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Abstract
This thesis presents an implementation and evaluation of two different multivariate

data assimilation techniques for the optimization of parameters of a global primitive

equation Atmospheric General Circulation Model (AGCM), the Planet Simulator

(PlaSim). The hypothesis used is that the source of uncertainty in the model is

related to parameters from the cloud parameterizations, vertical and horizontal dif-

fusion time scales in the model. The results are evaluated by comparing basic physi-

cal state variables of the atmosphere such as surface temperature, precipitation, net

heat flux, winds and sea level pressure predicted by the model with observations.

Initially, sensitivity analysis of PlaSim with respect to various parameters used in

its different parameterizations is carried out. The variation of the cost function

with respect to changes in each control parameter is studied and the most sensitive

parameters are identified. The results of the sensitivity analysis serve as a guideline

for identifying sensitive model parameters optimization procedures.

Green’s function (GF) method of parameter optimization is applied on two differ-

ent model configurations, with and without moisture related processes (wet and

dry configurations, respectively) in an identical twin model framework. The results

are inter-compared with existing results from 4D-variational (4D-var) assimilation

scheme in PlaSim. GF procedure successfully estimates model parameters for both

shorter (30 days) and longer time (365 days) scales using 3, 5 and 6 control param-

eters. However, when using real world observations, the GF method is unable to

minimize cost function even using a single control parameter.

Another optimization procedure based on stochastic approximation, the simulta-

neous perturbation stochastic approximation (SPSA) method is implemented in

PlaSim and the results are discussed. The advantage of using SPSA method is

its ease of implementation and its robustness to noise in cost function. In identical

twin experimental framework SPSA method reliably recovers the control parame-

ters. When real observations are used, the errors in optimized state, for example

in surface temperature and net heat flux are reduced by 16% and 30% respectively.

In addition, the optimized state of PlaSim shows improvement in sea level pressure,

zonal winds at 500 hPa and surface precipitation. This study demonstrates the use-

fulness of a simple data assimilation scheme in a highly non-linear chaotic system

and its potential application in tuning of the climate models.
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Chapter 1

Introduction

1.1 Climate models

Climate models are a numerical representation of the earth system that are widely

used as a tool to understand the observed climate changes. The components of an

earth system model are Atmosphere, Ocean, Land and cryosphere. These models are

used to diagnose whether the changes are due to natural variability, human activity

or a combination of both. Development in climate models is essential so as to predict

the accurate state closer to known state of Earth’s climate system. Climate models

are used for a variety of applications such as understanding the past and present

climate system and for predicting future state of the climate of the entire earth

system. The projections of future climate is one of the major components of the

Inter-governmental Panel for Climate Change (IPCC) reports and its interpretation

influences the decisions of national, regional and local importance (Houghton et al.,

1997).

Climate projections based on numerical models are biased as compared to the real

world and these biases (errors) could be of significant concern (Schwartz et al., 2002).

The errors in numerical climate models can be due to several reasons. They could be

either due to model’s resolution or from parametrization of processes unresolved at

grid scale (for example cloud formation), (Murphy et al., 2004). Some of the major

sources of errors in climate models are :

• The nonlinear system of the Navier-Stokes equation results in chaotic, unpre-

dictable system (atmosphere in particular) in contrast with linear system. In

addition, various assumptions used to formulate and discretized model equa-

tions can lead to significant model errors.
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• Model configuration, for example the resolution. Sub-grid scale processes are

not captured by a coarse resolution model and result in errors that grow with

time.

• Uncertainty in the initial conditions which can affect the quality of short term

forecast (seasonal to inter-annual). Small uncertainties in today’s weather

conditions prescribed to climate models as initial conditions may lead to large

forecast errors.

• Uncertainties in parameterization schemes used in models can lead to signifi-

cant errors in forecast and climate projections. In accurate model parameters

used in the parameterization of several sub-grid scale processes (for example

clouds and turbulence) are the major cause of this uncertainty. These param-

eters are basically derived from empirical relationships that are developed on

a basis of few observations that are poorly sampled in both space and time.

Global application of such parameters is one of the biggest sources of model

uncertainty.

For meaningful and accurate climate predictions, an important task is to reduce

the errors and bring the model closer to observations. By increasing the horizontal

and vertical resolution model simulations can be improved (Roeckner et al., 2006),

however increasing resolution results in increase in computational costs. Improve-

ment in the atmospheric initial conditions tend to improve short to medium range

forecast errors, however their influence on climate scale predictions is negligible. Im-

proved parameterization of sub-grid scale processes (like convection, clouds) play an

important role to improve climate simulations and affect climate sensitivity (Iaco-

bellis et al., 2003).

1.2 Data Assimilation

Climate models are corrected to bring them closer to the real world observations by

using data assimilation techniques (Daley, 1993; Kalnay, 2003; Malanotte-Rizzoli,

1996). Data assimilation tend to reduce model errors, regardless of the cause of these

errors such as numerical and physicals schemes or model parameters (as discussed

in the previous section). This procedure involves a combination of the observational

data and the physical processes that govern the system to be optimized, (Robinson

and Lermusiaux, 2000). Data assimilation procedures are mainly used to:

• provide better initial conditions in order to get a better forecast.
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• produce a model state which is consistent with observations.

• provide estimates of model parameters used in parameterization.

Immense progress has been made in the field of data assimilation in numerical

models since last three decades. Most of the efforts in data assimilation are taking

place in the Numerical weather prediction (NWP) community, where observations

are assimilated as and when available to improve the operational weather forecast.

This type of continuous data assimilation systems are meant to correct the initial

conditions of a short to medium range forecasting system. While improving initial

conditions through data assimilation, help in short to medium range forecasting,

longer time scale simulations are barely affected by the quality of initial conditions

(mainly the atmosphere). Model parameters used in different parameterizations

play a vital role in controlling model drifts from observed states during the course

of long term simulations. Hence it is necessary to accurately prescribe these model

parameters. This procedure of correcting model parameters and hence improving

model’s sub grid scale parameterizations by means of data assimilation is known

as parameter optimization. Parameter optimization plays a major role in building

a realistic numerical climate model which can be used to make reliable climate

predictions. Using observed climate to tune model parameters in a climate model is

a complex process.

There have been several efforts to include model parameters into data assimila-

tion as control variables using four-dimensional (4-D Var) or ensemble Kalman filter

(EnKF) methods (Wunsch, 1996; Anderson, 2001; Annan et al., 2005; Sugiura et al.,

2008; Evensen, 2009). These techniques have been developed and implemented both

in AGCMs and Ocean General Circulation Models (OGCMs). The successful imple-

mentation of optimization procedures on these models is one of the main concerns

as the the manual tuning of through trial and error requires intensive work and

computational cost is proportional to number of control parameters. Therefore an

automatic optimization procedure is required to find the best estimate of a set of

parameters.

Parameter estimation on climate scale simulations has been a challenge, par-

ticularly in atmospheric models. The problem becomes even more complex when

multiple parameters are used as control variables for optimization. While many

studies have shown success in estimating parameters in synthetic observation frame-

work, there are difficulties in applying these techniques to the real world problems.

Annan et al. (2005) implemented and tested EnKF (Ensemble Kalman Filter) in an

AGCM and found that few control parameters were successfully retrieved in identical
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twin experiments. Application using reanalysis data resulted in an improvement in

temperature fields whereas precipitation remained unaffected. Schirber et al. (2013)

found that the estimated parameter values lead to an overall error reduction on short

timescales, the error of the model state increases on climatological timescales. Center

for Earth System Research and Sustainability (CEN) at the University of Hamburg

has developed a 4-D var based coupled data assimilation system for their earth sys-

tem model (CESAM). CESAM consists of an atmospheric model (component of the

Planet Simulator, PlaSim) coupled to the Massachusetts institute of technology gen-

eral circulation model (MITgcm). The assimilation procedure (Blessing et al., 2014)

is an iterative minimization of cost function through variation of control parameters

(θ) by a Quasi Newton algorithm (Fletcher and Powell, 1963) which determines the

search direction through gradient of cost function with respect to control parame-

ters. The gradient is calculated by automatic differentiation (Griewank et al., 1989)

of the source code through transformation of algorithm in fortran (TAF) (Giering

and Kaminski, 1998). The performance of assimilation scheme used is limited by the

time window in case of the atmosphere model. However switching off the non-linear

processes helped in getting good results.

Some optimization algorithms are based on gradient approximation from measure-

ments of cost function. The main advantage of using such algorithms is that they

do not require detailed knowledge of functional relationship between the parameters

being optimized and the cost function being minimized that is required in gradient

based algorithms. This category includes simulated annealing (Jackson et al., 2004;

Gonzalez et al., 2007; Lakshmanan and Derin, 1989), Monte Carlo methods (Lewis

and Bridle, 2002), genetic algorithms (Yao and Sethares, 1994) and statistical esti-

mation algorithms (Altaf et al., 2011; Menemenlis et al., 2005). These algorithms

have been successfully used for optimization in chaotic systems. As pointed in above

discussion that parameter optimization in non-linear, chaotic systems is a difficult

problem. Variational assimilation techniques applied on climate models sometimes

fail to yield impressive results because of its inherent non-linear characteristics. In

these circumstances, stochastic optimization and statistical estimation algorithms

are quite useful because of their ability to cope with inherent system noise and high

nonlinearities. This thesis aims to build an alternate assimilation system to optimize

parameters of PlaSim, which is the atmospheric component of CESAM. The study

is funded by European Union research project NACLIM (https://www.cen.uni-

hamburg.de/en/research/coordinating-projects/naclim-seite.html).
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1.3 Goal of the thesis and approach

The goal of this thesis is to test an alternate assimilation system for optimizing

model parameters used in different physical parameterizations of PlaSim. In this

study two optimization algorithms; Green’s function (GF) based on statistical es-

timation and Simultaneous perturbation stochastic approximation (SPSA) based

on stochastic optimization will be implemented and tested with PlaSim at longer

integration time scales. The basic motive is to evaluate the potential of these two

approaches in optimizing model parameters to get a physical state of the atmosphere

which is more closer to the observations as compared to the state obtained using the

control configuration of PlaSim. Another objective of this study is to evaluate and

discuss the advantages/disadvantages of parameter estimation relative to the exist-

ing adjoint based approach of data assimilation in PlaSim. This study is an attempt

to explore the possibility of applying less complex data assimilation procedure to a

highly non-linear chaotic system in an effective manner to reduce model errors.

1.3.1 Approach

In order to achieve the above mentioned goals, following approach has been adopted

in this thesis:

• Study PlaSim’s sensitivity to model parameters used in different parameteri-

zation schemes so that the parameters which must be used as control variables

in pilot optimization approaches can be identified.

• Experiments with GF based parameter estimation approach using both dry

and wet configuration of PlaSim in an identical twin framework and compar-

ison of its performance relative to the existing 4D-var assimilation method in

PlaSim.

• Experiments with SPSA based optimization procedure applied on PlaSim.

The feasibility of parameter estimation using these techniques will be first tested

in an identical twin framework where the basic assumption will be that the main

source of model uncertainties are the biased parameters. Once this is done, then

these optimization procedures will be tested using real data.
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1.4 Structure of the thesis

The thesis has been divided into seven chapters (including introduction which is

chapter 1).

Chapter 2 gives a detailed description of the atmosphere model (PlaSim) used in

the study. The chapter further discusses model’s control run and data sets used in

the study. The results of comparison of PlaSim’s control run with European Center

for medium-range weather forecasts reanalysis (ERA-interim) are also discussed.

Chapter 3 briefly describes three optimization techniques that are used in the thesis:

Green’s function, Adjoint and SPSA .

Sensitivity experiments performed with PlaSim are presented in chapter 4. The

sensitivity of the model is based upon variations in the cost function with respect

to the perturbations applied to model parameters. Impact of model parameters on

basic state variables like temperature, precipitation, winds and sea level pressure

(SLP) is also analyzed. The results from sensitivity analysis are useful to provide

information on model parameters that could be chosen for optimization.

Chapter 5 discusses the application of GF on PlaSim. An inter comparison of the

Adjoint and the GF for the dry model configuration is made. Further, the results of

optimization for the wet model configuration using the GF are shown in this chap-

ter.

Chapter 6 is based on the application of SPSA on PlaSim. The optimization al-

gorithm assimilates pseudo as well as ERA-Interim reanalysis data for integration

time of 1 year. An improvement in optimized state is compared with original state

of model in this chapter.

Finally the conclusions from the thesis are compiled in Chapter 7.
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Chapter 2

Model description

In this study, an earth system model of intermediate complexity, PlaSim (Fraedrich

et al., 2005), is used. PlaSim, mainly an atmospheric model, has all the components

of an earth system model such as sea-ice, ocean, land surface and biosphere, however

these component models are of reduced complexity1. It is a σ-coordinate (where σ

is the pressure normalized by the surface pressure), primitive equation model based

on the basic laws of conservation of momentum, mass and energy. The equations are

solved using the spectral transform method (Orszag, 1970) and integrated in time

using a leap-frog semi-implicit time stepping scheme (Hoskins and Simmons, 1975;

Simmons et al., 1978) with Robert/Asselin time filter (Robert, 1981; Asselin, 1972).

Major unresolved processes of boundary layer fluxes, diffusion, radiation, moisture

and clouds are included by simplified parametrization.

This model has been widely used in research involving timescales ranging from sea-

sonal to inter-annual and up to climate scales. Several climate related studies have

been performed using PlaSim, for example, the impact of Atlantic and Pacific ocean

sea surface temperature anomalies on the north Atlantic multidecadal variability

(Grosfeld et al., 2008), thermodynamics of climate change (Lucarini et al., 2010),

the effect of global warming and global cooling on the distribution of the latest Pe-

riman climate zones (Roscher et al., 2011), effect of mountains and ice sheets on

global ocean circulation (Schmittner et al., 2011). Although, a complete description

of the atmosphere model is available in the model document2, a brief overview of the

model’s equation and the configuration that has been used in this study is provided

1The complete model including sources and documentation is available at (www.mi.uni-

hamburg.de/plasim)
2http://www.mi.uni-hamburg.de/fileadmin/files/forschung/theomet/planet simulator/downloads

/PS ReferenceManual.pdf
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in the following sections.

2.1 Model equations

The horizontal coordinates of the model are ϕ (representing latitude) and λ (rep-

resenting longitude). The temperature is linearized about a reference profile T0,

hence, prognostic equation for temperature deviations T ′ = T − T0 are used where

T0 = 250K is constant for all σ levels.

Model equations are moist primitive equations which are dimensionless set of

differential equations obtained by scaling of

• vorticity ζ and divergence D with respect to angular velocity of the Earth Ω.

• pressure p by mean sea level pressure ps = 101325Pa

• temperature T and T ′ by
a2Ω2

R
and

• Orography and geopotential (Ψ) by
a2Ω2

g
(where g is the acceleration due to

gravity and R is the gas constant for dry air).

The dimensionless equations in (λ,µ,σ)- coordinates (Hoskins and Simmons, 1975)

are as shown below

Conservation of momentum leading to equations for for vorticity (ζ) and diver-

gence (D)
∂ζ + f

∂t
=

1

(1− µ2)
∂Fv
∂λ
− ∂Fu

∂µ
+ Pζ (2.1)

∂D

∂t
=

1

(1− µ2)
∂Fu
∂λ

+
∂Fv
∂µ
− O2E − O2(φ+ T0lps) + PD (2.2)

Hydrostatic approximation

0 =
∂φ

∂lnσ
+ T (2.3)

Conservation of mass (continuity equation) leading to pressure equation

∂lnps
∂t

= −
∫ 1

0
Adσ (2.4)
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and the Thermodynamic equation

∂T ′
∂t

= FT − σ̇
∂T

∂σ
+ κWT +

J

cp
+ PT (2.5)

The notations used above are

Fu = (ζ + f)V − σ̇ ∂U
∂σ
− T ′∂lnps

∂λ

Fv = −(ζ + f)U − σ̇ ∂V
∂σ
− (1− µ2)T ′∂lnps

∂µ

FT = − 1

(1− µ2)
∂(UT ′)
∂λ

− ∂(V T ′)
∂µ

+DT ′

E =
U2 + V 2

2(1− µ2)

σ̇ = σ

∫ 1

0
Adσ −

∫ σ

0
Adσ

W =
ω

p
= V.Olnps −

1

σ

∫ σ

0
Adσ

A = D + V.Olnps =
1

ps
O.psV

Here σ̇ is the vertical velocity in the σ system. Diabatic heating per unit mass and

kinetic energy per unit mass are given by J and E respectively. For velocity, the

stream function (ψ) is the nondivergent part and the velocity potential (χ) is the

irrotational part.

The model includes parametrization of river runoff, soil hydrology and soil and

land temperatures. Although a simple zero layered thermodynamic sea ice model

is included in the model, it is not used in this particular study. Maximum albedo

for sea ice is set to 0.7 while the minimum and maximum albedo for glaciers are 0.6

and 0.8, respectively. and that for snow are 0.4 to 0.8 respectively. The albedo of

water is set to 0.069, (Romanova et al., 2006). The model setup used in the thesis

is explained in next section.

2.2 Model configuration and control run

2.2.1 Model configuration

Two different configurations of PlaSim, namely the wet and the dry have been used

in this study. In the wet configuration, PlaSim includes all major processes and
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components except the land-biosphere model, while in the dry configuration mois-

ture related processes are excluded, i.e. there is no precipitation, evaporation and

runoff. In addition, the soil moisture is set to climatology there is no cloud radiative

feedback.

For all experiments in this study, the horizontal resolution of PlaSim is set to spec-

tral T21 (approximately 5.6◦ grid spacing) with 64 points in longitude and 32 points

in latitude. There are 10 vertical sigma levels and an integration time step of 45

minutes. This configuration is same as used by Blessing et al. (2014) in their exper-

iments. There were a couple of reasons for choosing this setup:

• Being a coarse resolution model the experiments, specially the sensitivity runs

(which were around 3200 model years) could be performed in a reasonable

time.

• The results of 4D-var experiments using the same configuration were available

at hand that would allow an inter-comparison with the results of this study.

2.2.2 Control run

Beginning from a cold start, a forward run of PlaSim was carried out for 25 years us-

ing monthly averaged climatological sea ice concentration (sea ice model is switched

off), sea surface temperature (SST), glacier coverage, albedo and soil temperature

from ERA40 reanalysis (Uppala et al., 2005) as boundary conditions. A restart file

was recorded at the end of 25 years and this restart which corresponds to 1st Jan-

uary is used as initial condition in all the experiments. A forward simulation is then

made for a period of one year using the initial and boundary conditions mentioned

above and the default values of various parameters used in model’s parameterization

scheme (Table 4.1). This simulation is referred to as the control run and is used

as a reference in all the experiments. The control run is referred to as model’s ref-

erence state, i.e. the state before parameter optimization. Although we mentioned

two different configurations of PlaSim in Section 2.2, in most of the cases, the wet

configuration is used (except when exclusively mentioned otherwise).
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Figure 2.1— Plot of Annual mean temperature (K) at the lowest model level from (top) control
run, (middle) observations and (bottom) difference (control-observations). Control run represents the
annual mean state resulting from one year run discussed in section 2.2. Observations represents
annual mean of 21 years (1989-2009) from ERA-Interim reanalysis.

2.3 Comparison of the control run with ERA-Interim

reanalysis

It is of interest to compare the model’s reference state with observations in order

to get the information about the model biases. For this purpose, a comparison
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of the annual mean temperature at model’s lowest level, sea level pressure, zonal

winds at 500 hPa and surface precipitation simulated from the control run (1 year

period as discussed in section 2.2) is made with annual mean ERA-Interim reanalysis

(referred to as observations hereafter). ERA-Interim reanalysis (Dee et al., 2011) is

available from the European center for medium range weather forecasting (ECMWF;

http://data-portal.ecmwf.int/) and it covers period from 1979 onwards overlapping

the earlier ECMWF 40 year reanalysis. The data is available on a native 0.7◦x

0.7◦grid and is an output of an atmospheric model with an advanced 4D-Var data

assimilation technique. For this study, annual mean observations are constructed

using 21 years of data (from 1989 to 2009) and the values are averaged on to the

model grid to compute model data difference.

Figure 2.1 shows the comparison of annual mean temperature at the lowest model

level (which is near the surface). Overall patterns and range of temperature distribu-

tion in the control run (top panel) agree well with the observations (middle panel).

However from the difference control - observations plot (bottom panel), it can be

clearly seen that PlaSim in its original state in general has colder temperature with

respect to observations. Exceptions are the regions over middle east, eastern China,

south-west Australia, most parts of central North America and over north west re-

gion over South America. In tropics the difference is around -2 to -4 K, however in

polar regions the model is far too cold (∼ -10K to -15K), specially over the Arctic

Ocean.

Surface precipitation patterns shown in Figure 2.2 reveal that PlaSim (top panel)

has a poorly resolved Inter-tropical Convergence Zone (ITCZ) that appears to be

too much diffused. This might be attributed to the coarse resolution used in our

setup. However, the east-west gradient in precipitation patterns in the Pacific are

qualitatively similar to observations (Figure 2.2, middle panel). The differences in

precipitation are between ±6 mmday−1 (Figure 2.2, bottom panel). PlaSim overesti-

mates precipitation (> 4 mmday−1) mainly over east Africa, Arabian Sea, Peninsular

Indian region and East China. Tropical East Indian Ocean and west Pacific oceans

receive less rains in the control run (< 4 mmday−1) as compared to the observations.

Precipitation in the regions of prominent ITCZ between central and east Pacific, just

above the equator is also underestimated in the model.

Model simulated SLP is shown in Figure 2.3 (top panel). In the Northern Hemi-

sphere the patterns and magnitude of low and high pressure systems (in the subtrop-

ical, sub-polar Pacific and Atlantic) are consistent with the observations (Figure 2.3,

middle panel). However, in the southern hemisphere, south of 40◦S, the simulated
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Figure 2.2— same as in Figure 2.1 but for total precipitation (mmday−1)

pressure fields are highly underestimated (Figure 2.3, bottom panel). These are the

regions of very strong zonal winds, and the difference in SLP in these regions is quite

high (> 16 hPa).

500 hPa zonal winds from the model (Figure 2.4, top panel) show a well developed

westerly flow in both the hemispheres and the locations of maximum magnitude

are consistent with those in observations (Figure 2.4, middle panel). The difference

plot between model and observations (Figure 2.4, bottom panel) reveal weaker (<
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Figure 2.3— same as in Figure 2.1 but for Sea Level Pressure (hPa)

5-10 ms−1) zonal winds between 60◦S and 45◦S mainly in the Indo Pacific region.

Correspondingly between 40◦S and 20◦S , winds are stronger (> 3-16 ms−1) in the

control run. Apart, from these and barring a few regions in the northern hemisphere

between 30◦N and 60◦N, the differences in 500 hPa zonal winds between model and

observations are less than 4 ms−1.
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Figure 2.4— same as in Figure 2.1 but for zonal winds(ms−1)at 500 hPa

2.4 Summary

This chapter provided details of the numerical model (PlaSim) used in this study.

The setup, initial and boundary conditions and configurations used in the control run

were discussed. A qualitative evaluation of basic variables simulated from the con-

trol run was performed with respect to the ERA-Interim reanalysis and differences

were pointed out. Overall, PlaSim simulates colder surface temperatures, weaker
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zonal winds in the Southern Ocean and a poorly resolved ITCZ. It is seen from the

above comparison that there are some prominent regions of disagreement between

the control run and the observations, specially in the southern hemisphere and in

the Arctic. At this moment, it is quite difficult to identify the real cause of these

differences. Not all the differences are caused due to errors in model parametrization

as previous studies (Roeckner et al., 2006) have shown the dependence of model per-

formance on grid resolution. Nevertheless it will be interesting to find out how much

impact does the model parameters have in these regions. In the next chapter, the

effect of model parameters on PlaSim simulations will be examined through sensitiv-

ity experiments performed at different timescales using dry and wet configurations.

This will give insight into the magnitude and patterns of model differences due to

errors in model parameters.
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Chapter 3

Optimization Techniques

Data assimilation system comprises of three components: a numerical model , ref-

erence data (observations) and a assimilation technique. Several data assimilation

techniques are available for parameter optimization in numerical models. The differ-

ence between the various methods is the way in which the model skill is calculated to

measure distance between model and observations and also corresponding weights

given to observations and prior estimates. Another difference is the choice of pa-

rameters that are allowed to be adjusted in order to produce the final estimate. A

brief overview of various assimilation techniques was provided in Section 1.2 This

chapter discusses the optimization methods that will be used in this study.

3.1 Green’s function approach

The Green’s function (GF) approach follows the discrete inverse theory (Menke,

1989) which is used to solve inverse problems. The model’s Green functions are

calculated by perturbing model parameters one at a time and are used to linearize

the GCM. Later, the discrete inverse theory is used to estimate uncertain model

parameters of a GCM. The aim is to estimate model parameters from a combina-

tion of model and observations. The GF method was successfully applied on an

Ocean General Circulation Model (OGCM; Menemenlis et al. (2005); Menemenlis

and Wunsch (1997); Stammer and Wunsch (1996)) and to optimize sea ice and ocean

model parameters of a coupled ocean-sea ice model (Nguyen et al., 2011). The GF

has also been used for solving geophysical inverse problems (Wunsch, 1996; Gloor

et al., 2001; Fan et al., 1999; Challis and Sheard, 2003). The conventional methods

of adjusting model parameters involve trial and error sensitivity experiments where

the perturbed parameters are used repeatedly until optimum state of the model is
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obtained. This is a time consuming approach and requires lot of experiments and

patience. Menemenlis et al. (2005) successfully demonstrated GF approach for opti-

mizing a small set of parameters in an OGCM. The GF technique used in this study

briefly discussed (following Menemenlis et al. (2005)) as below:

Let an AGCM be written as discrete non linear equations:

xf (ti+1) = Mi[x
f (ti)] (3.1)

The state vector xf (ti) includes temperature, humidity, vorticity and wind ve-

locity on a predefined grid at discrete time ti for i = 0,...,N-1. M is a non linear

operator representing the advancement in the model state from time ti to time ti+1.

It includes known parameters describing the system, initial and boundary conditions

that serve as an input to the model and drive the system.

Let the true state of the ocean xt on discrete grid be represented by equation

3.1 plus a random noise in uncertain model parameters, θ having zero mean and

covariance Q:

xt(ti+1) = Mi(x
t(ti),θ) (3.2)

The observations are related to the model state by the equation:

yobs(t) = P (t,x(t)) + ε (3.3)

where;

t = 0,.....,N

yobs(t) is a vector of all available observations at time t

P (t,x(t)) is non linear operator that includes transformations and grid interpola-

tions.

ε is a vector of noise process having zero mean and covariance R.

To find the best estimates of the control parameters θ for the model to fit the

observations yobs, an objective function (Y ) is defined as :

Y = θTQ−1θ + εTR−1ε (3.4)

Model Green’s function is a vector comprising of model simulations using per-

turbed parameters (denoted by θ) relative to the baseline integration (control run).

The Green’s function G is then used to project back the simulated response on to

the model state vector (Menemenlis and Wunsch, 1997). Green’s function G relates

observations to the model parameters by using Equations (3.2) and (3.3):
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yobs(t) = G[θ] + ε (3.5)

Several optimization algorithms (Adjoint, EnKF) are based on linearization of

model dynamics and minimize Y with respect to the model. Green’s function method

makes use of linear assumption and this leads to the simplification of equation (3.5)

to:

yd = yobs −G[0] = Gθ + ε (3.6)

where 0 is null vector, i.e. the set of parameters without perturbation whose cor-

responding state is the control run, yd is model data difference The jth column of

matrix G is

gj =
G(ej)−G(0)

ej
(3.7)

where ej represents the vector of perturbation applied to each model parameter.

G(0) is baseline integration. In GF method, the AGCM’s sensitivity experiments

are performed by perturbing the parameters represented by vector θ and the matrix

g is constructed which is the difference between the perturbed and the baseline run

relative to the size of perturbation. Optimum parameters are then estimated using

the linear inverse theory by minimizing the model data differences. The minimization

of equation (3.4) and (3.6) is a discrete linear inverse problem with solution:

θa = HGTR−1yd (3.8)

where H is the uncertainty covariance matrix given by,

H = (Q−1 +GTR−1G)−1 (3.9)

Generally θa gives estimates of the model parameters. These estimates are fur-

ther used to calculate new parameter values at each iteration in a nonlinear system.

In the GF approach, each model parameter is perturbed one at a time, and cor-

responding measurements of cost function (Y) are obtained. Each component of

gradient estimate matrix is formed by taking the difference of the corresponding

cost function (Y) values and then dividing by a difference interval which is the cor-

responding change in one of the parameter. The gradient is a vector of the p partial

derivatives which is same as number of control parameters. The aim is to reduce

the cost function by searching an optimal set of parameters in the search direction.
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At each iteration, cost function, gradients are evaluated until Euclidean norm of the

control parameters and gradients are minimized.

3.2 4D-var assimilation method (Adjoint)

The 4D-VAR assimilation method was implemented with the PlaSim model by Bless-

ing et al. (2014). In this implementation, adjoint of the PlaSim required to calculate

the gradients of the cost function was constructed with the help of the source trans-

formation tool Transformation of Algorithms (Giering and Kaminski 1998, TAF).

The assimilation consists of an iterative minimization of a cost function through vari-

ation of control parameters (θ) by a Quasi Newton algorithm (Fletcher and Powell,

1963). This procedure determines the search direction through the gradient of a cost

function with respect to the control parameters. In the case of PlaSim, the gradient

of the cost function with respect to control parameter is calculated by automatic

differentiation (Griewank et al., 1989) of the source code through TAF (Giering and

Kaminski, 1998). The adjoint model is a very efficient tool to compute the gradient

of the cost function. For linear models, it can be shown that it is equivalent to

the optimal Kalman Filter solution under the hypothesis of a perfect model (Daley,

1991; Lorenc, 1986). In the nonlinear case and if the model is assumed to be perfect,

the variational data assimilation is successful if the tangent-linear hypothesis is valid

for the duration of the assimilation period.

Lea et al. (2000, 2002) demonstrated that variational parameter estimation with an

adjoint model does not work well for tuning of chaotic models due to their sensitive

dependence on initial conditions. In a study by Annan and Hargreaves (2007) it

is shown in the limit of infinite time scales, gradients of the cost function become

undefined therefore on those time-scales gradient based estimation of parameters

become impractical.

3.3 Parameter estimation using SPSA technique

SPSA is essentially a randomized Kiefer Wolfowitz method where the gradient is

estimated using only two evaluations per iteration regardless of the dimension of the

optimization problem (Spall, 1998). The evaluations are calculated based on two

simultaneous perturbations. The SPSA algorithm has gathered a great deal of inter-

est over last decade and has been used in variety of applications (Altaf et al., 2011;

Hutchison and Hill, 2001; Spall, 2000; Gerencsér and Vágó, 2001; Kong et al., 2011).
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As a result of the stochastic perturbation the calculated gradient is also stochastic,

however the expectation value of the stochastic gradient is the true gradient (Li and

Reynolds, 2011).

The gradient based algorithms converge faster than any gradient approximation

(SPSA algorithm) when speed is measured in terms of the number of iterations.

However, the total cost to achieve effective convergence depends not only on the

number of iterations required but also on the cost needed to perform these iterations,

which is large in gradient based algorithms. This cost may include computational

cost and additional human effort required for coding the gradients.

The details of SPSA are given by Spall (1998); however the technique is briefly

discussed here. In SPSA the cost function Y(θ̂) is minimized using the iterative

procedure

θ̂k+1 = θ̂k − akĝk(θ̂k) (3.10)

where ĝk(θ̂k) is a stochastic approximation of ∇Y (θ̂k), which denotes the gradient

of the cost function with respect to θ̂ evaluated at previous iterate θ̂k. The stochastic

gradient ĝk(θ̂k) in SPSA is calculated by

ĝk(θ̂k) =
Y (θ̂k + ck∆k)− Y (θ̂k − ck∆k)

2ck∆k
(3.11)

∆k is a p-dimensional perturbation vector generated by the Monte Carlo method

where each of the p components of ∆k are independently generated from a zero

mean probability distribution. Here ∆k is sampled from a Bernoulli ± distribution

with probability of
1

2
for each ±1 outcome.

The gain sequences (ak and ck) are defined as

ak =
a

(A+ k + 1)α
, ck =

c

(k + 1)γ
(3.12)

The choice of gain sequences (ak and ck) is critical for the performance of SPSA.

It is observed that in a high noise setting it is necessary to pick smaller a and larger c

than in a low noise setting. To attain optimal efficiency of the algorithm, the choice

of step size ak is crucial. The step size is flexible which can be used to make the

algorithm work efficiently for highly non linear models. The asymptotically optimal

values of α and γ are 1.0 and 1/6 respectively (Fabian, 1971; Chin, 1997). As a rule

of thumb (with the Bernoulli ±1 distribution for the elements of ∆k), it is effective
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to set c at a level approximately equal to the standard deviation of the noise in

the model cost function Y (equation 4.2). The SPSA method begins with an initial

set of parameter values . Two model simulations are performed by perturbing the

parameters. The cost functions are calculated and the gradients are approximated

according to equation (3.11). Further, parameter values are corrected so that the

algorithm progressively moves towards the parameter values where cost function is

minimized.

SPSA technique is very easy to implement because it needs only two cost function

evaluations independent of number of model parameters.

3.4 Summary

Three data assimilation techniques are briefly discussed in this chapter. These tech-

niques are iterative algorithms with aim of reducing model-data difference at each

iteration and obtain estimates of parameters. The choice of measure of distance be-

tween model and observations and also corresponding weights given to observations

and prior estimates in these algorithms is very crucial. 4D-var data assimilation

technique (Adjoint) is gradient based algorithm. In Adjoint method gradients gives

information to determine the search direction at every iteration of the algorithm.

In stochastic optimization algorithms: GF and SPSA, gradients are approximated

and there is a random choice in the search direction at each iteration towards the

solution. The optimization results of these techniques are discussed in Chapter 5

and 6.
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Chapter 4

Sensitivity Analysis of the

model

4.1 Sensitivity Analysis

A sensitivity analysis (SA) is usually performed as a series of tests in which values

of parameters used in various parametrization schemes are changed and their effect

on the model is studied. By studying the model’s response to changes in parameter

values, one can get useful information for the model development as well as model

evaluation. SA helps to understand the effect of uncertainties that are often asso-

ciated with parameters in the models. In this respect, SA allow us to determine

which model parameters are responsible for creating maximum change of the simu-

lated model state. It gives an idea of what range of perturbation in parameters is

corresponding to errors in the model and this information can be useful in model

development. Experimenting with a wide range of values of model parameters can

offer insights into model’s behavior.

In order to estimate parameters of the model, prior knowledge about impact of

parameter changes on model is important, therefore, performing SA is inevitable.

The change in model parameters also give an idea as to how much effect these

parameters have in model simulations, particularly on climate scales. In this chapter,

results of these sensitivity experiments are presented. Sensitivity of PlaSim is studied

from the behavior of model’s cost function with respect to perturbation in model’s

control parameters. Cost function is an estimate of the model data misfit and

therefore its magnitude in the sensitivity experiments can be used to know the

positive or negative impact of model parameters on model’s performance.
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4.2 Control parameters

In an AGCM, the errors in parameters in different physical parametrization schemes

contribute to the model errors. The choice of model’s control parameters in opti-

mization plays a crucial role. The model is not equally sensitive to all parameters.

Some parameters have large impact on the climate of the model while others have

a moderate or less effect. The idea of performing sensitivity experiments is to find

out those parameters whose variations have huge impact on the model simulations.

According to Intergovernmental panel on Climate Change (IPCC) first assessment

report most of the climate uncertainties are due to representation of cloud radiative

feedbacks. Cloud and radiation parameters are commonly chosen in optimization

procedures (Annan et al., 2005; Severijns and Hazeleger, 2005; Mauritsen et al., 2012)

as they are mainly responsible for accurate temperature and precipitation simula-

tions. Recently, Blessing et al. (2014) used diffusion time scale related parameters

in their coupled model optimization experiments using the 4D-var method. In this

study, 15 control parameters are selected for SA. These selected parameters are listed

in Table 4.1 along with their definitions and their default values which were coded

in the model. The control variables selected are parameters used in the parameteri-

zation of long wave, short wave radiation and clouds, time scale for Rayleigh friction

in the uppermost two atmospheric layers, the diffusion time scales for divergence,

vorticity and temperature. The choice of these parameters is similar to those used

by Blessing et al. (2014), although there are many more parameters in the model

that can be considered for optimization . Since one of the objectives of this study

is to inter-compare the results of optimization with those of the 4-D var method

applied on PlaSim, so it was thought to use same control parameters as were used

in experiments with 4-D var method.

The parameters tfrc1 and tfrc2 are rayleigh friction timescales in level 10 and level

9 respectively, while, tdissz, tdissd and tdisst represents time scale of damping in the

atmosphere and are used in horizontal diffusion parametrization. For calculation of

mixing lengths, drag and transfer coefficients, the parameters vdiff lamm, vdiff b,

vdiff c and vdiff d are used. The parameters tpofmt, th2oc, tswr1, tswr2, tswr3

and acllwr are used in cloud parametrization. A high value of th2oc increases the

absorption of radiation by the moisture in the atmosphere leading to an increase

in temperature, which results in more evaporation and hence increases moisture in

the air. A small value of parameter tswr1 increases cloud albedo and leads to more

precipitation. For a balance of precipitation and evaporation these two parameters
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Nr Acronym Control parameter units Default Value

1 tfrc1 rayleigh friction timescale days 20

2 tfrc2 rayleigh friction timescale days 100

3 tdissz diffusion time scale for vorticity days 1.1

4 tdissd diffusion time scale for divergence days 0.2

5 tdisst diffusion time scale for temperature days 5.6

6 vdiff lamm tuning parameter for vertical diffusivity m 160

7 vdiff b tuning parameter for vertical diffusivity m 5

8 vdiff c tuning parameter for vertical diffusivity m 5

9 vdiff d tuning parameter for vertical diffusivity m 5

10 tpofmt tuning of point of mean transimittivity in layer 1

11 th2oc absorption coefficient for h2o continuum 0.04

12 tswr1 tuning of cloud albedo range 0.04

13 tswr2 tuning of cloud back scattering range2 0.048

14 tswr3 tuning of cloud scattering albedo range2 0.004

15 acllwr mass absorption coefficient for clouds 0.1

Table 4.1— List of 15 control parameters used in optimization procedure

should be consistent. The parameters tswr2, tswr3 and acllwr are responsible for

cloud back scattering.

4.3 Methodology for sensitivity experiments

4.3.1 Cost function (model data misfit)

In this study, it is assumed that the difference between data and simulation results is

only due to measurement errors and incorrectly prescribed model parameters. The

measure of model skill, is based on a cost function which is defined as the weighted

measure of the mean squared difference between the model and the observations.

Mathematically, cost function for N different fields d (for example, temperature,

precipitation etc.) and model predictions M(θ) at N points and normalized by the

inverse of a N X N model-data covariance matrix C−1d . Cd represents uncertainties

in the observations and the model. C0 contains information about error statistics of

the background field. The problem of estimation is then solved by minimizing the

cost function (Y) with respect to the parameters θ̂
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Figure 4.1— Plot of model cost function (Y) vs. perturbation applied to model control parameters
(θ, 9) in the dry configuration of PlaSim. The cost function (Y) is computed from pseudo data set and
an averaged cost function is plotted for a period of 7 days.

Y (θ̂) = 0.5[(M(θ)− d)TC−1d (M(θ)− d) + (θ − θ0)TC0
−1(θ − θ0)] (4.1)

where θ0 is model’s background state vector. θ is model’s original state. C0 repre-

sents uncertainties in the model respectively. In equation 4.2, θ is a vector of model

parameter values and ’T’ indicates the matrix transpose.

In this entire study the cost function computation includes the contribution of 16

model variables which are listed in Table 4.2. These are temperature at all model

levels, surface fluxes, radiation fields and precipitation. The Table 4.2 also shows

the corresponding standard deviations of each of these variables computed from 34

years of ERA-Interim reanalysis data set spanning period 1979-2012.

For SA experiments are performed in the identical twin framework, i.e. the cost

function is computed with respect to the output that is generated by the model

itself (called pseudo observations). Pseudo observations are a result of the control

run which is discussed in section 2.2. In this run the control parameters used in

various parameterization (in our case 15 parameters) are set to their default values

(listed in table 4.1). In equation 4.2, the first term shows the model data misfit and
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Datafield STD Units

Temperature (level 10(surface)) 0.657 K

Temperature (level 9) 0.640 K

Temperature (level 8) 0.616 K

Temperature (level 7) 0.578 K

Temperature (level 6) 0.564 K

Temperature (level 5) 0.568 K

Temperature (level 4) 0.724 K

Temperature (level 3) 0.984 K

Temperature (level 2) 1.212 K

Temperature (level 1) 1.302 K

Large scale precipitation (LSP) 3.390x10−9 ms−1

Convective precipitation (CP) 5.007x10−9 ms−1

Surface Sensible Heat Flux (SSHF) 3.155 Wm−2

Surface Latent Heat Flux (SLHF) 6.502 Wm−2

Surface Solar Radiation (SSR) 5.054 Wm−2

Surface Thermal Radiation (STR) 2.490 Wm−2

Table 4.2— Variables contributing cost function computation. The second column list standard
deviation (STD) that are globally averaged values computed from annual averaged data sets spanning
(1979-2012). The data set used to compute standard deviation is ERA-Interim data.

second term represents the prior information (background term). As mentioned in

section 2.2, the total number of horizontal grid points in the model are 64*32 =

2048, therefore in our experiments of one year we will have the number of pseudo

observations = 2048*16*365 = 11960320. Since the number of observations are

much larger than the total number of control parameters, the background term in

equation 4.2 can be safely dropped. Therefore in equation 4.2 the background term

is set to zero i.e. prior information on the control variables is not considered in this

study. This approach is similar to the one used in for computing the cost function

in Menemenlis et al. (2005) and Blessing et al. (2014). Revised equation 4.2 is now

expressed as

Y (θ̂) = 0.5[(M(θ)− d)TC−1d (M(θ)− d)] (4.2)
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Figure 4.2— Same as Figure 4.1 except for 30 day integration period.

The pseudo observations used to compute the cost function for SA comprises the

contribution from 16 variables involving temperature (all 10 levels), precipitation

and heat flux . Two sets of pseudo observations are generated from the control run.

One set corresponds to the dry configuration of the model while the other to the wet

configuration. Both configurations were described in section 2.2. The model data

differences are time averaged over the assimilation window and the cost function is

evaluated at the end of the assimilation window.

4.4 Sensitivity experiments and results

4.4.1 Sensitivity analysis with the dry configuration of PlaSim

In the dry configuration of PlaSim, there is no hydrological cycle and all moisture

related processes are excluded. Hence the parameters related to cloud parametriza-

tion are not used. These parameters are tpofmt, th2oc, tswr1, tswr2, tswr3 and

acllwr. Therefore in this case, SA of PlaSim is performed with the remaining 9

control parameters. The main purpose of these experiments with dry configuration

is to compare the assimilation results with those obtained from the 4D var adjoint

method. The results of the 4D var were available only for the dry configuration of

the model.
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In the first experiment, model integrations are performed by perturbing the above

mentioned 9 control parameters one by one. The range of perturbation which is ap-

plied to each parameter varies from -50% to 50% (with an interval of 2%) of the

default control parameter value. The model is integrated forward in time for 7

seven days and the time averaged cost function corresponding to each perturbation

is evaluated with respect to pseudo-observations. This resulted in a total of 51x9 =

455 simulations. Figure 4.1 shows the plot of cost function with respect to pertur-

bation applied to the control parameter. Different line colors indicate the control

parameters that are used in the experiments. The variation in the cost function

due to changes applied to the control parameters is very smooth. This is mainly

due to two reasons, one the period of integration is very small (7 days) and second

the non-linearity doesn’t set in during this small integration period as the moisture

related processes are not active (dry configuration). Larger perturbation applied

results in larger deviations of the model from pseudo-observations which can be

seen in relatively higher values of the cost function. Reduction in parameter values

(negative perturbations) causes more deviations in the model. The maximum effect

of perturbations comes from the tuning parameter for vertical diffusivity (vdiff b)

and the parameter for rayleigh friction timescale (tfrc1). It is concluded from Figure

4.1 that the cost function has a no local minima.

In the second experiment, with the same set of perturbed parameters as used in the

first experiment, model integrations are performed over 30 days. Here too 455 model

runs were carried out corresponding to different control parameters range. The time

averaged cost function is then plotted against the parameter perturbations (Figure

4.2). It can be seen from a couple of cases (when tfrc1 and vdiff b are perturbed)

that the cost function has multiple minima.

The range of the cost function is higher for 30 days as compared to 7 days. This is

consistent with the fact that as the integration period increases, the model deviates

from pseudo observations and hence errors become larger. It can also be seen from

Figures 4.1 and 4.2 that for 7 days the cost function is most sensitive to parameters

vdiff b and vdiff c while for 30 days tfrc1 is the most influential parameter when its

value is reduced relative to its default value. From these two experiments we can

say that for shorter time scales, the model is quite linear in its dry configuration and

there is a unique minimum of the cost function and this is one important requirement

for the success of many assimilation algorithms. This result may change when all

parameters are perturbed at a time.
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4.4.2 Sensitivity analysis with the wet configuration of PlaSim

In the wet configuration of PlaSim, the hydrological cycle is included and all moisture

related processes are active in the model. Therefore the parameters used in cloud

parameterization are included as control parameters in the SA. In this case, SA is

performed using a total of 15 control parameters. Once again, as in section 4.4, two

set of experiments are performed, for 7 days and for 30 days. Each set consisted of

51*15 = 765 model integrations. All data are time averaged over the assimilation

window and the cost function is evaluated against pseudo observations.

Figure 4.3 shows the cost function vs. parameter plot for the 7 day model run. The

fluctuations in cost function with respect to change in parameter values are quite

large and therefore the function is not very smooth. The range of the cost function

goes up to 60. Unlike dry model configuration in which the cost function plot was

very smooth , the wet configuration of PlaSim due to several non-linear processes

involved results in large variations in the model cost function. On 7 day timescale

the cost function is most sensitive to water vapor absorption coefficient (th2oc) and

parameter related to tuning of albedo due to cloud scattering (tswr3).

For 30 day integration the cost function’s fluctuations are even larger (Fig 4.4)
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Figure 4.3— Same as Figure 4.1 except for the wet configuration of PlaSim and for 15 control
parameters.
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with the range of the cost function reaching up-to 140 corresponding to large per-

turbations in water vapor absorption coefficients (th2oc). Other parameters that

have large influence on model on 30 day integration period are tuning parameters

for vertical diffusivity (vdiff lamm and vdiff b).

From Figures 4.3 and 4.4, it can be seen that the cost function has a parabolic

shape with several secondary minima.

4.5 Model response to parameter perturbation on longer

timescales

SA for model runs for shorter time-scales in previous two sections was mainly per-

formed keeping in mind comparison of the optimizations techniques with 4-D var

adjoint assimilation scheme, results for which were available for shorter timescales

and for dry configuration of PlaSim. Since one of the objectives of the thesis is to

test and to implement the Green’s function and the SPSA approach into PlaSim

for longer time scales, therefore, SA with the wet configuration for 365 days is also

carried out. In this case, the control parameters are perturbed from -90% to 500%

(with an interval of 10%) of the original parameter value and the model is integrated

for a period of 1 year. This entire process involved 61*15 = 915 model runs each
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Figure 4.4— Same as Figure 4.2 except for the wet configuration and for 15 control parameters.
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of 1 year length. The cost function is computed for the averaged values of variables

for the entire year and is plotted with respect to perturbation range (Figure 4.5) of

parameters. Consistent with the previous results, here too the range of cost function

increases further with integration time.

The cost function is most sensitive to parameters tswr3 and th2oc (see Figures

4.3, 4.4 and 4.5). From Figure 4.5, it is visible that the cost function is not smooth

and several secondary minima exist. This behavior is quite similar to what is seen in

Figure 4.4. This is an indicator of nonlinear behavior of the model cost function with

respect to perturbation in each parameter. Due to the non-linearity of an atmosphere

system, for longer integration time scales, several secondary minima exist. These

secondary minima are no longer resolved and appear as stochastic deviations and

therefore gradient descent methods fail to find the absolute (true) minima. Instead

of the true minimum, the optimization gets caught in a nearby minima or a range

of minimum cost function (Köhl and Willebrand, 2002).
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Figure 4.5— Plot of model cost function (Y) vs. perturbation applied to model control parameters
(θ, 15) in the wet configuration of PlaSim. The cost function is computed from pseudo data and is
based on annual mean values of 1 year model integration.
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Figure 4.6— Same as Figure 4.5 except the range of perturbation from -50% to 200%. This plot
clearly shows the range of minimum cost function that can achieved if parameter perturbations are
not precisely zero.

These sensitivity experiments gives an idea of the range of perturbation that each

parameter should be perturbed so as to get their reasonable estimate by cost function

minimization. The range of true minimum of cost function in case of identical twin

experiment can be identified from the sensitivity plot. In our case the range of cost

function values corresponding to perturbation in parameters vary between 0 and

400 shown in Figure 4.6 which is the magnified plot of Figure 4.5. The range of

perturbation in Figure 4.6 is -50% to 200%. From the Figure it is clear that the

range of minimum cost function that can be achieved if parameter perturbations

are not precisely zero is between 20 and 30. Therefore, it can be said that the best

estimates of parameters in case of identical twin experiments would result in this

range of cost function.
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4.5.1 Impact of model parameters on state variables

Up to now, in this chapter, the focus was on the sensitivity of the cost function to

model parameters. The cost function is a measure of the cumulative errors in the

model variables and therefore the above SA does not provide any information on

the behavior of individual model variables. Hence, it will be of interest to know the

consequence of parameter perturbation on individual model variables in different

regions. In this subsection, the regional impact of perturbation to model param-

eters is investigated on basic atmospheric state variables. This particular analysis

provides an information about the parameters that might be crucial in the regions

where PlaSim has errors (as discussed in the previous chapter). The aim is not to

discuss much about the physical processes related to each parameter but to identify

the regions which have the maximum impact due to perturbation in each of these

parameters.

For this purpose, the sensitivity runs discussed in section 4.5 are analyzed. There

are 60 realizations corresponding to each of the 15 parameters. The basic state

variables of temperature at 1000 hPa, surface precipitation, SLP, zonal winds at 500

hPa, surface humidity and net heat flux are considered. Each of these variables are

averaged for the entire period of 365 days, therefore providing 60 values for each

model parameter. Root Mean Square error (RMSE) for each variable is computed

at every model grid point with respect to the control run over those 60 simulations

and the results are discussed. The RMSE is computed as

RMSE =

√∑N
i=1 (Xi −Xc)2

N − 1
(4.3)

where N denotes the total number of model runs performed for each parameter.

In this case N = 60. Xi denotes the state variable from the ith run and Xc denotes

the state variable from the control run.

Figure 4.7 shows the RMSE for temperature at 1000 hPa. The 15 panels shown

correspond to each model parameter that is perturbed. Most prominently for most

of the parameters the major influence of perturbation is seen over land particularly

over Northern Russia, North America, Sahara region and Brazil and the errors are

in the range of 0.5 to 3.5 K in these regions. Over the oceans the major impact of

perturbation is seen in the Arctic, north of 40◦N in Pacific and Atlantic and south of

50◦S in the Southern Ocean. In tropical oceans, there is almost no impact seen from

most of the diffusion and viscosity related parameters except from vdiff lamm, which

has some influence in the tropical west Pacific Ocean. The parameter vdiff lamm
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Figure 4.7— Plot of root mean square error (RMSE) in annual mean temperature (K) at 1000
hPa due to perturbations applied to 15 model parameters with respect to the control run.

also affects the regions south of 40◦S. Cloud and moisture related parameters (mainly

th2oc and tswr3) have influence over the oceanic regions, although weaker as com-

pared to the influence on land. Overall, in temperature at 1000 hPa, the maximum

sensitivity seems to come from th2oc, tswr3 and vdiff lamm.

The effect on surface precipitation (Figure 4.8) from all parameters is mainly seen

in the Northern Indian Ocean, north east China, the Indian subcontinent and to

some extent in the Western Pacific. Cloud and moisture related parameters (th2oc,

tswr1, 2 and 3) have an impact on the entire ITCZ region. In addition to this,

perturbations in vdiff lamm influences north west and central Pacific between 30◦N

and 50◦N and also in the narrow band along 40◦S mainly in the Atlantic and the

Indian Ocean. Overall, the range of errors in surface precipitation due to the applied
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Figure 4.8— same as in figure 4.7 but for surface precipitation (mmday−1).

perturbations is between 0.1-3 mmday−1. Interestingly, these regions coincide with

the regions where the surface precipitation had errors with respect to observations

(seen in chapter 2).

For SLP (Figure 4.9) the sensitive regions are mainly outside the tropical regions

and coincide with the regions having major SLP changes, i.e. North Pacific, Arc-

tic, North Atlantic and the entire Southern ocean. Parameter vdiff lamm has the

strongest influence (errors > 5 hPa) mainly in the north Pacific between 40◦N and

60◦N and in Southern Ocean south of 40◦S in strong winds regime. Sensitivity is

also observed in the Indian Ocean and in the central Pacific between 10◦N-30◦N.

There are some regions in the central tropical Pacific between 140◦W and 120◦W

which are sensitive to th2oc. Remaining parameters have an almost similar domain

of influence, albeit with varying magnitudes of changes (between 1-5 hPa).
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Figure 4.9— same as in figure 4.7 but for SLP (hPa).

Zonal winds at 500 hPa are affected in almost all the regions (Figure 4.10). The

exception is the western equatorial Pacific region where some of the parameters

have no effect on the upper level winds. Among all parameters, zonal winds at 500

hPa have the maximum sensitivity to vdiff lamm especially in the southern ocean

below 35S and central north Pacific ocean (above 35N). One can recollect from

previous chapter that these regions had major errors in the model simulations of

zonal winds at 500 hPa. Few other parameters like tfrc1, th2oc and tswr2 have

somewhat stronger impact as compared to rest of the parameters.

Apart from the above four basic variables, the effect of sensitivity experiments on

surface net heat flux and humidity is also examined. For net heat flux (Figure 4.11)

the major contribution to the response comes from all cloud and radiation based

parameters (th2oc, tswr1,2 and 3) and almost all of the oceanic regions are sensitive.
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Figure 4.10— same as in Figure 4.7 but for zonal winds (ms−1) at 500 hPa.

However, there are some regions like the North Pacific (above 30N), the Northwest

Atlantic and North Indian Ocean, which have somewhat pronounced impact due to

perturbations in these parameters. For all other remaining parameters, the errors

are within 10-20 Wm−2. Humidity (Figure 4.12)at 1000 hPa is sensitive to th2oc

and tswr3 mainly in the tropical oceans and over continents. Remaining parameters

influence over the oceans but identically affect the regions over continents.

Next, we look at the sensitivity in the upper levels of the model. For this, the RMSE

of the global mean values at each level for temperature, zonal winds and humidity

were computed and the results are shown in Figure 4.13. It can be clearly seen

that for temperature (left panel, 4.13), at all levels most sensitive parameters are

mainly belonging to parametrization of clouds and moisture (th2oc, tswr2, tswr3).

While th2oc has maximum influence on the surface, tswr3 contributes to maximum
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Figure 4.11— same as in Figure 4.7 but for surface net heat flux (Wm−2).

errors at 300 hPa. There is a contribution from vdiff lamm at 200 hPa and at levels

close to surface. From this plot, six main parameters appear to have the maximum

impact on temperature and they are th2oc, tswr1,2,3, acllwr and vdiff lamm. For

winds (middle panel, 4.13) the outstanding response is seen above 600 hPa due to

changes in th2oc with maximum at 200 and 300 hPa. All other parameters (except

for vdiff lamm) seems to have very little influence on the global mean zonal winds.

The peak in response in humidity (right panel, 4.13)is mainly seen at 800 hPa with

an exception of tswr3 whose maximum impact is seen at the surface. Along with

th2oc, humidity at 800 hPa is sensitive to diffusion related parameters (vdiff b and

vdiff d).
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Figure 4.12— same as in Figure 4.7 but for humidity at 1000 hPa (kg/kg).

4.6 Summary

In this chapter, the sensitivity experiments are analyzed in terms of the behavior of

the model’s cost function with respect to perturbation in the control parameters. It

has been found that the cost function is quite sensitive to cloud related parameters

and also to the length of time of model integration. Longer integration time results

in growing nonlinearities in the cost function and it becomes more difficult to identify

true minima. The SA gives an idea about the model response due to perturbation

in individual parameters. The regional effect of model parameters on the basic state

variables is also examined. SA results will serve as a guideline for choosing suitable

parameters including a useful range of applied perturbations for tests in identical

twin experiments. Our next aim is to perform parameter optimization in PlaSim
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Figure 4.13— Plots of height vs. RMSE between model simulations due to perturbations applied
to 15 model parameters and the control run for (left panel) Temperature(K), (middle panel) zonal winds
(ms−1) and (right panel) humidity (kg/kg).

using the GF approach which is presented in next chapter.
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Chapter 5

Parameter optimization using

Green’s function

In this chapter, the GF based approach is applied and tested with PlaSim. The

technique is briefly discussed in section 3.1. Since this is for the first time the GF

is applied to PlaSim, it is of interest to inter-compare two techniques of parameter

optimization and this is done in the following sections. Firstly the comparison of

two optimization algorithms (Adjoint and GF approach) for the dry configuration

of PlaSim for shorter time scales based on identical twin experiments is discussed.

5.1 Identical twin experiments

Identical twin experiments were first carried out in planning the Global Atmospheric

research program and were also called observing system simulation experiments

(OSSE) (Bengtsson et al., 1981). Identical twin experiments provide the initial test

of an assimilation system. They assimilate a data set (pseudo data) produced by

model itself in a run with the known values of all control parameters that take the

role of the optimal values. Identical twin experiments provide a good test for the

applicability of the method because the errors are controlled. Therefore methods

that perform well in identical twin experiments are also considered for performing

data assimilation of real observations.

In the GF approach, the iterative assimilation procedure starts from a perturbed

control vector. The experiment is successful if we can approximately recover the

default values of control parameters through assimilation of data with a reduction in

cost function. In identical twin experiments the optimal values of control parameters
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Figure 5.1— Convergence of the Adjoint method using the dry configuration for, 9 control param-
eters, the assimilation of pseudo observations and an integration time 7 days. Cost function (black),
norm of its gradient (red) and norm of control vector to default value (blue) over the iteration number.
Y axis is on log10 scale.

Figure 5.2— Convergence of the GF approach using the dry configuration for, 9 control param-
eters, assimilation of pseudo observations and integration time 7 days. Cost function (black), norm of
its gradient (red) and norm of control vector to default value (blue) over the iteration number. Y axis
is on log10 scale
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are known so it is possible to calculate the parameter error norm. The parameter

error norm is defined as :

D = (
N∑
i=1

(θi − θ0)2)0.5 (5.1)

where N is number of control parameters Here θ0 are the default values of control

parameters. θi is parameter value at each iteration(i).

The condition that all control parameters converge to their original value, which

means the parameter error norm decreases to zero indicates the success of optimiza-

tion. Since, at the moment optimization results using PlaSim’s adjoint in the dry

configuration are available, in the next section we will compare them with the results

using the GF approach implemented with PlaSim.

5.1.1 Inter comparison of Adjoint and GF approach in PlaSim

For comparison, the optimization runs for identical twin experiments were avail-

able from the adjoint of PlaSim in its dry configuration (Dr. Ion Matei, personal

communication). These results were available for integration times of 7, 21 and

56 days. The pseudo observations for identical twin experiments come from the

control run (discussed in section 2.2) using default values of control parameters (as

listed in Table 4.1) and the optimization was performed using the following 9 control

parameters:

• rayleigh friction(tfrc1,2)

• diffusion time scale for vorticity (tdissz)

• diffusion time scale for divergence (tdissd)

• diffusion time scale for temperature (tdisst)

• tuning parameter for vertical diffusivity (vdiff b, vdiff c, vdiff d)

• tuning of point of mean transimittivity in layer (tpofmt)

Using same setup as in the adjoint method, the optimization is performed using

the GF approach for the integration time periods of 7, 21 and 56 days. The GF

matrix given by equation (3.4) is computed by applying perturbation to the control

parameters. The perturbation to the parameters applied is ∼ 10−7. This choice of

perturbation was based on several trial experiments where the smoothness of the
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Figure 5.3— Same as Figure 5.1 except for an integration time of 21 days

Figure 5.4— Same as Figure 5.2 except for an integration time of 21 days
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Figure 5.5— Same as Figure 5.1 except for an integration time of 56 days

Figure 5.6— Same as Figure 5.2 except for an integration time of 56 days
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cost function played a very important role. The estimated parameters are obtained

as according to equation (3.5) and these values of new parameters are again used to

compute the GF and a new estimate of the parameters is again made. The iterative

procedure is stopped if the gradient of the cost function show little changes between

successive iterations as compared to the start of the iterative procedure when the

gradients were quite large. At this point, it is assumed that no further reduction in

cost function can be obtained. Figures 5.1 and 5.2 show the results of the adjoint

Method and the GF, respectively, for an integration time of 7 days. The plots show

a reduction in the cost function, the parameter error norm and the gradients with

respect to the number of iterations. It can be seen from the figures 5.1 and 5.2 that

the number of iterations required to reach the minimum cost function is large in case

of the adjoint method as compared to the GF approach. For the adjoint method,

a minimum cost function is achieved in around 65 iterations whereas with the GF

approach only 4 iterations achieve convergence. The parameter error norm (blue

line) and the gradients (red line) also show a consistent decrease.

Similar experiments are performed for an integration time of 21 and 56 days. Figures

5.3 and 5.4 show the results of adjoint and the GF approach, respectively for inte-

gration time of 21 days. It is to be noted that while for GF the number of iterations

that it took to achieve convergence increased in 21 days experiment as compared to

7 days experiment, while it is not for the adjoint method. In the 21 days experiment

using the adjoint method, the convergence is achieved in 50 iterations (as compared

to 65 iterations in 7 days experiment) while it took only 14 iterations in case of the

GF. Similarly, it can be seen that for 56 days the minimum cost function is attained

using the adjoint method in 70 iterations (Figure 5.5) and using the GF in only 40

iterations (Figure 5.6).

It is clear from the above mentioned results that with the GF approach, minimum

cost function can be achieved in less number of iterations as compared to adjoint

method. From these three different experiments it can be inferred that with the GF

method the number of iterations required to minimize the cost function and achieve

convergence increases when the assimilation window length increases, however it is

not so in the adjoint method.

A complete adjoint-method optimization may require approximately 4 times as much

time to complete as a forward-model integration. The adjoint method requires a

tangent-linear model and in addition, its computational expensiveness, implemen-

tation is technically demanding and it is unable to handle chaotic systems. The
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chaotic dynamics of the AGCM restricts the applicability of Adjoint method to very

short time scales.

In the next section, we demonstrate the application of the GF on the wet configu-

ration of PlaSim for both shorter (30 days) and longer time scales (1 year)

5.1.2 Application of Green’s function approach in the wet config-

uration of PlaSim

In this section, the wet configuration of PlaSim is used. Since the wet configuration

includes the hydrological cycle in PlaSim therefore cloud related parameters (as

shown in the Table 4.1) can also be included for the optimization. The selection

of control parameters is based on the sensitivity of model’s cost function. The

sensitivity experiments were discussed in chapter 4. Only the parameters which

generated large deviations in the cost function due to change in their values were

selected for further experiments using GF method. The following parameters were

selected:

• tuning parameter for vertical diffusivity (vdiff lamm)

• absorption coefficient h2o continum(lwr) (th2oc)

• tuning of cloud albedo range1 (tswr1)

• tuning of cloud back scattering range2 (tswr2)

• tuning of cloud scattering albedo range2 (tswr3)

• mass absorption coefficient for clouds (lwr) (acllwr)

The results from the sensitivity experiments (section 4.4.2) with the wet config-

uration reveal that the model cost function is not smooth and contains several local

minima. Therefore for using GF in the wet configuration of PlaSim the value of per-

turbation applied to estimate gradients will be different than what was used in GF

experiments with dry configuration. Since for the wet configuration cost function is

not smooth, smaller perturbation for estimating gradients will result in wrong search

direction. Therefore, the perturbation applied to estimate gradients should be large

enough to overcome the noise level of the cost function. The sensitivity experiments

performed in chapter 4 gives an idea for the necessary range of perturbations applied

to estimate gradients.
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Experiments
Control parameters Integration time

(in days)

Cost function

reduction(%)vdiff lamm th2oc tswr1 tswr2 tswr3 acllwr

EXP-6P-30 160 0.04 0.04 0.048 0.004 0.1 30 97

EXP-5P-30 - 0.04 0.04 0.048 0.004 0.1 30 92

EXP-3P-30 160 0.04 - - 0.004 - 30 96

EXP-6P-365 160 0.04 0.04 0.048 0.004 0.1 365 95

EXP-5P-365 - 0.04 0.04 0.048 0.004 0.1 365 94

EXP-3P-365 160 0.04 - - 0.004 - 365 97

Table 5.1— Three experiments performed with different sets of control parameters used in the
optimization procedure for different integration time scales in identical twin experiments.

Different set of experiments are performed using pseudo data sets for an integra-

tion time of 30 days and 365 days. In the first experiment (called EXP-6P-30), all 6

selected parameters were used as control, while in EXP-5P-30, 5 control parameters

that are related to cloud processes were used. In EXP-3P-30, only the three most

sensitive parameters are considered. The control parameters used and their values

are listed in Table 5.1. The purpose of choosing different control parameters was

to check the dependence of the performance of the GF approach on the choice of

parameters. The perturbation applied to each parameter for calculating gradients is

100% of the parameter value. The cost function in EXP-6P-30 reduces from a value

of 100 to a minimum value of 3 (Figure 5.7) in around 9 iterations. In EXP-5P-30,

the cost function reduces to a minimum value of 7 (from an initial value of 92) in

around 7 iterations along with a decrease in parameter error norm and gradients. In

EXP-3P-30, the cost function is reduced from a value of 114 to 5 in 4 iterations. Ta-

ble 5.1 shows the percentage reduction in cost function for each of the experiments.

The middle panel of Figure 5.7 shows the parameter error norm as calculated using

equation 5.1. The parameter error norm represents the deviation in the parameter

values from the control values and it is seen from Fig 5.7 (middle panel) that with

successive iterations the parameter error norm reduces and become close to zero at

the point of attaining minimum cost function. The parameter error norm getting

closer to zero suggests that the optimization algorithm is successfully able to retrieve

the original parameter values. Simultaneously, the gradients are also reduced until

about 10 iterations. In the begining, gradients shows maximum decrease, however

beyond 10 iterations there is no clear trend and the fluctuations in the gradients

become quite large and no further convergence can be achieved (Figure 5.7, lower

panel). In this case of identical twin experiments, the true minimum should ideally
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be zero. However, due to the stochastic behavior of the cost function the minimum

of the perfect minima cannot be found. This minimum can only be reached using

the precise set of parameter values which were used in the control run of the ex-

periments. Any small deviation in any or all of the parameter values result in a

sizable increase in the value of the cost function. From sensitivity experiments we

saw that unless we use exact parameter values, the minimum value of the cost func-

tion that could be attained is between 10 and 20 for a 365 day integration period.

Further reduction in the value of cost function is not attainable. In fact continuing

further with iterations result in large deviations in parameter error norm and the

cost function begins to rise again.

Beyond 10 iterations there is an increase in the value of the cost function, the

gradients show random fluctuations. It is also seen that for all three experiments,

the parameter error norm increases after attaining a minimum. This is due to

the large fluctuations in the gradients that the deviations in the parameters again

begin to increase and therefore the cost function also show a steady rise. From the

above experiments it can be seen that GF is able to obtain a unique minimum cost

function and parameter error norm for wet configuration of PlaSim in identical twin

experiments performed at shorter time scales. Blessing et al. (2014) noted that the

Adjoint approach was not successful for even less days of PlaSim simulations in wet

configuration.

We now attempt to demonstrate parameter optimization using GF for longer

model integration periods. For this one year model integration time is chosen. The

model integration period of one year will be just enough to demonstrate the ro-

bustness of the optimization capability of GF for climate applications. The above

experiments were repeated for cost function calculations for an integration time of

one year. The convergence of the cost function and the parameter error norm is

quite similar to the 30 day experiments except for the different values of initial cost

function which in this case is slightly higher because of longer integration times

(Figure 5.8). The minimum cost function as shown in Figure 5.8, top panel is

achieved in 18, 10 and 6 iterations for EXP-6P-365, EXP-5P-365 and EXP-3P-365

respectively. The minimum value of cost function is within the expected minimum

range (as shown in Figure 4.6). At the point of attaining minimum cost function

the parameter error norm (Figure 5.8 middle panel) also becomes minimum and is

close to zero. The minimization of norm indicates that the optimization procedure

has reached convergence and the parameter values retrieved are close to the actual

values. Iterations carried beyond this point leads to an increase in the norm indicat-
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Figure 5.7— Convergence of the GF approach in the wet configuration using pseudo observa-
tions for EXP-6P-30, EXP-5P-30 and EXP-3P-30. Cost function (top panel), parameter error norm
(middle panel) and gradients (bottom panel) versus iteration numbers. The integration time is 30
days.

ing that the parameter values are starting to diverge away from the actual values.

The larger fluctuations in the gradient (Figure 5.8 bottom panel) after the point
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Figure 5.8— Convergence of the GF approach in the wet configuration using pseudo obser-
vations for EXP-6P-365, EXP-5P-365 and EXP-3P-365. Cost function (top panel), parameter error
norm (middle panel) and gradients (bottom panel) versus iteration numbers. The integration time is
365 days.

of minima suggest that continuation of iterations beyond this point leads to large

uncertainties. From the above results, it appears that this optimization procedure
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for identical twin experiments is quite successful for longer integration periods of

the atmosphere model.

5.2 Optimization with ERA-Interim reanalysis data

After successfully assimilating pseudo data using the GF approach, the next step is

to perform the experiments with the real observations. ERA-Interim reanalysis data

as described in section 2.3 has most of the available observational data assimilated

and therefore it can be considered as one of the most accurate representation of

the climate system. As a next step towards optimizing the atmosphere model we

make use of this data set. For computing the cost function, instead of pseudo data,

annual means of state variables from ERA-interim data set are used. The period of

data from which the annual means are constructed spans year 1979 to 2012. The

cost function computation comprise of same state variables which were used in the

identical twin experiments as described in section 5.1.

Optimization experiments are performed similar to those in section 5.1.2 using 3,

5 and 6 control parameters described in table 5.1 for shorter and longer (30 and 365

days respectively) integration time periods and with different combination of the

above used parameters. The default values of the control parameters as mentioned

in table 5.1 is used as starting values in the iterative procedure. The perturbation

applied in successive iterations is large and comparable to the parameter value it-

self. The cost function using the control values of model parameters with respect

to ERA-interim observations is ∼ 105 which indicates that model is far away from

the observations. There is no significant reduction in the cost function with succes-

sive iterative steps of GF approach and fluctuations in the gradients are observed.

Subsequent efforts for optimizing the model were carried out by reducing the num-

ber of control parameters, however the behavior was similar and the cost function

curve remained noisy for entire iterations and no meaningful optimization could be

attained. Finally, the most sensitive parameters vdiff lamm and th2oc are used for

the procedure. Two experiments are performed using ERA-Interim data with the

GF approach. The Figures 5.9 and 5.10 shows the results of the iterations for 30

and 365 days and with the above mentioned control parameters. The cost function

is of the order of 105. It is observed from these two figures that there is no reduction

in the cost function. Also, gradients are not reducing with respect to iterations

and they are not helpful (Figure not shown) in finding minimum cost function. In

experiments with real data optimal values of control parameters are not known and
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Figure 5.9— Reduction in cost function wrt Iterations when optimization is done with ERA-Interim
data using 2 control parameters and integration time is 30days.

therefore it is not possible to get a measure of the parameter error norm.

5.3 Summary

In this chapter, the implementation and application of GF on PlaSim is discussed.

It is found that GF and Adjoint method can successfully optimize parameters in

the dry configuration of PlaSim and their results are comparable. The advantage of

using GF is the ease implementation of code as compared to the adjoint method. The

performance of the GF with the wet configuration and using pseudo data is quite

satisfactory. GF approach used on wet configuration of PlaSim is able to obtain

optimal model parameters within 10 iterations for 30 and 365 days integration time

in identical twin experiments framework. However, GF fails to optimize PlaSim

when real observations are used to compute the cost function.



56

Figure 5.10— Same as in Figure 5.9 but integration time is 365 days.

One of the drawbacks of the GF approach is that the computational cost increases

linearly with the number of control parameters that are used in the procedure.

Another major limitation that is found in GF approach is that it is unable to optimize

parameters with ERA-interim reanalysis data .One of the reasons for this could be

large biases in the PlaSim with respect to ERA-interim observations which grow

with longer integration time. In the next chapter, stochastic optimization method

SPSA is implemented and discussed.
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Chapter 6

Parameter optimization using

SPSA

In the last chapter, it was seen that the GF approach is successfully able to retrieve

optimal parameters for both dry and wet configurations of PlaSim in identical twin

experiment framework. It was also found that Green’s function performance is com-

putationally better than the adjoint method in the dry configuration of PlaSim.

The major drawback of GF approach from the experiments performed is that it fails

when applied to real atmospheric conditions, i.e. when the data used for cost func-

tion computation are not pseudo observations but real observations. Another major

drawback of GF approach is that the computational cost increases linearly with the

number of control parameters. To overcome above drawbacks of GF a stochastic

approach, the Simultaneous Perturbation stochastic Approximation (SPSA) is con-

sidered. The concept of SPSA is developed by (Kiefer and Wolfowitz, 1952) and these

stochastic algorithms perform random search in parameter space. SPSA is based on

highly efficient and easily implemented simultaneous perturbation approximation to

the gradient. This gradient approximation for the central difference method uses

only two cost function evaluations independent of the number of parameters being

optimized. As a result of the stochastic perturbation the calculated gradient is also

stochastic, however the expectation of the stochastic gradient is true gradient (Li

and Reynolds, 2011).

The advantage of stochastic algorithms is its ability to deal with random noise in

the measurement of cost function. Also these algorithms rely on an approximation

to the gradient from the noisy measurements of cost function. These algorithms

can be easily implemented with any numerical model hence no huge programming
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effort is needed. The SPSA algorithm has gathered a great deal of interest over last

decade and has been used in variety of applications (Hutchison and Hill, 2001; Spall,

2000; Gerencsér and Vágó, 2001; Kong et al., 2011). The gradient based algorithms

(Adjoint,EnKF) are faster to converge than any gradient approximated algorithms

(GF, SPSA algorithm) when speed is measured in terms of the number of iterations.

The total cost to achieve effective convergence depends not only on the number of

iterations required but also on the cost needed to perform these iterations which is

more in gradient based algorithms. This cost may include computational cost and

additional human effort required for coding the gradients. In the following sections,

implementation and experiments of SPSA are discussed.

6.1 Identical twin results

SPSA scheme based upon formulation given in section 3.3 is implemented in PlaSim.

Following this, a set of identical twin experiments are performed. Different sets of

experiments with different control parameters (as in chapter 5) with pseudo data

and with different integration time scales are carried out. The cost function (model

data difference) comprises of 16 variables which are listed in Table 4.2 together with

their corresponding globally averaged STD (C0). A default setup (as explained in

section 2.2) is used to generate pseudo data for one year period. The experiment is

successful if we can approximately recover the default values through assimilation

of pseudo data via reduction in the cost function. All experiments using SPSA are

performed on the wet configuration of PlaSim.

First experiment is carried out using the same 5 control parameters as used in

EXP-2 of chapter 5 for integration time 30 days. The perturbation applied to each

parameters is 200% of their default value. The value of a and c in the gain sequence

given by equation 3.12 were chosen to be 0.05 and 1.0 respectively. According to

Spall (1998) the value of a should be very small as compared to c. It is effective

to set c as standard deviation of the noise in the cost function. The values of a

and c that are used in this study are a result of several trial experiments where

the criteria of cost function convergence was used. Figure 6.1 shows the result of

optimization with SPSA. Top panel shows the reduction in the cost function with

respect to each iteration. The cost function is reduced from a value of 35 to ∼5 in

50 iterations. Simultaneously the parameter error norm defined in equation 5.1 has

reduced approximately to zero. Because of the nonlinear behavior of cost function
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Figure 6.1— Cost function vs. iteration number for selected 5 parameters (Table 4.1) in the
identical twin experiment. Cost function is computed for a period of 30 days model integration

exact minimum cannot be achieved but a nearby minimum is achieved and this

minimum is in the same range as explained in sensitivity experiments. The number

of iterations required to achieve convergence are larger than those in GF approach.

However, it must be noted that in GF for 5 parameter case, each iteration required

5 model runs (one corresponding to each parameter perturbation) while in SPSA

only two model runs per iteration are needed for any number of control parameters.

Next experiment is performed for integration time of 365 days and with same

setup as for 30 days. Figure 6.2 shows the corresponding result. Top panel shows

the reduction in cost function with respect to iterations and it is reduced to min-

imum range of 10-20. This is the same range of minimum as shown in sensitivity

experiments Figure 4.6. The minimum cost function is found in 150 iterations and

parameter error norm is also reduced in 150 iterations.

In the GF approach we reduced the number of control parameters that were
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Figure 6.2— Cost function vs. iteration number for selected 5 parameters (Table 4.1) in the
identical twin experiment. Cost function is computed for a period of one year model integration

actually used in the procedure. The main reason for this was the computational

time associated with each parameter. The total time taken for one iteration in GF is

dependent on the number of control parameters used. Hence we restricted the control

parameters to 6 based on the sensitivity experiments of PlaSim However, SPSA is

not limited by this constraint as the perturbation applied to all the parameters is

simultaneous and iteration time is independent of the number of control parameters.

Therefore an attempt is made to apply SPSA on PlaSim using all the 15 control

parameters that are mentioned in Table 4.1. The iterative procedure is started using

a perturbed vector of selected 15 parameters as mentioned in Table 4.1, known as the

control vector. The size of perturbation is based upon the sensitivity of cost function

to each parameter. As seen in Figure 4.5, the parameters tfrc1, tfrc2, tdissz, tdissd,

tdisst, vdiff b, vdiff c, vdiff d and tpofmt are contributing almost same as the noise

in the cost function and therefore the size perturbation applied to these is larger

(∼ 200% of the original value) as compared to the remaining parameters (∼ 20% of

the original value). The assimilation is carried out over one year integration time
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scale. The experiment is successful if we can approximately recover the default

values through the assimilation of the data via reduction of the cost function.

Figure 6.3— Cost function vs. iteration number for selected 15 parameters in the identical twin
experiment. Cost function is computed for a period of 1 year model integration

The control run as explained in section 2.2 is used as reference to compute the

cost function using equation 4.2 of section 4.3.1. The value of a and c in the gain

sequence used are 0.01 and 0.2 respectively. a is used for gain sequence ak which

relates to the inverse of Hessian in the Quasi-Newton algorithm. The value of c is

decided by the variability of the cost function over certain range of perturbations

in parameters (Spall, 1998). All 15 parameters (normalized to 1) are perturbed

simultaneously and using the SPSA method described in section 3.3, gradients are

computed and corrections to the parameter are applied.

Figure 6.3 shows the cost function vs. iterations plot. It can be seen that the

cost function achieves the minimum value of ∼15 in around 120 iterations and then

continues to fluctuate about this value further on. As discussed in section 4.5 this

value of cost function lies in the range of an acceptable minimum and it cannot

reduce further. At this stage about 2/3 of the cost corresponds to temperature and

1/3 to the surface fluxes.

Ideally, in identical twin experiments, the reduction in cost function and in Euclidean

distance of control vector to the default values is achieved simultaneously. The

absolute values of the differences of control parameters are plotted with successive

iterations is shown in Figure 6.4. Here, the absolute difference (∆θ) is defined as the
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Figure 6.4— Absolute differences (∆θ) vs Iteration plotted individually for all 15 parameters in
identical twin experiments. Integration time is 1 year. The absolute differences is computed as shown
in equation (6.1)

distance between the default parameter (θ̂i) value and value of parameter at each

iteration (θki)

∆θi = |θ̂i − θki| (6.1)

where θ̂i represents control parameter values.

In identical twin experiments, the parameters must reach to their default value,

however due to the effectively stochastic behavior of the model this may not happen

in case of multiple parameters. The parameters are expected to converge to their

original values, however in our case only values for 8 out of 15 parameters were

retrieved, while remaining 7 parameters were not converging to their default values.

As mentioned above, for 8 out of 15 parameters the absolute differences ∆θi has

decreased meaning that the parameter is getting closer to its true value. From the

sensitivity experiments curve in Figure 4.5 it can be seen that the cost function is

less sensitive to the parameters which were not correctly retrieved and that some

parameters were not contributing in the cost function more than the noise level. So
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it is difficult to retrieve those parameters. However, the cost function minimum in

our case was achieved which indicate that the technique has a potential application

to our model. Annan et al. (2005) got similar results where they also found that

not all parameters converge to their default values. Their argument was that the

data used to constraint the parameters were inadequate and so this type of result

was expected.

In the next section ERA-interim observations are used in the optimization pro-

cedure.

6.2 Application using reanalysis data

The observational data used are from the ERA-Interim reanalysis. These datasets

are interpolated on model levels and then averaged to the model horizontal grid.

We have used annual means of the temperature (all levels), large scale precipitation

(LSP), convective precipitation (CP), surface sensible heat flux (SSHF), surface

latent heat flux (SLHF), surface solar radiation (SSR) and surface thermal radiation

(STR).

As expected, with ERA-Interim data the cost function has a larger value (order 3

larger) as compared to cost function against pseudo data and therefore the value of

a in the algorithm used to be low (∼ 1e−4) for stable results in successive iterations.

The model was integrated for one year using default values of parameters, the gra-

dients with respect to the ERA-Interim data were used to calculate corrections to

parameters iteratively. At each iteration the cost function reduces until it reaches

a value after which there is no substantial decrease and the cost function fluctuates

around that minimum value. This happens after about 500 iterations and by then

the reduction in cost function is around 25%. The main contribution for reduction

in cost function is from tfrc1 (14%), tpofmt (41%), th2oc(11%), tswr1 (16%) and

tswr3 (14%) , while the contribution of the remaining parameters is significantly

smaller.

The robustness of the experiment results is assessed by an ensemble with three

members, each of which start from a different point in control space. Three ensembles

(Ens-1, Ens-2 and Ens-3) using different initial values of control parameters are

carried out with 15 control parameters. In Ens-1, Ens-2 and Ens-3 the value of each

control parameter is increased by 0% (default parameter values), 60% and 100%

respectively. Figure 6.5 shows the reduction in cost function with successive model

iterations for three ensembles.
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Figure 6.5— Total cost function(using ERA-Interim reanalysis data) vs iteration number. Reduc-
tion in cost function with respect to iterations for three ensemble members.
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Figure 6.6— RMSE of all (total) and individual(temperature, precipitation, net heat flux and total
cost) contributions in original and optimized model states. The reduction is ∼ 20%, 5%, 11%, 18%
and 21% for temperature, precipitation, net heat flux, surface temperature and total cost function.

The cost function in all the cases attains near identical values around 700 it-

erations. All three cases converging to same value of the cost function gives the

impression that the technique is robust and identifies unique minimum instead of

multiple minima. The performance of optimization was judged by means of Root

Mean Square Error (RMSE) which is the square root of normalized cost function

given by
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RMSE =

√
Y (θ̂)

N
(6.2)

where N represents the total number of observations. The model state resulting

after using optimized parameters shows improvement on the original state when

compared to ERA-Interim reanalysis.

The total RMSE which was ∼ 3.1 in the Original run is reduced by ∼16% to 2.6

while for the individual variables the reduction is 5%, 11% and 18% for precipitation,

net heat flux and surface temperature respectively (Figure 6.6). The optimized

control parameters are used for a forward run of PlaSim for 1 year and an optimized

state is made. The RMSE of the global mean temperature profile from the original

and an optimized state is shown in Figure 6.7. The errors have reduced at almost

all levels barring level 2. The levels of maximum errors experienced significant

Figure 6.7— RMSE of global mean Temperature between ERA-Interim and Original and op-
timized model temperature. Y axis denotes height of the atmosphere represented as sigma levels
with model level 10 corresponding to the bottom and model level 1 corresponding to the top of the
atmosphere
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reduction. Overall there is ∼10-20% reduction of error in temperature at various

levels in the atmosphere. Spatial distribution of errors of surface temperature and

surface net heat flux from original and optimized state is shown in Figures (6.8 and

6.9). Most of the error reduction in surface temperature takes place in the equatorial

West Pacific, North Atlantic and Southern Indian Ocean regions. Net heat flux

shows improvement almost in every region with large errors of > 50 Watts/m2

coming down within 10 Watts/m2 in the North Pacific, south-east Africa and also

in South Atlantic ocean. There are some places where optimization has resulted

in larger errors, most prominent of these are the regions around Greenland in the

North Atlantic and in the eastern equatorial Indian ocean. Not much improvement

is seen in total precipitation, however there are some regions in the equatorial West

Pacific and in the Indian Ocean region where the RMSE in total precipitation has

decreased (Figure not shown).

Figure 6.8— Absolute mean difference of near surface temperature between ERA-Interim and
(top panel) Original, (bottom panel) Optimized

In chapter 2, annual mean differences of PlaSim with respect to the ERA-interim

reanalysis for near surface temperature, precipitation, sea level pressure and 500hPa

winds (2.1 - 2.4) were shown. Figures 6.10 - 6.13 show the differences in the opti-

mized state resulting from SPSA procedure for the same variables as discussed in

section 2.3. For temperature at 1000 hPa, the differences have reduced mainly in

the northern Polar Regions (Arctic and Greenland) where the temperatures were

underestimated. Marginal improvements are also seen over equatorial oceans. How-
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Figure 6.9— same as Figure 6.8 but for Net surface heat flux. Contour intervals for net heat flux
is 5 watts m−2

ever, over North America and over West Asia, the differences have increased after

optimization. Precipitation shows slight less differences over Indian Ocean and over

South America (as discussed in previous section too), however there are pockets

of regions where the differences have increases such as in eastern Africa and over

eastern China. Overall, there is slight improvement in the precipitation (< 10%)

in the optimized simulations. Differences have reduced in the Sea level pressure

(Figure 6.12) simulations, mainly over Antarctic and Arctic regions. High positive

and negative differences have now reduced after optimization in these regions. The

only region where the differences have slightly increased are around 40N in the Pa-

cific Ocean. Sea level pressure is also an indicator of surface winds, and therefore

these results may suggest also the differences in surface winds in the optimized runs.

Winds at 500hPa show less differences than control in the region between 40-60S ,

over central Africa and West Asia. In other regions, however, there is either no im-

provement or degradation seen. Overall, there is only slight improvement in 500hPa

winds. The above results suggests that, although, overall the optimization proce-

dures have resulted in reduced cost function, there are regions over the globe where

the procedure has yielded negative results.
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Figure 6.10— Annual mean Temperature (K) at 1000 hPa from (Top) PlaSim Optimized, (mid-
dle) ERA-Interim reanalysis data and (bottom) absolute difference (PlaSim Optimized - ERA-interim).
PlaSim Optimized represents the annual mean state resulting from one year optimization run using
SPSA as discussed in section 6.2. ERA-interim data represents annual mean of 21 years (1989-
2009)

6.3 Conclusion

In this chapter, SPSA technique is applied to optimize the AGCM PlaSim. The

experiments are performed with 15 control parameters simultaneously and for time
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Figure 6.11— same as in 6.10 but for total precipitation (mmday−1)

scale of 1 year using the wet configuration of PlaSim. The experiments are performed

with synthetic as well as real data. SPSA technique is used to minimize the cost

function comprising of contributions of mainly temperature, precipitation and heat

fluxes.

SPSA technique can efficiently optimize parameters of the atmospheric model by

finding the minimum cost function. The technique is robust and works well both

with identical twin and reanalysis data. In identical twin experiments, the default
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Figure 6.12— same as in 6.10 but for Sea Level Pressure (hPa)

values for 8 parameters are recovered and cost function is also reduced to acceptable

range of minimum cost function. The results with ERA-Interim data shows an

overall reduction in RMSE of ∼ 21% while temperature shows an improvement up

to 20%. Precipitation shows slight improvement especially in the Indian Ocean. The

primary virtues of SPSA are the ease of implementation and the lack of need for a

cost function gradient, theoretical and experimental support for relative efficiency,

robustness to noise in the cost function measurements and ability to find a global
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Figure 6.13— same as in 6.10 but for zonal winds at 500 hPa

minimum when multiple minima exist.
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Chapter 7

Conclusions

Climate models are essential tools for climate study and future climate projections.

Long term climate simulations results in the drifts of the simulated state with re-

spect to the observations and hence the efforts are on,globally, for minimizing these

differences between model and observations by means of data assimilation. This

thesis is an effort in that direction, in which the atmospheric component, PlaSim,

of the university of Hamburg earth system model, CESAM, is used to test the per-

formance of two different approaches of tuning the model parameters through data

assimilation. The basis of the work is an assumption according to which the errors

in the model simulation are caused by the errors in the values of the parameters used

in different parameterization schemes of the model. The parameter optimization is

aimed for longer time scales so that the optimized model can be used effectively for

climate simulations.

Before applying any optimization procedure, a sensitivity analysis of PlaSim was

performed (explained in chapter 4 of the model) by perturbing the vector of control

parameters over a wide range and then analyzing the changes in the model data

difference (i.e. the cost function). This was done to understand the effect of uncer-

tainties that are often associated with control parameters in models. In this study

the sensitivity analysis of PlaSim was performed using the wet, the dry configurations

with 15 parameters and for different integration time scales. It is found that discon-

tinuities in the variation of cost function grew by including complex processes and

by increasing model integration time. For longer model integration (up to 365 days)

PlaSim’s cost function which is computed using contributions from temperature,

precipitation and heat flux components is highly sensitive to tuning parameter for
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vertical diffusivity, point of mean transimittivity in layer and cloud related processes.

Remaining parameters have smaller contribution to the cost function as compared

to above mentioned parameters. An important information that is obtained from

the sensitivity experiments is that range of the minimum cost function that could be

achieved when the parameters are not precisely the same as control parameters. This

information was very useful in optimization procedure in identical twin experiments.

The first technique used for optimizing PlaSim is a least square estimate based

Green’s function (GF) approach. In Greens function method (Menemenlis et al.,

2005), each individual control parameter is perturbed one at a time and partial

derivatives of cost function with respect to each parameter are obtained. Green’s

function approach was found to be effective in estimation of parameters under iden-

tical twin framework. One of the goals of the thesis was to inter-compare the per-

formance of adjoint based and Green’s function based optimization techniques. Fol-

lowing conclusions can be made in this regard:

• Implementation of Green function was quite simple whereas adjoint method

is known to be quite complicated to implement and needs immense time for

development.

• While adjoint based approach applied on PlaSim is limited by the length of

the assimilation window even in the model where the non-linear processes are

minimal (Blessing et al., 2014), Green’s function approach was able to retrieve

the parameters successfully even for longer time scales.

• For shorter integration time (7 days) Green’s function method effectively takes

less time to converge as compared to the adjoint method, however, for longer

timescales (56 days) Green’s function was more time consuming although it

required less number of iterations to converge.

GF approach is advantageous over other parameter optimization methods (in

comparison with Adjoint and EnKF) due to its ease of implementation. Not much

efforts are required to calculate the gradients of the cost function. Therefore, this

method can be applied to any numerical model with very few changes in the model.

GF approach, however, has some shortcomings. When applied to real observa-

tions (ERA-interim reanalysis, used in this study), this method fails to get an esti-

mate of the parameters even for one day assimilation window. The reasons for this

were not explored in this thesis, however according to Sumata et al. (2013) finite
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difference based optimization techniques generally fail to work when the model’s

response is non-linear with respect to the control parameters. In our case, with

real observations, it was found that the model data misfit is quite large and due

to several local minima in the cost function, attaining optimization becomes quite

difficult. This technique is based on linearization of model dynamics and therefore

in highly non linear systems, this approach is not able to optimize parameters. In

GF approach there is a possibility of finding a local minimum of cost function in-

stead of unique minimum. To overcome this disadvantage, the perturbation applied

for calculating gradients should be larger than the noise level in the cost function.

Another major drawback in using this approach is that the computational time for

each iteration is dependent on the size of the control vector. The cost for calcu-

lating gradients increases linearly with number of parameters to be estimated. So

moderate and highly sensitive model parameters should be selected to enhance the

performance of the GF approach.

It was seen that although the Green’s function approach took less number of

iterations for optimization, the actual time required for the entire procedure was

larger than that for the adjoint based optimization approach. This is simply because

the model has to be integrated separately for each perturbed parameter. With this

constraint GF approach is unfit for any practical application in atmospheric models

for parameter optimization especially where we want to consider optimization of a

large number of parameters.

Stochastic techniques are known to be an efficient tool for the solution of op-

timization problems in case of chaotic models. The second technique used in this

study is the simultaneous perturbation stochastic approximation (SPSA). In SPSA

the gradient is estimated using only two measurements per iteration regardless of

the dimension of the optimization problem. Unlike GF, in SPSA all considered pa-

rameters are perturbed simultaneously. It is found that SPSA takes more number

of iterations to find minimum cost function range as compare to the GF in identical

twin experiments. However, in SPSA the computational time for each iteration is

independent of the size of the control vector.

SPSA was applied to ERA-Interim reanalysis data and unlike the GF approach, cost

function reduction was achieved. The optimized set of parameters was then used

to generate the optimized state which was then compared with the observations. It

was found that the errors in temperature have reduced (as compared to the control

state) at almost all levels barring second level just below the stratosphere. Over-

all there was ∼10-20% of reduction of error in temperature at various levels in the
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atmosphere. Most of error reduction in surface temperature occurred in the equa-

torial West Pacific, North Atlantic and Southern Indian Ocean regions. Net heat

flux improved almost in every region with large errors of > 50 Watts/m2 coming

down within 10 Watts/m2 in the North Pacific, south-east Africa and also in South

Atlantic ocean. However there was not much improvement in total precipitation,

however there are some regions in equatorial west Pacific and in the Indian Ocean

region where the RMSE in total precipitation has decreased. Overall SPSA method

successfully optimized PlaSim both in identical twin as well as in real experiments.

A major limitation of all stochastic methods is the large number of iterations that

are required for optimization. A recent research (Schirber et al., 2013) demonstrates

that single parameter estimation (using Ensemble Kalman Filter, EnKF) for shorter

time scales (30 days) is quite successful. The gradient based algorithms (Adjoint,

EnKF) are faster to converge than any cost function based gradient approximation

(SPSA algorithm).

7.0.1 Closing Remarks

An attempt to use two different optimization methods, one based on gradient de-

scent approach and another based on gradient approximation approach was made in

this thesis. The aim was to explore an alternate assimilation approach along with al-

ready existing 4-D variational assimilation system in PlaSim. With the experiments

performed in this experiments, it is found that the stochastic approach of optimiza-

tion works quite effectively in bringing down the model data differences. The major

advantage of using SPSA has been its simple formulation and ease of implementa-

tion. In this aspect SPSA scores over many other existing techniques such as the

Kalman filter, variational methods etc. There are however certain limitations which

are quite serious and might require further efforts to make such techniques practical

for routine use. The choice of control parameters is very crucial in determining the

success of these optimization techniques. Many more experiments with different

initial parameter values must be performed in future to get even better results. An-

other significant point of concern is that in this study a very coarse resolution model

is used for the experiments. For any practical application the resolution of the model

has to be fine enough so that it can capture meso to sub-mesoscale variability of the

climate system. Applying SPSA in this framework where the model resolution is fine
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is a challenging task as the number of iterations required for successful optimization

is quite large.

In this study, SPSA technique has been successfully applied for the first time

to an atmospheric model, however, because of the above mentioned limitations, it

might be possible in near future with the development of computer infrastructure

and parallel computations to use it practically for our real world applications.
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