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Abstract
Within this thesis a precise mass-prediction for the Higgs fields of the Next-to-
Minimal Supersymmetric Standard Model (NMSSM) is obtained with Feynman-
diagrammatic methods. The results are studied numerically for sample scenarios
that are in agreement with current New Physics searches at the LHC. Furthermore
a comparison between the obtained results and different calculations is performed as
a first step in order to obtain an estimation for the theoretical uncertainties of the
Higgs-mass prediction in the NMSSM.
The precise mass-prediction includes the full NMSSM one-loop corrections sup-

plemented with the dominant and sub-dominant two-loop corrections within the
Minimal Supersymmetric Standard Model (MSSM). These include contributions at
the orders O(αtαs, αbαs, α2

t , αtαb), as well as a resummation of leading and subleading
logarithms from the top/scalar top sector. Higher-order corrections are essential for
the NMSSM in order to provide a Higgs particle that is consistent with the available
data, including the observed neutral, CP-even Higgs field with a mass of about
125 GeV. We explored the validity of the applied approximation at the two-loop
level and found that it is reliable for a wide range of scenarios within the NMSSM.
This is especially true for the mass of the observed (MS)SM-like Higgs field. The
result of this work will be included in a future extension of the program FeynHiggs.
We also compared our results with the program NMSSMCalc that also performs

a Feynman-diagrammatic calculation of the Higgs-masses with a slightly different
renormalization scheme. The comparison reveals that for the mass of the (MS)SM-like
Higgs field the genuine NMSSM-effects induced by the choice of the renormalization
scheme are by far minor compared to similar effects observed in the MSSM.
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Kurzdarstellung
In dieser Arbeit wird unter Verwendung von Feynman-Diagrammen eine Präzisions-
vorhersage für die Massen der Higgs-Felder im Nächstminimalen Supersymmetrischen
Standardmodell (NMSSM) erarbeitet. Die Ergebnisse werden numerisch ausgewertet
für verschiedene Beispielszenarien, welche im Einklang stehen mit den aktuellen
Suchen nach neuer Physik am LHC. Darüber hinaus wird ein Vergleich angestellt
zwischen den erhaltenen Ergebnissen und vergleichbaren Berechnungen als ein erster
Schritt zur Abschätzung der theoretischen Unsicherheit der Higgs-Massenvorhersage
im NMSSM.
Die Präzisionsvorhersage für die Higgsmassen berücksichtigt die vollständigen Ein-

schleifen-Korrekturen ergänzt durch führende und nächstführende Zweischleifen-Kor-
rekturen aus dem Minimalen Supersymmetrischen Standardmodell (MSSM). Diese
beinhalten sowohl Beiträge der Ordnungen O(αtαs, αbαs, α2

t , αtαb), als auch eine Re-
summation von führenden und nächstführenden Logarithmen aus dem Top/skalaren
Top-Sektor. Korrekturen höherer Ordnung sind essentiell für die Existenz eines
mit den experimentellen Daten konsistentes Higgs-Feldes im NMSSM. Dies gilt im
besonderem Maße für die Masse des beobachteten neutralen, CP-geraden Higgs-Feld
mit einer Masse von ungefähr 125 GeV. Wir haben in dieser Arbeit die angewandte
Approximation der Zweischleifen-Beiträge untersucht mit dem Ergebnis, dass diese
für einen großen Parameterbereich des NMSSM verlässlich ist. Dies gilt in beson-
derem Maße für die Masse des beobachteten (MS)SM-artigen Higgs-Feldes. Die
Ergebnisse dieser Arbeit werden Teil der zukünftigen Erweiterung des Programms
FeynHiggs sein.
Darüber hinaus wird unser Ergebnis verglichen mit dem Programm NMSSMCalc,

welches ebenfalls eine Feynman-diagrammatische Berechnung der Higgs-Massen mit
einem leicht verschiedenen Renormierungsschema enthält. Der Vergleich zeigt, dass
für die Massenvorhersage des (MS)SM-artigen Higgs-Feldes reine NMSSM-Effekte,
erzeugt durch die Wahl des Renormierungsschemas, bedeutend geringer sind als
vergleichbare Effekte, die im MSSM beobachtet wurden.
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1 Introduction
The first observation of a Higgs signal in 2012 [1,2] represented a huge success for the
description of electroweak symmetry breaking. While the Higgs particle and its role in
the process of electroweak symmetry breaking within the Standard Model of particle
physics (SM) [3–5] has been postulated almost 50 years earlier by François Englert,
Robert Brout and Peter Higgs [6–9], it evaded detection at previous experiments.
With the now observed Higgs signal any model, which describes electroweak physics,
needs to provide a state that can be identified with it. While within the present ex-
perimental uncertainties the properties of the observed state are compatible with the
predictions of the SM, many other interpretations are possible as well, in particular
as a Higgs boson of an extended Higgs sector.
In the Minimal Supersymmetric Standard Model (MSSM), see e.g. [10, 11], the

number of particle degrees of freedom is doubled by predicting two scalar partners
for all SM fermions, as well as fermionic partners to all bosons. The scalar Higgs
sector is extended by an additional Higgs-doublet in order to give mass to all SM
fermions. In the CP-conserving MSSM the observed Higgs is a linear combination
of the CP-even scalar Higgs fields. For scenarios with one decoupled, heavy CP-even
Higgs, the observed state is the lighter of both. Although the mass of the lightest
CP-even Higgs field in the MSSM is bound from above by MZ , the MSSM Higgs-
masses receive potentially large higher-order corrections. These corrections can lift
the mass up and thus provide a SM-like state with a mass at around the measured
value of 125 GeV [12].
The Next-to-Minimal Supersymmetric Standard Model (NMSSM) and its vari-

ants [13–19] represent a minimal supersymmetric theory with an extended Higgs
sector by one singlet superfield compared to the MSSM. The two additional scalar
degrees of freedom mix with the doublet Higgs-fields. However its admixture to the
Higgs field observed at around 125 GeV is not allowed to be very large, since it
does not couple to the gauge-bosons. As in the MSSM potentially large higher-order
corrections appear, that are necessary to provide a SM-like state with appropriate
mass. In order to allow for a precise prediction for the Higgs masses in the NMSSM
the calculation of higher-order corrections is necessary.
Within the NMSSM several codes exist that calculate the Higgs masses in the pure

DR scheme with different two-loop contributions. Amongst these codes SPheno [20,
21] incorporates the most complete results at the two-loop level, including two-
loop contributions from the fermion/sfermions, two-loop corrections from the Higgs-
sector in the gaugeless limit as well as mixed contributions of both sectors calcu-
lated with the results of the effective potential approach as outlined in [22]. The
tools FlexibleSUSY [23], NMSSMTools [24, 25] and SOFTSUSY [26–28] include leading
(supersymmetric) QCD (SQCD) corrections in the NMSSM from the top-/stop-
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1 Introduction

/bottom-/sbottom-sectors supplemented by certain MSSM corrections. Also the code
NMSSMCalc allows to calculate Higgs masses in the NMSSM including leading (S)QCD
corrections from the top-/stop-sector. In contrast to the the aforementioned codes the
calculation implemented in NMSSMCalc [29] is obtained with Feynman-diagrammatic
methods with the option to choose between the on-shell and DR renormalisation
schemes in the top-/-stop-sector.
The results presented in this thesis will provide an additional calculation with

Feynman-diagrammatic methods that will be included in the code FeynHiggs [30–36]
as a first step to extend this code to the NMSSM, labelled NMSSM-FeynHiggs in the
following. The presented results differ from the pure DR calculations listed above by
the use of a hybrid on-shell/DR renormalisation scheme. From NMSSMCalc it differs
by approximating the two-loop contributions by their known MSSM counterparts,
which are already implemented in FeynHiggs. The code NMSSM-FeynHiggs will be
the only code that includes the resummation of large logarithms and thus improves the
results of the Feynman-diagrammatic calculation for heavy supersymmetric partner-
fields with masses beyond several TeV [37]. The code NMSSM-FeynHiggs will fur-
thermore provide also the wave function normalisation factors of the NMSSM with
the employed MSSM approximation for the two-loop contributions. The MSSM
approximation of the two-loop contributions yields an accurate mass prediction for
(MS)SM-like Higgs-fields for a wide range of parameters. For a light singlet-like
Higgs-field the MSSM approximation for the two-loop sfermion-contributions is less
reliable for certain parameter regions. However, in these regions two-loop corrections
to the singlet mass from the Higgs-sector are expected to be larger than the sfermion
contributions of the same loop-level.
Since the calculations implemented in the codes above contain at most partial two-

loop contributions an estimate of the unknown higher-order effects is necessary to
provide an estimate of the theoretical uncertainties of the Higgs-mass predictions.
While such estimations exist for the calculation in the MSSM, see e.g. [32, 38], they
are absent for the NMSSM calculation. While a first step for obtaining estimation
of theoretical uncertainties for NMSSM Higgs-mass predictions has been performed
in [39] for DR codes, the impact of different on-shell/DR renormalisation schemes
has not been studied yet. A comparison between the preliminary code NMSSM-
FeynHiggs and the public code NMSSMCalc shows that genuine NMSSM-effects from
different prescriptions induce only small higher-order contributions, while a study of
partial one-loop corrections suggest that the higher-order effects from missing two-
loop contribution can be more significant for certain parameter regions.

Thesis outline

This thesis is structured as follows. In Chapter 2 an overview over the Standard
Model and the supersymmetric extensions in form of the MSSM and the NMSSM is
given. Chapter 3 will provide details about the treatment of higher-order corrections
in supersymmetric theories in general and will discuss regularisation methods, renor-
malisation schemes, the definition of the wave function normalisation factors as well
as the renormalisation group equations. The NMSSM Higgs sector will be discussed

2



in detail at the one- and two-loop level in Chapter 4. Subsequently the definition of
the Higgs masses at higher-orders will be given in Chapter 5, including a description of
the used methods and codes. In Chapter 6 the one-loop contributions will be divided
into appropriate subsets and discussed separately. At the end of this chapter the
discussion is extended to the implications for the two-loop contributions. Chapter 7
will give a brief overview over future implementations of NMSSM calculations into
the public codes FeynHiggs, FeynArts and FormCalc based on the presented work. A
numerical discussion of the obtained results takes place in Chapter 8. The numerical
impact of partial NMSSM-contributions at the one-loop level will be discussed. The
employed two-loop MSSM approximation will be compared to the full NMSSM result
for the (S)QCD corrections from the top-/stop-sector implemented in NMSSMCalc.
In the last Chapter 9 a detailed comparison between the codes NMSSM-FeynHiggs
and NMSSMCalc will be presented in order to study higher-order effects induced
by different renormalisation prescriptions. The study represents a first attempt to
estimate theoretical uncertainties for NMSSM calculations in hybrid on-shell/DR
renormalisation schemes. Finally, this thesis will conclude in Chapter 10.
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2 The Standard Model and its
Supersymmetric Extensions

The development of quantum-field theories (QFTs) during the 20th century provided
a powerful tool for the description of elementary particles. They represent a combina-
tion of special relativity and quantum theory. At a classical level they connect the par-
ticles observed in nature with field degrees of freedom. After canonical quantisation
of the theory the field degrees of freedom become operators. Demanding invariance of
the action under local, (special) unitary transformations of these degrees of freedom
leads to the description of the strong, weak and electromagnetic interactions. The
best tested and accepted gauge theory describing these forces is called the Standard
Model of Particle Physics (SM) [3–5]. It will be described in this chapter with the
conventions used throughout this work. For a more detailed understanding of its
properties and the definition of the mentioned quantities, a general SU(N) invariant
Yang–Mills theory [40] is discussed in the appendix in sec. A.2. After describing the
SM its shortcomings will be outlined to motivate supersymmetric extensions of the
SM. The Minimal Supersymmetric Standard Model (MSSM) and the Z3-invariant
Next-to Minimal Supersymmetric Standard Model (NMSSM) will be described in
more detail as such extensions and the conventions used in this work. A discussion
of a general SU(N) invariant Super Yang–Mills theory is given in the appendix in
sec. A.3.

2.1 The Standard Model (SM)

The Standard Model of Particle Physics is a spontaneously broken gauge theory1.
It successfully unifies the electromagnetic and weak interactions as one electroweak
force and contains a description of the the strong interaction. Before spontaneous
symmetry breaking the SM is invariant under a local gauge transformation of the
groups U(1)Y × SU(2)L × SU(3)c. After the SU(2)L × U(1)Y -symmetry is broken
spontaneously to the U(1)em-symmetry of quantum electrodynamics (QED), massive
fields can be described. The underlying procedure of spontaneous symmetry breaking
is called the Brout–Englert–Higgs-mechanism (BEH mechanism) [6–9]. After sponta-
neous symmetry breaking the theory contains three massive vector fields and massive
fermions. It is invariant under the group U(1)em × SU(3)c.

1At the quantised level it is a BRST-invariant theory as described in sec. A.2.
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2 The Standard Model and its Supersymmetric Extensions

2.1.1 Gauge Invariance

The generators of the groups U(1)Y , SU(2)L and SU(3)c can be expressed by the
matrices Y/2, σa/2 and τb/2. The corresponding charges are called hypercharge,
weak isospin and colour. They are called the hypercharge operator, the Pauli- and
the Gell-Mann-matrices. Their commutation relations read

[Y, Y ] = 0, [σa,σb] = igwεabcσc, [τa, τb] = igsfabcτc. (2.1)

The couplings of the three gauge groups are labelled gY , gw and gs, εabc and fabc are
the structure constants of SU(2)L and SU(3)c, respectively. Since U(1)Y is an abelian
group its structure constant is zero. Not all particles in the SM are charged under
all three groups. Fermion fields charged under SU(2)L are denoted by an index L,
fields uncharged under this group with an index R. Only quarks are charged under
SU(3)c. The 8 gauge bosons of SU(3)c, labelled Ga

µ, describe the gluons, the massless
mediators of the strong interaction. Thus SU(3)c is the gauge group of Quantum
Chromodynamics (QCD). The 4 gauge bosons of the U(1)Y and SU(2)L, labelled
Bµ and W a

µ , can not directly be identified with the mediators of the electroweak
interaction. Only their linear combinations describe the observed W- and Z-boson
and the photon. To describe the electroweak interaction, the BEH mechanism has to
be applied.

2.1.2 Electroweak Symmetry-Breaking

The SU(2)L × U(1)Y invariance introduced in the last section forbids explicit mass
terms for both bosons and Dirac-fermions. However, this is in contradiction with
observations, since both fermions and gauge bosons of the electroweak interactions are
observed as massive particles [41]. This fact hints to a breaking of the U(1)Y ×SU(2)L
invariance at the weak scale. After the spontaneous breaking a local symmetry under
U(1)em has to remain to describe the massless photon of Quantum Electrodynamics
(QED).
In the SM the introduced Higgs field is in the fundamental representation of SU(2)L

and decomposed as follows,

Φ =
(

G+(x)
v + 1√

2 [h(x) + iG0(x)]

)
. (2.2)

Here the CP-even field h is physical and called the Higgs boson. The fields G+ and
G0 represent the two electrically charged and the one neutral Goldstone modes. The
Higgs potential defined in (A.23) for the SM reads

V SM
H (Φ) =

[
−µ2 |Φ|2 + λ |Φ|4

]
, µ, λ > 0, (2.3)

6



2.1 The Standard Model (SM)

and thus the vacuum expectation-value obtains the value

v =
√
µ2

2λ. (2.4)

Inserting this value into the kinetic term of the Higgs field (A.25) gives rise to non-
zero mass terms for the four vector bosons of U(1)Y and SU(2)L. However, these
massive fields are not observed in nature. They mix into the massless photon field A
of QED as well as the massive neutral and charged vector bosons Zµ and W±

µ of the
weak force. They are obtained by the linear combinations(

W+
µ

W−
µ

)
= 1√

2

(
1 −i
1 i

)(
W1,µ
W2,µ

)
,

(
Zµ
Aµ

)
=
(

cosϑw − sinϑw
sinϑw cosϑw

)(
W3,µ
Bµ

)
. (2.5)

The conventions follow those of the calculations implemented in the tool FeynHiggs [30–
36]. It differs from the convention used in [42] by the different sign of the weak mixing
angle ϑw.
The A-Z mixing is parametrised by the weak mixing angle ϑw. This angle can be

related to the coupling constants of U(1)Y , SU(2)L and U(1)em, gY , gw and e, by

sinϑw ≡ sw = − gY√
g2
Y + g2

w

, cosϑw ≡ cw = gw√
g2
Y + g2

w

, e = gwsw = gY cw. (2.6)

Expressing the mass matrices in analogy to (A.25) reveals only non-vanishing mass
terms for the Z- and W-Bosons while the photon remains massless,

MW = MZcw = gwv, MA = 0. (2.7)

Dirac Fermions and their Mass Terms in the SM

After breaking the SU(2)L symmetry spontaneously, Dirac mass-terms for the fermions,
which would break the SU(2)L symmetry explicitly otherwise, can be generated by
couplings with the Higgs SU(2)L-doublet. In the SM with the assumption of massless
neutrinos such couplings exist for the three generations of up- and down-type quarks
and leptons, u, d and l. These couplings can be expressed in family space by the 3×3
Yukawa coupling-matrices Yf and the right- and left-handed spinor fields. With the
family indices i and j this reads

LYuk =
(
Q̄i
L ·ΦC

)
(Yu)ij ujR +

(
Q̄i
L ·Φ

)
(Yd)ij djR +

(
L̄iL ·Φ

)
(Yl)ij ljR. (2.8)

Here ΦC = iσ3φ
∗ represents the charge conjugated Higgs field and the dot denotes

the SU(2)L-invariant product given in sec. A.1.3. Replacing the Higgs field by the
vacuum expectation-value reveals the mass matrices. For the leptons the mass matrix
reads

(ml)ij = v (Yl)ij . (2.9)
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2 The Standard Model and its Supersymmetric Extensions

The quark fields in the theory are not mass eigenstates. Each of the left- and right-
handed fields can be transformed into mass eigenstates by a unitary matrix U f

L/R.
Thus the mass matrices for the up- and down-type quarks reads

mu = (Uu
L)† vYuUu

R, md =
(
Ud
L

)†
vYdU

d
R. (2.10)

The rotation into mass eigenstates leads to the combination

VCKM = (Uu
L)† Ud

R, (2.11)

known as the Cabibbo-Kobayashi-Maskawa (CKM) matrix. A complex phase in this
matrix provides the only source of CP-violation in the SM. Flavour violation will
be neglected in the following, the Yukawa coupling matrices will thus be considered
diagonal.

2.1.3 Quantisation
In the SM the functionals Ca mentioned in sec. A.28 are given for the physical
vector fields Aµ, Zµ and W±

µ . Assuming that the primed and unprimed gauge-fixing
parameters are chosen equally (ξ = ξ′), evaluating (A.28) yields

CA = ∂µAµ, C
Z = ∂µZµ − ξZMZG

0, C± = ∂µW±
µ ∓ iξWMWG

±, CG = ∂µGµ.

(2.12)

The mass matrix for the Goldstone bosons and ghost fields is thus diagonal. The
mass parameters of the unphysical ghost fields and Goldstone bosons are equal to the
corresponding gauge-boson masses up to a factor ξi,

M2
G0 = M2

uZ = ξZM
2
Z , M2

G± = M2
uW = ξWM

2
W . (2.13)

Unless stated otherwise the t’Hooft–Feynman gauge is applied throughout this work,
where all gauge-fixing parameters are chosen to be equal to one (ξA = ξZ = ξW =
ξG = 1).

2.1.4 Lagrangian and Particle Content
The covariant derivative of the SM reads

DSM
µ = 1∂µ + iAµ + iZµ + iW+

µ + iGµ (2.14a)

with

Aµ = e
(
Bµ1+ 1

2W3,µσ3

)
, Zµ = e

(
−Bµ1+ cw

2sw
W3,µσ3

)
, (2.14b)

W±
µ = e

2sw
1√
2

(W1,µσ1 ∓W2,µσ2) , Gµ = gsG
a
µ

τa

2 . (2.14c)
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2.1 The Standard Model (SM)

The full kinetic term for three generations of fermions and the gauge bosons reads

LSMkin. =
3∑
i=1

(
Q̄i
L
/D
SM
Qi
L + L̄iL /D

SM
LiL + ūiR /D

SM
uiR + d̄iR /D

SM
diR + l̄iR /D

SM
liR
)

+ Tr [AµνAµν ] + Tr [ZµνZµν ] +
(
Tr
[
W+,µνW−

µν

]
+ h.c.

)
+ Tr [GµνGµν ]

(2.15)

with the trace over the gauge indices as defined in (A.22). The left-chiral fermion
doublets of quark and lepton/neutrino fields are denoted by

Qi
L =

(
uiL
diL

)
and LiL =

(
νli,L
liL

)
. (2.16)

The right-chiral fields are denoted with small letters uR, dR and lR for the up- and
down-quark, and the leptons. Neutrinos are considered massless throughout this
work, thus no right-chiral neutrino fields exists.
The Lagrangian of the SM is formed by the sum of the parts mentioned in this

section and the appendix A.2,

LSM = LSMkin + LSMYuk + LSMghost + LSMfix . (2.17)

It describes the dynamics and interactions of the particles listed in tab. 2.1.

type field Y/2 I3

leptons/
neutrinos

LiL −1/2 ±1/2
eiR −1 0
νli,L 0 +1/2

quarks
Qi
L 1/6 ±1/2

uiR 2/3 0
diR −1/3 0

field group generators index
Bµ U(1)Y Y
W a
µ SU(2)L σa {1, 2, 3}

Ga
µ SU(3)c τa {1, . . . , 8}

type field Y/2 σ3/2
Higgs h 1/2 −1/2

Table 2.1: Matter fields of the SM before electroweak symmetry-breaking. The
symbols denote the eigenvalues of the operators for the hypercharge Y and the
weak isospin I3.

2.1.5 Shortcomings of the SM
In spite of the successful description of electroweak and strong interactions the SM
fails to provide a description of all phenomena observed in nature, among that it
lacks a description of gravity. Due to this shortcoming the SM can be interpreted at
most as an effective theory [43] that is only valid up to the scale where gravitational
interactions are of relevance. The scale of gravity is usually associated with the
Planck scale MP = 1019 GeV. Above this scale a full theory, which includes gravity,
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2 The Standard Model and its Supersymmetric Extensions

is needed. The couplings of the SM at the electroweak scale associated with MW

would then be predictions of the full theory.
The unified description of the electromagnetic and weak interactions at the weak

scale motivates to attempt that a unified description of the electroweak and strong
interactions described by a grand unified theory (GUT) exists at a scaleMGUT < MP.
The description of the unified interactions would be described by one gauge group.
This assumption however implies that the couplings gY , gw and gs have the same
value at MGUT, which is only possible if additional matter is added to the SM [44].
In the treatment of the SM as an effective theory the Higgs mass would be a

prediction of the full theory above MP. At MP, the running Higgs mass has to match
the Higgs mass in the full theory. If the full theory contains fermions with a mass of
≈MP that couple to the Higgs, however, their contributions to the Higgs self-energy
are proportional toM2

P and thus would be very large. Since the Higgs mass in the SM
was measured with around 125 GeV very large cancellations have to occur between
the bare self-energies and their counterterms to arrive at this low mass in the on-shell
scheme. This cancellation has to be fine-tuned in order to arrive from contributions
of O(M2

P) at a mass of the order of O(M2
Z). The large gap between the two scales

has to be bridged by precise cancellations. Even in the absence of additional, heavy
fermions a large gap exists between the mass scales of the SM particles and any new
particles with masses around MP. This is know as the “hierarchy problem”.
It is implied by astrophysical observations that only 5% of the energy content of the

universe is made of SM matter. Dark Matter (DM) and Dark Energy (DE) constitute
27% and 68% [45], respectively, of the matter content of the universe. Any candidate
for DM has to be stable on cosmological time scales and is only allowed to interact
weakly. None of the SM particles is a viable DM candidate under this constraints2.
Furthermore, additional sources of CP-violation beyond the single complex phase in
the CKM matrix are necessary in order to explain the observed matter-antimatter
asymmetry in the universe and to meet the Sakharov conditions [49].

2.2 Minimal Supersymmetric Standard Model
In the Minimal Supersymmetric Standard Model (MSSM) [10,11] the Poincaré sym-
metry of the SM is extended by one fermionic generator (N = 1 supersymmetry).
The gauge groups of the MSSM are identical to the SM. For each fermion in the SM
a scalar superpartner, a sfermion, and for each SM boson a fermionic superpartner,
a bosino, is thus introduced.

2.2.1 Motivation
Supersymmetric theories cure several shortcomings of non-supersymmetric theories.
The hierarchy problem is directly addressed by supersymmetry: Scalar self-energies
2Although neutrinos are weakly interacting, massive [46,47] particles, they are too light to account
for more than a small fraction of dark matter [48].
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2.2 Minimal Supersymmetric Standard Model

are protected against quadratic contributions due to a non-renormalisation theo-
rem [50–55]. This property is preserved in softly-broken supersymmetric theories like
the MSSM [56], if the difference between the mass of the heavier fermions and their
superpartners is smaller than or of the order of the Higgs mass. The invariance of a
theory under local supersymmetry provides a connection to general relativity [57].
As an extension of the SM, in the MSSM a unification of the three gauge-couplings

gY , gw and gs at a scale MGUT is possible. In this case the superpartner masses are
typically of several TeV.
In addition the MSSM can provide a possible cold dark matter candidate. If the

lightest supersymmetric partner field is stable, electrically neutral and only weakly
charged it can serve as a candidate for non-baryonic dark matter [58,59].
For certain scenarios it is possible starting from universal boundary condition on

the high scale to arrive at a negative value of the squared Higgs mass m2
h(MSUSY) at

the mass scale of the supersymmetric partner fields MSUSY, which leads to radiative
electroweak symmetry-breaking [60]. In such scenarios the Higgs potential obtains
a non-zero vacuum expectation-value that leads to spontaneous breaking of the
electroweak symmetry.

2.2.2 Chiral Superfields for SM Fields
For each SM fermion a chiral superfield, denoted with a hat, is introduced, which
contains the left- and right-handed SM fermion in the Weyl representation and
its superpartners as component fields. The introduced fields and components are
outlined in tab. 2.2. The scalar superpartners are denoted by an additional letter s
in front of the name of its SM partner. E.g. the partners of the top are called stops.

field scalar fermion

Q̂i Q̃ =
(
ũiL, d̃

i
L

)T
Q =

(
uiL, d

i
L

)T
L̂i L̃ =

(
ν̃iL, l̃

i
L

)T
L =

(
νiL, l

i
L

)T

field scalar fermion
ûi ũiR uiR
d̂i d̃iR diR

l̂i l̃iR liR

Table 2.2: Superfields and their component fields the MSSM with generation
index i. In the left table the SU(2)L-doublet superfields are given, in the right
table the SU(2)L-singlet superfields. The fermionic component fields are two-
component Weyl-spinors. Since neutrinos are considered massless throughout
this work, superfields for right handed neutrino fields are absent.

2.2.3 Super Gauge-Invariance
The vector superfield V can be expressed with the generators of the gauge groups,

V = gYB
Y

2 + gwWa
σa
2 + gsGb

τb
2 . (2.18)
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2 The Standard Model and its Supersymmetric Extensions

The left- and right-chiral field strength can be decomposed in the same way due to its
construction from V . The vector superfields B, Wa and Gb contain the component
field as outlined in tab. 2.3.

group field vector fermion

U(1)Y B Bµ B̃

SU(2)L Wa W µ
a W̃a

SU(3)c Gb Gµ
b G̃b

Table 2.3: Component fields of the vector superfields in the MSSM. The
fermionic components for the superfields of U(1)Y , SU(2)L and SU(3)c are called
the bosino, the winos and the gluinos.

2.2.4 Electroweak Symmetry-Breaking and Soft-Breaking
Terms

Two different Higgs doublets are needed to obtain the mass terms for the SM fermions
given in (2.8), since a term mixing chiral and anti-chiral superfields is not allowed
in the superpotential given in eq. (A.49). The two Higgs superfields will be called
Ĥ1 and Ĥ2 and carry the hypercharge Y of −1 and 1, respectively. The term in the
superpotential for these fields in the MSSM is given by

WMSSM
Higgs = µ Ĥ2 · Ĥ1. (2.19)

TheD-terms from the kinetic term and the F -terms contribute to the Higgs potential.
If the scalar component fields of Ĥ1 and Ĥ2 are to obtain non-vanishing vacuum
expectation-values v1 and v2 it is necessary to add the soft breaking terms,

LHiggs, MSSM
soft = −m2

1 |H1|2 −m2
2 |H2|2 − [b12µ (H2 ·H1) + h.c.] . (2.20)

With these additions the Higgs potential of the MSSM is given by

V MSSM
H = m2

1 |H1|2 +m2
2 |H2|2 + µ (H2 ·H1) + [b12µ (H2 ·H1) + h.c.]

+ 1
8
(
g2
1 + g2

2

) (
|H1|2 + |H2|2

)2
+ 1

2g
2
2

∣∣∣H†1H2

∣∣∣2 . (2.21)

The scalar componentsH1 andH2 can be expanded around their vacuum expectation-
values by

H1 =
(
v1 + 1√

2 (φ1 − iχ1)
−φ−1

)
, H2 =

(
φ+

2
v2 + 1√

2 (φ2 + iχ2)

)
. (2.22)

Here the fields φi are the CP-even, χj the CP-odd and φ±k the charged scalar fields.
The sum v2 = v2

1 + v2
2 of the squared values for v1 and v2 is determined by the

minimisation conditions of the Higgs potential. The Higgs-sector fields and the Higgs
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2.2 Minimal Supersymmetric Standard Model

potential will be discussed for the Next-to-Minimal Supersymmetric Standard Model
(NMSSM) in sec. 2.3. Both doublets contribute to the masses of the gauge bosons,
that read

MW = MZcw = gw
√
v2

1 + v2
2. (2.23)

Mass Terms for Fermions and Sfermions in the MSSM

The field H2 gives mass to the up-type fermions/sfermions, the field H1 gives mass
to the down-type fermions/sfermions and leptons/sleptons. The superpotential for
these mass terms is given by

WYukawa =
3∑
i=1

(
Q̂i

L · Ĥ2
)
Yuû

i
R −

(
Q̂i

L · Ĥ1
)
Ydd̂

i
R −

(
L̂iL · Ĥ1

)
Yl l̂

i
R. (2.24)

The Yukawa matrices for the MSSM can be written in terms of the ratio between the
vacuum expectation-values and the SM matrices,

Yu = Y (SM)
u

1
sin β , Yd,l = Y

(SM)
d,l

1
cos β , tan β = v2

v1
. (2.25)

The introduction of additional soft-breaking terms for the sfermions allow them to
have different masses than their SM counterparts. They read

Lscalarsoft =

−
3∑
i=1

(
M2

Q̃iL

∣∣∣Q̃i
L

∣∣∣2 +M2
ũiR

∣∣∣ũiR∣∣∣2 +M2
d̃iR

∣∣∣b̃iR∣∣∣2 +M2
L̃iL

∣∣∣L̃iL∣∣∣2 +M2
l̃iR

∣∣∣l̃iR∣∣∣2)

−
3∑
i=1

[
AiuY

i
u

(
Q̃i
L ·H2

) (
ũiR
)∗

+ AidY
i
d

(
Q̃i
L ·H1

) (
d̃iR
)∗

+ AilY
i
l

(
L̃il ·H1

) (
l̃iR
)∗

+ h.c.
]
.

(2.26)

The parameters MQ̃iL
and ML̃iL

are the soft mass terms for the partners of the left-
handed quarks, leptons and neutrinos, while MũiR

, Md̃iR
and Ml̃iR

are the soft masses
for the superpartners of the right-handed up- and down-type quarks and leptons.
The parameters Aiu, Aid and Ail denote the trilinear breaking terms for the up- and
down-type squarks and sfermions. The superscript i is the generation index.
The soft breaking terms for the gauginos of U(1)Y , SU(2)L and SU(3)c read

Lfermion
soft = − 1

2
(
M1B̃B̃ +M2W̃

aW̃ a +M3G̃
bG̃b + h.c.

)
. (2.27)

The aforementioned soft parameters can in general be complex. Since only the CP-
conserving case will be discussed in this work, they are considered to be real.
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2 The Standard Model and its Supersymmetric Extensions

2.2.5 R-Parity
An additional constraint on the number of allowed vertices is applied by introducing
a global symmetry, the R-symmetry [61, 62]. It acts on the Grassmann coordinates
in superfields,

Φ
(
x, ϑ, ϑ̄

)
→ e(iαR)Φ

(
x, eiαRΦϑ, e−iαRΦϑ̄

)
. (2.28)

The eigenvalues RΦ are integer numbers, the angle α is an arbitrary real constant;
the eigenvalue of a product of superfields is the sum of all eigenvalues. R-parity is a
special case for α = π. The eigenvalues for an SM component field are defined as 1,
while the eigenvalues of the corresponding superpartner components are defined as
−1. Demanding R-parity conservation forbids vertices that enable the violation of
lepton- and baryon-number conservation.

2.2.6 Lagrangian and Particle Content
For each chiral and vector superfield a kinetic term as given in (A.48) exists in the
MSSM,

LMSSM
kin = LMSSM

kin,chir + LMSSM
kin,vec + LMSSM

kin,Higgs

LMSSM
kin,chir =

∫
d2ϑd2ϑ̄

3∑
i=1

(
Q̂†ie2V Q̂i + û†ie2V ûi + d̂†ie2V d̂i + L̂†ie2V L̂i + ê†i e2V êi

)

LMSSM
kin,Higgs=

∫
d2ϑd2ϑ̄

2∑
n=1

Ĥ†ne2V Ĥn, LMSSM
kin,vec =

(∫
d2ϑWαWα + h.c.

)
. (2.29)

The terms from the superpotential of the MSSM are given by

LMSSM
Suppot =

∫
d2ϑ WMSSM + h.c., WMSSM = WYukawa +WMSSM

Higgs . (2.30)

The Lagrangian for the MSSM is the sum of the aforementioned parts,

LMSSM = LMSSM
kin + LMSSM

Suppot + LMSSM
soft + LSMghost + LSMfix (2.31)

The unphysical ghost and the gauge parts are identical to the ones used in the SM. For
the ghost and gauge-fixing parts only the contributions from the SM are considered
in the Rξ-gauge. The Goldstone bosons of the MSSM are linear combinations of the
charged and CP-odd scalar states from the Higgs doublets.

2.2.7 Shortcomings of the MSSM
However, the most severe shortcoming of supersymmetric extensions of the SM rep-
resents the fact that so far neither a superpartner field nor an additional Higgs field
have been observed [41]. The search for superpartner fields remains as an important
task for contemporary and future experiments.
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The dimensionful parameter µ appears as a free parameter in the superpotential of
the MSSM. In the SM all dimensionful parameters can be connected to electroweak
symmetry-breaking, which also fixes their order to O(MZ). An association between µ
and electroweak symmetry-breaking as in the SM would conceptually be preferable.
This is called the µ-problem.
The tree-level mass mtree

h of the lightest CP-even Higgs is bound from above by the
Z-mass, (

mtree
h

)2
< M2

Z cos2 2β. (2.32)

In order to lift its value up to 125.1 GeV [12] large higher-order corrections are neces-
sary. While this is possible, especially for scenarios with a large mass splitting between
the stop superpartners, this re-introduces a “little hierarchy problem” between the
masses of the two stops.

2.3 Next-to-Minimal Supersymmetric Standard
Model

The NMSSM and its variants [13–19] represent a minimal supersymmetric theory
with an extended Higgs sector. In the Z3-invariant NMSSM an additional chiral
superfield Ŝ, that is a singlet under all gauge groups, is added to the MSSM with a
modified NMSSM superpotential. Its interactions are defined solely by the NMSSM
superpotential. The singlet superfield adds a CP-even and -odd Higgs field to the
theory. The fermionic component of Ŝ serves as an additional neutralino.

2.3.1 Motivation

In the NMSSM two shortcomings of the MSSM are addressed directly: It solves the
µ-problem and increases the upper bound for the mass of the lightest, doublet-like
Higgs field compared to the MSSM.
The µ-term in the NMSSM is dynamically generated by an additional gauge-singlet

scalar field that receives a vacuum expectation-value by electroweak symmetry-breaking.
Thus in the initial superpotential no dimensionful parameter is present, as in the SM.
The upper bound on the tree-level massmtree

h of the lightest CP-even doublet-Higgs
field is lifted in the NMSSM compared to the MSSM by the new Higgs self-coupling
parameter λ, (

mtree
h

)2
< M2

Z cos2 2β + λ2v2 sin2 2β. (2.33)

In the NMSSM the magnitude of higher-order corrections necessary to lift the mass
of the SM-like Higgs to its measured value is therefore decreased compared to the
MSSM.
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2 The Standard Model and its Supersymmetric Extensions

2.3.2 Differences to the Minimal Supersymmetric Standard
Model

Compared to the superpotential of the MSSM (2.19) only the second part, which de-
scribes the interaction between the extended Higgs and Neutralino sectors is changed.
Several possibilities exist to implement the singlet superfield Ŝ. A good overview can
be found in [17]. For this work only the Z3-invariant NMSSM will be discussed.
This symmetry only allows terms with three superfields in the superpotential. The
Superpotential of the Z3-invariant NMSSM reads

WNMSSM = WYukawa +WNMSSM
Higgs , WNMSSM

Higgs = λŜ
(
Ĥ2 · Ĥ1

)
+ 1

3κŜ
3. (2.34)

The parameters λ and κ are free parameters of the NMSSM and considered real in the
CP-conserving NMSSM. The new singlet fields are unable to couple to SM fermions
and therefore do not affect their masses. The scalar component of the field Ŝ can
acquire a vacuum expectation-value vs, around which it can be expanded as

S = vs + 1√
2

(φs + iχs) . (2.35)

The value vs gives rise to an effective µ-term in the superpotential,

λŜ
(
Ĥ2 · Ĥ1

)
= µeff Ĥ2 · Ĥ1 + excitations, µeff = λvs. (2.36)

In the MSSM the quartic couplings between the components of the doublet Higgs
fields H1 and H2 are determined solely by D-terms. They are proportionally to
the squared of gauge couplings. In the NMSSM additional quartic coupling terms
proportional to λ2 are introduced due to F -terms from the superpotential. For the
singlet all D-terms vanish. Its quartic couplings are determined solely by F -terms
and thus λ and κ.
Compared to the soft breaking terms of the MSSM given in (2.26) only the last

term involving the interaction between the Higgs fields is subject to a change in the
NMSSM. For the new parameters λ and κ new breaking parameters Aλ and Aκ are
introduced, and the scalar component of Ŝ receives a soft mass parameter ms,

LHiggs, NMSSM
soft = −m2

1 |H1|2 −m2
2 |H2|2 −m2

s |S|
2

−
[
λAλS (H2 ·H1) + 1

3κAκS
3 + h.c.

]
.

(2.37)

In the CP-conserving NMSSM the new soft-breaking parameters are real. The
Higgs potential of the NMSSM is given by the aforementioned parts and D-term
contributions. It reads

V NMSSM
H = m2

1 |H1|2 +m2
2 |H2|2 +m2

s |S|
2 + λ2S2

(
|H1|2 + |H2|2

)
+
∣∣∣λ (H2 ·H1) + κS2

∣∣∣2 +
[
λAλ (H2 ·H1) + 1

3κAκS
3h.c.

]
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+ 1
8
(
g2
1 + g2

2

) (
|H1|2 + |H2|2

)2
+ 1

2g
2
2

∣∣∣H†1H2

∣∣∣2 . (2.38)

2.3.3 Lagrangian
The Lagrangian of the NMSSM is identical to the one of the MSSM given in (2.31)
up to the different superpotential and the additional kinetic term for the singlet
superfield,

LNMSSM
Suppot =

∫
d2ϑ WNMSSM + h.c.

LNMSSM
kin,Higgs =

∫
d2ϑd2ϑ̄

( 2∑
n=1

Ĥ†ne2V Ĥn + Ŝ†Ŝ

)
.

(2.39)

Note that the singlet superfield is not coupled to the vector superfields.

2.3.4 Masses of Gauginos, Higgsinos and Sfermions
The superpartner fields of the SM fields as obtained directly from the superfields
are not observable. They can mix and have to be expressed in the mass basis.
In the following the mass matrices for the superpartner fields will be given in the
conventions of [31, 33] for the real case. Instead of the gauge couplings and the
vacuum expectation-values of the Higgs fields the result is expressed in terms of the
gauge boson masses and µeff where applicable.

Charginos

Charginos are mixed from the charged Higgsino and Winos. They obtain a Dirac
mass-term. The mass matrix for the fields in the interaction basis reads

X =
(

M2
√

2MW sin β√
2MW cos β µeff

)
. (2.40)

It can be diagonalised by a biunitary transformation

X(diag) = U∗χ+XV†χ− = diag{mχ1 ,mχ2}. (2.41)

A numerical singular value decomposition on X yields numerical results for the
positive and real singular values, which can be identified with the two chargino masses.
The decomposition also yields results for the matrices U and V.

Neutralinos

The superpartner fields of the singlet mix with the other neutral gauginos and
higgsinos. Thus there are five neutralinos in the NMSSM. Their mass matrix in
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the interaction basis reads

Y =


M1 0 −MZsW cos β MZsW sin β 0
0 M2 MZcW cos β −MZcW sin β 0

−MZsW cos β MZcW cos β 0 −µeff λv2
MZsW sin β −MZcW sin β −µeff 0 λv1

0 0 λv2 λv1 −
√

2κvs

 .
(2.42)

It can be diagonalised by a unitary transformation Nχ0 by

Y(diag) = N∗χ0YN†χ0 = diag
{
mχ0

1
,mχ0

2
,mχ0

3
,mχ0

4
,mχ0

5

}
. (2.43)

Since Y is a 5 × 5 matrix, Nχ0 is of the same rank. Since Y is hermitian, it can be
diagonalised with only one unitary matrix N. The numerical values for the mixing
matrix and the neutralino masses are obtained by performing a numerical singular
value decomposition on Y.

Sfermions

The sfermions are mixed between the superpartners of the right- and left-handed SM
fermions. The mass matrix for the fields in the interaction basis reads

Mf̃ =
M2

f̃L
+m2

f +M2
Z cos 2β(If3 −Qfs

2
W ) mfXf

mfXf M2
f̃

+m2
f +M2

Z cos 2βQfs
2
W

 ,

(2.44)

with (f, f̃ , f̃L) ∈ {(u, ũ, q̃), (d, d̃, q̃), (e, ẽ, l̃)} and Xf = (Af−µeff tf̃ (β)), where tf̃ (β) =
tan β for sleptons and down-type squarks and tf̃ (β) = cot β for up-type squarks. The
symbols If3 and Qf denote the weak isospin and electric charge of the corresponding
SM fermion.
Since the sfermion mass matrix is hermitian, it can be diagonalised by a unitary

2× 2 matrix Uf̃ given by

M(diag)
f̃

= Uf̃Mf̃U
†
f̃

= diag
{
m2
f̃1
,m2

f̃2

}
. (2.45)

Throughout this work the mixing matrix will be parametrised by the real mixing
angle θf̃ ,

Uf̃ =
(

cos θf̃ sin θf̃
− sin θf̃ cos θf̃

)
, (2.46)

that depends on the mass hierarchy between the two stop masses. The elements of
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the mixing matrix elements fulfil the relation
(
Uf̃

)
11

(
Uf̃

)
12

= mfXf

m2
f̃1
−m2

f̃2

. (2.47)

The mass eigenstates are given by

m2
f̃1,2

= m2
f + 1

2
[
M2

f̃ +m2
f + If3M

2
Z cos 2β

∓
√
M2

f̃
−M2

f̃
+M2

Z cos 2β(If3 −Qfs2
W ) + 4,2f

∣∣∣Af − µeff tf̃ (β)
∣∣∣2] . (2.48)

2.3.5 Higgs Masses

The Higgs potential VH contains all terms in the Lagrangian that emerge from terms
proportional to arbitrary powers of Higgs fields. It is formed from by contributions
from both the superpotential and the Kähler potential (A.48). Since Ŝ transforms
as a singlet, the D-terms of the Higgs sector remain identical to the ones from the
MSSM. In this work the vacuum expectation-values of the Higgs doublets (2.22) and
the singlet (2.35), v1, v2 and vs, are only allowed to be real. Rearranging VH by
powers of the fields leads to

VH = . . .− Tφ1φ1 − Tφ2φ2 − TφSφS (2.49)

+ 1
2
(
φ1, φ2, φS

)
Mφφ

φ1
φ2
φS

+ 1
2
(
χ1, χ2, χS

)
Mχχ

χ1
χ2
χS

+
(
φ−1 , φ

−
2

)
Mφ±φ±

(
φ+

1
φ+

2

)

+ · · · .

The coefficients linear in the fields are the tadpole coefficients. The ones bilinear in the
fields are the mass matrices Mφφ, Mχχ and Mφ±φ± . In eq. (2.49) the Higgs potential
is given in the interaction basis with the fields φi and φ±j . A unitary transformation
has to be applied in order to obtain physical fields in the mass basis. For the CP-
conserving case the mixing into mass eigenstates can be described at lowest order by
the unitary transformationsH1

H2
H3

 = Ue(0)

φ1
φ2
φs

 ,
A1
A2
G0

 = Uo(0)

χ1
χ2
χs

 , (
H±

G±

)
= Uc(0)

(
φ±1
φ±2

)
. (2.50)

The new fields correspond to the five neutral Higgs bosons Hi and Aj, the charged
pair H± and the Goldstone bosons G0 and G±. For the interaction fields the Higgs
mass-matrices are not diagonal. They are diagonalised at tree-level by the matrices
U{e,o,c}(0),

Ue(0)MφφU†e(0) = diag
(
m2
H1 ,m

2
H2 ,m

2
H3

)
, (2.51a)
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Uo(0)MχχU†o(0) = diag
(
m2
A1 ,m

2
A2 , 0

)
, (2.51b)

Uc(0)Mφ±φ±U†c(0) = diag
(
m2
H± , 0

)
, (2.51c)

without the contributions from gauge-fixing sector. The explicit discussion of the
Higgs mass-matrices and tadpoles will be given in chapter 4.

2.3.6 MSSM-Limit
The MSSM can be obtained as a limit of the NMSSM for

λ→ 0, κ→ 0, µeff = const., λ
κ

= const. (2.52)

If κ maintains a finite value in this limit, the singlet and singlino sector decouples
from the remaining fields. The result is the MSSM with a self-interacting singlet and
singlino sector.
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3 Higher-Order Corrections
The S-matrix element for the transition of an initial state labelled i into a final state
labelled f can be written as

Sfi = δfi + i (2π)4 δ(4)(pi − pf )Mfi (3.1)

with the Kronecker-delta δij and the invariant matrix elementMfi. The four dimen-
sional delta-function δ(4) ensures momentum conservation between the initial and
final states. An expansion of Mfi can be performed in powers of the appearing
couplings. For a theory with one coupling g this expansion reads

Mfi =
∞∑
n=1

gnM(n)
fi . (3.2)

EachM(n)
fi relates to a calculation at fixed order and is gauge-invariant independently.

They involve the description of intermediate states that take part in the process i→
f . While the four dimensional delta-function in (3.1) secures momentum conservation
for the external states, the momenta of the intermediate states are not necessarily
fully determined by momentum-conservation. In order to consider these momenta
consistently it is necessary to integrate over all possible values. The integration
over all possible momenta leads to non well-defined expressions. In order to address
this problem these integrals have to be regularised. By applying this procedure
the integrals become well-defined quantities. This process is always connected to
the introduction of an unphysical scale µr, that drops out only if the invariant
matrix element Mfi is calculated at all orders. After regularisation it is possible
for renormalisable theories to apply a renormalisation procedure that ensures that
each of theM(n)

fi remains well-defined after the regularisation procedure is reversed.

3.1 Regularisation
Several methods exist for regularisation. Amongst the most common ones are dimen-
sional regularisation (DREG) [63,64] and dimensional reduction (DRED) [65].

3.1.1 Dimensional Regularisation (DREG)
In order to regularise the divergent integrals all 4-dimensional quantities in the
calculation are treated asD-dimensional objects, whereD is an arbitrary real number,
usually expressed as D = 4 − 2ε with the arbitrary real number ε. The limit ε → 0
restores the result in 4 dimensions. The change in dimensionality affects the measure
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3 Higher-Order Corrections

in integrations over momentum and spatial coordinates. For the bare invariant action
of a theory with the coupling g and scalar field Ψ with mass m this leads to1

S = µD−4
r

∫
dDx L(g,m,Ψ). (3.3)

In order to keep the dimension ~ for the invariant action the scale µr has to be
absorbed by a redefinition of the couplings and fields of the theory.
The potentially ultraviolet-divergent loop-integrals in momentum space are well

defined quantities in D dimensions. The one-loop integral of a function F over the
momentum k can be expressed as a polynomial in ε,

∫ d4k

(4π)4F (k)→ µ4−D
r

∫ dDk
(4π)D

F (k) = ∆a∆ + a0 + εa1 +O
(
ε2
)
, (3.4)

with the real coefficients a and the typical divergent factor ∆, which reads for
dimensional regularisation

∆ = 1
ε
− γE + ln 4π. (3.5)

Here γE is the Euler-Mascheroni constant. The first term in eq. (3.5) corresponds to
the divergent contribution in D = 4 dimensions. The remaining constant terms are
introduced by performing the integration in D-dimensions. Any terms proportional
to negative powers of ε have to cancel in the calculation of physical quantities. Any
terms proportional to positive powers of ε vanish for D → 0, but can cancel their
power in ε with divergent terms in calculations beyond one-loop order.
One major disadvantage of dimensional regularisation is its explicit breaking of

supersymmetry. Treating vector fields in D dimensions leads to D bosonic degrees
of freedom, while the number of fermionic degrees of freedom remains unchanged.
In a vector superfield consequently the number of fermionic degrees of freedom is
not equal to the number of the degrees of freedom of the vector component-field,
as supersymmetry requires. In order to avoid this problem either supersymmetric
counterterms can be introduced [66,67] or a supersymmetry conserving regularisation
method can be used.

3.1.2 Dimensional Reduction (DRED)
In this procedure only the momenta of the calculations are treated as D-dimensional
objects, while the vector-fields remain 4-dimensional. The difference to dimensional
regularisation only appears in fixed order calculations. At one-loop order the expan-
sion in terms of ε outlined in eq. (3.4) remains unchanged. Dimensional reduction
will be applied to all calculations performed in this work.
It has been shown that DRED conserves supersymmetry at one-loop order [64].

1Eq. (3.3) is understood for the bare quantities. With the notation of sec. 3.2 it reads
S0 = µD−4

r

∫
dDx L0(g0,m0,Ψ0).
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As of today the supersymmetry conserving properties of DRED at two-loop order
are only known for special cases. For the calculations and results in this work the
supersymmetry conserving property of DRED has been explicitly checked in [68].

3.2 Renormalisation
Renormalisation is a two-step process. At first a renormalisation transformation has
to be applied to all fields and independent parameters of the theory. This introduces
new parameters, the renormalisation constants. Their explicit form has to be fixed
in a second step.
The renormalisation transformations for independent parameters of a theory with

fields Ψ0, coupling g0 and mass m0 read

g0 → g + δg, m0 → m+ δm, Ψ0 →
√
ZΨΨ =

(
1 + 1

2δZΨ

)
Ψ (3.6)

The quantities with the subscript zero are the parameters and fields that are called
unrenormalised or bare. The quantities without subscript are called renormalised.
The quantities denoted with a δ are the renormalisation constants. Applying this
procedure to the Lagrangian generates new terms that are denoted by L and δL.
While L depends only on the renormalised parameters and fields, the counterterm
Lagrangian δL depends also on the renormalisation constants,

L0(g0,m0,Ψ0)→ L(g,m,Ψ) + δL(g,m,Ψ; δg, δm, δZΨ) = L̂(g,m,Ψ; δg, δm, δZΨ).
(3.7)

Both L and δL are independent of the bare couplings and fields.
For the renormalisation of a vector field V in a gauge theory the gauge-fixing

parameter ξV also has to be renormalised,

ξV → ξV

(
1 + 1

2δZξV
)
. (3.8)

The divergent part of the counterterm for ξV , however, is fixed by gauge-symmetry
relations of the theory [69] to

δξV |div. = δZV |div. . (3.9)

Here δZV is the field renormalisation constant for the vector field V .
In a second step after applying the renormalisation transformations the renor-

malisation constants have to be defined. Only after this step the renormalised
parameters of the theory have a physical meaning. The divergent contributions of
the renormalisation constants is defined such that the contributions from δL cancel
all appearing regularised ultraviolet-divergences in physical observables. The finite
contributions of the renormalisation constants can be defined arbitrarily in each
renormalisation scheme. However, the physical meaning of the renormalised param-
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3 Higher-Order Corrections

eters is dependent on the finite contributions of their renormalisation constants and
thus on the renormalisation scheme. For a fixed-order calculation, however, different
renormalisation schemes can lead to different results. Two common renormalisation
schemes, the on-shell and MS-/DR-scheme, are described in the following section.

3.2.1 On-Shell Scheme
It is possible to define the renormalisation constants for masses and fields such that
the renormalised mass-parameters are the parameters of the classical Lagrangian.
Furthermore it ensures, that in- and outgoing particles maintain correct in-shell
properties. This scheme is called on-shell scheme. Depending on the Lorentz structure
of the fields the on-shell conditions have a different form. An overview over this
procedure in the SM can be found in [42]2. Here the renormalisation conditions that
are necessary for this work will be presented in their general form.

Scalar Fields

The on-shell renormalisation conditions for a single complex scalar field φ with the
tree-level mass-parameter Mφ read

ReΓ̂φ†φ
(
k2
)∣∣∣
k2=M2

φ

!= 0, lim
k2→M2

φ

1
k2 −M2

φ

Γ̂φ†φ
(
k2
) != 1. (3.10)

The corresponding renormalised two-point functions at one-loop order reads

iΓ̂φφ
(
k2
)

= i
(
k2 −M2

φ

)
+ iΣφ†φ

(
k2
)

+ i
(
k2 −M2

φ

) 1
2
(
δZφ

† + δZφ
)
− iδM2

φ (3.11)

with the unrenormalised self energy Σφ†φ(k2) and the square of the external momen-
tum k2. The renormalisation conditions lead to expressions for the renormalisation
constants appearing in eq. (3.11) that read

δM2,OS
φ = ReΣφ†φ

(
M2

φ

)
, δZOS

φ = − ∂

∂k2 Σφ†φ

(
k2
)∣∣∣∣∣
k2=M2

φ

. (3.12)

The on-shell conditions in eq. (3.10) are formulated for an unstable particle. For a
stable particle it is sufficient to impose both conditions only for the real part of the
two-point functions instead.

Vector Fields

For the renormalisation of a vector field V with massMV the on-shell conditions read

ReΓ̂Vµν(q)εν(q)
∣∣∣
q2=M2

V

!= 0, lim
q2→M2

V

1
q2 −M2

V

ReΓ̂Vµν (q) εν(q) != 0 (3.13)

2Note the different sign convention for the weak angle between the reference and the calculation
presented here. Furthermore the results in this reference only accounts for stable particles.
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with the polarisation vector ε and momentum q of the external field. The correspond-
ing renormalised two-point function at one-loop order reads

iΓ̂Vµν(q) = (3.14)

− i
[(
gµν −

qµqν
q2 (1− ξV )

)
q2 − gµνM2

V

]
− i

[(
gµν −

qµqν
q2

)
ΣV
T(q2) + qµqν

q2 Σ̂V
L (q2)

]

− i
2

[(
gµν −

qµqν
q2 (1− ξV )

)
q2 − gµνM2

V

] (
δZV

† + δZV
)

+ i
(
gµνδM

2
V + ξV

qµqν
2 δZξV

)
.

with the unrenormalised transversal and longitudinal self energies ΣV
T(q2) and ΣV

L (q2).
Since qµεµ = 0 this fixes only the mass and field renormalisation constants. They
read

δM2,OS
V = ReΣV

T

(
M2

V

)
, δZOS

V = − ∂

∂q2ReΣ
V
T

(
M2

V

)
(3.15)

Fermion Fields

For the renormalisation of a fermion field ψ with mass mψ the on-shell conditions
read

ReΓ̂ψψ(p)u(p)
∣∣∣
q2=m2

ψ

!= 0, lim
p2→m2

ψ

/p−mψ

p2 −m2
ψ

ReΓ̂ψψ (p)u(p) != iu(p). (3.16)

with the spinors u of the external field. The corresponding renormalised two-point
function at one-loop order reads

iΓ̂ψψ(p) = i(/p−mψ) + iΣψψ(p) + i(/p−mψ)δZψ − iδmψ (3.17)

with the unrenormalised self energy Σψψ, which can be decomposed as

Σψψ(p) = /pΣ
(/p)
ψψ(p) +mψΣ(S)

ψψ(p) (3.18)

= /p
[
PLΣ

(/p,L)
ψψ (p) + PRΣ(/p,R)

ψψ (p)
]

+mψ

[
PLΣ(S,L)

ψψ (p) + PRΣ(S,R)
ψψ (p)

]
in electroweak theory. This leads to the mass renormalisation constants given by

δmOS
ψ = 1

2Re
[
Σ(/p,L)
ψψ (p) + Σ(/p,R)

ψψ (p) + Σ(S,L)
ψψ (p) + Σ(S,R)

ψψ (p)
]
/p=mψ

. (3.19a)

For the field renormalisation constants of the left- and right-handed field in the on-
shell scheme this yields

δZL,OS
ψ = −ReΣ(/p,L)

ψψ

(
p2
)
−m2

ψ

[
∂

∂p2Re
(
Σ(/p)
ψψ

(
p2
)

+ Σ(S)
ψψ

(
p2
))]

p2=m2
ψ

(3.19b)
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δZR,OS
ψ = −ReΣ(/p,R)

ψψ

(
p2
)
−m2

ψ

[
∂

∂p2Re
(
Σ(/p)
ψψ

(
p2
)

+ Σ(S)
ψψ

(
p2
))]

p2=m2
ψ

. (3.19c)

3.2.2 MS-/DR-Scheme

The MS-scheme denotes a modified minimal subtraction (MS) scheme using dimen-
sional regularisation. In this scheme the renormalisation constants absorb only the
divergent part and the constants that appear in the typical divergent factor given in
eq. (3.5). The DR renormalisation scheme refers to MS with dimensional reduction
as the regularisation procedure. Since only the DR renormalisation scheme is used in
the following, the superscript MS will be dropped. In D dimensions a renormalisation
constant reads at one-loop order

δgDR = ∆ · c, c = const. (3.20)

The relation between the DR and on-shell counterterms can be obtained via1

δm2,OS
φ = δm2,DR

φ + δm2,OS
φ

∣∣∣fin. , δZOS
φ = δZDR

φ + δZOS
φ

∣∣∣fin. (3.21)

Here the finite contributions to the renormalisation constants do not contain contri-
butions proportional to ∆. It is, however, not necessary to obtain the full on-shell
renormalisation constants to determine DR renormalisation constants. Since only
the divergent part is necessary, any renormalisation condition imposed to a vertex
function that involves the renormalisation constant is sufficient.

3.2.3 Conversion between Renormalisation Schemes

If it is necessary to transform a renormalised quantity from renormalisation scheme I
to another renormalisation scheme II, the transformation can be performed by start-
ing from the bare parameter which is equal in both schemes. The bare parameter can
then be expressed by the renormalised parameters and the renormalisation constants
of both schemes according to

g0 = gI + δgI = gII + δgII . (3.22)

Thus the renormalised parameter in scheme I, gI , can be expressed by the renor-
malised in scheme II, gII , as

gI = gII +
(
δgII − δgI

)
= gII + ∆g. (3.23)

The difference between the renormalisation constants in both schemes yields a finite
shift ∆g.
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3.3 Wave Function Normalisation Factors

3.3 Wave Function Normalisation Factors

In order to ensure the independence of the S-matrix from the field normalisation,
each external leg of a stable field φ in amputated Green-functions has to enter the
calculation with a factor

√
Zφ. The factor Zφ is given by the residuum of the full

propagator

iZφ = ResM2 [∆φφ] = lim
p2→M2

[(
p2 −M2

)
∆φφ

(
p2
)]
, (3.24)

whereM2 is the (real) pole of the full propagator. This is a result of the Lehmann–
Symanzik–Zimmermann (LSZ) theorem [70]. At lowest order Zφ = 1 holds. In the
on-shell renormalisation the field renormalisation constant of φ is chosen such that
this relation holds also at higher-orders.

For the Higgs-fields fields hi, that are unstable and can mix with each other, on-shell
renormalisation conditions given in eq. (3.10) have to be imposed for all two-point
functions involving fields hi in order to ensure that the normalisation factors for the
fields hi are identical to one. However, for the calculation in this work each Higgs-
doublet and the Higgs Higgs-singlet field receives one field renormalisation constant
that is fixed in the DR-scheme. Thus the wave function normalisation factors Zi the
Higgs-fields hi are not equal to one at higher-orders. Furthermore the wave function
normalisation factors form a non-unitary matrix Ẑh, that relates the ĥi with the fields
hi, 

ĥ1

ĥ2

ĥ3

 = Ẑh

h1
h2
h3

 (3.25)

The fields hi are the tree-level Higgs-fields in the mass basis. The fields ĥi can be
interpreted with physical, asymptotically free fields. The matrix Ẑh is non-diagonal
and accounts for higher-order corrections to the mixing of the interaction states. If
all fields were renormalised in the on-shell scheme, the matrix Ẑh would be the unity
matrix.

The elements of the Ẑh-matrix are obtained with the full propagator-matrix ∆hh(k2),
that is related to the inverse of the matrix of the renormalised two-point functions,
Γ̂hh(k2), [

Γ̂hh(k2)
]
ij

=
(
p2 −m2

hi

)
δij + Σ̂hihj

(
p2
)

(3.26)

by

∆hh(k2) = i
[
Γ̂hh(k2)

]−1
. (3.27)

With the results for the renormalised self-energies Σhihj(k2) the inverse propagator
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matrix can be calculated as[
Γ̂hh(k2)

]
ij

=
(
k2 −m2

hi

)
δij + Σ̂hihj

(
k2
)
. (3.28)

With the result of [71, 72] the matrix elements of Ẑ read

[
Ẑh(k2)

]a
ij

= 1√
Ẑa
i

ResM2
a

[
∆hihj

(
k2
)]

=
√
Ẑa
i

[
∆hihj(k2)
∆hihj(k2)

]
p2=M2

a

, (3.29)

whereM2
a denotes on of the complex poles of the propagator-matrix and

Ẑa
i = ResM2

a

[
∆hihi

(
k2
)]
. (3.30)

With this relations the matrix Ẑh can be written as

Ẑh =


√
Ẑ1

1

√
Ẑ1

1 Ẑ
1
12

√
Ẑ1

1 Ẑ
1
13√

Ẑ2
2 Ẑ

2
21

√
Ẑ2

2

√
Ẑ2

2 Ẑ
2
23√

Ẑ3
3 Ẑ

3
31

√
Ẑ3

3 Ẑ
3
32

√
Ẑ3

3

 . (3.31)

All matrix elements that contribute to ĥa are considered to be evaluated at the
complex poleM2

a, assuming that Re(M2
1) < Re(M2

2) < Re(M2
3). If no off-diagonal

of the full propagator matrix ∆hh(k2), the matrix Ẑh is diagonal. In this special
case its entries correspond to the Z-factors of the LSZ-theorem, but evaluated at the
complex pole for unstable particles. In this case no higher-order mixing-effects are
considered in Ẑh. The inclusion of off-diagonal entries of ∆hh(k2) relates to including
higher-order mixing-effects due to the inversion of the non-diagonal matrix Γhh(k2).
With this definition of the wave function normalisation matrix Ẑh the diagonal

elements of the inverse propagator-matrix have on-shell properties if the matrix Ẑh

is applied for both external legs

lim
k2→M2

i

1
k2 −M2

i

(
Ẑ · Γ̂hh · ẐT

)
ii

= 1. (3.32)

The analogue procedure can be used to obtain the wave function normalisation factors
for the CP-odd Higgs-fields. For an extensive discussion of the wave normalisation
functions see [73].

3.3.1 Relation between physical Fields and Fields in the
interaction Basis

Only the matrix Ẑ can determine the admixture of a certain mass eigenstate ha to
the physical fields ĥ at higher-orders. For the admixture of the fields φ1, φ2 and φs
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3.4 Renormalisation Group Equation

to the physical fields ĥ can be obtained by
ĥ1

ĥ2

ĥ3

 = Ẑh

h1
h2
h3

 = ẐhUe(0)

φ1
φ2
φs

 (3.33)

Depending on the loop-order of the higher-order contribution in the inverse propagator-
matrix we define

Ue(n) := Ẑ(n)
h Ue(0), (3.34)

where Ẑ(n)
h denotes the wave function normalisation matrix obtained with two-point

functions including correction up to the n-th loop-order. However, Ẑ(n)
h contains

corrections of a higher loop-orders due to mixing effects as explained above.
The Ẑ-matrix was not available for the numerical results presented in this work.

Thus we will use an approximate result for Ue(n) instead, that is obtained by the
singular value decomposition of the inverted propagator-matrix close to zero momen-
tum, to illustrate the singlet-admixture to the physical fields in certain numerical
scenarios.

3.4 Renormalisation Group Equation

Any result for a physical observables must be independent of the renormalisation pre-
scription. The renormalisation group equation (RGE) [74,75] describes this by depict-
ing the independence of renormalised vertex functions of renormalisation points [69].
In dimensional regularisation this translates to the independence of the unphysical
regularisation scale µr. The total derivative of a renormalised vertex function Γ̂(n)

with n external scalar fields Ψ as described in sec. 3.2 with respect to the regularisa-
tion scale µr has to vanish,

0 = µr
d

dµr
Γ̂(n)(pk; g,m;µr)

= µr

(
∂

∂µr
+ ∂g

∂µr

∂

∂g
+ ∂m

∂µr

∂

∂m
+ n

2
1
ZΨ

∂ZΨ

∂µr

)
Γ̂(n)(pk; g,m;µr).

(3.35)

The coefficients in front of the derivatives in eq. (3.35) define the β-function

β(g,m;µr) = lim
ε→0

µr
∂

∂µr
g(g0,m0, ε;µr), (3.36)

the anomalous dimension

γ(g,m;µr) = − lim
ε→0

1
2ZΨ

µr
∂

∂µr
ZΨ(g0,m0, ε;µr) (3.37)
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3 Higher-Order Corrections

and the renormalisation-group coefficient for the mass term

γm(g,m;µr) = − lim
ε→0

1
m
µr

∂

∂µr
m(g0,m0, ε;µr), (3.38)

where ε is defined as in the previous sections.

Renormalisation Group Evolution

Before applying the limes ε → 0 to the β-function, eq. (3.36) presents a differential
equation for the finite part of the coupling g,

µr
∂

∂µr
g(µr) = β +O(ε) =

∞∑
n=1

gn(µr)β(n)
g +O(ε), (3.39)

where β(n)
g represents the β-function of g at n-th order divided by gn(µr). By

solving this equation the finite value of g can be obtained at any scale for a given
initial condition µ0. Including the one-loop β-function leads to the running coupling
including all leading logarithms in the scale µr, including the two-loop β-function
leads to the incorporation of next-to-leading logarithms, etc.

Construction of divergent Counterterm Contributions

Due to the structure of the coefficient

µD−4
r = elnµ

2ε
r = 1 + ε lnµ2

r +O
(
ε2
)

(3.40)

in eq. (3.4) the typical divergent factor appears with the same coefficient c,

cµ4−D
r ∆ = c∆ + c lnµ2

r +O(ε). (3.41)

Thus the identity

µ2
r

∂

∂µ2
r

≡ ∂

∂ lnµ2
r

= ∂

∂∆ (3.42)

holds at one-loop order. Thus the divergent part of an unrenormalised quantity can
be expressed by β-functions and anomalous dimensions,

g(1) = ∆β(1) + finite (3.43a)
Z(1) = ∆γ(1) + finite (3.43b)
m(1) = ∆m(0)γ(1)

m + finite. (3.43c)

The superscript (0) denotes tree-level parameters. From these expressions the DR
renormalisation constants can be obtained by

g(1) − δg(1),DR != finite ⇒ δg(1),DR = ∆β(1) (3.44a)
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3.4 Renormalisation Group Equation

Z(1) − δZ(1),DR != finite ⇒ δZ(1),DR = ∆γ(1) (3.44b)

m(1) − δm(1),DR != finite ⇒ δm(1),DR = ∆m(0)γ(1)
m (3.44c)

for a given scale µr.
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4 Higgs-Sector of the NMSSM
The massMΨ of a complex field Ψ with total width ΓΨ is defined according to the real
part of the complex poleM2

Ψ = M2
Ψ − iM2

ΨΓΨ1 of the renormalised, full propagator.
For this value the inverse propagator, the renormalised two-point function Γ̂Ψ†Ψ as
given in eq. (3.11), vanishes,

Γ̂Ψ†Ψ = δ2L̂
δΨ†δΨ , Γ̂Ψ†Ψ

(
k2
)∣∣∣
k2=M2

Ψ
= 0. (4.1)

The two-point function receives higher-order corrections. If the parameter m2
Ψ is

independent, a renormalisation condition can be applied to Γ̂Ψ†Ψ directly and the
pole mass can be renormalised independently. If m2

Ψ is a dependent quantity no
independent renormalisation condition can be imposed on Γ̂Ψ†Ψ. The pole mass can
then be predicted in terms the independent parameters.
For the determination of the pole mass it is necessary to obtain the Higgs propagator-

matrices and tadpole coefficients expressed by the independent parameters. In a
next step the counterterms for Higgs mass-matrices are obtained by applying the
renormalisation transformation for the independent parameters. After that the renor-
malisation constants are fixed by independent renormalisation conditions.
The results outlined in this section are obtained in the same convention as used

for calculations of the corresponding quantities in the MSSM, e.g. [31, 33, 35], that
are included in FeynHiggs. The analytic results for the MSSM mass matrix elements
and their counterterms as given in [31] have been verified in the MSSM limit defined
in eq. (2.52) for the real case. Further checks have been performed with the analytic
NMSSM results given in [76].

4.1 Higgs Mass-Matrices and Tadpole Coefficients
In this section the explicit expressions for the tadpole coefficients and Higgs mass-
matrices are given together with the relations between the chosen set of independent
parameters. The initial set of independent parameters and the chosen set for the
calculation are shown in tab. 4.1.

4.1.1 Tree-Level expression in terms of the initial Set of
Parameters

In the CP-conserving NMSSM the Higgs mass-matrices, Mφφ, Mχχ and Mφ±φ± , are
hermitian 3 × 3 and 2 × 2 matrices respectively. Their independent entries read for
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4 Higgs-Sector of the NMSSM

Kähler super- vacuum soft breaking
potential potential expectation-values parameters
g1, g2 λ, κ v1, v2, vs Tφ1 , Tφ2 , Tφs , m1, m2, ms, Aλ, Aκ
l l l l

MW , MZ λ, κ tan β, v, µeff Th1 , Th2 , Th3 , M2
H± , Aκ

Table 4.1: Set of independent parameters of the NMSSM Higgs-potential VH
as given in eq. (2.38) listed by their origin (first row) versus the final choice of
independent parameters (second row). The arrows denote parameters that are
replaced in the specified sectors.

the CP-even fields

(Mφφ)11 = m̃2
1 + λ2v2

2 + 1
4
(
g2
1 + g2

2

) (
3v2

1 − v2
2

)
(4.2a)

(Mφφ)22 = m̃2
2 + λ2v2

1 + 1
4
(
g2
1 + g2

2

) (
3v2

2 − v2
1

)
(4.2b)

(Mφφ)33 = m2
s + λ2

(
v2

1 + v2
2

)
− 2λκv1v2 + 6κ2v2

s + 2κvsAκ (4.2c)

(Mφφ)12 = −µeffB + 2λ2v1v2 −
1
2
(
g2
1 + g2

2

)
v1v2 (4.2d)

(Mφφ)13 = −v2

vs
µeffB + λvs (2λv1 − κv2) (4.2e)

(Mφφ)23 = −v1

vs
µeffB + λvs (2λv2 − κv1) , (4.2f)

for the CP-odd fields

(Mχχ)11 = m̃2
1 + λ2v2

2 −
1
4
(
g2
1 + g2

2

) (
v2

1 − v2
2

)
(4.3a)

(Mχχ)22 = m̃2
2 + λ2v2

1 −
1
4
(
g2
1 + g2

2

) (
v2

2 − v2
1

)
(4.3b)

(Mχχ)33 = m2
s + λ2

(
v2

1 + v2
2

)
+ 2λκv1v2 + 2κ2v2

s − 2κvsAκ (4.3c)
(Mχχ)12 = −µeffB (4.3d)

(Mχχ)13 = −v2

vs
µeffB + 2λκv2vs (4.3e)

(Mχχ)23 = v1

vs
µeffB − 2λκv1vs (4.3f)

and for the charged fields

(Mφ±φ±)11 = m̃2
1 + 1

4g
2
1

(
v2

1 − v2
2

)
+ 1

4g
2
2

(
v2

1 + v2
2

)
(4.4a)

(Mφ±φ±)22 = m̃2
2 + 1

4g
2
1

(
v2

2 − v2
1

)
+ 1

4g
2
2

(
v2

2 + v2
1

)
(4.4b)

(Mφ±φ±)12 = −µeffB + λ2v1v2 −
1
2g2v1v2, (4.4c)
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4.1 Higgs Mass-Matrices and Tadpole Coefficients

where m̃2
φi

= m2
φi

+ λ2v2
s and µeffB = λvs (κvs + Aλ). The Higgs mass-matrices are

diagonalised according to eq. (2.51).

4.1.2 Tree-Level expressions in terms of the chosen Set of
Parameters

For the determination of NMSSM Higgs-masses at higher orders all appearing in-
dependent parameters have to be renormalised. At one-loop order only the twelve
independent parameters from the Higgs potential VH given in eq. (2.38) enter the
calculation. While their number is fixed, the set of independent parameters can in
principle be chosen arbitrarily. In practice choices are constrained due to numerical
stability and sensitivity of masses, e.g. in the neutralino-/chargino-sector, to the
soft-breaking parameters.

Parameters from the Kähler Potential

The gauge-boson masses, MW and MZ , and the SM vacuum expectation-value v
are known and fixed [77–79], while the remaining parameters only appear in the
NMSSM- and a subset also in the MSSM-calculation. The Higgs mass-matrices have
to be expressed by the chosen set of independent parameters and thus the relations
between them and the initial parameters are necessary.

Vacuum Expectation Values

The relation between the v1, v2 and v is given by

v2
1 + v2

2 = v2. (4.5)

Thus the two vacuum expectation-values of the doublet fields can also be expressed
by their ratio,

tan β = v2

v1
, v1 = v cos β, v2 = v sin β. (4.6)

The relation between the vacuum expectation-values and the gauge-boson masses are
stated in eq. (2.23), the relation between the singlet vacuum expectation-value and
the effective µ-parameter µeff is given in eq. (2.36).

Charged Higgs Mass

The relation between the trilinear breaking parameter Aλ or µeffB, and the charged
Higgs mass at lowest order is obtained by diagonalising the charged Higgs mass-matrix
Mφ±φ± from eq. (4.4a). With the real angle βc and the ansatz

Uc(0) =
(
− sin βc cos βc
cos βc sin βc

)
(4.7)
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4 Higgs-Sector of the NMSSM

the masses of the charged Higgs and unphysical Goldstone pair read

M2
H± = (Mφ±φ±)11 sin2 βc + (Mφ±φ±)22 cos2 βc − 2 (Mφ±φ±)12 sin βc cos βc (4.8a)

M2
G± = (Mφ±φ±)11 cos2 βc + (Mφ±φ±)22 sin2 βc + 2 (Mφ±φ±)12 sin βc cos βc (4.8b)

The explicit value for βc can be obtained by the requirement that the mass of the
charged Goldstone pair depends only on the tadpole coefficients and thus vanishes
at tree-level for the contribution from the Higgs sector. In general there are also
contributions from the gauge-fixing term. In case of β, βc ∈ [0, 2π) this is true, if
βc = β, which yields

M2
H± = − 1√

2v

(
sin2 β

cos β Tφ1 + cos2 β

sin β Tφ2

)
µeffB

sin β cos β +M2
W + λ2v2 (4.9a)

M2
G± = − 1√

2v
(Tφ1 cos β + Tφ2 sin β) (4.9b)

By solving eq. (4.9a) for µeffB one obtains

µeffB = 1√
2v
(
sin3 β Tφ1 + cos3 β Tφ2

)
+
(
M2

H± −M2
W + λ2v2

)
sin β cos β. (4.10)

It hast to be pointed out that the angle βc is not an independent parameter and
consequently will not receive a counterterm.

Tadpole Coefficients

The tadpole coefficients in the interaction basis are defined as the first derivatives of
the Higgs potential with respect to the Higgs fields taken in the classical minimum,
where all fields vanish. In order to obtain a stable minimum all first derivatives with
respect to the Higgs fields have to vanish,

Tφi = ∂

∂φi
VH

∣∣∣∣∣
φl,χm,φ

±
n=0

!= 0 (4.11a)

Tχi = ∂

∂χi
VH

∣∣∣∣∣
φl,χn,φ

±
n=0

!= 0 (4.11b)

Tφ±i
= ∂

∂φ±i
VH

∣∣∣∣∣
φl,χn,φ

±
n=0

!= 0. (4.11c)

They are related to the tadpole coefficients in the mass basis for in the mass basis
Thi , by Th1

Th2

Th3

 = Ue(0)

Tφ1

Tφ2

Tφs

 and

Tφ1

Tφ2

Tφs

 = U†e(0)

Th1

Th2

Th3

 . (4.12)
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4.1 Higgs Mass-Matrices and Tadpole Coefficients

For the tree-level calculation all tadpole coefficients are zero, but they receive higher-
order corrections. Thus it is necessary to treat them as non-vanishing quantities and
neglect them only after their renormalisation transformations are applied. In order
to shorten the following expressions, the tadpole coefficients in the interaction basis
will be used in the following.
In the NMSSM with real parameters the conditions (4.11b) and (4.11c) are always

fulfilled due to CP- and charge-conservation. However, this is not true for condi-
tions (4.11a). In order to fulfil these conditions for the CP-even fields it is necessary
to choose three free parameters, normally the soft Higgs-masses mi, such that the
tadpoles for the CP-even fields vanish. If conditions (4.11a) are fulfilled, the soft
Higgs-masses are given by

m̃1 = − Tφ1√
2v2

+ v2

v1
µeffB − λ2v2

2 + 1
4
(
g2
1 + g2

2

) (
v2

2 − v2
1

)
(4.13a)

m̃2 = − Tφ2√
2v1

+ v1

v2
µeffB − λ2v2

1 + 1
4
(
g2
1 + g2

2

) (
v2

1 − v2
2

)
(4.13b)

m2
s = − Tφs√

2vs
+ v1v2

v2
s

µeffB − λ2
(
v2

1 + v2
2

)
+ λκv1v2 − 2κ2v2

s − κvsAκ, (4.13c)

The expressions for the soft-breaking parameters given in eq. (4.13) in terms of the
new set of independent parameters read

m̃1 = − Tφ1√
2v sin β

+ µeffB tan β − λ2v2 sin2 β + 1
4M

2
Z

(
sin2 β − cos2 β

)
(4.14a)

m̃2 = − Tφ2√
2v cos β

+ µeffB cot β − λ2v2 cos2 β + 1
4M

2
Z

(
cos2 β − sin2 β

)
(4.14b)

m2
s = − λTφs√

2µeff
+
(
µeffB

λ2v2

µ2
eff

+ λκv2
)

sin β cos β − λ2v2 − 2κ
2

λ2µ
2
eff + κ

λ
µeffAκ.

(4.14c)

Higgs Mass-Matrices

In the final set of independent parameters the Higgs mass-matrix elements for the
CP-even fields read

(Mφφ)11 = 1√
2v

(
−1− sin4 β

cos β Tφ1 + cos2 β sin β Tφ2

)
+
(
M2

H± −M2
W + λ2v2

)
sin2 β +M2

Z cos2 β

(4.15a)

(Mφφ)22 = 1√
2v

(
sin2 β cos β Tφ1 −

1− cos4 β

sin β Tφ2

)
+
(
M2

H± −M2
W + λ2v2

)
cos2 β +M2

Z sin2 β

(4.15b)
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(Mφφ)33 = λ√
2µeff

[
−Tφs + λv

µeff
sin β cos β

(
sin3 β Tφ1 + cos3 β Tφ2

)]

+ λ2v2

µ2
eff

sin2 β cos2 β
(
M2

H± −M2
W + λ2v2

)
− λκv2 sin β cos β + 4κ

2

λ2µ
2
eff + κ

λ
µeffAκ

(4.15c)

(Mφφ)12 = − 1√
2v
(
Tφ1 sin3 β + Tφ2 cos3 β

)
−
(
M2

H± −M2
W + λ2v2 +M2

Z

)
sin β cos β

(4.15d)

(Mφφ)13 = − λ√
2µeff

sin β
(
sin3 β Tφ1 + cos3 β Tφ2

)
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos β

− κv sin βµeff + 2λv cos βµeff

(4.15e)

(Mφφ)23 = − λ√
2µeff

cos β
(
sin3 β Tφ1 + cos3 β Tφ2

)
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
cos2 β sin β

− κv cos βµeff + 2λv sin βµeff,

(4.15f)

for the CP-odd fields the Higgs mass-matrix elements read

(Mχχ)11 = 1√
2v

(
−1− sin4 β

cos β Tφ1 + cos2 β sin β Tφ2

)
+
(
M2

H± −M2
W + λ2v2

)
sin2 β

(4.16a)

(Mχχ)22 = 1√
2v

(
sin2 β cos β Tφ1 −

1− cos4 β

sin β Tφ2

)
+
(
M2

H± −M2
W + λ2v2

)
cos2 β

(4.16b)

(Mχχ)33 = λ√
2µeff

[
−Tφs + λv

µeff
sin β cos β

(
sin3 β Tφ1 + cos3 β Tφ2

)]

+ λ2v2

µ2
eff

sin2 β cos2 β
(
M2

H± −M2
W + λ2v2

)
+ 3λκv2 sin β cos β − 3κ

λ
µeffAκ

(4.16c)

(Mχχ)12 = − 1√
2v
(
Tφ1 sin3 β + Tφ2 cos3 β

)
−
(
M2

H± −M2
W + λ2v2

)
sin β cos β

(4.16d)

(Mχχ)13 = − λ√
2µeff

sin β
(
sin3 β Tφ1 + cos3 β Tφ2

)
− λv

µeff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos β + 3κv sin βµeff

(4.16e)
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(Mχχ)23 = λ√
2µeff

cos β
(
sin3 β Tφ1 + cos3 β Tφ2

)
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
cos2 β sin β − 3κv cos βµeff.

(4.16f)

Obtaining the Goldstone Bosons

In the (unphysical) charged Higgs sector the charged Goldstone pair G± is obtained
with the rotation matrix given in eq. (4.7) with βc = β. When rotating the mass
matrix Mχχ of the CP-odd Higgs-fields into the mass basis the neutral Goldstone
boson must only contain admixtures of the doublet fields. Thus the mixing matrix
in the CP-odd sector can be decomposed as

Uo(0) = U(a)
o(0)U

(G)
o(0), (4.17a)

where the second matrix rotates the doublet fields such that the the Goldstone boson
is obtained and the first matrix rotates the remaining CP-odd fields such that the
physical fields are obtained,

Uo(0)

χ1
χ2
χs

 = U(a)
o(0)U

(G)
o(0)

χ1
χ2
χs

 = U(a)
o(0)

 a1

a
(s)
2
G0

 =

A1
A2
G0

 . (4.17b)

After the first rotation the field a1 is purely doublet and the field a(s)
2 is purely singlet

like. The singlet field is demixed from the remaining, MSSM-like field a1 and the
Goldstone boson. For the mass matrix this leads to

Uo(0)MχχU†o(0) = U(a)
o(0)U

(G)
o(0)Mχχ

(
U(G)
o(0)

)† (
U(a)
o(0)

)†
= U(a)

o(0)Maa

(
U(a)
o(0)

)†
= diag{m2

A1 ,m
2
A2 , 0}.

(4.17c)

Both matrices U(a)
o(0) and U(G)

o(0) are rotations with one angle. This allows the ansatz

U(G)
o(0) =

− sin βn cos βn 0
0 0 1

cos βn sin βn 0

 . (4.18)

As βc the real mixing angle βn is not an independent parameter and does not need to
be renormalised. The value for βn can be fixed by the condition that the Goldstone-
boson mass,

MG0 = (Mχχ)11 cos2 βn + (Mχχ)22 sin2 βn + 2 (Mχχ)12 sin βn cos βn, (4.19)

depends only on on tadpole coefficients and vanishes at tree-level. In case of β, βn ∈
[0, 2π) this is true, if βn = β.
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With the mixing matrices given in eqs. (4.7) and (4.18) for the charged and CP-odd
Higgs sector the Goldstone bosons are obtained only from the doublet fields as

G± = −φ±1 cos β + φ±2 sin β (4.20a)
G0 = −χ1 cos β + χ2 sin β, (4.20b)

as in the MSSM for the same sign conventions in the Higgs doublets as given in
eq. (2.22).

4.2 Renormalisation of the Higgs Potential

The renormalisation transformation for the Higgs potential reads

VH → VH + δVH (4.21)

with the dependent counterterm δVH. It enters the renormalised two-point func-
tions (4.1) in the form

iΓ̂Ψ†iΨj

(
k2
)

= (4.22)

ik2δij

[
1 + 1

2
(
δZ†Ψi + δZΨj

)]
+ iΣΨ†iΨj

(
k2
)
− i

[
δ2

δΨ†iδΨj

(VH + δVH)
]

Ψ†
l
=Ψm=0

where Ψ denotes any scalar Higgs field with the field renormalisation constant δZΨ.
The self-energy for the according external fields is denoted by ΣΨ†iΨj

(k2). From
the definition of VH in eq. (2.49) the contributions from the Higgs potential and its
counterterm can be read off

(VH)Ψ†iΨj
≡
[
δ2VH

δΨ†iδΨj

]
Ψ†
l
=Ψm=0

= (MΨΨ)ij (4.23)

(δVH)Ψ†iΨj
≡
[
δ2 (δVH)
δΨ†iδΨj

]
Ψ†
l
=Ψm=0

= (MΨΨ)ij
1
2
(
δZ†Ψi + δZΨj

)
+ (δMΨΨ)ij , (4.24)

where MΨΨ denotes the mass matrix for the fields Ψ with the counterterm mass-
matrix δMΨΨ. In this section the counterterm mass-matrices will be given explicitly.

4.2.1 Renormalisation Transformations for independent
Parameters at One-Loop Order

Compared to the MSSM, the number of independent parameters that enter the Higgs
mass calculation at one-loop order is increased in the NMSSM. In the MSSM one-loop
calculation only tan β and the charged Higgs mass M2

H± (or the mass of the single
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4.2 Renormalisation of the Higgs Potential

CP-odd Higgs field M2
A) need to be renormalised, all other parameters drop out1.

The additional parameters that have to be renormalised in the NMSSM are the new
NMSSM specific parameters λ, κ and Aκ, as well as the vacuum expectation-value v,
that does not drop out as in the MSSM.
The renormalisation transformation for the set of independent parameters read

Th1 → Th1 + δTh1 , tan β → tan β + δtan β
Th2 → Th2 + δTh2 µeff → µeff + δµeff

Ths → Ths + δThs v → v + δv

M2
Z →M2

Z + δM2
Z λ→ λ+ δλ

M2
W →M2

W + δM2
W κ→ κ+ δκ

M2
H± →M2

H± + δM2
H± Aκ → Aκ + δAκ. (4.25)

The tadpole counterterms in the mass basis are connected to the counterterms in the
interaction basis in the same way as the tadpole coefficients byδTh1

δTh2

δTh3

 = Ue(0)

δTφ1

δTφ2

δTφs

 and

δTφ1

δTφ2

δTφs

 = U†e(0)

δTh1

δTh2

δTh3

 . (4.26)

4.2.2 Explicit Counterterms for the Higgs Mass-Matrices in
the interaction Basis

The counterterms for the mass matrices (4.15) of the CP-even and -odd Higgs fields
read in the interaction basis

Mφφ →Mφφ + δMφφ (4.27a)
Mχχ →Mχχ + δMχχ (4.27b)

They read in components

δMφφ =

δm
2
φ1φ1 δm2

φ1φ2 δm2
φ1φs

δm2
φ2φ1 δm2

φ2φ2 δm2
φ2φs

δm2
φsφ1 δm2

φsφ2 δm2
φsφs

 (4.28a)

δMχχ =

δm
2
χ1χ1 δm2

χ1χ2 δm2
χ1χs

δm2
χ2χ1 δm2

χ2χ2 δm2
χ2χs

δm2
χsχ1 δm2

χsχ2 δm2
χsχs

 . (4.28b)

In order to obtain the Higgs mass-matrix counterterms the renormalisation transfor-
mations given in eq. (4.25) have to be applied to the tree-level mass-matrices given
in eq. (4.15) and (4.16).
This yields for the components of the counterterm matrix in the interaction basis

1The gauge couplings appear with a coefficient v and thus are expressed in terms of the gauge-boson
masses.
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for the CP-even fields

δm2
φ1φ1 = 1√

2v

(
−1− sin4 β

cos β δTφ1 + cos2 β sin β δTφ2

)
+
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
sin2 β + δM2

Z cos2 β

+ 2(M2
H± + λ2v2 −M2

W −M2
Z) sin β cos3 β δtan β

(4.29a)

δm2
φ2φ2 = 1√

2v

(
sin2 β cos β δTφ1 −

1− cos4 β

sin β δTφ2

)
+
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
cos2 β + δM2

Z cos2 β

+ 2(M2
H± + λ2v2 −M2

W −M2
Z) cos β sin3 β δtan β

(4.29b)

δm2
φsφs = λ√

2µeff

[
−δTφs + λv

µeff
sin β cos β

(
sin3 β δTφ1 + cos3 β δTφ2

)]

+ λ2v2

µ2
eff

sin2 β cos2 β
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
+ λ2v2

µ2
eff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos2 β ·[

2
(
δλ

λ
− δµeff

µeff

)
+ δv2

v2 + 2
(
cos2 β − sin2 β

) δtan β
tan β

]

+ 8κ
2

λ2µ
2
eff

(
δκ

κ
− δλ

λ
+ δµeff

µeff

)
+ κ

λ
µeffAκ

(
δκ

κ
− δλ

λ
+ δµeff

µeff
+ δAκ

Aκ

)
(4.29c)

δm2
φ1φ2 = − 1√

2v
(
sin3 β δTφ1 + cos3 β δTφ2

)
−
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
sin β cos β

−
(
M2

H± −M2
W + λ2v2

)
cos2 β

(
cos2 β − sin2 β

)
δtan β

(4.29d)

δm2
φ1φs = − λ√

2µeff
sin β

(
sin3 β δTφ1 + cos3 β δTφ2

)
+ λv

µeff
sin2 β cos β

[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos β ·[

δλ

λ
− δµeff

µeff
+ 1

2
δv2

v2 +
(
2 cos2 β − sin2 β

) δtan β
tan β

]

− κv sin βµeff
(
δµeff
µeff

+ δκ

κ
+ 1

2
δv2

v2 + cos2 β
δtan β
tan β

)

+ 2λv cos βµeff
(
δλ

λ
+ δµeff

µeff
+ 1

2
δv2

v2 + sin β cos β δtan β
)

(4.29e)
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4.2 Renormalisation of the Higgs Potential

δm2
φ2φs = − λ√

2µeff
cos β

(
sin3 β δTφ1 + cos3 β δTφ2

)
+ λv

µeff
sin2 β cos β

[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos β ·[

δλ

λ
− δµeff

µeff
+ 1

2
δv2

v2 +
(
cos2 β − 2 sin2 β

) δtan β
tan β

]

− κv cos βµeff
(
δµeff
µeff

+ δκ

κ
+ 1

2
δv2

v2 + sin β cos β δtan β
)

+ 2λv sin βµeff
(
δλ

λ
+ δµeff

µeff
+ 1

2
δv2

v2 + cos2 β
δtan β
tan β

)

(4.29f)

and for components of the counterterm matrix in the interaction basis for the CP-odd
fields

δm2
χ1χ1 = 1√

2v

(
−1− sin4 β

cos β δTφ1 + cos2 β sin β δTφ2

)
+
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
sin2 β

+ 2(M2
H± + λ2v2 −M2

W ) sin β cos3 β δtan β

(4.30a)

δm2
χ2χ2 = 1√

2v

(
sin2 β cos β δTφ1 −

1− cos4 β

sin β δTφ2

)
+
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
cos2 β

+ 2(M2
H± + λ2v2 −M2

W ) cos β sin3 β δtan β

(4.30b)

δm2
χsχs = λ√

2µeff

[
−δTφs + λv

µeff
sin β cos β

(
sin3 β δTφ1 + cos3 β δTφ2

)]

+ λ2v2

µ2
eff

sin2 β cos2 β
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
+ λ2v2

µ2
eff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos2 β ·[

2
(
δλ

λ
− δµeff

µeff

)
+ δv2

v2 + 2
(
cos2 β − sin2 β

) δtan β
tan β

]

+ 8κ
2

λ2µ
2
eff

(
δκ

κ
− δλ

λ
+ δµeff

µeff

)
+ κ

λ
µeffAκ

(
δκ

κ
− δλ

λ
+ δµeff

µeff
+ δAκ

Aκ

)
(4.30c)

δm2
χ1χ2 = − 1√

2v
(
sin3 β δTφ1 + cos3 β δTφ2

)
−
[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
sin β cos β

−
(
M2

H± −M2
W + λ2v2

)
cos2 β

(
cos2 β − sin2 β

)
δtan β

(4.30d)
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δm2
χ1χs = − λ√

2µeff
sin β

(
sin3 β δTφ1 + cos3 β δTφ2

)
+ λv

µeff
sin2 β cos β

[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos β ·[

δλ

λ
− δµeff

µeff
+ 1

2
δv2

v2 +
(
2 cos2 β − sin2 β

) δtan β
tan β

]

− κv sin βµeff
(
δµeff
µeff

+ δκ

κ
+ 1

2
δv2

v2 + cos2 β
δtan β
tan β

)

+ 2λv cos βµeff
(
δλ

λ
+ δµeff

µeff
+ 1

2
δv2

v2 + sin β cos β δtan β
)

(4.30e)

δm2
χ2χs = − λ√

2µeff
cos β

(
sin3 β δTφ1 + cos3 β δTφ2

)
+ λv

µeff
sin2 β cos β

[
δM2

H± − δM2
W + 2λv (δλv + λδv)

]
+ λv

µeff

(
M2

H± −M2
W + λ2v2

)
sin2 β cos β ·[

δλ

λ
− δµeff

µeff
+ 1

2
δv2

v2 +
(
cos2 β − 2 sin2 β

) δtan β
tan β

]

− κv cos βµeff
(
δµeff
µeff

+ δκ

κ
+ 1

2
δv2

v2 + sin β cos β δtan β
)

+ 2λv sin βµeff
(
δλ

λ
+ δµeff

µeff
+ 1

2
δv2

v2 + cos2 β
δtan β
tan β

)

(4.30f)

4.2.3 Explicit Counterterms for the Higgs Mass-Matrices in
the mass Basis

For the calculation the counterterms have to be transformed into the mass basis,
where the renormalisation transformation for the diagonalised mass matrices read

Mhh →Mhh + δMhh (4.31a)
MAA →MAA + δMAA, (4.31b)

MH±G± →MH±G± + δMH±G± . (4.31c)

The components of the counterterm matrices in the mass basis are obtained by
rotating the counterterm mass matrices in the interaction basis in the same way
as the tree-level mass-matrices (2.51),

δMhh = Ue(0) δMφφ U†e(0) =

δm
2
h1h1 δm2

h1h2 δm2
h1h3

δm2
h2h1 δm2

h2h2 δm2
h2h3

δm2
h3h1 δm2

h3h2 δm2
h3h3

 (4.32a)

44



4.2 Renormalisation of the Higgs Potential

δMAA, = Uo(0) δMχχ U†o(0) =

δm
2
A1A1 δm2

A1A2 δm2
A1G0

δm2
A2A1 δm2

A2A2 δm2
A2G0

δm2
G0A1 δm2

G0A2 δm2
G0G0

 (4.32b)

δMH±G± = Uc(0)δMφ±φ±U†c(0) =
(
δm2

H±H± δm2
H±G±

δm2
G±H± δm2

G±G±

)
. (4.32c)

In the charged sector the only relevant counterterm matrix-element reads

δm2
H±H± = δM2

H± , (4.33)

since the charged Higgs-boson mass is renormalised after the rotation into the mass
basis. For the CP-odd counterterm matrix the rotation can be performed in two steps
as described for the tree-level mass matrix in eq. (4.17),

Uo(0)δMχχU†o(0) =

= U(a)
o(0)U

(G)
o(0)δMχχ

(
U(G)
o(0)

)† (
U(a)
o(0)

)†
=

δm
2
χ1χ1 δm2

χ1χ2 δm2
χ1χs

δm2
χ2χ1 δm2

χ2χ2 δm2
χ2χs

δm2
χsχ1 δm2

χsχ2 δm2
χsχs



= U(a)
o(0)δMaa

(
U(a)
o(0)

)†
=

δm
2
a1a1 δm2

a1a2 δm2
a1G0

δm2
a2a1 δm2

a2a2 δm2
a2G0

δm2
G0a1

δm2
G0a2

δm2
G0G0



= δMAA =

δm
2
A1A1 δm2

A1A2 δm2
A1G0

δm2
A2A1 δm2

A2A2 δm2
A2G0

δm2
G0A1

δm2
G0A2

δm2
G0G0

 . (4.34)

In the first rotation the singlet counterterms are demixed from the doublet countert-
erms similar to the fields as described in eqs. (4.17).
Although the charged and neutral Goldstone fields obtain a mass term ξWM

2
W and

ξZM
2
Z by the gauge-fixing term, they are considered to be renormalised such that do

not contribute to the counterterm construction.

4.2.4 Field Renormalisation

For the field renormalisation, which is necessary to obtain finite Green-functions for
arbitrary values of the external momentum, a single renormalisation constant is given
to each Higgs doublet and the singlet,

H1 →
(
1+ 1

2δZH1

)
H1, H2 →

(
1+ 1

2δZH2

)
H2, S →

(
1+ 1

2δZS
)
S. (4.35)

In the mass basis the field renormalisation in the CP-even and CP-odd sectors readsh1
h2
h3

→ [
1+ 1

2δZhh
]h1

h2
h3

 =

1+ 1
2

δZh1h1 δZh1h2 δZh1h3

δZh2h1 δZh2h2 δZh2h3

δZh3h1 δZh3h2 δZh3h3



h1
h2
h3

 (4.36a)
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A1
A2
G0

→ [
1+ 1

2δZAA
]A1

A2
G0

 =

1+ 1
2

δZA1A1 δZA1A2 δZA1G0

δZA2A1 δZA2A2 δZA2G0

δZG0A1 δZG0A2 δZG0G0



A1
A2
G0

 .
(4.36b)

The renormalisation constants defined in the interaction basis according to eqs. (4.35)
are related to the renormalisation constants in the mass basis from by

δZhh = Ue(0)

δZH1 0 0
0 δZH2 0
0 0 δZS

U†e(0) (4.37a)

δZAA = Uo(0)

δZH1 0 0
0 δZH2 0
0 0 δZS

U†o(0). (4.37b)

Since the all fields of H1, H2 and S, the on-shell conditions can not be fulfilled
for all physical fields at the same time, which leads to non-trivial wave function
normalisation-constants.

4.3 Renormalisation Conditions

For the one-loop calculation the chosen set independent parameters from the Higgs
potential VH given in tab. 4.1 has to be renormalised. In this section the explicit form
of their counterterms given in eq. (4.25) will be fixed. An overview over the chosen
renormalisation schemes for the independent parameters is given in tab. 4.2. In order

on-shell scheme: MW , MZ , MH±(, Th1 , Th2 , Ths)
DR scheme: λ, κ, tan β, v, µeff, Aκ

Table 4.2: Chosen renormalisation schemes for the set of independent parame-
ters. The on-shell scheme for the tadpole coefficient means they are renormalised
to their classical value, which is zero in the minimum of the Higgs potential VH

to maintain compatibility with earlier calculations in the MSSM as implemented in
FeynHiggs, the MSSM-Parameters are renormalised according to the conventions
of this code. An overview over employed renormalisation schemes in the MSSM
with real parameters can be found in [80]. All parameters that are genuine to
the NMSSM-calculation are chosen to be renormalised in the DR scheme at the
specified renormalisation scale of the Higgs-mass calculation. In FeynHiggs this scale
is typically the mass of the top-quark.

46



4.3 Renormalisation Conditions

4.3.1 MSSM(-like) Parameters
The SM gauge bosons and the charged Higgs masses are renormalised on-shell,

δM2
W = ReΣWW

T

(
M2

W

)
, δM2

Z = ReΣZZ
T

(
M2

Z

)
, δM2

W = ReΣH±H±

(
M2

H±

)
. (4.38)

As the tadpole coefficients are required to vanish to ensure the minimisation of the
Higgs potential, their renormalisation constants follow from

T
(1)
hi

+ δThi = 0, i ∈ {1, 2, 3} (4.39)

where T (1)
hi

denotes the tadpole contributions at one-loop order2. The conditions (4.39)
yield

δThi = −T (1)
hi
, i ∈ {1, 2, 3}. (4.40)

For the field renormalisation constants the DR-scheme is chosen

δZH1 = − ∂

∂k2 Σφ1φ1

∣∣∣∣∣
div

, δZH2 = − ∂

∂k2 Σφ2φ2

∣∣∣∣∣
div

, δZS = − ∂

∂k2 Σφsφs

∣∣∣∣∣
div

(4.41)

The field renormalisation constants completely drop out in the determination of the
Higgs-boson masses at one-loop order. They only enter via residual higher-order
effects as a consequence of the iterative numerical determination of the propagator
poles described in sect. 5.2. The DR scheme for the field renormalisation constants is
convenient in order to avoid the possible occurrence of unphysical threshold effects.
Higgs bosons appearing as external particles in a physical process of course have to
obey proper on-shell conditions as discussed in sec. 3.3.
Based on the field renormalisation constants the DR scheme is adopted for tan β

δtan β = 1
2 (δZH2 − δZH2) tan β (4.42)

Since clear experimental signals for supersymmetry are a absent, a manifestly process
independent renormalisation condition as in eq. (4.42) is convenient. For calculations
in the MSSM this definition yields numerically stable results [81–83]. This scheme also
is gauge-independent at the one-loop level both in the MSSM [83] and NMSSM [84,
85].

4.3.2 Parameters genuine to the NMSSM Calculation
In the MSSM only the renormalisation constants of the W-boson mass, δM2

W , the
charged Higgs mass, δM2

H± , and δtan β enter the one-loop calculation together with
the tadpole counterterms. In the NMSSM more renormalisation constants enter.
These constant are not all genuine to the NMSSM. Genuine to the NMSSM are λ, κ,
2Although the singlet tadpole coefficient is not MSSM-like it is mentioned along its MSSM
counterparts, since it is renormalised in the same way.
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Aκ and the tadpole of the singlet field Tφs . Besides the tadpole, that is renormalised as
its MSSM counterpart, they are renormalised in the DR scheme. The parameters not
genuine to the NMSSM the vacuum expectation-value v and µeff. They do not drop
out in the tree-level NMSSM calculation like for the MSSM calculation. In particular
the DR renormalisation of v has repercussion on the charge renormalisation, since
they are directly related to each other. This relation will be discussed in the following
section in greater detail.

4.4 Renormalisation of the electromagnetic
Coupling Constant α

In the NMSSM calculation of Higgs masses the SM vacuum expectation-value v does
not drop out of the tree-level calculation. Thus an additional independent parameter
has to be renormalised, either v or the electromagnetic coupling constant α, which
are related by

v2 = 2s2
wM

2
W

4πα . (4.43)

The weak mixing angle is not an independent parameter in the presented calculation,
where the gauge-boson masses are treated as independent parameters. The weak
mixing angle is related to them by eq. (2.7).
Applying a renormalisation transformation to the parameters sw and α,

α→ α (1 + δZα) , s2
w → s2

w + δs2
w (4.44)

to eq. (4.43) yields

δv2 = 2s2
wM

2
W

4πα

(
δs2

w

s2
w

+ δM2
W

M2
W

− δZα
)
. (4.45)

Considering δM2
W and subsequently δs2

w already fixed by on-shell conditions for the
gauge-boson masses as outlined in sec. 4.3.1, where the dependent counterterm for
the sine of the weak mixing angle is given by

δs2
w = −c2w

(
δM2

W

M2
W

− δM2
Z

M2
Z

)
, (4.46)

either δZα or δv in eq. (4.45) can be fixed by an independent renormalisation condition
(and the other counterterm is then a dependent quantity).
In this section a motivation for the chosen DR renormalisation scheme for v will

be given together with a description of the implications for the renormalisation of α
and the applied reparametrisation procedure.
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4.4 Renormalisation of the electromagnetic Coupling Constant α

4.4.1 Motivation for a DR renormalised v

The renormalisation prescription [76] where δZα is fixed by renormalising e,

e→ e (1 + δZe) , δZα = 2δZe, (4.47)

in the static limit results in a non-DR renormalisation for δv. Here δZe is the
counterterm of the charge renormalisation within the NMSSM according to the static
(Thomson) limit,

δZe = 1
2Πγγ(0) + sw

cw

ΣγZ
T (0)
M2

Z

, (4.48)

and Πγγ(0), ΣγZ
T (0) are the derivative of the transverse part of the photon self-energy

and the transverse part of the photon–Z self-energy at zero momentum transfer,
respectively. It is important to stress that the sign convention for the weak mixing-
angle differs from the standard convention found in the literature for the SM, e.g.
in [42, 69], which changes the sign in front of ΣγZ

T (0) in eq. (4.48).
For the self-energies in the Higgs sector δv enters the counterterms for the renor-

malised Higgs potential in eq. (4.21) with coefficients involving λ and κ, like

δm2
φsφ{1,2}

⊃ −κµeff {sin β, cos β} (δv + . . .) , (4.49)

for the self-energies with each an external doublet and singlet field. The ellipsis in
eq. (4.49) denote other renormalisation constants that are fixed in the DR-scheme and
thus do not contribute with a finite part. However, a finite contribution from δv would
lead to a κ-dependence of all loop contributions to δv, in particular also of the correc-
tions from the fermions and sfermions (while the fermion and sfermion contributions
to the unrenormalised self-energy are κ-independent). A finite contribution from δv
would furthermore imply the rather artificial feature that a self-energy involving an
external gauge singlet field would receive a counterterm contribution involving the
renormalisation constant δZe for the electric charge. We therefore prefer to use the
DR-scheme for the renormalisation of v, which means that we use a scheme where
δZe is a dependent counterterm. This leads to the relation

δZdep
e = 1

2

[
δs2

w

s2
w

+ δM2
W

M2
W

− δv2

v2

]
, (4.50)

which implies

δZdep
e

∣∣∣fin = 1
2

[
δs2

w

s2
w

+ δM2
W

M2
W

]fin
(4.51)

for the finite part of δZdep
e . In this scheme the numerical value for the electric charge

e (and accordingly for α) is determined indirectly via eq. (4.51). In order to avoid a
non-standard numerical value for α in our numerical results, a two-step procedure is
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applied: In the first step a DR renormalisation for v is applied as outlined above. As a
second step this result is reparametrised in terms of a suitably chosen expression for α.
By default we use the same convention as for the MSSM result that is implemented in
FeynHiggs, namely the expression for the electric charge in terms of Fermi’s constant
GF , in order to facilitate the comparison between the FeynHiggs result in the MSSM
and our new result in the NMSSM. For the numerical comparison with NMSSMCalc
α(MZ) will be used instead. The procedure of the reparametrisation is outlined in
the following section.

4.4.2 Reparametrisation of α

Because of the equality of the bare couplings, the couplings gI and gII in two different
renormalisation schemes are in general related to each other by

gI
(
1 + δZI

g

)
= gII

(
1 + δZII

g

)
. (4.52)

The corresponding shift in the numerical values of the coupling definitions is obtained
from the finite difference of the two counterterms, ∆ ≡ gIIδZII

g −gIδZI
g . Accordingly,

a reparametrisation from the numerical value of the coupling used in scheme I to the
one of scheme II can be performed via

gI = gII + ∆ . (4.53)

Since ∆ is of one-loop order, its insertion into a tree-level expression generates a
term of one-loop order, etc.
In our calculation the reparametrisation of the electromagnetic coupling is only

necessary up to the one-loop level, since all corrections of two-loop and higher order
that we are going to incorporate have been obtained in the gauge-less limit (some
care is necessary regarding the incorporation of the MSSM-type contributions of
O(α2

t ), see [86, 87]). At this order the shift ∆ can simply be expressed as ∆ =
gII

(
δZII

g − δZI
g

)
. Specifically, for the reparametrisation of the electromagnetic cou-

pling constant in terms of GF the parameter shift ∆GF reads

∆GF = e
(
δZe − δZdep

e − 1
2∆rNMSSM

)
. (4.54)

Here δZe is the counterterm of the charge renormalisation within the NMSSM ac-
cording to the static (Thomson) limit as given in eq. (4.48). The counterterm
δZdep

e has been defined in eq. (4.50), and for the quantity ∆rNMSSM we use the
result of [88] (see also [89]). The numerical value for the electromagnetic coupling
e in this parametrisation is obtained from the Fermi constant in the usual way as
e = 2MW sw

√
GF

√
2.

Similarly, for the reparametrisation of the electromagnetic coupling defined in the
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previous section in terms of α(MZ) the parameter shift ∆α(MZ) reads

∆α(MZ) = e
(
δZe − δZdep

e − 1
2∆α

)
. (4.55)

The numerical value of e in this parametrisation is obtained from α(MZ) = α(0)/(1−
∆α), and α(0) is the value of the fine-structure constant in the Thomson limit. The
quantity ∆α will be discussed when ∆α(MZ) will be described in more detail for the
comparison with the code NMSSMCalc in sec. 8.1.3.

4.4.3 Reparametrisation of the NMSSM Higgs-Sector
The reparametrisation of the NMSSM Higgs-sector leads to additional terms of one-
loop order that are added the mass matrices at tree-level,

M2
ΨΨ →M2

ΨΨ + ∆M2
ΨΨ, Ψ ∈ {φ, χ}. (4.56)

The matrix ∆M2
ΨΨ is proportional to the finite shift ∆α and vanishes in the MSSM-

limes. Its components read for the CP-even sector in the interaction basis(
∆M2

φφ

)
11

= λ2v2 sin2 β ∆α, (4.57a)(
∆M2

φφ

)
22

= λ2v2 cos2 β ∆α, (4.57b)(
∆M2

φφ

)
33

=
(

2λ
4v4

µ2
eff

sin2 β cos2 β − λκv2 sin β cos β
)

∆α, (4.57c)(
∆M2

φφ

)
12

= − λ2v2 sin β cos β ∆α, (4.57d)(
∆M2

φφ

)
13

=
(

3λ
3v3

µeff
sin β2 cos β − κvµeff sin β + 2λvµeff cos β

)
∆α

2 , (4.57e)

(
∆M2

φφ

)
23

=
(

3λ
3v3

µeff
cos2 β sin β − κvµeff cos β + 2λvµeff sin β

)
∆α

2 , (4.57f)

and for the CP-odd sector they read(
∆M2

χχ

)
11

= λ2v2 sin2 β ∆α, (4.58a)(
∆M2

χχ

)
22

= λ2v2 cos2 β ∆α, (4.58b)(
∆M2

χχ

)
33

=
(

2λ
4v4

µ2
eff

sin2 β cos2 β + 3λκv2 sin β cos β
)

∆α, (4.58c)(
∆M2

χχ

)
12

= − λ2v2 sin β cos β ∆α, (4.58d)(
∆M2

χχ

)
13

=
(
−3λ

3v3

µeff
sin2 β cos β + 3κvµeff sin β

)
∆α

2 , (4.58e)

(
∆M2

χχ

)
23

=
(

3λ
3v3

µeff
cos2 β sin β − 3κvµeff cos β

)
∆α

2 . (4.58f)
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The shift-matrix ∆M2
ΨΨ is transformed into the mass basis by the unitary transfor-

mations U{e,o}(0) at lowest order,

∆M2
hh = Ue(0)∆M2

φφU
†
e(0), ∆M2

AA = Uo(0)∆M2
χχU

†
o(0). (4.59)

4.5 Analytic Tests of the Renormalisation Scheme

Including DR renormalisation constants does not influence the Higgs-mass predic-
tions, which depend only on finite higher-order contributions. However, including DR
renormalisation constants presents a non-trivial test for the calculation. It involves
all NMSSM vertices that enter the Higgs-mass calculation. This test is of particular
importance for the genuine NMSSM couplings that are not present in the MSSM.

The presented calculations of higher-order corrections in the Higgs sector were
performed semi-automatically. In order to generate the unrenormalised higher-order
corrections the NMSSM was implemented into a model file for the tool FeynArts [90].
The implementation of the NMSSM is performed in the mass basis, expressed by the
vertices in the interaction basis and generic mixing matrices for the superpartner
fields. The model file is based on an automatically generated NMSSM model file
obtained by an early version of Sarah [91]. The model file itself was already used
for previous NMSSM studies [92] in which not all sectors relevant to the Higgs-mass
calculation were involved, and thus the model file was only partially tested. Thus
further testing and improvement of this model file was advisable and necessary.

In order to have a simple and elegant check for DR renormalised NMSSM spe-
cific parameters κ, λ and Aκ, the one-loop β-functions have been recovered from
their counterterms as described in sec. 3.4. The β-functions and anomalous (field)
dimensions γ of the NMSSM are well-known, see [17, 93, 94], for a more general
treatment see [84,85,95–97]. The one-loop β functions are unique for a given theory.
In particular they are independent of the basis in which they are calculated. Hence
a calculation in the interaction basis for the Higgs-, higgsino- and gaugino-sectors
is applied. In this approach, where no mixing between any fields in these sectors
occurs, the calculation obtains a simple structure and is thus feasible to be performed
analytically. In the mass basis the presence of several mixing matrices makes an
analytic calculation unwieldy. For the NMSSM calculation with the help of FeynArts
and FormCalc the calculation in the interaction basis is performed as in the mass
basis, but with all mixing matrices set identical to the unity matrix. The outlined
approach is spelled out for the one-loop calculation. It makes extensive use of reduced
set of couplings between the singlet/singlino field and the remaining field spectrum.
An extension to two-loop order is possible, but retrieving the divergences from the
β-functions and anomalous dimensions is more involving.
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4.5.1 Feynman-Rules and higher-order Corrections in the
Interaction Basis

In the interaction basis both diagonal and non-diagonal entries of the mass matrices
can give rise to tree-level vertices between two different fields, which reads for scalars
Ψi

ΓΨiΨj

(
p2
)

= i
[
p2δij − (MΨΨ)ij

]
. (4.60)

If the fields in the interaction basis are considered massive, the diagonal entries of
the mass matrices are included in the propagator and do not give rise to additional
vertices,

ΓΨiΨj

(
p2
)

= i
(
p2 − [MΨΨ)ii

]
δij︸ ︷︷ ︸

inverse propagator

−i (MΨΨ)ij (1− δij)︸ ︷︷ ︸
vertex

. (4.61)

In terms of Feynman rules this reads as a propagator and a mass-vertex

Ψi Ψj = iδij
p2 − (MΨΨ)ii

(4.62a)

Ψi Ψj = i (MΨΨ)ij (1− δij) . (4.62b)

These vertices give rise to an infinite number of Feynman diagrams that contribute to
higher-order corrections at each order separately. From these new diagrams, however,
only a very small number is divergent and needs to be considered in order to obtain
the divergent part at each order. The analogous procedure gives rise to similar new
Feynman rules for the fermion fields in the interaction basis, in particular for the
higgsinos. In the following the divergent contribution of higher-order corrections to
fermion self-energies and trilinear couplings between three scalars, and two fermions
and one scalar will be outlined. The potentially divergent diagrams will be identified.

Self-Energies

In the interaction basis an infinite number of diagrams contributes to the self-energy
Σ at one-loop order,

Σ
(
p2
)

= + + + . . .

= + + finite.
(4.63)

The diagrams expressed by the ellipses contain more than one two-point vertex.
However, power-counting reveals that only the first two diagrams are potentially
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divergent, while all remaining diagrams are finite.

Three-Point Function for three Scalars Γφφφ

The one-loop diagrams contributing to a triple scalar vertex include pure fermion or
scalar loops,

Γ(1)
φφφ = + + + + . . . (4.64)

Again, the diagrams expressed by the ellipses contain more than one two-point vertex.
The second diagram with the scalar triangle loop is finite, while the other depicted
diagrams are power-counting divergent.

Three-Point Function for two fermions and one Scalar Γφψψ̄

The contributing one-loop diagrams to a vertex with two fermions and one scalar are

Γ(1)
φψψ̄

= + + . . . . (4.65)

The only power-counting divergent diagram is the second one, containing one scalar
and two fermion propagators. Diagrams with one or more two-point vertices are
finite.

4.5.2 Renormalisation Conditions for λ, κ, Aκ and µeff

The parameter µeff will be fixed by renormalising the two-point function in the neu-
tralino/higgsino sector, while the remaining parameters are renormalised by vertex
functions. The renormalisation conditions for the renormalised two- and three-point
functions,

Γ̂
h̃1

¯̃h2
= −Y34 + δY34 + Σ

h̃1
¯̃h2
, Γ̂ΨΨΨ = Γ̂(0)

ΨΨΨ + δΓ̂ΨΨΨ + Γ̂(1)
ΨΨΨ, (4.66)

where the index Ψ denotes any external field and the superscripts 0 and 1 denote
tree-level and one-loop quantities, read

Γ̂
h̃1

¯̃h2

∣∣∣div = Γ̂
h̃sh̃sφs

∣∣∣div = Γ̂
h̃±h̃±φs

∣∣∣div = Γ̂φsφsφs
∣∣∣div = 0. (4.67)

The tree-level quantities for the vertex functions read

Y34 = −µeff, (4.68a)
Γ(0)
h̃s

¯̃hsφs
= −
√

2κ (PL + PR) = −
√

2κ, (4.68b)

Γ(0)
h̃±¯̃h±φs

= − λ√
2

(PL + PR) = − λ√
2
, (4.68c)
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Γ(0)
φsφsφs

= −
√

2
(
κAκ + 6κ

2

λ
µeff

)
. (4.68d)

After applying the renormalisation transformations to these equations and using the
result of [84,85],

[
δµeff
µeff
− δλ

λ

]div
= 1

2δZφs
∣∣∣∣div , (4.69)

one obtains the following expressions for the renormalisation constants

δµeff = −
[
µeff

1
2
(
δZh̃1

+ δZ†
h̃2

)
+ Σ

h̃1
¯̃h2

]div.
(4.70a)

δκ = − 1√
2

[
Γ(1)
h̃s

¯̃hsφs
+
√

2Γ(0)
h̃s

¯̃hsφs

(
δZφ̃s + 1

2δZφs
)]div

(4.70b)

δλ =
√

2
[
Γ(1)
h̃±¯̃h±φs

− 1
2Γ(0)

h̃±¯̃h±φs

(
δZL

h̃± + δZL
h̃± + δZφs

)]div
(4.70c)

δAκ = 1√
2κ

[
Γ(1)
φsφsφs

− 3
2Γ(0)

φsφsφs
δZφs

]div
− Aκ

δκ

κ
+ 6κ

2

λ
µeff

(
2δκ
κ

+ 1
2δZφs

)
.

(4.70d)

According to eq. (3.19b) the field renormalisation constant for the neutral higgsinos,
which are Majorana fermions, are given in the DR-scheme by

δZL
h̃i

= δZR
h̃i

= δZh̃i =
[
Σ(/p)
h̃i

¯̃hi
(0)
]div

, i ∈ {1, 2}. (4.71)

For the charged higgsino, which is a Dirac fermion, the DR field renormalisation
constants read

δZL
h̃± = −

[
Σ(/p,L)
h̃±¯̃h±

(
µ2
eff

)]div
, δZR

h̃± = −
[
Σ(/p,R)
h̃±¯̃h±

(
µ2
eff

)]div
. (4.72)

Since only the divergent parts of higher-order contributions are necessary, only a sub-
set of all contributing one-loop diagrams in the interaction basis has to be considered
They will be discussed explicitly in the following section.

4.5.3 Diagrams with mixed Propagators
For the renormalisation conditions above two additional diagrams are necessary in
order to express the neutral and charged higgsino self-energies and the one-loop
corrections to the three-scalar vertex in terms of diagrams in the interaction basis.

Self-Energies

In the neutral higgsino sector only one power-counting divergent diagram with one
two-point vertex exists which is given in eq. (4.63). It is, however, finite and does
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not contribute to the determination of the DR field-renormalisation of the neutral
higgsino.
Also for the charged higgsino only one diagram with one two-point vertex is

power-counting divergent. The diagram is indeed divergent, but the divergence is
independent of the external momentum /p and p2. Thus it does not contribute to
Σ(/p)
h̃i

¯̃hi
(0) and subsequently does not contribute to the field renormalisation constants

of the charged higgsino.

Higher-Order Corrections to Γφsφsφs
For the higher-order corrections to the vertex function Γφsφsφs one diagram with a
two-point vertex has to be evaluated. Since the singlet does neither couple to the SM
fermions nor to the gaugino fields at tree-level,

Γ(0)
φsff̄

= Γ(0)
φsW̃±W̃±

= Γ(0)
φsB̃B̃

= 0, (4.73)

those fields cannot appear as internal fields in the diagram. Additionally the couplings
to the neutral higgsinos are severely constrained with only one non-vanishing vertex
to both different neutral higgsinos, see eq. (4.68c). The coupling to two charged
higgsinos does not vanish, but no two-point vertex exists for the charged higgsino.
The only divergent diagram reads

Γ(1,mix)
φsφsφs

=

h̃1

h̃2

h̃2
h̃1

φs

φs

φs

. (4.74)

Due to the simple coupling structure of the singlet to the higgsinos the divergent
contribution of this graph can be easily calculated via the box diagram,

iΓ(1)
φsφsφsφs

= φ̃1

φ̃2

φ̃2

φ̃1

φs

φs

φs

φs

(4.75)

by replacing one vertex Γ(0)
φsh̃1h̃2

= λ/
√

2 with the two-point vertex Γ(0)
h̃1h̃2

= −µeff,

iΓ(1,mix)
φsφsφs

∣∣∣div =
 Γ(0)

h̃1h̃2

Γ(0)
φsh̃1h̃2

iΓ(1)
φsφsφsφs

div = −
√

2µeff
λ

[
iΓ(1)
φsφsφsφs

]div
. (4.76)
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4.5.4 Explicit Expressions for δµeff, δλ, δκ and δAκ

After the calculation of all relevant diagrams eqs. (4.70) yield the analytic results

δκ

κ
= ∆

16π2 3
(
κ2 + λ2

)
(4.77a)

δAκ = ∆
16π2 6

(
λ2Aλ + κ2Aκ

)
(4.77b)

δµeff
µeff

= ∆
16π2

(
1
2
(
3Y 2

t + 3Y 2
b + Y 2

τ

)
+ λ2 − α

c2ws
2
w

(
1 + 2c2w

))
(4.77c)

δλ

λ
= ∆

16π2

(
1
2
(
3Y 2

t + 3Y 2
b + Y 2

τ

)
+ κ2 + 2λ2 − α

c2ws
2
w

(
1 + 2c2w

))
. (4.77d)

The results are given in the original set of independent parameters as present in
the Higgs potential (2.38) to enable an easier comparison with the β-functions given
in [17]. Both results agree with each other3. In order to test the consistency of the
model file the higher-order corrections for additional vertices between three fields
were successfully checked for finiteness with the methods described in this section.
These tests included all three-point vertices at one-loop order with three CP-even

Higgs bosons and all remaining singlet-higgsino-Higgs vertices,

Γ̂φiφjφk = Γ(0)
φiφjφk

+ Γ(1)
φiφjφk

+ δΓφiφjφk = finite, (4.78a)

Γ̂h̃ih̃sφj = Γ(0)
h̃ih̃sφj

+ Γ(1)
h̃ih̃sφj

+ δΓh̃ih̃sφj = finite, (4.78b)

where {i, j, k} ∈ {1, 2, s} and

δΓΨlΨmΨn = δgΨlΨmΨn + 1
2 (δZΨl + δZΨm + δZΨn) Γ(0)

ΨlΨmΨn . (4.78c)

Here the symbols Ψl denote Higgs- or higgsino-fields, and δg contains no field renor-
malisation constants.

3In [17] the β-functions for an additional supersymmetry conserving µ-parameter and λ2 are given.
The result for µeff is identical to the result for µ, while the one-loop result for λ is related by
βλ = βλ2/2.
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The determination of NMSSM Higgs-masses was performed as a first step of an
extension of the public tool FeynHiggs [30–36] for the NMSSM with real parameters.
This extension consists of a full one-loop calculation in the NMSSM supplemented by
two-loop contributions from the MSSM that are already implemented in FeynHiggs.
Thus the presented calculation was performed by using the same diagrammatic
methods with a mixed on-shell and DR renormalisation scheme as was used for
the calculations implemented in FeynHiggs. The NMSSM- and MSSM-calculations
should thus yield identical results for the Higgs-masses in the MSSM-limit.
In this chapter the definition of the Higgs pole-masses will be given. Furthermore

the chapter will provide descriptions of the tools and methods used in the calculation
and numerical evaluation of the obtained results for the Higgs pole-masses.

5.1 Pole-Mass Definition
The pole mass mpole of an unstable scalar field φ is determined by the real part of
the complex poleM of the full propagator, which is given in the φ3-theory by

i∆φφ

(
p2
)

= +p p

+
∞∑
n=1

(
p p

)n
·
(
p p

)n+1

+
∞∑
n=1

(
p p + p p

)n
·
(
p p

)n+1

+ . . .

(5.1)

where the scalar field φ is always denoted by a solid line. The first diagram in eq. (5.1)
denotes the tree-level propagator, the second line contains all renormalised one-loop
diagrams and the third line all renormalised two-loop diagrams1. The ellipses denote
diagrams of higher-order. Summed up the full propagator reads

∆̂φφ

(
p2
)

= 1
p2 −m2

φ + Σ̂(p2)
, (5.2)

1Tadpole contributions are considered to be already renormalised and absorbed by the tadpole
counterterm contributions.
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where mφ denotes the tree-level mass-parameter of the field φ. The renormalised
higher-order corrections are expressed by the renormalised self-energy Σ̂,

Σ̂
(
p2
)

=
∞∑
n=1

Σ̂(n)
(
p2
)

= Σ̂(1)
(
p2
)

+ Σ̂(2)
(
p2
)

+ . . . (5.3)

with

Σ̂(1)
(
p2
)

= p p , Σ̂(2)
(
p2
)

= p p + p p . (5.4)

At the poleM2 of the full propagator the inverse propagator vanishes. This means
the renormalised two-point function vanishes atM2,

i∆̂−1
φφ

(
M2

)
= Γ̂φφ

(
M2

)
=M2 −m2

φ + Σ̂
(
M2

)
= 0. (5.5)

After obtaining the complex pole by solving eq. (5.5) it can be decomposed into the
pole mass and the total width Γφ of the particle φ

M2 = m2
pole − impoleΓφ. (5.6)

In the NMSSM the Higgs bosons mix with each other resulting in a propagator matrix
with several polesM2

i . The pole condition given in eq. (5.5) is then translated into

det
[
Γ̂φφ

(
k2
)]
k2=M2

i

= 0. (5.7)

5.1.1 Self-Energy Contributions

The renormalised self-energies in the CP-even and -odd sectors are evaluated by
taking into account the full contributions from the NMSSM at one-loop order and as
an approximation, the contributions from the MSSM at two-loop order,

Σ̂ΨΨ
(
k2
)
≈ Σ̂(1)

ΨΨ

(
k2
)∣∣∣NMSSM

+ Σ̂(2)
ΨΨ

(
k2
)∣∣∣MSSM

k2=0
, ΨΨ ∈ {hh,AA}. (5.8)

The two-loop self-energies are taken directly as a numerical result from FeynHiggs.
For the final implementation the momentum dependence of the term of O(αtαs) [98]
will be included as well.

5.2 Pole-Mass Determination in the NMSSM
Higgs-Sector

The masses of the NMSSM Higgs bosons are obtained from the complex poles of the
full propagator-matrix. The inverse propagator-matrix for the three CP-even Higgs
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bosons hi from eq. (2.50) is a 3× 3 matrix that reads

i∆̂−1
hh

(
k2
)

= Γ̂hh
(
k2
)
. (5.9)

HereMhh denotes the diagonalised mass matrix of the CP-even Higgs fields at tree-
level and Σ̂hihj denotes their renormalised self-energy corrections,

Γ̂hh
(
k2
)

=


k2 −m2

h1 + Σ̂h1h1(k2) Σ̂h1h2(k2) Σ̂h1h3(k2)
Σ̂h2h1(k2) k2 −m2

h2 + Σ̂h2h2(k2) Σ̂h2h3(k2)
Σ̂h3h1(k2) Σ̂h3h2(k2) k2 −m2

h2 + Σ̂h3h3(k2)


(5.10)

The three complex polesMi of the propagator in the CP-even Higgs sector are given
by the values of the external momentum k2 for which the determinant of the inverse
propagator-matrix vanishes,

det
[
Γ̂hh

(
k2
)]
k2=M2

i

!= 0, i ∈ {1, 2, 3}. (5.11)

For the CP-odd sector the inverse propagator matrix reads

i∆̂−1
AA

(
k2
)

= Γ̂AA
(
k2
)
. (5.12)

HereMAA denotes the diagonalised mass matrix of the CP-odd Higgs fields at tree
level and Σ̂AA denotes their renormalised self-energy corrections,

Γ̂AA
(
k2
)

=


k2 −m2

A1 + Σ̂A1A1(k2) Σ̂A1A2(k2) Σ̂A1G0(k2)
Σ̂A2A1(k2) k2 −m2

A2 + Σ̂A2A2(k2) Σ̂A2G0(k2)
Σ̂G0A1(k2) Σ̂G0A2(k2) k2 + Σ̂G0G0(k2)

 .
(5.13)

The Higgs–Goldstone mixing contributions and the self-energy of the neutral Goldstone-
boson, Σ̂G0Ai(k2) and Σ̂G0G0(k2), are of subleading two-loop order and are thus
neglected. In the pole determination the Goldstone-boson is considered massless.
Besides the trivial propagator-pole at k2 = 0, the remaining poles are determined as
in the CP-even sector.

5.3 Incorporation of One-Loop Contributions
The one-loop diagrams were generated with FeynArts 3.9 [90] by using the pri-
vate NMSSM model-file mentioned in the previous chapter. The amplitudes were
subsequently calculated with FormCalc 7.42 [102]. For both tools the computer
algebra software Mathematica [103] was used. After obtaining analytic expres-

2The versions of both tools were the current versions of the time of the calculation, while several
updates for FormCalc have been released in the meantime [99–101].
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sions for the higher-order corrections the renormalisation scheme was implemented
in Mathematica. Finiteness of renormalised self-energies was checked analytically
for the fermions/sfermion contributions and numerically for the remaining Higgs-
and gauge-sector contributions in Mathematica. Since computer-algebra software
tends to be relatively slow for processing numerical evaluations, the analytic results
were converted into Fortran code. This was performed partly with the help of the
export features of FormCalc. Due to the better numerical performance the numerical
evaluation of the finite results was performed completely in a self-developed Fortran
code using the Fortran library of LoopTools 2.12 [104] to evaluate the one-loop
diagrams.

5.3.1 Implementation of complex Momentum-Dependence
LoopTools does not allow the evaluation of loop functions for complex momenta.
In order to attribute this shortcoming for the determination of complex poles, the
self-energies are expanded around the real part of the complex momentum

Σ
(
p2
)
≈ Σ

(
p2
r

)
+ ip2

i

d
dp2

r

Σ
(
p2
r

)
, p2 = p2

r + ip2
i . (5.14)

The approximation performed by truncating the series has been tested to create no
significant error [105] for many parameters.

5.3.2 Reparametrisation
For the determination of ∆rNMSSM a Fortran/Mathematica-routine based on the
result of [88] has been used. Contributions from the reparametrisation are added as
a momentum independent shift to the inverse propagator-matrices,

ΓΨΨ
(
k2
)

=
(
1k2 −M2

ΨΨ

)
+ ∆M2

ΨΨ + Σ̂ΨΨ
(
k2
)
, Ψ ∈ {h,A}. (5.15)

For the reparametrisation to α(MZ) the value ∆α(MZ) no additional input from an
external code is necessary, since ∆α is a constant value.

5.3.3 Implementation of the Pole Determination at
One-Loop Order

The pole determination is performed numerically by an iterative procedure. It starts
by performing an eigenvalue decomposition on the loop-corrected mass matrix

M(1)
hh (k2) = Mhh − Σ̂(1)

hh

(
k2
)
, M(1)

hh (k2) = M(1)
hh (k2) + Σ̂(2)

hh

(
k2
)

(5.16)

for a given (complex) momentum argument k2
(n). The obtained eigenvalues M̃2

i (k2
(n))

are stored. Since the pole condition given in eq. (5.11) can be written with the
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complex polesM2
i as

0 !=
3∏
i=1

{
k2

(n) −M2
i

}
, (5.17)

the quantity

d(n) =
∣∣∣k2

(n) − M̃2
i

(
k2

(n)

)∣∣∣ (5.18)

is calculated, where i is fixed for the algorithm. If d(n) > 10−9, the determinant will
not be considered as vanishing. Then a new momentum will be defined as

k2
(n+1) = M̃2

i

(
k2

(n)

)
(5.19)

and d(n+1) will be calculated. This procedure is repeated until d(m) . 10−9 or a given
number of 50 iterations reached. In the first case the last value for the momentum is
considered the as the complex pole. In the the second case the routine is considered
as unsuitable for the task, since it found no converging result. However, the algorithm
has proven to be viable for a wide range of parameters.
The procedure has to be executed for all different poles. The tree-level masses are

a good choice as starting conditions for finding all poles,

k2
(0) = m2

hi
, (5.20)

since the algorithm tends to find the pole closest to the starting condition [73].

5.4 Incorporation of Two-Loop Contributions
The renormalised two-loop self-energies are taken as a numerical result from FeynHiggs
2.10.2. They are passed to the Fortran code containing the one-loop results, where
they are converted into the mass basis of the NMSSM and subsequently added to the
one-loop self-energies of the NMSSM. In this section the available two-loop corrections
implemented in FeynHiggs for the MSSM are described together with the description
of their implementation into the NMSSM results.

5.4.1 FeynHiggs

FeynHiggs [30–36] is a package for the prediction of Higgs observables in the real and
complex MSSM. For the Higgs-boson masses it includes the full MSSM one-loop and
partial two-loop contributions. In the CP-conserving, real MSSM the included two-
loop corrections are ofO(αsαt, α2

t , αsαb, αtαb), for an overview see [32], in the complex
MSSM the implemented contributions are of O(αsαt, α2

t ) [31, 35, 36]. Furthermore it
includes a resummation of large logarithms that can appear for large scale differences
in the calculation [30] and momentum-dependent two-loop contributions of O(αtαs)
for the MSSM with real parameters [98]. Also included in FeynHiggs are higher-order
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corrections ∆b to the bottom Yukawa-coupling [106,107]. In all calculations the stop-
masses are considered to be renormalised on-shell. The top-mass is also renormalised
on-shell, but a reparametrisation to the MS-mass of the top quark is available as an
option.
For this work the NMSSM predictions include the MSSM two-loop corrections with-

out momentum-dependence and without ∆b-corrections. In the MSSM the momentum-
dependence at two-loop order has a minor effect of less than 1 GeV for the mass of
the light, SM-like Higgs field in the scenarios considered in [98] and can increase up
to the experimental uncertainty [12]. The ∆b-corrections also remain very small for
the scenarios discussed in this work. Both features are thus neglected for this work,
but will be available in the public NMSSM-version of FeynHiggs.

5.4.2 Conversion of the MSSM Self-Energies

The MSSM self-energies from FeynHiggs have to be converted into self-energies in the
mass basis off the NMSSM. All necessary parameters for this procedure are provided
by FeynHiggs.
In the CP-even sector the two-loop MSSM-corrections are provided by FeynHiggs

in the MSSM mass-basis of the fields h and H

Σ̂(MSSM)
e,hH =

(
Σ̂(2)
hh Σ̂(2)

hH

Σ̂(2)
Hh Σ̂(2)

HH

)
(5.21)

together with the lowest-order mixing matrix U(MSSM)
e(0) that relates h and H with the

fields φ1 and φ2 in the interaction basis,(
h
H

)
= U(MSSM)

e(0)

(
φ1
φ2

)
, U(MSSM)

e(0) =
(
− sinα cosα
cosα sinα

)
. (5.22)

Since the two-loop self-energies are taken in the limit of vanishing external momenta,
the momentum argument of the self-energies is suppressed in this section.
In the CP-odd sector only one self-energy and the mixing matrix for the CP-odd

Higgs field A is given,

Σ̂(MSSM)
o,AG =

(
Σ̂(2)
AA 0
0 0

)
(5.23)

together with the lowest-order mixing matrix U(MSSM)
o(0) that relates A and the neutral

Goldstone boson G with the fields χ1 and χ2 in the interaction basis,(
A
G

)
= U(MSSM)

o(0)

(
χ1
χ2

)
, U(MSSM)

o(0) =
(
− sin β cos β
cos β sin β

)
. (5.24)
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The MSSM self-energy corrections in the interaction basis are obtained by

Σ̂(MSSM)
e,φφ =

(
U(MSSM)
e(0)

)†
Σ̂(MSSM)
e,hH U(MSSM)

e(0) =
Σ̂(MSSM)

φ1φ1 Σ̂(MSSM)
φ1φ2

Σ̂(MSSM)
φ2φ1 Σ̂(MSSM)

φ2φ2

 (5.25)

Σ̂(MSSM)
e,χχ =

(
U(MSSM)
o(0)

)†
Σ̂(MSSM)
o,AG U(MSSM)

o(0) =
(

Σ̂(MSSM)
χ1χ1 Σ̂(MSSM)

χ1χ2

Σ̂(MSSM)
χ2χ1 Σ̂(MSSM)

χ2χ2

)
(5.26)

and are subsequently rotated into the NMSSM mass-basis with the mixing matrices
of the NMSSM,

Σ̂(2)
hh

∣∣∣MSSM
= Ue(0)

Σ̂(MSSM)
φ1φ1 Σ̂(MSSM)

φ1φ2 0
Σ̂(MSSM)
φ2φ1 Σ̂(MSSM)

φ2φ2 0
0 0 0

U†e(0) =


Σ̂h1h1 Σ̂h1h2 Σ̂h1h3

Σ̂h2h1 Σ̂h2h2 Σ̂h2h3

Σ̂h3h1 Σ̂h3h2 Σ̂h3h3

 (5.27)

Σ̂(2)
AA

∣∣∣MSSM
= Uo(0)

Σ̂(MSSM)
χ1χ1 Σ̂(MSSM)

χ1χ2 0
Σ̂(MSSM)
χ2χ1 Σ̂(MSSM)

χ2χ2 0
0 0 0

U†o(0) =

Σ̂A1A1 Σ̂A1A2 0
Σ̂A2A1 Σ̂A2A2 0

0 0 0

 . (5.28)

The two-loop contributions to the Goldstone boson self-energies are neglected.

5.4.3 Renormalisation Scheme and On-Shell Conversion for
the Parameters in the Stop Sector

In order to use the two-loop self-energies from FeynHiggs the parameters in the
stop-sector have to be given as on-shell parameters, where the stop-masses are renor-
malised on-shell. In the public, MSSM-version of FeynHiggs the conversion of DR-
renormalised stop-parameters given at a specified scale into on-shell parameters is
included. The formulas can be found in [108,109] for the complex case. A discussion
of the conversion for a possible extension to the NMSSM is given in this section.
For the top- and stop-sector the renormalisation transformation of the top- and

stop-masses together with the mixing angle θt̃ read

mt → mt + δmt, m2
t̃i
→ m2

t̃i
+ δm2

t̃i
, θt̃ → θt̃ + δθt̃. (5.29)

The mass counterterms are obtained by on-shell renormalisation-conditions as de-
scribed in sec. 3.2.1,

δmOS
t = 1

2Re
[
Σ(/p,L)
tt (p) + Σ(/p,R)

tt (p) + Σ(S,L)
tt (p) + Σ(S,R)

tt (p)
]
/p=mt

(5.30)

δm2,OS
t̃i

= ReΣt̃i t̃i

(
m2
t̃i

)
, (5.31)

while the counterterm for the mixing angle reads

δθt̃ = 1
2
Re

[
Σt̃1 t̃2

(
m2
t̃1

)
− Σt̃1 t̃2

(
m2
t̃2

)]
m2
t̃1
−m2

t̃2

. (5.32)
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The finite shifts for the conversion between the DR and on-shell scheme for the
top-quark and stop-squark masses and the mixing angle are given by the finite
contributions of the renormalisation constants,

∆mt = δmOS
t − δmDR

t , ∆m2
t̃i

= δm2
t̃OS
i
− δm2

t̃DRi
, ∆θt̃ = δθOS

t̃ − δθ
DR
t̃ (5.33)

Thus the finite shifts for the conversion of the soft-breaking parameters of the
stop-sector, M2

t̃L
, M2

t̃ and At, from the DR scheme into the on-shell scheme for the
top-quark and stop-squark masses in the NMSSM with real parameters read

∆M2
t̃L

=
(
Uf̃

)2

11
∆m2

t̃1
+
(
Uf̃

)2

12
∆m2

t̃2
− 2

(
Uf̃

)
12

(
Uf̃

)
22

m2
t̃1
−m2

t̃2

∆θt̃ − 2mt∆mt (5.34a)

∆M2
t̃ =

(
Uf̃

)2

21
∆m2

t̃1
+
(
Uf̃

)2

22
∆m2

t̃2
− 2

(
Uf̃

)
11

(
Uf̃

)
21

m2
t̃1
−m2

t̃2

∆θt̃ − 2mt∆mt (5.34b)

∆At = 1
mt

[(
Uf̃

)
11

(
Uf̃

)
12

(
∆m2

t̃1
−∆m2

t̃2

)
+
(
m2
t̃1
−m2

t̃2

)
∆θt̃ −Xt∆mt

]
.

(5.34c)

The corrections that have to be included in the top and stop self-energies for the
Higgs-mass calculation depends on the considered two-loop contributions. If only
two-loop corrections of O(αtαs) are considered, only corrections from (S)QCD have
to be considered. If O(α2

t ) corrections are included, contributions from the Higgs-
sector have to be included as well, since they enter the calculation at the same order.

Differences between the MSSM and NMSSM Conversion

While the renormalisation constant of the top-quark mass δmt is identical for the
MSSM and NMSSM, the self-energies of the stops receive additional corrections from
the scalar singlet-fields of the NMSSM. The contributions from the neutral Higgs-
and the stop-fields to the stop-squark self-energy have the form

Ψm

t̃j

t̃i t̃i (5.35)

with any neutral Higgs field Ψm in the mass basis. In the NMSSM the singlet
component of Ψm couples to the stops only via the coupling of O(λ), while the
MSSM-like doublet component couples to the sfermions via couplings of O(Yt) and
D-terms that are proportional to the gauge couplings g1 and g2. If the electroweak
gauge-couplings are neglected the stop self-energies at one-loop order can be classified
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as

Σt̃i t̃i

(
k2
)
≈ Σ(g,g̃)

t̃i t̃i

(
k2
)

︸ ︷︷ ︸
=O(αs)

+ Σ(Ψm,t̃)
t̃i t̃i

(
k2
)

︸ ︷︷ ︸
=O(Y 2

t )

+ Σ(Ψs)
t̃i t̃i

(
k2
)

︸ ︷︷ ︸
=O(λ2)

. (5.36)

The first term denotes the (S)QCD corrections, the second term denotes the MSSM-
like contributions from the doublet-admixture of the Higgs fields denoted by Ψm and
the third term denotes the corrections from the singlet admixture that are genuine
to the NMSSM. The (S)QCD corrections are identical in both models. The MSSM-
like contributions partially differ from the MSSM contributions by the mixing matrix
elements of the Higgs sector.
In our result we incorporate MSSM-like two-loop corrections of O(αtαs, α2

t ), while
the genuine NMSSM corrections at two-loop order are neglected. These are correction
from the stop-sector including at least one power of λ instead of Yt in any coupling.
Thus for a consistent DR to on-shell conversion in the stop-sector it is sufficient to
include only MSSM-like contributions.
For scenarios where the singlet character is significantly attributed to one particular

field in the CP-even and -odd sector, the MSSM conversion represents a very good
approximation for the MSSM-like contributions from the Higgs-sector.

5.5 Validating sample scenarios with HiggsBounds

For the purpose of investigating the result for scenarios that are not excluded by
experimental probes of the Higgs sector the code HiggsBounds [110–114] was used
to validate chosen scenarios. Thus the input parameters needed by HiggsBounds
have to be derived from the definition of the scenario. This was done by a two-step
procedure: First the scenario definition for the preliminary version of the FeynHiggs
NMSSM-extension, which requires on-shell parameters in the stop-sector, was con-
verted into a SUSY Les Houches Accord (SLHA) [115,116] conform input file, which
only contains DR parameters at a specified scale. After that the input was used to
run NMSSMTools [17], which calculated all necessary input parameters in the effective
coupling approximation as needed for HiggsBounds3.

5.5.1 Conversion of the parameter Xt

The by far largest effect from the on-shell to DR conversion of the parameters in the
sfermion-sector stems from Xt. Thus only the conversion of this parameter including
only (S)QCD corrections at one-loop order was considered in this work. We follow
the conversion as described in [105] for the case of real parameters. The relation

3For a more complete check of its experimental viability the scenario should be tested with
HiggsBounds in conjunction with HiggsSignals [117]. However, for providing a first check for a
sample scenario to test for the Higgs-mass prediction the check with HiggsBounds is considered
sufficient.
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between the on-shell and DR value for Xt is given by

X
(OS)
t = X

(DR)
t

(
1 + ∆mt

mt

)
−

∆m2
t̃

2mt

, (5.37a)

where

∆mt = αs
6πmt

[
gt1 + gt2 +m2

t

(
6 log m

2
t

µ2
r

− 10
)

+m2
g̃

(
log

m2
g̃

µ2
r

− 1
)]

, (5.37b)

∆m2
t̃ = 2αs

3π
(
gt̃1 − gt̃2

)
, (5.37c)

gti = −m2
t̃i

(
log mt̃i

µ2
r

− 1
)

+ fiRe
[
B0
(
m2
t ,m

2
g̃,m

2
t̃i

)]fin
, (5.37d)

gt̃i = 2m2
t̃i

(
log mt̃i

µ2
r

− 2
)
− fiRe

[
B0
(
m2
t̃ ,m

2
g̃,m

2
t

)]fin
, (5.37e)

fi = m2
g̃ +m2

t −m2
t̃i
− (−1)i 2mg̃mt. (5.37f)

Heremg̃ denotes the gluino mass andB0 denotes the one-loop standard integral as first
defined in [118]. The conversion depends explicitly on the renormalisation scale µr. It
also depends implicitly on the renormalisation schemes and scales of the parameters
entering the conversion outlined in eqs. (5.37). This dependences, however, are of
higher-orders and thus are neglected with the exception of the running of αs. The
numerical value of a running αs can change significantly when calculated at different
scales in both the DR- and MS-schemes. For the conversion of Xt the value of αs at
the scale µr in the MS scheme at one-loop order, given by

αs(µr) ≈
αs(MZ)

1 + αs(MZ)
4π β

(1)
αs log µ2

r

M2
Z

, β(1)
αs = 1

4π

(
11− 2

3Nc

)
, (5.38)

is used for five active flavours, Nc = 5, when evolving αs from the scale MZ to
mt. For the purposes of this work µr is set to the on-shell mass of the top-quark
m

(OS)
t = 173.2 GeV, which results in a change of the numerical value of αs by ≈ 10%,

αs(MZ) = 0.1184, αs
(
m

(OS)
t

)
= 0.1081, (5.39)

where αs(MZ) was taken from the results of [119]. Any higher-order contribution
in eq. (5.38) would lead to contributions that formally contribute to the Higgs-mass
calculation as an effect of three-loop order. They are thus neglected in the result
presented here which includes only one- and two-loop contributions.
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6 Partial Contributions
The calculation of the one-loop corrections is performed in separate parts. Besides
the full ons-loop calculation in the NMSSM also appropriate subsets of the one-loop
corrections are identified and calculated to study the numerical impact of different
partial one-loop contributions. With this approach the numerically leading higher-
orders contributions can be identified. Four subsets are calculated for the one-loop
Higgs masses, which are listed in tab. 6.1. The splitting of the m4

t approximation into

Approximation Contributions
m4
t -MSSM t/t̃-sectors in gaugeless limit for λ→ 0

m4
t -NMSSM t/t̃-sectors in gaugeless limit

f/f̃ contributions from a complete
fermion/sfermion doublet

HG Approximation Higgs/higgsino/gauge/gaugino-sectors

Table 6.1: Overview over the different subsets considered for the one-loop
corrections.

an MSSM and an NMSSM part is motivated by an upper bound on the NMSSM-
parameters λ and κ, if one demands perturbativity of the NMSSM up to a high scale
MGUT [120]. In this case the relation

λ2 + κ2 . 0.5 (6.1)

has to hold. Since the couplings between the singlet sector and the remaining fields
are governed by λ, a “small” value for this parameter is expected to reduce the
influence of the singlet sector. This effect can be quantified by calculating MSSM
and NMSSM versions of approximations. The listed approximations will be described
in this chapter and numerically studied chapter 8.

6.1 The m4
t -Approximations

The m4
t Approximation accounts only for the contributions from the t/t̃-sectors in

the electroweak gaugeless limit. It comes in two variants: The first, m4
t -MSSM, only

accounts for MSSM-like contributions, the second, m4
t -NMSSM, also includes genuine

NMSSM corrections. A comparison of both contributions reveals the impact of the
genuine NMSSM corrections.
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The approximation is a two-step procedure. The first step, which is common for
both versions, consists of neglecting the momentum dependence of all present self-
energies. The second step selects specific t/t̃-contributions, that are different for both
versions of the m4

t -approximations.

6.1.1 Common Approximations for Self-Energies
In both approximations the momentum-dependence of all appearing self-energies are
neglected, since it is a sub-leading effect,

ΣΨ†iΨj

(
k2
)
≈ ΣΨ†iΨj

(0) ≡ ΣΨ†iΨj
(6.2)

Without momentum-dependence the self-energy becomes a real quantity. The mo-
mentum dependence of the self-energy will be suppressed for the rest of this section.
Neglecting the momentum-dependence corresponds to neglecting the tree-level Higgs
masses in the one-loop calculation. The renormalised two-point function reads

iΓ̂(m4
t )

Ψ†iΨj

(
k2
)

= i
(
k2
1−MΨΨ + Σ̂ΨΨ

)
ij

(6.3)

with the renormalised self-energy matrices(
Σ̂ΨΨ

)
ij

= Σ̂Ψ†iΨj
= ΣΨ†iΨj

− (δVH)ΨiΨj (6.4)

The approximate one-loop corrections represent a finite, real shift to the pole of the
propagator.
Since no Higgs fields appear within the loops in this approximation the mixing

matrices from eq. (2.50), which transform the Higgs fields into the mass basis, appear
only for the external Higgs fields. Thus the self-energy contributions in the mass basis
can be written as linear combinations of the self-energies in the interaction basis in
this approximation,

Σ̂(m4
t )

hh = Ue(0)Σ̂
(m4

t )
φφ U†e(0), Σ̂(m4

t )
AA = Uo(0)Σ̂(m4

t )
χχ U†o(0). (6.5)

6.1.2 Classification of the leading Top/Stop-Contributions
For the two different m4

t -approximations the Higgs self-energies can be classified by
their couplings to the top quark and stop squarks in the electroweak gaugeless limit.
These couplings will be given for the CP-even sector in this section together with a
list of the contributing topologies.
Only the doublet Higgs field φ2 couples to the top-quark at lowest-order,

iΓφ2tt̄ = − 1√
2
Yt, iΓφ1tt̄ = iΓφstt̄ = 0, Y 2

t = 4πα
2s2

w sin2 β

m2
t

M2
W

. (6.6a)

The matrices for the couplings of the1 three CP-even Higgs fields to the stop squarks
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t̃1 and t̃2 in the electroweak gaugeless limit read

iΓφ1 t̃t̃ = iµeffYt ·
 √2 sin 2θt̃ − 1√

2 cos 2θt̃
− 1√

2 cos 2θt̃ −
√

2 sin 2θt̃

 (6.6b)

iΓφ2 t̃t̃ = iAtYt ·
 √2 sin 2θt̃ − 1√

2 cos 2θt̃
− 1√

2 cos 2θt̃ −
√

2 sin 2θt̃

+ imtYt ·
(√

2 0
0 −

√
2

)
(6.6c)

iΓφs t̃t̃ = imtλ cot β ·
√2 sin θt̃ cos θt̃ 1√

2 cos 2θt̃
1√
2 cos 2θt̃ −

√
2 sin θt̃ cos θt̃

 (6.6d)

and the non-vanishing coupling matrices between two stops and two CP-even Higgs
fields read

iΓφ2φ2 t̃t̃ = −iY 2
t ·

(
1 0
0 1

)
, iΓφ1φs t̃t̃ = −iλYt ·

(
sin θt̃ cos θt̃ 1

2 cos 2θt̃
1
2 cos 2θt̃ − sin θt̃ cos θt̃

)
. (6.6e)

Classifying the couplings in terms of the order of Yt reveals that the singlet couplings
to sfermions are of a lower order in Yt than their counterparts with doublet fields.
For each lower order in Yt they gain a power in λ,

Γφi t̃t̃ = O(Yt) +O(α), Γφs t̃t̃ = O(λ) (6.7a)
Γφ2φ2 t̃t̃ = O

(
Y 2
t

)
+O(α), Γφ1φs t̃t̃ = O(λYt). (6.7b)

The reduced number of non-vanishing couplings between singlet Higgs and stop fields
leads to a decreased number of topologies that can contribute to the unrenormalised
Higgs one-loop self-energies with an external singlet field. They are given together
with their order in Yt and λ in tab. 6.2. The first column in this table shows diagrams
that represent MSSM-like contributions in the NMSSM, while the second to forth
column depict genuine NMSSM-corrections involving one ore two external singlet
Higgs field. Applying the classification to the bare self-energies leads to

Σ(m4
t )

φφ =

O(Y 2
t ) O(Y 2

t ) O(λYt)
O(Y 2

t ) O(Y 2
t ) O(λYt)

O(λYt) O(λYt) O(λ2)

 , (6.8)

where the 2× 2 sub-matrix contains MSSM-like contributions and the third row and
column contain genuine NMSSM-corrections, involving the singlet Higgs field. For
the CP-odd sector the according classification leads to a similar result,

Σ(m4
t )

χχ =

O(Y 2
t ) O(λYt) 0

O(λYt) O(λ2) 0
0 0 0

 , (6.9)

with the MSSM-like self-energy for the doublet Higgs field. one-loop contributions to
the Goldstone-boson are neglected here, since they contribute at sub-leading two-loop
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(i,j) (1|2, 1|2) (1, s) (2, s) (s, s)
order O(Y 2

t ) O(λYt) O(λYt) O(λ2)
fields top/stop stop stop stop

topologies

Table 6.2: Diagrams and their order in terms of the couplings in the top-/stop-
sector that contribute to the self-energies of the CP-even fields φi at one-loop
order in the gaugeless limit. The numbers 1 and 2 denote the doublet-states as
external fields, while s denotes an external singlet. The internal lines depict either
a top (solid) or a scalar top-partner (dashed).

order to the CP-odd masses. For the one-loop tadpole-contributions the classification
yields

T
(1)
φ1 = O(Yt), T

(1)
φ2 = O(Yt), T

(1)
φs

= O(λ). (6.10)

As a result from the classification by powers of the couplings λ and Yt a possible
suppression or enhancement of the genuine NMSSM-contributions by the parameter
λ becomes apparent.

6.1.3 Analytic Relations between MSSM-like and genuine
NMSSM Corrections

For the MSSM-like and genuine NMSSM diagrams in tab. 6.2 simple analytical
relations exist. Due to the simple coupling structure, the genuine NMSSM-diagrams
can be expressed by their MSSM-like counterparts and the ratio between the involved
couplings.

Diagrams with a quartic Coupling

The third row diagrams in tab. 6.2 are related to each other by
t̃a

φ1 φs

=
Γφ1φs t̃a t̃a

Γφ2φ2 t̃a t̃a

·
t̃a

φ2 φ2

, (6.11)

where the superscript a is the squark index in the mass basis. The coefficients are
identical for both stop-fields and read

Γφ1φs t̃a t̃a

Γφ2φ2 t̃a t̃a

=
∣∣∣∣12 sin 2θt̃

∣∣∣∣ λYt .
1
2λ (6.12)
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for Yt ≈ 1. This coefficient represents an upper limit for the size of each genuine
NMSSM-diagram of this type relative to their MSSM-like counterparts. However,
this upper limit only applies for a specific value of the mixing angle θt̃ = π/4 from
the stop sector.

Diagrams with trilinear Couplings

The MSSM-like and genuine NMSSM diagrams involving trilinear scalar couplings
differ only by the trilinear Higgs–stop couplings,

t̃a

t̃b

φs φ{1,2}=
Γφs t̃a t̃b
Γφi t̃a t̃b

·

t̃a

t̃b

φi φ{1,2} (6.13a)

t̃a

t̃b

φs φs =
Γφs t̃a t̃b
Γφi t̃a t̃b

Γφs t̃a t̃b
Γφj t̃a t̃b

·

t̃a

t̃b

φi φj , (6.13b)

where the superscripts a and b are the stop indices in the mass basis, and no
summation over the indices i, j is intended. The relation holds for all choices for
i and j. All non-vanishing ratios of the vertices read

Γφs t̃a t̃b
Γφ1 t̃a t̃b

= λ
v

µeff
cos β (6.14a)

Γφs t̃1 t̃2
Γφ2 t̃1 t̃2

= λ
v

At
cos β,

Γφs t̃a t̃a
Γφ2 t̃a t̃a

= λ
v sin 2θt̃

2mt ± At sin 2θt̃
cos β. (6.14b)

where the indices a, b represent the stop-index in the mass basis and the value for the
vacuum expectation-value of the doublet fields is v ≈ 177 GeV in our conventions.
The plus/minus sign in eq. (6.14) depends on the value of a.
The ratios in eq. (6.14) yield, that the graphs given in eq. (6.13) can be suppressed

compared to the respective couplings from the doublet-sector not only by small values
of λ and cos β, but also by values of µeff larger than 177 GeV.
The ratio in eq. (6.14a) is applicable for all diagrams of this specific type, but yields

a weaker upper limit than the ratios involving the trilinear breaking-parameter At
in eq. (6.14b). Since small values < 100 GeV for µeff are disfavoured due to direct
searches for charginos [41] the upper limit from the first ratio in eq. (6.14a) is given
by

Γφs t̃a t̃b
Γφ1 t̃a t̃b

. 1.77λ. (6.15)

The remaining two ratios in eq. (6.14b) can yield stronger upper bound on the relative
size of the genuine NMSSM-diagrams for large values of At >> µeff. However, the
trilinear breaking-parameter At can be chosen such that one of the ratios diverges:
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either At = ∓2mt/ sin 2θt̃ or At = 0. In this case the corresponding MSSM-like
diagram vanishes in the electroweak gaugeless limit, while the according genuine
NMSSM-diagram does not. However, the NMSSM-diagram can still experience a
relative suppression by the condition in eq. (6.14a). For the two extreme choices of
At the ratios in eq. (6.14) without a pole read

At = 0 :
Γφs t̃a t̃a
Γφ2 t̃a t̃a

.
1
2λ

v

mt

sin 2θt̃ cos β ≈ 1
2λ (6.16a)

At = ∓ 2mt

sin 2θt̃
:

Γφs t̃1 t̃2
Γφ2 t̃1 t̃2

.
1
2λ

v

mt

sin 2θt̃ cos β ≈ 1
2λ. (6.16b)

We found that the effect of large values for these ratios is not severe even for the two
extreme choices for At. This will be addressed in the discussion of numerical results
in chapter 8.

6.1.4 Approximation in the Sbottom-Sector
If one restricts the self-energy contributions to the t/t̃-sectors all independent mass
parameters from other sectors are neglected, in particular the bottom mass mb is
neglected

mb
m4
t= 0. (6.17)

In this approximation the Yukawa coupling of the bottom-quark Yb vanishes and the
left- and right-handed sbottom-fields do not mix at lowest-order (2.44). Only the
left-handed sbottom field appears in the self-energy contributions for the charged
Higgs due to the non-vanishing coupling-matrix between the charged Higgs-, the
“left-handed” sbottom-field and any of the stop-fields,

ΓH± t̃b̃L = (At cos βc + µeff sin βc)Yt

(Uf̃)12(
Uf̃
)

22

 . (6.18)

Since the left handed mass breaking parameter MQ3
L
contributes to both the stop

and sbottom mass-matrices it cannot be neglected. Subsequently the sbottom fields
can not both be massless The sbottom mass-matrix and the sbottom masses in the
m4
t -MSSM approximation read

Mb̃

m4
t=
(
M2

Q̃L
0

0 M2
b̃

)
, m2

b̃1

m4
t= M2

Q̃L
, m2

b̃2

m4
t= M2

b̃ . (6.19)

In this case the sbottom mixing-matrix that is identical to the unity matrix. Ex-
pressing the soft mass-parameter for the third squark generation in terms of the top-
and stop-masses and the stop mixing-matrix yields

m2
b̃1

m4
t= M2

t̃L
= m2

t̃1
(Ut̃)11 +m2

t̃2
(Ut̃)12 −m

2
t . (6.20)
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Using this relation for one sbottom mass ensures the correct treatment of the sbottom
sector in the m4

t -approximation.

6.1.5 m4
t -MSSM Approximation

In the m4
t -MSSM approximation only MSSM-like t/t̃-contributions are taken into

account. They are very well-known to be the numerically leading MSSM contri-
butions [33, 121–124]: For the CP-even sector this means the 2 × 2 submatrix in
eq. (6.8), and for the CP-odd sector this means the single matrix-element containing
the self-energy for the doublet Higgs in eq. (6.9). These contributions are of O(Y 2

t )
and they are usually denoted as corrections of order O(αt), where αt = Y 2

t /(4π) and
a factor m2

t is suppressed. These corrections yield the leading MSSM-contributions
of O(m4

t/M
2
W ). The set of non-vanishing renormalisation constants necessary to

properly renormalise the self-energies in this limit is reduced.
Throughout this section an overset m4

t will be used for the equal signs to express
an equality that holds only in the m4

t -MSSM approximation. Quantities in this
approximation will be marked with a super- or subscript m4

t .

Renormalisation Constants and Counterterms

Only the counterterm contributions to the Higgs potential that lead to terms are of
O(Y 2

t ) have to be considered. In the applied limit the only renormalisation constants
with non-vanishing contributions are those for the charged Higgs mass and the doublet
tadpoles,

δM2
H± , δTφ1 , δTφ2 . (6.21)

The renormalisation constants of the gauge-boson masses vanish in the gaugeless
limit.
Also the DR renormalisation constants

δλ, δtan β, δµeff, δv, δZH2 . (6.22)

do not contribute, although they can potentially lead to contributions that are of
O(Y 2

t ). However, not all of the renormalisation constants above contribute to O(Y 2
t )

in the counterterms of the Higgs-mass matrices, given in eqs. (4.29) and (4.30). The
constants stated in eq. (6.22) appear with a prefactor of v or v2. This effectively
changes their order in Yt, since

vYt = mt

sin β = mt

MW

MW

sin β , (6.23)

which results in a term that is neglected in the gaugeless limit. Accordingly, terms
of this type These terms do not contribute in this approximation. The remaining
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renormalisation constants vanish in the m4
t -MSSM approximation,

δκ
m4
t= δAκ

m4
t= δZH2

m4
t= δZs

m4
t= 0. (6.24)

The reduced set of counterterms for the Higgs mass-matrix in this limit is identical
for the CP-even and -odd sectors. They read

δm
2,(m4

t )
Ψ1Ψ1 = 1√

2v

(
−1− sin4 β

cos β δTφ1 + cos2 β sin β δTφ2

)
+ δM2

H± sin2 β (6.25a)

δm
2,(m4

t )
Ψ2Ψ2 = 1√

2v

(
sin2 β cos β δTφ1 −

1− cos4 β

sin β δTφ2

)
+ δM2

H± cos2 β (6.25b)

δm
2,(m4

t )
Ψ1Ψ2 = 1√

2v
(
sin3 β δTφ1 + cos3 β δTφ2

)
− δM2

H± sin β cos β (6.25c)

δm
2,(m4

t )
Ψ1Ψs = δm

2,(m4
t )

Ψ2Ψs = δm
2,(m4

t )
ΨsΨs = 0, (6.25d)

where Ψ denotes either φ or χ. Thus the renormalised self-energies in the m4
t -MSSM

approximation read

Σ̂(m4
t )

ΨΨ =

Σ(m4
t )

Ψ1Ψ1 Σ(m4
t )

Ψ1Ψ2 0
Σ(m4

t )
Ψ2Ψ1 Σ(m4

t )
Ψ2Ψ2 0

0 0 0

−
δm

2,(m4
t )

Ψ1Ψ1 δm
2,(m4

t )
Ψ1Ψ2 0

δm
2,(m4

t )
Ψ2Ψ1 δm

2,(m4
t )

Ψ2Ψ2 0
0 0 0

 . (6.26)

While the self-energies in the interaction basis are exactly the self-energies as they
would appear in the MSSM for the two Higgs doublets in the same limit, they are
combined with the NMSSM tree-level Higgs mass-matrix and subsequently diago-
nalised.

6.1.6 m4
t -NMSSM Approximation

In them4
t -NMSSM approximation the genuine NMSSM-corrections of orderO(λYt, λ2),

which are genuine to the NMSSM, are added to the m4
t -MSSM approximation. In the

literature, e.g. [109,125], these contributions are generally referred to as corrections of
O(αt), although they include corrections beyond this order. For this work the order
of genuine NMSSM-corrections will be spelled out in this section and whenever it is
necessary to distinguish them from the MSSM-like corrections. For all other purposes
they will be referred to together with their corresponding MSSM-like corrections as
NMSSM-corrections of O(αt). Throughout this section the symbol m̃4

t will be used
in the same fashion as m4

t in the last section for the m4
t -MSSM approximation.

Renormalisation Constants and Counterterms

All counterterm contributions to the Higgs potential that of O(Y 2
t ) have to be con-

sidered. In the applied limit the only renormalisation constants with non-vanishing
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contributions are those for the charged Higgs mass and the tadpoles,

δM2
H± , δTφ1 , δTφ2 , δTφs . (6.27)

The renormalisation constants of the gauge-boson masses vanish in the gaugeless
limit. Also the DR renormalisation constants

δλ, δtan β, δµeff, δv, δZH2 . (6.28)

have contributions that are ofO(Y 2
t ). Again, the remaining renormalisation constants

vanish in this approximation

δκ
m̃4
t= δAκ

m̃4
t= δZH2

m̃4
t= δZs

m̃4
t= 0. (6.29)

In order to obtain a finite result the counterterms for the Higgs mass-matrix have
to be extended. Spelling them out in detail is useful for understanding the genuine
NMSSM-contributions. The counterterms for the CP-even and -odd sectors read

δm
2,(m̃4

t )
φ1φ1 = δm

2,(m4
t )

φ1φ1 + 2λ2v2 sin2 β

(
δλ

λ
+ 2δv

v
cos2 β

δtan β
tan β

)
(6.30a)

δm
2,(m̃4

t )
φ2φ2 = δm

2,(m4
t )

φ2φ2 + 2λ2v2 cos2 β

(
δλ

λ
+ 2δv

v
sin2 β

δtan β
tan β

)
(6.30b)

δm
2,(m̃4

t )
φ1φ2 = δm

2,(m4
t )

φ1φ2 − 2λ2v2 sin β cos β
[
δλ

λ
+ 2δv

v
+
(
cos2 β − sin2 β

) δtan β
tan β

]
(6.30c)

δm
2,(m̃4

t )
φiφs

=
[
δm2

φiφs

]
δκ=δAκ=0

, i ∈ {1, 2, s}, (6.30d)

and for the CP-odd sector

δm2,(m̃4
t )

χiχj
= δm

2,(m4
t )

φiφj
, i, j ∈ {1, 2} (6.31a)

δm2,(m̃4
t )

χkχs
=
[
δm2

χkχs

]
δκ=δAκ=0

, k ∈ {1, 2, s}. (6.31b)

Here the counterterms for the singlet self-energies introduce non-vanishing contri-
butions due to the counterterms for the tadpoles and the charged Higgs mass. In
the m4

t -NMSSM approximation the field renormalisation cannot be neglected in the
DR-scheme applied here. It gives a purely divergent contribution with a coefficient
of O(λYt). For the counterterms of the MSSM-like 2× 2 submatrix they read

(MΨΨ)22 δZH2

m4
t= λ2v2 sin2 β δZH2 ≡ [((MΨΨ)22 δZH2 ]

(m̃4
t ) (6.32a)

1
2 (MΨΨ)12 δZH2

m4
t= − 1

2λ
2v2 sin β cos β δZH2 ,≡ [((MΨΨ)12 δZH2 ]

(m̃4
t ) , (6.32b)
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where Ψ again denotes either φ or χ. For the counterterms of the genuine NMSSM-
corrections the contributions read

1
2 (Mφφ)23 δZH2

m4
t= 1

2
λv

µeff
λ2v2 cos2 β sin β δZH2 + 1

2 (2λvµeff sin β − κvµeff cos β) δZH2

≡
[
((Mφφ)23 δZH2

](m̃4
t )

(6.32c)
1
2 (Mχχ)23 δZH2

m4
t= 1

2
λv

µeff
λ2v2 cos2 β sin β δZH2 −

1
23κvµeff cos β δZH2

≡
[
((Mχχ)23 δZH2

](m̃4
t )
.

(6.32d)

Thus the finite contributions to the renormalised self-energies in the m4
t -NMSSM

approximation read

Σ̂(m̃4
t )

ΨΨ

∣∣∣∣fin =

Σ̂(m4
t )

ΨΨ +


0 0 Σ̂(m̃4

t )
Ψ1Ψs

0 0 Σ̂(m̃4
t )

Ψ2Ψs

Σ̂(m̃4
t )

ΨsΨ1 Σ̂(m̃4
t )

ΨsΨ2 Σ̂(m̃4
t )

ΨsΨs



fin

, (6.33)

where Ψ denotes either φ or χ. While the finite contribution of the MSSM-like self-
energies is identical to the m4

t -MSSM approximation. Furthermore the renormalised,
genuine NMSSM self-energies contribute in the m4

t -NMSSM approximation. The
renormalisation of the additional self-energies involves contributions from the field
renormalisation constants.

6.1.7 Comparison with Results obtained in the effective
Potential Approach

The m4
t -NMSSM approximation has been calculated already in the effective poten-

tial [125–127]. This makes an analytic comparison of the obtained result possible.
The effective Higgs potential can be decomposed in the neutral Higgs sector as

Veff = V0 + ∆V , where ∆V contains higher-order corrections. Thus the Higgs mass
matrices receive higher-order corrections,

Meff
ΨΨ = MΨΨ + ∆Meff

ΨΨ. (6.34)

The higher-order corrections ∆Meff
ΨΨ correspond to the renormalised self-energies in

eq. (6.3). They are given by the derivatives of ∆V with respect to the fields taken in
the classical minimum of Veff, which corresponds to vanishing fields Ψi

(
∆Meff

ΨΨ

)
ij

= − 1√
2
δij
vi

∂∆V
∂Ψi

∣∣∣∣∣
min.

+ ∂2∆V
∂Ψi∂Ψj

∣∣∣∣∣
min.

, i, j ∈ {1, 2, s}, (6.35)

where the short-hand notation v1 = v cos β and v2 = v sin β is used. The first term
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corresponds to the diagrammatically obtained finite parts of the tadpole contribu-
tions, the the second to the DRrenormalised Higgs self-energy in the m4

t -NMSSM
approximation,

∂∆V
∂Ψi

∣∣∣∣∣
min

= δTΨi |
fin ,

∂2∆V
∂Ψi∂Ψj

∣∣∣∣∣
min

=
(
Σm̃4

t
ΨΨ

)fin

ij
. (6.36)

The calculation in the effective potential approach corresponds to a Feynman-diagrammatic
calculation in a pure DR-scheme, where the only non-vanishing counterterm contri-
butions are

δmeff
ΨiΨj

∣∣∣fin = δij√
2vi

δTφi |
fin , i ∈ {1, 2, s}. (6.37)

These contributions stem from the expression of the soft-breaking Higgs-mass terms.
The additional contributions from the tadpole counterterms to the Higgs-mass coun-
terterms given in eqs. (4.29) and (4.30) are a result of the chosen on-shell renor-
malisation scheme for the charged Higgs-mass M2

H± . They are not present in the
effective potential approach, that correlates to a calculation where the independent
parameters are assumed to be DR-renormalised. The identity between the result
in the effective potential (left side) and the corresponding result obtained from the
Feynman-diagrammatic calculation (right side),

(
∆Meff

ΨΨ

)
ij

=
(
Σm̃4

t
ΨΨ

)fin

ij
− δmeff

ΨiΨi

∣∣∣fin , (6.38)

has been confirmed analytically.

6.2 Subsets of Fermion/Sfermion-Contributions

Amongst the fermion/sfermion-contributions (f/f̃ -contribution) additional subsets
can be formed by contributions of any fermion-doublet together with their super-
partners, for example contributions that are proportional to the colour factor Nc of
the third generation. These contributions stem from the top/bottom quarks and
stop/sbottom-squarks. No additional approximation is applied in their evaluation,
which means that the Higgs fields can couple to the squark fields via D-terms. Scalars
that are gauge-singlets, however, do not obtain D-terms and thus no additional
couplings between singlet Higgs fields and the squarks are introduced by D-terms.
Hence all allowed diagrams for MSSM-like and genuine NMSSM self-energies are
identical to the set in the m4

t -approximation as shown in tab. 6.2. All renormalisation
constants are required besides those that obtain only corrections from the Higgs-
and gauge-sectors, which are δZφs , δκ and δAκ. In particular this means that the
renormalisation constants for the gauge-boson masses contribute in this case.
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6.3 Higgs- and Gauge-Sector Contributions

Finally we are considering the subset accounting1 only for the contributions from the
Higgs- and gauge-sectors. All renormalisation constants and self-energies have to be
considered.
For the contributions from gauge bosons and the gaugino fermions the couplings

are identical to the MSSM-like Higgs fields and will not be discussed here. The focus
of this section will be on the Higgs-higgsino and Higgs self-couplings genuine to the
NMSSM. However, the contributions from the gauge bosons are necessary for a con-
sistent renormalisation of the Higgs sector. Other than in the fermion/sfermion sector
the number of contributing NMSSM diagrams in this sector is enhanced compared
to the self-energies for the MSSM-like Higgs fields. In the MSSM the Higgs self-
couplings and the couplings between Higgs and higgsino fields are determined purely
by the gauge couplings, while the MSSM µ-term only contributes to the Higgs and
higgsino masses. In the NMSSM, however, the Higgs self-couplings are determined
by the gauge-couplings, λ and κ. The NMSSM Higgs-higgsino-couplings involving at
least one singlet- or singlino-field are determined only by λ and κ and vanish in the
MSSM-limit.
In this section the qualitative features of these contributions will be discussed in the

interaction basis for simplicity. For the full calculation the diagrams have to evaluated
in the mass basis. This means that the single diagrams have to be multiplied by the
mixing matrix elements. The arguments then hold for the fields mixed into the mass
states.

Higgsino Contributions

The genuine NMSSM higgsino contributions to the Higgs self-energies have the form

ψm

ψn

Ψi(k) Ψj(k) = O
(
ΓΨiψ̄mψnΓΨiψ̄nψm

)
(6.39)

In the MSSM no such diagram exists with purely higgsino-fields in the loop and thus
they represent a genuine NMSSM-correction. If classified in terms of the couplings
the self-energy corrections from these diagrams read

Σh̃s
ΨΨ =

O(λ2) O(λ2) O(λκ)
O(λ2) O(λ2) O(λκ)
O(λκ) O(λκ) O(κ2)

 . (6.40)

Since the singlino-mass depends on the parameter κ the order of couplings must not
represent the κ-dependency of the contributions. For example, after renormalisa-
tion the diagram in eq. (6.39) yields for neglected external momenta a self-energy
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contribution that is proportional to

κ2m2
h̃s

log m
2
hs

µ2
r
∼ κ4

λ2µ
2
eff log κ2, (6.41)

where µr is the renormalisation scale, since the singlino mass grows linearly with κ,
mh̃s

=
√

2κ/λµeff.

Higgs Contributions

The Higgs self-couplings stem from two diagrams,

Ψm

Ψn

Ψi(k) Ψj(k) = ΓΨiΨmΨnΓΨiΨnΨmB0
(
k2,m2

Ψn ,m
2
Ψm

)
(6.42a)

Ψm

Ψi(k) Ψj(k) = ΓΨiΨjΨmΨmA0
(
m2

Ψm

)
. (6.42b)

The non-vanishing trilinear Higgs self-couplings are of the the orders

Γφiφjφk = O
(
λ2
)
, Γφiφjφs = O(λκ), Γφiφsφs = O(λκ), Γφsφsφs = O

(
κ2
)

(6.43)

for the CP-even fields without D-terms. For the CP-odd fields any vertex with an
even number of CP-odd fields is allowed and of the same order as the vertex for CP-
even fields. For the quartic coupling the pattern is similar: A vertex that involves
only CP-even fields is proportional to λ2, a mixed vertex is proportional to λκ, and
a pure singlet vertex is proportional to κ2. The diagrams in eqs. (6.42) are thus of
the orders

Ψm

Ψn

Ψi(k) Ψj(k) = O
(
λ4−nκn

)
,

Ψm

Ψi(k) Ψj(k) = O
(
λ2−nκn

)
(6.44)

where n denotes by the number of involved singlet fields. As for the higgsino-
contributions the order of the couplings might not reflect the λ- and κ-dependence of
these contributions, since the masses of the internal fields depend on both parameters.

Comparison with the m4
t -NMSSM Approximation

Both the magnitude of the genuine NMSSM-corrections from the stop-sector and
from the Higgs-sector increase with λ. However, the Higgs-sector contributions
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6 Partial Contributions

depend on higher powers of λ than the stop-contributions. Thus scenarios with
an increased NMSSM-contributions from the stops are expected to have have also
increased NMSSM-contributions from the Higgs-sector. These contributions are not
genuine to the higher-order corrections to the mass of the singlet, since also doublet-
fields couple with λ.
For increased values of κ only the contributions to the self-energies with an external

singlet may yield a more sizeable contribution.
While the impact of the genuine stop-contributions is decreased for large values

of µeff (6.14a), the Higgs-sector contributions can increase with µeff (6.41). Thus in
scenarios with large values for λor κ, and µeff the Higgs-sector contributions might
be increased and have a larger impact than the genuine NMSSM-contributions from
sfermions.

6.4 Two-Loop MSSM Approximation
Up to now the two-loop calculations for Higgs masses in the MSSM and NMSSM have
mainly been performed in the electroweak gaugeless limit. In the previous sections
the one-loop contributions were discussed in detail. The discussion can be used to
estimate the numerical impact of genuine NMSSM-corrections at two-loop order. In
the MSSM the leading two-loop contributions stem from QCD and SQCD corrections
of O(αtαs), involving a gluon or a gluino, and the two-loop corrections of O(α2

t ). The
corresponding diagrams can be written as one-loop diagrams with an insertion as seen
in tab. 6.3. The insertions are denoted by blobs. The blobs represent the topologies

(a1) (a2) (b1) (b2) (c1) (c2)

Table 6.3: Two-loop diagrams depicted as one-loop diagrams with insertions of
a propagator correction, labelled (#1) , and a vertex correction, labelled (#2).

i

o1

o2

: Γf1f2f3io1o2 =
f1

f2

f3i

o1

o2

, Γf1f2io1o2 =

f1

f2

i

o1

o2

(6.45a)

i o : Γf1f2f3io =

f1

f2

i o, Γfio =

f

i o, (6.45b)

where the plain solid lines represent any field denoted by its label.
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6.4 Two-Loop MSSM Approximation

6.4.1 Corrections of O(αtαs)
For this class corrections from a gluon, a gluino or a stop to the diagrams of the
m4
t -approximations are taken into account. We focus here on the diagrams involving

the Higgs singlet field on one or both external lines.
The diagrams with a propagator-correction, any topology from eq. (6.45b) inserted

into diagrams (#1), are suppressed by the same factors as the one-loop diagrams,
since the Higgs fields couple directly to the fermion/sfermion fields in the outer loop.
For the diagrams with a vertex correction, any topology from eq. (6.45a) inserted

into diagrams (#2), the number of diagrams with an external singlet is reduced. The
singlet field does not couple to the top-quark in either the inner or outer loop, thus

Γt̄tgφs t̄t = 0. (6.46)

The loop-induced singlet–top–top vertex gives rise to a contributions from the dia-
gram (a1) to the singlet-doublet self-energy. However, it can be suppressed compared
to the according diagram with a loop-induced vertex involving only Higgs doublet-
fields,

Γt̃a t̃ag̃φs t̄t
=

Γφs t̃a t̃b
Γφi t̃a t̃b

Γt̃a t̃ag̃φi t̄t
(6.47)

with the suppression factors given in eq. (6.14).
Since the vertex corrections of the diagrams (#2) for the singlet field receive a

similar suppression as the corresponding one-loop diagrams, the two-loop self-energy
corrections can be classified by the order of their couplings as

ΣΨΨ =

O(Y 2
t αs) O(Y 2

t αs) O(λYtαs)
O(Y 2

t αs) O(Y 2
t αs) O(λYtαs)

O(λYtαs) O(λYtαs) O(λ2αs)

 . (6.48)

As for the m4
t -NMSSM one-loop approximation the genuine two-loop NMSSM con-

tributions of O(αtαs) are suppressed or enhanced compared to the MSSM-like contri-
butions. Thus the relative size of the genuine NMSSM-corrections at one-loop order
can be used as an estimate for the impact of the according two-loop corrections.
The genuine NMSSM-corrections ofO(αtαs) have been calculated and implemented

into the public code NMSSMCalc. This allows to test the MSSM-approximation for
this set of contributions, see sect. 8.1.3.

6.4.2 Corrections of O
(
α2
t

)
For this class corrections to the diagrams of the m4

t -approximations with insertion of
O(Y 2

t , λYt, λ
2) involving top/stop fields are taken into account. Both the external-

and the sub-diagrams can contain a Higgs-singlet field and thus receive a suppression
compared to the corresponding diagram in the MSSM. If the sub-diagram contains
only stop-fields, it is always MSSM-like. Only the external diagram can be suppressed

83



6 Partial Contributions

in this case.
The two-loop self-energy contributions thus can be classified by the highest power

in the coupling Yt as

ΣΨΨ =
2∑

n=0


O
(
Y 4−n
t λn

)
O
(
Y 4−n
t λn

)
O
(
λ1+nY 3−n

t

)
O
(
Y 4−n
t λn

)
O
(
Y 4−n
t λn

)
O
(
λ1+nY 3−n

t

)
O
(
λ1+nY 3−n

t

)
O
(
λ1+nY 3−n

t

)
O
(
λ2+nY 2−n

t

)
 . (6.49)

For n = 0 only MSSM-like subdiagrams appear. The MSSM-like contributions for
the doublet fields are recovered for this case in a 2× 2 submatrix. They are identical
to the MSSM-contributions up to mixing effects between the Higgs fields.
A calculation of the O(α2

t ) corrections in the NMSSM in a mixed DR/on-shell
scheme is still missing. However, for DR calculations the contributions at this order
have been obtained, see e.g. [39].

6.5 Conclusion
In this section partial one-loop contributions from appropriate subsets were deter-
mined. Analytic arguments for the expected numerical impact of these contributions
have been provided for the genuine NMSSM contributions. The estimations based
on these arguments will be tested for specific scenarios in the following chapters.
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7 NMSSM-FeynHiggs: Predictions for
NMSSM Higgs masses and
mixing contributions

The results of this work will be part of the next major update for the code Feyn-
Higgs [30–36]. This update will extend the calculation of the Higgs masses and the
wave normalisation factors to NMSSM with real and complex parameters. The ex-
tension will include the full one-loop calculation including momentum-dependence, as
outlined in this work. The MSSM approximation will be used for the two-loop contri-
butions of O(αsαt, α2

t , αsαb, αtαb), for an overview see [32], and O(αsαt, α2
t ) [31,35,36]

for the MSSM with real and complex parameters, respectively. The resummation of
large logarithms due to large SUSY-masses [30] will be included for the real and the
complex as well as the momentum-dependence for the corrections of O(αtαs) in the
real case [98].
In order to extend the one-loop calculation presented in this work to the NMSSM

with complex parameters a new model file for FeynArts and FormCalc is created.
It will contain all necessary counterterms for fully automated one-loop calculations,
similar to the available model file for the MSSM with complex parameters [128]. The
renormalisation scheme for the absolute values complex parameters will follow the
scheme outlined in this work. Any additional DR-counterterms for the phases of the
complex parameters are obtained with the methods described in sec. 4.5. The model
file for the NMSSM with complex parameters including one-loop counterterms will
be published separately and included into future versions of FeynArts and FormCalc.
The new version of FeynHiggs will include an extended SLHA-conform interface,

that allows to supply every DR-parameter at its own scale. For the Higgs-mass
calculation these parameters will be RGE-evolved to the renormalisation scale mt,
where the stop-parameters will be converted into the on-shell scheme for the top- and
stop-masses with the MSSM routines as an approximation as discussed in sec. 5.4.3.
The obtained renormalised self-energies in the Higgs-sector will be used to calculate

the wave function normalisation factors for the Higgs-fields, described in sec. 3.3, for
the NMSSM with complex and real parameters.
The aforementioned implementations and developments are work in progress. For

the studies in this work a preliminary version of FeynHiggs was used. In this version
the one-loop calculation and the pole-determination was separated from FeynHiggs,
which provides only the renormalised MSSM self-energies at the two-loop level as
described in sec. 5.3. The calculation of wave normalisation factors will be available
only in the final NMSSM-extension of FeynHiggs.
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8 Study of the MSSM
Approximations at one- and
two-loop order

In this chapter the MSSM approximation implemented at the two-loop level will be
tested. For this purpose a genuine NMSSM scenario will be studied, which gives rise
to a SM-like Higgs with a predicted mass at the two-loop level of around 125 GeV
and a lighter, singlet-like Higgs field. In order to investigate the influence of the
extended Higgs- and higgsino sector of the NMSSM compared to the MSSM the
study will start with one-dimensional variations of λ. The limit λ→ 0 and constant
µeff leads to decoupled singlet fields with infinite mass and MSSM-like doublet fields
in the Higgs- and neutralino sectors. Increasing the value of λ translates directly
to increasing the influence of genuine NMSSM-effects. A detailed study of the
one-loop result and the quality of approximations by partial contributions will be
performed. In order to study the two-loop MSSM approximation the results obtained
with the methods described in the previous chapters will compared with the public
tool NMSSMCalc [29]. This tool offers a similar Higgs-mass calculation with
diagrammatic methods in a hybrid DR/on-shell renormalisation scheme and thus
is well suited for a comparison.
In a subsequent study the behaviour of the mass of a singlet-like Higgs field under

variations of At will be studied for different values of λ. It will be compared with the
At-dependence of the masses of MSSM-like Higgs fields.
The chosen scenarios will always respect the relation

λ2 + κ2 . 0.5 (8.1)

to ensure perturbative predictability of the NMSSM up to high scales [120].

8.1 MSSM-Approximation: A sample Scenario
The sample scenario for our study is defined by the parameters given in table 8.1.
The parameter λ is varied if not stated otherwise. The derived tree-level masses
of the stop-, chargino- and neutralino-fields are given in the appendix in sec. B.1 .
For values λ & 0.32 the mass of the lightest state becomes tachyonic at tree-level
and therefore the analyses will be performed only for values of λ up to 0.32. The
choice for the top-quark mass will be the pole mass mOS

t for the comparison with
NMSSMCalc and mMS

t (mt) for the remaining studies. Using the MS top-mass allows
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8 Study of the MSSM Approximations at one- and two-loop order

to include the resummation of leading and next-to-leading logarithms implemented
in FeynHiggs. The renormalisation scale for the studies in this chapter will be fixed
at the used value of the top-quark mass. The discussed scenario is tested against the

Higgs sector parameters: heavy fermion masses:

MH± tan β µeff Aκ κ

1000 8 125 −300 0.2
mOS
t mMS

t (mt) mMS
b (mb) mτ

173.2 167.48 4.2 1.78

sfermion- and gaugino-parameters:

Mq̃ Ml̃ At Aτ , Ab, Aq Al M
(GUT)
1 M2 M3

1500 200 −2000 −1500 −100 ≈ 143 300 1500

Table 8.1: Definition of the analysed sample scenario. All dimensionful pa-
rameters are given in GeV. All DR-parameters are defined at mMS

t (mt). All
stop-parameters are on-shell parameters.

full set of experimental limits implemented in HiggsBounds 4.1.3 [113]. To obtain
the relevant quantities for HiggsBounds we made use of NMSSMTools 4.4.0 [17] and
linked it with HiggsBounds1 as described in sec. 5.5.

8.1.1 Full Result
The full results for the tree-level, one- and two-loop Higgs-mass predictions in the
sample scenario defined in tab. 8.1 are shown as a function of λ in fig. 8.1 for the
CP-even fields and in fig. 8.2 for the CP-odd fields. The term ’full result’ refers
to all one-loop corrections in the NMSSM including momentum-dependence and
reparametrisation, and all available contributions of O(αsαt, αsαb, α2

t , αtαb) from the
MSSM including the resummation of large logarithms. For this study the parameter
λ will be varied between 0.1 and 0.32. The lower limit of the parameter λ is chosen
to depict only one point with a cross-over behaviour for the two smaller masses, mh1

and mh2 . For values λ < 0.1 there is another point with cross-over behaviour of the
two larger masses. However, due to the small values of λ in this region it is less
suitable to study the behaviour of the genuine NMSSM-corrections that scale with
λ.
In order to understand the physical situation of the scenario it is important to

determine the admixture of the genuine NMSSM-contributions to the plotted masses.
Thus the squared mixing matrix elements determining the singlet admixture are given
1We thank Florian Domingo and Oskar Stål for providing a modified version of NMSSMTools
including a link to HiggsBounds.
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mh1

2-loop

1-loop

tree

125 GeV

0.10 0.15 0.20 0.25 0.30
0

20

40

60

80

100

120

140

λ

m
/G

eV
mh2

2-loop

1-loop

tree

125 GeV

0.10 0.15 0.20 0.25 0.30
0

100

200

300

400

λ

m
/G

eV

mh3

2-loop

1-loop

tree

0.10 0.15 0.20 0.25 0.30
997.0

997.5

998.0

998.5

999.0

999.5

1000.0

λ

M
/G

eV

(Ue (0))13
2

(Ue (0))23
2

(Ue (1))13
2

(Ue (1))23
2

(Ue (2))13
2

(Ue (2))23
2

0.10 0.15 0.20 0.25 0.30
0.0

0.2

0.4

0.6

0.8

1.0

λ

(U
e
(n
))

i3
2

Figure 8.1: Upper row and lower left: Mass of the CP-even Higgs-fields mhi

at tree-level, full one- and two-loop order. All corrections from the NMSSM are
calculated at one-loop order including momentum-dependence and reparametri-
sation. At two-loop order the MSSM-type corrections of O

(
αsαt, αsαb, α

2
t , αtαb

)
without momentum-dependence are taken into account as well as the resummation
of large logarithms. The dotted line represents 125 GeV. Lower right: Squared
mixing-matrix elements that determine the singlet-admixture to the two lighter
fields h1 and h2. The values for λ(n)

c at the intersection are λ(0)
c ≈ 0.26, λ(1)

i ≈ 0.21,
and λ(2)

i ≈ 0.23 at the respective loop orders.

for the two lighter CP-even fields. For the remaining fields no cross over behaviour
appears in the depicted interval of λ, their mixing matrix elements are either ≈ 0 for
doublet-like and ≈ 1 for singlet-like fields. The heaviest CP-even and -odd fields, h3
and A2, are doublet-like, while the lighter CP-odd field A1 is singlet-like.
The lighter CP-even masses switch their dominant admixture: For low values of λ

the field h2 is singlet- and the field h1 is doublet-like and vice versa for large values
of λ. Both fields are evenly mixed between a singlet and a doublet Higgs-field at
the value λ(n)

c at the n-th loop-order with n = 0 denoting tree-level. The values λ(n)
c

are different from each other. They can be determined from the plot on the lower
right in fig. 8.1 as the intersection points between the squared mixing-matrix elements
[U2

e(n)]{13,23}, that are defined in sec. 3.3, that quantify the singlet-admixture of the
fields h1 and h2. The (momentum-dependent) one-loop corrections cause the largest
shift for λ(1)

c of λ(1)
c − λ(0)

c ≈ −0.05, while the additional shift from the (momentum-
independent) two-loop corrections is much smaller with λ(2)

c −λ(1)
c ≈ 0.01. At λ(n)

c both
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Figure 8.2: Mass of the CP-odd Higgs fields mAi at tree-level, full one- and
two-loop order with the same contributions as for the CP-even sector given in
fig. 8.1.

mixing-matrix elements are equal to 0.5 and thus higher-order corrections from both
the singlet- and the doublet-sectors contribute equally to the mass prediction. Neither
contribution is enhanced or suppressed by mixing effects. At λ(2)

c it is expected that
the effect from neglecting genuine NMSSM-corrections as performed at the two-loop
level is most severe.
The λ-dependence of the masses is dominated by tree-level and mixing effects: A

strong singlet admixture leads to decreasing masses with increasing values of λ, while
a small singlet-admixture leads to a slightly increasing masses. Generally the higher-
order corrections for singlet-like fields grow faster with λ than their counterparts for
doublet-like fields, since the Higgs singlet couples to the remaining field spectrum via
λ. In the MSSM-approximation of the two-loop result singlet-like states receive no
two-loop corrections. As in the MSSM the larger masses (of doublet-like fields) are
affected by higher-order corrections to a lesser extent than the lighter states.

8.1.2 Numerically leading One-Loop Contributions
In this section the numerically leading one-loop contributions will be identified by
studying the partial contributions defined in chapter 6. The ratios of Higgs–sfermion
couplings defined in sec. 6.1.3, which can enhance or suppress the genuine NMSSM
contributions, are plotted as a function of λ in fig. 8.3. All ratios are smaller than 1
and should suppress the genuine NMSSM-corrections.
The mass predictions for the MSSM- and NMSSM-versions of them4

t -approximation
are depicted together with the tree-level and full one-loop results in fig. 8.4 as a
function of λ. For all three masses the two different m4

t -approximations are almost
indistinguishable from each other for a wide range of λ. For the light singlet-light field
at larger values of λ, however, a slight difference between both m4

t -approximations
can be observed together with a less accurate approximation of the full one-loop
prediction. In order to study this effect in more detail the absolute differences between
the partial and the full one-loop mass-predictions are plotted as a function of λ in
fig. 8.5 together with the squared mixing-matrix elements that determine the singlet-
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Figure 8.3: Suppression factors as defined in sec. 6.1.3. The omitted ratios of
couplings remain smaller than the maximal value of ∆3.

admixture to the lighter states h1 and h2.
In the first row of fig. 8.5 the squared mixing-matrix elements for the singlet-

admixture are plotted for the three CP-even fields as a function of λ. All plotted
approximations reproduce the behaviour of the full one-loop result well. The dif-
ference between the points with cross-over behaviour between the two lighter fields,
λc, never exceed the value of 0.01. However, for some approximations the shift can
give rise to intersection points between the full one-loop and the approximate mass
predictions as observed in the upper left plot for the mass of the lightest field in
fig. 8.4. They result in discontinuous points in the plots of the mass-differences.
In the second row of fig. 8.5 the difference between the m4

t -NMSSM approximation
and the m4

t -NMSSM approximation (∆m = |m(m4
t -NMSSM)

hi
−m(m4

t -MSSM)
hi

|) is plotted
as a function of λ. The maximal difference between the approximations m4

t -MSSM
and m4

t -NMSSM remains below 500 MeV for the mass of the lightest field h1. For
h2 and h3 the difference decreases by one and two orders of magnitude, respectively.
The λ-dependence of ∆m is different for the three masses depending strongly on
the singlet admixture: The largest values for ∆m are observed for singlet-like fields
where it rises with λ. For doublet-like fields the difference remains below 10 MeV
even for larger values of λ. At λ(1)

c , the point of the cross-over behaviour between
h1 and h2, a local maximum of the difference can be observed. However, it does not
exceed 100 MeV. For the Higgs field with a mass around 125 GeV this represents
an improvement an additional contribution of less than 1h by including genuine
NMSSM-corrections of O(λYt, λ2). For the mass of the singlet-like field for larger
values of λ a sharp increase of the difference between the approximations m4

t -MSSM
and -NMSSM can be observed. The corrections of O(λYt, λ2) account for a maximal
contribution of ≈ 1% for a singlet-like field with a mass below 40 GeV. For the
heaviest field h3 the difference is negligible but rises with its singlet admixture. This
suggests that in scenarios where values λ � 0.32 are allowed, the genuine NMSSM-
contributions could become more important and even dominant compared to the
MSSM-like contributions. This, however, is not the case as will be discussed in the
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Figure 8.4: Upper row and lower left: Masses of the CP-even Higgs-fields in the
approximations m4

t -MSSM and m4
t -NMSSM approximations, at tree-level and at

full one-loop order. Lower right: Squared mixing-matrix elements that determine
the singlet-admixture to the two lighter fields h1 and h2 for partial one-loop
contributions. The solid and dashed lines denote the singlet-admixture for h1
and h2, respectively. Lines with the same colour are calculated for the same set
of partial contributions: full one-loop (red), m4

t -MSSM and m4
t -NMSSM (green).

The approximations yield almost identical results for the singlet-admixture, thus
only one of both is shown in this plot.

following.
In the third row of fig. 8.5 the difference between the m4

t -NMSSM approximation
and the full one-loop contribution (∆m = |m(m4

t -NMSSM)
hi

− m
(1L)
hi
|) is plotted as a

function of λ. For the light doublet-like field, h1 for λ < λc and h2 for λ > λc, the
m4
t -NMSSM approximation, which takes only leading top/stop-sector contributions

into account, approximates the full one-loop result with an error of less than 5%. For
the heaviest field the deviation remains far below 1 GeV and is negligible. For the
singlet-like field, h2 for λ < λc and h1 for λ > λc, the m4

t -NMSSM contributions (and
subsequently the MSSM version) approximates the full one-loop result very poorly.
The error rises up to 50% of the full one-loop mass prediction of ≈ 40 GeV. This large
deviation arises from contributions beyond the leading top/stop-sector contributions.
These contributions can stem from either the remaining fermion/sfermion sectors or
the Higgs- and gauge-sectors including their superpartners. Both sectors and their
contributions are studied separately.
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Figure 8.5: Partial one-loop contributions to the mass predictions and singlet
admixture in the CP-even sector. Each column shows the result for one of the
fields h1, h2 and h3 (from left to right). In the first row the result for h3 is
scaled by a factor 100. In the second to last row the mass axis is scaled by 10
and 100 for h2 and h3, respectively. First row: Squared mixing-matrix elements
that determine the singlet admixture for the result in the m4

t -approximation. The
mixing is very similar for all depicted approximations. At λ(1)

c , the vale for the
cross-over behaviour between the two lighter fields, the squared mixing matrix-
element is equal to 0.5 (dash-dotted black line). Second to last row: Absolute
differences between partial one-loop mass predictions and the full one-loop result.
For a detailed description and discussion see sec. 8.1.2.
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8 Study of the MSSM Approximations at one- and two-loop order

In the fourth row of fig. 8.5 the difference between the prediction including the
contributions from all fermions and sfermions including momentum-dependence and
the full one-loop result (∆m = |m(f/f̃)

hi
−m(1L)

hi
|) is plotted as a function of λ. While

this subset provides a very accurate approximation for the light singlet-like field, it
still provides only a bad approximation for the mass of a light singlet-like field. The
heaviest field is approximated as well as in the m4

t -NMSSM approximation. The com-
parison of the left plots in the third and fourth rows shows that the fermion/sfermion-
sector contributions beyond the MSSM approximation, which are important for the
MSSM-like doublet-fields have a negligible effect on the mass-prediction of singlet-like
fields.
In the fifth (last) row of fig. 8.5 the difference between the m4

t -NMSSM approxima-
tion supplemented with the momentum-dependent corrections from the Higgs- and
gauge-sectors (HG) and the full one-loop result (∆m = |m(m4

t -NMSSM+HG)
hi

− m
(1L)
hi
|)

is plotted as a function of λ. The additional corrections in this approximation are
found to cure the unsatisfactory behaviour of the previous approximations for the
mass of a light singlet-like state at large values of λ, while the impact of the missing
contributions from the fermion/sfermion sector beyond the m4

t -NMSSM approxima-
tion is clearly visible for the doublet-like fields in the left plot. Even for the heaviest
state, the mixed-in genuine NMSSM-contributions are well approximated. For the
light MSSM-like fields the Higgs- and gauge-sector contributions improve the one-loop
approximation by ≈ 1 GeV. The impact of the added contributions is less significant
for the doublet-fields than for the singlet-like field and is comparable to its expected
size in the MSSM [32].
As a result of the study outlined in this section the MSSM-like top/stop-sector

contributions of O(Yt) have been verified as the leading one-loop contributions to
MSSM-like fields at the one-loop level. The genuine NMSSM top/stop-sector contri-
butions of O(λYt, λ2) have the largest impact on singlet-like fields for large values of
λ. For such large values of λ, however, the improvement of including those genuine
NMSSM contributions is by far overshadowed by the fact that Higgs- and gauge-sector
contributions become more and more important for a singlet-like Higgs field, so that
the complete fermion/sfermion contributions no longer provide a good approximation
for the full result in this region.

8.1.3 Comparison with NMSSMCalc

In order to test our results against available tools, we decided to compare with
NMSSMCalc [29], since it is the only public tool performing the Higgs-mass calculation
in a mixed DR/on-shell renormalisation scheme. In this section the numerical differ-
ences between the results for the masses of the two lighter Higgs states of NMSSMCalc
and our calculation will be discussed at different orders for the scenario given in
tab 8.1. Both codes, NMSSMCalc and our calculation, labelled NMSSM-FeynHiggs in
the following, are adapted. Both codes interpret the stop-sector parameters as defined
for on-shell renormalised masses of the stops2. Since NMSSMCalc uses a different charge
2We thank Kathrin Walz for providing a modified version of NMSSMCalc for this feature.
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8.1 MSSM-Approximation: A sample Scenario

renormalisation and the value α(MZ) for the electromagnetic coupling constant, we
reparametrised our result as described in sec. 4.4.2. The numerical values for α(MZ)
and ∆α are taken directly from NMSSMCalc,

∆α = ∆α(5)
had + ∆αlep = 5.89188 · 10−2, α(MZ) = 1/128.962 . (8.2)

After the reparametrisation is applied the only difference between the one-loop Higgs-
mass predictions of NMSSM-FeynHiggs and NMSSMCalc stem from the finite contribu-
tion of δv. Furthermore only MSSM two-loop contributions of O(αtαs) calculated
for on-shell renormalised top- and stop-masses are considered for this comparison as
only their NMSSM-counterparts are implemented in NMSSMCalc. The resummation
of logarithms is not included for the study in this section. For simplicity, we will
refer to this reduced set of two-loop contributions as two-loop order throughout this
section. The remaining differences between the Higgs-mass calculations of NMSSMCalc
and NMSSM-FeynHiggs are summarised in tab. 8.2. The applied modifications ensure
that the comparison between both codes will quantify the numerical impact of the
genuine NMSSM two-loop corrections of O(Ytλαs, λ2αs).

NMSSMCalc NMSSM-FeynHiggs
one-loop αem(MZ) renormalised, ↔ αem(MZ) reparametrised

(δZe − 1
2∆α) (δZdep

e , ∆α(MZ))

two-loop NMSSM O(αtαs) ↔ MSSM O(αtαs)

Table 8.2: Main calculational differences between NMSSMCalc and our modified
calculation (labelled NMSSM-FeynHiggs) used for the comparison in sec. 8.1.3.
The difference at one-loop stems only from the dependent renormalisation of the
electric charge, described in sec. 4.4.2. At two-loop order the codes differ only
by the genuine NMSSM contributions of O

(
λYt, λ

2), described in sec. 6.4. The
two-loop MSSM corrections beyond O(αtαs) and the resummation are turned off
in NMSSM-FeynHiggs for the comparison in sec. 8.1.3.

We used the SM parameters as specified in the built-in standard input files of
NMSSMCalc for our calculation as given in the appendix in sec. B.2. We passed
over the input values in the quark- and squark-sectors as on-shell parameters to
NMSSMCalc. The pole mass for the top, m(OS)

t = 173.2 GeV, is used in this section,
and the renormalisation scale is chosen as m(OS)

t . For the comparison both codes use
the identical, value αMS

s (m(OS)
t ) = 0.1069729, which is evaluated by NMSSMCalc with

the routines of [129].
As an initial test the one- and two-loop results of NMSSMCalc and NMSSM-FeynHiggs

are compared in the MSSM-limit, where λ and κ vanish simultaneously. Both the
effects of the different renormalisation schemes and the reparametrisation have to
vanish in this limit and thus the results have to be identical. The one- and two-
loop results for the mass of the lightest CP-even field obtained with both codes,
140.742 GeV and 116.902 GeV, respectively, are in agreement with each other with
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8 Study of the MSSM Approximations at one- and two-loop order

a precision of < 1 MeV. This confirms that the MSSM-contributions are treated
identically in both calculations. Thus all observed differences between the results
for non-vanishing values of λ and κ have to stem from the treatment of the genuine
NMSSM-contributions and residual higher-order effects of the different renormalisa-
tion of v after the reparametrisation.
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Figure 8.6: Difference between the mass predictions for the two lighter CP-
even fields h1 and h2 of NMSSMCalc and NMSSM-FeynHiggs at one- and two-loop
order, ∆mhi = mNMSSM-FH

hi
−mNMSSMcalc

hi
. The result of NMSSM-FeynHiggs has been

reparametrised to α(MZ). The point for the cross-over behaviour between the
fields h1 and h2 at one- and two-loop order read λ

(1)
c ≈ 0.21 and λ

(2)
c ≈ 0.24,

respectively. the value of ∆mhi is negative for the singlet-like field and positive
for the doublet-like field.

For the sample scenario defined in tab. 8.1 the absolute difference between the
two mass predictions are plotted in fig. 8.6 as functions of λ for the two lighter CP-
even states at one- and two-loop order3, ∆mhi = mNMSSM-FH

hi
− mNMSSMcalc

hi
. The left

plot in fig. 8.61 shows the mass for the lighter state h1. It behaves doublet-like for
values λ . λ(n)

c and singlet-like state for values λ & λ(n)
c . The behaviour of h2 is

the opposite. The relative influence of the genuine NMSSM-corrections compared to
the MSSM-like corrections is expected to be large at λ(n)

c , where neither the genuine
NMSSM-corrections nor MSSM-like corrections are enhanced or suppressed due to
mixing effects.
The difference between the two calculations is largest for regions with larger values

of λ for the mass of the singlet-like state. The mass of the doublet-like state is effected
to a lesser extent by the MSSM-approximation. For both fields ∆mhi increase with
λ, although the increase is more significant for the mass of the singlet-like field. At
neither order a pronounced local extremum can be observed around λ

(n)
i at each

order. The impact on ∆mhi around λ
(n)
i is less significant than the impact of larger

values of λ. The general shape of the one-loop difference, caused by the different
renormalisation schemes, is still present for ∆mhi at two-loop order. However, the
point with cross-over behaviour between h1 and h2 is shifted by ∆λc = λ(2)

c − λ(1)
c ≈

3The variation of the mass of the heaviest state is smaller than 2 MeV and thus not plotted in
fig. 8.6.
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8.1 MSSM-Approximation: A sample Scenario

0.03 between one- and two-loop order, which makes a point-wise comparison of each
∆mhi between both orders difficult. However, it is possible to compare the local and
global extrema, in particular at λ(n)

c and for the largest values of λ, to read off the
numerical impact of the genuine two-loop NMSSM corrections implemented only in
NMSSMCalc. For h1 this yields ∆mh1(λc) . 50 MeV, for h2 we obtain ∆mh2(λc) .
30 MeV. Both values are obtained for the λ = 0.32. The corresponding two-loop
Higgs masses for this maximal differences are mh1 ≈ 40 GeV and mh2 ≈ 125 GeV,
for the singlet- and doublet-like field, respectively.
These results confirm that the two-loop MSSM-approximation induced an uncer-

tainty that is numerically small if λ < Yt as discussed in sec. 6.4.1. This is especially
true for the masses of MSSM-like fields. The relative error induced by the two-loop
MSSM-approximation remains in the region far below 1% even for the light singlet
mass and larger values of λ. The different renormalisation schemes for δv and δZe,
respectively, have a larger, but still small impact on the results in the given scenario.

8.1.4 Corrections beyond O(αtαs)
While the genuine NMSSM two-loop corrections ofO(λYtαs, λ2αs) induce a very small
effect below 50 MeV, the MSSM-corrections beyond O(αtαs) and the resummation
of large logarithms can result in a shift for the mass of the light doublet-like field of
several GeV. In order to quantify the impact of the additional MSSM-contributions
of O(α2

t , αbαs, αtαb) and the resummation of logarithms the results with and without
these corrections are plotted as functions of λ in fig. 8.7 using the MS-value of the top-
quarkmMS

t (mt). A sizeable shift of about 3−4 GeV can be observed for the mass of the
doublet-like field. The mass prediction for the singlet-like field remains unaffected by
the two-loop MSSM-corrections, since all singlet self-energies are neglected at two-
loop order. The impact of the additional corrections beyond O(αtαs) exceed the
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Figure 8.7: Mass predictions for the two lighter CP-even fields h1 and
h2 for different contributions at two-loop order. The blue lines include all
MSSM-corrections of O

(
αtαs, αbαs, α

2
t , αtαb

)
, the red curves contain only MSSM-

corrections of O(αtαs). Both include the resummation of large logarithms and
the full NMSSM one-loop contributions. The thin, constant line marks 125 GeV.

numerical impact of the genuine NMSSM-corrections of O(λYtαs, λ2αs) by several
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8 Study of the MSSM Approximations at one- and two-loop order

orders of magnitude.

8.2 Stop-Mixing Dependence for a Singlet-like
Higgs-field

The previous section was focused on the variation of λ, which couples or decouples
the singlet Higgs-field and its superpartner from the remaining field spectrum of the
NMSSM. In this section the influence of the trilinear breaking-parameter of the stop-
sector, At, will be investigated for different values of λ in the sample scenario defined
in tab. 8.1. In the MSSM the Higgs masses have a strong dependency on the value
of At at one- and two-loop level, see for example [130] and references therein. While
in the literature typically Xt is varied, that determines the mixing between the two
stops, the studies presented in this section will focus on At due to its importance
for the suppression-factors defined in sec. 6.1.3. For the sample scenario the relation
between the Xt and At reads Xt ≈ At − 16 GeV ≈ At.

8.2.1 Mass-Prediction and Singlet-Admixture
The mass of the lightest CP-even Higgs-field h1 is plotted as a function of At for
different values of λ together with their singlet-admixture in fig. 8.8. The singlet-
admixture shows a strong dependence on At, especially for ”maximal” stop-mixing
around At ≈

√
6Mq̃ ≈ 3700 GeV at the one-loop level and around At ≈ 2Mq̃ =

13000 GeV at the two-loop level for on-shell parameters. In the investigated scenario
the field h1 remains doublet-like for λ = 0.2, while the singlet-admixture increases
sharply at ”maximal” stop-mixing for larger values of λ, until the field h1 becomes
dominantly singlet-like at λ = 0.24 for values of At between ±4.5 TeV and ±4 TeV
at one- and two-loop order, respectively.
For the doublet-like field at λ = 0.2 the At-dependence resembles the situation in

the MSSM: Significant maxima and minima for the mass mh1 can be observed for
for ”maximal” and absent stop-mixing, respectively. The magnitude of the maxima
are not identical for positive and negative values of At, the difference between the
two maxima is more pronounced in the two-loop result. For an increased singlet-
admixture to the field h1 at higher values of λ these maxima are flattened out. Thus
the minima for At ≈ 0 become less pronounced for increased singlet-admixtures.

8.2.2 Singlet-Admixture for ”maximal” Stop-Mixing
In order to study the behaviour of the maxima around ”maximal” stop-mixing in
dependence of λ the plots in 8.9 show the mass predictions of both lighter CP-even
fields h1 and h2 for different values of λ. The values of λ are chosen such that both
fields h1 and h2 receive similar singlet-admixtures for ”maximal” stop-mixing. For
the lowest depicted values of λ the field h2 is dominantly singlet- and for the largest
values of λ doublet-like at ”maximal” stop-mixing and vice versa for the field h1. With
increasing doublet-admixture for ”maximal” stop-mixing the mass mh2 ’inherits’ the

98



8.2 Stop-Mixing Dependence for a Singlet-like Higgs-field

-4000 -2000 0 2000 4000
110

115

120

125

130

135

140

145

At/GeV

m
/G

eV
λ

0.2

0.21

0.215

0.22

0.225

0.23

0.24 -4000 -2000 0 2000 4000
0.0

0.2

0.4

0.6

0.8

1.0

At/GeV

(U
e
(1
))

13
2

λ

0.2

0.21

0.215

0.22

0.225

0.23

0.24

-4000 -2000 0 2000 4000
110

115

120

125

130

135

140

145

At/GeV

m
/G

eV

λ

0.2

0.21

0.215

0.22

0.225

0.23

0.24

0.25
-4000 -2000 0 2000 4000

0.0

0.2

0.4

0.6

0.8

1.0

At/GeV

(U
e
(2
))

13
2

λ

0.2

0.21

0.215

0.22

0.225

0.23

0.24

0.25

Figure 8.8: The left plots show the At-dependence of the massmh1 of the lightest
CP-even Higgs-field h1 at one- and two-loop order in the upper and lower row,
respectively, for different values of λ in the sample scenario defined in tab. 8.1.
The right plots show the according At-dependences of the squared mixing-matrix
elements that determine the singlet-admixture to h1. The values for λ are chosen
such that they are close to the one- and two-loop values of λ(n)

c of the sample
scenario, where h1 receives singlet- and doublet-contributions equally.

behaviour of the mass mh1 of the former doublet-like field. At the same time the
flattening observed for the maxima of the mass mh1 resembles the behaviour of the
mass mh2 of the former singlet-like field.

8.2.3 Genuine NMSSM-Corrections to a dominantly
Singlet-like Field

A more detailed study of the At-dependence for the massmh1 of the either dominantly
singlet- and doublet-like field h1 is shown in fig. 8.10. The mass is plotted in the
MSSM and NMSSM version of the m4

t -approximation at the one-loop order, which
accounts for the dominant dependence on the stop-squark masses. For an increasing
singlet-admixture the mass mh1 exhibits a weaker dependence on At both in the
m4
t -MSSM and m4

t -NMSSM approximations. The At-dependence is very similar for
both approximations. This is quite remarkable since the m4

t -MSSM approximation
contains no higher-order corrections for the singlet-field φs. The additional genuine
NMSSM-corrections included in the m4

t -NMSSM approximation result in a mass-shift
that depends only weakly on At. These contributions are shown in fig. 8.11 as the
absolute difference between the two m4

t -approximations. For all values of λ the At-
dependence remains in the region of 10 . . . 20 MeV, several orders of magnitude below
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Figure 8.9: Upper row: One-loop mass-prediction for the lightest and next-to-
lightest CP-even Higgs-fields h1 and h2 for λ = 0.21, 0.215, 0.22, chosen close
to λ(n)

c , where the fields h1 and h2 receive a similar singlet-admixture close to
”maximal” stop-mixing. Lower row: Two-loop version of the upper row for λ =
0.21, 0.215, 0.22.

the At-dependence of a doublet-like field. Since the singlet–sfermion–sfermion vertex
is independent of At, the observed At-dependence thus stems from the stop-squark
masses that enter the calculation logarithmically. The genuine NMSSM-corrections
included in the m4

t -NMSSM approximation have the strongest impact on the mass
prediction for values of At where the singlet-admixture is shared between the two
fields h1 and h2, e.g. around ”maximal” stop-mixing for λ = 0.2 in this example.
The apparent increase for larger values of At is an effect caused by the increasing
doublet-admixture to h1, that takes effect for slightly different values of At for both
m4
t -approximations.

As explained above the genuine NMSSM-corrections to the mass mh1 have only a
very weak dependence on At. However, extrema can be observed for the dominantly
singlet-like states in fig. 8.10. Thus the At-dependence of the mass mh1 for the
dominantly singlet-like field h1 is an effect driven by the residual doublet-admixture to
h1. Even for a singlet-like state with a doublet-admixture of . 1% the At-dependence
of the genuine NMSSM-corrections from the top/stop-sectors can remain subleading
to the residual At-dependence of the MSSM-like corrections.
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Figure 8.10: At-dependence of mass mh1 of the field h1 for selected values of
λ at the one-loop level in the approximations m4

t -MSSM and m4
t -NMSSM. For

λ = 0.2 the field is dominantly doublet-like. The singlet-admixture increases with
λ as shown in the lower right plot in fig. 8.8 until h1 is dominantly singlet-like for
λ = 0.29.

8.3 Conclusion

In this section the two-loop MSSM-approximation employed in NMSSM-FeynHiggs and
the partial one-loop corrections to the masses of the CP-even fields in the NMSSM
with real parameters were studied.
The MSSM-like one-loop contributions from the top/stop-sector have been identi-

fied as the leading fermion/sfermion-contributions at one-loop order in the NMSSM.
However, for the mass of a (light) singlet-like field and larger values of λ these con-
tributions can be subleading compared to the Higgs- and gauge-sector contributions.
For the MSSM-approximated two-loop corrections of O(αtαs) the result was com-

pared against the full NMSSM-corrections of this order, yielding only very small
deviations in the predictions for the masses of both doublet- and singlet-like fields.
The MSSM-approximated contributions ofO(α2

t ) included in the prediction of NMSSM-
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Figure 8.11: Absolute difference between the mass in both m4
t -approximations,

∆mh1 = |m(m4
t−MSSM)

h1
−m(m4

t−NMSSM)
h1

| for different values of λ. For λ = 0.17 the
field is dominantly singlet-like. The singlet-admixture increases with λ as shown
in the lower right plot in fig. 8.8 until h1 is dominantly singlet-like for λ = 0.29

FeynHiggs so far have no counterpart in the NMSSM at this order in a mixed
on-shell/DR renormalisation scheme. However, the same reasoning that success-
fully motivated the MSSM-approximation of O(αtαs) can be applied for the MSSM-
approximated corrections of O(α2

t ). One can expect that they are dominant relative
to their genuine NMSSM-counterparts as well.
For the two-loop corrections beyond the fermion/sfermion-contributions potentially

large one-loop corrections from the Higgs- and gauge-sector suggest an increased effect
of Higgs- and gauge-sector contributions also at the two-loop level. An increased
importance of these contributions has already been observed for pure DR-calculations
for similar scenarios [131], while a full calculation of these contributions in a mixed
on-shell/DRrenormalisation scheme is still missing.
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9 Theoretical Uncertainties for
NMSSM Higgs-mass predictions

The experimental value of the mass of the detected Higgs signal [12],

mH = 125.09± 0.21(stat.)± 0.11(syst.) GeV, (9.1)

has an error of only several permil. It is thus already three years after its discovery
an (electroweak) precision observable. In order to make full use of this high-precision
measurement every model that provides a prediction for this quantity should ideally
provide a result with a similar precision. If a prediction with similar precision is
unavailable it is important to provide a solid estimate for the theoretical uncertainties
of the available prediction. This is the situation for both the MSSM and the NMSSM,
the experimental error of the mass of the SM-like Higgs-boson is significantly smaller
than the theoretical uncertainties of the current predictions. Two different sources for
theoretical uncertainties exist in these predictions. One are the experimental errors
of the input parameters, the other are unknown higher-order corrections.
For the MSSM detailed estimates for theoretical uncertainties of the Higgs-mass

predictions are available, see e.g. [32, 38]. At least one tool, FeynHiggs, provides
routines for an automated estimate of the theoretical uncertainties of its Higgs-mass
prediction.
For the NMSSM several public spectrum generators are available that offer an auto-

mated calculation of Higgs-masses: FlexibleSUSY [23], NMSSMCALC [29], NMSSMTools [24,
132,133], SOFTSUSY [26–28] and SPheno [20,21]. The results obtained by the different
codes for the same set of input parameters can differ by several GeV.
A first step towards investigating the theoretical uncertainties for NMSSM Higgs-

mass predictions using DR-methods has been performed in [39]. In this publication
the tools mentioned before were used to calculate NMSSM Higgs-masses for six
sample scenarios with different physical properties. The sources for the differences
between the codes have been identified. After they have been modified to address the
differences, an agreement at the level of O(10 MeV) for the same set of higher-order
corrections has been achieved. However, this comparison did not account derivatives
resulted by use of different renormalisation schemes. Among the tested tools only
NMSSMCalc offered the option to use a mixed DR/on-shell scheme , but a comparison
between different DR/on-shell schemes was not considered in [39]. In order to improve
on this situation a comparison between NMSSMCalc and the NMSSM-extended version
of FeynHiggs developed in this work, called NMSSM-FeynHiggs in the following,
is currently performed. It follows closely the comparison performed in [39] with
necessary adaptions and extensions for the on-shell calculation as described below.
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

Q tan β(MZ) λ κ Aλ Aκ µeff M1 M2 M3 At Ab Mt̃l
Mt̃

TP1 1500 10 0.1 0.1 −10 −10 900 500 1000 3000 3000 0 1500 1500
TP2 1500 10 0.05 0.1 −200 −200 1500 1000 2000 2500 −2900 0 2500 500
TP3 1000 3 0.67 0.1 650 −10 200 200 400 2000 1000 1000 1000 1000
TP4 750 2 0.67 0.2 405 0 200 120 200 1500 1000 1000 750 750
TP5 1500 3 0.67 0.2 570 −25 200 135 200 1400 0 0 1500 1500
TP6 1500 3 1.6 1.61 375 −1605 614 200 400 2000 0 0 1500 1500

Table 9.1: Definition of the TP scenarios. All parameters are given DR
parameters at the scale Q besides tan β, which is defined atMZ . All dimensionful
parameters are given in GeV. The remaining soft SUSY breaking-parameters,
common to all points, are Mf̃L

= Mf̃ = 1500 GeV, Af = 0.

In a subsequent step a comparison between the DR/on-shell and the DR calculations
of the codes mentioned above is necessary. After these steps an estimate of theory
uncertainties can be obtained.
This section focuses on the comparison of the predictions for Higgs-masses im-

plemented in NMSSMCalc and NMSSM-FeynHiggs. It aims at an identification of all
sources for differences in their mass-predictions and eliminating all differences beside
those that are caused by the different renormalisation scheme. Since this task requires
thorough knowledge about both codes it is performed in close collaborations between
the authors of NMSSMCalc and NMSSM-FeynHiggs and is currently work in progress.
The results for modified versions of NMSSMCalc have been obtained by its authors.
First a brief description of the studied scenarios will be given followed by a short

classification of the possible sources of uncertainties Subsequently a short descrip-
tion of the differences between the codes NMSSMCalc and NMSSM-FeynHiggs will
be provided together with the means to identify those that are unrelated to the
renormalisation-scheme dependence. Finally the present status of the ongoing com-
parison will be presented.

9.1 Description of Scenarios
The test-point (TP) scenarios discussed in [39] for the comparison of the calculations
with DR-methods will also be used for the comparison between NMSSMCalc and
NMSSM-FeynHiggs. They are defined in tab. 9.1. The TP-scenarios correspond to
the following different physical situations:

• MSSM-like point (TP1)

• MSSM-like point with large stop splitting (TP2)

• Point with light singlet and λ close to the perturbativity limit (TP3)

• Point with heavy singlet and λ close to the perturbativity limit (TP4)

• Point with slightly lighter singlet. Additional matter needed for perturbativity;
inspired by [134] (TP5)

• Point with huge λ (TP6)
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All points feature an (MS)SM-like Higgs-field with a mass around 125 GeV at the
two-loop level for DR calculations. For the comparison of the DR/on-shell codes the
scenarios will be evaluated once at the high scale Q and once at the on-shell value
of the top-quark mass mOS

t = 172.9 GeV, called the low scale in the following. No
evaluation for TP2 at the low scale was possible, since the RGE-evolved parameters
at the low scale yield tachyonic stops. Since NMSSM-FeynHiggs is designed with the
intent of calculating Higgs-masses at the top-quark mass mt, only the comparison at
the low scale will be considered for the final estimate of the intrinsic uncertainties. At
this scale hybrid DR/on-shell calculations are expected to provide a more accurate
mass prediction compared to pure DR-calculations. The calculation at the high scales
will be included for completeness to enable a later comparison with the results of [39].

9.2 Classifying Uncertainties
Uncertainties of the Higgs-mas prediction can be divided into two types: Parametric
and intrinsic uncertainties. Parametric uncertainties are all uncertainties related to
the input-parameters of the calculation . Intrinsic uncertainties denote all uncer-
tainties that are related to unknown higher-order corrections. Calculations differ by
higher-order effects in particular because of differences in the renormalisation scheme
and scale of the calculation and further differences like the RGE-evolution of DR/MS-
renormalised input parameters together with their on-shell conversion.
For this comparison we will divide the theory uncertainties slightly differently

into all uncertainties that are caused by input parameters and uncertainties that
are caused by differences of the Higgs-mass calculations themselves. The input
uncertainties include the parametric uncertainties for the SM-quantities together with
higher-order effects due to the RGE-evolution and conversion of input parameters.
The remaining uncertainties are caused only by the renormalisation scheme and scale
dependence of the calculation.

9.2.1 Parametric Uncertainties
Amongst the parametric uncertainties the experimental error of the top-quark mass
mt has the by far the largest influence on the MSSM Higgs-mass predictions, since
the leading MSSM one-loop corrections are of O(m4

t/M
2
W ). In the NMSSM this also

holds for an (MS)SM-like Higgs-field. The experimental errors of remaining heavier
fermions, the bottom-quarkmb and the τ -leptonmτ , can have a minor influence on the
Higgs-mass prediction in the TP-scenarios. Since the two-loop (S)QCD contributions
to the Higgs-mass are proportional to αs, its experimental error also can have a visible
effect on result depending on the total size of the two-loop corrections. A detailed
study of the parametric uncertainties in the MSSM can be found in [38]. For the
investigation of the intrinsic uncertainties of NMSSMCalc and NMSSM-FeynHiggs both
codes get the identical input values for measured quantities. They are listed in the
appendix under sec. B.3.
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

9.2.2 SUSY Input Parameters
The TP-scenarios are defined by a complete set of independent parameters, where
all DR-quantities are given at the scale Q besides tan β, which is given at MZ . In
principle these parameters can be defined in any renormalisation scheme at any scale.
The SUSY Les Houches Accord (SLHA) has been defined in [116,135] as a well-defined
interface between different codes. In this input format all SUSY parameters have to
be given as DR-parameters together with the scale at which they are defined. Any
code reading the SLHA input-file has to transform the DR-parameters MDR

l (M j
in)

defined at their individual input scaleM j
in into the form necessary for the calculations

carried out by the code. This can include both the RGE-evolution of MDR
l to the

scale Mcalc of the calculation as well as the conversion into another renormalisation
scheme, typically the on-shell scheme,

MDR
l (M j

in)
RGE−evolution−−−−−−−−−→ MDR

l (Mcalc) conversion−−−−−→ MOS
l . (9.2)

The order at which either the RGE-evolution or the conversion is performed can give
rise to higher-order effects in the comparison of different codes.

9.2.3 Theoretical uncertainties from unknown higher-order
Corrections

Unknown higher-order corrections contribute to the intrinsic uncertainties of the
Higgs-mass prediction. Parts of them can be studied by comparing the mass pre-
dictions that employ different renormalisation schemes that account for different
higher-order contributions. The predictions of NMSSMCalc and NMSSM-FeynHiggs use
a different renormalisation and reparametrisation of the electromagnetic coupling-
constant α. Since the reparametrisation for α only accounts for on-loop order effects
of the renormalisation to a non-standard value for α, residual two-loop effects are
expected as additional higher-order corrections that appear in the comparison. These
higher-order corrections should be studied separately, since their leading contributions
can be of the order of potentially non-negligible two-loop correction from the Higgs-
sector.

9.3 Differences between NMSSMCalc and
NMSSM-FeynHiggs

The implemented functionalities in NMSSMCalc and NMSSM-FeynHiggs are different.
NMSSMCalc allows one to calculate Higgs-masses and branching-ratios in the NMSSM
with complex parameters. The currently unpublished version of NMSSM-FeynHiggs
calculates only Higgs-masses in the NMSSM with real parameters with the MSSM-
approximation at the two-loop level.

NMSSM-FeynHiggs was intended for the calculation of MSSM and NMSSM Higgs-
masses at or close to the electroweak scale for SUSY-masses up to several TeV.
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9.3 Differences between NMSSMCalc and NMSSM-FeynHiggs

Although NMSSMCalc uses a similar calculation with Feynman-diagrammatic methods,
the codes is designed to calculate the Higgs masses at a common scale that is
given in the input file. However, for purely Feynman-diagrammatic calculations the
reliability for very large SUSY masses above ≈ 5 TeV is questionable. The higher-
order corrections can become potentially large due to logarithms of the ratio of the
electroweak and the SUSY scale. Partially the problem can be remedied by the
resummation of such large logarithms, which are included in FeynHiggs and NMSSM-
FeynHiggs see [37] and references therein.

NMSSMCalc provides the calculation of NMSSM Higgs-masses with on-shell or DR
renormalised top- and stop-masses, while NMSSM-FeynHiggs provides only the on-shell
renormalisation of these sectors is implemented, with the option to reparametrise the
on-shell top-quark massmOS

t to the MS- or DR-scheme. For the comparison described
in this sections the options for on-shell renormalised top- and stop-masses will be
considered if not stated otherwise.
In this section we will focus on the differences affecting the implemented Higgs-

mass prediction for these options in the CP-conserving (real) NMSSM. The relevant
differences between the two codes stem from the employed renormalisation scheme
for electromagnetic coupling-constant α, the included higher-order corrections, and
the treatment of the strong coupling constant αs for both the Higgs-mass prediction
and the on-shell conversion of the stop-sector parameters.

Treatment of DR input-parameters

According to the SLHA-conventions all soft-breaking parameters are provided in the
DR-scheme together with their respective scale.

NMSSMCalc accepts all soft-breaking parameters at the same scale Q, which serves
as the renormalisation scale for the Higgs-mass calculation. No RGE-evolution for
the soft-breaking parameters is necessary.
In NMSSM-FeynHiggs a conversion from DR input-parameters to on-shell param-

eters, which are used internally, is performed in the stop-/sbottom-sector. In the
present version of the code no RGE-evolution for the remaining soft-breaking param-
eters is performed. Their effects are treated as higher-order effects and are neglected.
In the public version of NMSSM-FeynHiggs, the necessary routines needed for a proper
treatment of SLHA input files will be implemented.
Both NMSSMCalc and NMSSM-FeynHiggs perform the on-shell conversion at the

one-loop level. The conversion is performed at the one-loop level to account for the
on-shell renormalisation at the two-loop level.

Included higher-order Corrections

The two-loop corrections in NMSSM-FeynHiggs are approximated by the MSSM con-
tributions, while in NMSSMCalc a complete NMSSM-calculation of only the O(αtαs)
is implemented while all further contributions at the two-loop level are neglected.
Within of the MSSM-approximation NMSSM-FeynHiggs contains contributions be-
yond O(αtαs) and the resummation of large logarithms. It also includes higher-order
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

corrections to the bottom Yukawa-coupling summed up in ∆b. These additional
contributions and features that are not (yet) included in NMSSMCalc and thus will
not be considered for the comparison of the two codes.

Renormalisation Scheme of α

The renormalisation schemes employed in NMSSMCalcand NMSSM-FeynHiggs are al-
most identical to each other, with the notable exception of the renormalisation of the
vacuum expectation-value v or the electromagnetic coupling constant α. While in
NMSSM-FeynHiggs v is renormalised as an independent parameter in the DR-scheme,
in NMSSMCalc α is renormalised and α(MZ) is chosen as input parameter instead. In
the standard version of NMSSM-FeynHiggs α is reparametrised in terms of Fermi’s
constant, yielding the value αGF . In contrast to the MSSM calculation the charge
renormalisation is of particular importance for the determination of the theoretical
uncertainty for the NMSSM calculation. In the MSSM different choices for α are an
effect of two-loop order, that formally is of the same order as two-loop corrections
from the Higgs- and electroweak gauge-sector. However, the two-loop corrections of
O(αtαs) have been obtained in the electroweak gaugeless limit and thus the higher-
order effects related to the renormalisation of α are neglected for the contributions
of O(αtαs). In the NMSSM, however, the charge renormalisation appears already at
one-loop order and the numerical value of α has either to be chosen according to the
renormalisation scheme or has to be reparametrised.

Treatment of αs: Two-Loop Higgs Self-Energies

In NMSSM-FeynHiggs αs is always evolved to the scale of the on-shell top-quark mass
mOS
t from the input-value for αMS

s (MZ). In NMSSMCalc αMS
s (MZ) is evolved to a scale

Q and subsequently converted into its DR-value. The employed RGE-evolution of αs
is described in [129]. It represents the running in the SM. The MS to DR conversion
for αs can be found in [136].

Treatment of αs: On-Shell Conversion of stop-sector Parameters

Since only corrections ofO(αtαs) are considered, both codes use the MSSM-conversion
of O(αs) as described in see sec. 5.4.3. However, the calculation of the relevant
top and stop self-energies differs by the used value for αs: While NMSSM-FeynHiggs
always uses αMS

s (mOS
t ), NMSSMCalc uses αDR

s (Q). While αs does not enter the one-
loop calculation explicitly, different choices for αs cause a higher-order effect within
the on-shell conversion for the stop-sector parameters.

9.4 Identification of Input-Uncertainties
The initial task for the comparison in this section is to identify the input uncertainties
in order to isolate the intrinsic uncertainties from higher-order corrections. This is
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done by separating any treatment of the provided input parameters from the Higgs-
mass calculation and by providing adapted versions of both codes for the comparison.

9.4.1 RGE-Evolution and On-Shell Conversion of the Input
Parameters

For the calculation in the TP-scenario at the low scale the input parameters have
to be evolved from Q to mOS

t . The RGE-evolution is performed by FlexibleSUSY
1.2.2 [23], which includes the two-loop RGE-evolution in the NMSSM for the soft-
breaking parameters.
After the input parameters have been evaluated at either the high or the low scale,

all necessary input-parameters are calculated by the built-in routines of NMSSMCalc.
The parameters obtained by NMSSMCalc include the on-shell values for the trilinear
breaking parameter At and the soft-breaking masses Mt̃L and Mt̃ in the stop-sector
as well as the on-shell mass of the charged Higgs MH± . The on-shell value for MH±

is calculated with one-loop corrections for the one-loop Higgs-mass predictions and
two-loop corrections for the two-loop Higgs-mass predictions, respectively. By this
procedure of using the same input parameters in both codes possible higher-order
effects from the RGE-evolution and on-shell conversion are avoided.

9.4.2 Adapted Versions of NMSSMCalc and NMSSM-FeynHiggs

In order to address the different treatments of αs in the Higgs self-energies at the
two-loop level, the two codes will be adjusted such that they use an identical, fixed
value for αs. Further adaptions are provided for the treatment of the renormalisation
of the electromagnetic coupling constant α in order to separate this effect from the
influence of αs. The different settings are listed together with their abbreviations in
tab. 9.2. A more detailed explanation of the adaptions will be given together with
the obtained numerical results in the following section 9.5.

9.5 Numerical Results

In this section the Higgs-mass predictions for the (MS)SM-like field in the TP-
scenarios will be discussed. The scenario TP6 will be omitted, since the MSSM-
approximation is not expected to be viable for its “extreme” value of λ ≈ 1.6.
While the complete results for all CP-even Higgs-masses can be found in the ap-
pendix B.3, this section will focus on the differences between the mass-predictions
for the (MS)SM-like Higgs-field of NMSSMCalc and NMSSM-FeynHiggs. Each scenario
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

α ∆α αs comments
NMSSM-FH αGF αGF X αMS

s (mt) vanilla
NMSSM-FH α(MZ) α(MZ) X αMS

s (mt)
NMSSM-FH α(MZ)(−) α(MZ) – αMS

s (mt) unphysical

NMSSMCalc α(MZ) – αDR
s (Q) vanilla

NMSSMCalc αmod
s α(MZ) – αMS

s (mt)
NMSSMCalc (−) α(MZ) – αMS

s (mt) uses δvDR

Table 9.2: The headings specify the used value for the electromagnetic coupling
constant α, whether the reparametrisation ∆α for the used value of α has been
applied and which value for the strong coupling constant αs is used. In the versions
marked with “(−)” the chosen value for α does neither fit the renormalisation
scheme nor has a reparametrisation been applied (see text). They represent
inconsistent and thus unphysical calculations created only for the purpose of this
comparison.

will be evaluated at the high scale Q and the low scale mOS
t . Additionally a “rough”1

MSSM-limit of each scenario was evaluated.
In the following a short discussion of the singlet-admixture will be provided before

the numerical results are presented. Subsequently the theoretical uncertainties caused
by the input parameters and the MSSM-approximation of NMSSM-FeynHiggs are
presented together with an explanation of the adapted versions of the codes outlined
in tab. 9.2. In the last section the two codes will be compared for their standard
mass-predictions.

9.5.1 Singlet-admixture
The singlet-admixture to the fields hi beyond lowest-order is defined by the wave
function normalisation matrix Ẑ and the tree-level mixing matrix Ue(0) as defined
in eq. (3.34). However, in this section we use the approximation for the matrix
Ue(n) as described in sec. 3.3.1. The approximate matrices Ue(n) are obtained by the
eigenvalue decomposition from the iterative pole determination as an approximation
for the wave renormalisation factors. The quantities Ue(n) are approximately unitary
matrices with a unitarity violation of typically less than 1h, if the obtained mass
from from the iterative procedure is of the order of O(100 GeV). Since at lowest-
1The input parameters evaluated at either scale will be fixed after the RGE-evolution with non-
vanishing values for λ and κ, and subsequently the MSSM-limit, involving λ, κ → 0, is taken.
For a future comparison with DR-calculations the MSSM-limit should be applied before any
RGE-evolution takes place, to ensure that both codes calculate results in the same scenario.
Since λ and κ have the largest effect on genuine NMSSM-parameters, the error of this approach
is expected to be minor for the present calculation. Also for the purpose of the presented results
the “rough” MSSM-limit is sufficient since no RGE-evolution is implemented in either NMSSMCalc
or NMSSM-FeynHiggs.
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order the singlet-admixture to the fields hi is determined by the squared matrix-
elements |Ue(0)|2i3, we will assume that at higher-orders the matrix-elements |Ue(n)|2i3
approximate the singlet-admixture to hi2.
For the TP-scenarios numerical values for the |Ue(0)|2i3 and |Ue(n)|2i3 are presented

in tab. 9.3. The depicted values for |Ue(n)|2i3 are obtained by the pole determination
for the mass of the the lightest CP-even Higgs-field.

Comparison I Comparison II
|Ue(n)|213 |Ue(n)|223 |Ue(n)|233 |Ue(n)|213 |Ue(n)|223 |Ue(n)|233

TP1
n = 0 0 1 0 0 1 0
n = 2 0 1 0 0 1 0

TP2
n = 0 0 1 0 – – –
n = 2 0 1 0 – – –

TP3
n = 0 0.84 0.14 0.02 0.95 0.03 0.02
n = 2 0.92 0.06 0.02 0.96 0.02 0.02

TP4
n = 0 0 0.97 0.03 0 0.97 0.03
n = 2 0.17 0.80 0.03 0.02 0.95 0.03

TP5
n = 0 0.03 0.95 0.02 0.13 0.84 0.02
n = 2 0.31 0.67 0.02 0.28 0.69 0.02

Table 9.3: Singlet-admixture |Ue(0)|2i3 at lowest order and approximate two-loop
singlet-admixture |Ue(2)|2i3 to the fields hi for the high scale Q (comparison I)
and the low scale mOS

t (comparison II). The mass hierarchy mh1 < mh2 < mh3 is
assumed.

At two-loop order in each scenario TP1 . . . 4 one field can be identified to be
dominantly singlet-like. For TP5 the singlet-admixture is significant for both lighter
Higgs-fields. For TP4 the singlet-admixture to h1 at the low scale mOS

t is an order of
magnitude smaller than at the high scale Q. This may lead to smaller higher-order
effects from the genuine NMSSM corrections.

9.5.2 Higher-order effects from αs

The codes NMSSMCalc and NMSSM-FeynHiggs have a different standard value that
is used internally for the strong coupling-constant αs: In NMSSMCalc the DR renor-
malised value for αs is evaluated at the scale specified in the SLHA-Input file, while
NMSSM-FeynHiggs always uses the MS-value of αs at the pole mass of the top-
quark. The value for αs is fixed intentionally, since NMSSM-FeynHiggs is designed
to calculate the Higgs-mass at the electroweak scale. The strong scale dependence
2In [39] the dominantly singlet- and the (MS)SM-like fields are identified primarily by the matrix

Ue(n).
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

of αs can lead to vastly different two-loop results for the Higgs-masses, since all two-
loop contributions of O(αtαs) are directly proportional to αs. In fig. 9.1 the absolute
differences between the two mass-predictions for the dominantly (MS)SM-like Higgs-
field obtained by the standard (vanilla) version of NMSSMCalc and NMSSM-FeynHiggs
are shown in orange for all TP-scenarios at the high and low scale. In order to
eliminate the influence of different values for the electromagnetic coupling constants,
the used NMSSM-FeynHiggs-modification includes the reparametrisation for α(MZ) if
not stated otherwise. It is abbreviated with “NMSSM-FH α(MZ)”. The comparison for
TP2 at the low scale is unphysical, since the scenario yields negative squared masses
for the stop-squarks after the RGE-evolution. Throughout this chapter it will be
treated as if the difference between the codes were zero to allow an easy comparison
between charts depicting the low- and high-scale results.
For the calculation at the high scale the differences between the mass-predictions

can exceed 5 GeV, while at the low scale the difference generally remains below 1 GeV.
This behaviour is a pure MSSM-effect, since also TP2 with a very small value for
λ is significantly affected. It can be directly traced back to the scale dependence
of αs. The values at the different scales Q in the TP-scenarios are shown in the
DR- and MS-scheme in tab. 9.4. The shown values for αMS

s were obtained with the

Q αMS
s (Q) αDR

s (Q)
mOS
t 0.10697 0.10789

750 GeV 0.09065 0.09131
1000 GeV 0.08803 0.08865
1500 GeV 0.08458 0.08515

Table 9.4: The strong coupling constant at the different scales Q of the TP-
scenarios and the top-quark mass mOS

t . As starting value αs(MZ) = 0.1184 [119]
was used.

results of [129] including corrections up to partial four-loop order as implemented in
NMSSMCalc, while the values for αDR

s were obtained with the two-loop result of [136].
The scale variation has a larger effect on αs than the MS to DR conversion.
In tab. 9.5 the two-loop shifts to the (MS)SM-like Higgs-boson masses,

m
(2L)
hi

= m
(tree)
hi

+ ∆m(1L)
hi

+ ∆m(2L)
hi

= m
(1L)
hi

+ ∆m(2L)
hi

(9.3)

with

∆m(2L)
hi

= m
(2L)
hi
−m(1L)

hi
, (9.4)

are given for the vanilla version of NMSSMCalc and NMSSM-FeynHiggs reparametrised
to α(MZ) together with the change of the strong coupling constant at the high scale
αDR
s (Q), that is used in NMSSMCalc, relative to its MS value at mOS

t , that is used
in NMSSM-FeynHiggs. The majority of the difference between the two-loop shifts
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Figure 9.1: Absolute difference between the two-loop predictions for the mass
of the dominantly (MS)SM-like Higgs-field of NMSSMCalc and “NMSSM-Feyn-
Higgs α(MZ)” (orange, ∆m = |m(NC)

hi
− m(N-FH α(MZ))

hi
|), “NMSSMCalcαmod

s ” and
“NMSSM-FeynHiggs α(MZ)” (brown, ∆m = |m(NC αmod

s )
hi

− m
(N-FH α(MZ))
hi

|), and
“NMSSMCalcαmod

s ” and “NMSSM-FeynHiggs α(MZ)(−)” (blue, ∆m = |m(NC αmod
s )

hi
−

m
(N-FH α(MZ)(−))
hi

|). The upper chart shows the comparison at the high scale, the
lower chart at the low scale.
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∆m(2L)/GeV
Q/GeV NMSSMCalc NMSSM-FH ∆αsrel

TP1 1500 19.692 25.263 ≈ 20%
TP2 1500 20.253 26.014 ≈ 20%
TP3 1000 10.896 13.196 ≈ 17%
TP4 750 4.571 5.675 ≈ 15%
TP5 1500 11.603 13.875 ≈ 20%

Table 9.5: Two-loop shifts ∆m = |m(2L) − m(1L)| for NMSSMCalc and NMSSM-
FeynHiggs with α(MZ) and relative difference between the values of the strong
coupling constant in the MS-scheme at the top-quark pole mass m(OS)

t and in the
DR-scheme at the high scale Q, δαrel = (αs(m(OS)

t )− αs(Q))/αs(m(OS)
t )

of NMSSMCalc (abbreviated as NC) and NMSSM-FeynHiggs (abbreviated as N-FH) in
tab. 9.5 at the high scale can be explained by ∆αsrel, since

∆mN-FH (1−∆αsrel) ≈ ∆mNC. (9.5)

The calculation at the low scale is only influenced by the MS to DR conversion, and
the low-scale mass-predictions are in much better agreement with each other than
the high-scale mass-predictions, that are also affected also by the RGE-evolution of
αs.
In order to eliminate the influence of an RGE-evolving αs and its renormalisa-

tion scheme conversion, NMSSMCalc was modified such that it uses the same value
αMS
s (mOS

t ) as NMSSM-FeynHiggs. This version is labelled “NMSSMCalc αmod
s ”. The dif-

ference between the two-loop mass predictions of this modified version and “NMSSM-FH
α(MZ)” is shown in brown in fig. 9.4. For the calculation at the high scale both codes
show much more similar results with a difference of at most 430 MeV. At the low
scale the modified version “NMSSMCalc αmod

s ” yields a more similar mass prediction for
the MSSM-like scenario TP1 and TP5. For TP3 and TP4 the differences between the
two predictions are slightly increased compared the comparison with the unmodified
version of NMSSMCalc and can be attributed to the MS–DR-conversion of αs and the
two-loop MSSM-approximation of NMSSM-FeynHiggs.
The residual differences are increased for larger singlet-admixtures and increased

difference between the mass-scale of the stops and the renormalisation scale. These
behaviours can be observed in both charts in fig. 9.1: The residual differences between
the predictions of “NMSSM-FH α(MZ)” and “NMSSMCalc αmod

s ”, that are depicted in
brown in fig. 9.1, are smaller at the high scale, where the renormalisation scheme
µr is chosen close to the stop-masses (tab. 9.6). They are somewhat enhanced for
the scenarios with larger mass-splitting in the stop-sector, most notably for TP3 and
TP4. The extreme mass-splitting for TP2 is mitigated by the small values of λ, which
suppress genuine NMSSM-corrections.
In order to eliminate the theoretical uncertainty induced by αs for all subsequent
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Comparison I Comparison II
mt̃1 mt̃2 mt̃1 mt̃2

TP1 1360.25 1656.14 1547.21 1564.19
TP2 2553.68 507.225 – –
TP3 941.474 1085.45 941.784 1085.16
TP4 669.224 855.688 760.14 549.379
TP5 1547.21 1564.19 1503.75 1468.22

Table 9.6: Stop-squark masses in GeV at tree-level for the calculation at the
high scale Q (comparison I) and low scale mOS

t (comparison II).

studies both NMSSMCalc and NMSSM-FeynHiggs will use the same fixed value for
αMS
s (m(OS)

t ) = 0.10697. For all following studies this modification is considered to
be included if not stated otherwise. Hence, the addition “αmod

s ” for the αs-modified
version of NMSSMCalc will be dropped in the following.

9.5.3 Effects of the MSSM-Approximation
The residual differences between NMSSMCalc and “NMSSM-FH α(MZ)”, depicted in
brown in fig. 9.1, are caused by the different renormalisation schemes for δv and δZe,
respectively, and the two-loop MSSM-approximation of NMSSM-FeynHiggs. They
correlate to the difference studied in sec. 8.1.3, but have a generally somewhat larger
impact than the effects observed in that section. Scenario TP3 bares the closest
resemblance of the physical situation in the sample scenario from section 8.1.3.
Both scenarios feature a light singlet-like state (tab. B.1) with relatively small mass-
splitting in the stop-sector and a large gluino-mass.
In order to disentangle the effects from the renormalisation scheme and the approx-

imation a further comparison is performed, where NMSSMCalc and NMSSM-FeynHiggs
were modified such that both codes use a DR renormalisation scheme for the vacuum
expectation-value v while using α(MZ) without applying a reparametrisation. These
versions are labelled “NMSSMCalc (−)” and “NMSSM-FH α(MZ)(−)”. These modified
versions do not reflect a physical calculation, since they use a value for α that does
not fit the applied renormalisation condition without applying a reparametrisation.
However, the residual two-loop difference between the these versions, that is depicted
in blue in fig. 9.1, provides an insight into the size of the genuine NMSSM two-
loop corrections. For the calculation at the high scale they remain below 90 MeV
in all TP-scenarios and are largest for TP5, where the singlet-admixture to the
dominantly (MS)SM-like field is largest. For the calculation at the low scale the
residual differences are slightly larger, up to 210 MeV, for TP5.
Thus the MSSM-approximation can be expected to lead to an effect that is minor

compared to the effect of the different renormalisation schemes. The effect of the
differences in the renormalisation scheme is enhanced compared to the effect observed
earlier in section 8.1.3 for the sample scenario that is similar to TP3. This enhance-
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

O(αtαs) O(αtαs, αbαs) ’full’ ∆m1 ∆m2
+ MSSM

TP1 124.84 123.84 123.84 < 0.01 < 0.01
TP2 123.81 123.08 123.05 0.73 0.03
TP3 127.55 126.59 126.10 0.96 0.49
TP4 128.23 127.52 126.33 0.71 1.19
TP5 126.12 125.12 124.85 1.00 0.27

Table 9.7: Results for the (MS)SM-like Higgs-mass for the high scale as obtained
with SPHENO from [39]. The orders of the included two-loop NMSSM-contributions
are stated, where “MSSM” refers to the DR results for the corrections that are
included in FeynHiggs and ’full’ denotes the corresponding NMSSM-contributions
plus the correction from the Higgs-sector in the gaugeless limit, that means
corrections including the couplings λ and κ. The differences ∆mi denote the
impact of the MSSM corrections, ∆m1, and the Higgs-sector contributions, ∆m2.
The corrections of O(αbαs) alone are negligible for all scenarios.

ment is driven by the larger values of λ. The uncertainty arising from employing
the MSSM-approximation can be seen to be insignificant compared to the other
theoretical uncertainties for all TP-scenarios. The largest (but still numerically small)
effect occurs to TP5, where the increased singlet-admixture to the (MS)SM-like field
accounts for a larger impact of the MSSM-approximation.

9.5.4 Higher-order effects from the Reparametrisation
In NMSSM-FeynHiggs the reparametrisation procedure for α is applied at the tree-
level, leading to a reparametrised result at one-loop order. Beyond one-loop order the
reparametrisation shifts are considered to be negligible higher-order effects. However,
a reparametrisation for the genuine NMSSM one-loop Higgs-contributions would re-
sult in contributions that are formally of the same order as the two-loop contributions
from the Higgs-sector. The impact of these contributions can be estimated for the
TP-scenarios. For the comparison of DR-calculations in [39] the code SPheno includes
two-loop corrections from the Higgs-sector in the gaugeless limit. The corresponding
numerical results are given in tab. 9.7 for convenience3.
While the Higgs-sector contributions at the two-loop level give rise to a small

mass-shift for the MSSM-like scenarios TP1 and TP2, their effect on the mass of the
(MS)SM-like fields reside between 0.3 and 1.2 GeV for TP3-5. As mentioned above,
a change in the parametrisation of α1 at the one-loop level induces a shift that is of
the order of the two-loop contributions from the Higgs-m and gauge-sector. It can
therefore give an indication of possible effects of unknown higher-order effects of this
3While the two-loop MSSM-corrections seem to have a very small effect on the results in all TP-
scenarios, they have been found to yield a larger effect for the calculation with mixed on-shell/DR
renormalisation schemes in certain scenarios.
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order.

9.5.5 Higher-order effects from α

In fig. 9.2 the differences ∆m between the two-loop mass-predictions using the values
α(MZ) and αGF , and the corresponding renormalisation schemes are depicted. In
order to disentangle the effects that are genuine to the NMSSM, the difference between
the corresponding Higgs-mass predictions in the MSSM are depicted in orange. For
the original TP-scenarios two results are presented. In brown the difference between
the NMSSM-FeynHiggs versions with the reparametrisations to αGF and to α(MZ) are
depicted, while the difference between the vanilla versions of NMSSM-FeynHiggs with
corrections up to Oαtαs only and NMSSMCalc is depicted in blue.
Both for the calculation at the high and the low scale the difference between the

MSSM-results ranges between 500 and 700 MeV, with marginally larger differences
for the calculation at the low scale.
For the MSSM-like scenarios TP1 and TP2 the genuine NMSSM-effects are small

at both scales. They remain below 50 MeV for both the results obtained with only
one or two different codes.
For TP3-5 the difference between the reparametrised versions of NMSSM-FeynHiggs

is generally smaller than the difference in the MSSM-limit. The comparison of the
vanilla versions of NMSSMCalc and NMSSM-FeynHiggs yields larger differences, since
it accounts also for the different renormalisation schemes. The size of this additional
difference between the two comparisons for the TP-scenarios (brown and blue bars
in fig. 9.2) closely resembles the differences obtained for the comparison between
NMSSMCalc and “NMSSM-FH α(MZ)” (brown bars in fig. 9.1). For an estimate of the
remaining theoretical uncertainties from unknown higher-order corrections all the
above effects have to be taken into account.
The genuine NMSSM-effects are more important for scenarios with rather large

values for λ (TP3-5), where the difference can be altered by up to 500 MeV compared
to the MSSM-result at the high scale. For TP5 that means that the MSSM-difference
(orange) is almost completely absorbed by genuine NMSSM-effects. For scenarios
with large mass-splitting in the stop-sector the genuine NMSSM-effects are somewhat
enhanced (TP3, TP4) as well as for a larger singlet-admixture (TP5).
For the calculation at the low scale the genuine NMSSM-effects alter the MSSM-

result by at most 200 MeV. From the obtained results neither at the high nor at the
low scale a tendency can be deduced that indicates a general increase or a decrease of
the differences due to genuine NMSSM-effects. However, the difference between the
calculation using only one and both codes (brown and blue bars in fig. 9.2) is increased
for large mass-splitting in the stop-sector (TP3, TP4) and a larger singlet-admixture
(TP5).
The presented results indicate that the renormalisation scheme of the electromag-

netic coupling constant α can have a significant numerical impact on the mass-
prediction even for a (MS)SM-like Higgs-field of up to 1 GeV from the combined
MSSM-like and genuine NMSSM-effects. The comparison between the two codes
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Figure 9.2: Absolute difference between the two-loop mass-prediction
parametrised in terms of α(MZ) and αGF for the MSSM-limit (orange, ∆m =∣∣∣m(NC)
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∣∣∣), and between the original versions with

corrections up to O(αtαs) (blue, ∆m =
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∣∣∣), of the TP-scenarios.
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9.6 Conclusion

based on somewhat different schemes reveals differences that go beyond the ones
obtained from changing the parametrisation in a single code.

9.5.6 Higher-order effects from the Top-/Stop-sector
In this section results for the comparison of “NMSSMCalc αmod

s ” with DR-renormalised
masses in the top-/stop-sector and the standard version of NMSSM-FeynHiggs with
on-shell renormalised masses in the top-/stop-sector are presented in tab. 9.8. The
scenarios were evaluated at the scale mOS

t . The results are preliminary, in the sense
that the DR-option in NMSSMCalc only accounts for the conversion of the top-mass
and stop-sector parameters, but not for the determination of the on-shell mass for
the charged Higgs. In NC the on-shell charged Higgs mass is determined with top-
and stop-masses in the chosen renormalisation scheme, while the results for NMSSM-
FeynHiggs are obtained for the on-shell mass for the charged Higgs obtained with on-
shell top- and stop-masses. The differences between the two codes for contributions

TP1 TP2 TP3 TP4 TP5
NMSSMCalc αmod

s 116.94 – 128.34 132.29 123.84
NMSSM-FH O(αtαs) 113.19 – 123.39 128.25 121.78
NMSSM-FH 121.70 – 126.30 131.13 123.48

Table 9.8: Results for the (MS)SM-like Higgs-field obtained in the TP-scenarios
from the codes “NMSSMCalc αmod

s ” with DR-renormalised masses in the top-/stop-
sector and NMSSM-FeynHiggs evaluated once including only the corrections up to
O(αtαs) and once including all corrections of O

(
αsαt, α

2
t , αsαb, αtαb

)
with on-shell

renormalised masses in the top-/stop-sector.

up to O(αtαs) employing a DR and the on-shell renormalisation of the stop-sector are
found to be sizeable, reaching up to 5 GeV for TP3. The inclusion for the additional
MSSM corrections result in a sizeable shift compared to the results including only
correction of O(αtαs), reaching up to 8.5 GeV for TP1. For all TP-scenarios the
results including the additional MSSM contributions in the on-shell scheme for the
top-/stop-sector are generally closer to the result with a DR scheme in the same
sector including only corrections up to O(αtαs).

9.6 Conclusion
In order to asses theoretical uncertainties from unknown higher-order corrections, in
a first step the theoretical uncertainties related to the input parameters in NMSSMCalc
and NMSSM-FeynHiggs have been identified. Different modified versions of both codes
have been developed to disentangle different sources for higher-order effects:

• Higher-order effects from the soft-breaking input-parameters have been dis-
entangled by separating their RGE-evolution and on-shell conversion of DR
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9 Theoretical Uncertainties for NMSSM Higgs-mass predictions

input-parameters from the actual Higgs-mass calculations.

• Higher-order effects from αs have been identified. For comparison purposes a
modified version of NMSSMCalc has been provided by its authors, where the
fixed value αMS

s (mOS
t ) is used.

• Higher-order corrections from the renormalisation scheme of α have been ad-
dressed by adapting both codes such that both use the identical renormalisation
scheme for α.

With these modified versions it was possible to isolate the uncertainty related to the
MSSM-approximation in NMSSM-FeynHiggs. For the points TP1-4 the uncertainty
remains very small and does not exceed 140 MeV, while the larger singlet-admixture to
the (MS)SM-like Higgs-field for TP5 slightly increases the uncertainty to ≈ 210 MeV.
Furthermore the uncertainties estimated by different renormalisation prescriptions

for α the top-/stop-sector have been quantified for the evaluation at the low scale
mOS
t :

• Higher-order effects from the top-/stop-sector induced by either choosing the
DR or the on-shell scheme for the top- and stop-masses together with different
renormalisation prescriptions for α yield a effects between 2-5 GeV. Their total
size is similar to the expected MSSM-effects [38].

• Higher-order effects from different renormalisation prescriptions for α yield no
significant differences to the corresponding effect in the MSSM. The genuine
NMSSM-effect remains . 200 MeV for all studied scenarios. Thus it remains
small compared to the studied higher-order effects from the top-/stop-sector.

The comparison of different renormalisation prescriptions has been used to study
the order of unknown higher-order correction. The investigation at the one-loop level
revealed that genuine NMSSM-contributions from the Higgs- and gauge-sector can
be sizeable. However, only the DR results in the gaugeless limit are available so
far for the Higgs-sector contributions at the two-loop level. The resummation of
large logarithms, which is only contained in NMSSM-FeynHiggs, can yield additional
contributions in the range of several GeV for SUSY masses of more than 2 TeV [37].
Appropriate estimates of theoretical uncertainties are necessary for for different pa-
rameter regions taking into account the type of corrections implemented in different
codes.
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10 Conclusion
The goal of the work presented in this thesis was to provide precise predictions
for the Higgs-masses and related quantities in the Next-to-Minimal Supersymmetric
Standard Model (NMSSM). Such precise predictions are important for an accurate
interpretation of the Higgs signal discovered in 2012 at the LHC and the already very
precise determination of its mass.
We presented a detailed discussion of the Higgs-mass prediction in the NMSSM for

the full and partial contributions at the one-loop level, while at two-loop order the
result was approximated with the known corrections from the Minimal Supersym-
metric Standard Model (MSSM). The applied MSSM approximation was motivated
by a detailed study of analytic and numeric properties of the one-loop contributions
and numeric properties of the two-loop contributions in Chapters 6 and 8.
The status of automated higher-order calculations in the NMSSM with real and

complex parameters for the tools FeynHiggs, FeynArts and FormCalc and upcoming
improvements as a consequence of this work were briefly discussed in Chapter 7.
Furthermore, we presented first results for an estimation of theoretical uncertainties

in the NMSSM from genuine NMSSM-effects in Chapter 9.

NMSSM Higgs-mass prediction

The Higgs-masses in the Next-to-Minimal Supersymmetric Standard Model (NMSSM)
can receive potentially large higher-order corrections. In order to provide a precise
prediction for the Higgs-masses, these higher-order contributions have to be calcu-
lated and included. We provided Higgs-mass predictions for the CP-even and -odd
sectors, that contain a full calculation of the momentum-dependent one-loop correc-
tion and added the known, momentum-independent MSSM two-loop corrections of
O(αsαt, α2

t , αsαb, αtαb) to the result. The terms neglected by the MSSM approxima-
tion are genuine contributions for the gauge-singlet Higgs-field and its mixing with
the remaining Higgs-fields at higher-orders. Our approximation is intended for the
use in scenarios where the NMSSM remains predictive up to the GUT-scale MGUT.
For the one-loop contributions from the sfermions the genuine MMSSM contribu-

tions are sub-leading to the corresponding MSSM-like contributions, if one demands
perturbativity of the theory up to the scale MGUT, which implies that λ . 0.7. The
suppression of the genuine NMSSM-contributions is caused by a relative suppression
of the singlet–sfermion couplings compared to the according doublet–sfermion cou-
plings by small values of λ and large values of µeff. For large values of λ the genuine
NMSSM one-loop corrections from sfermions become larger. However, we found that
for such cases the genuine NMSSM-contribution from the Higgs-sector, that grow
faster with λ can be more important, especially for the mass of a singlet-like state.
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10 Conclusion

The behaviour of the genuine NMSSM contributions at the one-loop level suggests a
similar behaviour of the genuine NMSSM contributions at the two-loop level. We have
tested this assumption by comparing the result including contributions of O(αtαs)
between the MSSM approximation and the NMSSM contributions available in the
code NMSSMCalc in a genuine NMSSM scenario where the second lightest state is
responsible for the Higgs signal at around 125 GeV. We found that they were still
sub-leading to their MSSM-counterparts at two-loop order, especially for the mass
of a (MS)SM-like Higgs-field. These results suggest that the MSSM-approximation
is applicable for two-loop corrections beyond O(αtαs). However, the DR-results for
the NMSSM two-loop contributions from the Higgs-sector imply that the genuine
NMSSM corrections from the fermions are in comparison also sub-leading as they are
at the one-loop level.
The dependence of the mass of a singlet-like state on the trilinear breaking pa-

rameter of the stop sector, At, has been investigated. We found that even for a
doublet-admixture of less than 1% the dependence on At can be dominated by the
At-dependence of the admixed doublet-like fields.

Automated higher-order calculations

The renormalisation scheme developed in this work forms the basis for a FeynArts
model file for the NMSSM with complex parameters. It will include all one-loop coun-
terterms to allow automatic higher-order calculations. Based on the presented results
the code FeynHiggs will be extended to provide NMSSM Higgs-mass predictions and
the calculation of the wave function normalisation matrix Ẑ with renormalised self-
energy contributions up to the two-loop level in the applied MSSM approximation.

Theoretical Uncertainties for NMSSM Higgs-mass Predictions

As a first step for estimating the intrinsic theoretical uncertainties of NMSSM Higgs-
mass predictions, the comparison of different renormalisation prescriptions imple-
mented in the codes NMSSMCalc and NMSSM-FeynHiggs has been used to study the
order of unknown higher-order corrections.
We compared our results of NMSSM-FeynHiggs with the code NMSSMCalc for con-

tributions of up to O(αtαs). We found that higher-order effects induced by different
renormalisation prescriptions for the electromagnetic coupling α and the top-/stop-
masses are of similar size to the according difference in the MSSM calculation. The
higher-order effects induced by different renormalisation prescriptions for the strong
coupling αs are minor compared to higher-order effects induced by a possible RGE-
evolution of αs, that can be induced by choosing a non-standard renormalisation scale
for the Higgs-mass calculation implemented in FeynHiggs. The standard renormal-
isation scale for the Higgs-mass predictions in FeynHiggs is either the on-shell, MS
or DR mass of the top-quark, that is used in the calculation. By including MSSM
corrections beyond O(αtαs) an additional sizeable higher-order effect is induced that
reaches up to 8 GeV. The investigation at the one-loop level revealed that genuine
NMSSM-contributions from the Higgs- and gauge-sector can be sizeable. However,
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only the DR results in the gaugeless limit are available so far for the Higgs-sector
contributions at the two-loop level and can yield a sizeable effect for the studied
scenarios between 1 and 2 GeV. The resummation of large logarithms, which is only
contained in NMSSM-FeynHiggs, can yield additional contributions in the range of
several GeV for SUSY masses of more than 2 TeV. For appropriate estimates of
theoretical uncertainties in the NMSSM are necessary for different parameter regions
taking into account the type of corrections implemented in different codes.
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A Appendix: Theory

A.1 Conventions and Notation

A.1.1 Conventions
The metric tensor is defined as follows

gµν = diag (1,−1,−1,−1). (A.1)

The γ-matrices are given in the Weyl representation by

γµ =
(

0 σµ

σ̄µ 0

)
where σµ = (1, ~σ) , σ̄µ = (1,−~σ) (A.2)

with the three dimensional Pauli matrices ~σ. From these matrices the left- and right-
chiral projectors for Dirac fermions,

PL = 1
2
(
1− γ5

)
and PR = 1

2
(
1 + γ5

)
, (A.3)

can be formed with γ5 = iγ0γ1γ2γ3. The elementary charge e is defined positive in
this work, e > 0.

A.1.2 Grassmann Numbers
The left-sided derivative of Grassmann coordinates from chapter A.3.1 can be defined
by

∂αϑβ ≡
∂

∂ϑα
ϑβ := δαβ, ∂̄

α̇ϑβ̇ ≡
∂

∂ϑ̄α̇
ϑ̄β̇ := δα̇β̇. (A.4)

The integral over a Grassman variable can be defined by its application to a general
superfield (A.38), ∫

dϑαF (x, ϑ, ϑ̄) :=
√

2ξα(x), (A.5)∫
dϑ̄αF (x, ϑ, ϑ̄) :=

√
2χα(x), (A.6)∫

d2ϑF (x, ϑ, ϑ̄) := M(x), (A.7)∫
d2ϑ̄F (x, ϑ, ϑ̄) := N(x), (A.8)
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∫
d2ϑd2ϑ̄F (x, ϑ, ϑ̄) := 1

2D(x). (A.9)

A.1.3 SU(2)L-invariant Product
The product of two SU(2)L-doublets Φ1 and Φ2 is defined by

Φ1 ·Φ2 = εαβΦα
1 Φβ

2 , εαβ =
(

0 −1
1 0

)
αβ

. (A.10)

A.2 SU(N) invariant Yang–Mills Theory
The invariant action S of a field theory is given by

S =
∫

d4x L. (A.11)

Invariance of the measure under Poincaré- and local SU(N) gauge-transformations
leads to an invariant Lagrangian under the same transformations. Its parts will be
outlined in the following section. For an abelian group the relations in this section
hold for vanishing structure functions.

A.2.1 Poincaré Invariance and allowed kinetic Terms
The fields of a relativistic invariant quantum field theory (QFT) transform under a
representation of the Poincaré-group, which is formed by the Lie algebra

[P µ, P ν ] = 0 , (A.12a)
[P µ, Jρσ] = i (gµρP σ − gµσP ρ) , (A.12b)
[Jµν , Jρσ] = i (−gµρJνσ + gνρJµσ − gνσJµρ + gµσJνρ) (A.12c)

of its generators P µ and Jµν . This invariance determines the structure of all possible
terms in the Lagrangian density. All so far observed elementary particles in nature
carry either spin 0, 1/2 or 1. The allowed kinetic terms for complex scalar (φ, spin
0), fermion (ψ, spin 1/2) and vector (Aµ, spin 1) fields are1

Lkin = Lkin,scalar + Lkin,fermion + Lkin,vector

= −φ†∂µ∂µφ+ ψ̄ /∂ψ − 1
4F

µνFµν ,
(A.13)

where ψ̄ = ψ†γ0, /∂ = γµ∂µ and F µν denotes the total antisymmetric field-strength
tensor. The kinetic term (A.13) describes massless, non-interacting, relativistic fields.

1Terms involving the dual field strength tensor lead to total derivatives that do not contribute to
the action.
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A.2.2 Gauge Invariance

The choice of the gauge group under which the Lagrangian of the theory remains in-
variant determines the described interaction. All fields of the theory that are charged
under a specific generator have to be given in a specific multiplet representation of
the according gauge group. For this work only the (anti-)fundamental and adjoint
representations are necessary.
A field F that is charged under a gauge group SU(N) is given in the fundamen-

tal representation, the corresponding anti field F̄ is given in the anti-fundamental
representation. The field F transforms under SU(N) as

F (x)→ exp [−iα(x)]F (x). (A.14)

Fields uncharged under the gauge group transform trivially as a singlet. The bold
faced α is given in the adjoint representation of SU(N) and can be written with its
generators Ta

α(x) = g
N2−1∑
a=1

αa(x)Ta (A.15)

Here g is the real valued coupling constant of the theory. Since fields in the adjoint
representation are of matrix value, they are bold faced in the following. The N2 − 1
generators for SU(N) fulfil the commutation relations

[Ta,Tb] = igfabcTc (A.16)

with the structure constants fabc. The spin-one fields V µ of the theory are given in
the adjoint representation of SU(N),

Vµ = g
N2−1∑
a=1

V a
µ T

a (A.17)

and transform as

Vµ → Vµ + ∂µα+ i [α,Vµ] , (A.18a)

which reads in components

Vµ,a → Vµ,a + ∂µαa + gfabcV
b
µα

c. (A.18b)

To maintain gauge invariance of the kinetic terms given in (A.13), the transition from
the derivative to the covariant derivative has to be performed for the fermions and
scalars of the the theory,

1∂µ →Dµ = 1∂µ + iVµ = 1∂µ + ig
N2−1∑
a=1

V a
µ T

a. (A.19)
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The field-strength tensor for the spin-one fields is now given by the covariant deriva-
tive

Vµν = i
g

[Dµ,Dν ] = 1
g

(∂µVν − ∂νVµ − [Vµ,Vν ]) (A.20a)

which reads in components

V a
µν = ∂µV

a
ν − ∂νV a

µ − igfabcV b
µV

c
ν . (A.20b)

The component fields V a
µ are called gauge bosons. For more than one gauge group

the transformations for the fields (A.14) and the covariant derivative (A.19) can be
extended by additional transformations.
The kinetic terms for the fermions and gauge bosons in a gauge theory with an

SU(N) invariance read

Lkin =
∑
i

ψ̄i /Dψi − Tr [V µνVµν ], (A.21)

where the index i sums over all fermion multiplets and singlets and the trace is
understood over the component fields

Tr [V µνVµν ] =
N2−1∑
a=1

V a,µνV a
µν . (A.22)

A.2.3 Spontaneous Symmetry-Breaking
Mass terms for gauge bosons violate gauge invariance explicitly. To maintain a
description of vector bosons within a framework of gauge theories the mechanism
of spontaneous symmetry-breaking can be used. In order to generate mass terms for
gauge bosons by spontaneous symmetry breaking a Lorentz-scalar, the Higgs field Φ,
in the fundamental representation of SU(N) can be introduced to the theory. The
Lagrangian for this field is given by

LHiggs = (DµΦ)† (DµΦ)− VH(Φ) (A.23)

with the Higgs potential VH . The Higgs field can be decomposed as

Φ = v + φ = v + ϕ+ χ (A.24)

into multiplets in the fundamental representation of SU(N) for the constant vacuum
expectation-value v and fields φ. To avoid confusion between symbols the underlined
quantities in the decomposition are multiplets in the fundamental representation of
SU(N). The component fields are distinguished by an index. The fields φ can be
further decomposed into the physical Higgs fields ϕ and the massless Goldstone bosons
χ, that accompany spontaneous breaking of continuous symmetries [137–139]. These
Goldstone modes can be absorbed into the gauge bosons by a gauge transformation
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and thus the vector bosons gain a longitudinal degree of freedom. Demanding the
decomposition of (A.24) breaks the SU(N) symmetry spontaneously. The explicit
form of v is determined by requiring that VH(v) is minimal at the classical level.
The mass terms for the gauge bosons are obtained by inserting the vacuum-

expectation value into the kinetic term of the Higgs field,

(Dµv)†i (D
µv)i = g2

[
v∗j
(
T aji
)†
T bikvk

]
V a
µ V

b,µ ≡
(
M2

V

)
ab
V a
µ V

b,µ. (A.25)

Here M2
V is the squared mass matrix for the gauge bosons.

A.2.4 Quantisation

It is not possible to quantise the Lagrangian (A.13) naively, since one would quantise
unphysical degrees of freedom of the gauge bosons. Gauge invariance is a symmetry of
the classical (unquantised) theory and alone is not sufficient to construct quantised
vector fields that suffice the commutation relations of canonical quantisation. A
generalisation of the gauge symmetry that holds for the quantised theory provides a
way to circumvent these problems. This symmetry is called Becchi–Rouet–Stora—
Tyutin (BRST) symmetry [140–143]. It allows to add BRST-invariant terms that
violate gauge invariance explicitly. Additionally, new, unphysical degrees of freedom,
the so called ghost fields, are introduced for each of the vector fields.
With the BRST operator s [69] the gauge fixing and ghost terms reads

Lfix+ghost = Lghost + Lfix = s (ūaF a) . (A.26)

The implicit sum over the group indices is understood here and in the following. Here
ūa is the antighost field and F a the gauge fixing functional, which can be written as

F a = ξA
2 B

a + Ca[Aµ], Ba = −1
ξ
Ca. (A.27)

The real parameter ξA is called a gauge-fixing parameter. Here Ba is an auxiliary
field, the Nakanishi–Lautrup field that can be eliminated by its equation of motion,
and Ca is a functional depending of the vector field itself. The Ca can be chosen
arbitrarily. A convenient choice for Ca is the Rξ-gauge,

Ca = ∂µAaµ + igξ′AviT aijφj, (A.28)

which avoids gauge boson–Goldstone mixing propagators at tree-level. Here g is the
coupling constant of the gauge group. Inserting (A.27) and (A.28) into (A.26) yields
for the kinetic terms of the ghost fields ua

Lghost = iūa
[
∂µDab

µ − ξ′A(M2
ghost)ab − ξ′Ag2v∗i

(
T aij
)†
T bjkφk

]
ub, (A.29)
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with the covariant derivative Dµ and the ghost mass matrix

(M2
ghost)ab = g2v∗i

(
T aij
)†
T bjkvk. (A.30)

The kinetic term gives rise to couplings of the ghosts to gauge bosons and Higgs fields
of the theory. The mass of the ghost fields depends on the choice of the gauge-fixing
parameter ξA. The result for the gauge-fixing term is

Lfix = − 1
2ξA
|Ca|2 = − 1

2ξA

∣∣∣∂µAaµ + igξ′AviT aijχj
∣∣∣2 . (A.31)

It leads to mass terms for the Goldstone bosons
(
M2

χ

)
ij
χiχj = −(ξ′A)2

ξA
g2
(
χiT

a
ijv
∗
j

) (
vkT

b
kjχj

)
, (A.32)

that are also dependent of the gauge-fixing parameters.

A.2.5 Lagrangian
The Lagrangian from eq. (A.11) for a spontaneously broken Yang–Mills theory is
given by the sum of the aforementioned parts,

L = Lkin + LHiggs + Lfix + ghost. (A.33)

A.3 SU(N) invariant Super-Yang–Mills Theory
A Super-Yang–Mills theory is the supersymmetric extension of a Yang–Mills theory.
The Poincaré-invariance is extended in the only non-trivial way, which leads to an
increase of the number of degrees of freedom. Super gauge invariance, the supersym-
metric version of gauge invariance, generates furthermore additional interactions that
are not present without supersymmetry.

A.3.1 Super-Poincaré Invariance and allowed kinetic Terms
According to the theorem of Haag, Łopuszański and Sohnius [144] the Poincaré
group (A.12) can only be extended nontrivially by fermionic operators. The N
new fermionic generators Qi,α (i ∈ {1, . . . , N}) form together with the generators
from (A.12) the Super-Poincaré group. The new generators fulfil the anticommutation
relations

{Qi,α, Qi,α} = 0, {Q̄α̇
i , Q̄

α̇
i } = 0. (A.34)

In the supersymmetric extensions discussed in the following only one additional
fermionic generators is added (N = 1). The Lie algebra of the Super-Poincaré group
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is thus formed by

{Qα, Q̄β̇} = 2 (σµ)αβ̇ Pµ , {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0 , (A.35a)
[Qα, P

ν ] = 0 , [Qα, J
µν ] = − (σµν)α βQβ . (A.35b)

With the extension of the Poincaré algebra it is necessary to change the field degrees
of freedom of the theory. Additionally to the four space-time coordinates xµ two more
two-dimensional fermionic coordinates ϑα and ϑ̄α̇ (α, α̇ ∈ {1, 2}) are introduced. All
tupels (x, ϑ, ϑ̄) together form the superspace. With them the fermionic generators
are given by

Qα = −i
(
∂α + i (σµ)αβ̇ ϑ̄β̇∂µ

)
and Q̄α̇ = −i

(
∂̄α̇ + i (σ̄µ)α̇β ϑβ∂µ

)
. (A.36)

Due to the extension of the space-time coordinates to the superspace, the covariant
derivative Dµ (A.19) needs to be extended. The extension describing the derivative
with respect to the new Grassman variables ϑα and ϑ̄α̇ read

Dα = ∂α − i (σµ)αβ̇ ϑ̄β̇∂µ and D̄α̇ = ∂̄α̇ − i (σ̄µ)α̇β ϑβ∂µ . (A.37)

These fermionic derivatives transform covariantly on the superspace. They anticom-
mute with the new Grassmann variables and the new generator (A.36). The field
degrees of freedom are described as fields on superspace. They are polynomials in ϑ
and ϑ̄ up to the order ϑ4 = ϑαϑ

αϑ̄β̇ϑ̄
β̇, where the sum over the indices on the right

side is understood,

F (x, ϑ, ϑ̄) =f(x) +
√

2ϑξ(x) +
√

2ϑ̄χ̄(x) + ϑϑM(x) + ϑ̄ϑ̄N(x)

+ ϑσµϑ̄Aµ(x) + ϑϑϑ̄λ̄(x) + ϑ̄ϑ̄ϑζ(x) + 1
2ϑϑϑ̄ϑ̄D(x) .

(A.38)

The fields described in A.13 appear as complex component fields, but not all of them
have a physical meaning. To describe physical fields, special cases of this general
superfield are needed.

Chiral Superfields

To describe the SM fermions and their superpartners chiral and antichiral superfields
Φ and Φ† are used. They are defined by

D̄αΦ = 0 ⇔ Φ(x, ϑ, ϑ̄) = exp
(
−iϑσµϑ̄

)
φ(x, ϑ)

= A(y) +
√

2ϑξ(y) + ϑϑF (y)
= φ(y, ϑ)

(A.39)

with y = x + iϑσµϑ̄. A chiral superfield contains a complex scalar field A, a Weyl-
spinor field and a complex auxiliary field F without dynamic terms. Thus the chiral
superfield contains the same number of fermionic and bosonic degrees of freedom.
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Vector Superfields

To describe the gauge vector-fields, general superfields V with the property

V = V † (A.40)

are used. This condition constrains the component fields from the general super-
field (A.38): The fields f , Aµ and D have to be real and M = N †, ξ = χ, λ = ζ. The
definitions of the vector superfield in a gauge theory allows another constraint using
a chiral superfield Λ in the form of a super gauge-transformation,

V → V ′ = V + i
(
Λ− Λ†

)
, (A.41)

Under this transformation the vector field transforms analogous to a classical gauge
transformation, Aµ → Aµ − 2∂µ Im f . In the Wess–Zumino gauge [145] a special
choice for Λ gauges the component fields f , ξ and M to zero. Thus the form of the
vector superfield in this gauge reads

VWZ = ϑσµϑ̄Aµ(x) + ϑϑϑ̄λ̄(x) + ϑ̄ϑ̄ϑλ(x) + 1
2ϑϑϑ̄ϑ̄D(x). (A.42)

The field D is an auxiliary field without an own dynamic. The resulting field contains
three real, bosonic degrees of freedom with Aµ and four fermionic degrees of freedom
with λ and λ̄.

Kinetic Terms

By introducing a left- and right-chiral field strength

Wα = −1
4D̄β̇D̄

β̇DαVWZ, W̄ α̇ = −1
4D

βDβD̄
α̇VWZ, (A.43)

the kinetic terms for a chiral superfield and a vector superfield in the Wess–Zumino
gauge read

Lkin =
∫

d2ϑd2ϑ̄ Φ†Φ +
(∫

d2ϑWαWα + h.c.
)
. (A.44)

This term contains the kinetic as given in (A.13) for all component fields according
to their spin.

A.3.2 Super Gauge-Invariance
A (anti-)chiral superfield that is charged under a gauge group SU(N) is given in
the (anti-)fundamental representation of the gauge group. A vector superfield V
containing the gauge bosons of SU(N) as component fields is given in the adjoint
representation. They transform under a super-gauge transformation as

Φ −→ e−iΛΦ, Φ† −→ Φ†eiΛ† , e2V −→ e−iΛe2V eiΛ† . (A.45)
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Here the bold faced fields are given in the adjoint representation of SU(N),

V = gV aT
a

2 , Λ = gΛaT
a

2 . (A.46)

The left- and right-chiral field strength is derived from the component fields,

Wa
α = −1

4D̄β̇D̄
β̇DαV

a, W̄ α̇
a = −1

4D
βDβD̄

α̇Va. (A.47)

With these transformations the super-gauge invariant kinetic term for one chiral and
one vector superfields reads

Lkin =
∫

d2ϑd2ϑ̄ Φ†e2V Φ +
(∫

d2ϑ Wa
αWα

a + h.c.
)
. (A.48)

The kinetic terms for a vector superfield as given in (A.44) remain invariant under
a super-gauge transformation (A.41). Together the terms (A.48) are known as the
Kähler potential. The Kähler potential gives rise to quartic interactions between
the scalar components of chiral and anti-chiral superfields that are defined by the
gauge-couplings. They stem from the auxiliary component fields.

A.3.3 SUSY electroweak Symmetry-Breaking and Soft
SUSY-Breaking Terms

Demanding Super-Poincaré invariance of the action implies additional interaction
terms between chiral superfields. The renormalisable terms that can be written down
are polynomials in either chiral or anti-chiral superfields up to the third power,

W = aiΦi + bijΦiΦj + cijkΦiΦjΦk (A.49)

with the complex coupling matrices a, b, and c. These terms can be used to implement
mass terms for the superfields by the BEH-mechanism as described in section 2.1.2.
Since the superpotential has to be a polynomial in either chiral or antichiral super-
fields, at least two Higgs superfields are necessary to create mass terms for leptons, up-
and down-type quarks. These mass terms stem from the trilinear terms in eq. (A.49).

Soft Supersymmetry-Breaking

With the superpotential of eq. (A.49) the mass term generates an identical mass
for all components of a fermion/sfermion superfield. The same happens also for the
masses of the gauge bosons and their superpartners, although their mass terms are
generated in the Kähler potential. However, no superpartners have been observed
until today [41]. To allow for different superpartner masses while conserving gauge
invariance and renormalisability of the theory soft-breaking terms have to be intro-
duced. These are additional terms of the supersymmetric Lagrangian involving only
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superpartner fields. They can have the form

Lsoft = Lscalarsoft + Lfermion
soft , Lscalarsoft = aiAi + bijAiAj + cijkAiAjAk,

Lfermion
soft = Mij Tr λ̄iλj = Mijλ̄

a
i λ

a
j .

(A.50)

The breaking parameter matrices a, b, c and M can be complex. Soft-breaking terms
break supersymmetry while keeping gauge invariance intact.

A.3.4 Quantisation
The quantisation described in sec. A.2.4 for the non-supersymmetric case is not
applicable directly to supersymmetric theories. The BRST-symmetry sector has to
be extended to a supersymmetric form in order to define supersymmetric BRST-
invariant gauge-fixing terms. The extended gauge fixing term can give rise to addi-
tional parameters that need to be renormalised. The additional counterterms of this
sector are finite and can be used to restore supersymmetric properties of a calculation
if they are violated due to a regularisation procedure. Their explicit form has to
be derived directly from the symmetry-relations of the theory, the Slavnov–Taylor-
identities [66,146].
For Higgs-mass calculations in the Minimal and Next-to-Minimal Supersymmetric

Standard Models as described in this work the extended, supersymmetric gauge-fixing
sector can be neglected. It has been shown that the applied dimensional reduction
conserves supersymmetry for the full one-loop calculation and the used two-loop
calculations in the electroweak gaugeless limit [68]. For the one-loop calculation the
non-supersymmetric gauge-fixing term as described in [68] is sufficient.
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B.1 Derived Masses in the Sample Scenario
The chargino- and stop-masses are independent of λ. They read

m2
χ±1

= 110.1 GeV, m2
χ±2

= 326.2 GeV, m2
t̃1

= 1388.8 GeV, m2
t̃2

= 1620.8 GeV.
(B.1)

The neutralino masses are λ-dependent due to the λ-dependent singlino mass-terms.
They are plotted as a function of λ in fig. B.1. For λ . 0.14 the heaviest neutralino
field χ0

5 is singlet-like, for values λ & 0.14 the second-heaviest field χ0
4 is singlet-like.

For large values of λ all fields besides χ0
5 obtain a singlet component and thus a

λ-dependent mass.
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Figure B.1: Neutralino masses in the sample scenario of chap. 8.

B.2 Input Parameters for the Comparison with
NMSSMCalc

The SM input parameters for the comparison are taken from the built-in SLHA input
file,

α(MZ) = 128.962 · 102 (B.2a)
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αMS
s (MZ) = 0.1190 (B.2b)

mOS
t = 172.5 GeV (B.2c)

mMS
b (mb) = 4.19 GeV (B.2d)
mOS
τ = 1.77684 GeV. (B.2e)

B.3 Numerical results for Comparison with
NMSSMCalc

The tree-level Higgs-masses are given in tab. B.1. The masses of the CP-even Higgs-

Comparison I Comparison II
mh1 mh2 mh3 mh1 mh2 mh3

TP1 88.23 1797.49 2768.59 88.41 1795.71 2842.02
TP2 89.22 5949.75 6369.10 – – –
TP3 76.34 105.78 653.62 58.70 108.70 665.17
TP4 107.35 138.05 466.69 100.03 135.15 475.25
TP5 100.64 120.03 625.57 94.76 109.46 631.22

Table B.1: Tree-level Higgs-masses for the TP-scenarios at the high and the low
scale. The bold numbers refer to the (MS)SM-like Higgs-field, the italic numbers
refer to the dominantly singlet like field.

fields for the comparison with NMSSMCalc are depicted in the following for the TP-
scenarios together with the value for the on-shell mass for the charged Higgs as
obtained with NMSSMCalc at the respective order are depicted in tab. B.2. The
corresponding results in the MSSM-limit are given in tab. B.3.
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TP1

Comparison I at scale Q, M
H± = 2751.09

NMSSMCalc vanilla {121.843, 1797.457, 2747.997}
NMSSMCalc αmod

s {116.264, 1797.451, 2747.834}
NMSSMCalc (−) {116.261, 1797.450, 2747.834}

NMSSM-FH αGF
{115.701, 1797.451, 2747.909}

NMSSM-FH α(MZ) {116.277, 1797.451, 2747.838}
NMSSM-FH α(MZ)(−) {116.262, 1797.451, 2747.840}

Comparison II at scale mOS
t , M

H± = 2695.70

NMSSMCalc vanilla {113.452, 1797.462, 2694.140}
NMSSMCalc αmod

s {113.755, 1797.543, 2692.842}
NMSSMCalc CT mod {113.781, 1797.543, 2692.839}

NMSSM-FH αGF
{113.189, 1797.596, 2692.842}

NMSSM-FH α(MZ) {113.799, 1797.596, 2692.753}
NMSSM-FH α(MZ)(−) {113.783, 1797.596, 2692.755}

TP2

Comparison I at scale Q, M
H± = 6376.48

NMSSMCalc vanilla {120.416, 5951.364, 6374.602}
NMSSMCalc αmod

s {114.655, 5951.362, 6374.514}
NMSSMCalc (−) {114.655, 5951.362, 6374.514}

NMSSM-FH αGF
{114.123, 5951.363, 6374.593}

NMSSM-FH α(MZ) {114.655, 5951.363, 6374.523}
NMSSM-FH α(MZ)(−) {114.655, 5951.363, 6374.524}

Comparison II at scale mOS
t , M

H± = 6343.78

NMSSMCalc vanilla {–, –, –} (tanchyonic stops)
NMSSMCalc K. Walz {–, –, –} (tanchyonic stops)
NMSSM-FeynHiggs {–, –, –} (tanchyonic stops)

NMSSM-FH αGF
{–, –, –} (tanchyonic stops)

NMSSM-FH α(MZ) {–, –, –} (tanchyonic stops)
NMSSM-FH α(MZ)(−) {–, –, –} (tanchyonic stops)

TP3

Comparison I 1at scale Q, M
H± = 639.815

NMSSMCalc vanilla {91.141, 125.674, 650.870}
NMSSMCalc αmod

s {90.240, 123.482, 650.798}
NMSSMCalc (−) {90.376, 123.664, 650.915}

NMSSM-FH αGF
{89.933, 124.142, 650.177}

NMSSM-FH α(MZ) {90.178, 123.780, 650.517}
NMSSM-FH α(MZ)(−) {90.481, 123.668, 650.900}

Comparison II at scale mOS
t , M

H± = 634.538

NMSSMCalc vanilla {89.370, 124.008, 645.337}
NMSSMCalc αmod

s {90.195, 124.208, 645.369}
NMSSMCalc (−) {89.640, 123.479, 644.877}

NMSSM-FH αGF
{90.549, 123.387, 645.191}

NMSSM-FH α(MZ) {89.813, 123.579, 644.45}
NMSSM-FH α(MZ)(−) {90.151, 123.417, 644.818 }

TP4

Comparison I at scale Q, M
H± = 453.502

NMSSMCalc vanilla {127.681, 142.370, 465.721}
NMSSMCalc αmod

s {126.051, 141.856, 465.572}
NMSSMCalc (−) {126.226, 141.982, 465.641}

NMSSM-FH αGF
{127.131, 141.951, 464.905}

NMSSM-FH α(MZ) {126.483, 141.852, 465.231}
NMSSM-FH α(MZ)(−) {126.251, 142.095, 465.600}

Comparison II at scale mOS
t , M

H± = 449.349

NMSSMCalc vanilla {128.857, 139.075, 461.312}
NMSSMCalc αmod

s {128.999, 139.752, 461.348}
NMSSMCalc (−) {128.001, 139.176, 460.963}

NMSSM-FH αGF
{128.248, 139.961, 461.312}

NMSSM-FH α(MZ) {128.392, 139.184, 460.487}
NMSSM-FH α(MZ)(−) {128.143, 139.433, 460.846}

TP5

Comparison I at scale Q, M
H± = 614.300

NMSSMCalc vanilla {120.559, 123.698, 626.088}
NMSSMCalc αmod

s {118.168, 122.326, 626.020}
NMSSMCalc (−) {118.441, 122.538, 625.288}

NMSSM-FH αGF
{119.039, 122.291, 625.468}

NMSSM-FH α(MZ) {118.841, 122.204, 625.600}
NMSSM-FH α(MZ)(−) {118.528, 122.449, 626.283}

Comparison II at scale mOS
t , M

H± = 614.981

NMSSMCalc vanilla {118.842, 122.372, 626.460}
NMSSMCalc αmod

s {118.800, 122.312, 626.431}
NMSSMCalc (−) {118.472, 121.811, 625.944}

NMSSM-FH αGF
{119.011, 121.778, 626.481}

NMSSM-FH α(MZ) {118.277, 122.080, 627.677}
NMSSM-FH α(MZ)(−) {119.107, 121.597, 625.869}

Table B.2: Two-loop masses of the CP-even Higgs-fields in the TP-scenarios.
The masses are given in GeV in the form {mh1 ,mh2 ,mh3}.
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TP1 MSSM-limit

Comparison I at scale Q, M
H± = 2751.161

NMSSMCalc vanilla {122.497, 1797.498, 2747.993}
NMSSMCalc αmod

s {116.951, 1797.498, 2747.830}

NMSSM-FH α(MZ) {116.951, 1797.498, 2747.835}
NMSSM-FH αGF

{116.378, 1797.498, 2747.965}

Comparison II at scale mOS
t , M

H± = 2695.188

NMSSMCalc vanilla {114.165, 1771.217, 2694.188}
NMSSMCalc αmod

s {114.466, 1771.217, 2692.894}

NMSSM-FH α(MZ) {114.466, 1771.217, 2692.900}
NMSSM-FH αGF

{113.903, 1771.217, 2962.980}

TP2 MSSM-limit

Comparison I at scale Q, M
H± = 4345.769

NMSSMCalc vanilla {120.401, 2949.576, 4344.175}
NMSSMCalc αmod

s {114.639, 2949.576, 4344.113}

NMSSM-FH αGF
{114.107, 2949.576, 4344.161}

NMSSM-FH α(MZ) {114.639, 2949.576, 4344.119}

Comparison II at scale mOS
t , M

H± =

NMSSMCalc vanilla {–, –, –} (tanchyonic stops)
NMSSMCalc αmod

s {–, –, –} (tanchyonic stops)

NMSSM-FH αGF
{–, –, –} (tanchyonic stops)

NMSSM-FH α(MZ) {–, –, –} (tanchyonic stops)

TP3 MSSM-limit

Comparison I at scale Q, M
H± = 738.595

NMSSMCalc vanilla {102.796, 397.492, 736.464}
NMSSMCalc αmod

s {99.945, 397.492, 736.360}

NMSSM-FH αGF
{99.365, 397.492, 736.362}

NMSSM-FH α(MZ) {99.946, 397.492, 736.360}

Comparison II at scale mOS
t , M

H± = 718.245

NMSSMCalc vanilla {101.680, 379.520, 715.785}
NMSSMCalc αmod

s {101.823, 379.520, 715.842}

NMSSM-FH αGF
{101.187, 379.520, 715.851}

NMSSM-FH α(MZ) {101.823, 379.520, 715.846}

TP4 MSSM-limit

Comparison I at scale Q, M
H± = 541.156

NMSSMCalc vanilla {91.606, 400.000, 541.721}
NMSSMCalc αmod

s {89.304, 400.000, 541.539}

NMSSM-FH α(MZ) {89.304, 400.000, 541.539}
NMSSM-FH αGF

{88.599, 400.000, 541.510}

Comparison II at scale mOS
t , M

H± = 528.181

NMSSMCalc vanilla {90.738, 386.446, 528.400}
NMSSMCalc αmod

s {90.878, 386.446, 528.459}

NMSSM-FH α(MZ) {90.878, 386.447, 528.459}
NMSSM-FH αGF

{90.134, 386.447, 528.433}

TP5 MSSM-limit

Comparison I at scale Q, M
H± = 705.613

NMSSMCalc vanilla {101.848, 393.700, 703.381}
NMSSMCalc αmod

s {97.633, 393.700, 703.286}

NMSSM-FH α(MZ) {97.632 393.700, 703.286}
NMSSM-FH αGF

{97.099, 393.700, 703.287}

Comparison II at scale mOS
t , M

H± = 687.785

NMSSMCalc vanilla {98.794, 372.606, 684.680}
NMSSMCalc αmod

s {98.977, 372.606, 684.626}

NMSSM-FH α(MZ) {98.977, 372.606, 684.626}
NMSSM-FH αGF

{98.395, 372.606, 684.633}

Table B.3: One-loop masses of the CP-even Higgs-fields in the TP-scenarios.
The masses are given in GeV in the form {mh1 ,mh2 ,mh3}. The mass that is
unaffected by the change of codes is the mass of the decoupled singlet-field.
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