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Zusammenfassung

zur Dissertation

”
Models and Algorithms for Extended Network Design“

von Alessandro Hill

In dieser Dissertation werden Modelle und Methoden für die Planung kosten-
optimierter Netzwerke studiert. Es werden Strukturen aus der Klasse so-
genannter erweiterter Netzwerke betrachtet. Diese zweistufigen zentrali-
sierten Netzwerke vereinen zwei unterschiedliche Netzwerktopologien und
ermöglichen somit integrierte Entscheidungsfindung. Zusammenfassend wer-
den folgende Ergebnisse erarbeitet.

Einerseits wird in dieser Doktorarbeit eine neuer Typ von Netzwerkpla-
nungsmodellen entwickelt, sogenannte Ring-Baum-Probleme. Diese verallge-
meinern grundlegend unterschiedliche Steinerbaum- und Tourenplanungs-
probleme unter Berücksichtigung von Kapazitätsrestriktionen. Hierdurch
lassen sich simultan zentrale Kreisstrukturen sowie angrenzende Baumstruk-
turen kostenoptimal planen. Zudem zeigt sich, dass diese Modelle ein hohes
Potential für die Ableitung von Modellvarianten und deren Einsatz in di-
versen Anwendungsgebieten bergen. Die in der Arbeit entwickelten exakten
und heuristischen Lösungsverfahren sind hochkompetitiv und entsprechen
dem aktuellen Stand entsprechender Forschungsarbeit.

Andererseits werden innovative Methoden auf Grundlage mathemati-
scher Optimierung vorgestellt und es wird gezeigt, dass diese zum Lösen der
betrachteten komplexen Modelle geeignet sind. Die konsequente Einbettung
von Techniken der mathematischen Programmierung in metaheuristische
Ansätze führt zu herausragenden Ergebissen im Vergleich zu den besten be-
kannten Methoden aus der Fachliteratur. Die vorgestellten Algorithmen ver-
einen exakte Schnittebenenverfahren mit iterativen lokalen Suchverfahren.
Diese Methoden werden ausführlich für die betrachteten Modelle getestet,
haben allerdings einen sehr allgemeinen Charakter, sodass die Anwendung
auf weitere kombinatorische Optimierungsprobleme nahe liegt.
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Highlights

1. Exact cutting plane algorithms, metaheuristics, matheuris-
tics and presolving techniques are presented for selected mod-
els in extended network design using state-of-the-art method-
ology.

2. A new class of extended network design models is developed.
These ring tree models turn out to be suitable for application
to various areas and fruitful to derive further related models.

3. Novel mathematical programming based heuristic algorithms
are elaborated which are shown to be capable of handling the
high complexity of the considered models. These techniques
are extensively tested and can naturally be adapted for many
kinds of problems in combinatorial optimization.

3



Abstract

The ubiquitous interest in networks per se stems from their natural appear-
ance in countless situations - real world kind as well as theoretical. Network
models can be used to describe infrastructure, processes, and relations in
general. Furthermore, the cost-driven evaluation of networks leads to the
question of how to efficiently construct networks of high quality in regard
to the expenses - either from scratch or by extending existing ones. The de-
sign of algorithms for efficiently finding optimal, or near optimal, structures
is a field of research motivated by applications in various industries, such
as telecommunications, transportation, manufacturing and mining, just to
mention a few.
The problems studied in this dissertation, all of them essentially combina-
torial, ask for networks of minimal overall cost obtained from the synthesis
of the fundamental graph classes of cycles, trees or stars. The resulting
integrated decision-making under various capacity side constraints leads to
computationally challenging models in discrete optimization.
The contribution of the presented research is twofold. Firstly, new models of
practical relevance are developed for which exact and heuristic state-of-the-
art algorithms are elaborated. Secondly, innovative matheuristic concepts of
generic type are presented and studied on these models. These techniques
are able to elegantly push the frontiers of computability to efficiently ap-
proximate optimal solutions using mathematical programming.

Keywords: Network design, combinatorial optimization, mathematical
programming, heuristics, matheuristics, operations research
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1. Introduction

1.1 Research Classification

This collection of cohesive research works covers topics that can be assigned
to multiple disciplines. However, Operations Research is probably the most
suitable since it essentially embodies optimization while being application
oriented. As widely accepted, one of the strengths of operations research as
a discipline is its many-sidedness. Although hereby hard to properly define,
it substantially overlaps with mathematics, computer science, industrial en-
gineering and management science.
Figure 1.1 shows the overlappings of this dissertation with the most relevant
fields: Network design, combinatorial optimization, mathematical program-
ming and heuristics. Along the way we borrow concepts from graph the-
ory, data structures, algorithm engineering, strategic planning and artificial
intelligence to model and solve problems motivated by real world applica-
tions. More specifically, the predominant subject of this thesis is network

Figure 1.1: An illustration of this work’s overlapping fields of research.

optimization. The three studied main models are predominantly related to
their applicability in telecommunications [6, 5, 13, 30]. The developed op-
timization techniques are of heuristic and exact nature, but substantially

5



strengthen the cross-linkage between classical heuristic concepts and math-
ematical programming.

1.2 Research Framework

In the following, the research framework is described with the included scien-
tific works. Additionally, their relationships regarding optimization models
and methodology are provided. A detailed summary of the models is given
in Section 2 and the developed methodology is reviewed in Chapter 3.

Scientific papers

The papers that are part of this dissertation are listed in Table 1.11. Fig-
ure 1.2 shows the embedding of the included works in both, the related
network design models and the used methodology.

A. Hill, I. Lubić A GRASP Algorithm for the Connected Facility Location
Problem, IEEE CS Press [28]

2008

A. Hill Novel Presolving Techniques for the Connected Facility Lo-
cation Problem, IEEE CS Press [27]

2012

A. Hill Modeling Techniques in Ring and Tree Bases Network De-
sign, IEEE CS Press [26]

2012

A. Hill, S. Voß An Equi-Model Matheuristic for the Multi-Depot Ring Star
Problem, to appear in Networks [15]

2014

A. Hill, S. Voß Optimal Capacitated Ring Trees, EURO Journal on Com-
putational Optimization [17]

2015

A. Hill Multi-Exchange Neighborhoods for the Capacitated Ring
Tree Problem, LNCS [14]

2015

A. Hill, S. Voß Generalized Local Branching Heuristics and the Capacitated
Ring Tree Problem, submitted [16]

2014

Table 1.1: Papers included in this thesis.

A work that considers a problem variant that is closely related to the ring
tree problem studied in [17] and is not included in this thesis can be found
in [1].

1
Papers i.,ii. and iii. were published under the name Alessandro Tomazic.
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Figure 1.2: An illustration of the research framework.
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2. Extended Network Design
Models: Combining Stars,
Trees and Rings

In this thesis, we consider models from a class of emerging network de-
sign problems which are motivated by integrated decision making. These
extended network design models combine different classical network opti-
mization models within more general ones. As a consequence, the solutions
essentially generalize the different network topologies that are associated
with the base models. These extended models allow the utilization of a
major optimization potential, which arises when considering the base model
decisions simultaneously, rather than separately. The overall objective in
the models in this dissertation is the minimization of the network cost mea-
sured as the sum of the edge costs and eventual facility installation costs.
An overview of the studied extended network design models is given in Sec-
tion 2.2 after some preliminaries in Section 2.1. Relevant model extensions
and applications can be found in Sections 2.3 and 2.4.

2.1 Preliminaries

The considered networks correspond to graphs being the central concept in
graph theory. An undirected graph is a pair of a set of nodes, or vertices, and
a set of edges, which are unordered pairs of nodes representing links between
two distinct nodes. In a directed graph, the node relations are represented by
arcs which are ordered pairs of nodes, respectively. In some network design
problems, a designated central node, also called root or depot, is used to
mark a special location within the network. For an introduction to network
based models and algorithms we refer to [18]. An extensive presentation
of network flows, which are important in regard to mathematical model
formulations and algorithmic solution approaches, can be found in [3].
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2.2 Optimization Models

In this section, the extended network design models that are studied in
this thesis are summarized. The basic models that serve as building blocks
are presented beforehand. Figure 2.1 highlights the corresponding model
dependencies.

Figure 2.1: Relationships between base models (star, tree and ring topolo-
gies) and extended models (top layer).

2.2.1 Base Models

The following base models and their corresponding network topologies play
central roles in the subsequent extended problems.

Tree based

A prominent tree based network design model is the Steiner tree problem
(STP) [30]. The STP asks for an edge cost minimal tree that connects
given terminal nodes, or customers. Nodes from a set of Steiner nodes can
optionally be chosen to be part of the tree if this results in an overall cost
reduction. The specification of a root, from which each terminal can be
reached on a directed path, is necessary for the directed STP. If no Steiner
nodes are present, the NP-hard STP reduces to the minimum spanning tree
problem (MST) which can be solved in polynomial time.

Ring based

Vehicle routing problems in its many variations have been widely studied.
A resulting solution network is the intersection of cycles, also called tours,
routes or rings, in a designated depot node [12]. As in the STP, Steiner
nodes might be available. If we restrict the number of tours to one, we
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obtain the prominent NP-hard traveling salesman problem (TSP) [4]. The
classical problem of finding such a single tour within an arbitrary graph is
known as the Hamiltonian cycle problem which is NP-hard as well.

Star based

A star can be described as a connected graph in which all but one node,
the center, are required to have degree one. Every star is a tree and can be
used to model assignments of the leave nodes to the center, among others.
Corresponding optimization problems are known as assignment problems,
warehouse/facility location problems, bin packing problems and knapsack
problems [20].

2.2.2 Trees and Stars

The terminals in the STP commonly represent potential hub locations from
which end customers are served. Such an end customer could be assigned to
different hubs, or even to a Steiner node which serves as a hub. Conversely,
a terminal might not even be needed if no end customers are assigned to
it. Finally, corresponding facility costs incur for the hubs only. Instead
of solving a STP and a facility location problem separately, the connected
facility location problem (ConFLP) [19] incorporates both and asks for an
overall cost-optimal layout of a tree connecting selected hubs while assigning
specific end customers to these hubs. A solution network consisting of 14
assignment stars, the installed hub facilities and the core Steiner tree is
illustrated in Figure 2.2.

Figure 2.2: A solution for the ConFLP: A tree and star based network with
customers assigned to facilities installed at hub nodes which are connected
to a depot by a Steiner tree.
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2.2.3 Rings and Stars

In some applications, such as transportation or reliable telecommunication
networks, the core structure that interconnects the hubs and the depot in the
ConFLP is naturally cycle-based. Multiple cycles (or rings) can be installed
to either contain customer nodes directly, or have them assigned to its nodes
to turn them into hubs. The capacitated ring star problem (CRSP) is an
extended network design model that incorporates ring and star structures
in this way. Upper bounds on the number of ring star structures attached
to the depot as well as the number of customers served by each of them
make the problems especially challenging. Figure 2.3 shows such a (single
depot) ring star network that satisfies the requirements for a telecommuni-
cation network in Northern Italy [6]. The more general multi-depot ring star

Figure 2.3: An implementation of an optimal ring star based optical network
in a provincial town in Northern Italy (CRSP; from [6]).

problem [5] even allows ring star structures originating from different given
depot locations. In [15] we intrduced depot dependent capacities which were
useful for modeling. Two high quality solutions of diverse structure for a
literature instance - obtained by algorithms developed in this thesis [15] -
are given in Figure 2.4. The network implements 16 ring stars connected
to 8 depots. Baldacci et al. [5] computed an upper bound of 75426 whereas
we found 68566 (left) and 67792 (right) which corresponds to cost savings
of about 10%.
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Figure 2.4: Two locally optimal MDRSP solutions for instance B-119 found
by our method [15].

2.2.4 Rings and Trees

Consider a ring star model from above. When used on a strategic level, the
model customers that are allowed to be assigned to ring structures repre-
sent a bundle of physical consumers. These could for instance be several
buildings that need to be connected to an infrastructure and share a certain
proximity to each other. This grouping is usually done in a preprocessing
phase to obtain a model of tractable size and the assignment costs are es-
timated according to the consumer locations. Once a convenient ring star
layout is found the end customer groups are expanded and interconnected
according to the initial estimation - using a tree structure.
In the spirit of the full optimization potential utilization in extended net-
work design models, we develop a model that plans the network structure up
to the end customers. In other words, we consider the assignment of Steiner
trees to rings, leading to so-called ring trees, under similar capacity con-
straints as in the CRSP in Section 2.2.3. The installation of rings, which are
more cost intensive than trees, is motivated by selected nodes that require
ring-connectivity. This capacitated ring tree problem turns out to elegantly
generalize several prominent existing network design problems. On the one
hand (capacitated) spanning trees and Steiner trees are captured as special
cases. On the other hand, the underlying ring structures can model vehicle
routing problems and, therefore, the traveling salesman problem. A solu-
tion for a medium sized instance Q-217 from [16] implementing four ring
trees is given in Figure 2.5. Figure 2.6 shows optimal capacitated ring trees
for instance Q-1 from [17] while increasing the number of customers that
need to be on ring structures, called type 2 customers. Clearly, the cost of
an optimal network is non-decreasing when incrementally augmenting the
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Figure 2.5: A ring-tree based solution network (instance Q-217 from [16]).

number of type 2 customers. The objective values for the optimal solutions
in Figure 2.6 are 157, 210, 227, 236 and 242, respectively.
In this thesis, we extensively study this capacitated ring tree problem and
present several algorithms to solve it. Certainly, its general nature does
make it significantly harder than its mentioned special cases. At the same
time, this fact gives rise to new algorithmic challenges. Nevertheless, the in-
creased complexity triggers parts of our novel MIP based heuristic strategies
in Section 3 which turn out to be highly effective for the CRTP.

Figure 2.6: Optimal CRTP solutions for instance Q-1 and increasing type 2
customer rates: 0%, 25%, 50%, 75%, 100% (top); corresponding increasing
network costs (bottom). [17].
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2.3 Model Features and Extensions

Typically, network design problems incorporate multiple application-oriented
requirements as constraints. In the following we highlight a relevant selec-
tion applied to the models considered in this thesis.

• Connectivity: We consider the connectivity r between two nodes as
the number of node, or edge, disjoint paths in the network. For sets of
more than two nodes this property holds if pairwise valid. Trees pro-
vide 1-connectivity by definition and appear in the ConFLP and the
CRTP [28, 17]. The special case of stars can be found in [28, 15]. Cy-
cle (sub-)structures naturally provide twice the protection compared
to trees when assuming a single edge (or node) failure. Moreover, this
reliability can be implicitly augmented by reducing the allowed cy-
cle length; see also capacity bounds below. Survival network design
models [25] provide more general connectivity by requiring a minimum
connectivity between two network nodes, i.e. the number of disjoint
paths between two nodes is greater or equal than r, without imposing
structural requirements. We do not consider such networks in this
thesis.

• Oriented networks: Depending on the application of a model, it can be
necessary or convenient to use a directed network representation. This
leads to the replacement of edges by arcs which allows the usage of an
asymmetric cost function. The latter is commonly required in VRPs.
Furthermore, the modeling becomes more powerful and computational
benefits might be expected through such directed representations; see,
e.g. [17], for some mathematical formulations.

• Multiple node types: Differentiating between customer node types in
the network is important to specify eventual node-dependent require-
ments, e.g. reliability in the CRTP. In some models, such as the facility
location problem, the roles of the customer nodes are strictly preset
regarding the network structure. Others allow various node configu-
rations, e.g. customers that can be ring nodes or they can be assigned
to rings in the MDRSP.

• Capacity bounds: Limiting the number of nodes or customers of a
certain type within specific substructures of the network is commonly
needed to reflect technologically or economically motivated limits in
practice. In the CRTP a restricted number of customers can be located
on each of the ring trees. Moreover, the number of the ring trees
is bounded. Similarly, the number of ring stars and the number of
corresponding customers is bounded. In [15], we introduce the depot
dependent version of these constraints for the MDRSP. Note that these
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capacity constraints in particular apply to the structures of the base
models, e.g. rings and trees.

• Steiner nodes: These optional network nodes are frequently indispens-
able to model necessary intermediate points within the represented
infrastructure. A simple example that typically leads to the introduc-
tion of a Steiner node is a street intersection at which the correspond-
ing infrastructure can branch into some of the incident streets. It is
well-known that Steiner nodes significantly increase the model com-
plexity. The NP-hard STP even turns into the polynomially solvable
MST when the instance does not include Steiner nodes at all.

• Multi-depot: A natural generalization of single-depot models are multi-
depot models. For the TSP this can be interpreted as the (partial)
coverage of given customers by multiple salesmen that are located at
different home bases. These can rarely be considered independently
since the assignment of the customers to the salesmen is commonly an
integrated part of the problem. However, the STP, and therewith the
ConFLP, admits the modeling of this feature by the introduction of
an artificial depot terminal.

• Facility location: Facility location is a basic concept to model required
additional costs when using specific network nodes. Besides physical
devices, e.g. repeater or splitter in telecommunication networks, it can
represent costs for servicing assigned customers. In the ConFLP these
opening costs appear for potential facility nodes that have customers
assigned. For the MDRSP and the CRTP these node costs can be
integrated with minor effort into the mathematical formulations of
the models.

• Variable edge costs: The cost of an edge or arc might be dependent
on the sub-topology it is used for, e.g. tree edge vs. ring edge. The
ConFLP separates the edges by definition, whereas in the MDRSP
and the CRTP this feature does not require model changes for its
integration as addressed in [6] and [17].

We further mention diameter constraints and hop constraints, node de-
gree constraints, customer profits, customer demands and supply capacities
which are common in related models. They could be integrated into the
studied models in future research.

2.4 Applications

In the following, we give a brief overview of relevant fields of application
for the considered optimization models. The main area of relevance for this
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work is strategic planning in telecommunications. Secondly, transportation
problems are closely related to the considered models, but preferably in their
directed variants. We note that the algorithms and techniques developed in
this thesis are of generic character and can be transferred to a broad class of
not necessarily related optimization problems. Furthermore, we note that
the models studied in this work are recent (MDRSP) or new (CRTP) and
that we are confident that their usefulness in relevant disciplines will be
appreciated.

• Telecommunications: The design of telecommunication networks is a
fruitful field for the described network optimization models [30, 13,
6]. For instance, the implementation of fiber-based technology which
started about a decade ago gave rise to many research topics. Last-mile
network architectures such as fiber-to-the-Curb (FTTC), fiber-to-the-
home (FTTH) or more generally fiber-to-the-x (FTTX) lead to diverse
optimization models depending on cost structures and additional tech-
nological or economical requirements. The extended network design
models studied in this thesis are suitable to model multi-layer network
planning which integrate the layout of reliable backbone networks.

• Transportation: Numerous vehicle routing applications can be found
in the literature. The presented extended models are highly relevant
for integrated modeling. Ring star models have been used to model
school bus routing including the bus stop walking distances for the
children [23]. An unexplored application of the ring tree models could
address the integrated planning of ship routes and hinterland infras-
tructure of harbors.

• Chip design: In very large scale integration (VLSI), the terminals in
the STP represent transistors that need to be connected on a chip.
Besides TSP variants, variations of the STP such as the rectilinear STP
or the group STP are commonly used to solve chip design problems.
The layout of circuits is also fundamental in these applications. To our
best knowledge, corresponding applications of the CRTP or variants
have not been considered in the literature.

• Logistics: Logistic supply chains correspond to connected networks of
various structure. Trees, stars and rings often represent sub-processes
within larger systems. An example for a star based optimization prob-
lem is the warehouse location problem which can be summarized as
follows. For a given set of customers we ask for the locations of facili-
ties to which the customers will be assigned such that the assignments
costs plus the location dependent facility installation costs are mini-
mal [3].
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• Manufacturing: It is known that production planning problems like
lot-sizing problems can be modeled using Steiner trees [29]. There
might be directions of research that are not sufficiently explored within
the academic literature.

• Personnel planning: The planning of personnel typically consists of
two components, which are the allocation of personnel to predefined
tasks or positions and the scheduling of jobs over a time horizon. Al-
locating personnel to tasks corresponds to the construction of star
structures and these tasks are commonly required to be performed ac-
cording to some precedence constraints which are defined by a directed
tree structure [3].

• Mining: The planning of mining leads to strategies to successively
explore areas for resources or/and to mine them. The precedence con-
straints for operations constitute a network that may be optimized
in regard to profit, time or expenses. Here, we see a major poten-
tial of extending the successful application of the base models to the
presented extended models.

• Biochemistry: Steiner trees can be used to represent large scale bio-
chemical data [7]. Optimization is shown to be useful for fitting and
reduction methods (see Section 3.2) are necessary to facilitate an effi-
cient network analysis.
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3. Methodology: From Heuris-
tics to Exact Methods and
Back

In this thesis we solve network design problems. To do so different types of
methodology may be applied. After eventually preprocessing a problem, this
can be heuristic methods, exact methods as well as hybridization between
the two, nowadays also called matheuristics. After some preliminaries the
subsequent subsections are devoted to the different types of methods.

3.1 Preliminaries and Optimization Challenges

Algorithms to solve optimization problems can be classified into exact meth-
ods and heuristics. While exact algorithms terminate with an optimal solu-
tion, usually no satisfactory guarantee for the solution quality is provided by
a heuristic. Many well-performing exact approaches for NP-hard problems
are based on a prior mathematical problem formulation. Our algorithms
follow this by using the framework of Mixed Integer Programs (MIPs). A
MIP is a mathematical description of an optimization model using binary
variables, integer variables, continuous variables, an optimization sense, and
an objective function and inequalities linking the variables. We restrict
ourselves to linear MIPs in which the objective function and the constraints
describing inequalities are linear functions in the variables. MIPs serve as an
interface to general purpose MIP solvers as well as a precise model descrip-
tion format. An introduction to the corresponding discipline of (mixed)
integer programming can be found in [31]. Asurvey on metaheuristics is
given, e.g., in [9].
The extended network design problems considered in this work are NP-hard
since they reduce to the mentioned hard base models (see Section 2). A
main aspect of this thesis is the study of their computational complexity us-
ing state-of-the-art algorithms. We think that the following characteristics
are mainly responsible for the observed hardness.
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• Combined problem structures: The extended network design models
integrate decisions of different types into one optimization model. As
a consequence, the complexity of the solution structures increases.
Problem specific heuristics suffer from an increased number of network
configurations that need to be considered. For local search algorithms,
this effects neighborhoods of augmented complexity (see Section 3.4).
The formulations used in exact mathematical programming based al-
gorithms become larger and need a careful definition of the problem
characteristics, e.g. for proving optimality. In Section 3.6 it is shown
that generic heuristic MIP-based approaches can help to efficiently
overcome this issue.

• Model side constraints: The integration of the model features listed in
Section 2.3 into optimization problems notably increase the difficulty
of solving them. In particular, Steiner nodes and capacity constraints
are known to reduce the size of instances that can be solved to opti-
mality and that they complicate heuristic search.

Ways to reduce complexity and size of an instance, so-called preprocessing or
reduction techniques, are addressed in Section 3.2 whereas Sections 3.3, 3.4,
3.5 and 3.6 deal with concrete solution techniques.

3.2 Reduction Techniques

The formulation of the underlying practical problem in terms of an optimiza-
tion model can cause significant increase of the problem size. Especially for
large-scale instances of network design problems, the reduction of the input
information, e.g. edges and nodes, can be necessary for the application of
suitable solution methods. These preprocessing techniques aim at detecting
relationships that lead to beforehand eliminations of input decision vari-
ables.
Certainly, these procedures cannot resolve the overall problem unless it is
easy, or the preprocessing effort is sufficiently high. With an increasing effort
for detecting these eliminations that can be tracked back, the techniques
typically get more powerful. Therefore, the term presolving is sometimes
used in the literature. For very large scale instances, preprocessing in fact
serves as a first part of a heuristic approach. In [27], we develop such ex-
tended techniques for the ConFLP, which generalize known procedures for
the STP [10]. Advanced tests involving shortest path and minimal cut com-
putations are provided as well. To avoid redundant searches, we analyze
the complex interactions, before embedding them into a tabu search guided
framework. Finally, the techniques presented in [27] are shown to reduce
the size of the input node set by up to 36%, and the edge set by up to 86%,
respectively, for the considered set of test instances.
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3.3 Constructive Approaches

Regarding the considered models it is easy to find a network that satisfies
the stated requirements, so that feasibility is not an issue, albeit, a naively
generated solution can be of exorbitant cost. In many cases heuristics are
conceptually a composition of improvement strategies which are initialized
by such a start solution. This initial start solution usually has a significant
impact on the effectiveness and the behavior of subsequent optimization
strategies.

3.4 Polynomial Local Search

An important ingredient for effective local search algorithms is the definition
of appropriate neighborhoods. A neighborhood with respect to an existing
reference solution can be defined as a set of solutions. Typically, they are re-
lated to the reference solution by some problem specific distance measure or
a transformation technique. In local search, these solutions are dynamically
constructed and compared to the reference solution regarding their costs. If
an improving solution is found, then this solution is considered to replace
the incumbent solution before the search continues according to a high level
strategy. The developed MIP based refinement techniques in Section 3.6 are
also based on this generic concept.
The benefit of the exploration of a neighborhood is typically problem depen-
dent and, unfortunately, also depends on the considered instance class. To
efficiently explore such a partial solution space, two concepts are commonly
used. Either the neighborhood is completely examined to improve solutions
with respect to the objective function (I) [24], or it is partially traversed by
some search heuristic (II) [2]. We say that either technique is a polynomial
local search if the used exploration algorithm has polynomial time complex-
ity.
Exact local search (I) is usually suitable for relatively simple neighbor-
hoods, e.g. shift, swap, re-assign moves, and collapses to polynomial local
search. Neighborhoods of advanced structure require more complex explo-
ration techniques (e.g. MST [14]) and are thus sensitive to the instance
size. The MIP techniques introduced in Section 3.6 extend this approach to
neighborhoods of arbitrary structure and time complexity.
Techniques based on (II) allow the definition of larger neighborhoods which,
depending on the used heuristic, might lead to larger improvements. It is
up to the exploration heuristic to efficiently identify these in turn. For the
models considered in this work, it is shown that sub-routines of type (I) and
(II) lead to powerful tools [14] to design iterative improvement algorithms.
In order to escape local optimality, we utilize structural and random based
multi-start approaches [28, 15, 14] and support these by problem-tailored
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(multi-exchange) search operators. These techniques provide decent so-
lutions, even for large instances. However, the mentioned neighborhood
structures arising in the extended network design models are hard to cap-
ture since they quickly become complex due to the network topology and the
additional model features; see Section 3.1. This motivates the development
of the subsequent generic algorithms which lead to further improved results.

3.5 Exact Mixed Integer Programming Based
Algorithms

Many state-of-the-art algorithms that solve NP-hard optimization problems
to optimality are based on branch and bound with integrated linear pro-
gramming techniques. This thesis contains two such approaches which are
developed for the MDRSP [15] and the CRTP [17]. The presented exact ap-
proach for the MDRSP is based on the three index arc formulation suggested
in [5]. We develop the first exact algorithm which incorporates additional
cutting planes to increase its efficiency. It is known that multi-depot models
are significantly harder than their single-depot counterparts. Nevertheless,
we are able to solve most instances with up to 50 customers, which is enough
to use the algorithm within our heuristic framework presented in [15].
For the CRTP, we present the first MIP formulation in [17]. The formula-
tion combines a non-compact arc based STP formulation with a circulation
flow model. Among others, we elaborate sophisticated valid multi-star like
inequalities. Furthermore, heuristic solution techniques [14] are used to
compute initial primal bounds and to polish feasible intermediate solutions.
This leads to a highly efficient exact method for the CRTP. Purely tree
structured problems, or capacitated Steiner tree problems, up to 100 nodes
are solved within a few seconds; see [17]. Optimal purely ring-based solu-
tions and ring tree structures are computed in most cases for instances with
up to 50 customers, using a 1 hour time limit. A TSPlib based instance set
of 225 instances [17] is derived to study lower bounds and corresponding op-
timality gaps if optimality could not be proved. Furthermore, the impact of
the distribution of the given customer types is investigated in [17]. It turns
out that CRTP instances with balanced numbers of randomly distributed
customers of the two types are the hardest to solve.

3.6 Mixed Integer Programming Refinement
Methods

The search for improving neighboring solutions using mathematical pro-
gramming techniques primarily to completely explore a neighborhood de-
serves special attention. The approaches developed in this thesis operate
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within structured frameworks to navigate through the search space in which
the actual exploration of the considered neighborhoods is carried out by a
MIP solver. The following two aspects need to be mentioned in this context.

1. No local search algorithm that is tailored to a specific neighborhood
is required.

2. The performance of the used black-box MIP solver contributes to the
overall efficiency of the algorithm.

Only during the last decade the incorporation of mathematical programming
based techniques into (meta-)heuristic frameworks gained increased popu-
larity [22]. One reason is the continuous improvement of general purpose
MIP solvers. Significant speedups could not just be achieved by the rapidly
increasing computing power but also by superior dual and primal bound-
ing techniques as well as the implemented search strategies. Heuristics that
embody components borrowed from mathematical optimization found their
way into the academic literature as matheuristics [22]. This class of methods
is a subclass of more generic hybrid algorithms which are combinations of
different algorithmic approaches [8].

3.6.1 Model Extraction

If the instance of the optimization problem that we intend to solve is small
enough then it can certainly be solved to optimality by an exact algorithm
(see Section 3.5). For larger instances this is generally not possible in an
efficient way. For the models considered in this work an instance includ-
ing 70-100 nodes may exceed the capabilities of our exact approaches to be
solved within reasonable time limits, unless of notably simple structure.
In [15] extraction-based techniques are developed that allow us to apply
our exact algorithms restricted to parts of the instance to refine a given
solution. If an improving solution could be identified, it is used to replace
the current network substructure that is considered in this refinement step.
We are able to develop techniques to use the overall model, the MDRSP,
to solve these significantly smaller subproblems to optimality. They are
constructed according to differently structured problem-tailored node clus-
tering concepts. More specifically, we select sets of network nodes, so-called
clusters, which induce substructures within the incumbent solution network.
Two approaches are used to find these clusters. The first concept identifies
node sets based on the edge cost structure only, by minimizing the maxi-
mal edge costs to connect two nodes in the set. Apart from these ball-type
clusters, nodes are selected according to various substructures in the cur-
rent reference solution, such as paths, pairs of paths or rings. In both cases
multi-exchange neighborhoods are captured by considering nodes from mul-
tiple ring stars for refinement. Figure 3.1 illustrates some of the used cluster
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types used for the MDRSP.
Rather than decomposing an existing solution into such refinement prob-
lems, we build them on overlapping node set covers - just as large such that
they can still be solved efficiently. The techniques are embedded in an iter-
ative improvement strategy. These approaches are template based whereas
the approach in Section 3.6.3 generalizes this idea for the CRTP and does
not require a specific model for carrying out the MIP refinements.

Figure 3.1: Some cluster types used for selecting refinement model nodes in
the MDRSP [15].

3.6.2 Contraction Techniques

The concept of local search describes a search procedure that aims at improv-
ing a solution by the partial exploration of the complete solution space. In
general, this is not sufficient to guarantee global optimality of the resulting
improved solution. Therefore, search strategies usually include perturba-
tion mechanisms which are applied whenever no local improvement could
be found [21]. Instead of commonly used random strategies, we apply con-
traction techniques [15]. These are used to identify network substructures
that may be ignored when considering the restructuring of the overall net-
work. To do so we first cluster nodes in an existing network to reduce the
number of nodes. This is done using different metrics to diversify the set of
obtained reduced networks. Afterwards, we apply our exact algorithm on
the induced inputs for a suitable optimization model. For instance, applying
it to the MDRSP, we are able to use the overall problem to solve the result-
ing vehicle routing problem variants. Even if no immediate improvement
of the reduced structure is observed, we further optimize the best found
expanded network before comparing it to the incumbent. It turns out that
this technique can also be used to construct promising start solutions, i.e., in
the case that no incumbent network exists. By combining these techniques
with the ones in Section 3.6.1 the heuristic results reported in [5] could be
improved significantly [15]; see also Figure 2.4.
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3.6.3 Mathematical Formulation Based Techniques

The methods described in the previous section utilize mathematical pro-
gramming to solve the extracted refinement models. A disadvantage of these
approaches is the need of suitable refinement models and the transformation
effort necessary to feed these models. To overcome the latter, one can limit
the modeling effort by operating on a selection of refinement variables in
the overall mathematical model without thinking about an appropriate re-
finement model. Here, we assume that we have a formulation of the overall
problem together with an exact algorithm at hand. In that case, the refine-
ment search can be executed by the modification of this master MIP such
that only changes of the refinement variables are taken into consideration
during optimization. To forbid changes of selected non-refinement variables
within the MIP we apply variable fixing. This fixing of variables can be seen
as projection techniques which reduce the effective dimension of the solution
space to the number of refinement variables.

3.6.4 Generalized Local Branching Techniques

The formulation based MIP refinement techniques developed in Section 3.6.3
get even stronger when they are combined with the concept of local branch-
ing [11]. The latter was originally introduced as a strategy to improve, or
polish, intermediate solutions found during branch and bound algorithms
for general MIPs. Local search is performed with respect to a reference
solution by solving the overall MIP with additional Hamming distance con-
straints. These are enforced by local branching cuts which limit the sum
of the variable value changes, typically binary variable flips, with respect
to the reference solution. As for the refinement techniques above, the key
idea is to obtain a MIP that is significantly easier to solve than the overall
problem, and can still be solved efficiently to optimality to possibly detect
a solution of lower cost.
In this thesis, we develop a novel generic algorithmic framework to efficiently
compute high quality solutions for extended network design problems [16].
We introduce a new local branching parameter which describes the number
of edge variables to which a local branching cut is applied. The remaining
variables are fixed to their values in the reference solution and not considered
for change. This allows the consideration of a broad class of refinement sub-
problems. By increasing the latter parameter we can decrease the Hamming
bound so that the resulting problems can be solved efficiently. Conversely,
we can reduce the set of considered variables to allow a large variable value
change in an efficiently solvable subproblem. In [16] we suggest an iterative
strategy leading to generalized local branching (GLB). This concept general-
izes both, the classical local branching as well as the model extraction based
refinement techniques in Section 3.6.1. Figure 3.2 illustrates two GLB re-
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Figure 3.2: Two GLB refinement neighborhoods that differ in the number
of variables considered, i.e. |B1| and |B2|, and the variable value changes
allowed, i.e. k1 and k2 (from [16]).

finement problems which are represented by cylinders of different volumes.
The two GLB parameters, i.e. (|B1|, k1) and (|B2|, k2), correspond to the
diameter and the height of each cylinder.
Using this heuristic framework, we are able to improve 36% of the best
known solutions [17], 65% of the solutions obtained by the local search
heuristics in [14] and we reduce the optimality gap by 10% on average. We
show that the approach clearly outperforms the pure local branching tech-
nique and the model extraction based method in Section 3.6.1 regarding the
obtained solution quality.
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4. Conclusions

This thesis embraces several existing as well as novel models in network de-
sign that combine different network topologies for integrated decision mak-
ing. These extended network design problems are studied and algorithms
are developed. We conclude this summary by highlighting two main out-
comes of this work.
Firstly, a new class of extended network design models, namely ring tree
problems, is developed in this thesis. Hereby, well-known vehicle routing
problems and the essentially different Steiner tree problems are generalized
under capacity constraints. This advance allows the simultaneous optimiza-
tion of two-level networks based on core rings and peripheral tree structures.
Moreover, these models turn out to be fruitful to derive further models and
are suitable for application to various areas. The corresponding elabora-
tions on exact and heuristic algorithms represent a piece of state-of-the-art
methodology.
Secondly, novel mathematical programming based algorithms are elaborated
which are shown to be capable of handling the high structural complexity
of the considered extended network design models. Through the extensive
embedding of mathematical programming techniques within metaheuristic
frameworks, we obtain outstanding results compared to state-of-the-art lit-
erature methods. These methods are based on the hybridization of exact
branch and cut algorithms with iterative local search strategies. After the
incorporation of the suggested local branching concepts we are able to still
ameliorate these results. These techniques are extensively tested for the
considered models but can be adapted in a natural way for many kinds of
problems in combinatorial optimization.
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Abstract

We apply a Greedy Randomized Adaptive Search Pro-
cedure (GRASP) to solve the Connected Facility Location
Problem heuristically. Diversification property is assured
by applying a randomized greedy algorithm to construct
feasible solutions in a multi-start fashion. Intensification
elements are guaranteed due to two facility-based local
search techniques. The computational study is conducted
on a parameterized set of randomly generated benchmark
instances. The obtained results reflect the quality of the
proposed approach with respect to both, the quality of so-
lutions and the computational effort, by comparison with
lower bounds obtained from a Branch-and-Cut framework.

1 Introduction
Given an undirected connected graph G with vertices V

and the set of edges E, a nontrivial partition P = (F,C)
of V identifying facilities and customers, edge costs c :
E 7→ Q+ and a function p : F 7→ Q+ that defines the
opening costs for the facilities, the Connected Facility Lo-
cation Problem is defined as finding a connected subtree
T = (V [T ], E[T ]), such that C ⊂ V [T ] and G[F ∩ V [T ]]
is connected, that minimizes the objective function

∑

v∈V [T ]∩NT (C)

p(v) +
∑

e∈E[T ]

c(e) .

With NT (C), we denote the neighboring nodes of C in T .
In a solution T with an edge connecting a facility v with
customer u, we say that v is open and u is supplied by v.
Potential suppliers Fp are those nodes from F that have at
least one neighbor in C, i.e. Fp = NG(C) ∩ F .

It follows immediately from the definition that in every
feasible solution customer nodes must be leaves. There-
∗Supported by the Austrian Research Promotion Agency, FFG, within

Bridge 2 programme (812973)
†Supported by the Hertha-Firnberg Fellowship of the Austrian Science

Foundation (FWF)

fore, given a graph G, edges between two customers can be
deleted, without loss of generality.

In the design of telecommunication networks the fol-
lowing problem can be modelled as ConFL: build a last-
mile network by replacing outdated copper- by fiber-optic-
connections, thereby placing multiplexers to switch be-
tween them. Connect then multiplexers to each other, so
that connection- and installation-costs are minimized.

The ConFL Problem has been introduced in [4], and the
best-known approximation ratio of 4.23 has been obtained
recently by Eisenbrand et al. [2]. Ljubić [5] concentrated
on the rooted version of the problem, in which a facility r is
open at no costs.

In the next Section we show how to integrate a greedy
heuristic and two local-search methods in a GRASP frame-
work. Section 3 describes how the problem can be trans-
formed into the Minimum Steiner Arborescence Problem
(SA) in graphs. We also propose to solve the SA using
a branch-and-cut algorithm (B&C) whose bounds are then
used in in section 4 to measure the quality of our heuristic
approach. Section 5 gives some conclusions and ideas for
improving the algorithm.

2 The GRASP Algorithm

A GRASP [3] is a multi-start iterative approach for com-
binatorial optimization problems where each iteration con-
sists of two phases: greedy construction and local improve-
ment. The best overall solution is reported as the final one.

In every iteration of the GRASP algorithm, we use a
randomized Greedy procedure to construct a feasible solu-
tion. As a search intensification mechanism, we iteratively
apply open- and close-facility moves, followed by a shortest
path Steiner tree heuristic to find locally optimal solutions.
The whole process is iterated in a multi-start fashion until a
prespecified number of iterations is reached.

Diversification property is assured by dynamically in-
creasing the number of potential candidates to be inserted
within the randomized greedy procedure.
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2.1. The randomized Greedy construction

For the construction phase a deterministic Greedy
heuristic presented below is modified. The algorithm incre-
mentally opens potential suppliers and connects them into a
tree T , until all customers are supplied.

Greedy Algorithm The potential supplying facilities Fp

are sorted in increasing order according to the following cri-
terion:

p(v)dist(v, T )

degC′(v) + 1
, v ∈ Fp (1)

where dist(v, T ) is the length of a shortest path from v to
a vertex in T with respect to c. If T = ∅ or v ∈ V [T ],
dist(v, T ) = minu,v∈F c(u, v). degC′(v) is the number
of unsupplied customers that can be served by v. Hereby,
a higher priority is given to the vertices close to the par-
tially constructed subtree T , incident to many unsupplied
customers or with low opening costs.

Among all closed potential suppliers, let v be the best
one according to (1). We open v and connect all the
neighboring customers to it if not already supplied cheaper.
Then we extend T by adding the shortest path from v to
T . Afterwards facilities are reassigned where appropri-
ate, and if some of the previously opened facilities gets
closed, the facility network is redesigned by application of
the Shortest Path Heuristic[7] described below.

The algorithm iteratively opens facilities in this manner
until all the customers are supplied.
Shortest Path Steiner Tree Heuristic (SPH) For a set
of open facilities we use a heuristic to redesign the facility
network. The basic subproblem at this stage is the Steiner
Tree Problem with the set of open facilities chosen as ter-
minals and the remaining facilities as Steiner nodes. There-
fore we apply the well known Shortest Path Heuristic that
efficiently returns an approximation of the optimal connec-
tion between open facilities. Hereby the tree is iteratively
extended by adding the shortest path to the nearest uncon-
nected terminal node starting with an arbitrary one.

Denote with G[F ] the subgraph induced by F , and with
E[F ] the corresponding set of edges. The computational
complexity of the SPH is O(|F |(|E[F ]| log |F |) (see [1] for
the explanation of an efficient implementation using Dijk-
stra’s shortest path algorithm and binary heaps).
Randomized Greedy In a multistart version with starting
alternatives, we add a tolerance to the selection of facilities
to open. Our candidate list of length k will simply consist of
the first k vertices in Fp - sorted with respect to (1) - that are
not opened yet. So in each step of the method we randomly
choose one among those k facilities. Setting the parameter
k to 1 corresponds to the non-randomized version of the al-
gorithm. In our implementation the number of candidates
is dynamically set within the GRASP procedure and ap-
plies for a complete Greedy run. We begin with k = 1 and

linearly (rounded to integers) increase it up to 3/20 of the
number of vertices available after each Greedy insertion.

Since in every iteration the Dijkstra algorithm and the
SPH are called, the total runtime complexity of Greedy is
O(|F |(|F ||E[F ]| log |F |+ |C|)).
2.2. Local Search Techniques

To intensify the search in the local regions of a such
constructed greedy solution, we explore open- and close-
facility neighborhoods in two phases: we first search for
the locally optimal solution with respect to the open-facility
neighborhood, in the second phase we search for the im-
provement by sequentially applying close-facility moves. In
the case of facility closure the Shortest Path Heuristic is
reapplied.

Our computational studies have shown that further rep-
etitions of the two phases would be rather time consuming
than beneficial. Therefore we decided to apply them only
once per GRASP iteration.

A set of references related to the neighborhood search
techniques for the Steiner Tree Problem can be found in
[1], for example.

Open-facility Moves A closed potential supplier v ∈ Fp

is opened to check, whether supplying customers results in
cost reduction. Thereby we consider the opening costs of v,
the costs for connecting customers and the savings of previ-
ously paid connection costs for each reconnected customer.
If this reduces the objective value, we perform the oper-
ations. When reconnecting customers we may end up in
finding an open facility u not supplying any customers. In
this case u can be closed and its opening costs are taken into
account when evaluating the opening of v. Computational
complexity of a single move is O(|F ||E[F ]| log |F |+ |C|).
For the total exploration of the neighborhood we need
O(|F |(|F ||E[F ]| log |F |+ |C|)) time.

Close-facility Moves Closing a facility v can only result
in a feasible solution when all the customers can be sup-
plied by other open facilities. Here we focus on the open
ones and try to reconnect its customers such that it costs us
less than we gain by closing v. The closure of a facility may
also have impact on the structure of our facility network.
Since v isn’t indispensable because of its supplying func-
tion anymore, solving the corresponding Steiner Tree Prob-
lem would return an optimal facility network for the cur-
rent supply situation. This is approximated by running the
Shortest Path Steiner Tree Heuristic described previously.
A single move in that case has a computational complexity
of O(|F |(|E[F ]| log |F | + |C|)). For the total exploration
of the neighborhood we need O(|F |2(|E[F ]| log |F |+|C|))
time. By using priority queues we might improve this com-
putational complexity. When exploring the neighborhoods,
we consider first improvement strategy where facilities to be
opened/closed are always processed in a randomized order
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to prevent the algorithm from getting stuck at the same local
optimum.

2.3. Integration in the GRASP-Framework

The Greedy-heuristic together with the local search tech-
niques are embedded in a GRASP framework as described
in Algorithm 1.

Algorithm 1 The GRASP-Framework
Input: (G = (V,E), c, p)
Output: A feasible ConFL solution (T,A)

1: for iter = 0 to iter = |Fp|/5 do
2: (T,A) = Greedy(G, c, p)
3: OpenFacilityLocalSearch(G, c, p, T,A)
4: CloseFacilityLocalSearch(G, c, p, T,A)
5: end for

3 Relation to the Minimum Steiner Ar-
borescene Problem

Given a directed connected graph GA = (VA, A) with
costs function on the arcs w : A 7→ Q+, with a root r ∈
VA and a set of terminals TA ⊂ VA, the Minimum Steiner
Arborescence Problem searches for a rooted subtree of GA

of minimum costs, such that there is a directed path from r
to every v ∈ TA.

Every ConFL problem on a graph G = (V,E) can be
transformed into a SA problem in the following way:

1. Introduce an artificial root r and for every potential
supplier v ∈ Fp its counterpart v′. Set VA = V ∪
{r} ∪ {v′ | v ∈ Fp}.

2. Connect all potential suppliers to r, i.e. set A =
{(r, v) | v ∈ Fp} and w(r, v) = 0∀v ∈ Fp.

3. Connect all facilities with each other: A = A ∪
{(u, v), (v, u) | u, v ∈ F} and w(u, v) = w(v, u) =
c(u, v), u, v ∈ F .

4. Split potential suppliers: A = A ∪ {(v, v′) | v ∈ Fp}.
Set w(v, v′) = p(v), v ∈ Fp.

5. Connect facilities and clients only in one direction:
A = A ∪ {(v, vc) | v ∈ Fp, vc ∈ C} and w(v, vc) =
c(v, vc).

In such obtained instance there are obviously no outgo-
ing arcs from any customer node vc ∈ C, and there are
only outgoing arcs from the root r. To assure feasibility of
a ConFL solution that is obtained by removing r and its ad-
jacent arcs, and contracting splitted nodes again, we request
that the outgoing degree of r must be equal to one.

To solve the minimum SA problem on GA to optimality,
we use an adaptation of the branch-and-cut algorithm pro-
posed in [6]. The bounds obtained using this algorithm are
presented in the next Section.

(a) SET1: |F | = 20, |C| = 100,
tavg ≈ 3s

(b) SET1: |F | = 100, |C| = 20,
tavg ≈ 44s

(c) SET1: |F | = 50, |C| = 50, tavg ≈ 15s

(d) SET3: |F | = 50, |C| = 50, tavg ≈ 15s

Figure 1. Percentage gaps between GRASP
solutions and optimal values.

4 Computational Results
The procedure was tested on a set of randomly generated

graphs with random integer weights1. Edges of the network
1All instances are available at homepage.univie.ac.at/

alessandro.tomazic.
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G[F ] are generated with probability pe(F ) ∈ {0.1, 0.5, 1},
whereas connections between facilities and customers are
established with probability pe(C) ∈ {0.18, 0.55, 1}.
Lower and upper bounds for the edge weights were set to
50 and 100. We generated two sets, SET1 (|F | × |C| ∈
{100×20, 20×100, 50×50}) and SET2 (100×100) of 81
and 27 instances, respectively, with facility opening costs
randomly assigned to values between 150 and 200. For 27
additional 50× 50 instances (SET3) we randomly assigned
the facility opening costs to values between 800 and 1600.

After letting MAPLE generate a random facility network
G[F ], we randomly link customers to the existing vertices
using the parameters given above. This resulted in instances
where almost always every facility was a potential supplier.

Our C++ implementation of the GRASP was tested on
an Intel Core 2 Duo E4300 with 1.8 GHz, 3.25 GB RAM.

SET1 and SET3: Each single box in the diagrams of Fig-
ure 1 reflects the results of 10 GRASP runs on 3 random
instances with the same construction properties (30 results).
The computation time that our method needed did not ex-
ceed two minutes. The exact method completed the com-
putations in 5 minutes on average for the instances of SET1
and SET3, but needed almost 30 minutes for three of them.
Figure 1 depicts percentage gaps between GRASP solu-
tions and optimal solutions (OPT) calculated as: gap =
(GRASP−OPT)/OPT[%].

We observe that GRASP easily finds optimal solutions
if |F | is small when compared to |C| and the connections
between F and C are sparse (Figure 1(a)). With increas-
ing density pe(C), the performance gets worse, but median
gaps are still within 2% of optimum.

For instances whose number of facilities is large when
compared to the number of customers (Figure 1(c)) we ob-
serve that GRASP has difficulties to deal with, by provid-
ing solutions whose median gaps are between 1% and 6%
of optimum.

Given the same graph topology, we also tested the influ-
ence of the cost structure to the GRASP performance, by
comparing 50 × 50 instances of the SET1 and the SET3
(Figures 1(c), 1(d)). There is obviously no direct depen-
dency between the quality of obtained solutions and the
parameters pe(F ) and pe(C) of the SET1 group. How-
ever, when average facility opening costs are by an order of
magnitude higher than the average connection costs (SET3),
GRASP solves graphs with complete bipartite structure be-
tween F and C (pe(C) = 1) very efficiently (median gap
less than 1%), and had difficulties with sparse structures
(pe(C) ∈ 0.18, 0.55).

SET2: For 27 instances of size 100 × 100, after running
B&C for one hour, only one instance was solved to optimal-
ity, and for three of them not even a feasible solution was
found. On the contrary, the GRASP results were all ob-
tained within less than 5 minutes, and in less than 2 minutes

Group LB-gap UB-gap GRASP B&C-gap
pe(F ) pe(C) avg med avg med t[s] avg

0.1 0.18 8.6 8.8 – – 41.5 –
0.1 0.55 5.5 5.8 3.2 1.9 123.9 9.1
0.1 1.0 5.7 5.5 -2.2 -2.0 69.7 3.4
0.5 0.18 6.1 6.3 -0.6 -0.5 106.0 5.5
0.5 0.55 5.8 6.1 -0.4 0.2 27.9 5.4
0.5 1.0 5.8 5.9 0.0 -0.2 185.5 5.8
1.0 0.18 4.7 4.4 -1.7 -1.7 275.1 3.0
1.0 0.55 4.9 4.7 -1.1 -0.7 46.8 3.8
1.0 1.0 3.4 3.2 -2.0 -2.0 15.6 1.4

Table 1. GRASP vs. branch-and-cut results
for SET2 instances (100×100).

on average.
In Table 4, for three instances within a group and for

10 runs per instance, we report the following values: LB-
gap = (GRASP− LB)/LB, the average and median gaps
between the GRASP solution and the B&C lower bound
(LB); UB-gap = (UB − GRASP)/UB, the average and
median gaps between the GRASP solution and the B&C
upper bound (UB); average GRASP running time in sec-
onds (t[s]) and the optimality gap of the B&C obtained as
(UB− LB)/LB.

The most difficult instances for B&C are the sparse
graphs, where GRASP even outperforms the upper bounds
found by B&C (positive UB-gap values) after one hour.

We conclude that, on three sets of randomly generated
instances with uniform topology and different cost struc-
tures, GRASP performs fast and provides stable results
whose average gap to optimum varies between 0% and
10%. For both approaches, B&C and GRASP, the most
difficult (easiest) instances appear to be those with sparse
(dense) customer-facility topologies when |F | = |C|.
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Abstract—We consider the connected facility location problem
(ConFLP), a useful model in telecommunication network design.
First we introduce the extended connected facility location prob-
lem which generalizes the ConFLP by allowing pre-opened and
pre-fixed facilities. This new concept is advantageous for applying
complex sequences of reduction tests. By such an analysis of
the solution space we anticipate solution dependencies in favor
of following optimization methods. Besides transferring existing
techniques designed for the facility location problem, the Steiner
tree problem and the group Steiner tree problem, specific new
reduction methods are introduced. The presented concepts based
on graph theoretic formulations are also of theoretical interest.
Additionally, we propose an efficient self-adaptive presolving
strategy based on test dependencies and test impacts respectively.
A computational study shows that the number of edges could
be reduced up to 85% and the number of nodes up to 36%
respectively on instances from the literature.

Keywords-connected facility location; presolving; network de-
sign; Steiner tree;

I. INTRODUCTION

A. Motivation

THE connected facility location problem (ConFLP) is a
highly useful model for the application to problems aris-

ing in the design of telecommunication networks. For instance
the (partial) replacement of existing out-of-date copper based
networks by modern fiber-optic cables can be handled as a
ConFLP. We are given customers, that need to be connected
to a central distributor by a tree-shaped network. In com-
monly used Fiber-To-The-Curb (FTTC) architectures, potential
switching locations are given to which the customers may by
connected by an existing copper infrastructure. Any choice of
switch installations results in a set of terminals that have to be
connected to the distributor using new fiber-optic technology.
The practical objective is to minimize the overall installation
costs for cables and switching devices.
The ConFLP is an NP-hard [1] optimization problem and
therefore especially challenging in real world applications
involving large instances. To ease the computational burden
for algorithms to compute an optimal or heuristic solution,
the application of problem presolving procedures is not just
effective, but also unavoidable in many cases. The term

Partially supported by the Austrian Research Promotion Agency, FFG,
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presolving is used in turn which emphasizes the solution-
oriented character of the applied techniques, compared to
simple preprocessing methods. Such an analysis of the solution
space may result in a remarkable reduction of the problem size.
For certain instances no further methods need to be applied
since the techniques used for presolving completely reduced
them to trivial ones and therefore solves it to optimality. Exact
and heuristical methods take advantage of the anticipation of
preprocessable dependencies. Certainly a reduced number of
provided variables is likely to accelerate the enumeration in
exact branch & bound algorithms.

B. Contribution

We developed several presolving techniques for the ConFLP,
transferred existing literature ideas for related problems and
embedded these methods into a self-adaptive overall strategy.
This algorithmical framework is based on problem and test
specific reduction dependencies that we also present in this
paper. In our studies we did not limit ourselves to problem re-
ductions that necessarily result into a ConFLP instance again.
Instead we generalized the ConFLP by the introduction of
the extended connected facility location problem (EConFLP).
This model is very convenient for transferring presolving in-
formation during the reduction process and allows the flexible
integration of practical side constraints at the same time. The
ideas are also of theoretical interest and variations may be
considered for related problems. Computational results show
that these methods can be effective.

C. Related work

The ConFLP model combines two classical problems in
combinatorial optimization. On the one hand the Steiner tree
problem (STP) asks for a tree of minimal edge costs that
connects given terminals by optional use of Steiner nodes for
the interlinkage [2]. On the other hand the ConFLP generalizes
the well known (Uncapacitated) facility location problem
(FLP). To solve the FLP selected facilities are installed at
potential sites and each given customer is assigned to exactly
one of them. The objective is to minimize the sum of the
installation costs and the assignment costs. The ConFLP
has been introduced by Karger and Minkoff [1] who gave
the first approximation algorithm of constant factor. Solution
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approaches for the ConFLP in the literature include exact MIP-
based methods [3], greedy random adaptive search [4] and
a dual based heuristic [5]. The design of effective reduction
methods was already carried out for related network design
problems. Introductory work on preprocessing techniques can
ba found in [6]. The STP was considered by Duin et al. [7]
and Polzin et al. ( [8], [9]). Ferreira et al. [10] developed
sophisticated tests for the reduction of instances of the group
Steiner tree problems (GSTP). Ideas from these works serve as
a starting point for some of our elaborations presented in this
paper. More recently, the extensive application of presolving
techniques by Letchford et al. [11] enabled the solution of
peviously unsolved FLP instances to optimality. The authors
combined complex lower and upper bounding procedures to
an effective aggressive preprocessing scheme, that reduces
instances sufficiently for MIP solvers.

D. Problem definition

Given an undirected connected graph G = (V, E), a nontriv-
ial partition (F, C) of V identifying facilities and customers,
nonnegative edge costs c and nonnegative opening costs for
the facilities, the connected facility location problem consists
of finding a connected subgraph G′ = (V ′, E′) of G, such that

i.) each customer is adjacent to exactly one facility in G′,
ii.) the subgraph of G′ induced by the set of facilities in V ′

is connected, and
iii.) the total cost, defined as the sum of the edge costs and

the costs for opening facilities,
∑

v∈NV ′ (C)

pv +
∑

e∈E′

ce ,

is minimized.
For any node u ∈ V , by NV ′(u) we denote the set of its
neighboring nodes in V ′, and for any subset X ⊆ V , we
set NV ′(X) = ∪u∈XNV ′(u). Due to the problem definition
above and the non-negativity of costs c and p there exists an
optimal solution such that G′ is a tree. Some facilities in F
may be used as pure Steiner nodes, in which case no opening
costs need to be paid for them. If in a solution a facility v is
adjacent to a customer u, we call v an open facility and we
say that u is supplied by v, or that u is assigned to v. The set
of potential facilities Fp = NF (C) contains the nodes in F
that allow facility installations.

II. THE EXTENDED CONFLP (ECONFLP)

In our presolving studies we did not limit ourselves to
problem reductions that necessarily result into a ConFLP
instance. Instead we generalize the understanding of such an
instance by the following properties:

• A facility might be labeled as open facility, i.e. it has to
be open in a solution.

• A facility might be labeled as network facility, i.e. it has
to be part of a solution, either open or not. We do not
allow a facility to be open and a network facility at the
same time.

• An edge connecting two facilities might be labeled as
network edge, i.e. it has to be part of the facility network
in a solution. This implies each of the two ends to be
network facilities if not opened yet.

• Facilities may belong to groups. A group specifies facility
sets in which at least one node belongs to an optimal
solution.

In order to solve the resulting EConFLP, algorithms might
need to be modified with respect to the additional restrictions.
Alternatively a ConFLP instance could easily be obtained from
an EConFLP instance. The corresponding transformation into
the ConFLP looks as follows:

i.) For each open facility v, introduce an artificial customer
ṽ and connect it to v with cṽv = 0. Herewith in any
ConFLP solution the facility v will be opened.

ii.) For each network facility v introduce an auxiliary facility
v′ and connect it to v by an edge of zero cost where
pv′ = 0. Then proceed with v′ as for an open facility
described above. Note that v′ needs to be introduced since
we do not necessarily open v.

iii.) For each group g, introduce an artificial customer vg and
connect it by zero cost edges to the nodes in g.

III. PRESOLVING TECHNIQUES

Our presolving methodology tries to reduce the initial prob-
lem stepwise. To refer to the current reduced structures we use
tilde, (e.g. F̃p). Furthermore we will use the distance function
duv which returns the length of a shortest path between two
nodes u to v in the current graph with respect to c. To restrict
the function to a subgraph induced by the nodes X ⊆ V
we write dX

uv . For the set of open and network facilities,
we also say solution or fixed facilities. Given two disjoint
node sets S1, S2 ⊆ V [G], we define a minimal {S1, S2}-
cut as a partition {RS1

, RS2
} of V [G] such that S1 ⊆ RS1

,
S2 ⊆ RS2

and the number of edges connecting RS1
and

RS2
is minimized. After computing a solution for the reduced

problem, a corresponding solution for the original problem
needs to be constructed. This is achieved by the successive
reversion of the modifications in the current problem and
the corresponding solution adaptations in the opposite order
of reduction. Corresponding restoration rules can easily be
derived from the reduction steps so that we do not elaborate
them here.

A. Presolving the facility subgraph

As we already observed, once the set of open facilities is
known, the problem reduces to the Steiner tree problem on
the facility subgraph GF . Therefore, the traditional reduction
procedures for the STP, most of them originally proposed by
Duin and Volgenant [7], can easily be extended to the ConFLP.
We now show how to generalize these tests for the ConFLP:
we apply them on the subgraph G̃F̃ , with network facilities
and open facilities treated as terminal nodes.
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1) Degree 1 and 2 facilities: Every facility v ∈ F̃ with
degṼ (v) = 1 that is not a potential facility can be deleted.
If v is an open or network facility, we additionally fix its
neighbor (if not an open facility yet) as a network facility.
For a facility v ∈ F̃ with degṼ (v) = 2 that is not a potential
facility, an open facility or network facility, we can apply
the following: delete v and insert an edge connecting its two
former neighbors. Set the edge cost to the sum of the costs
of the removed edges. If this edge already exists, then set its
weight to the minimum of the new cost and its original value.
This is possible because either none of the two edges incident
with v is part of an optimal solution or both.

2) Shortest paths: An edge e = uv ∈ ẼF̃ that is not a
network edge is dispensable if ce ≥ dF̃

uv , because e can always
be replaced by a shortest path connecting u and v without
increasing the objective value.

3) Network edges: For a network edge e = uv ∈ ẼF̃ with
not both ends being potential suppliers, i.e. {u, v} 6⊆ F̃p, u
and v can be contracted, say to z. Then z becomes a solution
facility if neither u nor v were fixed in the solution before. If
one of the ends was an open facility, then we assign its opening
costs to z and open it. If u or v was a network facility, then
z is added to the network facilities.

4) Nearest node: Consider a solution facility v and let x =
argminu∈NF̃ (v)cvu and z = argminu∈NF̃ (v)\{x}cvu. We add
vx to our solution as a network edge if a solution facility v′

exists such that
cvx + dF̃

xv′ ≤ cvz .

Note that the nearest facility x may be a solution facility and in
this case the test corresponds to the adjacent solution facilities
test for x and v.

5) Node nearer to solution facility: An edge uv ∈ ẼF̃ will
not appear in an optimal solution if a solution facility x /∈
{u, v} exists such that

max(dF̃
xu, dF̃

xv) ≤ cuv .

This is possible, because instead of using the edge uv in the
network we could always connect the two ends to a solution
facility without paying additional costs. Note that in the case
of one end being a terminal, this test corresponds to the nearest
node test.

6) Bottleneck degree m: We consider a facility v that is
not a potential facility with m = degF̃ (v) ≥ 3. Such a facility
will have either degree two or will not belong to an optimal
solution if the following property holds:

∑

u∈NF̃ (v)

cvu ≥ ST (K, G̃F̃ \{v}), ∀K ⊆ NF̃ (v), |K| ≥ 3,

where ST (K, H) denotes the cost of an optimal Steiner tree
connecting subset K of terminals on the graph H . Since solv-
ing the Steiner Tree subproblem would be way to expensive,
we just apply a heuristic, namely the well known Shortest
Path Heuristic for the STP (see [2] or [4]). In order to do
so, for each pair of neighbors of x, z ∈ NF̃ (v), we either
insert a new edge e = xz (if it does not exist) and set its

cost to s = cxv + cvz or we update the current edge weight
to cxz = min(cxz, s). In the worst case we pay the price of
adding

(
m
2

)
− m edges to the problem for a single facility

deletion which explains why this test is just applicable for
small values of m. In a dense facility network we conversely
may not need to add any edges but we might want to change
the cost structure, besides the facility deletion.

7) Adjacent solution facilities: Let two adjacent facilities u
and v be part of a solution, either as network or open facilities.
If cvu ≤ cvx ∀x ∈ F then the edge evu can be added to our
solution as a network edge. To prove this, assume that the
condition holds for v but an optimal solution S exists that
does not contain vu. For connectivity reasons S contains a
path in F̃ using an edge vx (x 6= u) from v to u. So S could
be improved by using vu instead of vx what contradicts with
the optimality of S.

8) Facility cuts: In [9], Polzin and Daneshmand present
a decomposition concept for the STP based on the detection
of node separator subsets of low cardinality, i.e. subsets of
nodes whose removal separates the terminals of the graph
G̃F̃ . We extend this concept to the set of edge separators, by
introducing additional presolving steps for the newly detected
groups induced by these cuts. For solution facilities t1 and t2
we compute a minimal t1-t2-cut (S, T ) in G̃F̃ . If there is just a
single edge e connecting S and T we can label e as a network
edge, since it will belong to any feasible solution. Additionally
we consider the induced node separator sets QS = {v ∈ S :
NF̃ (v)∩T 6= ∅} and QT = {v ∈ T : NF̃ (v)∩S 6= ∅}. We add
QS and QT to the set of groups, but control these additions
by a parameter that limits the size of added groups. Some of
the presolving techniques for the group Steiner tree problem
can be transferred and applied to the concept of EConFLP
as defined above. Recall that, given a graph G̃F̃ with non-
negative edge costs, and a collection R of subsets of F̃ , called
groups, the GSTP is to find a minimum-cost subtree of G̃F̃

that contains at least one node from each group R ∈ R. We
consider the groups R ⊂ F̃ , that arise from different tests
introduced within this paper. Apart from such groups, we can
initially add a group Ru for each customer u consisting of its
potential suppliers NF̃ (u).

9) Node nearer to group: This test is a generalization of
the node nearer to terminal test for the GSTP. An edge e =
uv ∈ ẼF̃ will not appear in an optimal solution if a group
R 6⊇ {u, v} exists such that

max(dF̃
ru, dF̃

rv) ≤ ce ∀r ∈ R .

This is possible, because instead of using the edge e in the
network we could always connect the two ends with any node
in R without additional costs. The special case of considering
groups of cardinality one leads to the node nearer to terminal
test.

10) Group cuts: For two disjoint groups R1 and R2, we
compute a minimal (R1, R2)-cut in GF̃ , say (S, T ). If there
is just a single edge connecting S and T we can label it as a
network edge, since it will belong to any solution. Additionally
we consider the induced node sparator sets RS = {v ∈ S :
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N(v) ∩ T 6= ∅} and RT = {v ∈ T : N(v) ∩ T 6= ∅}. We add
RS and RT to the set of groups, but limit the total number
of added groups. This generalizes the facility cut test since
facilities fixed in a solution are just groups of cardinality one.
Here we also mix the two types by allowing singleton groups.

B. Presolving the facility-customer subgraph

Adapting presolving tests for the facility location problem
we get the following applying to the ConFLP.

1) Degree 1 customers: For a customer u ∈ C̃ with
degG̃(u) = 1 we remove u and force the facility v to be
part of the facility network as an open facility.

2) Customer domination: For two customers u and v with
NṼ (u) ⊂ NṼ (v) we can delete an edge e = vx with x /∈
NṼ (u) if ce ≥ cvz ∀z ∈ NṼ (u). The reason for this is that
at least one of the potential facilities of u will be opened
and therefore even if facility x was already open it would be
cheaper to let v be supplied by the facility supplying u.

3) Network facility: We consider the network facilities that
are potential suppliers in order to open them or exclude
alternative potential suppliers. Consider such a facility v and a
potential customer u, i.e. v ∈ NṼ (u). We may delete an edge
ux (x 6= v) if cxu ≥ cuv + pv . So opening v and supplying u
by v would be cheaper than supplying u by x, even if x was
open.

4) Open facility: In the case that we have fixed a facility v
to be supplying in our solution we should check whether we
can exclude other facilities from being potential suppliers for
its potential customers. So for a customer u adjacent to v an
edge e = ux (x 6= v) can be deleted if cvu ≤ ce.

C. Presolving the whole graph

Finally, in this section we propose tests that apply to the
EConFLP concept, involving the whole graph G̃, considering
solution facilities, network edges and groups as well.

1) Facility-customer distance: For a potential facility v we
can delete a supply edge e = vu (u ∈ C̃) if a path Pvu

in G̃F̃∪{u} from v to u not containing e exists such that
d′

vu ≤ cvu, where d′
vu denotes the length of the path Pvu

plus the opening costs of the potential facility z on that path
if not opened yet. Thereby, the weights of network edges are
discarded:

d′
vu =

{∑
e∈Pvu

ce + pz z closed∑
e∈Pvu

ce z open
(zu ∈ Pvu) .

This test checks if it would be cheaper to add the whole path
to the solution and possibly open the facility z than using the
edge vu.

2) Solution-facility-customer distance: In this test we con-
sider a potential facility v and one of its supply edges e = vu
(u ∈ C̃). Let FS be the set of current solution facilities. We
delete e if for a x ∈ FS a path Pux in G̃F̃∪{u} from u to x
not containing e exists such that d′

u,x ≤ cvu. Here d′ is the
function used in the facility-customer distance test. In contrast
to the facility-customer distance test we just try to supply and

connect the customer u to any facility in the existing facility
subnetwork without exceeding certain supply edge costs. In
the case that v is already open or a network facility, this test
covers the facility-customer distance test.

3) Group-customer distance: We extend the terminal-
customer distance test to groups. The additional requirement
for a supply edge deletion is the existence of the mentioned
path for all the nodes of at least one group.

4) Potential facility leaves: Let a potential facility v have
degF̃ (v) = 1. If v is part of an optimal solution, then -
provided it is not the only facility to do so - surely its incident
edge vx ∈ ẼF̃ in the facility network will be used in this
solution. In the case that x is not a potential facility itself, we
can contract x and v and set the opening costs of the resulting
potential facility as pv+ce. Otherwise if x is a potential facility
and there exists a group not containing v or one other solution
facility, then the opening cost of v can be increased by ce to
provoke the success of the network facility test.

5) Groups: We remove groups that contain solution facili-
ties, since this is redundant information. Additionally we trans-
form groups of cardinality 1 to network facilities. Multiple
and empty groups are dynamically removed when removing a
facility.

D. The overall presolving strategy

The proposed techniques are all of polynomial time com-
plexity. Although the STP is well known to be in the class of
NP-hard optimization problems we use a polynomial method
to solve the problem heuristically. Therefore the overall pro-
cedure based on reduction success is also polynomial. The
correctness follows from the validity of the single reductions
and the transformation of the EConFLP into the ConFLP.
However the effort for carrying out test on a problem in-
stance varies. For instance a degree-testing can be done in
significantly less time than running numerous minimal cut
computations. Therefore we tried to minimize the number of
tests that we identified as computationally more expensive
in our experiments. The latter ones are mostly the tests that
require solving a non-trivial subproblem, e.g. finding minimal
cuts or multiple shortest paths. So we first apply the less
elaborate tests as long as this results in a problem reduction.
Afterwards we once run the more time consuming procedures
and perform a restart if a problem modification was detected.
Since we still observed many redundant test runs we focus on
concrete test interactions to minimize unnecessary iterations.
One can observe some complex relationships between different
reduction types. Figure 1 describes the potential changes of
the problem structure with respect to the tests performed. An
arc depicts the potentially successful presolving tests after a
certain problem modification. Figure 2 shows the impacts of
the modifications of the input graph on specific presolving
steps. An arc describes a problem modification consequence
of the corresponding reduction type. Our idea was to make the
testing scheme adaptive. Therefore a prioirity is assigned to
each reduction method. Initially these values are chosen to set
up a basic ordering. We simply enumerate the tests from based
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on our computational study from easy to hard. So the tests are
called according to their priority. Whenever a test did alter the
current problem, we increment the priority of all the other tests
that may depend on the performed problem modification. To
keep the computational effort low, we still apply the 2-phase
division that first works all the easy tests.

Fig. 1: Arc AM indicates that test A may result in a problem
modification of type M .

Fig. 2: Arc MB indicates that a modification of type M may
have an impact on the success of test B.

IV. COMPUTATIONAL RESULTS

We ran our scheme on the ConFLP instances used in [4].
The problems consist of a random facility network with ran-
domly added customer assignments . The following parameters
were adjusted to create the problem classes: the probability
of creating an edge in the facility network, G[F ] (peF ), the
probability of creating a supply edge (peC) and the probability
of defining a facility node as a potential supplier (pFp).
Edge weights are randomly assigned ranging from 50 to 100
and opening costs from 150 to 200 respectively. Our C++
implementation of the presolving algorithm was tested on an
Intel Core 2 Duo E4300 machine with 1.8 GHz, 3.25 GB
RAM. We used the following default parameter setting: in the

bottleneck degree test we set m = 3; the maximal size of the
added groups was set to 2 and number of groups was limited
to 8. The simple categorization of tests into two complexity
classes already speeds up the overall testing procedure. The
number of easy test loops is about twice the number of hard
test repetitions. Moreover it saves computational effort to
exclude hard tests from a test loop, if no need can be detected
by the dependencies illustrated in the previous section. The
results shown in Table I are average values of 3 random
instances per group. The computation times did not exeed 5
minutes per instance. The graphs having a sparse facility

TABLE I: Average presolving effectiveness on 39 instances
(|F | = 100,|C| = 100) with the relative reductions rV and
rE on V end E. Each instance class consists of 3 random
instances.

Orig. ConFLP instance Presolved EConFLP instance
peF peC pFp |E| |EF | |EC | |E| |F | |C| rV rE
0.18 0.18 0.3 1131 590 540 435 33 93 36.5 61.5
0.18 0.18 1.0 2406 594 1811 1811 100 100 0.0 24.7
0.18 0.55 0.3 2215 587 1628 1702 49 100 25.3 23.2
0.18 0.55 1.0 6062 575 5486 5486 100 100 0.0 9.5
0.18 1.00 0.3 3575 575 3000 3103 57 100 21.2 13.2
0.18 1.00 1.0 10572 572 10000 10029 100 100 0.0 5.1
0.55 0.18 0.3 3070 2538 531 647 87 94 9.0 78.9
0.55 0.18 1.0 4347 2538 1808 1808 100 100 0.0 58.4
0.55 0.55 0.3 4179 2524 1654 1815 72 100 13.8 56.6
0.55 0.55 1.0 8023 2528 5495 5495 100 100 0.0 31.5
0.55 1.00 0.3 5518 2518 3000 3154 66 100 17.0 42.8
1.00 0.18 0.3 5506 4950 556 828 96 98 3.0 85.0
1.00 0.55 0.3 6569 4950 1619 1869 80 100 9.75 71.6

network (peF = 0.18) can be preprocessed with less effort
than others. The benefit of the applied methods obviously
depends on the density of the customer-facility network (peC).
If the bipartite subgraph is complete, the algorithm stops after
less than 2 seconds without any reduction. On the other hand
if both networks are sparse (peF = peC = 0.18) and not all
facilities are potential suppliers (pFp = 0.3), we are able to
significantly reduce the size of the inputs. We obtain graphs
whose numbers of nodes and edges are reduced by 36% and
61% respectively on average. We can also observe that the
sparsity of the graph G is not a sufficient condition for a
successful reduction. If Fp = F , i.e. pFp = 1, the presolving
is not able to remove nodes, even for a very sparse graph G[F ].
The worst results are obtained for graphs having a complete
bipartite structure and Fp = F . This can be explained by the
fact that many tests originally designed for the STP are not
directly applicable to potential suppliers. Since our benchmark
instances obey a uniform structure, in which every node has
almost the same degree, simple degree tests that lead facility
removals have no effect at all. In extreme cases, when the
degree of every customer equals |Fp|, the number of edges
could be reduced by only 5.1%. Finally, the most remarkable
reductions concerning the number of edges (between 71.6%
and 85%) are obtained for graphs having complete facility
networks.
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(a) (b)

Fig. 3: Presolving effect on a random instance.

V. CONCLUSIONS

In this paper we provide techniques for presolving instances
of the ConFLP embedded in an algorithmic framework. We
extend the concept of a the ConFLP by allowing terminal
facility nodes (being open or not) and groups of facilities
among which at least one needs to be included in the solution.
Afterwards we also describe how such an extended ConFLP
instance can be reversed into a ConFLP. The new extended
ConFLP concept enables the transfer of several known tests
for (group) Steiner tree problems and the facility location
problem. Furthermore, we propose a bunch of new presolv-
ing ideas for the ConFLP structure itself and test all of
them computationally. The overall methodology is based on
identified problem modification dependencies. Our algorithmic
framework is tested on a set of benchmark instances from the
literature showing that the proposed presolving is especially
beneficial for graphs obeying a sparse edge structure with
respect to the edges connecting only facilities, facilities and
customers, or both. We observe that increasing the number of
potential suppliers decreases the effectivity of the presolving
procedures. maximal degree m for the bottleneck test, are
determined manually, by running only a small number of
sample instances. One possible way to improve these features
is to use intelligent learning techniques to train these so-called
control values.
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Abstract—Solving real world problems in network design
by means of combinatorial optimization usually begins with
finding or developing appropriate models. The application of
models for which problem specific efficient heuristic or exact
methods exist is favourable. Another desirable key feature of
such a model is its flexibility to be adapted to represent the
practical requirements. We consider two capacitated problems
in locational network design: the capacitated connected facility
location problem and the multi-depot ring star problem, the
latter ensuring reliability. First we present several relations to
other known optimization problems that are generalized by
these models. Then we show how to integrate multiple highly
relevant side constraints. Besides prize collecting, customer cov-
erage and multiple distributor variants we elaborate problem
specific features. The introduced modeling techniques allow the
usage of these optimization models with their various existing
solution approaches from the literature in a wider context and
help to distinguish between related models.

Keywords-multi-depot ring star problem;capacitated con-
nected facility location problem;modeling;reliable network de-
sign;

I. INTRODUCTION

Networks are used as foundations for numerous practical
and theoretical applications. In the context of telecommu-
nication we naturally deal with networks representing the
underlying structures for data transfer based on different
technologies. Commonly, information is sent from distribut-
ing devices to customers and vice versa. Locational network
design extends the structural network design by the need of
taking decisions on the installation of devices at potential
sites. Typical scenarios are the need of signal repeaters or
switching units. Depending on the field of application the
design of networks from scratch or the extension of existing
structures are tasks of high importance. Modern supply
networks are required to be designed or refined following
strategical business requirements. Certainly, a key aspect
here is cost saving planning. For instance, the replacement
of outdated copper-based infrastructure by powerful fiber-
optic cables is expensive concerning laying as well as costs
of material. To minimize the overall installation expenses
the application of suitable optimization methods has become

This work was supported in part by the Austrian Research Promotion
Agency, FFG, within Bridge 2 programme (812973).

quite popular in the last decade. Such algorithms are usu-
ally developed for specific optimization models representing
practical problems. Since the network specifications vary de-
pending on the business requirements, we might be lacking a
suitable model for which solution approaches already exist.
Therefore, it is highly useful to have modeling techniques
at hand that allow the embedding of a given problem into a
known related model structure.
In this paper we consider two powerful network design
models from the literature, the capacitated connected fa-
cility problem and the multi-depot ring star problem. Both
models employ customer supply capacities and are based on
different structures to link customers to distributors. The first
one provides a tree-based supply structure for the customers.
Conversely, the second model propagates ring star structures
that yield reliability of service. The latter can be informally
described as a set of rings that interlink customers, to which
selected coustomers may also be assigned. We illustrate both
problems and give an overview of several problems variants
and related models from the literature. Our main contribution
is the elaboration of various modeling techniques for each
problem that enable us to integrate additional requirements
of high practical relevance. For instance, we show how to
model side constraints such as customer coverage rates,
customer price collection and multiple distributors.
Our paper is structured as follows. In the following section
II we consider the capacitated connected facility location
problem. After defining the problem formally we explain
relations to literature models and introduce our modeling
techniques for the integration of additional requirements.
Section III covers the elaborations for the multi-depot ring
star problem. Our conclusions are summarized in the final
section IV.

II. CAPACITATED CONNECTED FACILITY LOCATION
PROBLEMS

The connected facility location problem (ConFLP) has
been introduced by Karger and Minkoff [6]. Connected fa-
cility location problems are suitable models for well known
Fiber-to-the-Curb (FTTC) strategies. Here we are given an
existing copper structure connecting customers to a distrib-
utor. The task is to design a cost efficient fiber core network
that replaces the outdated structure partially. From selected
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transition points to the customers, the so-called last mile, the
rather short existing copper cables are retained to minimize
the overall replacement costs. Various solution approaches
have been proposed for this uncapacitated problem in the
literature. In [14] we proposed a heuristic GRASP method
and elaborated effective reduction methods in [13]. The more
general model considered in this paper is the capacitated
connected facility problem (CapConFLP) introducing supply
capacities and customer demands. Relating to a ftth renewal
scenario the capacities correspond to technical limits of
multiplexers which are needed for changing over from digital
to analog transmission. In [9] a problem variant including
a customer coverage is solved heuristically. Our modeling
techniques will include the reduction of this derivative to
the CapConFLP and show the flexibitity and capability of
this model in general.
We first define our basic problem in section II-A. Then a
bunch of related problems from the literature are presented
in II-B. Section II-C contains our modeling techniques for
the CapConFLP.

A. The capacitated connected facility location problem

The following definition is based on a rooted problem
formulation which is equivalent to an unrooted counterpart
from a complexity point of view. A mutual transformation
is described among our modeling techniques in section II-C.
We are given an undirected connected simple graph
G = (F ∪̇U,E) representing the potential network resources.
A node of G may either be part of the set of customers U
or the set of facilities F . No edges between customers are
allowed here. Let r ∈ F be the root node and consider the
following given nonnegative values.
• Demands: du ∀u ∈ U
• Capacities: kv ∀v ∈ Fp

• Opening costs: cv ∀v ∈ Fp

• Supply costs: ce ∀e ∈ EF∪U

• Connection costs: ce ∀e ∈ EF

Throughout the article the set of edges E restricted to edges
connecting nodes in X is denoted by EX . Facilities that
are incident to a customer in G are called the potential
suppliers and denoted by Fp. A solution for the CapConFLP
is a subgraph T of G such that the facility network TF is
connected, r ∈ T , each customer is connected to exactly one
potential supplier and the supply capacities are respected:

∑

u∈NU (v)

du ≤ kv ∀v ∈ Fp ,

where the neighbors of a node v restricted to a node
subset X of the current graph are denoted by NX(v). The
CapConFLP asks for a solution T = (VT , ET ) of minimal
total cost z(T ), where

z(T ) =
∑

v∈NF (U)

cv +
∑

e∈ET

ce .

An example of a solution network for the CapConFLP is
given in figure 1. The requirement of a unique supplier for
each customer makes the CapConFLP a single-source supply
model.

Figure 1: An example solution for the capacitated connected
facility location problem with 332 customers.

B. Related models

1) The connected facility location problem: As men-
tioned in the introduction, the CapConFLP generalizes the
connected facility location problem (ConFLP). By simply
setting the customer demands to zero we are able to model
each ConFLP instance as a CapConFLP instance.

2) The group Steiner tree problem: In the case of uniform
assignment costs cuv ∀v ∈ N(v) for each customer u
and zero opening costs, we can transform the ConFLP
into the group Steiner tree problem (GSTP). The GSTP
is a generalization of the well known Steiner tree problem
(STP) and asks for a tree of minimal cost connecting given
groups of terminal nodes. The GSTP is NP-hard, since it
obviously generalizes the STP. It was introduced by Reich
and Widmayer in [11]. The transformation is done in the
following way:

i. Initialize the GSTP with the graph GF .
ii. Define the set of groups R as all the potential

supplier sets for the customers and a root group:
R = {N(v)|v ∈ U} ∪ {{r}}.

Since we do not pay for opening facilities and each cus-
tomers assignment costs are constant, we can assign the
customer to corresponding potential suppliers that are part
of the Steiner tree. In general the resulting groups are not
disjoint. To reconstruct a solution for the ConFLP from the
solved GSTP just consider the group tree T and connect the
customers arbitrarily to their original potential suppliers that
are contained in T .
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3) The facility location problem: Given a bipartite graph
with partition sets Fp (facilities) and U (customers), with
non-negative edge costs and non-negative opening costs
assigned to facilities, the uncapacitated facility location
problem (UFLP) consists of finding a subset of facilities to
open, so that each customer is assigned to exactly one open
facility and the sum of facility opening costs and customer
assignment costs is minimized. Observe that having zero
connection costs in the ConFLP, the connectivity require-
ment (connecting the open facilities by a Steiner tree) is
superfluous and the ConFLP reduces to the UFLP.
The capacitated facility location problem (CapFLP) addi-
tionally incorporates given facility capacities and customer
demands that have to be respected. This model is also
well known as the warehouse location problem and is
analogously generalized by the CapConFLP.

4) The Steiner tree problem: Recall that in the Steiner
tree problem (STP) we search for the subgraph of a given
egde-weighted graph GF which connects given terminals
at minimum costs. Assume that we are given a feasible
CapConFLP. In the case of a unique potential supplier for
each customer, the CapConFLP is equivalent to the STP.
Simply solve the STP on G with the customers as terminals.
Due to this reduction to the STP, the CapConFLP even
remains NP-hard if the opening costs of facilities are zero.

5) The Steiner arborescence problem: As we already
observed in [14], the ConFLP can be transformed into the
Steiner arborescence problem (SAP). The SAP asks for an
arborescence of minimal total arc weight that spans a set
of terminals under the optional usage of Steiner nodes in
a directed graph. This transformation replaces the facility
opening costs by artificial arcs using a simple node splitting
technique that was proved to be useful in different models
on graph structures.

C. Modeling

The CapConFLP can model several side constraints of
high practical relevance. To describe some of them, we begin
with the transformation to force a facility to be part of the
solution network.

1) Facility fixing: Suppose that a facility v is required to
be part of a solution. First introduce an artificial customer
u. If v is a potential supplier, add an artificial supplier v′

and edges uv′ and v′v. If v is no potential supplier, v′ is
not needed and just the edge uv of zero weight is inserted.

2) Unrooted CapConFLP: We can omit the root node
requirement in a CapConFLP and obtain the unrooted
CapConFLP when applying a facility fixing transformation
on r. Then again we can turn the latter into a (rooted)
CapConFLP by the following efficient instance expansion.
Add an artificial root node and connect it by zero cost edges
to each facility node.

3) Multi-rooted CapConFLP: Our model allows, as the
ConFLP, efficient multiple root modeling. For a given set

of roots R ⊂ F , the task is to supply the customers by a
forest of minimal cost, such that each tree contains at least
one root in R. The transformation is achieved by adding an
artificial master root node r and connecting it to the existing
roots by edges rri ∀ri ∈ R of zero cost. In similar network
design problems as the ring star problems considered later
in this paper the introduction of additional root locations
boosts the problem complexity drastically.

4) Customer prize collection: Customers may not be
supplied in the solution network under payment of individual
prizes. This co-called customer prize collecting can be
integrated by exploiting the capacitated problem structure.
We add an artificial potential supplier t of zero opening
cost, capacity big M and artificial supply edges tu for each
customer u. Set the supply edge costs equal to the prizes
for of the corresponding customers. The facility network
connectivity is guaranteed after the insertion of the edge rt
of weight zero.

5) Facility prize collection: We can model the case that
we have to pay a prize pv for a facility v ∈ F \Fp not being
part of the solution. An artificial customer u of zero demand
is added with the zero cost edge vu so that v becomes
a potential supplier with zero opening cost and unlimited
capacity. We choose another customer x ∈ U of minimal
degree and insert edges zu ∀z ∈ N(u) of cost pv . In the
CapConFLP, the node weights are also respected in the case
of a facility opening. The exclusive case can be set up by
reducing the corresponding opening cost by the node weight.

6) Customer weights: Weights for customer nodes can
easily be integrated into their supply costs since the Cap-
ConFLP is a single-source supply model.

7) Demand coverage: We might not need to supply
all the customers. A target coverage value D for total
customer demand satisfaction can be modeled. We introduce
an artificial potential supplier t, set its capacity to the
sum of the customer demands minus the required value,
kt =

∑
u∈U du − D, and connect it to the root node r

by a new zero cost edge. If r is a potential supplier, we
need an additional artificial supplier as in the facility fixing
transformation. For D = 0 we face the special case treated
in [9]. Note that in the more general case of having a target
covering value depending on other values than the customer
demands, we might still apply this technique as long as the
value relation is linear.

8) Intersecting facilities and customers: Given that the
customer and facility locations are not disjoint, we can still
obtain an equivalent CapConFLP. This modification needs
the replacement of each node v ∈ F ∩ U , with a pair of
nodes, v1 ∈ F and v2 ∈ U , and the connection of all nodes
u ∈ NU (v) to v1, and all u ∈ NF (v) to v2, without changing
the edge costs. Finally, if v is a actually a potential supplier,
we also need to connect v1 and v2 by an edge of zero weight
and set the opening cost fv1 = fv .
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Figure 2: Modeling of the demand coverage constraint.

9) Unconnected facility network: Especially instances
based on data coming from real world applications may
not satisfy the requirement of the facility graph GF to
be connected. In this case we performed the following
validation procedure, which was part of our preprocessing
if the data did not correspond to an infeasible problem in
our context. Let F1, . . . , Fk be the connected components of
GF . If there exists a customer u that is not adjacent to a node
in a component Fi, then we can discard Fi and delete all its
nodes in G because not all customers can be supplied. For
every remaining component Fj we solve the corresponding
ConFLP on the graph GFj and keep the best solution we
find. In the case that no component is left, we got infeasible
data for our model. In the rooted case only the component
containing the root node comes into consideration.

III. MULTI-DEPOT RING STAR PROBLEMS

Models based on ring structures assure reliability in the
sense of one-link failure insensitivity. Although this struc-
tural idea finds numerous applications in network design it
has been considered extensively for routing in transportation
networks. Therefore, distributors are consequently referred
to as depots in this article to match with the literature
notation. In the work of Fink et al. [5] a generalized model is
proposed that extends several single depot ring-based models
from the literature. The authors point out the different
relationships and present a heuristical solution approach.
However, the model considered in our paper concentrates
on an even more general case.
The ring star problem was introduced by Labbé et al. [7]
and simply asks for a single cost-minimal ring star for a
depot connecting all the customers. In a ring star customers
may either be part of a cycle containing the depot or they
may be assigned to a cycle node. By restricting the allowed
customer assignments in advance, we are able to divide
the customers into two classes. On the one hand we have
ring customers that require a reliable network access. On
the other hand selected customers may just be connected
to the rings by simple links. In [7] this problem is studied
from a polyhedral point of view and an exact branch & cut
algorithm is proposed. Later Baldacci et al. [3] introduced
the capacitated version that, additionally, allows multiple

ring stars for the depot and the optionel usage of Steiner
nodes: the capacitated m-ring star problem (CmRSP). The
authors developed exact solution procedures based on mixed
integer programming (MIP) formulations. Currently, the
efficient heuristic by Naji et al. [10] yields the best results
for mid-sized instances of the CmRSP. We consider an even
more general model that was applied to telecommunication
network design problems in the literature recently: the multi-
depot ring star problem (MDRSP). Three heuristic methods
are proposed by Baldacci et al. [2] in their introductory
work. The results are outerperformed by a hybrid heuristic of
Tomazic [12] based on sophisticated MIP-based refinement
and contraction techniques. After giving a formal definition
of the MDRSP in III we list selected literature problems that
are generalized by the MDRSP in III-B. Our main modeling
ideas are presented in section III-C.

A. The multi-depot ring star problem

We are given an undirected complete graph G = (V,E)
that contains all the potential connections for building rings.
The node set V is the disjoint union of depots D, customers
U and optional Steiner nodes W . A set of selected potential
assignments A contains arcs from customers to any other
non-depot nodes. Each edge e ∈ E and each assignment
a ∈ A is associated with a nonnegative cost ce and ca,
respectively. A subcycle C in G containing exactly one depot
is a ring. Such a ring paired with assignments of customers
to its ring nodes yields a ring star. For each depot d ∈ D
a ring star limit md and a customer limit qd per ring star
is given. A solution to the multi-depot ring star problem
(MDRSP) is a set of ring stars such that
• every customer is part of exactly one ring star,
• each Steiner node is used in at most one ring star,
• each depot d is contained in at most md ring stars, and
• the number of customers in a ring star does not exceed

the limit qd for its depot d.
The MDRSP asks for a solution of minimal total cost, i.e.
minimized sum of ring edge costs and assignment arc costs.
Note that in our definition of the MDRSP we introduce
heterogeneous capacities md and qd depending on the con-
sidered depot d. The latter property increases flexibility for
the application to real world problems as explained later.
Figure 3 illustrates an example solution for the MDRSP.

B. Related models

1) The prize collecting traveling salesman problem: As
a generalization of the classical traveling salesman prob-
lem (TSP) the prize collecting traveling salesman problem
(PCTSP) allows omitting customers in the tour by paying
corresponding penalty prizes. It was first considered by
Balas [1] and also discussed in [5]. By not allowing any
assignments and setting the ring limit to one for the unique
depot, the MDRSP can model the PCTSP. The detailed
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Figure 3: An example solution for the multi-depot ring star
problem using 2 depots to serve 200 customers, where the
ring star limit per depot is 4 and the ring star capacity is 30.

modeling idea will result from our general prize collection
integration that is elaborated in section III-C1.

2) The Steiner ring star problem: The Steiner ring star
problem (SRSP) was introduced by Lee et al. [8]. This
single depot problem asks for a unique ring star of minimal
overall edge and assignment costs. Additionally, customers
are forbidden on the ring and therefore forced to be assigned
to Steiner ring vertices. The authors propose an exact branch
& cut method for this problem arising in the design of digital
data networks. The SRSP can be represented straightforward
by the MDRSP through a ring star limit of one, the optional
assignment of all the customers and an infinite limit on the
number of ring customers. To exclude the customers from
being on the ring we set the edge costs involving customer
nodes to some big M value.

3) The vehicle routing allocation problem: A related
single-depot problem combining routing and allocation is the
vehicle routing allocation problem (VRAP) introduced by
Beasley and Nascimento [4]. The VRAP allows the disregard
of customers under given penalty costs similar as in the
PCTSP but considers ring star structures. We can model
the VRAP and its multiple depot version as a MDRSP
using the procedure for general prize collection integration
given in section III-C1. The advantage over the incorporation
of additional binary service variables in a MIP model, as
proposed in [3], is the applicability of arbitrary solution
methods designed for the MDRSP without any algorithmic
customization.

C. Modeling

1) Prize collection: In many real world scenarios the
connection of customers to the network may be neglected be-
cause of their remote location or their generally inconvenient
location. Since such a decision usually means a loss of profit,
penalty costs should be imposed upon such an exclusion.
We can integrate this flexibility into the MDRSP by the
following transformations. Introduce an artificial depot d′

with customer per ring capacity qd′ = |U | and ring star
capacity md′ = 1. Additionally, insert two Steiner nodes
x and y. To y the customers may be assigned by arcs of
their penalty costs, x is just needed to constitute a ring. The
ring edge costs cd′v , cxv and cyv are set to big M for all
original network nodes v ∈ V and cd′x = cxy = cd′y = 0.
In a solution of the resulting modified problem the slack
ring star containing the ring nodes d′,x and y will include
customer assignments if paying the corresponding penalty
prize is globally cost efficient. For the modeling of this
feature we observe the moderate problem size increase of
one depot, two Steiner nodes and |U | assignments.

2) Customer coverage: Based on strategic planning just
a subset of customers might have to be included in the
solution network. Due to business requirements this number
of neglectable customers is usually limited. Let the coverage
parameter r describe the minimal number of connected
customers. If r = |U | this generalizing model reduces to the
MDRSP again. Otherwise we can integrate this flexibility to
partially supply the customers into the MDRSP by allowing
a slack ring star as for the prize collection concept. However,
the slack ring star capacity qd′ has to be set to |U |−r and the
customer assignment costs to y will be zero. Certainly, also
a combination of prize collection and customer coverage can
be integrated into the MDRSP.

Figure 4: Modeling prize collecting or coverage in the
MDRSP. Customers may be assigned to the Steiner node y
which is one of two artificial ring Steiner nodes constituting
the slack ring star served by the auxiliary depot d′.

3) Heterogeneous ring capacities: The MDRSP, as de-
fined above, allows depot-dependent limits for the number
of customers per ring star. Since the capacity of a ring star
usually depends on the used technology for its physical
installation, we might want to consider distinct types of
ring stars. The MDRSP is capable to model this practical
requirement by taking advantage of the individual ring star
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limits md in the following transformation. Assume that
for a depot d we are given ring star types t1, ..., tr (not
necessarily different) with customer capacities q1, ..., qr. We
substitute d by artificial depots d1, ..., dr, where each of them
corresponds to a ring star type and the customer per ring
star limits are set to the associated values. The number of
allowed rings for a depot di corresponds to the number of
installable rings of type ti. Edge costs involving new depots
equal the costs for d. Note that this transformation is just
valid if md = r, otherwise we are not able to assure the
total ring star limit md for d.

Figure 5: Example for a solution for the MDRSP when
modeling heterogeneous customer per ring star capacities
for a specific depot. The depot d is replaced by depots
d1, d2, d3, d4.

4) Customer-to-depot assignments: In the definition of
the MDRSP we do not allow an assigment of a customer u
to a depot d. However, we can model this using a slack ring
star R for d as in III-C1. It is of importance to force the
slack ring to be built when allowed at non-artificial depots.
Since we need to increment the ring star limit of d, omitting
R would allow an additional ring star for d which may lead
to an infeasible solution. To enforce the installation of R
we assume that qd > 0 and force an artificial customer to
be assigned to R. Finally, one of the artificial Steiner nodes
is set as a potential supplier of u instead of the depot d.
Herewith, an obtained solution containing the assignment of
u in R should be interpreted as an assignment of u to d.

5) Ring star set up costs: An incremented number of
installed ring stars may effect the need for a distributing
device with increased capacity. Likewise, ring stars might
evoke one-time establishment costs. For a depot d we can
integrate a constant ring star set up cost fd by augmenting
the costs for each edge incident to d by fd/2.

IV. CONCLUSIONS

In this paper we considered two mathematical models
in telecommunication network design and presented highly
relevant modeling techniques for their practical application.
On the one hand we show the flexibility of the capacitated
connected facility location problem as a tree structure based
model. On the other hand the multi-depot ring star problem
is considered as a representative of reliable network design
models guaranteeing one-link failure insensitivity. For both
problems we give literature references and relationships to

other combinatorial optimization models from the literature.
Our main contribution is the elaboration of problem specific
modeling techniques for both cases. These are of theoretical
and practical interest. Since the modeled side constraints
represent requirements of major practical relevance the ap-
plication of existing solution approaches can be extended to
a larger class of problems.
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An equi-model matheuristic for the multi-depot ring
star problem

Alessandro Hill and Stefan Voß

Abstract In the multi-depot ring star problem (MDRSP) a set of customers
has to be connected to a set of given depots by ring stars. Such a ring star is
a cycle graph, also called a ring, with some additional nodes assigned to its
nodes by single star edges. Optional Steiner nodes can be used in the network
as intermediate nodes on the rings. Depot dependent capacity limits apply to
both, the number of customers in each ring star and the number of ring stars
connected to a depot. The MDRSP asks for a network such that the sum of
the edge costs is minimized.
In this paper we present a matheuristic that iteratively refines a solution net-
work in a locally exact fashion. In contrast to existing approaches we define an
equi-model matheuristic. That is a refinement method in which the subprob-
lems are modeled as smaller instances of the global problem. Hence the opti-
mization model that is used to explore the various structural multi-exchange
neighborhoods in our algorithm is the MDRSP itself.

A first class of neighborhoods considers local sub-networks for optimal im-
provements. Through an advanced modeling technique we are able to refine
arbitrary sub-networks of suitable size induced by simple node sets. A second
class aims at globally restructuring the current network after the application
of different contraction techniques. For both purposes we develop an exact
branch & cut algorithm for the MDRSP that efficiently solves the local op-
timization problems to optimality, if they are chosen reasonably in terms of
size and complexity. The efficiency of the approach is shown by computational
results improving known upper bounds for instance classes from the litera-
ture containing up to 1000 nodes. 91% of the known best objective values are
improved up to 13% in competitive computational time.
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Keywords Multi-depot ring star problem · Hybrid heuristic · Branch & cut ·
Local refinement · Network design · Matheuristic

1 Introduction

In the last decade telecommunication companies have been spending billions
on their physical networks and will continue their investments. Due to the enor-
mous technological progress and the demand of high speed data connectivity of
the customers, improved network structures are needed. Network providers are
faced with eminent challenges concerning the extension and the replacement
of existing out-dated copper cables by faster fiber-based technology. Urban
areas need an almost complete coverage with improved service and rural areas
at least partially. The arising costs, essentially for excavation and installation,
and the corresponding major cost-saving potential motivates the application
of optimization methods to suitable mathematical models.
Generally spoken, in modern telecommunication network design a principal
task is to connect given customers to one or several distributors by means
of some technology. The structure of the network is defined by technologi-
cal or business requirements. Many modern network design models consist of
a subproblem that requires a certain core network structure combined with a
component that allows assignments of customers to the core nodes. The Steiner
tree star problem and the connected facility location problem, for example, ask
for a cost saving allocation of the customers to potential suppliers that are
connected to the distributor by a tree structure. In the ring star problem each
customer has to be connected to a depot by a ring or may be assigned to a
node of such a ring. Capacities are introduced in the capacitated m-ring star
problem (CmRSP), where the number of customers visited by or assigned to
a ring is limited as well as the number of possible rings served by the depot.
The CmRSP is closely related to the capacitated ring tree problem [9] and is
a special case of the recent ring tree facility location problem [1]. In our work
we consider the multi-depot ring star problem (MDRSP) which generalizes the
CmRSP by allowing multiple depots. The desired core ring structure guar-
antees reliability in the sense of one-link-failure insensibility since after the
removal of a single link the nodes on the ring are still connected by a path.
Optional Steiner nodes may be used to reduce the network costs. These nodes
do not consume capacity and can be incorporated into rings if advantageous
in terms of the overall edge costs. The MDRSP is a suitable model for rout-
ing problems, too, as it generalizes the well-known capacitated vehicle routing
problem with a heterogeneous fleet, homogeneous demands and multiple de-
pots. As a generalization of the classical traveling salesman problem (TSP) the
MDRSP is NP-hard.
Real-world instances of the MDRSP and related problems commonly involve
several hundred customers that have to be supplied. As for the CmRSP,
customer nodes represent houses when using a fiber-to-the-building model
(FTTB) and represent even more single households when modeling a fiber-
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to-the-home scenario (FTTH). Potential network branches such as crossings
result in Steiner nodes which leads to large instances even for middle-sized
cities. For further details on modeling and examples we refer to [3]. Finding a
proven optimum for reasonably sized problem instances is not possible using
nowadays methods and computing power. Therefore, current practical solution
approaches are mostly heuristical but may incorporate exact subroutines. In
this respect recent ideas from the realm of matheuristics and related hybrid
methods come into play. Moreover, the rapid improvement of integer linear
programming (ILP) solvers renders possible their usage to full capacity as
subroutines in heuristic solution frameworks. Within the method, setting up
suitable subproblems that locally improve a given solution structure seems a
most important issue. On the one hand the sizes of the explored neighbor-
hoods have to be chosen carefully such that the computational complexity
does not exceed the optimization potential of the exact method. On the other
hand subproblems should be worth being solved to optimality to outperform
heuristic searches. In our work we develop an efficient hybrid algorithm for
the MDRSP based on a branch & cut method. We demonstrate how the in-
tegration of exact methods can be used efficiently to solve this sophisticated
problem in combinatorial optimization and to improve previous best known
results from literature.
The paper is organized as follows. In Section 2 we provide a formal definition
of the problem and a literature review. Our branch & cut method for the
MDRSP is explained in Section 3. The main procedure is illustrated in detail
in Section 4. Our tests on literature instances and the comparison with existing
heuristics is given in Section 5. We present numerical results together with a
study analyzing our improvement performance. The paper is closed with some
conclusions in Section 6.

2 The multi-depot ring star problem

2.1 Problem definition

In the following we give a formal definition of the multi-depot ring star problem
(MDRSP) and introduce some basic notation.

Definition. We are given an undirected complete graph G = (V,E). The node
set V is the disjoint union of depots D, customers U and Steiner nodes W . A
set of possible assignments A ⊆ U × (U ∪W ) contains arcs from customers to
potential suppliers. Each edge e ∈ E is associated with a nonnegative weight
ce and each assignment a ∈ A is associated with a nonnegative weight ca,
respectively. A cycle C in G containing exactly one depot is a ring. Paired
with assignments B ⊆ U \ V (C)× V (C) ⊆ A we obtain a ring star. For each
depot k ∈ D a ring star limit mk and a customer limit qk per ring star are
given. A solution to the MDRSP is a set of ring stars such that

• every customer is part of exactly one ring star,
• each Steiner node is used in at most one ring star,
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• each depot k is contained in at most mk ring stars, and
• the number of customers in a ring star does not exceed the limit qk for its

depot k.

The MDRSP asks for a solution of minimal total cost, i.e. minimized sum of
edge costs and assignment costs.

A solution for a MDRSP is depicted in Figure 1. Note that in our defini-
tion of the MDRSP we allow heterogeneous capacities mk and qk depending
on the considered depot k. The latter property generalizes the model used in
the literature so far. On the one hand this increases flexibility for the applica-
tion to real-world problems. On the other hand we utilize this potential when
formulating subproblems in our algorithm. If capacities are homogeneous, we
may simply skip the index referring to the depot, i.e., we use m and q as data.
A path in a solution ring together with the associated assignments is called a
path star. For a customer v, R(v) = {u ∈ V : (v, u) ∈ A} denotes the set of
potential suppliers. Edges between depots are not considered in a solution and
just carried along for simplicity. The MDRSP may turn out to be infeasible
due to capacity restrictions, i.e., capacities of the potential suppliers might not
allow the supply of customers such that the required customer demands are
fulfilled. Here we assume feasibility to avoid technical issues complicating our
descriptions.

2.2 Related work

An overview of previously studied ring-based optimization models including
algorithmic approaches can be found in [12] and [5]. The ring star problem
was introduced by [11] and simply asks for a single cost-minimal ring star for
a depot connecting all the customers. The authors studied this problem from
a polyhedral point of view and proposed a branch & cut algorithm. Later [4]
introduced the single depot version of the capacitated problem allowing mul-
tiple ring stars and Steiner nodes: the capacitated m-ring star problem. The
authors provided branch & cut procedures based on two ILP formulations and
identified their two-index formulation as computationally superior to the two-
commodity flow formulation. Results slightly outperforming the branch & cut
method were achieved by a branch & cut & price algorithm by [10]. The heuris-
tic of [15] yields efficient results for the CmRSP. It incorporates several local
search steps that are combined with a random shaking procedure. Computa-
tional comparison shows that it is on average superior to the metaheuristic
approach for the CmRSP of [14]. The two-index cut set formulation of [4] was
extended for the MDRSP by [3] when introducing the multi-depot general-
ization. Three heuristic methods are proposed for the computation of upper
bounds. These start with an initial solution that is the result of a heuristic so-
lution of the vehicle routing problem obtained after dropping the Steiner nodes
and star-assignments. Then heuristic ring star improvements are followed by
different tabu searches. Lower bounds are derived after the application of a
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Fig. 1 MDRSP solution using five depots (instance B-100, |U | = 250, m = 2, q = 40)

depot contraction argument that reduces the problem to the CmRSP which is
then solved by exhaustive runs of their branch & cut method.
Several locally exact refinement-based algorithms have been developed for dis-
crete optimization problems related to routing. For a given initial solution they
aim at its iterative improvement through local search. The methods share the
fundamental idea of defining a search space of neighboring solutions in each
step from which a best one is chosen. The well-known k-opt improvement pro-
cedures for the TSP can be seen as very basic examples. The exploration of
possible rearrangements of single route nodes for the TSP by [17] is often refer-
enced as a starting idea in the literature. More sophisticated techniques for the
capacitated distance constrained vehicle routing problem have been developed
by [7]. They extract partial routes from an existing solution and reinsert them
according to the exact solution of an ILP-based reallocation problem. [19] car-
ried out this technique for the vehicle routing problem. In the work of [16]
the related open vehicle routing problem was tackled likewise involving exact
local improvements using integer programming. Here the reallocation model
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contains an exponential number of variables representing possible route sub-
sequences considered for reinsertion. The heuristical column generation based
approach is extended by local search techniques and a perturbation mecha-
nism. Another hybrid refinement method by [2] based on ILP subproblems for
an inventory routing problem was able to improve existing heuristic results. A
framework for variable fixing-based refinements that incorporates local branch-
ing is presented in [8].
Our algorithm differs from the ones found in the literature in that the sub-
problems solved in our approach share the structure of the global problem, i.e.,
the subproblems are smaller versions of the global problem (hence the name
equi-model matheuristic). This allows us to use the exact algorithm developed
for the global problem to iteratively solve well-chosen subproblems. We de-
fine neighborhoods that correspond to these subproblems according to several
structural patterns that we identify in the current solutions. Additionally, we
develop sophisticated contraction based neighborhoods to effect structural re-
combinations respecting the capacity constraints. These refinement techniques
are embedded in a heuristic framework that uses tabu mechanisms to minimize
redundant searches. The corridor method is a related matheuristic approach
that aims at the exploration of generic neighborhoods obtained by the im-
position of exogenous constraints (or corridors) on the decision space of the
target problem [18]. For some references regarding matheuristics the reader is
referred to [13].

3 A branch & cut method

3.1 An ILP model

Branch & cut algorithms are known to be efficient for numerous combinatorial
optimization problems. For the related CmRSP Baldacci et al. [4] concluded
that a cut set formulation is computationally superior to a proposed two-
commodity formulation. Therefore, we develop a branch & cut method for the
non-compact three index formulation for the MDRSP introduced by [3]. For a
node set S ⊆ V we denote the set of incident edges in G by δ(S). For a single
node set {v} ⊂ V we may write δ(v) for δ({v}).

min
∑

k∈D

∑

e∈E
cex

k
e +

∑

k∈D

∑

a=(i,j)∈A
caz

k
ij (1)

s. t.
∑

e∈δ(k)

xke ≤ 2mk ∀ k ∈ D, (2)

∑

e∈δ(i)
xke = 2zkii ∀ i ∈ U,∀ k ∈ D, (3)

∑

e∈δ(j)
xke = 2wkj ∀ j ∈W, ∀ k ∈ D, (4)
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∑

k∈D

∑

j∈R(i)

zkij = 1 ∀ i ∈ U, (5)

∑

k∈D
wkj ≤ 1 ∀ j ∈W, (6)

∑

i∈U

∑

j∈S∩R(i)

zkij ≤
qk
2

∑

e∈δ(S)

xke ∀ S ⊆ V \D : S 6= ∅,∀ k ∈ D, (7)

xke ∈ {0, 1} ∀ e ∈ E,∀ k ∈ D, (8)

zkij ∈ {0, 1} ∀ (i, j) ∈ A,∀ k ∈ D, (9)

wkj ∈ {0, 1} ∀ j ∈W, ∀ k ∈ D. (10)

The model uses binary variables xke for all e ∈ E to indicate the installa-
tion of the edge e in a ring star connected to the depot k. If a Steiner node
j ∈ W is used in a ring star of depot k, variable wkj takes the value one, zero

otherwise. For the binary assignment variables zkij ∀(i, j) ∈ A a non-zero value
corresponds to the assignment of customer i to the ring node j connected to
depot k. Note that an assignment variable zkii of value one is equivalent to i
being a ring node of degree two. Constraints (2) impose that a depot k is serv-
ing at most mk rings. The problem variant which asks for an exact predefined
number of ring stars for the depots, as in the CmRSP, requires equalities here.
Customers and Steiner nodes are incident to exactly two ring edges if placed
on a solution ring due to (3), (4) and (6). Each customer has to be either
assigned to a ring or part of a ring which is ensured by the equalities (5). The
fractional capacity inequalities (7) forbid subtours and restrict the number of
customers in the ring stars of each depot. This exponential number of con-
straints cannot be incorporated explicitly, hence they are added dynamically
subsequent to a separation process. Again, the depot-dependent customer per
ring star capacities qk for each depot k are introduced without considerably
complicating the model.

3.2 Cutting planes

In the branch & cut fashion, at each node of the branch & bound tree a lower
bound is computed. The linear programming relaxation is solved and the ob-
jective value is used for pruning. Since we are dealing with an exponential
number of model cuts in (7) this is achieved by an iterative process. Initially,
we solve the linear program (LP) omitting the fractional capacity constraints.
In a typical step we add identified violated inequalities and resolve it. A sepa-
ration procedure is needed to find these required cuts. By adding inequalities
that are not implied by the current model we can further reduce the solu-
tion space of the LP. Such valid cuts may improve the resulting lower bound
and herewith allow earlier pruning in the branch & bound tree. We adopt
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valid inequalities for the CmRSP, among them are connectivity inequalities
and multi-star inequalities. Compared to the CmRSP a specific depot does
not necessarily serve all the customers in the MDRSP. Therefore, the num-
ber of customers |U | is replaced by the current sum of fractional assignments
Uk = {i ∈ U :

∑
j∈R(i) z

k
ij > 0} for a depot k ∈ D. The identification of

violated inequalities is still of polynomial complexity and essentially based on
computations of maximal flows in auxiliary networks. A more detailed descrip-
tion of the separation techniques for the CmRSP can be found in [4].

Fractional capacity cuts For a set of nodes S ⊆ V \D : S 6= ∅ we know
that the customers associated with S are U ∩ S and the customers in U \ S
that are assigned to a node in S. Thus at least

∑
i∈U

∑
j∈S∩R(i) z

k
ij/qk rings

are needed to satisfy the demand of S for each depot k. Since each ring that
connects a node in S implies an entering edge and a leaving edge, S violates
constraint (7) if

∑

i∈U

∑

j∈S∩R(i)

zkij ≤
qk
2

∑

e∈δ(S)

xke . (11)

The separation of these integrality cuts for the single depot case was carried
out in [4]. In contrast to the CmRSP we separately look for the most violated
cut for each depot k individually.

Connectivity cuts Each customer u that is situated on a ring has to be
connected to the depot by two node disjoint paths which form the ring. By
Menger’s theorem this is equivalent to requiring each set S ⊆ V \ D that
includes u to be connected by two edges to V \ S. The resulting well-known
connectivity cuts are added by separating the most violated inequality for each
depot k ∈ D, similarly as in [4], out of

∑

e∈δ(S)

xke ≥ 2
∑

j∈S
zkuj S ⊆ V \D, u ∈ U ∩ S. (12)

Ring multi-star cuts The ring multi-star cuts were introduced by [4] for
the single depot case and are related to multi-star cuts known for vehicle
routing problems. They generalize (11) by adding capacity consumption of S
obtained from counting the customers in V \S that are connected to nodes in
S. We add the most violated inequality for each depot k ∈ D out of

∑

e∈δ(S)

xke ≥
2

qk
(
∑

i∈U,j∈S
zkij +

∑

i∈U\S,j∈S
xkij) S ⊆ V \D. (13)

Further tightening of the LP relaxation Based on a connectivity ar-
gument we add the following constraints to the initial model.

∑

k∈D,e∈δ(S)

xke ≥ 2 S = i ∪R(i), i ∈ U. (14)
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We also add the following known valid inequalities as done before for related
problems [11, 4].

xkij ≤ zjj j ∈ U, i ∈W, k ∈ D, (15)

xkij ≤ wj i, j ∈W, k ∈ D. (16)

Besides this we activate the CPLEX-internal cutting techniques to increase
the solver efficiency. We experienced that the lower bound computations of the
solver could be speeded up by initially adding some classes of inequalities to
the integer model. These constraints do not improve the obtained optimal
value of the LP relaxation but tend to reduce the number of needed cuts and
runs of the simplex algorithm, respectively. Inequality (11) is explicitly added
for cut sets S = R(i) ∀i ∈ U , S = i∪R(i) ∀i ∈ U and S = V \D for each depot
k ∈ D. These are the sets of potential customer suppliers with and without
the corresponding customer and the set of non-depots. To further accelerate
the cutting process we initially add the following equalities for each k ∈ D as
special cases of (12).

xkij + zkij ≤
{
zkjj if j ∈ U,
wkj if j ∈W, i ∈ U, j ∈ V \D, i 6= j. (17)

Since the considered subproblems in our algorithm may contain zero capacities
for some instances we use simple inequalities to avoid non-depot ring stars in
early fractional solutions:

∑

i∈U,j∈R(i)

zkij ≤ qkmk, k ∈ D. (18)

4 The hybrid method

Our hybrid algorithm iteratively tries to improve an existing solution for the
MDRSP. For this purpose we implement several strategies to construct local
search spaces. The obtained neighborhoods are explored by solving MDRSP
type subproblems to optimality using our branch & cut method. These pro-
cedures are explained in Section 4.1. Moreover, we designed a mechanism to
escape local optima based on several clustering and contraction ideas. Again
the optimization is done by exact methods for the resulting vehicle routing
problem variants. Section 4.2 contains the detailed techniques. Afterwards the
initial construction heuristic is described in Section 4.3 since it is based on the
latter ideas. The overall process is illustrated in Section 4.4.
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4.1 Exact local refinement procedure

In the following we introduce various so-called reallocation models which re-
fer to the modification of customer positions in routing structures. For the
MDRSP this may correspond to rearrangements of customers within a ring
star but also among several ring stars served by distinct depots. We accom-
plish local optimization by a clustering step followed by the solution of a
MDRSP. We present a generic technique to build the subproblems from clus-
ters containing nodes in the solution. The key ingredients are the different
cluster generation ideas. Changing cluster strategy means exploring diverse
neighborhoods with respect to the current overall solution. Our ideas of build-
ing problem clusters are explained in Section 4.1.1 using a general framework.
Afterwards we elaborate the actual construction of the corresponding MDRSP
based on such a cluster. Although the local application of exact methods is
equivalent to solving the problem after complementary variable fixing, we ex-
plicitly extract substructures which is more efficient since we avoid the solver
overhead due to the unchanged solution structure.

4.1.1 Clustering

For the success of the local refinement idea, the choice of clusters is crucial.
Generally spoken, a cluster C ⊆ U∪W that will be used to create a subproblem
is a set that contains customers and Steiner nodes. We construct clusters using
different strategies to obtain diverse structured neighborhoods. We develop the
following constructions based on different neighborhood concepts.
(I) Ring star: A complete ring star from the current solution is added to the
cluster if the number of nodes does not exceed a cluster size limit. Figure 4
illustrates such a selection.
(II) Path star: We extract a path on a solution ring with its assigned

customers and close unused Steiner nodes. The number of admitted customers
depends on a limiting parameter. We give an example of such a clustering in
Figure 4.
(III) Path star exchange: Following the path star idea we build two close

clusters on distinct rings and join them. See Figure 5 for an example of such
a clustering.
(IV) Ball: The basic idea is to select nodes contained in the neighborhood of

a central node without considering the current solution structure. For a given
cluster-center node v we build a subproblem cluster Cv consisting of customers
and Steiner nodes according to two parameters. The number of total nodes
and the number of customers is limited. After sorting the nodes in (U ∪W ){v}
according to their distance to v we iteratively add close nodes until one of the
capacities is utilized. An example of such a clustering is given in Figure 3.
(V) Ring edge: The idea for this cluster type is to avoid expensive ring edges
passing by close customers that could be collected or assigned to the ring.
Starting with a ring edge uv we add a current solution node x if cvx ≤ cuv and
cux ≤ cuv. Nodes from different solution rings may be part of the cluster. In a
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selection procedure we add current solution nodes according to a low value of
the sum of the squared distances to the edge’s ends c2vx + c2ux until a cluster
size limit is reached. Figure 2 shows an example for such a cluster.

To enable the following problem construction, some cleaning steps for the

Fig. 2 Ring edge cluster (V) in a single ring star

cluster nodes are needed. Let S denote a current solution and C a selected
cluster:

• We call a non-cluster path (star) in S connecting C to itself without con-
taining a depot an ear (star). Ears are added to C and their structure is
forced to be unchanged to reduce the computational burden for the branch
& cut method.

• Customers in the cluster that are assigned to non-cluster suppliers are
removed.

• We add customers in U \ C that are assigned to nodes in the cluster.
• If just one node of a ring is in the cluster, add its non-depot neighbors in
S to enable improving exchanges.

These modifications might lead to an empty cluster or a predefined cluster size
limit may be exceeded. In such a case we build up the next scheduled cluster.

4.1.2 Problem construction

In the following we describe a general procedure to define the local problem
based on a cluster C that is a MDRSP itself. We note that the solutions
obtained after embedding the local solutions into the complementary structure
of the incumbent solution form the considered neighborhood. An edge or a
node might need to be forced to be part of the solution in the modeling process.
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Fig. 3 Example for ball clustering (IV) in a network with 3 ring stars using the depots k1
and k2

Independent of the exact solution method, we can incorporate such features
by modifying the edge costs. For example, forbidding an edge e is achieved
by setting its cost ce to big M . A suitable value for M could be the sum
of all the routing and assignment costs plus one. Since we employ a branch
& cut algorithm, variable fixing could also be done in the ILP solver by the
modification of bounds for the corresponding variable.
The customers and Steiner nodes of the local MDRSP are the ones in the
cluster. A potential assignment in the original problem is considered in the
subproblem if the customer and the potential supplier are elements of C. The
costs of assignments and ring edges are inherited from the global problem.
Since C does not contain the depot C induces a set of path trees in the current
overall solution S. For each path tree T we introduce an artificial depot k′ and
set the edge costs to connect it to the the ends of the partial ring in T to
zero. We call such such a substituting edge a leg. At the same time we forbid
all the edges connecting k′ to other cluster nodes. Figure 6 illustrates such a
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Fig. 4 Example for path star/ring star clustering (II)/(I) in a network with 2 ring stars
connected to the depot k

Fig. 5 Path star exchange clusters (III) in a network with 3 ring stars connected to depots
k1 and k2
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construction. If a path star T ′ that is substituted by a leg does not contain

Fig. 6 Ball cluster leading to a ring star problem with two depots k1 and k2

customers, we allow cluster reconnections: the cost of the edge connecting k′

and C is set to the cost of T ′. Herewith ring stars may be redesigned starting
from the depot (see Figure 7). The ring star limits of the depots are set to
the number of its involved ring stars and forced to be tight in the ILP for
ring star fragments that do not have two reconnectable legs. Ring stars may
completely disappear during the local optimization followed by the removal of
the leg Steiner nodes. Any local redesign has to be valid with respect to the
global customer per ring capacities of the depots. Let k be the depot in S that
currently serves the customers of a cluster path star that is part of the ring
star R. We set the ring customer limit for the corresponding artificial depot
to the capacity of the current solution ring star depot k minus the number of
ring star customers in R not in C. In the following paragraphs we consider
the special case of allowed reconnections. If the cluster contains nodes of two
or more ring stars of the same depot we pursue as described in the ring star
management paragraph below.

Depot ring star interchanges A cluster in general contains multiple ring
star fragments, say r, connected to the same depot k. To respect the depot ca-
pacities when recombining ring star interchanges we could underestimate the
customer per ring star capacity of k or introduce

(
r
2

)
− r artificial depots to

model all the possible recombinations or add leg customers until the numbers
of supplied customers on each leg are equal and force them to be part of a
solution. We decided to integrate this one by one in our subproblem. Consider
the case that different customer per ring star capacities would apply for two
rings of a depot that serve cluster customers due to non identical numbers of
customers on the legs. We model one of the rings as associated with another ar-
tificial depot which is added to the subproblem with corresponding capacities
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Fig. 7 Cluster with reconnectable zero-customer legs and their modeling from depots k1
and k2

and connection costs. So a depot in a subproblem of type MDRSP is just al-
lowed to serve multiple rings if the path star customer numbers are equal. The
consequence is that in general the number of depots increases. This technical
step needs to be reverted when interpreting the solution of the subproblem
globally.

Cluster reconnection Leg substituting edges in the local problems are
weighted according to the path lengths. For a leg that does not contain any
customers, the corresponding ring star fragment connector h does not neces-
sarily have to be preserved during optimization. In the case that both legs of a
cluster ring star fragment are reconnectable, we certainly include all ring star
customers by our clustering technique. Besides this case, a single leg might be
flexible or none. In [4] a depot k is modeled by a source s and a sink t in a
network flow problem fashion. This allows a simple fixing of a leg substitut-
ing edge. The additional variables representing edges incident to t provide the
flexibility we need here. Note that fixing a single depot-connector edge cannot
be done just by forbidding the depot edges, since the second leg is flexible.
But we achieve this by the following transformation. Insert an artificial Steiner
node u and force the edge kh to be present in the solution. Set zero cost for
the edge hu and big M cost for other edges incident to h. For any other cluster
node v let cuv = chv. The integration of this aspect is significant when consid-
ering clusters containing ring star fragments that are close to depots. Figure 8
illustrates such a transformation.

Ring star management By our default construction, the number of ring
stars per depot is preserved. To enable the closure of a ring star R we take into
account the savings due to leg removals. This is just possible if we are dealing
with a completely reconnectable ring star fragment as explained above. So far,
no additional ring stars may be added by the cluster optimization. The depots
not appearing in the local problem are potential ring star suppliers for the
cluster customers. To model this, we add the cluster-uninvolved depot k and
allow connections to all the cluster nodes by edges of original routing cost. Its
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Fig. 8 Enabling one leg (represented by edge {k, v1}) to be flexible for the depot k in the
subproblem using big M edge costs while the other leg (represented by edge {k, h}) is fixed

ring star potential is set to mk minus its number of ring stars in the current
solution. If no ring star capacity is available, k may be dropped. Figure 9
illustrates this model modification.

Fig. 9 Enabling ring stars from a depot k that is currently not connected to cluster nodes

Extending existing heuristic local search By setting up appropriate
subproblems, we cover existing heuristic local search techniques. For instance,
the two customer exchanges, the customer transfer and the squeeze searches
by [3] are largely covered by our cluster selection techniques.
Every time the branch & cut method is called to solve a local problem, we pass
the current local solution to the solver to accelerate the exact solution process.
In the case of an improvement, the current solution is updated according to
the exact solution of the local subproblem. If cluster reconnections are implied
by the solution of the subproblem, the former Steiner legs have to be deleted
in the global solution and the proposed connection legs have to be installed.
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4.1.3 Refinement strategies

The subproblem optimization has varying structural impact on the solution
depending on the cluster type. A path star based MDRSP will not affect
the global ring star partition of the customers. However, a local ball refine-
ment may imply several customer interchanges between ring stars. Our method
groups a sequence of local refinement attempts based on the same cluster struc-
ture. In such a phase we perform multiple locally exact searches for a cluster
type successively differing in their parameterization (e.g. different center cen-
ter nodes). Since we allow clusters of a certain type to be overlapping, a new
cluster can not be built until the previous optimization has terminated. To
avoid redundant local problems we use tabu lists containing representatives
for each processed structure. For instance, a ring star is identified by a ring
node adjacent to the corresponding depot during a phase. In the edge cluster
based local refinement phase we repeatedly select an unused ring edge e of
maximal length. e is then used for clustering, the derived subproblem is solved
and e is set tabu for the subsequent iterations in this phase. After a limit of lo-
cal search steps is reached the tabu list is cleared. Similarly, we produce a cover
of each ring star with path stars allowing a certain overlapping in a path star
optimization phase. The ring star cluster based subproblems are CmRSPs. In
such a phase all the current ring stars are processed. The ball type subproblem
parameters are the central nodes. We generate a set of well-distributed centers
heuristically first, maximizing their mutual distance sum.
The path star exchange cluster sequence is constructed as follows. First select
a non-tabu path star, then find the closest customer v that is not part of the
same ring star. The second path star is built such that v is as central as pos-
sible depending on its depot distance. The primary path star is set tabu and
to exclude remote path stars not worth considering, a local problem is just
built if the path star distance is less than the network diameter scaled with
a positive parameter lower or equal to one. Best improvement strategies are
not efficiently applicable in this setting, because the dependencies of the sub-
problems would remarkably increase the computational effort. The repeated
solution of all subproblems of a phase would be the cost of such a look ahead
strategy.

4.2 Contraction-based improvement procedure

Our local optimization technique is generally not able to escape local minima
by changing the global structure. We do not use random sampling techniques
to effect perturbation. Instead, after getting stuck locally we switch to ad-
equate sophisticated neighborhoods involving solution nodes that were not
combined in previous local clusters. Therefore, we first try to identify sub-
structures that are unlikely to break apart after further optimization. This is
achieved by clustering appropriate customers and Steiner nodes according to
their distance. Then the nodes contained in such clusters are contracted into
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single nodes. Afterwards, subproblems are created by considering the struc-
ture induced by the nodes corresponding to the contracted clusters. On the
reduced solution structure the optimization is carried out by solving vehicle
routing problem variants to optimality, namely capacitated multi-depot ve-
hicle routing problems with heterogeneous (CMDVRPhet) and homogeneous
demands (CMDVRPhom) with an underlying homogeneous vehicle fleet. As
for the extraction based local searches in Section 4.1 a customer node limit
(maxU ) is used to keep the computational effort manageable.
Given a MDRSP solution S, we apply this technique locally according to the
following subnetworks.
(VI) 2-Ring star: Consider the network restricted to two ring stars.

(VII) Depot: Consider the ring stars connected to a depot in S

(VIII) Global: Apply the contractions to the entire network S

We perform each variant using the following two types of contractions (Fig-
ure 10).

Fixed cluster size We contract customer sets of fixed size on the selected
substructure. The fixed cluster size r is computed by d|UR|/maxUe. For each
ring star in UR we iterate over the customers, either on the ring or assigned to
it, and successively fill clusters. The cardinality of the last attained ring star
cluster may be less than r leading a certain inaccuracy that has to be handled
afterwards if complicating. A CMDVRPhom is set up by using the depots in R
and a customer for each cluster. Vehicle depots are considered if contained in
a ring star of R. The vehicle limit for a depot k is set to mk minus the number
of solution ring stars of k not intersecting with R. The vehicle capacities are
set to dqk/re. Routing costs are estimated by the minimum over the customer
distances between two clusters or the depots, respectively.

Flexible clusters Different cluster sizes are considered depending on the
customer distances. We initialize the construction with disjoint clusters that
contain exactly one customer of UR. The cluster distances are the ring edge
costs of the customer connecting edges, if adjacent. Iteratively, we merge clus-
ters using the minimum distance criterion until their number is lower or equal
to maxU . Additionally, the clustering is refined by 2-opt moves. To balance
the cluster sizes we limit the cardinalities by |UR|/4. A CMDVRPhet is built as
follows. From every cluster we derive a customer with a demand equal to the
number of contracted customers. Vehicle depots are considered if contained in
a ring star of R. The vehicle capacities are inherited from the master MDRSP
and the distance of two customers is set to the minimum distance between
their contracted customers. The vehicle limit for a depot k is set to mk minus
the number of solution ring stars of k not in R.

Furthermore, we consider recombinations that are not based on the under-
lying current solution as follows. Again, we build optimization subproblems
as above, but do not cluster based on node distances in the incumbent ring
star network. These clusters are built according to the node distances in the
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Fig. 10 Examples for the contraction ideas (VI)-(VIII) on given solutions and the induced
current routing structure: fixed cluster size 4 (left) and flexible cluster size (right)

original graph G of the problem instead. The resulting optimization problems
do not differ from the ones above. Given a cluster size, we greedily select
d|UR|/maxUe distributed customers of |UR| by repeatedly adding the farthest
customer. Starting with theses singleton clusters the closest unused customer
to a cluster is added while preserving the size limit.
During these consolidation processes the Steiner nodes used in the current so-
lution are ignored since we focus on the assignment of customers to the depots.
However, the obtained networks undergo a subsequent local refinement phase
before being compared to the incumbent. The created problem might turn out
to be infeasible due to capacity restrictions and we proceed to the next step.
In any other case an overall solution to the MDRSP is constructed by replac-
ing the current ring star structure by the routing solution after performing a
heuristical expansion. Note that we obtain rings without customer assignments
and the previous star structures within the clusters are not reusable in general.
Therefore, we solve a TSP on each ring using the nearest neighbor heuristic,
followed by 2-opt and 3-opt searches and the exact local improvement proce-
dures from Section 4.1 (ring star, path star, ball, path star exchange). If the
reoptimized solution finally yields an improved objective value, the current
solution structure is replaced.
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4.3 Initial solution and correctness

Our improvement ideas, as representatives of local search in general, operate
on an initial solution for the MDRSP. The used procedure to generate such a
set of ring stars is a special case of the contraction-based method. The latter
is applied on the set of customers U using clusters of fixed size and no use
of a given solution structure. Since this does not necessarily yield a feasible
solution at all we embed this idea into a multi-start procedure. Consider, for
example, a given MDRSP with |U | = 45, |D| = 3 and capacities q = 15,
m = 1. Depending on the computational power available, assume a routing
subproblem customer limit of 12. Then the fixed cluster size is determined
by d|UR|/maxUe = d45/12e = 4. The resulting contracted subproblem turns
out to be infeasible. Therefore, we repeat the attempt with a decremented pa-
rameter maxU = 11. This increases the fixed cluster size to 5 and produces a
feasible subproblem. In the case of a repeated failure we iteratively retry with
a still reduced parameter. Although we succeeded in this illustrative example,
this is generally false. In the case of failure we use a simple cluster first - route
second approach to guarantee a feasible starting solution. According to the
depot-customer distances we first assign customers to depots greedily respect-
ing their customer capacities. Then the customers are grouped to route nodes
using a clustering scheme. Basically we successively route customers in the
nearest neighbor fashion until the ring capacities are utilized or all the depot
customers are assigned to rings. However, on the tested literature instances
we did not encounter the need of such a heuristical starting solution. Note
that the initial solution consists of rings only, not involving any assignments
yet. Through our modular overall strategy explained in Section 4.4 we do not
apply any further improvements here. Since we assured the construction of at
least one feasible solution for the MDRSP that can be returned it follows that
our algorithm is correct.

4.4 Overall strategy

After having explained the specific elements of our approach, we summa-
rize the overall strategy combining the various concepts described above. We
distinguish between techniques changing the structure of a single ring star
[(I),(II),(III)] and those allowing ring star interactions [(IV),(V),(VI),(VII),
(VIII)]. The computational complexity, i.e. the number of variables and con-
straints in the mathematical model, increases dramatically with every ad-
ditional depot. Hence, we execute the complex searches involving multiple
ring stars subsequent to less extensive steps. The process is interrupted and
restarted every time an overall improvement is achieved and the incumbent
solution is updated. After an iteration limit is reached or the solution could
not be further improved by any search technique, the current best set of ring
stars is returned. Our detailed overall strategy combining the various local
searches is illustrated in Figure 11.
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Fig. 11 Flow chart showing the overall optimization strategy

5 Computational study

Our algorithm is implemented in C++ using CPLEX 12.2 as ILP solver carry-
ing out the branch & cut framework. Computations are performed on an Intel
i5 U470 1.33GHz processor unit with 4 GB working memory available. CPLEX
is set to run in the single thread mode. The memory usage for computations
of our implementation does not exceed 100 MB in the performed tests. The
ILP solver and computing power dependent parameter calibration is described
in Section 5.1. For each ILP a time limit of 90 seconds is applied to avoid a
runtime explosion due to solver-hard subproblems. This is rarely encountered,
mostly when solving the routing subproblems for the contraction techniques.
Optimal network flows in the branch & cut separation steps are efficiently
computed by the network simplex algorithm. The subproblems arising in the
contraction phases, CMDVRPhom and CMDVRPhet are solved by a branch
& cut algorithm. Clustering is done using the minimum distance criterion for
adding customers. The number of overall iterations is limited to 25, which is
not reached in our experiments.
It should be noted that the results of our method are certainly machine and
solver dependent. However, we are convinced that the integration of a state-of-
the art MIP solver always comes with the drawback of uncertainty regarding
replication. As pointed out in [6], several minor modeling and implementation
details may have a major effect on the performance of a MIP solver based
algorithm. As a consequence, any deviating intermediate result provided by
the MIP solver is likely to guide our search into an alternate local optimum.
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Clustering Max. number of
cluster nodes

(I) Ring Star 55

(II) Path Star 20

(III) Path Star Exch. 17

(IV) Ball 22

(V) Edge 22

Contraction Max. number of
final customers (maxU )

(flexible/fixed size)

(VI) 2-Ring-Star 14/22

(VII) Depot 10/15

(VIII) Global 10/16

Table 1 The parameters used within the local refinement techniques (I)-(VIII)

5.1 Parameter calibration

We determine the parameters limiting the subproblem sizes through running
a series of tests on our machine. Starting with modest limits we repeatedly
apply our method on the set of test instances while incrementing these bounds.
Once the optimization of a type of subproblem exceeds the runtime of two
seconds in an instance we fix the corresponding parameter. Since cluster size
limit variations mutually impact the subproblem behaviour, we rather use this
approach as a rough solver capacity estimation. Table 5.1 shows the parameters
that we used for testing the algorithm. We list both the bounds for the number
of nodes in a cluster for techniques (I)-(V) and the target number of nodes for
reoptimizing after the application of the contraction techniques (VI)-(VIII).

5.2 Results on literature instances

To assess the quality of our approach we use random instances that were gen-
erated by [3] to test their heuristics. Given uniformly distributed node coordi-
nates in the plane, the distances are set to be Euclidean. These 276 medium
sized problems contain up to 300 customers, 750 Steiner nodes and 5 depots.
Various combinations of q, m and |D| are considered. They are divided into
classes A and B where q is 30 and 40, respectively. Attempts to compute the
LP lower bounds for the instances through our branch & cut method failed
due to exhaustive memory allocation of the solver. Therefore, we compare our
results with the best results achieved by the three heuristics in [3].
Tables 2 and 3 show the objective function values of our solutions (obj) for sev-
eral instances listed in [3]. Additionally, the relative improvements in percent
compared to the best results obtained by [3] are given in column ∆. Column Ω
gives the number of solved ILPs, column σ the number of improvements and
column t(s) the algorithm runtime. Out of 276 instances in total we are able
to find improved solutions in 251 cases, about 91%, respectively. In instance
class B we compute higher upper bounds for just three problem instances.
However, we do not exceed the known upper bound value by more than 1.1%.
The best solution improvement our algorithm achieves is 13%. Restricted to
problems of class A we still observe 8%. On average we improve the current
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Table 2 Results for instance class A (q = 30) and relative improvement (∆) compared
to [3]

P |U | |W | |D| m obj ∆ Ω σ t(s)

A-1 100 200 2 2 47051 1.9 801 31 1204
A-2 42185 4.2 620 24 509
A-3 40115 0.9 447 18 149
A-4 42544 1 615 27 258
A-5 41440 1 449 19 277
A-6 41725 3 578 22 623
A-7 250 42983 1.5 697 23 242
A-8 41793 0.8 435 17 253
A-9 43946 0.4 425 15 340
A-10 41797 0.6 925 19 326
A-11 43800 0.6 1053 16 373
A-12 42120 1.4 436 15 182
A-13 150 300 3 51442 1.5 1051 30 427
A-14 54746 -0.6 432 25 689
A-15 53660 1.6 513 21 532
A-16 2 3 61482 -0.1 789 33 1056
A-17 53296 0.3 1029 29 469
A-18 52727 1.1 325 16 157
A-19 4 2 50252 6.2 249 15 207
A-20 52661 -0.7 395 24 590
A-21 51357 1.1 993 33 510
A-22 2 3 57432 0.4 1759 47 1182
A-23 59326 -0.6 669 22 884
A-24 55874 3.1 728 29 603
A-25 4 52421 2.6 628 25 463
A-26 55209 2.3 1224 33 1124
A-27 51799 4.7 1462 36 658
A-28 54302 -0.2 816 25 928
A-29 54540 1.4 486 24 753
A-30 53513 1.7 1157 40 705
A-31 375 3 2 49336 2.7 1075 27 628
A-32 49262 2.9 647 18 378
A-33 52387 2 508 25 926
A-34 2 3 51619 1.4 966 30 560
A-35 55750 -0.2 585 20 413
A-36 55769 3.5 449 19 472
A-37 4 2 48963 8 1738 37 618
A-38 48518 7.9 1620 34 501
A-39 47878 5.4 932 36 462
A-40 2 3 52078 0.7 1065 26 684
A-41 55837 0.5 369 28 339
A-42 55396 1.6 1302 44 898
A-43 4 54934 2.8 954 45 532
A-44 53335 1.9 762 37 637
A-45 52717 0.7 608 38 604
A-46 50563 5.2 563 28 214
A-47 55497 3.1 364 26 406
A-48 56089 1.7 761 38 649
A-49 200 400 4 2 60133 1.6 822 42 474
A-50 62916 2.3 1076 42 1084
A-51 60101 2 1300 41 1061
A-52 3 3 56942 2.9 926 33 773
A-53 59388 2.6 2599 47 1109
A-54 58993 2.2 1611 36 1208
A-55 2 4 66569 1.9 1529 47 1187
A-56 63215 2.6 1940 53 1164
A-57 65426 -0.9 1757 45 1103
A-58 5 2 62155 4.6 838 29 547
A-59 62839 6.1 1325 34 876
A-60 60863 4.4 2002 37 1193
A-61 3 3 57631 1.8 1033 40 559
A-62 68473 1 527 33 520
A-63 59143 -0.7 2089 39 1454
A-64 2 4 70434 0.5 1320 53 1093
A-65 64362 1.8 1220 40 710
A-66 64558 0.2 741 40 1019

P |U | |W | |D| m obj ∆ Ω σ t(s)

A-67 500 4 2 62417 2.7 1350 55 1274
A-68 58520 3.1 1348 53 957
A-69 67930 0.4 1106 45 678
A-70 3 3 60328 2 888 41 921
A-71 60856 4.5 1286 49 993
A-72 64508 1 545 35 448
A-73 2 4 69625 -0.7 1981 45 1506
A-74 64391 0.3 1722 45 1065
A-75 64371 1.9 641 41 646
A-76 5 2 58317 0.6 1441 44 943
A-77 57648 6 801 34 709
A-78 59692 3.1 1324 41 645
A-79 3 3 64374 0 1049 33 1204
A-80 59534 -0.7 1785 42 852
A-81 60452 2.9 428 26 359
A-82 2 4 69623 0.9 1635 51 1476
A-83 68559 -0.5 1472 28 892
A-84 64874 -0.1 1239 32 1021
A-85 250 5 2 67004 2.2 2101 63 1244
A-86 76053 -1.2 1030 41 1278
A-87 66997 3.6 1038 40 997
A-88 3 3 74177 -1.1 1351 49 1341
A-89 75457 0.8 1245 72 1384
A-90 75866 -1.5 1525 31 1109
A-91 4 68793 1 1135 50 1230
A-92 66586 4.7 1069 59 1071
A-93 70588 5.1 1709 58 1465
A-94 3 4 69220 4.6 1461 63 1509
A-95 81000 1.1 2503 80 1199
A-96 69019 3 1536 59 1362
A-97 625 5 2 67496 5.9 2876 48 1157
A-98 66055 -1.1 1993 52 1148
A-99 64307 6.2 1154 38 673
A-100 3 3 81620 -1.1 586 53 942
A-101 82710 0.2 1886 42 979
A-102 69917 2.1 1410 42 1044
A-103 4 68738 0.9 1586 44 1039
A-104 63510 7.5 2083 51 1084
A-105 64872 5.8 1502 52 1235
A-106 3 4 76479 2.2 1814 50 1146
A-107 72660 0.4 983 70 757
A-108 70744 1.6 2309 65 1331
A-109 300 600 4 3 70081 1.9 1962 56 1206
A-110 73804 7.6 1727 58 1404
A-111 80235 1.1 1455 61 1252
A-112 3 4 81094 2.7 2229 66 1201
A-113 85892 -0.8 1399 59 1208
A-114 76871 3.1 3531 99 1457
A-115 5 3 78559 2.8 1327 71 1476
A-116 72859 2.3 2523 67 1198
A-117 76313 1.4 1091 52 1222
A-118 3 4 89131 -2.6 1946 71 1202
A-119 80751 4.1 1002 63 1424
A-120 82723 1.3 1890 64 1369
A-121 750 4 3 77565 0.9 1111 55 1151
A-122 80552 4.3 1377 46 1242
A-123 73077 3.3 1927 56 1104
A-124 3 4 78750 4 1847 74 1169
A-125 83593 0.9 2402 53 1449
A-126 83225 2.1 1712 60 1376
A-127 5 3 75033 3.5 4386 94 1215
A-128 76194 4.9 1728 62 1279
A-129 72859 3.5 1814 60 1341
A-130 3 4 77074 0.8 1436 63 1313
A-131 86321 -0.1 2635 64 1333
A-132 79753 -0.8 1470 59 1537
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Table 3 Results for instance class B (q = 40) and relative improvement (∆) compared
to [3]

P |U | |W | |D| m obj ∆ Ω σ t(s)

B-1 100 200 2 2 43298 0.4 267 14 103
B-2 39318 2.8 861 26 176
B-3 38229 4.2 393 13 61
B-4 41042 4.5 937 16 221
B-5 40676 1.2 1147 37 240
B-6 40513 2 606 13 116
B-7 40917 2.1 894 14 402
B-8 42305 3.1 580 13 150
B-9 41064 2.5 749 16 270
B-10 250 40519 1.9 433 12 119
B-11 40507 2 587 14 214
B-12 41429 0.8 739 11 271
B-13 40220 2 770 16 178
B-14 42190 0.6 960 21 296
B-15 39901 0.8 824 20 252
B-16 40417 7 1536 24 311
B-17 41698 4.8 853 32 474
B-18 40627 4.2 530 21 147
B-19 150 300 51453 0.2 1840 40 1088
B-20 50845 2 994 21 432
B-21 52625 0.8 1544 35 1502
B-22 3 48846 5 792 19 214
B-23 49228 3.2 1764 35 710
B-24 51095 3.2 1314 32 834
B-25 2 3 52083 0.7 597 21 319
B-26 53578 1.8 751 24 446
B-27 52106 1.6 910 22 359
B-28 49833 2 779 28 336
B-29 48374 3.2 653 23 269
B-30 48895 3.7 2274 45 1450
B-31 375 2 50168 1.1 885 25 1177
B-32 49458 5.4 1202 26 942
B-33 48185 2.5 831 29 314
B-34 3 50124 1.9 1314 31 497
B-35 49131 3.5 883 19 219
B-36 48738 3.5 1173 27 272
B-37 2 3 48733 4.5 1067 21 383
B-38 51181 2.6 1240 32 447
B-39 52646 0.8 2803 52 1391
B-40 52470 2.4 1165 37 438
B-41 49745 5.3 719 36 300
B-42 50990 3.4 1368 40 360
B-43 200 400 3 2 56109 2.6 4133 36 1302
B-44 55796 5.7 1133 37 525
B-45 58907 4.4 891 24 413
B-46 2 3 58660 3.8 1325 42 798
B-47 61006 1.7 1007 34 505
B-48 57799 0 2791 46 1129
B-49 4 2 57728 2.7 2015 38 1350
B-50 57703 6.3 2684 48 1150
B-51 59576 3.4 841 36 404
B-52 2 3 59726 0.9 794 28 654
B-53 61752 0.9 1413 42 665
B-54 61653 1.1 1581 49 1402
B-55 4 63847 4.2 795 25 629
B-56 59539 6.4 1879 44 1151
B-57 58908 4.8 1020 23 754
B-58 60225 3.1 978 26 634
B-59 57860 6 1254 35 842
B-60 57932 6.6 2094 25 1340
B-61 500 3 2 59721 0.5 1617 33 983
B-62 56335 2.6 2075 31 1090
B-63 60389 1 1876 42 1352
B-64 2 3 62023 1.6 961 32 759
B-65 60120 1.9 3093 46 1474
B-66 60686 1.6 851 24 559
B-67 4 2 55483 7.1 1838 24 1062
B-68 55090 7.3 1839 36 576
B-69 57629 2.4 1474 35 862
B-70 2 3 59370 0.5 1061 35 741
B-71 58569 2.4 788 25 554
B-72 58789 -0.6 1231 42 752

P |U | |W | |D| m obj ∆ Ω σ t(s)

B-73 4 63328 0.5 1504 44 1312
B-74 63818 0.1 2994 55 1039
B-75 61253 -0.8 3340 42 1222
B-76 61615 2.6 903 27 359
B-77 66336 0.8 1558 37 1111
B-78 60349 2.4 2615 41 1109
B-79 250 4 2 63161 3.1 2231 50 1463
B-80 64416 1.6 2952 53 1403
B-81 63312 1.9 2212 43 1017
B-82 2 4 70942 3.2 1853 56 1315
B-83 67619 3.2 1727 43 1035
B-84 63433 3.8 2648 60 1403
B-85 5 2 62920 4.6 2675 46 1021
B-86 63439 8.7 3159 47 1469
B-87 64691 3.2 1984 41 1146
B-88 3 3 64853 4 1562 39 574
B-89 66508 4.9 2676 50 1237
B-90 64646 5.5 3123 50 1361
B-91 2 4 65663 4.4 1686 56 1018
B-92 70955 2.5 3377 55 1494
B-93 65817 3.4 970 46 871
B-94 625 4 2 62130 6.2 2494 44 1460
B-95 59974 2.8 2818 41 864
B-96 63252 4 2969 56 1235
B-97 2 4 70723 3.6 1521 51 1122
B-98 66049 2.1 2688 67 1320
B-99 69543 -0.5 2219 77 1465
B-100 5 2 63763 6.9 3022 82 1418
B-101 62377 6.1 2456 45 1272
B-102 61573 5.4 1680 31 1173
B-103 3 3 67023 2.8 3860 70 1345
B-104 64406 2.5 2223 46 957
B-105 65471 3.1 3083 56 1195
B-106 2 4 69046 1.3 1001 39 1470
B-107 66262 1.7 3981 64 1549
B-108 76071 0.9 4646 51 1125
B-109 300 600 5 2 69244 6 3247 72 1374
B-110 68938 4 1816 57 1237
B-111 69300 4.7 2223 45 1062
B-112 3 3 74306 1.4 3497 81 1192
B-113 68388 4.2 3946 69 1336
B-114 77137 1.2 1786 52 1506
B-115 2 4 80458 0.6 1453 25 1044
B-116 79425 2.6 2633 44 1123
B-117 73814 1.2 2368 41 1430
B-118 4 3 69512 4 2553 70 1335
B-119 68566 9.1 1954 64 1452
B-120 72801 4.4 2528 47 1384
B-121 3 4 74264 4.7 2921 56 1270
B-122 72250 9.8 5969 81 1093
B-123 73991 4.7 2355 48 1711
B-124 73431 4.5 2505 65 1480
B-125 68686 4 3627 59 1214
B-126 71475 4.4 2619 47 1309
B-127 750 5 2 67685 6.2 2480 73 1223
B-128 73016 3.2 2310 65 1513
B-129 70948 4.6 3508 58 1415
B-130 3 3 75423 0.8 1895 60 1214
B-131 78466 0.5 4121 77 1503
B-132 71846 5.2 2705 74 1479
B-133 2 4 71343 2.6 2408 75 1308
B-134 72656 2.1 1889 61 1296
B-135 82240 0.1 1261 62 1236
B-136 4 3 68501 4.5 2584 53 1495
B-137 73401 5 4487 48 1147
B-138 71444 4.5 1946 50 1236
B-139 3 4 71648 4.8 3393 45 1203
B-140 75802 4.7 2397 58 1482
B-141 71824 4.4 4607 83 1469
B-142 69879 13.4 1871 53 1345
B-143 71394 4.7 2751 77 1212
B-144 69514 6.9 3272 71 1344
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best solutions by 2.6%. More specifically, we observe a superior performance
on the instances with more than 200 customers. These instances are improved
by 1.9/3.9% (A/B) compared to the smaller ones (2.2/2.7%). Our method is
slightly more effective on instances with an increased number of depots and
higher rings per depot capacities. We note that this is not necessarily related
to the hardness of the instances because we use existing results for bench-
marking. However, we believe that one of the strengths of our approach is the
ability to perform complex multiple ring star exchange movements which pays
off on those instances. The runtime spent on the instances reported in [3] is
about 38% less than the one of our method on average. Since cluster selection
heuristics are at most of quadratic complexity by far the most of the compu-
tational time is used for the solution of the ILPs. Our algorithm involves the
solution of up to 6645 ILPs per instance (1900 on average) and identifies up
to 99 local improvements for an instance. Figure 12 shows the effectiveness of
the different search techniques by the number of their improvements per in-
stances. The total numbers of refinements were: (I):3913; (II):297; (III):4923;
(IV):5687; (V):580; (VI):575; (VII):68; (VIII):14.

Fig. 12 Numbers of refinements per search type per instance

5.3 Performance analysis

From their results, [3] conclude that class A instances are harder to solve due
to the lower ring star customer capacity (30). We agree on this point, arguing
that it is harder to improve their results by our approach on average. However,
it is possible that their results could have been quite good and therefore closer
to ours.
In the following we try to give an explanation for the obtained solution im-
provements. The constraints leading to the hardness of the MDRSP are basi-
cally the customer limits qk and ring star limits mk for each depot k. There-
fore, finding a good ring star partition is the hard task. The construction of
the ring stars can be handled efficiently by our exact local searches or known
routing-based algorithms from the literature. Changing the ring star partition
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is commonly done heuristically by swap move variants that perform node ex-
changes between ring stars. After a possible heuristic ring star improvement
phase the overall solution is evaluated and compared to the incumbent.
In our approach we follow a more general idea that allows multiple node ex-
changes between multiple ring stars and simultaneously considers customer
assignments. Certainly, we are not able to explore that many neighborhoods
but benefit from the sophisticated neighborhood structure. Additionally, we
explore the obtained subproblems in depth which further increases the im-
provement potential. Our studies with decreased subproblem sizes result in
inferior solution quality emphasizing the importance of the ILP solver effi-
ciency. Achieving perturbation through more extensive changes of the ring
star partition is essential in our algorithm.
The proposed contraction techniques turn out to be very effective. However,
to find improving global structural changes the subsequent local improvement
phase is required. After either dropping the latter or even skipping the con-
traction steps we observe a substantial loss of solution quality. The contraction
procedures certainly weaken the impact of the starting solution since they en-
able a global repartitioning. We like to point out that our techniques differ
from typical perturbation steps used in large neighborhood searches since no
randomness applies. In our opinion a random impact would be inconvenient
in this context because of the rather expensive exact subproblem solution.
On the one hand the overall success of our method is based on our model-
ing techniques that allow the application of the exact method to convenient
substructures. On the other hand we rely on the careful selection of neigh-
borhoods. We are strongly dependent on minimizing redundancy and avoiding
pointless neighborhood explorations. The elaborated greedy tabu-based selec-
tion schemes seem to meet these requirements.

6 Conclusions

In this work we addressed the multi-depot ring star problem, a useful model
in practical network design and routing based transportation. A hybrid algo-
rithm based on local refinements using exact methods was presented. For this
purpose we worked out a branch & cut algorithm for the MDRSP. The arising
local refinement problems were modeled as instances of the MDRSP itself.
Furthermore, to enable global restructuring of the network we developed con-
traction based techniques. Again, the corresponding optimization was done by
the application of exact methods. Therefore, we solved vehicle routing problem
variants to optimality. The latter techniques were combined with a construc-
tion heuristic for our starting solution.
To our knowledge the combination of contraction- and extraction-based sub-
problems for ILP refinement has not been considered before. Our overall strat-
egy yields an efficient heuristic delivering high quality solutions. This is shown
by a computational study on literature instances. More than 90% of the ex-
isting results are improved by our approach. Using appropriate models for
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the local subproblems for which advanced exact methods are available seems
necessary for a successful application. We suppose that our solution frame-
work is more suitable the more complex the problem solution structure is.
The combination of rings, assignments, multiple depots and capacities seems
promising. We observed the possibility of increasing the solution quality by
allowing bigger subproblems that are solved to optimality. This parameteri-
zability needs careful fine-tuning but enables some sort of adjustment of the
solution quality when using variable computing power. By designing additional
neighborhoods the procedure could possibly be further improved. Advanced
cluster techniques as basis for contractions or inserting an improved MDRSP
optimization module could also result in an enhanced overall performance.
A challenging approach could be the nested parameterized application of our
method. On the first level, relatively big subproblems could be allowed that
are solved by our proposed heuristical method replacing the exact solver.
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Introduction

In supply network design as well as telecommunications, the graph class of trees is
widely used as a base structure to model optimization problems. Typically, a set of
specified customer nodes has to be connected to a central distributor by a selection of
supply edges for which individual installation costs apply. In a natural way there exists
a tree that minimizes the overall connection costs when considering this basic setting.
The determination of such a tree is well-known as the spanning tree problem (SPTP).
However, many real-world networks would allow the establishment of links that do not
necessarily connect two customers directly, but utilize optional intermediate nodes.
The usage of these Steiner nodes might be either essential for the network connectivity,
result in an overall cost reduction or be non-advantageous. Although providing a
broader applicability, the resulting well-known steiner tree problem (STP) (Voß 2006)
is more challenging as its complexity is known to be NP-hard.

A crucial requirement for the design of networks in various applications is the
ability to provide reliable service to the customers. Even after a link failure due to
technological or environmental reasons the customer connectivity might be highly
desirable in the remaining network. Since trees can be characterized as graphs in
which two nodes are connected by a unique path, any missing link disconnects the
network. To overcome this weakness, the ring structure has proven to be a suitable
option because of its 2-connectivity property: after the removal of any single edge the
graph is still connected.

The model that we introduce in this work fills a gap in the existing literature.
We bring together the tree structure and the ring structure under additional capacity
constraints. In this capacitated ring tree problem (CRTP) we are given two categories
of customers that have to be connected to a central distributor by using optional
Steiner nodes. We say customers are of type 2 if they require a link-failure reliability
with respect to the distributor, sometimes also called 1 + 1 protection. The remaining
customers are labeled as of type 1 and need simple connectivity. Albeit, the latter
might be equipped with additional reliability if this is favorable in terms of the overall
network cost. We want to find a set of rings that intersect in the distributor node and
contain all type 2 customers. At the same time the remaining type 1 customers have
to be connected to these ring structures by forming trees or be ring nodes themselves.
Such an individual structure that is connected to the distributor, either a pure tree or a
ring with its attached trees, is called a ring tree. We impose two capacity limits on the
resulting network: the number of these ring trees as well as the number of customers
in such a ring tree are bounded. We allow these ring trees to be pure trees that are
directly attached to the distributor but count each incident non-ring edge as one ring
tree. The objective is to minimize the overall costs for the installed edges. Figure 1
illustrates a solution for the CRTP implementing four ring trees.

To the best of our knowledge the modeling of this advanced ring extension structure
under capacity constraints has not been explicitly considered in the literature so far.
By allowing the assignment of trees to rings in the CRTP we present the first research
approach into this direction. A major strategical planning feature of these models is the
anterior two-type categorization of the customers. Ring tree problems find applications
in the design of telecommunication networks. The CRTP can be used in local access
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Fig. 1 A solution for a capacitated ring tree problem based on 4 ring trees (3 of which are 1-trees and one
is a tree)

network design, for modeling backbone networks or even combining these levels. It
can be used to integrate ring-based reliability in recent real world applications which
are based on steiner trees (Grötschel et al. 2013). In transportation network planning,
we can represent ship routes by rings and simultaneously model the inter-modal freight
distribution networks from their ports of call. Here, we see another particular strength
of the model in the ability of linking two strategical levels.

Given the above exposition, the idea of this work is to provide a new type of
problem, the CRTP, which allows for generic treatment and extended understanding
of developing new algorithmic approaches for the CRTP as well as some of the arising
subproblems. This paper is structured as follows. A formal definition of the CRTP is
presented in Sect. 2 with the notation used throughout this work. In Sect. 3 we relate our
new model to existing concepts in the greater network design literature. In Sect. 4 we
present our mathematical formulation on which the exact algorithm is based. Along
the description of our exact algorithm in Sect. 5 we develop valid inequalities and
show in detail how these can be separated. In our computational study we apply our
algorithms on literature-derived test instances for different reliability scenarios. The
results and an analysis of the impact of reliability variation are provided in Sect. 6.
We close with our conclusions in Sect. 7.

The capacitated ring tree problem

Before giving a formal definition of the capacitated ring tree problem we introduce
the base topology of the CRTP in a graph theoretic manner. Throughout this work
we denote the node set of a graph G as V [G], its set of edges by E[G] and the arc
set by A[G] if G is directed. Recall that a 1-tree can be characterized as a connected
undirected graph containing a unique cycle.
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Fig. 2 Some ring trees and their fundamental subcycles

Definition 1 A ring tree is a connected graph containing at most one cycle.

In other words, a ring tree is a connected graph Q with at most |V [Q]| edges. Therefore,
the graph class of ring trees is the disjoint union of trees and 1-trees. Since the class
of cycle graphs is included in 1-trees, ring trees generalize both, rings and trees. We
recall that 1-trees have been proven useful for deriving lower bounds and solution
techniques for the classical TSP (Held and Karp 1971).

Given a tree T we can create (|V [T ]|2 − |V [T ]|)/2 − |E[T ]| distinct subcycles
in T by the insertion of single chords which are called fundamental cycles. Figure 2
depicts examples for the ring tree structure and fundamental cycles. Similarly, we can
define a directed ring tree as a directed graph that is either an arborescence or the
union of a directed (fundamental) cycle C and arborescences rooted in V [C].
Definition 2 We are given an undirected complete simple graph G. Its node set is
the disjoint union of type 1 customers U1, type 2 customers U2 and Steiner nodes W ,
complemented by a distributor node d: V [G] = U1∪̇U2∪̇W ∪̇{d}. Each edge e ∈ E[G]
is associated with a non-negative weight ce. Let a ring tree limit m and a customer
per ring tree limit q be given. For a set of ring trees S = {Q1 ⊆ G, . . . , Qk ⊆ G}
we denote the network graph by NS = (

⋃
Q∈S V [Q],⋃Q∈S E[Q]). S represents a

solution for the CRTP if

• each type 1 customer is contained in exactly one ring tree,
• each type 2 customer is contained in exactly one ring tree’s fundamental cycle,
• each steiner node is contained in at most one ring tree,
• the number of ring trees k is at most m,
• the number of customers in a ring tree does not exceed q, and
• for each ring tree, d is either a degree-two cycle node or a leaf if no fundamental

cycle is present.

The CRTP asks for a solution of minimal total cost, i.e. minimized sum of edge costs∑
e∈E[NS] ce.

Note that following our definition of the CRTP we allow the direct assignment of trees
to the distributor. It is easy to see that requiring every distributor-outbound structure to
link back to it would favor solutions containing Steiner rings which we want to avoid
here. We assume that the distributor has the same capacity consumption through a tree
serving a certain number of customers as it has by serving a ring (tree) with equally
many customers. When applying the customer limit we consider each tree induced by
an edge incident to d individually. Some ring-based models require m to be met exactly
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(e.g. Baldacci et al. 2007), which we relax here for the sake of overall cost efficiency.
We define U to be the set of customers U1 ∪ U2 that require to be contained in a
solution and assume that mq ≥ |U | since the CRTP instance is obviously infeasible.
The NP-hardness of the CRTP follows from its reducibility to the travelling salesman
problem (see Sect. 3), for instance. Figure 1 above illustrates a solution for the CRTP.

Related models

In this section, we show the originality of the CRTP by summarizing relationships to
existing related network design models. We focus on the models with an overall edge
cost minimization objective function and do not address various extensions such as
price-collecting problems or revenue maximization. Figure 6 illustrates the relation-
ships between the models mentioned in the following. In addition to the 1-connectivity
required for type 1 nodes and the 2-connectivity for the type 2 nodes, we denote the
optional Steiner node usage as a 0-connectivity requirement.

Ring models

The ring component of the CRTP is used in classical capacitated vehicle routing
problems (VRPs) to represent vehicle routes. The CRTP reduces to a unit-demand
VRP with a homogeneous vehicle fleet when all nodes ( �= d) are of type 2. As a
consequence, when m = 1 and q ≥ |V [G]| the CRTP generalizes the prominent
travelling salesman problem (TSP), asking for a Hamiltonian cycle of minimal total
edge costs. The steiner travelling salesman problem (STSP) (Letchford et al. 2013)
asks for a cost minimal tour in which an edge may be traversed multiple times as
illustrated in Fig. 3. Moreover, we pay the edge cost for each of the edges in a solution
network, which is generally not a simple graph. Since the CRTP does not admit edges
to be used multiple times we cannot relate the STSP to it in a straightforward way.
For a set of predefined clusters, the generalized travelling salesman problem (GTSP)

Fig. 3 A generalized travelling salesman tour (left) and a solution for the steiner travelling salesman
problem (right)
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(Fischetti et al. 1997) asks for a ring that just includes one node of each cluster rather
than all of them. Figure 3 illustrates such a non-spanning tour. Obviously, the GTSP
is a TSP if all the clusters are of order one it can only be modeled by the CRTP in
this special case. In contrast to most routing models we allow Steiner nodes when
designing ring trees in the CRTP. A collection of related vehicle routing models and
existing exact algorithms can be found in Baldacci et al. (2010).

Tree models

The CRTP generalizes the (rooted) capacitated minimum spanning tree problem
(CSPTP) with unit node demands. The CSPTP asks for a minimum spanning tree
in which the sum of given node demands in each subtree induced by an edge inci-
dent to the distributor is bounded by σ . A CSPTP can be formulated as a CRTP with
m = ∞, q = σ , U2 = W = ∅ and U1 containing all the non-distributor nodes. A
survey on heuristics for related problems can be found in Amberg et al. (1996). The
minimum capacitated Steiner tree problem (CSTP) shares the cardinality constraints
but allows the usage of Steiner nodes in the network. We note in passing that an explicit
consideration of the CSTP is somewhat lacking in literature. When even relaxing the
ring tree capacity constraints, this problem is equivalent to the STP.

Ring star models

A ring that is extended by single node assignments is known to follow the ring star
pattern (Labbé et al. 2004) as illustrated in Fig. 4. Each node either belongs to a ring
or is a leaf node of degree 1. An efficient layout then usually means the interlinkage
of customers to a central distributor by (disjoint) ring stars such that the overall edge

Fig. 4 A CRTP approximating ring star network (left) and its realization using the ring tree structure (right)
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costs are minimized. Due to practical requirements capacity limits may apply to the
number of customers per ring star or the number of installed ring stars (Baldacci et al.
2007). In this capacitated ring star problem (CRSP) the customers that are allowed
to be assigned to rings are given in advance. The CRTP goes beyond this idea by
replacing single customer assignments by assignments of trees but does not generalize
the CRSP. In ring star problems the allowed assignments of customers to the rings are
commonly the result of a previous optimization-based modeling step. Once a solution
is at hand, the actual assignment is realized by the installation of a shortest path
from the assigned type 1 customer to its chosen ring supplier. Multiple such paths are
possibly implemented by a combining tree structure as illustrated in Fig. 4. Hence, the
optimization potential is fully utilized in the CRTP by the integration of the design of
the type 1 customer assignment structures into the overall model. With an increasing
rate of the latter customers we magnify the overall cost-saving potential compared to
the described two-step approach.

In the travelling purchaser problem (TPP) (Ramesh 1981), a cost-efficient tour has
to be designed to purchase required products at selected markets. These products can
be obtained from various markets at different prices. A decision to purchase a certain
product at a market on the route can be interpreted as a product assignment to a route
that includes this market, resulting in a ring star structure. In Gouveia et al. (2011), an
extension is considered in which the tour length as well as the number of assignments
per market are restricted. However, in the TPP the assignable products cannot be tour
nodes whereas a type 1 customer can be a ring node in the CRTP and the CRSP,
respectively.

Survivable network design

Requiring a certain degree of connectivity between network nodes is the basic con-
cept in survivable network design problems (SNDPs). The survivability of a node is
either measured by the number of edge-disjoint paths to the remaining network or
the stronger node-disjoint paths. In the CRTP, these underlying connectivity require-
ments with respect to the distributor are of order 0, 1 and 2, depending on the node
type. They are typical for low-connectivity-constrained survivable network design
problems (Stoer 1992; Fortz et al. 2000). However, the CRTP enforces a ring tree
topology whereas SNDP models do not restrict the obtained network structure as long
as the connectivity requirements are fulfilled. Figure 5 gives examples for optimal
SNDP topologies that result from the given survivability requirements and the edge
cost structure. Related models, polyhedral results and solution methods can be found
in Stoer (1992) and Kerivin and Mahjoub (2005). Due to its rather generic survivability
requirement, special cases including regular survivability and bounded survivability
got particular attention. Some results with a special focus on low redundancy are
summarized in Fortz (2000). The numerous suitable applications for SNDP-based
models motivated their extensions to design networks that satisfy various supplemen-
tary requirements. These additional restrictions are largely of capacity-bounding type
which reflect technological or business limitations. Well-established representatives
are node degree constraints, hop constraints, diameter constraints, node/edge supply
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Fig. 5 SNDP solution topologies for SNDlib instances ZIB54, DFN-GWIN and SUN Orlowski et al.
(2010)

Fig. 6 The capacitated ring tree problem and related network design models

capacity constraints, cardinality constraints, mesh constraints and their combinations.
In Fortz et al. (2000), the authors introduce a capacity constraint on the number of
customers on the rings in a two-connected network to bound the rerouting distances
in the case of a link failure. Several network design models can be considered as
SNDPs with imposed capacity constraints. Figure 6 summarizes the major problems
and problem classes discussed in this section. It also puts the CRTP into perspective.

Mathematical formulation

We present a mathematical model for the CRTP that is based on a directed network
representation. Since non-compact formulations were shown to be computationally
more efficient than flow-based formulations in many cases (e.g. Baldacci et al. 2007)
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we propose a 2-index cut set formulation. Advanced branch and cut techniques for
an efficient algorithm are developed in the next section. As concluded in Magnanti
and Wolsey (1994), the LP lower bounds obtained by a directed formulation of the
steiner tree problem are at least as good as their counterparts from the undirected case.
Similarly, this holds for directed formulations of vehicle routing problems. Therefore,
we formulate the CRTP based on the complete orientation of G, denoted by H . The
resulting forward and backward arcs are assigned the cost of the corresponding edge in
E[G]. We search for a solution based on directed ring trees which can be transformed
into a solution of the CRTP by definition. A binary variable xa indicates whether an arc
a is used in such a directed representation. The installation of a forces a corresponding
binary edge variable ye to take value 1. A continuous circulation flow variable fa ∈
[0, 1] takes value 1 if the arc a is part of a directed ring and 0 otherwise. Our directed
formulations might also be used for an asymmetric capacitated ring tree problem
(ACRTP) that we will not further investigate in this paper. The CRTP can be formulated
as a steiner arborescence problem with additional side constraints. To achieve this,
artificial sink nodes have to be introduced that represent terminals for the arborescence
rooted in the distributor whenever a directed path is closed to a ring. However, we
decided to develop a separate model for the CRTP without such a reformulation to
underline its importance in its own right.

In our mathematical formulation we occasionally use i j to denote an arc (i, j) for
the sake of simplified notation. For two disjoint node sets X, Y ⊂ V [H ] in a directed
graph H , we define δ+

Y (X) = {(i, j) ∈ A[H ] : i ∈ X, j ∈ Y } and δ−
Y (X) = {(i, j) ∈

A[H ] : i ∈ Y, j ∈ X}. If clear from context we may omit to mention Y in the case that
V [H ]\X ⊆ Y . For X = {i}, i ∈ V [H ], we may use δ−

Y (i) and δ+
Y (i), respectively. We

also use X (Y ) = X ∩ Y for denoting intersecting sets, as for example the customers
U (S) in a node set S ⊆ V [G].

minimize
∑

e∈E[G]
ce ye (1)

subject to
∑

a∈δ−(S)

xa ≥ |U (S)|
q

∀ S ⊂ V [H ]\d, (2)

∑

a∈δ−(i)

xa = 1 ∀ i ∈ U, (3)

∑

a∈δ−(i)

xa ≤ 1 ∀ i ∈ W, (4)

∑

a∈δ+(d)

xa ≤ m, (5)

xi j + x ji = yi j ∀ {i, j} ∈ E[G], (6)
∑

a∈δ−(i)

fa =
∑

a∈δ+(i)

fa ∀ i ∈ V [H ], (7)
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∑

a∈δ−(i)

fa = 1 ∀ i ∈ U2, (8)

0 ≤ fa ≤ xa ∀ a ∈ A[H ], (9)

xa ∈ {0, 1} ∀ a ∈ A[H ], (10)

ye ∈ {0, 1} ∀ e ∈ E[G]. (11)

Our cut set formulation is based on binary arc variables xa for the arcs in A[H ].
The assignment constraints (3) ensure an in-degree equal to one for each customer,
whereas the capacity constraints (4) limit the inbound arcs to one for each Steiner
node. The capacitated connectivity constraints (2) bound the number of customers per
ring tree to q. We model underlying circulation structures by arc flow variables fa and
(in)equalities (7), (8) and (9). Since we consider directed ring trees, inequality (5) is
sufficient to limit the number of ring trees to m. To obtain a simple undirected solution
network and identify its edges we implement the variable linking equalities (6). When
q = |U | and U2 = ∅ the right hand side of (2) is bounded by 1, leading to a well-
known cut set formulation for the STP. If q = |U | and U1 = W = ∅ then we
obtain a corresponding model for the TSP. Although we are just dealing with a total of
3|E[G]| variables we are faced with an exponential number of constraints of type (2).
The objective (1) measures the network cost by summing up the costs of installed
edges.

We note that each edge variable yi j could be eliminated by adding the con-
straint xi j + x ji ≤ 1, dropping inequalities (6) and using the objective function∑

a∈A[H ] ci j xi j . However, computational tests showed that the y variables had a pos-
itive effect on the number of explored nodes as well as the overall computation time.

A CRTP variant that considers a different cost function for edges on fundamental
cycles than for edges of attached trees can be modeled by modifying the objective.
Let cr

e be the cost of a ring edge e ∈ E[G] and ct
e′ the cost of a non-ring edge. Then

the total cost of a ring tree design can be measured by replacing (1) by the following
objective function.

∑

e={i, j}∈E[G]

[

cr
e( fi j + f j i ) + ct

e(ye − fi j − f j i )

]

(12)

Exact solution techniques

In this section, we develop an efficient branch & bound algorithm based on our non-
compact mathematical formulation in Sect. 4. An emphasis is put on bound-tightening,
which we achieve by CRTP specific cutting techniques and solution polishing. These
two matters are crucial for the efficiency of a mathematical programming-based
approach as extensively discussed in the literature (e.g. Mitchell 2009). For various
hard combinatorial optimization problems the most competitive algorithms rely on the
application of sophisticated cutting planes combined with efficient primal heuristics.
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Fig. 7 A typical solution of a LP-relaxed CRTP in the directed formulation before the enforcement of the
capacitated connectivity constraints (2)

Strengthening the lower bounds

In the following, we present valid inequalities and corresponding separation techniques
to improve the lower bounds during the branch and cut algorithm. Due to the specific
CRTP topology we combine cutting planes based on ideas from network design models
for trees and vehicle routing. In the special cases that U2 = ∅ or U1 = ∅ some of
our valid inequalities collapse to equivalent ones for the STP or the VRP, respectively.
Let LP denote the linear program obtained after relaxing the integrality of variables
x and y in our formulation. We consider an optimal fractional arc solution for the
LP-relaxed subproblem in the branch and bound tree as the assignment of values
x∗ : a ∈ A[H ] → [0, 1] and f ∗ for the circulation flow, respectively. Such a typical
solution combines characteristics from the Steiner tree problem with VRP typical
subtours. In Fig. 7 a solution of a LP relaxation is depicted before the separation of
inequalities (2). For a more convenient formulation of the inequalities we introduce a
continuous auxiliary ring node variable zi for each node i ∈ V [H ]\{d} that identifies
i as a fundamental cycle node. These variables are linked to the node’s total inbound
circulation flow as follows.

zi =
∑

a∈δ−(i)

fa ∀ i ∈ V [H ]\{d} (13)

Inasmuch as zi = 1 holds ∀ i ∈ U2 we are more interested in the connectivity
of type 1 customers and steiner nodes with respect to d. Optimal ring node values
complementing x∗ and f ∗ are denoted by z∗. The different node types in the CRTP
give rise to various cut arc configurations for a given node subset. We refer to the
illustration in Fig. 8 along our descriptions.

Circulation inequalities The inequalities (9) that link the circulations to the ring
arc variables can be further tightened for mandatory cycle nodes through (14).

fa = xa ∀ a ∈ δ−(i), i ∈ U2 ∪ {d} (14)
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Fig. 8 A CRTP cut set and examples for the various types of intersections with ring tree structures con-
sidered by cutting planes

In the CRTP, we even allow non-type-2 nodes to obtain double connectivity by being
a ring node. In terms of our formulation such a node i ∈ U ∪ W is equipped with
reliability if there is circulation flow entering i , i.e. zi > 0. If this is the case, then the
cycle structure requires a unique subsequent ring node on i’s ring. Thus, there is at
most one natural ring node (type 2 customer or distributor) connected by an arc from i .

∑

a∈δ+
U2∪{d}(i)

xa ≤ zi ∀ i ∈ V [H ]\d (15)

To avoid reverse circulation flow we can require the outbound circulation flow from
j to nodes in V [H ]\i to be at least the circulation flow fi j on each arc (i, j) ∈ A[H ].

fi j ≤
∑

a∈δ+
V [H ]\{i}( j)

fa ∀ (i, j) ∈ A[H ] (16)

Since there are |A[H ]| such inequalities (16) we separate them dynamically by a
straightforward arc search.

Connectivity inequalities The following inequalities are also well-known as sub-
tour elimination constraints and impose a unitary lower bound on the right-hand side
of (2). ∑

a∈δ−(S)

xa ≥ 1 ∀ S ⊂ V [H ]\d : i ∈ S, ∀ i ∈ U (17)

To separate (17) for a customer i we compute a directed d − i cut (D, S) of minimal
weight w in H with respect to arc weights x∗. If w < 1 then we add an inequality (17)
for the cut set S.
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Capacitated connectivity inequalities Inequalities (2) dominate (17) if U2(S) > q.
The separation of (2) requires the computation of a minimal d − s cut (R, S) in
a directed auxiliary graph H−

1,2 with node set V [H−
1,2] = V [H ] ∪ {s} and arc set

A[H−
1,2] = A[H ] ∪ {(i, s) : i ∈ U }. An arc (i, s) has weight 1/q ∀i ∈ U and the

remaining arcs have weight x∗
i j . S is a violating cut set if the obtained cut weight is

less than |U |/q.
In fact, we can even assume that the sum of the inbound arc variable values in (2)

is integer to get stronger rounded versions.

∑

a∈δ−(S)

xa ≥
⌈ |U (S)|

q

⌉

∀ S ⊂ V [H ]\d (18)

If S violates (2) it necessarily violates (18) and then we add this stronger inequality
instead.

Capacitated ring tree multi-star inequalities Furthermore, we introduce several
capacitated ring tree multi-star inequalities for the CRTP which generalize (2). For
a set of nodes S not including d, we additionally estimate the number of distinct
customers in U\S that are connected to a node in S to ensure a sufficient number of
arcs entering S. Due to the (ring) tree topology such a customer can be incident to
multiple arcs in δ−

U\S(S). Hence counting all these inbound customer arcs generally
results in an overestimation of the number of inbound customers. Nevertheless, we can
give a lower bound on the number of inbound customers for a given subset X of S by
calculating the inbound customer circulation flow

∑
a∈δ−(X) fa . Moreover, for each

type 2 customer i ∈ X we can replace an in-flow variable f j i by the in-arc variable x ji .
At the same time we obtain a lower approximation using the fact that the out-degree
of a customer node is at most q. Thus, we can sum over all the inbound customer
arc variables while correcting by dividing through the decremented ring tree customer
capacity q − 1. These two arguments are combined in the following inequalities on
X ⊆ S and its complementary set S\X in S.

∑

a∈δ−(S)

xa ≥ 1

q

⎛

⎜
⎝|U (S)| +

∑

a∈δ−
U\S(U2(X))

xa +
∑

a∈δ−
U\S(X\U2)

fa + 1

q

∑

a∈δ−
U\S(S\X)

xa

⎞

⎟
⎠

∀ X ⊆ S, S ⊂ V [H ]\d
(19)

These inequalities are similar to partial multi-star inequalities known for the VRP. We
are able to efficiently separate these CRTP specific inequalities for a fixed set X ⊂
V [H ]\d. The separation of inequalities (19) is based on the minimal cut computation
for (2) with modified arc costs in H−

1,2. We set the weight for an arc a ∈ U × U2(X)

to (1 − 1/q)x∗
a and for a ∈ U × (X\U2) to x∗

a − f ∗
a /q using the fact that f ∗

a ≤ x∗
a .

The arc weight for a ∈ U × (V [H ]\X) is (1 − 1/q2)x∗
a . The sets we selected are

inspired by the cut arc node type combinations illustrated in Fig. 8. More precisely,
we enforce (19) for X ⊆ {⋃L∈P L : P ∈ P({W, U1, U2})} resulting in at most eight
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different types of inequalities. When adding such a cut we can replace the maximal
out-degree q by min{q, |S|} and if S ∩ W = ∅ by min{q − 1, |S|}.

An alternative way to strengthen (2) is to count arcs leaving S towards customers
not in S since they consume capacity. Actually, even a non-ring arc (i, j) in δ+

W (S)

implies at least one more customer since there exists an optimal solution without
Steiner leave nodes. However, this customer might be already incorporated as a node
in S. Such potential ears with respect to S are the reason that we cannot relate inbound
and outbound arcs at the same time. In contrast to (19), every customer that is reached
from S can be counted without approximation as follows.

∑

a∈δ−(S)

xa ≥ 1

q

⎛

⎜
⎝|U (S)| +

∑

a∈δ+
U\S(S)

xa

⎞

⎟
⎠ ∀ S ⊂ V [H ]\d (20)

Note that the separation of inequalities (20) is NP-hard since it is equivalent to finding
a directed cut of maximal weight.

Rounded ring tree multi-star inequalities Although rounding the right hand side
of (20) results in further dominating valid inequalities, the constraint linearity would
be violated. So we use the techniques from Baldacci et al. (2007) to derive linear
inequalities through an estimate as follows. Lemma 1 of Baldacci et al. (2007) states
that for integers (α, β, γ ) ∈ N3 with α > γ > 0 and α mod γ �= 0 the inequality
�α−β

γ
� ≥ � α

γ
� − β

α mod γ
holds. We use this after rewriting the summation terms for

the case that |U | > q and |U | mod q �= 0. Note that if |U | ≤ q then we deal with an
instance that is effectively uncapacitated.

∑

a∈δ−(S)

xa ≥
⎡

⎢
⎢
⎢
⎢

1

q

⎛

⎜
⎝|U (S)| +

∑

a∈δ+
U\S(S)

xa

⎞

⎟
⎠

⎤

⎥
⎥
⎥
⎥

≥
⎡

⎢
⎢
⎢
⎢

1

q

⎛

⎜
⎝|U (S)| +

⎡

⎢
⎣|U\S| −

∑

i∈U\S

∑

a∈δ−
V [H ]\S(i)

xa

⎤

⎥
⎦

⎞

⎟
⎠

⎤

⎥
⎥
⎥
⎥

≥
⎡

⎢
⎢
⎢
⎢

1

q

⎛

⎜
⎝|U | −

∑

i∈U\S

∑

a∈δ−
V [H ]\S(i)

xa

⎞

⎟
⎠

⎤

⎥
⎥
⎥
⎥

≥
⌈ |U |

q

⌉

− 1

|U | mod q

∑

i∈U\S

∑

a∈δ−
V [H ]\S(i)

xa ∀ S ⊂ V [H ]\d : S �= ∅

(21)

The partial multi-star inequalities (20) and (21) cannot be separated polynomi-
ally (Letchford et al. 2002). Therefore, we check whether any of these is violated
by any cut set identified in a previous separation procedure and eventually add it.
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Ring closure inequalities Compared to (2) the following inequalities ensure type
2 customer connectivity towards d in our directed formulation.

∑

a∈δ+(S)

fa ≥ 1 ∀ S ⊂ V [H ]\d : i ∈ S, ∀ i ∈ U2 (22)

Inequalities (22) can be adapted to be applicable to nodes of type 0 and 1. Since such
a node i is not necessarily a ring node, we express the constraint based on the optional
circulation flow zi through i .

∑

a∈δ+(S)

fa ≥ zi ∀ S ⊂ V [H ]\d : i ∈ S, ∀ i ∈ U1 ∪ W (23)

The separation of (22) and (23) is done by minimal i −d cut computations in H using
arc weights f ∗. The violation of the first inequality is detected as for (17) and we
add (23) if the obtained cut weight is lower than z∗

i .
Capacitated ring closure inequalities The connectivity requirement in inequali-

ties (22) can be extended to capacitated ring closure inequalities that take into account
the ring tree capacity q when imposing necessary rings.

∑

a∈δ+(S)

fa ≥ |U2(S)|
q

∀ S ⊂ V [H ]\d (24)

After rounding the constant term as in (18) we obtain rounded capacitated ring closure
inequalities.

∑

a∈δ+(S)

fa ≥
⌈ |U2(S)|

q

⌉

∀ S ⊂ V [H ]\d (25)

Inequality (24) is separated by the computation of a minimal s − d cut S, D on the
directed auxiliary graph H+

2 with V [H+
2 ] := V [H ] ∪ {s} and additional arcs from s

to all the type 2 customers: A[H+
2 ] := A[H ] ∪ {(s, i) : i ∈ U2}. The weight of an arc

(i, j) ∈ A[H+
2 ] is 1/q if i = s and else f ∗

i j . The cut set S violates (24) if the cut weight
is less than |U2|/q. Furthermore, we can take into account type 1 ring customers in
S since they consume ring tree capacity, too. They can be identified by the conveyed
circulation flow zi ∀i ∈ U1. Therefore, inequalities (24) are generalized by stronger
inequalities (26) that count the number of type 1 ring nodes based on the circulations.

∑

a∈δ+(S)

fa ≥ 1

q

⎛

⎝|U2(S)| +
∑

i∈U1(S)

zi

⎞

⎠ ∀ S ⊂ V [H ]\d (26)

We separate them on the graph H+
1,2 which is obtained from H+

2 by extending the arc

set to A[H+
1,2] = A[H+

2 ] ∪ {(s, i) : i ∈ U1} with arc weights z∗
j/q ∀(s, j) ∈ s × U1.

A s − d cut weight less than (|U2| + ∑
j∈U1

z∗
j )/q indicates that S is a cut set that

violates the inequality the most. We note that an alternative separation technique can
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be derived by expressing zi as
∑

a∈δ+(i) fa using (7) and modifying the corresponding
arc costs in H+

2 .
Capacitated ring closure multi-star inequalities To ensure ring-node-to-distributor

connectivity we take into account a unitary capacity consumption for each arc from a
ring node in S to a customer in V [H ]\S. This does not hold for an arbitrary node in S
since the connected customer outside of S is not necessarily part of a ring that inter-
sects with S. However, we can tighten the capacitated ring closure inequalities (26)
by a similar counting argument. We utilize the circulation information to count the
number of customers outside of S that are connected from ring nodes in S as follows.

∑

a∈δ+(S)

fa ≥ 1

q

⎛

⎜
⎝|U2(S)| +

∑

i∈U1(S)

zi +
∑

a∈δ+
U\S(S)

fa

⎞

⎟
⎠ ∀ S ⊂ V [H ]\d (27)

To derive an even tighter version of (27) we first rewrite the introduced outbound
customer circulation flow-term as

∑

a∈δ+
U1\S(S\U2)

fa +
∑

a∈δ+
U\S(U2(S))

fa +
∑

a∈δ+
U2\S(S\U2)

fa (28)

We observe that values of the circulation flow variables in the last summation term
will be equal to the corresponding arc variable values by (14). The second term counts
the customers in U\S that are connected from type 2 customers in S by ring arcs.
In fact, every customer that is connected from a type 2 node consumes capacity of
a ring tree that requires a fundamental cycle. Thus, we can exchange the summation
flow variables f to arc variables x for this term as well. Unfortunately, this argument
can just be applied conditionally to the first sum. More precisely, we cannot count
an outbound arc (i, j) since we do not know whether the originating node i ∈ S is
connected to a ring. This lifting procedure on the right-hand side of (27) yields the
following right-hand side.

1

q

⎛

⎜
⎝|U2(S)| +

∑

a∈δ+
U1\S(S\U2)

fa +
∑

a∈δ+
U\S(U2(S))

xa +
∑

a∈δ+
U2\S(S\U2)

xa

⎞

⎟
⎠ (29)

The separation procedure for inequalities (27) can be deduced from (22) and (26). An
arc a ∈ A[H+

1,2] has weight (1 − 1/q) f ∗
a if a ∈ (U ∪ W ) × U and f ∗

a otherwise.
We extend this by include an approximating component to reflect (29). Thereby, the
weight of an arc a ∈ U2 × U of H+

1,2 is set to max{0, f ∗
a − x∗

a/q} based on the
suggested variable exchange. So far, we tried to enforce connectivity from ring nodes
to the depot. Conversely, we are able to formulate capacitated inequalities that ensure
sufficient inbound circulation flow for a cut set as follows.
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∑

a∈δ−(S)

fa ≥ 1

q

⎛

⎜
⎝|U2(S)| +

∑

i∈U1(S)

zi +
∑

a∈δ−
U\S(S\U2)

fa +
∑

a∈δ−
U\S(U2(S))

xa

⎞

⎟
⎠

∀ S ⊂ V [H ]\d
(30)

The separation procedure can be adapted from (27) including (29) on H−
1,2 which we

will not elaborate here. The obtained types of ring closure inequalities all together
ensure a certain outbound connectivity of S whereas the various ring tree inequalities
target sufficient inbound connectivity in a similar way. However, we remind that due
to the ring tree structure we will not be able to match the number of arcs entering such
a cut set S with the order of the leaving arcs in general.

Strengthening the upper bounds

In a branch and bound algorithm, it is crucial to generate tight upper bounds that are
used for pruning. During the initial branching process integer feasible CRTP solu-
tions are found scarcely and are at best of moderate quality. Therefore, we compute an
integer-feasible start solution in our algorithm using a multi-start local search heuristic
as described in Hill (2015). Based on several construction strategies various single and
multi ring tree exchange neighborhoods are explored to identify potential improve-
ments. Ties can be broken by reusing these techniques for a CRTP specific solution
polishing to optimize solutions found during the exact method. Consequently, each
time an integer feasible solution is found we perform local search and if this results
in an improved solution we replace the incumbent.

Cut management

In our algorithm, we add (14) and (15), separate (2), (16), (17), (19), (15), (22), (23)
and (30). Inequalities incorporating (29) are separated heuristically as explained above
whereas (20), (18), (25) and (21) are added if violated for any of the obtained cut sets.
In addition, to these inequalities we include constraints in our initial model which do
not improve the theoretical lower bounds computed by solving the LP but in practice
speed up the overall solution process.

Since customers of type 2 are required to be ring nodes and Steiner leave nodes
cannot improve a solution, we add (31). These inequalities are implied by (22) and (3).

∑

a∈δ+(i)

xa ≥
∑

a∈δ−(i)

xa ∀ i ∈ U2 ∪ W (31)

We additionally add inequality (27) for S = U2 to the initial model. Furthermore, we
add inequalities (18) for S = V [G]\{d} and S = {v} ∀ v ∈ V (G)\d.

Besides our own CRTP-specific cutting techniques we activated the solver’s internal
cutting routines that implement common cuts. Various experiments with the different
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branching strategies using different prioritizations of arc and edge variables have
shown that the pseudo-cost branching is most effective for our instances.

We let the CPLEX-internal cut management decide whether to purge added cuts
if convenient. However, integrality enforcing cuts of type (18) and capacitated ring
closure cuts (27) are forced to stay in the model permanently.

Computational study

In our computational study, we follow two objectives. On the one hand, we give results
of our exact branch and cut algorithm and compare them to the results of our heuristic
solution approach from Hill (2015). On the other hand, we consider various reliability
scenarios and draw some conclusions about the cost of reliability in terms of overall
costs and computational effort.

Implementation details

The algorithms was implemented in C++ using the CPLEX 12.6 branch and cut frame-
work. Computations were done on an Intel i7-3667U 2.00 GHz processor unit. CPLEX
was set to run in the single thread mode. We searched for an optimal LP-feasible solu-
tion at the root node and generated inequalities for all violated cuts. In our experiments
it turned out that our algorithm performed better when additionally utilizing the solver
cutting techniques. Among the various branching strategies suggested in the literature,
we decided to use a strategy based on pseudo-costs which is implemented in the solver.

Scenarios

Our 675 CRTP instances1 are derived from the 45 class A random instances generated
for the CRSP in Baldacci et al. (2007). These TSPLib-based CRSP instances with
12 ≤ |U | ≤ 100, 3 ≤ q ≤ 38 and m ∈ {3, 4, 5} already served for computational
studies in Hoshino and de Souza (2009) and Naji-Azimi et al. (2010). They were
derived from the three TSPLib instances eil51, eil76 and eil101 by declaring the
first input node as the depot, the following α% (α ∈ {25, 50, 75, 100}) nodes as
customers and the remaining nodes as Steiner nodes. Capacities were set up based
on m ∈ {3, 4, 5} such that the ring star utilization is about 90 %. The edge costs
correspond to the Euclidean distances.

During our adaptation process, we assigned customers to be of type 1 using the
following strategies. We prioritized according to their closeness to d (DC), remoteness
to d (DF), closeness to a random customer (RC), remoteness to a random customer
(RF) or performed a random assignment (R). For each class of obtained instances we
use five different type 1 customer rates: r1 ∈ {0, 0.25, 0.5, 0.75, 1}. Note that U1 = ∅
and U1 = U result in a VRP variant and a CSTP, respectively. The used random seed
depends on the CRSP instance and is constant for its derived CRTP instances. For

1 The instances can be obtained from the corresponding author.
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Fig. 9 CRTP random instances (left to right: 0, 0.25, 0.5, 0.75, 1—type 1 customer rate; top to bottom: R,
DC, DF, RC, RF—type 1 customer assignment strategy)

two instances I and I ′ that are constructed based on the same strategy with r1 < r ′
1

we have U ′
1 ⊂ U1. Hence the optimal values z and z′ obey z ≥ z′. The scenarios are

illustrated in Fig. 9 for the instance Q-30.

Results

Tables 1, 2 and 3 show the computational results for the instances of type R. We
limit ourselves here to the latter since they turned out to be computationally most
challenging for our algorithm. The first 8 columns indicate the CRTP base instance
name (P), the type 1 customer rate (r1), node set cardinalities (|V |,|U2|,|U1|,|W |) and
the capacity bounds (m,q). Each base instance is derived from a CRSP instance of class
A from Baldacci et al. (2007), in the given order. Lower and upper bounds obtained
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Table 1 Results for CRTP instances for reliability expansion scenario (R) and type 1 customer rates
r1 ∈ {0, 0.25, 0.5, 0.75, 1}
P r1 |V | |U2| |U1| |W | m q lb0 lb0 lb ub ub0 � t (s) Nodes

Q-1 1 26 0 12 13 3 5 141 157 157 157 157 0 2 1

0.75 3 9 190 207 210 210 215 0 4 4

0.5 6 6 193 221 227 227 227 0 8 45

0.25 9 3 214 236 236 236 236 0 3 5

0 12 0 238 241 242 242 242 0 1 1

Q-2 1 26 0 12 13 4 4 145 163 163 163 164 0 2 1

0.75 3 9 181 207 207 207 207 0 2 1

0.5 6 6 214 233 240 240 240 0 9 118

0.25 9 3 238 247 249 249 249 0 3 2

0 12 0 248 251 251 251 251 0 1 1

Q-3 1 26 0 12 13 5 3 147 170 170 170 173 0 1 1

0.75 3 9 201 235 242 242 244 0 11 81

0.5 6 6 225 245 251 251 251 0 4 2

0.25 9 3 258 278 279 279 279 0 3 1

0 12 0 274 279 279 279 279 0 1 1

Q-4 1 26 0 18 7 3 7 194 207 207 207 207 0 1 1

0.75 4 14 230 249 256 256 256 0 10 97

0.5 9 9 263 267 274 274 274 0 6 27

0.25 13 5 272 284 292 292 292 0 12 161

0 18 0 292 292 301 301 305 0 5 20

Q-5 1 26 0 18 7 4 5 206 217 217 217 220 0 1 1

0.75 4 14 244 277 285 285 285 0 17 116

0.5 9 9 282 304 313 313 318 0 27 128

0.25 13 5 301 317 334 334 334 0 102 889

0 18 0 334 334 339 339 339 0 5 26

Q-6 1 26 0 18 7 5 4 213 227 227 227 231 0 1 1

0.75 4 14 246 276 278 278 278 0 5 22

0.5 9 9 307 320 336 336 336 0 67 433

0.25 13 5 338 353 361 361 361 0 13 73

0 18 0 365 374 375 375 375 0 2 2

Q-7 1 26 0 25 0 3 10 245 245 245 245 248 0 0 1

0.75 6 19 277 283 294 294 294 0 11 135

0.5 13 12 293 296 313 313 313 0 55 1414

0.25 18 7 312 312 327 327 327 0 20 501

0 25 0 324 326 328 328 328 0 1 4

Q-8 1 26 0 25 0 4 7 252 252 252 252 267 0 0 1

0.75 6 19 293 300 311 311 315 0 12 132

0.5 13 12 308 319 345 345 345 0 769 5530

0.25 18 7 332 342 357 357 357 0 60 754

0 25 0 358 358 362 362 362 0 1 8
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Table 1 continued

P r1 |V | |U2| |U1| |W | m q lb0 lb0 lb ub ub0 � t (s) Nodes

Q-9 1 26 0 25 0 5 6 254 254 254 254 262 0 0 1

0.75 6 19 293 307 319 319 322 0 17 150

0.5 13 12 331 352 369 369 372 0 326 2882

0.25 18 7 351 369 378 378 379 0 20 296

0 25 0 392 394 396 396 397 0 2 11

Q-10 1 51 0 12 38 3 5 109 156 156 156 156 0 16 1

0.75 3 9 163 181 190 190 196 0 234 32

0.5 6 6 185 203 213 213 215 0 340 365

0.25 9 3 204 220 222 222 222 0 9 2

0 12 0 234 238 242 242 242 0 7 1

Q-11 1 51 0 12 38 4 4 143 159 159 159 163 0 16 1

0.75 3 9 184 199 209 209 209 0 89 54

0.5 6 6 208 226 230 230 230 0 54 34

0.25 9 3 230 238 238 238 238 0 7 1

0 12 0 240 250 251 251 251 0 10 1

Q-12 1 51 0 12 38 5 3 154 170 170 170 172 0 15 1

0.75 3 9 182 203 203 203 203 0 20 1

0.5 6 6 218 240 251 251 251 0 508 116

0.25 9 3 248 271 278 278 278 0 77 46

0 12 0 269 279 279 279 279 0 11 1

Q-13 1 51 0 25 25 3 10 227 244 245 245 248 0 28 2

0.75 6 19 254 279 293 302 305 3.1 3600 2686

0.5 12 13 281 295 311 311 312 0 2760 2482

0.25 18 7 292 310 322 322 322 0 858 796

0 25 0 314 323 328 328 328 0 32 30

Q-14 1 51 0 25 25 4 7 226 250 252 252 267 0 17 3

0.75 6 19 271 296 304 304 321 0 583 301

0.5 12 13 305 327 341 352 352 3.1 3600 2050

0.25 18 7 332 344 357 357 357 0 1795 1145

0 25 0 350 355 362 362 362 0 55 29

Q-15 1 51 0 25 25 5 6 234 254 254 254 262 0 14 2

0.75 6 19 293 320 331 335 339 1.1 3600 3035

0.5 12 13 319 348 359 370 372 3 3600 1440

0.25 18 7 331 360 372 387 387 3.9 3600 1012

0 25 0 344 382 390 390 397 0 13 9

by our exact method using a one hour time limit can be found in columns lb and ub,
respectively. The root node relaxation objective value is given in lb0. To show the
effectiveness of our cutting techniques we provide the lower bounds in the root node
obtained by the pure model (1)–(11) in column lb0. The primal bound resulting from
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Table 2 Results for CRTP instances for reliability expansion scenario (R) and type 1 customer rates
r1 ∈ {0, 0.25, 0.5, 0.75, 1}
P r1 |V | |U2| |U1| |W | m q lb0 lb0 lb ub ub0 � t (s) Nodes

Q-16 1 51 0 37 13 3 14 285 303 304 304 304 0 7 1

0.75 9 28 329 346 350 375 375 6.6 3600 3745

0.5 18 19 345 356 364 376 378 3.2 3600 2878

0.25 27 10 353 366 379 379 380 0 1428 4254

0 37 0 371 376 380 380 381 0 32 21

Q-17 1 51 0 37 13 4 11 278 308 308 308 309 0 13 2

0.75 9 28 329 351 363 363 369 0 3472 2867

0.5 18 19 364 376 384 399 399 3.8 3600 2361

0.25 27 10 375 384 396 404 404 1.9 3600 3852

0 37 0 395 404 410 410 418 0 358 200

Q-18 1 51 0 37 13 5 9 295 311 314 314 314 0 11 24

0.75 9 28 346 372 374 408 408 8.2 3600 1239

0.5 18 19 370 397 401 431 431 7 3600 1700

0.25 27 10 386 411 417 436 436 4.5 3600 1880

0 37 0 429 435 446 446 452 0 359 1316

Q-19 1 51 0 50 0 3 19 376 376 376 376 377 0 1 1

0.75 12 38 402 407 418 427 436 2.1 3600 5032

0.5 25 25 425 429 435 445 447 2.3 3600 6217

0.25 37 13 433 441 451 451 454 0 1953 2396

0 50 0 451 454 462 462 473 0 1311 1068

Q-20 1 51 0 50 0 4 14 382 384 384 384 386 0 4 56

0.75 12 38 406 418 423 458 458 7.7 3600 2236

0.5 25 25 430 444 448 493 493 9.1 3600 2700

0.25 37 13 456 464 471 502 502 6.2 3600 4800

0 50 0 476 480 493 493 513 0 799 2042

Q-21 1 51 0 50 0 5 12 387 390 390 390 392 0 6 80

0.75 12 38 420 439 447 491 501 9 3600 1474

0.5 25 25 460 471 478 526 526 9.1 3600 2132

0.25 37 13 484 489 497 525 525 5.3 3600 3233

0 50 0 502 506 522 526 541 0.8 3600 5792

Q-22 1 76 0 18 57 3 7 180 213 213 213 214 0 77 2

0.75 4 14 227 271 272 272 272 0 624 28

0.5 9 9 250 282 288 318 318 9.6 3600 268

0.25 13 5 267 294 303 318 318 4.8 3600 414

0 18 0 301 320 331 331 332 0 1020 953

Q-23 1 76 0 18 57 4 5 205 229 232 232 235 0 97 139

0.75 4 14 255 300 302 309 312 2.1 3600 396

0.5 9 9 288 333 336 336 336 0 1869 144

0.25 13 5 315 352 359 369 369 2.8 3600 0

0 18 0 348 383 386 386 390 0 1710 339
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Table 2 continued

P r1 |V | |U2| |U1| |W | m q lb0 lb0 lb ub ub0 � t (s) Nodes

Q-24 1 76 0 18 57 5 4 231 249 257 257 259 0 223 369

0.75 4 14 269 314 325 325 325 0 1829 161

0.5 9 9 319 357 368 379 379 2.9 3600 330

0.25 13 5 356 395 397 397 397 0 345 3

0 18 0 398 448 448 448 451 0 2663 370

Q-25 1 76 0 37 38 3 14 252 275 320 320 320 0 856 9

0.75 9 28 322 360 363 390 390 6.8 3600 502

0.5 18 19 353 369 372 402 402 7.4 3600 622

0.25 27 10 373 384 390 403 403 3.3 3600 607

0 37 0 390 409 409 409 413 0 2586 1556

Q-26 1 76 0 37 38 4 11 283 326 326 326 336 0 231 123

0.75 9 28 340 378 382 402 402 5 3600 372

0.5 18 19 374 408 410 455 455 9.8 3600 312

0.25 27 10 394 415 418 460 460 9.2 3600 361

0 37 0 423 434 446 458 458 2.6 3600 1176

Q-27 1 76 0 37 38 5 9 306 333 340 340 343 0 539 1379

0.75 9 28 355 405 407 446 446 8.7 3600 240

0.5 18 19 394 422 426 473 473 9.9 3600 149

0.25 27 10 420 443 443 497 497 10.9 3600 223

0 37 0 458 472 477 506 506 5.6 3600 1110

Q-28 1 76 0 56 19 3 21 374 382 383 383 395 0 21 7

0.75 14 42 407 426 427 462 462 7.6 3600 869

0.5 28 28 430 436 438 477 477 8.1 3600 659

0.25 42 14 444 451 461 465 472 1 3600 4168

0 56 0 462 467 476 476 495 0 3600 2353

Q-29 1 76 0 56 19 4 16 382 388 389 389 402 0 28 14

0.75 14 42 421 437 441 488 488 9.7 3600 396

0.5 28 28 448 462 466 520 520 10.4 3600 316

0.25 42 14 475 487 492 532 532 7.4 3600 610

0 56 0 492 500 514 535 543 4 3600 1725

Q-30 1 76 0 56 19 5 13 391 396 399 399 414 0 38 148

0.75 14 42 438 468 469 533 533 11.9 3600 253

0.5 28 28 468 492 493 554 554 11 3600 234

0.25 42 14 495 509 512 558 558 8.2 3600 545

0 56 0 527 534 546 557 561 1.9 3600 1411

the heuristic from Hill (2015) can be found in ub0. Bold objective values are optimal.
The corresponding computation time (in seconds) and the number of explored nodes
in the branch and bound tree can be found in columns t (s) and nodes, whereas the
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Table 3 Results for CRTP instances for reliability expansion scenario (R) and type 1 customer rates
r1 ∈ {0, 0.25, 0.5, 0.75, 1}
P r1 |V | |U2| |U1| |W | m q lb0 lb0 lb ub ub0 � t (s) nodes

Q-31 1 76 0 75 0 3 28 473 473 473 473 478 0 2 1

0.75 18 57 503 515 516 551 551 6.4 3600 1676

0.5 37 38 528 532 537 564 564 4.9 3600 1399

0.25 56 19 541 547 554 564 573 1.8 3600 2800

0 75 0 567 567 572 572 584 0 230 463

Q-32 1 76 0 75 0 4 21 478 478 482 482 494 0 8 35

0.75 18 57 506 530 531 573 573 7.4 3600 539

0.5 37 38 537 550 552 612 612 9.8 3600 954

0.25 56 19 573 581 586 618 618 5.2 3600 1640

0 75 0 593 597 603 626 626 3.7 3600 3890

Q-33 1 76 0 75 0 5 17 482 482 488 488 495 0 88 456

0.75 18 57 528 546 552 623 623 11.3 3600 178

0.5 37 38 562 576 585 623 623 6.1 3600 343

0.25 56 19 584 598 608 656 656 7.4 3600 522

0 75 0 617 623 641 674 674 4.9 3600 2358

Q-34 1 101 0 25 75 3 10 162 274 274 274 282 0 450 20

0.75 6 19 256 308 314 314 327 0 1760 114

0.5 12 13 299 332 337 353 353 4.6 3600 323

0.25 18 7 324 351 356 363 363 2 3600 180

0 25 0 353 365 366 366 366 0 121 1

Q-35 1 101 0 25 75 4 7 238 288 289 289 293 0 333 24

0.75 19 6 289 344 344 367 367 6.2 3600 34

0.5 12 13 327 367 367 405 405 9.3 3600 60

0.25 18 7 361 385 385 416 416 7.5 3600 27

0 25 0 392 407 409 425 425 3.8 3600 362

Q-36 1 101 0 25 75 5 6 251 295 299 299 299 0 330 47

0.75 19 6 296 362 361 393 393 8.1 3600 10

0.5 12 13 326 377 378 403 403 6.2 3600 15

0.25 18 7 371 406 407 429 429 5.1 3600 17

0 25 0 422 435 440 452 452 2.7 3600 48

Q-37 1 101 0 50 50 3 19 346 409 411 411 411 0 410 10

0.75 12 38 406 457 457 492 492 7.1 3600 9

0.5 25 25 445 472 473 499 499 5.3 3600 70

0.25 37 13 465 482 483 503 503 3.9 3600 45

0 50 0 486 492 493 508 523 2.9 3600 645

Q-38 1 101 0 50 50 4 14 356 415 415 415 420 0 380 1

0.75 12 38 416 460 460 480 480 4.1 3600 117

0.5 25 25 451 484 484 517 517 6.5 3600 43

0.25 37 13 484 501 501 531 531 5.7 3600 76

0 50 0 514 521 525 537 537 2.3 3600 223
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Table 3 continued

P r1 |V | |U2| |U1| |W | m q lb0 lb0 lb ub ub0 � t (s) nodes

Q-39 1 101 0 50 50 5 12 368 422 426 426 443 0 790 67

0.75 12 38 424 479 481 505 505 4.8 3600 128

0.5 25 25 470 569 495 527 527 6.1 3600 65

0.25 37 13 506 523 523 564 564 7.3 3600 49

0 50 0 542 551 553 574 574 3.6 3600 126

Q-40 1 101 0 75 25 3 28 462 498 511 511 516 0 840 168

0.75 18 57 519 554 555 594 594 6.6 3600 223

0.5 37 38 543 569 570 592 592 3.8 3600 159

0.25 56 19 573 586 588 612 612 4 3600 220

0 75 0 596 600 606 606 622 0 2098 916

Q-41 1 101 0 75 25 4 21 475 500 516 516 519 0 780 112

0.75 18 57 533 559 559 595 595 6 3600 40

0.5 37 38 551 582 582 607 607 4.1 3600 141

0.25 56 19 591 600 603 619 619 2.6 3600 177

0 75 0 616 623 624 639 642 2.3 3600 532

Q-42 1 101 0 75 25 5 17 483 521 522 522 529 0 93 85

0.75 18 57 546 584 584 653 653 10.6 3600 20

0.5 37 38 571 597 598 645 645 7.3 3600 189

0.25 56 19 607 623 622 670 670 7.1 3600 123

0 75 0 642 648 649 689 689 5.8 3600 223

Q-43 1 101 0 100 0 3 38 554 554 555 555 555 0 1 1

0.75 25 75 600 612 611 652 652 6.2 3600 260

0.5 50 50 620 623 624 657 660 5 3600 532

0.25 75 25 634 639 644 648 656 0.7 3600 2170

0 100 0 658 660 663 663 683 0 292 578

Q-44 1 101 0 100 0 4 28 561 561 564 564 568 0 2 50

0.75 25 75 608 624 624 663 663 5.9 3600 207

0.5 50 50 632 642 644 690 690 6.7 3600 455

0.25 75 25 655 661 665 683 691 2.7 3600 1523

0 100 0 677 681 684 700 700 2.3 3600 993

Q-45 1 101 0 100 0 5 23 567 570 570 570 576 0 2 1

0.75 25 75 612 625 629 695 695 9.5 3600 100

0.5 50 50 657 670 674 717 717 6 3600 203

0.25 75 25 683 687 689 730 730 5.6 3600 206

0 100 0 705 708 709 743 743 4.6 3600 952

optimality gap (ub − lb)/lb can be found in column �. The run time of the primal
heuristic never exceeded 25 s during our tests.

As expected, the pure tree or ring structured problems can usually be solved more
efficiently in terms of optimality gap and number of explored nodes. We observed the

123
106



A. Hill, S. Voß

instances with balanced customer reliability requirements as the most challenging.
Even though we could solve 64 % of the purely ring-based instances and all the purely
tree-based instances to optimality, we proved optimality for just 31 % of the problems
with r1 = 0.5. Our heuristic algorithm from Hill (2015) produced solutions that were
optimal for 27 % of the instances. Additionally, the local search techniques polished
integer-feasible solutions during the branch and cut procedure in many cases for the
remaining instances. For the entire test set we obtained an average optimality gap of
2.6 %.

The presented cutting techniques turned out to have a significant effect on the quality
of the computed lower bounds. Regarding the lower bounds obtained for the root node
we observe an augmentation of 6.3 % compared to the values stemming from the pure
model (lb0). This corresponds to a root optimality gap reduction of about 50 % on
average.

Since we let CPLEX manage the cuts, we do not have information about which of
the generated cuts are active in the LPs. Our extensive separation strategies produce
large numbers of cuts that are passed to the solver. For the different instance sizes
(|V | ∈ {26, 51, 76, 101}) we separate 857, 4742, 7546 and 11,270 cuts per instance
on average.

The cost of reliability

We are particularly interested in the effect of increased reliability requirements on
the overall costs. Certainly, different cost functions as well as parameters such as the
capacity limits m, q and the reliability distribution have a strong impact on solutions
for CRTP instances. Nevertheless, we give some consequences of reliability parame-
terization in our different scenarios based on our solution approaches. As the ring
tree structure suggests, the CRTP solutions can be quite different, from pure tree or
ring-based ones.

The series of optimal solutions for the different type 1 customer scenarios in Fig. 10
give an impression of the topological spectrum covered by the CRTP. With an increas-
ing type 1 customer rate, we expect a smaller number of fundamental cycles as it is
the case for the exemplary evolution for instance Q-1 in Fig. 11.

For the increasing type 1 customer rates, we extended the type 1 customer set
incrementally in our scenarios. Therefore, we can assume that the function of optimal
network costs is monotonically increasing for a decreasing type 1 customer rate.
Depending on the distribution of the reliability requirements among the customers
this results in different correlations between the optimal network cost and the type 1
customer rate, as shown in Fig. 12. The curves show the relative cost increase with a
decreasing type 1 customer rate averaged over all the instances for our scenarios. We
observe that providing additional reliability to all the customers increased the overall
network costs by 35–65 % for our instances. More precisely, installing initial reliability
is costly, whereas it gets less expensive the more reliability is already implemented.
This is intuitive due to the fact that the rerouting of an existing ring is more efficient
than the implementation of a ring structure on a widely tree-spanned customer domain.
Therefore, the reliability cost function tends to be concave. In the scenario that assigns
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Fig. 10 Solutions for CRTP random instances (Q-30; left to right: 0.25, 0.5, 0.75—type 1 customer rate;
top to bottom: R, DC, DF, RC, RF—type 1 customer assignment strategy)

Fig. 11 Optimal solutions for the CRTP base instance Q-1 (m = 3, q = 5) with type 1 customer rates
0.00, 0.25, 0.50, 0.75, and 1.00 using random type 1 customer assignments (R)

reliability to customers closer to the distributor first (DF), we see this function to be
less curved on average than when randomly turning customers into type 2 (R). In turn,
providing reliability in remote areas (DC) requires to close rings towards a distant d
which is more elaborate when the ring tree capacity limits are tight. We expect this
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Fig. 12 The relative cost of reliability for different reliability expansion scenarios based on the best upper
bounds for the network costs. Upper bounds on the left and lower bounds on the right

Fig. 13 The average relative
optimality gaps for different
reliability scenarios

effect to become even stronger when reducing the ring tree customer limit since the
number of required ring trees increases.

In Fig. 13 we show the average relative optimality gaps for different reliability
scenarios. It can be seen that our algorithm achieves tighter results for instances of
type DF compared to DC. However, type R instances are even harder to solve.
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Conclusions

We presented a novel model for designing cost-optimized capacitated networks. This
capacitated ring tree problem (CRTP) combines ring and tree structures that are com-
mon models in telecommunication applications and in logistics. Our approach gen-
eralizes existing optimization models and allows a broader use due to its capability
of embracing problems that were previously modeled independently. We related the
resulting ring tree topology to tree-based, ring-based, ring-star-based and survivable
network design concepts previously studied in the literature. The presented mathe-
matical formulation for the problem was used to elaborate an efficient branch and
cut algorithm based on mathematical programming. Therefore, we developed cutting
techniques tailored for the capacitated ring tree structure. We showed how to separate
valid inequalities exactly and explained our heuristic addition of violated inequalities
with hard separation problems. A local search-based heuristic was used to produce
starting solutions that support the solver’s search and to polish integer-feasible solu-
tions during the branch and bound method. For a set of small- and medium-sized
capacity-tight literature derived instances we gave computational results for our algo-
rithms. Using different reliability scenarios we observed that a balanced types 1 and 2
reliability ratio yields the most difficult instances for our methods. After studying dif-
ferent reliability distributions we obtained an indication that instances with uniformly
distributed customers with an additional reliability tend to be of increased difficulty.
Nevertheless, we were able solve instances with up to 50 nodes to optimality. When
considering existing scenarios that imply a pure tree or ring structure we could even
solve instances up to 100 nodes.

We suggest further research on the CRTP in terms of heuristics and model exten-
sions. It seems to be a fruitful model for the application of efficient metaheuristics
or matheuristics that take advantage of the specific solution network structure. Corre-
sponding efficient solution techniques could either be integrated in our exact methods
or could be used to tackle bigger problem sizes. We are also aware that a column
generation-based algorithm could improve the presented results, especially in the case
of an increasing number of ring trees. A model extension that could be of practical
use concerns the integration of lower bounds on the number of customers served by
a ring tree. Another balancing measure could be the introduction of separate lower
and upper bounds q1, q2, qr for type 1 customers, type 2 customers or ring customers,
respectively.
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Abstract. A ring tree is a tree graph with an optional additional edge
that closes a unique cycle. Such a cycle is called a ring and the nodes on
it are called ring nodes. The capacitated ring tree problem (CRTP) asks
for a network of minimal overall edge cost that connects given customers
to a depot by ring trees. Ring trees are required to intersect in the depot
which has to be either a ring node of degree two in a ring tree or a node
of degree one if the ring tree does not contain a ring. Customers are
predefined as of type 1 or type 2. The type 2 customers have to be ring
nodes, whereas type 1 customers can be either ring nodes or nodes in
tree sub-structures. Additionally, optional Steiner nodes are given which
can be used as intermediate network nodes if advantageous. Capacity
constraints bound both the number of the ring trees as well as the num-
ber of customers allowed in each ring tree. In this paper we present
first advanced neighborhood structures for the CRTP. Some of them
generalize existing concepts for the TSP and the Steiner tree problem,
others are CRTP-specific. We also describe models to explore these multi-
node and multi-edge exchange neighborhoods in one or more ring trees
efficiently. Moreover, we embed these techniques in a heuristic multi-start
framework and show that it produces high quality results for small and
medium size literature instances.

Keywords: Capacitated ring tree problem · Network design · Local search

1 Introduction

The design of cost efficient networks under capacity constraints is of undoubted
importance for applications in various industries. Especially in the field of trans-
portation and telecommunication significant cost savings were achieved through
the application of appropriate optimization models in the last decades. Topolog-
ically, many networks are based on fundamental structures such as trees or rings.
The extensively studied minimum weight spanning trees (MSTs) assure connec-
tivity such that a unique path between any two nodes in the network exists,
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whereas the capacitated minimum spanning tree problem (CMSTP) [2] asks for
such a tree of minimal total edge costs while limiting the number of nodes of
sub-trees connected to a depot by a single edge. In practice, the integration of
optional intermediate Steiner nodes is highly relevant and is facilitated by the
well-known Steiner tree problem (STP) [7]. On the contrary, a prominent ring
based optimization problem is the travelling salesman problem (TSP), asking for
a travel cost minimizing sequence in which each customer of a given set should
be visited before returning to a depot. Such a tour is required for each vehicle
starting from the depot in the vehicle routing problem (VRP) [3]. The need for
multiple vehicles arises from the commonly limited transport capacity to deliver
or pick up goods from or to the customers. Beyond these concepts, the recent
capacitated ring tree problem (CRTP) [5] integrates the ring structure and the
tree structure into an optimization model under consideration of capacities and
the useful Steiner nodes. The implemented ring tree structure is defined to be
either a tree, a ring or a ring with additional disjoint trees attached to some
of its nodes. Moreover, certain customers are prespecified to be of type 2 and
thus required to be contained in sub-rings in ring trees. The remaining type 1
customers can be such ring nodes or nodes in sub-trees. Additional capacity
constraints bound the total number of customers on each ring tree as well as
the number of ring trees originating from the depot. Figure 1 shows a feasible
network that satisfies these requirements and minimizes the overall edge costs,
i.e. the objective function. The CRTP is NP-hard as are its special cases, the
STP and the TSP, but computationally even more challenging [5]. For most real
world applications heuristic solution approaches are indispensable due to the
size limits for efficient exact algorithms. Therefore, in this paper we generalize
known neighborhood structures for the purely tree [1] and purely ring based [6]
special cases by treating the ring tree case. Furthermore, the CRTP gives rise
to interesting structured neighborhoods on its own that we introduce and show
how to efficiently explore. We embed these techniques in a multi-start heuristic
framework and show its efficiency on a set of literature instances.

After a formal definition of the CRTP in Sect. 2 we introduce the novel neigh-
borhoods and corresponding exploration techniques in Sect. 3. The embedding
of these ideas in a multi-start heuristic is described in Sect. 4 before we close
with our conclusion in Sect. 5.

2 The Capacitated Ring Tree Problem

In the following we give a formal definition of the CRTP using basic graph
theoretic notation. We consider a network N synonymous with an undirected
simple graph with node set V [N ] and edge set E[N ]. The graph obtained after
the removal of a node v ∈ V [N ] is denoted by N\v.

Definition. We are given a set of nodes V = U2 ∪̇ U1 ∪̇ W ∪̇ {d} where the
nodes in Ut correspond to type t customers, nodes in W are Steiner nodes and
d represents a central depot. The cost of connecting two nodes u �= v in V by an
edge e = {u, v} is ce > 0. A solution for the CRTP is a network N obtained from
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Fig. 1. A CRTP solution with 24 customers in 3 ring trees.

the union of a set of rings R = {R1, ..., Rk} and a set of trees T = {T1, ..., Tl}
on V such that

• each type 2 customer is contained in exactly one ring,
• each type 1 customer is contained in exactly one ring or tree,
• each Steiner node is contained in at most one ring or tree,
• each ring contains the depot d,
• each tree contains either the depot d or a node of a ring,

and N is capacity feasible, i.e.

• the number of connected components in N\d is at most m and
• the number of type 1 and type 2 customers in each connected component of

N\d does not exceed q.

The CRTP asks for such a network of minimal total edge cost c(N ) =
∑

e∈E[N ] ce.

From each connected component of N\d we obtain a ring tree Q by adding the
depot d and the edges connecting d and Q in N . Such a ring tree forms either
a tree or a ring with disjoint trees attached to it. Figure 1 illustrates a solution
network based on 2 rings and 4 trees according to our definition of the CRTP.

3 Neighborhood Structures

In the following we elaborate several structured neighborhoods for the CRTP
and explain how to efficiently explore them. They partially generalize existing
concepts for the TSP, VRP, STP and CMSTP but we also introduce CRTP-
specific neighborhoods that do not have non-trivial counterparts in these spe-
cializations. For the sake of simplified descriptions we introduce some notation
which refers to a CRTP solution network N unless explicitly stated differently.
Let U = U1 ∪ U2 be the set of all customers. For a ring tree Q ⊆ N we denote
the set of neighbors of a node v ∈ V [Q] in Q as NQ[v]. Let PQ[u, v] be the set of

115



88 A. Hill

paths that connect two distinct nodes u, v ∈ V [Q]. We recall that if Q contains
a ring then |PQ[u, v]| ≤ 2, otherwise Q is a tree and thus |PQ[u, v]| = 1. Then
we define TQ[u, v] as the set of path trees of Q obtained from extending each
path P ∈ PQ[u, v] by the non-ring structures in Q attached to the nodes of P.
Finally, for a node set X ⊂ V we define ΔQ[X] as the set of edges with one end
in X and the other end in V [Q]\X.

1-edge-opt. In contrast to purely ring-based models, a 1-edge-opt neighborhood
can be defined for the CRTP by considering the feasible removal of an edge
e ∈ E[Q] followed by the insertion of an edge e′ �∈ E[Q] for each ring tree Q ⊆ N .
We first observe that given a ring without type 2 customers, the edge with the
highest cost can be deleted and N is still feasible. Therefore, we assume that
each ring in N contains a type 2 customer. In the case that e is a ring edge e′ is
required to repair the destroyed ring if possible. The ring-tree-opt neighborhood
below will cover this case. Thus let e = {u, v} be a non-ring edge of Q and let
u be the node on each path from v to d. Then the deletion of e creates two
connected components of Q, one containing d and another one that contains v,
more precisely a tree Tv. To establish a valid solution we consider the insertion
of each re-connecting edge e′ ∈ ΔQ[V [Tv]] subject to adherence to the capacity
constraints. In particular, we may create a new (ring)tree by allowing e′ to be
incident to d.

2-edge-opt. The prominent TSP-tailored edge swaps can be applied to each ring
in N . In a similar manner ties can be broken by facilitating capacity-feasible
re-combinations of two distinct ring trees Q1 and Q2 as known for the VRP.
More specifically, for two ring edges e = {u, v} ∈ E[Q1] and e′ = {w, x} ∈
E[Q2] we consider their replacement by {u,w} and {v, x} or {u, x} and {v, w}.
Figure 2 illustrates such an improvement move. If both edges are incident to d
the neighborhood is empty. By allowing Q1 = Q2 and avoiding sub-tours we
obtain the mentioned 2-opt for the TSP.

Moreover, we consider the deletion of two non-ring edges followed by the
reconnection of the cut-off sub-trees T1 ⊆ Q1 and T2 ⊆ Q2 to other ring trees as
depicted in Fig. 3. We hereby partially generalize the 1-edge-opt neighborhood.
Since we regard the capacity constraints such a move can have an ejecting effect
with respect to attached sub-trees when for instance reconnecting T1 to Q2.
Finally, taking into account the removal of an edge e in a ring R ⊆ Q1 and
a non-ring edge e′ ∈ E[Q2] yields the remainder of this neighborhood. Let T2

Fig. 2. A 2-edge-opt improvement based on the ring edges {u, v} and {w, x}.
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Fig. 3. A 2-edge-opt improvement based on the non-ring edges e and e′.

Fig. 4. A 2-edge-opt improvement based on a ring edge e and a non-ring edge e′.

be the sub-tree of Q2 induced by e′ as in the 1-edge-opt neighborhood. The
corresponding modification of Q1 in N corresponds to the replacement of a e by
a path tree obtained from T2, whereas Q2 is reduced by T2. Figure 4 shows such
a transformation.

1-node-opt. We consider moving a single customer node u from its current ring
tree Q1 to a ring tree Q2. Obviously, the capacity of Q2 needs to be sufficient
when performing such an operation. We ensure the preservation of the ring tree
structure after the extraction of u from Q1 by the incorporation of a MST on
the neighbors NQ1

[u]. Note that the degree of the depot has to be limited by m
minus the number of current ring trees beside Q1 to satisfy the ring tree capacity
m. Although the degree constrained minimum spanning tree problem (DCMSTP)
is known to be NP-hard in general this special case can be solved polynomially
using a Prim’s algorithm in a slightly modified version starting from d. If u is
of type 1 it may be inserted into Q2 either as a leaf or as an intermediate node
that splits an edge {v, w} into edges {v, u} and {u,w}. Type 2 customers may
only be inserted in this edge replacing manner into a ring instead.

2-node-opt. We consider swapping two customers that are not necessarily in
distinct ring trees. This neighborhood can be constructed by intersecting two
1-node-opt spaces.

Steiner-node-opt. This neighborhood is inspired by known STP improvement
moves and consists of all the feasible solutions obtained after deleting or insert-
ing a single Steiner node. Certainly, a Steiner leaf node can simply be removed,
whereas a node with degree 2 can be replaced by an edge connecting both neigh-
bors if this results in an overall cost reduction. For an arbitrary Steiner node
x ∈ V [Q], the re-connection can be accomplished by a MST on NQ[x] as for the
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Fig. 5. A minimum spanning tree based improvement in a ring-tree-opt.

1-node-opt neighborhood. Conversely, we also consider the insertion of a Steiner
node x /∈ V [N ] into N . We take into account the splitting of an existing edge
{u, v} into {u, x} and {x, v}. Moreover, two incident edges {u, v} and {u,w}
with u �= d can be replaced by the star configuration {x, u}, {x, v} and {x,w}.

Ring-tree-opt. This advanced neighborhood contains the solutions obtained
by the rearrangement of the tree structure induced by two specifically situated
mandatory ring nodes. Let T ∈ TQ(u, v) be a path tree in a ring tree Q ∈ N
for {u, v} ⊆ U2 ∪ {d} such that V [T ]\{u, v} does not contain type 2 customers
or the distributor. Then we can build a DCMSTP on the nodes of T . As in
previous neighborhoods a single degree constraint applies when d ∈ {u, v} to
avoid the installation of more additional ring trees than allowed. An improving
solution in this neighborhood connects u and v by a path tree of less cost as
illustrated in Fig. 5. This neighborhood is also valid for nodes u and v such that
V [TQ(u, v)] ∩ U2 = ∅ and therefore, in particular applicable when Q is a tree.

Ring-tree-split-opt. This neighborhood contains solutions that can be obtained
by splitting a ring tree Q ⊆ N into two separate ring trees. This presumes enough
capacity in N to install an additional ring tree. Basically, we try to repair a single
ring edge removal by the feasible insertion of two new ring-closing edges. As in
the ring-tree-opt search let T be a path tree for two distinct nodes u and v in
V [Q]∩ (U2 ∪{d}) with V [T ]\{u, v}∩{d}∪U2 = ∅. Then we consider the removal
of each ring edge e ∈ E[T ] followed by the insertion of two edges {d,w} and {d, x}
for {w, x} ⊆ V [T ] as shown in Fig. 6. If u = d then Q splits into a tree and a
ring tree, whereas the splitting of a pure tree Q is contained in the 1-edge-opt
neighborhood.

Ejection-chain-opt. Extracting a customer node u1 from a ring tree Q1 and
inserting it into a ring tree Q2 might be cost saving but not feasible because
Q2 is capacity tight, i.e. Q2 contains q customers. However, the ejection of a
customer u2 in Q2 and its insertion into a ring tree Q3 can facilitate the move.

Fig. 6. An improving solution in the ring-tree-split neighborhood.
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In this ejection-chain-opt neighborhood we consider all these double node moves
for distinct ring trees Q1, Q2 and Q3. Note that if Q3 = Q1 then it corresponds
to the 2-nodes-opt neighborhood.

4 A Multi-start Local Search Heuristic

Our heuristic is based on the iterated exploration of the introduced CRTP neigh-
borhoods. We apply the corresponding local searches (LQSs) in a multi-start
fashion on a set of start solutions obtained from different initial constructions.
For a CRTP instance P , let Σ(P ) be the procedure that returns a solution pool
based on the strategies that we briefly summarize in the following. On the one
hand we apply cluster first, route second techniques as in [4] to solve the VRP
obtained after temporarily declaring all customers type 2. Different cluster dis-
tance metrics (e.g. min/max/avg cluster node distance) give rise to multiple
solutions that are added to the pool. Then we conversely focus on the design of
(partial) rings or (partial) trees based on the computation of MSTs and the con-
struction of nearest first TSP routes. We combine these partial networks on the
different sets of customers and turn them into a feasible solution by a correction
mechanism that repeatedly applies moves similar to the ones described in our
local search neighborhoods. Our overall algorithm applies the local searches on
each of the solutions in Σ(P ) in a best-fit fashion until no enhancement can be
found. The order in which the different neighborhoods are explored corresponds
to the increasing potential structural impact. The resulting multi-start CRTP
heuristic can be described as follows.

Input: CRTP P
;
foreach N ′ ∈ Σ(P ) do

z ← ∞;
while c(N ′) < z do

z ← c(N ′);
LQS(N ′, Ring-tree-opt);
LQS(N ′, 1-edge-opt);
LQS(N ′, 2-edge-opt);
LQS(N ′, 1-node-opt);
LQS(N ′, 2-node-opt);
LQS(N ′, Steiner-node-opt);
LQS(N ′, Ring-tree-split-opt);
LQS(N ′, Ring-tree-join-opt);
LQS(N ′, Ejection-chain-opt);

end
if c(N ′) < c(N) then N ← N ′;

end
return N;
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We implemented the algorithm in c++ and ran tests on an Intel i7-3667U 2.00
GHz processor unit for the 225 small to medium size instances1 used in [5]. The
type 1 customers in these TSPLIB based instances with |V | ∈ {26, 51, 76, 101}
are randomly assigned according to a rate r1 ∈ {0, 0.25, 0.5, 0.75, 1}. Various
combinations of m and q with an average customer capacity slack (mq−|U |)/mq
of 0.14 make them capacity tight. The computational results are given in
Appendix 1. The run time of the heuristic procedure never exceeded 25 s. Table 1
contains the computational results with the first 4 columns indicating the CRTP
instance, the type 1 customer rate r1, the number of nodes |V | and customers
|U |. The network cost c(N ) is then given along with the relative gaps Δlb =
[clb(N ) − c(N )]/c(N ) and Δub = [c(N ) − cub(N )]/c(N ) to the lower bound
clb(N ) and the upper bound cub(N ) obtained by the exact method in [5]. We do
not intend to compete with the branch & cut algorithm but rather give an idea
of the solution quality obtained by the heuristic. Since we initialized the exact
method with the heuristic solution and use the local search techniques along the
branch & bound Δub ≥ 0 holds.

5 Conclusions

We introduced advanced multi-edge and multi-node exchange neighborhood
structures for the CRTP. They partially generalize existing concepts for promi-
nent tree and ring based combinatorial optimization problems. We presented
suitable models to explore these neighborhoods efficiently and a heuristic frame-
work to turn these techniques into an efficient heuristic. Using this diversifying
multi-start algorithm we are able to obtain optimal results in many cases for a
set of small and medium sized literature instances. The average gap to known
lower bounds is 3.8 %. We suggest this first heuristic approach for the CRTP as
a reference for related models and further algorithms.

1 The instances can be obtained from the author.
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Appendix 1

Table 1. Heuristic results for CRTP instances from [5] with type 1 customer rates
r1 ∈ {0, 0.25, 0.5, 0.75, 1} compared to bounds obtained by a branch & cut algorithm.

P r1 |V | |U | Δlb c(N ) Δub

1 1 26 12 0 157 0
0.75 -2.3 215 2.3
0.5 0 227 0
0.25 0 236 0
0 0 242 0

2 1 -0.6 164 0.6
0.75 0 207 0
0.5 0 240 0
0.25 0 249 0
0 0 251 0

3 1 -1.7 173 1.7
0.75 -0.8 244 0.8
0.5 0 251 0
0.25 0 279 0
0 0 279 0

4 1 18 0 207 0
0.75 0 256 0
0.5 0 274 0
0.25 0 292 0
0 -1.3 305 1.3

5 1 -1.4 220 1.4
0.75 0 285 0
0.5 -1.6 318 1.6
0.25 0 334 0
0 0 339 0

6 1 -1.7 231 1.7
0.75 0 278 0
0.5 0 336 0
0.25 0 361 0
0 0 375 0

7 1 25 -1.2 248 1.2
0.75 0 294 0
0.5 0 313 0
0.25 0 327 0
0 0 328 0

8 1 -5.6 267 5.6
0.75 -1.3 315 1.3
0.5 0 345 0
0.25 0 357 0
0 0 362 0

9 1 -3.1 262 3.1
0.75 -0.9 322 0.9
0.5 -0.8 372 0.8
0.25 -0.3 379 0.3
0 -0.3 397 0.3

10 1 51 12 0 156 0
0.75 -2 196 2
0.5 0 215 0
0.25 0 222 0
0 0 242 0

11 1 -2.5 163 2.5
0.75 0 209 0
0.5 0 230 0
0.25 0 238 0
0 0 251 0

12 1 -1.2 172 1.2
0.75 0 203 0
0.5 0 251 0
0.25 0 278 0
0 0 279 0

13 1 25 -1.2 248 1.2
0.75 -4 305 1
0.5 0 312 0
0.25 0 322 0
0 0 328 0

14 1 -5.6 267 5.6
0.75 -5.3 321 5.3
0.5 -3.1 352 0
0.25 0 357 0
0 0 362 0

15 1 -3.1 262 3.1
0.75 -2.2 339 1.2
0.5 -3.5 372 0.5
0.25 -3.9 387 0
0 -1.8 397 1.8

P r1 |V | |U | Δlb c(N ) Δub

16 1 37 0 304 0
0.75 -6.6 375 0
0.5 -3.7 378 0.5
0.25 -0.3 380 0.3
0 -0.3 381 0.3

17 1 -0.3 309 0.3
0.75 -1.6 369 1.6
0.5 -3.8 399 0
0.25 -1.9 404 0
0 -1.9 418 1.9

18 1 0 314 0
0.75 -8.2 408 0
0.5 -7 431 0
0.25 -4.5 436 0
0 -1.3 452 1.3

19 1 50 -0.3 377 0.3
0.75 -4.1 436 2.1
0.5 -2.7 447 0.4
0.25 -0.7 454 0.7
0 -2.3 473 2.3

20 1 -0.5 386 0.5
0.75 -7.7 458 0
0.5 -9.1 493 0
0.25 -6.2 502 0
0 -3.9 513 3.9

21 1 -0.5 392 0.5
0.75 -10.7 501 2
0.5 -9.1 526 0
0.25 -5.3 525 0
0 -3.5 541 2.8

22 1 76 18 0 214 0
0.75 0 272 0
0.5 -9.6 318 0
0.25 -4.8 318 0
0 0 332 0

23 1 -0.9 235 0.9
0.75 -3.1 312 1
0.5 0 336 0
0.25 -2.8 369 0
0 -1 390 1

24 1 0 259 0
0.75 0 325 0
0.5 -2.9 379 0
0.25 0 397 0
0 -0.7 451 0.7

25 1 37 0 320 0
0.75 -6.8 390 0
0.5 -7.4 402 0
0.25 -3.3 403 0
0 -1 413 1

26 1 -3 336 3
0.75 -5 402 0
0.5 -9.8 455 0
0.25 -9.2 460 0
0 -2.6 458 0

27 1 -0.9 343 0.9
0.75 -8.7 446 0
0.5 -9.9 473 0
0.25 -10.9 497 0
0 -5.6 506 0

28 1 56 -3 395 3
0.75 -7.6 462 0
0.5 -8.1 477 0
0.25 -2.4 472 1.5
0 -3.8 495 3.8

29 1 -3.2 402 3.2
0.75 -9.7 488 0
0.5 -10.4 520 0
0.25 -7.4 532 0
0 -5.4 543 1.5

30 1 -3.6 414 3.6
0.75 -11.9 533 0
0.5 -11 554 0
0.25 -8.2 558 0
0 -2.6 561 0.7

P r1 |V | |U | Δlb c(N ) Δub

31 1 75 -1 478 1
0.75 -6.4 551 0
0.5 -4.9 564 0
0.25 -3.4 573 1.6
0 -2.1 584 2.1

32 1 -2.4 494 2.4
0.75 -7.4 573 0
0.5 -9.8 612 0
0.25 -5.2 618 0
0 -3.7 626 0

33 1 -1.4 495 1.4
0.75 -11.3 623 0
0.5 -6.1 623 0
0.25 -7.4 656 0
0 -4.9 674 0

34 1 101 25 -1.8 282 1.8
0.75 -4 327 4
0.5 -4.6 353 0
0.25 -2 363 0
0 0 366 0

35 1 -1.4 293 1.4
0.75 -6.2 367 0
0.5 -9.3 405 0
0.25 -7.5 416 0
0 -3.8 425 0

36 1 0 299 0
0.75 -8.1 393 0
0.5 -6.2 403 0
0.25 -5.1 429 0
0 -2.7 452 0

37 1 50 0 411 0
0.75 -7.1 492 0
0.5 -5.3 499 0
0.25 -3.9 503 0
0 -5.7 523 2.9

38 1 -1.2 420 1.2
0.75 -4.1 480 0
0.5 -6.5 517 0
0.25 -5.7 531 0
0 -2.3 537 0

39 1 -3.8 443 3.8
0.75 -4.8 505 0
0.5 -6.1 527 0
0.25 -7.3 564 0
0 -3.6 574 0

40 1 75 -1 516 1
0.75 -6.6 594 0
0.5 -3.8 592 0
0.25 -4 612 0
0 -2.6 622 2.6

41 1 -0.6 519 0.6
0.75 -6.2 595 0
0.5 -4.2 607 0
0.25 -2.6 619 0
0 -2.8 642 0.5

42 1 -1.3 529 1.3
0.75 -10.6 653 0
0.5 -7.3 645 0
0.25 -7.1 670 0
0 -5.8 689 0

43 1 100 0 555 0
0.75 -6.2 652 0
0.5 -5.5 660 0.5
0.25 -1.9 656 1.2
0 -2.9 683 2.9

44 1 -0.7 568 0.7
0.75 -5.9 663 0
0.5 -6.7 690 0
0.25 -3.8 691 1.2
0 -2.3 700 0

45 1 -1 576 1
0.75 -9.5 695 0
0.5 -6 717 0
0.25 -5.6 730 0
0 -4.6 743 0
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In this paper we present a heuristic framework that is based on mathematical programming to solve network

design problems. Our techniques combine local branching with locally exact refinements. In an iterative

strategy an existing solution is refined by solving restricted mixed integer programs (MIPs) to optimality.

These are obtained from the master problem MIP by limiting the number of variable flips for structured

subsets of the binary edge variables. We introduce generalized local branching cuts which enforce the latter

using two parameters at the same time: the number of considered variables and the number of allowed

variable flips.

Using this concept we develop an efficient algorithm for the capacitated ring tree problem (CRTP), a recent

network design model for partially reliable capacitated networks that combines cycle and tree structures.

Our implementation operates on top of an efficient branch and cut algorithm for the CRTP. The sets of

refinement variables are deduced from single-ball network node clusters. We provide computational results

and an extensive analysis of the algorithm for a set of literature instances. We show that the approach

is capable of improving existing best results for the CRTP and outperforms the pure refinement or local

branching approaches.

Key words : capacitated ring tree problem; local branching; mathematical programming; local search;

network design; matheuristic
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1. Motivation and contribution

Network design applications in telecommunications and transportation environments typi-

cally involve a large number of decision variables in suitable optimization models. Although

exact algorithms are usually not applicable when it comes to medium and large size

instances they have proven useful in heuristic frameworks, also referred to as matheuris-

tics Maniezzo et al. (2010). This class of heuristics combines mathematical programming

concepts and classical (meta-)heuristic paradigms.

Integer programming based refinement algorithms have been successfully applied to com-

plex network optimization problems (e.g. Franceschi et al. (2006), Archetti et al. (2012),

Cafieri et al. (2014), Hill and Voß (2014), Naji-Azimi et al. (2012)) as well as other classes

of challenging combinatorial optimization problems (e.g. Maniezzo et al. (2010), Lalla-Ruiz

and Voß (2014)). These methods typically incorporate an exact mathematical programming

based approach that is applied to a local improvement model for an existing solution. They

get more effective with increasing complexity of the underlying problem structure Archetti

et al. (2012), Hill and Voß (2014). Due to the limited computational efficiency of the exact

method that is used to carry out the refinements, the mentioned techniques are in fact only

effective locally on small-sized substructures. Commonly, random, multi-start or contrac-

tion based perturbation mechanisms are added to (partially) overcome local optimality.

In this work we suggest an approach that aims at increasing the number of decisions con-

sidered for local refinement. This is achieved by bounding the scale of modification in

terms of binary variable flips in return. The basic idea of considering neighboring solutions

within a certain Hamming distance is known as local branching and has been introduced

as a polishing procedure in general mixed integer programs (MIPs) in Fischetti and Lodi

(2003). Several highly efficient heuristics for various combinatorial optimization problems

successfully incorporate this concept (e.g. Rodŕıguez-Mart́ın and Salazar (2010), Legato

and Trunfio (2014), Smet et al. (2014)). However, we are not aware of other literature

work that considers the combination of subsets of binary variables of different sizes with

suitable Hamming bounds at the same time. Moreover, our approach provides a complete

algorithmic framework, suitable for a variety of combinatorial optimization problems. We

iteratively build refinement models by adding new generalized local branching cuts to the

master program and solve these extended MIPs to optimality. Herewith, we are able to

arbitrarily increase the local area that is considered for refinement by adequately limiting
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the allowed variable flips.

We show that the sketched ideas can be turned into an effective algorithm for capaci-

tated network design. We devise an efficient heuristic for the capacitated ring tree problem

(CRTP) which was introduced in Hill and Voß (2015) recently. The CRTP combines ring

based models such as the classic traveling salesman problem (TSP) with tree based models

such as the Steiner tree problem (STP) under capacity constraints. Heuristics and exact

algorithms for the CRTP are discussed in Hill (2015), Hill and Voß (2015) and Hoshino

and Hill (2014). Even though the CRTP can be broadly applied as it generalizes several

prominent network design problems, our techniques can be transferred to related models

with reasonable effort. More generally, we suggest that our main ideas can be used to

solve a variety of discrete, or even (partially) continuous, optimization problems. The main

contributions of this work are

• the development of a generic framework for heuristic network design based on a gen-

eralized local branching, combining local branching and integer programming based

refinement techniques, and

• the design and analysis of an efficient heuristic algorithm for the CRTP incorporating

these concepts which is able to find new best solutions for literature instances.

Section 2 contains a formal description of the CRTP along with the MIP formulation used

in our algorithm. After the presentation of the generic local branching based refinement

technique in Section 3 we develop the heuristic algorithm for the CRTP in Section 4. In

Section 5 we provide the improved results for literature instances and computationally

compare different configurations of our method. We close the paper with conclusions in

Section 6.

2. The capacitated ring tree problem

The capacitated ring tree problem (CRTP) was introduced in Hill and Voß (2015) and

generalizes several classical ring and tree based network design models. The base topology

is the ring tree defined as a graph consisting of a cycle C and node disjoint trees T1, ...,Tk,
each of them intersecting with C in exactly one node. By allowing C to be a cycle of order

one the ring tree graph class contains both, pure trees and cycle graphs. To simplify our

description we say that a ring tree star of order h centered in d is a graph obtained by

the union of ring trees Q1, ...,Qh that intersect in the node d such that d is a leaf in Qi if
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Qi is a tree and a cycle node of degree 2 otherwise, ∀ i∈ {1, ..., h}. Figure 1 depicts three

characteristic ring tree stars.

Figure 1 Ring tree stars of order 4 (left), 3 (center) and 5 (right).

For given capacity bounds m,q ∈N, a ring tree star N centered in d is a solution for the

CRTP if it contains given customer nodes U =U1 ∪̇U2 and a subset of given Steiner nodes

W such that

(i) each customer node in U2 is on a cycle in N ,

(ii) the order of N is at most m, and

(iii) each connected component in N \ d contains at most q customers.

Let ce be the cost for the installation of an edge e in N . Then the CRTP asks for a solution

that minimizes the sum of the edge costs of the ring tree star, i.e.
∑

e∈E[N ] ce. The CRTP

is NP-hard as it generalizes the TSP, among others. We say that nodes in U2, also called

type 2 nodes, correspond to customers of type 2, whereas nodes in U1 are of type 1 and

correspond to type 1 customers. Type 1 nodes have to be connected to d by at least one

path while type 2 nodes have to be connected to d by exactly two node disjoint paths. The

cycles in N are also called rings. By requiring the type 2 nodes to be part of such rings we

provide additional reliability to the corresponding customers: there are exactly two (node)

disjoint paths from such a node to d. This double-connectivity is optional for the remaining

type 1 nodes, and the Steiner nodes in W are not even required to be nodes in N unless

beneficial regarding the overall network cost. A solution for the CRTP is illustrated by

Figure 2. We denote the set of all available nodes U ∪̇W ∪̇{d} as V and the set of potential

network edges {e⊆ V : |e|= 2} as E. Moreover, we refer to the set of nodes of a graph G
by V [G] and to its edges by E[G].
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Figure 2 An optimal solution for instance 13 (q = 10, m = 3, |U1| = 13, |U2| = 12) implementing a ring tree star

of order 3.

The following non-compact MIP formulation (F) was developed in Hill and Voß (2015).

It is based on a directed Steiner tree problem formulation in which rings are enforced by

circulations. We observe that removing one center-incident edge in each ring turns a ring

tree star into a tree. This tree can be transformed into a directed tree by rooting it in the

center d and replacing the edges by arcs such that each leaf node can be reached from d via

a directed path. A directed cycle can be formed in the directed network by the insertion

of an arc towards d. To ensure that each type 2 node is on such a directed cycle we require

a circulation to pass through them and d for each ring. Such a directed network induces a

solution for the CRTP obtained by replacing arcs by edges. We denote the set of potential

arcs as A and a binary arc variable xa is used to indicate whether arc a will be installed.

The circulation on an arc is modeled by a continuous arc circulation flow variable fa. Arcs

leaving [entering] a node set S are denoted by δ+(S) [δ−(S)].

(F) min
∑

e∈E[G]

ceye (1)

s. t.
∑

a∈δ−(S)

xa ≥
|U(S)|
q

∀ S ⊂ V \ d, (2)

∑

a∈δ−({i})
xa = 1 ∀ i∈U, (3)
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∑

a∈δ−({i})
xa ≤ 1 ∀ i∈W, (4)

∑

a∈δ+({d})
xa ≤ m, (5)

xij +xji = yij ∀ {i, j} ∈E, (6)

∑

a∈δ−({i})
fa =

∑

a∈δ+(i)

fa ∀ i∈ V, (7)

∑

a∈δ−({i})
fa = 1 ∀ i∈U2, (8)

0 ≤ fa ≤ xa ∀ (i, j)∈A, (9)

xa ∈ {0,1} ∀ a∈A, (10)

ye ∈ {0,1} ∀ e∈E. (11)

Assignment constraints (3) ensure an in-degree equal to one for each customer, whereas

the capacity constraints (4) limit the inbound arcs to one for each Steiner node. The

capacitated connectivity constraints (2) bound the number of customers per ring tree to q.

These exponentially many constraints are separated dynamically during the branch and

bound procedure presented in Hill and Voß (2015). We enforce the underlying circulation

by (in)equalities (7), (8) and (9). Since we consider directed ring tree stars, inequality (5)

is sufficient to limit the number of ring trees to m. To obtain a simple undirected solution

network and identify its edges we implement the variable linking equalities (6). For a more

detailed discussion of this formulation we refer to Hill and Voß (2015).

3. Generalized local branching

In this section we describe our generic framework. The specific application of our techniques

to the CRTP follows in Section 4. Since we mainly use integer programming techniques

we give descriptions using terminology and concepts from mathematical programming, in

particular, a branch and bound framework. We assume that we have a MIP formulation
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at hand in which the network structure is encoded by binary edge variables. The pre-

sented techniques can be adapted to different mathematical programming approaches and,

moreover, to related network design problems. Therefore, we consider a generic MIP

(P) min cTy, Ay≤ b, y ∈ {0,1}|E|, (12)

with ye being the variable indicating whether the edge e ∈ E is installed in the solution

network. Without loss of generality, we omit eventual continuous variables in (P) for

the sake of a simplified description. The constraints in (12) describe the integer feasible

solutions as a subset of the fractional solutions contained in the polyhedron Γ described

by Ay′ ≤ b, y′ ∈ R|E|. A cut for (P) is an inequality that describes a halfspace in R|E|

whose intersection with Γ is non-trivial. Moreover, we assume that we are given a feasible

reference solution ỹ for (P), as illustrated in Figure 3 (left), which represents a solution

network Nỹ. We reformulate the concepts of local branching and integer programming

based refinements in Sections 3.1 and 3.2 before we bring them together in Section 3.3.

Finally, we describe the introduced cuts on the unit cube in Section 3.4.

3.1. Local branching

Local branching (LB) was introduced by Fischetti and Lodi in Fischetti and Lodi (2003)

as a polishing heuristic for a general purpose MIP solver. It is applied whenever an integer

feasible solution ỹ is found in the branch and bound algorithm that replaces the current

incumbent. To carry out the local search a restricted MIP is solved that is obtained by

adding a local branching cut to the master problem. For k ∈N0 such an inequality

∑

e∈E:ỹe=1

(1− ye) +
∑

e∈E:ỹe=0

ye ≤ k (13)

induces a k-opt neighborhood N(ỹ, k) of ỹ. It contains each feasible solution y for (P) within

Hamming distance ∆(ỹ, y) = |{e ∈ E : ỹe 6= ye}| ≤ k from ỹ. Figure 3 (center) illustrates

N(ỹ, k) in a branching scheme for k = 2. This technique found its way into commercial

solvers such as CPLEX. Inverse local branching cuts can be obtained by reversing the sense

of (13) but turned out to be less effective in practice.

A related concept in the heuristic literature is limited discrepancy search (LDS) Harvey

and Ginsberg (1995), in which the decision tree is also traversed respecting a bound on the

deviation from a reference solution. Compared to LB, LDS does not necessarily take place

in an exact mathematical programming environment and is rather constraint satisfaction

oriented in its original version.
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3.2. Refinement techniques

The exploration of neighborhoods of ỹ by exact methods is likewise the key ingredient for

MIP refinement techniques. In contrast to the LB idea in Section 3.1 it focuses on the re-

optimization of a subset of decision variables without bounding ∆(ỹ, y) for a neighboring

solution y. In terms of mathematical programming this idea can be translated to variable

fixing of the remaining variables. However, variable fixing techniques typically use infor-

mation from solutions of the linear relaxed problem to deduce integer feasible solutions

(e.g. Danna et al. (2005), Berthold (2014)). Related approaches that round fractional solu-

tions to integers are used to find an integer feasible solution at all (e.g. Fischetti et al.

(2005)). Additionally, structural knowledge about the underlying optimization problem is

usually exploited in problem specific branch and bound algorithms. For the network Nỹ we

can fix the current state of edges F ⊆E by adding the following variable fixing equalities

to (P).

ye =





0 if e /∈E[Nỹ]
1 if e∈E[Nỹ]

∀ e∈ F (14)

This defines the neighborhood N(ỹ, F ) containing all the feasible solutions in (P) such

that a variable ye that corresponds to an edge e ∈ F is forced to 1 if e is installed in N
and to 0 otherwise. The remaining edge variables (for edges in E \F ) are free to take any

constraint-feasible value in {0,1}. Figure 3 (right) depicts solutions in N(ỹ, F ).

3.3. Combining local branching and refinements

In this section we generalize the concepts of local branching and MIP refinements to

obtain the generic concept of generalized local branching (GLB). To develop the latter we

first observe that the refinement techniques described above can be formulated as local

branching on a 2-partition of the edge set: the fixed edges and the flexible ones. Again, let

F ⊆E be the set of edges that should be fixed to their current values in ỹ and let E \F
contain the remaining edges whose variables are considered for refinement. Then we can

achieve this by the addition of two partial local branching cuts. The first one defines the

trivial neighborhood N(ỹF ,0) restricted to the edges in F . The second one corresponds

to all the feasible solutions N(ỹE\F , |E|). More generally, let F = (F1, ..., Fp) be a cover of

the edge set E. Then we apply individual Hamming bounds K = (k1, ..., kp) ∈ Np
0 to the

corresponding variable subsets. Hereby we can incorporate pre-knowledge about how many
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Figure 3 A solution ỹ of (P) in a branch and bound tree (left), five solutions in N(ỹ,2) (center) and three

solutions in N(ỹ, F ) with F = {e0, e3, ..., en} (right).

changes we expect after sub-optimizing each set Fi. We define generalized local branching

cuts as a system of LB cuts

∑

e∈Fi:ỹe=1

(1− ye) +
∑

e∈Fi:ỹe=0

ye ≤ ki ∀ i∈ {1, ..., p}. (15)

For each edge set Fi we limit the number of variable flips among the corresponding edge

variables by the constant ki. In particular, if ki = 0 then the part of the current solution

Nỹ represented by Fi is fixed. ki ≥ |E| means that the partial solution is considered for

full refinement. We denote the corresponding neighborhood by N(ỹ,F ,K). We refer to (P)

extended by GLB cuts (15) as the generalized local branching problem (GLBP) correspond-

ing to F and K. Note that this concept is related to the concept of defining corridors within

the corridor method Sniedovich and Voß (2006). However, the latter attempts to increase

the set of decisions that is considered for refinement depending on the optimization method

at hand, whereas our approach is designed to work on arbitrary subnetworks, in presence

of the Hamming bounds, though. Following the approach in Fischetti and Lodi (2003) we

can define inverse generalized local branching cuts for F and K as inequalities (15) with

flipped signs which we will not further investigate in this work.

So far we did not address strategies to set up a suitable F and K. In Section 4 we focus on
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the CRTP and present a practical implementation of these concepts. The described GLB

cuts can then also be integrated in an exact algorithm as it was originally suggested for LB

in Fischetti and Lodi (2003). As common for exact algorithms, the branch and cut method

for the CRTP that we use in the next section already incorporates such a polishing, based

on CRTP-specific local search Hill (2015). However, we consider the pure improvement

heuristic in this work which is embeddable in arbitrary algorithmic frameworks.

3.4. GLB cuts on the unit cube

In the following we discuss the geometric interpretation of the GLB cuts introduced above

using the unit cube. Let Φ be the convex hull of the integer points in Γ. We recall that cuts

used to accelerate cutting plane algorithms (e.g. disjunctive, cover, Gomory mixed integer)

tighten Γ to describe Φ. In contrast to these techniques, the GLB cuts aim at downsizing Φ

regardless of the resulting linear programming relaxation. However, the mentioned cutting

plane techniques, together with problem specific ones, play an important role when solving

the reduced GLBPs within the overall algorithm in Section 4.

GLB cuts are in general not facet defining. To see this, consider an edge variable based

formulation for the symmetric TSP on n > 3 nodes and m= n(n− 1)/2 edges. Let F0 =

({y1, y3, yn+1, ..., ym},{y2, y4, ..., yn}) and K0 = (3,0) be GLB parameters and y1, ..., yn the

ordered variables that correspond to the edges in the current reference tour. Then the GLB

cuts obtained through F0 and K0 allow up to three variable flips for the variables that

correspond to the non-incident tour edges y1 and y3 as well as all unused edges. Certainly,

no feasible solution can be obtained by removing either one of these tour edges while adding

two unused edges. At the same time, the elimination of y1 and y3 cannot be repaired by a

single edge insertion. Only the augmentation of the first Hamming bound to 4 would lead

to facet-defining cuts and a non-trivial neighborhood.

In the following example in {0,1}3 let ỹ = [0,0,0] be a reference solution. For the sake of

simplicity we assume that Φ = {0,1}3. Although the purpose of this setting is to better

understand the GLB cuts, it could be a model for a price-collecting spanning tree problem

on three nodes. We limit ourselves to GLB cuts with p = 2 to avoid trivial cuts. For

F1 = {y1}, F2 = {y2, y3} and k1 = 0, k2 = 1 let F1 = (F1, F2) and K1 = (k1, k2). Then we

construct the following GLB cuts according to (15).

y1 ≤ 0 , y2 + y3 ≤ 1 (16)
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We denote the corresponding hyperplanes by H1 and H2. These cuts reduce Φ to the convex

hull of N(ỹ,F1,K1) projected onto H1. As shown in Figure 4 (left), the resulting triangle-

shaped linear search space is spanned by the integer-feasible solutions ỹ, [0,1,0] and [0,0,1].

To see the effect of the chosen Hamming bounds, let us first consider k′2 = 0 and the

corresponding hyperplane H ′2. Figure 4 (center) shows the resulting trivial neighborhood

containing ỹ only. Conversely, if k′′2 = 2 then the resulting hyperplane H ′′2 does not cut off

any points in Φ and all the four integer solutions in Φ ∩H1 are considered. The latter

corresponds to a MIP refinement search as described in Section 3.2.

Figure 4 Three GLB cuts with respect to reference solution ỹ = [0,0,0].

Using k2 we can explore all the points within Hamming distance one to ỹ by rearranging

F1. This can be achieved by the variable partitions F1, ({y3},{y1, y2}) and ({y2},{y1, y3}).

The resulting neighborhoods are illustrated in Figure 5. The exploration of these three

search spaces is inefficient from a computational point of view due to notable redundancy

regarding integer points. The three integer feasible solutions appear as potential improved

solutions six times in total. Alternatively, Φ can be reduced to the corresponding simplex by

the pure LB cut y1 +y2 +y3 ≤ 1 which can be expressed as a GLB cut with F = ({y1, y2, y3})

and K= (1).
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Figure 5 Three GLB search spaces with respect to reference solution ỹ.

Furthermore, the union of the subspaces depicted in Figure 5 does not cover Φ. In order

to take into account all integer solutions, let us now alter the Hamming bound for the

first variable set F1. Since |F1| = 1 we only consider the incremented value, i.e. k′1 = 1.

Figure 6 illustrates the effect on Φ using k2 (left), k′2 (center) and k′′2 (right). It can be seen

that the corresponding hyperplane H ′1 does not cut off any integer points. Therefore, this

parameterization corresponds to pure local branching as described in Section 3.1.

Figure 6 Three GLB cuts with respect to reference solution ŷ.

By definition, GLB cuts can be parameterized for a given variable partition F to induce

all subspaces of Φ that contain integer points within Hamming distance ki with respect to

Fi for each 1≤ i≤ p; in particular, the reference solution ỹ. For the example above, eight

configurations exist for the 3-partition of the variable set (k1, k2, k3 ∈ {0,1}), eighteen for

the three 2-partitions (k1 ∈ {0,1}, k2 ∈ {0,1,2} or k1 ∈ {0,1,2}, k2 ∈ {0,1}) and four for the
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1-partition (k1 ∈ {0,1,2,3}). This results in eleven (=1+3+3+3+1) distinct neighborhoods

for a fixed ỹ. In Section 4 we propose a strategy to explore such neighborhoods effectively

for the CRTP.

4. A generalized local branching algorithm for the CRTP

We first describe single-ball node clustering techniques that will serve to build effective

GLB cuts in Section 4.1. The CRTP tailored GLB techniques are presented in Section 4.2.

We explain characteristics of the underlying exact mathematical programming approach

to be taken into account, such as cut management, in Section 4.3. This section is closed

by the overall strategy in Section 4.4.

4.1. Single-ball clusters

In general local search algorithms the exploration of multiple suitable diverse neighbor-

hoods is known to be effective, as shown for the CRTP in Hill (2015). To study the strength

of our GLB cuts we will limit ourselves to simple but effective ball type neighborhoods of

a reference network N in this work. In several variants, these were already successfully

implemented in MIP refinement techniques in Hill and Voß (2014). Hence, we use the fol-

lowing node clustering strategy to generate structured 2-partitions of the edge variables

needed to deduce GLB cuts.

For a cluster center node v ∈ V [N ] we define a (single-)ball cluster BN (v, r) ⊆ V [N ] as

the set containing v and the r− 1 (0≤ r < |V [N ]|) closest nodes to v with respect to the

distance function c. Two such balls are given in Figure 7.

Figure 7 Two single-ball clusters BN (v,6) and BN (u,4).
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For the overall effectiveness of the GLBPs the selection of the ball cluster centers is crucial.

To locally optimize the current solution N evenly, we build ball node clusters for well

distributed cluster centers in order to cover the whole network. Starting with a cluster

center node of highest cumulative distance to the remaining nodes, we iteratively choose

the next cluster center by adding the most remote node with respect to the previously

selected ones. We build a cluster BN (v, r) for each hereby obtained node v and a suitable r.

The edges incident to the depot are of particular importance since they are closely related

to the number of installed ring trees. Moreover, the opening and closure of ring trees is

facilitated by these edges. It turned out to be beneficial to include d in each ball. For a

very large relative number of Steiner nodes it could be convenient to limit their inclusion

which was not necessary in our experiments.

4.2. Generalized local branching cuts for the CRTP

We now use the idea of GLB cuts from Section 3.3 to construct GLBPs based on the

single-ball clusters described in Section 4.1. For such a cluster B ⊆ V [N ] let IE[B] be the

set of edges in E with both end nodes in B. Then we add GLB cuts (15) for the induced

edge partition

FB = (IE[B],E \ IE[B])

and Hamming bounds

K= (k,0).

We parameterize the GLBPs by the cluster size and the Hamming bound k as follows.

Assume that we know an estimate r for the largest computing machine dependent cluster

size such that the pure refinement problem can be solved efficiently by our exact method.

In practice, r can be determined by a calibration mechanism in which, for a sufficiently

large k, a cluster is incrementally increased as long as the corresponding GLBP can be

solved within a reasonable time limit. Contrary, let r be the estimated largest cluster size

such that the GLBP for a small non-trivial k can be solved efficiently. r can be obtained

by a similar procedure as used for r.

We say a GLB scheme of order m is a sequence of pairs (r1, k1), ..., (rm, km) used to construct

GLBPs with |B|= ri and Hamming bound ki for i ∈ {1, ...,m}. The scheme that we use

in our algorithm arises from linear interpolation with respect to (r, k) and (r, k). More

precisely, we use a step size ρ to define the cluster sizes r, r+ρ, ..., r. The Hamming bounds
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are set to k, k− κ, ..., k where κ= ρ(k− k)/(r− r). Here we presume that increasing the

complexity of the GLBP by enlarging the set of cluster nodes B, and therewith the set

of flexible variables IE[B], can be compensated by the reduction of the number of allowed

variable flips k, which turned out to be suitable for our approach.

Certainly, r and r are sensitive to the hardness of the instance and the chosen balls. In

particular, the capacity bounds m and q, the customer type ratio |U1 ∩B|/|B| and the

Steiner node portion |W ∩B|/|B| in B can have an impact on the performance of the exact

method. In Figure 8 we illustrate two GLB cuts using a cylindrical representation of the

GLBP solution spaces in terms of k and r= |B|.

Figure 8 Cylindrical illustration of two different single-ball GLB cuts with r1 = |B1| = 34 and r2 = |B2| = 6, and

Hammig bounds k1 and k2, each of them (and both together) inducing a GLBP for the solution N .

4.3. The underlying branch and cut method

We use the branch and cut method presented in Hill and Voß (2015) as underlying math-

ematical programming based algorithm. When running the method including the GLB

cuts some formulation-specific characteristics need to be considered. As typical for branch

and cut algorithms the cut management plays an important role for the efficiency and

the stability of the method. Model cuts as well as valid cuts added at the root node are

indispensable to obtain strong lower bounds. However, their separation can be time con-

suming. To avoid the repeated generation of such master problem root cuts in each GLBP
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we pre-compute these in an initialization phase and add them to each model. Moreover,

it turned out to be advantageous to continuously extend this set of inequalities by the

cuts separated within the GLBPs. Unfortunately, the found solver-internal cuts cannot be

accessed and eventually have to be re-calculated dynamically.

We provide the current incumbent solution to the branch and cut method each time it

is called for solving a GLBP. The local search based polishing procedures to accelerate

the branch and cut algorithm may return a solution that violates the current GLB cuts.

Nonetheless, we update the current best solution in this case since they it is feasible for

the original problem.

Assuming a metric edge cost function c, and therefore c satisfying the triangle inequality,

the mathematical formulation for the CRTP does not need constraints enforcing a single

directed path from each cycle node to the depot. However, these restrictions are necessary

when performing GLB refinements. The partial fixing of a cycle structure in general forces

the creation of non-ring-tree structures as shown in Figure 9.

Figure 9 An infeasible structure due to missing ring enforcing circulation constraints.

4.4. Overall strategy

In this section we present the overall strategy used in the GLB heuristic. Basically, we

refine an initial ring tree star N according to the GLB parameters (r, k) provided by a

GLB scheme sorted by increasing cluster size r= |B|. Figure 10 illustrates the relation of

k and |B| in our algorithm.
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Figure 10 With an increasing ball size |B| we decrease k and the number of considered balls in our GLB scheme.

For a cluster size r and a Hamming bound k the procedure 1 locally optimizes

N using the ball clustering strategy presented in Section 4.1 until no improve-

ment can be found. Improvements are immediately incorporated in N . The function

findSingleBallCenters(N , P ) returns a set of customers used for the construction of ball

clusters. The GLB cut for the refinement edge variables induced by a node set B and a

Hamming bound k is returned by CutGLB(IE[B], k,N ). CutGLB(E \ IE[B],0,N ) returns

the GLB cut that fixes the remaining edge variables in the master MIP, denoted by F(P ).

We denote the MIP obtained by the addition of a cut R to F(P ) by F(P )⊕R. A GLBP

F is solved by the exact algorithm by calling the procedure solve(F) which either returns

an improving solution or the incumbent.
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Algorithm 1 REFINE()

Input: CRTP P , solution N , cluster node limit r, Hamming bound k;

repeat

cold← c(N );

Z← findSingleBallCenters(N , P );

for all v ∈Z do

B←BN (v, r);

F←F(P )⊕CutGLB(IE[B], k,N );

F←F⊕CutGLB(E \ IE[B],0,N );

N ← solve(F);

end for

until c(N ) = cold

return N ;

Algorithm 2 describes the main procedure including the construction of a start

solution by generateStartSolution(P) and the calculation of the GLB scheme by

generateSortedSchemeGLB(P).

Algorithm 2 The GLB heuristic for the CRTP.
Input: CRTP P ;

N ← generateStartSolution(P );

H← generateSortedSchemeGLB(P );

while |H|> 0 do

(r, k)← pop(H);

N ←REFINE(P ,N ,r,k);

end while
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5. Computational study

In this section we provide computational results for literature instances and give a com-

prehensive analysis of the algorithm’s performance.

5.1. Framework, implementation and parameterization

We study our algorithm on 225 CRTP instances1 that were suggested for the CRTP

in Hill and Voß (2015). These contain up to 101 nodes and are deduced from TSPlib-based

instances. For 102 instances no optimal solutions are known according to Hill and Voß

(2015). The algorithm is implemented in C++ using the CPLEX 12.6 MIP solver. Com-

putations are done on an Intel i7-4610M 3.00 GHz processor unit with 16 GB RAM.

To show the strength of our new strategy we consider the following four configurations.

(A) Heuristically enhanced GLB: the GLBPs are constructed for a pre-specified

scheme; heuristic start solution Hill (2015); local search polishing of each improved

solution found Hill (2015).

(B) Self-contained GLB: the GLBPs are constructed for a pre-specified scheme; ran-

dom start solution; no local search.

(C) Pure refinement: the GLBPs are constructed for one “small” ball size only; k is

set to the number of current ball edges; heuristic start solution Hill (2015).

(D) Pure local branching: the GLBPs are constructed for one “large” ball size only; k

is set to a small value; heuristic start solution Hill (2015).

To solve the GLBPs we use the efficient branch and cut algorithm developed in Hill and Voß

(2014) using a time limit of 120 seconds. This exact approach originally incorporates the

heuristic techniques to construct start solutions and for solution polishing developed in Hill

(2015). Note that we use an improved version of the heuristic presented in Hill (2015):

each construction in the multi-start algorithm is repeated using a shortest path Steiner

tree heuristic instead of the computation of the minimum spanning tree. To understand

the impact of the latter, configuration (B) does not include these features. A random start

solution is generated by randomly selecting type 2 customers to build rings at full capacity

instead. The remaining type 1 customers are iteratively used to construct trees from ring

nodes in a random fashion. This results in feasible networks of 1.2 to 6.5 times the cost of

the best known solution (3.1 on average). Configurations (C) and (D) represent the pure

1 The test set can be downloaded from http://dimacs11.cs.princeton.edu/downloads.html
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refinement and LB introduced in Section 3.2 and Section 3.1.

In our experiments we set the cluster size step size ρ to 12. We determine a minimal

cluster size r = 14 and a maximal cluster size r = min(62, |Ñ |) as suitable by a series of

calibration runs. For the maximal and the minimal number of variable flips we use k= 14

and k = 4, respectively. The number of ball clusters constructed for a pair (r, k) is set to

b2.9|V [N ]|/rc. Figure 12 (left) shows the complete GLB scheme. To further strengthen the

primal GLBP bounds we turn on the solver-internal polishing heuristics, including local

branching.

5.2. Results

Tables 1, 2 and 3 contain the results obtained by our GLB method with configurations

(A), (B), (C) and (D). The column information for each instance is explained as follows.

P : CRTP instance

|U| : overall number of customers

µ : rate of type 1 customers (|U1|/|U |)
c(Ñ ) : start solution costs

c(N ) : costs computed by the GLB configuration

Ω : number of considered GLBPs (MIPs)

# : number of refinements

t : GLB runtime in seconds

γ : best achieved relative cost improvement in % with respect to the solution cost α

computed by the heuristic in (Hill 2015): (α− c(N ))/α

θ : relative reduction of the optimality gap2 ub− lb in %; 100(ub− c(N ))/(ub− lb)
Bold cost values indicate that no better solution was found by our heuristics. An ∗ is pre-

fixed if the solution is proven optimal according to the results in Hill and Voß (2015). When

Ω = 0 then the instance is already solved to optimality during the initial cut generation

phase.

Algorithm (A) clearly outperforms (B), (C) and (D) in terms of number of best solutions

found. As shown in Figure 11, 98% of the best solutions are found by (A) compared to

37%, 66% and 73% for (B), (C) and (D). The run times for the whole instance set are

about 68, 109, 14 and 26 hours, respectively. Even though starting with a random solution

2 lb and ub are the bounds computed by the branch and cut algorithm in (Hill and Voß 2015)
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Table 1 Results for the 225 TSPlib-based CRTP instances.

P (A) (B) (C) (D) Best
|U| µ c(Ñ ) c(N ) Ω # t c(Ñ ) c(N ) Ω # t c(N ) Ω # t c(N ) Ω # t γ θ

1 12 1 ∗157 ∗157 0 0 1 265 ∗157 0 0 1 ∗157 0 0 1 ∗157 0 0 2 0 0
2 0.75 215 ∗210 9 1 17 348 ∗210 9 1 9 ∗210 9 1 14 ∗210 9 1 16 2.4 0
3 0.5 ∗227 ∗227 3 0 8 340 232 9 1 11 ∗227 3 0 7 ∗227 3 0 8 0 0
4 0.25 ∗236 ∗236 3 0 6 413 ∗236 9 2 7 ∗236 3 0 5 ∗236 3 0 5 0 0
5 0 ∗242 ∗242 3 0 5 364 ∗242 9 1 4 ∗242 3 0 5 ∗242 3 0 4 0 0
6 12 1 ∗163 ∗163 0 0 0 271 ∗163 0 0 1 ∗163 0 0 0 ∗163 0 0 0 0.6 0
7 0.75 ∗207 ∗207 0 0 2 366 ∗207 0 0 2 ∗207 0 0 1 ∗207 0 0 2 0 0
8 0.5 ∗240 ∗240 3 0 7 412 ∗240 3 0 5 ∗240 3 0 7 ∗240 3 0 7 0 0
9 0.25 ∗249 ∗249 3 0 4 346 ∗249 9 1 6 ∗249 3 0 5 ∗249 3 0 5 0 0
10 0 ∗251 ∗251 0 0 1 348 ∗251 0 0 1 ∗251 0 0 1 ∗251 0 0 2 0 0
11 12 1 173 ∗170 9 1 2 241 ∗170 9 2 2 ∗170 9 1 2 ∗170 9 1 2 1.8 0
12 0.75 ∗242 ∗242 3 0 9 363 ∗242 9 3 14 ∗242 3 0 8 ∗242 3 0 8 0.8 0
13 0.5 ∗251 ∗251 3 0 7 397 ∗251 9 1 11 ∗251 3 0 8 ∗251 3 0 13 0 0
14 0.25 ∗279 ∗279 0 0 1 398 ∗279 6 0 4 ∗279 3 0 3 ∗279 3 0 2 0 0
15 0 ∗279 ∗279 0 0 1 348 ∗279 0 0 1 ∗279 0 0 1 ∗279 0 0 0 0 0
16 18 1 ∗207 ∗207 0 0 1 400 ∗207 0 0 1 ∗207 0 0 1 ∗207 0 0 1 0 0
17 0.75 ∗256 ∗256 7 0 15 525 ∗256 7 0 12 ∗256 4 0 8 ∗256 3 0 13 0 0
18 0.5 ∗274 ∗274 7 0 11 625 ∗274 18 1 12 ∗274 4 0 8 ∗274 3 0 8 0 0
19 0.25 ∗292 ∗292 7 0 8 564 ∗292 21 4 15 ∗292 4 0 4 ∗292 3 0 5 0 0
20 0 303 303 7 0 7 498 312 20 4 14 303 4 0 6 303 3 0 5 0.7 0
21 18 1 ∗217 ∗217 0 0 1 417 ∗217 0 0 1 ∗217 0 0 1 ∗217 0 0 0 1.4 0
22 0.75 ∗285 ∗285 8 0 23 547 ∗285 25 6 33 ∗285 5 0 11 ∗285 3 0 17 0 0
23 0.5 ∗313 ∗313 7 0 17 560 ∗313 25 8 51 ∗313 4 0 10 ∗313 3 0 12 1.6 0
24 0.25 ∗334 ∗334 7 0 21 643 ∗334 24 7 90 ∗334 4 0 7 ∗334 3 0 13 0 0
25 0 ∗339 ∗339 7 0 5 535 347 25 6 11 ∗339 4 0 4 ∗339 3 0 4 0 0
26 18 1 ∗227 ∗227 0 0 1 391 ∗227 0 0 1 ∗227 0 0 1 ∗227 0 0 1 1.8 0
27 0.75 ∗278 ∗278 7 0 15 548 283 7 0 20 ∗278 4 0 10 ∗278 3 0 12 0 0
28 0.5 ∗336 ∗336 7 0 23 510 ∗336 25 8 54 ∗336 4 0 11 ∗336 3 0 18 0 0
29 0.25 ∗361 ∗361 7 0 16 632 ∗361 25 8 36 ∗361 4 0 9 ∗361 3 0 11 0 0
30 0 ∗375 ∗375 7 0 5 541 ∗375 7 0 3 ∗375 4 0 4 ∗375 3 0 3 0 0
31 25 1 ∗245 ∗245 0 0 0 769 ∗245 0 0 0 ∗245 0 0 0 ∗245 0 0 0 1.2 0
32 0.75 ∗294 ∗294 9 0 22 798 ∗294 9 0 19 ∗294 6 0 8 ∗294 3 0 14 0 0
33 0.5 ∗313 ∗313 9 0 38 765 ∗313 27 2 122 ∗313 6 0 8 ∗313 3 0 36 0 0
34 0.25 ∗327 ∗327 9 0 14 806 328 27 2 65 ∗327 6 0 4 ∗327 3 0 10 0 0
35 0 ∗328 ∗328 9 0 4 873 333 33 9 17 ∗328 6 0 2 ∗328 3 0 2 0 0
36 25 1 ∗252 ∗252 0 0 0 704 ∗252 0 0 0 ∗252 0 0 0 ∗252 0 0 0 6 0
37 0.75 ∗311 ∗311 9 0 23 749 ∗311 33 9 60 ∗311 6 0 10 ∗311 3 0 23 1.3 0
38 0.5 ∗345 ∗345 9 0 53 892 348 24 2 376 ∗345 6 0 10 ∗345 3 0 64 0 0
39 0.25 ∗357 ∗357 9 0 19 839 ∗357 39 13 160 ∗357 6 0 7 ∗357 3 0 12 0 0
40 0 ∗362 ∗362 9 0 4 814 365 36 16 19 ∗362 6 0 3 ∗362 3 0 3 0 0
41 25 1 ∗254 ∗254 9 0 2 721 ∗254 9 0 1 ∗254 6 0 1 ∗254 3 0 1 3.1 0
42 0.75 ∗319 ∗319 9 0 16 827 ∗319 39 16 48 ∗319 6 0 7 ∗319 3 0 11 0.9 0
43 0.5 371 371 9 0 65 693 371 30 6 120 371 6 0 12 371 3 0 42 0.3 0
44 0.25 ∗378 ∗378 9 0 17 772 ∗378 24 3 33 ∗378 6 0 6 ∗378 3 0 10 0.3 0
45 0 397 ∗396 24 1 6 898 ∗396 24 1 6 ∗396 18 1 4 ∗396 9 1 4 0.3 0
46 12 1 ∗156 ∗156 3 0 4 265 157 9 2 3 ∗156 3 0 3 ∗156 3 0 3 0 0
47 0.75 194 194 4 0 47 354 197 9 2 44 194 3 0 33 194 1 0 24 1 0
48 0.5 215 215 3 0 19 334 216 9 2 20 215 3 0 19 215 3 0 14 0 0
49 0.25 ∗222 ∗222 3 0 25 370 ∗222 9 2 26 ∗222 3 0 27 ∗222 3 0 18 0 0
50 0 ∗242 ∗242 3 0 51 364 ∗242 6 0 34 ∗242 3 0 46 ∗242 3 0 37 0 0
51 12 1 ∗159 ∗159 6 0 24 271 163 9 2 15 ∗159 4 0 20 ∗159 2 0 18 2.5 0
52 0.75 ∗209 ∗209 3 0 73 300 210 9 2 50 ∗209 3 0 63 ∗209 3 0 52 0 0
53 0.5 ∗230 ∗230 3 0 47 368 ∗230 15 2 90 ∗230 3 0 45 ∗230 3 0 65 0 0
54 0.25 ∗238 ∗238 0 0 4 381 ∗238 0 0 5 ∗238 0 0 3 ∗238 0 0 8 0 0
55 0 ∗251 ∗251 0 0 6 348 ∗251 0 0 7 ∗251 0 0 5 ∗251 0 0 12 0 0
56 12 1 172 ∗170 9 1 19 241 ∗170 9 2 12 ∗170 9 1 16 ∗170 9 1 43 1.2 0
57 0.75 ∗203 ∗203 3 0 37 335 204 9 2 30 ∗203 3 0 31 ∗203 3 0 69 0 0
58 0.5 ∗251 ∗251 3 0 67 315 ∗251 9 2 81 ∗251 3 0 55 ∗251 3 0 135 0 0
59 0.25 ∗278 ∗278 3 0 73 429 ∗278 7 0 115 ∗278 3 0 59 ∗278 3 0 150 0 0
60 0 ∗279 ∗279 0 0 5 348 ∗279 0 0 17 ∗279 0 0 12 ∗279 0 0 32 0 0
61 25 1 248 ∗245 24 1 20 769 ∗245 33 11 23 ∗245 18 1 15 ∗245 9 1 35 1.2 0
62 0.75 305 304 21 1 466 774 302 33 7 447 305 6 0 51 304 9 1 705 1 100
63 0.5 ∗311 ∗311 13 0 188 737 312 36 11 289 ∗311 6 0 35 ∗311 3 0 64 0.3 0
64 0.25 ∗322 ∗322 9 0 55 826 ∗322 36 13 176 ∗322 6 0 29 ∗322 3 0 32 0 0
65 0 ∗328 ∗328 9 0 21 873 ∗328 36 12 1381 ∗328 6 0 15 ∗328 3 0 14 0 0
66 25 1 ∗252 ∗252 9 0 14 704 ∗252 33 10 23 ∗252 6 0 9 ∗252 3 0 9 6 0
67 0.75 309 ∗304 32 1 144 789 307 36 10 203 ∗304 18 1 58 ∗304 9 1 66 5.3 0
68 0.5 349 349 13 0 218 757 352 33 10 401 349 6 0 96 349 3 0 114 0.9 72.2
69 0.25 ∗357 ∗357 13 0 100 819 358 36 15 213 ∗357 6 0 32 ∗357 3 0 43 0 0
70 0 ∗362 ∗362 9 0 34 814 365 36 16 68 ∗362 6 0 24 ∗362 3 0 26 0 0
71 25 1 257 ∗254 24 1 11 721 ∗254 33 8 15 ∗254 18 1 7 ∗254 9 1 7 3.1 0
72 0.75 341 335 21 1 318 795 340 54 14 962 341 6 0 45 335 9 2 208 1.2 100
73 0.5 372 372 9 0 424 694 377 39 12 814 372 6 0 60 372 3 0 272 0 118
74 0.25 387 384 24 1 252 879 384 42 14 564 384 18 1 49 384 9 1 238 0.8 80
75 0 397 396 24 1 50 898 396 45 17 85 396 18 1 33 396 9 1 32 0.3 0
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Table 2 Results for the 225 TSPlib-based CRTP instances.

P (A) (B) (C) (D) Best
|U| µ c(Ñ ) c(N ) Ω # t c(Ñ ) c(N ) Ω # t c(N ) Ω # t c(N ) Ω # t γ θ

76 37 1 ∗304 ∗304 16 0 9 1205 ∗304 69 20 12 ∗304 8 0 6 ∗304 3 0 5 0 0
77 0.75 369 369 16 0 622 1135 363 64 17 331 369 8 0 58 369 3 0 286 3.3 51.8
78 0.5 376 376 16 0 434 1231 376 98 28 1588 376 8 0 56 376 3 0 365 0.5 100
79 0.25 380 ∗379 40 1 211 1224 ∗379 93 23 294 ∗379 24 1 43 380 3 0 181 0.3 0
80 0 ∗380 ∗380 16 0 26 1208 ∗380 45 2 28 ∗380 8 0 17 ∗380 3 0 46 0.3 0
81 37 1 309 309 16 0 13 1208 ∗308 61 18 14 309 8 0 9 309 3 0 25 0.3 0
82 0.75 369 ∗363 37 1 198 966 ∗363 64 21 319 369 8 0 52 ∗363 9 1 303 1.7 0
83 0.5 399 398 49 1 648 1341 410 64 21 1022 398 27 1 86 398 9 1 506 0.3 93.4
84 0.25 404 404 20 0 145 1328 422 77 25 355 404 9 0 34 404 3 0 130 0 100
85 0 412 412 16 0 38 1259 416 67 26 93 412 8 0 23 412 3 0 66 1.4 0
86 37 1 ∗314 ∗314 16 0 16 1107 ∗314 66 23 31 ∗314 8 0 10 ∗314 3 0 32 0 0
87 0.75 406 400 45 3 1123 1152 434 66 24 1193 404 24 1 145 406 3 0 445 2 76.2
88 0.5 429 423 49 2 2168 1190 424 72 23 1673 423 27 2 161 423 9 1 947 1.9 73.5
89 0.25 447 441 37 1 1147 1264 433 72 26 907 447 8 0 58 447 3 0 380 0.7 84.6
90 0 448 ∗446 40 1 73 1351 452 82 34 126 ∗446 24 1 40 ∗446 9 1 128 1.3 0
91 50 1 ∗376 ∗376 0 0 0 1442 ∗376 0 0 0 ∗376 0 0 0 ∗376 0 0 1 0.3 0
92 0.75 427 427 27 0 398 1512 426 105 35 700 427 11 0 47 427 3 0 209 2.3 88.7
93 0.5 447 444 65 1 450 1681 448 162 57 2161 444 33 1 85 447 3 0 174 0.7 90
94 0.25 454 454 27 0 72 1693 454 194 59 640 454 11 0 21 454 3 0 45 0 0
95 0 463 463 27 0 33 1669 464 163 48 116 463 11 0 14 463 3 0 40 2.1 0
96 50 1 386 ∗384 65 1 24 1388 ∗384 105 27 36 ∗384 33 1 10 ∗384 9 1 28 0.5 0
97 0.75 442 442 27 0 626 1744 442 143 42 3319 442 11 0 81 442 3 0 348 3.6 54.6
98 0.5 475 474 60 1 2412 1647 484 178 49 3680 475 11 0 125 475 3 0 523 3.9 57.6
99 0.25 502 498 65 1 646 1674 500 182 66 4014 498 33 1 61 502 3 0 193 0.8 87.1
100 0 494 ∗493 60 1 68 1681 ∗493 192 51 383 494 11 0 18 494 3 0 50 4.1 0
101 50 1 392 391 65 1 41 1561 ∗390 135 32 70 391 33 1 14 391 9 1 45 0.5 0
102 0.75 489 482 71 3 2492 1687 480 149 34 3886 485 33 2 139 489 3 0 400 4.4 75
103 0.5 515 512 66 2 1889 1726 512 170 57 2899 515 11 0 128 515 3 0 464 2.7 70.7
104 0.25 531 525 65 2 679 1871 525 208 70 2328 525 33 2 65 531 3 0 239 0 100
105 0 533 526 76 3 92 1762 529 195 62 513 526 44 3 35 533 3 0 69 2.8 100
106 18 1 214 214 8 0 9 569 217 25 6 13 214 5 0 6 214 3 0 17 0 0
107 0.75 ∗272 ∗272 8 0 460 549 273 21 7 309 ∗272 5 0 278 ∗272 3 0 451 0 0
108 0.5 307 307 8 0 595 639 315 21 6 584 307 5 0 193 307 3 0 427 3.5 63.9
109 0.25 318 318 8 0 529 553 318 39 7 1315 318 5 0 180 318 3 0 459 0 100
110 0 ∗331 330 21 1 197 676 333 22 5 86 330 15 1 137 330 9 1 437 0.6 0
111 18 1 235 235 8 0 17 548 236 25 7 23 235 5 0 10 235 3 0 33 0 0
112 0.75 306 306 8 0 269 527 310 21 5 313 306 5 0 137 306 3 0 337 1.9 54.5
113 0.5 ∗336 ∗336 8 0 355 589 337 18 4 179 ∗336 5 0 179 ∗336 3 0 425 0 0
114 0.25 368 367 21 1 698 618 369 29 10 362 367 15 1 348 367 9 1 891 0.5 80.5
115 0 390 390 8 0 159 812 392 22 5 82 390 5 0 124 390 3 0 336 0 0
116 18 1 259 259 8 0 74 602 260 21 6 53 259 5 0 56 259 3 0 159 0 0
117 0.75 ∗325 ∗325 8 0 351 565 327 21 5 304 ∗325 5 0 173 ∗325 3 0 483 0 0
118 0.5 377 376 21 1 528 673 379 25 7 354 376 15 1 230 376 9 1 885 0.8 72.8
119 0.25 ∗397 ∗397 8 0 228 660 399 26 7 139 ∗397 5 0 119 ∗397 3 0 365 0 0
120 0 ∗448 ∗448 8 0 135 781 458 18 4 80 ∗448 5 0 100 ∗448 3 0 218 0.7 0
121 37 1 ∗320 ∗320 21 0 57 1071 325 69 22 53 ∗320 9 0 25 ∗320 3 0 72 0 0
122 0.75 387 379 51 2 1204 1171 396 98 25 2021 387 9 0 172 387 3 0 508 2.8 58.5
123 0.5 393 393 21 0 1227 1321 397 88 26 1637 393 9 0 183 393 3 0 471 2.2 69.8
124 0.25 403 402 47 1 665 1151 406 61 23 368 403 9 0 81 403 3 0 283 0.2 92.5
125 0 410 410 20 0 102 1226 411 61 25 124 410 9 0 48 410 3 0 132 0.7 0
126 37 1 336 ∗326 51 3 121 1074 330 61 17 85 ∗326 27 3 61 ∗326 9 2 169 3 0
127 0.75 402 401 47 1 2799 1085 424 109 27 2254 402 9 0 238 402 3 0 504 0.2 95
128 0.5 435 434 51 1 1904 1325 455 74 31 1660 434 27 1 257 435 3 0 469 4.6 52.9
129 0.25 457 449 77 2 2810 1422 454 117 36 1432 454 27 2 254 457 3 0 501 2.4 74.1
130 0 458 458 21 0 195 1291 464 61 22 305 458 9 0 88 458 3 0 262 0 100
131 37 1 343 342 51 1 158 1085 342 61 17 125 342 27 1 60 342 9 1 169 0.3 0
132 0.75 446 439 55 2 3463 1078 462 100 30 3836 445 27 1 581 446 3 0 535 1.6 82
133 0.5 472 463 45 3 2777 1167 471 111 34 2659 472 9 0 205 468 9 1 1065 2.1 78.6
134 0.25 493 478 65 4 3168 1394 480 119 43 2517 484 36 2 534 493 3 0 790 3.8 64.9
135 0 500 485 56 4 448 1312 494 109 34 476 491 27 2 171 500 3 0 455 4.2 26.5
136 56 1 388 ∗383 81 4 135 1862 ∗383 126 33 119 387 36 1 41 387 9 1 123 3.1 0
137 0.75 455 455 32 0 2450 1903 476 180 49 5728 455 13 0 424 455 3 0 779 1.5 79.9
138 0.5 460 460 32 0 1883 1899 471 199 52 5006 460 13 0 352 460 3 0 704 3.6 56.2
139 0.25 465 465 32 0 477 2056 473 71 2 914 465 13 0 92 465 3 0 230 1.5 100
140 0 ∗476 ∗476 32 0 148 1761 477 196 54 705 ∗476 13 0 71 ∗476 3 0 158 3.8 0
141 56 1 ∗389 ∗389 32 0 121 1856 395 131 49 186 ∗389 13 0 64 ∗389 3 0 157 3.2 0
142 0.75 476 472 77 3 4513 1608 475 181 41 5097 472 39 3 503 474 9 1 1127 3.3 66.2
143 0.5 507 507 32 0 2024 1860 516 208 56 5848 507 13 0 248 507 3 0 637 2.5 76
144 0.25 522 522 32 0 1670 1908 530 171 68 3789 522 13 0 179 522 3 0 588 1.9 74.7
145 0 528 528 32 0 249 1793 531 198 54 672 528 13 0 90 528 3 0 233 2.8 67.1
146 56 1 414 ∗399 84 4 227 1809 400 130 43 197 411 39 1 113 413 9 1 220 3.6 0
147 0.75 527 522 72 3 3021 1835 561 190 50 6871 524 39 1 668 527 3 0 660 2.1 82.7
148 0.5 542 538 77 2 4688 1669 546 171 50 5497 541 39 1 791 542 3 0 1038 2.9 73.9
149 0.25 558 553 77 1 1752 1820 551 193 56 3713 556 39 1 363 558 3 0 660 1.3 84.7
150 0 557 557 32 0 168 1803 559 200 58 738 557 13 0 52 557 3 0 119 0.7 100
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Table 3 Results for the 225 TSPlib-based CRTP instances.

P (A) (B) (C) (D) Best
|U| µ c(Ñ ) c(N ) Ω # t c(Ñ ) c(N ) Ω # t c(N ) Ω # t c(N ) Ω # t γ θ

151 75 1 478 ∗473 0 0 4 2616 ∗473 0 0 3 ∗473 0 0 4 ∗473 0 0 9 1.1 0
152 0.75 546 542 101 3 3051 2430 554 209 73 6273 543 45 2 622 546 3 0 770 1.6 74.4
153 0.5 558 551 102 3 2631 2465 552 297 89 3334 558 15 0 405 558 3 0 984 2.3 52.7
154 0.25 573 573 43 0 556 2519 561 295 109 2489 573 16 0 92 573 3 0 282 2.1 71.2
155 0 576 ∗572 108 2 224 2713 612 314 108 1584 ∗572 45 1 75 576 3 0 178 2.1 0
156 75 1 494 486 123 5 213 2552 ∗482 189 59 171 487 60 4 55 494 3 0 108 2.5 0
157 0.75 572 556 94 5 6275 2586 589 350 99 11264 563 45 2 929 572 3 0 1051 3 59.7
158 0.5 588 584 99 2 5506 2523 587 294 98 6717 588 15 0 515 588 3 0 1395 4.6 53.4
159 0.25 618 613 111 4 2407 2717 618 328 116 5689 615 48 3 192 617 9 1 691 0.8 84.4
160 0 620 612 102 4 314 2731 637 293 117 1293 620 15 0 76 620 3 0 195 2.2 39.7
161 75 1 495 ∗488 98 2 211 2425 491 240 68 321 495 15 0 45 495 3 0 125 1.4 0
162 0.75 598 575 88 6 3071 2544 593 379 93 13122 598 15 0 520 598 3 0 1325 7.7 32.1
163 0.5 623 617 108 4 6060 2770 701 366 97 12065 622 45 1 758 623 3 0 1351 1 84.2
164 0.25 652 641 105 5 4282 2524 666 342 109 7123 646 48 2 277 652 3 0 529 2.3 68.9
165 0 662 662 42 0 393 2672 662 337 103 2435 662 15 0 75 662 3 0 251 1.8 63.9
166 25 1 280 280 13 0 91 836 282 33 10 61 280 6 0 62 280 3 0 154 0.7 0
167 0.75 317 315 32 1 1371 804 316 33 10 669 315 18 1 273 317 3 0 601 3.7 0
168 0.5 352 352 13 0 740 770 349 33 11 457 352 6 0 251 352 3 0 584 1.1 75.5
169 0.25 363 363 14 0 518 831 367 36 10 376 363 7 0 223 363 3 0 489 0 100
170 0 ∗366 ∗366 13 0 225 984 368 30 10 152 ∗366 6 0 148 ∗366 3 0 357 0 0
171 25 1 293 293 14 0 47 809 295 42 13 47 293 7 0 16 293 3 0 50 0 0
172 0.75 367 367 13 0 1408 904 373 48 10 1443 367 6 0 416 367 3 0 838 0 100
173 0.5 400 400 13 0 1279 786 404 33 9 1023 400 6 0 343 400 3 0 745 1.2 86.7
174 0.25 416 416 13 0 891 974 417 36 15 716 416 6 0 228 416 3 0 553 0 100
175 0 424 424 34 1 370 1049 426 30 9 164 424 20 1 204 424 9 1 522 0.2 93.8
176 25 1 298 298 35 1 77 918 302 42 15 45 298 21 1 20 298 9 1 51 0.3 0
177 0.75 385 383 35 1 2527 840 385 36 11 1212 383 21 1 850 385 3 0 634 2.5 68.6
178 0.5 403 403 13 0 1300 940 405 33 12 723 403 6 0 340 403 3 0 607 0 100
179 0.25 429 429 14 0 797 908 427 60 17 915 429 7 0 286 429 3 0 698 0.5 90.9
180 0 452 452 14 0 311 1007 468 36 14 214 452 7 0 180 452 3 0 453 0 100
181 50 1 ∗411 ∗411 28 0 56 1780 412 99 31 86 ∗411 11 0 23 ∗411 3 0 55 0 0
182 0.75 481 481 28 0 2398 1798 486 162 40 6113 481 11 0 442 481 3 0 688 2.2 68.5
183 0.5 499 499 28 0 1944 1736 501 164 50 4728 499 11 0 365 499 3 0 912 0 100
184 0.25 501 501 65 1 1234 1957 505 166 52 1271 501 33 1 303 501 9 2 703 0.4 89.8
185 0 506 506 27 0 287 2020 506 171 55 891 506 11 0 174 506 3 0 396 3.4 86.5
186 50 1 420 420 27 0 101 1925 420 151 37 283 420 11 0 51 420 3 0 113 0 0
187 0.75 477 475 78 2 2717 1703 489 107 34 2624 477 33 1 801 477 9 2 1169 1 74.7
188 0.5 505 505 29 0 936 1839 511 194 54 4523 505 11 0 310 505 3 0 681 2.3 64.1
189 0.25 531 531 28 0 1199 1865 532 115 43 1551 531 11 0 243 531 3 0 572 0 100
190 0 534 534 28 0 269 2016 535 192 59 679 534 11 0 120 534 3 0 269 0.6 75.4
191 50 1 436 428 116 5 307 1724 428 97 37 249 428 44 4 87 436 3 0 127 3.5 0
192 0.75 505 501 77 3 6116 1704 502 120 40 2617 504 33 1 667 505 3 0 875 0.8 83.5
193 0.5 527 516 96 6 1498 1588 517 197 48 1680 520 55 6 552 527 3 0 912 2.1 65.9
194 0.25 559 551 73 3 1951 1985 555 138 56 2395 559 33 1 434 559 9 1 1179 2.3 68.6
195 0 574 568 67 2 686 2051 575 179 60 899 568 33 2 336 574 3 0 727 1 71.3
196 75 1 516 513 93 2 269 2542 514 192 53 203 516 16 0 55 516 4 0 154 0.6 0
197 0.75 581 580 51 4 5632 2856 593 264 74 7507 580 51 4 989 581 16 3 2412 2.4 64.2
198 0.5 591 587 86 2 4213 2716 597 268 80 5653 590 48 1 967 591 4 0 1249 0.8 77.5
199 0.25 612 602 111 4 2278 2883 620 335 110 4384 604 64 3 724 612 3 0 970 1.6 59
200 0 608 608 44 0 255 2794 610 374 121 1159 608 16 0 122 608 4 0 324 2.3 0
201 75 1 517 517 44 0 182 2866 518 298 70 619 517 16 0 76 517 4 0 198 0.4 0
202 0.75 589 584 54 3 5952 2720 600 259 73 9043 587 48 1 784 589 3 0 1192 1.8 69.2
203 0.5 607 603 59 4 5665 2811 604 303 94 9184 605 48 2 1005 607 4 0 1844 0.7 83.9
204 0.25 619 619 44 0 1074 2651 621 354 109 4127 619 16 0 368 619 4 0 863 0 100
205 0 638 637 97 1 634 2774 638 318 108 1338 638 16 0 152 638 4 0 394 0.8 86.7
206 75 1 526 525 111 3 337 2673 526 265 68 410 527 48 2 85 526 9 2 206 0.8 0
207 0.75 642 630 48 3 6514 2569 629 341 77 11699 630 48 5 1044 642 3 0 1404 3.8 65.2
208 0.5 639 634 59 2 4999 2812 648 335 104 9711 637 48 1 784 639 3 0 1270 1.7 76.6
209 0.25 666 663 87 2 3145 2567 665 312 96 6494 663 64 3 708 666 3 0 729 1 85.4
210 0 674 673 102 1 627 2852 669 339 114 1871 673 48 1 236 674 3 0 435 3 49.8
211 100 1 ∗555 ∗555 56 0 218 3608 1161 334 67 331 ∗555 21 0 115 ∗555 4 0 297 0 0
212 0.75 642 635 71 5 10093 3318 880 408 119 11755 640 63 1 1922 642 4 0 2141 2.6 58.2
213 0.5 647 641 115 5 4712 3279 967 400 126 7458 642 63 3 1094 647 12 1 2671 2.9 51.6
214 0.25 656 652 133 2 2195 3445 1104 390 131 5099 652 63 2 567 656 4 0 673 0.6 193
215 0 674 666 133 2 567 3458 1163 429 147 1502 666 63 2 227 674 12 1 574 2.5 0
216 100 1 568 ∗564 133 1 358 3195 971 228 67 271 ∗564 63 1 118 568 4 0 236 0.7 0
217 0.75 661 658 70 2 9428 3288 1210 389 94 10952 658 63 2 1980 661 4 0 2419 0.8 87.1
218 0.5 679 672 89 3 7644 3578 1124 442 140 10838 677 63 1 2191 679 4 0 3119 2.6 60.8
219 0.25 690 687 145 3 2639 3466 883 420 137 6451 690 63 1 532 690 12 1 1256 0.6 121.7
220 0 700 692 166 4 698 3525 1181 508 153 2140 695 84 2 244 700 4 0 515 1.1 50.9
221 100 1 575 574 145 2 330 3297 1102 322 71 408 575 63 1 111 575 12 1 374 0.3 0
222 0.75 684 670 92 6 11271 3282 1008 585 124 19657 676 105 4 3129 684 4 0 2873 3.6 62.1
223 0.5 717 708 73 4 10367 3565 1032 488 141 13613 714 63 2 2807 717 4 0 4102 1.3 79.1
224 0.25 729 717 123 3 3674 3640 1152 452 134 6215 720 63 2 609 729 4 0 876 1.8 68.3
225 0 729 720 133 2 692 3530 1155 486 159 1785 725 63 1 266 729 4 0 495 3.1 33.1
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in (B) helps finding better local optima than with the other strategies for 10 instances, the

algorithm convergence is significantly slower. Moreover, it especially seems to suffer from

the costly start solution for the larger instances. On average we observe 28 refinements

and 84 GLBPs per instance for (B), compared to 1 and 38 for (A).

Figure 11 Total number of instances by number of customers and number of best solutions found by heuristics

(A), (B), (C) and (D).

Let us sum up the performance of (A) compared to existing approaches. We improve 42%

of the solutions found by the initial heuristic and 65% of the heuristic results in (Hill 2015).

On average we achieve an improvement of 1.6% for the problems without known optimal

solutions. We improve 36% of the best known results that were obtained by the branch

and cut algorithm in Hill and Voß (2015), reducing the optimality gap by 10% on average

for the corresponding instances. However, we are not able to compete with the pure exact

method for 15% of the problems.

5.3. Algorithm analysis

To better understand the algorithm performance we provide further details about the com-

putations with configuration (A) in this section. In the following we break down the com-

putational details into the different numbers of instance customers for each GLBP param-

eterization over all the 225 instances. [|U | ∈ {12,18,25,37,50, 56,75,100}; #instances:

30,30,45,30,30,15,30,15 (see also Figure 11).] We recall that these pairs of k and r= |B|
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in the GLB scheme are computed in advance based on an initial calibration. Depending

on |U | we utilize the first pairs (k1, r1), ..., (kh, rh) such that rh−1 < |U | and rh ≥ |U |. The

used scheme is shown in Figure 12 (left).

The average number of edge variable flips of a refinement is illustrated in Figure 12 (right).

Even though these average values range within [0, k] as expected, the used local search

procedures might lead to best (GLBP-infeasible) solutions beyond the allowed Hamming

distance to the incumbent.

Figure 12 GLB scheme (left) and average number of edge variable flips per improvement (right).

Figure 13 shows the total number of GLBPs (left) and the number of improvements found

(right) for each parameterization and number of customers. The majority of improvements,

except for instances with |U |= 75, are carried out when considering balls of size 14 and

26. In total, solving 227 (2.7%) of 8514 GLBPs result in an improved solution.

Figure 13 Number of GLBPs (left) and number of improvements (right).
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The average GLBP improvement of the network costs is given in Figure 14 (left). These

numbers support that k ∈ {14,26} does not only yield the most improvements, but also the

highest cost reduction per improvement on average. Figure 14 (right) shows the average

run times of the exact algorithm for the GLBPs using the time limit of 120 seconds. Even

though some parameterizations and instance classes tended to yield more time consuming

GLBPs for the solver, our GLB scheme seems to be well balanced within the used frame-

work. Finally, 1.5% of the overall runtime is spent for GLBPs that lead to an improvement.

Figure 14 Average relative objective improvement (left) and average runtime (right).

Figure 15 (left) shows the average relative optimality gap at the root node. These results

seem to be related with the average runtimes in Figure 14 (right). Therefore, the root

node gap might be a good indicator for the hardness of a GLBP. The average number of

explored nodes within the branch and cut method is given in Figure 15 (right).

Figure 15 Average GLBP root node gap (left) and average number of explored GLBP branching nodes (right).
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93.6% of the GLBPs could be solved within the time limit. The average optimality gap when

the GLBP could not be solved and the time limit was reached is illustrated in Figure 16

(left). Figure 16 (right) shows the number of GLBPs that could not be solved. GLBPs

with r= k= 14 were mostly solved to optimality since this was a finding of our initial GLB

calibration, as Figure 14 (right) already suggests. For instances with |U | ∈ {37,56,75} up

to 45% of the GLBPs could not be solved. We recall that this does not necessarily mean

that no improving solution was found by the exact method.

Figure 16 Average relative optimality gap when time limit reached (left) and number of unsolved GLBPs (right).

Finally, we would like to mention that we also experimented with a strategy (A′) which

utilizes the reversed (A) GLB scheme. In other words, we considered balls of large size first

and incrementally made them smaller while increasing k. We observed that for 8 instances

better solutions than with (A) were found and for 2 instances (A′) could not compete with

(A). Furthermore, the average runtime could be reduced by 0.5% and 5.0% in total.

6. Conclusions

We presented a novel heuristic framework to solve a broad class of network design prob-

lems. A key ingredient is GLB, a concept that generalizes the ideas of local branching and

local refinement techniques based on mathematical programming. GLB refinement prob-

lems are created by the addition of GLB cuts to an ILP formulation of the overall problem.

These are iteratively solved while increasing the number of involved decision variables and

at the same time decreasing the number of variable flips. Hereby, we control the complexity

of these subproblems in order to solve them to optimality.

Using this idea we designed a heuristic for the CRTP based on an exact branch and cut

algorithm. This approach turned out to be powerful since we were able to obtain new best
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solutions for literature instances. Compared to the pure MIP refinements or local branch-

ing it produced significantly more best solutions. Furthermore, we could improve solutions

obtained by the pure exact algorithm in most cases.

The proposed approach represents a promising strategy when no improving solution can

be found by other algorithms at hand (in our case a multi-start local search heuristic and

an exact algorithm). As typical for exact refinement methods, the ability to incrementally

enlarge the refinement neighborhoods results in an adjustable algorithm performance.

Using the presented solutions as a starting point for an exact algorithm could significantly

accelerate the solution process and improve the obtained bounds. Moreover, the techniques

could be integrated into an exact method to effectively polish feasible solutions that are

found along the search. The study of extended problem-specific solution refinement sub-

structures, beside the used single-balls, could further improve the results. Furthermore,

we suggest to transfer our techniques to related optimization models in network design to

study their effectiveness.
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