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Abstract

The development of the stacking theory has certain peculiarities. Almost all new stacking
concepts (such as, common-midpoint stack, common-reflection-surface (CRS) stack, etc.)
have originally been developed for simulating a zero-offset section from 2D prestack
multicoverage monotypic data recorded along a seismic profile. Later, these techniques
have been extended to three practically important “special” cases: the case of 3D acquisition
geometry, the case of converted (PS) waves and the case of common-offset (CO) sections.

In the last years an increasing number of investigations is devoted to the double-
square-root-based (DSR-based) stacking operators: Multifocusing and two extensions of
the conventional CRS stack — implicit CRS (i-CRS) and non-hyperbolic CRS (n-CRS).
The DSR-based stacking operators use the same kinematic wavefield attributes as the
conventional CRS stack. However, due to a double square root structure, the DSR-
based stacking operators approximate the diffraction events better than the conventional
CRS stacking operator. As a result, stacking with the DSR-based operators provides
higher resolved stacked sections and more reliable wavefield attributes which are extremely
important for the subsequent processing, imaging and inversion steps.

Recent studies have systematically analyzed the DSR-based stacking operators and
have proposed the search of wavefield attributes using global optimization techniques and
the proper treatment of the conflicting dip problem. Together with a growing computing
power, these studies unlock the full potential of the DSR-based stacking operators.
Thus, nowadays, multidimensional stacking with the DSR-based stacking operators and
the subsequent analysis of the obtained wavefield attributes constitute an exciting new
technology.

In this thesis, I take the next logical step in the evolution of stacking theory and
investigate the extension of the DSR-based stacking operators to the three above mentioned
“special” cases. I construct extensions of n-CRS and i-CRS stacking operators for the 3D,
PS and CO cases. I also present a new stacking operator, so-called explicit DSR stacking
operator, which plays a very important role in the theory of DSR-based stacking operators.
Furthermore, I investigate the accuracy of stacking operators, the accuracy of obtained
wavefield attributes and discuss the implementation of the new stacking operators into the
CRS-based software.

The derivations of DSR-based stacking operators require a simplified model to fit
seismic data from a heterogenous overburden. It requires an auxiliary medium and
an analytical description of the reflector. The existing mechanisms to account for the
overburden heterogeneity, either by the shift in velocity (effective medium), or by the shift
of the reference time (optical medium), could not yet be extended to the 3D case. Hence, I
suggest an auxiliary anisotropic medium, which in the 3D case allows to simulate wavefronts
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of complex shape. The auxiliary anisotropic medium and an analytical description of the
reflector surface constitute the 3D simplified model, which yields the derivation of the 3D
i-CRS, 3D n-CRS and 3D DSR stacking operators.

In the case of converted PS waves, I suggest the simplified model with a constant ratio
of P- and S- wave velocities. The PS simplified model together with a newly introduced
~v—CMP coordinates, which account for the symmetry of the problem, allow to derive the
DSR-based stacking operators for converted waves and formulate the efficient parameter
search strategy. Furthermore, for the most general CO case, I demonstrate that similar
to the classical CRS stacking operator the DSR-based stacking operators could be derived
from the paraxial ray theory. This result justifies the implementation of the DSR-based
stacking operators in the case of an anisotropic medium and opens the possibility of
construction of an anisotropic velocity model by inversion of the stacking parameters.

Thus, the research presented in this thesis not only provides a theoretical basis for
extension of the DSR-based stacking operators to the 3D, PS and CO cases, but also makes
practical recommendations regarding the implementation of the new stacking operators.
I believe that the results of this work could be a starting point for further investigations
and that the technologies presented here will be of high demand by industry and basic
research.



Zusammenfassung

Die Entwicklung der Theorie des Stapelns enthélt bestimmte Besonderheiten. Fast
alle neuen Stapelungskonzepte (wie die common-midpoint Stapelung, common-reflection-
surface (CRS) Stapelung usw.) wurden urspriinglich fiir simulierte zero-offset Sektionen
aus 2D prestack multicoverage monotypischen Daten, aufgenommen entlang eines seis-
mischen Profils, entwickelt. Im Laufe der Zeit wurden diese Techniken zu drei praktisch
relevanten Spezialfillen erweitert: die 3D Akquisitionsgeometrie, konvertierte (PS) Wellen
und die common-offset (CO) Sektion.

In den letzten Jahren hat sich eine steigende Anzahl an Untersuchungen auf die double-
square-root (DSR)-basierten Operatoren fokussiert: Multifocusing und zwei Erweiterungen
der konventionellen CRS Stapelung — impliziertes CRS (i-CRS) und nicht-hyperboliosches
CRS (n-CRS). Die DSR-basierten Stapeloperatoren approximieren Diffraktionen besser als
der konventionelle CRS Stapeloperator. Als Resultat liefert die Stapelung mittels DSR-
basierten Operatoren besser aufgeloste Stapelsektionen und verldsslichere Wellenfeldat-
tribute, die sehr wichtig fiir nachfolgende Prozessierung, Abbildung und Inversionsschritte
sind.

Kiirzlich erfolgte Studien haben die DSR-basierten Operatoren systematisch analysiert
und vorgeschlagen die Suche der Wellenfeldattribute mittels globaler Optimierungstech-
niken und unter Beriicksichtigung von interferierenden Wellenfelder (conflicting dips)
durchzufiihren. Zusammen mit wachsender Rechenleistung ermdoglichen diese Studien
das volle Potential aus DSR-basierten Stapeloperatoren zu nutzen. Heutzutage stellt
multidimensionales Stapeln mittels DSR-basierten Stapeloperatoren und anschlieffender
Analyse der erhaltenen Wellenfeldattributen eine aufregende neue Technologie dar.

In dieser These nehme ich den néchsten logisch folgenden Schritt in der Entwicklung
der Stapelungstheorie und untersuche die Erweiterung der DSR-basierten Stapeloperatoren
auf die drei genannten Spezialfille. Ich erweitere die n-CRS und i-CRS Stapeloperatoren
fir die 3D, PS und CO Falle. Weiterhin présentiere ich einen neuen Stapeloperator,
den sogenannten explizierten DSR, Stapeloperator, der eine sehr wichtige Rolle in der
Theorie von DSR-basierten Stapeloperatoren einnimmt. Weiterhin untersuche ich die
Genauigkeit der Stapeloperatoren, der erhaltenen Wellenfeldattribute und diskutiere die
Implementation des neuen Stapeloperators in die CRS-basierte Software.

Die Ableitungen des DSR-basierten Stapeloperators bendtigen ein vereinfachtes Model
um seismische Daten bei heterogenem Deckgestein zu beschreiben. Es bendtigt ein
Hilfsmedium und eine analytische Beschreibung des Reflektors. Der existierende Mech-
anismus um das heterogene Deckgestein zu beriicksichtigen, entweder durch velocity shift
(effektives Hilfsmedium) oder time shift (optisches Hilfsmedium), konnte bisher nicht auf
den 3D Fall erweitert werden. Daher schlage ich vor ein anisotropes Hilfsmedium zu

il
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benutzen, da es erlaubt Wellenfronten von komplexer Form im 3D Fall zu simulieren. Das
anisotrope Hilfsmedium und eine analytische Beschreibung der Reflektoroberfliche stellen
das vereinfachte 3D Modell dar, welches die Herleitung der 3D i-CRS, 3D n-CRS und 3D
DSR Stapeloperatoren liefert.

Im Falle von konvertieren PS Wellen schlage ich ein vereinfachtes Modell mit
konstantem P- und S-Wellen Geschwindigkeiten vor. Das vereinfachte PS Modell
zusammen mit neu eingefithrten v—CMP Koordinaten, die die Symmetrie des Problems
beriicksichtigen, ermdglichen es die DSR-basierten Stapeloperatoren fiir konvertierte
Wellen herzuleiten und die effiziente Parametersuchstrategie aufzustellen.

Weiterhin, fiir den allgemeinsten CO Fall, demonstriere ich, das &hnlich wie bei dem
klassischen CMP Stapeloperator, der DSR-basierte Stapeloperator aus der paraxialen
Strahlentheorie hergeleitet werden kann. Das Resultat rechtfertigt die Implementierung
des DSR-basierten Stapeloperators im Falle eines anisotropen Mediums und erdéffnet die
Méglichkeit ein anisotropes Geschwindigkeitsmodell, mittels Inversion der Stapelparame-
ter, zu konstruieren.

Die Forschung, die in dieser These prisentiert wird, liefert nicht nur die theoretische
Basis zur Erweiterung DSR-basierter Stapeloperatoren auf die 3D, PS und CO Fille,
sondern macht auch praktische Vorschlige beziiglich der Implementierung des neuen
Stapeloperators. Ich glaube die Ergebnisse dieser Arbeit knnten ein guter Startpunkt fiir
weitere Untersuchungen sein, denn die hier présentierten Technologien sind von grofem
Interesse in Industrie und Forschung.
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Introduction

Due to the growth of the world population and the rising living standards, the worldwide
energy consumption is constantly increasing. Thought the world becomes more energy
efficient and the alternative energy sources develop, in the near future the hydrocarbons
(natural gas, oil, coal) will remain a major source of the energy. Most of conventional
reservoirs are already explored and depleted. Future reservoirs characterize by the
increasing depth and complexity, giving a constant high demand for innovative and
advanced technologies for hydrocarbon exploration.

The reflection seismic method is the most effective geophysical method for hydrocarbon
exploration. The goal of the reflection seismic method is to create an image of the
Earth’s subsurface using the reflected seismic waves. The seismic image contains valuable
information about the location and configuration of the seismic reflection horizons. There
are two types of the seismic images: images in the time domain (linked to the vertical
two-way traveltime) and images in the depth domain (linked to the depth).

Imaging in time domain was historically the first type of imaging. Its development was
closely related to the ability to digitize analog signals. An image in the time domain
may be obtained, for instance, by stacking the common-midpoint (CMP) gathers, first
suggested by Mayne (1962). Over the last fifty years, this simple CMP stacking has evolved
into a sophisticated technology that requires complicated mathematics and state-of-the-art
computation (Rashed, 2014).

The last 20-30 years have seen a growing interest in the methods for imaging the subsurface
in depth domain. The main feature of these methods is the requirement of an initial
velocity model. The modern strategy for imaging in depth domain is based on the full
waveform inversion (FWI) for an iterative update of the initial velocity model and further
prestack depth migration (PSDM) performed using the resulting velocity model (see e.g.
Warner et al., 2013). This procedure allows reconstruction of highly resolved depth images
of the subsurface with correct locations and dips of the reflection horizons. However, the
quality of the depth imaging depends significantly on the initial velocity model, which
should be sufficiently close to the true velocity model.

On the contrary, imaging in time domain does not require the initial velocity model.
Moreover, it extracts the stacking parameters that may be used to estimate the velocity
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model for subsequent imaging steps. Currently, about 70% of the seismic reflection data
are processed only in the time domain (Landa, 2007), mainly due to the lower cost of
imaging in time domain compared to imaging in depth domain. Hence, the development
of improved algorithms for imaging in time domain is a promising research topic.

The multidimensional stacking is a modern method for imaging in time domain. It
consists of stacking traces in the neighboring CMP gathers. The multidimensional stacking
significantly increases the stacking fold, which results in the enhanced continuity of
reflection horizons and the improved image resolution. This procedure requires the stacking
operator: an expression describing the traveltime of the reflected wave.

Two alternative multidimensional stacking operators have been proposed almost si-
multaneously at the end of the 20th century: the common-reflection-surface (CRS)
stacking operator (Mann et al., 1999; Jdger et al., 2001) and the Multifocusing (MF)
stacking operator (Gelchinsky et al., 1999; Tygel et al., 1999). Both stacking operators are
formulated in terms of near-surface kinematic wavefield attributes of Hubral (1983) and
are valid for arbitrary velocity models and arbitrary source-receiver pairs in the vicinity of
the chosen imaging point. Both CRS and MF give comparable results for reflection events.

However, the seismic wavefield contains not only reflection events but also diffraction
events. The "diffractions" appear at terminations of reflectors (e.g., at faults, edges,
pinch-outs) and at small scattering inhomogeneities of the subsurface. The diffractions
carry valuable information necessary for the velocity model building (e.g., by means of the
NIP-wave tomography, Duveneck, 2004; Bauer et al., 2016b), for the migration velocity
analysis (Fomel et al., 2007) and for the recovery of structures smaller than the seismic
wavelength (Khaidukov et al., 2004).

The CRS stacking operator cannot properly fit traveltimes of diffraction events, whereas
the MF stacking operator is designed to account for diffraction events. Hence, the MF stack
produces better stacked sections (images) than the CRS stack (Landa, 2007). In order to
improve the performance of the conventional CRS stack, two alternative approaches have
recently been proposed: the implicit CRS (i-CRS) stack (Schwarz et al., 2014) and the
non-hyperbolic CRS (n-CRS) stack (Fomel and Kazinnik, 2013). Since MF, i-CRS and
n-CRS describe the traveltime of the reflected/diffracted event as a sum of two square
roots, they are called "double-square-root-based" (DSR-based) stacking operators. Recent
studies (Schwarz et al., 2015; Walda et al., 2016) indicate that all DSR-based stacking
techniques give superior results compared to the conventional CRS stack.

All multidimensional stacking operators (CRS, MF, i-CRS and n-CRS) are traditionally
formulated for the 2D zero-offset (ZO) acquisition geometry and monotypic waves. The
conventional CRS stack has extensions to three important cases: the case of 3D surveys
(Miiller, 2003), the case of converted (PS) waves (Bergler et al., 2002) and the case of the
common-offset (CO) acquisition geometry (Zhang et al., 2001). However, apart from few
exceptions, the DSR-based stacking operators do not have extensions to these special cases.

The conventional CRS stacking operator originates from the paraxial ray theory (see
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e.g, Hubral et al., 1992). Moser and Cerveny (2007) recently formulated the paraxial ray
theory for the general anisotropic case. This opens the possibility of a large number of
applications, including the estimation of the kinematic wavefield attributes in the general
anisotropic media. The DSR-based staking operators are usually derived from the model-
based approach. The question naturally arises whether it is possible to derive the DSR-
based stacking operators from the paraxial ray theory and, thus, extend them to general
anisotropic media.

In this thesis, I present the extensions of the DSR-based stacking operators to the three
special cases (3D, PS, CO) and demonstrate the derivation of the DSR-based stacking
operators from the paraxial ray theory. The thesis is structured as follows.

In Chapter 1, I review the theory of stacking starting from the classical CMP stack over
the CRS stack to the modern DSR-based stacking operators. I also discuss extensions of
these stacking techniques to three special cases: the 3D case, the case of converted PS
waves and the case of CO acquisition geometry. Furthermore, I introduce and explain
notations and terms that are used in the next chapters.

Chapter 2 is dedicated to the theory of 3D stacking operators. I suggest a 3D simplified
model which consists of the curved reflector in the auxiliary anisotropic medium. Based
on this 3D simplified model, I propose the 3D extensions of the i-CRS and n-CRS stacking
operators and the completely new 3D DSR stacking operator.

In Chapter 3 I investigate the accuracy of the new 3D stacking operators based on the
simple numerical tests. I also discuss the implementation of the new stacking operators
into the CRS-based software.

Chapter 4 is concerned with the stacking operators for converted PS waves. Based on
a fairly reasonable assumption of constant ratio of P- and S-wave velocities, 1 suggest
extensions of the DSR and n-CRS stacking operators to the case of converted waves.
Furthermore, I introduce a pragmatic search strategy for converted waves, similar to the
one suggested by Miiller (1999) for monotypic waves. The new stacking operators and
the new pragmatic search strategy together form an efficient tool to obtain high-quality
stacked sections for converted PS waves.

In Chapter 5, based on the paraxial ray theory, I obtain the DSR stacking operator for the
most general common-offset (CO) case. This expression extends the range of applicability
of the DSR-based stacking operators and demonstrates their close relationship with the
standard CRS stacking operators.

In Summary and Outlook, I conclude the results of this thesis and provide an outlook
to future directions of investigations.
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Chapter 1

Theoretical background

“Bverything that happens once can never happen again. But everything that
happens twice will surely happen a third time”

— Paulo Coelho, The Alchemist

Stacking is one of the basic steps of the reflection data processing workflow. In this chapter,
I attempt to present, in historical sequence, the main stages of the development of the
stacking theory. I also introduce and explain notations and terms that will be used in the
next chapters.

1.1 Seismic reflection experiment

The seismic reflection experiment consists of the recording of reflected seismic waves. The
seismic waves are generated by a seismic source (dynamite charge, vibrator, airgun, etc.)
that is located at a ground level or is buried in the ground at a shallow depth (see
Figure 1.1a). The seismic waves propagate in a complex inhomogeneous medium that
is often called "overburden" or "subsurface". The velocity of propagation of seismic waves
depends on rock properties, density and other factors (see, e.g., Sheriff and Geldart, 1995).
At a boundary of different rocks (reflecting surface, "reflector"), a discontinuous change
of the rock properties occurs. In such a case, an incident seismic wave is partly reflected
and partly transmitted (see Figure 1.1b). The reflected wave returns back to the ground
surface, where it is recorded by receivers.

There are two modes of the seismic wave in an isotropic solid medium: a compressional
P-wave and a shear S-wave. These waves travel in the medium with different velocities.
Since the velocity of the S-wave is about half that of the P-wave, the reflected PP wave
comes before the reflected SS wave. The reflected PP waves are usually investigated in the

5
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Figure 1.1: Tllustration of the seismic reflection experiment. The incident seismic wave,
emitted by the source, reflects from the reflecting surfaces to the receivers on
the ground surface (a). At the reflecting surfaces the incident seismic wave
is partly reflected, partly converted and partly transmitted (b). The red and
green triangles indicate the source and receiver locations, respectively.

seismic reflection experiment.

During the reflection, the mode conversion can occur at the reflecting surface. The
converted PS and SP waves are formed as the wave changes the mode. The converted
PS waves are commonly used to obtain valuable information about S-wave velocities.

The seismic reflection experiments are complicated by topographic variations and complex
low-velocity near-surface structures. In order to overcome these problems, static corrections
(constant timeshifts) are applied to the recorded data (Cox, 1999). After the static
correction, the sources and the receivers belong to the reference horizon (so-called
"measurement surface") and the complex low-velocity near-surface layers are replaced by
constant-velocity layers.

It is usually assumed that the reference horizon is located at a zero depth z = 0. In the 2D
case, the measurements are performed along the seismic profile. Seismic data are generally
acquired in the shot-receiver (x4, x4) coordinates, where x, and x, denote the shot and
receiver locations along the profile. However, the processing of seismic data is usually
carried out in the midpoint-offset coordinates:

To+ X
T =2 —"5 p=

. (1.1)

where x,, is the midpoint location and h is the half-offset (the half distance from the source
to the receiver). As a result of the seismic reflection experiment the traces as a function of
the traveltime ¢, the midpoint z,, and the half-offset h (so-called "prestack seismic data'")
P(t,zy,, h) are obtained.
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1.2 Common-midpoint stack

Stacking of seismic traces, with the goal of improving the signal-to-noise ratio, dates back
to the early 1950s. Its development is closely related to the possibility to digitize the
analog signals. In 1956, Mayne patented the common-midpoint (CMP) stacking'. He
introduced the midpoint-offset coordinates (1.1) and proposed to collect traces with the
same midpoint z,, into the common-midpoint (CMP) gathers. The stacking of traces
in the CMP gather yields the stacked trace associated with the midpoint location. This
stacked trace approximates the trace that would be recorded if the source and the receiver
are located in the midpoint position. Since the useful signals are stacked "in phase" and
the noise is often uncorrelated (Sengbush, 1983), the stacked trace has an improved signal-
to-noise (S/N) ratio. Theoretically, while stacking, the S/N ratio increases by the square
root of the number of traces in the CMP gather (Mayne, 1962). Implementation of the
stacking procedure for each midpoint gives the CMP-stacked section (zero-offset section).

The geometry of the CMP gather and the raypath associated with the plane horizontal
reflector are presented in Figure 1.2a. Due to the difference in the raypaths, the traveltime
to of the zero-offset ray? is not equal to the traveltime t(h) of the ray from the remote
source to receiver. The dependence of traveltime with the offset is called "moveout". The
difference between ¢(h) and ¢y is called "moveout correction". Stacking of the seismic traces
in the CMP gather requires the moveout approximation ¢ = 7(to, h). With the introduced
notations, the CMP stacked section S(to, ) can be described as:

S(to, zm) = /P(T(to,h),xm,h)dh. (1.2)

Below, I discuss several moveout approximations used in the CMP processing.

1.2.1 Normal moveout

The moveout approximation that accounts for the difference of the source-receiver distance
is called "normal moveout" (NMO). The NMO equation reads:

t*(h) =t + 5. (1.3)

This approximation was derived for different earth models:

e Constant velocity model with a single horizontal plane reflector (Fig-
ure 1.2a). This case was considered by Green (1938) for measuring the average
velocity above the reflector. In this case, the stacking velocity vnmo is equal to the
velocity of the layer v.

! Originally, Mayne called his method the "common reflection point horizontal stacking".
2The ray whose source and receiver are located at the midpoint 2,,. Also called "central ray" or "normal
incidence ray".
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b

Figure 1.2: Mlustration of the simple earth structure models: the plane horizontal
reflector (a), the plane dipping reflector (c¢), the system of horizontal layers (b)
and the system of dipping layers (d). The red dashed line indicates the
trajectory of the normal incidence ray.

e Horizontally layered model (Figure 1.2b). The traveltime approximation for this
case have been obtained independently by Dix (1955) and Diirbaum (1954). They
showed that in this case the NMO velocity is equal to the root-mean-square (RMS)
velocity:

(1.4)

Here vy, is the interval velocity of the kth layer and Aty is the two-way traveltime in
the layer k. In this case the NMO (1.3) is a small-offset approximation (Castle, 1994).
Bolshykh (1956) and Taner and Koehler (1969) presented the long-offset moveout

approximations using the Taylor series expansion:
t2(h) = c1 + cah® 4+ csh* + c4hb + ... (1.5)

They showed that the first two coefficients of (1.5) coincide with the NMO (1.3)
approximation and the next coefficients are the complex functions depending on the
interval velocities. Taner and Koehler (1969) also provided the recursive formulas to
obtain all coefficients of the series.

e Constant velocity model with a single dipping plane reflector (Figure 1.2¢).
Levin (1971) considered this oversimplified case for understanding the dependence
of the stacking velocities on the dip of the reflector «. He found that the NMO
equation (1.3) is still valid and the stacking velocity is the same as or higher than
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the velocity of the layer v:
UNMO = v/ cos a. (1.6)

For this simple model the assumption that the traces in the CMP gather image the
same point in depth is violated. Hence, the effect of the reflection-point dispersal
occurs. To correct for this effect a dip-moveout (DMO) correction was introduced.
For the review of different DMO methods, see Hale (1991) and references therein.

e System of dipping layers (Figure 1.2d). Hubral and Krey (1980) proved that the
NMO approximation (1.3) is valid in this general case.

Fomel and Stovas (2010) fairly noticed that the hyperbolic behaviour of the moveout is
always valid around the zero offset, "thanks to source-receiver reciprocity® and first-order
Taylor series expansion". However, except for a few special cases, the moveout shows a
nonhyperbolic behaviour at large offsets.

In summary, the stacked section is obtained as follows. The prestack data are sorted in
the CMP gathers (see Figure 1.3a). In the CMP gather each time sample is considered as
to (see Figure 1.3b). The NMO (1.3) is calculated for a set of the NMO velocities from
the initially defined range. The objective function that measures the similarity of traces,
e.g., semblance (Taner and Koehler, 1969), is estimated for each of these NMO velocities.
The stacking velocity is the one that maximizes the value of the objective function. The
procedure provides the stacked section, the stacking velocity section and the semblance
section. Interpretation of the stacking velocities is performed with the chosen model of the
subsurface.

1.2.2 Shifted hyperbola

In the NMO equation (1.3), the inhomogeneity of the overburden is accounted by the
NMO velocity. In the presence of inhomogeneity, the NMO velocity becomes an effective
velocity, since it depends on the velocities of the layers. Hence, the conventional NMO (1.3)
describes the moveout in the effective medium.

de Bazelaire (1988) suggested an alternative idea based on the theory of geometrical optics.
He proposed to replace the inhomogeneous medium by the so-called "optical medium" — the
homogeneous medium with the constant near-surface velocity vg. In the optical medium,
the moveout ¢(h) is described by the shifted-hyperbola*:

4h?
(t —to+tp)° :t§+7. (1.7)
0

3The traveltime of the monotypic wave is invariant with respect to the source-receiver change.
Mathematically, it means that the traveltime is an even function of the offset ¢(—h) = t(h) and the
first derivative of the traveltime with respect to the offset is equal to zero: % =0.

*A similar approximation was proposed by Malovichko (1978) for the case of the horizontally layered
structure.
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Figure 1.4: The ray scheme for the shifted hyperbola. The actual raypath of the reflected

ray (a) in the inhomogeneous model and its equivalent raypath in the optical
analog (b). The center of the hyperbola is shifted to the point D’.

Here, tg is the two-way traveltime along the actual raypath X,,D in the inhomogeneous
medium and ¢, is the two-way traveltime along the equivalent raypath X,,, D" in the optical
medium (see Figure 1.4).

In the shifted hyperbola (1.7), the inhomogeneity of the medium is compensated by the
so-called focusing time ¢,. Thus, both NMO and the shifted hyperbola utilize the concept
of auxiliary constant velocity medium, but NMO is formulated for the effective auxiliary
medium and the shifted hyperbola for the optical auxiliary medium. One can say that
NMO and the shifted hyperbola are the same stacking operator formulated in the different
(effective or optical) domains, or utilized the different mechanisms (velocity-shift or time-
shift) to account for the inhomogeneity.

1.2.3 3D normal moveout

Subsurface geological features of interest in hydrocarbon exploration are three-dimensional
in nature (Yilmaz, 2001). The 3D seismic survey data are used to obtain the true and
precise 3D seismic image of the subsurface.

In the 3D seismic surveys, the sources and the receivers are distributed in the measurement
surface. In this case, the midpoint z,,, and the half-offset A become two-dimensional vectors:

:Xg+Xs h:Xg—Xs
2 ’ 2 ’

Xim (1.8)

where x, = {5, ys} and x, = {4, y,} denote the source and the receiver locations. Traces

with the same midpoint locations x,, are gathered in the CMP bins. The traces of the
CMP bin are stacked along the hyperbolic trajectories:
4|h|?

(bl = 6+ o

vxmo(§) (19)
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with the NMO velocity depending on the direction of the profile line £ (Levin, 1971):

1 2 22
i _ cos2§ s1n2§. (1.10)
oo (§) U1 vy

Equation (1.10) is known as the NMO velocity ellipse. Alternatively, the 3D NMO (1.9)
may be presented in the notations of Grechka and Tsvankin (1999):

t*(h) = 3 + 4hTWh, (1.11)

where the elements of the symmetric matrix W are the inverse values of the squared
stacking velocities.

1.2.4 Converted waves

The converted PS waves are commonly used to obtain valuable information about S-wave
velocities. Extensions of the NMO equation (1.3) for converted waves were proposed
by Fromm et al. (1985); Tessmer and Behle (1988); Tessmer et al. (1990); Iverson et al.
(1989). The shifted hyperbola moveout approximation for converted waves was formulated
by Slotboom (1990). The detailed review of the meaning of converted waves, the difficulties
in their processing and the existing moveout approximations are given in Section 4.1.

1.2.5 Common-offset stack

In the common-offset case, the source and receiver locations of the central ray do not
coincide. Stacking of seismic traces having the common-offset distances was patented by
Harris (1968). For a more detailed discussion of the common-offset stack the reader is
referred to Section 5.1.

1.3 Multidimensional stacking

At the beginning of the 1980s, several authors (e.g., Naess, 1982; Buchanan et al., 1983)
have pointed out that since traces in the CMP gather do not reflect from one point on
the reflector but rather from the segment of the reflector, it is possible to use traces
in the neighboring CMP gathers for stacking. Thus, to obtain the stacked trace at the
central (imaging) point xg, one must consider the traces whose sources and receivers are
in a certain vicinity of the central point. In such a situation, the midpoints x,, of the
traces being stacked do not coincide with the central point xg. The difference between the
midpoint z,, and the central point xg is called the midpoint displacement:

m = Ty, — Xo. (1.12)
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The stacked section S(to, o) is obtained by stacking the prestack seismic data P(t, Zy,, h)
both in the midpoint displacement m and the half-offset h directions (see Figure 1.5):

S(to,xo) = //P(T(to,m, h),mo—i—m,h) dm dh. (1.13)

This procedure requires the moveout approximation ¢ = 7(tg,m,h). Since the stack-
ing (1.13) is performed in two dimensions, the procedure is called "multidimensional
stacking". As it is apparent from Figure 1.5, the multidimensional stacking significantly
increases the stacking fold. Hence, it is particularly useful for data with a low signal-to-
noise ratio or acquisitions with a low fold.

Two competing multidimensional stacking techniques appeared almost simultaneously at
the end of the 20th century: the common-reflection-surface (CRS) stack (Mann et al., 1999;
Jager et al., 2001) and the Multifocusing (MF) stack (Gelchinsky et al., 1999). Although
originated from different theories, both techniques propose the moveout approximations
formulated in terms of kinematic wavefield parameters of Hubral (1983) and valid for
arbitrary velocity models. Both techniques perfectly handle reflection events, however the
MF stack produces better stacked sections due to its ability to properly handle diffraction
events (see, e.g., Landa, 2007).

In order to improve the performance of the conventional CRS stack, two alternative
approaches have recently been proposed: the implicit CRS (i-CRS) stack (Schwarz et al.,
2014) and the non-hyperbolic CRS (n-CRS) stack (Fomel and Kazinnik, 2013). Because
MF, i-CRS and n-CRS describe the traveltime of reflected/diffracted event as a sum of two
square roots, I will call them "double-square-root-based" (DSR-based) stacking operators.
I this section, I will briefly describe these four stacking operators, mention their relations
and existing extensions.

1.3.1 Common-reflection-surface stack

The CRS stacking operator® is a natural extension of the NMO equation (1.3) for the
multidimensional case. The CRS stacking operator can be derived from the paraxial ray
theory for the most general 3D common-offset (CO) case. Here, in contrast, I will start
from the most intuitive 2D zero-offset (ZO) case, and later discuss extensions to the 3D
and CO cases.
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Figure 1.6: Illustration of the kinematic wavefield attributes: « is the dip angle of the
zero-offset ray, Rnip is the radius of curvature of the NIP wave (a) and Ry is
the radius of curvature of the normal wave (b).

1.3.1.1 2D zero-offset CRS stacking operator

The multidimensional moveout approximation ¢ = 7(tg,m,h) may be considered as a
truncated Taylor series expansion:

ot ot 1 0%t 0%t 1 0%t
tm.h) = to 4+ — Lo L2 h4 =22 p2, 1.14
(mh) =to+ 5 om+ o5 ht oo gm+ oamht oo (1.14)
w =0 N =0 M

Due to the reciprocity principle, the first derivative of the traveltime with respect to the
half-offset and the mixed partial derivative are equal to zero. After giving the notations
for the non-zero coefficients of the series (1.14), the moveout approximation reads:

t(m, h) = to + wm + Nm? + Mh?. (1.15)

The last formula is called the parabolic traveltime approximation. The hyperbolic
traveltime approximation can be immediately obtained by squaring both sides of the
parabolic traveltime formula (1.15) and neglecting the terms of higher order than the
second:

2
£2(m, h) = [to + wm} + 2t [NmQ + M2, (1.16)

According to numerous investigations (e.g, Ursin, 1982; Mann et al., 1999), the hyperbolic
stacking operators better fit the reflection events than the parabolic stacking operators.
For a CMP gather, the hyperbolic stacking operator (1.16) reduces to the NMO
approximation (1.3).

The paraxial ray theory (Schleicher et al., 1993; Tygel et al., 1997) gives a physical
interpretation of the coefficients w®, M, N:
2 2

2sin « cos” o cos” o
w=— , M = , N = . (1.17)
V0 voRN1P voRN
"The multidimensional moveout approximation t = 7(to,m,h) is often referred to as "stacking

operator".

5Note that the sign of the first order derivative w depends on the definition of the coordinate system.
The negative sign is chosen here to be consistent with the coordinate systems described in the further
chapters.
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Here, vy denotes the near-surface velocity, « is the dip angle of the zero-offset ray, Rnip and
Ry are the radii of curvature of the two fundamental waves: the normal-incidence-point
(NIP) wave and the normal (N) wave (see Figure 1.6). The NIP wave is a hypothetical
wave generated by the fictitious point source placed in the NIP of the zero-offset ray,
and the normal wave is a hypothetical wave arising from the fictitious exploding reflector
experiment (Hubral, 1983).

The formula (1.16) together with interpretation of the coefficients (1.17) is known as the
2D zero-offset common-reflection-surface (2D ZO CRS) stacking operator. The 2D ZO
CRS stacking operator may also be derived by means of the geometrical (model-based)
approach of Hocht et al. (1999).

The 2D ZO CRS stacking operator is the core for the CRS stack. Miiller (1999); Jager et al.
(2001); Mann (2002) explained in detail the theory and the application of the CRS stack
and proposed a pragmatic search of the stacking parameters (a, Rnip, Ry). Mann et al.
(1999) showed successful implementation of the idea to the 2D field data.

The CRS stack provides the stacked section, the semblance section and the stacking
parameters. The stacking parameters are used in many applications, e.g., the veloc-
ity model building (the NIP-wave tomography, Duveneck, 2004; Della Moretta et al.,
2006), the prestack data enhancement and interpolation (Baykulov and Gajewski, 2009;
Hoecht et al., 2009), the diffraction imaging and separation (Dell and Gajewski, 2011;
Bakhtiari Rad et al., 2015) and the multiple suppression (Diimmong and Gajewski, 2008).
Baykulov et al. (2011) summarized the CRS based workflow.

The CRS stack is a topic of the ongoing research. Of prime interest are the advanced
search strategies of the stacking parameters (e.g., by means of global optimization
methods, Garabito et al., 2012; Walda and Gajewski, 2015a) and the conflicting dip
problem (Miiller, 2009; Soleimani et al., 2009; Walda and Gajewski, 2015b).

1.3.1.2 3D zero-offset CRS stacking operator

In the 3D case, the midpoint displacement m and the half-offset A become two-dimensional
vectors m and h:

_ Xg T+ X

Xg — X
Xm = h==

5 5 m = X,, — Xg, (1.18)

the first-order derivative w transforms to the two-dimensional vector w, and the second-
order derivatives M and N transform to the symmetric 2 x 2 matrices M and N.

The 3D zero-offset common-reflection-surface (3D ZO CRS) stacking operator reads:

#2(m, h) = [to n me] " 4ot [mTNm + hTMh] . (1.19)
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The coefficients w, M and N are related to the kinematic wavefield attributes as follows:

2si 1 1
- sma< cos 8 > M = —RKypRT, N = —RKyRT. (1.20)
Vo sin 3 ) Yo

Here, vy denotes the near-surface velocity, o and g are the dip and the azimuthal angles
of the zero-offset ray, Knp and Ky are the symmetric 2 x 2 curvature matrices of the
NIP and the normal waves in the ray-centered coordinate system, and R is the upper left
2 x 2 part of the 3 x 3 rotation matrix R that accounts for the transformation from the
ray-centered to the general Cartesian coordinate system:

cos —sinfg 0 cosae 0 sina
R = ®0, ®=| sinf cosp 0 |, e = 0 1 0 . (L.21)
0 0 1 —sina 0 cosa

The 3D ZO CRS stacking operator (1.19) contains eight stacking parameters: a, 8, Knip
and Ky. The theory and the implementation of the 3D ZO CRS stacking operator are
minutely discussed in Miiller (2003).

1.3.1.3 Common-offset CRS stacking operator

Zhang et al. (2001) presented the common-offset CRS (CO CRS) stacking operator. This
general operator has five stacking parameters in the 2D case and thirteen parameters in
the 3D case. A more detailed discussion of the 3D CO CRS stacking operator is presented
in Section 5.2.

1.3.1.4 CRS stacking operator for converted waves

A 2D CRS-based strategy for converted waves was proposed by Bergler et al. (2002). They
used the CO CRS stacking operator that accounts for the asymmetric PS raypath. Based
on the example of the 2D synthetic dataset, Bergler et al. (2002) showed that the proposed
strategy improves the quality of the stacked section in the presence of noise and extracts
reliable kinematic wavefield attributes.

1.3.2 Double-square-root-based stacking operators

Along with reflections, the seismic wavefield contains diffractions. Diffractions appear at
the termination of reflectors (e.g., at faults) and at the inhomogeneities of the subsurface.
Diffractions allow to obtain correctly migrated images of the subsurface; they are especially
important for determining the shape of the salt bodies. Diffractions are used to the obtain
velocity model (e.g., by means of the NIP-wave tomography Duveneck, 2004; Bauer et al.,
2016b) and to analyze the migration velocity (Fomel et al., 2007). Furthermore, processing
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hyperbolic reflector

Figure 1.7: (a) In MF, the intersection point of the central ray and the paraxial ray
is considered as the virtual seismic source. This virtual seismic source and
its corresponding mirror image generate two wavefronts: the source-related
wavefront with the radius of curvature R, and the receiver-related wavefront
with the radius of curvature R,. (b) i-CRS is based on the problem of reflection
from the circular reflector in the homogeneous velocity model. (c) n-CRS solves
the problem of finding the reflection point from the hyperbolic reflector in the
homogeneous velocity model.

of diffractions can lead to the recovery of details smaller than the seismic wavelength
(Khaidukov et al., 2004).

The conventional CRS stacking operator, being the second order moveout approximation,
cannot properly approximate the traveltimes of the diffraction events. Hence, several
alternative stacking operators were proposed to fit both reflection and diffraction events.

1.3.2.1 Multifocusing

Multifocusing (MF) is a stacking technique proposed by Gelchinsky et al. (1999). It
generalizes the ideas of the homeomorphic imaging (Gelchinsky, 1989). The MF moveout
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approximation is a double-square-root formula, that is traditionally expressed in terms of
the source and the receiver displacements:

Axrs =15 — T0, Axg =24 — 0. (1.22)
The MF moveout approximation reads:
t(Axg, Axy) = to + Ats + Aty, (1.23)

where

At

\/RZ2 + 2R; Ax; sin o + Am? — R;

= 5, g; 1.24
v ) ? 5, 9; ( )

R, and R, are the curvature radii of two waveforms (see Figure 1.7a)

140 l1-0
R, = . R,= : 1.25
1/Rx + o/Rx1p Y 1/Rx —o/Rnip (1.25)
and o is so-called focusing parameter:
Azs — A
Ts — Dy (1.26)

7T A+ Azy + 2(AzgAzgy/Raip) sina’

MF has a very close relationship with the shifted hyperbola of de Bazelaire (1988). Both
methods use the time-shift mechanism to account for the overburden inhomogeneity. For
the CMP gather, the MF moveout formula (1.23) reduces to the shifted hyperbola moveout
approximation (1.7).

Originally, the focusing parameter (1.26) was derived under the assumption of plane
dipping reflector in a homogeneous medium. Hence, the MF moveout approximation (1.23)
is often called "planar multifocusing”. An alternative formulation, so-called "spherical
multifocusing", was proposed by Landa et al. (2010). It is based on the analytical
expression for the traveltime of the wave, reflected from the circular reflector in a
homogeneous medium.

To my knowledge extension of the MF stacking operator to the 3D case was not presented so
far. An attempt to propose the 3D MF stacking operator was made by Landa et al. (2010).
They considered spherical reflector in a homogeneous medium. However, this oversimplified
model cannot adequately describe existing 3D effects (see Section 2.4 for more details).
The 3D MF formula exists only for purely diffracted events, when Ry = R, = Rnip (see,
e.g., Berkovitch et al., 2009, 2012). The successful implementation of the 3D MF for the
diffraction imaging was reported by Rauch-Davies et al. (2013).

The 2D common-offset MF (2D CO MF) stacking operator was presented by Berkovitch et al.
(2011). In the CO case, the moveout is still described by the double-square-root expression.
Berkovitch et al. (2011) showed that CO MF allow to enhance strongly non-hyperbolic
events and to construct the reliable velocity model by the prestack stereotomography.
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1.3.2.2 Implicit CRS

In order to improve the quality of the conventional CRS stack, Vanelle et al. (2010) have
revisited the model of Landa et al. (2010) - the circular reflector with the origin at the
point (z., H) and the radius R in the homogeneous isotropic medium with the velocity V'
(see Figure 1.7b). In this model, the traveltime of the ray propagated from the source x4
through the arbitrary point on reflector (defined by the angle 6) to the receiver z is equal:

t(Axy, Axy) =ts +tg, (1.27)

where
ti = V(A - A - RSi‘I;HP * (H = Reos 0)2, Az, = x. — X0, i=s,9. (1.28)
According to Fermat’s principle, the ray takes the path that minimizes the traveltime, i.e.,

the condition % = 0 must fulfill. This condition leads to the implicit equation for the

angle 6:
m—Azx. hts—t,

H Hts+t,

The last equation may be solved iteratively with the initial value of 6 corresponding to the
NIP (see Vanelle et al., 2010).

tanf = (1.29)

In order to extend this model-based approach to the inhomogeneous medium, Schwarz
(2011) expanded the square roots of (1.27) into the Taylor series and matched the
coefficients with the respective counterparts in the parabolic CRS stacking operator (1.15).
The obtained system of equations has a unique solution:

V= UNMO ’
\/1 + (v¥y10/v3) sin? o
Ry sin«
Te =10 — ,
T cos2a(l + (v 10/v3] sin? @)
P (1.30)
o= 041N
oMo €082 a1 + [vdyo/v3] sin? @)’
R— (UORN/UNMO (3082 Oé) — (UNMQtQ/Q)

\/1 + (V&0 /vE) sin a

where the NMO velocity is equal to

[ 2vo RNtp
=/ —. 1.31
UNMO to cos? o (1.31)

The traveltime formula (1.27) with the coefficients (1.30) was called the implicit CRS
(i-CRS) stacking operator.

Schwarz et al. (2014) summarized the method and compared i-CRS with the conventional
CRS and MF. They found that i-CRS provides higher accuracy than the MF method,
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especially in the presence of strong inhomogeneity. In order to explain this result,
Schwarz et al. (2015) investigated the mechanisms by which MF and i-CRS account for
inhomogeneity of the overburden: while MF uses the time-shift mechanism, i-CRS inherits
the velocity-shift mechanism, typical for CRS. Schwarz et al. (2015) also proposed a recipe
how to transform time-shifts to velocity-shifts and vice versa. With this recipe, one can
obtain the time-shifted version of the i-CRS operator and the velocity-shifted version of
MF. Schwarz et al. (2015) concluded that i-CRS and MF "are essentially equivalent, when
the same auxiliary medium for both operators is considered".

Vanelle et al. (2012a) proposed the 2D i-CRS stacking operator for converted waves (2D
i-CRS-PS, see Section 4.2.4 for more details). However, extension of the i-CRS method to
the 3D case and to the common-offset case was not presented so far.

1.3.2.3 Non-hyperbolic CRS

Another simple model, that consists of the hyperbolic reflector in the constant-velocity
medium (see Figure 1.7¢), was analyzed by Fomel and Stovas (2010). They derived an
analytical expression for the reflection traveltime in this simple model. Based on this
analytical expression, Fomel and Kazinnik (2013) proposed the non-hyperbolic common
reflection surface (n-CRS) stacking operator:

t(m, h) = \/F(m)+xh2+\/F(m—h)F(m+h)

1.32

2 Y ( )
where

F(m) = (to+wm)® + 2tNm?, (1.33)

X = 2to(2M — N) + w?, (1.34)

and w, M, N are the CRS parameters (1.17).

Obviously, the n-CRS stacking operator is mathematically more complicated than the
MF and i-CRS formulas. In order to better understand the structure of the n-CRS
formula (1.32), I propose the following reformulation (see Appendix C.1):

t(m,h) = [%\/F(m —h)+ %\/F(m + h)]2 + 2to(M — N)h? (1.35)
ts ty Atsg

In the case of diffractions, coefficients M and N are equal and n-CRS transforms to the
purely DSR formula.

Fomel and Kazinnik (2013) presented the formal extension of the n-CRS stacking operator
to the 3D case (3D n-CRS, see Appendix C.2). However, they could not find a geometrical
interpretation of the obtained traveltime approximation.
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Table 1.1: Evolution of stacking operators

Stack Stacking operator Extensions

CMP t = /Fano(to, ) 3D, PS, CO

CRS t = \/frs(to, hym) 3D, PS, CO

t= to -+ ) Figp(hom) + /e (hm)

MF
At Aty
i-CRS b= \/fiSCRS(tO’ hym) + \/fi%RS(tO’ h,m) ?
ts tg
2
n-CRS b= { \/fffCRS(tO’ h,m) + \/fgCRS(tm h, m)] + fudrs(tos h)
ts tg Atsg

Walda et al. (2016) made a fair comparison of the CRS, MF, i-CRS and n-CRS stacking
operators. In order to reveal the full potential of the DSR-based stacking operators, they
carefully accounted for the conflicting dips problem and used a global optimization scheme
to estimate the wavefield attributes. As well they compared stacking operators in the
same (time-shifted or velocity-shifted) domain. Based on the marine field data, they found
that all DSR-based stacking operators give superior results compared to the conventional
CRS. Also they did not observe significant differences between the DSR-based stacking
operators. A comparison of the computational efficiency showed that the most efficient
DSR-based stacking operator is the n-CRS with only 5% increase in the computational
time compared to the conventional CRS.

1.4 Conclusions

The stacking theory has come a long way from the CMP stack over the multidimensional
CRS stack to the double-square-root-based MF, i-CRS and n-CRS stacks. Over the years,
stacking operators have evolved and become more and more complicated (see Table 1.1).
For the purpose of simplicity, the new stacking techniques are usually proposed for the
simplest 2D zero-offset case. Later they are extended to three important cases: the 3D
case, the case of converted waves (PS) and the case of common-offset geometry (CO).

The classical CMP stack and the CRS stack have extensions for all these special cases.
However, the extension of the MF/i-CRS/n-CRS stacking operators to the 3D/PS/CO
cases have not been fully understood yet. Existing in the literature extensions (2D CO MF,
2D i-CRS-PS and 3D n-CRS) still remain a room for further studies. To date a number of
interesting questions are still open: how to derive the 3D n-CRS stacking operator, how to
extend the 2D i-CRS/MF stacking operators to the 3D case, how to construct the n-CRS
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Figure 1.8: Classification of the multidimensional stacking operators. The paraxial ray
theory is the origin for the 3D CO CRS stacking operator which may be used
for stacking of converted waves. The model-based approach is used for the
derivation of the DSR-based stacking operators. The most popular model - the
spherical reflector in the homogeneous medium - leads to the MF and i-CRS
stacking operators. The dashed line indicates that MF and i-CRS represent
almost the same stacking operator formulated in different domains.

stacking operator for the case of converted waves?

Another important issue is the origin of the stacking operators. While the CRS stacking
operator is based on the paraxial ray theory, all DSR-based staking operators are derived
from the model-based approach (see Figure 1.8). However, the 2D ZO CRS stacking
operator can also be derived from the model-based approach of Hocht et al. (1999). The
question naturally arises whether it is possible to derive the DSR-based stacking operators
from the paraxial ray theory.

In the next four chapters, I will try to find the answers to these questions.
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Chapter 2

Theory of 3D DSR-based stacking
operators

The geometrical approach is usually used for the derivation of the 2D DSR-based stacking
operators. The key element of the derivation is a simplified model: an analytical reflector
in a homogeneous isotropic medium (auxiliary medium). The straightforward extension
of this approach to the 3D case does not lead to good results since the wavefronts have
complicated shape in the 3D case.

In this chapter, I propose the 3D simplified model which consists of the auxiliary anisotropic
medium and the specially oriented analytical reflector. Based on this model, I extend the
existing DSR-based stacking operators to the 3D case.

2.1 Introduction

Stacking of seismic traces is a basic step in the seismic processing workflow (Yilmaz, 2001).
It represents a convenient and efficient way to obtain a simulated zero-offset (ZO) volume
and to extract surface-based kinematic wavefield attributes which may be used in the
subsequent imaging steps. The quality of the ZO volume and the wavefield attributes
significantly depends on the chosen stacking operator. The double-square-root-based
(DSR-based) stacking operators produce images of the subsurface superior than the one
obtained by the conventional common-reflection-surface (CRS) stacking operator (Landa,
2007; Schwarz et al., 2014). A variety of DSR-based stacking operators exists in the 2D
case. The most common are Multifocusing (MF) (Gelchinsky et al., 1999; Landa et al.,
1999; Tygel et al., 1999), non-hyperbolic CRS (n-CRS) (Fomel and Kazinnik, 2013) and
implicit CRS (i-CRS) (Vanelle et al., 2010; Schwarz, 2011).

Nowadays, the 3D seismic surveys have become a standard exploration and exploitation
tool (Vermeer, 2002). The 3D seismic surveys allow to obtain a true and precise image of
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the subsurface (French, 1974). While the 3D CRS stacking operator exists in the literature
(see Miiller, 2003), the 3D versions of the DSR-based stacking operators (except the formal
extension of n-CRS) were not presented so far. Hence, it is important to extend the DSR-
based stacking operators to the 3D case.

The geometrical (model-based) approach is commonly used for the derivation of the DSR-
based stacking operators. The derivation is usually based on a simplified model of the
subsurface: an analytical reflector in an auxiliary constant-velocity medium. The simplified
model is related to "reality" (a curved reflector below an inhomogeneous overburden)
through the two hypothetical experiments providing two eigen-wavefronts (Hubral, 1983).
This allows to obtain the DSR-based traveltime approximations with the same wavefield
attributes used in the conventional CRS stacking operator.

This chapter re-examines the geometrical approach in the 2D case and proposes its
extension to the 3D case in order to obtain the 3D DSR-based stacking operators. The
chapter has the following structure. Section (2.2) gives a statement of the problem and
explains the main ideas behind the derivation of the 2D DSR-based stacking operators. The
next three sections introduce the components of the 3D simplified model: the special ray-
centered coordinate system (Section 2.3), the auxiliary anisotropic medium (Section 2.4)
and the curved reflector (Section 2.5). The 3D simplified model (Section 2.6) depends only
on the traveltime of the central ray, the near-surface velocity and the kinematic wavefield
attributes. In the 3D simplified model, the traveltime of the reflected wave can be presented
either by the implicit DSR formula, similar to i-CRS (Section 2.7), or by the approximate
explicit DSR formula, similar to n-CRS (Section 2.8). Final Section (2.9) concludes the
results of this chapter and highlights the links between the obtained operators.

2.2 Statement of the problem

In the reflection seismic experiment, the seismic wave, emitted from the source, propagates
in the inhomogeneous subsurface. This wave reflects from the inhomogeneities in the
subsurface, returns back to the measurement surface and is recorded by receivers. In the
2D case, the sources and the receivers are located on the seismic profile. The central ray
originates from the central (imaging) point xg, reflects at the normal-incidence-point (NIP)
and returns back to xy with the traveltime ¢y (see Figure 2.1a). The stacking operators
describe the traveltime t of the paraxial ray, whose source position x; and receiver position
x4 are located in the vicinity of the central point zg.

The derivation of the 2D DSR-based stacking operators requires several assumptions. Both
i-CRS and n-CRS as well as MF utilize the concept of straight rays and locally approximate
the wavefront elements by circles. Hence, it is usual to replace the complex inhomogeneous
overburden by the homogeneous medium (so-called auxiliary medium). It is also common
to approximate the reflector by an algebraic curve. For example, the circular reflector is
used in the derivation of i-CRS, and n-CRS is based on the reflection from the specially
oriented hyperbola. The auxiliary medium and the analytical reflector form a simplified



CHAPTER 2. THEORY OF 3D DSR-BASED STACKING OPERATORS 27

model, appealing for the geometrical interpretation (see Figure 2.1b).

As mentioned in the previous chapter, the 2D stacking operators can be formulated either
for the “optical” or for the “efficient” auxiliary medium (see Sections 1.2.2 and 1.3.2.2). In
fact, the difference between these two auxiliary media is only in the value of the velocity,
which is either equal to the near-surface velocity vy (in the optical medium) or to the
effective velocity (in the effective medium). Since formulation in the optical domain is
more intuitive and leads to considerably simpler formulas, in the following I will use the
optical auxiliary medium.

The relationship between the inhomogeneous medium with the curved reflector and the
simplified model is established upon consideration of two hypothetical experiments: the
normal-incidence-point (NIP) experiment and the normal experiment.

In the NIP experiment, a fictitious source S is placed at the reflection point of the central
ray (NIP). The source S generates the wavefront with the radius of curvature Ryip at the
central point (see Figure 2.1¢c). The circular approximation of the wavefront is applicable
in the vicinity of the central point. In the optical auxiliary medium of constant velocity
Vg, an identical wavefront may be generated by an image source S* located at the center
of curvature of the NIP wavefront. The position of the image source §* is determined by
the emergence angle of the central ray « and the radius of curvature Ryip. Note that the
two-way traveltime along the central ray in the optical auxiliary medium

_ 2RN1P

=" (2.1)

is generally not equal to the two-way traveltime ¢y in the inhomogeneous medium.

In the normal experiment, the fictitious exploding reflector is considered (see Figure 2.1d).
Similarly to the NIP experiment, the wavefront of the normal wave can be approximated by
the circular wavefront with the radius of curvature Ry at the central point. It is apparent
from Figure 2.1d that the identical wavefront is generated by the circular reflector with
the origin at the center of curvature of the normal wavefront O* and the radius R:

R = Ry — Rnip. (2.2)

Thus, the simplified model is defined by the near-surface velocity vg and the surface-based
wavefield attributes: the emergence angle of the central ray a, and the curvatures of the
fundamental waves Rnrp and Ry.

In the simplified model, the traveltime of the ray from the source at zs to the circular
reflector (z,¢f(V), zref (1)) parameterized by the variable ¥ to the receiver at x, is equal:

Ts — Trep(9))2 + 22 (0 Ty — Trefp(9))% 4 22, (9
M):w 792 + 224 >+¢< L S,

Vo Vo

According to Fermat’s principle, the reflected ray prefers the path, which minimizes the
traveltime ¢(¢). Hence, the value of the variable ¥ = ¥, defining the reflection point
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Figure 2.1: Illustration of the 2D seismic reflection experiment (a). The central ray (red)
and the paraxial ray (black) propagate in the inhomogeneous isotropic medium.
In order to find the traveltime of the paraxial ray, the inhomogeneous medium
and the curved reflector are simplified by the constant-velocity medium and
the circular reflector (b). The parameters of such simplified model are linked
with the curvatures of the NIP (¢) and normal (d) waves.
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coordinates (x,, z,) can be found by minimizing the traveltime ¢(¢):

ot
5 = 0, — vY=F( v,z 24,0, o, Rarp, RN). (2.4)
The resulting implicit equation can be iteratively solved to obtain ¢,. Substitution of ¥,
into the equation (2.3) yields the traveltime of the reflected ray in the simplified model.

Finally, the traveltime of the reflected wave in the inhomogeneous medium is obtained
after subtraction of the time shift ¢, — tg from the traveltime of the reflected ray in the
simplified model:

Ve o PR | e
Vo Vo

t= — (tp — to). (2.5)

The above strategy reproduces the derivation of the time-shifted version of the 2D i-CRS
stacking operator (Schwarz, 2011).

The objective of this chapter is to apply the similar strategy in the 3D case in order to
find the 3D DSR-based stacking operators. This will obviously require:

1. the image source S8* in the 3D auxiliary medium, defined by the curvature of the
NIP wavefront (similar to 2.1);

2. the link between the curvature of the reflector and the curvatures of the NIP and
normal wavefronts in the 3D case (similar to 2.2);

3. the expression for the traveltime of the reflected ray (similar to 2.3);

4. the system of equations defining the reflection point coordinates (similar to 2.4).

Moreover, the 3D DSR-based stacking operators have to be compatible with the conven-
tional 3D CRS stacking operator (1.19) and have to use the same wavefield attributes (1.20)
as the conventional 3D CRS.

2.3 Coordinate system

To provide a mathematical formalism of the problem, I establish two coordinate systems:
the general Cartesian coordinate system L related to the measurement surface and the
special ray-centered coordinate system L’ related to the central ray (see Figure 2.2a).

The general Cartesian coordinate system L is chosen so that the seismic source X, the
receiver X, and the central point X are located in the plane z = 0. The positive z-axis
points downwards, thereby z may be referred to as "depth".
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Figure 2.2: Seismic measurements are related to the general Cartesian coordinate system
L (a). However, the derivation of the 3D DSR-based stacking operators requires
the special ray-centered coordinate system L£’. The origin of the system £’
coincides with the central point X{,. It’s z’-axis is tangential to the central ray
and the 2’ and gy/-axes align the principal directions of curvature of the NIP
wavefront. The direction of z’-axis is defined by the emergence angles o and
B of the central ray (b). In the standard ray-centered coordinate system L,z
and ¢'-axes do not coincide with the principal directions of the NIP wavefront.
Hence, the additional rotation for the angle ¢ is performed (c).

The system £’ is a special ray-centered coordinate system whose x’ and 1/-axes coincide
with the principal directions of curvature of the NIP wavefront. Like the standard ray-
centered coordinate system, the system £’ originates at the central point X, and it’s z’-axis
is tangential to the central ray at Xg.

The relationship between the general Cartesian coordinates X and the special ray-centered
coordinates X’ is given by equation:
% = RT(0) RT (0)RT(8) (% — %o)- (2.6)

Y
N———

RT
In this equation,  and S are the polar and azimuthal angles of the central ray, and ¢ is
the angle between the principal curvature direction and the z-axis of the standard ray-
centered coordinate system (see Figure 2.2b). The matrices R, and R, are the basic
rotation matrices:

) cos@ 0 siné6 R cos@ —sinf 0
R,(0) = 0 1 0 , R.(0)=| sinf cosf 0 |. (2.7)
—sinf 0 cosf 0 0 1

The matrix RT = f{;r(oz)f{;r (8) accounts for the transformation from the general Cartesian

to the standard ray-centered coordinate system. The matrix f{;r(é) makes an additional
rotation about z’-axis to aline 2’ and gy’-axes with the principal directions of curvature of
the NIP wavefront.

The obvious advantage of the coordinate system £ over the standard ray-centered system
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Figure 2.3: Tlustration of the NIP experiment in the 3D case. The fictitious source S in the
inhomogeneous medium generates the wavefront with the curvature K'np (a).
In the case of the auxiliary isotropic medium (b), the NIP wavefront does not
"focus" in one point. Consideration of the auxiliary anisotropic medium (c)
overcomes this problem.

is that in the £’ system the matrix of curvature of the NIP wave K'Nip is diagonal:

kL 0
K'nip = < NP > . (2.8)
0 KX

2.4 Auxiliary anisotropic medium

As discussed before, all DSR-based stacking operators describe the moveout in the auxiliary
medium of constant velocity. It is also important to note that the 2D auxiliary medium is
not only homogeneous but also isotropic, i.e. the velocity is direction-independent.

In the 2D case, the circular wavefront approximation is valid, because the arbitrary
wavefront is locally defined by one curvature. However, in the 3D case, an arbitrary
wavefront has two principal curvatures and, hence, could not be accurately approximated
by the spherical wavefront. In the 3D case, the homogeneous isotropic medium does
not "focus" the arbitrary wavefront (see Figure 2.3b). Thus, I propose to consider
a homogeneous anisotropic medium. In the homogeneous anisotropic medium, the
wavefronts have a complicated shape, since the velocity varies with the direction. Hence
it is possible to find the homogeneous anisotropic medium that "focus" the wavefront of
the arbitrary curvature in one point (see Figure 2.3c).

The wavefront propagation in a general homogeneous anisotropic medium is governed by
21 density normalized elastic parameters. However, the number of independent parameters
may be significantly reduced when the wavefronts with the certain symmetry properties are
required. In the system L', the local quadratic approximation of the arbitrary wavefront
has two orthogonal symmetry planes: 2’ = 0 and 3’ = 0 (see Figures 2.3a,c). Since the
wavefront approximation is only of interest in the half-space 2z’ > 0, there is an additional
symmetry plane 2/ = 0. Given the above mentioned symmetries, the general anisotropy
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degenerates to the orthorhombic anisotropy.

The orthorhombic anisotropy media is defined by 9 density normalized elastic parameters.
However, the propagation of quasi-compressional (qP) waves in the degenerate orthorhom-
bic (ellipsoidal) medium is governed by only three density normalized elastic parameters.
The group velocity of qP-waves in the weakly anisotropic ellipsoidal medium is equal to
(Daley and Krebes, 2005, p. 5 eq. 21):

1 sin?@cos?®  sin?Osin?®  cos? O

= + + . 2.9
¢2(0,) Aqy Ago Ass (29)

Here © and ® are the group polar and azimuthal angles defining the direction of the ray.
Density normalized elastic parameters Ay, Ass and Az define the group velocity in 2/, ¢/
and 2’ directions, respectively.

In order to investigate the link between the density normalized elastic parameters and the

principal curvatures of the NIP wavefront, I consider the NIP experiment. In the NIP

experiment the fictitious source S is placed at the reflection point of the central ray (see

Figure 2.3a). The wavefront generated by the source S arrives at the central point X{, at
to

the time % with the curvature Ki;p. The identical wavefront may be generated by the

image source S* at the point (0,0, R{;p) in the auxiliary anisotropic medium.

The depth of the image source R{;p and the parameters of the auxiliary anisotropic medium
Aq1, Ago, Asgz are uniquely determined from the condition that the traveltime, the slowness
vector and the curvature of the NIP wavefront at the central point X{, are the same both
in the inhomogeneous medium and in the auxiliary medium. Indeed:

e from the condition of the slowness equality, the group velocity along 2’-axis in the
auxiliary medium is equal to the velocity vg at the central point in the inhomogeneous

medium:
Ass = vg; (2.10)
e from the condition of the traveltime equality, the depth of the image source S&* is
equal:
x tovo
Ry = T; (2.11)

e from the condition of the curvature equality, the parameters Aj1, Ago are equal (see
Appendix A.2 for details):

1 to .11 1 to , 22
! — K \ip- (2.12)

A 2y NP Ay 2w

Hence, in the 3D case, the complex inhomogeneous overburden may be replaced by the
auxiliary anisotropic medium with parameters:
1 to /11 1 to 122 1 1

2t Ly = 2.13
All 2?}0 NIP> A22 2?}0 NIP> A33 ’1)8 ( )
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Figure 2.4: Ilustration of the normal experiment in the 3D case. The exploding reflector in
the inhomogeneous medium generates the wavefront with the curvature K (a).
The similar wavefront may be generated by the analytical reflector with the
curvature Ky in the auxiliary medium.

The parameters (2.13) depend on the traveltime of the central ray tg, the near-surface
velocity vg and the curvature of the NIP wavefront. Hence they are fixed for a given
central ray. Note that, unlike the 2D case, the traveltimes along the central ray coincide
in the auxiliary anisotropic medium and in the inhomogeneous medium.

2.5 Curvature of reflector

In the 2D case, the arbitrary reflector can be locally approximated by an analytic curve in
the vicinity of the NIP. For example, the circular reflector is used in the derivation of the
i-CRS formula, and the n-CRS formula is based on the reflection from the specially oriented
hyperbola. These simplifications are possible, because the front of the hypothetical normal
wave has one curvature in the 2D case. However, in the 3D case, both the reflector and the
normal wavefront are described by 2 x 2 symmetric curvature matrices (see Figure 2.4a).
As shown in the previous section, the inhomogeneous medium may be replaced by the
auxiliary anisotropic medium with parameters depending on the curvature of the NIP
wavefront. The aim of this section is to find the reflector that generates the normal
wavefront with the desired curvature in the auxiliary medium.

When the inhomogeneous overburden is replaced by the auxiliary medium, the central ray
becomes the straight line coinciding with the z’-axis and the NIP is located at the depth
R}p (see Figure 2.4b). Like in the inhomogeneous isotropic medium, in the auxiliary
medium the reflector passes through the NIP and is perpendicular to the central ray at the
NIP. The curvature of the reflector at the NIP is determined by the curvature matrix K.

In the 3D case, there are many surfaces with the curvature K} at the apex. For example,
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Figure 2.5: Two different ways to approximate the reflection surface: (a) by the paraboloid,
and (b) by the ellipsoid. Both reflectors have the same curvature K} at the
apex point RYyp.

the reflector can be approximated by the paraboloid (see Figure 2.5a):
/ * L Ty

or by the ellipsoid (see Figure 2.5b and Appendix B.1). Although the ellipsoidal reflector
is a restricted case (both principal curvatures have positive signs), this type of reflector is
of special interest because of the ability to fit point diffractors. Despite the actual form
of the reflector, the curvature of the normal wave depends only on the curvature of the
reflector at the NIP. In order to find the relationship between curvatures Kp and Ky, I
consider the normal experiment.

In the normal experiment (see Figure 2.4b), the wavefront, originated from the reflector,
propagates through the auxiliary medium and arrives at the central point Xy with the
curvature K4. Suppose that the reflector is defined by the function f of the lateral
coordinates (e.g., by the equation 2.14). Then, it is possible to compute a unit normal
vector at each point on the reflector. The normal vector, being also normal to the wavefront,
defines the direction of the phase velocity propagation. The directions of the group and
phase velocity propagation generally do not coincide in an anisotropic media and have a
complicated relation. However, in the auxiliary (ellipsoidal) anisotropic medium, there is
an explicit relation between the group and phase angles (see e.g. Daley and Krebes, 2005).
The group angles define the direction and the value of the group velocity ¢ according to
the equation (2.9).

Therefore, for each point on the reflector %/ f it is possible to construct the normal ray.

This ray crosses the surface 2z’ = 0 at the intersection point X}, ,:

x;nt x;’ef Cl (X;’ef)
Yt | = | res +t| GQxe) |- (2.15)
0 f(X;’ef) <3(X;"ef)
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The z’-component of this three-component equation gives the traveltime to the intersection
point as a function of x;ef:

f(x
t = —M (2.16)
C3(Xref)
Substitution of (2.16) into the 2’ and y’-components of the equation (2.15) yields the
dependence of the intersection point x';;,; on the reflector point x’,.¢. In the vicinity of the
central ray, this dependence can be linearized, and the inverse relation can be established
(see Appendix A.3 for details):
a -1

Xlep ~ [T+ KxpK'r| X (2.17)
With the last relation it is possible to find the traveltime of the normal wave as a function
of x'int (see Appendix A.3 for details):

2t

t2(X/ ) =04 _X/T

—1
—1 -1
int 1 20 mt[K/R +K/NIP] X' int. (2.18)

The comparison of this traveltime with the hyperbolic expression (see Appendix A.1)

2t
) =7 + 2—:}]0x'TK'NX' (2.19)

gives the desired link between the curvatures:

Ky =K' + K- (2.20)

Thus, in the 3D auxiliary anisotropic medium, the reflector with the curvature
/ /=1 —1 17t

generates the normal wavefront with the curvature K'y. Another important result follows
immediately from (2.17) and (2.21):

X'pef & [I - KIITI%PKIN}XIW- (2.22)

This means that the approximate position of the reflection point may be determined in
terms of the surface-based kinematic wavefield attributes.

2.6 3D simplified model

In summary, the inhomogeneous medium with the curved reflector may be replaced by the
auxiliary anisotropic medium with the analytical reflector of curvature K'g (see Figure 2.6).
The analytical reflector (2.21) and the auxiliary medium (2.13) in the special ray-centered
coordinate system (2.6) form the simplified model. The simplified model depends on the
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Figure 2.6: Similar to the 2D case, in the 3D case, the inhomogeneous overburden with
the curved reflector (a) can be replaced by the simplified model (b). In the
simplified model the rays are straight lines, and the reflector has a simple
shape. Hence, the traveltime of the paraxial ray can be found based on the
geometrical relations.

traveltime of the central ray, the near-surface velocity and the surface-based kinematic
wavefield attributes.

By definition, the simplified model satisfies the hypothetical NIP and normal experiments.
Since the NIP and normal waves are the eigen-waves (Hubral, 1983), the arbitrary reflected
wave, in some sense, can be represented by the superposition of these eigen-waves. Thus,
the simplified model may be used to predict the traveltime of the paraxial ray.

2.7 Implicit stacking operator (3D i-CRS)

As discussed previously, it is possible to replace the curved reflector and the inhomogeneous
overburden with a simplified model. The surface-based kinematic wavefield attributes
define the simplified model that consists of the special coordinate system £’ the auxiliary
medium and the reflector in the parametric form:

)A(;“ef(197 90) = (x;’ef(ﬂa ()0)7 y;ef(197 90)7 Z;ef (197 (P)) (223)

In this section, I discuss how to find the traveltime of the paraxial ray in the simplified
model.

Consider an arbitrary point on the reflector. The traveltime from the source location X/

to this arbitrary point and from this point to the receiver location f(’g is obviously equal:

t(’lg )_ \/Xé2+ys/2+zé2 . \/Xé2+Yg/2+Z_¢l]2
v G(0., ) (O, Bg)

(2.24)
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where the following notations are used:

Xz/ = x;’ef B xé‘? Yi, = y;ef - y;7 Z = Zief a ZZ{’ 1= 59, (2.25)

7

and (s, ¢4 denote the group velocities. Substituting the relations for the group angles:

X2 +y? y/?
sin® @; = ——+ +2 L, sin® @ = —t— i=s,g, (2.26a)
XE+Y/[ +Z X7 +Y/
ik X2
cos® ©; s’ =——1—  j=3s,g, (2.26b)

— i —

and the definition of the group velocity (2.9) into (2.24) yields the compact DSR formula
for the traveltime:

X2 yr? g2 \/X’2 y?2 g2
t(d, @) = g4 48y b 49 49 2.27
(0.¢) \/An Ap | Am \An T Am s (2:27)

Note that the resulting traveltime formula (2.27) is given as a function of the parameters
¥ and ¢. The parameters ¥,,, defining the reflection point of the paraxial ray X/ can
be determined using Fermat’s principle. According to Fermat’s principle, the paraxial ray
takes the path of the least traveltime. Hence, the parameters 9., , may be found by
solving the following system of nonlinear equations:

40
& (2.28)
dp —

The traveltime formula (2.27) and the solution of the system (2.28) form the 3D implicit
CRS stacking operator!' (3D i-CRS). Below, I present two iterative approaches to solve the
system (2.28). The choice of the approach depends on the type of parameterization of the
reflector surface.

2.7.1 Linearized iterative approach

In this approach, the parameters 1 and ¢ denote the lateral coordinates =’ and v/, and the
reflection surface is described by the continuous and twice differentiable function f of the
lateral coordinates:

Z;"ef = f(xlay/)' (229)

I assume that the reflection point of the paraxial ray is close to the reflection point of the
central ray. Hence the reflection point displacements

Am,r = x,r - xlro, Ay,r = y,r - y,ro (230)

!This name was given since the obtained stacking operator is "ideologically" close to the 2D implicit
CRS stacking operator.
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are small, compared to the typical scale of the problem. With this assumption, the system
of equations (2.28) can be linearized:

14m AxxA /() 14m A /() =0
{ * Tt LayBYy =0, (2.31)

Ay + Ay AP + A, Ay’ = 0.

Here Ax’fnj) and Ay’T(,j) are the updates of the reflection point coordinates at the j-th
iteration A A A A ' '
Ax'f,]) =/ _ $/(J—1), Ay'(]) = y’ﬁj) _ y/ﬁj—l)‘ (2.32)

T T T

The coefficients A, and A, denote the first-order partial derivatives of the traveltime (2.27)
with respect to the lateral coordinates of the reflection point, and the coefficients A,
Ay, Ayz and Ay, are equal to the corresponding second-order partial derivatives. The
coefficients are minutely discussed in Appendix B.2.

At the first iteration, the coefficients are estimated at the reflection point of the central

ray. The linearized system (2.31) gives the first approximation of the reflection point

coordinates (a/ ﬁl),y’ ﬁl)). The next approximation (x/ 5,2),3/ 5,2)) may be found by solving

the system (2.31) with the coefficients taken at the point X’T(,l). Accordingly, for the j-th

lﬁj_lly’?("j_l)). Finally, after n

iterations, I obtain the lateral coordinates of the reflection point (z’ 5,"),y’ ﬁ")) and get the

traveltime according to the formula (2.27).

iteration step, the coefficients are estimated at the point (z

Note that the algorithm, described here is a generalization of the approach presented by
Abakumov et al. (2013) for the case of the inhomogeneous overburden.

2.7.2 Trigonometric iterative approach

Alternatively, the reflector surface can be parameterized by polar angles. In this
parameterization 9 and ¢ denote the polar and azimuthal angles. In this case, the system
of nonlinear equations (2.28) may be presented in the following way:

tango - ]:1("9’ SD,tO,UO,XS?Xg,XOa a’lﬁ’ KNIP, KN) (233&)
tanﬁ - f2(297 (pathv07X87X97X07a757KN1P7KN) (233b)

The functions F; and F5 are defined in Appendix B.3.

The angles ¥ and ¢ can be obtained iteratively with the equations (2.33). At the first
iteration, I choose 9 and ¢(© corresponding to the reflection point of the central ray:

9 =0, gp(o) =0.

The equation (2.33a) gives an update <p(1). This updated value is used in the equation
(2.33b) for Y1), The iterations are repeated until the convergence is achieved. Finally,
after n iterations, I obtain the values 9™ and (™ and substitute them into the equation
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(2.27) to get the traveltime of the reflected wave. The described approach is based on the
method proposed by Schwarz et al. (2012) for the 2D i-CRS stacking operator.

Note that both iterative approaches potentially allow to find the traveltime of the reflected
wave in the simplified model with any desired precision.

2.8 Explicit stacking operators

The recently introduced 3D i-CRS stacking operator is much more complicated than the
conventional 3D CRS stacking operator, and hence its implementation into the CRS code is
rather challenging. In this section, I propose alternative explicit stacking operators in order
to achieve a good tradeoff between the accuracy and the efficiency of the implementation.

The idea here is to find an explicit approximation of the reflection point coordinates instead
of solving the system (2.28). For a given simplified model, the reflection point of the
paraxial ray depends only on the coordinates of source and receiver, or alternatively, on
the offset h’ and the midpoint displacement m’. The approximate location of the reflection
point may be presented as a Taylor series expansion around the reflection point of the
central ray:

XIT i~ X/m + Bh/hl + Bm/m/ + ... (234)

Here By and By, are 2 x 2 matrices describing the shift of the reflection point in the case
of CMP and zero-offset acquisitions, respectively. The matrix By is equal to zero due to
the reciprocity principle. The matrix By, is equal to (see equation 2.22):

Bm = [I - K'npK/'x|. (2.35)

2.8.1 3D DSR stacking operator

Substituting the approximation for x’, (2.34) into the traveltime formula (2.27) and
omitting the terms of higher order than the second yield the 3D DSR stacking operator
(see Appendix C.3 for detailed derivation):

1 2
tm,h) = \/ [to n WTAXS] + 2, [mTNm — 9mTNh + hTMh}

1 2
+3 \/ [to n WTAXg] + 2, [mTNm + 2mTNh + hTMh] . (2.36)

where Ax, and Ax, denote the source and receiver displacements:
Axs=m—h, Ax,=m+h. (2.37)

The 3D DSR stacking operator (2.36) includes only CRS parameters (1.20), and can be
easily implemented into the CRS software. It is numerically slightly more expensive than
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the conventional 3D CRS stacking operator (1.19). In the special cases of the flat reflector
and the point diffractor in the homogeneous medium, formula (2.36) gives exact traveltimes.
For the dipping plane reflector in the homogeneous medium, formula (2.36) is a short-spread
approximation.

2.8.2 3D n-CRS stacking operator

The 3D DSR stacking operator (2.36) can be transformed to the 3D n-CRS stacking
operator (see Appendix C.4 for details):

t(m,h) = \/[%\/F(m —h)+ %\/F(m + h)} i + 2tohT (M — N)h (2.38)

where
F(m) = (to+ me)2 + 2tomTNm. (2.39)

This stacking operator is identical to one proposed by Fomel and Kazinnik (2013) for the
3D case.

2.9 Conclusions

Along this chapter I reviewed the geometrical approach which is the basis of the derivation
of the 2D DSR stacking operators. Based on this review, I proposed a simplified model in
the 3D case. The simplified model consists of the special ray-centered coordinate system,
the auxiliary anisotropic medium and the analytical reflector. The model is fully defined by
the traveltime of the central ray, the near-surface velocity and the surface-based wavefield
attributes. By means of this model, I found implicit and explicit 3D stacking operators for
the traveltime of the paraxial ray.

The 3D implicit stacking operator (3D i-CRS) includes the system of nonlinear equations
defining the reflection point coordinates and the DSR expression for the traveltime, as a
function of the reflection point. This stacking operator allows to find the traveltime in the
simplified model with any desired precision. The accuracy of the 3D i-CRS approximation
is only restricted by the applicability of the simplified model. In the 2D case, this approach
reduces to the 2D i-CRS stacking operator.

The 3D explicit stacking operator (3D DSR) is based on the first-order approximation of
the reflection point coordinates. It is the DSR formula of the second-order accuracy. The
formula has the same set of parameters as the conventional 3D CRS stacking operator and
is thereby ready for implementation into the CRS-based software. The 3D DSR stacking
operator can be transformed to the 3D n-CRS stacking operator.

In the next chapter, I will investigate the domain of the applicability of the simplified
model and the accuracy of the 3D stacking operators. I will discuss the implementation of
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the new stacking operators into the CRS software and I will compare the performance of
the new operators with the one of the conventional 3D CRS.
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Chapter 3

Accuracy and implementation of
3D DSR-based stacking operators

How accurate is the 3D simplified model? What is the "best" 3D DSR-based stacking
operator? How do the DSR-based stacking operators improve the quality of the stacked
section? These and other intriguing questions naturally arise from the findings presented
in the previous chapter. In this chapter, I will answer these questions based on several
numerical examples.

3.1 Applicability of the simplified model

In the simplified model, the traveltime of the reflected ray could be found with any desired
precision. However, the simplified model correctly describes propagation of reflected rays
only in the vicinity of the central ray. Hence, it is important to investigate the range of
applicability of the simplified model.

In order to test the applicability of the simplified model, I consider the so-called Complex
model (see Figure 3.1a). The Complex model consists of the analytical reflector below
the inhomogeneous overburden with the velocity profile typical for the Gulf of Mexico.
Such a model is complicated enough to possess all effects of the real 3D media and at
the same time allows the numerical computation of traveltimes of reflected waves. The
Complex model is characterized by the depth of the NIP point D, which in this case is
approximately equal to 1 km.

A corresponding simplified model is shown in Figure 3.1b. The model consists of the
homogeneous anisotropic auxiliary medium (blue layer in Figure 3.1b) and ellipsoidal or
parabolic reflector (red surface). The simplified model is valid if the traveltime of the
reflected ray in the simplified model ¢, is almost identical to the traveltime of the reflected
ray in the Complex model t.,,.

43
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Figure 3.1: Tllustration of the Complex model (a) and the corresponding simplified model
(b). The Complex model consists of the constant velocity part (vg = 1500 m/s,
z < 250 m) simulating the water layer, and the constant-gradient velocity part
(v = v+ K(z — 20), 20 = 250 m, kK = 0.5 s71, z > 250 m) simulating the
sedimentary layer. The reflector (red surface) simulates the top of the salt
body. The reflector is described by the fourth order polynomial function of
lateral coordinates. The black line indicates the trajectory of the central ray.
The depth of the NIP point is approximately equal to 1.0 km. The simplified
model (b) is constructed for the particular central ray.

The CMP and ZO experiments could be used to identify the range of applicability of the
simplified model. These experiments allow to obtain the relative error of traveltimes in the

simplified model

t

tsm - tem
E=2"_ " 100% (3.1)

cm

as a function of the half-offset h = {h,, h,} and the midpoint displacement m = {mg, m,}
(see Figure 3.2).

As follows from Figures 3.2a,c, the simplified model is valid for traces with offsets |h| < D
and midpoint displacements |m| < D/2 (relative error does not exceed 0.2% and 0.3%,
respectively). There is no systematic difference between the ellipsoidal and parabolic
reflector (compare images a, ¢ with b, d in Figure 3.2), however the simplified model
with the ellipsoidal reflector provides a slightly better result.

3.2 The most effective iterative approach

In Section 2.7, I proposed two iterative approaches to find the traveltime of the reflected
wave in the simplified model: the trigonometric iterative approach (TTA, equations 2.33),
which is the extension of the method proposed by Schwarz et al. (2012) to the 3D case, and
the linearized iterative approach (LIA, equations 2.31). In this Section, T will investigate
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Figure 3.2: Relative errors (3.1) E of the traveltimes in the simplified model for the CMP

and ZO experiments. In the CMP experiment (a,b), E is a function of |h|
and azimuth angle &,: 0 < |h| < 2000 m, 00 < &, < 360, |/m| = 0. In
the ZO experiment (c,d), E is a function of |[m| and azimuth angle &y 0 <
lm| < 1000 m, 0" < &y < 3607, |h| = 0. Relative errors are computed for the
simplified model with the ellipsoidal (a,c) and parabolic (b,d) reflectors.
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Figure 3.3: Illustration of the acquisition geometry: 100 randomly distributed source-
receiver pairs in the vicinity of the central point (a). The RMS traveltime
errors plotted as functions of the iteration number (b).

which of these approaches perform best in the 3D case.

In order to answer this question, I consider N = 100 randomly distributed source-receiver
pairs (see Figure 3.3a) that satisfy the criteria of validity of the simplified model (|h| < D,
|lm| < D/2). The simplified model with the ellipsoidal reflector was chosen to compare the
LTA and TTA methods.

For comparison, it is convenient to use the root-mean-square (RMS) traveltime error
dtrms(?) which is equal to

1 th(i) — th \2
Strms (i) = NZ(%) - 100%, (3.2)
k=1 ex

where t¥_is the exact (computed numerically to very high precision) traveltime in the
simplified model from the source at x¥ to the receiver at Xlg and t(i) is the corresponding
traveltime obtained by the TIA /LIA methods on the i-th iteration step.

The RMS traveltime errors as functions of the iteration number are shown in Figure 3.3b.
As follows from the figure, LIA converges significantly faster than TTA (LIA requires only
5 iterations to reach the precision of the numerical computation, while TTA requires 14
iterations). In practice, 1-2 iterations are enough for LIA, while TTA requires more than 5
iterations.

Note that these results are only valid for the 3D case. Tests in the 2D case (and in the 3D
case with a spherical reflector) do not reveal significant difference between both approaches.
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Figure 3.4: Illustration of six analytical reflectors.

3.3 The most accurate stacking operator

As one can conclude from the previous sections, the best realization of the 3D i-CRS
stacking operator is the one with the ellipsoidal reflector and LIA. In this section, T will
compare 3D CRS (1.19), 3D DSR (2.36), 3D n-CRS (2.38) and three different realizations
of the 3D i-CRS stacking operator (I - LIA, parabolic reflector, IT - LIA ellipsoidal reflector,
III - TTA, ellipsoidal reflector) to find “the most accurate” stacking operator.

I consider six different reflectors (see Figure 3.4): the flat reflector, the plane dipping
reflector, the point diffractor’, the sphere, the ellipsoid and the analytical reflector from

the Complex model. Each of these reflectors is combined with three different overburden
structures:

e Const - constant velocity overburden (vg = 1500 m/s) simulating the water layer;

e Grad - constant-gradient velocity overburden (v = vy + kz, v9 = 1500 m/s, Kk =
0.5 s~1) simulating the sedimentary layer;

e 1-D - overburden of complex structure that consists of the water layer (depth <

250 m) and the sedimentary layer (depth > 250 m).

All reflectors are chosen in such a way that the depth of the NIP point D is approximately
equal to 1 km. Hence, previously used acquisition geometry (from Figure 3.3a) is applicable

!The point diffractor is simulated by the spherical reflector with the radius R = 10 m.



CHAPTER 3. ACCURACY AND IMPLEMENTATION OF 3D DSR-BASED
48 STACKING OPERATORS

for all 18 models. For each stacking operator the RMS traveltime error (3.2) is computed
(see Table 3.1).

Table 3.1: RMS traveltime errors

Reflector  Velocity CRS DSR n-CRS i-CRS! i-CRS! i-CRS!M

Const  0.000 0.000 0.000 0.000 0.000 —
Flat
Grad 0.058 0.058 0.058 0.059 0.059 —
reflector
1-D 0.050 0.050 0.050 0.050 0.050 —
Plane Const  0.000 0.207 0.000 0.001 0.001 —
dipping Grad 0.184 0.232 0.191 0.189 0.189 —
reflector 1-D 0.183 0.225 0.190 0.188 0.188 —
Point Const  0.878 0.005 0.002 0.001 0.000 0.000
diffractor Grad 0.908 0.091 0.089 0.092 0.092 0.092
(R=10m) 1-D 0.905 0.085 0.083 0.086 0.085  0.085
Const  0.241 0.087 0.043 0.007 0.000 0.000
Sphere
Grad 0.275 0.159 0.098 0.108 0.108 0.109
(R=1km)
1-D 0.273 0.153 0.093 0.104 0.104 0.105
Const  0.207 0.118 0.061 0.022 0.022 0.339
Ellipsoid Grad 0.167 0.123 0.092 0.095 0.096 0.621
1-D 0.163 0.117 0.086 0.090 0.090 0.619
Const  0.192 0.067 0.017 0.049 0.048 0.048
Complex
Grad 0.224 0.145 0.108 0.128 0.128 0.130
surface

1-D 0.223 0.144 0.108 0.128 0.128 0.130

As follows from the table, all stacking operators behave equally well for the flat reflector
and the plane dipping reflector. An exception is the 3D DSR stacking operator which gives
an approximate traveltime in the case of the plane dipping reflector.

In the case of quadric surfaces (point diffractor, sphere, ellipsoid) 3D i-CRS (for the
homogeneous overburden) and 3D n-CRS (for the inhomogeneous overburden) provide the
most accurate result. For these models, all DSR-based stacking operators fit traveltimes of
the reflected events significantly better than the conventional 3D CRS stacking operator.
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Figure 3.5: Relative errors of 3D CRS, 3D DSR, 3D n-CRS and 3D i-CRS stacking
operators along the 2D profile.

For complex analytical reflector, 3D n-CRS remains the most accurate stacking operator
even in the case of homogeneous overburden.

No significant differences were observed between different realizations of the i-CRS stacking
operator. As expected, the realization IT (LIA, ellipsoidal reflector) yields superior result
over the other two realizations. The realization III (TTA, ellipsoidal reflector) could not
be applied in the case of plane reflectors. As expected, for a given number of iterations
(three iterations in this particular case) the realization III (TTA, ellipsoidal reflector) is
less accurate than the realization IT (LIA, ellipsoidal reflector).

For the Complex model, I additionally compute the relative errors of traveltimes along
the 2D profile (see Figure 3.5). As expected, 3D n-CRS and different realizations of 3D i-
CRS demonstrate comparable accuracy, which is much higher than the one of conventional
3D CRS.

The results of this section indicate that 3D n-CRS is "the most accurate" 3D DSR-based
stacking operator.
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Figure 3.6: Tllustration of the model with the reflector of varying curvature (a). The
following model parameters are fixed and are equal: Ryp = 1.0 km, o = 30,
m = 0.2 km, h = 0.4 km, vy = 3.2 km/s. The radius of curvature of the
reflector R varies from 10~ km to 10* km. Illustration of the corresponding
exact traveltimes and CRS, DSR and n-CRS traveltime approximations (b).

3.4 On the role of explicit stacking operators

In the previous sections, I investigated different realizations of the 3D i-CRS stacking
operator. In this section, I would like to discuss relations between different explicit stacking
operators — 3D CRS, 3D DSR and 3D n-CRS.

The tests in the previous section indicate that the CRS stacking operator is accurate for
plane reflectors and is not accurate for point diffractors. On the contrary, the DSR stacking
operator perfectly fits diffraction events and is a short-offset approximation in the case of
the plane dipping reflector. As follows from the tests, n-CRS perfectly matches both cases.

For better understanding of these observations, I consider a circular reflector with
varying radius of curvature R in the homogeneous medium (see Figure 3.6a). For a
wide range of radii R (from 10~* km, corresponding to the point diffractor limit, to
10* km, corresponding to the plane reflector limit) I computed CRS, DSR and n-CRS
approximations and compared them with the exact (computed numerically) traveltime
(see Figure 3.6b). Figure 3.6b illustrates the idea that CRS and DSR are two asymptotic
solutions of the reflection traveltime. The n-CRS stacking operator, being accurate for the
whole range of curvatures, sews both asymptotic solutions. This fact explains outstanding
accuracy of the n-CRS stacking operator.

Further discussion about the link between the CRS and DSR stacking operators in the
context of the paraxial ray theory will be given in Chapter 5.
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Figure 3.7: Relative computational difficulty of the 3D stacking operators (a) and the 3D
CRS code with different 3D stacking operators (b). Conventional 3D CRS is
taken as reference (100%).

3.5 Computational difficulty

As already mentioned in Section 2.8, computational difficulty of the new stacking operators
in higher than the one of the conventional 3D CRS. The relative computational difficulty
of the 3D stacking operators is shown in Figure 3.7a. In terms of computational difficulty,
there is almost no difference between three realizations of the 3D i-CRS stacking operator,
however all of them are about eight times more “expensive” than the conventional 3D
CRS. As expected, explicit stacking operators are more efficient than implicit operators,
taking only two (3D DSR) and tree (3D n-CRS) times more computational time than the
conventional 3D CRS.

In the 3D CRS code, the computation of the moveout takes about 10% of the total
computation time. The 3D CRS code with explicit stacking operators requires slightly
more computational time (approximately 13% and 16% more for 3D DSR and 3D n-CRS)
then the code with the conventional 3D CRS stacking operator (see Figure 3.7b). The same
code with the 3D i-CRS stacking operator is significantly more expensive (additionally 80%
of the computation time). Hence, the 3D n-CRS stacking operator achieves the best trade-
off between the accuracy and the computational difficulty.

3.6 Implementation into the CRS software

Xie and Gajewski (2016) have recently presented the 3D CRS software with automatic
estimation of the stacking parameters by global optimization algorithm. The new software
allows implementation of the 3D DSR-based stacking operators. The set of staking
parameters for 3D DSR and 3D n-CRS coincides with the one of conventional 3D CRS (w,
M and N). The stacking parameters for 3D i-CRS could be (w, M and K'g), where K'g
is the curvature matrix of the reflector. Though the sets of parameters (w, M and N) and
(w, M and K’'g) are linked, T expect that the parameter search in terms of (w, M and
K'R) could get additional advantages.
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3.7 Conclusions

In this chapter, I analyzed the different realizations of the 3D i-CRS stacking operator and
compared accuracy of the 3D DSR-based stacking operators. I found that the trigonometric
iterative approach, which is very efficient in the 2D case, does not properly work in the
3D case. The linearized iterative approach, which was proposed as an alternative to TTA,
demonstrates significantly better results.

The accuracy tests demonstrated that 3D n-CRS and 3D i-CRS are the most accurate
stacking operators. Taking into account the computational difficulty, I found 3D n-CRS
to be the most promising 3D DSR-based stacking operator.

All 3D DSR-based stacking operators could be integrated into the CRS software with a
global search of stacking parameters. Study of their impact on complex synthetic and field
datasets will hopefully be a topic of future research.



Chapter 4

DSR-based stacking operators for
converted waves

Converted PS waves have attracted considerable interest because they are commonly used
to obtain valuable information about S-waves. However, the existing DSR-based stacking
operators are not designed for converted waves.

In this chapter, T propose a double-square-root traveltime approximation (DSR-PS) for
converted waves. This approximation is based on a fairly general assumption of constant
ratio of P- and S-wave velocities. Furthermore, I demonstrate that a CRS-type traveltime
approximation for converted waves may be derived from the new approximation. It enables
to introduce a pragmatic search strategy for converted waves, similar to the one for
monotypic waves. The DSR-PS stacking operator and the new pragmatic search strategy
together form an efficient way to obtain high-quality stacked sections for PS converted
waves.

4.1 Introduction

There are two types of body waves of different polarization in an isotropic medium: a
compressional (or primary) P-wave and a shear S-wave. Originally, the reflection seismic
imaging utilized only compressional PP reflected waves. However, the appearance of
multicomponent surveys in the early 1980s (Garotta, 1985), gave rise to registration and
processing of other types of reflected wavefields (PS, SP, SS). Thus, the multicomponent
measurements made it possible to obtain S-wave information.

The shear waves contain important information about the properties of the subsurface and
are widely used in seismic applications. For example, velocities of S-waves are used for
the estimation of porosity and permeability, which are two important parameters for the
reservoir characterization (Nelson, 2001). S-waves are needed for the detection of porous

23
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zones (Coulombe et al., 1996) and for identification and quantification of seismic anisotropy
(Tsvankin, 2012). Since the velocity of S-waves is typically half that of P-waves and the
frequency content of P- and S-events is almost the same, the images, obtained by S-waves,
have higher spatial resolution than the associated PP images (Stewart et al., 2002).

For many reasons, pure SS reflection experiments are rarely used in seismic exploration.
This is mainly because the efficient sources of S-waves are expensive, SS reflections
are typically noisy and SS listening times are about double or triple those of P-waves
(Stewart et al., 2002). Moreover, SS surveys are not applicable in marine measurements.
In contrast to SS, PS surveys are relatively inexpensive (Kendall and Davis, 1996) and they
do not require special types of sources. Hence, converted PS reflections are an alternative
to pure SS reflections.

The price we have to pay for this convenience is the asymmetry of the ray path of converted
waves. According to Snell’s law, the angle of incidence and the angle of reflection are not
the same for PS reflections. Moreover, the idea of reciprocity (invariance of the moveout
under the exchange of source and receiver positions), utilized in standard CMP-processing,
is violated for converted waves (Thomsen, 1999). As a consequence, the traveltime of the
converted wave becomes asymmetric because it has a linear term of offset. For these
reasons, the standard CMP-based processing is not applicable for converted waves.

The fundamentals of converted wave processing appeared at late 1980s - early 1990s. In
order to overcome the conversion point dispersal, it was proposed to sort the traces into
the common-conversion-point (CCP) gathers instead of conventional CMP gathers. The
successful examples of stacking of converted waves in CCP gathers were demonstrated
by Tessmer and Behle (1988), Tessmer et al. (1990) and Iverson et al. (1989). However,
even for simple velocity models it is a complicated problem to find a CCP gather (e.g.
Tessmer and Behle (1988); Thomsen (1999)).

With appearance of multiparameter stacking the problem of powerful stacking technique
for converted waves arose again. A 2D CRS-based stacking operator for converted waves
was presented by Bergler et al. (2002). In order to account for the asymmetric PS ray
path, Bergler et al. (2002) used the common-offset (CO) CRS stacking operator. The
disadvantage of this method is that the CO CRS operator uses five parameters that do
not have a physically intuitive explanation. The 2D i-CRS stacking operator for converted
waves was proposed by Vanelle et al. (2012a). To my knowledge, there are no MF or n-CRS
extensions for converted waves. Hence, there is an interest to investigate the DSR-based
stacking operators for converted waves.

The aim of this chapter is to obtain the DSR and n-CRS traveltime approximations for
converted waves valid for arbitrary observation geometry and arbitrary reflector curvature.
To achieve this goal, I introduce the simplified model of subsurface (Section 4.2.2) and
the special 7-CMP coordinates (Section 4.2.3) that accounts for the asymmetry of PS
trajectories. With these tools, I derive the DSR-PS and n-CRS-PS stacking operators
for converted waves, based on the geometrical approach (Section 4.2.4). The DSR-PS
stacking operator may be transformed to the CRS-PS stacking operator, which is formally
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Figure 4.1: Tllustration of the PS reflection experiment. The down- and upgoing segments
of the central PS ray do not coincide in the arbitrary inhomogeneous medium
(a). However, they have the same trajectories under the assumption of constant
vp/vg ratio (b). This fact enables one to introduce a simplified model for PS
waves (c).

similar to the ZO CRS operator (Section 4.2.5). Both DSR-PS and CRS-PS have clear
extension to the 3D case (Section 4.2.7). The CRS-PS stacking operator makes it possible
to formulate a pragmatic search strategy for converted waves (Section 4.3.2). For non-
converted waves, this strategy transforms to the well-known pragmatic approach of Miiller
(1999). Finally, T present several numerical simulations that provide insight into the
accuracy of the new approximations (Section 4.3.1), the accuracy of the estimated wavefield
attributes (Section 4.3.3) and the quality of the resulted stacked sections (Section 4.3.4).

4.2 Theory

In this chapter, I assume that the ratio of compressional velocity v, to shear velocity vy is
constant. For the most rocks this ratio varies from 1.6 to 2.0. Hence, the average value of
1.8 is relatively accurate (about 10% accuracy) for the most real rocks.
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4.2.1 Statement of the problem

In the PS reflection experiment, the compressional P-wave, emitted by the source,
propagates in the inhomogeneous medium. The P-wave partly "converts" to the S-wave
upon reflection and returns back to the measurement surface (see Figure 4.1a). In the
zero-offset case, the source and receiver locations of the central ray coincide at the central
point xg. The traveltime of the central ray is equal 9. The problem is to find a traveltime
t of the paraxial converted ray, whose source and receiver are located in the vicinity of
central point z( at the positions z, and x4, respectively.

In an arbitrary inhomogeneous medium the trajectories of P- and S-segments of the central
ray do not necessarily coincide. Therefore, these ray-segments should not be perpendicular
to the reflector at the reflection point, and the incidence and the emergence angles of the
central ray may differ considerably (see Figure 4.1a). However, under the assumption that
the ratio of P- and S-wave velocities is constant, the trajectory of the central ray simplifies:
down- and upgoing ray segments coincide, the central ray is perpendicular to the reflector
and the incidence and the emergence angles are equal (see Figure 4.1b). This simplification
enables to introduce the simplified model for converted waves.

4.2.2 Simplified model for converted waves

As discussed in Section 2.2, for monotypic reflected waves (PP or SS) it is possible to
replace the inhomogeneous medium with the reflector of arbitrary shape by the so-called
simplified model. In the 2D case, the simplified model consists of the circular reflector in
the auxiliary medium of constant velocity. The parameters of the simplified model (the
velocity v and the radius of a circular reflector R) are established upon the consideration
of the hypothetical normal-incidence-point (NIP) and normal experiments.

Due to the constant velocity ratio, the curvatures of the NIP Ry and normal Ry
wavefronts are identical both for P- and S-waves. These curvatures define effective velocities
of P- and S-waves (vp and vg, respectively, v = vp/vg) and the radius of circular reflector
R:

R = Ry — Rnip. (4.1)

The effective velocity of a converted PS wave is determined by the condition that the
traveltime of the central ray must coincide in the inhomogeneous and in the auxiliary
media:
_ 2Rnrp
vps
There is obviously an important relationship between the effective velocity of PS wave vpg
and the effective velocities of P- and S-waves:
2 = * + i (4.3)
vps vp vs
The velocities vp, vg and the circular reflector form the simplified model for converted
waves (see Figure 4.1c). The simplified model is determined by the traveltime of the

to (4.2)
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Figure 4.2: In the conventional CMP gather, sources and receivers are located
symmetrically with respect to the central point (a). In the case of a horizontally
layered medium, all reflection points of PP rays coincide with the NIP. In
the case of converted waves (b), the reflection points of PS rays in the CMP
gather are smeared. Fromm et al. (1985) found an approximation for the lateral
position of the conversion point (c). Based of this idea, I propose to use yv-CMP
gathers (d) for stacking PS converted waves.

central ray to and the kinematic wavefield attributes: the emergence angle of the central
ray « and the radii of NIP Rynrp and normal Ry waves. In the simplified model, the DSR,
stacking operator for converted waves can be derived using the geometrical approach.

4.2.3 ~—CMP coordinates

Before considering the stacking operators for converted waves, I will briefly describe the
special coordinate system required to simplify the expressions of these operators.

Conventionally, the reflection data are sorted into the common-midpoint (CMP) gathers
(Mayne, 1962). The CMP gathers are popular because for horizontally layered media,
the PP reflections in the CMP gather image the same point in depth (see Figure 4.2a).
However, since the path of the converted wave is asymmetric, the PS reflections in the
CMP gather come from different points in the subsurface (i.e., the effect of the conversion-
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point dispersal occurs (see Figure 4.2b)). Hence, successful stacking of converted waves
can not be achieved using the CMP gathers and requires special common conversion point
(CCP) gathers (Tessmer and Behle, 1988).

For constant vp, vg velocities and a flat horizontal reflector, Fromm et al. (1985) found
the approximate position of the conversion point Z,, (see Figure 4.2¢):

ag — s)

, =vp/vg. 4.4
1+~ Y p/vs (4.4)

Tm = Ts + Tp, Tp =

Following this idea, I introduce the v-CMP coordinates m and h:

YTg + Ts -
1+~

Em —x0, h= (4.5)

T =

With the v-CMP coordinates, I can express the source and receiver displacements as:

Azs =m —vh, Az, =1+ h. (4.6)

Traces having the same value of m are collected in the v-CMP gather (see Figure 4.2d).
The v-CMP gather can be considered as the first linear approximation of the CCP gather.
Note that in the particular case of monotypic waves (v = 1), the v-CMP coordinates (4.5)
coincide with the standard CMP coordinates (1.1).

4.2.4 DSR stacking operator for converted waves

In the simplified model (see Figure 4.1c), the traveltime of a PS wave from the source at
x5 to the reflector to the receiver at x, is equal:

\/(xs - xref)2 + Zzef \/(.’Eg - xref)2 + Z?’ef
+ .

vp vs

1) =

(4.7)

Here, both the source and the receiver are at the depth z = 0, and the angle ¥} defines the
point on the circular reflector (z,cf(?), zref(19)). As in the case of monotypic waves, the
angle ¥, defining the conversion point (x,, z,) can be found either implicitly or explicitly.

The implicit stacking operator for converted waves was proposed by Vanelle et al. (2012a).
The traveltime ¢ must fulfill Fermat’s principle, i.e., 9t/9¢ = 0, which leads to an implicit
equation for 9 (see Vanelle et al. (2012a), eq. 13):

tan ¥ = F (1, to, x5, 24, o, model parameters). (4.8)

The equation (4.8) is solved iteratively with the initial value of ¥ corresponding to the
conversion point of the central ray (NIP). The result ¥, is substituted into (4.7) to compute
the traveltime of PS wave. With the 3D auxiliary anisotropic medium, proposed in Section
2.4, the extension of this method to the 3D case is straightforward.
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In this section, I will present another approach, which is ideologically close to the 3D
explicit DSR stacking operator (see Section 2.8). Assuming that the source and receiver
displacements are much smaller than the characteristic distance of the problem (such as
Rnip or Ry), and using Snell’s law, I obtain the following expression for the angle ¥,
describing the reflection point (see Appendix D.1):

m
sint, ~ — cos a. 4.9
T RN ( )
Substituting the reflection point approximation (4.9) into the expression for PS travel-
time (4.7) T obtain, after some algebraic manipulations, the explicit! DSR-PS stacking
operator for converted waves (see Appendix D.2 for detailed derivation):

~ 2 ~ ~ ~ ~ ~
t(m, h) = ﬁ [to n umxs} + 2t [Nﬁﬁ — 2N (yh) + M(yh)Q]

2 N o
+ % [to + wag] + 2t [Nﬁﬂ + 2Nh + Mhﬂ} (4.10)
~
with parameters:
w:_2sino¢7 W= cos? o ’ N cos2a.
vps vpsRNIp vps RN

(4.11)

The DSR-PS stacking operator (4.10) is valid for any general location of the source and
receiver. If the radius of curvature Ry goes to infinity, I obtain the traveltime of a wave
reflected from a plane interface; if I set Ryp = RN, I obtain (in the case of the homogeneous
overburden) the exact solution for scattered PS waves. In the case v = 1, I get the typical
multi-parameter traveltime approximation like CRS, MF, n-CRS or i-CRS. Though DSR-
PS was derived for a constant velocity overburden, it is applicable for any arbitrary velocity
model. In that case, the wavefield attributes (a, Rnip and Ry) lose their clear geometrical
interpretation and become effective parameters.

4.2.5 CRS stacking operator for converted waves

The common-offset (CO) CRS stacking operator is commonly used to properly stack the
converted PS reflections (Bergler et al., 2002). The CO CRS operator includes five stacking
parameters and two a priory known near-surface velocities (Zhang et al., 2001). With
the DSR-PS stacking operator it is possible to obtain an alternative CRS-type stacking
operator for PS converted waves.

Indeed, using the Taylor series expansion of (4.10) and omitting the terms of higher order
than the second I get the CRS-type formula (CRS-PS) for converted waves in y-CMP
coordinates (see Appendix D.3):

~ 2 ~ -~
20, h) = [to + wm} + 2, [Nfrﬂ ANTR?]. (4.12)

'Here and later, "DSR-PS" means "explicit DSR stacking operator for converted waves".
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The CRS-PS stacking operator is identical to the ZO CRS expression (1.16) in the standard
CMP coordinates and it reduces to ZO CRS in the case of monotypic waves. If the standard
CMP coordinates are substituted in (4.12), T obtain the same five parameter expression
that was derived by Vanelle et al. (2012b). It is also formally identical with the CO CRS
of Zhang et al. (2001), but uses the same three parameters as ZO CRS.

As will be discussed later, CRS-PS (4.12) is a crucial element to establish the pragmatic
search of wavefield attributes for converted waves.

4.2.6 n-CRS stacking operator for converted waves

As in the case of monotypic waves, the n-CRS stacking operator for converted waves
(n-CRS-PS) may be obtained from the DSR stacking operator (see Appendix D.4). The
2D n-CRS-PS stacking operator reads:

t(m, h) = \/ [ﬁ\/m — ) + %«/ﬁ(m + E)r +2toy(M — N)R2 - (4.13)

where

F(m) = (to + wm)” + 2t N, (4.14)

2D n-CRS-PS coincide with 2D DSR-PS in the point diffractor limit and with 2D CRS-PS
in the plane-reflector limit. In the case of monotypic waves 2D n-CRS-PS reduces to the
conventional n-CRS stacking operator (1.32).

4.2.7 Extension to the 3D case

In the 3D case, m and A become two-dimensional vectors m and h. The parameter o,
corresponding to the first-order derivative of traveltime with respect to m, transforms to
the two-dimensional vector w, and the second-order derivatives M and N transform to
the symmetric 2 x 2 matrices M and N. The parameters w, M and N are related to the
kinematic wavefield attributes as follows:

25 V! S
W= — s1na( C9Sﬁ >a M= —RKypR', N=—RKyR". (4.15)
vpg sin 3 vps vps

Extension of the DSR-PS, CRS-PS and n-CRS-PS stacking operators to the 3D case is
straightforward:
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e the 3D DSR-PS stacking operator:

t(x, h) =
1 2 N . .
T [to + WTAXS} + 2t [mTNnﬁ — 2mTN(vh) + (fyh)TM(fyh)]
v
2 ~ o~ ~ ~ ~ ~
+ % [to + vaAxg] + 2t [rhTth + 2mTNh + hTMh] . (4.16)
v

e the 3D CRS-PS stacking operator:
- 2 - o
#2(r, h) = [to + varh] + 2t [rhTth + fyhTMh] . (4.17)
e the 3D n-CRS-PS stacking operator:

t(rh, h) = \/{%\/f‘(rh—’yfl) + 11—7”(‘“3)}2 + 2toyh™ (M — N)h

(4.18)

where

F(m) = (to + wTmm)? + 2t Nri. (4.19)

Note that in the case of monotypic waves (7 = 1), the 3D DSR-PS stacking operator (4.16)
is indentical to the explicit 3D DSR stacking operator (2.36), the 3D CRS-PS stacking
operator (4.17) is indentical to the 3D CRS stacking operator (1.19) and the 3D n-CRS-PS
stacking operator (4.18) is identical to the 3D n-CRS stacking operator (2.38).

4.3 Accuracy and implementation

In this section, I provide insight into the accuracy and the range of applicability of the
new stacking operators. I begin with simple models like the constant velocity and the
constant vertical gradient overburden over a circular reflector to demonstrate the accuracy
of the traveltime approximations and the coefficient determination. Using a more complex
synthetic data set I show that the new traveltime approximations also lead to high quality
stack results.

4.3.1 Accuracy of the stacking operators for converted waves

Consider the model from Figure 4.1c with a circular reflector under a homogeneous
overburden. For the monotypic reflections, the reflection point can be found by evaluating
the roots of a fourth-order equation (Landa et al., 2010). For the converted waves, the exact
solution requires solving a sixth-order algebraic equation (see Appendix E). I calculated
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Figure 4.3: Accuracy of the stacking operators for converted waves. (a) Comparison of the
reference traveltime (black), CRS-PS (blue), n-CRS-PS (green) and DSR-PS
(red) approximations. (b) Relative errors of the CRS-PS (blue), n-CRS-PS
(green), and DSR-PS (red) approximations. Relative traveltime errors of the
DSR-PS (c) and n-CRS-PS (d) approximations.

Table 4.1: Parameters of the constant velocity model

Parameter | Value

a 30

Rn1P 0.5 km
RN 1.0 km
vp 2.5 km/s
vg 1.8 km/s

such solutions as reference traveltimes. For the accuracy studies I used a model with
parameters listed in Table 4.1.

The accuracy of the DSR-PS and n-CRS-PS approximations can be compared not only with
the reference traveltime, but as well with the CRS approximation. The resulting DSR-PS,
CRS-PS, n-CRS-PS approximations and the reference traveltimes in a (standard) CMP
gather with a maximum offset of 1.35 km are presented in Figure 4.3a. These traveltime
approximations are compared to the reference traveltimes in Figure 4.3b, where relative
errors are shown. I observe that both DSR-PS and n-CRS-PS approximations exhibit
smaller errors for large offsets than the conventional CRS-PS.

For the CRS geometry, the resulting relative errors of the DSR-PS and n-CRS-PS
approximations are shown in Figures 4.3c-d. In most regions, the error is less than 2%.



CHAPTER 4. STACKING OPERATORS FOR CONVERTED WAVES 63

For the further tests, I will only use the DSR-PS approximation.

4.3.2 Pragmatic search strategy for converted waves

The stacking procedure consists of evaluating a measure of the coherency of the multi-
coverage data along the traveltime surfaces given by the DSR-PS operator (4.10) (or
n-CRS-PS operator) for any possible combination of the wavefield parameters. The
determination of the global maximum of the coherency turns out to be time consuming in
a three-parametric search strategy. Therefore, I propose a pragmatic search strategy that
helps to split the three-parametric search problem into four one-parametric searches and
an optional three-parametric local optimization.

The CRS stack approach determines optimal values of wavefield attributes for a known
near-surface velocity. For converted waves I additionally require that the near-surface
velocity ratio is known. Using the CRS-PS stacking operator (4.12) I can formulate a
pragmatic approach for converted waves similar to the one suggested by Miiller (1999). Tt
consists of the following steps:

e Step 1. Automatic y-CMP search with m = 0:

2

2tovq 5 Cos” «v
2 =2+ R . 4.20
Y CMP 0 UPS RNIP ( )
Output: ZO section, combined parameter q.
e Step 2. Plane wave search in the y-CMP stacked section with h = 0:
94
by pw = to — ——, (4.21)
vps

Output: emergence angle .

e Step 3. Repeated v-CMP search with m = 0. Fromm et al. (1985) showed that
the traveltime of converted waves expanded into a power series comprise terms of
third order that depend on the emergence angle and Rnmp. Due to this fact, the
determination of Rnip from the combined parameter ¢ and the angle « is not an
accurate procedure. For these reasons an additional Ryip search is required:

2tgcos? o, -~

1 2sino, ~.12
= — [ h ] n 7)? 4.22
147~ 0 vps () vps NP ) (4.22)
ol [ 2sina~]2 2tgcos® az,
—_— to — hf + ——h 4.23
147~ 0 vps vps RBnip (4.23)

Output: radius of NIP wave Rnip.
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e Step 4. Hyperbolic search in the ZO section with A = 0:

2sina _12  2tpcosia _,
m —m

2 sy = |to— (4.24)

vps vps RN

Output: radius of normal wave Ry.

After the determination of the wavefield attributes (o, Rnip, RN) the local optimization
is carried out with the DSR-PS stacking operator (4.10). The final ZO section from the
multi-coverage data is then constructed for the attributes of this optimization.

4.3.3 Accuracy of the wavefield attributes

In order to investigate the accuracy of the determined wavefield attributes, I choose a
medium with a constant vertical velocity gradient, vp = vy + kz and constant vp/vg ratio.
The reflector is a circle with radius R and top at the depth D (see Figure 4.4).

The reflected PP and the converted PS wavefields were generated in Seismic Unix with the
routines susynlv and susynlvcw, respectively. In order to make the data more realistic the
seismic noise was added to all traces. The parameters of the datasets are summarized in
Table 4.2.

The reference solutions for the wavefield attributes were generated by a numerical
determination of the reflection and conversion points and a subsequent evaluation of results
given in Vanelle (2002). Figure 4.5 illustrates the semblance, the emergence angle, Rnip,
Kn = 1/Ry for PP as well as PS reflections, and in comparison to the reference values. The
effective wavefield attributes display a similar behavior in comparison to the exact values.
They may be used in NIP-wave tomography for converted waves (Vanelle and Gajewski,
2009).
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Figure 4.5: Semblance (a) and effective wavefield attributes (b)-(d), derived from converted
(blue) and monotypic (red) waves by applying the DSR-PS operator. The
effective wavefield attributes display a similar behavior in comparison to the
exact values (green). The asymmetry in the semblance (a) may be explained
by the asymmetry of the survey.
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Table 4.2: Parameters of the constant-gradient velocity model

Parameter Value
Near-surface velocity vg | 2.0 km/s
Vertical gradient x 1.0 571
vp/vg ratio vy 1.4
Radius of reflector R 1.0 km
Depth of reflector D 1.0 km
Number of CMPs 201
CMP sampling interval | 25 m
CMP fold 81
Offset sampling interval | 25 m
Signal to noise ratio 5.0

4.3.4 Complex synthetic data example

Finally, I have applied the DSR-PS stacking operator to a complex synthetic dataset. The
NORSAR ray tracing package was used to generate synthetic seismograms for the model
shown in Figure 4.6. The resulting PP and PS-stacked sections in Figure 4.7 exhibit similar
quality. PS section can be interpreted on their own or together with P-wave sections.
Events seen on one section are not seen on the other. Due to the asymmetry of the
PS ray paths and stronger PS impedance contrast, I observe a better illumination of the
distant part of the top reflector in the PS than in the PP stack. I conclude that joint
interpretation of PP- and PS-stacked data using the DSR-PS/n-CRS-PS operators allow
for a better understanding of the subsurface structure.

4.4 Conclusions

In this chapter I have investigated the extension of the DSR-based stacking operators for
the case of converted waves. I have presented the new DRS-based traveltime expressions,
the DSR-PS and n-CRS-PS approximations, for converted waves reflected from the curved
interfaces. These approximations are natural generalizations of the earlier introduced
explicit DSR. and conventional n-CRS stacking operators. For converted waves the new
operators are highly accurate.

Furthermore, T have found a CRS-type expression for converted waves. This hyperbolic
operator is expressed in the v-CMP coordinates and allows for a pragmatic search strategy
for converted waves. Taken together, these findings provide a powerful and efficient tool
for constructing the PS-stacked sections.

The most important limitation of this work is the assumption of the constant vp/vg
ratio. Although this assumption does not hold in the "real world", it appears to be
quite reasonable, because the variation of v in most of rocks is limited. The assumption
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Figure 4.7: Stacked sections for PP (left) and PS (right) waves. Note the continuity of the

top reflector in the PS section resulting from the asymmetric ray paths.
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of the constant - is not necessarily a restriction, because even in the case of the complex
model with the non-constant value of v, the proposed DSR-PS stacking operator provides
high-quality PS images.

Monotypic and converted waves image different parts of the reflector because of the
asymmetry of ray paths of converted waves and the difference in P- and S-wave impedance.
The obtained PP and PS images and the corresponding wavefield attributes may be jointly
interpreted to derive the true model of the subsurface. Hence, I believe that this work could
be the starting point for stacking converted waves with the DSR-based stacking operators.
However, further studies, which take the variation of 7 into account and investigate the
application of the method to field data, will need to be performed.



Chapter 5

Common-offset DSR stacking
operator

“Is every accident just a higher-order design?”

— Terry Pratchett, Night Watch

In the previous chapters, I used a model-based approach to derive the DSR-based stacking
operators. Another commonly used approach is based on the paraxial ray theory. The
paraxial ray theory is valid for an arbitrary velocity model and, hence, the traveltime
expressions, obtained from this theory, are considered to be velocity model independent.

In this chapter, based on paraxial ray theory, I obtain the DSR stacking operator for the
most general common-offset (CO) case. This expression extends the range of applicability
of the DSR stacking operators and demonstrates their close relationship with the standard
CRS stacking operators. For a number of special cases, I find a good agreement with the
previously obtained results.

5.1 Introduction

Seismic ray theory provides the trajectories of seismic rays as well as the kinematic and
dynamic attributes along the ray. These dynamic attributes enable to predict the properties
of rays in the paraxial vicinity of the reference (central) ray. The properties of these paraxial
rays are determined by the surface-to-surface propagator matrix (éerveny, 2001).

Bortfeld (1989) derived a parabolic approximation for the traveltime of a reflected paraxial

ray that propagates in the so-called seismic system: a structure of homogeneous layers
with curved continuous boundaries. Hubral et al. (1992) proved that the same traveltime
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inhomogeneous paraxial ray
re ST R W Wy i

medium

" central ray
. ! )

Figure 5.1: Tllustration of the common-offset reflection experiment. The subsurface
consists of inhomogeneous isotropic layers with smooth continuous interfaces.

approximation is valid in the inhomogeneous isotropic medium. Moser and Cerveny (2007)
formulated the paraxial ray theory for the general anisotropic case. They argue, that even
in an anisotropic inhomogeneous layered medium, the parabolic traveltime approximation
of Bortfeld remains correct.

The hyperbolic traveltime approximations better fit the traveltime of reflected waves,
than the parabolic approximations (Ursin, 1982; Mann et al., 1999). These hyperbolic
traveltime approximations (e.g., CO CRS) are derived from parabolic approximations
(Schleicher et al., 1993; Zhang et al., 2001). In this chapter, I show that it is possible to
obtain a DSR stacking operator from the parabolic traveltime approximation of Bortfeld.

This chapter is structured as follows. Section 5.2 introduces the required notation and
discusses the statement of the problem. I show how the parabolic traveltime approximation
is derived from Hamilton’s equation and paraxial ray theory. In Section 5.3 I discuss the
link between the submatrices of the propagator matrix and the curvatures of wavefronts.
This link allows me to split the terms of the parabolic traveltime formula in two groups and
to present the traveltime in DSR form (CO DSR approximation). Section 5.4 investigates
the relation between the new CO DSR stacking operator and the DSR operators, derived
in the previous chapters. For this reason, I consider several special cases: a monotypic
reflected wave in the ZO experiment, a converted reflected wave in the ZO experiment, and
a diffracted wave in the CO experiment. In the conclusion 5.5 of this chapter I summarize
the results and discuss the applicability of the DSR stacking operators to anisotropic media.
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5.2 Traveltime approximation from paraxial ray theory

In this section I briefly review the basics of the paraxial ray theory and the traveltime
approximation obtained from this theory.

Consider the central ray emitted from the source and, after reflection from the curved
interface, recorded by the receiver (see Figure 5.1). In the general (common-offset) case,
the source and the receiver locations do not necessarily coincide. Let me denote the
traveltime along the central ray by #5. The question is, what is the traveltime t of the
paraxial ray in the vicinity of the central ray?

Let me now introduce the notations necessary to formalize the problem. As discussed
previously, in order to show the difference between 2D and 3D vectors, the 3D vectors are
marked with a hat (e.g., X5) while their horizontal projections do not have the hat (e.g.,
Xs). In the following:

e X, and X, are the source and the receiver locations of the central ray;

e xy and hg are the midpoint and the half-offset of the central ray:

1 1

Xo = §(X90 —|—X50), hy = 5( g0 — XSO); (51)

e X, and X, are the source and the receiver locations of the paraxial ray;

e x,, and h,, are the midpoint and the half-offset of the paraxial ray:

1 1
X = §(Xg + x), h,, = §(xg — Xs); (5.2)

e Ax, and Ax, are the source and the receiver displacements:
A%y = Xg — Ry, AXy =Ry — Xgp; (5.3)
e m and h are the midpoint and the half-offset displacements:

m =X, — Xy —

1
i(AXg + Axy),
1
h=h, —hy= §(Axg — Axy); (5.4)
e Py, and Py, are the slowness vectors of the central ray at the position of source and

receiver;

e P, and P, are the slowness vectors of the paraxial ray at the position of source and
receiver, and

e Ap, and Ap, are the deviations of the slowness vectors at the source and the receiver:

Af)s = f)s - f)soa Af)g = f)g - f)go- (5'5)
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It is assumed that all source-receiver pairs are located on the measurement surface z = 0,
and that the subsurface is an inhomogeneous isotropic layered medium with continuous
curved reflectors.

With these notations I can find the traveltime of a paraxial ray ¢. According to Hamilton’s
equation (see e.g., Bortfeld, 1989) the differential dt of the traveltime of reflected wave is
equal:

dt = P, dkg — Py dRs. (5.6)

Since the vertical components of the displacement vectors (5.3) are equal to zero, the
traveltime difference (5.6) depends only on two-component horizontal projections:

dt = py dxg — py dxs. (5.7)

The paraxial ray theory (see, e.g., Hubral, 1983; Cerveny, 2001) establishes the linear
relationship between the displacements and the deviations of the slowness vectors at the

source and the receiver:
Axg = [ Ax,
=T . 5.8
(o )=7(5) 69

This relation is set up by the 4 x 4 surface-to-surface ray propagator matrix for the central

’I‘:(‘é g), (5.9)

that consists of four 2 x 2 submatrices: A, B, C and D. The propagator matrix T has
several important properties, including, among others, symplecticity (see e.g., Cerveny,
2001). Hence, there is an additional condition for these submatrices:

ray:

ADT —BCT =1 (5.10)
where I is the identity matrix. The linear relationship (5.8) may be solved to get ps and
Py:

Ps = Ps, + B 'Ax, - BT'AAx,, (5.11a)
Py = Py, + CAx; + DB 'Ax, - DB 'AAx,. (5.11b)

Substitution of (5.11) into (5.7), together with the simplecticity property (5.10) and
integration yield the parabolic traveltime approzimation for a paraxial ray:

t(Axs, Axg) = to + p;Axg — pSTOAxS

_ 1 _ 1 _
~ AxIB 'Ax, + 5AX;FB TAAx, + 5AngDB 'Ax,. (5.12)

This formula was originally obtained by Bortfeld (1989) for a homogeneous layered medium
and later extended by Hubral et al. (1992) to inhomogeneous isotropic media. Further
investigations showed that the same parabolic traveltime approximation remains valid even
in a general inhomogeneous anisotropic medium (see Moser and Cerveny, 2007, eq. 72).
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In practice, it is common to work in the midpoint-offset coordinates. The parabolic
traveltime approximation (5.12) in the midpoint-offset coordinates reads:

t(m,h) =ty + p%Axg —prAx, +mT(DB™!' ~B'A)h
1 1
+ 5hT(B*IA +DB !4+ 2B Hh + imT(B*IA +DB!' 2B Hm. (5.13)

The hyperbolic traveltime approximation can be immediately obtained by squaring both
sides of the parabolic traveltime formula (5.13) and neglecting the terms of higher order
than the second (Zhang et al., 2001):

2
£(m,h) = [ty + pL Ax, — p;I;Axs] + 2t [mT(DB*1 ~B!'A)h

1 1
+3hT(BA+DB™ +2B")h+ sm"(B'A + DB - 2B_1)m] . (5.14)

In the next section I shall consider an alternative transformation of the parabolic traveltime
formula (5.13) leading to a DSR traveltime expression.

5.3 DSR approximation from paraxial ray theory

The submatrices A, B and D from the parabolic traveltime approximation (5.13) are
linked with the wavefront curvatures of the real and the hypothetical waves. These
waves are the results of two real (common-shot (CS), common-receiver (CR)) and
two hypothetical (common-midpoint (CMP) and common-offset (CO)) experiments (see
Figure 5.2). Conventionally, the parabolic traveltime approximation (5.13) is expressed
in the curvatures of the CS (Kfq) and CMP (K&yp, KL\ p) waves (see, e.g., Miiller,
2003). On the contrary, I shall use the curvatures of the CMP (K¢ p, Ky p) and CO
(Ko, K{) waves.

The link between the wavefront curvatures and the submatrices A, B and D was discussed
by Zhang et al. (2001). Miiller (2003) also derived similar relations in the 3D case.
Table 5.1 summarizes the results obtained in these studies.

Table 5.1: Wavefront curvatures in terms of the elements of the propagator matrix.

Experiment CS CMP CO CR
+R,K/RT = - -B71(I+A) B(I-A) -B7!A
RyKIRY = DB™! (D+1)B™! (D-1)B~! -

As it is apparent from Table 5.1, the curvature of the hypothetical downgoing CMP wave
K¢p at X, has the following relation with the submatrices A and B:

1
U—RSKSCMPR;F =-B71(I+A). (5.15)
S
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Figure 5.2: Tllustration of the different acquisition geometries: a) common-shot, b)
common-receiver, ¢) common-midpoint, and d) common-offset. According
to Hubral and Krey (1980) the elements of the curvature matrices are
positive/negative if the wavefront is fully behind/ahead its tangent plane.
Hence, the wavefront curvatures of the downgoing waves at the source X,
are negative and the corresponding emerging waves at the receiver X,, are
positive.
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Here, v is a near-surface velocity at the source location Xg,, and Ry is the upper left (2 x 2)
part of the rotation matrix that accounts for the transformation from the ray-centered to
the general Cartesian coordinate system. Ry is defined by the incidence polar oy and
azimuth S, angles of the central ray. Quantities vy, Ry, oy, [, denote corresponding
values at the receiver location Xg,.

In order to express the traveltime approximation (5.13) in the terms of the curvatures of
the CMP and CO waves, I use the following notations:

S 9

1 1
M, = —R,K{ypRYT, N, = —R,K{oRY
Vs Vs

1 , - 1 , - (5.16)
M, = U_RQKCMPRQ , N, = U_RyKCORg .
g g
Since there is a linear relation:
M, - N, = Ny — M,, (5.17)

only three variables among (5.16) are independent.

As it is apparent from Table 5.1, the sum and the difference of the CMP and CO curvatures
are equal:

M, -M;=B'A+DB ! +2B M, +M;=DB ' -B'A,

5.18
N,-N,=B'A+DB!-2B7} N, +N,=DB ! -B'A. (5.18)

The above equations allow to express the traveltime approximation (5.13) in terms of CMP
and CO wavefronts:

t(m,h) = to + py, Axy — pa Axg +m" (1 (Mg + My)) + 12(Ng + Ny))h
1 1
+ §hT(Mg — M,)h + imT(Ng —Ny)m (5.19)

Since there is no unique representation for the "mixed" term, I used the linear combination
of My + M; and N, + N with the weights 1y, 7o:

m+n =1 (5.20)
If T introduce the terms:
Ls = 771M8 + 772N57 Lg = 771Mg + 772Nga (5'21)

and represent the traveltime of the central ray as a sum of the traveltimes of the incident
ts and the reflected ¢, ray segments, I can split the terms in (5.19) in two groups:

1 1
t(m,h) =t, — pr Ax, — §mTN8m +mTLh — §hTM8h

source terms

1 1
+tg+ pr Axg + §mTNgm +mTL,h + 5hTMgh. (5.22)

receiver terms
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Note that the hyperbolic CO CRS stacking operator can be obtained by squaring (5.22)
and neglecting the terms of higher order than the second. Instead, I shall square and
neglect the terms of higher order than the second in each group separately. The result is
the common-offset DSR stacking operator:

2
t(m,h) = \/[ts — prsI(;Axs] +tq [ —mTN,m+2mTLh — hTMsh}

2
+ \/ [ty + PEAX, |+t [mTNym + 2mTL b + hTM,h|.  (5.23)

5.4 Special cases

The CO DSR stacking operator (5.23) uses exactly the same wavefield attributes as the
CO CRS stacking operator. These attributes are the horizontal projections of the slowness
vectors at the source py, and the receiver pgy,, and four symmetric 2 x 2 curvature matrices
Ké e Koup: Kéo: K& linked by equation (5.17). In total, CO DSR has 13 independent
wavefield attributes in the 3D case and 5 independent wavefield attributes in the 2D case.
Additionally, CO DSR requires the weights 7; and 72 and the traveltimes t; and t,. These
additional parameters do not allow to formulate an efficient implementation of the CO DSR
stacking operator. However, in several special cases, I can get relatively simple traveltime
approximations and compare them with existing results.

5.4.1 Zero-offset, monotypic waves

In the zero-offset case, the incident and the reflected ray coincide, hence:
to
Vs = Vg = Vo, o =g = q, Bs = By = B, ts =1ty = 5 (5.24)

According to Hubral (1983), the curvatures of the CMP waves are equal to the curvature
of the fictitious NIP wave and the curvatures of the CO waves are equal to the curvature
of the normal wave:

Kéyp = —Knip, K{\p = Knip, Kéo = —Kn, K{, = Kn. (5.25)
With this simplifications, CO DSR (5.23) can be expressed in notations w, M and N
from (1.20). Indeed,

W

Psy = _5’

and CO DSR transforms

Py, = g M,=-M, M,=M, N,=-N, N,=N. (5.26)
to:

1 2
t(m,h) = 3 \/[to + WTAXS] + 2tg [mTNm —2mT (mM + 772N)h + hTMh}

n %\/{ o+ WTAXQ} ? + 2t [mTNm +2m™ (M + 7;N)h + hTMh] - (5.27)
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If T set the weight 11 = 0, this formula is identical to the 3D DSR stacking operator (2.36).
Hence, I can conclude that in the zero-offset case the "mixed" term is determined only by
the curvature of the CO wave.

5.4.2 Zero-offset, converted waves

Similar to Chapter 4, I will only consider the special case of a constant vp/vg ratio. In
this case the incident and the reflected ray segments still coincide,

as =ag =, Bs = By = B, (5.28)
however, the traveltimes of the ray segments and the near-surface velocities are different:

to . 7o
Y g .
1+~ T+~
There is no more connection with the curvatures of the NIP Emd~the normal waves. The
DSR-PS formula is expressed in terms of the parameters w, M, N (4.15):

Vs = Up, Vg = Ug, te = (5.29)

sh

YW

pso__l—{—’y’ Pgo = 1+~ (5.30)
M, — —2 M',  M,— LM, M =—RKi,pR"
L+ Lty Z UPS 7 i=s,9. (5.31)
N, =< 2 Nt N, = 2—VN;, N — — RKiL,RT,
+7 I+~ vps

where i denotes either the source (s) or the receiver (g). Note, that the difference between
M* and M, and N* and N is only in the curvature matrix. Substitution of (5.30) and
(5.31) into (5.23) gives:

1 2
flm ) = [to + vaAxs] + 2t [ — mTNim + 2mTNzh — hTM;h]

2
+ r [t + WTAR, | + 2t [mTN;m + 2mTN;h + hTM;h| . (5.32)

This expression is formally identical to the 3D DSR-PS stacking operator in standard CMP
coordinates (D.36) (see Appendix D.5 for more details). A coefficient comparison in (5.32)
and (D.36) establishes the link between the curvatures of the CMP and the CO waves
and the curvatures of the NIP and the normal waves. As expected, the curvatures of CO
experiment at the source and the receiver are equal to the curvature of the normal wave:

o = —Kn;, K{, =Kx, (5.33)

and the curvatures of the CMP experiment are different:
Kewp = [KN + <

Kmp = [KN + <

27 \2
Yoo .

7) (Kntp — KN)]-
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5.4.3 Common-offset, diffractions

In the case of a point diffractor, the curvatures of the CMP and CO waves coincide and
become equal to the curvature of the NIP wave:

%MP = —Kiinpa K%Mp = K%Ip’ Kéo = _KIS\IIPa K%o = K%IP' (5-35)

The CO DSR stacking operator (5.23) in this case simplifies to:

2
t(m,h) = \/[ts - p’slszxs] + 2] {AXSTRSKIS\HPRSTAXS}

Vs

> ¢
+ \/ [ty +pEAX,| + . [AXTR K pRTAX, | (5.36)

If T expand the square roots of (5.36), I obtain the same parabolic stacking operator, as used
by Bauer et al. (2015) to enhance the diffraction events. Hence, the DSR formula (5.36)
may be used for diffraction imaging in the CO domain in the similar way as it was presented
by Bauer et al. (2016a).

5.4.4 Anisotropic media

Moser and Cerveny (2007) proved that the original parabolic traveltime approxima-
tion (5.13) is valid in the inhomogeneous anisotropic medium. Hence, I can argue that
the DSR stacking operators, obtained in the previous chapters under the assumption of an
inhomogeneous isotropic medium, are also valid in an anisotropic medium and have the
same representations. This is because the explicit DSR stacking operators and the DSR-PS
stacking operators are the special cases of the CO DSR stacking operator, derived from
exactly the same parabolic traveltime approximation. In the case of an anisotropic medium,
the parameters of the DSR stacking operators lose their clear physical interpretation and
incorporate anisotropy effects.

5.5 Conclusions

In this chapter I have derived the CO DSR stacking operator from paraxial ray theory. This
new formulation adds sufficiently to our understanding of the DSR stacking operators. In
fact, it appears that the DSR stacking operators, derived from geometrical considerations,
are just a reformulation of the well-known hyperbolic CRS stacking operator, derived
from the paraxial ray theory. Both formulations have their advantages: while the double-
square-root traveltime expression perfectly describes diffraction events, the hyperbolic CRS
operator is exact for reflected waves from inclined flat surfaces. Since the original parabolic
traveltime approximation is valid for inhomogeneous anisotropic layered media, the DSR
stacking operators are also applicable in this general type of medium.
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Moreover, I have found the CO DSR stacking operator for pure diffraction events. In my
opinion, this DSR formulation is physically more intuitive than the parabolic traveltime
formula. I think that this new DSR operator could further improve the enhancement of
diffraction events.

Finally, a number of potential weaknesses of the CO DSR approximation has to be
considered. The current formulation of the CO DSR stacking operator is challenging
for implementation since it requires additional parameters: the traveltimes along the ray
segments and the weight coefficients 7y, 72, defining the "mixed" term. As was found in
this work, in the ZO case, the "mixed" term depends only on the curvature of the normal
wave. However, with the knowledge obtained so far, I cannot argue that this remains
valid in the CO case. The solution of this problem gives a possibility for the efficient
implementation of the CO DSR. stacking operator.



80

CHAPTER 5. COMMON-OFFSET DSR STACKING OPERATOR




Summary and Outlook

Several new multidimensional stacking operators have been suggested in this thesis (see
Figure 5.3). Some of them are extensions of the already existing i-CRS and n-CRS stacking
operators from the standard 2D case to the 3D case and to the case of converted PS waves.
Another "family" of stacking operators, the DSR. stacking operators, provides a completely
novel representation of the traveltime of the reflected wave. Although they are not as
accurate as i-CRS and n-CRS, they have a unique role among the DSR-based stacking
operators, since they could be derived both from the model-based approach and from the
paraxial ray theory.

Thus, the paraxial ray theory is the origin of two alternative representations of the
traveltime of the reflected wave (3D CO CRS and 3D CO DSR). In some sense, these
representations are asymptotic: while CRS perfectly describes the traveltime response
from plane reflectors (reflector curvature is equal to zero), DSR is designed for the scattered
waves from point diffractors (reflector curvature is equal to infinity). I have also shown that
for every DSR operator there is a corresponding n-CRS stacking operator which "sews"
both asymptotic solutions. As a result, n-CRS inherits from the paraxial ray theory a
number of useful features, i.e., n-CRS stacking operators are valid for inhomogeneous
anisotropic medium.

Several stacking operators have not been discussed in detail, but their derivation is possible
based on the principles proposed in this work. For example, the derivation of 3D i-CRS
stacking operator for converted waves is straightforward with the proposed auxiliary
anisotropic medium. Also the n-CRS formula for the case of CO geometry could be
immediately obtained from the CO DSR stacking operator. However, the model-based
derivation of the CO stacking operators is still not fully understood.

Unfortunately, the 3D i-CRS stacking operator, which was the original objective of this
research, turned out to be computationally very expensive. Nevertheless, the investigation
of 3D i-CRS eventually led to the discovery of the auxiliary anisotropic medium. The
auxiliary anisotropic medium incorporates properties of effective and optical auxiliary
media and it is an essential element of the 3D simplified model.

Although all new stacking operators provide better accuracy than the conventional CRS
stack (and, hence, can potentially be used for larger spreads), they are still the short-spread
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Figure 5.3: Classification of the new multidimensional stacking operators (compare with

Figure 1.8). The new stacking operators (in yellow boxes) are derived from
the paraxial ray theory and from the model-based approach. The black
dashed arrow indicates that the derivation/extension of the stacking operator
is possible, but not discussed in the thesis. The blue solid arrows show the

related stacking operators.
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approximations and could be applied only for "local" stacking. The CO DSR stacking
operator is important for theory, however, it remains to be further clarified whether the
effective implementation could be proposed for this stacking operator. It is also worth
mentioning that although the PS staking operators have been derived under the assumption
of constant vp/vg ratio, they could be applied, with caution, to the complex media with
non-constant vp /vg ratio.

In future, it will be of great interest to apply the new stacking operators to field data,
especially for the 3D case and for the case of converted waves. The derivation of DSR and
n-CRS stacking operators from the paraxial ray theory, as well as the formulation of the
paraxial ray theory for the general anisotropic medium, opens up a lot of new opportunities.
Future work should also find an interpretation of the stacking parameters in the presence
of anisotropy and extend the existing applications (e.g. NIP wave tomography) to the case
of anisotropic media.

Finally, T would like to make several recommendations. I found out that the explicit
stacking operators (especially n-CRS) turned out to be the most efficient. If possible, I
suggest to jointly interpret the PP and PS stacked sections as well as the related attributes.
I also recommend to use the DSR-based stacking operators for diffraction imaging and
enhancement.
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Appendix A

Traveltime of NIP and normal waves

A.1 Traveltimes in inhomogeneous medium

In this section, I obtain the hyperbolic expressions for the traveltime of the NIP and normal
waves in the 3D imhomogeneous medium.

In the special ray-centered coordinate system £’, the NIP wavefront arrives at the central
point X, = (0,0,0) at the time £ with the curvature Kjp (see Section 2.3). The goal is
to find the traveltime, needed for the NIP wavefront to reach the point X' = (2/,4/,0) in

the vicinity of the central point.

In the vicinity of the central point, the traveltime of the NIP wave in the inhomogeneous
medium may be presented as a truncated Taylor series expansion about x' = (2/,1/):

by 1.1 0%

t(x’ =X X.
(x) 2 2 ox'ox!
The second spatial derivatives of the traveltime in the ray-centered coordinate system are
linked with the wavefront curvature (Cerveny, 2001), therefore:

(A1)

ot 1,
ox'ox! vy NP

(A.2)

The final formula for the traveltime of the NIP wave in the inhomogeneous medium is
obtained by squaring (A.1) and omitting the terms of order higher than two:

2t
t2(x/) = ZO + 2—1()]0X/TK/NIPXI. (A3)

Similar result may be obtained for the normal wave:

ot
(%) = ZO + 2—:})0XITKINX/. (A.4)
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A.2 Traveltime of NIP wave in auxiliary medium

In this section, I obtain the traveltime of the NIP wave in the auxiliary anisotropic medium.

The NIP wave originates from the image source located at the point (0,0, R{;p) in the
auxiliary anisotropic medium (in the £’ system). The traveltime, needed for the NIP
wavefront to reach the point X' = (2/,4,0) in the vicinity of the central point is obviously
equal:

R*%p + X

t2(x') = T, (A.5)
where the group velocity ¢
1 sin?@cos?2®  sin?Osin?d  cos?O
3 = + + (A.6)
¢%(0,) A Az As3z
depends on the group angles:
12 12 %2
R
Sin29C082@: *21.—,2, SiHQGSiHQ(b: *2y—/2, Cosz@: *2—NIP/2
R*gp + ¥ Ry + ¥ R + X

(A.7)
Substitution the value of the group velocity (A.6) into the traveltime of the NIP wave in
the auxiliary medium (A.5) yields:

*2 1

= 0

(x') = Bawe | ot ( Aél . >x'. (A.8)
Axn

By comparing the curvatures in the expressions (A.3) and (A.8), the parameters Ajq, Ago
of the auxiliary medium are found to be:

1 tO /11 1 tO 122
—_— = — — = —Fk . A9
A 29 NIP> Aoo 29 NIP ( )

A.3 Traveltime of normal wave in auxiliary medium

In this section, I obtain the traveltime of the normal wave in the auxiliary anisotropic
medium.

Consider the parabolic reflector with the curvature K'g in the special ray-centered
coordinate system L’ (see Section 2.3). The reflector is embedded in the auxiliary

anisotropic medium (see Section 2.4 and Figure 2.4b).

The surface of the reflector X/ 7 s given by:

m;’ef x
>A(;’6]‘.()(/7’6]0) = y:"ef 9 Xlref = < y,ref ) B (A..]_O)
f(xlreﬁ y/ref) ref
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where 1
T
f(x'ref) = Riqp + §X/refK/RX/7"€f’ (A.11)

K'R is the symmetric curvature matrix:

e
K'r = < 21 22 ) ; (A12)
R KR

R{;p is the apex of the reflector:
tovo
R;HP = T, (A]_?))
%0 is the one-way traveltime along the central ray and vy is the group velocity in the
Z'-direction.

The normal vector to the reflector surface is equal to:

k/ll / k/12 /

o Bl e
n (X Tef) = k,R 'I;“ef + k,R y;ef . (A14)
-1

Since the normal wavefront originates as an exploding reflector, the direction of the vector
i’ defines the phase polar § and azimuthal ¢ angles:

sin 6 cos ¢
i =|d|| sinfsing |. (A.15)
cos 6

In the 3D case, the auxiliary medium is a weakly anisotropic ellipsoidal medium. In the
weakly anisotropic ellipsoidal medium, the group polar © and azimuthal & angles are
related with the phase angles (Daley and Krebes, 2005, p. 5 eq. 17,19):

1/2

Ay tanb 1 Aoo/A11)? tan?
tanq):%tangb, tan © = 1 tan COS¢[ +( 22/ 11) an ¢]

A.16
11 A3z ( )

The group angles define the direction and the value of the group velocity ¢ (Daley and Krebes,
2005, p. 5 eq. 21):

1 B sin? © cos? @ . sin? O sin? @ n cos2 O (A17)
2(0,®) Aqy Adp Aszs '

In summary, the parameters (27, 2 Yre f) define the point on the reflector %/, 2 the normal

vector at this point ©/, the phase angles 6 and ¢, the group angles © and ®, and the group
velocity (.

Now, consider the ray, which originates at the point X/ Fon the reflector. This ray intersects
the surface 2’ = 0 at the point X,

’A(;nt = )A(;ef(x/ref) + tf(x/ref) (A.18)
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or, in components:

x;nt x;’ef Cl (X;«ef)
Yint | = | Yrey +t| Gy |- (A.19)
0 f(x/ref) <3(X;fef)

The traveltime ¢ as a function of x/, ¢ may be determined from the z-component of the
equation (A.19):
S rer)
o) = == (A.20)

Substituting (A.20) into (A.19), T obtain the coordinates of the ray’s intersection with the
surface 2/ = 0:

Tint = Ty — [ (X ref)C1/C35 (A.21a)
ygnt = y;"ef - f(Xlref)CQ/CS- (A21b)

The ratio of the group velocity components is equal (see section A.4.2 for details):

1 11 12
(/G = R TENTIT (K'R Trep + K'R Yreys) (A.22a)
NIPF NIP
1 21 22
C2/C3 = TN (KR Thor + KR Yres)- (A.22Db)
NIPF NIP
By substituting (A.11) and (A.22) into (A.21), I get:
Xint = [T+ (1 + QK 5ipK'r] X re, (A.23)
where ) . A
0=_= /T K/RX/ F _ iref. (A24)
27 e/ " R RYp

Since I only consider the rays in the vicinity of the central ray, the parameter 2 <« 1 and
may be neglected:
I =1 1—1 1!
X't ~ [K'g 4+ K'xip| K'-X re s (A.25)
Therefore, in the vicinity of central ray there is a linear relation between x',.r and x'j,;:

_ _ -1
X'yef A K'y' [K,Rl + K,NllP] X int- (A.26)

With the last relation it is possible to find the traveltime of the normal wave in the auxiliary
medium as a function of x’;,;. Indeed, if T square the equation (A.20)

fQ(X,ref)
G o

substitute into this equation the vertical component of the group velocity (see section A.4.3
for details):

t2(x;ef) = (A.27)

11
=S+

T T -1
CZ T2 X/TefK,RK,NIPK,RX,ref (A.28)
3 0

*
RNIP
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and the squared depth of the reflector (the fourth-order term is omitted):
fQ(X'Tef) = R*%\Hp + RﬁlpxlifK'Rxlref, (A.29)
I obtain (the fourth-order term is omitted):
tz(xl ) = 5 + — to KI KI K’ RX + — KI I(li1 K,RX, (A30)
ref A 200 ref NIP ref 2 f R refs
I
or
27! tO 1T | gr1— 1—1 Il
t°(Xpef) = 1t o, refK [K r +K NIP}K RX ref- (A.31)
Finally, T substitute X, from (A.26):
2/ 1 t% to 1= / -1
t(Xint) = Vil 200 int [K r +K NIP] X int- (A.32)

A.4 Group velocity components

In this section, I present the proof of the equations (A.22) giving the ratios of the group
velocity components and the equation (A.28) for the vertical component of the group

velocity. The proof requires two additional useful relations.

A.4.1 Additional useful relations

1. Relations between the group and phase angles:

A
tan © cos ® = —L tan 0 cos o,
Ass

Ago
tan © sin ¢ = —tanﬂsmgb
Ass

(A.33a)

(A.33h)

These relations are obtained from the equations (A.16) after some basic trigonomet-

ric manipulations.

2. Ratios of density normalized elastic parameters:

A33 RNIPk NIP ’

=
A33 RNIPk NIP

These relations follow immediately from the equations (2.13).

(A.34a)

(A.34b)
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A.4.2 Ratios of group velocity components

In order to proof the equation (A.22a), I use the relation (A.33a), the relation (A.34a) and
the expression for the normal vector (A.14):

A A k'llxl + k/l? /
(1/(3 =tanOcos ® = — L tan 6 cos ¢ = um _ i r:f ,HR yref (A.35)
Ass Asz ng Ripk'Nip

The equation (A.22b) can be derived similarly.

A.4.3 Vertical group velocity component

The proof of the equation (A.28) will be given in several steps.

First, I use the definition of the group velocity (A.17):

1 1 _ tan? © cos? ® n tan? © sin? ® n 1
(3 [¢[2cos?© Ay Ag Asg’

(A.36)
Second, T use the relations (A.33):

1 A11 1
tan? 6 cos? —|— 222 1 an? O sin? + — A.37
C3 A%?, ? A33 ? Az’ ( )

Third, T use the relation between the phase angles and the normal vector (A.15):

11 [ An(m 2+A22(n2)2]_ (A.38)

(2 As Aszz “ng3 Aszz “ng

Fourth, T use the equations (A.34), the expression for the normal vector (A.14) and the
definition of the parameter As3 = v(Q]:

1_1 1 12 4

= |l (Kl + g
<-32 ,U(Q] R;HP]{:,NIP ( R ref R yref)

1 21 22 2
e (K'R Ty + KR Yrey) } (A.39)
NIP® NIP
Finally, I present the result using the matrix notation:

1

<§ vo

1

[1 o R refKI KINIPKIRXIref}- (A.40)
NIP
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3D 1-CRS stacking operator

As discussed in Section 2.7, the 3D i-CRS stacking operator consists of:

1. the DSR traveltime formula:

X/2 Y/Z Z/2 \/X/2 Y/2 Z/2
t(9, ) = 5 4 78 TS 29 479 4 _g’ B.1
() \/Au Ao A T\ A T An T Ay (B.1)

R, Ry

where:
Xz/ = x;’ef o xé’ Y;/ = y:"ef - yé, Zz( = Z7/"ef B Zéa i =59, (B.2)

%, and Xj are the source and receiver locations, and %, ,(V,) is a parametric
representation of the reflector surface; and

2. the system of nonlinear equations:

2 g
(A (B.3)
dp —

which yields the parameters (¢,,,) defining the reflection point X/ of the paraxial
ray.

In this Appendix, I discuss the solution of the system (B.3) based on the example of the
ellipsoidal reflector.

B.1 Ellipsoidal reflector

The ellipsoidal reflector can be parameterized both by the lateral coordinates and by the
polar angles. The formulas (B.4) and (B.6) give the ellipsoidal surfaces with the center

91
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at the point (0,0, RY) and the curvature Ky at the point (0,0, R{p). The depth of the
center of the ellipsoid Ry, the depth of its apex R{;p, and the length of its z’-semi-axis
R* are linked (see Figure 2.5b):

Ry = Rypp + R™

B.1.1 Parameterization by lateral coordinates

In this case, the reflection surface is a function of lateral coordinates 2’ and v/:

/

X
Xep(@y) = | ¥ (B.4)
f@'y)
where
1
f(x)=Ry — R \/ 1-— ﬁx’TK’RX’. (B.5)

B.1.2 Parameterization by polar angles

In this case, the reflection surface is a function of polar 6 and azimuthal ¢ angles:

A’ sind cos ¢
X (0,0) = | B'sindsin(p — Ap) (B.6)
R, — R* cos ¥
where
K KE K
A = VR ‘= VR in Agp = B.
B Gerkn B Gerxy SmA¥ (B.7)

/k'ﬁlk%.

B.2 Linearized iterative approach

The linearized version of system (B.3) is:

. T B.8
Ay + Ay Ax’D 4+ Ay Ay'D) =0, (B8)

T T

{Am N A%Alﬂlﬁj) + AmyAy,(j) =0

1(7)

where Az'};

, Ay 9 ) are the updates of the reflection point coordinates at the j-th iteration

AW =70 x'(jil), Ayl(j) = y/ﬁj) - y/ﬁjil)- (B.9)

T



APPENDIX B. 3D I-CRS STACKING OPERATOR 93

The coefficients of the system are equal:

Ap= A3+ AL, Ay= A5+ A,

Ao = Ay + ASy, Ay = A5 + AL Ay = A5 + AL, Ay =4,  (BI10)
where
) rogie
A, = R% [2(121 + A—i} (B.11a)
. ozl
Ay = R%, [22 Ai’ ] (B.11b)
_ 2
e T A R S
2
A= n% Aim + ‘Zé—;g % —(4i)?], (B.11d)
AL, = n% fig - Zi{ﬁ;y/ — LA =g, (B.11e)

and f/,, f!’// and f7, fé’/y,, le/l/y’ are the first and the second-order spatial derivatives of
the function f, describing the reflector surface.

Equations (2.6), (2.13) and (2.21) link the variables in (B.11) with the surface-based
kinematic wavefield attributes.

B.3 Trigonometric iterative approach

When the reflector surface is parametrized by polar angles, the system (B.3) reduces to:

1 (X} O TR Y5 4 L Ozpef 1 Xg 0% R Y5 4 A P2er) _ g

R\ A 00 T s o0 T A5 00 R\ M 99 T Am v T A v ) = U

1 ng 8$;‘ef YSI 8y:‘ef ng 8Z':“ef 1 Xg,] 8$;‘ef Ygl 8y:‘ef Zg’; 8Z':“ef _ 0

"o\ 00 T A ap T A 0y ) TR\ 0 T A e T s e ) =V
(B.12)

In the case of the ellipsoidal reflector (B.6), the partial derivatives of X/ 7 with respect to
the angles ¥ and ¢ are equal:

a / ax;"e . .
_ﬂ;:;f = A’ cos ¥ cos p, Wf = —A’sindsin g,
y! OYre

g:;f = B’ cos¥sin(p — Ayp), a—@f = B'sind cos(p — Ap), (B.13)
0z! 02!

ref _ px _: ref
— 79 frg
50 R*sin 9, 3y 0

Substituting (B.13) into (B.12) yields two implicit equations for the angles ¥ and ¢:

CoS Agp(;—i + I’;—i)

tan ¢ = " X Vi (B.14a)

X7 . 7
gﬁﬁ—ff(R—s + R—Z) — smAgo(R—s + R—‘f])
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AL A
== 9
tan = (I;f f;’), (B.14b)
(7 + =)
where A B Ay
A; R* A33X, ¢+§A—Y,SI ((b_A(b)a Z‘:379' (B15)

Equations (2.6), (2.13), (2.21) and (B.7) link the variables in (B.14) with the surface-based
kinematic wavefield attributes.



Appendix C

Explicit stacking operators

C.1 Alternative representation of n-CRS

The 2D n-CRS stacking operator, proposed by Fomel and Kazinnik (2013), reads:

o \/F(m) +h? + \/Z(m—h)F(m%—h)’ o

where
F(m) = (to + wm)2 + 2toN'm?, (C.2)
X = 2to(2M — N) +w?, (C.3)

and w, M, N are the CRS parameters (1.17).

This stacking operator may be transformed to more intuitive expression. Indeed, taking
into account the relation

F(m) + xh?* = %F(m— h) + %F(m+h) + 4tg(M — N)h? (C.4)

yields:

t(m,h) = \/E VF(m—h)+ %\/F(m + h)} ’ + 2to(M — N)h?. (C.5)

Note, that expressions (C.1) and (C.5) are identical.

C.2 3D n-CRS stacking operator

Fomel and Kazinnik (2013) proposed a formal extension of the 2D n-CRS stacking operator
to the 3D case. They replaced m, h, w by two-dimensional vectors m, h, w and replaced

95
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M, N by the symmetric 2x 2 matrices M and N. Thereby, the 3D n-CRS stacking operator
reads:

oy | Fm) BT ¢ \/QF(m ~mF(m b .

where R
F(m) = (to + me)2 + 2tom ™ Nm, (C.7)

X = 2to(2M — N) + wwT.

The alternative 3D n-CRS expression reads:

t(m,h) = \/[%\/ﬁ(m —h) + %\/F(m - h)]2 +2tohT (M — N)h. (C.9)

C.3 3D DSR stacking operator

In this section, I give a proof for the explicit DSR stacking operator from Section 2.8. 1
start with the DSR expression for the traveltime of the reflected wave (2.27):

DI /R D (A
t:\/ s 4 Zs 4% o fZ9 L9 79 (C.10)
All A22 A33 All A22 A33

I consider the value under the square root and try to interpret it. I do the following
operations:

e Use the definition of X/, Y/, and Z] (2.25):

(=) (i=vey)” | (= 2re)”

S; = , 1=25,g. C.11
‘ An Ao Ass g (C-1)
e Use the definition of auxiliary media (2.13):
i = 200 NIP\*i ref 2U0 NIP\Ji ref U(Q] i ref) * .

e Use the vector and matrix notations:

to T 22 ;227 ey 22
S, = —(x',—x K/ x . —x yreS Zmemrel L 2 C.13
7 2?}0( ) ref) NIP( i ref) U% U% ?}3 ( )

~—— —— =

Si(l) Si(g) Si(a) 554)

e Find Si(l):

Use the definition of x/;:
xi=m' Fh, (C.14)
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and approximation for the reflection point (2.35):
X e A [I—K’ LK v | m/ (C.15)
(X/i — X/ref) K/NIPK Nm :F h, (016)
t
s = o [ K'Y (K vip) TK ym' 7 2m™ KT + WKy o0 (Ca7)
0
e Find Si(2):
Use the relation between curvatures (2.21):
K'r= Ky -Kyp] ™ (C.18)
and the paraboloidal reflector (A.11):
= R% LT K C.1
Zref = N1P+2Xref RX ref- (C.19)
r tovo 1 /T / I 1 /T 1= / /
5, to T 0 TyT
§& =204 0 T ym' — Lm/TK Y (K K'ym'. C.21
7 4 + 2,[)0 m 2,[)0 ( NIP) Nm ( )
e Find Si(s):
Use the link between the coordinate systems (2.6):
& — RT()RT () RT (5)(% — %o). (€.22)
BT
H,_/
=0
The elements of the matrix B are equal:
BY = sinacos 3, BL, = sinasin 8 (C.24)
,_ sinozcosﬁ) I
z; = < sin v sin Ax; = 5 W Ax;. (C.25)
t
S@(g) = 5OWTAXZ (C.26)
e Find SZ-(4):
g 1 2
Si( ) = Z(WTAXZ‘) (C.27)
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e Combine Si(l)7 SZ.(Q)7 SZ_(?’) and Si(4)3

Bt 1 t
Si = ZO =+ EOWTAXZ + Z (WTAXZ)2 + 2—0 |: /TK/Nm/ + QmITKlﬁh/ + h/TK/%IPh/] y
Vo
(C.28)

or

1 2
Zsi = [to + WTAXZ'] + 2t [mTNm F2mTNh + hTMh] i=3s,g. (C.29)

Finally, I obtain the 3D DSR stacking operator:

1 2
tm,h) = \/ [to + WTAXS] + 2, [mTNm — 2mTNh + hTMh]

n %\/[ ot WTAXQ} 1ot [mTNm + 2mTNh + hTMh] . (C.30)

C.4 Relation between 3D DSR and 3D n-CRS

The 3D DSR stacking operator (C.30) could be further transformed to the 3D n-CRS
stacking operator. Indeed, using notation F' (C.7), the 3D DSR stacking operator reads:

t(m,h) = %\/F(Axs) +2tohT (M — N)h + %\/F(Axg) +2tohT (M — N)h. (C.31)

If T square the right-hand side of the last expression

t(m,h) = \/[%\/F(Axs) +2t0hT (M — N)h + %\/F(Axg) + 2toh™ (M — N)h} g
(C.32)

"take out" 2tghT (M — N)h from the square roots and neglect the terms of higher order
than the second, I obtain the stacking operator

t(m,h) = \/[%\/F(Axs) + %\/F(Axg)r + 2tohT (M — N)h, (C.33)

that is identical to 3D n-CRS (C.9).




Appendix D

Stacking operators for converted
waves

D.1 Deviation angle

In this section I derive the deviation angle ¥, (equation (4.9)). I consider the circular
reflector with the center O, the central point Xy, and the source and the receiver at Xg,
Xg, respectively (see Figure D.1). The converted PS ray reflects from the circle at the
point S. The line passing through the points O and S intersects the measurement surface
at the point Xp. In all derivations of this appendix, I assume that the source and receiver
displacements

A.%'S EXs—Xo, A.%'g EXg—XO (D.l)

are small compared to the typical scale of the problem (like Ry = OXj or Rnip = SXp):

[Azs| |Azg| |Azs] !Awg\>

) ) ) e 1. D.2
Rnip” Rntp BN Ry (D-2)

55max<

I can express the deviation angle ¥, = /X0 Xp by the relations in the triangle A XqOXp:

XoX XoX XoX
OOX;D Sin(g —a) = OOX;D cos o = OOX: cosa(1+ 0(e)). (D.3)

sind, =

The combination of the Snell’s Law and the relations in the triangles AXgSXp, AXaSXp,

sin 91 sin 92 ll 71 l2 2

- = = /XsXpS D.4
vp vg ~ sinf sinf’  sinfy  sin(r — )’ g sXp (D.4)

lead to the following estimation of the ratio [y /ls:

i vpry 1
= N =~(14+0 . D.5
b= vsrs s (1 + O(e)) (D.5)
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SIA 4

PS reflection

Figure D.1: Hlustration of the notations used in the derivation of sin¢.

Here I took into account that: .
L —140(). (D.6)
T2
The combination of (D.5) and the fact that l;+1lo = X —Xg yields the following expression
for XoXp:
YAz, + Axg
1+

where a variable change from Xg,Xq to Azg, Az, was made. Substituting XoXp into the
equation (D.3) gives the final result:

XoXp = (1—|—O(€))

YAzxy + Az

1+ )i cosa + O(e?), (D.7)

sind, =

or, alternatively, in the v-CMP coordinates (4.5):

sind, = T cosa+ O(e?). (D.8)
Rn

D.2 Derivation of DSR-PS stacking operator

In this section T present the derivation of the DSR-PS staking operator (4.10). I start with
the DSR expression for the traveltime of converted PS wave in constant-velocity medium:

1
t=—v (s — )2+ 22+ —\/(xg—xr)2+z7?. (D.9)
vp vs

Here x5 and x4 are the lateral coordinates of source and receiver, ,, z. denote the location
of the reflection point, and vp and vg are the velocities of P- and S-waves, respectively
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(see Figure 4.1). For convenience, I denote the expression under the square root by S;:

Si= (i —x)* + 2, i=s,9. (D.10)

It is apparent from the Figures 4.1 and D.1 that the reflection point coordinates are equal:

z, = Rynsina— Rsin(a —9;,) + xq,
zr = Rncosa— Rcos(a—1U,). (D.11)

Substitution of (D.11) into (D.10) and simplification of trigonometric expressions yield:
S; = R% + R* — 2RnRcos ¥, + 2Az; Rsin(a — 9,) — 2Ax; Ry sin a + Aa?. (D.12)

The goal is to find a traveltime approximation which is accurate up to second order of ¢.
Hence, in the approximation for cos ¢, I include the second order term:

1
costy =1 -2 sin? 9, + O(eh) (D.13)

and in sin(a — ¥,) I retain only linear terms:

sin(a —¥,) =sina cos¥, — cosasind,. (D.14)
——
=1+0(g2)

Substituting (D.13) and (D.14) into (D.12) and taking into account the relation Ry =
Rnip + R yields:
2
S; = [RNIP — Az;sin a} + RyRsin? 9, — 2Az; R cos asind, + Ax? cos® a. (D.15)

Now, I substitute the approximation for sin, (D.3):

2
Si = [RNIP — Ax;sin a] + cos? {Ri;ﬁf - 2% nAz; + Axy|. (D.16)

In eqution (D.16), the source and receiver displacements Ax;,i = s, g are equal to:
Azg =1 —vh, Az, =m+h. (D.17)

To simplify these notations, I introduce h;:

~ —_— iL 1 p— ~
hz‘ _ {~ ’7 3 .Z S , A,CL',L — m + h’L" Z — S’g‘ (D].8)
h, i=g

With these notations .S; is equal:

.12 m?  2mh; b2
S; = [RNIP — Ax;sin a] + cos? aRNip e + RNZ RNZIP]' (D.19)
Velocities of P- and S-waves can be expressed as:
1 1 2 1 vyoo2 (D.20)

vp 1+yves’ vs L47vess
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Hence,
2 \2 2 si 2 2 12 2mhy h?
( ) S; = |:t0 — Slnanl' —|—2t0COS |:m— + i + L (D21)
Veff Veff Vepr LRN Ry Rnip
Here I took into account that the traveltime of the central ray is equal:
2R
ty = — N (D.22)
Veff
Finally, by introducing the coefficients:
w:_Qsina, = cos® o ’ N cos? o (D.23)
Veff VesfRNIP Vesf RN
I obtain the compact and elegant expression for the quantity under the square root:
92 \2 2 - . -
( ) S; = [to + wmi] + 2t [Nﬁf + 2Nk, + Mhﬂ (D.24)
Veff

Substitution of (D.24) into (D.9) gives the DSR-PS stacking operator:

~ 2 ~ ~ ~ ~ ~
t(m, h) = ﬁ [to n umxs} + 2t [Nm2 — 2N (yh) + M(yh)2]

n % [to n @Axg} ot [Nm? + oNmh + Miﬂ]. (D.25)

D.3 Derivation of CRS-PS stacking operator

In this section I discuss the derivation of the CRS-PS formula (4.12). I begin with the
DSR-PS stacking operator (D.25). T "take out" (tg + wAx;) from the square roots, make
Taylor series expansion of the square roots and neglect the terms of higher order than the
second:

¢ = o+ @Az,) ( | Nii? = 2Niw(yh) + M (vh)?) )

1+~ (to—i—?j)A%‘s)
v(to + WwAzy) 1 < o o = =
1 N 2Nmh+ Mh=|). (D.26
147 ( (to—}—u?Axg)[ e emi ]) (D-26)

After some simplifications:

_Azg+yAz, N+yN _, 29N —2yN _- +2M +~yM
— mh+ ———

t=to+w m h?,  (D.27)
1++v 1+~ 1+~ 1+~
N—— e N —
= =N =0 I
I obtain . o
t =t + win + Nm? +~yMh?. (D.28)

Final formula is obtained by squaring (D.28) and neglecting the terms of higher order than
the second:

12(m, h) = [to + wm} " 4ot [anz + VMBQ]. (D.29)
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D.4 Derivation of n-CRS-PS stacking operator

In this section I discuss the derivation of the 2D n-CRS-PS formula (4.13). T begin with the
DSR-PS stacking operator (D.25). Using notation F' (4.14), the DSR-PS stacking operator
reads:

t(m,h) =

—JE(Aay) + 20 (T — N) (7h)? + %\/F(Axg)%—%o(]\;[—ﬁ)ﬁl
(D.30)
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If T square the right-hand side of the last expression

t(m,ﬁ):\/[1+7\/F Azy) + 2to (M — N)(vh)2 + 1+7\/F Axzg) + 2t (M — N)h2] :
(D.31)

"take out" 2t (M -N ) h? from the square roots and neglect the terms of higher order than
the second, I obtain the n-CRS-PS stacking operator:

t(m, h) = \/[Hw’/ i — yh) + 1+w’/ +h} + 2ty (M — NYR2.  (D.32)

D.5 DSR-PS stacking operator in CMP coordinates

For some application, it might be useful to express the DSR-PS stacking operator in the
standard CMP coordinates. The midpoint displacement and the half-offset in the v-CMP
and standard CMP coordinates have the following relation:

f=m+oh, h=uh, (D.33)
where 1 5
YT =2 (D.34)
v+1 v+1
Substitution of 7 and & into (D.25) yields, after some algebra:
1 2 - _ N .
t(m,h) = ?\/[to + ’(I)ACES} + 2t [Nm2 —2Nmh + [N + ~?v?(M — N)] h2]
Y
2 _ ~ _ .
+ T [to + wmg] + 2t [Nm2 +2Nmh + [N + v2(M — N)] h2] (D.35)

Similarly, the 3D DSR-PS stacking operator in the standard CMP coordinates reads:

t(m,h) =
1 2 _ N N .
T [to+ WTAX, | + 2t [mTNm — 2mTNh + hT [N + 202(M — N)| ]
5
2 ~ ~ ~ ~ ~
n r [to n vaAxg] + 2t [mTNm +2mTNh + hT [N + v2(M — N)] h] . (D.36)
v
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Appendix E

PS exact solution

The problem of reflection from the circular mirror has a very long history. This problem
is known as Alhazen’s problem (Dorrie, 1965) and can be traced further back at least to
Ptolemy’s time (Neumann, 1998). The problem of reflection from the circular mirror is
identical to the circular billiard problem. (Neumann, 1998) and Drexler and Gander (1998)
proved that the circular billiard problem typically has two or four solutions corresponding
to the roots of fourth-order algebraic equation. TLanda et al. (2010) used this idea to
improve the quality of MF stacking operator.

In this appendix I discuss how to extend the solution proposed by Drexler and Gander
(1998) to the case of converted waves.

E.1 Method

In the case of converted waves, the problem can be formulated as follows. Given a source
Zs, a receiver x4, and a circular reflector. How to find a point on the circular reflector,
where a seismic ray form x, to x, reflects, assuming that the mode conversion from P to
S occurs on reflection?

Following the paper of Drexler and Gander (1998), I place the source zs at the point
(—=h,0), the receiver x4 at the point (h,0) and assume that the reflector is a circle of unit
radius and center at the point (mq, ms), i.e., the circle is given by equation:

(x —m1)? + (z —mao)? = 1. (E.1)

I denote by v, and vy velocities of P- and S-waves, v = vy, /vs.

Following Drexler and Gander (1998), I introduce the term "isochrone". By definition, at
each point on the isochrone curve Snell’s law is carried out for the incident and the reflected
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Figure E.1: Typically, equation (E.3) has four real roots. Corresponding reflection points
are shown as black crosses. Only the root, giving the smallest value of
traveltime, yields the required reflection point.

rays. In the case of converted waves, the isochrone is given by equation (see section E.2):

V(@4 h)2+ 22+ (x —h)? + 22 = 20. (E.2)

Coefficient 20 has a clear physical meaning of the product of the traveltime and the velocity
of P-waves. In the case of monotypic waves (7 = 1), the isochrone (E.2) is an ellipse. The
reflection point coordinates may be found as a solution of the system of three equations:
the equation of circle (E.1), the equation of isochrone (E.2) and the condition for tangency
between the circle and the isochrone (see section E.3). This system of nonlinear equations
in variables {z, z, o} leads to the sixth-order algebraic equation:

Beu® + Bsu® + Baut + Bau® + Bou® + Bru+ By = 0, (E.3)

where coefficients f3;,i = 0,...,6 depend on parameters h,~y, my, mo (see section E.4). The
reflection points are equal:

Tr =mq +cosf, 2z.=mo+sinf, 6O =2arctanu. (E.4)

In most cases equation (E.3) has four real roots and two complex roots. The typical
situation is shown in Figure E.1. Among real roots, the root, giving the smallest value of
traveltime, yields the required reflection point.

E.2 Isochrone of converted wave

I assume that for the fixed traveltime ¢ the isochrone is given in parametric form: r = r(7).
I denote by ry(7) and ry(7) radius vectors describing the isochrone from the position of
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Figure E.2: Tllustration of the notations used in the derivation of the isochrone equation.

source x, and receiver x4, respectively (see Figure E.2). If L is an arbitrary point on the
isochrone, and n is a unit normal vector of the isochrone, then Snell’s law may be written

| sin(r,(7), 1(r)) = ysin(ry (7). n(r)). (E5)

If instead of the normal I consider a unit tangent vector k, the Snell’s law will look like:
—ycos(ry(7),k(7)). (E.6)

cos(rs(7), k(1)) =

Now, I use the definition of the scalar product of vectors, substitute expression for the unit
multiply equation (E.6) by |[¢(7)|, and note that ©(7) = rs(7) =

()

()

tangent vector k = EGIL
14(7). Finally, I obtain:
ry(r) E(r) _x(r) () 1)
rs(7)] rg (7))
This expression is a total derivative with respect to 7:
d d
lro(r)] =~y lrg (7). (E3)
Rearranging terms and carrying out the integration yields:
s ()] +[rg(7)| = 20, (E.9)

The coordinate representation of rg,ry in

where 20 is the integration constant.
equation (E.9) yields the equation of isochrone:
(E.10)

V(@4 h)2+ 22+ (x— h)?+ 22 =20.

E.3 Tangency condition

The reflection point (z,,z2,) should satisfy Fermat’s principle, according to which the
Mathematically, this

reflected ray prefers the path, which minimizes the traveltime.
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is equivalent to the fact that the circle and the isochrone must touch each other at
the reflection point. If implicit functions F' and G denote the circle (E.1) and the
isochrone (E.2), the condition of tangency between the curves, may be written as follows:

(3)(5) - (E)(E) -0 (B11)

The solution of equation (E.11) with respect to o yields the traveltime of converted wave
as a function of reflection point:

A+ A
2 = (1442 [2 h @A]i E.12
where the following notations are made:
1 —~2 —
A=-"T A=p 27" 9=y 4% (E.13)
1++2 Zmi1 — Tmo

E.4 Coefficients of the sixth-order equation
The system of equations (E.1), (E.2) and (E.12) is solved in the following way:

1. isochrone (E.2) is twice squared to avoid irregularity;
2. o2 from (E.12) is substituted into (E.2);

3. x,z are substituted into (E.2) in the form x = my + cosf, z = ms + sind; they
automatically satisfy equation of circle (E.1);

4. in (E.2) the variable change is made: § = 2arctan u.

Finally, the system reduces to the sixth-order algebraic equation for u:
Beu® + Bsu’ + Pau’ + Bau’ + Pou® + Bru+ By = 0, (E.14)
with the following coefficients:

Bs = (2h(my — 1) — AA;)m3;

Bs = 2h(my — 1)By — A1 By — 4Ams3;

By = 2h(my + 1)m3 + 2h(my — 1)Cy — AgAm3 — 4myBy — A1 Co;
B3 = —8ma(4hmy + A(4m3 —m3));

By = 2h(my — 1)m3 + 2h(my + 1)C1 — Ay Am3 4 4my By — AyCo;
B1 = —2h(my +1)By + A2 By — 4Am§’;

Bo = (2h(m1 + 1) — AAs)m3;
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where:

Ay = (m2 +m3+1+h%—2my);

Ay = (m3 4+ m3 + 14 h%+2my);

B; = (4Ahms + 4mimes);

By = (4hmg + 4Amims);

Cy = (8Ahmy + 4h?® — 2m3 + 4m3);
Cy = (8hmy + A(4h? — 2m3 + 4m?)).
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Used software

The results of this thesis were derived on the working station running under a free
GNU/Linux operating system.

Processing and visualisation of the seismic data was performed in an open source seismic
utilities package Seismic Unix (Center for Wave Phenomena). Additional figures were
generated using MATLAB (MathWorks) and Microsoft Power Point.

The Wave Inversion Technology (WIT) consortium provided further software for the CRS
processing:

e 2D ZO CRS stack code as implemented by Mann (2002) with updates by Schwarz
(2011).

e 3D ZO CRS stack code as implemented by Miiller (2003) with updates by Ahmed
(2015) and Xie and Gajewski (2016).

Synthetic datasets were generated with NORSAR-2D, and NORSAR-3D software (NOR-
SAR Innovation AS).

The thesis itself was written on a PC with the free operating system Debian GNU /Linux
with the typesetting system KTEX.
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