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Abstract

The results of simulations for linear and two-dimensional electronic spec-

troscopy of DNA nucleobases have been presented in this work.

How nucleic acids respond to radiation is relevant to human health because

UV radiation can be the starting point of damaging photochemical reactions

leading to permanent damage of DNA. Moreover it is also important for our

understanding of how life on earth developed.

According to the popular reductionist approach, the study of deexcitation

processes of DNA double strands should start with the investigation of nucle-

obases, the main chromophores in DNA. The possible photochemical paths

following UV excitation in DNA monomers are in general prevented by ul-

trafast decay processes, through which the deexcitation of photoreactive

states is allowed to take place. Ultrafast internal conversion is responsible

for this relaxation process, which can be investigated by identifying the con-

ical intersections (CIs) between ground and excited states involved in the

radiationless decay.

As a first step in the understanding of such nonradiative processes, ex-

cited state properties and linear absorption spectra have been simulated for

the four DNA nucleobases in their microsolvated structures, by combining

time-dependent density functional theory calculations and the semiclassi-

cal nuclear ensemble method. This approach includes explicitly vibrational

broadening, which seems essential for a reliable comparison of simulated

photoabsorption spectra with experimental data.

The second part of the project was devoted to the determination of optical

properties of the DNA nucleobase isomer 9H-adenine in terms of the third-

order response function, with a direct connection of the theoretical model-
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ings to experimental results of 4-wave-mixing time-resolved optical spectro-

scopies, in particular to 2D-UV Fourier and pump probe spectroscopy.

A minimal kinetic model derived from experimental results was proposed to

underline the decay behaviour observed in adenine, where after excitation

to the bright ππ∗ state, the deexcitation can be direct to the ground state

or via a dark nπ∗ state. Two excited state absorptions from the ππ∗ and

nπ∗ are also proposed to take place. Time Nonlocal, and Hierarchy Equa-

tions of Motion approachs have been used to simulate the Non-Markovian

quantum dynamics of 9H-adenine. A good agreement between theoretical

and experimental 2DES and pump probe spectra has been reached in terms

of size and energy range characterizing the peaks forming the spectra.

The present study will serve as a basis for future simulations and experimen-

tal investigations, for instance further linear and 2D electronic spectrocopy

simulations where different methods can be applied, or the extension of the

model from single nucleobases to nucleotides (and nucleosides) polymers.



Zusammenfassung

In dieser Arbeit wurden die Ergebnisse von Simulationen der linearen

und zweidimensionalen Elektronenspektroskopie von Nukleobasen der DNA

vorgestellt.

Die Folgen der Bestrahlung von Nukleinsäuren ist wichtig für die men-

schliche Gesundheit, da UV-Strahlung die Schädigung photochemischer Reak-

tionen nach sich ziehen kann, was zur permanenten Beschädigung der DNA

führt. Zudem ist es entscheidend für unser Verständnis der Entwicklung des

Lebens auf der Erde.

Einem weit verbreiteten reduktionistischen Ansatz folgend sollte die Unter-

suchung der Abregung der DNA-Doppelstränge mit der Analyse der Nuk-

leobasen beginnen, die die Hauptchromophore der DNA sind.

Das Auftreten möglicher photochemischer Pfade, die aus der Anregung

von DNA-Monomeren mit UV-Strahlung resultieren, wird im Allgemeinen

mithilfe ultraschneller Zerfallsprozesse verhindert, durch die die Abregung

der photoreaktiven Zustände stattfinden kann. Die ultraschnelle interne

Abregung ist für diesen Relaxationsprozess verantwortlich, welcher durch

die Identifizierung der Kegelschnitte (conical intersections – CIs) zwischen

den am strahlungslosen Zerfall beteiligten Grund- und angeregten Zuständen

untersucht werden kann.

Als ersten Schritt für das Verständnis solcher strahlungsloser Prozesse wur-

den die Eigenschaften der angeregten Zustände und die linearen Absorption-

sspektren der vier Nukleobasen der DNA in ihren mikrogelösten Strukturen

simuliert, indem die Rechenmethoden der zeitabhängigen Dichtefunktion-

altheorie mit der Nuclear-Ensemble-Methode kombiniert wurden. Dieser

Ansatz beinhaltet explizit die durch Vibrationen verursachte Linienverbre-
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iterung, welche essentiell für einen zuverlässigen Vergleich zwischen den

simulierten Photoabsorptionsspektren und experemintellen Daten zu sein

scheint.

Der zweite Teil des Projekts war der Bestimmung der optischen Eigen-

schaften des DNA-Nukleobasenisomers 9H-Adenin in Bezug auf die Response-

Funktion dritter Ordnung gewidmet, mit einer direkten Verknüpfung zwis-

chen den theoretischen Modellen und den experimentellen Ergebnissen der

4-wave mixing zeitaufgelösten optischen Spektroskopien, insbesondere der

zweidimensionalen UV-Fourier- und der Pump-Probe-Spektroskopie.

Basierend auf den experimentellen Ergebnissen wurde ein minimales kinetis-

ches Modell vorgeschlagen, welches das bei Adenin beobachtete Zerfallsver-

halten unterstreicht, bei dem nach der Anregung auf den hellen ππ∗-Zustand

die Abregung direkt oder über den dunklen ππ∗-Zustand auf den Grundzu-

stand stattfinden kann. Weiterhin wird das Stattfinden zweier Absorptio-

nen im Zusammenhang mit den angeregten ππ∗- und nπ∗-Zuständen un-

tersucht. Die Ansätze der zeitlich nichtlokalen Gleichungen und der Hi-

erarchiegleichungen wurden verwendet, um die Nicht-Markovsche Quan-

tendynamik von 9H-Adenin zu simulieren. Es wurde eine gute Übereein-

stimmung zwischen den theoretischen und den experimentellen 2DES- und

Pump-Probe-Spektren hinsichtlich der die Peaks des Spektrums charakter-

isierenden Größe und Energiebereichs erzielt.

Die vorliegende Untersuchung dient als Grundlage für zukünftige Simula-

tionen and experimentelle Untersuchungen, zum Beispiel für weitere Sim-

ulationen der linearen und zweidimensionalen Elektronenspektroskopie, bei

denen unterschiedliche Methoden angewandt werden können, oder für die

Erweiterung des Modells von einzelnen Nukleobasen auf Nukleotid-(und

Nukleosid-)Polymere.



Chapter 1

Introduction

Figure 1.1: Double stranded DNA overview (picture taken from: Wikipedia,

DNA, created by M. Ströck).

Solar light is well known to have a deep impact on the various physical

and chemical reactions on the Earth, including biological processes, as, for

instance, photosynthesis and vision. Moreover, UV irradiation can target

biologically important molecules, such as proteins or enzymes, leading to

dangerous photoreactions, which become particularly damaging in the case

of nucleic acids, as these are the carriers of genetic information.

UV photochemistry of nucleic acids is thus of interest, as being the starting

point of a sequence of events which produces at its end UV-induced dam-
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age of DNA, with all its profound biological consequences (e.g. mutagenic

and carcinogenic effects). Fortunately, DNA shows a high photostability,

presumably due to some self-protection mechanisms that quickly convert

dangerous electronic excitation into less dangerous vibrational energy that

subsequently cools rapidly in solution.

To understand the details of this process, the most logical route, from the

experimental and theoretical point of view, should start with the investiga-

tion of nucleobases, the principal chromophores in nucleic acids, and then

continue by systematically considering the DNA sugar residues, pairing and

stacking interactions, and so forth. Following this reductionist approach,

the photophysical properties of nucleobases have been discussed in many

contributions [1, 2, 3].

The five nucleobases occurring naturally in DNA and RNA strongly absorb

UV radiation, although they are intrinsically very resistant to light-induced

damage.

It is well established that ultrafast internal conversion is responsible for this

relaxation process, occurring near the crossing of excited state and ground

state potential energy surfaces (PESs) under conditions of strong nonadia-

batic coupling [4, 5, 6]. Due to such a mechanism, nucleobases are photo-

stable and protected by radiative damage.

The situation becomes much more complex when a nucleobase is interacting

with other bases within the nucleic acid polymer [2, 7, 8]. The structure

of nucleic acids allows for interactions between the same strands via stack-

ing and, in case of double stranded DNA, also for interactions between two

strands. In this case, even delocalized excitations can occur, leading to ex-

citon and charge transfer phenomena during the relaxation pathway to the

ground state of the polymer.

Linear absorption properties are a first step in the understanding of the UV

photophysics of these systems, and the study of UV absorption of nucle-

obases plays a crucial role in clarifying how excited state relaxation is trig-

gered depending on the excitation wavelength [9]. Nonlinear spectroscopy

gives further information about electronic and vibronic couplings and the

dynamics of chemical, semi-conductor, and biological samples, which are not

accessible by applying linear spectroscopy studies [10]. Nucleobases exhibit
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ultrafast radiationless decay and low emission quantum yields, which have

been extensively investigated, but so far no definite agreement concerning

the relaxation mechanism after excitation has been reached [11].

The present work deals with linear and 2D spectroscopy studies of single

nucleobases. Linear absorption spectra have been calculated for the main

tautomers of nucleobases in their microsolvated structures, by combining

time-dependent density functional theory (TD DFT) calculations and the

semiclassical nuclear ensemble method developed by Barbatti et al [9]. In

addition, 2D and pump probe spectra have been calculated for 9H-adenine.

For all the simulations, experimental data are available for a direct compar-

ison with the calculated data.

1.1 Dynamics of UV-excited nucleobases

(a) (b)

Figure 1.2: Chemical structures (a) and measured absorption spectra (b) of

the four DNA nucleobases (picture taken from Ref.[2]).

Nucleobases are the main chromophores in DNA, strongly absorbing UV

radiation, but showing at the same time a high degree of photostability.

Photochemical events take place after a molecule absorbs a photon and

reaches an excited electronic state, leading to inter- or intramolecular chem-

ical reactions. The electronic energy can be radiated away by fluorescence,

and this process usually occurs with a rate of the order of ≈ 109 s−1, which is
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generally too slow to compete with an excited state reaction. Alternatively,

the electronic energy is transfered into heat by internal conversion to the

ground state, which is then dissipated to the environment. If the internal

conversion is fast enough to prevent photochemical reactions from taking

place, the molecule will have a short excited life time τ and will be stable

against UV photodamage. This is why internal conversion provides a funda-

mental “self healing process” following the UV absorption of the molecule.

The dissipation of the excess energy into internal energy of the ground state

minimizes the probability of the occurrence of photochemical reactions.

The most relevant nucleobases show the shortest excited state lifetimes,

while nucleobase derivatives, as isomers, have orders of magnitude longer

lifetimes. These are related to a major propensity for photoreactions. A

representative example is 5−methylcytosine, which shows a 10−fold longer

lifetime than cytosine, and typically undergoes photodamage reactions.

Important information about the photostability of nucleobases has been

obtained by ultrafast time-resolved spectroscopy, mostly concerning relax-

ation times, which are derived by fitting the measured deactivation curves

in terms of the pump probe delay time [12, 13]. Within a few picoseconds

these molecules return to the ground state, showing comparable deactivation

times. This provides the possibility for the nucleobase to quickly transfer

the harmful excess energy accumulated by photoabsorption of UV light into

heat, which can then be dissipated to the environment. In spite of the simi-

lar time durations involved in the decay process, each of the five nucleobases

follows different decay pathways, which can be investigated by performing

theoretical calculations based on different approaches and approximations.

A large amount of work has been carried out, reflecting the very rich and

complex photophysics of nucleobases (NABs) [9, 11, 14].

Information about the relaxation processes has been provided by identify-

ing the conical intersections (CIs) between ground and excited states where

radiationless decay can take place, if optically created electronic energy is

transfered to vibrational and/or rotational energies in S0 through rapid in-

ternal conversion, which requires the crossing of potential energy surfaces.

Upon UV excitation, the four DNA nucleobases adenine, cytosine, guanine

and thymine (A, C, G and T) show ultrafast relaxation from the lowest
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bright ππ∗ state to the ground state. However, the ultrafast relaxation is

not due to a single deactivation mechanism for all nucleobases, although

there are some general geometrical principles for the CIs connecting the

excited states to the ground state, like strong puckering deformation of the

six-membered rings [11, 15]. This six-sided structure is present in each DNA

nucleobase, as is evident in Fig. 1.2(a).

Nevertheless, the details of the deactivation pathways are very sensitive to

the form of the PESs, which can differ considerably, even between tautomers

of the same molecule.

Generally, the dynamics of the purine bases A and G are less complex

and faster than the dynamics encountered in the pyrimidine bases C and

T. Purines and pyrimidines show substantially different decay pathways:

the purine bases adenine and guanine mostly follow homogeneous pathways

based on relaxation along the ππ∗ states, while pyrimidines show possible

bifurcations to nπ∗ states and intersystem crossings to triplet states [2]. For

these two molecules (single cytosine and thymine in solution), it was shown

that the excited-state population bifurcates in the bright 1ππ∗ state, with

60% returning to the ground state and 40% first passing through a 1nπ∗

state. As we mentioned, even an intersystem crossing to a triplet state is

proposed to take place on a picosecond timescale from the vibrationally ex-

cited 1nπ∗ state [2].

We will focus in the following on the case of adenine, and the possible ap-

pearence of a nπ∗ state playing a (minor) role in the relaxation will be

discussed.

1.2 Photophysics of adenine: review

The four bases of DNA can exist in more than one tautomeric form, as we

will analyze in detail in the following, and 9H-adenine, whose Lewis structure

is shown in Fig.1.3, is one of the most studied nucleobase tautomers. Linear

absorption spectroscopy has extensively investigated this molecule. The

resulting spectra and the underlying transitions have been characterized, in

order to model the possible decay pathways following the UV excitation.

The absorption maximum of 9H-adenine at 252 nm is assigned to the
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Figure 1.3: Lewis structure of 9H-adenine

close-lying 1ππ∗ states, which are labeled La and Lb [3, 16]. Another singlet

state of nπ∗ character, located at 0.073 eV below the 1π → π∗ state, is

involved in the photoexcitation as a dark state [17].

Pump probe experiments provide time scales for the deactivation dynamics

of adenine in the gas phase. Different deactivation times have been found by

several groups [11], typically spanning from femtoseconds to picoseconds, or

even to nanoseconds. All experiments show a fast deactivation (τ2) within

the range 0.5 − 2 ps [12, 13, 18, 19, 20]. Most studies reported another,

shorter transient below 100 fs. In the group of Ulrich et al. [12], a larger

time constant on the nanosecond time scale has been measured.

Many theoretical studies have been performed in order to get information

about the deactivation dynamics of adenine in the gas phase. Fig. 1.4

depicts schematically each of the paths predicted by theoretical calculations.

Colors indicate electronic state character, and are used consistently for all

nucleobases. A color gradient indicates an adiabatic change of wavefunction

character, as in Fig. 1.4.c.

Fig. 1.5 shows the CIs proposed to be involved in these relaxation decays.

Atoms of characteristic geometrical features are given in gold.

Fabiano et al. [15], using Trajectory Surface Hopping (TSH) method,

identified processes on two time scales, which they assigned as τ1 and τ2. The
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Figure 1.4: Schematic overview of the proposed relaxation mechanisms for

adenine from [15, 21, 22] (picture taken from Ref. [11]).

Figure 1.5: Conical intersections proposed for adenine. Left: S2−S1 ππ
∗−

nπ∗ (ring torsion), middle: S1−S0 nπ
∗−gs (C6 -puckered CI), right: S1−S0

π − π∗ -gs (C2 -puckered CI)(picture taken from Ref. [11]).

short time constant was related to the relaxation of the initially populated

bright ππ∗-state within 15 fs to a dark nπ∗ state through a CI characterized

by an angle of about 15◦ between the planes of the two rings, see Fig. 1.5 left.

Once in the nπ∗ state, the deactivation to the ground state takes 560 fs via

the C6-puckered (nπ∗/gs) CI (Fig. 1.5 centre), geometrically characterized

by an out-of plane distortion of the amino group (the functional group with

the nitrogen atom connected by single bonds to the hydrogen atoms, denoted

as NH2 in Fig. 1.3).

A TSH study was conducted by Barbatti et al. [21], leading to time

constants which are very similar to the ones obtained by Fabiano [15] but

slightly different deactivation pathways were recorded. The first time con-

stant is related to the S2 → S1 decay and the second constant is connected

to the S1 → S0 decay (Sn stands for the n-th excited state). In contrast to

the previous work the so-called C2−puckered CI is the major deactivation

channel, see Fig. 1.5 (right). Even though a S2 → S1 transition is reported,
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the system stays in the ππ∗ state, see Fig. 1.4(b). Mean-field analysis by

Lei et al. [22] employing a density functional-based tight binding (DFTB)

approach observed a strong influence of the excitation energy on the relax-

ation path taken and hence on the relaxation times. Using an excitation

energy of 5.0 eV, they observed that the C6−puckered CI is employed for

relaxation. The excited-state lifetime in this case was 1.050 fs. On the other

hand, excitation at 4.8 eV activates the channel through the C2−puckered

CI, with an excited-state lifetime of 1.360 fs.

In all cases the initial ππ∗ state is reported to change to an intermediate

nπ∗ state before reverting to the ππ∗ state and accessing the respective CI.

Accordingly, the authors state that the final transition back to the ground

state happens always from the ππ∗ state, even though previous studies re-

port the C6−puckered CI to be of nπ∗/gs character.

We mention for reason of completeness that Sobolewski, Domcke and cowork-

ers [23, 24], also located another type of CI involving 1σπ∗ states and hy-

drogen abstraction from the NH and NH2 groups, but this proposed decay

pathway will not be discussed further in the present work, where we focus

on the deexcitation processes involving 1ππ∗ and 1nπ∗ states.

To sum up, despite the fact that the time constants predicted by several

groups by using different methods are similar, the predominant relaxation

pathways obtained are different. Depending on the level of theory, either the

state character is preserved [21], leading to the C2-puckered CI, or it changes

to nπ∗ [15], leading to a decay via the C6-puckered CI. It remains unclear

which puckering motion is of major importance until dynamical simulations

at a more reliable level of theory become possible.

1.3 Base multimer excited states

In actual living cells, a nucleobase interacts with other bases within the

same nucleic acid polymer. The structure of nucleic acids allows for interac-

tion within the same strand via stacking and, in the case of double stranded

DNA, also for interactions between two strands via hydrogen bonding (base

coupling), see Fig. 1.6.

What is experimentally observed is that excess electronic energy relaxes
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(a) (b)

Figure 1.6: Basic assemblies of nucleobases: a)base stacking, b)base pairing

(picture taken from Ref.[2]).

by one or two orders of magnitude more slowly in DNA oligo- and polynu-

cleotides compared to the case of single nucleobases. Moreover, absorption

spectra closely resemble those of the building block monomers, apart from

the decrease of intensity, leading to the well known effect of hypochromism

[25]. In the case of single-stranded adenine homopolymers, both ultrafast

(≈ 1 ps) and more slowly decaying components are observed [7]. Middleton

et al. suggest in Ref. [2] that the fast and slow signal components cor-

respond to excitations in unstacked and stacked base regions, respectively.

The different decay pathways proposed for both stacked and unstacked DNA

single strands are summarized in Fig. 1.7.

The decay in unstacked base strands is hypothesized to occur via the

same pathways illustrated in the previous section for the single monomers:

relaxation along the ππ∗ states, with possible bifurcations to nπ∗ states and

intersystem crossings to triplet states.

The analogous decay behaviour observed for isolated bases and unstacked

single strands is reasonable and intuitive as, in the unstacked geometrical

configuration, single bases are assumed not to be correlated in any way to

each other.

On the other side, strands formed by stacks of two or more bases are ex-

cited to an exciton state. There is strong evidence [26], that regardless of

the length of the sequence, initial excitons trap to a common state that is
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Figure 1.7: Decay pathways for stacked and unstacked DNA single strands

(picture taken from Ref. [2]).

localized on just two bases. The exciton decays to an exciplex state in less

than 1 ps. The term exciplex/excimer stands for an excited dimer, and it

is generally understood to be formed by an electronically excited monomer

and a second unexcited one. The energy of the two monomers when bound

is lower than the energy of them separated. Here the terms indicate an

excited electronic state with strong charge transfer character. The decay of

excimer/exciplex states by charge recombination takes place in 3 − 200 ps

and may play a dominant role in the photostability of DNA by guaranteeing

that most excited states do not lead to deleterious reactions but instead

relax back to the electronic ground state.

Fig. 1.8 describes the simplest situation of the electronic interactions of

two identical chromophores (A and B) in terms of locally and charge transfer

excited states, depending on the relative position of the excited electron and

the corresponding hole. If they are both located on the same monomer, it is

the case of a locally excited state, while if the electron moves to a different

site, the system gets excited to a charge transfer state.

The wavefunction of the excited state has the general form
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Figure 1.8: Schematic illustration of the electronic interactions of identical

chromophores A and B in terms of localized and charge transfer excited

states (picture taken from Ref.[27]).

φ(exciplex) = c1Φ(A∗B) + c2Φ(AB∗) + c3Φ(A−B+) + c4Φ(A+B−) (1.1)

where A = B, c1 = c2, and c3 = c4 for excimers. Excimers and exciplexes

are, respectively, excited state complexes formed by two identical or two

different molecules. The first two terms correspond to locally excited states

and their interaction results in exciton states. At intermolecular separations

below 5−6 Å, orbital interactions come into play, mediating a mixing of the

locally excited states with the charge transfer states, described by the third

and fourth terms. It is thus important to distinguish whether the exciton

can be described as a linear combination of locally excited states, forming a

Frenkel exciton, or whether CT configurations also play a role. The first case

can be understood in terms of Frenkel exciton theory. In this framework a

model Hamiltonian H is written as the sum of Nmon isolated chromophore
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Hamiltonians Hm and a coupling term Vml:

H =

Nmon∑
m

Hm +
∑
m

∑
l>m

Vml. (1.2)

The singly excited states are described by:

Φa = φexa
∏
b6=a

φb (1.3)

where the chromophore a is in the excited state, while the others are in the

ground state. The wavefunction of the excitonic state is then written as a

linear combination of the wavefunctions of locally excited states:

Ψk(exciton) =
∑
a

ckaΦa. (1.4)

When there are strong orbital interactions between the different frag-

ments, Frenkel exciton theory is no longer sufficient and it is necessary to

explicitly include charge transfer configuration in the modeling.

Many models have been developed to investigate the exciton and charge

transfer features in the decay paths of DNA single strands. These models

perform very well in relation to experiments (see Ref. [8] for a relevant

example), but will not be discussed in the following as the current work is

focused on studies of single nucleobases.



Chapter 2

Theoretical background

2.1 Basic notions regarding photophysics in bio-

logical systems

A multitude of processes may occur when sunlight, filtered through the

Earth’s atmosphere, interacts with matter. The spectrum of solar radiation

striking the Earth spans from 100 nm to 106 nm, and can be divided into

the ultraviolet (UV) range (100 nm to 400 nm), visible range (400 nm to

700 nm) and infrared (IR) range (700 to 106 nm).

Molecular photophysical processes relevant for photobiology include absorp-

tion and emission of UV, visible or near-IR light, by molecules. The basic

principles of molecular photophysics can be clarified with the help of the

Jablonski diagram, named after the polish physicist Aleksander Jablonski.

It illustrates the electronic states of a molecule and the transitions between

them, see Fig. 2.1.

19
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Figure 2.1: Jablonski diagram representing energy levels and related mech-

anisms underlying absorption, fluorescence and phosphorescence spectra.

The singlet states S1 and S2 states, the triplet state T1 and the ground

state S0 involved in the transitions are depicted, including their vibrational

structure (picture taken from Ref. [28]).

The elctronic states are arranged vertically by energy and horizontally

by spin multiplicity. In the left part of the diagram three singlet states with

anti-parallel spin are shown: the singlet ground state (S0) and two higher

singlet excited states (S1 and S2). Singlet states are diamagnetic, as they

do not interact with an external magnetic field. The triplet state (T1) is the

elctronic state with parallel spins. Transistions between electronic states of

the same spin multiplicity are allowed. Transitions between states with dif-

ferent multiplicity are formally forbidden, but may occur due to spin orbit

coupling. Processes of this kind are called intersystem crossings. Superim-

posed on this electronic states are the vibrational states, which are of much

smaller energy.

In Fig. 2.1, solid arrows indicate radiative transitions occurring by ab-

sorption (violet, blue) or emission (green for fluorescence, red for phospho-
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rescence) of a photon. Dashed arrows represent non-radiative transitions.

Internal conversion is a non-radiative transition, which occurs when a vi-

brational state of higher electronic state is coupled to a vibrational state of

a lower electronic state. In the notation of, for example, S1,0, the first sub-

script refers to the electronic state (first excited) and the second one to the

vibrational sublevel (v = 0). In the diagram the following internal conver-

sions are indicated: S2,4 → S1,0, S2,2 → S1,0, S2,0 → S1,0, S2,0 → S0,0. The

dotted arrow from S1,0 → T1,0 is a nonradiative transition called intersystem

crossing, because it is a transition between states of different multiplicity.

Below the diagram sketches of absorption-, fluorescence- and phosphores-

cence spectra are shown.

When a molecule absorbs a photon of appropriate energy, a valence elec-

tron is promoted from the ground state to some vibrational level in the

excited singlet manifold. The process is extremely rapid (≈ 1 fs = 10−15

s), and this implies that the nuclei of the molecule may be considered as

fixed during the transition, because of their much larger mass, and that the

Born-Oppenheimer approximation (which will be introduced in the follow-

ing) is valid. After light absorption, the excited molecule ends up at the

lowest vibrational level of S1 (S1,0) via vibrational relaxation and internal

conversion, and this radiationless process takes place in about 1 ps (1 ps

= 10−12 s).

In Fig. 2.1, a sketch of an absorption spectrum consisting of two bands is

shown: in the condensed phase, broad absorption bands are observed, rather

than the sharp transitions seen for atoms or molecules in the gas phase.

This is due to the phenomena known as homogeneous and inhomogeneous

broadening. Homogeneous broadening arises from the many vibrational and

rotational states, which are all superimposed on the electronic transitions

preventing the observation of sharp transitions, while inhomogeneous broad-

ening arises from solvent effects.

The strength of the lowest optical transition is very often expressed in terms

of the dimensionless oscillator strenghth f :

f = 1.44 · 10−19

∫ ∞
0

ε(σ)dσ (2.1)
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where ε is the molar extinction coefficient connected with the lowest

electronic transition, σ is the wavenumber and the integral is over the whole

range of wavenumbers of the absorption band. For strongly allowed tran-

sitions f ≈ 1. The oscillator strength has a direct relationship with the

electronic transition dipole moment ~µeg, which couples the wavefunctions of

the ground (Ψg) and excited (Ψe) electronic states. It reads

~µeg =

∫
Ψ∗e(r) · ~µ ·Ψg(r)d3r, (2.2)

with ~µ = −er, and the integration takes place over the spatial coordinate r.

This quantity is a measure of the dipole moment associated with the shift of

a charge that occurs when electrons are redistributed in the molecule upon

excitation. The oscillator strength is proportional to the magnitude of the

transition dipole moment, i.e.

f ∝ |~µeg|2. (2.3)

Moving to the central inset of Fig. 2.1, the process of fluorescence is de-

picted. The lowest vibrational level of S1 is the starting point for fluores-

cence emission to the ground state S0, non-radiative decay to S0 (internal

conversion), and transition to the lowest triplet state (intersystem cross-

ing). Fluorescence takes place on the nanosecond timescale (1 ns = 10−9 s),

and, depending on the molecular species, its duration amounts to 1 − 100

nanoseconds. It is clear from the Jablonski diagram that fluorescence always

originates from the same level, irrespective of which electronic energy level is

excited. The emitting state is the zeroth vibrational level of the first excited

electronic state S1,0. It is for this reason that the fluorescence spectrum is

shifted to lower energy than the corresponding absorption spectrum (Stokes

shift). The Stokes shift can be enhanced by solvent interactions. We can

also conclude from the sketched spectra in Fig. 2.1 that the vibrational fine

structure in a fluorescence spectrum reports on vibrations in the ground

state, and vibronic bands in an absorption spectrum provide information on

vibrations in higher electronic excited states.
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Figure 2.2: Franck Condon principle applied to a two-dimensional poten-

tial energy diagram. The potential wells show favored transitions between

vibrational sublevels ν = 0 and ν = 2 both for absorption (blue arrow)

and emission (green arrow) (picture taken from Wikipedia: Franck Condon

Principle, created by Mark M. Somoza).

Another factor that has to be considered in fluorescence spectroscopy is

the Franck-Condon factor. If we look at the Jablonski scheme in Fig. 2.1,

it can be seen that the fluorescence transition S1,0 → S0,0 is not the most

intense one. The Franck-Condon principle states that the most intense vi-

bronic transition is from the vibrational state in the ground state to that

vibrational state in the excited state vertically above it (Fig. 2.2, blue ar-

row). The schemes (for absorption and emission) in Fig. 2.2 are simplified

two-dimensional potential energy diagrams. Since the excited state is differ-

ent from the ground state, a displaced minimum nuclear normal coordinate

can be expected. It should be noted further that the time to reach the ex-

cited state is so short (femtoseconds) that the nuclei positions are virtually

unchanged during the electronic transition. In the vibronic wavefunctions,
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the nuclear coordinates can then be uncoupled from the electronic coor-

dinates (Born-Oppenheimer principle). The transition dipole can then be

factorized into an electronic and a nuclear part according to

~µeg =

∫
Ψ∗e(r) · ~µ ·Ψg(r)d3relect

∫
Ψv(R) ·Ψv(R)d3Rnuc. (2.4)

The second integral is the so-called Franck-Condon vibrational overlap,

which also determines the strength of the electronic transition (or oscillator

strength). In the fluorescent part of the scheme in Fig. 2.1, the second

and third vibrational transitions (S1,0 → S0,1 and S1,0 → S0,2) have larger

Franck-Condon factors than the one between fundamental vibrational wave-

functions S1,0 → S0,0.

In Fig. 2.1, the triplet state is also drawn, from which the process of

phosphorescence arises. Once in a different spin state, electrons cannot relax

into the ground state quickly: they will reside for a very long time there

(from microseconds to seconds) before decaying to the ground state. This is

due to the spin-forbidden transitions involved in the (excited) singlet-triplet

and triplet-singlet (ground state) transitions. As these transitions occur very

slowly in certain materials, absorbed radiation may be re-emitted at a lower

intensity and long-lived phosphorescence from this state can be observed.

Because of its long lifetime, the triplet state of an aromatic molecule is

the starting point for photochemical reactions.

2.2 Born-Oppenheimer approximation and coni-

cal intersections

The theoretical treatment of a molecular system is always based on the

selection of an appropriate computational method, with the final goal of

solving the Schrödinger equation for the whole system. Because of its com-

plexity, the exact solution of the Schrödinger equation is not possible for

most of the molecules of interest. However, the problem can be simplified

by applying procedures leading to satisfying approximate solutions. A basic

approximation on which all quantum chemistry methods are founded is the

Born-Oppenheimer approximation, which will be briefly introduced in the
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following.

A system of N atoms located at ~R = (R1, R2, ..., Rl, ..., RN ), with n elec-

trons located at ~r = (r1, r2, ..., ri, ...rn) is described by the time-dependent

Schrödinger equation

Ĥφ(~r, ~R; t) = i~
∂

∂t
φ(~r, ~R; t) (2.5)

with the total Hamiltonian

Ĥ(~r, ~R) = T̂n(~R) + T̂e(~r) + V̂nn(~R) + V̂ne(~r, ~R) + V̂ee(~r), (2.6)

with

T̂ (~R) = −1

2

N∑
I=1

∇2
I

MI
(2.7)

being the sum of the kinetic energy of the nuclei,

T̂e(~r) = −1

2

N∑
I=1

∇2 (2.8)

being the sum of kinetic energy of the electrons,

V̂nn(~R) =
N∑
I=1

N∑
J>1

ZiZj

|~Ri − ~Rj |
(2.9)

being the internuclear repulsion,

V̂ne(~r, ~R) = −
N∑
I=1

n∑
i=1

ZI

|~Ri − ~RI |
(2.10)

being the electron-nuclear attraction,

V̂ee(~r) =

n−1∑
i=1

n∑
J>1

1

|~ri − ~rj |
(2.11)

being the interelectronic repulsion.

MI and ZI denote the mass and atomic number of the I-th nucleus. The

nabla operators ∇I and ∇i act on the coordinates of I-th nucleus and i-th

electron, respectively. Defining the partial electronic Hamiltonian for fixed

nuclei (i.e. the clamped-nuclei part of Ĥ) as

Ĥel = T̂e(~r) + V̂nn(~R) + V̂ne(~r, ~R) + V̂ee(~r) (2.12)
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we rewrite the total Hamiltonian as

Ĥ(~r, ~R) = T̂n(~R) + Ĥel(~r, ~R). (2.13)

We assume that the solutions of the time-independent (electronic) Schrödinger

equation,

Ĥel(~r, ~R)Φk(~r, ~R) = Ek(~R)Φk(~r, ~R), (2.14)

are known for the clamped nuclei, with a discrete spectrum of Ĥel(~r, ~R) and

orthonormalized eigenfunctions∫ +∞

−∞
Φ∗k(~r,

~R)Φl(~r, ~R) ≡ 〈Φk|Φl〉 = σkl. (2.15)

The total wavefunction φ can be expanded in terms of the eigenfunctions

of Hel since these form a complete set, i.e.,

φ(~r, ~R; t) =
∑

Φl(~r, ~R)χl(~R, t) (2.16)

Insertion of this so-called Born-Oppenheimer ansatz into the time-dependent

Schrödinger equation (2.13), followed by multiplication from the left by

Φ∗k(~r,
~R) and integration over the electronic coordinates, leads to a set of

coupled differential equations

[T̂n(~R) + Ek(~R)]χk +
∑
l

Ĉklχl = i~
∂

∂t
χk, (2.17)

where the coupling operator Ĉkl is defined as

Ĉkl ≡< Ψk|T̂n(~R)|Ψl > −
∑
l

~2

Ml
< Ψk|∇I |Ψl > ∇I . (2.18)

The diagonal term Ckk represents a correction to the adiabatic eigenvalue

Ek of the electronic Schrödinger equation, Eq. (2.14).

The adiabatic approximation is obtained by taking into account only the

diagonal terms, Ckk ≡< Ψk|Tn(~R)|Ψk >, which results in a complete decou-

pling

[T̂n(~R) + Ek(~R) + Ĉkk(~R)]χk = i~
∂

∂t
χk (2.19)

of the exact set of differential Eqs. (2.17), (2.18). This implies that the nu-

clear motion proceeds without changing the quantum state of the electronic
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subsystem during time evolution and, correspondingly, the wavefunction

(2.16) is reduced to a single term

φ(~r, ~R; t) ≈ Ψk(~r, ~R)χk(~r, ~R), (2.20)

being the direct product of an electronic and a nuclear wavefunction. The

last simplification consists in also neglecting the diagonal coupling terms

[T̂n(~R) + Ek(~R)]χk = i~
∂

∂t
χk (2.21)

which defines the Born-Oppenheimer approximation. The Born-Oppenheimer

approximation can be applied to a considerable number of physical situa-

tions. However, many theoretical and experimental studies have revealed

cases where the Born-Oppenheimer approximation fails, meaning that the

total wavefunction is not well approximated by a simple product of an elec-

tronic eigenfunction with a vibrational wavefunction (the eigenfunction of

the nuclear part of the Schrödinger equation). A particularly relevant fail-

ure is encountered in the vicinity of PES crossings (for degenerate or nearly

degenerate electronic states). There, molecular motion is determined not

only by the PES of the given state but depends also on the topology of the

(almost) degenerate PES.

A potential energy surface is the result of solving equation (2.14) for

many nuclear configurations, leading to the electronic potential energy as a

function of the nuclear coordinates.

In a diatomic molecule there is only one nuclear coordinate, the interatomic

distance RAB. In this case, the potential energy ‘surface’ is more accurately

termed a potential energy curve. It describes the potential energy of the

system, U(RAB), as the two atoms are brought closer to, or moved away

from each another.

The concept can be expanded to a tri-atomic molecule such as water

where we have two O-H bonds and H-O-H bond angle as variables on which

the potential energy of a water molecule will depend. The two O-H bonds

can be safely assumed to be equal. Thus, a PES can be drawn mapping

the potential energy E of a water molecule as a function of two geometrical

parameters, q1 = O-H bond length and q2 = H-O-H bond angle. The lowest
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point on such a PES will define the equilibrium structure of a water molecule.

In Fig. 2.3 a water molecule PES is depicted, including the energy minimum

corresponding to the optimized molecular structure for water- O-H bond

length of 0.0958 nm and H-O-H bond angle of 104.5◦.

Figure 2.3: PES for a water molecule. The figure shows the energy minimum

corresponding to the optimized molecular structure for water: O-H bond

length of 0.0958 nm and H-O-H bond angle of 104.5◦ (picture taken from

Wikipedia: Energy profile (chemistry), created by AimNature)).

When computing multiple potential energy surfaces for a system, for

instance, the ground state and electronic excited states, the possibility of

the surfaces having the same value of potential energy, U(R), occurs. This

might be the case, for example, in which a minimum on the upper surface

comes into the region of a maximum on the lower surface. What happens at

this point is not of straightforward interpretation, a simplified mathematical

treatment is given in the following.

The non-crossing rule was quantitatively formulated in 1929 by von Neu-

mann and Wigner [29], proving the theorem put forward earlier by Hund

[30], and stating that potential energy curves corresponding to electronic

states with the same symmetry properties cannot cross.
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Figure 2.4: An avoided energy-level crossing in a two-level system subjected

to an external magnetic field (picture taken from Wikipedia: Adiabatic

theorem).

Von Neumann and Wigner gave the mathematical proof for Hund’s ar-

gument, given here in a contracted form.

Whenever two energy levels E1 and E2 come close to each other, the cou-

pling V between the corresponding states is not negligible. The 2×2 matrix

Hamiltonian describing the system is given by

H =

∣∣∣∣∣E1 V

V E2

∣∣∣∣∣ . (2.22)

If the two energies depend on some parameter, e.g. in an approximately

linear way, there may be a point where they are degenerate. The eigenvalue

equation

∣∣∣∣∣E1 − E V

V E2 − E

∣∣∣∣∣
∣∣∣∣∣c1

c2

∣∣∣∣∣ = 0 (2.23)

leads to eigenvalues of the Hamiltonian which will not become degenerate,

but will have a hyperbolic shape where the minimal energetic distance is

2V . This is called an avoided crossing. In the (avoided) crossing region, the
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two states (e.g. one photonic and the other electronic excitation) become

strongly mixed.

Thus far, we have been concerned with potential energy surfaces derived

within the Born-Oppenheimer approximation, also known as the adiabatic

approximation. Hence, such surfaces are referred to as adiabatic potential

energy surfaces. A surface where actual intersections are substituted for the

avoided crossings is termed a diabatic surface. If the nuclei are assumed to

move slowly, then they are likely to follow a single, adiabatic energy surface,

even in the region of an avoided crossing. If the nuclei have sufficient velocity,

then the Born-Oppenheimer approximation breaks down and the nuclei may

effectively “ignore” the gap in the avoided crossing and simply cross over

to the other adiabatic surface, adopting that configuration. This is termed

non-adiabatic or “diabatic”.

Conical intersections are interesting as they exist between adiabatic surfaces,

where we would usually expect an avoided crossing. The distortion observed

at a conical intersection is a consequence of the breakdown of the Born-

Oppenheimer approximation. At a conical intersection, one can distinguish

two directions, X1 and X2, such that if the energy in the subspace (the

branching space) of these two geometric variables changes (combinations of

the bond lengths, angles, etc.), the potential energy would have the form of

a double cone in the region of the degeneracy. The remaining n–2 directions

define the crossing surface (the intersection space) in which the energies of

ground and excited states are equal. A movement in the plane (X1,X2) from

a point on the intersection will result in the degeneracy being lifted. The

two vectors X1 and X2, defined as

X1 =
∂(E1 − E2)

∂q
(2.24)

X2 = 〈ct1|
∂H

∂q
|c2〉, (2.25)

correspond to the gradient difference vector and non-adiabatic coupling vec-

tor, respectively, see Fig. 2.5.



31

Figure 2.5: A conical intersection as described by a double cone geometry

using two variables, X1 and X2 (picture taken from: iupac.org, Conical

intersections).

The main feature of a conical intersection is its non-adiabatic nature:

it is the breakdown of the Born-Oppenheimer approximation that allows

non-adiabatic electronic transitions to take place. Clearly, conical inter-

sections facilitate easier transitions compared to avoided crossing, allowing

radiationless decay.

2.3 Theory of 2D electronic spectroscopy

Linear spectroscopy measures the first-order polarization induced in a

sample by a single interaction with the incident electric field. The most

basic method of linear absorption spectroscopy involves a weak light-matter

interaction with one primary incident radiation field, and gives a picture

of the first excited state manifold of the sample, projected onto a single

frequency axis. Transition dipole strengths and excitation energies can be

probed, but there is no explicit information about coupling between different

excitons or excited state absorption.
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In complex systems, where many interacting degrees of freedom are present,

the interpretation of linear spectra has to deal with a number of ambiguities.

Two representative examples are given in the following.

When an absorption spectrum shows two peaks (see Fig. 2.6), a reasonable

question is if these arise from different, non-interacting molecules, or are

coupled quantum states of the same molecule. No answer can be obtained

from linear absorption spectroscopy, since it cannot resolve couplings or

spectral correlations directly, see Fig. 2.7.

Figure 2.6: Absorption spectrum with two peaks (picture taken from:

Tomakoff Group, Nonlinear and Two dimensional Spectroscopy Notes).

Figure 2.7: Left: excitation of different, noninteracting molecules. Right:

coupled quantum states of the same molecule (picture taken from: Tomakoff

Group, Nonlinear and Two dimensional Spectroscopy Notes).

Another ambiguous situation one could have to face is the interpretation

of broad lineshapes. Distinguishing whether a broadened spectrum comes



33

from a homogeneous lineshape broadened by fast irreversible relaxation or

an inhomogeneous lineshape arising from a static distribution of different

frequencies (see Fig. 2.8) is not an easy task, because linear spectra cannot

uniquely interpret line-broadening mechanism, or decompose heterogeneous

behavior in the sample.

Figure 2.8: Homogeneous (left) and inhomogeneous broadening (right) (pic-

ture taken from: Tomakoff Group, Nonlinear and Two dimensional Spec-

troscopy Notes).

Spectroscopy is the primary tool for describing the molecular structure,

interactions and relaxation, the kinetics and the dynamics of such systems.

Nonlinear spectroscopy can be used to correlate different spectral features.

This technique presents spectroscopic data as a map of spectral interactions

between two frequencies, ω1 and ω2. They can be thought of as excitation

and detection frequencies, respectively.

Two dimensional electronic spectroscopy (2DES) probes the third order po-

larization generated by the interaction of three carefully timed laser pulses

with the sample of interest. First, a broadband pump pulse interacts with

the sample, exciting a quantum mechanical coherence between the ground

and first excited states. After a time t1, frequently called the coherence

time, a second pump pulse interacts with the sample, creating a population

in the ground or excited electronic state. The time t2 before the third pulse

arrives is often referred to as the population time, and it is here that many

of the interesting dynamics such as energy and charge transfer occur.

The probe pulse creates a second coherence in the sample, which leads

to signal emission at a time t3 after the probe pulse, based on one of two

major processes. The first of these, in which the phase progression reverses

in comparison to the first coherence, is called the “rephasing” signal or

“photon echo”. The other follows a free-induction decay along the original
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phase progression and is called a “non-rephasing” signal or sometimes a

“virtual echo”. To reconstruct a true absorptive 2D spectrum, both of these

signals must be obtained and properly combined [31, 32, 33]. The real part of

the complex 2DES spectrum will give the absorptive part and the imaginary

part produces a dispersive component.

2.3.1 Polarization and density matrix

The theory applied to 2D spectroscopy is generally a mixed quantum-

classical framework, in which the incident fields are treated classically, but

the material system is described quantum mechanically. The treatment of

the bath and the system-bath coupling usually involves averaging over bath

degrees of freedom and the system is described by a density matrix ρ. The

diagonal elements ρii represent populations, while the off-diagonal elements

ρij give the coherences.

In situations of weak excitation, the time dependence of the density matrix

may be expanded perturbatively in powers of the incident electric field:

ρ(t) ≡ ρ(0)(t) + ρ(1)(t) + ρ(2)(t) + ... (2.26)

where ρ(n)(t) represents the n−th order contribution of the electric field.

The n−th order density matrix cannot be measured directly. However, it

can be probed by measuring the n−th order macroscopic polarization, which

is related to the expectation value of the dipole operator µ:

P (n)(r, t) = Tr[µρ(n)(r, t)] (2.27)

The first order polarization is responsible for linear optical effects. The

second order polarization P (2) is involved with nonlinear properties in bire-

fringent media, such as sum and difference frequency generation. It can

be shown that the signal contribution from P (2) vanishes in isotropic me-

dia. Therefore, the next term of interest after the linear optics is P (3), the

third order polarization. It is this order that is probed in 2D electronic

spectroscopy and other four-wave mixing spectroscopies, such as transient

absorption spectroscopy. In the following P (3)(r, t) will be the quantity of

interest.
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In the time domain, the third order polarization is a time convolution of

the incident electric fields with the third order material response function

R(3)(t3, t2, t1) [34]:

P (3)(r, t) = N

∫ ∞
0

dt3

∫ ∞
0

dt2

∫ ∞
0

dt1R
(3)(t3, t2, t1)E3(r, t− t3) (2.28)

E2(r, t− t3 − t2)E1(r, t− t3 − t2 − t1)

where R(3) is the third order response function given by

R(3)(t3, t2, t1) =

(
i

}

)3

〈Vν4|G(t3)Vν3G(t2)Vν2G(t1)Vν1|ρ0〉. (2.29)

The response function describes the full time-dependent, microscopic state

of the system for any set of three input pulses arriving at times ti. The

system is initially in the equilibrium state described by the density matrix

ρ0. The dipole operator Vνi modifies the density matrix following interaction

with the i-th pulse, and the field-free molecular time evolution for an interval

ti is given by the Green’s function G(ti). The final interaction Vν4 is the

signal mode giving the final response.

We assume delta function pulses, such that the time intervals are well defined

and well-ordered, and the pulses are much shorter than the investigated

molecular dynamics. Then, the incoming electric field can be expanded in

modes according to

E(r, t) =
∑
j

εj(t) exp(ikj · r− iωjt) + exp(−ikj · r + iωjt), (2.30)

where ε(t) is the temporal pulse envelope and the summation index j is over

the pulse number (input pulses 1-3 and signal s). For the visible and near-IR

wavelengths used in 2DES experiments, the pulse wavelengths (400-800 nm)

are much lower than the sample size and the approximation kjr� 1 holds.

Therefore, in 2DES experiments, the signals are highly directional, and the

signals related to specific energy pathways are chosen through a phase-

matching condition. The response function can then be expanded as

R(3)(t3, t2, t1) =

(
i

}

)3∑
l

R3
l (t3, t2, t1) exp(ikl · r− iωlt) (2.31)
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The Rl are the response function components associated with each pathway

in the signal. Because there are three input pulses, and each pulse can

interact with either the ket or the bra (positive or negative frequency), there

are 23 = 8 different signals over which the index l iterates. The phase and

frequency matching conditions for these are

kl = ±k1 ± k2 ± k3, (2.32)

ωl = ±ω1 ± ω2 ± ω3 (2.33)

The cases in which all the frequency components have the same sign are

highly oscillatory and do not contribute largely to the signal and can be ne-

glected by employing the rotating wave approximation. The dominant sig-

nals of interest in 2DES are usually referred to as the photon echo, or rephas-

ing, signal (ks = −k1 +k2 +k3) and the non-rephasing (ks = +k1−k2−k3).

The terminology comes from the fact that the phase evolves at conjugate

frequencies during the two coherence periods in the rephasing signal but not

in the non-rephasing. Thus the former is able to reform into an “echo”, while

phase evolution in the latter can only continue in the same direction. Con-

tributions to the signal in directions that do not match the phase-matching

condition will vanish due to a randomness in the phase [35].

The mathematical notation necessary to describe the various signal path-

ways associated with the field-matter interactions and density matrix field-

free evolution periods can get very complicated. In double sided Feynman

diagrams we find a simple tool for graphically representing the various path-

ways of the time evolution of the density matrix [35, 36].

The Feynman diagrams for the rephasing and non-rephasing pathways are

shown in Fig. 2.9 along with the corresponding energy level diagrams. These

include contributions from ground state bleach (GSB), excited state emis-

sion (ESE) and excited state absorption (ESA), as well as diagrams related

to features with common ground states (CGS) or energy transfer (ET).

For a detailed explanation of the formalism underlying double sided Feyn-

man diagrams, see Ref. [34].

In the general case of pathways involved in 2DES, the first pulse will

interact with either the ket or the bra. A single pulse interaction places
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Figure 2.9: Double-sided Feynman diagrams for the rephasing and non-

rephasing pathways. The energy levels below show the pulse interactions

corresponding to each Feynman diagram. Dotted (solid) lines denote in-

teractions with the ket (bra) (picture taken from Ref. [37]).
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the sample in a coherent superposition state, represented by an off-diagonal

element in the density matrix ρij , which oscillates at the frequency of ab-

sorption during the coherence time t1 as illustrated in Fig. 2.10.

Figure 2.10: A diagram of the density matrix elements involved during co-

herence and population times for a rephasing signal (picture taken from Ref.

[37]).

This coherence decays rapidly due to dephasing processes. After the

free evolution with the Green function G(t1), the second pulse interaction

creates a population in either the ground or excited state, corresponding to

a diagonal element in the density matrix ρii. The time between the second

and third pulses (t2) is often called the “population time”. It is during

this long-lived period that most of the interesting system dynamics occurs,

including for instance energy transfer and charge separation. The third pulse

again creates a coherence in the sample. Depending on the frequency of the

interaction and available manifold of states, this coherence can be between

the ground and first excited state or between the first and second excited

state, in the case of excited state absorption. The signal field radiates at

a time t3 after the third pulse in a phase matched direction determined by

the pathway involved.



39

2.3.2 2D spectra

The 2D spectrum contains information about both coherence periods,

t1 and t3. Generally, t1 is scanned in small steps and Fourier transformed

to a frequency axis ω1. This axis contains information about the transition

to the first excited state and can be considered as a label of the initial

excitation frequency. In most cases, the delay t3 is measured directly in

the frequency domain ω3 to facilitate easier data collection. ω3 contains

frequency information about the second coherence, which is related to the

frequency of the third pulse, which probes the state of the sample following

the dynamics during the t2 period. Therefore, the 2D spectrum acts as a

correlation map, wherein the ω1 axis can be thought of as the “excitation

axis” and ω3 is considered the “detection axis”. The t2 delay is fixed for

a given spectrum. So, each 2D spectrum is like a snapshot of the sample

state at a specific value of t2. To analyze the kinetics, several spectra must

be taken for different values of t2. A complete scan over t2 will give a 3D

spectrum S(ω1, t2, ω3).

To illustrate the types of information available in 2DES data, a cartoon

of a simple 2D spectrum is shown in Figure 2.11 along with energy level

diagrams indicating the transitions involved in the case of a pair of coupled

three-level systems. For cases in which the sample absorbs and emits at the

same frequency, a peak shows up along the diagonal, while energy transfer

and electronic coupling show up as a cross-peak below the diagonal. Cross-

peaks above the diagonal also occur but have generally lower amplitude due

to the low probability of uphill energy transfer in most coupling schemes.

Excited state absorption is shown as a negative amplitude peak shifted from

the diagonal by the anharmonicity. The spectrum also gives a direct measure

of the homogeneous and inhomogeneous linewidths as the antidiagonal and

diagonal peak widths, which can be used to obtain the frequency-frequency

correlation function for a given value of t2 [38].

To analyze the sample kinetics or any other population dynamics, a series

of 2D spectra are acquired, each for a different value of t2: in this way a

complex 3D array of data S(ω1, t2, ω3) is obtained. Each 2D spectrum is a

frequency-frequency correlation map: given that a chromophore is excited
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Figure 2.11: Representation of a 2DES spectrum and associated energy level

diagrams for a pair of coupled three-level systems (picture taken from Ref.

[37]).

at a frequency ω1, the 2D spectrum shows directly the distribution of fre-

quencies ω3 at which the sample emits or absorbs after a time t2.

The information content of a transient absorption (TA) experiment is the

same as that of a 2D spectrum integrated over the excitation (ω1) axis.

Analysis of transient absorption (or pump probe) spectra is one of the main

points we are going to discuss, among the results presented in this work, see

Chapter 5. 2DES is an ideal method for the study of condensed phase sys-

tems, including biological complexes in solution, in which the local solvent or

protein environment introduces a large degree of inhomogeneous broadening.

The technique can reveal homogeneous lineshapes beneath inhomogeneously

broadened spectra to provide insight into the physical nature of the broad-

ening. It can also capture couplings, energy and charge transfer, and other

rapid spectral dynamics with high time resolution [39].



Chapter 3

Computational methods

3.1 Quantum chemistry calculations

The past few decades have witnessed the development of a hierarchy of

quantum chemical methods that can be used to investigate the structures

and properties of molecules and solids [40, 41].

Several methods exist with completely different approaches to the solution

of the main problem in quantum chemistry, which is the integration of the

Schrödinger equation for the considered system. Since an exact solution

of the problem is impossible for almost any kind of system, approxima-

tion methods are required, which allow to determine electronic structure,

to optimize the geometry of molecules and to calculate excitation ener-

gies/frequencies and charge distributions.

Properties and reactions in the electronic ground state can be studied rou-

tinely by computation: high-level ab initio methods, such as the coupled

cluster theory and the Møller–Plesset perturbation theory [42, 43], give ac-

curate predictions for ground-state properties, while fast semiempirical ap-

proaches are used for treating large systems [44, 45].

Because of its favorable cost-performance ratio, density functional theory

(DFT) is used widely and successfully in studies of chemical reactions [46],

and this is the case of the current investigation on nucleobases as well.

41
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3.1.1 Time-Dependent Density Functional Theory (TDDFT)

Generally, two categories of quantum chemical approaches exist for the

calculation of excited states. The first kind is the wave-function-based ap-

proach, such as the Configuration Interaction (CI), the Multi-Configurational

Self-Consistent Field (MCSCF) and the Complete Active Space Perturba-

tion Theory of second order (CASPT2) method [47].

When the number of electrons increases, the wavefunctions become much

more complicated and will cost more computing time. Electron-density-

based methods become then more convenient, such as time-dependent den-

sity functional theory (TDDFT), where the calculation makes use of func-

tionals of the electronic density, and the approximation is due to the proper

estimation of the functionals.

TDDFT methods can be very accurate for little computational cost. In re-

cent years, they have been widely used to deal with photochemical properties

from small to medium molecules and even large biological systems. In this

subsection, we will focus on this popular class of computational methods for

excited states.

In density functional theory, the electron density of a molecule is used to

determine the energy and derivative properties of molecules. The electron

density only depends on three spatial coordinates. It is a function with three

variables: x-position, y-position, and z-position of the electrons, ρ(x, y, z).

The energy of the molecule is then a functional of the electron density:

E = F [ρ(x, y, z)] (3.1)

So there is a one-to-one mapping between the electron density of a sys-

tem and the energy. We can get considerable information about a molecule

if we can determine its electron density, which is the fundamental quantity

on which density functional theory is based. Compared to ab initio meth-

ods, the electron density function is only dependent on three coordinates,

independent of the system size. This approach is much faster than ab initio

methods.

However, despite its widespread popularity and success, TDDFT still has
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limitations in its present form. For instance, the approach fails for strongly

correlated systems and underestimates the barriers of chemical reactions and

charge transfer excitation energies [48].

The density functional theory is based on the Thomas–Fermi model [49]

(developed by Thomas and Fermi in 1927) and the Hohenberg-Kohn theorem

[50, 51], set up in 1964 by Hohenberg and Kohn. The first Hohenberg-Kohn

theorem states that the ground state electron density uniquely determines

the potential and thus all properties of the system, including the many-

body wave function. The second Hohenberg-Kohn theorem guarantees the

existence of a variational principle for electron densities. Kohn and Sham

introduced the Kohn-Sham orbitals and developed the Kohn-Sham theory,

bringing the density functional theory into a more practical version. In the

Kohn-Sham theorem, the total energy E[ρ] is expressed as

E[ρ] = Ts[ρ] + J [ρ] + Ene[ρ] + EXC [ρ], (3.2)

where Ts[ρ] is the kinetic energy of a non-interacting system, J [ρ] is the clas-

sical electron-electron repulsive (Coulombic) energy, Ene[ρ] is the nuclear-

electron attraction energy. The exchange-correlation term EXC [ρ] contains

the exchange and correlation effects. In density functional theory, all the

approximations lie in the exchange-correlation term. The Kohn-Sham equa-

tion is given by

ĤKSΦKS
i = εiΦ

KS
i (3.3)

where the Hamiltonian ĤKS can be expressed as:

ĤKS(r) = −1

2
∇2 + VKS(r) (3.4)

where

VKS(r) = Vne(r) +

∫
ρ(r′)

r− r′
dr′ + VXC(r) (3.5)

and VXC [r] is the exchange-correlation term. Equation (3.3) is limited to

time-independent systems. The Runge-Gross Theorem [52] is an analogous

time-dependent version of the first Hohenberg-Kohn theorem. It states that

two external potentials v(r1, t) and v(r2, t), which differ by more than a
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time-dependent constant C(t), result in two different electron densities, that

is:

v(r1, t) 6= v(r2, t) + C(t)→ ρ(r1, t) 6= ρ(r2, t). (3.6)

So there still exists a unique relationship between time-dependent potentials

V (r, t) and time-dependent densities ρ(r, t). Therefore the property of a

system can be written as a functional of the time-dependent density. The

Runge-Gross theorem is the rigorous mathematical basis of TDDFT. This

is the first step for the extension to the time domain. The next step is the

existence of a time-dependent variational principle that is analogous to the

second Hohenberg-Kohn theorem [53, 54].

If the wave function Ψ(r, t) is the solution of the time-dependent Schrödinger

equation,

i
∂

∂t
Ψ(r, t) = Ĥ(r, t)Ψ(r, t), (3.7)

it is the stationary point of the action integral

A =

∫ t1

t0

dt〈Ψ(t)|i ∂
∂t
− Ĥ(t)|Ψ(t)〉. (3.8)

According to the Runge-Gross theorem, the action integral can be written

as a functional of the time-dependent density:

A[ρ] =

∫ t1

t0

dt〈Ψ[ρ](r, t)|i ∂
∂t
− Ĥ(r, t)|Ψ[ρ](r, t)〉. (3.9)

To derive the time-dependent Kohn-Sham equation, a time-dependent non-

interacting reference system exists according to van Leeuwen [54]. The time-

dependent Kohn-Sham equation is written as

i
∂Ψi(r, t)

∂t
=

(
−1

2
∇2
i + v(r, t) +

∫
d3r′

ρ(r′, t)

|r− r′|
+
δAXC [ρ]

δρ(r, t)

)
Ψi(r, t)

(3.10)

In this case, the AXC part contains all the exchange and correlation effects.

There are different approximations for this functional. The DFT theory is

extended to the time-dependent domain and developed to time-dependent
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density functional theory (TDDFT). Using TDDFT in linear response (de-

riving the linear response of the time-dependent Kohn-Sham equation) al-

lows us to obtain useful information, such as excitation energies and oscil-

lator strengths of excited states.

TDDFT has become one of the most popular quantum chemical tools to

calculate excited-state properties of medium-sized or even large biological

molecules from first principles. While accurate high-level calculations such

as CASPT2 and CASSCF employing large active spaces are tedious and time

consuming, the TDDFT calculation can reach the accuracy of sophisticated

quantum chemical methods with moderate computational cost. However, as

we already mentioned, there are shortcomings in TDDFT. For instance, the

choice of the right exchange-correlation functional for the given excited state

property is crucial. As an example, the hybrid functional B3LYP is unsuc-

cessful in some applications: for instance, the lack of long range correlation

causes the failure of the approach for treating charge transfer (CT) problems.

In the present studies the TDDFT implementation in the GAUSSIAN

quantum chemistry program package has been applied. The functional

M062X has been used for the TDDFT calculations.

The M06-2X and CAMB3LYP functionals have been chosen for the purposes

of the present study because they perform reasonably well in linear response

TDDFT calculations for molecular clusters. In particular, they avoid un-

derestimation of the energies of the states involved in charge-transfer tran-

sitions, and do not predict spurious charge- transfer transitions to occur at

low energies [55].

3.1.2 Basis sets

Given the calculation method, a basis set has to be chosen to optimally

approximate the wavefunction. It is composed of a set of functions, which

are linearly combined to approximate molecular orbitals.

A good description is given by Slater-type orbitals (STOs):

R(r) = Nrn−1e−ζr (3.11)
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where n is the quantum number, N is the normalizing constant, r is the dis-

tance of the electron from the atomic nucleus, and ζ is the constant related

to the effective charge of the nucleus.

As they decay exponentially with the distance from the nuclei, STOs accu-

rately describe the long-range overlap between atoms, and reach a maximum

at zero, well describing the charge and spin at the nucleus. Due to compu-

tational difficulties in realizing them, approximations as linear combination

of Gaussian orbitals (GTOs) are more convenient and are mostly chosen for

the actual calculations. Hence, in fact, we have

R(r) = Brle−αr
2

(3.12)

where l is the angular momentum, and α is the orbital exponent. Since it is

easier to calculate overlap and other integrals with Gaussian basis functions,

this leads to a huge computational advantage.

There are hundreds of basis sets composed of GTOs, the smallest are called

minimal basis sets, and they are typically composed of the minimum number

of basis functions required to represent all the electrons on each atom. The

most common ones are called STO-nG, where n is the number of Gaussian

primitive functions comprising a single basis function. Correlation consis-

tent basis sets (CCBSs) are also used, since they are designed to converge

to the complete basis set (CBS) limit. Basis sets of this kind are cc-pVNZ,

where N=D,T,Q,5,6,... (D=double, T=triples, etc.). The “cc-p” stands

for “correlation-consistent polarized” and the “V” indicates that they are

valence-only basis sets. The most common extension to basis sets is the

addition of polarization functions, denoted by a ∗. An improvement of the

accuracy also could be reached by making use of “augmented” basis sets,

i.e., by using very shallow Gaussian basis functions, which more accurately

represent the tail portion of the atomic orbitals, which are distant from the

atomic nuclei. This is important for large “soft” molecular systems.

As already mentioned, the functionals M062X and CAMB3LYP have

been used for the TDDFT calculations of the current studies, with the aug-

cc-pVDZ and aug-cc-pVTZ basis sets.
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3.2 Semiclassical nuclear ensemble method

In the current work, linear absorption spectra have been simulated for

the main tautomers of nucleobases in their hydrosolvated molecular geom-

etry. The UV-VIS absorption spectra in aqueous solution were modelled

using the semiclassical nuclear ensemble method of Crespo-Otero and Bar-

batti [56]. This method allows the performance sophisticated simulations

on molecular systems with a high degree of chemical complexity, taking into

account several effects, such as vibrational broadening and solvent effects.

It is based on the approximation that the forms of spectral bands are pre-

dominantly controlled by the nuclear geometry distribution of the electronic

ground state [56]. This approach requires as input a set of Npts ground-

state geometries of the molecule of interest {Ri}, which are usually sam-

pled either from a statistical distribution or from thermostatted molecular

dynamics trajectories. The vertical excitation energies ∆E0n(Ri) for the

excitation to the n-th excited state and the associated oscillator strengths

f0n(Ri) are computed at each of these geometries. Then, the molecular

absorption cross-section σ is calculated as

σ(E) =
πe2~

2me cε0nrE

Nfs∑
n=1

1

Npts

Npts∑
i=1

∆E0n(Ri)f0n(Ri)g(E −∆E0n(Ri), δ).

(3.13)

Here, g(E−∆E0n(Ri), δ) is a normalized line-shape function whose purpose

is to account for other sources of broadening, such as collisions and finite

excited-state lifetime. In practice, the simulated spectra are found to be rel-

atively insensitive to the choice of the line-shape function [57]. nr denotes

the index of refraction of the medium, and me is the electron rest mass. Nfs

is the number of vertical excitation energies calculated for each configura-

tion. In turn, the molecular absorption cross-section σ (expressed in cm2)

is related to the molar extinction coefficient ε (in M−1 cm−1) through

ε =
NA × 10−3

ln(10)
σ. (3.14)

The nuclear ensemble method simulates only the envelopes of spectral bands,

and cannot predict fine spectral features such as vibrational progressions.

For the purposes of the present work, however, this does not represent a
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serious drawback, as such features are also unresolved in experimentally de-

termined spectra of nucleobases in solution.

For each molecule under study, Npts = 500 geometries were sampled from

the Wigner quantum harmonic oscillator distribution for the vibrational

ground state, which was generated using the program initcond.pl from the

simulation package Newton-X [59, 60]. Nfs = 15 vertical excitation energies

were calculated for each such geometry. A Gaussian line-shape function

g(E −∆E0n(Ri), δ) =

√
2

δ2π
exp

(
−2(E −∆E0n(Ri))

2

δ2

)
(3.15)

was used, with the broadening parameter set to δ = 0.2 eV. The index of

refraction of the aqueous solution was taken to be independent of the wave-

length, with a value of nr = 1.36. In the present studies, the implementation

in the GAUSSIAN quantum chemistry program packages has been applied

[61]. The functionals M062X and CAMB3LYP with the aug-cc-pVDZ basis

set have been used for the TDDFT calculations.

The results obtained for linear absorption spectra of nucleobases by applying

the semiclassical nuclear ensemble method are described in Chapter 4.

3.3 TNL and HEOM methods for the solution of

Non-markovian Master Equation

Molecules in solution are under the influence of the environment, which

leads, among other effects, to strong damping of vibrational motion. There-

fore, it is necessary to employ simulation methods that include the effect

of environmental damping. While damping can be included in the wave

function formalism of quantum mechanics at a phenomenological level, only

the density matrix formalism allows a proper treatment of decoherence and

dissipation.

The employed methods for the treatment of adenine in aqueous solution as

an open quantum system will be presented in the following. This sets the

framework for the calculations of 2D spectra discussed in Chapter 5.
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3.3.1 Open quantum systems

In the experimental reality, any system is in contact with a solution

(hereafter called environment or bath) and therefore must be treated as an

open quantum system. The whole system (system+environment) can be

well described by the following model Hamiltonian [58, 64]

Htotal = Hs +Hb +Hsb, (3.16)

where Hs is the system Hamiltonian, Hsb is the system-environment cou-

pling, and Hb is the Hamiltonian model for the bath. Additionally, we can

consider a factorized initial state W (t = t0) = ρ(t0)⊗ R0 at an initial time

t0 when the interaction is turned on. There, ρ(t0) and R0 are the initial

state of the system and the environment, respectively. The latter can be as-

sumed to be formed by a collection of harmonic oscillators, which generate

Gaussian fluctuations for the system of interest [58, 64].

In the simplest case, one can assume the weak coupling regime and invoke

the Markov approximation, neglecting any memory effects on the dynamics

of the reduced density matrix ρ(t). The latter is obtained after the harmonic

bath has been traced out. In the regime of weak coupling, the Born approx-

imation is performed as well, leading to the Born-Markov master equation

for the reduced density operator. The bath is only of indirect interest, and

its properties need only to be specified in general terms, e.g., by the tem-

perature and its spectral density function. The simplest case is the one of

frequency independent damping, which is realized by an Ohmic spectral den-

sity J(ω) = mγωe−ω/ωc . Therein, γ and ωc are the damping constant and

a cut-off frequency, which is taken to be the largest frequency in the model.

The reduced density matrix ρ(t) then evolves according to the equation of

motion

ρ̇(t) = D[ρ(t)], (3.17)

where D is the Liouvillian superoperator, which is composed of a coherent

part L0 describing the dynamics of the uncoupled system, and a dissipative

part L encompassing the dissipative effects and yielding to the transition

rates for the relaxation processes, i.e.

D = L0 + L . (3.18)
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The most convenient way to integrate Eq. (3.17) is to solve the eigenvalue

problem for D [65]. The latter is not a hermitian operator, i.e., in general

we cannot find a set of eigenoperators where D is diagonal. However, it is

possible to find its right and left eigenoperators,

Dvk = λkv
k, (3.19)

vkD = λkvk, (3.20)

where λk are complex numbers. Solving the above eigenvalues problem,

the reduced density operators can be written as:

ρ(t) =
∑
k

cke
λktρk + ρ∞ (3.21)

where ck = Tr
{
ρ(0)v†k

}
, and ρ∞ corresponds to the right eigenvector with

zero eigenvalue. For a more detailed treatment of theory and calculations,

see Ref. [65].

Many attempts have been made to go beyond the Markov approxima-

tion. One of the available approaches is a time nonlocal method based on a

numerical decomposition of the spectral density [66]. We will describe this

Time Nonlocal (TNL) method in the following.

3.3.2 Time Nonlocal method

The total Hamiltonian of the system-plus-bath complex can be written

as the sum of four terms,

H = Hs +Hb +Hsb +Hren, (3.22)

where Hs is the system Hamiltonian, Hsb is the system-environment

coupling, Hb is the Hamiltonian model for the bath and Hren is the renor-

malization term. In

Hs =
p2

2M
+ V (q) +W (q, t), (3.23)

the potential is split into a time-independent part V (q) and an explicitly

time-dependent part W (q, t) which, for example, may represent a laser field.

The bath Hamiltonian is taken as the sum of harmonic oscillators with mass

mi and frequency ωi:
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Hb =
1

2

∑
i=1

N

(
p2
i

mi
+miω

2
i x

2
i

)
. (3.24)

The other two terms are the interaction Hamiltonian, which is assumed to

be separable,

Hsb = −K(q)

N∑
i=1

cixi, (3.25)

and the renormalization

Hren = K(q)2
∑
i=1

N
c2
i

2miω2
i

= K(q)2µ

2
, (3.26)

introduced to avoid artificial shifts in the system potential due to the cou-

pling to the bath. If the coupling is assumed to be bilinear (i.e. F (q) = q)

the previous equations lead to the so-called Caldeira-Leggett Hamiltonian

H =
p2

2M
+ V (q) +W (q, t) +

1

2

N∑
i=1

[
p2
i

mi
+miω

2
i

(
xi −

ci
miω2

i

q

)2
]
. (3.27)

The coupling between the system and the bath is linear in the bath coordi-

nate. Introducing a spectral density of the bath oscillators by

J(ω) = π
N∑
i=1

c2
i

2miωi
δ(ω − ωi), (3.28)

a correlation function can be defined by

c(t) =

∫ ∞
0

dω

2π
J(ω) cos(ωt) coth

(
~βω

2

)
(3.29)

−i
∫ ∞

0

dω

2π
J(ω) sin(ωt) = a(t)− ib(t). (3.30)

In terms of the spectral density, the potential renormalization is then given

by µ =
∫∞

0 (dω/2π)(J(ω)/ω). Hence, the bath is fully characterized by its

spectral density and by temperature T = 1/(kbβ).
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Non-Markovian master equation

Starting from the Liouville equation

ρ̇T = − i
~

[HT , ρT ] (3.31)

where ρT is the density matrix of the total system formed by system

and bath, one can perform a projection onto the system subspace. The

projector formalism of Nakajima–Zwanzig [67, 68] allows to separate the

dynamics of the bath from the one of the system under consideration. A

suitable projector onto the system subspace is defined by P = ρeqb trb, with

trbρ
eq
b = 1 and and Q = (1− P ). Applying this projector to Eq. (3.31) and

integrating out the degrees of freedom of the bath, we get a master equation

for the time evolution of the reduced system density operator, this time

without invoking the Markov equation. This implies taking into account

the memory of the system induced by the bath fluctuations.

It is shown rigorously in Ref. [69], how the master equation can be recast

into a set of coupled, time-local first-order differential equations for the

system density matrix and N auxiliary density matrices that account for

memory and all initial correlations. The key of this is a parametrization of

the spectral density in the form

J(ω) =
π

2

N∑
k=1

pk
ω

[(ω + Ωk)2 + Γ2
k][(ω − Ωk)2 + Γ2

k]
(3.32)

with arbitrary parameters pk, Ωk and Γk. This set of parameters approx-

imates a given expression for the spectral density very accurately. This is

the case of Ohmic environment with peaks.

The procedure is described in Ref. [69] and can be viewed as a replacement

of an infinite collection of bath oscillators by a small numbers of special

systems, evolving in time under non-Hermitian dynamics, but having the

same effect to the system as a bath with a continuous spectral distribution.
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Linear absorption spectra

We have used the first-order transition dipole moment correlation func-

tion to calculate the absorption spectra defined by

I(ω) ∝ω
∫ +∞

−∞
dteiωt〈µ(t)µ(0)〉g, (3.33)

The correlation functions can be calculated as 〈µ(t)µ(0)〉g = trS{µtrB[e−iHtµρge
iHt]},

where

µ =
N∑
m=1

µm(am + a†m) (3.34)

µm is the transition dipole moment of the m-th molecule, am and a†m

are respectively the creation and annihilation operators of the electronic

excitation on the m-th molecule.

2D spectra

For the calculation of two-dimensional spectra, we have applied the equa-

tion of motion-phase matching approach (EOM-PMA) established in Ref.

[70]. In the EOM-PMA, the induced polarization in the direction of the

photon-echo signal is calculated by the simultaneous propagation of three

auxiliary density matrices (ρ1(t), ρ2(t), and ρ3(t)), each of which obeys a

modified effective equation of motion according to

ρ̇1(t) = −i[Hs − V1(t, t1)− V †2 (t, t2)− V †3 (t, t3), ρ1(t)]−<(t)ρ1(t),

ρ̇2(t) = −i[Hs − V1(t, t1)− V †2 (t, t2), ρ2(t)]−<(t)ρ2(t),

ρ̇3(t) = −i[Hs − V1(t, t1)− V †3 (t, t3), ρ3(t)]−<(t)ρ3(t),

(3.35)

where Vα(t, tα) = XAe−(t−tα)2/2Γ2
eiωt, X is the transition dipole operator,

Γ is the pulse duration, and < is a relaxation superoperator. All three above

master equations were calculated by adopting the TNL method [69] to the

auxiliary density operators with the corresponding different time-dependent

Hamiltonians, see Eq. (3.36).
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ρ̇s(t) =  Leffs (t)ρs(t) + λ

[
nr∑
k=1

αrk  L−ρrk(t) +

ni∑
k=1

αik  L−ρik(t)

]
,

ρ̇rk(t) = ( Ls(t) + γrk)ρ
r
k(t) + λ L−ρs(t), k = 1, . . . , nr,

ρ̇ik(t) = ( Ls(t) + γik)ρ
i
k(t) + λ L+ρs(t), k = 1, . . . , ni.

(3.36)

Then, the third-order induced polarization is obtained as

PPE(t1, t2, t3, t) = eiks·r〈X(ρ1(t)− ρ2(t)− ρ3(t))〉+ c.c., (3.37)

where the brackets 〈. . .〉 indicate the evaluation of the trace.

The total 2D Fourier-transformed spectrum is then given by the double

Fourier transform of the photon-echo polarization signal with respect to the

delay time τ = t2 − t1 and t according to

SPE(ωτ , T, ωt) ∼
∫ +∞

−∞
dτ

∫ +∞

−∞
dte−iωτ τeiωttPPE(τ, T, t). (3.38)

Here, ωτ is the “coherence” frequency, ωt is the detection frequency, and T

is “waiting” time given by the difference between t3 and t2.

3.3.3 HEOM method

The hierarchy of equations of motion (HEOM) approach is a popular

method for simulating non-Markovian quantum dynamics in open quantum

systems. Initially proposed by Tanimura and Kubo in 1989 [71], it was

developed over the following 20 years. In recent years, the method has

been applied to study various problems such as two-dimensional optical

spectroscopy of light harvesting complexes [72], DNA [73], electron transfer

systems [74], quantum impurity systems [75] and fermionic systems [76].

In this work, we propose an extension of the hierarchy of equations of motion

method to describe conical intersections. We focus in particular on a conical

intersection between an excited state and the ground state and between

two excited states. We use our model to calculate two-dimensional optical

spectra of a model for the nucleobase adenine. In this way, we include

relaxation mechanisms to the ground state in spectroscopic calculations in a

detailed way. We calculate two-dimensional optical spectra to connect with

experiment.
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In order to describe damping, we couple the system Hamiltonian to a

bath consisting of infinitely many harmonic oscillators. We then propagate

the damped dynamics using a generalization of the hierarchy of equations

of motion method. Two-dimensional optical spectra can be calculated with

the standard perturbative method, see Ref. [34].

The Hamiltonian is given as the sum of a Hamiltonian for the two po-

tential energy surfaces and a Hamiltonian for their coupling to the harmonic

oscillator bath. In order to derive it, we generalize the treatment by Tanaka

and Tanimura [77]. The first part of the Hamiltonian for a three-state model

is given by

HP = εe|e〉〈e|+εd|d〉〈d|+M2Ω2
2Q2deD2|e〉〈e|+M2Ω2

2Q2ddD2|d〉〈d|+ (3.39)

+M1Ω2
1Q1D1(dV 1|d〉〈e|+ dV 2|g〉〈d|+ h.c.).

Q1 and Q2 are respectively the coupling and the tuning coordinates, involved

in Eq. (3.39). The diabatic state energies vary along Q2, while along Q1

variations of the coupling between diabatic states are observed.

The harmonic potentials for the tuning and coupling coordinates and the

conjugate momenta are described by

HH =
P 2

1

2M1
+

P 2
2

2M2
+

1

2
M1Ω2

1Q
2
1 +

1

2
M2Ω2

2Q
2
2. (3.40)

The interaction of the coupling and tuning modes with the bath is given by

the Hamiltonian

HSB =
∑
α

{
p2
α

2mα
+

1

2
mαω

2
α(xα −

g1α

mαω2
α

Q1)2 +
1

2
mαω

2
α(xα −

g2α

mαω2
α

Q2)2

}
(3.41)

The spectral densities are defined as

Ji(ω) =
∑
α

g2
iα

2mαωα
δ(ω − ωα), (3.42)

and are chosen to be Ohmic,

Ji(ω) = Miγiω exp−ω/Λ. (3.43)

g is the strength of the coupling to a single bath mode, γ describes the

strength of the coupling to the heat bath, and Λ is a cut-off frequency,
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which we assume to be larger than all other frequencies in the system, so

that it can be set to infinity.

Through a canonical transformation, see Ref. [78], the Hamiltonian is rewrit-

ten as

H = ε|e〉〈e| − (dg|g〉〈g|+ de|e〉〈e|)
∑
α

g′2αx
′
α − dV (|g〉〈e|+ h.c.)

∑
α

g′1αx
′
α.

(3.44)

The transformed spectral density is

J ′i = 2~λi
γiΩ

2
iω

(Ω2
i − ω2)2 + γ2

i ω
2
, (3.45)

where i = 1, 2 and λi = MiD
2
i Ω

2
i /2π~.

In the overdamped limit, we choose ωc,i � Ωi and derive the spectral

density

JiOD(ω) = 2λiωc,i
ω

ω2 + ω2
c,i

, (3.46)

where ωc,i = Ω2
i /γi.

The model is thus characterized by the excitation energies εe and εd, the

displacements d2
dλ2, d2

eλ2, d2
V 1λ1 and d2

V 2λ1 and the cut-off frequencies of

the overdamped bath ωc,1 and ωc,2. The fact that only the combination

d2λ appears (and not the two parameters d and λ, independently from each

other) can be seen from Eq. (3.44) and the definition of the spectral density.

A hierarchy of equations of motion can be derived by generalizing the treat-

ment in Refs.[77, 79] to two coordinates and overdamped baths.



Chapter 4

Linear absorption spectra of

DNA nucleobases

We have performed quantum chemistry calculations by using the den-

sity functional theory (DFT) and time-dependent density functional theory

(TDDFT) methods and applying the semiclassical nuclear ensemble method

of Crespo-Otero and Barbatti [56] to model the UV-VIS absorption spectra

of the main tautomers of DNA nucleobases in aqueous solution. Electron

Density Difference Maps (EDDMs) have been derived in order to visual-

ize the electronic distribution in the excited states, and define the kind of

orbitals involved in the excitations. The obtained results are presented in

this chapter and compared with the available experimental data. The re-

sults from the present chapter are systematically collected in the submitted

manuscript [80].

The photophysics and photochemistry of DNA/RNA bases and their

components has been the focus of considerable research effort due to its fun-

damental importance in several scientific disciplines [1]. A major issue is the

absorption spectrum of DNA of solar UV radiation in the so-called UV-B

spectral region in the range of wavelengths of 280-315 nm. The photochemi-

cal products after UV-B absorption include cyclobutane pyrimidine dimers.

They generate cojoined lesions of neighboring thymidine bases within the

DNA strand which are cytotoxic and can lead to carcinogenic mutations

57
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[81, 82]. On the other hand, the prevalence of UV-B irradiation on the

early Earth is hypothesized to have exerted an increased selective pres-

sure in prebiotic chemistry, such that the five canonical DNA and RNA

nucleobases were favored. In particular, their evolutionary success could

be explained by their rather high photostability owing to their ability to

dump solar photon energy efficiently via non-radiative decay processes [83].

Interestingly enough, this pronounced feature does not occur in potential

alternative nucleobases which lack this advantageous property [84, 85]. In

addition, it should be noted that once the bases are incorporated into either

DNA or RNA strands, the excited state lifetimes change enormously and it

is now clear that the most relevant excited states within biologically rele-

vant DNA/RNA involve potentially long lived, high reactive, excited states

- in contrast to what is observed for the isolated bases. The conventional

view correlating excited state lifetimes of nucleobases to evolutionary selec-

tion needs to be challenged. It is certainly important to try to understand

the effect of the environment on the excited state properties of the core

chromophore in DNA/RNA as well as the effect of structural changes to

the nucleobase moeity in the process of DNA/RNA formation. This is the

starting motivation of the present work, with the focus on the nucleobases

and the role of the surrounding water on their electronic structure.

Reflecting the biological importance of nucleobases, which are the chro-

mophores of DNA and RNA, their photoabsorption spectra and their relax-

ation processes and pathways following photoexcitation have been the sub-

ject of numerous studies. In particular, various levels of electronic structure

theory have been applied. A recent perspective article provides a detailed

review of the current state of the art [83]. With some notable exceptions

[86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96], most the studies existing to date

have concentrated on nucleobases as isolated molecules in the gas phase, ne-

glecting a careful description of their interactions with their environmental

degrees of freedom. A recent overview of the current state of the art of ad-

vanced computational studies of the excited states of nucleobases in solution

is given in Ref. [86]. The lowest few electronic excitations of a π-stacked ade-

nine dimer in its DNA geometry were determined, in the gas phase and in a

water cluster, using a long-range-corrected version of time-dependent density
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functional theory that asymptotically incorporates Hartree-Fock exchange

[87]. A major finding was that the implemented parametrized effective

long-range correction can eliminate the underestimation of charge-transfer

excitation energies that plagues conventional TDDFT in calculations for

molecular clusters. However, this is at the expense of introducing an addi-

tional adjustable parameter that determines the length scale on which the

Hartree-Fock exchange is turned on. By applying [88] a mixed quantum

mechanical/molecular mechanical (QM/MM) approach, the photoinduced

nonadiabatic decay dynamics of 9H-adenine in aqueous solution was inves-

tigated by surface-hopping simulations. In particular, molecular dynamics

simulations in terms of an effective force field model were used to describe

the continuous solvent classically. On a similar footing at the semiempiri-

cal level, notable solvent-induced shifts in the computed vertical excitation

energies (up to about 0.4 eV) were produced [89]. The importance of a

nonadiabatic proton transfer for the photostability of the molecular build-

ing blocks of RNA and DNA has been revealed by ab initio investigations

on a syn and an anti conformer of adenosine exhibiting an intramolecu-

lar hydrogen bond [90]. Using a correlated ab initio methodology within a

QM/MM framework to calculate the excited states and potential surfaces of

the adenine dinucleotide in gas phase and in solution, the formation of ex-

ciplexes with remarkably short intermolecular separation has been reported

[91]. The complicated interplay of collective electronic effects, excitonic cou-

pling, hydrogen-bonding interactions, local steric hindrance, charge transfer,

and environmental and solvent effects and its impact on DNA oligomers and

polymers is surveyed in Ref. [92]. In particular, the role of localized vs delo-

calized excitations and the extent to which they determine the nature and

the temporal evolution of the initial photoexcitation in DNA strands was

revealed. Using excited-state nonadiabatic dynamics simulations based on

second-order algebraic diagrammatic construction (ADC(2)), it is shown in

Ref. [93] that 7H-adenine in water cluster relaxes via a state intersection

induced by electron transfer from water to the chromophore, indicating the

decisive role of the hydration shell for the photorelaxation. By adding 2-

aminopurine (2AP) as a fluorescent replacement for purine in DNA bases

and exploiting the fact that the luminescence of this molecule is strongly de-
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pendent on the environment, computational simulations of isolated 2AP and

a series of 2AP–water clusters have been performed. This revealed that the

excited-state lifetime of 2AP strongly depends on the number and location

of water molecules [94]. Also nonadiabatic dynamics simulations, performed

using the ADC(2) electronic structure method [95, 96] show that binding of

a single water molecule has a dramatic effect on the excited state lifetime of

adenine. In fact, electron-driven proton transfer from water to the nitrogen

atom N3 of the adenine ring may be the process responsible for the observed

ultrafast decay. Moreover, in Ref. [96], high-level quantum chemical calcu-

lations were performed together with experiments to show that prolonged

UV-irradiation of cytidine may lead to H-C1’ hydrogen atom abstraction

by the carbonyl oxygen atom of cytosine. A comprehensive overview of the

photophysics of the nucleobases in the gas phase and in solution is given

in Ref. [97], where the effects of the solvent in modulating the followed

photochemical paths have been analyzed.

Despite these illuminating works on the role of the solvent for the pho-

torelaxation of DNA nucleobases, several questions remain open, and how

aqueous solvation controls the shape of UV-VIS absorption spectra remains

partially unclear. Understanding the shape of the photoabsorption spectrum

and the energy ordering of the various underlying excited states is also key

to the interpretation of data obtained in pump-probe experimental studies

of nucleobase photorelaxation dynamics.

In order to address these questions, in the present work we report quan-

tum chemistry calculations of the four nucleobases of DNA (adenine, thymine,

cytosine and guanine) immersed in a water hydration shell and placed in

aqueous solution. The nucleobase tautomers considered in this study are

7H-adenine, 9H-adenine, amino-keto cytosine, 7H-guanine, 9H-guanine, and

2,4-diketo thymine, see Fig. 4.1. We use static and time-dependent den-

sity functional theory (DFT and TDDFT) in connection with M06-2X and

CAM-B3LYP functionals with the aug-cc-pVDZ basis set. By this, we cal-

culate vertical excitation spectra and electronic density difference maps.

Equipped with these, we furthermore calculate linear absorption spectra for

all DNA nucleobases and compare them with the experimentally measured

absorption spectra. On the basis of reasonable parameters for the contin-
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uous solvent (water), no further fitting parameter enters the calculations.

Apart from a systematic constant energy shift, we find a good agreement

between theoretical and experimental results. A high level of realism in

the calculations is ensured by including several phenomena which affect the

shapes of the absorption spectra (interaction with explicit solvent molecules

through hydrogen bonding, the presence of bulk solvent, tautomeric equilib-

ria, and vibrational broadening) in the simulations. This study is the first to

attempt to systematically reproduce the observed photoabsorption spectra

of all four nucleobases of DNA in aqueous solution.

Figure 4.1: Lewis structures of the tautomers considered in this work.
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4.1 Electronic structure methods

The quantum chemistry simulations were performed using the static and

time-dependent density functional theory (DFT and TDDFT) methods as

implemented in the computational chemistry software package Gaussian 09,

Revision A.02 [61]. In particular, we have used the M06-2X and CAM-

B3LYP functionals for the TDDFT calculations with the aug-cc-pVDZ ba-

sis set. These functionals have been chosen for the present study because

they are known to perform reasonably well in the context of linear response

TDDFT calculations for molecular clusters. In particular, they do not tend

to underestimate the energies of the states involved in charge-transfer tran-

sitions, and neither do they predict spurious charge-transfer transitions to

occur at low energies [62, 98, 99].

The key new ingredient in this work is the explicit inclusion of a hydra-

tion shell of water molecule around the bases. Simulations of the photoab-

sorption spectra in the UV-VIS range were performed for these microsol-

vated base molecules. For this, clusters of bases and several solvating water

molecules were constructed. The solvation shell around each nucleobase

molecule was constructed in such a way as to saturate all, or most, hy-

drogen bonding sites of the nucleobase, while using as few water molecules

as possible in order to reduce the cost of the computation. For 7H- and

9H-adenine, the structure of the solvation shell was adapted from Ref. [93].

Typically, from five to eight water molecules were included in the investi-

gated geometrical structures.

The interaction of the base molecule and the surrounding explicit wa-

ter molecules with the bulk water solvent was modeled by the continuous

surface charge implementation of the polarizable continuum model (CSC-

PCM) [100, 101]. It was imposed both at the stage of the optimization of

the molecular geometry and in the subsequent simulations of the photoab-

sorption spectra. Linear response solvation was applied in all TDDFT cal-

culations of vertical excitation energies. A dielectric constant of ε = 78.3553

was used for the aqueous solvent. As per default, the solute cavity was con-

structed as a set of overlapping spheres centered at the solute atoms, using

the universal force field atomic radii scaled by a factor of 1.100.
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Concerning the tautomeric equilibrium state, the population of the 7H-

tautomer of adenine in aqueous solution was assumed to be 22%, as de-

termined experimentally by Cohen et al. [102]. In turn, the population of

the 7H-tautomer of guanine in aqueous solution was taken to be 18%, as

estimated by Yu et al. [103] on the basis of density functional theory (DFT)

calculations. In the cases of cytosine and thymine, only the predominant

tautomers were taken into account (which is to say, amino-keto cytosine and

2,4-diketo thymine).

The semiclassical nuclear ensemble method of Crespo-Otero and Barbatti

[56] has been already described in details in Section 3.2 and has been applied

to model the UV-VIS absorption spectra.



64

4.2 Results and discussion

4.2.1 Equilibrium geometries

Figure 4.2: Equilibrium geometry of the six investigated nucleobase tau-

tomers optimized at the M06-2X/aug-cc-pVDZ level of theory. The lengths

of hydrogen bonds are marked in units of Å.
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Fig. 4.2 shows the optimized geometries and hydrogen bond lengths (in

Å) of the six tautomers of microsolvated bases: 7H- and 9H-adenine, cyto-

sine, 7H-keto and 9H-keto tautomers of guanine and thymine.

The O-H bonds have in general a length of approximately 1.9 Å.

4.2.2 Calculated vertical excitation spectra

Table 4.1: Vertical excitation spectra (M06-2X/aug-cc-pVDZ) for 7H-

adenine, 9H-adenine and cytosine

Tautomer Electronic state Gas phase PCM solvent model Explicit waters

∆E, eV f ∆E, eV f ∆E, eV f

7H-adenine La
1ππ∗ 5.259 0.138 5.182 0.244 5.132 0.315

Lb
1ππ∗ 5.810 0.029 5.661 0.048 5.540 0.070

1 1nπ∗ 5.057 0.008 5.415 0.004 5.805 0.001

2 1nπ∗ 5.650 0.001 5.864 0.001 6.191 0.001

1 1πσ∗ 5.146 0.016 5.650 0.008 5.710 0.004

2 1πσ∗ 6.053 0.002 6.304 0.013 6.231 0.001

9H-adenine La
1ππ∗ 5.347 0.287 5.271 0.361 5.190 0.410

Lb
1ππ∗ 5.523 0.014 5.476 0.027 5.395 0.040

1 1nπ∗ 5.315 0.001 5.447 0.001 5.804 < 10−3

2 1nπ∗ 5.878 0.002 5.984 0.002 6.303 0.001

1 1πσ∗ 5.452 0.007 5.594 0.007 5.658 0.004

2 1πσ∗ 5.731 0.001 6.136 0.001 6.199 0.001

cytosine 1 1ππ∗ 4.974 0.068 5.106 0.125 5.201 0.192

2 1ππ∗ 5.904 0.125 5.906 0.193 5.948 0.098

1 1nπ∗ 5.264 0.002 5.660 0.003 6.028 0.049

2 1nπ∗ 6.334 < 10−3 6.137 < 10−3 6.588 0.004

1 1πσ∗ 5.495 0.004 5.926 0.005 6.130 0.004

2 1πσ∗ 6.100 0.010 6.403 0.002 6.604 0.004

a A valence-to-valence excited state with an admixture of Rydberg character.

Vertical excitation spectra of nucleobase molecules, calculated by using

the TDDFT method at the M06-2X/aug-cc-pVDZ and CAM-B3LYP/aug-
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Table 4.2: Vertical excitation spectra (M06-2X/aug-cc-pVDZ) for 7H-

guanine, 9H-guanine and thymine

Tautomer Electronic state Gas phase PCM solvent model Explicit waters

∆E, eV f ∆E, eV f ∆E, eV f

7H-guanine La
1ππ∗ 4.958 0.132 4.870 0.183 4.684 0.203

Lb
1ππ∗ 5.793 0.181 5.373 0.001 5.675 0.297

1 1nπ∗ 5.362 < 10−3 5.511 < 10−3 5.870 < 10−3

2 1nπ∗ 6.137 0.001 6.363 0.001 6.510 0.004

1 1πσ∗ 5.180 0.006 5.738 0.255 5.364 0.002

2 1πσ∗ 5.454 0.009 5.825 0.037 5.941 0.005

9H-guanine La
1ππ∗ 5.162 0.136 5.076 0.174 4.921 0.200

Lb
1ππ∗ 5.588 0.318 5.490 0.457 5.487 5.486

1 1nπ∗ 5.376 0.002 5.595 < 10−3 5.836 < 10−3

2 1nπ∗ 6.276 0.005 6.412 0.001 6.488 0.002

1 1πσ∗ 4.987 0.016 5.287 < 10−3 5.289 0.004

2 1πσ∗ 5.339 0.010 5.812 0.011 5.889 0.001

thymine 1 1ππ∗ 5.246 0.179 5.156 0.232 5.124 0.239

2 1ππ∗ 6.610 0.108 6.450 0.250 6.310 0.267

1 1nπ∗ 4.971 < 10−3 5.178 < 10−3 5.371 < 10−3

2 1nπ∗ 6.251 < 10−3 6.402 < 10−3 6.605 0.001

1 1πσ∗ 5.633 0.001 5.948 0.001 6.076 0.002

2 1πσ∗ 6.373 0.001 6.497 0.001 6.631 0.002

a A valence-to-valence excited state with an admixture of Rydberg character.

cc-pVDZ levels of theory, are characterized in Tables 4.1, 4.2, 4.3 and 4.4.

Vertical excitation energies (∆E) and associated oscillator strengths (f)

into the low-lying singlet excited states of the six investigated nucleobase

tautomers at their ground-state equilibrium (S0-min) geometries are listed.

Different microenvironments were imposed in the calculations of the verti-

cal excitation spectra: the gas phase, aqueous solvation represented using

both explicit water molecules and the PCM solvation model, and aqueous

solvation represented by only the PCM solvation model. The ππ∗ states are

labeled as La and Lb according to the formalism described in Ref. [16], and
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Table 4.3: Vertical excitation spectra (CAM-B3LYP/aug-cc-pVDZ) for 7H-

adenine, 9H-adenine and cytosine

Tautomer Electronic state Gas phase PCM solvent model Explicit waters

∆E, eV f ∆E, eV f ∆E, eV f

7H-adenine La
1ππ∗ 5.191 0.077 5.133 0.227 5.103 0.292

Lb
1ππ∗ 5.734 0.031 5.598 0.053 5.497 0.077

1 1nπ∗ 5.129 0.046 5.504 0.003 5.872 0.001

2 1nπ∗ 5.658 0.002 5.913 0.001 6.241 < 10−3

1 1πσ∗ 5.236 0.033 5.771 0.009 5.904 0.006

2 1πσ∗ 6.166 0.002 6.473 0.002 6.429 0.001

9H-adenine La
1ππ∗ 5.316 0.278 5.246 0.349 5.182 0.402

Lb
1ππ∗ 5.459 0.012 5.416 0.025 5.341 0.037

1 1nπ∗ 5.339 0.001 5.491 0.001 5.867 < 10−3

2 1nπ∗ 5.916 0.001 6.044 0.002 6.372 0.001

1 1πσ∗ 5.629 0.010 5.764 0.010 5.879 0.005

2 1πσ∗ 5.945 0.003 6.330 0.001 6.427 0.039

cytosine 1 1ππ∗ 4.936 0.064 5.085 0.117 5.196 0.183

2 1ππ∗ 5.870 0.122 5.89 0.190 5.960 0.130

1 1nπ∗ 5.281 0.002 5.695 0.003 6.062 0.025

2 1nπ∗ 5.862 < 10−3 6.255 < 10−3 6.713 0.030

1 1πσ∗ 5.621 0.005 6.058 0.006 6.296 0.006

2 1πσ∗ 6.130 0.003 6.506 0.003 6.752 0.019

a A valence-to-valence excited state with an admixture of Rydberg character.

in agreement with the results presented in Refs. [104], [105].

As the simulated photoabsorption spectra of nucleobases in aqueous so-

lution will be dominated by excitations into the bright excited states of the

majority tautomers, it is of interest to assess the accuracy of the TDDFT

method in combination with the M06-2X and CAM-B3LYP functionals for

the vertical excitations of these states. In order to take advantage of the

most accurate theoretical benchmarks available, the subject of this assess-

ment must be the vertical excitation spectra of the isolated molecules. The

study of Szalay and coworkers [106], which employed coupled cluster meth-
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Table 4.4: Vertical excitation spectra (CAM-B3LYP/aug-cc-pVDZ) for 7H-

guanine, 9H-guanine and thymine

Tautomer Electronic state Gas phase PCM solvent model Explicit waters

∆E, eV f ∆E, eV f ∆E, eV f

7H-guanine La
1ππ∗ 4.887 0.132 4.802 0.182 4.646 0.201

Lb
1ππ∗ 5.759 a 0.150 5.720 0.248 6.271 0.382

1 1nπ∗ 5.440 < 10−3 5.608 < 10−3 5.970 < 10−3

2 1nπ∗ 6.039 < 10−3 6.278 0.001 6.455 0.002

1 1πσ∗ 5.292 0.006 5.523 0.001 5.607 0.010

2 1πσ∗ 5.601 0.016 5.960 0.010 5.690 0.254

9H-guanine La
1ππ∗ 5.072 0.117 5.015 0.173 4.880 0.197

Lb
1ππ∗ 5.559 0.273 5.464 0.440 5.484 0.373

1 1nπ∗ 5.526 0.012 5.741 < 10−3 5.976 < 10−3

2 1nπ∗ 6.324 0.002 6.422 0.002 6.485 0.003

1 1πσ∗ 5.164 0.037 5.452 0.007 5.542 0.055

2 1πσ∗ 5.508 0.044 5.974 0.011 6.140 0.001

thymine 1 1ππ∗ 5.208 0.174 5.122 0.227 5.088 0.234

2 1ππ∗ 6.581 0.046 6.432 0.261 6.293 0.272

1 1nπ∗ 5.082 < 10−3 5.301 < 10−3 5.501 < 10−3

2 1nπ∗ 6.366 < 10−3 6.517 < 10−3 6.724 0.002

1 1πσ∗ 5.775 0.001 6.110 0.001 6.271 0.002

2 1πσ∗ 6.541 < 10−3 6.661 0.001 6.834 0.003

a A valence-to-valence excited state with an admixture of Rydberg character.

ods, is the theoretically most advanced calculation of the vertical excitation

spectra performed to date, and so we use it as a benchmark against which

to compare the results of the TDDFT calculations. In Table 4.5, we com-

pare the vertical excitation energies oscillator strengths of the bright excited

states of nucleobases obtained from the TDDFT calculations with the values

reported in the work just cited. (For our purposes, excited states character-

ized by values of the oscillator strength greater than 0.05 were considered

to be bright.)

It can be seen from Table 4.5 that the TDDFT calculations in combi-
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M06-2X/aug-cc-pVDZ

Nucleobase Excited state ∆E, eV f

9H-adenine La ππ
∗ 5.348 0.2867

cytosine ππ∗ 4.974 0.0687

9H-guanine La ππ
∗ 5.163 0.1356

Lb ππ
∗ 5.589 0.3174

Thymine ππ∗ 5.246 0.1793

CAM-B3LYP/aug-cc-pVDZ

Nucleobase Excited state ∆E, eV f

9H-adenine La ππ
∗ 5.316 0.2783

cytosine ππ∗ 4.936 0.0635

9H-guanine La ππ
∗ 5.072 0.1164

Lb ππ
∗ 5.559 0.2729

Thymine ππ∗ 5.207 0.1744

EOMEE-CCSD(T)/aug-cc-pVTZ

Nucleobase Excited state ∆E, eV f a

9H-adenine La ππ
∗ 5.23 0.275

cytosine ππ∗ 4.69 0.066

9H-guanine La ππ
∗ 4.86 0.160

Lb ππ
∗ 5.37 0.366

Thymine ππ∗ 5.15 0.213
a The values of the oscillator strength are taken from calculations at the

EOMEE-CCSD/aug-cc-pVTZ level of theory.

Table 4.5: Comparison of vertical excitation spectra of the isolated nucle-

obase molecules calculated using the TDDFT method with the use of the

M06-2X and CAM-B3LYP functionals with the benchmark provided by the

EOMEE-CCSD(T) method [106].

nation with either functional systematically overestimate the vertical ex-

citation energies into the bright excited states of nucleobases by up to

around 0.3 eV, in comparison to the benchmark provided by the method
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of the equation of motion excitation energy coupled-cluster with perturba-

tive triple excitations (EOMEE-CCSD(T)). The exception is thymine, for

which the excitation energies calculated with TDDFT coincide closely with

those obtained at the EOMEE-CCSD(T) level. Therefore, insofar as the

EOMEE-CCSD(T) level of theory can be considered a realistic benchmark

for vertical excitation energies, and assuming this systematic blue shift is

not compensated for by another source of error, we may expect that the

photoabsorption spectra of nucleobases in aqueous solution simulated with

the use of TDDFT, with the M06-2X or the CAM-B3LYP functional, will

exhibit a blue shift of a few tenths of an electronvolt relative to experiment.

Inspection of the data in Tables 4.1-4.4 reveals that aqueous solvation

has a strong influence on the vertical excitation spectra. Across all nucle-

obase molecules considered presently, the participation of the lone electron

pairs in hydrogen bonding with explicit solvating water molecules increases

the vertical excitation energies into the nπ∗-type excited states by a few

tenths of an electronvolt. Meanwhile, the excitation energies into the lowest

ππ∗-type states are shifted downwards by up to around 0.3 eV. The ex-

ception is cytosine, in which the inclusion of explicit solvent molecules and

continuum bulk solvent has the effect of increasing the excitation energy of

the lowest ππ∗ state by roughly 0.2 eV, according to both the M06-2X and

CAM-B3LYP functionals. As a consequence, for each of the microsolvated

nucleobase molecules in continuum aqueous solvent (including cytosine), the

lowest vertical excitation is into a ππ∗-type state, which is energetically sep-

arated from the lowest nπ∗- and Rydberg-type excited states.

This is in contrast to the cases of nucleobases in the gas phase, and with

continuum solvation without the use of explicit solvent molecules, where the

energies of the lowest nπ∗- and ππ∗-type states are comparable.

Moreover, for all six nucleobase tautomers, aqueous solvation also has

the effect of shifting upwards by a few tenths of an electronovolt the exci-

tation energies into the lowest Rydberg-type (πσ∗) excited states. This is

true whether the solvent is modeled using only the CSC-PCM model, or the

CSC-PCM model in combination with explicit water molecules.

The phenomenon whereby the excitation energies into the Rydberg-type

states of a chromophore are increased by the presence of explicit solvent
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molecules, or substituents bonded to the chromophore, was apparently first

considered by Szalay and coworkers [107], who attributed it to the spa-

tial overlap between the Rydberg-type orbitals of the chromophore and the

orbitals of the nearby chemical moieties. As seen in Tables 4.1-4.4, the

Rydberg-type excited states are also destabilized by interaction with an

implicitly included environment alone, although due to their abstracted na-

ture, the CSC-PCM model provides only a very simplistic description of the

interaction of the Rydberg-type states with the surroundings of the chro-

mophore. The treatment of the Rydberg-type states could in principle be

improved through the further build-up of the explicit solvation shell, but

this approach is unattractive because the simulation cost increases rapidly

with system size.

We note that for the purposes of the present study, however, a highly re-

alistic description of the Rydberg-type excited states is not essential. This

is because, in the absence of mixing with valence-to-valence excited states,

the oscillator strengths of the Rydberg-type excited states are typically of

the order of 0.005, much lower than the oscillator strengths of the low-lying

bright ππ∗-type states, which are in the range of roughly 0.2 to 0.4. It fol-

lows that, according to Eq. 3.13, as long as the number of Rydberg-type

excited states found near the low-lying ππ∗-type states is low, the magni-

tude of the relative error in the calculated photoabsorption coefficient due

to the simplified treatment of the Rydberg-type excited states is therefore

unlikely to exceed 0.005/0.2 = 2.5%.
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Electron density difference maps (EDDMs)

(a) S1 (La ππ
∗) (b) S2 (Lb ππ

∗)

(c) S3 (Rydberg) (d) S4 (nπ∗)

Figure 4.3: EDDMs calculated for the lowest excited states of microsolvated

7H-adenine, calculated at the M06-2X/aug-cc-pVDZ level of theory, and

plotted in the form of isosurfaces with isovalues of ±0.005 e/a0
3. For each

excited state, the red and blue isosurfaces delimit regions in which the elec-

tron density is increased and decreased, respectively, relative to the singlet

ground state.

Electron density difference maps (EDDMs) have been derived for the six

investigated nucleobase tautomers: 7H- and 9H-adenine, cytosine, 7H- and

9H-keto guanine and thymine. They represent the difference of the electron

density of the excited state and the one of the ground state for a given

molecular geometry, and they are useful to visualize the nature of an excited

electronic state and the orbitals involved in the observed transitions. In
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Figs. 4.3-4.8, EDDMs are shown for all the investigated molecules. EDDMs

are plotted in the form of isosurfaces with isovalues of ±0.005 e/a0
3. For

each excited state, the red and blue isosurfaces delimit regions in which

the electron density is increased and decreased, respectively, relative to the

singlet ground state.

(a) S1 (La ππ
∗) (b) S2 (Lb ππ

∗)

(c) S3 (Rydberg) (d) S4 (nπ∗)

Figure 4.4: EDDMs calculated for the lowest excited states of microsolvated

9H-adenine, calculated at the M06-2X/aug-cc-pVDZ level of theory, and

plotted in the form of isosurfaces with isovalues of ±0.005 e/a0
3.
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(a) S1 (ππ∗) (b) S2 (nπ∗)

(c) S3 (nπ∗) (d) S4 (Rydberg)

Figure 4.5: EDDMs calculated for the lowest excited states of microsolvated

cytosine, calculated at the M06-2X/aug-cc-pVDZ level of theory, and plotted

in the form of isosurfaces with isovalues of ±0.005 e/a0
3.
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(a) S1 (La ππ
∗) (b) S2 (Rydberg)

(c) S3 (Lb ππ
∗) (d) S4 (nπ∗)

Figure 4.6: EDDMs calculated for the lowest excited states of microsolvated

7H−keto guanine, calculated at the M06-2X/aug-cc-pVDZ level of theory,

and plotted in the form of isosurfaces with isovalues of ±0.005 e/a0
3.
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(a) S1 (La ππ
∗) (b) S2 (Rydberg)

(c) S3 (Lb ππ
∗) (d) S4 (nπ∗)

Figure 4.7: EDDMs calculated for the lowest excited states of microsolvated

9H-keto guanine, calculated at the M06-2X/aug-cc-pVDZ level of theory,

and plotted in the form of isosurfaces with isovalues of ±0.005 e/a0
3.

4.2.3 Linear photoabsorption spectra

On the basis of the calculated vertical excitation spectra, we have calcu-

lated the linear photoabsorption spectra and compared them to the exper-

imentally measured data. The results are shown in Figs. 4.9-4.11 with the

spectra simulated at the M06-2X/aug-cc-pVDZ and CAM-B3LYP/aug-cc-

pVDZ levels of theory.

The experimental spectra were obtained at the Max Planck Institute for

the Structure and Dynamics of Matter (Hamburg) in the Coherent Control

and Multidimensional Spectroscopy group by Alessandra Picchiotti and Dr.

Valentyn Prokhorenko (the text of the following paragraph was provided by

Alessandra Picchiotti, Max Planck Institute for the Structure and Dynamics
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(a) S1 (ππ∗) (b) S2 (nπ∗)

(c) S3 (Rydberg) (d) S4 (ππ∗-Rydberg)

Figure 4.8: EDDMs calculated for the lowest excited states of microsolvated

thymine, calculated at the M06-2X/aug-cc-pVDZ level of theory, and plotted

in the form of isosurfaces with isovalues of ±0.005 e/a0
3.

of Matter Hamburg). The data were obtained using a Shimadzu UV 2600

spectrometer [80]. Each scan was performed with a sensitivity of 0.5 nm

and a time-per-point accumulation equal to 2 s. Moreover, Hellma quartz

cuvettes with a path length of 0.1 cm were used. All the samples were pur-

chased from Sigma Aldrich and Santa Cruz in powder and used without

further purification. They were dissolved in desalted and doubly distilled

water, then filtered with 0.2 µm syringe filters. The solute concentrations

were adjusted to give a maximal absorbance between 0.5 and 1 at the peak

near 260 nm. The solution pH was monitored and was always close to 7.

The spectra were recorded in the range of 400 to 220 nm.

Looking at Figs. 4.9-4.11, it can be seen that the vibrational broadening
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shifts the simulated spectra to the red relative to the vertical excitation spec-

trum calculated for the ground-state equilibrium geometry. We note that

both for 7H-adenine and 9H-adenine, and for 7H-guanine and 9H-guanine,

a weighted sum of the spectra is shown in order to obtain a more realistic

absorption spectrum containing both tautomers.

In general, the form of the experimental spectra in the low-energy regime

is well reproduced by the simulations. All calculated spectra are blue-shifted

relative to the experimental data by approximately 0.3 eV. The systematic

shifts of the peaks of the two lowest bands between the experimental and

simulated spectra are collected in Tables 4.6 and 4.7, together with the rel-

ative error of the photoabsorption cross section. This quantity has been

determined according to the relation (see Fig. 4.12 for a graphical explana-

tion)

∆σ

σ
=
σcalcmax − σobsmax

σobsmax
. (4.1)

In the case of cytosine, the second peak in the experimental spectrum is

outside the range of 3.50 to 6.20 eV in which the data were collected. For

this reason, we could not analyze the corresponding error in the position

and intensity of the second peak in this case.

The chosen basis set aug-cc-pVDZ is moderately large, but from a com-

putational point of view, an even larger basis could be chosen. Therefore,

to investigate the effect of using a larger one, we have also used the basis set

aug-cc-pVTZ. The importance of this effect is estimated by re-optimizing the

geometries of the six nucleobase-water clusters at the M06-2X/aug-cc-pVTZ

and CAM-B3LYP/aug-cc-pVTZ levels of theory, and then re-calculating

their vertical excitation spectra for the resulting geometries. The compari-

son between the stick spectra calculated by using aug-cc-pVDZ and aug-cc-

pVTZ is presented in Figs. 4.13 and 4.14, where the stick spectra of the two

levels of theory are superposed.

Somewhat counter-intuitively, the vertical excitation energies for the low-

lying bright states generally increase slightly when the calculation is repeated

with the larger aug-cc-pVTZ basis set at the re-optimized energy. In fact, it

would be normally expected that the blue shift is reduced and the excitation



79

Figure 4.9: Simulated absorption spectra of nucleobases in aqueous solu-

tion, computed at the M06-2X/aug-cc-pVDZ level of theory, compared to

the experimentally observed (experimental data by courtesy of Alessandra

Picchiotti, Max Planck Institute for the Structure and Dynamics of Mat-

ter Hamburg) spectra. The black columns indicate the vertical excitation

energies evaluated at the ground-state equilibrium geometry, and their rel-

ative heights are proportional to the corresponding oscillator strengths. In

the case of adenine and guanine, the spectra are averaged over the 7H- and

9H- tautomers of both bases according to their populations, and the column

heights are also scaled proportionally to the respective populations.
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Figure 4.10: Simulated absorption spectra of nucleobases in aqueous solu-

tion, computed at the CAMB3LYP/aug-cc-pVDZ level of theory, compared

to the experimentally observed (experimental data by courtesy of Alessandra

Picchiotti, Max Planck Institute for the Structure and Dynamics of Mat-

ter Hamburg) spectra. The black columns indicate the vertical excitation

energies evaluated at the ground-state equilibrium geometry, and their rel-

ative heights are proportional to the corresponding oscillator strengths. In

the case of adenine and guanine, the spectra are averaged over the 7H- and

9H- tautomers of both bases according to their populations, and the column

heights are also scaled proportionally to the respective populations.
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Figure 4.11: Comparison of photoabsorption spectra for the four DNA nucle-

obases simulated using the M06-2X and the CAM-B3LYP functionals with

the experimentally observed (experimental data by courtesy of Alessandra

Picchiotti, Max Planck Institute for the Structure and Dynamics of Matter

Hamburg) spectra.
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Figure 4.12: Graphical explanation of calculation of values in Tabs. 4.6 and

4.7.
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Nucleobase Ecalc
max1, eV shift in Ecalc

max1, eV ∆σ/σ at max1

adenine 5.050 0.291 −0.0481

cytosine 5.010 0.358 0.0855

guanine 4.830 0.304 0.0678

thymine 4.970 0.283 −0.0286

Nucleobase Ecalc
max2, eV shift in Ecalc

max2, eV ∆σ/σ at max2

adenine 6.350 0.360 −0.113

cytosine

guanine 5.350 0.332 0.052

thymine 6.280 0.247 −0.204

Table 4.6: Systematic shifts of the peaks and relative errors of the photoab-

sorption cross section of the lowest (max1) and the second lowest (max2)

band between experimental and simulated spectra for the four DNA nucle-

obases, from calculations performed using the M06-2X functional.

Nucleobase Ecalc
max1, eV shift in Ecalc

max1, eV ∆σ/σ at max1

adenine 5.010 0.251 −0.043

cytosine 5.020 0.368 0.0549

guanine 4.810 0.274 0.054

thymine 4.890 0.203 −0.009

Nucleobase Ecalc
max2, eV shift in Ecalc

max2, eV ∆σ/σ at max2

adenine 6.300 0.310 −0.071

cytosine

guanine 5.320 0.302 −0.032

thymine 6.470 0.438 −0.156

Table 4.7: Same as Table 4.4, but using the CAM-B3LYP functional.
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Figure 4.13: Simulated stick spectra for the six DNA nucleobases tautomers

derived from the M06-2X calculation: comparison between results obtained

by using the aug-cc-pVDZ (black) and aug-cc-pVTZ (red) basis sets.
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Figure 4.14: Simulated stick spectra for the six DNA nucleobases tau-

tomers derived from CAM-B3LYP calculation: comparison between results

obtained by using the aug-cc-pVDZ (black) and aug-cc-pVTZ (red) basis

sets.
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energies decrease with increasing the basis set size. Yet, we find that the

vertical excitation energy to the lower bright state are only slightly affected

by enlarging the basis set.

In general, the spectra of the four nucleobases are composed of two clearly

visible bands, separated by a low intensity region. In the case of adenine

and thymine, each of these bands is due to a single bright ππ∗ transition.

For guanine, four ππ∗ states contribute to the lowest photoabsorption band,

i.e., the excitations into the lowest two ππ∗ states arise (the La and Lb states

of each tautomer). This may be related to multiple decay pathways which

can be identified in the molecule after UV absorption [57].

Regarding cytosine, there has been a debate in previous studies as to how

many bright excited states give significant contributions to the photoabsorp-

tion spectrum. On the basis of the linear vibronic coupling method and on

the equations-of-motion coupled cluster with single and double excitations

(EOM-CCSD) level of electronic structure theory, Tajti et al. [108] have

performed spectral simulations for cytosine in the gas phase. They have in-

terpreted the resulting photoabsorption spectrum up to around 60000 cm−1

(7.4 eV) as arising mainly from transitions to only two ππ∗-type states.

Subsequently, Barbatti and coworkers [57] have demonstrated that a third

ππ∗-type state must be taken into account in order to explain the appearance

of the gas-phase spectrum. The present results for microsolvated cytosine in

a bulk solvent indicate that in aqueous solution the number of excited elec-

tronic states which significantly contribute to the photoabsorption spectrum

is even higher. This is due to a mixing of ππ∗ and nπ∗ states. This is fur-

ther supported by the the EDDMs of the low-lying excited electronic states

of microsolvated cytosine calculated at the M06-2X/aug-cc-pVDZ level at

the ground-state equilibrium geometry, which are shown in Fig. 4.5. The

S2 and S3 states are both nominally nπ∗ in character, but also involve a

substantial redistribution of the π-type electron density. These nπ∗ states

have a sizable admixture of ππ∗ character which is reflected by their mod-

erately large oscillator strengths (0.098 and 0.049, respectively, for S2 and

S3). The contribution of these nπ∗ states to the photoabsorption spectrum

is mainly significant in the interband region around 5.5 eV in the simulated

spectrum. This feature may trigger different deactivation pathways right
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after the photoabsorption [57].

Cytosine has the largest shift between the experimental and calculated spec-

tra for both the functionals M06-2X and CAM-B3LYP. The peak in the

simulated spectra is in the valley of the experimental spectrum, see Figs.

4.9-4.11. The effect of the explicit inclusion of the water molecules form-

ing the hydration shell seems to play a quite important role in particular

for cytosine. To study this in more detail, we have simulated the pho-

toabsorption spectra of cytosine with the polarizable continuum model but

without explicitly including the water molecules of the hydration shell, at

the CAM-B3LYP/aug-cc-pVDZ and M06-2X/aug-cc-pVDZ levels of theory.

The results for the photoabsorption spectra are shown in Fig. 4.15. The

general form of these spectra in the presence of a bulk solvent only is sim-

ilar to that when explicit water molecules are additionally included, but,

importantly, the intensity of the first absorption band is significantly un-

derestimated with respect to the experiment. Hence, this indicates that at

least for cytosine, the inclusion of explicit solvent molecules is mandatory in

order to reproduce the experimentally-observed spectrum. A total of four

excited states with vertical excitation energies below 7 eV have significant

oscillator strengths (larger than 0.1).
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Figure 4.15: Spectrum of cytosine simulated on the level of M062X/aug-cc-

pVDZ and CAM-B3LYP/aug-cc-pVDZ without an explicit hydration shell,

but only bulk solvent taken into account within the polarizable continu-

ous medium (PCM) method (experimental data by courtesy of Alessandra

Picchiotti, Max Planck Institute for the Structure and Dynamics of Matter

Hamburg). The vertical bars indicate the associated stick spectrum .
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Dependence on line-shape parameter

Figure 4.16: Simulated spectra for cytosine on the level of M062X/aug-cc-

pVDZ and CAM-B3LYP/aug-cc-pVDZ by including bulk solvent within the

PCM method and neglecting explicit microsolvation, changing the δ param-

eter from 0.2 eV to 0.05 eV (experimental data by courtesy of Alessandra

Picchiotti, Max Planck Institute for the Structure and Dynamics of Matter

Hamburg).
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In the spectral simulations reported in this work, the value of the line-

shape parameter δ, which appears in Eq. (3.15) and which controls the

width of the line-shape function, was set to the relatively large value of

0.2 eV. The reason for this choice is the aim to obtain smooth simulated

spectra to facilitate the comparison with the experiment. With the goal of

understanding the role of the line-shape parameter, we have investigated the

effect of using a smaller value of δ by recalculating the PCM-only spectra

of cytosine without an explicit hydration shell, by setting δ=0.05 eV. The

resulting absorption spectra are shown in Fig. 4.16. We find that the spectra

obtained with the smaller value of δ have a rough and less smooth shape

due to statistical noise in the calculations, but the overall shapes of the

absorption bands are essentially the same as with δ=0.2 eV. Hence, this

justifies the use of the larger value of δ=0.2 eV to obtain a smooth spectrum

which is in fair agreement with the experimental data.

4.3 Conclusions

The photoabsorption spectra of the four canonical DNA nucleobases ex-

plicitly coupled to a hydration shell of water molecules and embedded in

bulk aqueous solution have been simulated using the semiclassical nuclear

ensemble method in combination with the time-dependent density functional

theory and two choices of the exchange-correlation functional (the M06-2X

and CAM-B3LYP functionals). A major difference to existing approaches

is that we have explicitly included a finite number of water molecules in

the simulations which form a hydration shell. We find that the hydration

shell of the microsolvated nucleobases plays an important role. In general,

both functionals reproduce the general form of the experimentally observed

photoabsorption spectra, while at the same time giving rise to a systematic

energy shift in the calculated positions of absorption peaks. Importantly,

we confirm that the M06-2X and CAM-B3LYP functionals do not give rise

to spurious intermolecular charge transfer excited states when the explicitly

solvated nucleobase molecules are considered. Therefore, these function-

als are well suited for the simulation of the photoabsorption spectra, when

hydration shells are included explicitly.
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Hydrogen bonding with explicit solvent molecules destabilizes the nπ∗-

type excited states of all four nucleobases relative to the low-lying ππ∗-type

excited states. This destabilization will persist following photoexcitation

into the low-lying bright ππ∗-type states for as long as the system remains

near the Franck-Condon geometry, and all hydrogen bonds with the solvat-

ing water molecules are intact. During this period of time, the nπ∗-type

states will therefore be too high in energy to be populated to a significant

extent. It follows that a rearrangement of the solvating water molecules is a

prerequisite for population transfer into the nπ∗-type states. Precisely this

sequence of events was recently predicted to take place in the relaxation dy-

namics of microsolvated 7H-adenine [93]: in this system, the populated state

initially had a pure ππ∗ character, and gradually acquired a mixed ππ∗- and

nπ∗-type character concurrently with a rearrangement of the solvation shell.

The latter process occurred on a timescale of 100-200 fs. Extrapolating to

the other nucleobase molecules in aqueous solution, we therefore expect that

hydrogen bonding with the solvent will generally delay population transfer

into the nπ∗-type at least until some 100-200 fs following the initial pho-

toexcitation.

Moreover, the additional inclusion of vibrational broadening seems essen-

tial for a reliable comparison of simulated photoabsorption spectra with

experimental data, as the peaks in the vibrationally-broadened spectra are

consistently red-shifted with respect to the vertical excitation energies cal-

culated at the ground-state equilibrium geometries. Further spectroscopic

studies in terms of ultrafast 2D spectroscopy is necessary to confirm this

picture. Yet, the present study can serve as a basis for future simulations of

experimental 2D spectra.
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Chapter 5

2D electronic spectroscopy of

adenine

Adenine is a prominent example of the decay behavior of DNA nucle-

obases, exhibiting ultrafast radiationsless decay and low emission quantum

yields, which has been extensively investigated, but sofar no definite agree-

ment concerning the relaxation mechanism after excitation has been reached.

Recently, the photophysics of nucleobases was experimentally investigated

by means of transient absorption (pump-probe) and 2D spectroscopies [109]

at the Max Planck Institute for the Structure and Dynamics of Matter (Ham-

burg) in the Coherent Control and Multidimensional Spectroscopy group.

As an example, Fig. 5.1 presents experimental pump-probe spectra and 2D

spectrum at T=225 fs for adenine in water.

They found that, in all nucleobases, deactivation of the induced population

occurs via a “dark” state which is presumably the so-called nπ∗ state, popu-

lated from the excited state ππ∗ via conical intersection (CI) between them.

Further decay of the population of the nπ∗ state occurs via the second CI

which connects the nπ∗ and ground states. From the experiments the au-

thors derived a spectroscopic model, shown on Fig. 5.2, which convincingly

explains their observation [109].

In the following we focus our consideration on the dominant 9H-isomer of

adenine. In the first part we present the modeling results of the 2D electronic

spectroscopy, based on phenomenological model (a) (Fig. 5.2) and obtained

93
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Figure 5.1: Experimental transient absorption (top) and 2D spectra of 9H-

adenine for waiting time T=225 fs (bottom) [109] (experimental data by

courtesy of Alessandra Picchiotti, Max Planck Institute for the Structure

and Dynamics of Matter Hamburg).

by applying the TNL method, which has been introduced in Section 3.3.

In the second part of this Chapter, we will use the exact hierarchy equation

of motion (HEOM) approach to compare calculated 2D electronic spectra
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Figure 5.2: Spectroscopic model derived from the experiments: phenomeno-

logical (a) and quantum-chemical (b)

with those obtained from the approximate TNL method and with the exper-

imental one. However, the HEOM approach is exact only for a specifically

chosen spectral density of bath states which restricts the modeling to a high

temperature limit. For this modeling we will use the quantum-mechanical

spectroscopic model (b) (Fig. 5.2) which explicitly accounts for two CIs and

also includes a basic vibrational structure for the involved excited states.

5.1 Time Nonlocal Method

5.1.1 Theoretical modeling

Although several excited states play a role in the dynamics of photoex-

cited adenine, and many decay paths are proposed for this molecule, see

Sec. 1.2, we focus here on a minimal kinetic model derived from experimen-

tal results which is schematically shown in Fig. 5.3 (see also panel (a) in

Fig. 5.2) in which the first CI is formally accounted for by introducing a

coupling parameter V between “bright” and “dark” states.
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Figure 5.3: Phenomenological model for the UV deactivation of 9H-adenine

After the excitation of the molecule from the ground state S0 to the S1

ππ∗ excited state, the deactivation of population to the ground state occurs

directly (weak channel, approximately 40 ps decay) and via a dark nπ∗

state (main channel, approximately 700 fs decay). Two higher excited states

ESA1 and ESA2 contribute to the measured signals due to absorption from

the populated ππ∗ and nπ∗, respectively. µ indicates the transition dipole

moments associated with the excitations to the bright state involved in this

theoretical model and to highly-excited states.

Transient absorption spectroscopy of adenine reveals three decay times: the

shortest is due to the flow of population from the excited to the “dark”

state. The associated decay time is ∼ 0.6 − 0.7 ps. Depopulation of the

dark state occurs via a CI with the ground state S0 within a decay time

of ∼ 1.5 − 1.8 ps. The third channel is the direct population decay to the

ground state from the excited S1 state with a decay time of ∼ 40 ps. In
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the present modeling these last two decay channels will be accounted for

phenomenologically (see below).

The formalized Hamiltonian belonging to the energy level scheme of Fig.

5.3 is

Hs =



g 0 0 0 0

0 εππ∗ V 0 0

0 V εnπ∗ 0 0

0 0 0 εESAππ∗ 0

0 0 0 0 εESAnπ∗


(5.1)

where εππ∗ = 37600 cm−1 and εnπ∗ = 37150 cm−1 are the energies of the S1

ππ∗ and the dark nπ∗ states, V = 50 cm−1 is the coupling energy between

the two states, εESAππ∗ = 72600 cm−1 and εESAnπ∗71650 cm−1 are the en-

ergies of the two excited state absorption states.

In Subsection 3.3.2 we reviewed the theory of the TNL method. Accord-

ing to this approach, the Liouville equation describing the evolution of the

total system, formed by the system and the bath, is first projected following

the procedure of Nakajima–Zwanzig [67] and then decomposed into a set of

coupled equations for ρs, ρ
r
k(t), ρ

l
k(t) which are local in time but still treat

both memory and initial correlations correctly (see Ref. [69])

ρ̇s(t) = Leffs (t)ρs(t) + λ×

(
nr∑
k=1

αrkL−ρrk(t) +

nl∑
k=1

αlkL−ρlk(t)

)
, (5.2)

ρ̇rk(t) = (Ls(t) + γrk)ρ
r
k(t) + λL−ρs(t) k = 1, nr, (5.3)

ρ̇lk(t) = (Ls(t) + γlk)ρ
l
k(t) + λL+ρs(t) k = 1, nl. (5.4)

This approach can be applied to reproduce the linear and the 2D electronic

spectra of our simplified model for 9H-adenine. The decays of the bright

and dark states to the ground state S0 are not explicitly included in the

TNL model, but their contributions are modeled using a Lindblad equation:

ρ̇(t) = −i[H, ρ(t)] +
M∑
k=1

γk

(
Lkρ(t)L†k −

1

2
L†kLkρ(t)− 1

2
ρ(t)L†kLk

)
(5.5)
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5.1.2 Results

The calculated linear absorption spectrum of 9H-adenine is shown in Fig.

5.4. Overlapped in the same plot the experimental absorption and the laser

spectra are shown for comparison.

The spectrum seems to be very narrow as compared to the experimental

one, and this is due to the fact that in the current investigation we’re more

focused on fitting the transient absorption spectra. The model is subject

to improvement, in order to get a satisfactory agreement with experimental

linear absorption spectra. The 2D spectra, calculated for different waiting

Figure 5.4: Theoretical and experimental absorption spectrum of 9H-

adenine, overlapped is the laser spectrum (blue dotted line) (experimen-

tal data by courtesy of Alessandra Picchiotti, Max Planck Institute for the

Structure and Dynamics of Matter Hamburg).

times, are shown in Fig. 5.5. For calculation of this spectrum we used an

infinitely-short laser pulse (impulsive limit in excitation).

Direct comparison with Fig. 5.1 shows good agreement between the

magnitudes and positions of positive and negative peaks in the simulated

and experimental spectra. This is a first confirmation of the reliability of

the spectroscopic model proposed in Ref. [109].
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Figure 5.5: Simulated 2D spectra of 9H-adenine shown at four values of the

waiting time T.

Transient Absorption

Transient absorption spectroscopy is perhaps the most widely used third-

order nonlinear experiment. It can be applied to follow many types of time-

dependent relaxation processes and chemical dynamics, and is most com-

monly used to follow population relaxation, chemical kinetics, dynamics of

wavepacket created by excitation at different electronic potential surfaces,

and quantum beats.

Two pulses separated by a delay τ are crossed in a sample: a pump pulse and

a time-delayed probe pulse. The pump pulse Epu creates a non-equilibrium

state, and the time-dependent changes in the sample are characterized by

the probe-pulse Epr through the pump-induced intensity change in the trans-

mitted probe, ∆T . The described interaction mechanism between the pulses

and sample is depicted in Fig. 5.6.
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Figure 5.6: Pump probe setup (picture taken from: Tomakoff Group, Non-

linear and Two dimensional Spectroscopy Notes).

Calculation of the pump-probe (PP) spectra of 9H-adenine was per-

formed according to the method introduced in Ref. [110], briefly reviewed

in the following.

The system’s response to the applied fields

Ea(t) = λaEa(t− τa) exp i(kar− ωat) (5.6)

where λa, ka, ωa and τa denote amplitude, wavevector, frequency and tem-

poral position of the pulses, is determined by the total complex nonlinear
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polarization

P (r, t) = Tr[µρ(r, t)] (5.7)

which contains contributions corresponding to all possible values of the wave

vector k = l1k1 + l2k2 , with la being arbitrary integers. The pump probe

polarization PPP (t) corresponds to the phase-matching condition l1 = 0,

l2 = 1. PPP (t) can be retrieved from the total polarization P (t) by the

formula

PPP (t) =
1

2π

∫ 2π

0
dϕ2 exp [−iϕ2]P (ϕ2; t), (5.8)

where P (ϕ2; t) is computed for specific values of the phase angles (k1r = 0

and k2r = ϕ2). Once PPP (t) has been determined, the transient absorption

integral PP signal is obtained according to

SPP (t) = Im

∫ ∞
−∞

dtE2(t)(PPP (t)− P offPP (t)), (5.9)

where P offPP (t) is the polarization induced solely by the probe pulse, and

T = τ2 − τ1 is the time delay between the pump and probe pulses.

Pump probe spectra have been simulated for 9H-adenine by applying

the already introduced TNL model.
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Figure 5.7: Simulated pump-probe spectrum of 9H-adenine
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Figure 5.8: Pump probe amplitude of 9H-adenine (experimental data by

courtesy of Alessandra Picchiotti, Max Planck Institute for the Structure

and Dynamics of Matter Hamburg).

In Fig. 5.7 we show numerically simulated pump-probe spectrum, while

in Fig. 5.8 the experimental and calculated PP traces are overlaid, showing

good agreement between each other. The red and blue lines are the PP

amplitude profiles of the red and the blue peak in the calculated spectra,

respectively. The increasing trend in the PP-amplitude of the blue peaks,

which reflects a decay of ππ∗ state and population growth of nπ∗ state mon-

itored via ESA, is reproduced very well.

From the relatively good agreement between the experimental and numeri-

cal results, we can conclude that the phenomenological model shown in Fig.

5.2 (a) supports the experimental observation and validates our theoretical

model. Moreover, concerning the results already achieved for adenine and

presented in Sec. 1.2, we can conclude that our results of numerical simu-

lation of the PP kinetics supports two of the three decay pathways found

in experiments [109], i.e. the 1Laππ
∗ → nπ∗ → S0 and the 1Laππ

∗ → S0

paths.
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5.2 Hierarchy Equations of Motion

The 2D and pump-probe spectra of adenine in aqueous solution have

been also simulated by applying the second method, the Hierarchy equa-

tions of motion, which was already briefly introduced in Section 3.3.3. This

is a more accurate and precise method and also allows us to take into con-

sideration both CIs explicitly. The signatures of conical intersections have

been detected, and the results obtained from these simulations will be pre-

sented in this section.

Many molecules of interest in spectroscopy exhibit conical intersections

[111]-[118]. Here, we focus in particular on a conical intersection between

the electronic excited state and the ground state, in addition to possible con-

ical intersections between the excited states. Such conical intersections have

been suggested to be present in the nucleobase 9H-adenine (see Section 1.2

and the References listed therein), where they are responsible for ultrafast

deactivation of the excited state. Due to fast dynamics, a rich waiting time

dependence of the two-dimensional spectrum is expected for these systems

[119]-[121]. Of particular interest in this study are the conical intersections

between excited and the ground states.

Nonadiabatic coupling between the excited and ground states was also con-

sidered for a one-dimensional model by Tanimura [79]. In the one-dimensional

model used, a coupling between diabatic states leads to avoided crossing of

the adiabatic surfaces. To go one step further and obtain a conical intersec-

tion of these surfaces, one needs to introduce at least two vibrational modes

[122].

Although several excited states play a role in the wavepacket dynamics of

photoexcited adenine [123], we focus here on a minimal model that cor-

responds to the kinetic model derived from the experimental results and

depicted in Fig. 5.2 (b).

5.2.1 Theoretical modeling

A minimal model for a conical intersection is the linear vibronic cou-

pling model [124, 119]. In this work, we will generalize this model to include

three potential energy surfaces with two CIs: the ground state, a bright
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Figure 5.9: Diabatic potential energy surfaces along the tuning coordinate

Q2.

ππ∗ state and a dark state, see Fig. 5.9. In addition, as in the previous

modeling, we include the ESA channels for both the bright and the dark

state (not shown). This model differs from the previous one considered in

the framework of TNL by inclusion of a vibronic structure composed by two

vibrational states, which are thought to play an important role in the dy-

namics of the excited states. The present model sketched in Fig. 5.9 includes

both conical intersections CI1 and CI2; however, the direct decay channel

from the excited to the ground state is not accounted for(due to a very long

decay time as compared to the fast deactivation pathways). It should be

noted that, in this model, numerical calculations are limited by the shapes

of potential surfaces: all of them are parabolic (harmonic potentials) and

have the same curvatures.

In this model, three coordinates are involved: the tuning coordinate, along

which the coupling between diabatic states changes, and two coupling coor-

dinates, one for each considered conical intersection. This is a generalization

of the treatment introduced in Chapter 3 (where just one coordinate was

describing both the two CIs), ensuring a more accurate description of the

model.

The potential energy surfaces along the tuning coordinate are harmonic,
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and the dependence of the diabatic coupling on the coupling coordinate is

linear. This coupling coordinate is not explicitly shown in Fig. 5.9. Ide-

ally, it would be perpendicular to the plane on which the tuning-dependent

potential surfaces are lying. In the present model the tuning and coupling

coordinates have separate and uncorrelated vibrational modes.

Three parabolas represent the three harmonic potentials corresponding

to the ground state S0, the bright ππ∗ and the dark state nπ∗.

The Hamiltonian is given as the sum of a Hamiltonian for the two po-

tential energy surfaces and a Hamiltonian for their coupling to the harmonic

oscillator bath. The first part of the Hamiltonian for three modes is given

by

HP = εe|e〉〈e|+ εd|d〉〈d|

+ M2Ω2
2Q2deD2|e〉〈e|+M2Ω2

2Q2ddD2|d〉〈d|

+ M1Ω2
1Q1D1(dV 1|d〉〈e|+ h.c.)

+ M1′Ω
2
1′Q1′D1′(dV 1′ |g〉〈d|+ h.c.), (5.10)

where εe and εd are the vertical transition energies of the ππ∗ state |e〉 and

dark state |d〉, Mj , Dj and Ωj are masses, length scales and frequencies of

the modes with coordinates Qj , and di are the dimensionless displacements.

The potentials for the tuning coordinate Q2 and the coupling coordinates

Q1 and Q1′ are harmonic.

In order to describe damping, we couple the system Hamiltonian to a

bath consisting of infinitely many harmonic oscillators. The interaction of

the coupling and tuning modes with the bath is given by the Hamiltonian:

HSB =
∑
α

{ p
2
α

2mα
+

1

2
mαω

2
α(xα −

g1α

mαω2
α

Q1)2

+
1

2
mαω

2
α(xα −

g1′α

mαω2
α

Q1′)
2

+
1

2
mαω

2
α(xα −

g2α

mαω2
α

Q2)2}, (5.11)

where mα, ωα, xα and pα are the masses, frequencies, coordinates and mo-

menta of the infinitely many harmonic bath oscillators, and giα are their

coupling strengths to the system.
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Because of the assumed linear coupling to a harmonic bath, all informa-

tion about the bath and the system bath coupling is encoded in the spectral

densities. The spectral densities are defined as

Ji(ω) =
∑
α

g2
iα

2mαωα
δ(ω − ωα), (5.12)

and are chosen to be Ohmic,

J(ω) = Miγiω exp−ω/Λ, (5.13)

where we will take the cut-off Λ larger than all other frequencies in the

system, so that it can be set to infinity. The parameters γi measure the

strength of the damping.

Through a canonical transformation the Hamiltonian is rewritten as [78]

H = εe|e〉〈e|+ εd|d〉〈d|

− (dd|d〉〈d|+ de|e〉〈e|)
∑
α

g′2αx
′
α

− (dV 1|d〉〈e|+ h.c.)
∑
α

g′1αx
′
α

− (dV 1′ |g〉〈d|+ h.c.)
∑
α

g′1′αx
′
α (5.14)

The transformed spectral density, defined for the couplings to the trans-

formed bath g′iα is of the Brownian oscillator form, with reorganization

energies λi = MiD
2
i Ω

2
i /2π~. In the overdamped limit, which allows the

simplest calculation and agrees with experimental results, we approximate

the spectral density by the Debye form

JiOD(ω) = 2λiωc,i
ω

ω2 + ω2
c,i

, (5.15)

where ωc,i is the cut-off frequency.

A hierarchy of equations of motion can be derived by generalizing the

treatment in Refs. [77] and [79] to three coordinates and overdamped baths.

In our calculations, we use the form of the hierarchy proposed in Ref. [125].

Linear spectra, pump-probe spectra and two-dimensional optical spectra can

be calculated with the standard perturbative method. In order to include

induced absorption in the calculation of two-dimensional spectra, we add two
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levels with energies εf1 and εf2, which can be excited optically from the ππ∗

and dark states, respectively. We do not include dynamics for these states

in the model. Therefore, they are simply characterized by their excitation

energies εf1 and εf2 and transition dipoles µESA1 and µESA2.

5.2.2 Results

In the calculation we used the following set of parameters which allows

satisfactory agreement between the modeled and experimental data: εe =

4.75 eV, εd = 6.3 eV, d2
eλ2 = 16 meV, d2

dλ2 = 100 meV, d2
V 1λ1 = 9.6 meV,

d2
V 1′λ1′ = 4.32 meV, ωc,1 = ωc,1′ = 0.5 eV, ωc,2 = 0.15 eV and εf1 = 8.8 eV,

εf2 = 10.3 eV, µESA1 = 0.7, µππ∗ , µESA2 = 2.0, µππ∗ and β = 0.5/ eV.

In the numerical simulations of 2D and PP spectra horizontal displace-

ments de and dd play a significant role through their product with the reor-

ganization energy λ2, which gives the strength of the coupling to the bath

of the tuning coordinate. The response function formalism with delta (in-

finitely short) laser pulses has been used for the current calculations.
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Figure 5.10: (solid) Calculated and (dashed) experimental linear spectrum

(experimental data by courtesy of Alessandra Picchiotti, Max Planck Insti-

tute for the Structure and Dynamics of Matter Hamburg).

In Fig. 5.10 the calculated and the experimentally obtained linear ab-
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Figure 5.11: Dynamics of a system with two conical intersections. Plotted

are the populations of the diabatic states. Color coding is as in the potential

energy surfaces in figure 5.9.

sorption spectra are overlaid: by comparing with Fig. 5.4 we can see a

much better performance of the HEOM method with respect to the TNL

approach, at least for simulation of the linear absorption spectra.

The population kinetics of the diabatic states is plotted in Fig. 5.11, where

the color coding corresponds to the coloring of potential energy surfaces in

Fig. 5.9. The pump-probe spectra as a function of waiting time is depicted

in Fig. 5.12 and shows qualitative agreement with the experimental PP-

spectra, see top panel in Fig. 5.1. The positive peak (plotted in the red

and yellow colors) is related to the processes of bleaching and stimulated

emission, the negative peak (plotted in the light-blue color) is the signal

representative of the mechanism of induced absorption. It visualizes the

population of dark state via the excited-state absorption.

Figure 5.13 shows the calculated pump-probe slices through the pump-probe

spectrum at fixed frequency as a function of waiting time. The main fea-

tures of the experimental data, namely a gradual decrease of the positive

peak and an increase of the amplitude of the negative peak on a time scale

of 100s of femtoseconds, followed by a decrease on a picosecond time scale,



109

0.0 0.5 1.0 1.5
t2  (ps)

30

32

34

36

38

40

42

44
ν t
 (k

cm
−1
)

Figure 5.12: Calculated pump probe spectrum as a function of waiting time.

are well reproduced.

In Fig. 5.14 calculated two-dimensional optical spectra are shown for vari-

ous waiting times: size and relative position of the two lobes with opposite

signs reproduces well the experimental observations (Fig. 5.1). The ob-

served spectral shift of ≈ 2000 cm−1 in the calculated 2D spectra to higher

energies is most likely due to some drawbacks of spectroscopic model used

for calculations (harmonic shapes of the PESs with equal curvatures) as well

as due to setting of parameters for calculations (transition energies). The

decrease in intensity of the peaks is a result of the dynamics through conical

intersections.

The main limitation of our model is the equal curvatures of all electronic

states, which should differ from each other in a more exact treatment of the

problem. The second limitation is the Condon approximation (constant

transition dipole moments) used in the calculations. A more realistic model
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Figure 5.13: Slices through the pump-probe signal for (red) the positive and

(blue) the negative peak as a function of waiting time. Slices were taken at

the points indicated by the dashed line in Figure 5.12.

should account for dependency of transition dipole moments on the nuclear

coordinates.

Future work will be devoted to solving these issues and going beyond the

approximations used in this preliminary, but quite promising study.
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Figure 5.14: Calculated two-dimensional optical spectra for various waiting

times.
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Chapter 6

Conclusions

The present work was devoted to the study of linear and two-dimensional

electronic spectroscopy of DNA nucleobases. Introduction of the theoretical

background, explanation of the used computational methods and description

of main results are provided.

UV photochemistry of nucleic acids is a subject of big interest, as UV

electronic excitations trigger a sequence of events which may lead to UV-

induced damage of DNA, with all its profound and vast biological conse-

quences (e.g. mutagenic and carcinogic effects). This has a big impact in

understanding of exact circumstances for the beginning of life on Earth,

since much of the prebiotic chemistry probably occurred under intense UV

irradiation.

On the other side, investigating the fundamental processes underlying UV

photochemistry of DNA constituents can have extremely important medical

applications, for what concerns the damaging processes following the UV

irradiation, which is one of the main cause of skin cancer [126].

To date, not so much is known about the dynamics of the electronic states

of these DNA macromolecules.

In this work, we intend to provide for the first time a tractable low-

dimensional model of the excited state dynamics of DNA nucleobases in

presence of external fluctuations induced by the solvent. In order to do so,

we follow the so-called reductionist approach and start our analysis from

the single nucleobases and their UV photophysics, studied in terms of linear

113
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and 2DES spectroscopy.

After UV photoexcitation, all four DNA nucleobases return to the ground

state by means of internal conversion processes at the scale of a few picosec-

onds, a fact that has been often related to the intrinsic photostability of these

bases. The electronic excited states involved in such decay processes have

been intensively investigated in the last decades, but no common picture for

the relaxation of DNA nucleobases have been reached yet.

Understanding and simulating linear absorption spectra of DNA con-

stituents is a first necessary step in this direction, and this is the motivation

for the first part of the present study, where the UV absorption spectra

of the four DNA nucleobases in aqueous solution have been modeled. The

calculation has been performed by using a combination of time-dependent

density functional theory and the semiclassical nuclear ensemble method

[56]. The water molecules forming the microsolvation shell are explicitly in-

cluded and the entire complex is placed in a bulk water solvent represented

as a continuous polarizable dielectric medium (PCM). The simulated spec-

tra are compared to experimentally measured absorption spectra. Apart

from a systematic shift of 0.3 eV of the absorption peaks, the calculated

photoabsorption spectra reproduce the measured ones with good accuracy.

The effect of the solvation shell seems significant: the lone electron pairs

in the hydrogen bonding with the solvating water molecules systematically

increases the energies of vertical excitation into the nπ∗-type states. As a

consequence, the energies of vertical excitation into the nπ∗-type states are

higher by a few tenths of an electronvolt for the microsolvated bases than

the energies for the excitation into the lowest ππ∗-states. This is in contrast

to the case of isolated nucleobases, where the energies of the lowest nπ∗-

and ππ∗-type states are comparable.

The additional inclusion of vibrational broadening, implicit in the use of the

semiclassical ensemble method, seems essential for a reliable comparison of

simulated photoabsorption spectra with experimental data, as the peaks in

the vibrationally-broadened spectra are consistently red-shifted with respect

to the vertical excitation energies calculated at the ground-state equilibrium

geometries.
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One of the goals of this project is also to determine optical properties of

DNA nucleobases in terms of the third-order response function, which yields

a direct connection of the theoretical modelings to experimental results of

4-wave-mixing time-resolved optical spectroscopies, in particular to photon-

echo-based 2D-UV and transient absorption spectroscopies. The developed

theoretical picture was obtained in close collaboration with the experimen-

talists at the Max Planck Institute for the Structure and Dynamics of Matter

(MPSD), who provided the reference experimental data and a spectroscopic

model derived from the analysis of experimental observations. The investi-

gated system for this study was the 9H- isomer of adenine, the most studied

DNA nucleobase in the past. A minimal kinetic model was derived from

the experimental results: excitation to a bright ππ∗ state is followed by fast

population transfer to a dark nπ∗ state via a conical intersection. The deac-

tivation of the nπ∗ state population is due to a second conical intersection

connecting the dark and the ground state.

The non-Markovian quantum dynamics of such system has been simulated

by means of two methods: Time Nonlocal (TNL) [69], and Hierarchy Equa-

tions of Motion (HEOM) [77, 79] approach. 2DES and pump probe spectra

have been simulated and compared with the available experimental data,

leading in both cases to good agreement between the experiment and the-

ory.

For the HEOM approach, the linear vibronic coupling model [124] has been

used, while in the TNL treatment, no vibronic structure of the excited states

was accounted for. Therefore, the HEOM approach leads to more accurate

results, even though a good agreement for the pump-probe spectra at short

delay times was not yet reached. However, the theoretical modelings pre-

sented here fully supports the spectroscopic model derived from experiments

and the proposed route for deactivation of population in DNA nucleobases

via two conical intersections [109].

Several issues still limit the performance of both TNL and HEOM ap-

proaches, for instance, the use of the Condon approximation and the high

temperature limit. Further spectroscopic studies in terms of ultrafast 2D

spectroscopy are necessary to confirm the results of the present study, which

will serve as a basis for future simulations and experimental investigations.
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The natural continuation of the research described in the present work

is the extension of the model from single nucleobases to nucleotides (and

nucleosides) polymers. Simulation of linear absorption, circular dichroism

and 2DES spectra for dimers, and even longer chains of nucleobases will be

the next steps of the research, with the goal of reproducing the experimental

data, available for chains of 2, 4 and 10 DNA monomers.

The modeling of such systems clearly would imply taking into account the

exciton couplings between the DNA monomers and charge transfer due to

the interaction of more monomers within a single (or double) DNA strand,

already studied and introduced in Chapter 1.

The present work is the first milestone towards the development of a working

exciton model for single-stranded, and furthermore double-stranded DNA,

so that we can gain a full understanding of the forthcoming 2D spectra.

A suitable system for a promising application of the semiclassical en-

samble method is the cyclobutane thymine dimer, the major DNA lesion

induced in human skin by sunlight, whose recognition and repair are inten-

sively studied for the implication on human health [127]. Linear absorption

and circular dichroism spectroscopies of such molecule are possible topics

for future research.
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