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Abstract
The thesis discusses several aspects of string topology presented by Chas and Sullivan
in [5] on the homology of the free loop space of a closed oriented manifold. After
an introductory chapter we use a speci�c chain model for string topology de�ned by
Irie [20] to perform the homotopy transfer to homology in a special case. We prove
vanishing results and combine these with a theorem of Fukaya [13] to get the following
result (cf. Theorem 4.17) as a corollary:

Theorem 0.1

A closed, oriented, spin Lagrangian submanifold

X � pCk, ω0q

for k � n �m ¥ 3 cannot be of the form M �N where M, N are smooth, closed
and oriented manifolds of �nite dimension dimM � m ¥ 0 and dimN � n ¥ 3
respectively with M simply connected and N admitting a Riemannian metric of
negative sectional curvature.

Earlier publications derived from the dissertation: �



Zusammenfassung
Die Arbeit behandelt verschiedene Aspekte der String Topologie, dargelegt von Chas
und Sullivan in [5], auf der Homologie des freien Schleifenraums einer geschlossenen
und orientierten Mannigfaltigkeit. Nach einem einführenden Kapitel benutzen wir
ein konkretes Kettenmodell für String-Topologie von Irie [20], um in einem Spezial-
fall den Homotopie-Transfer auf Homologie durchzuführen. Die daraus resultierenden
Verschwindungsresultate kombinieren wir mit einem Theorem von Fukaya [13] und
erhalten folgenden Satz (vgl. Theorem 4.17):

Theorem 0.2

Eine geschlossene, orientierte, spin Lagrangesche Untermannigfaltigkeit

X � pCk, ω0q

für k � n � m ¥ 3 kann nicht von der Form M � N sein, für M, N glatte,
geschlossene und orientierte Mannigfaltigkeiten der Dimension dimM � m ¥ 0
beziehungsweise dimN � n ¥ 3, wobei M einfach zusammenhängend ist und N
eine Riemannsche Metrik mit negativer Schnittkrümmung zulässt.

Aus dieser Dissertation hervorgegangene Vorverö�entlichungen: �
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Chapter 1

Introduction

1.1 History and motivation

Surprisingly, in mathematics di�cult questions are sometimes much easier to handle
when �rst complicating things. Like in modern tendencies in physics, that prefer to
regard particles as strings rather than point-like, mathematicians try to understand
properties of a space X by examining the space of loops on X. These mapping spaces
CkpS1, Xq are commonly denoted by LX without further specifying k P N0. From a
topological point of view these are the same (cf. section 2 of [6]).

A way to better understand the geometry of LX is to use the language of algebra and
try to understand its homology H�pLXq arising of a certain chain model. At least
researchers in topology, Riemannian geometry, TFT/string theory and symplectic ge-
ometry may extract information of an understanding of H�pLXq. Having this broader
in�uence in mind it is justi�ed to study the topology of free loop spaces. Our �eld of
interest is symplectic geometry that poses the motivating question:

"What closed manifolds arise as Lagrangians submanifold of Ck?"

In this thesis our contribution to that question is:

"A high-dimensional product manifold of a hyperbolic and a simply connected
manifold does not arise as a Lagrangian submanifold of Ck!"

In order to obtain such a result, we aim to understand the (co-)homology of the free
loop space H�pLMq and H�pLMq respectively. For H�pLMq there is the cup product
turning it into a ring. Further, as discovered by M. Chas and D. Sullivan, H�pLMq is
not just a module but may be equipped with a BV-algebra structure. Comparably to
the Pontryagin product for pointed loop spaces concatenation of loops at its basepoints
provides a product 
, the loop product. Notice that basepoints do not coincide in
general, thus one needs to incorporate the intersection product

H�pMq �H�pMq
X
ÝÑ H��dim MpMq

in ev0pLMq � M yielding a product of degree (� dimM). One works with shifted
homology

H�pLMq :� H��dim MpLMq

3



4 CHAPTER 1. INTRODUCTION

in order to get an algebra structure with a product of degree 0.
The BV-operator ∆ of degree �1 is induced by the natural S1-action on LM by moving
the basepoints around the loops. The loop product and the BV-operator combine to
a Lie bracket t�, �u of degree �1, the loop bracket.
Erasing basepoints or putting basepoint markers everywhere along the loops yields
maps

H�pLMq

E
++

HS1

� pLMq .

M

jj

whereM � E � ∆ and E �M � 0.
Here HS1

� pLMq arises via the Borel construction for equivariant homology. The Erase
and Mark maps are used to transfer structure from H�pLMq to HS1

� pLMq and vice
versa. In particular the loop product descends to a Lie bracket r�, �s on HS1

� pLMq, the
string bracket.
In this thesis the notion string topology means dealing with the BV-algebra

pH�pLMq, 
, t�, �u,∆q

and the graded Lie algebra

pHS1

� pLMq, r�, �sq

forMn being an n-dimensional manifold that is closed and oriented. Though the theory
is de�ned for integer coe�cients we mostly work with �eld coe�cients. In particular
in chapter 4 we use real coe�cients. Here the notion higher string topology in turn
stands for discussions concerning the A8{L8-algebra

pH�pLMq, tmkuk¥1q and pH�pLMq, tλkuk¥1q

where m2 corresponds to the loop product and λ2 corresponds to the loop bracket.

To be able to do string topology computations we may apply direct methods or drift
into the world of algebra. Direct methods are very limited in a way that we may only
discuss 'nice' spaces as the circle S1, the n-torus T n or surfaces of higher genus Σ2

g.
Here one actually sees how loops or strings interact. This insight is given up in order
to get results when using concepts of algebra. In the thesis we use spectral sequences
which are shortly recalled in appendix 5.4. Further concepts for doing computations
would be Hochschild homology and Cyclic homology. These kind of approaches are
not discussed here.

1.2 Motivation from symplectic geometry

An ongoing research project in symplectic geometry asks about the embeddability of
closed Lagrangian manifolds into symplectic manifolds pY, ω � dλq.
A submanifold X ãÑ Y is called Lagrangian if ω|X � 0, so that λ|X is a closed 1-form.
It is called exact Lagrangian if the cohomology class rλ|Xs P H1pX;Rq vanishes.
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For the exact symplectic manifold pCk, ω0q with ω0 � dλ0 � dp
k°

i� 1

xidyiq and X closed

we know that X ãÑ Ck Lagrangian implies that

(i) H1pX;Rq � 0 (Gromov, [16]).

(ii) X does not admit a Riemannian metric of negative sectional curvature (Viterbo,
cf. [12]).

To prove piq, Gromov constructs a non-constant pseudo-holomorphic disk, which in
particular is a smooth map u : pD2, BD2q Ñ pCk, Xq such that

0   Epuq :�

»
D2

u�ω0 �

»
S1

u�λ0 ,

implying 0 � rλ0|Xs P H
1pX;Rq. In particular it follows that a Lagrangian submani-

fold of Ck cannot be simply connected.

For piiq the authors in particular need that all non-constant geodesics are not con-
tractible which is the case for negatively curved manifolds.

The techniques for proving (i) and (ii) are rather di�erent and do not allow to exclude
that a productM�N of a simply connected and a negatively curved manifold embeds
as a Lagrangian submanifold into Ck. In this thesis we aim to treat this special case.
We use the work of Fukaya as input.

Fukaya's insight was that compacti�cations of moduli spaces may be understood in
terms of algebraic equations in string topology. These equations in turn yield better
obstructions against the Lagrangian embeddability. This approach combines the two
di�erent methods of proof into one strategy inspired by homological algebra and in
particular by string topology. We brie�y recall the author's ideas.

Pick an almost complex structure J compatible with ω0 that is J : TCk Ñ TCk with
J2 � �1, ω0pv, Jvq ¡ 0 for all v � 0 and ω0pJv, Jwq � ω0pv, wq for all v, w. Further
choose a class a P π2pCk, Xq � π1pXq. One expects the following moduli spaces to be
�nite dimensional manifolds:
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moduli space dimension

�Mpaq :� tu P C8p pD2, BDq, pCk, Xq q | rus � a, BJu � 0u k � µpaq

parametrized J-holomorphic curves of class a

Mpaq :� �Mpaq{AutpD2, 1q k � µpaq � 2

unparametrized J-holomorphic curves of class a

N pa, tq :� tu P C8p pD2, BDq, pCk, Xq q | rus � a, BJu � ηtu k � µpaq

parametrized, perturbed
J-holomorphic curves of class a

N paq :�
�

t P r0,1s

N pa, tq k � µpaq � 1

Remark that BJu � 1
2
pdu � J � du � jq P Ω0,1pD2, u�TCkq � Ω0,1pD2,Ckq is the an-

tiholomorphic part of du and tηtu is a one parameter family of antiholomorphic one
forms satisfying

• η0 � 0 (so that N pa, 0q � �Mpaq)

• η1 such that N pa, 1q � H for all a P π2pCk, Xq .

Recall that for the Maslov index µ one has µpaq P 2Z since X is oriented. Later we
work with a degree p� kq shifted chain complex, where �Mpaq,Mpaq and N pa, tq yield
even dimensional data.

All stated moduli spaces come with an evaluation map

ev1 : 'moduli space'Ñ X

via u ÞÑ up1q and rus ÞÑ up1q, respectively. The second map de�ned onMpaq is well-
de�ned since we only divide out the automorphisms that �x 1 P BD2.

The spacesMpaq and N paq are compacti�ed by adding bubble trees of J-holomorphic
curves. For details the reader is referred to [31] and especially chapter 4 therein.
Remark that only disk bubbles and no sphere bubbles appear since π2pCkq � 0. The
resulting compact spaces are expected to have codimension one boundaries

BMpaq �
º

a1 � a2 � a

Mpa1q �XMpa2q and

BN paq � N pa, 1q \N pa, 0qloooooooooomoooooooooon
� �Mpaq

\
º

a1 � a2 � a

�
N pa1q �XMpa2q \ Mpa1q �X N pa2q

�
,

where the �ber products are taken using the evaluation maps ev1 described above.
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Fukaya's insight was that these compacti�cations may be described in the language of
string topology as follows. The evaluation map

ev : C8p pD2, BDq, pCk, Xq q ÝÑ LX

u ÞÝÑ u|BD2

induces a corresponding map for the above moduli spaces. It allows to interpret these
moduli spaces as chains in a certain chain model C��kpLXq. Heuristically speaking
when lifting the string topology operations de�ned by Chas and Sullivan to chain level
one gets the following identities

BM �
1

2
tM,Mu ,

BN � tN ,Mu � rXs

where M :�
°
a� 0

Mpaq is of even degree |Mpaq| � k � µpaq � 2 � k � µpaq � 2 and

N :�
°
a

N paq is of even degree |N paq| � k � µpaq � k � µpaq in C��kpLXq.

Remark that for a � 0 we have that �Mpaq is a degenerate chain, factorizing over
Mpaq. The remaining �Mp0q �Mp0q just consists of constant J-holomorphic curves
corresponding to the chain of constant loops rXs in LX.

The in�nite sums make sense when working with completions with respect to the action
�ltration tF lulPZ, with F l � F l�1 given by

F l :� F lC�pLXq :� tc P C�pLXq |Apciq ¥ lu

where c �
°
ci and ci with connected domain. Here the action Apciq is de�ned as

follows. Having connected domains means that ci is a chain in a path component
LαiX of LX. Remark that

αi P π0pLXq � rπ1pXq � conjugacy classes of π1pXq .

For a smooth map u : pD2, BD2q Ñ pCk, Xq the action

Apuq :�

»
D2

u�ω0 �

»
S1

u�λ0 �

»
u|S1

λ0

just depends on the class rus P rπ2pCk, Xq � rπ1pXq. We thus de�ne

Apciq :� Apαiq :� Apuq

where ru|S1s � αi.

The action integral is additive when composing loops.
In the language of string topology this means that if ta, bu � 0, we have

Apta, buq � Apaq �Apbq .
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For the chain coming from the moduli space of non-constant holomorphic curves M
we can apply proposition 4.1.4. of [31] and get

Apev�pMqq ¡ 0 .

Further for the chain rXs p�pX Ñ LXq coming from the constant loops at each point
of X we get

AprXsq � 0 .

In full generality the observations are summarized as a theorem (see [25] for more
details) proposed by Fukaya in [13].
Two di�culties are silently suppressed here. It is quite nontrivial to �nd an almost
complex structure such thatM and N are transversally cut out, and thus are mani-
folds, whose boundary can still be described as outlined above. Further since working
with real coe�cients one has to think about signs in the stated equations, resulting in
a discussion about orientations of the involved moduli spaces.

Theorem 1.1 (Thm. 6.1., Thm. 6.4. and Thm. 12.3. of [13])

For a closed, oriented, spin Lagrangian submanifold X � Ck there exists a com-
pleted, �ltered, degree shifted complex pC�pLXq with a �ltered dg Lie algebra struc-
ture pB, t�, �uq implementing the Chas-Sullivan loop bracket on homology.

The moduli spaces yield chains M,N P pC�pLXq with M P pC�pL� 0Xq, which
satisfy the following equations:

BM �
1

2
tM,Mu , (1.1)

BN � tN ,Mu � rXs (1.2)

A suitable dg Lie algebra structure on chain level is introduced and discussed in Irie
[20].

This theorem motivates the study of algebraic structures on H�pLXq in chapter 4 of
this thesis. There the focus is laid on closed, oriented, �nite dimensional Riemannian
manifolds X arising as productsM�N whereM, N are assumed to be smooth, closed
and oriented Riemannian manifolds of �nite dimension dimM � m ¥ 0 respectively
dimN � n ¥ 3. FurtherM is assumed simply connected and N has negative sectional
curvature. To apply the arguments of Fukaya we needX to be spin. For the topological
discussion presented in the text this assumption is negligible.

1.3 Results of the thesis

When nothing else is indicated we consider (co-)homology with coe�cients in a �eld
of characteristic 0. Goals of our study can be summarized as follows:

• How far can the vector space structure of H�pLpX1 � X2qq, H
S1

� pLpX1 � X2qq
be described in terms of the homology vector space structure of the separate
factors?
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• How can string topology operations on H�pLpX1 � X2qq, H
S1

� pLpX1 � X2qq be
described in terms of those on the homology of the separate factors?

• How can A8{L8-structures on H�pLXq be computed in speci�c examples?

• For which manifolds can we achieve appropriate vanishings result for the higher
operation implying the non-embeddability as a Lagrangian submanifold into Ck?

The following results are discusses in the thesis. The author remarks that not all are
completely new but proofs of them are sometimes missing in the literature.

piq String topology of products

It is explicitly proven that one has a Künneth type isomorphism of BV-algebras

H�pLpM1 �M2qq � H�pLM1q bH�pLM1q

forMi being �nite dimensional smooth manifolds that are closed and oriented. Further
by analysing the corresponding universal bundles we present a way of how the Euler
class of the S1-bundles

LpX1�X2q ÝÑ pLX1�LX2q{{S
1 and pLX1�LX2q{{S

1 ÝÑ LX1{{S
1�LX2{{S

1 ,

where LX{{S1 :� LX �S1 ES1, may be computed in terms of the Euler classes of the
separate factors. Using the Serre spectral sequences gives a method to compute

HS1

� pLpX1 �X2qq

whenever the Xi are path-connected topological spaces. Unfortunately so far it is not
clear how the string bracket may be computed in this set-up due to missing informa-
tion about theMark and Erase map for the product case.

piiq Higher structures in string topology

We want to understand A8-/L8-algebra structures in string topology. Therefore we
rely on the work of K. Irie [20]. In that article it is proven that when working with de
Rham chains and real coe�cients we get a Gerstenhaber algebra structure on chain
level of LX. This structure in turn descends to the string topology structure on ho-
mology de�ned by Chas and Sullivan.

By applying the homotopy transfer construction this equips quasi-isomorphic chain
complexes (as for example H�pLXq) with an A8-/L8-algebra structure. We prove
that for a product X of a simply connected and a hyperbolic manifold of dimension
greater than 3 the corresponding higher operations on H�pLXq essentially vanish (c.f.
theorem 4.15 and 4.16).

Using the arguments of Fukaya as a black box this yields an obstruction against the
Lagrangian embeddability of X into Ck, precisely speaking we prove:
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Theorem 1.2

A closed, oriented, spin Lagrangian submanifold X � pCk, ω0q for k � n�m ¥ 3
can not be of the form

M �N

where M, N are smooth, closed and oriented Riemannian manifolds of �nite di-
mension dimM � m ¥ 0 respectively dimN � n ¥ 3, with M simply connected
and N of negative sectional curvature.

1.4 Outline

As the results suggest the text consists of three parts:

• A general, geometry focused introduction to the world of string topology in
chapter 2.

• An algebraic discussion of A8{L8-algebras in chapter 3. As an example we
construct an A8-algebra structure on the homology of a complex C, where HpCq
is isomorphic to H��npLS

nq as an algebra for n ¥ 2.

• A construction of the transfer of the dg Lie algebra structure on Irie's complex
(cf. [20]) to homology in chapter 4. The arising vanishing results for a certain
class of manifolds then yield theorem 1.2 as a corollary.

The �rst chapter can be seen as more introductory since many already known concepts
are described. In chapter 3 we discuss A8{L8-structures in general and in particu-
lar for the homology of LSn. This serves as a toy model for the general picture of
higher string topology of product manifolds in the last chapter of this thesis. Chapter
4 forms the heart of the thesis in the sense that we discuss concepts that are necessary
for addressing the motivating question of the present studies, namely the Lagrangian
embeddability into Ck.



Chapter 2

String topology

In this chapter we discuss basic notions of string topology. In particular we review
algebraic operations on

H�pLMq and HS1

� pLMq

whereM is a �nite dimensional smooth manifold that is closed and oriented. Through-
out the chapter we closely follow the original work of Chas and Sullivan (cf. [5]). We
recall their ideas with a slight focus on the geometrical perspective, meaning that we
highlight why concepts only work for homology and may not be generalized to a chain
level description. As the title of the thesis suggests we then pay attention to manifolds
that arise as products M � M1 �M2. The chapter then directly leads to section 4.1
where Irie's rigorous de�nition of string topology on the chain level is reviewed.

2.1 Topology of loop spaces

As outlined in the motivation we are interested in certain path/loop spaces. In the
following we denote the standard interval r0, 1s by I and regard the one dimensional
circle as S1 � R{Z. Without further mention we require X to be path connected and
having the homotopy type of a countable CW-complex.
De�nition 2.1

For a given path-connected, pointed topological space pX, x0q we consider

• the path space

Px0X :� tγ : I
C0

ÝÑ X | γp0q � x0u

• the based loop space, and its Moore version,

Ωx0X � ΩX :� tγ : S1 C0

ÝÑ X | γp0q � γp1q � x0u

ΩMx0
X � ΩMX :� tpγ, rq : r0,8q

C0

ÝÑ X | @ t ¥ r P r0,8q : pγ, rqp0q � pγ, rqptq � x0u

� C0pr0,8q, Xq � R

• the free loop space, and its Moore version,

LX :�tγ : S1 C0

ÝÑ Xu

LMX :�tpγ, rq : r0,8q
C0

ÝÑ X | @ t ¥ r : pγ, rqp0q � pγ, rqptqu

11
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• the homotopy orbit space or string space

LX �S1 ES1 .

Remark 2.2. For the homotopy orbit space we quotient out the diagonal S1-action.
This is done by using ES1, the total space of the universal bundle over BS1, in order
to get the circle acting freely on LX � ES1 and thus the quotient to be non-singular.
Remark that the action S1 ñ LX via

γp�q Ñ γp� � θq

for θ P S1, γ P LX is not free since for example constant loops γx0ptq � x0 P X are �xed
points for all θ. For a short recap about classifying spaces and the Borel construction
we refer to Appendix 5.2.

Lemma 2.3

We have deformation retractions

ΩMx0
X

�
ÝÑ Ωx0X and LMX

�
ÝÑ LX .

Proof : The case for the pointed loop space is discussed in [3]. We describe the case for
the free loop space that works analogously.
Remark that we have a homeomorphism

LX � tpγ, rq P LMX |r � 1u �: LM� 1X

that is used for the following inclusions

LM� 1X
ι2
ãÑ LM¥ 1X :� tpγ, rq P LMX |r ¥ 1u

ι1
ãÑ LMX .

We deform in two steps from right to left.
A deformation retraction H1 : r0, 1s � LMX Ñ LMX for ι1 is given by

H1ps, pγ, rqq � Hs
1ppγ, rqq :�

$&%
pγ, r � sq for r � s ¤ 1 ,
pγ, 1q for r ¤ 1 and r � s ¥ 1 ,
pγ, rq else .

That is we have Hs
1 � ι1 � idLM¥1X

for all s P r0, 1s and ι1 �H
1
1 � idLMX via Ht.

The space LM¥ 1X deformation retracts to LM� 1X via H2 given by reparameterizations
of the form

H2ps, pγ, rqq � Hs
2ppγ, rqq :� pγ � hr,s, p1� sqr � sq

where hr,sptq :� r
p1�sqr�s t reparametrizes γ.

In particular the Moore- and the ordinary loop space (based or free) have the same
homotopy type and thus their homotopy and homology groups are isomorphic.
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Remark that ΩX, ΩMX are H-spaces, that is we get an induced algebra structure on
H�pΩXq, H�pΩ

MXq. The reader is referred to Appendix 5.3. The product for ΩX is
simply the concatenation, whereas the product on ΩMX is given by

pγ, rq � pτ, sq � pγ � τ, r � sq ,

where

γ � τptq :�

"
γptq , 0 ¤ t ¤ r

τpt� rq , r ¤ t ¤ r � s
.

Clearly i1, i2 in the proof above are H-maps and the homeomorphism relating ΩX and
ΩMX is an H-equivalence. One easily checks that H1

1 , H
1
2 are H-maps, namely

H1
1 ppγ, rq � pτ, sqq

�

"
ppγ � τq, 1q , r � s ¤ 1

ppγ � τq, r � sq , r � s ¥ 1
�

$''&''%
ppγ � τq, 2q , r, s   1

ppγ � τq, r � 1q , r ¥ 1 , s ¤ 1
ppγ � τq, 1� sq , r ¤ 1 , s ¥ 1
ppγ � τq, r � sq , r, s ¥ 1

�H1
1 ppγ, rqq �H

1
1 ppτ, sqq

and

H1
2 ppγ, rq � pτ, sqq � H1

2 pppγ � τq, r � sqq

�ppγ � τq � hr�s,1, 1q � pγ � hr,1, 1q � pτ � hs,1, 1q � H1
2 ppγ, rqq �H

1
2 ppτ, sqq .

We conclude that we even have an algebra isomorphism

H�pΩXq � H�pΩ
MXq . (2.1)

As the headline of this chapter suggests we are interested in the topology of loop spaces
and it thus does not matter if we work with the Moore version or not. The advan-
tage of Moore loop spaces is provided by the fact that the concatenation operation is
associative. The space of based Moore loops is a monoid with the constant loop x0

being the neutral element. For non-Moore loops concatenation is only associative up
to homotopy given by reparameterization.
We introduce the slightly less intuitive Moore version of the free loop space for de�ning
operations (see chapter 4.4) for chains on LX. There we need that concatenating loops
is strictly associative and thus de�nes an algebra structure on C�pLXq.
To keep the presentation simple we mostly work with spaces of non-Moore loops ΩX
and LX in this chapter.

As all considered loop spaces are mapping spaces MappX, Y q of continuous maps be-
tween topological spacesX and Y , we equip them with the compact-open topology (see
e.g. [29]). A subbase is given by open sets of the form tf P MappX, Y q | fpKq � Uu
for K � X compact and U � Y open.
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These loop spaces are not only just topological spaces. Using J. Milnor's result (Corol-
lary 2 in [32]) we know that for a topological space Y having the homotopy type of a
countable CW-complex, the mapping space MappX, Y q is of the homotopy type of a
countable CW-complex if X is a compact metric space.

As a �rst approach to understand these spaces we think about their path-connected
components, labelled by classes in π0p�q. Loop spaces are disjoint unions

Ωx0X �
º

rf sPπ0pΩx0Xq

�
Ωrf s
x0
X :� tγ P Ωx0X | γ �x0 fu

�
LX �

º
rf sPπ0pLXq

�
Lrf sX :� tγ P LX | γ � fu

�
,

where we used based and free homotopies, respectively. For homology we get

H�pΩx0Xq �
à

rf sPπ0pΩx0Xq

H�pΩ
rf s
x0
Xq

H�pLXq �
à

rf sPπ0pLXq

H�pL
rf sXq

H�pLX �S1 ES1q � HS1

� pLXq �
à

rf sPπ0pLXq

HS1

� pLrf sXq .

Points in the loop space LX correspond to loops in X. We aim to understand how
π0pLXq may be interpreted in terms of the fundamental group π1pXq. For a short
recollection of fundamental groups and homotopy theory in general the reader is re-
ferred to Appendix 5.1.

Two given based loops f, g P Ωx0X are homotopic and thus de�ne the same element of
π0pΩx0Xq if and only if there exists a path of based loops connecting them. The map

H : I ÝÑ Ωx0X

Hp0, tq � fptq ; Hp1, tq � gptq ; Hps, 0q � x0 ,

is interpreted as a homotopy H : I � S1 Ñ X implying rf s � rgs P π1pX, x0q.

Next we want to understand π0pLXq. This is done in two steps.

For points f, g in the same path-component of the free loop space LX we do not
have fp0q � gp0q in general and thus may not work with a based homotopy H with
Hps, 0q � x0. But we require X to be path-connected and thus get a path h connecting
fp0q and gp0q. Since g and h�1gh are freely homotopic in X, we identify π0pLXq with
the set of based loops modulo free homotopies that do not have to �x the base point
x0 (see �gure 2.1).
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Figure 2.1: Free homotopy H 1 : I Ñ LX connecting f and g

So suppose f, g P Ωx0X are freely homotopic via

H 1 : I ÝÑ LX p� H : I � S1 ÝÑ X

Hp0, tq � fptq ; Hp1, tq � gptq .

The path traversed by the base point hpsq � Hps, 0q is a loop inX that is rhs P π1pX, x0q.
We claim that rf s � rh�1ghs � rhs�1rgsrhs and thus get that loops in Ωx0X which are
freely homotopic correspond to elements in π1pX, x0q that are conjugate.
A homotopy is given by

rH : I � S1 ÝÑ X

ps, tq ÞÝÑ

$'''''&'''''%

hp3tq ; t P r0, s
3
s

Hps,
t� s

3

1� 2s
3

q ; t P r s
3
, 1� s

3
s

hp3p1� tqq ; t P r1� s
3
, 1s

.

Conversely for rh�1fhs � rgs P π1pX, x0q we may use the homotopy yielding h�1fh � g
to write down a free homotopy where the path of the basepoint is a closed loop in X.
We thus get rf s � rgs P π0pLXq.

In total when assuming X to be path-connected we get

π0pΩx0Xq
1:1
ÐÑ π1pXq (2.2)

and
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π0pLXq
1:1
ÐÑ rπ1pXq (2.3)

:� trf s � rgs | D γ P LX : f � γ�1gγulooooooooooooooooooooooomooooooooooooooooooooooon
conjugacy classes of rf s, rgs P π1pXq

�loomoon
if π1pXq
abelian

π1pXq .

In order to get a better handling of our loop spaces we make use of the fact that
they all �t into �brations. We refer to Appendix 5.1 for a short summary of the most
important facts of �brations. For them we have many methods for deriving topologi-
cal properties of the involved spaces, for example long exact homotopy sequences and
spectral sequences (Appendix 5.4).

De�nition; Lemma 2.4. The following maps are �brations:

• path-loop �bration

ΩX // Px0X

ev1

��

γ
_

��
X γp1q

• loop-loop �bration

ΩX // LX

ev0

��

γ
_

ev0

��

γxp�q � x

X
O
s

XX

γp0q x
_

s

OO

• loop-string �bration

S1 // LX � ES1

��
LX �S1 ES1

Remark 2.5. By using the long exact homotopy sequence (see e.g. Appendix 5.4) and
that Px0X is contractible we get that the homotopy groups of the involved spaces are
given by

πipΩ
αXq � πi�1pXq

πipL
0Xq � πipΩ

0Xq ` πipXq � πi�1pXq ` πipXq

for i ¥ 1. Further

πipL
αX �S1 ES1q � πipL

αXq

for i ¥ 3.
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Proof : We show that the stated maps are �brations.

Denote the set of continuous maps I Ñ X by XI . Consider the associated �bration
p : Eι Ñ X to the map tx0u

ι
Ñ X. As described in Appendix 5.1 its total space is

given by

Eι � tpx0, γq P tx0u �XI | γp0q � x0u � Px0X �: PX .

Since the �bration map is of the form ppx0, γq � γp1q its general �ber is given by

p�1pxq � tpx0, γq P tx0u �XI | γp0q � x0, γp1q � xu � Ωx0X .

This shows that PX Ñ X is a �bration. The construction of the associated �bration
further yields PX � tx0u which implies πi¥ 0pPXq � 0.
Observe that the contractibility of the path space PX simpli�es the long exact ho-
motopy sequence for the path-loop �bration as follows

� � � Ñ πnpΩ
αXq Ñ 0 Ñ πnpXq Ñ πn�1pΩ

αXq Ñ 0 Ñ � � � Ñ π1pXq Ñ π0pΩ
αXq .

Exactness directly implies πipΩ
αXq � πi�1pXq for i ¥ 1.

We directly show that XI pev0,ev1q
ÝÑ X � X is a �bration. Consider the commuting

diagram

Y � t0u
g //

��

XI

pev0,ev1q

��
Y � I

G�pG1,G2q // X �X .

We de�ne rG : Y � I Ñ XI as

X Q rGpy, tqpsq :�

$''''&''''%
G1py, t� 3sq , 0 ¤ s ¤ t

3

gpy, 0qp 1
3�2tp3s� tqq , t

3 ¤ s ¤ 1� t
3

G2py, 3ps� 1q � tq , 1� t
3 ¤ s ¤ 1

and get that rGpy, 0q � gpy, 0q and

pev0, ev1q � rGpy, tq � p rGpy, tqp0q, rGpy, tqp1qq � pG1py, tq, G2py, tqq .

That is XI pev0,ev1q
ÝÑ X �X is a �bration.

Pulling back this �bration along the map ∆ : X Ñ X � X yields the loop-loop �-
bration. The existence of a global section s : M Ñ LM implies that the long exact
homotopy sequence for the loop-loop �bration splits. With πipΩ

αXq � πi�1pXq we
get πipL

0Xq � πi�1pXq ` πipXq for i ¥ 1.

The map LX �ES1 Ñ LX �S1 ES1 is a S1-principal bundle and thus a �bration by
construction.
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2.2 Operations on the homology of certain loop spaces

In the following discussion we replace X by M since we require the underlying space
to carry the structure of a n-dimensional manifold Mn that is closed and oriented.
The standard reference for the following chapter is the original article [5]. When we
de�ne our operations we mostly refer to it. In our summary of the construction we
keep a geometric focus, relying on ideas illustrated in [7]. This geometric approach
helps in section 4.1 for a chain level description of string topology. For a strict homo-
topy theoretic construction the reader is referred to [11]. A general overview of both
approaches and possible further developments is provided by [9].

Remark that the upcoming section does not claim mathematical preciseness. We aim to
provide a schematic picture about the particular operations. For a detailed discussion
of the operations on chain level we refer to [20] and chapter 4.

2.2.1 The commutative algebra pH�pLMq, 
q

One easily de�nes an intersection product X on H�pMq if M is a Poincaré duality
space. This is done by dualizing the cup product with the help of Poincaré duality.
This approach can not be used for de�ning such a product for the homology of free
loop spaces LM .
But Poincaré duality is de�ned for M and we have an intersection product X (of
degree �n) on H�pMq. We further have the Pontryagin product 
 (of degree 0) on
H�pΩMq. The theory for pointed loop spaces is relatively classical. Important results
are stated in appendix 5.3.
As we have seen, the spaces LM , ΩM and M �t into the loop-loop �bration. Thus
we may regard LM as a twisted product of M and ΩM and try to combine the two
operations X and 
 to de�ne the so called loop product 
 (of degree �n) on H�pLMq.
We remark that similarly to the intersection product the loop product is de�ned on
homology but on chain level only makes sense for transversal chains. We adopt the
language of [5] and call such operations transversally de�ned on chain level.

In the following we work with coe�cients in a �eld k of characteristic 0 (mostly Q or
R). It is possible to de�ne the operations for Z coe�cients. This is done in the stated
references above.
Recall the theorem of R. Thom ([35]) about realizing homology classes by manifolds.
For all classes a P HipM ;Zq there exists k P N such that ka � f�rK

is where

f : Ki ÑM

is a smooth map from a closed, oriented, i-dimensional manifold K.
This allows us to describe the intersection product for coe�cients in the �eld k coe�-
cient set-up as follows. Namely for a P HipM ;kq and b P HjpM ;kq we get representing
chains fa : Ki

a ÑM and fb : Kj
b ÑM , that is

ka � a � pfaq�rK
i
as and kb � b � pfbq�rK

i
bs . (2.4)

Recall that we have
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Proposition 2.6 (Corollary 2.5 of [23])

Let f : V Ñ M , g : W Ñ M be two maps between manifolds. Then there is a
homotopy ht of g such that h0 � g and h1&f . In particular rgs � rh1s on homology
HpMq.

After such a perturbation of fb to rfb (by abuse of notation also denoted by fb) we get
transversality of the two maps, fa&fb. By the implicit function theorem the space

Ka�b � Ka �M Kb :� tpka, kbq P Ka �M Kb | fapkaq � rfbpkbqu
is an oriented manifold of dimension i� j � n. This yields a chain

fa X fb : Ka�b ÑM (2.5)

of degree i� j � n.

For details about which orientation is naturally assigned to Ka �M Kb the reader is
referred to chapter 8.2. of [14]. In the following we use their conventions. In order to
understand sign issues we recap some properties of the orientation of �bre products.
Reversing the orientation of some manifold X is as usually denoted by �X.

Lemma 2.7 (Chapter 8.2. of [14])

For smooth oriented manifolds Xi and Yj (BYj � H) one has orientation preserving
di�eomorphisms between

(i) BpX1 �Y X2q and BX1 �Y X2 \ p�1qdim X1�dim YX1 �Y BX2

(ii) pX1 �Y1 X2q �Y2 X3 and X1 �Y1 pX2 �Y2 X3q

(iii) X1 �Y1�Y2 pX2 �X3q and p�1qdim Y2pdim Y1�dim X2qpX1 �Y1 X2q �Y2 X3

(iv) X1 �Y X2 and εpf1q � εpf2q � εpgqX
1
1 �Y 1 X

1
2

induced by εpfiq-oriented di�eomorphisms Xi
fiÑ εpfiqX

1
i and an εpgq-oriented

di�eomorphisms Y
g
Ñ εpgqY 1 where εpfiq, εpgq P t�1u .

Remark that we assumed appropriate maps between (products of) Xi and Yj such
that expressions in the Lemma make sense. As shown in chapter 3.1 of [7] relation
pivq yields that the canonical twist map X1 � X2

τ
Ñ X2 � X1 induces an orientation

preserving di�eomorphism between

pvq X1 �Y X2 and p�1qpdim X1�dim Y qpdim X2�dim Y qX2 �Y X1 . (2.6)

The importance of this relation is re�ected in the fact that later all appearing products
are graded commutative on homology.
For chains as de�ned in (2.5) de�ned above Lemma 2.7 yields the following relations
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piq Bpfa X fbq � Bfa X fb � p�1q|fa|fa X Bfb

piiq pfa X fbq X fc � fa X pfb X fcq

piiiq fa X pfb b fcq � p�1qdimM |f2|pfa X fbq X fc

pivq fa X fb � p�1q|fa||fb|fb X fa

where from now on we always use

|fi| :� dim Ki � dim M .

Since Ki is closed we get that Bpfa X fbq � pfa X fbq|BKa�b � 0 and thus the product
de�ned above descends to homology. In total we de�ne the intersection product
HipM ;kq bHjpM ;kq Ñ Hi�j�npM ;kq via

aX b :�
1

kakb
rfa � fb : Ka �M Kb ÑM s P Hi�j�npM ; kq . (2.7)

Due to the appearing coe�cients it is clear that this de�nition only works for coe�-
cients in a �eld k of characteristic 0.
In total we get the well known fact that

H�pM ;kq :� H��dimMpM ;kq

is an associative, graded commutative algebra with | X | � 0.

The discussion above is classical and can be generalized to de�ne a product for the
free loop space LM . Again remark that the discussion is possible for coe�cients in
a ring, but is simpli�ed here by using coe�cients in a �eld k of characteristic 0. We
recall ideas presented in [5] and [7].

By using the loop-loop �bration

ΩM �
� / LM

ev0

��
M

s

\\

we regard LM as a twisted product ofM and ΩM . Combining the intersection product
X on H�pM ;kq and the Pontryagin product 
 generalizes the discussion above such
that we get a product 
 of degree 0 on

H�pLM ;kq :� H��dimMpLM ;kq .

Given classes a P HipLM ;kq and b P HjpLM ;kq are represented by continuous maps
fa : Ki

a Ñ LM and fb : Kj
b Ñ LM from closed oriented manifolds Ka, Kb.

We choose the representatives such that fa :� ev0�fa and fb :� ev0�fb are smooth and
mutually transversal in M . As in the discussion above this yields an (i� j � n)-chain
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fa X fb : Ka �M Kb ÑM .

Since LM ÑM is a �bration the perturbations can be lifted and we get that

fa X fb : Ka �M Kb Ñ LM �M LM

de�nes an (i� j � n)-chain.
For pka, kbq P Ka �M Kb the base points fapkaqp0q � fbpkbqp0q coincide and we thus
can concatenate the loops as in the de�nition of the Pontryagin product for the based
loop space. In total this means that

fa 
 fb : Ka �M Kb Ñ LM (2.8)

where

fa 
 fb pka, kbqptq :�

"
fapkaqp2tq , t P r0, 1{2s

fbpkbqp2t� 1q , t P r1{2, 1s

de�nes an (i� j � n)-chain in LM � C0pS1,Mq.
Analogously as in the discussion of the intersection product one can then prove that:

Theorem 2.8 ([5], section 2 )

pH�pLM ;kq, 
q is an associative, graded commutative algebra. The algebra unit is
given by e � s�prM sq P H0pLM ;kq.

Remark 2.9. Since the map

M
s
Ñ LM

ev0Ñ M

is the identity, the corresponding chain representing e is transverse to all possible
given chains. Thus e 
 a respectively a 
 e makes sense (even on chain level) for all
a P H�pLMq and equals a since one concatenates with constant based loops. It follows
that e � s�prM sq is the algebra unit.

The reader should be aware of the fact that associativity on chain level only holds up
to homotopy. This comes from the fact that concatenating pointed loops is only strictly
associative when working with Moore loops. Similarly to equation (2.1) we have

H�pLMq � H�pL
MMq (2.9)

as algebras. Analogously as above we have a loop product for the homology of the free
Moore loop space when de�ning (2.8) as

fa 
 fbpka, kbqptq :� pfapkaq � fbpkbqqptq ,

where we concatenate Moore loops. Taking the �ber product K1 �M K2 is independent
of using Moore or non-Moore loops. The homotopy equivalence LMM � LM only
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involves reparameterizations of the given loops and thus the product structures on ho-
mology agree.

The graded commutativity needs more attention, because the algebra pH�pΩMq, 
q is
clearly not (graded) commutative. A schematic illustration of the loop product may be
drawn as in �gure 2.2.

a

ba b

-

Figure 2.2: Illustration of the loop product a 
 b

On chain level of LM we need to de�ne an operation fa � fb whose boundary yields

fa 
 fb � p�1q|a||b|fb 
 fa (2.10)

at least for chains representing homology classes. Pictorially this has to be considered
as in �gure 2.3. The construction of � is recalled in the next section 2.2.2.

a

ba b

-

a

b

ab

-+-

∂

- +-

a

b

a b*

-

Figure 2.3: Graded commutativity of 
 on H�pLMq

2.2.2 The Gerstenhaber algebra pH�pLMq, t�, �u, 
q

Extending the ideas of how the loop product is de�ned it is clear that a loop product
where the 2nd basepoint is moving should have the following domain

Ka �M pI �Kbq .

We review ideas for non-Moore loops and thus work with the standard interval I �
r0, 1s instead of R¥ 0 as the time domain. For given homology classes

a P HipLM ;kq, b P HjpLM ;kq

represented by closed manifolds Ka, Kb we get that

ev0 : Ka ÑM and ev : I �Kb ÑM
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are mutually transversal (after perturbation). That is Ka �M pI �Kbq is manifold of
dimension i� j � 1� n. Since this domain gets mapped to a family of based loops we
again may concatenate and thus get a chain in LM . The operation

� : CipLMq b CipLMq Ñ Ci�j�1�npLMq

is transversally de�ned on chain level where

pfa � fbqpka, t, kbqpsq :�

$&% fbpkbqp2sq , s P r0, t{2s
fapkaqp2s� tq , s P rt{2, t�1

2
s

fbpkbqp2s� 1q , s P r t�1
2
, 1s

,

for pka, t, kbq P Ka �M pI � Kbq. Visualized in a schematic way it looks like the left
side of �gure 2.3.
By using the results of Lemma 2.7 we may examine Bpfa �fbq. The geometric boundary
of its domain is given by

p�1q|fa|B
� �:Ka�bhkkkkkkkkkikkkkkkkkkj
Ka �M pI �Kbq

�
�p�1q|fa|

�
KBa� b � p�1q|fa|pKa �M pt1u �Kbq �Ka �M pt0u �Kbq �Ka� Bbq

�
�p�1q|fa|KBa� b �Ka 
 b � p�1q|fa||fb|Kb 
 a �Ka� Bb .

On the one hand this proves the graded commutativity of the loop product on homology.
But further it also yields that for representing cycles fa, fb one has

Bp

p�qhkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkj
fa � fb � p�1qp|a|�1qp|b|�1qfb � faq

Bfa�Bfb�0hkkikkj
� p�1q|a|pfa 
 fb � p�1q|a||b|fb 
 faq�

� p�1qp|a|�1qp|b|�1qp�1q|b|pfb 
 fa � p�1q|b||a|fa 
 fbq � 0 .

As shown in [5] the closed chain p�q not only descends to homology but also de�nes a
graded Lie algebra structure via

trfas, rfbsu :� rfa � fb � p�1qp|a|�1qp|b|�1qfb � fas .

Theorem 2.10 ([5], chapter 4 )

pH�pLMq, t�, �uq is a graded Lie algebra with |t�, �u| � 1. That is

piq ta, bu � �p�1qp|a|�1qp|b|�1qtb, au pSymmetryq

piiq ta, tb, cuu � tta, bu, cu � p�1qp|a|�1qp|b|�1qtb, ta, cuu pJacobi identityq .

Further t�, �u de�nes a derivation on the algebra pH�pLMq, 
q

ta, b 
 cu � ta, bu 
 c� p�1q|b|p|a|�1qb 
 ta, cu .

Remark that a datum like pH�pLMq, t�, �u, 
q satisfying the stated properties is called
a Gerstenhaber algebra in the literature.
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2.2.3 The Batalin-Vilkovisky algebra pH�pLMq,∆, 
q

In the last section we de�ned a 'basepoint moving loop product' �. Here we try
to separate this into two operations namely the ordinary loop product (with �xed
basepoints) and an operation ∆ that models the moving of the basepoint. In particular
∆ descends to homology and we get a BV-algebra structure whose informations could
alternatively be used to prove Theorem 2.10.
As re�ected in the loop-string �bration we have an action of S1 on LM that rotates
the basepoint. This de�nes a BV-operator of degree �1 on C�pLMq via fa ÞÑ ∆fa,
where

∆fa :

�:K∆ahkkkikkkj
S1 �Ka Ñ LM (2.11)
pt, kaq ÞÑ fapkaqpt� �q .

Remark that this operation is fully de�ned and not just transversally on chain level.
Since BpS1 �Kaq � BS1 �Ka� S

1 �BKa by Lemma 2.7 we conclude that ∆ descends
to homology and we get an operation

∆ : H�pLMq ÝÑ H��1pLMq .

Further on homology ∆ is a di�erential, that is it squares to zero, ∆ � ∆ � 0. This
can be seen as follows. For an i-chain fa P CipLMq applying the BV operator twice
yields a degree i� 2 chain ∆p∆faq : S1 � S1 �Ka Ñ LM . However, it is a degenerate
chain and thus homologous to zero since it factors through an i� 1 chain

S1 � S1 �Ka Ñ S1 �Ka Ñ LM

via

∆p∆faqps, t, kaqp�q � fapkaqps� t� �q � ∆faps� t, kaqp�q .

As announced the following theorem states the fact that a combination the loop prod-
uct 
 and the BV operator ∆ yields the loop bracket t�, �u.

Theorem 2.11 ([5], section 5 )

pH�pLMq, 
,∆q is a Batalin-Vilkovisky algebra with |∆| � �1. That is:

piq pH�pLMq, 
q is an associative, graded commutative algebra.

piiq ∆ �∆ � 0

piiiq The expression p�1q|a|∆pa 
 bq � p�1q|a|∆a 
 b� a 
∆b is a derivation in each
variable

One easily checks that

p�1q|a|∆pa 
 bq � p�1q|a|∆a 
 b� a 
∆b �: ta, bu (2.12)
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de�nes a Lie bracket for a, b P H�pLMq. In [5] the authors show that it coincides
with the loop bracket de�ned above. So Theorem 2.11 can indeed be taken as a
generalization of Theorem 2.10. In fact one may check that a Batalin-Vilkovisky
algebra in general yields a Gerstenhaber algebra when de�ning the Lie bracket via

ta, bu :� p�1q|a|∆pa 
 bq � p�1q|a|∆a 
 b� a 
∆b� a 
∆p1q 
 b .

Remark that in our case the algebra unit 1 is represented by the constant loop at each
point that is f1 : M Ñ LM . We get that ∆pf1qpt, pqp�q � f1ppqp� � tq � f1ppqp�q. That
is ∆pf1q is a degenerate chain and thus 0.
This leads to

ta, 1u � p�1q|a|∆pa 
 1q � p�1q|a|∆a 
 1 � p�1q|a|∆a� p�1q|a|∆a � 0

for all a P H�pLMq.

2.2.4 A graded Lie bracket for HS1

�
pLMq

We apply the Gysin sequence, see for example appendix 5.2, to the loop-string �bration
S1 ãÑ LM � ES1 π

ÝÑ LM �S1 ES1 and get the exact sequence

� � � ÝÑ HkpLMq
E
ÝÑ HS1

k�npLMq
X e
ÝÑ HS1

k�n�2pLMq
M
ÝÑ Hk�1pLMq ÝÑ � � �

The maps π�, π� are called Mark and Erase since we think of LM as the space of
loops marked by the basepoint whereas LM �S1 ES1 presents the space of unmarked
strings. E is just the induced map on homology thus can be interpreted as forgetting
the basepoint. The degree �1 map M maps a family of strings to the particular S1

�bres in the total space, that is it puts basepoints everywhere to the loops.

The Gysin sequence provides a possibility the 'go back and forth' between non-equivariant
and equivariant homology. Precisely speaking one asks what happens with operations
de�ned for one side when transferred to the other via

H�pLMq

E
++

HS1

� pLMq .

M

jj

When taking the identity maps

idH� : H�pLMq Ñ H�pLMq

id
HS1
�

: HS1

� pLMq Ñ HS1

� pLMq ,

these transfer to

E � idH� �M � 0 : HS1

� pLMq Ñ HS1

� pLMq

M � id
HS1
�
� E p�q

� ∆ : H�pLMq Ñ H�pLMq .
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For p�q remark that applyingM to Epaq for a family of loops a we get back a but now
with basepoints spread along the loops, that is ∆a.
The BV operator on non-equivariant homology transfers to

E �∆ �M � E � pMloomoon
0

� Eq �Mloomoon
0

� 0 .

With (2.12) we get for the loop bracket transferred to equivariant homology that

E � tMpaq,Mpbqu � Ep � ∆pMpaq 
Mpbqq 	 ∆pMloomoon
0

paqq 
 b � a 
 ∆Mloomoon
0

pbq q � 0 .

It remains to check what happens to the loop product 
. In fact it yields a non-trivial
operation and surprisingly not a product but a bracket on non-equivariant homology:

Theorem 2.12 ([5])

pHS1

� pLM ;kq, r�, �sq is a graded Lie algebra, with bracket of degree 2�n de�ned by

ra, bs :� p�1q|a|EpMpaq 
Mpbqq , (2.13)

where |a| � dim a� dimM . This means that graded commutativity

ra, bs � �p�1q|a||b|rb, as

and the graded Jacobi identity

ra, rb, css � rra, bs, cs � p�1q|a||b|rb, ra, css

are satis�ed.

2.3 Computational methods

It is mostly non-trivial to compute the vector space structure H�pLM ;kq for a given
topological space X. In the following we mostly work with coe�cients in a �eld k of
characteristic 0 and write H�pLMq for simplicity reasons. To derive string topology
structures for smooth �nite dimensional oriented closed manifolds as de�ned in section
2.2 is even harder. Exceptions are very well understood spaces as S1, Lie groups or
Eilenberg-MacLane spaces KpG, 1q. In the following we show how direct methods may
already yield some information.
The following section about computations refers to methods presented in [1] and [7].

The circle S1

Throughout the whole text spheres Sn appear all the time. We distinguish between
the simply connected spheres Sn¥2 and the non-simply connected circle S1.
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The 1-sphere S1 is the simplest closed manifold. For the point tptu one has a ring
isomorphism H�pLptq � Z and HS1

� pLptq � H�pBS
1q.

Recall that

H�pLS
1;Zq �

à
nP rπ1pS1q

�π1pS1q�Z

H�pL
nS1;Zq

that is we need to understand

LnS1 � tγ : S1 Ñ S1 | deg � nu

consisting of loops with winding number n. Via its universal cover R exp
Ñ S1 a map

f P LnS1 lifts to a map

F P Fn � tΓ : RÑ R |Γpt� 1q � Γptq � nu .

The lift F is unique up to translation by an integer and further homotopes to

Gptq � nt�mpF q

via

H : r0, 1s � Fn Ñ Fn
pt, F q ÞÑ p1� sqF � spnt�mpF qq

where mpF q :�
1³
0

pF ptq � ntq dt P R.

Projecting this homotopy via exp yields a deformation retraction from LnS1 to the set
of constant speed loops

LncS
1 :� tγn : S1 Ñ S1|dγn{dt � nu

that wind around n-times and only di�er by their basepoints p P S1. Remark that the
homotopy is S1-equivariant, meaning that the following diagram commutes

r0, 1s � LncS
1 � S1

H
��

S1-action // r0, 1s � LncS
1

H
��

LncS
1 � S1 S1-action // LncS

1

where the pS1 � R{Zq-action is given by

S1 � LncS
1 Ñ LncS

1

pτ, fq ÞÑ fpτ � �q .
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The commutativity is provided by

mpF pτ � �qq �

1»
0

pF pτ � tq � ntq dt �

τ�1»
τ�0

pF pxq � npx� τqq dx � mpF q � nτ

since F ptq � nt is 1-periodic.

The evaluation at the basepoint ev0pγnq � γnp0q yields a homotopy equivalence

LncS
1 � S1

that is also S1-equivariant. Here the action of S1, with coordinate τ , on S1 is given by

pτ, tq ÞÑ rnτ � ts P R{Z (2.14)

In total we get

H�pLS
1;Zq �

à
n PZ

H�pS
1;Zq .

The generators of H�pS
1;Zq � Zxx, yy (|x| � 0, |y| � 1) are similarly used for the free

loop space homology of LS1. We set

xn : tptu Ñ LS1 and yn : S1 Ñ LS1

where xnpptqptq � rnts P R{Z and ynpτqptq � rnt� τ s P R{Z and get

H�pLS
1;Zq �

à
n PZ

Zxrxns, rynsy with |rxns| � �1, |ryns| � 0 .

We work with shifted degrees and thus the loop product 
 is of degree 0. By degree
reasons we get

rxis 
 rxjs � 0 .

Since ev0 � yj : S1 Ñ S1 is a submersion, the products xi 
 yj and yi 
 yj are de�ned
even on chain level.
The domain of xi 
 yj is pt�S1 S1 � pt. So concatenating at t � 0 the loop that winds
around i-times with the one winding around j-times yields

rxis 
 ryjs � rxi�js ,

that holds on chain level only up to reparameterization. For yi 
 yj it is similar except
that now the domain is S1 �S1 S1 � S1. The resulting one dimensional family now is
given by

ryis 
 ryjs � ryi�js .
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So the algebra structure is fully understood and we deduce

H�pLS
1;Zq � ΛZpuq bZ Z rt, t�1s with |u| � �1, |t| � 0 , (2.15)

where u � rx0s, ti � ryis and uti � rxis. Remark that we already use the notation
proposed by [10].

We conclude with the BV-algebra structure. On homology we get for the generator
rxis � uti that

p∆xiq pτ, tq � ripτ � tqs ,

so that ∆xi is homologous to iyi. Thus for H�pLS
1;Zq the BV operator is fully

determined by

∆uti � iti , (2.16)

that in turn yields a Gerstenhaber algebra with Lie bracket given by

tuti, utju � pi� jquti�j ; tuti, tju � �jti�j ; tti, tju � 0 . (2.17)

The S1-action is trivial on the component L0
cS

1 � S1 � LS1 containing the trivial
loop. Further for n � 0 and the diagonal S1-action on LnS1loomoon

�S1

�ES1, where the action

on the �rst factor is as in (2.14), we get that

LnS1 �S1 ES1 � S8{Zn
for n � 0. Here S8{Zn is the in�nite lens space. See for example appendix 5.1 for a
short review of its topological properties. Its homology groups are given by

HipS
8{Zn;Zq �

$&% Z ; i � 0
Zn ; i odd
0 ; else

.

In total we get a Z-module

HS1

� pLS1;Zq �
à
n PZ

HS1

� pLnS1;Zq �
à
n

H�pL
nS1 �S1 ES1;Zq

� H�pL
0S1 �BS1;Zq `

à
n� 0

H�pL
nS1 �S1 ES1;Zq

� H�pS
1;Zq bH�pBS

1;Zq `
à
n� 0

H�pS
8{Zn;Zq

�
�à
i¥0

H�pS
1;Zqxci{i!y

�
`

à
n� 0

H�pS
8{Zn;Zq ,
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where the generator c P H2pBS
1;Zq is Kronecker dual to the Euler class rc P H2pBS1;Zq

of the universal S1-bundle ES1 Ñ BS1 and H�pBS
1;Zq � Zdiv.rcs is the divided poly-

nomial algebra, that is it is generated by monomials ci

i!
.

We simplify things by working with coe�cients in a �eld k of characteristic 0 and get

HS1

i pLS
1;kq �

$'''''&'''''%

À
n PZ

kxαn y , i � 0

kxα0 b cj y , i � 2j � 0

kx1S1 b cj y , i � 2j � 1

. (2.18)

When working with shifted degrees theMark respectively the Erase map have degrees
|M| � 0 and |E | � �1. Due to (2.15) the non-equivariant homology of LS1 is concen-
trated in degree �1 and 0. This means by construction

Mpαiq � iti , Eputiq � αi , Ept0q � 1S1

and zero else.
We end up with the string bracket of degree 2� n � 1 that is fully described by

rαi, αjs � �EpMpαiq 
Mpαjqq � �Epiti 
 jtjq
p2.15qhkkikkj
� �ij Epti�jq (2.19)

�

"
�ij 1S1 , i� j � 0

0 , i� j � 0

because Epti�jq � EpMp
αi�j
i�j

qq � 0 if i� j � 0.

Eilenberg-MacLane spaces Kpπ1, 1q

Recall that the loop-loop �bration yields an exact sequence

� � � Ñ πnpΩx0Mq Ñ πnpLMq Ñ πnpMq Ñ πn�1pΩx0Mq Ñ � � � , (2.20)

for M path-connected. Eilenberg-MacLane spaces M with

πnpMq � 0 for n � 1

are very attractive to be studied in the context of string topology. Examples of such
spaces may be found in chapter 1.B. of [18]. Recall that we require M to be an
n-dimensional closed and oriented manifold. The following examples shall be discussed:

(i) the circle S1 (previously treated)

(ii) the torus T n

(iii) manifolds of non-positive sectional curvature K

(iv) products of the stated examples (see chapter 2.4)
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The torus T n and products are easily understood in terms of string topology for the sep-
arate factors when we have the results of chapter 2.4 about string topology of product
manifolds in general. In this way we will deduce the BV-algebra structure of H�pLT

nq.

Lemma 2.13

The S1-equivariant homology of LT n is given by

HS1

� pLT nq � H�pT
nq bH�pBS

1q `
� à
pm1,...,mnq P

Znzt0u

H�pT
n�1q bH�pES

1{ZggTpm1,...,mnqq
�
.

(2.21)

Proof : Again we follow [1] here.
As for the circle S1 the homotopy equivalence Tn Ñ L0Tn is S1-equivariant. We thus
get

H�pL
0Tn �S1 ES1q � H�pT

n �S1 ES1q � H�pT
n �BS1q � H�pT

nq bH�pBS
1q .

Since Tn is a Lie group we have a product � and get a homeomorphism

L0Tn ÝÑ Lα� 0Tn (2.22)

γ ÞÝÑ ap�q � γp�q

where a : S1 Ñ Tn is of constant speed and a representative of α.
As for the circle S1 we get a homotopy equivalence

ta � γp | γpptq � p P Tnu �: aTn Ñ Lα� 0Tn

which is also S1-equivariant. The S1-action is given by

S1 � Lα� 0Tn Ñ Lα� 0Tn

pτ, γq ÞÑ γpτ � �q

and

S1 � aTn Ñ aTn

pτ, a � γpq ÞÑ apτ � �q � γp

respectively.
We thereof get

Lα� 0Tn �S1 ES1 � aTn �S1 ES1 � aTn{S1 � ES1{Stabpaq � aTn�1 � S8{ZggTpm1,...,mnq

since the stabilizer Stabpaq of a in S1 is given by ZggTpm1,...,mnq when its class α is
pm1, ...,mnq P Zn. Further aTn�1 � Tn�1 since tori are Lie groups.
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In total we get

HS1

� pLα� 0Tnq � H�pT
n�1q bH�pS

8{ZggTpm1,...,mnqq .

Since we understand the loop product it remains to understand theMark and Erase
map to compute the string bracket r�, �s for HS1

� pLT nq. Unfortunately we do not have
a general answer and refer the reader to chapter 2.3.1 of [1], where the calculation is
done for n � 2.

So how to compute things for manifolds with non-positive sectional curvature? The
following proposition derives the module structure of homology.

Proposition 2.14

Let X be a path-connected topological Kpπ1, 1q-space and rf s � α P π0pLXq.
Topologically one has

L0X � X and Lα� 0X is a K
�
Crf spπ1pXqq , 1

�
space ,

where the subgroup

Cgpπ1pXqq � tg1 P π1pXq|g
1g � gg1u

is the centralizer of g P π1pXq. So for homology we have

H�pLXq � H�pXq `
à

0�α P rπ1pXq

H�pKpCrf spπ1pXqq, 1qq .

Corollary 2.15

If a Riemannian manifold M has sectional curvature Kpp, σq   0 for all p P M
and σ P TpM then it is a Kpπ1, 1q-space and further

Crf s�0pπ1pMqq � Z .

This implies

LM �M \
§

0�α Pπ0pLMq

S1

yielding for homology

H�pLMq � H�pMq `
à

0�α Pπ0pLMq

H�pS
1q

HS1

� pLMq � H�pMq bH�pBS
1q `

à
0�α Pπ0pLMq

H�pES
1{Znpαqq ,

where the free homotopy class α is the npαq-th iterate of a primitive homotopy
class.
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Proof of Proposition 2.14 : For X a Kpπ1, 1q-space, (2.20) and the fact that we have
a section s : X Ñ L0X allows to deduce

π1pL
0Xq � π1pXq ` π1pΩ

0
x0
Xq �loomoon

path-loop �bration

π1pXq ` π2pXq � π1pXq .

Remark that the splitting exists only for the α � 0 component. From remark 2.5 we
see that πkpΩ

α
x0
Xq � πk�1pXq � 0 for k ¥ 1 and thus with (2.20) we deduce

πkpL
αXq � 0

for k ¥ 2. By using the Whitehead theorem we get that the inclusion of constant
loops X ãÑ L0X induces a homotopy equivalence

X � L0X and thus H�pL
0Xq � H�pXq .

Since πkpL
αXq � 0 for k ¥ 2 it remains to compute

π1pL
αXq � π1pL

αX, fq � π1pLX, fq ,

for rf s � α � 0.
Recall the result of [17] namely

π1pLX, fq � Crf spπ1pXqq .

Remark when setting α � 0 we get the previous result for π1pL
0Xq � π1pXq. The

statement can be easily seen when considering the loop-loop �bration. Indeed, the
exactness of

π1pΩx0X, fqloooooomoooooon
�π2pXq� 0

ÝÑ π1pLX, fq
pev0q�
ÝÑ π1pXq

implies π1pLX, fq � imppev0q�q. Remark that β P imppev0q�q � π1pXq if and only if
there is a map

b : S1 � S1 ÝÑ X

such that b0 � ev0 � b : S1 � t0u Ñ X is a possible representative of β and further
that b|t0u�S1 represents rf s. Similar as in �gure 2.1 this means that there is a based
homotopy from b0 � f to f � b0.
We thus get rb0srf s � rf srb0s that is β � rb0s P Crf spπ1pXqq and therefore

π1pLX, fq � Crf spπ1pXqq .

We conclude that LαX is a KpCαpπ1pXqq, 1q-space for α � 0 and thus

H�pL
αXq � H�pKpCαpπ1pXqq, 1qq

for α � 0.
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Proof of Corollary 2.15 : It remains to think about the statement for X being a nega-
tively curved manifold denoted by M . Due to the Theorem of Cartan-Hadamard (see
e.g. [4]) we know that in this case the exponential map

expp : TpM ÑM

is a covering and thus πipMq � πipRnq � 0 for all i ¥ 2. So M is a Kpπ1, 1q space.

So with the previous proposition it remains to compute

π1pLX, fq � Crf spπ1pXqq

for rf s � 0. Here we rely on methods presented in chapter 12 of [4].

For the universal covering π : �M ÑM we get that the group of covering transforma-
tions of �M is isomorphic to π1pMq due to [28].
When combining Proposition 2.6 and Lemma 3.3 of [4] we get that under the stated
isomorphism a nonzero element rf s P π1pMq corresponds to a translation

F : �M Ñ �M
and there exists a unique geodesic rγ � �M which is invariant under F , that is F prγq � rγ.
For rgs P Crf spπ1pXqq the de�ning condition of the centralizer translates into

F pGprγqq � GpF prγqq � Gprγq
and by uniqueness we get Gprγq � rγ.
This holds for all elements of Crf spπ1pXqq and thus Lemma 3.5 of [4] states that
Crf spπ1pXqq is in�nite cyclic, that is

π1pLX, fq � Crf spπ1pXqq � Z

for rf s � 0.

We deduce that LαM is a KpZ, 1q-space for α � 0 and thus homotopy equivalent to
S1. If α is the n-th iteration of a primitive class, we can �nd a representative f for α
of the form fptq � γpntq. Then the homotopy equivalence is realized by the map

S1 Ñ LαM

τ ÞÑ fpτ � �q .

Remark that this map is S1-equivariant for the S1-actions

S1 � S1 Ñ S1 ; ps, τq ÞÑ rns� τ s P R{Z
S1 � LαM Ñ LαM ; ps, xq ÞÑ xps� �q

As in the discussion previous for Tn we thus get for α � 0 that

LαM �S1 ES1 � S1 �S1 ES1 � S8{Zn
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implying

HS1

� pLαMq � H�pES
1{Znq .

For L0M �M by working in the simply connected cover ofM we get an S1-equivariant
homotopy from contractible to trivial loops. Thus as in the previous discussion we
get

HS1

� pL0Mq � H�pM �S1 ES1 q � H�pM � ES1{S1 q � H�pMq bH�pBS
1q .

So what do we know about the string topology operations for manifolds of negative
sectional curvature?
Corollary 2.16

Let M be a manifold of negative sectional curvature of dimension n ¥ 3. For the
space

L� 0M :�
§
α� 0

LαM

of non-contractible loops on M the loop product, the loop bracket and the string
bracket vanish.

Proof : This holds by degree reasons. Du to the previous corollary

H�pL
� 0Mq �

à
0�α Pπ0pLMq

H��npS
1q

is concentrated in degrees �n and �n� 1. When working with these shifted degrees
the loop product is of degree 0 and the loop bracket is of degree 1.
The image of the loop product lives in degrees �2n,�2n� 1 or �2n� 2. To possibly
get non-vanishing operations these degrees must be �n or �n� 1. This can only be
satis�ed for 2 ¥ n ¥ �1, a contradiction.
The same consideration for the loop bracket yields 3 ¥ n ¥ 0, but the n � 3 case
can be excluded. The only non-trivially vanishing operation would be of the form
tc, du with |tc, du| � �3 for |c| � |d| � �2, but remark that pevtq�c and pevtq�d are
degenerate chains and thus tc, du � 0.
The string bracket is vanishing since M preserves the property of a loop to be non-
contractible and further the loop product is 0.

The reader is referred to chapter 4.4 where we discuss how these e�ects already par-
tially appear on chain level.

For the dimension 2 case we refer to chapter 2.3.2 of [1]. We know that a closed
oriented surface M admits a hyperbolic structure if and only if χpMq � 2 � 2g   0
(see e.g. Theorem 9.3.2. in [33]). Since we need orientability for the string topology
operations we may focus on oriented surfaces of higher genus Σg¡1 in the following.
Working with coe�cients in a �eld k of characteristic 0 yields
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H�2pLMq � H0pMq `
à

0�α P rπ1pXq

H�pS
1q � Z`

à
0�α

kxxαy

H�1pLMq � H1pMq `
à

0�α P rπ1pXq

H�pS
1q � H1pMq `

à
0�α

kxyαy

H0pLMq � kxrM sy

HkpLMq � 0 for k R t�2,�1, 0u

where we adopt the notation of the discussion of S1, namely xα is one loop and yα
is the S1-family of loops in the class α. We know that rM s is the unit for the loop
product. By degree reasons (| 
 | � 0) the remaining pairing to discuss is

H�1pLMq bH�1pLMq


ÝÑ H�2pLMq .

For the BV operator we get ∆xα � cαyα and 0 else for cα P k being the multiplicity
of α.
When ignoring the constant loops L0M we get for the S1-equivariant homology

HS1

� pLαMq � HS1

0 pLαMq �
à
α� 0

kxαy for α � 0 .

Thus string topology is incorporated in

HS1

0 pLMqbHS1

0 pLMq
Mb2

ÝÑ H�1pLMqbH�1pLMq


Ñ H�2pLMq

E
Ñ HS1

0 pLMq
M
Ñ H�1pLMq

where up to sign the composition of the �rst three arrows is the string bracket

ra, bs � p�1q|a|EpMpaq 
Mpbqq .

Composing the last three arrows yields the loop bracket t�, �u|H�1pLMqb2 since ∆ yα � 0.
Recall that

ta, bu � p�1q|a|∆pa 
 bq � p�1q|a|∆a 
 b� a 
∆b .

Since for surfaces the string bracket r�, �s is just the Goldman bracket

trγ1s, rγ2su �
¸

p P γ1Xγ2

sgnppqrγ1 �p γ2s

we conclude that

yα 
 yβ �
¸
p

�xα�pβ

when again ignoring the constant loops, that is α, β � 0.
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2.4 Products of manifolds

In terms of the algebraic structure de�ned in chapter 2.2 for the ordinary and the S1-
equivariant homology of LM1 and LM2 we show how these structures may be computed
for loop spaces of the product manifold M1 �M2.

2.4.1 BV structure of the non-equivariant loop space homology

We aim to understand the BV-algebra structure of H�pLpM1 �M2qq, where Mi are
compact, oriented manifolds of dimension dim Mi � di.
For M :�M1 �M2 we have a homeomorphism LM � LM1 � LM2. It is provided by

φ � pφ1, φ2q : γ ÞÝÑ pLpr1 � γ, Lpr2 � γq ,

where Lpri : LM Ñ LMi is the natural projection induced by projecting on one factor
with pri : M Ñ Mi. As before we work with coe�cients in a �eld k of characteristic
0. By the Künneth theorem for vector spaces we have

HkpLpM1 �M2qq � Hk�d1�d2pLpM1 �M2qq �
à

i�j� k�d1�d2

HipLM1q bHjpLM2q �

(2.23)

�
à

i�j� k

Hi�d1pLM1q bHj�d2pLM2q �
à

i�j� k

HipLM1q bHjpLM2q .

We want this relation to be an algebra isomorphism where the multiplication is given
by the loop product as a degree | 
 | � 0 morphism on shifted homology. This is indeed
true and can be seen as follows. The considerations are inspired by the discussion of
the loop product for Lie groups in [7]. Remark that we refer to chapter 3.2.1 of [1]
where the formulas for the loop bracket and the BV operator for product manifolds
are used for computational purposes.

In summary we get
Proposition 2.17

The BV-algebra operations of H�pLMq � H�pLM1q b H�pLM2q for a product
manifold M �M1 �M2 are given by

prx1s b rx2sq 
 pry1s b ry2sq � p�1q|x2||y1|prx1s 
 ry1sq b prx2s 
 ry2sq (2.24)

∆prx1s b rx2sq � ∆1prx1sq b rx2s � p�1q|x1|�dimM1 rx1s b∆2prx2sq (2.25)

for the tensor product of the BV-algebras H�pLM1q and H�pLM2q.

Proof of (2.24) : For i � 1, 2 let xi : Kxi Ñ LMi and yi : Kyi Ñ LMi be given and
consider the product chains

px1, x2q : Kx1 �Kx2 Ñ LM1 � LM2

py1, y2q : Ky1 �Ky2 Ñ LM1 � LM2 .
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We may assume that ev0 � xi and ev0 � yi are mutually transversal in Mi for i � 1, 2.
This implies that the �ber product Kx 
 y � Kx�M Ky may be written as an union of

tpkx1 , kx2 , ky1 , ky1q|pev0 � xiqpkxiq � pev0 � yiqpkyiqu �

�pKx1 �Kx2q �pM1�M2q pKy1 �Ky2q

piiiq
� p�1qdimM2pdimM1�dimKy1 qppKx1 �Kx2q �M1 Ky1q �M2 Ky2

pvq
�p�1qdimM2pdimM1�dimKy1 q�dimKx1dimKx2 ppKx2 �Kx1q �M1 Ky1q �M2 Ky2

piiq
� p�1qdimM2pdimM1�dimKy1 q�dimKx1dimKx2 pKx2 � pKx1 �M1 Ky1qq �M2 Ky2

pvq
�p�1qdimM2pdimM1�dimKy1 q�dimKx1dimKx2�dimKx2 pdimKx1�dimKy1�dimM1q

ppKx1 �M1 Ky1q �Kx2q �M2 Ky2

piiq
� p�1qdimKy1 pdimKx2�dimM2q�dimM1pdimKx2�dimM2qpKx1 �M1 Ky1q � pKx2 �M2 Ky2q

�p�1qpdimKy1�dimM1qpdimKx2�dimM2qpKx1 �M1 Ky1q � pKx2 �M2 Ky2q .

Remark that we applied the results piq � pvq of Lemma 2.7 and write '�' if there
exists an orientation preserving di�eomorphism. The resulting orientation preserving
di�eomorphism

Kx 
 y
�
ÝÑ

¤
p�1qpdimKy1�dimM1qpdimKx2�dimM2qKx1 
 y1 �Kx2 
 y2

�ts into a commutative diagram of the form

Kx 
 y
x 
 y //

�p�1q���

��

LM

� φ

���
Kx1 
 y1 �Kx2 
 y2 °

px1 
 y1, x2 
 y2q
// LM1 � LM2 .

(2.26)

Here the vertical maps are given by

px 
 yqpkx, kyqptq �

"
xpkxqp2tq , t P r0, 1{2s

ypkyqp2t� 1q , t P r1{2, 1s
,

px1 
 y1, x2 
 y2qpkx1 , ky1 , kx2 , ky2qptq �

"
px1pkx1qp2tq, x2pkx2qp2tqq , t P r0, 1{2s

py1pky1qp2t� 1q, y2pky2qp2t� 1qq , t P r1{2, 1s
.

The commutativity of (2.26) implies that the loop product on the level of homology
is given by
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H�pLMq bH�pLMq

�
��

H�pLM1q bH�pLM2q bH�pLM1q bH�pLM2q

p�1qpdimKy1�dimM1qpdimKx2�dimM2q

��
H�pLM1q bH�pLM1q bH�pLM2q bH�pLM2q


b

��

H�pLM1q bH�pLM2q

�
��

H�pLMq .

For homology classes rxs, rys P H�pLMq the loop product rxs 
 rys is therefore given
by

prx1s b rx2sq 
 pry1s b ry2sq � p�1q|x2||y1|prx1s 
 ry1sq b prx2s 
 ry2sq , (2.27)

where | � | is the degree of an homogeneous element of the commutative graded algebra
pH�pLMq, 
q. In total we get that (2.23) is an algebra isomorphism with respect to
the loop product.

It remains to derive how the BV operator ∆ on H�pLMq may be expressed in terms
of ∆i, the ones de�ned on H�pLMiq.

Proof of (2.25) : For i � 1, 2 let xi : Kxi Ñ LMi be given and consider the product
chain

px1, x2q : Kx1 �Kx2 Ñ LM1 � LM2 .

We have a T 2-action on px1, x2q is given by

T : pS1 � S1q � pKx1 �Kx2q ÝÑ LM1 � LM2

ps1, s2, kx1 , kx2q ÞÝÑ px1pkx1qp� � s1q, x2pkx2qp� � s2qq .

The BV operator as an S1-action on px1, x2q in turn is given by the composition

∆px1, x2q : S1 � pKx1 �Kx2q
diag�id
ÝÑ pS1 � S1q � pKx1 �Kx2q

T
ÝÑ LM1 � LM2

ps, kx1 , kx2q ÞÝÑ ps, s, kx1 , kx2q .

Further we have the separate S1-actions

p∆x1, x2q :

�pS1�Kx1 q�Kx2hkkkkkkkkkkikkkkkkkkkkj
S1 � pKx1 �Kx2q

ι1�idÝÑ pS1 � S1q � pKx1 �Kx2q
T
ÝÑ LM1 � LM2

ps, kx1 , kx2q ÞÝÑ ps, 0, kx1 , kx2q .
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and

px1,∆x2q :

�p�1qdimKx1Kx1�pS
1�Kx2 qhkkkkkkkkkkikkkkkkkkkkj

S1 � pKx1 �Kx2q
ι2�idÝÑ pS1 � S1q � pKx1 �Kx2q

T
ÝÑ LM1 � LM2

ps, kx1 , kx2q ÞÝÑ p0, s, kx1 , kx2q .

The stated domains �t together such that

∆px1, x2q �
�
p∆x1, x2q � p�1qdimKx1 px1,∆x2q

�
is a the boundary of T restricted to the triangle D � T 2 which is the projection of
tps1, s2q P R2 | 0 ¤ s1 ¤ 1, 0 ¤ s2 ¤ 1, 0 ¤ s1�s2 ¤ 1u under the projection R2 Ñ T 2.
This implies that

∆prx1s b rx2sq � ∆1prx1sq b rx2s � p�1q|x1|�dimM1 rx1s b∆2prx2sq ,

for rxis P H�pLMiq since |x1| � dimKx1 � dimM1.

2.4.2 The structure of the S1-equivariant free loop space ho-

mology

Extending the ideas of the last section we try to understand the graded Lie algebra
structure of

pHS1

�

�
LpM1 �M2q

�
, r�, �sq ,

in terms of pHS1

� pLMiq, r�, �sq whereMi are oriented manifolds of dimension dimMi � di
and the Lie bracket is given by the string bracket.
Unfortunately we may not be that optimistic as in the last section. We derive a spectral
sequence related result which provides a possibility to compute the module structure of
HS1

� pLpM1�M2qq. It is still not clear how the string bracket for products is computed
in terms of the underlying brackets for the separate factors.
We only present results for some speci�c cases where the string bracket is already
vanishing for at least one of factors. In contrast to the loop product this does not in
general imply the vanishing of the string bracket for LpM1 �M2q.

Basics facts about spectral sequences for �bre bundles are brie�y reviewed in appendix
5.4. The essence of understanding the Leray-Serre spectral sequence of an Sn-bundle
E Ñ B lies in the topology of the base and the transgression map, that in turn is
determined by the Euler class e P Hn�1pBq.
For an S1-bundle Y Ñ X spectral sequence arguments yield the exact Gysin sequence

� � � ÝÑ HkpY q ÝÑ HkpXq
X e
ÝÑ Hk�2pXq ÝÑ Hk�1pY q ÝÑ � � � .

For coe�cients in a �eld of characteristic zero we deduce

HkpY q � kerpHkpXq
X e
Ñ Hk�2pXqq ` cokerpHk�1pXq

X e
Ñ Hk�1pXqq .
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Theorem 2.18

For X �M1 �M2 the Euler classes of the bundles

S1 // LX �S1 ES1

p

��

S1 // LpM1 �M2q � ES1 � LX

��
pLM1 �S1 ES1q � pLM2 �S1 ES1q , LX �S1 ES1 .

are given by

�pπ�1 pe1q � π�2 pe2q q

and

� p�pπ�1 pe1qq � � p�pπ�2 pe2qq

respectively. Here ei P H
2pLMi �S1 ES1q for i � 1, 2 are the Euler classes of the

S1-bundles

S1 // LMi � ES1 � LMi

��
LMi �S1 ES1

and πi are the projections

pLM1 �S1 ES1q � pLM2 �S1 ES1q
πiÝÑ LMi �S1 ES1 .

The theorem is proven with the help of the universal bundles. A short summary of
universal bundles and classifying spaces is given in Appendix 5.2.

Understanding the homology

H�pLMiq and HS1

� pLMiq � H�pLMi �S1 ES1q

means that we understand the Euler classes of the following bundles

S1 // LMi � ES1

��

Fi // S8

��

S1oo

LMi �S1 ES1 fi // CP8 .

By examining the Leray-Serre spectral sequence and using the contractibility of S8

we get

H�pCP8q � Zrus

where u P H2pCP8q is the Euler class of S8 Ñ CP8. It yields the Euler class of the
bundle on the left via pullback
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eipLMiq :� ei � f�i puq P H
2pLMi �S1 ES1q .

In the following we do not care about the explicit form of fi.

Euler class of the S1-bundle pLM1 � LM2q �S1 ES1 Ñ pLM1 �S1 ES1q � pLM2 �S1 ES1q:

The Euler class e P H2ppLM1 �S1 ES1q � pLM2 �S1 ES1qq is given by

pf1 � f2q
�pruq (2.28)

where ru denotes the Euler class of the bundle on the right hand side of

S1 // pLM1 � LM2q �S1 ES1

��

// S8 �S1 S8

��

S1oo

pLM1 �S1 ES1q � pLM2 �S1 ES1q
f1�f2 // CP8 � CP8 .

(2.29)
Remark that

pLM1 � LM2q �S1 ES1 Ñ pLM1 �S1 ES1q � pLM2 �S1 ES1q

mods out a complement of the diagonal S1 ∆
Ñ T 2. It remains to understand how ru can

be written in terms of u the Euler class of the S1-bundle S8 Ñ CP8.

Since the bundle S8 Ñ CP8 arises as a direct limit of S1-bundles

� � � � � / S2n�1

��

// S2n�3

��

� � / � � �

� � � � � / CP n // CP n�1 � � / � � �

and H�pCP nq � Zras{pan�1q p|a| � 2q we conclude for the Euler class

u � epS8 Ñ CP8q � epS3 Ñ CP 1q �

� ep S3 Ñ S2looomooon
Hopf �bration

q � a2 P H
�pS2q � Zra2s{pa

2
2q , |a2| � 2 .

By the same reason the Euler class ru equals the Euler class of S3 �S1 S3 Ñ S2 � S2.
Observe that we have a diagram of pullback bundles:

S3 � S3

xx

∆�pS3 � S3q � S3 � S1oo

ww

��

T 2? _o

S1 � � / ι�i pS
3 �S1 S3q

pi
��

// S3 �S1 S3

��

∆�pS3 �S1 S3qoo

��

S1? _o

S2 ιi // S2 � S2 S2∆oo

(2.30)
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Here ιi is the inclusion into the �rst respectively second factor and ∆ is the diagonal
map x ÞÑ px, xq. This yields for the total space and pi that

S1
ãÑ ι�i pS

3 �S1 S3q
p1Ñ S2 �

#
S1 ãÑ S3 �S1 S1 p1Ñ S2 ; i � 1

S1 ãÑ S1 �S1 S3 p1Ñ S2 ; i � 2
.

The bundle on the left is thus a Hopf bundle with Euler class �1. For the Euler classru � z1 ` z2 P H
2pS2 � S2q � Z` Z we thus get ι�i pz1 ` z2q � �zi � 1 and conclude

epS3 �S1 S3 Ñ S2 � S2q � p�1q ` p�1q .

The total space

∆�pS3 � S3q � tpx, yq P S3 � S3 | D θ P S1 : θ.x � yu

of the T 2-bundle over S2 can be identi�ed with S3 � S1. For this space the diagonal
S1-action is not a diagonal map but the Hopf map

S3 � S1 Ñ ∆�pS3 �S1 S3q � S2 � S1 .

We deduce that the bundles on the right hand side is trivial and therefore get

∆�
�
epS3 �S1 S3 Ñ S2 � S2q

�
� ∆�

�
p�1q ` p�1q

�
� �1� 1

!
� 0

since the Euler class of a trivial �bre bundles vanishes in general. In total we conclude

e
�
S3 �S1 S3 Ñ S2 � S2

�
� ru � �p1`�1q � � pu`�uq . (2.31)

Combining this with (2.28) we get that the Euler class of

pLM1 � LM2q �S1 ES1 Ñ pLM1 �S1 ES1q � pLM2 �S1 ES1q

is given by

H2ppLM1 �S1 ES1q � pLM2 �S1 ES1qq Q � e � �pf1 � f2q
�pruq �

� pf1 � f2q
�pu`�uq � f�1 u`�f

�
2 u �

� π�1 pe1q � π�2 pe2q . (2.32)

Remark that

H2ppLM1 � LM2q �S1 ES1qq Q p�pπ�1 pe1q � π�2 pe2qq � 0 (2.33)

by the exactness of the Gysin sequence.

So as claimed in the beginning of this section the knowledge of the Euler class of

S1 // LMi � ES1 � LMi

��
LMi �S1 ES1 .
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yields HS1

� pLM1 � LM2q by using (2.32) for the Leray-Serre spectral sequence of the
left �bration of (2.29).

Euler class of the S1-bundle LpM1 �M2q � ES1 Ñ LpM1 �M2q �S1 ES1:

So far we presented a possibility to compute the module structure of

HS1

� pLM1 � LM2q .

When discussing operations that arise as descended operations on H�pLMq as de-
scribed in section 2.2.4 we need to better understand the corresponding Gysin sequence
for the loop-string �bration.
To be precise we need a concept of how the Euler class and theMark, Erase map for

S1 // LpM1 �M2q � ES1 � LM1 � LM2

��
pLM1 � LM2q �S1 ES1

are computed in terms of the ones of

S1 // LMi � ES1 � LMi

��
LMi �S1 ES1 .

At least for the Euler class we present a concept of how to compute it. We tie up to
the considerations and notions from above.
Remark that since the S3-bundle S3 �S1 S3 Ñ S2 is trivial we have a homotopy
equivalence

S3 �S1 S3 � S2 � S3 � S3 � S2 .

Again we �nd the Hopf map and thus get for the Euler class

e
�
S3 � S3 Ñ S3 �S1 S3

�
P H2pS2q bH0pS3q � H0pS3q bH2pS2q (2.34)

the class that that clearly arises when pulling back the Euler class of the Hopf bundle
S3 Ñ S2 via the projection onto the �rst or the second S2-factor.
This principle of the universal bundles is manifested in the loop-string �bration for
products, namely its Euler class arises as a pulled back Euler class via

pLM1 � LM2q � ES1

��

// LM1 � ES1

��
pLM1 � LM2q �S1 ES1 π1�p // LM1 �S1 ES1

or analogously for LM2. We conclude that the Euler class

epLpM1 �M2q Ñ pLM1 � LM2q �S1 ES1 q
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is given by

H2ppLM1 � LM2q �S1 ES1qq Q � e � p�pπ�1 pe1qq � p�pπ�2 pe2qq (2.35)

which is consistent with p�pπ�1 pe1q � π�2 pe2qq � 0.

Exemplifying computation for T 2 � S1 � S1:

Described concepts are demonstrated for the torus T 2 as a product of two circles S1.
Recall that for a �eld k of characteristic 0 we have k-vector spaces

H�pLS1q �
à
n PZ

kxan, Any and H�
S1pLS1q �

à
i¥ 0

kxα0 b ciα, 1α b ciαy `
à

0�n PZ
kxαny ,

for generators of degree |an| � |An|�1 � 0, |α0b c
i
α| � |1αb c

i
α|�1 � 2i and |αn| � 0.

Since we work with coe�cients in a �eld we may equally work with homology or
cohomology. As described in appendix 5.4 for the S1-bundle LS1�ES1 Ñ LS1�S1ES1

the whole information of the Leray-Serre spectral sequence is encoded in the E2-page:

We thus have for x, cα P H�
S1pLS1q that

d2 : xb t ÞÑ pxY cαq b 1

and zero else. That is the Euler class of the stated bundle is cα P H2
S1pLS1q. With the

spectral sequence we get the following generators for H�pLS1q:

rαns � an , rαn� 0ts � An , r1αs � A0 .

By the considerations above we get that up to a sign the Euler class c of the S1-bundle

LT 2 �S1 ES1 Ñ pLS1 �S1 ES1q � pLS1 �S1 ES1q (2.36)

is given by

cα b 1� 1b cβ .

That in turn allows to compute H�
S1pLT 2q. Namely the E2-page for (2.36) is given by

where
d2 : xb tÑ pxY cq b 1

for x P H�
S1pLS1q bH�

S1pLS1q and zero else. For the cohomology of the total space we
get the following generators on the E3-page and thus for H�

S1pLT 2q:
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generators degree
rαnβms for n,m ¥ 0 0

rαnβmts for n � 0^m � 0 1
rαn1βs, r1αβms for n,m ¥ 0 1

r1α1βc
i
αs for i ¥ 0 2i� 2

rα0β0c
i
αs for i ¥ 1 2i

rα01βc
i
αs, r1αβ0c

i
αs for i ¥ 1 2i� 1

Remark that

H�
S1pLT 2q Q rxpcα b 1� 1b cβqs � 2rxcαs � 2rxcβs

due to (2.33).
We conclude that the S1-equivariant (co-)homology vector space HS1

pLT 2q is given by

�
pk` k2 ` kq b krcαs

�
`

à
pn,mq PZ2z0

pk` kq � H�pT
2q bH�pBS

1q `
à

Znzt0u
H�pT

1q .

which is consistent with (2.21).

So how do results apply for the Euler class of the S1-bundle

p

�LT 2hkkkkkikkkkkj
LS1 � LS1 q � ES1 Ñ LT 2 �S1 ES1 . (2.37)

Its Euler class is given by

cα b 1 � 1b cβ .

With the knowledge of H�
S1pLT 2q we are now able to compute

H�pLT 2q � H�pLS1q bH�pLS1q .

Namely the E2-page for (2.37) is given by
where

d2 : rxs b τ Ñ rxY cαs b 1

and zero else. For the cohomology of the total space we get the following generators
on the E3-page and thus for H�pLT 2q:
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generators degree
anbm :� rαnβms2 0

Apbq :� rαpβpts2 for p � 0^ q � 0
1

anBm :� rαnβms2τ for n � 0_m � 0
Anb0 :� rαn1βs2, A0bm :� r1αβms2 1
ApBq :� rαpβqts2τ for p � 0^ q � 0

2
ApB0 :� rαn1βs2τ, A0Bq :� r1αβms2τ for n,m � 0

A0B0 :� r1α1βs2 2

In total this yields

H�pLT
2q �

�à
n PZ

kxan, Any
�
b
� à
m PZ

kxbm, Bmy
�
� H�pLS1q bH�pLS1q ,

which is consistent with proposition (2.17).

We conclude the chapter by remarking the fact that methods nicely apply to consider-
ations concerning LM�LN when one Euler class is vanishing. This for example is the
case if we consider the space of non-contractible loops on a manifold M with negative
sectional curvature. Recall that corollary 2.15 yields that for a �eld k of characteristic
0 one has

HS1

� pL¡ 0M ;kq �
à

0�α P rπ1pMq

H�pES
1{Znq b k �

à
0�α P rπ1pMq

H0pES
1{Znq b k

which means that the Euler class of the loop-string �bration of LM is vanishing by
degree reasons and further by the considerations above thus vanishes for

pLM � LNq � ES1

��
pLM �Nq �S1 ES1 .

Products of manifolds where one factor has negative sectional curvature are further
examined in chapter 4.4. The essence of why we are discussing these kinds of spaces
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lies in the fact that the topology of the space of non-contractible loops on them is so
well understood. Recall that in our context questions posed by symplectic geometry
and answered by using holomorphic curve theory only concern non-contractible loops.



Chapter 3

Homotopy algebras

Structures such as algebras or Lie algebras transfer from one complex to an isomorphic
complex. If the complexes are just quasi-isomorphic (as for a formal chain complex and
its homology) we get higher homotopy versions of algebras and Lie algebras namely
A8-/L8-algebras. This transfer construction is summarized in section 3.1 for algebras
and in section 3.3 for Lie algebras. Standard references are [21] and [27].
The concepts for algebras are then applied to the dg algebra

pC, dq � pΛRpαq bR Rrλs, dq

where
H�pCq � H�pLS

nq

as algebras for n ¥ 2. We get higher string topology operations extending the loop
product on H�pLS

nq for n ¥ 2.

In the following we always work with coe�cients in R.

3.1 The homotopy transfer construction for algebras

3.1.1 A8-algebras

We rely on the ideas and concepts presented by Kadeishvili in [21].

An A8-algebra consists of a graded vector space C �
À
m¥0

Cm and operations

mn : Cbn Ñ C , n ¥ 1

of degree |mn| � n� 2 (homological convention) such that

n�1̧

k�0

n�ķ

j�1

p�1qk�|a1|�...�|ak|mn�j�1pa1, ..., ak,mjpak�1, ..., ak�jq, ..., anq � 0 (3.1)

for all n ¥ 1. An equivalent approach is given by the bar construction.
On

49
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TCr�1s :� Cr�1s ` Cr�1s b Cr�1s ` ...

we have a coproduct η given by

ηpa1 b ...b akq :�
ķ

i�0

pa1 b ...b aiq b pai�1 b ...b akq , |η| � 0 .

The operations mn : Cbn Ñ C determine a coderivation d : TCr�1s Ñ TCr�1s, which
is given by

dpa1b ...b anq :�
n�1̧

k�0

n�ķ

j�1

p�1qk�|a1|�...�|ak|a1b ...b akbmjpak�1b ...b ak�jqb ...b an .

For d being a coderivation means that

η b d � pdb id� idb dq � η : C Ñ C b C .

Lemma 3.1 ([21] and chapter 3.6. of [22])

pC, tmnun¥1q is an A8-algebra, that is (3.1) are satis�ed for all n ¥ 1, if and only
if

d2 � 0 ,

that is d is a di�erential on the coalgebra TCr�1s.

Remark 3.2. A dga pA, µ, dq may be viewed as an A8-algebra when setting

rm1 :� d, rm2pa, bq :� p�1q|a|µpab bq � p�1q|a|ab, rmk¥3 :� 0 .

The sign factor is necessary so that the A8-relations (3.1) imply associativity and that
d is a derivation and vice versa. Namely p3.1q for i � 2 reads as

rm1prm2pa, bqq � rm2prm1paq, bq � p�1q|a|�1 rm2pa, rm1pbqq � 0 ,

which according to the de�nition is equivalent to

p�1q|a|dpabq � p�1q|a|�1dab� adb � 0 ,

that is

dpabq � dab�p�1q|a|adb .

Similarly p3.1q for i � 3 reads as

rm2prm2pa, bq, cq�p�1q|a|�1 rm2pa, rm2pb, cqq � 0 ,

which is equivalent to
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p�1q2|a|�|b|pabqc�p�1q2|a|�|b|�1apbcq � 0 ,

or simply

pabqc �apbcq .

Conversely an A8-algebra pB, tmnun¥1q is a dg algebra if mn � 0 for all n ¥ 3.

An A8-morphism between A8-algebras

tfnun¥1 : pC, tmnuq Ñ pC 1, tm1
nuq

consists of a collection of maps tfn : Cbn Ñ C 1 of degree |fn| � n � 1u satisfying
certain relations. These relations can be expressed by saying that

f : TCr�1s Ñ TC 1r�1s

where f is given by

fpa1 b ...b anq :�
ņ

t�1

¸
tk1,...,kt |

°
ki�nu

fk1pa1 b ...b ak1q b ...b fktpan�kt�1 b ...b anq

is a di�erential coalgebra map in the bar construction, that is

f � d � d1 � f and η1 � f � f b f � η .

Lemma 3.3 ([21] and chapter 3.6. of [22])

The morphism f is a coalgebra map if and only if for all n ¥ 1

n�1̧

k�0

n�ķ

j�1

p�1qk�|a1|�...�|ak|fn�j�1pa1, ..., ak,mjpak�1, ..., ak�jq, ak�j�1, ..., anq (3.2)

�
ņ

t�1

¸
tk1,...,kt |

°
ki�nu

rm1
tpfk1pa1, ..., ak1q, ..., fktpan�kt�1, ..., anqq .

The following subsection describes a procedure to transfer a given A8-algebra structure
on A to a sub-complex ipBq � A. We need that i : B Ñ A is a quasi-isomorphism.
In the following we often assume B to be the homology of A with trivial di�erential.
Further the A8-algebra A is mostly just a di�erential graded algebra, that is mn � 0
for n ¥ 3.

3.1.2 Homotopy transfer for dg algebras

Again we are following [21]. Let pC, µ, dq be a di�erential (graded) algebra, corre-
sponding to an A8-algebra pC, trmnun¥1q with mn � 0 for n ¥ 3.
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Remark that on HpCq we always have the trivial A8-structure with mn � 0 for n ¥ 3
when setting 0 � fn : HpCqbn Ñ C for all n ¥ 2.

Further it is possible to de�ne an A8-algebra structure

pHpC, dq, tmnun¥1q

that is induced by pC, µ, dq. This so called homotopy transfer construction is described
in the stated reference. We recall the construction here in order to derive a feeling for
the required formulas.

The construction described in [21] allows to write down an A8-algebra structure on
HpCq and further an A8-morphism

f � tfnun¥1 : pHpCq, tmnun¥1q Ñ pC, trmnun¥1q ,

where f1 � i : HpCq Ñ C is a chosen quasi-isomorphism. The morphism f is called
an A8-quasi-isomorphism.

Theorem 3.4 (Theorem 1 of [21])

Let pC, µ, dq be a di�erential algebra over R. Then one gets an A8-algebra struc-
ture tmnun¥1 on HpCq such that m1 � 0 and m2 is the induced product on HpCq.
Further one gets an A8-algebra morphism f � tfnun¥1 : HpCq Ñ C such that f1

is a quasi-isomorphism.

Proof : The dg algebra pC, µ, dq is an A8-algebra when setting

rm1 :� d, rm2pa, bq :� p�1q|a|µpab bq � p�1q|a|ab, rmk¥3 :� 0

as before.

The theorem is proven by induction.

One starts by setting m1 � 0 and de�nes f1 to be a cycle choosing homomorphism i,
which is possible since we assume HpCq to be free. Then f1m1 � 0 � rm1f1 that is
(3.2) is satis�ed for n � 1.

For n ¥ 2 the necessary relations of mn and fn required in (3.2) for tfnun¥1 to be an
A8-morphism translate into

f1mn � Un � rm1fn , (3.3)

where

Unpa1, ..., anq :�
n�1̧

s�1

rm2pfspa1, ..., asq, fn�spas�1, ..., anqq�

n�2̧

k�0

n�1̧

j�2

p�1qk�1�|a1|�...�|ak|fn�j�1pa1, ..., ak,mjpak�1, ..., ak�jq, ak�j�1, ..., anq .
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Things are simpli�ed in the described way since rmk � 0 for k ¥ 3.

For the inductive step k�1 ÞÑ k assume that all operations mj and morphisms fj are
constructed for 1 ¤ j ¤ k � 1 and satisfy the relation (3.3) for n ¤ k � 1.

Equation (3.3) reads as

i �mk � Uk � d � fk . (3.4)

Since Uk only involves operations mj and morphisms fj for 1 ¤ j ¤ k � 1 it is
determined and one checks that

dpUkpa1, ..., akqq � 0

for ai P HpCq. We de�ne

pp � Ukqpa1, ..., akq � rUkpa1, ..., akqs �: mkpa1, ..., akq .

Then pi �mkqpa1, ..., akq and Ukpa1, ..., akq are homologous for all ai P HpCq, and so
for generators x1, ..., xk of HpCq we can choose fkpx1, ..., xkq P C to be a chain whose
boundary equals

pi �mk � Ukqpx1, ..., xkq .

Linearly extending de�nes fk. It remains to check that the operations mk satisfy
(3.1), which is proven in [21].

This completes the inductive step, and we conclude that f � tfnun¥1 de�ned in this
way is an A8-algebra morphism.

Remark that the constructed operations and morphisms are not unique in the sense
that for each degree we chose f1 and a homotopy fn bounding f1mn�Un for all n ¥ 1.

To get more insight into the de�ned operations remark that for a formal dga pC, µ, dq
we have the set-up

pHpC, dq, d � 0q
i // pC, µ, dqýh

p
oo (3.5)

p � i �id
i � p� id �dh� hd

The �rst equation implies that p is surjective and i is injective. Both equations to-
gether say that i is a chain homotopy equivalence with inverse p.

The described non-uniqueness of the arising operations and morphisms is displayed
in the global homotopy h. This can be seen as follows. Reinterpreting the stated
recursive construction yields

m1 � 0 , m2pa, bq � p � rm2pf1paq, f1pbqqloooooooomoooooooon
�U2pa,bq

� p�1q|a|ppipaq � ipbqq
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and for (3.3) with n � 2 we get

i �m2 � U2pa, bq � pi � p� idq�m2pipaq, ipbqq
p3.5q
� pdh� hdq�m2pipaq, ipbqq �

� dph � �m2pipaq, ipbqqq �: dp f2pa, bq q .

Here we used that d is a derivation and d � i � 0.
Continuing in that manner we end up with A8-operations on HpCq of the form visu-
alized in �gure (3.1). A detailed description of this approach can be found in section
10.3.7. and in paricular theorem 10.3.8. of [27].

Figure 3.1: Visualization of higher operations

3.1.3 Homotopy transfer for a product of dg algebras

We continue to work with real coe�cients. Recall that the tensor product C � AbB of
two di�erential graded algebras pA, µA, dAq, pB, µB, dBq is a di�erential graded algebra
pC, µC , dCq, where

Ck �
à
i�j�k

Ai bBj , µpxb y, x1 b y1q :� p�1q|y||x
1|µApx, x

1q b µBpy, y
1q ,

dpxb yq :� dApxq b y � p�1q|x|xb dBpyq .

For linear maps

f : AÑ A1 and g : B Ñ B1

of degree |f | � p and |g| � q the linear map f b g : A b B Ñ A1 b B1 of degree
|f b g| � p� q is de�ned as

pf b gqpab bq � p�1q|g||a|fpaq b gpbq .
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The homotopy transfer construction described above allows to write down an induced
A8-algebra structure on HpCq and further an A8-morphism

tfnu : pHpCq, tmnuq Ñ pC, trmnuq ,

where f1 : HpCq Ñ C is a quasi-isomorphism. One may ask whether the operations
mn and the morphisms fn may be written in terms of the operations mA

n , m
B
n and

morphisms fBn arising when doing the construction for the separate factors A and B.
In general this question is not easy to answer but the problem simpli�es in the case
when the induced A8-algebra on the homology of one factor is trivial. Here without
loss of generality we assume that HpAq is a graded algebra with vanishing higher
operations mk¥3 � 0.

Lemma 3.5

If the A8-algebra structure on HpAq obtained from the homotopy transfer does
not have non-trivial higher operations, then the induced A8-algebra of HpAbBq is
given up to sign by the induced A8-algebra of HpBq with coe�cients in the algebra
HpAq.

Proof : Remark that for set-up (3.5) and thus for the homotopy construction we do
not need that the left hand side is the homology of the right. We want to split the
homotopy transfer into two steps and �rst discuss it for the following set-up:

HpA, dAq bB
i�iAb id|B //

pAbB,µ, dqýh�hAb id|B
p�pAb id|B
oo (3.6)

p � i �id

i � p� id �dh� hd

The stated relations hold since

p � i � ppiA b idBq � pAiA b idB � idA b idB � id ,

pdh� hdq � dphA b idBq � hpdA b idB � idA b dBq

� dAhA b idB � hA b dB � hAdA b idB � hA b dB

� piApA � idAq b idB

� ip� id .

Remark that now we have m1 � 0 and thus if we de�ne Un as before (3.2) does not
rewrite as (3.4) but

f1 �m1 � d � f1 � rm1 � f1

and
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f1 �mn � Un � d � fn �
n�1̧

k�0

p�1qkfn � pîd
k
bm1 b idn�k�1q

� d � fn � fn � dpHpAqbBqbn �: δfn ,

for n ¥ 2 where îdpxq � p�1q|x|x and rm1pxq � dAbBpxq.

Doing the homotopy transfer construction for set-up (3.6) yields the following opera-
tions and morphisms for HpA, dAq bB:

U2 � rm2 � pf1 b f1q ,

m1 � id|HpA,dAq b dB , m2 � p � U2 ,

f1 � iA b id|B , f2 � h � U2 ,

where rm2px, yq � p�1q|x|µpx, yq. This can be seen as follows:

The equation f1 �m1 � d � f1 holds, since

pf1 �m1qpras b bq

�
�
f1 � pid|HpAq b dBq

�
pras b bq � p�1q�rasiAprasq b dBpbq

dA�iA�0
� pd � piA b id|Bqq pras b bq � pd � f1qpras b bq ,

and

i �m2 � U2 � d � f2 � f2pm1 b idq � f2pîdbm1q

holds since

pi �m2 � U2qpras b b, ra1s b b1q

� pf1 � p� idqrm2piAras b b, iAra
1s b b1q � pdh� hdqrm2piAras b b, iAra

1s b b1q

� pd � f2 � h � rm1 � rm2qpiAras b b, iAra
1s b b1q

p3.1q
�
�
d � f � ph � rm2q � prm1 b idq � pf1 b f1q�

� ph � rm2q � pîdb rm1q � pf1 b f1q
�
pras b b, ra1s b b1q

f1m1� rm1f1�
�
d � f2 � f2 � pm1 b idq � f2 � pîdbm1q

�
pras b b, ra1s b b1q .

Continuing in that manner we de�ne higher (k ¥ 3) operations and morphisms via
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Ukppra1s b b1q, ..., praks b bkqq : � p�1q�UAk pra1s, ..., raksq b µBpb1, ..., bkq

fkppra1s b b1q, ..., praks b bkqq : � ph � Ukqpra1s, ..., raksq b µBpb1, ..., bkq

mkppra1s b b1q, ..., praks b bkqq : � pp � Ukqpra1s, ..., raksq b µBpb1, ..., bkq

� p�1q�mA
k pra1s, ..., raksq b µBpb1, ..., bkq ,

where � � |b1|p|a2|�...�|an|�n�1q�|b2|p|a3|�...�|an|�n�2q�...�|bn�1|p|an|�1q.
Here mA

k , U
A
k , f

A
k are operations and morphisms arising when doing the homotopy

transfer construction for

HpA, dAq
iA //

pA,µA, dAqý
hA .

pA
oo

We abbreviate µBpb1, ..., bkq :� µBp...µBpµBpb1, b2q, b3q, ...q, bkq which is possible since
we assume µB to be associative.

These de�nitions are justi�ed since

pf1 �mn � Unqpra1s b b1, ..., rans b bnq

�p�1q�pi � p� idq
�
UAn pra1s, ..., ransq b µBpb1, ..., bkq

�
�p�1q�pdh� hdq

�
UAn pra1s, ..., ransq b µBpb1, ..., bkq

�
�dfnpra1s b b1, ..., rans b bnq�

�
ņ

k�1

p�1q��|a1|�...�|an|�n�2�|b1|�...�|bk�1|h
�
UAn pra1s, ..., ransq b µBpb1, ..., dBpbkq, ..., bnq

�
�dfnpra1s b b1, ..., rans b bnq�

�
ņ

k�1

p�1q|a1|�...�|ak|�n�2�|b1|�...�|bk�1|�n�kphUnq
�
ra1s b b1, ..., raks b dBpbkq, ..., rans b bn

�
�dfnpra1s b b1, ..., rans b bnq�

�
ņ

k�1

p�1q|a1|�|b1|�...�|ak�1|�|bk�1|�kphUnq
�
ra1s b b1, ...,m1praks b bkq, ..., rans b bn

�
�
�
dfn �

n�1̧

k�0

p�1qkpfnqpîd, ..., îdlooomooon
k

,m1, id, ..., idq
�
pra1s b b1, ..., rans b bnq .

By assumptionmA
k¥3 � 0 and thus we end up with a homotopy transferred A8-algebra

structure on

HpAq bB

of the form

m1 � id|HpAq b dB , m2 � pp � rm2qpib iq � �mA
2 b µB , mk¥3 � 0 .



58 CHAPTER 3. HOMOTOPY ALGEBRAS

Since mA
2 pras, ra

1sq � p�1q|ras|µHpAqpras, ra
1sq we get

m2pras b b, ra1s b b1q �pp � rm2qpab b, a1 b b1q

�p�1q|a|�|b|�|b||a
1|µHpAqpras, ra

1sq b µBpb, b
1q .

That is up to sign the resulting A8-algebra structure is nothing but the di�eren-
tial graded algebra structure of pB,µB, dBq with coe�cients in the graded algebra
pHpAq, µHpAqq.

So it remains to think about the A8-algebra structure resulting of the homotopy
transfer construction for

HpAq bHpB, dq
id|HpAqb iB //

pHpAq bB,µ|HpAq b µ|B, id|HpAq b dBqý
id|HpAqb hB

id|HpAqb pB
oo

The stated relations hold since they hold for pB, iB, dB, hB by assumption. Thus
the homotopy transfer a�ects only the second factor and we directly conclude that on
HpAq bHpBq we have operations and morphisms of the form

mnpra1s b b1, ..., rans b bnq :� �ra1s � ... � rans bmB
n prb1s, ..., rbnsq

fnpra1s b b1, ..., rans b bnq :� �ra1s � ... � rans b fBn prb1s, ..., rbnsq .

3.2 Examples: A8-structures for H�pLS
nq

We keep working with coe�cients in R.

We exemplify the stated homotopy transfer construction for a dg algebra of the form

ΛRpαq bR R rλs ,

where ΛRpαq :� R rαs{pα2q, and discuss how the resulting higher operations may be
considered as the higher loop product of simply connected spheres.
Theorem 3.6

Consider the dg algebras

pAn, dAnq � pA, dAq � pΛRpαq bR R rλs, 0q for n ¥ 3 odd

and

pBn, dBnq � pB, dBq � pΛRpαq bR R rλs, dα � 0, dλ � αλ2q for n ¥ 4 even ,

where |α| � �n, |λ| � n� 1.
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The A8-algebra on HpA, dAq obtained by homotopy transfer is trivial, that is it is
A8-quasi-isomorphic to the dga

pHpA, dAq, tm1 � 0,m2,mi¥3 � 0uq .

The A8-algebra on HpB, dBq obtained by homotopy transfer is non-trivial, that is
it is not A8-quasi-isomorphic to the dga

pHpB, dBq, tm1 � 0,m2,mi¥3 � 0uq .

Corollary 3.7

The A8-algebra on
HpAn1 b ...b Ankq

is trivial and the A8-algebra on

HpAn1 b ...b Ank bBnq

is non-trivial for ni ¥ 3 odd, n ¥ 2 even and k ¥ 1.

Proof of Corollary : The corollary follows by theorem 3.6 combined with lemma 3.5.

Remark 3.8. Note that the algebra ΛRpαqbRR rλs viewed as an R-module has additive
generators of the form

1, λ, λ2, ...

and
α, αλ, αλ2, ... .

It has at most rank 1 in each degree for n ¥ 3, since

kpn� 1q � n � |αλk| � |λl| � lpn� 1q

ô l �
pk � 1qpn� 1q � 1

pn� 1q
P Z ô

1

pn� 1q
P Z ,

which is not possible for n ¥ 3.

Remark 3.9. It is tempting to call the arising operations higher loop product of Sn

for n ¥ 2 since we have algebra isomorphisms

HpA, dAq � ΛRpaq bR Rrus � pH�pLS
nq, 
q for n ¥ 3 odd

with rαs � a and rλs � u and

HpB, dBq � ΛRpbq bR Rra, vs{pa2, ab, avq � pH�pLS
nq, 
q for n ¥ 2 even

with rαs � a, rαλs � b and rλ2s � v. It remains to discuss whether pA, dAq and pB, dBq
are indeed sub-algebras of a fully de�ned chain level string topology complex such as
the one introduced in section 4. We postpone this discussion to section 4.3, where for
spheres of odd dimension n ¥ 3 we prove that this is indeed the case. For spheres of
even dimension n ¥ 2 we are only able to leave it as a conjecture.
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Proof of Theorem 3.6 : In the following we construct the operations mn on homology
for n ¥ 1 as suggested in section 10.3.7. and in particular theorem 10.3.8. of [27].
That is we use the approach via trees as visualized in �gure 3.1.

We regard the algebra A as an A8-algebras when setting rm1 � dA, rm2px, yq :�
p�1q|x|µpxb yq and rmn � 0 for n ¥ 3. The algebra multiplication µ is given by

µpαb λk1 , αb λk2q � 0 , µp1b λk1 , 1b λk2q � 1b λk1�k2 ,

µpαb λk1 , 1b λk2q � αb λk1�k2 � µp1b λk1 , αb λk2q

since α and λ have di�erent parity, so one of them is even, and |1| � 0.
Analogously we de�ne trmnun¥1 for the algebra B.

higher operations for HpA, dAq

The vanishing of the chain level boundary operator implies that

pHpA, dAq, 0q � pA, dAq

which in turn allows to de�ne h � 0. We get that the morphisms i, p are isomorphisms
and that (3.5) is satis�ed. Therefore

mn � 0

for n ¥ 3.

Since d � 0 we have hd � dh � id � i � p � 0 for any map h : A Ñ A of degree �1.
The homotopy transfer would yield

pHpA, dAq, tpmnun¥1q
φ
ÝÑ pA, trmnun¥1q

where pmn is not necessarily vanishing for n ¥ 3 and φ is an A8-quasi-isomorphism.
Due to theorem 10.4.7. of [27] we know that we can construct an inverse A8-quasi-
isomorphism

pHpA, dAq, tpmnun¥1q
ψ
ÐÝ pA, trmnun¥1q .

We conclude that pHpA, dAq, tmnun¥1q and pHpA, dAq, tpmnun¥1q, arising when set-
ting h � 0 and h arbitrary, respectively, are A8-quasi-isomorphic.

higher operations for HpB, dBq

By remark 3.8 we know that we have just one generator in each degree of B and thus
at most one generator in each degree of HpB, dBq. That is the morphisms i and p are
uniquely de�ned as

α
p
ÞÝÑ a

i
ÞÝÑ α , αλ2k�1 p

ÞÝÑ bvk
i

ÞÝÑ αλ2k�1 , αλ2k p
ÞÝÑ 0

i
ÞÝÑ 0 ,

λ2k p
ÞÝÑ vk

i
ÞÝÑ λ2k , λ2k�1 p

ÞÝÑ 0
i

ÞÝÑ 0

for k ¥ 0. We de�ne the homotopy h : B Ñ B of degree 1 as
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hpαλ2kq :� λ2k�1 pfor k ¡ 0q ; h � 0 else.

That is set-up (3.5) is provided. Namely p � i � id holds. Further id � i � p except
for λ2k�1 and αλ2k we have

pdh� hdqpαλ2kq � pdhqpαλ2kq � dpλ2k�1q � αλ2k � pid� i � pqpαλ2kq ,

pdh� hdqpλ2k�1q � phdqpλ2k�1q � hpαλ2kq � λ2k�1 � pid� i � pqpλ2k�1q ,

since dpαλ2kq � 0 and dpλ2k�1q � αλ2k which in turn follows by

dλk �
k�1̧

i�0

p�1qiλidpλqλk�i�1 �
k�1̧

i�0

p�1qiαλk�1 �

"
0 for k � even

αλk�1 for k � odd .

and thus

dpαλkq � αdpλkq � 0 .

Remark that the product rm2px, yq � p�1q|x|µpx, yq on B is commutative, that is we
will not care about the order of the input elements in the following.
We use the approach via trees as visualized in �gure 3.1 to construct the operations
mn.
To understand which trees produce a non-trivial output remark that only compositions
of the following type occur for k, l, r ¥ 0:

1q

ph � µqpipxq b ipyqq �

"
λ2k�1 , tx, yu � ta, vku

0 , else

since µpipxq b ipyqq is of the form αλ2k only for tx, yu � ta, vku.

2q

ph � µqphp�q b ipxqq � ph � µqpλ2k�1 b ipxqq �

"
hpαλ2pk�lqq � λ2pk�lq�1 , x � bvl

0 , else

since the output of h is either 0 or of the form λ2k�1 and µpλ2k�1 b ipxqq is of the
form αλ2k�2l only for x � bvl.

3q

ph � µqphp�q b hp�qq � ph � µqpλ2k�1 b λ2l�1q � 0 .

since the output of h is either 0 or of the form λr for r odd.

For possible non-trivial �nal outputs we have:
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1q1

pp � µqpipxq b ipyqq � m2px, yq

since m2 is the induced product on HpB, dBq due to theorem 3.4.

2q1

pp � µqphp�q b ipxqq � pp � µqpλ2k�1 b ipxqq �

"
ppαλ2k�1q � bvk�1 , x � a

0 , else

since pp � µqpλ2k�1 b ipxqq is only non-zero for ipxq being of the form αλ2l or λ2l�1

but only αλ0 � α is in the image of i.

3q1

pp � µqphp�q b hp�qq � pp � µqpλ2k�1 b λ2l�1q � vk�l�1 .

since the output of h is either 0 or of the form λr for r odd.

Visualizing this information we conclude that non-trivial trees may only be built by
the following sub-trees and their mirrored version. For appearing signs recall thatrm2px, yq � p�1q|x|µpx, yq and |λ| � odd, |α| � even in B.

ii

h

1) a vk

i

2) bvl

rm2

λ2k�1

rm2

λ2k�1

h

�λ2pk�lq�1

h

�αλ2pk�lq

i

2)1 a

rm2

λ2k�1

p

�bvk�1

h

�αλ2k�1

3)1

rm2

p

�vk�1

h

�λ2pk�lq�2

h

λ2l�1λ2k�1

Combining these four type of trees we deduce that only non-trivial trees as visualized
in �gure 3.2 occur (where k, l ¡ 0 and km, ln ¥ 0q.
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1)+2)+2)1 1)+2)+3)1

p�1qr�2bvpk�k1�...�kr�3q�1

a

i

ii rm2

h

a

i

rm2

i

h

h
rm2

rm2

p

vk bvk1 bvkr�3

p�1qr�3vk�k1�..�kr�j�2�l�l1�...�lj�2�1

rm2

p

ii rm2

h

a

i

rm2

h

h
rm2

i i

i irm2

h
i

rm2
h

h
rm2

vk avl

bvl1 bvlj�2bvk1 bvkr�j�2

Figure 3.2: Possible higher operations for H�pLS
nq for n even

Remark that we are free to interchange the two edges at each vertex and the corre-
sponding trees also produce non-vanishing outputs.

For the tree on the right hand side we are free to distribute the edges with inputs of
the form bvks among the two main branches of the tree, and all resulting terms come
with the same sign. This explains the factor pi� 3q in the formula (3.7) below, since
this is the number of possible distributions.

In total we conclude that for the induced A8-algebra of H�pB, dBq the following
non-trivial induced higher (i ¥ 3) operations appear:

mipa, v
k, bvk1 , ..., bvki�3 , aq � p�1qi�2 bvpk�k1�...�ki�3q�1

mipa, v
k, bvk1 , ..., bvki�4 , vl, aq � p�1qi�3 � pi� 3q � vpk�l�k1�...�ki�4q�1

(3.7)

where k, l ¡ 0 and kj ¥ 0.

Remark the possibility of interchanging certain edges which yields the stated non-
vanishing higher operations with a di�erent order of the inputs.

It remains to prove that the A8-algebra structure pHpB, dBq, tmnun¥1q is indeed
non-trivial, that is there exists no A8-quasi-isomorphism

pHpB, dBq, tmnun¥1q
φ
ÝÑ pHpB, dBq, tpmnun¥1q

where mn is of the form described above and pm1 � 0, pm2 � m2 � pp � rm2qpib iq andpmn � 0 for n ¥ 3.
This is proven by contradiction, that is we assume that there exists such an A8-quasi-
isomorphism φ.
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This implies that φ1 is a quasi isomorphism of degree 0. Since m1 � pm1 � 0 and
we only have at most one generator in each degree we �nd that φ1paq � λa � a and
φ1pbq � λb � b with λa, λb P R�.
Since φ is an A8-morphism, it satis�es (3.2), namely

n�1̧

k�0

n�ķ

j�1

p�1qk�|a1|�...�|ak|φn�j�1pa1, ..., ak,mjpak�1, ..., ak�jq, ak�j�1, ..., anq

�
ņ

t�1

¸
tk1,...,kt |

°
ki�nu

pmtpφk1pa1, ..., ak1q, ..., φktpan�kt�1, ..., anqq .

For pa1, a2, a3q � pa, v, aq this reads as

φ1pm3pa, v, aqq � φ2pm2pa, vq, aq � p�1q|a|�1φ2pa,m2pv, aqq

� pm2pφ1paq, φ2pv, aqq � pm2pφ2pa, vq, φ1paqq .

since m1 � pm1 � pm3 � 0. Further φ1 � id, m3pa, v, aq � �b and m2pa, vq �
m2pv, aq � 0. Thus the equations writes as

�λb � b � λa � ppm2pa, φ2pv, aqq � pm2pφ2pa, vq, aqq � λa � pm2pa, φ2pv, aqq �m2pφ2pa, vq, aqq .

But this can not be the case because multiplication with a is zero in HpBq.

We conclude that such an A8-quasi-isomorphism φ to the trivial A8-algebra can not
exist.

3.3 The homotopy transfer construction for Lie alge-

bras

Notice the considerations about algebras and A8-algebras presented in section 3.1.
Here we only recall ideas of Appendix A3. of [14], chapter 10. of [27] and section 4 of
[25]. The interested reader is referred to these sources for more details.

An L8-algebra over R consists of a graded real vector space C �
À
mPZ

Cm and operations

λn : ΛnC Ñ C pn ¥ 1q

of degree |λn| � n� 2 (homological convention) such that

¸
n1�n2�n�1

p�1qn2

¸
ρ PSn

ρp1q ... ρpn1q
ρpn1�1q ... ρpnq

ε � λn2pλn1paρp1q, ..., aρpn1qq, aρpn1�1q, ..., aρpnqq � 0 (3.8)
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where ε � �1 is determined by a1 ^ ...^ an � ε aρp1q ^ ...^ aρpnq.
Here ΛnC � T nC{pab b� p�1q|a||b|bb aq denotes the nth exterior power of C and Sn
is the symmetric group.

As for A8-algebras there is an equivalent approach in terms of a bar construction. The
concept is equivalent to

pSpCr�1sq, η, lq

being a di�erential coalgebra structure, that is pl � pl � 0. Precisely speaking on

SpCr�1sq :�
à
k¥1

SkpCr�1sq :�
à
k¥1

pCr�1s b � � � b Cr�1sq{ �

where SnC � T nC{pab b� p�1q|a||b|bb aq, we de�ne

lkpc1 � � � crq �
¸
ρ PSr

�
1

k!pr � k!q
pσ1 � λk � σ

�1
k qpcρp1q � � � cρpkqq b cρpk�1q b � � � b cρprq

if r ¥ k and zero else. Here we use the isomorphism

pΛkCqr�ks
σkÝÑ SkpCr�1sq

a1 ^ ...^ ak ÞÝÑ p�1q
°
pk�iq|ai|a1 � � � ak

where we used degrees in C for |ai| for 1 ¤ i ¤ k.

An L8-algebra morphism between L8-algebras pC, tλkuk¥1q and pC 1, tλ1kuk¥1q is a se-
quence of maps tφk : ΛkC Ñ Cuk¥1 of degree |φk| � k � 1 that satisfy

eg � l � l1 � eg (3.9)

in the bar construction, where

gk :� σ1 � φk � σ
�1
k : SkpCr�1sq Ñ C 1r�1s

and

eg : SpCr�1sq Ñ SpC 1r�1sq ; c1���ck ÞÑ
¸

k1�...kr�k

¸
ρ

�
1

r!k1!...kr!
pgk1b...bgkrqpcρp1qb...bcρpkqq .

Similar to the fact that di�erential graded algebras can be viewed as A8-algebras, it
is possible to interpret a di�erential graded Lie algebra pC, d, t�, �uq as an L8-algebra.
In fact we have

ta, bu � �p�1q|a||b|tb, au

and when setting

λ1 :� d, λ2pa, bq :� p�1q|a|ta, bu and λk¥3 :� 0 ,
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for n � 1, 2, 3 equation (3.8) translates into

d � d � 0 ,

dta, bu � tda, bu � p�1q|a|ta, dbu ,

ta, tb, cuu � tta, bu, cu � p�1q|a||b|tb, ta, cuu .

For general L8-algebras the Jacobi identity just holds up to homotopy given by λ3.
So when passing down to homology via the boundary λ1 Jacobi identity strictly holds.
As for A8-algebras we can transfer L8-algebra structures from one complex C to a
quasi-isomorphic complex B and thus in particular to homology H�pCq. Generally
speaking we want to transfer structure from C to a homotopy retract B.

Theorem 3.10 ([27] Theorem 10.3.2., Theorem 10.3.8., Theorem 10.3.9.)

Let pB, dBq and pC, dCq be chain complexes such that

pB, dBq
i // pC, dCqý

h

p
oo

p � i � idB pp surjective and i injectiveq

i � p� idC � dCh� hdC pi is chain homotopy equivalenceq

Suppose trλnun¥1 is an L8-algebra structure on C with rλ1 � dC . Then B is equipped
with an induced L8-algebra structure tλnun¥1 with λ1 � dB pictorially given by
�gure 3.3, and φ1 :� i extends to a morphism tφnun¥1 of L8-algebras.

Figure 3.3: Transferring L8-algebras

Inspired by the work of Kadeishvili in [21] there is a recursive construction for λn
without using the stated trees and the global homotopy h displayed on the inner edges
above. In the following we prefer that approach since we do not want to specify the
homotopy h.
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As described in [8] the homotopy transfer may be done recursively without specifying
the homotopy h in the case that we transfer to homology, namely for the set-up

pHpC, dCq, d � 0q
i // pC, dCq .
p

oo

This is done in much more generality in Theorem 6.1. of [8]. Restricting to the case
of L8-algebras, it is proven that a given L8-algebra pC, trlkuk¥1q and in particular a
Lie algebra structure (that is rlk � 0 for k ¥ 3) transfers to an L8-algebra structure
pHpCq, tlkuk¥1q and further that there exists an L8-algebra morphism

g : HpCq Ñ C

such that g1 is a quasi-isomorphism. The morphism g is called a 8-quasi-isomorphism.
Analogously to equation (3.3) for the homotopy transfer for L8-algebras Lemma 2.9.
of [8] yields a relation between the L8-algebra operations and the morphism g, namely

gk � l1 � rl1 � gk � g1 � lk �
1

k!
rlk � gdk1 �Rkpg, l,rlq � 0 (3.10)

where

gk1 d � � � d gkipc1 � � � clq

:�
¸
σPSk

εpσq

k1! � � � ki!
gk1pcσp1q � � � cσpk1qq � � � gkipcσpk1�...�ki�1�1q � � � cσpk1�...�kiqq

and εpσq is determined by cσp1q � � � cσpkq � εpσqc1 � � � ck. Here the morphisms Rkpg, l,rlq
only contain components lk1 , rlk1 , gk1 with k1   k. In particular R1 � 0 and R2 � 0
since rl1 � g1 � 0 � l1.

Since l1 � 0 equation (3.10) simpli�es to

rl1 � gk � g1 � lk �
1

k!
rlk � gdk1 �Rkpg, l,rlq

When we are in the special case that C is just a Lie algebra we have rlk � 0 for k ¥ 3
and thus may write

rl1 � gk � dc � gk � g1 � lk �

$'&'%
rl1 � g1 � dc � i � 0 , k � 1

1
2
rl2 � gd2

1 , k � 2

�Rkpg, l,rlq , k ¥ 3

�: g1 � lk � Vk

and analogously

rλ1 � φk � dc � φk � φ1 � λk � σ1 � Vk � σ
�1
kloooooomoooooon

�:Vk

. (3.11)
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Chapter 4

Higher string topology via homotopy

transfer

Throughout this chapter we work with real coe�cients and loop spaces consisting of
smooth loops. When talking about string topology on chain level we have to specify
which chain complex we are working with such that its homology yields the singular
homology of LM . Further in full strictness string topology operations are only de�ned
on the level of homology via homotopy theoretical considerations as in [11]. The def-
inition of [5] namely by de�ning them geometrically on chain level and then let them
descend to homology still lacks the speci�cation which chain model one should use.
For performing the homotopy transfer construction later we have to think of how the
initially only partially de�ned operations can be fully de�ned such that the chain com-
plex becomes a di�erential graded algebra respectively di�erential graded Lie algebra.
By using the work of Irie (cf. [20]) we get a chain level version of the loop product
and the loop bracket. We then let these structures descend to homology H�pLMq
which yields an A8{L8-algebra structure on H�pLMq for general closed and oriented
manifolds M .

Remark that we rely on version v2 of Irie's work [20] in the following. The most recent
version of this document is version v4 with the title "`A chain level Batalin-Vilkovisky
structure in string topology via de Rham chains"'.

A di�erent and more algebraic approach would be to work in the language of operads.
We are not discussing these methods here but refer to [24] and [36]. There it is proven
that there exists a functor converting partial algebras into algebras such that both are
quasi-isomorphic as partial algebras. Especially Theorem 2.7.3. of [36] states that the
complex of chains of the free loop space can be equipped with a Lie algebra structure
induced by the loop bracket. We do not pursue this approach since we are interested in
actually computing the operations on chain level. This would be harder when working
on that more algebraic level.

Finally when we understand the homotopy algebra structures, in particular the L8-
algebra, we are able to use Fukaya's theorem 1.1 in a meaningful way and prove that
a product of a hyperbolic manifold and a simply connected manifold does not embed
as a Lagrangian submanifold into Cn.

69
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4.1 De Rham homology of LM

According the work of Irie in [20] for a given manifold M it is possible to de�ne a
chain complex for LM � C8pS1,Mq which becomes a di�erential graded algebra and
a di�erential graded Lie algebra (with a degree �1 operator ∆) which further descends
to the known BV-algebra structure on homology de�ned in [5]. We brie�y recall the
author's ideas. This is done in order to adapt ideas and then discuss the case for
LpNsc. �MK 0q in the next section where N is simply connected of dimension n ¥ 0
and M has negative sectional curvature and is of dimension m ¥ 3. As usually in
string topology N and M are assumed to be closed and oriented.

In the following we refer to de�nitions and results of [20].

A di�erentiable space is a set X equipped with a di�erentiable structure

PpXq :� tpU, φq | U P U , φ : U Ñ X is a plotu ,

where U :�
�
n¥1

0¤k¤n

Un,k and Un,k is the set of k-dimensional oriented C8-submanifolds

of Rn without boundary. The collection of plots tφ : U Ñ Xu is required to have the
following properties:

(i) If θ : U 1 Ñ U a C8-submersion for U 1 P U and pU, φq P PpXq, then pU 1, φ � θq P
PpXq

(ii) If φ : U Ñ X is a map with U P U such that there is an open covering pUαqαPI
of U such that pUα, φ|Uαq P PpXq for all α P I, then pU, φq P PpXq.

A manifold M is a di�erentiable space by specifying φ : U Ñ M to be a plot if φ is
smooth, that is

pU, φq P PpMq :ô φ P C8pU,Mq

A subset X1
ι
Ñ X2 of a di�erentiable space X2 is a di�erentiable spaces by specifying

a map φ : U Ñ X1 to be a plot if pU, ι � φq P PpX2q.

A map between di�erentiable spaces f : X Ñ Y is smooth if pU, φq P PpXq implies

pU, f � φq P PpY q .

By de�nition the inclusion X1
ι
Ñ X2 is a smooth map.

Two such maps f, g are smoothly homotopic if a smooth map h : X � R Ñ Y exists
such that

hpx, sq �

"
fpxq , s   0
gpxq , s ¡ 1

.

Remark that we have a canonical di�erentiable structure on products of di�erentiable
spaces. A map is a plot if all its projections are plots of the particular factors.
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In the following we want to treat free loop spaces. ForM a smooth closed and oriented
manifold and LM � C8pS1,Mq we de�ne a di�erentiable structure as follows:

pU, φq P PpLMq :ô ev � φ P C8pU � S1,Mq where pev � φqpu, tq :� φpuqptq .

Remark that by de�nition evaluation maps LM evtÑM ; γ ÞÑ γptq are thus smooth.
Further the energy functional

E : LM Ñ R (4.1)

γ ÞÑ

»
S1

| 9γ|2

is smooth for the di�erentiable structures de�ned above.

For a di�erentiable space pX,PpXqq we de�ne the de Rham chain complex

CdR
k pXq :� RxZkpXqy{ZkpXq pk ¥ 0q

where the vector space RxZkpXqy is generated by the set

ZkpXq :� tpU, φ, ωq | pU, φq P PpXq, ω P ΩdimU�k
c pUqu ,

where Ωi
cpUq is the vector space of compactly supported i-forms on U .

We mod out the subspace ZkpXq generated by vectors:

• apU, φ, ωq � pU, φ, aωq for a P R

• pU, φ, ωq � pU, φ, ω1q � pU, φ, ω � ω1q

• pU, φ, π!ωq � pU
1, φ � π, ωq, where π! : Ωr

cpU
1q Ñ Ωr�dimU 1�dimU

c pUq is the integra-
tion along the �ber de�ned for C8-submersions π : U 1 Ñ U

The linear degree �1 map

B rpU, φ, ωqs :� rpU, φ, dωqs

de�nes a boundary. We de�ne de Rham homology as the homology

HdR
� pXq :� H�pC

dR
� pXq, Bq .

An augmentation is given by rpU, φ, ωqs ÞÑ
³
U

ω for rpU, φ, ωqs P CdR
0 pXq

Smooth maps f : X Ñ Y between di�erentiable spaces induce chain maps

f�prpU, φ, ωqsq :� rpU, f � φ, ωqs .

The de Rham chain complex is indeed functorial here since smoothly homotopic maps
induce chain homotopic maps as shown in Proposition 2.5. of [20].

Next we want to compare Irie's construction with standard singular homology.
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A map ρ : ∆k Ñ X is strongly smooth if either k � 0 or if k ¡ 0 and there exists a
neighbourhood U of

∆k � tpt1, ..., tkq P Rk | 0 ¤ t1 ¤ ... ¤ tk ¤ 1u � Rk

and a smooth map ρ : U Ñ X such that ρ|∆k � ρ. For a di�erentiable space we can
de�ne the chain complex of strongly smooth maps

Ssm
� pXq � S�pXq �

à
k¥0

R xMapp∆k, Xq y

as the sub-complex generated by strongly smooth maps inside the singular chain com-
plex.

Lemma 4.1 (e.g. Theorem 18.7 of [26])

For a smooth �nite dimensional manifold X the inclusion

Ssm
� pXq ãÑ S�pXq

is a quasi-isomorphism. It yields an isomorphism

Hsm
� pXq � H�pXq . (4.2)

Remark that ∆k carries the canonical structure of a di�erentiable space as it is a subset
of Rk.

Lemma 4.2 (Lemma 2.6. and Proposition 3.2. of [20])

There exist uk P C
dR
k p∆kq for all k P N0 such that the map

Ssm
k pXq Ñ CdR

k pXq

σ ÞÑ σ�pukq

for X a smooth �nite dimensional manifold is a chain map and yields an isomor-
phism

Hsm
� pXq � HdR

� pXq (4.3)

that is not depending on the choice of pukqk¥0.

When combining both Lemmas we conclude that de Rham homology computes real
singular homology for �nite dimensional smooth manifolds.

Proposition 4.3

For X a smooth �nite dimensional manifold there exists an isomorphism

HdR
� pXq � H�pXq . (4.4)

We want a similar result for free loop spaces of �nite d-dimensional smooth Riemannian
manifolds M that are closed and oriented. That is we want an isomorphism
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HdR
� pLMq � H�pLMq .

By choosing a strictly increasing sequence pEjqj¥1 such that lim
jÑ8

Ej � 8 we de�ne the

energy �ltration of LM via

LMEj :� tγ P LM | Epγq   Eju

where we used the energy as de�ned in (4.1). Inclusion of subspaces LMEi ãÑ LMEj

(j ¡ i) provides a directed system which in turn yields homomorphisms

limÝÑ
jÑ8

HkpLM
Ejq Ñ HkpLMq

limÝÑ
jÑ8

Hsm
k pLMEjq Ñ Hsm

k pLMq (4.5)

limÝÑ
jÑ8

HdR
k pLMEjq Ñ HdR

k pLMq .

Remark that pEpxq � Ejqj¥1 is a sequence of decreasing smooth functions, that is

pEpxq � E1q ¥ pEpxq � E2q ¥ ... for all x P LM ,

and lim
jÑ8

pEpxq � Ejq � �8 for all x P LM . Therefore results of chapter 2.7. of [20]

can be applied.

Lemma 4.4 (chapter 3.3. of [18]; Lemma 2.8. and Lemma 2.10. of [20])

For the loop space LM of a �nite dimensional, closed and oriented Riemannian
manifolds M with the energy �ltration

LMEj :� tγ P LM | Epγq   Eju

the inclusion induces isomorphisms

limÝÑ
jÑ8

HkpLM
Ejq Ñ HkpLMq

limÝÑ
jÑ8

Hsm
k pLMEjq Ñ Hsm

k pLMq (4.6)

limÝÑ
jÑ8

HdR
k pLMEjq Ñ HdR

k pLMq .

Proof (sketch) : Represent a cycle in LM by singular simplices. The union of their
images is a compact set in LM where the energy functional E attains a maximum
Ej0 and thus the cycle is a cycle in LMEj0 . This proves surjectivity.
Injectivity follows similarly since a bounding chain in LM of a cycle in LMEj1 is
compact and thus lies in some LMEj2 for j1 ¤ j2.

In order to prove that de Rham homology computes singular homology for free loop
spaces of �nite dimensional smooth manifolds it is therefore enough to show that



74 CHAPTER 4. HIGHER STRING TOPOLOGY VIA HOMOTOPY TRANSFER

limÝÑ
jÑ8

HkpLM
Ejq Ð limÝÑ

jÑ8

Hsm
k pLMEjq Ñ limÝÑ

jÑ8

HdR
k pLMEjq (4.7)

are isomorphisms.

In [20] this is done by approximating the free loop space LM by �nite dimensional
smooth manifolds FE

NM . By previous considerations (4.2) and (4.3) we know that we
have isomorphisms

limÝÑ
jÑ8

HkpF
Ej
Nj
Mq Ð limÝÑ

jÑ8

Hsm
k pF

Ej
Nj
Mq Ñ limÝÑ

jÑ8

HdR
k pF

Ej
Nj
Mq . (4.8)

So it remains to clarify how the approximations FE
NM are de�ned and then to show

that (4.7) is equivalent to (4.8).

Finite dimensional approximations of LM

Remark that M is equipped with a Riemannian metric, so that we can measure dis-
tances. We approximate a loop by a �nite number of points on it, that is we de�ne

FNM :� tpx0, ..., xNq PM
N | x0 � xNu ,

FE0
N M :� tx � px0, ..., xNq P FNM | Epxq :� N �

¸
0¤j¤N�1

dpxj, xj�1q
2   E0u .

The approximations carry the canonical di�erentiable structure as subsets of MN .

Lemma 4.5 (Lemma 4.3. of [20])

For a sequence Ej Ñ 8 of strictly increasing positive real numbers there exists a
sequence Nj Ñ 8 of integers such that the evaluation map

eN : LM Ñ LMN (4.9)
γ ÞÑ pγp0q, γp1{Nq, γp2{Nq, ..., γp1qq

induces an isomorphism

limÝÑ
iÑ8

H#
� pLMEiq

limÝÑ
iÑ8

H#
� peNi q

// limÝÑ
iÑ8

H#
� pF

Ei
Ni
Mq . (4.10)

Here # either means 'de Rham homology' or 'smooth singular homology' or 'sin-
gular homology'.

The Lemma combined with the isomorphisms in (4.8) imply that

limÝÑ
jÑ8

HkpLM
Ejq Ð limÝÑ

jÑ8

Hsm
k pLMEjq Ñ limÝÑ

jÑ8

HdR
k pLMEjq
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are isomorphisms. Since we already proved that LMEi ãÑ LM induces isomorphisms
on homology for singular homology, smooth singular homology and de Rham homology
we conclude that

HkpLMq Ð Hsm
k pLMq Ñ HdR

k pLMq

are isomorphisms that is de Rham homology computes singular homology for free loop
spaces of �nite dimensional smooth Riemannian manifolds M that are closed and ori-
ented.

Corollary 4.6

For M a smooth �nite dimensional manifold there exists an isomorphism

HdR
� pLMq � H�pLMq . (4.11)

�

Proof of Lemma 4.5 : The evaluation map

eN : LM Ñ LMN (4.12)

γ ÞÑ pγp0q, γp1{Nq, γp2{Nq, ..., γp1qq

is smooth by de�nition and eN pLM
E0q � FE0

N M by using the Cauchy-Schwarz in-
equality, namely for γ P LME0 one has

EpeN pγqq � N
¸

0¤j¤N�1

dpxj , xj�1q
2 � N

¸
0¤j¤N�1

���
i�1
N»
i
N

| 9γ|

��

2

¤ N
¸

0¤j¤N�1

���
i�1
N»
i
N

12

��

���

i�1
N»
i
N

| 9γ|2

��


�
¸

0¤j¤N�1

���
i�1
N»
i
N

| 9γ|2

��
� »
S1

| 9γ|2   E0 .

For E0 �xed we choose N0 su�ciently large such that

a
E0{N0   rM

where rM is the injectivity radius that is positive since M is closed.
Then

dpxj , xj�1q  

d ¸
0¤j¤N�1

dpxj , xj�1q2 �
a
E0{N0   rM ,

so that there is a geodesic connecting xj and xj�1 which we denote by γxj ,xj�1 . These
geodesics will soon be further subdivided into m parts. We �x m ¡ 0. For given
energies 0   E0   E1

0 we choose δ ¡ 0 such that

p1� δq4   E1
0{E0 .

Our next goal is to de�ne a map
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g0 : FE0
N0
M Ñ LME10 (4.13)

that is smooth (in the sense above) and continuous (in the sense of Whitney C8-
topology). For that we need a map µ : r0, 1s Ñ r0, 1s that satis�es

(i) 0 ¤ µ1ptq ¤ 1� δ

(ii) µpi{mq � i{m

(iii) µ is constant near 0 and 1 .

Now we set g0px0, ..., xN0q � γ where

γptq �

$''&''%
γx0,x1pµpN0t� 0qq ; t P r0, 1{N0s
γx1,x2pµpN0t� 1qq ; t P r1{N0, 2{N0s

� � �
γxN0�1,xN0

pµpN0t� pN0 � 1qqq ; t P rN0 � 1{N0, 1s

.

Notice that property piq of µ implies Epγq ¤ p1� δq2Epxq � p1� δq2E0   E1
0.

We de�ne

im : FE0
N0
M

g0ÝÑ LME10
emN0ÝÑFE0

mN0
M

px0, ..., xN0q ÞÑ γ ÞÑ px0, γx0,x1p1{mq, ..., γx0,x1p1q � γx1,x2p0q � x2, ..., ..., xN0qloooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon
mN0�1

.

One further checks that

LME0 incl. //

eN0
��

LME10

FE0
N0
M

g0

::

commutes up to homotopy. This is done in chapter 4 of [20]. Roughly speaking since
N0 is su�ciently large points of incl.(γ) and pg0 � e

E0
N0
qpγq in LME10 can be connected

by geodesics. This de�nes a smooth homotopy γs connecting these two loops. Further
we have Epγsq ¤ p1� δq4E0   E1

0.

We end up with smooth (in the sense above) and continuous (in the sense of Whitney
C8-topology) maps �tting in the diagram

LME0 incl. //

eN0

��

LME10 �: LME1

emN0
�:eN1

��

FE0
N0
M

g0

99

im
// F

E10
mN0

M �: FE1
N1
M
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that commutes up to homotopy.
Continuing the construction inductively we get a sequence

� � � // LMEj //

��

LMEj�1

��

// � � �

� � � // F
Ej
Nj
M

gj

::

// F
Ej�1

Nj�1
M

gj�1

;;

// � � � .

In total we get an isomorphism

limÝÑ
iÑ8

H#
� pLM

Eiq

limÝÑ
iÑ8

H#
� peNi q

//
limÝÑ
iÑ8

H#
� pF

Ei
Ni
Mq

limÝÑ
iÑ8

H#
� pgiq

oo .

4.2 Chain level string topology of LM

We want to describe Irie's de�nition of string topology operations on CdR
� pLMq. In

order to make such de�nitions one faces three issues:

(I) Concatenation of loops is not associative. That is on chain level we would not get
an associative algebra. Further the fundamental class

rM s p� rpM, s, fqs

(for s : M Ñ LM section and f � 1 P C8pM,Rq) would not be a strict unit with
respect to the loop product. We therefore want to work with Moore loops

LMM � LM � tpγ, T q � γT | T ¥ 0 ; γ P C8pr0, T s,Mq ; γp0q � γpT qu .

A di�erentiable structure for LM is de�ned as follows:

�
U, φ � pγφ, T φq

�
P PpLMq : ðñ T φ P C8pU,Rq and

tpu, tq | u P U, 0 ¤ t ¤ T φpuqu ÑM

pu, tq ÞÑ γφpuqptq

extends to a smooth map on U � R

(II)When concatenating loops the derivatives may not �t and thus the resulting chain
of loops is not an element of CdR

� pLMq. That is CdR
� pLMq would not be closed under

the loop product. We further restrict to

LM l :� tpγ, t1, ..., tl, T q | pγ, T q P LM ; 0 ¤ t1 ¤ ... ¤ tl ¤ T ;

γpmqptq � 0 for m ¥ 1 and t P t0, t1, ..., tl, T uu � LM �∆l
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where �pmq means taking the m-th derivative. A di�erentiable structure for LM l is
de�ned via

pU, φ � pγφ, tφ1 , ..., t
φ
l , T

φqq P PpLM lq :ô

pU, pγφ, T φqq P PpLMq and tφ1 , ..., t
φ
l P C

8pU,Rq .

Notice that evaluations evl,j : LM l Ñ M are smooth in the sense of di�erentiable
spaces, that is evl,j � φ P C8pU,Mq, where

pevl,j � φqpuq �

"
φpuqp0q; j � 0

φpuqptjq; 1 ¤ j ¤ l
.

Relying on Lemma 7.6. and 7.7. of [20] we get that for p : r0, 1s Ñ S1 � r0, 1s{0 � 1
the maps

LM
pr1ÐÝ LM �∆l incl.

ÐÝ LMl ÝÑ LM l (4.14)
pγ, t1, ...,tlq ÞÝÑ pγ � p, t1, ..., tl, 1q

induce isomorphisms on de Rham homology. Here the di�erentiable structure of

LMl � tpγ, t1, ..., tlq P LM �∆l |γpmqptq � 0 for m ¥ 1 and t P t0, t1, ..., tluu

is the canonical one assigned to it as it is a subset of the di�erentiable space LM �∆l.
Thus all maps of (4.14) are smooth.
The fact (4.14) combined with (4.11) yields isomorphisms

HdR
� pLM lq � HdR

� pLM �∆lq � HdR
� pLMq � H�pLMq . (4.15)

(III) In order to intersect evaluated chains in M mutual transversality in M has to be
given. This is guaranteed if we only allow chains whose evaluation toM is submersive.
That is we de�ne LM l,reg to be the set LM l where the di�erentiable structure is
modi�ed as follows:

pU, φq P PpLM l,regq : ðñ pU, φq P PpLM lq and evl,j � φ is further a submersion
(4.16)

For de Rham chains with respect to this di�erentiable structure intersection in M is
fully de�ned. Since

M Ñ LM ÑM

p ÞÑ γp ÞÑ p

is a submersion the chain given by the family of constant loops at p for all p PM is a
regular chain.
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In the following we work on the complex

C�pLMq :�
¹
l¥0

CdR
��d�lpLM l,regq .

Irie de�nes a de Rham chain level loop product. For x, y P C�pLMq it is given by

px 
 yqk :�
¸

l�m�k

�pcl,mq� pxl �M ym q P C
dR
��d�kpLMk,regq ,

where
xl �M ym :� rpU �M V, φ� ψ, ω � ηqs

for xl � rpU, φ, ωqs P CdR
��d�lpLM l,regq and ym � rpV, ψ, ηqs P CdR

��d�mpLMm,regq.

The chain map cl,m is de�ned by concatenating loops at time 0, that is

cl,m : LM l,reg �M LMm,reg Ñ LM l�m,reg�
pγ1, τ1, ..., τl, T1q, pγ2, t1, ..., tm, T2q

�
ÞÑ pγ, τ1, ..., τl, T1 � t1, ..., T1 � tm, T1 � T2q ,

where γptq :�

"
γ1ptq , 0 ¤ t ¤ T1

γ2pt� T1q , T1 ¤ t ¤ T1 � T2
.

The product is indeed fully de�ned since

U �M V � tpu, vq P U � V | evl,0 � φpuq � evm,0 � ψpvqu

is a manifold due to the required regularity in (4.16).
Out of this loop product, Irie further de�nes a de Rham chain level loop bracket

tx, yuk :� px � yqk � py � xqk ,

where

px � yqk :�
¸

l�m�k

�σ pxl 
 ρpymqq

and σ, ρ are both induced maps that move the basepoints along the involved loops.
Remark that after applying the de Rham chain level loop product or the de Rham
chain level loop bracket the evaluation maps are still submersive in the sense above,
that is C�pLMq is indeed closed under the de�ned operations.

Notice the trivial but important fact that if

tφpuqpt1q � ψpvqpt2qu � H

in M for all times ti P R and u P U and v P V , the de Rham loop product and the de
Rham loop bracket both vanish already on chain level since U �M V � H and thus

xl 
 ym � 0 � xl 
 ρpymq .
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This is used in the following section to prove that both operations, and their higher
versions, are essentially trivial for the homology of a particular class of manifolds.

Further both operations are related via

ta, b 
 cu � ta, bu 
 c� p�1q|b|p|a|�1qb 
 ta, cu . (4.17)

Remark that when taking b � c � rM s the algebra unit this yields

ta, rM su � ta, rM s 
 rM su � ta, rM su 
 rM s � p�1q|rMs|p|a|�1qrM s 
 ta, rM su �

� pp�1q|rMs|p|a|�1q � 1qta, rM su

that is either 2ta, rM su or zero. In both cases we get

ta, rM su � 0 . (4.18)

The S1-action on LM is also incorporated in the de Rham picture, namely Irie uses
this action to de�ne a degree �1 de Rham BV-operator ∆ that commutes with the
di�erential D. The operations on chain level introduced above descend to homology
and combine to a BV-algebra structure:

Proposition 4.7 (Theorem 1.2. of [20])

The de Rham loop product and the de Rham loop bracket turn the chain complex

C�pLMq :�
¹
l¥0

CdR
��d�lpLM l,regq

into an associative non-commutative dg algebra and a dg Lie algebra with respect
to the di�erential D where d � dimM .

Further both operations and the de Rham BV-operator descend to homology and
turn H�pC�pLMqq into a BV-algebra.

On homology there exists an isomorphism

H�pC�pLMqq � H��dpLMq � H�pLMq (4.19)

as BV-algebras, where the BV-structure on H�pLMq is the one de�ned by Chas
and Sullivan in [5].

In section 4.4 we will use Irie's chain level operations and study the induced A8{L8-
algebra structure on H�pLMq, for certain product manifolds M .

Before we do so we discuss how the dg algebra

pC, dq � pΛRpαq bR R rλs, dq ,

where HpC, dq � H�pLS
nq as algebras, can be seen as a sub-algebra of Irie's dg algebra.
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4.3 Chain level string topology of LSn

We show that pΛRpαq bR R rλs, 0q for |α| � �n, |λ| � n � 1 and n ¥ 3 odd is a
sub-algebra of Irie's chain complex. This yields that the considerations of section 3.2
actually compute the A8-operations extending the loop product on H�pLS

nq for n ¥ 3
odd.

When only considering the algebra structure given by the chain level loop product
theorem 4.7 simpli�es to:

Proposition 4.8 (Section 5.3. of [20])

The de Rham loop product turns the chain complex

C�pLMq :� CdR
��dpLM0,regq

into an associative non-commutative dg algebra with respect to the di�erential D
where d � dimM .

Further the operation descends to homology and there exists an isomorphism

H�pC�pLMqq � H��dpLMq � H�pLMq (4.20)

as algebras, where the algebra structure onH�pLMq is provided by the loop product
de�ned by Chas and Sullivan in [5].

In the following we want to show that for odd dimensional simply connected spheres
things are quite simply to handle, namely:

Lemma 4.9

One can de�ne α, λ P C�pLMq with |α| � �n, |λ| � n� 1 for n ¥ 3 odd such that

ι : pΛRpαq bR R rλs, 0q ãÑ pC�pLSnq, Dq

is an inclusion as a sub-algebra

When combining this with theorem 3.6 we get as a corollary:

Theorem 4.10

For n ¥ 3 odd the dg algebra

pΛRpαq bR R rλs, 0q

for |α| � �n, |λ| � n� 1 induce trivial higher operations for H�pLS
nq.

Further for n ¥ 3 odd
H�pLS

n � � � � � LSnq

is equipped with trivial induced higher operations. �

Proof of Lemma 4.9 : We are considering Sn for n ¥ 3 odd with p0 P S
n �xed.

We set ιpαq :� a and ιpλq :� l, where a, l are de�ned in the following.
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Remark that alk � 0 and lk � 0 for k ¥ 1 since

HpΛRpαq bR R rλsq � ΛRprasq bR R rrlss � H�pLS
nq

and rasrlsk and rlsk for k ¥ 1 generate the module H�pLS
nq.

So let us de�ne a and l. Pick an embedding

φ : Dn Ñ Sn

such that φpDnq is a neighbourhood of p0. Further �x a volume form ω P Ωn
c pD

nq,
that is

³
Dn

ω � 1. We de�ne

a :� rpDn,Φ, ωqs

of degree �n in C�pLMq where

Φ : Dn Ñ LSn � R¥0

x ÞÑ pγφpxq, 0q

and γφpxq is the constant loop at φpxq. Remark that

pDn,Φq P PpLSn0,regq

since ev0 � Φ � φ is an embedding and in particular a submersion.
We have

Da � rpDn,Φ, dωqs � rpDn,Φ, 0qs � 0

by degree reasons.

For the generator l recall that

H�pΩp0S
nq � Rrus with |u| � n� 1 .

For y0 P Tp0S
n �xed the class u may be represented by

lp0,y0 : Sn�1
y0

� tz P Sn| xz, y0yRn�1 � 0u � Sn�1 Ñ Ωp0S
n (4.21)

where

lp0,y0pzqptq �
p0 � z

2
� pcos 2πµptqq �

p0 � z

2
� psin 2πµptqq �

c
1� xp0, zy

2
y0

and µ : R¥0 ÞÑ R¥0 smooth of the form:

1

µptq�id

µptq�0

1

µptq�0
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We need the reparametrization µ such that

plp0,y0pzqq
pmqptq � 0

for m ¥ 1 and t P t0, 1, 2, ...u.

More can be found in chapter 3.7 of [7]. The described pn� 1q-chain is visualized as:

y0
p
0

z1

z4

z3

z2

S
n

S
n-1

Figure 4.1: Representative lp0,y0 of the generator of H�pΩp0S
nq � Zrus

The product is given by

lkp0,y0
: Sn�1

y0
� � � � � Sn�1

y0looooooooooomooooooooooon
k

Ñ Ωp0S
n (4.22)

where

lkp0,y0
pz1, ..., zkqptq �

$&%
lp0,y0pz1qpµptqq , 0 ¤ t ¤ 1

� � �
lp0,y0pzkqpµptqq , k � 1 ¤ t ¤ k

.

To extend this construction to the free loop space LSn we make use of a �xed nowhere
vanishing vector �eld ν on Sn. With 1 P Ω0

cpS
n � Sn�1q constant we now de�ne

l :� rpSn � Sn�1,Ψ, 1qs

of degree n� 1 in C�pLMq where

Ψ : Sn � Sn�1 Ñ LSn � R¥0

pp, zq ÞÑ plp,νppqpzq, 1q .

Remark that

pSn � Sn�1,Ψq P PpLSn0,regq
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since pev0 �Ψqpp, zq � p meaning that ev0 �Ψ is a submersion.
We clearly have

Dl � rpSn � Sn�1,Ψ, Dp1qqs � rpSn � Sn�1,Ψ, 0qs � 0 .

It remains to check that a 
 a � 0 and that a 
 l � l 
 a.

Recall that for de Rham chains we have

rpU, φ, π!ωqs � rpU 1, φ � π, ωqs ,

where π! : Ωr
cpU

1q Ñ Ωr�dimU 1�dimU
c pUq is the integration along the �ber de�ned for

C8-submersions π : U 1 Ñ U .

We use the concatenation c :� c0,0 de�ned in the previous section. This yields

a 
 a � c�pa�Sn aq � c�
�
rpDn,Φ, ωqs �Sn rpD

n,Φ, ωqs
�

� c�
�
rpDn �Sn D

n,Φ� Φ, π�ω ^ π�ωqs
�
� rpDn,Φ, ω ^ ωqs � 0

for π : Dn �Sn D
n Ñ Dn since ω2 P Ω2n

c pD
nq vanishes.

We further have a 
 l � l 
 a since

a 
 l � c�
�
a�Sn l

�
� c�

�
rpDn,Φ, ωqs �Sn rpS

n � Sn�1,Ψ, 1qs
�

� c�
�
rpDn �Sn pS

n � Sn�1q,Φ�Ψ, π�ω ^ π�1qs
�

� c�
�
rppSn � Sn�1q �Sn D

n,Ψ� Φ, π�1^ π�ωqs
�

� l 
 a

for the di�eomorphism Dn�Sn pS
n�Sn�1q Ñ pSn�Sn�1q�SnD

n that in particular
is a C8-submersion. Further c�pa�Sn lq � c�pl�Sn aq since a is a family of constant
Moore loops.

For even dimensional spheres this construction does not work since we do not �nd a
nowhere vanishing vector �eld on these spheres. The existence of poles complicates
the de�nition of l as a regular chain.

4.4 Higher string topology of product manifolds

In this section M, N are assumed to be smooth, closed and oriented Riemannian
manifolds of �nite dimension dimM � m ¥ 0 respectively dimN � n ¥ 3. Further
M is simply connected and N has negative sectional curvature.
Recall that for

LN �
§

α Pπ0pLNq

LαN

we derived that LαN is a KpZ, 1q space for α � 0 and L0N � N . For α � 0 the
isomorphism

H�pL
αNq � H�pS

1q
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can be realized by choosing a representative

γα : S1 Ñ N

and considering

Γα : S1 � R{ZÑ LN

tÑ γαp� � 1{l � tq .

for l being the winding number of γα. For α � 0 we have

Γ0 : N Ñ LN

pÑ γp

where γpptq � p for all t P S1. We set imΓα �: S1
α and imΓ0 �: N .

For X :�M �N the free loop space LX thus topologically looks like

LpM �Nq

� LM � LN � LM �
§

α Pπ0pLNq

LαN
Cor. p2.15q
� LM � pN \

§
0�α

P rπ1pNq� rπ1pM�Nq

S1
αq

� pLM �Nq \ pLM �
§
α� 0

S1
αq .

Our goal is to transfer the structure de�ned above, namely the dg algebra structure
and the dg Lie structure of

pC�pXq, D, 
, t�, �uq

to an A8-algebra and an L8-algebra on homology

HpC�pXq, Dq � H�pLXq .

The basic idea of the following construction is that we want the subspaces S1
α to be

disjoint implying that the A8{L8-algebra operations on homology are essentially zero.

The construction further yields an A8-algebra morphism f and an L8-algebra mor-
phism φ that are 8-quasi-isomorphism�

H�pLXq, tmnun¥1, tλnun¥1

� f�tfnu //
�
C�pLXq, rm1, rm2

�
.

and �
H�pLXq, tmnun¥1, tλnun¥1

� φ�tφnu //
�
C�pLXq, rλ1, rλ2

�
.

where rm1 :�D, rm2pa, bq :� p�1q|a|a 
 b ,rλ1 :�D, rλ2pa, bq :� p�1q|a|ta, bu .

We work with the disk of radius r de�ned as Dnprq :� tx P Rn | |x| ¤ ru and set
Dn :� Dnp1q in the following.
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Proposition 4.11

Let A � rπ1pNq be the set of primitive nontrivial homotopy classes of loops in N .
Then there exist curves γa in N indexed by a P A and closed tubular neighbour-
hoods Oa � γa with the following properties:

piq The curve γa represents the homotopy class a.

piiq Oa is a smooth submanifold of N with boundary and is di�eomorphic to
S1 �Dn�1 via a di�eomorphism φa : S1 �Dn�1 Ñ Oa.

piiiq For a � b the submanifolds Oa and Ob are disjoint.

Remark that in particular Oa and O�a are disjoint.
Proof : For a � 0 the curve γa � N is chosen as a representative of a.

The manifold N is compact and thus π0pLNq � rπ1pNq is countable. We choose a
counting

A � ta1, a2, ...u .

Fix γa1 and the closed tubular neighbourhood Oa1 in N , which is possible due to
corollary 2.3 of [23] for example. We have a di�eomorphism φa1 : S1 �Dn�1 Ñ Oa1 .

We recursively isotope γai for i � 1 and use the same notation for the perturbed γai .
Since we use isotopies the perturbed γai is still a representative of ai.

For the inductive step assume that we have modi�ed γa1 , ..., γak and constructed
disjoint closed neighbourhoods Oa1 , ...,Oak satisfying piq - piiiq of the proposition.
Isotope γak�1

such that

γak�1
&γa1 , γak�1

&γa2 , ..., γak�1
&γak .

Such isotopies exist due Corollary IV.2.4 of [23] for example and the fact that the
γai 's are smooth compact submanifolds. Since the curves γai are one dimensional and
we assume N to be of dimension m ¥ 3 this implies

γai X γaj � H for 0   i, j ¤ k � 1 with i � j .

By radially moving out we can achieve that γak�1
intersects Oai (1 ¤ i ¤ k) only in

BOai �: Bai � S1 � Sn�2 and that

γak�1
X

�
Oai � H .

These submanifolds Bai , Baj � N are disjoint, closed and compact, thus have positive
pairwise distances di,j ¡ 0. We �x disjoint open neighbourhoods Uai of Bai in M for
1 ¤ i ¤ k. The Bai 's are di�eomorphic to S1 � Sn�2 and in particular hypersurfaces.
We can achieve that

γak�1
XOai � H for 1 ¤ i ¤ k

by perturbing γak�1
in Uai . After these perturbations for all 1 ¤ i ¤ k the subman-

ifolds γak�1
and Oai � M are disjoint and have a distance di ¡ 0. We thus can
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construct Oak�1
as a closed tubular neighbourhood of γak�1

, and in particular we can
arrange

Oai XOaj � H for 0   i, j ¤ k � 1 with i � j .

This concludes the inductive step and thus proves the proposition.

Remark 4.12. We �x a smooth homotopy

H : S1 �Dn�1 � r0, 1s Ñ S1 �Dn�1

pτ, x, tq ÞÑ Htpτ, xq

where Htpτ, xq is the �ow of the vector �eld

V pτ, xq :� ρp|x|q � B
Bxn�1

on S1 � Dn�1 at time t. Here x � px1, ..., xn�1q P D
n�1 � Rn�1 and ρ smooth is a

cut-o� function of the form

The homotopy H satis�es

piq Ht � id near BpS1 �Dn�1q for all t .

piiq H0 � id .

piiiq H1

�
S1 �Dn�1p1{4q

�
X
�
S1 �Dn�1p1{4q

�
� H .

Due to the work of Irie in [20] we know that the homology of the complex

C�pLpM �Nqq

is isomorphic to H�pLpM �Nqq. Further the de Rham loop product and the de Rham
loop bracket descend to homology and there they coincide with the loop product and
the loop bracket respectively de�ned by Chas and Sullivan in [5].
We have

C�pLpM �Nqq � C0
�pLpM �Nqq `

à
a PA

Ca�pLpM �Nqq

where Ca�pLpM �Nqq contains chains in homotopy classes which are positive iterates
of a and C0

�pLpM �Nqq contains chains of contractible loops.

Remark the subcomplex C1� � C�pLpM �Nqq that splits as
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C1� :� pC1�q
0 `

à
a PA

pC1�q
a

where pC1�q
a � Ca�pLpM �Nqq contains all the chains whose loops are in

M � φapS
1 �Dn�1q

and pC1�q
0 � C0

�pLpM � Nqq contains all the chains whose loops are contractible in
M �N and further constant in N .
Lemma 4.13

The inclusion of the chain complex

C1� ãÑ C�pLpM �Nqq

induces an isomorphism on homology. In particular

H�pC
1q � H�pLpM �Nqq .

Further C1� is closed under the de Rham loop product and the de Rham loop bracket
de�ned in [20].

Proof : By proposition 4.11 for a P A and α � ka we have homotopy equivalences

LM �
§
k¥ 1

LkpS1 �Dn�1q
id�Lφa
ÝÑ LM �

§
k¥ 1

LkaN

and clearly

LM �N ÝÑ LM � L0N .

The two complexes C1� and C�pLpM � Nqq are the complexes of de Rham chains on
the loop spaces on the left and the right respectively. By corollary 4.6 we thus get
that the homology of these spaces is isomorphic.
By de�nition the homotopy equivalences are compatible with the de Rham loop prod-
uct and the de Rham loop bracket.

Remark 4.14. The lemma in general holds for Dn�1prq with 0   r ¤ 1. For reasons
of clarity in the upcoming proofs we highlight the radius as C1�,r if r � 1.

The homotopy of remark 4.12 yields chain maps

h :
à
a PA

pC1�q
a Ñ

à
a PA

pC1�q
a

of degree 1 induced by H and

T :
à
a PA

pC1�q
a Ñ

à
a PA

pC1�q
a

of degree 0 induced by H1. Further H0 induces the identity on C1�.
These relate to
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Dh� hD � id� T (4.23)

by proposition 2.5. of [20] which guarantees that smoothly homotopic maps induce
chain homotopic ones on C1�.

The topological rewriting and simpli�cation of the set-up will imply that

x 
 y � 0 and tx, yu � 0

for x, y P H�pLXq being homology classes of loops in non-trivial conjugacy class com-
ponents of rπ1pM � Nq since the classes x, y can be either represented as families of
loops that are disjoint in N due to (iii) of remark 4.12 and (4.23).

The following theorems state the generalization of this fact to the higher A8{L8-
algebra operations mk¥3 and λk¥3 on homology H�pLXq.
Remark that in the following we work with

H�pLXq � H�pL
0Xq `

à
a PA

H�pL
aXq

where H�pL
aXq �

À
α� ka
for k¥ 1

H�pL
αXq when setting

LaX :�
§
α� ka
for k¥ 1

LαX

for α P rπ1pXq � rπ1pNq.

In the following theorems we assume X � M � N and M, N to be smooth, closed
and oriented Riemannian manifolds of �nite dimension dimM � m ¥ 0 respectively
dimN � n ¥ 3. Further M is simply connected and N has negative sectional curva-
ture.
Theorem 4.15

The homotopy transfer construction for

H�pLXq ÝÑ C�pLXq

equips H�pLXq with an A8-algebra structure pH�pLXq, tmkuk¥ 1q and yields an
A8-algebra morphism

f � tfkuk¥1 : H�pLXq ÝÑ C�pLXq

such that:

(i) m1 � 0,

(ii) f1 is a cycle choosing homomorphism and in particular a quasi-isomorphism,

(iii) m2 corresponds to the loop product, and
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(iv) mkpx1, ..., xkq � 0

for k ¥ 2 whenever the inputs xi are classes of families of loops that are non-
contractible, that is xi P

À
a PA

H�pL
aXq.

Theorem 4.16

The homotopy transfer construction for

H�pLXq ÝÑ C�pLXq

equips H�pLXq with an L8-algebra structure pH�pLXq, tλkuk¥ 1q and yields an
L8-algebra morphism

φ � tφkuk¥1 : H�pLXq ÝÑ C�pLXq

such that:

(i) λ1 � 0,

(ii) φ1 is a cycle choosing homomorphism and in particular a quasi-isomorphism,

(iii) λ2 corresponds to the loop bracket, and

(iv) λkpy1, ..., ykq � 0

for k ¥ 2 whenever the inputs are elements yi P H�pL
aiXq for primitive classes

ai P A which are not all equal.

For proving the theorems we apply the homotopy transfer construction presented by
Kadeishvili in [21] by recursively constructing the higher operations and morphisms.

Proof of theorem 4.15 : We use the notation from section 3.
For the �rst operations we set

m1 � 0 � U1 and f1 � ι

where ι : H�pL
aXq Ñ pC1�,1{4q

a for a P A and ι : H�pL
0Xq Ñ pC1�q

0 are cycle choosing

homomorphism. Thus equation (3.3) is satis�ed, namely

U1 � f1 �m1 � 0 � D � ι � rm1 � f1 .

The operation m2 � rrm2 � i
b2s on H�pLXq is the loop product up to sign due to howrm2 :� � de Rham loop product

are constructed by Irie.

It remains to prove pivq. For general k ¥ 2 we have

Ukpx1, ..., xkq �
k�1̧

s�1

rm2pfspx1, ..., xsq, fk�spxs�1, ..., xkqq�

�
k�2̧

i�0

k�1̧

j�2

p�1qi�1�|x1|�...�|xi|fk�j�1px1, ..., xi,mjpxi�1, ..., xi�jq, xi�j�1, ..., xkq .
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We will show that there exist maps

fk : H�pLXq
bk ÝÑ C1�

such that

D � fk � rm1 � fk � Uk � f1 �mk � Uk

when acting on inputs xi that are classes of families of loops that are non-contractible.
This then yields

mkpx1, ..., xkq � rUkpx1, ..., xkqs � 0

for such inputs.
For the induction assume the stated assertion holds up to degree k. We perform the
inductive step for k Ñ k � 1.

Assume all operations and morphisms are constructed up to degree k. In the induction
hypothesis we assume that the image of fkpx1, ..., xkq is contained in the support of
f1pxk�1q when acting on x1, ..., xk�1 as in the condition for pivq. In particular we thus
have

rm2pfkpx1, ..., xkq, Tf1pxk�1qq � 0 . (4.24)

According to the de�nition of the loop product by Irie we know that for chains x P C1�
and xi as in the condition for piiiq we have that the supports of

rm2pf1pxiq, xq and rm2pTf1pxiq, xq

are contained in the support of f1pxiq and Tf1pxiq respectively. By piiiq of remark
4.12 we thus have

rm2pf1pxiq, Tf1pxiqq � 0 . (4.25)

We de�ne

fk�1 :� p�1qd1�...�dk�k�1 rm2 � pfk b hf1q (4.26)

when acting on Hd1pL
ai1Xq b ...bHdk�1

pLaik�1Xq for a1, ..., aik�1
P A. Remark that

for x1, ..., xk�2 as in the condition for pivq we get that the image of fk�1px1, ..., xk�1q
is contained in the support of f1pxk�2q

Due to he work of Kadeishvili in [21] we can de�ne fk�1 for the remaining cases if at
least one input is of H�pL

0Xq such that D � fk�1 � Uk�1 � f1 �mk�1 implying mk�1

not necessarily zero. We do not want to prove something about these operations here.

It remains to show that

Dfk�1 � Uk�1

when acting on x1, ..., xk�1 as in the condition for piiiq. Recall the A8-operations in
the case rmk � 0 for k ¥ 3, namely
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rm1 � rm1 � 0 ,rm1prm2px, yqq � rm2prm1pxq, yq � p�1q|x|�1 rm2px, rm1pyqq � 0 ,rm2prm2px, yq, zq � p�1q|x|�1 rm2px, rm2py, zqq � 0 .

Since |fk| � k � 1 we get

p�1q|x1|����|xk|�k�1pDfk�1qpx1, ..., xk�1q (4.27)

�
�
D � rm2 � pfk b hf1q

�
px1, ..., xk�1q

�
�
� rm2 � ppDfkq b hf1q � p�1q|x1|����|xk|�k rm2 � pfk b pDhf1qq

�
px1, ..., xk�1q .

For the �rst summand we use the induction hypothesis

Dfj � Uj implying mj � 0

for 1 ¤ j ¤ k. In particular we thus get

Dfk � Uk �
k�1̧

s�1

rm2pfs b fk�sq �
k�2̧

i�0

k�1̧

j�2

� fk�j�1p1
i bmj b 1k�i�jq

�
k�1̧

s�1

rm2pfs b fk�sq .

For the second summand we use (4.23) and D � f1 � 0, that is

rm2 � pfk b pDhf1qq � rm2 � pfk b ppid� T qf1qq � rm2 � pfk b f1q

by (4.24). For (4.27) we deduce

p�1q|x1|����|xk|�k�1pDfk�1qpx1, ..., xk�1q

�
�
�
k�1̧

s�1

rm2 � prm2pfs b fk�sq b hf1q � p�1q|x1|����|xk|�k rm2 � pfk b f1q
�
px1, ..., xk�1q .

Using that the de Rham loop product and thus rm2 is associative implies

p�1q|x1|����|xk|�k�1pDfk�1qpx1, ..., xk�1q

�
� k�1̧

s�1

p�1q|x1|����|xs|�s rm2 � pfs b rm2pfk�s b hf1qq � p�1q|x1|����|xk|�k rm2 � pfk b f1q
�
px1, ..., xk�1q

By de�nition (4.26) we have

rm2 � pfk�s b hf1q � p�1q|x
1
1|�...�|x

1
k�s|�k�s�1 fk�s�1
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for x1i � xs�i, that is we get

p�1q|x1|����|xk|�k�1pDfk�1qpx1, ..., xk�1q

�
� k�1̧

s�1

p�1q|x1|����|xk|�k�1 rm2 � pfs b fk�s�1q � p�1q|x1|����|xk|�k�1 rm2 � pfk b f1q
�
px1, ..., xk�1q

� p�1q|x1|����|xk|�k�1
� k�1̧

s�1

rm2 � pfs b fk�s�1q � rm2 � pfk b f1q
�
px1, ..., xk�1q

� p�1q|x1|����|xk|�k�1
� ķ

s�1

rm2 � pfs b fk�s�1q
�
px1, ..., xk�1q

which is

p�1q|x1|����|xk|�k�1Uk�1px1, ..., xk�1q

since mj |p
À
a PA

H�pLaXqqbk � 0 for 1 ¤ j ¤ k by the induction hypothesis.

Proof of theorem 4.16 : We use the notation from section 3.3.
For the �rst operations we set

λ1 � 0 � V1 and φ1 � ι ,

where ι : H�pL
aXq Ñ pC1�q

a for a P A and ι : H�pL
0Xq Ñ pC1�q

0 are cycle choosing
homomorphisms. Thus equation (3.11) is satis�ed, namely

φ1 � λ1 � V1 � 0 � D � ι � rλ1 � φ1 .

The operation λ2 � rrλ2 � i
b2s on H�pLXq is the loop bracket up to sign due to how

rλ2 :� � de Rham loop bracket

are constructed by Irie.

The recursive construction of Kadeishvili yields

V2px, yq � rλ2pφ1pxq, φ1pyqq

for x, y P H�pLXq. Therefore by construction for a � b P A and x P H�pL
aXq we get

V2px, yq

"
� 0 , for y P H�pL

bXq
P pC1�q

a , for y P H�pL
aXq or y P H�pL

0Xq

since pC1�q
a and H�pL

aXq contains families/classes of loops that are positive iterates
of the primitive nontrivial homotopy class a.
For λ2 :� rV2s we get

λ2px, yq

"
� 0 , for y P H�pL

bXq
P H�pL

aXq , for y P H�pL
aXq or y P H�pL

0Xq

which allows to de�ne φ2 such that
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φ2px, yq

"
� 0 , for y P H�pL

bXq
P pC1�q

a , for y P H�pL
aXq or y P H�pL

0Xq

Analogously we get

λ2px, yq P H�pL
0Xq and φ2px, yq P pC

1
�q

0

for x, y P H�pL
0Xq.

We end up with (3.11), namely

φ1 � λ2 � V2 � rλ1 � φ2 .

It remains to prove piiiq. We perform the inductive step for k Ñ k � 1.

Assume all operations and morphisms are constructed up to degree k and that

λlpc1, ..., clq

$&%
� 0 , pIq

P H�pL
aXq , pIIq

P H�pL
0Xq , pIIIq

(4.28)

and

φlpc1, ..., clq

$&%
� 0 , pIq

P pC1�q
a , pIIq

P pC1�q
0 , pIIIq

(4.29)

for all 1 ¤ l ¤ k. Here condition pIq means

pIq p�D i, j P t1, ..., lu such that ci P H�pL
aXq and cj P H�pL

bXq for a � b P A ,

pIIq means

pIIq p�@ i P t1, ..., lu we either have ci P H�pL
0Xq or ci P H�pL

aXq for a P A

and there exists at least one i0 P t1, ..., lu such that ci0 P H�pL
aXq

and pIIIq means

pIIIq p�@ i P t1, ..., lu we have ci P H�pL
0Xq .

We prove that (4.28) and (4.29) hold for λk�1 and φk�1 which then proves piiiq of the
theorem, namely that

λlpc1, ..., clq � 0 if D i, j such that ci P H�pL
aXq and cj P H�pL

bXq for a � b P A

and for all l ¥ 1.

The recursive construction of Kadeishvili yields
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Vk�1pc1, ..., ck�1q �
¸
σ,

p�q�k�1

� cσ rλ2pφppcσp1q, ..., cσppqq, φqpcσpp�1q, ..., cσpk�1qqq�

�
¸
τ,

1  l  k�1

� cτ φk�l�2pλlpcτp1q, ..., cτplqq, cτpl�1q, ..., cτpk�1qq .

The multiplicities, the signs and in particular the question which σ and τ are used,
shu�es or permutations, is an important issue in general. We may bypass these ques-
tions since the statements above will hold independently for each summand.

Since only morphisms and operations of degree¤ k are involved we apply the induction
hypothesis and get

Vk�1pc1, ..., ck�1q

$&%
� 0 , pIq

P pC1�q
a , pIIq

P pC1�q
0 , pIIIq

Since λk�1 :� rVk�1s we get

λk�1pc1, ..., ck�1q

$&%
� 0 , pIq

P H�pL
aXq , pIIq

P H�pL
0Xq , pIIIq

.

According to the de�nition of Kadeishvili φk�1 is de�ned such that

Dφk�1pc1, ..., ck�1q :� Vk�1pc1, ..., ck�1q � φ1pλk�1pc1, ..., ck�1qq .

Since φ1 satis�es (4.29) we can choose φk�1 such that

φk�1pc1, ..., ck�1q

$&%
� 0 , pIq

P pC1�q
a , pIIq

P pC1�q
0 , pIIIq

.

This �nishes the inductive step and proves piiiq namely that for pIq we have

λk�1pc1, ..., ck�1q � 0 .

4.5 Obstruction against

the Lagrangian embedding X ãÑ Cd

In this section we combine the results of the previous section with a result of Fukaya
to prove:
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Theorem 4.17

A closed, oriented, spin Lagrangian submanifold

X � pCd, ω0q

for d � n�m ¥ 3 can not be of the form M �N where M, N are smooth, closed
and oriented manifolds of �nite dimension dimM � m ¥ 0 and dimN � n ¥ 3
respectively with M simply connected and N admitting a Riemannian metric of
negative sectional curvature.

We prove theorem 4.17 by contradiction, that is we assume that

Assumption: (4.30)

X �M �N with the stated conditions embeds as a Lagrangian submanifold into Cd .

We will prove that for such an X and the corresponding dg Lie algebra C�pLXq the
chain of constant loops rXs � rpX, s : X Ñ LX, 1qs P C�pLXq is not in the image of
the twisted di�erential

Da � D � rλ2p � , aq

where a P C�pL
α� 0Xq is any Maurer Cartan element which is positive with respect

to a suitable �ltration. With Fukaya's theorem 4.21 (see below) we get the desired
contradiction and hence a proof of Theorem 4.17.

To make sense of the intermediate statements we �rst need to discuss completions with
respect to a given �ltration.

For a smooth map u : pD2, BD2q Ñ pCd, Xq we have the action

Apuq :�

»
D2

u�ω0 �

»
D2

u�dλ0 �

»
BD2�S1

u�λ0 �

»
upS1q

λ0 � xrλ0|Xs, u�rS
1sy P R

for u�rS1s P H1pX;Zq.

Indeed A only depends on the free relative homotopy class rus in rπ2pCd, Xq.This holds
since for a relative homotopy h : pD2 � r0, 1s, BD2 � r0, 1sq Ñ pCd, Xq between u � h0

and u1 � h1 we have

0 �

»
BpD2�r0,1sq

h�ω0 �

»
BD2�r0,1s

h�ω0 �

»
D2

h�1ω0 �

»
D2

h�0ω0

which implies

Apu1q �
»
D2

h�1ω0 �

»
D2

h�0ω0 � Apuq

since X is a Lagrangian submanifold and thus»
BD2�r0,1s

h�ω0 �

»
hpBD2�r0,1sq�X

ω0 � 0 .
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Since Cd is contractible we get rπ2pCd, Xq � rπ1pXq .

Further for the path components π0pLXq of LX we have π0pLXq � rπ1pXq.

Lemma 4.18

A Lagrangian embedding ι0 : X Ñ Cd is isotopic via Lagrangian embeddings to
ι1 : X Ñ Cd such that

rι�λ0s P H
1pX;Zq � H1pX;Rq .

Proof : 1) For the Lagrangian submanifold X ãÑ pCd, ω0 � dλ0q we apply the Weinstein
tubular neighbourhood theorem (cf. theorem 9.3 of [34]) that states:

There exist neighbourhoods U of X in Cd and V of X in pT �X,ω � dλq, embedded as
the zero section s0 : X Ñ T �X, and a di�eomorphism φ : V Ñ U such that φ�ω0 � ω
and φ � s0 � ι0.

2) The Lagrangian submanifold X ãÑ pT �X,ω � dλq can be isotoped in V � T �X
(cf. proposition 3.4 of [34]) as follows:

For any closed one form µ on X the isotopy s : r0, 1s �X Ñ T �X given by

stpxq � px, tµxq

is a Lagrangian isotopy in T �X and s�1λ � µ.

3) We choose µ P Ω1pXq closed such that Xµ P V and

rι�0λ0s � rµs P
1

N
H1pX;Zq

for some N P N. Since φ : V Ñ U is a symplectomorphism, we know that φ�λ0 � λ is
a closed 1-form on T �X.
Consider the isotopy s from step 2) and de�ne ιt : X Ñ Cd as ιt � φ � st.
Note that

s�0pφ
�λ0 � λq � ι�0λ0

since λ vanishes along the zero section s0pXq � T �X.
On the other hand s�1pφ

�λ0 � λq � ι�1λ0 � µ. Since s0 and s1 are homotopic and µ is
closed, we conclude that

rι�0λ0s � rs�0pφ
�λ0 � λqs � rs�1pφ

�λ0 � λqs � rι�1λ0 � µs � rι�1λ0s � rµs

and so rι�1λ0s � rι�0λ0s � rµs P 1
N H1pX;Zq.

4) Since the translation and multiplication with a real number does not change the
property of a submanifold of Cd to be Lagrangian we can scale up the Lagrangian by
a factor N and get rλ0|Xs P H

1pX;Zq.
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Since we now may assume that A|π0pLXq � Z this allows to equip

C�pLXq �
à

α Pπ0pLXq

C�pL
αXq

with an integer �ltration tFkC�pLXqukPZ with FkC�pLXq � Fk�1C�pLXq given by

FkC�pLXq :� tc P C�pLXq |Apciq ¥ ku .

where c �
°
i

ci and

Apciq :� Apαq

for ci P C�pL
αXq with connected domain.

By construction the de Rham loop bracket and the boundary operator D preserve the
�ltration, that is

tFk1C�pLXq,Fk2C�pLXqu � Fk1�k2C�pLXq and DFkC�pLXq � FkC�pLXq .

It is a �ltration on the index set π0pLXq and therefore the �ltration descends to
homology and we get tFkH�pLXqukPZ. This further allows to extend the operations
to the completion xC�pLXq :� t

8̧

k¥ k0 PZ

ck | ck P FkC�pLXq u

and we get that xC�pLXq is a dg Lie algebra with Lie bracket given by the de Rham
loop bracket. The induced �ltration of the completion is denoted by tFkpC�pLXqukPZ.
Remark 4.19. An L8-algebra pC, tλkuk¥ 1q is called �ltered if for C there exists a
�ltration FkC � Fk�1C and the operations preserve that �ltration, namely

λlpFk1C, ...,FklCq � Fk1�...�klC .

An L8-algebra morphism between �ltered L8-algebras

pC, tλkuk¥ 1q
tφkuk¥1
ÝÑ pC 1, tλ1kuk¥ 1q

is called �ltered if the morphisms preserve that �ltration, namely

φlpFk1C, ...,FklCq � Fk1�...�klC 1 .

The dg Lie algebra operations rλ1 and rλ2 on Irie's complex C�pLXq preserve the �ltra-
tion. We conclude that

ppC�pLXq, rλ1, rλ2q

is a completed, �ltered L8-algebra with rλk � 0 for k ¥ 3.

In general Maurer-Cartan elements can be used to de�ne twisted di�erentials that is:
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Lemma 4.20 (Lemma 4.8. in [25])

If a P pC is a Maurer-Cartan element in a completed L8-algebra p pC, tλkuk¥ 1q, that
is

8̧

k� 1

p�1q
pk�1qk

2
1

k!
λkpa, ..., aq � 0 ,

the morphism Da : pC Ñ pC given by

Dapbq :�
8̧

k� 1

p�1q
pk�2qpk�1q

2
1

pk � 1q!
λkpb, a, ..., aq

is a di�erential.

Our main input from symplectic geometry is the following version of a result of Fukaya.

Theorem 4.21 (cf. Fukaya [13])

Let X be a closed, oriented, spin Lagrangian submanifold X � Cd, and let

ppC�pLXq, rλ1, rλ2q

be the completion of the �ltered, degree shifted Irie complex with its induced �ltered
dg Lie algebra structure.
Then there exist chains a P pC�pLXq with Apaq ¡ 0 and b P pC�pLXq satisfying:

rλ1paq �
1

2
rλ2pa, aq � 0 (4.31)

Dapbq � rλ1pbq � rλ2pb, aq � rXs (4.32)

All appearing operations and morphisms in the homotopy transfer construction for

H�pLXq ÝÑ C�pLXq

in the last section preserve the decomposition by homotopy classes of loops. Therefore
we can do the same homotopy transfer construction as in the last section now for the
�ltered set-up and get:

Theorem 4.22

The homotopy transfer construction for

H�pxC�pLXq, Dq ÝÑ xC�pLXq
equips H�pxC�pLXq, Dq with a �ltered L8-algebra structure pH�pxC�pLXqq, tλkuk¥ 1q
and yields a �ltered L8-algebra morphism

φ � tφkuk¥1 : H�pxC�pLXqq ÝÑ xC�pLXq
such that:
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(i) λ1 � 0

(ii) φ1 is a cycle choosing homomorphism and in particular a quasi-isomorphism

(iii) λ2 corresponds to the loop bracket

(iv) λkpy1, ..., ykq � 0

for k ¥ 2 where the inputs y1, ..., yk are classes of loops in at least two di�erent
non-trivial conjugacy class components modulo positive iterations of loops.

�

Since φ is an L8-quasi-isomorphism, that is φ1 is a quasi-isomorphism, we may apply
Theorem 10.4.7. of [27] and get an inverse L8-quasi-isomorphism

�
H�pxC�pLXqq, tλnun¥2

� �xC�pLXq, trλnun¥1

�
.

ψ�tψnun¥1oo

The way this L8-morphism is constructed is described in Theorem 10.4.2. of [27]. The
morphism ψk is constructed by applying

p : xC�pLXq Ñ H�pxC�pLXqq and φi¤ k : H�pxC�pLXqqb i Ñ xC�pLXq
in various combinations. Since the morphisms φi for all i and p preserve the stated
�ltration we get that ψ � tψnun¥1 preserves the �ltration that is

ψnpFk1xC�pLXq, ...,FknxC�pLXqq � Fk1�...�knH�pxC�pLXqq .
The L8-quasi-isomorphism ψ is now used to transfer information from xC�pLXq to
H�pxC�pLXqq.
Lemma 4.23 (Proposition 4.9. (1) in [25])

If a P pC is a Maurer-Cartan element in a completed L8-algebra p pC, trλnun¥1q, that
is

8̧

k� 1

p�1q
pk�1qk

2
1

k!
rλnpa, ..., aq � 0 ,

and

� pC, trλnun¥1

� ψ�tψnun¥1 //
�
H�p pC, rλ1q, tλnun¥2

�
.

is an L8-quasi-isomorphism, then the element

a :�
8̧

k� 1

1

k!
ψkpa, ..., aq

is a Maurer-Cartan element in
�
H�p pC, rλ1q, tλnun¥2

�
, that is

8̧

k� 2

p�1q
pk�1qk

2
1

k!
λkpa, ..., aq � 0 .
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Maurer-Cartan elements can be used to de�ne twisted di�erentials as described in
lemma 4.20 that is

Dapxq :�
8̧

k� 1

p�1q
pk�2qpk�1q

2
1

pk � 1q!
rλkpx, a, ..., aq � rλ1pxq � rλ2px, aq

and

Dapyq :�
8̧

k� 2

p�1q
pk�2qpk�1q

2
1

pk � 1q!
λkpy, a, ..., aq

de�ne di�erentials on xC�pLXq and H�pxC�pLXqq respectively.
Recall the L8-quasi-isomorphism

�
H�pxC�pLXqq, tλnun¥2

� �xC�pLXq, trλnun¥1

�
.

ψ�tψnun¥1oo

It actually gives rise to a chain map between�xC�pLXq, Da
�

and
�
H�pxC�pLXqq, Da

�
,

namely:

Lemma 4.24 (Proposition 4.9. (2) in [25])

If a P pC is a Maurer-Cartan element in a completed L8-algebra p pC, trλnun¥1q and

a :�
8̧

k� 1

1

k!
ψkpa, ..., aq

is the induced Maurer-Cartan element in H�pxC�, rλ1q, the map

ψ :
�xC�pLXq, Da

�
ÝÑ

�
H�pxC�pLXqq, Da

�
given by

ψpxq :�
8̧

k� 1

1

pk � 1q!
ψkpx, a, ..., aq

is a chain map between the complexes with their twisted di�erentials, that is

Da � ψ � ψ �Da .

Recall that Fukaya's Theorem 4.21 gives a Maurer-Cartan element a P F1xC�pLXq and
an element b P xC�pLXq such that

Dapbq � rXs .

Applying Lemma 4.23 and Lemma 4.24 we obtain

Dapψpbqq � ψprXsq .
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It is equivalent to

Da
�
ψpbq

�
�

8̧

k� 2

p�1q
pk�2qpk�1q

2
1

pk � 1q!
λkpψpbq, a, ..., aq

�
8̧

k� 1

1

pk � 1q!
ψkprXs, a, ..., aq � ψ1prXsq � ψ2prXs, aq � � � �

Remark that rXs P F0xC�pLXq and a P F1xC�pLXq. Since ψ preserves the �ltration we
get that

Apψ1prXsqq � 0 , a P F1H�pxC�pLXqq
and ψkprXs, a, ..., aq P Fk�1H�pxC�pLXqq .

Since both ψ and λ preserve the �ltration and ψ1 � p we get for

b P F lbxC�pLXq
that

ψpbq P F lbH�pxC�pLXqq
and further that

λkpψpbq, a, ..., aq P F lb�k�1H�pxC�pLXqq .
We deduce that we need some summand of zero action in Da

�
ψpbq

�
and so ψ1prXsq

must arise as the sum of elements of the form¸
k

� ck λkpxk, a, ..., aq

where we need xk to have negative action since a P F1H�pxC�pLXqq. But then xk and
any component of a cannot represent positive multiples of the same homotopy class.
However, in that case pivq theorem 4.22 yields

λkpxk, a, ..., aq � 0

for k ¥ 2.

We deduce that the assumption (4.30) was wrong and conclude that X �M �N with
the properties as in theorem 4.17 does not embed as a Lagrangian submanifold into
Cd. �



Chapter 5

Appendix

Basic mathematical concepts and methods frequently used throughout the text are
recalled. We assume the reader to be somehow familiar with the upcoming theory.
Proofs are thus more or less completely omitted and referred to the literature. The
speci�c literature we rely on is highlighted in each section.

Precisely speaking we recall the following:

1) How are higher homotopy groups de�ned, what are some of their properties and
how may computations be done.

2) We recall the basic notions necessary to de�ne the HS1

� pLXq sloppily called the
homology of the space of strings on X or more seriously speaking the S1-equivariant
homology of LX. We use the Borel construction of equivariant homology. For de�ning
operations onHS1

� pLXq we need and thus recap the Gysin sequence for a sphere bundle.

3) The pointed loop space is characterized as an H-space. In that sense the homology
ring structure of the pointed loop space of the sphere Sn is recalled.

4) We brie�y discuss the Leray-Serre spectral sequence for a �bration and as an example
compute the cohomology ring structure of BS1 with these methods. Further the
exactness of the Gysin sequence for a sphere bundle is explained.

5.1 (Higher) Homotopy theory

In string topology one studies spaces of maps S1 ÑM . At least from a computational
perspective it is essential to understand the fundamental group π1pMq. Computations
are possible since we have methods like long exact sequences or the Whitehead theo-
rem. Both need the concept of higher homotopy theory that we shortly recap in the
following. Mainly we rely on [18].

The concept higher homotopy (n ¥ 1) is a covariant functor from the category of
pointed topological spaces into the category of (abelian for n ¥ 2) groups

πn : Top
 ÝÑ Grp .
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With I � r0, 1s it is de�ned on objects by

pX, x0q ÞÝÑ thomotopy classes of (continuous) maps f : pIn, BInq Ñ pX, x0qu .

In that sense π0 is regarded as

π0pXq � tpath-components of Xu

with no boundary condition since BI0 � H. We assume n ¡ 0 in the following.

At some point it is helpful to work with a relative version of homotopy groups. For
A � X we de�ne πnpX,A, x0q to be the set of homotopy classes of maps

f : pIn, BIn, BInzIn�1q Ñ pX,A, x0q .

It may be regarded as a generalization of the previous de�nition since for A � tx0u we
have

πnpX,A, x0q � πnpX, x0q .

The compression lemma yields that f � 0 holds if fpInq � A. This lemma is enough
to prove that there exists a long exact sequence

� � � Ñ πnpA, x0q
i�Ñ πnpX, x0q

j�Ñ πnpX,A, x0q
B
Ñ πn�1pA, x0q Ñ � � � , (5.1)

where the homomorphisms are induced by the inclusions

i : pA, x0q ãÑ pX, x0q and j : pX, x0, x0q ãÑ pX,A, x0q .

This in particular proves π2pCd, Y q � π1pY q since πkpCdq � 0 for k ¥ 1.
In contrast to the long exact sequence in homology the connecting homomorphism B
indeed comes from a map namely the restriction of

f : pIn, BIn, BInzIn�1q Ñ pX,A, x0q

to f : pIn�1, BIn�1q Ñ pA, x0q.

For X path connected we have πnpX, x0q � πnpX, x1q for all x0, x1 P X and thus
de�ne πnpXq :� πnpX, x0q. Clearly to make sense of πnpX,Aq we need A to be path-
connected.
The naturally given action

π1pX, x0qñ πnpX, x0q

allows to consider πnpX, x0q as a module over Zrπ1pX, x0qs. The stated action is given
as follows. For representatives

f : pIn, BInq Ñ pX, x0q and γ : pI1, BI1q Ñ pX, x0q

we de�ne γf by shrinking the domain of f and inserting γ. It is visualized as :
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f f
γ

Analogously to the absolute case we have an action of π1pA, x0q on πnpX,A, x0q. It is
clear that π1pA, x0q acts on each group of the long exact homotopy sequence (5.1) and
further commutes with the homomorphism between them.

For computational purposes we highlight:

Theorem 5.1 (Prop. 4.2. [18])

For a product space
±
α

Xα we have isomorphisms πnp
±
α

Xαq �
±
α

πnpXαq for all n.

In (co)homology many computations are possible since excision leads to a long exact
sequence. For homotopy theory this is not true but alternatively long exact sequences
arise for �brations.

De�nition 5.2

A �bration is a map E
p
Ñ B such that the homotopy lifting property (HLP) holds:

Given maps X � r0, 1s
gtÑ B and X � t0u

rg0Ñ E such that

px, 0q
_

��

X � t0u
rg0 //

i

��

E

p

��
px, 0q X � r0, 1s

gt // B

commutes, there exists a homotopy X � r0, 1s
rgtÑ E such that p � rgt � gt andrgt � i � rg0.

For b0 P B and B path-connected the space p�1pb0q �: F is called the �ber of the
�bration.

Remark 5.3. (i) Topologically we are allowed to speak of the �ber F � E with-
out specifying the corresponding basepoint since there exists a homotopy equivalence
p�1pb0q � p�1pb1q for all b0, b1 in the same path component of B.

(ii) If B is path-connected and E is not the empty set then the map p is surjective.

(iii) Given a �bration E
p
Ñ B, any map B1 β

Ñ B yields a pullback �bration E 1 p1
Ñ B,

where E 1 :� B1 �B E � tpb1, eq P B1 � E | βpb1q � ppequ and p1pb1, eq � b1.

(iv) For B being Hausdor� and paracompact �ber bundles F ãÑ E Ñ B are always
�brations. Remark that throughout the thesis B is mostly assumed to be a manifold.
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(v) If F is discrete, then a �ber bundle is a covering. A covering is a �ber bundle, if
all �bres have the same cardinality.

A given map f : A Ñ B allows to write down a �bration (called the associated
�bration)

p : Ef Ñ B

with �ber Ff such that

A

�
ι

  
f

��

Ef

p
~~

B

commutes and

ι : AÑ Ef

a ÞÑ pa, γfpaqq ,

where γfpaqptq � fpaq for all t P I, is a homotopy equivalence. Here the total space is
given by

Ef � tpa, γq P A� BIloomoon
C0pI,Bq

| γp0q � fpaqu

and ppa, γq � γp1q yielding a �ber

p�1pb0q � Ff � tpa, γq P A�BI | γp0q � fpaq, γp1q � b0u .

Assuming B to be path-connected, a �bration E Ñ B with �ber F yields a long exact
sequence

� � � Ñ πnpF, x0q
i�Ñ πnpE, x0q

p�Ñ πnpBq
B
Ñ πn�1pF, x0q Ñ � � � Ñ π0pF, x0q

π0piq
Ñ π0pE, x0q ,

(5.2)

induced by (5.1), since πnpE,F, x0q
p�Ñ πnpBq is an isomorphism.

For F discrete (e.g. for a covering) we have πn¥1pF q � 0 and thus

• πnpE, x0q � πnpBq for all n ¥ 2

• π1ppq : π1pE, x0q Ñ π1pBq injective .

Lens spaces Lpm; l1, .., lnq :� S2n�1{Zm (n ¡ 1) appear at one point of the text. For
m, l1, ..., ln P N �xed and gcdpli,mq � 1 for all 1 ¤ i ¤ n, the quotient arises by
modding out the action on S2n�1 � Cn given by

Zm � S2n�1 ÝÑ S2n�1

pk, pz1, ..., znqq ÞÝÑ pe
2πikl1
m z1, ..., e

2πikln
m znqq .
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The projection

S2n�1 ÝÑ S2n�1{Zm

serves as an example of a �bration with discrete �ber Zm. Using the stated long exact
homotopy sequence and π0pS

2n�1q � π1pS
2n�1q � 0 we get

πipLpm; l1, .., lnqq �

$&% 0 ; i � 0
Zm ; i � 1

πipS
2n�1q ; i ¥ 2

. (5.3)

Analogously we could do the same construction starting with the in�nite dimensional
sphere S8 � lim

ÝÑ
n

S2n�1, yielding Lpm; l1, ..q :� S8{Zm and

πipLpm; l1, ..qq �

"
Zm , i � 1
0 , i � 1

. (5.4)

That is Lpm; l1, ..q is an Eilenberg-MacLane space KpZm, 1q.
For homology, remark that one may use a CW structure of Lpm; l1, .., lnq respectively
Lpm; l1, ..q given by one cell in each dimension and a boundary map alternating between
0 and multiplication by m. Its homology is thus given by

HipLpm; l1, .., lnqq �

$&% Z , i � 0, 2n� 1
Zm , 0   i   2n� 1 ^ i odd
0 , else

(5.5)

and

HipLpm; l1, ..qq �

$&% Z , i � 0
Zm , i odd
0 ; else

. (5.6)

5.2 Universal bundles and Gysin sequence

We rely on discussions presented in [19] and [29]. For B paracompact and Hausdor�,
a principal bundle is a �bration. So results of appendix 5.1 may be applied.
For xi P G and ti P r0, 1s we de�ne

EG :�
 
xx, ty � px0, t0, x1, t1, ...q |

¸
ti � 1, ti � 0 for �nitely many i

(
{ � ,

where we mod out the equivalence relation

xx, ty � xx1, t1y ô @i : ti � t1i ^ pti � t1i ¡ 0 : xi � x1iq .

The following important facts hold for EG:
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• EG has a natural topology such that the G-action

EG�GÑ EG

prxx, tys, gq ÞÑ rpx0g, t0, x1g, t1, ...qs

is continuous.

• The G-action on EG is free and thus

G ãÑ EGÑ BG :� EG{G

is a G-principal bundle by a theorem of Gleason (e.g. [15]).

• EG is contractible and thus πipBGq � πi�1pGq for i ¥ 1.

The space BG is called the classifying space and EG Ñ BG the universal bundle of
G, since we have the following bijection

rX,BGs
�
ÝÑ tG-bundle over X{iso.u

rf s ÞÝÑ
 
f�EGÑ X

(
between homotopy classes of maps and isomorphism classes of G-bundles over X.
Since we mostly work with G � S1 remark that ES1 � S8 and thus BS1 � CP8.
For a space X with (non-free) G-action we get a free diagonal G-action on X � EG
and thus again by [15] a G-principal bundle

G ãÑ X � EGÑ X �G EG . (5.7)

Further the associated �bre bundle is given by

X // X �G EG

��
EG{G � BG .

In the Borel construction the G-equivariant co-/homology of a space X is given by the
co-/homology

HGpXq :� HpX �G EGq . (5.8)

G-equivariant maps between spaces X, Y with G-action descend to maps between the
G-equivariant co-/homology of X and Y . Further the homotopy property holds that is
homotopic G-equivariant maps induce the same maps on co-/homology. The additivity
property of non-equivariant co-/homology transfers to G-equivariant co-/homology
since

HG

�§
α

Xα

�
� H

�
p
§
α

Xαq �G EG

�
� H

�§
α

pXα �G EGq

�
�
à
α

HpXα �G EGq �
à
α

HGpXαq .
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Namely the co-/homology of a disjoint union of spaces is isomorphic to the direct sum
of the co-/homology of the particular path-components.

The extreme cases are that G acts either freely or trivially on X. If the action is free
we get a �bre bundle

EG // X �G EG

��
X{G ,

and thus since EG is contractible the G-equivariant co-/homology HGpXq is given by
HpX{Gq.
If the action is trivial we get X �G EG � X � EG{G and thus for �eld coe�cients

HpX �G EGq � HpXq bHpBGq .

In particular the coe�cient group of G-equivariant co-/homology is given by

HGpptq � HpBGq .

Recall that an oriented �bre bundle E π
Ñ B with F � Sn yield exact sequences (Gysin

sequence)

� � � Ñ HipEq
π�Ñ HipBq

Xe
Ñ Hi�n�1pBq

π�
Ñ Hi�1pEq Ñ � � �

� � � Ñ H ipEq
π�Ñ H i�npBq

Ye
Ñ H i�1pBq

π�
Ñ H i�1pEq Ñ � � � .

where we either take the cap respectively the cup product with the Euler class

e P Hn�1pBq .

The morphism π� : H�pEq Ñ H�pBq and π� : H�pBq Ñ H�pEq are the induced maps
of π on either homology or cohomology.
For homology

π� : HipBq Ñ Hi�npEq

is induced by the chain map mapping a cycle x : K Ñ B to

x�E � K �B E Ñ E

which is induced by the pullback �bration. It is indeed a cycle map since F � Sn is
closed.
For cohomology the map »

Sn

� π� : H ipEq Ñ H i�npBq

is the dual map to the map just described. It is the integration along the �bre when
working with compact de Rham forms and assuming that E, B are smooth �nite di-
mensional manifolds. In general the cohomological Gysin sequence is easily constructed
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out of the En�1-page of the Leray-Serre spectral sequence for the �bration E Ñ B as
described in appendix 5.4.
Exactness of the Gysin sequences implies

π� � π
� � 0 ,

and further

π� � π� �: ∆ : HpEq Ñ HpEq

de�nes an operator of degree deg ∆ � � dim F for homology and deg ∆ � � dim F
for cohomology.
Important for de�ning operations for strings out of operations for loops via the loop-
string �bration is the fact that an operation θ : HpEqbn Ñ HpEq for the co-/homology
of the total space de�nes an operation for the co-/homology of the base space via

�π� � θ � pπ
�qbn : HpBqbn Ñ HpBq .

Remark that the discussion �ts into the concept of equivariant co-/homology for the
�ber being S1 since it is both a Lie group (for equivariant co-/homology) and a sphere
(for the Gysin sequence).

5.3 The based loop space

Without diving very deep into the world of loop spaces we recall some basic facts
appearing in the text. That is we discuss its H-space structure and the resulting Pon-
tryagin product for its homology. Some easy homology ring computations are recalled.
Computational ambitions then directly lead us to spectral sequences, which are re-
viewed in Appendix 5.4.
Throughout the chapter we rely on concepts presented in [7] and [18].

De�nition 5.4

An H-space is a pointed topological space pX, eq equipped with a continuous map
µ : X �X Ñ X , such that the maps

X ÝÑ X

x ÞÝÑ µpx, eq

x ÞÝÑ µpe, xq

are homotopic relative e to the identity X Ñ X.
A continuous map f : X Ñ Y between H-spaces pX, eX , µXq, pY, eY , µY q is an
H-map if

f � µX and µY � f
�2

are homotopic relative eY . It is further an H-equivalence if there exists an H-map
g : Y Ñ X such that

g � f and f � g
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are homotopic relative eX respectively eY to the respective identity maps idX , idY .

Standard examples of H-spaces are topological groups and based loop spaces.
For a pointed topological space X and

Ωx0X � ΩX :� tγ P C0pS1, Xq | γp0q � γp1q � x0u

the multiplication µpγ1, γ2q � γ1 � γ2 is de�ned as the concatenation

γ1 � γ2 ptq :�

"
γ1p2tq , 0 ¤ t ¤ 1{2

γ2p2t� 1q , 1{2 ¤ t ¤ 1

This multiplication is clearly only associative and unital up to homotopy given by
reparameterization. The unit is given by the constant loop t ÞÑ x0.

In the following we work with coe�cients in R, a �eld of characteristic 0. For the
rest of this section we assume X and Y to be H-spaces. The H-space multiplication
descends to a product on homology, the Pontryagin product


 : H�pXq bH�pXq
�
Ñ H�pX �Xq

µ�Ñ H�pXq

and equips H�pXq with an algebra structure. The unit is given by res. Further one
has a Künneth type isomorphism between algebras

H�pX � Y q � H�pXq bH�pY q

where the Pontryagin product on the tensor product is given by

pab bq 
 pa1 b b1q � p�1q|a
1||b|pa 
 a1q b pb 
 b1q .

The cohomology H�pXq is equipped with the (cup-)product. The Pontryagin product
provides a coproduct

∆ : H�pXq
µ�
Ñ H�pX �Xq

�
Ñ H�pXq bH�pXq

that is compatible with the product. In total we get that H�pXq is a commutative,
associative Hopf algebra (without antipode). This combined with the Theorem of Hopf
(cf. Theorem 3C.4. of [18]) then yields:

Theorem 5.5

Let R be a �eld of characteristic 0. If X is a path connected H-space whose
cohomology HkpX;Rq is �nite dimensional for all k, then there is an algebra iso-
morphism

H�pX;Rq � ΛRrx1, x2, ...s � Rrx1, x2, ...s{pxixj � p�1q|xi||xj |xjxiq .

In particular for X �nite dimensional we get

H�pX;Rq � ΛRrx1, ..., xl, s ,

with |xi| �odd.
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A discussion of the theory and a proof of the theorem can be found in [7].
Remark that H-equivalent spaces have isomorphic homology algebras.

Examples:

1) The circle S1:

As shown in Lemma 2.4 the path-loop �bration yields πk�1pXq � πkpΩp0Xq. Thus in
particular for the circle we get

πkpΩS
1q �

"
Z ; k � 0
0 ; else and thus H�pΩS

1;Rq �
à
l PZ

Rx rls y ,

where rls may be represented by pt ÞÑ e2πiltq P ΩS1. For the product we get

rls 
 rms � rl �ms

and thus

H�pΩS
1;Rq � R

�
t, t�1

�
as algebras with |t| � 0.

2) The spheres Sn¥2:

Out of a given pointed topological space pX, eq we get an H-space ΩeX. We further
get its 'free' H-space JX. The James reduced product is de�ned as

JX :�
� §
k¥ 1

Xk
�
{ � �

� ¤
k¥ 1

JkX
�
{ �

where

px1, ..., xkqloooomoooon
PXk

� px1, ..., xi, e, xi�1, ..., xkqloooooooooooooomoooooooooooooon
PXk�1

and

JkX :� Xk{px1, ..., xi, e, ...xkq � px1, ..., e, xi, ...xkq .

The H-space multiplication is de�ned as

µprx1, ..., xks, ry1, ..., ylsq � rx1, ..., xk, y1, ..., yls

whereas the unit is given by res.
For spheres we take the standard cell decomposition Sn¥2 � e0 Y en � e YB D

n. So
the quotient map Xk Ñ JkX maps cells into cells, namely subcomplexes with one
coordinate e are glued. That is

112



J1X � Sn � e0 Y en

J2X � Sn � Sn{px, eq � pe, xq � pe0 Y enq � pe0 Y enq{px, eq � pe, xq �

� J1X YB pS
n � eq�2 � e0 Y en Y e2n

� � �

JkX � Jk�1X Y pSn � eqk � e0 Y en Y ...Y ekn .

We deduce that JSn � e0 Y en Y e2n Y ... is a CW complex and by dimension reasons
the cellular boundary map is 0 for n ¥ 2. Therefore

H�pJS
nq �

"
R , � � i � n pi ¥ 0q
0 , else �

à
i

Rx reins y .

For computing the algebra structure with respect to the Pontryagin product we com-
pute reins 
 rejns. Represent the homology classes by

i : p∆in, B∆inq Ñ pein, e0q , j : p∆jn, B∆jnq Ñ pejn, e0q .

For the product we then get

∆in �∆jn ÝÑ JSn � JSn
µ
ÝÑ JSn

px, yq ÞÝÑ pipxq, jpyqq ÞÝÑ ipxqjpyq ,

that is on homology reins 
 rejns � repi�jqns. We conclude with the Pontryagin algebra
structure

H�pJS
n¥2q � R

�
u
�

(5.9)

with |u| � n. The James reduced product relates to pointed loop spaces as follows:

For a pointed topological space pX, eq we can de�ned its reduced suspension

ΣX :� X � I{pX � BIq Y pe� Iq

and get a map into its pointed loop spaces

λ : X Ñ ΩresΣX � ΩΣX

x ÞÑ λpxqp�q

where λpxqptq :� pt ÞÑ rx, tsq. This generalizes to an map of H-spaces

λ : JX Ñ ΩΣX

rx1, ..., xks ÞÑ pλpx1q � ... � λpxkqqp�q .

By Theorem 4J.1. of [18] this is further a weak homotopy equivalence for X being a
CW complex. Since λ is compatible with the H-space products this then further yields

H�pJXq � H�pΩΣXq
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as algebras. For spheres we have a homeomorphism

ΣSn � Sn�1 .

This and result (5.9) are then used to prove that

H�pΩS
n�1q � R

�
u
�
with |u| � n , (5.10)

where u is represented by an explicit cycle of loops in Sn�1, cf. section 4.3.

A more systematic method to compute (co-)homology groups and certain products
also for free loop spaces is provided by spectral sequences which are brie�y discussed
in the next section.

5.4 Spectral sequences

We recall some basic facts about spectral sequences for a double positively graded
complex. In the thesis we need them to do computations for �brations and thus ideas
are exempli�ed by means of the Leray-Serre spectral sequence.
All presented ideas can be found in detail in [2] or [30]. We also pro�t from ideas
presented in [7].

For a graded R-module
K �

à
n¥ 0

Kn

with a linear mapD is a graded complex ifDpKnq � Kn�1 andD2 � 0. So cohomology
with respect to D is de�ned. It is a �ltered complex if a (decreasing) �ltration of sub-
complexes

K � K0 � K1 � K2 � � � �

exists. If it is both graded and �ltered one gets an induced �ltration

Kn � Kn
0 � Kn

1 � Kn
2 � � � �

for each dimension n by setting Kn
p :� Kp XKn. Inclusion and projection induces an

exact sequence

0 Ñ Kn
p�1

i
Ñ Kn

p
j
Ñ Kn

p {K
n
p�1 Ñ 0

that can be reinterpreted as an exact triangle. Its long exact sequence on cohomology
can also be written as an exact triangle

A1 :�
À

n¥ 0, p¥ 0

HpKn
p q

i1�i� //
À

n¥ 0, p¥ 0

HpKn
p q � A1

j1�j�
tt

E1 :�
À

n¥ 0, p¥ 0

HpKn
p {K

n
p�1q

k1�k

jj

.

(5.11)
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It yields another well-de�ned exact triangle

k1peq A2 :� i1pA1q
i2:�i1|i1pA1q // A2

j2uu

i1paq6

zz
res




ff

E2 :� HpE1, d1 :� j1 � k1q

k2

jj

rj1paqs .

Deriving exact triangles from given ones can be done in�nitely often.

A spectral sequence is a sequence of di�erential complexes pEr, drq with Er�1 � HpEr, drq.
It stabilizes if El�1 � El�2 � � � � �: E8 and converges to HpKq if

E8 �
à
p

HpKqp{HpKqp�1

for the induced cohomology �ltration HpKq � HpKq0 � HpKq1 � HpKq2 � � � � given
by HpKqp :� pi�q

pHpKpq. If HpKq is a vector space over a �eld k we haveà
p

HpKqp{HpKqp�1 � HpKq .

Theorem 5.6 (e.g. Theorem 14.6. in [2])

If the �ltration has �nite length ln, that is

Kn � Kn
0 � Kn

1 � � � � � Kn
ln � Kn

ln�1 � 0

for each dimension n ¥ 0, the induced spectral sequence stabilizes and converges.

We are in the situation required in the theorem when considering a double (bigraded)
complex

K �
à
p,q¥ 0

Kp,q

with di�erentials

δ : Kp,q Ñ Kp�1,q and d1 : Kp,q Ñ Kp,q�1

such that pd1q2 � 0, δ2 � 0 and d1 � δ � δ � d1.

It yields a single graded �ltered complex pK �
À
n¥0

Kn, Dq with Kn :�
À

p�q�n

Kp,q and

�ltration Kp0 :�
À

q¥ 0, i¥ p0

Ki,q of �nite length in each dimension. The de�nitions are

best illustrated as in �gure 5.1.

Finite length is given since Kn
p � KnXKp � 0 for p ¡ n. For the E1-page pE1, d1q we

get

E1 �
à
p¥ 0

HpKp{Kp�1, Dq �
à
p,q¥ 0

HpKp,q, d1q �:
à
p,q¥ 0

Ep,q
1
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Figure 5.1: Induced single complex

since δ|Kp{Kp�1 � 0. For d1 � j1 � k1 : HpKp{Kp�1q Ñ HpKp�1{Kp�2q we get

ras ÞÑ rDas � rδas

since k1 is the connecting homomorphism of the long exact sequence and thus

Ep,q
2 � HppH �,qpK, dq, δq .

This principle is manifested in the zig-zag Lemma as described in [2].

Lemma 5.7 (�14 of [2])

For x0 P K
p,q one has

rx0sk�1 P E
p,q
k�1 ô D k-zig-zag px0, ..., xkq

i.e. dx0 � 0, δxl � p�1qp�1dxl�1 pl   kq

and further

dk�1rx0sk�1 � rδxksk�1 P E
p�k�1,q�k
k�1 .

Our motivation for studying spectral sequences are (co-)homological computations for
�brations F ãÑ E

π
Ñ B for F,E,B being CW-complexes and B being path-connected.

For U � tUαuαPI being a cover of B we de�ne a double complex

Kp�1,q δ
ÐÝ Kp,q d

ÝÑ Kp,q�1 ,

with Kp,q :� Cppπ�1pUq, Cqq being the p-th �ech cochain group with values in the
presheaf of singular q-cochains. This set-up yields a spectral sequence. As described
in the literature, if π1pBq acts trivially on HqpF q we have

Hqpπ�1pUqq � HqpF q

if U is a good cover of B, that is it is locally �nite and non-empty intersections
Uα1 X � � � X Uαr are di�eomorphic to Rn.
Following chapter 5 of [30] for the corresponding spectral sequence we get:
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• Ep,q
1 � CppU,HqpF qq

• Ep,q
2 � HppU,HqpF qq

• pEr, drq converges to H�pEq

• The universal coe�cient theorem yields

Ep,q
2 � HppBq bHqpF q

if we use �eld coe�cients and HqpF q is �nite dimensional for all q.

Analogously we could work with chains instead of cochains and would get the same
statements for homology. For the cup product on cohomology or the loop product on
H�pLXq, the statement generalizes in a way such that module isomorphisms become
algebra isomorphisms. For this we refer to [10] and [30]

As an example consider S8 Ñ CP8 as a realization of the universal S1-bundle. Con-
tractibility of S8 yields

Ep,q
k¥3 � Ep,q

8 �

"
0 , pp, qq � p0, 0q
k , pp, qq � p0, 0q

when using coe�cients in a �eld k. This follows by degree reasons whereas the E2-page
is given by

which implies
H�pBS1;kq � H�pCP8;kq � k rxs

with |x| � 2.

The class x P H2pCP8;kq is known as the Euler class which can be easily de�ned
for general sphere bundles using spectral sequences. The exactness of the previously
mentioned Gysin sequence is also straightforward.
Both statements can be seen as follows:

In general for a �bration F ãÑ E Ñ B an element ω P HnpF q is called transgressive if

d2pωq � � � � � dnpωq � 0 .

Since p, q ¥ 0 we have dk¥n�2pωq � 0 by degree reasons. In this situation, the map
ω ÞÑ dn�1pωq is called the transgression map.
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For an oriented Sn-bundle π1pBq acts trivially on HqpSnq and we have

E0,�
2 � H�pSn;kq � k rωs{pω2q .

Thus by degree reasons E2 � � � � � En�1 and En�2 � � � � � E8. So for computing
H�pEq we just need to understand

dn�1pωq �: e P Hn�1pBq ,

called the Euler class of the bundle E Ñ B. We immediately get that a trivial sphere
bundle has a vanishing Euler class.
In total the di�erential dn�1 on En�1 is given by

HppBq bHnpSnq ÝÑ Hp�n�1pBq bH0pSnq

xb ω ÞÝÑ pxY eq b 1 .

For coe�cients in a �eld it yields H�pEq � kerp�Y eq`H�pBq{imp�Y eq which may be
interpreted as

� � � Ñ H ipEq
π�Ñ H i�npBq

Ye
Ñ H i�1pBq

π�
Ñ H i�1pEq Ñ � � �

where π� is the projection to kerp� Y eq and π� : H�pBq Ñ H�pBq{imp� Y eq. This is
the already mentioned Gysin sequence that is clearly exact.
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