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Abstract

The thesis discusses several aspects of string topology presented by Chas and Sullivan
in [5] on the homology of the free loop space of a closed oriented manifold. After
an introductory chapter we use a specific chain model for string topology defined by
Irie [20] to perform the homotopy transfer to homology in a special case. We prove
vanishing results and combine these with a theorem of Fukaya [13] to get the following
result (cf. Theorem as a corollary:

Theorem 0.1

A closed, oriented, spin Lagrangian submanifold

X c (Ck, wo)

for k = n +m = 3 cannot be of the form M x N where M, N are smooth, closed
and oriented manifolds of finite dimension dimM = m > 0 and dimN =n > 3
respectively with M simply connected and N admitting a Riemannian metric of
negative sectional curvature.

Earlier publications derived from the dissertation: —



Zusammenfassung

Die Arbeit behandelt verschiedene Aspekte der String Topologie, dargelegt von Chas
und Sullivan in [5], auf der Homologie des freien Schleifenraums einer geschlossenen
und orientierten Mannigfaltigkeit. Nach einem einfiihrenden Kapitel benutzen wir
ein konkretes Kettenmodell fiir String-Topologie von Irie [20], um in einem Spezial-
fall den Homotopie-Transfer auf Homologie durchzufiihren. Die daraus resultierenden
Verschwindungsresultate kombinieren wir mit einem Theorem von Fukaya [I3] und

erhalten folgenden Satz (vgl. Theorem [4.17)):
Theorem 0.2

FEine geschlossene, orientierte, spin Lagrangesche Untermannigfaltigkeit

X c (Ck,wo)

fir Kk = n +m > 3 kann nicht von der Form M x N sein, fiir M, N glatte,
geschlossene und orientierte Mannigfaltigkeiten der Dimension dimM = m = 0
beziehungsweise dim N = n > 3, wobei M einfach zusammenhingend ist und N
eine Riemannsche Metrik mit negativer Schnittkriimmung zulésst.

Aus dieser Dissertation hervorgegangene Vorveroffentlichungen: —
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Chapter 1

Introduction

1.1 History and motivation

Surprisingly, in mathematics difficult questions are sometimes much easier to handle
when first complicating things. Like in modern tendencies in physics, that prefer to
regard particles as strings rather than point-like, mathematicians try to understand
properties of a space X by examining the space of loops on X. These mapping spaces
C*(S1, X) are commonly denoted by LX without further specifying k € Ny. From a
topological point of view these are the same (cf. section 2 of [0]).

A way to better understand the geometry of LX is to use the language of algebra and
try to understand its homology H,.(LX) arising of a certain chain model. At least
researchers in topology, Riemannian geometry, TFT /string theory and symplectic ge-
ometry may extract information of an understanding of H,(LX). Having this broader
influence in mind it is justified to study the topology of free loop spaces. Our field of
interest is symplectic geometry that poses the motivating question:

"What closed manifolds arise as Lagrangians submanifold of CF?"
In this thesis our contribution to that question is:

"A high-dimensional product manifold of a hyperbolic and a simply connected
manifold does not arise as a Lagrangian submanifold of C*!"

In order to obtain such a result, we aim to understand the (co-)homology of the free
loop space H*(LM) and H,(LM) respectively. For H*(LM) there is the cup product
turning it into a ring. Further, as discovered by M. Chas and D. Sullivan, H,(LM) is
not just a module but may be equipped with a BV-algebra structure. Comparably to
the Pontryagin product for pointed loop spaces concatenation of loops at its basepoints
provides a product e, the loop product. Notice that basepoints do not coincide in
general, thus one needs to incorporate the intersection product

H*(M) X H*(M) L) H*fdim M(M)

in evg(LM) = M yielding a product of degree (—dim M). One works with shifted
homology
H*(LM) = H*+dim M(LM)
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in order to get an algebra structure with a product of degree 0.

The BV-operator A of degree +1 is induced by the natural S'-action on LM by moving
the basepoints around the loops. The loop product and the BV-operator combine to
a Lie bracket {-,-} of degree +1, the loop bracket.

Erasing basepoints or putting basepoint markers everywhere along the loops yields
maps

£
=

H,.(LM) HS'(LM) .
\H/

where M o€ = A and £ o M = 0.

Here HS'(LM) arises via the Borel construction for equivariant homology. The Erase
and Mark maps are used to transfer structure from H,(LM) to HS (LM) and vice
versa. In particular the loop product descends to a Lie bracket [-,-] on HS'(LM), the
string bracket.

In this thesis the notion string topology means dealing with the BV-algebra

(H*(LM)> e, {'7 '}7 A)
and the graded Lie algebra

(H (LM), [ ])

for M™ being an n-dimensional manifold that is closed and oriented. Though the theory
is defined for integer coefficients we mostly work with field coefficients. In particular
in chapter {4 we use real coefficients. Here the notion higher string topology in turn
stands for discussions concerning the A,,/Lo,-algebra

(Ho(LM), {mp}i=1) and  (H(LM), {A}i=1)
where my corresponds to the loop product and Ay corresponds to the loop bracket.

To be able to do string topology computations we may apply direct methods or drift
into the world of algebra. Direct methods are very limited in a way that we may only
discuss ’nice’ spaces as the circle S', the n-torus T™ or surfaces of higher genus 23.
Here one actually sees how loops or strings interact. This insight is given up in order
to get results when using concepts of algebra. In the thesis we use spectral sequences
which are shortly recalled in appendix Further concepts for doing computations
would be Hochschild homology and Cyclic homology. These kind of approaches are
not discussed here.

1.2 Motivation from symplectic geometry

An ongoing research project in symplectic geometry asks about the embeddability of
closed Lagrangian manifolds into symplectic manifolds (Y, w = d\).

A submanifold X < Y is called Lagrangian if w|x = 0, so that \|x is a closed 1-form.
It is called ezact Lagrangian if the cohomology class [A|x] € H'(X;R) vanishes.
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k
For the exact symplectic manifold (C*,wy) with wy = d\g = d( Y] z;dy;) and X closed
i=1
we know that X < C* Lagrangian implies that

(1) HY(X;R) # 0 (Gromov, [16]).

(i7) X does not admit a Riemannian metric of negative sectional curvature (Viterbo,
cf. [12]).

To prove (i), Gromov constructs a non-constant pseudo-holomorphic disk, which in
particular is a smooth map w : (D? 0D?) — (CF, X) such that

0< E(u) := Ju*wo = fu*/\o :

implying 0 # [Ao|x] € H'(X;R). In particular it follows that a Lagrangian submani-
fold of C* cannot be simply connected.

For (i) the authors in particular need that all non-constant geodesics are not con-
tractible which is the case for negatively curved manifolds.

The techniques for proving (i) and (i7) are rather different and do not allow to exclude
that a product M x N of a simply connected and a negatively curved manifold embeds
as a Lagrangian submanifold into C*. In this thesis we aim to treat this special case.
We use the work of Fukaya as input.

Fukaya’s insight was that compactifications of moduli spaces may be understood in
terms of algebraic equations in string topology. These equations in turn yield better
obstructions against the Lagrangian embeddability. This approach combines the two
different methods of proof into one strategy inspired by homological algebra and in
particular by string topology. We briefly recall the author’s ideas.

Pick an almost complex structure J compatible with wy that is J : TC* — TC* with
J* = —1, wo(v, Jv) > 0 for all v # 0 and wo(Jv, Jw) = wy(v,w) for all v, w. Further
choose a class a € my(CF, X) = 7;(X). One expects the following moduli spaces to be
finite dimensional manifolds:
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moduli space dimension

M(a) := {ue C*((D?,aD), (C*, X)) | [u] = a, dyu = 0} k+ pla)

parametrized J-holomorphic curves of class a

M(a) := M(a)/Aut(D?,1) k+ p(a) — 2

unparametrized J-holomorphic curves of class a

N(a,t) := {ue C*((D?0D),(CF, X)) |[u] = a, Oyu =n} k+ p(a)

parametrized, perturbed
J-holomorphic curves of class a

N(@):= U N(a,t) k+ p(a) +1

te[0,1]

Remark that dyu = 3(du + J o duo j) € Q¥ (D?, w*TCF) = Q*(D? CF) is the an-
tiholomorphic part of du and {n;} is a one parameter family of antiholomorphic one
forms satisfying

e 19 = 0 (so that N(a,0) = M(a))
e 1, such that N (a,1) = & for all a € m(C*, X) .
Recall that for the Maslov index p one has p(a) € 27Z since X is oriented. Later we

work with a degree (— k) shifted chain complex, where M(a), M(a) and N(a, t) vield

even dimensional data.

All stated moduli spaces come with an evaluation map
evy : 'moduli space’ — X

via u — u(1l) and [u] — u(1), respectively. The second map defined on M(a) is well-
defined since we only divide out the automorphisms that fix 1 € 0D?.

The spaces M(a) and N (a) are compactified by adding bubble trees of J-holomorphic
curves. For details the reader is referred to [3I] and especially chapter 4 therein.
Remark that only disk bubbles and no sphere bubbles appear since mo(C*) = 0. The
resulting compact spaces are expected to have codimension one boundaries

o M(a) = ]_[ M(ay) xx M(ag) and

a1 +az=a

N (a) zN(a,l)EN(a,O)u [T (W(a) xx M(az) u M(ar) xx N(az))

. J

a1 +az=a

= M(a)

where the fiber products are taken using the evaluation maps ev; described above.
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Fukaya’s insight was that these compactifications may be described in the language of
string topology as follows. The evaluation map

ev: C*((D? 0D), (C* X)) — LX

u U|5D2

induces a corresponding map for the above moduli spaces. It allows to interpret these
moduli spaces as chains in a certain chain model C,_;(LX). Heuristically speaking
when lifting the string topology operations defined by Chas and Sullivan to chain level
one gets the following identities

M= (MM},
ON = {N, M} + [X]

where M := Y M(a) is of even degree |M(a)| = k + pu(a) — 2 — k = p(a) — 2 and
a#0

N =3 N(a) is of even degree |N(a)| =k + u(a) — k = pu(a) in Cy_p(LX).

Remark that for « # 0 we have that M(a) is a degenerate chain, factorizing over
M(a). The remaining M(0) = M(0) just consists of constant J-holomorphic curves
corresponding to the chain of constant loops [X] in LX.

The infinite sums make sense when working with completions with respect to the action
filtration {F'};cz, with F! o F'*1 given by

Fli= FIOL(LX) = {ce C.(LX) | A(c;) = 1}

where ¢ = Y ¢; and ¢; with connected domain. Here the action A(c;) is defined as
follows. Having connected domains means that ¢; is a chain in a path component
L*X of LX. Remark that

a; € mo(LX) = T (X) = conjugacy classes of m1(X) .
For a smooth map u : (D? 0D?) — (C*, X) the action

A(u) = Ju*wo = fu*)\o = f Ao

D2 S1 ulg1

just depends on the class [u] € Fo(C*, X) = 7,(X). We thus define

A(e;) == Ala;) = A(u)

where [u]g1] = ;.

The action integral is additive when composing loops.
In the language of string topology this means that if {a, b} # 0, we have

A({a,b}) = A(a) + A() .
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For the chain coming from the moduli space of non-constant holomorphic curves M
we can apply proposition 4.1.4. of [31] and get

A(ev (M)) > 0.

Further for the chain [X|= (X — LX) coming from the constant loops at each point
of X we get

A([X]) =0.
In full generality the observations are summarized as a theorem (see [25] for more
details) proposed by Fukaya in [13].
Two difficulties are silently suppressed here. It is quite nontrivial to find an almost
complex structure such that M and N are transversally cut out, and thus are mani-
folds, whose boundary can still be described as outlined above. Further since working
with real coefficients one has to think about signs in the stated equations, resulting in
a discussion about orientations of the involved moduli spaces.

Theorem 1.1 (Thm. 6.1., Thm. 6.4. and Thm. 12.3. of [13])

For a closed, oriented, spin Lagrangian submanifold X < CF there exists a com-
pleted, filtered, degree shifted complex C(LX) with a filtered dg Lie algebra struc-
ture (0,{-,-}) implementing the Chas-Sullivan loop bracket on homology.

The moduli spaces yield chains M,N € Cy(LX) with M € C,(L*°X), which
satisfy the following equations:

oM =3 IM M), (1.1)
ON = (N, M} + [X] (1.2)

A suitable dg Lie algebra structure on chain level is introduced and discussed in Irie
[20].

This theorem motivates the study of algebraic structures on H,(LX) in chapter [4] of
this thesis. There the focus is laid on closed, oriented, finite dimensional Riemannian
manifolds X arising as products M x N where M, N are assumed to be smooth, closed
and oriented Riemannian manifolds of finite dimension dim M = m = 0 respectively
dim N = n = 3. Further M is assumed simply connected and N has negative sectional
curvature. To apply the arguments of Fukaya we need X to be spin. For the topological
discussion presented in the text this assumption is negligible.

1.3 Results of the thesis

When nothing else is indicated we consider (co-)homology with coefficients in a field
of characteristic 0. Goals of our study can be summarized as follows:

e How far can the vector space structure of H,(L(X; x X5)), HS' (L(X; x X3))
be described in terms of the homology vector space structure of the separate
factors?
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e How can string topology operations on H,(L(X; x X)), HS' (L(X; x X3)) be
described in terms of those on the homology of the separate factors?

e How can Ay /Lg-structures on H,(LX) be computed in specific examples?

e For which manifolds can we achieve appropriate vanishings result for the higher
operation implying the non-embeddability as a Lagrangian submanifold into C*?

The following results are discusses in the thesis. The author remarks that not all are
completely new but proofs of them are sometimes missing in the literature.

(1) String topology of products
It is explicitly proven that one has a Kiinneth type isomorphism of BV-algebras

H,(L(M; x My)) = H,(LM;) ® H,(LM,)

for M; being finite dimensional smooth manifolds that are closed and oriented. Further
by analysing the corresponding universal bundles we present a way of how the Euler
class of the S'-bundles

L(X1 x X3) — (LXy x LX,)//S" and (LX; x LX5)//S* —> LX1//S" x LX,//S" |

where LX//S' := LX xg ES', may be computed in terms of the Euler classes of the
separate factors. Using the Serre spectral sequences gives a method to compute

HY (L(X; x X,))

whenever the X; are path-connected topological spaces. Unfortunately so far it is not
clear how the string bracket may be computed in this set-up due to missing informa-
tion about the Mark and Erase map for the product case.

(17) Higher structures in string topology

We want to understand A-/Ly-algebra structures in string topology. Therefore we
rely on the work of K. Irie [20]. In that article it is proven that when working with de
Rham chains and real coefficients we get a Gerstenhaber algebra structure on chain
level of LX. This structure in turn descends to the string topology structure on ho-
mology defined by Chas and Sullivan.

By applying the homotopy transfer construction this equips quasi-isomorphic chain
complexes (as for example H,(LX)) with an Ay-/Ly-algebra structure. We prove
that for a product X of a simply connected and a hyperbolic manifold of dimension
greater than 3 the corresponding higher operations on H, (LX) essentially vanish (c.f.

theorem and |4.16)).

Using the arguments of Fukaya as a black box this yields an obstruction against the
Lagrangian embeddability of X into CF, precisely speaking we prove:
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Theorem 1.2

A closed, oriented, spin Lagrangian submanifold X < (C*,wg) fork =n+m >3
can not be of the form

M x N

where M, N are smooth, closed and oriented Riemannian manifolds of finite di-
mension dim M = m = 0 respectively dim N = n > 3, with M simply connected
and N of negative sectional curvature.

1.4 Outline

As the results suggest the text consists of three parts:

e A general, geometry focused introduction to the world of string topology in
chapter [2|

e An algebraic discussion of A, /Le-algebras in chapter As an example we
construct an Ax-algebra structure on the homology of a complex C, where H(C')
is isomorphic to H,,,(LS™) as an algebra for n > 2.

e A construction of the transfer of the dg Lie algebra structure on Irie’s complex
(cf. [20]) to homology in chapter [df The arising vanishing results for a certain
class of manifolds then yield theorem as a corollary.

The first chapter can be seen as more introductory since many already known concepts
are described. In chapter [3| we discuss Ay /Le-structures in general and in particu-
lar for the homology of LS™. This serves as a toy model for the general picture of
higher string topology of product manifolds in the last chapter of this thesis. Chapter
forms the heart of the thesis in the sense that we discuss concepts that are necessary
for addressing the motivating question of the present studies, namely the Lagrangian
embeddability into CF.



Chapter 2

String topology

In this chapter we discuss basic notions of string topology. In particular we review

algebraic operations on
H.(LM) and H (LM)

where M is a finite dimensional smooth manifold that is closed and oriented. Through-
out the chapter we closely follow the original work of Chas and Sullivan (cf. [5]). We
recall their ideas with a slight focus on the geometrical perspective, meaning that we
highlight why concepts only work for homology and may not be generalized to a chain
level description. As the title of the thesis suggests we then pay attention to manifolds
that arise as products M = M; x M,. The chapter then directly leads to section
where Irie’s rigorous definition of string topology on the chain level is reviewed.

2.1 Topology of loop spaces

As outlined in the motivation we are interested in certain path/loop spaces. In the
following we denote the standard interval [0, 1] by I and regard the one dimensional
circle as S = R/Z. Without further mention we require X to be path connected and
having the homotopy type of a countable CW-complex.

Definition 2.1

For a given path-connected, pointed topological space (X, xq) we consider

e the path space
CO
Poy X i={y: 1 — X | 7(0) = 20}

e the based loop space, and its Moore version,
0
0, X = QX = {7: 8" 5 X [ 1(0) = (1) = o}
QX = QX 1= {(7,7) : [0,00) <= X [V ¢ = 7€ [0,00) : (7,7)(0) = (3,7)(¢) = w0}
c C%([0,0),X) xR
e the free loop space, and its Moore version,
LX :={y: 5" <, X}
CO
LYX :={(y,r) - [0,00) — X [V i =7: (7,7)(0) = (7,7)(t)}

11
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e the homotopy orbit space or string space

LX xg ES' .

Remark 2.2. For the homotopy orbit space we quotient out the diagonal S*-action.
This is done by using ES', the total space of the universal bundle over BSY, in order
to get the circle acting freely on LX x ES' and thus the quotient to be non-singular.
Remark that the action S* —~ LX via

7() = (- +0)

for0 e S', v e LX is not free since for example constant loops ., (t) = xo € X are fived
points for all 0. For a short recap about classifying spaces and the Borel construction

we refer to Appendiz[5.3,

Lemma 2.3
We have deformation retractions

O X 50, X and LMX -5 LX .

Proof: The case for the pointed loop space is discussed in [3]. We describe the case for
the free loop space that works analogously.
Remark that we have a homeomorphism

LX = {(y,r)e LMX |r=1} = LY X
that is used for the following inclusions
IMX S Y X = {(y,7) e LMX |r = 1} & VX .

We deform in two steps from right to left.
A deformation retraction Hj : [0,1] x LMX — LMX for ¢; is given by

(v,r+s) for r+s<1,
Hy(s,(v,r)) = Hi((v,r)) := (7,1) for r<landr+s=>1,
(v, 7) else .

That is we have Hj o1 = idpy x for all s € [0,1] and 1 0 H{ ~id my via Hy.

The space LY X deformation retracts to LY | X via Hy given by reparameterizations
of the form

Hy(s, (v,7)) = H3((7,7)) := (v © hrs, (L = )7 + 5)
where h; 4(t) := mt reparametrizes . |

In particular the Moore- and the ordinary loop space (based or free) have the same
homotopy type and thus their homotopy and homology groups are isomorphic.
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Remark that QX, Q™ X are H-spaces, that is we get an induced algebra structure on
H,(QX), H.(QMX). The reader is referred to Appendix The product for QX is
simply the concatenation, whereas the product on Q™ X is given by

(v,r)# (m8) = (yxmr +5)

where

. ~(t) ,0<t<r
7er(t) '_{ T(t—r) ,r<t<r+s

Clearly 41, 15 in the proof above are H-maps and the homeomorphism relating 2X and
OMX is an H-equivalence. One easily checks that H}, Hl are H-maps, namely

Hy((y,7) + (1,5))

(y*7),2) , rs<l
_f ((y=7) 1), r+s<1 (y+7),r+1) , r=1,s5<1
| ((yr)rts) L rHs=1 (yer),1+s) , r<l,s>1

((fy*T),T"i‘S) ) 7’7521
=Hi((v,7) « Hi((7,5))

and

Hy((v,7) # (7,5)) = Hy(((y £ 7). 7 + 5))
=((y#7) 0 hyps1, 1) ~ (Yo hya, 1) # (7 0 hyy 1) = Hy((7,7)) « Hy (7, 5)) -

We conclude that we even have an algebra isomorphism

H,(QX) = H (OMX) . (2.1)

As the headline of this chapter suggests we are interested in the topology of loop spaces
and it thus does not matter if we work with the Moore version or not. The advan-
tage of Moore loop spaces is provided by the fact that the concatenation operation is
associative. The space of based Moore loops is a monoid with the constant loop xg
being the neutral element. For non-Moore loops concatenation is only associative up
to homotopy given by reparameterization.

We introduce the slightly less intuitive Moore version of the free loop space for defining
operations (see chapter for chains on LX. There we need that concatenating loops
is strictly associative and thus defines an algebra structure on C,(LX).

To keep the presentation simple we mostly work with spaces of non-Moore loops QX
and LX in this chapter.

As all considered loop spaces are mapping spaces Map(X,Y") of continuous maps be-
tween topological spaces X and Y, we equip them with the compact-open topology (see
e.g. [29]). A subbase is given by open sets of the form {f € Map(X,Y) | f(K) < U}
for K < X compact and U c Y open.
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These loop spaces are not only just topological spaces. Using J. Milnor’s result (Corol-
lary 2 in [32]) we know that for a topological space Y having the homotopy type of a
countable CW-complex, the mapping space Map(X,Y) is of the homotopy type of a
countable CW-complex if X is a compact metric space.

As a first approach to understand these spaces we think about their path-connected
components, labelled by classes in mo(-). Loop spaces are disjoint unions

QX =[] (X = {reQX |7~ f})
[flemo(Qzy X)
tx= [] (IMX:={reLx|y~1}),
[flemo (LX)

where we used based and free homotopies, respectively. For homology we get

H,X)= @  HOYX)
[f]Eﬂ-O(QzO X)

H(LX)=~ @ HJ(VX)
[flemo (LX)

Ho(LX xgt ESHY=HS' (LX) = @ HS' (LX) .
[flemo(LX)

Points in the loop space LX correspond to loops in X. We aim to understand how
7o(LX) may be interpreted in terms of the fundamental group m(X). For a short
recollection of fundamental groups and homotopy theory in general the reader is re-

ferred to Appendix

Two given based loops f, g € €2, X are homotopic and thus define the same element of
70(Q, X ) if and only if there exists a path of based loops connecting them. The map

H:T—Q,X
H(O’t) :f(t); H(lat) :g(t); H(S,O) = 2o ,

is interpreted as a homotopy H : I x S — X implying [f] = [g] € m1(X, x0).
Next we want to understand my(LX). This is done in two steps.

For points f,g in the same path-component of the free loop space LX we do not
have f(0) # ¢(0) in general and thus may not work with a based homotopy H with
H(s,0) = x. But we require X to be path-connected and thus get a path h connecting
f(0) and g¢(0). Since g and h='gh are freely homotopic in X, we identify mo(LX) with
the set of based loops modulo free homotopies that do not have to fix the base point

g (see figure [2.1)).
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h(o):X()

f(t)=H(0,t) g(t)=H(1,t)

Figure 2.1: Free homotopy H': I — LX connecting f and g

So suppose f, g € £2,,X are freely homotopic via

IxS'— X

H:I—LX H X

HO0.) = £(0) : H(1

The path traversed by the base point h(s) = H(s,0)isaloop in X that is [h] € (X, x¢).
We claim that [f] = [ 'gh] = [h] ![g][h] and thus get that loops in Q,, X which are
freely homotopic correspond to elements in (X, zo) that are conjugate.

A homotopy is given by

H:Ix8 —X

(s,t) —> { H(s, 1_2) pte[s1— ]

Conversely for [h™! fh] = [g] € m1 (X, z0) we may use the homotopy yielding h™' fh ~ ¢
to write down a free homotopy where the path of the basepoint is a closed loop in X.
We thus get [f] = [g] € mo(LX).

In total when assuming X to be path-connected we get

70Dy X) > 71 (X) (2.2)

and
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mo(LX) <5 % (X) (2.3)

{[f1=[g]|IreLX : f~7""g}

conjugacy classes of [f],[g] € 71(X)

= m(X).
—=_m(X)
if m1(X)
abelian

In order to get a better handling of our loop spaces we make use of the fact that
they all fit into fibrations. We refer to Appendix for a short summary of the most
important facts of fibrations. For them we have many methods for deriving topologi-
cal properties of the involved spaces, for example long exact homotopy sequences and

spectral sequences (Appendix [5.4)).

Definition; Lemma 2.4. The following maps are fibrations:

e path-loop fibration

QX — P, X vy
]
X (1)
e loop-loop fibration
QX —LX v w)=a
Lo )
X\: v(0) x

e loop-string fibration

Sl——LX x ES?

|

LX xg ES!

Remark 2.5. By using the long exact homotopy sequence (see e.g. Appendix and
that P,, X is contractible we get that the homotopy groups of the involved spaces are
given by

Wi(QaX) = 7TZ'+1(X)
WZ(LOX) = WZ(QOX) C—BTF,L(X) = 7Tz+1(X) (—B’TQ(X)
for i = 1. Further
mi(L*X x g ESY) = 7;(L*X)

for i = 3.
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Proof: We show that the stated maps are fibrations.

Denote the set of continuous maps I — X by X'. Consider the associated fibration
p: E, — X to the map {zo} = X. As described in Appendix its total space is
given by

E, = {(w0,7) € {xo} x X1 | 7(0) = 20} = Py X =: PX .

Since the fibration map is of the form p(zg,vy) = (1) its general fiber is given by

p (@) = {(z0,7) € {wo} x X' | 7(0) = 0, ¥(1) = 2} ~ Qo X .

This shows that PX — X is a fibration. The construction of the associated fibration
further yields PX ~ {zo} which implies m;>o(PX) = 0.

Observe that the contractibility of the path space PX simplifies the long exact ho-
motopy sequence for the path-loop fibration as follows

o T (2YX) -5 0> (X)) > 11 (X)) > 0 - - - - > (X)) - m(QYX) .
(

Exactness directly implies m;(Q4X) = m;41(X) for ¢ > 1.

We directly show that X' (cvo.e0n) X x X is a fibration. Consider the commuting
diagram
g I
Y x {0} X
L l(evo,em)
y x 1S v x
We define G: Y x I — X7 as
G1(y,t — 3s) , 0<s<i
X 3Gy.t)(s) =1 9,0(2zBs—1) , §<s<1-4}
Gao(y,3(s—1)+t) , 1-L<s<1

and get that G(y,0) = g(y,0) and
(evo, evr) o Gy, ) = (Gly, 1)(0), Gy, (1)) = (G1(y, 1), Ga(y, 1)) -

(evo,ev1)
—

That is X/ X x X is a fibration.

Pulling back this fibration along the map A : X — X x X yields the loop-loop fi-
bration. The existence of a global section s : M — LM implies that the long exact
homotopy sequence for the loop-loop fibration splits. With m;(Q*X) = m;11(X) we

get mi(LYX) = m1(X) @ mi(X) for i > 1.

The map LX x ES! — LX x g ES' is a S'-principal bundle and thus a fibration by
construction.

17
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2.2 Operations on the homology of certain loop spaces

In the following discussion we replace X by M since we require the underlying space
to carry the structure of a n-dimensional manifold M™ that is closed and oriented.
The standard reference for the following chapter is the original article [5]. When we
define our operations we mostly refer to it. In our summary of the construction we
keep a geometric focus, relying on ideas illustrated in [7]. This geometric approach
helps in section for a chain level description of string topology. For a strict homo-
topy theoretic construction the reader is referred to [I1]. A general overview of both
approaches and possible further developments is provided by [9].

Remark that the upcoming section does not claim mathematical preciseness. We aim to
provide a schematic picture about the particular operations. For a detailed discussion
of the operations on chain level we refer to [20] and chapter [4]

2.2.1 The commutative algebra (H.(LM),e)

One easily defines an intersection product n on H,(M) if M is a Poincaré duality
space. This is done by dualizing the cup product with the help of Poincaré duality.
This approach can not be used for defining such a product for the homology of free
loop spaces LM.

But Poincaré duality is defined for M and we have an intersection product n (of
degree —n) on H,(M). We further have the Pontryagin product e (of degree 0) on
H,(QXM). The theory for pointed loop spaces is relatively classical. Important results
are stated in appendix [5.3

As we have seen, the spaces LM, QM and M fit into the loop-loop fibration. Thus
we may regard LM as a twisted product of M and QM and try to combine the two
operations N and e to define the so called loop product e (of degree —n) on H,(LM).
We remark that similarly to the intersection product the loop product is defined on
homology but on chain level only makes sense for transversal chains. We adopt the
language of [5] and call such operations transversally defined on chain level.

In the following we work with coefficients in a field k of characteristic 0 (mostly Q or
R). Tt is possible to define the operations for Z coefficients. This is done in the stated
references above.

Recall the theorem of R. Thom ([35]) about realizing homology classes by manifolds.
For all classes a € H;(M;Z) there exists k € N such that ka = f,[K’] where

f:K'—- M

is a smooth map from a closed, oriented, i-dimensional manifold K.

This allows us to describe the intersection product for coefficients in the field k coeffi-
cient set-up as follows. Namely for a € H;(M; k) and b € H;(M; k) we get representing
chains f, : K — M and f, : K} — M, that is

ko-a=(fu)«[K!] and ky b= (f)«[ K] - (2.4)

Recall that we have
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Proposition 2.6 (Corollary 2.5 of [23])

Let f:V — M, g: W — M be two maps between manifolds. Then there is a
homotopy hy of g such that hy = g and hyA f. In particular [g] = [hi] on homology
H(M).

After such a perturbation of f, to fb (by abuse of notation also denoted by f;,) we get
transversality of the two maps, f,h f,. By the implicit function theorem the space

Koy =Ko Xy Ky = {(kmkb) € K, xu Ky | fa(ka) = fb(kb)}

is an oriented manifold of dimension 7 + j — n. This yields a chain

famfb:wa_’M (25)
of degree i + j — n.

For details about which orientation is naturally assigned to K, x,; K} the reader is
referred to chapter 8.2. of [I4]. In the following we use their conventions. In order to
understand sign issues we recap some properties of the orientation of fibre products.
Reversing the orientation of some manifold X is as usually denoted by —X.

Lemma 2.7 (Chapter 8.2. of [13]])

For smooth oriented manifolds X; and Y; (0Y; = (&) one has orientation preserving
diffeomorphisms between

(1) 6(X1 Xy XQ) and 5X1 Xy X2 L (_1)dim Xi+dim YX1 Xy 6X2
(11) (Xl Xy, Xg) Xy, X3 and Xl Xy, (XQ Xy, X3)
(111) X1 XY1xYs (XQ X Xg) and (_1)dim Ya(dim Yi +dim X2)(X1 Xy, XQ) Xy, X3

(iv) X1 xy Xo and €(f1)-€(f2) - €(g) X] xy X},
induced by €( f;)-oriented diffeomorphisms X; N e(fi)X] and an €(g)-oriented
diffeomorphisms Y % €(g)Y" where €(f;), e(g) € {£1} .

Remark that we assumed appropriate maps between (products of) X; and Y; such
that expressions in the Lemma make sense. As shown in chapter 3.1 of [7] relation
(iv) yields that the canonical twist map X; x Xy - X, x X, induces an orientation
preserving diffeomorphism between

(U) Xl Xy X2 and (_1)(dim Xi+dim Y)(dim Xo+dim Y)XQ XYXl . (26)

The importance of this relation is reflected in the fact that later all appearing products
are graded commutative on homology.
For chains as defined in (2.5)) defined above Lemma yields the following relations
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(Z) a(fa N fb) = afa M fb + (_1)|fa"fa M afb

(1) (fan fo) 0 fe=Tfan (o0 fe)
(@10) for (fs® fo) = (=D)TME(fo A f) 0 fo
(@) for fo= (DVelRfy A f,
where from now on we always use
If:| := dim K; — dim M .

Since K; is closed we get that o(f, n fy) = (fa N fo)lox,, = 0 and thus the product
defined above descends to homology. In total we define the intersection product

anb:=

Tkir [fo=/fo: Ko xpu Ky »> M]e Hyj (M k) . (2.7)

Due to the appearing coefficients it is clear that this definition only works for coetfi-
cients in a field k of characteristic 0.
In total we get the well known fact that

H,.(M; k) := Hyfgimm(M; k)

is an associative, graded commutative algebra with | n| = 0.

The discussion above is classical and can be generalized to define a product for the
free loop space LM. Again remark that the discussion is possible for coefficients in
a ring, but is simplified here by using coefficients in a field k of characteristic 0. We
recall ideas presented in [5] and [7].

By using the loop-loop fibration

QM—— LM

AN
e’UOl 9
M.

we regard LM as a twisted product of M and QM. Combining the intersection product
n on H,(M;k) and the Pontryagin product e generalizes the discussion above such
that we get a product e of degree 0 on

H*(LM,k) = H*+dimM(LM;k) .

Given classes a € H;(LM;k) and b € H;(LM;k) are represented by continuous maps
fo: Ki— LM and f, : K] — LM from closed oriented manifolds K,, K.

We choose the representatives such that f, := evgo f, and f, := evgo f, are smooth and
mutually transversal in M. As in the discussion above this yields an (i + j — n)-chain
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fun o Ko X Ky — M .

Since LM — M is a fibration the perturbations can be lifted and we get that

faﬁbeKaX]MKb—)LMXMLM

defines an (i + j — n)-chain.

For (k4 ky) € K, xp Kp the base points f,(k,)(0) = fy(ky)(0) coincide and we thus
can concatenate the loops as in the definition of the Pontryagin product for the based
loop space. In total this means that

Ja® fo: Ko Xy Ky > LM (2.8)
where
, falk)(2t) , te]0,1/2]
Ja o Jo (ka ko)(1) := { fll)2t—1) , te[1/2.1]

defines an (i + j — n)-chain in LM = C°(S*, M).
Analogously as in the discussion of the intersection product one can then prove that:
Theorem 2.8 ([3, section 2)

(H,(LM:;Xk),e) is an associative, graded commutative algebra. The algebra unit is
given by ¢ = s,([M]) € Hy(LM; ).

Remark 2.9. Since the map

M2 LM< M

18 the identity, the corresponding chain representing e s transverse to all possible
given chains. Thus e o a respectively a o e makes sense (even on chain level) for all
a € H,(LM) and equals a since one concatenates with constant based loops. It follows
that e = s.([M]) is the algebra unit.

The reader should be aware of the fact that associativity on chain level only holds up
to homotopy. This comes from the fact that concatenating pointed loops is only strictly
associative when working with Moore loops. Similarly to equation we have

H, (LM) = H, (L M) (2.9)

as algebras. Analogously as above we have a loop product for the homology of the free
Moore loop space when defining (@ as

fa d fb(kaa kb)(t) = (fa(ka) # fb(kb))(t) )

where we concatenate Moore loops. Taking the fiber product Ky xy; Ko s independent
of using Moore or non-Moore loops. The homotopy equivalence LMM ~ LM only
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involves reparameterizations of the given loops and thus the product structures on ho-
mology agree.

The graded commutativity needs more attention, because the algebra (H,(QM),e) is
clearly not (graded) commutative. A schematic illustration of the loop product may be
drawn as in figure [2.2.

asb b
Figure 2.2: Illustration of the loop product a e b

On chain level of LM we need to define an operation f, * f, whose boundary yields

fao fo— (1) Wlfy 0 £, (2.10)

at least for chains representing homology classes. Pictorially this has to be considered
as in figure [2.3. The construction of = is recalled in the next section [2.2.3.

[+

axb

I+

a b.a a

Figure 2.3: Graded commutativity of e on H,(LM)

2.2.2 The Gerstenhaber algebra (H.(LM),{-,},s)

Extending the ideas of how the loop product is defined it is clear that a loop product
where the 2nd basepoint is moving should have the following domain

K, xy (I x Kp) .

We review ideas for non-Moore loops and thus work with the standard interval [ =
[0, 1] instead of R as the time domain. For given homology classes

a€ H;(LM;k), be H;(LM;k)
represented by closed manifolds K,, K, we get that

evg: Ko,—> M and ev:I x Ky — M
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are mutually transversal (after perturbation). That is K, x (I x Kj) is manifold of
dimension 7 + j + 1 — n. Since this domain gets mapped to a family of based loops we
again may concatenate and thus get a chain in LM. The operation

is transversally defined on chain level where

folk)(2s) , se0,t/2]
(far fo)(ka,t.ko)(s) =1 fa(ka)(2s —1) , se[t/2,57]
fb(k’b)(QS — 1) , SE€ [t+1 1]

for (kq,t,ky) € K, xar (I x Kp). Visualized in a schematic way it looks like the left

side of figure 2.3
By using the results of Lemma [2.7] we may examine 0(f, * f;). The geometric boundary

of its domain is given by

(—1)”“'5(}@ XN[?] X ij)
=(—DVel ( Kaqup + (=)l (K, xar ({1} x K) — Ko xar ({0} x ) — Kowap))
=(—D)Vel Kppap + Kaup — (—D)FI K, 0 — Koy

On the one hand this proves the graded commutativity of the loop product on homology.
But further it also yields that for representing cycles f,, f, one has

&) 0fa=0fy=
o(fas fr— (1 )('“‘“)(‘b‘“f v £2) f“( Dl(f, 0 fy = (1)1 fy 0 £)+

— (- 1)(|a\+1)(|b\+1 (-1 )‘b‘(fb o fo—(— 1)\blla\fa of)) =0

As shown in [5] the closed chain (*) not only descends to homology but also defines a
graded Lie algebra structure via

(el Uel} o= U s fo = (=100 e fo]
Theorem 2.10 ([5l], chapter 4)
(H,.(LM),{-,-}) is a graded Lie algebra with |{-,-}| = 1. That is

(i) fa.b} = —(=D)(HDEDLD o} (Symmetry)
(i1) {a,{b,c}} = {{a,b},c} + (—=1)UeFDWIFDLY Lq ) (Jacobi identity) .
Further {-,-} defines a derivation on the algebra (H,(LM),e)

{a,bec} = {a,b}ec+ (—1)M=Dpe {a, ¢} .

Remark that a datum like (H,(LM), {-, -}, o) satisfying the stated properties is called
a Gerstenhaber algebra in the literature.
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2.2.3 The Batalin-Vilkovisky algebra (H.(LM), A, e)

In the last section we defined a ’basepoint moving loop product’ . Here we try
to separate this into two operations namely the ordinary loop product (with fixed
basepoints) and an operation A that models the moving of the basepoint. In particular
A descends to homology and we get a BV-algebra structure whose informations could
alternatively be used to prove Theorem [2.10]

As reflected in the loop-string fibration we have an action of S* on LM that rotates
the basepoint. This defines a BV-operator of degree +1 on Cy(LM) via f, — Af,,
where

=:Kpaq
Af,:S'x Ky — LM (2.11)
(t, ko) = fa(ka)(t + ) -
Remark that this operation is fully defined and not just transversally on chain level.

Since 9(S! x K,) = 0S' x K, — S' x 0K, by Lemma, we conclude that A descends
to homology and we get an operation

A Hy(LM) —> H,1(LM) .

Further on homology A is a differential, that is it squares to zero, A o A = 0. This
can be seen as follows. For an i-chain f, € C;(LM) applying the BV operator twice
yields a degree i + 2 chain A(Af,) : S* x S' x K, — LM. However, it is a degenerate
chain and thus homologous to zero since it factors through an ¢ + 1 chain

S!x S x K, > S'x K, > LM
via
AAf) (8,8 ko)) = falka)(s+t+ ) = Afa(s+ 1, ka)() .

As announced the following theorem states the fact that a combination the loop prod-
uct e and the BV operator A yields the loop bracket {-,-}.

Theorem 2.11 ([5], section 5)
(H.(LM),e,A) is a Batalin-Vilkovisky algebra with |A| = +1. That is:

(i) (H.(LM),e) is an associative, graded commutative algebra.
(i1) Ao A =0

(4ii) The expression (—1)%A(a eb) — (—1)!?/Aa e b —a e Ab is a derivation in each
variable

One easily checks that

(—DlA(@eb) — (~1)"Ac e b —a e Ab=: {a,b} (2.12)
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defines a Lie bracket for a,b € H,(LM). In [5] the authors show that it coincides
with the loop bracket defined above. So Theorem can indeed be taken as a
generalization of Theorem In fact one may check that a Batalin-Vilkovisky
algebra in general yields a Gerstenhaber algebra when defining the Lie bracket via

{a,b} == (=D)A(aed) — (=1)Aceb—ae Ab+aeA(l)eb .

Remark that in our case the algebra unit 1 is represented by the constant loop at each
point that is f; : M — LM. We get that A(f1)(t,p)(-) = fi(p)(- +t) = fi(p)(-). That
is A(f1) is a degenerate chain and thus 0.

This leads to

{a,1} = (-=D)1MA(a e 1) = (=D)Ag e 1 = (-1)"Aa — (~1)l"Aa =0
for all a € H,(LM).

2.2.4 A graded Lie bracket for H5'(LM)

We apply the Gysin sequence, see for example appendix [5.2] to the loop-string fibration
St LM x ES' 55 LM x g ES' and get the exact sequence

s H (LM) -5 HEL(LM) 25 HEL o (LM) 25 Hy (LM) — - -

The maps m,, 7* are called Mark and Erase since we think of LM as the space of
loops marked by the basepoint whereas LM x g1 E'S? presents the space of unmarked
strings. &£ is just the induced map on homology thus can be interpreted as forgetting
the basepoint. The degree +1 map M maps a family of strings to the particular S*
fibres in the total space, that is it puts basepoints everywhere to the loops.

The Gysin sequence provides a possibility the ’go back and forth’ between non-equivariant
and equivariant homology. Precisely speaking one asks what happens with operations
defined for one side when transferred to the other via

£
/—\

H,.(LM) HS (LM) .
\_/
M

When taking the identity maps

idy, : H,(LM) — H,(LM)

id, o HY (LM) — HS' (LM) |

sl
H*

these transfer to

£oidg, oM =0: HS' (LM) — HS (LM)
Moid, o o€ 2 A H,(LM) — H,(LM) .
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For (*) remark that applying M to £(a) for a family of loops a we get back a but now
with basepoints spread along the loops, that is Aa.
The BV operator on non-equivariant homology transfers to

EoAoM=Eo(Mo&)oM=0.
v v

With (2.12) we get for the loop bracket transferred to equivariant homology that

£ o {M(a), M(b)} = E( + A(M(a) e M(D)) T A(M (a))eb — ae A(/]\/l 1)) =0.

It remains to check what happens to the loop product e. In fact it yields a non-trivial
operation and surprisingly not a product but a bracket on non-equivariant homology:
Theorem 2.12 ([5])

(HS'(LM:;X),[-,-]) is a graded Lie algebra, with bracket of degree 2 —n defined by

[a,0] := (1) E(M(a) e M(D)) (2.13)
where |a| = dima — dim M. This means that graded commutativity

[a,0] = —(=1)"*"[b, a]
and the graded Jacobi identity

[a, [b, c]] = [[a, 8], c] + (=1)“"![b, [a, c]]

are satisfied.

2.3 Computational methods

It is mostly non-trivial to compute the vector space structure H,(LM;k) for a given
topological space X. In the following we mostly work with coefficients in a field k of
characteristic 0 and write H,(LM) for simplicity reasons. To derive string topology
structures for smooth finite dimensional oriented closed manifolds as defined in section
is even harder. Exceptions are very well understood spaces as S!, Lie groups or
Eilenberg-MacLane spaces K(G, 1). In the following we show how direct methods may
already yield some information.

The following section about computations refers to methods presented in [I] and [7].

The circle St

Throughout the whole text spheres S™ appear all the time. We distinguish between
the simply connected spheres "2 and the non-simply connected circle S*.
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The 1-sphere S! is the simplest closed manifold. For the point {pt} one has a ring
isomorphism H,(Lpt) = Z and HS (Lpt) = H,(BS").

Recall that

H.(LS:Z)= @ H.(L"S,Z)

that is we need to understand

L"S' = {v:S' - S'|deg =n}

consisting of loops with winding number n. Via its universal cover R ¥ S' a map
f e L™S! lifts to a map

FeF,={"R->R|I'(t+1)-T()=n}.
The lift F' is unique up to translation by an integer and further homotopes to
G(t) = nt + m(F)
via

H:[0,1] x F, — F,
(t,F) — (1 —s)F + s(nt + m(F))

where m(F') := i(F(t) —nt)dt € R.

Projecting this homotopy via exp yields a deformation retraction from L"S! to the set
of constant speed loops

LSt = {v, : S* — SYdy,/dt = n}

that wind around n-times and only differ by their basepoints p € S*. Remark that the
homotopy is S'-equivariant, meaning that the following diagram commutes

[0,1] x LSt x St S=action 1 1]« [ngt

n ol 1 Sl-action n ol
LSt x S Lns

where the (S! = R/Z)-action is given by

St x L"S' — LnS!
(7. f) = f(r+) .
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The commutativity is provided by

m(F(r + ) = J(F(T ) —nt) dt — J (F(2) — n(x — 7)) dz = m(F) + nr

since F(t) — nt is 1-periodic.

The evaluation at the basepoint evy(7,) = 7,(0) yields a homotopy equivalence
LSt ~ St

that is also S'-equivariant. Here the action of S*, with coordinate 7, on S! is given by

(1,t) = [nT + t] e R/Z (2.14)

In total we get

H.(LSYZ) = P H.(SHZ

nez

The generators of H,(S';Z) = Z{z,y) (|z| = 0, |y| = 1) are similarly used for the free
loop space homology of LS!. We set

T, {pt} = LS' and y,:S' — LS!

where x,,(pt)(t) = [nt] € R/Z and y,(7)(t) = [nt + 7] € R/Z and get

H., LSl @Z<l‘n yn> with |[xn]|=—1,|[yn]|=0.

nez

We work with shifted degrees and thus the loop product e is of degree 0. By degree
reasons we get

] o [a,] = 0.
Since evg o y; : S* — St is a submersion, the products z;  y; and y; e y; are defined
even on chain level.

The domain of z; e y; is pt x g1 S' ~ pt. So concatenating at ¢ = 0 the loop that winds
around i-times with the one winding around j-times yields

[zi]  [y;] = [wiss]
that holds on chain level only up to reparameterization. For y; e y; it is similar except

that now the domain is S' x g S* ~ S!. The resulting one dimensional family now is
given by

[yi] ® [yi] = [vi+s] -
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So the algebra structure is fully understood and we deduce

H,(LSY7Z) = Ag(u) @z Z[t,t7"] with |u| = —1,[t|=0, (2.15)

where u = [z0], t' = [y;] and ut® = [z;]. Remark that we already use the notation
proposed by [10)].

We conclude with the BV-algebra structure. On homology we get for the generator
[2;] = ut® that
(Az) (m1) = [i(r + )],

so that Awx; is homologous to iy;. Thus for H,(LS';Z) the BV operator is fully
determined by

Aut' = it" (2.16)

that in turn yields a Gerstenhaber algebra with Lie bracket given by

{ut', ut?y = (i — §) ut™ ; {ut', '} = —jt" ; {1} = 0. (2.17)

The S'-action is trivial on the component L2S' ~ S' = LS! containing the trivial
loop. Further for n # 0 and the diagonal S'-action on L™S! xES', where the action

~ Gl
on the first factor is as in (2.14]), we get that

L"S' xg1 ES' ~ $°/Z,

for n # 0. Here S®/Z,, is the infinite lens space. See for example appendix for a
short review of its topological properties. Its homology groups are given by

Z ; 1=0
H{(S*/Z2,;7) =< Z, ; iodd
0 ; else

In total we get a Z-module

HE(LSY,Z) = @ HP (L"SY,Z) = P HL(L"S" xs1 ESY,Z)
nez n
= H,(L°S" x BSL,Z)® P H.(L"S' x5 ES'; Z)
n#0
=~ H.(S%Z)®@ H.(BSY;, Z) ® P H.(S®/Z,; Z)
n#0

= (D H.(SH2)/iy) ® @ Ha(S7/Zn; 2)

120 n#0
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where the generator ¢ € Hy(BS?; Z) is Kronecker dual to the Euler class ¢ € H*(BS'; Z)
of the universal S'-bundle ES' — BS' and H,(BS";Z) = Zg.|c] is the divided poly-
nomial algebra, that is it is generated by monomials j—f

We simplify things by working with coefficients in a field k of characteristic 0 and get

([ P kla,) , i=0

nez

HP (LShK) =4 klag@d) , i=2j#£0 - (2.18)

| k(1g®@¢) |, i=2j+1

When working with shifted degrees the Mark respectively the Erase map have degrees
IM| =0 and |€] = —1. Due to (2.15) the non-equivariant homology of LS! is concen-
trated in degree —1 and 0. This means by construction

M) =it" | Eut’) = a; , EX°) = 1a

and zero else.
We end up with the string bracket of degree 2 —n = 1 that is fully described by

(2.15))
[ai, o] = —E(M(a;) @ M(ay)) = —E(it" o jtI) = > —ij E(t'H) (2.19)
f —ijle , i+j=0
B 0 , i+j#0

because (") = E(M(52)) =01if i + j # 0.

i+7

Eilenberg-MacLane spaces K (7, 1)

Recall that the loop-loop fibration yields an exact sequence
- = T (g M) — 1 (LM ) — w0, (M) — 1 1 Qg M) — - -+, (2.20)
for M path-connected. Eilenberg-MacLane spaces M with

(M) =0 for n#1

are very attractive to be studied in the context of string topology. Examples of such
spaces may be found in chapter 1.B. of [I8]. Recall that we require M to be an
n-dimensional closed and oriented manifold. The following examples shall be discussed:

(i) the circle S* (previously treated)

)

(i) the torus T"

(iii) manifolds of non-positive sectional curvature K
)

(iv) products of the stated examples (see chapter
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The torus T™ and products are easily understood in terms of string topology for the sep-
arate factors when we have the results of chapter about string topology of product
manifolds in general. In this way we will deduce the BV-algebra structure of H, (LT™).

Lemma 2.13

The S'-equivariant homology of LT™" is given by

HI(LTY = H (TYQH.(BSHY @ ( @ Ho(T"Y) @ Hu(ESZggitmy,.mn)) ) -
(mi,...,mpn)
v
(2.21)

Proof: Again we follow [I] here.
As for the circle S! the homotopy equivalence T — LOT™ is S'-equivariant. We thus
get

H (L’T™ x g1 ESY) = H,(T" xg ES') =~ H,(T™ x BS') ~ H,(T") ® H.(BS") .

Since T™ is a Lie group we have a product - and get a homeomorphism

Lo — o707 (2.22)
v al) ()

where a : S' — T™ is of constant speed and a representative of a.
As for the circle S! we get a homotopy equivalence

{a-7 [ () =peT"} = al" — LO7OT"

which is also S'-equivariant. The S'-action is given by

Sl ~ LayéOTn _)LoméOTn
(r,7) > (1 +)

and

St x aT™ — aT™
(Tya-7p) = a(T +-) -

respectively.
We thereof get

LT x g1 BES' ~ aT" xg1 ES' ~ aT"/S" x ES" /stab(a) ~ aT™ ™" x S /Zggt(my....mn)

since the stabilizer Stab(a) of a in S' is given by Lo T(mi..
(m1,...,my) € Z". Further a7~ ~ T"~! since tori are Lie groups.

,my) When its class a is
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In total we get

.....

Since we understand the loop product it remains to understand the Mark and Erase
map to compute the string bracket [-,-] for H5' (LT™). Unfortunately we do not have
a general answer and refer the reader to chapter 2.3.1 of [I], where the calculation is
done for n = 2.

So how to compute things for manifolds with non-positive sectional curvature? The
following proposition derives the module structure of homology.

Proposition 2.14

Let X be a path-connected topological K(my,1)-space and [f] = a € mo(LX).
Topologically one has
L°X ~X and L*7°X is a K(Cly(mi(X)),1) space

where the subgroup
Co(m (X)) = {g' e m(X)|g'g = g9’}

is the centralizer of g € m(X). So for homology we have

HA(LX) = H(X)® @ H(K(Cipnm(X)),1) .

Oiae%l(X)

Corollary 2.15

If a Riemannian manifold M has sectional curvature K(p,o) < 0 for all p € M
and o € T,M then it is a K(m,1)-space and further

Clyzo(m(M)) = Z .
This implies
LM=Mu || S
0+ aemny(LM)

vielding for homology

H(LM)=H,(M)® @  H.(S"
0#aemy(LM)
HY'(LM) = H(M)@ H,(BSY® @  Hu(ES"/Zuw)

0+# aemg(LM)

where the free homotopy class « is the n(«)-th iterate of a primitive homotopy
class.
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Proof of Proposition [2.14]: For X a K(m,1)-space, (2.20) and the fact that we have
a section s : X — L°X allows to deduce

(LX) = m(X) & m (02, X) ~ 1 (X) @ ma(X) = m(X) .
path-loop fibration

Remark that the splitting exists only for the o« = 0 component. From remark we
see that m(Qg X) = mpy1(X) = 0 for k£ > 1 and thus with (2.20) we deduce

Wk(LaX) =0

for £ > 2. By using the Whitehead theorem we get that the inclusion of constant
loops X <> L°X induces a homotopy equivalence

X ~I°X and thus H,(L'X) =~ H.(X) .

Since mp(L*X) = 0 for k > 2 it remains to compute

7I'1(LO[X) = 7-‘—I(L(X)(a f) = WI(LXa f) )

for [f]=a # 0.
Recall the result of [I7] namely

7T1(LX, f) = C[f](ﬂ'l(X)) .

Remark when setting a = 0 we get the previous result for 71 (L°X) = 71(X). The
statement can be easily seen when considering the loop-loop fibration. Indeed, the
exactness of

(o X, f) — m(LX, f) 5 1y (X)
—

éﬂ'z(X)=0

implies m1(LX, f) = im((evp)«). Remark that 5 € im((evg)s) < m1(X) if and only if
there is a map

b:S' xSt — X

such that by = evg o b : S x {0} — X is a possible representative of 8 and further
that blggyxs1 represents [f]. Similar as in figure this means that there is a based
homotopy from by * f to f = bg.

We thus get [bo][f] = [f][bo] that is 3 = [bo] € C[y(m1(X)) and therefore

7T1(LX, f) = C[f](ﬂ'l(X)) .

We conclude that L*X is a K(Cy(m1 (X)), 1)-space for « # 0 and thus

H, (LX) = Ho(K(Co(mi (X)), 1))

for a # 0.
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Proof of Corollary [2.15|: It remains to think about the statement for X being a nega-
tively curved manifold denoted by M. Due to the Theorem of Cartan-Hadamard (see
e.g. [4]) we know that in this case the exponential map

expp : TyM — M

is a covering and thus m;(M) = m;(R™) =0 for all ¢ > 2. So M is a K (w1, 1) space.
So with the previous proposition it remains to compute

7T1(LX, f) = C[f](ﬂ'l(X))

for [f] # 0. Here we rely on methods presented in chapter 12 of [4].

For the universal covering 7 : M — M we get that the group of covering transforma-
tions of M is isomorphic to 7 (M) due to [28].

When combining Proposition 2.6 and Lemma 3.3 of [4] we get that under the stated
isomorphism a nonzero element [f] € m1 (M) corresponds to a translation

F:M—o>M

and there exists a unique geodesic ¥ M which is invariant under F , that is F(§) = 7.
For [g] € Cf(m1(X)) the defining condition of the centralizer translates into

F(G®H)) = GF®)) = GOH)

and by uniqueness we get G(5) = 7.
This holds for all elements of Cpy(m1(X)) and thus Lemma 3.5 of [4] states that
Ciy)(m1(X)) is infinite cyclic, that is

7T1(LX, f) = C[f](ﬂl(X)) ~7Z

for [f] # 0.

We deduce that L*M is a K(Z,1)-space for a # 0 and thus homotopy equivalent to
S1. If « is the n-th iteration of a primitive class, we can find a representative f for a
of the form f(t) = vy(nt). Then the homotopy equivalence is realized by the map

St oM
T f(r+).

Remark that this map is S'-equivariant for the S'-actions

St x 8t - St (s,7) > [ns + 7] e R/Z
St x LM — LM ; (s,z) — z(s + )

As in the discussion previous for 7" we thus get for o # 0 that

LM x g1 ES' ~ S xq1 ES' ~ §°/7,
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implying

HS' (L*M) =~ H,(ES"/Z,) .

For L°M ~ M by working in the simply connected cover of M we get an S'-equivariant
homotopy from contractible to trivial loops. Thus as in the previous discussion we
get

H5' (LOM) >~ Hy(M x g ES') =~ Hy (M x ES'/S') ~ H,(M) ® H,(BS") .
u

So what do we know about the string topology operations for manifolds of negative
sectional curvature?

Corollary 2.16

Let M be a manifold of negative sectional curvature of dimension n = 3. For the
space

L*°M := | | L°M
a#0
of non-contractible loops on M the loop product, the loop bracket and the string
bracket vanish.

Proof: This holds by degree reasons. Du to the previous corollary

H, (L7 M) ~ P Hen(Sh
0+#aem(LM)

is concentrated in degrees —n and —n + 1. When working with these shifted degrees
the loop product is of degree 0 and the loop bracket is of degree 1.
The image of the loop product lives in degrees —2n, —2n + 1 or —2n + 2. To possibly
get non-vanishing operations these degrees must be —n or —n + 1. This can only be
satisfied for 2 > n > —1, a contradiction.
The same consideration for the loop bracket yields 3 = n = 0, but the n = 3 case
can be excluded. The only non-trivially vanishing operation would be of the form
{c,d} with |[{c,d}| = —3 for |c| = |d| = —2, but remark that (ev;)«c and (ev;)«d are
degenerate chains and thus {c,d} = 0.
The string bracket is vanishing since M preserves the property of a loop to be non-
contractible and further the loop product is 0.

|

The reader is referred to chapter where we discuss how these effects already par-
tially appear on chain level.

For the dimension 2 case we refer to chapter 2.3.2 of [I]. We know that a closed
oriented surface M admits a hyperbolic structure if and only if x(M) =2 —2g <0
(see e.g. Theorem 9.3.2. in [33]). Since we need orientability for the string topology
operations we may focus on oriented surfaces of higher genus ¥,-; in the following.
Working with coefficients in a field k of characteristic 0 yields
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Hoo(LM) = H(M)® @ Ho(S")=Z® P klzo)

0# e (X) 0+
Ho(LM)=H(M)® B H(S")=H(M)D P kya)
0#aer(X) 0+ o

Ho(LM) = k{[M])
Hy(LM)=0 for k¢{—2 —1,0}

where we adopt the notation of the discussion of S!, namely z, is one loop and vy,
is the S'-family of loops in the class a. We know that [M] is the unit for the loop
product. By degree reasons (| e | = 0) the remaining pairing to discuss is

H_,(LM) @ H_,(LM) —> H_,(LM) .

For the BV operator we get Az, = c.y, and 0 else for ¢, € k being the multiplicity
of a.
When ignoring the constant loops LM we get for the S'-equivariant homology

HS(L°M) = Hy (L°M) = P k() fora#0.
a#0

Thus string topology is incorporated in

HS (LMY®HS' (LM) XS H_ (LM)QH_,(LM) > H_o(LM) 5 HS (LM) X H_, (LM)
where up to sign the composition of the first three arrows is the string bracket
[a,b] = (=D E(M(a) e M(1)) .
Composing the last three arrows yields the loop bracket {-, -}|u_,are2 since Ay, = 0.
Recall that
{a,b} = (=1)YA(a e b) — (=1)|Aceb—aeAb.

Since for surfaces the string bracket [-, -] is just the Goldman bracket

(el = D sen(®)mn el

PEYINTY2

we conclude that

Ya ®Yp = Z ixa*pﬁ
p

when again ignoring the constant loops, that is a;, 8 # 0.
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2.4 Products of manifolds

In terms of the algebraic structure defined in chapter [2.2] for the ordinary and the S*-
equivariant homology of LM, and LM, we show how these structures may be computed
for loop spaces of the product manifold M; x M.

2.4.1 BV structure of the non-equivariant loop space homology

We aim to understand the BV-algebra structure of H,(L(M; x Ms)), where M; are
compact, oriented manifolds of dimension dim M; = d;.
For M := M, x M, we have a homeomorphism LM ~ LM; x LM,. It is provided by

¢ = (p1,02) : v +—> (Lpri o7y, Lpraoy)

where Lpr; : LM — LM, is the natural projection induced by projecting on one factor
with pr; : M — M;. As before we work with coefficients in a field k of characteristic
0. By the Kiinneth theorem for vector spaces we have

Hy(L(My x Ms)) = Heyayra(L(My x Ma)) = @ H;(LM;) ® Hj(LM>) =
i+j =k+di+da
(2.23)

= P Hi—a,(LM\)® H;_q,(LM) = P Hi(LM)) @ H;(LMy) .

itj=Fk i+j=k

We want this relation to be an algebra isomorphism where the multiplication is given
by the loop product as a degree |®| = 0 morphism on shifted homology. This is indeed
true and can be seen as follows. The considerations are inspired by the discussion of
the loop product for Lie groups in [7]. Remark that we refer to chapter 3.2.1 of [1]
where the formulas for the loop bracket and the BV operator for product manifolds
are used for computational purposes.

In summary we get
Proposition 2.17

The BV-algebra operations of H,(LM) =~ H,(LM,) ® H,(LM,) for a product
manifold M = M; x M, are given by

([r1] @ [22]) o (] @ [ge]) = (1) ([21] @ [n]) @ ([wa] @ [12]) (224

A([21] @ [22]) = Ai([21]) @ [22] + (=1 [0 ] @ A([2]) (2.25)

for the tensor product of the BV-algebras H,(LM;) and H,(LM>).

Proof of (2.24): For i = 1,2 let ; : Ky, — LM; and y; : K,, — LM; be given and
consider the product chains
(x1,29) : Kyy x Kyy — LMy x LM,
(y1,92) : K, x Ky, - LMy x LM> .
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We may assume that evy o z; and evg o y; are mutually transversal in M; for i = 1, 2.
This implies that the fiber product K;., = K, x )/ K, may be written as an union of

(k1'17 k127 ky17ky1)|(€?}0 © xl)(kl:z) = (67}0 © yl)(kyz)} =
= K901 X K272) X (M x Mz) (Kyl X Kyz)

{
(
(i;'i( 1)dimM2(dim]V[1+dimel)((le % Kauy) %a1, Kyy) %, Ky
(
(
(

Nasg

() dim Ma(dim M; +dim K, )+dim K, dim K

= _1) ( w) ! 2((Kx2 X le) X My Kyl) X Ma Kyz
(i1) dim Ms(dim M +dim K, )+dim K, dim K,

= _1) ( v) 1 ”2(Kl‘2 X (le X My Ky1)) X Ms Ky2
W, 1 )dim Ma(dim M +dim Ky, )+dim Koy dim Ko, +dim Koy (dim K, +dim K, +dim M)

((Kml X My Kyl) X Kl“z) X Ma Kyz
(g)(_l)dimel (dirn Koy +dim Ma)-+dim My (dimn Koy i Ma) (¢ ) Ky) % (Kay <01, Kyp)

:(_1)(dime1*dim]Wl)(diszQ*dimMQ)(Kml X My Kyl) « (ng X M, Kyg) )

Remark that we applied the results (i) — (v) of Lemma and write =" if there
exists an orientation preserving diffeomorphism. The resulting orientation preserving
diffeomorphism

~ im K, —dim M im K. —dim M
Ka:oy U(_]‘)(dlm 1 dim 1)(d1m w2 dim 2>KI1OZ/1 XK:C202J2

fits into a commutative diagram of the form

Kuey AL LM (2.26)
(-1 |= =~ o
U K]}l LA X KI‘Q ® Y2 LMl X LM2

D(z1eyr,z20y2)

Here the vertical maps are given by

C( a(k)@2) , tel0,1/2]
(:v-y)(kxaky)(t)—{y(ky)(zt_1) L te[1/2,1]

_ (21 (k) (20), 22 (Kay ) (21)) , 1€[0,1/2]
(12 91,2 @ 92)Res By By ) () = { (k) (2~ 1), 1ol )2~ 1))+ e [1/2.1]

The commutativity of (2.26)) implies that the loop product on the level of homology
is given by
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H,(LM) @ H,(LM)

~

(71)(dim Ky —dim M1y )(dim Kgo —dim M3)
H,(LM;) ® Hy(LM;) ® Hy (LMy) ® Hy (LMs)

eXe

H, (LM;) @ H,(LMs)

~

H, (LM) .

For homology classes [z], [y] € Hx(LM) the loop product [x] e [y] is therefore given
by

([z1] @ [22]) o ([y1] © [2]) = (=D ([21] o [y1]) @ ([2] o [y2]) (2.27)

where |- | is the degree of an homogeneous element of the commutative graded algebra
(H«(LM),e). In total we get that (2.23)) is an algebra isomorphism with respect to
the loop product. |

It remains to derive how the BV operator A on H,(LM) may be expressed in terms
of A;, the ones defined on H, (LM;).

Proof of (2.25) : For i = 1,2 let x; : K;; — LM; be given and consider the product
chain

(x1,29) : Kyy x Kyy — LMy x LM, .

We have a T?-action on (x1,z2) is given by

T:(S' x 81 x (K, x K,,) — LM; x LM,
(51752’ kl‘u km) — (xl(km)( + 51)7x2(k332)(' + 52)) .

The BV operator as an S'-action on (x1,z2) in turn is given by the composition

Ay, x2) 0 ST x (K x Ky,) diagxid (ST x SN x (K, x Ku,) IS LMy x LM,
(87 kxl? kxz) — (57 S, k$17 kxg) .

Further we have the separate S'-actions

> (S'x Ky )% Ky

~

(Azy,x2) : 5L x (Ky, x Ky,) i (St x SN x (K, x Kg,) L LM, x LM,
(S7k$17kz2) — (Suovkzlukzg) .
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and
= (—1)Hm R K < (ST Kqy)
(z1,Axs): S x (KZ1 x Kg,) 224 (ST x 81 x (K, x Kg,) L, LM,y x LM,
(S, kzyykay) — (0,8, kpy s kay) -

The stated domains fit together such that

A(:L‘l, {L‘Q) — ( (Aazl, $2) + (_1)dim Kay ({L‘l, A$2) )

is a the boundary of T restricted to the triangle D < T2 which is the projection of
{(s1,52) eR?]0 <51 <1,0< 53 <1,0< s1—82 < 1} under the projection R? — T2,
This implies that

A([z1] ® [22]) = Ar([21]) ® [w2] + (—1)FERM [01] @ Ag([a2])

for [x;] € Hy(LM;) since |z1| = dim K, — dim M;. |

2.4.2 The structure of the S'-equivariant free loop space ho-
mology

Extending the ideas of the last section we try to understand the graded Lie algebra
structure of

(HY (L(M;y x M), [,]) ,

in terms of (HS" (LM;), [+, -]) where M; are oriented manifolds of dimension dim M; = d;
and the Lie bracket is given by the string bracket.

Unfortunately we may not be that optimistic as in the last section. We derive a spectral
sequence related result which provides a possibility to compute the module structure of
HS'(L(M; x My)). It is still not clear how the string bracket for products is computed
in terms of the underlying brackets for the separate factors.

We only present results for some specific cases where the string bracket is already
vanishing for at least one of factors. In contrast to the loop product this does not in
general imply the vanishing of the string bracket for L(M; x M,).

Basics facts about spectral sequences for fibre bundles are briefly reviewed in appendix
b.4 The essence of understanding the Leray-Serre spectral sequence of an S™-bundle
E — B lies in the topology of the base and the transgression map, that in turn is
determined by the Euler class e € H"™(B).

For an S'-bundle Y — X spectral sequence arguments yield the exact Gysin sequence
> Hy(Y) — Hy(X) =5 Hyo(X) — Hp oy (Y) — -+
For coefficients in a field of characteristic zero we deduce

Hy(Y) = ker(Hy(X) =5 Hy, (X)) @ coker(Hy 1 (X) = Hy (X)) .
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Theorem 2.18
For X = M, x M, the Euler classes of the bundles

Sl LX X g1 ESl Sl ﬁ'L(Ml X Mg) X ESl ~LX
I |
(LMl X g1 ESI) X (LM2 X g1 ESI) y LX X g1 ESl

are given by

+ (m(e1) — m(e2))

and

tp*(mi(er) = £p"(m3(e2))

respectively. Here e; € H*(LM; xg1 ES') for i = 1, 2 are the Euler classes of the
S'-bundles

Sl ——~ LM; x ES' ~ LM;

|

LMZ X g1 ESl
and m; are the projections

(LM, xg1 ESY) x (LMy xg1 ES') ™% LM; x g1 ES' .

The theorem is proven with the help of the universal bundles. A short summary of
universal bundles and classifying spaces is given in Appendix [5.2]

Understanding the homology

Ho(LM;) and HS (LM;) = H,(LM; xg ES")
means that we understand the Euler classes of the following bundles

F;

St ——— LM; x ES? S* St

| |

LM, xg ES! Ji cp®

By examining the Leray-Serre spectral sequence and using the contractibility of S®
we get
H*(CP®) = Z[u]

where u € H*(CP®) is the Euler class of S® — CP®. It yields the Euler class of the
bundle on the left via pullback
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eZ(LMz) =e; = fl*(u) S HQ(LM,L X g1 ESl) .

In the following we do not care about the explicit form of f;.

Euler class of the S'-bundle (LM; x LM;) xg1 ES' — (LM, x g ES') x (LMy xg1 ES'):

The Euler class e € H2((LM; x5 ES') x (LM, x g1 ES')) is given by

(f1 x fo)* (1) (2.28)
where @ denotes the Euler class of the bundle on the right hand side of
Sl (LM1 X LMQ) X g1 ESI S* X g1 S* Sl
(LM, x g1 ESY) x (LM, x g1 ESY) fixfe CP® x CP”
(2.29)

Remark that

(LM, x LM,) xg1 ES" — (LM, xg1 ES") x (LM, x g1 ES")

mods out a complement of the diagonal S! 5 T2. It remains to understand how % can
be written in terms of u the Euler class of the S'-bundle S® — CP®.

Since the bundle S® — CP® arises as a direct limit of S'-bundles

Ie 52n+1 S2n+3 ...
C CPn CPn+1 C .

and H*(CP") =~ Z[a]/(a™™") (|a] = 2) we conclude for the Euler class

e(S* — CP™) = e(S* - CPY) =
e( 88 =85 )=ae H'(S?) = Z[as]/(a3) , |as| =
Hopf fibration

u =

By the same reason the Euler class @ equals the Euler class of S3 x g1 S? — §% x S2.
Observe that we have a diagram of pullback bundles:

S B AF(PB xS =B G T2

|

ST 1#(S? x g1 §3) — §% x 51 S° A*(S? x g1 S%) st
") | !
S “s 52 x S £ S

(2.30)
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Here ¢; is the inclusion into the first respectively second factor and A is the diagonal
map x — (z,x). This yields for the total space and p; that

Sl B xSt 82 - =1

* p1 —
S oS xa )55 = {51%51“153&52 L i=2

The bundle on the left is thus a Hopf bundle with Euler class +1. For the Euler class
U=2 @z e H*(S* x S?) =~ Z®Z we thus get 17 (21 @ 22) = £2z; = 1 and conclude

e(S? xg1 8% — §% x §%) = (£1) @ (£1) .
The total space

A*(S* x S ={(z,y) € S® x S*|30e S*: 0.0 =y}

of the T%-bundle over S? can be identified with S x S!. For this space the diagonal
Sl-action is not a diagonal map but the Hopf map

S3 xSt A*(S? xg1 9%) = 5% x St
We deduce that the bundles on the right hand side is trivial and therefore get

A*(e(S% xg1 S5 — 52 x §%)) = A*((+1) @ (+1)) = 1+ 1 =0

since the Euler class of a trivial fibre bundles vanishes in general. In total we conclude

e(P x> P xSP)=tU=+(1®-1)==+(ud—u). (2.31)
Combining this with (2.28)) we get that the Euler class of
(LM x LMy) xg1 ES* — (LM, xg1 ES") x (LM, x g1 ES")

is given by

HA((LMy xsi ES") x (LMy xg1 BSY)) 3 ke = & (fi % f2)*(0) =
= (fi x fo)"(u® —u) = ffu®—fou=
mi(er) — ma(ea) - (2.32)

Remark that
H?*((LM, x LMy) xg1 ESY)) 3 p*(7f(e1) — w5 (e2)) =0 (2.33)
by the exactness of the Gysin sequence.

So as claimed in the beginning of this section the knowledge of the Euler class of

Sl —>LMZ X ESl jad LMZ

|

I/]\JZ X g1 ESI
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yields Hfl(L]\/[l x LMs,) by using 1) for the Leray-Serre spectral sequence of the
left fibration of ([2.29).

Euler class of the S'-bundle L(M; x M,) x ES' — L(M; x M) x g1 ES*:

So far we presented a possibility to compute the module structure of

HS (LM, x LM,) .

When discussing operations that arise as descended operations on H,(LM) as de-
scribed in section [2.2.4) we need to better understand the corresponding Gysin sequence
for the loop-string fibration.

To be precise we need a concept of how the Euler class and the Mark, £rase map for

Sl ﬁ'L(Ml X Mg) X ESl ~ LM1 X LM2
(LM1 X LMQ) X g1 ESl

are computed in terms of the ones of

S'— = LM; x ES' ~ LM,

|

LM,L X g1 ESI .

At least for the Euler class we present a concept of how to compute it. We tie up to
the considerations and notions from above.

Remark that since the S3-bundle S? xg1 S — S2 is trivial we have a homotopy
equivalence

S3 xg1 §% ~ 8% x 8% ~ 83 x 57,
Again we find the Hopf map and thus get for the Euler class

e(S* x S3 — §3 x g S%) € H2(S?) @ HO(S%) = H'(S%) @ H2(S?) (2.34)

the class that that clearly arises when pulling back the Euler class of the Hopf bundle
S3 — S? via the projection onto the first or the second S2-factor.

This principle of the universal bundles is manifested in the loop-string fibration for
products, namely its Euler class arises as a pulled back Euler class via

(LM, x LM,) x ES" LM, x ES!

| |

(LM, x LM,) x g1 ES' — 2 ~ LM, xg1 ES*
or analogously for LM,. We conclude that the Euler class

e( L(M; x My) — (LM, x LM,) xg1 ES*)
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is given by
H?*((LM, x LMy) xg1 ESY)) 3 e = p*(nf(e1)) = p* (73 (e2)) (2.35)

which is consistent with p* (75 (e;) — 75 (ea)) = 0.

Exemplifying computation for 7? = St x St

Described concepts are demonstrated for the torus 72 as a product of two circles S*.
Recall that for a field k of characteristic 0 we have k-vector spaces

H*(LS") = @ Kay, Ayy and HH(LS') = Pklag®@c, 1o @)@ P k),

nez 120 0#n€ZL
for generators of degree |a,| = [A,|—1 =0, |ap®c.| = [1,®c,| —1 = 2i and |a,| = 0.
Since we work with coefficients in a field we may equally work with homology or

cohomology. As described in appendix [5.4]for the S*-bundle LS! x ES' — LS'x g ES!
the whole information of the Leray-Serre spectral sequence is encoded in the Fs-page:

q
= 2|0
=
20 i
R ]. ant 1.t “()Cnt lucut Ouc&t
= d, d, d
& 2
0 anp 1, a,C, l.c. C‘()Cf: T

0 1 2 3 4 P

H%L(LSY) (neZ)
We thus have for z, ¢, € H} (LS') that

dy 2@t — (x U, ®1

and zero else. That is the Euler class of the stated bundle is ¢, € Hz,(LS"). With the
spectral sequence we get the following generators for H*(LS!):

[an] = an ; [aneot] = An, [1a] = Ao

By the considerations above we get that up to a sign the Euler class c of the S'-bundle

LT? xg1 ES* — (LS' xg1 ES) x (LS xg1 ESY) (2.36)
is given by
Ca ® 1-1 ® Cﬁ .

That in turn allows to compute H}, (LT?). Namely the Es-page for (2.36) is given by
where

dy:z®t— (ruc)®1

for x € H% (LS') ® H% (LS") and zero else. For the cohomology of the total space we
get the following generators on the Ej-page and thus for H (LT?):
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= Ax(t)
[\
o

5 ¢ Lot 1.8t lalgt, LacaBmt, anlgest,
QnPm Qplpl, LaPm p . e 1at. 1. Bocat
oCafBmt, anfocst QoCalpt, Labocpt

d, d,
| \ 11, Loc B olac
0 b valgs LoBm alp aCaBm, anlpes,

[6 p
aoCafm, anfocs apcalp, lafocs

0 1 2 3 P

Hi (LSY®HE (LSY) (n,m € 2)

H*(S")

generators degree
[ Bm] for ny,m =0 0
[anBimt] for n # 0 A m # 0 1
[an1s], [LafBm] for n,m =0 1
[Lalsc’ ] fori =0 2i + 2
[aoBoct| for i > 1 2i
[aolpc, ], [1afoct] fori>=1| 2i+1

Remark that

HEH(LT?) 3 [2(ca ® 1 +1®cs)] = 2[wca] = 2[xcs]

due to (2.33).
We conclude that the S'-equivariant (co-)homology vector space HS' (LT?) is given by

(koK ok eklul)® @ (kek =H(*)®H.(BSY® D H(T").

(n,m) € Z2\0 Z™\{0}

which is consistent with (2.21)).

So how do results apply for the Euler class of the S'-bundle
~LT?
—
(LS x LS* ) x ES" — LT? xg1 ES* . (2.37)
Its Fuler class is given by
Ca ® 1=1 ® Cﬁ .

With the knowledge of H (LT?) we are now able to compute

H*(LT*) = H*(LS") @ H*(LS") .

Namely the Es-page for (2.37) is given by
where

do : [7]®T > [t U, | ®1

and zero else. For the cohomology of the total space we get the following generators
on the E3-page and thus for H*(LT?):
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q A
=
S
= 210
Al
;C; 1 [ BT [Ml[z];[i}(fm% [Lalg]r [aofoca]m  [aolger, [LaBocalr
= pPqt
¥ d, d,
= 06w 1m\
nPm anplg || LaPm
« [(1 5.1 [1alg], [a0foca) [aolpey], [LaBoca]
pPqt

0 1 2 3 D
HZ (LT?)  (n,m € Z) (p,q € Z\0)
generators degree

anbm = [anﬂm]Q 0
Aby = [afpt]s forp#0Aqg#0

B = [y fm]ar forn#0vm #0
Anb() = [O'/nlﬁ]% AObm = [1aﬁm]2 1
A B, = [apfytleT forp#0Agqg#0

ApBO = [Oénlﬁ]QT, AOBq = [1045771]27_ for n,m # 0
AoBO = [1011/3]2 2

In total this yields

H (LT?) = (P Kan, 4,)) @ ( P kb, Bny) = H*(LS") @ H*(LS") ,

nez meZ

which is consistent with proposition (2.17)).

We conclude the chapter by remarking the fact that methods nicely apply to consider-
ations concerning LM x LN when one Euler class is vanishing. This for example is the
case if we consider the space of non-contractible loops on a manifold M with negative
sectional curvature. Recall that corollary yields that for a field k of characteristic
0 one has

HS(LP°Mk) = P HJ(BESYZ,)®k= O Hy(BESYZ,)®k
0750467?1(]\4) 0¢a€7~r1(M)

which means that the FEuler class of the loop-string fibration of LM is vanishing by
degree reasons and further by the considerations above thus vanishes for

(LM x LN) x ES?

|

(LM x N) xg1 ES?

Products of manifolds where one factor has negative sectional curvature are further
examined in chapter The essence of why we are discussing these kinds of spaces
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lies in the fact that the topology of the space of non-contractible loops on them is so
well understood. Recall that in our context questions posed by symplectic geometry
and answered by using holomorphic curve theory only concern non-contractible loops.



Chapter 3

Homotopy algebras

Structures such as algebras or Lie algebras transfer from one complex to an isomorphic
complex. If the complexes are just quasi-isomorphic (as for a formal chain complex and
its homology) we get higher homotopy versions of algebras and Lie algebras namely
A/ Lo-algebras. This transfer construction is summarized in section for algebras
and in section |3.3| for Lie algebras. Standard references are [21] and [27].

The concepts for algebras are then applied to the dg algebra

(C,d) = (Az(e) ®r R[], d)

where

H.(C) = H,(LS™)

as algebras for n = 2. We get higher string topology operations extending the loop
product on Hl,(LS™) for n = 2.

In the following we always work with coefficients in R.

3.1 The homotopy transfer construction for algebras

3.1.1 A,-algebras

We rely on the ideas and concepts presented by Kadeishvili in [21].

An A-algebra consists of a graded vector space C' = @ C™ and operations
mz=0

m,:C®" ->C |, n>=1
of degree |m,| = n — 2 (homological convention) such that

n—1n—k
DU (et (@, e @l My (@ e Q) s @) = 0 (3.1)
k=0 j=1

for all n > 1. An equivalent approach is given by the bar construction.
On

49
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TC[-1] :=C[-1]®C[-1]®C|-1]&...
we have a coproduct 7 given by

k
n(a ® ... ag) 1= Z(a1®...®ai) ®(a1®..Qar) , [n=0.

i=0
The operations m,, : C®" — C determine a coderivation d : TC[—1] — T'C[—1], which
is given by

n—1n—k
A1 ®..@a,) = Y > (~DFHalHnle @ @ar@mj(arn ® .. @) ® ... @a, .
k=0 j=1

For d being a coderivation means that

NRd=(d®id+id®d)on:C - CRC .
Lemma 3.1 ([21] and chapter 3.6. of [22])

(C,{my}n>1) is an A-algebra, that is are satisfied for all n > 1, if and only
if

=0,
that is d is a differential on the coalgebra T'C|—1].

Remark 3.2. A dga (A, p,d) may be viewed as an Ax-algebra when setting

iy = d, Ma(a,b) = (=) ula®@b) = (=1)14ab, Fg=s:=0.

The sign factor is necessary so that the Ay -relations imply associativity and that
d is a derivation and vice versa. Namely (3.1)) for i = 2 reads as

ml(mg(a, b)) + mz(ml(a), b) + (_1)\a|+1m2(a’ ml(b)) =0 s

which according to the definition is equivalent to

(=Dleld(ab) + (=1) " dab — adb = 0,

that is

d(ab) = dab+(—1)1"adb .

Similarly (3.1) for i = 3 reads as

mg(ﬁlg(a, b),c)—i—(—l)'“‘“ﬁlg(a,ﬁ%g(b, C)) =0 s

which is equivalent to
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(=1)2a+18l (b e+ (—1) 2+ g (be) = 0

or simply

(ab)e =a(bc) .
Conversely an Ax-algebra (B, {my,},=1) is a dg algebra if m,, = 0 for all n = 3.
An Ag-morphism between A-algebras

{Fndnz1 2 (O {mn}) = (C7, {my})

consists of a collection of maps {f, : C®¥* — C’ of degree |f,| = n — 1} satisfying
certain relations. These relations can be expressed by saying that

f:TC[-1] — TC'[-1]

where f is given by

flar®..@ay) = )] > Fi (01 ® .. @) ® .. ® [ (n—ty 11 D ... @ )

t=1 {kl ..... k‘t ‘ Zk‘L=TL}
is a differential coalgebra map in the bar construction, that is
fod=dof and Wof=f®fon.
Lemma 3.3 (/21 and chapter 3.6. of [22])

The morphism f is a coalgebra map if and only if for all n > 1

n—1n—=k
Z 2(—1)k+|al|+'"+|ak‘fnfj+1(a1, ooy Uy MG (@ 15 oy Al )y Qs o Q) (3.2)
k=0 j=1

= > a1y oo ), ooy froy (Qriy 15 s )

The following subsection describes a procedure to transfer a given Ay -algebra structure
on A to a sub-complex i(B) < A. We need that i : B — A is a quasi-isomorphism.
In the following we often assume B to be the homology of A with trivial differential.
Further the A, -algebra A is mostly just a differential graded algebra, that is m,, = 0
for n > 3.

3.1.2 Homotopy transfer for dg algebras

Again we are following [21]. Let (C,u,d) be a differential (graded) algebra, corre-
sponding to an Ag-algebra (C, {f,},>1) with m,, = 0 for n > 3.
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Remark that on H(C') we always have the trivial Ay,-structure with m,, =0 for n > 3
when setting 0 = f,, : H(C)®" — C for all n > 2.

Further it is possible to define an A-algebra structure

(H(C’ d)? {mn}n>1)

that is induced by (C, i, d). This so called homotopy transfer construction is described
in the stated reference. We recall the construction here in order to derive a feeling for
the required formulas.

The construction described in [21I] allows to write down an Ag-algebra structure on
H(C) and further an Ag-morphism

f = {fn}n>1 : (H(C)v {mn}n>1) - (Ca {mn}n>1) )

where f; =i : H(C) — C is a chosen quasi-isomorphism. The morphism f is called
an A -quasi-isomorphism.

Theorem 3.4 (Theorem 1 of [21]])

Let (C, u,d) be a differential algebra over R. Then one gets an Ay -algebra struc-
ture {my,}n>1 on H(C) such that m; = 0 and my is the induced product on H(C').
Further one gets an A.-algebra morphism f = {f,},>1 : H(C) — C such that f;
is a quasi-isomorphism.

Proof: The dg algebra (C, i, d) is an Ag-algebra when setting

My = d, ma(a,b) = (-1)ua®b) = (=1)1"ab, Mpsg:=0

as before.
The theorem is proven by induction.

One starts by setting m; = 0 and defines f; to be a cycle choosing homomorphism 4,
which is possible since we assume H(C') to be free. Then fim; = 0 = my f; that is

(3.2) is satisfied for n = 1.

For n > 2 the necessary relations of m,, and f, required in . ) for {fn}n=>1 to be an
Ax-morphism translate into

flmn — Un = T?Llfn s (3.3)
where
Un(ai, .. 2 ma(fs(at, ..., as), fams(@st1, ...y an))+
n—2n-—1 -

k+1 :
Z Z(_l) Fltlar|+ +‘ak|fn7j+1(ala"'7ak7mj(ak‘+17"'7ak+j)’al€+j+17"'7an) :
k=0 j=2
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Things are simplified in the described way since my = 0 for k = 3.

For the inductive step £ — 1 + k assume that all operations m; and morphisms f; are
constructed for 1 < j < k — 1 and satisfy the relation (3.3)) for n < k — 1.

Equation (3.3) reads as
iom —Up=do fy . (3.4)

Since U only involves operations m; and morphisms f; for 1 < j < k-1 it is
determined and one checks that

d(Uk(al,...,ak)) =0
for a; € H(C). We define

(po Uk)(al,...,ak) = [Uk(al,...,ak)] =: mk(al,...,ak) .

Then (i o my)(ai,...,ar) and Ug(ai, ..., ar) are homologous for all a; € H(C), and so
for generators x1, ..., xy of H(C') we can choose fi(z1,...,x;) € C to be a chain whose
boundary equals

(tomy — Ug)(z1, ..., k) -

Linearly extending defines f. It remains to check that the operations my satisfy
(3.1)), which is proven in [21].

This completes the inductive step, and we conclude that f = {f,}n>1 defined in this

way is an Ay -algebra morphism.
[ |

Remark that the constructed operations and morphisms are not unique in the sense
that for each degree we chose f; and a homotopy f,, bounding fym, —U, for all n > 1.

To get more insight into the defined operations remark that for a formal dga (C, u, d)
we have the set-up

(H(C,d),d = 0) (C, i, d) O (3.5)

pot=id
1op—id =dh + hd

The first equation implies that p is surjective and i is injective. Both equations to-
gether say that ¢ is a chain homotopy equivalence with inverse p.

The described non-uniqueness of the arising operations and morphisms is displayed
in the global homotopy h. This can be seen as follows. Reinterpreting the stated
recursive construction yields

mi =0, ma(a,b) =poiia(fila), 1(b) = (=1)"p(i(a) - (b))

g

=Uz(a,b)
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and for (3.3) with n = 2 we get

iomy — Uy(a,) = (i o p — i)z (i(a). i()) & (dh + hd)i(i(a). (b)) =
= d(h o my(i(a),i(b))) =: d( fa(a,b) ) .

Here we used that d is a derivation and d o7 = 0.

Continuing in that manner we end up with Ag-operations on H(C') of the form visu-
alized in figure . A detailed description of this approach can be found in section
10.3.7. and in paricular theorem 10.3.8. of [27].

n inputs

m1:d=O

mn>2 — Z +

planar trees
with only trivalent
vertices

1 output

Figure 3.1: Visualization of higher operations

3.1.3 Homotopy transfer for a product of dg algebras

We continue to work with real coefficients. Recall that the tensor product C = A® B of
two differential graded algebras (A, pa,da), (B, up,dp) is a differential graded algebra
(Cv e dC); where

Cr= @ AP, uz®@y, ' ®y) = ()" us(x,2") @ up(y,y') ,
itj—k

Az Qy) = da(2) @y + (-1 z @ dp(y) .

For linear maps

f:A—- A and ¢g:B-—> DB

of degree |f| = p and |g| = ¢ the linear map f® g : AQ B —» A’ ® B’ of degree
|f ® g| = p+ qis defined as

(f@9)a®b) = (-1 f(a) ®g(b) .
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The homotopy transfer construction described above allows to write down an induced
Ax-algebra structure on H(C') and further an A -morphism

{n} s (H(C) {ma}) — (C{7n})

where f; : H(C) — C'is a quasi-isomorphism. One may ask whether the operations
m,, and the morphisms f, may be written in terms of the operations m:, m? and
morphisms f7 arising when doing the construction for the separate factors A and B.
In general this question is not easy to answer but the problem simplifies in the case
when the induced Ay -algebra on the homology of one factor is trivial. Here without
loss of generality we assume that H(A) is a graded algebra with vanishing higher

operations my=3 = 0.
Lemma 3.5

If the Ay-algebra structure on H(A) obtained from the homotopy transfer does
not have non-trivial higher operations, then the induced Ay-algebra of H(A® B) is
given up to sign by the induced Ay-algebra of H(B) with coefficients in the algebra
H(A).

Proof: Remark that for set-up (3.5) and thus for the homotopy construction we do
not need that the left hand side is the homology of the right. We want to split the
homotopy transfer into two steps and first discuss it for the following set-up:

i—is @id|p

H(A,dy) ® B (A® B, i, d) ©h=ha®idis (3.6)

p=pa®id|p

poi=id
top—id =dh + hd

The stated relations hold since

poi=p(ia®idp) = paia ®idp = idy ®idp = id ,

(dh + hd) = d(ha ®idp) + h(da ®idp +ids ® dp)
=daha®idp —ha®dp + hady ®idp + ha ®dp
= (iapa —id4) ®idp
=ip—id.

Remark that now we have m; # 0 and thus if we define U,, as before (3.2) does not
rewrite as (3.4) but

fiomi =do fi=mio fi

and
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n—1

fl O My — Un = dofn — 2(_1)kfn o (1ak®m1 ®idn—k—1)
k=0

for n > 2 where id(z) = (=1)/*lz and 1 () = dagp(x).

Doing the homotopy transfer construction for set-up (3.6)) yields the following opera-
tions and morphisms for H(A,d4) ® B:

Uy =mao (f1® f1),
m1 = id|ga,a,) ®dp , m2 =polUs,
fi=1a®id|p, fo=hoUs,
where fio(z,y) = (—1)I*l (2, y). This can be seen as follows:
The equation fi; o m; = d o f1 holds, since
(fiomi)([a] ®b)

= (fro (idluy) ®dp)) ([a] ®b) = (=) %ia([a]) @ dp(b)
L (do (14 ®id|p)) ([a] ®) = (do f1)([a] ®D) ,

and

iomg — Uy =do fo— fo(m @id) + fo(id @ m1)
holds since

(i0oma — Us)([a] @b, [a'] @)
= (fiop—id)Ma(iala] @b,ia[a' ] @V) = (dh + hd)Ma(iala] @ b,iala’] @)
= (do fo+homyomsa)(iala] ®b,iald] @)

(do f = (hoims)o (7 @id) o (fi ® fi)+
+ (homg) o (id®@iu) o (fi® f1))([a] ®b, [d] @)

frma =i f1 (do fa = foo(m ®id) + foo0 (j&@ml))([a] b, [d]@V) .

Continuing in that manner we define higher (k > 3) operations and morphisms via
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Ur(([ar] @b1), ooy (lax] @ b)) = = (=1)* Ui ([ar], ..., [ar]) @ pu (b, .., by)
fe(([a] ®@b1), .., ([ak] @ b)) = = (ho Uk)([ar], -, [ar]) © pp (b, .., br)

mi(([a] ®@b1), ..., ([ae] @ bk)) : = (po Ur)([a1], ..., [ar]) ® up (b1, ..., bi)
= (=1)*mj ([a1], -+, [ax]) @ g (b1, - bi)
where % = |b1|(|az| +... +|an| +n—1) +|ba|(|ag| +... +|an| +1n—2) +... + |bp—1|(Jan| +1).
Here m,{?7 U,f, f,f are operations and morphisms arising when doing the homotopy

transfer construction for

i

H(A,da) (A, pa,ds) Ot .

pa

We abbreviate pup(b,...,b;) := pup(...up(up(b1,b2),b3),...), by) which is possible since
we assume pp to be associative.

These definitions are justified since

(fiomn —Up)([a1] @ b1, ..., [an] @ by)
—1)*(iop—id) (U ([ar, -, [an]) @ pp (b1, ., br))
—1)*(dh + hd) (Ui ([a1], -, [an]) ® pp (b, ..., bi))

fa([a1] @ b1, ..., [an] @ by)+

D) (ayrHa a2 bl (A (g, o fan]) @ (1o d (), - b))
=dfp([a1] ® b1, ..., [an] ® by)+
+ Z |a1|+ Alag|+n—2+b1|+...+|bp—1 | +n— k(hU )([@1] @b, ., [ax] © di(bg), ooy [an] ®bn)
=1

k
:dfn([al] @bl, . [an] ® bn)+

+ i (—1)lasltibaltetlanlHo =k (a1 ) ([a1] @ by, ..., ma ([ag] @ br), -, [an] @ by)
k=1

n—1
= — —1)k id, ..., id, mq, id, ..., 1 a1 oy [an] ®by) .
=(dfn ng( D*(f)(id, ..., id, my, id, ..., id) ) ([a1] @ b1, ..., [an] @ by)

k

By assumption m,‘?>3 = 0 and thus we end up with a homotopy transferred A -algebra
structure on

H(A)® B

of the form

m1 = id|ga) @dp , ma = (pom)(i®i) = +my @up , mr=3=0.
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Since m3!([a], [a']) = (=) g4y ([a], [a']) we get

ma([a] @, [a'] @) =(p o Miz)(a@b,a’ @)
= (=)l 4y ([a], [a']) © i (B, V) -

That is up to sign the resulting Ax-algebra structure is nothing but the differen-
tial graded algebra structure of (B, up,dp) with coefficients in the graded algebra

(H(A), pria))-

So it remains to think about the Ag-algebra structure resulting of the homotopy
transfer construction for

idlgay®in
—_—

H(A)® H(B,d) H(A)® B, ptlp(ay ® |, id |y 4y @ dp) O cn® s

id|H(A)® bB

The stated relations hold since they hold for pp, ip, dg, hg by assumption. Thus
the homotopy transfer affects only the second factor and we directly conclude that on
H(A) ® H(B) we have operations and morphisms of the form

mp(la1] ® by, ..., [an] @ by) :=
fal[a1] @by, ..., [an] @ by) =

[a1] - .. - [an] @ i ([ba], -... [bn])
lar] - .- [an] ® fir ([b1], -, [ba]) -

3.2 Examples: A -structures for H.(LS")

We keep working with coefficients in R.

We exemplify the stated homotopy transfer construction for a dg algebra of the form

Ar(a) @ R[A],

where Ag(a) := R[a]/(a?), and discuss how the resulting higher operations may be
considered as the higher loop product of simply connected spheres.
Theorem 3.6

Consider the dg algebras

(Ap,da,) = (A, da) = (Ar(a) e R[A],0) forn = 3 odd
and
(Bn,dp,) = (B,dp) = (Ag(a) @& R[A],da = 0,d\ = a)\?) forn =>4 even ,

where |a| = —n, |A| =n — 1.
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The A-algebra on H(A,d4) obtained by homotopy transfer is trivial, that is it is
A -quasi-isomorphic to the dga

(H(Aa dA)7 {ml = 07m27 Mi>3 = 0}) .

The Ay-algebra on H(B,dg) obtained by homotopy transfer is non-trivial, that is
it is not A,-quasi-isomorphic to the dga

(H(B,dB), {m1 = O,mg,mi>3 = O}) .

Corollary 3.7
The Ay -algebra on

H(A, ®..Q®A,,)

is trivial and the A.-algebra on

H(A, ®..0 A, ®B,)

is non-trivial for n; > 3 odd, n > 2 even and k > 1.

Proof of Corollary : The corollary follows by theorem combined with lemma [ |

Remark 3.8. Note that the algebra Ag(a)@rR [\] viewed as an R-module has additive
generators of the form
1, A A2
and
a, al, al?, ...

It has at most rank 1 in each degree for n = 3, since
k(n—1) —n=|a)| = |N|=1ln-1)

- :(k—l)(n—l)—le - 1 .
l n-1  CTm-n

which 1s not possible for n = 3.

Remark 3.9. [t is tempting to call the arising operations higher loop product of S™
for n = 2 since we have algebra isomorphisms
H(A,dy) = Ar(a) Qg Rlu] = (HL(LS™),e) forn =3 odd
with [a] = a and [\] = u and
H(B,dg) = Ag(b) ®r R[a,v]/(a®, ab, av) = (H,(LS™),e) forn =2 even

with [a] = a, [aA\] = b and [N\?] = v. It remains to discuss whether (A, d) and (B, dp)
are indeed sub-algebras of a fully defined chain level string topology complex such as
the one introduced in section[f] We postpone this discussion to section where for
spheres of odd dimension n = 3 we prove that this is indeed the case. For spheres of
even dimension n = 2 we are only able to leave it as a conjecture.
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Proof of Theorem [B.6]: In the following we construct the operations m,, on homology
for n > 1 as suggested in section 10.3.7. and in particular theorem 10.3.8. of [27].
That is we use the approach via trees as visualized in figure |3.1]

We regard the algebra A as an Ag-algebras when setting my = da, ma(z,y) =
(—=1)llu(z ® y) and A, = 0 for n > 3. The algebra multiplication 4 is given by

pa@A a@MN?) =0, p1@A, 1@ M2) = 1@tk |
@M\, 1@A2) = a@M\1FR = (1@ A, a @A)

since v and A have different parity, so one of them is even, and |1] = 0.
Analogously we define {m,},>1 for the algebra B.

higher operations for H(A,d4)

The vanishing of the chain level boundary operator implies that
(H(A,da),0) = (A,da)

which in turn allows to define h = 0. We get that the morphisms ¢, p are isomorphisms
and that (3.5) is satisfied. Therefore

m, =0

for n = 3.

Since d = 0 we have hd + dh = id —iop = 0 for any map h : A — A of degree +1.
The homotopy transfer would yield

(H(A,da), {n}ns1) =2 (A, {fin}ns1)

where m,, is not necessarily vanishing for n > 3 and ¢ is an Ag-quasi-isomorphism.
Due to theorem 10.4.7. of [27] we know that we can construct an inverse Aq-quasi-
isomorphism

(H(A,da), {fin}nz1) <o (A, {fin}nz1) -

We conclude that (H(A,da), {mn}n=1) and (H(A,da), {Mn}n=1), arising when set-
ting h = 0 and h arbitrary, respectively, are Ay-quasi-isomorphic.

higher operations for H(B,dp)

By remark we know that we have just one generator in each degree of B and thus
at most one generator in each degree of H(B,dp). That is the morphisms ¢ and p are
uniquely defined as

a p a 2 a ’ a)\?k‘-i-l p bUk‘ 1 a}\2k+1 ’ Od)\2k p 0 1 O ,

)\Qk |i) ’Uk MCEN )\Zk , )\2k+1 'L) 0 RGN 0

for k = 0. We define the homotopy h : B — B of degree 1 as
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R(aX?%) .= X=1 (for k> 0) ; h=0 else.
That is set-up (3.5)) is provided. Namely p o ¢ = id holds. Further id = i o p except
for A2*~1 and aA\?* we have
(dh + hd)(aX?*) = (dh)(aX?*) = d(AHF~1) = ad® = (id — i o p)(ar?) |

(dh + hd) N 1) = (Rd) (A1) = h(aX®) = A1 = (id — i o p) (A1) |

since d(aA?*) = 0 and d(A\?*~1) = a\?¥ which in turn follows by

s s 0 for k = even
kE_ _1yiN k—i—1 _ Vi B =
d\ _;0( 1IN (M)A ;0( 1)’ar {a)\k“ tor b — odd |
and thus

d(aX¥) = ad(WF) =0 .

Remark that the product s (z,y) = (—1)1*lu(z,y) on B is commutative, that is we
will not care about the order of the input elements in the following.

We use the approach via trees as visualized in figure to construct the operations
My,

To understand which trees produce a non-trivial output remark that only compositions
of the following type occur for k,I,r > 0:

= z,y} = {a,o"
tenweioy-{ 5 e

since u(i(z) ®i(y)) is of the form aA?* only for {z,y} = {a, v*}.

2)

X2y = \2(kHD=1
<hou><h<->®z’(z>)=<hou><v’f—1®i<x>>={ AT A e

since the output of A is either 0 or of the form A?*~1 and p(A\**~! ®i(x)) is of the
form a2 only for x = bu'.

(hom)(h()@h(-) = (ho (W @X71) = 0.
since the output of h is either 0 or of the form A" for r odd.

For possible non-trivial final outputs we have:
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1)
(pow)(i(x) ®i(y)) = ma(z,y)

since my is the induced product on H(B,dp) due to theorem [3.4]

2)!

aXZF=1y = pyk— T=a
et ®ile) = (o )O* @it = { PN

since (p o u)(A2*~1 ® i(x)) is only non-zero for i(z) being of the form aA? or \?*!
but only a\’ = « is in the image of i.

3)
(pow)(h(-) @h()) = (po W)\ T @21y = it

since the output of A is either 0 or of the form A" for r odd.

Visualizing this information we conclude that non-trivial trees may only be built by
the following sub-trees and their mirrored version. For appearing signs recall that
ma(x,y) = (=1)*lu(z,y) and [\ = odd, |o| = even in B.

_a/\2(k+l)

_)\2(k+l)71

2) p S {"h
AQk*l )\ 1—1
@
_a)\Qkfl _)\2(k+l)f2
p p
k1 k-1

Combining these four type of trees we deduce that only non-trivial trees as visualized
in figure occur (where k,1 > 0 and ky,, 1, > 0).
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1)+2)+3)

k1 kr_j_2
bv®t pykr-i v

(_1)T*2bv(k+k1+-..+kr—3)71
(_1)7‘73,Uk+k1+--+k7-7j72+l+11+-.-+lj7271

Figure 3.2: Possible higher operations for H,(LS™) for n even

Remark that we are free to interchange the two edges at each vertex and the corre-
sponding trees also produce non-vanishing outputs.

For the tree on the right hand side we are free to distribute the edges with inputs of
the form bv*s among the two main branches of the tree, and all resulting terms come
with the same sign. This explains the factor (i — 3) in the formula below, since
this is the number of possible distributions.

In total we conclude that for the induced Ag-algebra of H.(B,dp) the following
non-trivial induced higher (i > 3) operations appear:

mi(a, Uk,bvkl, ...,bvki—;",a) = (—1)1'72 py(ktkit . tkizg)—1

mi(a,vF, boPt | boki=t ol a) = (=1)773 - (i — 3) - plkHERthi-a) 3.7

where k,1 > 0 and k; > 0.

Remark the possibility of interchanging certain edges which yields the stated non-
vanishing higher operations with a different order of the inputs.

It remains to prove that the Ag-algebra structure (H(B,dp),{mn}n>1) is indeed
non-trivial, that is there exists no Ag-quasi-isomorphism

(H(B,dp), {ma}nz1) ~2 (H(B,dp), {fin}n=1)

where m,, is of the form described above and my = 0, mgo = mg = (poms)(i®1) and
my, = 0 for n > 3.

This is proven by contradiction, that is we assume that there exists such an Ay -quasi-
isomorphism ¢.
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This implies that ¢ is a quasi isomorphism of degree 0. Since m; = m; = 0 and
we only have at most one generator in each degree we find that ¢1(a) = A, - a and
d1(b) = Ap - b with A, \p € R*.

Since ¢ is an Ag-morphism, it satisfies , namely

n—1n—k
2 Z(_l) Flaal+ +|ak‘¢n7]’+l(al7°")a/€7mj(a’]€+1)"'7ak+j))a/€+j+17"'7an)
k=0 j=1

= Z Z ﬁlt(d)k‘l(alv'“aak‘l)a"'7¢k‘t(an—k‘t+17"'7an)) .

n
t=1{k1,...ke | X ki=n}

For (ai,az,a3) = (a,v,a) this reads as

¢1(m3(a7 U, a)) + ¢2(m2(a7 U)7a) + (_1)|a‘+1¢2(a7m2(v>a))
= ma(d1(a), d2(v, a)) + Ma(p2(a,v), P1(a)) .

since m; = m; = mg = 0. Further ¢; = id, ms(a,v,a) = —b and mao(a,v) =
ma(v,a) = 0. Thus the equations writes as

=X b= Ao - (Mala, p2(v,a)) + ma(p2(a,v),a)) = Ag - (mal(a, p2(v,a)) + ma(p2(a,v),a)) .

But this can not be the case because multiplication with a is zero in H(B).

We conclude that such an Ag-quasi-isomorphism ¢ to the trivial Ay -algebra can not
exist. |

3.3 The homotopy transfer construction for Lie alge-
bras

Notice the considerations about algebras and Aj-algebras presented in section
Here we only recall ideas of Appendix A3. of [14], chapter 10. of [27] and section 4 of
[25]. The interested reader is referred to these sources for more details.

An L.-algebra over R consists of a graded real vector space C' = @ C™ and operations
MEZ

A AC > C (n=1)

of degree |\,| =n —2 (homological convention) such that

Z (—1)"2 Z € - >\n2 ()\n1 (ap(l), ceey ap(m)), ap(n1+1), ceey ap(n)) =0 (3.8)

ni+ng=n+1 PESH
p(1) <. 2p(nr)
p(ni+1)<..<p(n)
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where € = +1 is determined by a; A ... A a, = €ay) A ... A App)-
Here A"C = T"C/(a®b + (—=1)19/b® a) denotes the nth exterior power of C' and S,
is the symmetric group.

As for A, -algebras there is an equivalent approach in terms of a bar construction. The
concept is equivalent to

(S(CT=11),n,1)

being a differential coalgebra structure, that is lol=0. Precisely speaking on

S(C[-1]) == D S (C[-1]) == D(C[-] @ - @ C[-1])/ ~

k=1 k=1

where S"C = T"C/(a® b — (—1)l*Plp @ a), we define
1 —1
e e)= ) + m(gl 0 A 001 ) (1) * o) @ Coplrrt) @+ - @ ()
pE S, ' '

if » > k and zero else. Here we use the isomorphism

(A*O)[=k] = S*(C[-1])

aiy N ...\ Qg —> (—1)2(’677;)'0’1“@1 e ay

where we used degrees in C for |q;| for 1 <i < k.

An Ly-algebra morphism between Lo-algebras (C, {\;}r=1) and (C', {\,.}x>1) is a se-
quence of maps {¢y, : A*C' — Cly=1 of degree |¢r| = k — 1 that satisfy

edol=10oel (3.9)
in the bar construction, where

g =010 droot s SHC[-1]) - C'[-1]

and

, 1
¢ : S(C[-1]) > S(C'[-1]) s crmeee > D, D) im(gm@...@gkr)(cpu)@...@cp(k)) :

ki+..kr=k p

Similar to the fact that differential graded algebras can be viewed as Ay -algebras, it
is possible to interpret a differential graded Lie algebra (C,d, {-,-}) as an L.-algebra.

In fact we have
{CL, b} = _(_1)|a|‘b‘{b7 CL}

and when setting

M= d, Ao(a,0) = (=D1a, b} and Nzg =0,
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for n = 1,2, 3 equation ([3.8)) translates into

dod=0,
d{a,b} = {da,b} + (=1){a,db}
{a,{b,c}} = {{a,b}, ¢} + (=)}, {a, c}} .

For general L.-algebras the Jacobi identity just holds up to homotopy given by As.
So when passing down to homology via the boundary A\; Jacobi identity strictly holds.
As for Ay -algebras we can transfer L.-algebra structures from one complex C to a
quasi-isomorphic complex B and thus in particular to homology H,(C'). Generally
speaking we want to transfer structure from C' to a homotopy retract B.

Theorem 3.10 ([27] Theorem 10.3.2., Theorem 10.3.8., Theorem 10.3.9.)
Let (B,dg) and (C,d¢) be chain complexes such that

7

(B,dp) (C,d¢c) "

poi=idg (p surjective and i injective)

iop—idc =dch+ hde (i is chain homotopy equivalence)

Suppose {Xn}@l is an Ly-algebra structure on C' with 3\1 = dc. Then B is equipped
with an induced L-algebra structure {\,},=1 with \; = dp pictorially given by
figure and ¢, := i extends to a morphism {¢,},>1 of Ly-algebras.

trees with n leaves

Figure 3.3: Transferring L-algebras

Inspired by the work of Kadeishvili in [21] there is a recursive construction for A,
without using the stated trees and the global homotopy h displayed on the inner edges
above. In the following we prefer that approach since we do not want to specify the
homotopy h.
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As described in [8] the homotopy transfer may be done recursively without specifying
the homotopy h in the case that we transfer to homology, namely for the set-up

(H(C,de),d = 0) == (C.de) -
This is done in much more generality in Theorem 6.1. of [8]. Restricting to the case
of Ly-algebras, it is proven that a given Lg-algebra (C,{lx}xr>1) and in particular a

Lie algebra structure (that is I, = 0 for k > 3) transfers to an Lu-algebra structure
(H(C),{lx}k>1) and further that there exists an Le-algebra morphism

g:HC)—-C

such that g; is a quasi-isomorphism. The morphism g is called a co-quasi-isomorphism.
Analogously to equation (3.3 for the homotopy transfer for Le-algebras Lemma 2.9.
of [§] yields a relation between the Ly-algebra operations and the morphism g, namely

1

o o g + Re(g.1.1) =0 (3.10)

groli—liogy + gioly —

where

G © - Ogp (1)
€(o)

= Z mgkl (Ca(l) e Ca(kl)) e 'gk:i(ca(k1+...+ki71+1) T Co‘(k1+-..+ki))

o€Sy,

and €(0) is determined by c,1) - - - cor) = €(0)cy - - - ¢ Here the morphisms Ry (g, l,lN

~

)
only contain components l, ly, gr with k' < k. In particular Ry = 0 and Ry = 0
since [ 0 g1 =0 = [;.

Since I; = 0 equation ([3.10) simplifies to
~ 1~ ~
lhogr=g10lp— Elkog?k + Ri(g,1,1)

When we are in the special case that C' is just a Lie algebra we have lNk =0fork >3
and thus may write

Log =dooi=0 , k=1

Logr=d.ogy=gioly— %ZNQOg?QN L k=2 =g ol -V
_Rk(gvlal) ) k=3

and analogously

Mo gp=deody=c1 0N —o10Vioop" . (3.11)
—_——

=V
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Chapter 4

Higher string topology via homotopy
transfer

Throughout this chapter we work with real coefficients and loop spaces consisting of
smooth loops. When talking about string topology on chain level we have to specify
which chain complex we are working with such that its homology yields the singular
homology of LM. Further in full strictness string topology operations are only defined
on the level of homology via homotopy theoretical considerations as in [I1]. The def-
inition of [5] namely by defining them geometrically on chain level and then let them
descend to homology still lacks the specification which chain model one should use.
For performing the homotopy transfer construction later we have to think of how the
initially only partially defined operations can be fully defined such that the chain com-
plex becomes a differential graded algebra respectively differential graded Lie algebra.
By using the work of Irie (cf. [20]) we get a chain level version of the loop product
and the loop bracket. We then let these structures descend to homology H,(LM)
which yields an Ay, /Lo-algebra structure on H, (LM ) for general closed and oriented
manifolds M.

Remark that we rely on version v2 of Irie’s work [20] in the following. The most recent
version of this document is version v4 with the title "‘A chain level Batalin-Vilkovisky

structure in string topology via de Rham chains'’.

A different and more algebraic approach would be to work in the language of operads.
We are not discussing these methods here but refer to [24] and [36]. There it is proven
that there exists a functor converting partial algebras into algebras such that both are
quasi-isomorphic as partial algebras. Especially Theorem 2.7.3. of [36] states that the
complex of chains of the free loop space can be equipped with a Lie algebra structure
induced by the loop bracket. We do not pursue this approach since we are interested in
actually computing the operations on chain level. This would be harder when working
on that more algebraic level.

Finally when we understand the homotopy algebra structures, in particular the L-
algebra, we are able to use Fukaya’s theorem in a meaningful way and prove that
a product of a hyperbolic manifold and a simply connected manifold does not embed
as a Lagrangian submanifold into C™.

69
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4.1 De Rham homology of LM

According the work of Irie in |20] for a given manifold M it is possible to define a
chain complex for LM = C®(S', M) which becomes a differential graded algebra and
a differential graded Lie algebra (with a degree +1 operator A) which further descends
to the known BV-algebra structure on homology defined in [5]. We briefly recall the
author’s ideas. This is done in order to adapt ideas and then discuss the case for
L(Nsc. X Mk~p) in the next section where N is simply connected of dimension n > 0
and M has negative sectional curvature and is of dimension m > 3. As usually in
string topology N and M are assumed to be closed and oriented.

In the following we refer to definitions and results of [20].
A differentiable space is a set X equipped with a differentiable structure

P(X):={U¢) |UeU,¢:U — X is a plot} ,

where U := || U, and U,y is the set of k-dimensional oriented C'*°-submanifolds

n=>1
0<k<n

of R™ without boundary. The collection of plots {¢ : U — X} is required to have the
following properties:

(1) If 0 : U — U a C*-submersion for U’ € U and (U, ¢) € P(X), then (U',¢po00) €
P(X)

(it) If ¢ : U — X is a map with U € U such that there is an open covering (U, )aer
of U such that (U,, ¢|v,) € P(X) for all a € I, then (U, ¢) € P(X).

A manifold M is a differentiable space by specifying ¢ : U — M to be a plot if ¢ is
smooth, that is

(U,¢) e P(M) = ¢pe C°(U, M)
A subset X, 5 X, of a differentiable space X, is a differentiable spaces by specifying
amap ¢ : U — X; to be a plot if (U, 10 ¢) € P(Xy).
A map between differentiable spaces f : X — Y is smooth if (U, ¢) € P(X) implies

(U, fod)eP(Y).

By definition the inclusion X; = X, is a smooth map.

Two such maps f, g are smoothly homotopic if a smooth map h : X x R — Y exists
such that

flx) , s<0
h(x’s):{g((xg , sil

Remark that we have a canonical differentiable structure on products of differentiable
spaces. A map is a plot if all its projections are plots of the particular factors.
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In the following we want to treat free loop spaces. For M a smooth closed and oriented
manifold and LM = C*(S', M) we define a differentiable structure as follows:

(U,¢) e P(LM) := evogpe C°(U x S, M) where (evo¢)(u,t) := ¢(u)(t) .

Remark that by definition evaluation maps LM =3 M; v +— ~(t) are thus smooth.
Further the energy functional

E:LM >R (4.1)

is smooth for the differentiable structures defined above.
For a differentiable space (X, P(X)) we define the de Rham chain complex

CiH(X) = R(ZL(X))/Zu(X) (k= 0)
where the vector space R(Z,(X)) is generated by the set

Z1(X) = {(U,¢,w) | (U, ¢) € P(X),w e Q™" U)},

where Q%(U) is the vector space of compactly supported i-forms on U.
We mod out the subspace Zj(X) generated by vectors:

e a(U,o,w)— (U, ¢,aw) for a e R
o (U d,w)+ (U ¢, — (U d,w+ ')

o (U ¢p,mw)— (U, ¢om w), where m : QL (U') — Qr~-dimU'+dimU(17) is the integra-
tion along the fiber defined for C*-submersions 7 : U' — U

The linear degree —1 map

olU, ¢,w)] = [(U, ¢, dw)]
defines a boundary. We define de Rham homology as the homology

HM(X) == Hy(C3™(X), 0) -
An augmentation is given by [(U, ¢,w)]| — §w for [(U, ¢,w)]| € CI*(X)
U
Smooth maps f : X — Y between differentiable spaces induce chain maps

fe(lU, 0, w)]) == [(U, f o b, w)] -

The de Rham chain complex is indeed functorial here since smoothly homotopic maps
induce chain homotopic maps as shown in Proposition 2.5. of [20].

Next we want to compare Irie’s construction with standard singular homology.



72 CHAPTER 4. HIGHER STRING TOPOLOGY VIA HOMOTOPY TRANSFER

A map p : A¥ — X is strongly smooth if either k = 0 or if k¥ > 0 and there exists a
neighbourhood U of

AP = {(t, . ) eRF|O<t <..<tp <1} cR”

and a smooth map p : U — X such that p|a» = p. For a differentiable space we can
define the chain complex of strongly smooth maps

Sim(X) = S*(X) = C—BR <Map(Ak,X)>

k=0

as the sub-complex generated by strongly smooth maps inside the singular chain com-
plex.

Lemma 4.1 (e.g. Theorem 18.7 of [26])

For a smooth finite dimensional manifold X the inclusion

STX) — Se(X)

is a quasi-isomorphism. It yields an isomorphism

H™(X) = H,(X) . (4.2)

Remark that AF carries the canonical structure of a differentiable space as it is a subset
of RF,

Lemma 4.2 (Lemma 2.6. and Proposition 3.2. of [20])
There exist uy € CIF(AF) for all k € Ny such that the map

SP(X) — C(X)

o o4 (uy)

for X a smooth finite dimensional manifold is a chain map and yields an isomor-
phism

H™(X) = H(X) (4.3)

that is not depending on the choice of (uy)y=0-

When combining both Lemmas we conclude that de Rham homology computes real
singular homology for finite dimensional smooth manifolds.

Proposition 4.3

For X a smooth finite dimensional manifold there exists an isomorphism

H®(X) = H,(X) . (4.4)

We want a similar result for free loop spaces of finite d-dimensional smooth Riemannian
manifolds M that are closed and oriented. That is we want an isomorphism
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H®(LM) = H,(LM) .
By choosing a strictly increasing sequence (£});»1 such that lim E; = co we define the
J]—00
energy filtration of LM via
LM¥i .= {ye LM | E(y) < E;}

where we used the energy as defined in (4.1)). Inclusion of subspaces LM — LMPFi
(j > i) provides a directed system which in turn yields homomorphisms

lim Hy,(LM") — Hy(LM)

J—0

limg H}™(LM") — Hy™(LM) (4.5)

J—0

lim H"(LM") — H{®(LM) .

J]—00

Remark that (E(x) — Ej});>1 is a sequence of decreasing smooth functions, that is

(E(x) — E1) =2 (E(x) — Ey) = ... forallze LM ,
and lim (E(x) — E;) = —oo for all # € LM. Therefore results of chapter 2.7. of |20]
can égzpplied.
Lemma 4.4 (chapter 3.3. of [18]; Lemma 2.8. and Lemma 2.10. of [20])

For the loop space LM of a finite dimensional, closed and oriented Riemannian
manifolds M with the energy filtration

LM% :={vye LM | E(y) < E;}

the inclusion induces isomorphisms

lim Hy(LM") — Hy(LM)

J—0

lim H}"(LM"3) — H™(LM) (4.6)

J—0

limy HI™(LM") — H™(LM) .

J—x0

Proof (sketch): Represent a cycle in LM by singular simplices. The union of their
images is a compact set in LM where the energy functional E attains a maximum
Ej, and thus the cycle is a cycle in LM Ejo. This proves surjectivity.

Injectivity follows similarly since a bounding chain in LM of a cycle in LMFn ig
compact and thus lies in some LM i for j; < jo. |

In order to prove that de Rham homology computes singular homology for free loop
spaces of finite dimensional smooth manifolds it is therefore enough to show that
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limg Hy(LMP) o limg HE™(LMP) = ling HER(LM) (4.7)

are isomorphisms.

In [20] this is done by approximating the free loop space LM by finite dimensional
smooth manifolds F£M. By previous considerations (4.2)) and (4.3) we know that we

have isomorphisms

liny Hy(Fy' M) « lim Hy®(Fy M) — lim HI®(Fy7 M) (4.8)
J—0 ! Jj—0 ! Jj—00 !

So it remains to clarify how the approximations FZM are defined and then to show
that (4.7) is equivalent to (4.8)).

Finite dimensional approximations of LM

Remark that M is equipped with a Riemannian metric, so that we can measure dis-
tances. We approximate a loop by a finite number of points on it, that is we define

FyM = {(xg,...,xx) € MY | 2o = 25},
F°M = {z = (zo, ....a5) € FNM | E(x) :=N- Y d(x;,7;11)> < Eo} -

0<j<N—1

The approximations carry the canonical differentiable structure as subsets of M".
Lemma 4.5 (Lemma 4.3. of [20])

For a sequence E; — oo of strictly increasing positive real numbers there exists a
sequence N; — oo of integers such that the evaluation map

ey : LM — LMy (4.9)
7= (7(0),7(1/N), 7 (2/N), ;v (1))

induces an isomorphism

lig H (en,)

lim Hff (LMP) =~ lim HY (FxiM) . (4.10)
1—00 1—00

Here # either means ‘de Rham homology’ or 'smooth singular homology’ or ’sin-
gular homology’.

The Lemma combined with the isomorphisms in (4.8]) imply that

limg Hy(LM®) « ling H™(LM®) — ling H{®(LM")

J]—00 J]—0 J]—00
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are isomorphisms. Since we already proved that LM% < LM induces isomorphisms

on homology for singular homology, smooth singular homology and de Rham homology
we conclude that

Hy(LM) « H™(LM) — H{"(LM)

are isomorphisms that is de Rham homology computes singular homology for free loop
spaces of finite dimensional smooth Riemannian manifolds M that are closed and ori-
ented.

Corollary 4.6

For M a smooth finite dimensional manifold there exists an isomorphism
H™(LM) = H,(LM) . (4.11)
[

Proof of Lemma [4.5]: The evaluation map

ey : LM — LMy (4.12)
7= (v(0), 7 (1/N), 7y (2/N), (1)

is smooth by definition and ex(LMF°) < FﬁOM by using the Cauchy-Schwarz in-
equality, namely for v € LM*0 one has

i+1 2 I3

i+ 1 1+1
N N N
Blen()=N Y d@jza?=N Y j B <y ¥ f 12 j 52
0<j<N-—1 0<j<N—1 \ * 0<j<N—1 \ ¥ /
N N
i+l
N
_— MF =jw|2<Eo.
0<j<N—1 \ 7
J L S1

For Ey fixed we choose Ny sufficiently large such that

A/ Eo/No <Tm

where rj; is the injectivity radius that is positive since M is closed.
Then

d(xj,rj1) < Z d(zj,zj41)?> = A/Eo/No < 7T

0<j<N—1

so that there is a geodesic connecting x; and x;,1 which we denote by vz, 2., These
geodesics will soon be further subdivided into m parts. We fix m > 0. For given
energies 0 < Ey < E{, we choose ¢ > 0 such that

(1+8)* < E)/Fy .

Our next goal is to define a map
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go : FR2M — LM (4.13)

that is smooth (in the sense above) and continuous (in the sense of Whitney C'®-
topology). For that we need a map p : [0,1] — [0, 1] that satisfies

(i) 0 p/(t) <1+6
(i) uifm) = ifm
(#97) p is constant near 0 and 1 .

Now we set go(zo, ..., n,) = 7 where

Yzo,x1 (u(Not — 0)) ; t€[0,1/No]

,.Y(t) — fyl’lal’Q(/'l’(NOt - 1)) ; te [1/N0’2/N0]

Vang_1on (M(Not — (No —1))) 5 t€[No—1/No,1]
Notice that property (i) of u implies E(y) < (1 +0)2E(z) = (1 + §)2Ey < E}.

We define

B /7 €mN,
it FAOM 25 LMPo 2 FI M

(20, -y TNy) > Y 2 (05 Yao,er (1/M)5 ooy Vag,0 (1) = Var,20(0) = X2, oy oy N,) -

. ~
"

mNp+1

One further checks that

LMEO incl. LME6

"

FOM
commutes up to homotopy. This is done in chapter 4 of [20]. Roughly speaking since
Ny is sufficiently large points of incl.(y) and (go o ef,g)(’y) in LM% can be connected

by geodesics. This defines a smooth homotopy 75 connecting these two loops. Further
we have E(vs) < (1 +9)*Ey < E}.

We end up with smooth (in the sense above) and continuous (in the sense of Whitney
C®-topology) maps fitting in the diagram

LMPo el parEy . LB

€Ng €mNy =€N;

E E} E
FEoM R M = P

im
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that commutes up to homotopy.
Continuing the construction inductively we get a sequence

e ILME — S LME o

B

E; E;
= FM ——F M —— -
J J

In total we get an isomorphism

lim HY (en,)

1—00

liny H (LMP") limy B (Fa M)
i—00 h_I)n Hf(gi) i—00

1—> 0

4.2 Chain level string topology of LM

We want to describe Irie’s definition of string topology operations on C3®(LM). In
order to make such definitions one faces three issues:

(I) Concatenation of loops is not associative. That is on chain level we would not get
an associative algebra. Further the fundamental class

[(M] = [(M, s, f)]

(for s : M — LM section and f = 1 € C®(M,R)) would not be a strict unit with
respect to the loop product. We therefore want to work with Moore loops

LMM=LM={(v.T) =7y | T=0; ve C*([0,T], M) ; 7(0) = (1)} .

A differentiable structure for LM is defined as follows:

(U, ¢ =(+*,T%) e P(LM) : — T? e C*(U,R) and
{(u,t) |uelU,0<t <T(u)} > M

(u,t) = % (u)(t)
extends to a smooth map on U x R

(IT) When concatenating loops the derivatives may not fit and thus the resulting chain
of loops is not an element of CI®(LM). That is CI®(LM) would not be closed under
the loop product. We further restrict to

LM, :={(v,ty,..t;,T) | (,T)e LM ; 0<t; <..<t;, <T;
Y™ (t) =0 for m = 1and t e {0,t,....t;, T}} € LM x A
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where -(™) means taking the m-th derivative. A differentiable structure for LM, is
defined via

(U, = (1,15, ...t0, 7)) e P(LM)) :=
(U, (v, T%)) € P(LM) and t7, ..., t) € C*°(U,R) .

Notice that evaluations ev;; : LM; — M are smooth in the sense of differentiable
spaces, that is ev;; o ¢ € C®(U, M), where

(eviy 0 ) (u) = { ¢(U)_(('));

Relying on Lemma 7.6. and 7.7. of [20] we get that for p : [0,1] — S* =[0,1]/0 ~ 1
the maps

LM EX LM x A& Ly, — LM, (4.14)
(7at17"'7tl) I (’Yop7t1,...,tl,1)

induce isomorphisms on de Rham homology. Here the differentiable structure of
LM, = {(7y,t1,...t)) € LM x A /™ (t) = 0 for m = 1 and t € {0,t, ..., t;}}

is the canonical one assigned to it as it is a subset of the differentiable space LM x Al.
Thus all maps of (4.14]) are smooth.

The fact (4.14) combined with (4.11)) yields isomorphisms

H®LM)) = H®(LM x A" = H®(LM) = H,(LM) . (4.15)

(III) In order to intersect evaluated chains in M mutual transversality in M has to be
given. This is guaranteed if we only allow chains whose evaluation to M is submersive.
That is we define Wl,reg to be the set LM, where the differentiable structure is
modified as follows:

(U,9) € P(LM)1eq) : <= (U, ¢) € P(LM,) and ev;j o ¢ is further a submersion
(4.16)

For de Rham chains with respect to this differentiable structure intersection in M is
fully defined. Since

M—- LM —> M
p—=>%p—p

is a submersion the chain given by the family of constant loops at p for all pe M is a
regular chain.
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In the following we work on the complex

€ (LM) = 1_[ CSEdH(ml,reg) :

=0

Irie defines a de Rham chain level loop product. For z,y € €,(LM) it is given by
(woy)ei= D, £ (cm)e (21 X0 Ym) € Oy (TMreg)
l+m=k
where
Ty XM Ym = [(U XM V7¢ X w7w X 77)]
for z; = [(U, ¢,w)] € OSEdH(ml,reg) and yn, = [(V,¢,m)] € Cgﬁd+m(mm,reg)~

The chain map ¢, is defined by concatenating loops at time 0, that is

Clom - LMl,reg XM LMm,reg - LMler,reg
((717 71, "'7TZ7T1)7 (7277517 s tma TQ)) = (77 T1, "'77—17T1 + tla "'7T1 + Z577177-'1 + TQ) ;
o Y1 (t) , 0<t<T
where (1) .—{ wt—T) . TI<t<Ti+T, "

The product is indeed fully defined since

UxyV={(uv)elU xV]ev,yood(u)=evyoot(v)}

is a manifold due to the required regularity in (4.16)).
Out of this loop product, Irie further defines a de Rham chain level loop bracket

(v, b =@y £ (Y=,
where
(@eyi= Y, o (@ ep(yn))

and o, p are both induced maps that move the basepoints along the involved loops.
Remark that after applying the de Rham chain level loop product or the de Rham
chain level loop bracket the evaluation maps are still submersive in the sense above,
that is €,(LM) is indeed closed under the defined operations.

Notice the trivial but important fact that if

{o(u)(t1) = Y(v)(t2)} = T

in M for all times ¢t; € R and v € U and v € V, the de Rham loop product and the de
Rham loop bracket both vanish already on chain level since U x; V = (& and thus

fL’l'?Jm:O:fL’l'P(?Jm)-
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This is used in the following section to prove that both operations, and their higher
versions, are essentially trivial for the homology of a particular class of manifolds.

Further both operations are related via

{a,bect = {a,b}ec+ (—1)**Vpe {a, c} . (4.17)

Remark that when taking b = ¢ = [M] the algebra unit this yields

{0, M1} = {a. [M] o [M1) = {a (M1} # [M] + (~1) ICED[AL] o o, [M]} =
= (=) 1 1), ]}

that is either 2{a, [M]} or zero. In both cases we get

{a,[M]} = 0. (4.18)

The S'-action on LM is also incorporated in the de Rham picture, namely Irie uses
this action to define a degree +1 de Rham BV-operator A that commutes with the
differential D. The operations on chain level introduced above descend to homology
and combine to a BV-algebra structure:

Proposition 4.7 (Theorem 1.2. of [20])
The de Rham loop product and the de Rham loop bracket turn the chain complex

€. (LM) := H Cgfdﬂ(ml,reg)

=0

into an associative non-commutative dg algebra and a dg Lie algebra with respect
to the differential D where d = dim M.

Further both operations and the de Rham BV-operator descend to homology and
turn H,(C€,(LM)) into a BV-algebra.

On homology there exists an isomorphism
H.(C.(LM)) = H, ¢(LM) = H,(LM) (4.19)

as BV-algebras, where the BV-structure on H,(LM) is the one defined by Chas
and Sullivan in [5].

In section we will use Irie’s chain level operations and study the induced Ay /Les-
algebra structure on H,(LM), for certain product manifolds M.

Before we do so we discuss how the dg algebra
(C,d) = (Ar(e) @e R[A],d)

where H(C,d) = H,(LS™) as algebras, can be seen as a sub-algebra of Irie’s dg algebra.
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4.3 Chain level string topology of LS"

We show that (Ag(a) ®g R[A],0) for || = —n, |[A| = n—1and n > 3 odd is a
sub-algebra of Irie’s chain complex. This yields that the considerations of section

actually compute the Ay -operations extending the loop product on H, (LS™) for n > 3
odd.

When only considering the algebra structure given by the chain level loop product
theorem [4.7] simplifies to:

Proposition 4.8 (Section 5.3. of [20])
The de Rham loop product turns the chain complex

Co(LM) := Oy (LMo reg)

into an associative non-commutative dg algebra with respect to the differential D
where d = dim M.

Further the operation descends to homology and there exists an isomorphism
H.(C.(LM)) = Hyq(LM) = H,(LM) (4.20)

as algebras, where the algebra structure on H,(LM) is provided by the loop product
defined by Chas and Sullivan in [3.

In the following we want to show that for odd dimensional simply connected spheres
things are quite simply to handle, namely:

Lemma 4.9
One can define a, \ € C,(LM) with |o| = —n, |[A\| =n —1 for n = 3 odd such that

L (Ar(a) ®r R[A],0) — (C.(LS™), D)

is an inclusion as a sub-algebra

When combining this with theorem we get as a corollary:

Theorem 4.10
For n = 3 odd the dg algebra

(Ar(@) @ R[A],0)

for |a| = —n, |A| = n — 1 induce trivial higher operations for H,(LS™).

Further for n = 3 odd
H,(LS™ x - - x LS™)

is equipped with trivial induced higher operations. [

Proof of Lemma [4.9]: We are considering S™ for n > 3 odd with pg € S™ fixed.
We set () := a and ¢()\) := [, where a,l are defined in the following.
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Remark that alf # 0 and ¥ # 0 for k > 1 since
H(Ar(a) @r R[A]) = Ar([a]) ®@r R[[!]] = H.(LS™)

and [a][I]* and [I]* for k > 1 generate the module H,(LS™).

So let us define a and [. Pick an embedding
¢: D" — S"
such that ¢(D™) is a neighbourhood of pg. Further fix a volume form w € QF(D"),

that is { w = 1. We define
Dn

@i (D", ®,w)]
of degree —n in C,(LM) where
®: D" - LS" x Rsg
T = (Yp(a)5 0)
and 74(y) is the constant loop at ¢(x). Remark that
(D™, ®) € P(LS™0 reg)

since evg o ® = ¢ is an embedding and in particular a submersion.
We have
Da = [(D",®,dw)] = [(D",®,0)] =0

by degree reasons.
For the generator [ recall that

H,(2,,5") 2 Rlu] with |u|=n—-1.
For yg € T}, S™ fixed the class © may be represented by
Ipoyo * Syt = {z € 8"z, yoypa+1 = 0} = S" — Q5" (4.21)

where

Ipoan ()(0) = P20 4 (cos 2mp() - P 4 (sin 2mu(r))- \/W N

and p: Ryg — Ry smooth of the form:

w(t)=0
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We need the reparametrization p such that

(Lo, (Z))(m) (t)=0

form >1and te{0,1,2,...}.

More can be found in chapter 3.7 of [7]. The described (n — 1)-chain is visualized as:

P

Sn

Figure 4.1: Representative [, ,, of the generator of H,(,,S™) = Z|u]
The product is given by

lﬁmyo : Sgoil Korre X Sgoil - QPOSn (4.22)

where

. lpo.yo (2) (1)), 0<t<1
lpo,yo(zlv s 20) () = e
lpowo (z6)(1(t)) » k—1<t<k

To extend this construction to the free loop space LS™ we make use of a fixed nowhere
vanishing vector field v on S™. With 1 € Q2(S™ x S"!) constant we now define

1:=[(S" x 8" 1, W, 1)]

of degree n — 1 in Cy(LM) where

T:S"x S5 LS™ x Ry
(p7 Z) = (lp,u(p)(z)7 1) .

Remark that

(S™ x "1 W) € P(LS"0 reg)
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since (evg o ¥)(p, z) = p meaning that evy o ¥ is a submersion.
We clearly have

Dl = [(8" x S"71, ¥, D(1))] = [(S" x S"~1,¥,0)] =0.

It remains to check that aea =0 and that ael =1 e a.

Recall that for de Rham chains we have

[(U7 ¢7 F!w)] = [(Ulv ¢ o, (/.))] )
where m : QL(U') — Q~dimU'+dimU(77) i5 the integration along the fiber defined for

C%®-submersions 7 : U’ — U.

We use the concatenation ¢ := cg o defined in the previous section. This yields

aea=ci(axgna)=c([(D", ®,w)] xgn [(D", ®,w)])
= i ([(D™ xgn D™, ® x ®, 7w A 7*w)]) = [(D", ®,w A w)] =0

for m: D™ xgn D™ — D™ since w? € Q2"(D") vanishes.

We further have a ¢ [ = [ e ¢ since

ael=rci(axgnl)=ce([(D", ®,w)] xgn [(S" x S* 1, ¥, 1)])

ex ([(D" xgn (S™ x 8" 1), @ x U, 7*w A 7*1)])

=i ([((S™ x 8" 1) xgn D", W x &, 7%1 A m*w)])
l

e

for the diffeomorphism D™ x gn (S™ x S"71) — (S™ x S"~1) x gn D™ that in particular
is a C®-submersion. Further cy(a xgn 1) = c«(Il X gn a) since a is a family of constant
Moore loops. |

For even dimensional spheres this construction does not work since we do not find a
nowhere vanishing vector field on these spheres. The existence of poles complicates
the definition of [ as a regular chain.

4.4 Higher string topology of product manifolds

In this section M, N are assumed to be smooth, closed and oriented Riemannian
manifolds of finite dimension dim M = m > 0 respectively dim N = n > 3. Further
M is simply connected and N has negative sectional curvature.
Recall that for

LN= || L°N

aemo(LN)

we derived that L*N is a K(Z,1) space for @ # 0 and L°N ~ N. For a # 0 the
isomorphism

H,(L“N) = H,(S")
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can be realized by choosing a representative
Yo : ST > N

and considering

r,:S'=R/Z— LN
t =Y (-+1/1-1).

for | being the winding number of v,. For o = 0 we have

I'y: N—> LN
P—=
where ~,(t) = p for all t € S*. We set imT',, =: S} and im Ty =: N.

For X := M x N the free loop space LX thus topologically looks like

L(M x N)
~LM x LN = LM x| | LQNCO’“LMX(Nu | ] St
aGﬂ'Q(LN) ~ 0o
eT(N) =T (MxN)

~ (LM x N)u (LM x | | S}).

a#0

Our goal is to transfer the structure defined above, namely the dg algebra structure
and the dg Lie structure of

(Q:*(X)v Do, {'7 })
to an Ay -algebra and an Lg-algebra on homology

H(€,(X),D) =~ H,(LX) .

The basic idea of the following construction is that we want the subspaces S. to be
disjoint implying that the A, /L.-algebra operations on homology are essentially zero.

The construction further yields an Ay -algebra morphism f and an L-algebra mor-
phism ¢ that are co-quasi-isomorphism

f:{fn}

(Ho (LX), {mn}nz1, {Aatn=1) (€L (LX), vy, M)

and

M‘ (Q:*(LX), Xl, Xg) .

(HL (LX), {mn}nz1, {An}nz1)

where
iy =D, My(a,b) = (—1)1%a e b,
A =D, Xa(a,b) := (=1)"{a, b} .

We work with the disk of radius r defined as D™(r) := {z € R™||z| < r} and set
D™ := D"(1) in the following,.
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Proposition 4.11

Let A < T (N) be the set of primitive nontrivial homotopy classes of loops in N.
Then there exist curves 7, in N indexed by a € A and closed tubular neighbour-
hoods O, o v, with the following properties:

(i) The curve vy, represents the homotopy class a.

(i1) O, is a smooth submanifold of N with boundary and is diffeomorphic to
St x D" ! via a diffeomorphism ¢, : S* x D" 1 — O,.

(17i) For a # b the submanifolds O, and O, are disjoint.

Remark that in particular O, and O_, are disjoint.

Proof: For a # 0 the curve v, € N is chosen as a representative of a.

The manifold N is compact and thus mo(LN) = 71 (N) is countable. We choose a
counting

A ={ay,az,...} .

Fix 7,, and the closed tubular neighbourhood O,, in N, which is possible due to
corollary 2.3 of [23] for example. We have a diffeomorphism ¢, : S' x D"™1 — O,,.

We recursively isotope v, for ¢ # 1 and use the same notation for the perturbed ~,,.
Since we use isotopies the perturbed ~,, is still a representative of a;.

For the inductive step assume that we have modified 7,,,...,7q, and constructed
disjoint closed neighbourhoods Oy, ..., O, satisfying (i) - (#ii) of the proposition.
Isotope g, such that

Yare1 Mar 5 Vapes Maz s 5 Yagr MVay, -

Such isotopies exist due Corollary IV.2.4 of [23] for example and the fact that the
Va;’s are smooth compact submanifolds. Since the curves 7,, are one dimensional and
we assume N to be of dimension m > 3 this implies

Ya; N Va; =& for 0<i,j<k+1withi#j.

By radially moving out we can achieve that 7,, , intersects O,, (1 < i < k) only in
00,4, =: By, = S' x "2 and that

(e}

Yapsr N Oai =g.

These submanifolds B,,, B,; € N are disjoint, closed and compact, thus have positive
pairwise distances d; ; > 0. We fix disjoint open neighbourhoods U, of B,, in M for
1 <i < k. The By,’s are diffeomorphic to S x $"2 and in particular hypersurfaces.
We can achieve that

%kﬂm(f)ai:@ for 1<i<k

by perturbing 7q,,, in U,,. After these perturbations for all 1 < ¢ < k the subman-
ifolds 74,,, and O, © M are disjoint and have a distance d; > 0. We thus can
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construct O
arrange

ars1 @8 @ closed tubular neighbourhood of 74, , ,, and in particular we can

Oun O =@ for0<i,j<k+1withij.

This concludes the inductive step and thus proves the proposition. |

Remark 4.12. We fiz a smooth homotopy

H:S'x D" ' x[0,1] - S' x D!
(1,2,t) = Hy(T, x)
where Hy(1,x) is the flow of the vector field
V(r,z) = plla]) - 5=

0xn—1

on S' x D" at time t. Here x = (x1,....,2,1) € D"' <« R"™! and p smooth is a
cut-off function of the form

5/8

1 7/8 778 1 R

The homotopy H satisfies
(i) H; = id near o(S* x DY) for all t .
(i) Ho = id .
(i11) Hy(S' x D"71(1/4)) n (S* x D" (1/4)) = & .

Due to the work of Irie in [20] we know that the homology of the complex

¢, (L(M x N))

is isomorphic to H,(L(M x N)). Further the de Rham loop product and the de Rham
loop bracket descend to homology and there they coincide with the loop product and

the loop bracket respectively defined by Chas and Sullivan in [5].
We have

Co(L(M x N)) = €Y(L(M x N))®@P €4(L(M x N))

where €%(L(M x N)) contains chains in homotopy classes which are positive iterates
of a and €2(L(M x N)) contains chains of contractible loops.

Remark the subcomplex €, < &€, (L(M x N)) that splits as
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¢, = (€,)" & P(e),)"

a€A
where (€,)* < €¢(L(M x N)) contains all the chains whose loops are in

M x ¢, (St x D™™1)

and (€,)° < €Y(L(M x N)) contains all the chains whose loops are contractible in
M x N and further constant in V.

Lemma 4.13

The inclusion of the chain complex

¢ — &, (L(M x N))
induces an isomorphism on homology. In particular

H,(€) =~ H,(L(M x N)) .

Further &, is closed under the de Rham loop product and the de Rham loop bracket
defined in [20)].

Proof: By proposition for a € A and o = ka we have homotopy equivalences

LM x | | A8 x DY) " Ly x| | RN
k>1 k=1

and clearly

LM x N —s LM x LN .

The two complexes €, and €,(L(M x N)) are the complexes of de Rham chains on
the loop spaces on the left and the right respectively. By corollary we thus get
that the homology of these spaces is isomorphic.

By definition the homotopy equivalences are compatible with the de Rham loop prod-
uct and the de Rham loop bracket. |

Remark 4.14. The lemma in general holds for D" (r) with 0 < r < 1. For reasons
of clarity in the upcoming proofs we highlight the radius as &, . if r # 1.

The homotopy of remark yields chain maps

h: @) - D)

a€A a€A

of degree 1 induced by H and

T: D) > D)

a€A a€A

of degree 0 induced by H;. Further Hy induces the identity on €.
These relate to
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Dh+hD =id—T (4.23)

by proposition 2.5. of [20] which guarantees that smoothly homotopic maps induce
chain homotopic ones on .

The topological rewriting and simplification of the set-up will imply that

rey=0 and {x,y}=0

for z,y € H,(LX) being homology classes of loops in non-trivial conjugacy class com-
ponents of T (M x N) since the classes z,y can be either represented as families of
loops that are disjoint in N due to (i2i) of remark [4.12| and (4.23).

The following theorems state the generalization of this fact to the higher Ay /Loo-
algebra operations my=3 and A;=3 on homology H,(LX).
Remark that in the following we work with

H. (LX) = Ho(L°X) @ P H. (LX)

a€cA
where H,(L*X) = @ H,(L*X) when setting
a=ka
for k=1

LOX = |_| LeX

a=ka
for k=1

for o € %1(X) = %I(N)

In the following theorems we assume X = M x N and M, N to be smooth, closed
and oriented Riemannian manifolds of finite dimension dim M = m > 0 respectively
dim N = n > 3. Further M is simply connected and N has negative sectional curva-
ture.

Theorem 4.15

The homotopy transfer construction for

H, (LX) — €, (LX)

equips H, (LX) with an Ay-algebra structure (H,(LX),{my}r>1) and yields an
Ag-algebra morphism

f={fetrzr  Hu(LX) — €(LX)
such that:
(i) m; =0,

(ii) fi1 is a cycle choosing homomorphism and in particular a quasi-isomorphism,

(i1i) mo corresponds to the loop product, and
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(iv) my(zy,...,z5) =0

for k = 2 whenever the inputs x; are classes of families of loops that are non-

contractible, that is z; € @@ H,(L*X).
a€A

Theorem 4.16

The homotopy transfer construction for

H, (LX) —> €, (LX)

equips H, (LX) with an Ly-algebra structure (H,(LX),{\.}r>1) and yields an
Lo-algebra morphism

¢ = {Prfrz1 : Ha(LX) — & (LX)
such that:
(i) \ =0,
(ii) ¢, is a cycle choosing homomorphism and in particular a quasi-isomorphism,
(iti) Ay corresponds to the loop bracket, and
(iv) Me(y1s - yx) =0

for k = 2 whenever the inputs are elements y; € H,(L*“X) for primitive classes
a; € A which are not all equal.

For proving the theorems we apply the homotopy transfer construction presented by
Kadeishvili in [2I] by recursively constructing the higher operations and morphisms.

Proof of theorem [.15]: We use the notation from section Bl
For the first operations we set

mi=0=U; and fi=1

where ¢ : Hy (LX) — (€, 1/4)“ for a € A and ¢ : H,(L°X) — (¢%,)? are cycle choosing
homomorphism. Thus equation (3.3) is satisfied, namely

Uy —fiom =0=Dor=myof.
The operation mg = [z 0i®%] on H, (LX) is the loop product up to sign due to how
mo := 1 de Rham loop product

are constructed by Irie.

It remains to prove (iv). For general k > 2 we have

k—1
Uk(xla 73316) = Z mQ(fs(xla ~"7$S)7fk‘—5(x8+1) 7$k'))+

|
N =
T

s
k 1

+

(_1)i+1+|m1|+m+|mi|fk—j+1(x17 ceey Ly mj(xiJrl) sy xiJrj)a L i1y o0y l‘k) .
j=2

@
Il
=}

<
I
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We will show that there exist maps
fr s Ho(LX)®% — ¢,
such that
Do fr,=myo fr = U — fromy = Uy

when acting on inputs x; that are classes of families of loops that are non-contractible.
This then yields

mk(acl,...,mk) = [Uk($1,...,$k)] =0

for such inputs.
For the induction assume the stated assertion holds up to degree k. We perform the
inductive step for k — k + 1.

Assume all operations and morphisms are constructed up to degree k. In the induction
hypothesis we assume that the image of fi(z1,...,z) is contained in the support of
fi(xg+1) when acting on x1, ..., 21 as in the condition for (iv). In particular we thus
have

ma(fr(w1, - 21), T f1(241)) =0 . (4.24)

According to the definition of the loop product by Irie we know that for chains x € @
and z; as in the condition for (iii) we have that the supports of

ﬁ”bg(fl (zz), .T) and 77~’LQ (Tf1 ($Z), I)

are contained in the support of fi(z;) and T fi(x;) respectively. By (iii) of remark
we thus have

mg(fl(xi),Tfl(l‘i)) =0. (4.25)

We define

frar o= (=)D A B R o (e @ B fL) (4.26)

when acting on Hg, (L*1 X) ® ... @ Hy, , , (L"*+1 X) for a1, ..., a;,,, € A. Remark that
for xy,...,xp42 as in the condition for (iv) we get that the image of friq1(x1, ..., Tg+1)
is contained in the support of fi(zxy2)

Due to he work of Kadeishvili in [21I] we can define fi.1 for the remaining cases if at
least one input is of Hl,(L°X) such that Do fry1 = Upy1 — f1 © mpy1 implying mp
not necessarily zero. We do not want to prove something about these operations here.

It remains to show that
Dfyi1 = Ukt

when acting on x1, ..., xx+1 as in the condition for (iii). Recall the Ay -operations in
the case my = 0 for k > 3, namely

91



92 CHAPTER 4. HIGHER STRING TOPOLOGY VIA HOMOTOPY TRANSFER

miomp =0,
A (g, y)) + Ha (M (), y) + (—1) 7 g (2, M (y) = 0,

Mo (Mia(w,y), 2) + (=) s (2, Aia(y, 2)) = 0 .

Since |fi| = k — 1 we get

(1)l YD f ) (@, was) (4.27)
= (Domgo (fr®hf1)) (1, ..., Tps1)
= (=g o (Dfr) @ hf1) — (D=1l Rim, o (f, @ (D)) (21, o0y 1) -

For the first summand we use the induction hypothesis
Df; = U; implying m; =0

for 1 < j < k. In particular we thus get

k=1 2

Dfy=Ux= Y Ma(fs ® frs) Z Zifk i (' @m; @157
s=1 i=0 j=2
k=1
Zm fs®fk: s .

For the second summand we use (4.23) and D o f; = 0, that is

Mz o (fr, ® (Dhf1)) = Moo (fr ® ((id = T)f1)) = M2 0 (fi ® f1)
by (4.24). For we deduce

(=Dl LD Y (@ e 2gs)
k=1

— Y g o (Ma(fe ® foms) @ Nfr) — (=) 108 g o (£ @ f1)) (@1, o0y Tt1) -

Using that the de Rham loop product and thus ms is associative implies

(=)l LD Y (@ e 2gs)

= (-1 Dlrbtlestemy o (fo @ Ma(fios @ hf1)) — (=) 05, o (fL.@ f1)) (@1, ooy Th41)

By definition (4.26]) we have

Mg o (fos @ hf1) = (=1)lmltFleh ==l g
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for z} = 44, that is we get

(—=D)lerbt e R LD g ) (@, e 1)
k-1
= ( Z (—1)laltlen 15, o (f @ frosir) + (=1 lesl 15, o (£ ® ) (@1, o Tht1)

s=1

k—1
= (=Dl RN iy 0 (o ® frosr1) + 2 0 (f ® f1)) (21,0, ht1)
s=1
k
_ (_1)‘I1‘+..-|Ik‘+k*1 ( 2 Mmoo (fs ® fk,SJrl)) (T1y ey Thoy 1)
s=1

which is
(—D)lerltlae R =1 ()

since mj|( @ Hy(Lex)er = 0for 1 < j <k by the induction hypothesis. |

a€cA

Proof of theorem [4.16]: We use the notation from section B.3]
For the first operations we set

AM=0=V; and ¢; =1,

where ¢ : H, (LX) — (€)% for a € A and ¢ : H,(L°X) — (,)? are cycle choosing
homomorphisms. Thus equation (3.11)) is satisfied, namely

¢10)\1—V1 ZOZDOszlo(ﬁl .
The operation Ay = [/N\Q 0i%2] on H, (LX) is the loop bracket up to sign due to how

X2 := + de Rham loop bracket

are constructed by Irie.

The recursive construction of Kadeishvili yields

Va(z,y) = Aa(1(2), d1(y))

for x,y € H,(LX). Therefore by construction for a # b€ A and x € H,(L*X) we get

V(1) =0 , foryeH,(L"X)
ALY ey | for ye Hy(LOX) or y € Hy (LX)

since (€)* and H,(L®X) contains families/classes of loops that are positive iterates
of the primitive nontrivial homotopy class a.
For A\ := [V3] we get

- =0 , for y e Hy (LX)
ALY e HL(L9X) , for y e H (LX) or y € H,(LOX)

which allows to define ¢9 such that
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ool ) =0 , foryeH,(L'X)
ALY e(@)e | for ye Hy(L9X) or y € Hy(LOX)

Analogously we get
Ao(x,y) € Hy (LX) and  ¢a(z,y) € (€)°

for @,y € H,(L°X).
We end up with (3.11]), namely

Groda—Va=Xody.

It remains to prove (7i7). We perform the inductive step for k — &k + 1.

Assume all operations and morphisms are constructed up to degree k and that

=0 , ()
Nlet, o) { e Ho(LeX) , (1) (4.28)
e H.(L°X) , (III)
and
=0 ) (I)
pi(cr, .o ) &), () (4.29)

for all 1 <[ < k. Here condition (I) means

(I)234,j € {1,...,1} such that ¢; € Hy(L*X) and ¢; € Hy(LPX) fora # be A,

(II) means

(ITY2Vie {1,...,1} we either have ¢; € H,(L°X) or ¢; € H,(L*X) for a € A
and there exists at least one ig € {1, ...,1} such that ¢;, € H.(L*X)

and (I11) means

(ITI)2Vie {1,...,1} we have ¢; € H,(L°X) .

We prove that (4.28)) and (4.29)) hold for \x 1 and ¢g1 which then proves (ii¢) of the
theorem, namely that

Nty .yc) =0 if34,j such that ¢; € Hy (LX) and ¢; € Hy(L'X) fora #be A

and for all { > 1.

The recursive construction of Kadeishvili yields
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Vig1(cl o ehp1) = 20 o Ma(@p(Coiys - Co)s PalCoprtys - Cotirn)) +
prask+l
+ >t et 2NCr (1) s Cr (1) Cr(ia1)s s o)) -

1<l<,k+1

The multiplicities, the signs and in particular the question which ¢ and 7 are used,
shuffles or permutations, is an important issue in general. We may bypass these ques-
tions since the statements above will hold independently for each summand.

Since only morphisms and operations of degree < k are involved we apply the induction
hypothesis and get

=0 , (1)
Vigi(er, s enrr) § € ()" , (I1)
e (¢, , (1)
Since Ag41 := [Vig1] we get
=0 , (D)
Meg1(Cty oo cpgr) § € Ho (LX), (1)
e H,(L°X) , (III)

According to the definition of Kadeishvili ¢y, 1 is defined such that
Dopyi(cry ooy chr1) := Vigi(er, oo crgr) — O1(Apgi(ct, ooy Crrr)) -

Since ¢ satisfies (4.29) we can choose ¢p11 such that

=0 ; (I)
bryi(crs o crp1) ] €(€)* , (1)
e (¢)Y |, (IID)

This finishes the inductive step and proves (iii) namely that for (I) we have

Met1(cty oy Chg1) =0

4.5 Obstruction against
the Lagrangian embedding X — C?

In this section we combine the results of the previous section with a result of Fukaya
to prove:
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Theorem 4.17

A closed, oriented, spin Lagrangian submanifold

X c (C% wy)

for d = n +m > 3 can not be of the form M x N where M, N are smooth, closed
and oriented manifolds of finite dimension dimM = m > 0 and dimN =n > 3
respectively with M simply connected and N admitting a Riemannian metric of
negative sectional curvature.

We prove theorem by contradiction, that is we assume that

Assumption: (4.30)
X = M x N with the stated conditions embeds as a Lagrangian submanifold into C? .

We will prove that for such an X and the corresponding dg Lie algebra €,(LX) the
chain of constant loops [X] = [(X,s: X — LX,1)] € €,(LX) is not in the image of
the twisted differential

D* = D+ Xy(-,a)

where a € €,(L*#%X) is any Maurer Cartan element which is positive with respect
to a suitable filtration. With Fukaya’s theorem [4.21] (see below) we get the desired
contradiction and hence a proof of Theorem [4.17]

To make sense of the intermediate statements we first need to discuss completions with
respect to a given filtration.

For a smooth map u : (D? 0D?) — (C% X) we have the action

Afu) = fu*wo _ fu*cmo _ J Wy — J X = Dholx], wa[ ST € R

D2 D2 aD2=5" u(Sh)
for u,[S'] € H (X;Z).
Indeed A only depends on the free relative homotopy class [u] in 7, (C%, X).This holds

since for a relative homotopy h : (D? x [0, 1],0D? x [0, 1]) — (C%, X) between u = hy
and v’ = h; we have

0= f h*wo = J h*wo — f hTUJO + f hSwO
o(D2x[0,1]) 0D? x[0,1] D2 D2

which implies

A(u') = J hiwy = J hiwo = A(u)
D2 D2
since X is a Lagrangian submanifold and thus

J h*(JJOZ J UJOZO.

0D2x[0,1] h(6D2x[0,1])c X
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Since C? is contractible we get
7~r2((Cd,X) = 7~T1(X) .
Further for the path components mo(LX) of LX we have mo(LX) = 7 (X).

Lemma 4.18

A Lagrangian embedding 1y : X — C? is isotopic via Lagrangian embeddings to
11 : X — C% such that

[t*)\o] € HY(X;Z) < H'(X;R) .

Proof: 1) For the Lagrangian submanifold X < (C%,wy = d)\g) we apply the Weinstein
tubular neighbourhood theorem (cf. theorem 9.3 of [34]) that states:

There exist neighbourhoods U of X in C? and V of X in (T*X,w = d)), embedded as
the zero section sy : X — T*X, and a diffeomorphism ¢ : V' — U such that ¢*wg = w
and ¢ o 89 = (9.

2) The Lagrangian submanifold X — (T*X,w = d\) can be isotoped in V < T*X
(cf. proposition 3.4 of [34]) as follows:

For any closed one form p on X the isotopy s : [0,1] x X — T*X given by

si(x) = (2, tpa)
is a Lagrangian isotopy in 7*X and sj\ = p.

3) We choose p € Q1(X) closed such that X, € V and

[8Aa) + ] € - H'(X;2)

for some N € N. Since ¢ : V — U is a symplectomorphism, we know that ¢*\g — A is
a closed 1-form on T*X.
Consider the isotopy s from step 2) and define ¢; : X — C% as 1; = ¢ o 5.
Note that
Sg(gb*)\o - )\) = LS)\Q
since A vanishes along the zero section so(X) ¢ T*X.
On the other hand s§(¢*Ao — ) = ¢ Ao — p. Since sp and s; are homotopic and p is
closed, we conclude that

[10h0] = 506 (6" A0 = )] = [51(¢" A0 = A)] = [11A0 — ] = [¢1 0] — (1]
and so [t Ao] = [tiAo] + [1] € % HY(X; Z).
4) Since the translation and multiplication with a real number does not change the

property of a submanifold of C? to be Lagrangian we can scale up the Lagrangian by
a factor N and get [\o|x] € H (X;7Z). |
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Since we now may assume that A|W0(LX) c Z this allows to equip

C(LX)= P . (LX)

aemy(LX)

with an integer filtration {F*€,(LX)}iez with F*€, (LX) o F*E, (LX) given by

FRC (LX) = {ce €. (LX) | A() = k} .
where ¢ = Z c; and

A(e;) = A(a)

for ¢; € €,(L*X) with connected domain.
By construction the de Rham loop bracket and the boundary operator D preserve the
filtration, that is

(FRE(LX), FRe¢, (LX)} c FFrihe, (LX) and DF*C, (LX) c F*e, (LX) .

It is a filtration on the index set mo(LX) and therefore the filtration descends to
homology and we get {F*H,(LX)}iez. This further allows to extend the operations
to the completion

CLX)=1{ > clone F'e, (LX)}

k=zkoeZ

and we get that a(LX ) is a dg Lie algebra with Lie bracket given by the de Rham
loop bracket. The induced filtration of the completion is denoted by {F*€,(LX)}xez.

Remark 4.19. An Ly-algebra (C,{\¢}r=1) is called filtered if for C there exists a
filtration F*C o F*T1C and the operations preserve that filtration, namely

)\l(}"le, ,.Fle) — J—_'k1+...+klc )
An Ly -algebra morphism between filtered Lo,-algebras

{¢k}k21 ! /

(CAMde=1) = (O { N e=1)
is called filtered if the morphisms preserve that filtration, namely

o(FHO, ..., FhC) c Fhit-thot

The dg Lie algebra operations A1 and X, on Trie’s complex €, (LX) preserve the filtra-
tion. We conclude that R .
(C(LX), A1, A2)

is a completed, filtered L.,-algebra with Xk =0 for k = 3.

In general Maurer-Cartan elements can be used to define twisted differentials that is:
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Lemma 4.20 (Lemma 4.8. in [25])

Ifae C is a Maurer-Cartan element in a completed Lo-algebra (C, {\g}r=1), that
is

(k—1k 1
(-1 A, a) = 0.

1

RE

Eal
>

the morphism D® : C—C given by

0
" (k—2)(k—1) 1
D (b) :kZ(—l) 2 m}\k(lLaq...,a/)
=1

is a differential.

Our main input from symplectic geometry is the following version of a result of Fukaya.
Theorem 4.21 (cf. Fukaya [13])

Let X be a closed, oriented, spin Lagrangian submanifold X < C¢, and Iet
(€(LX), A1, ho)

be the completion of the filtered, degree shifted Irie complex with its induced filtered

dg Lie algebra structure. R
Then there exist chains a € €,(LX) with A(a) > 0 and b e €,(LX) satisfying:

% (a) + %XQ(G, a) =0 (4.31)

D(b) = Ay (b) + Ao(b, a) = [X] (4.32)

All appearing operations and morphisms in the homotopy transfer construction for
H, (LX) — €, (LX)

in the last section preserve the decomposition by homotopy classes of loops. Therefore
we can do the same homotopy transfer construction as in the last section now for the
filtered set-up and get:

Theorem 4.22

The homotopy transfer construction for

H,(€,(LX),D) —> €,(LX)

—~

equips H, (€, (LX), D) with a filtered Ly,-algebra structure (H, (a(LX)), {Ate=1)
and yields a filtered Ly-algebra morphism

¢ = {Dr}rot1 : Hu(€u(LX)) — C,(LX)

such that:
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(i) =0

(it) ¢ is a cycle choosing homomorphism and in particular a quasi-isomorphism
(iti) Ay corresponds to the loop bracket
(iv) M\e(y1,.-yx) =0

for k = 2 where the inputs vy, ...,y are classes of loops in at least two different
non-trivial conjugacy class components modulo positive iterations of loops.

Since ¢ is an Ly-quasi-isomorphism, that is ¢, is a quasi-isomorphism, we may apply
Theorem 10.4.7. of [27] and get an inverse Lo,-quasi-isomorphism

(Ho(€o(LX)), {Annza) —— 2220 (LX), Ryt ) -

The way this Le-morphism is constructed is described in Theorem 10.4.2. of [27]. The
morphism vy is constructed by applying

P CU(LX) — Hy (T (LX) and i<y Ho(€,(LX))® — & (LX)

in various combinations. Since the morphisms ¢; for all ¢ and p preserve the stated
filtration we get that 1) = {1, },,>1 preserves the filtration that is

Un (FHEL (LX), ..., FF € (LX) « Fht-thn [, (€, (LX)) .

The Ly-quasi-isomorphism 1) is now used to transfer information from a(LX ) to
H,(€,(LX)).

Lemma 4.23 (Proposition 4.9. (1) in [25])

Ifa e C is a Maurer-Cartan element in a completed Lo-algebra (C, {\,}n=1), that
is

and

(€, Pdnzt) 222 (LG R, (Anbnsa) -

is an Ly -quasi-isomorphism, then the element
i 1
— k

is a Maurer-Cartan element in (H* (6’, Xl), {>\7L}n>2), that is

& (k Dk 1
di(-1) e (@, @) =0

k=2
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Maurer-Cartan elements can be used to define twisted differentials as described in
lemma that is

[oe]
(k=2)(k=1) 1 ~ ~ ~
— 2

k=1

and

& (k 2)(k 1) 1
— Ny, @, ...,a)
kZQ k-1

define differentials on €, (LX) and H, ( «(LX)) respectively.

Recall the L -quasi-isomorphism

(Ho(€o(LX)), PAnbnms) ——2020 (LX), (R dnnt) -

It actually gives rise to a chain map between
(C.(LX),D*) and (H.(€.(LX)),D"),
namely:

Lemma 4.24 (Proposition 4.9. (2) in [25])

Ifa e C is a Maurer-Cartan element in a completed L-algebra (6’, {Xn}@l) and
i Lo
— k‘

is the induced Maurer-Cartan element in H, (6‘;, 7\1), the map

¢ (C(LX), D) — ( H.(C.(LX)), D%)
given by

k=1

is a chain map between the complexes with their twisted differentials, that is

D%ov =)o D" .

Recall that Fukaya’s Theorem m gives a Maurer-Cartan element a € F1€, (LX) and
an element b € €, (LX) such that

D(b) = [X] .
Applying Lemma [4.23] and Lemma [1.24] we obtain

D*(1h(b)) = ([X]) -
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It is equivalent to

(k=2)(k—1) 1
2

DE(E([))) = Z (_1) mAk@(b),a,...,a)
3 (k—11)!¢’“([X]’av~~va) = 1 ([X]) + ([ X],a) + - - -

k=1

o~ P

Remark that [X] e F°C, (LX) and a € F'€,(LX). Since v preserves the filtration we
get that

AW ([X]) =0, Ge F'H,(E,(LX))
and  Uu([X], a,...,a) € F*LH,(€,(LX)) .

Since both ¢ and A preserve the filtration and ¢; = p we get for

be Fre&, (LX)
that

D(b) € F H, (€, (LX))
and further that

Ae((b), @, ..., @) € Fo F T H,(€(LX)) .

We deduce that we need some summand of zero action in D” (4(b) ) and so ¢ ([X])
must arise as the sum of elements of the form

Z + Ck )\k(l'k,a, ...,a)
k

_—~

where we need z;, to have negative action since @ € F' H,(€,(LX)). But then z; and
any component of @ cannot represent positive multiples of the same homotopy class.

However, in that case (iv) theorem yields
)\k(xk,a, ...,6) =0
for k = 2.
We deduce that the assumption (4.30) was wrong and conclude that X = M x N with

the properties as in theorem does not embed as a Lagrangian submanifold into
Ce. [



Chapter 5

Appendix

Basic mathematical concepts and methods frequently used throughout the text are
recalled. We assume the reader to be somehow familiar with the upcoming theory.
Proofs are thus more or less completely omitted and referred to the literature. The
specific literature we rely on is highlighted in each section.

Precisely speaking we recall the following:

1) How are higher homotopy groups defined, what are some of their properties and
how may computations be done.

2) We recall the basic notions necessary to define the HZ' (LX) sloppily called the
homology of the space of strings on X or more seriously speaking the Sl-equivariant
homology of LX. We use the Borel construction of equivariant homology. For defining
operations on H? ' (LX) we need and thus recap the Gysin sequence for a sphere bundle.

3) The pointed loop space is characterized as an H-space. In that sense the homology
ring structure of the pointed loop space of the sphere S™ is recalled.

4) We briefly discuss the Leray-Serre spectral sequence for a fibration and as an example
compute the cohomology ring structure of BS!' with these methods. Further the
exactness of the Gysin sequence for a sphere bundle is explained.

5.1 (Higher) Homotopy theory

In string topology one studies spaces of maps S — M. At least from a computational
perspective it is essential to understand the fundamental group m1(M). Computations
are possible since we have methods like long exact sequences or the Whitehead theo-
rem. Both need the concept of higher homotopy theory that we shortly recap in the
following. Mainly we rely on [I8].

The concept higher homotopy (n > 1) is a covariant functor from the category of
pointed topological spaces into the category of (abelian for n > 2) groups

m, : Top, — Grp .
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With I = [0, 1] it is defined on objects by

(X, zo) — {homotopy classes of (continuous) maps f : (I",dI") — (X, x0)} .
In that sense 7, is regarded as

7o(X) = {path-components of X}

with no boundary condition since 0I° = . We assume n > 0 in the following.

At some point it is helpful to work with a relative version of homotopy groups. For
A c X we define 7,(X, A, zo) to be the set of homotopy classes of maps

foIrorr, orm\Int) — (X, A, o) .

It may be regarded as a generalization of the previous definition since for A = {z(} we
have
(X, A, z0) = 1o (X, 20) -

The compression lemma yields that f ~ 0 holds if f(I") < A. This lemma is enough
to prove that there exists a long exact sequence

g 7Tn(A7 x(]) E’ 7Tn()(a l’o) E’ Wn(Xa A?‘IO) _a) 7T7L*1(A7 Io) >, (51)
where the homomorphisms are induced by the inclusions

i (A mo) = (X,mo) and  j: (X, z0,20) = (X, A, z9) .

This in particular proves mo(C%Y) = m(Y) since mx(C%) =0 for k > 1.
In contrast to the long exact sequence in homology the connecting homomorphism ¢
indeed comes from a map namely the restriction of

foIm o1, oIm\In1) — (X, A, o)
to f: (1" 101" 1) — (A, x).

For X path connected we have m,(X,z) = 7,(X,z;) for all zg,z; € X and thus
define 7,(X) := m,(X, z0). Clearly to make sense of 7,(X, A) we need A to be path-
connected.

The naturally given action

7('1(X, .’13‘0) i ’/Tn(X, .CUQ)

allows to consider m,(X, o) as a module over Z|m (X, x¢)]. The stated action is given
as follows. For representatives

(" 0I") — (X,29) and ~:(I',0I') — (X, x0)

we define v f by shrinking the domain of f and inserting . It is visualized as :

104



[/

[ ]

Analogously to the absolute case we have an action of 7 (A, zg) on 7,(X, A, z¢). It is
clear that (A, zo) acts on each group of the long exact homotopy sequence ({5.1]) and
further commutes with the homomorphism between them.

For computational purposes we highlight:

Theorem 5.1 (Prop. 4.2. [18])
For a product space || X, we have isomorphisms m,(] [ Xo) = [ [ mn(Xa) for all n.

« «

In (co)homology many computations are possible since excision leads to a long exact
sequence. For homotopy theory this is not true but alternatively long exact sequences
arise for fibrations.

Definition 5.2

A fibration is a map E % B such that the homotopy lifting property (HLP) holds:
Given maps X x [0,1] & B and X x {0} & E such that

(z,0) X x {0} —% E
7 p
(z,0) X x[0,1] —2 B
commutes, there exists a homotopy X x [0,1] 9% B such that pog; = g and
gt ©1 = Go.
For by € B and B path-connected the space p~t(by) =: F is called the fiber of the
fibration.

Remark 5.3. (i) Topologically we are allowed to speak of the fiber F < E with-
out specifying the corresponding basepoint since there exists a homotopy equivalence
p 1(bo) = p(b1) for all by, by in the same path component of B.

(i1) If B is path-connected and E is not the empty set then the map p is surjective.

(i4) Given a fibration E % B, any map B’ 2 B yields a pullback fibration E' 2, B,
where E':= B x5 E = (¥, c) € B x E | 3) = ple)} and /(<) = b.

(iv) For B being Hausdorff and paracompact fiber bundles F — E — B are always
fibrations. Remark that throughout the thesis B is mostly assumed to be a manifold.
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(v) If F is discrete, then a fiber bundle is a covering. A covering is a fiber bundle, if
all fibres have the same cardinality.

A given map f : A — B allows to write down a fibration (called the associated
fibration)

p:Ef— B
with fiber Iy such that
A
f E;
s
B
commutes and
L:A— Ey

a — (a7’7f(a)) )

where 7o) (t) = f(a) for all t € I, is a homotopy equivalence. Here the total space is
given by
Ep={(a,7) e Ax B [(0) = f(a)}
Co(1,B)

and p(a,~y) = (1) yielding a fiber
p~H(bo) = Fy = {(a,7) € Ax B" | 7(0) = f(a),7(1) = bo} .

Assuming B to be path-connected, a fibration £ — B with fiber F' yields a long exact
sequence

s (F20) 3 7 (B, 70) 28 7n(B) 5 w1 (F,10) — - - — mo(F, 20) ™S 700(E, ) |

(5.2)

induced by 1} since m,(E, F,x) % 7,(B) is an isomorphism.
For F discrete (e.g. for a covering) we have m,>1(F) = 0 and thus

o m,(E, x9) = m,(B) for all n > 2
o m(p): m(E,xg) — m(B) injective .

Lens spaces L(m;ly,..,1,) := S*1/Z,, (n > 1) appear at one point of the text. For
myly,...,l, € N fixed and ged(l;,m) = 1 for all 1 < ¢ < n, the quotient arises by
modding out the action on S?"~! < C" given by

7 x Sanl N S2n71
m
(ky (21, ooy 20)) > (€ 21, e 20))
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The projection

S2n71 _ Sanl/Zm

serves as an example of a fibration with discrete fiber Z,,. Using the stated long exact
homotopy sequence and mo(S?" 1) = m(S?" 1) = 0 we get

0 ;1=0
mi(L(m;ly, . 1)) = L, ci=1 . (5.3)
(ST i=2

Analogously we could do the same construction starting with the infinite dimensional
sphere S® =lim $*"~!, yielding L(m;1y,..) := S®/Z,, and

n

D , i=1
Wi(ﬁ(m; ll?")) = { 0 £ 1

(5.4)
That is £(m;1y,..) is an Eilenberg-MacLane space K (Z,,, 1).

For homology, remark that one may use a CW structure of L(m;ly,..,1,,) respectively
L(m; 1y, ..) given by one cell in each dimension and a boundary map alternating between
0 and multiplication by m. Its homology is thus given by

Z , 1=0,2n—-1

H,(L(m;ly, . 0,) =< Zy, , 0<i<2n—1 A iodd (5.5)
0 , else
and
Z , i=0
0 ; else

5.2 Universal bundles and Gysin sequence

We rely on discussions presented in [19] and [29]. For B paracompact and Hausdorff,
a principal bundle is a fibration. So results of appendix may be applied.
For x; € G and t; € [0, 1] we define

EG = {<x,t> = (o, to, 1,11, -..) | Zti = 1,t; # 0 for finitely many @}/ ~,
where we mod out the equivalence relation

(r,ty ="ty © Viit;=t, A (t;=t.>0: x;=1)) .

The following important facts hold for EG:
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e EG has a natural topology such that the G-action
EG x G — EG
([<z, D)1, 9) = [(x0g, to, 219, 11, -..)]

is continuous.

e The G-action on EG is free and thus
G — EG — BG := EG/G

is a G-principal bundle by a theorem of Gleason (e.g. [17]).

e EG is contractible and thus m;(BG) = m;_1(G) for i > 1.

The space BG is called the classifying space and FG — BG the universal bundle of
G, since we have the following bijection

[X, BG] => {G-bundle over X /iso.}
[f] — {f*EG—>X}
between homotopy classes of maps and isomorphism classes of GG-bundles over X.
Since we mostly work with G = S remark that ES' ~ S® and thus BS' ~ CP®.

For a space X with (non-free) G-action we get a free diagonal G-action on X x EG
and thus again by [15] a G-principal bundle

G X x EG— X xq EG . (5.7)

Further the associated fibre bundle is given by

X——X Xaq EG
EG/G = BG

In the Borel construction the G-equivariant co-/homology of a space X is given by the
co-/homology

Ho(X) = H(X x¢ EG) . (5.8)

G-equivariant maps between spaces X, Y with G-action descend to maps between the
G-equivariant co-/homology of X and Y. Further the homotopy property holds that is
homotopic G-equivariant maps induce the same maps on co-/homology. The additivity
property of non-equivariant co-/homology transfers to G-equivariant co-/homology
since

Hy <|E| Xa> - <(|E| X.) ¢ EG) - H <|_|(Xa X EG))

[0}

~ P H(Xa x¢ EG) = P He(Xa) -
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Namely the co-/homology of a disjoint union of spaces is isomorphic to the direct sum
of the co-/homology of the particular path-components.

The extreme cases are that GG acts either freely or trivially on X. If the action is free
we get a fibre bundle

EG—— X x¢ EG

|

X/G ,
and thus since EG is contractible the G-equivariant co-/homology Hg(X) is given by
H(X/G).
If the action is trivial we get X xg FG = X x EG/G and thus for field coefficients
H(X x¢ EG) = H(X)® H(BG) .

In particular the coefficient group of G-equivariant co-/homology is given by

He(pt) = H(BG) .

Recall that an oriented fibre bundle £ > B with F' = S™ yield exact sequences (Gysin
sequence)

- — Hy(E) ™ Hy(B) = Hy——1(B) ™ Hi1(E) — - -
BN HI(E) E’; Hz—n(B) ve Hz’-i—l(B) 7T_*) Hi—i—l(E) ..
where we either take the cap respectively the cup product with the Euler class
ee H"'(B) .

The morphism 7, : H.(E) — H,(B) and 7* : H*(B) — H*(E) are the induced maps
of m on either homology or cohomology.

For homology
7T* . HZ(B) — z+n(E)

is induced by the chain map mapping a cycle x : K — B to
*E =K xgpE - FE

which is induced by the pullback fibration. It is indeed a cycle map since F' = S™ is
closed.
For cohomology the map

f =7, : H(E) - H™™(B)

is the dual map to the map just described. It is the integration along the fibre when
working with compact de Rham forms and assuming that £, B are smooth finite di-
mensional manifolds. In general the cohomological Gysin sequence is easily constructed
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out of the E,, -page of the Leray-Serre spectral sequence for the fibration ¥ — B as
described in appendix [5.4]
Exactness of the Gysin sequences implies

meom =0,

and further

mfom, = A: H(E)— H(F)

defines an operator of degree deg A = + dim F' for homology and deg A = — dim F
for cohomology.

Important for defining operations for strings out of operations for loops via the loop-
string fibration is the fact that an operation 6 : H(E)®" — H(FE) for the co-/homology
of the total space defines an operation for the co-/homology of the base space via

+r, 000 (x*)®" : H(B)® — H(B) .

Remark that the discussion fits into the concept of equivariant co-/homology for the
fiber being S! since it is both a Lie group (for equivariant co-/homology) and a sphere
(for the Gysin sequence).

5.3 The based loop space

Without diving very deep into the world of loop spaces we recall some basic facts
appearing in the text. That is we discuss its H-space structure and the resulting Pon-
tryagin product for its homology. Some easy homology ring computations are recalled.
Computational ambitions then directly lead us to spectral sequences, which are re-
viewed in Appendix

Throughout the chapter we rely on concepts presented in [7] and [I§].

Definition 5.4

An H-space is a pointed topological space (X, e) equipped with a continuous map
X x X — X | such that the maps

X — X

x—> p(z,e)

x — ple, x)
are homotopic relative e to the identity X — X.

A continuous map f : X — Y between H-spaces (X, ex,ux), (Y,ey,uy) is an
H-map if

foux and pyo f*?

are homotopic relative ey. It is further an H-equivalence if there exists an H-map
g Y — X such that

gof and fog
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are homotopic relative ex respectively ey to the respective identity maps idx, idy .

Standard examples of H-spaces are topological groups and based loop spaces.
For a pointed topological space X and
QX = QX 1= {y.€ C°(S", X) | 7(0) = (1) = w0}

the multiplication p(v1,72) = 71 * 72 is defined as the concatenation

) o o), o<t<1/2
M* 2 () '_{72(225—1) C1/2<t

This multiplication is clearly only associative and unital up to homotopy given by
reparameterization. The unit is given by the constant loop ¢t — .

In the following we work with coefficients in R, a field of characteristic 0. For the
rest of this section we assume X and Y to be H-spaces. The H-space multiplication
descends to a product on homology, the Pontryagin product

o H(X)®H,(X) S H (X x X) 5 H,(X)

and equips H,(X) with an algebra structure. The unit is given by [e]. Further one
has a Kiinneth type isomorphism between algebras

Ho (X xY) = HJ(X)Q H,(Y)

where the Pontryagin product on the tensor product is given by

(@®b) e (@ @) = (~1)"V(aed) @ (bob).

The cohomology H*(X) is equipped with the (cup-)product. The Pontryagin product
provides a coproduct

A H*(X) S HY(X x X) 3 H*(X)® H*(X)

that is compatible with the product. In total we get that H*(X) is a commutative,
associative Hopf algebra (without antipode). This combined with the Theorem of Hopf
(cf. Theorem 3C.4. of [18]) then yields:

Theorem 5.5

Let R be a field of characteristic 0. If X is a path connected H-space whose
cohomology H*(X; R) is finite dimensional for all k, then there is an algebra iso-
morphism

H*(X; R) = Ag[z1, 2, ...] = Rlx1, 29, ...]/(zsz; — (=)@l 0,

In particular for X finite dimensional we get

H*(XyR) jad AR['I17 ...,xl,] y

with |x;| =odd.
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A discussion of the theory and a proof of the theorem can be found in [7].
Remark that H-equivalent spaces have isomorphic homology algebras.

Examples:
1) The circle S

As shown in Lemma [2.4] the path-loop fibration yields w41 (X) = m,(€2,,X). Thus in
particular for the circle we get

7Z ; k=0

T (QS1) = { 0 - else and thus  H,(QSY; R) = P R([1]) ,

leZ

where [I] may be represented by (¢ — 2™) € QS*. For the product we get

[[] e [m] = [l +m]
and thus
H.(QSY; R) = R[t,t7"]
as algebras with |¢| = 0.
2) The spheres S">2:

Out of a given pointed topological space (X, e) we get an H-space Q. X. We further
get its 'free’ H-space JX. The James reduced product is defined as

IX o= (| ] X¥)/~=(] 7"Xx)/ ~

k>1 E>1
where
(1, ey Tp) ~ (X1, oy Ty €, Ty 1,y oeny )
. o~ A o~
~~ ~"
e Xk e Xk+1
and

JEX = X% (2, . w0y ) ~ (24, .0 €, 24, )

The H-space multiplication is defined as

w1, s ze]s (Y1, - ul) = [T1, o T, Y1y -5 Ul

whereas the unit is given by [e].
For spheres we take the standard cell decomposition S"22 = ¢y U e, = e Usg D™. So
the quotient map X* — J*X maps cells into cells, namely subcomplexes with one
coordinate e are glued. That is
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JIX =S"=¢yue,
J2X = S" x S"/(z,e) ~ (e,7) = (eg U en) x (eg U ey)/(z,€) ~ (e,7) =

=J'X Uy (S"—e)? =eyue, U e,

JEX = JFIX O (S™ — e)k =e€egU ey U ... ULy -

We deduce that JS™ = ey U e, U ey, U ... is a CW complex and by dimension reasons
the cellular boundary map is 0 for n > 2. Therefore

R , »=i-n(i=
0 , else

HL(JS") = { 0) o SYATHIE

For computing the algebra structure with respect to the Pontryagin product we com-
pute [e;] @ [€jn]. Represent the homology classes by

it (A™ OA™) — (e, e0) , 7 (AT OAT) — (e, €) -
For the product we then get
A" x AT JS" x JST s JSn
(z,y) — (i), 1 (y)) — i(2)i(y) ,

that is on homology [e;,] ® [ejn] = [€irj)n]- We conclude with the Pontryagin algebra
structure

H,(JS"?) = R[u] (5.9)

with |u| = n. The James reduced product relates to pointed loop spaces as follows:
For a pointed topological space (X, e) we can defined its reduced suspension

YX =X xI/(Xxdl)u(exI)

and get a map into its pointed loop spaces

A X > QMEX =OXX
z = A@)()

where \(x)(t) := (t — [z,t]). This generalizes to an map of H-spaces

A JX - Q¥X
[21, ..y ] — (Mxy) = o M) () -

By Theorem 4J.1. of [I8] this is further a weak homotopy equivalence for X being a
CW complex. Since A is compatible with the H-space products this then further yields

H,(JX) = H,(Q2X)
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as algebras. For spheres we have a homeomorphism

»S" = gt
This and result (5.9) are then used to prove that

H (25" = R|u] with |u] =n , (5.10)
where u is represented by an explicit cycle of loops in S™*!, cf. section [4.3]

A more systematic method to compute (co-)homology groups and certain products
also for free loop spaces is provided by spectral sequences which are briefly discussed
in the next section.

5.4 Spectral sequences

We recall some basic facts about spectral sequences for a double positively graded
complex. In the thesis we need them to do computations for fibrations and thus ideas
are exemplified by means of the Leray-Serre spectral sequence.

All presented ideas can be found in detail in [2] or [30]. We also profit from ideas
presented in [7].

For a graded R-module

K=@@® K"

nz=0
with a linear map D is a graded complex if D(K™) ¢ K" and D? = 0. So cohomology
with respect to D is defined. It is a filtered complex if a (decreasing) filtration of sub-
complexes
K:K()DKlDKQD"-
exists. If it is both graded and filtered one gets an induced filtration

K'=KyoK!>K)y>---
for each dimension n by setting K’ := K, n K". Inclusion and projection induces an
exact sequence
0— K" 5 K5 KUK, —0

that can be reinterpreted as an exact triangle. Its long exact sequence on cohomology
can also be written as an exact triangle

A= @ H(KD S @ H(K!) = A
n=0,p=0 n=0,p=0
[ %

(5.11)
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It yields another well-defined exact triangle

i2:=11liy (4q)

6 AQ —-h A1

\\ //

Ey = H(Ey,dy := ji o k)
Deriving exact triangles from given ones can be done infinitely often.

A spectral sequence is a sequence of differential complexes (F,., d,.) with E,,; = H(E,,d,).
It stabilizes if Ej 1 = Ejyo = - -+ =: Ey and converges to H(K) if

oo—@H p/H p+1

for the induced cohomology filtration H(K) = H(K)q > H(K); > H(K)y > - - - given
by H(K), := (i,)’H(K,). If H(K) is a vector space over a field k we have

@H Yo/ H(K)pi1 = H(K) .

Theorem 5.6 (e.g. Theorem 14.6. in [2])
If the filtration has finite length I,,, that is

K'=Kl>K'>---5K! >KP ., =0

for each dimension n > 0, the induced spectral sequence stabilizes and converges.

We are in the situation required in the theorem when considering a double (bigraded)
complex

K= @ K
p,q=0

with differentials

§: KP9 5 KPY and ' K9 KPOt
such that (d)?=0,0*=0and d 0§ =dod.

It yields a single graded filtered complex (K = @ K™, D) with K" := @ KP4 and
nz0 p+qg=n
filtration K,, := @@ K" of finite length in each dimension. The definitions are

Q>O7Z>P0

best illustrated as in figure |5.1}

Finite length is given since K] = K" n K, = 0 for p > n. For the Ej-page (E,d;) we
get

Ei =@ H(K,/Kp+1,D) = @ H(K",d)= P EP!

p=0 p,q=0 p,q=0
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D:=0+d: K" — K"

Figure 5.1: Induced single complex

since d|k,/k,,, = 0. For dy = j1oky : H(K,/Kp1) — H(Kp11/Kpp2) we get

[a] = [Da] = [dd]
since k; is the connecting homomorphism of the long exact sequence and thus
EY* = HP(H (K, d),?) .
This principle is manifested in the zig-zag Lemma as described in [2].

Lemma 5.7 (§14 of [2])

For xq € KP1 one has

[20)k1 € B}y < 3 k-zig-zag (xo, ..., T))
ie. drg =0, 6xy = (=1)P" dayyy (I < k)
and further

dis1[Tolrs1 = [0x1]ps1 € E}I:j;llc-&-l,q—k '

Our motivation for studying spectral sequences are (co-)homological computations for
fibrations F < E 5 B for F, E, B being CW-complexes and B being path-connected.
For U = {U,}.er being a cover of B we define a double complex

Krtla O gra 4, pepatl

b

with KP4 := CP(z '(U), C%) being the p-th Cech cochain group with values in the
presheaf of singular g-cochains. This set-up yields a spectral sequence. As described
in the literature, if 7 (B) acts trivially on HI(F) we have

H(r~'(U)) = H'(F)

if U is a good cover of B, that is it is locally finite and non-empty intersections
Uas, N - - nU,, are diffeomorphic to R".
Following chapter 5 of [30] for the corresponding spectral sequence we get:
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EYY = (U, HY(F))

Ey* = HY(U, HY(F))
(E,,d,) converges to H*(E)

The universal coefficient theorem yields

EY?~ H?(B)® H(F)
if we use field coefficients and H?(F) is finite dimensional for all q.

Analogously we could work with chains instead of cochains and would get the same
statements for homology. For the cup product on cohomology or the loop product on
H, (LX), the statement generalizes in a way such that module isomorphisms become
algebra isomorphisms. For this we refer to [10] and [30]

As an example consider S®° — CP® as a realization of the universal S'-bundle. Con-
tractibility of S® yields

0 , (p.q) #(0,0)
P,q — D,q — Y ) )
Bizs = B {k . (p.g) = (0,0)

when using coefficients in a field k. This follows by degree reasons whereas the Fs-page
is given by

Ag(t)

o)

H*(SY)
[ R =
o/
o/

which implies
H*(BS';k) =~ H*(CP*;k) = k|[]

with |z]| = 2.
The class © € H*(CP™;k) is known as the Euler class which can be easily defined
for general sphere bundles using spectral sequences. The exactness of the previously

mentioned Gysin sequence is also straightforward.
Both statements can be seen as follows:

In general for a fibration F' — E — B an element w € H"(F) is called transgressive if

dy(w) =+ =dy(w) =0.

Since p,q = 0 we have dj>,4o(w) = 0 by degree reasons. In this situation, the map
w > dya1(w) is called the transgression map.
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For an oriented S™-bundle 7 (B) acts trivially on H?(S™) and we have
By = H*(S"; k) = k[w]/(w?) .

Thus by degree reasons Fy = --- = FE,,.; and F, 9 = --- = Ey. So for computing
H*(E) we just need to understand

dn+1(W) =.ec HnJrl(B) ,

called the Euler class of the bundle £ — B. We immediately get that a trivial sphere
bundle has a vanishing Euler class.
In total the differential d,,.1 on E,; is given by

HP(B)® H"(S") — H™*"*}(B)® H"(S")
ruw— (zue)®1 .

For coefficients in a field it yields H*(E) = ker(- v e)@® H*(B)/im(- U e) which may be
interpreted as

—>HZ(E) E’Hifn(B) iEHiJrl(B) W_’l;HiJrl(E) ..

where m, is the projection to ker(- u e) and 7* : H*(B) — H*(B)/im(- u e). This is
the already mentioned Gysin sequence that is clearly exact.

118



Bibliography

1]

2]

3]

4]
5]

[6]

|7l

18]

19]

[10]

[11]

[12]

[13]

BAsu, S.: Transversal String Topology € Invariants of Manifolds. Stony Brook
University, PhD thesis, August 2011.

BoTT, R. and L. W. Tu: Differential Forms in Algebraic Topology. Springer-
Verlag New York, 1982. volume 82.

CARLSSON, G. and R. J. MILGRAM: Stable Homotopy and Iterated Loop Spaces.
North Holland, 1995. in I. M. James, editor, Handbook of Algebraic Topology.

CARMO, M. P. DO: Riemannian Geometry. Birkhduser Boston, 1992.

CHAs, M. and D. SULLIVAN: String Topology. arXiv:math/9911159 |math.GT],
1999.

CHATAUR, D. and A. OANCEA: Basics on free loop spaces. in 'Free Loop Spaces
in Geometry and Topology’ (J. Latschev, A. Oancea, eds.), to appear in European
Mathematical Society Publishing House as IRMA Lectures in Mathematics and
Theoretical Physics Vol. 24.

CIELIEBAK, K.: Lectures on String Topology. Universitit Augsburg, lecture
notes, 2013.

CIeLIEBAK, K., K. FUKAYA and J. LATSCHEV: Homological algebra related to
surfaces with boundary. arXiv:1508.02741 [math.QA], 2015.

CoOHEN, R. L., K. HEss and A. VORONOV: String Topology and Cyclic Homol-
ogy. Birkh&user Verlag, 2006. Advanced Courses in Mathematics CRM Barcelona.

CoHEN, R. L., J. D. JONES and J. YAN: The loop homology algebra of spheres
and projective spaces. Progress in Mathematics, Volume 215, Number 2:77-92,
2003.

COHEN, R. L. and J. D. S. JONES: A homotopy theoretic realization of string
topology. Math. Ann. 324, no. 4:773-798, 2002.

ELIASHBERG, Y., A. GIVENTAL and H. HOFER: Introduction to Symplectic Field
Theory. Geom. Funct. Anal., Special Volume:560-673, 2000.

FUKAYA, K.: Application of Floer homology of Langrangian submanifolds to sym-
plectic topology. Springer, in: Paul Biran et al. (eds.), Morse Theoretic Methods
in Nonlinear Analysis and in Symplectic Topology:231-276, 2006.

119



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

22]

[23]

[24]

[25]

[26]

27]

28]

[29]

[30]

Fukavya, K., Y.-G. O, H. Outa and K. ONO: Lagrangian intersection Floer

theory: anomaly and obstruction. American Mathematical Society / International
Press, 2009. vol. 46.

GLEASON, A. M.: Spaces with a compact Lie group of transformations. Proceed-
ings of the American Mathematical Society, 1:35-43, 1950.

GROMOV, M.: Pseudo holomorphic curves in symplectic manifolds. Invent. Math.
82, no. 2:307-347, 1985.

HANSEN, V. L.: On the Fundamental Group of a Mapping Space. Compositio
Mathematica, 28 Fasc. 1:33-36, 1974.

HATCHER, A.: Algebraic Topology. Cambridge University Press, 2002.

HATCHER, A.: Vector Bundles & K-Theory. http://www.math.cornell.edu/
“hatcher/VBKT/VBpage.html, 2009.

IrRIE, K.: Transversality problems in string topology and de Rham chains.
arXiv:1404.0153v2 [math.GT], 2014.

KaApeisaviLi, T. V.: On the homology theory of fibre spaces. Russian Math.
Surveys, 35:231-238, 1980.

KELLER, B.: Introduction to A-infinity Algebras and Modules. Homology, Homo-
topy and Applications, 3, No. 1:1-35, 2001.

KosiNsKI, A. A.: Differential Manifolds, vol. 138. Academic Press, 1992. Pure
and Applied Mathematics.

KRiz, I. and J. P. MAY: Operads, Algebras, Modules, and Motives. Astérisque,
no. 233, 1995.

LATSCHEV, J.: Fukaya’s work on Lagrangian embeddings. in 'Free Loop Spaces
in Geometry and Topology’ (J. Latschev, A. Oancea, eds.), to appear in European
Mathematical Society Publishing House as IRMA Lectures in Mathematics and
Theoretical Physics Vol. 24.

Leg, J. M.: Introduction to Topological Manifolds, vol. 218. Springer, 2010.
Graduate Texts in Mathematics.

LopAy, J.-L. and B. VALLETTE: Algebraic Operads, vol. 346. Springer, 2012.
Grundlehren der mathematischen Wissenschaften.

MASSEY, W. S.: Algebraic Topology: An Introduction, vol. 56. Springer, 1977.
Graduate Texts in Mathematics.

MAy, J. P.: A Concise Course in Algebraic Topology. University Of Chicago
Press, 1999.

MCCLEARY, J.: A User’s Guide to Spectral Sequences. Publish or Perish, Inc.,
1985. Mathematics Lecture Series 12.

120


http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html
http://www.math.cornell.edu/~hatcher/VBKT/VBpage.html

[31] McDurF, D. and D. SALAMON: J-holomorphic curves and symplectic topology,
vol. 52. American Mathematical Society, 2004. Colloquium Publications.

[32] MILNOR, J.: On Spaces Having the Homoptopy Type of a CW-Complex. Trans-
actions of the American Mathematical Society, 90:272-280, 1959.

[33] RATCLIFFE, J. G.: Foundations of Hyperbolic Manifolds (second edition), vol.
149. Springer, 1994. Graduate Texts in Mathematics.

[34] Siva, A. C. DA: Lectures on Symplectic Geometry. Springer, 2008. 2nd edition.

[35] THOM, R.: Quelques propriétés globales des variétés différentiables. Comment.
Math. Helv., 28:17-86, 1954.

[36] WiLsON, S. O.: On the Algebra and Geometry of a Manifold’s Chains and
Cochains. Dissertation, Stony Brook University, 2005.

121



122



Eidesstattliche Versicherung

Hiermit erklire ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst
verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, den 6. November 2016

Johannes Huster



Nur durch die folgende Unterstiitzung wurde es mir moglich, die vorliegende Arbeit so
anzufertigen und schlussendlich hier in Hamburg einzureichen.

Mein aufrichtigster Dank gebiihrt meinem Betreuer Prof. Dr. Janko Latschev. Im Be-
sonderen fiir die Mdoglichkeit, hier in Hamburg an Dingen zu arbeiten, die in gewisser
Weise aus meinem eigenen Interesse entstanden sind. Dies wurde erst machbar durch
seine Geduld und Motivation, die er mir in den letzten Jahren immer entgegenge-
bracht hat. Die oft stundenlangen Diskussionen iiber Details und sein stindiger Wille,
mir auch die stupidesten Fragen zu beantworten, liefsen mich immer wieder aufs Neue
Mut und Ehrgeiz schépfen, um mit frischem Elan zuriick an die Arbeit zu gehen.

Den hier im Geomatikum oft zu findenden Experten, darunter besonders Andreas Ger-
stenberger, Fabian Kirchner, Marc Lange und Stephanie Ziegenhagen, danke ich fiir die
vielen hilfreichen Ideen, die mein Voranschreiten erleichternd unterstiitzten. Dringend
seien hier Prof. Dr. Birgit Richter und die Studenten ihres Seminars zur Topologie
im Wintersemster 2013/14 dankend erwéhnt, durch deren Hilfe ich Grundlagen in der
algebraischen Topologie wieder auffrischen konnte.

Danken will ich Kai, Sven, Peter, Meru, Katrin und Pavel aus Augsburg. Einerseits
fiir die ganze Mathematik die ich vor Ort gelernt habe, und natiirlich besonders fiir die
schonen vier Wochen, die ich wihrend meines Aufenthalts in Augsburg erleben durfte.

Die praktische Machbarkeit nicht vergessend, danke ich dem Graduiertenkolleg , Ma-
thematics Inspired by String Theory and QFT* und dem Fachbereich Mathematik der
Universitdt Hamburg fiir die finanzielle Unterstiitzung meiner Forschung in den letzten
vier Jahren.

Danken méchte ich meinen Eltern, Rita und Hans, fiir ihre andauernde und durch
nichts zu erschiitternde Unterstiitzung, die sie mir in allen Lebensbereichen entgegen-
bringen. Hedwig und Friedrich Kéapplinger danke ich fiir das Geborgensein und die
Wirme, die sie mich, ihrem Schwiegersohn, immer spiiren lassen. Nur durch das Ver-
trauen meiner ganzen Familie konnte ich mathematische Schaffenskrisen iiberwinden
und so fiir meine ’abstrakte’ Forschung in den letzten Jahren immer wieder Sinn und
Rechtfertigung finden. Besondere Achtung gebiihrt Hedi, die zwar nicht permanent
jedes mathematische Detail bis zur letzten Konsequenz verfolgt, aber doch mindestens
immer den aktuellen Arbeitstitel prasent hat.

Meiner wunderbaren Frau Magdalena danke ich fiir alles, und hier am meisten fiir all
die Knuffe und Kiisse, die zum Schreiben dieser Arbeit nétig waren!

Danke



	Introduction
	History and motivation
	Motivation from symplectic geometry
	Results of the thesis
	Outline

	String topology
	Topology of loop spaces
	Operations on the homology of certain loop spaces
	The commutative algebra 
	The Gerstenhaber algebra 
	The Batalin-Vilkovisky algebra 
	A graded Lie bracket for HS1LM

	Computational methods
	Products of manifolds
	BV structure of the non-equivariant loop space homology
	The structure of the S1-equivariant free loop space homology


	Homotopy algebras
	The homotopy transfer construction for algebras
	A-algebras
	Homotopy transfer for dg algebras
	Homotopy transfer for a product of dg algebras

	Examples: Ainfty-structures for H(LSn)
	The homotopy transfer construction for Lie algebras

	Higher string topology via homotopy transfer
	De Rham homology of LM
	Chain level string topology of LM
	Chain level string topology of LSn
	Higher string topology of product manifolds
	Obstruction against the Lagrangian embedding X->Cd

	Appendix
	(Higher) Homotopy theory
	Universal bundles and Gysin sequence
	The based loop space
	Spectral sequences


