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Abstra
t

The development of the sta
king theory has 
ertain pe
uliarities. Almost all new sta
king


on
epts (su
h as, 
ommon-midpoint sta
k, 
ommon-re�e
tion-surfa
e (CRS) sta
k, et
.)

have originally been developed for simulating a zero-o�set se
tion from 2D presta
k

multi
overage monotypi
 data re
orded along a seismi
 pro�le. Later, these te
hniques

have been extended to three pra
ti
ally important �spe
ial� 
ases: the 
ase of 3D a
quisition

geometry, the 
ase of 
onverted (PS) waves and the 
ase of 
ommon-o�set (CO) se
tions.

In the last years an in
reasing number of investigations is devoted to the double-

square-root-based (DSR-based) sta
king operators: Multifo
using and two extensions of

the 
onventional CRS sta
k � impli
it CRS (i-CRS) and non-hyperboli
 CRS (n-CRS).

The DSR-based sta
king operators use the same kinemati
 wave�eld attributes as the


onventional CRS sta
k. However, due to a double square root stru
ture, the DSR-

based sta
king operators approximate the di�ra
tion events better than the 
onventional

CRS sta
king operator. As a result, sta
king with the DSR-based operators provides

higher resolved sta
ked se
tions and more reliable wave�eld attributes whi
h are extremely

important for the subsequent pro
essing, imaging and inversion steps.

Re
ent studies have systemati
ally analyzed the DSR-based sta
king operators and

have proposed the sear
h of wave�eld attributes using global optimization te
hniques and

the proper treatment of the 
on�i
ting dip problem. Together with a growing 
omputing

power, these studies unlo
k the full potential of the DSR-based sta
king operators.

Thus, nowadays, multidimensional sta
king with the DSR-based sta
king operators and

the subsequent analysis of the obtained wave�eld attributes 
onstitute an ex
iting new

te
hnology.

In this thesis, I take the next logi
al step in the evolution of sta
king theory and

investigate the extension of the DSR-based sta
king operators to the three above mentioned

�spe
ial� 
ases. I 
onstru
t extensions of n-CRS and i-CRS sta
king operators for the 3D,

PS and CO 
ases. I also present a new sta
king operator, so-
alled expli
it DSR sta
king

operator, whi
h plays a very important role in the theory of DSR-based sta
king operators.

Furthermore, I investigate the a

ura
y of sta
king operators, the a

ura
y of obtained

wave�eld attributes and dis
uss the implementation of the new sta
king operators into the

CRS-based software.

The derivations of DSR-based sta
king operators require a simpli�ed model to �t

seismi
 data from a heterogenous overburden. It requires an auxiliary medium and

an analyti
al des
ription of the re�e
tor. The existing me
hanisms to a

ount for the

overburden heterogeneity, either by the shift in velo
ity (e�e
tive medium), or by the shift

of the referen
e time (opti
al medium), 
ould not yet be extended to the 3D 
ase. Hen
e, I

suggest an auxiliary anisotropi
 medium, whi
h in the 3D 
ase allows to simulate wavefronts

i
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of 
omplex shape. The auxiliary anisotropi
 medium and an analyti
al des
ription of the

re�e
tor surfa
e 
onstitute the 3D simpli�ed model, whi
h yields the derivation of the 3D

i-CRS, 3D n-CRS and 3D DSR sta
king operators.

In the 
ase of 
onverted PS waves, I suggest the simpli�ed model with a 
onstant ratio

of P- and S- wave velo
ities. The PS simpli�ed model together with a newly introdu
ed

γ−CMP 
oordinates, whi
h a

ount for the symmetry of the problem, allow to derive the

DSR-based sta
king operators for 
onverted waves and formulate the e�
ient parameter

sear
h strategy. Furthermore, for the most general CO 
ase, I demonstrate that similar

to the 
lassi
al CRS sta
king operator the DSR-based sta
king operators 
ould be derived

from the paraxial ray theory. This result justi�es the implementation of the DSR-based

sta
king operators in the 
ase of an anisotropi
 medium and opens the possibility of


onstru
tion of an anisotropi
 velo
ity model by inversion of the sta
king parameters.

Thus, the resear
h presented in this thesis not only provides a theoreti
al basis for

extension of the DSR-based sta
king operators to the 3D, PS and CO 
ases, but also makes

pra
ti
al re
ommendations regarding the implementation of the new sta
king operators.

I believe that the results of this work 
ould be a starting point for further investigations

and that the te
hnologies presented here will be of high demand by industry and basi


resear
h.



Zusammenfassung

Die Entwi
klung der Theorie des Stapelns enthält bestimmte Besonderheiten. Fast

alle neuen Stapelungskonzepte (wie die 
ommon-midpoint Stapelung, 
ommon-re�e
tion-

surfa
e (CRS) Stapelung usw.) wurden ursprüngli
h für simulierte zero-o�set Sektionen

aus 2D presta
k multi
overage monotypis
hen Daten, aufgenommen entlang eines seis-

mis
hen Pro�ls, entwi
kelt. Im Laufe der Zeit wurden diese Te
hniken zu drei praktis
h

relevanten Spezialfällen erweitert: die 3D Akquisitionsgeometrie, konvertierte (PS) Wellen

und die 
ommon-o�set (CO) Sektion.

In den letzten Jahren hat si
h eine steigende Anzahl an Untersu
hungen auf die double-

square-root (DSR)-basierten Operatoren fokussiert: Multifo
using und zwei Erweiterungen

der konventionellen CRS Stapelung � impliziertes CRS (i-CRS) und ni
ht-hyperbolios
hes

CRS (n-CRS). Die DSR-basierten Stapeloperatoren approximieren Di�raktionen besser als

der konventionelle CRS Stapeloperator. Als Resultat liefert die Stapelung mittels DSR-

basierten Operatoren besser aufgelöste Stapelsektionen und verlässli
here Wellenfeldat-

tribute, die sehr wi
htig für na
hfolgende Prozessierung, Abbildung und Inversionss
hritte

sind.

Kürzli
h erfolgte Studien haben die DSR-basierten Operatoren systematis
h analysiert

und vorges
hlagen die Su
he der Wellenfeldattribute mittels globaler Optimierungste
h-

niken und unter Berü
ksi
htigung von interferierenden Wellenfelder (
on�i
ting dips)

dur
hzuführen. Zusammen mit wa
hsender Re
henleistung ermögli
hen diese Studien

das volle Potential aus DSR-basierten Stapeloperatoren zu nutzen. Heutzutage stellt

multidimensionales Stapeln mittels DSR-basierten Stapeloperatoren und ans
hlieÿender

Analyse der erhaltenen Wellenfeldattributen eine aufregende neue Te
hnologie dar.

In dieser These nehme i
h den nä
hsten logis
h folgenden S
hritt in der Entwi
klung

der Stapelungstheorie und untersu
he die Erweiterung der DSR-basierten Stapeloperatoren

auf die drei genannten Spezialfälle. I
h erweitere die n-CRS und i-CRS Stapeloperatoren

für die 3D, PS und CO Fälle. Weiterhin präsentiere i
h einen neuen Stapeloperator,

den sogenannten explizierten DSR Stapeloperator, der eine sehr wi
htige Rolle in der

Theorie von DSR-basierten Stapeloperatoren einnimmt. Weiterhin untersu
he i
h die

Genauigkeit der Stapeloperatoren, der erhaltenen Wellenfeldattribute und diskutiere die

Implementation des neuen Stapeloperators in die CRS-basierte Software.

Die Ableitungen des DSR-basierten Stapeloperators benötigen ein vereinfa
htes Model

um seismis
he Daten bei heterogenem De
kgestein zu bes
hreiben. Es benötigt ein

Hilfsmedium und eine analytis
he Bes
hreibung des Re�ektors. Der existierende Me
h-

anismus um das heterogene De
kgestein zu berü
ksi
htigen, entweder dur
h velo
ity shift

(e�ektives Hilfsmedium) oder time shift (optis
hes Hilfsmedium), konnte bisher ni
ht auf

den 3D Fall erweitert werden. Daher s
hlage i
h vor ein anisotropes Hilfsmedium zu

iii
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benutzen, da es erlaubt Wellenfronten von komplexer Form im 3D Fall zu simulieren. Das

anisotrope Hilfsmedium und eine analytis
he Bes
hreibung der Re�ektorober�ä
he stellen

das vereinfa
hte 3D Modell dar, wel
hes die Herleitung der 3D i-CRS, 3D n-CRS und 3D

DSR Stapeloperatoren liefert.

Im Falle von konvertieren PS Wellen s
hlage i
h ein vereinfa
htes Modell mit

konstantem P- und S-Wellen Ges
hwindigkeiten vor. Das vereinfa
hte PS Modell

zusammen mit neu eingeführten γ−CMP Koordinaten, die die Symmetrie des Problems

berü
ksi
htigen, ermögli
hen es die DSR-basierten Stapeloperatoren für konvertierte

Wellen herzuleiten und die e�ziente Parametersu
hstrategie aufzustellen.

Weiterhin, für den allgemeinsten CO Fall, demonstriere i
h, das ähnli
h wie bei dem

klassis
hen CMP Stapeloperator, der DSR-basierte Stapeloperator aus der paraxialen

Strahlentheorie hergeleitet werden kann. Das Resultat re
htfertigt die Implementierung

des DSR-basierten Stapeloperators im Falle eines anisotropen Mediums und erö�net die

Mögli
hkeit ein anisotropes Ges
hwindigkeitsmodell, mittels Inversion der Stapelparame-

ter, zu konstruieren.

Die Fors
hung, die in dieser These präsentiert wird, liefert ni
ht nur die theoretis
he

Basis zur Erweiterung DSR-basierter Stapeloperatoren auf die 3D, PS und CO Fälle,

sondern ma
ht au
h praktis
he Vors
hläge bezügli
h der Implementierung des neuen

Stapeloperators. I
h glaube die Ergebnisse dieser Arbeit könnten ein guter Startpunkt für

weitere Untersu
hungen sein, denn die hier präsentierten Te
hnologien sind von groÿem

Interesse in Industrie und Fors
hung.
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Introdu
tion

Due to the growth of the world population and the rising living standards, the worldwide

energy 
onsumption is 
onstantly in
reasing. Thought the world be
omes more energy

e�
ient and the alternative energy sour
es develop, in the near future the hydro
arbons

(natural gas, oil, 
oal) will remain a major sour
e of the energy. Most of 
onventional

reservoirs are already explored and depleted. Future reservoirs 
hara
terize by the

in
reasing depth and 
omplexity, giving a 
onstant high demand for innovative and

advan
ed te
hnologies for hydro
arbon exploration.

The re�e
tion seismi
 method is the most e�e
tive geophysi
al method for hydro
arbon

exploration. The goal of the re�e
tion seismi
 method is to 
reate an image of the

Earth's subsurfa
e using the re�e
ted seismi
 waves. The seismi
 image 
ontains valuable

information about the lo
ation and 
on�guration of the seismi
 re�e
tion horizons. There

are two types of the seismi
 images: images in the time domain (linked to the verti
al

two-way traveltime) and images in the depth domain (linked to the depth).

Imaging in time domain was histori
ally the �rst type of imaging. Its development was


losely related to the ability to digitize analog signals. An image in the time domain

may be obtained, for instan
e, by sta
king the 
ommon-midpoint (CMP) gathers, �rst

suggested by Mayne (1962). Over the last �fty years, this simple CMP sta
king has evolved

into a sophisti
ated te
hnology that requires 
ompli
ated mathemati
s and state-of-the-art


omputation (Rashed, 2014).

The last 20-30 years have seen a growing interest in the methods for imaging the subsurfa
e

in depth domain. The main feature of these methods is the requirement of an initial

velo
ity model. The modern strategy for imaging in depth domain is based on the full

waveform inversion (FWI) for an iterative update of the initial velo
ity model and further

presta
k depth migration (PSDM) performed using the resulting velo
ity model (see e.g.

Warner et al., 2013). This pro
edure allows re
onstru
tion of highly resolved depth images

of the subsurfa
e with 
orre
t lo
ations and dips of the re�e
tion horizons. However, the

quality of the depth imaging depends signi�
antly on the initial velo
ity model, whi
h

should be su�
iently 
lose to the true velo
ity model.

On the 
ontrary, imaging in time domain does not require the initial velo
ity model.

Moreover, it extra
ts the sta
king parameters that may be used to estimate the velo
ity

1
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model for subsequent imaging steps. Currently, about 70% of the seismi
 re�e
tion data

are pro
essed only in the time domain (Landa, 2007), mainly due to the lower 
ost of

imaging in time domain 
ompared to imaging in depth domain. Hen
e, the development

of improved algorithms for imaging in time domain is a promising resear
h topi
.

The multidimensional sta
king is a modern method for imaging in time domain. It


onsists of sta
king tra
es in the neighboring CMP gathers. The multidimensional sta
king

signi�
antly in
reases the sta
king fold, whi
h results in the enhan
ed 
ontinuity of

re�e
tion horizons and the improved image resolution. This pro
edure requires the sta
king

operator: an expression des
ribing the traveltime of the re�e
ted wave.

Two alternative multidimensional sta
king operators have been proposed almost si-

multaneously at the end of the 20th 
entury: the 
ommon-re�e
tion-surfa
e (CRS)

sta
king operator (Mann et al., 1999; Jäger et al., 2001) and the Multifo
using (MF)

sta
king operator (Gel
hinsky et al., 1999; Tygel et al., 1999). Both sta
king operators are

formulated in terms of near-surfa
e kinemati
 wave�eld attributes of Hubral (1983) and

are valid for arbitrary velo
ity models and arbitrary sour
e-re
eiver pairs in the vi
inity of

the 
hosen imaging point. Both CRS and MF give 
omparable results for re�e
tion events.

However, the seismi
 wave�eld 
ontains not only re�e
tion events but also di�ra
tion

events. The "di�ra
tions" appear at terminations of re�e
tors (e.g., at faults, edges,

pin
h-outs) and at small s
attering inhomogeneities of the subsurfa
e. The di�ra
tions


arry valuable information ne
essary for the velo
ity model building (e.g., by means of the

NIP-wave tomography, Duvene
k, 2004; Bauer et al., 2016b), for the migration velo
ity

analysis (Fomel et al., 2007) and for the re
overy of stru
tures smaller than the seismi


wavelength (Khaidukov et al., 2004).

The CRS sta
king operator 
annot properly �t traveltimes of di�ra
tion events, whereas

the MF sta
king operator is designed to a

ount for di�ra
tion events. Hen
e, the MF sta
k

produ
es better sta
ked se
tions (images) than the CRS sta
k (Landa, 2007). In order to

improve the performan
e of the 
onventional CRS sta
k, two alternative approa
hes have

re
ently been proposed: the impli
it CRS (i-CRS) sta
k (S
hwarz et al., 2014) and the

non-hyperboli
 CRS (n-CRS) sta
k (Fomel and Kazinnik, 2013). Sin
e MF, i-CRS and

n-CRS des
ribe the traveltime of the re�e
ted/di�ra
ted event as a sum of two square

roots, they are 
alled "double-square-root-based" (DSR-based) sta
king operators. Re
ent

studies (S
hwarz et al., 2015; Walda et al., 2016) indi
ate that all DSR-based sta
king

te
hniques give superior results 
ompared to the 
onventional CRS sta
k.

All multidimensional sta
king operators (CRS, MF, i-CRS and n-CRS) are traditionally

formulated for the 2D zero-o�set (ZO) a
quisition geometry and monotypi
 waves. The


onventional CRS sta
k has extensions to three important 
ases: the 
ase of 3D surveys

(Müller, 2003), the 
ase of 
onverted (PS) waves (Bergler et al., 2002) and the 
ase of the


ommon-o�set (CO) a
quisition geometry (Zhang et al., 2001). However, apart from few

ex
eptions, the DSR-based sta
king operators do not have extensions to these spe
ial 
ases.

The 
onventional CRS sta
king operator originates from the paraxial ray theory (see
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e.g, Hubral et al., 1992). Moser and �erven�y (2007) re
ently formulated the paraxial ray

theory for the general anisotropi
 
ase. This opens the possibility of a large number of

appli
ations, in
luding the estimation of the kinemati
 wave�eld attributes in the general

anisotropi
 media. The DSR-based staking operators are usually derived from the model-

based approa
h. The question naturally arises whether it is possible to derive the DSR-

based sta
king operators from the paraxial ray theory and, thus, extend them to general

anisotropi
 media.

In this thesis, I present the extensions of the DSR-based sta
king operators to the three

spe
ial 
ases (3D, PS, CO) and demonstrate the derivation of the DSR-based sta
king

operators from the paraxial ray theory. The thesis is stru
tured as follows.

In Chapter 1, I review the theory of sta
king starting from the 
lassi
al CMP sta
k over

the CRS sta
k to the modern DSR-based sta
king operators. I also dis
uss extensions of

these sta
king te
hniques to three spe
ial 
ases: the 3D 
ase, the 
ase of 
onverted PS

waves and the 
ase of CO a
quisition geometry. Furthermore, I introdu
e and explain

notations and terms that are used in the next 
hapters.

Chapter 2 is dedi
ated to the theory of 3D sta
king operators. I suggest a 3D simpli�ed

model whi
h 
onsists of the 
urved re�e
tor in the auxiliary anisotropi
 medium. Based

on this 3D simpli�ed model, I propose the 3D extensions of the i-CRS and n-CRS sta
king

operators and the 
ompletely new 3D DSR sta
king operator.

In Chapter 3 I investigate the a

ura
y of the new 3D sta
king operators based on the

simple numeri
al tests. I also dis
uss the implementation of the new sta
king operators

into the CRS-based software.

Chapter 4 is 
on
erned with the sta
king operators for 
onverted PS waves. Based on

a fairly reasonable assumption of 
onstant ratio of P- and S-wave velo
ities, I suggest

extensions of the DSR and n-CRS sta
king operators to the 
ase of 
onverted waves.

Furthermore, I introdu
e a pragmati
 sear
h strategy for 
onverted waves, similar to the

one suggested by Müller (1999) for monotypi
 waves. The new sta
king operators and

the new pragmati
 sear
h strategy together form an e�
ient tool to obtain high-quality

sta
ked se
tions for 
onverted PS waves.

In Chapter 5, based on the paraxial ray theory, I obtain the DSR sta
king operator for the

most general 
ommon-o�set (CO) 
ase. This expression extends the range of appli
ability

of the DSR-based sta
king operators and demonstrates their 
lose relationship with the

standard CRS sta
king operators.

In Summary and Outlook, I 
on
lude the results of this thesis and provide an outlook

to future dire
tions of investigations.
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Chapter 1

Theoreti
al ba
kground

�Everything that happens on
e 
an never happen again. But everything that

happens twi
e will surely happen a third time�

� Paulo Coelho, The Al
hemist

Sta
king is one of the basi
 steps of the re�e
tion data pro
essing work�ow. In this 
hapter,

I attempt to present, in histori
al sequen
e, the main stages of the development of the

sta
king theory. I also introdu
e and explain notations and terms that will be used in the

next 
hapters.

1.1 Seismi
 re�e
tion experiment

The seismi
 re�e
tion experiment 
onsists of the re
ording of re�e
ted seismi
 waves. The

seismi
 waves are generated by a seismi
 sour
e (dynamite 
harge, vibrator, airgun, et
.)

that is lo
ated at a ground level or is buried in the ground at a shallow depth (see

Figure 1.1a). The seismi
 waves propagate in a 
omplex inhomogeneous medium that

is often 
alled "overburden" or "subsurfa
e". The velo
ity of propagation of seismi
 waves

depends on ro
k properties, density and other fa
tors (see, e.g., Sheri� and Geldart, 1995).

At a boundary of di�erent ro
ks (re�e
ting surfa
e, "re�e
tor"), a dis
ontinuous 
hange

of the ro
k properties o

urs. In su
h a 
ase, an in
ident seismi
 wave is partly re�e
ted

and partly transmitted (see Figure 1.1b). The re�e
ted wave returns ba
k to the ground

surfa
e, where it is re
orded by re
eivers.

There are two modes of the seismi
 wave in an isotropi
 solid medium: a 
ompressional

P-wave and a shear S-wave. These waves travel in the medium with di�erent velo
ities.

Sin
e the velo
ity of the S-wave is about half that of the P-wave, the re�e
ted PP wave


omes before the re�e
ted SS wave. The re�e
ted PP waves are usually investigated in the

5
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Figure 1.1: Illustration of the seismi
 re�e
tion experiment. The in
ident seismi
 wave,

emitted by the sour
e, re�e
ts from the re�e
ting surfa
es to the re
eivers on

the ground surfa
e (a). At the re�e
ting surfa
es the in
ident seismi
 wave

is partly re�e
ted, partly 
onverted and partly transmitted (b). The red and

green triangles indi
ate the sour
e and re
eiver lo
ations, respe
tively.

seismi
 re�e
tion experiment.

During the re�e
tion, the mode 
onversion 
an o

ur at the re�e
ting surfa
e. The


onverted PS and SP waves are formed as the wave 
hanges the mode. The 
onverted

PS waves are 
ommonly used to obtain valuable information about S-wave velo
ities.

The seismi
 re�e
tion experiments are 
ompli
ated by topographi
 variations and 
omplex

low-velo
ity near-surfa
e stru
tures. In order to over
ome these problems, stati
 
orre
tions

(
onstant timeshifts) are applied to the re
orded data (Cox, 1999). After the stati



orre
tion, the sour
es and the re
eivers belong to the referen
e horizon (so-
alled

"measurement surfa
e") and the 
omplex low-velo
ity near-surfa
e layers are repla
ed by


onstant-velo
ity layers.

It is usually assumed that the referen
e horizon is lo
ated at a zero depth z = 0. In the 2D

ase, the measurements are performed along the seismi
 pro�le. Seismi
 data are generally

a
quired in the shot-re
eiver (xs, xg) 
oordinates, where xs and xg denote the shot and

re
eiver lo
ations along the pro�le. However, the pro
essing of seismi
 data is usually


arried out in the midpoint-o�set 
oordinates:

xm =
xg + xs

2
, h =

xg − xs
2

, (1.1)

where xm is the midpoint lo
ation and h is the half-o�set (the half distan
e from the sour
e

to the re
eiver). As a result of the seismi
 re�e
tion experiment the tra
es as a fun
tion of

the traveltime t, the midpoint xm and the half-o�set h (so-
alled "presta
k seismi
 data")

P (t, xm, h) are obtained.
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1.2 Common-midpoint sta
k

Sta
king of seismi
 tra
es, with the goal of improving the signal-to-noise ratio, dates ba
k

to the early 1950s. Its development is 
losely related to the possibility to digitize the

analog signals. In 1956, Mayne patented the 
ommon-midpoint (CMP) sta
king

1

. He

introdu
ed the midpoint-o�set 
oordinates (1.1) and proposed to 
olle
t tra
es with the

same midpoint xm into the 
ommon-midpoint (CMP) gathers. The sta
king of tra
es

in the CMP gather yields the sta
ked tra
e asso
iated with the midpoint lo
ation. This

sta
ked tra
e approximates the tra
e that would be re
orded if the sour
e and the re
eiver

are lo
ated in the midpoint position. Sin
e the useful signals are sta
ked "in phase" and

the noise is often un
orrelated (Sengbush, 1983), the sta
ked tra
e has an improved signal-

to-noise (S/N) ratio. Theoreti
ally, while sta
king, the S/N ratio in
reases by the square

root of the number of tra
es in the CMP gather (Mayne, 1962). Implementation of the

sta
king pro
edure for ea
h midpoint gives the CMP-sta
ked se
tion (zero-o�set se
tion).

The geometry of the CMP gather and the raypath asso
iated with the plane horizontal

re�e
tor are presented in Figure 1.2a. Due to the di�eren
e in the raypaths, the traveltime

t0 of the zero-o�set ray

2

is not equal to the traveltime t(h) of the ray from the remote

sour
e to re
eiver. The dependen
e of traveltime with the o�set is 
alled "moveout". The

di�eren
e between t(h) and t0 is 
alled "moveout 
orre
tion". Sta
king of the seismi
 tra
es
in the CMP gather requires the moveout approximation t = τ(t0, h). With the introdu
ed

notations, the CMP sta
ked se
tion S(t0, xm) 
an be des
ribed as:

S(t0, xm) =

∫

P
(
τ(t0, h), xm, h

)
dh. (1.2)

Below, I dis
uss several moveout approximations used in the CMP pro
essing.

1.2.1 Normal moveout

The moveout approximation that a

ounts for the di�eren
e of the sour
e-re
eiver distan
e

is 
alled "normal moveout" (NMO). The NMO equation reads:

t2(h) = t20 +
4h2

v2NMO

. (1.3)

This approximation was derived for di�erent earth models:

� Constant velo
ity model with a single horizontal plane re�e
tor (Fig-

ure 1.2a). This 
ase was 
onsidered by Green (1938) for measuring the average

velo
ity above the re�e
tor. In this 
ase, the sta
king velo
ity vNMO is equal to the

velo
ity of the layer v.

1

Originally, Mayne 
alled his method the "
ommon re�e
tion point horizontal sta
king".

2

The ray whose sour
e and re
eiver are lo
ated at the midpoint xm. Also 
alled "
entral ray" or "normal

in
iden
e ray".
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I love Amel! 

Figure 1.2: Illustration of the simple earth stru
ture models: the plane horizontal

re�e
tor (a), the plane dipping re�e
tor (
), the system of horizontal layers (b)

and the system of dipping layers (d). The red dashed line indi
ates the

traje
tory of the normal in
iden
e ray.

� Horizontally layered model (Figure 1.2b). The traveltime approximation for this


ase have been obtained independently by Dix (1955) and Dürbaum (1954). They

showed that in this 
ase the NMO velo
ity is equal to the root-mean-square (RMS)

velo
ity:

vRMS =

√
√
√
√ 1

t0

K∑

k=1

∆tkv
2
k. (1.4)

Here vk is the interval velo
ity of the kth layer and ∆tk is the two-way traveltime in

the layer k. In this 
ase the NMO (1.3) is a small-o�set approximation (Castle, 1994).

Bolshykh (1956) and Taner and Koehler (1969) presented the long-o�set moveout

approximations using the Taylor series expansion:

t2(h) = c1 + c2h
2 + c3h

4 + c4h
6 + ... (1.5)

They showed that the �rst two 
oe�
ients of (1.5) 
oin
ide with the NMO (1.3)

approximation and the next 
oe�
ients are the 
omplex fun
tions depending on the

interval velo
ities. Taner and Koehler (1969) also provided the re
ursive formulas to

obtain all 
oe�
ients of the series.

� Constant velo
ity model with a single dipping plane re�e
tor (Figure 1.2
).

Levin (1971) 
onsidered this oversimpli�ed 
ase for understanding the dependen
e

of the sta
king velo
ities on the dip of the re�e
tor α. He found that the NMO

equation (1.3) is still valid and the sta
king velo
ity is the same as or higher than
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the velo
ity of the layer v:

vNMO = v/ cosα. (1.6)

For this simple model the assumption that the tra
es in the CMP gather image the

same point in depth is violated. Hen
e, the e�e
t of the re�e
tion-point dispersal

o

urs. To 
orre
t for this e�e
t a dip-moveout (DMO) 
orre
tion was introdu
ed.

For the review of di�erent DMO methods, see Hale (1991) and referen
es therein.

� System of dipping layers (Figure 1.2d). Hubral and Krey (1980) proved that the

NMO approximation (1.3) is valid in this general 
ase.

Fomel and Stovas (2010) fairly noti
ed that the hyperboli
 behaviour of the moveout is

always valid around the zero o�set, "thanks to sour
e-re
eiver re
ipro
ity

3

and �rst-order

Taylor series expansion". However, ex
ept for a few spe
ial 
ases, the moveout shows a

nonhyperboli
 behaviour at large o�sets.

In summary, the sta
ked se
tion is obtained as follows. The presta
k data are sorted in

the CMP gathers (see Figure 1.3a). In the CMP gather ea
h time sample is 
onsidered as

t0 (see Figure 1.3b). The NMO (1.3) is 
al
ulated for a set of the NMO velo
ities from

the initially de�ned range. The obje
tive fun
tion that measures the similarity of tra
es,

e.g., semblan
e (Taner and Koehler, 1969), is estimated for ea
h of these NMO velo
ities.

The sta
king velo
ity is the one that maximizes the value of the obje
tive fun
tion. The

pro
edure provides the sta
ked se
tion, the sta
king velo
ity se
tion and the semblan
e

se
tion. Interpretation of the sta
king velo
ities is performed with the 
hosen model of the

subsurfa
e.

1.2.2 Shifted hyperbola

In the NMO equation (1.3), the inhomogeneity of the overburden is a

ounted by the

NMO velo
ity. In the presen
e of inhomogeneity, the NMO velo
ity be
omes an e�e
tive

velo
ity, sin
e it depends on the velo
ities of the layers. Hen
e, the 
onventional NMO (1.3)

des
ribes the moveout in the e�e
tive medium.

de Bazelaire (1988) suggested an alternative idea based on the theory of geometri
al opti
s.

He proposed to repla
e the inhomogeneous medium by the so-
alled "opti
al medium" � the

homogeneous medium with the 
onstant near-surfa
e velo
ity v0. In the opti
al medium,

the moveout t(h) is des
ribed by the shifted-hyperbola

4

:

(t− t0 + tp)
2 = t2p +

4h2

v20
. (1.7)

3

The traveltime of the monotypi
 wave is invariant with respe
t to the sour
e-re
eiver 
hange.

Mathemati
ally, it means that the traveltime is an even fun
tion of the o�set t(−h) = t(h) and the

�rst derivative of the traveltime with respe
t to the o�set is equal to zero:

∂t
∂h

= 0.
4

A similar approximation was proposed by Malovi
hko (1978) for the 
ase of the horizontally layered

stru
ture.
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Figure 1.3: (a) Illustration of the geometry of the typi
al sta
king 
hart. (b) Example

of the CMP gather. Sta
king is performed along the NMO traje
tory (bold

blue 
urve). The pro
edure provides the sta
ked tra
e (
) asso
iated with the

zero-o�set ray (red dashed line).
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Figure 1.4: The ray s
heme for the shifted hyperbola. The a
tual raypath of the re�e
ted

ray (a) in the inhomogeneous model and its equivalent raypath in the opti
al

analog (b). The 
enter of the hyperbola is shifted to the point D′
.

Here, t0 is the two-way traveltime along the a
tual raypath XmD in the inhomogeneous

medium and tp is the two-way traveltime along the equivalent raypath XmD′
in the opti
al

medium (see Figure 1.4).

In the shifted hyperbola (1.7), the inhomogeneity of the medium is 
ompensated by the

so-
alled fo
using time tp. Thus, both NMO and the shifted hyperbola utilize the 
on
ept

of auxiliary 
onstant velo
ity medium, but NMO is formulated for the e�e
tive auxiliary

medium and the shifted hyperbola for the opti
al auxiliary medium. One 
an say that

NMO and the shifted hyperbola are the same sta
king operator formulated in the di�erent

(e�e
tive or opti
al) domains, or utilized the di�erent me
hanisms (velo
ity-shift or time-

shift) to a

ount for the inhomogeneity.

1.2.3 3D normal moveout

Subsurfa
e geologi
al features of interest in hydro
arbon exploration are three-dimensional

in nature (Yilmaz, 2001). The 3D seismi
 survey data are used to obtain the true and

pre
ise 3D seismi
 image of the subsurfa
e.

In the 3D seismi
 surveys, the sour
es and the re
eivers are distributed in the measurement

surfa
e. In this 
ase, the midpoint xm and the half-o�set h be
ome two-dimensional ve
tors:

xm =
xg + xs

2
, h =

xg − xs

2
, (1.8)

where xs ≡ {xs, ys} and xg ≡ {xg, yg} denote the sour
e and the re
eiver lo
ations. Tra
es
with the same midpoint lo
ations xm are gathered in the CMP bins. The tra
es of the

CMP bin are sta
ked along the hyperboli
 traje
tories:

t2(|h|, ξ) = t20 +
4|h|2

v2NMO(ξ)
(1.9)
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with the NMO velo
ity depending on the dire
tion of the pro�le line ξ (Levin, 1971):

1

v2NMO(ξ)
=

cos2 ξ

v21
+

sin2 ξ

v22
. (1.10)

Equation (1.10) is known as the NMO velo
ity ellipse. Alternatively, the 3D NMO (1.9)

may be presented in the notations of Gre
hka and Tsvankin (1999):

t2(h) = t20 + 4hTWh, (1.11)

where the elements of the symmetri
 matrix W are the inverse values of the squared

sta
king velo
ities.

1.2.4 Converted waves

The 
onverted PS waves are 
ommonly used to obtain valuable information about S-wave

velo
ities. Extensions of the NMO equation (1.3) for 
onverted waves were proposed

by Fromm et al. (1985); Tessmer and Behle (1988); Tessmer et al. (1990); Iverson et al.

(1989). The shifted hyperbola moveout approximation for 
onverted waves was formulated

by Slotboom (1990). The detailed review of the meaning of 
onverted waves, the di�
ulties

in their pro
essing and the existing moveout approximations are given in Se
tion 4.1.

1.2.5 Common-o�set sta
k

In the 
ommon-o�set 
ase, the sour
e and re
eiver lo
ations of the 
entral ray do not


oin
ide. Sta
king of seismi
 tra
es having the 
ommon-o�set distan
es was patented by

Harris (1968). For a more detailed dis
ussion of the 
ommon-o�set sta
k the reader is

referred to Se
tion 5.1.

1.3 Multidimensional sta
king

At the beginning of the 1980s, several authors (e.g., Naess, 1982; Bu
hanan et al., 1983)

have pointed out that sin
e tra
es in the CMP gather do not re�e
t from one point on

the re�e
tor but rather from the segment of the re�e
tor, it is possible to use tra
es

in the neighboring CMP gathers for sta
king. Thus, to obtain the sta
ked tra
e at the


entral (imaging) point x0, one must 
onsider the tra
es whose sour
es and re
eivers are

in a 
ertain vi
inity of the 
entral point. In su
h a situation, the midpoints xm of the

tra
es being sta
ked do not 
oin
ide with the 
entral point x0. The di�eren
e between the

midpoint xm and the 
entral point x0 is 
alled the midpoint displa
ement:

m ≡ xm − x0. (1.12)
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Figure 1.5: The multidimensional (CRS or MF) sta
king uses all available tra
es in the

vi
inity of the 
entral point x0. The multidimensional sta
king is performed

both in the midpoint and in the half-o�set dire
tions, i.e., along the moveout

surfa
e t = τ(t0,m, h) (red surfa
e). Sta
king in both dire
tions signi�
antly

in
reases the amount of sta
ked tra
es in 
omparison to the 
onventional CMP

sta
king (bold blue 
urve). Figure adapted from Müller (1999).
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The sta
ked se
tion S(t0, x0) is obtained by sta
king the presta
k seismi
 data P (t, xm, h)
both in the midpoint displa
ement m and the half-o�set h dire
tions (see Figure 1.5):

S(t0, x0) =

∫∫

P
(
τ(t0,m, h), x0 +m,h

)
dmdh. (1.13)

This pro
edure requires the moveout approximation t = τ(t0,m, h). Sin
e the sta
k-

ing (1.13) is performed in two dimensions, the pro
edure is 
alled "multidimensional

sta
king". As it is apparent from Figure 1.5, the multidimensional sta
king signi�
antly

in
reases the sta
king fold. Hen
e, it is parti
ularly useful for data with a low signal-to-

noise ratio or a
quisitions with a low fold.

Two 
ompeting multidimensional sta
king te
hniques appeared almost simultaneously at

the end of the 20th 
entury: the 
ommon-re�e
tion-surfa
e (CRS) sta
k (Mann et al., 1999;

Jäger et al., 2001) and the Multifo
using (MF) sta
k (Gel
hinsky et al., 1999). Although

originated from di�erent theories, both te
hniques propose the moveout approximations

formulated in terms of kinemati
 wave�eld parameters of Hubral (1983) and valid for

arbitrary velo
ity models. Both te
hniques perfe
tly handle re�e
tion events, however the

MF sta
k produ
es better sta
ked se
tions due to its ability to properly handle di�ra
tion

events (see, e.g., Landa, 2007).

In order to improve the performan
e of the 
onventional CRS sta
k, two alternative

approa
hes have re
ently been proposed: the impli
it CRS (i-CRS) sta
k (S
hwarz et al.,

2014) and the non-hyperboli
 CRS (n-CRS) sta
k (Fomel and Kazinnik, 2013). Be
ause

MF, i-CRS and n-CRS des
ribe the traveltime of re�e
ted/di�ra
ted event as a sum of two

square roots, I will 
all them "double-square-root-based" (DSR-based) sta
king operators.

I this se
tion, I will brie�y des
ribe these four sta
king operators, mention their relations

and existing extensions.

1.3.1 Common-re�e
tion-surfa
e sta
k

The CRS sta
king operator

5

is a natural extension of the NMO equation (1.3) for the

multidimensional 
ase. The CRS sta
king operator 
an be derived from the paraxial ray

theory for the most general 3D 
ommon-o�set (CO) 
ase. Here, in 
ontrast, I will start

from the most intuitive 2D zero-o�set (ZO) 
ase, and later dis
uss extensions to the 3D

and CO 
ases.
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Figure 1.6: Illustration of the kinemati
 wave�eld attributes: α is the dip angle of the

zero-o�set ray, RNIP is the radius of 
urvature of the NIP wave (a) and RN is

the radius of 
urvature of the normal wave (b).

1.3.1.1 2D zero-o�set CRS sta
king operator

The multidimensional moveout approximation t = τ(t0,m, h) may be 
onsidered as a

trun
ated Taylor series expansion:

t(m,h) = t0 +
∂t

∂m
︸︷︷︸

w

m+
∂t

∂h
︸︷︷︸

=0

h+
1

2

∂2t

∂m2
︸ ︷︷ ︸

N

m2 +
∂2t

∂h∂m
︸ ︷︷ ︸

=0

mh+
1

2

∂2t

∂h2
︸ ︷︷ ︸

M

h2. (1.14)

Due to the re
ipro
ity prin
iple, the �rst derivative of the traveltime with respe
t to the

half-o�set and the mixed partial derivative are equal to zero. After giving the notations

for the non-zero 
oe�
ients of the series (1.14), the moveout approximation reads:

t(m,h) = t0 + wm+Nm2 +Mh2. (1.15)

The last formula is 
alled the paraboli
 traveltime approximation. The hyperboli


traveltime approximation 
an be immediately obtained by squaring both sides of the

paraboli
 traveltime formula (1.15) and negle
ting the terms of higher order than the

se
ond:

t2(m,h) =
[

t0 + wm
]2

+ 2t0

[

Nm2 +Mh2
]

. (1.16)

A

ording to numerous investigations (e.g, Ursin, 1982; Mann et al., 1999), the hyperboli


sta
king operators better �t the re�e
tion events than the paraboli
 sta
king operators.

For a CMP gather, the hyperboli
 sta
king operator (1.16) redu
es to the NMO

approximation (1.3).

The paraxial ray theory (S
hlei
her et al., 1993; Tygel et al., 1997) gives a physi
al

interpretation of the 
oe�
ients w6,M,N :

w = −2 sinα

v0
, M =

cos2 α

v0RNIP
, N =

cos2 α

v0RN
. (1.17)

5

The multidimensional moveout approximation t = τ (t0,m, h) is often referred to as "sta
king

operator".

6

Note that the sign of the �rst order derivative w depends on the de�nition of the 
oordinate system.

The negative sign is 
hosen here to be 
onsistent with the 
oordinate systems des
ribed in the further


hapters.
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Here, v0 denotes the near-surfa
e velo
ity, α is the dip angle of the zero-o�set ray, RNIP and

RN are the radii of 
urvature of the two fundamental waves: the normal-in
iden
e-point

(NIP) wave and the normal (N) wave (see Figure 1.6). The NIP wave is a hypotheti
al

wave generated by the �
titious point sour
e pla
ed in the NIP of the zero-o�set ray,

and the normal wave is a hypotheti
al wave arising from the �
titious exploding re�e
tor

experiment (Hubral, 1983).

The formula (1.16) together with interpretation of the 
oe�
ients (1.17) is known as the

2D zero-o�set 
ommon-re�e
tion-surfa
e (2D ZO CRS) sta
king operator. The 2D ZO

CRS sta
king operator may also be derived by means of the geometri
al (model-based)

approa
h of Hö
ht et al. (1999).

The 2D ZO CRS sta
king operator is the 
ore for the CRS sta
k. Müller (1999); Jäger et al.

(2001); Mann (2002) explained in detail the theory and the appli
ation of the CRS sta
k

and proposed a pragmati
 sear
h of the sta
king parameters (α,RNIP, RN). Mann et al.

(1999) showed su

essful implementation of the idea to the 2D �eld data.

The CRS sta
k provides the sta
ked se
tion, the semblan
e se
tion and the sta
king

parameters. The sta
king parameters are used in many appli
ations, e.g., the velo
-

ity model building (the NIP-wave tomography, Duvene
k, 2004; Della Moretta et al.,

2006), the presta
k data enhan
ement and interpolation (Baykulov and Gajewski, 2009;

Hoe
ht et al., 2009), the di�ra
tion imaging and separation (Dell and Gajewski, 2011;

Bakhtiari Rad et al., 2015) and the multiple suppression (Dümmong and Gajewski, 2008).

Baykulov et al. (2011) summarized the CRS based work�ow.

The CRS sta
k is a topi
 of the ongoing resear
h. Of prime interest are the advan
ed

sear
h strategies of the sta
king parameters (e.g., by means of global optimization

methods, Garabito et al., 2012; Walda and Gajewski, 2015a) and the 
on�i
ting dip

problem (Müller, 2009; Soleimani et al., 2009; Walda and Gajewski, 2015b).

1.3.1.2 3D zero-o�set CRS sta
king operator

In the 3D 
ase, the midpoint displa
ement m and the half-o�set h be
ome two-dimensional

ve
tors m and h:

xm =
xg + xs

2
, h =

xg − xs

2
, m = xm − x0, (1.18)

the �rst-order derivative w transforms to the two-dimensional ve
tor w, and the se
ond-

order derivatives M and N transform to the symmetri
 2× 2 matri
es M and N.

The 3D zero-o�set 
ommon-re�e
tion-surfa
e (3D ZO CRS) sta
king operator reads:

t2(m,h) =
[

t0 +wTm
]2

+ 2t0

[

mTNm+ hTMh
]

. (1.19)
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The 
oe�
ients w, M and N are related to the kinemati
 wave�eld attributes as follows:

w = −2 sinα

v0

( cos β
sin β

)

, M =
1

v0
RKNIPR

T, N =
1

v0
RKNR

T. (1.20)

Here, v0 denotes the near-surfa
e velo
ity, α and β are the dip and the azimuthal angles

of the zero-o�set ray, KNIP and KN are the symmetri
 2 × 2 
urvature matri
es of the

NIP and the normal waves in the ray-
entered 
oordinate system, and R is the upper left

2 × 2 part of the 3 × 3 rotation matrix R̂ that a

ounts for the transformation from the

ray-
entered to the general Cartesian 
oordinate system:

R̂ = Φ̂Θ̂, Φ̂ =





cos β − sin β 0
sin β cos β 0
0 0 1



 , Θ̂ =





cosα 0 sinα
0 1 0

− sinα 0 cosα



 . (1.21)

The 3D ZO CRS sta
king operator (1.19) 
ontains eight sta
king parameters: α, β,KNIP

and KN. The theory and the implementation of the 3D ZO CRS sta
king operator are

minutely dis
ussed in Müller (2003).

1.3.1.3 Common-o�set CRS sta
king operator

Zhang et al. (2001) presented the 
ommon-o�set CRS (CO CRS) sta
king operator. This

general operator has �ve sta
king parameters in the 2D 
ase and thirteen parameters in

the 3D 
ase. A more detailed dis
ussion of the 3D CO CRS sta
king operator is presented

in Se
tion 5.2.

1.3.1.4 CRS sta
king operator for 
onverted waves

A 2D CRS-based strategy for 
onverted waves was proposed by Bergler et al. (2002). They

used the CO CRS sta
king operator that a

ounts for the asymmetri
 PS raypath. Based

on the example of the 2D syntheti
 dataset, Bergler et al. (2002) showed that the proposed

strategy improves the quality of the sta
ked se
tion in the presen
e of noise and extra
ts

reliable kinemati
 wave�eld attributes.

1.3.2 Double-square-root-based sta
king operators

Along with re�e
tions, the seismi
 wave�eld 
ontains di�ra
tions. Di�ra
tions appear at

the termination of re�e
tors (e.g., at faults) and at the inhomogeneities of the subsurfa
e.

Di�ra
tions allow to obtain 
orre
tly migrated images of the subsurfa
e; they are espe
ially

important for determining the shape of the salt bodies. Di�ra
tions are used to the obtain

velo
ity model (e.g., by means of the NIP-wave tomography Duvene
k, 2004; Bauer et al.,

2016b) and to analyze the migration velo
ity (Fomel et al., 2007). Furthermore, pro
essing
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Figure 1.7: (a) In MF, the interse
tion point of the 
entral ray and the paraxial ray

is 
onsidered as the virtual seismi
 sour
e. This virtual seismi
 sour
e and

its 
orresponding mirror image generate two wavefronts: the sour
e-related

wavefront with the radius of 
urvature Rs and the re
eiver-related wavefront

with the radius of 
urvature Rg. (b) i-CRS is based on the problem of re�e
tion

from the 
ir
ular re�e
tor in the homogeneous velo
ity model. (
) n-CRS solves

the problem of �nding the re�e
tion point from the hyperboli
 re�e
tor in the

homogeneous velo
ity model.

of di�ra
tions 
an lead to the re
overy of details smaller than the seismi
 wavelength

(Khaidukov et al., 2004).

The 
onventional CRS sta
king operator, being the se
ond order moveout approximation,


annot properly approximate the traveltimes of the di�ra
tion events. Hen
e, several

alternative sta
king operators were proposed to �t both re�e
tion and di�ra
tion events.

1.3.2.1 Multifo
using

Multifo
using (MF) is a sta
king te
hnique proposed by Gel
hinsky et al. (1999). It

generalizes the ideas of the homeomorphi
 imaging (Gel
hinsky, 1989). The MF moveout
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approximation is a double-square-root formula, that is traditionally expressed in terms of

the sour
e and the re
eiver displa
ements:

∆xs = xs − x0, ∆xg = xg − x0. (1.22)

The MF moveout approximation reads:

t(∆xs,∆xg) = t0 +∆ts +∆tg, (1.23)

where

∆ti =

√

R2
i + 2Ri∆xi sinα+∆x2i −Ri

v0
, i = s, g; (1.24)

Rs and Rg are the 
urvature radii of two waveforms (see Figure 1.7a)

Rs =
1 + σ

1/RN + σ/RNIP
, Rg =

1− σ

1/RN − σ/RNIP
; (1.25)

and σ is so-
alled fo
using parameter:

σ =
∆xs −∆xg

∆xs +∆xg + 2(∆xs∆xg/RNIP) sinα
. (1.26)

MF has a very 
lose relationship with the shifted hyperbola of de Bazelaire (1988). Both

methods use the time-shift me
hanism to a

ount for the overburden inhomogeneity. For

the CMP gather, the MF moveout formula (1.23) redu
es to the shifted hyperbola moveout

approximation (1.7).

Originally, the fo
using parameter (1.26) was derived under the assumption of plane

dipping re�e
tor in a homogeneous medium. Hen
e, the MF moveout approximation (1.23)

is often 
alled "planar multifo
using". An alternative formulation, so-
alled "spheri
al

multifo
using", was proposed by Landa et al. (2010). It is based on the analyti
al

expression for the traveltime of the wave, re�e
ted from the 
ir
ular re�e
tor in a

homogeneous medium.

To my knowledge extension of the MF sta
king operator to the 3D 
ase was not presented so

far. An attempt to propose the 3D MF sta
king operator was made by Landa et al. (2010).

They 
onsidered spheri
al re�e
tor in a homogeneous medium. However, this oversimpli�ed

model 
annot adequately des
ribe existing 3D e�e
ts (see Se
tion 2.4 for more details).

The 3D MF formula exists only for purely di�ra
ted events, when Rs = Rg = RNIP (see,

e.g., Berkovit
h et al., 2009, 2012). The su

essful implementation of the 3D MF for the

di�ra
tion imaging was reported by Rau
h-Davies et al. (2013).

The 2D 
ommon-o�set MF (2D COMF) sta
king operator was presented by Berkovit
h et al.

(2011). In the CO 
ase, the moveout is still des
ribed by the double-square-root expression.

Berkovit
h et al. (2011) showed that CO MF allow to enhan
e strongly non-hyperboli


events and to 
onstru
t the reliable velo
ity model by the presta
k stereotomography.
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1.3.2.2 Impli
it CRS

In order to improve the quality of the 
onventional CRS sta
k, Vanelle et al. (2010) have

revisited the model of Landa et al. (2010) - the 
ir
ular re�e
tor with the origin at the

point (xc, H) and the radius R in the homogeneous isotropi
 medium with the velo
ity V
(see Figure 1.7b). In this model, the traveltime of the ray propagated from the sour
e xs
through the arbitrary point on re�e
tor (de�ned by the angle θ) to the re
eiver xg is equal:

t(∆xs,∆xg) = ts + tg, (1.27)

where

ti =

√

(∆xi −∆xc −R sin θ)2 + (H −R cos θ)2

V
, ∆xc = xc − x0, i = s, g. (1.28)

A

ording to Fermat's prin
iple, the ray takes the path that minimizes the traveltime, i.e.,

the 
ondition

∂t
∂θ = 0 must ful�ll. This 
ondition leads to the impli
it equation for the

angle θ:

tan θ =
m−∆xc

H
+

h

H

ts − tg
ts + tg

. (1.29)

The last equation may be solved iteratively with the initial value of θ 
orresponding to the
NIP (see Vanelle et al., 2010).

In order to extend this model-based approa
h to the inhomogeneous medium, S
hwarz

(2011) expanded the square roots of (1.27) into the Taylor series and mat
hed the


oe�
ients with the respe
tive 
ounterparts in the paraboli
 CRS sta
king operator (1.15).

The obtained system of equations has a unique solution:

V =
vNMO

√

1 + (v2NMO/v
2
0) sin

2 α
,

xc = x0 −
RN sinα

cos2 α(1 + [v2NMO/v
2
0 ] sin

2 α)
,

H =
v0RN

vNMO cos2 α(1 + [v2NMO/v
2
0 ] sin

2 α)
,

R =
(v0RN/vNMO cos2 α)− (vNMOt0/2)

√

1 + (v2NMO/v
2
0) sin

2 α
,

(1.30)

where the NMO velo
ity is equal to

vNMO =

√

2v0RNIP

t0 cos2 α
. (1.31)

The traveltime formula (1.27) with the 
oe�
ients (1.30) was 
alled the impli
it CRS

(i-CRS) sta
king operator.

S
hwarz et al. (2014) summarized the method and 
ompared i-CRS with the 
onventional

CRS and MF. They found that i-CRS provides higher a

ura
y than the MF method,
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espe
ially in the presen
e of strong inhomogeneity. In order to explain this result,

S
hwarz et al. (2015) investigated the me
hanisms by whi
h MF and i-CRS a

ount for

inhomogeneity of the overburden: while MF uses the time-shift me
hanism, i-CRS inherits

the velo
ity-shift me
hanism, typi
al for CRS. S
hwarz et al. (2015) also proposed a re
ipe

how to transform time-shifts to velo
ity-shifts and vi
e versa. With this re
ipe, one 
an

obtain the time-shifted version of the i-CRS operator and the velo
ity-shifted version of

MF. S
hwarz et al. (2015) 
on
luded that i-CRS and MF "are essentially equivalent, when

the same auxiliary medium for both operators is 
onsidered".

Vanelle et al. (2012a) proposed the 2D i-CRS sta
king operator for 
onverted waves (2D

i-CRS-PS, see Se
tion 4.2.4 for more details). However, extension of the i-CRS method to

the 3D 
ase and to the 
ommon-o�set 
ase was not presented so far.

1.3.2.3 Non-hyperboli
 CRS

Another simple model, that 
onsists of the hyperboli
 re�e
tor in the 
onstant-velo
ity

medium (see Figure 1.7
), was analyzed by Fomel and Stovas (2010). They derived an

analyti
al expression for the re�e
tion traveltime in this simple model. Based on this

analyti
al expression, Fomel and Kazinnik (2013) proposed the non-hyperboli
 
ommon

re�e
tion surfa
e (n-CRS) sta
king operator:

t(m,h) =

√

F (m) + χh2 +
√

F (m− h)F (m+ h)

2
, (1.32)

where

F (m) =
(
t0 + wm

)2
+ 2t0Nm2, (1.33)

χ = 2t0(2M −N) + w2, (1.34)

and w, M , N are the CRS parameters (1.17).

Obviously, the n-CRS sta
king operator is mathemati
ally more 
ompli
ated than the

MF and i-CRS formulas. In order to better understand the stru
ture of the n-CRS

formula (1.32), I propose the following reformulation (see Appendix C.1):

t(m,h) =

√
√
√
√
√

[ 1

2

√

F (m− h)
︸ ︷︷ ︸

ts

+
1

2

√

F (m+ h)
︸ ︷︷ ︸

tg

]2
+ 2t0

(
M −N

)
h2

︸ ︷︷ ︸

∆tsg

. (1.35)

In the 
ase of di�ra
tions, 
oe�
ients M and N are equal and n-CRS transforms to the

purely DSR formula.

Fomel and Kazinnik (2013) presented the formal extension of the n-CRS sta
king operator

to the 3D 
ase (3D n-CRS, see Appendix C.2). However, they 
ould not �nd a geometri
al

interpretation of the obtained traveltime approximation.
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Table 1.1: Evolution of sta
king operators

Sta
k Sta
king operator Extensions

CMP t =
√

fNMO(t0, h) 3D, PS, CO

CRS t =
√

fCRS(t0, h,m) 3D, PS, CO

MF

t = t0 +
√

f s
MF(h,m)

︸ ︷︷ ︸

∆ts

+
√

f g
MF(h,m)

︸ ︷︷ ︸

∆tg

i-CRS

t =
√

f s
iCRS(t0, h,m)

︸ ︷︷ ︸

ts

+
√

f g
iCRS(t0, h,m)

︸ ︷︷ ︸

tg

?

n-CRS

t =

√
√
√
√

[√

f s
nCRS(t0, h,m)

︸ ︷︷ ︸

ts

+
√

f g
nCRS(t0, h,m)

︸ ︷︷ ︸

tg

]2
+ f sg

nCRS(t0, h)
︸ ︷︷ ︸

∆tsg

Walda et al. (2016) made a fair 
omparison of the CRS, MF, i-CRS and n-CRS sta
king

operators. In order to reveal the full potential of the DSR-based sta
king operators, they


arefully a

ounted for the 
on�i
ting dips problem and used a global optimization s
heme

to estimate the wave�eld attributes. As well they 
ompared sta
king operators in the

same (time-shifted or velo
ity-shifted) domain. Based on the marine �eld data, they found

that all DSR-based sta
king operators give superior results 
ompared to the 
onventional

CRS. Also they did not observe signi�
ant di�eren
es between the DSR-based sta
king

operators. A 
omparison of the 
omputational e�
ien
y showed that the most e�
ient

DSR-based sta
king operator is the n-CRS with only 5% in
rease in the 
omputational

time 
ompared to the 
onventional CRS.

1.4 Con
lusions

The sta
king theory has 
ome a long way from the CMP sta
k over the multidimensional

CRS sta
k to the double-square-root-based MF, i-CRS and n-CRS sta
ks. Over the years,

sta
king operators have evolved and be
ome more and more 
ompli
ated (see Table 1.1).

For the purpose of simpli
ity, the new sta
king te
hniques are usually proposed for the

simplest 2D zero-o�set 
ase. Later they are extended to three important 
ases: the 3D


ase, the 
ase of 
onverted waves (PS) and the 
ase of 
ommon-o�set geometry (CO).

The 
lassi
al CMP sta
k and the CRS sta
k have extensions for all these spe
ial 
ases.

However, the extension of the MF/i-CRS/n-CRS sta
king operators to the 3D/PS/CO


ases have not been fully understood yet. Existing in the literature extensions (2D CO MF,

2D i-CRS-PS and 3D n-CRS) still remain a room for further studies. To date a number of

interesting questions are still open: how to derive the 3D n-CRS sta
king operator, how to

extend the 2D i-CRS/MF sta
king operators to the 3D 
ase, how to 
onstru
t the n-CRS
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Figure 1.8: Classi�
ation of the multidimensional sta
king operators. The paraxial ray

theory is the origin for the 3D CO CRS sta
king operator whi
h may be used

for sta
king of 
onverted waves. The model-based approa
h is used for the

derivation of the DSR-based sta
king operators. The most popular model - the

spheri
al re�e
tor in the homogeneous medium - leads to the MF and i-CRS

sta
king operators. The dashed line indi
ates that MF and i-CRS represent

almost the same sta
king operator formulated in di�erent domains.

sta
king operator for the 
ase of 
onverted waves?

Another important issue is the origin of the sta
king operators. While the CRS sta
king

operator is based on the paraxial ray theory, all DSR-based staking operators are derived

from the model-based approa
h (see Figure 1.8). However, the 2D ZO CRS sta
king

operator 
an also be derived from the model-based approa
h of Hö
ht et al. (1999). The

question naturally arises whether it is possible to derive the DSR-based sta
king operators

from the paraxial ray theory.

In the next four 
hapters, I will try to �nd the answers to these questions.
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Chapter 2

Theory of 3D DSR-based sta
king

operators

The geometri
al approa
h is usually used for the derivation of the 2D DSR-based sta
king

operators. The key element of the derivation is a simpli�ed model: an analyti
al re�e
tor

in a homogeneous isotropi
 medium (auxiliary medium). The straightforward extension

of this approa
h to the 3D 
ase does not lead to good results sin
e the wavefronts have


ompli
ated shape in the 3D 
ase.

In this 
hapter, I propose the 3D simpli�ed model whi
h 
onsists of the auxiliary anisotropi


medium and the spe
ially oriented analyti
al re�e
tor. Based on this model, I extend the

existing DSR-based sta
king operators to the 3D 
ase.

2.1 Introdu
tion

Sta
king of seismi
 tra
es is a basi
 step in the seismi
 pro
essing work�ow (Yilmaz, 2001).

It represents a 
onvenient and e�
ient way to obtain a simulated zero-o�set (ZO) volume

and to extra
t surfa
e-based kinemati
 wave�eld attributes whi
h may be used in the

subsequent imaging steps. The quality of the ZO volume and the wave�eld attributes

signi�
antly depends on the 
hosen sta
king operator. The double-square-root-based

(DSR-based) sta
king operators produ
e images of the subsurfa
e superior than the one

obtained by the 
onventional 
ommon-re�e
tion-surfa
e (CRS) sta
king operator (Landa,

2007; S
hwarz et al., 2014). A variety of DSR-based sta
king operators exists in the 2D


ase. The most 
ommon are Multifo
using (MF) (Gel
hinsky et al., 1999; Landa et al.,

1999; Tygel et al., 1999), non-hyperboli
 CRS (n-CRS) (Fomel and Kazinnik, 2013) and

impli
it CRS (i-CRS) (Vanelle et al., 2010; S
hwarz, 2011).

Nowadays, the 3D seismi
 surveys have be
ome a standard exploration and exploitation

tool (Vermeer, 2002). The 3D seismi
 surveys allow to obtain a true and pre
ise image of

25
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the subsurfa
e (Fren
h, 1974). While the 3D CRS sta
king operator exists in the literature

(see Müller, 2003), the 3D versions of the DSR-based sta
king operators (ex
ept the formal

extension of n-CRS) were not presented so far. Hen
e, it is important to extend the DSR-

based sta
king operators to the 3D 
ase.

The geometri
al (model-based) approa
h is 
ommonly used for the derivation of the DSR-

based sta
king operators. The derivation is usually based on a simpli�ed model of the

subsurfa
e: an analyti
al re�e
tor in an auxiliary 
onstant-velo
ity medium. The simpli�ed

model is related to "reality" (a 
urved re�e
tor below an inhomogeneous overburden)

through the two hypotheti
al experiments providing two eigen-wavefronts (Hubral, 1983).

This allows to obtain the DSR-based traveltime approximations with the same wave�eld

attributes used in the 
onventional CRS sta
king operator.

This 
hapter re-examines the geometri
al approa
h in the 2D 
ase and proposes its

extension to the 3D 
ase in order to obtain the 3D DSR-based sta
king operators. The


hapter has the following stru
ture. Se
tion (2.2) gives a statement of the problem and

explains the main ideas behind the derivation of the 2D DSR-based sta
king operators. The

next three se
tions introdu
e the 
omponents of the 3D simpli�ed model: the spe
ial ray-


entered 
oordinate system (Se
tion 2.3), the auxiliary anisotropi
 medium (Se
tion 2.4)

and the 
urved re�e
tor (Se
tion 2.5). The 3D simpli�ed model (Se
tion 2.6) depends only

on the traveltime of the 
entral ray, the near-surfa
e velo
ity and the kinemati
 wave�eld

attributes. In the 3D simpli�ed model, the traveltime of the re�e
ted wave 
an be presented

either by the impli
it DSR formula, similar to i-CRS (Se
tion 2.7), or by the approximate

expli
it DSR formula, similar to n-CRS (Se
tion 2.8). Final Se
tion (2.9) 
on
ludes the

results of this 
hapter and highlights the links between the obtained operators.

2.2 Statement of the problem

In the re�e
tion seismi
 experiment, the seismi
 wave, emitted from the sour
e, propagates

in the inhomogeneous subsurfa
e. This wave re�e
ts from the inhomogeneities in the

subsurfa
e, returns ba
k to the measurement surfa
e and is re
orded by re
eivers. In the

2D 
ase, the sour
es and the re
eivers are lo
ated on the seismi
 pro�le. The 
entral ray

originates from the 
entral (imaging) point x0, re�e
ts at the normal-in
iden
e-point (NIP)
and returns ba
k to x0 with the traveltime t0 (see Figure 2.1a). The sta
king operators

des
ribe the traveltime t of the paraxial ray, whose sour
e position xs and re
eiver position
xg are lo
ated in the vi
inity of the 
entral point x0.

The derivation of the 2D DSR-based sta
king operators requires several assumptions. Both

i-CRS and n-CRS as well as MF utilize the 
on
ept of straight rays and lo
ally approximate

the wavefront elements by 
ir
les. Hen
e, it is usual to repla
e the 
omplex inhomogeneous

overburden by the homogeneous medium (so-
alled auxiliary medium). It is also 
ommon

to approximate the re�e
tor by an algebrai
 
urve. For example, the 
ir
ular re�e
tor is

used in the derivation of i-CRS, and n-CRS is based on the re�e
tion from the spe
ially

oriented hyperbola. The auxiliary medium and the analyti
al re�e
tor form a simpli�ed
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model, appealing for the geometri
al interpretation (see Figure 2.1b).

As mentioned in the previous 
hapter, the 2D sta
king operators 
an be formulated either

for the �opti
al� or for the �e�
ient� auxiliary medium (see Se
tions 1.2.2 and 1.3.2.2). In

fa
t, the di�eren
e between these two auxiliary media is only in the value of the velo
ity,

whi
h is either equal to the near-surfa
e velo
ity v0 (in the opti
al medium) or to the

e�e
tive velo
ity (in the e�e
tive medium). Sin
e formulation in the opti
al domain is

more intuitive and leads to 
onsiderably simpler formulas, in the following I will use the

opti
al auxiliary medium.

The relationship between the inhomogeneous medium with the 
urved re�e
tor and the

simpli�ed model is established upon 
onsideration of two hypotheti
al experiments: the

normal-in
iden
e-point (NIP) experiment and the normal experiment.

In the NIP experiment, a �
titious sour
e S is pla
ed at the re�e
tion point of the 
entral

ray (NIP). The sour
e S generates the wavefront with the radius of 
urvature RNIP at the


entral point (see Figure 2.1
). The 
ir
ular approximation of the wavefront is appli
able

in the vi
inity of the 
entral point. In the opti
al auxiliary medium of 
onstant velo
ity

v0, an identi
al wavefront may be generated by an image sour
e S∗
lo
ated at the 
enter

of 
urvature of the NIP wavefront. The position of the image sour
e S∗
is determined by

the emergen
e angle of the 
entral ray α and the radius of 
urvature RNIP. Note that the

two-way traveltime along the 
entral ray in the opti
al auxiliary medium

tp =
2RNIP

v0
(2.1)

is generally not equal to the two-way traveltime t0 in the inhomogeneous medium.

In the normal experiment, the �
titious exploding re�e
tor is 
onsidered (see Figure 2.1d).

Similarly to the NIP experiment, the wavefront of the normal wave 
an be approximated by

the 
ir
ular wavefront with the radius of 
urvature RN at the 
entral point. It is apparent

from Figure 2.1d that the identi
al wavefront is generated by the 
ir
ular re�e
tor with

the origin at the 
enter of 
urvature of the normal wavefront O∗
and the radius R:

R = RN −RNIP. (2.2)

Thus, the simpli�ed model is de�ned by the near-surfa
e velo
ity v0 and the surfa
e-based

wave�eld attributes: the emergen
e angle of the 
entral ray α, and the 
urvatures of the

fundamental waves RNIP and RN.

In the simpli�ed model, the traveltime of the ray from the sour
e at xs to the 
ir
ular

re�e
tor (xref (ϑ), zref (ϑ)) parameterized by the variable ϑ to the re
eiver at xg is equal:

t(ϑ) =

√

(xs − xref (ϑ))2 + z2ref (ϑ)

v0
+

√

(xg − xref (ϑ))2 + z2ref (ϑ)

v0
. (2.3)

A

ording to Fermat's prin
iple, the re�e
ted ray prefers the path, whi
h minimizes the

traveltime t(ϑ). Hen
e, the value of the variable ϑ = ϑr de�ning the re�e
tion point
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Figure 2.1: Illustration of the 2D seismi
 re�e
tion experiment (a). The 
entral ray (red)

and the paraxial ray (bla
k) propagate in the inhomogeneous isotropi
 medium.

In order to �nd the traveltime of the paraxial ray, the inhomogeneous medium

and the 
urved re�e
tor are simpli�ed by the 
onstant-velo
ity medium and

the 
ir
ular re�e
tor (b). The parameters of su
h simpli�ed model are linked

with the 
urvatures of the NIP (
) and normal (d) waves.
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oordinates (xr, zr) 
an be found by minimizing the traveltime t(ϑ):

∂t

∂ϑ
= 0, → ϑ = F(ϑ, v0, xs, xg, x0, α,RNIP, RN). (2.4)

The resulting impli
it equation 
an be iteratively solved to obtain ϑr. Substitution of ϑr

into the equation (2.3) yields the traveltime of the re�e
ted ray in the simpli�ed model.

Finally, the traveltime of the re�e
ted wave in the inhomogeneous medium is obtained

after subtra
tion of the time shift tp − t0 from the traveltime of the re�e
ted ray in the

simpli�ed model:

t =

√

(xs − xr)2 + z2r
v0

+

√

(xg − xr)2 + z2r
v0

−
(
tp − t0

)
. (2.5)

The above strategy reprodu
es the derivation of the time-shifted version of the 2D i-CRS

sta
king operator (S
hwarz, 2011).

The obje
tive of this 
hapter is to apply the similar strategy in the 3D 
ase in order to

�nd the 3D DSR-based sta
king operators. This will obviously require:

1. the image sour
e S∗
in the 3D auxiliary medium, de�ned by the 
urvature of the

NIP wavefront (similar to 2.1);

2. the link between the 
urvature of the re�e
tor and the 
urvatures of the NIP and

normal wavefronts in the 3D 
ase (similar to 2.2);

3. the expression for the traveltime of the re�e
ted ray (similar to 2.3);

4. the system of equations de�ning the re�e
tion point 
oordinates (similar to 2.4).

Moreover, the 3D DSR-based sta
king operators have to be 
ompatible with the 
onven-

tional 3D CRS sta
king operator (1.19) and have to use the same wave�eld attributes (1.20)

as the 
onventional 3D CRS.

2.3 Coordinate system

To provide a mathemati
al formalism of the problem, I establish two 
oordinate systems:

the general Cartesian 
oordinate system L related to the measurement surfa
e and the

spe
ial ray-
entered 
oordinate system L′
related to the 
entral ray (see Figure 2.2a).

The general Cartesian 
oordinate system L is 
hosen so that the seismi
 sour
e x̂s, the

re
eiver x̂g and the 
entral point x̂0 are lo
ated in the plane z = 0. The positive z-axis
points downwards, thereby z may be referred to as "depth".
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Figure 2.2: Seismi
 measurements are related to the general Cartesian 
oordinate system

L (a). However, the derivation of the 3D DSR-based sta
king operators requires

the spe
ial ray-
entered 
oordinate system L′
. The origin of the system L′


oin
ides with the 
entral point x̂′
0. It's z

′
-axis is tangential to the 
entral ray

and the x′ and y′-axes align the prin
ipal dire
tions of 
urvature of the NIP

wavefront. The dire
tion of z′-axis is de�ned by the emergen
e angles α and

β of the 
entral ray (b). In the standard ray-
entered 
oordinate system L̃′
, x̃′

and ỹ′-axes do not 
oin
ide with the prin
ipal dire
tions of the NIP wavefront.

Hen
e, the additional rotation for the angle δ is performed (
).

The system L′
is a spe
ial ray-
entered 
oordinate system whose x′ and y′-axes 
oin
ide

with the prin
ipal dire
tions of 
urvature of the NIP wavefront. Like the standard ray-


entered 
oordinate system, the system L′
originates at the 
entral point x̂0, and it's z

′
-axis

is tangential to the 
entral ray at x̂0.

The relationship between the general Cartesian 
oordinates x̂ and the spe
ial ray-
entered


oordinates x̂′
is given by equation:

x̂′ = R̂T

z (δ) R̂
T

y (α)R̂
T

z (β)
︸ ︷︷ ︸

R̂T

(x̂− x̂0). (2.6)

In this equation, α and β are the polar and azimuthal angles of the 
entral ray, and δ is

the angle between the prin
ipal 
urvature dire
tion and the x-axis of the standard ray-


entered 
oordinate system (see Figure 2.2b). The matri
es R̂y and R̂z are the basi


rotation matri
es:

R̂y(θ) =





cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ



 , R̂z(θ) =





cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 . (2.7)

The matrix R̂T ≡ R̂T
y (α)R̂

T
z (β) a

ounts for the transformation from the general Cartesian

to the standard ray-
entered 
oordinate system. The matrix R̂T
z (δ) makes an additional

rotation about z′-axis to aline x′ and y′-axes with the prin
ipal dire
tions of 
urvature of

the NIP wavefront.

The obvious advantage of the 
oordinate system L′
over the standard ray-
entered system
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Figure 2.3: Illustration of the NIP experiment in the 3D 
ase. The �
titious sour
e S in the

inhomogeneous medium generates the wavefront with the 
urvature K′
NIP (a).

In the 
ase of the auxiliary isotropi
 medium (b), the NIP wavefront does not

"fo
us" in one point. Consideration of the auxiliary anisotropi
 medium (
)

over
omes this problem.

is that in the L′
system the matrix of 
urvature of the NIP wave K′

NIP is diagonal:

K′
NIP =

(
k′11NIP 0

0 k′22NIP

)

. (2.8)

2.4 Auxiliary anisotropi
 medium

As dis
ussed before, all DSR-based sta
king operators des
ribe the moveout in the auxiliary

medium of 
onstant velo
ity. It is also important to note that the 2D auxiliary medium is

not only homogeneous but also isotropi
, i.e. the velo
ity is dire
tion-independent.

In the 2D 
ase, the 
ir
ular wavefront approximation is valid, be
ause the arbitrary

wavefront is lo
ally de�ned by one 
urvature. However, in the 3D 
ase, an arbitrary

wavefront has two prin
ipal 
urvatures and, hen
e, 
ould not be a

urately approximated

by the spheri
al wavefront. In the 3D 
ase, the homogeneous isotropi
 medium does

not "fo
us" the arbitrary wavefront (see Figure 2.3b). Thus, I propose to 
onsider

a homogeneous anisotropi
 medium. In the homogeneous anisotropi
 medium, the

wavefronts have a 
ompli
ated shape, sin
e the velo
ity varies with the dire
tion. Hen
e

it is possible to �nd the homogeneous anisotropi
 medium that "fo
us" the wavefront of

the arbitrary 
urvature in one point (see Figure 2.3
).

The wavefront propagation in a general homogeneous anisotropi
 medium is governed by

21 density normalized elasti
 parameters. However, the number of independent parameters

may be signi�
antly redu
ed when the wavefronts with the 
ertain symmetry properties are

required. In the system L′
, the lo
al quadrati
 approximation of the arbitrary wavefront

has two orthogonal symmetry planes: x′ = 0 and y′ = 0 (see Figures 2.3a,
). Sin
e the

wavefront approximation is only of interest in the half-spa
e z′ > 0, there is an additional

symmetry plane z′ = 0. Given the above mentioned symmetries, the general anisotropy
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degenerates to the orthorhombi
 anisotropy.

The orthorhombi
 anisotropy media is de�ned by 9 density normalized elasti
 parameters.

However, the propagation of quasi-
ompressional (qP) waves in the degenerate orthorhom-

bi
 (ellipsoidal) medium is governed by only three density normalized elasti
 parameters.

The group velo
ity of qP-waves in the weakly anisotropi
 ellipsoidal medium is equal to

(Daley and Krebes, 2005, p. 5 eq. 21):

1

ζ2(Θ,Φ)
=

sin2 Θcos2 Φ

A11
+

sin2 Θsin2 Φ

A22
+

cos2 Θ

A33
. (2.9)

Here Θ and Φ are the group polar and azimuthal angles de�ning the dire
tion of the ray.

Density normalized elasti
 parameters A11, A22 and A33 de�ne the group velo
ity in x′, y′

and z′ dire
tions, respe
tively.

In order to investigate the link between the density normalized elasti
 parameters and the

prin
ipal 
urvatures of the NIP wavefront, I 
onsider the NIP experiment. In the NIP

experiment the �
titious sour
e S is pla
ed at the re�e
tion point of the 
entral ray (see

Figure 2.3a). The wavefront generated by the sour
e S arrives at the 
entral point x̂′
0 at

the time

t0
2 with the 
urvature K′

NIP. The identi
al wavefront may be generated by the

image sour
e S∗
at the point (0, 0, R∗

NIP) in the auxiliary anisotropi
 medium.

The depth of the image sour
e R∗
NIP and the parameters of the auxiliary anisotropi
 medium

A11, A22, A33 are uniquely determined from the 
ondition that the traveltime, the slowness

ve
tor and the 
urvature of the NIP wavefront at the 
entral point x̂′
0 are the same both

in the inhomogeneous medium and in the auxiliary medium. Indeed:

� from the 
ondition of the slowness equality, the group velo
ity along z′-axis in the

auxiliary medium is equal to the velo
ity v0 at the 
entral point in the inhomogeneous
medium:

A33 = v20 ; (2.10)

� from the 
ondition of the traveltime equality, the depth of the image sour
e S∗
is

equal:

R∗
NIP =

t0v0
2

; (2.11)

� from the 
ondition of the 
urvature equality, the parameters A11, A22 are equal (see

Appendix A.2 for details):

1

A11
=

t0
2v0

k′
11
NIP,

1

A22
=

t0
2v0

k′
22
NIP. (2.12)

Hen
e, in the 3D 
ase, the 
omplex inhomogeneous overburden may be repla
ed by the

auxiliary anisotropi
 medium with parameters:

1

A11
=

t0
2v0

k′
11
NIP,

1

A22
=

t0
2v0

k′
22
NIP,

1

A33
=

1

v20
. (2.13)
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Figure 2.4: Illustration of the normal experiment in the 3D 
ase. The exploding re�e
tor in

the inhomogeneous medium generates the wavefront with the 
urvatureK′
N (a).

The similar wavefront may be generated by the analyti
al re�e
tor with the


urvature K′
R in the auxiliary medium.

The parameters (2.13) depend on the traveltime of the 
entral ray t0, the near-surfa
e

velo
ity v0 and the 
urvature of the NIP wavefront. Hen
e they are �xed for a given


entral ray. Note that, unlike the 2D 
ase, the traveltimes along the 
entral ray 
oin
ide

in the auxiliary anisotropi
 medium and in the inhomogeneous medium.

2.5 Curvature of re�e
tor

In the 2D 
ase, the arbitrary re�e
tor 
an be lo
ally approximated by an analyti
 
urve in

the vi
inity of the NIP. For example, the 
ir
ular re�e
tor is used in the derivation of the

i-CRS formula, and the n-CRS formula is based on the re�e
tion from the spe
ially oriented

hyperbola. These simpli�
ations are possible, be
ause the front of the hypotheti
al normal

wave has one 
urvature in the 2D 
ase. However, in the 3D 
ase, both the re�e
tor and the

normal wavefront are des
ribed by 2 × 2 symmetri
 
urvature matri
es (see Figure 2.4a).

As shown in the previous se
tion, the inhomogeneous medium may be repla
ed by the

auxiliary anisotropi
 medium with parameters depending on the 
urvature of the NIP

wavefront. The aim of this se
tion is to �nd the re�e
tor that generates the normal

wavefront with the desired 
urvature in the auxiliary medium.

When the inhomogeneous overburden is repla
ed by the auxiliary medium, the 
entral ray

be
omes the straight line 
oin
iding with the z′-axis and the NIP is lo
ated at the depth

R∗
NIP (see Figure 2.4b). Like in the inhomogeneous isotropi
 medium, in the auxiliary

medium the re�e
tor passes through the NIP and is perpendi
ular to the 
entral ray at the

NIP. The 
urvature of the re�e
tor at the NIP is determined by the 
urvature matrix K′
R.

In the 3D 
ase, there are many surfa
es with the 
urvature K′
R at the apex. For example,
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Figure 2.5: Two di�erent ways to approximate the re�e
tion surfa
e: (a) by the paraboloid,

and (b) by the ellipsoid. Both re�e
tors have the same 
urvature K′
R at the

apex point R∗
NIP.

the re�e
tor 
an be approximated by the paraboloid (see Figure 2.5a):

f(x′) = R∗
NIP +

1

2
x′TK′

Rx
′, (2.14)

or by the ellipsoid (see Figure 2.5b and Appendix B.1). Although the ellipsoidal re�e
tor

is a restri
ted 
ase (both prin
ipal 
urvatures have positive signs), this type of re�e
tor is

of spe
ial interest be
ause of the ability to �t point di�ra
tors. Despite the a
tual form

of the re�e
tor, the 
urvature of the normal wave depends only on the 
urvature of the

re�e
tor at the NIP. In order to �nd the relationship between 
urvatures K′
R and K′

N, I


onsider the normal experiment.

In the normal experiment (see Figure 2.4b), the wavefront, originated from the re�e
tor,

propagates through the auxiliary medium and arrives at the 
entral point x̂0 with the


urvature K′
N. Suppose that the re�e
tor is de�ned by the fun
tion f of the lateral


oordinates (e.g., by the equation 2.14). Then, it is possible to 
ompute a unit normal

ve
tor at ea
h point on the re�e
tor. The normal ve
tor, being also normal to the wavefront,

de�nes the dire
tion of the phase velo
ity propagation. The dire
tions of the group and

phase velo
ity propagation generally do not 
oin
ide in an anisotropi
 media and have a


ompli
ated relation. However, in the auxiliary (ellipsoidal) anisotropi
 medium, there is

an expli
it relation between the group and phase angles (see e.g. Daley and Krebes, 2005).

The group angles de�ne the dire
tion and the value of the group velo
ity ζ a

ording to

the equation (2.9).

Therefore, for ea
h point on the re�e
tor x̂′
ref it is possible to 
onstru
t the normal ray.

This ray 
rosses the surfa
e z′ = 0 at the interse
tion point x̂′
int:





x′int
y′int
0



 =





x′ref
y′ref
f(x′

ref)



+ t





ζ1(x
′
ref )

ζ2(x
′
ref )

ζ3(x
′
ref )



 . (2.15)
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The z′-
omponent of this three-
omponent equation gives the traveltime to the interse
tion
point as a fun
tion of x′

ref :

t = −
f(x′

ref )

ζ3(x
′
ref )

. (2.16)

Substitution of (2.16) into the x′ and y′-
omponents of the equation (2.15) yields the

dependen
e of the interse
tion point x′
int on the re�e
tor point x

′
ref . In the vi
inity of the


entral ray, this dependen
e 
an be linearized, and the inverse relation 
an be established

(see Appendix A.3 for details):

x′
ref ≈

[

I+K′−1
NIPK

′
R

]−1
x′
int. (2.17)

With the last relation it is possible to �nd the traveltime of the normal wave as a fun
tion

of x′
int (see Appendix A.3 for details):

t2(x′
int) =

t20
4
+

t0
2v0

x′T
int

[

K′−1
R +K′−1

NIP

]−1
x′

int. (2.18)

The 
omparison of this traveltime with the hyperboli
 expression (see Appendix A.1)

t2(x′) =
t20
4
+

t0
2v0

x′TK′
Nx

′
(2.19)

gives the desired link between the 
urvatures:

K′−1
N = K′−1

R +K′−1
NIP. (2.20)

Thus, in the 3D auxiliary anisotropi
 medium, the re�e
tor with the 
urvature

K′
R =

[

K′−1
N −K′−1

NIP

]−1
(2.21)

generates the normal wavefront with the 
urvature K′
N. Another important result follows

immediately from (2.17) and (2.21):

x′
ref ≈

[

I−K′−1
NIPK

′
N

]

x′
int. (2.22)

This means that the approximate position of the re�e
tion point may be determined in

terms of the surfa
e-based kinemati
 wave�eld attributes.

2.6 3D simpli�ed model

In summary, the inhomogeneous medium with the 
urved re�e
tor may be repla
ed by the

auxiliary anisotropi
 medium with the analyti
al re�e
tor of 
urvatureK′
R (see Figure 2.6).

The analyti
al re�e
tor (2.21) and the auxiliary medium (2.13) in the spe
ial ray-
entered


oordinate system (2.6) form the simpli�ed model. The simpli�ed model depends on the
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Figure 2.6: Similar to the 2D 
ase, in the 3D 
ase, the inhomogeneous overburden with

the 
urved re�e
tor (a) 
an be repla
ed by the simpli�ed model (b). In the

simpli�ed model the rays are straight lines, and the re�e
tor has a simple

shape. Hen
e, the traveltime of the paraxial ray 
an be found based on the

geometri
al relations.

traveltime of the 
entral ray, the near-surfa
e velo
ity and the surfa
e-based kinemati


wave�eld attributes.

By de�nition, the simpli�ed model satis�es the hypotheti
al NIP and normal experiments.

Sin
e the NIP and normal waves are the eigen-waves (Hubral, 1983), the arbitrary re�e
ted

wave, in some sense, 
an be represented by the superposition of these eigen-waves. Thus,

the simpli�ed model may be used to predi
t the traveltime of the paraxial ray.

2.7 Impli
it sta
king operator (3D i-CRS)

As dis
ussed previously, it is possible to repla
e the 
urved re�e
tor and the inhomogeneous

overburden with a simpli�ed model. The surfa
e-based kinemati
 wave�eld attributes

de�ne the simpli�ed model that 
onsists of the spe
ial 
oordinate system L′
, the auxiliary

medium and the re�e
tor in the parametri
 form:

x̂′
ref (ϑ,ϕ) ≡ (x′ref (ϑ,ϕ), y

′
ref (ϑ,ϕ), z

′
ref (ϑ,ϕ)). (2.23)

In this se
tion, I dis
uss how to �nd the traveltime of the paraxial ray in the simpli�ed

model.

Consider an arbitrary point on the re�e
tor. The traveltime from the sour
e lo
ation x̂′
s

to this arbitrary point and from this point to the re
eiver lo
ation x̂′
g is obviously equal:

t(ϑ,ϕ) =

√

X ′
s
2 + Y ′

s
2 + Z ′

s
2

ζs(Θs,Φs)
+

√

X ′
g
2 + Y ′

g
2 + Z ′

g
2

ζg(Θg,Φg)
, (2.24)
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where the following notations are used:

X ′
i = x′ref − x′i, Y ′

i = y′ref − y′i, Z ′
i = z′ref − z′i, i = s, g, (2.25)

and ζs, ζg denote the group velo
ities. Substituting the relations for the group angles:

sin2Θi =
X ′

i
2 + Y ′

i
2

X ′
i
2 + Y ′

i
2 + Z ′

i
2 , sin2 Φi =

Y ′
i
2

X ′
i
2 + Y ′

i
2 , i = s, g, (2.26a)

cos2 Θi =
Z ′
i
2

X ′
i
2 + Y ′

i
2 + Z ′

i
2 , cos2 Φi =

X ′
i
2

X ′
i
2 + Y ′

i
2 , i = s, g, (2.26b)

and the de�nition of the group velo
ity (2.9) into (2.24) yields the 
ompa
t DSR formula

for the traveltime:

t(ϑ,ϕ) =

√

X ′
s
2

A11
+

Y ′
s
2

A22
+

Z ′
s
2

A33
+

√

X ′
g
2

A11
+

Y ′
g
2

A22
+

Z ′
g
2

A33
. (2.27)

Note that the resulting traveltime formula (2.27) is given as a fun
tion of the parameters

ϑ and ϕ. The parameters ϑr, ϕr de�ning the re�e
tion point of the paraxial ray x̂′
r 
an

be determined using Fermat's prin
iple. A

ording to Fermat's prin
iple, the paraxial ray

takes the path of the least traveltime. Hen
e, the parameters ϑr, ϕr may be found by

solving the following system of nonlinear equations:

{
∂t
∂ϑ = 0,
∂t
∂ϕ = 0.

(2.28)

The traveltime formula (2.27) and the solution of the system (2.28) form the 3D impli
it

CRS sta
king operator

1

(3D i-CRS). Below, I present two iterative approa
hes to solve the

system (2.28). The 
hoi
e of the approa
h depends on the type of parameterization of the

re�e
tor surfa
e.

2.7.1 Linearized iterative approa
h

In this approa
h, the parameters ϑ and ϕ denote the lateral 
oordinates x′ and y′, and the

re�e
tion surfa
e is des
ribed by the 
ontinuous and twi
e di�erentiable fun
tion f of the

lateral 
oordinates:

z′ref = f(x′, y′). (2.29)

I assume that the re�e
tion point of the paraxial ray is 
lose to the re�e
tion point of the


entral ray. Hen
e the re�e
tion point displa
ements

∆x′r ≡ x′r − x′r0 , ∆y′r ≡ y′r − y′r0 (2.30)

1

This name was given sin
e the obtained sta
king operator is "ideologi
ally" 
lose to the 2D impli
it

CRS sta
king operator.
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are small, 
ompared to the typi
al s
ale of the problem. With this assumption, the system

of equations (2.28) 
an be linearized:

{

Ax +Axx∆x′(j)r +Axy∆y′(j)r = 0,

Ay +Ayx∆x′(j)r +Ayy∆y′(j)r = 0.
(2.31)

Here ∆x′(j)r and ∆y′(j)r are the updates of the re�e
tion point 
oordinates at the j-th
iteration

∆x′
(j)
r ≡ x′

(j)
r − x′

(j−1)
r , ∆y′

(j)
r ≡ y′

(j)
r − y′

(j−1)
r . (2.32)

The 
oe�
ients Ax and Ay denote the �rst-order partial derivatives of the traveltime (2.27)

with respe
t to the lateral 
oordinates of the re�e
tion point, and the 
oe�
ients Axx,

Axy, Ayx and Ayy are equal to the 
orresponding se
ond-order partial derivatives. The


oe�
ients are minutely dis
ussed in Appendix B.2.

At the �rst iteration, the 
oe�
ients are estimated at the re�e
tion point of the 
entral

ray. The linearized system (2.31) gives the �rst approximation of the re�e
tion point


oordinates (x′(1)r , y′(1)r ). The next approximation (x′(2)r , y′(2)r ) may be found by solving

the system (2.31) with the 
oe�
ients taken at the point x′(1)
r . A

ordingly, for the j-th

iteration step, the 
oe�
ients are estimated at the point (x′(j−1)
r , y′(j−1)

r ). Finally, after n

iterations, I obtain the lateral 
oordinates of the re�e
tion point (x′(n)r , y′(n)r ) and get the

traveltime a

ording to the formula (2.27).

Note that the algorithm, des
ribed here is a generalization of the approa
h presented by

Abakumov et al. (2013) for the 
ase of the inhomogeneous overburden.

2.7.2 Trigonometri
 iterative approa
h

Alternatively, the re�e
tor surfa
e 
an be parameterized by polar angles. In this

parameterization ϑ and ϕ denote the polar and azimuthal angles. In this 
ase, the system

of nonlinear equations (2.28) may be presented in the following way:

tanϕ = F1(ϑ,ϕ, t0, v0,xs,xg,x0, α, β,KNIP,KN) (2.33a)

tan ϑ = F2(ϑ,ϕ, t0, v0,xs,xg,x0, α, β,KNIP,KN) (2.33b)

The fun
tions F1 and F2 are de�ned in Appendix B.3.

The angles ϑ and ϕ 
an be obtained iteratively with the equations (2.33). At the �rst

iteration, I 
hoose ϑ(0)
and ϕ(0)


orresponding to the re�e
tion point of the 
entral ray:

ϑ(0) = 0, ϕ(0) = 0.

The equation (2.33a) gives an update ϕ(1)
. This updated value is used in the equation

(2.33b) for ϑ(1)
. The iterations are repeated until the 
onvergen
e is a
hieved. Finally,

after n iterations, I obtain the values ϑ(n)
and ϕ(n)

and substitute them into the equation
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(2.27) to get the traveltime of the re�e
ted wave. The des
ribed approa
h is based on the

method proposed by S
hwarz et al. (2012) for the 2D i-CRS sta
king operator.

Note that both iterative approa
hes potentially allow to �nd the traveltime of the re�e
ted

wave in the simpli�ed model with any desired pre
ision.

2.8 Expli
it sta
king operators

The re
ently introdu
ed 3D i-CRS sta
king operator is mu
h more 
ompli
ated than the


onventional 3D CRS sta
king operator, and hen
e its implementation into the CRS 
ode is

rather 
hallenging. In this se
tion, I propose alternative expli
it sta
king operators in order

to a
hieve a good tradeo� between the a

ura
y and the e�
ien
y of the implementation.

The idea here is to �nd an expli
it approximation of the re�e
tion point 
oordinates instead

of solving the system (2.28). For a given simpli�ed model, the re�e
tion point of the

paraxial ray depends only on the 
oordinates of sour
e and re
eiver, or alternatively, on

the o�set h′
and the midpoint displa
ement m′

. The approximate lo
ation of the re�e
tion

point may be presented as a Taylor series expansion around the re�e
tion point of the


entral ray:

x′
r ≈ x′

r0 +Bh′h′ +Bm′m′ + ... (2.34)

Here Bh′
and Bm′

are 2× 2 matri
es des
ribing the shift of the re�e
tion point in the 
ase

of CMP and zero-o�set a
quisitions, respe
tively. The matrix Bh′
is equal to zero due to

the re
ipro
ity prin
iple. The matrix Bm′
is equal to (see equation 2.22):

Bm′ =
[

I−K′−1
NIPK

′
N

]

. (2.35)

2.8.1 3D DSR sta
king operator

Substituting the approximation for x′
r (2.34) into the traveltime formula (2.27) and

omitting the terms of higher order than the se
ond yield the 3D DSR sta
king operator

(see Appendix C.3 for detailed derivation):

t(m,h) =
1

2

√
[

t0 +wT∆xs

]2
+ 2t0

[

mTNm− 2mTNh+ hTMh
]

+
1

2

√
[

t0 +wT∆xg

]2
+ 2t0

[

mTNm+ 2mTNh+ hTMh
]

, (2.36)

where ∆xs and ∆xg denote the sour
e and re
eiver displa
ements:

∆xs ≡ m− h, ∆xg ≡ m+ h. (2.37)

The 3D DSR sta
king operator (2.36) in
ludes only CRS parameters (1.20), and 
an be

easily implemented into the CRS software. It is numeri
ally slightly more expensive than



40 CHAPTER 2. THEORY OF 3D DSR-BASED STACKING OPERATORS

the 
onventional 3D CRS sta
king operator (1.19). In the spe
ial 
ases of the �at re�e
tor

and the point di�ra
tor in the homogeneous medium, formula (2.36) gives exa
t traveltimes.

For the dipping plane re�e
tor in the homogeneous medium, formula (2.36) is a short-spread

approximation.

2.8.2 3D n-CRS sta
king operator

The 3D DSR sta
king operator (2.36) 
an be transformed to the 3D n-CRS sta
king

operator (see Appendix C.4 for details):

t(m,h) =

√
[1

2

√

F̂ (m− h) +
1

2

√

F̂ (m+ h)
]2

+ 2t0hT
(
M−N

)
h (2.38)

where

F̂ (m) =
(
t0 +wTm

)2
+ 2t0m

TNm. (2.39)

This sta
king operator is identi
al to one proposed by Fomel and Kazinnik (2013) for the

3D 
ase.

2.9 Con
lusions

Along this 
hapter I reviewed the geometri
al approa
h whi
h is the basis of the derivation

of the 2D DSR sta
king operators. Based on this review, I proposed a simpli�ed model in

the 3D 
ase. The simpli�ed model 
onsists of the spe
ial ray-
entered 
oordinate system,

the auxiliary anisotropi
 medium and the analyti
al re�e
tor. The model is fully de�ned by

the traveltime of the 
entral ray, the near-surfa
e velo
ity and the surfa
e-based wave�eld

attributes. By means of this model, I found impli
it and expli
it 3D sta
king operators for

the traveltime of the paraxial ray.

The 3D impli
it sta
king operator (3D i-CRS) in
ludes the system of nonlinear equations

de�ning the re�e
tion point 
oordinates and the DSR expression for the traveltime, as a

fun
tion of the re�e
tion point. This sta
king operator allows to �nd the traveltime in the

simpli�ed model with any desired pre
ision. The a

ura
y of the 3D i-CRS approximation

is only restri
ted by the appli
ability of the simpli�ed model. In the 2D 
ase, this approa
h

redu
es to the 2D i-CRS sta
king operator.

The 3D expli
it sta
king operator (3D DSR) is based on the �rst-order approximation of

the re�e
tion point 
oordinates. It is the DSR formula of the se
ond-order a

ura
y. The

formula has the same set of parameters as the 
onventional 3D CRS sta
king operator and

is thereby ready for implementation into the CRS-based software. The 3D DSR sta
king

operator 
an be transformed to the 3D n-CRS sta
king operator.

In the next 
hapter, I will investigate the domain of the appli
ability of the simpli�ed

model and the a

ura
y of the 3D sta
king operators. I will dis
uss the implementation of



CHAPTER 2. THEORY OF 3D DSR-BASED STACKING OPERATORS 41

the new sta
king operators into the CRS software and I will 
ompare the performan
e of

the new operators with the one of the 
onventional 3D CRS.
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Chapter 3

A

ura
y and implementation of

3D DSR-based sta
king operators

How a

urate is the 3D simpli�ed model? What is the "best" 3D DSR-based sta
king

operator? How do the DSR-based sta
king operators improve the quality of the sta
ked

se
tion? These and other intriguing questions naturally arise from the �ndings presented

in the previous 
hapter. In this 
hapter, I will answer these questions based on several

numeri
al examples.

3.1 Appli
ability of the simpli�ed model

In the simpli�ed model, the traveltime of the re�e
ted ray 
ould be found with any desired

pre
ision. However, the simpli�ed model 
orre
tly des
ribes propagation of re�e
ted rays

only in the vi
inity of the 
entral ray. Hen
e, it is important to investigate the range of

appli
ability of the simpli�ed model.

In order to test the appli
ability of the simpli�ed model, I 
onsider the so-
alled Complex

model (see Figure 3.1a). The Complex model 
onsists of the analyti
al re�e
tor below

the inhomogeneous overburden with the velo
ity pro�le typi
al for the Gulf of Mexi
o.

Su
h a model is 
ompli
ated enough to possess all e�e
ts of the real 3D media and at

the same time allows the numeri
al 
omputation of traveltimes of re�e
ted waves. The

Complex model is 
hara
terized by the depth of the NIP point D, whi
h in this 
ase is

approximately equal to 1 km.

A 
orresponding simpli�ed model is shown in Figure 3.1b. The model 
onsists of the

homogeneous anisotropi
 auxiliary medium (blue layer in Figure 3.1b) and ellipsoidal or

paraboli
 re�e
tor (red surfa
e). The simpli�ed model is valid if the traveltime of the

re�e
ted ray in the simpli�ed model tsm is almost identi
al to the traveltime of the re�e
ted

ray in the Complex model tcm.

43
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Figure 3.1: Illustration of the Complex model (a) and the 
orresponding simpli�ed model

(b). The Complex model 
onsists of the 
onstant velo
ity part (v0 = 1500 m/s,
z ≤ 250 m) simulating the water layer, and the 
onstant-gradient velo
ity part

(v = v0 + κ(z − z0), z0 = 250 m, κ = 0.5 s−1
, z > 250 m) simulating the

sedimentary layer. The re�e
tor (red surfa
e) simulates the top of the salt

body. The re�e
tor is des
ribed by the fourth order polynomial fun
tion of

lateral 
oordinates. The bla
k line indi
ates the traje
tory of the 
entral ray.

The depth of the NIP point is approximately equal to 1.0 km. The simpli�ed

model (b) is 
onstru
ted for the parti
ular 
entral ray.

The CMP and ZO experiments 
ould be used to identify the range of appli
ability of the

simpli�ed model. These experiments allow to obtain the relative error of traveltimes in the

simpli�ed model

E =
tsm − tcm

tcm
· 100% (3.1)

as a fun
tion of the half-o�set h = {hx, hy} and the midpoint displa
ement m = {mx,my}
(see Figure 3.2).

As follows from Figures 3.2a,
, the simpli�ed model is valid for tra
es with o�sets |h| < D
and midpoint displa
ements |m| < D/2 (relative error does not ex
eed 0.2% and 0.3%,

respe
tively). There is no systemati
 di�eren
e between the ellipsoidal and paraboli


re�e
tor (
ompare images a, 
 with b, d in Figure 3.2), however the simpli�ed model

with the ellipsoidal re�e
tor provides a slightly better result.

3.2 The most e�e
tive iterative approa
h

In Se
tion 2.7, I proposed two iterative approa
hes to �nd the traveltime of the re�e
ted

wave in the simpli�ed model: the trigonometri
 iterative approa
h (TIA, equations 2.33),

whi
h is the extension of the method proposed by S
hwarz et al. (2012) to the 3D 
ase, and

the linearized iterative approa
h (LIA, equations 2.31). In this Se
tion, I will investigate
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Figure 3.2: Relative errors (3.1) E of the traveltimes in the simpli�ed model for the CMP

and ZO experiments. In the CMP experiment (a,b), E is a fun
tion of |h|
and azimuth angle ξh: 0 ≤ |h| ≤ 2000 m, 0° ≤ ξh ≤ 360°

, |m| = 0. In

the ZO experiment (
,d), E is a fun
tion of |m| and azimuth angle ξm: 0 ≤
|m| ≤ 1000 m, 0° ≤ ξm ≤ 360°

, |h| = 0. Relative errors are 
omputed for the

simpli�ed model with the ellipsoidal (a,
) and paraboli
 (b,d) re�e
tors.
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Figure 3.3: Illustration of the a
quisition geometry: 100 randomly distributed sour
e-

re
eiver pairs in the vi
inity of the 
entral point (a). The RMS traveltime

errors plotted as fun
tions of the iteration number (b).

whi
h of these approa
hes perform best in the 3D 
ase.

In order to answer this question, I 
onsider N = 100 randomly distributed sour
e-re
eiver

pairs (see Figure 3.3a) that satisfy the 
riteria of validity of the simpli�ed model (|h| < D,

|m| < D/2). The simpli�ed model with the ellipsoidal re�e
tor was 
hosen to 
ompare the

LIA and TIA methods.

For 
omparison, it is 
onvenient to use the root-mean-square (RMS) traveltime error

δtRMS(i) whi
h is equal to

δtRMS(i) =

√
√
√
√ 1

N

N∑

k=1

(tk(i)− tkex
tkex

)2
· 100%, (3.2)

where tkex is the exa
t (
omputed numeri
ally to very high pre
ision) traveltime in the

simpli�ed model from the sour
e at xk
s to the re
eiver at x

k
g and tk(i) is the 
orresponding

traveltime obtained by the TIA/LIA methods on the i-th iteration step.

The RMS traveltime errors as fun
tions of the iteration number are shown in Figure 3.3b.

As follows from the �gure, LIA 
onverges signi�
antly faster than TIA (LIA requires only

5 iterations to rea
h the pre
ision of the numeri
al 
omputation, while TIA requires 14

iterations). In pra
ti
e, 1-2 iterations are enough for LIA, while TIA requires more than 5

iterations.

Note that these results are only valid for the 3D 
ase. Tests in the 2D 
ase (and in the 3D


ase with a spheri
al re�e
tor) do not reveal signi�
ant di�eren
e between both approa
hes.
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Figure 3.4: Illustration of six analyti
al re�e
tors.

3.3 The most a

urate sta
king operator

As one 
an 
on
lude from the previous se
tions, the best realization of the 3D i-CRS

sta
king operator is the one with the ellipsoidal re�e
tor and LIA. In this se
tion, I will


ompare 3D CRS (1.19), 3D DSR (2.36), 3D n-CRS (2.38) and three di�erent realizations

of the 3D i-CRS sta
king operator (I - LIA, paraboli
 re�e
tor, II - LIA, ellipsoidal re�e
tor,

III - TIA, ellipsoidal re�e
tor) to �nd �the most a

urate� sta
king operator.

I 
onsider six di�erent re�e
tors (see Figure 3.4): the �at re�e
tor, the plane dipping

re�e
tor, the point di�ra
tor

1

, the sphere, the ellipsoid and the analyti
al re�e
tor from

the Complex model. Ea
h of these re�e
tors is 
ombined with three di�erent overburden

stru
tures:

� Const - 
onstant velo
ity overburden (v0 = 1500 m/s) simulating the water layer;

� Grad - 
onstant-gradient velo
ity overburden (v = v0 + κz, v0 = 1500 m/s, κ =
0.5 s−1

) simulating the sedimentary layer;

� 1-D - overburden of 
omplex stru
ture that 
onsists of the water layer (depth <

250 m) and the sedimentary layer (depth > 250 m).

All re�e
tors are 
hosen in su
h a way that the depth of the NIP point D is approximately

equal to 1 km. Hen
e, previously used a
quisition geometry (from Figure 3.3a) is appli
able

1

The point di�ra
tor is simulated by the spheri
al re�e
tor with the radius R = 10 m.



48

CHAPTER 3. ACCURACY AND IMPLEMENTATION OF 3D DSR-BASED

STACKING OPERATORS

for all 18 models. For ea
h sta
king operator the RMS traveltime error (3.2) is 
omputed

(see Table 3.1).

Table 3.1: RMS traveltime errors

Re�e
tor Velo
ity CRS DSR n-CRS i-CRS

I

i-CRS

II

i-CRS

III

Flat

re�e
tor

Const 0.000 0.000 0.000 0.000 0.000 �

Grad 0.058 0.058 0.058 0.059 0.059 �

1-D 0.050 0.050 0.050 0.050 0.050 �

Plane

dipping

re�e
tor

Const 0.000 0.207 0.000 0.001 0.001 �

Grad 0.184 0.232 0.191 0.189 0.189 �

1-D 0.183 0.225 0.190 0.188 0.188 �

Point

di�ra
tor

(R=10m)

Const 0.878 0.005 0.002 0.001 0.000 0.000

Grad 0.908 0.091 0.089 0.092 0.092 0.092

1-D 0.905 0.085 0.083 0.086 0.085 0.085

Sphere

(R=1km)

Const 0.241 0.087 0.043 0.007 0.000 0.000

Grad 0.275 0.159 0.098 0.108 0.108 0.109

1-D 0.273 0.153 0.093 0.104 0.104 0.105

Ellipsoid

Const 0.207 0.118 0.061 0.022 0.022 0.339

Grad 0.167 0.123 0.092 0.095 0.096 0.621

1-D 0.163 0.117 0.086 0.090 0.090 0.619

Complex

surfa
e

Const 0.192 0.067 0.017 0.049 0.048 0.048

Grad 0.224 0.145 0.108 0.128 0.128 0.130

1-D 0.223 0.144 0.108 0.128 0.128 0.130

As follows from the table, all sta
king operators behave equally well for the �at re�e
tor

and the plane dipping re�e
tor. An ex
eption is the 3D DSR sta
king operator whi
h gives

an approximate traveltime in the 
ase of the plane dipping re�e
tor.

In the 
ase of quadri
 surfa
es (point di�ra
tor, sphere, ellipsoid) 3D i-CRS (for the

homogeneous overburden) and 3D n-CRS (for the inhomogeneous overburden) provide the

most a

urate result. For these models, all DSR-based sta
king operators �t traveltimes of

the re�e
ted events signi�
antly better than the 
onventional 3D CRS sta
king operator.
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Figure 3.5: Relative errors of 3D CRS, 3D DSR, 3D n-CRS and 3D i-CRS sta
king

operators along the 2D pro�le.

For 
omplex analyti
al re�e
tor, 3D n-CRS remains the most a

urate sta
king operator

even in the 
ase of homogeneous overburden.

No signi�
ant di�eren
es were observed between di�erent realizations of the i-CRS sta
king

operator. As expe
ted, the realization II (LIA, ellipsoidal re�e
tor) yields superior result

over the other two realizations. The realization III (TIA, ellipsoidal re�e
tor) 
ould not

be applied in the 
ase of plane re�e
tors. As expe
ted, for a given number of iterations

(three iterations in this parti
ular 
ase) the realization III (TIA, ellipsoidal re�e
tor) is

less a

urate than the realization II (LIA, ellipsoidal re�e
tor).

For the Complex model, I additionally 
ompute the relative errors of traveltimes along

the 2D pro�le (see Figure 3.5). As expe
ted, 3D n-CRS and di�erent realizations of 3D i-

CRS demonstrate 
omparable a

ura
y, whi
h is mu
h higher than the one of 
onventional

3D CRS.

The results of this se
tion indi
ate that 3D n-CRS is "the most a

urate" 3D DSR-based

sta
king operator.
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Figure 3.6: Illustration of the model with the re�e
tor of varying 
urvature (a). The

following model parameters are �xed and are equal: RNIP = 1.0 km, α = 30°

,

m = 0.2 km, h = 0.4 km, v0 = 3.2 km/s. The radius of 
urvature of the

re�e
tor R varies from 10−4 km to 104 km. Illustration of the 
orresponding

exa
t traveltimes and CRS, DSR and n-CRS traveltime approximations (b).

3.4 On the role of expli
it sta
king operators

In the previous se
tions, I investigated di�erent realizations of the 3D i-CRS sta
king

operator. In this se
tion, I would like to dis
uss relations between di�erent expli
it sta
king

operators � 3D CRS, 3D DSR and 3D n-CRS.

The tests in the previous se
tion indi
ate that the CRS sta
king operator is a

urate for

plane re�e
tors and is not a

urate for point di�ra
tors. On the 
ontrary, the DSR sta
king

operator perfe
tly �ts di�ra
tion events and is a short-o�set approximation in the 
ase of

the plane dipping re�e
tor. As follows from the tests, n-CRS perfe
tly mat
hes both 
ases.

For better understanding of these observations, I 
onsider a 
ir
ular re�e
tor with

varying radius of 
urvature R in the homogeneous medium (see Figure 3.6a). For a

wide range of radii R (from 10−4 km, 
orresponding to the point di�ra
tor limit, to

104 km, 
orresponding to the plane re�e
tor limit) I 
omputed CRS, DSR and n-CRS

approximations and 
ompared them with the exa
t (
omputed numeri
ally) traveltime

(see Figure 3.6b). Figure 3.6b illustrates the idea that CRS and DSR are two asymptoti


solutions of the re�e
tion traveltime. The n-CRS sta
king operator, being a

urate for the

whole range of 
urvatures, sews both asymptoti
 solutions. This fa
t explains outstanding

a

ura
y of the n-CRS sta
king operator.

Further dis
ussion about the link between the CRS and DSR sta
king operators in the


ontext of the paraxial ray theory will be given in Chapter 5.
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Figure 3.7: Relative 
omputational di�
ulty of the 3D sta
king operators (a) and the 3D

CRS 
ode with di�erent 3D sta
king operators (b). Conventional 3D CRS is

taken as referen
e (100%).

3.5 Computational di�
ulty

As already mentioned in Se
tion 2.8, 
omputational di�
ulty of the new sta
king operators

in higher than the one of the 
onventional 3D CRS. The relative 
omputational di�
ulty

of the 3D sta
king operators is shown in Figure 3.7a. In terms of 
omputational di�
ulty,

there is almost no di�eren
e between three realizations of the 3D i-CRS sta
king operator,

however all of them are about eight times more �expensive� than the 
onventional 3D

CRS. As expe
ted, expli
it sta
king operators are more e�
ient than impli
it operators,

taking only two (3D DSR) and tree (3D n-CRS) times more 
omputational time than the


onventional 3D CRS.

In the 3D CRS 
ode, the 
omputation of the moveout takes about 10% of the total


omputation time. The 3D CRS 
ode with expli
it sta
king operators requires slightly

more 
omputational time (approximately 13% and 16% more for 3D DSR and 3D n-CRS)

then the 
ode with the 
onventional 3D CRS sta
king operator (see Figure 3.7b). The same


ode with the 3D i-CRS sta
king operator is signi�
antly more expensive (additionally 80%

of the 
omputation time). Hen
e, the 3D n-CRS sta
king operator a
hieves the best trade-

o� between the a

ura
y and the 
omputational di�
ulty.

3.6 Implementation into the CRS software

Xie and Gajewski (2016) have re
ently presented the 3D CRS software with automati


estimation of the sta
king parameters by global optimization algorithm. The new software

allows implementation of the 3D DSR-based sta
king operators. The set of staking

parameters for 3D DSR and 3D n-CRS 
oin
ides with the one of 
onventional 3D CRS (w,

M and N). The sta
king parameters for 3D i-CRS 
ould be (w, M and K′
R), where K′

R

is the 
urvature matrix of the re�e
tor. Though the sets of parameters (w, M and N) and

(w, M and K′
R) are linked, I expe
t that the parameter sear
h in terms of (w, M and

K′
R) 
ould get additional advantages.
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3.7 Con
lusions

In this 
hapter, I analyzed the di�erent realizations of the 3D i-CRS sta
king operator and


ompared a

ura
y of the 3D DSR-based sta
king operators. I found that the trigonometri


iterative approa
h, whi
h is very e�
ient in the 2D 
ase, does not properly work in the

3D 
ase. The linearized iterative approa
h, whi
h was proposed as an alternative to TIA,

demonstrates signi�
antly better results.

The a

ura
y tests demonstrated that 3D n-CRS and 3D i-CRS are the most a

urate

sta
king operators. Taking into a

ount the 
omputational di�
ulty, I found 3D n-CRS

to be the most promising 3D DSR-based sta
king operator.

All 3D DSR-based sta
king operators 
ould be integrated into the CRS software with a

global sear
h of sta
king parameters. Study of their impa
t on 
omplex syntheti
 and �eld

datasets will hopefully be a topi
 of future resear
h.



Chapter 4

DSR-based sta
king operators for


onverted waves

Converted PS waves have attra
ted 
onsiderable interest be
ause they are 
ommonly used

to obtain valuable information about S-waves. However, the existing DSR-based sta
king

operators are not designed for 
onverted waves.

In this 
hapter, I propose a double-square-root traveltime approximation (DSR-PS) for


onverted waves. This approximation is based on a fairly general assumption of 
onstant

ratio of P- and S-wave velo
ities. Furthermore, I demonstrate that a CRS-type traveltime

approximation for 
onverted waves may be derived from the new approximation. It enables

to introdu
e a pragmati
 sear
h strategy for 
onverted waves, similar to the one for

monotypi
 waves. The DSR-PS sta
king operator and the new pragmati
 sear
h strategy

together form an e�
ient way to obtain high-quality sta
ked se
tions for PS 
onverted

waves.

4.1 Introdu
tion

There are two types of body waves of di�erent polarization in an isotropi
 medium: a


ompressional (or primary) P-wave and a shear S-wave. Originally, the re�e
tion seismi


imaging utilized only 
ompressional PP re�e
ted waves. However, the appearan
e of

multi
omponent surveys in the early 1980s (Garotta, 1985), gave rise to registration and

pro
essing of other types of re�e
ted wave�elds (PS, SP, SS). Thus, the multi
omponent

measurements made it possible to obtain S-wave information.

The shear waves 
ontain important information about the properties of the subsurfa
e and

are widely used in seismi
 appli
ations. For example, velo
ities of S-waves are used for

the estimation of porosity and permeability, whi
h are two important parameters for the

reservoir 
hara
terization (Nelson, 2001). S-waves are needed for the dete
tion of porous

53
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zones (Coulombe et al., 1996) and for identi�
ation and quanti�
ation of seismi
 anisotropy

(Tsvankin, 2012). Sin
e the velo
ity of S-waves is typi
ally half that of P-waves and the

frequen
y 
ontent of P- and S-events is almost the same, the images, obtained by S-waves,

have higher spatial resolution than the asso
iated PP images (Stewart et al., 2002).

For many reasons, pure SS re�e
tion experiments are rarely used in seismi
 exploration.

This is mainly be
ause the e�
ient sour
es of S-waves are expensive, SS re�e
tions

are typi
ally noisy and SS listening times are about double or triple those of P-waves

(Stewart et al., 2002). Moreover, SS surveys are not appli
able in marine measurements.

In 
ontrast to SS, PS surveys are relatively inexpensive (Kendall and Davis, 1996) and they

do not require spe
ial types of sour
es. Hen
e, 
onverted PS re�e
tions are an alternative

to pure SS re�e
tions.

The pri
e we have to pay for this 
onvenien
e is the asymmetry of the ray path of 
onverted

waves. A

ording to Snell's law, the angle of in
iden
e and the angle of re�e
tion are not

the same for PS re�e
tions. Moreover, the idea of re
ipro
ity (invarian
e of the moveout

under the ex
hange of sour
e and re
eiver positions), utilized in standard CMP-pro
essing,

is violated for 
onverted waves (Thomsen, 1999). As a 
onsequen
e, the traveltime of the


onverted wave be
omes asymmetri
 be
ause it has a linear term of o�set. For these

reasons, the standard CMP-based pro
essing is not appli
able for 
onverted waves.

The fundamentals of 
onverted wave pro
essing appeared at late 1980s - early 1990s. In

order to over
ome the 
onversion point dispersal, it was proposed to sort the tra
es into

the 
ommon-
onversion-point (CCP) gathers instead of 
onventional CMP gathers. The

su

essful examples of sta
king of 
onverted waves in CCP gathers were demonstrated

by Tessmer and Behle (1988), Tessmer et al. (1990) and Iverson et al. (1989). However,

even for simple velo
ity models it is a 
ompli
ated problem to �nd a CCP gather (e.g.

Tessmer and Behle (1988); Thomsen (1999)).

With appearan
e of multiparameter sta
king the problem of powerful sta
king te
hnique

for 
onverted waves arose again. A 2D CRS-based sta
king operator for 
onverted waves

was presented by Bergler et al. (2002). In order to a

ount for the asymmetri
 PS ray

path, Bergler et al. (2002) used the 
ommon-o�set (CO) CRS sta
king operator. The

disadvantage of this method is that the CO CRS operator uses �ve parameters that do

not have a physi
ally intuitive explanation. The 2D i-CRS sta
king operator for 
onverted

waves was proposed by Vanelle et al. (2012a). To my knowledge, there are no MF or n-CRS

extensions for 
onverted waves. Hen
e, there is an interest to investigate the DSR-based

sta
king operators for 
onverted waves.

The aim of this 
hapter is to obtain the DSR and n-CRS traveltime approximations for


onverted waves valid for arbitrary observation geometry and arbitrary re�e
tor 
urvature.

To a
hieve this goal, I introdu
e the simpli�ed model of subsurfa
e (Se
tion 4.2.2) and

the spe
ial γ-CMP 
oordinates (Se
tion 4.2.3) that a

ounts for the asymmetry of PS

traje
tories. With these tools, I derive the DSR-PS and n-CRS-PS sta
king operators

for 
onverted waves, based on the geometri
al approa
h (Se
tion 4.2.4). The DSR-PS

sta
king operator may be transformed to the CRS-PS sta
king operator, whi
h is formally
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Figure 4.1: Illustration of the PS re�e
tion experiment. The down- and upgoing segments

of the 
entral PS ray do not 
oin
ide in the arbitrary inhomogeneous medium

(a). However, they have the same traje
tories under the assumption of 
onstant

vP /vS ratio (b). This fa
t enables one to introdu
e a simpli�ed model for PS

waves (
).

similar to the ZO CRS operator (Se
tion 4.2.5). Both DSR-PS and CRS-PS have 
lear

extension to the 3D 
ase (Se
tion 4.2.7). The CRS-PS sta
king operator makes it possible

to formulate a pragmati
 sear
h strategy for 
onverted waves (Se
tion 4.3.2). For non-


onverted waves, this strategy transforms to the well-known pragmati
 approa
h of Müller

(1999). Finally, I present several numeri
al simulations that provide insight into the

a

ura
y of the new approximations (Se
tion 4.3.1), the a

ura
y of the estimated wave�eld

attributes (Se
tion 4.3.3) and the quality of the resulted sta
ked se
tions (Se
tion 4.3.4).

4.2 Theory

In this 
hapter, I assume that the ratio of 
ompressional velo
ity vp to shear velo
ity vs is

onstant. For the most ro
ks this ratio varies from 1.6 to 2.0. Hen
e, the average value of
1.8 is relatively a

urate (about 10% a

ura
y) for the most real ro
ks.
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4.2.1 Statement of the problem

In the PS re�e
tion experiment, the 
ompressional P-wave, emitted by the sour
e,

propagates in the inhomogeneous medium. The P-wave partly "
onverts" to the S-wave

upon re�e
tion and returns ba
k to the measurement surfa
e (see Figure 4.1a). In the

zero-o�set 
ase, the sour
e and re
eiver lo
ations of the 
entral ray 
oin
ide at the 
entral

point x0. The traveltime of the 
entral ray is equal t0. The problem is to �nd a traveltime

t of the paraxial 
onverted ray, whose sour
e and re
eiver are lo
ated in the vi
inity of


entral point x0 at the positions xs and xg, respe
tively.

In an arbitrary inhomogeneous medium the traje
tories of P- and S-segments of the 
entral

ray do not ne
essarily 
oin
ide. Therefore, these ray-segments should not be perpendi
ular

to the re�e
tor at the re�e
tion point, and the in
iden
e and the emergen
e angles of the


entral ray may di�er 
onsiderably (see Figure 4.1a). However, under the assumption that

the ratio of P- and S-wave velo
ities is 
onstant, the traje
tory of the 
entral ray simpli�es:

down- and upgoing ray segments 
oin
ide, the 
entral ray is perpendi
ular to the re�e
tor

and the in
iden
e and the emergen
e angles are equal (see Figure 4.1b). This simpli�
ation

enables to introdu
e the simpli�ed model for 
onverted waves.

4.2.2 Simpli�ed model for 
onverted waves

As dis
ussed in Se
tion 2.2, for monotypi
 re�e
ted waves (PP or SS) it is possible to

repla
e the inhomogeneous medium with the re�e
tor of arbitrary shape by the so-
alled

simpli�ed model. In the 2D 
ase, the simpli�ed model 
onsists of the 
ir
ular re�e
tor in

the auxiliary medium of 
onstant velo
ity. The parameters of the simpli�ed model (the

velo
ity v and the radius of a 
ir
ular re�e
tor R) are established upon the 
onsideration

of the hypotheti
al normal-in
iden
e-point (NIP) and normal experiments.

Due to the 
onstant velo
ity ratio, the 
urvatures of the NIP RNIP and normal RN

wavefronts are identi
al both for P- and S-waves. These 
urvatures de�ne e�e
tive velo
ities

of P- and S-waves (vP and vS , respe
tively, γ = vP /vS) and the radius of 
ir
ular re�e
tor

R:
R = RN −RNIP. (4.1)

The e�e
tive velo
ity of a 
onverted PS wave is determined by the 
ondition that the

traveltime of the 
entral ray must 
oin
ide in the inhomogeneous and in the auxiliary

media:

t0 =
2RNIP

vPS
. (4.2)

There is obviously an important relationship between the e�e
tive velo
ity of PS wave vPS

and the e�e
tive velo
ities of P- and S-waves:

2

vPS
=

1

vP
+

1

vS
. (4.3)

The velo
ities vP , vS and the 
ir
ular re�e
tor form the simpli�ed model for 
onverted

waves (see Figure 4.1
). The simpli�ed model is determined by the traveltime of the
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Figure 4.2: In the 
onventional CMP gather, sour
es and re
eivers are lo
ated

symmetri
ally with respe
t to the 
entral point (a). In the 
ase of a horizontally

layered medium, all re�e
tion points of PP rays 
oin
ide with the NIP. In

the 
ase of 
onverted waves (b), the re�e
tion points of PS rays in the CMP

gather are smeared. Fromm et al. (1985) found an approximation for the lateral

position of the 
onversion point (
). Based of this idea, I propose to use γ-CMP

gathers (d) for sta
king PS 
onverted waves.


entral ray t0 and the kinemati
 wave�eld attributes: the emergen
e angle of the 
entral

ray α and the radii of NIP RNIP and normal RN waves. In the simpli�ed model, the DSR

sta
king operator for 
onverted waves 
an be derived using the geometri
al approa
h.

4.2.3 γ−CMP 
oordinates

Before 
onsidering the sta
king operators for 
onverted waves, I will brie�y des
ribe the

spe
ial 
oordinate system required to simplify the expressions of these operators.

Conventionally, the re�e
tion data are sorted into the 
ommon-midpoint (CMP) gathers

(Mayne, 1962). The CMP gathers are popular be
ause for horizontally layered media,

the PP re�e
tions in the CMP gather image the same point in depth (see Figure 4.2a).

However, sin
e the path of the 
onverted wave is asymmetri
, the PS re�e
tions in the

CMP gather 
ome from di�erent points in the subsurfa
e (i.e., the e�e
t of the 
onversion-
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point dispersal o

urs (see Figure 4.2b)). Hen
e, su

essful sta
king of 
onverted waves


an not be a
hieved using the CMP gathers and requires spe
ial 
ommon 
onversion point

(CCP) gathers (Tessmer and Behle, 1988).

For 
onstant vP , vS velo
ities and a �at horizontal re�e
tor, Fromm et al. (1985) found

the approximate position of the 
onversion point x̃m (see Figure 4.2
):

x̃m = xs + xp, xp =
γ(xg − xs)

1 + γ
, γ = vP/vS . (4.4)

Following this idea, I introdu
e the γ-CMP 
oordinates m̃ and h̃:

x̃m ≡ γxg + xs
1 + γ

, m̃ ≡ x̃m − x0, h̃ ≡ xg − xs
1 + γ

. (4.5)

With the γ-CMP 
oordinates, I 
an express the sour
e and re
eiver displa
ements as:

∆xs = m̃− γh̃, ∆xg = m̃+ h̃. (4.6)

Tra
es having the same value of m̃ are 
olle
ted in the γ-CMP gather (see Figure 4.2d).

The γ-CMP gather 
an be 
onsidered as the �rst linear approximation of the CCP gather.

Note that in the parti
ular 
ase of monotypi
 waves (γ = 1), the γ-CMP 
oordinates (4.5)


oin
ide with the standard CMP 
oordinates (1.1).

4.2.4 DSR sta
king operator for 
onverted waves

In the simpli�ed model (see Figure 4.1
), the traveltime of a PS wave from the sour
e at

xs to the re�e
tor to the re
eiver at xg is equal:

t(ϑ) =

√

(xs − xref )2 + z2ref

vP
+

√

(xg − xref )2 + z2ref

vS
. (4.7)

Here, both the sour
e and the re
eiver are at the depth z = 0, and the angle ϑ de�nes the

point on the 
ir
ular re�e
tor (xref (ϑ), zref (ϑ)). As in the 
ase of monotypi
 waves, the

angle ϑr de�ning the 
onversion point (xr, zr) 
an be found either impli
itly or expli
itly.

The impli
it sta
king operator for 
onverted waves was proposed by Vanelle et al. (2012a).

The traveltime t must ful�ll Fermat's prin
iple, i.e., ∂t/∂ϑ = 0, whi
h leads to an impli
it

equation for ϑ (see Vanelle et al. (2012a), eq. 13):

tan ϑ = F(ϑ, t0, xs, xg, x0,model parameters). (4.8)

The equation (4.8) is solved iteratively with the initial value of ϑ 
orresponding to the


onversion point of the 
entral ray (NIP). The result ϑr is substituted into (4.7) to 
ompute

the traveltime of PS wave. With the 3D auxiliary anisotropi
 medium, proposed in Se
tion

2.4, the extension of this method to the 3D 
ase is straightforward.
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In this se
tion, I will present another approa
h, whi
h is ideologi
ally 
lose to the 3D

expli
it DSR sta
king operator (see Se
tion 2.8). Assuming that the sour
e and re
eiver

displa
ements are mu
h smaller than the 
hara
teristi
 distan
e of the problem (su
h as

RNIP or RN), and using Snell's law, I obtain the following expression for the angle ϑr

des
ribing the re�e
tion point (see Appendix D.1):

sinϑr ≈
m̃

RN
cosα. (4.9)

Substituting the re�e
tion point approximation (4.9) into the expression for PS travel-

time (4.7) I obtain, after some algebrai
 manipulations, the expli
it

1

DSR-PS sta
king

operator for 
onverted waves (see Appendix D.2 for detailed derivation):

t(m̃, h̃) =
1

1 + γ

√
[

t0 + w̃∆xs

]2
+ 2t0

[

Ñm̃2 − 2Ñm̃(γh̃) + M̃(γh̃)2
]

+
γ

1 + γ

√
[

t0 + w̃∆xg

]2
+ 2t0

[

Ñm̃2 + 2Ñm̃h̃+ M̃h̃2
]

(4.10)

with parameters:

w̃ = −2 sinα

vPS
, M̃ =

cos2 α

vPSRNIP
, Ñ =

cos2 α

vPSRN
. (4.11)

The DSR-PS sta
king operator (4.10) is valid for any general lo
ation of the sour
e and

re
eiver. If the radius of 
urvature RN goes to in�nity, I obtain the traveltime of a wave

re�e
ted from a plane interfa
e; if I set RNIP = RN, I obtain (in the 
ase of the homogeneous

overburden) the exa
t solution for s
attered PS waves. In the 
ase γ = 1, I get the typi
al
multi-parameter traveltime approximation like CRS, MF, n-CRS or i-CRS. Though DSR-

PS was derived for a 
onstant velo
ity overburden, it is appli
able for any arbitrary velo
ity

model. In that 
ase, the wave�eld attributes (α, RNIP and RN) lose their 
lear geometri
al

interpretation and be
ome e�e
tive parameters.

4.2.5 CRS sta
king operator for 
onverted waves

The 
ommon-o�set (CO) CRS sta
king operator is 
ommonly used to properly sta
k the


onverted PS re�e
tions (Bergler et al., 2002). The CO CRS operator in
ludes �ve sta
king

parameters and two a priory known near-surfa
e velo
ities (Zhang et al., 2001). With

the DSR-PS sta
king operator it is possible to obtain an alternative CRS-type sta
king

operator for PS 
onverted waves.

Indeed, using the Taylor series expansion of (4.10) and omitting the terms of higher order

than the se
ond I get the CRS-type formula (CRS-PS) for 
onverted waves in γ-CMP


oordinates (see Appendix D.3):

t2(m̃, h̃) =
[

t0 + w̃m̃
]2

+ 2t0

[

Ñm̃2 + γM̃h̃2
]

. (4.12)

1

Here and later, "DSR-PS" means "expli
it DSR sta
king operator for 
onverted waves".
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The CRS-PS sta
king operator is identi
al to the ZO CRS expression (1.16) in the standard

CMP 
oordinates and it redu
es to ZO CRS in the 
ase of monotypi
 waves. If the standard

CMP 
oordinates are substituted in (4.12), I obtain the same �ve parameter expression

that was derived by Vanelle et al. (2012b). It is also formally identi
al with the CO CRS

of Zhang et al. (2001), but uses the same three parameters as ZO CRS.

As will be dis
ussed later, CRS-PS (4.12) is a 
ru
ial element to establish the pragmati


sear
h of wave�eld attributes for 
onverted waves.

4.2.6 n-CRS sta
king operator for 
onverted waves

As in the 
ase of monotypi
 waves, the n-CRS sta
king operator for 
onverted waves

(n-CRS-PS) may be obtained from the DSR sta
king operator (see Appendix D.4). The

2D n-CRS-PS sta
king operator reads:

t(m,h) =

√
[ 1

1 + γ

√

F̃ (m̃− γh̃) +
γ

1 + γ

√

F̃ (m̃+ h̃)
]2

+ 2t0γ
(
M̃ − Ñ

)
h̃2 (4.13)

where

F̃ (m̃) =
(
t0 + w̃m̃

)2
+ 2t0Ñm̃2. (4.14)

2D n-CRS-PS 
oin
ide with 2D DSR-PS in the point di�ra
tor limit and with 2D CRS-PS

in the plane-re�e
tor limit. In the 
ase of monotypi
 waves 2D n-CRS-PS redu
es to the


onventional n-CRS sta
king operator (1.32).

4.2.7 Extension to the 3D 
ase

In the 3D 
ase, m̃ and h̃ be
ome two-dimensional ve
tors m̃ and h̃. The parameter w̃,

orresponding to the �rst-order derivative of traveltime with respe
t to m̃, transforms to

the two-dimensional ve
tor w̃, and the se
ond-order derivatives M̃ and Ñ transform to

the symmetri
 2× 2 matri
es M̃ and Ñ. The parameters w̃, M̃ and Ñ are related to the

kinemati
 wave�eld attributes as follows:

w̃ = −2 sinα

vPS

( cos β
sin β

)

, M̃ =
1

vPS
RKNIPR

T, Ñ =
1

vPS
RKNR

T. (4.15)

Extension of the DSR-PS, CRS-PS and n-CRS-PS sta
king operators to the 3D 
ase is

straightforward:
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� the 3D DSR-PS sta
king operator:

t(m̃, h̃) =

1

1 + γ

√
[

t0 + w̃T∆xs

]2
+ 2t0

[

m̃TÑm̃− 2m̃TÑ(γh̃) + (γh̃)TM̃(γh̃)
]

+
γ

1 + γ

√
[

t0 + w̃T∆xg

]2
+ 2t0

[

m̃TÑm̃+ 2m̃TÑh̃+ h̃TM̃h̃
]

, (4.16)

� the 3D CRS-PS sta
king operator:

t2(m̃, h̃) =
[

t0 + w̃Tm̃
]2

+ 2t0

[

m̃TÑm̃+ γh̃TM̃h̃
]

. (4.17)

� the 3D n-CRS-PS sta
king operator:

t(m̃, h̃) =

√
[ 1

1 + γ

√

F̃(m̃− γh̃) +
γ

1 + γ

√

F̃(m̃+ h̃)
]2

+ 2t0γh̃T
(
M̃− Ñ

)
h̃

(4.18)

where

F̃(m̃) =
(
t0 + w̃Tm̃

)2
+ 2t0m̃

TÑm̃. (4.19)

Note that in the 
ase of monotypi
 waves (γ = 1), the 3D DSR-PS sta
king operator (4.16)

is indenti
al to the expli
it 3D DSR sta
king operator (2.36), the 3D CRS-PS sta
king

operator (4.17) is indenti
al to the 3D CRS sta
king operator (1.19) and the 3D n-CRS-PS

sta
king operator (4.18) is identi
al to the 3D n-CRS sta
king operator (2.38).

4.3 A

ura
y and implementation

In this se
tion, I provide insight into the a

ura
y and the range of appli
ability of the

new sta
king operators. I begin with simple models like the 
onstant velo
ity and the


onstant verti
al gradient overburden over a 
ir
ular re�e
tor to demonstrate the a

ura
y

of the traveltime approximations and the 
oe�
ient determination. Using a more 
omplex

syntheti
 data set I show that the new traveltime approximations also lead to high quality

sta
k results.

4.3.1 A

ura
y of the sta
king operators for 
onverted waves

Consider the model from Figure 4.1
 with a 
ir
ular re�e
tor under a homogeneous

overburden. For the monotypi
 re�e
tions, the re�e
tion point 
an be found by evaluating

the roots of a fourth-order equation (Landa et al., 2010). For the 
onverted waves, the exa
t

solution requires solving a sixth-order algebrai
 equation (see Appendix E). I 
al
ulated
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Figure 4.3: A

ura
y of the sta
king operators for 
onverted waves. (a) Comparison of the

referen
e traveltime (bla
k), CRS-PS (blue), n-CRS-PS (green) and DSR-PS

(red) approximations. (b) Relative errors of the CRS-PS (blue), n-CRS-PS

(green), and DSR-PS (red) approximations. Relative traveltime errors of the

DSR-PS (
) and n-CRS-PS (d) approximations.

Table 4.1: Parameters of the 
onstant velo
ity model

Parameter Value

α 30°

RNIP 0.5 km
RN 1.0 km
vP 2.5 km/s
vS 1.8 km/s

su
h solutions as referen
e traveltimes. For the a

ura
y studies I used a model with

parameters listed in Table 4.1.

The a

ura
y of the DSR-PS and n-CRS-PS approximations 
an be 
ompared not only with

the referen
e traveltime, but as well with the CRS approximation. The resulting DSR-PS,

CRS-PS, n-CRS-PS approximations and the referen
e traveltimes in a (standard) CMP

gather with a maximum o�set of 1.35 km are presented in Figure 4.3a. These traveltime

approximations are 
ompared to the referen
e traveltimes in Figure 4.3b, where relative

errors are shown. I observe that both DSR-PS and n-CRS-PS approximations exhibit

smaller errors for large o�sets than the 
onventional CRS-PS.

For the CRS geometry, the resulting relative errors of the DSR-PS and n-CRS-PS

approximations are shown in Figures 4.3
-d. In most regions, the error is less than 2%.
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For the further tests, I will only use the DSR-PS approximation.

4.3.2 Pragmati
 sear
h strategy for 
onverted waves

The sta
king pro
edure 
onsists of evaluating a measure of the 
oheren
y of the multi-


overage data along the traveltime surfa
es given by the DSR-PS operator (4.10) (or

n-CRS-PS operator) for any possible 
ombination of the wave�eld parameters. The

determination of the global maximum of the 
oheren
y turns out to be time 
onsuming in

a three-parametri
 sear
h strategy. Therefore, I propose a pragmati
 sear
h strategy that

helps to split the three-parametri
 sear
h problem into four one-parametri
 sear
hes and

an optional three-parametri
 lo
al optimization.

The CRS sta
k approa
h determines optimal values of wave�eld attributes for a known

near-surfa
e velo
ity. For 
onverted waves I additionally require that the near-surfa
e

velo
ity ratio is known. Using the CRS-PS sta
king operator (4.12) I 
an formulate a

pragmati
 approa
h for 
onverted waves similar to the one suggested by Müller (1999). It


onsists of the following steps:

� Step 1. Automati
 γ-CMP sear
h with m̃ = 0:

t2γ−CMP = t20 +
2t0γq

vPS
h̃2, q =

cos2 α

RNIP
. (4.20)

Output: ZO se
tion, 
ombined parameter q.

� Step 2. Plane wave sear
h in the γ-CMP sta
ked se
tion with h̃ = 0:

tγ−PW = t0 −
2 sinα

vPS
m̃. (4.21)

Output: emergen
e angle α.

� Step 3. Repeated γ-CMP sear
h with m̃ = 0. Fromm et al. (1985) showed that

the traveltime of 
onverted waves expanded into a power series 
omprise terms of

third order that depend on the emergen
e angle and RNIP. Due to this fa
t, the

determination of RNIP from the 
ombined parameter q and the angle α is not an

a

urate pro
edure. For these reasons an additional RNIP sear
h is required:

t =
1

1 + γ

√
[

t0 +
2 sinα

vPS
(γh̃)

]2
+

2t0 cos2 α

vPSRNIP
(γh̃)2 (4.22)

+
γ

1 + γ

√
[

t0 −
2 sinα

vPS
h̃
]2

+
2t0 cos2 α

vPSRNIP
h̃2 (4.23)

Output: radius of NIP wave RNIP.
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Figure 4.4: Illustration of the model with a 
onstant verti
al velo
ity gradient and a


ir
ular re�e
tor.

� Step 4. Hyperboli
 sear
h in the ZO se
tion with h̃ = 0:

t2γ−HY =
[

t0 −
2 sinα

vPS
m̃
]2

+
2t0 cos

2 α

vPSRN
m̃2. (4.24)

Output: radius of normal wave RN.

After the determination of the wave�eld attributes (α, RNIP, RN) the lo
al optimization

is 
arried out with the DSR-PS sta
king operator (4.10). The �nal ZO se
tion from the

multi-
overage data is then 
onstru
ted for the attributes of this optimization.

4.3.3 A

ura
y of the wave�eld attributes

In order to investigate the a

ura
y of the determined wave�eld attributes, I 
hoose a

medium with a 
onstant verti
al velo
ity gradient, vP = v0+κz and 
onstant vP /vS ratio.

The re�e
tor is a 
ir
le with radius R and top at the depth D (see Figure 4.4).

The re�e
ted PP and the 
onverted PS wave�elds were generated in Seismi
 Unix with the

routines susynlv and susynlv
w, respe
tively. In order to make the data more realisti
 the

seismi
 noise was added to all tra
es. The parameters of the datasets are summarized in

Table 4.2.

The referen
e solutions for the wave�eld attributes were generated by a numeri
al

determination of the re�e
tion and 
onversion points and a subsequent evaluation of results

given in Vanelle (2002). Figure 4.5 illustrates the semblan
e, the emergen
e angle, RNIP,

KN = 1/RN for PP as well as PS re�e
tions, and in 
omparison to the referen
e values. The

e�e
tive wave�eld attributes display a similar behavior in 
omparison to the exa
t values.

They may be used in NIP-wave tomography for 
onverted waves (Vanelle and Gajewski,

2009).
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Figure 4.5: Semblan
e (a) and e�e
tive wave�eld attributes (b)-(d), derived from 
onverted

(blue) and monotypi
 (red) waves by applying the DSR-PS operator. The

e�e
tive wave�eld attributes display a similar behavior in 
omparison to the

exa
t values (green). The asymmetry in the semblan
e (a) may be explained

by the asymmetry of the survey.
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Table 4.2: Parameters of the 
onstant-gradient velo
ity model

Parameter Value

Near-surfa
e velo
ity v0 2.0 km/s
Verti
al gradient κ 1.0 s−1

vP/vS ratio γ 1.4
Radius of re�e
tor R 1.0 km
Depth of re�e
tor D 1.0 km
Number of CMPs 201
CMP sampling interval 25 m
CMP fold 81
O�set sampling interval 25 m
Signal to noise ratio 5.0

4.3.4 Complex syntheti
 data example

Finally, I have applied the DSR-PS sta
king operator to a 
omplex syntheti
 dataset. The

NORSAR ray tra
ing pa
kage was used to generate syntheti
 seismograms for the model

shown in Figure 4.6. The resulting PP and PS-sta
ked se
tions in Figure 4.7 exhibit similar

quality. PS se
tion 
an be interpreted on their own or together with P-wave se
tions.

Events seen on one se
tion are not seen on the other. Due to the asymmetry of the

PS ray paths and stronger PS impedan
e 
ontrast, I observe a better illumination of the

distant part of the top re�e
tor in the PS than in the PP sta
k. I 
on
lude that joint

interpretation of PP- and PS-sta
ked data using the DSR-PS/n-CRS-PS operators allow

for a better understanding of the subsurfa
e stru
ture.

4.4 Con
lusions

In this 
hapter I have investigated the extension of the DSR-based sta
king operators for

the 
ase of 
onverted waves. I have presented the new DRS-based traveltime expressions,

the DSR-PS and n-CRS-PS approximations, for 
onverted waves re�e
ted from the 
urved

interfa
es. These approximations are natural generalizations of the earlier introdu
ed

expli
it DSR and 
onventional n-CRS sta
king operators. For 
onverted waves the new

operators are highly a

urate.

Furthermore, I have found a CRS-type expression for 
onverted waves. This hyperboli


operator is expressed in the γ-CMP 
oordinates and allows for a pragmati
 sear
h strategy

for 
onverted waves. Taken together, these �ndings provide a powerful and e�
ient tool

for 
onstru
ting the PS-sta
ked se
tions.

The most important limitation of this work is the assumption of the 
onstant vP /vS
ratio. Although this assumption does not hold in the "real world", it appears to be

quite reasonable, be
ause the variation of γ in most of ro
ks is limited. The assumption
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of the 
onstant γ is not ne
essarily a restri
tion, be
ause even in the 
ase of the 
omplex

model with the non-
onstant value of γ, the proposed DSR-PS sta
king operator provides

high-quality PS images.

Monotypi
 and 
onverted waves image di�erent parts of the re�e
tor be
ause of the

asymmetry of ray paths of 
onverted waves and the di�eren
e in P- and S-wave impedan
e.

The obtained PP and PS images and the 
orresponding wave�eld attributes may be jointly

interpreted to derive the true model of the subsurfa
e. Hen
e, I believe that this work 
ould

be the starting point for sta
king 
onverted waves with the DSR-based sta
king operators.

However, further studies, whi
h take the variation of γ into a

ount and investigate the

appli
ation of the method to �eld data, will need to be performed.



Chapter 5

Common-o�set DSR sta
king

operator

�Is every a

ident just a higher-order design?�

� Terry Prat
hett, Night Wat
h

In the previous 
hapters, I used a model-based approa
h to derive the DSR-based sta
king

operators. Another 
ommonly used approa
h is based on the paraxial ray theory. The

paraxial ray theory is valid for an arbitrary velo
ity model and, hen
e, the traveltime

expressions, obtained from this theory, are 
onsidered to be velo
ity model independent.

In this 
hapter, based on paraxial ray theory, I obtain the DSR sta
king operator for the

most general 
ommon-o�set (CO) 
ase. This expression extends the range of appli
ability

of the DSR sta
king operators and demonstrates their 
lose relationship with the standard

CRS sta
king operators. For a number of spe
ial 
ases, I �nd a good agreement with the

previously obtained results.

5.1 Introdu
tion

Seismi
 ray theory provides the traje
tories of seismi
 rays as well as the kinemati
 and

dynami
 attributes along the ray. These dynami
 attributes enable to predi
t the properties

of rays in the paraxial vi
inity of the referen
e (
entral) ray. The properties of these paraxial

rays are determined by the surfa
e-to-surfa
e propagator matrix (�ervený, 2001).

Bortfeld (1989) derived a paraboli
 approximation for the traveltime of a re�e
ted paraxial

ray that propagates in the so-
alled seismi
 system: a stru
ture of homogeneous layers

with 
urved 
ontinuous boundaries. Hubral et al. (1992) proved that the same traveltime

69
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Figure 5.1: Illustration of the 
ommon-o�set re�e
tion experiment. The subsurfa
e


onsists of inhomogeneous isotropi
 layers with smooth 
ontinuous interfa
es.

approximation is valid in the inhomogeneous isotropi
 medium. Moser and �erven�y (2007)

formulated the paraxial ray theory for the general anisotropi
 
ase. They argue, that even

in an anisotropi
 inhomogeneous layered medium, the paraboli
 traveltime approximation

of Bortfeld remains 
orre
t.

The hyperboli
 traveltime approximations better �t the traveltime of re�e
ted waves,

than the paraboli
 approximations (Ursin, 1982; Mann et al., 1999). These hyperboli


traveltime approximations (e.g., CO CRS) are derived from paraboli
 approximations

(S
hlei
her et al., 1993; Zhang et al., 2001). In this 
hapter, I show that it is possible to

obtain a DSR sta
king operator from the paraboli
 traveltime approximation of Bortfeld.

This 
hapter is stru
tured as follows. Se
tion 5.2 introdu
es the required notation and

dis
usses the statement of the problem. I show how the paraboli
 traveltime approximation

is derived from Hamilton's equation and paraxial ray theory. In Se
tion 5.3 I dis
uss the

link between the submatri
es of the propagator matrix and the 
urvatures of wavefronts.

This link allows me to split the terms of the paraboli
 traveltime formula in two groups and

to present the traveltime in DSR form (CO DSR approximation). Se
tion 5.4 investigates

the relation between the new CO DSR sta
king operator and the DSR operators, derived

in the previous 
hapters. For this reason, I 
onsider several spe
ial 
ases: a monotypi


re�e
ted wave in the ZO experiment, a 
onverted re�e
ted wave in the ZO experiment, and

a di�ra
ted wave in the CO experiment. In the 
on
lusion 5.5 of this 
hapter I summarize

the results and dis
uss the appli
ability of the DSR sta
king operators to anisotropi
 media.
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5.2 Traveltime approximation from paraxial ray theory

In this se
tion I brie�y review the basi
s of the paraxial ray theory and the traveltime

approximation obtained from this theory.

Consider the 
entral ray emitted from the sour
e and, after re�e
tion from the 
urved

interfa
e, re
orded by the re
eiver (see Figure 5.1). In the general (
ommon-o�set) 
ase,

the sour
e and the re
eiver lo
ations do not ne
essarily 
oin
ide. Let me denote the

traveltime along the 
entral ray by t0. The question is, what is the traveltime t of the
paraxial ray in the vi
inity of the 
entral ray?

Let me now introdu
e the notations ne
essary to formalize the problem. As dis
ussed

previously, in order to show the di�eren
e between 2D and 3D ve
tors, the 3D ve
tors are

marked with a hat (e.g., x̂s) while their horizontal proje
tions do not have the hat (e.g.,

xs). In the following:

� x̂s0 and x̂g0 are the sour
e and the re
eiver lo
ations of the 
entral ray;

� x0 and h0 are the midpoint and the half-o�set of the 
entral ray:

x0 =
1

2
(xg0 + xs0), h0 =

1

2
(xg0 − xs0); (5.1)

� x̂s and x̂g are the sour
e and the re
eiver lo
ations of the paraxial ray;

� xm and hm are the midpoint and the half-o�set of the paraxial ray:

xm =
1

2
(xg + xs), hm =

1

2
(xg − xs); (5.2)

� ∆xs and ∆xg are the sour
e and the re
eiver displa
ements:

∆x̂s = x̂s − x̂s0 , ∆x̂g = x̂g − x̂g0 ; (5.3)

� m and h are the midpoint and the half-o�set displa
ements:

m = xm − x0 =
1

2
(∆xg +∆xs),

h = hm − h0 =
1

2
(∆xg −∆xs); (5.4)

� p̂s0 and p̂g0 are the slowness ve
tors of the 
entral ray at the position of sour
e and

re
eiver;

� p̂s and p̂g are the slowness ve
tors of the paraxial ray at the position of sour
e and

re
eiver, and

� ∆p̂s and∆p̂g are the deviations of the slowness ve
tors at the sour
e and the re
eiver:

∆p̂s = p̂s − p̂s0 , ∆p̂g = p̂g − p̂g0 . (5.5)
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It is assumed that all sour
e-re
eiver pairs are lo
ated on the measurement surfa
e z = 0,
and that the subsurfa
e is an inhomogeneous isotropi
 layered medium with 
ontinuous


urved re�e
tors.

With these notations I 
an �nd the traveltime of a paraxial ray t. A

ording to Hamilton's
equation (see e.g., Bortfeld, 1989) the di�erential dt of the traveltime of re�e
ted wave is

equal:

dt = p̂T

g dx̂g − p̂T

s dx̂s. (5.6)

Sin
e the verti
al 
omponents of the displa
ement ve
tors (5.3) are equal to zero, the

traveltime di�eren
e (5.6) depends only on two-
omponent horizontal proje
tions:

dt = pT

g dxg − pT

s dxs. (5.7)

The paraxial ray theory (see, e.g., Hubral, 1983; �ervený, 2001) establishes the linear

relationship between the displa
ements and the deviations of the slowness ve
tors at the

sour
e and the re
eiver: (
∆xg

∆pg

)

= ¯̄T

(
∆xs

∆ps

)

. (5.8)

This relation is set up by the 4×4 surfa
e-to-surfa
e ray propagator matrix for the 
entral
ray:

¯̄T =

(
A B

C D

)

, (5.9)

that 
onsists of four 2 × 2 submatri
es: A, B, C and D. The propagator matrix

¯̄T has

several important properties, in
luding, among others, symple
ti
ity (see e.g., �ervený,

2001). Hen
e, there is an additional 
ondition for these submatri
es:

ADT −BCT = I. (5.10)

where I is the identity matrix. The linear relationship (5.8) may be solved to get ps and

pg:

ps = ps0 +B−1∆xg −B−1A∆xs, (5.11a)

pg = pg0 +C∆xs +DB−1∆xg −DB−1A∆xs. (5.11b)

Substitution of (5.11) into (5.7), together with the simple
ti
ity property (5.10) and

integration yield the paraboli
 traveltime approximation for a paraxial ray:

t(∆xs,∆xg) = t0 + pT

g0∆xg − pT

s0∆xs

−∆xT

s B
−1∆xg +

1

2
∆xT

s B
−1A∆xs +

1

2
∆xT

g DB−1∆xg. (5.12)

This formula was originally obtained by Bortfeld (1989) for a homogeneous layered medium

and later extended by Hubral et al. (1992) to inhomogeneous isotropi
 media. Further

investigations showed that the same paraboli
 traveltime approximation remains valid even

in a general inhomogeneous anisotropi
 medium (see Moser and �erven�y, 2007, eq. 72).
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In pra
ti
e, it is 
ommon to work in the midpoint-o�set 
oordinates. The paraboli


traveltime approximation (5.12) in the midpoint-o�set 
oordinates reads:

t(m,h) = t0 + pT

g0∆xg − pT

s0∆xs +mT(DB−1 −B−1A)h

+
1

2
hT(B−1A+DB−1 + 2B−1)h+

1

2
mT(B−1A+DB−1 − 2B−1)m. (5.13)

The hyperboli
 traveltime approximation 
an be immediately obtained by squaring both

sides of the paraboli
 traveltime formula (5.13) and negle
ting the terms of higher order

than the se
ond (Zhang et al., 2001):

t2(m,h) =
[

t0 + pT

g0∆xg − pT

s0∆xs

]2
+ 2t0

[

mT(DB−1 −B−1A)h

+
1

2
hT(B−1A+DB−1 + 2B−1)h+

1

2
mT(B−1A+DB−1 − 2B−1)m

]

. (5.14)

In the next se
tion I shall 
onsider an alternative transformation of the paraboli
 traveltime

formula (5.13) leading to a DSR traveltime expression.

5.3 DSR approximation from paraxial ray theory

The submatri
es A, B and D from the paraboli
 traveltime approximation (5.13) are

linked with the wavefront 
urvatures of the real and the hypotheti
al waves. These

waves are the results of two real (
ommon-shot (CS), 
ommon-re
eiver (CR)) and

two hypotheti
al (
ommon-midpoint (CMP) and 
ommon-o�set (CO)) experiments (see

Figure 5.2). Conventionally, the paraboli
 traveltime approximation (5.13) is expressed

in the 
urvatures of the CS (K
g
CS) and CMP (Ks

CMP,K
g
CMP) waves (see, e.g., Müller,

2003). On the 
ontrary, I shall use the 
urvatures of the CMP (Ks
CMP,K

g
CMP) and CO

(Ks
CO,K

g
CO) waves.

The link between the wavefront 
urvatures and the submatri
es A, B and D was dis
ussed

by Zhang et al. (2001). Müller (2003) also derived similar relations in the 3D 
ase.

Table 5.1 summarizes the results obtained in these studies.

Table 5.1: Wavefront 
urvatures in terms of the elements of the propagator matrix.

Experiment CS CMP CO CR

1
vs
RsK

s
lR

T
s = � −B−1

(
I+A

)
B−1

(
I−A

)
−B−1A

1
vg
RgK

s
lR

T
g = DB−1

(
D+ I

)
B−1

(
D− I

)
B−1

�

As it is apparent from Table 5.1, the 
urvature of the hypotheti
al downgoing CMP wave

Ks
CMP at x̂s0 has the following relation with the submatri
es A and B:

1

vs
RsK

s
CMPR

T

s = −B−1
(
I+A

)
. (5.15)
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Figure 5.2: Illustration of the di�erent a
quisition geometries: a) 
ommon-shot, b)


ommon-re
eiver, 
) 
ommon-midpoint, and d) 
ommon-o�set. A

ording

to Hubral and Krey (1980) the elements of the 
urvature matri
es are

positive/negative if the wavefront is fully behind/ahead its tangent plane.

Hen
e, the wavefront 
urvatures of the downgoing waves at the sour
e x̂s0

are negative and the 
orresponding emerging waves at the re
eiver x̂g0 are

positive.
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Here, vs is a near-surfa
e velo
ity at the sour
e lo
ation x̂s0 , and Rs is the upper left (2×2)
part of the rotation matrix that a

ounts for the transformation from the ray-
entered to

the general Cartesian 
oordinate system. Rs is de�ned by the in
iden
e polar αs and

azimuth βs angles of the 
entral ray. Quantities vg, Rg, αg, βg denote 
orresponding

values at the re
eiver lo
ation x̂g0 .

In order to express the traveltime approximation (5.13) in the terms of the 
urvatures of

the CMP and CO waves, I use the following notations:

Ms =
1

vs
RsK

s
CMPR

T

s ,

Mg =
1

vg
RgK

g
CMPR

T

g ,

Ns =
1

vs
RsK

s
COR

T

s ,

Ng =
1

vg
RgK

g
COR

T

g .
(5.16)

Sin
e there is a linear relation:

Mg −Ng = Ns −Ms, (5.17)

only three variables among (5.16) are independent.

As it is apparent from Table 5.1, the sum and the di�eren
e of the CMP and CO 
urvatures

are equal:

Mg −Ms = B−1A+DB−1 + 2B−1,

Ng −Ns = B−1A+DB−1 − 2B−1,

Mg +Ms = DB−1 −B−1A,

Ng +Ns = DB−1 −B−1A.
(5.18)

The above equations allow to express the traveltime approximation (5.13) in terms of CMP

and CO wavefronts:

t(m,h) = t0 + pT

g0∆xg − pT

s0∆xs +mT(η1(Mg +Ms)) + η2(Ng +Ns))h

+
1

2
hT(Mg −Ms)h+

1

2
mT(Ng −Ns)m (5.19)

Sin
e there is no unique representation for the "mixed" term, I used the linear 
ombination

of Mg +Ms and Ng +Ns with the weights η1, η2:

η1 + η2 = 1. (5.20)

If I introdu
e the terms:

Ls = η1Ms + η2Ns, Lg = η1Mg + η2Ng, (5.21)

and represent the traveltime of the 
entral ray as a sum of the traveltimes of the in
ident

ts and the re�e
ted tg ray segments, I 
an split the terms in (5.19) in two groups:

t(m,h) = ts − pT

s0∆xs −
1

2
mTNsm+mTLsh− 1

2
hTMsh

︸ ︷︷ ︸

sour
e terms

+ tg + pT

g0∆xg +
1

2
mTNgm+mTLgh+

1

2
hTMgh

︸ ︷︷ ︸

re
eiver terms

. (5.22)
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Note that the hyperboli
 CO CRS sta
king operator 
an be obtained by squaring (5.22)

and negle
ting the terms of higher order than the se
ond. Instead, I shall square and

negle
t the terms of higher order than the se
ond in ea
h group separately. The result is

the 
ommon-o�set DSR sta
king operator:

t(m,h) =

√
[

ts − pT
s0∆xs

]2
+ ts

[

−mTNsm+ 2mTLsh− hTMsh
]

+

√
[

tg + pT
g0∆xg

]2
+ tg

[

mTNgm+ 2mTLgh+ hTMgh
]

. (5.23)

5.4 Spe
ial 
ases

The CO DSR sta
king operator (5.23) uses exa
tly the same wave�eld attributes as the

CO CRS sta
king operator. These attributes are the horizontal proje
tions of the slowness

ve
tors at the sour
e ps0 and the re
eiver pg0 , and four symmetri
 2×2 
urvature matri
es
Ks

CMP,K
g
CMP,K

s
CO,K

g
CO linked by equation (5.17). In total, CO DSR has 13 independent

wave�eld attributes in the 3D 
ase and 5 independent wave�eld attributes in the 2D 
ase.

Additionally, CO DSR requires the weights η1 and η2 and the traveltimes ts and tg. These
additional parameters do not allow to formulate an e�
ient implementation of the CO DSR

sta
king operator. However, in several spe
ial 
ases, I 
an get relatively simple traveltime

approximations and 
ompare them with existing results.

5.4.1 Zero-o�set, monotypi
 waves

In the zero-o�set 
ase, the in
ident and the re�e
ted ray 
oin
ide, hen
e:

vs = vg = v0, αs = αg = α, βs = βg = β, ts = tg =
t0
2
. (5.24)

A

ording to Hubral (1983), the 
urvatures of the CMP waves are equal to the 
urvature

of the �
titious NIP wave and the 
urvatures of the CO waves are equal to the 
urvature

of the normal wave:

Ks
CMP = −KNIP, K

g
CMP = KNIP, Ks

CO = −KN, K
g
CO = KN. (5.25)

With this simpli�
ations, CO DSR (5.23) 
an be expressed in notations w, M and N

from (1.20). Indeed,

ps0 = −w

2
, pg0 =

w

2
, Ms = −M, Mg = M, Ns = −N, Ng = N. (5.26)

and CO DSR transforms to:

t(m,h) =
1

2

√
[

t0 +wT∆xs

]2
+ 2t0

[

mTNm− 2mT
(
η1M+ η2N

)
h+ hTMh

]

+
1

2

√
[

t0 +wT∆xg

]2
+ 2t0

[

mTNm+ 2mT
(
η1M+ η2N

)
h+ hTMh

]

. (5.27)
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If I set the weight η1 = 0, this formula is identi
al to the 3D DSR sta
king operator (2.36).

Hen
e, I 
an 
on
lude that in the zero-o�set 
ase the "mixed" term is determined only by

the 
urvature of the CO wave.

5.4.2 Zero-o�set, 
onverted waves

Similar to Chapter 4, I will only 
onsider the spe
ial 
ase of a 
onstant vP/vS ratio. In

this 
ase the in
ident and the re�e
ted ray segments still 
oin
ide,

αs = αg = α, βs = βg = β, (5.28)

however, the traveltimes of the ray segments and the near-surfa
e velo
ities are di�erent:

vs = vP , vg = vS , ts =
t0

1 + γ
, tg =

γt0
1 + γ

. (5.29)

There is no more 
onne
tion with the 
urvatures of the NIP and the normal waves. The

DSR-PS formula is expressed in terms of the parameters w̃, M̃, Ñ (4.15):

ps0 = − w̃

1 + γ
, pg0 =

γw̃

1 + γ
, (5.30)

Ms =
2

1 + γ
M∗

s,

Ns =
2

1 + γ
N∗

s,

Mg =
2γ

1 + γ
M∗

g,

Ng =
2γ

1 + γ
N∗

g,

M∗
i =

1

vPS
RKi

CMPR
T,

N∗
i =

1

vPS
RKi

COR
T,

i = s, g. (5.31)

where i denotes either the sour
e (s) or the re
eiver (g). Note, that the di�eren
e between
M∗

and M̃, and N∗
and Ñ is only in the 
urvature matrix. Substitution of (5.30) and

(5.31) into (5.23) gives:

t(m,h) =
1

1 + γ

√
[

t0 + w̃T∆xs

]2
+ 2t0

[

−mTN∗
sm+ 2mTN∗

sh− hTM∗
sh

]

+
γ

1 + γ

√
[

t0 + w̃T∆xg

]2
+ 2t0

[

mTN∗
gm+ 2mTN∗

gh+ hTM∗
gh

]

. (5.32)

This expression is formally identi
al to the 3D DSR-PS sta
king operator in standard CMP


oordinates (D.36) (see Appendix D.5 for more details). A 
oe�
ient 
omparison in (5.32)

and (D.36) establishes the link between the 
urvatures of the CMP and the CO waves

and the 
urvatures of the NIP and the normal waves. As expe
ted, the 
urvatures of CO

experiment at the sour
e and the re
eiver are equal to the 
urvature of the normal wave:

Ks
CO = −KN, K

g
CO = KN, (5.33)

and the 
urvatures of the CMP experiment are di�erent:

Ks
CMP = −

[

KN +
( 2γ

1 + γ

)2
(KNIP −KN)

]

,

K
g
CMP =

[

KN +
( 2

1 + γ

)2
(KNIP −KN)

]

.

(5.34)
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5.4.3 Common-o�set, di�ra
tions

In the 
ase of a point di�ra
tor, the 
urvatures of the CMP and CO waves 
oin
ide and

be
ome equal to the 
urvature of the NIP wave:

Ks
CMP = −Ks

NIP, K
g
CMP = K

g
NIP, Ks

CO = −Ks
NIP, K

g
CO = K

g
NIP. (5.35)

The CO DSR sta
king operator (5.23) in this 
ase simpli�es to:

t(m,h) =

√
[

ts − pT
s0∆xs

]2
+

ts
vs

[

∆xT
s RsK

s
NIPR

T
s ∆xs

]

+

√
[

tg + pT
g0∆xg

]2
+

tg
vg

[

∆xT
g RgK

g
NIPR

T
g ∆xg

]

. (5.36)

If I expand the square roots of (5.36), I obtain the same paraboli
 sta
king operator, as used

by Bauer et al. (2015) to enhan
e the di�ra
tion events. Hen
e, the DSR formula (5.36)

may be used for di�ra
tion imaging in the CO domain in the similar way as it was presented

by Bauer et al. (2016a).

5.4.4 Anisotropi
 media

Moser and �erven�y (2007) proved that the original paraboli
 traveltime approxima-

tion (5.13) is valid in the inhomogeneous anisotropi
 medium. Hen
e, I 
an argue that

the DSR sta
king operators, obtained in the previous 
hapters under the assumption of an

inhomogeneous isotropi
 medium, are also valid in an anisotropi
 medium and have the

same representations. This is be
ause the expli
it DSR sta
king operators and the DSR-PS

sta
king operators are the spe
ial 
ases of the CO DSR sta
king operator, derived from

exa
tly the same paraboli
 traveltime approximation. In the 
ase of an anisotropi
 medium,

the parameters of the DSR sta
king operators lose their 
lear physi
al interpretation and

in
orporate anisotropy e�e
ts.

5.5 Con
lusions

In this 
hapter I have derived the CO DSR sta
king operator from paraxial ray theory. This

new formulation adds su�
iently to our understanding of the DSR sta
king operators. In

fa
t, it appears that the DSR sta
king operators, derived from geometri
al 
onsiderations,

are just a reformulation of the well-known hyperboli
 CRS sta
king operator, derived

from the paraxial ray theory. Both formulations have their advantages: while the double-

square-root traveltime expression perfe
tly des
ribes di�ra
tion events, the hyperboli
 CRS

operator is exa
t for re�e
ted waves from in
lined �at surfa
es. Sin
e the original paraboli


traveltime approximation is valid for inhomogeneous anisotropi
 layered media, the DSR

sta
king operators are also appli
able in this general type of medium.
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Moreover, I have found the CO DSR sta
king operator for pure di�ra
tion events. In my

opinion, this DSR formulation is physi
ally more intuitive than the paraboli
 traveltime

formula. I think that this new DSR operator 
ould further improve the enhan
ement of

di�ra
tion events.

Finally, a number of potential weaknesses of the CO DSR approximation has to be


onsidered. The 
urrent formulation of the CO DSR sta
king operator is 
hallenging

for implementation sin
e it requires additional parameters: the traveltimes along the ray

segments and the weight 
oe�
ients η1, η2, de�ning the "mixed" term. As was found in

this work, in the ZO 
ase, the "mixed" term depends only on the 
urvature of the normal

wave. However, with the knowledge obtained so far, I 
annot argue that this remains

valid in the CO 
ase. The solution of this problem gives a possibility for the e�
ient

implementation of the CO DSR sta
king operator.
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Summary and Outlook

Several new multidimensional sta
king operators have been suggested in this thesis (see

Figure 5.3). Some of them are extensions of the already existing i-CRS and n-CRS sta
king

operators from the standard 2D 
ase to the 3D 
ase and to the 
ase of 
onverted PS waves.

Another "family" of sta
king operators, the DSR sta
king operators, provides a 
ompletely

novel representation of the traveltime of the re�e
ted wave. Although they are not as

a

urate as i-CRS and n-CRS, they have a unique role among the DSR-based sta
king

operators, sin
e they 
ould be derived both from the model-based approa
h and from the

paraxial ray theory.

Thus, the paraxial ray theory is the origin of two alternative representations of the

traveltime of the re�e
ted wave (3D CO CRS and 3D CO DSR). In some sense, these

representations are asymptoti
: while CRS perfe
tly des
ribes the traveltime response

from plane re�e
tors (re�e
tor 
urvature is equal to zero), DSR is designed for the s
attered

waves from point di�ra
tors (re�e
tor 
urvature is equal to in�nity). I have also shown that

for every DSR operator there is a 
orresponding n-CRS sta
king operator whi
h "sews"

both asymptoti
 solutions. As a result, n-CRS inherits from the paraxial ray theory a

number of useful features, i.e., n-CRS sta
king operators are valid for inhomogeneous

anisotropi
 medium.

Several sta
king operators have not been dis
ussed in detail, but their derivation is possible

based on the prin
iples proposed in this work. For example, the derivation of 3D i-CRS

sta
king operator for 
onverted waves is straightforward with the proposed auxiliary

anisotropi
 medium. Also the n-CRS formula for the 
ase of CO geometry 
ould be

immediately obtained from the CO DSR sta
king operator. However, the model-based

derivation of the CO sta
king operators is still not fully understood.

Unfortunately, the 3D i-CRS sta
king operator, whi
h was the original obje
tive of this

resear
h, turned out to be 
omputationally very expensive. Nevertheless, the investigation

of 3D i-CRS eventually led to the dis
overy of the auxiliary anisotropi
 medium. The

auxiliary anisotropi
 medium in
orporates properties of e�e
tive and opti
al auxiliary

media and it is an essential element of the 3D simpli�ed model.

Although all new sta
king operators provide better a

ura
y than the 
onventional CRS

sta
k (and, hen
e, 
an potentially be used for larger spreads), they are still the short-spread
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Auxiliary isotropic 

media, hyperbolic 

reflector

Auxiliary isotropic 

media, circular 

reflector

Auxiliary 

anisotropic media,

ellipsoidal reflector

Model-based 

approach

Paraxial ray 

theory

2D i-CRS 2D DSR-PS2D i-CRS-PS2D n-CRS

3D i-CRS

3D DSR

DSR for 

diffractions

CRS for 

diffractions

Converted 

waves

3D ZO CRS

3D i-CRS-PS

3D DSR-PS

3D n-CRS

MF

3D CO CRS

3D CO DSR

2D ZO CRS

2D/3D 

CRS-PS

2D

3D

2D

Derived

Derivation is possible

Formal extension to 3D

Related operators

2D/3D 

n-CRS-PS

Figure 5.3: Classi�
ation of the new multidimensional sta
king operators (
ompare with

Figure 1.8). The new sta
king operators (in yellow boxes) are derived from

the paraxial ray theory and from the model-based approa
h. The bla
k

dashed arrow indi
ates that the derivation/extension of the sta
king operator

is possible, but not dis
ussed in the thesis. The blue solid arrows show the

related sta
king operators.
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approximations and 
ould be applied only for "lo
al" sta
king. The CO DSR sta
king

operator is important for theory, however, it remains to be further 
lari�ed whether the

e�e
tive implementation 
ould be proposed for this sta
king operator. It is also worth

mentioning that although the PS staking operators have been derived under the assumption

of 
onstant vP /vS ratio, they 
ould be applied, with 
aution, to the 
omplex media with

non-
onstant vP /vS ratio.

In future, it will be of great interest to apply the new sta
king operators to �eld data,

espe
ially for the 3D 
ase and for the 
ase of 
onverted waves. The derivation of DSR and

n-CRS sta
king operators from the paraxial ray theory, as well as the formulation of the

paraxial ray theory for the general anisotropi
 medium, opens up a lot of new opportunities.

Future work should also �nd an interpretation of the sta
king parameters in the presen
e

of anisotropy and extend the existing appli
ations (e.g. NIP wave tomography) to the 
ase

of anisotropi
 media.

Finally, I would like to make several re
ommendations. I found out that the expli
it

sta
king operators (espe
ially n-CRS) turned out to be the most e�
ient. If possible, I

suggest to jointly interpret the PP and PS sta
ked se
tions as well as the related attributes.

I also re
ommend to use the DSR-based sta
king operators for di�ra
tion imaging and

enhan
ement.
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Appendix A

Traveltime of NIP and normal waves

A.1 Traveltimes in inhomogeneous medium

In this se
tion, I obtain the hyperboli
 expressions for the traveltime of the NIP and normal

waves in the 3D imhomogeneous medium.

In the spe
ial ray-
entered 
oordinate system L′
, the NIP wavefront arrives at the 
entral

point x̂′
0 = (0, 0, 0) at the time t0

2 with the 
urvature K′
NIP (see Se
tion 2.3). The goal is

to �nd the traveltime, needed for the NIP wavefront to rea
h the point x̂′ = (x′, y′, 0) in
the vi
inity of the 
entral point.

In the vi
inity of the 
entral point, the traveltime of the NIP wave in the inhomogeneous

medium may be presented as a trun
ated Taylor series expansion about x′ = (x′, y′):

t(x′) =
t0
2
+

1

2
x′T ∂2t

∂x′∂x′
x′. (A.1)

The se
ond spatial derivatives of the traveltime in the ray-
entered 
oordinate system are

linked with the wavefront 
urvature (�ervený, 2001), therefore:

∂2t

∂x′∂x′
=

1

v0
K′

NIP. (A.2)

The �nal formula for the traveltime of the NIP wave in the inhomogeneous medium is

obtained by squaring (A.1) and omitting the terms of order higher than two:

t2(x′) =
t20
4
+

t0
2v0

x′TK′
NIPx

′. (A.3)

Similar result may be obtained for the normal wave:

t2(x′) =
t20
4
+

t0
2v0

x′TK′
Nx

′. (A.4)

85



86 APPENDIX A. TRAVELTIME OF NIP AND NORMAL WAVES

A.2 Traveltime of NIP wave in auxiliary medium

In this se
tion, I obtain the traveltime of the NIP wave in the auxiliary anisotropi
 medium.

The NIP wave originates from the image sour
e lo
ated at the point (0, 0, R∗
NIP) in the

auxiliary anisotropi
 medium (in the L′
system). The traveltime, needed for the NIP

wavefront to rea
h the point x̂′ = (x′, y′, 0) in the vi
inity of the 
entral point is obviously

equal:

t2(x′) =
R∗2

NIP + |x′|2
ζ2

, (A.5)

where the group velo
ity ζ

1

ζ2(Θ,Φ)
=

sin2Θcos2 Φ

A11
+

sin2 Θsin2 Φ

A22
+

cos2 Θ

A33
(A.6)

depends on the group angles:

sin2 Θcos2Φ =
x′2

R∗2
NIP + |x′|2 , sin2Θsin2Φ =

y′2

R∗2
NIP + |x′|2 , cos2Θ =

R∗2
NIP

R∗2
NIP + |x′|2 .

(A.7)

Substitution the value of the group velo
ity (A.6) into the traveltime of the NIP wave in

the auxiliary medium (A.5) yields:

t2(x′) =
R∗2

NIP

A33
+ x′T

( 1
A11

0

0 1
A22

)

x′. (A.8)

By 
omparing the 
urvatures in the expressions (A.3) and (A.8), the parameters A11, A22

of the auxiliary medium are found to be:

1

A11
=

t0
2v0

k′
11
NIP,

1

A22
=

t0
2v0

k′
22
NIP. (A.9)

A.3 Traveltime of normal wave in auxiliary medium

In this se
tion, I obtain the traveltime of the normal wave in the auxiliary anisotropi


medium.

Consider the paraboli
 re�e
tor with the 
urvature K′
R in the spe
ial ray-
entered


oordinate system L′
(see Se
tion 2.3). The re�e
tor is embedded in the auxiliary

anisotropi
 medium (see Se
tion 2.4 and Figure 2.4b).

The surfa
e of the re�e
tor x̂′
ref is given by:

x̂′
ref (x

′
ref ) =





x′ref
y′ref
f(x′ref , y

′
ref )



 , x′
ref ≡

(
x′ref
y′ref

)

, (A.10)
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where

f(x′
ref ) = R∗

NIP +
1

2
x′T

refK
′
Rx

′
ref , (A.11)

K′
R is the symmetri
 
urvature matrix:

K′
R =

(
k′11R k′12R
k′21R k′22R

)

, (A.12)

R∗
NIP is the apex of the re�e
tor:

R∗
NIP ≡ t0v0

2
, (A.13)

t0
2 is the one-way traveltime along the 
entral ray and v0 is the group velo
ity in the

z′-dire
tion.

The normal ve
tor to the re�e
tor surfa
e is equal to:

n̂′(x′
ref ) =






k′11R x′ref + k′12R y′ref
k′21R x′ref + k′22R y′ref

−1




 . (A.14)

Sin
e the normal wavefront originates as an exploding re�e
tor, the dire
tion of the ve
tor

n̂′
de�nes the phase polar θ and azimuthal φ angles:

n̂′ = |n̂′|





sin θ cosφ
sin θ sinφ

cos θ



 . (A.15)

In the 3D 
ase, the auxiliary medium is a weakly anisotropi
 ellipsoidal medium. In the

weakly anisotropi
 ellipsoidal medium, the group polar Θ and azimuthal Φ angles are

related with the phase angles (Daley and Krebes, 2005, p. 5 eq. 17,19):

tanΦ =
A22

A11
tanφ, tanΘ =

A11 tan θ cosφ
[
1 + (A22/A11)

2 tan2 φ
]1/2

A33
. (A.16)

The group angles de�ne the dire
tion and the value of the group velo
ity ζ (Daley and Krebes,

2005, p. 5 eq. 21):

1

ζ2(Θ,Φ)
=

sin2Θcos2Φ

A11
+

sin2Θsin2Φ

A22
+

cos2Θ

A33
. (A.17)

In summary, the parameters (x′ref , y
′
ref ) de�ne the point on the re�e
tor x̂′

ref , the normal

ve
tor at this point n̂′
, the phase angles θ and φ, the group angles Θ and Φ, and the group

velo
ity ζ.

Now, 
onsider the ray, whi
h originates at the point x̂′
ref on the re�e
tor. This ray interse
ts

the surfa
e z′ = 0 at the point x̂′
int:

x̂′
int = x̂′

ref (x
′
ref ) + tζ̂(x′

ref ) (A.18)
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or, in 
omponents:





x′int
y′int
0



 =





x′ref
y′ref
f(x′

ref )



+ t





ζ1(x
′
ref )

ζ2(x
′
ref )

ζ3(x
′
ref )



 . (A.19)

The traveltime t as a fun
tion of x′
ref may be determined from the z-
omponent of the

equation (A.19):

t(x′
ref ) = −f(x′

ref )

ζ3
. (A.20)

Substituting (A.20) into (A.19), I obtain the 
oordinates of the ray's interse
tion with the

surfa
e z′ = 0:

x′int = x′ref − f(x′
ref )ζ1/ζ3, (A.21a)

y′int = y′ref − f(x′
ref )ζ2/ζ3. (A.21b)

The ratio of the group velo
ity 
omponents is equal (see se
tion A.4.2 for details):

ζ1/ζ3 = − 1

R∗
NIPk

′11
NIP

(
k′

11
R x′ref + k′

12
R y′ref

)
, (A.22a)

ζ2/ζ3 = − 1

R∗
NIPk

′22
NIP

(
k′

21
R x′ref + k′

22
R y′ref

)
. (A.22b)

By substituting (A.11) and (A.22) into (A.21), I get:

x′
int =

[
I+ (1 + Ω)K′−1

NIPK
′
R

]
x′

ref , (A.23)

where

Ω =
1

2
x′T

refK
′
Rx

′
ref

1

R∗
NIP

=
∆zref
R∗

NIP

. (A.24)

Sin
e I only 
onsider the rays in the vi
inity of the 
entral ray, the parameter Ω ≪ 1 and

may be negle
ted:

x′
int ≈

[
K′−1

R +K′−1
NIP

]
K′

Rx
′
ref . (A.25)

Therefore, in the vi
inity of 
entral ray there is a linear relation between x′
ref and x′

int:

x′
ref ≈ K′−1

R

[

K′−1
R +K′−1

NIP

]−1
x′

int. (A.26)

With the last relation it is possible to �nd the traveltime of the normal wave in the auxiliary

medium as a fun
tion of x′
int. Indeed, if I square the equation (A.20)

t2(x′
ref ) =

f2(x′
ref )

ζ23
, (A.27)

substitute into this equation the verti
al 
omponent of the group velo
ity (see se
tion A.4.3

for details):

1

ζ23
=

1

v20

[

1 +
1

R∗
NIP

x′T
refK

′T
RK

′−1
NIPK

′
Rx

′
ref

]

(A.28)
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and the squared depth of the re�e
tor (the fourth-order term is omitted):

f2(x′
ref) = R∗2

NIP +R∗
NIPx

′T
refK

′
Rx

′
ref , (A.29)

I obtain (the fourth-order term is omitted):

t2(x′
ref ) =

t20
4
+

t0
2v0

x′T
refK

′T
RK

′−1
NIPK

′
Rx

′
ref +

t0
2v0

x′T
ref K

′T
RK

′−1
R

︸ ︷︷ ︸

I

K′
Rx

′
ref , (A.30)

or

t2(x′
ref ) =

t20
4
+

t0
2v0

x′T
refK

′T
R

[

K′−1
R +K′−1

NIP

]

K′
Rx

′
ref . (A.31)

Finally, I substitute x′
ref from (A.26):

t2(x′
int) =

t20
4
+

t0
2v0

x′T
int

[

K′−1
R +K′−1

NIP

]−1
x′

int. (A.32)

A.4 Group velo
ity 
omponents

In this se
tion, I present the proof of the equations (A.22) giving the ratios of the group

velo
ity 
omponents and the equation (A.28) for the verti
al 
omponent of the group

velo
ity. The proof requires two additional useful relations.

A.4.1 Additional useful relations

1. Relations between the group and phase angles:

tanΘ cos Φ =
A11

A33
tan θ cosφ, (A.33a)

tanΘ sinΦ =
A22

A33
tan θ sinφ. (A.33b)

These relations are obtained from the equations (A.16) after some basi
 trigonomet-

ri
 manipulations.

2. Ratios of density normalized elasti
 parameters:

A11

A33
=

1

R∗
NIPk

′11
NIP

, (A.34a)

A22

A33
=

1

R∗
NIPk

′22
NIP

. (A.34b)

These relations follow immediately from the equations (2.13).
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A.4.2 Ratios of group velo
ity 
omponents

In order to proof the equation (A.22a), I use the relation (A.33a), the relation (A.34a) and

the expression for the normal ve
tor (A.14):

ζ1/ζ3 = tanΘ cos Φ =
A11

A33
tan θ cosφ =

A11

A33

n1

n3
= −

k′11R x′ref + k′12R y′ref

R∗
NIPk

′11
NIP

. (A.35)

The equation (A.22b) 
an be derived similarly.

A.4.3 Verti
al group velo
ity 
omponent

The proof of the equation (A.28) will be given in several steps.

First, I use the de�nition of the group velo
ity (A.17):

1

ζ23
=

1

|ζ|2 cos2Θ =
tan2 Θcos2Φ

A11
+

tan2 Θsin2 Φ

A22
+

1

A33
. (A.36)

Se
ond, I use the relations (A.33):

1

ζ23
=

A11

A2
33

tan2 θ cos2 φ+
A22

A2
33

tan2 θ sin2 φ+
1

A33
. (A.37)

Third, I use the relation between the phase angles and the normal ve
tor (A.15):

1

ζ23
=

1

A33

[

1 +
A11

A33

(n1

n3

)2
+

A22

A33

(n2

n3

)2
]

. (A.38)

Fourth, I use the equations (A.34), the expression for the normal ve
tor (A.14) and the

de�nition of the parameter A33 ≡ v20 :

1

ζ23
=

1

v20

[

1+
1

R∗
NIPk

′11
NIP

(
k′

11
R x′ref +k′

12
R y′ref

)2
+

1

R∗
NIPk

′22
NIP

(
k′

21
R x′ref +k′

22
R y′ref

)2
]

. (A.39)

Finally, I present the result using the matrix notation:

1

ζ23
=

1

v20

[

1 +
1

R∗
NIP

x′T
refK

′T
RK

′−1
NIPK

′
Rx

′
ref

]

. (A.40)



Appendix B

3D i-CRS sta
king operator

As dis
ussed in Se
tion 2.7, the 3D i-CRS sta
king operator 
onsists of:

1. the DSR traveltime formula:

t(ϑ,ϕ) =

√

X ′
s
2

A11
+

Y ′
s
2

A22
+

Z ′
s
2

A33
︸ ︷︷ ︸

Rs

+

√

X ′
g
2

A11
+

Y ′
g
2

A22
+

Z ′
g
2

A33
︸ ︷︷ ︸

Rg

, (B.1)

where:

X ′
i = x′ref − x′i, Y ′

i = y′ref − y′i, Z ′
i = z′ref − z′i, i = s, g, (B.2)

x̂′
s and x̂′

g are the sour
e and re
eiver lo
ations, and x̂′
ref (ϑ,ϕ) is a parametri


representation of the re�e
tor surfa
e; and

2. the system of nonlinear equations:

{
∂t
∂ϑ = 0,
∂t
∂ϕ = 0,

(B.3)

whi
h yields the parameters (ϑr, ϕr) de�ning the re�e
tion point x̂′
r of the paraxial

ray.

In this Appendix, I dis
uss the solution of the system (B.3) based on the example of the

ellipsoidal re�e
tor.

B.1 Ellipsoidal re�e
tor

The ellipsoidal re�e
tor 
an be parameterized both by the lateral 
oordinates and by the

polar angles. The formulas (B.4) and (B.6) give the ellipsoidal surfa
es with the 
enter
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at the point (0, 0, R∗
N) and the 
urvature K′

R at the point (0, 0, R∗
NIP). The depth of the


enter of the ellipsoid R∗
N, the depth of its apex R∗

NIP, and the length of its z′-semi-axis
R∗

are linked (see Figure 2.5b):

R∗
N = R∗

NIP +R∗.

B.1.1 Parameterization by lateral 
oordinates

In this 
ase, the re�e
tion surfa
e is a fun
tion of lateral 
oordinates x′ and y′:

x̂′
ref (x

′, y′) =





x′

y′

f(x′, y′)




(B.4)

where

f(x′) = R∗
N −R∗

√

1− 1

R∗
x′TK′

Rx
′. (B.5)

B.1.2 Parameterization by polar angles

In this 
ase, the re�e
tion surfa
e is a fun
tion of polar θ and azimuthal φ angles:

x̂′
ref (ϑ,ϕ) =





A′ sinϑ cosϕ
B′ sinϑ sin(ϕ−∆ϕ)
R∗

N −R∗ cos ϑ




(B.6)

where

A′ =
√
R∗

√

k′22R
detK′

R
, B′ =

√
R∗

√

k′11R
detK′

R
, sin∆ϕ =

k′12R
√

k′11R k′22R

. (B.7)

B.2 Linearized iterative approa
h

The linearized version of system (B.3) is:

{

Ax +Axx∆x′(j)r +Axy∆y′(j)r = 0,

Ay +Ayx∆x′(j)r +Ayy∆y′(j)r = 0,
(B.8)

where ∆x′(j)r , ∆y′(j)r are the updates of the re�e
tion point 
oordinates at the j-th iteration

∆x′
(j)
r ≡ x′

(j)
r − x′

(j−1)
r , ∆y′

(j)
r ≡ y′

(j)
r − y′

(j−1)
r . (B.9)
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The 
oe�
ients of the system are equal:

Ax = As
x +Ag

x, Ay = As
y +Ag

y,

Axx = As
xx +Ag

xx, Ayy = As
yy +Ag

yy, Axy = As
xy +Ag

xy, Ayx = Axy, (B.10)

where

Ai
x =

1

Ri

[ X ′
i

A11
+

Z ′
if

′
x′

A33

]

, (B.11a)

Ai
y =

1

Ri

[ Y ′
i

A22
+

Z ′
if

′
y′

A33

]

, (B.11b)

Ai
xx =

1

Ri

[ 1

A11
+

f ′
x′

2

A33
+

Z ′
if

′′
x′x′

A33
− (Ai

x)
2
]

, (B.11
)

Ai
yy =

1

Ri

[ 1

A22
+

f ′
y′
2

A33
+

Z ′
if

′′
y′y′

A33
− (Ai

y)
2
]

, (B.11d)

Ai
xy =

1

Ri

[f ′
x′f ′

y′

A33
+

Z ′
if

′′
x′y′

A33
−Ai

xA
i
y

]

, i = s, g, (B.11e)

and f ′
x′, f ′

y′ and f ′′
x′x′ , f ′′

x′y′ , f
′′
y′y′ are the �rst and the se
ond-order spatial derivatives of

the fun
tion f , des
ribing the re�e
tor surfa
e.

Equations (2.6), (2.13) and (2.21) link the variables in (B.11) with the surfa
e-based

kinemati
 wave�eld attributes.

B.3 Trigonometri
 iterative approa
h

When the re�e
tor surfa
e is parametrized by polar angles, the system (B.3) redu
es to:







1
Rs

(
X′

s

A11

∂x′

ref

∂ϑ + Y ′

s

A22

∂y′
ref

∂ϑ + Z′

s

A33

∂z′
ref

∂ϑ

)

+ 1
Rg

(
X′

g

A11

∂x′

ref

∂ϑ +
Y ′

g

A22

∂y′
ref

∂ϑ +
Z′

g

A33

∂z′
ref

∂ϑ

)

= 0,

1
Rs

(
X′

s

A11

∂x′

ref

∂ϕ + Y ′

s

A22

∂y′
ref

∂ϕ + Z′

s

A33

∂z′
ref

∂ϕ

)

+ 1
Rg

(
X′

g

A11

∂x′

ref

∂ϕ +
Y ′

g

A22

∂y′
ref

∂ϕ +
Z′

g

A33

∂z′
ref

∂ϕ

)

= 0.

(B.12)

In the 
ase of the ellipsoidal re�e
tor (B.6), the partial derivatives of x̂′
ref with respe
t to

the angles ϑ and ϕ are equal:

∂x′ref
∂ϑ

= A′ cos ϑ cosϕ,

∂y′ref
∂ϑ

= B′ cos ϑ sin(ϕ−∆ϕ),

∂z′ref
∂ϑ

= R∗ sinϑ,

∂x′ref
∂ϕ

= −A′ sinϑ sinϕ,

∂y′ref
∂ϕ

= B′ sinϑ cos(ϕ−∆ϕ),

∂z′ref
∂ϕ

= 0.

(B.13)

Substituting (B.13) into (B.12) yields two impli
it equations for the angles ϑ and ϕ:

tanφ =
cos∆ϕ

( Y ′

s

Rs
+

Y ′

g

Rg

)

A′

B′

A22
A11

(X′

s

Rs
+

X′

g

Rg

)
− sin∆ϕ

( Y ′

s

Rs
+

Y ′

g

Rg

) , (B.14a)
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tan θ = −
(Λ′

s

Rs
+

Λ′

g

Rg

)

(Z′

s

Rs
+

Z′

g

Rg

) , (B.14b)

where

Λ′
i =

A′

R∗

A33

A11
X ′

i cosφ+
B′

R∗

A33

A22
Y ′
i sin(φ−∆φ), i = s, g. (B.15)

Equations (2.6), (2.13), (2.21) and (B.7) link the variables in (B.14) with the surfa
e-based

kinemati
 wave�eld attributes.



Appendix C

Expli
it sta
king operators

C.1 Alternative representation of n-CRS

The 2D n-CRS sta
king operator, proposed by Fomel and Kazinnik (2013), reads:

t(m,h) =

√

F (m) + χh2 +
√

F (m− h)F (m+ h)

2
, (C.1)

where

F (m) =
(
t0 + wm

)2
+ 2t0Nm2, (C.2)

χ = 2t0(2M −N) + w2, (C.3)

and w, M , N are the CRS parameters (1.17).

This sta
king operator may be transformed to more intuitive expression. Indeed, taking

into a

ount the relation

F (m) + χh2 =
1

2
F (m− h) +

1

2
F (m+ h) + 4t0

(
M −N

)
h2 (C.4)

yields:

t(m,h) =

√
[1

2

√

F (m− h) +
1

2

√

F (m+ h)
]2

+ 2t0
(
M −N

)
h2. (C.5)

Note, that expressions (C.1) and (C.5) are identi
al.

C.2 3D n-CRS sta
king operator

Fomel and Kazinnik (2013) proposed a formal extension of the 2D n-CRS sta
king operator

to the 3D 
ase. They repla
ed m, h, w by two-dimensional ve
tors m, h, w and repla
ed

95
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M , N by the symmetri
 2×2 matri
esM andN. Thereby, the 3D n-CRS sta
king operator

reads:

t(m,h) =

√
√
√
√ F̂ (m) + hTχ̂h+

√

F̂ (m− h)F̂ (m+ h)

2
, (C.6)

where

F̂ (m) =
(
t0 +wTm

)2
+ 2t0m

TNm, (C.7)

χ = 2t0(2M −N) +wwT. (C.8)

The alternative 3D n-CRS expression reads:

t(m,h) =

√
[1

2

√

F̂ (m− h) +
1

2

√

F̂ (m+ h)
]2

+ 2t0hT
(
M−N

)
h. (C.9)

C.3 3D DSR sta
king operator

In this se
tion, I give a proof for the expli
it DSR sta
king operator from Se
tion 2.8. I

start with the DSR expression for the traveltime of the re�e
ted wave (2.27):

t =

√

X ′
s
2

A11
+

Y ′
s
2

A22
+

Z ′
s
2

A33
+

√

X ′
g
2

A11
+

Y ′
g
2

A22
+

Z ′
g
2

A33
. (C.10)

I 
onsider the value under the square root and try to interpret it. I do the following

operations:

� Use the de�nition of X ′
i, Y

′
i , and Z ′

i (2.25):

Si ≡
(
x′i − x′ref

)2

A11
+

(
y′i − y′ref

)2

A22
+

(
z′i − z′ref

)2

A33
, i = s, g. (C.11)

� Use the de�nition of auxiliary media (2.13):

Si ≡
t0
2v0

k′
11
NIP

(
x′i − x′ref

)2
+

t0
2v0

k′
22
NIP

(
y′i − y′ref

)2
+

1

v20

(
z′i − z′ref

)2
. (C.12)

� Use the ve
tor and matrix notations:

Si ≡
t0
2v0

(
x′

i − x′
ref

)T
K′

NIP

(
x′

i − x′
ref

)

︸ ︷︷ ︸

S
(1)
i

+
z′2ref
v20

︸ ︷︷ ︸

S
(2)
i

− 2z′iz
′
ref

v20
︸ ︷︷ ︸

S
(3)
i

+
z′2i
v20
︸︷︷︸

S
(4)
i

. (C.13)

� Find S
(1)
i :

Use the de�nition of x′
i:

x′
i ≡ m′ ∓ h′, (C.14)
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and approximation for the re�e
tion point (2.35):

x′
ref ≈

[

I−K′−1
NIPK

′
N

]

m′. (C.15)

(
x′

i − x′
ref

)
= K′−1

NIPK
′
Nm′ ∓ h′. (C.16)

S
(1)
i =

t0
2v0

[

m′TK′T
N

(
K′−1

NIP

)T
K′

Nm′ ∓ 2m′TK′T
Nh′ + h′TK′T

NIPh
′
]

. (C.17)

� Find S
(2)
i :

Use the relation between 
urvatures (2.21):

K′
R =

[
K′−1

N −K′−1
NIP

]−1
(C.18)

and the paraboloidal re�e
tor (A.11):

z′ref = R∗
NIP +

1

2
x′T

refK
′
Rx

′
ref . (C.19)

z′ref =
t0v0
2

+
1

2
m′TK′

Nm′ − 1

2
m′TK′T

N

(
K′−1

NIP

)T
K′

Nm′. (C.20)

S
(2)
i =

t20
4
+

t0
2v0

m′TK′
Nm′ − t0

2v0
m′TK′T

N

(
K′−1

NIP

)T
K′

Nm′. (C.21)

� Find S
(3)
i :

Use the link between the 
oordinate systems (2.6):

x̂′ = R̂T

z (δ)R̂
T

y (α)R̂
T

z (β)
︸ ︷︷ ︸

B̂T

(x̂− x̂0). (C.22)

z′i = B̂T

31(xi − x0) + B̂T

32(yi − y0) + B̂T

33 (zi − z0)
︸ ︷︷ ︸

=0

. (C.23)

The elements of the matrix B̂ are equal:

B̂T

31 = sinα cos β, B̂T

32 = sinα sin β (C.24)

z′i =
( sinα cos β

sinα sinβ

)

∆xi = −v0
2
wT∆xi. (C.25)

S
(3)
i =

t0
2
wT∆xi. (C.26)

� Find S
(4)
i :

S
(4)
i =

1

4

(
wT∆xi

)2
. (C.27)
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� Combine S
(1)
i , S

(2)
i , S

(3)
i and S

(4)
i :

Si =
t20
4
+

t0
2
wT∆xi+

1

4

(
wT∆xi

)2
+

t0
2v0

[

m′TK′
Nm′∓2m′TK′T

Nh′+h′TK′T
NIPh

′
]

,

(C.28)

or

1

4
Si =

[

t0 +wT∆xi

]2
+ 2t0

[

mTNm∓ 2mTNh+ hTMh
]

i = s, g. (C.29)

Finally, I obtain the 3D DSR sta
king operator:

t(m,h) =
1

2

√
[

t0 +wT∆xs

]2
+ 2t0

[

mTNm− 2mTNh+ hTMh
]

+
1

2

√
[

t0 +wT∆xg

]2
+ 2t0

[

mTNm+ 2mTNh+ hTMh
]

. (C.30)

C.4 Relation between 3D DSR and 3D n-CRS

The 3D DSR sta
king operator (C.30) 
ould be further transformed to the 3D n-CRS

sta
king operator. Indeed, using notation F̂ (C.7), the 3D DSR sta
king operator reads:

t(m,h) =
1

2

√

F̂ (∆xs) + 2t0hT
(
M−N

)
h +

1

2

√

F̂ (∆xg) + 2t0hT
(
M−N

)
h. (C.31)

If I square the right-hand side of the last expression

t(m,h) =

√
[1

2

√

F̂ (∆xs) + 2t0hT
(
M−N

)
h+

1

2

√

F̂ (∆xg) + 2t0hT
(
M−N

)
h
]2
,

(C.32)

"take out" 2t0h
T
(
M −N

)
h from the square roots and negle
t the terms of higher order

than the se
ond, I obtain the sta
king operator

t(m,h) =

√
[1

2

√

F̂ (∆xs) +
1

2

√

F̂ (∆xg)
]2

+ 2t0hT
(
M−N

)
h, (C.33)

that is identi
al to 3D n-CRS (C.9).



Appendix D

Sta
king operators for 
onverted

waves

D.1 Deviation angle

In this se
tion I derive the deviation angle ϑr (equation (4.9)). I 
onsider the 
ir
ular

re�e
tor with the 
enter O, the 
entral point X0, and the sour
e and the re
eiver at XS ,

XG, respe
tively (see Figure D.1). The 
onverted PS ray re�e
ts from the 
ir
le at the

point S. The line passing through the points O and S interse
ts the measurement surfa
e

at the point XP . In all derivations of this appendix, I assume that the sour
e and re
eiver

displa
ements

∆xs ≡ XS −X0, ∆xg ≡ XG −X0 (D.1)

are small 
ompared to the typi
al s
ale of the problem (like RN ≡ OX0 or RNIP ≈ SXP ):

ε ≡ max
( |∆xs|
RNIP

,
|∆xg|
RNIP

,
|∆xs|
RN

,
|∆xg|
RN

)

, ε ≪ 1. (D.2)

I 
an express the deviation angle ϑr = ∠X0OXP by the relations in the triangle △X0OXP :

sinϑr =
X0XP

OXP
sin(

π

2
− α) =

X0XP

OXP
cosα =

X0XP

OX0
cosα

(
1 +O(ε)

)
. (D.3)

The 
ombination of the Snell's Law and the relations in the triangles△XSSXP ,△XGSXP ,

sin θ1
vP

=
sin θ2
vS

,
l1

sin θ1
=

r1
sin β

,
l2

sin θ2
=

r2
sin(π − β)

, β = ∠XSXPS (D.4)

lead to the following estimation of the ratio l1/l2:

l1
l2

=
vP
vS

r1
r2

= γ
r1
r2

= γ(1 +O(ǫ)). (D.5)
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Figure D.1: Illustration of the notations used in the derivation of sinϑ.

Here I took into a

ount that:

r1
r2

= 1 +O(ε). (D.6)

The 
ombination of (D.5) and the fa
t that l1+l2 = XG−XS yields the following expression

for X0XP :

X0XP =
γ∆xg +∆xs

1 + γ
(1 +O(ε)).

where a variable 
hange from XS ,XG to ∆xs, ∆xg was made. Substituting X0XP into the

equation (D.3) gives the �nal result:

sinϑr =
γ∆xg +∆xs
(1 + γ)RN

cosα+O(ε2), (D.7)

or, alternatively, in the γ-CMP 
oordinates (4.5):

sinϑr =
m̃

RN
cosα+O(ε2). (D.8)

D.2 Derivation of DSR-PS sta
king operator

In this se
tion I present the derivation of the DSR-PS staking operator (4.10). I start with

the DSR expression for the traveltime of 
onverted PS wave in 
onstant-velo
ity medium:

t =
1

vP

√

(xs − xr)2 + z2r +
1

vS

√

(xg − xr)2 + z2r . (D.9)

Here xs and xg are the lateral 
oordinates of sour
e and re
eiver, xr, zr denote the lo
ation
of the re�e
tion point, and vP and vS are the velo
ities of P- and S-waves, respe
tively
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(see Figure 4.1). For 
onvenien
e, I denote the expression under the square root by Si:

Si ≡ (xi − xr)
2 + z2r , i = s, g. (D.10)

It is apparent from the Figures 4.1 and D.1 that the re�e
tion point 
oordinates are equal:

xr = RN sinα−R sin(α− ϑr) + x0,

zr = RN cosα−R cos(α− ϑr). (D.11)

Substitution of (D.11) into (D.10) and simpli�
ation of trigonometri
 expressions yield:

Si = R2
N +R2 − 2RNR cos ϑr + 2∆xiR sin(α− ϑr)− 2∆xiRN sinα+∆x2i . (D.12)

The goal is to �nd a traveltime approximation whi
h is a

urate up to se
ond order of ε.
Hen
e, in the approximation for cos ϑr I in
lude the se
ond order term:

cos ϑr = 1− 1

2
sin2 ϑr +O(ε4) (D.13)

and in sin(α− ϑr) I retain only linear terms:

sin(α− ϑr) = sinα cos ϑr
︸ ︷︷ ︸

=1+O(ε2)

− cosα sinϑr. (D.14)

Substituting (D.13) and (D.14) into (D.12) and taking into a

ount the relation RN =
RNIP +R yields:

Si =
[

RNIP −∆xi sinα
]2

+RNR sin2 ϑr − 2∆xiR cosα sinϑr +∆x2i cos
2 α. (D.15)

Now, I substitute the approximation for sinϑr (D.3):

Si =
[

RNIP −∆xi sinα
]2

+ cos2 α
[ R

RN
m̃2 − 2

R

RN
m̃∆xi +∆x2i

]

. (D.16)

In eqution (D.16), the sour
e and re
eiver displa
ements ∆xi, i = s, g are equal to:

∆xs = m̃− γh̃, ∆xg = m̃+ h̃. (D.17)

To simplify these notations, I introdu
e h̃i:

h̃i =

{

−γh̃, i = s

h̃, i = g
, ∆xi = m̃+ h̃i, i = s, g. (D.18)

With these notations Si is equal:

Si =
[

RNIP −∆xi sinα
]2

+ cos2 αRNIP

[ m̃2

RN
+

2m̃h̃i
RN

+
h̃2i

RNIP

]

. (D.19)

Velo
ities of P- and S-waves 
an be expressed as:

1

vP
=

1

1 + γ

2

veff
,

1

vS
=

γ

1 + γ

2

veff
. (D.20)
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Hen
e,

( 2

veff

)2
Si =

[

t0 −
2 sinα

veff
∆xi

]2
+ 2t0

cos2 α

veff

[ m̃2

RN
+

2m̃h̃i
RN

+
h̃2i

RNIP

]

(D.21)

Here I took into a

ount that the traveltime of the 
entral ray is equal:

t0 =
2RNIP

veff
. (D.22)

Finally, by introdu
ing the 
oe�
ients:

w̃ = −2 sinα

veff
, M̃ =

cos2 α

veffRNIP
, Ñ =

cos2 α

veffRN
(D.23)

I obtain the 
ompa
t and elegant expression for the quantity under the square root:

( 2

veff

)2
Si =

[

t0 + w̃∆xi

]2
+ 2t0

[

Ñm̃2 + 2Ñm̃h̃i + M̃h̃2i

]

(D.24)

Substitution of (D.24) into (D.9) gives the DSR-PS sta
king operator:

t(m̃, h̃) =
1

1 + γ

√
[

t0 + w̃∆xs

]2
+ 2t0

[

Ñm̃2 − 2Ñm̃(γh̃) + M̃(γh̃)2
]

+
γ

1 + γ

√
[

t0 + w̃∆xg

]2
+ 2t0

[

Ñm̃2 + 2Ñm̃h̃+ M̃h̃2
]

. (D.25)

D.3 Derivation of CRS-PS sta
king operator

In this se
tion I dis
uss the derivation of the CRS-PS formula (4.12). I begin with the

DSR-PS sta
king operator (D.25). I "take out" (t0 + w̃∆xi) from the square roots, make

Taylor series expansion of the square roots and negle
t the terms of higher order than the

se
ond:

t =
(t0 + w̃∆xs)

1 + γ

(

1 +
1

(t0 + w̃∆xs)

[

Ñm̃2 − 2Ñm̃(γh̃) + M̃(γh̃)2
])

+
γ(t0 + w̃∆xg)

1 + γ

(

1 +
1

(t0 + w̃∆xg)

[

Ñm̃2 + 2Ñm̃h̃+ M̃h̃2
])

. (D.26)

After some simpli�
ations:

t = t0 + w̃
∆xs + γ∆xg

1 + γ
︸ ︷︷ ︸

=m̃

+
Ñ + γÑ

1 + γ
︸ ︷︷ ︸

=Ñ

m̃2 +
2γÑ − 2γÑ

1 + γ
︸ ︷︷ ︸

=0

m̃h̃+
γ2M̃ + γM̃

1 + γ
︸ ︷︷ ︸

=γM̃

h̃2, (D.27)

I obtain

t = t0 + w̃m̃+ Ñm̃2 + γM̃ h̃2. (D.28)

Final formula is obtained by squaring (D.28) and negle
ting the terms of higher order than

the se
ond:

t2(m̃, h̃) =
[

t0 + w̃m̃
]2

+ 2t0

[

Ñm̃2 + γM̃ h̃2
]

. (D.29)
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D.4 Derivation of n-CRS-PS sta
king operator

In this se
tion I dis
uss the derivation of the 2D n-CRS-PS formula (4.13). I begin with the

DSR-PS sta
king operator (D.25). Using notation F̃ (4.14), the DSR-PS sta
king operator

reads:

t(m̃, h̃) =
1

1 + γ

√

F̃ (∆xs) + 2t0
(
M̃ − Ñ

)
(γh̃)2 +

γ

1 + γ

√

F̃ (∆xg) + 2t0
(
M̃ − Ñ

)
h̃2.

(D.30)

If I square the right-hand side of the last expression

t(m̃, h̃) =

√
[ 1

1 + γ

√

F̃ (∆xs) + 2t0
(
M̃ − Ñ

)
(γh̃)2 +

γ

1 + γ

√

F̃ (∆xg) + 2t0
(
M̃ − Ñ

)
h̃2

]2
,

(D.31)

"take out" 2t0
(
M̃− Ñ

)
h̃2 from the square roots and negle
t the terms of higher order than

the se
ond, I obtain the n-CRS-PS sta
king operator:

t(m,h) =

√
[ 1

1 + γ

√

F̃ (m̃− γh̃) +
γ

1 + γ

√

F̃ (m̃+ h̃)
]2

+ 2t0γ
(
M̃ − Ñ

)
h̃2. (D.32)

D.5 DSR-PS sta
king operator in CMP 
oordinates

For some appli
ation, it might be useful to express the DSR-PS sta
king operator in the

standard CMP 
oordinates. The midpoint displa
ement and the half-o�set in the γ-CMP

and standard CMP 
oordinates have the following relation:

m̃ = m+ σh, h̃ = υh, (D.33)

where

σ =
γ − 1

γ + 1
, υ =

2

γ + 1
. (D.34)

Substitution of m̃ and h̃ into (D.25) yields, after some algebra:

t(m,h) =
1

1 + γ

√
[

t0 + w̃∆xs

]2
+ 2t0

[

Ñm2 − 2Ñmh+
[
Ñ + γ2υ2(M̃ − Ñ)

]
h2

]

+
γ

1 + γ

√
[

t0 + w̃∆xg

]2
+ 2t0

[

Ñm2 + 2Ñmh+
[
Ñ + υ2(M̃ − Ñ)

]
h2

]

(D.35)

Similarly, the 3D DSR-PS sta
king operator in the standard CMP 
oordinates reads:

t(m,h) =

1

1 + γ

√
[

t0 + w̃T∆xs

]2
+ 2t0

[

mTÑm− 2mTÑh+ hT
[
Ñ+ γ2υ2(M̃− Ñ)

]
h
]

+
γ

1 + γ

√
[

t0 + w̃T∆xg

]2
+ 2t0

[

mTÑm+ 2mTÑh+ hT
[
Ñ+ υ2(M̃− Ñ)

]
h
]

. (D.36)
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Appendix E

PS exa
t solution

The problem of re�e
tion from the 
ir
ular mirror has a very long history. This problem

is known as Alhazen's problem (Dörrie, 1965) and 
an be tra
ed further ba
k at least to

Ptolemy's time (Neumann, 1998). The problem of re�e
tion from the 
ir
ular mirror is

identi
al to the 
ir
ular billiard problem. (Neumann, 1998) and Drexler and Gander (1998)

proved that the 
ir
ular billiard problem typi
ally has two or four solutions 
orresponding

to the roots of fourth-order algebrai
 equation. Landa et al. (2010) used this idea to

improve the quality of MF sta
king operator.

In this appendix I dis
uss how to extend the solution proposed by Drexler and Gander

(1998) to the 
ase of 
onverted waves.

E.1 Method

In the 
ase of 
onverted waves, the problem 
an be formulated as follows. Given a sour
e

xs, a re
eiver xg and a 
ir
ular re�e
tor. How to �nd a point on the 
ir
ular re�e
tor,

where a seismi
 ray form xs to xg re�e
ts, assuming that the mode 
onversion from P to

S o

urs on re�e
tion?

Following the paper of Drexler and Gander (1998), I pla
e the sour
e xs at the point

(−h, 0), the re
eiver xg at the point (h, 0) and assume that the re�e
tor is a 
ir
le of unit

radius and 
enter at the point (m1, m2), i.e., the 
ir
le is given by equation:

(x−m1)
2 + (z −m2)

2 = 1. (E.1)

I denote by vp and vs velo
ities of P- and S-waves, γ ≡ vp/vs.

Following Drexler and Gander (1998), I introdu
e the term "iso
hrone". By de�nition, at

ea
h point on the iso
hrone 
urve Snell's law is 
arried out for the in
ident and the re�e
ted
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Figure E.1: Typi
ally, equation (E.3) has four real roots. Corresponding re�e
tion points

are shown as bla
k 
rosses. Only the root, giving the smallest value of

traveltime, yields the required re�e
tion point.

rays. In the 
ase of 
onverted waves, the iso
hrone is given by equation (see se
tion E.2):

√

(x+ h)2 + z2 + γ
√

(x− h)2 + z2 = 2σ. (E.2)

Coe�
ient 2σ has a 
lear physi
al meaning of the produ
t of the traveltime and the velo
ity

of P-waves. In the 
ase of monotypi
 waves (γ = 1), the iso
hrone (E.2) is an ellipse. The

re�e
tion point 
oordinates may be found as a solution of the system of three equations:

the equation of 
ir
le (E.1), the equation of iso
hrone (E.2) and the 
ondition for tangen
y

between the 
ir
le and the iso
hrone (see se
tion E.3). This system of nonlinear equations

in variables {x, z, σ} leads to the sixth-order algebrai
 equation:

β6u
6 + β5u

5 + β4u
4 + β3u

3 + β2u
2 + β1u+ β0 = 0, (E.3)

where 
oe�
ients βi, i = 0, ..., 6 depend on parameters h, γ,m1,m2 (see se
tion E.4). The

re�e
tion points are equal:

xr = m1 + cos θ, zr = m2 + sin θ, θ = 2arctan u. (E.4)

In most 
ases equation (E.3) has four real roots and two 
omplex roots. The typi
al

situation is shown in Figure E.1. Among real roots, the root, giving the smallest value of

traveltime, yields the required re�e
tion point.

E.2 Iso
hrone of 
onverted wave

I assume that for the �xed traveltime t the iso
hrone is given in parametri
 form: r = r(τ).
I denote by rs(τ) and rg(τ) radius ve
tors des
ribing the iso
hrone from the position of
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Figure E.2: Illustration of the notations used in the derivation of the iso
hrone equation.

sour
e xs and re
eiver xg, respe
tively (see Figure E.2). If L is an arbitrary point on the

iso
hrone, and n is a unit normal ve
tor of the iso
hrone, then Snell's law may be written

as:

sin( ̂rs(τ),n(τ)) = γ sin( ̂rg(τ),n(τ)). (E.5)

If instead of the normal I 
onsider a unit tangent ve
tor k, the Snell's law will look like:

cos( ̂rs(τ),k(τ)) = −γ cos( ̂rg(τ),k(τ)). (E.6)

Now, I use the de�nition of the s
alar produ
t of ve
tors, substitute expression for the unit

tangent ve
tor k = ṙ(τ)
|ṙ(τ)| , multiply equation (E.6) by |ṙ(τ)|, and note that ṙ(τ) = ṙs(τ) =

ṙg(τ). Finally, I obtain:
rs(τ) · ṙs(τ)

|rs(τ)|
= −γ

rg(τ) · ṙg(τ)
|rg(τ)|

. (E.7)

This expression is a total derivative with respe
t to τ :

d

dτ
|rs(τ)| = −γ

d

dτ
|rg(τ)|. (E.8)

Rearranging terms and 
arrying out the integration yields:

|rs(τ)| + γ|rg(τ)| = 2σ, (E.9)

where 2σ is the integration 
onstant. The 
oordinate representation of rs, rg in

equation (E.9) yields the equation of iso
hrone:

√

(x+ h)2 + z2 + γ
√

(x− h)2 + z2 = 2σ. (E.10)

E.3 Tangen
y 
ondition

The re�e
tion point (xr, zr) should satisfy Fermat's prin
iple, a

ording to whi
h the

re�e
ted ray prefers the path, whi
h minimizes the traveltime. Mathemati
ally, this
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is equivalent to the fa
t that the 
ir
le and the iso
hrone must tou
h ea
h other at

the re�e
tion point. If impli
it fun
tions F and G denote the 
ir
le (E.1) and the

iso
hrone (E.2), the 
ondition of tangen
y between the 
urves, may be written as follows:

(∂F

∂x

)(∂G

∂z

)

−
(∂F

∂z

)(∂G

∂x

)

= 0. (E.11)

The solution of equation (E.11) with respe
t to σ2
yields the traveltime of 
onverted wave

as a fun
tion of re�e
tion point:

σ2 = (1 + γ2)
[

2xh+Θ∆
] Λ+∆

4(Λ∆ + 1)
, (E.12)

where the following notations are made:

∆ =
1− γ2

1 + γ2
, Λ = h

z −m2

zm1 − xm2
, Θ = x2 + z2 + h2. (E.13)

E.4 Coe�
ients of the sixth-order equation

The system of equations (E.1), (E.2) and (E.12) is solved in the following way:

1. iso
hrone (E.2) is twi
e squared to avoid irregularity;

2. σ2
from (E.12) is substituted into (E.2);

3. x, z are substituted into (E.2) in the form x = m1 + cos θ, z = m2 + sin θ; they
automati
ally satisfy equation of 
ir
le (E.1);

4. in (E.2) the variable 
hange is made: θ = 2arctan u.

Finally, the system redu
es to the sixth-order algebrai
 equation for u:

β6u
6 + β5u

5 + β4u
4 + β3u

3 + β2u
2 + β1u+ β0 = 0, (E.14)

with the following 
oe�
ients:

β6 = (2h(m1 − 1)−∆A1)m
2
2;

β5 = 2h(m1 − 1)B1 −A1B2 − 4∆m3
2;

β4 = 2h(m1 + 1)m2
2 + 2h(m1 − 1)C1 −A2∆m2

2 − 4m2B2 −A1C2;

β3 = −8m2(4hm1 +∆(4m2
1 −m2

2));

β2 = 2h(m1 − 1)m2
2 + 2h(m1 + 1)C1 −A1∆m2

2 + 4m2B2 −A2C2;

β1 = −2h(m1 + 1)B1 +A2B2 − 4∆m3
2;

β0 = (2h(m1 + 1)−∆A2)m
2
2;
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where:

A1 = (m2
1 +m2

2 + 1 + h2 − 2m1);

A2 = (m2
1 +m2

2 + 1 + h2 + 2m1);

B1 = (4∆hm2 + 4m1m2);

B2 = (4hm2 + 4∆m1m2);

C1 = (8∆hm1 + 4h2 − 2m2
2 + 4m2

1);

C2 = (8hm1 +∆(4h2 − 2m2
2 + 4m2

1)).
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� â � 3D ve
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