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Introduction

Signals have a significant impact on our every day life. They are used for communication
and entertainment, in engineering and medicine, for traffic control, space exploration and
data compression. In all these applications, signals are used to transmit information.
This is why there has been a growing interest in the field of signal processing. Due to
the further development during the last decades, for example, in multimedia entertain-
ment and information systems, signals have gained even more attention. Even though
the foundations for (digital) signal processing were laid in the 17th century with the
invention of integration and differentiation and in particular in the beginning of the
19th century with the introduction of the Fourier series [39], the systematic exploration
began in the 1940s when Zuse presented the first programmable fully automatic digital
computer. Since then, signal processing has become a fundamental and influential field
of research. Due to the particular importance of technology in today’s digital world and
the extremely fast increasing performance of electronic devices, the efficient processing,
analysis, organization and manipulation of digital data has become more important than
ever before. Many of the latest advances facilitating our daily life do strongly depend
on digital signal processing.
In many applications, plenty of signals are created and thus it might come to a super-
position or mixture of signals. Moreover, the information contained in a signal might be
encoded such that it is not readily available. Thus, the ability to extract information
from a signal has become more and more essential for handling the huge amount of col-
lected signals (see e.g. [30]). It is clear that this comes along with the need of tremendous
computational power and the possibility to compress and efficiently store the data. In
this context, the notorious ‘curse of dimensionality’ [9] is a serious issue that concerns
the development of advanced tools and forces balancing accuracy and storage capacity.
However, the data can often be characterized by only few features and thus, it might
be sufficient to store only these for retrieving the signal when needed. This is why re-
search on the efficient extraction and reconstruction of information from data has been
intensified.
Especially in signal processing, the extraction of meta data is used in several applications
such as weather forecasts, where the relevant information needs to be selected from
meteorological data and satellite images, or robot control, where a matching of visual,
audio and other stimulations is demanded. Many applications, however, refer to audio
data, as for example, acoustic echo cancellation and denoising, automatic transcription
of music, application of audio effects to single instruments in a mixed recording, speaker
separation in video conferences, emotion recognition from speech signals or hearing aids,
which are able to accentuate different sources. In all these situations, an efficient method
to analyze the auditory scene in order to extract the essential information is needed.
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Introduction

It is not surprising that the exceptional capability of humans to focus on a certain source
within a mixture of multiple sound sources has aroused the interest of many researchers.
The ability to suppress ambient and background noise and disturbing sources and to
concentrate on a particular sound source has gone down as ‘cocktail party effect’ [26].
This selective hearing is based on spatial distances between the sources, differences in
pitch and quality or visual indicators such as lip reading [117]. Nevertheless, the current
state of scientific and technical knowledge is far from attaining results similar to those
of the human auditory system.
In the last decades, some relatively successful separation algorithms appeared, and thus,
investigation on this topic has been intensified (see e.g. [5, 22, 67, 99, 108, 117, 122, 128]).
One approach to technically solve the problem of extracting single sources from a mixed
signal is blind signal separation. It relies on no assumptions concerning the position of
sensors or sources in contrast to geometrical source separation by means of beamforming
(e.g. [6]) or similar methods.
Blind signal separation (BSS) recovers a set of unknown source signals from a set of
mixed signals or other observations. The set of observations is usually given as a set of
recordings, each a different combination of the source signals, depending on the position
of the sensor. In this context, ‘blind’ stands for the fact that the sources themselves are
not individually observed and that there is no information available about the mixing
process, i.e., the estimation is performed with hardly any knowledge about the sources,
as for example location or activity time. This ‘blindness’ is not a negative property, in
contrast, it is precisely the strength of BSS models making them flexible and useful in a
wide range of applications [20].
A joint feature of many BSS methods is the assumption that the observations are a
weighted sum of the unknown sources (for non-linear mixing models see for instance
[74, 110]). This assumption involves the restriction that there are at least as many
observations as latent sources in order to guarantee the solvability of the linear system
describing the mixing process.
However, as in many applications there is only one sensor recording the mixed signal (e.g.
monophonic music recordings), there is a strong demand for methods that can handle
the highly under-determined situation of such a single-channel problem. To circumvent
the problem of having fewer observations than latent source signals, the classical BSS
methods are usually combined with a preprocessing step involving time-frequency anal-
ysis in order to construct a larger set of observations. In the time-frequency space each
frequency evolution in time can be viewed as one observation. Thus, a monophonic
recording becomes a large data matrix.
As one of the main difficulties of the BSS problem is its under-determination, there
are several approaches how to further restrict the set of possible solutions. The most
popular ones are independent component analysis (ICA) and non-negative matrix fac-
torization (NNMF) or modifications of those. ICA-like methods aim for uncorrelated or
stochastically independent source signals whereas NNMF-based methods focus on struc-
tural properties of the sources such as sparsity. Both methods are frequently used in
single-channel separation, see e.g. [10, 20, 59, 60, 76] for ICA and [25, 91, 108, 121] for
NNMF.
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Figure 1: General proceeding of signal separation in the time-frequency
domain.

A broadly used enhancement of ICA is independent subspace analysis (ISA) introduced
by Hyvärinen and Hoyer in [58], popularized by Casey and Westner in [22] and used in
many applications e.g. [48, 111, 128]. This technique combines the classical ICA method
with a grouping of the extracted features. The source signals are found in so called
independent subspaces spanned by these features. This approach can also be combined
with NNMF (see e.g. [54]). Other decomposition methods that should not be overlooked
are, for example, azimuth discrimination and resynthesis (ADRess) [6], which tries to
locate the different sources in space by analyzing the phase-shifts of recordings made
at different positions, and computational auditory scene analysis (CASA) [16], which
tries to mimic the human ear by the consecutive application of different filters to the
time-frequency data of the recorded signal.
As a consequence, BSS methods cannot only be classified into those operating in the
time-amplitude or time-frequency domain, but also into those using ICA, NNMF or
another decomposition method.
The general proceeding in signal separation in the time-frequency domain can be sum-
marized in three steps (compare Figure 1). First, the input signal is transformed to the
time-frequency space. This generates a data set or data matrix whose columns contain
information on the frequencies of the signal at a certain time instant. This data matrix
is typically high-dimensional and its size depends on the width of the signal’s frequency
band and its temporal duration. The actual separation or decomposition is performed
on this data set by extracting features corresponding to different source signals. In this
way, the data matrix is split into different matrices which are a linear decomposition
of the original matrix. In the reconstruction step, the sources are computed from these
data sets by applying an inverse signal transform. The first and the last step of this
framework are quite well understood whereas the middle step is the one which causes
trouble. Not only the development of decomposition techniques but also the dimension of
the involved data sets represent a challenge, especially when it comes to almost-real-time
computation which is desirable for many audio-related applications.
To reduce costs and speed up computation, dimensionality reduction can be included
as a preprocessing step. The observation that often only few features (frequencies) are
needed to sufficiently characterize a signal supports the idea to first drastically reduce
the data’s dimensionality before decomposing. The decomposition has to be followed by
a lifting of the data to the original time-frequency domain before the inverse transform
is applied.
The concept of dimensionality reduction is also known from other applications and there
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Introduction

are plenty of different techniques available (for an overview see [119]). Not all of them are
well suited for the application in signal separation as the used decomposition technique
might require some extra properties of the data. Even though the high-dimensional
data possesses these properties, they are not necessarily conserved beyond the reduction
step. The entry-wise non-negativity of the data is such a property since NNMF requires
non-negative input data. The high-dimensional time-frequency data is usually non-
negative, but the application of an intermediate dimensionality reduction step might
cause negative entries in the low-dimensional representation. Thus, there is a need of
sophisticated reduction methods which are able to preserve non-negativity.
This is the core motivation for this work. We want to improve the audio signal sepa-
ration process for single-channel recordings by the use of non-negative dimensionality
reduction methods. To this end we proceed as depicted in Figure 2. An input signal

spectrograms
of f1 and f2

signal f

high-dimensional data X

low-dimensional data Y

decomposed data

signals f1, f2

signal transform

non-negative reduction map P

ICA, NNMF

inverse signal transform

back-lifting

Figure 2: Signal separation with non-negative dimensionality re-
duction. Before a decomposition technique is applied, the dimen-
sionality of the non-negative data X is reduced by a non-negativity
preserving dimensionality reduction method P . This allows a de-
composition of the low-dimensional data set Y by methods such
as NNMF which require non-negativity input data.

f is converted to a high-dimensional non-negative data matrix X in the time-frequency
domain. The application of a reduction map P which preserves the non-negativity of
the data leads to a low-dimensional representation Y which can be decomposed by the
above mentioned techniques. A suitable lifting transfers the decomposed data back to
the high-dimensional space where an inverse signal transform is used to finally obtain
the separated source signals fi.
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This procedure is especially well suited for high energy signals as percussion record-
ings or other transient signals. Usually, this kind of signals is particularly difficult to
separate since the different sources have a similar and very wide frequency range and
the frequencies within one source occur mostly independent from each other. Although
there are successful BSS methods for speech recognition [100] and polyphonic music
[22, 24, 79, 123], the separation of this particular class of signals is still a challenge.
In [5, 22, 35, 54] the separation of drum tracks has also been studied but the methods
are computationally expensive. A sub-band approach for transient signal separation is
proposed in [134].
The interaction of dimensionality reduction and signal separation was discussed in a few
publications, among them [36, 48, 49, 68, 117]. However, to the best of our knowledge
none of these references have discussed or even commented on the need of non-negativity
preserving dimensionality reduction for the application in this framework. This aspect
was only considered in our works [47, 69].
In resent years, there has been put some effort into the investigation of non-negative
dimensionality reduction methods (an overview can be found in [132]) for the application
in different contexts. Nonetheless, we are interested in developing new non-negative
preserving dimensionality reduction methods since the existing ones are not that suitable
for the use in signal separation. Especially non-negative principal component analysis
(NNPCA), which has been studied in different forms, is usually formulated with very
restrictive constraints involving e.g. sparsity. In the literature, several approaches to
NNPCA have been proposed. For example, in [133] and [4] algorithms to compute a
local optimal solution of the NNPCA problem can be found and in [92] an extension
for the multi-linear case of the latter is discussed. Another idea which uses a non-linear
PCA is presented in [89]. There are also some non-linear non-negative dimensionality
reduction methods available but they are based on similar sparsity assumptions which
do not hold for our application [78, 127, 132].
All in all, this justifies the request for new non-negativity preserving dimensionality
reduction methods. A common approach for creating new methods is the modification
and improvement of well-established ones. This has the advantage that the analysis
of those methods can be partly adopted and known facts can be recycled. Thus, one
objective of this work is to provide a general framework how classical dimensionality
reduction methods can be reformulated to extend their field of application to situations
where the non-negativity of data sets needs to be preserved. If a dimensionality reduction
problem is formulated as an optimization on the set of reduction maps, a non-negativity
constraint requiring the image of the data set under the reduction map to be non-
negative can be added. This makes the optimization even more complex and demands
novel solution procedures.
To this end, we propose a splitting approach which permits to first solve the well-studied
classical dimensionality reduction problem before applying a rotation in order to en-
force non-negativity of the low-dimensional data set. Our approach uses a similar idea
as Plumbley in [97] where a non-negative ICA algorithm is developed. We will extend
and apply this idea to dimensionality reduction settings which can be written as opti-
mization problems with rotationally invariant cost functionals. In this way, we create
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non-negativity preserving dimensionality reduction methods. Furthermore, the reduc-
tion also needs to fulfill a certain condition to guarantee that angles between data points
are not increasing under the reduction. If this is the case, the problem can be solved
by our approach and the remaining task is the computation of a solution. For this class
of reduction methods, the splitting approach is an elegant way of solving this particular
constraint optimization problem.
For the second step of the splitting approach, a suitable rotation map can be constructed
for the purpose of transforming the reduced data to the positive orthant of the Cartesian
coordinate system. The sought rotation is given by the solution of an auxiliary constraint
optimization problem on the group of orthogonal matrices. Due to the rotational invari-
ance, the value of the cost functional is not changed by the rotation and the solution of
the remaining optimization problem can be computed as in the non-constrained case. In
comparison to other approaches this ansatz is able to compute a global (not necessarily
unique) solution of the problem.
For the computation of the rotation we use the special structure of the admissible set of
the auxiliary optimization problem. It relies on the theory of Lie groups and associated
Lie algebras in order to transfer the optimization problem on the manifold SO(d) of spe-
cial orthogonal matrices to an optimization in the vector space so(d) of skew symmetric
matrices. We rigorously derive a steepest descent method on Lie groups which iterates
along curves on the manifold starting in the direction of a tangent vector. Usually, it is
quite difficult to determine such curves explicitly but the structure of a Lie group offers
a simple and efficient way to do so. Similar results can be found in [97] in an application
based informal formulation and for Newton’s method in [1, 81]. Due to this technique we
are able to construct a multiplicative update algorithm on the set of special orthogonal
matrices which results in a suitable rotation.
This theory enables us to use non-negative dimensionality reduction as a preprocessing
step for NNMF in blind signal separation. We will see that this combination leads to
a quite good separation and comes close to the results obtained by PCA and ICA. The
coupling of NNPCA and ICA yields similar results as PCA and ICA.

This work is organized as follows.
Chapter 1 of this thesis is concerned with the optimization on Lie groups. In Section 1.1,
we discuss some general facts from differential geometry in order to rigorously derive a
steepest descent method on Lie groups. In particular, we review differentiable manifolds
(Section 1.1.1), Lie groups (Section 1.1.2), Lie algebras (Section 1.1.3) and the expo-
nential map (Section 1.1.4) since the proposed steepest descent algorithm will benefit
from the Lie group structure of the admissible set. In Section 1.2, we first recall briefly
a steepest descent method in Rn (Section 1.2.1) before we extend this in Section 1.2.2
to Lie groups (Theorem 1.62). Generalizing an optimization algorithm on an abstract
manifold is only the first step. The second step is developing efficient numerical methods
which we discuss in Section 1.3. We transfer the concept of line search to Lie groups by
searching along descent curves on the manifold instead of straight lines in Rn (Theorem
1.66). This leads to a multiplicative update algorithm (Algorithm 1.73) which can be
efficiently implemented (Section 1.3.1). In Section 1.3.2, we apply the before-developed
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theory to an optimization on the Lie group of special orthogonal matrices. This example
will play a key role in our approach to non-negative dimensionality reduction (compare
Section 2.3.2).

In Chapter 2 we discuss non-negative dimensionality reduction. We start with a gentle
introduction to dimensionality reduction in Section 2.1 before we formulate the general
dimensionality reduction task as an optimization problem in Section 2.2. In the subse-
quent subsections we briefly review some linear (principal component analysis in Section
2.2.1 and multidimensional scaling in Section 2.2.2) and non-linear (Isomap in Section
2.2.3 and others in Section 2.2.4) dimensionality reduction methods that fit into this
formulation. Later, we will extend some of these methods to non-negativity preserv-
ing ones using the approach proposed in this chapter. The non-negative dimensionality
reduction problem itself is formulated in Section 2.3, where we start with an example
to motivate the need of non-negativity preserving methods (in Section 2.3.1). In Sec-
tion 2.3.2 we introduce our splitting approach to non-negative dimensionality reduction
methods. We state a sufficient condition (Theorem 2.33) which allows to successfully
apply this approach to non-negative dimensionality reduction problems. Furthermore,
we provide an alternative condition (Theorem 2.38) which relaxes the previous one. To
end this chapter, we show in Section 2.4 how this framework applies to different di-
mensionality reduction methods introduced in Section 2.2. For non-negative principal
component analysis (Section 2.4.1), we additionally determine a bound for the lowest
dimension to which we can reduce such that the splitting approach can still be used
(Theorem 2.41). We also discuss the splitting approach for non-negative multidimen-
sional scaling (Section 2.4.2) and prove that this ansatz is appropriate if the data is lying
in a linear subspace (Theorem 2.44).

The last chapter is concerned with applications. In Section 3.1, we explain the signal
separation procedure and we briefly review the involved methods. Among them are short-
time Fourier transform in Section 3.1.1, dimensionality reduction for signal separation in
Section 3.1.2 and decomposition techniques, namely ICA and NNMF, in Section 3.1.3.
In the second part of this chapter (Section 3.2), we will discuss some numerical examples.
We start with an introduction of the considered examples (Section 3.2.1) before we show
and analyze the results.

An alphabetical index of relevant terms and a short summary in English and German
can be found at the very end of this work behind the bibliography. All figures in the
present work are created by the author.
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1 Optimization on Lie groups

In the last decades there has been growing interest in optimization methods on sets
missing a vector space structure. In particular, the optimization on Lie groups is of
major importance as it has various applications, for example in numerical linear algebra
[80]. The wide field of examples concerns optimization with matrix constraints, as e.g.
orthogonality conditions or conditions concerning the determinant.
For these reasons, numerous optimization algorithms on manifolds have been proposed,
for an overview see e.g. [83]. In contrast to the optimization on Rn, the optimization on
manifolds encounters more difficulties as these are in general not convex. In particular,
straight lines are often not contained in the manifold, which makes line search algorithms
and other descent based techniques not directly applicable.
Basically, optimization algorithms on manifolds can be classified into projection and
retraction based iterative methods. Projection methods perform updates without taking
care about staying in the manifold and project the current iterate after each iteration
step back to the manifold as e.g. in [40] or in [103] and for the Grassmannian and Stiefel
manifold in [82]. The projection can be done either orthogonal to the update direction
(i.e., to the tangent space at the previous step) or orthogonal to the manifold (i.e., to the
tangent space at the current step). The former is computationally cheap but difficult
to study analytically and the latter is computationally expensive but in general not as
costly as retraction methods (see e.g. [77]). Retraction methods (e.g. geodesic flow)
however, are the more natural approach as they try to generalize the optimization in
vector spaces (see [109] and [102] and the references therein). Here, the basic idea is to
optimize by following curves (as e.g. geodesics) on the manifold starting in the direction
of a tangent vector in analogy to lines in vector spaces. This analogy permits generalizing
standard methods such as steepest descent, Newton, conjugate gradient and others as
also possible for the projection approach.
A bottleneck of many retraction methods is the computation of the geodesics themselves
because it increases the complexity of standard methods considerably. Considering man-
ifolds that are Lie groups, a certain type of retraction methods - so called Lie group
methods - unfold their full potential. In fact, Lie group methods take advantage of the
group structure of the manifold which gives them a head start compared to optimization
on arbitrary manifolds.
Lie groups possess a certain structure which allows generalizing some nice properties
of the optimization on vector spaces. More precisely, the tangent space of a Lie group
at the identity can be endowed with an algebraic structure which allows inducing a
special Riemannian metric on the Lie group. The structures on both sets are linked in a
natural way by the exponential map which makes computation - and thus, optimization
- feasible. Furthermore, due to this link there are particular curves on the Lie group
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1 Optimization on Lie groups

that can be used as retractions and that are computable at reasonable costs. This is
why the optimization on Lie groups has gained more attention recently.
A general overview on optimization on matrix manifolds using the retraction approach
can be found in Absil et al., see [2]. The same group developed ‘Manopt’ [13], an open
source matlab toolbox for optimization on manifolds which does not use the particular
structure of Lie groups. Newton’s and conjugate gradient methods on Grassmannian
and Stiefel manifolds are discussed in [32] (and the references therein) whereas Newton’s
method on Lie groups has been studied in [81]. A survey on Lie group methods and
their applications to ODEs can be found in [61] and the application of similar methods
in control theory is discussed in [15]. A very recent result concerning extremum seeking
algorithms on manifolds can be found in [112]. This list does not claim to be complete,
further references can be found e.g. in [83].
In this work, we wish to address the optimization on Lie groups using the method of
steepest descent. We focus on the rigorous derivation of the algorithm, what in this
way has not been done before, to the best of our knowledge. In comparison to [40], we
exploit the Lie group structure of the manifold in order to reduce the computational
cost. Our approach is inspired by a paper of Plumbley [97], where the optimization on
the Lie group of special orthogonal matrices SO(n) is described in an informal way, but a
fundamental derivation of the underlying mathematics is missing. A similar but different
approach can be found in [113] where an optimal rotation on SO(3) is computed by a
trust-region method using the matrix exponential and a description of SO(3) based on
quaternions.
In contrast, the method we propose is not restricted to a particular class of Lie groups
and it is derived from scratch. In a certain sense it can be seen as a generalization
of [96] and [98]. It is designed for optimization problems with arbitrary but smooth
cost functional and a Lie group as constraint set and it is primarily based on the link
between a Lie group and its associated Lie algebra. This is the core idea of all Lie group
methods since both sets are linked in a canonical way by the exponential map. This
allows outsourcing some steps of the optimization procedure to the Lie algebra, where
computation is more comfortable due to the vector space structure.
As descent direction we have chosen the negative gradient. Certainly, other descent
directions can be used and might lead to more sophisticated algorithms but this was not
the objective of this work. For other descent directions compare e.g. [1] and [80].

This chapter concerns the optimization on Lie groups. In Section 1.1, we give an overview
on some basic concepts of differential geometry, in particular Lie groups, in order to
introduce the subject and to fix the terminology. The content of this section can be
found in many text books but for the sake of completeness we recall among others the
definition and main properties of differentiable manifolds in 1.1.1, Lie groups in 1.1.2 and
Lie algebras in 1.1.3 and in 1.1.4 we introduce the exponential map. A short summary
of this theoretical introduction is given in 1.1.5. In between we discuss some examples to
make the theory more easily accessible and in view of the applications in this work. This
theoretical part may seem a bit lengthy but we think that the effort of understanding
the theory pays off in the following sections. Section 1.2 concerns a key part of this
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work, namely the generalization of gradient descent methods to Lie groups. We first
briefly recall the gradient descent in 1.2.1 before we come to its formulation on Lie
groups in 1.2.2. In this subsection, we also introduce the algorithm further discussed
and developed in the next and last section of this chapter. In Section 1.3.1, we modify the
formerly derived algorithm to make computation feasible and efficient. This is followed
by an example from non-negative dimensionality reduction in 1.3.2. Here we consider an
optimization on the set of rotation matrices which will be a core part of our approach to
non-negativity preserving dimensionality reduction methods introduced in Section 2.3.
At the end of Section 1.3, we will summarize our achievements in 1.3.3.

1.1 Manifolds, Lie groups and Lie algebras
This section aims to give an overview of some basic ideas concerning differential geometry
and in particular Lie groups.
We will start with a gentle introduction to differentiable manifolds with a focus on the
tangent space, a linear approximation of a manifold at a point. The tangent space plays
an important role, since it permits a generalization of the differential to manifolds and
defines the tangent bundle as the union of all tangent spaces. We will describe a tangent
vector’s action on smooth functions by generalizing the concept of directional derivatives
to smooth curves on the manifold. Furthermore, we introduce the Riemannian metric
to endow the tangent spaces with inner products.
Next, we will consider differentiable manifolds which have additionally a group structure.
These so called Lie groups have some very nice properties. Introducing vector fields, i.e.,
maps between a Lie group and its tangent bundle, allows us to define the associated Lie
algebra of a Lie group as the set of its left-invariant vector fields.
Furthermore, we will see that the Lie algebra is isomorphic to the tangent space at
the identity and naturally linked to the Lie group by the exponential map. This map
defines curves on the Lie group, so called 1-parameter subgroups, which can be used for
optimization.
At the end of this section, we point out the consequences of the presented theory for
matrix groups. In particular, we will see that the exponential map is basically given by
the matrix exponential.
All facts of this section can be found in the books [14] by Bredon, [126] by Warner, [50]
by Hall and [120] by Varadarajan. For a deeper insight we refer to the same sources.

1.1.1 Manifolds
A basic structure in topology is the topological space which is a pair (X, T ) consisting of
a set X and a topology T on X, where the topology T is a family of subsets of X (called
open sets) fulfilling the following three axioms. 1. The empty set and the set X itself
are open sets. 2. The intersection of a finite number of open sets is open. 3. The union
of (finitely or infinitely many) open sets is open. A basis of the topological space (X, T )
is a subset of T such that every open set in T can be written as a union of elements
of the basis. Recall that a topological space is second-countable if its topology has a
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1 Optimization on Lie groups

countable basis. Furthermore, a topological space is said to be Hausdorff if distinct
points have disjoint neighborhoods, i.e., for all x, y ∈ X with x 6= y there exist disjoint
open neighborhoods.

Definition 1.1. A topological manifold M of dimension n is a second-countable, Haus-
dorff topological space that is locally homeomorphic to Rn.

Remark 1.2. From the definition it follows that a topological space looks locally like
a piece of Rn. Locally homeomorphic to Rn or locally Euclidean means that for all
p ∈ M there exists an open neighborhood Up ⊂ M and an injective, continuous map
φ : Up → Rn such that the inverse map φ−1 : φ(Up)→ Up is also continuous.
The homeomorphism φ called coordinate map or chart induces a local coordinate system
on Up through the coordinate functions xi given by xi = πi ◦ φ, i = 1, . . . n. Here, πi is
the projection on the ith component.
Consider a second chart ψ on a neighborhood Vp of p ∈ M with coordinate functions
yi = πi ◦ ψ. Then, two different coordinate systems (Up, φ) and (Vp, ψ) are induced
on the neighborhood Up ∩ Vp of p and any point in the intersection has two coordinate
descriptions. The change of coordinates from one system to the other is then defined by
the map ψ ◦ φ−1 since we have (y1, . . . yn) = ψ = ψ ◦ φ−1 ◦ φ = ψ ◦ φ−1(x1, . . . xn). The
change of coordinates is continuous since ψ and φ−1 are so.
Remark 1.3. Locally Euclidean spaces do not need to be Hausdorff. To see this, consider
the line with two origins, which is created by replacing the origin of the real line by two
points. Then, any open neighborhood of either points consist of all nonzero numbers of
an interval around zero. This space is not Hausdorff, because we cannot find disjoint
neighborhoods for the two origins, but it is locally homeomorphic to R.
Remark 1.4. In general, it is not necessary to require second-countability. However,
this property guarantees that the manifold can be embedded in a finite dimensional
Euclidean space. In fact, it gives us a partition of unity which is useful to pass from the
local coordinate maps to global properties (e.g. Theorem 1.11).
Remark 1.5. A topological manifold is not necessarily connected, i.e., it might be the
disjoint union of two non-empty open subsets. The connected components of a topological
manifold M are its maximal connected subsets and a topological manifold is called
simply connected if it is connected and every loop on M is null-homotopic (i.e., it can
be contracted to a point).
Using the induced coordinate systems and the change of coordinates one can further
classify manifolds.

Definition 1.6. An n-dimensional differentiable manifold of class Ck (1 ≤ k ≤ ∞) is
a topological manifold M of dimension n together with a collection of local coordinate
systems {(Uα, φα) : α ∈ A} with the following properties:

(i) every point in M is contained in at least one Uα, i.e.,
⋃
α∈A Uα =M,

(ii) the change of coordinates φα ◦ φ−1
β from the set φβ(Uα ∩ Uβ) ⊂ Rn onto the set

φα(Uα ∩ Uβ) ⊂ Rn for all α, β ∈ A is Ck,
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(iii) the collection of coordinate systems is maximal with respect to (ii): if (U, φ) is a
coordinate system such that φ ◦φ−1

α and φα ◦φ−1 are Ck for all α ∈ A, then (U, φ)
belongs to the collection.

Remark 1.7. A manifold is called smooth if it is of class C∞. The collection of coordinate
systems is called differentiable structure of class Ck or atlas.

Definition 1.8. The continuous map ϕ : M→ N is k-differentiable (or smooth if k =
∞) if and only if φ ◦ ϕ ◦ ψ−1 is k-differentiable for each coordinate map ψ of M and φ
of N . Then, we write ϕ ∈ Ck(M,N ) or just ϕ ∈ Ck. For Ck(M,R) we usually write
Ck(M).

Remark 1.9. For a k-differentiable function f : M→ R we write ∂
∂xi
f(p) to denote the

partial derivative of f ◦ φ−1 with respect to the ith argument evaluated at φ(p).
Now that we have introduced smooth mappings between manifolds, we are able do define
some other important objects. Together with the linearization concept of the differential
(which we introduce in the next subsection, see (1.1)) we can define submanifolds and
embeddings. Let ϕ : M→N be a smooth mapping between manifolds. If the differential
(dϕ)p : TpM → Tϕ(p)N is injective for each p ∈ M, it is called an immersion. If
furthermore ϕ is injective, the pair (M, ϕ) is a submanifold. Finally, ϕ is an embedding
if it is an injective immersion which is also a homeomorphism onto its image. That is, ϕ
is open as a map into ϕ(M) with the relative topology. Moreover, ϕ is a diffeomorhism if
ϕ is bijective and ϕ−1 is C∞. Last but not least, ϕ is a submersion if (dϕ)p is surjective
for each p ∈M.
Remark 1.10. For ϕ being an embedding it is essential that it is an injective immersion.
If ϕ would just be a homeomorphism on its image, only the topological and not the
differentiable structure would be inherited.
For dimensionality reduction, high-dimensional data sets are considered as points on a
manifold of dimension n. But, since it is easier to handle these sets in an Euclidean
space, the following embedding theorem is very useful. It allows finding a Euclidean
space (namely R2n) in which the manifold (and thus the data) can be embedded.

Theorem 1.11 (Whitney Embedding Theorem). Every smooth manifold M of
dimension n can be smoothly embedded in R2n, i.e., there exists a smooth embedding
g : M→ R2n.

Proof. See [14].

Remark 1.12. This bound is sharp as for example the real projective plane, a 2-dimen-
sional manifold, cannot be embedded in R3 without intersecting itself. The real projec-
tive plane can be thought of as the object we obtain by gluing a disk to the edge of the
Möbius stripe (see [124]).
One way to construct an n-dimensional manifold M is to consider the special case of
embedded submanifolds of RN . If, for example, M is a surface (i.e., N = n + 1), the
tangent space at a point p ∈ M is the collection of all vectors starting in p and being
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tangential to M. In this case, the tangential space can be thought of as a copy of Rn
attached to p. This graphic description of the tangent space relies on the fact that we
haveM embedded in RN . Nevertheless, there are also descriptions of the tangent space
not depending on having the manifold a priori embedded in some Euclidean space.
The above heuristics are in fact nothing else but defining a tangential vector to a point
p as the derivative of a curve on the manifold at the point where it passes through p. If
the manifold is not embedded in an Euclidean space, the derivative of such a curve can
be defined using the coordinate maps to locally transfer the problem.
In the further course of this chapter we wish to apply a tangent vector’s action on
smooth functions f : U ⊆ M → R. Therefore, we will elaborate a slightly different
heuristic which leads to an equivalent definition. The idea is to generalize the concept
of directional derivatives (well-known from real analysis) to curves on manifolds.
Let γ : ]−ε, ε[→M be a smooth curve with γ(0) = p and let Fp(M) be the set of germs
of smooth real-valued functions defined on a neighborhood of p. The germ at p is the
equivalence class of smooth functions defined by the relation f1 ∼ f2 if there exists an
open neighborhood U of p with f1|U = f2|U . In the following, we will not distinguish
between f and its equivalence class. The tangent vector to the curve γ at t = 0 is defined
as the mapping

γ̇(0) : Fp(M)→ R, with γ̇(0)f = d
dtf ◦ γ(t)

∣∣∣∣
t=0

.

This definition of a tangent vector to a curve allows to formally define tangent vectors
to a manifold at a point p ∈M.

Definition 1.13. A tangent vector ξp to p ∈M is a mapping

ξp : Fp(M)→ R, with ξpf = γ̇(0)f,

where γ : ]−ε, ε[→M is any curve with γ(0) = p.
The set of all tangent vectors at p is denoted by TpM and it is called the tangent space
of M at p.

Remark 1.14. The tangent vector to γ is defined as a mapping and not as time derivative
lim
τ→0

γ(τ)−γ(0)
τ as perhaps expected. However, if the manifold is embedded in an Euclidean

space, this expression is well-defined and known as

γ′(0) = d
dtγ(t)

∣∣∣∣
t=0

.

The link between both, γ̇(0) and γ′(0) is given by

γ̇(0)f = d
dt(f ◦ γ)

∣∣∣∣
t=0

= df(γ(0)) · γ′(0).

This shows that {γ′ : γ curve in M, γ(0) = p} is isomorphic to TpM. Therefore, in our
application we can identify both sets. For general manifolds, however, we need to stick
to the abstract definition.
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1.1 Manifolds, Lie groups and Lie algebras

Clearly, there are different curves γ1 6= γ2 defining the same tangent vector at p. There-
fore, it is appropriate to consider equivalence classes of such curves instead of the curves
themselves. For p ∈ M we define the equivalence relation on the set of curves γ like
the one in Definition 1.13: Two curves γ1 and γ2 are equivalent if and only if there is a
coordinate system (Uα, φα) so that (φα ◦ γ1)′(0) = (φα ◦ γ2)′(0).
Remark 1.15. The tangent space is an n-dimensional vector space. This can be seen
by considering for a chart φ the linear map (dφ)p : TpM → Rn defined as (dφ)p [ξp] =
(φ◦γ)′(0), where γ is a curve defining ξp. This map is bijective (injective by construction
of the equivalence relation and surjective since for a given vector v ∈ Rn the curve
γ = φ−1 ◦ g is in the preimage of v, where g : ]−ε, ε[ → Rn with g(t) = φ(p) + tv) and
thus, (dφ)p induces the structure of an n-dimensional vector space on the tangent space
TpM. This construction does not depend on the choice of (Uα, φα).
The linear map (dφ)p in Remark 1.15 is called the differential of φ at p. This concept
can be generalized to Ck-maps between differentiable manifolds: For a differentiable
map ϕ : M→N we define the differential

(dϕ)p : TpM→ Tϕ(p)N
ξp 7→ (dϕ)p [ξp] ,

(1.1)

where (dϕ)p [ξp] f = ξp(f ◦ ϕ) for f ∈ Fϕ(p)(N ). The application of (dϕ)p to a tangent
vector ξp is also called pushforward of ξp along ϕ.
Remark 1.16. Since the tangent vectors are operating on smooth functions f : M→ R,
it makes sense to verify if the product rule known from real analysis also holds for the
directional derivative on manifolds. For f, g ∈ Fp(M) it holds

ξp(f · g) = γ̇(0)(f · g) = d
dtf · g ◦ γ

∣∣∣∣
t=0

= d
dt ((f ◦ γ) · (g ◦ γ))

∣∣∣∣
t=0

=
[ d

dt(f ◦ γ) · (g ◦ γ) + (f ◦ γ) · d
dt(g ◦ γ)

]∣∣∣∣
t=0

= g(p) · (ξpf) + f(p) · (ξpg).

Remark 1.17. Furthermore, we verify the chain rule for smooth functions. Let ϕ : P → N
and ψ : M→ P, p ∈M, f ∈ Fϕ(ψ(p))(N ) and ξp ∈ TpM, then it holds

(dϕ ◦ ψ)p [ξp] f = ξp(f ◦ ϕ ◦ ψ)
= (dψ)p [ξp] f ◦ ϕ
= (dϕ)ψ(p) [(dψ)p [ξp]] f
= (dϕ)ψ(p) ◦ (dψ)p [ξp] f

and thus
(dϕ ◦ ψ)p = (dϕ)ψ(p) ◦ (dψ)p.
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1 Optimization on Lie groups

We will show that the collection of all tangent vectors ξp to a differentiable manifold
can be endowed with a differentiable structure and thus builds itself a differentiable
manifold. For the manifoldM we define T (M) =

⊔
p∈M TpM, the set of all pairs (p, ξp)

with ξp ∈ TpM. Then, there is a canonical projection on the manifold π : T (M) →M
with π(p, ξp) = p. Consider a coordinate system (Uα, φα) in M, then we can define a
map φ̃α on π−1(Uα) ⊂ T (M)

φ̃α : π−1(Uα)→ φα(Uα)× Rn ⊂ R2n

(p, ξp) 7→ (φα(p), (dφα)p [ξp]) .

With the maps φ̃α we can define a canonical basis {φ̃−1
α (W ) : W open in R2n and α ∈ A}

for a topology on T (M) and thus, restricting its range to its image φ̃α is a homeo-
morphism. This shows that T (M) is indeed a 2n-dimensional, second-countable, lo-
cally Euclidean space. Furthermore, the definition of the coordinate maps yields a
smooth change of coordinates φ̃α ◦ φ̃−1

β . Hence, the maximal collection containing
{(π−1(Uα), φ̃α) : α ∈ A} forms a differentiable structure on T (M) (compare Definition
1.6).

Definition 1.18. The smooth manifold T (M) is called tangent bundle of M.

The concept of a differential (dϕ)p of a mapping ϕ : M→ N at a point p can be used
to define a mapping on the corresponding tangent bundles

dϕ : T (M)→ T (N )
dϕ [p, ξp] = (ϕ(p), (dϕ)p [ξp]) .

(1.2)

The differential dϕ inherits the properties of (dϕ)p as for example the chain rule (dϕ◦ψ =
dϕ ◦ dψ).
Now, we can study mappings from a manifold to its tangent bundle and we have an idea
what smoothness is in this setting. Such mappings will play an important role in the
definition of a Lie algebra.

Definition 1.19. A vector field X on an open set U ⊂M is a map X : U → T (M) such
that π ◦X = id|U , called a lifting of U into T (M), i.e., the following diagram commutes

T (M)

U M

πX

Remark 1.20. For a point p ∈ U , the image is denoted X(p) = (p,Xp), where Xp is
an element of TpM. The set of smooth vector fields on an open set U forms a vector
space over R. Here, the vector space operations act only on the second part of the tuple
(p,Xp) and therefore, we might sometimes write Xp instead of (p,Xp). The action of a
vector field X on C∞(M) is defined as

(Xf) (p) = Xp(f).
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We have seen in Remark 1.15 that each tangent space TpM ofM is a vector space. Thus,
it is natural to endow them with inner products 〈 · , · 〉TpM which clearly will depend on
p. Furthermore, if this dependence on p is smooth, i.e., for any two smooth vector fields
X and Y the mapping p 7→ 〈Xp, Yp〉TpM is smooth, we call the family

(
〈 · , · 〉TpM

)
p∈M

a Riemannian metric on M and M a Riemannian manifold.
Remark 1.21. Even though the family is called ‘metric’, it is not a metric in the classical
sense. Nevertheless, it induces a metric on M similarly to the Euclidean inner product
on Rn. Roughly speaking, the distance of two points in M is defined as the length of
the shortest curve γ : R → M connecting both points. This distance measure induces
the same topology on M as used for the definition of the manifold.
In the following, we would like to define a product-like operation on the set of smooth
vector fields in order to later on endow a subset of this vector space with the struc-
ture of an algebra. To this end, we introduce derivations δ on C∞(M) as linear maps
δ : C∞(M)→ C∞(M) which fulfill the product rule

δ(f · g) = δ(f) · g + f · δ(g).

The vector space of all derivations on C∞(M) is denoted by D(M). We observe that a
vector field X defines in a natural way a derivation

LX : C∞(M)→ C∞(M)
f 7→ LX(f),

where LX(f)(p) = (df)p [Xp]. The mapping X 7→ LX is an isomorphism of vector spaces
between the space of smooth vector fields and D(M) (see [94]). Note that in general the
composition of derivations is not a derivation itself since the product rule does not hold:

δ1 ◦ δ2(f · g) = δ1 ◦ δ2(f) · g + δ2(f) · δ1(g) + δ1(f) · δ2(g) + f · δ1 ◦ δ2(g).

In contrast, it can easily be seen from this that δ1 ◦ δ2 − δ2 ◦ δ1 is a derivation. This is
an important observation. Now we can deduce that for two smooth vector fields X and
Y there exists a smooth vector field [X,Y ] with

L[X,Y ] = LX ◦ LY − LY ◦ LX , (1.3)

due to the isomorphy of the space of smooth vector fields and D(M).

Definition 1.22. If X and Y are smooth vector fields on M, the vector field [X,Y ] is
called Lie bracket of X and Y or commutator.

Remark 1.23. The Lie bracket of X and Y is anti-commutative ([X,Y ] = −[Y,X]) and
the Jacoby identity holds: [[X,Y ], Z]+ [[Y,Z], X]+ [[Z,X], Y ] = 0, for all smooth vector
fields X,Y, Z onM. A vector space with a bilinear operation which is anti-commutative
and satisfies the Jacobi identity is called a Lie algebra. We will give more information
on this in the next subsections.
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1.1.2 Lie groups
Lie groups are a very important class of differentiable manifolds. They are closely related
to Lie algebras since there is a natural link between a Lie group and its Lie algebra of
left-invariant vector fields. Due to this, optimization on Lie groups will turn out to be
practicable in an elegant way.

Definition 1.24. A Lie group G is a differentiable manifold which additionally has
a group structure such that the group product (g1, g2) 7→ g1g2 and the inverse map
g 7→ g−1 are smooth.

Remark 1.25. Group structure means that there is a map G×G→ G (also called group
operation or group product) which is associative and which admits an identity element
e and inverse elements.
Remark 1.26. Instead of requiring the group product and the inverse map to be smooth,
it is sufficient to require the map G×G→ G defined by (g1, g2) 7→ g1g

−1
2 to be smooth.

It is easy to see that both definitions are equivalent.
Example 1.27 (General linear group). The general linear group GL(n,R), the set of all
n×n non-singular matrices (i.e., with non-zero determinant), is a Lie group. To see this,
first of all notice that the set of all n× n matrices M(n,R) is diffeomorphic to Rn2 and
that the restriction of this diffeomorphism ϕ to GL(n,R) is an injective immersion since
GL(n,R) is an open subset of M(n,R). Thus GL(n,R) is a (differentiable) submanifold
of Rn2 . Its dimension is n2 since the diffeomorphism ϕ|GL(n,R) is also a coordinate map on
the open set GL(n,R). Furthermore, the matrix multiplication defines a smooth group
product on GL(n,R). We also observe, that GL(n,R) has two connected components:
the two sets of matrices with determinant less than zero and greater than zero. These
two sets are open and connected since the determinant is continuous from GL(n,R) to
R.

Definition 1.28. (H,ϕ) is a Lie subgroup of the Lie group G if

(i) H is a Lie group,

(ii) (H,ϕ) is a submanifold of G, i.e., ϕ : H → G is an injective immersion,

(iii) ϕ : H → G is a group homomorphism.

Example 1.29 (Orthogonal group). The orthogonal group O(n,R) ⊂ GL(n,R) or just
O(n) is the set of orthogonal matrices (i.e., A−1 = AT for A ∈ O(n)). The orthogonal
group is a Lie subgroup of GL(n,R): as before we take ϕ to be the inclusion map to
show (ii), i.e., that O(n) is a submanifold of GL(n,R). For (i) we use that the product
of two orthogonal matrices is indeed orthogonal and (iii) is obvious. In Remark 1.31 we
will see that the dimension of O(n) is n(n−1)

2 .
Example 1.30 (Special orthogonal group). Furthermore, O(n) has two connected com-
ponents: the sets of orthogonal matrices with determinant −1 and 1. The latter is the
set of special orthogonal matrices SO(n), also called the set of rotation matrices, which
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is a connected Lie subgroup of O(n). In contrast, the set of orthogonal matrices with
determinant −1 is not a Lie subgroup since it is not closed under multiplication.
Remark 1.31. Using the submersion Theorem (see e.g. [2] p. 26 or [105] p. 53) which
basically reads

the preimage ϕ−1(q) of a smooth mapping ϕ : M→N , with (dϕ)p surjective
for all p ∈ ϕ−1(q), is either empty or a differentiable manifold of dimension
dim(M)− dim(N )

we can show that the dimension of SO(n) is n(n−1)
2 .

Define GL+(n) := {A ∈ GL(n,R) : det(A) > 0} and Sym(n) := {B ∈ M(n,R) : BT =
B} and consider ϕ : GL+(n) → Sym(n) given by ϕ(A) = ATA − Idn. We observe that
ϕ is differentiable with (dϕ)A : TAGL+(n)→ Tϕ(A) Sym(n) and

(dϕ)A [ξA] f = ξA(f ◦ ϕ) = df(ATA− Idn) · (γ′(0)TA+ATγ′(0)),

where f ∈ Fϕ(A) Sym(n) and γ a curve defining ξA. Now, we prove that (dϕ)Ã is
surjective for Ã ∈ ϕ−1(0), i.e., for Ã orthogonal with det(Ã) = 1. To this end, let
ξ0 ∈ T0 Sym(n) be a tangent vector with defining curve β. We construct a preimage ξÃ
of ξ0 using γ(t) = 1

2Ãβ(t) + Ã ∈ GL+(n) as defining curve. We compute

(dϕ)Ã
[
ξÃ
]
f = df(ÃT Ã− Idn) · 12

((
Ãβ′(0)

)T
Ã+ ÃT Ãβ′(0)

)
= df(0n) · 12

(
β′(0)T + β′(0)

)
= df(0n) ·β′(0)

= d
dt(f ◦ β)

∣∣∣∣
t=0

= ξ0f.

This shows that (dϕ)Ã is surjective and thus, we can apply the above mentioned theorem.
This yields

dim(SO(n)) = dim(ϕ−1(0)) = dim(GL+(n))− dim(Sym(n))

= n2 − n(n+ 1)
2

= n(n− 1)
2 .

Here, we used the facts that GL+(n) ⊂ Rn2 is an open subset and Sym(n) an n(n+1)
2 -

dimensional vector space.
The special orthogonal group plays a very important role in this work. In order to com-
pute a low-dimensional representation of high-dimensional time-frequency data which
preserves the non-negativity of the input data, we will have to solve an optimization
problem on the set SO(n), see Section 1.3.2 and 2.3. To carry out this optimization,
we will use the relation between SO(n) and its Lie algebra. We will now introduce
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left-invariant vector fields which are essential for the definition of the Lie algebra of a
Lie group.

Definition 1.32. For g ∈ G, the left-translation by g is the diffeomorphism `g : G→ G
defined by `g(h) = gh. A vector field X on G is called left-invariant if for each g ∈ G
we have

d`g ◦X = X ◦ `g. (1.4)

This means that the following diagram commutes

G G

T (G) T (G)

`g

X X

d`g

Note that a left-invariant vector field X is uniquely defined by its value at the identity
e ∈ G since

X(g) = X ◦ `g(e)
(1.4)= d`g ◦X(e), for all g ∈ G.

Remark 1.33. The vector field X in the above definition is not assumed to be smooth.
However, it can be shown that left-invariant vector fields are smooth.
The set of all left-invariant vector fields on a Lie group G will be denoted by g.
Note that analogously right-invariant vector fields can be defined and all further consid-
erations of this work can also be done for right-invariant vector fields.
Example 1.34. In Example 1.30, we introduced the Lie group SO(n) of special orthogonal
matrices. Let us now identify the left-invariant vector fields of SO(2) in order to illustrate
the above introduced theory. Here, we stick to n = 2 since there is a simple description
of SO(2) =

{ (cosα − sinα
sinα cosα

)
: α ∈ R

}
.

As a first step, we compute the tangent space TpSO(2) for p =
(

cos ρ − sin ρ
sin ρ cos ρ

)
∈ SO(2).

Therefore, let β : ]−ε, ε[→ R with β(0) = ρ and β′(0) = b be a smooth curve such that
γ : ]−ε, ε[→ SO(2) with γ(t) =

(
cos β(t) − sin β(t)
sin β(t) cos β(t)

)
defines also a smooth curve. Then,

γ′(t) = β′(t)
(
− sin β(t) − cos β(t)
cos β(t) − sin β(t)

)
and

γ′(0) = b
(
− sin ρ − cos ρ
cos ρ − sin ρ

)
=
(

cos ρ − sin ρ
sin ρ cos ρ

) (
0 −b
b 0

)
= pB.

With the identification of Remark 1.14, we observe that the tangent space at the identity
(i.e., ρ = 0) is given by the skew-symmetric matrices TId2SO(2) =

{ (0 −b
b 0

)
, b ∈ R

}
=

Skew(2).

12



1.1 Manifolds, Lie groups and Lie algebras

The second step is now to describe smooth vector fields X and the differential of the
left-translation d`g. Any vector field X on SO(2) can be described by a smooth function
of the form F : SO(2)→ Skew(2) with F (p) = Bp through

X : SO(2)→ T (SO(2))
p 7→ (p, pBp).

Furthermore, for g =
(

cos θ − sin θ
sin θ cos θ

)
the left-translation `g : SO(2)→ SO(2) with `g(p) =

gp has the differential

d`g : T (SO(2))→ T (SO(2))
(p, pB) 7→ (gp, gpB).

This can be seen using once more the identification of Remark 1.14 which yields

(d`g)p
[
γ′(0)

]
= (`g ◦ γ)′(0) = gγ′(0).

Now, we use the definition of left-invariant (1.4) vector fields to determine which choices
of Bp yield a left-invariant vector field X:

d`g ◦X(p) = (gp, gpBp)
X ◦ `g(p) = (gp, gpBgp).

Hence, equation (1.4) yields the condition Bp = Bgp for any p and g. Especially, for
p = Id2, we have BId2 = Bg for any g and thus, the set of left-invariant vector fields of
SO(2) can be described as so(2) = {p 7→ (p, pB) : B ∈ Skew(2)}.
As another example, we compute the left-invariant vector fields of the additive group R.
This consideration will be useful in Section 1.1.4.
Example 1.35. As before, we first characterize the tangent space TrR. Let γ : ]−ε, ε[→ R
be a smooth curve with γ(0) = r and let f ∈ Fr(R), then γ̇(0)f = d

dtf(γ(t))
∣∣∣
t=0

=
f ′(r) · γ′(0). Thus, the tangent space is given by

TrR =
{
ξr : Fr(R)→ R such that ∃c ∈ R : ξrf = cf ′(r)

}
=
{
c

d
dt

∣∣∣∣
t=r

: c ∈ R
}
.

Next, we describe vector fields X by their action on f ∈ C∞(R)

(Xf)(r) = Xr(f) = cr
d
dtf(t)

∣∣∣∣
t=r

.

We need to choose the dependence of cr on r such that X is left-invariant. Therefore,
consider(d`s)r : TrR→ Ts+rR,

(d`s)r
[
c

d
dt

∣∣∣∣
t=r

]
f = c

d
dtf(`s(t))

∣∣∣∣
t=r

= c
d
dtf(t)

∣∣∣∣
t=r+s

13



1 Optimization on Lie groups

and compute

((d`s ◦X)f) (r) = cr
d
dtf(t)

∣∣∣∣
t=r+s

,

((X ◦ `s)f) (r) = (X ◦ `s)r(f) = (Xs+r) (f) = cr+s
d
dtf(t)

∣∣∣∣
t=r+s

.

Similarly, to the previous example we deduce cr = cr+s for any r and s. In par-
ticular, cs = c0 and hence, the left-invariant vector fields on R are characterized by
r =

{
r 7→ c0

d
dt

∣∣∣
t=r

: c0 ∈ R
}

. Moreover, this shows that r 7→ d
dt

∣∣∣
t=r

, shortly written as
d
dt , is a basis of the vector space r.

1.1.3 Lie algebras
For each Lie group there is a special Lie algebra which is closely related to it. Due to
this link, the properties of a Lie group can be reflected as properties of its associated Lie
algebra. Therefore, we have special interest in Lie algebras because this relation can be
used to solve optimization problems whose constrained sets are Lie groups.
The following definition seizes Remark 1.23 concerning the Lie bracket of a vector field.

Definition 1.36. A Lie algebra a over R is a real vector space a together with a bilinear
map [ , ] : a× a→ a with the following properties:

(i) [X,Y ] = −[Y,X], for X,Y ∈ a (anti-commutativity)

(ii) [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0, for X,Y, Z ∈ a (Jacobi identity)

For X,Y ∈ a, [X,Y ] is called the Lie bracket of X and Y .

Example 1.37. The vector space M(n,R) of all n× n matrices forms a Lie algebra if we
set [A,B] = AB −BA.
Example 1.38. The vector space Rn endowed with the trivial Lie bracket [x, y] = 0 is a
Lie algebra.

Theorem 1.39. Let G be a Lie group and g its set of left-invariant vector fields. Then,

(i) g is a real vector space.

(ii) The map F : g → TeG defined by F (X) = Xe is an isomorphism from g to the
tangent space of G at the identity e. In particular, dim g = dimTeG = dimG.

(iii) Left-invariant vector fields are smooth.

(iv) The Lie bracket of two left-invariant vector fields is itself a left-invariant vector
field (see equation (1.3)).

(v) g is a Lie algebra under the Lie bracket operation on vector fields.

Proof. See [126] p. 85.
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1.1 Manifolds, Lie groups and Lie algebras

Basically, the last aspect of Theorem 1.39 summarizes the other ones. Moreover, it
follows from (ii) that g can be identified with the tangent space at the identity which
will be useful in many applications.
The theorem motivates the following definition.

Definition 1.40. The Lie algebra of the Lie group G is the Lie algebra g of left-invariant
vector fields on G.

Remark 1.41. We also say that g is the associated Lie algebra of G.
Equivalently, we could define the Lie algebra of a Lie group G as the tangent space
TeG at the identity. Then, we would have to require the vector space isomorphism F
in 1.39(ii) to be an isomorphism of Lie algebras, i.e., a vector space isomorphism which
preserves the Lie bracket, in order to induce a Lie algebra structure on TeG.
Example 1.42. We reconsider Example 1.34 and compute the left-invariant vector fields
of SO(n). We start again with the computation of the tangent space TpSO(n) for
p ∈ SO(n). Therefore, let γ : ]−ε, ε[ → SO(n) be a smooth curve with γ(0) = p. Since
γ(t) ∈ SO(n) for all t we have

γ(t)Tγ(t) = Idn
and differentiation with respect to t yields

γ′(t)Tγ(t) + γ(t)Tγ′(t) = 0.

In particular, for t = 0 we get

γ′(0)T p+ pTγ′(0) = 0,

which implies that pTγ′(0) is skew-symmetric. Thus, for the tangent space we know
TpSO(n) ⊆ {pB : B ∈ Skew(n)} by identifying TpSO(n) as in Remark 1.14.
To see that the two spaces coincide, we observe that the dimension of both are the same
(compare Remark 1.31). Analogously to Example 1.34, we get the condition

(gp, gpBp) = d`g ◦X(p) = X ◦ `g(p) = (gp, gpBgp)

and thus, the set of left-invariant vector fields of SO(n) is so(n) = {p 7→ (p, pB) : B ∈
Skew(n)} ' Skew(n). This proves that the set of skew-symmetric matrices is isomorphic
to the associated Lie algebra of SO(n).
Furthermore, the skew-symmetric matrices can be endowed with an inner product 〈B,B′〉Skew(n) =
〈B,B′〉F =

∑n
i=1

∑n
j=1 bijb

′
ij = tr(BTB′), where B = (bij)ij=1,...n and B′ = (b′ij=1,...n) ∈

Skew(n). Equipped with this so called Frobenius inner product the vector space of skew-
symmetric matrices becomes a Hilbert space. Thus, the isomorphism between Skew(n)
and so(n) induces an inner product on so(n).
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1.1.4 The exponential map
As already mentioned, there is a natural relation between a Lie groupG and its associated
Lie algebra g. This relation is given by a C∞ map which defines a diffeomorphism on a
neighborhood of 0 ∈ g onto a neighborhood of e ∈ G and which is called the exponential
map. This subsection is dedicated to the derivation of this map and its properties which
we will then use in the next section.

Definition 1.43. A group homomorphism ϕ : G → H between Lie groups G and H is
a Lie group homomorphism if it is smooth.
A vector space homomorphism ψ : g → h between Lie algebras is a Lie algebra homo-
morphism if it preserves the Lie brackets, i.e., ψ([X,Y ]) = [ψ(X), ψ(Y )].

As we have seen in the last section, we can identify the associated Lie algebra g of G
with the tangent space TeG at the identity e ∈ G. Hence, for a smooth map ϕ : G→ H
we can construct d̂ϕ : g → h via the differential dϕ. Explicitly, d̂ϕ[X] is defined as the
unique left-invariant vector field of H with

d̂ϕ [X] (eH) = dϕ [X(eG)] . (1.5)

Due to the left-invariance of this vector field, we can determine for h ∈ H

d̂ϕ [X] (h) = d̂ϕ [X] (`h(eH)) = d`h
[
d̂ϕ [X] (eh)

]
= d`h [dϕ [X(eG)]] . (1.6)

Theorem 1.44. Let G and H be Lie groups with associated Lie algebras g and h, re-
spectively. Let G be simply connected and ψ : g → h be a Lie algebra homomorphism.
Then, there exists a unique Lie group homomorphism ϕ : G→ H such that d̂ϕ = ψ.

Proof. See [126] p. 101.

Definition 1.45. A Lie group homomorphism ϕ : R → G is called a 1-parameter sub-
group of G.

This somehow generalizes the concept of lines to groups. It is an important observation
that {ϕ(t) : t ∈ R} is a subgroup of G. Especially, it is closed under multiplication
and moreover, this subgroup is commutative: ϕ(t1)ϕ(t2) = ϕ(t1 + t2) = ϕ(t2 + t1) =
ϕ(t2)ϕ(t1). Thus, optimization in a 1-parameter subgroup can be interpreted as a line
search in R. The commutativity is of special importance since it guarantees that the
solution of a line search does not depend on the order of steps. Furthermore, it will
sometimes be convenient to interpret a 1-parameter subgroup as a curve in G.
In the following, we consider one particular 1-parameter subgroup, which is defined by a
Lie algebra homomorphism in the sense of Theorem 1.44. Therefore, let G be a Lie group
and g its Lie algebra. Recall that the associated Lie algebra of R (which is isomorphic
to R itself) has the basis d

dr (compare Example 1.35). For X ∈ g the map ψ : R → g
defined by λ d

dr 7→ λX is a Lie algebra homomorphism of the Lie algebra of the additive
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Lie group R into g. Since R is simply connected, Theorem 1.44 yields the existence of a
unique Lie group homomorphism expX : R→ G such that

d̂ expX
[
λ

d
dr

]
= λX. (1.7)

This homomorphism t 7→ expX(t) is the unique 1-parameter subgroup of G whose tan-
gent vector at 0 is X(e) (see equation (1.5) and the following lemma).

Lemma 1.46. A 1-parameter subgroup ϕ is uniquely defined by its tangent vector at 0.

Proof. Let ϕ : R → G be a 1-parameter subgroup with tangent vector ϕ̇(0) = ξe at 0.
Define the left-invariant vector field X : G→ T (G), with X(e) = (e, ξe). Recall that for
g ∈ G we have then X(g) = d`g [ξe].
Now, we will show that ϕ is the solution of a differential equation with fixed initial
condition and smooth right-hand side for which it is known (generalization of the Picard-
Lindelöf Theorem to differentiable manifolds, see e.g. [42] p. 208) that it has at most
one solution. This yields uniqueness. Using that ϕ is a homomorphism, the chain rule
and the left-invariance of X we compute

ϕ̇(t)f = dϕ
[ d

dr

∣∣∣∣
r=t

]
f = d

drf (ϕ(r))
∣∣∣∣
r=t

= d
drf (ϕ(r + t))

∣∣∣∣
r=0

= d
drf(ϕ(t)ϕ(r))

∣∣∣∣
r=0

= d
drf

(
`ϕ(t)ϕ(r)

)∣∣∣∣
r=0

= d
(
`ϕ(t) ◦ ϕ

) [ d
dr

∣∣∣∣
r=0

]
f

= d`ϕ(t) ◦ dϕ
[ d

dr

∣∣∣∣
r=0

]
f = d`ϕ(t) [ϕ̇(0)] f

= d`ϕ(t) [ξe] f = X(ϕ(t))f.

Hence, ϕ solves

ϕ̇(t) = X(ϕ(t))
with

ϕ(0) = e.

Definition 1.47. The map exp: g → G defined by exp(X) := expX(1) is called the
exponential map.

Remark 1.48. Here, it is not yet clear, whether there is a connection between the expo-
nential map as defined above and the exponential function. But we will see later that
the exponential map for the general linear group (and its subgroups) is indeed given by
the matrix exponential (compare Examples 1.50 and 1.52).
Let us first discuss some properties of the exponential map.
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1. The image of lines tX in g for t ∈ R can be described as exp(tX) = expX(t). To see
this, consider the maps ϕ1, ϕ2 : R→ G with ϕ1(t) = expsX(t) and ϕ2(t) = expX(st) for
s ∈ R and conclude that ϕ1(t) = ϕ2(t) for all t ∈ R by the following steps. First, we
note that

d expX
[
λ

d
dr

∣∣∣∣
0

]
= d̂ expX

[
λ

d
dr

]
(eG)

= λX (eG) .
(1.8)

Here we used the Definition of d̂ (see (1.6)) and (1.7).
Observe that equation (1.8) for the map ϕ1 with λ = 1 and X replaced by sX reads

ϕ̇1(0) = ˙expsX(0) = d expsX
[ d

dr

∣∣∣∣
0

]
= sX(eG).

Furthermore, define γ(t) = st and compute

d (expX ◦γ)
[ d

dr

∣∣∣∣
0

]
f = d

drf ◦ expX ◦γ(r)
∣∣∣∣
0

= s
d
drf ◦ expX(r)

∣∣∣∣
0

= d expX
[
s

d
dr

∣∣∣∣
0

]
f

and thus, using again equation (1.8) we observe that for ϕ2 it holds

ϕ̇2(0) = d(expX ◦γ)
[ d

dr

∣∣∣∣
0

]
= d expX

[
s

d
dr

∣∣∣∣
0

]
= sX (eG) .

Hence, as both ϕ1 and ϕ2 are Lie group homomorphisms, Lemma 1.46 yields

ϕ1 = ϕ2

and thus, we have the desired

exp(sX) = expsX(1) = expX(s). (1.9)

2. Now, it is straightforward to conclude the functional equation

exp((t1 + t2)X) = expX(t1 + t2) = expX(t1) expX(t2) = exp(t1X) exp(t2X)

by exploiting the above property (1.9) and that expX is a homomorphism.
3. Similarly, it follows e = exp(0) = exp((t− t)X) = exp(tX) exp(−tX) which yields

exp(tX)−1 = exp(−tX).

4. The exponential map exp: g→ G is a diffeomorphism of a neighborhood of 0 ∈ g onto
a neighborhood of e ∈ G. In particular, there is an inverse mapping log : Ue ⊂ G→ g of
exp in a neighborhood Ue of e. For a proof see [126] p. 103.
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5. In general, for X,Y ∈ g it is

exp(X + Y ) 6= exp(X) exp(Y ),

compare (1.12).

Theorem 1.49. Let (H,ϕ) be a Lie subgroup of G and let X ∈ g. If X ∈ d̂ϕ(h), then
exp(tX) ∈ ϕ(H) for all t. Conversely, if exp(tX) ∈ ϕ(H) for t in some open interval,
then X ∈ d̂ϕ(h).

Proof. To prove the first statement, we show that the following diagram commutes:

H G

h g

exp
ϕ

d̂ϕ

exp

Therefore, let Y ∈ h be a left-invariant vector field and define the smooth curve γ : R→
G, γ(t) = ϕ(exp(tY )). We compute the tangent vector of γ at 0 using the chain rule,
equation (1.8) and equation (1.5)

γ̇(0) = dγ
[ d

dr

∣∣∣∣
0

]
= d(ϕ ◦ expY )

[ d
dr

∣∣∣∣
0

]
= dϕ ◦ d expY

[ d
dr

∣∣∣∣
0

]
= dϕ [Y (expY (0))]
= d̂ϕ [Y ] (e).

This means that γ is a 1-parameter subgroup whose tangent vector at 0 is d̂ϕ [Y ] (e).
The same is true for expd̂ϕ[Y ] : t 7→ exp(td̂ϕ [Y ]) (compare equation (1.7)). By Lemma
1.46, we know that a 1-parameter subgroup is uniquely defined by its tangent vector at
0 and thus, ϕ(exp(tY )) = exp(td̂ϕ [Y ]). Setting t = 1 yields

ϕ(exp(Y )) = exp(d̂ϕ [Y ]) (1.10)

and the above diagram commutes.
To show the statement itself, let X ∈ d̂ϕ [h]. We construct h ∈ H such that ϕ(h) =
exp(tX). Since X ∈ d̂ϕ [h], we can find Y ∈ h with X = d̂ϕ [Y ]. We set h = exp(tY )
and compute with equation (1.10)

ϕ(h) = ϕ(exp(tY )) = exp(d̂ϕ [tY ]) = exp(td̂ϕ [Y ]) = exp(tX).
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For the second statement, let I = ]a, b[ be an open interval with exp(tX) ∈ ϕ(H) for all
t ∈ I. We observe that without loss of generality we may assume that 0 ∈ I. If 0 /∈ I,
we can construct an open interval I0, with 0 ∈ I0 and exp(tX) ∈ ϕ(H) for all t ∈ I0:
For t1, t2 ∈ I it holds exp((t1 − t2)X) = exp(t1X) exp(t2X)−1 ∈ ϕ(H) since ϕ(H) is a
subgroup and hence, closed under multiplication. Consider 0 < ε < |b−a|

2 , then we have
for all t ∈ I0 = ]−ε, ε[

t = a+ b

2︸ ︷︷ ︸
∈I

−
(
a+ b

2 − t
)

︸ ︷︷ ︸
∈I

and hence

exp(tX) = exp
(
a+ b

2 X

)
exp

((
a+ b

2 − t
)
X

)−1
∈ ϕ(H).

Thus, let 0 ∈ I and construct a preimage Y ∈ h of X under d̂ϕ with X = d̂ϕ [Y ]. Note
that the map expX : t 7→ exp(tX) can be decomposed in expX = ϕ◦α, where ϕ : H → G
is the Lie group homomorphism and α : I → H. It can be shown that α can be chosen
to be smooth (see [126] p. 47). Now, let Y ∈ h be the left-invariant vector field defined
by α̇(0) = Y (eH) and show that for this choice of Y we get indeed d̂ϕ [Y ] = X. For
g ∈ G and f ∈ C∞(G) we compute

d̂ϕ [Y ] (g)f(1.6)= d`g [dϕ [Y (eH)]] f
= d(`g ◦ ϕ) [Y (eH)] f

(1.2)= Y (eH)(f ◦ `g ◦ ϕ)
= α̇(0)(f ◦ `g ◦ ϕ)

= d
dt(f ◦ `g ◦ ϕ ◦ α)

∣∣∣∣
t=0

= d
dt(f ◦ `g ◦ expX)

∣∣∣∣
t=0

= d(`g ◦ expX)
[ d

dt

∣∣∣∣
t=0

]
f

(1.6)= d̂ expX
[ d

dt

]
(g)f

(1.7)= X(g)f

which completes the proof.

Example 1.50. Reconsider Example 1.27 and Example 1.37 concerning the general linear
group GL(n,R). In Example 1.27, we have seen that the tangent space of GL(n,R) at 0
is the set M(n,R) of all n× n matrices. From Theorem 1.39(ii) it follows that M(n,R)
is isomorphic to the associated Lie algebra of GL(n,R). One can show that M(n,R) as
associated Lie algebra of GL(n,R) is endowed with the in Example 1.37 introduced Lie
bracket (see [126] p.87) and thus gl(n) ' (M(n,R), [ , ]).
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Using this isomorphism, we will explore in the following that the exponential map in the
setting of Example 1.50 is closely related to the classical matrix exponential:

eA =
∞∑
i=0

Ai

i! , for A ∈M(n,R).

We will see that this relation is explicitly given by

exp(X) = eX(Idn) for X ∈ gl(n).

To this end, we have to show that etX(Idn) defines a 1-parameter subgroup whose tangent
vector at 0 is equal to X(Idn) = A. Due to the uniqueness of such a 1-parameter
subgroup (compare Lemma 1.46) it must be the same as the exponential map defined
in 1.47. Remark that in this context e does not refer to the identity element of a group.
The identity element of a matrix group will be denoted by Idn ∈M(n,R).
Indeed, E : t 7→ etA is a 1-parameter subgroup with tangent vector Ė(0) = A as we will
show by the following steps.
1. We observe that E is a map from R into GL(n,R). It is well-known that the sum∑∞
i=0

Ai

i! converges absolutely for A ∈ M(n,R) and thus, etA is well-defined. Moreover,
for the partial sums

Sj(A) =
j∑
i=0

Ai

i!

we have
B lim
j→∞

Sj(A) = lim
j→∞

BSj(A) for any B ∈M(n,R),

since the map C 7→ BC is continuous from M(n,R) into itself. If now B is invertible
(i.e., B ∈ GL(n,R)), it is

BeAB−1 = B lim
j→∞

Sj(A)B−1 = lim
j→∞

BSj(A)B−1 = lim
j→∞

Sj(BAB−1) = eBAB
−1
. (1.11)

In particular, B can be chosen such that BAB−1 is upper triangular (Jordan normal
form) and thus, all partial sums of eBAB−1 are upper triangular too. Let λ1, . . . , λn be
the diagonal entries of BAB−1, then the diagonal entries of eBAB−1 are eλ1 , . . . , eλn .
For the determinant, we deduce

det(eA) = det(BeAB−1) = det(eBAB−1) =
n∏
i=1

eλi = etr(A) 6= 0,

which proves that etA is invertible and thus, etA ∈ GL(n,R).
2. The map E is a group homomorphism. Let us prove that

eAeB = eA+B if AB = BA. (1.12)
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Therefore, compute

eAeB =
( ∞∑
k=0

Ak

k!

)( ∞∑
l=0

Bl

l!

)

=
∞∑
k=0

k∑
l=0

Ak−l

(k − l)!
Bl

l!

=
∞∑
k=0

1
k!

k∑
l=0

(
k

l

)
Ak−lBl

=
∞∑
k=0

1
k! (A+B)k = eA+B,

where we used the Cauchy product for absolutely convergent series for the second equal-
ity. The fourth equality is true if AB = BA. From this it follows

E(t1 + t2) = e(t1+t2)A = et1Aet2A = E(t1)E(t2)

and thus, E is a group homomorphism. Note that (1.12) is not an equivalence. As a

counterexample consider e.g. A =
(

0 0
0 2πi

)
and B =

(
0 1
0 2πi

)
. Then, it is eA = eB =

eA+B = Idn but AB =
(

0 0
0 −4π2

)
6=
(

0 2πi
0 −4π2

)
= BA. Compare Horn and Johnson

[57] page 436 where also real examples can be found.
3. Moreover, E is smooth and hence a Lie group homomorphism. This follows from the
absolute convergence of the series

∑∞
k=0

Bk

k! . For B = tA every entry(
etA
)
i,j

=
∞∑
k=0

tk
(Ak)i,j
k!

of etA is a power series in t and thus, the convergence radius of this series is

sup
{
|t| :

∞∑
k=0

tk
(Ak)i,j
k! converges

}
=∞.

This shows that every entry of etA and hence etA itself are smooth.
4. Finally, we compute the tangent vector of E at 0:

Ė(0) = E′(0) = d
dt

∞∑
k=0

(tA)k

k!

∣∣∣∣∣
t=0

=
∞∑
k=1

tk−1Ak

(k − 1)!

∣∣∣∣∣
t=0

= A
∞∑
k=0

(tA)k

k!

∣∣∣∣∣
t=0

= AetA
∣∣∣
t=0

= A.
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1.1 Manifolds, Lie groups and Lie algebras

Altogether, we have shown in four steps that E is a 1-parameter subgroup with tangent
vector A at 0 and thus, the exponential map is equal to the matrix exponential on
M(n,R) ' gl(n) in the sense of the following diagram.

M(n,R) gl

GL(n,R)

F

∼

e
exp

Here, F is the isomorphism of Theorem 1.39(ii).
As mentioned before, the exponential map exp: g→ G is locally diffeomorphic at 0 ∈ g.
Let us now introduce the logarithm on a neighborhood of the identity in GL(n,R) as
inverse of the matrix exponential. Analogously to the power series of the logarithm
known from real analysis, we define for any A ∈M(n,R)

log(A) =
∞∑
m=1

(−1)m+1 (A− Idn)m

m
,

whenever the series converges. In the following, we will restrict to sub-multiplicative
matrix norms, since calculations will be based on ‖(A− Idn)m‖ ≤ ‖A− Idn‖m. The
Frobenius norm ‖A‖F = (tr(ATA))

1
2 (see also Example 1.42) is an example for a sub-

multiplicative norm.
According to the majorant criterion for matrix-valued series,

∑∞
m=1(−1)m+1 (A−Idn)m

m

converges absolutely for ‖A− Idn‖ < 1. A majorant is given by
∑∞
m=1

‖A−Idn‖m
m since∥∥∥∥(−1)m+1 (A− Idn)m

m

∥∥∥∥ ≤ ‖A− Idn‖m

m

holds. The majorant
∑∞
m=1

‖A−Idn‖m
m converges for ‖A− Idn‖ < 1 due to the quotient

criterion.
Now, we can state the following theorem.

Theorem 1.51. The function log : A(n) = {A ∈M(n,R) : ‖A− Idn‖ < 1} →M(n,R)
is smooth and it holds

elog(A) = A

for all A ∈ A(n). Conversely, for all X with ‖X‖ < ln(2) it holds

eX ∈ A(n) and log(eX) = X.

Proof. First, we observe that the set A(n) ⊂ GL(n) is an open neighborhood of Idn ∈
GL(n). For the proof one uses the Neumann series to construct A−1 explicitly.
The function log is smooth on A(n) since a power series is smooth inside its radius of
convergence. Next, we show that elog(A) = A for all A with ‖A− Idn‖ < 1. To this end,
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1 Optimization on Lie groups

we will first consider diagonalizable matrices A and then we will generalize the result.
Let A be diagonalizable with A = CDC−1, where D = diag(d1, . . . , dn) is a diagonal
matrix and di are the eigenvalues of A. Then,

(A− Idn)m = (CDC−1 − Idn)m =
(
C(D − Idn)C−1

)m
= C(D − Idn)mC−1.

Since ‖A− Idn‖ < 1, for each eigenvalue di of A we have |di − 1| < 1 and thus, by the
continuity of the matrix multiplication it follows

log(A) =
∞∑
m=1

(−1)m+1 (A− Idn)m

m

= C

( ∞∑
m=1

(−1)m+1 (D − Idn)m

m

)
C−1 = C diag (ln(d1), . . . , ln(dn))C−1.

Applying equation (1.11) leads to

elog(A) = Cediag(ln(d1),...,ln(dn))C−1 = C diag
(
eln(d1), . . . , eln(dn)

)
C−1 = CDC−1 = A.

If, in contrast, A is not diagonalizable, note that it is the limit of a sequence of di-
agonalizable matrices (Ak)k∈N. This results from the fact that every matrix is similar
to an upper triangular matrix and that a matrix is diagonalizable if all its eigenvalues
are distinct. Therefore, small changes in the diagonal entries of the upper triangular
matrix will give us such a sequence (Ak)k∈N. If ‖A− Idn‖ < 1 then ‖Ak − Idn‖ < 1 for
sufficiently large k. From the previous considerations we know that elog(Ak) = Ak and
thus

elog(A) = A

due to the continuity of the matrix exponential and the logarithm.
Analogously, we show that log(eX) = X for all X with

∥∥∥eX − Idn
∥∥∥ < 1. Thus, it remains

to show that ‖X‖ < ln(2) implies
∥∥∥eX − Idn

∥∥∥ < 1:

∥∥∥eX − Idn
∥∥∥ ≤ ∞∑

m=1

‖Xm‖
m! ≤

∞∑
m=1

‖X‖m

m! = e‖X‖ − 1 < 1.

Example 1.52. For the special orthogonal matrices (compare Example 1.42), we can
show similarly as before that the exponential map is given by the matrix exponential.
Additionally, we have to verify that etA ∈ SO(n) for A ∈ Skew(n) ' so(n). This is a
direct consequence of equation (1.12) since

etA
(
etA
)T

= etAetA
T = etAe−tA = e0 = Idn.

Alternatively, this can be shown using Theorem 1.49.
Clearly, the restriction of the logarithm to SO(n) ∩A(n) is locally the inverse mapping
of the matrix exponential on Skew(n).
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1.2 Optimization on Lie groups - steepest descent

1.1.5 Summing up the theoretical part
For our application, the main issue is that the associated Lie algebra so(n) of the
Lie group of special orthogonal matrices SO(n) is isomorphic to the set of the skew-
symmetric matrices. This enables us to carry over some features of the linear structure
of the skew-symmetric matrices to the non-linear manifold SO(n). The local diffeomor-
phism on page 18 relating both sets is not just a theoretical construction but identifying
so(n) and Skew(n) explicitly given by the matrix exponential (see Figure 1.1) which
makes computation feasible. Due to this diffeomorphism we will be able to transfer opti-
mization algorithms designed for vector spaces to Lie groups. This is our core ingredient
for solving non-negative dimensionality reduction problems like ours (compare Section
2.3).
However, the generality of this chapter permits to use these ideas for optimization on
any Lie group, not just on matrix Lie groups. For an arbitrary Lie group, the linear
structure of its associated Lie algebra induces a convenient structure on the Lie group
itself via the exponential map. In particular, the concept of straight lines in linear spaces
is generalized to 1-parameter subgroups of non-linear groups. This provides an elegant
way to perform line search-like algorithms on arbitrary Lie groups (see Section 1.2.2).

log

exp

SO(n)

so(n)

Idn

0

Figure 1.1: Lie Group SO(n) and associated
Lie algebra so(n). Both sets are linked by the
diffeomorphism exp.

1.2 Optimization on Lie groups - steepest descent
This section is concerned with finding a (local) minimizer x∗ of a smooth function
f : M → R, i.e., a point x∗ ∈ M such that f(x∗) ≤ f(x) for all x in a neighborhood
of x∗. We can further restrict the problem by only considering points x ∈ U ⊂ M and
thus minimizing f on a subset U . The problem then becomes a constrained optimization
problem which we write in the standard way

min
x∈U

f(x).

In this setting, f is called cost function or objective function and f(x∗) is the minimum
value or just the minimum. The restriction x ∈ U is referred to as the constraint and
the set U as the admissible set. Note that U can be a submanifold and in particular, it
might be a non-convex set.
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1 Optimization on Lie groups

If we study optimization problems with intricate constraints, it might be useful to exploit
the structural properties on the set to make computations easier. The idea is to take
advantage of special properties of the problem as e.g. symmetry or invariance in order
to develop efficient numerical methods. These properties may concern both, constraints
and/or cost functional, and they occur for example in matrix optimization. Often, the
admissible sets of these problems have the structure of a non-linear matrix manifold.
One of the main challenges in solving these problems lies in the word non-linear since
non-linear sets do not possess vector space properties. Classical optimization however,
is based on additive iterative algorithms. This class of algorithms relies strongly on the
Euclidean structure of the search space (see [2]). As a consequence of the non-linearity,
the embedding of these manifolds in the Rn2 might lead to a non-convex set.
Additive iterative algorithms approach an extremum of the cost functional by adding at
each step of the algorithm an update quantity to the current iterate. At each step the
update direction and step-length needs to be computed. Typically, this computation is
based on first and second order derivatives of the cost functional or on an approximation
of these. In the case where the optimization is carried out on a manifold, this procedure
needs to be translated to the language of differential geometry. This will be the subject
of this section. We will concentrate on gradient descent line search algorithms on Lie
groups. We will use the exponential map and the thereby defined 1-parameter subgroups.
These curves on the Lie group can be used for generalized line search algorithms which
are simple but completely sufficient for our purposes. In particular, these algorithms
permit solving non-convex optimization problems on Lie groups (as e.g. on SO(n)).
Our precise description of the topic can be used as a basis for the further development of
sophisticated optimization methods on Lie groups. It provides a universal formulation of
the necessary ingredients to transfer standard methods into a more general framework.
In this sense, it can be seen as a theoretical contribution to the active research field of
optimization on manifolds and in particular on Lie groups. In comparison to Newton’s
method on Lie groups in [81] and the conjugate gradient method on U(n) for a certain
class of cost functions in [1], our approach is simpler to implement, nevertheless it leads
to sophisticated results at relatively low computational cost.
We will now briefly introduce the steepest descent method in Rn before we address the
core part of this section where we actually ‘translate’ this method to the more general
setting of Lie groups.

1.2.1 Steepest descent in Rn

In this section, we will briefly recall the concept of a steepest descent or gradient descent
method in Rn in order to generalize it to Lie groups in the next section. We will rely on
the text books [65] by Kelley and [43] by Geiger and Kanzow.
Let us consider the unconstrained optimization problem minx f(x), where f : Rn →
R. A descent method is an iterative method to solve such problems. Its central idea
is the following: At the current iterate xk a direction ξk is determined in which the
values of the cost function f decrease. To determine the next iterate one follows this
direction until the functional value is small enough. This procedure is repeated in order
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1.2 Optimization on Lie groups - steepest descent

to approach a minimum. Such a direction ξk is called a descent direction of f at xk. In
mathematical terms, the descent direction ξk is a vector in TxkRn. Since TxkRn = Rn,
we can characterize ξk by

f(xk + tξk) < f(xk) for all sufficiently small t > 0. (1.13)

The determination of such a descent direction (at best optimal) is a crucial point. How-
ever, there is a sufficient condition for ξk being a descent direction involving the gradient
∇f(xk) ∈ TxkRn.

Lemma 1.53. Let f : Rn → R be continuously differentiable, x ∈ Rn and ξ ∈ TxRn =
Rn with ∇f(x)T ξ < 0. Then, ξ is a descent direction of f at x.

Proof. See [43].

Intuitively, we would probably choose ξ to be the negative gradient of the function
f at x. Indeed, for ∇f(x) 6= 0 the negative gradient −∇f(x) is the steepest descent
(direction), i.e., the direction with the smallest directional derivative. To see this mini-
mize 〈∇f(x), ξ〉 = cos(](∇f(x), ξ)) ‖∇f(x)‖ for ‖ξ‖ = 1. The minimum is attained for
ξ = −∇f(x)

‖∇f(x)‖ since −1 = cos(π) = cos (](∇f(x),−∇f(x))). However, the restriction in
Lemma 1.53 admits all directions which have an angle to the negative gradient that is
smaller than π

2 . For ∇f(x) = 0 the point x is called stationary, i.e., a maximum, a
minimum or a saddle point.
For applications often the normalized gradient ξ = − ∇f

‖∇f‖ is used even though other
choices may lead to better convergence properties (compare [43] Chapter 8).
Remark 1.54. Though the condition in Lemma 1.53 is sufficient, it is not necessary. If
x is a strict local maximum of f , all directions ξ ∈ Rn \ {0} are descent directions, but
none of them fulfills the condition ∇f(x)T ξ < 0.

Algorithm 1.55. A general descent method has the following structure:
1: choose x0 ∈ Rn and set k = 0
2: for xk does not satisfy a suitable stopping criteria do
3: compute descent direction ξk of f at xk
4: compute step-length tk > 0 with f(xk + tkξk) < f(xk)
5: set xk+1 = xk + tkξk and k to k + 1
6: end for

As this general procedure shows, a descent method consists basically of two parts which
are alternately repeated: The search of a descent direction and the choice of a step-
length. So far we have discussed the choice of an appropriate update direction (even
though the gradient might not be the optimal one), but what remains to be determined
is the step-length tk. An obvious approach is to follow the descent direction until the
cost function is not descending any more, i.e., a line search along the descent direction.
For the computation of the step-length several criteria are available. We refer to the
Armijo rule (see [65]) which takes care of the chosen step-length to be not too small
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1 Optimization on Lie groups

and neither too large. Very small step-length may lead to an insufficient decrease of the
function f and too large step-length may cause that the algorithm runs into another
minimum.
Introducing the three parameters σ ∈ ]0, 1[, β ∈ ]0, 1[ and ε ≥ 0 and choosing the
(normalized) gradient as descent direction and the Armijo rule for the step-length com-
putation, Algorithm 1.55 reads as follows:

Algorithm 1.56. Gradient descent method with Armijo rule:
1: choose x0 ∈ Rn, σ, β ∈ ]0, 1[, ε ≥ 0 and set k = 0
2: for ‖∇f(xk)‖2 > ε do
3: set ξk = − ∇f(xk)

‖∇f(xk)‖2

4: compute tk = max{βl : l ∈ N and f(xk + βlξk) ≤ f(xk)− σβl‖∇f(xk)‖2}
5: set xk+1 = xk + tkξk and k to k + 1
6: end for

It can be shown that for ε = 0 each accumulation point of a sequence generated by Algo-
rithm 1.56 is a stationary point of f (see [43]). However, the convergence is rather slow
compared to other methods. But the steepest descent method provides the possibility
to be generalized to Lie groups which is convenient for our applications.

1.2.2 Steepest descent on Lie groups
In the first part of this chapter (Section 1.1), we have introduced all necessary tools
for generalizing the method of steepest descent to Lie groups. This is motivated by the
fact that sometimes the set of constraints of an optimization problem is restricting the
admissible set to a Lie group G. In order to solve such a problem of the form

min
x∈G

f(x), (1.14)

where f : G→ R, we cannot directly apply the steepest descent method since it involves
an additive update step. With this step, most likely we move away from the manifold
G and the new iterate is not admissible any more. To see this, consider the example of
the Lie group SO(n). Nevertheless, the theory is applicable for arbitrary Lie groups.
Example 1.57. Let f be a function from the set of real n× n matrices Rn×n to the real
line R. Consider the optimization problem

min
X∈SO(n)

f(X).

As we know from Example 1.30, the set of special orthonormal matrices SO(n) has a
Lie group structure, but it is clearly not a vector space since in general the sum of two
orthonormal matrices is not orthonormal. Even though for any update direction ξ and
any X ∈ SO(n) the matrix X + tξ, t ∈ R is an element of Rn×n, it might not be one of
SO(n). Moreover, the expression X + tξ is critical because a priori the operation + is
not defined on a general manifold. This is why the classical steepest descent algorithm
in Rn×n will fail.
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1.2 Optimization on Lie groups - steepest descent

This example already points out two possible problems occurring when transferring the
steepest descent method from Rn to a Lie group. In Rn a current iterate x is updated in
the direction where the directional derivative of the cost functional f is most negative.
This direction is computed by minimizing the directional derivative

Df(x)(ξ) = lim
t→0

f(x+ tξ)− f(x)
t

under all ξ ∈ TxRn = Rn with ‖ξ‖ = 1. If now f operates on a general manifold G
instead of Rn, the argument x + tξ does not make sense due to the lack of the vector
space structure. And as motivated above, even if we consider G ⊂ Rν for a suitable
ν, we might leave G or even the domain of f . To circumvent this problem, we have
introduced the tangential vector ξx at x ∈ G as action on smooth functions f ∈ Fx(G)
(compare Definition 1.13). This is a generalization of the directional derivative as in Rn
we have

ξxf = Df(x)(ξx). (1.15)

To make matters worse, there is a third critical aspect one has to face: How is the
gradient defined and what is its length? This problem occurs when computing the
descent direction itself. Therefore, we recall the formal definition of the gradient. To
define the gradient on manifolds we need an inner product. This justifies the introduction
of Riemannian manifolds (compare page 9) which allows also a rigorous definition of the
length of a tangential vector.

Definition 1.58. Let (M, (〈 · , · 〉TxM)x∈M) be a Riemannian manifold and f : M→ R
a continuously differentiable function. The gradient ∇f of f is the unique vector field
whose inner product with any tangential vector ξx ∈ TxM is equal to the directional
derivative of f at x for all x ∈M:

〈∇f(x), ξx〉TxM = ξxf, for all ξ ∈ TxM and all x ∈M.

Remark 1.59. The definition of the gradient depends strongly on the choice of the inner
product. Since both, G and g, are Riemannian manifolds we have to be careful to
distinguish the different inner products and gradients. We might refer to them as ∇Gf
and ∇gf , respectively.
To overcome the problem concerning the additive update, we define a generalized descent
direction in the tangent space at x of a Lie group G.

Definition 1.60. We call a tangential vector ξx ∈ TxG a descent direction of f at x if

f(γ(t)) < f(x),

for γ : R → G with γ(0) = x and γ̇(0) = ξx and sufficiently small t > 0. Such curves γ
are called descent curves of f at x.

Remark 1.61. Notice that this definition is compatible with the previous definition in
(1.13) for Rn.
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1 Optimization on Lie groups

Now, we want to characterize a certain class of descent curves involving the exponential
map. Therefore, we will consider the function f ◦ exp: g→ R and its gradient on g.

Theorem 1.62. Let h, q ∈ g be left-invariant vector fields with 〈∇g(f ◦exp)(q), h〉g < 0.
Then,

γ(t) = exp(q + th)

is a descent curve of f at x = exp(q).

Proof. It is sufficient to prove that d
dtf (γ(t))

∣∣∣
t=0

< 0 as f ◦ γ : R → R and f ◦ γ(0) =
f(exp(q)). Hence, we compute for β : R→ g, with β(t) = q + th

d
dtf (γ(t)) = d

dt (f ◦ exp ◦β(t))

= β̇(t)(f ◦ exp)
= 〈∇g(f ◦ exp)(β(t)), β̇(t)〉g.

(1.16)

Furthermore, as g is a vector space, by Remark 1.14 we have β̇(t) = β′(t) = h and thus,
for t = 0 equation (1.16) reads

d
dtf (γ(t))

∣∣∣∣
t=0

= 〈∇g(f ◦ exp)(q), h〉g < 0 (1.17)

which completes the proof.

Theorem 1.62 provides the basis for a steepest descent algorithm on Lie groups. It allows
that the additive update step q + th is not performed in the Lie group G but in the Lie
algebra g. This translation to the Lie algebra is called Lie group method and provides an
elegant generalization of the steepest descent algorithm to manifolds. This is illustrated
in Figure 1.2. Recall that the logarithm is only defined on a neighborhood of e ∈ G.
Remark once more that we do not need to compute a projection onto the manifold G in
the iteration step.

log

x = exp(q)

exp(q + th)

exp q + th

q = log(x)

G

g

Figure 1.2: Lie group method. The additive
update is performed in the Lie algebra g.

Corollary 1.63. Among all descent curves γ of the form γ(t) = exp(q + th) the one
with h = − ∇g(f◦exp)(q)

‖∇g(f◦exp)(q)‖ has the steepest descent in x = exp(q).
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1.3 Implementation-friendly optimization on Lie groups

Proof. Due to equation (1.17) this can be proven analogously to the statement in Rn.

Now, the steepest descent on a Lie group can be thought of as following a geodesic curve
in descent direction. Here, the geodesic is described as in Theorem 1.62 (for more details
see [42]). This procedure is also called geometric flow method.
As in the vector space setting, the step size along a descent curve can be chosen by the
Armijo rule. This is due to the fact that the steepest descent is the combination of several
‘line’ searches along curves on G in different directions. So to say, the optimization is
performed on functions f ◦ γ : R → R, where γ is the descent curve of Theorem 1.62.
Following the steps of Algorithm 1.56 we are now able to formulate a steepest descent
algorithm on Lie groups.

Algorithm 1.64. Gradient descent method with Armijo rule: Let G be a Lie group
and g its associated Lie algebra.

1: choose x0 ∈ G, σ, β ∈ ]0, 1[, ε ≥ 0 and set k = 0
2: compute qk = log(xk)
3: for ‖∇g(f ◦ exp)(qk)‖g > ε do
4: set descent direction hk = − ∇g(f◦exp)(qk)

‖∇g(f◦exp)(qk)‖g ∈ g

5: and descent curve γk(t) = exp(qk + thk)
6: compute tk = max{βl : l ∈ N and f(γk(βl)) ≤ f(xk)− σβl‖∇g(f ◦ exp)(qk)‖g}
7: set xk+1 = γk(tk) and k to k + 1
8: end for

Remark 1.65. In line 3 of Algorithm 1.64, the logarithm of xk needs to be computed since
γ is a descent curve at xk = exp(qk) (compare Figure 1.2). This might be problematic as
the logarithm is only defined on a neighborhood of e ∈ G. Furthermore, the computation
of the logarithm is usually quite expensive. In the next section, we will see how to
overcome this problem.
Analogously to the gradient descent method in Rn (Algorithm 1.56) the Algorithm 1.64
generates for ε = 0 a sequence whose accumulation points are stationary points of f
(compare [2] for a general theoretical result concerning Riemannian manifolds). This
guarantees the convergence of a subsequence.

1.3 Implementation-friendly optimization on Lie groups
In the last section, we have introduced an update algorithm with the update step xk+1 =
exp(qk + tkhk), where qk = log(xk). Since we operate in a group, there exists a gk ∈ G
with xk+1 = xkgk. We would prefer to use gk in order to perform the update, as the
computation of the logarithm is a bottleneck of the Algorithm 1.64. Therefore, the
computation of gk will be one objective of this section. Heuristically, the update

xk qk = log(xk) qk + tkhk1 xk+1 = exp(qk + tkhk1) = xkgk
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is equivalent to the update

e log(e) = 0 tkhk2 gk = exp(tkhk2) and setting xk+1 = xkgk,

which shifts the problem from xk in the origin and thus, omits the computation of the
logarithm.
Note that in general we cannot conclude

exp(qk + tkhk1) = exp(qk) exp(tkhk1)

to determine gk. To see this, consider the matrix case and recall that eqk+tkhk1 = eq
k
et
khk1

if hk1qk = qkhk1 (compare (1.12)). In particular, this implies in general hk1 6= hk2. The
remaining task is to determine the direction hk2 = hk.
In the following, we will formalize this heuristic rigorously. Therefore, we further explore
the left-invariance of the vector fields in g. Furthermore, we will discuss an example,
where this algorithm is used to find a certain rotation for a data set in Rd.

1.3.1 Multiplicative update
As already mentioned, we now aim to circumvent the computation of the logarithm in
Algorithm 1.64 by shifting the problem from xk to e ∈ G. This shift will be carried out
by the left-translation `(xk)−1 .
To this end, let us now reconsider Theorem 1.62 for γ(t) = `x ◦ exp(th).

Theorem 1.66. Let h ∈ g and x ∈ G with 〈∇g(f ◦ `x ◦ exp)(0), h〉g < 0 then

γ(t) = `x ◦ exp(th)

is a descent curve of f at x.

Proof. For the proof we apply Theorem 1.62 to f̃ = f ◦ `x and q = 0. First, we note that
the condition 〈∇g(f̃ ◦ exp)(0), h〉g < 0 is fulfilled by the assumption on f and h. Thus,
Theorem 1.62 is applicable and

γ̃(t) = exp(th)

is a descent curve of f̃ at x̃ = e. From this it follows directly that

γ(t) = `x ◦ exp(th)

is a descent curve of f at x.

Remark 1.67. We observe that equation (1.17) for f̃ and q = 0 reads

d
dtf (γ(t))

∣∣∣∣
t=0

= d
dt f̃ (exp(th))

∣∣∣∣
t=0

(1.17)= 〈∇g(f̃ ◦ exp)(0), h〉g
= 〈∇g(f ◦ `x ◦ exp)(0), h〉g.

(1.18)
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Theorem 1.66 provides an alternative description of descent curves of f at x, where the
logarithm is not involved. Analogously to Corollary 1.63, the steepest descent direction
is h = − ∇g(f◦`x◦exp)(0)

‖∇g(f◦`x◦exp)(0)‖g . But the theorem gives no hint how to compute this descent
direction in practice.
In the following, we want to derive an expression for this gradient in dependence on
∇Gf(x), since this might facilitate computations. Therefore, we define the left-invariance
of a Riemannian metric on G.

Definition 1.68. A Riemannian metric is called left-invariant if

〈ξ1
x, ξ

2
x〉TxG =

〈
(d`g)x

[
ξ1
x

]
, (d`g)x

[
ξ2
x

]〉
TgxG

for all x, g ∈ G and ξ1
x, ξ

2
x ∈ TxG.

(1.19)

From the definition it is clear that a left-invariant Riemannian metric is uniquely deter-
mined by 〈 · , · 〉TeG for the identity e ∈ G. Using the identification of the associated Lie
algebra g with the tangent space TeG at the identity (see 1.39(ii)), it can be shown that
there is a bijective correspondence between the inner products on the Lie algebra g and
the left-invariant Riemannian metrics on G (see [42] Chapter 17). This correspondence
is explicitly given as

〈h1, h2〉g = 〈h1(e), h2(e)〉TeG for all h1, h2 ∈ g and e ∈ G. (1.20)

In the following, we will always assume without mentioning that the Riemannian metric
on G and the inner product of g are related by equation (1.20). This will play an
important role in the proof of the next lemma.

Lemma 1.69. The gradient introduced in Theorem 1.66 is given by

∇g(f ◦ `x ◦ exp)(0) = X∇Gf(x), (1.21)

where X∇Gf(x) is the left-invariant vector field with X∇Gf(x)(e) = (d`x−1)x [∇Gf(x)].

Proof. Let h ∈ g be a left-invariant vector field. To prove the statement we compute
d
dtf(γ(t))

∣∣∣
t=0

with γ(t) = `x ◦ exp(th) and γ(0) = x in a different way. A comparison
with the previous computation in equation (1.18) will yield the result.
First observe for arbitrary f̃ ∈ C∞(G)

γ̇(0)f̃ = dγ
[ d

dr

∣∣∣∣
r=0

]
f̃

= d`x ◦ d exph
[ d

dr

∣∣∣∣
r=0

]
f̃

(1.8)= d`x ◦ h(exph(0))f̃
(1.4)= h ◦ `x(exph(0))f̃
= h(x)f̃

(1.22)
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and
(d`x−1)x [h(x)] = h ◦ `x−1(x) = h(e). (1.23)

For both equations it is essential that h is left-invariant. In equation (1.18), we can
consider γ : R→ G as curve and compute for the cost functional f

d
dtf (γ(t))

∣∣∣∣
t=0

= γ̇(0)f

Def. 1.58= 〈∇Gf(x), γ̇(0)〉TxG
(1.22)= 〈∇Gf(x), h(x)〉TxG
(1.19)= 〈(d`x−1)x [∇Gf(x)] , (d`x−1)x [h(x)]〉TeG
(1.23)= 〈(d`x−1)x [∇Gf(x)] , h(e)〉TeG
(1.20)= 〈X∇Gf(x), h〉g,

(1.24)

where X∇Gf(x) is the left-invariant vector field with X∇Gf(x)(e) = (d`x−1)x [∇Gf(x)].
From equations (1.18) and (1.24) it follows

〈∇g(f ◦ `x ◦ exp)(0), h〉g = 〈X∇Gf(x), h〉g
and thus, since h was arbitrary

∇g(f ◦ `x ◦ exp)(0) = X∇Gf(x).

This characterization of ∇g(f ◦ `x ◦ exp)(0) may seem quite technical, but one has to
realize that the gradient ∇g(f ◦ `x ◦ exp)(0) is an element of T0g which is isomorphic to
the Lie algebra g itself and thus, both sides of equation (1.21) are left-invariant vector
fields on G.
Lemma 1.69 provides a way to describe ∇g(f ◦ `x ◦ exp)(0) in dependence on ∇Gf(x).
But still we would have to determine a left-invariant vector field in order to give an
explicit expression for ∇g(f ◦ `x ◦ exp)(0). To avoid this, we can use the isomorphism
F : g → TeG from Theorem 1.39(ii) to identify the gradient with a tangent vector at
e ∈ G.
Lemma 1.70. For the isomorphism F : g → TeG, with F (h) = h(e) from Theorem
1.39(ii), we have

∇g(f ◦ `x ◦ exp)(0g)(e) = ∇TeG(f ◦ `x ◦ exp ◦F−1)(0TeG).

Proof. Let h ∈ g and set β(t) = th. Then, we can compute
d
dtf ◦ `x ◦ exp(β(t))

∣∣∣∣
t=0

= d
dtf ◦ `x ◦ exp ◦F−1(β(t)(e))

∣∣∣∣
t=0

=
〈
∇TeG(f ◦ `x ◦ exp ◦F−1)(β(0)(e)), β̇(0)(e)

〉
TeG

=
〈
∇TeG(f ◦ `x ◦ exp ◦F−1)(0TeG), h(e)

〉
TeG

.
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Comparison with equation (1.18) yields

〈∇g(f ◦ `x ◦ exp) (β(0)) (e), h(e)〉TeG
(1.20)= 〈∇g(f ◦ `x ◦ exp) (β(0)) , h〉g
(1.18)=

〈
∇TeG(f ◦ `x ◦ exp ◦F−1)(0TeG), h(e)

〉
TeG

which completes the proof.

Now, we combine Lemma 1.69 and Lemma 1.70 in order to characterize the gradient in
TeG.

Theorem 1.71. It holds

∇TeG(f ◦ `x ◦ exp ◦F−1)(0TeG) = (d`x−1)x [∇Gf(x)] .

Proof. With the lemmas we can compute

∇TeG(f ◦ `x ◦ exp ◦F−1)(0TeG)Lem. 1.70= ∇g(f ◦ `x ◦ exp)(0g)(e)
Lem. 1.69= X∇Gf(x)(e)

= (d`x−1)x [∇Gf(x)] .

With Theorem 1.71 we have provided a way to describe ∇TeG in terms of ∇G which is
often simpler to compute as we will see in Section 1.3.2.
Remark 1.72. With the aid of ∇TeG, we can reformulate Theorem 1.66. For h(e) ∈ TeG
and x ∈ G with

〈
∇TeG(f ◦ `x ◦ exp ◦F−1)(0TeG), h(e)

〉
= 〈(d`x−1)x [∇Gf(x)] , h(e)〉 < 0

the curve γ(t) = `x ◦exp ◦F−1(th(e)) is a descent curve of f at x. This can be seen using
Lemma 1.70 and equation (1.20).
Together with Theorem 1.71, we are now able to compute the updates starting in the
origin. This can be thought of as a shift to the origin as motivated in the beginning of this
section (compare [97]). Let us rewrite Algorithm 1.64 to summarize these achievements.

Algorithm 1.73. Gradient descent method with Armijo rule and shifting: Let G be
a Lie group with left-invariant Riemannian metric induced by the inner product of its
associated Lie algebra g.

1: choose x0 ∈ G, σ, β ∈ ]0, 1[, ε ≥ 0 and set k = 0
2: for θk =

∥∥∥(d`(xk)−1)xk
[
∇Gf(xk)

]∥∥∥
TeG

> ε do

3: set descent direction hk = −
(d`(xk)−1 )

xk [∇Gf(xk)]
θk

∈ TeG
4: and descent curve γk(t) = `xk ◦ exp ◦F−1(thk)
5: compute tk = max{βl : l ∈ N and f(γk(βl)) ≤ f(xk)− σβlθk}
6: set xk+1 = γk(tk) and k to k + 1
7: end for
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Once more observe that we do not need to compute the logarithm in Algorithm 1.73. In
particular, we do not have to worry about staying in a neighborhood of e ∈ G, where
the logarithm is defined. Furthermore, the multiplicative update gk aimed for in the
beginning of this section is explicitly given as

gk = exp(F−1(tkhk)).

It is an element of the image of the 1-parameter subgroup g(t) = exp(F−1(th)). This
1-parameter subgroup describes the ‘line’ in direction h and generalizes the concept of
line search. Due to the commutativity of the image of a 1-parameter subgroup (see
Definition 1.45 et seq.) a line search along the descent curves `x ◦ g(t) does not depend
on the step size nor on the order of the steps.

1.3.2 Rotation of data clouds in Rd

In this section we will discuss a concrete optimization problem in order to illustrate the
theoretical explanations of this chapter. Let us consider a point cloud X = {x1, . . . , xn}
in Rd. By X we might also refer to the matrix (x1, . . . , xn) ∈ Rd×n.
In applications, it is often desirable to compute a rotated configuration of the data
with certain properties. In non-negative dimensionality reduction, for instance, the
low-dimensional data is required to have non-negative coordinates, i.e., Xij ≥ 0 for
i = 1, . . . , d and j = 1, . . . , n (see Chapter 3). If this requirement is not fulfilled, a
rotation R can be applied to the data with the objective that (RX)ij ≥ 0 (see Figure
1.3).

X

R

RX

Figure 1.3: Rotation of a data set X ∈ Rd.
After the rotation the data is entry-wise non-
negative.

Obviously, such a rotation only exists if the data is lying inside a cone with opening
angle π

2 , i.e., if for all pairs of data points xi, xj ∈ X we have

〈xi, xj〉
‖xi‖ ‖xj‖

≥ cos
(
π

2

)
= 0.

Otherwise, if the data points are spreading too much they cannot be rotated to the
positive orthant. Even though for d = 2 the task of finding a rotation R to the positive
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orthant is simple, it can be quite challenging for higher dimensions. Furthermore, note
that such a rotation is in general not unique.
The above motivated task can be formulated as an optimization problem on the Lie
group of special orthogonal matrices of dimension d

min
R∈SO(d)

f(R), (1.25)

where the cost functional f : SO(d) → R should penalize the negative entries of RX.
Therefore, we choose

f(R) = ‖(RX)−‖2F
where (RX)− denotes the matrix with the negative entries of RX

((RX)−)ij = ((RX)ij)− = min{(RX)ij , 0} =
{

0, if (RX)ij ≥ 0,
(RX)ij if (RX)ij < 0.

This cost function reaches its minimum 0 if all coordinates of the rotated data are non-
negative, i.e., if the data cloud is in the positive orthant. Of course, other choices of f are
possible, but we stick to this one proposed in a similar context in [97]. The optimization
problem (1.25) has the form of (1.14) discussed in Section 1.2.2 and thus, we can apply
the theory of that section and in particular Algorithm 1.73 to find an optimal rotation
R∗.
To implement the algorithm, we need to determine the involved objects. From Example
1.42 we know that the associated Lie algebra so(d) of SO(d) is isomorphic to the set
of skew-symmetric matrices Skew(d) = TIddSO(d) and in Example 1.52 we have shown
that the exponential map on so(d) is the matrix exponential up to the isomorphism F
with

exp ◦F−1(A) = eA for A ∈ TIddSO(d).

It remains to define an inner product on so(d) with its induced left-invariant Riemannian
metric on SO(d) and to compute the gradient

∇TIddSO(d)(f ◦ `R ◦ exp ◦F−1)(0so(d)) = ∇TIddSO(d)(f ◦ `R ◦ e)(0TIddSO(d))

= (d`R−1)R
[
∇SO(d)f(R)

]
.

To this end, we consider the inner product on so(d)

〈h1, h2〉so(d)
(1.20)= 〈h1(Idd), h2(Idd)〉TIddSO(d)

= 〈B1, B2〉Skew(d)
(1.42)= tr

(
(B1)TB2

)
,

for hi ∈ so(d) with hi(Idd) = Bi. This defines an inner product 〈 · , · 〉TIddSO(d) on the
tangent space TIddSO(d) of SO(d) at the identity. In order to compute ∇SO(d)f(R) we
need to extend 〈 · , · 〉TIddSO(d) to a left-invariant Riemann metric on SO(d). Recall that
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the tangent space of SO(d) at R is given by TRSO(d) = {RB : B ∈ Skew(d)}. Further-
more, the differential of the left-translation (d`R−1)R is in this setting the multiplication
by R−1 (compare Example 1.34). Then, equation (1.19) yields for ξ1

R, ξ
2
R ∈ TRSO(d)

〈ξ1
R, ξ

2
R〉TRSO(d) =

〈
(d`R−1)R

[
ξ1
R

]
, (d`R−1)R

[
ξ2
R

]〉
TR−1RSO(d)

= 〈R−1ξ1
R, R

−1ξ2
R〉TIddSO(d)

= tr
(
(ξ1
R)TRR−1ξ2

R

)
= tr

(
(ξ1
R)T ξ2

R

)
= 〈ξ1

R, ξ
2
R〉F .

This shows that the inner product on TRSO(d) is the Frobenius inner product. Using
the definition of the gradient, this implies

〈∇SO(d)f(R), Y 〉F = 〈∇SO(d)f(R), Y 〉TRSO(d)
(1.15)= Df(R)(Y ) = 〈∇M(n,R)f(R), Y 〉F

for all Y ∈ TRSO(d) = {RB : B ∈ Skew(d)}. Here, ∇M(n,R)f(R) denotes the gradient
in the Euclidean space M(n,R). This equation is equivalent to

〈RT∇SO(d)f(R), B〉F = 〈RT∇M(n,R)f(R), B〉F for all B ∈ Skew(d).

From this we conclude that the skew-symmetric part of the matrices RT∇SO(d)f(R) and
RT∇M(n,R)f(R) has to be the same. The matrix RT∇SO(d)f(R) is skew-symmetric since
∇SO(d)f(R) ∈ TRSO(d) = {RB : B ∈ Skew(d)} and RTR = Idd. And thus, we get

RT∇SO(d)f(R) = skew(RT∇M(n,R)f(R)) = 1
2

(
∇M(n,R)f(R)−

(
∇M(n,R)f(R)

)T)
.

Now, the gradient ∇SO(d)f(R) can be computed by partial differentiation as in real
analysis which yields

(d`R−1)R∇SO(d)f(R) = R−1∇SO(d)f(R) = skew
(
RT∇M(n,R)f(R)

)

= skew

RT


∂
∂R11

f . . . ∂
∂R1d

f
... . . . ...
∂

∂Rd1
f . . . ∂

∂Rdd
f




= skew(−2RT (RX)−XT )
= X(RX)T−R−RT (RX)−XT .

Now, that we have all ingredients to determine an optimal rotation R∗, we rewrite
Algorithm 1.73.

Algorithm 1.74. Gradient descent method with Armijo rule and shifting in SO(d):
1: choose R0 ∈ G, σ, β ∈ ]0, 1[, ε ≥ 0 and set k = 0
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2: for θk =
∥∥∥X(RkX)T−Rk − (Rk)T (RkX)−XT

∥∥∥
F
> ε do

3: set descent direction hk = −X(RkX)T−Rk−(Rk)T (RkX)−XT

θk
∈ Skew(d)

4: and descent curve γk(t) = Rketh
k

5: compute tk = max
{
βl : l ∈ N and

∥∥∥∥(γk(βl)X)−
∥∥∥∥2

F
≤
∥∥∥∥(RkX)−

∥∥∥∥2

F
− σβlθk

}
6: set Rk+1 = γk(tk) and k to k + 1
7: end for

1.3.3 Summary
In this section, we have experienced the benefit of the precise theoretical considerations
in the previous parts of this chapter. Here, we have worked at the interface of theory and
praxis. In this field, we have attained a great achievement by formulating certain opti-
mization problems on Lie groups in a rigorous way. We have shown how a multiplicative
update algorithm on Lie groups can be formulated, where we used the special structure
of Lie groups and their associated Lie algebras. A main advantage of this procedure is
that at each iteration step the updated value is still a group element. This prevents us
from imposing additional constraints making the optimization even more complex.
The core step towards the definition of a multiplicative update was the shifting of the
current iterate to the origin (see Figure 1.4). This has the further advantage that the

xk
`(xk)−1 e

0

tkhkexp ◦F−1gk
`xkxk+1 = xkgk

◦`gkG

TeG
Figure 1.4: Update algorithm on the Lie group
G. A multiplicative update is obtained by shift-
ing the problem to the origin e ∈ G and calcu-
lating from there an update step via transferring
the problem to the tangent space at the identity
and back. Note that the computation of the log-
arithm is not needed as log(e) = 0.

computation of the logarithm is not needed any more and thus, we are not restricted to
its domain of definition as before (compare Figure 1.2).
Furthermore, we have discussed an example which plays a key role in our non-negative
dimensionality reduction approach (see Section 2.3). The optimization was performed
on the matrix manifold SO(d), but the theory we have provided is not restricted to this
Lie group.
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High-dimensional data sets occur frequently in many scientific disciplines such as physics,
medicine and musicology, to mention just a few. Due to the extremely fast growing
data storage capacity, analysis and interpretation of this kind of data sets pose new
mathematical and computational challenges and there has been an increasing demand
for effective methods to process high-dimensional data in the last decades. Especially in
the fields of data analysis and machine learning new methods known as dimensionality
reduction methods have been developed in order to understand, visualize and process
the structure of such data sets.
Many high-dimensional data sets from applications possess the inherent property that
the data’s intrinsic dimensionality is actually low. The core idea of all dimensionality re-
duction methods is to make use of this property by embedding the data into a significant
manifold of lower dimension within the high-dimensional space in order to encode im-
portant information of the data set. This lower dimension should ideally correspond to
the intrinsic dimensionality of the data. Different strategies are available for estimating
this dimensionality (see [75] or [119]).
This approach is motivated by the observation that in many cases less than all in-
formation contained in the data points is sufficient for understanding the underlying
characteristics or properties of the data. A logical consequence is that for many applica-
tions a reduction of the data’s dimensionality might improve the quality and speed up
the computation of the data analysis. Also, low-dimensional data sets are much easier
to operate with in case of classification, visualization or compression.
Within the recent years, researcher became aware that not only the data’s intrinsic
dimensionality is worth to be preserved beyond the reduction. In particular, several
applications arose where the entry-wise non-negativity of the data is of major impor-
tance (see [3, 12, 51, 52, 89, 92]). Especially, if the dimensionality reduction is included
in an established procedure for computational reasons, the non-negativity of the low-
dimensional data might be necessary to proceed with the next step. This is for exam-
ple the case for the application of dimensionality reduction in signal separation, where
the classical decomposition tools require a non-negative input. The high-dimensional
data set is typically obtained from a discrete signal transform and it is non-negative
by construction. Therefore, this particular example requires non-negativity preserving
dimensionality reduction methods.
Since there are plenty of efficient dimensionality reduction methods without the addi-
tional non-negativity constraint (see e.g. [73, 125]), the generic procedure is to use the
knowledge about these methods for constructing non-negative dimensionality reduction
methods. Especially, if we formulate the problem of finding a low-dimensional represen-
tation of the data as an optimization problem as in [18], we can benefit from both the
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formulation of the problem and the known reduction map. In fact, only an additional
constraint forcing the low-dimensional data to be non-negative needs to be included.
This describes and motivates our approach to non-negative dimensionality reduction.
There have been several other attempts to develop methods of these kind. Basically,
it can be differentiated between two main approaches. The first one applies only to
linear dimensionality reduction methods, i.e., the reduction map is given by a matrix.
In addition to the constraints of the dimensionality reduction problem this matrix is
required to be non-negative. This strategy was studied for sparse principal component
analysis (PCA) by Zass and Shashua in 2007 [133] and picked up in different contexts in
[31], [53] and others. A similar approach to multidimensional PCA has been developed
by Panagakis et al. in [92] for music genre classification, where the data is given as a
tensor of higher order.
From our point of view, requiring the reduction map to be non-negative is not the best
way to ensure that the reduction preserves the non-negativity of the data. First of all,
this restricts the class of methods to choose from to linear reductions and secondly, the
assumption itself is much stronger than only requiring the low-dimensional data to be
non-negative.
This motivates the other of the above mentioned approaches to non-negative dimension-
ality reduction. Here, the additional constraint concerns directly the low-dimensional
data set by forcing it to be entry-wise non-negative (as it is the high-dimensional data
set). This approach was taken by [3, 4, 107] for developing non-negative PCA methods
for sparse data. Since data from signal processing is not necessarily sparse, one of the
main objectives of this work was to develop a better suited non-negativity preserving
PCA method. Indeed, we have been able to formulate and solve a non-negative PCA
problem and on top we achieve the same approximation errors as the classical PCA
method. This is surprising as it means that the additional constraint does not affect the
quality of the approximation. Our approach provides an efficient computation of the
reduction map. The key idea is to divide the optimization problem into two steps. In
the first step of this splitting approach a classical dimensionality reduction method (e.g.
PCA) is performed and in the second step the non-negativity of the data is achieved
through a rotation of the data set.
Different approaches to non-negative PCA can be found in [87] from 2014 based on
theoretical statistical considerations and in [95] from 2004 based on a non-linear PCA
due to [88].
The procedure we propose for the non-negative PCA can also be used for other dimen-
sionality reduction techniques, no matter if linear or not, but the corresponding reduction
map has to satisfy certain properties. In particular, we need a good approximative in-
verse of this map for both theoretical issues and the application of the developed method
to signal separation.
Non-linear non-negative dimensionality reduction techniques have also been studied by
other authors. Several methods are briefly introduced by Zafeiriou and Laskaris in
[132] from 2010, a non-negative locally linear embedding (LLE) approach was developed
in 2013 in [127] and a non-negative Laplacian eigenmaps (LE) can be found in [78].
These approaches are based on an optimization problem subject to constraints on the
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low-dimensional data, where the conditions are posed in a very restrictive form. More
precisely, the low-dimensional data is not only required to be non-negative but also to
have orthogonal rows. The combination of both constraints seems rather limiting in
signal separation.
Completely different approaches to non-linear non-negative dimensionality reduction are
due to [23] where a non-negative LLE is constructed using a special neighborhood struc-
ture of the data and to a very recent paper [12] from 2015 where a method called
prototype vector projection is proposed. The latter method has non-negative output
data by construction. Furthermore, there are many non-negative dimensionality reduc-
tion methods based on non-negative matrix factorization which have not been studied
for this work (e.g. [90, 116]).

In this chapter we will first briefly introduce the concept of dimensionality reduction and
basic notations in Section 2.1. In Section 2.2 the general formulation of dimensionality
reduction as an optimization problem is studied. We will discuss PCA in Section 2.2.1,
multidimensional scaling (MDS) in Section 2.2.2, Isomap in 2.2.3 and other non-linear
methods in 2.2.4. In Section 2.3 we will introduce the non-negative dimensionality reduc-
tion problem in form of an optimization problem. Here, we will propose a new approach
to non-negative dimensionality reduction. This splitting approach is discussed in Sec-
tion 2.3.2. We investigate the applicability of our approach to different dimensionality
reduction methods in Section 2.4. In particular, in Section 2.4.1 our non-negative PCA
algorithm is formulated and analyzed.

2.1 Basic notations
Mathematically, the problem of dimensionality reduction can be formulated as in [48]:
Let X = {xk}nk=1 ⊂ RD be a data set of dimensionality D ∈ N. In abuse of notation we
will denote by X also the matrix X ∈ RD×n with columns xk. If much of the information
described by X is redundant and can be neglected, we try to find a low-dimensional data
set Y ⊂ Rd which best represents X while conserving the characteristics of the data such
as distances, geometry or other features. The dimensionality d of Y is called intrinsic
dimensionality of the data X and we assume that it satisfies d � D. This process is
called dimensionality reduction.
In this context, the data is assumed to lie on (or nearby) a (smooth) manifold M
embedded in a D-dimensional space. More precisely, we assume X to be sampled from
M, a ν-dimensional smooth compact manifold of RD. In mathematical terms, we search
for a homeomorphism B : RD ⊃M→ Ω ⊂ Rd, where Ω is a ν-dimensional submanifold
of Rd (see Figure 2.1 for an illustration).
Recall that due to the Whitney Embedding Theorem every ν-dimensional smooth con-
nected manifold can be embedded in Rd, for all d with d ≥ 2ν (compare Theorem 1.11).
Now, the objective is to construct a low-dimensional data set Y representing X and
its structure using the geometrical informations given by M. The homeomorphism B
maps the data set X with dimensionality D onto a new data set Y with dimensionality
d preserving the main structure of the data.
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M

ΩB

xk

yk

Figure 2.1: A manifold M ⊂ RD is embedded in a low-
dimensional space Rd (here D = 2, d = 1). The pair (Ω,B) is
a submanifold and the low-dimensional representation Ω of M
has basically the same geometrical structure. The main structure
of the data set X (here the geodesic distances between the data
points) is preserved.

In practice, neither the manifold M nor its low-dimensional representation Ω is known.
Therefore, we can only approximate the homeomorphism B by a dimensionality reduction
mapping P as shown in the diagram in Figure 2.2.

X ⊂ M ⊂ RD

Y ⊂ Ω ⊂ Rd

P B

Figure 2.2: The dimensionality reduction map P approximates
the unknown homeomorphism B.

These concepts are the basis of different dimensionality reduction methods developed in
the last decades. They can be classified in linear and non-linear techniques and among
them are PCA [93], MDS [115], Isomap [114], Laplacian eigenmaps [7] and locally linear
embedding [104], (local tangent space alignment [136]) to mention just a few. In this
context, linearity refers to the idea that each data point on the manifold is a linear
combination of the original data points, i.e., we assume the manifold M to be a linear
subspace (see [38]). For more information about dimensionality reduction we refer to
[73].

2.2 Dimensionality reduction as an optimization problem
In this work we will concentrate on dimensionality reduction methods which can be
computed as the solution of an optimization problem of the form

min
P∈U

g(P ), (2.1)

44



2.2 Dimensionality reduction as an optimization problem

where U ⊂ {f : X → Rd} and g : U → Rd. The cost functional g can be interpreted as
the measure of the distance of P to the homeomorphism B. The choice of the pair (U , g)
determines the dimensionality reduction method P and the minimization problem (2.1)
is (in general) a non-convex problem. Let us summarize this in the following definition.

Definition 2.1. We call a problem of the form (2.1) (i.e., of computing P : X → Rd) a
dimensionality reduction problem. A solution

P ∈ arg min
P̃∈U

g(P̃ )

of a dimensionality reduction problem is called a dimensionality reduction method. The
solution is in general not unique, but it can be made unique by restricting U sufficiently.

Remark 2.2. Note, that we consider optimization problems with admissible sets con-
sisting of reduction maps and not of low-dimensional data sets. A brief summary of
dimensionality reduction as an optimization problem can be found in [18].
It may seem a bit cumbersome to formulate the dimensionality reduction problem in this
way, but it will turn out that this form is convenient for further computations. Later
in this work, we are interested in dimensionality reduction methods with a rotationally
invariant cost functional g and an angle-preserving reduction map P . This can be verified
easily if the dimensionality reduction problem has the form (2.1). Moreover, we will see
that it is beneficial if U has some structure (e.g. a Lie group structure).
In the following, we will briefly discuss some dimensionality reduction methods, where
we focus on writing the corresponding dimensionality reduction problems in the form of
(2.1).

2.2.1 Principal Component Analysis - PCA
Principal component analysis (PCA) is probably one of the most frequently used tech-
niques in multivariate data analysis. Due to its structure based on singular value decom-
position it permits an efficient implementation. As PCA has many applications, it was
discovered independently in different scientific fields and improved by many scientists.
It was first introduced by Pearson [93] in 1901 in a biological framework. In the field of
stochastic processes PCA is also known as the Karhunen-Loève transform.
As stated before, we consider a data matrix X = (x1, . . . , xn) ⊂ RD×n. In the case of
PCA the data points are assumed to lie on or nearby a d-dimensional linear subspaceM
of RD and thus, we can choose Ω = Rd as its low-dimensional representation. The aim
is to find the subspaceM such that the sum of the Euclidean distances from the points
xk toM is minimized. It is well-known that the nearest point x̂k to xk inM is given by
the orthogonal projection of xk toM, i.e., xk− x̂k ⊥M or equivalently 〈xk− x̂k, p〉 = 0
for all p ∈M.
Since M is a linear subspace, we can choose an orthonormal basis U ∈ RD×d with
M = URd. Note that we call a matrix orthonormal even though only its columns or
rows are orthonormal, i.e., the matrix U is not necessarily quadratic. As a consequence,
for U ∈ RD×d we have UTU = Idd, but in general UUT 6= IdD.
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2 Non-negative dimensionality reduction

For x̂k ∈ URd we fix yk ∈ Rd with x̂k = Uyk and obtain

0 = 〈xk − Uyk, Uz〉 = (xTkU − yTk UTU)z for all z ∈ Rd

⇔ 0 = xTkU − yTk
⇔ yk = UTxk.

Thus, x̂k = Uyk = UUTxk and the low-dimensional representation of xk is given by
yk = UTxk. Altogether, the set Y ∈ Rd×n is obtained by projecting the set X onto Rd
by the orthonormal matrix UT ∈ Rd×D such that

Y = UTX.

The projection UT is then a minimizer of the squared Euclidean distance of the original
data to the data points on the subspace, i.e., of the PCA problem

min
ŨT Ũ=Idd

n∑
k=1

∥∥∥xk − Ũ ŨTxk∥∥∥2

2
= min

ŨT Ũ=Idd

∥∥∥X − Ũ ŨTX∥∥∥2

F
. (2.2)

Here, ‖ · ‖F denotes the Frobenius norm. To minimize this functional, we have to assure
that the low-dimensional representation captures as much of the spreading (or scattering)
of the data as possible and discards the redundancy in terms of correlation. This is the
case if the first spanning vector of the subspace is pointing in the direction in which the
data is scattering the most and each of the other d−1 spanning vectors is pointing in the
direction of the widest spread under the constraint of being orthogonal to the previous
ones. Figure 2.3 serves to illustrate the general idea of PCA. It depicts the distances
‖xk − x̂k‖2, whose squared sum has to be minimized, and the directions vi in which
the data is distributed with maximum variance. To reduce the dimension, the data is
projected on the first direction. Thus, PCA can be interpreted as a truncated principal
axis transformation.
Since the variance of a data set is a measure for its range of spread, the minimization
procedure (2.2) is equivalent to maximizing the variance of the low-dimensional data,
which is the trace of the data’s covariance matrix

max
ŨT Ũ=Idd

tr(Y Y T ) = max
ŨT Ũ=Idd

tr(ŨTXXT Ũ) = − min
ŨT Ũ=Idd

− tr(ŨTXXT Ũ). (2.3)

Theorem 2.3 (Principal component analysis). The above introduced optimization
problems (2.2) and (2.3) have the same minimizer. It is given by UT = Idd×DV T = Vd

T ,
where V contains the eigenvectors of XXT sorted in decreasing order by the size of the
corresponding eigenvalues.

To prove this theorem let us recall the Eckart-Young-Mirsky Theorem on the best d-rank
approximation of a matrix relying on a special form of the singular value decomposition.

Theorem 2.4 (Eckart and Young(1936), Mirsky (1960)). Let the singular value
decomposition of matrix X ∈ RD×n with rk(X) = r

X = V ΣW T =
r∑
i=1

σiviwi
T ,
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xk

x̂k = Uyk

‖xk − x̂k‖2

v1

v2

M

Figure 2.3: A data set X ⊂ RD is embedded in a d-dimensional
subspace (here D = 2, d = 1). The subspace M is spanned by
v1, the first principal component (first eigenvector) of XXT . The
approximation error is the sum over k of ‖xk − x̂k‖22 and it is
minimized by taking the orthogonal projection on the subspace
spanned by the first principal components.

where V = (v1, . . . , vr) ∈ RD×r with V TV = Idr, W = (w1, . . . , wr) ∈ Rn×r with
W TW = Idr and Σ = diag(σ1, . . . , σr) ∈ Rr×r is a diagonal matrix with σ1 ≥ σ2 ≥
. . . ≥ σr > 0. Let

X∗ =
d∑
i=1

σiviwi
T , d ≤ r.

Then, rk(X∗) = d and X∗ is the best d-rank approximation under the Frobenius norm,
namely,

‖X −X∗‖2F = min
B∈RD×n
rk(B)=d

‖X −B‖2F ,

with approximation error

‖X −X∗‖2F =
r∑

l=d+1
σ2
l .

Proof. For a proof see [125].

Proof of Theorem 2.3. First we show that the minimization problems

min
ŨT Ũ=Idd

∥∥∥X − Ũ ŨTX∥∥∥2

F
and min

ŨT Ũ=Idd
− tr(ŨTXXT Ũ)

are equivalent. Bearing in mind the orthonormality property of Ũ , by the well-known
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2 Non-negative dimensionality reduction

Pythagoras’ theorem follows that

tr(ŨTXXT Ũ) =
n∑
k=1
‖ŨTxk‖22

=
n∑
k=1
‖xk‖22 − ‖xk − Ũ ŨTxk‖22

= ‖X‖2F − ‖X − Ũ ŨTX‖2F .

This shows that

arg min
ŨT Ũ=Idd

− tr(ŨTXXT Ũ) = arg min
ŨT Ũ=Idd

∥∥∥X − Ũ ŨTX∥∥∥2

F
.

Now, it remains to prove that U = V IdD×d is indeed a minimizer of this problem. This
is clear, since Idd×DV TX is the best d-rank approximation of X with singular value
decomposition X = V ΣW T (see Theorem 2.4).

Remark 2.5. As a consequence of Theorem 2.3 the maximal variance of a d-dimensional
representation is

tr(VdTXXTVd) =
d∑
i=1

σ2
i ,

where σi are the singular values of X. The matrix Vd = V IdD×d is given by the singular
value decomposition of X = V ΣW T .
Remark 2.6. If the PCA model is fully respected, i.e., the data is exactly lying on M,
the smallest d is given by D− dim(ker(XXT )). The trace tr(VdTXXTVd) = tr(Y Y T ) is
maximal if we keep all eigenvalues of XXT apart from the zero eigenvalues. The number
of zero eigenvalues of XXT is given by dim(ker(XXT )).
In contrast, in real situations we often observe some noise and thus, the PCA model might
be not fully respected. This can result in a situation where all eigenvalues of XXT are
larger than zero. In this case, d cannot be estimated without loss of information. But
assuming that the spreading of the data points within the manifold is much larger than
the noise, it is a natural procedure to choose for Vd only the eigenvectors associated
to the largest eigenvalues. Then, we have almost the same situation as before and the
approximation error depending on the dimension d is given by

errPCA(d,X) = ‖X − VdVdTX‖2F =
D∑

i=d+1
σ2
i . (2.4)

Remark 2.7 (Inverse projection). In the case where the PCA model is fully respected,
it is obvious that there exists a back-lifting, projecting the data from the subspace back
to the original high dimensional space using U : Since PCA is based on an orthonormal
projection it is invertible on the low-dimensional subspace, i.e., X = UY , if the data
exactly lies on the subspace. But if the model is not fully respected, i.e., the data is not
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2.2 Dimensionality reduction as an optimization problem

lying in the subspace (just near by), it might be difficult to find an exact back projection
and sometimes it does not even exist. To deal with this problem, we assume the data to
lie in the subspace, and if it does not, we neglect the error.
Summing up, we can specify the cost functional introduced in (2.1)

gPCA(ŨT ) = − tr(ŨTXXT Ũ),

which describes the scattering of the data and the admissible set

UPCA = {ŨT ∈ Rd×D : ŨT Ũ = Idd}

as the set of linear functions from X to Rd which have orthogonal rows. The minimizer
UT of min

ŨT∈UPCA
gPCA(ŨT ) is given by the singular value decomposition of X.

Remark 2.8 (Uniqueness). The solution of the PCA problem is not unique since the
columns of U can be permuted and multiplied by −1.
Remark 2.9. Usually, PCA is applied to centered data sets, i.e.,

∑
i xi = 0. However, our

approach does not need this restriction. This is especially useful for the construction of
non-negative PCA (see Section 2.3).
Remark 2.10 (Computation). Numerically, the problem can be solved by computing
the singular value decomposition of X or the eigenvalue decomposition of the data’s
covariance matrix XXT , respectively. Theorem 2.3 states explicitly how U has to be
chosen.

2.2.2 Multidimensional Scaling - MDS
Another classical approach for dimensionality reduction is metric multidimensional scal-
ing (MDS). In this context, scaling refers to the attempt to determine a configuration
of points in a certain (metric) space from information about pairwise dissimilarities of
objects. So to say, we interpret the dissimilarities of objects as distances (not necessarily
Euclidean) between pairs of points and we aim to compute a configuration of points
in a Euclidean space with the same distance properties. MDS goes back to [131] by
Young and Householder in 1938 and to [115] by Torgerson in 1952. For dimensionality
reduction, MDS can be used in the sense that the low-dimensional representation of the
high-dimensional data is computed trying to preserve the pairwise distances of the data
points. Even though the approach of MDS differs quite a lot from the one of PCA,
we will see that both methods are closely related and yield the same reduction map.
In the following we will sketch a MDS approach to dimensionality reduction based on
minimization. Additional information on MDS can be found in [125] and [29].
Let dij for i, j ∈ {1, . . . , n} with dij ≥ 0, dij = dji and dii = 0 be the pairwise dissimilar-
ities and let D = (d2

ij)i,j=1,...,n ∈ Rn×n be the dissimilarity (or squared distance) matrix.
Similarly, for n data points y1, . . . , yn ∈ Rd we define their squared distance matrix as

DY =
(
(dYij)2

)
i,j=1,...,n

= (‖yi − yj‖22)i,j=1,...,n. (2.5)
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2 Non-negative dimensionality reduction

In this definition, we used the Euclidean metric, but in general any metric can be used
for MDS. A rather complete list of different MDS techniques can be found in Cox and
Cox [29].
Clearly, for a given dissimilarity matrix D we can find n points with ‖yi − yj‖22 ≈ d2

ij by
minimizing

n∑
i,j=1

∣∣∣d2
ij − ‖yi − yj‖22

∣∣∣ (2.6)

with respect to Y . The points Y obtained by this minimization are a configuration
representing the dissimilarities given by D. Note that here the dimension d of the
Euclidean space is not yet chosen. In particular, if d is chosen large enough and if the
dissimilarities dij are obtained from a Euclidean distance measure, the minimal value
of (2.6) can be reduced to zero. In this form, MDS can be seen as a dimensionality
reduction method.
To use this technique for dimensionality reduction, we compute the squared distance
matrix DX of the original high-dimensional data set X and use it as input for MDS.
The low-dimensional data set Y is then computed as the minimizer of

min
Y

n∑
i,j=1

∣∣∣(dXij )2 − ‖yi − yj‖22
∣∣∣ . (2.7)

This is a special application of metric MDS, where the dissimilarity matrix is given by
a configuration in the high-dimensional space.
In the following we will characterize a minimizer of (2.7) under the constraint that
Y = PX for an orthogonal matrix P ∈ Rd×D. Here, the orthogonality of P is a
modeling assumption. Furthermore, we will rewrite the cost functional as the trace of a
matrix-valued function.
But before doing so, let us discuss the relation between DX and the Gramian matrix
XTX. We observe that (dXij )2 = 〈xi, xi〉 − 2〈xi, xj〉+ 〈xj , xj〉 and thus,

DX = AX11×n − 2XTX + 1n×1(AX)T , (2.8)

with AX = (〈x1, x1〉, . . . , 〈xn, xn〉)T . Here, 1m×n denotes the m×n matrix whose entries
are 1. Moreover, let us introduce the centering matrix H = Idn − 1

n1n before we
actually compute the minimizer of (2.7). Note that we can center a data set X by
right multiplication with H since XH = X − 1

n (
∑
i xi, . . . ,

∑
i xi) and thus,

∑
i(XH)i =∑

i xi − 1
nn
∑
i xi = 0. Additionally, we have H2 = H and thus, XH = X implies that

X is centered.
Since MDS is defined to be a linear projection method, we can restrict Y to be the
image of an orthogonal projection and thus, we will minimize (2.7) subject to orthogonal
P ∈ Rd×D, with Y = PX instead of Y . Now we can prove the following theorem that
shows the close relation between MDS and PCA.

Theorem 2.11 (Multidimensional scaling). Let X ∈ RD×n be a high-dimensional
data set and let Xc = V ΣW T be the singular value decomposition of the centered data
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2.2 Dimensionality reduction as an optimization problem

set Xc = XH. Then, P = Vd
T = Idd×DV T is a minimizer of

min
P∈Rd×D,
PPT=Idd

n∑
i,j=1

∣∣∣(dXij )2 − (dPXij )2
∣∣∣ . (2.9)

Furthermore, the approximation error is

errMDS(d,X) =
n∑

i,j=1
(dXij )2 − (dVd

TX
ij )2 =

D∑
i=d+1

σ2
i ,

where σi are the singular values of X in descending order.

Proof. We will rewrite the minimization problem in several steps so that the solution
can be computed as the best d-rank approximation of XH, similarly to PCA.
For an arbitrary orthogonal matrix P ∈ Rd×D, i.e., PP T = Idd, we compute∣∣∣(dXij )2 − (dPXij )2

∣∣∣ =
∣∣∣‖xi − xj‖22 − ‖P (xi − xj)‖22

∣∣∣
=
∣∣∣(xi − xj)T (xi − xj)− (xi − xj)TP TP (xi − xj)

∣∣∣
=
∣∣∣(xi − xj)T (IdD − P TP )(xi − xj)

∣∣∣
=
∣∣∣(xi − xj)T (IdD − P TP )T (IdD − P TP )(xi − xj)

∣∣∣
= ‖(IdD − P TP )(xi − xj)‖22,

(2.10)

where we have used that IdD − P TP is an orthogonal projector.
Next, we observe that for H = Idn − 1

n1n and Z ∈ RD×n it holds

−n tr(HDZH) = −n tr
(
DZ − 1

n
(DZ1n + 1nDZ) + 1

n2 1nDZ1n
)

= −n
n∑
i=1

dZii − 2
n

n∑
k=1

dZki + 1
n2

n∑
k,l=1

dZkl


=

n∑
i,k=1

dZki = ‖DZ‖2F

(2.11)

and with H1n×1 = 11×nH = 0 we have

HDZH (2.8)= H
(
AZ11×n − 2ZTZ + 1n×1(AZ)T

)
H

= −2HZTZH.
(2.12)

Now we rewrite the cost functional in (2.9) as the Frobenius norm of the squared distance

51
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matrix of the matrix (IdD − P TP )X and compute

n∑
i,j=1

∣∣∣(dXij )2 − (dPXij )2
∣∣∣(2.10)=

n∑
i,j=1
‖(IdD − P TP )(xi − xj)‖22

(2.5)= ‖D(IdD−PTP )X‖2F
(2.11)= −n tr(HD(IdD−PTP )XH)
(2.12)= 2n tr

((
(IdD − P TP )XH

)T
(IdD − P TP )XH

)
= 2n‖(IdD − P TP )XH‖2F
= 2n‖XH − P TPXH‖2F . (2.13)

It is well-known, that the best d-rank approximation X∗ of XH under the Frobenius
norm is given by X∗ =

∑d
i=1 σiviu

T
i = VdΣdWd

T (see e.g. Theorem 2.4) and thus, for the
minimizer P∗ of (2.13) it holds X∗ = P T∗ P∗XH = VdΣdWd

T . An easy calculation shows,
that for P∗ = V T

d this equality indeed holds. Thus, the minimizer of (2.9) is given by
P = Vd

T . Furthermore, the error can be computed as in PCA case.

Remark 2.12. The matrix P TP in the cost functional
n∑

i,j=1
‖(IdD − P TP )(xi − xj)‖22 (2.14)

is the orthogonal projection on the d-dimensional subspace P TPRD of RD. This subspace
is spanned by the rows of P . In this sense we have computed an optimal d-dimensional
subspace of RD which is the same as for PCA. The value (2.14) is the sum of the pairwise
squared distances of the orthogonal projection of X onto the orthogonal complement of
P TPRD.

Corollary 2.13. The minimization problem in (2.9) can be equivalently formulated as

min
P∈Rd×D
PPT=Idd

tr(HXTXH −HXTP TPXH).

Proof. This is a direct consequence of Theorem 2.11, since

2n‖XH − P TPXH‖2F = 2n tr
(
(XH − P TPXH)T (XH − P TPXH)

)
= 2n tr(HXTXH −HXTP TPXH).

Remark 2.14. In particular, Theorem 2.11 shows that MDS and PCA lead to the same
reduction method for centered data, even though the heuristics are quite different. Com-
paring the cost functionals in trace-form, this is not surprising since for centered data
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2.2 Dimensionality reduction as an optimization problem

we have XH = X and thus, due to the cyclic invariance of the trace it holds

arg min
P∈Rd×D
PPT=Idd

tr(HXTXH −HXTP TPXH) = arg min
P∈Rd×D
PPT=Idd

tr(XTX −XTP TPX)

= arg min
P∈Rd×D
PPT=Idd

− tr(XTP TPX)

= arg min
P∈Rd×D
PPT=Idd

− tr(PXXTP T ).

In summary, the linear dimensionality reduction method MDS is given as

arg min
P∈UMDS

gMDS(P ),

with cost functional gMDS(P ) = tr(HXTXH − (PXH)TPXH) and admissible set
UMDS = {P ∈ Rd×D : PP T = Idd}. By Theorem 2.11, the solution is given by the
matrix containing row-wise the eigenvectors to the d largest eigenvalues of XHXT .
Remark 2.15 (Uniqueness). In analogy to PCA, the solution of the MDS problem is not
unique. Moreover, all other properties of PCA are also true for MDS.

2.2.3 Isomap
So far we have introduced dimensionality reduction methods, which are based on the
assumption that the data set is concentrated around a linear subspace of the high-
dimensional space RD. Such methods are called linear and they will most likely fail, if
the data is concentrated around a non-linear (Riemannian) manifold M. One reason
for the failure is that the Euclidean metric is not suitable for measuring the distances
of two points on a manifold (see Figure 2.4). To overcome this problem, we can use the

M

xi

xj

Figure 2.4: A configuration of points on a non-linear manifold.
The Euclidean distance of xi and xj is much smaller than their
distance on the manifold. If MDS is applied, the points xi and xj
will be mapped closer together as they should and the geometrical
structure of M is lost.
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metric induced by the Riemannian metric (called the geodesic metric) on the underly-
ing manifold instead of the Euclidean distance. As the manifold M is unknown, the
computation of the geodesic distance is not possible but we can use the neighborhood
structure of the data in order to approximate it. This neighborhood structure (see Step
1 on page 56) of the data induces a graph Γ = (X,E) on the data set, whose vertices
xi ∈ X are the data points and whose edges eij = (xi, xj) ∈ E connect points which are
in the same neighborhood, i.e., eij ∈ E if xj is a neighbor of xi or xi of xj .
Now, we define the graph distance dΓ of two points xi, xj ∈ X as follows: For a path
γ = (x0, x1, . . . , xm) connecting xi = x0 and xj = xm we define its length as dγ(xi, xj) =∑m−1
i=0 ‖xi − xi+1‖2. Then, the graph distance of two points is defined as dΓ(xi, xj) =

minγ∈Φ dγ(xi, xj), where Φ is the set of all paths connecting xi and xj .
Remark 2.16. If the data points are dense enough onM, the graph distance approximates
the geodesic distance well (for a proof see Section 8.5 in [125]).
In analogy to the previous section we can define a dissimilarity matrix from the graph
distance

DXΓ =
(
(dXΓ )2

ij

)
i,j=1,...,n

=
(
dΓ(xi, xj)2

)
i,j=1,...,n

.

The idea is now to use this dissimilarity matrix as an input for MDS. This proceeding is
called Isomap and was introduced by Tenenbaum and co-workers in 2000 (see [114]). The
name Isomap refers to isometric mapping since the dimensionality reduction is realized
by an isometric mapping P : M→ Rd. Here, a mapping is called isometric if it preserves
the pairwise distances of the data set.
Due to its construction Isomap strongly relies on MDS and is sometimes called the
non-linear version of MDS.
The Isomap problem is given by

min
Y

n∑
i,j=1

∣∣∣(dXΓ )2
ij − (dYij)2

∣∣∣ , (2.15)

compare (2.7). Remark that we do not assume that Y = PX for a linear P , so that
Isomap is a non-linear dimensionality reduction method.
In the following we will specify the constraint set of the minimization problem (2.15).
Note that DXΓ is not the squared Euclidean distance matrix and thus, Theorem 2.11 is
not directly applicable and we need some further considerations.
First, we observe that for N sufficiently large (at most n) there exists a configuration of
points Z ∈ RN×n with DZ = DXΓ as long as the so called Isomap kernel −1

2HD
X
Γ H is

positive-semidefinite. This can be seen as follows. A necessary condition for DXΓ to be a
squared Euclidean distance matrix of a configuration in RN is by equation (2.12)

−1
2HD

X
Γ H = (ZH)TZH.

From this it can be directly seen that the left-hand side needs to be positive-semidefinite.
On the other hand, if it is positive-semidefinite, an eigendecomposition yields a desired
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but centered configuration (compare [125]), i.e., ZH = Z. Moreover, we observe that
the dimension N can be chosen as the rank of the Isomap kernel −1

2HD
X
Γ H.

In the following we assume that −1
2HD

X
Γ H is indeed positive-semidefinite (if it is not

compare Remark 2.18) and that Z ∈ RN×n is a corresponding configuration. Now,
we apply the metric MDS from Section 2.2.2 to this data set Z in order to compute a
low-dimensional representation Y = PZ of X. The Isomap problem then reads

min
P∈Rd×N
PPT=Idd

n∑
i,j=1

∣∣∣(dXΓ )2
ij − (dPZij )2

∣∣∣ (2.16)

and with Theorem 2.11 a solution is given by the singular value decomposition of ZH =
V ΣW T as P = Vd

T . This yields the low-dimensional representation Y = Vd
TZ.

From the practical point of view it is not necessary to compute Z because Y can be
directly computed from the Isomap kernel. Consider the singular value decomposition
of ZH = V ΣW T which yields the eigendecomposition −1

2HD
X
Γ H = WΣTΣW T =

WΛ2W T . Then, it follows

Y = Vd
TZ = Vd

TZH = Vd
TV ΣW T = Idd×NΣW T = Idd×nΛW T .

Thus, Y can be directly obtained from the eigendecomposition of −1
2HD

X
Γ H.

Remark 2.17. The low-dimensional representation ofX is a centered data set even though
X was not centered.
Remark 2.18. If the points are not distributed densely enough onM, the Isomap kernel
might not be positive-semidefinite and thus, Y cannot be computed as described above.
To overcome this problem we can use the constant shift technique as in [125] which
consists in adding a positive integer δ > 0 to the graph distance dΓ(xi, xj) for i 6= j. It
is possible to choose δ in a way that the resulting Isomap kernel is positive-semidefinite
(see Chapter 8 in [125] for details).
Remark 2.19. Of course, other metrics beside the graph distance can be used to construct
the dissimilarity matrix of X approximating the geodesic metric. This will lead to other
methods.
In summary, Isomap is based on the same cost functional as MDS. Only the starting
distances are computed differently. Thus, we have gIsomap(P ) =

∑n
i,j=1

∣∣∣(dXΓ )2
ij − (dPZij )2

∣∣∣
and the admissible set UIsomap = {P ∈ Rd×N : PP T = Idd}. In contrast to MDS
and PCA, when formulating Isomap as an optimization problem, we need to make an
intermediate step where we compute the configuration Z.
To end this section we describe the Isomap algorithm.

Algorithm

As mentioned above, to solve the Isomap problem the graph metric dΓ on the data set
X is computed to approximate the geodesic metric of the underlying manifold before a
linear dimensionality reduction method (here MDS or PCA) is applied in order to find
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2 Non-negative dimensionality reduction

a low-dimensional representation preserving the graph metric. Since this computation
involves more steps as solving the PCA or MDS problem, where a simple singular value
decomposition is sufficient to compute the minimizer, we will outline the Isomap algo-
rithm in the following steps (compare [125]).
Step 1. Definition of neighboring points. To fix the neighborhood structure of the
data set X, we need to determine the neighboring points of a data point xi. To do so we
can use either its k-nearest neighbors or all points in an ε-neighborhood. Let us denote
the set of neighboring points of xi by N(i). Note that for k-nearest neighbors in general
xi ∈ N(j) does not imply xj ∈ N(i).
Step 2. Computation of graph distance. As already explained, the neighborhood
structure of X induces a graph Γ = (X,E) on X called the adjacency graph of X. The
graph metric on X is computed as the pairwise graph distance dΓ(xi, xj) for each pair of
points (xi, xj). If there are unconnected points, we set their distance to infinity. Define
the dissimilarity matrix DXΓ by the graph distances.
Step 3. Construction of the Isomap kernel. Compute the Isomap kernel Gc =
−1

2HD
X
Γ H. If it is not positive-semidefinite, change it according to Remark 2.18.

Step 4. Eigen decomposition of the kernel. Since Gc is positive-semidefinite it
has an eigendecomposition WΛ2W T , where Λ = diag(λ1, . . . , λd, . . . , λn) with λi ≥ 0
ordered by size. The low-dimensional data set Y is then given by Y = Idd×nΛW T .

2.2.4 Other non-linear methods
Of course Isomap is just one of many non-linear dimensionality reduction methods that
have been developed in the last decades. Due to the high demand for sophisticated
reduction methods the creation and combination of techniques is a very active field of
research. Many of these methods follow the same pattern as Isomap: the neighborhood
structure of X is defined and used to construct a certain graph. Then, a kernel is defined
and decomposed.
Surely not all dimensionality reduction methods can be formulated as an optimization
problem of the above form in (2.1). But there are quite a few. To discuss all of them
would go beyond the scope of this work, but we would like to mention briefly two other
very popular methods.

Locally Linear Embedding - LLE

The first one is locally linear embedding (LLE). LLE was introduced in 2000 by Roweis
and Saul [104]. The basic idea in LLE is to compute the embedding of the data in the low-
dimensional space by preserving the locally Euclidean structure of the neighborhood of
the data points. The intuition behind this is as follows. If the data points are distributed
densely enough onM, each data point xi and its neighbors are in (or close to) a locally
linear patch of the manifold. Thus, we can compute weights wij to reconstruct xi from
its neighbors by minimizing ‖xi −

∑
j wijxj‖22. If xj is not a neighbor of xi, the weight

wij is set to zero. Furthermore, we require
∑
j wij = 1. For the complete data set,

the weights can be computed by summing up the reconstruction error of all data points
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2.2 Dimensionality reduction as an optimization problem

which leads to
min

W=(wij)i,j=1,...,n
W1n×1=1n×1

wij=0 for xj /∈N(i)

n∑
i=1

∥∥∥xi − n∑
j=1

wijxj
∥∥∥2

2
. (2.17)

This is a simple least square problem which is solved in closed form by

wij =
∑
xk∈N(i)〈xi − xj , xi − xk〉−1∑

xl,xm∈N(i)〈xi − xl, xi − xm〉−1 , for xj ∈ N(i)

(compare [106]). The constraint W1n×1 = 1n×1 leads to a translation invariant cost
functional in the sense that a translation of X leads to the same weights W . Due to the
structure of the cost functional it is furthermore invariant under rotations and scalings
of X.
A low-dimensional representation is now computed by mapping each patch (point xi and
its neighbors) linearly to the low-dimensional space. On each patch this map consists of
rotation, translation and scaling and thus, the weights W are kept fixed.
Due to this construction, we expect that the low-dimensional representation yi of xi
can be reconstructed from its neighbors yj by the same weights as in the original space.
Thus, we can obtain Y by minimizing the same cost functional as in (2.17) but subject
to Y

min
Y ∈Rd×n
Y Y T=Idd

n∑
i=1

∥∥∥yi − n∑
j=1

wijyj
∥∥∥2

2
.

Constraining Y to have unit covariance, i.e., Y Y T = Idd, forces the rank of Y to be
not smaller than d and especially excludes the trivial solution Y = 0. Moreover, this
optimization problem has a unique solution if Y is assumed to be centered, compare
[106].
Let M = (Idn−W )T (Idn−W ), then the cost functional can be reformulated as a trace

n∑
i=1

∥∥∥yi − n∑
j=1

wijyj
∥∥∥2

2
= tr(YMY T ) (2.18)

and thus, it can be solved by solving an eigenvalue problem. The centered solution Y is
given by the eigenvectors to the d smallest non-vanishing eigenvalues (see [106]).
All in all, we do not write the LLE problem directly in the form of (2.1) but in a similar
one

min
Y ∈ULLE

gLLE(Y ), (2.19)

where ULLE = {Y ∈ Rd×n : Y Y T = Idd} is not a set of reduction maps and where
gLLE(Y ) = tr(YMY T ) is the corresponding cost functional.

Laplacian Eigenmaps - LE

The second method we would like to mention here is Laplacian eigenmaps (LE) developed
by Belkin and Niyogi in 2001 in [7]. LE shows some parallels to LLE but the involved
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2 Non-negative dimensionality reduction

kernel W is defined differently. LE is derived from the Laplace-Beltrami operator on the
manifold, which is approximated by the Laplace operator on the neighborhood graph
of the high-dimensional data set. This operator is represented by the graph’s weighted
Laplacian matrix.
The motivation behind LE is to preserve the neighborhood structure of the data set.
First, a neighborhood graph is constructed as in LLE and then a weight matrix W is
chosen in a way that nearby points xi and xj have a larger weight wij than faraway points.
Next, from this weight matrix we define a cost functional which takes a larger value if
nearby points xi and xj are mapped on faraway points yi and yj . A low-dimensional
representation can be obtained by minimizing

1
2

n∑
i,j=1

wij‖yi − yj‖22. (2.20)

The cost function in (2.20) can be reformulated in terms of a trace and the graph
Laplacian which is defined as

L = D −W = diag(
∑
i

w1i, . . . ,
∑
i

wni)−W.

A short calculation leads to

1
2

n∑
i,j=1

wij‖yi − yj‖22 = tr(Y LY T ).

For details on this we refer to [8].
Thus, the LE problem is given by

min
Y ∈Rd×n

YDY T=Idd

tr(Y LY T ), (2.21)

where the constraint ensures that rk(Y ) = d, in particular Y = 0 is not admissible.
Uniqueness can be obtained by requiring the solution to be centered since it is already
normalized by the condition Y DY T = Idd. The values dii =

∑
j wij corresponding

to the ith vertex of the neighborhood graph can be interpreted ass a measure for the
importance of this vertex. The larger the value the more important the vertex since the
adjacent edges have larger weights and contribute more to the cost functional’s value.
A minimizer of (2.21) is provided by the solution of the generalized eigenvalue problem

Lf = λDf.

The minimizer is explicitly given by Y = (f1, . . . , fd)T , where fi are the generalized
eigenvectors to the d smallest non-zero generalized eigenvalues. For a rigorous derivation
see e.g. [68].
As for LLE, we do not write the LE problem in the form of (2.1) but in the form (2.19)

min
Y ∈ULE

gLE(Y ).
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2.3 Non-negative dimensionality reduction as an optimization problem

Here, the admissible set is given by ULE = {Y ∈ Rd×n : Y DY T = Idd} and the cost
functional by gLE(Y ) = tr(Y LY T ).
Last but not least, let us briefly mention the choice of the weights wij . Due to the
analogy to the Laplace-Beltrami operator and its relation to the heat equation they are
usually chosen to be a modified heat kernel with t ∈ R and ε > 0

wij =

e−
‖xi−xj‖

2
2

4t if ‖xi − xj‖2 < ε

0 otherwise,

as proposed in [7]. Here, other choices for the weight matrix W are possible and the
similarity to LLE becomes apparent if we choose the weights accordingly.
The weights of LLE have the constraint

∑
j wij = 1 and thus, the corresponding matrix

DLLE is the identity. This yields M = L2, where M is the matrix from equation (2.18).
Since the eigenvectors of L and L2 are the same, for this special choice of weights LLE
and LE lead to the same reduction map.

2.3 Non-negative dimensionality reduction as an optimization
problem

In the first part of this chapter we have introduced the general concept of dimensionality
reduction, which is based on the crucial assumption that the intrinsic dimension of the
data is much lower than the dimension of the space wherein the data is embedded. We
have discussed different dimensionality reduction methods and we have seen that all of
them are constructed in a way which seeks to preserve some geometrical properties of
the data (as e.g. distances, neighborhoods, scattering in terms of variance).
However, there are other properties of the data which are worth to be preserved be-
yond the dimensionality reduction step. One of these properties is the non-negativity
of the data. In this context, non-negativity refers to the data matrix being entry-wise
non-negative, i.e., X = (xij)i=1,...,d,j=1,...,n ≥ 0 if xij ≥ 0 for all i, j. For example,
when dimensionality reduction is used as a preprocessing step, further computations
might require non-negative input data. This is for instance the case in signal separation
(compare Chapter 3). Here, time-frequency data is obtained by a signal transform and
stored in a data matrix, the so called spectrogram of the source signal. The spectro-
gram is non-negative by construction. To decompose the low-dimensional data set with
methods like independent component analysis or non-negative matrix factorization we
want the reduced data to be non-negative as well. Other applications for non-negative
dimensionality reduction can be found in [52, 90, 92].

2.3.1 Motivating example
The following illustrative example shows that even for an elementary linear dimension-
ality reduction method like PCA we cannot expect the low-dimensional data to be non-
negative although the high-dimensional data was so.
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2 Non-negative dimensionality reduction

Example 2.20. Consider the non-negative data set

X =

1
2

3
2 1 2

3
2

1
2 1 2

1 1 1 2

 ∈ R3×4

and compute a 2-dimensional representation Y using PCA. The covariance matrix XXT

has the eigendecomposition

XXT =


1√
3
−1√

2
−1√

6
1√
3

1√
2
−1√

6
1√
3 0

√
2√
3


21 0 0

0 1 0
0 0 0




1√
3

1√
3

1√
3−1√

2
1√
2 0

−1√
6
−1√

6

√
2√
3


and thus, by Theorem 2.3 a minimizer of the PCA problem is given as

UT =
( 1√

3
1√
3

1√
3−1√

2
1√
2 0

)
.

This yields

Y = UTX =
(√

3
√

3
√

3 2
√

3
1√
2

−1√
2 0 0

)
,

which clearly has a negative entry.
The reason for this phenomenon is the principal axes transformation that is performed
when PCA is applied to the data set (compare Figure 2.5).

UUTR3

X

(a) The data set X (red crosses) lies
in the plane UUTR3 (gray). The first
two principal axes (main scattering di-
rections) are depicted in blue.

UTR3 = R2

Y

(b) 2-dimensional representation Y
(red crosses) and principal axes (blue).

Figure 2.5: Principal component analysis of non-negative data
set X ∈ R3×4 which yields the low-dimensional representation Y
with a negative entry.

This example shows that in general the application of dimensionality reduction methods
might cause negative entries in the low-dimensional representation. Therefore, non-
negative dimensionality reduction methods are essentially required to guarantee non-
negative output data from non-negative input data. Accordingly, the construction of
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non-negative dimensionality reduction methods is of particular interest. One possible
approach to develop such methods is to modify already well-understood dimensionality
reduction techniques in a way that they preserve non-negativity. Seeking a universal pro-
cedure to extend existent dimensionality reduction methods to non-negativity preserving
ones is one of the main objectives of this work.
The main advantage of this approach is that we can benefit from the knowledge of
dimensionality reduction without non-negativity constraint. For many methods of this
type not only the formulation as an optimization problem is known but also a solution.
Nevertheless, we have to be aware that this ansatz entails some restrictions concerning
the dimensionality reduction methods that can be forced to preserve the non-negativity.
In the following, we develop and discuss this framework.

2.3.2 Splitting approach
As motivated above, for the further processing of the reduced data set we are interested
in preserving the non-negativity so that the low-dimensional representation of the data
is likewise non-negative. From Example 2.20 we have learned, that there is absolutely
no reason why the reduced data set Y should be non-negative if we apply any dimen-
sionality reduction method. Thus, in order to preserve this property, we need to enforce
the dimensionality reduction method to do so. This is where our formulation of the
dimensionality reduction problem as an optimization of the form (2.1) pays off because
we simply need to include an additional constraint.

Definition 2.21. The problem
min
P∈U

P (X)≥0

g(P ) (2.22)

is called non-negative dimensionality reduction problem. A solution of this problem is
called non-negative dimensionality reduction method.

By requiring P (X) ≥ 0 we guarantee that the low-dimensional representation is indeed
non-negative. This is a completely different ansatz as introduced in [133] and as used by
many others [31, 51, 52, 92] where a non-negative PCA is developed under the assumption
that U ≥ 0 instead of UTX ≥ 0. Compared to that one, our approach is less restrictive.
In particular, we will see that we obtain the same error as for the usual PCA (see
Theorem 2.41) which is not true in general for the methods using U ≥ 0.
A local solution of (2.22) can be found using standard optimization methods for con-
straint optimization. But searching for a global minimizer makes this typically non-
convex problem much more complex and difficult to solve since, in general, descent
methods do not result in a global minimum. We should keep in mind that this complex-
ity basically results from the additional constraint P (X) ≥ 0 as without this constraint
the problem reduces to the usual dimensionality reduction problem, for which we as-
sume that a minimizer is known. This assumption is reasonable since we have seen in
Section 2.2 that for many dimensionality reduction methods a minimizer can be com-
puted analytically. Precisely this observation motivates our approach to non-negative
dimensionality reduction. The idea is to treat both constraints separately in two steps
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2 Non-negative dimensionality reduction

by splitting the problem into an ordinary dimensionality reduction problem and a second
step where we take care of the non-negativity of the data.
In the following, we will refer to this ansatz by calling it splitting approach. More
precisely, this approach can be summarized like this:
Approach 2.22 (Splitting approach). For a dimensionality reduction method deter-
mined by (U , g) we

(i) solve the dimensionality reduction problem min
P∈U

g(P ) and

(ii) force the low-dimensional representation to be non-negative by applying a post-
processing without changing the value of the cost functional.

Remark 2.23. The success of this approach strongly depends on the dimensionality reduc-
tion problem itself, i.e., on the pair (U , g). The possibility to uncouple both constraints
is a very powerful tool and it allows for reducing the computational costs drastically.
However, it is not applicable to all problems of the form (2.22).
We want to dedicate the remaining sections of this chapter to the classification of (non-
negative) dimensionality reduction methods that can be treated by this approach.

Splitting approach: translation

For the second part of Approach 2.22 several approaches are conceivable. The most
simple one would be a translation of the data since by adding a constant c to all entries
of the data matrix we would achieve that Y + c1d×n ≥ 0 for c > 0 large enough.
This idea is motivated by the observation that some cost functionals from Section 2.2
are indeed translationally invariant.
Definition 2.24. We say that a dimensionality reduction problem has a translationally
invariant cost functional g : U → R if for all P ∈ U and all constant vectors c ∈ Rd

P + c ∈ U and g(P + c) = g(P ).

In this case, we call the reduction method translationally invariant.
All cost functionals of the dimensionality reduction methods from Section 2.2, except
for PCA, are based on the pair-wise distances ‖yi − yj‖2 of the low-dimensional data
points. Due to the translational invariance of this distance measure these cost functions
are translationally invariant by construction.
Unfortunately, this ansatz is not suitable for the application we have in mind even though
it might be useful in other situations. Our approach to signal separation requires the
separation of the low-dimensional data set Y . More precisely, we want to efficiently
decompose a signal (represented by a high-dimensional data set X) by reducing its
dimension, decomposing it with standard methods and mapping the thereby obtained
components Y1 and Y2 back to the high-dimensional data space. By translating the
low-dimensional data Y by c1d×n, we need to be aware of the fact that we only get a
decomposition of Z = Y + c1d×n into Z1 + Z2, which does not yield a decomposition of
Y into Y1 and Y2. This proceeding is shown in Figure 2.6.
These considerations require the search for another more sophisticated approach.
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X Y = P (X) Z = Y + c1d×n

Y1, Y2
with Y = Y1 + Y2

Z1, Z2
with Z = Z1 +Z2

dim. red. transl.

decomp.
?

Figure 2.6: The general proceeding in signal
separation with translation in order to obtain a
non-negative low-dimensional data set. Here, it
is not clear how to obtain Y1 and Y2 from Z1
and Z2 since Z1 and Z2 would need to be back
translated somehow.

Splitting approach: rotation

To overcome the above discussed obstacle we reconsider Example 2.20, which motivates
another approach. We observe that the points of the low-dimensional data set are
scattered in a way that the angle between each pair of vectors is not larger than π

2 .
This observation makes us think of rotating the data to the positive quadrant of the
coordinate system and motivates the following variant of the splitting approach 2.22 to
solve the non-negative dimensionality reduction problem (2.22). Recall that any rotation
of a data set in Rd can be described by a matrix R ∈ SO(d) (compare Example 1.30).

Approach 2.25 (Splitting approach with rotation). For a dimensionality reduction
method determined by (U , g) we

(i) solve the dimensionality reduction problem min
P∈U

g(P ) and

(ii) find a rotation matrix R ∈ SO(d), i.e., RTR = Idd, such that RP (X) ≥ 0 without
changing the value of the cost functional.

The drawback described in Figure 2.6 does not occur here since if Z = RY is decomposed
in Z1 and Z2 with RY = Z1 + Z2, we obtain the decomposition

Y = R−1RY = R−1(Z1 + Z2) = R−1Z1 +R−1Z2 = Y1 + Y2.

Of course this approach is not suitable for all data setsX and all dimensionality reduction
methods P . It will only lead to a solution of the minimization problem (2.22) if we
can guarantee the existence of such a rotation and that its application to the low-
dimensional data set does not affect the value of the cost functional. Thus, we now want
to characterize dimensionality reduction methods that allow for this ansatz.
In the following, we will formulate a sufficient condition for obtaining a global minimizer
of (2.22) by using the splitting approach 2.25. This condition will include two aspects:
first, the cost functional’s independence of the application of a rotation and second, the
existence of a suitable rotation.
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Definition 2.26. We say that a dimensionality reduction problem has a rotationally
invariant cost functional g : U → R if for all P ∈ U and all R ∈ SO(d) it holds

RP ∈ U and g(RP ) = g(P ).

Then, we call the dimensionality reduction method rotationally invariant.

The dimensionality reduction methods presented in the previous section are all rotation-
ally invariant as we will see in Section 2.4. Nevertheless, the rotation invariance of the
cost functional is not sufficient to justify the usage of the splitting approach 2.25 since
the question of the existence of a rotation is still not answered. To do so, we introduce
the notion of a cone and its opening angle.

Definition 2.27. A set K ⊂ Rd is called a cone with apex at 0 if for all x ∈ K we have
λx ∈ K for all λ ≥ 0. Furthermore, we define the opening angle θ ∈ [0, π] of a cone with
apex at 0 as

θ = sup
{

arccos
( 〈x, y〉
‖x‖2‖y‖2

)
: x, y ∈ K \ {0}

}
.

Note that we also refer to such a cone by calling it a cone of angle θ.

Remark 2.28. The opening angle of a cone only coincides with the geometrical picture
(see Figure 2.7) for θ < π since all other cones have opening angle θ = π according to
our definition.

θ

αij

xi

xj

apex

Figure 2.7: Data set lying inside a cone of angle θ. For the angle
αij between xi and xj holds that αij ≤ θ.

Let us now use the above definition to characterize the geometry of the discrete point
set X.
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Lemma 2.29. A data set X 6= {0} is lying inside a cone K of angle θ, i.e., X ⊂ K, if
and only if

〈xi, xj〉
‖xi‖2‖xj‖2

≥ cos(θ) for all xi, xj ∈ X \ {0}.

Proof. For X ⊂ K it follows immediately from Definition 2.27 that 〈xi,xj〉
‖xi‖2‖xj‖2

≥ cos(θ)
for xi, xj ∈ X \ {0}.
Conversely, consider K = conv{λxi : λ ≥ 0, xi ∈ X} = {

∑
i αixi : αi ≥ 0, xi ∈ X}, the

convex hull of all half-lines {λxi : λ ≥ 0}. Then, clearly xi ∈ K and K is a cone with
opening angle θ satisfying

θ ≥ ρ = max
{

arccos
(
〈xi, xj〉
‖xi‖2‖xj‖2

)
: xi, xj ∈ X \ {0}

}
. (2.23)

Actually, we even have θ = ρ. To see this, consider two points v1, v2 ∈ K with ‖v1‖2 =
‖v2‖2 = 1. The normalization effects no loss of generality since it does not affect the
angle between v1 and v2. Then, we have v1 =

∑
i αi

xi
‖xi‖2

and v2 =
∑
j βj

xj
‖xj‖2

with
αi, βj ≥ 0 and xi, xj ∈ X \ {0} and thus, 1 = ‖v1‖2 ≤

∑
i αi and analogously 1 ≤

∑
j βj .

This yields
〈v1, v2〉 =

∑
i,j

αiβj
〈xi, xj〉
‖xi‖2‖xj‖2

≥
∑
i,j

αiβj cos(ρ) ≥ cos(ρ),

where we used the monotonicity of the cosine on [0, π].
This shows that ρ ≥ arccos(〈v1, v2〉) and Definition 2.27 yields

θ = sup
{

arccos
( 〈v1, v2〉
‖v1‖2‖v2‖2

)
: v1, v2 ∈ K \ {0}

}
≤ ρ.

Together with (2.23) we get θ = ρ.

Remark 2.30. A non-negative data set lies inside a cone of angle θ = π
2 .

From the motivation it is already clear that a rotation of the data set to the positive
orthant only exists if the low-dimensional data is lying inside a cone with apex at 0 and
opening angle of at most θ = π

2 . If the opening angle of the cone would be larger, the
scattering of the data would contradict the existence of a suitable rotation.
Accordingly, in order to solve a non-negative dimensionality reduction problem of the
form (2.22) with the splitting approach 2.25 we need to ensure that the low-dimensional
data set is also lying inside such a cone. Thus, we need to characterize dimensionality
reduction methods that preserve the property of the data set to lie inside a cone of a
certain angle.

Definition 2.31 (Cone condition). Let the data set X lie inside a cone of angle θ. We
say that a dimensionality reduction method P fulfills the cone condition for θ if the
low-dimensional data points yi = P (xi), i = 1, . . . , n are lying inside a cone of the same
angle, i.e.,

〈xi, xj〉
‖xi‖2 ‖xj‖2

≥ cos(θ) ⇒ 〈P (xi), P (xj)〉
‖P (xi)‖2 ‖P (xj)‖2

≥ cos(θ). (2.24)
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Remark 2.32. This condition is weaker than requiring P to be angle-preserving since
only the opening angle of the cone containing the data is required to not increase. In
particular, every angle-preserving map P fulfills the cone condition.
Now that we have introduced the appropriate concepts, let us formulate a sufficient
condition for solving problem (2.22) with Approach 2.25.

Theorem 2.33 (Sufficient condition). Let the pair (U , g) define a dimensionality
reduction method P∗. If

(i) g is rotationally invariant and
(ii) P∗ fulfills the cone condition for θ = π

2 ,

a solution of (2.22) can be computed with the splitting approach 2.25. Moreover, it holds

min
P∈U

P (X)≥0

g(P ) = min
P∈U

g(P ).

Proof. We will show that indeed a solution of (2.22) can be constructed via 2.25. Let
P∗ ∈ arg minP∈U g(P ) be the dimensionality reduction method. Since X lies inside a
cone with opening angle π

2 , the low-dimensional representation P∗(X) also lies inside a
cone of the same angle due to the cone condition (condition (ii)). Hence, there exists
a rotation R ∈ SO(d) with RP∗(X) ≥ 0. The rotational invariance of g (condition (i))
implies

RP∗ ∈ U and g(RP∗) = g(P∗).

Now, it follows from minP∈U g(P ) ≤ min P∈U
P (X)≥0

g(P ) that

min
P∈U

P (X)≥0

g(P ) ≤ g(RP∗) = g(P∗) = min
P∈U

g(P ) ≤ min
P∈U

P (X)≥0

g(P ),

which shows that RP∗ is a minimizer of (2.22).

Remark 2.34. The sufficient condition in Theorem 2.33 consists of two conditions which
are of different nature. Condition (i) is a constraint concerning the cost functional of
the optimization problem, whereas condition (ii) is a constraint on the solution of the
optimization problem. Thus, the first one is much easier to check since for the second
one a minimizer needs to be known explicitly.
Theorem 2.33 paves the way for using the splitting approach 2.25 in non-negative dimen-
sionality reduction problems. This elegant approach provides the possibility of extending
classical dimensionality reduction methods to non-negativity preserving ones. In contrast
to [132], we can use the theory and algorithms developed for these classical methods.
Even though the rotation invariance is naturally fulfilled by many cost functionals due to
their construction based on the preservation of the geometrical structure of the data set,
the sufficient condition 2.33 is quite restrictive. The condition that the data is contained
in a certain cone does not apply to that many methods.
In particular, from non-linear methods this cannot be expected without further require-
ments on the manifold as P is an approximation of B (compare the diagram in Figure
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2.2). Linear methods, however, are more likely to satisfy the cone condition. Despite
these limitations, our approach is a step ahead and can be used in many applications
(e.g. compare Chapter 3).
Another crucial aspect is the non-centering of the low-dimensional data within the di-
mensionality reduction since otherwise the data is centered around zero and not con-
tained in a cone with apex at 0 of angle smaller than π

2 . Unfortunately, many dimen-
sionality reduction methods include a centering of the data in order to uniquely identify
a minimizer. The centering constrained Y 1n×1 = 0 can be dropped (as we did in Sec-
tion 2.2) but the thereby obtained methods are not unique. However, the uniqueness is
important for constructing an inverse reduction map, if this is possible at all.
We will now formulate a further condition that guarantees the validity of the cone
condition with θ = π

2 for P . This condition is motivated by the fact that in applications
the high-dimensional points are often not exactly lying on the manifold M but only
nearby. The following definition characterizes this deviation.

Definition 2.35. A map Q : Rd → RD with

Q ◦ P (xi) = xi + εxi for all xi ∈ X (2.25)

is called an approximative left-inverse of P with perturbation vectors εxi .

The setting of this definition is depicted in Figure 2.8 in order to illustrate the pertur-
bation εxi .

xi

Q(yi)

εxi

M

Figure 2.8: The high-dimensional data set X is not exactly lying
on the manifold M. The perturbation εxi is the vector between
point xi and the point Q(yi) = Q(P (xi)).

Remark 2.36. Provided that P well approximates B from the diagram in Figure 2.2, the
approximative left-inverse Q of P can be interpreted as an approximation of B−1.
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2 Non-negative dimensionality reduction

Remark 2.37. We will see in Section 2.4.1 that for PCA the map Q with Q(Y ) = UY is
an approximative left-inverse of P .
With this definition we can state an alternative condition to 2.33 (ii).

Theorem 2.38. Let Q be an approximative left-inverse of P with perturbation vector
εxi bounded by

‖εxi‖2 ≤ min
j=1,...,n

{
1
3
〈xi, xj〉
‖xj‖

,

√
1
3〈xi, xj〉

}
(2.26)

and

〈Q(yi), Q(yj)〉
‖Q(yi)‖2‖Q(yj)‖2

≤ 〈yi, yj〉
‖yi‖2‖yj‖2

for all yi = P (xi), i, j = 1, . . . , n. (2.27)

Then, P fulfills the cone condition for θ = π
2 .

Proof. Let X be a data set inside a cone of angle π
2 . From the properties of the absolute

value and the Cauchy-Schwartz inequality it follows −xTi εxj ≤ |xTi εxj | ≤ ‖xi‖2‖εxj‖2
and thus,

xTi εxj ≥ −‖xi‖2‖εxj‖2. (2.28)

Hence, we get

〈P (xi), P (xj)〉
‖P (xi)‖2‖P (xj)‖2

(2.27)
≥ 〈Q ◦ P (xi), Q ◦ P (xj)〉
‖Q ◦ P (xi)‖2‖Q ◦ P (xj)‖2

(2.25)=
〈xi + εxi , xj + εxj 〉
‖xi + εxi‖2‖xj + εxj‖2

=
〈xi, xj〉+ 〈xi, εxj 〉+ 〈xj , εxi〉+ 〈εxi , εxj 〉

‖xi + εxi‖2‖xj + εxj‖2
(2.28)
≥
〈xi, xj〉 − ‖xi‖2‖εxj‖2 − ‖xj‖2‖εxi‖2 − ‖εxi‖2‖εxj‖2

‖xi + εxi‖2‖xj + εxj‖2

≥
〈xi, xj〉 − 1

3〈xi, xj〉 −
1
3〈xi, xj〉 −

1
3〈xi, xj〉

‖xi + εxi‖2‖xj + εxj‖2
= 0.

For θ = π
2 this leads to

cos(θ) = 0 ≤ 〈P (xi), P (xj)〉
‖P (xi)‖‖P (xj)‖

,

which completes the proof.

Remark 2.39. Condition (2.27) can be thought of as an inverse version of the cone
condition (2.24). It requires that the angle between two vectors yi, yj is not decreasing
when Q is applied.
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Remark 2.40. The bound on ‖εxi‖2 basically requires the data set to lie in a cone with
a slightly smaller angle θ < π

2 . Careful rearranging of (2.26) leads to

θ = max
i,j=1,...,n

](xi, xj) ≤ max
i,j=1,...,n

{
arccos

(
3‖εxi‖2
‖xi‖2

)
, arccos

(
3 ‖εxi‖22
‖xi‖2‖xj‖2

)}
.

This shows that even for a small perturbation, the maximal angle ](xi, xj) between xi
and xj cannot be equal to π

2 . This matches with our intuition.

Numerical considerations and summary

So far we have discussed the feasibility of the splitting approach analytically. Since we
have a concrete application in mind, also the question of the numerical realization is
of particular interest. The main issue is the computation of a suitable rotation R. As
discussed in detail in Section 1.3.2, this can be done by solving an optimization problem
on the Lie group SO(d) of special orthogonal matrices. In the Sections 1.2 and 1.3
we have developed an efficient algorithm to compute R which is in general for d > 2
a non-trivial task. This substantiates the necessity of the theoretical considerations in
Chapter 1.
Solving minimization problem (2.22) is a crucial task since we aim for a global minimizer.
This is where many classical numerical methods fail. We have proposed an approach
which avoids this problem, as it resorts to the known global solution of a related problem
and uses this as a basis to compute a solution of the problem itself. By this, a global
solution of the minimization problem (2.22) is obtained.

2.4 Methods for non-negative dimensionality reduction
In the following we reconsider the dimensionality reduction methods introduced in the
first part of this chapter in order to figure out whether they fit into the above discussed
framework (see splitting approach 2.25). This means that for the different methods we
will verify the requirements of Theorem 2.33 and Theorem 2.38, respectively. It will
turn out that all methods presented in Section 2.2 possess a rotationally invariant cost
functional whereas the cone condition for θ = π

2 is rarely fulfilled. This is due to the
fact that non-linear methods are in general not angle-preserving. Non-linear methods
try to unfold manifolds like the Swiss role (compare [73]) and thus, they can only try to
preserve the angle between data points locally (as e.g. LLE). Furthermore, the centering
of the data contradicts the cone condition as mentioned above.

2.4.1 Non-Negative Principal Component Analysis - NNPCA
Recall from Section 2.2.1 the cost functional gPCA and the admissible set UPCA. With
this, the non-negative principal component analysis (NNPCA) problem according to
(2.22) reads

min
UT∈Rd×D,UT U=Idd

UTX≥0

− tr(UTXXTU). (2.29)
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NNPCA problems have been studied in different forms by several authors. Some of them
require the matrix U to be non-negative (e.g. [31, 52, 133]). This constraint is stronger
than ours and thus, the minimal value of the cost functional is in general expected to be
larger. The optimization problem itself is then solved by a relaxation method. A similar
formulation is used in [92] for a multi-linear NNPCA which is solved by optimization
on the Grassmannian manifold. Some of the earliest references on NNPCA are due to
Plumbley and Oja [89, 95], where NNPCA is considered as a special case of a non-linear
PCA [88], which leads to a different cost functional.
In [3, 4, 107] algorithms for a sparse NNPCA are developed. The NNPCA problem
formulation therein is similar to ours, but the approaches for finding minimizers and
thus, the algorithms are quite different. In particular, they require the minimizer to be
a sparse minimizer.
All in all, none of the above mentioned references studies the NNPCA problem as stated
in (2.29). Let us now analyze our splitting approach for this NNPCA problem. Due to
the preliminary considerations we have done, verifying the sufficient condition 2.33 is
straightforward.

Theorem 2.41 (Non-negative principal component analysis). Let X ∈ RD×n be
a non-negative data set and choose d such that

errPCA(d,X)(2.4)=
D∑

k=d+1
σ2
k ≤ min

i,j=1,...,n

{
1
9
〈xi, xj〉2

‖xj‖22
,
1
3〈xi, xj〉

}
. (2.30)

Then, a solution of the NNPCA problem (2.29) can be computed by the splitting approach
2.25. It is given by P = RVd

T for a suitable R ∈ SO(d), where VdT is the solution of
the PCA problem for X. Moreover, we have

errNNPCA(d,X) = errPCA(d,X).

Proof. We will use Theorems 2.33 and 2.38 in order to show that the splitting approach
yields indeed a solution of the NNPCA problem (2.29). We start with verifying 2.33 (i).
Let P = UT ∈ UPCA and R ∈ SO(d) be two matrices and compute for RUT ∈ Rd×D

RUT (RUT )T = RRT = Idd ⇒ RUT ∈ UPCA

and

gPCA(RUT ) = − tr
(
RUTXXT (RUT )T

)
= − tr

(
RTRUTXXTU

)
= gPCA(UT ).

For the last equation we used the cyclic invariance of the trace. This shows that gPCA
is indeed rotationally invariant. Next, to prove 2.33 (ii), i.e., that the minimizer P∗ =
Vd

T of (2.29) fulfills the cone condition for θ = π
2 , we exploit Theorem 2.38. First,
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2.4 Methods for non-negative dimensionality reduction

we observe that Vd is an approximative left-inverse of VdT with perturbation vectors
εxi = (VdVdT − Idd)xi. Then, it follows from (2.4) that

‖εxi‖22 ≤
n∑
i=1
‖εxi‖22 = ‖(VdVdT − Idd)X‖2F =

D∑
i=d+1

σ2
i ,

where σi are the smallest D − d singular values of X. Now, (2.30) yields

‖εxi‖2 ≤ min
i,j=1,...,n

{
1
3
〈xi, xj〉
‖xj‖2

,

√
1
3〈xi, xj〉

}
.

Furthermore, we have to check inequality (2.27). Therefore, we compute

〈Vdyi, Vdyj〉 = yTi Vd
TVdyj = 〈yi, yj〉,

which yields ‖Vdyi‖2 = ‖yi‖2 and thus,

〈Vdyi, Vdyj〉
‖Vdyi‖2‖Vdyj‖2

= 〈yi, yj〉
‖yi‖2‖yj‖2

.

This shows that P∗ = Vd
T fulfills 2.33 (ii).

All in all, Theorem 2.33 is applicable and the splitting approach leads to a minimizer
of the NNPCA problem. The equality of the approximation errors follows directly from
the same theorem.

If the high-dimensional data is exactly lying on a d-dimensional subspace of RD, i.e.,
rk(X) = d, it is sufficient that the data set is lying in the positive orthant to apply the
previous theorem. Because the reduction map VdT preserves angles between elements of
the subspace VdVdTRD, the cone condition for θ = π

2 is true for X. Let us formulate this
as a corollary.

Corollary 2.42. Let X ∈ RD×n be a non-negative data set with rk(X) = d. Then, the
assumptions of Theorem 2.41 are fulfilled. Moreover, the approximation error is

errNNPCA(d,X) = 0.

Proof. This is a direct consequence of Theorem 2.3, Remark 2.6 and Theorem 2.41. Since
X has rank d, it has exactly d non-vanishing singular values. Thus, the approximation
error satisfies errPCA(d,X) = 0. From Theorem 2.41 now follows that errNNPCA(d,X) =
errPCA(d,X) = 0.

Remark 2.43. If the data set is not exactly lying on a d-dimensional subspace, it has to
be contained in a cone with opening angle θ < π

2 in order to make the cone condition
still accomplishable. The value of θ depends on the size of the perturbation.
The statement of Theorem 2.41 is much stronger than the one of Corollary 2.42 since it
allows for some perturbation of the data. This is very useful for practical applications,
where usually some noise is involved.
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2.4.2 Non-Negative Multidimensional Scaling - NNMDS
One could think that the theoretical results for non-negative multidimensional scaling
(NNMDS) are the same as for NNPCA since their solutions for the classical dimension-
ality reduction problem are closely related. But the centering of X, from which the
reduction map PMDS is computed (compare Theorem 2.11), prevents proving a result
similar to Theorem 2.41.
However, if the non-negative data set X is lying inside a d-dimensional subspace (and
not just nearby), we will show that the splitting approach 2.25 yields a minimizer of the
NNMDS problem

min
P∈Rd×D,PPT=Idd

PX≥0

tr(HXTXH −HXTP TPXH). (2.31)

When applying the splitting approach to NNMDS, we have to bear in mind that the
minimizer of the classical MDS problem needs to fulfill the cone condition for θ = π

2 .
Since the minimizer of the MDS problem is not unique, we may choose the right one
according to the condition.
To this end, note that the centered data set Xc has not necessarily rank d but rk(Xc) =
δ ≤ d. Furthermore, Xc ∈ span(X) since Xc = XH and thus, the columns of Xc are
linear combinations of the columns of X. Recall, that the solution Vδ

T of the classical
δ-dimensional MDS problem (compare Theorem 2.11) is given by the singular vectors to
the δ non-zero singular values of Xc. It can be extended to an orthonormal basis Vd of
span(X) by adding d − δ singular vectors of Xc corresponding to the singular value 0.
In particular, Vd−δTXc = 0 holds and VδVδ

TXc = Xc.
Let us show that

Vd
T = (Vδ, Vd−δ)T (2.32)

is indeed a minimizer of the MDS cost functional in Corollary 2.13 by proving that
gMDS(VdT ) = 0:

gMDS(VdT ) = tr
(
(Xc)TXc − (Xc)TVdVdTXc

)
= tr

(
(Xc)TXc − (Xc)T (Vδ, Vd−δ)(Vδ, Vd−δ)TXc

)
= tr

(
(Xc)TXc − (Xc)TVδVδTXc − (Xc)TVd−δVd−δTXc

)
= 0.

In summary, we observe that

errMDS(δ,X) =
D∑

i=δ+1
σ2
i = 0 =

D∑
i=d+1

σ2
i = errMDS(d,X)

and, hence, the choice of the (δ + 1)th to dth basis vector does not affect the cost
functionals value.
Using this particular minimizer VdT of the classical MDS problem, we can apply the
splitting approach to the NNMDS problem as stated in the following theorem.
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Theorem 2.44 (Non-negative multidimensional scaling). Let the data set X ∈
RD×n be non-negative with rk(X) = d. Then, a solution of the NNMDS problem (2.31)
can be computed by the splitting approach and it is explicitly given by P = RVd

T for a
suitable rotation R ∈ SO(d) and the solution Vd

T of the corresponding MDS problem as
defined in (2.32).
Proof. We will apply Theorem 2.33. Therefore, we first observe that gMDS is rotationally
invariant: Let P ∈ Rd×D with PP T = Idd and R ∈ SO(d) then, for RP ∈ Rd×D

RP (RP )T = RPP TRT = Idd ⇒ RP ∈ UMDS

and

gMDS(RP ) = tr(HXTXH −HXT (RP )TRPXH)
= tr(HXTXH −HXTP TRTRPXH)
= gMDS(P ).

This proves the rotational invariance 2.33 (i). For condition 2.33 (ii) it is sufficient to
show 〈VdTxi, VdTxj〉 ≥ 0. In the preliminary considerations we have seen that due to the
assumption rk(X) = d and the construction of VdT the data X is lying in the subspace
VdVd

TRD and thus, VdVdTX = X. Hence,

〈VdTxi, VdTxj〉 = 〈xi, VdVdTxj〉 = 〈xi, xj〉 ≥ 0.

This completes the proof.

A consequence of this theorem is that for X with rk(X) = d the approximation error is
again the same for both, the non-negative and the classical method.

2.4.3 Splitting approach and non-linear methods
As already indicated, the splitting approach is not suitable for non-linear methods. This
has several reasons. Even though the cost functionals for Isomap (2.16), LLE (2.18) and
LE (2.21) are rotationally invariant (mostly due to the cyclic invariance of the trace),
the sufficient condition from Theorem 2.33 is not applicable since these methods are in
general not angle-preserving. The alternative condition from Theorem 2.38 is not helpful
since we are neither aware of appropriate approximative left-inverses for these methods,
nor are these given explicitly in the literature.
Another aspect concerns the formulation of the non-linear dimensionality reduction prob-
lem of LE and LLE. In Section 2.2.4 we have seen that these problems could not be
formulated as an optimization problem on the map P but only on the representation
Y . In this setting, imposing the additional constraint Y ≥ 0 is very restrictive since
the combination of Y DY T = Idd for a diagonal matrix D and Y ≥ 0 forces Y to have
at most one non-vanishing entry per column. Thus, the solution is sparse which is not
suitable for our applications.
Nevertheless, several authors have addressed problems with these constraints. In [78,
127, 132] they have been discussed for NNLE and NNLLE and the corresponding opti-
mization problems were solved by update algorithms.
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Many audio-related applications take advantage of the ability to separate sources from
a mixture without a prior knowledge about the mixing process. Thus, the analysis and
separation of audio signals into their source components is an important tool for the
extraction of meta data from audio data as for example separating musical instruments
from a polyphonic ensemble, music restoration or extracting speech from a noisy back-
ground. In all these situations, an efficient method to analyze the auditory scene in
order to extract essential information is needed. This concept is known as blind signal
separation (BSS) and was the topic of many recent research projects as already discussed
in the introduction of this thesis.
In the case of detection or separation of certain sources from a mixture of signals, time-
frequency information about the data is collected and used to decompose the signal into
different components corresponding each to one of the source signals. This decomposition
is based on the assumption that the different source signals can be characterized by
their frequency distribution. There are different methods for the decomposition of time-
frequency data available (e.g. independent component analysis (ICA) or non-negative
matrix factorization (NNMF)).
Time-frequency data is typically given by a spectrogram obtained from a signal trans-
form, such as short-time Fourier transform (STFT). Of course, other transforms can be
used for computing a time-frequency representation, but we will stick to the classical
STFT. For high-energy signals, the time-frequency data is characterized by the high
dimensionality of the Euclidean space in which the data is embedded. More precisely,
the dimension of this space is defined by the frequency range of the original signal and
the size of the signal transform. A standard value for the frequency range would be 256.
Therefore, it suggests itself that a reduction of the data’s dimensionality might improve
the method and speed up the computation of the data analysis. We observe that in many
cases not all information contained in the data points is relevant for understanding the
underlying characteristics or properties of the data. Many signals can be sufficiently de-
scribed by a few dominant frequencies. Also, low-dimensional data sets are much easier
to operate with in view of classification, visualization or decomposition. As a conse-
quence, we would like to reduce the dimensionality of the given data in a preprocessing
step before we apply a decomposition method. Thus, we focus on the interaction of di-
mensionality reduction and decomposition methods such as ICA or NNMF. The idea of
combining dimensionality reduction and ICA is not a new concept (see [36, 48, 69, 117]).
But to improve these strategies, a better mathematical understanding of these proce-
dures is needed. Also, the substitution of ICA by a non-statistic based method such as
NNMF could improve the results.
An important aspect we have to take into account is non-negativity. The amplitude
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spectrogram, output from the STFT, is non-negative. In this context, non-negativity
refers to the fact that the data matrix is entry-wise non-negative. This fits very well
with the decomposition by non-negative matrix factorization which requires, as the name
suggests, non-negative input data. But the application of an intermediate dimensionality
reduction step might cause negative entries in the low-dimensional representation. Thus,
there is a need of reduction methods which are able to preserve non-negativity. To this
end, we have developed an approach for non-negative dimensionality reduction (compare
Chapter 2).
In the present section, we will introduce a signal separation procedure which includes
this dimensionality reduction step. We will combine different techniques and discuss
several numerical examples to illustrate the algorithm’s applications. We will focus on
the separation of single channel drum and percussion tracks which are typically high-
energy signals. There has been done some research in this direction (see [36, 117]) but so
far the combination of non-negative dimensionality reduction and NNMF has not been
considered by other authors.
It will turn out that the combination of PCA or our NNPCA with ICA yields the best
separation. However, our new NNPCA combined with NNMF does perform almost
as good as PCA and ICA, whereas Isomap followed by any of the two decomposition
methods shows very poor separation qualities. In the latter, we used a naive kernel
approach (compare [86]) for approximating the inverse reduction map.
In Section 3.1, we introduce the concept of signal detection and separation and review
the involved methods in several subsections. Section 3.1.1 is dedicated to the generation
of time-frequency data, where we introduce the short-time Fourier transform. In Section
3.1.2, we discuss some difficulties which arise when it comes to dimensionality reduc-
tion in signal separation. Thereafter, we study decomposition techniques focusing on
independent component analysis and non-negative matrix factorization (Section 3.1.3).
In Section 3.2, we will discuss three examples. We will use the before-explained algorithm
in order to separate different mixtures of single-channel audio recordings. The examples
are introduced in Section 3.2.1 and the results are discussed in 3.2.2.

3.1 Signal separation procedure
Given a mixture f =

∑
i fi of band-limited source signals fi ∈ L2(R), signal separation

aims to estimate the different components fi by using specific assumptions on the time-
frequency or statistical characteristics.
For the matter of signal separation, also the identification of the time intervals during
which a certain source signal is active is a crucial aspect. This procedure is called signal
detection and can be used for further analysis. In fact, provided the time locations where
a certain source is active are known, separation algorithms could concentrate on these
regions and perform the source extraction with higher resolution, but this is not the
objective of this work.
For the numerical examples discussed in Section 3.2, we used the signal detection and
separation procedure which is illustrated in Figure 3.1: First, the spectrogram X of the
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signal to be separated is computed by a short-time Fourier transform. The spectrogram,
a data matrix whose columns are representing the time steps of the signal, contains
information about the frequencies which are present in the signal at each time step.
A spectrogram can be obtained by any time-frequency transform but we stick to the
classical discrete STFT. Usually, the data matrix X is very high-dimensional. In order
to make computation and interpretation easier, it is therefore convenient to apply a
(non-negative) dimensionality reduction method (the map P ) in a second step which
reduces the dimension of the data drastically. Then, the reduced data Y is decomposed
by assuming it to be a linear mixture Y = AS of the unknown source components S.
From this decomposition we obtain data matrices which need to be back-lifted to the
high-dimensional space in order to get the spectrograms of the sources and to apply the
inverse time-frequency transform for a complete separation.
In the following, we will give further information on the involved methods. We will focus
on our algorithm where we used STFT, PCA, NNPCA, Isomap, ICA and NNMF.

spectrograms
of f1 and f2

ICA, NNMF

signal f

X

Y

decomposed data

signals f1, f2

STFT

P

ISTFT

back-lifting

Figure 3.1: Signal separation with dimensionality reduction. The
map P is used to first reduce the dimension of the data X obtained
from a STFT, before the reduced data Y is decomposed into dif-
ferent components, each assigned to one of the source signals. The
decomposed data is then back-lifted to the initial space before an
ISTFT leads to the output signals.

3.1.1 Generation of time-frequency data
We are interested in implementing a separation algorithm for music recordings, especially
for percussion tracks. Digital signals are time-limited and discrete (usually sampled from
a continuous signal). For the implementation of an algorithm to separate this particular
class of signals we will recall some basic definitions and tools from discrete Fourier
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analysis. In the following, let ZN denote the set {0, . . . , N − 1} ⊂ N and thus, such a
signal can be thought of as an element `∞(ZN ) ' RN .
An approach for the extraction of meta data from an audio mixture is to use local
information about the signal. Provided a data set at each point in time, the idea is to
assign this information to the different source signals which yield a separation of the
signal. One possible type of information we can use here is frequency information. We
assume that each source signal has a characteristic time-frequency distribution which
can be used to distinguish different source signals. This is based on the time-frequency
representation of the signal which is the evolution in time of a signal’s spectral content.
From Fourier analysis we know that the frequency spectrum of an L1(R) or `∞(ZN )
signal is given by the Fourier transformation. However, since the Fourier transform is
time-independent this it not precisely what we need. But we will see that we can use
the Fourier transform to generate a time-frequency representation anyway.
In this section, we rely on the textbooks [85, 130]. For more information, especially
on the continuous time-frequency analysis we refer to [46, 135]. Let us briefly recall
the discrete Fourier transform and its inverse. These can be defined analogously to the
continuous Fourier transform FF (ω) =

∫
R F (t)e−2πiωtdt and its inverse.

Definition 3.1. For a discrete function f ∈ `∞(ZN ), its discrete Fourier transform
Ff ∈ `∞(ZN ) is defined as

(Ff)j =
N−1∑
k=0

fke
− 2πijk

N , for j ∈ ZN ,

with i denoting the imaginary unit.

The values fk can be obtained as samples fk = F (tk) from a continuous function F . The
sampling points in time tk = kT

N with sampling rate T
N have to be chosen equispaced

and according to the length T of the signal. Recall that a continuous function F can
be exactly reconstructed if sampled at Nyquist rate. From the famous Nyquist-Shannon
Sampling Theorem (see [84]), we know that this optimal sampling rate is closely related
to the bandwidth of the signal F .

Definition 3.2. Let F ∈ L1(R) be a function. The length of the support of the continu-
ous Fourier transform FF of F is called total bandwidth. If FF (ω) = 0 for ω /∈ ]−πδ, πδ [ ,
the function F has total bandwidth 2πδ and is called band-limited to [−πδ, πδ].

The Sampling Theorem now states, that a continuous function F ∈ L1(R) which is
band-limited to [−δπ, δπ] can be completely reconstructed from its samples at tk = k

δ
for k ∈ N with the formula

F (t) =
∞∑

k=−∞
F (tk)

sin(πδ(t− tk))
πδ(t− tk)

=
∞∑

k=−∞
fk sinc(δt− k).

The sampling frequency δ is known as the Nyquist rate.

78



3.1 Signal separation procedure

A signal cannot be both band-limited and time-limited. As in practice all signals are
time-limited, band-limited signals are only a theoretical concept which is used for an-
alytical purposes. A common technique in application is the truncation of the signal’s
Fourier transform if it decreases fast enough. Moreover, this truncation can be justified
by recalling that the human hearing range is roughly given as 20Hz to 20000Hz.
The continuous Fourier transform is not convenient for implementation and thus, the
truncation and the Sampling Theorem are fundamental for digital signal processing since
they enable us to use the discrete Fourier transform.
In Definition 3.1, we have not only sampled in time but also in the frequency domain.
The frequency samples are ωj = 2πjδ

N . The value (Ff)j is a complex number which has in
polar coordinates the form |(Ff)j |ei arg((Ff)j). The value |(Ff)j | is called the amplitude
and arg ((Ff)j) the phase of (Ff)j .
As for the continuous Fourier transform, there is an inverse discrete Fourier transform.

Definition 3.3. For a discrete function g ∈ `∞(ZN ) its discrete inverse Fourier trans-
form F−1g is defined by

(F−1g)k = 1
N

N−1∑
j=0

gje
2πijk
N , for k ∈ ZN .

Indeed, the inverse discrete Fourier transform is the inverse of the Fourier transform as
the following theorem states.

Theorem 3.4. For a discrete function f ∈ `∞(ZN ) the discrete Fourier inversion for-
mula holds:

fk = (F−1Ff)k = (FF−1f)k for all k ∈ ZN .

Proof. See [130].

Remark 3.5. It is easy to see that a straightforward computation of the discrete Fourier
transform is of complexity O(N2) as the computation for each of the N components is
of complexity O(N). In order to compute the discrete Fourier transform efficiently, the
so called fast Fourier transform (FFT) can be used. There are different algorithms to
perform the FFT, among them the Cooley-Tukey algorithm proposed in 1965 [28].
As already motivated, in signal detection we would like to have some local properties of
f on which we can base our separation algorithm. In particular, we are interested in a
‘local frequency spectrum’. Since for a continuous F the frequency spectrum computed
by a Fourier transform is only given for a time interval and not for a single point in time,
the idea is to choose the length of the interval to be short in order to approximate the
frequency spectrum at a point. To this end, we restrict F to an interval by multiplication
with a so called window function ϕ and compute the Fourier transform of this restriction.
We choose the window function to be smooth as this avoids problems at the ends of the
interval. As shown in Figure 3.2, we consider a segmentation of the signal into small
patches of length L at distance h. For the discrete setting, this segmentation is obtained
by multiplication of the signal by a discrete, compactly supported window of length L
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Figure 3.2: Short-time Fourier transform and construction of
spectrogram.

with center L
2 + lh. Subsequently, the FFT algorithm is applied to the segments in order

to compute a discrete time-frequency representation.
This motivation leads to the definition of the discrete short-time Fourier transform.

Definition 3.6. Assume that ϕ ∈ `∞(ZL) is a discrete window with ϕk 6= 0 and f ∈
`∞(ZN ). For n and h ∈ N with (n− 1)h = N − 1− L, we define the discrete short-time
Fourier transform (STFT) Fϕf of f by

(Fϕf)j,l =
L−1∑
k=0

fk+lhϕke
− 2πijk

L =
(
F (fk+lhϕk)L−1

k=0

)
j
, for j ∈ ZL, l ∈ Zn.

The parameter h is called hop size and L is the window length.

Remark 3.7. There is also a continuous version of the short-time Fourier transform (see
e.g. [46]). Therefore, the discrete STFT is also called DSTFT in the literature.
The localization in Definition 3.6 gives us the frequency content of the signal in a concrete
window ϕ with center L

2 + lh so that the discrete short-time Fourier transform depends
on two indices, j for the frequency and l for the position of the window. Obviously, for
a fixed l, we have (fk+lhϕk)k ∈ `∞(ZL) and thus, the STFT has properties analogue to
the properties of the discrete Fourier transform.
By means of the discrete short-time Fourier transform we compute the frequency range
of a signal f as a discrete function of time: the (amplitude) spectrogram of f . The
spectrogram displays the values | (Fϕf)j,l | in a time-frequency diagram. Since we are
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3.1 Signal separation procedure

considering real-valued signals, the absolute value is symmetric in ωj and thus, we only
use the positive part of the spectrum and not the total bandwidth. For a fixed l,
the values | (Fϕf)j,l | can be interpreted as the frequency range of f at time L

2 + lh.
Compared to the frequency spectrum obtained by a classical discrete Fourier transform,
the spectrogram makes a lot more information contained in f accessible. In order to
completely describe the STFT, the phase spectrogram arg((Fϕf)j,l) is needed as well.
In Figure 3.3, an example for the spectrogram of a signal is shown. The data matrix
in Figure 3.3b contains column-wise the approximate frequency information for a point
in time and row-wise the behavior in time of a certain frequency. The signal has been
sampled with 44100Hz. According to that, the distance in time between two sampling
points is therefore given as 2.27 · 10−5s. When using j = 1, . . . , 256 equispaced frequency
samples, their distance is 86.13Hz. In the time-frequency plot we refer to a frequency
sample by its number j. In a slight abuse of the notation we call this number nonetheless
‘frequency’.
We say that a frequency is active at a certain time, if it contributes to the Fourier
transform of the signal, i.e., the coefficient corresponding to this frequency does not
vanish. In Figure 3.3b red colored entries correspond to a high value whereas blue
correspond to a low value. The idea is to assign the active frequencies at each time
step to one of the source signals. From the figure it can be seen, that for this particular
example a lot of frequencies are active when a peak (high amplitude) is recorded. This is
what we mean by high-energy or transient signal. The precise definition for a transient
signal differs from this heuristic as a transient has a continuous and unbounded spectrum.
Thus, the discrete Fourier transform seems not to be the optimal choice but this is no
problem in practice due to the above-mentioned truncation.
An extreme example is a δ-distribution which is not even an L2(R) function. Therefore,
the term high-energy signal is a better choice of denomination since this implies that
the signal is at least in L2(R). The discrete Fourier transform leads to a discrete, finite
spectrum which circumvents the above explained problem.
Previous to Definition 3.6, we mentioned the window function ϕ. Usually, a window
function is a continuous, compactly supported, non-negative and symmetric function. In
fact, this definition can be generalized claiming that the function decreases sufficiently
fast to zero away from the origin. In the discrete setting, we sample the window function
with the same sampling rate as the signal. The STFT was first used by Gábor in 1946.
In [41], Gábor considers a truncation of the Gaussian window. Due to the importance
of the STFT in many applications, the STFT using this special window is called Gábor
transform.
From the huge class of window functions we like to introduce the Hann window

h(t) = 1
2

(
1 + cos

(2πt
L

))
χ[−L2 ,L2 ](t)

where L is the window size, i.e., supph ⊂ [−L
2 ,

L
2 ] (see [11]). This window is often chosen

in signal processing as it has very low aliasing effects. We will use this window for our
applications in Section 3.2. Of course, there are many other possible window functions
(see e.g. [84]) but the comparison of those is not the objective of this work.
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(a) A monophonic recording of 2.27
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(b) The spectrogram is a data ma-
trix of size 256 × 1569, the redder the
color the higher the Fourier coefficient,
whereas blue corresponds to no contri-
bution. The amplitude peaks of the
signal are clearly recognizable as a lot
of frequencies contribute to the signal
at these particular time steps.

Figure 3.3: A signal f and its corresponding spectrogram. For
the computation a 512-point FFT was used and a discrete Hann
window with hop size 64.

Let us now introduce the inverse discrete short-time Fourier transform.

Definition 3.8. For ϕ, h and n as in Definition 3.6 with h ≤ L and g ∈ `∞(ZL × Zn)
the discrete inverse short-time Fourier transform (ISTFT) is defined by(

Fϕ
−1g

)
k

= 1
ck

∑
(j,l)∈ZL×Zn : j+lh=k

(
F−1 (gi,l)L−1

i=0

)
j
, for k ∈ ZN ,

where
ck =

∑
(j,l)∈ZL×Zn : j+lh=k

ϕj .

Remark 3.9. The sum in Definition 3.8 is not empty if h ≤ L. This follows from the
decomposition of k by Euclidean division by h. This restriction is reasonable since
otherwise the hop size would be larger than the window size and application of the
discrete STFT would cause the loss of parts of the function f .

Theorem 3.10. For a function f ∈ `∞(ZN ) and ϕ, h and n as in Definition 3.6 with
h ≤ L the inversion formula holds:

fk =
(
Fϕ
−1Fϕf

)
k

for all k ∈ ZN .

Furthermore, for g ∈ `∞(ZL × Zn) it holds

gj,l =
(
FϕFϕ

−1g
)
j,l

for all j ∈ ZL, l ∈ Zn.
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Proof. Computation leads to(
Fϕ
−1Fϕf

)
k

= 1
ck

∑
(j,l)∈ZL×Zn : j+lh=k

(
F−1

(
(Fϕf)i,l

)L−1

i=0

)
j

= 1
ck

∑
(j,l)∈ZL×Zn : j+lh=k

(
F−1

((
F (fm+lhϕm)L−1

m=0

)))
j

= 1
ck

∑
(j,l)∈ZL×Zn : j+lh=k

fj+lhϕj

= 1
ck

∑
(j,l)∈ZL×Zn : j+lh=k

fkϕj

= fk.

The other equality can be proved analogously.

3.1.2 Dimensionality reduction in signal separation
The spectrogram of a signal introduced in the previous section can be interpreted as a
data set in a high-dimensional space R

L
2 . Each column of the spectrogram is one data

point in that space. On this data set we wish to apply dimensionality reduction tools as
motivated before.
This section is concerned with dimensionality reduction in signal separation. The core
assumption for the application of dimensionality reduction in signal separation is that
only some frequencies are necessary to represent the main content of a signal. By re-
ducing the dimension of the frequency range, we only keep some frequency information
while the rest is discarded.
One of the objectives of this work is to combine and compare the interaction of di-
mensionality reduction with different decomposition techniques (compare Section 3.1.3).
Recall that a core requirement for the combination of dimensionality reduction and
NNMF is the non-negativity preservation beyond the reduction.
To carry out the dimensionality reduction step we use the Matlab Toolbox for Dimen-
sionality Reduction [118] from van der Maaten. This toolbox includes 34 different dimen-
sionality reduction techniques but no specific non-negativity preserving ones, for more
information see [119]. Using our approach from Chapter 2, we transfer methods of the
toolbox into non-negativity preserving ones.
As we have already introduced and discussed different dimensionality reduction tech-
niques in Chapter 2, we will now concentrate on the ‘back-lifting’ of the data to the
high-dimensional space. This can be interpreted as something like an ‘inverse dimen-
sionality reduction’. Since we have thrown away a lot of information when reducing the
data’s dimension, we will not be able to really invert the reduction. But as we have
already discussed in Remark 2.7, we have some results in this sense for PCA. If the
high-dimensional data is indeed lying in a d-dimensional subspace of RD, we have shown
that the inverse PCA mapping is given by P−1 = Vd since this is an exact left-inverse
for P = Vd

T on VdVd
TRD, i.e., VdVdTx = x for all x ∈ VdVd

TRD. Furthermore, we
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have shown (compare Section 2.4.1) that for small perturbations this particular choice
of an approximate left-inverse still ensures the applicability of Theorem 2.38 and thus,
P still fulfills the cone condition. However, the perturbations are smoothed out as the
back-lifted data is always lying inside the subspace VdVdTRD.
These considerations justify the use of PCA for dimensionality reduction in signal sep-
aration. In contrast, we will not use MDS since the centering of the data makes an
application of this method in the context of NNMF impossible, except for the special
situation discussed in Section 2.4.2 which is rarely happening in practice.
The inversion of non-linear dimensionality reduction methods is far more difficult than
for liner techniques. However, in both cases the inversion of the rotation of the low-
dimensional data set (which guarantees the non-negativity of the data) is not problem-
atic. Since a rotation matrix R ∈ SO(d) is orthogonal, it has a natural inverse, namely
RT .

Inverting non-linear dimensionality reduction

When it comes to the application of non-linear non-negative dimensionality reduction in
signal separation, the computation of an approximative left-inverse is a serious issue since
in general this is not at hand. To overcome this shortcoming, the original data and its
low-dimensional representation can be used to obtain a high-dimensional reconstruction
of the separated low-dimensional data sets. This is the typical problem one is confronted
with in scattered data approximation [62].
One possible approach is to use interpolation by radial functions [63]. In the following
let us briefly sketch this approach using [86] as a reference. So far, we have that the data
points xi ∈ RD are embedded in Rd via the non-linear discrete mapping P : X → Rd with
P (xi) = yi. As the non-linear mapping P is usually only defined on the discrete data
points xi for i = 1, . . . , n, an inverse mapping P−1 is for now - if at all - given only on
the discrete data. For the ‘back-lifting’ of the separated data sets we seek an extension
of the inverse mapping to RD. If we assume that there is an underlying homeomorphism
(or more general a continuous operator) B : M → Rd with B|X = P , we aim to find
an approximative left-inverse B−1 of this homeomorphism with B−1 : B(M) → RD and
B−1(yi) = xi.
In signal separation, this can be applied if we assume the spectrograms of the source
signals to lie on the same manifold as the spectrogram of the mixture. In this situation
the separated low-dimensional representation of the source signals can be lifted back to
the high-dimensional space via B−1.
This approximation of the inverse mapping can be done in several ways (e.g. [33, 71]).
However, we rely on the above mentioned paper which uses a radial interpolation func-
tion.
Let us introduce radial and positive definite functions in order to define the interpolant
of a function f : Rd → R. Each component of the function B−1 : Rd → RD will then be
approximated by such an interpolant. A function φ : Rd → R is called radial if there
exists a function ϕ : [ 0,∞ ) → R such that φ(y) = ϕ(‖y‖2) for all y ∈ Rd. A radial
function φ defines a bivariate function Φ: Ω× Ω→ R, Ω ⊂ Rd with Φ(y, c) = φ(y − c).
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3.1 Signal separation procedure

Obviously, for a fixed c ∈ Ω the function Φ is a radial function centered in c.
Definition 3.11. A continuous function Φ: Ω× Ω→ R is called positive definite on Ω
if for all n ∈ N, all pairwise distinct points in Y = {y1, . . . , yn} ⊂ Ω, and all α ∈ Rn \{0}
we have

n∑
i=1

n∑
j=1

αiαjΦ(yi, yj) > 0.

Then, the matrix K = (Φ(yi, yj))i,j=1,...,n of function values is positive definite.

Definition 3.12. For a positive definite radial function Φ: Rd × Rd → R and centers
Y = (y1, . . . , yn) with corresponding evaluations fY = (f(y1), . . . , f(yn)) we call

sf,Y (y) =
n∑
i=1

αiΦ(y, yi)

the radial interpolation function, where the weights α = (α1, . . . , αn) are defined by
solving

αK = fY . (3.1)
Remark 3.13. Due to the construction of the weights we have sf,Y (yi) = f(yi). Note,
that the linear system in equation (3.1) is uniquely solvable since K is positive definite.
Now, B−1 can be approximated by interpolating each coordinate in RD with such a
function. This can be done simultaneously by solving first the system

AK = X

for A = (αij) i=1,...,D
j=1,...,n

which are the weights for the different coordinates. Then, for
y ∈ B(M) the corresponding x ∈ RD is computed as

B−1(y) = A (Φ(y, y1), . . . ,Φ(y, yn))T = XK−1 (Φ(y, y1), . . . ,Φ(y, yn))T .

Note that using A for the computation of B−1(y) is more efficient than using K−1 as it
does not involve a direct inversion of any matrix.
There are several results on the error estimation for radial interpolation functions but
this was not the objective of this work. Thus, we refer to [129] for further details on
this topic. For the application of Isomap in our separation procedure we will use this
technique for interpolating in the high-dimensional frequency space. A commonly used
positive definite radial function is the Gaussian

Φ(yi, yj) = e−ε
2‖yi−yj‖2

2 , with ε > 0

but we use a cubic function proposed in [86] for inverting Laplacian Eigenmaps:

Φ(yi, yj) = ‖yi − yj‖32.

Other positive definite radial functions can be found in [17].
This is a very rough approach to the search of an approximative left-inverse of B which
is still an open topic. Recall that we assumed the separated low-dimensional data to be
lying in B(M) which is kind of audacious. Nevertheless, we will try this approach but
we will see that the results are not satisfactory.
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3 Applications to signal separation

3.1.3 Decomposition techniques
In Figure 3.4, three frequency components of the spectrograms of a cymbal (red) and
a castanet (blue) recording are depicted. It can be seen that the two data sets clearly
separate into different clusters. This justifies the assumption that different signals can be
distinguished by their frequency representation. From this heuristic the idea arises that
a mixture of ρ signals can be separated by decomposing its frequency representation.

component 176 component 11

co
m

po
ne

nt
19

0 1 2 3 4 0

50

5

10

15

20

Figure 3.4: Three arbitrary components of the high-dimensional
spectrograms of a cymbal (red) and a castanet (blue) recording.

To decompose a spectrogram Y ∈ Rd×n we assume a linear mixing of the sources, i.e.,

Y = AS

for a mixing matrix A ∈ Rd×ρ and a source matrix S ∈ Rρ×n. This problem is highly
under-determined since both, A and S are unknown. There are several possibilities to
further restrict the problem in order overcome this limitation.
In the following, let us discuss two approaches, namely independent component analysis
and non-negative matrix factorization.

Independent Component Analysis - ICA

The problem of independent component analysis (ICA) was first proposed and so named
by Herault and Jutten in [55] around 1986 because of its similarities to PCA.
ICA is a stochastical method for decomposing a given data set into a set of statistically
(i.e., mutually) independent components. This statistical independence can be achieved
by maximization of the non-Gaussianity or equivalently by minimization of the mutual
information. This ansatz is based on the Central Limit Theorem [101] which states
that the distribution of a sum of independent random variables tends to a Gaussian
distribution.
The core idea of ICA is to make some statistical assumptions on the source signals in
order to balance the disproportion of equations and unknowns in the BSS problem. In
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concrete terms we assume the signals to be statistically independent. This does not need
to be completely true in practice [60].
To give a mathematical formulation of the just explained situation, we follow [27] and
consider d weighted sums y1, . . . , yd of ρ source signals s1, . . . , sρ called independent
components. The discrete functions in time sj and yi can be interpreted as the realization
of random variables which leads to the following linear statistical model:

Y = AS, (3.2)

where Y and S are random vectors with values in Rd and Rρ respectively and A ∈ Rd×ρ.
The components of the vector S are maximizing a ‘contrast’ function. The contrast of a
random vector is maximal if its components are statistically independent. Thus, the ICA
of a random vector consists of searching a linear transformation such that the statistical
dependence between its components is minimized.
Given n realizations of the random vector Y, equation (3.2) becomes Y = AS where we
aim to estimate both, the mixing matrix A and the corresponding realizations S of S.
This can be done by minimizing the mutual information.
The mutual information is a distance measure between the density function pS of a ran-
dom vector S and the product of its marginal densities

∏d
i=1 pSi . The random variables

Si are stochastically independent if and only if this distance vanishes. Thus, minimizing
the mutual information will lead to a maximally independent set of random variables S
and to the mixing matrix A. From A and Y then S can be computed.
Consequently, the remaining task is to specify an appropriate distance measure. Usually,
ICA relies on the Kullback-Leibler divergence

δ(pX , pZ) =
∫
pX (x) ln

(
pX (x)
pZ(x)

)
dx (3.3)

introduced in 1951 by Kullback and Leibler [70]. The Kullback-Leibler divergence is not
a true metric. However, it is δ(pX , pZ) = 0 if and only if pX = pZ .
As in application pS and pSi are typically unknown, we need to estimate these quan-
tities from the realizations Y of the random vector Y. One possible estimation can be
computed via the Edgeworth expansion for pS = pA−1Y , where A−1 is a pseudo inverse
of A (for a derivation of this expansion see [66]). For more information on ICA compare
[27, 68].
For the numerical implementation we rely on the Joint Approximate Diagonalization for
Eigenmatrices (JADE) algorithm developed by Cardoso (see [19] for the code). This
algorithm is based on Givens rotations which are subsequently applied until a solution
is reached. For details we refer to [21].

Non-Negative-Matrix Factorization

The ICA approach uses stochastical assumptions about the source signals. In order to
decompose the reduced spectrogram Y the data is modeled as a random process, i.e.,
the data matrix Y is interpreted as n realizations of a random vector. However, signals
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(especially high-energy signals) are very often deterministic and therefore, using a non-
statistic based separation method could improve the results. Moreover, ICA decomposes
into components that are not necessarily non-negative. Thus, in practice, the point-wise
absolute value is often taken. In [54] Helén and Virtanen stated that an NNMF approach
to signal separation outperforms ICA, at least for drum tracks. However, dimensionality
reduction in combination with NNMF was not studied therein.
Starting again from the problem of decomposing a given data set Y into a mixing matrix
A ∈ Rd×ρ and the source signals or source components S ∈ Rρ×n, i.e., Y = AS, the
task is to find a matrix factorization of Y . The time-frequency data we use for signal
separation is non-negative, so that we have the additional information that Y is non-
negative. Moreover, we would like the extracted source components S to be spectrograms
and therefore, we want S to be likewise non-negative. Due to these facts non-negative
matrix factorization (NNMF) seems to be a promising ansatz.
NNMF has its origin in the 1970s but was back then used in a completely different
context. In 1999 NNMF has been reconsidered by Lee and Seung in [72] who developed
efficient algorithms and established the name. The first to apply NNMF to audio signals
have been Smaragdis and Brown in [108]. In recent years, this ansatz has been used
successfully in the context of signal separation by many working groups (see e.g. [34,
37, 54, 91, 122]).
NNMF computes a factorization of Y

Y ≈ AS

by minimizing an error function depending on Y and AS under the constraint that A and
S are non-negative. As error function, a norm (e.g. ‖Y −AS‖F ) or another measure (e.g.
a divergence) can be chosen. We use the normalized discrete Kullback-Leibler divergence

δ̂(Y,AS) =
d∑
i=1

n∑
j=1

(
Yij ln

(
Yij

(AS)ij

)
− Yij + (AS)ij

)
.

Note that for
∑
i,j Yij =

∑
ij(AS)ij = 1 this is the discrete Kullback-Leibler divergence

(compare equation (3.3)).
In order to minimize this measure, we perform the multiplicative update algorithm
proposed in [72] which is based on a gradient descent method. For the implementation
we rely on NMFlib [45], a Matlab toolbox provided by Grindlay.
Remark 3.14. NNMF can also be used for dimensionality reduction if the dimensions of
the factor matrices are chosen accordingly (compare e.g. [90, 116]).

Independent Subspace Analysis - ISA

A commonly used enhancement in the decomposition step is independent subspace anal-
ysis (ISA). This concept was introduced in [58] by Hyvärinen and Hoyer as an extension
for ICA but recently, similar clustering techniques have also been combined with other
decomposition tools such as NNMF.
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Classical decomposition methods are based on the assumption that the number of sources
is known. In practice, this is not always the case and therefore the extraction of sources of
a data set Y might be inaccurate. As a consequence it could happen that we detect more
components as the true number of sources. In this case, two or more of the separated
components belong to the same source. In other words, the source is contained in the
subspace spanned by these components.
The general proceeding in ISA is to first extract some source components of a given
data set Y using ICA or NNMF. In a second step these components are grouped (or
partitioned) into subspaces, each one corresponding to a source. Finally, the sources are
reconstructed from these multi-component subspaces (see [22, 54, 58, 64]).
Thus, ISA can be seen as an upgrade of ICA or NNMF which partitions the different
components into groups, each of which is spanning a subspace. This procedure avoids
the above-explained problem of extracting more sources as really underlying. The main
difficulty in the concept of ISA - beside the decomposition itself - is to identify the
components that belong to the same multi-component subspace. This can be done by
some type of grouping and is not an objective of this thesis. The ‘independent’ in the
denomination of ISA comes from its first appearance when it was designed for ICA.
Let us formalize these considerations. For a given data set Y = (η1T , . . . , ηd

T )T ∈ Rd×n
we suppose as before each row ηi ∈ R1×n to be the weighted sum of ρ independent
components σj ∈ R1×n:

ηi =
ρ∑
j=1

aijσj = aiS

where S = (σ1T , . . . , σρT )T ∈ Rρ×n and A = (a1T , . . . , ad
T )T ∈ Rd×ρ. Remark that now

we consider rows ηi of Y , while before we denoted the columns by yl. The unknown
matrices S and A can be estimated with a decomposition method. Note that ρ can be
chosen such that rk(S) = ρ. Different as before, at this point we do not assume the σj
to be the sources of the mixed signal. More precisely, we have c source signals, where
c ≤ ρ.
The core idea of ISA is that each source is a linear combination of σj , i = 1, . . . , ρ.
Assume that each σj corresponds to only one of the c different unknown sources. Then,
the ρ-dimensional subspace U spanned by the σj is the internal direct sum of subspaces
Uk, each associated to one of the sources. Hence, we get a partition of Z = {σ1, . . . , σρ}

Z =
c⋃

k=1
Zk, Zk ∩ Zj = ∅ for all k 6= j.

This leads simultaneously to a partition of the index set I = {1, . . . , ρ} into sets Ik. Each
of the collections of components Zk defines a matrix Sk ∈ Rρk×n whose rows are the ρk
components belonging to the kth source Sk = ((σk1)T , . . . , (σkρk)T ) = (σiT )i∈Ik .
This partition of Z yields a decomposition Y =

c∑
k=1

Yk with

Yk = AkSk,
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where Ak = (aij)i=1,...d, j∈Ik ∈ Rd×ρk is a submatrix of A obtained by deleting some
columns and only keeping the columns corresponding to the index set Ik.
So far, we reviewed how to reconstruct the data sets Yk from Y , where Yk represents the
kth source, provided S and an adequate partition has been found. However, the main
difficulty in the concept of ISA is to identify this partition. This can be done by some
type of grouping. For our numerical results we used the grouping method introduced by
Casey and Westner in [22] combined with a manual refinement. This method is based
on calculating the similarities of the components σj and sorting them by using their
pairwise dissimilarities.
The dissimilarity measure used in [22] is again based on the Kullback-Leibler divergence
(see equation (3.3)) which is a dissimilarity measure for density functions. To apply this,
we assume again that the extracted components are realizations of a random variable.
The idea is to combine those components whose generating random variables are most
similar. Since the probability densities of the underlying variables Sj are unknown,
we need to estimate those from the realizations σj . As for ICA, this can be done by
the Edgeworth expansion involving the central moments of the random variable. For a
rigorous derivation compare [68].
Due to this particular choice of the dissimilarity measure, this grouping is especially
suitable for ICA but it can be likewise applied to components extracted by NNMF. The
obtained dissimilarity values are the basis for the clustering algorithm relying on a cost
functional proposed by Hofmann and Buhmann in [56].
Remark 3.15. Our algorithm only separates the amplitude spectrogram and not the
phase spectrogram. As both are needed for the ISTFT, we naively use for all components
the phase of the recorded mixture in the reconstruction step.

3.2 Numerical examples
In this section, we will consider three different examples of mixed high-energy audio
tracks in order to study the performance of the proposed separation procedure. Before
introducing the examples, let us discuss the quality measures we will use. Unfortunately,
it will turn out that we are not aware of any adequate error indicator to quantify the
deviation of the separated sources si to the original sources fi.

L∞-error

The L∞-error in the time-amplitude space is the maximum in time of the difference of
the amplitudes of fi and si:

err∞(fi, si) = max
k
|fi(tk)− si(tk)|.

For audio signals, the maximal value of the L∞-error is usually 2 as these signals are
bounded between −1 and 1.
For the reconstruction we only used the phase of the original mixture instead of sep-
arating also the phase spectrogram. Due to this fact, the extracted sources can have
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3.2 Numerical examples

a different phase than the original sources which typically causes an increase of the
L∞-error.
Nevertheless, this error can be used to quantify the effect of the dimensionality reduction.
If we just reduce the dimension and lift the data back to the high-dimensional space,
i.e., we simply sum up the separated sources, we get a reconstruction of the mixture.
This reconstruction does not suffer from a possible phase shift as the phase should still
be the same. Thus, with the L∞-error the reconstructed mixture can be compared to
the original signal.

Signal to Noise Ratio - SNR

In signal processing the signal to noise ratio (SNR) is another frequently used quality
measure. It estimates the portion of noise in a signal measured in decibel. Here, the
error fi(tk)− si(tk) can be considered as noise and thus, the SNR error [44] is given by

errSNR(fi, si) = 10 log10

(∑
k |fi(tk)− si(tk)|2∑

k |fi(tk)|2

)
.

For the SNR-error it holds: the smaller the error, the less the noise and the better the
reconstruction. Note that the SNR is sometimes also defined using the reciprocal of the
logarithm’s argument. This error measure can also suffer from a possible phase shift.
Nevertheless, we will use these measures to compare the results due to the lack of more
sophisticated ones.

3.2.1 Examples
We will now briefly present the examples we will use for showing the separation qualities
of the algorithm in Section 3.2.2.

Example 1

The first example is a short sequence of a mixture of a cymbal’s and a castanet’s recording
(see Figure 3.5). The first signal consists of three strokes of the cymbal, where each stroke
has a relatively slow decay behavior in time. These rapid oscillations superpose the short
clicks of the castanets quite considerably. In particular, the clicks coinciding with the
stroke of the cymbal are not distinguishable from the rest of the mixture (see Figure
3.5a).
From the separation algorithm we expect that the reconstruction of the cymbal will not
be too noisy whereas we consider the extraction of the castanets as a challenge.

Example 2

As a second example we consider again a mixture of two sources, a base drum and a
finger flipping (see Figure 3.6). As before, one of the sources is active during longer
periods (drum) than the other (finger flips). In the frequency representation we observe
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(a) Time-amplitude plots of cymbal, castanets and the mixture (from
left to right).

time [window]

fr
eq

ue
nc

y

0 500 1000 1500

50
100
150
200
250

time [window]

fr
eq

ue
nc

y

0 500 1000 1500

50
100
150
200
250

time [window]

fr
eq

ue
nc

y

0 500 1000 1500

50
100
150
200
250

(b) Time-frequency plots of cymbal, castanets and the mixture (from
left to right).

Figure 3.5: Signals of Example 1.
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(a) Time-amplitude plots of base drum, finger flips and the mixture
(from left to right).
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(b) Time-frequency plots of base drum, finger flips and the mixture
(from left to right).

Figure 3.6: Signals of Example 2.
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(a) Time-amplitude plots of bongo and the mixture of base drum, bongo
and finger flips (from left to right).
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(b) Time-frequency plots of bongo and the mixture of base drum, bongo
and finger flips (from left to right).

Figure 3.7: Signals of Example 3.

likewise the superposition of some base drum beats by the broader finger flip. However,
the frequency behavior differs from the previous example as the frequency activity is
sparser and also the occurrence in time is shorter.
This example is meant to analyze the performance of the algorithm in the case that the
characteristics of the sources are not that well distinct and that their spectrograms are
more similar.

Example 3

In the third example, we consider the mixture of three sources. We use again the
base drum and the flip of Example 2 (see Figure 3.6) and combine these with a bongo
sound (see Figure 3.7). The spectrogram of the bongo is quantitatively the same as the
spectrogram of the base drum. Comparing this mixture with the one from Example 2
the bongo sound is only visible if we are looking for this difference. Thus, this example
is another level of difficulty not only due to the higher number of sources but also due
to the severe overlay.

3.2.2 Results
Let us first compare the performance of the separation algorithm when using NNPCA
& NNMF and PCA, entry-wise absolute value & NNMF (referred to as PCA & NNMF
in the following). The latter is a naive alternative to NNPCA & NNMF in order to
guarantee non-negative entries in the low-dimensional data. For the comparison, we
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(a) By NNPCA & NNMF extracted sources and reconstructed mixture
from Example 1 (from left to right).
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(b) By PCA with entry-wise absolute value and NNMF extracted
sources and reconstructed mixture from Example 1 (from left to right).
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(c) By NNPCA & NNMF extracted sources and reconstructed mixture
from Example 2 (from left to right).
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(d) By PCA with entry-wise absolute value and NNMF extracted
sources and reconstructed mixture from Example 2 (from left to right).
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(e) By NNPCA & NNMF extracted sources and reconstructed mixture
from Example 3 (from left to right).
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(f) By PCA with entry-wise absolute value and NNMF extracted sources
and reconstructed mixture from Example 3 (from left to right).

Figure 3.9: Results of all three examples for the reduction to 10
dimensions by NNPCA or PCA and decomposition by NNMF.
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reduce the spectrograms of the mixture of sources from 256 frequency samples to only
10 and apply the separation algorithm. The results are depicted in Figure 3.9.
From the figure we can see that the algorithm with NNPCA & NNMF is able to detect
the source signals for all three examples. The algorithm with PCA & NNMF does not
perform that well. Surprisingly, also the well-hidden peaks of the castanets (Figures 3.8a
and 3.8b) and of the finger flips (Figures 3.8c and 3.8d) can be located. With NNPCA
& NNMF the bongo and the finger flips (Figure 3.9e) are detected, whereas with PCA
& NNMF (Figure 3.9f) this is not the case. Especially for the finger flips not even the
rhythm is recognized and thus, the detection of the sources can be said to have failed.
This shows that our approach outperforms the naive approach.
Furthermore, we compare the combination of NNPCA & NNMF with PCA & ICA. The
results are shown in Figure 3.10. We reduce again the dimension of the spectrograms
from 256 to 10.
It can be seen that PCA & ICA also detects the source signals for all three examples.
As before, also the well-hidden peaks of the castanets (Figure 3.10a), of the finger flips
(Figure 3.10b) and of the bongo (Figure 3.10c) can be distinguished.
If we compare the reconstructed mixture (i.e., the sum of the extracted sources, Figures
3.9 and 3.10, last column) with the original input signal, we can hardly see any difference,
especially for ICA. This justifies the application of dimensionality reduction in signal
separation, as not too much information seems to be lost when reducing and back-lifting
the spectrogram. In other words, the high-dimensional data is not too far away from a
10-dimensional subspace of R256.
We observe that some peaks have a different amplitude as in the original signal. This
is due to the fact that frequencies are assigned to only one of the source signals. Con-
sequently, if they occur in several signals at the same time instant, this is not captured.
This also causes artifacts of one source signal in the other which can be observed for
example in the cymbal’s signal when separated by NNMF.
Moreover, PCA & ICA seems to produce better results than NNPCA & NNMF. This
could be due to the fact that we consider high-energy signals whose frequencies follow
a certain distribution. Nevertheless, NNMF can still be used for signal detection. Note-
worthy, in Example 3 the bongo sound could be detected by PCA & ICA even though
it was hardly visible in the mixed signal or in its spectrogram. This shows impressively
the superior performance of ICA.
To further study these observations, let us reconsider the first example and perform
all variants of the algorithm with a reduction to different dimensions. In Table 3.1 we
compare the L∞-error and the SNR for different techniques and dimensions.
The table is organized as follows. In the first block the results for NNPCA & NNMF
with a reduction to 3, 10, 20 dimensions and without the reduction are listed and in
the second block the same for PCA & ICA can be found. Moreover, we tested the
combination of PCA with NNMF and NNPCA with ICA, the results are shown in the
last blocks of Table 3.1. Note that the L∞-error is displayed only for the reconstructed
mixture, as this comparison does not suffer from the phase-shift.
From Table 3.1 it can be seen that reducing less (i.e., staying in a higher-dimensional
space) and keeping more information does not necessarily lead to better results. Es-
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(a) By PCA & ICA extracted sources and reconstructed mixture from
Example 1 (from left to right).
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(b) By PCA & ICA extracted sources and reconstructed mixture from
Example 2 (from left to right).
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(c) By PCA & ICA extracted sources and reconstructed mixture from
Example 3 (from left to right).

Figure 3.10: Results of all three examples for the reduction to
10 dimensions by PCA and decomposition ICA.
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Table 3.1: Comparison of the results for Example 1. The length
of the signal is 2.27s and the size of the spectrogram is 256×1569.
no. of
comp.

comput.
time err∞

SNR of
recon. signal

SNR of
cymbal

SNR of
castanets

NNPCA & NNMF
3 14.8s 0.57 -2.899 -2.339 -0.978

10 35.6s 0.55 -2.239 -1.262 -0.553
20 248s 0.68 -2.170 -1.942 -0.237
all 115min 0.014 -36.576 -3.948 3.024

PCA & ICA
3 2.3s 0.23 -8.661 -7.424 -5.016

10 8s 0.23 -10.524 -8.660 -4.574
20 10.7s 0.21 -12.517 -9.765 -4.647
all ∞

PCA & absolute value & NNMF
3 3.6s 0.44 -4.949 -4.066 -2.992

10 13.1s 0.48 -4.708 -3.430 -2.149
20 23.2s 0.47 -4.367 -3.184 -2.313

NNPCA & ICA
3 8s 0.70 -3.212 -2.421 -1.114

10 20s 0.58 -2.227 -1.368 -1.888
20 201s 0.64 -2.207 -2.082 -0.109

pecially for the castanet reconstruction, we see that the SNR value is actually getting
better for fewer components.
To substantiate this observation we depicted the extracted castanet signals in Figure
3.11 where the dimension of the spectrogram was reduced to 3 dimensions. Remarkably,
also for this drastic reduction, the time locations of the castanets are well-detected and
for the PCA & ICA result, there is hardly any difference to the 10-dimensional case.
From Table 3.1 it also becomes apparent that both quality measures (L∞-error and SNR)
are not appropriate for these examples. The L∞-error is very high if the dimension is
reduced to 10, even if the resulting source signals seem not to be that different from the
originals (compare Figures 3.8a and 3.10a). In the case of NNMF, this can be partly
explained by the not exact approximation of Y ≈ AS. Not surprisingly, the NNMF
separation without reduction yields a very small L∞-error.
Qualitatively, the same is true for the SNR values. As expected, the SNR value for the
reconstructed signal is in all cases better than the one of the extracted sources. The
best results in the SNR sense are clearly obtained for the extraction of the cymbal with
reduction to 20 dimensions for PCA & ICA.
The errors for NNPCA & NNMF (third block of Table 3.1) do not mirror the observations
in Figure 3.9. More precisely, the SNR values suggest a better performance of the naive
approach while the pictures clearly show the contrary.
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(a) NNPCA & NNMF.
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(b) PCA & ICA.

Figure 3.11: Extracted castanets signals of Example 1 from a
reduction to 3 dimensions.

Concerning the computational time, we have to admit that the NNPCA & NNMF version
of the algorithm is more expensive. This is due to the computation of the rotation
matrix when performing NNPCA. We also observe that ICA cannot be used without
dimensionality reduction due to high storage requirements, at least if carried out by the
JADE algorithm. NNMF itself however, shows quite good behavior even if it is also
expensive.
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Figure 3.12: By NNPCA & ICA extracted castanets signals of
Example 1 from a reduction to 10 dimensions.

Furthermore, we have tested the combination of NNPCA & ICA and the results (compare
Table 3.1) seem competitive with NNPCA & NNMF. In Figure 3.12, the extracted
castanet sound is depicted and it can be seen that the extraction of the castanets is
almost as good as for PCA & ICA. This is another hint telling us that the SNR might
not be an appropriate measure.
When applying Isomap and using the naive kernel approach described in Section 3.1.2
the results are useless (see Figure 3.13). No matter for which, NNMF or ICA, we are
not even able to decide which of the extracted sources corresponds to the castanets
and which to the cymbal. Moreover, the amplitude scaling of the sources is completely
nonsense due to a bad spectrogram reconstruction. Here, a more sophisticated inverse
reduction map is needed.

In summary, we can say that our approach to signal separation is able to detect peaks of
the unknown source signals, even if they are well hidden. Furthermore, different sources
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(a) Isomap with entry-wise absolute value and NNMF.
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(b) Isomap & ICA.

Figure 3.13: Extracted source signals of Example 1 from a re-
duction by Isomap to 10 dimensions.

can be detected also if the original signals were quite similar. When NNMF is used for
decomposition we improved the results by applying our NNPCA instead of PCA and
entry-wise absolute value. Nevertheless, the combination of PCA or NNPCA with ICA
outperforms NNMF.
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4 Conclusion
This work was concerned with the improvement of algorithms in signal processing. More
precisely, the involvement of dimensionality reduction in signal separation has been stud-
ied. The starting point for these studies was the observation that classical dimensionality
reduction methods (in particular principal component analysis) cannot be used as a pre-
processing step if combined with non-negative matrix factorization. Therefore, we pro-
vided a general framework for enhancing classical reduction techniques to non-negativity
preserving ones. This framework consists of splitting the non-negative dimensionality
reduction problem in two subproblems which are solved successively.
We formulated a condition under which a non-negative dimensionality reduction problem
can be solved by this splitting approach. This condition restricts the class of possible
dimensionality reduction tools in two ways. On the one hand the involved cost functional
needs to be rotationally invariant, a requirement that is automatically fulfilled by many
methods. On the other hand, the reduction map may not increase the angles between
the data points, a restriction that is rarely satisfied. Nonetheless, this theory is provably
applicable to PCA and MDS.
Furthermore, we discussed the numerical implementation of our signal separation pro-
cedure and in particular of the splitting approach which can be done in a smart way
using the Lie group structure of the admissible set. Here, the exponential map plays an
important role since it permits the generalization of a steepest descent method to Lie
groups.
With this approach to signal separation we were able to improve our results from [48, 68].
Moreover, we compared the results of signal separation with NNPCA & NNMF with the
results for PCA & ICA. Although NNMF without dimensionality reduction seems to
be a promising alternative to ICA, it does not show this potential when combined with
NNPCA. Nevertheless, we improved the performance of the combination of NNMF with
dimensionality reduction. Possibly, the use of non-linear dimensionality reduction tools
might lead to a better separation but the lack of sophisticated non-linear non-negative
methods and a suitable approximative left-inverse made a comparison impossible.
Of course, there are several possibilities to further improve signal separation with dimen-
sionality reduction concerning the implementation, the theory or the procedure itself.
Theory: In order to better understand the mechanism of the algorithm, one of the first
steps is to find an appropriate measure for the separation error. The analysis of the
interaction of the involved techniques could lead to a better understanding which can
be used for improving the algorithm through a combination of more sophisticated tools.
Furthermore, we have seen that there is a strong demand for non-linear non-negative
dimensionality reduction methods and approximative inverses of the reduction maps for
not being restricted to linear tools.
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4 Conclusion

Procedure: The signal separation procedure includes a grouping when reconstructing
the source signals from the extracted components. This is a fundamental issue which we
have not considered so far. Additionally, the influence of other signal transforms (e.g.
wavelet transform) to the quality of the separation could be studied.
Implementation: Last but not least, the implementation could be done in a more
efficient way. We have seen, that the ICA algorithm we used is quite costly. Thus, one
could think of including a FastICA algorithm instead. It could be also considered to use
a Newton-like or conjugate gradient method when computing the rotation.
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Algebras and Möbius Transforms. Advances in Applied Clifford Algebras, pages 1–
12, 2015.

[50] B. C. Hall. Lie Groups, Lie Algebras, and Representations: An Elementary In-
troduction, volume 222 of Graduate Texts in Mathematics. Springer, New York,
2003.

[51] H. Han. Nonnegative principal component analysis for mass spectral serum profiles
and biomarker discovery. BMC Bioinformatics, 11(S-1), 2010.

106

http://www.seas.upenn.edu/~jean/diffgeom.pdf
http://www.seas.upenn.edu/~jean/diffgeom.pdf
http://www.ee.columbia.edu/~grindlay/code.html


Bibliography

[52] X. Han. Nonnegative Principal Component Analysis for Proteomic Tumor Profiles.
In Proceedings of the SIAM International Conference on Data Mining, pages 269–
280, USA, 2010.

[53] X. Han and J. Scazzero. Protein Expression Molecular Pattern Discovery by Non-
negative Principal Component Analysis. In Pattern Recognition in Bioinformat-
ics, volume 5265 of Lecture Notes in Computer Science, pages 388–399. Springer,
Berlin, 2008.

[54] M. Helén and T. Virtanen. Separation of drums from polyphonic music using non-
negative matrix factorization and support vector machine. In Proceedings of 13th
European Signal Processing Conference, pages 1091–1094, Istanbul, Turkey, 2005.

[55] J. Herault and C. Jutten. Space or time adaptive signal processing by neural net-
work models. In AIP Conference Proceedings 151 on Neural Networks for Com-
puting, pages 206–211, New York, 1987.

[56] T. Hofmann and J. M. Buhmann. Pairwise data clustering by deterministic anneal-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(1):1–14,
1997.

[57] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge University
Press, 1991.

[58] A. Hyvärinen and P. Hoyer. Independent subspace analysis shows emergence of
phase and shift invariant features from natural images. In Proceedings of the
International Joint Conference on Neural Networks, 1999.

[59] A. Hyvärinen and E. Oja. A fast fixed-point algorithm for independent component
analysis. Neural computation, 9:1483–1492, 1997.

[60] A. Hyvärinen and E. Oja. Independent component analysis: algorithms and ap-
plications. Neural Networks, 13:411–430, 2000.

[61] A. Iserles, H. Z. Munthe-Kaas, S.P. Nørsett, and A. Zanna. Lie-group methods.
Acta Numerica, pages 215–365, 2000.

[62] A. Iske. Multiresolution Methods in Scattered Data Modelling. Lecture Notes in
Computational Science and Engineering. Springer, 2004.

[63] A. Iske. Scattered data approximation by positive definite kernel functions. Ren-
diconti del Seminario Matematico, 69(3):217–246, 2011.

[64] R. Jaiswal, D. FitzGerald, D. Barry, E. Coyle, and S. Rickard. Clustering NMF
basis functions using Shifted NMF for monaural sound source separation. In IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 245–
248, 2011.

107



Bibliography

[65] C. T. Kelley. Iterative Methods for Optimization. Frontiers in Applied Mathemat-
ics. Society for Industrial and Applied Mathematics, 1999.

[66] M. Kendall and A. Stuart. The Advanced Theory of Statistics. Charles Griffin &
Company Limited, 1977.

[67] P. Kisilev, M. Zibulevsky, and Y. Y. Zeevi. A Multiscale Framework for Blind
Separation of Linearly Mixed Signals. Journal of Machine Learning Research,
4(7-8):1339–1364, 2004.

[68] S. Krause-Solberg. Dimensionality Reduction Methods in Independent Sub-
space Analysis for Signal Detection. http://www.math.uni-hamburg.de/
home/krause-solberg/Diplomarbeit_SaraKrause-Solberg.pdf , diploma the-
sis, Universität Hamburg, August 2011.

[69] S. Krause-Solberg and A. Iske. Non-negative dimensionality reduction for audio
signal separation by NNMF and ICA. In International Conference on Sampling
Theory and Applications (SampTA), pages 377–381, 2015.

[70] S. Kullback and R. A. Leibler. On Information and Sufficiency. Annals of Mathe-
matical Statistics, 22(1):79–86, 1951.

[71] D. Kushnir, A. Haddad, and R. R. Coifman. Anisotropic diffusion on sub-manifolds
with application to Earth structure classification. Applied and Computational Har-
monic Analysis, 32(2):280–294, 2012.

[72] D. D. Lee and H. S. Seung. Algorithms for Non-negative Matrix Factorization. In
Advances in Neural Information Processing Systems, volume 13, pages 556–562.
MIT Press, 1999.

[73] J. A. Lee and M. Verleysen. Nonlinear Dimensionality Reduction. Information
Science and Statistics Series. Springer, London, 2010.

[74] T.-W. Lee, B.-U. Koehler, and R. Orglmeister. Blind Source Separation of Nonlin-
ear Mixing Models. In Neural networks for Signal Processing VII, pages 406–415,
1997.

[75] E. Levina and P. J. Bickel. Maximum Likelihood Estimation of Intrinsic Dimen-
sion. In Advances in Neural Information Processing Systems, volume 17, pages
777–784. MIT Press, 2005.
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Summary
In this thesis, we studied the application of (non-negative) dimensionality reduction
methods in signal separation. In single-channel separation, the decomposition techniques
as e.g. non-negative matrix factorization (NNMF) or independent component analysis
(ICA) are typically applied to time-frequency data of the mixed signal obtained by a
signal transform.
Starting from this classical separation procedure in the time-frequency domain, we con-
sidered an additional preprocessing step, in which the dimension of the data is reduced
in order to facilitate the computation. Depending on the separation methods, different
properties of the dimensionality reduction technique are required. We focused on the
non-negativity of the low-dimensional data or - since the time-frequency data is non-
negative - rather on the non-negativity preservation beyond the reduction step, which is
mandatory for the application of NNMF.
We proposed an approach to non-negative dimensionality reduction that modifies classi-
cal dimensionality reduction techniques, which can be written as an optimization prob-
lem with rotationally invariant cost functional. By adding a non-negativity constraint
to the optimization problem, we enforce the low-dimensional data to be non-negative. If
furthermore the reduction map does not increase the angles between data points, these
conditions enable us to first solve the classical dimensionality reduction problem before
applying a rotation in order to obtain non-negativity of the low-dimensional data set. We
discuss the applicability of this splitting approach to different dimensionality reduction
techniques, especially to principal component analysis (PCA).
For the second step of the splitting approach, a suitable rotation map is needed, which
we compute by solving an auxiliary optimization problem on the set of special orthogonal
matrices SO(d). This set is not a vector space and thus, standard optimization methods
such as steepest descent or Newton’s method are not directly applicable. To overcome
the lack of additive update algorithms, we used the Lie group properties of SO(d) in
order to construct a multiplicative update algorithm. This construction strongly relies
on the exponential map which links SO(d) with its associated Lie algebra. We rigorously
derive a steepest descent method on Lie groups, which iterates along curves on the group
starting in the direction of a tangent vector. Usually, it is quite difficult to determine
such curves explicitly but the structure of a Lie group and the exponential map offer a
simple and efficient way to do so.
Finally, we discuss the application of the developed non-negative dimensionality reduc-
tion techniques to signal separation. We present some numerical results when using our
non-negative PCA (NNPCA) and compare its performance with other versions of PCA
and different separation techniques, namely NNMF and ICA. From the results, it can
be seen that our NNPCA performs better than the rather naive alternative of taking the
absolute value of the low-dimensional data set before applying NNMF. Furthermore, the
separation with NNPCA in combination with NNMF is almost as good as the one with
PCA and ICA.

Some results of this thesis are published in [47, 69].
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Kurzfassung
In der vorliegende Arbeit untersuchten wir die Anwendung von Methoden zur (nichtne-
gativen) Dimensionsreduktion (NNDR) im Gebiet der Signaltrennung. Typischerweise
werden für die Trennung von Monosignalen Zeit-Frequenz-Daten benutzt, die durch eine
Signaltransformation aus dem gemischten Signal berechnet werden. Die Trennung selber
kann mit Hilfe von verschiedene Methoden wie z. B. nichtnegativer Matrix Faktorisie-
rung (NNMF) oder Independent Component Analysis (ICA) durchgeführt werden.
Ausgehend hiervon betrachteten wir einen zusätzlichen Schritt, in welchem die Dimen-
sion der Daten im Zeit-Frequenz-Bereich reduziert wird, um Berechnungen zu vereinfa-
chen. In Abhängigkeit von der Trennmethode können unterschiedliche Eigenschaften der
Reduktionsmethode im Vordergrund stehen. Weil schon die Zeit-Frequenz-Daten nicht-
negativ sind, konzentrierten wir uns auf die Erhaltung der Nichtnegativität der Daten
über die Reduktion hinaus, da dies für die Anwendung von NNMF notwendig ist.
Wir entwickelten eine Methode zur NNDR, die darauf beruht klassische Reduktions-
techniken, welche als Optimierungsproblem (OP) mit rotationsinvariantem Kostenfunk-
tional formuliert werden können, abzuwandeln. Durch Hinzufügen einer Nichtnegati-
vitätsbedingung zu dem OP können wir garantieren, dass die niedrigdimensionalen Da-
ten nichtnegativ sind. Wenn außerdem durch die Reduktion die Winkel zwischen Daten-
punkten nicht vergrößert werden, können wir das OP lösen, indem wir erst die klassische
Reduktion durchführen und dann die Daten ins Positive rotieren. Überdies diskutierten
wir die Anwendbarkeit dieses Splitting Ansatzes auf verschiedene Dimensionsreduktions-
techniken, insbesondere auf Principal Component Analysis (PCA).
Dieser Ansatz basiert auf einer Rotationsabbildung, die wir durch Lösen eines weiteren
OPs auf der speziellen orthogonalen Gruppe SO(d) berechneten. Durch die fehlende
Vektorraumstruktur können auf dieser Menge Standardmethoden wie z. B. das Verfah-
ren des steilsten Abstiegs oder das Newtonverfahren nicht ohne Weiteres angewendet
werden. Wir können jedoch die Eigenschaften von SO(d) als Lie Gruppe verwenden, um
einen multiplikativen Update-Algorithmus zu konstruieren. Diese Konstruktion basiert
maßgeblich auf der Exponentialabbildung, die SO(d) mit ihrer assoziierten Lie Alge-
bra verknüpft. Auf Grund dieser Verknüpfung konnten wir ein Verfahren des steilsten
Abstiegs auf Lie Gruppen von Grund auf herleiten, bei dem wir entlang von Kurven,
die in Richtung eines Tangentialvektors verlaufen, iterieren. Im Allgemeinen ist es nicht
leicht solche Kurven explizit zu bestimmen, jedoch bietet die Exponentialabbildung eine
einfache und effiziente Möglichkeit hierfür.
Schlussendlich diskutierten wir die Anwendung der entwickelten Methoden im Bereich
der Signaltrennung. Wir stellten einige numerische Ergebnisse vor und verglichen un-
sere nichtnegative PCA (NNPCA) mit anderen PCA-Versionen sowie unterschiedlichen
Trenntechniken (NNMF und ICA). Die Ergebnisse zeigen, dass unsere NNPCA geeig-
neter ist als die naive Alternative, bei welcher der Absolutbetrag auf PCA-reduzierte
Daten angewendet wird. Des Weiteren zeigte sich, dass die Trennung mit NNPCA und
NNMF fast ebenso gute Ergebnisse liefert wie die Trennung mit PCA und ICA.

Einige Resultate dieser Arbeit sind in [47, 69] veröffentlicht.
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