
Cryptographic protocols based on

inner product spaces and group

theory with a special focus on the

use of Nielsen transformations

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für

Mathematik, Informatik und Naturwissenschaften

Fachbereich Mathematik

der Universität Hamburg

vorgelegt von

Anja I. S. Moldenhauer

Hamburg, 2016

Tag der Disputation: 23.09.2016

Als Dissertation angenommen vom Fachbereich

Mathematik der Universität Hamburg

Auf Grund der Gutachten von Prof. Dr. Gerhard Rosenberger

und Prof. Dr. Ulf Kühn

und Prof. Dr. Bettina Eick

To my family / Für meine Familie

Contents

1. Introduction 9
1.1. Cryptology and cryptographic protocols . 10

1.2. Examples of some known cryptographic protocols 15

1.2.1. Diffie-Hellman key exchange protocol . 15

1.2.2. ElGamal public key cryptosystem . 15

1.2.3. Pohlig-Hellman private key cryptosystem 16

1.2.4. RSA public key cryptosystem . 17

1.3. Outline of this thesis and summary of results . 18

1.3.1. On the evolution of the thesis . 18

1.3.2. Summary of the chapters and developed cryptographic protocols 20

1.3.3. Assessment of the results . 54

1.4. Suggestions for other platform groups instead of finitely generated free groups . . 56

1.5. Open questions and further research for cryptographic protocols based on combi-
natorial group theory . 59

2. Inner product spaces and cryptography 61
2.1. Inner product spaces and a private key cryptosystem (Protocol 1) 63

2.2. Inner product spaces and a challenge and response protocol (Protocol 2) 68

3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups 73
3.1. ElGamal like public key cryptosystem (Protocol 3) 75

3.2. Signature with a semigroup of 3× 3 matrices over F7[A5] (Protocol 4) 81

3.3. Security and ongoing research about the HKKS-key exchange protocol 87

4. Combinatorial group theory 93
4.1. Free groups and group presentations . 93

4.2. Nielsen transformations, Nielsen reduced sets and additional theory 96

4.3. Fundamental problems in group theory . 103

4.4. Whitehead-Automorphisms . 106

5. Secret sharing protocols 109
5.1. D. Panagopoulos’ (n, t)-secret sharing scheme . 111

5.1.1. Share distribution method given by D. Panagopoulos 113

5.2. A purely combinatorial (n, t)-secret sharing scheme (Protocol 5) 113

5.3. Access structures for generalized secret sharing schemes 118

5.3.1. Generalized secret sharing schemes by M. Ito, A. Saito and T. Nishizeki . 120

5.3.2. Generalized secret sharing schemes by J. Benaloh and J. Leichter 125

5.4. Comparison with A. Shamir’s suggested properties 130

6. Secret sharing schemes using Nielsen transformations 135
6.1. Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6) 135

6.2. Secret sharing scheme based on Nielsen reduced sets and the free length (Protocol 7)146

5

Contents

7. Private key cryptosystem with Aut(F) (Protocol 8) 153
7.1. Modification with the ciphertext a reduced word for the cryptosystem with Aut(F)166

7.2. Modification with SL(2,Q) for the cryptosystem with Aut(F) 171

7.3. Modification with Hilbert’s Tenth Problem for the cryptosystem with Aut(F) . . 175

7.4. Chosen plaintext attacks on the cryptosystem with Aut(F) 180

7.5. Chosen ciphertext attacks on the cryptosystem with Aut(F) 182

8. Private key cryptosystem with Aut(FU) (Protocol 9) 187
8.1. Modification with the ciphertext a reduced word for the cryptosystem with Aut(FU)200

8.2. Modification with SL(2,Q) for the cryptosystem with Aut(FU) 205

8.3. Modification with Hilbert’s Tenth Problem for the cryptosystem with Aut(FU) . 206

8.4. Chosen plaintext attacks on the cryptosystem with Aut(FU) 208

8.5. Chosen ciphertext attacks on the cryptosystem with Aut(FU) 210

9. Private key cryptosystem which uses automorphisms on plaintext sequences (Proto-
col 10) 215
9.1. Chosen plaintext attacks on the cryptosystem which uses automorphisms on plain-

text sequences . 234

9.2. Chosen ciphertext attacks on the cryptosystem which uses automorphisms on
plaintext sequences . 234

10.Additional cryptographic protocols using automorphisms of finitely generated free
groups 235
10.1. ElGamal like public key cryptosystem using automorphisms on a finitely gener-

ated free group F (Protocol 11) . 235

10.2. Challenge and response protocol using automorphisms on a finitely generated free
group F (Protocol 12) . 239

A. Additional definitions 243
A.1. Boolean formulae . 243

A.2. Elementary free groups . 245

B. Additional examples 247
B.1. Example for automorphisms for Remark 7.0.10 247

B.2. A part of an example with additional information from Alice 253

B.3. Example for Remark 7.0.9 . 257

C. Calculations with Maple 16 or GAP for examples 259
C.1. Example 2.1.5 calculations in Maple 16 . 259

C.2. Example 2.2.2 calculations in Maple 16 . 262

C.3. Example 6.1.3 calculations in Maple 16 . 267

C.4. Example 6.2.3 executed with GAP . 274

C.5. Example 7.0.7 executed with GAP . 277

C.6. Example 7.2.4 calculations in Maple 16 and GAP 287

C.7. Example of a message, where inverse automorphisms were used for decryption in
a cryptosystem based on Aut(F) . 307

C.8. Example 8.0.4 calculated with GAP . 316

C.9. Example for decryption where Bob uses an algorithm to solve a constructive
membership problem for a cryptosystem based on Aut(FU) 323

C.10.Example 9.0.7 calculated with GAP and Maple 16 331

C.11.Example 10.1.4 executed with GAP . 346

6

Contents

C.12.Example 10.2.2 executed with GAP and Maple 16 351

Bibliography 357

7

Chapter 1

Introduction

At the present time the most widely used cryptographic protocols are based on number theory
and on the structure of commutative groups. These include for example RSA, Diffie-Hellman,
ElGamal and elliptic curve cryptography (see for instance [Sil09] or [Kna92]).

Due to the growing strength of computers and the increased sophistication of improved compu-
tational techniques there is a definite need for research concerning new cryptographic protocols.

For the most used cryptographic protocols, like RSA and Diffie-Hellman, there are two problems,
integer factorization and finding discrete logarithms, that provide the security certification. Un-
fortunately there exist algorithms on a hypothetical quantum computer which factor integers
and find discrete logarithms in polynomial time (see [Sho96]1). Both problems are hard to solve
on classical computers, but if a working quantum computer is developed, in the future the cryp-
tographic protocols based on these problems are no longer secure. Therefore, it is necessary for
cryptographic protocols to be modified.

An idea that has been pursued is to use non-commutative groups as cryptographic platforms.
One of the earliest suggestions to use those groups was given by W. Magnus and appeared 1973
in his paper [Mag73]. However, it was the pioneering paper [MW85] by M. R. Magyarik and
N. R. Wagner in 1985, where they introduced the innovative idea of using the difficulty of group
theoretical decision problems (they suggest the word problem) as one-way functions in cryptog-
raphy, that began the work on using non-commutative platforms.

This led to an active line of research which tries to develop cryptographic protocols based on
non-commutative platforms. This area is called non-commutative algebraic cryptography.
Due to the fact, that the best understood non-commutative platforms are groups, this research
area is also known as group based cryptography. The book [MSU08] from A. Myasnikov,
V. Shpilrain and A. Ushakov contains a good overview of group based cryptography.

In this thesis, we give extensions of known cryptographic protocols, develop new cryptographic
protocols and give modifications of cryptographic protocols. The focus lays on newly developed
cryptographic protocols using non-commutative groups, and the use of techniques which are
typically studied in combinatorial group theory.
With extensions we mean, that the mathematical idea behind a known cryptographic protocol
is used to generate another cryptographic protocol based on this theory. For example we use
the idea behind the CFRZ-secret sharing scheme to come up with a private key cryptosystem.
To develop new cryptographic protocols means, that we use a mathematical theory which was
not used before to get a cryptographic protocol in such a way, thus the based theory is new for
this cryptographic protocol. For example we use finitely generated free groups, Nielsen reduced

1A preliminary version of the paper appeared in the proceedings of the 35th Annual Symposium on Foundations
of Computer Science, Santa Fe 1994, IEEE Computer Society Press, 124–134.

9

Chapter 1. Introduction

sets and automorphisms on finitely generated free groups, given by Nielsen transformations or
Whitehead-Automorphisms, respectively, to develop symmetric key cryptosystems.
By a modification we use the mathematical idea behind a cryptographic protocol but add some-
thing to it, which, in general, improves the security. For example in addition to a newly developed
symmetric key cryptosystem, based on combinatorial group theory, we use a faithful represen-
tation of a finitely generated free group F into SL(2,Q).

In progress of writing this thesis the following relating publications arose:

• [FMR13] B. Fine, A. I. S. Moldenhauer and G. Rosenberger, A secret sharing scheme based
on the Closest Vector Theorem and a modification to a private key cryptosystem,
De Gruyter Groups Complexity Cryptology 5 (2013), 223–238.

• [Mol15] A. I. S. Moldenhauer, A group theoretical ElGamal cryptosystem based on a
semidirect product of groups and a proposal for a signature protocol, Contem-
porary Mathematics 633 (2015), 97–113.

• [MR15] A. I. S. Moldenhauer and G. Rosenberger, Cryptographic protocols based on
Nielsen transformations, ArXiv: https://arxiv.org/abs/1504.03141v1 (2015).

• [FKIMR15] B. Fine, G. Kern-Isberner, A. I. S. Moldenhauer and G. Rosenberger, On the Gen-
eralized Hurwitz Equation and the Baragar-Umeda Equation, Results in Mathe-
matics 69 (2015), 69–92.

• [MR16] A. I. S. Moldenhauer and G. Rosenberger, Cryptosystems using automorphisms of
finitely generated free groups, Tributes 29, Computational Models of Rationality
(2016), 31–51.

• [CFMRZ16] C. S. Chum, B. Fine, A. I. S. Moldenhauer, G. Rosenberger and X. Zhang, On
secret sharing protocols, Contemporary Mathematics (to appear 2016).

In this chapter we first give a brief overview about cryptology and cryptographic protocols.
Examples of mostly standard cryptographic protocols are given. Following by the outline of this
thesis in which we also give a summary of results for each chapter and sketch the developed
cryptographic protocols in tables. Afterwards a section about the assessment of the results of this
thesis is given. Suggestions for other platform groups instead of finitely generated free groups
for the newly developed cryptographic protocols, based on combinatorial group theory, are
explained. The chapter closes with open questions and further research ideas for cryptographic
protocols based on combinatorial group theory.

1.1. Cryptology and cryptographic protocols

This section gives a brief overview of cryptology. For more information see for instance [MvOV97],
[Buc10], [BFKR15] or [BNS10]. For number theory and cryptography see for example [Kob87].
For group theoretical cryptography see for instance [VS15] and especially for group-based cryp-
tography with a special focus on non-commutative groups see for example [MSU08].

Historically, cryptology is an old subject, which started with the need for secrecy in informa-
tion and messages, respectively. For example Gaius Iulius Caesar (100 B.C - 40 B.C) used

10

https://arxiv.org/abs/1504.03141v1

1.1. Cryptology and cryptographic protocols

substitutions for military communication purposes (known as Caesar Cipher, see for instance
[MvOV97]).

Cryptology contains two subfields: cryptography and cryptanalysis. Cryptography is the
science of developing and implementing cryptographic protocols. Cryptanalysis is the science
of breaking cryptographic protocols. In cryptanalysis the cryptographic protocols are analyzed
and the strengths and weaknesses are presented. In most literatures cryptography is used syn-
onymously with cryptology.

Nowadays, with the use of computers and the internet, there are different goals and purposes
for cryptographic methods; these include confidentiality, data integrity, authentication and non-
repudiation.

These cryptographic goals given in greater detail (following [MvOV97]) are:

• Confidentiality is a technique used to keep the content of information from all but
those authorized to have it. Secrecy is a term synonymous with confidentiality and
privacy. There are numerous approaches to providing confidentiality, ranging from physical
protection to mathematical algorithms which render data unintelligible.

• Data integrity is a technique which addresses the unauthorized alteration of data. To as-
sure data integrity, one must have the ability to detect data manipulation by unauthorized
parties. Data manipulation includes such things as insertion, deletion and substitution.

• Authentication is a technique related to identification. This function applies to both
entities and information itself. Two parties entering into a communication should identify
each other. Information delivered over a channel should be authenticated as to origin,
data of origin, data content, time sent, etc. For these reasons this aspect of cryptography
is usually subdivided into two major classes: entity authentication and data origin
authentication. Data origin authentication implicitly provides data integrity (for if a
message is modified, the source has changed).

• Non-repudiation is a technique which prevents an entity from denying previous com-
mitment or actions. When disputes arise due to an entity denying that certain actions
were taken, a means to resolve the situation is necessary. For example, one entity may
authorize the purchase of property by another entity and later deny such authorization
was granted. A procedure involving a trusted third party is needed to resolve the dispute.

A cryptographic task is where one or more parties have to communicate with some degree of
secrecy and would like to get one or more of the above cryptographic aims. Suppose that several
parties want to manage a cryptographic task. Then they have to communicate with each other
and cooperate. Hence, each party has to follow certain rules and implement certain agreed upon
algorithms. The set of all such methods and rules to perform a cryptographic task is called a
cryptographic protocol.

Cryptology is subjected to Kerckhoffs’ Principle2:
The security of a cryptosystem must only lie in the choice of its keys; everything else (including
the algorithm itself) should be considered public knowledge (see for instance [vTJ11]).

This principle can be extended to all cryptographic protocols. The algorithms used in crypto-
graphic protocols are public knowledge and security depends only on the secrecy of the private
assumptions or keys, respectively, of the parties in a cryptographic protocol.

2Synonyms: Kerckhofs’ law; Shannon’s maxim

11

Chapter 1. Introduction

The two parties in cryptographic protocols are often referred to as Alice and Bob.
We differentiate between the following cryptographic protocols:

• Cryptosystems:
A cryptosystem is an algorithm to change an original message, written in some alphabet,
also called plaintext, into a coded text, also called ciphertext, and vice versa. The aim
of this cryptographic protocol is to protect the secrecy of the original message, if Alice
and Bob communicate with each other over a public channel. The process of putting
a plaintext into a ciphertext is called encryption while the reverse procedure, that is,
putting a ciphertext into the plaintext (more precisely into the original message), is called
decryption. A formal definition is the following:
Definition 1.1.1. A cryptosystem exists of the following parts and property:

(i) A set P of plaintexts.

(ii) A set C of ciphertexts.

(iii) A set K of keys, also called key space.

(iv) A set E := {Ee | e ∈ K}, with mappings

Ee : P → C

for encryption. The key e is called encryption key.

(v) A set D := {Dd | d ∈ K}, with mappings

Dd : C → P

for decryption. The key d is called decryption key.

(vi) For each e ∈ K exists a d ∈ K, such that Dd(Ee(p)) = p for all p ∈ P.

There are two different kinds of cryptosystems.

1. Private key cryptosystems (also called symmetric (key) cryptosystems):
The encryption key e is the same key as the decryption key d or it is easy to determine
d knowing only e or vice versa. Therefore, Alice and Bob have to agree (privately or
with the help of a key exchange or transport protocol) on a common secret encryption
key.

2. Public key cryptosystems (also called asymmetric (key) cryptosystems):
Given the encryption key e it is almost infeasible to determine the corresponding
decryption key d. The encryption key e is a public key. If e is the public key of Alice
everyone including Bob is able to send her a message, but only Alice who knows
the corresponding not public decryption key d to e, such that Dd(Ee(p)) = p for all
p ∈ P, is able to decrypt the ciphertexts correctly.
The basic idea is that a so called one-way function f is used to encrypt a plaintext.
Informally speaking, a one-way function is a function for which it is easy to compute
the image f(x) for an element x in the domain of f , but it is very hard to calculate
f−1(y) for “most” y in the codomain of f .

• Signature protocols (also called digital signature protocols):
In a signature protocol the receiver of a message or piece of information is able to verify
the transmitter authenticity. However, the receiver is not able to masquerade himself as
the original transmitter and sends messages to another party in the name of the original
transmitter. Signature protocols are able to protect data integrity, authentication or non-
repudiation.

12

1.1. Cryptology and cryptographic protocols

• Authentication protocols: A member authentication protocol should answer the ques-
tion if the current communication partner is exactly the person for which he claims to be.
The prover must be able to identify himself in real time to a verifier. We differentiate be-
tween one-way and two-way authentication depending if only the verifier identifies himself
to the prover or if in addition the prover verifies himself also to the verifier.
A special kind of authentication protocols is a challenge and response protocol. In
a challenge and response protocol there are two participants. One is called the verifier
and the other one is called the prover. The verifier presents a question (“challenge”) to
the prover and the prover has to provide the correct answer (“response”). They perform
different steps. First, they agree privately on a common shared secret between the prover
and the verifier which is a tuple (P, V) where P is a standard password for the prover and
V is the associated challenge “space”. The challenge “space” provides an unlimited set of
back-up challenges to the password. The assumption is, that it is infeasible to answer the
challenges without knowing the challenge “space”. Second, the prover sends the password
to the verifier. Third, the verifier presents a question depending on the associated chal-
lenge “space” V . Fourth, the question is answered by the prover and the answer is sent
to the verifier. Fifth, the verifier proves if the response is correct. This is then repeated
a finite number of questions. If all questions are answered correctly the prover (and the
password P) is verified.

• Zero-Knowledge protocols: Alice shall prove to Bob, that she is aware of a certain
secret information, without revealing any information. For example she can use this cryp-
tographic protocol to identify herself to Bob by verifying her knowledge about some special
information. Alice wants to convince Bob of the correctness of a claim whereby Bob is
allowed to ask questions. We define an interactive Zero-Knowledge proof roughly by the
following properties (following [BNS10]):

– In case that Alice can prove the correctness of her claim she can always convince Bob
to believe her (feasibility).

– In case that Alice’s claim is wrong or she is not able to prove it, there is just a small
probability for her to convince Bob (correctness).

– The proof has the Zero-Knowledge property. This means, the only knowledge Bob
gains is that Alice can prove her claim. Formally speaking: there is a simulator which
can, without actually knowing a proof, construct an interactive proof, which is for a
third party not distinguishable of a real interactive proof.

Zero-Knowledge protocols can be used for authentication.

• Key exchange protocols and key transport protocols: If Alice and Bob want to
communicate via a private key cryptosystem they use for example a key exchange protocol
to exchange a secret private key. A key transport protocol is used, if one party chooses
the private key and transmits it to the other party.

• Secret sharing protocols: After Kerckhoffs’ Principle the security of a cryptographic
protocol lies only in the choice of its secret keys. This provides a strong motivation for
the idea of secret sharing protocols. As already mentioned in [BFKR15] if we examine
the problem of maintaining sensitive information, we consider two issues: secrecy and
availability of the information. If only one person keeps the entire secret (which is for
example a key for a cryptographic protocol), then there is a risk that the person might
lose the secret or the person might not be available when the secret is needed. Hence, it is
often wise to allow several entities to have access to the secret. Otherwise, the more people
who can access the secret, the higher the chance the secret will be leaked. A secret sharing

13

Chapter 1. Introduction

protocol is designed to solve these issues by splitting a secret into multiple shares and
distributing these shares among a group of participants. The secret can only be recovered
when the participants of an authorized subset join together to combine their shares. In
this thesis we mainly work with (n, t)-secret sharing protocols. A (n, t)-secret sharing
protocol (or (n, t)-threshold scheme with a threshold t), n, t ∈ N and t ≤ n, is a method to
distribute a secret among a group of n participants in such a way that it can be recovered
only if at least t of them combine their shares. The person who calculates and distributes
the shares to the participant is called dealer. For a formal definition and more details see
Chapter 5.

We can replace the word “protocol” or “cryptographic protocol” by the word “scheme”.

Symmetric cryptosystems are very old in comparison with asymmetric cryptosystems. The first
known military symmetric cryptosystem was the scytale used in the 5th century BC by the
Spartans (see for instance [Sin06]). A scytale is a wooden staff around which a stripe of leather
or parchment is winded. The message is written on the stripe along the wooden staff. If it is
taken off of the wooden staff the stripe appears with an arbitrary looking order of letters. Only
a scytale with the same diameter as the first one decipher the message correctly, when the stripe
is wrapped around it.
The first asymmetric protocol was a key exchange protocol introduced 1976 by W. Diffie and
M. Hellman in [DH76], see also Section 1.2.1. R. L. Rivest, A. Shamir and L. Adleman published
1978 the paper [RSA78] in which they describe the first asymmetric cryptosystem, known as
RSA, see also Section 1.2.4.
For more historical background see for example [Kah96] or [Sin06].

An attempt to break a cryptographic protocol is called an attack. A brute force attack is
an attack where all possible candidates for a key are tested. There are other different attacks
on cryptosystems which are, in general, more efficient than brute force attacks, see [BNS10]:
Assume an enemy has access to an oracle which is able to perform the cryptosystem in which
the enemy is interested. It is like a blackbox. The oracle is able to encrypt and decrypt but
it does not tell the enemy which keys it has used for which encryption. The enemy can see at
most the plaintext and the ciphertext and, depending on the attack, he can determine which
plaintext or ciphertext the oracle decrypts.

• Known ciphertext attacks: An oracle chooses random plaintexts and calculates the depend-
ing ciphertexts. These ciphertexts are given to the enemy. This is also known as ciphertext
only attack, where the enemy gets the ciphertexts which are send between Alice and Bob.

• Known plaintext attacks: An oracle chooses random plaintexts and calculates the depend-
ing ciphertexts. The enemy gets both, the plaintexts and the corresponding ciphertexts.
Thus, the enemy gets plaintext-ciphertext pairs he did not choose.

• Chosen plaintext attacks: The enemy chooses plaintexts and sends these to the oracle.
The plaintexts are encrypted by the oracle and sent back to the enemy.

• Chosen ciphertext attacks: The enemy chooses ciphertexts and sends these to the oracle.
The ciphertexts are then decrypted and the plaintexts are sent back to the enemy.

We analyze the developed private key cryptosystems concerning known ciphertext attacks, be-
cause these attacks are always possible. In addition we take a closer look at chosen plaintext
attacks and chosen ciphertext attacks. A chosen plaintext attack is stronger than a known
plaintext attack, because an eavesdropper, Eve, is able to actively influence for which plaintexts

14

1.2. Examples of some known cryptographic protocols

she gets the corresponding ciphertexts. For example it is useful for Eve to encrypt a plaintext
which consists of just the same alphabet letter to get information about the way how this let-
ter is encrypted. For example she sends the plaintext “aaaaaa” to the oracle to get hopefully
information on how the letter “a” is encrypted. With chosen plaintext and chosen ciphertext
attacks the enemy is able to get plaintext-ciphertext pairs, which he chooses. For us this is of
more interest than known plaintext attacks and therefore this kind of attacks is not studied.

1.2. Examples of some known cryptographic protocols

We present classical concepts of known cryptographic protocols without a full cryptanalysis.
These examples were chosen, because they are mostly standard, we already referred to them
above and we will need some of these concepts in this thesis.

1.2.1. Diffie-Hellman key exchange protocol

The simplest and original implementation of this cryptographic protocol by W. Diffie and
M. E. Hellman (see [DH76] or [MSU08, Section 1.2]) uses the multiplicative group of inte-
gers modulo p, where p is a prime number. A more general description of this cryptographic
protocol uses an arbitrary finite cyclic group.

The Diffie-Hellman key exchange protocol is as follows:

1. Alice and Bob agree on a finite cyclic group G and a generating element g in G. The group
G is written multiplicatively.

2. Alice picks a random natural number a and sends ga to Bob.

3. Bob picks a random natural number b and sends gb to Alice.

4. Alice computes KA =
(
gb
)a

= gba.

5. Bob computes KB = (ga)b = gab.

Since ab = ba (because N is commutative), both, Alice and Bob, are now in possession of the
same group element K = KA = KB, which can serve as the shared secret key.

This cryptographic protocol is considered secure against eavesdroppers if G and g are chosen
properly. The eavesdropper, Eve, must solve the Diffie-Hellman problem (recover gab from
ga and gb) to obtain the shared secret key. This is currently considered difficult for a “good”
choice of parameters (see for example [MvOV97] for details). In addition, solving the discrete
logarithm problem (recover a from g and ga) would solve the Diffie-Hellman problem and
breaks this cryptosystem.

1.2.2. ElGamal public key cryptosystem

The ElGamal cryptosystem (see [ElG85] or [MSU08, Section 1.3]) is a public key cryptosystem,
which is based on the Diffie-Hellman key exchange protocol (see Section 1.2.1).

The ElGamal public key cryptosystem is as follows:

1. Alice and Bob agree on a finite cyclic group G and a generating element g ∈ G.

2. Alice (the receiver) picks a random natural number a and publishes the element c := ga.

15

Chapter 1. Introduction

3. Bob, who wants to send a message m ∈ G to Alice, picks a random natural number b and
sends two elements, m · cb and gb, to Alice. Note that cb = gab.

4. Alice recovers m =
(
m · cb

)
·
((
gb
)a)−1

.

Because this cryptographic protocol is based on the Diffie-Hellman key exchange protocol the
security depends also on the Diffie-Hellman problem and hence it is also vulnerable to the
discrete logarithm problem.

1.2.3. Pohlig-Hellman private key cryptosystem

The Pohlig-Hellman cryptosystem published in [PH78] is a private key cryptosystem, which is
based on number theory more precisely on modular arithmetic and Fermat’s little theorem, see
for instance [Kob87].

Theorem 1.2.1. [Kob87] Fermat’s little theorem
Let p be a prime number. Any integer a satisfies ap ≡ a (mod p), and any integer a not divisible
by p satisfies

ap−1 ≡ 1 (mod p).

Consequently, it is

zx ≡ zx (mod p−1) (mod p)

for 1 ≤ z ≤ p− 1 and x ∈ N.

We now describe the Pohlig-Hellman cryptosystem and assume that Alice would like to
send a message to Bob:

1. Alice and Bob agree on a (large) prime number p. They choose a natural number e with
2 ≤ e ≤ p−2 and gcd(e, p−1) = 1, and determine d with ed ≡ 1 (mod p−1), the inverse
element of e modulo p− 1 with 2 ≤ d ≤ p− 2. To calculate d they can use the Euclidean
Algorithm (see for instance [Kob87]).
Alice stores her private key e and Bob stores d.

2. If Alice wants to send a message m ∈ (Z/pZ)×, an element of the multiplicative group of
Z/pZ, to Bob she calculates

c := me (mod p)

and transmits the ciphertext c to Bob.

3. Bob gets c and reconstructs the message m as follows

cd = med ≡ med (mod p−1) ≡ m (mod p)

because of the consequence of Fermat’s little theorem (Theorem 1.2.1) and the choice of e
and d with ed ≡ 1 (mod p− 1).

Assume an eavesdropper, Eve, gets a ciphertext and the corresponding plaintext, that is, the
tuple (m,me), with m ∈ (Z/pZ)×. To break the cryptosystem she tries to get the number e,
because if she knows e she can calculate d with the extended Euclidean Algorithm. Getting the
number e of the tuple (m,me) is exactly the discrete logarithm problem.

16

1.2. Examples of some known cryptographic protocols

1.2.4. RSA public key cryptosystem

The RSA cryptosystem (see [RSA78] or for instance [Kob87]) can be seen as an extension of the
Pohlig-Hellman cryptosystem. However, the RSA cryptosystem is a public key cryptosystem
while the Pohlig-Hellman cryptosystem is a private key cryptosystem.

Definition 1.2.2. [Kob87]
Let n be a natural number. The Euler phi-function ϕ(n) is defined to be the number of non-
negative integers b less than or equal n which are prime to n, that is,

ϕ(n) := |{0 ≤ b ≤ n | gcd(b, n) = 1}| .

Corollary 1.2.3. [Kob87]

• The Euler phi-function is “multiplicative”, meaning that

ϕ(nm) = ϕ(n)ϕ(m),

whenever gcd(n,m) = 1.

• If p is a prime number, then ϕ(p) = p− 1.

A generalization of Fermat’s little theorem, due to Euler, is used.

Proposition 1.2.4. [Kob87]
If gcd(a, n) = 1, then aϕ(n) ≡ 1 (mod n).

Assume that Alice and Bob would like to communicate with each other and Bob should send a
message to Alice, then the RSA public key cryptosystem is as follows:

1. Alice chooses privately two prime numbers p and q.
She calculates N := pq and ϕ(N) = (p− 1)(q − 1) (see Corollary 1.2.3).
Additionally she needs a number e with 2 ≤ e ≤ ϕ(N) − 1 and gcd(e, ϕ(N)) = 1. The
tuple (N, e) is the public key.
She calculates her private key d, which is her decryption key, by determining d with

ed ≡ 1 (mod ϕ(N)).

2. Bob knows the public key (N, e). He chooses a plaintext m ∈ (Z/NZ)× and computes the
ciphertext

c ≡ me (mod N).

Bob sends c to Alice.

3. Alice, with her decryption key d, gets the message m by computing

cd = med ≡ med (mod ϕ(N)) ≡ m (mod N),

because of Proposition 1.2.4 and the choice of e and d with ed ≡ 1 (mod ϕ(N)).

The numbers N = pq and e are public. If an attacker is able to calculate ϕ(N) = (p− 1)(q− 1)
he can generate the multiplicative inverse element of e in Z/ϕ(N)Z with the Euclidean Algorithm,
and hence the description key d. It is easy to calculate ϕ(N) if the prime factorization of N is
known. Therefore, the security depends on the factorization problem.

17

Chapter 1. Introduction

1.3. Outline of this thesis and summary of results

We now give the outline of this thesis. Firstly, we explain the evolution of this thesis without go-
ing into details of the mathematical theory or the cryptographic protocols. After each paragraph
we give a listing of the developed cryptographic protocols. Secondly, we give a summary of each
chapter in which we sketch the results and summarize the developed cryptographic protocols.
This section closes with an assessment of the results.

1.3.1. On the evolution of the thesis

This Ph.D. project started with extending existing cryptographic protocols to other crypto-
graphic protocols. The basis are the secret sharing schemes, because they were studied in the
master’s thesis [Mol12] in which different secret sharing protocols were analyzed. Both the
CFRZ-secret sharing scheme by C. S. Chum, B. Fine, G. Rosenberger and X. Zhang [CFRZ12],
which is based on the Closest Vector Theorem in a real inner product space, and a secret shar-
ing scheme by D. Panagopoulos [Pan10] were analyzed. An observation for both cryptographic
protocols is that it is possible to first calculate and distribute the shares for the participants
and as a second step to choose the secret (under certain restrictions at the CFRZ-secret sharing
scheme) and either send an additional element to each participant or publish this element. With
the additional element and the shares the participants are able to reconstruct the secret. The
first private key cryptosystem (Protocol 1) in this Ph.D. project (published in [FMR13]), is
extended from the CFRZ-secret sharing scheme and uses the possibility that the secret can be
chosen after the distribution of the shares. In addition a challenge and response system arose a
little bit later (Protocol 2).

• CFRZ-secret sharing scheme ([CFRZ12], [Mol12])

– Protocol 1: CV-private key cryptosystem ([FMR13])

– Protocol 2: CV-challenge and response protocol

The aim for this thesis is to generate cryptographic protocols in combinatorial group theory,
which use non-commutative groups. Thus, the HKKS-key exchange protocol (shorter HKKS-
scheme) by M. Habbeb, D. Kahrobaei, C. Koupparis and V. Shpilrain in [HKKS13] was studied,
which is a key exchange protocol using semidirect products of (semi)groups. These studies re-
sulted in a public key cryptosystem (ElGamal like) (Protocol 3) as well as a signature protocol
(Protocol 4), published in the paper [Mol15]. There is an ongoing research about the HKKS-
scheme with linear algebra attacks and research about suitable platforms, which also affects this
cryptosystem and signature protocol. An overview of this research will be given.

• HKKS-key exchange protocol ([HKKS13])

– Protocol 3: Group theoretical ElGamal like public key cryptosystem using semidi-
rect products ([Mol15])

– Protocol 4: Signature with a semigroup of 3× 3 matrices over F7[A5] ([Mol15])

Another cryptographic protocol, which is based on the combinatorial group theory and studied
in the master’s thesis [Mol12], is the secret sharing scheme by D. Panagopoulos [Pan10]. It

18

1.3. Outline of this thesis and summary of results

uses the word problem in a finitely generated group G and the shares are subsets of the defin-
ing relators of this group. The security depends on the way how the shares are distributed.
Based on this observation it was sufficient to use the idea of the share distribution method
which D. Panagopoulos describes to get a purely combinatorial (n, t)-secret sharing scheme
(Protocol 5). It will be shown that the share distribution method given by D. Panagopoulos
is a special case of a multiple assignment scheme introduced in the paper [ISN87] by M. Ito,
A. Saito and T. Nishizeki. Furthermore, the introduced combinatorial secret sharing protocol is
shown to be similar to a variation of a secret sharing protocol explained in [BL90] by J. Benaloh
and J. Leichter. This newly developed secret sharing protocol is published in the survey article
[CFMRZ16] as research in the field of secret sharing schemes. It is also published in [MR15].

• D. Panagopoulos’ secret sharing scheme ([Pan10], [Mol12])

– Protocol 5: Purely combinatorial (n, t)-secret sharing scheme ([MR15],[CFMRZ16])

As mentioned above, D. Panagopoulos uses the word problem in finitely generated groups.
Therefore, it is possible to calculate first the shares and distribute them to the participants and
afterwards determine the secret. The share distribution method can be seen as a basis to develop
new cryptographic protocols in this thesis. The aim is to get cryptographic protocols which use
combinatorial group theory, hence, a first development is a secret sharing scheme using a finitely
generated abstract free group F , a finitely generated free group in SL(2,Q) and Nielsen reduc-
tion theory (using Nielsen transformations) (Protocol 6). Another secret sharing scheme uses
a Nielsen reduced set U and a Nielsen equivalent set V to U (Protocol 7). Both cryptographic
protocols can be used as (n, t)-secret sharing schemes using the share distribution method given
by D. Panagopoulos. Together with Protocol 5 the newly developed secret sharing protocols,
Protocol 6 and Protocol 7, are published in the survey article [CFMRZ16] as research in the
field of secret sharing schemes. They are also published in [MR15].

• D. Panagopoulos’ secret sharing scheme ([Pan10], [Mol12]) and Nielsen transformations

– Protocol 6: Secret sharing scheme using Nielsen transformations and SL(2,Q)
([MR15], [CFMRZ16])

– Protocol 7: Secret sharing scheme using Nielsen transformations together with
Nielsen reduced sets and free lengths of certain words ([MR15], [CFMRZ16])

The studies of these secret sharing protocols with Nielsen transformations can be seen as a
basis for the newly developed cryptographic protocols based on combinatorial group theory
and Nielsen transformations, which are the main result in this thesis (Protocol 8 to Proto-
col 12). It was possible to develop two new private key cryptosystems with similar modifications
(Protocol 8 and Protocol 9), another new private key cryptosystem (Protocol 10), a new
ElGamal like public key cryptosystem (Protocol 11) and a new challenge and response sys-
tem (Protocol 12), which all use combinatorial group theory and automorphisms on finitely
generated free groups. Parts of some of these cryptographic protocols (more precisely parts of
Protocol 8 and Protocol 11) are published in [MR16]. Protocol 11 is also published in
[MR15].

19

Chapter 1. Introduction

• Nielsen transformations

– Protocol 8: Private key cryptosystem with Aut(F) ([MR16])
Modifications:

1. The ciphertext is one reduced word in X

2. The ciphertext is a sequence of matrices in SL(2,Q) ([MR16])

3. Hilbert’s Tenth Problem is used

– Protocol 9: Private key cryptosystem with Aut(FU)
Modifications:

1. The ciphertext is one reduced word in X

2. The ciphertext is a sequence of matrices in SL(2,Q)

3. Hilbert’s Tenth Problem is used

– Protocol 10: Private key cryptosystem using automorphisms on plaintext sequences

– Protocol 11: ElGamal like public key cryptosystem using automorphisms on a
finitely generated free group F ([MR15], [MR16])

– Protocol 12: Challenge and response protocol using automorphisms on finitely gen-
erated free groups

1.3.2. Summary of the chapters and developed cryptographic protocols

Chapter 2

In Chapter 2 we introduce Protocol 1 and Protocol 2, which extend the CFRZ-secret shar-
ing scheme to a private key cryptosystem as well as to a challenge and response system. The
CFRZ-scheme is a (n, t)-secret sharing protocol, which is based on the Closest Vector Theorem
in a real inner product space (see Theorem 1.3.1). The idea behind the CFRZ-scheme was first
published by C. S. Chum, B. Fine, G. Rosenberger and X. Zhang in [CFRZ12]. It was worked
out and analyzed in detail in [Mol12] whereby parts of these results were published in [FMR13]
and the overview article [CFMRZ16].

We require knowledge of linear algebra and analytic geometry, as it is presented for example in
the books [Bos08] or [Fis10].

Both cryptographic protocols are based on the following Theorem.

Theorem 1.3.1. [Atk89] Closest Vector Theorem
Let W be a real inner product space and let V be a subspace of finite dimension t, t ∈ N. Suppose
that w∗ ∈ W , with w∗ 6∈ V , and e1, e2, . . . , et is an orthonormal basis of V . Then the unique
vector w ∈ V closest to w∗ is given by

w = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + · · ·+ 〈w∗, et〉et,

where 〈·, ·〉 is the inner product on W .

20

1.3. Outline of this thesis and summary of results

Inner structure of Chapter 2:
First of all the Closest Vector Theorem and the CFRZ-scheme are recalled. Afterwards Pro-
tocol 1 and Protocol 2 are introduced in detail and we also give an example for Protocol 1
and an example for Protocol 2.

• Protocol 1: CV-private key cryptosystem

Protocol 1 makes use of the Closest Vector Theorem in a real inner product space, thus we
call it CV-private key cryptosystem. It is published in [FMR13].
If W and V are given as in Theorem 1.3.1 then it is easy to calculate to each element w∗ ∈W \V
the closest element w in V to the element w∗. A situation whereW = R3 and V is a 2-dimensional
subspace of W (visualized by the yellow area) is given in Figure 1.1.

w

w∗

V

W

Figure 1.1.: Visualization of a situation with W = R3 and V a 2-dimensional subspace of W

Protocol 1 is summarized in Table 1.1 (page 22), which is exactly Table 2.1 (page 65) in
Chapter 2.

21

Chapter 1. Introduction

Table 1.1.: Summary of Protocol 1: CV-private key cryptosystem

Private Parameters

A subspace V ⊂W with dim(V) = t < m of
a real inner product space W with dim(W) = m.

Alice Bob

Key Creation

Calculate an orthonormal basis

G = {e1, e2, . . . , et}

for V .

Calculate the orthogonal complement V ⊥ to
V and a basis

B⊥ = {u⊥1 , u⊥2 , . . . , u⊥m−t}

for V ⊥.

Encryption

Choose plaintext p ∈W .
Choose arbitrary ephemeral vector w ∈ V ,
with w 6= p, and calculate v := w − p.
Compute w∗ ∈W \ V :

w∗ = w︸︷︷︸
∈ V

+ (α1u
⊥
1 + α2u

⊥
2 + · · ·+ αm−tu

⊥
m−t)︸ ︷︷ ︸

=: w⊥ ∈ V ⊥

,

αi ∈ R and at least one αi 6= 0, 1 ≤ i ≤ m−t.
Send c := (w∗, v) to Alice.
c:=(w∗,v)←−−−−−−−−−−−−−−−−−−−−

Decryption

Compute

w = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + · · ·+ 〈w∗, et〉et

and the message is w − v = p.

Security:
Protocol 1 is secure against known ciphertext attacks and statistical frequency attack (see for
instance [BFKR15]). To be secure against chosen ciphertext and chosen plaintext attacks Alice
and Bob have to change the subspace V , with dim(V) = t, after t encryptions and decryptions,
respectively.

Conclusion:
Extending a given cryptographic protocol to another cryptographic protocol is interesting, it
gives more possibilities to use the suggested mathematical theory for cryptology. Theoretically
it is a realizable private key cryptosystem but for applications it has the disadvantage that Alice
and Bob have to change the subspace V not later than after t messages (in order not to lose
privacy).

22

1.3. Outline of this thesis and summary of results

• Protocol 2: CV-challenge and response protocol

Protocol 2 uses also the Closest Vector Theorem (Theorem 1.3.1).
The verifier and the prover agree on a common secret P and a corresponding challenge space
V , which is a subspace of a real inner product space W . After presenting the password P to the
verifier, he gives challenges to the prover, which are correctly solvable in the challenge space V .

Possible Challenges:
We propose two kinds of questions for the challenges.

1. How long is the “line” between ` ≥ 3 associated vectors v1, v2, . . . , v` ∈ V given the vectors
v∗1, v

∗
2, . . . , v

∗
` ∈W \ V . That means, calculate

R :=

`−1∑
i=1

‖vi − vi+1‖+ ‖v1 − v`‖,

whereby ‖ · ‖ denotes the euclidean norm in W .

2. What is the sum of the entries of the associated vector v ∈ V given v∗ ∈W \ V ?

The situation for a question of case 1. is shown in Figure 1.2, that is, given the elements v∗1, v
∗
2

and v∗3 it is asks after the length of the blue dotted line.

v2

v∗2

V

W

v1

v∗1

v3

v∗3

Figure 1.2.: Visualization of a situation in a challenge and response system with W = R3 and
V a two dimensional subspace, visualized by a yellow area

Protocol 2 is summarized in Table 1.2 (page 24), which is exactly Table 2.2 (page 71) in
Chapter 2.

23

Chapter 1. Introduction

Table 1.2.: Summary of Protocol 2: CV-challenge and response protocol

Private Parameters

Subspace V ⊂W , with dim(V) = t < m, of a real inner product space W , with dim(W) = m,
and a common password P . The shared secret is (P, V).

Verifier Prover

Calculate orthogonal complement V ⊥ to V and
a basis

B⊥ = {u⊥1 , u⊥2 , . . . , u⊥m−t}

for V ⊥.

Calculate orthonormal basis

G = {e1, e2, . . . , et}

for V .

Present the password P to the verifier
P←−−−−−−−−−−−−−−−

Take challenge space V corresponding to pass-
word P , more precisely the calculated orthogo-
nal basis B⊥.
Choose elements v1, v2, . . . , v` ∈ V with
` ≥ 3 and calculate the associated elements
v∗1, v

∗
2, . . . , v

∗
` ∈W \ V .

Compute v∗i ∈W \ V , 1 ≤ i ≤ `:

v∗i = vi︸︷︷︸
∈ V

+ (αi1u
⊥
1 + αi2u

⊥
2 + · · ·+ αim−tu

⊥
m−t)︸ ︷︷ ︸

=: v⊥ ∈ V ⊥

,

αij ∈ R and at least one αij 6= 0, 1 ≤ j ≤ m− t.
Send v∗1, v

∗
2, . . . , v

∗
` as challenge to the prover.

Challenge: v∗1 ,v
∗
2 ,...,v

∗
`−−−−−−−−−−−−−−−−−−−→

Calculate

R′ :=
`−1∑
i=1

‖vi − vi+1‖+ ‖v1 − v`‖.

Compute

vi = 〈v∗i , e1〉e1 + 〈v∗i , e2〉e2 + · · ·+ 〈v∗i , et〉et

for each v∗i , 1 ≤ i ≤ `.

Calculate the response R and send it to
the verifier, it is

R :=
`−1∑
i=1

‖vi − vi+1‖+ ‖v1 − v`‖.

Response: R←−−−−−−−−−−−−−−−−−−
Proof if R′ = R.

Variation:
It is possible to get a two-way authentication protocol with this challenge and response system.
That means the prover authenticates the verifier in the time where the verifier authenticates the
prover.

24

1.3. Outline of this thesis and summary of results

Security:
There are infinitely many numbers of possible challenges, thus no challenge is used twice by the
verifier. An eavesdropper, Eve, gets only the challenges and the corresponding responses, but
these provide not enough information to get the challenge subspace V . Hence, Eve is not able
to masquerade herself as the prover.

Conclusion:
Extending the CFRZ-scheme to a challenge and response system is another application of the
Closest Vector Theorem for cryptology. It is good to have different challenge “spaces” for
challenge and response systems, in particular if these “spaces” generate an infinite amount of
challenges as in this CV-challenge and response system. In addition it is a benefit, that it can
be used as a two-way authentication protocol.

Further research questions for Chapter 2:
We give some ideas for further research questions.

• Are there other cryptographic protocols which can be based on the Closest Vector Theorem,
for example a public key cryptosystem or a key exchange protocol?

• Are there other suitable challenges for a challenge and response system using the Closest
Vector Theorem?

Chapter 3

In Chapter 3 we introduce Protocol 3 and Protocol 4, which extend the HKKS-key exchange
protocol (short HKKS-scheme) to an ElGamal like public key cryptosystem as well as to a signa-
ture protocol. The HKKS-scheme is introduced by M. Habbeb, D. Kahrobaei, C. Koupparis and
V. Shpilrain in [HKKS13] and it is based on a semidirect product of (semi)groups. Protocol 3
and Protocol 4 are published in [Mol15].

First we review some needed background of algebra as it is given in [Rot95] and we require
knowledge of algebra, as it is presented for example in the book [JS06].

Let G and H be two groups, let Aut(G) be the group of automorphisms of G and let
ρ : H → Aut(G) be a homomorphism. Then the semidirect product of G and H is the set

Γ = Goρ H = {(g, h) | g ∈ G, h ∈ H}

with the group operation given by

(g, h) · (g′, h′) = (gρ(h
′) · g′, h · h′).

Here gρ(h
′) denotes the image of g under the automorphism ρ(h′).

One special case of the semidirect product construction is where the group H is a subgroup
of the group Aut(G). If H = Aut(G), then the corresponding semidirect product is called the
holomorph of the group G. Thus, the holomorph of G, usually denoted by Hol(G), is the set

Hol(G) = {(g, φ) | g ∈ G,φ ∈ Aut(G)}

with the group operation given by

(g, φ) · (g′, φ′) = (φ′(g) · g′, φ · φ′).

25

Chapter 1. Introduction

A product φ · φ′ of two homomorphisms means that φ is applied first. It is often more practical
to use a subgroup of Aut(G) in this construction.

Let G be a (semi)group. An element g ∈ G as well as an arbitrary automorphism φ ∈ Aut(G)
(or an arbitrary endomorphism φ ∈ End(G)) are chosen and published.
Both, Alice and Bob, are going to work with elements of the form (g, φr), where g ∈ G and
r ∈ N. Note that two elements of this form are multiplied as follows:

(g, φr) · (h, φs) =
(
φs(g) · h, φr+s

)
.

Inner structure of Chapter 3:
We first recall the definition of a semidirect product and explain the HKKS-scheme. Next, Pro-
tocol 3, a public key cryptosystem, is introduced, which is an ElGamal like cryptosystem and
is based on a semidirect product of groups. We discuss two platform examples for Protocol 3.
The first one uses F∗p, whereby p is a prime number and we denote with Fp the field with p
elements and F∗p denotes the multiplicative subgroup. For the endomorphism φ of the group F∗p
a number ` ∈ N, ` > 1, is selected, such that

φ(h) = h` for every h ∈ F∗p.

Here, more precisely, it is F∗p = (Z/pZ)∗.
For the second example we choose a non-commutative group G, not a semigroup, because the
inverse of an element g−k−nhk+n, with g, h ∈ G, is needed. For example the general linear group
of r × r matrices with entries from a field is used, that is, G = GL(r,K), with r ∈ N, r > 1,
and a field K. Alice and Bob can use any non-commutative group G if ρH is selected to be a
non-trivial inner automorphism, that is, a conjugation by an element which is not in the center
of G. For any Matrix M ∈ G and for any k ∈ N, k > 0, it is

ρH(M) = H−1MH and ρkH(M) = H−kMHk.

Afterwards, the second cryptographic protocol in this chapter is introduced. Protocol 4 is a
signature scheme with a semigroup of 3 × 3 matrices over F7[A5], whereby F7 is the field with
seven elements and A5 is the group of even permutations on five symbols. Here, more precisely,
it is F∗7 = (Z/7Z)∗.
There is an ongoing research about the HKKS-key exchange protocol, which also affects the
cryptographic protocols in this chapter. Therefore, we close Chapter 3 with an overview of this
research.

• Protocol 3: Group theoretical ElGamal like public key cryptosystem using
semidirect products

We summarize Protocol 3, which is a group theoretical ElGamal like public key cryptosystem
using semidirect products, in Table 1.3 (page 27), which is exactly Table 3.1 (page 76) in Chap-
ter 3.

Security:
The security depends on the platform group G and the automorphism φ ∈ Aut(G), which are
used for this cryptographic protocol. Thus, if the group G is the multiplicative group F∗p, with p
a prime number, as in the Example 3.1.2, then this cryptographic protocol is not really different
from the standard ElGamal cryptosystem, described in Section 1.2.2. The security is also based
on the discrete logarithm problem and the Diffie-Hellman problem.
Therefore, the standard ElGamal cryptosystem is a special case of this public key cryptosystem,

26

1.3. Outline of this thesis and summary of results

Table 1.3.: Summary of Protocol 3: Group theoretical ElGamal like public key cryptosystem
using semidirect products

Public Parameters

Group G and cyclic subgroup H of the group Aut(G),
g ∈ G and φ ∈ H ⊆ Aut(G).

Alice Bob

Key Creation

Choose private key n ∈ N.
Compute
(a, φn) := (g, φ)n

with a := φn−1(g) · φn−2(g) · · ·φ(g) · g.
Publish a.

Encryption

Choose plaintext m ∈ G.
Choose random ephemeral key k ∈ N.
Compute
(c1, φ

k) := (g, φ)k

with c1 := φk−1(g) · φk−2(g) · · ·φ(g) · g,

(a, y) · (c1, φk) = (φk(a) · c1︸ ︷︷ ︸
=:b

, y · φk)

and
c2 := b ·m = φk(a) · c1 ·m.
Send ciphertext (c1, c2) to Alice.
(c1,c2)←−−−−−−−−−−−−−−−−−−

Decryption

Compute
(c1, x) · (a, φn) = (φn(c1) · a︸ ︷︷ ︸

=:K

, x · φn)

and recover
m = K−1 · c2.

hence, breaking this cryptosystem would imply breaking the ElGamal cryptosystem.
If the platform group is G = GL(r,K), with K a field, as in Example 3.1.4, it was assumed
that the security is based on the discrete logarithm problem and, furthermore, the security
assumption is that it is computationally hard to reclaim the “key” b = H−(n+k)(HM)n+k from
the quadruple (

H,M, a := H−n(HM)n, c1 := H−k(HM)k
)
,

with H,M ∈ G and n, k ∈ N. Therefore, Alice has to take care that the matrices H and HM
do not commute (see Remark 3.1.5).

This example was also given in the work [Mol15], but in the time under review the paper
[KMU14] by M. Kreuzer, A. D. Myasnikov and A. Ushakov appeared in which a linear algebra
attack on the HKKS-key exchange protocol with platform G = Mat(3,F7[A5]) was given. Their
attack affects also this cryptographic protocol. It is explained in more details in Section 3.3 and
also a linear decomposition attack by V. Roman’kov is described.

27

Chapter 1. Introduction

Conclusion:
Extending a given cryptographic protocol to another cryptographic protocol is interesting, it
gives more possibilities to use the suggested mathematical theory for cryptology. The research
about the HKKS-scheme comprises also this scheme. A security analysis must be done for each
platform group. If a platform group is found, which is not vulnerable to the known attacks,
this scheme works. Therefore, the theoretical idea is interesting, but for applications a platform
group must be found, which is optimal in terms of security and efficiency. D. Kahrobaei and
V. Shpilrain are working on this problem, see [KS16].
The work about this cryptographic protocol leads to groups and especially to non-commutative
groups, which gives input for the later newly developed cryptographic protocols which are based
on combinatorial group theory.

• Protocol 4: Signature with a semigroup of 3× 3 matrices over F7[A5]

Protocol 4, the signature with G a semigroup of 3× 3 matrices over the group ring F7[A5], is
summarized in Table 1.4 (page 28), which is exactly Table 3.4 (page 83) in Chapter 3.

Table 1.4.: Summary of Protocol 4: Signature with a semigroup of 3× 3 matrices over F7[A5]

Public Parameters

G the semigroup of 3× 3 matrices with entries in F7[A5], an invertible H ∈ G for
the automorphism ρH and a qualified hash function h.

Alice Bob

Choose n ∈ N and M ∈ G privately.
Compute
(a, ρnH) := (M,ρH)n

with a := ρn−1H (M) · ρn−2H (M) · · · ρH(M) ·M
= H−n(HM)n.

Take care that a−1 6∈ G and that H and HM
do not commute.

Public Key: a

Choose message m and compute value h(m) ∈ G.
Pick an ephemeral key k and compute
(b, ρkH) := (M,ρH)k

with b := ρk−1H (M) · ρk−2H (M) · · · ρH(M) ·M
= H−k(HM)k.

Compute
Z := h(m) · ρnH(b) = h(m) ·H−n−k(HM)kHn.

Signature: (k, b, Z,m)

Compute

(a, x) · (b, ρkH) = (ρkH(a) · b︸ ︷︷ ︸
=:E

, x · ρkH),

it is E = H−(k+n)(HM)n+k.
Prove
Z · a = h(m) ·H−n−k(HM)k+n

= h(m) · E.

28

1.3. Outline of this thesis and summary of results

Security:
A detailed security analysis is given. It is based on the discrete logarithm problem. In addition
it turns out, that the ephemeral key k should be used only once and should be a prime number.
Alice should choose for each new signature a lesser new ephemeral key k than she uses for the
previous signature. This leads to the problem, that Alice can just perform, with her private key
n, a finite number of signatures, which depend on her first ephemeral key k1.
In addition there is an ongoing research about the HKKS-scheme, which also affects Protocol 3
and Protocol 4. We give an overview of this research, which comprises four research papers. It
turns out, that the security assumptions, which are based on the discrete logarithm problem and
Diffie-Hellman problem, especially in the case with matrices, are not sufficient for the security.
V. Roman’kov in [Rom15] shows that he is able to determine the “key” K = H−n−k(HM)n+k

with a linear decomposition attack based on the decomposition method introduced by him in
monography [Rom13a] and paper [Rom13b]. He shows, that in this case, contrary to the com-
mon opinion (and some explicitly stated security assumptions), one does not need to solve the
underlying algorithmic problems to break the scheme, that means, there is another algorithm
that recovers the keys without solving the principal algorithmic problem (discrete logarithm
problem and Diffie-Hellman problem) on which the security assumptions were first based. This
changes completely the understanding of security of this cryptographic protocol. The efficacy of
the attack depends on the platform group, thus it requires a specific analysis in each particular
case.

Conclusion:
Extending the HKKS-scheme to a signature protocol gives another way to use semidirect prod-
ucts for cryptology. Theoretically it is interesting to get this extension, but for applications it
has the disadvantage that Alice can just perform, with her private key n, a finite number of
signatures, which depend on her first ephemeral key k1. The work about this cryptographic
protocol as about Protocol 3 leads also to groups and especially to non-commutative groups,
which gives input for the later newly developed cryptographic protocols which are based on
combinatorial group theory.

Further research questions for Chapter 3:
We give some ideas for further research questions.

• Are the attacks in [Rom15] also effective against the introduced signature (Protocol 4)?
The attacks need the element HM or M respectively, but M is a private element for Alice
in the signature, therefore also HM is not known publicly. Is it possible to calculate Z ′,
see Security 3.2.3 (I) 2. b), with such a kind of attack?

• Find optimal platform groups in terms of security and efficiency for the ElGamal like
cryptosystem under considerations of the attacks especially of the decomposition attack
by V. Roman’kov.

• Find optimal platform (semi)groups in terms of security and efficiency for the HKKS-
key exchange protocol under considerations of the attacks especially of the decomposition
attack by V. Roman’kov.

• Find optimal platform semigroups for the signature protocol. A specific analysis is required
for each platform group.

• Is it possible to develop other cryptographic protocols which use the idea behind the
HKKS-key exchange protocol, for example a challenge and response system?

29

Chapter 1. Introduction

Chapter 4

Chapter 4 introduces the combinatorial group theory background for the newly developed cryp-
tographic protocols (Protocol 6 to Protocol 12), which are based on this theory.
The books [CgRR08], [LS77] and [MKS66] are the basis for this chapter. The reader should be
familiar with the basics of groups as it is presented in a course about algebra (see for instance
[JS06]).

Combinatorial group theory is the branch of algebra which studies groups with the help of group
presentations. A group presentation for a group G consists of a set X of generators and a set R
of defining relators on X. We write

G = 〈X | R〉.

The group G is called finitely generated if both sets X and R are finite. The newly developed
cryptographic protocols use finitely generated free groups. Let F be a finitely generated free
group with free generating set X = {x1, x2, . . . , xq}, q ∈ N, then the group F is the set of
all reduced words in X±1, which is defined as X±1 = {x1, x−11 , x2, x

−1
2 , . . . , xq, x

−1
q }, where a

word is called reduced if it does not contain subwords of the form x−1j xj or xjx
−1
j , 1 ≤ j ≤ q.

The identity is considered as the empty word, which is 1. The set of relators for a free group F
consists only of trivial relators, which are of the form wjw

−1
j or w−1j wj , with wj a word in X,

thus we denote F by
F = 〈X | 〉.

The empty space on the right symbolized, that there are only trivial relators.

Inner structure of Chapter 4:
Chapter 4 starts with a detailed introduction of free groups and group presentations.
Among finitely generated free groups the cryptographic protocols make use of Nielsen transfor-
mations, Nielsen reduced sets and additional theory, thus these will be explained next. Nielsen
transformations are a linear technique to study free groups and general infinite groups. In ad-
dition the group of all automorphisms of a free group F , denoted by Aut(F), is generated by a
regular Nielsen transformation (which is a finite product of transformation (T1) and (T2), see
Definition 1.3.2) between two basis of F , and, each regular Nielsen transformation between two
basis of F defines an automorphism of F .

Let U := {u1, u2, . . . , ut} ⊂ F , t ≥ 2, with ui reduced words in X.

Definition 1.3.2. An elementary Nielsen transformation on U = {u1, u2, . . . , ut} ⊂ F is
one of the following transformations

(T1) replace some ui by u−1i ;

(T2) replace some ui by uiuj where j 6= i;

(T3) delete some ui where ui = 1.

In all three cases the uk for k 6= i are not changed. A (finite) product of elementary Nielsen trans-
formations is called a Nielsen transformation. A Nielsen transformation is called regular if
it is a finite product of the transformations (T1) and (T2), otherwise it is called singular.

30

1.3. Outline of this thesis and summary of results

Definition 1.3.3.
A finite set U in F is called Nielsen reduced, if for any three elements v1, v2, v3 from U±1 the
following conditions hold:

(N0) v1 6= 1;

(N1) v1v2 6= 1 implies |v1v2| ≥ |v1|, |v2|;

(N2) v1v2 6= 1 and v2v3 6= 1 implies |v1v2v3| > |v1| − |v2|+ |v3|.

Recall, |v| denotes the free length of v ∈ F , that is, the number of letters from X±1 in the
freely reduced word v. We write |v|X , if it is not clear from which set the letters of v are and
we count the letters in v which are given as elements in X±1.

Nielsen reduced sets of F can be seen as special basis for subgroups of F , because out of all
systems of generators for this subgroup a Nielsen reduced set U = {u1, u2, . . . , um}, ui reduced
words in X with special conditions, has the shortest total X-length, which is

∑m
i=1 |ui|X (with

|ui|X the free length of ui ∈ F , that is, the number of letters from X±1 in the freely reduced word
ui). We write FU for a subgroup of the free group F = 〈X | 〉, whereby the free generating set
U consists of words in X, it is FU = 〈U | 〉.

Afterwards we explain several fundamental problems in group theory, which could be used for
cryptology. For example D. Panagopoulos uses the word problem for his (n, t)-secret sharing
scheme. The word problem is the following:

Let G = 〈X | R〉 be a presentation of a group and g ∈ G a given word in X. Determine algo-
rithmically (in finitely many steps) if g represents the identity or not.

Another problem is the extended word problem, also called membership problem, which
is:

Given a recursively presented group G, a subgroup H of G generated by h1, h2, . . . , hk and an
element g ∈ G, determine whether or not g ∈ H.

A related problem (to the membership problem) is the constructive membership problem,
which is:

Given a recursively presented group G, a subgroup H of G generated by h1, h2, . . . , hk and an
element h ∈ H, find an expression of h in terms of h1, h2, . . . , hk.

The last two problems play a role for the security of the newly developed cryptographic protocols
in this thesis.

The Protocols 6-12 use automorphisms on finitely generated free groups. These automor-
phisms can be generated with the help of Nielsen transformations or alternatively with so called
Whitehead-Automorphisms. Therefore, we close Chapter 4 introducing Whitehead-Automorphisms.
With the help of these automorphisms we could develop an approach for choosing automorphisms
randomly of the automorphism group Aut(F), with F a finitely generated free group.

31

Chapter 1. Introduction

Chapter 5

Protocol 5, which is a purely combinatorial (n, t)-secret sharing scheme, is introduced in Chap-
ter 5. It uses the combinatorial share distribution method, which D. Panagopoulos describes in
[Pan10] for his combinatorial group theoretical (n, t)-secret sharing scheme.
Protocol 5 is published in the survey article [CFMRZ16] as research in the field of secret shar-
ing schemes. It is also published in [MR15].

Inner structure of Chapter 5:
We start Chapter 5 with a definition of (n, t)-secret sharing schemes and briefly explain the two
first mathematical (n, t)-secret sharing schemes. One was given by A. Shamir in [Sha79] and the
other by G. Blakley in [Bla79]. A. Shamir’s secret sharing protocol has become the standard
method for solving the (n, t)-secret sharing problem. He lists in his paper [Sha79] some useful
properties for (n, t)-secret sharing schemes, which we also use to analyze different secret sharing
schemes and compare them to A. Shamir’s scheme.
We explain D. Panagopoulos’ (n, t)-secret sharing scheme whereby we are mostly interested in
the share distribution method.

D. Panagopoulos distributes (for a (n, t)-secret sharing scheme) elements of a set R which are all
needed to reconstruct the secret, it is R = {r1, r2, . . . , rm} with m =

(
n
t−1
)

and t ≤ n, between
n participants in the following steps:

1. Let n, t ∈ N, with t ≤ n, calculate m =
(
n
t−1
)
. Choose R = {r1, r2, . . . , rm}, such that the

secret is only reconstructible if all elements of R are known.

2. Let A1, A2, . . . , Am be an enumeration of subsets of {1, 2, . . . , n} with t−1 elements. Define
n subsets R1, R2, . . . , Rn of the set {r1, r2, . . . , rm} with the property

rj ∈ Ri ⇐⇒ i 6∈ Aj for j = 1, 2, . . . ,m and i = 1, 2, . . . , n.

3. The participant pi gets the share-set Ri, 1 ≤ i ≤ n.

If t or more participants combine their sets, they can reconstruct the set R. With the knowledge
of R they are able to reconstruct the secret.

The purely combinatorial (n, t)-secret sharing protocol (Protocol 5) is introduced and we also
give an example.
We realize that the share distribution method by D. Panagopoulos is also given as a special
case by M. Ito, A. Saito and T. Nishizeki in [ISN87]. We show that if the method in [ISN87]
is used to generate a (n, t)-secret sharing scheme then the same share distribution method as
by D. Panagopoulos is described. M. Ito, A. Saito and T. Nishizeki use a multiple assignment
scheme, which is a method to distribute to each participant more than only one share, together
with a (m,m)-secret sharing scheme. Thus, we will see that the share distribution method by
D. Panagopoulos is a special case of paper [ISN87].
In addition we realize that the purely combinatorial secret sharing scheme (Protocol 5) is very
similar to a scheme, which J. Benaloh and J. Leichter obtain if they realize a (n, t)-secret sharing
scheme using minimal CNF form, described in their paper [BL90].
We will explain this in detail in a section about access structures of generalized secret sharing
schemes, because the papers [ISN87] and [BL90] examine such structures. Generalized secret
sharing schemes realize not only the situation where arbitrary t of n persons should be able to
reconstruct a secret ((n, t)-secret sharing scheme) but also some more special structures. For

32

1.3. Outline of this thesis and summary of results

example we assume that in a company with two directors and three vice-directors a secret should
be reconstructed if two directors or three vice-directors or one director and two vice-directors of
the company cooperate.
We close Chapter 5 comparing the CFRZ-scheme, D. Panagopoulos’ scheme and the purely
combinatorial (n, t)-secret sharing scheme to Shamir’s scheme.

• Protocol 5: Purely combinatorial (n, t)-secret sharing scheme

Protocol 5 uses a method for the distribution of the shares, which D. Panagopoulos describes,
the secret S is the sum of the multiplicative inverse of elements in the natural numbers, it is

S =
m∑
i=1

1

ai
,

with ai ∈ N. This cryptographic protocol is summarized in Table 1.5 (page 33), which is very
similar to Table 5.1 (page 115) in Chapter 5.

Table 1.5.: Summary of Protocol 5: Purely combinatorial (n, t)-secret sharing scheme

(n, t)-secret sharing scheme
Dealer Participants p1, p2, . . . , pn

Calculate m =
(
n
t−1
)
.

Choose a1, a2, . . . , am ∈ N.
Construct sets Rj ⊆ {a1, a2, . . . , am}
with share distribution method given by
D. Panagopoulos;

it is |Rj | =
(
n−1
t−1
)

for j = 1, 2, . . . n.

Distribute shares to the participants.
R1−−−−−−−−−−−−−−−−→ p1
R2−−−−−−−−−−−−−−−−→ p2

...
Rn−−−−−−−−−−−−−−−−→ pn

t participants combine their shares and thus
get the set {a1, a2, . . . , am}.
The secret is

S =

m∑
i=1

1

ai
.

Security:
The security depends on the distribution method of the shares and is hence analogous to the
security of D. Panagopoulos share distribution method.
If just t− 1 arbitrary sets (or less) of the sets R1, R2, . . . , Rn are combined, there exist a j, such
that the element aj is not included in the union of these sets. If just one element aj is absent, the

33

Chapter 1. Introduction

participants do not reconstruct the correct sum S, and hence cannot compute the correct secret.
Each aj is in each union of at least t subsets, thus t participants get the set {a1, a2, . . . , am} and
are able to reconstruct the secret.

Comparison with A. Shamir’s suggested properties:
A. Shamir lists some useful properties for (n, t)-secret sharing schemes in his paper [Sha79],
which we also use to analyze different secret sharing schemes and compare them to A. Shamir’s
scheme.
These properties for (n, t)-secret sharing schemes are the following.

(1) The size of each piece (which are the shares for the participants) does not exceed the size
of the original data (which is the secret).

(2) When t is kept fixed, pieces can be dynamically added or deleted (for example, when
executives join or leave a company) without affecting the other pieces. (A piece is deleted
only when a leaving executive makes it completely inaccessible, even to himself.)

(3) It is easy to change the pieces (the shares for the participants) without changing the original
data (which is the secret). All we need is a new polynomial g(x) with the same free term.
(In Shamir’s secret sharing scheme, the secret is the constant term of a polynomial g(x).)
A frequent change of this type can greatly enhance security since the pieces exposed by
security breaches cannot be accumulated unless all of them are values of the same edition
of the polynomial g(x).

(4) By using tuples of polynomial values as pieces, we can get a hierarchical scheme in which
the number of pieces needed to determine the secret depends on their importance. For
example, if we give the company’s president three values of g(x), each vice-president two
values of g(x), and each executive one value of g(x), then a (n, 3)-threshold scheme enables
checks to be signed either by any three executives, or by any two executives one of whom
is a vice-president, or by the president alone.

In addition we choose the following fifth property.

(5) It is easy to change the secret without changing the shares of the participants.

Table 1.6 (page 35) summarized the results of the comparison between Shamir’s scheme, the
CFRZ-scheme, D. Panagopoulos’ scheme and Protocol 5 concerning these properties, this is
exactly Table 5.4 (page 132) in Chapter 5.

Furthermore, the comparison of the running time for the participants is given in Chapter 5.

Shamir’s scheme: The involved polynomial interpolation has a quadratic running time, that
means, if we have t supporting points we get a complexity of O(t2).

The CFRZ-scheme: In order to orthonormalize t linear independent vectors in a real inner
product space with dimension m we have a total running time of O(t2m).
In the CFRZ-scheme the variable m depends on the number t, because m > t is postulated.
The total running time for this scheme is longer than for Shamir’s.

Panagopoulos’ scheme: The word problem in a Coxeter group, for example, is solvable within
quadratic running time, due to the fact, that Coxeter groups are automatic and automatic groups
have a solvable word problem with a quadratic running time.

34

1.3. Outline of this thesis and summary of results

Table 1.6.: Summary of the comparison

Shamir’s Shamir’s scheme CFRZ-scheme D. Panagopoulos’ scheme Protocol 5
properties

(1)
√ √

− −

(2)
√ √

− −

(3)
√ √ √ √

(4)
√ √ √ √

Additional property
(5) −

√ √
−

Protocol 5: For the reconstruction of the shares the participants only add up m elements.
Therefore, for the participants it is just O(m), where m =

(
n
t−1
)

is already previously calculated
by the dealer, and hence m is fixed for the participants.

In the special case of a (t + 1, t)-secret sharing scheme the running time depends for Proto-
col 5 also only on t like in Sharmir’s scheme. Hence, the running time is also O(t2), but the
participants only sum up m elements, which is a very easy operation to reconstruct the secret.
It is important in terms of practicability, that the dealer calculates and distributes the shares
for the participants in Protocol 5 long before the secret is needed by the participants. Hence,
the dealer has enough time to execute the share distribution method and his computational
cost should be of no consequence for this cryptographic protocol. Note, that the dealer has to
generate m =

(
n
t−1
)

shares and uses the share distribution method given by D. Panagopoulos.
The size of the share-set exceeds the size of the secret but the calculation to reconstruct the
secret is very easy and fast.

Conclusion:
In contrast to other secret sharing schemes the part for the participants is very easy, they only
have to add up m elements. The (time) expensive part is the part of the dealer, who has to
generate the sets Ri for the participants. In contrast to Shamir’s scheme, where the part of the
dealer is the easier one and the participants have to do polynomial interpolation to reconstruct
the secret.

35

Chapter 1. Introduction

Chapter 6

Chapter 6 introduces two secret sharing schemes, which are based on Nielsen transformations
(see Chapter 4). Protocol 6 uses in addition a free subgroup of the special linear group SL(2,Q)
and the secret is a sum over traces of matrices in a set M ⊂ SL(2,Q). Protocol 7 uses in ad-
dition Nielsen reduced sets and the secret is a sum, which uses the free length of elements in a
Nielsen reduced set.
We present both cryptographic protocols as (m,m)-secret sharing schemes, because it is possi-
ble to modify them to any (n, t)-secret sharing scheme if the share distribution method given
by D. Panagopoulos is used and m is determined as m =

(
n
t−1
)
. Both developed cryptographic

protocols are published in the survey article [CFMRZ16] as research in the field of secret sharing
schemes. They are also published in [MR15]

Inner structure of Chapter 6:
Firstly, Protocol 6 is introduced. We give an example and compare it to Shamir’s suggested
properties. Secondly, Protocol 7 is introduced and we also give an example and analyze it
concerning Shamir’s suggested properties.

• Protocol 6: Secret sharing scheme using Nielsen transformations and SL(2,Q)

Protocol 6, as a (n, t)-secret sharing scheme, is summarized in Table 1.7 (page 37), which is
very similar to Table 6.1 (page 138) in Chapter 6.

Security:
The secret is only reconstructible if the whole set M ′ = {M ′1,M ′2, . . . ,M ′m} is known by the
participants, because (M1,M2, . . . ,Mm) and (M ′1,M

′
2, . . . ,M

′
m) differ to each other only in the

position order and inverses, that means M ′ = {M δ1
1 ,M

δ2
2 , . . . ,M

δm
m } with δi ∈ {1,−1}. Both

sets U and N are needed for the reconstruction procedure of the secret.
If only the set N is known, then the matrices in SL(2,Q) are known, but nobody knows which
Nielsen transformations should be applied on N to get the set M ′. It is also unknown how
many Nielsen transformations were used. There could be hints for Nielsen transformations, if
elements in N could be written in terms of other elements in SL(2,Q). Therefore, the unknown
solvability of the (constructive) membership problem for (discrete) free subgroups of SL(2,Q),
which are not subgroups in SL(2,Z), play a role for the security.

Comparison with A. Shamir’s suggested properties:
Protocol 6 uses the share distribution method given by D. Panagopoulos to be a (n, t)-secret
sharing protocol. Therefore, this scheme fulfills the same properties of Shamir as D. Panagopou-
los’ scheme does. That means (3) and (4) are fulfilled and (1) and (2) are not fulfilled. Further-
more, the additional property (5) does not hold (see Chapter 5 for the properties).

A variation for Protocol 6 is given, such that the additional property (5) is fulfilled; but the
dealer has to take care that all (or almost all) matrices in the set M are in SL(2,Q) but not in
SL(2,Z) then the constructive membership problem cannot be used to get information about
the used Nielsen transformation, due to the fact, that there is no algorithm known to solve
the (constructive) membership problem for (discrete) free subgroups (with rank greater 2) in
SL(2,Q), which are not subgroups in SL(2,Z).

In [Ste89] an algorithm, using elementary Nielsen transformations, is presented which, given a
finite set S of m words of a free group, returns a set S′ of Nielsen reduced words, such that
〈S〉 = 〈S′〉; This is exactly what the participants have to do to get the elements which are
needed to reconstruct the secret. The algorithm runs in O(`2m2), where ` is the maximum free

36

1.3. Outline of this thesis and summary of results

Table 1.7.: Summary of Protocol 6: Secret sharing scheme using Nielsen transformations and
SL(2,Q)

(n, t)-secret sharing scheme
Dealer Participants p1, p2, . . . , pn

Calculate m =
(
n
t−1
)
.

Choose abstract free generating set
X := {x1, x2, . . . , xm} and explicit free
generating set M := {M1,M2, . . . ,Mm} with
Mi ∈ SL(2,Q) (all or almost allMi /∈ SL(2,Z)).

Apply simultaneously regular Nielsen transfor-
mation (NT) on X and M :

(x1, x2, . . . , xm) (M1,M2, . . . ,Mm)
↓ NT ↓ NT

(u1, u2, . . . , um) (N1, N2, . . . , Nm)

U := {u1, u2, . . . , um}; N := {N1, N2, . . . , Nm}.

Construct sets Rj ⊆ U and Sj ⊆ N with share
distribution method given by D. Panagopoulos;

it is |Rj | = |Sj | =
(
n−1
t−1
)

for j = 1, 2, . . . n.

Distribute shares to the participants.
(R1,S1)−−−−−−−−−−−−−−−−−−−→ p1
(R2,S2)−−−−−−−−−−−−−−−−−−−→ p2

...
(Rn,Sn)−−−−−−−−−−−−−−−−−−−→ pn

t participants combine their shares and thus
get the sets U and N .

Apply simultaneously regular Nielsen
transformation (NT) on U and N :

(u1, u2, . . . , um) (N1, N2, . . . , Nm)
↓ NT ↓ NT

(x′1, x
′
2, . . . , x

′
m) (M ′1,M

′
2, . . . ,M

′
m)

The secret is

S :=
m∑
j=1

1

|a′j |
∈ Q+, with a′j := tr(M ′j) ∈ Q.

37

Chapter 1. Introduction

length of a word in S. In this cryptographic protocol, the dealer fixes the number m, hence the
running time depends only on the maximum free length ` of the words in a Nielsen equivalent
set. Thus, the participants have a running time of O(`2).

Conclusion:
Protocol 6 is the first newly developed cryptographic protocol in this thesis, which uses combi-
natorial group theory, especially Nielsen transformations and finitely generated free groups. It
is mathematically a very interesting cryptographic protocol, which serves very good as a basis
to develop other cryptographic protocols. In this thesis it is the basis for Protocol 7 to Pro-
tocol 12, which are also based on combinatorial group theory.

• Protocol 7: Secret sharing scheme using Nielsen transformations together with Nielsen
reduced sets and free lengths of certain words

Protocol 7 is given as a (n, t)-secret sharing scheme and summarized in Table 1.8 (page 39),
which is very similar to Table 6.5 (page 148) in Chapter 6.

Security:

By combining less than m shares the participants get a subset Ṽ of V , it is
∣∣∣Ṽ ∣∣∣ ≤ m − 1. If

they apply Nielsen transformations on the set Ṽ in a Nielsen reducing manner they do not get
a subset Ũ of U , in general. Hence, they get no useful information to reconstruct the secret.

Comparison with A. Shamir’s suggested properties:
Protocol 7 uses the share distribution method given by D. Panagopoulos to be a (n, t)-secret
sharing protocol. Therefore, this scheme fulfills the same properties of Shamir as D. Panagopou-
los’ scheme does. That means (3) and (4) are fulfilled and (1) and (2) are not fulfilled. Further-
more, the additional property (5) does not hold (see Chapter 5 for the properties).
In [Ste89] an algorithm, using elementary Nielsen transformations, is presented which, given a
finite set S of m words of a free group, returns a set S′ of Nielsen reduced words, such that
〈S〉 = 〈S′〉; This is exactly what the participants have to do to get the elements which are
needed to reconstruct the secret. The algorithm runs in O(`2m2), where ` is the maximum free
length of a word in S. In this cryptographic protocol, the dealer fixes the number m, hence the
running time depends only on the maximum free length ` of the words in a Nielsen equivalent
set. Thus, the participants have a running time of O(`2).

Conclusion:
Protocol 7 is, like Protocol 6, mathematically a very interesting cryptographic protocol which
in addition uses a Nielsen reduced subset U 6= X of a finitely generated free group F = 〈X | 〉
and gives therefore the final input for the newly developed cryptosystems.

38

1.3. Outline of this thesis and summary of results

Table 1.8.: Summary of Protocol 7: Secret sharing scheme using Nielsen transformations to-
gether with Nielsen reduced sets and free lengths of certain words

(n, t)-secret sharing scheme
Dealer Participants p1, p2, . . . , pn

Calculate m =
(
n
t−1
)
.

Choose abstract free generating set
X = {x1, x2, . . . , xq}, q ∈ N \ {1}, and a Nielsen
reduced set U = {u1, u2, . . . , um} ⊂ F , ui words
in X.

Apply regular Nielsen transformation (NT) on
U :

(u1, u2, . . . , um)
↓ NT

(v1, v2, . . . , vm)

V := {v1, v2, . . . , vm}.

Construct sets Rj ⊆ V with share distribution
method given by D. Panagopoulos;

it is |Rj | =
(
n−1
t−1
)

for j = 1, 2, . . . n.

Distribute shares to the participants.
R1−−−−−−−−−−−−−−−−→ p1
R2−−−−−−−−−−−−−−−−→ p2

...
Rn−−−−−−−−−−−−−−−−→ pn

t participants combine their shares and
thus get the set V .

Apply regular Nielsen transformation
(NT) on V to get a Nielsen reduced set:

(v1, v2, . . . , vm)
↓ NT

(u′1, u
′
2, . . . , u

′
m)

The secret is

S =
m∑
i=1

1

|u′i|X
.

39

Chapter 1. Introduction

Chapter 7

Chapter 7 introduces Protocol 8, which is a private key cryptosystem, and three modifications
of it. This cryptographic protocol is based on combinatorial group theory, see Chapter 4, and
uses a finitely generated free group F , a subgroup FU of F with finite rank, a Nielsen reduced
set and automorphisms of F .
The automorphisms are out of a common set FAut ⊂ Aut(F). Assume Alice sends a message to
Bob. For decryption Bob needs to know which automorphisms of FAut were used for the encryp-
tion procedure by Alice. For this choice of elements in FAut regulations are needed. Therefore,
Alice and Bob make use of a linear congruence generator with maximal periodic length.
Protocol 8 is published in [MR16].

Inner structure of Chapter 7:
First, we shortly introduce a linear congruence generator. Protocol 8 is explained next. There
are two possibilities to decrypt a ciphertext. We give an example for each possibility. Afterwards
three modifications for this cryptographic protocol are given.
In Protocol 8 the ciphertext is a sequence of reduced words in X where the end of each ci-
phertext unit is marked (for example with “o”) and X is a free generating set for a free group F
of finite rank. The first modification is given, in which the ciphertext is now only one reduced
word in X instead of a sequence of words, in this case it is possible that additional information
is needed for decryption, thus these is sent with the ciphertext if required. In the second modi-
fication a faithful representation from F into the special linear group SL(2,Q) is used, such that
the ciphertext is a sequence of matrices in SL(2,Q). The third modification utilizes the negative
solution of Hilbert’s Tenth Problem (see [Hil02]). Instead of a presentation of the ciphertext
as a sequence of matrices in SL(2,Q) the ciphertext is represented as a sequence of matrices in
GL(2, R) with R := Z[y1, y2, . . . , yn], the integral polynomial ring in n ≥ 2 variables.
We close Chapter 7 with a detailed look at chosen plaintext and chosen ciphertext attacks.

• Protocol 8: Private key cryptosystem with Aut(F)

There are two ways to decrypt a ciphertext given by Protocol 8. One uses inverses of auto-
morphisms, which were used for encryption, and the other uses a table like Table 1.9 (page 40),
which is exactly Table 7.1 (page 157) in Chapter 7.
Given the knowledge of a set U = {u1, u2, . . . , uN}, which is part of the private parameters,
the linear congruence generator h and the number z, the receiver is able to compute for each
automorphism fxi , i = 1, 2, . . . , z, the set Ufxi = {fxi(u1), fxi(u2), . . . , fxi(uN)}. This is used for
Table 1.9 (page 40), which is exactly Table 7.1 (page 157) in Chapter 7.

Table 1.9.: Table for decryption: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to ci-
phertext alphabet Ufxi depending on the automorphisms fxi

Ufx1 Ufx2 · · · Ufxz

a1 fx1(u1) fx2(u1) · · · fxz(u1)

a2 fx1(u2) fx2(u2) · · · fxz(u2)
...

...
...

...
...

aN fx1(uN) fx2(uN) · · · fxz(uN)

40

1.3. Outline of this thesis and summary of results

Protocol 8 is summarized in Table 1.10 (page 41), which is very similar to Table 7.2 (page 158)
in Chapter 7.

Table 1.10.: Summary of Protocol 8: Private key cryptosystem with Aut(F)

Public Knowledge

F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2; plaintext alphabet A = {a1, a2, . . . , aN}, N ≥ 2;
set FAut ⊂ Aut(F); linear congruence generator h of maximal periodic length.

Alice Bob

Private keys

Nielsen reduced set U ⊂ F , |U | = N ; seed fα ∈ FAut,
one-to-one correspondence A→ U , aj 7→ uj .

Encryption

Choose message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A.
Calculate
x1 = α, x2 = h(x1), . . . , xz = h(xz−1), obtain
fx1 , fx2 , . . . , fxz .
Encryption procedure:
if si = at then si 7→ ci := fxi(ut), 1 ≤ i ≤ z,
1 ≤ t ≤ N.
Ciphertext:
C = fx1(s1)fx2(s2) · · · fxz(sz) = c1c2 · · · cz.

C=c1oc2o···ocz−−−−−−−−−−−−−−−−−−−−−−−→
Decryption

Compute z automorphisms:
x1 = α, x2 = h(x1), . . . , xz = h(xz−1), ob-
tain fx1 , fx2 , . . . , fxz .
Two possibilities:

1. For each fxi , i = 1, 2, . . . , z, compute the
inverse automorphism f−1xi .
2. For each fxi , i = 1, 2, . . . , z, compute
Ufxi = {fxi(u1), fxi(u2), . . . , fxi(uN)}
and get a table like Table 1.9 (page 40).
(Decryption: Search in this table.)

With knowledge of Table 1.9 (page 40) or
inverse automorphisms f−1xi , respectively,
the decryption is as follows:
if ci = fxi(ut) then ci 7→ si := f−1xi (ci) = at,
1 ≤ i ≤ z, 1 ≤ t ≤ N.
Plaintext message
S = f−1x1 (c1)f

−1
x2 (c2) · · · f−1xz (cz)

= s1s2 · · · sz, with si ∈ A.

41

Chapter 1. Introduction

Examples for Protocol 8 are given:

1. An example is given, in which for decryption the inverse automorphisms of the z auto-
morphisms fxi , which Alice used for encryption, are calculated, see the example attached
in Appendix C.7.

2. An example is given, in which for decryption a table (see Table 1.9 (page 40)) is used,
which stores the ciphertext alphabet Ufxi and is generated with the automorphisms Alice
used for encryption, see the Example 7.0.7.

Security:
The cryptosystem is a polyalphabetic system, that is, a word ui ∈ U , and hence a letter ai ∈ A,
is encrypted differently at different positions in the plaintext, because different automorphisms
are used during the encryption procedure for each ciphertext unit. Thus, for the ciphertext,
a statistical frequency attack (see for instance [BFKR15]) over the frequency of words, which
corresponds to letters in the plaintext alphabet, or groups of words, is useless.
The security depends on the fact, that the set U is private. Note, that in general ci /∈ FU ,
with FU = 〈U | 〉. An eavesdropper, Eve, assumes that the elements of the set U , which were
used for the encryption, can be found in the ball B(F,L) of the Cayley graph from F , with
L =

∑z
i=1 |ci| and ci ciphertext units of an intercepted ciphertext

C = c1 o c2 o · · · o cz.

The symbol “o” marks the end of each ciphertext unit ci, 1 ≤ i ≤ z − 1.

The ball B(F,L) contains all elements of F with a free length equal to or less than L. The
number of elements which are candidates for the set U , so called primitive elements, grows ex-
ponentially with the free length, here with L. Eve has to test subsets Vi of K ≥ N elements
of the ball B(F,L) to get candidates for U . For this she constructs the corresponding Nielsen
reduced sets V ′i to Vi (which are minimal concerning a lexicographical order). If |V ′i | = N then
V ′i is a candidate for U .
The running time is within O(λ2K2), with λ := max{|vi` |X | vi` ∈ Vi for ` = 1, 2, . . . ,K} ≤ L,
to get a Nielsen reduced set V ′i from Vi with a known algorithm.
Furthermore, the security depends on the way how Alice and Bob choose the automorphisms of
the set FAut. To verify, whether a candidate set V ′i is very likely the set U used by Alice and
Bob, it is likely that Eve tests the automorphisms in FAut with her set V ′i to get the ciphertext.
The set FAut should be large enough to make this kind of brute force search inefficient. A
variation is given where the set FAut is partly or fully publicly unknown, to avoid such a search.
This also avoids brute force attacks which could be done over the inverse automorphisms of the
set FAut and known ciphertexts.
Thus, the main security certification depends on the fact, that for a single subset of K ≥ N
elements Eve finds a Nielsen reduced set in the running time O(λ2K2) but she has to test all
possible subsets of K elements for which she needs exponential running time.

Modification:
To improve the security certification we give three modifications.

1. We present a modification (Section 7.1) where the ciphertext is only one reduced word in
X instead of a sequence of words, in this case it is possible that additional information is
needed for decryption, thus these is sent with the ciphertext if required.
Security: The security certification is extended to the fact, that Eve is in general not
able to identify the beginning and end of a ciphertext unit ci, i = 1, 2, . . . , z. There could
also be cancellations, which she is not able to recognize. Thus, the attack which uses the

42

1.3. Outline of this thesis and summary of results

automorphisms of FAut in the unmodified cryptographic protocol is not realizable in this
modification.

2. We present a modification (Section 7.2), which uses a faithful representation from F into
the special linear group SL(2,Q), such that the ciphertext is a sequence of matrices in
SL(2,Q). A variation (Variation 7.2.3) is given where the ciphertext is not a sequence of
matrices but a sequence of entries of matrices. This reduces the space for the ciphertext
and the memory space for the decryption table, like Table 1.9 (page 40).
Security: The security certification is extended to the fact, that there is no algorithm
known to solve the (constructive) membership problem for (discrete) free subgroups of
SL(2,Q), which are of rank greater than or equal to 2 and not subgroups of SL(2,Z).
Therefore, the attack which uses a Cayley graph and automorphisms of FAut in the un-
modified cryptographic protocol is not realizable in this modification.

3. We present a modification (Section 7.3), which utilizes the negative solution of Hilbert’s
Tenth Problem. Instead of a presentation of the ciphertext as a sequence of matrices
in SL(2,Q) the ciphertext is represented as a sequence of matrices in GL(2, R), with
R := Z[y1, y2, . . . , yn], the integral polynomial ring in n ≥ 2 variables.
Security: The security certification is extended to Hilbert’s Tenth Problem. In addition
the security is improved by the fact, that for each encryption Alice and Bob can take
privately ephemeral matrices in GL(2, R), R = Z[y1, y2, . . . , yn], with the property that
the common private point D ∈ Zn generates the correct matrices in PSL(2,Z). This gives
randomness to ciphertexts, which complicates attacks for Eve. The attack which uses a
Cayley graph and automorphisms of FAut in the unmodified cryptographic protocol is not
realizable in this modification.

Conclusion concerning chosen plaintext attacks and chosen ciphertext attacks:
We also analyze this private key cryptosystem as well as the modifications concerning chosen
plaintext attacks (Section 7.4) and chosen ciphertext attacks (Section 7.5). If the ciphertext is
given as a matrix, the system is secure against chosen plaintext attacks and chosen ciphertext
attacks. If the ciphertext is a word in X it could be possible that an eavesdropper can get hints
for the elements in U and hence the search for the primitive elements in the Cayley graph as
well as the search for the automorphisms in FAut could be performed in a more selective measure.

Conclusion:
Especially, the modifications of Protocol 8 with matrices are of interest for group based cryp-
tography. If Protocol 8 is used together with the second modification, which uses a faithful
representation into SL(2,Q), then the system is secure and the security depends on the unknown
solution of the (constructive) membership problem in the used matrix groups. If Protocol 8 is
used together with the third modification, which uses matrices in GL(2, R), R = Z[y1, y2, . . . , yn]
with n ≥ 2, then the system is secure and the security depends additionally on the negative
solution of Hilbert’s Tenth Problem (see [Hil02]). Moreover, we also get randomness to each ci-
phertext by the ephemeral matrices, which the encrypter used for encryption. To generate these
ephemeral matrices he only needs the common secret point D ∈ Zn, this improves also the secu-
rity. Altogether, we get interesting new private key cryptosystems, which use non-commutative
groups and are based on combinatorial group theory and not only on number theory.

Chapter 8

Chapter 8 introduces Protocol 9, which is a private key cryptosystem similar to Protocol 8.
We also give three modifications, which uses the same ideas for the modifications of Proto-
col 8. Like Protocol 8 it is based on combinatorial group theory (see Chapter 4). It uses a

43

Chapter 1. Introduction

finitely generated free group F , a subgroup FU of F with finite rank, a Nielsen reduced set and
automorphisms of FU . It differs to Protocol 8 only in the way that it uses automorphisms of
a finitely generated subgroup FU of F instead of automorphisms of the finitely generated free
group F . The automorphisms are out of a common set HAut ⊂ Aut(H), with an abstract free
generating set H and the cardinality |H| = |A| = N , with A the set of plaintext letters. Assume
Alice sends a message to Bob. For decryption Bob needs to know which automorphisms of HAut
were used for the encryption procedure by Alice. For this choice of elements in HAut regulations
are needed. Therefore, Alice and Bob make use of a linear congruence generator with maximal
periodic length as for Protocol 8. Hence, this is explained in Chapter 7.

Inner structure of Chapter 8:
First Protocol 9 is introduced. There are two possibilities to decrypt a ciphertext. We give an
example for each possibility. Afterwards three modifications for this cryptographic protocol are
given. We close Chapter 8 with a detailed look at chosen plaintext and chosen ciphertext attacks.

• Protocol 9: Private key cryptosystem with Aut(FU)

Let F be a finitely generated free group with free generating set X = {x1, x2, . . . , xq}, q ≥ 2,
and FU the subgroup of F freely generated by the Nielsen reduced set U = {u1, u2, . . . , uN},
with N ≥ 2 and ui words in X. The ciphertext C can be interpreted as a sequence of words in
X or of words in U . It is sent as a sequence of words in X. There are two ways to decrypt a
ciphertext. One uses a table like Table 1.11 (page 44), which is exactly Table 8.1 (page 190) in
Chapter 8.

Being aware of the set U = {u1, u2, . . . , uN}, the linear congruence generator h and the number
z, the decrypter is able to compute for each automorphism fui , i = 1, 2, . . . , z, the set

Ufui = {fui(u1), fui(u2), . . . , fui(uN)},

with fui(uj) written as a reduced word in X. This is used for Table 1.11 (page 44).

Table 1.11.: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to ciphertext alphabet Ufui
depending on the automorphisms fui

Ufu1 Ufu2 · · · Ufuz

a1 fu1(u1) fu2(u1) · · · fuz(u1)

a2 fu1(u2) fu2(u2) · · · fuz(u2)

...
...

...
...

...

aN fu1(uN) fu2(uN) · · · fuz(uN)

The other way, to decrypt a ciphertext, uses the Nielsen reduced set U and an algorithm to
write the ciphertext units ci (given as words in X) as words in U . Now, together with the used
automorphisms, the ciphertext can be decrypted correctly.

44

1.3. Outline of this thesis and summary of results

Protocol 9 is summarized in Table 1.12 (page 45), which is very similar to Table 8.2 (page 191)
in Chapter 8.

Table 1.12.: Summary of Protocol 9: Private key cryptosystem with Aut(FU)

Public Knowledge

F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2; plaintext alphabet A = {a1, a2, . . . , aN}, N ≥ 2;
abstract free group H = 〈U | 〉, U = {u1, u2, . . . , uN} with ui abstract letters;
set HAut ⊂ Aut(H); linear congruence generator h of maximal periodic length.

Alice Bob

Private keys

Explicit set U = {u1, u2, . . . , uN} with ui words in X, U ⊂ F Nielsen reduced set,
|U | = N ; seed fα ∈ FAut, one-to-one correspondence A→ U , aj 7→ uj .

Encryption

Choose message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A.
Calculate
u1 = α,u2 = h(u1), . . . ,uz = h(uz−1), obtain
fu1 , fu2 , . . . , fuz .
Encryption procedure:
if si = at then si 7→ ci := fui(ut), 1 ≤ i ≤ z,
1 ≤ t ≤ N.
Ciphertext:
C = fu1(s1)fu2(s2) · · · fuz(sz) = c1c2 · · · cz,
with ci written as words in X.

C=c1oc2o···ocz−−−−−−−−−−−−−−−−−−−−−−−→
Decryption

Compute z automorphisms:
u1 = α,u2 = h(u1), . . . ,uz = h(uz−1), ob-
tain fu1 , fu2 , . . . , fuz .
Two possibilities:

1. For each fui , i = 1, 2, . . . , z, compute
Ufui = {fui(u1), fui(u2), . . . , fui(uN)}
and get a table like Table 1.11 (page 44).
(Decryption: Search in this table.)
If ci = fui(ut) then ci 7→ si = at, 1 ≤ i ≤ z,
1 ≤ t ≤ N.
2. Use Nielsen reduced set U and an algo-
rithm to write the ciphertext units ci (given
as words in X) as words in U . Together
with the used automorphisms the cipher-
text is decrypted correctly.

Reconstruct plaintext message
S = s1s2 · · · sz, with si ∈ A.

45

Chapter 1. Introduction

Examples for Protocol 9 are given:

1. An example is given, in which for decryption a table (see Table 1.11 (page 44)) is used,
which stores the ciphertext alphabet Ufui and is generated with the automorphisms Alice
uses for encryption, see Example 8.0.4.

2. An example is given, in which Bob knows the Nielsen reduced set U , hence with a known
algorithm he is able to write the ciphertext as a sequence of words in U . With the
automorphisms, Alice used for encryption, he is able to decrypt the ciphertext correctly,
see the example attached in Appendix C.9.

Security:
The cryptosystem is a polyalphabetic system, that is, a word ui ∈ U , and hence a letter ai ∈ A,
is encrypted differently at different positions in the plaintext, because different automorphisms
are used during the encryption procedure for each ciphertext unit. Thus, for the ciphertext,
a statistical frequency attack (see for instance [BFKR15]) over the frequency of words, which
corresponds to letters in the plaintext alphabet, or groups of words, is useless.
The security depends on the fact, that the set U is private. Note, that the ciphertext units ci
are elements in FU , with FU = 〈U | 〉. An eavesdropper, Eve, knows that the elements of the
set U , which where used for the encryption, can be found in the ball B(F,L1) of the Cayley
graph from F , with L1 = max{|ci|X | i = 1, 2, . . . , z} and ci ciphertext units of an intercepted
ciphertext

C = c1 o c2 o · · · o cz.

The symbol “o” marks the end of each ciphertext unit ci, 1 ≤ i ≤ z − 1.
Let

C̃ = {c1, c2, . . . , cz}

be the set of ciphertext units and let C̃Nred be a Nielsen reduced set of C̃, hence the group
FC̃Nred , generated by C̃Nred, is a free subgroup of FU and rank(FC̃Nred) ≤ z. The main security
certification depends on the fact, that for a single subset V of FU with K elements Eve finds a
Nielsen reduced set in the running time O(λ2K2), with λ the maximum over the free length of
the elements in the subset V with K primitive elements, but she has to test all possible subsets
of K elements for which she needs exponential running time, because the number of primitive
elements grows exponentially with the free length, here with L1. She searches in a ball B(F,L1),
with L1 = max{|ci| | ci ∈ C̃} for these primitive elements.
A subset of V is also known, it is C̃Nred ⊂ V but she has to put all other primitive elements to
this set and proves if V ′, which is Nielsen reduced to V , is of order N and hence a candidate for
U .
Furthermore, the security depends on the way how Alice and Bob choose the automorphisms of
the set HAut. To verify, whether a candidate set V ′ is very likely the set U used by Alice and
Bob, it is likely that Eve writes the ciphertext units ci with letters of her candidate set V ′±1.
This is possible because the constructive membership problem is solvable in abstract free groups
and Nielsen reduced sets. Thus, she could get hints for the automorphisms used for encryption
and it is not only a brute force search through the set HAut.

Modifications:
The modifications use the ideas behind the modifications of Protocol 8.

1. We present a modification (Section 8.1) where the ciphertext is only one reduced word in
X instead of a sequence of words, in this case it is possible that additional information is
needed for decryption, thus these is sent with the ciphertext if required. The ciphertext
can be interpreted as words in X and as words in U , thus the additional information could

46

1.3. Outline of this thesis and summary of results

be given about the ciphertext written as a word in U or as a word in X.
Security: The security certification is extended to the fact that Eve is in general not
able to identify the beginning and end of a ciphertext unit ci, i = 1, 2, . . . , z. There could
also be cancellations, which she is not able to recognize. Eve is neither able to determine
the number L1 because she does not know what the ciphertext units ci exactly look like,
nor is she able to generate the set C̃Nred. This worsens her attacks of the unmodified
cryptographic protocol above.

2. We present a modification (Section 8.2), which uses a faithful representation from F into
the special linear group SL(2,Q), such that the ciphertext is a sequence of matrices in
SL(2,Q). Furthermore, a variation (like Variation 7.2.3) can be used, where the cipher-
text is not a sequence of matrices but a sequence of entries of matrices. This reduces the
space for the ciphertext and the memory space for the decryption table.
Security: The security certification is extended to the fact, that there is no algorithm
known to solve the (constructive) membership problem for (discrete) free subgroups of
SL(2,Q), which are of rank greater than or equal to 2 and not subgroups of SL(2,Z).
Therefore, the attack which uses a Cayley graph and automorphisms of FAut in the un-
modified cryptographic protocol is not realizable in this modification.

3. We present a modification (Section 8.3), which utilizes the negative solution of Hilbert’s
Tenth Problem. Instead of a presentation of the ciphertext as a sequence of matrices
in SL(2,Q) the ciphertext is represented as a sequence of matrices in GL(2, R), with
R := Z[y1, y2, . . . , yn], the integral polynomial ring in n ≥ 2 variables. Here we get two
subcases, the first applies the modification with Hilbert’s Tenth Problem on a text given
as a sequence of words in X and the second applies it to a text given as a sequence of
words in U .
Security: The security certification is extended to Hilbert’s Tenth Problem. In addition
the security is improved by the fact, that for each encryption Alice and Bob can take
privately ephemeral matrices in GL(2, R), R = Z[y1, y2, . . . , yn], with the property that
the common private point D ∈ Zn generates the correct matrices in PSL(2,Z). This gives
randomness to ciphertexts, which complicates attacks for Eve. The attack which uses a
Cayley graph and automorphisms of FAut in the unmodified cryptographic protocol is not
realizable in this modification.

Conclusion concerning chosen plaintext attacks and chosen ciphertext attacks:
If the ciphertext is given as a matrix, the system is secure against chosen plaintext attacks
(Section 8.4). If the ciphertext is a word in X it could be possible that an eavesdropper can
get hints for the elements in U and hence the search for the primitive elements in the Cayley
graph could be performed in a more selective measure, but these hints can also be seen in a
ciphertext only attack. Hence, this is no information which only appears at a chosen plaintext
attack. This cryptosystem is secure against chosen ciphertext attacks (Section 8.5). An attacker
gets no additional hints for the set U than he gets with a ciphertext only attack.

Conclusion:
Due to the fact, that Protocol 9 differs to Protocol 8 only in the way, that it uses auto-
morphisms of a finitely generated subgroup FU of F instead of automorphisms of the finitely
generated free group F , we get a similar cryptographic protocol. The modifications use the same
ideas as the modifications for Protocol 8. Therefore, as above, especially the modifications of
Protocol 9 with matrices are of interest for cryptography. If Protocol 9 is used together with
the second modification, which uses a faithful representation into SL(2,Q), then the system
is secure and the security depends on the unknown solution of the (constructive) membership

47

Chapter 1. Introduction

problem in the used matrix groups. If Protocol 9 is used together with the third modification,
which uses matrices in GL(2, R), R = Z[y1, y2, . . . , yn], n ≥ 2, then the system is secure and the
security depends in addition on the negative solution of Hilbert’s Tenth Problem. Moreover, we
get also randomness to each ciphertext by the ephemeral matrices, which the encrypter used
for encryption. To generate these ephemeral matrices he only needs the common secret point
D ∈ Zn, this improves also the security. Altogether, we get interesting new private key cryp-
tosystems, which use non-commutative groups and are based on combinatorial group theory and
not only on number theory.

Chapter 9

Chapter 9 introduces Protocol 10, a symmetric key cryptosystem. It is based on combinatorial
group theory, uses automorphisms of finitely generated free groups, Nielsen reduced sets and a
faithful representation of a finitely generated free group F into SL(2,Q). The automorphisms
are out of a common set GAut ⊂ Aut(G) (with G an abstract free group of finite rank). For
decryption Bob needs to know which automorphisms of GAut were used for the encryption
procedure by Alice. Therefore, Alice and Bob make use of a linear congruence generator with
maximal periodic length as for Protocol 8 and Protocol 9. Hence, for linear congruence
generators see Chapter 7.
The main difference of the cryptographic protocol in this chapter to Protocol 8 and Protocol 9
is, that it uses automorphisms of Aut(G) on plaintext sequences instead of automorphisms on F
or FU , respectively. Moreover, Protocol 10 contains special random matrices, which generate
randomness for the ciphertext and work as ephemeral keys in the encryption procedure.

Inner structure of Chapter 9:
We first describe Protocol 10 in a restricted version to explain the idea. This is then gener-
alized. A variation and an example are given. The chapter closes with a closer look at chosen
ciphertext and chosen plaintext attacks.

• Protocol 10: Private key cryptosystem using automorphisms on plaintext sequences

To describe this private key cryptosystem we assume that z = 4 · t, with t ∈ N, and that the
letters in each plaintext part Si are pairwise different.

Protocol 10 is summarized in Table 1.13 (page 49) and Table 1.14 (page 50), which are exactly
Table 9.1 (page 219) and Table 9.2 (page 220) in Chapter 9.

48

1.3. Outline of this thesis and summary of results

Table 1.13.: Summary of Protocol 10: Private key cryptosystem using automorphisms on
plaintext sequences I

Public Knowledge

Abstract free group G = 〈Y | 〉, Y = {y1, y2, . . . , y5}; plaintext alphabet A = {a1, a2, . . . , aN}
with N ≥ 2; subset GAut ⊂ Aut(G); linear congruence generator h of maximal periodic length.

Alice Bob

Private keys

Free group F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2,
free subgroup FU = 〈U | 〉 of F with Nielsen reduced set U = {u1, u2, . . . , u2N} ⊂ F ;

faithful representation ϕ : F → SL(2,Q);
FU ′ = 〈U ′ | 〉, U ′ = {V1, V2, . . . , V2N } with Vi = ϕ(ui);

assignment ai=̂Vj ⇐⇒ j ≡ i (mod N) and starting seed gα ∈ GAut.
Encryption

Choose message
S = s1s2 . . . sz, z ≥ 1 and si ∈ A.

Cut message into parts of rank(G)− 1 = 4 letters
S = s1s2s3s4︸ ︷︷ ︸

S1

| s5s6s7s8︸ ︷︷ ︸
S2

| · · · | sz−3sz−2sz−1sz︸ ︷︷ ︸
Sβ

.

Write S as a sequence S′ of matrices with
ai=̂Vj ⇐⇒ j ≡ i (mod N), it is
S′ = V ′1V

′
2V
′
3V
′
4︸ ︷︷ ︸

S′1

| V ′5V ′6V ′7V ′8︸ ︷︷ ︸
S′2

| · · · | V ′z−3V ′z−2V ′z−1V ′z︸ ︷︷ ︸
S′β

,

with V ′i ∈ {V1, V2, . . . , V2N }.

Calculate β = z
4 automorphisms gi ∈ GAut.

Compute y1 = α, y2 = h(y1), . . . , yβ = h(yβ−1) and obtain
gy1 , gy2 , . . . , gyβ .

For each part S′i, 1 ≤ i ≤ β, choose an additional matrix
Pi ∈ SL(2,Q), with Pi 6∈ FU ′ , which is an ephemeral key.

Encryption:
For S′i, 1 ≤ i ≤ β, choose ephemeral key Pi and apply
automorphism gyi :(
V ′4i−3, V

′
4i−2, V

′
4i−1, V

′
4i, Pi

)
↓ gyi

(W5i−4,W5i−3,W5i−2,W5i−1,W5i).

Generate ciphertext

C = W1W2W3W4W5W6W7W8W9W10 · · ·Wz+β

and send it to Bob.
C=W1W2W3W4W5W6W7W8W9W10···Wz+β−−→

49

Chapter 1. Introduction

Table 1.14.: Summary of Protocol 10: Private key cryptosystem using automorphisms on
plaintext sequences II

Alice Bob

Decryption

Cut C into parts of 5 matrices:
C = W1W2W3W4W5︸ ︷︷ ︸

C′1

|W6W7W8W9W10︸ ︷︷ ︸
C′2

| · · · |Wz+β−4 · · ·Wz+β︸ ︷︷ ︸
C′β

.

Compute β automorphisms:
y1 = α, y2 = h(y1), . . . , yβ = h(yβ−1),
obtain gy1 , gy2 , . . . , gyβ .

Compute for each automorphism gyi ∈ GAut, i = 1, 2, . . . , β, the
inverse automorphism g−1yi .

Apply on each ciphertext part C ′i the corresponding automorphism
g−1yi . In general, for C ′i, it is:

(W5i−4,W5i−3,W5i−2,W5i−1,W5i)
↓ g−1yi(

V ′4i−3, V
′
4i−2, V

′
4i−1, V

′
4i, Pi

)
Decide which matrices in the reconstructed part belong to the set
U ′ and which not.

Therefore, get sequence of matrices

S′ = V ′1V
′
2V
′
3V
′
4V
′
5V
′
6V
′
7V
′
8 · · ·V ′z−3V ′z−2V ′z−1V ′z ,

with V ′i ∈ {V1, V2, . . . , V2N }, and with the knowledge

ai=̂Vj ⇐⇒ j ≡ i (mod N)

read the plaintext

S = s1s2s3s4s5s6s7s8 · · · sz−3sz−2sz−1sz

from Alice.

We also look at the situations, when z ∈ N is not necessarily z = 4 · t, t ∈ N, and the letters in
each part Si are not necessarily pairwise different (Remark 9.0.2).

Alice has to calculate ephemeral matrices in SL(2,Q), we also give proposals how Alice could
generate these matrices, which are not matrices in FU ′ (Remark 9.0.3).

Security:
Protocol 10 is a polyalphabetic system, that is, a matrix Vi ∈ U ′, and hence a letter ai ∈ A,
is encrypted differently at different positions in the plaintext. Therefore, a statistical frequency
attack (see for instance [BFKR15]), for the ciphertext, over the frequency of matrices, which
corresponds to letters in the plaintext alphabet, or groups of words, is useless. If Alice takes

50

1.3. Outline of this thesis and summary of results

care, that each plaintext sequence Ci has as one product at least one ephemeral matrix Pj (that
is, it is not only written as a word in U ′), then Ci 6∈ FU ′ and each plaintext sequence is encrypted
differently, even if the same text with the same automorphisms is used and only the ephemeral
matrices from Alice are changed, she generates a totally different ciphertext for the same plain-
text. The security depends on the ephemeral keys (matrices), which are privately chosen by the
encrypter and the unknown solution of the (constructive) membership problem for the matrices
in U ′ ⊂ SL(2,Q) and the ephemeral keys.

Variations:
We explained Protocol 10 by fixing the rank of the abstract group G, rank(G) = 5, and the
cardinality of U , |U | = 2N . This helped us to explain this private key cryptosystem, but it is
not mandatory. We can variate these values.

1. We can choose an abstract free group G with finite rank(G) ≥ 2; another option is to
choose different free groups Gi with pairwise different finite ranks rank(Gi) ≥ 2. The set
GAut from which Alice and Bob get the automorphisms for encryption and decryption,
respectively, is then a subset of

⋃
iAut(Gi).

2. The set U can be chosen with cardinality |U | = k · N , k ≥ 2. Each sequence Si, which
we get by cutting the plaintext into pieces, must, in general, have a length between 1 and
rank(Gj)−1, depending on the group Gj on which the automorphism acts for the sequence
Si, because we now add to each sequence at least one ephemeral matrix. We have to take
care that the elements in each sequence Si with the additional ephemeral keys form a basis
for a free group of rank(Gj). Therefore, it is possible to align the set U , that is, choose k
with k ≥ max

i
{rank(Gi)} − 1 for |U | = k ·N and act like in Remark 9.0.2 case 2.1.

Another option is to split the sequence with more than k identical letters in a similar
way as explained in Remark 9.0.2 case 2.2. The ephemeral keys in each sequence must be
pairwise different and after construction, see Remark 9.0.3, they are elements of a basis.

We present also a variation, in which the used automorphisms are private.

Conclusion concerning chosen plaintext attacks and chosen ciphertext attacks:
This cryptosystem is secure against chosen plaintext and chosen ciphertext attacks, because of
the ephemeral keys by Alice and the unknown solution of the (constructive) membership prob-
lem for the matrices in U ′ ⊂ SL(2,Q) and the ephemeral keys.

Conclusion:
Protocol 10 applies automorphisms on sequences of plaintext units, which are written as
matrices in SL(2,Q) with the help of a faithful representation from a finitely generated free
group F into SL(2,Q). With additional random matrices for the encryption procedure and
the unknown solvability of the (constructive) membership problem in the used matrix group
it is a secure private key cryptosystem. Thus, we get another interesting new private key
cryptosystem, which uses non-commutative groups and is based on combinatorial group theory
and not on number theory.

Chapter 10

Chapter 10 introduces Protocol 11, an ElGamal like public key cryptosystem, and Proto-
col 12, a challenge and response system. Protocol 11 is published in [MR15] and [MR16].
Both systems are based on combinatorial group theory and use the ideas behind the private key
cryptosystems in the previous sections. Thus, they also need a finitely generated free group F ,

51

Chapter 1. Introduction

automorphisms on F and a faithful representation from F into SL(2,Q) (see Chapter 4).

Inner outline of Chapter 10:
Firstly, we describe Protocol 11 and give proposals for variations and an example. Secondly,
Protocol 12 is introduced and an example can be found in the appendix.

• Protocol 11: ElGamal like public key cryptosystem using automorphisms on a
finitely generated free group F

Protocol 11, an ElGamal like cryptosystem, is summarized in Table 1.15 (page 52), which is
exactly Table 10.1 (page 236) in Chapter 10.

Table 1.15.: Summary of Protocol 11: ElGamal like public key cryptosystem using automor-
phisms on a finitely generated free group F

Public Parameters

Free group F = 〈X | 〉, a freely reduced word a 6= 1 in F
and an automorphism f : F → F of infinite order.

Alice Bob

Key Creation

Choose private key n ∈ N.
Compute

fn(a) =: c ∈ S∗.

(S∗ denotes the set of all freely reduced words
with letters in X±1.)

Publish c.

Encryption

Choose plaintext m ∈ S∗.
Choose random ephemeral key t ∈ N.
Compute

m · f t(c) =: c1 ∈ S∗ and f t(a) =: c2 ∈ S∗.

Send ciphertext (c1, c2) ∈ S∗ × S∗ to Alice.
(c1,c2)←−−−−−−−−−−−−−−−−−−

Decryption

Compute
c1 · (fn(c2))

−1 = m · f t(c) · (fn(c2))
−1

= m · f t(fn(a)) · (fn(f t(a))−1

= m · f t+n(a) · (fn+t(a))−1

= m,
which is the message from Bob.

52

1.3. Outline of this thesis and summary of results

Security:
The security is based on the Diffie-Hellman problem and discrete logarithm problem in cyclic
subgroups of automorphisms on finitely generated free groups.

Variations:

1. The element a ∈ S∗ could be taken as a common private secret between Alice and
Bob. They could use for example the Anshel-Anshel-Goldfeld key exchange protocol (see
[MSU08]) to agree on the element a.

2. Alice and Bob agree on a faithful representation from F into the special linear group of
all 2 × 2 matrices with entries in Q, that is, g : F → SL(2,Q). Now, m ∈ S∗ and Bob
sends g(m) · g(f t(c)) =: c1 ∈ SL(2,Q) instead of m · f t(c) =: c1 ∈ S∗; c and c2 remain
the same. Therefore, Alice calculates c1 · (g(fn(c2)))

−1 = g(m) and hence the message
m = g−1(g(m)) ∈ S∗. This variation in addition extends the security certification to the
constructive membership problem in the matrix group SL(2,Q) (see [EKLG14]).

Conclusion:
Protocol 11 is similar to the ElGamal cryptosystem (see Section 1.2.2), whereby the ElGamal
cryptosystem is easier to handle. The ElGamal cryptosystem is based on the Diffie-Hellman
problem and discrete logarithm problem, respectively, over a finite field. If these problems
should eventually be solved we introduced an alternative system, which is not based on number
theory.

• Protocol 12: Challenge and response protocol using automorphisms on finitely
generated free groups

We use the idea behind the public key cryptosystem (Protocol 11) based on Nielsen trans-
formations to develop a challenge and response protocol. More precisely Protocol 12 is a
symmetric key authentication protocol.

The verifier and the prover agree on a common secret P and a corresponding challenge automor-
phism of a finitely generated free group F with rank N ≥ 3. After presenting the password P
to the verifier, he gives challenges to the prover, which are correctly solvable with the challenge
automorphism.

Possible Challenges:
We propose four types of questions for the challenges.

1. What is the matrix M = ϕ(fn(w)), given w ∈ F (a freely reduced word in F), n ∈ N and
a faithful representation ϕ : F → SL(2,Q)? The verifier takes care that each matrix ϕ(xi),
1 ≤ i ≤ N , has at least one entry in Q \ Z.

2. What is the trace of the matrix M = ϕ(fn(w)), given w ∈ F (a freely reduced word in F),
n ∈ N and a faithful representation ϕ : F → SL(2,Q)? The verifier takes care that each
matrix ϕ(xi), 1 ≤ i ≤ N , has at least one entry in Q \ Z.

3. What is the entry Mx,y of the matrix M = ϕ(fn(w)), given w ∈ F (a freely reduced word
in F), n ∈ N and a faithful representation ϕ : F → SL(2,Q), with x, y ∈ {1, 2} and x gives
the row and y the column in the matrix M? A variation could be given if the entry Mx,y

is an integer, then it could be ask for certain digits of an entry Mx,y, for example for the
last 7 digits.

53

Chapter 1. Introduction

4. Questions as in 1. and 2. but the faithful representation ϕ could be public or also a part
of the common shared secret between the verifier and the prover.

Protocol 12 is summarized in Table 1.16 (page 54), which is exactly Table 10.2 (page 241) in
Chapter 10.

Table 1.16.: Summary of Protocol 12: Challenge and response protocol using automorphisms
on finitely generated free groups

Private Parameters

Free group F with free generating set X = {x1, x2, . . . , xN}, N ≥ 3;
an automorphism f ∈ Aut(F) of infinite order and a common password P .

The shared secret is the tuple (P, f).

Verifier Prover

Present the password P to the verifier
P←−−−−−−−−−−−−−−−

Take challenge automorphism f corresponding
to password P . Choose
• a faithful representation ϕ : F → SL(2,Q);
take care that each matrix ϕ(xi), 1 ≤ i ≤ N ,
has at least one entry in Q \ Z;
• a freely reduced word w ∈ F ;
• n ∈ N.

Challenge: (ϕ,w,n)−−−−−−−−−−−−−−−−−→
Compute

M ′ = ϕ(fn(w)).
Compute the response M and send it to
the verifier

M = ϕ(fn(w)).

Response: M←−−−−−−−−−−−−−−−−−−−
Proof if M ′ = M .

Security:
The Security is based on the unknown solution of the constructive membership problem of (dis-
crete) free subgroups in SL(2,Q) of rank greater than two.

Conclusion:
To develop a challenge and response system using automorphisms on finitely generated free
groups is another cryptologic application of this mathematical theory. It is good to have different
challenge “spaces” for challenge and response systems, in particular if these “spaces” generate
an infinite amount of challenges as it is the case in Protocol 12.

1.3.3. Assessment of the results

The first private key cryptosystem (Protocol 1) is an extension of a (n, t)-secret sharing scheme
by C. S. Chum, B. Fine, G. Rosenberger and X. Zhang (CFRZ-scheme) and is therefore based
on the Closest Vector Theorem. This extension is of mathematical interest. However, for appli-
cations it has the disadvantage that Alice and Bob have to exchange the subspace V not later

54

1.3. Outline of this thesis and summary of results

than after t messages, with dim(V) = t. This private key cryptosystem, along with other cryp-
tographic theory, was published in [FMR13] and presented in the “Algebra and Cryptography”
seminar at CUNY (City University of New York) Graduate Center in New York in 2013 as well
as in the “Spring Easter Section Meeting” of the AMS (American Mathematical Society) more
precisely the “Special session on ‘Algorithmic problems of group theory and applications to in-
formation security’ at Boston College” in 2013 by an invitation from Prof. Dr. V. Shpilrain and
Prof. Dr. D. Kahrobaei. The positive feedback gave motivation to find another cryptographic
protocol based on the Closest Vector Theorem. This is the CV-challenge and response system
(Protocol 2).

In this thesis, we also introduce two extensions of a key exchange protocol by M. Habbeb,
D. Kahrobaei, C. Koupparis and V. Shpilrain, which is based on a semidirect product of
(semi)groups. One extension is a signature protocol (Protocol 3) and the other is an ElGamal
like public key cryptosystem (Protocol 4). Both are of mathematical interest and published
in [Mol15]. For applications of the signature protocol it has the disadvantage that Alice, with
her private key n, can just perform a finite number of signatures, which depend on her first
ephemeral key k1. The theory of the ElGamal like public key cryptosystem is interesting, but
for applications a platform group has to be found, which is optimal in terms of security and
efficiency. D. Kahrobaei and V. Shpilrain are working on this problem, see [KS16].
The research about these cryptographic protocols leads to groups and especially to non-commuta-
tive groups, which gives input for the later newly developed cryptographic protocols that are
based on combinatorial group theory.

Two new challenge and response systems are explained. Protocol 2 is an extension of the
CFRZ-scheme and a variation is given, such that it is a two-way authentication. Protocol 12
is one of the newly developed cryptographic protocols which are based on combinatorial group
theory. It is good to get different challenge “spaces” for challenge and response systems, in par-
ticular, if these “spaces” generate an infinite amount of challenges as it is the case for these two
cryptographic protocols. Protocol 2 was, among other protocols, presented at the workshop
“New directions in cryptography” related to the “Computer Science in Russia” symposium in
Moscow (2014).

Protocol 5 is a secret sharing protocol, which is highly interesting if the participants need a
very simple way to reconstruct the secret and the dealer has enough time to generate and to
distribute the shares for the participants.

Protocol 6 and Protocol 7 are the first newly developed cryptographic protocols in this thesis,
which use combinatorial group theory especially Nielsen transformations and finitely generated
free groups. Protocol 6 is mathematically a highly interesting cryptographic protocol. Indeed
it serves especially well as a basis to develop other cryptographic protocols. In this thesis it is
the basis for Protocol 7-12, which are also based on combinatorial group theory.
Protocol 7 is, like Protocol 6, mathematically a very interesting cryptographic protocol which
in addition uses a Nielsen reduced subset U 6= X of a finitely generated free group F = 〈X | 〉
and gives therefore the final input for the newly developed cryptographic Protocol 8-12.
Protocol 5 and Protocol 6, as Protocol 2, were presented at the workshop “New directions
in cryptography” related to the “Computer Science in Russia” symposium in Moscow (2014).
Enhancing the combinatorial secret sharing scheme with the idea of using automorphisms on
finitely generated free groups became the basis for the other newly developed cryptographic
protocols (Protocol 8-12). Moreover, Protocol 5, Protocol 6 and Protocol 7 were also
presented at the Fairfield University (2015) by an invitation from Prof. Dr. B. Fine and they

55

Chapter 1. Introduction

are going to be published in the survey article [CFMRZ16] as research in the area of secret
sharing schemes. They are also described in [MR15].
In addition Protocol 11 and a previous version of Protocol 9 are presented in [MR15].

The main results in this thesis are, in addition to the challenge and response system (Protocol 12),
the private key cryptosystems Protocol 8, Protocol 9, Protocol 10 and the ElGamal like
public key cryptosystem Protocol 11, which are all based on combinatorial group theory and
automorphisms on finitely generated free groups. These automorphisms can be generated by
Nielsen transformations or Whitehead-Automorphisms.
Especially the modification of Protocol 8 and Protocol 9, respectively, with matrices are
of interest for group based cryptography. If Protocol 8 or Protocol 9, respectively, is used
together with a modification, which uses a faithful representation from a finitely generated free
group into SL(2,Q), then the system is secure and the security depends on the unknown solution
of the (constructive) membership problem in the used matrix group. If Protocol 8 or Pro-
tocol 9, respectively, is used together with the modification, which uses matrices in GL(2, R),
R = Z[y1, y2, . . . , yn], n ≥ 2, then the system is secure and the security depends in addition
on the negative solution of Hilbert’s Tenth Problem. Moreover, we get also randomness to
each ciphertext by the ephemeral matrices which were used for encryption. To generate these
ephemeral matrices only the common secret point D ∈ Zn is needed, this improves also the secu-
rity. In fact we get two interesting new private key cryptosystems, which use non-commutative
groups and are based on combinatorial group theory and not only on number theory.
Protocol 10 applies automorphisms on sequences of plaintext units, which are written as ma-
trices in SL(2,Q). Together with additional random matrices for the encryption procedure and
the unknown solvability of the (constructive) membership problem in the used matrix group it
is a secure private key cryptosystem. Thus, we get another interesting new private key cryp-
tosystem, which uses non-commutative groups and is based on combinatorial group theory and
not on number theory.
Protocol 11 is similar to the standard ElGamal cryptosystem; however the standard ElGamal
cryptosystem is easier to handle. The ElGamal cryptosystem is based on the Diffie-Hellman
problem and discrete logarithm problem, respectively, over a finite field. If these problems
should eventually be solved we introduce here an alternative system, which is not based on
number theory.
A previous version of Protocol 8 together with Protocol 11 was presented at the annual
meeting of the DMV (Deutsche Mathematiker-Vereinigung) at the minisymposium “Algebraic
Aspects of Cryptology” in 2015. Following an invitation from Prof. Dr. V. Shpilrain a talk was
held about the research in the “Algebra and Cryptography” seminar at CUNY Graduate Center
in New York. Protocol 8 together with the modification, which uses a faithful representation
of a finitely generated free group into SL(2,Q), as well as Protocol 10, were presented in this
seminar at CUNY Graduate Center in New York (2015). In addition Protocol 8 together with
the modification using a faithful representation of a free group into SL(2,Q) and the idea to use
Hilbert’s Tenth Problem are published in [MR16] together with Protocol 11.

1.4. Suggestions for other platform groups instead of finitely
generated free groups

In this section we give other platform groups instead of finitely generated free groups for the
cryptographic protocols Protocol 6 to Protocol 12.

We suggest the use of surface groups. A surface group is the fundamental group of a compact

56

1.4. Suggestions for other platform groups instead of finitely generated free groups

orientable or non-orientable surface. It is defined, that the genus of a surface group is g if the
corresponding surface has genus g (for surface groups in combinatorial group theory see for
example [AFR05] and [FR99]). It is known (see for instance [BS65]), that an orientable surface
group Φg of genus g ≥ 2 has an one-relator presentation of the form

Φg = 〈α1, β1, . . . , αg, βg |
g∏
j=1

[αj , βj] = 1〉, (1.1)

in which [αj , βj] denotes the commutator of αj and βj and is defined as [αj , βj] := αjβjα
−1
j β−1j .

Depending on the new introduced cryptographic protocols Protocol 6 to Protocol 12 Alice
and Bob need subgroups of the used group, a basis of this subgroup, a faithful representation
into SL(2,Q) or PSL(2,Q), respectively, and automorphisms (or Nielsen transformations, which
in the free group case describe the automorphisms of the free group) of the group or subgroup,
respectively.

Magnus shows in [Mag73] that Φg, for g ≥ 2, has infinitely many faithful representations as a
discontinuous subgroup of PSL(2,Q). He obtains this result by finding 2 by 2 matrices α and β
whose elements are rational functions of two parameters r and t, such that α and β generate a
faithful representation of the group G, defined by

G = 〈α, β | [α, β]2 = 1〉, (1.2)

for all r > 1, t > 0, and every Fuchsian group isomorphic with G conjugates in PSL(2,R) with
one of these representations.
He proves the Theorem 1.4.1, which is needed to get a representation of Φ2 as discontinuous
group of PSL(2,Q).

Theorem 1.4.1. [Mag73, Theorem 1]
Let r, t be real parameters and let r2 > 1, t 6= 0. Then the matrices

α =

(
r 0
0 r−1

)
and β =

(
1

t(r2−1) tr2

2
t(r2−1)2

t(1+r4)
r2−1

)

generate a discontinuous subgroup of PSL(2,R) isomorphic with G as defined by (1.2). Every
discontinuous subgroup of PSL(2,R) isomorphic with G is conjugated in PSL(2,C) with one of
the groups generated by α, β for suitable values of r, t.

With the following lemma, he gives a construction to generate Φ2 with the help of G defined by
(1.2) and Φ2 contains Φg for g ≥ 2 as a subgroup of index g − 1.

Lemma 1.4.2. [Mag73, Lemma 2]
Given α and β as in Theorem 1.4.1. Define the elements α1, β1, α2, β2, γ of G by

α1 := α2, β1 := β, α2 := γ−1α2γ, β2 := γ−1βγ, γ := αβα−1β−1.

Then α1, β1, γ generate a subgroup G2 of index 2 in G with defining relations

(α1β1α
−1
1 β−11 γ−1)2 = 1 and γ2 = 1,

and α1, β1, α2, β2 generate a subgroup of index 4 in G which is isomorphic with Φ2 (defined by
(1.1) for g = 2). The group Φ2 contains Φg for g ≥ 2 as a subgroup of index g − 1.

The proof of this lemma consists of an application of the Reidemeister-Schreier-Method (see
[CgRR08] or [MKS66] or [LS77]). The group G2 has coset representatives 1, α in G and Φ2

57

Chapter 1. Introduction

has coset representatives 1, γ in G2. For Φg we may choose the normal closure of the subgroup

generated by αg−11 and β1, α2, β2.

Corollary 1.4.3. [Mag73, Corollary 1.2.]
Wherever r2 > 1 and t 6= 1 are rational numbers, the representation of G in Theorem 1.4.1
produces a representation of Φ2 as discontinuous subgroup of PSL(2,Q).

If Alice and Bob choose the rational parameters r and t, with r2 > 1 and t 6= 1 (see Corollary 1.4.3
and Lemma 1.4.2), they get a faithful representation for Φ2 in PSL(2,Q) and if they change the
parameters they change the faithful representation for Φ2 in PSL(2,Q).
Alice and Bob would use the orientable surface group Φ2 instead of the finitely generated free
group F = 〈x1, x2, . . . , xq | 〉 and with Lemma 1.4.2 they are able to generate each subgroup
Φg, for g ≥ 2, in Φ2, which they use instead of FU . The 2g generators of this subgroup are
the basis for the subgroup, because fewer than 2g − 1 elements in Φg generate a free group (see
[FR99, p. 54]), hence the set of 2g generators of Φg is a minimal generating set for Φg, thus a
basis.

It is possible to use Nielsen transformations for the cryptosystems because orientable surface
groups have only one Nielsen class of minimal generating systems:
Let H = 〈a1, a2, . . . , an | r = 1〉 be a one-relator group with m ≥ 2 and r a relation which is a
cyclically reduced word and involves all elements a1, a2, . . . , an. Let H not be a free group, that
is, r 6= 1 and r is not a primitive element in F = 〈a1, a2, . . . , an | 〉. We say H has exactly
one Nielsen class, if each generating system {x1, x2, . . . , xn} of H is Nielsen equivalent to
{a1, a2, . . . , an} (see [CgRR08]).
Alice and Bob are able to execute the cryptographic protocols above with orientable surface
groups Φg and Nielsen transformations, because orientable surface groups Φg, g ≥ 2, have ex-
actly one Nielsen class (see [CgRR08]) and a faithful representation into PSL(2,Q).

We now give two remarks about two further platform groups, which could be of interest for the
cryptographic protocols.

Remark 1.4.4. A presentation of a non-orientable surface group Ng of genus g ≥ 2 can be
given by the following one-relator presentation

Ng = 〈α1, α2, . . . , αg | α2
1α

2
2 · · ·α2

g = 1〉,

see [FR99] and the references there. For the non-orientable surface groups with genus g ≥ 4 it is
know that these have exactly one Nielsen class of minimal generating systems (see [CgRR08]),
and that there is a faithful representation as discrete subgroup of PSL(2,R) (see [FKR14]).
Thus, we could use these groups for the cryptosystems above but we are then in the case in
which we store and calculate real numbers. In cryptography it is more required to use elements
not in R \Q thus we would like to get a faithful representation into the group PSL(2,Q) but it
is unknown if such an embedding exists.

Remark 1.4.5. For other platform groups we suggest finitely generated elementary free groups.
Nonabelian groups that have exactly the same first order theory (see for example Appendix A.2
or [FGMRS14, Chapter 4]) as the class of nonabelian free groups are called elementary free
groups (see for instance [FGMRS14, Chapter 10]). The primary non-free examples of such
groups are orientable surface groups Φg of genus g ≥ 2 and non-orientable surface groups Ng of
genus g ≥ 4.
The finitely generated elementary free groups are hyperbolic, see [FGMRS14, Theorem 10.4.1].
It is known, that any finitely generated elementary free group has a faithful representation

58

1.5. Open questions and further research for cryptographic protocols based on combinatorial
group theory

into PSL(2,C) ([FGMRS14, Theorem 10.4.11]). It is also known, that any limit group can be
embedded in PSL(2,R) ([FGMRS14, Theorem 7.3.5]) and elementary free groups are limit groups
([FGMRS14, Section 10.4.4]), thus we get also a faithful representation into PSL(2,R). There
is a conjecture that finitely generated hyperbolic elementary free groups have only one Nielsen
class of minimal generating systems. As above, Remark 1.4.4, we could use a representation
into PSL(2,R) for the cryptosystem but for cryptography it is more required to use a faithful
representation into PSL(2,Q) but it is unknown if such an embedding exists.

1.5. Open questions and further research for cryptographic protocols
based on combinatorial group theory

We give some ideas for further research questions.

• Try to find other cryptographic protocols, which can be based on Nielsen transformations,
for example a public key cryptosystem which is not ElGamal like.

• Is there a faithful representation into the group PSL(2,Q) for the non-orientable surface
groups with genus g ≥ 4?

• For finitely generated elementary free group is there a faithful representation into PSL(2,Q)?

• We developed symmetric key cryptosystems which use abstract presentations of free groups
and improve them by using the special linear group SL(2,Q) for the presentation of the
used group. The additional security certification is now, that there is no algorithm known
to solve the membership problem for (discrete) free subgroups of SL(2,Q). B. Eick,
M. Kirschmer and C. Leedham-Green presented in the paper [EKLG14] a practical al-
gorithm to solve the constructive membership problem for (discrete) free subgroups of
rank 2 of SL(2,R). For example, the subgroup SL(2,Z) of SL(2,R) is discrete. They
also mention, that it is an open problem to solve the membership problem for arbitrary
subgroups of SL(2,R) with rank m ≥ 2. The developed cryptosystems work with exactly
such subgroups of rank greater than or equal to 2. For further research one could work
on the solvability of the membership problem for arbitrary subgroups of SL(2,R) with
rank m ≥ 2. B. Eick, M. Kirschmer and C. Leedham-Green presented a practical algo-
rithm to solve the constructive membership problem for discrete free subgroups of rank
2 of SL(2,R), hence it is convenient to start with the analysis of discrete groups of rank
greater than 2 and the constructive membership problem, therefore it is useful to study
the algebraic generalizations of discrete groups (see for example [FR99]).

• A lot of open questions exist, especially in the non-commutative group based cryptography,
which are interesting for research, for example (see [FHKR11]):

1. What is the most appropriate platform group for non-commutative cryptography?

2. Should the group be finite or infinite?

3. How can we show a group is provably secure for the new non-commutative schemes
such as public key exchanges, signatures, authentication protocols et cetera?

4. Can we design more public keys based on other search and decision problems in com-
binatorial group theory? Can we analyze the security of this cryptographic protocols?

5. What should be the measure of the security? (Practicality, complexity, average case
complexity, generic complexity?)

59

Chapter 1. Introduction

6. What is the complexity of the Reidemeister-Schreier rewriting algorithm for free
groups?

In [FHKR11] B. Fine, M. Habeeb, D. Kahrobaei and G. Rosenberger mention also that
another problem to think in this direction is quantum computational approaches to cryp-
tosystems. Quantum algorithms for finite solvable groups (which are polycyclic) have been
studied, particularly by J. Watrous [Wat00]. He found a quantum algorithm to compute
the order of a finite solvable group in polynomial time. The algorithm works in the setting
of black-box groups none of them having polynomial-time classical algorithms. Is it possi-
ble to design quantum algorithms for solving other decision problems in polycyclic groups
(both for finite and infinite ones); especially the ones which are used in cryptography?
The following questions appear:

1. Is there any quantum algorithm for solving the search conjugacy problem for poly-
cyclic groups that reduces the complexity of the algorithm?

2. Are there other quantum algorithms for problems in combinatorial group theory?

Acknowledgements

I acknowledge my debt of thanks to my advisor Gerhard Rosenberger, who greatly improved my
knowledge of mathematics and for his outstanding support and encouragement during the last
years.
I am very grateful to my co-advisor Ulf Kühn for his excellent support during my studies and
my Ph.D. project.
My special thank is dedicated to Benjamin Fine, with whom I enjoyed to collaborate. Especially,
his invitation to Fairfield with a lot of fruitful discussions enriches my research.
I would like to thank Delaram Kahrobaei and Vladimir Shpilrain for giving me the opportunity
to present my research during their conferences and seminars wherein I had the chance to meet
some outstanding mathematicians in the field of my research.

60

Chapter 2

Inner product spaces and cryptography

In this chapter we introduce Protocol 1 and Protocol 2, which extend the CFRZ-secret sharing
scheme to a private key cryptosystem as well as to a challenge and response system. The CFRZ-
scheme is a (n, t)-secret sharing protocol, which is based on the Closest Vector Theorem in a real
inner product space (see Theorem 2.0.1). The idea behind the CFRZ-scheme was first published
by C. S. Chum, B. Fine, G. Rosenberger and X. Zhang in [CFRZ12]. It was worked out and
analyzed in detail in [Mol12] whereby parts of these results were published in [FMR13] and the
overview article [CFMRZ16]. We require knowledge of linear algebra and analytic geometry, as
it is presented for example in the books [Bos08] or [Fis10].

Protocol 1 is a private key cryptosystem, which is published in [FMR13]. We call it also
CV-private key cryptosystem, because it uses the Closest Vector Theorem.

Protocol 2 is a challenge and response system, which is also named CV-challenge and response
protocol, because it also makes use of the Closest Vector Theorem.

First of all we recall the Closest Vector Theorem and the CFRZ-scheme. Afterwards we introduce
Protocol 1 and Protocol 2 in detail.
All cryptographic protocols in this chapter require the following theorem.

Theorem 2.0.1. [Atk89] Closest Vector Theorem
Let W be a real inner product space and let V be a subspace of finite dimension t, t ∈ N. Suppose
that w∗ ∈ W , with w∗ 6∈ V , and e1, e2, . . . , et is an orthonormal basis of V . Then the unique
vector w ∈ V closest to w∗ is given by

w = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + · · ·+ 〈w∗, et〉et,

where 〈·, ·〉 is the inner product on W .

Let W be a real inner product space and V ⊂ W with dim(W) = m and dim(V) = t, m > t.
We denote the element in V which is the closest element to w∗ ∈W \ V with w.

A situation where W = R3 and V is a two dimensional subspace, which is indicated by a yellow
area, is visualized in Figure 2.1.

w

w∗

V

W

Figure 2.1.: Visualization of a situation in a CFRZ-scheme

61

Chapter 2. Inner product spaces and cryptography

Now, we give the idea of the CFRZ-secret sharing protocol. Afterwards we explain it in more
details. The dealer determines the numbers n, t ∈ N, with n ≥ t. He chooses a real inner product
space W of dimension m and a subspace V ⊂W of dimension t, with

t = dim(V) and m = dim(W) > t.

The secret is an element w ∈ V . The dealer calculates an element w∗ ∈ W \ V , such that w is
the closest element in V to w∗ , that is, ‖w∗ − w‖ ≤ ‖w∗ − v‖ for all v ∈ V , here ‖ · ‖ denotes
the euclidean norm in W . The dealer constructs a set M = {v1, v2, . . . , vn} with the property,
that arbitrary t elements of M form a basis for the subspace V . The participant pi receives the
share vi, for 1 ≤ i ≤ n. The element w∗ is sent to each participant or is published. If t or more
participant join their shares, they are able to reconstruct the secret w ∈ V with the help of the
public element w∗.

We explain in more details the steps for a (n, t)-secret sharing scheme, which are done by the
dealer and the participants, following the paper [FMR13].

Steps for the dealer:
The integers n and t are given, n is the number of participants and t is the threshold and the
dimension of the subspace V ⊂W , respectively.

1. The dealer defines the dimension m ∈ N of the real inner product space W with the
property m > t.

2. He picks a secret w ∈W .

3. Now, he chooses a subspace V ⊂W with dimension t, such that w ∈ V .

4. He determines a set of vectors in V as M = {v1, v2, . . . , vn} with the property that any
subset of size t is independent. Hence, any such subset defines a basis for the subspace V .

5. The dealer calculates the closest vector w∗ ∈W \ V , such that w ∈ V is the closest vector
in V to w∗, as follows:

a) He chooses a basis {b1, b2, . . . , bt} of the subspace V and computes the orthogonal
complement V ⊥ = {u ∈W |u ⊥ v for all v ∈ V } to V .

b) Let B⊥ =
{
b⊥1 , b

⊥
2 , . . . , b

⊥
m−t

}
be a basis of the orthogonal complement V ⊥. Hence,

w∗ can be calculated as follows

w∗ = w︸︷︷︸
∈ V

+ (α1b
⊥
1 + α2b

⊥
2 + · · ·+ αm−tb

⊥
m−t)︸ ︷︷ ︸

=: w⊥ ∈ V ⊥

∈W \ V,

with αi ∈ R and at least one αi 6= 0, with 1 ≤ i ≤ m− t.

6. The dealer distributes the vector vi to the participant pi, for all 1 ≤ i ≤ n. The vector w∗

is either sent to each participant or is published.

Steps for the participants:
If t out of n participants combine their parts, then the secret w can be recovered as follows:

1. The t vectors (shares from the participants) form a basis for the subspace V and hence
using the Gram-Schmidt procedure together with a normalization (see for instance [Atk89])
they determine an orthonormal basis G = {e1, e2, . . . , et} of the subspace V .

62

2.1. Inner product spaces and a private key cryptosystem (Protocol 1)

2. Together with the vector w∗ they are able to reconstruct the secret w with the help of
Theorem 2.0.1, that is,

w = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + · · ·+ 〈w∗, et〉et.

Security 2.0.2. If a subset of participants of size less than t is given, then these participants can
only generate a subspace V ′ of dimension less than t. In the real inner product space W there
are infinitely many extensions with dimension t to subspaces which contain the subspace V ′.
Hence, the probability to determine V from V ′ is negligible and it is very unlikely to reconstruct
the secret w ∈ V . The probability to choose the correct subspace is negligible. Therefore, each
possible secret is equally likely.
The public vector w∗ tells an eavesdropper only the dimension of the real inner product space
W . The eavesdropper does not know on which subspace he has to project the vector w∗ to get
the secret w, since infinitely many subspaces have to be considered for the projection.

Remark 2.0.3. For this (n, t)-secret sharing scheme it is easy to generate a new secret without
changing the shares from the participants. If the subspace V ⊂ W is fixed it is possible to
calculate for each element v in V the element v∗, such that v is the closest element in V to v∗.
This can be done as explained in step 5. of the dealer.

Remark 2.0.4. If a CFRZ-scheme, which is a (n, t)-secret sharing scheme, was executed and
the secret v is known to all participants, then the shares of the participants can be used to
realize a CFRZ-scheme, which is a (n, t − 1)-secret sharing scheme. Therefore, a new secret
vnew ∈ V and the corresponding element v∗new ∈ W \ V , with vnew the closest vector in V to
the vector v∗new, are needed. The dealer sends either v∗new to each participant or publishes this
element. The known secret v is an element in V and hence it is possible to replace a share of
one participant by v and therefore, with the knowledge of v, it is possible that the (n, t)-secret
sharing scheme is reduced to a (n, t− 1)-secret sharing scheme.

2.1. Inner product spaces and a private key cryptosystem
(Protocol 1)

Now, we extend the (n, t)-secret sharing scheme from above to Protocol 1, a private key cryp-
tosystem, using Remark 2.0.3. Suppose Bob wants to send a message to Alice.

We agree analogously as in the (n, t)-secret sharing protocol above on the following notations:
The closest vector in V to v∗ ∈ W \ V is denoted with v. The dimension of W is denoted by
m and the dimension of V is denoted by t, it is t < m. The set B := {b1, b2, . . . , bt} denotes a
basis for the subspace V .

Private keys:
First Alice and Bob agree on a private key which consists of a subspace V of a real inner prod-
uct space W with dimension m, it is V ⊂ W with dim(V) = t and t < m. The private key
is a basis for this subspace V . For encryption Bob needs an arbitrary basis of the subspace
V and the orthogonal complement V ⊥ to V . For decryption Alice needs an orthonormal basis
of the subspace V . As soon as they agree on a subspace V Alice is able to calculate an or-
thonormal basis for V and saves this as her private decryption key. As soon as Bob knows V he
calculates a basis B⊥ for the orthogonal complement V ⊥ to V which is part of his encryption key.

63

Chapter 2. Inner product spaces and cryptography

Remark 2.1.1. Let the plaintext p be an element in the real inner product space W . Now, we
get two possibilities relating to p and the subspace V ⊂W .

1. p 6∈ V : Bob needs an additional vector w ∈ V . Therefor he calculates the vector w∗, which
he sends as encrypted message. To receive the original text (the plaintext p), the vector
w∗ is sent with the vector v := w − p. The ciphertext, which is sent to Alice, is now the
tuple c := (w∗, v).

2. p ∈ V : Now, the plaintext is an element in the subspace V . The encrypted message is
c := p∗.

Now, the sent ciphertext is on one hand an element in W , case 2., and on the other hand a
tuple of elements in W , case 1. In order that no adversary can obtain additional information by
looking at the form of c, Bob must act for each encryption as in case 1. explained.
Hence, in both cases he has to fulfill the same steps.

Encryption procedure for Bob:
Let p ∈W be Bob’s plaintext.

1. Bob chooses an arbitrary ephemeral vector w ∈ V , with w 6= p, and calculates the vector
v := w − p.

2. In the next step he computes the vector w∗ ∈W \ V as follows:

a) Bob generates the orthogonal complement

V ⊥ =
{
v′ ∈W |v′ ⊥ u for all u ∈ V

}
to the subspace V .

b) Let B⊥ =
{
u⊥1 , u

⊥
2 , . . . , u

⊥
m−t

}
be a basis for the orthogonal complement V ⊥. Now,

Bob can compute w∗:

w∗ = w︸︷︷︸
∈ V

+ (α1u
⊥
1 + α2u

⊥
2 + · · ·+ αm−tu

⊥
m−t)︸ ︷︷ ︸

=: w⊥ ∈ V ⊥

∈W \ V,

with αi ∈ R and at least one αi 6= 0, with 1 ≤ i ≤ m− t.

3. The ciphertext is c := (w∗, v). Bob transmits c to Alice.

Decryption procedure for Alice:
For the decryption Alice needs an orthonormal basis for the subspace V . She can use the
Gram-Schmidt procedure and normalization (see for instance [Atk89]). Assume she gets the
orthonormal basis G = {e1, e2, . . . , et} for the subspace V .
To get the plaintext, Alice first calculates w:

w = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + · · ·+ 〈w∗, et〉et. (2.1)

Then she calculates the plaintext:
w − v = p.

The Protocol 1 is summarized in Table 2.1 (page 65).

64

2.1. Inner product spaces and a private key cryptosystem (Protocol 1)

Table 2.1.: Summary of Protocol 1: CV-private key cryptosystem

Private Parameters

A subspace V ⊂W with dim(V) = t < m of
a real inner product space W with dim(W) = m.

Alice Bob

Key Creation

Calculate an orthonormal basis

G = {e1, e2, . . . , et}

for V .

Calculate the orthogonal complement V ⊥ to
V and a basis

B⊥ = {u⊥1 , u⊥2 , . . . , u⊥m−t}

for V ⊥.

Encryption

Choose plaintext p ∈W .
Choose arbitrary ephemeral vector w ∈ V ,
with w 6= p, and calculate v := w − p.
Compute w∗ ∈W \ V :

w∗ = w︸︷︷︸
∈ V

+ (α1u
⊥
1 + α2u

⊥
2 + · · ·+ αm−tu

⊥
m−t)︸ ︷︷ ︸

=: w⊥ ∈ V ⊥

,

αi ∈ R and at least one αi 6= 0, 1 ≤ i ≤ m−t.
Send c := (w∗, v) to Alice.
c:=(w∗,v)←−−−−−−−−−−−−−−−−−−−−

Decryption

Compute

w = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + · · ·+ 〈w∗, et〉et

and the message is w − v = p.

Remark 2.1.2. The ephemeral key (vector) w ∈ V is used only once. Assume that (w∗1, v1) and
(w∗2, v2) are two ciphertexts for different plaintexts p1 and p2, respectively, but w1 = w2. If Eve
gets (w∗1, v1) and the corresponding plaintext p1 she is able to calculate w1, because w1 = p1+v1.
Thus, she is able to generate p2 since p2 = w2− v2 = w1− v2, recall we assume w2 = w1 and w1

is known by her. Therefore, the ephemeral key (vector) w ∈ V is used only once.

Remark 2.1.3. Alice’s private key is an orthonormal basis G for the subspace V . Hence, if she
gets the message c := (w∗, v) from Bob she only needs to execute formula (2.1) to reconstruct
w. For this she needs t scalar products. Each scalar product needs m multiplications and m− 1
additions. Furthermore she needs t multiplications and t − 1 additions. Altogether these are
t(m+ (m− 1)) + t+ (t− 1) operations and hence a running time of O(tm+ t). Whereby m is
the dimension of the real inner product space W and t is the dimension of the subspace V ⊂W .
To get the message p her final step is the subtraction w− v. For this she needs m subtractions.
Thus, the total running time for decryption is O(tm+ t).

Security 2.1.4. If the same plaintext p ∈ W is encrypted twice we get different ciphertexts.
For encryption Bob chooses randomly ephemeral elements w ∈ V , thus for the first decryption

65

Chapter 2. Inner product spaces and cryptography

of p he chooses the element w1 ∈ V and for the second he chooses w2 ∈ V with w2 6= w1 and
therefore v1 := w1− p 6= w2− p =: v2 and hence c1 = (w∗1, v1) is different to c2 = (w∗2, v2) even if
they encrypt the same plaintext p. Thus, for the ciphertext, a statistical frequency attack (see
for instance [BFKR15]) is useless.
If an eavesdropper, Eve, gets only ciphertexts (known ciphertext attack), that is, she gets
a system of tuples ci = (w∗i , vi), she knows that w∗i ∈ W \ V and for the plaintext pi it is
pi = wi − vi. If she does not know the subspace V she is not able to calculate wi from w∗i .
From the knowledge of w∗i she cannot get the subspace V , because there are infinitely many
subspaces of dimension V , which do not contain the element w∗i ∈W \V and are candidates for
V , especially if dim(V) << dim(W).
If Eve is able to get ciphertexts and the corresponding plaintexts (for example by a chosen
ciphertext attack) she can calculate elements of the used subspace V . Assume that she
knows c = (w∗, v) and the corresponding plaintext p then she gets the element w ∈ V by
calculating p+ v = w and hence she knows an element of V . In the worst case scenario she gets
t ciphertexts and corresponding plaintexts and hence she is able to calculate t elements of V . If
these t elements form a basis for V , she is able to encrypt each message which is further send
by Alice and Bob using V .
In a chosen plaintext attack Eve gets to chosen plaintexts the corresponding ciphertexts and
hence also pairs of c = (w∗, v) with the corresponding plaintext p. With these pairs she is also
able, as above, to calculate elements w in V , with p+ v = w. If she gets t independent different
elements of V she gets a basis of V and hence she is able to encrypt each message which is
further send by Alice and Bob using V .
Therefore, Alice and Bob should change the subspace V of dimension t after transmitting t
ciphertexts to avoid chosen plaintext and chosen ciphertext attacks.

Example 2.1.5. The calculations in Maple 16 for this example are given in Appendix C.1.
We assume that Bob wants to send a message to Alice. Therefore, Alice and Bob agree privately
on the real inner product space R6 and a subspace V of dimension 3, which is given by the basis
elements

b1 :=



66
20
−34
−21
−50
−79

 , b2 :=



−36
−7
−62
−56
30
−71

 and b3 :=



−41
16
−90
−8
62
28

 .

For encryption Bob calculates also a basis B⊥ for the orthogonal complement V ⊥ to V . This is

B⊥ := (u⊥1 , u
⊥
2 , u

⊥
3) :=





67528

61217
−72236

61217
−1433

61217

0
1
0


,



129349

61217
−362352

61217
−208597

122434

0
0
1


,



46287

61217
−191417

61217
−121115

122434

1
0
0




.

With the knowledge of b1, b2 and b3 Alice is able to calculate her decryption key, which is an
orthonormal basis G = {e1, e2, e3} for the subspace V . For this she uses the Gram-Schmidt

66

2.1. Inner product spaces and a private key cryptosystem (Protocol 1)

procedure and a normalization (see for instance[Atk89]). Thus, she gets

e1 :=



33
√

15094

7547

10
√

15094

7547

−17
√

15094

7547

−21
√

15094

15094

−25
√

15094

7547

−79
√

15094

15094



, e2 :=



−144211
√

12849748610

32124371525

−101599
√

12849748610

96373114575

−25667
√

12849748610

6424874305

−742847
√

12849748610

192746229150

69667
√

12849748610

19274622915

−228797
√

12849748610

64248743050


and

e3 :=



1141824503
√

1211483474194866265

6057417370974331325

5968746002
√

1211483474194866265

18172252112922993975

−830820734
√

1211483474194866265

1211483474194866265

3745334828
√

1211483474194866265

18172252112922993975

594555334
√

1211483474194866265

3634450422584598795

2286429878
√

1211483474194866265

6057417370974331325



.

Alice decryption key is the orthonormal basis G = {e1, e2, e3}.

Next, we take a closer look at the encryption procedure. Bob’s plaintext is p =



3
18
25
16
20
15

 . He

chooses w ∈ V as w = 3b1 − 6b2 + 7b3 =



127
214
−360
217
104
385

 , hence it is v = w − p =



124
196
−385
201
84
370

 . In

67

Chapter 2. Inner product spaces and cryptography

addition he calculates w∗ as

w∗ = w + (13u⊥1 − 65u⊥2 + 5u⊥3) =



476173

61217
34757165

61217
−15580134

61217

222
117
320


.

He sends the ciphertext (w∗, v) to Alice.
For decryption, Alice uses her decryption key G = {e1, e2, e3} and the Closest Vector Theorem
to calculate

U = 〈w∗, e1〉e1 + 〈w∗, e2〉e2 + 〈w∗, e3〉e3

and get P = U − v =



3
18
25
16
20
15

, which is exactly the plaintext p from Bob.

2.2. Inner product spaces and a challenge and response protocol
(Protocol 2)

We use the idea behind the CFRZ-scheme from the paper [FMR13] to develop Protocol 2,
the CV-challenge and response protocol. More precisely this is a symmetric key authentication
protocol (see for example [BBFT10] or [BNS10, Section 18.3]).

First we start with a general outline of this challenge and response system. The structure is
adapted on a model which is now used for most password and password back-up schemes, see
[BBFT10, p. 6]. Afterwards we make suggestions for possible challenges and give a security
analysis.

General outline of this symmetric key authentication protocol:

In this variation each prover is assigned to a subspace V of a real inner product space W . Due
to this, the common shared secret between the prover and the verifier is the tuple (P, V) where
P is a standard password for the prover and V is the associated challenge space.
This is a symmetric key authentication protocol, thus, both the prover and verifier use a single
common private key within the authentication process, which is here V .

1. The prover and verifier communicate directly, either face-to-face or by a public key method,
to setup a common shared secret (P, V), with P a standard password and V the chal-
lenge subspace of a real inner product space W . As above, in the previous section, it is
t := dim(V) < dim(W) =: m. Each prover’s challenge subspace is unique to that

68

2.2. Inner product spaces and a challenge and response protocol (Protocol 2)

prover. The password is chosen by the prover while the challenge subspace is randomly
chosen.

2. The prover presents the password to the verifier. The verifier presents a “question” (see
possible challenges for the prover below). The assumption is that this “question” is difficult
in the sense that it is infeasible to answer if the subspace V is unknown. This is repeated a
finite number of times. If all answers are correct the prover (and the password) is verified.

3. The cryptographic protocol is then repeated from the viewpoint of the prover, authenti-
cating the verifier to the prover.

We give examples for questions which are very unlikely to answer correctly if the challenge sub-
space is unknown.

Possible challenges for the prover:

1. How long is the “line” between ` ≥ 3 associated vectors v1, v2, . . . , v` ∈ V given the vectors
v∗1, v

∗
2, . . . , v

∗
` ∈W \ V ? That means, calculate

R :=

`−1∑
i=1

‖vi − vi+1‖+ ‖v1 − v`‖,

whereby ‖ · ‖ denotes the euclidean norm in W . The prover sends R as response to the
verifier.
In general the “line” between the elements v1, v2, . . . , v` ∈ V is of a different length than the
“line” between the associated vectors v∗1, v

∗
2, . . . , v

∗
` ∈W \V . The verifier can determine the

computer accuracy for the response, for example he can ask for 12 digits of the “length”.
Such a situation is visualized in Figure 2.2, that is, given the elements v∗1, v

∗
2 and v∗3 it is

asked after the length of the blue dotted line.

v2

v∗2

V

W

v1

v∗1

v3

v∗3

Figure 2.2.: Visualization of a situation in a challenge and response system with W = R3 and
V a two dimensional subspace, visualized by a yellow area

69

Chapter 2. Inner product spaces and cryptography

2. What is the sum of the entries of the associated vector v ∈ V given v∗ ∈ W \ V ? That
means the verifier sends v∗ to the prover, the prover calculates v = (v1, v2, . . . , vt) ∈ V
with the help of the Closest Vector Theorem and

R :=
t∑
i=1

vi.

The result R is the response from the prover for the verifier.

The Protocol 2 is summarized in Table 2.2 (page 71).

Security 2.2.1. For security analysis we assume that an adversary or eavesdropper has access
to the encrypted form of the transmission but is passive in that the adversary will not change
any transmissions.
An eavesdropper, Eve, gets elements v∗1, v

∗
2, . . . , v

∗
` ∈ W \ V , as mentioned above (see Secu-

rity 2.1.4) she cannot get the subspace V , because there are infinitely many subspaces of di-
mension V , which do not contain the element w∗i ∈ W \ V , 1 ≤ i ≤ `, and are candidates for
V , especially if dim(V) << dim(W). As response she gets a number which is the length of the
“line” between the associated elements v1, v2, . . . , v` ∈ V to v∗1, v

∗
2, . . . , v

∗
` ∈ W \ V . This gives

also no hint for the subspace V . In the second variation for the challenges it is asks after the
sum of entries of a vector v ∈ V associated to v∗ ∈ W \ V . The response gives not enough
information for v and for the subspace V if only v∗ ∈W \ V is known.
There are infinitely many numbers of possible challenges of kind 1. and 2., see above, thus no
challenge is used twice by the verifier. Therefore, replay attacks, in which an adversary records
a communication session and replays parts of the session or the whole session ([MvOV97]), is
avoided.

Example 2.2.2. An example for one challenge and the corresponding response together with
the Maple-Code can be found in Appendix C.2.

It is possible to get a two-way authentication with this challenge and response system. That
means the prover authenticates the verifier in the time where the verifier authenticates the prover.
For this the prover and verifier start as above and agree on the common shared secret (P, V) with
V the challenge space of a real inner product space W also with t := dim(V) < dim(W) =: m.
Before the verifier gives challenges to the prover the prover transmits a distance to the verifier
in which the length of the “line” must be (or respectively the sum of the entries of an element
in V if we are in case 2. for the challenges), that means L1 and L2 ∈ R are given to the verifier.
The verifier chooses vi ∈ V , such that the expected response from the prover is between R1

and R2 and sends the corresponding elements v∗i ∈ W \ V to the prover. The prover calculates
the exact response R (up to a given computational accuracy) and sends it to the verifier. It is
very unlikely that a person is able to give elements v∗i as challenges to the prover, such that the
calculated response R lies in the expected range, that is, L1 ≤ R ≤ L2.

70

2.2. Inner product spaces and a challenge and response protocol (Protocol 2)

Table 2.2.: Summary of Protocol 2: CV-challenge and response protocol

Private Parameters

Subspace V ⊂W , with dim(V) = t < m, of a real inner product space W , with dim(W) = m,
and a common password P . The shared secret is (P, V).

Verifier Prover

Calculate orthogonal complement V ⊥ to V and
a basis

B⊥ = {u⊥1 , u⊥2 , . . . , u⊥m−t}

for V ⊥.

Calculate orthonormal basis

G = {e1, e2, . . . , et}

for V .

Present the password P to the verifier
P←−−−−−−−−−−−−−−−

Take challenge space V corresponding to pass-
word P , more precisely the calculated orthogo-
nal basis B⊥.
Choose elements v1, v2, . . . , v` ∈ V with
` ≥ 3 and calculate the associated elements
v∗1, v

∗
2, . . . , v

∗
` ∈W \ V .

Compute v∗i ∈W \ V , 1 ≤ i ≤ `:

v∗i = vi︸︷︷︸
∈ V

+ (αi1u
⊥
1 + αi2u

⊥
2 + · · ·+ αim−tu

⊥
m−t)︸ ︷︷ ︸

=: v⊥ ∈ V ⊥

,

αij ∈ R and at least one αij 6= 0, 1 ≤ j ≤ m− t.
Send v∗1, v

∗
2, . . . , v

∗
` as challenge to the prover.

Challenge: v∗1 ,v
∗
2 ,...,v

∗
`−−−−−−−−−−−−−−−−−−−→

Calculate

R′ :=

`−1∑
i=1

‖vi − vi+1‖+ ‖v1 − v`‖.

Compute

vi = 〈v∗i , e1〉e1 + 〈v∗i , e2〉e2 + · · ·+ 〈v∗i , et〉et

for each v∗i , 1 ≤ i ≤ `.

Calculate the response R and send it to
the verifier, it is

R :=

`−1∑
i=1

‖vi − vi+1‖+ ‖v1 − v`‖.

Response: R←−−−−−−−−−−−−−−−−−−
Proof if R′ = R.

71

Chapter 3

A group theoretical ElGamal cryptosystem
based on a semidirect product of groups

In this chapter Protocol 3, a group theoretical ElGamal cryptosystem, is introduced, which
is based on semidirect products of groups. It extends the key exchange protocol based on
a semidirect product of (semi)groups introduced in [HKKS13] by M. Habeeb, D. Kahrobaei,
C. Koupparis and V. Shpilrain, also called HKKS-key exchange protocol or shorter HKKS-
scheme. We also explain a proposal for a signature protocol, which is Protocol 4. These
cryptographic protocols are published in [Mol15].

There is an ongoing research about the HKKS-scheme with linear algebra attacks and researches
about suitable platforms which also affects the cryptosystem (Protocol 3) and the signature
protocol (Protocol 4). An overview of this research will be given.

We start with the definition of a semidirect product and a recall of the HKKS-scheme. It follows
the introduction of Protocol 3, Protocol 4 and an overview about ongoing research of the
HKKS-scheme closes this chapter. For this chapter we are orientated on [HKKS13] and [Mol15].

Definition 3.0.1. [Rot95]
Let G and H be two groups, let Aut(G) be the group of automorphisms of G and let
ρ : H → Aut(G) be a homomorphism. Then the semidirect product of G and H is the set

Γ = Goρ H = {(g, h) | g ∈ G, h ∈ H}

with the group operation given by

(g, h) · (g′, h′) = (gρ(h
′) · g′, h · h′).

Here gρ(h
′) denotes the image of g under the automorphism ρ(h′).

One special case of the semidirect product construction is where the group H is a subgroup
of the group Aut(G). If H = Aut(G), then the corresponding semidirect product is called the
holomorph of the group G. Thus, the holomorph of G, usually denoted by Hol(G), is the set

Hol(G) = {(g, φ) | g ∈ G,φ ∈ Aut(G)}

with the group operation given by

(g, φ) · (g′, φ′) = (φ′(g) · g′, φ · φ′).

A product φ · φ′ of two homomorphisms means that φ is applied first. It is often more practical
to use a subgroup of Aut(G) in this construction, as it is done in [HKKS13, Section 3], where a
key exchange protocol is described, that uses (as the platform) an extension of a group G by a
cyclic group of automorphisms. This key exchange is described in more details below.

73

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

Remark 3.0.2. This construction can also be used if G is not necessarily a group, but just a
semigroup, and/or if endomorphisms of G, that are not necessarily automorphisms of G, are
considered. Then the result will be a semigroup.

Now, we describe the key exchange protocol based on a semidirect product of (semi)groups by
automorphisms from M. Habeeb, D. Kahrobaei, C. Koupparis and V. Shpilrain (see [HKKS13]).

Alice and Bob use a group (or semigroup)G and they can use just a cyclic subgroupH (or a cyclic
subsemigroup) of the group Aut(G) (respectively, of the semigroup End(G) of endomorphisms)
instead of the whole group of automorphisms of G.
Let G be a (semi)group. An element g ∈ G as well as an arbitrary automorphism φ ∈ Aut(G)
(or an arbitrary endomorphism φ ∈ End(G)) are chosen and published.
Both, Alice and Bob, are going to work with elements of the form (g, φr), where g ∈ G and
r ∈ N. Note that two elements of this form are multiplied as follows:

(g, φr) · (h, φs) =
(
φs(g) · h, φr+s

)
.

1. Alice chooses a private number n ∈ N;
she computes (g, φ)n = (φn−1(g)·φn−2(g) · · ·φ(g)·g, φn) and sends only the first component,
namely a := φn−1(g) · φn−2(g) · · ·φ(g) · g, to Bob.

2. Bob chooses a private number k ∈ N;
he computes (g, φ)k = (φk−1(g)·φk−2(g) · · ·φ(g)·g, φk) and sends only the first component,
namely b := φk−1(g) · φk−2(g) · · ·φ(g) · g, to Alice.

3. Alice computes (b, x) · (a, φn) = (φn(b) · a, x · φn).
Her key is now KA := φn(b) · a. Note that she does not actually “compute” x · φn because
she does not know the automorphism x = φk; recall that it was not transmitted to her,
but she does not need it to compute KA.

4. Bob computes (a, y) ·
(
b, φk

)
=
(
φk(a) · b, y · φk

)
.

His key is now KB := φk(a) · b. Again, Bob does not actually “compute” y ·φk because he
does not know the automorphism y = φn.

5. Since (b, x) · (a, φn) = (a, y) ·
(
b, φk

)
= (g, φ)n+k, it is KA = KB = K, the shared secret

key.

Remark 3.0.3. The shared secret key is K = KB = KA, since

KB = φk(a) · b
= φk(φn−1(g) · φn−2(g) · · ·φ(g) · g) · φk−1(g) · φk−2(g) · · ·φ(g) · g
= φk+n−1(g) · φk+n−2(g) · · ·φk+1(g) · φk(g) · φk−1(g) · φk−2(g) · · ·φ(g) · g
= φn(φk−1(g) · φk−2(g) · · ·φ(g) · g) · φn−1(g) · φn−2(g) · · ·φ(g) · g
= φn(b) · a
= KA.

Remark 3.0.4. In contrast to the standard Diffie-Hellman key exchange (see Section 1.2.1),
the correctness here is based on the equality hn ·hk = hk ·hn = hn+k rather than on the equality
(hn)k =

(
hk
)n

= hnk. In the standard Diffie-Hellman set up, the trick would not work, because,
if the shared key K was just the product of two openly transmitted elements, then anybody,
including the eavesdropper, could compute K.

74

3.1. ElGamal like public key cryptosystem (Protocol 3)

Remark 3.0.5. The transmitted elements are products of n or k, respectively, elements of a
(semi)group G. To compute powers of an element, Alice and Bob can use the “square-and-
multiply” method (see for instance [HPS08]), as it is also done in the standard Diffie-Hellman
key exchange. The cost of applying an automorphism φ to an element g ∈ G, and also of
computing powers of φ depends on the platform (semi)group G and automorphism φ, which are
used.
Let p be a prime number. We denote the field with p elements with Fp and F∗p denotes the
multiplicative subgroup. Here Mat(3,F7[A5]) means the set of 3 × 3 matrices with entries in
F7[A5], whereby F7 is the field with seven elements and A5 is the group of even permutations
on five symbols.
For G = F∗p (here more precisely F∗p = (Z/pZ)∗) with φ(h) = h` (as in Example 3.1.2), and
G = Mat(3,F7[A5]) with φH(L) = H−1LH (as for the signature in Section 3.2) M. Habbeb,
D. Kahrobaei, C. Koupparis and V. Shpilrain mention in [HKKS13] that the cost of computing
(g, φ)n is O(log n), just as in the standard Diffie-Hellman protocol.

3.1. ElGamal like public key cryptosystem (Protocol 3)

Protocol 3, a public key cryptosystem, is an ElGamal like cryptosystem and it is based on a
semidirect product of groups. After the general description of this cryptosystem we give two
examples for possible platform groups and discuss their security. For this we are orientated on
[Mol15].

Alice and Bob can use a group G and a cyclic subgroup H of the group Aut(G) instead of the
whole group of automorphisms of G as in the key exchange protocol.

1. Alice and Bob agree on an element g ∈ G and an automorphism φ ∈ H ⊆ Aut(G) or Alice
determines g and φ as public parameters, respectively. Whereby, Alice has to take care,
that the base element (g, φ) has a large order, otherwise the system is susceptible to brute
force attacks.

2. Alice chooses a random natural number n as her secret key.
She computes (g, φ)n = (φn−1(g)·φn−2(g) · · ·φ(g)·g, φn) and publishes the first component
a := φn−1(g) · φn−2(g) · · ·φ(g) · g only.

3. Bob wants to send the message m ∈ G to Alice. He picks a random ephemeral key k ∈ N.
Therefore, he has to calculate two elements.
He computes (g, φ)k = (φk−1(g) · φk−2(g) · · ·φ(g) · g, φk), its first component is named
c1 := φk−1(g) · φk−2(g) · · ·φ(g) · g. Then he computes (a, y) · (c1, φk) = (φk(a) · c1, y · φk).
He sets the first component b := φk(a) · c1. Note that he does not actually “compute”
y · φk, because he does not know the automorphism y = φn, but he does not need it to
compute b. He computes c2 := b ·m = φk(a) · c1 ·m and sends the ciphertext (c1, c2) to
Alice.

4. Alice computes (c1, x)·(a, φn) = (φn(c1)·a, x·φn), named the first componentK := φn(c1)·a
and recovers the message by m = K−1 · c2 = (φn(c1) · a)−1 · c2.
Note that she does not “compute” x · φn because she does not know x = φk and does not
need it to compute K.

Alice gets the message m, because from

K−1 · c2 = (φn(c1) · a)−1 · c2 = (φn(c1) · a)−1 · φk(a) · c1 ·m

75

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

with
φn(c1) · a = φk(a) · c1,

which follows from the same calculations as in Remark 3.0.3, it is

K−1 · c2 = (φn(c1) · a)−1 · c2
= (φn(c1) · a)−1 · φk(a) · c1 ·m
= (φn(c1) · a)−1 · φn(c1) · a ·m
= m.

Protocol 3, an ElGamal like cryptosystem, is summarized in Table 3.1 (page 76).

Table 3.1.: Summary of Protocol 3: Group theoretical ElGamal like public key cryptosystem
using semidirect products

Public Parameters

Group G and cyclic subgroup H of the group Aut(G),
g ∈ G and φ ∈ H ⊆ Aut(G).

Alice Bob

Key Creation

Choose private key n ∈ N.
Compute
(a, φn) := (g, φ)n

with a := φn−1(g) · φn−2(g) · · ·φ(g) · g.
Publish a.

Encryption

Choose plaintext m ∈ G.
Choose random ephemeral key k ∈ N.
Compute
(c1, φ

k) := (g, φ)k

with c1 := φk−1(g) · φk−2(g) · · ·φ(g) · g,

(a, y) · (c1, φk) = (φk(a) · c1︸ ︷︷ ︸
=:b

, y · φk)

and
c2 := b ·m = φk(a) · c1 ·m.
Send ciphertext (c1, c2) to Alice.
(c1,c2)←−−−−−−−−−−−−−−−−−−

Decryption

Compute
(c1, x) · (a, φn) = (φn(c1) · a︸ ︷︷ ︸

=:K

, x · φn)

and recover
m = K−1 · c2.

Remark 3.1.1. Alice computes a large power of the element (g, φ), but she does not transmit
the whole result, she only publishes the part a of it. Bob also computes a large power of the
element (g, φ) and only the first part c1 is a part of his ciphertext. In addition, he computes a

76

3.1. ElGamal like public key cryptosystem (Protocol 3)

product of two elements from G and only the first part multiplied by the message is the second
part of his ciphertext.

It is important that different random ephemeral keys k are used to encrypt different messages.
As it is for the standard ElGamal cryptosystem (see [MvOV97]). Suppose that Bob uses the
same ephemeral key k to encrypt two messages m1 and m2 and assume that m1 is known. The
ciphertext pairs are (c1, c2) and (c′1, c

′
2), with c1 = c′1, c2 = φk(a) · c1 ·m1 and c′2 = φk(a) · c′1 ·m2.

Eve only has to calculate m1 · (c2)−1 · c′2 to get the message m2.

Another non-commutative generalization of the ElGamal key exchange which is based on the
complexity differences between various group-theoretic decision problems and uses polycyclic
groups can be found in [KK06].

Example 3.1.2. Following the example in [HKKS13, Chapter 5] for the key exchange presented
there, we now use the multiplicative group F∗p (here more precisely F∗p = (Z/pZ)∗) as the platform
group G for illustration purposes.
Let G be the multiplicative group F∗p with p a prime number.
For the endomorphism φ of the group F∗p a number ` ∈ N, ` > 1, is selected, such that

φ(h) = h` for every h ∈ F∗p.

If ` is relatively prime to p− 1, then φ is actually an automorphism.
For an element g ∈ F∗p and n ∈ N it is

(g, φ)n = (φn−1(g) · φn−2(g) · · ·φ(g) · g, φn)

with

φn−1(g) · φn−2(g) · · ·φ(g) · g = g`
n−1 · g`n−2 · · · g` · g

= g`
n−1+`n−2+···+`+1

= g
`n−1
`−1 ,

since the finite geometric sum is used and

φr(g) = g`
r

for all r ∈ N.

An example is performed in Table 3.2 (page 78).

77

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

Table 3.2.: Example with G = F∗p.

Public Parameters

G = F∗p with p a prime number, φ(h) = h` ∀h ∈ F∗p
with qualified ` ∈ N, ` > 1, and g ∈ F∗p.

Alice Bob

Key Creation

Choose private key n ∈ N.
Compute
(a, φn) := (g, φ)n

with a := φn−1(g) · φn−2(g) · · ·φ(g) · g = g
`n−1
`−1 .

Publish a.

Encryption

Choose plaintext m ∈ F∗p.
Choose random ephemeral key k ∈ N.
Compute
(c1, φ

k) := (g, φ)k

with c1 := φk−1(g) · φk−2(g) · · ·φ(g) · g,

(a, y) · (c1, φk) = (φk(a) · c1︸ ︷︷ ︸
=:b

, y · φk)

and
c2 := b ·m = φk(a) · c1 ·m.

Send c1 = g
`k−1
`−1 and

c2 = φk(a) · c1 ·m

= φk
(
g
`n−1
`−1

)
· g

`k−1
`−1 ·m

=
(
g
`n−1
`−1

)`k
· g

`k−1
`−1 ·m

= g
`k+n−1
`−1 ·m

as ciphertext (c1, c2) to Alice.
(c1,c2)←−−−−−−−−−−−−−−−−−−

Decryption

Compute
(c1, x) · (a, φn) = (φn(c1) · a︸ ︷︷ ︸

=:K

, x · φn),

it is

K =

(
φn
(
g
`k−1
`−1

)
· g

`n−1
`−1

)
=

((
g
`k−1
`−1

)`n
· g

`n−1
`−1

)
= g

`k+n−1
`−1 .

Recover
m = K−1 · c2

= g
−`k+n+1

`−1 · g
`k+n−1
`−1 ·m.

Security 3.1.3. We now take a closer look at the security of the ElGamal like cryptosystem

78

3.1. ElGamal like public key cryptosystem (Protocol 3)

with the platform group G = F∗p. If the eavesdropper Eve wants to get the message m by
calculation

b−1 · c2 = b−1 · g
`k+n−1
`−1︸ ︷︷ ︸
=b

·m = m

she has to know the “key” b.
On the one hand she can compute b in two ways by solving the discrete logarithm problem.
First she can compute b = φn(c1) · a. For this she needs the private key n from Alice. As an
alternative she computes b = φk(a) ·c1. For this she has to get the ephemeral key k from Bob. In
both ways she has to solve the discrete logarithm problem twice. For example, if she wants

to get the private ephemeral key k from Bob she first has to recover `k−1
`−1 from c1 := g

`k−1
`−1 , and

then she has to recover k from `k, because ` is known since φ is published.
On the other hand she can recover b by the analog of what is called the Diffie-Hellman prob-

lem, so she should recover b := g
`k+n−1
`−1 from the triple

(
g, c1 := g

`k−1
`−1 , a := g

`n−1
`−1

)
. This is

exactly the Diffie-Hellman problem, because Eve knows the elements g and `, which are public

parameters, and it is equivalent to recover g`
n+k

from the triple
(
g, g`

n
, g`

k
)

.

Thus, if the group G is the multiplicative group F∗p, with p a prime number, then this crypto-
graphic protocol is not really different from the standard ElGamal cryptosystem, described in
Section 1.2.2.
Therefore, the standard ElGamal cryptosystem is a special case of this public key cryptosystem,
hence, breaking this cryptosystem would imply breaking the ElGamal cryptosystem.

Example 3.1.4. We now give an example for the public key cryptosystem with a non-commutative
group. Choose a non-commutative group G, not a semigroup, because the inverse of an element
g−k−nhk+n, with g, h ∈ G, is needed. For example G = GL(r,K), with r ∈ N, r > 1, and a field
K, the general linear group of r × r matrices with entries from a field.
Use an extension of the group G by an inner automorphism ρH which is conjugated by a matrix
H ∈ GL(r,K). Alice and Bob can use any non-commutative group G if ρH is selected to be a
non-trivial inner automorphism, that is, a conjugation by an element which is not in the center
of G, where the center of GL(r,K) is the set defined as

C(GL(r,K)) = {α · I | α ∈ K \ {0} and I the identity matrix in GL(r,K)}.

For any Matrix M ∈ G and for any k ∈ N, k > 0, it is

ρH(M) = H−1MH and ρkH(M) = H−kMHk.

For s ∈ N, s > 0, it is

(M,ρH)s = (H−(s−1)MHs−1 ·H−(s−2)MHs−2 · · ·H−1MH ·M,ρsH)

= (H−s(HM)s, ρsH).

An example is performed in Table 3.3 (page 80).

79

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

Table 3.3.: Example with G = GL(r,K)

Public Parameters

Group G = GL(r,K), r ∈ N and r > 1, a matrix H ∈ G, therefore the automorphism is ρH ,
and a matrix M ∈ G. Take care that H and HM do not commute.

Alice Bob

Key Creation

Choose private key n ∈ N.
Compute
(a, ρnH) := (M,ρH)n

with a := ρn−1H (M) · ρn−2H (M) · · · ρH(M) ·M
= H−n(HM)n.

Publish a.

Encryption

Choose plaintext m ∈ G.
Choose random ephemeral key k ∈ N.
Compute
(c1, ρ

k
H) := (M,ρH)k with

c1 := ρk−1H (M) · ρk−2H (M) · · · ρH(M) ·M ,

(a, y) · (c1, ρkH) = (ρkH(a) · c1︸ ︷︷ ︸
=:b

, y · ρkH)

and
c2 := b ·m = ρkH(a) · c1 ·m.
Send c1 = H−k(HM)k and
c2 = ρkH(a) · c1 ·m

= H−kH−n(HM)nHk ·H−k(HM)k ·m
= H−k−n(HM)n+k ·m

as ciphertext (c1, c2) to Alice.
(c1,c2)←−−−−−−−−−−−−−−−−−−

Decryption

Compute
(c1, x) · (a, ρnH) = (ρnH(c1) · a︸ ︷︷ ︸

=:K

, x · ρnH),

it is
K = ρnH(c1) · a

= H−nH−k(HM)kHn ·H−n(HM)n

= H−n−k(HM)k+n.
Recover
m = K−1 · c2

= (H−n−k(HM)k+n)−1·H−k−n(HM)n+k·m.

Remark 3.1.5. If the matrices H and HM commute, Eve can use c1 and c2 to get the element

V := c−11 · c2 = (HM)−kHk ·H−k−n(HM)n+k ·m = H−n(HM)n ·m.

The public key is the element a = H−n(HM)n and hence everyone could compute m in the

80

3.2. Signature with a semigroup of 3× 3 matrices over F7[A5] (Protocol 4)

following way

a−1 · V = a−1c−11 · c2
= (H−n(HM)n)−1H−n(HM)n ·m = m.

The inverse of a and c1 exists because G is a group.
To prevent this Alice has to take care that H and HM do not commute.

Security 3.1.6. We look at the security of the public key cryptosystem with the platform group
G = GL(r,K), r ∈ N. As in Security 3.1.3 with the platform group G = F∗p the eavesdropper

Eve can get the message m if she is aware of the “key” b, it is b = H−(n+k)(HM)n+k. She then
calculates

b−1 · c2 = b−1 ·H−(n+k)(HM)n+k︸ ︷︷ ︸
=b

·m = m.

For example she can get b by computing b = ρkH(a) · c1. Therefore, she has to try to re-
cover the ephemeral key k from Bob, that means, she has to recover k from the element
c1 := H−k(HM)k = g−khk (with g := H and h := HM). In the special case with g = I
it is the discrete logarithm problem for matrices in GL(r,K), which is recover k from hk. It
is known (see [MW97]) that a probabilistic polynomial-time reduction of the discrete logarithm
problem exists in the general linear group GL(r, q) (r × r matrices with entries of a finite field
with q elements) to the discrete logarithm problem in some small extension fields of Fq (a finite
field of order q, with q = ps where p is the characteristic of Fq). Statistical experiments show
that for a random matrix M , matrices Mn are indistinguishable from random (see [HKKS13]).
Furthermore, the security assumption is that it is computationally hard to reclaim the “key”
b = H−(n+k)(HM)n+k from the quadruple(

H,M, a := H−n(HM)n, c1 := H−k(HM)k
)
.

Therefore, Alice has to take care that the matrices H and HM do not commute (see Re-
mark 3.1.5).
This example was also given in the work [Mol15] but in the time under review the paper [KMU14]
by M. Kreuzer A. D. Myasnikov and A. Ushakov appeared in which they give a linear algebra
attack on the HKKS-key exchange protocol with G = Mat(3,F7[A5]), which was an example
in [HKKS13]. We will explain this in more details in Section 3.3 and also describe a linear
decomposition attack by V. Roman’kov.

3.2. Signature with a semigroup of 3× 3 matrices over F7[A5]
(Protocol 4)

In this section an idea for a signature scheme, Protocol 4, inspired by the example of the key
exchange protocol with a semigroup as platform group (see [HKKS13, Chapter 6]) is described
and a security analysis is given. For this we are orientated on [Mol15].
In [KK12] D. Kahrobaei and C. Koupparis give a survey about several digital signature proposals
using non-commutative groups and rings.

Let G be a non-commutative semigroup which has non-central invertible elements, where ρH
is a non-identical inner automorphism, that is, a conjugation by an element H ∈ G, such that
H−1gH 6= g for at least some g ∈ G.

81

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

1. Alice chooses an invertible H ∈ G for the automorphism ρH and a qualified hash function
h, with

h : {possible messages} −→ {non-invertible matrices in G}

(see Security 3.2.3 (II) and (III)). This is published.

2. Alice picks n ∈ N and an element M ∈ G private.
She computes (M,ρH)n = (ρn−1H (M) · ρn−2H (M) · · · ρH(M) ·M,ρnH) and publishes only the
first component a := ρn−1H (M) ·ρn−2H (M) · · · ρH(M) ·M . Alice has to take care that H and
HM do not commute (see Remark 3.2.2) and that her element a has no inverse in G (see
Security 3.2.3 (I)).

3. To sign the message m she picks an ephemeral key k ∈ N, and computes
(M,ρH)k = (ρk−1H (M) · ρk−2H (M) · · · ρH(M) · M,ρkH) with the first component named

b := ρk−1H (M) ·ρk−2H (M) · · · ρH(M) ·M . With the help of the hash function h she computes
the element Z := h(m) · ρnH(b). Her signature is the quadruple (k, b, Z,m).

4. Before Bob can prove the signature he has to calculate the element
(a, x) · (b, ρkH) = (ρkH(a) · b, x · ρkH). The first component is named E := ρkH(a) · b. Note
that he does not actually “compute” x · ρkH because he does not know the automorphism
x = ρnH , but he does not need it to compute E. Bob is aware of the hash function h and
he proves the signature with the calculation Z · a = h(m) · E.

It is

Z · a = h(m) · ρnH(b) · a
= h(m) · ρkH(a) · b
= h(m) · E,

because ρnH(b) · a = ρkH(a) · b, which follows from the same calculations as in Remark 3.0.3.
Now, let G be the semigroup of 3 × 3 matrices over the group ring F7[A5], where A5 is the
alternating group on 5 elements, that is, G = Mat(3,F7[A5]). We can take F∗7 = (Z/7Z)∗. The
inner automorphism ρH is a conjugation by a matrix H ∈ GL(3,F7[A5]). It is

ρH(L) = H−1LH and ρrH(L) = H−rLHr,

for any matrix L ∈ G and any r ∈ N, r > 0.

Remark 3.2.1. The semigroup of 3 × 3 matrices over the group ring F7[A5] is used, because
the multiplication can be calculated very efficient in this semigroup and it provides a large key
space (see [KKS13]).

Note that the element a has no inverse in G if M has no inverse in G.
A technique to obtain an invertible matrix H is presented in [HKKS13, Chapter 8]. From there
it is also known that the exponents n and k should be of the magnitude of 2t, where t is the
security parameter, to make a brute force search (for n and k) infeasible.

Remark 3.2.2. Alice has to take care that H and HM do not commute.
Assume that H and HM commute, it is

Z = h(m) ·H−n−k(HM)kHn

= h(m) ·H−k(HM)k

= h(m) · b.

82

3.2. Signature with a semigroup of 3× 3 matrices over F7[A5] (Protocol 4)

Hence, it adds up to calculate a new b′ if an eavesdropper, Eve, wants a new Z ′ to impersonate
herself as Alice. This is discussed in the Security 3.2.3 under (I) 1.

Protocol 4, the signature with G a semigroup of 3× 3 matrices over the group ring F7[A5], is
summarized in Table 3.4 (page 83).

Table 3.4.: Summary of Protocol 4: Signature with a semigroup of 3× 3 matrices over F7[A5]

Public Parameters

G the semigroup of 3× 3 matrices with entries in F7[A5], an invertible H ∈ G for
the automorphism ρH and a qualified hash function h.

Alice Bob

Choose n ∈ N and M ∈ G privately.
Compute
(a, ρnH) := (M,ρH)n

with a := ρn−1H (M) · ρn−2H (M) · · · ρH(M) ·M
= H−n(HM)n.

Take care that a−1 6∈ G and that H and HM
do not commute.

Public Key: a

Choose message m and compute value h(m) ∈ G.
Pick an ephemeral key k and compute
(b, ρkH) := (M,ρH)k

with b := ρk−1H (M) · ρk−2H (M) · · · ρH(M) ·M
= H−k(HM)k.

Compute
Z := h(m) · ρnH(b) = h(m) ·H−n−k(HM)kHn.

Signature: (k, b, Z,m)

Compute

(a, x) · (b, ρkH) = (ρkH(a) · b︸ ︷︷ ︸
=:E

, x · ρkH),

it is E = H−(k+n)(HM)n+k.
Prove
Z · a = h(m) ·H−n−k(HM)k+n

= h(m) · E.

Security 3.2.3. The eavesdropper, Eve, knows Alice’s public key a = H−n(HM)n. Eve wants
to impersonate herself as Alice, that is, everyone should think that Eve’s new message m′ comes
from Alice. Assume that Eve knows the signature S = (k, b, Z,m).

(I) Eve chooses a new key k′:
She chooses new parameters (k′, b′, Z ′,m′) where m′ is the new message.

1. She has to calculate a new b′.

a) She needs to know the element M ∈ G which is one of Alice’s secrets. She can get

83

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

M from

H−1 · k
√
Hk · b = H−1 · k

√
Hk ·H−k(HM)k

= H−1 · k
√

(HM)k

= M.

The difficulty here is to take the kth root from the element (HM)k. This is a difficult
problem in a finite semigroup of 3× 3 matrices over the group ring F7[A5].
If it was easy to calculate the correct kth root from (HM)k, Eve could calculate the
element b′ = H−k

′
(HM)k

′
.

b) Alternatively she uses a new k′ with the property k′ := k · s, with s ∈ N, s > 1. Now,
it is, with b = H−k(HM)k,

u :=
(
Hk · b

)s
=
(

(HM)k
)s

= (HM)k·s

= (HM)k
′

and it is b′ = H−k
′ · u = H−k

′ · (HM)k
′
. To prevent this, Alice and Bob could agree

that Alice uses only prime numbers for the ephemeral keys k. If Bob gets a
signature with k not a prime number he recognizes that Eve tried such an attack.

c) Suppose, Eve knows several signatures

S1 = (k1, bk1 , Zk1 ,m1) ,

S2 = (k2, bk2 , Zk2 ,m2) ,

...

Su = (ku, bku , Zku ,mu) ,

with pairwise different ephemeral keys ki. She can use the element
bki = H−ki(HM)ki to get

Tki := Hki · bki = (HM)ki .

It is
Tki+kj = Tki · Tkj = (HM)ki+kj .

The new bki+kj is now

bki+kj = H−(ki+kj) · Tki+kj = H−(ki+kj) · (HM)ki+kj .

In general Eve can calculate every bk′ with

k′ =
u∑
i=1

αi · ki, with αi ∈ N ∪ {0}.

If it is claimed that Alice’s private key a has no inverse, then M cannot have an
inverse; hence HM has no inverse. Therefore, αi cannot be a negative number. Thus,
Eve can calculate b′k whereby every new k′ is always greater than the smallest number
ki.

84

3.2. Signature with a semigroup of 3× 3 matrices over F7[A5] (Protocol 4)

A possible counter-measure is that Alice chooses at each new signature a lesser new
ephemeral key than she uses for the previous signature. This leads to the problem,
that Alice can just perform, with her private key n, a finite number of signatures,
which depend on her first ephemeral key k1.

2. After she has a new b′ she needs a new element Z ′ = h(m′) · ρnH(b′). There are two
possibilities:

a) Eve tries to recover n from the public element a = H−n(HM)n. Note that Eve only
knows the element HM if she can take the k-the root of the element (HM)k (see
above 1. a)).
As said in [HKKS13], a special case of this problem, where H = I, is the discrete
logarithm problem for matrices over F7[A5]. This problem is hard; it is addressed
in [KKS13] in more detail.
M. Habeeb, D. Kahrobaei, C. Koupparis and V. Shpilrain also analyze whether
or not any information about the private exponent n is leaked from transmission,
that is, from the fact that Eve knows a = H−n(HN)n. That is the question:
for a random exponent n, how different is the matrix in the first component of
(M,ρH)n = (H−n(HM)n, ρnH) from N , where N is a random matrix? They find
out, that no information about a private exponent n is revealed from the public
element a = H−n(HM)n (see [HKKS13, Chapter 7]).

b) She does not know the secret n, therefore she has to calculate Z ′ in another way. Eve
knows that Bob will verify the signature by the proof of the following equation

Z ′ · a = h(m′) · ρk′H(a) · b′.

She can calculate Z ′ as

Z ′ = h(m′) · ρk′H(a) · b′ · a−1

if the inverse of the element a exists.

Therefore, to prevent an attack (I) from Eve, Alice should assure that her public element a
has no inverse. Hence, she can create the signature only in a semigroup. The element
a = H−n(HM)n has no inverse if the matrix M is not invertible.

(II) Eve uses the same key k:
Eve chooses a new message m′. The elements k and b are the same. She only needs a new
element Z ′. Hence, she calculates

Z ′ = h(m′) · (h(m))−1 · Z
= h(m′) · (h(m))−1 · h(m)ρnH(b)

= h(m′) · ρnH(b).

Therefore, it is very easy for Eve to make everyone believe that her message m′ comes from
Alice. Alice and Bob could take care that every ephemeral k is used only once.

(III) Eve’s information from Z:
We get two situations.

1. Let us first take a look at the situation if she wants to get the private key n with the help

85

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

from Z. Note that the hash function h is public. It is Z = h(m) · ρnH(b) and it follows

A := Hk · (h(m))−1 · Z = Hk · ρnH(b)

= Hk ·H−n−k(HK)kHn

= H−n (HM)k︸ ︷︷ ︸
=:B

Hn.

Eve knows B from Hk · b = Hk ·H−k(HM)k = B and she can get x := Hn if she solves
the conjugations search problem, that is: given two conjugate elements A,B ∈ G, find
a particular element x ∈ G, such that x−1Bx = A. Suppose that she solves this problem
and gets Hn, she then has to solve the discrete logarithm problem for matrices over
F7[A5], namely recover n from H and Hn. This problem is hard (see [KKS13] for more
details).

2. Suppose Eve knows several signatures

S1 = (k1, bk1 , Zk1 ,m1) ,

S2 = (k2, bk2 , Zk2 ,m2) ,

...

Su = (ku, bku , Zku ,mu) ,

with pairwise different ephemeral keys ki.
With Zkj = h(mj) ·H−n−kj (HM)kjHn follows

Xkj := Hkj · (h(mj))
−1Zkj = H−n(HM)kjHn.

With very similar deliberations as in (I) 1. b) and c) we have:

a) Eve chooses a new k′ with the property k′ := ki · s, with s ∈ N, s > 1. It is

Xk′=ki·s := (Xki)
s =

(
H−n(HM)kiHn

)s
= H−n(HM)ki·sHn

= H−n(HM)k
′
Hn.

For this k′ she can get Zk′ , for the signature (k′, bk′ , Zk′ ,m
′), with

Zk′ = h(m′) ·H−k′ ·Xk′

= h(m′) ·H−k′−n(HM)k
′
Hn.

To prevent this, Alice and Bob could agree that Alice uses only prime numbers
for the ephemeral keys k. If Bob gets a signature with k not a prime number he
recognizes that Eve tried such an attack.

b) As above in a) it is

Xkj := Hkj · (h(mj))
−1Zkj = H−n(HM)kjHn.

It follows
Xkj+ki := Xkj ·Xki = H−n(HM)kj+kiHn.

86

3.3. Security and ongoing research about the HKKS-key exchange protocol

The new Zkj+ki for the signature (kj + ki, bkj+ki , Zkj+ki ,m
′) is now

Zkj+ki = h(m′) ·H−(kj+ki) ·Xkj+ki

= h(m′) ·H−(kj+ki)−n(HM)kj+kiHn.

In general Eve can calculate every Zk′ with

k′ =

u∑
i=1

αi · ki, with αi ∈ N ∪ {0}.

If it is claimed that the private key a from Alice has no inverse, then M cannot have
an inverse; hence HM has no inverse. Therefore, αi cannot be a negative number.
Thus, Eve can calculate Z ′k whereby every new k′ is always greater than the smallest
number ki.
A possible counter-measure is that Alice chooses at each new signature a lesser new
ephemeral key than she uses for the previous signature. This leads to the problem,
that with her private key n, Alice can only perform a finite number of signatures
depending on her first ephemeral key k1.

If Eve tries to impersonate herself as Alice with the information from (III) she also needs the
corresponding bk′ , which is discussed in (I) 1.
The counter-measure from Alice against Eve’s attacks (II) and (III) should be, to determine, that
the image of the hash function h is only the non-invertible matrices in the semigroup
G. Hence, Eve does not know the element ρnH(bkj) and therefore she cannot use Xkj for an
attack.

3.3. Security and ongoing research about the HKKS-key exchange
protocol

There is an ongoing research about the HKKS-key exchange protocol, which also affects the
ElGamal like key exchange of Section 3.1. In this section we give an overview of this research.

Paper [KMU14]:
As mentioned above M. Kreuzer, A. D. Maysnikov and A. Ushakov published the paper [KMU14]
in which they describe a linear algebra attack on the HKKS-scheme when the proposed semigroup
G = Mat(3,F7[A5]) is used as it is suggested in [HKKS13, Chapter 6]. This is the semigroup
of 3 × 3 matrices over the group ring F7[A5], where A5 is the alternating group on 5 elements
and F7 is the field with 7 elements (here, more precisely, it is F∗7 = (Z/7Z)∗). In addition they
use an extension of the semigroup G by an inner automorphism ϕH , which is conjugation by a
matrix H ∈ GL(3,F7[A5]).
In their attack, they use an embedding of Mat(3,F7(A5)) into Mat(180,F7) and they are able to
reconstruct the key, which is H−n−k(HM)n+k, without the knowledge of the private exponents
n and k of Alice and Bob, respectively. For this it is sufficient to find two matrices l, r ∈ G
satisfying the following system of matrix equations:

l ·H = H · l (3.1)

r · (HM) = (HM) · r (3.2)

a = lr, (3.3)

87

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

with H and M public parameters and a the public element from Alice. If matrices l and r are
known, which satisfy the equations (3.1)-(3.3), then the shared key is computable as

l · b · r = l ·H−k(HM)k · r
= H−k · l · r · (HM)k

= H−k ·H−n(HM)n · (HM)k = H−k−n(HM)k+n,

with b = H−k(HM)k, the sent element from Bob. M. Kreuzer, A. D. Myasnikov and A. Ushakov
observed that the system (3.1)-(3.3) has at least one solution with l ∈ GL(3,F7[A5]), that means,
with an invertible matrix l = H−n and r = (HM)n. Hence, instead of solving the matrix
equations (3.1)-(3.3) it is sufficient to solve the system

` ·H = H · `
r · (HM) = (HM) · r

`a = r,

and recover the matrix l from the equation ` · l = 1.
They get a system of linear equations over F7 for ` and explain how they are able to find `, for
more details see [KMU14].
Such an attack also violates the ElGamal like cryptosystem as explained in Table 3.3 (page 80).
If H−k−n(HM)k+n is known, then the message m in the ElGamal like cryptosystem is recon-
structible, because

(H−k−n(HM)k+n)−1 · c2 = m.

Thus, this attack should also be possible for Example 3.1.4, which is in more details explained
in Table 3.3 (page 80). The elements which Eve needs to know for such an attack, and hence to
generate H−k−n(HM)k+n, are

H−n(HM)n,

H−k(HM)k,

H and HM,

which are also public in the ElGamal like cryptosystem.
It is important to see, that there is another algorithm that recovers the private key without
solving the principal algorithmic problems on which the security assumptions are based.
Recall, that the security assumptions are the following.

1. It is computationally hard to retrieve the key K = H−n−k(HM)n+k from the quadruple
(H,M,H−k(HM)k, H−n(HM)n). Thus, they have to take care, that H and HM do not
commute, because otherwise K is just a product of H−k(HM)k and H−n(HM)n.

2. It is hard to recover k from H−k(HM)k or n from H−n(HM)n, respectively. A special
case of this problem, where H = I, is the discrete logarithm problem for matrices over
F7[A5], this problem is hard, see [KKS13].

3. For a random exponent n, how different is the matrix of the first component of (M,ϕH)n

from N , where N is a random matrix in Mat(3,F7(A5))? In [HKKS13, Chapter 7] it is
explained, that they are indistinguishable.

4. How different is the final secret key from a random matrix? This is in more details the
question: if n and k are the secret random keys from Alice and Bob how different is the
matrix of the first component of (M,ϕH)k+n from the matrix of the first component of

88

3.3. Security and ongoing research about the HKKS-key exchange protocol

(M,ϕH)q, where q is of the same bit size as n+k. In [HKKS13, Chapter 7] it is explained,
that they are indistinguishable.

Paper [KLS15]:
D. Kahrobaei, H. T. Lam and V. Shpilrain suggest in the paper [KLS15] for the platform for the
HKKS-scheme the semigroup of matrices over a Galois field of characteristic 2, more specifically
over F2127 , thus they reduce the key size and speed up the computation quite a bit. Furthermore,
the automorphism that they use in their paper [KLS15] is not inner, but a composition of an
inner automorphism with the endomorphism that raises each entry of a given matrix to the
power of 4.
If one uses just inner automorphisms and matrices over a field they suggest an extra “tweak” of
the cryptographic protocol to avoid a linear algebra attack as explained in [KMU14].
We explain in short their suggested variations.

1. Let G be the semigroup of 2 × 2 matrices over F2127 . They suggest for F2127 the factor
algebra Z2[x]/〈p(x)〉, with Z2 := Z/2Z and 〈p(x)〉 is the ideal of the polynomial algebra Z2[x]
generated by the irreducible polynomial p(x) = x127 + x63 + 1. Elements of F2127 are
therefore here polynomials of degree at most 126 over Z2. They use an extension of the
semigroup G by endomorphism ϕ, which is a composition of a conjugation by a matrix
H ∈ GL(2,F2127) with the endomorphism ψ that rises each entry of a given matrix to the
power of 4. The composition is such that ψ is applied first, followed by conjugation. Thus,
for any matrix M ∈ G and for any integer k ≥ 1, we have

ϕ(M) = H−1ψ(M)H and

ϕk(M) = H−1ψ(H−1)ψ2(H−1) · · ·ψk−1(H−1)ψk(M)ψk−1(H) · · ·ψ(H)ψ2(H)H.

The rest of the cryptographic protocol stays the same as the HKKS-protocol.

2. If the public automorphism ϕ is just conjugated by a public matrices H, the transmitted
matrices are then H−n(HM)n and H−k(HM)k. Thus, this cryptographic protocol is
vulnerable to linear algebra attacks, if the matrices involved in this cryptographic protocol
are over a field or over a ring that can itself be embedded in a ring of matrices over a field.
The attacker Eve is looking for matrices X and Y , such that

XH = HX

Y (HM) = (HM)Y

XY = H−n(HM)n.

The first two matrix equation translate into a system of linear equations in the entries of
X and Y over the ground field, whereas the last one does not. However, if X is invertible,
then the last matrix equation can be rewritten as Y = X−1H−n(HM)n, and this translates
into a system of linear equations in the entries of X−1 and Y . Thus, upon replacing the
first matrix equation XH = HX by the equivalent X−1H = HX−1, Eve ends up with a
system of linear equations in the entries of X−1 and Y over the ground field. After solving
this system and finding X and Y , Eve can recover the shared secret key K from the public
transmissions as follows:

X(H−k(HM)k)Y = H−kXY (HM)k = H−kH−n(HM)n(HM)k

= H−n−k(HM)n+k = K

This kind of attack may also work if the platform is a semigroup consists of matrices not
over a field, but over a ring that can itself be embedded in a ring of matrices over a field,

89

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

see for example [KMU14].
Thus, they give a “tweak” to avoid such kinds of attacks in semigroups. In addition to
the secret key n Alice also selects a private matrix R 6= 0 ∈ G, such that R(HM) = 0,
whereby 0 denotes the zero matrix. Such a matrix R exists, because HM is not invertible.
Recall, that G is a semigroup. Bob does the same, he selects in addition to his private
ephemeral key k a matrix S 6= 0 ∈ G with S(HM) = 0. Now, Alice sends

A = H−n(HM)n +R

to Bob and he sends
B = H−k(HM)k + S

to Alice. The step to recover the common secret key stays the same for Alice and Bob.

Alice calculates (B, x) · (H−n(HM)n, ϕn) where the first component is

H−n−k(HM)n+k + (H−nSHn) · (H−n(HM)n) = H−n−k(HM)n+k = K,

because S(HM) = 0. Bob computes (A, y) · (H−k(HM)k, ϕk) where the first component
is

H−n−k(HM)n+k + (H−kRHk) · (H−k(HM)k) = H−n−k(HM)n+k = K

because R(HM) = 0.

These variations are not interesting for the ElGamal like cryptosystem, because they use semi-
groups and the cryptosystem needs a group. Moreover, the next paper [Rom15] by V. Roman’kov
gives a linear decomposition attack which breaks also these two variations.

Paper [Rom15]:
V. Roman’kov shows in [Rom15] that a linear decomposition attack based on the decompo-
sition method introduced by the author, V. Roman’kov, in monography [Rom13a] and paper
[Rom13b] works by finding exchange keys in the both main cryptographic protocols in [HKKS13]
and [KLS15]. The attack works when the platform groups are linear.
He shows, that in this case, contrary to the common opinion (and some explicitly stated security
assumptions), one does not need to solve the underlying algorithmic problems (discrete loga-
rithm problem and Diffie-Hellman problem) to break the scheme, that means, there is another
algorithm that recovers the keys without solving the principal algorithmic problem on which the
security assumptions were first based. This changes completely the understanding of security
of this cryptographic protocol. The efficacy of the attack depends on the platform group, so it
requires a specific analysis in each particular case. In general V. Roam’kov mentioned that one
can only state that the attack is in polynomial time in the size of the data, when the platform
and related groups are given together with their linear representations. In many other cases we
can effectively use known linear representations of the groups under considerations.

Main points in Roman’kovs paper:

1. He shows for the HKKS-key exchange protocol, that the shared secret key K can be com-
puted in the case when G is a multiplicative subgroup of a finite dimensional algebra A
over a field F and the endomorphism φ is extended to an endomorphism of the underlying
vector space V of A. Furthermore, we assume that the basic field operations in F are effi-
cient in particular they can be performed in polynomial time in the size of the elements,
for example, F is finite. In all the particular cryptographic protocols considered in the
paper [Rom15] the field F satisfies all these conditions.

90

3.3. Security and ongoing research about the HKKS-key exchange protocol

Using Gauß elimination Roman’kov showed that one can effectively find a maximal lin-
early independent subset L of the set {a0, a1, . . . , a`, a`+1, . . .}, where it is a0 = g and
a` = φ`−1(g) · · ·φ(g) · g for ` ≥ 1. Indeed, suppose that {a0, a1, . . . , a`} is a linear
independent set but a`+1 can be presented as a linear combination of the form

a`+1 =
∑̀
i=0

λiai for λi ∈ F.

Suppose by induction that a`+j can be presented as above for every j ≤ t−1. In particular

a`+t−1 =
∑̀
i=0

µiai for µi ∈ F.

Then

a`+t = φ(a`+t−1) · g =
∑̀
i=0

µiφ(ai) · g

=
∑̀
i=0

µiai+1 = µ`λ0a0 +
`−1∑
i=0

(µi + µ`λi+1)ai+1.

Thus, L = {ao, a1, . . . , a`}. In particular, we can effectively compute

ak =
∑̀
i=0

ηiai for ηi ∈ F. (3.4)

Then

ak+n = φn(ak) · an (3.5)

=
∑̀
i=0

ηiφ
n(ai) · an =

∑̀
i=0

ηiφ
i(an) · ai. (3.6)

Note that all data on the right hand side is known. Thus, we get the shared key K = an+k.
Hence, in the case, where G is in Mat(3,F7[A5]), there is a polynomial time algorithm to
find the shared key K from the public data.

2. Using matrices over a Galois Field and extensions by special endomorphisms [KLS15]:
V. Roman’kov showed that this cryptographic protocol, even with the endomorphism ψ
that rises each entry of a given matrix to the power of 4 and the composition is just that
ψ is applied first, followed by conjugation, can be attacked by the linear decomposition
attack as above.

3. In [KLS15] D. Kahrobaei, H. T. Lam and V. Shpilrain showed that the version of [HKKS13]
is vulnerable to linear algebra attacks (which was also mentioned in [KMU14]). Roman’kov
showed in his paper, that his linear decomposition attack is very simple in contrast to the
linear algebra attack described in [KMU14].

4. In [KLS15] they gave a “tweak” to avoid the linear algebra attack. Unfortunately this
cryptographic protocol is also vulnerable against the linear decomposition attack. This is
also described in [Rom15].

91

Chapter 3. A group theoretical ElGamal cryptosystem based on a semidirect product of groups

5. Note, in the attacks by Roman’kov the secret keys k or n are not needed to recover the
secret key K.

Paper [KS16]:
D. Kahrobaei and V. Shpilrain shift their focus in [KS16] to select an optimal platform (semi)group,
in terms of security and efficiency.
They suggest the group G = Fr/F p2

r · γc+1(Fr). This group, being a nilpotent p-group, is finite. We
recall the definitions of nilpotent groups and p-groups.
Let Fr be the free group generated by the free generating set {x1, x2, . . . , xr}, that is,

Fr = 〈x1, x2, . . . , xr | 〉.

The normal subgroup F pr is generated (as a group) by all elements of the form gp, g ∈ Fr. In the
factor group Fr/F p

r every nontrivial element has order p (if p is a prime number). More generally,
if n ≥ 2 is an arbitrary integer, then the order of any element of Fr/Fn

r divides n.
The other normal subgroup, which is needed, is somewhat less straightforward to define.
Let [a, b] denote the commutator with [a, b] = a−1b−1ab. Then, inductively, let [y1, y2, . . . , yc+1]
denote [[y1, y2, . . . , yc], yc+1]. For a group G, denote by γc(G) the (normal) subgroup of G
generated (as a group) by all elements of the form [y1, y2, . . . , yc]. If γc+1(G) = {1}, we say that
the group G is nilpotent of nilpotency class c.
The factor group Fr/γc+1(Fr) is called the free nilpotent group of nilpotency class c. This
group is infinite. The group G = Fr/F p2

r · γc+1(Fr), which they recommend as platform group, is
finite, the order depends on p, c and r. For more details see [KS16].
The number p should be large enough to make the dimension of linear representations of G so
large that a linear algebra attack would be infeasible. As they mentioned in the introduction, a
faithful representation of a finite p-group, with at least one element of order pn, as a group of
matrices over a finite field of characteristic p is of dimension at least 1 + pn−1 ([Jan70]), so in
their case it is of dimension at least 1 + p. Thus, if p is, say, a 100-bit number, a linear algebra
attack is already infeasible. For efficiency reasons it seems better to keep c and r fairly small
(in particular they suggest c = 2 or 3).

92

Chapter 4

Combinatorial group theory

This chapter yields the mathematical background for Protocol 6 to Protocol 12, which are
based on combinatorial group theory. Combinatorial group theory is the branch of algebra
which studies groups via their presentations, that is, via their description with generators and
relators. All seven cryptographic protocols (Protocol 6 to Protocol 12) use finitely generated
free groups as platform groups; therefore, we start with a detailed introduction of free groups
and group presentations.

Among free groups we introduce Nielsen transformations, Nielsen reduced sets and corresponding
theory, which will be used later on for the cryptographic protocols. Nielsen transformations are
a linear technique to study free groups and general infinite groups.

Afterwards, we explain several fundamental problems in group theory, which could be used
for cryptology. One problem is the extended word problem, also called membership problem,
another related problem is the constructive membership problem, both problems play a role for
the security of the newly developed cryptographic protocols.

In addition Protocol 6 to Protocol 12 use automorphisms on finitely generated free groups.
These automorphisms can be generated with the help of Nielsen transformations or alterna-
tively with so called Whitehead-Automorphisms. Therefore, we close this chapter introducing
Whitehead-Automorphisms. With the help of these automorphisms we could develop an ap-
proach for choosing automorphisms randomly of the automorphism group Aut(F), with F a
finitely generated free group F .

The books [CgRR08], [LS77] and [MKS66] are the basis for this chapter. The reader should be
familiar with the basics of groups as it is presented in a course about algebra (see for instance
[JS06]).

4.1. Free groups and group presentations

Let G be a group, let X ⊆ G be a subset and X−1 := {x−1 | x ∈ X}, the set of the inverse
elements of the elements in X. The subgroup generated by X is labeled with 〈X〉 and consists
of all finite products of elements from X±1 := X ∪X−1. It is

〈X〉 = {x1x2 · · ·xm | x1, x2, . . . , xm ∈ X±1,m ∈ N}.

We call a term of the form w = x1x2 · · ·xm, with xi ∈ X±1 a word in X or just a word. Each
word corresponds to an element in G. The identity in G corresponds to the empty word and is
labeled with 1.

Definition 4.1.1. (universal property) [CgRR08]
Let X be a nonempty set, F a group and ι : X → F an injective map. The group F - more
precisely the tuple (F, ι) - is named free on X, if there exists for every group G and every map

93

Chapter 4. Combinatorial group theory

f : X → G an uniquely defined homomorphism ϕ : F → G, such that f = ϕ ◦ ι, that means the
following diagram (Figure 4.1)

X F

G

f

ι

∃! ϕ

Figure 4.1.: Commuting diagram

commutes.

At most we consider X as subset of the group F with ι as inclusion. Then, the set X is named
free generating set of F .

Example 4.1.2. The set {1} is a free generating set for the group (Z,+).

Theorem 4.1.3. [CgRR08, Satz 1.2]
Let F1 and F2 - more precisely (F1, ι1) and (F2, ι2) - be free on X. Then there exists an isomor-
phism ϕ : F1 → F2 with ϕ ◦ ι1 = ι2, that means, F1 is unique up to isomorphisms.

The free group F (X):
Next, we show, that for each set X exists exactly one group F , up to isomorphisms (Theo-
rem 4.1.3), which is free on X. This group F is constructed as follows:

If X = ∅, then F (X) = {1}.
Let X 6= ∅ with X−1 as above, it is X ∩ X−1 = ∅ and let x 7→ x−1 be a bijection from X to
X−1. Recall, that X±1 := X ∪X−1. We denote the set of all finite sequences (x1, x2, . . . , xm),
xi ∈ X±1 and m ≥ 0, with M(X). If m = 0, we get the empty sequence. We define an
associative multiplication on M(X) by concatenation, that is,

(x1, x2, . . . , xm) · (y1, y2, . . . , ym′) := (x1, x2, . . . , xm, y1, y2, . . . , ym′).

The identity is the empty sequence, and is labeled with 1. The map X±1 →M(X) with x 7→ (x)
is injective and (x) is identified with x. Each element w ∈ M(X) is uniquely presented as a
word (in X), that is, as a product of elements from X±1:

w = xε11 x
ε2
2 · · ·x

εm
m , with xi ∈ X and εi = ±1,

whereby x+1
i is identified with xi.

The set M(X) is a monoid. It is called free monoid on X±1. The elements of X±1 are called
letters. A word w is called reduced, if xi 6= xi+1 or xi = xi+1 but εi + εi+1 6= 0, for 1 ≤ i < m;
the empty word is reduced. If w = xε11 x

ε2
2 · · ·xεmm is not reduced, we say, w′ ensued of w by

elementary reduction, if w′ = xε11 x
ε2
2 · · ·x

εi−1

i−1 x
εi+2

i+2 · · ·xεmm , with xi = xi+1 and εi + εi+1 = 0.
We can write a reduced word w as

w = xα1
1 xα2

2 · · ·x
αm
m , with xi ∈ X,xi 6= xi+1 and αi ∈ Z \ {0} .

We get an equivalence relation on M(X) while we put w ≡ w′, if w = w′ or there is a finite
sequence w = w1, w2, . . . , wk = w′, such that either from wj+1 follows wj or from wj follows

94

4.1. Free groups and group presentations

wj+1 by elementary reduction with 1 ≤ j < k. For every w ∈ M(X) there is always a reduced
word w′ ∈ M(X) with w ≡ w′. If w ≡ w′ then uwv ≡ uw′v for all u, v ∈ M(X) and if w ≡ w′

and v ≡ v′, then also vw ≡ v′w′. Hence, the multiplication on M(X) implies a multiplication
on F (X) := M(X) /≡ , the set of the equivalence classes of M(X) concerning ≡, with

[u][v] := [uv],

whereby [w] denotes the class of the word w. The multiplication is associative (transmission of
the quotient structure) and the identity is the class of the empty word.
The set F (X) is a group and F (X) is free on X (see [CgRR08, p. 5]).

Corollary 4.1.4. [CgRR08, Korollar 1.4]
Let G be a group with G = 〈X〉. Then G is isomorphic to a quotient group of F (X).

Definition 4.1.5.
In general a group G is called a free group if there exists a set X with G ∼= F (X).

Theorem 4.1.6. (Normalformensatz)[CgRR08, Satz 1.5]
There is exactly one reduced word in each equivalence class. That means, for every word w exists
exactly one reduced word w′ = xε11 x

ε2
2 · · ·xεmm , εi ∈ {1,−1}, with w ≡ w′. The uniquely defined

number m is called the free length of w; denoted with |w|.

Group presentation via generators and relators:
Let G be a group, X a set and ϕ : F (X) � G be a groupepimorphism. We call X a generating
set for G under ϕ and {ϕ(x) | x ∈ X} a set of generators of G. It is

G = 〈ϕ(x) | x ∈ X〉.

We also call X just a generating set for G. The kernel kerϕ is called the set of relators of G
under ϕ.
If u = xε11 · · ·xεnn and v = yη11 · · · y

ηm
m , with xi, yj ∈ X, such that uv−1 ∈ kerϕ and ϕ(xi) = ai,

ϕ(yj) = bj , then we call aε11 · · · aεnn = bη11 · · · b
ηm
m a relation in G. Especially, if u ∈ kerϕ, then it

is aε11 · · · aεnn = 1 a relation in G.
Now, let H be a group. Let S ⊆ H, we call the normal closure

〈〈S〉〉 := 〈hsh−1 | s ∈ S, h ∈ H〉

of S in H the set of consequences of S in H.
A subset R ⊆ F (X) is called a set of defining relators of G (under ϕ), if kerϕ is the set
of consequences of R. The image of R under ϕ is called the corresponding set of defining
relations.
We also call a relation ϕ(u) = ϕ(v) a consequence of a set of defining relators (or defining
relations) if the corresponding relator uv−1 is a consequence of the defining relators.

Presentation:
A presentation 〈X | R〉ϕ of G consist of a set X, a groupepimorphismus ϕ : F (X) � G and a
set of defining relators of G (under ϕ). The group G is called finitely presented, if both sets
X and R are finite.

Convention:
We write G = 〈X | R〉ϕ, if 〈X | R〉ϕ is a presentation of G. Usually we omit ϕ, especially if ϕ is
the canonical mapping

ϕ : F (X) � F (X)/〈〈R〉〉

95

Chapter 4. Combinatorial group theory

or, if ϕ is injective on X (then it is X ⊆ G).
Often, we replace the relator uv−1 by the relation u = v. We mix the words “relators” and
“relations”, without getting misunderstandings. We mostly write

G = 〈X | r = 1, r ∈ R〉

for a presentation of G.

Example 4.1.7. 1. A free group F (X) has only relations which are consequences of x−1i xi
and xix

−1
i , hence R = ∅ and we write F (X) = 〈X | 〉.

2. A cyclic group Z/pZ = 〈x |xp = 1〉, with p a prime number.

3. The trivial group {1} = 〈x |x = 1〉 = 〈x, y |x = 1, xy−1 = 1〉.

Corollary 4.1.8. [CgRR08, Korollar 3.4]
Two groups with the same presentation are isomorph.

Instead of F (X) we also write just F for a free group on a free generating set X. We denote a
subgroup of F by FU if it is generated by a free generating set U , whereby the elements in U
are words in X.

Remark 4.1.9. Let X be the free generating set for the free group F = 〈X | 〉. We call X
also a basis of F . The cardinality |X| of a basis for a free group F is called the rank of the
group. The rank for a free group is unique, because two free groups are isomorphic if and only
if their basis have the same cardinality (see Theorem 4.3.7).

4.2. Nielsen transformations, Nielsen reduced sets and additional
theory

Let F be a free group with free generating set X := {x1, x2, . . . , xq}, q ≥ 2. We determine that
words in X are reduced. Let w ∈ F , we write w ≡ w1w2 · · ·wk if there are no cancellations
between the words wi and wi+1, 1 ≤ i < k, that means |w| = |w1|+ |w2|+ · · ·+ |wk|.
Let U := {u1, u2, . . . , ut} ⊂ F , t ≥ 2, with ui words in X.

Definition 4.2.1. An elementary Nielsen transformation on U = {u1, u2, . . . , ut} ⊂ F is
one of the following transformations

(T1) replace some ui by u−1i ;

(T2) replace some ui by uiuj where j 6= i;

(T3) delete some ui where ui = 1.

In all three cases the uk for k 6= i are not changed. A (finite) product of elementary Nielsen trans-
formations is called a Nielsen transformation. A Nielsen transformation is called regular if
it is a finite product of the transformations (T1) and (T2), otherwise it is called singular.

The regular Nielsen transformations generate a group (see for instance[CgRR08]). The set U is
called Nielsen equivalent to the set V , if there is a regular Nielsen transformation from U to
V . Nielsen equivalent sets U and V generate the same group, that is, 〈U〉 = 〈V 〉.

96

4.2. Nielsen transformations, Nielsen reduced sets and additional theory

Each elementary Nielsen transformation (T1) and (T2) has an inverse which is a regular Nielsen
transformation. It follows then, that the regular Nielsen transformations form a group which
contains every permutation of the set U = {u1, u2, . . . , ut} (see for instance [FGMRS14]).
Now, we agree on some notations. We write (T1)i if we replace ui by u−1i and we write (T2)i.j if
we replace ui by uiuj ; if we want to apply the same Nielsen transformation (T2) consecutively
`-times we write [(T2)i.j]

` and hence replace ui by uiu
`
j . Thus, it is

(T1)i : (u1, . . . , ui, . . . , ut)→ (u1, . . . , u
−1
i , . . . , ut),

(T2)i.j :(u1, . . . , ui, . . . , uj , . . . , ut)→ (u1, . . . , uiuj , . . . , uj , . . . , ut),

[(T2)i.j]
`:(u1, . . . , ui, . . . , uj , . . . , ut)→ (u1, . . . , uiu

`
j , . . . , uj , . . . , ut).

Definition 4.2.2.
A finite set U in F is called Nielsen reduced, if for any three elements v1, v2, v3 from U±1 the
following conditions hold:

(N0) v1 6= 1;

(N1) v1v2 6= 1 implies |v1v2| ≥ |v1|, |v2|;

(N2) v1v2 6= 1 and v2v3 6= 1 implies |v1v2v3| > |v1| − |v2|+ |v3|.

Recall, |v| denotes the free length of v ∈ F , that is, the number of letters from X±1 in the
freely reduced word v. We could also write |v|X , if it is not clear from which set the letters of v
are and we count the letters in v which are given as elements in X±1.

Remark 4.2.3. We say that any word w, not necessary reduced, with finitely many letters from
X±1 has length L if the number of letters occurring is L. The length of a word w is greater
than or equal to the free length of the word w. For freely reduced words the length and the
free length are equal. If a word w is not freely reduced then the length is greater than the free
length of w.

Proposition 4.2.4. [CgRR08, Korollar 2.10]
Let F be a free group of finite rank q. Then, the group of all automorphisms of F , Aut(F), is
generated by the elementary Nielsen transformations (T1) and (T2).
More precisely: Each automorphism of F is describable as a regular Nielsen transformation
between two basis of F , and, each regular Nielsen transformation between two basis of F defines
an automorphism of F .

Proposition 4.2.5. [CgRR08, Theorem 2.3] or [LS77, Proposition 2.2]
If U = {u1, u2, . . . , um} is finite, then U can be carried by a Nielsen transformation into some
V , such that V is Nielsen reduced. It is |V | = rank(〈V 〉) ≤ m.

Proposition 4.2.6. [MKS66, Corollary 3.1]
Let H be a finitely generated subgroup of the free group F on the free generating set X. Let
U = {u1, u2, . . . , ut}, ui words in X, be a Nielsen reduced set, which generates H. Then, out of
all systems of generators for H, the set U has the shortest total X-length, which is

∑t
i=1 |ui|X .

Remark 4.2.7. If FV is a finitely generated subgroup of F = 〈X | 〉, with free generating set
V = {v1, v2, . . . , vN}, vi words in X, then there exist only finitely many Nielsen reduced sets
Ui = {ui1 , ui2 , . . . , uiN }, i = 1, 2, . . . , `, to V , which are Nielsen equivalent. With the help of
a (lexicographical) order relation ≺ the smallest set Us, in the set of all Nielsen reduced sets
UVNred := {U1, U2, . . . , U`} to V , can be uniquely marked. With the use of a regular Nielsen
transformation it is possible to obtain this marked set Us starting from any arbitrary set in
UVNred.

97

Chapter 4. Combinatorial group theory

Example 4.2.8. Let F be a free group on the free generating set X = {x1, x2, . . . , xq}, q ≥ 2.
For example (see [MKS66]) we can define a (lexicographical) order relation ≺ among words
w ∈ F as follows:
If |w| < |u| for words w, u ∈ F , then w ≺ u.
It is

x1 ≺ x−11 ≺ x2 ≺ x
−1
2 ≺ · · · ≺ xq ≺ x

−1
q .

If |w| = |u| for words w, u ∈ F and they first differ in their kth term, then order w and u
according to their kth term.
For example

1 ≺ x2 ≺ x1xq ≺ x1x−1q ≺ x32.

Let F be a free group on the free generating setX = {x, y}. The sets {y2, yxy−1} and {y2, y−1xy}
are Nielsen reduced (see Example 4.2.16). It is

y2 ≺ yxy−1 ≺ y−1xy,

thus, here {y2, yxy−1} is the smallest set of {{y2, yxy−1}, {y2, y−1xy}} concerning this (lexico-
graphical) order relation ≺.

Corollary 4.2.9. [CgRR08, Korollar 2.9]
Let F be a free group with basis X and let U be a subset of X which is Nielsen reduced. Then
it is

X±1 ∩ 〈U〉 = X±1 ∩ U±1.

Especially, if U is also a basis for F , then X±1 = U±1.

Corollary 4.2.10. [CgRR08, Korollar 2.4]
Let F be a free group with basis X and let U be a subset of X which is Nielsen reduced. Then
there exists for each u ∈ U±1 words `(u), m(u) and r(u) with m(u) 6= 1, such that

1. u ≡ `(u)m(u)r(u),

2. if w = u1u2 · · ·ut, t ≥ 0, ui ∈ U±1, uiui+1 6= 1 for all i = 1, 2, . . . , t− 1, then the elements
m(u1),m(u2), . . . ,m(ut) stay unreduced in the reduced form of w.

Especially, it is |w|X = |u1u2 · · ·ui−1`(ui)|X+|m(ui)|X+|r(ui)ui+1ui+2 · · ·ut|X for all 1 ≤ i ≤ t.

Remark 4.2.11. Because of Corollary 4.2.10, there exists for each u ∈ U±1 a stable letter
x±1j ∈ m(u). This stable letter is in each freely reduced word between elements of U at the place

where u appears. For the element u−1 the stable letter is the inverse of the stable letter of u
(if there is a reduction in uv, there is also a reduction in v−1u−1). It is also possible that u has
more than one stable letter.

Corollary 4.2.12. [CgRR08, Korollar 2.5]
Let F be a free group with basis X and let U be a subset of X which is Nielsen reduced. Let
w = u1u2 · · ·uk, k ≥ 0, ui ∈ U±1, uiui+1 6= 1 for 1 ≤ i < k. Then

(a) |w|X ≥ k,

(b) |w|X ≥ 1
2 |u1|X + 1

2 |uk|X + k − 2 for k ≥ 2,

(c) |w|X ≥ |ui|X for all 1 ≤ i ≤ k.

Theorem 4.2.13. [CgRR08, Satz 2.6]
Let U be Nielsen reduced, then 〈U〉 is free on U .

98

4.2. Nielsen transformations, Nielsen reduced sets and additional theory

Theorem 4.2.14. (Nielsen-Schreier) [CgRR08, Satz 2.11]
Every finitely generated subgroup of a free group is free.

For the next lemma we need some notations. Let w 6= 1 be a freely reduced word in X. The
initial segment s of w which is “a little more than half” of w, that is, 1

2 |w| < |s| ≤
1
2 |w| + 1,

is called the major initial segment of w. The minor initial segment of w is that initial
segment s′ which is “a little less than half” of w, that is, 1

2 |w| − 1 ≤ |s′| < 1
2 |w|. Similarly,

major and minor terminal segments are defined.
If the free length of the word w is even, we call the initial segment s of w, with |s| = 1

2 |w| the
left half of w. Analogously, we call the terminal segment s′ of w, with |s′| = 1

2 |w| the right
half of w.
Let {w1, w2, . . . , wm} be a set of freely reduced words in X, which are not the identity. An
initial segment of a w-symbol (that is, of either wi or w−1i , which are different w-symbols) is
called isolated if it does not occur as an initial segment of any other w-symbol. Similarly, a
terminal segment is isolated if it is a terminal segment of a unique w-symbol.

Lemma 4.2.15. [MKS66, Lemma 3.1]
Let M = {w1, w2, . . . , wm} be a set of freely reduced words in X with wj 6= 1, 1 ≤ j ≤ m. Then
M is Nielsen reduced if and only if the following conditions are satisfied:

1. Both the major initial and major terminal segments of each wi ∈M are isolated.

2. For each wi ∈M of even free length, either its left half or its right half is isolated.

Example 4.2.16. Let F be a free group of rank 2 and let X = {x, y} be its free generating set.

1. The set U1 = {y2, yxy−1} is Nielsen reduced. To prove this, we first prove the condition 1.
of Lemma 4.2.15: The major initial and major terminal segments are listed in Table 4.1
(page 99).

Table 4.1.: Major initial and major terminal segment for elements in U1

Element in U1 Major initial segment Major terminal segment

y2 y2 y2

yxy−1 yx xy−1

The major initial segment y2 is no initial segment of yxy−1 and yx−1y−1. The major
initial segment yx is no initial segment of y2 and y−2. The major terminal segment y2

is no terminal segment of yxy−1 and yx−1y−1. The major terminal segment xy−1 is no
terminal segment of y2 and y−2.
Hence, the major initial and major terminal segment of each element in U1 is isolated.
Therefore, condition 1. of Lemma 4.2.15 holds.

Second, we prove the condition 2. of Lemma 4.2.15: The left and the right half of the
elements with even length are listed in Table 4.2 (page 100).

99

Chapter 4. Combinatorial group theory

Table 4.2.: Left and right half of elements in U1 of even length

Element in U Left half Right half

y2 y y

The left half y is an initial segment of yxy−1 and yx−1y−1 but the right half y is no
terminal segment of yxy−1 and yx−1y−1. Hence, condition 2. of Lemma 4.2.15 holds.
Therefore, we proved that U1 = {y2, yxy−1} is Nielsen reduced.

2. The set U2 = {y2, y−1xy} is Nielsen reduced. We first prove the condition 1. of Lemma 4.2.15:
The major initial and major terminal segments are listed in Table 4.3 (page 100).

Table 4.3.: Major initial and major terminal segment for elements in U2

Element in U2 Major initial segment Major terminal segment

y2 y2 y2

y−1xy y−1x xy

The major initial segment y2 is no initial segment of y−1xy and y−1x−1y. The major initial
segment y−1x is no initial segment of y2 and y−2. The major terminal segment y2 is no
terminal segment of y−1xy and y−1x−1y. The major terminal segment xy is no terminal
segment of y2 and y−2.
Hence, the major initial and major terminal segment of each element in U2 is isolated.
Therefore, condition 1. of Lemma 4.2.15 holds.

Second, we prove the condition 2. of Lemma 4.2.15: The left and the right half of the
elements with even length are listed in Table 4.4 (page 100).

Table 4.4.: Left and right half of elements in U2 of even length

Element in U2 Left half Right half

y2 y y

The right half y is a terminal segment of y−1xy and y−1x−1y but the left half y is no initial
segment of y−1xy and y−1x−1y. Hence, condition 2. of Lemma 4.2.15 holds.
Therefore, we proved that U2 = {y2, y−1xy} is Nielsen reduced.

We now have two sets U1 and U2 which are Nielsen reduced and it is U1 6= U2, but the sets U1

and U2 are Nielsen equivalent and hence generate the same group.

100

4.2. Nielsen transformations, Nielsen reduced sets and additional theory

It is

U1 = {y2, yxy−1} we get (y2, yxy−1)
(N2)2.1−→ (y2, yxy)

(N1)2−→ (y2, y−1x−1y−1)

(N2)2.1−→ (y2, y−1x−1y)

(N1)2−→ (y2, y−1xy) hence U2 = {y2, y−1xy}.

The set U3 := {y2, yxy} generates also the same group as U1 and U2, see the above Nielsen trans-
formation from U1 to U2; but U3 is not Nielsen reduced, because condition 2. of Lemma 4.2.15
does not hold for U3. To prove this, the left and the right half of the elements with even length
in U3 are listed in Table 4.5 (page 101).

Table 4.5.: Left and right half of elements in U3 of even length

Element in U3 Left half Right half

y2 y y

The left half y is an initial segment of yxy and the right half y is a terminal segment of yxy.
Hence, condition 2. of Lemma 4.2.15 holds not and U3 is not Nielsen equivalent.

Remark 4.2.17. In [Ste89] an algorithm, using elementary Nielsen transformations, is presented
which, given a finite set S of m words of a free group, returns a set S′ of Nielsen reduced words,
such that 〈S〉 = 〈S′〉; the algorithm runs in O(`2m2), where ` is the maximum free length of a
word in S.

For some cryptographic protocols in the next chapters we would like to use a faithful represen-
tation from a free group F with free generating set X = {x1, x2, . . . , xq}, q ≥ 2, into the special
linear group SL(2,Q). Therefore, we could use the following theorem.

Theorem 4.2.18. [Leh64]
Let F be a free group with countable number of generators x1, x2, . . .; corresponding to xj define

Mj =

(
−rj −1 + r2j

1 −rj

)
,

with rj ∈ Q and the inequalities

rj+1 − rj ≥ 3 and r1 ≥ 2. (4.1)

Then G* generated by {M1,M2, . . .} is isomorphic to F .

Definition 4.2.19. [CgRR08]
Let F be a free group of rank q and let G be a free subgroup of F with rank m. An element
g ∈ G is called a primitive element of G, if a basis U of G with g ∈ U exists.

Definition 4.2.20. [Rot95]
A subgroup H of F is called characteristic in F if ϕ(H) = H for every automorphism ϕ of F .

101

Chapter 4. Combinatorial group theory

Proposition 4.2.21. [MS03]
The number of primitive elements of free length k of the free group F = 〈x1, x2 | 〉 (and
therefore, in any free group F = 〈x1, x2, . . . , xq | 〉, q ≥ 2) is:

1. more than 8
3
√
3
· (
√

3)k if k is odd;

2. more than 4
3 · (
√

3)k if k is even.

Theorem 4.2.22. [BMS02]
If P (q, k) is the number of primitive elements of free length k of the free group

F = 〈x1, x2, . . . , xq | 〉,

q ≥ 3, then for some constants c1 and c2, we have

c1 · (2q − 3)k ≤ P (q, k) ≤ c2 · (2q − 2)k.

Definition 4.2.23. [FGMRS14, Definition 3.2.1.]
Let G = 〈X | R〉 be a group presentation. We form a graph Γ(G,X) in the following way.
Let X±1 = X ∪ X−1. For the vertex set of Γ(G,X) we take the elements of G, that is,
V (Γ) = {g | g ∈ G}. The edges of Γ are given by the set E(Γ) = {(g, x) | g ∈ G, x ∈ X±1}. We
call g the initial point and gx the terminal point. Two points g1 and g2 in the vertex set are
connected by an edge if g2 = g1x for some x ∈ X±1. We have (g, x)−1 = (gx, x−1). This gives
an oriented graph called the Cayley graph on G on the generating set X.

We call x the label on the edge (g, x). Given a g ∈ G then g is represented by at least one word
w in X±1. This represents a path in the Cayley graph. The length of the word w is the length
of the path. Each closed path in the Cayley graph represents a relator.

Example 4.2.24. 1. The Cayley graph for the symmetric group

S3 = 〈x, y | x2 = y3 = (xy)2 = 1〉

is given in Figure 4.2.

1 y

y2

x xy2

xy

Figure 4.2.: Cayley graph for S3

102

4.3. Fundamental problems in group theory

2. The Cayley graph for the free group F = 〈x, y | 〉 on two symbols is given in Figure 4.3.

1x−2 x−1 x x2

y−2

y−1

y

y2

xy

xy−1

x−1y

x−1y−1

yxyx−1

y−1xy−1x−1

xyx

xy2xyx−1

Figure 4.3.: Cayley graph for the free group F of rank 2

Remark 4.2.25. Let F be a group and L a natural number. The ball B(F,L) in the Cayley
graph from the group F contains all elements y ∈ F with free length |y| ≤ L.

4.3. Fundamental problems in group theory

M. Dehn formalized 1911 in [Deh11] three fundamental problems for groups, see also for instance
[MKS66] or [MSU08]. These problems are the word problem, the conjugacy problem and the
isomorphism problem.

Problem 4.3.1. Word problem:
Let G = 〈X | R〉 be a presentation of a group and g ∈ G a given word in X. Determine
algorithmically (in finitely many steps) if g represents the identity or not.

Problem 4.3.2. Conjugacy problem:
Let G = 〈X | R〉 be a presentation of a group and two elements g, h ∈ G are given. Determine
algorithmically (in finitely many steps) if g is conjugated to h in G or not, that means, determine
whether or not there is an element x ∈ G, such that x−1gx = h.

Problem 4.3.3. Isomorphism problem:
Let G = 〈X | R〉 and H = 〈Y | S〉 be two presentations of two group. Determine algorithmically
(in finitely many steps) if G is isomorphic to H or not.

Remark 4.3.4. Problem 4.3.1 is a special case of Problem 4.3.2. If we select h to be the identity
then the solution to the conjugacy problem yields a solution to the word problem.

These problems have not been solved in general. Indeed, they have been solved for some classes of
presentations of one specialized form or another, see for example [MKS66, Section 1.3]. However,
they are solvable in abstract free groups.

103

Chapter 4. Combinatorial group theory

Corollary 4.3.5. [CgRR08, Korollar 1.6] Word problem in free groups:
Two words in a free group F = 〈X| 〉 are equivalent if and only if they have the same reduced
word.

Corollary 4.3.6. [CgRR08, Korollar 1.7] Conjugacy problem in free groups:
Two reduced words w1 and w2 are conjugated in a free group F = 〈X| 〉 if and only if they are
of the form

w1 = hkgh−1 and w2 = lgkl−1,

whereby kg and gk, respectively, do not end with the inverse of their first letter.

Theorem 4.3.7. [CgRR08, Satz 1.9] Isomorphism problem in free groups:
Let X and Y be two sets. Let G = 〈X | 〉 and H = 〈Y | 〉 be two free groups on X and Y ,
respectively. The free group G is isomorphic to the free group H if and only if |X| = |Y |.

A further problem, which is a more general problem than the word problem and is needed
for some of the developed cryptographic protocols based on combinatorial group theory, is the
membership problem or also called extended word problem.

Problem 4.3.8. Membership problem:
Given a recursively presented group G, a subgroup H of G generated by h1, h2, . . . , hk and an
element g ∈ G, determine whether or not g ∈ H.

A related problem (to the membership problem) is the constructive membership problem.

Problem 4.3.9. Constructive membership problem:
Given a recursively presented group G, a subgroup H of G generated by h1, h2, . . . , hk and an
element h ∈ H, find an expression of h in terms of h1, h2, . . . , hk.

The membership problem is solvable for abstract free groups. Let F be a free group and let
w ∈ F . Recall, we write w ≡ w1w2 · · ·wk if there are no cancellations between the words wi and
wi+1, 1 ≤ i < k, that means |w| = |w1|+ |w2|+ · · ·+ |wk|.

Theorem 4.3.10. [CgRR08, Satz 2.21] Membership problem in free groups:
Let F be a free group with basis X, G = 〈g1, g2, . . . , gn〉 a finitely generated subgroup of F , gi
words in X, and w ∈ F . The following instruction defines an algorithm to decide if w ∈ G:

1. Calculate to the set {g1, g2, . . . , gn} a Nielsen equivalent set U , which is Nielsen reduced.

2. Write each u ∈ U in the form u ≡ `(u)m(u)r(u) as in Corollary 4.2.10 with a stable
part m(u).

3. If w = 1, then the out put is “w ∈ G” and stop.

4. If there exists an element u0 ∈ U with w ≡ `(u0)m(u0)w
′ for a w′ ∈ F , go to step 5. If

there exists an element u0 ∈ U with w ≡ r(u0)
−1m(u0)

−1w′ for a w′ ∈ F , go to step 6.
Otherwise the output is “w /∈ G” and stop.

5. Replace w by u−10 w and go to step 3.

6. Replace w by u0w and go to step 3.

Remark 4.3.11. If the used elements of the set U in step 5. and step 6. are noted down,
it is possible to write the word w as a product of elements in U±1 if w ∈ G. Thus, with
Theorem 4.3.10, the constructive membership problem is solvable in free groups F for words
w ∈ F and subgroups G = 〈U〉 of F with a Nielsen reduced set U .

104

4.3. Fundamental problems in group theory

Remark 4.3.12. In [CgRR08] it is shown that

U =

(
1 1
0 1

)
und T =

(
0 −1
1 0

)

generate the special linear group SL(2,Z) =

{(
a b
c d

)
| a, b, c, d ∈ Z and ab− cd = 1

}
. The

proof gives an algorithm how to write each element A ∈ SL(2,Z) in terms of U and T and hence
solves the constructive membership problem in this situation. We now take a look at this proof.

Let A =

(
a b
c d

)
∈ SL(2,Z). We consider the case where c 6= 0.

Case 1: |a| < |c|.
Calculate

TA =

(
0 −1
1 0

)(
a b
c d

)
=

(
−c −d
a b

)
=:

(
a′ b′

c′ d′

)
.

Therefore, we get the case 2 with |a′| > |c′|.

Case 2: |a| > |c|.
Then, there are q, r ∈ N with |a| = q · |c|+ r and 0 ≤ r < |c|. It follows a = p · c+ s with
p = ±q, s = ±r and 0 ≤ |s| < |c|. Calculate

U−pA =

(
1 −p
0 1

)(
a b
c d

)
=

(
s b− pd
c d

)
=:

(
a′′ b′′

c′′ d′′

)
.

Now, |a′′| < |c′′| and we are in case 1. Therefore, together with case 1 and case 2 we end
up in finitely many steps with s = 0 (because this is Euclid’s algorithm) and thus with

case 1 we get a matrix SA =

(
α β
0 δ

)
∈ SL(2,Z) with S ∈ 〈T,U〉.

Case 3: |a| = |c|. We consider two cases

i) a = c:
Calculate

TUTA =

(
−1 0
1 −1

)(
a b
c d

)
=

(
−a −b
0 b− d

)
.

ii) a = −c:
Calculate

T−1UA =

(
0 1
−1 −1

)(
a b
c d

)
=

(
c d
0 −b− d

)
.

Hence, we get also a matrix SA =

(
α β
0 δ

)
∈ SL(2,Z) with S ∈ 〈T,U〉.

Thus, we can reduce the case c 6= 0 to the case c = 0 and consider the matrix

SA =

(
α β
0 δ

)
∈ SL(2,Z),

with S ∈ 〈T,U〉. Due to α · δ = 1 it follows α = δ = ±1. Without loss of generality let

α = δ = 1 (otherwise calculate T 2SA, because T 2 =

(
−1 0
0 −1

)
). Therefore, SA = Uβ and

thus A = S−1Uβ ∈ 〈T,U〉. If the used matrixes for S and Uβ are stored we are able to write

105

Chapter 4. Combinatorial group theory

the matrix A in terms of U and T and hence solve the constructive membership problem in this
situation.

This can also be used to show, that the constructive membership problem is solvable for the

modular group Γ =
{
z 7→ az+b

cz+d | z ∈ C ∪ {∞} | a, b, c, d ∈ Z and ad− bc = 1
}

. It is

Γ ∼= SL(2,Z)/{±E2} = PSL(2,Z), with E2 =

(
1 0
0 1

)
.

The group Γ is generated by the transformations U : z 7→ z+ 1 and T : z 7→ −1
z , because U and

T generate SL(2,Z). From Γ = 〈T ,U〉 it follows that also Γ = 〈R, T 〉, with R = TU , and it is

Γ = 〈T ,R | T 2
= R

3
= 1〉.

This can be seen as follow:
It is R : z 7→ − 1

z+1 ; R
2

: z 7→ − z+1
z and R

3
: z 7→ z thus R is of order 3.

Let R− = {x ∈ R | x < 0} and R+ = {x ∈ R | x > 0}, thus it is T (R−) ⊂ R+ and R
α
(R+) ⊂ R−

for α = 1, 2. The relations T
2

= R
3

= 1 are defining relations for Γ, because: Let S ∈ Γ, after

applying the relations T
2

= R
3

= 1 and suitable conjugations, we can assume that S = 1 or

S = R
α1 · T ·Rα2 · · ·T ·Rαn+1 ,

with 1 ≤ αi ≤ 2 and α1 = αn+1. Let x ∈ R+ for the second case, then it is S(x) ∈ R− and
therefore S 6= 1.

Theorem 4.3.13. [GS07, Theorem 1.3]
The membership problem for the modular group, that is, PSL(2,Z) = SL(2,Z)/{±E2}, with E2 the
identity matrix in SL(2,Z), is decidable in polynomial time.

Remark 4.3.14. There is no algorithm known to solve the (constructive) membership problem
for (discrete) free subgroups of SL(2,Q) of rank greater than or equal to 2. B. Eick, M. Kirschmer
and C. Leedham-Green present in their paper [EKLG14] a practical algorithm to solve the
constructive membership problem for discrete free subgroups of rank 2 of SL(2,R). For example,
the subgroup SL(2,Z) of SL(2,R) is discrete, but they also mention, that it is an open problem
to solve the membership problem for (discrete) free subgroups of SL(2,R) with arbitrary rank
m ≥ 2.

Remark 4.3.15. The group SL(2,R) is a topological group with respect to the metric d on
SL(2,R) defined by d(M,N) = ‖M −N‖, where ‖M‖ =

√
tr(MM t). A subgroup G of SL(2,R)

is said to be discrete if G is discrete with respect to this topology. In other words, a subgroup
G of SL(2,R) is discrete if inf{‖M − I‖ |M ∈ G,M 6= ±I} 6= 0, see for instance [Bea83].

4.4. Whitehead-Automorphisms

The cryptographic protocols, Protocol 6 to Protocol 12, which we explain in the next chap-
ters, are based on automorphisms of F , with F = 〈X | 〉 a free group on free generating set X
with |X| = q ≥ 2. A fixed set of randomly chosen automorphisms is part of the key space for the
private key cryptosystem. These automorphisms should be chosen randomly. It is known, see
Proposition 4.2.4, that the Nielsen transformations generate the automorphism group Aut(F).

106

4.4. Whitehead-Automorphisms

For a realization of a random choice procedure the Whitehead-Automorphisms will be used. The
following approach for choosing automorphisms randomly of Aut(F) is published in [MR16].

Definition 4.4.1. Whitehead-Automorphisms

1. Invert the letter a and leave all other letters invariant:

ia(b) =

{
a−1 for a = b

b for b ∈ X \ {a}.

There are q Whitehead-Automorphisms of this type.

2. Let a ∈ X and L,R,M be three pairwise disjoint subsets of X, with a ∈ M . Then the
tuple (a, L,R,M) defines a Whitehead-Automorphism W(a,L,R,M) as follows

W(a,L,R,M)(b) =


ab for b ∈ L
ba−1 for b ∈ R
aba−1 for b ∈M
b for b ∈ X \ (L ∪M ∪R).

There are q · 4q−1 automorphisms of this type.

Note, that W−1(a,L,R,M) = ia ◦W(a,L,R,M) ◦ ia.

With this definition it is clear how the Whitehead-Automorphisms can be generated as a prod-
uct of regular Nielsen transformations. Conversely, the Whitehead-Automorphisms generate the
group of the Nielsen transformations and therefore also the automorphism group Aut(F) (see
also [DKR13]). With the Whitehead-Automorphisms it is simple to realize a random choice of
automorphisms. We now give an approach for this choice.

An approach for choosing automorphisms randomly of Aut(F):

Let X = {x1, x2, . . . , xq}, q ≥ 2, be the free generating set for the free group F .

1. First of all it should be decided in which order an automorphism fi is generated by au-
tomorphisms of type ia and W(a,L,R,M). For this purpose an automorphism of type ia is
identified with a zero and W(a,L,R,M) with a one. A sequence of zeros and ones is randomly
generated. This sequence is translated to randomly chosen Whitehead-Automorphisms and
hence presents an automorphism fi ∈ Aut(F). This translation is as follows:

2.1. For a zero in the sequence we generate ia randomly: choose a random number z, with
1 ≤ z ≤ q; hence an element a ∈ X must be chosen to declare the automorphism. Then it
is a := xz and hence xz is replaced by x−1z and all other letters are invariant.

2.2. For a one in the sequence we generate W(a,L,R,M) randomly: choose a random number z,
with 1 ≤ z ≤ q. Hence, it is a := xz. Moreover, it is a ∈ M . After this the disjoint sets
L,R,M ⊆ X are chosen randomly. One possible approach is the following:

a) Choose random numbers z1, z2 and z3 with

0 ≤ z1 ≤ q − 1,

0 ≤ z2 ≤ q − 1− z1,
0 ≤ z3 ≤ q − 1− z1 − z2.

107

Chapter 4. Combinatorial group theory

If we are in the situation of z1 = z2 = z3 = 0 we get the identity idX . If this case
arises a random number z̃ from the set {1, 2, . . . , q} \ {z} is chosen and hence the
element xz̃ is assigned randomly to one of the sets L, R or M ; therefore the identity
is avoided.

It is

|L| = z1, |R| = z2, |M | = z3 + 1.

b) Choose z1 pairwise different random numbers r1, r2, . . . , rz1 of the set

{1, 2, . . . , q} \ {z}.

Then L is the set

L = {xr1 , xr2 , . . . , xrz1}.

c) Choose z2 pairwise different random numbers p1, p2, . . . , pz2 of the set

{1, 2, . . . , q} \ ({z} ∪ {r1, r2, . . . , rz1}) .

Then R is the set

R = {xp1 , xp2 , . . . , xpz2}.

d) Choose z3 pairwise different random numbers t1, t2, . . . , tz3 of the set

{1, 2, . . . , q} \ ({z} ∪ {r1, r2, . . . , rz1} ∪ {p1, p2, . . . , pz2}) .

Then M is the set

M = {xt1 , xt2 , . . . , xtz3} ∪ {a}.

Remark 4.4.2. If Alice and Bob use Whitehead-Automorphisms to generate automorphisms
on a free group with free generating set X they should take care, that there are no sequences of
the form

1. ia ◦ ia = idX ,

2. W(a,L,R,M) ◦ ia ◦W(a,L,R,M) ◦ ia︸ ︷︷ ︸
=W−1

(a,L,R,M)

= idX or

ia ◦W(a,L,R,M) ◦ ia︸ ︷︷ ︸
=W−1

(a,L,R,M)

◦W(a,L,R,M) = idX ,

for the automorphisms fj . They also should not use Whitehead-Automorphisms sequences for
fj , which cancel each other and so be vacuous for the encryption.

108

Chapter 5

Secret sharing protocols

This chapter introduces Protocol 5, which is a purely combinatorial (n, t)-secret sharing
scheme. It uses the combinatorial share distribution method, which D. Panagopoulos describes
in [Pan10] for his combinatorial group theoretical (n, t)-secret sharing scheme.

We realize that this share distribution method is also given as a special case by M. Ito, A. Saito
and T. Nishizeki in [ISN87]. We show that if the method in [ISN87] is used to generate a
(n, t)-secret sharing scheme then the same share distribution method as by D. Panagopoulos
is described. M. Ito, A. Saito and T. Nishizeki use a multiple assignment scheme, which is a
method to distribute to each participant more than only one share, together with a (m,m)-
secret sharing scheme. Thus, we see that the share distribution method by D. Panagopoulos is
a special case of paper [ISN87], see Table 5.2 (page 123).

In addition we realize that the purely combinatorial secret sharing scheme (Protocol 5) is very
similar to a scheme, which J. Benaloh and J. Leichter obtain if they realize a (n, t)-secret sharing
scheme using minimal CNF form, described in their paper [BL90]. We explain this in detail and
a summary is given in Table 5.3 (page 129).
Protocol 5 is published in the survey article [CFMRZ16] as research in the field of secret shar-
ing schemes. It is also published in [MR15].

We start the chapter with a definition of (n, t)-secret sharing schemes and briefly explain the
two first mathematical (n, t)-secret sharing schemes. One was given by A. Shamir in [Sha79]
and the other by G. Blakley in [Bla79]. A. Shamir’s secret sharing protocol has become the
standard method for solving the (n, t)-secret sharing problem. He lists some useful properties
for (n, t)-secret sharing schemes in his paper [Sha79], which we also use to analyze different
secret sharing schemes and compare them to A. Shamir’s scheme.

We explain D. Panagopoulos’ (n, t)-secret sharing scheme and the purely combinatorial (n, t)-
secret sharing scheme (Protocol 5). It follows a section about access structures of generalized
secret sharing schemes, because the papers [ISN87] and [BL90] examine such structures. Gener-
alized secret sharing schemes realize not only the situation where arbitrary t of n persons should
be able to reconstruct a secret ((n, t)-secret sharing scheme) but also some more special struc-
tures. For example we assume that in a company with two directors and three vice-directors a
secret should be reconstructible if two directors or three vice-directors or one director and two
vice-directors of the company cooperate, see Example 5.3.12. We also show the connection of
the method by M. Ito, A. Saito and T. Nishizeki to Protocol 5, and the connection of the
method by J. Benaloh and J. Leichter to Protocol 5.
We close this chapter comparing the CFRZ-scheme, D. Panagopoulos’ scheme and the purely
combinatorial (n, t)-secret sharing scheme to Shamir’s scheme.

Definition 5.0.1. Let P = {p1, p2, . . . , pn} be a set of n participants (or also called trustees). A
(n, t)-secret sharing scheme (or (n, t)-threshold scheme), with n, t ∈ N and t ≤ n, is a method
to split a secret S into n shares s1, s2, . . . , sn and distribute each share si to one participant pi,
1 ≤ i ≤ n, in such a way that

109

Chapter 5. Secret sharing protocols

1. if arbitrary t or more participants Pj = {pj1 , pj2 , . . . , pjl} ⊆ P , with t ≤ l ≤ n, come to-
gether they are able to reconstruct the secret S with the help of their shares sj1 , sj2 , . . . , sjl ;

2. if arbitrary t − 1 or less participants Pk = {pk1 , pk2 , . . . , pkl} ⊆ P , with 1 ≤ l ≤ t − 1,
come together they are not able to reconstruct the secret S with the help of their shares
sk1 , sk2 , . . . , skl .

The set of all participants for a secret sharing scheme is also called access control group, see
for example [BFKR15].
If in a (n, t)-secret sharing scheme t−1 or less participants combine their shares and they cannot
get any information about the secret S, then we call it a perfect (n, t)-secret sharing scheme.
In other words, a perfect (n, t)-secret sharing scheme is a scheme in which the knowledge of only
t − 1 or less shares prove no advantage (no information about the secret S whatsoever, in the
information-theoretic sense) to an outsider (opponent) who knows no shares (see [MvOV97]).
The number t is called threshold and the person who distributes the shares to the participants
is called dealer.
Mathematical secret sharing schemes were first formalized in 1979 by A. Shamir [Sha79] and
independently by G. Blakley [Bla79] and each of them presented a different (n, t)-secret sharing
scheme in his paper.
A. Shamir motivated his paper [Sha79], in which he introduced his (n, t)-secret sharing scheme,
with the following problem from Liu (see [Liu68]):

Problem 5.0.2. Eleven scientists are working on a secret project. They wish to lock up the
documents in a cabinet so that the cabinet can be opened if and only if six or more of the
scientists are present. What is the smallest number of locks needed? What is the smallest
number of keys to the locks each scientist must carry?

If we ask after the smallest number of locks, we must consider the situation in which five scientists
come together. There must be at least one lock for which these five scientists together do not
have the key, but for which every other scientist of the residuary six must have one. This is
computable with the help of the binomial coefficient

(
n
t

)
:= n!

t!(n−t)! , with n, t ∈ N0 and t ≤ n.

There are
(
n
t

)
possibilities to choose t elements of a set of n elements. Thus, there are

(
11
5

)
= 462

groups of five scientists, hence the cabinet must have at least 462 locks.
If we ask after the smallest number of keys to the looks, we are in the situation that each scientist
must hold at least one key for every group of five scientists, of which he is not a member. There
are

(
10
5

)
= 252 such groups. Thus, each scientist must carry at least 252 keys.

The idea behind (n, t)-secret sharing schemes, and hence behind A. Shamir’s scheme, is that
there is just one lock and one key for this lock, but the key is split into subkeys (the shares
for the participants). Each participant gets one share, if the desired number of scientists come
together they should be able to reconstruct the key combining their subkeys. If fewer scientists
wish to open the cabinet, it should be impossible.

Remark 5.0.3. In general, if we consider Problem 5.0.2 from Liu for a (n, t)-secret sharing
scheme, we get

(
n
t−1
)

locks for the cabinet and
(
n−1
t−1
)

keys for each scientist, due to the illustration
in the situation above with n = 11 and t = 6.
Thus, we claim that a (n, t)-secret sharing scheme should have less than

(
n
t−1
)

“locks” and less

than
(
n−1
t−1
)

“keys” for each participant.

A. Shamir uses polynomial interpolation for his (n, t)-secret sharing scheme. Let F be any field
and let (x1, y1), (x2, y2), . . . , (xt, yt) be t points in F2 with pairwise distinct xi, 1 ≤ i ≤ t. We
say a polynomial g(x) over F interpolates these points if g(xi) = yi, 1 ≤ i ≤ t. A. Shamir’s
secret sharing scheme is based on the following theorem.

110

5.1. D. Panagopoulos’ (n, t)-secret sharing scheme

Theorem 5.0.4. [Atk89]
Let F be any field and let x1, x2, . . . , xt be t pairwise distinct elements of F and let y1, y2, . . . , yt
be any elements of F. Then there exists a unique polynomial of degree less than or equal to t− 1
that interpolates the t points (xi, yi), 1 ≤ i ≤ t.
A. Shamir’s (n, t)-secret sharing scheme is roughly this: The dealer chooses a field F. The secret
S is an element in F. The dealer picks a polynomial g(x) of degree t − 1 with the secret S as
constant term, that is, g(x) = S + a1x+ a2x

2 + · · ·+ at−1x
t−1, ai ∈ F and at−1 6= 0. He chooses

pairwise distinct elements x1, x2, . . . , xn ∈ F, with xi 6= 0 for all 1 ≤ i ≤ n, and distributes to
each of the n participants a point (xi, g(xi)) as a share. By Theorem 5.0.4 any t participants
can determine the polynomial g(x) (for example with Lagrange interpolation, see [Atk89]) and
hence recover the secret S. If less than t people combine their shares any element in F can be
the constant term and hence the secret. A. Shamir suggested to use F = Fp = Z/pZ where p is a
large prime number.

G. Blakley’s (n, t)-secret sharing scheme is a geometrical one. He uses hyperplanes as shares.
The secret S is a point in a t dimensional vector space and the n shares are hyperplanes in the
t dimensional vector space with the property that the only intersection point of any arbitrary
t hyperplanes is the secret S. If less than t participants combine their shares they cannot
reconstruct the secret, but they get information about the secret point S, because they know
that it lies in the intersection of their hyperplanes, hence it is not perfect. If not the whole point
is the secret but only one coordinate of the point S, then they have no more information about
the secret than an outsider.

Remark 5.0.5. G. Blakley’s scheme is less space efficient, for computer storage, than A. Shamir’s
and also the distributed shares are larger than the secret, whereas A. Shamir gets shares which
are of the same size than the secret (see for instance [Sha79] or [BFKR15]). A. Shamir’s secret
sharing protocol has become the standard method for solving the (n, t)-secret sharing problem,
although there are modifications for different situations as for example a verifying secret sharing
variation, see [BFKR15]. A verifying secret sharing protocol makes certain, that the dealer and
the participants behave correctly.

5.1. D. Panagopoulos’ (n, t)-secret sharing scheme

We now introduce a (n, t)-secret sharing scheme, which uses an interesting method to distribute
shares to the participants. This (n, t)-secret sharing scheme, presented by D. Panagopoulos in
[Pan10], is based on combinatorial group theory, see Section 4.1. More precisely, it is based
on group presentations of groups with solvable word problem (Problem 4.3.1). The secret is a
binary sequence which is reconstructible if the finite presentation of a group

G = 〈x1, x2, . . . , xk | r1 = r2 = · · · = rm = 1〉

is known. The shares are subsets of the set of defining relations R = {r1, r2, . . . , rm} of the used
group G.
The cryptographic protocol is as follows:

Steps for the dealer:

1. A finitely presented group G with solvable word problem is chosen, it is

G = 〈x1, x2, . . . , xk | r1 = r2 = · · · = rm = 1〉,

111

Chapter 5. Secret sharing protocols

with m =
(
n
t−1
)

and k ≥ 2.

2. Let A1, A2, . . . , Am be an enumeration of the subsets of {1, 2, . . . , n} with t− 1 elements.
Define n subsets R1, R2, . . . , Rn of the set {r1, r2, . . . , rm} with the property

rj ∈ Ri ⇐⇒ i 6∈ Aj for j = 1, 2, . . . ,m and i = 1, 2, . . . , n.

3. The dealer distributes to each of the n participants one of the sets R1, R2, . . . , Rn as a
share. The generating set {x1, x2, . . . , xk} is known by each participant.

The secret is a binary sequence a1a2 · · · a`. The dealer constructs words wi, 1 ≤ i ≤ `, in the
group G, such that

wi = 1 in G ⇐⇒ ai = 1 for 1 ≤ i ≤ `.

The word wi must involve most of the relations r1, r2, . . . , rm if wi represents the identity in
G. Furthermore, all of the defining relations must be used at some point in the construction of
some element wi (see [Pan10] for a way to create a word which represents the identity). The
dealer sends the words wi, 1 ≤ i ≤ `, to the participants.

Security 5.1.1. The security of this share distribution method depends on the following facts.
The dealer puts rj in the set Ri if and only if i 6∈ Aj , for j = 1, 2, . . . ,m and i = 1, 2, . . . , n. Each
subset A1, A2, . . . , Am has t−1 elements from {1, 2, . . . , n}, hence in each subset Aj are n−(t−1)
elements from {1, 2, . . . , n} not contained. Thus, each element rj is exactly in n − (t − 1) sets
Ri contained. Therefore, each element rj , 1 ≤ j ≤ m, is not contained in exactly t− 1 sets Ri.
Consequently, if just t − 1 or less arbitrary sets of the sets R1, R2, . . . , Rn are combined, then
there exist a j, such that the element rj is not included in the union of these sets. Further, each
rj is in each union of at least t pairwise different sets Ri.

Remark 5.1.2. Each participant pi gets a share rj for each subset Aj of size t− 1 in which i is
not an element. There are

(
n−1
t−1
)

many sets with this property. Hence, each participant has as

a share a set of r :=
(
n−1
t−1
)

elements.

Remark 5.1.3. This is equivalent to the solution of Liu (see Problem 5.0.2 and Remark 5.0.3).
We can see the elements in each set Ri for one participant pi as the number of keys for each
participant (which is

(
n−1
t−1
)
). The number of locks is the number of relations for the group G,

there are m =
(
n
t−1
)

relations for G, if the participants know all relations they can reconstruct
the secret, which means they can “open the cabinet”.

Steps for the participants:

If t participants combine their shares they are able to reconstruct the defining relations for the
group G (see Security 5.1.1) and, since the generating set X = {x1, x2, . . . , xk} is given to each
of them, they get the presentation of the group G, that is,

G = 〈x1, x2, . . . , xk | r1 = r2 = · · · = rm = 1〉.

To reconstruct the secret they solve the word problem for the words w1, w2, . . . , w` in the recon-
structed group G. If wi = 1 in G, then ai = 1 but if wi 6= 1 in G, then ai = 0.

If less than t participants combine their shares they get not all of the relations r1, r2, . . . , rm (see
Security 5.1.1). Hence, they obtain a group presentation

G1 = 〈x1, x2, . . . , xk | r′1 = r′2 = · · · = r′p = 1〉,

112

5.2. A purely combinatorial (n, t)-secret sharing scheme (Protocol 5)

with r′i ∈ {r1, r2, . . . , rm} for 1 ≤ i ≤ p and p < m. Thus, the groups G and G1 are not
isomorphic and in general wi = 1 in G is not equivalent to wi = 1 in G1. Therefore, the
participants are not able to reconstruct the correct binary sequence, which is the secret.

Remark 5.1.4. The secret (a binary sequence) is not needed for the construction of the shares.
It is possible to calculate and to distribute the shares for the participants first and afterwards
the secret can be determined and the corresponding sequence of words can be send to the par-
ticipants. Because of this, the cryptographic protocol can also be used to verify the authenticity
of a secret (or a message, respectively). In particular, a secret (or a message, respectively) could
contain a predetermined subsequence (a signature) and t participants may control whether this
predetermined sequence is contained in the secret (or the message, respectively) thus validat-
ing it. To prevent attacks the place of the signature in a secret (or a message, respectively)
should be unknown. We refer to the paper [Pan10] of D. Panagopoulos for description of some
more methods for attacks and suggestions for possible group presentations for this cryptographic
protocol.

5.1.1. Share distribution method given by D. Panagopoulos

We isolate now just the way how D. Panagopoulos distributes elements of a setR = {r1, r2, . . . , rm},
with m =

(
n
t−1
)

and t ≤ n, between n participants pi in such a way, that

• if t or more (arbitrary) participants come together and combine their t subsets Ri ⊆ R
they can reconstruct the set R and

• if t − 1 or less (arbitrary) participants combine their subsets Ri ⊆ R they do not get the
whole set R, there is at least one element in R which is not in the union of t− 1 subsets.

Distribution method:

1. Let n, t ∈ N, with t ≤ n, calculate m =
(
n
t−1
)
. It is R = {r1, r2, . . . , rm}.

2. Let A1, A2, . . . , Am be an enumeration of subsets of {1, 2, . . . , n} with t−1 elements. Define
n subsets R1, R2, . . . , Rn of the set {r1, r2, . . . , rm} with the property

rj ∈ Ri ⇐⇒ i 6∈ Aj for j = 1, 2, . . . ,m and i = 1, 2, . . . , n.

3. The participant pi gets the share-set Ri, 1 ≤ i ≤ n.

This distribution method fulfills the desired property, to be used for share distribution to get a
(n, t)-secret sharing scheme, see Security 5.1.1. It is |R| = m =

(
n
t−1
)

and after Remark 5.1.2 it

is known, that |Ri| =
(
n−1
t−1
)
, 1 ≤ i ≤ n. As mentioned in Remark 5.1.3 this is equivalent to the

solution of Liu (see Problem 5.0.2 and Remark 5.0.3).

5.2. A purely combinatorial (n, t)-secret sharing scheme (Protocol 5)

With the share generation of Section 5.1.1 we get Protocol 5, a purely combinatorial (n, t)-
secret sharing scheme, whereby the secret is the sum of the multiplicative inverse of elements in
the natural numbers.

We introduce Protocol 5: The numbers n and t are given, whereby n is the number of partic-
ipants and t is the threshold. It is n, t ∈ N with t ≤ n.

113

Chapter 5. Secret sharing protocols

Steps for the dealer:

1. First the dealer calculates the number m =
(
n
t−1
)
.

2. He chooses m elements a1, a2, . . . , am ∈ N. The secret S is the sum

S :=
m∑
i=1

1

ai
∈ Q+,

with Q+ := {x ∈ Q|x > 0} the set of all positive rational numbers.

3. From the elements a1, a2, . . . , am ∈ N he constructs the sets R1, R2, . . . , Rn as follows.
Let A1, A2, . . . , Am be an enumeration of subsets of {1, 2, . . . , n} with t−1 elements. Define
n subsets R1, R2, . . . , Rn of the set {a1, a2, . . . , am} with the property

aj ∈ Ri ⇐⇒ i 6∈ Aj for j = 1, 2, . . . ,m and i = 1, 2, . . . , n.

4. The participant pi gets the set Ri, 1 ≤ i ≤ n, which is his share.

Steps for the participants:

If t out of n participants come together they can reconstruct the secret. They first combine their
t private sets Ri and get by construction the set {a1, a2, . . . , am}. The secret is the sum of the
inverse elements in the reconstructed set, that is,

S =
m∑
i=1

1

ai
.

The cryptographic protocol is summarized in Table 5.1 (page 115).

Remark 5.2.1. It is important in terms of practicability, that the dealer calculates and dis-
tributes the shares for the participants long before the secret is needed by the participants.
Hence, the dealer has enough time to execute the share distribution method and his compu-
tational cost should be of no consequence for the cryptographic protocol. If t participants
reconstruct the secret, they add up only m elements, which is feasible in linear time.

Variation 5.2.2. If the dealer needs a special secret S̃ ∈ Q he gives each participant one more
element x ∈ Q in each Ri, with

x :=
S̃

S
.

The participants get S̃ by multiplying the reconstructed secret S with x.

Remark 5.2.3. Which information gets an eavesdropper when he knows the number x given
by the Variation 5.2.2? The situation is the following.

• The element S, which the participants generate, is

S =
m∑
i=1

1

ai
=
p

q
,

with the prime factorization p =
∏z1
i=1 p

αi
i and q =

∏z2
i=1 q

βi
i , with pi, qi ∈ P and pk 6= p`,

as well as qk 6= q` for k 6= `, P set of all prime numbers, αi, βi ∈ N. The number S is

114

5.2. A purely combinatorial (n, t)-secret sharing scheme (Protocol 5)

Table 5.1.: Summary of Protocol 5: Purely combinatorial (n, t)-secret sharing scheme

(n, t)-secret sharing scheme
Dealer Participants p1, p2, . . . , pn

Calculate m =
(
n
t−1
)
.

Choose a1, a2, . . . , am ∈ N.
Construct sets Rj ⊆ {a1, a2, . . . , am} with
share distribution method of Section 5.1.1;

it is |Rj | =
(
n−1
t−1
)

for j = 1, 2, . . . n.

Distribute shares to the participants.
R1−−−−−−−−−−−−−−−−→ p1
R2−−−−−−−−−−−−−−−−→ p2

...
Rn−−−−−−−−−−−−−−−−→ pn

t participants combine their shares and thus
get the set {a1, a2, . . . , am}.
The secret is

S =

m∑
i=1

1

ai
.

a reduced fraction, thus p and q are co-prime, that is, pi 6= qj for all i and j. Let P be
the set of all prime divisors of p, that is, P = {p1, p2, . . . , pz1} ⊂ P, define analogously
Q = {q1, q2, . . . , qz2} ⊂ P. It is P ∩Q = ∅.

• The secret S̃, which the participants want to know is

S̃ =
u

v
,

with the prime factorization u =
∏z3
i=1 u

γi
i (or u = −

∏z3
i=1 u

γi
i if S̃ is a negative rational

number) and v =
∏z4
i=1 v

δi
i , ui, vi ∈ P and uk 6= u` as well as vk 6= v` for k 6= `, γi, δi ∈ N.

The number S̃ is a reduced fraction, thus u and v are co-prime, that is, ui 6= vj for all i
and j. Let U be the set of all prime divisors of u, that is, U = {u1, u2, . . . , uz3} ⊂ P, define
analogously V = {v1, v2, . . . , vz4} ⊂ P. It is U ∩ V = ∅.

• Let x be the additional information for all participants. We assume that x is public. Let

x̃ =
u

v

q

p
=
r

t

be uncanceled and x the canceled fraction of x̃. It is r = uq and t = vp, that means r
t is

an uncanceled fraction. The numerator of x̃ has the prime factorization r =
∏z5
i=1 r

ηi
i (or

r = −
∏z5
i=1 r

ηi
i if S̃ and hence x̃ is a negative rational number), ri ∈ (U ∪Q), ηi ∈ N, and

the denominator has the prime factorization t =
∏z6
i=1 t

εi
i , ti ∈ (V ∪ P), εi ∈ N.

It is z5 = |U ∪ Q| = z3 + z2 − |U ∩ Q|. If ri ∈ (U ∩ Q) and ri = qk1 = uk2 for a k1 with
1 ≤ k1 ≤ z2 and for a k2 with 1 ≤ k2 ≤ z3, then ηi = βk1 +γk2 . If ri /∈ (U ∩Q) then ri ∈ U

115

Chapter 5. Secret sharing protocols

or ri ∈ Q, if ri ∈ U then ri = uk3 for a k3 with 1 ≤ k3 ≤ z3, and hence ηi = γk3 otherwise
if ri ∈ Q then ri = qk4 for a k4 with 1 ≤ k4 ≤ z2, and hence ηi = βk4 . Analogously
considerations hold for t.

The goal for an attacker is to get the number

S̃ =
u

v
.

There are different situations for the canceled fraction x = S̃
S = r′

t′ of x̃ = u
v
q
p = r

t . With the

prime factorizations r′ =
∏z′5
i=1 r

′η′i
i , r′i ∈ (U∪Q), z′5 ≤ z5, η′i ≤ ηi, and t′ =

∏z′6
i=1 t

′ε′i
i , t′i ∈ (V ∪P),

z′6 ≤ z6, ε′i ≤ εi.

1. If ui ∈ P for some 1 ≤ i ≤ z3 we get two possibilities:

a) It is ui = pj , for a j with 1 ≤ j ≤ z1, and γi ≤ αj : now ui 6= r′k for any 1 ≤ k ≤ z′5.
The prime factor ui is missing in the prime factorization of r′. An attacker knows
not which prime factor is missing.

b) It is ui = pj , for a j with 1 ≤ j ≤ z1, and γi > αj : The prime factor ui is in the
prime factorization of r′, that is, ui = r′k, for a k with 1 ≤ k ≤ z′5, but the exponent
for ui, that is, γi is unknown.

2. If ui /∈ P for some 1 ≤ i ≤ z3: Then u can be found in the prime factorization of r′.

3. These considerations can be done analogously for the situations with vi ∈ Q and vi /∈ Q
for 1 ≤ i ≤ z4.

If an attacker knows the prime factorization of r′ and t′ he gets some hints for the searched
secret u

v . How useful this is depends on the situations 1. to 3. for x above.

The variation with a special secret S̃ can be improved as follows.

Variation 5.2.4. Everything as above, with the additional public element x = S̃
S (as in Variation

5.2.2) with S̃ = u
v , but the secret is S′ = u − v ∈ Z instead of just S̃. The dealer should take

care, that for x the situation of 1. a) from above appears for u or v. To get the secret S′ there
are different possibilities for u and v, such that S′ = u− v and there should be at least one for
which arises the situation 1. a) of above for at least one ui ∈ U or vj ∈ V .

The security of this method is a consequence of the following.

Security 5.2.5. The security depends on the distribution of the shares and is hence analogous
to the Security 5.1.1 of D. Panagopoulos share distribution method. If just t− 1 arbitrary sets
(or less) of the sets R1, R2, . . . , Rn are combined, there exist a j, such that the element aj is
not included in the union of these sets. If just one element aj is absent, the participants do
not reconstruct the correct sum S, and hence cannot compute the correct secret. Each aj is in
each union of at least t subsets, thus t participants get the set {a1, a2, . . . , am} and are able to
reconstruct the secret.

Remark 5.2.6. If less than t participants come together, for example 1 ≤ b < t, they generate
the set {a′1, a′2, . . . , a′y}, with a′i ∈ {a1, a2, . . . , am} and y < m. They know that the searched
secret S is greater than the inverse sum over their elements in the set of the union of their
shares, that is, S >

∑y
i=1

1
a′i

. Thus, they have more information than an outsider. Indeed they

are not able to reconstruct the secret S if they have not all elements a1, a2, . . . , am. Certainly,
if we are in the situation where we have a special secret with an additional public element x or
the situation of Variation 5.2.4 then b participants have no more information than an outsider.

116

5.2. A purely combinatorial (n, t)-secret sharing scheme (Protocol 5)

Example 5.2.7. We perform the steps for a (4, 3)-secret sharing scheme. It is n = 4 and t = 3.
The dealer follows the steps:

1. He first calculates m =
(
n
t−1
)

=
(
4
2

)
= 6.

2. The dealer chooses the numbers a1 := 2, a2 := 16, a3 := 3, a4 := 5, a5 := 4 and a6 := 7.
The secret is

S :=

m∑
i=1

1

ai
=

2501

1680
.

a) The six subsets with size 2 of the set {1, 2, 3, 4} are

A1 = {1, 2} , A2= {1, 3} , A3 = {1, 4} ,
A4 = {2, 3} , A5= {2, 4} , A6 = {3, 4} .

With help of the Ai, i = 1, 2, . . . , 6, the dealer gets the sets R1, R2, R3 and R4, which
contain elements from {a1, a2, . . . , a6}. He puts the element aj for which i is not
contained in the set Aj for i = 1, 2, 3, 4 and j = 1, 2, . . . , 6, into the set Ri:

1 6∈ A4, A5, A6 =⇒ R1 = {a4, a5, a6} ,
2 6∈ A2, A3, A6 =⇒ R2 = {a2, a3, a6} ,
3 6∈ A1, A3, A5 =⇒ R3 = {a1, a3, a5} ,
4 6∈ A1, A2, A4 =⇒ R4 = {a1, a2, a4} .

3. The dealer distributes the set Ri to the participant pi, for i = 1, 2, 3, 4.

If three of the four participants come together, they can calculate the secret S. For example the
participants p1, p2 and p3 have the set

R̃ :=R1 ∪R2 ∪R3

= {a4, a5, a6} ∪ {a2, a3, a6} ∪ {a1, a3, a5}
= {a1, a2, a3, a4, a5, a6} ,

and hence get the secret

S =
6∑
i=1

1

ai
=

2501

1680
, with ai ∈ R̃.

If we are now in the situation, that the dealer needs a special secret, for example S′ = 12 we
use the Variation 5.2.4. The public element x is of the unreduced form

x̃ =
u

v

1680

2501
=
u · 24 · 3 · 5 · 7
v · 41 · 61

with the notations in Remark 5.2.3. The dealer uses for u the number u = 41 · 7 = 287, then
v = 287− 12 = 275 = 52 · 11 because the secret is 12 = S′ = u− v. Now, it is

x =
24 · 3 · 72

5 · 11 · 61
=

2352

3355
.

After the reconstruction of S = 2501
1680 the participants calculate x · S = 287

275 and get the secret
S′ = 287− 275 = 12.

117

Chapter 5. Secret sharing protocols

For the developed (n, t)-secret sharing scheme, with the set {a1, a2, . . . , am}, m =
(
n
t−1
)

and
ai ∈ N, the secret is

S =
m∑
i=1

1

ai
.

We could also use some other sums to define a secret. Some examples are:

• Let ai ∈ Q, 1 ≤ i ≤ m. The secret is

S =
m∑
i=1

ai.

• Let ai ∈ {1, 2, . . . , α− 1}, 1 ≤ i ≤ m, for a qualified α ∈ N. The secret is

S =
m∑
i=1

ai (mod α).

This case appears in [BL90], if J. Benaloh and J. Leichter a use minimal CNF form to
describe an access structure of a (n, t)-secret sharing scheme (see Section 5.3.2 for a detailed
explanation).

• Let ai ∈ K, 1 ≤ i ≤ m and K a field (for example K = Q) or a big finite field. The secret
is

S = a21 + a22 + · · ·+ a2m − a1a2 . . . am.

This secret is based on the Hurwitz equation, which is

x21 + x22 + · · ·+ x2m = dx1x2 · · ·xm − k,

with m ≥ 3, d ∈ N and k ∈ N ∪ {0}. This variation of a (n, t)-secret sharing scheme is
published in [FKIMR15].

5.3. Access structures for generalized secret sharing schemes

M. Ito, A. Saito and T. Nishizeki in [ISN87] were the first (see [MvOV97]), who studied general-
ized secret sharing schemes and the idea of access structures. They attend (n, t)-secret sharing
schemes to generalized secret sharing schemes. There is also a second paper [ISN93] from them,
which is an extended version of the Paper [ISN87].

They provide in their paper [ISN87] a methodology to design a secret sharing scheme realizing
any given monotone access structure. Their secret sharing scheme is a so called multiple assign-
ment scheme, which means, that the dealer distributes to each participant several shares of a
(n, t)-secret sharing scheme. They showed that it is possible to realize any given monotone access
structure with the help of a (n, t)-secret sharing scheme using multiple assignment schemes.

In [BL90] J. Benaloh and J. Leichter describe also a method to construct secret sharing schemes
for any given monotone access structure. The construction of M. Ito, A. Saito and T. Nishizeki
is generalized by the method of J. Benaloh and J. Leichter, which uses the correspondence
between access structures and monotone boolean formulae (see Appendix A.1 for background

118

5.3. Access structures for generalized secret sharing schemes

information about boolean formulae (or also just called formulae)).

Firstly, in Section 5.3.1, we take a closer look at the construction of M. Ito, A. Saito and
T. Nishizeki and we show that in the proof of Theorem 1 in [ISN87] the distribution of shares,
which D. Panagopoulos uses and we use for the combinatorial (n, t)-secret sharing scheme
(Protocol 5) in Section 5.1.1, is contained as a special case.
Secondly, in Section 5.3.2, we shortly summarize how J. Benaloh and J. Leichter realize any given
access structure for a secret sharing scheme with the help of boolean formulae. We then show
that the access structure of a (n, t)-secret sharing scheme of M. Ito, A. Saito and T. Nishizeki
corresponds to the case of minimal CNF form (see Definition A.1.9) in the variation of J. Be-
naloh and J. Leichter. Therefore, we will see that Protocol 5 is a very similar scheme to the one
which J. Benaloh and J. Leichter obtain for (n, t)-secret sharing schemes using minimal CNF
form, this is summarized in Table 5.3 (page 129).

We start with some notations. Let M be a set, we denote by P(M) the power set of M and by
|M | the cardinality of M .

Definition 5.3.1. Let S be a secret and P = {p1, p2, . . . , pm}, with m ∈ N, the set of all
participants for a secret sharing scheme.
The family {Pj ⊆ P | the participants in Pj can reconstruct the secret S} is called the access
structure of the secret sharing scheme and its elements Pj are called qualified subsets.

Similar to the definition of (n, t)-secret sharing schemes (see Definition 5.0.1), we get the follow-
ing definition for (generalized) secret sharing schemes.

Definition 5.3.2. Let P = {p1, p2, . . . , pm} be a set of m participants (or trustees). A gen-
eralized secret sharing scheme (or just secret sharing scheme) is a method to split a secret
S into m shares s1, s2, . . . , sm and distribute each share si to one participant pi, 1 ≤ i ≤ m, in
such a way that

1. if Pj = {pj1 , pj2 , . . . , pjl} ⊆ P is a qualified subset of participants, then the secret S can
be reconstructed with the help of their shares sj1 , sj2 , . . . , sjl ;

2. if Pj = {pj1 , pj2 , . . . , pjl} ⊆ P is not a qualified subset of participants, then the secret S
cannot be reconstructed with the help of their shares sj1 , sj2 , . . . , sjl ;

We next give examples for generalized secret sharing schemes.

Example 5.3.3. 1. For a (n, t)-secret sharing scheme with P = {p1, p2, . . . , pn} and thresh-
old t, we get the access structure An,t := {Pj ⊆ P | |Pj | ≥ t}. Thus, we understand a
(n, t)-secret sharing scheme as a special case of a generalized secret sharing scheme.

2. An example for an access structure, which belongs not to a (n, t)-secret sharing scheme
and is a generalized secret sharing scheme, is the following. Assume in a company are two
directors D1 and D2 and three vice-directors V1, V2 and V3, hence P = {D1, D2, V1, V2, V3}
is the set of participants. Further, a secret S can be reconstructed if two directors or three
vice-directors or one director and two vice-directors of the company cooperate. Thus, the
access structure is

A = {{D1, D2}, {D1, V1, V2}, {D1, V1, V3}, {D1, V2, V3}, {D2, V1, V2}, {D2, V1, V3},
{D2, V2, V3}, {V1, V2, V3}, {D1, V1, V2, V3}, {D2, V1, V2, V3},
{D1, D2, V1, V2, V3}, {D1, D2, V1}, {D1, D2, V2},
{D1, D2, V3}, {D1, D2, V1, V2}, {D1, D2, V1, V3}, {D1, D2, V2, V3}}.

119

Chapter 5. Secret sharing protocols

Proposition 5.3.4. [ISN87, Proposition 1]
If A ⊆ P(P) is an access structure of a secret sharing scheme, then A satisfies

A ∈ A ∧ A ⊆ A′ ⊆ P =⇒ A′ ∈ A. (5.1)

If A ⊆ P(P) fulfills (5.1) we call it monotone (see also [BL90]). Secret sharing schemes with
a monotone access structure are also called monotone. All (n, t)-secret sharing schemes are
monotone.

5.3.1. Generalized secret sharing schemes by M. Ito, A. Saito and T. Nishizeki

To realize any access structure A, which satisfies (5.1) M. Ito, A. Saito and T. Nishizeki use
a multiple assignment scheme. In [ISN87] they explain a multiple assignment scheme using
A. Shamir’s secret sharing scheme, but it is possible to generate multiple assignment schemes
with any (n, t)-secret sharing scheme, which is able to generate m ≥ n shares (this conforms
the property (2) which A. Shamir claims for (n, t)-secret sharing schemes, see Section 5.4). We
explain multiple assignment schemes in general.

Multiple assignment schemes

Let S be a secret and P = {p1, p2, . . . , pn} is the set of persons, who are involved in the secret
sharing scheme.

1. Choose a (n, t)-secret sharing scheme, which is able to generate m ≥ n shares.

2. Generate the set M = {s1, s2, . . . , sm}, which is the set of m shares with the property that
arbitrary t shares of M can reconstruct the secret S.

3. Choose Si ⊆M , 1 ≤ i ≤ n, and distribute Si to the participant pi, for 1 ≤ i ≤ n.

The distribution in step 3. can be considered as a function

g : P → P(M)

pi 7→ Si.

Now, the multiple assignment scheme consist of the following access structure

A =

Q ⊆ P |
∣∣∣∣∣∣
⋃
pi∈Q

g(pi)

∣∣∣∣∣∣ ≥ t
 .

If each g(pi) consists of just one element, we are in the situation of a (n, t)-secret sharing scheme
with n = |P |. Thus, a multiple assignment scheme is a generalization of a (n, t)-secret sharing
scheme.

Definition 5.3.5. For a finite set P , a finite set M , a function g : P → P(M) and a natural
number t we define A(g, t) as

A(g, t) :=

Q ⊆ P |
∣∣∣∣∣∣
⋃
pi∈Q

g(pi)

∣∣∣∣∣∣ ≥ t
 .

Remark 5.3.6. If M is a set of shares for a (n, t)-secret sharing scheme with |M | = n, then
the monotone access structure A(g, t) is exactly a monotone access structure of the multiple
assignment scheme defined by M and the assignment g : P → P(M).

120

5.3. Access structures for generalized secret sharing schemes

In the proof of the next theorem M. Ito, A. Saito and T. Nishizeki explain how each monotone
access structure can be realized as an access structure for a multiple assignment scheme.

Theorem 5.3.7. [ISN87, Theorem 1]
Let P be s set of participants. For any A ⊆ P(P) satisfying (5.1), there exists a set M , a
function g : P → P(M) and a natural number t, such that A(g, t) = A.

They use in the proof of Theorem 5.3.7 a construction to realize an access structure A = A(g, t)
from information of the unqualified subsets, as follows.

Construction in the proof of Theorem 5.3.7:
Let A be a monotone access structure (that means it satisfies (5.1)). Let B = P(M) \ A. The
elements in the family B are called unqualified subsets and satisfies by (5.1) the property

B ∈ B ∧ B′ ⊆ B =⇒ B′ ∈ B. (5.2)

Remark 5.3.8. In general a perfect secret sharing scheme is a scheme in which any unqualified
subset of P cannot get any information about the secret S.

The family of maximal sets in B is denoted by ∂+B, it is

∂+B :=
{
B ∈ B | B 6⊆ B′ for all B′ ∈ B \ {B}

}
.

A set M is constructed, such that each element of M corresponds one-to-one to a maximal set
of B. Thus, M is defined by

M := {sB | B ∈ ∂+B},

where sB 6= sB′ , if B,B′ ∈ ∂+B and B 6= B′. The function g is defined by g : P → P(M) with

g(p) =
{
sB | B ∈ ∂+B, p 6∈ B

}
and it is shown in the next proof that now A(g, t) = A if t = |∂+B| = |M |.

Proof. [ISN87, Proof of Theorem 1]:
To show A(g, t) = A if t = |∂+B| = |M | we show first A ⊆ A(g, t) if t = |∂+B| = |M |: Assume
the contrary, that means, A 6⊆ A(g, t) and t = |∂+B| = |M |, hence there exists a Q ∈ A but
Q 6∈ A(g, t). Since t = |M | it is ⋃

p∈Q
g(p) 6= M,

therefore it exists an element B ∈ ∂+B, such that

sB ∈M \
⋃
p∈Q

g(p).

Hence, for each p ∈ Q it is sB 6∈ g(p) and after definition of the function g it is p ∈ B and thus
Q ⊆ B. After (5.2) we get Q ∈ B, because B ∈ B and Q ⊆ B. Thus, Q ∈ B and Q ∈ A which
contradicts the definition of B := P(M) \ A. Hence, it is A ⊆ A(g, t) if t = |∂+B| = |M |.
Next, we show A(g, t) ⊆ A if t = |∂+B| = |M |: Assume the contrary, that means, A(g, t) 6⊆ A
and t = |∂+B| = |M |. Thus, there exists a Q ∈ A(g, t) but Q 6∈ A. After the definition of B, it
is Q ∈ B if Q 6∈ A. Therefore, Q ∈ B and so Q ⊆ B for some B ∈ ∂+B. For all p ∈ Q ⊆ B it is

sB 6∈
⋃
p∈Q

g(p)

121

Chapter 5. Secret sharing protocols

by definition of g and hence Q /∈ A(g, t), which contradicts the assumption Q ∈ A(g, t). Hence,
it is A(g, t) ⊆ A if t = |∂+B| = |M |.
Altogether it is shown that A(g, t) = A if t = |∂+B| = |M |.

Remark 5.3.9. By Theorem 5.3.7, a family A ⊆ P(P) is called an access structure (of some
multiple assignment scheme) if A satisfies (5.1).

Remark 5.3.10. If an arbitrary monotone access structure A is given we are able to realize this
access structure with the help of the construction of Theorem 5.3.7. If we define t = |∂+B| =
|M | =: m′ we get A(g,m′) = A. If M is the set of shares for a (m′,m′)-secret sharing scheme
then A(g,m′) is exactly an access structure of the multiple assignment scheme defined by M
and g, whereby g is defined as in the construction for Theorem 5.3.7 and we get A(g,m′) = A.
Thus, also hierarchical secret sharing schemes (which are monotone) can be realized. This was
claimed by A. Shamir in property (4), see Section 5.4. Hierarchical secret sharing schemes are
also known as asymmetric secret sharing schemes.

Now, we show how the share distribution method given by D. Panagopoulos is given by M. Ito,
A. Saito and T. Nishizeki. Let P = {p1, p2, . . . , pn} be the set of participants. If we realize
the access structure An,t = {P ′ ⊆ P | |P ′| ≥ t} with the help of a multiple assignment scheme
with a (m′,m′)-secret sharing scheme, as described above for Theorem 5.3.7, we get the share
distribution method given by D. Panagopoulos (see Section 5.1.1).
It is shown (proof of Theorem 5.3.7) that A(g,m′) = An,t if m′ = |∂+B| = |M | and if M is a set
of shares for a (|M | ,m′)-secret sharing scheme, then A(g,m′) is exactly an access structure of
the multiple assignment scheme defined by M and g.

We first need the family B of all unqualified subsets for the access structure An,t. After definition
it is B = P(P) \ An,t and hence

B = {P ′ ⊆ P |
∣∣P ′∣∣ ≤ t− 1}.

The family of maximal sets in B is, after definition,

∂+B = {P ′ ⊆ P |
∣∣P ′∣∣ = t− 1}.

It is |P | = n and there are
(
n
t−1
)

subsets of P with t− 1 elements. Hence, |∂+B| =
(
n
t−1
)
, we get

m′ =
(
n
t−1
)

Because m′ = |M | = |∂+B|, it is ∂+B = {P ′1, P ′2, . . . , P ′m′}, M = {s1, s2, . . . , sm′} and we get the

one-to-one assignment P ′i
1:1←→ si, 1 ≤ i ≤ m′ with sj 6= si, if P ′i , P

′
j ∈ ∂+B but P ′j 6= P ′i .

The assignment g is now g : P → P(M) with g(p) = {sj | P ′j ∈ ∂+B, p 6∈ P ′j} in other words, we
give participant pi element sj if and only if pi is not an element in P ′j , for all 1 ≤ j ≤ m′ and
1 ≤ i ≤ n.
This is exactly what D. Panagopoulos describes in [Pan10] for the way how he constructs the
shares Ri, which are subsets of R = {r1, r2, . . . , rm}, with m =

(
n
t−1
)
, for his (n, t)-secret sharing

scheme, and distributes them to the participants pi, 1 ≤ i ≤ n. We shortly summarize both
methods in Table 5.2 (page 123).

122

5.3. Access structures for generalized secret sharing schemes

Table 5.2.: D. Panagopoulos’ share distribution method and M. Ito, A. Saito and T. Nishizeki
construction for a (n, t)-secret sharing scheme using multiple assignment scheme

M. Ito, A. Saito and T. Nishizeki: con-
struction to realize an access structure An,t
(for a (n, t)-secret sharing scheme) with the
help of a multiple assignment scheme

D. Panagopoulos: construction of shares
for his (n, t)-secret sharing scheme

P = {p1, p2, . . . , pn} set of participants P = {p1, p2, . . . , pn} set of participants

They calculate m′ with
∂+B = {P ′ ⊆ P | |P ′| = t− 1}, hence it is
m′ := |M | = |∂+B| =

(
n
t−1
)
.

He defines m :=
(
n
t−1
)
.

m′ = m

P ′i ∈ ∂+B, P ′i subsets of P of size t− 1,
1 ≤ i ≤ m′

Ai subsets of {1, 2, . . . , n} with t−1 elements,
1 ≤ i ≤ m

P ′i
1:1←→ Ai

pj ∈ P j ∈ {1, 2, . . . , n}

pj
1:1←→ j

M = {s1, s2, . . . , sm′} R = {r1, r2, . . . , rm}

si
1:1←→ ri

Assignment to distribute the elements of M
to the participants:
g : P → P(M) with
g(p) = {sj |P ′j ∈ ∂+B, p 6∈ P ′j},
this is equivalent to

sj ∈ g(pi)⇐⇒ pi 6∈ P ′j ,

1 ≤ j ≤ m′ and 1 ≤ i ≤ n.
The participant pi gets the set g(pi).

Construct set Ri for the participant pi,
i = 1, 2, . . . , n, with

rj ∈ Ri ⇐⇒ i 6∈ Aj ,

1 ≤ j ≤ m and 1 ≤ i ≤ n.
The participant pi gets the set Ri.

g(pi)
1:1←→ Ri

123

Chapter 5. Secret sharing protocols

Remark 5.3.11. In a (n, t)-secret sharing scheme, which is realized with a multiple assign-
ment scheme, which uses for the shares a (m,m)-secret sharing scheme (with m =

(
n
t−1
)

see

above), each participant gets
(
n−1
t−1
)

shares of the used (m,m)-secret sharing scheme, that is,

|g(pi)| =
(
n−1
t−1
)

for all i = 1, 2, . . . , n. Because of the assignment g each participant gets a
share for each subset of size t−1 in which he is not a member. If |P | = n, then there are exactly(
n−1
t−1
)

subsets of P in which the participant pi ∈ P is not a member.

With the multiple assignment scheme (n, t)-secret sharing schemes can be used to realize asym-
metric (or hierarchical, see for instance [Sha79]) secret sharing schemes. If we use the construc-
tion of Theorem 5.3.7, we can realize any given monotone access structure, but this construction
is not the only way to realize a given monotone access structure, it is possible that there exists
also other constructions, see Example 5.3.12.

Example 5.3.12. Assume in a company are two directors D1 and D2 and three vice-directors
V1, V2 and V3, hence P = {D1, D2, V1, V2, V3} is the set of participants. Further, a secret S can
be reconstructed if two directors or three vice-directors or one director and two vice-directors of
the company cooperate. Thus, the monotone access structure is

A = {{D1, D2}, {D1, V1, V2}, {D1, V1, V3}, {D1, V2, V3}, {D2, V1, V2}, {D2, V1, V3}, {D2, V2, V3},
{V1, V2, V3}, {D1, V1, V2, V3}, {D2, V1, V2, V3}, {D1, D2, V1, V2, V3}, {D1, D2, V1},
{D1, D2, V2}, {D1, D2, V3}, {D1, D2, V1, V2}, {D1, D2, V1, V3}, {D1, D2, V2, V3}}.

Therefore, the set of unqualified subsets is B = P(P) \ A, with

B = {{D1}, {D2}, {D1, V1}, {D1, V2}, {D1, V3}, {D2, V1}, {D2, V2}, {D2, V3},
{V1}, {V2}, {V3}, {V1, V2}, {V1, V3}, {V2, V3}, ∅}.

Now, we give two possibilities to realize the access structure A. Firstly, we use shares of a
(n, t)-secret sharing scheme. Secondly, we use the construction of Theorem 5.3.7 and hence
we need the help of a multiple assignment scheme with a (m′,m′)-secret sharing scheme, with
m′ = |∂+B| = |M | and M the set of the shares for the used (m′,m′)-secret sharing scheme.

1. possibility: Use a (12, 6)-secret sharing scheme. The set of shares is M = {s1, s2, . . . , s12}.
Each participant gets a subset of the set M as follows

D1 → {s1, s2, s3}, D2 → {s4, s5, s6},
V1 → {s7, s8}, V2 → {s9, s10} and V3 → {s11, s12}.

How many shares each participant gets depends on the importance of him. Each set
of participants in A can reconstruct the secret, because they get at least six shares for
the (12, 6)-secret sharing scheme. No set of participants in B can reconstruct the secret,
because they get at most five different shares from M .

2. possibility: First we need the set of all maximal unqualified subsets

∂+B = {{D1, V1}, {D1, V2}, {D1, V3}, {D2, V1}, {D2, V2},
{D2, V3}, {V1, V2}, {V1, V3}, {V2, V3}}.

It is |∂+B| = 9, thus |M | = 9 = t. To get A(g, t) with A(g, t) = A we use a (9, 9)-
secret sharing scheme with the share-set M = {s1, s2, . . . , s9} and the following one-to-one

124

5.3. Access structures for generalized secret sharing schemes

assignment between elements in M and elements in ∂+B

s1
1:1←→ {D1, V1} =: B1, s2

1:1←→ {D1, V2} =: B2, s3
1:1←→ {D1, V3} =: B3,

s4
1:1←→ {D2, V1} =: B4, s5

1:1←→ {D2, V2} =: B5, s6
1:1←→ {D2, V3} =: B6,

s7
1:1←→ {V1, V2} =: B7 , s8

1:1←→ {V1, V3} =: B8 , s9
1:1←→ {V2, V3} =: B9.

With the assignment g : P → P(M) with g(p) = {sj | Bj ∈ ∂+B, p /∈ Bj} it is

D1 7→ g(D1)={s4, s5, s6, s7, s8, s9},
D2 7→ g(D2)={s1, s2, s3, s7, s8, s9},
V1 7→ g(V1) ={s2, s3, s5, s6, s9},
V2 7→ g(V2) ={s1, s3, s4, s6, s8},
V3 7→ g(V3) ={s1, s2, s4, s5, s7}.

Each set of participants in A can reconstruct the secret S but no set in B, because a
(9, 9)-secret sharing scheme for the multiple assignment scheme and the assignment g is
used to realize the access structure A(g, 9) = A, after Theorem 5.3.7.

Remark 5.3.13. A multiple assignment scheme for a given access structure A constructed with
the construction of the proof of Theorem 5.3.7 uses |∂+B| = m′ shares. The number |∂+B| = m′

could become very large compared with the number of participants for the access structure A.
In Example 5.3.12, we use an access structure which has 5 participants and it is |∂+B| = m′ = 9.
If we use as access structure An,t, which is an access structure for a (n, t)-secret sharing scheme,
we have n participants and it is |∂+B| =

(
n
t−1
)
.

In general the theorem of Sperner (Theorem 5.3.15) gives a bound for |∂+B|, which was also
mentioned in [ISN93]. Before we are able to present Sperners Theorem and the subsequently
bound, we need the next definition.

Definition 5.3.14. Let P = {p1, p2, . . . , pn} be a set of n elements. A family D ⊆ P(P) is
called an antichain if

D 6⊆ D′ for any D,D′ ∈ D.

Theorem 5.3.15. Sperners Theorem ([Spe82] or [Sac96])
Let D be an antichain of a set with n elements. The number m = |D| satisfies the inequality

m ≤
(
n

bn2 c

)
.

Note, for r ∈ R it is brc := max{x ∈ Z | x ≤ r}.

If A is a monotone access structure and B = P(P) \ A, then ∂+B is an antichain and after
Sperners Theorem (Theorem 5.3.15) it is

∣∣∂+B∣∣ ≤ (|P |
b |P |2 c

)
.

5.3.2. Generalized secret sharing schemes by J. Benaloh and J. Leichter

In [BL90] J. Benaloh and J. Leichter translate the access structure for a monotone secret shar-
ing scheme into a monotone formula. Each variable in this formula is assigned to exactly one

125

Chapter 5. Secret sharing protocols

participant in P , the set of the participants for the desired secret sharing scheme. It is known,
that a monotone formula contains only AND and OR operators (Remark A.1.10). Hence, they
show how to divide a secret “across” each of these two operators (they make this method more
efficient by using also THRESHOLD operators (see [BL90]), but here this is of no interest at
the moment).

We now explain how they use the AND and OR operator.

Let P = {p1, p2, . . . , pn} be the set of participants for a generalized secret sharing scheme. Let
S be the secret with S ∈ {0, 1, 2, . . . , α− 1} for a qualified α ∈ N.

• If a secret should be divide across an AND operator they use the simple sum (see also
“unanimous consent control by modular addition” in [MvOV97]). For example the secret
should be reconstructible if “p1 and p2 and . . . and pz” (z ≤ n) come together, the variables
for the corresponding formula are assigned to the participants, that means variable p̃i is
assigned to participant pi. The formula for this access structure is p̃1∧ p̃2∧· · ·∧ p̃z. Choose
the shares si ∈ {0, 1, 2, . . . , α− 1} for i = 1, 2, . . . , z − 1 randomly. Calculate

sz = S −
z−1∑
j=1

sj (mod α)

and give each participant pi his share si.

• If a secret should be divide across an OR operator they give each set of participant (which is
assigned to one literal) the secret S. For example we assign one literal p̃i to one participant
pi. If “p1 or p2 or . . . or pq” should be able to reconstruct the secret, then each participant
pi, 1 ≤ i ≤ q, gets the secret. The formula for the access structure is p̃1 ∨ p̃2 ∨ · · · ∨ p̃q.

Moving a secret across an OR operator corresponds to a (n, 1)-secret sharing scheme and moving
the secret across an AND operator corresponds to a (m,m)-secret sharing scheme, which are for
J. Benaloh and J. Leichter the simple sums. Thus, this can also be seen as a multiple assignment
scheme.

We now focus on access structures for (n, t)-secret sharing schemes. The formula for an access
structure An,t can be written in a Disjunctive Normal Form (DNF) (see Definition A.1.7) and
also in a logically equivalent Conjunctive Normal Form (CNF) (see Definition A.1.6). In addition
a variation is also to use minimal DNF form (see Definition A.1.8) or minimal CNF form (see
Definition A.1.9) for formula of an access structures.

Example 5.3.16. Let P = {p1, p2, p3} be the set of participants for a (3, 2)-secret sharing
scheme. The access structure is

A3,2 = {P ′ ⊆ P |
∣∣P ′∣∣ ≥ 2} = {{p1, p2}, {p1, p3}, {p2, p3}, {p1, p2, p3}}.

The formula corresponding to this access structure is

(p̃1 ∧ p̃2) ∨ (p̃1 ∧ p̃3) ∨ (p̃2 ∧ p̃3) ∨ (p̃1 ∧ p̃2 ∧ p̃3) . (5.3)

This is in DNF. The secret is first divided “across” the OR operators. After this the secret is
shared independently for the AND parts (that is, for each set in the access structure A). Each
participant gets one share for each set in the assecc structure in which he is a member. If in
this example the secret is S = 35 and α = 812 the dealer does the following for each term in the
DNF formula

126

5.3. Access structures for generalized secret sharing schemes

• 1. term: (p̃1 ∧ p̃2). Divide S = 35 between p1 and p2. Participant p1 gets the share
s11 = 10 and participant p2 gets the share s12 = 25.

• 2. term: (p̃1 ∧ p̃3). Divide S = 35 between p1 and p3. Participant p1 gets the share
s21 = 30 and participant p3 gets the share s23 = 5.

• 3. term: (p̃2 ∧ p̃3). Divide S = 35 between p2 and p3. Participant p2 gets the share s32 = 7
and participant p3 gets the share s33 = 28.

• 4. term: (p̃1 ∧ p̃2 ∧ p̃3). Divide S = 35 between p1, p2 and p3. Participant p1 gets the share
s41 = 2, participant p2 gets the share s42 = 13 and participant p3 gets the share s43 = 20.

Altogether participant p1 holds the multiple share S1 = {s11 , s21 , s41}, participant p2 holds the
multiple share S2 = {s12 , s32 , s42} and participant p3 holds the multiple share S3 = {s23 , s33 , s43}.
If all shares sij with the same i are combined, then the secret S is the sum of these elements.
The minimal DNF form is here

(p̃1 ∧ p̃2) ∨ (p̃1 ∧ p̃3) ∨ (p̃2 ∧ p̃3) ,

which reduces the shares in the set Si for the participants pi about one element, precisely s4i
for participant pi, compared with the corresponding shares for the DNF formula (5.3).

It is not clear, that a DNF or a CNF of a formula for an access structure is the most efficient
solution to generate the multiple shares for the participants (in the sense that a participant holds
as less shares as possible). Even more if J. Benaloh and J. Leichter also add the THRESHOLD
operator (for more details see [BL90]).

J. Benaloh and J. Leichter pointed out, that the method of M. Ito, A. Saito and T. Nishizeki
corresponds to the case of minimal CNF form.
In the situation of the access structure for a (n, t)-secret sharing scheme, this could be seen as
follows:
The access structure for a (n, t)-secret sharing scheme with P = {p1, p2, . . . , pn}, the set of
participants, is An,t = {P ′ ⊆ P | |P ′| ≥ t}. Hence, the access structure An,t is monotone it is
enough to consider the set Aminn,t = {P ′ ⊆ P | |P ′| = t} ⊆ An,t, because Aminn,t is the minimal set,
which we need to obtain, with the monotone property (5.1), the access structure An,t. Thus,
the DNF formula corresponding to Aminn,t is a minimal DNF form for An,t.
The Algorithm 5.3.17 gives all

(
n
t

)
elements of Aminn,t (line [6]). With line [7] we get all terms for

a minimal DNF form which corresponds to the access structure Aminn,t and hence to An,t.

Algorithm 5.3.17. Generate terms for minimal DNF form corresponding to An,t
[1] for i1 from 1 to n− t+ 1 do

[2] for i2 from i1 + 1 to n− t+ 2 do

[3] for i3 from i2 + 1 to n− t+ 3 do

[4]
...

[5] for it from it−1 + 1 to n do

[6] print {{pi1 , pi2 , pi3 , . . . , pit}};
[7] print {(p̃i1 ∧ p̃i2 ∧ p̃i3 ∧ · · · ∧ p̃it)};
[8] end;

[9] . .
.

[10] end;

[11] end;

[12] end;

127

Chapter 5. Secret sharing protocols

The output sets {pi1 , pi2 , pi3 , . . . , pit} (and hence also the terms) are ordered with i1 < i2 < i3 <
· · · < it and each set has t elements (each term has t variables), after construction. Here the
DNF formula is monotone, hence only the use of the distributive property

a ∨ (b ∧ c) = (a ∧ b) ∨ (a ∧ c),

for a, b, c a formula, is required to get a monotone CNF formula.
We are interested in a minimal CNF form (Definition A.1.9), therefore we must know how many
variables are at least in a clause of CNF formula in this case. One clause with minimal numbers
of variables is the one, which gets from each term in the minimal DNF form a variable, which is
also included in the clause or if there are just variables the clause does not include yet, then the
variable p̃ij is added to the clause with the property, that ij is the smallest index of all variables
in the term for which p̃ij is not yet included in the clause. Because of the construction of the
terms for the minimal DNF form and the consequence that the sets {pi1 , pi2 , pi3 , . . . , pit} are
ordered with i1 < i2 < i3 < · · · < it it follows, that the clause with the minimum numbers of
variables has n− t+1 variables (this can be seen by Algorithm 5.3.17 line [1]). All combinations
of n − t + 1 variables of {p̃1, p̃2, p̃3, . . . , p̃n} are possible. Thus, the following Algorithm 5.3.18,
gives all

(
n

n−t+1

)
clauses for a minimal CNF form corresponding to the access structure An,t.

Algorithm 5.3.18. Clauses for minimal CNF form corresponding to An,t
[1] for i1 from 1 to t do

[2] for i2 from i1 + 1 to t+ 1 do

[3] for i3 from i2 + 1 to t+ 2 do

[4]
...

[5] for in−t+1 from in−t + 1 to n do

[6] print {(p̃i1 ∨ p̃i2 ∨ p̃i3 ∨ · · · ∨ p̃in−t+1)};
[7] end;

[8] . .
.

[9] end;

[10] end;

[11] end;

The number of clauses in a minimal CNF form gives the number of shares in which the secret is
divided by the method of J. Benaloh and J. Leichter. Here it is m̃ =

(
n

n−t+1

)
, hence they divide

the secret into m̃ shares s1, s2, s3 . . . , sm̃. It is

S =

m̃∑
i=1

si (mod α),

for a qualified α ∈ N. The shares are distributed to the participants. The terms in the minimal
CNF form Φ are numerated, it is

Φ = φ1 ∧ φ2 ∧ φ3 ∧ · · · ∧ φm̃,

with φi, 1 ≤ i ≤ m̃, a clause generated by the Algorithm 5.3.18 (line [6]). The share sk corre-
sponds to the clause φk. Hence, each participant pj gets the share sk if p̃j is a variable in the
clause φk. To get the number of shares each participant gets we must know in how many clauses
each variable p̃i (1 ≤ i ≤ m̃) is included. There are r̃ :=

(
n−1

(n−t+1)−1
)

=
(
n−1
n−t
)

many clauses in
which p̃j is a variable, hence the participant pj , 1 ≤ j ≤ m̃, gets a multiple share which is a
subset with

(
n−1
n−t
)

elements of the set {s1, s2, . . . , sm̃}.

128

5.3. Access structures for generalized secret sharing schemes

This is very similar to Protocol 5, the combinatorial (n, t)-secret sharing scheme (Section 5.2),
which was developed from D. Panagopoulos (n, t)-secret sharing scheme.

The secret sharing scheme from Section 5.2 uses a set of m =
(
n
t−1
)

elements from which
the shares for the participants are constructed. J. Benaloh and J. Leichter need a set with
m̃ =

(
n

n−t+1

)
=
(
n
t−1
)

elements. Each participant in the combinatorial (n, t)-secret sharing
scheme, which uses the share distribution method given D. Panagopoulos (see Section 5.1.1),
gets a set of r =

(
n−1
t−1
)

element as a share (see Remark 5.1.2). In the method of J. Benaloh and

J. Leichter each participant gets r̃ =
(
n−1
n−t
)

=
(
n−1
t−1
)

elements in his set of shares. Hence, in both
schemes the number of shares from which the subsets for the participants are generated is the
same and also the number of shares which each participant gets in his share-set is the same.
The only difference lies in the kind of shares and in the way how the secret is reconstructed. In
the combinatorial scheme the secret is the sum over inverse elements of natural numbers (shares
are natural numbers) and in the method of J. Benaloh and J. Leichter the secret is the sum of
elements modulo α (for a qualified α and the shares are elements of {0, 1, 2, . . . , α− 1}). This is
summarized in the Table 5.3 (page 129).

Table 5.3.: Comparison of the values of the combinatorial (n, t)-secret sharing scheme
(Protocol 5) and a (n, t)-secret sharing scheme by J. Benaloh and J. Leichter using
minimal CNF form

Values of the schemes Protocol 5: purely com-
binatorial (n, t)-secret shar-
ing scheme

J. Benaloh and J. Leichter’s
method for a (n, t)-secret
sharing scheme

Number of shares m =
(
n
t−1
)

m̃ =
(

n
n−t+1

)
=
(
n
t−1
)

m = m̃

Share-set {a1, a2, . . . , am} with ai ∈ N {s1, s2, . . . , sm̃} with
si ∈ {0, 1, 2, . . . , α − 1} for
a qualified α ∈ N

Secret S

S =
m∑
i=1

1

ai

S ∈ Q+

S =

m̃∑
i=1

si (mod α)

S ∈ {0, 1, 2, . . . , α− 1}

Number of shares from
the share-set for each
participant

r =
(
n−1
t−1
)

r̃ =
(
n−1
n−t
)

=
(
n−1
t−1
)

r = r̃

129

Chapter 5. Secret sharing protocols

5.4. Comparison with A. Shamir’s suggested properties

A. Shamir lists in his paper [Sha79] the following useful properties for his (n, t)-secret sharing
scheme.

(1) The size of each piece (which are the shares for the participants) does not exceed the size
of the original data (which is the secret).

(2) When t is kept fixed, pieces can be dynamically added or deleted (for example, when
executives join or leave a company) without affecting the other pieces. (A piece is deleted
only when a leaving executive makes it completely inaccessible, even to himself.)

(3) It is easy to change the pieces (the shares for the participants) without changing the
original data (which is the secret). All we need is a new polynomial g(x) with the same
free term. A frequent change of this type can greatly enhance security since the pieces
exposed by security breaches cannot be accumulated unless all of them are values of the
same edition of the polynomial g(x).

(4) By using tuples of polynomial values as pieces, we can get a hierarchical scheme in which
the number of pieces needed to determine the secret depends on their importance. For
example, if we give the company’s president three values of g(x), each vice-president two
values of g(x), and each executive one value of g(x), then a (n, 3)-threshold scheme enables
checks to be signed either by any three executives, or by any two executives one of whom
is a vice-president, or by the president alone.

In addition we choose the following fifth property.

(5) It is easy to change the secret without changing the shares of the participants.

This property is not true for Shamir’s secret sharing scheme as it is explained above. Since the
supporting points (which are the shares for the participants) fix the polynomial and therefore
the constant term (which is the secret).

We analyze the CFRZ-scheme, D. Panagopoulos’ scheme and the Protocol 5, a purely combi-
natorial (n, t)-secret sharing schemes, concerning these 5 points; as we also did it in [FMR13]
and [CFMRZ16].

CFRZ-scheme of Chapter 2 (see also [FMR13] or [CFMRZ16]):

(1) The secret is a vector in the subspace V of the real inner product space W . A share is a
basis vector for the subspace V . Therefore, the size of each share does not exceed the size
of the secret.

(2) If we fix the number t of shares (we need at least to reconstruct the secret) we can arbitrarily
add or delete many shares. The dealer has to pay attention to the construction that every
possible combination of t shares form a basis for the subspace V .

(3) We can change the shares without changing the secret. We need only another subspace
V ′ 6= V , which contains the secret w. For this new subspace V ′ with dimension t we can
calculate new shares, which are a set of vectors where every arbitrary t of them form a
basis for V ′. A new associated vector w∗ can be constructed as explained in Chapter 2
step 5. for the dealer.

130

5.4. Comparison with A. Shamir’s suggested properties

(4) Every (n, t)-secret sharing scheme can be converted into a hierarchical secret sharing pro-
tocol (see Section 5.3 Remark 5.3.10).

Because of Remark 2.0.3 we get the additional property.

(5) We can change the secret easily. Every vector in the subspace can be used as a new
secret wnew ∈ V (excluded the shares from the participants) and hence we can calculate
the associated vector w∗new as described in Chapter 2 step 5. for the dealer.

D. Panagopoulos’ scheme of Section 5.1 (see also [FMR13] or [CFMRZ16]):

(1) The secret is a binary sequence. The shares are sets Rj of relations. The length from the
relations is not defined. In every set Rj are

(
n−1
t−1
)

relations from the group. The size of
each share can exceed the size of the secret.

(2) The dealer creates the shares according to instructions (see for instance the summary in
Section 5.1.1). Hence, he cannot add or delete shares, because the way he creates them
depends on the number m of relations and the number n of participants.

(3) He can change the shares if he changes the group G. He has to pay attention to the fact
that the sent word in the new group is equivalent to 1 if and only if it is equivalent to 1
in the previous group. Then the secret is not changed.

(4) Every (n, t)-secret sharing scheme can be converted into a hierarchical secret sharing pro-
tocol (see Section 5.3 Remark 5.3.10).

Because of Remark 5.1.4 we get the additional property.

(5) The secret, which is a binary sequence, can be changed at every time by sending new
words to the participants.

Protocol 5 of Section 5.2 (see also [CFMRZ16]):
Due to the fact, that this cryptographic protocol uses the share distribution method given by
D. Panagopoulos it fulfills the same properties of Shamir’s list ((1)-(4)) as D. Panagopoulos’
scheme does.

(1) The secret is the sum over m elements:
∑m

i=1
1
ai
∈ Q+. The shares are subsets Rj of

{a1, a2, . . . , am}, ai ∈ N, with |Rj | =
(
n−1
t−1
)
. Therefore, the size of each piece exceeds the

size of the secret.

(2) We use the method of D. Panagopoulos, hence this property is not valid due to the same
reasons as for his secret sharing scheme.

(3) The shares are subsets of the set {a1, a2, . . . , am}. If we choose a new set {a′1, a′2, . . . , a′m}
with the property

∑m
j=1

1
ai

=
∑m

j=1
1
a′i

and give each participant subsets of this new set as

a share, then the shares can be changed without changing the secret.

(4) Every (n, t)-secret sharing scheme can be converted into a hierarchical secret sharing pro-
tocol (see Section 5.3 Remark 5.3.10).

(5) A secret cannot be changed easily without changing the shares, because it is a sum over
all elements in the set {a1, a2, . . . , am} and hence depends on this set.

131

Chapter 5. Secret sharing protocols

The comparison is summarized in Table 5.4 (page 132).

Table 5.4.: Summary of the comparison

Shamir’s Shamir’s scheme CFRZ-scheme D. Panagopoulos’ scheme Protocol 5
properties

(1)
√ √

− −

(2)
√ √

− −

(3)
√ √ √ √

(4)
√ √ √ √

Additional property
(5) −

√ √
−

With the knowledge of Section 5.3.1 we can interpret D. Panagopoulos’ (n, t)-secret sharing
scheme and Protocol 5 as (m,m)-secret sharing schemes which are converted into (n, t)-secret
sharing schemes by the help of multiple assignment schemes, which is possible if m =

(
n
t−1
)
. The

number of shares each participant gets is
(
n−1
t−1
)

(see Remark 5.3.11). This corresponds with the
combinatorial solution of Lius problem (see Problem 5.0.2 and Remark 5.0.3).

Now, we take a look at the running time for the participants (see also [FMR13] or [CFMRZ16]).

Shamir’s scheme: The involved polynomial interpolation has a quadratic running time, that
means, if we have t supporting points we get a complexity of O(t2) (see for instance [EMNW11,
Section 9.2.1.]).

The CFRZ-scheme: In order to orthonormalize t linear independent vectors in a real inner
product space with dimension m we have a total running time of O(t2m) (see [FMR13, Sec-
tion 2.4]).
In the CFRZ-scheme the variable m depends on the number t, because m > t is postulated.
The total running time for this scheme is longer than for Shamir’s.

Panagopoulos’ scheme: The word problem in a Coxeter group, for example, is solvable within
quadratic running time, due to the fact, that Coxeter groups are automatic (see [BH93]) and
automatic groups have a solvable word problem with a quadratic running time (see [LS77]).

132

5.4. Comparison with A. Shamir’s suggested properties

Protocol 5: For the reconstruction of the shares the participants only add up m elements.
Therefore, for the participants it is just O(m), where m =

(
n
t−1
)

is already previously calculated
by the dealer, and hence m is fixed for the participants.

Remark 5.4.1. In the special case of a (t+1, t)-secret sharing scheme the running time depends
for Protocol 5 also only on t like in Sharmir’s scheme:

m =

(
n

t− 1

)
=

(
t+ 1

t− 1

)
=

(
t+ 1

2

)
=

(t+ 1) · t
2

=
t2 + t

2

<
2t2

2
= t2.

Hence, the running time is also O(t2), but as shown above the participants only add up m
elements, which is a very easy operation to reconstruct the secret.

As mentioned above in Remark 5.2.1 it is important in terms of practicability, that the dealer
calculates and distributes the shares for the participants in Protocol 5 long before the secret is
needed by the participants. Hence, the dealer has enough time to execute the share distribution
method and his computational cost should be of no consequence for the cryptographic protocol.
Note, that the dealer has to generate m =

(
n
t−1
)

shares and uses the share distribution method
in Section 5.1.1.
The size of the share-set exceeds the size of the secret but the calculation to reconstruct the
secret is very easy and fast.

133

Chapter 6

Secret sharing schemes using Nielsen
transformations

Now, we introduce first Protocol 6 and afterwards Protocol 7. Both are secret sharing pro-
tocols and are based on Nielsen transformations. Protocol 6 uses in addition a free subgroup
of the special linear group SL(2,Q) and the secret is a sum over traces of matrices in SL(2,Q).
Protocol 7 uses in addition Nielsen reduced sets and the secret is a sum which uses the free
length of elements in a Nielsen reduced set.
We present both cryptographic protocols as (m,m)-secret sharing schemes, because it is pos-
sible to modify them to any (n, t)-secret sharing scheme if the share distribution method of
Section 5.1.1 is used and m is determined as m =

(
n
t−1
)
. Both developed cryptographic pro-

tocols are published in the survey article [CFMRZ16] as research in the field of secret sharing
schemes. They are also published in [MR15].

6.1. Secret sharing scheme based on Nielsen transformations and
SL(2,Q) (Protocol 6)

For Protocol 6 we consider a finitely generated free group F as an abstract group but also
explicit as a subgroup of the special linear group of all 2× 2 matrices over Q, that is,

SL(2,Q) =

{(
a b
c d

)
| a, b, c, d ∈ Q and ad− bc = 1

}
.

We use the special linear group over the rational numbers because these numbers can be stored
and computed more efficiently on a computer than irrational numbers.

We explain Protocol 6, while we take a closer look at the steps for the dealer and the steps for
the participants.

Steps for the dealer:

For a (m,m)-secret sharing scheme, m ∈ N, the dealer does the following steps.

1. He chooses an abstract free generating set X for the free group F of rank m, it is

F = 〈X | 〉 with X := {x1, x2, . . . , xm}.

He also needs an explicit free generating set M , so it is

F = 〈M | 〉 with M := {M1,M2, . . . ,Mm}

135

Chapter 6. Secret sharing schemes using Nielsen transformations

and Mi ∈ SL(2,Q). Therefore, F is a subgroup of SL(2,Q), he chooses Mi ∈ SL(2,Q) and
takes care that F is not a subgroup of SL(2,Z), see Security 6.1.2.

2. With the known matrices in the set M the secret is

S :=

m∑
j=1

1

|aj |
∈ Q+, with aj := tr(Mj) ∈ Q,

tr(Mj) is the trace of the matrix Mj :=

(
a b
c d

)
∈ SL(2,Q), that is, tr(Mj) := a+ d.

If the dealer needs a special secret he can act as described in Variation 5.2.2 or Varia-
tion 5.2.4.

3. The dealer constructs the shares for the participants in the following way:
He first applies a regular Nielsen transformation simultaneously for both sets X and M to
get Nielsen equivalent sets U and N to X and M , respectively (see Figure 6.1).

X = {x1, x2, . . . , xm} M = {M1,M2, . . . ,Mm}
(x1, x2, . . . , xm) (M1,M2, . . . ,Mm)

regular Nielsen

transformation

regular Nielsen

transformation

(u1, u2, . . . , um) (N1, N2, . . . , Nm)
U := {u1, u2, . . . , um} N := {N1, N2, . . . , Nm}

Figure 6.1.: Simultaneously regular Nielsen transformations

The elements ui are words in X and the elements Ni are words in M . Hence, we have
Ni ∈ SL(2,Q).

4. Let P = {p1, p2, . . . , pm} be the set of participants for the secret sharing protocol. The
dealer distributes to each participant pi one abstract share ui and one explicit share Ni.
Hence, pi gets (ui, Ni), 1 ≤ i ≤ m.

If all participants combine their parts they obtain the sets U and N .

Steps for the participants:

1. The participants apply regular Nielsen transformations in a Nielsen reducing manner for U
as described in [Ste89], Remark 4.2.17, (or also in [CgRR08] and [LS77]) and step by step
simultaneously for N . By Proposition 4.2.5 and the fact, that the dealer does a regular
Nielsen transformation and starts with a basis of m elements, they get Nielsen reduced
sets X ′ = {x′1, x′2, . . . , x′m} and M ′ = {M ′1,M ′2, . . . ,M ′m}, see Figure 6.2.

136

6.1. Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6)

U = {u1, u2, . . . , um} N = {N1, N2, . . . , Nm}
(u1, u2, . . . , um) (N1, N2, . . . , Nm)

regular Nielsen

transformation

regular Nielsen

transformation

(x′1, x
′
2, . . . , x

′
m) (M ′1,M

′
2, . . . ,M

′
m)

X ′ := {x′1, x′2, . . . , x′m} M ′ := {M ′1,M ′2, . . . ,M ′m}

Figure 6.2.: Simultaneously regular Nielsen transformations

Because of Corollary 4.2.9 it is X±1 = X ′±1 and M±1 = M ′±1, respectively. Hence,
(x′1, x

′
2, . . . , x

′
m) differs to (x1, x2, . . . , xm) just in the position order and inverses. That

means the set X ′ is the set X up to inverses. The same is true for M ′ and M . Thus, it is
X ′ = {xε11 , x

ε2
2 , . . . , x

εm
m } and M ′ = {M δ1

1 ,M
δ2
2 , . . . ,M

δm
m } with εi, δi ∈ {1,−1}.

2. With the knowledge of the set M ′ it is easy to reconstruct the secret

S =

m∑
j=1

1

|aj |
∈ Q+, with tr(Mj) = aj ∈ Q.

Recall that here tr(M δi
i) = tr(Mi), δi ∈ {1,−1}, for i = 1, . . . ,m.

If the participants get just matrices of the set M , from which the secret can be reconstructed,
and they know that the secret is a special sum over the traces of the matrices in M , then
they know that the searched secret is bigger than the special sum over their known matrices.
Hence, they know more than an outsider and the secret sharing scheme is not perfect in the
information-theoretic sense. Therefore, the Nielsen transformation is needed.

Remark 6.1.1. If a (n, t)-secret sharing scheme is desired the dealer chooses m =
(
n
t−1
)

and
uses the method described in Section 5.1.1 for distribution of U and N and gives the two share-
sets Ri and Sj to participant pk with Ri ⊆ U and Sj ⊆ N , 1 ≤ k ≤ n. If t or more participants
combine their shares, they get the sets U and N . With these sets they are able to reconstruct
the secret as explained above in the steps for the participants. Less than t participants can
neither get the whole set U , which is Nielsen equivalent to X ′, nor the whole set N , which is
Nielsen equivalent to M ′.

The cryptographic protocol as a (n, t)-secret sharing scheme is summarized in Table 6.1 (page 138).

137

Chapter 6. Secret sharing schemes using Nielsen transformations

Table 6.1.: Summary of Protocol 6: Secret sharing scheme using Nielsen transformations and
SL(2,Q)

(n, t)-secret sharing scheme
Dealer Participants p1, p2, . . . , pn

Calculate m =
(
n
t−1
)
.

Choose abstract free generating set
X := {x1, x2, . . . , xm} and explicit free
generating set M := {M1,M2, . . . ,Mm} with
Mi ∈ SL(2,Q) (all or almost allMi /∈ SL(2,Z)).

Apply simultaneously regular Nielsen transfor-
mation (NT) on X and M :

(x1, x2, . . . , xm) (M1,M2, . . . ,Mm)
↓ NT ↓ NT

(u1, u2, . . . , um) (N1, N2, . . . , Nm)

U := {u1, u2, . . . , um}; N := {N1, N2, . . . , Nm}.

Construct sets Rj ⊆ U and Sj ⊆ N with share
distribution method of Section 5.1.1;

it is |Rj | = |Sj | =
(
n−1
t−1
)

for j = 1, 2, . . . n.

Distribute shares to the participants.
(R1,S1)−−−−−−−−−−−−−−−−−−−→ p1
(R2,S2)−−−−−−−−−−−−−−−−−−−→ p2

...
(Rn,Sn)−−−−−−−−−−−−−−−−−−−→ pn

t participants combine their shares and thus
get the sets U and N .

Apply simultaneously regular Nielsen
transformation (NT) on U and N :

(u1, u2, . . . , um) (N1, N2, . . . , Nm)
↓ NT ↓ NT

(x′1, x
′
2, . . . , x

′
m) (M ′1,M

′
2, . . . ,M

′
m)

The secret is

S :=
m∑
j=1

1

|a′j |
∈ Q+, with a′j := tr(M ′j) ∈ Q.

138

6.1. Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6)

Security 6.1.2. For the calculation of the secret, the participants need the whole set M ′,
because the secret depends on the traces of the matrices M ′i ∈M ′. The participants need both
sets U and N . If they just have one set U or N they cannot get information about the set M ′.
If the set U is known, it is only known which regular Nielsen transformation should be done to get
the Nielsen equivalent set X ′, but it is unknown on which matrices they should be simultaneously
done.
If only the set N is known, then the matrices in SL(2,Q) are known, but nobody knows which
Nielsen transformations should be applied on N to get the set M ′. It is also unknown how many
Nielsen transformations were used. There could be hints, for Nielsen transformations if elements
in N could be written in terms of other elements in SL(2,Q). For example it is known, that an
algorithm exists which writes each element in SL(2,Z) in terms of(

1 1
0 1

)
and

(
0 −1
1 0

)
(see Remark 4.3.12). We can use the fact that there is no algorithm known to solve the (con-
structive) membership problem for (discrete) free subgroups of SL(2,Q) of rank 2 or greater
than 2 which are not subgroups in SL(2,Z) (see Remark 4.3.14). B. Eick, M. Kirschmer and
C. Leedham-Green presented in their paper [EKLG14] a practical algorithm to solve the con-
structive membership problem for discrete free subgroups of rank 2 of SL(2,R). For example,
the subgroup SL(2,Z) of SL(2,R) is discrete, but they also mention, that it is an open problem
to solve the membership problem for (discrete) free subgroups of SL(2,R) with arbitrary rank
m ≥ 2. Therefore, if the dealer takes care, that all (or almost all) matrices in M are in SL(2,Q)
but not in SL(2,Z) then the constructive membership problem cannot be used to get information
about the Nielsen transformation to go from N to M ′.

Running time:

In [Ste89] an algorithm, using elementary Nielsen transformations, is presented which, given a
finite set S of m words of a free group, returns a set S′ of Nielsen reduced words, such that
〈S〉 = 〈S′〉; the algorithm runs in O(`2m2), where ` is the maximum free length of a word in S.
In this cryptographic protocol, the dealer fixes the number m, hence the running time depends
only on the maximum free length ` of the words in the Nielsen equivalent set U to the set X.
Thus, the participants have a running time of O(`2) to get the set X ′.
If the participants perform the associated elementary Nielsen transformations on the set N of
matrices at the same time, then they perform either a matrix multiplication or they calculate an
inverse matrix. In order to multiply two 2× 2 matrices in SL(2,Q) they need 8 multiplications
and 4 additions of rational numbers, hence 12 operations. The inverse matrix of

A =

(
a b
c d

)
∈ SL(2,Q)

is

A−1 =
1

ad− bc

(
d −b
−c a

)
.

The participants need 4 operations to get 1
ad−bc (note, that in SL(2,Q) it is ad − bc = 1 and

hence A−1 =

(
d −b
−c a

)
); for the entries of the matrix A−1 they do not need any operations,

they just swap two entries and write a minus in front of the other two entries.
All together the participants have a running time of O(`2), where ` is the maximum free length
of the elements in U .

139

Chapter 6. Secret sharing schemes using Nielsen transformations

We now present an example for this secret sharing scheme.

Example 6.1.3. We perform the steps for a (3, 2)-secret sharing scheme with the help of the
computer program Maple 16, see Appendix C.3. It is n = 3, t = 2 and hence m =

(
3
1

)
= 3.

First the dealer generates the shares for the participants.

1. The dealer chooses an abstract presentation for the free group F of rank 3

F = 〈X | 〉 with X := {x1, x2, x3}.

He takes an explicit presentation

F = 〈M | 〉 with M := {M1,M2,M3},

Mi ∈ SL(2,Q), with the help of Theorem 4.2.18. We first mention that the inequalities
(4.1) hold for

r1 =
7

2
, r2 =

15

2
, r3 = 11

and hence the set of the matrices

M1 =

(
−7

2 −1 +
(
7
2

)2
1 −7

2

)
=

(
−7

2
45
4

1 −7
2

)
,

M2 =

(
−15

2 −1 +
(
15
2

)2
1 −15

2

)
=

(
−15

2
221
4

1 −15
2

)
and

M3 =

(
−11 −1 + 112

1 −11

)
=

(
−11 120

1 −11

)
is a free generating set for a free group of rank 3.

2. It is

a1 := tr(M1) = −7, a2 := tr(M2) = −15, a3 := tr(M3) = −22,

and hence the secret is

S :=
3∑
j=1

1

|aj |
=

589

2310
.

3. Construction of the shares for the participants: First the dealer applies regular Nielsen
transformations (NTs) simultaneously for both sets X and M to get Nielsen equivalent
sets U and N to X and M , respectively. These transformations are shown in Table 6.2
(page 141).

140

6.1. Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6)

Table 6.2.: Nielsen transformations (NTs) done by the dealer

NTs Theoretical set X Explicit set M

(x1, x2, x3)

((
− 7

2
45
4

1 − 7
2

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
−11 120

1 −11

))

(T1)2
(
x1, x

−1
2 , x3

) ((
− 7

2
45
4

1 − 7
2

)
,

(
− 15

2 − 221
4

−1 − 15
2

)
,

(
−11 120

1 −11

))

(T2)1.2
(
x1x

−1
2 , x−1

2 , x3
) ((

15 109
−4 −29

)
,

(
− 15

2 − 221
4

−1 − 15
2

)
,

(
−11 120

1 −11

))

[(T2)3.2]3
(
x1x

−1
2 , x−1

2 , x3x
−3
2

) ((
15 109
−4 −29

)
,

(
− 15

2 − 221
4

−1 − 15
2

)
,

(
−8565 −63664

799 5939

))

(T2)2.3
(
x1x

−1
2 , x−1

2 x3x
−3
2 , x3x

−3
2

) ((
15 109
−4 −29

)
,

(
80371

4
597401

4
5145
2

38243
2

)
,

(
−8565 −63664

799 5939

))

(T1)1
(
x2x

−1
1 , x−1

2 x3x
−3
2 , x3x

−3
2

) ((
−29 −109

4 15

)
,

(
80371

4
597401

4
5145
2

38243
2

)
,

(
−8565 −63664

799 5939

))

(T2)1.2
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x−1
2 x3x

−3
2 , x3x

−3
2

) (
80371

4
597401

4
5145
2

38243
2

)
,

(
−8565 −63664

799 5939

))

(T1)3
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x−1
2 x3x

−3
2 , x32x

−1
3

) (
80371

4
597401

4
5145
2

38243
2

)
,

(
5939 63664
−799 −8565

))

(T2)3.2
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x−1
2 x3x

−3
2 , x32x

−1
3 x−1

2 x3x
−3
2

) (80371
4

597401
4

5145
2

38243
2

)(
1132425929

4
8417369243

4
− 152350279

4 − 1132425989
4

))

The dealer gets the sets

U = {u1, u2, u3} := {x2x−11 x−12 x3x
−3
2 , x−12 x3x

−3
2 , x32x

−1
3 x−12 x3x

−3
2 }

141

Chapter 6. Secret sharing schemes using Nielsen transformations

and

N = {N1, N2, N3}

:=

{(
−3452369

4 −25661603
4

237917
2

1768447
2

)
,

(
80371

4
597401

4
5145
2

38243
2

)
,

(
1132425929

4
8417369243

4
−152350279

4 −1132425989
4

)}
.

He gets the share (Ri, Sj) for the participant pk with Ri ⊂ U and Sj ⊂ N following the
method in Section 5.1.1:

a) It is m =
(
n
t−1
)

=
(
3
1

)
= 3.

b) The dealer chooses the abstract elements ã1, ã2, ã3 and gets the three sets

A1 = {1} , A2= {2} , A3 = {3} .

With the help of the Ai the dealer gets the sets R′1, R
′
2, and R′3 which contain elements

from the set {ã1, ã2, ã3}. He puts the element ãj by which i is not contained in the
set Aj for i = 1, 2, 3 and j = 1, 2, 3, into the set R′i:

1 6∈ A2, A3 =⇒ R′1 = {ã2, ã3} ,
2 6∈ A1, A3 =⇒ R′2 = {ã1, ã3} ,
3 6∈ A1, A2 =⇒ R′3 = {ã1, ã2} .

Now, we apply this to U and N to create the share-sets for the participants, respec-
tively:

R1 = {u2, u3} , S1= {N2, N3} ,
R2 = {u1, u3} , S2= {N1, N3} ,
R3 = {u1, u2} , S3= {N1, N2} .

4. The dealer gives each participant pk a tuple (Ri, Sj). Participant p1 gets (R1, S2), p2 gets
(R2, S3) and p3 gets (R3, S1).

Assume the participants p1 and p2 come together to reconstruct the secret. They generate the
sets U = {u1, u2, u3} and N = {N1, N2, N3}. The secret can be recovered as follow.
The participants apply regular Nielsen transformations step by step simultaneously for both
sets U and N to get X ′ and M ′. The steps are shown in Table 6.3 (page 143) and Table 6.4
(page 144).

142

6.1. Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6)

Table 6.3.: Nielsen transformations (NTs) done by the participants I

NTs Theoretical set U Explicit set N

(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x−1
2 x3x

−3
2 , x32x

−1
3 x−1

2 x3x
−3
2

) (80371
4

597401
4

5145
2

38243
2

)
,

(
1132425929

4
8417369243

4
− 152350279

4 − 1132425989
4

))

(T1)2
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x32x
−1
3 x2, x

3
2x

−1
3 x−1

2 x3x
−3
2

) (
38243

2 − 597401
4

− 5145
2

80371
4

)
,

(
1132425929

4
8417369243

4
− 152350279

4 − 1132425989
4

))

(T2)3.2
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x32x
−1
3 x2, x

3
2x

−1
3

) (
38243

2 − 597401
4

− 5145
2

80371
4

)
,

(
5939 63664
−799 −8565

))

(T1)2
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x−1
2 x3x

−3
2 , x32x

−1
3

) (
80371

4
597401

4
5145
2

38243
2

)
,

(
5939 63664
−799 −8565

))

(T2)2.3
(
x2x

−1
1 x−1

2 x3x
−3
2 ,

((
− 3452369

4 − 25661603
4

237917
2

1768447
2

)
,

x−1
2 , x32x

−1
3

) (
− 15

2 − 221
4

−1 − 15
2

)
,

(
5939 63664
−799 −8565

))

(T2)1.3
(
x2x

−1
1 x−1

2 , x−1
2 , x32x

−1
3

) ((
653
2

9679
4

−45 − 667
2

)
,

(
− 15

2 − 221
4

−1 − 15
2

)
,

(
5939 63664
−799 −8565

))

(T1)2
(
x2x

−1
1 x−1

2 , x2, x
3
2x

−1
3

) ((
653
2

9679
4

−45 − 667
2

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
5939 63664
−799 −8565

))

(T2)1.2
(
x2x

−1
1 , x2, x

3
2x

−1
3

) ((
−29 −109

4 15

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
5939 63664
−799 −8565

))

(T1)1
(
x1x

−1
2 , x2, x

3
2x

−1
3

) ((
15 109
−4 −29

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
5939 63664
−799 −8565

))

143

Chapter 6. Secret sharing schemes using Nielsen transformations

Table 6.4.: Nielsen transformations (NTs) done by the participants II

NTs Theoretical set U Explicit set N

(T2)1.2
(
x1, x2, x

3
2x

−1
3

) ((
− 7

2
45
4

1 − 7
2

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
5939 63664
−799 −8565

))

(T1)3
(
x1, x2, x3x

−3
2

) ((
− 7

2
45
4

1 − 7
2

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
−8565 −63664

799 5939

))

[(T2)3.2]3 (x1, x2, x3)

((
− 7

2
45
4

1 − 7
2

)
,

(
− 15

2
221
4

1 − 15
2

)
,

(
−11 120

1 −11

))

With the knowledge of the set M ′ =

{(
−7

2
45
4

1 −7
2

)
,

(
−15

2
221
4

1 −15
2

)
,

(
−11 120

1 −11

)}
the partici-

pants can reconstruct the secret easily. It is

a′1 := tr(M ′1) = −7, a′2 := tr(M ′2) = −15, a′3 := tr(M ′3) = −22,

and hence it is

S :=
3∑
j=1

1

|a′j |
=

1

7
+

1

15
+

1

22
=

589

2310
.

In general we can use any free matrix group F of rank m :=
(
n
t−1
)

for a (n, t)-secret shar-
ing scheme as it is described in this example. The shares can be generated by the method of
D. Panagopoulos and are tuples (Ri, Sj) with Ri ⊂ U and Sj ⊂ N .

We could also use some other sums or products to define a secret. Some examples are:

• S :=

m∏
i=1

|tr(Mi)| or S :=

m∑
i=1

|tr(Mi)| or

• S :=

m∏
i=1

(tr(Mi))
2 or S :=

m∑
i=1

(tr(Mi))
2 or

• S :=

m
2∏
i=1

tr([M2i−1,M2i]) if m is even or

• S :=
m∑
i=1

tr(M2
i).

Remark 6.1.4. Maybe the dealer should not only use matrices, for the set M, generated by
Theorem 4.2.18, because they are of a special look, which is

Mj =

(
−rj −1 + r2j

1 −rj

)
,

144

6.1. Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6)

with rj ∈ Q, 1 ≤ j ≤ m, and it is

rj+1 − rj ≥ 3 and r1 ≥ 2.

Maybe an enemy could start an attack with this information. To avoid this, the dealer could
calculate a set X ′ = {X1, X2, . . . , X`}, ` ≥ 3, with matrices generated by Theorem 4.2.18, and
the set M could be a free generating set (not necessary Nielsen reduced) with m =

(
n
t−1
)

elements
of a subgroup of 〈X ′ | 〉.

Remark 6.1.5. We now compare this scheme as (n, t)-secret sharing protocol to Shamir’s
properties as given in Section 5.4. To get a (n, t)-secret sharing variation we use the share
distribution method given in Section 5.1.1 by D. Panagopoulos. Therefore, this scheme fulfills
the same properties of Shamir as D. Panagopoulos’ scheme does. That means (3) and (4) are
fulfilled and (1) and (2) are not fulfilled. Furthermore, the additional property (5) does not
hold. In more details:

(1) The size of each share exceed the size of the secret, because the secret is a rational number
and the shares are tuples of subsets (Ri, Sj), whereby each set Ri and Sj holds

(
n−1
t−1
)

elements (see Section 5.1.1).

(2) The dealer creates the shares according to instructions (see for instance the summary in
Section 5.1.1). Hence, he cannot add or delete shares, because the way he creates them
depends on the number m =

(
n
t−1
)

and the number n of participants.

(3) He can change the shares if he changes the set M . He has to take care that the new set
Mnew (which is another explicit generating set for a free group of rank m) gives the same
secret as the set M , that means

m∑
i=1

1

|ai|
=

m∑
i=1

1

|anewi |
,

with ai := tr(Mi), Mi ∈M , and anewi := tr(Mnew
i), Mnew

i ∈Mnew.

(4) Every (n, t)-secret sharing scheme can be converted into a hierarchical secret sharing pro-
tocol (see Section 5.3 Remark 5.3.10).

(5) A secret cannot be changed easily without changing the shares, because it is a sum over
the rank of matrices in the set M and hence depends on this set.

To fulfill property (5) we introduce the following variation.

Variation 6.1.6. The dealer constructs the Nielsen equivalent sets U to X and N to M as in
Figure 6.1. The set U is distributed to the participants and the set N is public. If the dealer
needs a new secret he uses a new set M̃ and calculates, with the same Nielsen transformation
with which he comes from the set X to the set U , the Nielsen equivalent set Ñ to M̃ . He then
publishes the set Ñ . If the participants come together to reconstruct the set U , they know the
Nielsen transformation to come from the set N to the set M or from the set Ñ to the set M̃ ,
respectively. The dealer can change the secret without changing the shares of the participants.
If he takes care, that all (or almost all) matrices in the sets M or M̃ , respectively, are in SL(2,Q)
but not in SL(2,Z) then the constructive membership problem cannot be used to get information
about the used Nielsen transformation, see Security 6.1.2.

145

Chapter 6. Secret sharing schemes using Nielsen transformations

6.2. Secret sharing scheme based on Nielsen reduced sets and the
free length (Protocol 7)

We now present Protocol 7, which uses as Protocol 6 Nielsen transformations. Let F be
a finitely generated free group with the abstract free generating set X := {x1, x2, . . . , xq},
q ∈ N \ {1}, that is,

F = 〈X | 〉.

In this cryptographic protocol we just work with respect to the given basis elements of a finitely
generated free group.

Steps for the dealer:

For a (m,m)-secret sharing scheme, m ∈ N, the dealer does the following steps.

1. He chooses a free group F with an abstract free generating set X := {x1, x2, . . . , xq},
q ∈ N \ {1}, and a Nielsen reduced set U ⊂ F with U := {u1, u2, . . . , um}. The ui are
given as words in X.

2. With the known set U the secret is the sum

S :=

m∑
i=1

1

|ui|X
,

with |ui|X the free length of the word ui in X. If the dealer needs a special secret he can
act as described in Variation 5.2.2 or Variation 5.2.4.

3. To generate the shares for the participants, the dealer does a regular Nielsen transformation
on the set U to get the Nielsen equivalent set V as shown in Figure 6.3.

U = {u1, u2, . . . , um}
(u1, u2, . . . , um)

regular Nielsen

transformation

(v1, v2, . . . , vm)

V = {v1, v2, . . . , vm}

Figure 6.3.: Regular Nielsen transformation from U to a Nielsen equivalent set V

4. Let P = {p1, p2, . . . , pm} be the set of the participants for the secret sharing scheme. Each
participant pi, 1 ≤ i ≤ n, gets one element vi ∈ V .

If all participants come together to reconstruct the secret, they combine their shares and get
the set V = {v1, v2, . . . , vm}.

146

6.2. Secret sharing scheme based on Nielsen reduced sets and the free length (Protocol 7)

Steps for the participants:

1. They have to find a Nielsen reduced set U ′ = {u′1, u′2, . . . , u′m} to V . They apply Nielsen
transformations in a Nielsen reducing manner as described in [Ste89], Remark 4.2.17, (or
also in [CgRR08] and [LS77]) and get from V a Nielsen reduced set U ′, see Figure 6.4.

V = {v1, v2, . . . , vm}
(v1, v2, . . . , vm)

regular Nielsen

transformation

(u′1, u
′
2, . . . , u

′
m)

U ′ = {u′1, u′2, . . . , u′m}

Figure 6.4.: Regular Nielsen transformation from V to a Nielsen reduced set U ′

2. With the knowledge of U ′ the secret is the sum

S =

m∑
i=1

1

|u′i|X
,

because for each i we have |u′i|X = |uj |X for some j (see the proof of Corollary 3.1 in
[MKS66]). From U ′ we get U by permutations and length preserving Nielsen transforma-
tions.

Remark 6.2.1. If a (n, t)-secret sharing scheme is desired the dealer chooses m =
(
n
t−1
)

and
uses the method described in Section 5.1.1 for distribution of V and gives one of the obtained
share-sets, that is, Ri ⊆ V , to participant pi, 1 ≤ i ≤ n. If t or more participants combine their
shares, they get the set V . With this set they are able to reconstruct the secret as explained
above in the steps for the participants. Less than t participants cannot get the whole set V due
to the method how the share-sets Ri ⊆ V are generated.

This cryptographic protocol as a (n, t)-secret sharing scheme is summarized in Table 6.5 (page 148).

147

Chapter 6. Secret sharing schemes using Nielsen transformations

Table 6.5.: Summary of Protocol 7: Secret sharing scheme using Nielsen transformations to-
gether with Nielsen reduced sets and free lengths of certain words

(n, t)-secret sharing scheme
Dealer Participants p1, p2, . . . , pn

Calculate m =
(
n
t−1
)
.

Choose abstract free generating set
X = {x1, x2, . . . , xq}, q ∈ N \ {1}, and a Nielsen
reduced set U = {u1, u2, . . . , um} ⊂ F , ui words
in X.

Apply regular Nielsen transformation (NT) on
U :

(u1, u2, . . . , um)
↓ NT

(v1, v2, . . . , vm)

V := {v1, v2, . . . , vm}.

Construct sets Rj ⊆ V with share distribution
method of Section 5.1.1;

it is |Rj | =
(
n−1
t−1
)

for j = 1, 2, . . . n.

Distribute shares to the participants.
R1−−−−−−−−−−−−−−−−→ p1
R2−−−−−−−−−−−−−−−−→ p2

...
Rn−−−−−−−−−−−−−−−−→ pn

t participants combine their shares and
thus get the set V .

Apply regular Nielsen transformation
(NT) on V to get a Nielsen reduced set:

(v1, v2, . . . , vm)
↓ NT

(u′1, u
′
2, . . . , u

′
m)

The secret is

S =
m∑
i=1

1

|u′i|X
.

Security 6.2.2. By combining less than m shares the participants get a subset Ṽ of V , it is

148

6.2. Secret sharing scheme based on Nielsen reduced sets and the free length (Protocol 7)

∣∣∣Ṽ ∣∣∣ ≤ m− 1. If they apply a regular Nielsen transformation on the set Ṽ in a Nielsen reducing

manner they do not get a subset Ũ of U , in general. Hence, they get no useful information
to reconstruct the secret. They know that for each element ũi ∈ Ũ there exists an element
ui ∈ U , such that |ui|X ≤ |ũi|X . Hence, they only know, that S >

∑
ũi∈U

1
|ũi|X

, because 1
x ≤

1
y

if 0 < y ≤ x.

If the secret is just the sum
∑m

i=1 |ui|X , then the participants know that the secret is less than
the sum over the free length of the elements in V , that is, S <

∑m
i=1 |vi|X , because it is known

that a Nielsen reduced set V has the shortest total X-length of all Nielsen equivalent sets to
this set V , see Proposition 4.2.6. It is likely that the secret is less than

K =
m∑
i=1
i 6=j

|vi|X

for a j ∈ {1, 2, . . . ,m}. Hence, less than m participants could get a correct bound K for the
secret, which is a natural number. Therefore, they know that the secret S is an element in
{m,m+ 1,m+ 2, . . . ,K}.
Instead, as mention in Security 6.2.2, if the secret is S =

∑m
i=1

1
|ui|X and m − 1 participants

calculate the sum

S′ =
m∑
i=1
i6=j

1

|vi|X
,

they can only assume S > S′, because there is a bijection between V and U , such that vi 7→ uj
and |vi|X ≥ |uj |X for each i and the corresponding j and in addition it is 1

x ≤
1
y if 0 < y ≤ x.

Running time:

In [Ste89] an algorithm, using elementary Nielsen transformations, is presented which, given a
finite set S of m words of a free group, returns a set S′ of Nielsen reduced words, such that
〈S〉 = 〈S′〉; the algorithm runs in O(`2m2), where ` is the maximum free length of a word in S.
In this cryptographic protocol, the dealer fixes the number m, hence the running time depends
only on the maximum free length ` of the words in the Nielsen equivalent set V to the set U .
Thus, the participants have a running time of O(`2) to get the set U ′. The secret is then the
above sum, which is computable in linear time.

We now present an example for this secret sharing scheme.

Example 6.2.3. This example is executed with the help of the computer program GAP1 and
the FGA2 package. We give a (3, 3)-secret sharing example. Let p1, p2 and p3 be the participants.
Let F be a finitely generated free group with the free generating set X = {a, b, c}. The Nielsen
reduced set U can be constructed with the help of Lemma 4.2.15 and because of Theorem 4.2.13
it is a basis for a free group. The dealer chooses U = {b2a, cab, ac−1b−1a3}, with u1 = b2a,
u2 = cab and u3 = ac−1b−1a3. Thus, the secret is

S =
3∑
i=1

1

|ui|X
=

1

3
+

1

3
+

1

6
=

5

6
.

1Groups, Algorithms and Programming [GAP15]
2Free Group Algorithms. A GAP4 package by Christian Sievers, TU Braunschweig.

149

Chapter 6. Secret sharing schemes using Nielsen transformations

The regular Nielsen transformation for the dealer is given by the elementary Nielsen transfor-
mations

(N1)2 (N2)1.3 (N2)3.2 (N2)2.3 (N1)2 (N2)1.2 (N1)2 (N2)3.2 (N1)1 (N1)3.1 (N1)1,

which are applied from the left to the right:

(u1, u2, u3)
(N1)2−→ (u1, u

−1
2 , u3)

(N2)1.3−→ (u1u3, u
−1
2 , u3)

(N2)3.2−→ (u1u3, u
−1
2 , u3u

−1
2)

(N2)2.3−→ (u1u3, u
−1
2 u3u

−1
2 , u3u

−1
2)

(N1)2−→ (u1u3, u2u
−1
3 u2, u3u

−1
2)

(N2)1.2−→ (u1u3u2u
−1
3 u2, u2u

−1
3 u2, u3u

−1
2)

(N1)2−→ (u1u3u2u
−1
3 u2, u

−1
2 u3u

−1
2 , u3u

−1
2)

(N2)3.2−→ (u1u3u2u
−1
3 u2, u

−1
2 u3u

−1
2 , u3u

−2
2 u3u

−1
2)

(N1)1−→ (u−12 u3u
−1
2 u−13 u−11 , u−12 u3u

−1
2 , u3u

−2
2 u3u

−1
2)

(N1)3.1−→ (u−12 u3u
−1
2 u−13 u−11 , u−12 u3u

−1
2 , u3u

−2
2 u3u

−2
2 u3u

−1
2 u−13 u−11)

(N1)1−→ (u1u3u2u
−1
3 u2, u

−1
2 u3u

−1
2 , u3u

−2
2 u3u

−2
2 u3u

−1
2 u−13 u−11)

This regular Nielsen transformation generates the automorphism f(see Proposition 4.2.4) with

f : 〈U〉 → 〈U〉
u1 7→ v1 := u1u3u2u

−1
3 u2

u2 7→ v2 := u−12 u3u
−1
2

u3 7→ v3 := u3u
−2
2 u3u

−2
2 u3u

−1
2 u−13 u−11 .

Therefore, a Nielsen equivalent set of U is V = {v1, v2, v3} with

v1 = b2a2c−1b−1a3caba−3bca−1cab,

v2 = b−1a−1c−1ac−1b−1a3b−1a−1c−1,

v3 = (ac−1b−1a3(b−1a−1c−1)2)2ac−1b−1a3b−1a−1c−1a−3bca−2b−2.

Each participant pi gets one share vi, 1 ≤ i ≤ 3.
If all three shares are combined, the participants regenerate the set V and if they now calculate
a Nielsen reduced set of this set V they get a set U ′ := {u′1, u′2, u′3} which includes two elements
of free length 3 and one element of free length 6. Let |u′1| = |u′2| = 3 and |u′3| = 6, if this is not
the situation, renumber the elements in U ′. They reconstructed the correct secret

S =

3∑
i=1

1

|u′i|X
=

1

3
+

1

3
+

1

6
=

5

6
.

The package FGA for the computer program GAP provides the operation

. FreeGeneratorsOfGroup(G)

which returns a list of free Nielsen reduced generators, which defines a Nielsen reduced set of
the finitely generated subgroup G of a free group. See Appendix C.4 for the computer code of
this example.

Remark 6.2.4. We now compare this scheme as (n, t)-secret sharing protocol to Shamir’s

150

6.2. Secret sharing scheme based on Nielsen reduced sets and the free length (Protocol 7)

properties as given in Section 5.4. To get a (n, t)-secret sharing variation we use the share
distribution method given in Section 5.1.1 by D. Panagopoulos. Therefore, this scheme fulfills
the same properties of Shamir as D. Panagopoulos’ scheme does. That means (3) and (4) are
fulfilled and (1) and (2) are not fulfilled. Furthermore, the additional property (5) does not
hold. In more details:

(1) The size of each share exceed the size of the secret, because the secret is a rational num-
ber and the shares Ri are subsets of V , whereby each set Ri holds

(
n−1
t−1
)

elements (see
Section 5.1.1).

(2) The dealer creates the shares according to instructions (see for instance the summary in
Section 5.1.1). Hence, he cannot add or delete shares, because the way he creates them
depends on the number m =

(
n
t−1
)

and the number n of participants.

(3) He can change the shares if he changes the set U . Firstly, he chooses a new abstract free
generating set Xnew = {x1, x2, . . . , xq′}, with q′ ∈ N \ {1} not necessary q′ = q. Secondly,
he selects a Nielsen reduced set Unew = {unew1 , unew2 , . . . , unewm }, with unewi word in Xnew,
1 ≤ i ≤ m. He has to take care that the new set Unew gives the same secret as the set U ,
that means

m∑
i=1

1

|ui|X
=

m∑
i=1

1

|unewi |Xnew
,

with ui ∈ U and unewi ∈ Unew.

(4) Every (n, t)-secret sharing scheme can be converted into a hierarchical secret sharing pro-
tocol (see Section 5.3 Remark 5.3.10).

(5) A secret cannot be changed easily without changing the shares, because it is a sum over
the free length of the elements in the set U and hence depends on this set.

151

Chapter 7

Private key cryptosystem with Aut(F)
(Protocol 8)

In this chapter we introduce Protocol 8 as well as three modifications of this cryptographic
protocol. Protocol 8 is a private key cryptosystem, which is based on combinatorial group
theory. It uses a finitely generated free group F , a subgroup FU of F with finite rank, a Nielsen
reduced set and automorphisms of F . It is published in [MR16].
In this cryptographic protocol the ciphertext is a sequence of reduced words in X where the
end of each ciphertext unit is marked and X is a free generating set for a free group F of finite
rank. A modification is given, in which the ciphertext is now only one reduced word in X
instead of a sequence of words, in this case it is possible that additional information is needed
for decryption, thus these is sent with the ciphertext if required. In the second modification
a faithful representation from F into the special linear group SL(2,Q) is used, such that the
ciphertext is a sequence of matrices in SL(2,Q). The third modification utilizes the negative
solution of Hilbert’s Tenth Problem. Instead of a presentation of the ciphertext as a sequence
of matrices in SL(2,Q) the ciphertext is represented as a sequence of matrices in GL(2, R), with
R := Z[y1, y2, . . . , yn], the integral polynomial ring in n ≥ 2 variables.

For the encryption of the plaintext different automorphisms are used. Each plaintext unit is
encrypted with another automorphism, as in a One-Time-Pad (see for instance [MvOV97]). The
automorphisms are out of a common set FAut ⊂ Aut(F) (with F a free group of finite rank).
For decryption Bob needs to know which automorphisms of FAut were used for the encryption
procedure by Alice. For this choice of elements from FAut regulations are needed. Therefore,
Alice and Bob make use of a linear congruence generator with maximal periodic length. Such a
generator is also needed for Protocol 9 and Protocol 10.
Thus, we start this chapter with a short introduction of a linear congruence generator. The
description of Protocol 8 and the modifications are explained next. We give for each crypto-
graphic protocol in this chapter a security analysis and beside this we consider chosen plaintext
attacks and chosen ciphertext attacks.

For n ∈ N let Zn := Z/nZ be the ring of integers modulo n. The corresponding residue class in
Zn for an integer β is denoted by β (see also [BFKR15]).

Definition 7.0.1. [BFKR15]
Let n ∈ N and β, γ ∈ Zn. A bijective mapping h : Zn → Zn given by x 7→ βx + γ is called a
linear congruence generator.

153

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

Theorem 7.0.2. [BFKR15] (Maximal period length for n = 2m, m ∈ N)
Let n ∈ N, with n = 2m, m ≥ 1 and let β, γ ∈ Z, such that h : Zn → Zn, with x 7→ βx + γ, is a
linear congruence generator. Further let α ∈ {0, 1, . . . , n− 1} be given and x1 = α, x2 = h(x1),
x3 = h(x2),
Then the sequence x1, x2, x3, . . . is periodic with maximal periodic length n = 2m if and only if
the following holds:

1. β is odd, consequently β 6= 0.

2. If m ≥ 2 then β ≡ 1 (mod 4).

3. γ is odd, consequently γ 6= 0.

Now, we introduce Protocol 8. Before Alice and Bob are able to communicate with each other,
they have to make some arrangements.

We speak about public parameters also in private key cryptosystems, because these are pa-
rameters which each person, also an eavesdropper, Eve, gets, if she looks at the sent ciphertext.
Public parameters are also elements, which Alice and Bob communicate with each other publicly.
It is also not a secret which plaintext alphabet is used for the communication.

Public Parameters

They first agree on the following public parameters.

1. A free group F with free generating set X = {x1, x2, . . . , xq} with q ≥ 2.

2. A plaintext alphabet A = {a1, a2, . . . , aN} with N ≥ 2.

3. A subset FAut := {f0, f1, . . . , f2128−1} ⊂ Aut(F) of automorphisms of F . It is fi : F → F
and the fi, i = 0, 1, . . . , 2128 − 1, pairwise different, are generated with the help of 0-1-
sequences (of different length) and random numbers as described in Section 4.4. The set
FAut is part of the key space.

4. They agree on a linear congruence generator h : Z2128 → Z2128 with a maximal period
length (see Definition 7.0.1 and Theorem 7.0.2).

Remark 7.0.3. If the set FAut and the linear congruence generator h are public Alice and Bob
are able to change the automorphisms and the linear congruence generator publicly without a
private meeting. The set FAut should be large enough to make a brute force search inefficient.

Variation 7.0.4. A variation could be, that Alice and Bob choose the number of elements in the
starting set FAut less than 2128, say for example 210. This starting automorphism set FAut should
be chosen privately by Alice and Bob as their set of seeds and should not be made public. Then
Alice and Bob can extend publicly the starting set FAut to the set FAut1 of automorphisms,
such that FAut1 contains, say for example, 232 automorphisms. The number of all elements
in FAut1 should make a brute force attack inefficient. The linear congruence generator stays
analogous, just the domain and codomain must be adapted to, say for example, Z232 . Because
of Theorem 7.0.2 Alice and Bob always get a linear congruence generator with maximal periodic
length.

154

Private Parameters

Now, they agree on their private parameters.

1. Alice and Bob choose a free subgroup FU = 〈U | 〉 of F with rank N and the free
generating set U = {u1, u2, . . . , uN}, with U a minimal Nielsen reduced set (with respect
to a lexicographical order, see for instance Example 4.2.8) and the elements ui ∈ U are
freely reduced words in X. Such systems U are easily to construct using Theorem 4.2.13
and Lemma 4.2.15 (see also [CgRR08] and [LS77]). It is UNred the set of all minimal
Nielsen reduced sets with N elements in F , which is part of the key space.

2. They use a one-to-one correspondence between the Nielsen reduced set U and the plaintext
alphabet A, it is

A→ U

aj 7→ uj for j = 1, . . . , N.

3. Alice and Bob agree on an automorphism fα ∈ FAut, hence α is the common secret starting
point α ∈ {0, 1, . . . , 2128 − 1}, with x1 = α ∈ Z2128 , for the linear congruence generator.
With this α they are able to generate the sequence fx1 , fx2 , . . . , fxz (with z the number
of the plaintext units, which are letters from A) of automorphisms of the set FAut, which
they need for encryption and decryption, respectively.

The key space: The set UNred of all minimal (with respect to a lexicographical order) Nielsen
reduced subsets of F with N elements. The set FAut of 2128 randomly chosen automorphisms
of F .

Variation 7.0.5. Alice and Bob could use the set FAut more than once, but not exactly in the
same way as before:

(i) They could change privately the seed x1 for the linear congruence generator. The way how
they run through the set FAut stays the same, just the starting point is different.

(ii) They could change publicly the bijective mapping h (the seed x1 stays the same). Just
the starting point stays the same, how they run through the set FAut is different.

(iii) They could change the bijective mapping h publicly and the seed x1 privately. Neither the
way how they run through the set FAut stays the same nor the starting point.

Private Key Cryptosystem

Now, we explain the private key cryptosystem in detail and look carefully at the steps for Alice
and Bob.

Public knowledge: F = 〈X | 〉, X = {x1, x2, . . . , xq} with q ≥ 2; plaintext alphabet
A = {a1, a2, . . . , aN} with N ≥ 2; a set FAut ⊂ Aut(F); a linear congruence generator h.

Encryption and Decryption Procedure:

1. Alice and Bob agree privately on the private parameters: a set U ∈ UNred with |U | = N
and an automorphism fα ∈ FAut. They also know the one-to-one correspondence between
U and A.

155

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

2. Alice wants to transmit the message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A to Bob.

2.1. She generates with the linear congruence generator h and the knowledge of fα the z
automorphisms fx1 , fx2 , . . . , fxz , which she needs for encryption. It is x1 = α, x2 = h(x1),
. . ., xz = h(xz−1).

2.2. The encryption is as follows

if si = at then si 7→ ci := fxi(ut), 1 ≤ i ≤ z, 1 ≤ t ≤ N.

Recall that the one-to-one correspondence A→ U with aj 7→ uj , for j = 1, 2, . . . , N , holds.
The ciphertext

C = fx1(s1)fx2(s2) · · · fxz(sz) with si=̂ut ⇔ si = at

= c1c2 · · · cz

is sent to Bob. We call cj the ciphertext units, which are words in X. We do not perform
cancellations between ci and ci+1 and the end of each ci is marked, 1 ≤ i ≤ z − 1, for
example with the symbol “o”.

3. Bob gets the ciphertext
C = c1 o c2 o · · · o cz.

He knows where each ciphertext unit cj begins and ends. Hence, he gets the information
that he has to use z automorphisms of the set FAut for decryption. He has now two
possibilities for decryption.

3.1.a. With the knowledge of fα, the linear congruence generator h and the number z, he com-
putes for each automorphism fxi , i = 1, 2, . . . , z, the inverse automorphism f−1xi .

3.1.b. With the knowledge of fα, the set U = {u1, u2, . . . , uN}, the linear congruence generator
h and the number z, he computes for each automorphism fxi , i = 1, 2, . . . , z, the set

Ufxi = {fxi(u1), fxi(u2), . . . , fxi(uN)}.

Hence, with the one-to-one correspondence between U and A, he gets a one-to-one corre-
spondence between the letters in the alphabet A and the words of the ciphertext depending
on the automorphisms fxi . This is shown in Table 7.1 (page 157). Bob does a search in
the table for decryption.

3.2. With the knowledge of the Table 7.1 (page 157) or the inverse automorphisms f−1xi , re-
spectively, the decryption is as follows

if ci = fxi(ut) then ci 7→ si := f−1xi (ci) = at, 1 ≤ i ≤ z, 1 ≤ t ≤ N.

He generates the plaintext message

S = f−1x1 (c1)f
−1
x2 (c2) · · · f−1xz (cz)

= s1s2 · · · sz with si = aj ⇔ si=̂uj ,

from Alice.

156

Table 7.1.: Table for decryption: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to ci-
phertext alphabet Ufxi depending on the automorphisms fxi

Ufx1 Ufx2 · · · Ufxz

a1 fx1(u1) fx2(u1) · · · fxz(u1)

a2 fx1(u2) fx2(u2) · · · fxz(u2)

...
...

...
...

...

aN fx1(uN) fx2(uN) · · · fxz(uN)

Remark 7.0.6. The cryptosystem is a polyalphabetic system, that means, a word ui ∈ U , and
hence a letter ai ∈ A, is encrypted differently at different positions in the plaintext, because
different automorphisms are used during the encryption procedure for each ciphertext unit.
Thus, for the ciphertext, a statistical frequency attack (see for instance [BFKR15]) over the
frequency of words, which corresponds to letters in the plaintext alphabet, or groups of words,
is useless.

We summarize Protocol 8 in Table 7.2 (page 158).

157

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

Table 7.2.: Summary of Protocol 8: Private key cryptosystem with Aut(F)

Public Knowledge

F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2; plaintext alphabet A = {a1, a2, . . . , aN}, N ≥ 2;
set FAut ⊂ Aut(F); linear congruence generator h of maximal periodic length.

Alice Bob

Private keys

Nielsen reduced set U ⊂ F , |U | = N ; seed fα ∈ FAut,
one-to-one correspondence A→ U , aj 7→ uj .

Encryption

Choose message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A.
Calculate
x1 = α, x2 = h(x1), . . . , xz = h(xz−1), obtain
fx1 , fx2 , . . . , fxz .
Encryption procedure:
if si = at then si 7→ ci := fxi(ut), 1 ≤ i ≤ z,
1 ≤ t ≤ N.
Ciphertext:
C = fx1(s1)fx2(s2) · · · fxz(sz) = c1c2 · · · cz.

C=c1oc2o···ocz−−−−−−−−−−−−−−−−−−−−−−−→
Decryption

Compute z automorphisms:
x1 = α, x2 = h(x1), . . . , xz = h(xz−1), ob-
tain fx1 , fx2 , . . . , fxz .
Two possibilities:

1. For each fxi , i = 1, 2, . . . , z, compute the
inverse automorphism f−1xi .
2. For each fxi , i = 1, 2, . . . , z, compute
Ufxi = {fxi(u1), fxi(u2), . . . , fxi(uN)}
and get a table like Table 7.1 (page 157).
(Decryption: Search in this table.)

With knowledge of Table 7.1 (page 157)
or inverse automorphisms f−1xi , respectively,
the decryption is as follows:
if ci = fxi(ut) then ci 7→ si := f−1xi (ci) = at,
1 ≤ i ≤ z, 1 ≤ t ≤ N.
Plaintext message
S = f−1x1 (c1)f

−1
x2 (c2) · · · f−1xz (cz)

= s1s2 · · · sz, with si ∈ A.

Bob has two possibilities to decrypt the ciphertext. Firstly, he calculates the inverse automor-
phisms of the z automorphisms fxi , which Alice used for encryption. An example is attached

158

in Appendix C.7. Secondly, he uses a table (see Table 7.1 (page 157)) for decryption, which
stored the ciphertext alphabet Ufxi , which is generated with the automorphisms Alice used for
encryption. The following example performs this last method for decryption.

Example 7.0.7. This example was executed with the help of the computer program GAP and
the FGA package, see Appendix C.5.

First Alice and Bob agree on the public parameters:

1. Let F be the finitely generated free group on the free generating set X = {a, b, c, d}.

2. Let Ã := {a1, a2, . . . , a12} = {A,E, I,O,U,T,M, L,K,Y,B,S} be the plaintext alphabet.

3. A set FAut is determined. In this example we give the automorphisms, which Alice and
Bob use for encryption and decryption, respectively, just at the moment when they are
needed.

4. The linear congruence generator with maximal periodic length is

h : Z2128 → Z2128

x 7→ 5x + 3.

The private parameters for this example are:

1. The free subgroup FŨ of F with the free generating set

Ũ ={u1, u2, . . . , u12}
={ba2, cd, d2c−2, a−1b, a4b−1, b3a−2, bc3, bc−1bab−1, c2ba, c2dab−1, a−1d3c−1, a2db2d−1}.

The set Ũ is a Nielsen reduced set and the group FŨ has rank 12. Alice and Bob agree
on the starting automorphism f93, hence it is x1 = α = 93. It is known, that ai 7→ ui,
i = 1, 2, . . . , 12, for ui ∈ Ũ and ai ∈ Ã, therefore

A=̂u1 = ba2, E=̂u2 = cd, I=̂u3 = d2c−2, O=̂u4 = a−1b,

U=̂u5 = a4b−1, T=̂u6 = b3a−2, M=̂u7 = bc3, L=̂u8 = bc−1bab−1,

K=̂u9 = c2ba, Y=̂u10 = c2dab−1, B=̂u11 = a−1d3c−1, S=̂u12 = a2db2d−1.

We look at the encryption and decryption procedure for Alice and Bob.

2. With the above agreements Alice is able to encrypt her message

S = ILIKEBOB.

Her message is of length 8. She generates the ciphertext as follows:

2.1. She first determines, with the help of the linear congruence generator h, the automorphisms
fxi , i = 1, 2, . . . , 8, which she needs for encryption. It is

x1 = α = 93, x2 = h(x1) = 468, x3 = h(x2) = 2343,

x4 = h(x3) = 11718, x5 = h(x4) = 58593, x6 = h(x5) = 292968,

x7 = h(x6) = 1464843, x8 = h(x7) = 7324218.

The automorphisms are describable with the help of regular Nielsen transformations, it is

159

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

fx1=̂ (N1)3(N2)1.4(N2)4.3(N2)2.3(N1)3(N2)1.4(N2)3.1,

fx1 : F → F

a 7→ ad2c−1, b 7→ bc−1, c 7→ cad2c−1, d 7→ dc−1;

fx2=̂ (N2)1.4(N1)2(N2)2.4(N2)3.1(N1)2(N1)1(N2)1.3[(N2)4.3]
2(N1)3,

fx2 : F → F

a 7→ d−1a−1cad, b 7→ d−1b, c 7→ d−1a−1c−1, d 7→ d(cad)2;

fx3=̂ (N1)2(N2)4.2(N1)4(N2)2.4(N1)2(N2)4.2(N1)3(N2)2.1(N2)3.2
[(N2)1.4]

3(N1)2(N2)4.2,

fx3 : F → F

a 7→ ab3, b 7→ a−1d−1, c 7→ c−1da, d 7→ ba−1d−1;

fx4=̂ [(N2)3.1]
2(N1)2[(N2)2.1]

3(N2)2.4(N2)4.2(N2)1.3,

fx4 : F → F

a 7→ aca2, b 7→ b−1a3d, c 7→ ca2, d 7→ db−1a3d;

fx5=̂ (N2)1.2(N1)3(N1)1[(N2)4.3]
2(N2)1.2(N1)2(N1)3(N2)2.4(N2)3.1,

fx5 : F → F

a 7→ b−1a−1b, b 7→ b−1dc−2, c 7→ cb−1a−1b, d 7→ dc−2;

fx6=̂ (N1)1(N2)2.3(N2)3.1(N1)2(N2)1.2(N2)4.2,

fx6 : F → F

a 7→ a−1c−1b−1, b 7→ c−1b−1, c 7→ ca−1, d 7→ dc−1b−1;

fx7=̂ [(N2)2.1]
3(N1)3[(N2)4.3]

3(N1)1(N2)1.2(N1)2(N2)2.4(N2)3.1,

fx7 : F → F

a 7→ a−1ba3, b 7→ a−3b−1dc−3, c 7→ c−1a−1ba3, d 7→ dc−3;

fx8=̂ (N2)1.4(N1)2(N1)3(N2)2.1[(N2)3.4]
2(N1)4(N1)1(N1)3(N2)4.2,

fx8 : F → F

a 7→ d−1a−1, b 7→ b−1ad, c 7→ d−2c, d 7→ d−1b−1ad.

Note, that the regular Nielsen transformations are applied from the left to the right.

160

2.2 The ciphertext is now

C =fx1(I)fx2(L)fx3(I)fx4(K)fx5(E)fx6(B)fx7(O)fx8(B)

=fx1(d2c−2)fx2(bc−1bab−1)fx3(d2c−2)fx4(c2ba)fx5(cd)fx6(a−1d3c−1)

fx7(a−1b)fx8(a−1d3c−1)

=dc−1d−1a−1d−2a−1c−1 o d−1bcabd−1a−1cadb−1d o
(ba−1d−1)2(a−1d−1c)2 o (ca2)2b−1a3daca2 o cb−1a−1bdc−2o
bca(dc−1b−1)3ac−1 o a−1(a−2b−1)2dc−3 o (ab−1)3adc−1d2

=c1c2c3c4c5c6c7c8.

The symbol “o” marks the end of each ciphertext unit ci, 1 ≤ i ≤ z − 1.

3. Bob gets the ciphertext

C =dc−1d−1a−1d−2a−1c−1 o d−1bcabd−1a−1cadb−1d o
(ba−1d−1)2(a−1d−1c)2 o (ca2)2b−1a3daca2 o cb−1a−1bdc−2o
bca(dc−1b−1)3ac−1 o a−1(a−2b−1)2dc−3 o (ab−1)3adc−1d2

from Alice. Now, he knows, that he needs eight automorphisms for decryption.

3.1. Bob knows the set U , the linear congruence generator h and the starting seed auto-
morphism f93. For decryption he uses tables (analogous to Table 7.1 (page 157)).

Now, he is able to compute for each automorphism fxi the set Ufxi , i = 1, 2, . . . , 8,
and to generate the tables Table 7.3 (page 161), Table 7.4 (page 162), Table 7.5
(page 162) and Table 7.6 (page 163).

Table 7.3.: Correspondence: plaintext alphabet to ciphertext alphabet I

Ufx1 Ufx2

A b(c−1ad2)2c−1 d−1bd−1a−1c2ad

E cad(dc−1)2 d−1a−1c−1(dca)2d

I dc−1d−1a−1d−2a−1c−1 ((dca)2d)2cadcad

O cd−2a−1bc−1 d−1a−1c−1ab

U (ad2c−1)3ad2b−1 d−1a−1c4adb−1d

T (bc−1)2bd−2a−1cd−2a−1 (d−1b)3d−1a−1c−2ad

M b(ad2)3c−1 d−1b(d−1a−1c−1)3

L bd−2a−1c−1bc−1ad2b−1 d−1bcabd−1a−1cadb−1d

K c(ad2)2c−1bc−1ad2c−1 (d−1a−1c−1)2d−1bd−1a−1cad

Y c(ad2)2c−1dc−1ad2b−1 (d−1a−1c−1)2dcadc2adb−1d

B cd−2a−1(dc−1)2d−1a−1c−1 d−1a−1c−1(ad2cadc)3adcad

S (ad2c−1)2d(c−1b)2d−1 d−1a−1c2ad(dca)2bd−1b(d−1a−1c−1)2d−1

161

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

Table 7.4.: Correspondence: plaintext alphabet to ciphertext alphabet II

Ufx3 Ufx4

A a−1d−1(ab3)2 b−1a3d(aca2)2

E c−1daba−1d−1 ca2db−1a3d

I (ba−1d−1)2(a−1d−1c)2 (db−1a3d)2a−2c−1a−2c−1

O b−3a−2d−1 a−2c−1a−1b−1a3d

U (ab3)4da (aca2)4d−1a−3b

T (a−1d−1)3(b−3a−1)2 (b−1a3d)3a−2c−1a−3c−1a−1

M a−1d−1(c−1da)3 b−1a3d(ca2)3

L (a−1d−1)2ca−1d−1ab3da b−1a3da−2c−1b−1a3daca2d−1a−3b

K c−1dac−1ab3 (ca2)2b−1a3daca2

Y (c−1da)2ba−1d−1ab3da (ca2)2db−1a3daca2d−1a−3b

B b−3a−1(ba−1d−1)3a−1d−1c a−2c−1a−1(db−1a3d)3a−2c−1

S (ab3)2b(a−1d−1)2b−1 aca3c(a2db−1a)2a2

Table 7.5.: Correspondence: plaintext alphabet to ciphertext alphabet III

Ufx5 Ufx6

A b−1dc−2b−1a−2b (c−1b−1a−1)2c−1b−1

E cb−1a−1bdc−2 ca−1dc−1b−1

I dc−2dc−1(c−1b−1ab)2c−1 (dc−1b−1)2ac−1ac−1

O b−1adc−2 bcac−1b−1

U b−1a−4bc2d−1b (a−1c−1b−1)3a−1

T (b−1dc−2)3b−1a2b (c−1b−1)2abca

M b−1dc−1(b−1a−1bc)2b−1a−1b c−1b−1(ca−1)3

L b−1dc−2b−1abc−1b−1dc−2b−1a−1bc2d−1b c−1b−1ac−2b−1a−1

K cb−1a−1bcb−1a−1dc−2b−1a−1b ca−1c(a−1c−1b−1)2

Y (cb−1a−1b)2dc−2b−1a−1bc2d−1b (ca−1)2dc−1b−1a−1

B b−1ab(dc−2)3b−1abc−1 bca(dc−1b−1)3ac−1

S b−1a−2b(dc−2b−1)2 (a−1c−1b−1)2d(c−1b−1)2d−1

162

Table 7.6.: Correspondence: plaintext alphabet to ciphertext alphabet IV

Ufx7 Ufx8

A a−3b−1dc−3a−1(ba2)2a b−1d−1a−1

E c−1a−1ba3dc−3 d−2cd−1b−1ad

I dc−3dc−3(a−3b−1ac)2 d−1(b−1a)2(dc−1d)2d

O a−1(a−2b−1)2dc−3 adb−1ad

U a−1(ba2)4ac3d−1ba3 (d−1a−1)5b

T (a−3b−1dc−3)3a−1(a−2b−1)2a (b−1ad)3adad

M a−3b−1dc−3(c−1a−1ba3)3 b−1a(d−1cd−1)2d−1c

L a−3b−1dc−3a−3b−1aca−3b−1dc−3a−1ba3c3d−1ba3 b−1adc−1d2b−1d−1a−1b

K c−1a−1ba3c−1a−1dc−3a−1ba3 (d−2c)2b−1

Y (c−1a−1ba3)2dc−3a−1ba3c3d−1ba3 (d−2c)2d−1b−1d−1a−1b

B a−3b−1a(dc−3)3a−3b−1ac (ab−1)3adc−1d2

S a−1(ba2)2a(dc−3a−3b−1)2 (d−1a−1)2d−1(b−1ad)2d

3.2. With these tables he is able to generate the plaintext from Alice, it is

S =f−1x1

(
dc−1d−1a−1d−2a−1c−1

)
f−1x2

(
d−1bcabd−1a−1cadb−1d

)
f−1x3 ((ba−1d−1)2(a−1d−1c)2)f−1x4

(
(ca2)2b−1a3daca2

)
f−1x5

(
cb−1a−1bdc−2

)
f−1x6

(
bca(dc−1b−1)3ac−1

)
f−1x7

(
a−1(a−2b−1)2dc−3

)
f−1x8

(
(ab−1)3adc−1d2

)
=̂ILIKEBOB.

Security 7.0.8. An eavesdropper, Eve, intercepts the ciphertext

C = c1c2 · · · cz,

with ci = fxi(uj) for some 1 ≤ j ≤ N . This is a ciphertext only attack also called known
ciphertext attack (see Section 1.1 or for instance [BFKR15], [MvOV97] or [BNS10]). If Alice and
Bob choose non characteristic subgroups, then it is likely that cj /∈ FU for some 1 ≤ j ≤ z. In
general, the sets Ufxi are not Nielsen equivalent sets to U under the automorphisms fxi . Hence,
the ciphertext units give no hint for the subgroup FU . Eve knows L =

∑z
k=1 |ck|, the length

of C, because Alice does not perform cancellations between ci and ci+1, for 1 ≤ i ≤ z − 1.
To break the system Eve needs to know the set U . For this it is likely that she assumes that
the ball B(F,L) in the Cayley graph for F contains a basis for FU . With this assumption she
searches for primitive elements y for FU in the ball B(F,L), |y| ≤ L, y ∈ F . In fact she needs to
find N primitive elements for FU in B(F,L) (these would be primitive elements for FU in a ball
B(FU , L) for some Nielsen reduced basis for FU). From Proposition 4.2.21 and Theorem 4.2.22
it is known that the number of primitive elements grows exponentially with the free length
of the elements. Eve chooses sets Vi := {vi1 , vi2 , . . . , viK} with K ≥ N and elements vij in
B(F,L) and with Nielsen transformations she constructs the corresponding Nielsen reduced sets

163

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

V ′i (which are minimal concerning a lexicographical order). If |V ′i | = N then V ′i is a candidate
for U .
The running time is within O(λ2K2), with λ := max{|vj` |X | vj` ∈ Vj for ` = 1, 2, . . . ,K} ≤ L,
to get a Nielsen reduced set V ′j from Vj with the algorithm in [Ste89] (see Remark 4.2.17).

How can Eve verify that her generated set V ′i =: U ′ (with U ′ = {u′1, u′2, . . . , u′N}), which is a
candidate for U , is the used set U by Alice and Bob?
Therefor she calculates

U ′fi = {fi(u′1), fi(u′2), . . . , fi(u′N)},

1 ≤ i ≤ |FAut|, and proves for each i if there is a j ∈ {1, 2, . . . , N}, such that c` = fi(u
′
j), if she

finds such an i and j Eve assumes that she found an automorphism in FAut, which Alice used
in her encryption, Eve is now able to prove if c`+1 = fh(i)(u

′
k′) for a k′ ∈ {1, 2, . . . , N}, (h is the

public linear congruence generator) therefore she calculates

U ′fh(i) = {fh(i)(u′1), fh(i)(u′2), . . . , fh(i)(u′N)}.

If ` > 1 Eve is also able to prove if c`−1 = fh−1(i)(u
′
k′) for a k′ ∈ {1, 2, . . . , N}. The mapping h is

a public linear congruence generator of maximal periodic length, hence bijective and therefore
the inverse mapping of h exists. She calculates

U ′fh−1(i)
= {fh−1(i)(u

′
1), fh−1(i)(u

′
2), . . . , fh−1(i)(u

′
N)}.

In general if for all ck, 1 ≤ k ≤ z, follows that c`+j = fhj(i)(u
′
k′) for some k′ ∈ {1, 2, . . . , N},

with hj(i) = h(h(· · ·h(h︸ ︷︷ ︸
j times h

(i)) · · ·)) if j > 0 and hj(i) = h−1(h−1(· · ·h−1(h−1︸ ︷︷ ︸
|j| times h−1

(i)) · · ·)) if j < 0,

respectively, then it is very likely that U = U ′ and Eve is able to read the message because
she knows (can calculate with the linear congruence generator) the automorphisms which were
used for encryption and she knows (or is able to calculate with the help of a frequency attack)
ai 7→ ui, 1 ≤ i ≤ N , and the plaintext alphabet A is public. This is a brute force search through
the public set FAut.

Another idea for Eve is to calculate the inverse automorphisms of the known set FAut and apply
these inverse automorphisms f−1j , j = 0, 1, . . . , 2128−1, to the ciphertext units ci, i = 1, . . . , z. If

she fixes ck and calculates f−1j (ck) for all j = 0, 1, . . . , 2128−1 then at least one of these elements

is a correct element in U , namely f−1xk
(ck), but she does not know which j ∈ {0, 1, . . . , 2128 − 1}

is xk. To a given ciphertext

C = c1c2 · · · cz,

with ci = fxi(uj) for some 1 ≤ j ≤ N , she could calculate the possible plaintext

Sinvers` = f−1` (c1)f
−1
h(`)(c2)f

−1
h2(`)

(c3) · · · f−1hz−1(`)
(cz),

with ` ∈ {0, 1, . . . , 2128} and the public linear congruence generator h. Thus, Eve gets 2128

possible plaintexts written as elements in F . If the eavesdropper gets more than N different
words in the plaintext Sinvers` she knows, that this is not a correct candidate for the plaintext.
The plaintext consist of maximum N different letters, because the plaintext alphabet consist of
N letters. In each situation where the ciphertext is rewritten in maximum N different words in
F Eve could do a statistical frequency attack (see for instance [BFKR15]) over the frequency
of letters (or groups of letters). Then she is able to generate possible plaintexts, whereby the

164

correct plaintext is contained. To prevent this kinds of attack it is possible to keep parts of the
set or the whole set FAut private, such that Eve does not know from which automorphism she
should calculate the inverse elements.

Remark 7.0.9. Alice assumes that the ball B(F,L) in the Cayley graph for F contains a basis
for FU or at least all elements in U which were used for the encryption. She cannot be sure
that this is true because the automorphisms for encryption are automorphisms on F and hence
therefore it is likely that ci 6∈ FU . It is possible that there exists an element ui ∈ U , which
was used for the encryption, and it is |ui|X ≥ L, with L =

∑z
k=1 |ck|, thus Eve is not able to

find the element ui in the ball B(F,L) of the Cayley graph from F . For a small example see
Appendix B.3.

Remark 7.0.10. Eve uses L =
∑z

k=1 |ck| for her search in the Cayley graph (see Security 7.0.8)
because it is likely, that the elements of U lay in the ball B(F,L). Another number which she
could use is L1 = max{|ck| | 1 ≤ k ≤ z}. This number L1 would make the search for primitive
elements in the Cayley graph faster, because

max{|ck| | 1 ≤ k ≤ z} ≤ L =

z∑
i=1

|ck|

and the number of primitive elements in the ball B(F,L) grows exponentially with the free
length of the elements (see Proposition 4.2.21 and Theorem 4.2.22). Hence, it is faster to search
in the ball B(F,L1) if

max{|uj | | 1 ≤ j ≤ N} ≤ max{|ck| | 1 ≤ k ≤ z}. (7.1)

Eve cannot be sure that inequality (7.1) is true for the ciphertext units and the elements in the
Nielsen reduced set U , because there exists automorphisms, such that the inequality does not
hold (see Appendix B.1) and Eve cannot decide if she is in such a situation.

The main security certification depends on the fact, that for a single subset of K ≥ N elements
Eve finds a Nielsen reduced set in the running time O(λ2K2) but she has to test all possible
subsets of K elements for which she needs exponential running time, because the number of
primitive elements grows exponentially with the free length, see Proposition 4.2.21 and Theo-
rem 4.2.22. She searches in a ball B(F,L), with L =

∑z
i=1 |ci| for these primitive elements.

To verify the set U ′ as U or to find the automorphisms for si, which were used by Alice and
Bob, (and hence decrypt the message) Eve could do a brute force search through the set FAut.

Remark 7.0.11. If the set FAut is private Eve has no hints for the used automorphisms of
Aut(F), which were used by Alice. Even if Eve gets a candidate U ′ for U she does not know
which automorphism is used and she also has no set FAut which she could use for a brute force
search. In general, the elements ci are no elements of FU hence she cannot use the algorithm
(in Theorem 4.3.10), which solves the constructive membership problem to get a hint for the
automorphism.
Alice and Bob made the set FAut public, because they are then able to change the automorphisms
without a private meeting, see Remark 7.0.3. If they use Variation 7.0.4 they have a public part
of the set FAut and a private part, hence they make an attack for Eve more difficult than in the
situation when the set FAut is completely public.

Remark 7.0.12. The one-to-one correspondence between A and U is not public. If Eve is able
to decrypt the ciphertext to a version where she can write it as a kind of plaintext with elements
in U , then she can use a statistical frequency attack (see for instance [BFKR15]) to reconstruct

165

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

the correspondence between A and U and hence read the plaintext. Thus, it is possible that
Alice and Bob let the theoretical one-to-one correspondence between A and U remain public.
Note that they do not publish the explicit set U .

Remark 7.0.13. If Alice and Bob used an arbitrary Nielsen reduced set U and not a minimal
Nielsen reduced set corresponding to a lexicographical order, then Eve gets for V ′i much more
sets, see Example 4.2.16. She gets also sets V ′i which are the set U but with permuted order.
In this case she has to test all permuted sets and not only the minimal set (corresponding to a
lexicographical order), thus she gets N !−1 more sets for each V ′i to test with the automorphisms.
There are also Nielsen reduced sets, which generate the same group but differ not only in the
permutation order but also in some elements, for example {y2, y−1xy} and {y2, yxy−1} generate
the same free group (see Example 4.2.16).

The security certification can be improved with the next three modifications, which are explained
in Section 7.1, Section 7.2 and Section 7.3.

7.1. Modification with the ciphertext a reduced word for the
cryptosystem with Aut(F)

We present a modification where the ciphertext is only one reduced word in X instead of a
sequence of words, in this case it is possible that additional information is needed for decryption,
thus these is sent with the ciphertext if required.

Let C, with
C = c1c2 · · · cz,

be the unreduced ciphertext to the plaintext

S = s1s2 · · · sz,

with si ∈ A and A the used plaintext alphabet, as described above in Protocol 8, a private key
cryptosystem with Aut(F). Let F = 〈X | 〉 be the finitely generated free group for Alice and
Bob, with X = {x1, x2, . . . , xq}, q ≥ 2, and let U = {u1, u2, . . . , uN} be the used Nielsen reduced
set with ui words in X and N = |A|. Remember, that there is a one-to-one correspondence
between A and U , it is ai 7→ ui, for 1 ≤ i ≤ N . It is possible that ci ends with xk and ci+1

begins with x−1k , with xk ∈ X±1, thus in C there is a part with xkx
−1
k , for a 1 ≤ k ≤ q. The end

of each ciphertext unit is marked, such that Bob and also the eavesdropper, Eve, know where
each cj ends and begins and they also know the whole reduced word cj .

In this modification the reduced word Cred of the ciphertext C is sent instead of C, hence there
are no parts with xkx

−1
k , for a 1 ≤ k ≤ q, which only occur in C if xk is the last letter of cj and

x−1k is the first letter of cj+1. The beginning and end of each ciphertext unit ci is not marked.

Let

Cred = x′1x
′
2 · · ·x′L′ ,

with x′i ∈ X±1, 1 ≤ i ≤ L′, be the reduced ciphertext from Alice for Bob.

Now, if Bob wants to decrypt the ciphertext Cred he first calculates

Ufx1 = {fx1(u1), fx1(u2), . . . , fx1(uN)}.

166

7.1. Modification with the ciphertext a reduced word for the cryptosystem with Aut(F)

His aim is to find the first ciphertext unit c1 in Cred. There could occur different cases for him.
Depending on the occurred cases Alice may has to give additional information to Bob. This
additional information is of the form

(i, d, w̃)

with the following impact

i : i states the ciphertext unit ci = x̃1x̃2 · · · x̃pi , x̃j ∈ X±1, to which the additional information

corresponds;

d : d states the letter x̃d in ci after which Bob then knows that the word w̃ appears in ci;

w̃ : w̃ is the word which appears in ci after x̃d, such that the identification of ci is uniquely for Bob.

It is i ∈ {1, 2, . . . , z}, d ∈ {0, 1, 2, . . . , pi} and w̃ a reduced word in X or the empty word.

This information is specified and explained in the following different cases, which could occur
for a ciphertext Cred.

(i) It is Cred ≡ c1w with w a word in X. That means, c1 is an initial segment of Cred and no
letters of c1 are canceled. There are two subcases:

a) Assume there are 1 ≤ j, t ≤ N , with j 6= t, such that

fx1(uj) ≡ fx1(ut)x
′ω2,

with x′ ∈ X±1 and ω2 a word in X or the empty word, which is 1. The ciphertext
Cred is of the form

Cred ≡c1w
≡fx1(uj)ω1

≡fx1(ut)x
′ω2ω1,

with ω1 a word in X. If w = ω1 then c1 = fx1(uj); if w ≡ x′ω2ω1 then c1 = fx1(ut).
Bob does not know if Alice encrypted with c1 the plaintext letter aj or at (remember
the one-to-one correspondence with ai 7→ ui) because it could be, that in Ufx2 exists
an element fx2(uk) ≡ x′ω2ω3, with ω3 an initial segment of ω1 (or ω3 = ω1 if the
plaintext consists of two plaintext units, that means z = 2.).
If c1 = fx1(ut) Alice gives Bob the information

(1,
∣∣fx1(ut)∣∣ , 1).

If c1 = fx1(uj) Alice gives Bob the information

(1,
∣∣fx1(ut)∣∣ , x′) or (1,

∣∣∣fx1(uj)∣∣∣ , 1).

With this information Bob is able to identify c1 uniquely.
If there occurs a case in which Bob gets this problem with more than two elements
in Ufx1 the situation is similar. Just the element x′ is then not a letter but a word in
X, which makes a uniquely identification of the correct element in Ufx1 possible for
Bob, see Appendix B.2.

167

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

b) Assume c1 = fx1(uj) and it is

fx1(ut) 6≡ fx1(uj)x
′ω2 and fx1(uj) 6≡ fx1(ut)x

′ω2,

for all j 6= t with 1 ≤ j ≤ N . Bob needs no additional information from Alice. He
can uniquely identify c1.

(ii) There are cancellations between c1 and c2. Thus we get two subcases:

a) The ciphertext unit c1 is completely canceled by c2:
It is c2 ≡ c−11 w with w a word in X or the empty word. Therefore, Bob is not able
to find the ciphertext unit c1 in the initial segment of Cred. In this case Alice gives
Bob the additional information

(1, 0, c̃1),

with c̃1 an initial segment of c1, such that c1 is uniquely identifiable in the set Ufx1 .
In the worst case it is c̃1 = c1 which only ocures if Ufx1 has at least two elements
fx1(uj) and fx1(ut) as in (i) a) as well as c1 = fx1(ut) or if c1 = fx1(uj) and
|fx1(uj)| = |fx1(ut)|+ 1.

b) The ciphertext unit c1 is not completely canceled by c2:
Let c1 ≡ ω1x

′ω2 and c2 ≡ ω−12 x′−1ω3, with ω1, ω2, ω3 words in X, x′ ∈ X±1 and no
cancellations between ω1 and ω3; (ω1 6= 1). Alice has to give additional information
if the ciphertext unit c1 is not uniquely identifiable for Bob in the set Ufx1 with the
knowledge of the initial segment ω1 of c1. This is the case if the set Ufx1 has at least
two elements fx1(uk) and fx1(u`) with fx1(uk) ≡ ω1w and fx1(u`) ≡ ω1w

′, with w
and w′ words in X. Then Alice gives as additional information

(1, |ω1|, x′ω̃2),

with ω̃2 an initial segment of ω2 which is long enough to identify c1 uniquely in Ufx1 .
Or Alice gives the information

(1, |c1|, 1)

if c1 is the only element in Ufx1 of free length |c1|. For an example see Example B.2.1
in Appendix B.2.

After this Bob works with C
(2)
red = c−11 Cred and Ufx2 to identify c2; the above decrypted cases (i)

and (ii) occur analogously. After this he works with C(3) = c−12 C
(2)
red and Ufx3 and so on until

he found all ciphertext units ci and hence decrypted the ciphertext Cred. The cases (i) and (ii)

appear analogously for C
(2)
red, C

(3)
red, . . . , C

(z−1)
red . It is C

(z)
red = c−1z−1C

(z−1)
red = cz which can be found

in Ufxz uniquely.

Remark 7.1.1. The number d in the additional information (i, d, w̃), with w̃ 6= 1, tells Bob

that the first d letters of ci are the first d letters of C
(i)
red.

Remark 7.1.2. If Alice gives the information (i, |ci|, 1) Bob knows that the element ci is an

initial segment of C
(i)
red, if there are more elements in Ufxi of free length |ci|. Or if ci is the only

element in Ufxi of free length |ci| then Bob can uniquely identify ci also if a terminal segment

of ci is canceled by an initial segment of ci+1 in C
(i)
red and hence in Cred.

Remark 7.1.3. Additional information from Alice for Bob is only required

• if a ciphertext unit ci is completely canceled by the ciphertext unit ci+1;

168

7.1. Modification with the ciphertext a reduced word for the cryptosystem with Aut(F)

• if ci = fxi(uk) and there is at least another element fxi(u`) in the set Ufxi with either
ci = fxi(u`)ω1 or ciω2 = fxi(u`) with ω1 and ω2 words in X. An example of such an
automorphism is given in Appendix B.2;

• if there are cancellations between ci = ω1x
′ω2 and ci+1 = ω−12 x′−1ω3, with ω1, ω2, ω3 words

in X, x′ ∈ X±1, and no cancellations between ω1 and ω3, and the set Ufx1 has at least
two elements fxi(uk) and fxi(u`) with fxi(uk) = ω1w and fxi(u`) = ω1w

′, with w and w′

words in X, see Example B.2.1 in Appendix B.2

Example 7.1.4. In Example 7.0.7 the ciphertext is

C =c1c2c3c4c5c6c7c8

dc−1d−1a−1d−2a−1c−1 o d−1bcabd−1a−1cadb−1d o
(ba−1d−1)2(a−1d−1c)2 o (ca2)2b−1a3daca2 o cb−1a−1bdc−2o
bca(dc−1b−1)3ac−1 o a−1(a−2b−1)2dc−3 o (ab−1)3adc−1d2

and the reduced ciphertext is

Cred =dc−1d−1a−1d−2a−1c−1d−1bcabd−1a−1cadb−1d(ba−1d−1)2(a−1d−1c)2(ca2)2b−1

a3daca2cb−1a−1bdc−2bca(dc−1b−1)3ac−1a−1(a−2b−1)2dc−3(ab−1)3adc−1d2.

In this example are no reductions between the ciphertext units ci and all ciphertext units are
uniquely identifiable in the corresponding set Ufxi . Thus, no additional information is needed
from Alice for decryption. In the first moment Bob does not know how many sets Ufxi he will
need and hence how big the table (a table like Table 7.1 (page 157)) will be, which he needs for
decryption, but he knows the set U , the starting automorphism fα, the used set FAut as well
as the linear congruence generator h, hence he is able to calculate the required sets Ufxi for the
table. These tables are given in Example 7.0.7, see Table 7.3 (page 161), Table 7.4 (page 162),
Table 7.5 (page 162) and Table 7.6 (page 163).

Note, that the decryption is done with tables like Table 7.1 (page 157). If Bob wants to use
the inverse automorphisms f−1xi of the used automorphisms fxi ∈ FAut of Alice, he has to know
where each ciphertext unit ci ends and begins and he also needs to know the canceled letters
in the word Cred. Thus, the additional information which Bob needs should give him exactly
the unreduced ciphertext C with the markers “o” between the ciphertext units. Therefore, also
Eve gets this information and is able to reconstruct the unreduced ciphertext C, hence this
modification has then no advantage over the unreduced version. Thus, Bob has to use the tables
for encryption. Even if there are no cancellations between the ciphertext units and only the
markers “o” are missing, Bob does not know on how many letters in Cred even the first inverse
automorphism is to apply. It could be that f−1x1 (c1) = u3 and f−1x1 (c2) = u−13 u5 and Bob applies
f−1x1 on c1 and c2 and thus, gets for example

f−1x1 (c1c2) = f−1x1 (c1)f
−1
x1 (c2) = (u3)(u

−1
3 u5) = u5,

so s1=̂u5 instead of s1=̂u3 (which would be correct). It could also be, that c1 ≡ w11w12 and
c2 ≡ w21w22 , with w11 , w12 , w21 and w22 words in X and f−1x1 (w11) = u2 and Bob stops and gets
for f−1x2 (w12w21w22) = f−1x2 (w12)f−1x2 (w21w22) = (u6u

−1
3)u3 = u6, but correct would be

f−1x1 (w11w12) = f−1x1 (w11)f−1x1 (w12) = (u2)(u
−1
2 u4) = u4

169

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

and
f−1x2 (w21w22) = u3.

In the wrong decryption Bob would get S = a2a6ã with ã a word in A but correct would be
S = a4a3ã

′, with ã′ a word in A.

Remark 7.1.5. We take a look at the situation for the eavesdropper, Eve, and her information
which she obtains from the additional information which Alice sends to Bob. Eve knows from

1. (i, |ci|, 1), that there is at least one element in Ufxi of free length |ci|, but she does not

know if this element is completely visibly in Cred or C
(i)
red;

2. (i, |c′i|, w), with c′i an initial segment of ci and w an segment of ci (ci ≡ c′iww̃ with w̃ word
in X or the empty word), that |ci| ≥ |c′i| + |w| (it is |ci| = |c′i| + |w| if w̃ = 1), and the

first |c′i| elements of C
(i)
red are the first |c′i| elements of ci and after these elements comes

the word w in ci, but she does not know, if this word w is visible in Cred or C
(i)
red;

3. (i, 0, c′i), with c′i the initial segment of ci, that the word ci is completely canceled in Cred.
She also knows that c′i is an initial segment of ci, thus |ci| ≥ |c′i|, it is not necessary that
c′i = ci.

In general Eve cannot be sure where C
(i)
red begins (this is equivalent to the beginning of ci) or

where ci ends. She is also not able to identify all missing letters of X±1 in Cred, which she needs
to get the unreduced word C.

Security 7.1.6. An eavesdropper, Eve, intercepts the reduced ciphertext

Cred = x′1x
′
2 · · ·x′L′ ,

with x′i ∈ X±1, 1 ≤ i ≤ L′. In general, she is not able to identify the end of c1 and hence she
cannot identify the beginning or end of the other ciphertext units cj , 2 ≤ j ≤ z, and she also
does not know which elements are canceled in the reduced ciphertext Cred.

As in Security 7.0.8 to break the system an eavesdropper, Eve, needs to know the set U . She
knows L′ = |Cred|X the freely reduced length of the reduced ciphertext. For this it is likely that
she assumes, as above, that the ball B(F,L′) in the Cayley graph for F contains a basis for FU .
She searches in the same way for candidates of U as explained in Security 7.0.8.
Now it is difficult for Eve to verify that she gets the correct candidate U ′ = {u′1, u′2, . . . , u′N}
for U , because she does not know where each ciphertext unit cj ends or begins. Furthermore,
she does not know if there are cancellations between the ciphertext units and hence if there
are letters in the ciphertext Cred missing from which she has no idea. Maybe the additional
information from Alice, which is sent publicly to Bob, gives her hints, but she cannot be sure
that there are no other letters missing, which she cannot deduce from the additional information,
see Remark 7.1.5. Hence, if she goes the way described in Security 7.0.8, then it is not likely
that, even if she gets an automorphism fi ∈ FAut and found in

U ′fi = {fi(u′1), fi(u′2), . . . , fi(u′N)}

a j, such that fi(u
′
j) is a segment of Cred, this automorphism fi is a used automorphism for

encryption and it is not clear that she is on the right way even if in

U ′fh(i) = {fh(i)(u′1), fh(i)(u′2), . . . , fh(i)(u′N)}

the next segment of Cred can be found.

170

7.2. Modification with SL(2,Q) for the cryptosystem with Aut(F)

Eve is not able do identify the ciphertext units ci uniquely and completely. Bob is able to do
it uniquely and completely because he is able to calculate the sets Ufxi and hence tables, like
Table 7.1 (page 157), with which he is able to decrypt the ciphertext.

7.2. Modification with SL(2,Q) for the cryptosystem with Aut(F)

In this modification Alice and Bob use the fact, that there is no algorithm known to solve the
membership problem (see Problem 4.3.8) for (discrete) free subgroups of SL(2,Q) which are of
rank greater than or equal to 2 and not subgroups of SL(2,Z), Remark 4.3.14 (see [EKLG14]).
Let the initial set up be exactly as described in the beginning of Chapter 7. Thus, F is a
finitely generated free group on the free generating set X = {x1, x2, . . . , xq}, q ≥ 2, the set
A = {a1, a2, . . . , aN}, N ≥ 2, is the used alphabet for the plaintext and U = {u1, u2, . . . , uN} is
a Nielsen reduced set with uj , 1 ≤ j ≤ N , words in X.
Alice and Bob agree in addition to Protocol 8 privately on a faithful representation of a
finitely generated free group F into SL(2,Q), that is, ϕ : F → SL(2,Q), thus they can write
the ciphertext units ci of the ciphertext C as matrices in SL(2,Q) instead as words in X. Let

ϕ : F → SL(2,Q)

xi 7→Mi,

be this faithful representation of F into SL(2,Q) (see Remark 7.2.2 for a proposal to generate
Mi). The group Fϕ = 〈M1,M2, . . . ,Mq | 〉 is isomorphic to F under the mapping xi 7→ Mi,
for i = 1, . . . , q. Alice and Bob take care that the free matrix group Fϕ is not a subgroup of
SL(2,Z). The ciphertext is now

C ′ = ϕ(c1)ϕ(c2) · · ·ϕ(cz)

= W1W2 · · ·Wz,

a sequence of matrices Wj ∈ SL(2,Q). The matrices Wj are words in

Xϕ := {ϕ(x1), ϕ(x2), . . . , ϕ(xq)} = {M1,M2, . . . ,Mq}.

The encryption is realizable with a table (like Table 7.1 (page 157)) if the representation ϕ is
applied to the elements fxi(uj) in the table. In general, it is not possible to use the inverse
automorphism of fxi for decryption because Bob does not know how the matrix Wi = ϕ(ci)
is written as a product of the matrices M1,M2, . . . ,Mq (constructive membership problem is
not solvable) but this knowledge is important to apply the inverse automorphism f−1xi on the
matrix Wi = ϕ(ci) = ϕ(fxi(uj)) and then to reconstruct ϕ(uj) and hence uj (and then si = aj).
Therefore, Bob gets the Table 7.7 (page 172) with matrices and hence an assignment from
the matrices to the plaintext alphabet depending on the automorphisms fxi and the faithful
representation ϕ, with

Uϕ(fxi) = {ϕ(fxi(u1)), ϕ(fxi(u2)), . . . , ϕ(fxi(uN))} ⊂ SL(2,Q).

171

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

Table 7.7.: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to ciphertext alphabet Uϕ(fxi)
depending on the automorphisms fxi and the faithful representation ϕ

Uϕ(fx1) Uϕ(fx2) · · · Uϕ(fxz)

a1 ϕ(fx1(u1)) ϕ(fx2(u1)) · · · ϕ(fxz(u1))

a2 ϕ(fx1(u2)) ϕ(fx2(u2)) · · · ϕ(fxz(u2))

...
...

...
...

...

aN ϕ(fx1(uN)) ϕ(fx2(uN)) · · · ϕ(fxz(uN))

Security 7.2.1. Eve intercepts a ciphertext, which is a sequence of matrices

C ′ = W1W2 · · ·Wz,

with Wi ∈ SL(2,Q), 1 ≤ i ≤ z. To get a situation as in Security 7.0.8 and hence to be able to
start an attack, Eve has to write each matrix Wi, 1 ≤ i ≤ z, as a word in M , which is the set
M = {M1,M2, . . . ,Mq}, with Mi = ϕ(xi), because Mi corresponds to xi.
Eve makes a guess M̃ = {M̃1, M̃2, . . . , M̃q} for the set M , that means a guess for the faithful
representation ϕ. To be sure, that M̃ is a qualified candidate for M she has to solve the
membership problem for all ciphertext matrices Wi, 1 ≤ i ≤ z, and the set M̃ (see Problem
4.3.8). If she is also able to solve the constructive membership problem for all ciphertext matrices
Wi, 1 ≤ i ≤ z, and the set M̃ , she is then in a situation as explained in Security 7.0.8, that is,
she can write C ′ as an unreduced word in X. If M̃ = M she gets C otherwise she gets another
unreduced word in X but not necessary C. If Alice and Bob take care, that no algorithm is
known to solve the membership problem for Wi, 1 ≤ i ≤ z, and {M1,M2, . . . ,Mq} then it is
very unlikely that Eve is able to decrypt the message correctly.
If there is no algorithm known to solve the membership problem for the group FM = 〈M | 〉,
Eve could only do a brute force search, that means, she makes a guess M̃ = {M̃1, M̃2, . . . , M̃q}
for the set M (which is a guess for the faithful representation ϕ which is then ϕ′ : F → SL(2,Q))
and a guess U ′ for the set U , which is Nielsen reduced of cardinality N and has elements, which
are words in X. She has no hints for these sets. She then could use the automorphisms fi ∈ FAut
to calculate with her sets U ′ and M̃ (and hence with ϕ′) sets U ′ϕ′(fi). She then searches for ma-

trices Wj , 1 ≤ j ≤ z, which are ciphertext matrices of C ′ in her generated sets U ′ϕ′(fi).

Even if she gets for her set U ′ and M̃ the matrix Wj = ϕ′(fi(u
′
k)) she cannot be sure that this

is correct for the plaintext from Alice, that means Wi is decrypted to ak. There are a lot of sets
M̃ 6= M , which Eve could choose for M , and also a lot of sets of U ′ 6= U which she could use for
U , such that Wj = ϕ′(fi(u

′
k)), for some j, i and k, with 1 ≤ j ≤ z, 1 ≤ i ≤ 2128 and 1 ≤ k ≤ N .

It is difficult for Eve to recognize if she gets the correct sets U and M , if there is no algorithm
known to solve the membership problem for FM = 〈M | 〉.

Hence, here the additional security certification is, that there is no algorithm known to solve
the membership problem (see Problem 4.3.8) for (discrete) free subgroups of SL(2,Q), which
are of rank greater than or equal to 2 and not subgroups of SL(2,Z) (see Remark 4.3.14 and the

172

7.2. Modification with SL(2,Q) for the cryptosystem with Aut(F)

paper [EKLG14]).

Remark 7.2.2. If Alice and Bob use Theorem 4.2.18 to generate the matrices they first should
take care that q ≥ 3, because Theorem 4.2.18 generates a representation of a discontinuous group
(see [Leh64, pp. 246]) and discontinuous groups are discrete [Leh64, Theorem on p. 96]). B. Eick,
M. Kirschmer and C. Leedham-Green present in the paper [EKLG14] a practical algorithm to
solve the constructive membership problem (see Problem 4.3.9) for discrete free subgroups of
rank 2 of SL(2,R) (see Remark 4.3.14). Second, they should take care, that they do not use
q matrices for the set M which are generated by Theorem 4.2.18. They should calculate a set
X ′ = {X1, X2, . . . , X`}, ` ≥ 3, with matrices generated by Theorem 4.2.18, and the set M
should be a free generating set (not necessary Nielsen reduced) with q elements for a subgroup
of 〈X ′ | 〉. It is M = {M1,M2, . . . ,Mq}, with Mj a word in X ′ and |Mj |X′ ≥ 2, for all
j = 1, 2, . . . , q. Alice and Bob should also take care, that 〈M | 〉 is not a subgroup of SL(2,Z),
because the membership problem is effectively solvable in SL(2,Z), see Theorem 4.3.13. The
matrices in X ′ have all a special look, which is

Xj =

(
−rj −1 + r2j

1 −rj

)
,

with rj ∈ Q, 1 ≤ j ≤ q, and it is

rj+1 − rj ≥ 3 and r1 ≥ 2.

Maybe Eve could start an attack with this information if X ′ = M .

The encryption and decryption is realized with Table 7.7 (page 172), which is dynamically
expandable, such that it is possible for Alice and Bob to generate a table for each message they
want to communicate. After calculating this table, the encryption and decryption procedure is
just a search in this table. We now mention a way to modify the ciphertext.

Variation 7.2.3. Instead of the whole matrix ϕ(fxi(uj)) = Wi =

(
wi1 wi2
wi3 wi4

)
, 1 ≤ i ≤ z

and 1 ≤ j ≤ N , they use one entry wik of the matrix as ciphertext unit ci. They use for the
ciphertext unit ci, 1 ≤ i ≤ z, the element

wi1 if i ≡ 1 (mod 4),

wi2 if i ≡ 2 (mod 4),

wi3 if i ≡ 3 (mod 4),

wi4 if i ≡ 0 (mod 4).

Assume that i ≡ e (mod 4) and there are two matrices Wi and W̃i in Uϕ(fxi) with entries
wie = w̃ie then it is not clear which matrix and hence which letter in the alphabet A is encrypted
with this element. In this situation the encrypter gives in addition the next entry of the correct
matrix Wi until the matrix Wi is uniquely identifiable. At least if all four entries of a matrix
are given, it is uniquely identifiable and there is no other matrix in Uϕ(fxi) with exactly these
four entries because Uϕ(fxi) is a basis.

If the Variation 7.2.3 is used, they send instead of matrices just rational numbers and hence they
need less space for the ciphertext than in the case if they send the whole matrices. With Table
7.7 (page 172) it is possible to decrypt the ciphertext. If Alice and Bob proof that the matrices

ϕ(fxi(uj)) = Nj =

(
nj1 nj2
nj3 nj4

)
in the column of Uϕ(fxi) have at the place y ∈ {1, 2, 3, 0}, with

i ≡ y (mod 4), all different entries njy then they only need to store these entries instead of

173

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

the whole matrix and hence need less space to store the table. In addition, if an eavesdropper
intercepts the ciphertext she gets for ci no element of the set Ufxi . She just gets an entry of one
matrix of this set and this makes an attack nearly impossible.

Example 7.2.4. In this example (see Appendix C.6 for calculations in Maple 16 and GAP) Alice
and Bob agree additionally to Example 7.0.7 on a faithful representation. With Theorem 4.2.18
they generate the matrices

X1 :=

(
−7
2

45
4

1 −7
2

)
, X2 :=

(
−15
2

221
4

1 −15
2

)
and X3 :=

(
−23
2

525
4

1 −23
2

)
.

These matrices form a basis for a free group Fϕ1 of rank 3. Alice and Bob generate a sub-
group Fϕ of Fϕ1 of rank 4 because X = {a, b, c, d}. The free generating set for Fϕ is the set
M = {X1X2, X3X

2
1 , X2X3X2, X

−1
1 X2}. Thus, the faithful representation is

ϕ : F → SL(2,Q)

a 7→ X1X2 =

(
75
2
−1111

4

−11 163
2

)
, b 7→ X3X

2
1 =

(−1189 3990
104 −349

)
,

c 7→ X2X3X2 =
(−2681 19966

360 −2681
)
, d 7→ X−11 X2 =

(
15 −109
4 −29

)
.

The ciphertext is now

C ′ =ϕ(dc−1d−1a−1d−2a−1c−1) ϕ(d−1bcabd−1a−1cadb−1d)

ϕ((ba−1d−1)2(a−1d−1c)2) ϕ((ca2)2b−1a3daca2) ϕ(cb−1a−1bdc−2)

ϕ(bca(dc−1b−1)3ac−1) ϕ(a−1(a−2b−1)2dc−3) ϕ((ab−1)3adc−1d2)

=

(
−429743093559909

2
−6400784021410159

4

−62588240305379 −932216979117085
2

)
(

−3240070331754423030683243991
2

47007695458416827592369656315
4

−223326322203710575272321977 3240070327830150751386194361
2

)
(
−6899014060703475554169965

2
102756972145191520348785607

4

301722468685102729969483 −4493988131847945704997109
2

)
(

−397074726172421275253684843812134445
2

5883318761059670223751985896578473377
4

26659253089426526822952736194350493 −395000924306510751052288425218790757
2

)
(

46475888407425825
2

692232489736400389
4

−3120351373297111 −46475896943687759
2

)
(
−37154085868492177463035768197599

2
−553374013794643763898030444104547

4

1624906569753714749910956723073 24201404758781402065719318991873
2

)
(

−3418963163764785449276501363
2

−50923553357916815212095363641
4

−230751369629481141540301125 −3436913216344813651054341083
2

)
(

2739747352948144349387
2

−39628644296581967709615
4

−402070084312200114547 5815679440792026855107
2

)
.

Instead of a sequence of words in F Alice sends to Bob a sequence of eight matrices in SL(2,Q).

The matrices, which are needed for encryption and are therefore stored in a table like Table 7.7
(page 172), are computed in Appendix C.6 in the “Decryption” part.

174

7.3. Modification with Hilbert’s Tenth Problem for the cryptosystem with Aut(F)

With Variation 7.2.3 the ciphertext is

C ′′ =
−429743093559909

2
o 47007695458416827592369656315

4
o

301722468685102729969483 o −395000924306510751052288425218790757

2
o

46475888407425825

2
o −553374013794643763898030444104547

4
o

− 230751369629481141540301125 o 5815679440792026855107

2

The symbol “ o” marks the end of a ciphertext unit ci.

7.3. Modification with Hilbert’s Tenth Problem for the cryptosystem
with Aut(F)

In this modification the negative solution of Hilbert’s Tenth Problem is used.

Hilbert’s Tenth Problem: Given a diophantine equation with any number of unknown quantities
and with rational integral numerical coefficients: to devise a process according to which it can be
determined by a finite number of operations whether the equation is solvable in rational integers.

This is the tenth problem of a list of problems (see [Hil02]) which Hilbert presented 1900 at the
International Congress of Mathematicians in Paris. In 1970 Hilbert’s Tenth Problem was finally
proved to be negative by Y. Matiyasevich in [Mat70]. For this he used a series of results by
J. Robinson, M. Davis and H. Putnam (see for example [Dav73] or [Mat70] or [Mat96]).

Alice and Bob use instead of a presentation of the ciphertext in SL(2,Q) a presentation of the
ciphertext in a finitely generated free group in GL(2, R), with R := Z[y1, y2, . . . , yn], the inte-
gral polynomial ring in the variables y1, y2, . . . , yn with n ≥ 2.

This modification is inspired by the public key cryptosystem AMC1, which is explained in
[BFKR15, Chapter 12] and [BF08]. We now recall some needed theory of PSL(2,Z) and aug-
mented rings.

Properties of PSL(2,Z):
Firstly, it is known that PSL(2,Z), the group of 2 × 2 projective integral matrices of determi-
nant 1, is finitely presented, that is,

PSL(2,Z) = 〈s, t | s2 = (st)3 = 1〉,

with

s =

(
0 1
−1 0

)
and t =

(
1 1
0 1

)
,

see Remark 4.3.12. Secondly, it is known, that the matrices

a := t2 =

(
1 2
0 1

)
and b := (st−1s)2 =

(
1 0
2 1

)

175

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

freely generate a free subgroup J of PSL(2,Z), thus J = 〈a, b | 〉. Each subgroup of J is free,
see Theorem 4.2.14, moreover J contains subgroups of every finite rank.
Thirdly, it is known that there exists an algorithms, see Remark 4.3.12, to write each matrix
T ∈ PSL(2,Z) in terms of s and t.

Augmented rings:

Definition 7.3.1. [BFKR15, Definition 12.4.1]
An augmented ring is a unitary ring R together with a unitary homomorphism

ε : R→ Z.

Remark 7.3.2. [BFKR15]
A ring R with a multiplicative identity 1 becomes an augmented ring if it contains an ideal I,
the augmented ideal, and R/I is isomorphic to Z. It follows that we can view Z as a subring of
R and thus

R = Z⊕ I.

Example 7.3.3. We give three examples for augmented rings

1. Z, which is a trivial example;

2. Z[y1, y2 . . . , yn], which is the ring of integral polynomials in any number n ∈ N of variables.

3. Z[G], which is an integral group ring of a group G.

With the next lemma and its corollaries we can connect such augmented rings (Example 7.3.3
2. and 3.) to free groups and then we can use Hilbert’s Tenth Problem for our cryptosystems.

Lemma 7.3.4. [BFKR15, Lemma 12.4.2]
Let R and S be unitary rings and let φ be a homomorphism from R to S. If GL(m,R) is the
group of all m × m matrices over R, then φ induces a homomorphism φ∗ of GL(m,R) into
GL(m,S).

Corollary 7.3.5. [BFKR15, Lemma 12.4.3]
If R is an augmented ring with augmentation ε, then the augmentation ε from R into Z induces
a homomorphism ε∗ from GL(n,R) to GL(n,Z).

Corollary 7.3.6. [BFKR15, Lemma 12.4.3]
Suppose that φ is a unitary homomorphism of the unitary ring R into the unitary ring S and
that X is a subset of GL(m,R). If φ∗(X) freely generates a free subgroup of GL(m,S), then X
freely generates a free subgroup of GL(m,R).

The important consequence of the corollary is

Lemma 7.3.7. [BFKR15, Lemma 12.4.5]
Let R be an augmented ring and

r1, r2, r3, r4, r,r6, r7, r8 ∈ R.

Furthermore, let

A =

(
r1 r2
r3 r4

)
and B =

(
r5 r6
r7 r8

)
.

176

7.3. Modification with Hilbert’s Tenth Problem for the cryptosystem with Aut(F)

If

ε(r1) = 1, ε(r2) = 2, ε(r5) = 1, ε(r6) = 0,

ε(r3) = 0, ε(r4) = 1, ε(r7) = 2, ε(r8) = 1,

and if A and B are invertible, then they freely generate a free group.

How to use Hilbert’s Tenth Problem for Protocol 8, a private key cryptosystem
with Aut(F):

In general, if Alice and Bob use the augmented ring

R := Z[y1, y2, . . . , yn],

with n ≥ 2, consider 8 polynomials,

p1, p2, p3, p4, p5, p6, p7, p8 ∈ Z[y1, y2, . . . , yn]

and take privately an augmentation

ε : Z[y1, y2, . . . , yn]→ Z,

such that

ε(r1) = 1, ε(r2) = 2, ε(r5) = 1, ε(r6) = 0,

ε(r3) = 0, ε(r4) = 1, ε(r7) = 2, ε(r8) = 1,

then this augmentation induces a homomorphism

ε∗ : GL(2, R)→ GL(2,Z),

with

A :=

(
p1 p2
p3 p4

)
7→
(

1 2
0 1

)
= a

B :=

(
p5 p6
p7 p8

)
7→
(

1 0
2 1

)
= b.

The matrices A and B generate a free subgroup of rank 2 because a and b generate a free sub-
group of rank 2, see above.

To make use of Hilbert’s Tenth Problem, the augmentation here is given by evaluating a point
D = (d1, d2, . . . , dn) ∈ Zn, such that

ε∗(A) =

(
p1(D) p2(D)
p3(D) p4(D)

)
=

(
1 2
0 1

)
= a

and

ε∗(B) =

(
p5(D) p6(D)
p7(D) p8(D)

)
=

(
1 0
2 1

)
= b.

177

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

To improve Protocol 8, a private key cryptosystem with Aut(F), see the beginning of Chapter 7,
Alice and Bob agree in addition on a subgroup JW = 〈W | 〉, with rank q, of J = 〈a, b | 〉,
with free generating set W = {w1, w2, . . . , wq}. The set W is Nielsen reduced and the elements
wi, 1 ≤ i ≤ q, are words in {a, b}. Recall, that in the cryptosystem with Aut(F) the free group
F is freely generated by the set X = {x1, x2, . . . , xq}, q ≥ 2. Therefore, it is |W | = |X|.

The public knowledge for this modification extends to the augmented ring R = Z[y1, y2, . . . , yn]
with n ≥ 2.

The private information for Alice and Bob extends to a point D ∈ Zn, the set {a, b} and the
Nielsen reduced set W = {w1, w2, . . . , wq} with wi abstract words in {a, b}.

Note, that Alice and Bob do not fix 8 polynomials for the encryption and decryption procedure,
respectively. For each encryption they can choose privately as an ephemeral key 8 polynomials,
p1j , p2j , . . . , p8j ∈ R, to generate the matrices Aj and Bj in GL(2, R) with

Aj =

(
p1j p2j
p3j p4j

)
and Bj =

(
p5j p6j
p7j p8j

)
and the property

pij (D) = pi(D) for all i = 1, 2, . . . , 8 (7.2)

and for D ∈ Zn, the common secret between Alice and Bob, and thus

ε∗(Aj) = a and ε∗(Bj) = b. (7.3)

It is not necessary, that the decrypter knows which polynomials were needed if equality (7.2)
and hence equality (7.3) holds.

The ciphertext C in the cryptosystem with Aut(F) is a sequence of ciphertext units ci, written
as words in X, it is,

C = c1 o c2 o · · · o cz.

Alice and Bob identify xi ∈ X with wi ∈W , for all i ∈ {1, 2, . . . , q}.
For encryption Alice writes the ciphertext C, which she generates as explained above, as a
sequence of matrices in GL(2, R) with R = Z[y1, y2, . . . , yn].

Firstly, she writes C as a sequence of words in W , that is,

CW = c̃1 o c̃2 o · · · o c̃z,

with c̃i, 1 ≤ i ≤ z words in W . These words wi are also abstract words in {a, b}, hence she gets
the ciphertext

C ′ = c′1 o c′2 o · · · o c′z,

with c′i, 1 ≤ i ≤ z, abstract words in {a, b}. Secondly, Alice writes C ′ as a sequence of words
in {Aj , Bj}, which is C ′Hilbert and means, instead of a she writes Aj and instead of b she writes
Bj . It is

Aj =

(
p1j p2j
p3j p4j

)
and Bj =

(
p5j p6j
p7j p8j

)
,

178

7.3. Modification with Hilbert’s Tenth Problem for the cryptosystem with Aut(F)

with p1j , p2j , . . . , p8j ∈ Z[y1, y2, . . . , yn] her ephemeral polynomials. Thus,

C ′Hilbert = ĉ1 o ĉ2 o · · · o ĉz

is the ciphertext C written as a sequence of matrices in GL(2, R) with R = Z[y1, y2, . . . , yn].
Hence, Alice sends each ĉi, 1 ≤ i ≤ z, as one matrix in GL(2, R).

For decryption Bob uses the augmentation, which is given by evaluating pij , 1 ≤ i ≤ 8, at the
private point D, such that ε∗(Aj) = a and ε∗(Bj) = b. With this point D he is able to generate
from C ′Hilbert the ciphertext version

Ĉ ′ = ε∗(ĉ1) o ε∗(ĉ2) o · · · o ε∗(ĉz) = ĉ′1 o ĉ′2 o · · · o ĉ′z,

with ĉ′i, 1 ≤ i ≤ z, matrices in SL(2,Z) which are words in {a, b}. With an algorithm (use for
example the method described in Remark 4.3.12) to write the matrix ĉ′i as an abstract word c′i
in {a, b} he gets

C ′ = c′1 o c′2 o · · · o c′z.

Since Alice and Bob choose a Nielsen reduced set W = {w1, w2, . . . , wq}, wj abstract words in
{a, b}, Bob is now able to write each c′i, 1 ≤ i ≤ z, as an abstract word in W , see Theorem 4.3.10
and Remark 4.3.11, and gets

CW = c̃1 o c̃2 o · · · o c̃z,

with c̃i, 1 ≤ i ≤ z words in W .
Because of the identification of xi ∈ X with wi ∈ W , for all i ∈ {1, 2, . . . , q}, he is able to
reconstruct the ciphertext

C = c1 o c2 o · · · o cz,

with ci words in X, 1 ≤ i ≤ z, as in the cryptosystem with Aut(F). He finally decrypts the
ciphertext as explained in the beginning of Chapter 7.

Remark 7.3.8. In an analogous way, also the modification in Section 7.1, with the ciphertext
a reduced word Cred in X, can be improved with this approach. With the above procedure
Alice generates of the reduced word Cred in X, one matrix MHilbert in GL(2, R). Bob is able to
reconstruct with the described procedure for decryption above from MHilbert the reduced word
Cred and hence decrypts Cred as explained in Section 7.1. Remember that Alice has to sent
additional information to Bob if the decryption is not only possible with Cred. Alice could also
get the matrix MHilbert by multiplying the ciphertext matrices of the ciphertext C ′Hilbert, that
is,

MHilbert =
z∏
i=1

ĉi,

with ĉi ciphertext units of the ciphertext C ′Hilbert.

Security 7.3.9. The security certification depends, in addition to Security 7.0.8, (for Re-
mark 7.3.8 in addition to Security 7.1.6) on the unsolvability of Hilbert’s Tenth Problem.
Y. Matiyasevich proved in [Mat70] finally that there is no general algorithm which determines
whether or not an integral polynomial in any number of variables has a zero. Therefore, for Eve,
who sees just matrices in GL(2, R), with R = Z[y1, y2, . . . , yn] and n ≥ 2, it is hard to find the
private key D of Alice and Bob. In addition the security is improved by the fact, that for each
encryption Alice and Bob can take privately ephemeral matrices in GL(2, R) with the property
that the common private point D ∈ Zn generates the correct matrices in PSL(2,Z). This gives
randomness to ciphertexts, which complicates attacks for Eve.

179

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

7.4. Chosen plaintext attacks on the cryptosystem with Aut(F)

In a chosen plaintext attack (see Section 1.1 or for instance also [BFKR15, Section 3.1]) Eve
gives a blackbox, which does the encryption procedure, plaintexts of her choice and gets the
corresponding ciphertexts. It is likely that Eve gives the blackbox a plaintext which obtains
only one letter ai of the alphabet A, to get information about the corresponding element ui, it
is,

S =s1s2 · · · sr
= aiai · · · ai︸ ︷︷ ︸

r times

,

with ai ∈ A. She gets the ciphertext

C =fα(ai)fh(α)(ai)fh2(α) · · · (ai)fhr−1(α)(ai)

=c1c2 · · · cr,

with α the starting seed to generate with the linear congruence generator h the used auto-
morphisms fj ∈ FAut for encryption. If the ciphertext units have a similar structure, then an
eavesdropper can maybe get information about the element ui in the Nielsen reduced set U
which corresponds to the plaintext letter ai. This information could make the search in the
Cayley graph more efficient.

Example 7.4.1. Eve gives the blackbox the plaintext

S = YYYYYYYY.

We assume that the blackbox uses the same public and private parameters as in Example 7.0.7.

The starting seed for the linear congruence generator h is x1 = α = 93 and the used auto-
morphisms fx1 , fx2 , . . . , fx8 , for encryption are computed as above in Example 7.0.7, hence the
ciphertext is

C =fx1(Y)fx2(Y)fx3(Y) · · · fx8(Y)

=c1c2c3 · · · c8
=c(ad2)2c−1dc−1ad2b−1 o (d−1a−1c−1)2dcadc2adb−1d o (c−1da)2ba−1d−1ab3dao

(ca2)2db−1a3daca2d−1a−3b o (cb−1a−1b)2dc−2b−1a−1bc2d−1b o (ca−1)2dc−1b−1a−1o
(c−1a−1ba3)2dc−3a−1ba3c3d−1ba3 o (d−2c)2d−1b−1d−1a−1b.

The ciphertext units have a similar structure, which is

ci = (wi)
2ui,

for i = 2, 3, . . . , 8, with wi, ui words in X. The structure of c1 differs to the structures of the
other ciphertext units.

Thus, an eavesdropper can assume that the element u10 ∈ U which corresponds to the letter
a10 = Y is of the above form (w)2u, with w and u words in X.

In this example he is correct with this assumption because it is Y = a10=̂u10 = c2dab−1, thus
w = c and u = dab−1.

To prevent this, Alice and Bob can agree privately on a way to change the used Nielsen reduced
set U .

180

7.4. Chosen plaintext attacks on the cryptosystem with Aut(F)

If we are in the situation (Section 7.1) in which the ciphertext Cred is a reduced word and the
beginning and end of a ciphertext unit ci is not marked it is more difficult to get information
about a blackbox if words are used as inputs. If only one letter at the time is an input for the
blackbox, then we get the same information as in the situation when the ciphertext units are
identifiable in the unreduced ciphertext.

If we are in the situation (Section 7.2) in which the ciphertext C ′ is a matrix in SL(2,Q) this
attack gives no information about the way the elements in the set U look like, because an
eavesdropper, Eve, sees just matrices and she does not know which matrices are multiplied to
get the ciphertext matrices ci.

Example 7.4.2. If in Example 7.4.1 the used cryptosystem is chosen with the modification in
which the ciphertext units are elements in SL(2,Q) and the blackbox used the parameters as in
Example 7.2.4 (the same faithful representation ϕ : F → SL(2,Q)), then the ciphertext to the
plaintext

S = YYYYYYYY

is

C ′ =ϕ(fx1(Y))ϕ(fx2(Y))ϕ(fx3(Y)) · · ·ϕ(fx8(Y))

=
(

1362002520154399003411251 15571388221164541516505605
−182887338329092260567748 −2090899028244770708376289

)(−21110929144428898215300010362223029327 153141139922135745238345648793303290342
−2918730152410756047224184025644787864 21172808624733035641035893652532742081

)(−264642814125471122620337910440849 1960560486141522671648480208507617
−35535778402189873460069830975764 263260664038220168770908609864163

)(
−1854802475109324474047850088679642277698067443

2
12448535408701006001695125586831847496712873647

4

124529831176821449990103535085350844783642259 −835783881921361278554480278343662618989118139
2

)
(−32871793295402748701492250323594559338626411841 110309948059576753437092104294389254500749326264

4413968139903703503835378944511234293490078624 −14812231017451052734153541914032788681367313857
)(

302888317565353 1032440955663986
−40672482384904 −138638350003831

)
(m1 m2
m3 m4)(
−2530644964961716069

2
16984462710235839663

4

−174957482575393773 1174229842519006355
2

)
,

with

m1 =− 714125099204244682044465671027046210480583358681019787918242382304493

m2 =5290472191821927427878112760844761694412645622508690469944455927367053

m3 =− 95891478419140064071486038232134465359693838135391328268043601255684

m4 =710395420318448295524538695244804791684685771008576162902211439464607,

see Appendix C.6. This gives no hint for the element u10=̂Y = a10.

If we are in the situation (Section 7.3) in which the ciphertext C ′Hilbert is a sequence of matrices
in GL(2, R), with R = [y1, y2, . . . , yn] and n ∈ N, this attack gives no hint for the elements in U .
As in the situation in which the ciphertext is a sequence of matrices in SL(2,Q) an eavesdropper
sees just matrices and she does not know which matrices are multiplied to get the ciphertext
matrices ĉi, with i = 1, 2, . . . , r.

181

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

Conclusion concerning chosen plaintext attacks

If the ciphertext is given as a matrix, the system is secure against chosen plaintext attacks. If
the ciphertext is a word in X it could be possible that an eavesdropper can get hints for the
elements in U and hence the search for the primitive elements in the Cayley graph as well as
the search for the automorphisms in FAut could be performed in a more selective measure.

7.5. Chosen ciphertext attacks on the cryptosystem with Aut(F)

In a chosen ciphertext attack (see Section 1.1 or for instance also [BFKR15, Section 3.1]) Eve
chooses ciphertexts and send these to a blackbox, she then gets the corresponding plaintexts
back.

For example Eve gets to some parts of a given ciphertext the corresponding plaintext. These
parts can be chosen by her.

Let
C = c1 o c2 o · · · o cz

be the ciphertext generated as explained in Chapter 7.

In this attack Eve gets for example the plaintext units sj and sj+1 to the ciphertext units cj
and cj+1, for a j with 1 ≤ j ≤ z − 1.

Thus, she knows that

cj
is decrypted to−−−−−−−−−−→ sj = ak, (7.4)

cj+1
is decrypted to−−−−−−−−−−→ sj+1 = a`, (7.5)

with k, ` ∈ {1, 2, . . . , N}. In general, Eve gets no hint from (7.4) and (7.5) for the Nielsen
reduced set U , which she needs for decryption (see Security 7.0.8). Maybe if she gets a lot of
plaintext parts for a ciphertext and there are a few which decrypt the same alphabet letter, that
means

cj1
is decrypted to−−−−−−−−−−→ sj1 = ak, (7.6)

cj2
is decrypted to−−−−−−−−−−→ sj2 = ak, (7.7)

... (7.8)

cjs
is decrypted to−−−−−−−−−−→ sjs = ak (7.9)

and the ciphertext units have a similar structure, for example

cji = ui(wi)
2vi,

for i = 1, 2, . . . , s with ui, vi, wi words in X, it is likely that she also assumes that uk is of the
structure

uk = u′(w′)2v′,

with u′, v′, w′ words in X. This is similar to the knowledge, which Eve could get by a chosen
plaintext attack, see Section 7.4.
If Eve gets a candidate U ′ for U the information from (7.4) and (7.5) is useful for her. She

182

7.5. Chosen ciphertext attacks on the cryptosystem with Aut(F)

knows theoretically that

fxj (uk) = cj

fxj+1(u`) = cj+1.

With this she can prove for all fi ∈ FAut if

fi(u
′
k) = cj or

fi(u
′
`) = cj+1,

with her u′k and u′` elements of her candidate set U ′. Therefore, she can do the procedure to verify
if U ′ is the used set U (both ordered by a lexicographical order) by Alice and Bob or to decrypt
the ciphertext, respectively, in a more selective measure as in Security 7.0.8 described. Therefore,
she proves if fi(u

′
s) = cj only for two elements s = k and s = ` (with k, ` ∈ {1, 2, . . . , N}) instead

for all s ∈ {1, 2, . . . , N}. We assume that she knows the theoretical one-to-one correspondence
aj 7→ uj , 1 ≤ j ≤ N .

Example 7.5.1. Assume Eve is able to do a chosen ciphertext attack on the ciphertext C of
Example 7.0.7, which is

C =dc−1d−1a−1d−2a−1c−1 o d−1bcabd−1a−1cadb−1d o
(ba−1d−1)2(a−1d−1c)2 o (ca2)2b−1a3daca2 o cb−1a−1bdc−2o
bca(dc−1b−1)3ac−1 o a−1(a−2b−1)2dc−3 o (ab−1)3adc−1d2,

and Eve knows

c6 = bca(dc−1b−1)3ac−1
is decrypted to−−−−−−−−−−→ B = a11 (=̂u11),

c7 = a−1(a−2b−1)2dc−3
is decrypted to−−−−−−−−−−→ O = a4 (=̂u4),

c8 = (ab−1)3adc−1d2
is decrypted to−−−−−−−−−→ B = a11 (=̂u11),

remember, that she does not know how u11 or u4 are written as words in X = {a, b, c, d}. With
this she could assume the following structures

u4 = u(w)2v

u11 = w′(v′)3u′ or u11 = (w̃)3ũ,

with u,w, v, w′, v′, u′, w̃, ũ words in X. Note, that Alice and Bob used the following words for
u4 and u11

u4 = a−1b =̂ B = a4 and u11 = a−1d3c−1 =̂ O = a11.

The assumed structure for u4 is wrong, only one of the assumed structures (which follows from
c6) for u11 is correct, but Eve is not able to decide if the structure is correct or which structure
is the correct one (for u11). Thus, the hint for elements of U is not as good as it could be in a
chosen plaintext attack, see Section 7.5.
If she gets a candidate set U ′ = {u′1, u′2, . . . , u′12} for the set U , used by Alice and Bob, it
is likely that Eve calculates the element fi(u

′
4) for automorphisms fi ∈ FAut, this is a more

selective measure for a search than without the knowledge of a chosen ciphertext attack (see
Security 7.0.8). If fi(u

′
4) = c6 or fi(u

′
4) = c8 she gets a candidate for the automorphism fx6 or

fx8 , respectively. If for all fi ∈ FAut it is c6 6= fi(u
′
4) 6= c8, Eve knows that her set U ′ is not

183

Chapter 7. Private key cryptosystem with Aut(F) (Protocol 8)

correct.

Assume we are in the situation in which the ciphertext Cred is a reduced word in X and the
beginning and end of each ciphertext unit ci is not marked (see Section 7.1).
With a chosen ciphertext attack Eve gets information how the word Cred is assigned partly to
the plaintext units. There could appear different cases:

1. If there are no cancellations for cj and Alice knows which part of Cred corresponds to sj
then she knows cj and knows where it ends and begins and hence where cj+1 begins and
cj−1 ends. In general she does not know which number of {1, 2, . . . , z} is j. She now could
act similar as in the unreduced ciphertext case above.

2. If there are cancellations for cj it is not sure that Eve knows that. Maybe it is not necessary
for Alice to give Bob such an additional information and hence Eve does not know if there
are cancellations or not. Let

Cred ≡ w1c̃jw2

be the ciphertext with w1, w2 words in X and cj ≡ cj1 c̃jcj2 with cj1 , cj2 words in X or the
empty word. In a chosen ciphertext attack Eve gets the information

c̃j
is decrypted to−−−−−−−−−−→ sj = ak (=̂uk)

for a k ∈ {1, 2, . . . , N}. It is cj ≡ cj1 c̃jcj2 , with cj1 , cj2 words in X or the empty word,
but she does not know what cj1 and cj2 look like. Maybe she gets information about the
structure of ũk, for uk ≡ uk1 ũkuk2 with uk1 , uk2 words in X, because of the structure of c̃j ,
with c̃j is decrypted to ũk. In general she does not know which number of 1, 2, . . . , z is j.
It is known that cj = fxj (uk) = cj1 c̃jcj2 for a fxj ∈ FAut. Hence, if she gets a candidate
set U ′ = {u′1, u′2, . . . , u′N} for U , the Nielsen reduced set used by Alice and Bob, it is likely
that she calculates the element fi(u

′
k) for automorphisms fi ∈ FAut. If fi(u

′
k) = uc̃jv with

u, v words in X, it is possible that fi is the used automorphism fxj from Alice and Bob but
this is not sure. It could also happen that fi(u

′
k) = uc̃jv for more than one automorphism

fi ∈ FAut or fi(u
′
k) = uc̃jv but u′k is not the element uk from Alice and Bob. It is difficult

for Eve to find the used set U and the automorphisms which were used by Alice and Bob,
see also Security 7.1.6.

3. If the ciphertext is a sequence of different ciphertexts Credi , 1 ≤ i ≤ z′, given as words
in X, and she gets a plaintext for example for one Credj she then knows of how many
letters in U , and hence in A (the plaintext alphabet), the message Credj = cj1cj2 · · · cjzj is

written, that means, she knows |Credj |U = zj . In general she does not know where each
ciphertext unit cjk , 1 ≤ k ≤ zj , begins or ends, or if there are cancellations between the
ciphertext units cjk and cjk−1

or cjk and cjk+1
. If the letter ak is encrypted several times

in Credj , then it could be that Eve gets a hint for the element uk, see above (7.6) to (7.9),
remember that there could occur cancellations, see 2.

Assume we are in the situation in which the ciphertext C ′ is a sequence of matrices in SL(2,Q),
see Section 7.2. Let

C ′ = W1W2 · · ·Wz

be the ciphertext with Wi ∈ SL(2,Q), 1 ≤ i ≤ z. With the chosen ciphertext attack, Eve gets

184

7.5. Chosen ciphertext attacks on the cryptosystem with Aut(F)

for example the information

Wj
is decrypted to−−−−−−−−−−→ sj = ak(=̂uk),

Wj+1
is decrypted to−−−−−−−−−−→ sj+1 = a`(=̂u`),

with 1 ≤ j ≤ z − 1 and k, ` ∈ {1, 2, . . . , N}. There is no hint for Eve for the used set M , to get
the faithful representation ϕ, or the set U , used by Alice and Bob.
Only the brute force search described in Security 7.2.1 could be performed in a more selective
measure, that means, Eve looks if

ϕ′(fj(u
′
k)) = Wj

instead if
Wj ∈ U ′ϕ′(fj),

with fj ∈ FAut, U ′ = {u′1, u′2, . . . , u′N} her guessed set for U and ϕ′ her guessed faithful repre-
sentation, which she gets by her guessed set M ′ for M .
Even if she found a set U ′ and a set M ′, such that

ϕ′(fj(u
′
k)) = Wj

she cannot be sure that U ′ and M ′ are the set used by Alice and Bob. There are a lot of sets,
such that

ϕ′(fj(u
′
k)) = Wj

for some fj ∈ FAut.

Assume we are in the situation in which the ciphertext CHilbert is a sequence of matrices in
GL(2, R), with R = Z[y1, y2, . . . , yn], see Section 7.3. This situation is analogous to the modifi-
cation in which the ciphertext is a sequence of matrices in SL(2,Q). Eve gets neither a hint for
U nor Aj and Bj nor D nor W .

Conclusion concerning chosen ciphertext attacks

If the ciphertext is given as a matrix, the system is secure against chosen ciphertext attacks. If
the ciphertext is a word in X it could be possible that an eavesdropper can get hints for the
elements in U and hence the search for the primitive elements in the Cayley graph as well as
the search for the automorphisms in FAut could be performed in a more selective measure.

185

Chapter 8

Private key cryptosystem with Aut(FU)
(Protocol 9)

In this chapter we introduce Protocol 9, which is a private key cryptosystem similar to Proto-
col 8. As Protocol 8 it is based on combinatorial group theory. It uses a finitely generated free
group F , a subgroup FU of F with finite rank, a Nielsen reduced set and automorphisms of FU .
It differs to Protocol 8 only in the way, that it uses automorphisms of the finitely generated
subgroup FU of F instead of automorphisms of the finitely generated free group F . The modifi-
cations of this cryptographic protocol use the ideas for the modifications of the Protocol 8. In
the cryptographic protocol the ciphertext is a sequence of reduced words in X where the end of
each ciphertext unit is marked and X is a free generating set for a free group F of finite rank. A
modification is given where the ciphertext is only one reduced word in X instead of a sequence
of words, in this case it is possible that additional information is needed for decryption, thus
these is sent with the ciphertext if required. In the second modification a faithful representation
from F into the special linear group SL(2,Q) is used, such that the ciphertext is a sequence of
matrices in SL(2,Q). The third modification utilizes the negative solution of Hilbert’s Tenth
Problem. Instead of a presentation of the ciphertext as a sequence of matrices in SL(2,Q) the
ciphertext is represented as a sequence of matrices in GL(2, R), with R := Z[y1, y2, . . . , yn], the
integral polynomial ring in n ≥ 2 variables.

For the encryption of the plaintext different automorphisms are used for each plaintext unit, as
in a One-Time-Pad (see for instance [MvOV97]). The automorphisms are out of a common set
HAut ⊂ Aut(H) (with H an abstract free group of finite rank). For decryption Bob needs to
know which automorphisms of HAut were used for the encryption procedure by Alice. For this
choice of elements from HAut regulations are needed. Therefore, Alice and Bob make use of a
linear congruence generator with maximal periodic length as for Protocol 8. Hence, for linear
congruence generators see Chapter 7.

Thus, we start this chapter with the description of Protocol 9. The modifications are explained
next. We give for each cryptographic protocol in this chapter a security analysis and beside this
we consider chosen plaintext attacks and chosen ciphertext attacks.

Now, we introduce Protocol 9. Before Alice and Bob are able to communicate with each other
they have to make some arrangements.

Public Parameters

They first agree on the following public parameters.

1. A finitely generated free group F with free generating set X = {x1, x2, . . . , xq} with q ≥ 2.

2. A plaintext alphabet A = {a1, a2, . . . , aN} with N ≥ 2.

187

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

3. An abstract free group H = 〈U | 〉 with rank(H) = |A| = N and an abstract free
generating set U = {u1, u2, . . . , uN}, with ui, 1 ≤ i ≤ N , abstract letters.

4. A subset HAut := {f0, f1, . . . , f2128−1} ⊂ Aut(H) of automorphisms of H. It is fi : H → H
and the fi, i = 0, 1, . . . , 2128 − 1, pairwise different, are generated with the help of the
0-1-sequence (of different length) and random numbers as described in Section 4.4. The
set HAut is part of the key space.

5. They agree on a linear congruence generator h : Z2128 → Z2128 with a maximal period
length.

Private Parameters

Now, they agree on the private parameters.

1. Alice and Bob choose an explicit Nielsen reduced set U with N elements, which are words
in X. Such systems U are easily to construct using Theorem 4.2.13 and Lemma 4.2.15
(see also [CgRR08] and [LS77]). Then FU = 〈U | 〉 is a free subgroup of F with rank N ,
because of Theorem 4.2.13. It is UNred the set of all minimal Nielsen reduced sets with N
elements in F , which is part of the key space.

2. They use a one-to-one correspondence

A→ U

aj 7→ uj for j = 1, . . . , N.

3. Alice and Bob agree on an automorphism fα ∈ HAut, hence α is the common secret starting
point α ∈ {0, 1, . . . , 2128 − 1}, with u1 = α ∈ Z2128 , for the linear congruence generator.
With this α they are able to generate the sequence fu1 , fu2 , . . . , fuz (with z the number
of the plaintext units, which are letters from A) of automorphisms of the set HAut, which
they need for encryption and decryption, respectively.

Remark 8.0.1. If the explicit set U := {u1, u2, . . . , uN}, ui words in X, is used, then FU is
a free subgroup of F and with the automorphism fuj ∈ HAut, with fuj : FU → FU , the set
Ufuj = {fuj (u1), fuj (u2), . . . , fuj (uN)} is generated, which is Nielsen equivalent to the set U .

The key space: The set UNred of all minimal (with respect to a lexicographical order) Nielsen
reduced sets of F with N elements. The set HAut of 2128 randomly chosen automorphisms of
FU .

Private Key Cryptosystem

Now, we explain the private key cryptosystem and look carefully at the steps for Alice and Bob.

Public knowledge: F = 〈X | 〉, X = {x1, x2, . . . , xq} with q ≥ 2; plaintext alphabet
A = {a1, a2, . . . , aN} with N ≥ 2; the set HAut; a linear congruence generator h.

Encryption and Decryption Procedure:

1. Alice and Bob agree privately on the private parameters: a set U ∈ UNred and an au-
tomorphism fα ∈ HAut. They also know the one-to-one correspondence between U and
A.

188

2. Alice wants to transmit the message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A to Bob.

2.1. She generates with the linear congruence generator h and the knowledge of fα the z
automorphisms fu1 , fu2 , . . . , fuz , which she needs for encryption. It is u1 = α, u2 = h(u1),
. . ., uz = h(uz−1).

2.2. The encryption is as follows

if si = at then si 7→ ci := fui(ut), 1 ≤ i ≤ z, 1 ≤ t ≤ N.

Recall that the one-to-one correspondence A→ U with aj 7→ uj , for j = 1, 2, . . . , N , holds.
The ciphertext

C = fu1(s1)fu2(s2) · · · fuz(sz) with si=̂ut ⇔ si = at

= c1c2 · · · cz

is sent to Bob. As above cj are called the ciphertext units and we do not perform cancel-
lations between ci and ci+1 and the end of each ci is marked, 1 ≤ i ≤ z − 1, for example
with the symbol “o”. On the one hand the ciphertext unit cj can be seen as a word in
U , because the set Ufuj = {fuj (u1), fuj (u2), . . . , fuj (uN)} is Nielsen equivalent to U and

fuj (sj)=̂fuj (uk) =: cj , for sj = ak, is an element in Ufuj . On the other hand it can be
written as a word in X, because the explicit elements in U are words in X and so are the
elements in the Nielsen equivalent set Ufuj to U .

3. Bob gets the ciphertext
C = c1c2 · · · cz,

with cj , 1 ≤ j ≤ z, words in X. He knows where each ciphertext unit cj begins and ends.
Hence, he gets the information that he has to use z automorphisms of F from the set HAut
for decryption. He has two possibilities for decryption.

3.1.a. With the knowledge of fα, the set U = {u1, u2, . . . , uN}, the linear congruence generator
h and the number z, he computes for each automorphism fui , i = 1, 2, . . . , z, the set

Ufui = {fui(u1), fui(u2), . . . , fui(uN)},

with fui(uj) written as a reduced word in X. Hence, with the one-to-one correspondence
between U and A, he gets a one-to-one correspondence between the letters in the alphabet
A and the words of the ciphertext depending on the automorphisms fui . This is shown in
Table 8.1 (page 190).

189

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

Table 8.1.: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to ciphertext alphabet Ufui
depending on the automorphisms fui

Ufu1 Ufu2 · · · Ufuz

a1 fu1(u1) fu2(u1) · · · fuz(u1)

a2 fu1(u2) fu2(u2) · · · fuz(u2)

...
...

...
...

...

aN fu1(uN) fu2(uN) · · · fuz(uN)

With the knowledge of the Table 8.1 (page 190) the decryption is as follows

if ci = fui(ut) then ci 7→ si = at, 1 ≤ i ≤ z, 1 ≤ t ≤ N.

He generates the plaintext message

S = s1s2 · · · sz,

with si ∈ A, from Alice.

3.1.b. Bob knows the Nielsen reduced set U , hence with the algorithm in Theorem 4.3.10 he
is able to write the elements ci as words in U . With the knowledge of fα, the set
U = {u1, u2, . . . , uN}, the linear congruence generator h and the number z, he gets the
automorphism fui which Alice used for encryption of ci. Because of the fact that a one-
to-one correspondence between A and U is used and the ciphertext unit ci is an image of
an element in U under the automorphism fui , Bob knows with the automorphism fui and
the ciphertext unit ci written as word in U , the plaintext letter aj ∈ A which corresponds
to the ciphertext unit ci.

Remark 8.0.2. As soon as Alice and Bob agree on the starting seed automorphism and the
Nielsen reduced set U , Bob is able to calculate the first columns of Table 8.1 (page 190) for
decryption (he does not know how many columns he will need because he does not know yet
how long the plaintext from Alice will be). If he gets the ciphertext C from Alice, he only
has to do a search in the table to get the corresponding plaintext units to the ciphertext units.
If columns are missing to decrypt the ciphertext, he calculates the missing columns. Thus,
in Version 3.1.a. instead of Version 3.1.b. for decryption Bob is able to do calculations for
decryption even before he knows the ciphertext.

Remark 8.0.3. The cryptosystem is a polyalphabetic system, that means, a word ui ∈ U , and
hence a letter ai ∈ A, is encrypted differently at different positions in the plaintext, because
different automorphisms are used during the encryption procedure for each ciphertext unit.
Thus, for the ciphertext, a statistical frequency attack (see for instance [BFKR15]) over the
frequency of words, which corresponds to letters in the plaintext alphabet, or groups of words,
is useless.

We summarize Protocol 9 in Table 8.2 (page 191).

190

Table 8.2.: Summary of Protocol 9: Private key cryptosystem with Aut(FU)

Public Knowledge

F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2; plaintext alphabet A = {a1, a2, . . . , aN}, N ≥ 2;
abstract free group H = 〈U | 〉, U = {u1, u2, . . . , uN} with ui abstract letters;
set HAut ⊂ Aut(H); linear congruence generator h of maximal periodic length.

Alice Bob

Private keys

Explicit set U = {u1, u2, . . . , uN} with ui words in X, U ⊂ F Nielsen reduced set,
|U | = N ; seed fα ∈ FAut, one-to-one correspondence A→ U , aj 7→ uj .

Encryption

Choose message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A.
Calculate
u1 = α,u2 = h(u1), . . . ,uz = h(uz−1), obtain
fu1 , fu2 , . . . , fuz .
Encryption procedure:
if si = at then si 7→ ci := fui(ut), 1 ≤ i ≤ z,
1 ≤ t ≤ N.
Ciphertext:
C = fu1(s1)fu2(s2) · · · fuz(sz) = c1c2 · · · cz,
with ci written as words in X.

C=c1oc2o···ocz−−−−−−−−−−−−−−−−−−−−−−−→
Decryption

Compute z automorphisms:
u1 = α,u2 = h(u1), . . . ,uz = h(uz−1), ob-
tain fu1 , fu2 , . . . , fuz .
Two possibilities:

1. For each fui , i = 1, 2, . . . , z, compute
Ufui = {fui(u1), fui(u2), . . . , fui(uN)}
and get a table like Table 8.1 (page 190).
(Decryption: Search in this table.)
If ci = fui(ut) then ci 7→ si = at, 1 ≤ i ≤ z,
1 ≤ t ≤ N.
2. Use Nielsen reduced set U and an algo-
rithm to write the ciphertext units ci (given
as words in X) as words in U . Together
with the used automorphisms the cipher-
text is decrypted correctly.

Reconstruct plaintext message
S = s1s2 · · · sz, with si ∈ A.

An example with decryption described as in 3.1.a. is given in Example 8.0.4. Another example
with decryption as described in 3.1.b. is given in Appendix C.9.

191

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

Example 8.0.4. This example was executed in GAP. All details are given in Appendix C.8
Firstly, Alice and Bob agree on public parameters.

1. Let F be the free group on the free generating set X = {x, y, z}.

2. Let Ã = {a1, a2, . . . , a8} = {L,E, I,O,U,A,V,B} be the plaintext alphabet.

3. LetH be the abstract free group of rank |Ã| = 8 with free generating set U = {u1, u2, . . . , u8}.

4. A set HAut ⊂ Aut(H) is determined. In this example we give the automorphisms, which
Alice and Bob use for encryption and decryption, respectively, just at the moment when
they are needed.

5. The linear congruence generator with maximal periodic length is

h : Z2128 → Z2128

u 7→ 133u + 51.

The private parameters for this example are the following:

1. Let FU be the explicit finitely generated free group, which is generated with the free
generating set U = {u1, u2, . . . , u8} with words in X, for this example it is

u1 :=xyz, u2 :=yzy−1, u3 :=x−1zx−1, u4 :=y−1x2,

u5 :=z−1xyx, u6 :=z−1yx−1, u7 :=x3y, u8 :=y3z−2.

The starting automorphism fu1 is f23442, hence it is u1 = α = 23442. It is known, that
ai 7→ ui, i = 1, 2, . . . , 12, for ui ∈ U and ai ∈ Ã, therefore

L=̂u1 =xyz, E=̂u2 =yzy−1, I=̂u3 =x−1zx−1, O=̂u4 =y−1x2,

U=̂u5 =z−1xyx, A=̂u6 =z−1yx−1, V=̂u7 =x3y, B=̂u8 =y3z−2.

We now look at the encryption and decryption procedure for Alice and Bob.

2. With the above agreements Alice is able to encrypt her message

S = LOVE.

Her message is of length 4. She generates the ciphertext as follows:

2.1 First, she determines, with the help of the linear congruence generator h : Z2128 → Z2128

with u 7→ 133u + 51 and the starting seed α = 23442, the four automorphisms fui ∈ HAut,
1 ≤ i ≤ 4, which she needs for encryption. It is

u1 = α = 23442, u2 = h(u1) = 3117837,

u3 = h(u2) = 414672372 and u4 = h(u3) = 55151425527.

The automorphisms are describable with the help of regular Nielsen transformations, it is

fu1=̂ (N2)1.7 (N2)2.4 (N1)5 (N2)7.8 [(N2)3.4]
2 (N2)4.6 (N2)5.1 (N1)7 (N2)6.3 (N2)8.1

192

(N2)7.4 (N1)7 (N2)1.2 (N2)2.3 (N2)4.5,

fu1 : H → H

u1 7→ u1u7u2u4, u5 7→ u−15 u1u7,

u2 7→ u2u4u3u
2
4, u6 7→ u6u3u

2
4,

u3 7→ u3u
2
4, u7 7→ u−16 u−14 u7u8,

u4 7→ u4u6u
−1
5 u1u7, u8 7→ u8u1u7.

fu2=̂ (N2)1.3 (N2)3.5 (N1)2 (N1)4 (N2)6.5 (N1)1 [(N2)3.4]
2 (N2)5.2 (N2)7.6 (N2)4.2

(N2)2.8 (N2)8.4 (N1)4 (N2)1.4 (N2)2.6 (N2)5.6 (N2)6.4 (N2)4.7,

fu2 : H → H

u1 7→ u−13 u−11 u2u4, u5 7→ u5u
−1
2 u6u5,

u2 7→ u−12 u8u6u5, u6 7→ u6u5u2u4,

u3 7→ u3u5u
−2
4 , u7 7→ u7u6u5,

u4 7→ u2u4u7u6u5, u8 7→ u8u
−1
4 u−12 .

fu3=̂ (N1)2 (N1)5 (N1)8 (N2)6.3 (N2)3.7 (N2)1.2 [(N2)4.8]
2 (N2)5.6 (N2)8.3 (N2)6.3

(N1)8 (N2)2.3 (N2)7.4 (N2)1.8 (N2)3.4,

fu3 : H → H

u1 7→ u1u
−1
2 u−17 u−13 u8, u5 7→ u−15 u6u3,

u2 7→ u−12 u3u7, u6 7→ u6u
2
3u7,

u3 7→ u3u7u4u
−2
8 , u7 7→ u7u4u

−2
8 ,

u4 7→ u4u
−2
8 , u8 7→ u−17 u−13 u8.

fu4=̂ (N1)1 (N1)3 (N1)4 (N2)6.2 [(N2)8.2]
3 (N2)2.3 (N2)3.4 (N2)5.2 (N2)7.4 (N2)1.3

(N2)4.5 (N2)8.3 (N1)1 (N1)2 (N2)7.2 (N1)3 (N2)2.3 (N2)3.5 (N2)6.1,

fu4 : H → H

u1 7→ u4u3u1, u5 7→ u5u2u
−1
3 ,

u2 7→ u3u
−1
2 u4u3, u6 7→ u6u2u4u3u1,

u3 7→ u4u3u5u2u
−1
3 , u7 7→ u7u

−1
4 u3u

−1
2 ,

u4 7→ u−14 u5u2u
−1
3 , u8 7→ u8u

3
2u
−1
3 u−14 .

2.2 Secondly, she encrypts her message. The ciphertext is

C = fu1(L)fu2(O)fu3(V)fu4(E)

= fu1(u1)fu2(u4)fu3(u7)fu4(u2)

= u1u7u2u4 o u2u4u7u6u5 o u7u4u−28 o u3u
−1
2 u4u3.

The ciphertext C is a sequence of words in X, it is

C = u1u7u2u4 o u2u4u7u6u5 o u7u4u−28 o u3u
−1
2 u4u3

= xyzx3y2zy−2x2 o yzy−2x5yz−1yx−1z−1xyx o x5(z2y−3)2 o x−1zx−1yz−1y−2xzx−1.

193

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

3. Bob gets the ciphertext

C = xyzx3y2zy−2x2 o yzy−2x5yz−1yx−1z−1xyx o x5(z2y−3)2 o x−1zx−1yz−1y−2xzx−1

from Alice. Thus, he knows that he needs 4 automorphisms for decryption.

3.1. Bob knows the set U , the linear congruence generator h and the starting seed automor-
phism f23442. For decryption he uses tables like Table 8.1 (page 190).

Now, he is able to compute for each automorphism fui the set Ufui , 1 ≤ i ≤ 4, and to
generate Table 8.3 (page 194) and Table 8.4 (page 194).

Table 8.3.: Correspondence: plaintext alphabet to ciphertext alphabet I

Ufu1
Ufu2

L xyzx3y2zy−2x2 (xz−1)2y−1x−1yzy−2x2

E yzy−2xzx−1(y−1x2)2 yz−1y2z−3yx−1z−1xyx

I x−1zx−1(y−1x2)2 x−1zx−1z−1x(yx−1)2x−1y

O y−1x2z−1yx−2y−1x−1zxyzx3y yzy−2x5yz−1yx−1z−1xyx

U x−1y−1x−1zxyzx3y z−1(xy)2z−1y−1z−1yx−1z−1xyx

A z−1yx−2zx−1(y−1x2)2 z−1yx−1z−1(xy)2zy−2x2

V xy−1zx−2yx3y4z−2 x3yz−1yx−1z−1xyx

B y3z−2xyzx3y y3z−2x−2y2z−1y−1

Table 8.4.: Correspondence: plaintext alphabet to ciphertext alphabet II

Ufu3
Ufu4

L xyzyz−1y−2x−2z−1xy3z−2 y−1xzyz

E yz−1y−1x−1zx2y x−1zx−1yz−1y−2xzx−1

I x−1zx4(z2y−3)2 y−1xzx−1z−1(xy)2zy−1xz−1x

O y−1x2(z2y−3)2 x−2yz−1(xy)2zy−1xz−1x

U x−1y−1x−1yx−2zx−1 z−1(xy)2zy−1xz−1x

A z−1y(x−2z)2x2y z−1yx−1yzy−2xzyz

V x5(z2y−3)2 x3yx−2yx−1zx−1yz−1y−1

B y−1x−2z−1xy3z−2 y3z−2yz3y−1xz−1x−1y

With these tables he is able to reconstruct the plaintext from Alice. He searches for the
plaintext element si the ciphertext unit ci in the column Ufui , 1 ≤ i ≤ 4, and hence gets

194

the alphabet letter aj = si for a j ∈ {1, 2, . . . , 8}. Therefore, he decrypts the ciphertext

C = xyzx3y2zy−2x2 o yzy−2x5yz−1yx−1z−1xyx o x5(z2y−3)2 o x−1zx−1yz−1y−2xzx−1

to the message

S = LOVE.

Security 8.0.5. An eavesdropper, Eve, intercepts the ciphertext

C = c1c2 · · · cz,

with ci ∈ Ufui , 1 ≤ i ≤ z. This is a ciphertext only attack also called known ciphertext
attack (see Section 1.1 or for instance [BFKR15], [MvOV97] or [BNS10]). She knows where each
ciphertext unit ends and begins, because there are no cancellations between ci and ci+1, and
the end and the beginning of each ci is marked. Alice and Bob generate the set Ufui from the
set U = {u1, u2, . . . , uN} with the regular Nielsen transformation fui ∈ HAut on U , thus Ufui is
Nielsen equivalent to U , for all 1 ≤ i ≤ z. This situation is visualized in Figure 8.1.

(u1, u2, . . . , uN)

U := {u1, u2, . . . , uN}

(fu1(u1), fu1(u2), . . . , fu1(uN))
Ufu1 = {fu1(u1), fu1(u2), . . . , fu1(uN)}

· · · (fuz(u1), fuz(u2), . . . , fuz(uN))

Ufuz = {fuz(u1), fuz(u2), . . . , fuz(uN)}

fu1 · · · fuz

Figure 8.1.: Nielsen equivalent sets Ufui to the set U

The elements ui are written as words in X. Therefore, the elements in Ufui and hence the
ciphertext units ci are words in X. All sets Ufui are Nielsen equivalent to U and therefore the
ciphertext units are elements in the free subgroup FU = 〈U | 〉 of F = 〈X | 〉. Thus, the set
of ciphertext units, that is,

C̃ = {c1, c2, . . . , cz}

generates a subgroup 〈C̃〉 of FU . Let C̃Nred be a Nielsen reduced set of C̃, hence the group
FC̃Nred , generated by C̃Nred, is a free subgroup of FU , that is,

FC̃Nred = 〈C̃Nred | 〉

is a subgroup of FU = 〈U | 〉 and rank(FC̃Nred) ≤ z because of Proposition 4.2.5. Let

L1 := max{|ci|X | ci ∈ C̃}

be the maximum free length of the ciphertext units written as reduced words in X. After Re-
mark 4.2.17 there exists an algorithm, such that Eve is able to generate C̃Nred of C̃ in a running
time of O(L2

1z
2), with |C̃| = z.

To break the system, Eve needs to know the set U . If 〈C̃〉 = FU then C̃Nred = U (and

195

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

FC̃Nred = FU), because of Proposition 4.2.4 and the property, that Alice and Bob used a mini-
mal Nielsen reduced set (with respect to a lexicographical order, see for instance Example 4.2.8),
thus Eve is then able to identify the set U with the help of C̃Nred.
In general it is C̃Nred 6= U and hence FC̃Nred is not the free group FU . Eve knows that FC̃Nred
is a subgroup of FU . Hence, she can use the set C̃Nred to get candidates for U . For this
she needs qualified elements {w1, w2, . . . , w`}, with wj , 1 ≤ j ≤ `, primitive elements in F .
With these elements wj , 1 ≤ j ≤ `, Eve can generate sets Vi := C̃Nred ∪ {w1, w2, . . . , w`} with
K := |Vi| ≥ N and with Nielsen transformations she constructs Nielsen reduced sets V ′i to
Vi. If |V ′i | = N then V ′i is a candidate for U . The running time is within O(λ2K2), with

λ := max
(
{|wj |X | j = 1, 2, . . . , `} ∪ {|c′i|X | c′i ∈ C̃Nred}

)
≤ L, to get the set V ′i from Vi with

the algorithm [Ste89] (see Remark 4.2.17).

Remark 8.0.6. The ciphertext units are elements of FU . Is it possible for Eve to get hints for
the used elements in U analyzing the ciphertext units ci, 1 ≤ i ≤ z?
Eve intercepts ciphertext units ci, 1 ≤ i ≤ z, written as words in X. Let c′i be the ciphertext
unit ci written as a word in U , that is,

c′i = u′i1u
′
i2 · · ·u

′
iki
,

with 1 ≤ ki ≤ |c′i|X , u′ij ∈ U
±1 and u′iju

′
ij+1
6= 1 for 1 ≤ j < ki. It is ki ≤ |c′i|X ≤

∑ki
j=1 |u′ij |X

because U is Nielsen reduced and hence each element in U has a stable letter (see Corollary 4.2.10
and Remark 4.2.11). It is likely that there are cancellations between the letters u′ij and u′ij+1

,

such that only a segment ũ′ij of u′ij written as a word in X (which contains its stable letter, see

Remark 4.2.11) is visible in ci. Eve is not able to identify which segment of ci is a segment of
u′ij , for all 1 ≤ j ≤ ki. She also does not know the free length of u′ij in X and which elements

of U±1 are used to write c′i. Thus, it is difficult for her to get good hints for U by analyzing the
ciphertext units ci.
To make it more difficult for Eve Alice and Bob could change the set U frequently.

How can Eve find qualified elements wj for the set Vi?
Eve knows that Alice and Bob used a Nielsen reduced set U = {u1, u2, . . . , uN} with words ui
in X, 1 ≤ i ≤ N . Each ciphertext unit ci, 1 ≤ i ≤ z, can be written as a word in U , it is

ci = u′i1u
′
i2 · · ·u

′
iki
,

with 1 ≤ ki ≤ |ci|X , u′ij ∈ U±1 and u′iju
′
ij+1
6= 1 for 1 ≤ j < ki. It is ki ≤ |ci|X because U

is Nielsen reduced and hence each element in U has a stable letter (see Corollary 4.2.10 and
Remark 4.2.11).
Let U ′ci := {u′i1 , u

′
i2
, . . . , u′iki

} be the set of all letters in U±1 of the ciphertext unit ci. Define

Uci := U ∩ U ′±1ci and

UC :=

z⋃
i=1

Uci ,

it is UC ⊆ U and the ciphertext units of C = c1c2 · · · cz are words in UC .
The set U is Nielsen reduced and hence, because of Corollary 4.2.12, it is |ci|X ≥ |u′ij |X for all
1 ≤ j ≤ ki and therefore

L1 := max{|ci|X | ci ∈ C̃} ≥ max{|uj |X | uj ∈ UC}.

Thus, it is likely that each element of U can be found as a letter in at least one ciphertext unit ci

196

in C̃, hence it is likely that UC = U . Therefore, Eve knows that the ball B(F,L1) in the Cayley
graph of F contains the set UC and maybe although if UC 6= U a whole basis for FU . With this
knowledge she searches for primitive elements in the ball B(F,L1). These primitive elements
are her qualified elements wj , which she needs to get the sets Vi and hence the candidates V ′i
for U . Eve can be sure that she is able to write each ciphertext unit ci with elements in her
set V ′i , because each ci can be written with C̃Nred and all elements in C̃Nred can be written
with elements in V ′i , because C̃Nred ⊆ Vi. Therefore, she can be sure, that there exists a set
V ′i , such that UC ⊆ V ′i with which she can decrypt the ciphertext C correctly if she gets the
automorphism fui for the ciphertext unit ci.

To get all primitive elements in B(F,L1) it took exponential time (see Proposition 4.2.21 and
Theorem 4.2.22). Assume Eve gets a candidate V ′ for U . After construction, the words ci can
be written with letters of V ′±1.

With the constructive membership problem, she writes the ciphertext units ci with letters of
V ′±1 (see Theorem 4.3.10 and Remark 4.3.11) and this gives her hints for the used automorphism
fui , which Alice used to get ci. If she found an automorphism fui corresponding to ci she gets
with the public linear congruence generator h the other automorphisms fuj for the ciphertext
units cj , and if she gets with these automorphisms and her set V ′ the correct elements cj ,
Eve can be very sure that she found the correct set V ′ and hence she can also reconstruct the
plaintext. For this she can use a statistical frequency attack (see for instance [BFKR15]) on her
reconstructed plaintext given as words in V ′ over the frequency of words (or groups of words),
which corresponds to letters in the plaintext alphabet.

Remark 8.0.7. Let
S = s1s2 · · · sz,

si ∈ A with A the set of plaintext letters, be the plaintext from Alice for Bob. Let

C = c1c2 · · · cz

be the corresponding ciphertext to S and define C̃ = {c1, c2, . . . , cz}, the set of the ciphertext
units.

Assume UC 6= U , that means, there exists an element uk ∈ U , such that uk is not a letter in the
ciphertext units ci, 1 ≤ i ≤ z, of the ciphertext C.

If |uk| ≤ L1 then uk is an element in the ball B(F,L1) and Eve could find the correct set U
which is used by Alice and Bob.

If |uk| > L1 then uk is not an element in the ball B(F,L1) and Eve could not find the set U ,
but a set V ′, with UC ⊂ V ′.
If we are in the situation in which UC 6= U for the ciphertext C, Eve searches for sets Vi with
Vi = C̃Nred∪W , K = |Vi| ≥ N and wj ∈W primitive elements in the ball B(F,L1) of the Cayley
graph from F , L1 = max{|ci|X | ci ∈ C̃}, and V ′i a Nielsen reduced set to Vi with |V ′i | = N as
in Security 8.0.5. These sets V ′i are candidates for U .

With such a set V ′i she is able to generate the ciphertext units cj , because of the way she generates
these sets. Let V ′ = {v1, v2, . . . , vN} be a Nielsen reduced set, which is one of Eve’s candidates
for U . Hence, with the algorithm, given in Theorem 4.3.10, which solves the constructive
membership problem in free groups for subgroups with a Nielsen reduced set as generating set,
Eve is able to write each element in C̃ as a word of letters from the set V ′±1.

Assume Eve writes the element ci as ci = vi1vi2 · · · vil , with vij ∈ V ′±1 for 1 ≤ j ≤ l. This
is a hint for the used automorphism by Alice. Therefore, Eve searches in the set HAut of
automorphism on U for such an automorphism, which applies an element uk, 1 ≤ k ≤ N , to an
element uε1i1u

ε2
i2
· · ·uεlil , with ia ∈ {1, 2, . . . , N} for 1 ≤ a ≤ l and εb ∈ {1,−1} for 1 ≤ b ≤ l. If

197

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

vip = viq , p 6= q, then u
εp
ip

= u
εq
iq

, and via corresponds to uεaia .

If Eve does not find such an automorphism in HAut, she can be sure, that her set V ′ is false. If
Eve finds such an automorphism fν ∈ HAut, with ci ∈ V ′fν , then it could be that Alice encrypted
her plaintext letter si = ak, for a k ∈ {1, 2, . . . , N}, of the plaintext S with this automorphism fν
to the ciphertext unit ci. If this is true and if the one-to-one correspondence between A and U is
public Eve knows that ci corresponds to the element uk and hence decrypts the plaintext letter
ak. If the one-to-one correspondence between A and U is not public, Eve can use a statistical
frequency attack (see for instance [BFKR15]) on her reconstructed plaintext given as a sequence
of words in U over the frequency of words (or groups of words), which corresponds to letters in
the plaintext alphabet, to get the one-to-one correspondence.

Eve assumes that fν is the automorphism fui , which was used by Alice to encrypt si by ci. She
then proves if the other elements ci+`, 1 ≤ i+ ` ≤ z, can be generated with her set V ′ and the
corresponding automorphisms, which she is able to calculate, if she gets a correct automorphism
fν , which Alice used as fui .

If 1 ≤ ` ≤ z − i she gets the automorphisms fh`(ν) corresponding to ci+` by calculating

h`(ν) = h(h(· · ·h(h︸ ︷︷ ︸
` times h

(ν)) · · ·)),

remember that the linear congruence generator h is public.

If −i+ 1 ≤ ` ≤ −1 she gets the automorphisms fh`(ν) corresponding to ci+` by calculating

h`(ν) = h−1(h−1(· · ·h−1(h−1︸ ︷︷ ︸
|`| times h−1

(ν)) · · ·)).

The mapping h is a public linear congruence generator of maximal periodic length, hence bijec-
tive and therefore the inverse mapping of h exists.

There are two possibilities.

1. ci+` /∈ V ′f
h`(ν)

:

It is possible that the automorphism fν is not the used automorphism fui by Alice to
generate the ciphertext unit ci. Then, Eve searches for another automorphism fν1 in
HAut, which applies an element uk to an element uε1i1u

ε2
i2
· · ·uεlil , with ia ∈ {1, 2, . . . , N} for

1 ≤ a ≤ l and εb ∈ {1,−1} for 1 ≤ b ≤ l (see above). If she finds such an automorphism she
calculates the set V ′

f`
h(ν1)

, which is Nielsen equivalent to the set V ′ under the automorphism

fh`(ν1), and searches for the element ci+` in this set.
If ci+` ∈ V ′fh(ν1) , Eve is then in case 2. below. If ci+` /∈ V ′fh(ν1) she is again in this case 1.

and tries to find another automorphism fν2 in HAut, which applies an element uk to an
element uε1i1u

ε2
i2
· · ·uεlil , with ia ∈ {1, 2, . . . , N} for 1 ≤ a ≤ l and εb ∈ {1,−1} for 1 ≤ b ≤ l

(see above).
If she tried all possible automorphisms and got every time the case 1. then she has
definitely a wrong set V ′, that means it is UC 6⊂ V ′. She then has to change her candidate
V ′ for U .

2. ci+1 ∈ V ′fh(ν) :
If she is able to generate each element cj ∈ C̃ with this set V ′ and the automorphisms
which she gets with her seed automorphism fν ∈ HAut and the linear congruence generator
h then it is very likely that she found the correct automorphism fν which is fui and a set
V ′ with UC ⊂ V ′. With these automorphisms she is able to identify which elements of
V ′ correspond to the set UC and which to the set W , it is V ′ = UC ∪W . It is possible,

198

that the elements in W are not elements in U . If she is not able to generate each element
cj ∈ C̃ with the automorphisms which follows from her automorphism fh(ν) she then is in
case 1. above.

Assume Eve knows a set V ′ with U 6= V ′ = UC ∪W , thus she knows the sets UC ⊂ U and
W , hence she knows which elements of U are for sure in her set V ′. She also knows the
automorphisms fut , which Alice used to get the ciphertext units ct for the plaintext units st, for
all 1 ≤ t ≤ z.
If Eve intercepts now the next ciphertext C1 = cz+1cz+2 · · · cz1 , she is able to calculate the
automorphism fuz+1 , because she knows fuz and it is h(uz) = uz+1, with h the used linear
congruence generator. Eve calculates the set V ′fuz+1

and searches for the element cz+1 in this

set. There occur two cases.

1. If cz+1 ∈ V ′fuz+1
then cz+1 is a word in UC or it is a word in V ′ which has at least one

letter in the set W±1. Eve is able to decide if a letter of W±1 was used to write cz+1. If
the second case arises, Eve knows that these letters of W±1 are candidates for the set U .
Hence, she gets closer to the set U . The actual set V ′ could be U . It is likely that she
decrypts the ciphertext unit cz+1 correctly.

2. If cz+1 6∈ V ′fuz+1
then cz+1 has at least one letter used which is not in UC and also not in

W , hence there are elements in W which do not belong to the set U and the actual set V ′

is not U . Eve gets one of the following situations:

a) The ciphertext cz+1 is written with elements of U \ V ′. She then knows, that no
element of W is a letter for cz+1. She knows the automorphisms and hence only the
elements uk who map to words which are written with elements not in UC are possible
for the ciphertext cz+1. She knows that cz+1 is written with up to min{|W |, |cz+1|}
elements of U \ UC . Maybe this information is enough to identify the corresponded
letter to cz+1. Eve could also try to get correct letters for cz+1 which are in U \ UC ,
therefore she uses other elements for W as before. These elements are primitive
elements in a ball B(F, |cz+1|) of the Cayley graph from the free group F . She could
use the information of the words which are written with elements not in UC and the
ciphertext unit cz+1 to get new candidates for W and hence Eve comes closer to the
correct set U . It is not necessary to know the whole set U to decrypt the ciphertext
unit, if the set UC gives enough information to identify uk for the ciphertext unit
uz+1 if the automorphism fuz+1 is known.

b) The ciphertext unit cz+1 is written with letters in V ′±1 and letters not in V ′±1. Eve
searches for the element cz+1 in the set V ′fuz+1

, because cz+1 has letters which are

elements of V ′±1 there are elements in V ′fuz+1
which match partly with sequences in

cz+1. Sequences in cz+1 which are different must occur to elements u` ∈ U which
are not in Eve’s set V ′. Eve is able to identify at least sequences with stable let-
ters for these elements u`. Maybe it is enough to search for an element in V ′fuz+1

which matches partly to cz+1 to get the correct plaintext letter for cz+1, this element
cz+1 = fuz+1(ut) (if sz+1 = at) must be written in U with some letters which are not
yet in V ′. For these letters she can identify sequences in cz+1 and hence gets hints for
the elements in U , which are not yet in V ′. It is not necessary to know the whole set
U , because maybe the set CU and the automorphism fuz+1 give enough information
to identify the correct plaintext letter to the element cz+1. If this is possible she also
gets hints for elements in the set U ⊂ UC .

This is analogous for the other ciphertext elements in the ciphertext C1 = cz+1cz+2 · · · cz1 .

199

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

The main security certification depends on the fact, that for a single subset V of FU with K
elements Eve finds a Nielsen reduced set in the running time O(λ2K2), with λ the maximum
over the free length of the elements in the subset V with K primitive elements, but she has to
test all possible subsets of K elements for which she needs exponential running time, because the
number of primitive elements grows exponentially with the free length, see Proposition 4.2.21
and Theorem 4.2.22. She searches in a ball B(F,L1), with L1 = max{|ci| | ci ∈ C̃} for these
primitive elements.
A subset of V is also known, it is C̃Nred ⊂ V but she has to put all other primitive elements to
this set and proves if V ′, which is Nielsen reduced to V , is of order N and hence a candidate for U .

To verify the set V ′ as U or to find the automorphisms for encryption and decryption, re-
spectively, and hence decrypt the message, Eve gets hints for the used automorphisms in HAut
by solving the constructive membership problem of the elements ci of the ciphertext with her
candidate V ′ for U , which is Nielsen reduced. Thus, this is not only a brute force search.

Remark 8.0.8. If the set HAut is private Eve could write with the correct set V ′ = U and the
constructive membership problem each element ci as a word in U , but she does not know to which
element uk ∈ U the ciphertext unit ci corresponds. If the set of automorphisms Aut(H) is not
restricted by the set HAut, then every correspondence between ci and uk (and hence plaintext
unit ak) is equivalently likely. A statistical frequency attack (see for instance [BFKR15]) is
useless, because even if si = sj , i 6= j, it is ci 6= cj as words both in X and U . Alice and Bob
made the set HAut public because they are then able to change the automorphisms without a
private meeting, see Remark 7.0.3. If they use Variation 7.0.4 they have a public part of the set
HAut and a private part, hence they make an attack for Eve more difficult than in the situation
when the set FAut is completely public.

Remark 8.0.9. If Alice and Bob used an arbitrary Nielsen reduced set U and not a minimal
Nielsen reduced set concerning to a lexicographical order, than Eve gets for V ′ much more
sets, see Example 4.2.16. She gets also sets V ′ which are the set U but with permuted order.
In this case she has to test all permuted sets and not only the minimal set (concerning to a
lexicographical order), thus she gets N !−1 more sets for each V ′ to test with the automorphisms.
There are also Nielsen reduced sets, which generate the same group but differ not only in the
permutation order but also in some elements, for example {y2, y−1xy} and {y2, yxy−1} generate
the same free group (see Example 4.2.16).

The security certification can be improved by the next three modifications, which are explained
in Section 8.1, Section 8.2 and Section 8.3.

8.1. Modification with the ciphertext a reduced word for the
cryptosystem with Aut(FU)

As in Section 7.1 the reduced word Cred of the ciphertext C is sent instead of C, hence there
are no parts with xkx

−1
k , for a 1 ≤ k ≤ q, which only occur in C if xk is the last letter of cj and

x−1k is the first letter of cj+1. The beginning and end of each ciphertext unit ci is not marked.

Let

Cred = x′1x
′
2 · · ·x′L′ ,

with x′i ∈ X±1, 1 ≤ i ≤ L′, be the reduced ciphertext from Alice for Bob. This word can also

200

8.1. Modification with the ciphertext a reduced word for the cryptosystem with Aut(FU)

be seen as a reduced word in U , that means

Ĉred = û1û2 · · · û`,

with ûi ∈ U±1, 1 ≤ i ≤ `. It is ` ≤ L′ because of Corollary 4.2.12.
Alice sends the word Cred with letters in X±1 as ciphertext to Bob.

The method how Bob decrypts the ciphertext Cred with the help of tables like Table 8.1
(page 190) and the kind of additional information which Alice has to give to Bob, if the decryp-
tion is not unique, is analogous to the description in Section 7.1, in which the cryptosystem uses
Aut(F).

Example 8.1.1. In Example 8.0.4 the ciphertext is

C = xyzx3y2zy−2x2 o yzy−2x5yz−1yx−1z−1xyx o x5(z2y−3)2 o x−1zx−1yz−1y−2xzx−1.

The reduced ciphertext is

Cred =xyzx3y(yzy−2x2)2x3yz−1yx−1z−1xyx6(z2y−3)2x−1zx−1yz−1y−2xzx−1.

In this example are no reductions between the ciphertext units and all ciphertext units are
uniquely identifiable in the corresponding set Ufui . Thus, no additional information is needed
from Alice for decryption. In the first moment Bob does not know how many sets Ufui and hence
how big the table (a table like Table 8.1 (page 190)) will be, which he needs for decryption, but
he knows the set U , the starting automorphism fα, the used set HAut and the linear congruence
generator h, hence he is able to calculate the required sets Ufui for the tables. The tables for
this example are given in Example 8.0.4, see Table 8.3 (page 194) and Table 8.4 (page 194).

Bob could also use instead of tables (like Table 8.1 (page 190)), which store words in X, the
algorithm which solves the constructive membership problem (see Theorem 4.3.10) to reconstruct
the message from Alice. He knows the Nielsen reduced set U and hence he is able to write the
ciphertext Cred as a word in U . Thus, he gets from Cred the word Ĉred written in U . With the
starting automorphism fα, the used set HAut and the linear congruence generator h, Bob is able
to calculate the used automorphisms fui . He then gets tables, like Table 8.5 (page 201), which
store words in U and give a correspondence between the alphabet letters in the set A and the
images of the automorphisms fui ∈ HAut, because of the one-to-one correspondence between A
and U .

Table 8.5.: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to the images of the auto-
morphisms f(ui)

fu1 fu2 · · · fuz

a1=̂u1 fu1(u1) fu2(u1) · · · fuz(u1)

a2=̂u2 fu1(u2) fu2(u2) · · · fuz(u2)

...
...

...
...

...

aN =̂uN fu1(uN) fu2(uN) · · · fuz(uN)

201

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

With these tables and additional information from Alice, if required, he is able to decrypt the
ciphertext correctly. The additional information and the method for decryption is analogous to
the description in Section 7.1, in which the cryptosystem uses Aut(F).
Alice and Bob agree if the additional information is for Cred or Ĉred. Or Alice gives this
information also in her additional information. She can use instead of (i, d, w̃), see above in
Section 7.1, the additional information (i, d, w̃,X) if the information is about Cred and the
others entries have the same meaning as before. Or (i, d, w̃, U) if the information is about Ĉred
and the other entries are analogous for words in U .

Example 8.1.2. If Bob does the decryption with using Ĉred and tables like Table 8.5 (page 201),
he gets for

Cred =xyzx3y(yzy−2x2)2x3yz−1yx−1z−1xyx6(z2y−3)2x−1zx−1yz−1y−2xzx−1,

from Example 8.1.1, the ciphertext

Ĉred = u1u7(u2u4)
2u7u6u5u7u4u

−2
8 u3u

−1
2 u4u3.

The required steps can be taken from the tables in Appendix C.9.
With the starting automorphism fu1 , which is f23442 for this example (Example 8.0.4), and the
other common information between Alice and Bob, he is able to get step by step the Table 8.6
(page 202) and to decrypt also step by step the ciphertext Ĉred, with the help of the columns of
the Table 8.6 (page 202), correctly. He needs no additional information from Alice, because no
analogous situation as described in Remark 7.1.3 appears and hence the decryption is uniquely
possible for Bob without additional information.

Table 8.6.: Plaintext alphabet A = {L,E, I,O,U,A,V,B} corresponding to the images of the
automorphisms fui , i = 1, 2, 3, 4

fu1 fu2 fu3 fu4

L=̂u1 u1u7u2u4 u−13 u−11 u2u4 u1u
−1
2 u−17 u−13 u8 u4u3u1

E=̂u2 u2u4u3u
2
4 u−12 u8u6u5 u−12 u3u7 u3u

−1
2 u4u3

I=̂u3 u3u
2
4 u3u5u

−2
4 u3u7u4u

−2
8 u4u3u5u2u

−1
3

O=̂u4 u4u6u
−1
5 u1u7 u2u4u7u6u5 u4u

−2
8 u−14 u5u2u

−1
3

U=̂u5 u−15 u1u7 u5u
−1
2 u6u5 u−15 u6u3 u5u2u

−1
3

A=̂u6 u6u3u
2
4 u6u5u2u4 u6u

2
3u7 u6u2u4u3u1

V=̂u7 u−16 u−14 u7u8 u7u6u5 u7u4u
−2
8 u7u

−1
4 u3u

−1
2

B=̂u8 u8u1u7 u8u
−1
4 u−12 u−17 u−13 u8 u8u

3
2u
−1
3 u−14

Remark 8.1.3. Which is Eve’s information of the additional information from Alice for Bob?
These are similar to the information in the cryptosystem which uses Aut(F), see Remark 7.1.5.
Eve knows from

202

8.1. Modification with the ciphertext a reduced word for the cryptosystem with Aut(FU)

1. (i, |ci|, 1, X), that there is at least one element in Ufui of free length |ci|. After Corol-
lary 4.2.12 Eve knows that |ci|X ≥ |fui(ut)|U for all 1 ≤ t ≤ N , hence all automorphisms
of HAut with |fui(ut)|U > |ci|X for all 1 ≤ t ≤ N are not used by Alice to encrypt si to ci,

but she does not know if this element is completely visibly in Cred or C
(i)
red;

2. (i, |c′i|X , w,X), with c′i an initial segment of ci and w an segment of ci (ci ≡ c′iww̃ with w̃

word in X or the empty word), that |ci| ≥ |c′i|+|w| and the first |c′i| elements of C
(i)
red are the

first |c′i| elements of ci and after these elements comes the word w in ci. If (i, |c′i|X , w1, X),
then |ci| = |c′i|+ |w| and Eve gets the analogous information for the automorphism fui as

above in 1., but she does not know, if this word w is visible in Cred or C
(i)
red;

3. (i, 0, c′i, X), with c′i the initial segment of ci, that the word ci is completely canceled in
Cred. She also knows that c′i is an initial segment of ci, thus |ci| ≥ |c′i|, it is not necessary
that c′i = ci;

4. (i, |ci|U , 1, U), that there is at least one element in the set {fui(u1), fui(u2), . . . , fui(uN)},
with fui(uk) written as a word in U , of length |ci|U . Hence, all automorphism ft of HAut
for which the set {ft(u1), ft(u2), . . . , ft(uN)} has no element of free length |ci|U in U , was
not used by Alice to encrypt si to ci. Eve does not know if the element ci is completely

visibly in Ĉred or Ĉ
(i)
red;

5. (i, |c′i|U , v, U), with c′i an initial segment of ci and v a segment of ci (ci ≡ c′ivṽ with ṽ word
in U or the empty word), that |ci|U ≥ |c′i|U + |v|U . Hence, all automorphisms ft of HAut for
which the set {ft(u1), ft(u2), . . . , ft(uN)} has only elements of free length in U less than
|c′i|U + |v|U , was not used by Alice to encrypt si to ci.

If (i, |c′i|U , v1, U), then |ci|U = |c′i|U + |v|U and Eve gets the analogous information for the

automorphism fui as above in 4. The first |c′i|U elements of Ĉ
(i)
red are the first |c′i|U elements

of ci written in U and after this elements comes the word v in ci, but she does not know,

if this word v is visible in Ĉred or Ĉ
(i)
red;

6. (i, 0, c′i, U), with c′i the initial segment of ci, that the word ci is completely canceled in Ĉred.
She also knows that c′i is an initial segment of ci, thus |ci|U ≥ |c′i|U , it is not necessary that
c′i = ci. Hence, all automorphisms ft of HAut for which the set {ft(u1), ft(u2), . . . , ft(uN)}
has only elements of free length in U less than |c′i|U , were not used by Alice to encrypt si
to ci.

In general Eve cannot be sure where C
(i)
red begins (this is equivalent to the beginning of ci) or

where ci ends. She is also not able to identify all missing letters of X±1 in Cred, which she needs
to get the unreduced word C.

Security 8.1.4. An eavesdropper, Eve, intercepts the reduced ciphertext

Cred = x′1x
′
2 · · ·x′L′ ,

with x′i ∈ X±1, 1 ≤ i ≤ L′. It is Cred a word in FU .

In general, she is not able to identify the end of c1 and hence she cannot identify the beginning
or end of the other ciphertext units cj and she also does not know which elements are canceled
in the reduced ciphertext Cred.

As in Security 8.0.5 to break the system an eavesdropper, Eve, needs to know the set U . The
notations in the following passage are analogous to the notations given in Security 8.0.5.

203

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

In an attack of the modification without reduction (beginning of Chapter 8), Eve uses as can-
didates for the set U the sets Vi = C̃Nred ∪ {w1, w2, . . . , wl}, with wi primitive elements in the
ball B(F,L1) of the Cayley graph from F and C̃Nred a set of elements which she gets with the
help of all ciphertext units ci.

Now, in contrast, Eve is neither able to determine the number

L1 := max{|ci|X | ci ∈ C̃},

because she does not know what the ciphertext units ci look like and hence she cannot determine
the maximum free length of them, nor is she able to generate the set C̃Nred, because for this she
needs the ciphertext units ci unreduced written as a word in X.

Eve knows L′ = |Cred|X the freely reduced length of the ciphertext. Now, it is likely that she
assumes, that the ball B(F,L′) in the Cayley graph for F contains a basis for FU . She searches
in the same way for candidates of U as explained in Security 7.0.8, which is similar as before
but gives no guarantee that in all her sets V ′i is at least one set V ′ with UC ⊂ V ′ .
If Eve gets a candidate V ′ for U she writes the word Cred as a word in V ′, for this she uses the
algorithm to solve the constructive membership problem as explained in Theorem 4.3.10. If this
is not possible, she knows, that V ′ is not the correct set U , or a set V ′, with UC ⊂ V ′. Assume
Eve is able to write the ciphertext Cred as a word in her set V ′ = {v1, v2, . . . , vN}, with vi words
in X. Let

Ĉ ′red = v′1v
′
2 · · · v′`′ ,

with v′i ∈ V ′±1, be the rewritten ciphertext for Eve. It is `′ ≤ L′, because of Corollary 4.2.12.
It is not necessary, that the elements v′i are elements in the set U±1, which was used by Alice
and Bob.

The element Ĉ ′red could give her hints for the used automorphisms by Alice, but these hints
are not as good as they were for the cryptosystem without reductions, because Eve does not
know which v′j is the last letter of ci, written as word in V ′, and which v′j+1 is the first letter
of ci+1, written as word in V ′. Maybe there are also letters of U missing at the end of ci,
because they are canceled by the initial segment of ci+1. Thus, it is possible, that Eve assumes
ci = v′tv

′
t+1 · · · v′t+s, but it is |ci|U > s+ 1.

It is also likely that there are automorphisms in HAut, for which ui has an image which is an

initial segment of Ĉ ′
(1)

red = Ĉ ′red if i = 1, or Ĉ ′
(i)

red = ci−1Ĉ ′
(i−1)
red if 2 ≤ i ≤ z, or Ĉ ′

(z)

red = cz if i = z.

To use the hints for the automorphisms Eve must be able to get the words C ′
(i)
red, but there are

a lot of possibilities for these elements, because Eve does not know where ci ends. Furthermore,
she does not know if there are cancellations between the ciphertext units and hence if there
are letters in the ciphertext Cred missing from which she has no idea. Therefore, she gets more
possibilities for the automorphisms than in the version in which the ciphertext is unreduced.

Maybe the additional information from Alice, which is sent publicly to Bob, gives her hints (see
Remark 8.1.3) but she cannot be sure that there are no other letters missing, which she cannot
deduce from the additional information. Hence, if she goes the way described in Security 8.0.5,
and in more details in Remark 8.0.7, then it is not likely that, even if she gets an automorphism
fi ∈ HAut and found in

V ′fi = {fi(v1), fi(v2), . . . , fi(vN)}

a j, such that fi(vj) is an segment of Ĉ ′red and thus she assumes that ck = fi(vj) and Ĉ ′
(k)

red = ckw

with w an terminal segment of Ĉ ′red, this automorphism fi is a used automorphism for encryption
and it is not clear that she is on the right way even if in

V ′fh(i) = {fh(i)(v1), fh(i)(v2), . . . , fh(i)(vN)}

204

8.2. Modification with SL(2,Q) for the cryptosystem with Aut(FU)

the next segment of Cred, which is the initial segment of Ĉ ′
(k+1)

red , can be found.

8.2. Modification with SL(2,Q) for the cryptosystem with Aut(FU)

This modification is analog to the modification with SL(2,Q) for the cryptosystem with Aut(F),
see Section 7.2.
Alice and Bob agree also in addition privatly on a faithful representation ϕ : F → SL(2,Q) thus
they can write the ciphertext units ci of the ciphertext C as matrices in SL(2,Q) instead as a
word in X. Let

ϕ : F → SL(2,Q)

xi 7→Mi

be this faithful representation of F into SL(2,Q).
One way for Alice and Bob to generate the matrices Mi, 1 ≤ i ≤ q, is given in Remark 7.2.2.
In addition to the situation in Section 7.2, the ciphertext C can now also be seen as a word in
U and therefore the ciphertext C ′ is also a word in Uϕ. Thus, Alice and Bob must take care,
that the set Uϕ = {ϕ(u1), ϕ(u2), . . . , ϕ(uN)}, with ϕ(ui) ∈ SL(2,Q) is not a generating set of
a subgroup in SL(2,Q) for which the membership problem is decidable, therefore, |N | ≥ 3 and
〈Uϕ〉 is not a subgroup of SL(2,Z).
The encryption is realizable with a table (like Table 8.1 (page 190)) if the representation ϕ is
applied to the elements fui(uj) in this table, see Table 8.7 (page 205).

Table 8.7.: Plaintext alphabet A = {a1, a2, . . . , aN} corresponding to ciphertext alphabet Uϕ(fui)
depending on the automorphisms fui and the faithful representation ϕ

Uϕ(fu1) Uϕ(fu2) · · · Uϕ(fuz)

a1 ϕ(fu1(u1)) ϕ(fu2(u1)) · · · ϕ(fuz(u1))

a2 ϕ(fu1(u2)) ϕ(fu2(u2)) · · · ϕ(fuz(u2))

...
...

...
...

...

aN ϕ(fu1(uN)) ϕ(fu2(uN)) · · · ϕ(fuz(uN))

The encryption for Bob is not possible with the use of the solution of the constructive Mem-
bership problem for the ciphertext C ′, a sequence of matrices, the set Uϕ and the used auto-
morphisms fui , because Alice and Bob take care that there is no algorithm known to solve this
problem efficiently.

Security 8.2.1. As in Security 7.2.1 the additional security certification is, that there is no
algorithm known to solve the membership problem (see Problem 4.3.8) for free (discrete) sub-
groups of SL(2,Q) which are of rank greater than or equal to 2 and not subgroups of SL(2,Z),
even if Eve makes the correct guess for the set M = {M1,M2, . . . ,Mq}, with Mi = ϕ(xi), used
by Alice and Bob, or the set Uϕ = {ϕ(u1), ϕ(u2), . . . , ϕ(uN)}, with ϕ(ui) ∈ SL(2,Q), which

205

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

could also be used for encryption, see above. Thus, Eve is not able to generate a situation as
in Security 8.0.5, hence it is very unlikely that Eve is able to decrypt the message correctly.
Even if Eve does a brute force search through the set HAut with her candidate U ′ϕ for the set
Uϕ instead of the abstract set U and founds with her candidate U ′ϕ and an automorphism of
HAut one matrix Wi of the ciphertext C ′ it could be that she used a different U ′ϕ and different
automorphism of HAut than Alice and hence encrypts this ciphertext unit Wi not correctly.

Remark 8.2.2. If Alice and Bob use this variation, then they can also let the set X private. In
the previous version the ciphertext C is a sequence of words in X hence if Alice looks at C it is
very likely that she gets all elements in X, hence the set X is considered as public. In addition
the automorphisms of FAut give all elements in X. Now, the ciphertext C ′ is a sequence of
matrices in SL(2,Q) and Alice and Bob can choose X privately. This makes a correct guess
from Eve for the set M more difficult, because Eve does not know the cardinality of M , which
is q = |X|, because know X is private. The automorphisms in HAut give no hint, because they
are abstract given on a set with N elements and in general it is N 6= |X|.

8.3. Modification with Hilbert’s Tenth Problem for the cryptosystem
with Aut(FU)

The same way how Alice and Bob use Hilbert’s Tenth Problem for the cryptosystem with Aut(F)
in Section 7.3, they can use it for the cryptosystem with Aut(FU). Alice writes the ciphertext
C, which she gets by the cryptosystem with Aut(FU) to a sequence CHilbert of matrices in
GL(2, R), with R = Z[y1, y2, . . . , yn] and n ≥ 2, as explained in Section 7.3, because in both
cryptosystems (with Aut(F) and Aut(FU)) the ciphertext is a sequence of words in X, with
X = {x1, x2, . . . , xq} and F = 〈X | 〉. Therefore, the decryption from CHilbert to C is for Bob
the same as in Section 7.3 explained.

Remark 8.3.1. The version of the cryptosystem of Aut(FU) in which the ciphertext is only
one reduced word in X (Section 8.1) can also be improved with the explained procedure which
uses the negative solution of Hilbert’s Tenth Problem, analogous to Remark 7.3.8. Then the
ciphertext is only a matrix MHilbert in GL(2, R), with R = Z[y1, y2, . . . , yn] and n ≥ 2.

Security 8.3.2. The security certification depends, in addition to Security 8.0.5, (for Re-
mark 8.3.1 in addition to Security 8.1.4) on the unsolvability of Hilbert’s Tenth Problem.
Y. Matiyasevich proved in [Mat70] finally that there is no general algorithm which determines
whether or not an integral polynomial in any number of variables has a zero. Therefore, for Eve,
who sees just matrices in GL(2, R), with R = Z[y1, y2, . . . , yn] and n ≥ 2, it is hard to find the
private key D of Alice and Bob.

We get one more variation of this cryptosystem, which is only possible if we use in addition the
negative solution of Hilbert’s Tenth Problem. Let

C = c1c2 · · · cz

be the ciphertext generated as explained in the beginning of Chapter 8. The ciphertext units
ci are words in U , with U = {u1, u2, . . . , uN} a Nielsen reduced set with elements ui, which are
words in X, hence the ci are also words in X. In the above systems with Aut(F) and Aut(FU),
the ciphertext C was send as a sequence of words in X. Now, we consider the ciphertext units
ci as words in the abstract set U .

206

8.3. Modification with Hilbert’s Tenth Problem for the cryptosystem with Aut(FU)

To make use of Hilbert’s Tenth Problem, the augmentation here (as in Section 7.3) is given by
evaluating a point D = {d1, d2, . . . , dn} ∈ Zn, such that

ε∗(A) =

(
p1(D) p2(D)
p3(D) p4(D)

)
=

(
1 2
0 1

)
= a

and

ε∗(B) =

(
p5(D) p6(D)
p7(D) p8(D)

)
=

(
1 0
2 1

)
= b.

The public knowledge for this modification extends to the augmented ring R = Z[y1, y2, . . . , yn],
with n ∈ N \ {1}.
The private information for Alice and Bob extends to a point D ∈ Zn, the set {a, b} and the
Nielsen reduced set V = {v1, v2, . . . , vN}, with vi abstract words in {a, b}.

In this modification the elements in the abstract set U are identified with words in the set
{a, b} instead as words in X. Thus, instead of a free subgroup JW = 〈W | 〉 with rank
q of J = 〈a, b | 〉 (see Section 7.3) Alice and Bob use a free subgroup JV = 〈V | 〉
with rank N , N = |U | the number of letters in the used plaintext alphabet A. Therefore, let
V = {v1, v2, . . . , vN} be a Nielsen reduced set with vi, 1 ≤ i ≤ N , abstract words in {a, b}.
Alice and Bob identify ui ∈ U with vi ∈ V , for all i = 1, 2, . . . , N , and thus Alice writes the
ciphertext (generated as explained in Chapter 8)

C = c1c2 · · · cz,

with ci abstract words in U , as
C ′ = c′1c

′
2 · · · c′z,

with c′i abstract words in V .

Next, Alice writes C ′ as a sequence of words in {Aj , Bj}, that is, C ′Hilbert and means, instead of
a she writes Aj and instead of b she writes Bj . It is

Aj =

(
p1j p2j
p3j p4j

)
and Bj =

(
p5j p6j
p7j p8j

)
,

with p1j , p2j , . . . , p8j ∈ Z[y1, y2, . . . , yn], n ≥ 2, her 8 ephemeral polynomials, which generate the
matrices Aj and Bj in GL(2, R) with the property

ε∗(Aj) = a and ε∗(Bj) = b.

Thus,
C ′Hilbert = ĉ1 o ĉ2 o · · · o ĉz

is the ciphertext C ′ written as a sequence of matrices in GL(2, R), with R = Z[y1, y2, . . . , yn]
and n ≥ 2. Hence, Alice sends each ĉi, 1 ≤ i ≤ z, as one matrix in GL(2, R) to Bob.

For decryption Bob uses the augmentation, which is given by evaluating pij , 1 ≤ i ≤ 8, at the
private point D, such that ε∗(Aj) = a and ε∗(Bj) = b. With this point D he is able to generate
from C ′Hilbert the ciphertext version

Ĉ ′ = ε∗(ĉ1) o ε∗(ĉ2) o · · · o ε∗(ĉz) = ĉ′1 o ĉ′2 o · · · o ĉ′z,

207

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

with ĉ′i, 1 ≤ i ≤ z, matrices in SL(2,Z), which are words in {a, b}. With an algorithm (use for
example the method described in Remark 4.3.12) to write the matrix ĉ′i as an abstract word c′i
in {a, b} he gets

C ′ = c′1 o c′2 o · · · o c′z.

Since Alice and Bob choose a Nielsen reduced set V = {v1, v2, . . . , vq}, vj abstract words in
{a, b}, Bob is now able to write each c′i, 1 ≤ i ≤ z, as an abstract word in V , see Theorem 4.3.10
and Remark 4.3.11, and gets

C ′ = c′1 o c′2 o · · · o c′z,

with ci, 1 ≤ i ≤ z, words in V .

Bob writes the ciphertext C ′ with the one-to-one correspondence between U and V to the
ciphertext C, in which the ciphertext units are written as words in U . Thus, the decryption is
then the same as explained in Encryption and Decryption Procedure 3.1.b in the beginning
of Chapter 8.

Remark 8.3.3. This modification is only possible with the use of the negative solution of
Hilbert’s Tenth Problem. Without writing the elements c′i as matrices in GL(2, R) with the
integral polynomial ring R = Z[y1, y2, . . . , yn], n ≥ 2, an eavesdropper intercepts ciphertext
units as abstract words in U or V , respectively. Alice and Bob use the one-to-one correspondence
with ui 7→ vi for ui ∈ U and vi ∈ V . This gives hints for the used automorphism of Alice in HAut
for encryption, because now the ciphertext units are images of elements in U or V , respectively,
and Eve knows that Alice used an automorphism for which the ciphertext unit ci is such an
image. The abstract automorphisms HAut ⊂ Aut(H) on U , see Chapter 8, can be also seen
as abstract automorphisms on V and H ′ = 〈V | 〉 instead on H = 〈U | 〉 (this is possible
because |V | = |U | and hence H is isomorphic to H ′, see Theorem 4.3.7), thus HAut = H′Aut and
Aut(H) = Aut(H ′).

Security 8.3.4. The security certification depends on the unsolvability of Hilbert’s Tenth Prob-
lem. Y. Matiyasevich proved in [Mat70] finally that there is no general algorithm which deter-
mines whether or not an integral polynomial in any number of variables has a zero. Therefore,
for Eve, who sees just matrices in GL(2, R), with R = Z[y1, y2, . . . , yn], it is hard to find the
private key D of Alice and Bob. In addition the security is improved by the fact, that for each
encryption Alice and Bob can take privately ephemeral matrices in GL(2, R) with the property
that the common private point D ∈ Zn generates the correct matrices in PSL(2,Z). This gives
randomness to ciphertexts, which complicates attacks for Eve.

8.4. Chosen plaintext attacks on the cryptosystem with Aut(FU)

In a chosen plaintext attack (see Section 1.1 or for instance also [BFKR15, Section 3.1]) Eve
gives a blackbox, which does the encryption procedure, plaintexts of her choice and gets the
corresponding ciphertexts. Assume Eve gives the blackbox a plaintext which obtains only one
letter of the alphabet A, it is

S =s1s2 · · · sr
= aiai · · · ai︸ ︷︷ ︸

r times

,

208

8.4. Chosen plaintext attacks on the cryptosystem with Aut(FU)

with ai ∈ A. She gets the ciphertext

C =fα(ai)fh(α)(ai)fh2(α) · · · (ai)fhr−1(α)(ai)

=c1c2 · · · cr,

with α the starting seed to generate with the linear congruence generator h the used automor-
phisms fi ∈ HAut for encryption.

The ciphertext units ci are words in U , which are given as words inX, because U = {u1, u2, . . . , uN}
and ui words in X.

In general, the ciphertext units do not have a similar structure as it could be in the case for a
chosen plaintext attack of the cryptosystem with Aut(F), see Section 7.4.

Eve gets words fhj−1(α)(ai) = cj , 1 ≤ j ≤ r, in X which are differently written in U and it is
also possible that uεi , ε ∈ {1,−1}, is not a letter in the word cj .

Thus, a chosen plaintext attack gives no additional hints for the set U , than the look at the
ciphertext, which is a ciphertext only attack, see Security 8.0.5 and especially Remark 8.0.6.

Example 8.4.1. Eve gives the blackbox the plaintext

S = LLLL.

We assume that the blackbox used the same public and private parameters as in Example 8.0.4.

The starting seed for the linear congruence generator h is u1 = α = 23442 and the used auto-
morphisms fu1 , fu2 , fu3 and fu4 , for encryption are computed as above in Example 8.0.4, hence
the ciphertext is

C =fu1(L)fu2(L)fu3(L)fu4(L)

=c1c2c3c4

=xyzx3y2zy−2x2 o (xz−1)2y−1x−1yzy−2x2 o xyzyz−1y−2x−2z−1xy3z−2 o y−1xzyz.

There is no structure for u1=̂a1 = L identifiable . The following is a consideration, which Eve
could also take at a ciphertext only attack, see Remark 8.0.6. Eve could assume that one ui is
of the form or has a segment or is a segment of

yzy−2x2

because this segment is a terminal segment of c1 and c2.

It is also likely, that she assumes, that one uj is of the form or has a segment or is a segment of

xyz

because this segment is an initial segment of c1 and c3.

Remember, that in Example 8.0.4, Alice and Bob agreed on

u1 :=xyz, u2 :=yzy−1, u3 :=x−1zx−1, u4 :=y−1x2,

u5 :=z−1xyx, u6 :=z−1yx−1, u7 :=x3y, u8 :=y3z−2.

Therefore, she takes correct thought for u1 = xyz and u4 = y−1x2, this enables a more selective
brute force search through the Cayley graph for the set U , see Security 8.0.5.

If we are in the situation (Section 8.1) in which the ciphertext Cred is a reduced word and the
beginning and end of a ciphertext unit ci is not marked it is more difficult to get information
about a blackbox if words are used as inputs. If only one letter at the time is an input for the

209

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

blackbox, then they get the same information as in the situation when the ciphertext units are
identifiable in the unreduced ciphertext.

If we are in the situation (Section 8.2) in which the ciphertext C ′ is a matrix in SL(2,Q) this
attack gives no information about the way the elements in the set U look like, because an eaves-
dropper, Eve, sees just matrices and she does not know which matrices are multiplied to get the
ciphertext matrices ci.

If we are in the situation (Section 8.3) in which the ciphertext C ′Hilbert is a sequence of matrices
in GL(2, R), with R = [y1, y2, . . . , yn], this attack gives no hint for the elements in U . As in the
situation in which the ciphertext is a sequence of matrices in SL(2,Q) an eavesdropper sees just
matrices and she does not know which matrices are multiplied to get the ciphertext matrices ĉi.

Conclusion concerning chosen plaintext attacks

If the ciphertext is given as a matrix, the system is secure against chosen plaintext attacks. If
the ciphertext is a word in X it could be possible that an eavesdropper can get hints for the
elements in U and hence the search for the primitive elements in the Cayley graph could be
performed in a more selective measure, but these hints can also be seen in a ciphertext only
attack. Hence, this is not an information which only appears at a chosen plaintext attack.

8.5. Chosen ciphertext attacks on the cryptosystem with Aut(FU)

In a chosen ciphertext attack (see Section 1.1 or for instance also [BFKR15, Section 3.1]) Eve
chooses ciphertexts and sends these to a blackbox, she then gets the corresponding plaintexts
back.
For example Eve gets to some parts of a given ciphertext the corresponding plaintext. These
parts can be chosen by her.
Let

C = c1c2 · · · cz
be the ciphertext generated as explained in Chapter 8.
Let

cj = fuj (uk)

be the ciphertext unit for which Eve knows the plaintext sj = ak. She gets no more information
about the set U , than she also knows from a ciphertext only attack.
She knows the free length |cj |X and thus |cj |U ≤ |cj |X because of Corollary 4.2.12.
Eve is able, as before (see Security 8.0.5 more precisely Remark 8.0.7), to reduce the set HAut,
which gives abstract automorphisms of FU = 〈U | 〉 for an abstract set U = {u1, u2, . . . , uN},
for the automorphism which Alice used to encrypt sj = ak with her explicit set U , in which the
elements are words in X. Only automorphisms f` ∈ HAut for which |f`(uk)|U ≤ |cj |X is true are
candidates for the used automorphism fuj by Alice.
Assume Eve gets a candidate V ′ = {v1, v2 . . . , vN}, with vi words in X, for Alice set U . She
writes the element cj as

cj = vj1vj2 · · · vjl , (8.1)

with vji ∈ V ′±1 for 1 ≤ i ≤ l and l ≤ |cj |X (with the algorithm given in Theorem 4.3.10). If
l > |cj |X the set V ′ is wrong.

210

8.5. Chosen ciphertext attacks on the cryptosystem with Aut(FU)

This is a hint for the used automorphism by Alice. Therefore, Eve searches in the set HAut of
automorphisms on U for such an automorphism, which applies the element uk to an element
uε1j1u

ε2
j2
· · ·uεljl with ja ∈ {1, 2, . . . , N} for 1 ≤ a ≤ l and εb ∈ {1,−1} for 1 ≤ b ≤ l. If vjp = vjq ,

p 6= q, in Eve’s equation (8.1), then u
εp
jp

= u
εq
jq

, and vjp corresponds to u
εp
jp

. Now, she only searches
for this explicit uk and not for all ur with 1 ≤ r ≤ N . Thus, this search could be performed in
a more selective measure as in Security 8.0.5, more precisely Remark 8.0.7.

Assume we are in the situation in which the ciphertext Cred is a reduced word in X and the
beginning and end of each ciphertext unit ci is not marked (see Section 8.1).
With a chosen ciphertext attack Eve gets information how the word Cred is assigned partly to
the plaintext units. In general, Eve is not able to write Cred as C, that means, she is not able
to identify for each ciphertext unit ci the end and the beginning and she also does not know all
cancellations between ci and ci+1. Hence, to find the set U , she gets no additional hints for U
than in a ciphertext only attack (see Security 8.1.4) on Cred. To get candidates V ′ for U she
acts as described in Security 8.1.4.
There could appear different cases for her information which she gets from a chosen ciphertext
attack (these are similar to the cases for the cryptosystem with Aut(F), see Section 7.5):

1. If there are no cancellations for cj and Alice knows which part of Cred corresponds to sj
then she knows cj and knows where it ends and begins and hence where cj+1 begins and
cj−1 ends. In general she does not know which number of {1, 2, . . . , z} is j. She now could
act similar as in the unreduced ciphertext case above if she gets a candidate for U .

2. If there are cancellations for cj it is not sure that Eve knows that. Maybe it is not necessary
for Alice to give Bob such an additional information and hence Eve does not know if there
are cancellations or not. Let

Cred ≡ w1c̃jw2

be the ciphertext with w1, w2 words in X and cj ≡ cj1 c̃jcj2 with cj1 , cj2 words in X or the
empty word. In a chosen ciphertext attack Eve gets the information

c̃j
is decrypted to−−−−−−−−−−→ sj = ak (=̂uk),

for a k ∈ {1, 2, . . . , N}. Thus, her information is cj ≡ cj1 c̃jcj2 with cj1 , cj2 words in X or
the empty word, and she does not know what cj1 and cj2 look like. In general she does
not know which number of 1, 2, . . . , z is j.

If Eve gets a candidate V ′ for U she writes the word Cred as a word in V ′, for this
she uses the algorithm to solve the constructive membership problem as explained in
Theorem 4.3.10. If this is not possible, she knows, that V ′ is not the correct set U , or a
set V ′, with UC ⊂ V ′. Assume Eve is able to write the ciphertext Cred as a word in her
set V ′ = {v1, v2, . . . , vN}, with vi words in X. Let

Ĉ ′red = v′1v
′
2 · · · v′`′ ,

with v′i ∈ V ′±1, be the rewritten ciphertext for Eve. It is `′ ≤ |Cred|X , because of Corol-
lary 4.2.12. She then also knows which elements of V ′ correspond to the element c̃j , that
means she knows

c̃j = v′tv
′
t+1 · · · v′t+d, (8.2)

211

Chapter 8. Private key cryptosystem with Aut(FU) (Protocol 9)

with v′i ∈ V ′±1, t ∈ {1, 2, . . . , `′−d} and d+1 = |c̃j |V ′ ≤ |cj |X , because of Corollary 4.2.12.

This is a hint for the used automorphism by Alice. Therefore, Eve searches in the set
HAut of automorphisms on U for such an automorphism, which applies the element
uk to an element w1u

ε1
j1
uε2j2 · · ·u

εd+1

jd+1
w2, with w1, w2 words in U or the empty word and

ja ∈ {1, 2, . . . , N} for 1 ≤ a ≤ d + 1 and εb ∈ {1,−1} for 1 ≤ b ≤ d + 1. If v′p = v′q,

p 6= q, in Eve’s equation (8.2), then u
εp
jp

= u
εq
jq

, and v′p corresponds to u
εp
jp

. Now, she only
searches for this explicit uk and not for all ur with 1 ≤ r ≤ N . Hence, the search for the
possible automorphisms of Alice in HAut could be performed in a more selective measure
as in Security 8.0.5, more precisely Remark 8.0.7, described.
Even if Eve founds such an automorphism she cannot be sure that it is the automorphism
of Alice or her set V ′ is correct, see also Security 8.1.4.

It is difficult for Eve to find the used set U and the automorphisms which were used by
Alice and Bob.

3. If the ciphertext is a sequence of different ciphertexts Credi , 1 ≤ i ≤ z′, given as words
in X, and she gets a plaintext, for example for one Credj , she then knows of how many
letters in U , and hence in A (the plaintext alphabet), the message Credj = cj1cj2 · · · cjzj is

written, that means, she knows |Credj |U = zj . In general, she does not know where each
ciphertext unit cjk , 1 ≤ k ≤ zj , begins or ends. Or if there are cancellations between the
ciphertext units cjk and cjk+1

.

This gives no more information for the set U as in the cases above.

Assume we are in the situation in which the ciphertext C ′ is a sequence of matrices in SL(2,Q),
see Section 8.2. Let

C ′ = W1W2 · · ·Wz

be the ciphertext with Wi ∈ SL(2,Q), 1 ≤ i ≤ z. With the chosen ciphertext attack, Eve gets
for example the information

Wj
is decrypted to−−−−−−−−−−→ sj = ak(=̂uk),

with 1 ≤ j ≤ z − 1 and k ∈ {1, 2, . . . , N}. There is no hint for Eve for the used set M , to get
the faithful representation ϕ, or the set U , used by Alice and Bob, and hence for the set Uϕ.
Only the brute force search described in Security 8.2.1 could be performed in a more selective
measure, that means, Eve makes a guess U ′ϕ = {M̃1, M̃2, . . . , M̃N}, with M̃j ∈ SL(2,Q), for the
set Uϕ of Alice and Bob. Eve tests if

f`(M̃k) = Wj ,

for f` ∈ HAut (the automorphisms in HAut can be applied on 〈U ′ϕ〉 because |U ′ϕ| = |U | and
therefore the free group FU = 〈U | 〉 is isomorphic to FU ′ϕ = 〈U ′ϕ | 〉), instead if

Wj ∈ f`(U ′ϕ).

Even if she found a set U ′ϕ and an automorphism f` ∈ HAut, such that

f`(M̃k) = Wj

she cannot be sure that these were used by Alice and Bob. There are a lot of candidates for
U ′ϕ, that means sets in SL(2,Q) with N elements, such that

f`(M̃k) = Wj

212

8.5. Chosen ciphertext attacks on the cryptosystem with Aut(FU)

for some f` ∈ HAut.

Assume we are in the situation in which the ciphertext CHilbert is a sequence of matrices in
GL(2, R), with R = Z[y1, y2, . . . , yn] and n ≥ 2, see Section 8.3. This situation is analogous to
the modification in which the ciphertext is a sequence of matrices is SL(2,Q). Eve gets neither
a hint for U nor Aj and Bj nor D nor W .

Conclusion concerning chosen ciphertext attacks

This cryptosystem is secure against chosen ciphertext attacks. An attacker gets no additional
hints for the set U than he gets with a ciphertext only attack.

213

Chapter 9

Private key cryptosystem which uses
automorphisms on plaintext sequences
(Protocol 10)

This chapter introduces Protocol 10, a symmetric key cryptosystem. It is based on combinato-
rial group theory, uses automorphisms of finitely generated free groups, Nielsen reduced sets and
a faithful representation of a finitely generated free group into SL(2,Q). The automorphisms are
out of a common set GAut ⊂ Aut(G) (with G an abstract free group of finite rank). For decryp-
tion Bob needs to know which automorphisms of GAut were used for the encryption procedure
by Alice. For this choice of elements in GAut regulations are needed. Therefore, Alice and Bob
make use of a linear congruence generator with maximal periodic length as for Protocol 8 and
Protocol 9. Hence, for linear congruence generators see Chapter 7.
The main difference of the cryptographic protocol in this chapter to Protocol 8 and Proto-
col 9 is, that it uses automorphisms on plaintext sequences instead of automorphisms on F
or FU , respectively. Moreover, Protocol 10 contains special random matrices, which generate
randomness for the ciphertext and work as ephemeral keys in the encryption procedure.

We first describe Protocol 10 in a restricted version to explain the idea. This is then gener-
alized. A variation and an example are given. The chapter closes with a closer look at chosen
ciphertext and chosen plaintext attacks.

Now, we introduce Protocol 10.

Public Parameters

First of all Alice and Bob agree on public parameters.

1. A plaintext alphabet A = {a1, a2, . . . , aN} with N ≥ 2.

2. An abstract free group G = 〈Y | 〉 with rank(G) = 5 and a free generating set
Y = {y1, y2, . . . , y5}.

3. A subset GAut := {g0, g1, . . . , g2128−1} ⊂ Aut(G) of automorphisms of G. It is gi : G → G
and the gi, i = 0, 1, . . . , 2128 − 1, pairwise different, are generated with the help of the
0-1-sequence (of different length) and random numbers as described in Section 4.4. The
set GAut is part of the key space.

4. They agree on a linear congruence generator h : Z2128 → Z2128 with a maximal period
length.

215

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

Private Parameters

Afterwards they agree on their common private parameters.

1. A finitely generated free group F = 〈X | 〉 with free generating set X = {x1, x2, . . . , xq},
with q ≥ 2.

2. A free subgroup FU = 〈U | 〉 with rank 2N of the free group F and the free generating
set U = {u1, u2, . . . , uN , uN+1, . . . , u2N}, with ui freely reduced words in X, is chosen.
The set U is a minimal Nielsen reduced set (with respect to a lexicographical order, see for
instance Example 4.2.8). Such systems U are easily to construct using Theorem 4.2.13 and
Lemma 4.2.15 (see also [CgRR08] and [LS77]). It is UNred the set of all minimal Nielsen
reduced sets with 2N elements in F , which is part of the key space.

3. They agree on a faithful representation

ϕ : F → SL(2,Q)

xi 7→Mi.

The set M = {M1,M2, . . . ,Mq}, with Mi = ϕ(xi), is a free generating set for a free
subgroup H = 〈M | 〉 of SL(2,Q). The groups F and H are isomorphic.

4. With the representation ϕ they calculate the free group FU ′ = 〈U ′ | 〉. The free generating
set is U ′ = {V1, V2, . . . , V2N }, with Vi = ϕ(ui) and 1 ≤ i ≤ 2N . Hence, the group elements
are matrices in SL(2,Q). The group FU is isomorphic to the group FU ′ .

5. They agree on the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod N).

6. Alice and Bob agree on an automorphism gα ∈ GAut, hence α is the common secret starting
point α ∈ {0, 1, . . . , 2128 − 1}, with y1 = α ∈ Z128 for the linear congruence generator h.
With this α they are able to generate the sequence of automorphisms of the set GAut,
which is y1 = α ∈ Z2128 , y2 = h(y1) ∈ Z2128 , . . ., yβ = h(yβ−1) ∈ Z2128 . The sequence
gy1 , gy2 , . . . , gyβ of automorphisms of the set GAut is used for encryption and to generate
the automorphisms for decryption of a plaintext with z plaintext letters, it is β = d z4e (for
r ∈ R it is dre := min{x ∈ Z|x ≥ r}).

Key space: F = 〈X | 〉, X = {x1, x2, . . . , xq} with q ≥ 2; the set UNred of all minimal (with
respect to a lexicographical order) Nielsen reduced subsets of F with 2N elements. The set
GAut ⊂ Aut(G) of 2128 randomly chosen automorphisms of G.

Private Key Cryptosystem

Now, we explain the private key cryptosystem and look carefully at the steps for Alice and Bob.

Public knowledge: Plaintext alphabet A = {a1, a2, . . . , aN} with N ≥ 2, G = 〈Y | 〉,
Y = {y1, y2, . . . , y5}, the set GAut ⊂ Aut(G); a linear congruence generator h of maximal peri-
odic length.

216

Encryption and Decryption Procedure:

1. Alice and Bob agree privately on the private parameters: A finitely generated free group
F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2, a free subgroup FU = 〈U | 〉 with Nielsen
reduced set U = {u1, u2, . . . , u2N} ⊂ F , a faithful representation ϕ : F → SL(2,Q),
now it is FU ′ = 〈U ′ | 〉, U ′ = {V1, V2, . . . , V2N } with Vi = ϕ(ui), an assignment
ai =̂ Vj ⇐⇒ j ≡ i (mod N) and a starting seed gα ∈ GAut.

2. Alice wants to transmit the message

S = s1s2 · · · sz, z ≥ 1,

with si ∈ A to Bob.

2.1. Alice cuts the message into parts of rank(G)− 1 = 4 letters

S = s1s2s3s4︸ ︷︷ ︸
S1

| s5s6s7s8︸ ︷︷ ︸
S2

| · · · | sz−3sz−2sz−1sz︸ ︷︷ ︸
Sβ

,

with si ∈ {a1, a2, . . . , aN}. To describe the procedure we assume that the letters in the
parts Si are pairwise different and z = 4 · t, t ∈ N. Thus, it is β = t.

2.3. She writes S as a sequence S′ of matrices with

ai=̂Vj ⇐⇒ j ≡ i (mod N),

it is
S′ = V ′1V

′
2V
′
3V
′
4︸ ︷︷ ︸

S′1

| V ′5V ′6V ′7V ′8︸ ︷︷ ︸
S′2

| · · · | V ′z−3V ′z−2V ′z−1V ′z︸ ︷︷ ︸
S′β

,

with V ′i ∈ {V1, V2, . . . , V2N }.

2.2. Alice needs for the encryption procedure β = z
4 automorphisms gi ∈ GAut. With the

help of the congruence generator h and the knowledge of gα she gets the automorphisms
gy1 , gy2 , . . . , gyβ . It is y1 = α, y2 = h(y1), . . . , yβ = h(yβ−1).

2.3. For each part S′i, 1 ≤ i ≤ β, of the message Alice needs an additional matrix Pi with the
property, that Pi 6∈ FU ′ ⊂ SL(2,Q), remember U ′ = {ϕ(u1), ϕ(u2), . . . , ϕ(u2N)}. We call
the additional matrices Pi arbitrary ephemeral keys for Alice.

2.4. Alice encrypts the message as follows: for the part S′1 she applies the Nielsen transforma-
tion gx1 to the set {V ′1 , V ′2 , V ′3 , V ′4 , P1}, that is:(

V ′1 , V
′
2 , V

′
3 , V

′
4 , P1

) gx1−→ (W1,W2,W3,W4,W5) ,

with Wj , 1 ≤ j ≤ 5, words in {V ′1 , V ′2 , V ′3 , V ′4 , P1}.
In general, she uses for the part S′i, 1 ≤ i ≤ β, the automorphism gyi and the ephemeral
key Pi, it is:(

V ′4i−3, V
′
4i−2, V

′
4i−1, V

′
4i, Pi

) gxi−→ (W5i−4,W5i−3,W5i−2,W5i−1,W5i) ,

with Wj , 5i − 4 ≤ j ≤ 5i, words in {V ′4i−3, V ′4i−2, V ′4i−1, V ′4i, Pi}. Alice generates the
ciphertext

C = W1W2W3W4W5W6W7W8W9W10 · · ·Wz+β

217

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

and sends it to Bob.

3. Bob gets the ciphertext

C = W1W2W3W4W5W6W7W8W9W10 · · ·Wz+β

for decryption.

3.1. He cuts C into parts of 5 matrices

C = W1W2W3W4W5︸ ︷︷ ︸
C′1

|W6W7W8W9W10︸ ︷︷ ︸
C′2

| · · · |Wz+β−4 · · ·Wz+β︸ ︷︷ ︸
C′β

.

3.2. With the knowledge of gα, the linear congruence generator h and β(= z+β
5) he computes

for each automorphism gyi ∈ GAut, i = 1, 2, . . . , β, the inverse automorphism g−1yi .

3.3 He applies on each ciphertext part C ′i the corresponding automorphism g−1yi .
For example

(W1,W2,W3,W4,W5)
g−1
y1−→
(
V ′1 , V

′
2 , V

′
3 , V

′
4 , P1

)
.

In general, for C ′i, it is

(W5i−4,W5i−3,W5i−2,W5i−1,W5i)
g−1
yi−→
(
V ′4i−3, V

′
4i−2, V

′
4i−1, V

′
4i, Pi

)
.

Bob knows the set U ′ and hence he can decide which matrix in the reconstructed part is
an element of the set U ′ and thus also that Pi /∈ U ′, 1 ≤ i ≤ β. Therefore, he knows that
the last matrix in the reconstructed set is an ephemeral key of Alice and hence belongs
not to the plaintext.

He gets the following sequence of matrices

S′ = V ′1V
′
2V
′
3V
′
4V
′
5V
′
6V
′
7V
′
8 · · ·V ′z−3V ′z−2V ′z−1V ′z ,

with V ′i ∈ {V1, V2, . . . , V2N }, and with the knowledge

ai=̂Vj ⇐⇒ j ≡ i (mod N)

he is able to read the plaintext

S = s1s2s3s4s5s6s7s8 · · · sz−3sz−2sz−1sz,

with si ∈ A, 1 ≤ i ≤ z, from Alice.

The cryptographic protocol is summarized in Table 9.1 (page 219) and Table 9.2 (page 220).

218

Table 9.1.: Summary of Protocol 10: Private key cryptosystem using automorphisms on plain-
text sequences I

Public Knowledge

Abstract free group G = 〈Y | 〉, Y = {y1, y2, . . . , y5}; plaintext alphabet A = {a1, a2, . . . , aN}
with N ≥ 2; subset GAut ⊂ Aut(G); linear congruence generator h of maximal periodic length.

Alice Bob

Private keys

Free group F = 〈X | 〉, X = {x1, x2, . . . , xq}, q ≥ 2,
free subgroup FU = 〈U | 〉 of F with Nielsen reduced set U = {u1, u2, . . . , u2N} ⊂ F ;

faithful representation ϕ : F → SL(2,Q);
FU ′ = 〈U ′ | 〉, U ′ = {V1, V2, . . . , V2N } with Vi = ϕ(ui);

assignment ai=̂Vj ⇐⇒ j ≡ i (mod N) and starting seed gα ∈ GAut.
Encryption

Choose message
S = s1s2 · · · sz, z ≥ 1 and si ∈ A.

Cut message into parts of rank(G)− 1 = 4 letters
S = s1s2s3s4︸ ︷︷ ︸

S1

| s5s6s7s8︸ ︷︷ ︸
S2

| · · · | sz−3sz−2sz−1sz︸ ︷︷ ︸
Sβ

.

Write S as a sequence S′ of matrices with
ai=̂Vj ⇐⇒ j ≡ i (mod N), it is
S′ = V ′1V

′
2V
′
3V
′
4︸ ︷︷ ︸

S′1

| V ′5V ′6V ′7V ′8︸ ︷︷ ︸
S′2

| · · · | V ′z−3V ′z−2V ′z−1V ′z︸ ︷︷ ︸
S′β

,

with V ′i ∈ {V1, V2, . . . , V2N }.

Calculate β = z
4 automorphisms gi ∈ GAut.

Compute y1 = α, y2 = h(y1), . . . , yβ = h(yβ−1) and obtain
gy1 , gy2 , . . . , gyβ .

For each part S′i, 1 ≤ i ≤ β, choose an additional matrix
Pi ∈ SL(2,Q), with Pi 6∈ FU ′ , which is an ephemeral key.

Encryption:
For S′i, 1 ≤ i ≤ β, choose ephemeral key Pi and apply
automorphism gyi :(
V ′4i−3, V

′
4i−2, V

′
4i−1, V

′
4i, Pi

)
↓ gyi

(W5i−4,W5i−3,W5i−2,W5i−1,W5i).

Generate ciphertext

C = W1W2W3W4W5W6W7W8W9W10 · · ·Wz+β

and send it to Bob.
C=W1W2W3W4W5W6W7W8W9W10···Wz+β−−→

219

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

Table 9.2.: Summary of Protocol 10: Private key cryptosystem using automorphisms on plain-
text sequences II

Alice Bob

Decryption

Cut C into parts of 5 matrices:
C = W1W2W3W4W5︸ ︷︷ ︸

C′1

|W6W7W8W9W10︸ ︷︷ ︸
C′2

| · · · |Wz+β−4 · · ·Wz+β︸ ︷︷ ︸
C′β

.

Compute β automorphisms:
y1 = α, y2 = h(y1), . . . , yβ = h(yβ−1),
obtain gy1 , gy2 , . . . , gyβ .

Compute for each automorphism gyi ∈ GAut, i = 1, 2, . . . , β, the
inverse automorphism g−1yi .

Apply on each ciphertext part C ′i the corresponding automorphism
g−1yi . In general, for C ′i, it is:

(W5i−4,W5i−3,W5i−2,W5i−1,W5i)
↓ g−1yi(

V ′4i−3, V
′
4i−2, V

′
4i−1, V

′
4i, Pi

)
Decide which matrices in the reconstructed part belong to the set
U ′ and which not.

Therefore, get sequence of matrices

S′ = V ′1V
′
2V
′
3V
′
4V
′
5V
′
6V
′
7V
′
8 · · ·V ′z−3V ′z−2V ′z−1V ′z ,

with V ′i ∈ {V1, V2, . . . , V2N }, and with the knowledge

ai=̂Vj ⇐⇒ j ≡ i (mod N)

read the plaintext

S = s1s2s3s4s5s6s7s8 · · · sz−3sz−2sz−1sz

from Alice.

Remark 9.0.1. The ephemeral key Pi for the sequence
(
V ′4i−3, V

′
4i−2, V

′
4i−1, V

′
4i, Pi

)
must not

be necessarily at the end, Alice can write it at each position, which she wants. For example
(V ′4i−3, Pi, V

′
4i−2, V

′
4i−1, V

′
4i). Bob reconstructs exactly the sequence, because he knows the set

U ′. He is able to decide which element in (V ′4i−3, Pi, V
′
4i−2, V

′
4i−1, V

′
4i) is not an element of U ′ and

therefore he knows, that Pi is an ephemeral key from Alice and belongs not to the plaintext,
thus he can delete this matrix.

To describe this scheme we assumed that z = 4 · t, with t ∈ N, and that the letters in each part
Si are pairwise different. We now look at the situations, when z ∈ N is not necessarily z = 4 · t,
t ∈ N, and the letters in each part Si are not necessarily pairwise different.

220

Remark 9.0.2. Let
S = V ′1V

′
2 · · ·V ′z , with z ≥ 1, V ′i ∈ U ′,

be a plaintext written as a sequence of matrices.

There are two cases, which differ to the assumptions for the cryptographic protocol above:

1. The first one is, that z ∈ N is not necessarily z = 4 · t, t ∈ N. Thus, Alice needs β = d z4e
(for r ∈ R it is dre := min{x ∈ Z|x ≥ r}) automorphisms of GAut for encryption.
Moreover, Alice adds r′ = 4−r, with r ≡ z (mod 4) and 0 ≤ r′ ≤ 3, matrices Pj ∈ SL(2,Q),
with Pj /∈ FU ′ to S. Bob knows U ′ and hence he is able to identify the added matrices
from Alice and knows these matrices belong not to the plaintext.
Alice can add the matrices Pj on an arbitrary place in the plaintext.

2. The second one is, that the letters in a part Si of a message

S = s1s2s3s4︸ ︷︷ ︸
S1

| s5s6s7s8︸ ︷︷ ︸
S2

| · · · | sz−3sz−2sz−1sz︸ ︷︷ ︸
Sβ

are not necessarily pairwise different. Therefore, we get two cases.

2.1. 1. case: One letter appears twice in the plaintext sequence Si:

Si = {s4i−3, s4i−2, s4i−1, s4i}.

For example it is s4i−2 = s4i−1 = at, s4i−3 = ak and s4i = ar, with at, ak, ar ∈ {a1, a2, . . . , aN}
and pairwise different.
As above Alice writes the plaintext as a sequence of matrices in U ′, it is FU ′ = 〈U ′ | 〉,
with U ′ = {V1, V2, . . . , V2N } and

ai=̂Vj ⇐⇒ j ≡ i (mod N).

Alice chooses at = s4i−2=̂Vt and at = s4i−1=̂VN+t. Therefore, it is Vt 6= VN+t and the
cryptosystem is feasible. Thus, she gets

S′i = {Vk, Vt, VN+t, Vr}, Vi ∈ U ′.

2.2. 2. case: One letter appears three or four times in the plaintext sequence Si:

Si = {s4i−3, s4i−2, s4i−1, s4i}.

Split Si into two parts

Si1 = {s4i−3, s4i−2, Pj , Pj+1} and Si2 = {s4i−1, s4i, Pj+2, Pj+3}.

Let Pj , . . . , Pj+3 ∈ SL(2,Q) be pairwise different matrices, a basis for a subgroup of rank
4, and Pj , . . . , Pj+3 /∈ FU ′ . Alice writes the plaintext as a sequence of matrices. If she gets
for Si1 or Si2 the situation as in point 2.1, she acts as it is described there. Now, it is

S′i = {V ′` , V ′`+1, V
′
`+2 = Pj , V

′
`+3 = Pj+1} and S′i+1 = {V ′`+4, V

′
`+5, V

′
`+6 = Pj , V

′
`+7 = Pj+1}

and the matrices in each set are pairwise different.
Bob is able to identify the matrices Pi which do not belong to the plaintext and decrypt
the message correctly because he knows the set U ′.

221

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

Alice has to calculate ephemeral matrices in SL(2,Q), we now give proposals how Alice could
generate these matrices, which are not matrices in FU ′ .

Remark 9.0.3. We give three opportunities to generate ephemeral matrices for Alice, the third
one is a mix of the first and the second one.

1. Alice knows the Nielsen reduced set U = {u1, u2, . . . , u2N}. She generates a Nielsen re-
duced set UA = U ∪{u2N+1, u2N+2, . . . , u2N+t}, with uj , 2N +1 ≤ j ≤ 2N + t, words in X
and t the minimum of ephemeral matrices which she needs for encryption of one sequence
Sj of the plaintext. Her ephemeral matrices are ϕ(u2N+1), ϕ(u2N+2), . . . , ϕ(u2N+t).

2. Alice chooses an abstract set XA = {xq+1, xq+2, . . . , xq+p}, with p ≥ 2 and X ∩XA = ∅,
and generates a Nielsen reduced set UA = {u2N+1, u2N+2, . . . , u2N+t}, with uj , 2N + 1 ≤
j ≤ 2N + t, words in XA and t the minimum of ephemeral matrices which she needs for
encryption of one sequence Sj of the plaintext. She chooses a faithful representation ϕA into
SL(2,Q), with the property ϕA(xi) = ϕ(xi) = Mi for all i = 1, 2, . . . , q, and ϕA(xq+s) = Ns

with 1 ≤ s ≤ p. The set {M1,M2, . . . ,Mq} ∪ {N1, N2, . . . , Np} is a free generating set
for a free subgroup in SL(2,Q) of rank q + p. To generate these matrices she can use
Theorem 4.2.18. Her ephemeral matrices are ϕA(u2N+1), ϕA(u2N+2), . . . , ϕA(u2N+t).

3. As in 2. Alice chooses an abstract set XA = {xq+1, xq+2, . . . , xq+p}, with p ≥ 2 and
X∩XA = ∅, she then generates a Nielsen reduced set UA = U∪{u2N+1, u2N+2, . . . , u2N+t},
with uj , 2N + 1 ≤ j ≤ 2N + t, words in X ∪ XA and t the minimum of ephemeral
matrices which she needs for encryption of one sequence Sj of the plaintext. She chooses
a faithful representation ϕA into SL(2,Q), with the property ϕA(xi) = ϕ(xi) = Mi for
all i = 1, 2, . . . , q, and ϕA(xq+s) = Ns with 1 ≤ s ≤ p. The set {M1,M2, . . . ,Mq} ∪
{N1, N2, . . . , Np} is a free generating set for a free subgroup in SL(2,Q) of rank q + p.
To generate these matrices she can use Theorem 4.2.18. Her ephemeral matrices are
ϕA(u2N+1), ϕA(u2N+2), . . ., ϕA(u2N+t).

We explained Protocol 10 by fixing the rank of the abstract group G, rank(G) = 5, and the
cardinality of U , |U | = 2N . This helped us to explain this private key cryptosystem, but it is
not mandatory. We can variate these values.

Variation 9.0.4. 1. We can choose a finitely generated abstract free group G with a rank
greater than or equal to 2; another option is to choose different finitely generated free
groups Gi with pairwise different ranks rank(Gi) ≥ 2. The set GAut from which Alice and
Bob get the automorphisms for encryption and decryption, respectively, is then a subset
of
⋃
iAut(Gi).

2. The set U can be chosen with cardinality |U | = k · N , k ≥ 2. Each sequence Si which
we get by cutting the plaintext into pieces must, in general, have a length between 1 and
rank(Gj)−1, depending on the group Gj on which the automorphism acts for the sequence
Si, because we now add to each sequence at least one ephemeral matrix. We have to take
care that the elements in each sequence Si with the additional ephemeral keys form a basis
for a free group of rank(Gj). For this it is possible to align the set U , that means choose
k with k ≥ max

i
{rank(Gi)} − 1 for |U | = k ·N and act like in Remark 9.0.2 case 2.1.

Another option is to split the sequence with more than k identical letters in a similar
way as explained in Remark 9.0.2 case 2.2. The ephemeral keys in each sequence must be
pairwise different and after construction, see Remark 9.0.3, they are elements of a basis.

We now take a look at the security.

222

Security 9.0.5. Let

C = C1C2C3 · · ·Cz+β,

with Ci ∈ SL(2,Q), be a ciphertext to a plaintext with z letters, and β is the number of added
ephemeral matrices by Alice. The ciphertext is longer than the plaintext. If Alice takes care,
that each plaintext sequence Ci has as one product at least one ephemeral matrix Pj (that
means it is not only written as a word in U ′), then Ci 6∈ FU ′ and hence each plaintext sequence
is encrypted differently, even if the same plaintext with the same automorphisms is used and only
the ephemeral matrices from Alice are changed. There exist infinitely many ephemeral matrices
for Alice. Therefore, the cryptosystem is a polyalphabetic system, that means, a matrix Vi ∈ U ′,
and hence a letter ai ∈ A, is encrypted differently at different positions in the plaintext. Hence,
a statistical frequency attack (see for instance [BFKR15]), for the ciphertext, over the frequency
of matrices, which corresponds to letters in the plaintext alphabet, or groups of words, is useless.

It is very unlikely that Eve makes a correct guess for the set U ′, of the used matrices to write
the ciphertext matrices Cj , 1 ≤ j ≤ b+ z, because Eve does not know the number q which gives
the number of matrices of the form

Mj =

(
−rj −1 + r2j

1 −rj

)
(9.1)

which are the basic to generate the matrices in U ′.

Alice and Bob are working with ϕ(ui), ui words in X, instead with ϕ(xj) = Mj , because if they
generate the matrices ϕ(xj) = Mj with Theorem 4.2.18 the matrices are of a special form (9.1).
Then, maybe, there are attacks possible for this cryptosystem, because an eavesdropper knows
when she gets likely the correct automorphism of the set GAut by the form (9.1) of the matrices.

Even if Eve makes a correct guess for the set U ′ she cannot use this set to solve the constructive
membership problem for the matrices Cj , because for this problem there is no algorithm known
for the used matrix group, and if Alice takes care that in each Cj is at least one ephemeral
matrix contained, then Eve needs also this ephemeral matrix to write Cj as a word in U ′ in
conjunction with this ephemeral matrix.

Eve could do Nielsen transformations, which are the inverse automorphisms of GAut, on the
sequences of ciphertext matrices and tries to get matrices of U ′ = {ϕ(u1), ϕ(u2), . . . , ϕ(u2N)}.
Especially, if we assume that Eve knows how to cut the ciphertext into the correct sequences,
in the case where the abstract groups Gi are of different rank (see Variation 9.0.4). This is a
brute force search through the inverse elements of the elements of GAut. In general, she does
not know how U ′ looks like. Thus, even if she generates matrices she cannot be sure if these are
matrices of U ′ she is also not able to identify the ephemeral added matrices of Alice. She knows
that in each sequence is at least one ephemeral matrix. Assume Eve is able to generate the
correct sequence of plaintext matrices with inverse automorphisms of the set GAut, she then has
to do a statistical frequency attack (see for instance [BFKR15]) to decrypt the plaintext, because
she does not now which matrix belongs to which letter in the plaintext alphabet. The added
ephemeral matrices could confuse this statistical frequency attack, if Alice uses her ephemeral
matrices more than once but in different plaintext sequences.

Due to the fact, that there is no algorithm known to solve the constructive membership problem
for free (discrete) subgroups of SL(2,Q) of rank greater than or equal to 2, Eve cannot use the
set U ′, if she gets it, to rewrite for the next ciphertext the element Cj as a word in U ′ and hence
she cannot get hints for the used automorphisms, in particular she does not know the ephemeral
matrices from Alice.

We present a second variation, in which the used automorphisms are private.

223

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

Variation 9.0.6. Instead of the public set GAut and the linear congruence generator, Alice and
Bob agree privately on two or more abstract free groups Gi with rank(Gi) ≥ 2, i ≥ 2.
They choose privately two or more automorphisms g`k ∈

⋃j
i=1Aut(Gi), with g`k ∈ Aut(Gk).

For example it is j = 2 and they choose t automorphisms for the encryption and decryption

g11 ∈ Aut(G1),

g21 ∈ Aut(G1),

g32 ∈ Aut(G2),

...

gt1 ∈ Aut(G1).

Alice writes as before the plaintext S as a sequence of matrices

S′ = V ′1V
′
2V
′
3V
′
4V
′
5V
′
6V
′
7V
′
8 · · ·V ′z−3V ′z−2V ′z−1V ′z .

Then, she cuts S′ into pieces with |S′i| < rank(Gj), because gij ∈ Aut(Gj) and the encryption of
the part S′i is gij (S

′
i∪N ′i) withN ′i a set of ephemeral matrices for Alice with |N ′i | = rank(Gj)−|S′i|

and for each P` ∈ N ′i it is P` /∈ FU ′ .
If the number of automorphisms ends before all of the plaintext S is encrypted, Alice starts again
from the beginning of the automorphisms (which is g11 ∈ Aut(G1)) and uses the automorphisms
in the same order again.
Bob is able to encrypt the ciphertext because he knows the set U ′ and also the automorphisms
gij ∈ Aut(Gj) and hence the corresponding inverse automorphisms g−1ij ∈ Aut(Gj).
Because of the fact, that the automorphisms are private an eavesdropper, Eve, does not know
how long the sequences are in which the plaintext is cut. Thus, Eve does not know which
matrices form a set on which she should do Nielsen transformations. She does also not know
which inverse automorphisms she could use for a brute force search. Hence, she has to do Nielsen
transformations on a sequence and tries to get matrices, but she does not know when she gets
the correct matrices and hence when to stop with her Nielsen transformations.

We calculate an example for this last variation.

Example 9.0.7. We perform the steps for an example of a symmetric key cryptosystem with
Variation 9.0.6 and the help of the computer program Maple 16 and GAP, see Appendix C.10
for details.

We first give the public information. Let F be a free group of rank 4 with free generating
set X = {a, b, c, d} and let A := {B, I,E, L,K,O,M} be the plaintext alphabet, hence it is
N := |A| = 7.

For the private parameters Alice and Bob agree on the following common secret keys:

1. Because of Variation 9.0.6, they choose two abstract free groups. The first one is G1 with
rank(G1) = 5. Therefore, it is

G1 = 〈x1, x2, x3, x4, x5 | 〉

and the second one is G2 with rank(G2) = 4, hence

G2 = 〈y1, y2, y3, y4 | 〉.

224

They choose for each group one automorphism, it is g11 ∈ Aut(G1) and g22 ∈ Aut(G2).
The first one can be described with Nielsen transformations as follows

(N1)1 (N1)4 (N2)2.3 (N2)5.3 (N2)1.3 (N2)4.2 (N1)5 (N2)1.2 (N2)2.4 (N2)3.1,

hence we get the automorphism

g11 : G1 → G1

x1 7→x−11 x3x2x3,

x2 7→x2x3x−14 x2x3,

x3 7→x3x−11 x3x2x3,

x4 7→x−14 x2x3,

x5 7→x−13 x−15 x3.

The second automorphism is describable with Nielsen transformations as follows

[(N2)3.1]
2 (N1)2 [(N2)2.1]

3 (N2)2.4 (N2)4.2 (N2)1.3.

Therefore, the automorphism is

g22 : G2 → G2

y1 7→y1y3y21,
y2 7→y−12 y31y4,

y3 7→y3y21,
y4 7→y4y−12 y31y4.

2. The alphabet A consists of N = 7 elements, hence Alice and Bob choose a Nielsen reduced
set with 2N = 14 elements. Thus, let U = {u1, u2, . . . , u14} be a subset of F , which is
Nielsen reduced and

u1 := ba2, u8 := bc−1bab−1,

u2 := cd, u9 := c2ba,

u3 := d2c−2, u10 := c2dab−1,

u4 := a−1b, u11 := dabd−1a,

u5 := a4b−1, u12 := a−1d3c−1,

u6 := b3a−2, u13 := a−1c−1bac−2,

u7 := bc3, u14 := a2db2d−1.

225

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

3. They agree on the faithful representation

ϕ : F → H ⊂ SL(2,Q)

a 7→
(−7

2
45
4

1 −7
2

)
,

b 7→
(−15

2
221
4

1 −15
2

)
,

c 7→
(−23

2
525
4

1 −23
2

)
,

d 7→
(−35

2
1221
4

1 −35
2

)
.

The set M=

{(−7
2

45
4

1 −7
2

)
,

(−15
2

221
4

1 −15
2

)
,

(−23
2

525
4

1 −23
2

)
,

(−35
2

1221
4

1 −35
2

)}
is a free generating

set for a free subgroup H of SL(2,Q), because of Theorem 4.2.18.

They generate the set U ′ = {V1, V2, . . . , V14}, with Vi = ϕ(ui), and because of the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod N)

they know

V1 :=

(
−563 1889

76 −255

)
, V8 :=

(
10733

2
155745

4
−691 −10027

2

)
=̂B;

V2 :=

(
665
2

−23229
4

−29 1013
2

)
, V9 :=

(
109363

2
−745561

4
−4773 32539

2

)
=̂I;

V3 :=

(
−84596 −1938405

2
4842 55474

)
, V10 :=

(
−647496 −9392507

2
56518 409922

)
=̂E;

V4 :=

(
15 −109
4 −29

)
, V11 :=

(
563077 −2011276
−32264 115245

)
=̂L;

V5 :=

(
−4575 −33209
1364 9901

)
, V12 :=

(
729437

2
17021361

4
102117 2382893

2

)
=̂K;

V6 :=

(
95009

2
638869

4
−6391 −42975

2

)
, V13 :=

(−843429
2

−19325129
4

−122869 −2815245
2

)
=̂O;

V7 :=

(
149079

2
−3415829

4
−10009 229335

2

)
, V14 :=

(
3682603

2
128159475

4
−548633 −19093157

2

)
=̂M.

We look at the encryption and decryption procedure for Alice and Bob.

1. With the above agreements Alice is able to encrypt her message

S = ILIKEBOB.

226

a) Firstly, she writes the message S as sequence of matrices

S′ =V2V4V9V12V3V1V13V1

=

(
665
2

−23229
4

−29 1013
2

)(
15 −109
4 −29

)(
109363

2
−745561

4
−4773 32539

2

)
(

729437
2

17021361
4

102117 2382893
2

)(
−84596 −1938405

2
4842 55474

)(
−563 1889

76 −255

)
(−843429

2
−19325129

4
−122869 −2815245

2

)(
−563 1889

76 −255

)
.

b) Secondly, she cuts the matrix-plaintext S′ into pieces to apply for encryption the auto-
morphisms g11 ∈ Aut(G1), with rank(G1) = 5 and g22 ∈ Aut(G2), with rank(G1) = 4.
Alice gets:

S′1 =

{(
665
2

−23229
4

−29 1013
2

)
,

(
15 −109
4 −29

)
,

(
109363

2
−745561

4
−4773 32539

2

)
,

(
729437

2
17021361

4
102117 2382893

2

)}
⇒
((

665
2

−23229
4

−29 1013
2

)
,

(
15 −109
4 −29

)
,

(
109363

2
−745561

4
−4773 32539

2

)
,

(
729437

2
17021361

4
102117 2382893

2

))
=̂ILIK

S′2 =

{(
−84596 −1938405

2
4842 55474

)
,

(
−563 1889

76 −255

)}
⇒
((
−84596 −1938405

2
4842 55474

)
,

(
−563 1889

76 −255

))
=̂EB

S′3 =

{(−843429
2

−19325129
4

−122869 −2815245
2

)
,

(
−563 1889

76 −255

)}
⇒
((−843429

2
−19325129

4
−122869 −2815245

2

)
,

(
−563 1889

76 −255

))
=̂OB

c) Thirdly, Alice needs additional matrices Pj /∈ FU ′ , as arbitrary ephemeral keys.

• For the first sequence S′1, she needs one ephemeral matrix, because |S′1| = 4 and she
applies g11 on this set and it is rank(G1) = 5.

• For the second sequence S′2, she needs two ephemeral matrices, because |S′2| = 2 and
she applies g22 on this set and it is rank(G2) = 4.

• For the third sequence S′3, she needs three ephemeral matrices, because |S′3| = 2 and
she applies g11 on this set and it is rank(G1) = 5.

To generate ephemeral matrices, Alice uses the method explained in 2. of Remark 9.0.3.
She needs at most three ephemeral keys in each sequence S′i.

227

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

Thus, Alice chooses the set XA = {z5, z6, z7} and extends ϕ to ϕA with

ϕA : F → SL(2,Q)

a 7→
(−7

2
45
4

1 −7
2

)
,

b 7→
(−15

2
221
4

1 −15
2

)
,

c 7→
(−23

2
525
4

1 −23
2

)
,

d 7→
(−35

2
1221
4

1 −35
2

)
,

z5 7→ N1 :=

(−43
2

1845
4

1 −43
2

)
,

z6 7→ N2 :=

(−55
2

3021
4

1 −55
2

)
,

z7 7→ N3 :=

(−63
2

3965
4

1 −63
2

)
.

After Theorem 4.2.18 ϕA(a), ϕA(b), ϕA(c), ϕA(d), ϕA(z5), ϕA(z6) and ϕA(z7) together
generate a free subgroup of SL(2,Q) with rank 7.

To get a subgroup of rank 4 she generates a Nielsen reduced set with 4 elements, it is

N ′ = {N1N
2
2 , N2N3, N3N

2
1 , N

−1
1 N2N1N2}.

She gets

N ′1 = N1N
2
2 =

(
−57866 3180525

2
2694 −74036

)
, N ′2 = N2N3 =

(
3243
2

−204199
4

−59 3715
2

)
,

N ′3 = N3N
2
1 =

(
−71714 3080365

2
2278 −48924

)
, N ′4 = N−11 N2N1N2 =

(
621893

2
−34178721

4
14351 −788719

2

)
.

Hence, her ephemeral keys are

P1 = N ′1, P2 = N ′2, P3 = N ′3 and P4 = N ′4.

Now, Alice is able to encrypt her message

• She adds to the first sequence S′1=̂ILIK the ephemeral key P1 and applies the automorphism
g11 on
(

665
2

−23229
4

−29 1013
2

)
,

(
−57866 3180525

2
2694 −74036

)
︸ ︷︷ ︸

=P1

,

(
15 −109
4 −29

)
,

(
109363

2
−745561

4
−4773 32539

2

)
,

(
729437

2
17021361

4
102117 2382893

2

) .

228

She gets((
453037463005

2
−6566656978411

4
12969541169 −187990033891

2

)
,

(−515958453260453803
2

7478679920196901999
4

12010438543010031 −174088097591505391
2

)
,(

3968201970233
2

−57518027287927
4

529958232109 −7681602973983
2

)
,

(
83406030953

2
−1208948133265

4
12234456659 −177335180327

2

)
,

(−65207575
2

991192539
4

−4494561 68319905
2

))
.

• She adds to the second sequence S′2=̂EB the ephemeral keys P2 and P3, then she applies
the automorphism g22 on

(
−84596 −1938405

2
4842 55474

)
,

(
−563 1889

76 −255

)
,

(
3243
2

−204199
4

−59 3715
2

)
︸ ︷︷ ︸

=P2

,

(
−71714 3080365

2
2278 −48924

)
︸ ︷︷ ︸

=P3

 .

She gets((−1104332496534507861
2

−25304312660337129571
4

31604200843034185 724168293536436571
2

)
,(

−480689945680474129277 10323650084255317045974
−143263719821090419728 3076836797799093562123

)
,(

22386390293811
2

512954405587601
4

−407276382779 −9332197468925
2

)
,(

−186180075388817073675749582 7997079898367833227219056023
2

5914022532266907628279666 −127013888603589241202576880

))
.

• She adds to the third sequence S′3=̂OB the ephemeral keys P4, P2 and P3, then she
applies the automorphism g31 , which is g11 because Alice and Bob only agree on two
automorphisms, on

(−843429
2

−19325129
4

−122869 −2815245
2

)
,

(
621893

2
−34178721

4
14351 −788719

2

)
︸ ︷︷ ︸

=P4

,

(
−563 1889

76 −255

)
,

(
3243
2

−204199
4

−59 3715
2

)
︸ ︷︷ ︸

=P2

,

(
−71714 3080365

2
2278 −48924

)
︸ ︷︷ ︸

=P3

 .

229

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

She gets ((−1616087435846771117
2

10844781227098250059
4

70532776776146599 −473311354639843285
2

)
,(

5117735040480436319307
2

−34342644872543531950151
4

118098476048874935309 −792501759245893528165
2

)
,(

1176330057042013989893
2

−7893782128685642713947
4

−79397180640094685191 532796082062893539917
2

)
,(

−3473922528580 23311814068153
2

−110342647234 370228071430

)
,(

30697842540 −205999121749
2

9149177258 −30697963178

))
.

Alice sends the ciphertext

C =C1C2C3C4C5C6C7C8C9C10C11C12C13C14(
453037463005

2
−6566656978411

4
12969541169 −187990033891

2

)
,

(−515958453260453803
2

7478679920196901999
4

12010438543010031 −174088097591505391
2

)
,(

3968201970233
2

−57518027287927
4

529958232109 −7681602973983
2

)
,

(
83406030953

2
−1208948133265

4
12234456659 −177335180327

2

)
,

(−65207575
2

991192539
4

−4494561 68319905
2

)
(−1104332496534507861

2
−25304312660337129571

4
31604200843034185 724168293536436571

2

)
,(

−480689945680474129277 10323650084255317045974
−143263719821090419728 3076836797799093562123

)
,(

22386390293811
2

512954405587601
4

−407276382779 −9332197468925
2

)
,(

−186180075388817073675749582 7997079898367833227219056023
2

5914022532266907628279666 −127013888603589241202576880

)
(−1616087435846771117

2
10844781227098250059

4
70532776776146599 −473311354639843285

2

)
,(

5117735040480436319307
2

−34342644872543531950151
4

118098476048874935309 −792501759245893528165
2

)
,(

1176330057042013989893
2

−7893782128685642713947
4

−79397180640094685191 532796082062893539917
2

)
,(

−3473922528580 23311814068153
2

−110342647234 370228071430

)
,(

30697842540 −205999121749
2

9149177258 −30697963178

)
to Bob.

Bob knows the automorphisms g11 ∈ Aut(G1) and g22 ∈ Aut(G2) and also the rank of G1, which
is rank(G1) = 5, and the rank of G2, which is rank(G2) = 4.

230

1. Firstly, he cuts the ciphertext C into the following parts

C = C1C2C3C4C5︸ ︷︷ ︸
C′1

| C6C7C8C9︸ ︷︷ ︸
C′2

| C10C11C12C13C14︸ ︷︷ ︸
C′3

,

with |C ′1| = rank(G1) = 5, |C ′2| = rank(G2) = 4 and |C ′3| = rank(G1) = 5.

2. Secondly, he calculates the inverse automorphisms for g11 and g22 . The inverse automor-
phism g−111

can be explained with Nielsen transformations (applied from the left to the
right) as

(N1)1 (N2)3.1 (N1)1 (N1)4 (N2)2.4 (N1)4 (N1)2 (N2)1.2 (N2)4.2 (N1)5 (N1)3

(N2)5.3 (N1)5 (N2)5.3 (N2)1.3 (N1)2 (N2)2.3 (N1)1 (N1)3 (N1)4 (N1)5,

hence it is

g−111
: G1 → G1

x1 7→ (x1x4x
−1
2 x1x

−1
3)−1,

x2 7→ x2x
−1
4 x1x

−1
3 ,

x3 7→ x3x
−1
1 ,

x4 7→ x2x
−2
4 ,

x5 7→ (x3x
−1
1 x5x1x

−1
3)−1.

The inverse automorphism g−122
can be explained with Nielsen transformations (applied

from the left to the right) as

(N1)2 (N2)4.2 (N1)3 (N2)1.3 (N1)3 (N1)1 [(N2)3.1]
2 (N1)2 (N1)4 (N2)2.4

[(N2)2.1]
3(N1)1 (N1)2 (N1)4,

hence it is

g−122
: G2 → G2

y1 7→ y1y
−1
3 ,

y2 7→ (y22y
−1
4 (y3y

−1
1)3)−1,

y3 7→ y23y
−1
1 y3y

−1
1 ,

y4 7→ y4y
−1
2 .

3. He applies g−111
on C ′1, that is,((

453037463005
2

−6566656978411
4

12969541169 −187990033891
2

)
,

(−515958453260453803
2

7478679920196901999
4

12010438543010031 −174088097591505391
2

)
,(

3968201970233
2

−57518027287927
4

529958232109 −7681602973983
2

)
,

(
83406030953

2
−1208948133265

4
12234456659 −177335180327

2

)
,

(−65207575
2

991192539
4

−4494561 68319905
2

))
,

and gets((
665
2

−23229
4

−29 1013
2

)
,

(
−57866 3180525

2
2694 −74036

)
,

(
15 −109
4 −29

)
,

(
109363

2
−745561

4
−4773 32539

2

)
,

(
729437

2
17021361

4
102117 2382893

2

))
.

231

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

Now, he proves which matrix is an element in U ′ := {V1, V2, . . . , V14}.

It is

(
−57866 3180525

2
2694 −74036

)
/∈ U ′. Hence, Bob knows that this matrix is an ephemeral key

from Alice and does not belong to the plaintext.

The other matrices are elements in U ′ and with the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod 7)

he knows (
665
2

−23229
4

−29 1013
2

)
= V2=̂a2 = I,(

15 −109
4 −29

)
= V4=̂a4 = L,(

109363
2

−745561
4

−4773 32539
2

)
= V9=̂a2 = I,(

729437
2

17021361
4

102117 2382893
2

)
= V12=̂a5 = K,

analogous for the ciphertext sequences C ′2 and C ′3.
He applies g−122

on C ′2, that is,((−1104332496534507861
2

−25304312660337129571
4

31604200843034185 724168293536436571
2

)
,(

−480689945680474129277 10323650084255317045974
−143263719821090419728 3076836797799093562123

)
,(

22386390293811
2

512954405587601
4

−407276382779 −9332197468925
2

)
,(

−186180075388817073675749582 7997079898367833227219056023
2

5914022532266907628279666 −127013888603589241202576880

))
and gets((

−84596 −1938405
2

4842 55474

)
,

(
−563 1889

76 −255

)
,

(
3243
2

−204199
4

−59 3715
2

)
,

(
−71714 3080365

2
2278 −48924

))
.

Now, he proves which matrix is an element in U ′ := {V1, V2, . . . , V14}.

It is

(
3243
2

−204199
4

−59 3715
2

)
,

(
−71714 3080365

2
2278 −48924

)
/∈ U ′. Hence, Bob knows that these matrices

are ephemeral keys from Alice and do not belong to the plaintext.

The other matrices are elements in U ′ and with the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod 7)

232

he knows (
−84596 −1938405

2
4842 55474

)
= V3=̂a3 = E,(

−563 1889
76 −255

)
= V1=̂a1 = B.

He applies g−131
= g−111

on C ′2, that is,((−1616087435846771117
2

10844781227098250059
4

70532776776146599 −473311354639843285
2

)
,(

5117735040480436319307
2

−34342644872543531950151
4

118098476048874935309 −792501759245893528165
2

)
,(

1176330057042013989893
2

−7893782128685642713947
4

−79397180640094685191 532796082062893539917
2

)
,(

−3473922528580 23311814068153
2

−110342647234 370228071430

)
,(

30697842540 −205999121749
2

9149177258 −30697963178

))
and gets ((−843429

2
−19325129

4
−122869 −2815245

2

)
,

(
621893

2
−34178721

4
14351 −788719

2

)
,

(
−563 1889

76 −255

)
,(

3243
2

−204199
4

−59 3715
2

)
,

(
−71714 3080365

2
2278 −48924

))
.

Now, he proves which matrix is an element in U ′ := {V1, V2, . . . , V14}.

It is

(
621893

2
−34178721

4
14351 −788719

2

)
,

(
3243
2

−204199
4

−59 3715
2

)
,

(
−71714 3080365

2
2278 −48924

)
/∈ U ′. Hence, Bob knows

that these matrices are ephemeral keys from Alice and do not belong to the plaintext.

The other matrices are elements in U ′ and with the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod 7)

he knows (−843429
2

−19325129
4

−122869 −2815245
2

)
= V13=̂a6 = O,(

−563 1889
76 −255

)
= V1=̂a1 = B.

4. Bob reconstructs the message:

ILIKEBOB

233

Chapter 9. Private key cryptosystem which uses automorphisms on plaintext sequences
(Protocol 10)

9.1. Chosen plaintext attacks on the cryptosystem which uses
automorphisms on plaintext sequences

In a chosen plaintext attack (see Section 1.1 or for instance also [BFKR15, Section 3.1]) Eve
gives a blackbox, which does the encryption procedure, plaintexts of her choice and gets the
corresponding ciphertexts.

Each plaintext is encrypted different also if the automorphisms are the same, because of the
ephemeral keys. If, for example, the same letter is given to the blackbox, there are different
possibilities to write this letter as a matrix in U ′, because of the agreement

ai=̂Vj ⇐⇒ j ≡ i (mod N),

and |U ′| = k ·N for a fixed k ≥ 2 unknown by Eve. If she gives only one letter to the blackbox,
she will get a sequence of matrices of the length |Gi|, encrypted with an automorphism of the set
Aut(Gi). The blackbox uses |Gi| − 1 ephemeral matrices for the encryption. The constructive
membership problem for the chosen matrices U ′ ∈ SL(2,Q) and the ephemeral keys is unknown
and in addition Eve does not know the used ephemeral keys (matrices) for encryption, hence
she cannot decide which automorphisms were used for encryption nor how the set U ′ look likes.

Conclusion concerning chosen plaintext attacks

This cryptosystem is secure against chosen plaintext attacks.

9.2. Chosen ciphertext attacks on the cryptosystem which uses
automorphisms on plaintext sequences

In a chosen ciphertext attack (see Section 1.1 or for instance also [BFKR15, Section 3.1]) Eve
chooses ciphertexts and sends these to a blackbox, she then gets the corresponding plaintexts
back.
For example Eve gets to some parts of a given ciphertext the corresponding plaintext. These
parts can be chosen by her.

Let
C = C1C2 · · ·Cz+β

be the ciphertext generated as explained above. In this kind of attacks Eve gets for example the
plaintext units sj and sj+1, which are letters of the plaintext alphabet, to the ciphertext matrix
Cj and Cj+1, for a j with 1 ≤ j ≤ z + β − 1.
This is no help to generate the set V ′ or to get hints for the used automorphisms.

Conclusion concerning chosen ciphertext attacks

This cryptosystem is secure against chosen ciphertext attacks.

234

Chapter 10

Additional cryptographic protocols using
automorphisms of finitely generated free groups

This chapter introduces Protocol 11, an ElGamal like public key cryptosystem, and Proto-
col 12, a challenge and response system. Protocol 11 is published in [MR15] and [MR16].
Both systems are based on combinatorial group theory and uses the ideas behind the private
key cryptosystems in the previous sections. Thus, they also need a finitely generated free group
F , automorphisms on F and a faithful representation from F into SL(2,Q).

Firstly, we introduce Protocol 11, discuss the security, give proposal for variations and an
example. Secondly, Protocol 12 is described and an example can be found in the appendix.

10.1. ElGamal like public key cryptosystem using automorphisms on
a finitely generated free group F (Protocol 11)

Now, we describe Protocol 11, a public key cryptosystem, for Alice and Bob which is inspired
by the ElGamal cryptosystem, see Section 1.2.2 (or for instance [ElG85] or [MSU08, Section 1.3]).

Let X = {x1, x2, . . . , xN}, N ≥ 3, be the free generating set of the finitely generated free group
F = 〈X | 〉. It is X±1 = X∪X−1. The message is an element m ∈ S∗, S∗ denotes the set of all
freely reduced words with letters in X±1. Public are the free group F , its free generating set X
and an element a ∈ S∗. The automorphism f , given as a Nielsen transformation or Whitehead-
Automorphisms, should be chosen randomly, for example as it is described in Section 4.4.

Protocol 11, an ElGamal like public key cryptosystem, with public parameters determined by
Alice is now as follows:

Public parameters: The finitely generated free group F = 〈X | 〉, a freely reduced word
a 6= 1 in the free group F and an automorphism f : F → F of infinite order.

Encryption and Decryption Procedure:

1. Alice chooses privately a natural number n and publishes the element fn(a) =: c ∈ S∗.

2. Bob picks privately a random t ∈ N and his message m ∈ S∗. The number t is an ephemeral
key for this message, he changes t for each message m, because of Remark 10.1.1. He
calculates the freely reduced elements

m · f t(c) =: c1 ∈ S∗ and f t(a) =: c2 ∈ S∗.

He sends the ciphertext (c1, c2) ∈ S∗ × S∗ to Alice.

235

Chapter 10. Additional cryptographic protocols using automorphisms of finitely generated free
groups

3. Alice calculates

c1 · (fn(c2))
−1 = m · f t(c) · (fn(c2))

−1

= m · f t(fn(a)) · (fn(f t(a))−1

= m · f t+n(a) · (fn+t(a))−1

= m,

and gets the message m.

Protocol 11, an ElGamal like public key cryptosystem, is summarized in Table 10.1 (page 236).

Table 10.1.: Summary of Protocol 11: ElGamal like public key cryptosystem using automor-
phisms on a finitely generated free group F

Public Parameters

Free group F = 〈X | 〉, a freely reduced word a 6= 1 in F
and an automorphism f : F → F of infinite order.

Alice Bob

Key Creation

Choose private key n ∈ N.
Compute

fn(a) =: c ∈ S∗.

(S∗ denotes the set of all freely reduced words
with letters in X±1.)

Publish c.

Encryption

Choose plaintext m ∈ S∗.
Choose random ephemeral key t ∈ N.
Compute

m · f t(c) =: c1 ∈ S∗ and f t(a) =: c2 ∈ S∗.

Send ciphertext (c1, c2) ∈ S∗ × S∗ to Alice.
(c1,c2)←−−−−−−−−−−−−−−−−−−

Decryption

Compute
c1 · (fn(c2))

−1 = m · f t(c) · (fn(c2))
−1

= m · f t(fn(a)) · (fn(f t(a))−1

= m · f t+n(a) · (fn+t(a))−1

= m,
which is the message from Bob.

236

10.1. ElGamal like public key cryptosystem using automorphisms on a finitely generated free
group F (Protocol 11)

Remark 10.1.1. It is important that different random ephemeral keys t are used to encrypt
different messages. As it is for the standard ElGamal cryptosystem (see [MvOV97]). Suppose
that Bob uses the same ephemeral key t to encrypt two messages m1 and m2 and assume that
m1 is known. The ciphertext pairs are (c1, c2) and (c′1, c

′
2), with c2 = c′2, c1 = m1 · f t(c) and

c′1 = m2 · f t(c). Eve only has to calculate c′1 · (c1)−1 ·m1 to get the message m2.

Security 10.1.2. A possible attacker, Eve, can see the elements c, c1, c2 ∈ S∗. She does not
know the free length of m and the cancellations between m and f t(c) in c1. It could be possible
that m is completely canceled by the first letters of f t(c). Hence, she cannot determine m
from the given c1. Eve just sees words, f t(a) and fn(a), in the free generating set X from
which it is unlikely to realize the exponents n and t, that is, the private keys from Alice and
Bob, respectively. The security is based on the Diffie-Hellman problem and discrete logarithm
problem in cyclic subgroups of automorphisms on finitely generated free groups.

Variation 10.1.3. We give some ideas to enhance the security, they can also be combined:

1. The element a ∈ S∗ could be taken as a common private secret between Alice and
Bob. They could use for example the Anshel-Anshel-Goldfeld key exchange protocol (see
[MSU08]) to agree on the element a.

2. Alice and Bob agree on a faithful representation from F into the special linear group of
all 2 × 2 matrices with entries in Q, that is, g : F → SL(2,Q). Now, m ∈ S∗ and Bob
sends g(m) · g(f t(c)) =: c1 ∈ SL(2,Q) instead of m · f t(c) =: c1 ∈ S∗; c and c2 remain
the same. Therefore, Alice calculates c1 · (g(fn(c2)))

−1 = g(m) and hence the message
m = g−1(g(m)) ∈ S∗. This variation in addition extends the security certification to the
constructive membership problem in the matrix group SL(2,Q) (see [EKLG14]).

We now explain this variation in more details.

In addition toX = {x1, x2, . . . , xN}Alice chooses a second abstract set Y = {y1, y2, . . . , yN},
X ∩ Y = ∅, which generates a free group F ′ = 〈Y | 〉 of rank N . The automorphism f
from Alice is an automorphism on a free group of rank |X| if we identify xi with yi for
i = 1, 2, . . . , N , then f is also an automorphism of F ′, because |X| = |Y | and hence F ′ is
isomorphic to F , see Theorem 4.3.7.

Alice needs a faithful representation of 〈X ∪ Y | 〉 into SL(2,Q), such that

g : 〈X ∪ Y | 〉 → SL(2,Q)

xi 7→Mi, with i = 1, 2, . . . , N and Mi ∈ SL(2,Z),

yi 7→Wi, with i = 1, 2, . . . , N and Wi ∈ SL(2,Q) and Wi /∈ SL(2,Z).

Thus, each Wi has at least one entry which is an element in Q \ Z. The set g(X) ∪ g(Y)
is a free generating set of a free subgroup in SL(2,Q) of rank 2N .

a) The public element from Alice is as before c = fn(a) ∈ S∗, with private key n ∈ N.

b) Bob chooses privately a message m ∈ S∗, a random t ∈ N and calculates the element
c2 = f t(a) ∈ S∗ as before. After this he computes f t(c) = f t(fn(a)) = f t+n(a) ∈ S∗
and writes it as a word in Y whereby he used the assignment xi 7→ yi for 1 ≤ i ≤ N .
We denote f t(c) as f tY (c) when f t(c) is written as a word in Y . The element f tY (c) is
a reduced word in Y . Bob’s element c1 = m · f tY (c) is now a reduced word in X ∪ Y .

237

Chapter 10. Additional cryptographic protocols using automorphisms of finitely generated free
groups

He applies the faithful representation g on this element. It is

g(m · f tY (c)) = g(m)︸ ︷︷ ︸
∈SL(2,Z)

· g(f tY (c))︸ ︷︷ ︸
∈SL(2,Q)

=: c′1 ∈ SL(2,Q).

Instead of (c2, c1) ∈ S∗ × S∗ he sends (c2, c
′
1) ∈ S∗ × SL(2,Q) to Alice.

c) Firstly, Alice calculates fn(c2) and hence gets the same element f t(c) as Bob, because

fn(c2) = fn(f t(a)) = fn+t(a) = f t+n(a) = f t(fn(a)) = f t(c).

Secondly, she writes fn(c2) as a word in Y , thus she gets f tY (c). Thirdly, she uses the
faithful representation g to calculate g(f tY (c)) and together with c′1 she gets

c′1 · (g(f tY (c)))−1 = g(m) · g(f tY (c))(g(f tY (c)))−1 = g(m) ∈ SL(2,Z).

She gets a matrix in SL(2,Z) and she knows that this matrix is a word in the letters of
Mi, 1 ≤ i ≤ N , hence there is an algorithm (see Remark 4.3.12 and Theorem 4.3.13)
to write g(m) as a word in g(X) and therefore as a word in X. Thus, she is able to
reconstruct m.

An eavesdropper, Eve, gets a matrix c′1 ∈ SL(2,Q) and she is not able to write it as a
word in X ∪ Y (because there is no algorithm known to solve the constructive member-
ship problem in a (discrete) free subgroup of SL(2,Q) of rank greater than or equal to
2 ([EKLG14]), which is not in SL(2,Z)). Thus, she cannot get the situation as in the
cryptosystem without the faithful representation g into SL(2,Q). There is no hint for the
message m, instead of the system above in which it is possible that an initial segment
of m is visible whereby Eve does not know how long this initial segment is and if it is
relay visible. Thus, this variation extends the security certification to the constructive
membership problem in the matrix group SL(2,Q).

Example 10.1.4.
This example, see also Appendix C.11, is a very small one and it is just given for illustration
purposes. Bob wants to send a message to Alice.
The public parameters are the free group F of rank 3 with free generating set X = {x, y, z},
the freely reduced word a ∈ F , with a := x2yz−2y and the automorphism f : F → F , which is
given, for this example, by the regular Nielsen transformation: [(N2)1.2]

2 (N2)3.2 (N1)3 (N2)2.3,
thus, it is:

f : F → F

x 7→ xy2,

y 7→ z−1,

z 7→ y−1z−1.

1. Alice’s private key is n = 7. Thus, she gets the automorphism

f7 : F → F

x 7→ xy2z−1y(yz)2(zyz2y)2zy,

y 7→ y−1((z−1y−1z−1)2y−1z−1)2z−1y−1z−2,

z 7→ (((y−1z−1)2z−1)2y−1z−2)2y−1(z−1y−1z−1)2z−1.

238

10.2. Challenge and response protocol using automorphisms on a finitely generated free group
F (Protocol 12)

Her public key is

c := f7(a) =(xy2z−1y(yz)2(zyz2y)2zy)2(z2y)2

((zyz)2yz)2zyz2yz−1.

2. Bob privately picks the ephemeral key t = 5 and gets the automorphism

f5 : F → F

x 7→ xy2z−1y2z(zy)2,

y 7→ y−1(z−1y−1z−1)2z−1,

z 7→ ((y−1z−1)2z−1)2y−1z−2.

His message for Alice is m = z−2y2zx2y−1x−1. He calculates

c1 =m · f5(c)
=z−2y2zx2(yz−1)2((z−1y−1z−2y−1)2z−2y−1)2(z−1y−1z−1)2z−1y−1

((((z−1y−1z−1)2y−1z−1)2z−1y−1z−1y−1z−1)2(z−1y−1z−2y−1)2z−1

y−1z−1)2((z−1y−1z−2y−1)2z−2y−1)2(z−1y−1z−1)2z−1xy2z−1y(z−1

(((z−1y−1z−2y−1)2z−2y−1)2(z−1y−1z−1)2z−1y−1)3(z−1y−1z−1)2

y−1z−1((z−1y−1z−2y−1)2z−2y−1)2(z−1y−1z−1)2y−1)3z−1

((z−1y−1z−2y−1)2z−2y−1)2(z−1y−1z−1)2y−1z−1y

and

c2 := f5(a) = (xy2z−1y2z(zy)2)2z2y(zyz)2zyz−1.

The ciphertext for Alice is the tuple (c1, c2).

3. Alice first computes

(f7(c2))
−1 =y−1(((((zy)2z)2zyz)2zy(zyz)2)2zy

((zyz)2yz)2zyz)2(zy(((zyz)2yz)2zyzyz)2

(zyz2y)2z)2y(((((z2y)2zy)2z2yzy)2z

(zyz2y)2zy)2z(zyz2y)2z2y

(((zyz)2yz)2zyzyz)2(zyz2y)2z

(zy−1)2y−1x−1)2

and gets m by
m = c1 · (f7(c2))−1 = z−2y2zx2y−1x−1.

10.2. Challenge and response protocol using automorphisms on a
finitely generated free group F (Protocol 12)

We use the idea behind the public key cryptosystem based on Nielsen transformations in the
previous section to develop a challenge and response protocol. More precisely this is a symmetric

239

Chapter 10. Additional cryptographic protocols using automorphisms of finitely generated free
groups

key authentication protocol (see for example [BBFT10] or [BNS10, Section 18.3]).

First we start with a general outline of this challenge and response system. The structure is
adapted on a model which is now used for most password and password back-up schemes, see
[BBFT10, p. 6]. Afterwards we make suggestions for possible challenges and give a security
analysis.

General outline of this symmetric key authentication protocol:

In this variation each prover is assigned to an automorphism f of infinite order (Nielsen transfor-
mation or Whitehead-Automorphisms) of a free group F with rank N ≥ 3, that is, F = 〈X| 〉
with X = {x1, x2, . . . , xN}. Due to this, the common shared secret between the prover and
the verifier is the tuple (P, f) with P a standard password for the prover and f the associated
challenge automorphism.
This is a symmetric key cryptographic authentication protocol, thus, both the prover and verifier
use a single common private key within the authentication process, which is here f .

1. The prover and verifier communicate directly, either face-to-face or by a public key method,
to setup a common shared secret (P, f) with P a standard password and f the challenge
automorphism of a free group of rank N . Each prover’s challenge automorphism is unique
to that prover. The password is chosen by the prover while the challenge automorphism
is randomly chosen.

2. The prover presents the password to the verifier. The verifier presents a “question” (see
possible challenges for the prover below). The assumption is that this “question” is difficult
in the sense that it is infeasible to answer it if the automorphism f is unknown. This is
repeated a finite number of times. If all answers are correct the prover (and the password)
is verified.

3. The cryptographic protocol is then repeated from the viewpoint of the prover, authenti-
cating the verifier to the prover.

We give examples for questions which are very unlikely to answer correctly if the challenge au-
tomorphism is unknown.

Possible challenges for the prover:

We propose four types of questions for the challenges.

1. What is the matrix M = ϕ(fn(w)), given w ∈ F (a freely reduced word in F), n ∈ N and
a faithful representation ϕ : F → SL(2,Q)? The verifier takes care that each matrix ϕ(xi),
1 ≤ i ≤ N , has at least one entry in Q \ Z.

2. What is the trace of the matrix M = ϕ(fn(w)), given w ∈ F (a freely reduced word in F),
n ∈ N and a faithful representation ϕ : F → SL(2,Q)? The verifier takes care that each
matrix ϕ(xi), 1 ≤ i ≤ N , has at least one entry in Q \ Z.

3. What is the entry Mx,y of the matrix M = ϕ(fn(w)), given w ∈ F (a freely reduced word
in F), n ∈ N and a faithful representation ϕ : F → SL(2,Q), with x, y ∈ {1, 2} and x gives
the row and y the column in the matrix M? A variation could be given if the entry Mx,y

is an integer, then it could be ask for certain digits of an entry Mx,y, for example for the
last 7 digits.

240

10.2. Challenge and response protocol using automorphisms on a finitely generated free group
F (Protocol 12)

4. Questions as in 1. and 2. but the faithful representation ϕ could be public or also a part
of the common shared secret between the verifier and the prover.

Protocol 12 is summarized in Table 10.2 (page 241) with a challenge of kind 1.

Table 10.2.: Summary of Protocol 12: Challenge and response protocol using automorphisms
on finitely generated free groups

Private Parameters

Free group F with free generating set X = {x1, x2, . . . , xN}, N ≥ 3;
an automorphism f ∈ Aut(F) of infinite order and a common password P .

The shared secret is the tuple (P, f).

Verifier Prover

Present the password P to the verifier
P←−−−−−−−−−−−−−−−

Take challenge automorphism f corresponding
to password P . Choose
• a faithful representation ϕ : F → SL(2,Q);
take care that each matrix ϕ(xi), 1 ≤ i ≤ N ,
has at least one entry in Q \ Z;
• a freely reduced word w ∈ F ;
• n ∈ N.

Challenge: (ϕ,w,n)−−−−−−−−−−−−−−−−−→
Compute

M ′ = ϕ(fn(w)).
Compute the response M and send it to
the verifier

M = ϕ(fn(w)).

Response: M←−−−−−−−−−−−−−−−−−−−
Proof if M ′ = M .

Security 10.2.1. For security analysis we assume that an adversary or eavesdropper has access
to the encrypted form of the transmission but is passive in that the adversary will not change
any transmissions.
An eavesdropper, Eve, is interested in the challenge automorphism f . In the first variation Eve
gets a faithful representation ϕ, an element w ∈ F , a natural number n and the matrix M or
the trace of M .
If the trace is given it is very unlikely that she reconstructs the correct matrix M . If she gets the
matrix M Eve is not able to write M as a word in ϕ(xi), because it is no algorithm known to solve
the constructive membership problem in SL(2,Q) for (discrete) free subgroups of rank greater
than or equal to 2, see Remark 4.3.14. In the second variation an eavesdropper gets w ∈ F ,
the natural number n, the Matrix M or the trace of M and for each challenge another faithful
representation ϕ. Now, an eavesdropper has the problem, that the faithful representation ϕ is
changed at every challenge.
Furthermore, if Eve stores the challenges and responses she cannot use them to pose as the
prover, because ϕ(fn(w))ϕ(f b(w)) = ϕ(fn(w)f b(w)) 6= ϕ(fn+b(w)) because fn+b(w) = f b(fn(w))
and in general f b(fn(w)) 6= fn(w)f b(w) beside this, also the word w can be changed at every
challenge.

241

Chapter 10. Additional cryptographic protocols using automorphisms of finitely generated free
groups

There are infinitely many possibilities for the word w ∈ F , the number n ∈ N and also the
faithful representation ϕ into SL(2,Q). Thus, each challenge is used only once. Therefore,
replay attacks, in which an eavesdropper records a communication session and replays parts of
the session or the whole session (see [MvOV97]) is avoided. If a challenge is used twice the
verifier or the prover, respectively, knows that it is an attack.

Example 10.2.2. An example for one challenge and the corresponding response together with
the GAP-Code and Maple-Code can be found in Appendix C.12.

242

Appendix A

Additional definitions

A.1. Boolean formulae

This appendix-section is based on the books [Lig06], [CK02] and [Weg87], it reminds the reader
of the theory of boolean formulae and gives the required definitions for Section 5.3.2.

Definition A.1.1. A boolean function in the (boolean) variables ψ1, ψ2, . . . , ψn is a map
f : {0, 1}n → {0, 1}.

Some examples of boolean functions include

• the 0-ary constant functions 0 and 1,

• the unary function ¬ (negation),

• the binary functions ∨ (OR), ∧ (AND), ⊕ (EXCLUSIVE OR), ⇒ (implication, where
ψ1 ⇒ ψ2 is defined by ¬ψ1 ∨ ψ2) and ≡ (also ⇔) (equivalence, also called biimplication).

Definition A.1.2. A literal is a boolean variable ψi or its negation ¬ψi.

The negation of a literal ¬ψi is ψi.

Definition A.1.3. A boolean formula or just formula (over the De Morgan basis {∧,∨,⊕, 0, 1})
is defined recursively as follows:

• The constants (that is 0-place connectives) 0 (FALSE) and 1 (TRUE) are boolean formulae.

• A boolean variable is a boolean formula.

• If Ψ1 and Ψ2 are boolean formulae, then ¬Ψ1 (negation), (Ψ1 ∧Ψ2) (conjunction) and
(Ψ1 ∨Ψ2) (disjunction) are boolean formulae.

The connectives ∧ and ∨ associate to the right, so that Ψ1 ∨Ψ2 ∨Ψ3 means Ψ1 ∨ (Ψ2 ∨Ψ3) and
Ψ1 ∧Ψ2 ∧Ψ3 means Ψ1 ∧ (Ψ2 ∧Ψ3).

Definition A.1.4. Let ψ1 = ψ, ψ0 = ¬ψ and let ψ1, ψ2, . . . , ψn be some distinct literals. A
conjunction of the form

ψa11 ∧ ψ
a2
2 ∧ · · · ∧ ψ

an
n ,

with ai ∈ {0, 1}, 1 ≤ i ≤ n, is called a term (or minterm or simple formula).

Definition A.1.5. Let ψ1 = ψ, ψ0 = ¬ψ and let ψ1, ψ2, . . . , ψn be some distinct literals. A
disjunction of the form

ψa11 ∨ ψ
a2
2 ∨ · · · ∨ ψ

an
n ,

with ai ∈ {0, 1}, 1 ≤ i ≤ n, is called a clause (or maxterm).

243

Appendix A. Additional definitions

Definition A.1.6. A formula is in Conjunctive Normal Form (CNF) if it can be presented
as

Ψ = ψ1 ∧ ψ2 ∧ · · · ∧ ψn,

where ψ1, ψ2, . . . , ψn denote any clauses. (In words: Any formula in CNF is a conjunction of
disjunctions of literals.)

Definition A.1.7. A formula is in Disjunctive Normal Form (DNF) if it can be presented
as

Ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn,

where ψ1, ψ2, . . . , ψn denote any terms. (In words: Any formula in DNF is a disjunction of
conjunctions of literals.)

As may be observed, for a particular formula there may exist many different CNF which are
equivalent.

Definition A.1.8. A formula
Ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψn

is in minimal DNF form if and only if there does not exist a logically equivalent formula in
DNF composed of m terms where m < n.

Definition A.1.9. A formula
Ψ = ψ1 ∧ ψ2 ∧ · · · ∧ ψn

is in minimal CNF form if and only if there does not exist a logically equivalent formula in
CNF composed of m clauses where m < n.

Any formula can be transformed into a logically equivalent CNF or DNF form. It can be noted
that in general case the minimal DNF of a formula is not defined in a unique way.

Remark A.1.10. It is known, that monotone formulae contain only AND (∧) and OR (∨)
operators (but no NEGATIONS (¬)).

244

A.2. Elementary free groups

A.2. Elementary free groups

To explain elementary free groups we need the first-order theory, because non-free groups that
have exactly the same first-order theory as the class of nonabelian free groups are called elemen-
tary free groups (or elementarily free groups).
Therefore, we give a brief introduction into first order theory, which is from the book [FGMRS14].

The starting point is a first-order language with equality (always interpreted as the identity
relation) containing a binary operation symbol “·” (often suppressed in favor of juxtaposition),
unary operation symbol “ −1”, and a constant symbol “1”. In particular, this is what it means
for L0 to be appropriate for group theory. A formula in this language is a logical expression
containing a string of variables x = (x1, x2, . . . , xn), the logical connectives ∨,∧,∼, and the
quantifiers ∀, ∃. Here ∨ stands for the disjunction of two propositions, ∧ for the conjunction of
two propositions and ∼ for the negation.
A variable in a formula is called bound (or occurs bound) if it is restricted by a quantifier (∀, ∃).
Otherwise, the variable is called free (or occurs free). A sentence is a formula of L0 in which
all variables are bound, or in other words there are no free occurrences of any variable.
A universal sentence of L0 is one of the form ∀x{φ(x)} where x is a tuple of distinct variables,
φ(x) is a formula of L0 containing no quantifiers and containing at most the variables of x.
Similarly an existential sentence is one of the form ∃x{φ(x)} where x and φ(x) are as above.

Example A.2.1. 1. The sentence

∀(x, y){xy = yx}

is a universal sentence describing an abelian group.

2. The sentence
∃(x, y){xy 6= yx}

is an existential sentence describing a nonabelian group.

A universal-existential sentence is one of the form ∀x∃y{φ(x, y)}. Similarly defined is
an existential-universal sentence, which is of the form ∃x∀y{φ(x, y)}. It is known that
every sentence of L0 is logically equivalent to one of the form Q1x1Q2x2 · · ·Qnxn{φ(x)}, where
x = (x1, x2, . . . , xn) is a tuple of distinct variables, each Qi for i = 1, 2, . . . , n is a quantifier,
either ∀ or ∃, and φ(x) is a formula of L0 containing no quantifiers and containing freely at most
the variables x1, x2, . . . , xn. Further vacuous quantifications are permitted. Finally a positive
sentence is one logically equivalent to a sentence constructed using (at most) the connectives
∨,∧,∀, ∃, that is, no negations are allowed.
If G is a group then the universal theory of G consists of the set of all universal sentences
of L0 true in G. Since any universal sentence is equivalent to the negation of an existential
sentence it follows that two groups have the same universal theory if and only if they have the
same existential theory. The set of all sentences of L0 true in G is called the first-order
theory or the elementary theory of G.

The primary examples of elementary free groups are the orientable surface groups Sg of genus
g ≥ 2 and the non-orientable surface groups Ng of genus g ≥ 4.
For more information about elementary free groups see for instance the book [FGMRS14].

245

Appendix B

Additional examples

If there are Nielsen transformations of type (N1) one after another we can apply them in one
step. For example if the Nielsen transformations (N1)5 (N1)2 (N1)1 (N2)3.2 are applied to a
set (a, b, c, d, e) we write instead of

(a, b, c, d, e)
(N1)5−→ (a, b, c, d, e−1)

(N1)2−→ (a, b−1, c, d, e−1)

(N1)1−→ (a−1, b−1, c, d, e−1)

(N2)3.2−→ (a−1, b−1, cb−1, d, e−1)

the following

(a, b, c, d, e)
(N1)5(N1)2(N1)1−→ (a−1, b−1, c, d, e−1)

(N2)3.2−→ (a−1, b−1, cb−1, d, e−1).

We use the FGA1 package in GAP2.

B.1. Example for automorphisms for Remark 7.0.10

Let F be a free group of rank 6 with free generating set X = {x1, x2, . . . , x6}. Let U be a subset
of F , which is Nielsen reduced. It is U = {u1, u2, u3, u4}, with u1 = x23x

−1
2 , u2 = x−11 x3x5x

−1
6 ,

u3 = x4x
2
2x

2
3, u4 = (x−14 x−11 x3x5)

4.

In GAP it is

LoadPackage("FGA");;

F:=FreeGroup("x1", "x2", "x3", "x4", "x5", "x6");;

AssignGeneratorVariables(F);;

and with the operation

. FreeGeneratorsOfGroup(G)

which returns a list of free Nielsen reduced generators, which defines a Nielsen reduced set of
the finitely generated subgroup G of a free group, we can prove that

U = {x23x−12 , x−11 x3x5x
−1
6 , x4x

2
2x

2
3, (x

−1
4 x−11 x3x5)

4}
1Free Group Algorithms. A GAP4 Package by Christian Sievers, TU Braunschweig.
2Groups, Algorithms and Programming [GAP15]

247

Appendix B. Additional examples

is Nielsen reduced:

G:=Group(x3^2*x2^-1,x1^-1*x3*x5*x6^-1,x4*x2^2*x3^2,(x4^-1*x1^-1*x3*x5)^4);;

gap> FreeGeneratorsOfGroup(G);

[x3^2*x2^-1, x1^-1*x3*x5*x6^-1, x4*x2^2*x3^2, (x5^-1*x3^-1*x1*x4)^4]

GAP gives the Nielsen reduced set UGAP = {x23x
−1
2 , x−11 x3x5x

−1
6 , x4x

2
2x

2
3, (x

−1
5 x−13 x1x4)

4}. This
differs to U only in the last element, which is the inverse of u4. To prove that U is Nielsen
reduced the Lemma 4.2.15 must be proved only for u4 in the set U , because of UGAP and the
results of GAP. Now, after Lemma 4.2.15 the set U is Nielsen reduced.

The plaintext from Alice is
S = a4a2a1a2.

For encryption she uses the following automorphisms, which are describable with the given
Nielsen transformations:

• Automorphism fx1 :

(x1, x2, x3, x4, x5, x6)
(N2)5.6−→ (x1, x2, x3, x4, x5x6, x6)

(N1)4(N1)5−→ (x1, x2, x3, x
−1
4 , x−16 x−15 , x6)

(N2)5.4−→ (x1, x2, x3, x
−1
4 , x−16 x−15 x−14 , x6)

(N1)3−→ (x1, x2, x
−1
3 , x−14 , x4x5x6, x6)

(N2)4.3−→ (x1, x2, x
−1
3 , x−14 x−13 , x4x5x6, x6)

(N1)4−→ (x1, x2, x
−1
3 , x3x4, x4x5x6, x6)

(N2)1.2−→ (x1x2, x2, x
−1
3 , x3x4, x4x5x6, x6)

(N1)1−→ (x−12 x−11 , x2, x
−1
3 , x3x4, x4x5x6, x6)

(N2)3.1−→ (x−12 x−11 , x2, x
−1
3 x−12 x−11 , x3x4, x4x5x6, x6)

(N1)3(N1)1−→ (x1x2, x2, x1x2x3, x3x4, x4x5x6, x6)

(N2)2.6−→ (x1x2, x2x6, x1x2x3, x3x4, x4x5x6, x6)

(N2)6.1−→ (x1x2, x2x6, x1x2x3, x3x4, x4x5x6, x6x1x2)

Hence, it is

fx1 : F → F

x1 7→ x1x2,

x2 7→ x2x6,

x3 7→ x1x2x3,

x4 7→ x3x4,

x5 7→ x4x5x6,

x6 7→ x6x1x2.

248

B.1. Example for automorphisms for Remark 7.0.10

• Automorphism fx2 :

(x1, x2, x3, x4, x5, x6)
(N2)4.2−→ (x1, x2, x3, x4x2, x5, x6)

(N2)6.2−→ (x1, x2, x3, x4x2, x5, x6x2)

(N2)5.6−→ (x1, x2, x3, x4x2, x5x6x2, x6x2)

(N2)1.3−→ (x1x3, x2, x3, x4x2, x5x6x2, x6x2)

(N1)1(N1)3−→ (x−13 x−11 , x2, x
−1
3 , x4x2, x5x6x2, x6x2)

(N2)3.1−→ (x−13 x−11 , x2, x
−2
3 x−11 , x4x2, x5x6x2, x6x2)

(N1)3(N1)1−→ (x1x3, x2, x1x
2
3, x4x2, x5x6x2, x6x2)

(N2)2.1−→ (x1x3, x2x1x3, x1x
2
3, x4x2, x5x6x2, x6x2)

Hence, it is

fx2 : F → F

x1 7→ x1x3,

x2 7→ x2x1x3,

x3 7→ x1x
2
3,

x4 7→ x4x2,

x5 7→ x5x6x2,

x6 7→ x6x2.

• Automorphism fx3

(x1, x2, x3, x4, x5, x6)
(N2)1.2−→ (x1x2, x2, x3, x4, x5, x6)

(N2)2.3−→ (x1x2, x2x3, x3, x4, x5, x6)

(N2)3.2−→ (x1x2, x2x3, x3x2x3, x4, x5, x6)

(N2)4.5−→ (x1x2, x2x3, x3x2x3, x4x5, x5, x6)

(N2)5.2−→ (x1x2, x2x3, x3x2x3, x4x5, x5x2x3, x6)

(N1)1−→ (x−12 x−11 , x2x3, x3x2x3, x4x5, x5x2x3, x6)

(N2)6.1−→ (x−12 x−11 , x2x3, x3x2x3, x4x5, x5x2x3, x6x
−1
2 x−11)

(N1)1−→ (x1x2, x2x3, x3x2x3, x4x5, x5x2x3, x6x
−1
2 x−11)

249

Appendix B. Additional examples

Hence, it is

fx3 : F → F

x1 7→ x1x2,

x2 7→ x2x3,

x3 7→ x3x2x3,

x4 7→ x4x5,

x5 7→ x5x2x3,

x6 7→ x6x
−1
2 x−11 .

• Automorphism fx4 :

(x1, x2, x3, x4, x5, x6)
[(N2)1.2]2−→ (x1x

2
2, x2, x3, x4, x5, x6)

(N2)2.5−→ (x1x
2
2, x2x5, x3, x4, x5, x6)

(N1)3−→ (x1x
2
2, x2x5, x

−1
3 , x4, x5, x6)

(N2)3.2−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x4, x5, x6)

(N1)4−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x

−1
4 , x5, x6)

(N2)5.4−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x

−1
4 , x5x

−1
4 , x6)

(N1)6−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x

−1
4 , x5x

−1
4 , x−16)

(N2)4.6−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x

−1
4 x−16 , x5x

−1
4 , x−16)

(N1)4−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x4x6x4, x5x

−1
4 , x−16)

(N2)4.5−→ (x1x
2
2, x2x5, x

−1
3 x2x5, x4x6x4x5x

−1
4 , x5x

−1
4 , x−16)

(N1)1−→ (x−22 x−11 , x2x5, x
−1
3 x2x5, x4x6x4x5x

−1
4 , x5x

−1
4 , x−16)

(N2)6.1−→ (x−22 x−11 , x2x5, x
−1
3 x2x5, x4x6x4x5x

−1
4 , x5x

−1
4 , x−16 x−22 x−11)

(N1)6−→ (x−22 x−11 , x2x5, x
−1
3 x2x5, x4x6x4x5x

−1
4 , x5x

−1
4 , x1x

2
2x6)

Hence, it is

fx4 : F → F

x1 7→ x−22 x−11 ,

x2 7→ x2x5,

x3 7→ x−13 x2x5,

x4 7→ x4x6x4x5x
−1
4 ,

x5 7→ x5x
−1
4 ,

x6 7→ x1x
2
2x6.

250

B.1. Example for automorphisms for Remark 7.0.10

In GAP they define for the automorphisms:

#f_{x_1}

fx11:=x1*x2;;

fx12:=x2*x6;;

fx13:=x1*x2*x3;;

fx14:=x3*x4;;

fx15:=x4*x5*x6;;

fx16:=x6*x1*x2;;

#f_{x_2}

fx21:=x1*x3;;

fx22:=x2*x1*x3;;

fx23:=x1*x3^2;;

fx24:=x4*x2;;

fx25:=x5*x6*x2;;

fx26:=x6*x2;;

#f_{x_3}

fx31:=x1*x2;;

fx32:=x2*x3;;

fx33:=x3*x2*x3;;

fx34:=x4*x5;;

fx35:=x5*x2*x3;;

fx36:=x6*x2^-1*x1^-1;;

#f_{x_4}

fx41:=x2^-1*x1^-1;;

fx42:=x2*x5;;

fx43:=x3^-1*x2*x5;;

fx44:=x4*x6*x4*x5*x4^-1;;

fx45:=x5*x4^-1;;

fx46:=x1*x2^2*x6;;

Because of the one-to-one correspondence ai 7→ ui, the ciphertext to the plaintext,

S = a4a2a1a2

is here

C =c1c2c3c4

=fx1(u4)fx2(u2)fx3(u1)fx4(u2)

=fx1((x−14 x−11 x3x5)
4)fx2(x−11 x3x5x

−1
6)fx3(x23x

−1
2)fx4(x−11 x3x5x

−1
6).

To get the ciphertext Alice calculates in GAP:

c1:=(fx14^-1*fx11^-1*fx13*fx15)^4;;

c2:=fx21^-1*fx23*fx25*fx26^-1;;

c3:=fx33^2*fx32^-1;;

c4:=fx41^-1*fx43*fx45*fx46^-1;;

gap> c1;

251

Appendix B. Additional examples

(x5*x6)^4

gap> c2;

x3*x5

gap> c3;

x3*x2*x3^2

gap> c4;

x1*x2*x3^-1*x2*x5^2*x4^-1*x6^-1*x2^-2*x1^-1

Therefore, it is

C =c1c2c3c4

=(x5x6)
4 o x3x5 o x3x2x23 o x1x2x−13 x2x

2
5x
−1
4 x−16 x−22 x−11 .

Eve gets from the ciphertext C the information

|c1| = 8, |c2| = 2, |c3| = 4 and |c4| = 11.

It is

L =
4∑
i=1

|ci| = 25 and L1 = max{|uj | | 1 ≤ j ≤ 4} = 11

but the element in U with maximum length is the element u4 = (x−14 x−11 x3x4)
4, therefore it is

max{|uk| | uk ∈ U} = |u4| = 16. Hence, it is L1 < max{|uk| | uk ∈ U} < L. In general, it
is more likely that the ball B(F,L) in the Cayley graph for F contains a basis for FU instead
of the ball B(F,L1). Hence, it is likely, that Eve studies the ball B(F,L) as in Security 7.0.8
assumed.

252

B.2. A part of an example with additional information from Alice

B.2. A part of an example with additional information from Alice

Let F = 〈X | 〉 be a free group of rank 9 with free generating set X = {x1, x2, . . . , x9}.

In GAP it is:

LoadPackage("FGA");;

F:=FreeGroup("x1", "x2", "x3", "x4", "x5", "x6", "x7", "x8", "x9");;

AssignGeneratorVariables(F);;

Let f : F → F be an automorphism of F which is describable via the following Nielsen trans-
formations

(x1, x2, x3, x4, x5, x6, x7, x8, x9)

(N2)5.6−→ (x1, x2, x3, x4, x5x6, x6, x7, x8, x9)

(N1)5(N1)4−→ (x1, x2, x3, x
−1
4 , x−16 x−15 , x6, x7, x8, x9)

(N2)5.4−→ (x1, x2, x3, x
−1
4 , x−16 x−15 x−14 , x6, x7, x8, x9)

(N1)5(N1)3−→ (x1, x2, x
−1
3 , x−14 , x4x5x6, x6, x7, x8, x9)

(N2)4.3−→ (x1, x2, x
−1
3 , x−14 x−13 , x4x5x6, x6, x7, x8, x9)

(N1)4−→ (x1, x2, x
−1
3 , x3x4, x4x5x6, x6, x7, x8, x9)

(N2)1.2−→ (x1x2, x2, x
−1
3 , x3x4, x4x5x6, x6, x7, x8, x9)

(N1)1−→ (x−12 x−11 , x2, x
−1
3 , x3x4, x4x5x6, x6, x7, x8, x9)

(N2)3.1−→ (x−12 x−11 , x2, x
−1
3 x−12 x−11 , x3x4, x4x5x6, x6, x7, x8, x9)

(N1)3(N1)1−→ (x1x2, x2, x1x2x3, x3x4, x4x5x6, x6, x7, x8, x9)

(N1)5(N1)7−→ (x1x2, x2, x1x2x3, x3x4, x
−1
6 x−15 x−14 , x6, x

−1
7 , x8, x9)

(N2)7.5−→ (x1x2, x2, x1x2x3, x3x4, x
−1
6 x−15 x−14 , x6, x

−1
7 x−16 x−15 x−14 , x8, x9)

(N1)5(N1)8−→ (x1x2, x2, x1x2x3, x3x4, x4x5x6, x6, x
−1
7 x−16 x−15 x−14 , x−18 , x9)

(N2)8.7−→ (x1x2, x2, x1x2x3, x3x4, x4x5x6, x6, x
−1
7 x−16 x−15 x−14 , x−18 x−17 x−16 x−15 x−14 , x9)

(N1)8(N1)9−→ (x1x2, x2, x1x2x3, x3x4, x4x5x6, x6, x
−1
7 x−16 x−15 x−14 , x4x5x6x7x8, x

−1
9)

[(N2)2.1]2−→ (x1x2, x2(x1x2)
2, x1x2x3, x3x4, x4x5x6, x6, x

−1
7 x−16 x−15 x−14 , x4x5x6x7x8, x

−1
9)

(N2)6.3−→ (x1x2, x2(x1x2)
2, x1x2x3, x3x4, x4x5x6, x6x1x2x3, x

−1
7 x−16 x−15 x−14 , x4x5x6x7x8, x

−1
9)

(N2)9.7−→ (x1x2, x2(x1x2)
2, x1x2x3, x3x4, x4x5x6, x6x1x2x3, x

−1
7 x−16 x−15 x−14 , x4x5x6x7x8, x

−1
9 x−17 x−16 x−15 x−14)

(N1)9−→ (x1x2, x2(x1x2)
2, x1x2x3, x3x4, x4x5x6, x6x1x2x3, x

−1
7 x−16 x−15 x−14 , x4x5x6x7x8, x4x5x6x7x9);

253

Appendix B. Additional examples

hence the automorphism is

f : F → F

x1 7→ x1x2,

x2 7→ x2(x1x2)
2,

x3 7→ x1x2x3,

x4 7→ x3x4,

x5 7→ x4x5x6,

x6 7→ x6x1x2x3,

x7 7→ x−17 x−16 x−15 x−14 ,

x8 7→ x4x5x6x7x8,

x9 7→ x4x5x6x7x9.

Thus, in GAP Alice and Bob define for the automorphism f :

x11:=x1*x2;;

x12:=x2*(x1*x2)^2;;

x13:=x1*x2*x3;;

x14:=x3*x4;;

x15:=x4*x5*x6;;

x16:=x6*x1*x2*x3;;

x17:=x7^-1*x6^-1*x5^-1*x4^-1;;

x18:=x4*x5*x6*x7*x8;;

x19:=x4*x5*x6*x7*x9;;

Assume we are in the situation of a cryptosystem as explained in Section 7.1. The alphabet
A = {a1, a2, a3, a4, a5, a6, a7} consists of 7 elements, hence let U be a basis for a subgroup of F
with rank 7 and U is Nielsen reduced.

It is U = {u1, u2, u3, u4, u5, u6, u7} with u1 = x4x
−1
1 , u2 = x1x4, u3 = x23x4x

−1
2 , u4 = x3x5,

u5 = x3x6, u6 = x3x8, u7 = x3x9.

With the operation

. FreeGeneratorsOfGroup(FU)

which returns a list of free Nielsen reduced generators, which defines a Nielsen reduced set of
the finitely generated subgroup FU of a free group, we can prove that

U = {x4x−11 , x1x4, x
2
3x4x

−1
2 , x3x5, x3x6, x3x8, x3x9}

is Nielsen reduced:

FU:=Group(x4*x1^-1, x1*x4, x3^2*x4*x2^-1, x3*x5, x3*x6, x3*x8, x3*x9);;

gap> FreeGeneratorsOfGroup(FU);

[x4*x1^-1, x1*x4, x3^2*x4*x2^-1, x3*x5, x3*x6, x3*x8, x3*x9]

We assume that Bob encrypted c1, c2, . . . , ci−1 correctly and no letters of ci are canceled in C
(i)
red,

it is C
(i)
red = c−1i−1 · · · c

−1
2 c−11 Cred with Cred the send ciphertext from Alice. Hence, we assume,

254

B.2. A part of an example with additional information from Alice

that he gets

C
(i)
red ≡ ciω
≡ x1x2x3x4x5x6x7x8ω′,

with ω the reduced word of ci+1 · · · cz and ω′ = ω or ω′ is a terminal segment of ω.

To encrypt ci he calculates Ufxi = Uf . In GAP this is

fu1:=x14*x11^-1;;

fu2:=x11*x14;;

fu3:=x13^2*x14*x12^-1;;

fu4:=x13*x15;;

fu5:=x13*x16;;

fu6:=x13*x18;;

fu7:=x13*x19;;

gap> fu1;

x3*x4*x2^-1*x1^-1

gap> fu2;

x1*x2*x3*x4

gap> fu3;

(x1*x2*x3)^2*x3*x4*(x2^-1*x1^-1)^2*x2^-1

gap> fu4;

x1*x2*x3*x4*x5*x6

gap> fu5;

x1*x2*x3*x6*x1*x2*x3

gap> fu6;

x1*x2*x3*x4*x5*x6*x7*x8

gap> fu7;

x1*x2*x3*x4*x5*x6*x7*x9

and therefore it is

Ufxi = Uf ={f(x4x
−1
1), f(x1x4), f(x23x4x

−1
2), f(x3x5), f(x3x6), f(x3x8), f(x3x9)}

={x3x4x−12 x−11 , x1x2x3x4, (x1x2x3)
2x3x4(x

−1
2 x−11)2x−12 ,

x1x2x3x4x5x6, x1x2x3x6x1x2x3, x1x2x3x4x5x6x7x8, x1x2x3x4x5x6x7x9}

and he knows

u1 7→x3x4x−12 x−11 ,

u2 7→x1x2x3x4,
u3 7→(x1x2x3)

2x3x4(x
−1
2 x−11)2x−12 ,

u4 7→x1x2x3x4x5x6,
u5 7→x1x2x3x6x1x2x3,
u6 7→x1x2x3x4x5x6x7x8,
u7 7→x1x2x3x4x5x6x7x9.

If he now looks at C
(i)
red he is not able to decide if the ciphertext unit ci encrypt a2 or a4 or a6.

255

Appendix B. Additional examples

Hence, Alice has to send additional information to Bob.
If Bob gets the information

• (i, 4, 1) he knows, that the element ci is of free length 4. There are two elements in Uf of
free length 4, which are f(u1) and f(u2), but Bob knows that all 4 elements are visible as

initial segment of C
(i)
red and hence ci = x1x2x3x4 = f(u2), thus si = a2;

• (i, 6, 1) he knows, that the element ci is of free length 6 and hence he knows that now
ci = x1x2x3x4x5x6 = f(u4), thus si = a4;

• (i, 7, x8) he knows, that the element ci is of free length at least 8 and the 8th letter differs
from all other elements in Uf , which have the same first seven letters as ci and these seven

letters are an initial segment of C
(i)
red, and the 8th letter is x8. Hence, he knows, that

ci = x1x2x3x4x5x6x7x8 = f(u6), thus si = a6;

• (i, 8, 1) he knows, that |ci| = 8 and that all 8 letters of ci are the first letters of C
(i)
red hence

he knows, that ci = x1x2x3x4x5x6x7x8 = f(u6), thus si = a6.

Example B.2.1. Assume the ciphertext unit ci is a reduced initial segment of the word C
(i)
red,

that means, there are cancellations between ci and ci+1. Hence, let

C
(i)
red ≡ x1x2x3x

′ω,

with x′ ∈ X±1 \ {x−13 , x4, x1} and ω, be a word in X. If Bob gets the information

• (i, 3, x41), x41 means that after x4 is the empty word, and hence it is known that the free

length of ci is |ci| = 3 + |x41| = 4 and thus ci has the same first 3 letters as C
(i)
red and the

terminal segment of ci is x4. Therefore, Bob knows that ci = f(u2), thus si = a2;

• (i, 13, 1) (u3 is the only element in Uf of free length 13) or (i, 3, x1) he knows |ci| > 3 + 1,

the first 3 letters are the same first 3 letters of C
(i)
red and the 4th letter differs from every

other 4th letter of each element in Uf , which first 3 letters are the same as the first 3

letters of C
(i)
red. Therefore, Bob knows ci = f(u3), thus si = a3.

• (i, 6, 1) (u4 is the only element in Uf of free length 6) or (i, 3, x4x5x61), x4x5x61 means
that after x4x5x6 is the empty word, and hence it is known that |ci| = 3 + |x4x5x61| = 6

and thus ci has the same first 3 letters as C
(i)
red and the terminal segment of ci is x4x5x6.

Therefore, he knows that ci = f(u4), thus si = a4;

• (i, 8, 1) he does not know if ci = f(u6) or ci = f(u7) hence Alice has to give one of the
following information to Bob

1. (i, 3, x4x5x6x7x81) if ci = f(u6) and thus si = a6. The word x4x5x6x7x81 means that
after x4x5x6x7x8 is the empty word, and hence it is known that for the free length

of ci it is |ci| = 3 + |x4x5x6x7x81| = 8 and thus ci has the same first 3 letters as C
(i)
red

and the terminal segment of ci is x4x5x6x7x8.

2. (i, 3, x4x5x6x7x91) if ci = f(u7) and thus si = a7. The word x4x5x6x7x91 means that
after x4x5x6x7x91 is the empty word, and hence it is known that for the free length

of ci it is |ci| = 3 + |x4x5x6x7x91| = 8 and thus ci has the same first 3 letters as C
(i)
red

and the terminal segment of ci is x4x5x6x7x9.

256

B.3. Example for Remark 7.0.9

B.3. Example for Remark 7.0.9

Let F be a finitely generated free group on the free generating set X = {a, b, c, d}. We give
a small example for a Nielsen reduced set U = {u1, u2}, with u1, u2 words in X, and two
automorphisms f1, f2 ∈ Aut(F), such that for c1 = f1(u1) and c2 = f2(u2) the following holds:

L =

2∑
i=1

|ci| < max{|u1|, |u2|}

In this case not all elements of U can be found in a ball B(F,L) in the Cayley graph of F .

Let u1 = (ab)3 and u1 = cd then U = {(ab)3, cd} is a Nielsen reduced set (Lemma 4.2.15 is
fulfilled).

Let f1 : F → F be an automorphism of F , which is describable via the following Nielsen
transformations

(a, b, c, d)

(N1)1(N1)3−→ (a−1, b, c−1, d)

(N2)1.3−→ (a−1c−1, b, c−1, d)

(N1)1−→ (ca, b, c−1, d)

(N2)3.1−→ (ca, b, a, d)

(N1)3−→ (ca, b, a−1, d)

(N2)1.4−→ (c, b, a−1, d)

(N1)2−→ (c, b−1, a−1, d)

(N2)2.1−→ (c, b−1c, a−1, d)

(N2)2.4−→ (c, b−1cd, a−1, d)

(N1)2−→ (c, d−1c−1b, a−1, d)

(N2)1.4−→ (cd, d−1c−1b, a−1, d)

[(N2)3.4]3−→ (cd, d−1c−1b, a−1d3, d)

(N2)4.1−→ (cd, d−1c−1b, a−1d3, dcd);

hence the automorphism is

f1 : F → F

a 7→ cd,

b 7→ d−1c−1b,

c 7→ a−1d3,

d 7→ dcd.

Let f2 : F → F be an automorphism of F , which is describable via the following Nielsen

257

Appendix B. Additional examples

transformations

(a, b, c, d)

(N1)1(N1)3−→ (a−1, b, c−1, d)

(N2)3.4−→ (a−1, b, c−1d, d)

(N1)4−→ (a−1, b, c−1d, d−1)

(N2)4.1−→ (a−1, b, c−1d, d−1a−1)

(N2)2.4−→ (a−1, bd−1a−1, c−1d, d−1a−1)

(N1)1−→ (a, bd−1a−1, c−1d, d−1a−1)

(N2)1.3−→ (ac−1d, bd−1a−1, c−1d, d−1a−1);

hence the automorphism is

f2 : F → F

a 7→ ac−1d,

b 7→ bd−1a−1,

c 7→ c−1d,

d 7→ d−1a−1.

It is
c1 = f1(u1) = f1((ab)

3) = (cdd−1c−1b)3 = b3

and
c2 = f2(u2) = f2(cd) = c−1dd−1a−1 = c−1a−1.

Now, L = |c1|+ |c2| = 3 + 2 = 5 and max{|u1|, |u2|} = max{6, 2} = 6, thus

5 = L < max{|u1|, |u2|} = 6.

258

Appendix C

Calculations with Maple 16 or GAP for
examples

If there are Nielsen transformations of type (N1) one after another we can apply them in one
step. For example if the Nielsen transformations (N1)5 (N1)2 (N1)1 (N2)3.2 are applied to a
set (a, b, c, d, e) we write instead of

(a, b, c, d, e)
(N1)5−→ (a, b, c, d, e−1)

(N1)2−→ (a, b−1, c, d, e−1)

(N1)1−→ (a−1, b−1, c, d, e−1)

(N2)3.2−→ (a−1, b−1, cb−1, d, e−1)

the following

(a, b, c, d, e)
(N1)5(N1)2(N1)1−→ (a−1, b−1, c, d, e−1)

(N2)3.2−→ (a−1, b−1, cb−1, d, e−1).

We use the FGA1 package in GAP2.
In Maple 163 the package “LinearAlgebra” is used.

C.1. Example 2.1.5 calculations in Maple 16

First, Alice and Bob have to agree on a private key.

The real inner product space is W = R6 and the subspace V is of dimension 3. In Maple 16
they define:

> restart:
> with(LinearAlgebra):
> m:=6: t:=3:

> B:=RandomMatrix(t,m);

B :=

 66 20 −34 −21 −50 −79
−36 −7 −62 −56 30 −71
−41 16 −90 −8 62 28


> Rank(B);

3

1Free Group Algorithms. A GAP4 Package by Christian Sievers, TU Braunschweig.
2Groups, Algorithms and Programming [GAP15]
3More precisely Classic Worksheet Maple 16 is used.

259

Appendix C. Calculations with Maple 16 or GAP for examples

The rows of the matrix B define a basis for a 3-dimensional subspace V in R6.

Bob calculates for encryption his private key, which is a basis for the orthogonal complement
V ⊥ to V . This is the nullspace of the matrix B:

> kern:=NullSpace(B);

kern :=





67528

61217
−72236

61217
−1433

61217

0
1
0


,



129349

61217
−362352

61217
−208597

122434

0
0
1


,



46287

61217
−191417

61217
−121115

122434

1
0
0




Alice needs as decryption key an orthonormal basis of the subspace, which she gets with the
help of the Gram-Schmidt procedure and a normalization:

> L:=[seq(B[j,1..m],j=1..t)]:
> G:=GramSchmidt(L,normalized);

G := [

[
33
√

15094

7547
,

10
√

15094

7547
, −17

√
15094

7547
, −21

√
15094

15094
, −25

√
15094

7547
, −79

√
15094

15094

]
,

[

−144211
√

12849748610

32124371525
, −101599

√
12849748610

96373114575
, −25667

√
12849748610

6424874305
,

−742847
√

12849748610

192746229150
,

69667
√

12849748610

19274622915
, −228797

√
12849748610

64248743050

]
,

[
1141824503

√
1211483474194866265

6057417370974331325
,

5968746002
√

1211483474194866265

18172252112922993975
,

−830820734
√

1211483474194866265

1211483474194866265
,

3745334828
√

1211483474194866265

18172252112922993975
,

594555334
√

1211483474194866265

3634450422584598795
,

2286429878
√

1211483474194866265

6057417370974331325

]
]

Bob wants to send Alice a message p ∈ R6. He also chooses an element w ∈ V and calculates
v = w − p:

> p:=Transpose(<3,18,25,16,20,15>);
> a:=3: b:=-6: c:=7:
> w:=a*B[1,1..m]+b*B[2,1..m]+c*B[3,1..m];
> v:=w-p;

p := [3, 18, 25, 16, 20, 15]

w := [127, 214, −360, 217, 104, 385]

v := [124, 196, −385, 201, 84, 370]

In addition he needs the element w∗ with the property, that w is the closest vector in V to w∗.
Therefore, he needs his encryption key stored as kern, which is a basis for the orthogonal
complement V ⊥. He stores w∗ as ww, and sends (ww, v) to Alice:

260

C.1. Example 2.1.5 calculations in Maple 16

> w:=Transpose(w):
> r:=m-t:
> R:=RandomVector(r):
> while Equal(R,Vector(r)) do
> R:=RandomVector(r):
> end:
> R;  13

−65
5


> u:=Vector(m):
> for k from 1 to r do
> u:= u + kern[k]*R[k]:
> end:
> ww:=u+w;

ww :=



476173

61217
34757165

61217
−15580134

61217

222
117
320


Alice gets (ww, v). With her decryption key (an orthonormal basis for V), which is stored in
G, she is able to calculate U = w with the Closest Vector Theorem. Afterwards she calculates
P = U − v, which is the message from Bob:

> V:=Transpose(Vector(m)):
> for k from 1 to t do
> U:=U+DotProduct(ww,G[k])*G[k]:
> end:
> P:=U-v;

P := [3, 18, 25, 16, 20, 15]

261

Appendix C. Calculations with Maple 16 or GAP for examples

C.2. Example 2.2.2 calculations in Maple 16

In a challenge and response system, the prover and the verifier agree privately on a password
and a challenge subspace V . In this example they agree on the password P = Alice and the
challenge space V is a 3-dimensional subspace of R7. In Maple 16 they define:

> restart:
> with(LinearAlgebra):

> m:=7: t:=3:

> B:=RandomMatrix(t,m);

B :=

 13 66 20 −34 −21 −50 −79
−65 −36 −7 −62 −56 30 −71

5 −41 16 −90 −8 62 28


> Rank(B);

3

The rows of the matrix B define a basis for the 3-dimensional subspace of R7, which is the
common subspace V .

The prover should verify himself to the verifier. For this, he sends the password P = Alice to
the verifier. Now, the verifier knows the corresponding challenge space V to the password P
and generates a challenge for the prover. He chooses three elements w, u, p ∈ V and asks for
the length of the “line” between these elements. For w, u, p ∈ V he chooses:

> a1:=2: a2:=4: a3:=-2:
> b1:=5: b2:=-3: b3:=2:
> c1:=3: c2:=-2: c3:=-1:
> w:=a1*B[1,1..m]+a2*B[2,1..m]+a3*B[3,1..m];
> u:=b1*B[1,1..m]+b2*B[2,1..m]+b3*B[3,1..m];
> p:=c1*B[1,1..m]+c2*B[2,1..m]+c3*B[3,1..m];

w := [−244, 70, −20, −136, −250, −104, −498]

u := [270, 356, 153, −164, 47, −216, −126]

p := [164, 311, 58, 112, 57, −272, −123]

Now, he needs the challenge elements for the prover. He first calculates a basis for the
orthogonal complement V ⊥ of V and stored it as kern:

> kern:=NullSpace(B);

kern :=





−208597

112011
40305

37337
179012

112011

0
0
0
1


,



−121115

112011
5827

37337
138649

112011

0
1
0
0


,



−2866

112011
40656

37337
−120604

112011

0
0
1
0


,



−122434

112011
−22648

37337
494216

112011

1
0
0
0




He calculates the elements w∗ =: XX, u∗ =: Y Y and p∗ =: ZZ for which w, u, and p,
respectively, are the closest elements in V , as follows:

262

C.2. Example 2.2.2 calculations in Maple 16

> r:=m-t:
> R:=RandomVector(r):
> S:=RandomVector(r):
> E:=RandomVector(r):
> while Equal(R,Vector(r)) do
> R:=RandomVector(r):
> end:
> while Equal(S,Vector(r)) do
> S:=RandomVector(r):
> end:
> while Equal(E,Vector(r)) do
> E:=RandomVector(r):
> end:
> R;
> S;
> E; 

−66
55
68
26



−75

38
97
−82



−69

23
25
5


> x:=Vector(m):
> for k from 1 to r do
> x:= x + kern[k]*R[k]:
> end:
> XX:=Transpose(w)+x;
> y:=Vector(m):
> for k from 1 to r do
> y:= y + kern[k]*S[k]:
> end:
> YY:=y+Transpose(u);
> z:=Vector(m):
> for k from 1 to r do
> z:= z + kern[k]*E[k]:
> end:
> ZZ:=Transpose(p)+z;

XX :=



−7867593

37337
2449705

37337
−593591

37337

−110
−195
−36
−564



263

Appendix C. Calculations with Maple 16 or GAP for examples

YY :=



51046961

112011
16291291

37337
−43243855

112011

−246
85
−119
−201



ZZ :=



29293532

112011
9867943

37337
−3210283

112011

117
80
−247
−192



It is XX = w∗ = w + (−66u⊥1 + 55u⊥2 + 68u⊥3 + 26u⊥4),
Y Y = u∗ = u+ (−75u⊥1 + 38u⊥2 + 97u⊥3 − 82u⊥4) and
ZZ = p∗ = p+ (−69u⊥1 + 23u⊥2 + 25u⊥3 + 5u⊥4), with kern = {u⊥1 , u⊥2 , u⊥3 , u⊥4 }.

The Verifier sends the challenge (XX,Y Y,ZZ) with a computational accuracy of 12 digits to
the prover.

To calculate the response the prover first uses the Gram-Schmidt procedure and a
normalization to generate a orthonormal basis G for the subspace V :

> L:=[seq(B[j,1..m],j=1..t)]:
> G:=GramSchmidt(L, normalized);

264

C.2. Example 2.2.2 calculations in Maple 16

G := [

[
13
√

15263

15263
,

66
√

15263

15263
,

20
√

15263

15263
, −34

√
15263

15263
, −21

√
15263

15263
, −50

√
15263

15263
,

−79
√

15263

15263

]
,

[
− 1044511

√
4059517036667

4059517036667
, −815580

√
4059517036667

4059517036667
,

−187481
√

4059517036667

4059517036667
, −809218

√
4059517036667

4059517036667
,

−770056
√

4059517036667

4059517036667
,

659490
√

4059517036667

4059517036667
,

−765145
√

4059517036667

4059517036667

]
,

[
10791066889

√
10738342994104662523

85906743952837300184
,

769777141
√

10738342994104662523

85906743952837300184
,

7309852223
√

10738342994104662523

85906743952837300184
,

−9995226829
√

10738342994104662523

42953371976418650092
,

2499753517
√

10738342994104662523

85906743952837300184
,

3654268049
√

10738342994104662523

42953371976418650092
,

3791392411
√

10738342994104662523

42953371976418650092

]
]

With the Closest Vector Theorem he is now able to reconstruct the elements w, u and p from
XX, Y Y , ZZ, respectively, which he stores as W , U and P :

> W:=Transpose(Vector(m)):
> for k from 1 to t do
> W:=W+DotProduct(XX,G[k])*G[k]:
> end:
> W;

[−244, 70, −20, −136, −250, −104, −498]

> U:=Transpose(Vector(m)):
> for k from 1 to t do
> U:=U+DotProduct(YY,G[k])*G[k]:
> end:
> U;

[270, 356, 153, −164, 47, −216, −126]

> P:=Transpose(Vector(m)):
> for k from 1 to t do
> P:=P+DotProduct(ZZ,G[k])*G[k]:
> end:
> P;

[164, 311, 58, 112, 57, −272, −123]

The prover calculates the “line” between his computed elements in V with a computational
accuracy of 12 digits:

> Digits:=12:
> nnn:=evalf(Norm(W-U,2)+Norm(U-P,2)+Norm(P-W,2));

nnn := 1848.80960451

He sends nnn := 1848.80960451 as response to the verifier. The verifier compares this with his
length of the “line”, which is:

265

Appendix C. Calculations with Maple 16 or GAP for examples

> Digits:=12:
> nn:=evalf(Norm(w-u,2)+Norm(u-p,2)+Norm(p-w,2));

nn := 1848.80960451

It is nn = nnn, therefore the response is correct. It is not possible to generate the correct
response by knowing just XX, Y Y and ZZ. The “line” between these elements is
nnnn = 2319.52030261 which is not nn = 1848.80960451:

> Digits:=12;
> nnnn:=evalf(Norm(XX-YY,2)+Norm(YY-ZZ,2)+Norm(ZZ-XX,2));

Digits := 12

nnnn := 2319.52030261

266

C.3. Example 6.1.3 calculations in Maple 16

C.3. Example 6.1.3 calculations in Maple 16

We now present the calculations which were needed to execute Example 6.1.3, which is a (3, 2)-
secret sharing scheme using free subgroups in SL(2,Q).

We take a closer look at the steps for the dealer for this (3, 2)-secret sharing scheme. It is n = 3
and t = 2. Thus, in Maple we define:

> restart; with(LinearAlgebra):

> n := 3; t := 2; m := binomial(n, t-1);

n := 3

t := 2

m := 3

The dealer needs m = 3 matrices. For this he chooses rational numbers ri =: r[i], 1 ≤ i ≤ 3, with
the properties (4.1). Hence, these rational numbers were chosen as follows and the inequalities
(4.1) were proved:

> r[1] := 7/2; r[2] := 15/2; r[3] := 11;

r1 :=
7

2

r2 :=
15

2
r3 := 11

> r[1]-2; r[2]-r[1]-3; r[3]-r[2]-3;

3

2
1
1

2
All results are greater than 0, hence he can generate with the numbers r1, r2 and r3 matrices,
which generate a free subgroup of SL(2,Q) of rank 3. The matrices are:

> M[1] := Matrix([[-r[1], r[1]^2-1], [1, -r[1]]]);
> M[2] :=Matrix([[-r[2], r[2]^2-1], [1, -r[2]]]);
> M[3] := Matrix([[-r[3], r[3]^2-1], [1, -r[3]]]);

M1 :=


−7

2

45

4

1
−7

2



M2 :=


−15

2

221

4

1
−15

2


M3 :=

[
−11 120

1 −11

]
The secret is reconstructible with the help of the traces of these matrices, which are:

> Trace(M[1]); Trace(M[2]); Trace(M[3]);

−7

−15

−22

267

Appendix C. Calculations with Maple 16 or GAP for examples

To get the Nielsen equivalent set N and U , from which the dealer constructs the share-sets for
the participants, he does the following elementary Nielsen transformations on the matrices and
on an abstract set. These matrix multiplications are the following:

> M[11] := M[1]; M[12] := M[2]; M[13] := M[3];

M11 :=


−7

2

45

4

1
−7

2



M12 :=


−15

2

221

4

1
−15

2


M13 :=

[
−11 120

1 −11

]
> M[21] := M[11]; M[22] := MatrixInverse(M[12]); M[23] := M[13];

M21 :=


−7

2

45

4

1
−7

2



M22 :=


−15

2

−221

4

−1
−15

2


M23 :=

[
−11 120

1 −11

]
> M[31] := M[21].M[22]; M[32] := M[22]; M[33] := M[23];

M31 :=

[
15 109
−4 −29

]

M32 :=


−15

2

−221

4

−1
−15

2


M33 :=

[
−11 120

1 −11

]
> M[41] := M[31]; M[42] := M[32]; M[43] := M[33].M[32]^3;

M41 :=

[
15 109
−4 −29

]

M42 :=


−15

2

−221

4

−1
−15

2


M43 :=

[
−8565 −63664

799 5939

]
> M[51] := M[41]; M[52] := M[42].M[43]; M[53] := M[43];

M51 :=

[
15 109
−4 −29

]

268

C.3. Example 6.1.3 calculations in Maple 16

M52 :=


80371

4

597401

4
5145

2

38243

2


M53 :=

[
−8565 −63664

799 5939

]
> M[61] := MatrixInverse(M[51]); M[62] := M[52]; M[63] := M[53];

M61 :=

[
−29 −109

4 15

]

M62 :=


80371

4

597401

4
5145

2

38243

2


M63 :=

[
−8565 −63664

799 5939

]
> M[71] := M[61].M[62]; M[72] := M[62]; M[73] := M[63];

M71 :=


−3452369

4

−25661603

4
237917

2

1768447

2



M72 :=


80371

4

597401

4
5145

2

38243

2


M73 :=

[
−8565 −63664

799 5939

]
> M[81] := M[71]; M[82] := M[72]; M[83] := MatrixInverse(M[73]);

M81 :=


−3452369

4

−25661603

4
237917

2

1768447

2



M82 :=


80371

4

597401

4
5145

2

38243

2


M83 :=

[
5939 63664
−799 −8565

]
> M[91] := M[81]; M[92] := M[82]; M[93] := M[83].M[82];

M91 :=


−3452369

4

−25661603

4
237917

2

1768447

2



M92 :=


80371

4

597401

4
5145

2

38243

2



269

Appendix C. Calculations with Maple 16 or GAP for examples

M93 :=


1132425929

4

8417369243

4
−152350279

4

−1132425989

4


> R[1] := M[91]; R[2] := M[92]; R[3] := M[93];

R1 :=


−3452369

4

−25661603

4
237917

2

1768447

2



R2 :=


80371

4

597401

4
5145

2

38243

2



R3 :=


1132425929

4

8417369243

4
−152350279

4

−1132425989

4


The share distribution is done by the method given by D. Panagopoulos.
If now two or more participants combine their shares they get the following matrices:

> R[1]; R[2]; R[3]; 
−3452369

4

−25661603

4
237917

2

1768447

2




80371

4

597401

4
5145

2

38243

2




1132425929

4

8417369243

4
−152350279

4

−1132425989

4


Next, the calculations for the participants to generate a set M ′ are given. They do Nielsen
transformations on the explicit set of matrices, which they reconstruct from the theoretical set.
These are the following matrix operations:

> R[11] := R[1]; R[12] := R[2]; R[13] := R[3];

R11 :=


−3452369

4

−25661603

4
237917

2

1768447

2



R12 :=


80371

4

597401

4
5145

2

38243

2



R13 :=


1132425929

4

8417369243

4
−152350279

4

−1132425989

4



270

C.3. Example 6.1.3 calculations in Maple 16

> R[21] := R[11]; R[22] := MatrixInverse(R[12]); R[23] := R[13];

R21 :=


−3452369

4

−25661603

4
237917

2

1768447

2



R22 :=


38243

2

−597401

4
−5145

2

80371

4



R23 :=


1132425929

4

8417369243

4
−152350279

4

−1132425989

4


> R[31] := R[21]; R[32] := R[22]; R[33] := R[23].R[22];

R31 :=


−3452369

4

−25661603

4
237917

2

1768447

2



R32 :=


38243

2

−597401

4
−5145

2

80371

4


R33 :=

[
5939 63664
−799 −8565

]
> R[41] := R[31]; R[42] := MatrixInverse(R[32]); R[43] := R[33];

R41 :=


−3452369

4

−25661603

4
237917

2

1768447

2



R42 :=


80371

4

597401

4
5145

2

38243

2


R43 :=

[
5939 63664
−799 −8565

]
> R[51] := R[41]; R[52] := R[42].R[43]; R[53] := R[43];

R51 :=


−3452369

4

−25661603

4
237917

2

1768447

2



R52 :=


−15

2

−221

4

−1
−15

2


R53 :=

[
5939 63664
−799 −8565

]
> R[61] := R[51].R[53]; R[62] := R[52]; R[63] := R[53];

271

Appendix C. Calculations with Maple 16 or GAP for examples

R61 :=


653

2

9679

4

−45
−667

2



R62 :=


−15

2

−221

4

−1
−15

2


R63 :=

[
5939 63664
−799 −8565

]
> R[71] := R[61]; R[72] := MatrixInverse(R[62]); R[73] := R[63];

R71 :=


653

2

9679

4

−45
−667

2



R72 :=


−15

2

221

4

1
−15

2


R73 :=

[
5939 63664
−799 −8565

]
> R[81] := R[71].R[72]; R[82] := R[72]; R[83] := R[73];

R81 :=

[
−29 −109

4 15

]

R82 :=


−15

2

221

4

1
−15

2


R83 :=

[
5939 63664
−799 −8565

]
> R[91] := MatrixInverse(R[81]); R[92] := R[82]; R[93] := R[83];

R91 :=

[
15 109
−4 −29

]

R92 :=


−15

2

221

4

1
−15

2


R93 :=

[
5939 63664
−799 −8565

]
> R[101] := R[91].R[92]; R[102] := R[92]; R[103] := R[93];

R101 :=


−7

2

45

4

1
−7

2



272

C.3. Example 6.1.3 calculations in Maple 16

R102 :=


−15

2

221

4

1
−15

2


R103 :=

[
5939 63664
−799 −8565

]
> R[111] := R[101]; R[112] := R[102];
> R[113] :=MatrixInverse(R[103]);

R111 :=


−7

2

45

4

1
−7

2



R112 :=


−15

2

221

4

1
−15

2


R113 :=

[
−8565 −63664

799 5939

]
> R[121] := R[111]; R[122] := R[112]; R[123] := R[113].R[112]^3;

R121 :=


−7

2

45

4

1
−7

2



R122 :=


−15

2

221

4

1
−15

2


R123 :=

[
−11 120

1 −11

]
> T[1] := R[121]; T[2] := R[122]; T[3] := R[123];

T1 :=


−7

2

45

4

1
−7

2



T2 :=


−15

2

221

4

1
−15

2


T3 :=

[
−11 120

1 −11

]
The participants calculate the matrices T1, T2, T3, with the traces of these matrices they are able
to reconstruct the correct secret.

273

Appendix C. Calculations with Maple 16 or GAP for examples

C.4. Example 6.2.3 executed with GAP

We give an example for a (3, 3)-secret sharing scheme. The finitely generated free group F with
its free generating set X = {a, b, c} is defined in GAP:

LoadPackage("FGA");;

F:=FreeGroup("a", "b", "c");;

AssignGeneratorVariables(F);;

A Nielsen reduced set U = {u1, u2, u3} with three elements is needed. The dealer chooses
u1 = b2a, u2 = cab and u3 = ac−1b−1a3. Because of Theorem 4.2.13 the set U is a free generat-
ing set of a subgroup G of F . With the operation

. FreeGeneratorsOfGroup(G)

which returns a list of free Nielsen reduced generators, which defines a Nielsen reduced set of a
finitely generated subgroup G of a free group, we can prove that U = {b2a, cab, ac−1b−1a3} is
Nielsen reduced:

G:=Group (b^2*a, c*a*b, a*c^-1*b^-1*a^3);;

gap>FreeGeneratorsOfGroup(G);

[b^2*a, c*a*b, a*c^-1*b^-1*a^3]

The dealer calculates the Nielsen equivalent set V to U by applying the following Nielsen trans-
formations:

(u1, u2, u3)
(N1)2−→ (u1, u

−1
2 , u3)

(N2)1.3−→ (u1u3, u
−1
2 , u3)

(N2)3.2−→ (u1u3, u
−1
2 , u3u

−1
2)

(N2)2.3−→ (u1u3, u
−1
2 u3u

−1
2 , u3u

−1
2)

(N1)2−→ (u1u3, u2u
−1
3 u2, u3u

−1
2)

(N2)1.2−→ (u1u3u2u
−1
3 u2, u2u

−1
3 u2, u3u

−1
2)

(N1)2−→ (u1u3u2u
−1
3 u2, u

−1
2 u3u

−1
2 , u3u

−1
2)

(N2)3.2−→ (u1u3u2u
−1
3 u2, u

−1
2 u3u

−1
2 , u3u

−2
2 u3u

−1
2)

(N1)1−→ (u−12 u3u
−1
2 u−13 u−11 , u−12 u3u

−1
2 , u3u

−2
2 u3u

−1
2)

(N2)3.1−→ (u−12 u3u
−1
2 u−13 u−11 , u−12 u3u

−1
2 , u3u

−2
2 u3u

−2
2 u3u

−1
2 u−13 u−11)

(N1)1−→ (u1u3u2u
−1
3 u2, u

−1
2 u3u

−1
2 , u3u

−2
2 u3u

−2
2 u3u

−1
2 u−13 u−11)

In GAP define:

u_1:=b^2*a;;

u_2:=c*a*b;;

u_3:=a*c^-1*b^-1*a^3;;

274

C.4. Example 6.2.3 executed with GAP

v_1:=u_1*u_3*u_2*u_3^-1*u_2;;

v_2:=u_2^-1*u_3*u_2^-1;;

v_3:=u_3*u_2^-2*u_3*u_2^-2*u_3*u_2^-1*u_3^-1*u_1^-1;;

Write v1, v2 and v3 as words in X:

gap> v_1;

b^2*a^2*c^-1*b^-1*a^3*c*a*b*a^-3*b*c*a^-1*c*a*b

gap> v_2;

b^-1*a^-1*c^-1*a*c^-1*b^-1*a^3*b^-1*a^-1*c^-1

gap> v_3;

(a*c^-1*b^-1*a^3*(b^-1*a^-1*c^-1)^2)^2*a*c^-1*b^-1\\

*a^3*b^-1*a^-1*c^-1*a^-3*b*c*a^-2*b^-2

Participant pi gets the share vi, i = 1, 2, 3. If the participants combine their shares they obtain
the set V .

If the set V = {v1, v2, v3} of all shares is used as free generating set for a subgroup H of F , then
the operation

. FreeGeneratorsOfGroup(H)

gives a Nielsen reduced generating set U ′ for H:

H:=Group(v_1,v_2,v_3);;

gap> H;

Group([b^2*a^2*c^-1*b^-1*a^3*c*a*b*a^-3*b*c*a^-1*c*a*b,\

b^-1*a^-1*c^-1*a*c^-1*b^-1*a^3*b^-1*a^-1*c^-1,\

(a*c^-1*b^-1*a^3*(b^-1*a^-1*c^-1)^2)^2*a*c^-1*b^-1*a^3*b^-1\

*a^-1*c^-1*a^-3*b*c*a^-2*b^-2])

gap> FreeGeneratorsOfGroup(H);

[b^2*a, c*a*b, a*c^-1*b^-1*a^3]

The participants get the Nielsen reduced generating set U ′ = {b2a, cab, ac−1b−1a3}, which is U ,
and hence they are able to reconstruct the correct secret

S =

3∑
i=1

1

|u′i|X
=

1

3
+

1

3
+

1

6
=

5

6
.

If just two participants combine they shares and generate Nielsen reduced sets, it is likely that
no element in their Nielsen reduced set is of the length of one element in U . For example we can
take a look at the free generating sets of subgroups which are just generated by two elements of
the set V , see the following GAP-Code:

F1:=Group(v_1,v_2);;

F2:=Group(v_1,v_3);;

F3:=Group(v_2,v_3);;

gap> F1;

275

Appendix C. Calculations with Maple 16 or GAP for examples

Group([b^2*a^2*c^-1*b^-1*a^3*c*a*b*a^-3*b*c*a^-1*c*a*b,\

b^-1*a^-1*c^-1*a*c^-1*b^-1*a^3*b^-1*a^-1*c^-1])

gap> FreeGeneratorsOfGroup(F1);

[a^-3*b*c*a^-2*b^-2, c*a*b*a^-3*b*c*a^-1*c*a*b]

gap> F2;

Group([b^2*a^2*c^-1*b^-1*a^3*c*a*b*a^-3*b*c*a^-1*c*a*b,\

(a*c^-1*b^-1*a^3*(b^-1*a^-1*c^-1)^2)^2*a*c^-1*b^-1*a^3*b^-1\

*a^-1*c^-1*a^-3*b*c*a^-2*b^-2])

gap> FreeGeneratorsOfGroup(F2);

[b^2*a^2*c^-1*b^-1*a^3*c*a*b*a^-3*b*c*a^-1*c*a*b,\

c*a*b*a^-3*b*c*a^-1*(c*a*b)^2*a^-3*b*c*a^-1]

gap> F3;

Group([b^-1*a^-1*c^-1*a*c^-1*b^-1*a^3*b^-1*a^-1*c^-1,\

(a*c^-1*b^-1*a^3*(b^-1*a^-1*c^-1)^2)^2*a*c^-1*b^-1*a^3*b^-1\

*a^-1*c^-1*a^-3*b*c*a^-2*b^-2])

gap> FreeGeneratorsOfGroup(F3);

[c*a*b*a^-3*b*c*a^-1*c*a*b, b^2*a^2*c^-1*b^-1*a^3*\

(c*a*b*a^-3*b*c*a^-1*c*a*b)^2*c*a*b*a^-3*b*c*a^-1]

276

C.5. Example 7.0.7 executed with GAP

C.5. Example 7.0.7 executed with GAP

To execute the Example 7.0.7 the program GAP is used.

Firstly, Alice and Bob choose a free group F with free generating set X = {a, b, c, d}:

LoadPackage("FGA");;

F:=FreeGroup("a", "b", "c", "d");;

AssignGeneratorVariables(F);;

They use the set

Ũ = {ba2, cd, d2c−2, a−1b, a4b−1, b3a−2, bc3, bc−1bab−1, c2ba, c2dab−1, a−1d3c−1, a2db2d−1}

as free generating set.

If this set is used as free generating set for a subgroup FU of F , then the operation

. FreeGeneratorsOfGroup(FU)

gives a Nielsen reduced generating set for FU , which is FŨ in Example 7.0.7:

FU:=Group(b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2, b*c^3,\

b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1, a^-1*d^3*c^-1,\

a^2*d*b^2*d^-1);;

gap> FU;

Group([b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2,\

b*c^3, b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1,\

a^-1*d^3*c^-1, a^2*d*b^2*d^-1])

gap> FreeGeneratorsOfGroup(FU);

[b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2, b*c^3,\

b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1, a^-1*d^3*c^-1,\

a^2*d*b^2*d^-1]

Secondly, they agree on the seed 93 and to encrypt the message S = ILIKEBOB Alice needs 8
automorphisms, which are describable with Nielsen transformations as follows:

• Automorphism fx1 :

(a, b, c, d)
(N1)3−→ (a, b, c−1, d)

(N2)1.4−→ (ad, b, c−1, d)

(N2)4.3−→ (ad, b, c−1, dc−1)

(N2)2.3−→ (ad, bc−1, c−1, dc−1)

(N1)3−→ (ad, bc−1, c, dc−1)

(N2)1.4−→ (ad2c−1, bc−1, c, dc−1)

(N2)3.1−→ (ad2c−1, bc−1, cad2c−1, dc−1)

277

Appendix C. Calculations with Maple 16 or GAP for examples

Hence, the automorphism is

fx1 : F → F

a 7→ ad2c−1,

b 7→ bc−1,

c 7→ cad2c−1,

d 7→ dc−1.

• Automorphism fx2 :

(a, b, c, d)
(N2)1.4−→ (ad, b, c, d)

(N1)2−→ (ad, b−1, c, d)

(N2)2.4−→ (ad, b−1d, c, d)

(N2)3.1−→ (ad, b−1d, cad, d)

(N1)2(N1)1−→ (d−1a−1, d−1b, cad, d)

(N2)1.3−→ (d−1a−1cad, d−1b, cad, d)

[(N2)4.3]2−→ (d−1a−1cad, d−1b, cad, d(cad)2)

(N1)3−→ (d−1a−1cad, d−1b, d−1a−1c−1, d(cad)2)

Hence, the automorphism is

fx2 : F → F

a 7→ d−1a−1cad,

b 7→ d−1b,

c 7→ d−1a−1c−1,

d 7→ d(cad)2.

• Automorphism fx3 :

278

C.5. Example 7.0.7 executed with GAP

(a, b, c, d)
(N1)2−→ (a, b−1, c, d)

(N2)4.2−→ (a, b−1, c, db−1)

(N1)4−→ (a, b−1, c, bd−1)

(N2)2.4−→ (a, d−1, c, bd−1)

(N1)2−→ (a, d, c, bd−1)

(N2)4.2−→ (a, d, c, b)

(N1)3−→ (a, d, c−1, b)

(N2)2.1−→ (a, da, c−1, b)

(N2)3.2−→ (a, da, c−1da, b)

[(N2)1.4]3−→ (ab3, da, c−1da, b)

(N1)2−→ (ab3, a−1d−1, c−1da, b)

(N2)4.2−→ (ab3, a−1d−1, c−1da, ba−1d−1)

Hence, the automorphism is

fx3 : F → F

a 7→ ab3,

b 7→ a−1d−1,

c 7→ c−1da,

d 7→ ba−1d−1.

• Automorphism fx4 :

(a, b, c, d)
[(N2)3.1]2−→ (a, b, ca2, d)

(N1)2−→ (a, b−1, ca2, d)

[(N2)2.1]3−→ (a, b−1a3, ca2, d)

(N2)2.4−→ (a, b−1a3d, ca2, d)

(N2)4.2−→ (a, b−1a3d, ca2, db−1a3d)

(N2)1.3−→ (aca2, b−1a3d, ca2, db−1a3d)

279

Appendix C. Calculations with Maple 16 or GAP for examples

Hence, the automorphism is

fx4 : F → F

a 7→ aca2,

b 7→ b−1a3d,

c 7→ ca2,

d 7→ db−1a3d.

• Automorphism fx5 :

(a, b, c, d)
(N2)1.2−→ (ab, b, c, d)

(N1)3(N1)1−→ (b−1a−1, b, c−1, d)

[(N2)4.3]2−→ (b−1a−1, b, c−1, dc−2)

(N2)1.2−→ (b−1a−1b, b, c−1, dc−2)

(N1)2(N1)3−→ (b−1a−1b, b−1, c, dc−2)

(N2)2.4−→ (b−1a−1b, b−1dc−2, c, dc−2)

(N2)3.1−→ (b−1a−1b, b−1dc−2, cb−1a−1b, dc−2)

Hence, the automorphism is

fx5 : F → F

a 7→ b−1a−1b,

b 7→ b−1dc−2,

c 7→ cb−1a−1b,

d 7→ dc−2.

• Automorphism fx6 :

(a, b, c, d)
(N1)1−→ (a−1, b, c, d)

(N2)2.3−→ (a−1, bc, c, d)

(N2)3.1−→ (a−1, bc, ca−1, d)

(N1)2−→ (a−1, c−1b−1, ca−1, d)

(N2)1.2−→ (a−1c−1b−1, c−1b−1, ca−1, d)

(N2)4.2−→ (a−1c−1b−1, c−1b−1, ca−1, dc−1b−1)

280

C.5. Example 7.0.7 executed with GAP

Hence, the automorphism is

fx6 : F → F

a 7→ a−1c−1b−1,

b 7→ c−1b−1,

c 7→ ca−1,

d 7→ dc−1b−1.

• Automorphism fx7 :

(a, b, c, d)
[(N2)2.1]3−→ (a, ba3, c, d)

(N1)3−→ (a, ba3, c−1, d)

[(N2)4.3]3−→ (a, ba3, c−1, dc−3)

(N1)1−→ (a−1, ba3, c−1, dc−3)

(N2)1.2−→ (a−1ba3, ba3, c−1, dc−3)

(N1)2−→ (a−1ba3, a−3b−1, c−1, dc−3)

(N2)2.4−→ (a−1ba3, a−3b−1dc−3, c−1, dc−3)

(N2)3.1−→ (a−1ba3, a−3b−1dc−3, c−1a−1ba3, dc−3)

Hence, the automorphism is

fx7 : F → F

a 7→ a−1ba3,

b 7→ a−3b−1dc−3,

c 7→ c−1a−1ba3,

d 7→ dc−3.

• Automorphism fx8 :

(a, b, c, d)
(N2)1.4−→ (ad, b, c, d)

(N1)2(N1)3−→ (ad, b−1, c−1, d)

(N2)2.1−→ (ad, b−1ad, c−1, d)

[(N2)3.4]2−→ (ad, b−1ad, c−1d2, d)

(N1)4(N1)1(N1)3−→ (d−1a−1, b−1ad, d−2c, d−1)

(N2)4.2−→ (d−1a−1, b−1ad, d−2c, d−1b−1ad)

281

Appendix C. Calculations with Maple 16 or GAP for examples

Hence, the automorphism is

fx8 : F → F

a 7→ d−1a−1,

b 7→ b−1ad,

c 7→ d−2c,

d 7→ d−1b−1ad.

In GAP they define the automorphisms:

#f_{x1}

a1:=a*(d^2)*(c^(-1));;

b1:=b*(c^(-1));;

c1:=c*a*(d^2)*(c^(-1));;

d1:=d*(c^(-1));;

FF1:=Group(b1*a1^2, c1*d1, d1^2*c1^-2, a1^-1*b1, a1^4*b1^-1,\

b1^3*a1^-2, b1*c1^3, b1*c1^-1*b1*a1*b1^-1, c1^2*b1*a1,\

c1^2*d1*a1*b1^-1,a1^-1*d1^3*c1^-1, a1^2*d1*b1^2*d1^-1);;

#f_{x2}

a2:=d^-1*a^-1*c*a*d;;

b2:=d^-1*b;;

c2:=d^-1*a^-1*c^-1;;

d2:=d*(c*a*d)^2;;

FF2:=Group(b2*a2^2, c2*d2, d2^2*c2^-2, a2^-1*b2, a2^4*b2^-1,\

b2^3*a2^-2, b2*c2^3, b2*c2^-1*b2*a2*b2^-1, c2^2*b2*a2,\

c2^2*d2*a2*b2^-1,a2^-1*d2^3*c2^-1, a2^2*d2*b2^2*d2^-1);;

#f_{x3}

a3:=a*(b^3);;

b3:=(a^(-1))*(d^(-1));;

c3:=(c^(-1))*d*a;;

d3:=b*(a^-1)*d^-1;;

FF3:=Group(b3*a3^2, c3*d3, d3^2*c3^-2, a3^-1*b3, a3^4*b3^-1,\

b3^3*a3^-2, b3*c3^3, b3*c3^-1*b3*a3*b3^-1, c3^2*b3*a3,\

c3^2*d3*a3*b3^-1,a3^-1*d3^3*c3^-1, a3^2*d3*b3^2*d3^-1);;

#f_{x4}

a4:=a*c*(a^2);;

b4:=(b^(-1))*(a^3)*d;;

c4:=c*(a^2);;

d4:=d*(b^(-1))*(a^3)*d;;

FF4:=Group(b4*a4^2, c4*d4, d4^2*c4^-2, a4^-1*b4, a4^4*b4^-1,\

b4^3*a4^-2, b4*c4^3, b4*c4^-1*b4*a4*b4^-1, c4^2*b4*a4,\

c4^2*d4*a4*b4^-1,a4^-1*d4^3*c4^-1, a4^2*d4*b4^2*d4^-1);;

#f_{x5}

a5:=b^-1*a^-1*b;;

b5:=b^-1*d*c^-2;;

282

C.5. Example 7.0.7 executed with GAP

c5:=c*b^-1*a^-1*b;;

d5:=d*c^-2;;

FF5:=Group(b5*a5^2, c5*d5, d5^2*c5^-2, a5^-1*b5, a5^4*b5^-1,\

b5^3*a5^-2, b5*c5^3, b5*c5^-1*b5*a5*b5^-1, c5^2*b5*a5,\

c5^2*d5*a5*b5^-1,a5^-1*d5^3*c5^-1, a5^2*d5*b5^2*d5^-1);;

#f_{x6}

a6:=(a^(-1))*(c^(-1))*(b^(-1));;

b6:=(c^(-1))*(b^(-1));;

c6:=c*(a^(-1));;

d6:=d*(c^(-1))*(b^(-1));;

FF6:=Group(b6*a6^2, c6*d6, d6^2*c6^-2, a6^-1*b6, a6^4*b6^-1,\

b6^3*a6^-2, b6*c6^3, b6*c6^-1*b6*a6*b6^-1, c6^2*b6*a6,\

c6^2*d6*a6*b6^-1,a6^-1*d6^3*c6^-1, a6^2*d6*b6^2*d6^-1);;

#f_{x7}

a7:=a^-1*b*a^3;;

b7:=a^-3*b^-1*d*c^-3;;

c7:=c^-1*a^-1*b*a^3;;

d7:=d*c^-3;;

FF7:=Group(b7*a7^2, c7*d7, d7^2*c7^-2, a7^-1*b7, a7^4*b7^-1,\

b7^3*a7^-2, b7*c7^3, b7*c7^-1*b7*a7*b7^-1, c7^2*b7*a7,\

c7^2*d7*a7*b7^-1,a7^-1*d7^3*c7^-1, a7^2*d7*b7^2*d7^-1);;

#f_{x8}

a8:=d^-1*a^-1;;

b8:=b^-1*a*d;;

c8:=d^-2*c;;

d8:=d^-1*b^-1*a*d;;

FF8:=Group(b8*a8^2, c8*d8, d8^2*c8^-2, a8^-1*b8, a8^4*b8^-1,\

b8^3*a8^-2, b8*c8^3, b8*c8^-1*b8*a8*b8^-1, c8^2*b8*a8,\

c8^2*d8*a8*b8^-1,a8^-1*d8^3*c8^-1, a8^2*d8*b8^2*d8^-1);;

Because of the one-to-one correspondence between the plaintext alphabet and the set U Alice
gets for his message ILIKEBOB the ciphertext:

gap> FF1.3; FF2.8; FF3.3; FF4.9; FF5.2; FF6.11; FF7.4; FF8.11;

d*c^-1*d^-1*a^-1*d^-2*a^-1*c^-1

d^-1*b*c*a*b*d^-1*a^-1*c*a*d*b^-1*d

(b*a^-1*d^-1)^2*(a^-1*d^-1*c)^2

(c*a^2)^2*b^-1*a^3*d*a*c*a^2

c*b^-1*a^-1*b*d*c^-2

b*c*a*(d*c^-1*b^-1)^3*a*c^-1

a^-1*(a^-2*b^-1)^2*d*c^-3

(a*b^-1)^3*a*d*c^-1*d^2

Bob gets the entries for the tables, which are used for encryption, in GAP with:

gap> FF1.1;FF1.2;FF1.3;FF1.4;FF1.5;FF1.6;

b*(c^-1*a*d^2)^2*c^-1

c*a*d*(d*c^-1)^2

283

Appendix C. Calculations with Maple 16 or GAP for examples

d*c^-1*d^-1*a^-1*d^-2*a^-1*c^-1

c*d^-2*a^-1*b*c^-1

(a*d^2*c^-1)^3*a*d^2*b^-1

(b*c^-1)^2*b*d^-2*a^-1*c*d^-2*a^-1

gap> FF1.7;FF1.8;FF1.9;FF1.10;FF1.11;FF1.12;

b*(a*d^2)^3*c^-1

b*d^-2*a^-1*c^-1*b*c^-1*a*d^2*b^-1

c*(a*d^2)^2*c^-1*b*c^-1*a*d^2*c^-1

c*(a*d^2)^2*c^-1*d*c^-1*a*d^2*b^-1

c*d^-2*a^-1*(d*c^-1)^2*d^-1*a^-1*c^-1

(a*d^2*c^-1)^2*d*(c^-1*b)^2*d^-1

gap> FF2.1;FF2.2;FF2.3;FF2.4;FF2.5;FF2.6;

d^-1*b*d^-1*a^-1*c^2*a*d

d^-1*a^-1*c^-1*(d*c*a)^2*d

((d*c*a)^2*d)^2*c*a*d*c*a*d

d^-1*a^-1*c^-1*a*b

d^-1*a^-1*c^4*a*d*b^-1*d

(d^-1*b)^3*d^-1*a^-1*c^-2*a*d

gap> FF2.7;FF2.8;FF2.9;FF2.10;FF2.11;FF2.12;

d^-1*b*(d^-1*a^-1*c^-1)^3

d^-1*b*c*a*b*d^-1*a^-1*c*a*d*b^-1*d

(d^-1*a^-1*c^-1)^2*d^-1*b*d^-1*a^-1*c*a*d

(d^-1*a^-1*c^-1)^2*d*c*a*d*c^2*a*d*b^-1*d

d^-1*a^-1*c^-1*(a*d^2*c*a*d*c)^3*a*d*c*a*d

d^-1*a^-1*c^2*a*d*(d*c*a)^2*b*d^-1*b*(d^-1*a^-1*c^-1)^2*d^-1

gap> FF3.1;FF3.2;FF3.3;FF3.4;FF3.5;FF3.6;

a^-1*d^-1*(a*b^3)^2

c^-1*d*a*b*a^-1*d^-1

(b*a^-1*d^-1)^2*(a^-1*d^-1*c)^2

b^-3*a^-2*d^-1

(a*b^3)^4*d*a

(a^-1*d^-1)^3*(b^-3*a^-1)^2

gap> FF3.7;FF3.8;FF3.9;FF3.10;FF3.11;FF3.12;

a^-1*d^-1*(c^-1*d*a)^3

(a^-1*d^-1)^2*c*a^-1*d^-1*a*b^3*d*a

c^-1*d*a*c^-1*a*b^3

(c^-1*d*a)^2*b*a^-1*d^-1*a*b^3*d*a

b^-3*a^-1*(b*a^-1*d^-1)^3*a^-1*d^-1*c

(a*b^3)^2*b*(a^-1*d^-1)^2*b^-1

gap> FF4.1;FF4.2;FF4.3;FF4.4;FF4.5;FF4.6;

b^-1*a^3*d*(a*c*a^2)^2

c*a^2*d*b^-1*a^3*d

(d*b^-1*a^3*d)^2*a^-2*c^-1*a^-2*c^-1

a^-2*c^-1*a^-1*b^-1*a^3*d

(a*c*a^2)^4*d^-1*a^-3*b

(b^-1*a^3*d)^3*a^-2*c^-1*a^-3*c^-1*a^-1

gap> FF4.7;FF4.8;FF4.9;FF4.10;FF4.11;FF4.12;

284

C.5. Example 7.0.7 executed with GAP

b^-1*a^3*d*(c*a^2)^3

b^-1*a^3*d*a^-2*c^-1*b^-1*a^3*d*a*c*a^2*d^-1*a^-3*b

(c*a^2)^2*b^-1*a^3*d*a*c*a^2

(c*a^2)^2*d*b^-1*a^3*d*a*c*a^2*d^-1*a^-3*b

a^-2*c^-1*a^-1*(d*b^-1*a^3*d)^3*a^-2*c^-1

a*c*a^3*c*(a^2*d*b^-1*a)^2*a^2

gap> FF5.1;FF5.2;FF5.3;FF5.4;FF5.5;FF5.6;

b^-1*d*c^-2*b^-1*a^-2*b

c*b^-1*a^-1*b*d*c^-2

d*c^-2*d*c^-1*(c^-1*b^-1*a*b)^2*c^-1

b^-1*a*d*c^-2

b^-1*a^-4*b*c^2*d^-1*b

(b^-1*d*c^-2)^3*b^-1*a^2*b

gap> FF5.7;FF5.8;FF5.9;FF5.10;FF5.11;FF5.12;

b^-1*d*c^-1*(b^-1*a^-1*b*c)^2*b^-1*a^-1*b

b^-1*d*c^-2*b^-1*a*b*c^-1*b^-1*d*c^-2*b^-1*a^-1*b*c^2*d^-1*b

c*b^-1*a^-1*b*c*b^-1*a^-1*d*c^-2*b^-1*a^-1*b

(c*b^-1*a^-1*b)^2*d*c^-2*b^-1*a^-1*b*c^2*d^-1*b

b^-1*a*b*(d*c^-2)^3*b^-1*a*b*c^-1

b^-1*a^-2*b*(d*c^-2*b^-1)^2

gap> FF6.1;FF6.2;FF6.3;FF6.4;FF6.5;FF6.6;

(c^-1*b^-1*a^-1)^2*c^-1*b^-1

c*a^-1*d*c^-1*b^-1

(d*c^-1*b^-1)^2*a*c^-1*a*c^-1

b*c*a*c^-1*b^-1

(a^-1*c^-1*b^-1)^3*a^-1

(c^-1*b^-1)^2*a*b*c*a

gap> FF6.7;FF6.8;FF6.9;FF6.10;FF6.11;FF6.12;

c^-1*b^-1*(c*a^-1)^3

c^-1*b^-1*a*c^-2*b^-1*a^-1

c*a^-1*c*(a^-1*c^-1*b^-1)^2

(c*a^-1)^2*d*c^-1*b^-1*a^-1

b*c*a*(d*c^-1*b^-1)^3*a*c^-1

(a^-1*c^-1*b^-1)^2*d*(c^-1*b^-1)^2*d^-1

gap> FF7.1;FF7.2;FF7.3;FF7.4;FF7.5;FF7.6;

a^-3*b^-1*d*c^-3*a^-1*(b*a^2)^2*a

c^-1*a^-1*b*a^3*d*c^-3

d*c^-3*d*c^-3*(a^-3*b^-1*a*c)^2

a^-1*(a^-2*b^-1)^2*d*c^-3

a^-1*(b*a^2)^4*a*c^3*d^-1*b*a^3

(a^-3*b^-1*d*c^-3)^3*a^-1*(a^-2*b^-1)^2*a

gap> FF7.7;FF7.8;FF7.9;FF7.10;FF7.11;FF7.12;

a^-3*b^-1*d*c^-3*(c^-1*a^-1*b*a^3)^3

a^-3*b^-1*d*c^-3*a^-3*b^-1*a*c*a^-3*b^-1*d*c^-3*a^-1*b*a^3*c^3*d^-1*b*a^3

c^-1*a^-1*b*a^3*c^-1*a^-1*d*c^-3*a^-1*b*a^3

(c^-1*a^-1*b*a^3)^2*d*c^-3*a^-1*b*a^3*c^3*d^-1*b*a^3

a^-3*b^-1*a*(d*c^-3)^3*a^-3*b^-1*a*c

285

Appendix C. Calculations with Maple 16 or GAP for examples

a^-1*(b*a^2)^2*a*(d*c^-3*a^-3*b^-1)^2

gap> FF8.1;FF8.2;FF8.3;FF8.4;FF8.5;FF8.6;

b^-1*d^-1*a^-1

d^-2*c*d^-1*b^-1*a*d

d^-1*(b^-1*a)^2*(d*c^-1*d)^2*d

a*d*b^-1*a*d

(d^-1*a^-1)^5*b

(b^-1*a*d)^3*a*d*a*d

gap> FF8.7;FF8.8;FF8.9;FF8.10;FF8.11;FF8.12;

b^-1*a*(d^-1*c*d^-1)^2*d^-1*c

b^-1*a*d*c^-1*d^2*b^-1*d^-1*a^-1*b

(d^-2*c)^2*b^-1

(d^-2*c)^2*d^-1*b^-1*d^-1*a^-1*b

(a*b^-1)^3*a*d*c^-1*d^2

(d^-1*a^-1)^2*d^-1*(b^-1*a*d)^2*d

286

C.6. Example 7.2.4 calculations in Maple 16 and GAP

C.6. Example 7.2.4 calculations in Maple 16 and GAP

In Example 7.2.4, the Example 7.0.7 is extended with a faithful representation, thus the cipher-
text is a sequence of matrices in SL(2,Q).

We first prove with GAP, that the set M = {X1X2, X3X
2
1 , X2X3X2, X

−1
1 X2} is a free generating

set for a subgroup Fϕ of rank 4 of Fϕ1 = 〈X1, X2, X3 | 〉 :

LoadPackage("FGA");;

Fphi1:=FreeGroup("X1", "X2", "X3");;

AssignGeneratorVariables(Fphi1);;

Fphi:=Group(X1*X2, X3*X1^2, X2*X3*X2, X1^-1*X2);;

gap> Rank(Fphi);

4

We show now the calculations, which are needed for this example and were executed with the
program Maple 16:

> restart; with(LinearAlgebra):

For the faithful representation ϕ they need matrices in SL(2,Q) and generate them with
Theorem 4.2.18. For this they choose rational numbers ri =: r[i], 1 ≤ i ≤ 3, with the
properties (4.1). Hence, these rational numbers were chosen as follows and the inequalities
(4.1) were proved:

> r[1] := 7/2;
> r[2] := 15/2;
> r[3] := 23/2;

r1 :=
7

2

r2 :=
15

2

r3 :=
23

2
> r[1]-2;
> r[2]-r[1]-3;
> r[3]-r[2]-3;

3

2
1

1

All results are greater than 0, hence they can generate with the numbers r1, r2 and r3 matrices
which generate a free subgroup of SL(2,Q) of rank 3. The matrices for Alice and Bob are:

> X[1] := Matrix([[-r[1], r[1]^2-1], [1, -r[1]]]);
> X[2] := Matrix([[-r[2], r[2]^2-1], [1, -r[2]]]);
> X[3] := Matrix([[-r[3], r[3]^2-1], [1, -r[3]]]);

X1 :=


−7

2

45

4

1
−7

2



287

Appendix C. Calculations with Maple 16 or GAP for examples

X2 :=


−15

2

221

4

1
−15

2



X3 :=


−23

2

525

4

1
−23

2


Because of the free generating set {X1X2, X3X

2
1 , X2X3X2, X

−1
1 X2} and the chosen faithful

representation ϕ, they define in Maple:
> a:=X[1].X[2];
> b:=X[3].X[1].X[1];
> c:=X[2].X[3].X[2];
> d:=MatrixInverse(X[1]).X[2];

a :=


75

2

−1111

4

−11
163

2


b :=

[
−1189 3990

104 −349

]
c :=

[
−2681 19966

360 −2681

]
d :=

[
15 −109
4 −29

]
The ciphertext C ′ = C1C2C3C4C5C6C7C8, as sequence of matrices in SL(2,Q), is now

> C[1]:=d.MatrixInverse(c).MatrixInverse(d).MatrixInverse(a).MatrixInve
> rse(d).MatrixInverse(d).MatrixInverse(a).MatrixInverse(c);
> C[2]:=MatrixInverse(d).b.c.a.b.MatrixInverse(d).MatrixInverse(a).c.a.d
> .MatrixInverse(b).d;
> C[3]:=b.MatrixInverse(a).MatrixInverse(d).b.MatrixInverse(a).MatrixInv
> erse(d).MatrixInverse(a).MatrixInverse(d).c.MatrixInverse(a).MatrixInv
> erse(d).c;
> C[4]:=c.a.a.c.a.a.MatrixInverse(b).a.a.a.d.a.c.a.a;
> C[5]:=c.MatrixInverse(b).MatrixInverse(a).b.d.MatrixInverse(c).MatrixI
> nverse(c);
> C[6]:=b.c.a.d.MatrixInverse(c).MatrixInverse(b).d.MatrixInverse(c).Mat
> rixInverse(b).d.MatrixInverse(c).MatrixInverse(b).a.MatrixInverse(c);
> C[7]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInverse
> (b).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b).d.MatrixInverse
> (c).MatrixInverse(c).MatrixInverse(c);
> C[8]:=
> a.MatrixInverse(b).a.MatrixInverse(b).a.MatrixInverse(b).a.d.MatrixInv
> erse(c).d.d;

C1 :=


−429743093559909

2

−6400784021410159

4

−62588240305379
−932216979117085

2



C2 :=


−3240070331754423030683243991

2

47007695458416827592369656315

4

−223326322203710575272321977
3240070327830150751386194361

2



288

C.6. Example 7.2.4 calculations in Maple 16 and GAP

C3 :=


−6899014060703475554169965

2

102756972145191520348785607

4

301722468685102729969483
−4493988131847945704997109

2


C4 :=

[
−397074726172421275253684843812134445

2
,

5883318761059670223751985896578473377

4

]
[
26659253089426526822952736194350493 ,

−395000924306510751052288425218790757

2

]

C5 :=


46475888407425825

2

692232489736400389

4

−3120351373297111
−46475896943687759

2



C6 :=


−37154085868492177463035768197599

2

−553374013794643763898030444104547

4

1624906569753714749910956723073
24201404758781402065719318991873

2



C7 :=


−3418963163764785449276501363

2

−50923553357916815212095363641

4

−230751369629481141540301125
−3436913216344813651054341083

2



C8 :=


2739747352948144349387

2

−39628644296581967709615

4

−402070084312200114547
5815679440792026855107

2


Decryption:
If Bob gets the above ciphertext as sequence of matrices he has to calculate a table like Table 7.7
(page 172). Therefore, he first defines in Maple the common matrices X1, X2 and X3:

> restart;
> with(LinearAlgebra):
> r[1] := 7/2;
> r[2] := 15/2;
> r[3] := 23/2;

r1 :=
7

2

r2 :=
15

2

r3 :=
23

2
> X[1] := Matrix([[-r[1], r[1]^2-1], [1, -r[1]]]);
> X[2] := Matrix([[-r[2], r[2]^2-1], [1, -r[2]]]);
> X[3] := Matrix([[-r[3], r[3]^2-1], [1, -r[3]]]);

X1 :=


−7

2

45

4

1
−7

2



289

Appendix C. Calculations with Maple 16 or GAP for examples

X2 :=


−15

2

221

4

1
−15

2



X3 :=


−23

2

525

4

1
−23

2


Because of the free generating set {X1X2, X3X

2
1 , X2X3X2, X

−1
1 X2} and the chosen faithful

representation ϕ, he defines in Maple:
> a:=X[1].X[2];
> b:=X[3].X[1].X[1];
> c:=X[2].X[3].X[2];
> d:=MatrixInverse(X[1]).X[2];

a :=


75

2

−1111

4

−11
163

2


b :=

[
−1189 3990

104 −349

]
c :=

[
−2681 19966

360 −2681

]
d :=

[
15 −109
4 −29

]
With these definitions he is able to calculate the required Table C.1 (page 290) with which he
is able to decrypt the ciphertext C ′.

Table C.1.: Plaintext alphabet A = {A,E, I,O,U,T,M, L,K,Y,B, S} corresponding to ciphertext
alphabet Uϕ(fxi) depending on the automorphisms fxi and the faithful representa-

tion ϕ

Uϕ(fx1) Uϕ(fx2) · · · Uϕ(fx8)

a1 = A ϕ(fx1(u1)) = N11 ϕ(fx2(u1)) = N21 · · · ϕ(fx8(u1)) = N81

a2 = E ϕ(fx1(u2)) = N12 ϕ(fx2(u2)) = N22 · · · ϕ(fx8(u2)) = N82

...
...

...
...

...

a12 = S ϕ(fx1(u12)) = N112 ϕ(fx2(u12)) = N212 · · · ϕ(fx8(u12)) = N812

290

C.6. Example 7.2.4 calculations in Maple 16 and GAP

For Table C.1 (page 290) he first calculates the entries in the column Uϕ(fx1):

> N[11]:=b.MatrixInverse(c).a.d.d.MatrixInverse(c).a.d.d.
> MatrixInverse(c);
> N[12]:=c.a.d.d.MatrixInverse(c).d.MatrixInverse(c);
> N[13]:=d.MatrixInverse(c).MatrixInverse(d).MatrixInverse(a).MatrixInve
> rse(d).MatrixInverse(d).MatrixInverse(a).MatrixInverse(c);
> N[14]:=c.MatrixInverse(d).MatrixInverse(d).MatrixInverse(a).b.MatrixIn
> verse(c);
> N[15]:=a.d.d.MatrixInverse(c).a.d.d.MatrixInverse(c).a.d.d.MatrixInver
> se(c).a.d.d.MatrixInverse(b);
> N[16]:=b.MatrixInverse(c).b.MatrixInverse(c).b.MatrixInverse(d).Matrix
> Inverse(d).MatrixInverse(a).c.MatrixInverse(d).MatrixInverse(d).Matrix
> Inverse(a);
> N[17]:=b.a.d.d.a.d.d.a.d.d.MatrixInverse(c);
> N[18]:=b.MatrixInverse(d).MatrixInverse(d).MatrixInverse(a).MatrixInve
> rse(c).b.MatrixInverse(c).a.d.d.MatrixInverse(b);
> N[19]:=c.a.d.d.a.d.d.MatrixInverse(c).b.MatrixInverse(c).a.d.d.MatrixI
> nverse(c);
> N[110]:=c.a.d.d.a.d.d.MatrixInverse(c).d.MatrixInverse(c).a.d.d.Matrix
> Inverse(b);
> N[111]:=c.MatrixInverse(d).MatrixInverse(d).MatrixInverse(a).d.MatrixI
> nverse(c).d.MatrixInverse(c).MatrixInverse(d).MatrixInverse(a).MatrixI
> nverse(c);
> N[112]:=a.d.d.MatrixInverse(c).a.d.d.MatrixInverse(c).d.MatrixInverse(
> c).b.MatrixInverse(c).b.MatrixInverse(d);

N11 :=


1726044910473446627

2

25708356233079285239

4

−75487096670467781
−1124332953580545765

2



N12 :=


−31245270331619

2

−465378427039713

4

2097780379171
31245104387701

2



N13 :=


−429743093559909

2

−6400784021410159

4

−62588240305379
−932216979117085

2



N14 :=


3181531972845

2

47387139217729

4

−213606308371
−3181546487339

2



N15 :=


2131284812621970980298075

2

48732748634630267751942089

4

−312796606586025044761211
−7152229637375004077469917

2



N16 :=


−5409749175019023063569477

2

−36860106580604442519169935

4

236590749441386152662525
1612045209168853659502723

2


N17 :=

[
795521381235160141 5924395980590698676
−69583114032935312 −518198417814550971

]

291

Appendix C. Calculations with Maple 16 or GAP for examples

N18 :=

[
−90099029000979888807221 −1030076624795949617586074

7880806953101379022888 90099029000976615232691

]
N19 :=

[
51707261346868077665909739 385073611490674350228100114
−6943161455342564033343592 −51707017295619157216197933

]
N110 :=

[
1362002520154399003411251 15571388221164541516505605
−182887338329092260567748 −2090899028244770708376289

]

N111 :=


143452020684119915871

2

2136637948565376806965

4

−9631289840302078855
−143452697761124185201

2



N112 :=


10122094452395075481217127

2

−76240613192995084024349669

4

−1485562500845350307519449
11189403194530487717235255

2



Second, he calculates the entries in the column Uϕ(fx2):

> N[21]:=MatrixInverse(d).b.MatrixInverse(d).MatrixInverse(a).c.c.a.d;
> N[22]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).d.c.a.d.c.a.
> d;
> N[23]:=d.c.a.d.c.a.d.d.c.a.d.c.a.d.c.a.d.c.a.d;
> N[24]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).a.b;
> N[25]:=MatrixInverse(d).MatrixInverse(a).c.c.c.c.a.d.MatrixInverse(b).
> d;
> N[26]:=MatrixInverse(d).b.MatrixInverse(d).b.MatrixInverse(d).b.Matrix
> Inverse(d).MatrixInverse(a).MatrixInverse(c).MatrixInverse(c).a.d;
> N[27]:=MatrixInverse(d).b.MatrixInverse(d).MatrixInverse(a).MatrixInve
> rse(c).MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).MatrixInvers
> e(d).MatrixInverse(a).MatrixInverse(c);
> N[28]:=MatrixInverse(d).b.c.a.b.MatrixInverse(d).MatrixInverse(a).c.a.
> d.MatrixInverse(b).d;
> N[29]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).MatrixInvers
> e(d).MatrixInverse(a).MatrixInverse(c).MatrixInverse(d).b.MatrixInvers
> e(d).MatrixInverse(a).c.a.d;
> N[210]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).MatrixInver
> se(d).MatrixInverse(a).MatrixInverse(c).d.c.a.d.c.c.a.d.MatrixInverse(
> b).d;
> N[211]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).a.d.d.c.a.d
> .c.a.d.d.c.a.d.c.a.d.d.c.a.d.c.a.d.c.a.d;
> N[212]:=MatrixInverse(d).MatrixInverse(a).c.c.a.d.d.c.a.d.c.a.b.Matrix
> Inverse(d).b.MatrixInverse(d).MatrixInverse(a).MatrixInverse(c).Matrix
> Inverse(d).MatrixInverse(a).MatrixInverse(c).MatrixInverse(d);

N21 :=

[
389795903484122413 −2819360910238709533
53734441988781860 −388656689109694783

]

N22 :=


34818098324541438944473

2

−503672740055148162378181

4

2406919959187600869799
−34818098324541696255255

2



292

C.6. Example 7.2.4 calculations in Maple 16 and GAP

N23 :=

[−129947831392256654391379918549839222145036327 ,

939901709902249703742555386199933409489204602]

[−34613503284060659775514069446954072249786856 ,

250356551347068858962670784732660569304552793]

N24 :=

[
396104100073 −1329232007756
54764097424 −183775404391

]
N25 :=

[
11174267271911668375467101 −81059436849408272206936373
1544915977518850788019012 −11207000519140712027900975

]
N26 :=

[
−236310193323463285933886391 1709214803716582701013996097
−32576012885043522519239540 235619981881035997967538469

]
N27 :=

[
9531492161404806907617847 70983133459497417507196019
1313942522318989432917316 9785221016866591539405915

]

N28 :=


−3240070331754423030683243991

2

47007695458416827592369656315

4

−223326322203710575272321977
3240070327830150751386194361

2



N29 :=


−12382178550188482311769807597

2

179118507280143386620295182193

4

−855960380514708613164396211
12382178550187706387285804827

2


N210 := [−21110929144428898215300010362223029327 ,

153141139922135745238345648793303290342]

[−2918730152410756047224184025644787864 ,

21172808624733035641035893652532742081]

N211 :=

[
−91706563164184834841532011018350101065765948680031435964924973

2
,

1326611681068995502652878382969282252045951186401367136911128377

4

]
[
− 6339529379547013672054019614913843728524362886626126071455963 ,

91706563164190581596008000085122503931656189978277573261459739

2

]
N212 := [82335301850873934413508015209229035820945924887161 ,

−309107513178964843246713866147639639578017068212624]

[11383397250841957747919103394908684555473783833984 ,

−42736147638215940177555361818088748311302543810615]

293

Appendix C. Calculations with Maple 16 or GAP for examples

Third, he calculates the entries in the column Uϕ(fx3):

> N[31]:=MatrixInverse(a).MatrixInverse(d).a.b.b.b.a.b.b.b;
> N[32]:=MatrixInverse(c).d.a.b.MatrixInverse(a).MatrixInverse(d);
> N[33]:=b.MatrixInverse(a).MatrixInverse(d).b.MatrixInverse(a).MatrixIn
> verse(d).MatrixInverse(a).MatrixInverse(d).c.MatrixInverse(a).MatrixIn
> verse(d).c;
> N[34]:=MatrixInverse(b).MatrixInverse(b).MatrixInverse(b).MatrixInvers
> e(a).MatrixInverse(a).MatrixInverse(d);
> N[35]:=a.b.b.b.a.b.b.b.a.b.b.b.a.b.b.b.d.a;
> N[36]:=MatrixInverse(a).MatrixInverse(d).MatrixInverse(a).MatrixInvers
> e(d).MatrixInverse(a).MatrixInverse(d).MatrixInverse(b).MatrixInverse(
> b).MatrixInverse(b).MatrixInverse(a).MatrixInverse(b).MatrixInverse(b)
> .MatrixInverse(b).MatrixInverse(a);
> N[37]:=MatrixInverse(a).MatrixInverse(d).MatrixInverse(c).d.a.MatrixIn
> verse(c).d.a.MatrixInverse(c).d.a;
> N[38]:=MatrixInverse(a).MatrixInverse(d).MatrixInverse(a).MatrixInvers
> e(d).c.MatrixInverse(a).MatrixInverse(d).a.b.b.b.d.a;
> N[39]:=MatrixInverse(c).d.a.MatrixInverse(c).a.b.b.b;
> N[310]:=MatrixInverse(c).d.a.MatrixInverse(c).d.a.b.MatrixInverse(a).M
> atrixInverse(d).a.b.b.b.d.a;
> N[311]:=MatrixInverse(b).MatrixInverse(b).MatrixInverse(b).MatrixInvers
> e(a).b.MatrixInverse(a).MatrixInverse(d).b.MatrixInverse(a).MatrixInve
> rse(d).b.MatrixInverse(a).MatrixInverse(d).MatrixInverse(a).MatrixInve
> rse(d).c;
> N[312]:=a.b.b.b.a.b.b.b.b.MatrixInverse(a).MatrixInverse(d).MatrixInve
> rse(a).MatrixInverse(d).MatrixInverse(b);

N31 :=


−875508157155713045018858865

2

5875995723000494713919774509

4

−59089551091571537879850991
396581055984771055113986671

2


N32 :=

[
−52462153571035 197040748651696
−7044527054176 26458290218157

]

N33 :=


−6899014060703475554169965

2

102756972145191520348785607

4

301722468685102729969483
−4493988131847945704997109

2



N34 :=


1736041194186217

2

−13040669107719885

4

258665645503951
−1943025951139943

2


N35 :=

[
2676005265677868729323807778096848696881970346991

2
,

−39649443737453961182911866890506362179673136614829

4

]
[
− 392531276610950108107075857748690863246534068369 ,

5816000053062062920287043877980031608507919293455

2

]

294

C.6. Example 7.2.4 calculations in Maple 16 and GAP

N36 :=


143469085237161269143044743153795

2

978072450356992870819485910375329

4

9682977735144453927523988429869
66011808359337462336418813538459

2



N37 :=


262766997214803713261

2

−3893321884154026856671

4

17734600975882186301
−262767055292328578747

2



N38 :=


60046959286768006113664103

2

−889695010836535207325903853

4

4052673569889420773596575
−60047061475005452764043257

2



N39 :=


81250457122162677557

2

−545314552057052265903

4

5455085279589136317
−36611946455877241171

2


N310 :=

[
−264642814125471122620337910440849 1960560486141522671648480208507617
−35535778402189873460069830975764 263260664038220168770908609864163

]

N311 :=

[
−33799498112481785080551313536439331923

2
,

503424700328119525649401721213732913751

4

]
[
− 5036037754318909623407973468834742789 ,

75008977614754793145630085595903685045

2

]
N312 := [−12489517190626465361408670713063501 ,

−142791693237797324141014980979372933]

[3664063139165114201184457628059780 ,

41890953171852949920484820282758239]

295

Appendix C. Calculations with Maple 16 or GAP for examples

Fourth, he calculates the entries in the column Uϕ(fx4):

> N[41]:=MatrixInverse(b).a.a.a.d.a.c.a.a.a.c.a.a;
> N[42]:=c.a.a.d.MatrixInverse(b).a.a.a.d;
> N[43]:=d.MatrixInverse(b).a.a.a.d.d.MatrixInverse(b).a.a.a.d.MatrixInv
> erse(a).MatrixInverse(a).MatrixInverse(c).MatrixInverse(a).MatrixInver
> se(a).MatrixInverse(c);
> N[44]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(c).MatrixInvers
> e(a).MatrixInverse(b).a.a.a.d;
> N[45]:=a.c.a.a.a.c.a.a.a.c.a.a.a.c.a.a.MatrixInverse(d).MatrixInverse(
> a).MatrixInverse(a).MatrixInverse(a).b;
> N[46]:=MatrixInverse(b).a.a.a.d.MatrixInverse(b).a.a.a.d.MatrixInverse
> (b).a.a.a.d.MatrixInverse(a).MatrixInverse(a).MatrixInverse(c).MatrixI
> nverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInverse(c).MatrixInv
> erse(a);
> N[47]:=MatrixInverse(b).a.a.a.d.c.a.a.c.a.a.c.a.a;
> N[48]:=MatrixInverse(b).a.a.a.d.MatrixInverse(a).MatrixInverse(a).Matr
> ixInverse(c).MatrixInverse(b).a.a.a.d.a.c.a.a.MatrixInverse(d).MatrixI
> nverse(a).MatrixInverse(a).MatrixInverse(a).b;
> N[49]:=c.a.a.c.a.a.MatrixInverse(b).a.a.a.d.a.c.a.a;
> N[410]:=c.a.a.c.a.a.d.MatrixInverse(b).a.a.a.d.a.c.a.a.MatrixInverse(d
>).MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).b;
> N[411]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(c).MatrixInver
> se(a).d.MatrixInverse(b).a.a.a.d.d.MatrixInverse(b).a.a.a.d.d.MatrixIn
> verse(b).a.a.a.d.MatrixInverse(a).MatrixInverse(a).MatrixInverse(c);
> N[412]:=a.c.a.a.a.c.a.a.d.MatrixInverse(b).a.a.a.d.MatrixInverse(b).a.
> a.a;

N41 :=

[
−513488210929547673539574533663 3804088532737489619819457791461
−153017069607382517165666970852 1133600474980335755589237657517

]

N42 :=


8222742539238989319

2

−118948807013625144725

4

−552067809895253689
7986119845574387591

2


N43 :=

[
−1563284215014946800339122756440950793

2
,

−23284247669073816353945187259984437557

4

]
[
− 207549619755460346794126167987042697 ,

−3091335985863599924019109669659549081

2

]
N44 :=

[
79686112408670975985 −576362932521190220726
10756289961320657336 −77799338401159316671

]
N45 := [−703010811569942788096360622140741457181943574303 ,

2359133950371788647643796063817871044709921741609]

[206250160480703419278859534710705813075218221644 ,

−692125565996715873756796020149270204171356936499]

296

C.6. Example 7.2.4 calculations in Maple 16 and GAP

N46 := [−460361491896333103259524859337563623822160735323 ,

−1569158081037566807843491641983672840871715455177]

[−137185557429914796504140271654003591735605415116 ,

−467601721325702969333399926778755436345402421271]

N47 := [2768358995717297587008240401005707 ,

−20508908453895828977046357109799047]

[824957948652919494810532026604780 ,

−6111558173419851530072842755940537]

N48 :=

[
−698712892014741754166505489902359377160204367

2
,

4689422347384309201854953920835064020229849267

4

]
[
− 104106576312094129260890983899094761812642801 ,

698712892014741754166505489902361181913204689

2

]
N49 :=

[
−397074726172421275253684843812134445

2
,

5883318761059670223751985896578473377

4

]
[
26659253089426526822952736194350493 ,

−395000924306510751052288425218790757

2

]
N410 :=

[
−1854802475109324474047850088679642277698067443

2
,

12448535408701006001695125586831847496712873647

4

]
[
124529831176821449990103535085350844783642259 ,

−835783881921361278554480278343662618989118139

2

]
N411 :=

[
24931382127208596145240182958788526043353382697269

2
,

371339050574804306226384411584741296047183920489255

4

]
[
1682659419507347427142502984919596138477205063419 ,

25062274850727205651619554854824329882242333545821

2

]

297

Appendix C. Calculations with Maple 16 or GAP for examples

N412 := [1401445586364089527515609909896677321561 ,

−10382367054853350133578386455386847742168]

[−411157797768533245209433326356258166368 ,

3045991378782695229592798663646039438825]

Fifth, he calculates the entries in the column Uϕ(fx5):

> N[51]:=MatrixInverse(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInv
> erse(b).MatrixInverse(a).MatrixInverse(a).b;
> N[52]:=c.MatrixInverse(b).MatrixInverse(a).b.d.MatrixInverse(c).Matrix
> Inverse(c);
> N[53]:=d.MatrixInverse(c).MatrixInverse(c).d.MatrixInverse(c).MatrixIn
> verse(c).MatrixInverse(b).a.b.MatrixInverse(c).MatrixInverse(b).a.b.Ma
> trixInverse(c);
> N[54]:=MatrixInverse(b).a.d.MatrixInverse(c).MatrixInverse(c);
> N[55]:=MatrixInverse(b).MatrixInverse(a).MatrixInverse(a).MatrixInvers
> e(a).MatrixInverse(a).b.c.c.MatrixInverse(d).b;
> N[56]:=MatrixInverse(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInve
> rse(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(b).d.MatrixIn
> verse(c).MatrixInverse(c).MatrixInverse(b).a.a.b;
> N[57]:=MatrixInverse(b).d.MatrixInverse(c).MatrixInverse(b).MatrixInve
> rse(a).b.c.MatrixInverse(b).MatrixInverse(a).b.c.MatrixInverse(b).Matr
> ixInverse(a).b;
> N[58]:=MatrixInverse(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInve
> rse(b).a.b.MatrixInverse(c).MatrixInverse(b).d.MatrixInverse(c).Matrix
> Inverse(c).MatrixInverse(b).MatrixInverse(a).b.c.c.MatrixInverse(d).b;
> N[59]:=c.MatrixInverse(b).MatrixInverse(a).b.c.MatrixInverse(b).Matrix
> Inverse(a).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(b).Matrix
> Inverse(a).b;
> N[510]:=c.MatrixInverse(b).MatrixInverse(a).b.c.MatrixInverse(b).Matri
> xInverse(a).b.d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(b).Mat
> rixInverse(a).b.c.c.MatrixInverse(d).b;
> N[511]:=MatrixInverse(b).a.b.d.MatrixInverse(c).MatrixInverse(c).d.Mat
> rixInverse(c).MatrixInverse(c).d.MatrixInverse(c).MatrixInverse(c).Mat
> rixInverse(b).a.b.MatrixInverse(c);
> N[512]:=MatrixInverse(b).MatrixInverse(a).MatrixInverse(a).b.d.MatrixI
> nverse(c).MatrixInverse(c).MatrixInverse(b).d.MatrixInverse(c).MatrixI
> nverse(c).MatrixInverse(b);

N51 :=


−365385955853067554347

2

2452293476161570042335

4

−54441561369235201709
365385378499638352013

2



N52 :=


46475888407425825

2

692232489736400389

4

−3120351373297111
−46475896943687759

2



298

C.6. Example 7.2.4 calculations in Maple 16 and GAP

N53 :=

[
14191978774688406127415200745164963719

2
,

211381585887241188067953006827362787131

4

]
[
2066934845786228511332260345459789991 ,

30785838434815863847055570274170645175

2

]

N54 :=


−373093851727

2

−5557025260549

4

−55590105705
−827983683487

2



N55 :=


−5173498604167616695190467

2

34722070510940799420862545

4

−770837595439492555130851
5173496581167136640775173

2


N56 :=

[
236357721809547248875036643357091258605753

2
,

−1586321620922972791166006152873732335817091

4

]
[
35216688575084594110611133775250811086945 ,

−236357814232880135335252482498712414452247

2

]
N57 := [23455501903958352847442570254147219707 ,

−78710981319565390255952867319014211859]

[6989618105979490990361435765310986524 ,

−23455464838200828841741347834673695945]

N58 := [−284244077477374602753409971553960937849434307980785 ,

953855761412220171261967322875122763319442511726099]

[−84703263165642653454673803941736597543139159266364 ,

284244077477374602753409971553960937985809664780451]

N59 := [−137009547192400415099556348312427759 ,

459770844120935649284742595027142669]

[18397407489614077383094633659063868 ,

−61737241998606250592052460430053827]

N510 := [−32871793295402748701492250323594559338626411841 ,

110309948059576753437092104294389254500749326264]

[4413968139903703503835378944511234293490078624 ,

−14812231017451052734153541914032788681367313857]

299

Appendix C. Calculations with Maple 16 or GAP for examples

N511 :=

[
−1117059369669026324897897152421296554195

2
,

−16637974509373875748385275531166037883631

4

]
[
− 166439216821158943893841096912313013091 ,

−2479019040546684774320083349402815695915

2

]

N512 :=


48347918051060432198595097427

2

1105492914035182258613069251201

4

7203711790887966001556351021
164715517453469113660801869675

2


Sixth, he calculates the entries in the column Uϕ(fx6):

> N[61]:=MatrixInverse(c).MatrixInverse(b).MatrixInverse(a).MatrixInver
> se(c).MatrixInverse(b).MatrixInverse(a).MatrixInverse(c).MatrixInverse
> (b);
> N[62]:=c.MatrixInverse(a).d.MatrixInverse(c).MatrixInverse(b);
> N[63]:=d.MatrixInverse(c).MatrixInverse(b).d.MatrixInverse(c).MatrixIn
> verse(b).a.MatrixInverse(c).a.MatrixInverse(c);
> N[64]:=b.c.a.MatrixInverse(c).MatrixInverse(b);
> N[65]:=MatrixInverse(a).MatrixInverse(c).MatrixInverse(b).MatrixInvers
> e(a).MatrixInverse(c).MatrixInverse(b).MatrixInverse(a).MatrixInverse(
> c).MatrixInverse(b).MatrixInverse(a);
> N[66]:=MatrixInverse(c).MatrixInverse(b).MatrixInverse(c).MatrixInvers
> e(b).a.b.c.a;
> N[67]:=MatrixInverse(c).MatrixInverse(b).c.MatrixInverse(a).c.MatrixIn
> verse(a).c.MatrixInverse(a);
> N[68]:=MatrixInverse(c).MatrixInverse(b).a.MatrixInverse(c).MatrixInve
> rse(c).MatrixInverse(b).MatrixInverse(a);
> N[69]:=c.MatrixInverse(a).c.MatrixInverse(a).MatrixInverse(c).MatrixIn
> verse(b).MatrixInverse(a).MatrixInverse(c).MatrixInverse(b);
> N[610]:=c.MatrixInverse(a).c.MatrixInverse(a).d.MatrixInverse(c).Matri
> xInverse(b).MatrixInverse(a);
> N[611]:=b.c.a.d.MatrixInverse(c).MatrixInverse(b).d.MatrixInverse(c).M
> atrixInverse(b).d.MatrixInverse(c).MatrixInverse(b).a.MatrixInverse(c)
> ;
> N[612]:=MatrixInverse(a).MatrixInverse(c).MatrixInverse(b).MatrixInver
> se(a).MatrixInverse(c).MatrixInverse(b).d.MatrixInverse(c).MatrixInver
> se(b).MatrixInverse(c).MatrixInverse(b).MatrixInverse(d);

N61 :=


4989102626594102575547043

2

114077665045869559745000465

4

334964027943461496434749
7659075597776491896904123

2



N62 :=


5065502573

2

115824577897

4

−340102379
−7776565883

2



300

C.6. Example 7.2.4 calculations in Maple 16 and GAP

N63 :=


7068388757136746119

2

105276700756844776107

4

1029447732362045239
15332611800004139383

2



N64 :=


17372872650923

2

397237117666257

4

−759789784787
−17372872650685

2



N65 :=


122839481176503653049604626763

2

837434156315872177661635803007

4

8290632772451966313990403091
56519768682082652618974237107

2



N66 :=


−3695267028822070304930101

2

54751512591106411129906743

4

−248097026848674149289061
3675969120329385561726419

2


N67 :=

[
−603536215070245 −2188325322808444
−81041797188976 −293844532550381

]
N68 :=

[
4433429876425551979 15112020877128908548
595313281830109424 2029215978194757507

]
N69 :=

[
2644486227573318277141 30233574719374844059484
−355107190573592881776 −4059828206950396405763

]
N610 :=

[
302888317565353 1032440955663986
−40672482384904 −138638350003831

]

N611 :=


−37154085868492177463035768197599

2

−553374013794643763898030444104547

4

1624906569753714749910956723073
24201404758781402065719318991873

2


N612 :=

[
−1762889723238284598642610609859449

2
,

13233467868651718699587658429619917

4

]
[
− 118980242945650767672293015299471 ,

893147881725339985446477908120247

2

]

301

Appendix C. Calculations with Maple 16 or GAP for examples

Seventh, he calculates the entries in the column Uϕ(fx7):

> N[71]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInver
> se(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).MatrixInver
> se(a).b.a.a.b.a.a.a;
> N[72]:=MatrixInverse(c).MatrixInverse(a).b.a.a.a.d.MatrixInverse(c).Ma
> trixInverse(c).MatrixInverse(c);
> N[73]:=d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).d.MatrixIn
> verse(c).MatrixInverse(c).MatrixInverse(c).MatrixInverse(a).MatrixInve
> rse(a).MatrixInverse(a).MatrixInverse(b).a.c.MatrixInverse(a).MatrixIn
> verse(a).MatrixInverse(a).MatrixInverse(b).a.c;
> N[74]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInvers
> e(b).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b).d.MatrixInvers
> e(c).MatrixInverse(c).MatrixInverse(c);
> N[75]:=MatrixInverse(a).b.a.a.b.a.a.b.a.a.b.a.a.a.c.c.c.MatrixInverse(
> d).b.a.a.a;
> N[76]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInvers
> e(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).MatrixInvers
> e(a).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b).d.MatrixInvers
> e(c).MatrixInverse(c).MatrixInverse(c).MatrixInverse(a).MatrixInverse(
> a).MatrixInverse(a).MatrixInverse(b).d.MatrixInverse(c).MatrixInverse(
> c).MatrixInverse(c).MatrixInverse(a).MatrixInverse(a).MatrixInverse(a)
> .MatrixInverse(b).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b).a
> ;
> N[77]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInvers
> e(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).MatrixInvers
> e(c).MatrixInverse(a).b.a.a.a.MatrixInverse(c).MatrixInverse(a).b.a.a.
> a.MatrixInverse(c).MatrixInverse(a).b.a.a.a;
> N[78]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInvers
> e(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).MatrixInvers
> e(a).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b).a.c.MatrixInve
> rse(a).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b).d.MatrixInve
> rse(c).MatrixInverse(c).MatrixInverse(c).MatrixInverse(a).b.a.a.a.c.c.
> c.MatrixInverse(d).b.a.a.a;
> N[79]:=MatrixInverse(c).MatrixInverse(a).b.a.a.a.MatrixInverse(c).Matr
> ixInverse(a).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).Matr
> ixInverse(a).b.a.a.a;
> N[710]:=MatrixInverse(c).MatrixInverse(a).b.a.a.a.MatrixInverse(c).Mat
> rixInverse(a).b.a.a.a.d.MatrixInverse(c).MatrixInverse(c).MatrixInvers
> e(c).MatrixInverse(a).b.a.a.a.c.c.c.MatrixInverse(d).b.a.a.a;
> N[711]:=MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInver
> se(b).a.d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(c).d.MatrixI
> nverse(c).MatrixInverse(c).MatrixInverse(c).d.MatrixInverse(c).MatrixI
> nverse(c).MatrixInverse(c).MatrixInverse(a).MatrixInverse(a).MatrixInv
> erse(a).MatrixInverse(b).a.c;
> N[712]:=MatrixInverse(a).b.a.a.b.a.a.a.d.MatrixInverse(c).MatrixInvers
> e(c).MatrixInverse(c).MatrixInverse(a).MatrixInverse(a).MatrixInverse(
> a).MatrixInverse(b).d.MatrixInverse(c).MatrixInverse(c).MatrixInverse(
> c).MatrixInverse(a).MatrixInverse(a).MatrixInverse(a).MatrixInverse(b)
> ;

302

C.6. Example 7.2.4 calculations in Maple 16 and GAP

N71 :=

[
491242464152854397073164953229902461255

2
,

−7278569536174366155700087157823127215211

4

]
[
33154750722324811892562685660155475849 ,

−491242464152854397151552695389537909577

2

]

N72 :=


25006979973079625087006197

2

372465048022695423900531297

4

1678946926167764261161005
25006979977423521761358637

2


N73 :=

[
−7699943409566554448091575396593779468936425994969

2
,

114686371341339826250501196559373813819693490898411

4

]
[
− 1121427927457178242018886338993276426468994958505 ,

16703044799149102429509542697601018313095169457079

2

]

N74 :=


−3418963163764785449276501363

2

−50923553357916815212095363641

4

−230751369629481141540301125
−3436913216344813651054341083

2


N75 :=

[
147884375041475017324443571313129988363901091144866247

2
,

−2191151591321180393736879249784838134096931438144099461

4

]
[
9978539921228100178514822142659528920999132179433159 ,

−147848571705623773221439805363957597092222338109442985

2

]
N76 := [−1917501648134529281699752849700279323102272171442408401035\
8490170929265243493773/2, 28417838192150384328232498893822592\
5923325290235808842518059046225929258079112255/4]

[−1294152965036947719482380310549512158807997829265603099818\
364022178373234676845, 1917965994558113049526115314977773565\
2018712530486691848830812359607849427713227/2]

N77 := [307253407345214027463240195753018673581626320827081618934875 ,

−2276233686806016217859636459533986431515024329647154116427101]

[41474061680244923186701454603086852931821394993611576754276 ,

−307253407345214027265109441943442824001481781885148062246249]

303

Appendix C. Calculations with Maple 16 or GAP for examples

N78 := [−1111902685260715112592331976486866225359364143481015885371\
413931515528713100235212457, 8237338588069300728047160356009\
289955424493157153617180340243358615333153537215506842]

[−1500882315655503644780069838809218869613886795424721912011\
45403304812210312480745480, 11119026852607151125923319764868\
66225359364143481015885371413931515491864639588207287]

N79 := [−7075024575670677730711671937846485302921 ,

52414094975447925368413712383286085372946]

[−950022015986828434135602818386401309992 ,

7038073669161757445953617485519799708311]

N710 := [−7141250992042446820444656710270462104805833586810197879182\
42382304493, 52904721918219274278781127608447616944126456225\
08690469944455927367053]

[−9589147841914006407148603823213446535969383813539132826804\
3601255684, 710395420318448295524538695244804791684685771008\
576162902211439464607]

N711 :=

[
−28219998803938529243649025390292501154743396866090613397997

2
,

420321175095862978332646548782095579195079743209460420281847

4

]
[
− 1904613493343600144316411755228338922185120521766127577237 ,

28368157886452135285330454729011120180899505185688266657755

2

]
N712 :=

[
−25957886623406102864369630935798238817614699538481142186981

2
,

−593536351831582281237697678129309863060584592765077847655111

4

]
[
− 1751515722129038609254521229993323948023016994642313085483 ,

−40049032764891467959230675434565276507471913122150128089757

2

]

304

C.6. Example 7.2.4 calculations in Maple 16 and GAP

Eight, he calculates the entries in the column Uϕ(fx8):

> N[81]:=MatrixInverse(b).MatrixInverse(d).MatrixInverse(a);
> N[82]:=MatrixInverse(d).MatrixInverse(d).c.MatrixInverse(d).MatrixInve
> rse(b).a.d;
> N[83]:=MatrixInverse(d).MatrixInverse(b).a.MatrixInverse(b).a.d.Matrix
> Inverse(c).d.d.MatrixInverse(c).d.d;
> N[84]:=a.d.MatrixInverse(b).a.d;
> N[85]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(d).MatrixInvers
> e(a).MatrixInverse(d).MatrixInverse(a).MatrixInverse(d).MatrixInverse(
> a).MatrixInverse(d).MatrixInverse(a).b;
> N[86]:=MatrixInverse(b).a.d.MatrixInverse(b).a.d.MatrixInverse(b).a.d.
> a.d.a.d;
> N[87]:=MatrixInverse(b).a.MatrixInverse(d).c.MatrixInverse(d).MatrixIn
> verse(d).c.MatrixInverse(d).MatrixInverse(d).c;
> N[88]:=MatrixInverse(b).a.d.MatrixInverse(c).d.d.MatrixInverse(b).Matr
> ixInverse(d).MatrixInverse(a).b;
> N[89]:=MatrixInverse(d).MatrixInverse(d).c.MatrixInverse(d).MatrixInve
> rse(d).c.MatrixInverse(b);
> N[810]:=MatrixInverse(d).MatrixInverse(d).c.MatrixInverse(d).MatrixInv
> erse(d).c.MatrixInverse(d).MatrixInverse(b).MatrixInverse(d).MatrixInv
> erse(a).b;
> N[811]:=a.MatrixInverse(b).a.MatrixInverse(b).a.MatrixInverse(b).a.d.M
> atrixInverse(c).d.d;
> N[812]:=MatrixInverse(d).MatrixInverse(a).MatrixInverse(d).MatrixInver
> se(a).MatrixInverse(d).MatrixInverse(b).a.d.MatrixInverse(b).a.d.d;

N81 :=


2097601

2

14292341

4

312537
2129521

2



N82 :=


−26813876357

2

387885462929

4

−1853791571
26816667315

2



N83 :=


275294109706861162119

2

−3981948313145580257957

4

18579531779042231303
−268740712634099781193

2



N84 :=


−571570823

2

8268256717

4

83886209
−1213485159

2



N85 :=


16738764316333488977

2

−112342474856279558485

4

1157124261881365959
−7766057328924309343

2



N86 :=


−718483209332862630528527

2

10393456867555252407522837

4

−107052306989130851251047
1548600608630707637395105

2



305

Appendix C. Calculations with Maple 16 or GAP for examples

N87 :=


−362905014339202517

2

5405268075257403809

4

−54071991727653267
805372202374372147

2


N88 :=

[
−22095669332318830605 74147712742895201839
−6584405441798070604 22095669334039730431

]
N89 :=

[
−33830252063749 −386771627007598
−4677744857864 −53479323358077

]

N810 :=


−2530644964961716069

2

16984462710235839663

4

−174957482575393773
1174229842519006355

2



N811 :=


2739747352948144349387

2

−39628644296581967709615

4

−402070084312200114547
5815679440792026855107

2


N812 :=

[
33187983477846157011 −240017332068410620973
4588465451737171748 −33184035925207219073

]
Now, he is able to encrypt the ciphertext C ′ as the message S = ILIKEBOB.

306

C.7. Example of a message, where inverse automorphisms were used for decryption in a
cryptosystem based on Aut(F)

C.7. Example of a message, where inverse automorphisms were used
for decryption in a cryptosystem based on Aut(F)

Bob wants to send a message to Alice. As in Example 7.0.7 let F be a free group with free
generating set X = {a, b, c, d}, let Ã := {a1, a2, . . . , a12} = {A,E, I,O,U,T,M, L,K,Y,B, S} be
the plaintext alphabet and let h with

h : Z2128 → Z2128

x 7→ 5x + 3

be the linear congruence generator. The starting seed is x9 = h(x8) = h(7324218) = 36621093
(the next automorphism of Example 7.0.7, which Alice and Bob use now as starting seed).
Let also

Ũ ={u1, u2, . . . , u12}
={ba2, cd, d2c−2, a−1b, a4b−1, b3a−2, bc3, bc−1bab−1, c2ba, c2dab−1, a−1d3c−1, a2db2d−1}

be the free generating set for the free subgroup FŨ of F .

It is known, that ai 7→ ui, i = 1, 2, . . . , 12, for ui ∈ Ũ and ai ∈ Ã.
In GAP they define:

LoadPackage("FGA");;

F:=FreeGroup("a", "b", "c", "d");;

AssignGeneratorVariables(F);;

FU:=Group(b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2, b*c^3,

b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1,a^-1*d^3*c^-1,

a^2*d*b^2*d^-1);;

Bob’s message for Alice is

S = YES.

He first determines, with the help of the linear congruence generator h, the three automorphisms
fx9 , fx10 and fx11 . It is

x9 = h(x8) = 36621093, x10 = h(x9) = 183105468, x11 = h(x10) = 915527343.

These automorphisms are describable with regular Nielsen transformations:

• Automorphism fx9 :

(a, b, c, d)
(N1)3−→ (a, b, c−1, d)

(N2)1.3−→ (ac−1, b, c−1, d)

(N2)2.3−→ (ac−1, bc−1, c−1, d)

(N1)1−→ (ca−1, bc−1, c−1, d)

(N2)4.1−→ (ca−1, bc−1, c−1, dca−1)

(N2)1.4−→ (ca−1dca−1, bc−1, c−1, dca−1)

(N2)3.4−→ (ca−1dca−1, bc−1, c−1dca−1, dca−1)

(N2)2.3−→ (ca−1dca−1, bc−2dca−1, c−1dca−1, dca−1)

307

Appendix C. Calculations with Maple 16 or GAP for examples

Hence, the automorphism is

fx9 : F → F

a 7→ ca−1dca−1,

b 7→ bc−2dca−1,

c 7→ c−1dca−1,

d 7→ dca−1

and he defines in GAP:

a9:=c*a^-1*d*c*a^-1;;

b9:=b*c^-2*d*c*a^-1;;

c9:=c^-1*d*c*a^-1;;

d9:=d*c*a^-1;;

• Automorphism fx10 :

(a, b, c, d)
(N2)3.2−→ (a, b, cb, d)

[(N2)1.3]2−→ (a(cb)2, b, cb, d)

(N1)4−→ (a(cb)2, b, cb, d−1)

(N2)3.4−→ (a(cb)2, b, cbd−1, d−1)

(N2)2.3−→ (a(cb)2, bcbd−1, cbd−1, d−1)

(N1)1−→ ((a(cb)2)−1, bcbd−1, cbd−1, d−1)

(N4)4.1−→ ((a(cb)2)−1, bcbd−1, cbd−1, d−1(a(cb)2)−1)

Hence, the automorphism is

fx10 : F → F

a 7→ (a(cb)2)−1,

b 7→ bcbd−1,

c 7→ cbd−1,

d 7→ d−1(a(cb)2)−1

and he defines in GAP:

a10:=(a*(c*b)^2)^-1;;

b10:=b*c*b*d^-1;;

c10:=c*b*d^-1;;

d10:=d^-1*(a*(c*b)^2)^-1;;

308

C.7. Example of a message, where inverse automorphisms were used for decryption in a
cryptosystem based on Aut(F)

• Automorphism fx11 :

(a, b, c, d)
(N2)4.1−→ (a, b, c, da)

(N2)3.2−→ (a, b, cb, da)

(N1)4−→ (a, b, cb, a−1d−1)

(N2)2.4−→ (a, ba−1d−1, cb, a−1d−1)

(N1)1−→ (a−1, ba−1d−1, cb, a−1d−1)

(N2)1.4−→ (a−2d−1, ba−1d−1, cb, a−1d−1)

(N2)3.1−→ (a−2d−1, ba−1d−1, cba−2d−1, a−1d−1)

(N2)4.1−→ (a−2d−1, ba−1d−1, cba−2d−1, a−1d−1a−2d−1)

(N2)1.2−→ (a−2d−1ba−1d−1, ba−1d−1, cba−2d−1, a−1d−1a−2d−1)

(N1)2−→ (a−2d−1ba−1d−1, (ba−1d−1)−1, cba−2d−1, a−1d−1a−2d−1)

(N2)2.3−→ (a−2d−1ba−1d−1, (ba−1d−1)−1cba−2d−1, cba−2d−1, a−1d−1a−2d−1)

Hence, the automorphism is

fx11 : F → F

a 7→ a−2d−1ba−1d−1,

b 7→ (ba−1d−1)−1cba−2d−1,

c 7→ cba−2d−1,

d 7→ a−1d−1a−2d−1

and he defines in GAP:

a11:=a^-2*d^-1*b*a^-1*d^-1;;

b11:=(b*a^-1*d^-1)^-1*c*b*a^-2*d^-1;;

c11:=c*b*a^-2*d^-1;;

d11:=a^-1*d^-1*a^-2*d^-1;;

The ciphertext from Bob is

C =fx9(Y)fx10(E)fx11(S)

=fx9(c2dab−1)fx10(cd)fx11(a2db2d−1)

=C1C2C3,

with GAP he gets

C1:=c9^2*d9*a9*b9^-1;;

C2:=c10*d10;;

C3:=a11^2*d11*b11^2*d11^-1;;

gap> C1;

(c^-1*d*c*a^-1)^2*d*(c*a^-1)^2*c^2*b^-1

309

Appendix C. Calculations with Maple 16 or GAP for examples

gap> C2;

c*b*d^-2*(b^-1*c^-1)^2*a^-1

gap> C3;

(a^-2*d^-1*b*a^-1*d^-1)^2*a^-1*d^-1*(a^-1*b^-1*c*b)^2*d*a

and hence the ciphertext is

C =C1C2C3

=(c−1dca−1)2d(ca−1)2c2b−1o
cbd−2(b−1c−1)2a−1o
(a−2d−1ba−1d−1)2a−1d−1(a−1b−1cb)2da.

Alice uses for decryption the inverse automorphisms of fx9 , fx10 and fx11 , which are describable
with regular Nielsen transformations as follows:

• Inverse automorphism of fx9 is f−1x9 :

(a, b, c, d)
(N1)4−→ (a, b, c, d−1)

(N2)1.4−→ (ad−1, b, c, d−1)

(N2)2.4−→ (ad−1, bd−1, c, d−1)

(N2)3.4−→ (ad−1, bd−1, cd−1, d−1)

(N1)4(N1)−→ (da−1, bd−1, cd−1, d)

(N2)4.1−→ (da−1, bd−1, cd−1, d2a−1)

(N1)3−→ (da−1, bd−1, dc−1, d2a−1)

(N2)1.3−→ (da−1dc−1, bd−1, dc−1, d2a−1)

[(N2)2.3]2−→ (da−1dc−1, bc−1dc−1, dc−1, d2a−1)

Hence, the automorphism is

f−1x9 : F → F

a 7→ da−1dc−1,

b 7→ bc−1dc−1,

c 7→ dc−1,

d 7→ d2a−1

and she defines in GAP:

a9i:=d*a^-1*d*c^-1;;

b9i:=b*c^-1*d*c^-1;;

c9i:=d*c^-1;;

d9i:=d^2*a^-1;;

310

C.7. Example of a message, where inverse automorphisms were used for decryption in a
cryptosystem based on Aut(F)

• Inverse automorphism of fx10 is f−1x10 :

(a, b, c, d)
(N1)1−→ (a−1, b, c, d)

(N2)4.1−→ (a−1, b, c, da−1)

(N1)3−→ (a−1, b, c−1, da−1)

(N2)2.3−→ (a−1, bc−1, c−1, da−1)

(N1)3(N1)4−→ (a−1, bc−1, c, ad−1)

(N2)3.4−→ (a−1, bc−1, cad−1, ad−1)

(N1)3−→ (a−1, bc−1, (cad−1)−1, ad−1)

[(N2)1.3]2−→ (a−1(cad−1)−2, bc−1, (cad−1)−1, ad−1)

(N1)(N1)3−→ (a−1(cad−1)−2, cb−1, cad−1, ad−1)

(N2)3.2−→ (a−1(cad−1)−2, cb−1, cad−1cb−1, ad−1)

(N1)−→ (a−1(cad−1)−2, bc−1, cad−1cb−1, ad−1)

Hence, the automorphism is

f−1x10 : F → F

a 7→ a−1(cad−1)−2,

b 7→ bc−1,

c 7→ cad−1cb−1,

d 7→ ad−1

and she defines in GAP:

a10i:=a^-1*(c*a*d^-1)^-2;;

b10i:=b*c^-1;;

c10i:=c*a*d^-1*c*b^-1;;

d10i:=a*d^-1;;

311

Appendix C. Calculations with Maple 16 or GAP for examples

• Inverse automorphism of fx11 is f−1x11 :

(a, b, c, d)
(N1)−→(a, b, c−1, d)

(N2)2.3−→ (a, bc−1, c−1, d)

(N2)1.2−→ (abc−1, bc−1, c−1, d)

(N1)1−→ (cb−1a−1, bc−1, c−1, d)

(N2)4.1−→ (cb−1a−1, bc−1, c−1, dcb−1a−1)

(N1)−→(cb−1a−1, bc−1, c, dcb−1a−1)

(N2)3.1−→ (cb−1a−1, bc−1, c2b−1a−1, dcb−1a−1)

(N1)4(N1)1−→ (abc−1, bc−1, c2b−1a−1, (dcb−1a−1)−1)

(N2)1.4−→ (abc−1(dcb−1a−1)−1, bc−1, c2b−1a−1, (dcb−1a−1)−1)

(N1)2−→ (abc−1(dcb−1a−1)−1, cb−1, c2b−1a−1, (dcb−1a−1)−1)

(N2)2.4−→ (abc−1(dcb−1a−1)−1, cb−1(dcb−1a−1)−1, c2b−1a−1,

(dcb−1a−1)−1)

(N2)4.1−→ (abc−1(dcb−1a−1)−1, cb−1(dcb−1a−1)−1, c2b−1a−1,

(dcb−1a−1)−1(abc−1(dcb−1a−1)−1))

(N1)2−→ (abc−1(dcb−1a−1)−1, (cb−1(dcb−1a−1)−1)−1, c2b−1a−1,

(dcb−1a−1)−1(abc−1(dcb−1a−1)−1))

(N2)3.2−→ (abc−1(dcb−1a−1)−1, (cb−1(dcb−1a−1)−1)−1,

c2b−1a−1(cb−1(dcb−1a−1)−1)−1,

(dcb−1a−1)−1(abc−1(dcb−1a−1)−1))

(N1)1(N1)2−→ ((abc−1(dcb−1a−1)−1)−1, cb−1(dcb−1a−1)−1,

c2b−1a−1(cb−1(dcb−1a−1)−1)−1,

(dcb−1a−1)−1(abc−1(dcb−1a−1)−1))

In GAP Alice proves if she can write these elements in an equivalent shorter way:

a11ir:=((a*b*c^-1)*((d*c*b^-1*a^-1)^-1))^-1;;

b11ir:=c*b^-1*(d*c*b^-1*a^-1)^-1;;

c11ir:=c^2*b^-1*a^-1*(c*b^-1*(d*c*b^-1*a^-1)^-1)^-1;;

d11ir:=(d*c*b^-1*a^-1)^-1*(a*b*c^-1*(d*c*b^-1*a^-1)^-1);;

gap> a11ir;

d*(c*b^-1*a^-1)^2

gap> b11ir;

c*b^-1*a*b*c^-1*d^-1

gap> c11ir;

c^2*b^-1*a^-1*d*c*b^-1*a^-1*b*c^-1

gap> d11ir;

312

C.7. Example of a message, where inverse automorphisms were used for decryption in a
cryptosystem based on Aut(F)

a*b*c^-1*d^-1*(a*b*c^-1)^2*d^-1

Hence, the automorphism is

f−1x11 : F → F

a 7→ d(cb−1a−1)2,

b 7→ cb−1abc−1d−1,

c 7→ c2b−1a−1dcb−1a−1bc−1,

d 7→ abc−1d−1(abc−1)2d−1

and she defines in GAP:

a11i:=d*(c*b^-1*a^-1)^2;;

b11i:=c*b^-1*a*b*c^-1*d^-1;;

c11i:=c^2*b^-1*a^-1*d*c*b^-1*a^-1*b*c^-1;;

d11i:=a*b*c^-1*d^-1*(a*b*c^-1)^2*d^-1;;

Before Alice decrypt the ciphertext she first proves if she gets the correct inverse automorphisms.
Thus, she proves in GAP that f−1xi (fxi(xj)) = xj for i = 9, 10, 11 and j = 1, 2, 3, 4:

#Automorphism f_{x_9}

a9p:=c*a^-1*d*c*a^-1;;

b9p:=b*c^-2*d*c*a^-1;;

c9p:=c^-1*d*c*a^-1;;

d9p:=d*c*a^-1;;

#Inverse automorphism f^{-1}_{x_9}

a9ip:=d9p*a9p^-1*d9p*c9p^-1;;

b9ip:=b9p*c9p^-1*d9p*c9p^-1;;

c9ip:=d9p*c9p^-1;;

d9ip:=d9p^2*a9p^-1;;

gap> a9ip; b9ip; c9ip; d9ip;

a

b

c

d

####################################

#Automorphism f_{x_10}

a10p:=(a*(c*b)^2)^-1;;

b10p:=b*c*b*d^-1;;

c10p:=c*b*d^-1;;

d10p:=d^-1*(a*(c*b)^2)^-1;;

#Inverse automorphism f^{-1}_{x_10}

a10ip:=a10p^-1*(c10p*a10p*d10p^-1)^-2;;

b10ip:=b10p*c10p^-1;;

c10ip:=c10p*a10p*d10p^-1*c10p*b10p^-1;;

d10ip:=a10p*d10p^-1;;

313

Appendix C. Calculations with Maple 16 or GAP for examples

gap> a10ip; b10ip; c10ip; d10ip;

a

b

c

d

####################################

#Automorphism f_{x_11}

a11p:=a^-2*d^-1*b*a^-1*d^-1;;

b11p:=(b*a^-1*d^-1)^-1*c*b*a^-2*d^-1;;

c11p:=c*b*a^-2*d^-1;;

d11p:=a^-1*d^-1*a^-2*d^-1;;

#Inverse automorphism f^{-1}_{x_11}

a11ip:=d11p*(c11p*b11p^-1*a11p^-1)^2;;

b11ip:=c11p*b11p^-1*a11p*b11p*c11p^-1*d11p^-1;;

c11ip:=c11p^2*b11p^-1*a11p^-1*d11p*c11p*b11p^-1*a11p^-1*b11p*c11p^-1;;

d11ip:=a11p*b11p*c11p^-1*d11p^-1*(a11p*b11p*c11p^-1)^2*d11p^-1;;

gap> a11ip; b11ip; c11ip; d11ip;

a

b

c

d

To decrypt the ciphertext

C =C1C2C3

=(c−1dca−1)2d(ca−1)2c2b−1

cbd−2(b−1c−1)2a−1

(a−2d−1ba−1d−1)2a−1d−1(a−1b−1cb)2da,

which she gets from Bob, she calculates

S =f−1x9 (C1)f
−1
x10(C2)f

−1

x11(C3)

=f−1x9 ((c−1dca−1)2d(ca−1)2c2b−1)f−1x10(cbd−2(b−1c−1)2a−1)

f−
1

x11((a−2d−1ba−1d−1)2a−1d−1(a−1b−1cb)2da)

=S1S2S3,

in GAP, this is:

S1:=(c9i^-1*d9i*c9i*a9i^-1)^2*d9i*(c9i*a9i^-1)^2*c9i^2*b9i^-1;;

S2:=c10i*b10i*d10i^-2*(b10i^-1*c10i^-1)^2*a10i^-1;;

S3:=(a11i^-2*d11i^-1*b11i*a11i^-1*d11i^-1)^2*a11i^-1*d11i^-1*\

(a11i^-1*b11i^-1*c11i*b11i)^2*d11i*a11i;;

gap> S1;

314

C.7. Example of a message, where inverse automorphisms were used for decryption in a
cryptosystem based on Aut(F)

c^2*d*a*b^-1

gap> S2;

c*d

gap> S3;

a^2*d*b^2*d^-1

With the one-to-one correspondence between the plaintext alphabet Ã and the Nielsen reduced
generating set Ũ for the subgroup FŨ Alice can read the message YES from Bob.

315

Appendix C. Calculations with Maple 16 or GAP for examples

C.8. Example 8.0.4 calculated with GAP

Alice and Bob use the free group F = 〈X | 〉, with free generating set X = {x, y, z}, and the
explicit free subgroup FU of F , with free generating set U = {u1, u2, . . . , u8}, ui words in X,
they choose

u1 :=xyz, u2 :=yzy−1, u3 :=x−1zx−1, u4 :=y−1x2,

u5 :=z−1xyx, u6 :=z−1yx−1, u7 :=x3y, u8 :=y3z−2.

In GAP they define

LoadPackage("FGA");;

F:=FreeGroup("x", "y", "z");;

AssignGeneratorVariables(F);;

u1:=x*y*z;;

u2:=y*z*y^-1;;

u3:=x^-1*z*x^-1;;

u4:=y^-1*x^2;;

u5:=z^-1*x*y*x;;

u6:=z^-1*y*x^-1;;

u7:=x^3*y;;

u8:=y^3*z^-2;;

FU:=Group(u1, u2, u3, u4, u5, u6, u7, u8);;

and prove that U is a Nielsen reduced set with the operation

. FreeGeneratorsOfGroup(FU)

which gives a Nielsen reduced generating set for the group FU :

gap> FreeGeneratorsOfGroup(FU);

[x*y*z, y*z*y^-1, x^-1*z*x^-1, y^-1*x^2, z^-1*x*y*x,\

z^-1*y*x^-1, x^3*y, y^3*z^-2]

Alice knows the linear congruence generator h hence she can get the 4 required automorphisms
of the set HAut to encrypt her message.

These automorphisms are describable with Nielsen transformations as follows:

316

C.8. Example 8.0.4 calculated with GAP

• Automorphism fu1 :

(u1, u2, u3, u4, u5, u6, u7, u8)

(N2)1.7−→ (u1u7, u2, u3, u4, u5, u6, u7, u8)

(N2)2.4−→ (u1u7, u2u4, u3, u4, u5, u6, u7, u8)

(N1)5−→ (u1u7, u2u4, u3, u4, u
−1
5 , u6, u7, u8)

(N2)7.8−→ (u1u7, u2u4, u3, u4, u
−1
5 , u6, u7u8, u8)

[(N2)3.4]2−→ (u1u7, u2u4, u3u
2
4, u4, u

−1
5 , u6, u7u8, u8)

(N2)4.6−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 , u6, u7u8, u8)

(N2)5.1−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6, u7u8, u8)

(N1)7−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6, u

−1
8 u−17 , u8)

(N2)6.3−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6u3u

2
4, u
−1
8 u−17 , u8)

(N2)8.1−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6u3u

2
4, u
−1
8 u−17 , u8u1u7)

(N2)7.4−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6u3u

2
4, u
−1
8 u−17 u4u6, u8u1u7)

(N1)7−→ (u1u7, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6u3u

2
4, u
−1
6 u−14 u7u8, u8u1u7)

(N2)1.2−→ (u1u7u2u4, u2u4, u3u
2
4, u4u6, u

−1
5 u1u7, u6u3u

2
4, u
−1
6 u−14 u7u8, u8u1u7)

(N2)2.3−→ (u1u7u2u4, u2u4u3u
2
4, u3u

2
4, u4u6, u

−1
5 u1u7, u6u3u

2
4, u
−1
6 u−14 u7u8, u8u1u7)

(N2)4.5−→ (u1u7u2u4, u2u4u3u
2
4, u3u

2
4, u4u6u

−1
5 u1u7, u

−1
5 u1u7, u6u3u

2
4, u
−1
6 u−14 u7u8, u8u1u7)

Hence, the automorphism is

fu1 : H → H

u1 7→ u1u7u2u4,

u2 7→ u2u4u3u
2
4,

u3 7→ u3u
2
4,

u4 7→ u4u6u
−1
5 u1u7,

u5 7→ u−15 u1u7,

u6 7→ u6u3u
2
4,

u7 7→ u−16 u−14 u7u8,

u8 7→ u8u1u7.

317

Appendix C. Calculations with Maple 16 or GAP for examples

• Automorphism fu2 :

(u1, u2, u3, u4, u5, u6, u7, u8)

(N2)1.3−→ (u1u3, u2, u3, u4, u5, u6, u7, u8)

(N2)3.5−→ (u1u3, u2, u3u5, u4, u5, u6, u7, u8)

(N1)2(N1)4−→ (u1u3, u
−1
2 , u3u5, u

−1
4 , u5, u6, u7, u8)

(N2)6.5−→ (u1u3, u
−1
2 , u3u5, u

−1
4 , u5, u6u5, u7, u8)

(N1)1−→ (u−13 u−11 , u−12 , u3u5, u
−1
4 , u5, u6u5, u7, u8)

[(N2)3.4]2−→ (u−13 u−11 , u−12 , u3u5u
−2
4 , u−14 , u5, u6u5, u7, u8)

(N2)5.2−→ (u−13 u−11 , u−12 , u3u5u
−2
4 , u−14 , u5u

−1
2 , u6u5, u7, u8)

(N2)7.6−→ (u−13 u−11 , u−12 , u3u5u
−2
4 , u−14 , u5u

−1
2 , u6u5, u7u6u5, u8)

(N2)4.2−→ (u−13 u−11 , u−12 , u3u5u
−2
4 , u−14 u−12 , u5u

−1
2 , u6u5, u7u6u5, u8)

(N2)2.8−→ (u−13 u−11 , u−12 u8, u3u5u
−2
4 , u−14 u−12 , u5u

−1
2 , u6u5, u7u6u5, u8)

(N2)8.4−→ (u−13 u−11 , u−12 u8, u3u5u
−2
4 , u−14 u−12 , u5u

−1
2 , u6u5, u7u6u5, u8u

−1
4 u−12)

(N1)4−→ (u−13 u−11 , u−12 u8, u3u5u
−2
4 , u2u4, u5u

−1
2 , u6u5, u7u6u5, u8u

−1
4 u−12)

(N2)1.4−→ (u−13 u−11 u2u4, u
−1
2 u8, u3u5u

−2
4 , u2u4, u5u

−1
2 , u6u5, u7u6u5, u8u

−1
4 u−12)

(N2)2.6−→ (u−13 u−11 u2u4, u
−1
2 u8u6u5, u3u5u

−2
4 , u2u4, u5u

−1
2 , u6u5, u7u6u5, u8u

−1
4 u−12)

(N2)5.6−→ (u−13 u−11 u2u4, u
−1
2 u8u6u5, u3u5u

−2
4 , u2u4, u5u

−1
2 u6u5, u6u5, u7u6u5, u8u

−1
4 u−12)

(N2)6.4−→ (u−13 u−11 u2u4, u
−1
2 u8u6u5, u3u5u

−2
4 , u2u4, u5u

−1
2 u6u5, u6u5u2u4, u7u6u5, u8u

−1
4 u−12)

(N2)4.7−→ (u−13 u−11 u2u4, u
−1
2 u8u6u5, u3u5u

−2
4 , u2u4u7u6u5, u5u

−1
2 u6u5, u6u5u2u4, u7u6u5, u8u

−1
4 u−12)

Hence, the automorphism is

fu2 : H → H

u1 7→ u−13 u−11 u2u4,

u2 7→ u−12 u8u6u5,

u3 7→ u3u5u
−2
4 ,

u4 7→ u2u4u7u6u5,

u5 7→ u5u
−1
2 u6u5,

u6 7→ u6u5u2u4,

u7 7→ u7u6u5,

u8 7→ u8u
−1
4 u−12 .

318

C.8. Example 8.0.4 calculated with GAP

• Automorphism fu3 :

(u1, u2, u3, u4, u5, u6, u7, u8)

(N1)2(N1)5(N1)8−→ (u1, u
−1
2 , u3, u4, u

−1
5 , u6, u7, u

−1
8)

(N2)6.3−→ (u1, u
−1
2 , u3, u4, u

−1
5 , u6u3, u7, u

−1
8)

(N2)3.7−→ (u1, u
−1
2 , u3u7, u4, u

−1
5 , u6u3, u7, u

−1
8)

(N2)1.2−→ (u1u
−1
2 , u−12 , u3u7, u4, u

−1
5 , u6u3, u7, u

−1
8)

[(N2)4.8]2−→ (u1u
−1
2 , u−12 , u3u7, u4u

−2
8 , u−15 , u6u3, u7, u

−1
8)

(N2)5.6−→ (u1u
−1
2 , u−12 , u3u7, u4u

−2
8 , u−15 u6u3, u6u3, u7, u

−1
8)

(N2)8.3−→ (u1u
−1
2 , u−12 , u3u7, u4u

−2
8 , u−15 u6u3, u6u3, u7, u

−1
8 u3u7)

(N2)6.3−→ (u1u
−1
2 , u−12 , u3u7, u4u

−2
8 , u−15 u6u3, u6u

2
3u7, u7, u

−1
8 u3u7)

(N1)8−→ (u1u
−1
2 , u−12 , u3u7, u4u

−2
8 , u−15 u6u3, u6u

2
3u7, u7, u

−1
7 u−13 u8)

(N2)2.3−→ (u1u
−1
2 , u−12 u3u7, u3u7, u4u

−2
8 , u−15 u6u3, u6u

2
3u7, u7, u

−1
7 u−13 u8)

(N2)7.4−→ (u1u
−1
2 , u−12 u3u7, u3u7, u4u

−2
8 , u−15 u6u3, u6u

2
3u7, u7u4u

−2
8 , u−17 u−13 u8)

(N2)1.8−→ (u1u
−1
2 u−17 u−13 u8, u

−1
2 u3u7, u3u7, u4u

−2
8 , u−15 u6u3, u6u

2
3u7, u7u4u

−2
8 , u−17 u−13 u8)

(N2)3.4−→ (u1u
−1
2 u−17 u−13 u8, u

−1
2 u3u7, u3u7u4u

−2
8 , u4u

−2
8 , u−15 u6u3, u6u

2
3u7, u7u4u

−2
8 , u−17 u−13 u8)

Hence, the automorphism is

fu3 : H → H

u1 7→ u1u
−1
2 u−17 u−13 u8,

u2 7→ u−12 u3u7,

u3 7→ u3u7u4u
−2
8 ,

u4 7→ u4u
−2
8 ,

u5 7→ u−15 u6u3,

u6 7→ u6u
2
3u7,

u7 7→ u7u4u
−2
8 ,

u8 7→ u−17 u−13 u8.

319

Appendix C. Calculations with Maple 16 or GAP for examples

• Automorphism fu4 :

(u1, u2, u3, u4, u5, u6, u7, u8)

(N1)1(N1)3(N1)4−→ (u−11 , u2, u
−1
3 , u−14 , u5, u6, u7, u8)

(N2)6.2−→ (u−11 , u2, u
−1
3 , u−14 , u5, u6u2, u7, u8)

[(N2)8.2]3−→ (u−11 , u2, u
−1
3 , u−14 , u5, u6u2, u7, u8u

3
2)

(N2)2.3−→ (u−11 , u2u
−1
3 , u−13 , u−14 , u5, u6u2, u7, u8u

3
2)

(N2)3.4−→ (u−11 , u2u
−1
3 , u−13 u−14 , u−14 , u5, u6u2, u7, u8u

3
2)

(N2)5.2−→ (u−11 , u2u
−1
3 , u−13 u−14 , u−14 , u5u2u

−1
3 , u6u2, u7, u8u

3
2)

(N2)7.4−→ (u−11 , u2u
−1
3 , u−13 u−14 , u−14 , u5u2u

−1
3 , u6u2, u7u

−1
4 , u8u

3
2)

(N2)1.3−→ (u−11 u−13 u−14 , u2u
−1
3 , u−13 u−14 , u−14 , u5u2u

−1
3 , u6u2, u7u

−1
4 , u8u

3
2)

(N2)4.5−→ (u−11 u−13 u−14 , u2u
−1
3 , u−13 u−14 , u−14 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 , u8u

3
2)

(N2)8.3−→ (u−11 u−13 u−14 , u2u
−1
3 , u−13 u−14 , u−14 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 , u8u

3
2u
−1
3 u−14)

(N1)1(N1)2−→ (u4u3u1, u3u
−1
2 , u−13 u−14 , u−14 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 , u8u

3
2u
−1
3 u−14)

(N2)7.2−→ (u4u3u1, u3u
−1
2 , u−13 u−14 , u−14 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 u3u

−1
2 , u8u

3
2u
−1
3 u−14)

(N1)3−→ (u4u3u1, u3u
−1
2 , u4u3, u

−1
4 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 u3u

−1
2 , u8u

3
2u
−1
3 u−14)

(N2)2.3−→ (u4u3u1, u3u
−1
2 u4u3, u4u3, u

−1
4 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 u3u

−1
2 , u8u

3
2u
−1
3 u−14)

(N2)3.5−→ (u4u3u1, u3u
−1
2 u4u3, u4u3u5u2u

−1
3 , u−14 u5u2u

−1
3 , u5u2u

−1
3 , u6u2, u7u

−1
4 u3u

−1
2 , u8u

3
2u
−1
3 u−14)

(N2)6.1−→ (u4u3u1, u3u
−1
2 u4u3, u4u3u5u2u

−1
3 , u−14 u5u2u

−1
3 , u5u2u

−1
3 , u6u2u4u3u1, u7u

−1
4 u3u

−1
2 , u8u

3
2u
−1
3 u−14)

Hence, the automorphism is

fu4 : H → H

u1 7→ u4u3u1,

u2 7→ u3u
−1
2 u4u3,

u3 7→ u4u3u5u2u
−1
3 ,

u4 7→ u−14 u5u2u
−1
3 ,

u5 7→ u5u2u
−1
3 ,

u6 7→ u6u2u4u3u1,

u7 7→ u7u
−1
4 u3u

−1
2 ,

u8 7→ u8u
3
2u
−1
3 u−14 .

In GAP she defines for the automorphisms:

#Automorphism f_{u_1}

u11:=u1*u7*u2*u4;;

u12:=u2*u4*u3*u4^2;;

u13:=u3*u4^2;;

320

C.8. Example 8.0.4 calculated with GAP

u14:=u4*u6*u5^-1*u1*u7;;

u15:=u5^-1*u1*u7;;

u16:=u6*u3*u4^2;;

u17:=u6^-1*u4^-1*u7*u8;;

u18:=u8*u1*u7;;

#Automorphism f_{u_2}

u21:=u3^-1*u1^-1*u2*u4;;

u22:=u2^-1*u8*u6*u5;;

u23:=u3*u5*u4^-2;;

u24:=u2*u4*u7*u6*u5;;

u25:=u5*u2^-1*u6*u5;;

u26:=u6*u5*u2*u4;;

u27:=u7*u6*u5;;

u28:=u8*u4^-1*u2^-1;;

#Automorphism f_{u_3}

u31:=u1*u2^-1*u7^-1*u3^-1*u8;;

u32:=u2^-1*u3*u7;;

u33:=u3*u7*u4*u8^-2;;

u34:=u4*u8^-2;;

u35:=u5^-1*u6*u3;;

u36:=u6*u2^3*u7;;

u37:=u7*u4*u8^-2;;

u38:=u7^-1*u3^-1*u8;;

#Automorphism f_{u_4}

u41:=u4*u3*u1;;

u42:=u3*u2^-1*u4*u3;;

u43:=u4*u3*u5*u2*u3^-1;;

u44:=u4^-1*u5*u2*u3^-1;;

u45:=u5*u2*u3^-1;;

u46:=u6*u2*u4*u3*u1;;

u47:=u7*u4^-1*u3*u2^-1;;

u48:=u8*u2^3*u3^-1*u4^-1;;

Hence, to get the ciphertext

C = fu1(L)fu2(O)fu3(V)fu4(E)

= fu1(u1)fu2(u4)fu3(u7)fu4(u2)

as a word in X, she calculates in GAP:

gap> u11;

x*y*z*x^3*y^2*z*y^-2*x^2

gap> u24;

y*z*y^-2*x^5*y*z^-1*y*x^-1*z^-1*x*y*x

gap> u37;

x^5*(z^2*y^-3)^2

gap> u42;

x^-1*z*x^-1*y*z^-1*y^-2*x*z*x^-1

321

Appendix C. Calculations with Maple 16 or GAP for examples

Thus, the ciphertext is

C = xyzx3y2zy−2x2 o yzy−2x5yz−1yx−1z−1xyx o x5(z2y−3)2 o x−1zx−1yz−1y−2xzx−1

and this is sent to Bob.
For decryption Bob calculates the tables Table 8.3 (page 194) and Table 8.4 (page 194). For
this he chooses the automorphisms in Haut, which Alice also used. In GAP it is:

gap> u11; u12; u13; u14; u15; u16; u17; u18;

x*y*z*x^3*y^2*z*y^-2*x^2

y*z*y^-2*x*z*x^-1*(y^-1*x^2)^2

x^-1*z*x^-1*(y^-1*x^2)^2

y^-1*x^2*z^-1*y*x^-2*y^-1*x^-1*z*x*y*z*x^3*y

x^-1*y^-1*x^-1*z*x*y*z*x^3*y

z^-1*y*x^-2*z*x^-1*(y^-1*x^2)^2

x*y^-1*z*x^-2*y*x^3*y^4*z^-2

y^3*z^-2*x*y*z*x^3*y

gap> u21; u22; u23; u24; u25; u26; u27; u28;

(x*z^-1)^2*y^-1*x^-1*y*z*y^-2*x^2

y*z^-1*y^2*z^-3*y*x^-1*z^-1*x*y*x

x^-1*z*x^-1*z^-1*x*(y*x^-1)^2*x^-1*y

y*z*y^-2*x^5*y*z^-1*y*x^-1*z^-1*x*y*x

z^-1*(x*y)^2*z^-1*y^-1*z^-1*y*x^-1*z^-1*x*y*x

z^-1*y*x^-1*z^-1*(x*y)^2*z*y^-2*x^2

x^3*y*z^-1*y*x^-1*z^-1*x*y*x

y^3*z^-2*x^-2*y^2*z^-1*y^-1

gap> u31; u32; u33; u34; u35; u36; u37; u38;

x*y*z*y*z^-1*y^-2*x^-2*z^-1*x*y^3*z^-2

y*z^-1*y^-1*x^-1*z*x^2*y

x^-1*z*x^4*(z^2*y^-3)^2

y^-1*x^2*(z^2*y^-3)^2

x^-1*y^-1*x^-1*y*x^-2*z*x^-1

z^-1*y*x^-1*y*z^3*y^-1*x^3*y

x^5*(z^2*y^-3)^2

y^-1*x^-2*z^-1*x*y^3*z^-2

gap> u41; u42; u43; u44; u45; u46; u47; u48;

y^-1*x*z*y*z

x^-1*z*x^-1*y*z^-1*y^-2*x*z*x^-1

y^-1*x*z*x^-1*z^-1*(x*y)^2*z*y^-1*x*z^-1*x

x^-2*y*z^-1*(x*y)^2*z*y^-1*x*z^-1*x

z^-1*(x*y)^2*z*y^-1*x*z^-1*x

z^-1*y*x^-1*y*z*y^-2*x*z*y*z

x^3*y*x^-2*y*x^-1*z*x^-1*y*z^-1*y^-1

y^3*z^-2*y*z^3*y^-1*x*z^-1*x^-1*y

With this information Bob is able to reconstruct the message S = LOVE.

322

C.9. Example for decryption where Bob uses an algorithm to solve a constructive membership
problem for a cryptosystem based on Aut(FU)

C.9. Example for decryption where Bob uses an algorithm to solve a
constructive membership problem for a cryptosystem based on
Aut(FU)

We are in the situation of Example 8.0.4, that means Bob and Alice agreed on the following
public parameters.

1. Let F be the free group on the free generating set X = {x, y, z}.

2. Let Ã = {a1, a2, . . . , a8} = {L,E, I,O,U,A,V,B} be the plaintext alphabet.

3. LetH be the abstract free group of rank |Ã| = 8 with free generating set U = {u1, u2, . . . , u8}.

4. A set HAut ⊂ Aut(H) is determined. The automorphisms, which Alice and Bob use
for encryption and decryption, respectively, are just given at the moment when they are
needed.

5. The linear congruence generator with maximal periodic length is

h : Z2128 → Z2128

u 7→ 133u + 51.

The private parameters are the following:
Let FU be the explicit finitely generated free group, which is generated with the free generating
set U = {u1, u2, . . . , u8} with words in X, for this example it is

u1 :=xyz, u2 :=yzy−1, u3 :=x−1zx−1, u4 :=y−1x2,

u5 :=z−1xyx, u6 :=z−1yx−1, u7 :=x3y, u8 :=y3z−2.

The starting automorphism fu1 is f23442, hence it is u1 = α = 23442. It is known, that ai 7→ ui,
i = 1, 2, . . . , 12, for ui ∈ U and ai ∈ Ã, therefore

L=̂u1 =xyz, E=̂u2 =yzy−1, I=̂u3 =x−1zx−1, O=̂u4 =y−1x2,

U=̂u5 =z−1xyx, A=̂u6 =z−1yx−1, V=̂u7 =x3y, B=̂u8 =y3z−2.

Now, Bob gets the ciphertext

C = xyzx3y2zy−2x2 o yzy−2x5yz−1yx−1z−1xyx o x5(z2y−3)2 o x−1zx−1yz−1y−2xzx−1

= c1c2c3c4

from Alice.

Bob knows that Alice used 4 automorphisms to encrypt her message. With the help of the linear
congruence generator h : Z2128 → Z2128 with u 7→ 133u + 51 and the starting seed α = 23442, he
is able to reconstruct these 4 automorphisms fui ∈ HAut, 1 ≤ i ≤ 4. It is

u1 = α = 23442, u2 = h(u1) = 3117837,

u3 = h(u2) = 414672372 and u4 = h(u3) = 55151425527.

323

Appendix C. Calculations with Maple 16 or GAP for examples

The automorphisms are

fu1 : H → H

u1 7→ u1u7u2u4, u5 7→ u−15 u1u7,

u2 7→ u2u4u3u
2
4, u6 7→ u6u3u

2
4,

u3 7→ u3u
2
4, u7 7→ u−16 u−14 u7u8,

u4 7→ u4u6u
−1
5 u1u7, u8 7→ u8u1u7;

fu2 : H → H

u1 7→ u−13 u−11 u2u4, u5 7→ u5u
−1
2 u6u5,

u2 7→ u−12 u8u6u5, u6 7→ u6u5u2u4,

u3 7→ u3u5u
−2
4 , u7 7→ u7u6u5,

u4 7→ u2u4u7u6u5, u8 7→ u8u
−1
4 u−12 ;

fu3 : H → H

u1 7→ u1u
−1
2 u−17 u−13 u8, u5 7→ u−15 u6u3,

u2 7→ u−12 u3u7, u6 7→ u6u
2
3u7,

u3 7→ u3u7u4u
−2
8 , u7 7→ u7u4u

−2
8 ,

u4 7→ u4u
−2
8 , u8 7→ u−17 u−13 u8;

fu4 : H → H

u1 7→ u4u3u1, u5 7→ u5u2u
−1
3 ,

u2 7→ u3u
−1
2 u4u3, u6 7→ u6u2u4u3u1,

u3 7→ u4u3u5u2u
−1
3 , u7 7→ u7u

−1
4 u3u

−1
2 ,

u4 7→ u−14 u5u2u
−1
3 , u8 7→ u8u

3
2u
−1
3 u−14 .

Now, Bob writes the ciphertext units

c1 =xyzx3y2zy−2x2,

c2 =yzy−2x5yz−1yx−1z−1xyx,

c3 =x5(z2y−3)2,

c4 =x−1zx−1yz−1y−2xzx−1

with the help of the algorithm given in Theorem 4.3.10 in letters of the Nielsen reduced set U .
Step 1. and Step 2. are for all ciphertext units ci equal.

Step 1: The Nielsen reduced set is U = {u1, u2, . . . , u8} with

u1 :=xyz, u2 :=yzy−1, u3 :=x−1zx−1, u4 :=y−1x2,

u5 :=z−1xyx, u6 :=z−1yx−1, u7 :=x3y, u8 :=y3z−2.

Step 2: Write each u ∈ U as u ≡ `(u)m(u)r(u) as in Corollary 4.2.10 with a stable part m(u):

324

C.9. Example for decryption where Bob uses an algorithm to solve a constructive membership
problem for a cryptosystem based on Aut(FU)

`(u1) = x, m(u1) = y, r(u1) = z;

`(u2) = y, m(u2) = z, r(u2) =y−1;

`(u3) =x−1, m(u3) = z, r(u3) =x−1;

`(u4) =y−1, m(u4) = x, r(u4) = x;

`(u5) =z−1, m(u5) = xy, r(u5) = x;

`(u6) =z−1, m(u6) = y, r(u6) =x−1;

`(u7) = x, m(u7) = x2, r(u7) = y;

`(u8) = y, m(u8) =y2z−2, r(u8) = 1.

• Bob uses the algorithm to write the ciphertext unit c1 = xyzx3y2zy−2x2 in letters of U±1.
Table C.2 (page 326) shows the steps which were done in the algorithm without Step 1.
and Step 2.

325

Appendix C. Calculations with Maple 16 or GAP for examples

Table C.2.: Write the element c1 as a word in U

Action Used element in U

Step 3 : c1 = xyzx3y2zy−2x2 6= 1

Step 4 : c1 = `(u1)m(u1)zx3y2zy−2x2 u1

Step 5 : c′1 := u−1
1 c1 = x3y2zy−2x2

Step 3 : c′1 = x3y2zy−2x2 6= 1

Step 4 : c′1 = `(u7)m(u7)y2zy−2x2 u7

Step 5 : c′′1 := u−1
7 c′1 = yzy−2x2

Step 3 : c′′1 = yzy−2x2 6= 1

Step 4 : c′′1 = `(u2)m(u2)y−2x2 u2

Step 5 : c′′′1 := u−1
2 c′′1 = y−1x2

Step 3 : c′′′1 = y−1x2 6= 1

Step 4 : c′′′1 = `(u4)m(u4)x u4

Step 5 : c
′′′′
1 := u−1

4 c′′′1 = 1

Step 3 : c
′′′′
1 = 1

It is c
′′′′
1 = 1 and hence the algorithm stops. At the third column Bob gets the elements

of U±1 to write c1. Hence, he knows c1 = u1u7u2u4. Bob knows that this ciphertext unit
was encrypted with the automorphism

fu1 : H → H

u1 7→ u1u7u2u4, u5 7→ u−15 u1u7,

u2 7→ u2u4u3u
2
4, u6 7→ u6u3u

2
4,

u3 7→ u3u
2
4, u7 7→ u−16 u−14 u7u8,

u4 7→ u4u6u
−1
5 u1u7, u8 7→ u8u1u7.

It is fu1(u1) = u1u7u2u4 = c1. Hence, he knows, that s1=̂u1 was encrypted with c1 and
thus the first letter is a1 = L.

• Bob uses the algorithm to write the ciphertext unit c2 = yzy−2x5yz−1yx−1z−1xyx in
letters of U±1. Table C.3 (page 327) shows the steps which were done in the algorithm

326

C.9. Example for decryption where Bob uses an algorithm to solve a constructive membership
problem for a cryptosystem based on Aut(FU)

without Step 1. and Step 2.

Table C.3.: Write the element c2 as a word in U

Action Used element in U

Step 3 : c2 = yzy−2x5yz−1yx−1z−1xyx 6= 1

Step 4 : c2 = `(u2)m(u2)y−2x5yz−1yx−1z−1xyx u2

Step 5 : c′2 := u−1
2 c2 = y−1x5yz−1yx−1z−1xyx

Step 3 : c′2 = y−1x5yz−1yx−1z−1xyx 6= 1

Step 4 : c′2 = `(u4)m(u4)x4yz−1yx−1z−1xyx u4

Step 5 : c′′2 := u−1
4 c′2 = x3yz−1yx−1z−1xyx

Step 3 : c′′2 = x3yz−1yx−1z−1xyx 6= 1

Step 4 : c′′2 = `(u7)m(u7)yz−1yx−1z−1xyx u7

Step 5 : c′′′2 := u−1
7 c′′2 = z−1yx−1z−1xyx

Step 3 : c′′′2 = z−1yx−1z−1xyx 6= 1

Step 4 : c′′′2 = `(u6)m(u6)x−1z−1xyx u6

Step 5 : c
′′′′
2 := u−1

6 c′′′2 = z−1xyx

Step 3 : c′′′′2 = z−1xyx 6= 1

Step 4 : c′′′′2 = `(u5)m(u5)x u5

Step 5 : c
′′′′′
2 := u−1

5 c′′′2 = 1

Step 3 : c′′′′′2 = 1

It is c′′′′′2 = 1 and hence the algorithm stops. At the third column Bob gets the elements
of U±1 to write c2. Hence, he knows c2 = u2u4u7u6u5. Bob knows that this ciphertext

327

Appendix C. Calculations with Maple 16 or GAP for examples

unit was encrypted with the automorphism

fu2 : H → H

u1 7→ u−13 u−11 u2u4, u5 7→ u5u
−1
2 u6u5,

u2 7→ u−12 u8u6u5, u6 7→ u6u5u2u4,

u3 7→ u3u5u
−2
4 , u7 7→ u7u6u5,

u4 7→ u2u4u7u6u5, u8 7→ u8u
−1
4 u−12 .

It is fu2(u4) = u2u4u7u6u5 = c2. Hence, he knows, that s2=̂u4 was encrypted with c2 and
thus the second letter is a4 = O.

• Bob uses the algorithm to write the ciphertext unit c3 = x5(z2y−3)2 in letters of U±1.
Table C.4 (page 328) shows the steps which were done in the algorithm without Step 1.
and Step 2.

Table C.4.: Write the element c3 as a word in U

Action Used element in U

Step 3 : c3 = x5(z2y−3)2 6= 1

Step 4 : c3 = `(u7)m(u7)x2(z2y−3)2 u7

Step 5 : c′3 := u−1
7 c3 = y−1x2(z2y−3)2

Step 3 : c′3 = y−1x2(z2y−3)2 6= 1

Step 4 : c′3 = `(u4)m(u4)x(z2y−3)2 u4

Step 5 : c′′3 := u−1
4 c′3 = (z2y−3)2

Step 3 : c′′3 = (z2y−3)2 6= 1

Step 4 : c′′3 = r(u8)−1m(u8)−1y−1z2y−3 u−1
8

Step 6 : c′′′3 := u8c′′3 = z2y−3

Step 3 : c′′′3 = z2y−3 6= 1

Step 4 : c′′′3 = r(u8)−1m(u8)−1y−1 u−1
8

Step 6 : c′′′′3 := u8c′′3 = 1

Step 3 : c′′′′3 = 1

328

C.9. Example for decryption where Bob uses an algorithm to solve a constructive membership
problem for a cryptosystem based on Aut(FU)

It is c′′′′3 = 1 and hence the algorithm stops. At the third column Bob gets the elements
of U±1 to write c3. Hence, he knows c3 = u7u4u

−2
8 . Bob knows that this ciphertext unit

was encrypted with the automorphism

fu3 : H → H

u1 7→ u1u
−1
2 u−17 u−13 u8, u5 7→ u−15 u6u3,

u2 7→ u−12 u3u7, u6 7→ u6u
2
3u7,

u3 7→ u3u7u4u
−2
8 , u7 7→ u7u4u

−2
8 ,

u4 7→ u4u
−2
8 , u8 7→ u−17 u−13 u8.

It is fu3(u7) = u7u4u
−2
8 = c3. Hence, he knows, that s3=̂u7 was encrypted with c3 and

thus the third letter is a7 = V.

• Bob uses the algorithm to write the ciphertext unit c4 = x−1zx−1yz−1y−2xzx−1 in letters
of U±1. The Table C.5 (page 330) shows the steps which were done in the algorithm.

329

Appendix C. Calculations with Maple 16 or GAP for examples

Table C.5.: Write the element c4 as a word in U

Action Used element in U

Step 3 : c4 = x−1zx−1yz−1y−2xzx−1 6= 1

Step 4 : c4 = `(u3)m(u3)x−1yz−1y−2xzx−1 u3

Step 5 : c′4 := u−1
3 c4 = yz−1y−2xzx−1

Step 3 : c′4 = yz−1y−2xzx−1 6= 1

Step 4 : c′4 = r(u2)−1m(u2)−1y−2xzx−1 u−1
2

Step 6 : c′′4 := u2c′4 = y−1xzx−1

Step 3 : c′′4 = y−1xzx−1 6= 1

Step 4 : c′′4 = `(u4)m(u4)zx−1 u4

Step 5 : c′′′4 := u−1
4 c′′4 = x−1zx−1

Step 3 : c′′′4 = x−1zx−1 6= 1

Step 4 : c′′′4 = `(u3)m(u3)x−1 u3

Step 5 : c′′′′4 := u−1
3 c′′4 = 1

Step 3 : c′′′′4 = 1

It is c′′′′4 = 1 and hence the algorithm stops. At the third column Bob gets the elements of
U±1 to write c4. Hence, he knows c4 = u3u

−1
2 u4u3. Bob knows that this ciphertext unit

was encrypted with the automorphism

fu4 : H → H

u1 7→ u4u3u1, u5 7→ u5u2u
−1
3 ,

u2 7→ u3u
−1
2 u4u3, u6 7→ u6u2u4u3u1,

u3 7→ u4u3u5u2u
−1
3 , u7 7→ u7u

−1
4 u3u

−1
2 ,

u4 7→ u−14 u5u2u
−1
3 , u8 7→ u8u

3
2u
−1
3 u−14 .

It is fu4(u2) = u3u
−1
2 u4u3 = c4. Hence, he knows, that s4=̂u2 was encrypted with c4 and

thus the fourth letter is a2 = E.

All together Bob reconstructs the correct message S = LOVE from Alice.

330

C.10. Example 9.0.7 calculated with GAP and Maple 16

C.10. Example 9.0.7 calculated with GAP and Maple 16

For the private key cryptosystem in Example 9.0.7 we first present the calculations, which were
done in GAP. After this we show the matrix multiplications, which were executed with the
program Maple 16.

First, the free group F with generating set X = {a, b, c, d} is defined in GAP:

LoadPackage("FGA");;

F:=FreeGroup("a", "b", "c", "d");;

AssignGeneratorVariables(F);;

Alice and Bob also define the abstract groups G1 and G2:

G1:=FreeGroup("x1", "x2", "x3", "x4", "x5");;

AssignGeneratorVariables(G1);;

G2:=FreeGroup("y1", "y2", "y3", "y4", "y5");;

AssignGeneratorVariables(G2);;

After this they choose the automorphisms g11 and g22 .

The automorphism g11 is describable with Nielsen transformations, as follows:

(x1, x2, x3, x4, x5)
(N1)1(N1)4−→ (x−11 , x2, x3, x

−1
4 , x5)

(N2)2.3−→ (x−11 , x2x3, x3, x
−1
4 , x5)

(N2)5.3−→ (x−11 , x2x3, x3, x
−1
4 , x5x3)

(N2)1.3−→ (x−11 x3, x2x3, x3, x
−1
4 , x5x3)

(N2)4.2−→ (x−11 x3, x2x3, x3, x
−1
4 x2x3, x5x3)

(N1)5−→ (x−11 x3, x2x3, x3, x
−1
4 x2x3, x

−1
3 x−15)

(N2)1.2−→ (x−11 x3x2x3, x2x3, x3, x
−1
4 x2x3, x

−1
3 x−15)

(N2)2.4−→ (x−11 x3x2x3, x2x3x
−1
4 x2x3, x3, x

−1
4 x2x3, x

−1
3 x−15)

(N2)3.1−→ (x−11 x3x2x3, x2x3x
−1
4 x2x3, x3x

−1
1 x3x2x3, x

−1
4 x2x3, x

−1
3 x−15)

Hence, the automorphism is

g11 : G1 → G1

x1 7→ x−11 x3x2x3,

x2 7→ x2x3x
−1
4 x2x3,

x3 7→ x3x
−1
1 x3x2x3,

x4 7→ x−14 x2x3,

x5 7→ x−13 x−15 x3.

For decryption Bob needs the inverse automorphism g−111
, which is described with Nielsen trans-

formations in the following way:

331

Appendix C. Calculations with Maple 16 or GAP for examples

(x11, x21, x31, x41, x51)
(N1)1−→ (x−111 , x21, x31, x41, x51)

(N2)3.1−→ (x−111 , x21, x31x
−1
11 , x41, x51)

(N1)1(N1)4−→ (x11, x21, x31x
−1
11 , x

−1
41 , x51)

(N2)2.4−→ (x11, x21x
−1
41 , x31x

−1
11 , x

−1
41 , x51)

(N1)4(N1)2−→ (x11, x41x
−1
21 , x31x

−1
11 , x41, x51)

(N2)1.2−→ (x11x41x
−1
21 , x41x

−1
21 , x31x

−1
11 , x41, x51)

(N2)4.2−→ (x11x41x
−1
21 , x41x

−1
21 , x31x

−1
11 , x

2
41x
−1
21 , x51)

(N1)5(N1)3−→ (x11x41x
−1
21 , x41x

−1
21 , x11x

−1
31 , x

2
41x
−1
21 , x

−1
51)

(N2)5.3−→ (x11x41x
−1
21 , x41x

−1
21 , x11x

−1
31 , x

2
41x
−1
21 , x

−1
51 x11x

−1
31)

(N1)5−→ (x11x41x
−1
21 , x41x

−1
21 , x11x

−1
31 , x

2
41x
−1
21 , x31x

−1
11 x51)

(N2)5.3−→ (x11x41x
−1
21 , x41x

−1
21 , x11x

−1
31 , x

2
41x
−1
21 , x31x

−1
11 x51x11x

−1
31)

(N2)1.3−→ (x11x41x
−1
21 x11x

−1
31 , x41x

−1
21 , x11x

−1
31 , x

2
41x
−1
21 , x31x

−1
11 x51x11x

−1
31)

(N1)2−→ (x11x41x
−1
21 x11x

−1
31 , x21x

−1
41 , x11x

−1
31 , x

2
41x
−1
21 , x31x

−1
11 x51x11x

−1
31)

(N2)2.3−→ (x11x41x
−1
21 x11x

−1
31 , x21x

−1
41 x11x

−1
31 , x11x

−1
31 , x

2
41x
−1
21 , x31x

−1
11 x51x11x

−1
31)

(N1)1(N1)3−→ ((x11x41x
−1
21 x11x

−1
31)−1, x21x

−1
41 x11x

−1
31 , x31x

−1
11 , x

2
41x
−1
21 , x31x

−1
11 x51x11x

−1
31)

(N1)4(N1)5−→ ((x11x41x
−1
21 x11x

−1
31)−1, x21x

−1
41 x11x

−1
31 , x31x

−1
11 , x21x

−2
41 , (x31x

−1
11 x51x11x

−1
31)−1)

Hence, the inverse automorphism of g11 is

g−111
: G1 → G1

x1 7→ (x1x4x
−1
2 x1x

−1
3)−1,

x2 7→ x2x
−1
4 x1x

−1
3 ,

x3 7→ x3x
−1
1 ,

x4 7→ x2x
−2
4 ,

x5 7→ (x3x
−1
1 x5x1x

−1
3)−1.

In GAP they define

x11:=x1^-1*x3*x2*x3;

x21:=x2*x3*x4^-1*x2*x3;

x31:=x3*x1^-1*x3*x2*x3;

x41:=x4^-1*x2*x3;

x51:=x3^-1*x5^-1*x3;

to apply the automorphism g11 on x1, x2, x3, x4 and x5 and they define

x11i:=(x11*x41*x21^-1*x11*x31^-1)^-1;

x21i:=x21*x41^-1*x11*x31^-1;

332

C.10. Example 9.0.7 calculated with GAP and Maple 16

x31i:=x31*x11^-1;

x41i:=x21*x41^-2;

x51i:=(x31*x11^-1*x51*x11*x31^-1)^-1;

to proof if g−111
is the correct inverse automorphism for g11 :

gap> x11i;

x1

gap> x21i;

x2

gap> x31i;

x3

gap> x41i;

x4

gap> x51i;

x5

The automorphism g22 is describable with Nielsen transformations, as follows:

(y1, y2, y3, y4)
[(N2)3.1]2−→ (y1, y2, y3y

2
1, y4)

(N1)2−→ (y1, y
−1
2 , y3y

2
1, y4)

[(N2)2.1]3−→ (y1, y
−1
2 y31, y3y

2
1, y4)

(N2)2.4−→ (y1, y
−1
2 y31y4, y3y

2
1, y4)

(N2)4.2−→ (y1, y
−1
2 y31y4, y3y

2
1, y4y

−1
2 y31y4)

(N2)1.3−→ (y1y3y
2
1, y
−1
2 y31y4, y3y

2
1, y4y

−1
2 y31y4)

Therefore, the automorphism is

g22 : G2 → G2

y1 7→ y1y3y
2
1,

y2 7→ y−12 y31y4,

y3 7→ y3y
2
1,

y4 7→ y4y
−1
2 y31y4.

For decryption Bob needs the inverse automorphism g−122
, which is describable with Nielsen

transformations in the following way

333

Appendix C. Calculations with Maple 16 or GAP for examples

(y11, y21, y31, y41)
(N1)2−→ (y11, y

−1
21 , y31, y41)

(N2)4.2−→ (y11, y
−1
21 , y31, y41y

−1
21)

(N1)3−→ (y11, y
−1
21 , y

−1
31 , y41y

−1
21)

(N2)1.3−→ (y11y
−1
31 , y

−1
21 , y

−1
31 , y41y

−1
21)

(N1)3(N1)1−→ (y31y
−1
11 , y

−1
21 , y31, y41y

−1
21)

[(N2)3.1]2−→ (y31y
−1
11 , y

−1
21 , y

2
31y
−1
11 y31y

−1
11 , y41y

−1
21)

(N1)2(N1)4−→ (y31y
−1
11 , y21, y

2
31y
−1
11 y31y

−1
11 , y21y

−1
41)

(N2)2.4−→ (y31y
−1
11 , y

2
21y
−1
41 , y

2
31y
−1
11 y31y

−1
11 , y21y

−1
41)

[(N2)2.1]3−→ (y31y
−1
11 , y

2
21y
−1
41 (y31y

−1
11)3, y231y

−1
11 y31y

−1
11 , y21y

−1
41)

(N1)1(N1)2(N1)4−→ (y11y
−1
31 , (y

2
21y
−1
41 (y31y

−1
11)3)−1, y231y

−1
11 y31y

−1
11 , y41y

−1
21);

hence it is

g−122
: G2 → G2

y1 7→ y1y
−1
3 ,

y2 7→ (y22y
−1
4 (y3y

−1
1)3)−1,

y3 7→ y23y
−1
1 y3y

−1
1 ,

y4 7→ y4y
−1
2 .

In GAP they define

y11:=y1*y3*(y1^2);

y21:=(y2^(-1))*(y1^3)*y4;

y31:=y3*(y1^2);

y41:=y4*(y2^(-1))*(y1^3)*y4;

to apply the automorphism g22 on y1, y2, y3 and y4 and they define

y11i:=y11*y31^-1;

y21i:=(y21^2*y41^-1*(y31*y11^-1)^3)^-1;

y31i:=y31^2*y11^-1*y31*y11^-1;

y41i:=y41*y21^-1;

to proof if g−122
is the correct inverse automorphism for g22 :

gap> y11i;

y1

gap> y21i;

y2

gap> y31i;

y3

gap> y41i;

y4

334

C.10. Example 9.0.7 calculated with GAP and Maple 16

For their alphabet A they need a Nielsen reduced set U ⊂ F with 2|A| elements. They choose

U = {ba2, cd, d2c−2, a−1b, a4b−1, b3a−2, bc3, bc−1bab−1, c2ba, c2dab−1, dabd−1a, a−1d3c−1,
a−1c−1bac−2, a2db2d−1}.

They prove in GAP, if this is a Nielsen reduced set. If the set U is used as free generating set
for a subgroup FU of F , then the operation

. FreeGeneratorsOfGroup(FU)

gives a Nielsen reduced generating set for FU :

FU:=Group(b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2, b*c^3,\

b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1, d*a*b*d^-1*a,\

a^-1*d^3*c^-1, a^-1*c^-1*b*a*c^-2, a^2*d*b^2*d^-1);;

gap> FU;

Group([b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2, b*c^3,\

b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1,d*a*b*d^-1*a,\

a^-1*d^3*c^-1, a^-1*c^-1*b*a*c^-2, a^2*d*b^2*d^-1])

gap> FreeGeneratorsOfGroup(FU);

[b*a^2, c*d, d^2*c^-2, a^-1*b, a^4*b^-1, b^3*a^-2, b*c^3,\

b*c^-1*b*a*b^-1, c^2*b*a, c^2*d*a*b^-1, d*a*b*d^-1*a,\

a^-1*d^3*c^-1, a^-1*c^-1*b*a*c^-2, a^2*d*b^2*d^-1]

For the ephemeral matrices from Alice she uses an abstract group FN of rank 3 with free gener-
ating set N = {N1, N2, N3} and the Nielsen reduced set is {N1N

2
2 , N2N3, N3N

2
1 , N

−1
1 N2N1N2}.

If this set is used as free generating set for a subgroup FN ′ =: H of F , then the operation

. FreeGeneratorsOfGroup(H)

gives a Nielsen reduced generating set for H:

N:=FreeGroup("N1", "N2", "N3");;

AssignGeneratorVariables(N);;

H:=Group(N1*N2^2, N2*N3, N3*N1^2, N1^-1*N2*N1*N2);;

gap> H;

Group([N1*N2^2, N2*N3, N3*N1^2, N1^-1*N2*N1*N2])

gap> FreeGeneratorsOfGroup(H);

[N1*N2^2, N2*N3, N3*N1^2, N1^-1*N2*N1*N2]

We take a closer look at the calculations which were executed with Maple 16.

> restart; with(LinearAlgebra):

For the faithful representation ϕ they need matrices in SL(2,Q) and generate them with
Theorem 4.2.18. For this they choose rational numbers ri =: r[i], 1 ≤ i ≤ 4, with the
properties (4.1). Hence, these rational numbers were chosen as follows and the
inequalities (4.1) were proved:

335

Appendix C. Calculations with Maple 16 or GAP for examples

> r[1] := 7/2;
> r[2] := 15/2;
> r[3] := 23/2;
> r[4] := 35/2;

r1 :=
7

2

r2 :=
15

2

r3 :=
23

2

r4 :=
35

2
> r[1]-2;
> r[2]-r[1]-3;
> r[3]-r[2]-3;
> r[4]-r[3]-3;

3

2
1

1

3

All results are greater than 0, hence they can generate with the numbers r1, r2, r3 and r4
matrices which generate a free subgroup of SL(2,Q) of rank 4. The matrices for Alice and Bob
are the following:

> M[1] := Matrix([[-r[1], r[1]^2-1], [1, -r[1]]]);
> M[2] := Matrix([[-r[2], r[2]^2-1], [1, -r[2]]]);
> M[3] := Matrix([[-r[3], r[3]^2-1], [1, -r[3]]]);
> M[4] := Matrix([[-r[4], r[4]^2-1], [1, -r[4]]]);

M1 :=


−7

2

45

4

1
−7

2



M2 :=


−15

2

221

4

1
−15

2



M3 :=


−23

2

525

4

1
−23

2



M4 :=


−35

2

1221

4

1
−35

2


Because of the faithful representation ϕ they define:

> a:=M[1];
> b:=M[2];
> c:=M[3];
> d:=M[4];

336

C.10. Example 9.0.7 calculated with GAP and Maple 16

a :=


−7

2

45

4

1
−7

2



b :=


−15

2

221

4

1
−15

2



c :=


−23

2

525

4

1
−23

2



d :=


−35

2

1221

4

1
−35

2



Now, they are able to calculate the elements of the Nielsen reduced set U ′:

> V1:=b.a.a;
> V2:=c.d;
> V3:=d.d.MatrixInverse(c).MatrixInverse(c);
> V4:=MatrixInverse(a).b;
> V5:=a.a.a.a.MatrixInverse(b);
> V6:=b.b.b.MatrixInverse(a).MatrixInverse(a);
> V7:=b.c.c.c;
> V8:=b.MatrixInverse(c).b.a.MatrixInverse(b);
> V9:=c.c.b.a;
> V10:=c.c.d.a.MatrixInverse(b);
> V11:=d.a.b.MatrixInverse(d).a;
> V12:=MatrixInverse(a).d.d.d.MatrixInverse(c);
> V13:=MatrixInverse(a).MatrixInverse(c).b.a.MatrixInverse(c).MatrixInve
> rse(c);
> V14:=a.a.d.b.b.MatrixInverse(d);

V1 :=

[
−563 1889

76 −255

]

V2 :=


665

2

−23229

4

−29
1013

2


V3 :=

 −84596
−1938405

2

4842 55474


V4 :=

[
15 −109
4 −29

]
V5 :=

[
−4575 −33209

1364 9901

]

337

Appendix C. Calculations with Maple 16 or GAP for examples

V6 :=


95009

2

638869

4

−6391
−42975

2



V7 :=


149079

2

−3415829

4

−10009
229335

2



V8 :=


10733

2

155745

4

−691
−10027

2



V9 :=


109363

2

−745561

4

−4773
32539

2


V10 :=

 −647496
−9392507

2

56518 409922


V11 :=

[
563077 −2011276
−32264 115245

]

V12 :=


729437

2

17021361

4

102117
2382893

2



V13 :=


−843429

2

−19325129

4

−122869
−2815245

2



V14 :=


3682603

2

128159475

4

−548633
−19093157

2


Encryption:
To write the message in sequences of matrices Alice uses the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod N)

between the alphabet elements ai ∈ A and the matrices Vj ∈ U ′.

For her first message sequence S′1 it is:
ILIK =̂ V2 V4 V9 V12

> s11:=V2;
> s12:=V4;
> s13:=V9;
> s14:=V12;

s11 :=


665

2

−23229

4

−29
1013

2



338

C.10. Example 9.0.7 calculated with GAP and Maple 16

s12 :=

[
15 −109
4 −29

]

s13 :=


109363

2

−745561

4

−4773
32539

2



s14 :=


729437

2

17021361

4

102117
2382893

2


For the second message sequence S′2 it is:
EB =̂ V3 V1

> s21:=V3;
> s22:=V1;

s21 :=

 −84596
−1938405

2

4842 55474


s22 :=

[
−563 1889

76 −255

]
and for the third message sequence S′3 it is:
OB =̂ V13 V1

> s31:=V13;
> s32:=V1;

s31 :=


−843429

2

−19325129

4

−122869
−2815245

2


s32 :=

[
−563 1889

76 −255

]
To generate ephemeral keys P1, P2, P3 and P4, Alice generates first matrices N1, N2, N3 also
with the Theorem 4.2.18 under considerations of the matrices M1, M2, M3 and M4. She proves
the inequalities (4.1):

> r[1] := 7/2;
> r[2] := 15/2;
> r[3] := 23/2;
> r[4] := 35/2;
> r[5] := 43/2;
> r[6] := 55/2;
> r[7] := 63/2;

r1 :=
7

2

r2 :=
15

2

r3 :=
23

2

339

Appendix C. Calculations with Maple 16 or GAP for examples

r4 :=
35

2

r5 :=
43

2

r6 :=
55

2

r7 :=
63

2
> r[1]-2;
> r[2]-r[1]-3;
> r[3]-r[2]-3;
> r[4]-r[3]-3;
> r[5]-r[4]-3;
> r[6]-r[5]-3;
> r[7]-r[6]-3;

3

2
1

1

3

1

3

1

All results are greater than 0, hence she can generate with the numbers r1, r2, . . . , r7 matrices
which generate a free subgroup of SL(2,Q) of rank 7. Now, her matrices for the generating set
N are:

> N[1] := Matrix([[-r[5], r[5]^2-1], [1, -r[5]]]);
> N[2] := Matrix([[-r[6], r[6]^2-1], [1, -r[6]]]);
> N[3] := Matrix([[-r[7], r[7]^2-1], [1, -r[7]]]);

N1 :=


−43

2

1845

4

1
−43

2



N2 :=


−55

2

3021

4

1
−55

2



N3 :=


−63

2

3965

4

1
−63

2


With the matrices in the generating set N she chooses the Nielsen reduced set
{P1, P2, P3, P4} as follows:

> P1:=N[1].N[2].N[2];
> P2:=N[2].N[3];
> P3:=N[3].N[1].N[1];
> P4:=MatrixInverse(N[1]).N[2].N[1].N[2];

P1 :=

 −57866
3180525

2

2694 −74036



340

C.10. Example 9.0.7 calculated with GAP and Maple 16

P2 :=


3243

2

−204199

4

−59
3715

2


P3 :=

 −71714
3080365

2

2278 −48924



P4 :=


621893

2

−34178721

4

14351
−788719

2


To encrypt her first message sequence S′1 she added the ephemeral matrix P1 to the sequence:

> y1:=s11;
> y2:=P1;
> y3:=s12;
> y4:=s13;
> y5:=s14;

y1 :=


665

2

−23229

4

−29
1013

2


y2 :=

 −57866
3180525

2

2694 −74036


y3 :=

[
15 −109
4 −29

]

y4 :=


109363

2

−745561

4

−4773
32539

2



y5 :=


729437

2

17021361

4

102117
2382893

2


The sequence S′1 is encrypted with the automorphism g11 as:

> q11:=MatrixInverse(y1).y3.y2.y3;
> q12:=y2.y3.MatrixInverse(y4).y2.y3;
> q13:=y3.MatrixInverse(y1).y3.y2.y3;
> q14:=MatrixInverse(y4).y2.y3;
> q15:=MatrixInverse(y3).MatrixInverse(y5).y3;

q11 :=


453037463005

2

−6566656978411

4

12969541169
−187990033891

2



q12 :=


−515958453260453803

2

7478679920196901999

4

12010438543010031
−174088097591505391

2



341

Appendix C. Calculations with Maple 16 or GAP for examples

q13 :=


3968201970233

2

−57518027287927

4

529958232109
−7681602973983

2



q14 :=


83406030953

2

−1208948133265

4

12234456659
−177335180327

2



q15 :=


−65207575

2

991192539

4

−4494561
68319905

2


For her second message sequence S′2 she added the ephemeral keys P2 and P3 to the sequence:

> y1:=s21;
> y2:=s22;
> y3:=P2;
> y4:=P3;

y1 :=

 −84596
−1938405

2

4842 55474


y2 :=

[
−563 1889

76 −255

]

y3 :=


3243

2

−204199

4

−59
3715

2


y4 :=

 −71714
3080365

2

2278 −48924


Thus, the sequence S′2 is encrypted with the automorphism g22 as:

> q21:=y1.y3.y1.y1;
> q22:=MatrixInverse(y2).y1.y1.y1.y4;
> q23:=y3.y1.y1;
> q24:=y4.MatrixInverse(y2).y1.y1.y1.y4;

q21 :=


−1104332496534507861

2

−25304312660337129571

4

31604200843034185
724168293536436571

2


q22 :=

[
−480689945680474129277 10323650084255317045974
−143263719821090419728 3076836797799093562123

]

q23 :=


22386390293811

2

512954405587601

4

−407276382779
−9332197468925

2


q24 :=

 −186180075388817073675749582
7997079898367833227219056023

2

5914022532266907628279666 −127013888603589241202576880



342

C.10. Example 9.0.7 calculated with GAP and Maple 16

The ephemeral keys P4, P2 and P3 are added to the sequence S′3:
> y1:=s31;
> y2:=P4;
> y3:=s32;
> y4:=P2;
> y5:=P3;

y1 :=


−843429

2

−19325129

4

−122869
−2815245

2



y2 :=


621893

2

−34178721

4

14351
−788719

2


y3 :=

[
−563 1889

76 −255

]

y4 :=


3243

2

−204199

4

−59
3715

2


y5 :=

 −71714
3080365

2

2278 −48924


Hence, the sequence S′3 is encrypted with the automorphism g31 as:

> q31:=MatrixInverse(y1).y3.y2.y3;
> q32:=y2.y3.MatrixInverse(y4).y2.y3;
> q33:=y3.MatrixInverse(y1).y3.y2.y3;
> q34:=MatrixInverse(y4).y2.y3;
> q35:=MatrixInverse(y3).MatrixInverse(y5).y3;

q31 :=


−1616087435846771117

2

10844781227098250059

4

70532776776146599
−473311354639843285

2



q32 :=


5117735040480436319307

2

−34342644872543531950151

4

118098476048874935309
−792501759245893528165

2



q33 :=


1176330057042013989893

2

−7893782128685642713947

4

−79397180640094685191
532796082062893539917

2


q34 :=

 −3473922528580
23311814068153

2

−110342647234 370228071430


q35 :=

 30697842540
−205999121749

2

9149177258 −30697963178



343

Appendix C. Calculations with Maple 16 or GAP for examples

Decryption:

For the decryption Bob applies the inverse automorphism g−1ij on the ciphertext sequences C ′i.

He starts with g−111
and the ciphertext sequence C ′1:

> a11:=q11.q14.MatrixInverse(q12).q11.MatrixInverse(q13):
> a111:=MatrixInverse(a11);
> b11:=q12.MatrixInverse(q14).q11.MatrixInverse(q13);
> c11:=q13.MatrixInverse(q11);
> d11:=q12.MatrixInverse(q14).MatrixInverse(q14);
> e11:=q13.MatrixInverse(q11).q15.q11.MatrixInverse(q13):
> e111:=MatrixInverse(e11);

a111 :=


665

2

−23229

4

−29
1013

2



b11 :=

 −57866
3180525

2

2694 −74036


c11 :=

[
15 −109
4 −29

]

d11 :=


109363

2

−745561

4

−4773
32539

2



e111 :=


729437

2

17021361

4

102117
2382893

2


Next, he applies g−122

on the ciphertext sequence C ′2:

> a22:=q21.MatrixInverse(q23);
> b22:=q22.q22.MatrixInverse(q24).q23.MatrixInverse(q21).q23.MatrixInver
> se(q21).q23.MatrixInverse(q21):
> b222:=MatrixInverse(b22);
> c22:=q23.q23.MatrixInverse(q21).q23.MatrixInverse(q21);
> d22:=q24.MatrixInverse(q22);

a22 :=

 −84596
−1938405

2

4842 55474


b222 :=

[
−563 1889

76 −255

]

c22 :=


3243

2

−204199

4

−59
3715

2


d22 :=

 −71714
3080365

2

2278 −48924



344

C.10. Example 9.0.7 calculated with GAP and Maple 16

Finally, he applies g−131
= g−111

on the ciphertext sequence C ′3 and gets the following:

> a33:=q31.q34.MatrixInverse(q32).q31.MatrixInverse(q33):
> a333:=MatrixInverse(a33);
> b33:=q32.MatrixInverse(q34).q31.MatrixInverse(q33);
> c33:=q33.MatrixInverse(q31);
> d33:=q32.MatrixInverse(q34).MatrixInverse(q34);
> e33:=q33.MatrixInverse(q31).q35.q31.MatrixInverse(q33):
> e333:=MatrixInverse(e33);

a333 :=


−843429

2

−19325129

4

−122869
−2815245

2



b33 :=


621893

2

−34178721

4

14351
−788719

2


c33 :=

[
−563 1889

76 −255

]

d33 :=


3243

2

−204199

4

−59
3715

2


e333 :=

 −71714
3080365

2

2278 −48924


With the plaintext alphabet A and the assignment

ai=̂Vj ⇐⇒ j ≡ i (mod N),

for ai ∈ A and Vj ∈ U ′, he is able to reconstruct the message ILIKEBOB from Alice.

345

Appendix C. Calculations with Maple 16 or GAP for examples

C.11. Example 10.1.4 executed with GAP

For Example 10.1.4 we used the program GAP.

Alice defines the public parameters.

Let X = {x, y, z} be the free generating set for a free subgroup of rank 3:

LoadPackage("FGA");;

F:=FreeGroup("x", "y", "z");;

AssignGeneratorVariables(F);;

Additionally she defines the freely reduced word a := x2yz−1y and describes the automorphism
f with the following regular Nielsen transformation

(x, y, z)
[(N2)1.2]2−→ (xy2, y, z)

(N2)3.2−→ (xy2, y, zy)

(N1)3−→ (xy2, y, y−1z−1)

(N2)2.3−→ (xy2, z−1, y−1z−1);

hence the automorphism is

f : F → F

x 7→ xy2,

y 7→ z−1,

z 7→ y−1z−1

and she defines in GAP:

x1:=x*y^2;;

y1:=z^(-1);;

z1:=y^(-1)*z^(-1);;

Alice chooses as private key n = 7, hence she must calculate the automorphism f7. For this she
calculates in GAP:

#Calculate automorphism f^2=f^1(f^1)

x2:=x1*y1^2;;

y2:=z1^(-1);;

z2:=y1^(-1)*z1^(-1);;

gap> x2; y2; z2;

x*y^2*z^-2

z*y

z^2*y

#Calculate automorphism f^3=f^1(f^2)

x3:=x2*y2^2;;

y3:=z2^(-1);;

346

C.11. Example 10.1.4 executed with GAP

z3:=y2^(-1)*z2^(-1);;

gap> x3; y3; z3;

x*y^2*z^-1*y*z*y

y^-1*z^-2

(y^-1*z^-1)^2*z^-1

#Calculate automorphism f^5=f^2(f^3)

x5:=x3*y3^2*z3^(-2);;

y5:=z3*y3;;

z5:=z3^2*y3;;

gap> x5; y5; z5;

x*y^2*z^-1*y^2*z*(z*y)^2

y^-1*(z^-1*y^-1*z^-1)^2*z^-1

((y^-1*z^-1)^2*z^-1)^2*y^-1*z^-2

#Calculate automorphism f^7=f^2(f^5)

x7:=x5*y5^(2)*z5^(-2);;

y7:=z5*y5;;

z7:=z5^2*y5;;

gap> x7; y7; z7;

x*y^2*z^-1*y*(y*z)^2*(z*y*z^2*y)^2*z*y

y^-1*((z^-1*y^-1*z^-1)^2*y^-1*z^-1)^2*z^-1*y^-1*z^-2

(((y^-1*z^-1)^2*z^-1)^2*y^-1*z^-2)^2*y^-1*(z^-1*y^-1*z^-1)^2*z^-1

Thus, the automorphism f7 is

f7 : F → F

x 7→ xy2z−1y(yz)2(zyz2y)2zy,

y 7→ y−1((z−1y−1z−1)2y−1z−1)2z−1y−1z−2,

z 7→ (((y−1z−1)2z−1)2y−1z−2)2y−1(z−1y−1z−1)2z−1.

Her public key is c := f7(a):

c:=x7^2*y7*z7^(-2)*y7;;

gap> c;

(x*y^2*z^-1*y*(y*z)^2*(z*y*z^2*y)^2*z*y)^2*(z^2*y)^2*\

((z*y*z)^2*y*z)^2*z*y*z^2*y*z^-1

Bob is now able to send a message to Alice. Let m = z−2y2zx2y−1x−1 be the message for
Alice. He chooses the ephemeral key t = 5 and hence calculates the automorphism f5 in GAP
as follows:

m:=z^-2*y^2*z*x^2*y^-1*x^-1;;

347

Appendix C. Calculations with Maple 16 or GAP for examples

#Calculate automorphism f^2=f^1(f^1)

x2:=x1*y1^2;;

y2:=z1^(-1);;

z2:=y1^(-1)*z1^(-1);;

gap> x2; y2; z2;

x*y^2*z^-2

z*y

z^2*y

#Calculate automorphism f^3=f^1(f^2)

x3:=x2*y2^2;;

y3:=z2^(-1);;

z3:=y2^(-1)*z2^(-1);;

gap> x3; y3; z3;

x*y^2*z^-1*y*z*y

y^-1*z^-2

(y^-1*z^-1)^2*z^-1

#Calculate automorphism f^5=f^2(f^3)

x5:=x3*y3^2*z3^(-2);;

y5:=z3*y3;;

z5:=z3^2*y3;;

gap> x5; y5; z5;

x*y^2*z^-1*y^2*z*(z*y)^2

y^-1*(z^-1*y^-1*z^-1)^2*z^-1

((y^-1*z^-1)^2*z^-1)^2*y^-1*z^-2

Hence, the automorphism f5 is

f5 : F → F

x 7→ xy2z−1y2z(zy)2,

y 7→ y−1(z−1y−1z−1)2z−1,

z 7→ ((y−1z−1)2z−1)2y−1z−2.

He now calculates his ciphertext (c1, c2) for Alice with c1 = m · f5(c) and c2 = f5(a) in GAP:

#c22:=f^5(c)

c22:=(x5*y5^2*z5^(-1)*y5*(y5*z5)^2*(z5*y5*z5^2*y5)^2*z5*y5)^2*\

(z5^2*y5)^2*((z5*y5*z5)^2*y5*z5)^2*z5*y5*z5^2*y5*z5^(-1);;

c1:=m*c22;;

gap> c1;

z^-2*y^2*z*x^2*(y*z^-1)^2*((z^-1*y^-1*z^-2*y^-1)^2\

*z^-2*y^-1)^2*(z^-1*y^-1*z^-1)^2*z^-1*y^-1*((((z^-\

348

C.11. Example 10.1.4 executed with GAP

1*y^-1*z^-1)^2*y^-1*z^-1)^2*z^-1*y^-1*z^-1*y^-1*z^\

-1)^2*(z^-1*y^-1*z^-2*y^-1)^2*z^-1*y^-1*z^-1)^2*((\

z^-1*y^-1*z^-2*y^-1)^2*z^-2*y^-1)^2*(z^-1*y^-1*z^-\

1)^2*z^-1*x*y^2*z^-1*y*(z^-1*(((z^-1*y^-1*z^-2*y^-\

1)^2*z^-2*y^-1)^2*(z^-1*y^-1*z^-1)^2*z^-1*y^-1)^3*\

(z^-1*y^-1*z^-1)^2*y^-1*z^-1*((z^-1*y^-1*z^-2*y^-1\

)^2*z^-2*y^-1)^2*(z^-1*y^-1*z^-1)^2*y^-1)^3*z^-1*(\

(z^-1*y^-1*z^-2*y^-1)^2*z^-2*y^-1)^2*(z^-1*y^-1*z^\

-1)^2*y^-1*z^-1*y

#c2:=f^5(a)

c2:=x5^2*y5*z5^(-2)*y5;;

gap> c2;

(x*y^2*z^-1*y^2*z*(z*y)^2)^2*z^2*y*(z*y*z)^2*z*y*z^-1

Bob sends (c1, c2) to Alice. Alice gets the message m by calculating

m = c1 · (f7(c2))−1.

In GAP she computes:

#dc:=f^7(c2)

dc:=(x7*y7^2*z7^(-1)*y7^2*z7*(z7*y7)^2)^2*z7^2*y7*\

(z7*y7*z7)^2*z7*y7*z7^(-1);;

gap> dc;

(x*y*(y*z^-1)^2*((z^-1*y^-1*z^-2*y^-1)^2*z^-2*y^-1\

)^2*(z^-1*y^-1*z^-1)^2*z^-1*y^-1*((((z^-1*y^-1*z^-\

1)^2*y^-1*z^-1)^2*z^-1*y^-1*z^-1*y^-1*z^-1)^2*(z^-\

1*y^-1*z^-2*y^-1)^2*z^-1*y^-1*z^-1)^2*((z^-1*y^-1*\

z^-2*y^-1)^2*z^-2*y^-1)^2*(z^-1*y^-1*z^-1)^2*z^-1)\

^2*y^-1*(((z^-1*y^-1*z^-1)^2*y^-1*z^-1)^2*z^-1*y^-\

1*z^-1*y^-1*z^-1)^2*(z^-1*y^-1*z^-2*y^-1)^2*z^-1*y\

^-1*z^-1*((((z^-1*y^-1*z^-2*y^-1)^2*z^-2*y^-1)^2*(\

z^-1*y^-1*z^-1)^2*z^-1*y^-1)^2*((z^-1*y^-1*z^-1)^2\

*y^-1*z^-1)^2*z^-1*y^-1*z^-2*y^-1)^2*(((z^-1*y^-1*\

z^-1)^2*y^-1*z^-1)^2*z^-1*y^-1*z^-1*y^-1*z^-1)^2*(\

z^-1*y^-1*z^-2*y^-1)^2*z^-1*y^-1*z^-1*y

gap> dc^-1;

y^-1*(((((z*y)^2*z)^2*z*y*z)^2*z*y*(z*y*z)^2)^2*z*\

y*((z*y*z)^2*y*z)^2*z*y*z)^2*(z*y*(((z*y*z)^2*y*z)\

^2*z*y*z*y*z)^2*(z*y*z^2*y)^2*z)^2*y*(((((z^2*y)^2\

*z*y)^2*z^2*y*z*y)^2*z*(z*y*z^2*y)^2*z*y)^2*z*(z*y\

*z^2*y)^2*z^2*y*(((z*y*z)^2*y*z)^2*z*y*z*y*z)^2*(z\

*y*z^2*y)^2*z*(z*y^-1)^2*y^-1*x^-1)^2

349

Appendix C. Calculations with Maple 16 or GAP for examples

gap> c1*dc^-1;

z^-2*y^2*z*x^2*y^-1*x^-1

Finally, she reconstructs the correct message

z−2y2zx2y−1x−1.

350

C.12. Example 10.2.2 executed with GAP and Maple 16

C.12. Example 10.2.2 executed with GAP and Maple 16

In a challenge and response system, the prover and the verifier agree privately on a password
and a challenge automorphisms f . In this example they agree on the password P = Bob and
the challenge automorphism f is described with the regular Nielsen transformation

(x, y, z)
[(N2)1.2]2−→ (xy2, y, z)

(N2)3.2−→ (xy2, y, zy)

(N1)3−→ (xy2, y, y−1z−1)

(N2)2.3−→ (xy2, z−1, y−1z−1);

hence the automorphism is

f : F → F

x 7→ xy2,

y 7→ z−1,

z 7→ y−1z−1.

With the agreement on the automorphism f , it is known, that X = {x, y, z}. The prover should
verify himself to the verifier. For this, he sends the password P = Bob to the verifier. Now, the
verifier knows the corresponding challenge automorphism f to the password P and generates a
challenge for the prover. In this example, he chooses the natural number n = 7, the reduced
word w = x2y2z−1 and the following faithful representation

ϕ : F → SL(2,Q)

x 7→
(
−409 1394
120 −409

)
,

y 7→
(

435
2

−6479
4

−19 283
2

)
,

z 7→
(

16843
2

−113025
4

−1133 7603
2

)
.

The matrices ϕ(x), ϕ(y) and ϕ(z) generate a free group, because they were generated with
Theorem 4.2.18 and a Nielsen reduced set in G = 〈a, b, c | 〉 as follows:

The verifier uses Maple 16 and chooses the following rational elements r[1], r[2] and r[3] and
proves the inequalities (4.1) from Theorem 4.2.18:

> restart; with(LinearAlgebra):
> r[1] := 7/2;
> r[2] := 15/2;
> r[3] := 23/2;

r1 :=
7

2

r2 :=
15

2

r3 :=
23

2

351

Appendix C. Calculations with Maple 16 or GAP for examples

> r[1]-2;
> r[2]-r[1]-3;
> r[3]-r[2]-3;

3

2
1

1

All results are greater than 0, hence he can generate with the numbers r[1], r[2] and r[3]
matrices which generate a free subgroup of SL(2,Q) of rank 3. The verifier then gets with
Theorem 4.2.18 the following matrices M [1], M [2] and M [3], which generate a free group:

> M[1] := Matrix([[-r[1], r[1]^2-1], [1, -r[1]]]);
> M[2] := Matrix([[-r[2], r[2]^2-1], [1, -r[2]]]);
> M[3] := Matrix([[-r[3], r[3]^2-1], [1, -r[3]]]);

M1 :=


−7

2

45

4

1
−7

2



M2 :=


−15

2

221

4

1
−15

2



M3 :=


−23

2

525

4

1
−23

2


Due to the fact, that these matrices have a special look, the verifier uses a Nielsen reduced set
U with 3 elements in a free group G = 〈a, b, c | 〉 to generate a free subgroup of G. In GAP it
is:

LoadPackage("FGA");;

G:=FreeGroup("a", "b", "c");;

AssignGeneratorVariables(G);;

GG:=Group(a*b*a, c*b, b^2*a^2);;

gap> FreeGeneratorsOfGroup(GG);

[a*b*a, c*b, b^2*a^2]

With the operation

. FreeGeneratorsOfGroup(GG)

which returns a list of free Nielsen reduced generators, which defines a Nielsen reduced set of
the finitely generated subgroup GG of a free group. Thus, the verifier proved that

U = {aba, cb, b2a2}

is Nielsen reduced.

Therefore, with a := M [1], b := M [2] and c := M [3] he generates the elements
ϕ(x) = ϕ(aba) =: x1, ϕ(y) = ϕ(cb) =: y1 and ϕ(z) = ϕ(b2a2) =: z1, thus it is:

352

C.12. Example 10.2.2 executed with GAP and Maple 16

> x1:=M[1].M[2].M[1];
> y1:=M[3].M[2];
> z1:=M[2].M[2].M[1].M[1];

x1 :=

[
−409 1394

120 −409

]

y1 :=


435

2

−6479

4

−19
283

2



z1 :=


16843

2

−113025

4

−1133
7603

2


Hence, the above faithful representation ϕ is generated.

The verifier sends (ϕ,w, n) to the prover, with n = 7 and w = x2y2z−1.

The prover and the verifier perform now the same steps. They calculate ϕ(fn(w)).

First, they calculate the automorphism f7; for this they use GAP as follows:

#Calculate automorphism f^2=f^1(f^1)

x2:=x1*y1^2;;

y2:=z1^(-1);;

z2:=y1^(-1)*z1^(-1);;

gap> x2; y2; z2;

x*y^2*z^-2

z*y

z^2*y

#Calculate automorphism f^3=f^1(f^2)

x3:=x2*y2^2;;

y3:=z2^(-1);;

z3:=y2^(-1)*z2^(-1);;

gap> x3; y3; z3;

x*y^2*z^-1*y*z*y

y^-1*z^-2

(y^-1*z^-1)^2*z^-1

#Calculate automorphism f^5=f^2(f^3)

x5:=x3*y3^2*z3^(-2);;

y5:=z3*y3;;

z5:=z3^2*y3;;

gap> x5; y5; z5;

x*y^2*z^-1*y^2*z*(z*y)^2

y^-1*(z^-1*y^-1*z^-1)^2*z^-1

((y^-1*z^-1)^2*z^-1)^2*y^-1*z^-2

353

Appendix C. Calculations with Maple 16 or GAP for examples

#Calculate automorphism f^7=f^2(f^5)

x7:=x5*y5^(2)*z5^(-2);;

y7:=z5*y5;;

z7:=z5^2*y5;;

gap> x7; y7; z7;

x*y^2*z^-1*y*(y*z)^2*(z*y*z^2*y)^2*z*y

y^-1*((z^-1*y^-1*z^-1)^2*y^-1*z^-1)^2*z^-1*y^-1*z^-2

(((y^-1*z^-1)^2*z^-1)^2*y^-1*z^-2)^2*y^-1*(z^-1*y^-1*z^-1)^2*z^-1

Therefore, the automorphism f7 is

f7 : F → F

x 7→ xy2z−1y(yz)2(zyz2y)2zy,

y 7→ y−1((z−1y−1z−1)2y−1z−1)2z−1y−1z−2,

z 7→ (((y−1z−1)2z−1)2y−1z−2)2y−1(z−1y−1z−1)2z−1.

They need the element r := f7(x2y2z−1):

r:=x7^2*y7^2*z7^-1;;

gap> r;

x*y^2*z^-1*y*(y*z)^2*(z*y*z^2*y)^2*z*y*x*y^2*z^-1*y^2*(z*y*z)^2*y

With the element r they can now calculate the matrix M = ϕ(f7(x2y2z−1)) = ϕ(r). Thus, they
use Maple 16 with the matrices x1, x2 and x3:

> x1:=M[1].M[2].M[1];
> y1:=M[3].M[2];
> z1:=M[2].M[2].M[1].M[1];

x1 :=

[
−409 1394

120 −409

]

y1 :=


435

2

−6479

4

−19
283

2



z1 :=


16843

2

−113025

4

−1133
7603

2


Now, M can be calculated as follows:

> M:=x1.y1.y1.MatrixInverse(z1).y1.y1.z1.y1.z1.z1.y1.z1.z1.y1.z1.y1.z1.z1.
> y1.z1.y1.x1.y1.y1.MatrixInverse(z1).y1.y1.z1.y1.z1.z1.y1.z1.y1;

354

C.12. Example 10.2.2 executed with GAP and Maple 16

M := [23841548704365461063218823154411079276122356828819682877543\
05517896347784578880505953540504181284250715226083,−17755233\
53499978017039773651578189514853519664889709072698793500963\
8424849031800573503371171870460697578430073]

[−6995085008480279366250726044105857770410774036773809665079\
93357004520123633034515140714187153570659417305932, 52093666\
17194712302044067796474373049405262712671263897905945954612\
344636304031828987283471508883904579622639]

Thus, the response is the matrix M =

(
M1,1,M1,2

M2,1,M2,2

)
with

M1,1 = 2384154870436546106321882315441107927612235682881968287754305517896347784578880505953540504181284250715226083

M1,2 = −17755233534999780170397736515781895148535196648897090726987935009638424849031800573503371171870460697578430073
M2,1 = −699508500848027936625072604410585777041077403677380966507993357004520123633034515140714187153570659417305932
M2,2 = 5209366617194712302044067796474373049405262712671263897905945954612344636304031828987283471508883904579622639.

If the challenge is to give the last 10 digits of M2,2, then the response is only 4579622639.
The verifier compares the response with his result. If the response is correct, the prover is
verified by the verifier.

355

Bibliography

[AFR05] P. Ackermann, B. Fine and G. Rosenberger, On surface groups: Motivating ex-
amples in combinatorial group theory, LMS Lecture Note Series 339, Groups St.
Andrews vol. 1 (2005), 126–170.

[Atk89] K. Atkinson, An introduction to numerical analysis, 2nd edition, John Wiley &
Sons, 1989.

[BBFT10] G. Baumslag, Y. Bryiukov, B. Fine and D. Troeger, Challenge response password
security using combinatorial group theory, De Gruyter Groups Complexity Cryp-
tology 2 (2010), 67–81.

[Bea83] A. F. Beardon, The Geometry of Discrete Groups, volume 91 of Graduate Texts
in Mathematics, Springer Verlag, 1983.

[BF08] G. Baumslag and B. Fine, Augmented rings, matrices and public key cryptogra-
phy: I, private communication (notes from 2008).

[BFKR15] G. Baumslag, B. Fine, M. Kreuzer and G. Rosenberger, A course in mathematical
cryptography, De Gruyter, 2015.

[BH93] B. Brink and R. B. Howlett, A finiteness property and an automatic structure for
Coxeter groups, Mathematische Annalen 296 (1993), 179–190.

[BL90] J. Benaloh and J. Leichter, Generalized secret sharing and monotone functions,
CRYPTO ’88 Proceedings on Advances in Cryptology, Springer Verlag New York
(1990), 27–35.

[Bla79] G. Blakley, Safeguarding cryptographic keys, Proceedings of the National Com-
puter Conference 48 (1979), 313–317.

[BMS02] A. V. Borovik, A. G. Myasnikov and V. Shpilrain, Measuring sets in infinite groups,
Contemporary Mathematics 298 (2002), 21–42.

[BNS10] A. Beutelspacher, H. B. Neumann and T. Schwarzpaul, Kryptografie in Theorie
und Praxis, 2nd edition, Vieweg+Teubner, 2010.

[Bos08] S. Bosch, Lineare Algebra, 4th edition, Springer Verlag, 2008.

[BS65] H. Behnke and F. Sommer, Theorie der analytischen Funktionen einer komplexen
Veränderlichen, 3rd edition, Springer Verlag, 1965.

[Buc10] J. Buchmann, Einführung in die Kryptographie, Springer Verlag, 2010.

[CFMRZ16] C. S. Chum, B. Fine, A. I. S. Moldenhauer, G. Rosenberger and X. Zhang, On
secret sharing protocols, Contemporary Mathematics (to appear 2016).

[CFRZ12] C. S. Chum, B. Fine, G. Rosenberger and X. Zhang, A proposed alternative to the
shamir secret sharing scheme, Contemporary Mathematics 582 (2012), 47–50.

357

Bibliography

[CgRR08] T. Camps, V. große Rebel and G. Rosenberger, Einführung in die kombinatorische
und die geometrische Gruppentheorie, Berliner Studienreihe zur Mathematik Band
19, Heldermann Verlag, 2008.

[CK02] P. Clote and E. Kranakis, Boolean functions and computation models, Springer
Verlag, 2002.

[Dav73] M. Davis, Hilbert’s Tenth Problem is Unsolvable, The American Mathematical
Monthly 80 (1973), no. 3, 233–269.

[Deh11] M. Dehn, Über unendliche diskontinuierliche Gruppen, Mathematische Annalen
71 (1911), 116–144.

[DH76] W. Diffie and M. E. Hellman, New directions in cryptography, IEEE Transactions
on Information Theory IT 22 (1976), 644–654.

[DKR13] V. Diekert, M. Kufleitner and G. Rosenberger, Diskrete algebraische Methoden,
De Gruyter, 2013.

[EKLG14] B. Eick, M. Kirschmer and C. Leedham-Green, The constructive membership prob-
lem for discrete free subgroups of rank 2 of SL2(R), LMS Journal of Computation
and Mathematics 17 (2014), 345–359.

[ElG85] T. ElGamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory IT-31 (1985), 469–473.

[EMNW11] G. Engeln-Müllges, K. Niederdrenk and R. Wodicka, Numerik-Algorithmen, Ver-
fahren, Beispiele, Anwendungen, 10th revised and extended edition, Springer Ver-
lag, 2011.

[FGMRS14] B. Fine, A. Gaglione, A. Myasnikov, G. Rosenberger and D. Spellman, The Ele-
mentary Theory of Groups, De Gruyter, 2014.

[FHKR11] B. Fine, M. Habeeb, D. Kahrobaei and G. Rosenberger, Aspects of nonabelian
group based cryptography: A survey and open problems, JP Journal of Algebra,
Number Theorie and Applications 21 (2011), 1–40.

[FKIMR15] B. Fine, G. Kern-Isberner, A. I. S. Moldenhauer and G. Rosenberger, On the
Generalized Hurwitz Equation and the Baragar-Umeda Equation, Results in Math-
ematics 69 (2015), 69–92.

[FKR14] B. Fine, M. Kreuzer and G. Rosenberger, Faithful real representation of cyclically
pinched one-relator groups, International Journal of Group Theory 3 (2014), no. 1,
1–8.

[FMR13] B. Fine, A. I. S. Moldenhauer and G. Rosenberger, A secret sharing scheme based
on the Closest Vector Theorem and a modification to a private key cryptosystem,
De Gruyter Groups Complexity Cryptology 5 (2013), 223–238.

[FR99] B. Fine and G. Rosenberger, Algebraic Generalizations of Discrete Groups: A Path
to Combinatorial Group Theory through One-Relator Products, CRC Press, 1999.

[Fis10] G. Fischer, Lineare Algebra, 17th edition, Vieweg+Teubner Verlag, 2010.

[GAP15] GAP, Version 4.7.7 of 13-feb-2015 (free software, GPL), http://www.

gap-system.org (2015).

358

http://www.gap-system.org
http://www.gap-system.org

Bibliography

[GS07] Y. Gurevich and P. Schupp, Membership problem for the modular group, Slam J.
Comput. 37 (2007), no. 2, 425–459.

[Hil02] D. Hilbert, Mathematical problems, Bulletin of the American Mathematical Society
8 (1902), 437–479.

[HKKS13] M. Habeeb, D. Kahrobaei, C. Koupparis and V. Shpilrain, Public key exchange
using semidirect product of (semi)groups, ACNS 2013, Lecture Notes in Computer
Science 7954 (2013), 475–486.

[HPS08] J. Hoffstein, J. Pipher and J. H. Silverman, An introduction to mathematical cryp-
tography, Springer Verlag, 2008.

[ISN87] M. Ito, A. Saito and T. Nishizeki, Secret sharing scheme realizing general access
structure, IEEE Global Telecommunications Conference (1987), 99–102.

[ISN93] M. Ito, A. Saito and T. Nishizeki, Multiple assignment scheme for sharing secret,
Journal of Cryptology (1993), 15–20.

[Jan70] G. J. Janusz, Faithful representation of p-groups at characteristic p, Journal of
Algebra 15 (1970), 335–351.

[JS06] J. C. Jantzen and J. Schwermer, Algebra, Springer Verlag, 2006.

[Kah96] D. Kahn, The codebreakers: The comprehensive history of secret communication
from ancient times to the internet, Scribner, 1996.

[KK06] D. Kahrobaei and B. Khan, A non-commutative generalization of ElGamal key
exchange using polycyclic groups, Proceeding of IEEE, GLOBECOM (2006), 1–5.

[KK12] D. Kahrobaei and C. Koupparis, Non-commutative digital signatures, De Gruyter
Groups Complexity Cryptology 4 (2012), 377–384.

[KKS13] D. Kahrobaei, C. Koupparis and V. Shpilrain, Public key exchange using matrices
over group rings, De Gruyter Groups Complexity Cryptology 5 (2013), 97–115.

[KLS15] D. Kahrobaei, H. T. Lam and V. Shpilrain, Public key exchange using extensions
by endomorphisms and matrices over a galois field, preprint http://www.sci.

ccny.cuny.edu/~shpil/res.html, 2015.

[KMU14] M. Kreuzer, A. D. Myasnikov and A. Ushakov, A linear algebra attack to group-
ring-based key exchange protocols, Applied Cryptography and Network Security
vol. 8479 of the series Lecture Notes in Computer Science (2014), 37–43.

[Kna92] A. W. Knapp, Elliptic curves, Princeton University Press, 1992.

[Kob87] N. Koblitz, A course in number theory and cryptography, Springer Verlag, 1987.

[KS16] D. Kahrobaei and V. Shpilrain, Using semidirect product of (semi)groups in public
key cryptography, ArXiv: http://arxiv.org/abs/1604.05542 (2016).

[Leh64] J. Lehner, Discontinuous groups and automorphic functions, Mathematical Sur-
veys Number VIII, American Mathematical Society, Providence, Rhode Island,
1964.

[Lig06] A. Ligêza, Lokal foundations for rule-based systems, vol. 11, Springer Verlag, 2006.

359

http://www.sci.ccny.cuny.edu/~shpil/res.html
http://www.sci.ccny.cuny.edu/~shpil/res.html
http://arxiv.org/abs/1604.05542

Bibliography

[Liu68] C. L. Liu, Introduction to combinatorial mathematics, McGraw-Hill, 1968.

[LS77] R. C. Lyndon and P. E. Schupp, Combinatorial group theory, Ergebnisse der Math-
ematik und ihre Grenzgebiete 89, Springer Verlag, 1977.

[Mag73] W. Magnus, Rational Representations of Fuchsian Groups and Non-parabolic Sub-
groups of the Modular Group, Nachrichten der Akademie der Wissenschaft in
Göttingen (1973), 179–189.

[Mat70] Y. Matiyasevich, Solution of the Tenth Problem of Hilbert, Mat. Lapok 21 (1970),
83–87.

[Mat96] Y. Matiyasevich, Hilbert’s Tenth Problem: What can we do with Dio-
phantine equations?, http://logic.pdmi.ras.ru/~yumat/personaljournal/

reversechronocontent.html, 1996.

[MKS66] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and
Applied Mathematics, A Series of Texts and Monographs Volume XIII, John Wiley
& Sons, 1966.

[Mol12] A. I. S. Moldenhauer, Untersuchungen der Secret-Sharing-Protokolle von Shamir
und Panagopoulos, sowie die Entwicklung eines neuen Secret-Sharing-Protokolls,
Master’s Thesis, University of Hamburg, 2012.

[Mol15] A. I. S. Moldenhauer, A group theoretical ElGamal cryptosystem based on a semidi-
rect product of groups and a proposal for a signature protocol, Contemporary Math-
ematics 633 (2015), 97–113.

[MR15] A. I. S. Moldenhauer and G. Rosenberger, Cryptographic protocols based on Nielsen
transformations, ArXiv: https://arxiv.org/abs/1504.03141v1 (2015).

[MR16] A. I. S. Moldenhauer and G. Rosenberger, Cryptosystems using automorphisms of
finitely generated free groups, Tributes 29, Computational Models of Rationality
(2016), 31–51.

[MS03] A. G. Myasnikov and V. Shpilrain, Automorphic orbits in free groups, Journal of
Algebra 269 (2003), 18–27.

[MSU08] A. Myasnikov, V. Shpilrain and A. Ushakov, Group-based cryptography, Advanced
Courses in Mathematics - CRM Barcelona, Birkhäuser Basel, 2008.

[MvOV97] A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of applied cryp-
tography, CRC Press LLC, 1997.

[MW85] M. R. Magyarik and N. R. Wagner, A public key cryptosystem based on the word
problem, Advances in Cryptology - CRYPTO ’84, Lecture Notes in Computer
Science 196, Springer Verlag (1985), 19–36.

[MW97] A. J. Menezes and Y.-H. Wu, The discrete logarithm problem in GL(n, q), Ars
Combinatoria 47 (1997), 23–32.

[Pan10] D. Panagopoulos, A secret sharing scheme using groups, ArXiv: http://arxiv.

org/abs/1009.0026 (2010).

[PH78] S. C. Pohlig and M. E. Hellman, An improved algorithm for computing logarithms
over GF(p) and its cryptographic significance, IEEE Transactions on Information
Theory 24 (1978), 106–110.

360

http://logic.pdmi.ras.ru/~yumat/personaljournal/reversechronocontent.html
http://logic.pdmi.ras.ru/~yumat/personaljournal/reversechronocontent.html
https://arxiv.org/abs/1504.03141v1
http://arxiv.org/abs/1009.0026
http://arxiv.org/abs/1009.0026

Bibliography

[Rom13a] V. A. Roman’kov, Algebraic cryptography, Omsk State Dostoevsky University
(2013).

[Rom13b] V. A. Roman’kov, Cryptanalysis of some schemes applying automorphisms, Prik-
ladnaya Discrenaya Matematika 3 (2013), 35–51.

[Rom15] V. A. Roman’kov, Linear decomposition attack on public key exchange protocols us-
ing semidirect products of (semi)groups, ArXiv: https://arxiv.org/abs/1501.

01152v1 (2015).

[Rot95] J. J. Rotman, An introduction to the theory of groups, Springer Verlag, 1995.

[RSA78] R. L. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Commun. ACM 21 (1978), no. 2, 120–126.

[Sac96] V. N. Sachkov, Combinatorial methods in discrete mathematics, Cambridge Uni-
versity Press, 1996.

[Sha79] A. Shamir, How to share a secret, Communications of the ACM 22 (1979), no. 11,
612–613.

[Sho96] P. W. Shor, Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer, ArXiv: https://arxiv.org/abs/quant-ph/

9508027 (1996).

[Sil09] J. H. Silverman, The arithmetic of elliptic curves, Springer Verlag, 2009.

[Sin06] S. Singh, Geheime Botschaften: Die Kunst der Verschlüsselung von der Antike bis
in die Zeiten des Internets, Deutscher Taschenbuch Verlag, 2006.

[Spe82] E. Sperner, Ein Satz über Untermengen einer endlichen Menge, Mathematische
Zeitschrift 27 (1982), 544–548.

[Ste89] I. A. Stewart, Obtaining Nielsen reduced sets in free groups, Technical Report
Series No. 293, 1989.

[VS15] M. I. G. Vasco and R. Steinwandt, Group theoretical cryptography, CRC Press,
2015.

[vTJ11] H. C. A. van Tilborg and S. Jajodia, Encyclopedia of Cryptography and Security,
Springer Verlag, 2011.

[Wat00] J. Watrous, Succinct quantum proofs for properties of finite groups, Proceedings
of the 41st Annual IEEE Symposium on Foundations of Computer Science (2000),
537–546.

[Weg87] I. Wegener, The complexity of boolean functions, Stuttgart: BG Teubner, 1987.

361

https://arxiv.org/abs/1501.01152v1
https://arxiv.org/abs/1501.01152v1
https://arxiv.org/abs/quant-ph/9508027
https://arxiv.org/abs/quant-ph/9508027

362

Danksagung

Meinem Doktorvater Prof. Dr. Gerhard Rosenberger bin ich zutiefst dankbar für seine en-
gagierte und hilfreiche Betreuung. Er hat mein Interesse an der gruppenbasierten Kryptology
entfacht und durch das Masterstudium hindurch gefördert. Für die hervorragende Unterstützung
während der Promotionsphase bin ich ihm sehr verbunden. Seine Tür stand mir stets offen und
die Diskussionen waren immer sehr fruchtbar und spannend.
Ich möchte Prof. Dr. Ulf Kühn dafür danken, dass er mein Interesse an der mathematischen
Kryptology schon im Bachelorstudium geweckt hat und für seine Unterstützung während der
Promotionsphase.

Ich danke dem Team von Pro Exzellenzia für die finanzielle Unterstützung und deren hervorra-
gendes Programm, das mich durch hilfreiche Workshops, Coachings und Netzwerkveranstaltun-
gen während meiner Promotionsphase gestärkt und unterstützt hat.

Nicole Beisiegel, Mirjam Braßler, Veronika Altpeter und Britta Moldenhauer danke ich für ihr
sorgfältiges Lesen und ihren Anmerkungen zu meiner Arbeit.
Markus Nikolaus danke ich für seine Geduld und sein Verständnis während dieser besonderen
Zeit.

Meiner Familie bin ich dankbar für die Unterstützung während meines gesamten Studiums.
Insbesondere möchte ich meinen Eltern für ihr Verständnis, ihre Ruhe und ihr offenes Ohr
danken.

363

Zusammenfassung

Das Thema dieser Arbeit ist angesiedelt in dem Gebiet der mathematischen Kryptologie, ins-
besondere in der gruppenbasierenden Kryptologie. Wir erweitern bestehende kryptographische
Protokolle, entwickeln neue kryptographische Protokolle bezüglich des mathematischen Hinter-
grundes und geben Modifikationen für diese an. Erweitert wird die Arbeit durch Kryptoana-
lysen und Beispiele. Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von neuen kryp-
tographischen Protokollen basierend auf nichtkommutativen Gruppen und Techniken, die typis-
cherweise in der kombinatorischen Gruppentheorie Anwendung finden. Es werden Automorphis-
men von endlich erzeugten freien Gruppen genutzt, die mit Hilfe von Nielsen-Transformationen
oder Whitehead-Automorphismen erzeugt werden können. Mit der Hilfe von Whitehead-Auto-
morphismen entwickeln wir einen Vorschlag, um zufällig Automorphismen der Automorphis-
mengruppe Aut(F) zu erzeugen, hierbei ist F eine endlich erzeugte freie Gruppe.
Es werden insgesamt zwölf kryptographische Protokolle vorgestellt, die für diese Arbeit en-
twickelt wurden. Darunter sind zwei Erweiterungen eines (n, t)-Secret-Sharing-Verfahrens, das
auf einer Idee von C. S. Chum, B. Fine, G. Rosenberger und X. Zhang basiert. Sie beruhen
auf dem Dichtesten-Vektor-Theorem in einem euklidischen Vektorraum. Die erste Erweiterung
(Protokoll 1) ist ein symmetrisches Kryptosystem. Die zweite ist ein Challenge-and-Response-
Verfahren (Protokoll 2), das durch eine Variation auch als Zwei-Wege-Authentifizierung genutzt
werden kann. Weiterhin werden zwei Erweiterungen des HKKS-Schlüsselaustausch-Protokolls
von M. Habbeb, D. Kahrobaei, C. Koupparis und V. Shpilrain gegeben. Das HKKS-Schlüssel-
austausch-Protokoll nutzt semidirekte Produkte von (Halb-)Gruppen und wird zu einem ElGa-
mal ähnlichen asymmetrischen Kryptosystem (Protokoll 3) sowie zu einem Signatur-Protokoll
(Protokoll 4) erweitert. Aktuell wird an dem HKKS-Schlüsselaustausch-Protokoll geforscht, so
gibt es Angriffe basierend auf der linearen Algebra und es wird nach passenden Plattformen für
dieses Verfahren gesucht. Diese Forschung betrifft auch das ElGamal ähnliche asymmetrische
Kryptosystem und das Signatur-Protokoll. Ein kurzer Überblick über die Forschung zum HKKS-
Schlüsselaustausch-Protokoll wird gegeben.
Darüber hinaus wird ein rein kombinatorisches Secret-Sharing-Verfahren (Protokoll 5) vorge-
stellt. Dieses nutzt die Verteilung der Geheimnisse, wie sie D. Panagopoulos für ein (n, t)-
Secret-Sharing-Verfahren erklärt. Wir zeigen, dass diese Verteilung der Geheimnisse, nach
D. Panagopoulos, ein Spezialfall eines Multiple-Assignment-Verfahrens ist, das von M. Ito,
A. Saito und T. Nishizeki eingeführt wird. Des Weiteren wird gezeigt, dass das vorgestellte kom-
binatorische Secret-Sharing-Protokoll ähnlich zu einer Variation eines Secret-Sharing-Protokolls
von J. Benaloh und J. Leichter ist. Die Idee der Erweiterung des kombinatorischen Verfahrens
durch die Benutzung von Automorphismen von endlich erzeugten freien Gruppen führt zu
zwei neuen Secret-Sharing-Verfahren. Ein Vergleich zu Shamirs Secret-Sharing-Verfahren wird
gegeben. Das erste der beiden neuen Secret-Sharing-Verfahren, nutzt eine endlich erzeugte freie
Gruppe F , eine endlich erzeugte freie Untergruppe in der SL(2,Q) und Nielsen-Transformationen
(Protokoll 6). Es bildet die Basis für die Protokolle 7-12, die auch auf der kombina-
torischen Gruppentheorie basieren. Das andere Secret-Sharing-Verfahren (Protokoll 7) be-
nutzt eine endlich erzeugte freie Gruppe F = 〈X | 〉, eine Nielsen reduzierte Menge U 6= X
und eine Nielsen äquivalente Menge V zu U und gibt somit den abschließenden Input für die
neu entwickelten kryptographischen Protokolle 8-12, die das Hauptergebnis dieser Arbeit
darstellen. Es war möglich zwei symmetrische Kryptosysteme mit ähnlichen Modifikationen
(Protokoll 8 und Protokoll 9), ein weiteres symmetrische Kryptosysteme (Protokoll 10),

364

ein ElGamal ähnliches asymmetrisches Kryptosystem (Protokoll 11) und ein Challenge-and-
Response-Protokoll (Protokoll 12) neu zu entwickeln, die alle die kombinatorische Grup-
pentheorie und Automorphismen auf endlich erzeugten freien Gruppen nutzen. Je nach Pro-
tokoll beruht die Sicherheit auf einem linearen Kongruenzgenerator, dem diskreten Logarithmus-
Problem für zyklische Untergruppen der Automorphismengruppe einer endlich erzeugten freien
Gruppe, der unbekannten algorithmischen Lösung des (konstruktiven) Untergruppenzugehörigkeit-
problems in Matrixgruppen über rationalen Zahlen oder dem zehnten Problem von Hilbert.

365

366

Abstract

The topic of this thesis is established in the area of mathematical cryptology, more precisely
in group based cryptology. We give extensions of cryptographic protocols, develop new crypto-
graphic protocols concerning the mathematical background and give modifications of them. In
addition cryptographic analysis as well as examples are given. The focus lays on the development
of new cryptographic protocols using non-commutative groups and of techniques, which are typ-
ically studied in combinatorial group theory. Automorphisms on finitely generated free groups
are used, which can be generated by Nielsen transformations or Whitehead-Automorphisms.
With the help of the Whitehead-Automorphisms we develop an approach for choosing automor-
phisms randomly of the automorphism group Aut(F), with F a finitely generated free group.
Altogether twelve cryptographic protocols are explained. Among these are two extensions of
a (n, t)-secret sharing protocol, which is introduced by C. S. Chum, B. Fine, G. Rosenberger
and X. Zhang. Both extensions depend on the Closest Vector Theorem in a real inner product
space. The first one (Protocol 1) is a symmetric key cryptosystem and the second one is a
challenge and response system (Protocol 2), which can be used by a variation as a two-way
authentication. Furthermore, the HKKS-key exchange protocol by M. Habbeb, D. Kahrobaei,
C. Koupparis and V. Shpilrain, which uses semidirect products of (semi)groups, is extended to an
ElGamal like public key cryptosystem (Protocol 3) and to a signature protocol (Protocol 4).
There is an ongoing research about the HKKS-key exchange protocol with linear algebra at-
tacks as well as research about suitable platforms, which also affects the ElGamal like public
key cryptosystem and the signature protocol. A short overview of the research is given in this
thesis.
Furthermore, a purely combinatorial secret sharing scheme (Protocol 5) is introduced, which
uses a share distribution method explained by D. Panagopoulos for a (n, t)-secret sharing scheme.
We show that this share distribution method is a special case of a multiple assignment scheme
introduced by M. Ito, A. Saito and T. Nishizeki. Furthermore, the introduced combinatorial
secret sharing protocol is shown to be similar to a variation of a secret sharing protocol ex-
plained by J. Benaloh and J. Leichter. The idea of enhancing the combinatorial secret sharing
scheme by using automorphisms on finitely generated free groups leads to two new secret sharing
schemes. In addition a comparison to Shamir’s secret sharing scheme is given. The first one is a
secret sharing scheme using a finitely generated abstract free group F , a finitely generated free
subgroup in SL(2,Q) and Nielsen transformations (Protocol 6). Protocol 6 is the basis for
Protocol 7-12, which are also based on combinatorial group theory. The other secret sharing
scheme (Protocol 7) uses a finitely generated free group F = 〈X | 〉, a Nielsen reduced set
U 6= X and a Nielsen equivalent set V to U and gives therefore the final input for the newly
developed cryptographic Protocols 8-12, which are the main result in this thesis. Two new
private key cryptosystems with similar modifications (Protocol 8 and Protocol 9) were de-
veloped, another new private key cryptosystem (Protocol 10), a new ElGamal like public key
cryptosystem (Protocol 11) and a new challenge and response system (Protocol 12), which
all use the combinatorial group theory and automorphisms on finitely generated free groups.
Depending on the protocols the security is based on a linear congruence generator, the discrete
logarithm problem in cyclic subgroups of the automorphism group of a finitely generated free
group, the unknown algorithmic solution of the (constructive) membership problem in matrix
groups over the rational numbers or Hilbert’s Tenth Problem.

367

368

Eidesstattliche Versicherung

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift selbst verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe.

Hamburg, 23.08.2016

369

	Introduction
	Cryptology and cryptographic protocols
	Examples of some known cryptographic protocols
	Diffie-Hellman key exchange protocol
	ElGamal public key cryptosystem
	Pohlig-Hellman private key cryptosystem
	RSA public key cryptosystem

	Outline of this thesis and summary of results
	On the evolution of the thesis
	Summary of the chapters and developed cryptographic protocols
	Assessment of the results

	Suggestions for other platform groups instead of finitely generated free groups
	Open questions and further research for cryptographic protocols based on combinatorial group theory

	Inner product spaces and cryptography
	Inner product spaces and a private key cryptosystem (Protocol 1)
	Inner product spaces and a challenge and response protocol (Protocol 2)

	A group theoretical ElGamal cryptosystem based on a semidirect product of groups
	ElGamal like public key cryptosystem (Protocol 3)
	Signature with a semigroup of 3 3 matrices over F7 [A5] (Protocol 4)
	Security and ongoing research about the HKKS-key exchange protocol

	Combinatorial group theory
	Free groups and group presentations
	Nielsen transformations, Nielsen reduced sets and additional theory
	Fundamental problems in group theory
	Whitehead-Automorphisms

	Secret sharing protocols
	D. Panagopoulos' (n,t)-secret sharing scheme
	Share distribution method given by D. Panagopoulos

	A purely combinatorial (n,t)-secret sharing scheme (Protocol 5)
	Access structures for generalized secret sharing schemes
	Generalized secret sharing schemes by M. Ito, A. Saito and T. Nishizeki
	Generalized secret sharing schemes by J. Benaloh and J. Leichter

	Comparison with A. Shamir's suggested properties

	Secret sharing schemes using Nielsen transformations
	Secret sharing scheme based on Nielsen transformations and SL(2,Q) (Protocol 6)
	Secret sharing scheme based on Nielsen reduced sets and the free length (Protocol 7)

	Private key cryptosystem with Aut(F) (Protocol 8)
	Modification with the ciphertext a reduced word for the cryptosystem with Aut(F)
	Modification with SL(2,Q) for the cryptosystem with Aut(F)
	Modification with Hilbert's Tenth Problem for the cryptosystem with Aut(F)
	Chosen plaintext attacks on the cryptosystem with Aut(F)
	Chosen ciphertext attacks on the cryptosystem with Aut(F)

	Private key cryptosystem with Aut(FU) (Protocol 9)
	Modification with the ciphertext a reduced word for the cryptosystem with Aut(FU)
	Modification with SL(2,Q) for the cryptosystem with Aut(FU)
	Modification with Hilbert's Tenth Problem for the cryptosystem with Aut(FU)
	Chosen plaintext attacks on the cryptosystem with Aut(FU)
	Chosen ciphertext attacks on the cryptosystem with Aut(FU)

	Private key cryptosystem which uses automorphisms on plaintext sequences (Protocol 10)
	Chosen plaintext attacks on the cryptosystem which uses automorphisms on plaintext sequences
	Chosen ciphertext attacks on the cryptosystem which uses automorphisms on plaintext sequences

	Additional cryptographic protocols using automorphisms of finitely generated free groups
	ElGamal like public key cryptosystem using automorphisms on a finitely generated free group F (Protocol 11)
	Challenge and response protocol using automorphisms on a finitely generated free group F (Protocol 12)

	Additional definitions
	Boolean formulae
	Elementary free groups

	Additional examples
	Example for automorphisms for Remark 7.0.10
	A part of an example with additional information from Alice
	Example for Remark 7.0.9

	Calculations with Maple 16 or GAP for examples
	Example 2.1.5 calculations in Maple 16
	Example 2.2.2 calculations in Maple 16
	Example 6.1.3 calculations in Maple 16
	Example 6.2.3 executed with GAP
	Example 7.0.7 executed with GAP
	Example 7.2.4 calculations in Maple 16 and GAP
	Example of a message, where inverse automorphisms were used for decryption in a cryptosystem based on Aut(F)
	Example 8.0.4 calculated with GAP
	Example for decryption where Bob uses an algorithm to solve a constructive membership problem for a cryptosystem based on Aut(FU)
	Example 9.0.7 calculated with GAP and Maple 16
	Example 10.1.4 executed with GAP
	Example 10.2.2 executed with GAP and Maple 16

	Bibliography

