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CHAPTER 1

Introduction

A typical question in graph theory investigates the relationship between struc-
tural properties of a graph and its invariants. In extremal graph theory we are
interested in the quantitative aspects of this dependence, for example the maxi-
mum or minimum number of edges for which a certain property is satisfied, and
how the graphs with exactly such number of edges look like.

Extremal graph theory is a branch of discrete mathematics whose origin is
usually set in 1941, when Turán proved his celebrated theorem on K

r

-free graphs.
In the last few years, many advanced results have been proved and new techniques
have been developed, including methods that have their roots in other branches
of mathematics, like algebra and probability theory. In this thesis we introduce
two new results that deal with di�erent aspects of extremality in relationships
between graphs.

A central part of extremal graph theory investigates the structural properties
of graphs that do not contain a given subgraph. Turán’s theorem is a prime
example. It establishes that the maximal number of edges a K

r

-free graph may
have is the number of edges of the complete (almost) balanced pr ´ 1q-partite
graph and that this is actually the only K

r

-free graph attaining such many edges.
The case where triangles are forbidden gave rise to further questions that set the
basis of our first result. In fact, we extended a theorem on triangle-free graphs to
the case where small odd cycles are not contained in the graph. In Theorem 5 we
determine the minimum degree that allows a graph with a given odd girth to be
homomorphically mapped into its smallest odd cycle and in Theorem 6 we study
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1. INTRODUCTION 2

the structure of the extremal graphs for this property. We give a brief history of
the problem and introduce our contribution in Section 1.1.

We remark that here we started from a (forbidden) substructure and studied
how this a�ects the overall appearance of a larger graph. On the other hand, one
may start from a large complete graph and investigate which families of graphs
can be found as edge disjoint subgraphs in it. These questions are called packing
problems and their di�cult increases as the number of edges of the graphs we
want to pack approaches that of the hosting complete graph. In particular when
all edges are used we call such a packing perfect. For example, a well-known and
still open conjecture of Gyárfás asks for a perfect packing of n trees having all
possible orders from 1 to n into K

n

. In this thesis we extend a recent result that
solves an asymptotic version of this conjecture for trees with bounded maximum
degree. In fact, Theorem 9 establishes a similar statement that involves graphs
from a minor closed family with bounded maximum degree. We refer the reader
to Section 1.2 for a more detailed description of our result and the research around
Gyárfás’ conjecture.

Notation. Throughout this thesis we consider finite and simple graphs with-
out loops and for any notation not defined here we refer to the textbooks [12,15,
24]. As usual, V pGq and EpGq denote the vertex set and the edge set of a graph
G respectively, with their cardinalities indicated by vpGq and epGq. The degree of
a vertex v, i.e., the number of edges having v as an endpoint, is denoted by dpvq,
while ”pGq, dpGq, and �pGq signify the minimum, average, and maximum degree
of G respectively. Finally, ‰pGq designates the chromatic number of G, i.e., the
minimum number of colours with which we may label the vertices of G in such a
way that any two adjacent vertices have di�erent colours.
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§1.1. Graph homomorphism

A large branch of extremal graph theory studies su�cient conditions for given
graphs F and G that force the existence of a subgraph isomorphic to F in G.
In this type of problems, the number of edges of G is a natural parameter to
consider. Let expn, F q be the maximum number of edges that a graph G of
order n not containing F as a subgraph may have. The case when F is a clique
of size r, meaning that G does not contain a set of r vertices any two of which
are joined by an edge, was settled by Turán [53] in 1941 and is considered the
starting point of extremal graph theory.

Theorem 1 (Turán). For any graph G with n ” ¸ pmod r ´ 1q vertices and
0 § ¸ § r ´ 1

expn, K
r

q “ 1
2

ˆ
1 ´ 1

r ´ 1

˙
pn2 ´ ¸2q `

ˆ
¸

2

˙
.

Moreover, the only K
r

-free graph with n vertices and expn, K
r

q edges is the Turán
graph T pn, rq, i.e., the pr ´ 1q-partite graph where any two partition classes di�er
by at most one in size and there is an edge between two vertices if and only if they
belong to distinct partition classes.

While this exact number of edges gives us a precise description of an extremal
K

r

-free graph, it is impossible to grasp the structure of a K
r

-free graph with
fewer edges by this information alone, since we don’t know how those edges are
distributed among the vertices. Considering the minimum degree allows us to
characterise a broader range of K

r

-free graphs.
In this sense, a direct consequence of Turán’s theorem is that a graph G with

minimum degree larger than r´2

r´1

n must contain K
r

[57]. In some cases when
pr ´ 1q does not divide n, a graph with minimum degree exactly r´2

r´1

n may have
chromatic number larger than r ´ 1 “ ‰pT pn, rqq. Since the Turán graph has the
maximum number of edges, one may guess that a sharper degree condition could
mark this change in the structure. In fact, the following is true [9].
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Theorem 2 (Andrasfái, Erd�s, and Sós). Let r • 3. For any n-vertex graph G

at most two of the following properties can hold:

(1) K
r

Ü G,
(2) ”pGq ° 3r´7

3r´4

n,
(3) ‰pGq • r.

The extremal graph here is unique in the sense that, when p3r ´ 4q | n, there
exists a unique K

r

-free graph with n vertices, minimum degree exactly 3r´7

3r´4

n and
chromatic number r. This graph has vertex set

V “ V
1

9Y . . . 9Y V
r´3

9Y U
0

9Y . . . 9Y U
4

where

|V
i

| “ 3n

3r ´ 4 and |U
j

| “ n

3r ´ 4
for i “ 1, . . . , r ´ 3 and j “ 0, . . . , 4, and its edge set contains all pairs tx, yu such
that x P V

i

and y R V
i

or x P U
j

and y P U
j`1pmod 5q Y U

j´1pmod 5q.
In the triangle case we have that if a K

3

-free graph G with n vertices has
minimum degree 2n

5

† ”pGq § n

2

, then G is bipartite, and if 5 | n and ”pGq “ 2n

5

then G is either bipartite, or it is a balanced blow-up of C
5

, i.e., a graph where
the vertex set is partitioned into five classes of the same size and any two vertices
from classes V

i

and V
i`1pmod 5q are joined by an edge. One may thus expect that if

a graph G has minimum degree lower than but close to 2n

5

, then G has a structure
“similar” to that.

More precisely, we say that a graph G is homomorphic to a graph H if there
exists a map „ : V pGq Ñ V pHq such that t„puq, „pwqu P EpHq whenever tu, wu P
EpGq. Graph homomorphisms are strictly related to chromatic numbers. In fact,
if there exists a colouring of G with k colours, then there exists a homomorphism
into K

k

where each vertex of K
k

is a colour, and if there exists a homomorphism
from G to K

k

one can colour all vertices of G mapped to the same vertex of H

with the same colour.
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We have seen that if G is K
3

-free and has minimum degree at least 2n

5

then G

is homomorphic to C
5

(note that a bipartite graph is homomorphic to any graph
with at least one edge). Häggkvist [36] showed that such a phenomenon already
happens when the minimum degree is larger than 3n

8

.

Theorem 3 (Häggkvist). Any n-vertex, K
3

-free graph G with minimum degree
”pGq ° 3n

8

is homomorphic to C
5

.

The degree condition here is best possible, since there exists a graph with
minimum degree exactly 3n

8

that is not homomorphic to C
5

. This graph is the
balanced blow-up of the cycle of length eight a

0

. . . a
7

a
0

with additional edges
ta

i

, a
i`4pmod 8qu for i “ 0, . . . , 3. It is denoted by M

8

and named the Möbius ladder
of order eight.

a
0

a
1

a
2

a
3

a
4

a
5

a
6

a
7

Figure 1. The Möbius Ladder M
8

.

We may further refine the problem and ask whether there exists a minimum
degree condition that guarantees that a K

3

-free graph is homomorphic to M
8

, then
look at the extremal graph that is not homomorphic to M

8

, study the minimum
degree condition for which a K

3

-free graph is homomorphic to that, and so on.
Let F

¸

be a cycle of length 3¸ ´ 1 with additional edges joining vertices whose
distance in the cycle is 3j ` 1 for any j “ 1, . . . , t ¸´1

2

u. Note that for any ¸ • 1,
F

¸

is an ¸-regular graph with chromatic number three and F
¸`1

contains F
¸

as
a subgraph but it is not homomorphic to it. With this notation in mind, we
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remark that Theorems 2 and 3 establish the degree condition for the existence of
a homomorphism into F

1

and F
2

respectively, and in general we would like to argue
that any K

3

-free graph with minimum degree larger than p¸`1qn

3¸`2

is homomorphic
to F

¸

for every ¸ • 1. In fact, this is true for 1 § ¸ § 9.

Theorem 4 (Chen, Jin, and Koh). Let 1 § ¸ § 9. Any n-vertex K
3

-free
graph G with minimum degree ”pGq ° p¸`1qn

3¸`2

is homomorphic to F
¸

. Moreover,
for each such ¸ there exists an extremal graph with minimum degree exactly p¸`1qn

3¸`2

which is homomorphic to F
¸`1

but not to F
¸

.

For ¸ ° 9 graphs with larger chromatic number appear. In fact, Häggkvist
[36] showed that there exists a K

3

-free graph with minimum degree exactly 10n

29

that contains the Grötzsch graph (see Figure 2) as a subgraph. Since the Grötzsch
graph has chromatic number four, a graph containing it cannot be homomorphic
to any F

¸

since they all have chromatic number three.

Figure 2. The Grötzsch graph.

This result disproved a conjecture of Erd�s and Simonovits stating that any
K

3

-free graph with minimum degree larger than n

3

has chromatic number three.
The value n

3

reflects the existence of graphs with arbitrarily large chromatic num-
ber and minimum degree

`
1

3

´ Á
˘

n for any Á ° 0. The structure of the graphs
F

¸

seems to sustain this choice, since 1

3

is limit of the degree of F
¸

divided by its
number of vertices for ¸ Ñ 8.
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In fact, Chen, Jin, and Koh [22] showed that containing the Grötzsch graph is
the only obstacle for a triangle-free graph with minimum degree larger than n

3

to be
homomorphic to some F

¸

and, hence, have chromatic number at most three. The
problem posed by Erd�s and Simonovits was thoroughly investigated in [17,42,52]
and finally settled by Brandt and Thomassé [19], proving that K

3

-free graphs with
minimum degree larger than n

3

have chromatic number at most four.
In this thesis we establish the starting point for a generalisation of this theory

to a broader class of graphs. The odd girth of a graph is defined as the length of
its smallest odd cycle. Hence, since triangles are cycles of length three, triangle-
free graphs have odd girth at least five. Our aim is to find the minimum degree
conditions that help describe the structure of graphs with larger odd girth. In
this sense, we generalised Theorem 3 to graphs of any odd girth [46].

Theorem 5. For every integer k • 2 and for every n-vertex graph G the
following holds. If G has minimum degree ”pGq ° 3n

4k

and G has odd girth at least
2k ` 1, then G is homomorphic to C

2k`1

.

As in the triangle-free case, the minimum degree here is best possible, as the
Möbius ladder of order 4k shows. We provide a detailed characterisation of the
extremal graphs in the following theorem.

Theorem 6. For every integer k • 2 and for every n-vertex graph G with
minimum degree ”pGq “ 3n

4k

and odd girth at least 2k ` 1 the following holds. If G

is not homomorphic to C
2k`1

then G is a blow-up of M
4k

with vertex partition
A

0

, . . . , A
4k´1

. Furthermore,

‚ if 3 - k then G is a balanced blow-up, i.e., |A
0

| “ ¨ ¨ ¨ “ |A
4k´1

| “ n

4k

;
‚ if 3 | k then there exist Í

0

, Í
1

, Í
2

P t z

3

: z P Zu with Í
0

` Í
1

` Í
2

“ 0 such
that |A

i

| “ n

4k

` Í
ipmod 3q for i “ 0, . . . , 4k ´ 1.

The proofs of both theorems, together with a discussion on the open questions
in the area will be the subject of Chapter 2.
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§1.2. Graph packing

The problem of finding a certain subgraph in a larger graph naturally extends
to the case where we require many subgraphs at the same time. More precisely,
given a sequence of graphs pG

1

, . . . , G
t

q, we say that it packs into some graph H

if there exist edge-disjoint subgraphs H
1

, . . . , H
t

Ñ H with H
i

isomorphic to G
i

for every i P rts. In packing problems we are interested in characterising those
classes of graphs G

1

, . . . , G
t

such that G
i

P G
i

and pG
1

, . . . , G
t

q packs into a given
graph H.

In the simplest instance of this problem we are given two n-vertex graphs G
1

and G
2

and study the conditions that allow such graphs to be packed into K
n

. A
simple counting argument by Sauer and Spencer [51] shows that this is possible
if epG

1

qepG
2

q †
`

n

2

˘
. Bollobás and Eldridge [13] studied a more specific case, i.e.,

when one of the graphs has less than n

2

edges. In this case, for su�ciently large n,
pG

1

, G
2

q packs into K
n

if epG
1

q § –n with 0 † – † 1

2

and epG
2

q § 1

2

p1 ´ 2–qn3{2.
The following example shows that the exponent in n3{2 is best possible. For

fixed –, let s “ p2–nq 1
2 , G

1

“ K
s

Y K
n´s

, and G
2

“ T pn, sq, thus epG
1

q § –n

and epG
2

q § n3{2. Since G
2

is the union of s ´ 1 complete graphs and G
1

contains
a clique on s vertices, they cannot pack into K

n

. This example suggests that
graphs containing vertices with high degree may be di�cult to pack. In fact,
if we consider graphs with a bounded maximum degree, then a larger number of
edges is allowed. In this sense, Sauer and Spencer [51] showed that pG

1

, G
2

q packs
into K

n

if �pG
1

q�pG
2

q † n

2

.
Can we replace the 1

2

factor with something better? Let d
1

§ d
2

† n such that
pd

1

`1qpd
2

`1q • n`2, set G
1

“ d
2

K
d1`1

XK
d1´1

and G
2

“ d
1

K
d2`1

XK
d2´1

, and
suppose that pG

1

, G
2

q packs into K
n

. Then each K
d1`1

component of G
1

would
use at most one vertex in each of the d

1

components of G
2

that are isomorphic
to K

d2`1

and, hence, at least one vertex from the K
d2´1

component of G
2

. Since
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K
d2´1

has fewer vertices than the number of K
d1`1

components in G
1

, such a
packing cannot exist.

Bollobás and Eldridge [13] and Catlin [21] conjectured that this example is
best possible, and therefore a packing exists if p�pG

1

q ` 1qp�pG
2

q ` 1q § n ` 1.
Some special cases were proved in [1, 4, 14, 21, 23] and a solution for large n

was recently claimed by Kun. We also remark that such a conjecture is related
to the well-known Hajnal-Szemerédi theorem [38], which states that any graph
with maximum degree � has a colouring with p� ` 1q colours in which any two
colour classes di�er by at most one in size. In fact, suppose G

2

is the union of r

cliques of size n

r

(here we assume r | n for simplicity) and, hence, it has maximum
degree n

r

´ 1. Then p�pG
1

q ` 1qp�pG
2

q ` 1q § n ` 1 implies that �pG
1

q § r ´ 1,
therefore G

1

has r independent sets of size n

r

that can host G
2

.
Let us now consider packing problems that involve a larger number of graphs.

The following conjecture was formulated by Gyárfás in 1976 and it is referred to
as the Tree Packing Conjecture [35].

Conjecture 7. Any sequence T “ pT
1

, . . . , T
n

q of trees of order vpT
i

q “ i for
i P rns packs into K

n

.

Figure 3. A packing of pT
1

, . . . , T
7

q into K
7

.

The simplicity of the statement and the fact that the packing of these sequence
of trees into K

n

would be perfect make this conjecture an appealing problem.
Some special cases of Conjecture 7 were verified (see, e.g., the survey [39] and



1.2. GRAPH PACKING 10

[33]). Gyárfás and Lehel [35] showed that the conjecture holds when all but two
of the trees in the sequence are stars, and when each tree is either a star or a path
(see also [56]). The case when at most one of the trees has diameter more than
three was proved by Hobbs, Bourgeois, and Kasiraj [40]. Other cases concerning
restrictions on the structure of the trees were investigated by Dobson [25–27] and
by Roditty [50].

Another line of research concerns the packing of subsequences of T . In this
sense, Bollobás [11] showed that pT

1

, . . . , T
k

q packs into K
n

if k † n?
2

. About
the other endpoint of T , it was shown by Hobbs, Bourgeois, and Kasiraj [40]
that pT

n´2

, T
n´1

, T
n

q packs into K
n

, while Balogh and Palmer [10] proved that
pT

k

, . . . , T
n

q with k ° n ´ n

1{4

10

packs into K
n`1

.
A related conjecture was formulated and studied by Gerbner, Keszegh, and

Palmer [31]. This states that T packs into any n-chromatic graph, and it was
proved to hold in the case when all but three of the trees are stars. Another
conjecture by Hobbs [39] states that T packs into the complete bipartite graph
K

n´1,rn{2s. This holds if each of the trees is either a star or a path (see [56]
and [39] for the case when n is even and odd, respectively). Yuster [55] proved this
conjecture for a subsequence of T , i.e., pT

1

, . . . , T
k

q with k †
a

5{8n, improving
the previously best-known bound on k by Caro and Roditty [20].

As we have seen for packing problems involving two graphs, a bounded maxi-
mum degree allows for a more e�cient use of the edges of the hosting graph. In
fact, Böttcher, Hladk ,̋ Piguet, and Taraz [16] showed that with such a restriction
on the trees, the graph obtained by adding only Án vertices to K

n

is su�cient to
accommodate n trees of order at most n when n is su�ciently large (since we
provide asymptotical results, we will omit floors and ceilings in the following).

Theorem 8 (Böttcher, Hladk ,̋ Piguet, and Taraz). For any Á ° 0 and any
� P N there exists n

0

P N such that for any n • n
0

the following holds for every
t P N. If T “ pT

1

, . . . , T
t

q is a sequence of trees satisfying
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(a ) �pT
i

q § � and vpT
i

q § n for every i P rts, and
(b )

∞
t

i“1

epT
i

q §
`

n

2

˘
,

then T packs into Kp1`Áqn

.

In the proof of Theorem 8 the trees are cut into equally sized forests that are
packed with a randomized procedure into a large complete subgraph of Kp1`Áqn

and then the remaining vertices are used to correct collisions. By splitting the
trees in a di�erent way we managed to extend this result to graphs from any
non-trivial minor-closed family.

Theorem 9. For any Á ° 0, � P N, and any non-trivial minor-closed family
G there exists n

0

P N such that for every n • n
0

the following holds for every
integer t P N. If F “ pF

1

, . . . , F
t

q is a sequence of graphs from G satisfying

(a ) �pF
i

q § � and vpF
i

q § n for every i P rts, and
(b )

∞
t

i“1

epF
i

q §
`

n

2

˘
,

then F packs into Kp1`Áqn

.

Actually, we established a more general result that concerns the packing of
p”, sq-separable graphs. Such graphs have the property that by removing a ”-
proportion of the vertices the resulting components have size at most s, where s

is a small constant.

Theorem 10. For any Á ° 0 and � P N there exists ” ° 0 such that for every
s P N and any p”, sq-separable family G there exists n

0

P N such that for every
n • n

0

the following holds. If F “ pF
1

, . . . , F
t

q is a sequence of graphs from G

satisfying

(a ) �pF
i

q § � and vpF
i

q § n for every i P rts, and
(b )

∞
t

i“1

epF
i

q §
`

n

2

˘
,

then F packs into Kp1`Áqn

.
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In fact, our strategy consists in removing the separator from each tree, packing
the resulting components into a large complete subgraph of Kp1`Áqn

using some
classical results and then use the remaining vertices of Kp1`Áqn

to embed the
separators and reconnect the components. The details of this procedure will be
discussed in Chapter 3.



CHAPTER 2

Graphs with given odd girth and large minimum degree

The material presented in this chapter is largely based on the paper On the
structure of graphs with given odd girth and large minimum degree [46], joint
work with Mathias Schacht. Similar results were obtained by Brandt and Ribe-
Baumann.

§2.1. Homomorphisms of graphs with given odd girth

A homomorphism from a graph G into a graph H is a mapping

„ : V pGq Ñ V pHq

with the property that t„puq, „pwqu P EpHq whenever tu, wu P EpGq. We say
that G is homomorphic to H if there exists a homomorphism from G into H.
Furthermore, a graph G is a blow-up of a graph H, if there exists a surjective
homomorphism „ from G into H, but for any proper supergraph of G on the
same vertex set the mapping „ is not a homomorphism into H anymore. In
particular, a graph G is homomorphic to H if and only if it is a subgraph of a
suitable blow-up of H. Moreover, we say a blow-up G of H is balanced if the
homomorphism „ signifying that G is a blow-up has the additional property that
|„´1puq| “ |„´1pu1q| for all vertices u and u1 of H.

Homomorphisms can be used to capture structural properties of graphs. For
example, a graph is k-colourable if and only if it is homomorphic to K

k

. Further-
more, many results in extremal graph theory establish relationships between the
minimum degree of a graph and the existence of a given subgraph. The following
theorem of Andrásfai, Erd�s and Sós [9] is a classical result of that type.

13
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Theorem 11 (Andrásfai, Erd�s & Sós). For every integer r • 3 and for every
n-vertex graph G the following holds. If G has minimum degree ”pGq ° 3r´7

3r´4

n and
G contains no copy of K

r

, then G is pr ´ 1q-colourable. ⇤

In the special case r “ 3, Theorem 11 states that every triangle-free n-vertex
graph with minimum degree greater than 2n

5

is homomorphic to K
2

. Several ex-
tensions of this result and related questions were studied. In particular, Häggkvist
[36] showed that triangle-free graphs G “ pV, Eq with ”pGq ° 3|V |

8

are homomor-
phic to C

5

. In other words, such a graph G is a subgraph of suitable blow-up
of C

5

. This can be viewed as an extension of Theorem 11 for r “ 3, since bal-
anced blow-ups of C

5

show that the degree condition ”pGq ° 2|V |
5

is sharp there.
Strengthening the assumption of triangle-freeness to graphs of higher odd girth,
allows us to consider graphs with a more relaxed minimum degree condition. In
this direction Häggkvist and Jin [37] showed that graphs G “ pV, Eq which con-
tain no odd cycle of length three and five and with minimum degree ”pGq ° |V |

4

are homomorphic to C
7

.
We generalize those results to arbitrary odd girth, where we say that a graph

G has odd girth at least g, if it contains no odd cycle of length less than g.

Theorem 12. For every integer k • 2 and for every n-vertex graph G the
following holds. If G has minimum degree ”pGq ° 3n

4k

and G has odd girth at least
2k ` 1, then G is homomorphic to C

2k`1

.

Note that the degree condition given in Theorem 12 is best possible as the
following example shows. For an even integer r • 6 we denote by M

r

the so-called
Möbius Ladder (see, e.g., [34]), i.e., the graph obtained by adding all diagonals
to a cycle of length r, where a diagonal connects vertices of distance r

2

in the
cycle (Figure 4). One may check that M

4k

has odd girth 2k ` 1, but it is not
homomorphic to C

2k`1

. Moreover, M
4k

is 3-regular and, consequently, balanced
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blow-ups of M
4k

show that the degree condition in Theorem 12 is best possible
when n is divisible by 4k.

Figure 4. The Möbius Ladder M
4k

for k “ 3.

In the following we will denote the vertices of M
4k

by a
0

, . . . , a
4k´1

, where
a

0

a
1

. . . a
4k´1

a
0

is a 4k-cycle and all other edges of M
4k

are in the form ta
i

, a
i`2k

u
(where the indices are taken modulo 4k). Similarly, we will denote the vertex
classes of a blow-up of M

4k

by A
0

, . . . , A
4k´1

.
If G has minimum degree exactly 3n

4k

and 3 - k, then clearly 4k | n. In this case
we will thus show that if G is not homomorphic to C

2k`1

, then it is a balanced
blow-up of M

4k

. In the case when 3 | k we will show that if G is not homomorphic
to C

2k`1

, then there exist Í
0

, Í
1

, Í
2

P t z

3

: z P Zu with Í
0

` Í
1

` Í
2

“ 0 such that
each vertex class of the blow-up has one neighbouring class having size n

4k

` Í
0

,
one having size n

4k

` Í
1

, and one having size n

4k

` Í
2

.

Theorem 13. For every integer k • 2 and for every n-vertex graph G with
minimum degree ”pGq “ 3n

4k

and odd girth at least 2k ` 1 the following holds. If
G is not homomorphic to C

2k`1

then G is a blow-up of M
4k

with vertex partition
A

0

, . . . , A
4k´1

. Furthermore,

‚ if 3 - k then G is a balanced blow-up, i.e., |A
0

| “ ¨ ¨ ¨ “ |A
4k´1

| “ n

4k

;
‚ if 3 | k then there exist Í

0

, Í
1

, Í
2

P t z

3

: z P Zu with Í
0

` Í
1

` Í
2

“ 0 such
that |A

i

| “ n

4k

` Í
ipmod 3q for i “ 0, . . . , 4k ´ 1.
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We also remark that Theorem 12 implies that every graph with odd girth at
least 2k ` 1 and minimum degree bigger than 3n

4k

contains an independent set of
size at least kn

2k`1

. This a�rmatively answers a question of Albertson, Chan, and
Haas [2].

§2.2. Proof of the main results

In this section we prove Theorem 12 and Theorem 13. Our main technical tool
is Proposition 14 (see below), that gives some preliminary results on edge-maximal
graphs that satisfy the assumptions of the theorems. We say that a graph G with
odd girth at least 2k ` 1 is edge-maximal if adding any edge to G (by keeping the
same vertex set) yields an odd cycle of length at most 2k ´ 1. We denote by G

n,k

all edge-maximal n-vertex graphs satisfying the assumptions of Theorem 13, i.e.,
for integers k • 2 and n we set

G
n,k

“ tG “ pV, Eq : |V | “ n , ”pGq • 3n

4k

,

and G is edge-maximal with odd girth 2k ` 1u .

Moreover, for n and k we define G°
n,k

as the subset of G
n,k

satisfying the degree
condition with strict inequality, i.e.,

G°
n,k

“ tG P G
n,k

: ”pGq ° 3n

4k

u.

Proposition 14 states that graphs from G
n,k

have a very simple structure.

Proposition 14. For all integers k • 2 and n and for every G P G
n,k

one of
the following holds:

‚ G is bipartite;
‚ G is a blow-up of C

2k`1

;
‚ G is a blow-up of M

4k

and ”pGq “ 3n

4k

.

The proof of Proposition 14 will be given in Section 2.4.
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Proof of Theorem 12. Let G be a graph with n vertices, odd girth at least
2k ` 1, and minimum degree ”pGq ° 3n

4k

. Consider an edge-maximal supergraph
G1 of G. Since G1 P G°

n,k

, Proposition 14 implies that either G1 is bipartite or
it is a blow-up of C

2k`1

and in both cases it follows that G is homomorphic to
C

2k`1

. ⇤
Proof of Theorem 13. Let G be a graph with n vertices, odd girth at least

2k ` 1 and minimum degree ”pGq “ 3n

4k

and, similarly to the proof above, let G1

be a supergraph of G from G
n,k

r G°
n,k

. We may assume that G1 is not bipartite
and it is not a blow-up of C

2k`1

, therefore, by Proposition 14, G1 is a blow-up
of M

4k

with vertex classes A
0

, . . . , A
4k´1

and for each vertex a
i

P A
i

we have
Npa

i

q “ A
i´1

Y A
i`1

Y A
i`2k

.
First we show that all vertices of G1 have degree exactly 3n

4k

. In fact, if the
vertices in some vertex class have degree strictly larger than 3n

4k

, then we obtain
the following contradiction:

3n “ 4k
3n

4k
†

4k´1ÿ

i“0

|NpA
i

q| “
4k´1ÿ

i“0

|A
i´1

| ` |A
i`1

| ` |A
i`2k

| “ 3
4k´1ÿ

i“0

|A
i

| “ 3n .

Note that this implies that G1 “ G, therefore G is a blow-up of M
4k

.
It is left to show that the vertex classes of the blow-up are either balanced or

have size |A
i

| “ n

4k

`Í
ipmod 3q for some Í

0

, Í
1

, Í
2

P t z

3

: z P Zu with Í
0

`Í
1

`Í
2

“ 0.
Let Í

i

“ |A
i

| ´ n

4k

for i P t0, . . . , 4k ´ 1u. Below we prove that Í
i

“ Í
ipmod 3q.

Since each vertex has degree precisely 3n

4k

, for every i “ t0, . . . , 4k ´ 1u it holds
Í

i´1

` Í
i`1

` Í
i`2k

“ 0. Moreover, A
i`1

and A
i`2k

are also adjacent to A
i`2k`1

,
whose third neighbouring class is A

i`2k`2

. This implies that

Í
i`2k`2

“ 0 ´ Í
i`1

´ Í
i`2k

“ Í
i´1

and by shifting the indices we obtain that

Í
i

“ Í
i`2k`3

for every i P t0, . . . , 4k ´ 1u.
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We want to show that Í
i

“ Í
ipmod 3q for every i P t0, . . . , 4k ´ 1u. Therefore, it

su�ces to prove that the following linear congruence has a solution

p2k ` 3q ¨ x ” 3pmod 4kq . (1)

This happens when t “ gcdp2k ` 3, 4kq | 3. Let r and s P N such that 2k ` 3 “ rt

and 4k “ st. It follows that 2p2k `3q´4k “ 6 “ p2r ´sqt, meaning that t | 6. We
can exclude the cases t “ 2 and t “ 6 since 2k ` 3 is odd. Consequently, t P t1, 3u
and, hence, t | 3, which shows that the linear congruence (1) has a solution and
therefore Í

i

“ Í
i`3

for every i P t0, . . . , 4k ´ 1u. This already yields the desired
conclusion for the case 3 | k.

If 3 - k, then we can even show that t “ 1. In fact, since t | 2k ` 3, having
t “ 3 would imply t | 2k and, hence, 3 “ t | k, which contradicts the assumption
on k. Consequently, in this case t “ 1 and the linear congruence

p2k ` 3q ¨ x ” 1pmod 4kq

has a solution, implying Í
i`1

“ Í
i

for every i P t0, . . . , 4k ´ 1u. Since the sum
Í

i´1

` Í
i`1

` Í
i`2k

must be zero, we obtain Í
i

“ 0. ⇤

§2.3. Forbidden subgraphs

In this section we introduce two lemmas, Lemmas 15 and 17 below, needed for
the proof of Proposition 14, which is described in Section 2.4. Roughly speaking,
in each lemma we show that certain configurations cannot occur in graphs from
G°

n,k

and if they occur in graphs from G
n,k

r G°
n,k

, then this implies the existence
of a subgraph isomorphic to M

4k

.
For k fixed, we say that an odd cycle is short if its length is at most 2k ´ 1. A

chord in a cycle of even length 2j is a diagonal if it joins two vertices at distance
j in the cycle. Given a walk W we define its length ¸pW q as the number of edges,
each counted as many times as it appears in the walk. Hence, the lengths of
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paths and cycles coincide with their number of edges. We will also say that a
path/cycle/walk is odd (even) if its length is odd (even).

2.3.1. Cycles of length six with precisely one diagonal. We denote by
� (Figure 5) the graph obtained from C

6

by adding exactly one diagonal, i.e.,
V p�q “ ta

i

: 0 § i § 5u Ñ V and

Ep�q “ tta
i

, a
i`1pmod 5qu : 0 § i § 5u Y ta

1

, a
4

u .

Figure 5. The graph �.

Lemma 15. For all integers k • 2 and n and for every G P G
n,k

the following
holds. Either G does not contain an induced copy of � or G contains a copy of
M

4k

and ”pGq “ 3n

4k

.

Proof. Suppose that G “ pV, Eq contains � in an induced way. Note that
the chords of the C

6

in � which are not diagonals would create triangles in G

so assuming that � is induced in G gives us only information concerning the
non-existing two diagonals. Since G is edge-maximal, the non-existence of the
diagonal between a

0

and a
3

must be forced by the existence of an even path P
03

which, together with ta
0

, a
3

u, would yield an odd cycle of length at most 2k ´ 1.
Consequently, the length of P

03

is at most 2k ´ 2. Since a
0

and a
3

have distance
three in �, a shortest path between them in �, together with P

03

, results in a
closed walk with odd length at most 2k ` 1. Recall that any odd closed walk
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is either an odd cycle or it contains a shorter odd cycle, it follows that P
03

has
length exactly 2k ´ 2 and its inner vertices are not in �. The same argument can
be applied to the other missing diagonal between a

2

and a
5

to show that there
exists another even path P

25

of length 2k ´ 2 whose inner vertices are disjoint
from V p�q.

a
0

a
1

a
2

a
3

a
4

a
5

b

P
03

P
25

(a) W
05

(red) and W
23

(blue).

a
0

a
1

a
2

a
3

a
4

a
5

b

P
03

P
25

(b) W
02

(red) and W
35

(blue).

Figure 6. The paths P
03

and P
25

are vertex disjoint.

We now show that P
03

and P
25

are vertex disjoint. Suppose that they are not
and let b be the first vertex in P

03

which is also a vertex of P
25

, i.e., b is the only
vertex from a

0

P
03

b which is also contained in P
25

. Consider the walks

W
05

“ a
0

P
03

bP
25

a
5

and

W
23

“ a
2

P
25

bP
03

a
3

,

where we follow the notation from [24], i.e., W
05

is the walk in G which starts
at a

0

and follows the path P
03

up to the vertex b from which the walk continues
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on the path P
25

up to the vertex a
5

(Figure 6a). Since W
05

and W
23

consist of
the same edges (with same multiplicities) as P

03

and P
25

their lengths sum up to
4k ´ 4. Consequently, one of the walks, say W

05

, has length at most 2k ´ 2. If
W

05

is even, then, together with the edge ta
0

, a
5

u, it yields an odd closed walk of
length at most 2k ´ 1 and hence a short odd cycle. Otherwise, if W

05

and W
23

are odd, then also the walks

W
02

“ a
0

P
03

bP
25

a
2

and

W
35

“ a
3

P
03

bP
25

a
5

(Figure 6b) have an odd length. This implies that one of them, say W
02

, has odd
length at most 2k ´ 3. Together with the path a

0

a
1

a
2

this results into a closed
walk with odd length at most 2k ´ 1 which yields the existence of a short odd
cycle. Consequently, we derive a contradiction from the assumption that P

03

and
P

25

are not vertex-disjoint.
Having established that V pP

03

q X V pP
25

q “ ?, we deduce that G contains the
following graph �1 consisting of a cycle of length 4k

a
0

a
1

a
2

P
25

a
5

a
4

a
3

P
03

a
0

with three diagonals ta
0

, a
5

u, ta
1

, a
4

u and ta
2

, a
3

u (Figure 7).

a
0

a
1

a
2

a
3

a
4

a
5

P
03

P
25

Figure 7. The graph �1.

We now show that no vertex in G can be joined to four vertices in �1. Suppose,
for a contradiction, that there exists a vertex x in G such that |N

G

pxqXV p�1q| • 4.
Recall that x can be joined to at most two vertices of a cycle of length 2k `1 and,
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a
0

a
1

a
2

a
3

a
4

a
5

b
1

b
2

c
1

c
2

(a) P
11

(red) and P
22

(blue).
a

0

a
1

a
2

a
3

a
4

a
5

b
1

b
2

c
1

c
2

(b) P
12

(red) and P
21

(blue).

Figure 8. Each vertex of G can have at most three neighbours in �1.

if so, then these vertices must have distance two in that cycle. Since each of the
three diagonals splits the cycle of length 4k of �1 into two cycles of length 2k ` 1,
we have that x cannot have more than four neighbours in �1. Moreover, the only
way to pick four neighbours is to choose two vertices from each of these cycles
and none from their intersection, i.e. the ends of the diagonals. By applying this
argument to each of the three diagonals, we infer that no vertex from V p�q can
be a neighbour of x, therefore two neighbours b

1

and b
2

are some inner vertices
of P

03

and the two other neighbours c
1

and c
2

are inner vertices of P
25

. Consider
the vertex disjoint paths

P
11

“ b
1

P
03

a
0

a
1

a
2

P
25

c
1

and

P
22

“ b
2

P
03

a
3

a
4

a
5

P
25

c
2

(Figure 8a). Since b
1

and b
2

as well as c
1

and c
2

have distance two on the cycle
of length 4k in �1, both path lengths have the same parity and their lengths sum
up to 4k ´ 4. If both lengths are odd, one must have length at most 2k ´ 3 and,
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together with x, this yields a short odd cycle. If, on the other hand, both lengths
are even, then the paths

P
12

“ b
1

P
03

a
0

a
5

P
25

c
2

and

P
21

“ b
2

P
03

a
3

a
2

P
25

c
1

(Figure 8b) have odd length. Since their lengths sum up to 4k ´ 6, together with
x, this yields the existence of a short odd cycle. Therefore, every vertex of G is
joined to at most three vertices of �1.

If G P G°
n,k

, then this leads leads to the following contradiction

3n “ 4k
3n

4k
†

ÿ

uPV p�

1q
|N

G

puq| “
ÿ

xPV

|N
G

pxq X V p�1q| § 3|V | “ 3n . (2)

Hence, G does not contain � as an induced subgraph.
If G P G

n,k

r G°
n,k

then it follows directly from 2 that each vertex of G has
exactly three neighbours in �1. Let us denote the vertices of P

03

and P
25

as follows:

P
03

“ a
0

u
2k´3

. . . u
1

a
3

and

P
25

“ a
2

v
1

. . . v
2k´3

a
5

.

We want to show that G contains M
4k

. As we observed above, the cycle

a
0

a
1

a
2

a
3

v
1

. . . v
2k´3

a
5

a
4

a
3

u
1

. . . u
2k´3

a
0

has length 4k and contains three diagonals ta
0

, a
3

u, ta
1

, a
4

u, and ta
2

, a
5

u. It is
then left to show that also the diagonals tu

i

, v
i

u with i “ 0, . . . , 2k ´ 3 are edges
of G. Note that all these vertices have degree two in �1, so they must all have
one more neighbour in V p�1q in the graph G. In particular, they cannot have any
vertex of � as neighbour since these vertices have already degree three, so there
exists a matching of the vertices of P

03

with the vertices of P
25

. Suppose that
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there exist i, j P t1, . . . , 2k ´ 3u with i ‰ j such that tu
i

, v
j

u is an edge of G. Two
cases may occur. If i and j have the same parity, then the paths

P
ij1

“ u
i

P
03

a
0

a
1

a
2

P
25

v
j

and

P
ij2

“ u
i

P
03

a
3

a
4

a
5

P
25

v
j

(Figure 9a) have both even length, and since their lengths sum up to 4k and they
cannot have the same length (i ‰ j), one of them has length at most 2k ´ 2. Such
a path, together with the edge tu

i

, v
j

u, yields a short cycle.
If i and j have a di�erent parity, then the paths

P
ij3

“ u
i

P
03

a
0

a
5

P
25

v
j

and

P
ij4

“ u
i

P
03

a
3

a
2

P
25

v
j

(Figure 9b) have both even length, and since their lengths sum up to 4k ´ 2, one
of them has length at most 2k ´ 2 and together with the edge tu

i

, v
j

u it yields a
short cycle. It follows that the edges tu

i

, v
i

u are contained in G, giving rise to a
copy of M

4k

. ⇤

2.3.2. Tetrahedra with odd faces. In the next lemma we will consider
graphs from the following family, which can be viewed as the family of tetrahedra
with three faces formed by cycles of length 2k`1, i.e., a particular odd subdivision
of K

4

(see, e.g., [30]).

Definition 16 (p2k ` 1q-tetrahedra). Given k • 2 we denote by T
k

the set of
graphs T consisting of

(i ) one cycle C
T

with three branch vertices a
T

, b
T

, and c
T

P V pC
T

q,
(ii ) a center vertex z

T

outside C
T

, and
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a
0

a
1

a
2

a
3

a
4

a
5

u
i

v
j

v
i

(a) P
ij1

(red) and P
ij2

(blue).
a

0

a
1

a
2

a
3

a
4

a
5

u
i

v
j

v
i

(b) P
ij3

(red) and P
ij4

(blue).

Figure 9. Every vertex u
i

is adjacent to the vertex v
i

.

(iii ) internally vertex disjoint paths (called spokes) P
az

, P
bz

, P
cz

connecting
the branch vertices with the center.

Furthermore, we require that each cycle in T containing z and exactly two of the
branch vertices must have length 2k ` 1 and two of the spokes have length at least
two.

Figure 10. The family T
k

for k “ 3.
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It follows from the definition that for T P T
k

we have that the cycle C
T

has
odd length and if T Ñ G for some G P G

n,k

, then T consists of at least 4k

vertices. In fact, the length of C
T

equals the sum of the lengths of the three
cycles containing z minus twice the sum of the lengths of the spokes. Since all
three cycles containing z have an odd length, the length of C

T

must be odd as
well. In particular, if T Ñ G for some G P G

n,k

, then the length of C
T

must be at
least 2k ` 1. Summing up the lengths of all four cycles, counts every vertex twice,
except the branch vertices and the center vertex, which are counted three times.
Consequently,

|V pT q| • 1
2

`
4 ¨ p2k ` 1q ´ 4

˘
“ 4k (3)

for every T P T
k

with T Ñ G for some G P G
n,k

.
We will also use the following further notation. For a cycle containing distinct

vertices u, v, and w we denote by P
uvw

the unique path on the cycle with endver-
tices u and w which contains v and, similarly, we denote by P

uvw

the path from
u to w which does not contain v.

For a tetrahedron T P T
k

we denote by C
ab

the cycle containing z and the two
branch vertices a and b. Similarly, we define C

ac

and C
bc

. Note that the union of
two cycles, for instance C

ab

and C
ac

, contains an even cycle

C
ab

‘ C
ac

“ C
ab

Y C
ac

´ P
az

“ aP
abz

zP
zca

a , (4)

where P
abz

is a path on the cycle C
ab

and P
zca

a path on the cycle C
ac

. Clearly,
the length of C

ab

‘ C
ac

equals

¸pC
ab

‘ C
ac

q “ ¸pC
ab

q ` ¸pC
ac

q ´ 2¸pP
az

q “ 4k ` 2 ´ 2¸pP
az

q . (5)

Lemma 17. For all integers k • 2 and n and for every G P G
n,k

the following
holds. Either G does not contain any T P T

k

as a (not necessarily induced)
subgraph, or G contains a copy of M

4k

and ”pGq “ 3n

4k

.



2.3. FORBIDDEN SUBGRAPHS 27

a

b c
z

C
ac

C
ab

C
bc

Figure 11. A tetrahedron T , with C
T

in black, P
az

in red, P
bz

in
blue, and P

cz

in green.

Proof. Suppose that G “ pV, Eq contains a graph from T
k

. Fix that graph
T P T

k

contained in G having the shortest length of C
T

. We shall prove that no
vertex in G can be joined to four vertices in T .

Suppose that there exists a vertex x P V such that |N
G

pxq X V pT q| • 4 and
fix four of those neighbours. Since T consists of the union of three cycles of
length 2k ` 1 one of those cycles must contain exactly two of these neighbours.
This implies that we can either pick two of those cycles which contain the four
neighbours (see Claim 18 below), or we have at least two ways to pick two such
cycles which contain exactly three neighbours (see Claim 19 below).

Recall that the vertices on the spokes belong to two cycles and the center z

belongs to all three cycles C
ab

, C
ac

, and C
bc

. If z is a neighbour of x, then one
more neighbour z1 must be on a spoke, because it must have distance two from
z and T has at least two spokes of length at least two. This means that two
cycles already have two neighbours z and z1, and the third cycle already has one
neighbour, namely z. Therefore there cannot be two more neighbours of x in T .
A similar argument shows that at most two neighbours of x can lie on all the
spokes of T all together.

Before we proceed to analyze the two main cases, note that x can also be
a vertex in T . It is easy to check that x cannot be z, since it would have three
neighbours on the three spokes, which we just excluded. Furthermore, x cannot be
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one of the branch vertices. Indeed, suppose x “ a. Then three neighbours y
1

, y
2

, y
3

of a are placed at distance one from a on P
azb

, P
az

and P
azc

respectively, and a
neighbour y

4

can only be on P̊
bzc

, the interior of P
bzc

. Consider the paths

P
24

“ y
2

P
az

zP
zbc

y
4

and

P 1
24

“ y
2

P
az

zP
zcb

y
4

(Figure 12a). Since the subpaths zP
zbc

y
4

and zP
zcb

y
4

cover the cycle C
bc

, which
has length 2k ` 1, the lengths of the paths P

24

and P 1
24

have di�erent parity.
Suppose that P

24

has odd length. Let

P
34

“ y
3

P
azc

cP
czb

y
4

(Figure 12b) and note that C
ac

‘ C
bc

“ ay
2

P
24

y
4

P
34

y
3

a. Then both P
24

and P
34

have length 2k ´ 1, because

¸pP
24

q ` ¸pP
34

q “ ¸pC
ac

‘ C
bc

q ´ 2 (5)“ 4k ´ 2¸pP
cz

q § 4k ´ 2

and together with x each of the paths P
24

and P
34

create an odd cycle. The graph
obtained from T by replacing the cycle C

ab

with the cycle ay
2

P
24

y
4

a of length
2k ` 1 results in a graph T 1 P T

k

, with branch vertices a, y
4

, and c and center z

(Figure 12c). Since the spoke P
bz

of T is replaced by the larger spoke

P
y4z

“ y
4

P
cbz

z

in T 1, we have that the cycle C
T

1 has shorter length than C
T

. This contradicts
the choice of T Ñ G.

Summarizing the above, from now on we can assume that x P V ztz, a, b, cu.
Moreover, if x P V pT q, then x lies in one of the cycles C

ab

, C
ac

, or C
bc

and two
neighbours of x in T among the four we consider are direct neighbours of x on
this cycle. We now study the aforementioned main cases in Claim 18 and Claim
19 below.
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a

b c
z

y
1

y
2

y
3

y
4

(a) P
24

(red) and P 1
24

(blue).

a

b c
z

y
1

y
2

y
3

y
4

(b) P
24

(red) and P
34

(blue).

a

b c
z

y
1

y
2

y
3

y
4

(c) T 1 with the spoke P
y4z

in red.

Figure 12. The vertex x cannot be a branch vertex.

Claim 18. The four neighbours of x in T cannot be contained in only two of
the cycles C

ab

, C
ac

, and C
bc

.

a

b c
z

y
1

y
2

y
3

y
4

(a) P
13

(red) and P 1
24

(blue).

a

b c
z

y
1

y
2

y
3

y
4

(b) P
14

(red) and P
23

(blue).

Figure 13. The neighbours of x in the case when they are con-
tained in two cycles.
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Suppose C
ab

and C
ac

contain four neighbours of x. Then the spoke P
az

shared
by both cycles does not contain any neighbour of x. Let

y
1

, y
2

P N
G

pxq X P̊
abz

and

y
3

, y
4

P N
G

pxq X P̊
acz

where y
1

and y
3

are the neighbours of x coming first on the respective paths (P
abz

and P
acz

) starting at a. Consider the paths

P
13

“ y
1

P
zba

aP
acz

y
3

and

P
24

“ y
2

P
abz

zP
zca

y
4

(Figure 13a). Since the neighbours in the same p2k ` 1q-cycle have distance two
and ¸pC

ab

‘ C
ac

q is even, we infer that P
13

and P
24

have the same parity and

¸pP
13

q ` ¸pP
24

q “ 2p2k ` 1q ´ 2¸pP
az

q ´ 4 § 4k ´ 4 .

If P
13

and P
24

have odd length, then one of them must have length at most 2k ´3,
thus, together with x, it yields the existence of a short odd cycle. This implies
that P

13

and P
24

have even length. Consequently, the paths

P
14

“ y
1

P
zba

aP
az

zP
zca

y
4

and

P
23

“ y
2

P
abz

zP
az

aP
acz

y
3

(Figure 13b) have odd length and we have that

¸pP
14

q ` ¸pP
23

q “ 2p2k ` 1q ´ 4 “ 4k ´ 2 .

Therefore, because of the odd girth of G, they must have both length 2k ´ 1.
Suppose that one path, say P

14

, has no endpoints inside the spokes P
bz

and
P

cz

(here the branch vertices b and c are allowed to be neighbours of x) and
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x itself is not a vertex of P
bz

and P
cz

. In this case consider the p2k ` 1q-cycle
C

y1c

“ xy
1

P
14

y
4

x. As a result the graph obtained from T by replacing C
ac

with
C

y1c

is a graph T 1 P T
k

with ¸pC
T

1q † ¸pC
T

q, since the spoke P
az

is replaced by
the longer spoke

P
y1z

“ y
1

P
baz

z 1

This contradicts the choice of T .

a

b c

z

y
1

y
2

y
3

y
4

x

Figure 14. T 1 with the spoke P
y1z

in red.

Furthermore, if x would be on one of the spokes P
bz

or P
cz

, then it must lie on
P

bz

since otherwise x would lie between y
3

and y
4

and then y
4

would be contained
in the interior of P

cz

, which we excluded here. Since we also excluded that x is a
branch vertex, we arrive at the situation that y

1

“ b and both y
2

and x are inside
P

bz

(Figure 15a). Hence, the four neighbours of x are also contained in the cycle
C

ac

‘ C
bc

, which also contains P
23

. Next we consider the path

P 1
14

“ y
1

P
bzc

cP
cza

y
4

in C
ac

‘ C
bc

(Figure 15b). Since ¸pC
ac

‘ C
bc

q is even and ¸pP
23

q is odd we have
¸pP 1

14

q “ ¸pC
ac

‘ C
bc

q ´ ¸pP
23

q ´ 4 is also odd. Recalling, that ¸pP
23

q “ 2k ´ 1 we
obtain

¸pP 1
14

q “ 2p2k ` 1q ´ 2¸pP
cz

q ´ ¸pP
23

q ´ 4 “ 2k ´ 1 ´ 2¸pP
cz

q § 2k ´ 3 .
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Hence, we arrive at the contradiction that P 1
14

together with x yields a short odd
cycle in G.

a

c
z

y
1

y
2

y
3

y
4

(a) P
14

(red) and P 1
23

(blue).

a

c
z

y
1

y
2

y
3

y
4

(b) P 1
14

(red) and P
23

(blue).

Figure 15. The neighbours of x in the case when x is contained
in a spoke.

Thus both of the paths P
13

and P
24

must have an end vertex on one of the
spokes P

bz

and P
cz

. If both paths have an end vertex on the same spoke, say P
bz

,
then we can repeat the last argument (considering P 1

14

).
Therefore, it must be that both P

bz

and P
cz

contain one neighbour of x each,
namely y

2

and y
4

. Since y
2

and y
4

are in the same p2k`1q-cycle C
bc

, they also have
distance two in T . This means that T contains a path y

1

by
2

zy
4

which, together
with x, results in cycle xy

1

by
2

zy
4

x of length six. Note that the diagonal ty
2

, xu is
present (Figure 16).

a

b c
zy

1

y
2 y

3

y
4

x

Figure 16. GrV pT q Y xs contains a copy of �.
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Owing to Lemma 15, two cases may occur. If G contains an induced copy
of �, then we know that G has minimum degree 3n

4k

and it contains M
4k

, hence
we are done. If G does not contain � as an induced subgraph, then at least one
of the other diagonals ty

1

, zu and tb, y
4

u must be an edge of G. But both these
edges are chords in cycles (C

ab

and C
bc

) of length 2k ` 1, which contradicts the
odd girth assumption on G. This concludes the proof of Claim 18.

Claim 19. Three neighbours of x in T cannot be contained in only two of the
cycles C

ab

, C
ac

, and C
bc

.

Let T Ñ G chosen in the beginning of the proof violate the claim. First, we
will show that we may assume that T also has the following properties:

(A ) all four neighbours of x are contained in C
T

,
(B ) the two cycles can be chosen in such a way, that the spoke shared by

them contains no neighbour of x and has length at least two, and
(C ) the cycle containing one neighbour of x has the property that this neigh-

bour is not one of the two branch vertices contained in that cycle.

Owing to Claim 18 we know that any pair of two out of the three cycles C
ab

,
C

ac

, and C
bc

contains at most three of the four neighbours of x in T . Consequently,
the spokes P

az

, P
bz

, and P
cz

all together can contain at most one neighbour of x.
Suppose v is a neighbour of x on the spoke P

az

. Since we already showed that z

cannot be a neighbour of x, property (A ) follows, by showing that v is not con-
tained in P̊

az

, the interior of P
az

. If v ‰ a, then the two neighbours y
1

and y
2

of x contained in C
ab

and C
ac

would have distance two from v. Consequently, v

would have to be a neighbour of a in P
az

and y
1

and y
2

would also have to be
neighbours of a in T (Figure 17). Hence, replacing a by x would give a rise to a
subgraph T 1 P T

k

of G, where x is a branch vertex. This yields a contradiction as
shown before Claim 18 and, hence, property (A ) must hold.

Furthermore, if none of the neighbours is a branch vertex, then one cycle
would contain two neighbours and the other two would contain one neighbour



2.3. FORBIDDEN SUBGRAPHS 34

a

b c
z

y
1

v

y
2

Figure 17. The neighbours of x in the case when one of them is
contained in P̊

az

. Note that this configuration yields Figure 12c.

each (Figure 18). Since at least two spokes have length at least two, we can select
two cycles containing three neighbours in such a way that properties (B ) and (C )
hold.

a

b c
z

y
2

y
1

y
3

y
4

Figure 18. The neighbours of x in the case when none of them is
a branch vertex.

If one neighbour is a branch vertex, say b, then the two cycles C
ab

and C
bc

contain two neighbours and C
ac

contains one neighbour of x (Figure 19). In
particular the spokes P

az

and P
cz

contain no neighbour and one of them has
length at least two. This implies that we can select one of the cycles C

ab

or C
bc

together with C
ac

such that properties (B ) and (C ) also hold in this case.
Without loss of generality, we may therefore assume that the cycle C

ab

contains
two neighbours y

1

and y
2

P P
azb

ztau (where y
1

is closer to a and y
2

is closer to b),
that the cycle C

ac

contains one neighbour y
3

P P̊
azc

, and that the spoke P
az

has
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a

c
z

y
2

y
1

y
3

y
4

Figure 19. The neighbours of x in the case when one of them is
a branch vertex.

length at least two. In C
ab

‘ C
ac

we consider the paths

P
13

“ y
1

P
bza

aP
azc

y
3

and

P
23

“ y
2

P
abz

zP
zca

y
3

(Figure 20a). Since P
az

has length at least two, we have that

¸pP
13

q ` ¸pP
23

q “ 2p2k ` 1q ´ 2¸pP
az

q ´ 2 § 4k ´ 4 .

Therefore, if P
13

and P
23

have odd length, then one has length at most 2k ´ 3
and, together with x, it yields the existence of a short odd cycle. This implies
that P

13

and P
23

have even length. Consequently, the paths

P 1
13

“ y
1

P
baz

zP
zca

y
3

and

P 1
23

“ y
2

P
abz

zP
zac

y
3

(Figure 20b) have odd length, and we have that

¸pP 1
13

q ` ¸pP 1
23

q “ 2p2k ` 1q ´ 2 “ 4k .

Therefore, one of these paths, say P 1
23

has length 2k ´ 1. Set

C
23

“ xy
2

P 1
23

y
3

x
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(Figure 20c). The graph T 1 obtained from T by replacing C
ab

with C
23

is a again
member of T

k

. Since the spoke P
az

is replaced by the longer spoke

P
y3z

“ y
3

P
caz

z ,

we have ¸pC
T

1q † ¸pC
T

q. This contradicts the minimal choice of T , and concludes
the proof of Claim 19.

a

b c
z

y
2

y
1

y
3

y
4

(a) P
13

(red) and P
23

(blue).

a

b c
z

y
2

y
1

y
3

y
4

(b) P 1
13

(red) and P 1
23

(blue).

a

b c
z

y
2

y
1

y
3

y
4

x

(c) T 1 with the spoke P
y3z

in red.

Figure 20. The vertex x cannot be a branch vertex.

Claim 19 yields that if G does not contain �, then every vertex x in G is joined
to at most three vertices of T . Recall that every T P T

k

with T Ñ G consists of
at least 4k vertices (see (3)). Similarly, as in the proof of Lemma 15 (see 2), we
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obtain the following contradiction for graphs G P G°
n,k

.

3n “ 4k
3n

4k
†

ÿ

uPV pT q
|N

G

puq| “
ÿ

xPV

|N
G

pvq X V pT q| § 3|V | “ 3n .

On the other hand, if G P G
n,k

r G°
n,k

, then each vertex of G must have exactly
three neighbours in T .

It is then left to show that in this case G contains M
4k

. First we show that
one spoke of T has length one. Suppose not, then let u be the vertex adjacent to
z on a spoke, say P

az

. Since u must have three neighbours in T , there exists some
vertex u1 in T such that tu, u1u is an edge of G. Since u is contained in both C

ab

and C
ac

, the vertex u1 must lie on the path P̊
bzc

. Then one of the paths

P
u

“ uP
azb

P
bzc

u1

and

P 1
u

“ uP
azc

P
czb

u1

must have even length, and without loss of generality we can assume it is P
u

.
Then also the path

P 2
u

“ uP
zac

cP
czb

u1

has even length, since its union with P
u

is the cycle C
ac

‘C
bc

. Moreover, since the
spoke P

cz

contains at least two edges (because we assumed no spoke has length
one), we have ¸pC

ac

‘ C
bc

q § 4k ´ 2 and consequently one of the even paths P
u

and P 2
u

has length 2k ´ 2, thus yielding a short cycle with tu, u1u. We have thus
shown that P

az

has length one.
By definition of T , the spokes P

bz

and P
cz

have length at least two. Let
b1 be the vertex adjacent to z on P

bz

. Since each vertex of G has exactly three
neighbours in V pT q, then there exists some vertex b2 P V pT q such that tb1, b2u P E.
Since b1 is contained in both C

ab

and C
bc

, then b2 must lie on the path P̊
azc

. The
paths

P
b

1 “ b1zP
zac

b2
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a

b c
z

u

u1

(a) P
u

(red) and P 1
u

(blue).

a

b c
z

u

u1

(b) P
u

(red) and P 2
u

(blue).

Figure 21. The spoke P
az

has length one.

and

P 1
b

1 “ b1zP
zca

b2

have di�erent parity and their lengths sum up to 2k ` 3. Hence, b2 must have
distance at least 2k on the even path. If P

b

1 is even, then b2 is a vertex of the
spoke P

cz

, yielding that tb1, b2u is a chord of C
bc

. This implies that P 1
b

1 is even and
b2 must be the vertex at distance 2k on P 1

b

1 , i.e., the vertex adjacent to a on P
azc

,
since the vertex at distance 2k ` 2 is already a neighbour of b1 (i.e., z). Similarly,
denoting by c1 the vertex adjacent to z on the spoke P

cz

, we find that its third
neighbour c2 can only be the vertex adjacent to a in the path P

azb

.
Note that the cycle c2ab2b1zc1c2 has length six, and the diagonal ta, zu is an

edge of G. Moreover, the diagonals tc2, b1u and tb2, c1u are chords of C
ab

and C
ac

respectively, hence they are not contained in EpGq since they would close short
odd cycles (Figure 22). Therefore, � is contained in G and, owing to Lemma 15,
M

4k

is also contained in G. ⇤

§2.4. Proof of Proposition 14

In this section we deduce Proposition 14 from Lemmas 15 and 17. Let G “
pV, Eq be a graph from G

n,k

. Me may assume that G is not bipartite. Owing to
Lemma 15 and Lemma 17, two cases may occur:
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a

b c
z

b1

b2

c1

c2

Figure 22. G contains a copy of �.

‚ Case 1: G does not contain � as an induced subgraph and any graph
from T

k

as a (not necessarily induced) subgraph;
‚ Case 2: G contains a copy of M

4k

and has minimum degree exactly 3n

4k

.

Case 1. We shall prove that in this case G is a blow-up of C
2k`1

. First we
observe that G contains a cycle of length 2k ` 1. Indeed, suppose for a contra-
diction that for some ¸ ° k a cycle C “ a

0

. . . a
2¸

is a smallest odd cycle in G.
Since G is edge-maximal, the non-existence of the chord ta

0

, a
2k

u is due to the
fact that it creates an odd cycle of length at most 2k ´ 1. Therefore a

0

and a
2k

are linked by an even path P of length at most 2k ´ 2 which, together with the
path P 1 “ a

2k

a
2k`1

. . . a
2¸

a
0

yields the existence of an odd closed walk and, hence,
of an odd cycle, of length at most 2¸ ´ 1, which contradicts the minimal choice
of C.

Let B be a vertex-maximal blow-up of a p2k ` 1q-cycle contained in G. Let
A

0

, . . . , A
2k

be its vertex classes, labeled in such a way that every edge of B is
contained in E

G

pA
i

, A
i`1

q for some i P t0, . . . , 2ku. Here and below addition in the
indices of A is taken modulo 2k ` 1. Clearly, the sets A

0

, . . . , A
2k

are independent
sets in G. We will show B “ G.

Suppose, for a contradiction, that there exists a vertex x P V zV pBq. Owing
to the odd girth assumption on G, the vertex x can have neighbours in at most
two of the vertex classes of B and if there are two such classes, then they must
be of the form A

i´1

and A
i`1

for some i “ 0, . . . , 2k.
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First consider the case when x has neighbours in two classes and let a
i´1

P A
i´1

and a
i`1

P A
i`1

be two of such neighbours. In order to show that x P A
i

, we shall
prove that x is joined to all the vertices from A

i´1

and to all the vertices from
A

i`1

. Suppose that this is not the case and there is some vertex b
i´1

P A
i´1

, which
is not a neighbour of x. The argument for the other case, when there is such a
vertex in A

i`1

is identical.
Fix vertices a

i´2

P A
i´2

and a
i

P A
i

arbitrarily. This way we fixed a cycle

C “ xa
i`1

a
i

b
i´1

a
i´2

a
i´1

x

of length six in G. Owing to the choice of b
i´1

the diagonal tx, b
i´1

u is missing
in C. Moreover, the diagonal ta

i`1

, a
i´2

u is also not present, since together with
a path from a

i´2

to a
i`1

through the vertex classes

A
i´3

, . . . , A
1

, A
0

, A
2k´1

, . . . , A
i`2

it would create an odd cycle of length 2k´1. On the other hand, since B is a blow-
up, the edge ta

i

, a
i´1

u is contained in B Ñ G, which is a diagonal in C (Figure 23).
Consequently, precisely one diagonal of C is present, which contradicts Lemma 15.
Therefore, such a vertex b

i´1

cannot exist, thus yielding x P V pBq.

x

a
i

a
i`1

a
i´1

b
i´1

a
i´2

Figure 23. G contains an induced copy of �.

Now suppose that x has vertices in one class of the blow-up and fix some
neighbour a

i

of x in A
i

. Moreover, for every j ‰ i fix a vertex a
j

P A
j

arbitrarily.
Since B is a blow-up of C

2k`1

those vertices span a cycle C “ a
0

a
1

. . . a
2k

a
0

of
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length 2k ` 1. Moreover, since x has no neighbours in A
i´2

Y A
i`2

, the vertex x

is neither joined to a
i´2

nor to a
i`2

.
The edge-maximality of G P G

n,k

implies the existence of paths P
ai´2x

and P
xai`2

in G with an even length of at most 2k´2. Under all choices of such paths we pick
two which minimize the number of edges together with C, i.e., we pick paths P

ai´2x

and P
xai`2 of even length at most 2k ´ 2 such that

EpCq Y EpP
ai´2x

q Y EpP
xai`2q

has minimum cardinality and we set

T “ C Y P
ai´2x

Y P
xai`2 Ñ G .

We shall show that T is a tetrahedron from T
k

with center vertex a
i

. Hence,
Lemma 17 gives rise to a contradiction and no such vertex x can exist.

Owing to the path xa
i

a
i´1

a
i´2

of length three the path P
ai´2x

must have
length 2k ´ 2. Similarly, a

i`2

a
i`1

a
i

x yields that P
xai`2 has length 2k ´ 2. More-

over, P
ai´2x

and P
ai`2x

are disjoint from ta
i´1

, a
i

, a
i`1

u. We set

C 1 “ a
i´2

P
ai´2x

xa
i

a
i´1

a
i´2

and

C2 “ a
i`2

a
i`1

a
i

xP
xai`2a

i`2

(Figure 24). We just showed that C 1 and C2 both have length 2k ` 1. In order
to show that T is a tetrahedron we have to show that the cycles C, C 1, and C2

intersect pairwise in spokes with center a
i

.
Consider the intersection P of the cycles C 1 and C2. We will show that P is

a path with one end vertex being a
i

. Indeed every vertex in a P V pP q r ta
i

u is
a vertex in the paths P

ai´2x

and P
xai`2 . Owing to the minimal choice of P

ai´2x

and P
xai`2 it su�ces to show that a has the same distance to x in both paths.
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x

a
i

a
i`2

a
i´2

C

C 1 C2

Figure 24. The structure arising from the assumption that x has
only neighbours in A

i

.

Suppose the distances have di�erent parity. This implies that the closed walks

aP
ai´2x

xP
xai`2a

and

a
i

a
i´1

a
i´2

P
ai´2x

aP
xai`2a

i`2

a
i`1

a
i

have odd length. Since those walks cover the edges (with multiplicity) of C 1 and
C2 with the only exception of tx, a

i

u, the sum of their lengths is ¸pC 1q` ¸pC2q´2.
Hence, one of the closed walks would have an odd length of at most 2k ´ 1, which
yields a contradiction. If the distances between a and x are di�erent, but have the
same parity, then replacing the longer path by the shorter one in the corresponding
cycle yields an odd cycle of length at most 2k ´ 1. This again contradicts the
assumptions on G and, hence, P “ C 1 X C2 is indeed a path with end vertex a

i

.
In the same way one shows that CXC 1 and CXC2 are paths with end vertex a

i

.
Since those two paths contain a

i

a
i´1

a
i´2

and a
i`2

a
i`1

a
i

, respectively, their length
is at least two. Therefore, T is a tetrahedron from T

k

with center a
i

and spokes
C 1 X C2, C X C 1, and C X C2.

This contradicts the assumption of Case 1, hence there is no vertex v P V with
neighbours in only one vertex class of B. Moreover, since G is edge maximal, it
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is also connected, therefore there are no vertices with no neighbours in B. This
implies B “ G.

Case 2. We will prove that in this case G is a blow-up of M
4k

. Recall that
G has minimum degree 3n

4k

. First we show that any vertex of G is adjacent to
exactly three vertices in every copy of M

4k

contained in G. Moreover for every
vertex x P V pGq, there exists a vertex a

i

in M
4k

having the same neighbours as x

in M
4k

(here and below we take indices modulo 4k).

Claim 20. For every copy of M
4k

contained in G and every vertex x of G

there exists i P t0, . . . , 4k ´ 1u such that N
G

pxq X V pM
4k

q “ ta
i´1

, a
i`1

, a
i`2k

u.

Proof. First note that each diagonal splits M
4k

into two cycles of length
2k ` 1. Since each such cycle can contain at most two neighbours of x, we have
|N

G

pxq X V pM
4k

q| § 4. Suppose x has four neighbours and let a
j

be one of these.
The diagonal ta

j

, a
j`2k

u splits the graph M
4k

in two p2k`1q-cycles, but since a
j

is
contained in both, one of such cycles contains at least three neighbours of x, thus
creating a short odd cycle. This shows that |N

G

pxq X V pM
4k

q| § 3. Moreover,
the minimum degree condition on G yields:

3n “ 4k
3n

4k
“

ÿ

uPV pM4kq
|N

G

puq| “
ÿ

xPV

|N
G

pxq X V pM
4k

q| § 3n

which implies |N
G

pxq X V pM
4k

q| “ 3 for every x P V pGq.
For the proof of the claim it is left to show that the three neighbours of x in M

4k

are the same neighbours of some vertex of M
4k

. Let a
j

be one of the neighbours
of x and consider the p2k ` 1q-cycles in M

4k

defined by the diagonal ta
j

, a
j`2k

u.
Each such cycle must contain one of the other neighbours, and both such vertices
must have distance two from a

j

in each cycle. Hence, one of the candidates must
be chosen in ta

j`2

, a
j`2k´1

u and the other in ta
j´2

, a
j`2k`1

u (Figure 25), which
gives rise to four cases. In three of the cases we find a vertex of M

4k

with the
same neighbourhood of x in M

4k

. In fact,

‚ N
G

pxq X V pM
4k

q “ ta
j

, a
j`2k´1

, a
j`2k`1

u ñ i “ j ` 2k;
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‚ N
G

pxq X V pM
4k

q “ ta
j

, a
j`2

, a
j`2k`1

u ñ i “ j ` 1;
‚ N

G

pxq X V pM
4k

q “ ta
j

, a
j´2

, a
j`2k´1

u ñ i “ j ´ 1.

In the remaining case N
G

pxq X V pM
4k

q “ ta
j

, a
j´2

, a
j`2

u there is no suitable i,
however, the diagonal ta

j`2

, a
j`2k`2

u defines a p2k ` 1q-cycle that contains all the
three vertices, which yields a contradiction and the claim follows. ⇤

a
j

a
j`2

a
j´2

a
j`2k`1

a
j`2k´1

Figure 25. The possible neighbours of x in M
4k

.

We now consider the largest blow-up B of M
4k

in G with vertex classes denoted
by A

0

, . . . , A
4k´1

, where each vertex class A
i

is completely adjacent to the classes
A

i´1

, A
i`1

, and A
i`2k

, and show that B “ G.
First note that each vertex class is an independent set, otherwise triangles

would be contained in G. Consider a vertex x P V pGq. If x has neighbours in
four (or more) vertex classes, then there exists a copy of M

4k

in which x has four
(or more) neighbours, which is impossible by Claim 20. For the same reason, x

cannot have neighbours in at most two classes. Moreover, if x has a neighbour
in the vertex class A

j

, then it must have all vertices of A
j

as neighbours, since
otherwise we could take a copy of M

4k

containing a vertex of A
j

that is not
adjacent to x and in such a copy of M

4k

the vertex x would have less than three
neighbours. Summarizing, Claim 20 implies that for any vertex x there exists
i P t0, . . . , 4k ´ 1u such that x has the whole vertex classes A

i´1

, A
i`1

, and A
i`2k

as neighbours, hence x P V pBq and consequently B “ G.
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§2.5. Open questions

It would be interesting to study the situation when we further relax the degree
condition in Theorem 13. It seems plausible that if G has odd girth at least 2k `1
and ”pGq • p 3

4k

´Áqn for su�ciently small Á ° 0, then the graph G is homomorphic
to M

4k

. In fact, this seems to be true until ”pGq ° 4n

6k´1

. At this point blow-ups
of the p6k ´ 1q-cycle with all chords connecting two vertices of distance 2k in the
cycle added, would show that this is best possible. For k “ 2 such a result was
proved by Chen, Jin, and Koh [22], for k “ 3 it was obtained by Brandt and
Ribe-Baumann [18] and recently Ebsen et al.1 extended these results to k • 2.

More generally, for ¸ • 2 and k • 3 let F
¸,k

be the graph obtained from a
cycle of length p2k ´1qp¸´1q`2 by adding all chords which connect vertices with
distance of the form jp2k ´1q`1 in the cycle for some j “ 1, . . . , tp¸´1q{2u. Note
that F

2,k

“ C
2k`1

and F
3,k

“ M
4k

. For every ¸ • 2 the graph F
¸,k

is ¸-regular,
has odd girth 2k ` 1, and it has chromatic number three. Moreover, F

¸`1,k

is not
homomorphic to F

¸,k

, but contains it as a subgraph.
A possible generalization of the known results would be the following: if an

n-vertex graph G has odd girth at least 2k ` 1 and minimum degree bigger than

¸n

p2k´1qp¸´1q`2

, then it is homomorphic to F
¸´1,k

. However, this is known to be false
for k “ 2 and ¸ ° 10, since such a graph G may contain a copy of the Grötzsch
graph which (due to having chromatic number four) is not homomorphically em-
beddable into any F

¸,2

. However, in some sense this is the only exception for
that statement. In fact, with the additional condition ‰pGq § 3 the statement is
known to be true for k “ 2 (see, e.g., [22]). To our knowledge it is not known if a
similar phenomenon happens for k ° 2 and it would be interesting to study this
further.

1Personal communication
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The discussion above motivates the following question, which asks for an ex-
tension of the result of £uczak for triangle-free graphs from [43]. Note that for
fixed k the degree of F

¸,k

divided by its number of vertices tends to 1

2k´1

as ¸ Ñ 8.

Question 21. Is it true that every n-vertex graph with odd girth at least 2k`1
and minimum degree at least p 1

2k´1

` Áqn can be mapped homomorphically into a
graph H which also has odd girth at least 2k`1 and V pHq is bounded by a constant
C “ CpÁq independent of n?

A di�erent formulation of this problem is related to chromatic thresholds.
A question of Andrásfai [8] started the investigation on the minimum degree
condition that forces bounded chromatic number in F -free graphs (where F is a
graph itself). More precisely, the chromatic threshold of a given graph F is defined
as

”
‰

pF q “ inft– P r0, 1s : Dk P N such that ‰pGq § k

@G with F Ü G and ”pGq • –|V pGq|u .

Some special cases were studied in [28,32,47,52]. In [44] £uczak and Thomassé
proved that ”

‰

pF q R p0, 1

3

q for all graphs F , and finally Allen et al. [3] settled the
question by showing that for every graph F we have

”
‰

pF q P
"

r ´ 3
r ´ 2 ,

2r ´ 5
2r ´ 3 ,

r ´ 2
r ´ 1

*
.

One can ask for a graph F , what is the minimum degree that allows an F -free
graph G to be homomorphic to a smaller graph H which is also F -free. This leads
to the definition of homomorphism threshold:

”
hom

pF q “ inft– P r0, 1s : Dk P N such that

@G with F Ü G and ”pGq • –|V pGq|

DH with F Ü H, |V pHq| § k, and G
hom›››Ñ Hu .



2.5. OPEN QUESTIONS 47

The aforementioned result of £uczak [43] solves this problem for F “ K
3

and it
was extended to cliques by Goddard and Lyle [32], who showed ”

‰

pK
r

q “ ”
hom

pK
r

q
for every r • 3.

The definition of homomorphism thresholds naturally extends to families of
graphs, i.e., given a family F , one considers graphs G and H that do not contain
any member of F as subgraphs. If we denote by C

2¸`1

the family tC
3

, C
5

, . . . , C
2¸`1

u,
Question 21 is equivalent to the following one.

Question 22. Is it true that ”
hom

pC
2¸`1

q “ 1

2¸`1

for ¸ • 2?

We conjecture that the answer to this question is positive.



CHAPTER 3

Packing minor-closed families of graphs

The material presented in this chapter is widely based on the paper
Packing minor-closed families of graphs [45], joint work with Vojt�ch Rödl and
Mathias Schacht.

§3.1. The Tree Packing Conjecture

Given graphs H and F , an F -packing of H is a collection of edge-disjoint
subgraphs of H that are isomorphic to F . This definition naturally extends to
sequences of graphs. In particular, we say that F “ pF

1

, . . . , F
t

q packs into H if
there exist edge-disjoint subgraphs H

1

, . . . , H
t

Ñ H with H
i

isomorphic to F
i

for
every i P rts. Gyárfás’ tree packing conjecture [35] initiated a lot of research and
asserts the following for the case where H is a complete graph and F is a sequence
of trees.

Conjecture 23. Any sequence of trees pT
1

, . . . , T
n

q with vpT
i

q “ i for i P rns
packs into K

n

.

Figure 26. A packing of pT
1

, . . . , T
7

q into K
7

.

48
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The di�culty of this conjecture lies in the fact that it asks for a perfect packing,
i.e., a packing where all the edges of K

n

are used, since each tree has epT
i

q “ i ´ 1
edges and hence

∞
iPrns epT

i

q “
`

n

2

˘
. Although some special cases were proven (see,

e.g., [39] and the references in [16]), this conjecture is still widely open.
Recently, Böttcher, Hladk ,̋ Piguet, and Taraz [16] showed that a restricted

approximate version holds. More precisely, they considered a host graph with
slightly more than n vertices and trees with bounded maximum degree, while
relaxing the assumption on the number of vertices of each tree.

Theorem 24 (Böttcher, Hladk ,̋ Piguet, and Taraz). For any Á ° 0 and any
� P N there exists n

0

P N such that for any n • n
0

the following holds for every
t P N. If T “ pT

1

, . . . , T
t

q is a sequence of trees satisfying

(a ) �pT
i

q § � and vpT
i

q § n for every i P rts, and
(b )

∞
t

i“1

epT
i

q §
`

n

2

˘
,

then T packs into Kp1`Áqn

.

In case p1 ` Áqn is not an integer, we should talk about Ktp1`Áqnu. However,
since we provide asymptotical results, we will omit floors and ceilings here. The
proof of Theorem 24 is based on a randomized embedding strategy, which draws
some similarities to the semirandom nibble method (see e.g. [6]). Inspired by
the result in [16], we obtained a somewhat simpler proof of Theorem 24, which
extends from sequences of trees to sequences of graphs contained in any non-trivial
minor-closed class.

Theorem 25. For any Á ° 0, � P N, and any non-trivial minor-closed family
G there exists n

0

P N such that for every n • n
0

the following holds for every
integer t P N. If F “ pF

1

, . . . , F
t

q is a sequence of graphs from G satisfying

(a ) �pF
i

q § � and vpF
i

q § n for every i P rts, and
(b )

∞
t

i“1

epF
i

q §
`

n

2

˘
,

then F packs into Kp1`Áqn

.
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In the following we will consider graphs that do not contain isolated vertices. In
fact, such vertices can easily be embedded after larger components just by picking
any vertex of Kp1`Áqn

that has not been used before for the same graph. In the
proof we split the graphs F

i

into smaller pieces by removing a small separator, i.e.,
a small subset of the vertex set. We discuss these concepts and a generalisation
of Theorem 25 in the next section.

§3.2. Main technical result

We shall establish a generalisation of Theorem 25 for graphs with small sepa-
rators (see Theorem 29 below). In fact, the Separator Theorem of Alon, Seymour,
and Thomas [5] will provide the connection between Theorem 25 and slightly more
general Theorem 29.

Theorem 26 (Alon, Seymour, and Thomas). For every non-trivial minor-
closed family of graphs G there exists cG ° 0 such that for every graph G P G there
exists U Ñ V pGq with |U | § cG

?
n such that every component of G ´ U has order

at most n{2.

The graphs we consider in our main result satisfy the following property.

Definition 27. Given ” ° 0 and s P N, a p”, sq-separation of a graph G “
pV, Eq with minimum degree ”pGq • 1 is a pair pU, Cq satisfying

(i ) U Ñ V , |U | § ”vpGq and
(ii ) C “ GrV rU s, i.e., the subgraph of G induced on V rU , has the property

that each component of C has order at least two and at most s.

We refer to U as the separator, and to C as the component graph of G.

Note that, for technical reasons that will become clear later (see equation (18)),
in (ii ). we only allow components of size at least two. Although the removal of
a separator could induce components of size one, such a separator U0 of G may
yield at most �|U0| components of size one, because in our setting we only deal
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with graphs G of bounded degree �pGq § �. This allows us to add these “few”
vertices to U0 without enlarging it too much, and ensure that the resulting set U

complies with the definition above.

Definition 28. A family G of graphs with minimum degree at least one is
p”, sq-separable if every G P G admits a p”, sq-separation.

We will deduce Theorem 25 from the following result, in which the condition
of G being minor-closed is replaced by the more general property of being p”, sq-
separable.

Theorem 29. For any Á ° 0 and � P N there exists ” ° 0 such that for every
s P N and any p”, sq-separable family G there exists n

0

P N such that for every
n • n

0

the following holds. If F “ pF
1

, . . . , F
t

q is a sequence of graphs from G

satisfying

(a ) �pF
i

q § � and vpF
i

q § n for every i P rts, and
(b )

∞
t

i“1

epF
i

q §
`

n

2

˘
,

then F packs into Kp1`Áqn

.

As mentioned above, Theorem 25 easily follows from Theorem 29. First we
show that for any non-trivial minor-closed family G and any ” ° 0 there is some
s such that G is p”, sq-separable. Then we use this fact to deduce Theorem 25.

Given a graph G P G of order n with minimum degree ”pGq • 1 and maximum
degree �pGq § �, we apply Theorem 26 to all components of G that have some
size r

0

with n

2

§ r
0

§ n. Since there are at most two such components, at most
two applications of Theorem 26 lead to a separator of size at most 2cGn1{2 and a
set of components all of which have order less than n{2. We then apply Theorem
26 to all components of G that have some size r

1

with n

4

§ r
1

† n

2

and obtain
another separator of size at most 4cG

`
n

2

˘
1{2. At this point all components have

order less than n{4. Again, we apply Theorem 26 to all components of some size
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r
2

with n

8

§ r
2

† n

4

, add at most 8cG
`

n

4

˘
1{2 more vertices to the separator, and so

on. After i ° 0 such iterations we obtain a separator U0 Ñ V pGq such that

|U0| § 2cGn1{2`4cG

´n

2

¯
1{2

`¨ ¨ ¨`2icG

´ n

2i´1

¯
1{2

† 2cGn1{2 ¨
?

2 i ´ 1?
2 ´ 1

† 6cGn1{2 2i{2

and each component of G ´ U0 has order at most n{2i. For given ” ° 0 we can
apply this with

i “
Z
2 log

2

ˆ
”n1{2

6cGp� ` 1q

˙^

and obtain a separator U
0

of order at most ”n{p�`1q, and a set of components all
of which have order at most 72c2

Gp� ` 1q2{”2. Note that some of the components
in G ´ U0 may have size one. However, owing to the maximum degree of G there
are at most �|U0| such components. By defining U as the separator of size at
most ”n obtained from U0 by adding all these degenerate components of order
one, we have shown that the non-trivial minor-closed family G is p”, sq-separable
with s “ 72c2

Gp� ` 1q2{”2. Applying Theorem 29 with this s yields Theorem 25.
The rest of this paper is devoted to the proof of Theorem 29. In Section 3.3

we introduce some definitions and state two technical lemmas that are used in
the proof of the theorem, which is given at the end of the section. Resolvable and
almost resolvable decompositions, which we will use to construct our packing,
are introduced in Section 3.4. Finally, the two technical lemmas, Lemma 32 and
Lemma 33, are proved in Sections 3.5 and 3.6, respectively.

§3.3. Proof of the main result

The following notation will be convenient.

Definition 30. Let G be a family of graphs. A t-tuple of graphs F “
pF

1

, . . . , F
t

q with F
i

P G and i P rts is called a pG, n, �q-sequence if

(a ) �pF
i

q § � and vpF
i

q § n for every i P rts, and
(b )

∞
t

i“1

epF
i

q §
`

n

2

˘
.
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We will consider pG, n, �q-sequences with the following additional properties:

‚ G will be a p”, sq-separable family and
‚ each graph F

i

will be associated with a fixed p”, sq-separation pU
i

, C
i

q.
Note that, since we are only considering graphs F

i

that do not contain isolated
vertices, we have vpF

i

q § 2epF
i

q and, hence,
tÿ

i“1

|U
i

| §
tÿ

i“1

”vpF
i

q § ”
tÿ

i“1

2epF
i

q
(b )

§ 2”

ˆ
n

2

˙
† ”n2 .

For a simpler notation we will often suppress the dependence on U
i

when we refer
to a pG, n, �q-sequence pF

1

, . . . , F
t

q, since the separator U
i

will be always clear
from the context. In a component C from C

i

we distinguish the set of vertices
that are connected to the separator U

i

and refer to this set as the boundary BC

of C

BC “ V pCq X NpU
i

q,

where as usual NpU
i

q denotes the union of the neighbours in F
i

of the vertices in
U

i

.
Moreover, for a component graph C

i

we consider the union of the boundary
sets of its components and set

BC
i

“
§

tBC : C component in C
i

u.

Note that

|BC
i

| §
ÿ

uPUi

dpuq § |U
i

|� § ”n� . (6)

For the proof of Theorem 29 we shall pack a given pG, n, �q-sequence into
Kp1`Áqn

. The vertices of the host graph Kp1`Áqn

will be split into a large part X

of order p1 ` ›qn for some carefully chosen › “ ›pÁ, �q ° 0, and a small part
Y “ V r X. We will pack the graphs tC

i

u
iPrts into the clique spanned on X and

the sets tU
i

u
iPrts into Y . For this, we shall ensure that the vertices representing

the boundary BC
i

will be appropriately connected to the vertices representing
the separator U

i

. Having this in mind we will make sure that each vertex of X
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will only host a few boundary vertices. In fact, since every edge of the complete
bipartite graph induced by X and Y can be used only once in the packing, each
vertex x P X can be used at most |Y | times as boundary vertex for the packing
of the sequence tC

i

u
iPrts. This leads to the following definition.

Definition 31. For every i P rts, let F
i

“ pV
i

, E
i

q be graphs with separators
U

i

, Ñ V
i

and component graphs C
i

“ F
i

rV
i

r U
i

s. For a family of injective maps
f “ tf

i

u
iPrts with f

i

: V pC
i

q Ñ X and for x P X we define the boundary degree of
x with respect to f by

dB
f pxq “ |ti P rts : f´1

i

pxq P BC
i

u| .

We call such a family of maps b-balanced for some b P R if dB
f pxq § b for every

x P X.

Theorem 29 follows from Lemma 32 and Lemma 33 below. Lemma 32 yields
a balanced packing of the component graphs tC

i

u
iPrts into the clique spanned by

X with |X| § p1 ` ›qn.

Lemma 32. For any › ° 0 and � P N there exists ” ° 0 such that for every
s P N and any p”, sq-separable family G there exists n

0

P N such that if F is a
pG, n, �q-sequence with n • n

0

, then there exists a p›nq-balanced packing of the
component graphs tC

i

u
iPrts of all members of F into Kp1`›qn

.

Once we have a balanced packing of tC
i

u
iPrts into Kp1`›qn

, the next lemma
allows us to extend it to a packing of F “ pF

1

, . . . , F
t

q into a slightly larger clique
of size p1 ` Áqn.

Lemma 33. For any Á ° 0 and � P N, there exist › ° 0 and ” ° 0 such
that for every s and any p”, sq-separable family G there exists n

0

such that for
any n • n

0

the following holds. Suppose there exists a p›nq-balanced packing of
the component graphs tC

i

u
iPrts associated with a pG, n, �q-sequence F into Kp1`›qn

.
Then there exists a packing of F into Kp1`Áqn

.
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We postpone the proofs of Lemma 32 and Lemma 33 to Section 3.5 and Section
3.6. Here we describe the proof of our main Theorem based on these two lemmas.

3.3.1. Proof of Theorem 29. We will first fix all involved constants. Note
that Theorem 29 and Lemma 33 have a similar quantification. Hence, for the
proof of Theorem 29, we may apply Lemma 33 with Á and � from Theorem 29
and obtain › and ”1. Then Lemma 32 applied with › and � yields a constant ”2.
For Theorem 29 we set ” “ mint”1, ”2u. After displaying ” for Theorem 29 we are
given some s P N and a p”, sq-separable family G.

With constants chosen as above, we can apply Lemma 32 for a pG, n, �q-
sequence F which then asserts that the assumptions of Lemma 33 are fulfilled.
Finally, the conclusion of Lemma 33 yields Theorem 29. ⇤

§3.4. Resolvable and almost resolvable decompositions

In the proof of Lemma 32 we will construct a packing of tC
i

u
iPrts into K

X

. The
components of each graph will be grouped by isomorphism types and those from
the same type will be packed into complete subgraphs of K

X

. In this process we
have to obey two main constraints. First, we want to use the space e�ciently. For
that it would be useful to have a packing of the components that covers (almost)
all edges of the host graphs. Second, the components of a given graph C

i

must be
packed vertex-disjointly. Hence, we would like the host graph to contain disjoint
copies of a given isomorphism type that cover (almost) all its vertices. This leads
to resolvable decompositions and the concepts discussed below.

Given graphs H and F , a resolvable F -decomposition of H is an edge disjoint
partition of H into F -factors. Note that for the existence of a perfect F -packing of
H it is required that epF q divides epHq, and the existence of an F -factor requires
that vpF q divides vpHq, hence both conditions are necessary for the existence of
a resolvable F -decomposition. Let H “ K

n

. In the special case when F is also
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a clique, Ray-Chaudhuri and Wilson [49] showed that these necessary conditions
are actually su�cient.

Figure 27. A resolvable K
3

-decomposition of K
9

.

Theorem 34 (Ray-Chaudhury and Wilson). For every m • 2 there exists n
0

such that if n • n
0

and n ” m pmod mpm´1qq, then K
n

admits a resolvable K
m

-
decomposition.

Note for future reference that a K
m

-factor of K
n

contains n

m

vertex disjoint
cliques of order m, and a resolvable K

m

-decomposition of K
n

is a collection of
`

n

2

˘
`

m

2

˘ m

n
“ n ´ 1

m ´ 1

edge disjoint K
m

-factors.
For a general graph F , some additional conditions must be satisfied for the

existence of an F -decomposition. Let gcdpF q denote the greatest common divi-
sor of the degree sequence of F . If an F -decomposition of K

n

exists, then we
have that gcdpF q divides n ´ 1, in addition to epF q divides

`
n

2

˘
. In fact, Wil-

son [54] showed that for n su�ciently large these two necessary conditions are
also su�cient.

Theorem 35 (Wilson). For every graph F there exists n
0

such that if n •
n

0

, epF q divides
`

n

2

˘
, and gcdpF q divides n´1, then K

n

admits an F -decomposition.
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For general F , resolvable decompositions do not necessarily exists (for example
it is easy to see that there is no n for which resolvable K

1,3

-decompositions of K
n

exist). Therefore, instead of F -factors, we consider F -matchings, i.e., sets of
vertex disjoint copies of F .

Definition 36. An pF, ÷q-factorization of K
¸

is a collection of F -matchings
of K

¸

such that

(1) each matching has size at least p1 ´ ÷q ¸

vpF q , and
(2) these matchings together cover all but at most ÷

`
¸

2

˘
edges of K

¸

.

From these two properties we deduce that the number t of F -matchings in an
pF, ÷q-factorization satisfies

p1 ´ ÷qp¸ ´ 1qvpF q
2epF q § t § p¸ ´ 1qvpF q

2epF q .

Also note that any pF, 0q-factorization of K
¸

is a resolvable F -decomposition of
K

¸

. We will then use the following approximate result, which can be deduced
from [29] and [48] (see also [7]).

Theorem 37. For every F and ÷ ° 0 there exists ¸
0

such that for every ¸ • ¸
0

there exists an pF, ÷q-factorization of K
¸

.

§3.5. Packing the components

The crucial part in the proof of Theorem 29 is Lemma 32, which we are going to
prove in this section. In Lemma 32 we are given a pG, n, �q-sequence pF

1

, . . . , F
t

q
of graphs from a p”, sq-separable family G with fixed separations pU

i

, C
i

q associ-
ated with each F

i

. Our goal will be to construct a p›nq-balanced packing of the
component graphs tC

i

u
iPrts into K

N

, with N “ p1 ` ›qn.
The packing of tC

i

u
iPrts will make use of a resolvable K

m

-decomposition of K
N

(actually we will use a somewhat more complicated auxiliary structure which we
will describe in Section 3.5.1) and will be realized in two steps: the assignment
phase and the balancing phase.
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‚ In the assignment phase we consider a K
m

-decomposition of K
N

and then
describe which components of each C

i

are assigned to which copies of K
m

.
‚ In the balancing phase we ensure that the mapping from components of

each C
i

into copies of K
m

from K
N

will form a p›nq-balanced packing as
promised in Lemma 32.

Below we outline the main ideas of these two steps. We start with the assignment
phase first. The balancing phase will be discussed in Section 3.5.3.

3.5.1. Outline of the assignment phase. The purpose of the assignment
phase is to produce a “preliminary packing” of each C

i

, i “ 1, . . . , t into some K
m

-
factor. We recall that each component graph C

i

consists of several components
each with at most s vertices and maximum degree at most �. Moreover, in each
component C we distinguish the set BC of vertices that are connected to the
separator U

i

.
We define an isomorphism type S as a pair pR, Bq where R is a graph on at

most s labeled vertices and maximum degree at most �, and B is a subset of the
vertices of R. Let S “ pS

1

, . . . , S
‡

q be the enumeration of all isomorphism types
S

j

“ pR
j

, B
j

q, such that
epR

1

q
vpR

1

q • ¨ ¨ ¨ • epR
‡

q
vpR

‡

q . (7)

The definition of S yields

‡ § 2ps
2q ¨ 2s § 2s

2
. (8)

For every component C of C
i

there exists an isomorphism type S
j

“ pR
j

, B
j

q P
S such that there exists a graph isomorphism Ï : V pCq Ñ V pR

j

q with the addi-
tional property that ÏpBCq “ B

j

. Therefore, we can describe the structure of a
component graph C

i

as a disjoint union

C
i

“
§

SPS
‹

i

pSq ¨ S

where ‹
i

pSq denotes the number of components isomorphic to S contained in C
i

.
In the rest of the paper we will simplify the notation and refer to S as a graph.
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The assignment procedure makes use of further decomposition layers. In fact,
for each copy of K

m

appearing in the resolvable decomposition of K
N

we consider a
resolvable K

¸

-decomposition of such a copy of K
m

. Each resolution class consisting
of m

¸

disjoint copies of K
¸

will be reserved for some isomorphism class S and
the copies of S coming from various C

i

will be then packed into each such K
¸

.
Since we consider K

m

-decomposition of K
N

, K
¸

-decomposition of K
m

, and S-
decomposition of K

¸

for each S P S, we will refer to such structure as three layer
decomposition and motivate its use below.

3.5.2. The three layer decomposition. We begin our discussion with the
simpler case when all components in all the component graphs C

i

are isomorphic
to a given graph S and argue why even in this simpler case at least two layers are
required. Then we look at the general case, where the component graphs consist
of more di�erent isomorphism types, and explain the use of three layers.

3.5.2.1. One layer. In the case where all components in tC
i

u
iPrts are isomorphic

to a single graph S, a straightforward way to pack tC
i

u
iPrts into K

N

would be the
following. Suppose there exists a resolvable S-decomposition of K

N

. Then, by
assigning the components of a graph C

i

to copies of S from the same S-factor,
we ensure that the components within each component graph are packed vertex-
disjointly.

With this approach, however, we might end up not covering many edges of
K

N

(and consequently not being able to find a packing of the graphs C
i

). Let
C

1

and C
2

be component graphs with strictly more than N{2 vertices. Once we
assign the components of C

1

to an S-factor of K
N

, we cannot use the other copies
of S in the same S-factor to accomodate the components of C

2

. In fact, at least
one component of C

2

would not fit in that S-factor and we would have to use
a copy of S from another S-factor. We would have to ensure that this copy of
S is vertex disjoint from those already used for C

2

in the previous S-factor, and
an obvious way to get around this would be to embed all components of C

2

in a
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new S-factor all together. However, this would be very wasteful and if many (for
example �pnq) graphs C

i

would be of size strictly larger than N{2, then we would
not be able to pack all C

i

into K
N

in such a straightforward way. We remedy this
situation by introducing an additional layer.

3.5.2.2. Two layers. For an appropriately chosen integer m, suppose there
exist a resolvable K

m

-decomposition of K
N

and a resolvable S-decomposition of
K

m

. Note that, with this additional decomposition layer at hand, we can address
the issue raised above more easily. In fact, we fix a K

m

-factor of K
N

and use
su�ciently many K

m

’s of this K
m

-factor to host the components of C
1

, all of which
are isomorphic to S by our assumption. The remaining K

m

’s of the factor can host
the first part of C

2

. We then “wrap around” and reuse the K
m

’s containing copies
of S from C

1

by selecting a new S-factor inside these K
m

’s to host the second
part of C

2

. This way the components of C
1

and C
2

are packed edge disjointly and
the components of C

2

(resp. C
1

) are in addition vertex disjoint, as required for a
packing. We can continue this process to pack C

3

, C
4

, . . . until the fixed K
m

-factor
of K

N

is fully used. Then we continue with another K
m

-factor and so on.
This procedure will work if all components of each C

i

are isomorphic to a
single S. Let us note however that in case C

i

contains components of di�erent
isomorphism types two layers may not be su�cient. This is because we would
have to select S-factors for di�erent graphs S within K

m

and there seems to
be no obvious way to achieve this in a two layer decomposition. Instead we will
introduce a third layer, which will give us su�cient flexibility to address this issue.

3.5.2.3. Three layers. Here we give an outline and describe how a three layer
structure can be used to address the general problem. The details will follow in
section 3.5.4.1. Consider a resolvable K

m

-decomposition Dm,N of K
N

, a resolvable
K

¸

-decomposition D ¸,m of K
m

, and resolvable S-decompositions DS,¸ of K
¸

for
every S P S (in fact the last assumption will never be used in its full strength, we
will use Theorem 37 instead). We view resolvable decompositions as collections
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of factors. We write Dm,N “ tDm,N

1

, . . . , Dm,N

N´1
m´1

u, where Dm,N

j

is a K
m

-factor of
K

N

for j “ 1, . . . , N´1

m´1

.
Suppose now we are given graphs C

1

, . . . , C
t

, C
i

“ î
SPS ‹

i

pSq ¨ S. We will
proceed greedily processing the C

i

’s one by one. In each step we will work with
one fixed K

m

-factor Dm,N

j

“ Dm,N

current

of K
N

which will be used repeatedly as long
as “su�ciently many” edges of such factor are available. For example, Dm,N

1

will
host C

1

, C
2

, . . . , C
a

for some a † t, then Dm,N

2

will host C
a`1

, C
a`2

, . . . , C
b

for some
a † b † t, and so on. Once we run out of available edges in factor Dm,N

current

we
will move that factor in the set Dm,N

used

Ñ Dm,N of factors the edges of which were
already assigned to previous C

i

’s and select a new factor Dm,N

current

P Dm,N r Dm,N

used

which we will continue to work with.
We outline the assignment within a K

m

of the current K
m

-factor. For each
K

m

P Dm,N

current

we consider a resolvable decomposition D ¸,m “ D ¸,mpK
m

q of such
a K

m

. Again some factors in that decomposition might have already been com-
pletely used. Among those which were not completely used yet, we specify ‡ of
such “current” factors D¸,m

S

, each ready to be used to embed copies of S in the
current particular step. Since K

¸

admits resolvable S-decompositions for every
S P S, each D¸,m

S

corresponds to p¸´1qvpSq
2epSq “ tpSq S-factors of K

m

which we may
denote by DS,¸,m

1

, . . . , DS,¸,m

tpSq . At each step, in every K
m

we will only use one of
such S-factors, which we denote by DS,¸,m

current

. A set of components of C
i

that are
going to be assigned to an S-factor of a K

m

will be referred to as a chunk.
With this structure in mind we are able to describe our greedy assignment

procedure. Assume that in the assignment procedure the graphs C
1

, . . . , C
i´1

were
already processed and that C

i

“ î
SPS ‹

i

pSq ¨ S. The assignment of C
i

will consist
of the following four steps which we discuss in detail in Section 3.5.4.1.

(i ) For every isomorphism type S P S, partition the ‹
i

pSq components into
as few as possible chunks of size at most m

vpSq .
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(ii ) For every S P S, select ‹ipSqvpSq
m

copies of K
m

from the current K
m

-factor
Dm,N

current

and match each such K
m

with a chunk of components isomorphic
to S.

(iii ) For every S P S and for each chunk of type S, assign the components
in the chunk to the S-factor DS,¸,m

current

of K
m

. The copies of S will cover
m epSq

vpSq edges of K
m

.
(iv ) Prepare for the assignment of the next component graph.

This procedure leads to a packing of tC
i

u
iPrts into K

N

if we do not run out of
K

m

-factors during the process, and in the proof we shall verify this. Assuming
this for the moment, the procedure above yields a preliminary packing which can
be encoded by functions f “ tf

i

u
iPrts, with f

i

: V pC
i

q Ñ V pK
N

q.

3.5.3. Outline of the balancing phase. In this section we will outline how
the preliminary packing f obtained in the assignment phase is used to realize a
p›nq-balanced packing of tC

i

u
iPrts into K

N

. Further detail will be given in Section
3.5.4.2.

Note that so far we did not consider the boundary degrees of the vertices of K
N

and, in fact, f is not guaranteed to be balanced. However, the layered structure of
the assignment will allow us to fix this by using the following degrees of freedom.
Firstly, the N

m

K
m

’s in any of the N´1

m´1

K
m

-factors from Dm,N can be permuted
independently for each K

m

-factor. Since any component graph is assigned to a
single K

m

-factor, the resulting mappings remain injective and the embedding of
the C

i

’s stays pairwise edge disjoint. Secondly, each K
m

can be embedded into
K

N

in m! possible ways by permuting its vertices. There are

ˆˆ
N

m

˙
! ˆ pm!q N

m

˙ N´1
m´1

such choices in total and each of them leads to a packing of the component graphs
tC

i

u
iPrts.
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We will pick one of such choices uniformly at random, and show that with
positive probability each vertex of K

N

is used as a boundary vertex approximately
the same number of times. Since the sum of the boundary degrees is at most
�”n2 § ›n2{2 (see (6)), this leads to a p›nq-balanced packing g of tC

i

u
iPrts into

K
N

.

3.5.4. Proof of Lemma 32. Given › and �, set

” “ ›

2� (9)

and let G be a p”, sq-separable family, for some s P N. We apply Theorem 37 with

÷ “ ›{8 (10)

and fix an integer ¸ ° s2 satisfying that for every S P S there exists an pS, ÷q-
factorization of K

¸

. Let m P N such that

m ° 16‡¸{› (11)

and there exists a resolvable K
¸

-decomposition of K
m

(see Theorem 34). Similarly,
let

n
0

° maxt4m2{›, 22mu (12)

such that for any n • n
0

satisfying the necessary congruence property there
exists a resolvable K

m

-decomposition of K
n

. Having defined n
0

, we are given a
pG, n, �q-sequence F “ pF

1

, . . . , F
t

q for some n • n
0

. We show that there exists
a p›nq-balanced packing of the family of component graphs tC

i

u
iPrts into K

N

, for
any N with p1 ` ›

2

qn § N § p1 ` ›qn such that K
N

admits a K
m

-decomposition.
Since n • n

0

• 4m

2

›

, such N indeed exist.
3.5.4.1. The assignment phase. Next we elaborate on the outline given in Sec-

tions 3.5.1 and 3.5.2. First we describe the auxiliary structure we are going to use
followed by the actual assignment procedure.
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The auxiliary structure. For each S P S let DS,¸ be a fixed pS, ÷q-factorization
of K

¸

(see Definition 36). Let D ¸,m be an arbitrarily chosen resolvable K
¸

-
decomposition of K

m

. Similarly, for the given N , denote by Dm,N an arbitrarily
chosen resolvable K

m

-decomposition of K
N

.
At each point of time in the assignment procedure we will work with one K

m

-
factor which we refer to as the current K

m

-factor Dm,N

current

P Dm,N . Each K
m

of
the current K

m

-factor is decomposed into K
¸

-factors using D ¸,m. Moreover, in
every K

m

, for every S P S we pick a K
¸

-factor which we denote by D¸,m

S

. We refer
to D¸,m

S

as the current K
¸

-factor for S. We then apply Theorem 37 to all K
¸

’s in
such a K

¸

-factor and obtain pS, ÷q-factorizations for every K
¸

in D¸,m

S

. Note that
we can arbitrarily fix an S-matching in each K

¸

of D¸,m

S

and obtain an S-matching
of K

m

of size at least

p1 ´ ÷q ¸

vpSq
m

¸
“ p1 ´ ÷q m

vpSq . (13)

This way we set up tpSq edge disjoint S-matchings of K
m

contained in D¸,m

S

, for

p1 ´ ÷qp¸ ´ 1qvpSq
2epSq § tpSq § p¸ ´ 1qvpSq

2epSq ,

which we denote by DS,¸,m

1

, . . . , DS,¸,m

tpSq . Each of these S-matchings cover at least
p1 ´ ÷qm

¸

`
¸

2

˘
edges of the K

¸

’s in D¸,m

S

.
Every such structure will be used until it is considered full according to the

following definition.

Definition 38. A K
¸

-factor D¸,m

S

is full when all its S-matchings have been
used. A K

m

is full when there exists an isomorphism type S P S such that D¸,m

S

is full and any other K
¸

-factor is either full or reserved to another isomorphism
type. A K

m

-factor is full when one of its K
m

’s is full.

The assignment procedure. We now give the details of the four steps outlined
in Section 3.5.2.3 for the assignment for the graph C

i

“ î
SPS ‹

i

pSq ¨ S.
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We assume that the graphs C
1

, . . . , C
i´1

have already been assigned and that
the current K

m

-factor Dm,N

current

“ Dm,N

j

is not full.

(i ) For each isomorphism type S P S we group the ‹
i

pSq copies of S into as
few as possible chunks of size at most p1 ´ ÷q m

vpSq (note that this matches
the size of an S-matching of K

m

, as given in (13)) The correction factor
p1 ´ ÷q here addresses the fact that we deal with pS, ÷q-factorizations
and not with resolvable S-decompositions. The number µ

i

pSq of chunks
required for the ‹

i

pSq components of type S is hence given by

µ
i

pSq “
R

‹
i

pSq ¨ vpSq
p1 ´ ÷qm

V
. (14)

(ii ) We order the K
m

’s in the current K
m

-factor Dm,N

current

according to the
number of edges that have already been assigned to it. We start with the
one in which the least number of edges have been used. We then assign
the µ

i

pS
1

q chunks of type S
1

to the first µ
i

pS
1

q K
m

’s in that order and
continue in the natural way, that is, the µ

i

pS
2

q chunks of type S
2

are
assigned to the next µ

i

pS
2

q K
m

’s, and so on. Since the members of S are
ordered non-increasingly according to their densities (see 7), this way we
will ensure that the K

m

’s in the current K
m

-factor are used in a balanced
way, which is essential to leave only little waste.

(iii ) Once we have determined which chunk goes to which K
m

, we have to
assign the components S of the chunk to their copies in the corresponding
K

m

. In the chosen K
m

we assign the components of the chunk to DS,¸,m

current

.
Such a matching exists because we assumed that the current K

m

-factor
Dm,N

j

is not full. Note that, independently of the precise number of
components in the chunk, we use an entire S-matching in all the K

¸

’s of
the current K

¸

-factor for S for the assignment of this chunk.
(iv ) After we have assigned the components of C

i

we prepare for the assign-
ment of C

i`1

. In each K
m

, for every isomorphism type S, we check
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whether the current K
¸

-factor for S is full. If it is, two cases may arise.
In the first case there exists another K

¸

-factor in the K
m

that has not
been reserved for any S P S yet. Then, we apply Theorem 37 with S

and ÷ to all copies of K
¸

in such a K
¸

-factor and this factor becomes
the current K

¸

-factor for S, i.e., D¸,m

S

in that K
m

. In the second case,
all K

¸

-factors are either full or have been reserved for some S 1 P S with
S 1 ‰ S, hence we cannot set up a new K

¸

-factor for S. This implies that
the K

m

and the K
m

-factor are full (see Definition 38). Since we assigned
the components of C

i

to the least used K
m

’s in the K
m

-factor, we are
ensured that at this point all the K

m

’s in Dm,N

current

are almost completely
used. At this point we add Dm,N

current

to Dm,N

used

and set Dm,N

current

“ Dm,N

j`1

.

The assignment phase yields a packing. We shall verify that the procedure
yields a correct assignment. For that we have to show that any component graph
C

i

“fits” into K
N

, and that we do not run out of K
m

-factors while iterating the
four steps for all graphs in tC

i

u
iPrts.

We first show that every C
i

fits into one K
m

-factor. Recall that in Step (i )) the
copies isomorphic to some S P S are split into chunks of size at most p1 ´ ÷q m

vpSq

and each chunk is assigned to an S-matching of D¸,m

S

. At this point some vertices
may not be used for one of the following two reasons:

(V1) We always reserve a whole S-matching DS,¸,m

current

for each chunk, even
though some chunks may contain only a few copies of S. In the worst
case where only one copy of S is contained in the chunk we may waste
m ´ vpSq § m vertices and in principle this could happen for every iso-
morphism type S P S. However, since such a “rounding error” occurs at
most once for each isomorphism type, we may waste at most ‡m vertices
for this reason.

(V2) We cannot guarantee that the S-matchings which we are using are perfect
S-factors. However, from Theorem 37 it follows that each matching covers
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at least

p1 ´ ÷q m

vpSqvpSq “ p1 ´ ÷qm

vertices of K
m

. Therefore the number of uncovered vertices in the K
m

-
factor due to this imperfection is at most ÷mN

m

“ ÷N .

Hence C
i

fits into one K
m

-factor if we ensure that vpC
i

q ` ‡m ` ÷N § N , which
follows from

vpC
i

q ` ‡m ` ÷N § n ` ‡m ` ÷N § p1 ` ›

2qn § N,

due to (10), (11), and (12).
It is left to show that N´1

m´1

K
m

-factors are su�cient to host all the graphs from
tC

i

u
iPrts. For that, we shall bound the number of unused edges in each K

m

-factor.
At the point when a K

m

becomes full, all its K
¸

-factors, except for the current K
¸

-
factors D¸,m

S

for each isomorphism type S P S, have been used in the assignment.
This leads to the following cases.

(E1) The current K
¸

-factor D ¸,m

S

for a given isomorphism type S may not
have been used at all and hence all its

`
¸

2

˘
m

¸

edges are not used in the
assignment.

(E2) Owing to Theorem 37, in a used K
¸

-factor, up to at most ÷
`

¸

2

˘
m

¸

edges
are not covered by the S-matchings.

Hence the total number of edges that are not used in a full K
m

can be bounded
by ˆ

‡ ` ÷
m ´ 1
¸ ´ 1

˙ ˆ
¸

2

˙
m

¸
.

It is left to establish a similar estimate for the other K
m

’s in the K
m

-factor. Recall
that we declared the whole K

m

-factor to be full as soon as one K
m

was full. Since
all components of any C

i

Ñ F
i

have bounded maximum degree �, in each step up
to at most m�

2

edges are reserved in any K
m

of the current K
m

-factor. Owing to
the balanced selection of the K

m

’s within the current K
m

-factor (see Step (ii )))
we have that the number of used edges over all K

m

’s in Dm,N

current

di�ers by at most
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m�

2

. Consequently, the number of unused edges in any K
m

at the point when the
K

m

-factor is declared full is at most
ˆ

‡ ` ÷
m ´ 1
¸ ´ 1

˙ ˆ
¸

2

˙
m

¸
` m�

2 .

Using this estimate for all
`

N

2

˘
{
`

m

2

˘
of the K

m

in the K
m

-decomposition of K
N

leads to a total of unused edges of at most
ˆ

‡
¸ ´ 1
m ´ 1 ` ÷ ` �

m ´ 1

˙ ˆ
N

2

˙
† 2÷

ˆ
N

2

˙
,

where we used (10), (11), and � † ‡. Furthermore, since by N • p1 ` ›

2

qn we
have ˆ

n

2

˙
` 2÷

ˆ
N

2

˙
§

ˆ
N

2

˙
,

we have shown that we do not run out of K
m

-factors and, hence, the assignment
procedure yields a preliminary packing of tC

i

u
iPrts.

For the proof of Lemma 32 we have to show not only that there exists such a
packing but also that there is a balanced one. This will be the focus of the next
phase.

3.5.4.2. The balancing phase. In the assignment phase we have constructed
a preliminary packing f of tC

i

u
iPrts into the K

m

-factors of K
N

as described in
Section 3.5.1. We now construct a p›nq-balanced packing h by the following
random process consisting of two parts. Firstly, we randomly permute the N

m

K
m

’s in each K
m

-factor independently and we will denote the resulting packing
by g. Secondly, for each K

m

, we pick a random permutation of its vertices. As we
already noted in Section 3.5.3, any such permutation yields a packing of tC

i

u
iPrts

into K
N

.
It is left to show that with positive probability each vertex v of K

N

has bound-
ary degree with respect to h bounded by ›n. Recall from Definition 31 that the
boundary degree with respect to f of a vertex v is defined by

dB
f pvq “ |ti P rts : f´1

i

pvq P BC
i

u|.
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For a K
m

of the K
m

-decomposition of K
N

and a vertex v of K
m

we consider the
relative boundary degree

dB
f pv, K

m

q “ |ti P rts : f
i

assigns some components of C
i

to K
m

and f´1

i

pvq P BC
i

u|

Clearly,
∞

dB
f pv, K

m

q “ dB
f pvq, where the sum runs over all K

m

from the K
m

-
decomposition of K

N

that contain v. For each K
m

we define its label as the
monotone sequence of the relative boundary degrees of its vertices. Since these
labels of the K

m

’s consist of relative boundary degrees, such a label is invariant
under permutations of the vertices of a K

m

and it is invariant under permutations
of the K

m

’s within its K
m

-factor. Moreover, the label of a K
m

is determined by
the isomorphism types S P S it hosts, because each type S consists of a labelled
graph R with a set of boundary vertices B. Since in the assignment phase we
assigned an isomorphism type to a whole K

¸

-factor, the number of possible labels
is bounded by |S|pm´1q{p¸´1q “ ‡pm´1q{p¸´1q † 2m (see (8) and the choice of ¸ ° s2).

For every K
m

-factor Dm,N

j

, let –
j

pAq be the number of K
m

’s with label A in
Dm,N

j

and define

–pAq “
N´1
m´1ÿ

j“1

–
j

pAq.

We call a label common if –pAq • ÷

2

m
NpN´1q
mpm´1q and rare otherwise. Note that the

total number of K
m

’s having a rare label is bounded by ÷ NpN´1q
mpm´1q , therefore

ÿ

A common

–pAq • p1 ´ ÷qNpN ´ 1q
mpm ´ 1q . (15)

We use these labels to show that each vertex in K
N

hosts roughly the same
amount of boundary vertices. For that we first prove that an arbitrary vertex is
contained in approximately the expected number of K

m

’s of a given common label.
For a vertex v of K

N

and a common label A we denote by Xv,A the number of
K

m

’s containing v that have label A. Note that Xv,A is the sum of N´1

m´1

indicator
variables Xv,A

j

, where Xv,A

j

“ 1 if the K
m

from the K
m

-factor Dm,N

j

adjacent
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to v has label A. The probability that this happens is then given by –jpAq
N{m

. By
applying Cherno�’s inequality ((2.9) in [41]) we obtain

P
`
|Xv,A ´ EXv,A| ° ÷EXv,A

˘
† 2 exp

ˆ
´÷2EXv,A

3

˙
† 2 exp

ˆ
´÷2

3
m

N
–pAq

˙
.

Consequently, the probability that one of the common labels appears too many
or too few times among the K

m

’s containing some vertex is bounded by

ÿ

vPV pKN q

ÿ

A common

2 exp
ˆ

´÷2

3
m

N
–pAq

˙
† N2m`1 exp

ˆ
´ ÷3pN ´ 1q

2m ¨ 3pm ´ 1q

˙
† 1 ,

where we used that common labels A are defined through –pAq • ÷

2

m
NpN´1q
mpm´1q in

the first inequality. Therefore, with positive probability, all vertices are balanced
in the sense that the occurrences of every common label among the K

m

’s incident
to each vertex roughly agree in proportion with the occurrences of that label in
the decomposition.

We fix such permutation of the K
m

’s and the corresponding numbers Xv,A for
every vertex v and every label A. Let g be the corresponding packing of tC

i

u
iPrts

into K
N

. As a consequence, we get that for every vertex v the number of K
m

’s
with common labels attached to it satisfies

ÿ

A common

Xv,A •
ÿ

A common

p1 ´ ÷qm

N
–pAq “ p1 ´ ÷qm

N

ÿ

A common

–pAq

(15)

• p1 ´ ÷qm

N
p1 ´ ÷qNpN ´ 1q

mpm ´ 1q “ p1 ´ ÷q2

N ´ 1
m ´ 1 • p1 ´ 2÷qN ´ 1

m ´ 1 .

We also obtain an upper bound on the number of K
m

’s with rare labels for every
vertex v

ÿ

A rare

Xv,A “ N ´ 1
m ´ 1 ´

ÿ

A common

Xv,A § 2÷
N ´ 1
m ´ 1 . (16)

Next we show that randomly permuting the vertices of each K
m

in the K
m

-
decomposition of K

N

for the random packing g ensures that the boundary degrees
in each K

m

are evenly distributed. Let dB
hpv, Aq be the sum of the boundary
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degrees of the vertex v within the K
m

’s labelled by A and containing v. Clearly,

dB
hpvq “

ÿ

A

dB
hpv, Aq.

We denote by Apjq the j-th element of the degree sequence A and set —pAq “
1

m

∞
m

j“1

Apjq as the average degree in A. Since –pAq is the number of K
m

’s with
label A in the K

m

-decomposition of K
N

and m—pAq “ ∞
m

j“1

Apjq is the sum of
the relative boundary degrees of the vertices of such a K

m

, for later reference we
note

ÿ

A

m—pAq–pAq “
ÿ

A

–pAq
mÿ

j“1

Apjq “
tÿ

i“1

|BC
i

|. (17)

For a moment we ignore the K
m

’s with rare labels, since owing to (16) their
contribution will be negligible, and consider only those that have a common label.
We first show that for a vertex v of K

N

and a common label A, dB
hpv, Aq is in the

range p1 ˘ ÷q—pAqXv,A with high probability. Let Y v,A

j

be the number of K
m

’s
labelled by A in which v gets boundary degree Apjq. By applying Cherno�’s
inequality we obtain

P
ˆˇ̌

ˇ̌Y v,A

j

´ Xv,A

m

ˇ̌
ˇ̌ ° ÷

Xv,A

m

˙
† 2 exp

ˆ
´÷2

3
Xv,A

m

˙

for every j P rms. This implies that with probability 1 ´ 2m exp
´

´÷

2

3

X

v,A

m

¯
we

have

dB
hpv, Aq “

mÿ

j“1

ApjqY v,A

j

“
mÿ

j“1

Apjqp1 ˘ ÷qXv,A

m
“ p1 ˘ ÷q—pAqXv,A.

By summing over all common labels, we have that with positive probabil-
ity there exist permutations for every K

m

of the K
m

-decomposition of K
N

for
which all vertices have roughly the expected boundary degree. More precisely,
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the probability that there exists a misbehaving vertex is bounded by

ÿ

vPV pKN q

ÿ

A common

2m exp
ˆ

´÷2

3
Xv,A

m

˙
† N2m`1m exp

ˆ
´÷2

3 p1 ´ ÷q–pAq
N

˙

§ N2m`1m exp
ˆ

´ ÷3

2m ¨ 3p1 ´ ÷q N ´ 1
mpm ´ 1q

˙

† 1 ,

where the first inequality follows from g being a packing in which Xv,A is close
to its expected value for every v P V pK

n

q and the second inequality follows from
the definition of common labels. Therefore, the contribution of the K

m

’s with
common labels for each vertex v is at most

ÿ

A common

dB
hpv, Aq §

ÿ

A common

p1 ` ÷q—pAqXv,A

§
ÿ

A common

p1 ` ÷q
”
—pAqp1 ` ÷qm

N
–pAq

ı

“ p1 ` ÷q2

1
N

ÿ

A common

pm—pAq–pAqq

(17)

§ p1 ` ÷q2

1
N

tÿ

i“1

|BC
i

|

(6),(9)

§ p1 ` ÷q2

1
N

›

2n2.

Owing to (16), a vertex can be incident to at most 2÷ N´1

m´1

K
m

’s with rare
labels. Since no component of any C

i

consists of a single isolated vertex (see (ii )
in Definition 27), the largest relative boundary degree of any vertex in such a K

m

can be at most m ´ 1 and we infer that

dB
hpvq § p1 ` ÷q2

1
N

›

2n2 ` 2÷
N ´ 1
m ´ 1 pm ´ 1q †

ˆp1 ` ÷q2

1 ` ›{2
›

2 ` 2÷p1 ` ›q
˙

n
(10)† ›n

(18)
for every v P V pK

N

q, thus proving Lemma 32. ⇤
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§3.6. Packing the separators

In this section we prove Lemma 33. The Lemma asserts that a balanced pack-
ing of tC

i

u
iPrts into Kp1`›qn

can be extended to a packing of tF
i

u
iPrts in Kp1`Áq. For

that we have to show that we can embed the separators tU
i

u
iPrts in an appropriate

way. Roughly speaking, we will show that a simple greedy strategy will work in
here.

3.6.1. Proof of Lemma 33. Given Á and �, set

› “ Á

12�2

and ” “ Á2

72�2

.

Let s P N and let G be a p”, sq-separable family. For su�ciently large n let
F “ pF

1

, . . . , F
t

q be a pG, n, �q-sequence and suppose that there exists a p›nq-
balanced packing of the component graphs tC

i

u
iPrts into a clique of order p1 ` ›qn.

Fix a partition X 9YY of the vertex set of Kp1`Áqn

, where |X| “ p1`›qn, and denote
by K

X

, K
Y

, and K
X,Y

the complete subgraphs induced on X and on Y , and the
complete bipartite subgraph between X and Y , respectively. Let h “ th

i

u
iPrts

with

h
i

: V pC
i

q Ñ X

be a p›nq-balanced packing of tC
i

u
iPrts into K

X

. We shall use K
Y

to embed tU
i

u
iPrts,

and K
X,Y

for the necessary connections. It is easy to see that if the following
conditions are satisfied then the resulting map is a packing of F into Kp1`Áqn

:

(P1) for every i P rts, the vertices of U
i

are mapped injectively into Y ;
(P2) each edge in K

X,Y

is used at most once;
(P3) each edge in K

Y

is used at most once.

Note that we will embed
∞

iPrts |U
i

| § ”n2 vertices into Y , therefore some vertices
in Y will be used at least

∞
iPrns |Ui|

|Y | § ”n

2

|Y | times. However, we will ensure that each
vertex in Y is used at most 3 ”n

2

|Y | times. The packing of F into Kp1`Áqn

will be
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expressed by a family of functions h “ th
i

u
iPrts with

h
i

: V pF
i

q Ñ X 9YY

where h
i

extends h
i

from V pC
i

q to V pF
i

q. For a vertex v P V pC
i

q, we set h
i

pvq “
h

i

pvq P X for any i P rns. For the vertices in the separators tU
i

u
iPrts we will fix

their image h
i

pvq in Y one by one in a greedy way, starting with vertices of U
1

.
At each step we embed a vertex u P U

i

into Y , assuming that all vertices
of U

j

with j † i and possibly some (at most |U
i

| ´ 1 † ”n) vertices of U
i

were
already embedded. Let NCipuq be the neighbourhood of u in C

i

, and N
Uipuq the

neighbourhood of u in U
i

both of size at most �. Suppose so far we made sure
that every vertex in Y was used at most 3 ”n

2

|Y | times. We will embed u in such a
way that (P1), (P2), and (P3) are obeyed (see (P11), (P21), and (P31) below), and
afterwards each vertex of Y is still used at most 3 ”n

2

|Y | times. This will show that
h can be extended to a packing h of F and conclude the proof. Having this in
mind we note:

(P11) The vertices of U
i

have to be embedded injectively into Y and, hence, up
to at most |U

i

| ´ 1 † ”n vertices of Y may not be used for the embedding
of u.

(P21) Since every edge in K
X,Y

can be used at most once, we require h
i

puq ‰
h

j

pu1q for every vertex u1 P U
j

with h
j

pNCj pu1qq X h
i

pNCipuqq ‰ ?. Let
x P h

i

pNCipuqq. Owing to the p›nq-balancedness of the packing th
i

u
iPrts, x

hosts at most ›n vertices from
î

kPrts BC
k

and each of them has at most �
neighbours in some U

k

for k P rts. Assuming that all of them have already
been embedded into Y , we obtain at most �›n forbidden vertices for each
of the up to at most � neighbours of u in C

i

. Hence, the total number of
forbidden options for h

i

puq in Y is at most �2›n.
(P31) Note that K

Y

also hosts the edges contained in the separator U
i

and
every edge of K

Y

may be used at most once. Suppose that there exists
a vertex u1 from U

j

with j † i such that h
i

pN
Uipuqq X h

j

pN
Uj pu1qq ‰ ?.
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Then h
i

puq must avoid h
j

pu1q for any such u1, because at least one edge
between this vertex and the image of the neighbours of u is already used.
Since by our assumption every vertex in the set h

i

pN
Uipuqq hosts at most

3 ”n

2

|Y | vertices embedded so far, and since �pF
j

q § �, there are at most
� ¨ 3 ”n

2

|Y | |N
Uipuq| § 3�2”n2{|Y | such restrictions.

Since up to now every vertex y P Y was used at most 3 ”n

2

|Y | times for the
embedding, by denoting with Y

u

Ñ Y the set of candidates for the embedding of
u, we obtain

|Y
u

| • |Y | ´
´

”n ` �2›n ` 3�2

”n2

|Y |
¯

• |Y | ´ Á

4n ° |Y |
2 .

Since we have to embed at most
∞

iPrts |U
i

| § ”n2 vertices in total, at any time
some vertex y P Y

u

was used at most
”n2

|Y |{2 † 3”n2

|Y | ´ 1

times, and this vertex we choose for h
i

puq. We have thus shown that at each round
we can always pick one vertex in Y such that all the edges needed to connect the
vertex we want to embed to all its neighbour are available and it was used before
at most 3 ”n

2

|Y | ´ 1 times. This completes the proof of the lemma. ⇤
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Appendix

Summary/Zusammenfassung

We present two results that concern di�erent aspects of extremal graph theory.
In the first part we study minimum degree conditions for which a graph with given
odd girth is homomorphic to its smallest odd cycle. This is motivated by a classical
result of Andrásfai, Erd�s, and Sós which states that every n-vertex graph with
odd girth at least 2k ` 1 and minimum degree larger than 2n

2k`1

is bipartite. Since
the cycle C

2k`1

is an extremal graph for this problem, we asked whether a weaker
degree condition implies the existence of a homomorphism into C

2k`1

. We show
that this happens for any n-vertex graph with odd girth 2k ` 1 and minimum
degree larger than 3n

4k

and give a detailed description of the extremal graphs.
The second part of our work is dedicated to a packing problem that has its

roots in Gyárfás’ Tree Packing Conjecture. This conjecture states that a sequence
of n trees pT

1

, . . . , T
n

q with vpT
i

q “ i packs into K
n

. An asymptotic version of
this conjecture in which trees with bounded maximum degree are packed into
Kp1`op1qqn

was recently proved. We generalise this result from sequences of trees
to sequences of graphs from any non-trivial minor-closed class.

Wir stellen zwei Ergebnisse vor, die verschiedene Aspekte der extremalen
Graphentheorie betre�en. Im ersten Teil untersuchen wir Minimalgradbedingun-
gen für die ein Graph mit gegebener ungerader Taillenweite homomorph zu dem
kleinsten ungeraden Kreis ist, den er enthält. Diese Frage ist durch ein Resultat
von Andrásfai, Erd�s, und Sós motiviert, welches besagt, dass jeder Graph auf n

Ecken mit ungerader Taillenweite mindestens 2k ` 1 und Minimalgrad größer
als 2n

2k`1

bipartit ist. Da der Kreis auf 2k ` 1 Ecken ein extremaler Graph für
dieses Problem ist, untersuchen wir ob eine schwächere Minimalgradbedingung
die Existenz eines Homomorphismus in C

2k`1

impliziert. Wir zeigen, dass dies für
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Graphen auf n Ecken mit ungerader Taillenweite 2k ` 1 und Minimalgrad größer
als 3n

4k

gilt und beschreiben die extremalen Graphen im Detail.
Im zweiten Teil untersuchen wir ein Packungsproblem, dass seinen Ursprung

in der Baumpackungsvermutung von Gyárfás hat. Diese Vermutung besagt, dass
jede Folge von Bäumen pT

1

, . . . , T
n

q mit vpT
i

q “ i sich in den K
n

packen lässt.
Eine asymptotische Variante dieser Vermutung, in der Bäume mit beschränktem
Maximalgrad in Kp1`op1qqn

gepackt werden, wurde kürzlich gezeigt. Wir verallge-
meinern dieses Resultat auf Folgen von Graphen mit beschränktem Maximalgrad
aus jeder beliebigen nicht-trivialen unter Minorenbildung abgeschlossenen Gra-
phenklasse.
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