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Kurzfassung

In der folgenden Doktorarbeit werden die Ergebnisse der Analyse des Zusam-
menspieles zwischen der strukturellen und magnetischen Chiralität in den ver-
schiedenen Übergangsmetallmonogermaniden und -monosiliziden: Mn1−xFexGe,
Fe1−yCoyGe und Fe1−zCozSi präsentiert. Unterhalb der Ordnungstemperatur Tc
weisen diese kubischen B20 Verbindungen, die über keine Inversionssymmetrie
verfügen, eine helikale (homochirale) Spinstruktur auf, die auf dem konkurrieren-
den Zusammenspiel zwischen der starken ferromagnetischen (FM) Wechselwirkung
J mit der schwächeren Dzyaloshinskii-Moriya (DM) Austauschwechselwirkung D
basiert. Resonante Röntgendiffraktion und polarisierte Neutronenstreuung wur-
den angewendet, um die strukturelle ΓC und magnetische γm Chiralitäten zu
bestimmen. Die mikroskopischen Messungen wurden dabei durch makroskopis-
che magnetische SQUID Messungen ergänzt. Für alle untersuchten Materialsys-
teme konnte der experimentelle Nachweis erbracht werden, dass der Zusammen-
hang zwischen den beiden Chiralitäten (Γc ↔ γm) von den 3d-Elementen abhängt.
Für die Systeme, die auf Mn und Co basieren, sind die kristalline und magnetis-
che Chiralität gleich (Γc × γm= +1), während für Systeme, die auf Fe basieren
(Γc × γm = −1) das Gegenteil der Fall ist. Zusammen mit der Fähigkeit die struk-
turelle Chiralität der Monosilizide mittels Czochralski-Methode zu kontrollieren,
zeigen die hier präsentierten Ergebnisse die Möglichkeit, die chirale magnetische-
Gitter Kopplung phänomenologisch durch die DM abgebildet, für zukünftige spin-
tronische Bauelemente zu nutzen, die auf der elektrischen Ladung und dem mag-
netischen Moment des Elektrons basieren (wie es z. B. im magnetischen ”Race-
track” Speicher realisiert werden könnte). In allen Verbindungen zeigt der spi-
rale Wellenvektor ks = 2π/d, mit der Helixlänge d, eine starke Konzentrations-
abhängigkeit seiner Größe. Die Möglichkeit diese zu variieren ist von großem
Interesse für maßgeschneiderte Werkstoffe. Der absolute Wert von |ks| wird bei
einer bestimmten Konzentration zu null. Damit einhergehend ändert die Kopplung
zwischen struktureller und magnetischer Chiralität ihr Vorzeichen. Das monotone
Verhalten des Wellenvektors führt zu der Schlussfolgerung, dass die DM Wech-
selwirkung ebenfalls zu null wird. Der Wellenvektor ks = 0 bei den kritischen
Konzentrationen xc, yc, zc, sowie der Nachweis einer magnetischen Ordnung durch
die SQUID Messungen, deuten darauf hin, dass bei x, y, z → xc, yc.zc der helikale
Zustand in einen ferromagnetischen transformiert wird. Der Unterschied zwischen
der FM und der DM Austauschwirkung ist durch den Wellenvektor ks = D/J
gegeben, während die Energiedifferenz zwischen dem helikalen und ferromagnetis-
chen Zustand durch das zweite kritische Feld Hc2 bestimmt ist, ab welchem die
helikal Phase in die Feld-induzierte ferromagnetische Phase übergeht. Die Ergeb-
nisse unterstreichen die wichtige Rolle der kubischen Anisotropie, welche die he-
likale Struktur, im Bereich kleiner ks destabilisiert und ebenfalls einen Beitrag
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zur Größe des zweiten kritischen Feldes Hc2 liefert. Basierend auf den exper-
imentellen Ergebnissen, welche in dieser Arbeit vorgestellt werden, konnte die
Konkurrenz zwischen der kubischen Anisotropie und der Dzyaloshinskii-Moriya
Austauschwirkung als verantwortlicher Mechanismus für die Transformation der
helikalen zur ferromagnetischen Anordnung identifiziert werden. Dadurch konnte
der experimentelle Nachweis für die notwendige Erweiterung des bisherigen Mod-
ells von Bak-Jensen für kubische B20 Helimagnete erbracht werden.
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Abstract

The thesis presented here investigates the interplay between structural and mag-
netic properties of the three different series of transition metal monogermanides
and -silicides: Mn1−xFexGe, Fe1−yCoyGe and Fe1−zCozSi. These non-centrosym-
metric cubic B20 compounds show a helical (homochiral) spin structure, based on
the competition of the large ferromagnetic-exchange (FM) interaction J and the
weaker antisymmetric Dzyaloshinskii-Moriya (DM) interaction D below Tc. Reso-
nant x-ray diffraction has been combined with polarised neutron scattering to de-
termine the structural Γc and magnetic γm chirality, respectively. The microscopic
measurements have been further complemented by macroscopic magnetic SQUID
measurements. For all three investigated compounds it could be experimentally
demonstrated that the relation between both chiralities (Γc ↔ γm) depends on
the 3d-element concentrations. For the Mn-/Co- based compounds the crystalline
and magnetic chirality have the same sense (Γc× γm= +1), while for the Fe-based
compounds the chiralities are opposite to each other (Γc × γm= -1). Together
with the ability to control the structural chirality in the monosilicide based com-
pounds via the Czochralski method these results show the potential to use the
chiral magneto-lattice coupling, mapped phenomenologically as DM, to produce
customised magnetic chiral systems for future spintronic applications, using the
magnetic moment in addition to the electric charge of the electron (as it might
be realised in ’Racetrack’ memories for example). In all compounds the absolute
value of the spiral wavevector ks = 2π/d, where d is the spiral period, shows a large
variation in dependence on the concentration of up to two orders of magnitude.
The ability to tune the spiral size is of great interest for tailored materials. The
absolute value of |ks| reaches zero at a certain critical concentration accompanied
with the switch of the chiral link between structural and magnetic chirality. The
monotonic behaviour in respect to the changes in the concentration ratios leads
to the conclusion that the DM also becomes zero. The fact that the value of
the helical wavevector goes to zero at the critical concentrations xc, yc, zc and the
clear evidence for an existing magnetic order from the macroscopic magnetisation
measurements suggests a transition from the helical to a ferromagnetic state at
x, y, z → xc, yc, zc. The differences in the two competing interaction FM and DM is
given by the wavector ks = D/J , while the difference in the energies of the helical
and the ferromagnetic collinear spin state be experimentally determined by mea-
suring the second critical field Hc2, that transforms the helical into a field-induced
ferromagnetic phase. The results obtained in this work underline the important
role of the cubic anisotropy, which can destabilise the entire helix structure for
small ks and furthermore makes a contribution to the second critical field Hc2.
Based on the experimental data presented in this work the mechanism responsible
for the transformation from the helical to the ferromagnetic spin state is realised
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via the competition between the cubic anisotropy and the Dzyaloshinskii-Moriya
interaction and delivers the experimental evidence for the extension of the estab-
lished Bak-Jensen model for cubic B20 helimagnetic systems.
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Chapter 1

Introduction

... Perhaps looking-glass milk isn’t good to drink ...

in Through the Looking Glass by Lewis Carroll [Car], Alice expresses her concern
respective the looking-glass milk. Carroll refers to so called enantiomers, dis-
covered by Pasteur in 1848 [Pas]. Enantiomers are two stereoisomers related to
each other by mirror reflection. These two molecules consist of the same kinds
and number of atoms, but a different orientation in space. Many molecules are
chiral and they react different depending on their chirality. Chirality is moreover
of critical importance in different scientific fields, some examples will be given in
the next passage (see e.g. [Wag] for a more detailed review).
In 2001 Knowles, Noyori and Sharpless received the Noble prize in chemistry for
their work on chiral catalysis [Nob]. One of the most fascinating example of chiral
molecules is without doubt the deoxyribonucleic acid (DNA), always existing in a
right handed screw. The weak nuclear force, which is responsible for the nuclear
decay, has the opposite preferred handedness. The prediction by Lee and Yang [LY]
in 1956 (Nobel prize in physics 1957) that the parity of weak interaction is violated,
could be experimentally verified by Wu and co-workers in 1957 [WAH+]. For this
reason, they used the β− decay of 60

27Co→ 60
28Ni + e− + υe + 2 γ and compared the

direction of emitted electrons and gammas with the nuclear spin of the Co. In the
same year Goldhaber and co-workers could reveal that all existing neutrinos are
left-handed, while all antineutrinos are right-handed [GGS].
In this work the focus will be on another manifestation of chirality: the inter-
play of structural and magnetic chirality in cubic B20 structures without inversion
symmetry. The coupling between structure and magnetism in condensed mat-
ter physics was found to be of crucial scientific and technologically interest: the
magnetoelastic effect, magnetostriction, magnetoelectric coupling are some exam-
ples [Jen, Jou, EWP+]. Another important type of coupling is the chiral one,
where a chiral spin structure forms on a chiral crystal lattice [DCGD]. This link

1
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has been experimentally demonstrated for a broad variation of itinerant mag-
nets with the cubic space group P213 like as for example MnSi [IEM+, TTIE],
Mn1−xFexSi [GCD+b], Fe1−xCoxSi [DGM+] or Cu2OSeO3 [DPG+]. A further,
topologically non-trivial structure can be observed in a certain magnetic field
range within the H − T phase diagram of the B20 magnets. Originally de-
scribed as chiral vortices, these objects are called nowadays skyrmions, named
after the nuclear physicist Tony Skyrme, who developed a nonlinear field the-
ory of mesons and baryons, showing that topologically stable field configurations
occur as a particle like solution [Sky]. A topologically protected, particle-like mag-
netic structure is highly interesting because of the potential applications in novel
spintronic devices, for example, based on its motion. The idea of using move-
able magnetic structures for data storage was proposed by Parkin and co-workers
as ’Racetrack’ memory [Par, PHT]. Originally they suggested to use domains
within ferromagnetic wires, coding information in the sequence of the different
oriented domain walls (DW). The DW would be electrically moved by a spin
polarised current, carrying a spin angular momentum [PJK+] and transferring
spin-momentum to the DW [Slo, Bera], that causes the movement of the domain
walls [Berb,TK,LZ,ZL,TNMS,BM]. The great advantages of such a memory de-
vice are the non-volatility combined with the one-dimensionality of the used wires,
allowing a highly increased data storage density as compared with two-dimensional
devices, as for example, magnetoresistive random access memory (MRAM) [Åke].
Furthermore, since each wire consists of many bits, one needs just one reading-and-
writing unit, while in MRAMS every bit needs his own processing unit. However,
the current density necessary to move a ferromagnetic domain wall fast enough is
on the order of 108 A/cm2 to be competitive with other technologies [PHT]. Such
high current densities, on the other hand, lead to Joule heating in the wires that
might cause thermal fluctuations that subsequently cause uncontrolled movements
of the domain walls [FYN+]. The topologically protected, particle-like skyrmions
are here extremely promising candidates to overcome this problem. The current
density to move such a magnetic whirl-structure is reported to be five orders of
magnitude smaller as it is needed for ferromagnetic DWs [JMP+,FCS]. Notwith-
standing the great interest, the helimagnetic structure that forms the basis of the
phase diagram in these B20 compounds is still not yet fully understood. Due to
the fact that the helical and the A-phase are based on the same hierarchy of inter-
actions the understanding of the helical phase will have an important impact on
the path of tailoring the A-phase. Therefore, further experimental and theoretical
work is necessary for a complete picture of the underlying concept. Two experi-
mental techniques, the resonant x-ray diffraction and polarised neutron scattering,
are highly suitable to determine the structural Γc and magnetic chirality γm, re-
spectively. Using a refinement of the so-called Flack-parameter [Fla, FB, SSF], a
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standard tool of modern crystallographic, the absolute structure of a crystal can
be determined. In contrast to electro-magnetic waves, neutrons carry a magnetic
moment which makes them a powerful probe for magnetic structures in condensed
matter physics. For chiral magnetic structures polarised small angle neutron scat-
tering (SANS) offers unique possibility to directly probe the magnetic handedness.
In this work the combination of these two powerful techniques, complemented
by superconducting quantum interference device (SQUID) susceptibility measure-
ments, is used to probe the structural and magnetic chirality in three different series
of compounds: Mn1−xFexGe, Fe1−yCoyGe and Fe1−zCozSi. While the monosilicide-
based cubic B20 helimagnetic systems, like MnSi, have been studied in detail in
the last decades, this was not the case for germanide based compounds due to the
complicate and laborious synthesises. Similar to MnSi, the cubic MnGe and FeGe
compounds show both a helical structure arising from the Dzyaloshinskii-Moriya
interaction, interfering with the ferromagnetic exchange. Nevertheless, the mag-
netic properties are remarkable different. At Tc ≈ 278.7 K FeGe transforms from
the paramagnetic to an ordered state evincing a long wavelength helical structure
with a period of approximate 690 Å. The critical field at which the transition from
this helimagnetic structure into a field aligned ferromagnetic occurs is approxi-
mately 0.3 Tesla [LBF] and it has a magnetic moment of 1 µB per Fe atom at
low temperatures [WH]. The pure MnGe compound exhibits remarkably different
properties: a very short spiral length of approximate 3 Å below the magnetic or-
dering temperature of Tc ≈ 140 K, a high magnetic moment of 1.9 µB per Mn atom
at 2 K, the field induced transformation from the helical to the ferromagnetic state
at above 10 T and a giant Topological Hall Effect [KOA+,MTA+,KKI+]. Recent
small angle neutron scattering studies revealed an intrinsic instability of the spiral
structure in MnGe along with a complex temperature driven order-disorder phase
transition in a temperature range of more than 100 K above the ordering tempera-
ture [ASD+], as also reported from studies using Mössbauer spectroscopy [DMH+].
In addition, both MnGe and FeGe manifest a complex pressure induced spin tran-
sition due spin fluctuations [DBT+]. Without doubt, a collective understanding of
the underlying mechanism generating these wide varieties of magnetic properties
is of significant importance. It is well known that for Mn-based silicide-based com-
pounds (Mn1−xFexSi and Mn1−xCoxSi) the crystalline and magnetic chirality have
the same sense [IEM+,TTIE,GCD+b], while the connection for Fe-based systems
(Fe1−zCozSi) seems to be opposite for the low Co concentration range [GCD+a].
Pure FeSi and CoSi are not magnetically ordered, for this reason, Mn1−xFexSi and
Mn1−xCoxSi do not allow to prove the hypothesis of different signs of the DM in-
teraction in Mn/Co and Fe based compounds. In contrast to the germanide based
compounds, Mn1−xFexGe and Fe1−yCoyGe are magnetically ordered in a broader
concentration range.
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In this work, the evolution of the helical magnetic structure in Mn1−xFexGe by
mixing the two kinds of magnetic atoms Fe and Mn from x = 0.0 to x = 1.0 is
investigated. The same approach has been applied to Fe1−yCoyGe by substituting
the Fe by Co atoms. For both compounds unpolarised SANS measurements have
been used to investigate the evolution of the helix wavevector ks in dependence
on the transition metal concentration x and y, respectively. Moreover, the idea of
controlling the sign of the DM by using single crystals has been exploited. Due to
the fact that powder samples consist of equal amount of grains of both chiralities a
determination of the chiral link is just possible in single crystalline samples. Since
one is able to fabricate single crystals of sufficient size for the monosilicide series of
Fe1−zCozSi, they turn out as a good candidate to gain full control of the crystalline
and magnetic chirality.
All three systems considered within this thesis allow in addition to test the hypoth-
esis by Kataoka and co-workers [NYHK], who pointed out the important role of
the weak cubic anisotropy interaction in the case of small wavevector |ks|. In this
limited case the interaction between the cubic anisotropy and the Dzyaloshinskii-
Moriya interaction should enable the transformation from the spiral to the ferro-
magnetic spin structure at a certain critical concentration.
In the following, the concept of chirality in general and, in particular, in chiral
magnetism will be introduced. Chapter 2 gives a compact overview about the
basic principles of the scattering techniques used in this work. In Chapter 3 the
fundamental structural properties of the investigated cubic B20 crystals, as well
as the used techniques for samples preparation and x-ray characterisation, are
presented. In Chapter 4 the results obtained for Mn1−xFexGe, Fe1−yCoyGe and
Fe1−zCozSi are presented. The last chapter summarises this work and give an
outlook for future research.
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1.1 Chirality

In this chapter a definition of chirality in general and an overview about the mag-
netic chirality in cubic B20 structures is given.

1.1.1 Inversion symmetry and physical quantities

In physics three fundamental symmetry operations exist corresponding to distinct
inversions, namely: parity, time reversal and charge conjugation. The invariance
of a physical law under a transformation follows from the invariance of the Hamil-
tonian H under the same transformation. The inversion of the coordinates of all
particles in a system is called parity inversion (operator: P ). The replacement of
the time coordinates t by −t is called time reversal (operator: T ). The intercon-
version from particle and antiparticle is the so called charge conjunction (operator:
C).
In physics a distinction is drawn between scalar physical quantities (e.g. energy),
with a magnitude but without a direction, vector quantities with a magnitude and
a direction (e.g. linear momentum p) and tensors with a magnitude with more
than one direction (e.g. stress tensor). If its sign is reversed by P a vector is called
polar or true vector (e.g. position r). An axial or pseudovector is not changed by
P , a typical example for a pseudovector is the angular momentum L = r × p. If
T does not change the sign of the vector it is called time even (e.g. r), otherwise
time odd (e.g. p or L). The magnetism in condensed matter is usually caused by
the spins or the angular moments of electrons, which are both pseudovectors.

1.1.2 Definition of chirality

Figure 1.1: (a) Left- and right hand together with the mirror image of the left
hand and (b) Sinistral (left) and dextral (right) shells of Amphidromus perver-
sus a species with chiral dimorphism (Reprinted by permission from Macmillan
Publishers Ltd: NATURE [GP], copyright 2009).
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The concept of chirality (greek χειρ for hand) was first introduced into science
by Lord Kelvin [Kel] in the early nineteenth century:

I call any geometrical figure, or group of points, chiral, and say that it
has chirality, if its image in a plane mirror, ideally realised, cannot be
brought to coincide with itself.

Regarding ones left and right hand this idea makes immediately sense. Obvious
the human hands cannot be superimposed by rotation or translation with each
other, while this is possible with the respective opposing mirror image (presented
in Fig.1.1). An object which is superposable with its mirror image is called achi-
ral. As long as exclusive static, enantiomer objects (under space inversion P or
mirror reflections) are considered the definition given by Lord Kelvin is sufficient.
Considering moveable systems, time-reversal arguments cannot be neglected any

Figure 1.2: P and T effect on a stationary spinning particle (a) and a translating
spinning particle (b) (figure taken from [Bara]).

more. Hence a mathematical stricter definition of chirality has been given by
Barron [Barb]:

True chirality is exhibited by systems existing in two distinct enan-
tiomeric states that are interconverted by space inversion, but not by
time reversal combined with any proper spatial rotation.

For distinction: time non-invariant spatial enantiomorphism are called false chi-
rality by Barron. Thus true chiral systems are time invariant. As pointed out in
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Figure 1.3: The effect of P , T and Rπ on (a) a stationary spinning cone, that
has false chirality and on (b) a translating spinning cone, that has true chiral-
ity (Reprinted with permission from [Barb]. Copyright 1986 American Chemical
Society.).

Fig.1.2 (a) a stationer spinning electron is non-chiral (due to the missing enan-
timor under P inversion), whereas an electron translating with a spin projection
parallel/ antiparallel to the direction of motion is truly chiral (see Fig.1.2 (b)).
Fig.1.3 illustrates an example for false (a) and true (b) chirality. The spinning
cone illustrated in Fig.1.3 (a) is a false chiral object because time reversal T fol-
lowed by a rotation Rπ produces the same object as space inversion P . Fig.1.3
(b) presents the same spinning cone with an additional translating as it is a true
chiral object.

1.2 Chiral magnetism

One more fascinating example for chirality is the helical spin arrangement in non-
centrosymmetric crystals. To minimise the free energy and enable a chiral arrange-
ment of the magnetic moments a further interaction is necessary, which could be in
form of the Dzyaloshinski-Moriya (DM) interaction that will be discussed in more
detail in the next section. Another possible source leading to a chiral magnetic
order is frustration, which will not be discussed here. To describe the helimagnetic
spin structure [as illustrated in Fig.1.4] in cubic B20 compounds without inver-
sion symmetry, two models had been developed based on the phenomenological
Landau-like theory. In 1.2.2 the Bak-Jensen model [BJ] will be introduced and
a similar model by Nakanishi, Yanase, Hasegawe and Kataoka [NYHK] will be
presented in 1.2.3. While both groups used a similar approach, Kataoka and co-
workers took the cubic anisotropy into account, which is an important extension
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of the Bak-Jensen model respective small wavevector |ks|, as it will be revealed in
chapter 4.

d

right-handed

left-handed

S1 S2

S1 S2

c

c

Figure 1.4: Left- and right-handed magnetic spiral.

1.2.1 Dzyaloshinskii-Moriya interaction

Magnetic long range order is usual driven by Heisenberg [Hei] or superexchange
interaction [And], which is described by the Hamiltonian

H = JSi · Sj. (1.1)

Depending on the sign of the exchange constant J , this term describes a parallel
or antiparallel alignment of the magnetic spins. To describe a spiral spin arrange-
ment as it is exemplified in Fig.1.4 an additional term is necessary.
In the middle of the last century the weak ferromagnetic behaviour observed in
otherwise antiferromagnetic compounds e.g. α-Fe2O3 was of great interest. The
experimentally determined ordered magnetic moment in this compounds was 10−2 -
10−5 times smaller than the expected ferromagnetic coupling. In 1958 Dzyaloshin-
skii [Dzyb] gave a phenomenological answer to the question if the weak ferromag-
netism is an intrinsic property of α-Fe2O3. He could reveal that an α-Fe2O3 crystal
with spins perpendicular to the trigonal axis (antiferromagnetic arrangement) has
the same symmetry as with a canted spin arrangement and a net magnetisation
perpendicular to the trigonal axis. Writing down the free energy in terms of the
spin variables, resulted into an expression that favours the canted spin arrangement
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over the antiferromagnetic one:

H = DSi × Sj, (1.2)

with a constant vector D. The nature of D was neither clearly defined nor given
an expression how to calculate it.
By taking the spin orbit coupling into account Moriya [Mor] was able to extend the
theory of Anderson for the anisotropic superexchange [And] in 1960. He provided
evidence that Eq.1.2 which was phenomenological introduced by Dzyaloshinskii
[Dzyb], appears as relativistic correction of the superexchange interaction due
spin-orbit coupling. Moreover, Moriya pointed out the importance of the crystal
symmetry. Regarding two ions located at the points A and B, and the straight
line AB denoted as C, he formulated the following rules:

1. When a centre of inversion is located at C,
D = 0.

2. When a mirror plane perpendicular to AB passes through C,
D ‖ mirror plane or D ⊥ AB.

3. When there is a mirror plane including A and B,
D ⊥ mirror plane.

4. When a two-fold rotation axis perpendicular to AB passes through C,
D ⊥ two-fold axis.

5. When there is an n-fold axis (n ≥ 2) along AB,
D ‖ AB.

1.2.2 The Bak-Jensen model

In 1958 the idea of a magnetic superstructure with the periodicity many time
bigger than the interatomic spacing was proposed simultaneously by Villain [Vil],
Kaplan [Kap] and Yoshimory [Yos], based on the symmetric part of the exchange
interaction. Six years later, Dzyaloshinskii [Dzya] suggested a mechanism for such
a superstructure by an instability of a ferromagnetic structure with respect to
small relativistic spin-lattice or spin-spin interactions. The first realisation of such
a helical structure was experimentally found by Lundgren and co-workers in the
week itinerant ferromagnet FeGe [LBA+] and in 1976 by Ishikawa and co-workers
[ITBR] in MnSi. In 1980 Bak and Jensen [BJ] were able to explain the long-period
helimagnetic structure in these compounds by including the Dzyaloshinskii-Moriya
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interaction into the free energy. They expanded the free energy in terms of a slow-
varying spin density S(r) according to the theory of Landau and Lifshitz [LL]

F (r) =
1

2
A
(
S2
x + S2

y + S2
z

)
+DS (∇× S)

+
1

2
B1

[
(∇Sx)2 + (∇Sy)2 + (∇Sz)2]

+
1

2
B2

[(
∂Sx
∂x

)2

+

(
∂Sy
∂y

)2

+

(
∂Sz
∂z

)2
]

+ C1

(
S2
x + S2

y + S2
z

)2

+ C2

(
S4
x + S4

y + S4
z

)
. (1.3)

A is here the ferromagnetic exchange energy, D is the DM constant, B1,2 are the
coefficients for the first and second order anisotropy and C1,2 are the fourth-order
coefficients. Below Tc the free energy is minimised by periodic structures of the
form:

S(r) =
1√
2

[S exp(ik · r) + S∗ exp(ik · r)] . (1.4)

Insert Eq.1.4 into 1.3 the free energy density becomes (to second order in S):

F (k) =
1

2
A|S|2 + iDk (S × S∗) +

1

2
B1k

2|S|2

+
1

2
B2

(
k2
x|Sx|2 + k2

y|Sy|2 + k2
z |Sz|2

)
. (1.5)

Set S = S1+iS2, Eq.1.5 is minimised when S1 ⊥ S2, |S1| = |S2| and k antiparallel
to [S1 × S2] for D > 0 or k parallel to [S1 × S2] for D < 0, describing a right-
and left-handed spiral, respectively. The term D has fully rotational symmetry, so
no preferred direction is given for k, while the anisotropic second order gradient
term with coefficient B2 could fix the direction of k along the easy axis:

B2 < 0 : k ‖ (111)

B2 > 0 : k ‖ (001). (1.6)

Based on first experimental results obtained by magnetisation and neutron diffrac-
tion measurements for MnSi [ITBR] and FeGe [LBA+] it was concluded that
B2 < 0 for both alloys. Based on further small angle neutron scattering mea-
surements Lebech and co-workers revealed a more complex behaviour of the prop-
agation vector in FeGe compounds [LBF]. The direction of the k points along the
equivalent 〈100〉 directions between the upper ordering temperature Tc = 278.8 K
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(where the paramagnetic phase transforms into the helimagnetic structure) and
T2 (the second critical temperature at which the propagation vector changes its
direction), with decreasing temperature T2↓ = 211 K and increasing temperature
T2↑ = 245 K. Below the second critical temperature the propagation direction of k
is along the equivalent 〈111〉 directions. The relative small value of the anisotropic
second order term enables already a weak applied magnetic field to rotate k into
any direction [IKB,GS]. The free energy is finally given by:

F =

(
1

2
A− |D|k

)
|S|2 +

(
1

2
B1 +

1

6
B2k

2|S|2
)

(1.7)

and is minimised by:

k = |D|/
(
B1 +

1

3
B2

)
. (1.8)

The small value of D compared to B1 + 1
3
B2 results in a small magnitude of k.

In Fig.1.5 the free energy given in Eq.1.7 is plotted versus k for the left-handed
(D < 0) and the right-handed (D > 0) spiral structures. It could be clearly seen
that, the ferromagnetic spin structure (illustrated as dashed line) is non-stable
(k = 0). The Bak-Jensen model does not impose any limitations for the value of

Figure 1.5: Free energy as function of wavevector k for left- and right handed
spirals. The dashed line represents the free energy for a system with inversion
symmetry (D = 0) (figure taken from [BJ]).

k that can become infinite small. As it will be evidenced in chapter 4 the cubic
anisotropy has to be taken into account to make the model working in these cases.
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1.2.3 The Nakanishi-Yanase-Hasegawa-Kataoka model

In the same year as Bak and Jensen, the group of Kataoka independently published
their work on the origin of the helical spin density wave in MnSi [NYHK]. They
considered the spin structures of an itinerant electron magnet without inversion
symmetry with an exchange energy favourable for a ferromagnetic state (FMS).
Starting from a spin structure defined in terms of a single k, a spatial variation of
the spin density S(r) is expressed by:

S (r) =S1 cos (k · r) + S2 sin (k · r)

=
1

2
[S (r) exp (−ik · r) + S (r)∗ exp (ik · r)] (1.9)

For S1 ⊥ S2 and S1 = S2, S (r) expresses a helical spin density wave (HSDW) and
a sinusoidal spin density wave (SSDW) for S1 || S2. Expanding the free energy
F in powers of S (r) and taking the the space group P213 (T 4) into account, the
following expression was obtained:

F =
{

1
2

[
χ (0)−1 + ck2

] 〈
S2
〉
p

+ 1
4
γ
〈
S4
〉
p

}
+D [S1 × S2] · k + 1

2

{
A1

[〈
3S2

z − S2
〉
p

(
3k2

z − k2
)

+3
〈
S2
x − S2

y

〉
p

(
k2
x − k2

y

)]
+ A2

[〈
3S2

z − S2
〉
p

×
(
k2
x − k2

y

)
−
〈
S2
x − S2

y

〉
p

(
3k2

z − k2
)]

+ 4A3

[
〈SxSy〉p kxky + 〈SySz〉p kykz

+ 〈SzSx〉p kzkx
]}
− 1

2
K1

[〈
S4
x

〉
p

+
〈
S4
y

〉
p

+
〈
S4
z

〉
p

]
. (1.10)

With positive c and γ the first two terms stabilise a FMS below the ordering
temperature Tc. The second term in Eq.1.10 is responsible for the helical plane
in the HSDW perpendicular to the direction of k. A distinction is made between
a negative and a positive sign of D. A negative sign of D produces a clockwise
rotation of the spins ([S1 × S2] parallel to k), whereas a counterclockwise rotation
([S1 × S2] antiparallel to k) is energetically favourable for a positive sign of D.
The anisotropic energy given in the third term depends on both, the direction
of the spins and k. The fourth term represents the magnetic anisotropy energy
independent of k. Following Kataoka and co-workers, all terms beside the first one
should vanish if the spin-lattice interaction is absence. The spin-orbit interaction
is involved into the Dzyaloshinskii-Moriya interaction (second term). Unless the
direction of the propagation vector k is along 〈111〉 or 〈100〉, the third term of
Eq.1.10 disturbers the perpendicular configuration. From Eq.1.10 Kataoka and
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co-workers obtained the three following expressions:

FHSDW = 1
2

[
χ(0)1 − 2|D|k + (c+ A1 − A3) k2

]
S2

+ 1
4

(
γ − 3

4
K1

)
S4 + 1

2

[
(A3 − 3A1)S2k2 − 3

8
K1S

4
]

×
(
β4

1 + β4
2 + β4

3

)
(1.11)

with S ≡ S1 = S2; β1, β2 and β3 are the direction cosines of k.

FSSDW = 1
2

[
χ(0)1 + ck2

]
S2 + 3

8
γS4 + (anisotropy energy) (1.12)

S = [(S2
1 = S2

2) /2]
1/2

and the anisotropy energy came from the third term in
Eq.1.10. The DM interaction does not contribute to the SSDW. For the free
energy of the ferromagnetic state they obtained (k = 0 and S(r) = S):

FFMS = 1
2
χ(0)−1S2 + 1

4
γS4 + 1

2
K1S

4
(
α4

1 + α4
2 + α4

3

)
(1.13)

α1, α2 and α3 are the direction cosines of S. Minimising the free energies given
in Eqs.1.11-1.13, Kataoka and co-workers obtained the following expressions with
respect to S below the ordering temperature (small terms are neglected):

FHSDW = − 1
4γχ(0)2

{[
1 +

(
3K1

4γ

)
− 4|D|χ(0)k + 2 (c+ A1 − A3)χ(0)k2

]
+
[(

3K1

4γ

)
+ 2 (A3 − 3A1)χ(0)k2

] (
β4

1 + β4
2 + β4

3

)}
(1.14)

FSSDW = − 1
6γχ(0)2

[
1 + 2cχ(0)k2

]
+ (anisotropy energy) (1.15)

FFMS = − 1
4γχ(0)2

[
1 +

(
2K1

γ

) (
α4

1 + α4
2 + α4

3

)]
. (1.16)

Based on the free energy some characteristics for the spin structure in MnSi could
be given:

• only if k → 0 the FHSDW is higher than FFMS by a part of the magnetic
anisotropy (see Fig.1.6)

• caused by the missing inversion symmetry: D [S1 × S2] ·k causes a decrease
of FHSDW with increasing k and has its minimum at k0 (see Fig.1.6)

• the SSDW spin structure might be just considerable in a domain structure

• HSDW is the most stable structure for a small magnetic anisotropy energy
K1, for an increasing anisotropic energy the HWSD becomes unstable

• as the magnitude of spin decreases, the fourth term decreases faster than
the second term in Eq.1.10→ with increasing temperature HSDW is getting
more stable than FMS
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Figure 1.6: Free energies FHSDW , FSSDW and FFMS given by Eq.1.14 - 1.16.The
solid circle represents FFMS. HSDW and SSDW have no meaning at k = 0. The
minimum of FHSDW is at k0 (≈ |D|/c) for small K1 (Reprinted from [NYHK],
Copyright (1980), with permission from Elsevier).

The magnitude of k for the minimum of FHSDW is given by:

k0 =
|D|
c

[
1 +

(
A3 − A1

c

)
+

(
3A1 − A3

c

)(
β4

1 + β4
2 + β4

3

)]
(1.17)

Due the small value of the second and third term in Eq.1.17 k0 is approximated
by k0 ≈ |D|/c, which leads to a small dependence of k0 on the direction k. When
substituting Eq.1.17 into Eq.1.14 one obtains the anisotropy energy of the direction
of k (neglecting small terms) as:

− 3K1

[4γχ(0)]2
(
β4

1 + β4
2 + β4

3

)
(1.18)

For a negative or positive value of K1, k is directed into the 〈111〉 and 〈100〉
direction, respectively. Without anisotropic energies the free energy is isotropic
with respect to the direction of k.
In contrast to Bak and Jensen, Kataoka and co-workers take the cubic anisotropy
into account, limiting the stability of the helical spin structure in case of small
ks. However, they do not consider the influence of the cubic anisotropy of the
second critical field Hc2 at which the spiral is transformed into the field aligned
ferromagnetic spin structure.



Chapter 2

Scattering Theory

In this chapter a brief overview of the scattering theory used in this thesis will be
given. Since the 1960s neutron scattering is established as a unique technique to
provide information on the atomic level of condensed matter systems. The main
advantages are [Squ]:

• The de-Broglie wavelength of thermal neutrons is in the order of interatomic
distances in solids and liquids (a few Å). From the interference effects oc-
curring during the scattering process it is possible to gain information about
the atomic structure of the investigated system.

• Because neutrons are uncharged, there is no Coulomb barrier to overcome.
Thus neutrons are scattered by the nuclear forces, which allow to pene-
trate deeply and provides information about bulk material. Contrary to X-
ray scattering the scattering length is no monotonic function of the atomic
number. It varies strongly for neighbouring elements and even for different
isotopes of the same element. For example, the light element hydrogen is
virtually transparent to X-ray, but a strong scatterer for neutrons.

• Neutrons are spin one-half particles: they carry a magnetic moment. This
leads to an interaction with the unpaired electrons in a solid. From the
elastic scattering it is possible to gain information about the electron spin
arrangement and density distribution of the unpaired electrons.

• The energy of many excitations in condensed matter is of the same order as
that of thermal neutrons. Therefore, the measurements of the energy gain or
loose of the neutrons during inelastic scattering by creation or annihilation
of an excitation provides information about the energy of these excitations.

This chapter is based on the books of Lovesey [Lov] and Squires [Squ], where also
most of the formulas are taken from. The de-Broglie wavelength of neutrons with

15
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a velocity v is given by

λ =
h

mv
=
h

p
. (2.1)

Within a typical scattering process neutrons with an initial momentum ~ki are
scattered due the interaction with a sample into another state with the momentum
~kf . Due the conservation laws the momentum and energy are conserved in this
process and the relevant momentum and energy transfers are given by

~Q = ~ (ki − kf )

~ω = Ei − Ef =
~

2mn

(
|ki|2 − |kf |2

)
. (2.2)

The scattering function S (Q, ω) gives the probability of the scattering of a neu-

ki sample

kf

dS

dΩ

r

Φ

θ

Figure 2.1: Geometry for a scattering experiment (adapted from [Squ]).

tron with the incoming wavevector ki into a certain direction with the outgoing
wavevector kf . A Fourier transformation of S (Q, ω) grants the scattering poten-
tial in real space and time. The probability of the scattering is given by the partial
differential neutron scattering cross section (exemplified in Fig.2.1)

d2σ

dΩdEf
=

neutrons scattered into the solid angle dΩ and energy interval dEf
Incident flux of neutrons Φ dΩf dEf

.

(2.3)
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By using Fermi’s golden rule, the partial differential neutron scattering cross-
section can by given in mathematical terms (see [Squ,Lov] for a detailed derivation)
as:

d2σ

dΩdEf
=
kf
ki

∑
λi,σi

pλpσ
∑
λf ,σf

| 〈kf , σf , λf |V |ki, σi, λi〉 |2δ
(
~ω + Eλi − Eλf

)
, (2.4)

where σi/σf represent the ratio of incoming to outgoing spin states of the neu-
trons. The (normalised) weights pλ of the initial state is given as product of the
thermodynamics factors exp (−Eλ/kBT ) at the sample temperature T . For an un-
polarised beam the probability for the neutron spin to be in the up or down state
is equally pσ = 1

2
. Eq.2.4 takes all possible initial and final state into account. The

matrix element 〈...〉 represents the transition probability from the initial state to
the final state of the system due the interaction operator V . The δ-function ensure
the energy conservation.

2.1 Nuclear scattering

2.1.1 The Fermi pseudopotential

The interaction of the neutron with matter takes place via the nuclear force. The
range of these interactions is small (approx. 1 fm) compared to the wavelength of
the neutron (approx. 0.1 - 2 nm, for thermal and cold neutrons). The scattering
potential of a single spinless nucleus j at the position Rj, with the scattering
length bj, is given by the Fermi pseudopotential [Lov,Squ]:

Vj (r) =
2π~2

m
bjδ (r −Rj) . (2.5)

With the mass of the neutron mn. By summing up over all individual nuclei j one
obtains the scattering potential of the ensemble of the nuclei

V (r) =
2π~2

m

∑
j

bjδ (r −Rj) . (2.6)

Due to the weak interactions the Born approximation can be considered as valid.
In consequence, both the incoming and outgoing wave is considered as plane wave.
The accuracy of the Born approximation, for s-wave scattering, has been proven
by Nowak in 1982 [Now]. The matrix element is given as:

|〈kf , λf |V | ki, λi〉|2 =

(
2π~2

mn

)2
∣∣∣∣∣∑
j

bj 〈λf | exp (iQ ·Rj) |λi〉

∣∣∣∣∣
2

. (2.7)
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With the scattering vector Q. Using the time dependent Heisenberg operator Rj

Rj (t) = exp(iHt/~)Rj exp(−iHt/~) (2.8)

and the integral form of the δ-function

δ(Eλi − Eλf + E − E ′) =
1

2π~

∫ +∞

−∞
exp

{
i
(
Eλf − Eλi

)
/~
}

exp(−iωt)dt, (2.9)

where ω is defined via ~ω = E − E ′. The final expression for the nuclear partial
differential neutron scattering cross-section can be written as [Squ]:

d2σ

dΩdEf
=
kf
ki

1

2π~
∑
j,j′

bjbj′

∫ +∞

−∞
〈exp {−iQ ·Rj′(0)} exp {iQ ·Rj(t)}〉 exp(−iωt)dt.

(2.10)

Where 〈A〉 =
∑
λ

= pλ 〈λ|A|λ〉 is the thermal average over the operator A.

2.1.2 Coherent and incoherent scattering

The differential cross section is a sum of the coherent and incoherent scattering
parts. The coherent part offers information about the correlations between the
same nucleus at different times, and different nuclei at different times. For this
reason, interference effects could appear. From the coherent part of the cross
section one can gain information about the structure or excitations in condensed
matter systems. The incoherent scattering depends only on the correlation between
the position of the same nucleus at different times, therefore no interference effects
take place. In a sample with unknown distribution of nuclei and isotopes it is
necessary to average over all possible scattering lengths bj [Squ]

d2σ

dΩdEf
=
kf
ki

1

2π~
∑
j,j′

bj′bj

∫
〈exp {−iQ ·Rj′(0)} exp {iQ ·Rj(t)}〉 exp(−iωt)dt,

(2.11)

where bj′bj can be separated into the coherent and incoherent part(
d2σ

dΩdEf

)
coh

=
σcoh
4π

kf
ki

1

2π~
∑
j,j′

∫ +∞

−∞
〈exp {−iQ ·Rj′(0)} exp {iQ ·Rj(t)}〉 exp(−iωt)dt.

(2.12)

and(
d2σ

dΩdEf

)
inc

=
σinc
4π

kf
ki

1

2π~
∑
j

∫ +∞

−∞
〈exp {−iQ ·Rj(0)} exp {iQ ·Rj(t)}〉 exp(−iωt)dt.

(2.13)
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with σcoh = 4π
(
b
)2

and σinc = 4π
{
b2 −

(
b
)2
}

. The focus of this work is on

the contributions from the coherent scattering only, while the isotropic incoherent
contribution just add some intensity to the background. The coherent and inco-
herent cross sections for the elements considered within this dissertation are given
in Tab.2.1.

Table 2.1: Neutron scattering cross sections for the elements used in this thesis
(for a wavelength of 1.798 Å) [Sea].

Element Z σcoh (barn) σinc (barn) σabs (barn)
Si 14 2.1633(10) 0.004(8) 0.171(3)
Mn 25 1.75(2) 0.40(2) 13.3(2)
Fe 26 11.22(5) 0.40(11) 2.56(3)
Co 27 0.779(13) 4.8(3) 37.18(6)
Ge 32 8.42(4) 0.18(7) 2.20(4)

2.1.3 Nuclear Bragg scattering from a crystal

In this thesis, single or polycrystalline samples are investigated exclusively. For
this reason, Eq.2.10 will be evaluated for the case of single crystals. The detailed
deviation can be found in [Squ]. For convenience a Bravais crystal (infinite array
of discrete points) is considered, with one atom per unit cell. The sides of the unit
cell are given by three independent basic vectors a1, a2 and a3. The lattice vector
in this case is given by

l = l1a1 + l2a2 + l3a3 (2.14)

and the corresponding volume

v0 = a1 [a2 × a3] . (2.15)

The unit cell vectors τ j fulfil aiτ j = 2πδij and are defined as

τ 1 =
2π

v0

[a2 × a3] τ 2 =
2π

v0

[a3 × a1] τ 3 =
2π

v0

[a1 × a2] (2.16)

the displacement of the the nucleus l due thermal motion is represented by ul in
the instantaneous position operator Rl(t) = l + ul(t). In the considered case the
correlation between two nuclei depends only on its distance, l− l′, and one can set
l’ = 0 and get ∑

l,l′

〈exp {−iQ ·Rl′(0)} exp {iQ ·Rl(t)}〉

= N
∑
l

exp (iQ · l) 〈exp {−iQ · u0(0)} exp {iQ · ul(t)}〉 . (2.17)
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N is the number of nuclei in the crystal, U = −iQ ·u0(0) and V = iQ ·ul(t). As-
suming harmonic interatomic forces (i.e. linear forces) in the crystal the theory of
normal mode can be applied to describe the motions of the atoms inside the crys-
tal (see [Squ] for details). Resulting in 〈expU expV 〉 = exp 〈U2〉 exp 〈UV 〉, where:
exp (2W (Q)) = exp (−〈U2〉) = exp

(〈
{Q · u0(0)}2〉) is called Debye-Waller fac-

tor [Deb,Wal]. Expanding this expression gives

exp 〈UV 〉 = 1 + 〈UV 〉+
1

2!
〈UV 〉2 + .... (2.18)

For the elastic scattering of zeroth order one obtain the cross-section [Squ](
dσ

dΩ

)
coh,el

=
σcoh
4π

N
(2π)3

v0

exp (−2W (Q))
∑
τ

δ (Q− τ ) (2.19)

Eq.2.19 reveals that scattering just appears for Q = ki − kf = τ . As pointed out
in Fig.2.2, this is equivalent to Braggs law in reciprocal space

τ = 2k sin

(
θ

2

)
(2.20)

Set k = ki = kf = 2π
λ

and τ = n2π
d

one obtain Bragg’s law

nλ = 2d sin

(
θ

2

)
(2.21)

where d is the lattice spacing and λ the wavelength of the neutrons. The expression
above can be easily extended for non-Bravais lattice [Squ]:(

dσ

dΩ

)
coh,el

= N
(2π)3

v0

∑
τ

δ (Q− τ ) |FN (Q)|2 (2.22)

due the extension of the cross-section with the so-called nuclear unit-cell factor :

FN (Q) =
∑
d

bd exp (iQ · d) exp (−Wd) (2.23)

The vector d gives the position and exp (−Wd) the Debye-Waller factor of the dth
atom in the unit cell.

2.2 Magnetic scattering

In the following chapter the interaction of the magnetic dipole moment of the
neutron with the magnetic field produced by the unpaired electrons of the samples
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Figure 2.2: Bragg’s law in reciprocal space (a) Q 6= τ : no coherent elastic scatter-
ing appears, (b) Q = τ : coherent elastic scattering appears (adapted from [Squ]).

will be described. The operator corresponding to the magnetic dipole moment of
the neutron is given by

µn = −γµN σ̂ (2.24)

with the nuclear magneton

µN =
e~

2mp

. (2.25)

mp is the mass of the proton, e the its charge, γ = 1.913 the gyromagnetic ratio and
σ̂ the Pauli-matrices1 . The unpaired electrons of the sample produce a magnetic
field via the spin (magnetic dipole moment of the electron µe = −2µBs) of

BS =
µ0

4π
∇× µe × R̂

R2
(2.27)

R̂ is the unit vector in the direction ofR, that is the distance from the electron, µB
the Bohr magneton, me the mass of the electron and the index S marks the spin
origin of the field. The second possibility is obtained from the Biot and Savard
law (electronic current related to the orbital motion)

BL = −µ0

4π

2µB
~
p× R̂
R2

(2.28)

1

σ̂1 = |↑〉 〈↓|+ |↓〉 〈↑| σ̂2 = −i |↑〉 〈↓|+ i |↓〉 〈↑| σ̂3 = |↑〉 〈↑| − |↓〉 〈↓| (2.26)
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with the electron momentum p at the point R, where L marks the orbital origin
of the field. Altogether the magnetic interaction potential of a neutron with the
dipole momentum µn in the field B is given by

Vm = −µn ·B = −µ0

4π
γµN2µBσ̂ · (W S +W L) (2.29)

where W S = ∇×
(
s×R̂
R2

)
and W L = 1

~
p×R̂
R2 . The evaluation of the matrix element

〈kf |Vm|ki〉 is carried out in detail in [Squ] and is just briefly outlined here. For
the ith electron with spin si, the position ri and the momentum pi∑

i

〈kf |W Si
+W Li

|ki〉 = 4πMQ⊥ (2.30)

MQ⊥ =
∑
i

exp (iQ · ri)
{
Q̂×

(
si × Q̂

)
+

i

~Q

(
pi × Q̂

)}
(2.31)

Q̂ is the unit vector in the direction of Q and MQ⊥ is the so-called magnetic
interaction vector, which could also be expressed as a function of the local mag-
netisation density M (r) at the point r

MQ⊥ = Q̂×
(
MQ × Q̂

)
(2.32)

MQ = − 1

2µB

∫
M(r) exp (iQ · r) dr. (2.33)

MQ is the magnetic structure factor and effectively the Fourier transformation of
M(r). For this reason, information of the microscopic magnetisation of the sample
can be obtained by measure the distribution of the magnetic neutron scattering.
The final expression for the complete magnetic cross-section for an unpolarised
neutron beam (pσ = 0.5 for both polarisation states) is given by (see [Squ] for
details)

d2σ

dΩdEf
= (γr0)2 kf

ki

∑
αβ

(
δαβ − Q̂αQ̂β

)
×
∑
λiλf

pλ
〈
λi|M∗

Qα|λf
〉
〈λf |MQβ|λi〉 δ

(
Eλi − Eλf + ~ω

)
(2.34)

where r0 is the classical electron radius, α, β = x, y, z and δα,β the Kronecker delta
function. According to Eq.2.32 only the component of the magnetisation which is
perpendicular to the scattering vector contributes to the scattering cross section.
Fig.2.3 (a) illustrates the decomposition of the magnetisation vector MQ. MQ⊥is
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Figure 2.3: Decomposition of the magnetisation vector MQ (a) and the magnetic
field configuration for MQ perpendicular (b) and parallel (c) to the scattering
vector Q (adapted from [Her]).

the projection of the magnetic structure factor MQ onto a plane perpendicular
to the scattering vector Q. Due the dipole nature of the magnetic interaction,
only the component of MQ perpendicular Q contributes to the scattering process.
This could be illustrated with the help of Fig.2.3 (b/c): a magnetisation parallel
to the scattering vector will be cancelled out due to destructive interference, thus
the net magnetisation becomes zero. In the perpendicular case, on the other hand,
constructive interference takes place and the net magnetisation is maximised.

2.2.1 Scattering due spin only

Considering firstly the Heitler-London model as valid, i.e. the unpaired electron
are localised. Secondly LS coupling takes place, i.e. L and S are good quantum
numbers. In addition, the considered crystal is a non-Bravis crystal with nucleus
l and d at position Rld. If rν is the position of the νth unpaired electron in the
ion l, d relative to the nucleus, then

ri = Rld + rν (2.35)
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and for the magnetic structure factor [Squ]

〈λf |MQ|λi〉 =

〈
λf | exp (iQ ·Rld)

∑
ν(d)

exp (iQ · rν) sν |λi

〉
= Fd (Q) 〈λf | exp (iQ ·Rld)Sld|λi〉 (2.36)

with the magnetic form factor

Fd (Q) =

∫
sd (r) exp (iQ · r) dr (2.37)

The scalar function sd (r) is the normalised density of the unpaired electrons in
the ion d. Sld is the total spin of the considered ion.

2.2.2 Scattering by ions with spin and orbital angular mo-
mentum

For ions with both, spin and unquenched orbital angular moment [L 6= 0 (e.g. rare
earth elements)] the magnetic form factor from Eq.2.37 can be replace by [Squ]

1

2
gF (Q) =

1

2
gsJ0 +

1

2
gL (J0 + J2) (2.38)

with

gs = 1 +
S (S + 1)− L (L+ 1)

J (J + 1)
gL =

1

2
+
L (L+ 1)− S (S + 1)

2J (J + 1)
(2.39)

Jn = 4π

∫ ∞
0

jn (Qr) s (r) r2dr. (2.40)

g = gs + gL is the Landé splitting factor, jn (Qr) a spherical Bessel function of the
order n, and s (r) the normalised density of the unpaired electrons averaged of all
direction in space. For partially quenched orbital angular momentum the operator
S has to be considered as total angular momentum operator J .

2.2.3 Magnetic Bragg scattering of helical order

In the following section the scattering from a magnetic crystal with a helical ar-
rangement of spins (as it will be considered throughout this work) is considered.
A detailed deviation of this and further spin arrangements (e.g. anti-, ferromag-
netism) can be found in [Squ] for example. To develop the cross-section for a
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helical spin arrangement, the spins are assumed to be in the xy plane, perpen-
dicular to the z-axis. For the magnetic ion on the side l, the total spin is given
by

〈Sxl 〉 = 〈S〉 cos (k · l)
〈Syl 〉 = 〈S〉 sin (k · l)
〈Szl 〉 = 0 (2.41)

with the propagation vector k and ks = 2π
d

. d gives the periodicity of the magnetic
structure in real space. The scattering cross-section is given by(

dσ

dΩ

)
mag,el

= (γr0)2

{
1

2
gF (Q)

}2

exp (−2W ) I (2.42)

where

I =
N

4

(2π)3

v0

〈S〉2
(

1 + Q̂2
z

)∑
τ

{δ (Q+ k − τ ) + δ (Q− k − τ )} . (2.43)

The scattering arising from the helical spin structure appears at the scattering
positions Q = τ ± k, relative to the nuclear peaks at τ as it follows from the δ
function in Eq.2.43. For a magnetic structure commensurate with the chemical
lattice (e.g. ferromagnets, ks = 0) the magnetic scattering appears at Q = τ .

2.3 Polarised scattering

In the previous sections the spin of the incident and scattered neutron has been
assumed as randomly oriented. In many cases it is useful to consider polarised
neutrons to gain more detailed information about the scattering process. In this
section the polarised beam, the Blume-Maleev equation [MBS, Blu] and polarised
scattering on chiral magnets will be discussed. Additional a quick overview about
experimental polarisation and flipping of neutrons will be given. All through this
work use is made of the unique ability of polarised neutrons to distinguish between
left- and right handed magnetic chirality.

2.3.1 Polarised beam

A neutron is a spin 1
2

particle. For the individual neutron j in the beam the
vector pj gives the three expectations values of the three components of the Pauli
matrices 2.26

pj = 〈σ〉 =

〈σx〉〈σy〉
〈σz〉

 . (2.44)
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In consequence, the polarisation of the whole beam can be expressed as average
over the individual polarisations of all neutrons:

P =
1

N

∑
j

pj (2.45)

For an unpolarised beam P = 0, on the other hand for a complete polarised beam
P = 1 and for a partial polarised beam 0 < P < 1. The component of polarisation
of the beam P can be written as

Pα =
n+ − n−

n+ + n−
, (2.46)

with n± denoting the numbers of neutron in the ±1
2

eigenstates.

2.3.2 Polarised neutron scattering

In the early 1960s the fundamental equation which describes the scattering of a
polarised neutron beam was given, independently of each other, by Maleev and
Blume [MBS,Blu]. In this subsection a brief overview about the polarisation of the
scattered beam in the elastic case is presented according to [Brob]. The Blume-
Maleev equation is given as:

PfI =P i

(
NQN

∗
Q −MQ⊥ ·M ∗

Q⊥
)

+MQ⊥
(
P i ·M ∗

Q⊥
)

+M ∗
Q⊥ (P i ·MQ⊥) +MQ⊥N

∗
Q +M ∗

Q⊥N
∗
Q

− iP i ×
(
MQ⊥N

∗
Q −M ∗

Q⊥NQ
)

+ i
(
MQ⊥ ×M ∗

Q⊥
)

(2.47)

NQ is the nuclear structure factor and MQ,⊥ the magnetic interaction vector of
the chemical unit cell. P i and P f are the incident and scattered polarisation,
respectively. The intensity (proportional to the differential cross section) of the
scattered beam is given by:

I = NQN
∗
Q︸ ︷︷ ︸

pure nuclear contribution

+ MQ⊥ ·M ∗
Q⊥︸ ︷︷ ︸

pure magnetic contribution

+ P i ·MQ⊥N
∗
Q + P i ·M ∗

Q⊥NQ︸ ︷︷ ︸
nuclear magnetic interference

− iP i ·
(
MQ⊥ ×M ∗

Q⊥
)︸ ︷︷ ︸

chiral magnetic contribution

(2.48)

The pure nuclear as well as the pure magnetic contribution are independent of the
initial polarisation. The nuclear-magnetic interference term appears if the nuclear
and magnetic scattering take place at the same position in the (Q, ω)-space, and
the chiral contribution depends on the initial polarisation. The relation between
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the incident polarisation P i and the scattered polarisation P f can be described
by the tensor equation [Broa]

P f = P̃P i + P
′

(2.49)

where P̃ is the polarisation tensor and P
′
the polarisation created in the scattering

process. Define a set of polarisation axis with x parallel to the scattering vector, z
perpendicular to the plane of the incident and scattered beams and y completing
the right-handed orthogonal set. In this configuration there is no component of
MQ⊥ perpendicular to x. The components of P̃ and P

′
are given as:

P̃ I =

N2 −M2 Jnz Jny
−Jnz N2 −M2 +Ryy Ryz

−Jny Rzy N2 −M2 +Rzz


P

′
I =

−JyzRny

Rnz

 (2.50)

with:

Ix = M2 +N2 + PxJyz

Iy = M2 +N2 + PyRny

Iz = M2 +N2 + PzRnz

I = M2 +N2 + PxJyz + PyRny + PzRnz (2.51)

where N denotes the nuclear structure factor with N2 = NN∗, M is the mag-
netic interaction vector with M2 = MQ⊥ ·M ∗

Q⊥, Rni = 2R(NM∗
Q⊥i), Rij =

2R(M⊥iM
∗
⊥j), Jni = 2I(NM∗

⊥i) and Jij = 2I(M⊥iM
∗
⊥j) with M⊥i denoting the ith

component (i = y, z) of MQ⊥ and I and R the imaginary and real part, respec-

tively. The off-diagonal components of P̃ represent the components of the scat-
tered polarisation that are non-parallel to the incident direction and describe the
rotation of the polarisation during the scattering process. The polarisation analysis
is used to describe the experiments where the scattered polarisation is measured.
A distinction is drawn between classical polarisation analysis [MRK], which mea-
sure only one component parallel to the applied field (i = j = z and z parallel to
the applied field), and the 3d polarisation analysis [Sch], with I±i±i, i = x, y, z. For
both methods a magnetic field or magnetisation is present at the sample, there-
fore components perpendicular to the field cannot be measured. The off-diagonal
components of P̃ can be detected by the so-called spherical polarimetry [TBLB+].
This work will be restricted to classical polarisation analyses, with the goal to
investigate the polarised scattering on chiral magnets, which is described in more
detail in the next section.
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2.3.3 Chiral scattering

Throughout this work polarised neutron scattering is used to determine the hand-
edness of magnetic spirals. As the unpolarised scattering from a spiral magnetic
structure is already discussed in (2.2.3), the polarised case will be introduced in
the following, and in particular, the resulting expressions for polarised elastic scat-
tering from spiral magnetic structures. The average spin Sl and the vector MQ

are given by:

Sl =
1

2
[S exp (−ik · l)S∗ exp (ik · l)]

= S1 cos (k · l) + S2 sin (k · l) (2.52)

MQ =
r

2N
F (Q)

∑
τ

(SδQ−k,τ + S∗δQ+k,τ ) (2.53)

l is the coordinate of the site l and τ is the reciprocal lattice vector. According
to [Mala], the expression for the elastic scattering cross section of a magnetic
spiral [MBS,Blu] can be derived as:

σel =
[r

2
F (Q)

]2
{[
S2

1 −
(
S1, Q̂

)2

+ S2
2 −

(
S2, Q̂

)2
]

× (∆Q+k + ∆Q−k) + 2
(
P i · Q̂

)(
[S1 × S2] Q̂

)
(∆Q+k + ∆Q−k)

}
(2.54)

with

∆Q±k =
(2π)3

V0

∑
τ

δ (Q± k − τ ) . (2.55)

Here V0 is the unit cell volume. The superstructural peaks occur as for the unpo-
larised case at the positions Q = ±k + τ . Using the identity [LB] A⊥ ×B⊥ =

Q̂
(

[A×B] Q̂
)

and considering a simple spiral with |S1| = |S2| and all vectors

mutual perpendicular Eq.2.54 can be simplified to:

σel =

[
rS

2
F (Q)

]2{[
1 +

(
Q̂ · m̂

)2

+ 2
(
P i · Q̂

)(
Q̂ · m̂

)]
∆Q+k

+

[
1 +

(
Q̂ · m̂

)2

− 2
(
P i · Q̂

)(
Q̂ · m̂

)]
∆Q−k

}
(2.56)

For a right- and left-handed spiral, m̂ = [S1 × S2] /S2 and k are parallel and
antiparallel, respectively. From Eq.2.53 and Eq.2.55 it follows that the scattering
of polarised neutrons offers the possibility to determine the direction of the spirals
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rotation. The chirality can be identified by measuring the difference between the
scattering intensities taken from the incident neutron beam with the polarisation
along (+Pi = P i ↑↑ H) and opposite (−Pi = P i ↑↓ H) at a fixed Q = k. The
value Ps, the difference between two intensities taken at the same Q normalised to
their sum, allows to quantify the helix chirality. The helix chirality γm is connected
with the individual measured scattered intensities and the incident polarisation by
the relation [GMO+]

Ps (Q) =
I (+P i)− I (−P i)

I (+P i) + I (−P i)
= γm

(
P i · Q̂

)
= γmPi cos (ψ) . (2.57)

ψ is the angle between the polarisation vector P i and the unit scattering vector
Q̂.

2.3.4 Experimental methods for neutron polarisation

The neutron beams from neutron sources are in general unpolarised. Currently,
there are three methods to produce a polarised beam and analyse its polarisation
after the scattering process, which will be shortly introduced here:

• Bragg scattering from ferromagnetic crystals The polarisation effect
due ferromagnetic Bragg scattering is the first example of nuclear - magnetic
interference [Shu]. The scattering amplitude for neutrons with spin parallel
and antiparallel (±) is defined as [Mala]

f± = −
{
b± rF (Q)S

[
1−

(
Q̂ · m̂

)2
]}

(2.58)

The right choice of Q and S can set the amplitude f− to zero, that only
the neutrons with the polarisation along the field are Bragg scattered. Two
possible materials that can be used for polarising the beam are the (111)
reflection of the Heusler alloy Cu2MnAl with a polarisation antiparallel to
the field [SAMM] or (200) reflection of Co92Fe8.

• Reflection from magnetised mirrors The square of the refraction index
for a neutron beam entering a material is given in [Mala] as

n2
0 = 1− 2π

N0b

ME
(2.59)

N0 is the density of the material, M is the mass and E the energy of the
neutron. For a magnetised material the interaction between the neutron
spin and the magnetic field in the sample becomes dependent on their rela-
tive orientation. At a proper glancing angle (often in the order of less than



30 CHAPTER 2. SCATTERING THEORY

1◦) neutrons of one spin state are completely reflected, while the other state
mainly penetrates the sample. Particularly tailored multilayer samples al-
low one to increase the incident angle. Typical materials for this kind of
magnetised mirrors are Fe/Si, Co/Si or Fe50Co48Vx/TiNix multilayers.

• Using polarised nuclei of the isotope 3He as filters The neutron ab-
sorption of 3He is strongly dependent of the relative orientation between the
neutron spin and the one of the nuclei [PS,TR,HDH+]. A 3He filter strongly
absorbs neutrons with a spin antiparallel to the nuclei spin but transmits the
ones with the opposite spin.

Moreover, it is sometimes necessary to change the direction of the polarisation vec-
tor P during the experiment. This could be achieved by a specially designed mag-
netic field structure set along the path of the neutron. In a constant magnetic field
the neutron polarisation vector rotates. This rotation is called Larmor-precession:

dP

dt
= −2µn [B (r)× P ] (2.60)

The Lamor frequency is given by ωL = 2 |µn|~ |B|. One can distinguish different
cases [Rob]. In the adiabatic case the field variation is slow compared to the
Larmor frequency and the polarisation vector P follows the direction of the field.
In the non-adiabatic case, on the other hand, the polarisation of the beam will not
re-orient and instead the beam will keep processing along the initial orientation.
The different experimental realisation of polarisation-rotation systems, are called
flipper. In this work an adiabatic fast passage (AFP) flipper has been used (see
[GGb,GGa,GGK] for details).

2.4 Small angle neutron scattering

Small Angle Neutron Scattering (SANS) is an elastic scattering method, which
allows to probe large scale structures. Wide angle scattering experiments, on the
contrary, applied for the investigation of inter-atomic distances. Typical diffrac-
tion experiments aims on the Q-range of approximately 10 Å−1 to 0.5 Å−1 or
structural sizes of 1 nm to 0.1 nm, while small angle scattering (SAS) is aiming
on large length scale properties. SANS is often applied to investigate soft con-
densed matter (e.g. colloidal particles, polymers, gels, liquid crystals), biology
(e.g. proteins, biomembrans), material science (e.g. phase separation in alloys
and glasses, morphology of superalloys), but also hard condensed matter (e.g. flux
lines in superconductors, magnetic correlations). The typically covered Q-range is
approximately between 0.0005 Å−1 and 0.5 Å−1 addressing length scales between
10 Å and 10000 Å. In this work spiral magnetic spin arrangements with a long
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periods between 30 Å for MnGe [KOA+,MTA+,KKI+] and 700 Å for FeGe [LBF]
are investigated. For this reason, small angle neutron scattering is the perfect
tool to probe the chiral, magnetic scattering arising from these phenomena. The
SANS experiments in this work have been carried out at the SANS-1 [GOS+] in-
strument, which is located at the Heinz Maier Leibnitz Zentrum (MLZ), Garching,
Germany and at D22 [d22] located at the Institute Laue Langevn (ILL), Grenoble,
France. An overview about the specific characteristics of both instruments is given
in Appendix A. SANS measures the scattering function S (Q) in reciprocal space,

source

velocity
selector

slit1

polariser

flipper

collimation

slit2

sample

PSD

L1 L2

Figure 2.4: Schema of a small angle neutron scattering set-up.

transformed to the scattering length function G (r) in real space, for the scattering
vector Q:

|Q| = 4π

λ
sin (θ) (2.61)

with the scattering angle 2θ. The schematic set-up of a monochromatic small
angle neutron scattering instrument is presented in Fig.2.4. The wavelength of
the neutrons λ is given by the tunable rotation speed of the velocity selector.
After they passed the velocity selector an adaptable collimation and slit system
generates a parallel flight path of the neutrons (’collimated’ neutrons). In a typical
pinhole like machine, there is one slit (R1) located behind the velocity selector and
a second one in front of the sample (R2), with a typical distance between both slits
of L1 = 10 - 30 m. The scattered neutrons will be detected using a 2 dimensional
position sensitive detector (PSD). To cover a broadQ-range the detector is movable
to vary the sample-detector distance between 1 - 40 m. The collimation- and
detector tubes are evacuated to prevent scattering by air, a polariser and a flipper
are installed within the collimation tube. The experimental resolution is in general
determined by the finite size of the incident beam, the wavelength resolution, the
pixel size of the detector and the gravity effects [PPM]. The effect of the pixel
sizes of the used detectors is between 8 × 8 mm2 and 5 × 5 mm2 and for this
reason neglectable, the same is valid for the effect due to the gravity. For both
SANS instruments, used within this work, the wavelength contribution given by
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∆λ/λ ≈ 10 %, dominates the instrument resolution and determines the width of
the measured peaks. For a given Q the Q-resolution can be written (according to
a Taylor series expansion) [Gri]:

∆Q = −Q
(
δλ

λ

)
+

(
4π

λ

)
cos (θ) ∆θ (2.62)

and so:

∆Q2 = Q2

(
δλ

λ

)2

+

(
4π

λ

)2

cos2 (θ) ∆θ2 = ∆Q2 (λ) + ∆Q2 (θ)

= Q2

[(
1

2
√

2ln2

∆λ

λ

)2
]

+

[(
4π

λ

)2

−Q2

]
∆θ2 (2.63)

here the triangular function of the wavelength distribution is given by FWHM =
λ0 (∆λ/λ). θ is related to the width of the direct beam (see [Gri] for details). For

ks
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incoming beam

sample

Figure 2.5: The schematic outline of a SA(P)NS experiment.

the measurements presented in this work the solid solutions have been put inside
the beam with the magnetic field perpendicular to the incident neutron beam. The
optional polarisation P 0 was applied parallel to the magnetic field H .



Chapter 3

Crystal structure and sample
preparation

In the first section of this chapter the crystal structure of the investigated monosili-
cide and monogermanide samples will be introduced. The second section describes
the synthesising methods used in this thesis: the monosilicides have been fabri-
cated using the Czochralski method, while the monogermanides could only be
produced under high pressure condition. In the last part the results from the
x-ray characterisation are presented.

3.1 Crystal structure

The transition-metal monosilicides and -germanides MnSi, FeSi, CoSi, MnGe,
FeGe, CoGe and their solid solutions crystallise in the chiral space group P213
(B20 structure) [TTIE, TSES, LBF, DGO+]. They can be grown in a left-handed
and right-handed crystalline chirality. Four transition metal atoms (Mn, Fe, Co)
and four Si/Ge atoms occupying the Wyckoff positions [Hah]

4(a) : R1 (u, u, u) ; R2

(
1
2

+ u, 1
2
− u,−u

)
R3

(
−u, 1

2
+ u, 1

2
− u
)

; R4

(
1
2
− u,−u, 1

2
+ u
)

(3.1)

For a right-handed crystalline chirality the positions for the atoms in the unit cells
are uSi/Ge = 0.154 and uMe = 0.865 (where Me is the transition-metal) [IEM+,
TTIE]. Consequential for the left-handed structure it must be uLSi/Ge = 1 - uSi/Ge
and uLMe = 1 - uMe. Using the same uSi/Ge and uMe one get for the left-handed
Wyckoff positions

4(a) : R1 (1− u, 1− u, 1− u) ; R2

(
1
2
− u, 1

2
+ u, u

)
R3

(
u, 1

2
− u, 1

2
+ u
)

; R4

(
1
2

+ u, u, 1
2
− u
)

(3.2)
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Figure 3.1: View of B20 cubic crystals along 〈001〉 (a), (b) and 〈111〉 (c), (d) for
right-handed ((a) + (c)) and left-handed ((b) + (d)) configuration. The black spi-
rals help to depict the sense of the spiral skewing (Reprinted figure with permission
from [DGM+]. Copyright (2011) by the American Physical Society).

This is equal to the inversion operation (x, y, z) → (-x, -y, -z). To image the unit
cells one can set the Me-Si/Ge pairs into the fcc lattice sites with the orientation
along the 〈111〉 direction, at the four different sides [0, 0, 0], [0.5, 0.5, 0], [0, 0.5,
0.5] and [0.5, 0. 0.5]. The Me and Si/Ge atoms building helices with opposite
sense skewing around 〈111〉. Fig.3.1 demonstrate a dextral- (right) and sinistral-
(left)handed structures along the 〈001〉 direction (a), (b) and along the 〈111〉
direction (c), (d), respectively. Following the definition given by the authors of
Refs. [IEM+,TTIE] the chirality of the whole structure coincides with the structure
of the Si-sublattice. The Me-sublattice has the opposite chirality sense.
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3.2 Sample preparation

For the monosilicide and monogermanide based compounds two different synthesis
processes have been used. The Fe1−zCozSi samples with z = 0.5, 0.6, 0.65, 0.75
and 0.8 have been produced using the Tri-Arc-Czochralski device located at the
Technische Universität Braunschweig [see Fig.3.2 (a)]. As it is proven in Ref.
[DGM+] this method give almost 100 % control of the structural chirality. For the
germanide based compounds, samples with a sufficient large size for the neutron
scattering experiments can only be produced in powder form. The samples of
Fe1−yCoyGe (y running from 0.0 to 0.8) and Mn1−xFexGe (x running from 0.0 to
1.0) have been synthesised as B20 structure using the high pressure method at the
Institute for High Pressure Physics in Troisk [Tsv]. An exception is the pure FeGe,
that can be produced using chemical vapour transport as single crystal sufficient
large for neutron experiments as described in detail in Ref. [WSCG+].

3.2.1 Czochralski-method

Figure 3.2: (a) the Tric-Arc Czochralski device, (b) view of the crystal growth
process, (c) Fe0.5Co0.5Si (top) and the MnSi reference sample (bottom).

To study the crystalline Γc as well as the magnetic chirality γm the availability
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of high-quality single crystalline sample is essential. The single crystals of MnSi
as well as the Fe1−zCozSi compounds are grown using the Tri-Arc-Czochralski
method [Czo]. This method is well established due to its intensive use in the
semiconductor industry. For the Tri-Arc Czochralski method high purity compo-
nents [99.98 % Fe (Alfar Aesar), 99.9 % Co (Alfa Aesar), Si (Preussag AG)] are
mixed stoichiometrically and pre-molten in a water-cooled copper crucible under
Argon atmosphere with a pressure of 0.6 bar for Fe1−zCozSi and 2.5 bar for MnSi.
The pre-molten mixture is melted again in the Czochralski equipment under the
same Argon atmospheres. Three electric arcs arranged in a 120 degree geometry
provide a homogeneously heat contribution. The clockwise revolving seed crys-
tal is submerged into the reversely rotating melt (see Fig.3.2 (b)). Subsequently
the crystal is drawn out of the melt with a speed of 12 mm/h and the material
starts to crystallise at the bottom of the seed. The crystal growth conditions are
nearly identical for all samples, but due to their different vapour pressures the
argon pressure has to be adapted for the samples containing Mn, Fe and Co. At
the beginning of the growth process the crystal diameter is reduced to a few mil-
limetres, the so called ’necking’ (performed due a temperature change), which is a
well established method to eliminate dislocations. It turned out that a reduction
of the growth velocity during the necking to 2-3 mm/h reduces the probability
that liquid melts tears of the crystal. Beside the ability to gain high-quality single
crystalline samples, this method offers almost 100 % control of the crystalline chi-
rality as revealed by Dyadkin and co-workers [DGM+]. Using a left-/right-handed
seed crystal (necessarily with a similar crystal structure and similar cubic lattice
parameters) it is possible to grow crystals with the same handedness as the seed
crystal. In consequence, one gains the ability to control the handedness of the
resulting crystal.

3.2.2 High pressure method

Figure 3.3: Fe0.25Co0.75Ge produced via high pressure method.
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Sufficient large samples for neutron scattering experiments of the transition
metal monogermanides CoGe, MnGe and their composition (beside the pure FeGe)
can only be produced in B20 structure under high temperature and high pressure
condition. Consequently, most of the germanide based samples considered in this
work exist only as polycrystalline powder with crystallite sizes in the order of a few
microns. Here a short summary of the used method described in more details in
Ref. [Tsv] will be given. The syntheses were carried out in a high pressure chamber
constructed by Khvostantsev and co-workers [KVN]. A stoichiometric mixture of
the elements has been pressed and placed in a rock salt pipe ampoule. The Mn
purity was 99.0 % and that of Ge 99.999 %. This mixture has been placed in the
high pressure chamber with a constant pressure of about 8 GPa and heated above
the melting temperature of the mixture to 1600◦ C. Afterwards, the systems has
been rapidly quenched to room temperature, whereupon the pressure has been
released. The melting temperature could be controlled by the voltage-current
plot. Subsequently, the crystalline structure has been checked by x-ray powder
diffraction. The procedure has been repeated with slightly adapted temperatures
and pressure values till the favoured B20 structure of the mixed compounds has
been obtained.

3.3 X-ray characterisation

The structural chirality of 3d metals is nearly 100 % controlled by the chirality of
the used seed crystal during the Czochralski growing [DGM+]. The Dzyaloshinskii-
Moriya interaction offers a link between the structural and magnetic chirality that
has been experimental proven for plenty of different 3dmetals as pointed our above.
It is absolutely essential to know the crystal structure and the structural chirality
of the investigated samples. As all monogermanide based samples, besides MnGe2

and FeGe, can be produced just in powder form one is limited to x-ray powder
diffraction, whereas the single crystalline MnGe, FeGe and Fe1−zCozSi sample can
be investigated via single crystal diffraction. Following in this section the results
from the powder diffraction experiments are presented in subsection 3.3.1 and the
single crystal diffraction in subsection 3.3.2.

2It should be noted that the MnGe single crystals are sufficient large for the synchrotron
single crystal diffraction but not for neutron experiments.
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Figure 3.4: An example of a typical powder diffraction pattern taken for
Mn0.5Fe0.5 Ge at T = 200 K. The inset shows the (120) peak for MnGe at T = 80 K
(squares) and 500 K (circles), which is referred to have a maximal broadening due
to the phase transition (proposed in Ref. [MTA+]). For comparison the peak
at T = 80 K is shifted to the left by -0.1454◦ and scaled by a factor of 1.0874.
It is clearly seen that there is no phase transition between these two tempera-
tures (Reproduced with permission of the International Union of Crystallography
from [DGO+]. Copyright (2014) International Union of Crystallography).

3.3.1 Powder diffraction

The Mn1−xFexGe as well as the Fe1−yCoyGe used in this thesis are in a polycrys-
talline powder form with a crystalline size not less than a micron [GPS+b,GSA+].
X-ray powder diffraction were performed at the PILATUS@SNBL [DPDC] diffrac-
tometer at the BM01A end station of the Swiss-Norwegian Beam Lines at the
ESRF (Grenoble, France) (more details about the beamline parameters and per-
formance can be found in Appendix A). In this sub-section the pre-characterisation
on the powder samples will be introduced, exemplarily for Mn1−xFexGe, based on
the work of Dyadkin and co-workers. [DGO+]. For the measurements a wavelength
of 0.68239 Å have been used. The data have been collected using a single φ scan
with an angular step of 0.1 ◦ in a shutter free mode using a Pilatus2M pixel area
detector. To improve the powder averaging the 0.2 mm capillary was repeatedly
oscillated over a 10◦ range. The temperature range between 80 K and 500 K was
measured in 1 K steps. The SNBL Toolbox [Dya] has been used to reprocess the
data, afterwards the azimuthally integration has been performed with Fit2D [Ham]
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Figure 3.5: The temperature evolution of the unit-cell parameters normalised to
the value of T = 80 K. Within the inset the Fe concentration x versus the low-
temperature lattice parameter a0 at T = 0 K, obtained from equation Eq.3.3 with
crosses indicating values expected from Vegards law is plotted (Reproduced with
permission of the International Union of Crystallography from [DGO+]. Copyright
(2014) International Union of Crystallography).

and the final Rietvield refinement was carried out with FULLPROF [RC]. An
example data set is illustrated in Fig.3.4. In contrast to the single crystalline
samples the powder samples contain crystalline phases of unknown compositions
with a varying number of contaminating phases from sample to sample. Fig.3.5
demonstrates the temperature evolution of the unit cell parameter in the range
between 80 K and 500 K. The unit cell dimension decreases linearly as function
of the concentration x (with a slope of -0.01), this behaviour is in a good agree-
ment with the expected decrease of the average covalent radius of the 3d metal
atoms. Dyadkin and co-workers assumed that the Vegards law is fulfilled. Some
minor corrections have to be applied, which do not have any significant effect on
the obtained results. For all compositions the thermal expansion fits to the Debye
model (for each individual composition)

a (T ) = a0 + a0αΘDfD (ΘD/T ) (3.3)
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with

f (x) = 3

1∫
0

t3

exp(tx)− 1
dt (3.4)

In Fig.3.6 the concentration dependence of the thermal expansion coefficient α
and the Debye temperature ΘD (including the minor corrections for the compo-
sition) is presented. The Debye temperature also decays with the increasing Fe
concentration with a dispersion larger than for a0. The thermal expansion α devi-
ates clearly from linearity with the change of the 3d metal concentration. Neither
from the powder patterns nor from the thermal expansion any indications for a
phase transition around 170 K in pure MnGe could be observed (as proposed by
Makarova and co-workers [MTA+]).
The cubic B20 structure of the Fe1−yCoyGe samples used within this thesis has
been confirmed by laboratory x-ray diffraction. A detailed temperature depen-
dent diffraction study using synchrotron radiation (analogous to the Mn1−xFexGe
presented here) is planned and will be performed in the nearest future.

3.3.2 Single-crystal diffraction

For the single crystal Bragg diffraction measurements a similar set-up has been
used as for the powder diffraction measurements. The Bragg raw data have been
processed with the SNBL Tool Box [Dya], the integral intensities have been ex-
tracted from frames with CRYSALISPRO [Tec], the crystal structure has been
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solved by SHELXS and refined by SHELXL [She]. The results for MnGe, FeGe
and Fe1−zCozSi are given in Tab.3.1. For all single crystalline samples considered
in this work the resonant scattering contribution to the x-ray scattering amplitude
was sufficient to refine the so-called Flack parameter [Fla, FB, SSF].This analysis
is based on the difference between the Friedel pairs

[
I (hkl)− I

(
h̄k̄l̄
)]

. The mea-
sured difference provides a direct proof about the ratio between the two opposite-
handed structural domains for chiral space groups. The value of the Flack parame-
ter equal to zero corresponds to an enantiopure, i.e. only domains of the same chi-
rality are present in the sample. Together with the atomic coordinates determined
during the carried out refinement the absolute structure could be determined. In
agreement with the previous works [GCD+a], the chirality Γc of a structure with
uMe ≈ 0.86 is right-handed (Γc = +1), whereas uMe ≈ 0.15 is defined as left handed
(Γc = -1). The single crystalline Fe1−zCozSi and the MnGe sample possess an
uMe ≈ 0.86 and are therefore right-handed (Γc = +1), only the FeGe has an atomic
position of uMe ≈ 0.13 and exist ergo in a left-handed structural chirality (Γc = -1).
Together with the low Flack-parameter (Abs. structure parameter in Tab.3.1), one
can assume that all single crystalline samples considered in this thesis are enantiop-
ure. The Flack-parameter determined for all six samples is close to zero for each of
them (see Tab.3.1). These results together with different single crystal diffraction
experiments in the past [DGM+, GCD+a, GCD+b, GPS+b, WSCG+, DPG+], indi-
cate that the energy barrier separating the two enantiopure domains is rather high
implying that large domains with the same chirality are energetically favoured.
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Chapter 4

Magnetic measurements

4.1 Motivation

Mn1−xFexGe, Fe1−yCoyGe and Fe1−zCozSi are highly interesting magnetic ordered
systems due to the broad range of new phenomena that are observed within this
class of material. All of them are cubic B20 compounds with a non-centrosymmetric
crystallographic structure described by the P213 space group with a helimagnetic
spin ordering, but strongly different magnetic properties. These cubic helimagnetic
B20 compounds attracted much attention during the last years due to the promis-
ing physical properties of the magnetic structure in the A-phase, which is the host
of the so-called skyrmion-lattice. This topological protected structures are promis-
ing candidates for future high effective spintronic applications [MYS+,RHM+]. On
the other hand, the ’simpler’ helical phase of the systems that is the base of the
A-phase is still not understood. The monogermanide compounds, which are less
investigated due to their difficult synthesis, exhibit magnetic characteristics which
differs clearly from the monosilicide based ones. The pure MnGe has a short he-
lix pitch of 3 nm [TSES, KOA+, MTA+], a magnetic moment of 1.9 µB at 2.5 K
[approximately 5 times larger than that of MnSi (0.4 µB)], and undergoes an
intrinsic instability of the helix along with a complex order-disorder phase transi-
tion [ASD+]. In addition, a stress induced magnetic texture and fluctuation chiral
phase [DBT+], as well as a pressure induced collapse of the magnetic order [DMH+]
have been observed recently. While the pure FeGe, which is in principal a simi-
lar helimagnetic system, manifests strongly different magnetic properties. Its helix
pitch of about 70 nm [LBF,WSCG+] is more than 20 times larger as for MnGe and
goes along with a segmented A-phase [MGD+]. In all these compounds the major
ferromagnetic exchange interaction together with the chiral Dzyaloshinskii-Moriya
interaction stabilise the spiral magnetic structure below Tc [BJ,NYHK], while the
weak anisotropic exchange fixes the spiral along the principal axis of the cubic
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system. As it is pointed out in the subsections 1.2.2, 1.2.3 and experimentally
in Refs. [TTIE, IEM+, GCD+a, GCD+b, DGM+], the sign of the DM interaction
determines the sense of the magnetic spiral. For various Mn-based monosilicide
B20 compounds (Mn1−xFexSi and Mn1−xCoxSi) the crystalline and magnetic chi-
rality have the same sense, while for the Fe-based ones (Fe1−zCozSi) the opposite
behaviour seems to be the case. [TTIE, IEM+, GCD+a, GCD+b, DGM+]. This is
a strong indication that the different types of compounds, Mn-/Co-based on the
one hand, and Fe-based on the other hand, possess different signs of the DM in-
teraction. It is of great interest to follow the change of the sign of the D constant
by substituting more Fe/Co into the Mn1−xFexSi/Mn1−xCoxSi. Unfortunately
Mn1−xCo/FexSi are magnetically ordered just in a narrow range of doping and be-
come non-magnetic with further Fe/Co doping. In contrast, the monogermanide
systems, are due to their broader magnetic ordering range, more promising can-
didates to observe the magnetic structure development with doping of Fe/Co. In
this work the evolution of the magnetic structure from pure MnGe to pure FeGe by
continually substituting Mn by Fe and furthermore with Co doping to Fe0.2Co0.8Ge
(where the magnetic order disappears) has been investigated. Analogous to the
germanide based compound the evolution of the chiral link with the tuning of
the 3d electrons configuration by Fe/Co doping in Fe1−zCozSi compounds has
been probed. The following chapter presents the results for the investigation of
the microscopic and macroscopic magnetic structure in Mn1−xFexGe, Fe1−yCoyGe
and Fe1−zCozSi compounds using superconducting quantum interference device
(SQUID) and small angle neutron scattering (SANS).
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4.2 Mn1−xFexGe

The alloys of Mn1−xFexGe offer the possibility to follow the changes of the magnetic
properties from pure MnGe with Fe doping to pure FeGe and thereby observe the
evolution of the link between structural and magnetic chirality within this com-
pound sequence. In this chapter the results for the investigation of the magnetic
structure of Mn1−xFexGe via SQUID magnetisation (section 4.2.1), unpolarised
(section 4.2.2) and polarised (4.2.3) SANS are presented. In addition, a short
overview of the recent theory is given in section 4.2.4.

4.2.1 Magnetisation measurements: SQUID
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Figure 4.1: Temperature dependence of the susceptibility χ at an applied magnetic
field of 50 mT for the compounds with x = 0, 0.25, 0.5, 0.75, 1.0. For better visi-
bility the susceptibility of the compounds with x = 0 and x = 0.25 are multiplied
by factor of 10 and that of the compound with x = 0.5 is multiplied by factor of
5 (figure taken from [GPS+b]).

The macroscopic magnetic properties of all samples with x running from 0.0 to
1.0 have been investigated by using a SQUID magnetometer (see Appendix A.2 for
details). The temperature dependent dc-susceptibility curves have been measured
between 5 and 350 K after zero-field cooling to 5 K and heating up in an external
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Figure 4.2: Temperature dependence of the magnetic susceptibility χ(T ) of
Mn0.5Fe0.5Ge at H = 50 mT and the temperature derivative dχ/dT . The crit-
ical temperature is taken from the lower maximum (Tc1 at the maximum of the
first deviation). The insert demonstrates the determination of the critical tempera-
ture in the similar DM helimagnet Mn0.92Fe0.08Si (Reprinted figure with permission
from [GMD+b], Copyright (2011) by the American Physical Society).

field of 50 mT. In Figure 4.1 the susceptibility χ for x = 0.0, 0.25, 0.5, 0.75 and 1.0
are presented. As it was revealed for the similar helimagnetic system MnSi (find
details in Ref. [GMD+b]) the temperature driven transition from the paramagnetic
to the helical phase could be accompanied by a chiral fluctuating state associated
with a maximum in the susceptibility χ. The curves with x = 0.0, 0.25, 0.50 and
1.0 plotted in Fig.4.1 have the typical shape with a maximum as it is expected for
a helical system. The critical temperature is determined as the low-temperature
inflection point in the T dependence, corresponding to the maximum of the first
derivative of the susceptibility on the temperature dχ/dT . In Fig.4.2 is exempli-
fied for Mn0.5Fe0.5Ge. On the contrary, the curve with the critical concentration
x = 0.75 shows a Curie-Weiss-like shape without any maximum, indicating a fer-
romagnetic spin structure. For all considered samples, the critical temperature is
plotted versus the concentration x in Fig.4.3. It decreases slightly with increasing
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Figure 4.3: Dependence of the critical temperature Tc on the concentration x
of Mn1−xFexGe compounds. The red circles represent the critical temperatures
determined by the maximum of the first derivation of the magnetic susceptibility
measurements dχ/dT (as illustrated in [GMD+b]), the blue square is the lower
critical temperature at which the stable helix transforms into a fluctuating helix
(value taken from [ASD+])(figure taken from [GPS+b]).

x from approximately 140 K for MnGe to a minimum of 100 K for x = 0.2. With
the further increase of the Fe-concentration, Tc increases monotonically again with
a maximum of approximately 278 K for pure FeGe.
Recent small angle neutron scattering experiments carried out on pure MnGe re-
vealed a more complex temperature driven order-disorder phase transition covering
a temperature range of more than 100 K in pure MnGe [ASD+]. The stable he-
lical spiral structure disappears at Tc ≈ 130 K, and so 10 K below the critical
temperature of Tc ≈ 140 K as it was determined before in [GPS+b]. Further ex-
periments will investigate also the compounds with increasing Fe-concentration if
similar transitions exist in the nearest future.

4.2.2 Investigation of the helical phase: unpolarised SANS

The macroscopic measurements of the magnetic structure of the Mn1−xFexGe com-
pounds via SQUID are presented in the last section. As discovered in previous
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investigations the magnetic ground state of pure MnGe ( [KOA+]) as well as pure
FeGe ( [LBA+]) is a proper spin helix with a helix length of 2π/|ks| ≈ 3 nm and
700 nm, respectively. As it is explained in section 2.2.3, the value of the wavevector
ks can be determined by neutron diffraction, the corresponding magnetic Bragg
peaks are well accessible by small angle neutron scattering. The SANS mea-

Figure 4.4: Maps of the SANS intensity for FeGe at 11 K (a) and 300 K (b). In
(c) the map of 300 K is subtracted as background from the 11 K measurement.
In (d) the momentum transfer dependence of the scattering intensities extracted
from the maps (a) - (c) is presented (for the marked Q-range).

surements were carried out at the instrument D22 at the Institute Laue Langevin,
Grenoble, France (see Appendix A.4 for details). The scattering intensities have
been measured at the lowest reachable temperature (T = 5 K) after zero-field
cooling. The schematic outline of all performed SANS experiment in this work is
shown in Fig.2.5. All samples used for the experiment described in this chapter
are powder samples, i.e. exist of randomly oriented grains and therefore it is not
possible to align the sample in the beam along the principal axis. For a single
crystalline sample, with one domain of magnetic spirals, pointing in the same di-
rection one would expect superstructural peaks occurring at positions Q = τ ±ks
(as derived in subsection 2.2.3). Due the powder nature of the compounds the
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Figure 4.5: Momentum transfer dependence of the SANS intensity at T ≈ 20 K for
compounds with x = 0, 0.5, 0.6, 0.9. For a better visualisation of the remarkable
change of the diffraction peak position |ks| of 2 orders magnitude, the argument
Q is plotted in a logarithmic scale. (figure taken from [GPS+b]).

scattering maps exhibit a ring corresponding to the scattering from randomly ori-
ented spiral domains with the same helix wavevector |ks|. The data treatment
has been performed using the Graphical Reduction and Analysis SANS Program
(GRASP) [Dew]. A typical example for a neutron scattering map is presented in
Fig.4.4 (a) for pure FeGe recorded at 11 K, with the proper background measure-
ment in (b) taken at 300 K and the corresponding subtracted map in (c). For
more quantitative evaluation, the intensity is integrated azimuthally between the
radii indicated by the two white circle in (c), as shown in (d). Afterwards, the
Bragg peak is fitted by a single Gaussian curve and |ks| is calculated from its
centre position in Q. For all measurements the width of the peak is mainly deter-
mined by the particular resolution of the SANS instrument that is dominated by
the δλ

λ
≈ 10% wavelength resolution (see 2.4 for details of the SANS resolution).

Since the width of the peaks is mainly due to the wavelength resolution, one can
only determine a value for a minimal correlation length of ≈ 600 nm, however,
it may be expected that the magnetic domains are far larger. The momentum
transfer dependence of the scattering intensities I(Q) are illustrated for different



50 CHAPTER 4. MAGNETIC MEASUREMENTS

0 , 0 0 , 2 0 , 4 0 , 6 0 , 8 1 , 01 0 - 2

1 0 - 1

1 0 0

k s (n
m-1 )

x
Figure 4.6: Dependence of the helix wavevector ks on the concentration x (the
lines are guides for the eyes) (figure taken from [GPS+b]).

compounds in Fig.4.53. Analogous to FeGe the values of |ks| have been extracted
by the centre of the Gaussian fits. The intensities of the curves are not comparable
due to the different ordered moment of each sample, the different samples masses,
as well as the different neutron fluxes due to the different chosen collimations for
each sample-detector position. The absolute scattering intensities, however, are
not required for the extraction of |ks|. Figure 4.6 shows the x dependence of the
helical wavevector |ks|, which gives the length of the helix pitch d via d = 2π/|ks|.
The behaviour of ks can be separated into three different regions. In the first Mn-
rich region for x ∈ [0.0 - 0.4], |ks| stays roughly constant at 2.2 nm−1 corresponding
to a helix pitch of approximate d = 3 nm. With increasing Fe concentration x,
|ks| decays to approximately zero at xc ≈ 0.75 while it increases again for higher
concentrations up to a value of |ks| = 0.09 nm−1 (d ≈ 70 nm for FeGe). Since the
measurements were performed far below the ordering temperature, the vanishing
helix wavevector for the sample with the concentration xc = 0.75 can be inter-
preted as a ferromagnetic phase in full accordance to the results obtained by the
macroscopic SQUID measurements (determined Tc ≈ 234 K).

3It should be noted that due to the logarithmical scale the approximately equal width of the
curves in Fig.4.5 appears to be different.
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4.2.3 Investigation of the helical phase: polarised SANS

Using polarised small angle neutron diffraction, one can estimate the spin chirality
of a magnetic system with spiral spin structure. The helix chirality γm can be
quantified with the help of the polarisation of the scattered neutron Ps at a fixed
point in the momentum space Q = ks via Eq.2.57:

Ps (Q) =
I (+P i)− I (−P i)

I (+P i) + I (−P i)
= γm

(
P i · Q̂

)
= γmPi cos (ψ)

where ψ is the angle between the polarisation vector P i, the unit scattering vector
Q̂ and I (+P i) and I (−P i) are the integrated scattering intensities measured at
the same point of reciprocal space, but for opposite initial polarisations. In this
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Figure 4.7: Maps of the SANS intensities of an MnSi sample (standard crystal) at
T = 25 K and the FeGe crystal under study at T = 260 K for the polarisation P i

opposite to the guide field (a,c) and along it (b,d) (figure taken from [GPS+b]).

chapter the experimental results for the investigation of the chiral link between
MnSi and FeGe are introduced. In a cubic B20 helimagnet the ferromagnetic
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exchange interaction J and the Dzyaloshinskii-Moriya interaction with its constant
D are balanced via ks = D/J . The spin wave stiffness is defined as A = S · J · a2,
where S is the average spin moment and a the lattice constant. Consequently, as
one can see by linking these two equations, the helix wave vector ks is linked to
the Dzyaloshinskii constant D via the equation given by Maleyev [Malb]:

ks =
SD

A
. (4.1)

The spin wave stiffness and the value of the spin moment can be assumed to
be monotonic function of the Fe content, ergo, |ks| going to zero implies that
|D| follows and also goes to zero. The sign of the wavevector ks, on the other
hand, describes the chirality of the helical structure and is directly determined
by the sign of the Dzyaloshinskii constant D. The transformation of the helix
structure to a ferromagnetic arrangement at x→ xc could be the result of different
signs of the Dzyaloshinskii-Moriya interaction. At xc the different signs of D due
to the different magnetic atoms involved just add up to a net constant D that
becomes zero. To prove this hypothesis and explore the chiral link between the
structural chirality Γc and the magnetic chirality γm above and below the critical
concentration a study combining x-ray diffraction (see subsection 3.3.2 for details)
and polarised neutron scattering (as described in section 2.3.3) have been applied.
As introduced in section 2.3.2, Maleyev and co-workers as well as Blume [MBS,Blu]
discovered that the spin chirality of a magnetic system can be estimated with the
help of polarised neutron scattering. A measure for the different population of
left- and right-handed domains is given by |γm|. |γm| = 1 corresponds to a single
domain enantiomorph, while |γm| = 0 represents equal distributed left- and right-
handed domains. Unfortunately, no single crystal of MnGe exists so far that is
sufficient large to perform polarised neutron scattering. Though assumed that the
magnetic chirality is determined by the equivalent transition metal (Mn or Fe), one
may nevertheless gain indirectly insight in the sense of magnetic chirality in the
system by comparing the chiral link between MnSi and FeGe. The link between
structural and magnetic chirality is supposed to be identical for MnSi and MnGe.
According to the definition [DCGD] the FeGe sample is left-handed (Γc = -1)
[GPS+b] similar to the MnSi considered in this work [GCD+a]. The polarised small
angle neutron scattering measurements were performed at the D22 instrument at
the Institute Laue Langevin with an initial neutron beam polarisation of Pi = 0.93
and a mean wavelength of λ = 0.60 nm. A guide field of 1 mT was set along the
Qx direction. The typical SANS pattern from the MnSi sample below Tc with
the initial polarisation opposite to (-P i) and along (+P i) the magnetic field are
shown in Fig.4.7 (a) and (b), respectively. From earlier studies it is well know
that for MnSi the left-handed structural chirality goes along with a left-handed
magnetic chirality [GCD+a]. In consequence, the product of the crystallographic
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configuration times the magnetic chirality is Γc×γm = -1 × -1 = +1. For MnSi the
magnetic chirality, γm, was obtained to be equal to -1 in the whole temperature
range below Tc. SANS measurements on the FeGe sample were carried out using
an equivalent set-up below Tc as shown in Fig.4.7 (c) for the polarisation opposite
(-P i) and in Fig.4.7 (d) along (P i) the magnetic field4. The side of the peak is
reversed for both systems, in consequence, it follows that they have a reversed
magnetic chirality. For this reason, the product of both chiralities is Γc × γm =
−1×−1 = +1 for MnSi and the opposite case Γc × γm = −1×+1 = −1 is valid
for FeGe.

4It should be noted that due to the different instrument settings and samples the measure-
ments of MnSi and FeGe shown in Fig.4.7 show different noise.
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4.2.4 Theoretical interpretation

In this section an overview about the theoretical approaches to reproduce the sign
change of the DM constant D at the critical concentration xc will be given. The
sign of the Dzyaloshinskii-Moriya constant caused by different helix chiralities re-
lated to the different electron configuration of the magnetic atoms (Fe and Mn)
above and below xc. Complementary to the polarised neutron scattering experi-
ments Shibata and co-workers discovered a similar flip of the chiral link between
the structural and magnetic chirality for Mn1−xFexGe within the A-phase in the
so-called skyrmion structure [SYH+]. At the moment three theoretical approaches
exist to reproduce the experimental results (an overview about all of them is given
in Appendix B): a Monte Carlo simulation by Chen and co-workers [CXYL] as
well as the ab initio density-functional theory (DFT) calculation by Gayles and
co-workers [GFS+] and Koretsune and co-workers [KNA]. The calculated strength
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Figure 4.8: Strength of the DM as function of the Fe concentration. The total
value is the sum of the contribution coming from the transition metal and the Ge
(Reprinted figure with permission from [GFS+], Copyright (2015) by the American
Physical Society).

of the DM as function of the Fe concentration as it is calculated by Gayles and
co-workers is given in Fig.4.8, which is in good agreement with the experimental
results given here and by Shibata an co-workers [SYH+]. The value determined in
this thesis of xc = 0.75 is slightly different from the theoretical determined value by
Chen and co-workers xc,Chen = 0.7 and Gayles and co-workers of of xc,Gayles = 0.8.
This could be due to a small derivation of the real concentration of the investi-
gated sample, or the existence of a certain critical range 0.7 . xc . 0.8. A more
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detailed sampling around xc is necessary to verify this idea. Koretsune and co-
workers were able to qualitatively reproduce the experimental results D < 0 in the
Mn-like region and D > 0 in the Fe-like one, however, the calculated critical value
of xc,Koretsune = 0.45 deviates clearly from the experimental values. The trans-
formation of the spiral to the ferromagnetic structure will be discussed in respect
to the competition between the Dzyaloshinskii-Moriya interaction and the cubic
anisotropy in section 4.3.3.

4.2.5 Discussion

The three main findings concerning the Mn1−xFexGe compounds are the following:

• the possibility to control the size of the helimagnetic structure in a range of
two magnitudes

• the transformation of the spiral spin structure to a ferromagnetic-like at the
critical concentration xc ≈ 0.75

• different signs of the link between structural and magnetic chirality for x < xc
and x > xc

The ability to continuously tune the size of the helical structure by a factor of
25 between pure MnGe and FeGe and even by two orders of magnitudes between
MnGe and Mn0.2Fe0.8Ge may be of great importance for the development of future
spintronic devices. Moreover, the transformation from the spiral to a ferromagnetic
spin structure within a cubic B20 helimagnetic system with Dzyaloshinskii-Moriya
interaction has been demonstrated. The results presented in the previous sections
give strong evidence for the hypothesis that different signs of the Dzyaloshinskii-
Moriya interaction and the different helix chiralities related to the different mag-
netic atoms (Fe and Mn) are the reason for the transformation of the helix struc-
ture. The findings concerning Mn1−xFexGe are summarised in Tab.4.1 with the
results similar to the monosilicide based transition metals. It has to be mentioned

Table 4.1: Crystal chirality Γc and magnetic chirality γm of the compounds with
P213 structure. (+1) and (-1) corresponds to the right and left chirality, respec-
tively [GPS+b,GCD+a,GCD+b,DGM+].

Compound Γc → γm Γc × γm
MnSi +1(−1)→ +1(−1) +1
MnGe +1(−1)→ +1(−1) +1
FeSi +1(−1)→ −1(+1) −1
FeGe +1(−1)→ −1(+1) −1



56 CHAPTER 4. MAGNETIC MEASUREMENTS

that the magnetic chirality could not be directly measured for MnGe because of
the powder crystalline form of the sample. But due to the dominating role of the
3d occupying element and the negligible role of the silicide/germanide, the mag-
netic chirality of MnSi is expected to be identical to MnGe. The properness of this
assumption have been reproduced experimentally by Lorentz microscopy [SYH+]
as well as by simulations [CXYL,GFS+,KNA].
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4.3 Fe1−yCoyGe

In the previous section, experimental evidences were presented for the alternation
of the link between the crystalline and magnetic chirality by mixing two types of
magnetic sites, here Fe and Mn. Grigoriev and co-workers formulated the hypoth-
esis that the Mn and Co based monosilicides/-germanides should have the same
chiral link, while it is opposite for Fe based compounds [GPS+b]. Apparently
it is interesting to verify this hypothesis by following the evolution of the mag-
netic structure starting from pure FeGe with subsequently replacing the Fe sites
by Co atoms. In this section the experimental results for the compound series
Fe1−yCoyGe are presented.
As discussed above the non-centrosymmetric space group of these compounds pro-
duces a chiral spin-spin DM interaction. According to the model of Bak and
Jensen [BJ], and also independently shown by Kataoka and co-workers [NYHK],
the helical (homochiral) structure is stabilised by the ferromagnetic exchange in-
teraction J together with the DM interaction D below Tc. These two interactions
are balanced via the helical wavevector ks:

ks =
D

J
. (4.2)

Bak and Jensen did not introduce any limits for the critical field strength as well as
for the size of the wavevector |ks|, both can become arbitrarily small. Kataoka and
co-workers, on the other hand, took the cubic anisotropy into account [NYHK].
At small |ks|, it becomes comparable to the DM interaction and destabilises the
helical structure in favour for a ferromagnetic spin structure. When a magnetic
field is applied above a first critical field Hc1, the helical spin structure starts
canting and transforms to a single conical domain, accompanied by the rotation
of the corresponding wavevector ks towards the direction of the applied field.
Finally above a second critical field, Hc2, the spins align parallel in a collinear
ferromagnetic spin state. As it was demonstrated in previous works [Malb, BRP]
the energy between the helical and the ferromagnetic state is given via the second
critical field Hc2:

gµBHc2 ≈ Ak2
s (4.3)

with the spin wave stiffness A = J · S · a2 where S is the ordered spin and a the
lattice constant. By determining ks, Hc2 and S all parameter describing the mag-
netic system are known and it is possible to calculate the ferromagnetic exchange
interaction J and the DM interaction D. Below the SQUID magnetisation and
SANS results will be presented for Fe1−yCoyGe, followed by the discussion of the
role of the cubic anisotropy.



58 CHAPTER 4. MAGNETIC MEASUREMENTS

4.3.1 Magnetisation measurements: SQUID

The whole concentration range of Fe1−yCoyGe compounds with y ∈ [0.0, 1.0] has
been synthesised. Similar to the Mn1−xFexGe compounds discussed in section
4.2.1, they can only be synthesised under high pressure, resulting in a polycrys-
talline powder with a crystallite size in the order of a few microns (see [Tsv] for
details). The B20 structure was confirmed by laboratory x-ray powder diffrac-
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Figure 4.9: (a) The temperature dependence of the magnetisation M for
Fe1−yCoyGe compounds with y = 0.0 − 0.8 at H = 10 mT measured by SQUID
and (b) the first derivative of the magnetisation on the temperature dM/dT (figure
taken from [GSA+]).

tion measurements. A more detailed temperature and pressure dependent x-ray
diffraction study, analogous to the studies on Mn1−xFexGe presented in section
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3.3.1, using synchrotron radiation is planned and will be performed at the PI-
LATUS@SNBL diffractometer (ESRF, Grenoble) in the nearest future. While
pure FeGe possess helical and ferromagnetic spin states, as discussed in section
4.2, pure CoGe is a Pauli paramagnet [TSF+]. The macroscopic SQUID mag-
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Figure 4.10: The magnetic field dependence of the magnetisation M for y =
0.0 − 0.8 at T = 5 K. The dashed lines are the linear approximations to the low
and high field range. The crossing point is used to estimate the value of the second
critical field Hc2, as it is done exemplary for y = 0.0. (figure taken from [GSA+]).

netisation measurements have been performed analogous to measurements for the
Mn1−xFexGe compounds using the same SQUID-magnetometer Quantum Design
MPMS-5S (see Appendix A.2 for details). The temperature scans of the magnetic
susceptibility for different compounds after zero-field cooling in a field of H =
10 mT are plotted in Fig.4.9 (a) and the corresponding first derivative of the mag-
netisation on the temperature dM/dT in Fig.4.9 (b). As discussed in section 4.2.1,
the ordering temperature can be determined as the position of the sharp maxima
of the first derivative of the magnetisation in respect to the temperature dM/dT
[Fig.4.9 (b)]. This maximum observed for the compounds with x = 0.0 − 0.5
transforms into a broader distribution with two peaks for the compounds with
x = 0.6 and x = 0.7. The change of the form from one to two features indicat-
ing that the magnetic phase transition for these two concentrations becomes more
complex. As it was evidenced for the similar helimagnetic system Mn1−xFexSi
(find details in [GMD+b]) and observed in Mn1−xFexGe, in the previous section,
the temperature driven transition from the paramagnetic to the helical phase may
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Figure 4.11: Dependence of the critical temperature Tc and the ordered spin value
S on the concentration y of Fe1−yCoyGe compounds determined by SQUID and
unpolarised SANS (described in the next section) measurements (figure taken from
[GSA+]).

go through a complex crossover, from paramagnetic to partially chiral, from par-
tially chiral to fully chiral fluctuating state and further to the spiral state. The
high-temperature maximum is used to determine the critical temperature for the
beginning magnetic ordering for the particular compound. The dependence of the
so determined ordering temperatures on the y-concentration is shown in Fig.4.11.
Tc decreases monotonically with increasing y and approaches zero for y → 0.9.
Besides, magnetisation curves are recorded at low temperature (T = 5 K) as plot-
ted in 4.10. These measurements allow to estimate the second critical field Hc2,
which is a measure for the different energy between the ferromagnetic aligned
and the helimagnetic state below and above Hc2, respectively. Beside the second
critical magnetic field the value of the ordered spin S could be estimated by the
SQUID magnetisation measurements. Together with the helical wavevector these
two parameters describe the helimagnetic system completely. For all investigated
Fe1−yCoyGe (with y = 0.0−0.8) the magnetisation curves increase linearly at small
fields and saturate at Hc2, which is a characteristic field of the transformation from
the conical (non-collinear) to the ferromagnetic collinear state. The critical field
is estimated from the magnetisation as cross points of the linear approximation
from the low-field and high field ranges as it is illustrated in Fig.4.10. An example



4.3. FE1−YCOYGE 61

for this is given for y = 0.0 in Fig.4.10. Additionally, the values of the ordered
spin per atom S as function of the concentration y are plotted in Fig.4.11, as it
could be estimated directly from the magnetisation curves. Similar to the criti-
cal temperatures, the ordered moments decrease with y, but exhibits a shoulder
around y = 0.4. In conclusion, the SQUID measurements presented in this section
clearly show that magnetic ordering persists up to y = 0.8 for the Fe1−yCoyGe
compounds.

4.3.2 Investigation of the helical phase: unpolarised SANS

Figure 4.12: The small angle neutron scattering maps for the compounds with
y = 0.1 (a) and 0.5 (b) at T ≈ 10 K (figure is taken from [GSA+]).

The microscopic magnetic structure of the Fe1−yCoyGe compounds has been in-
vestigated by small-angle neutron scattering. The experiments were carried out at
the SANS-1 at the Maier-Leibnitz-Zentrum (see Appendix A.3 for details), where
a Q-range from 2×10−2 to 1 nm−1 has been covered. The SANS scans have been
carried out with a magnetic field perpendicular to the incoming neutron beam and
a strength of maximal 0.5 T in a temperature range between 10 and 300 K with
an accuracy of ∆T = 0.1 K. Fig.4.12 shows two typical scattering maps for y =
0.1 [Fig.4.12(a)] and y = 0.5 in [Fig.4.12(b)], both recorded at T ≈ 10 K. The ob-
served scattering pattern are similar to the ones taken at low temperature and zero
magnetic field for Mn1−xFexGe (see Fig.4.4). The intensity ring exhibited in the
SANS maps corresponds to the scattering from randomly oriented spiral domains
with the same helix wavevector |ks|. The observed spots are due to the scattering
of the relative large magnetic domains of the helical spin structure limited by the
micrometer sized crystal grains. These are slightly different distributed in size and
orientation, resulting in the observed higher intensity spots within the ring. For
all measurements in this section the peak width is determined by the resolution of
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the SANS instrument, analogous to the measurements done at Mn1−xFexGe pre-
sented in section 4.2.2. Similar to D22 the Q resolution of SANS-1 is dominated
by the ∆λ

λ
≈ 10 % wavelength contribution. In Fig.4.13 the momentum transfer

dependences of the scattering intensity I(Q) are plotted. At low temperatures
of about 10 K clear diffraction peaks of the helimagnetic spin structure are mea-
sured for the concentration y = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7 and 0.8. At the critical
concentration yc ≈ 0.6, however, no Bragg peak is observed but instead a tail of
diffuse scattering centred around Q→ 0, as it is expected for a not fully collinear
ferromagnetic-like spin arrangement. The behaviour of the y dependence of the
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Figure 4.13: Momentum transfer dependence of the SANS intensity (normalised)
at T ≈ 10 K for compounds with y = 0.0 − 0.8. The lines are the Gaussian fits
(figure is taken from [GSA+]).

helix wave vector ks, plotted in Fig.4.14, is qualitatively similar to the one observed
in Mn1−xFexGe (see Fig.4.6). In the Fe-rich part (y ∈ [0.0 − 0.5]) ks decreases,
from 0.09 nm−1 for pure FeGe to around zero at yc ≈ 0.6. Further raising of the
Co-concentration results in an increase of the wavevector ks to a maximum value
of 0.14 nm−1 at y = 0.8. For yc ≈ 0.6 the wavevector ks goes to zero, implying that
the helimagnetic structure vanishes. The SQUID magnetisation measurement for
this concentration evidenced, on the other hand, still a clear magnetic signal with
an ordering temperature of Tc ≈ 130 K, indicating strongly the transformation of
the helical spin state into a ferromagnetic-like spin structure at the critical con-
centration yc. According to the model by Bak-Jensen and Kataoka and co-workers
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Figure 4.14: Dependence of the helix wavevector ks on the concentration y of the
Fe1−yCoyGe compounds (figure taken from [GSA+]).

(summarised in sections 1.2.2 and 1.2.3) a ferromagnetic-like structure would be
realisable just in the case of a vanishing macroscopic DM constant D. The be-
haviour of the wavevector ks can be interpreted as a change of the sign of ks,
which would correspond to a change of the magnetic chirality at yc analogous to
the observations for Mn1−xFexGe pointed out in the previous section. For FeGe a
left-handed crystalline chirality is connected to a right-handed magnetic chirality
as shown in section 4.2.3, while, according to the hypothesis given in [GPS+b], for
the Co-based compounds it should be opposite, a left-handed crystalline structure
should go ahead with a left-handed magnetic spiral and vice versa. This hypothe-
sis will be checked as soon as sufficient large single-crystalline samples for neutron
scattering experiments will be available. As mentioned before, the difference in
the energy between the ferromagnetic and the helical state can be measured by the
critical field Hc2 (see Eq.4.3), which is needed to transform the conical into the field
aligned spin state. For this reason, it is of great interest to follow the evolution of
the magnetic structure in the Fe1−yCoyGe compounds under an applied magnetic
field. An example how a horizontal oriented magnetic field affects the scattering
for y = 0.0 is demonstrated in Fig.4.15 at T ≈ 10 K. After zero field cooling, a
field of 0.01 T is applied [ Fig.4.15 (a)] and a ring-like pattern is observed, due to
the randomly oriented spirals of the different crystallites. This picture is similar
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to the zero field measurements for y = 0.1 and y = 0.5 shown in Fig.4.12. The
relative small field value of 0.01 T is not able to rotate the spiral spin structure
into the field direction. Below Hc1 the helix wavevector is fixed along the easy

Figure 4.15: Small angle neutron scattering maps for the compound y = 0.0 and
(a) H = 0.01 T, (b) H = 0.1 T, (c) H = 0.25 T and (d) H = 0.5 T at T ≈ 10 K. The
crossing points of the linear fits in the high temperature range with zero determine
the value of Hc2 for each concentration y. As example the critical fields Hc1 and
Hc2 are given for x = 0.1 (figure taken from [GSA+]).

anisotropic axis of the cubic system. The intensity in the spots parallel to the field
increases, due to the alignment of the spirals along the field direction. Starting
from the first critical field Hc1 one observes a reorientation from the multi-domain
helical state to a single domain cone structure [Fig.4.15 (b)] oriented along the
field direction, which is stable in the field range Hc1 < H < Hc2 (see [BJ, Malb]).
As discussed above, Hc1 is a measure for strength of the anisotropic interactions,
which aligns the helix wavevector along the principal axis of the system. The ring
seen in (a) smoothly transforms into the spots laying on the field axis [Fig.4.15 (c)].
Reaching the second critical field Hc2 the two spots disappear and just a diffuse
scattering around Q = 0 remains, characteristic for the ferromagnetic field aligned
state [Fig.4.15 (d)]. Both critical fields can be identified from the integrated in-
tensities along the field direction illustrated in Figure 4.16. Hc1 is determined as
the field strength at which the integrated intensity starts growing, while Hc2 is
estimated as the cross point of the linear approximation of the determined curves
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Figure 4.16: Magnetic field dependence of the integral intensity of the peak at T =
10 K for the compounds with y = 0.0, 0.1, 0.3, 0.8. The two critical fields Hc1 and
Hc2 could be estimated from this curves as it is exemplified for y = 0.3. Hc1 refers
to the point at which the intensities in the two Bragg peaks along the field direction
increases due to the alignment of the spirals along the field. Hc2 is determined
from the intersection of the linear approximation of the increasing intensity and
the zero intensity line. This point corresponds to the field strength at which the
spins are fully transformed from the conical structure to the ferromagnetic-like
(figure taken from [GSA+]).

and the H axis as exemplary shown in Fig.4.16. With the method described here
one can determine Hc1, which is the field at which the spirals start to align along
the field, and Hc2, at which all spins are supposed to be field aligned. The critical
fields Hc1 and Hc2 are plotted as function of the concentration y in Figure 4.17. It
should be noted that both critical fields depend on the crystallographic orientation.
Consequently, due to the powder nature of the investigated samples one can just
determine an average over all possible directions in the crystal. As it could be seen
in the H − y phase diagram for Fe1−yCoyGe in Fig.4.17, the values determined by
the SANS measurements are in a good agreement with the ones from the SQUID
measurements. Hc1, with the value of 0.03 T, stays approximately constant for
all concentration y within the error bars. Hc2, on the other hand, manifests a be-
haviour similar to ks. It decreases linear from Hc2 ≈ 0.3 T for y = 0.0 to Hc2 → 0
for yc = 0.6 and slightly increases again for x = 0.7. Summarising the experimental
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Figure 4.17: Dependence of the critical field Hc1 and Hc2 on the concentration y
for the Fe1−yCoyGe with 0.0 ≤ y ≤ 0.8. (figure taken from [GSA+]).

findings from SQUID and SANS measurements Figure 4.17 can be interpreted as
the following. In zero field the magnetic system is ordered in a plane spin helix.
The helices transform into a conical spin state above Hc1 and further to a field
aligned spin state above Hc2. The three existing states, namely the helical, conical
and ferromagnetic, are separated by the critical magnetic fields Hc1 and Hc2. The
experimental data suggest the transformation to a ferromagnetic ground state,
when the energy difference between the ferromagnetic and helical state, measured
by Hc2, becomes smaller than the energy of the anisotropy. This behaviour will
be discussed in more detail in the following subsection.

4.3.3 Transformation from the spiral to the ferromagnetic
state

The standard model to describe spin structure of cubic, non-centrosymmetric B20
compounds, given by Bak and Jensen [BJ] and Kataoka and co-workers [NYHK],
was introduced in subsections 1.2.2 and 1.2.3, respectively. The helical spin struc-
ture is based on the hierarchy of the interactions: the ferromagnetic exchange J ,
the antisymmetric Dzyaloshinskii-Moriya interaction D and the anisotropic ex-
change interaction. Initially the cubic anisotropy was not included in this model.
Kataoka and co-workers, however, already mentioned the importance of it [NYHK].
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In the following chapter the essential role of the cubic anisotropy will be introduced
based on the work of Maleyev and co-workers [GSM].
According to [BJ,NYHK], the ferromagnetic exchange interaction J and the DM
interaction D are balanced in the value of the wavevector ks (as given in Eq.4.2).
Furthermore, the second critical field Hc2 is a measure for the differences in the en-
ergies between the collinear ferromagnetic and the helical state (Eq.4.3). Therefore
the experimental parameter set ks, Hc2 and S describes completely the magnetic
system. Applying Eqs.4.2 and 4.3 to the experimental data given in Fig.4.11, 4.14

y

J 
(m
eV
)

D
/a

 (
m
eV
)

(a)

(b)

y

D (Hc2, ks)
D (Tc, ks)

J (Tc)

J (Hc2, ks)

Figure 4.18: (a) Exchange constant J and (b) DM constant D estimated using the
model ( [BJ,NYHK]+ [Malb,BRP]) and using the model ( [BJ,NYHK]+ [SYH+])
in dependence on concentration y of Fe1−yCoyGe (Reprinted figure with permission
from [GSM], Copyright (2015) by the American Physical Society).
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and 4.17 one can calculate the major driving interactions via J = A/ (Sa2) and
D/a. From the formula above it is obvious that J is determined by the critical
field Hc2 and ks. In the following chapter the values for J and D, calculated from
ks and Hc2, will be named J (Hc2, ks) and D (Hc2, ks) to indicate their dependence
of the Hc2 and ks. They are plotted in Fig.4.18. A divergent-like behaviour could
be observed for J at y → 0.6, related to ks. The constant D, on the other hand, is
nearly independent of y for y < 0.6 and changes its sign for y > yc. The transition
from the spiral to the ferromagnetic spin structure goes along with both parame-
ters, ks as well as Hc2, reaching zero. The DM constant D (Hc2, k) does here not
vanish, but exhibits a step-like behaviour, while the ferromagnetic exchange con-
stant J (Hc2, k) increases dramatically, this behaviour indicate the little physical
meaning of both parameters at the critical point. Therefore, the model described
by Eqs.4.2 and 4.3 seems to be inapplicable to the mixed Fe1−yCoyGe compounds
close to yc.
Another approach was applied by Shibata and co-workers [SYH+]. They used the
rough equality between the transition temperature kBTc to J . Due the proportion-
ality of the wavevector ks to D/J one is able to recalculate the change of J and
D with the concentration y. Therefore the value of J (Tc) changes smoothly with
y similar to the observed ordering temperature that is also dependent on y. The
DM interaction constant D (Tc, ks) decreases slowly in this model for y ≤ 0.5 and
crosses zero around yc = 0.6. The behaviour of the effective constant of D (Tc, ks)
and J (Tc) is consistent with the hypothesis on an average exchange constant for
Fe and Co atoms in the mixed compounds. It is remarkable to mention that both
models give the same values if applied to MnSi [GMO+]. In the limited case of
small values of y, characterised by a second critical field Hc2 that is much larger
than the first critical field Hc1, both models work quite well. As pointed out
above, the first critical field Hc1 is a measure for the anisotropy in the system and
Hc2 for the helix energy, thus one can conclude that there is an influence of the
anisotropy on the DM interaction upon formation of the spin helix. Maleyev and
co-workers suggested certain modifications of Eq.4.2 to make the approach by Bak
and Jensen [BJ] working in case of small ks. The contribution of the Hamiltonian
due to the cubic anisotropy can be written as:

HCA = K
∑
{(SxR)4 + (SyR)4 + (SzR)4}. (4.4)

In ferromagnets with SR = S and a contribution of the cubic anisotropy to the
classical energy term can be now expressed as:

ECA = G

{
1;S ‖ (1, 0, 0),

1/3;S ‖ (1, 1, 1).
(4.5)
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Here G = KS4 and the extrema of ECA are given in the right handed side of
Eq.4.5. Two of the three possible axis in the cubic system, namely the (1, 1, 1)
and (1, 0, 0) are therefore the easy axes for K > 0 and K < 0, respectively. As
calculated in [Malb] the (1,1,0) direction is not possible. As derived in detail in
Appendix C (Eqs.C.9 - C.13) the expression for the helix energy taking the cubic
anisotropy into account is:

E =− SAk2
s

2

(
1− sin2 α

)
+
G

8
[(3− 5C) (−7 sin4 α + 6 sin2 α + 1) + 8C]

− SH‖ sinα. (4.6)

In zero magnetic field the energy term (Eq.C.13) is minimal for a planar helix
(α = 0) and ĉ || (1, 1, 1) for G > 0. The helix exists if the helix energy E =
−SAk2/2 + G/2 is smaller than the anisotropic energy G/3 of the ferromagnetic
state. The corresponding conditions are derived by Maleyev and co-workers as:

SAk2 > G/3. (4.7)

If the condition above is not fulfilled, the helix is unstable and a ferromagnetic
state is energetically favoured. If G < 0 the spiral points along the (1, 0, 0) axis
and one get the following condition for the stability of the helical state:

SAk2 > |G|/2. (4.8)

The first critical field Hc1 (depending on the anisotropy G and the ratio of the
DM interaction and the cubic anisotropy r = SAk2

s/12G (for G > 0) and r =
SAk2

s/8|G| (for G < 0) is given by (see Appendix C for a detailed derivation):

Hc1 =
G

S
sinαc1

(
7 sin2 αc1 + 12r − 3

)
, r >

√
1

30
(4.9)

where αc1 is the first critical angle. The first critical magnetic field Hc1 is thus
strongly dependent on the angle between the applied magnetic field and the easy
axis with a minimum when both directions coincide. The first critical magnetic
field is obviously so much less the closer orientation of the magnetic field is to
the easy axis. The second critical field Hc2 (see also Appendix C for a detailed
derivation) is given for G > 0 by:

Hc2 = Ak2
s +

9

16

G

S
, G > 0. (4.10)

and for G < 0:

Hc2 = Ak2
s −

9

16

|G|
S
, G < 0. (4.11)

A detailed consideration of the influence of the cubic anisotropy can be found in
Appendix C according to [GSM].
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4.3.4 Discussion

In summary of the results for the solid solutions of Fe1−yCoyGe, a transformation
from the helical to the ferromagnetic spin structure at y → yc has been observed.
This transformation results from the different signs of the Dzyaloshinskii-Moriya
interaction and the different helix chiralities related to the different magnetic atoms
(Co and Fe). Due to the lack of sufficiently big single crystals for polarised neu-
tron studies it was not possible to determine the chiral link between structural and
magnetic chirality for the samples with a concentration x > 0.0. At the critical
concentration the DM constant effectively vanished, while the isotropic, ferromag-
netic exchange constant J is positive and finite, i.e. the transformation occurs
when Hc2 becomes comparable to Hc1. Furthermore, the competition between
the cubic anisotropy and the ferromagnetic exchange could be identified as the
mechanism responsible for the transformation from the spiral to the ferromagnetic
spin structure. The important role of the cubic anisotropy, in the case of small
ks was already noticed in [NYHK], but is not included in the commonly used
phenomenological model by Bak-Jensen [BJ]. Without the cubic anisotropy the
model of Bak-Jensen does not impose any limitation for the value of the helical
wavevector ks as well as for the second critical field Hc2. Both parameters can
become infinitely small. The anisotropic exchange energy, as part of the exchange
interaction, cannot provide such a limitation, whereas the cubic anisotropy can
limit the stability of the helical phase in the region of small ks [Eqs.4.7 and 4.8]
and in addition, makes a contribution to the value of the second critical field Hc2

[Eqs.4.10 and 4.11]. Of certain importance is, moreover, the dependence of the
critical fields on the orientation of the magnetic field dependent on the position
relative to the crystalline axis due the influence of the cubic anisotropy [Eqs.4.10
and 4.11]. The critical field decreases (increases) depending if the energy of the
cubic anisotropy is positive (negative). Besides, it has been revealed that if a pos-
sible weakening of the DM interaction takes place, a first-order transition from the
spiral to the ferromagnetic spin arrangement can occur (for certain orientation of
the magnetic field) and the corresponding critical cone angle for this case [Eq.C.22]
was determined by Maleyev and co-workers [GSM].
In general, the experimental and theoretical proof for the possible existence of a
ferromagnetic phase in non-centrosymmetric cubic magnets with Dzyaloshinskii-
Moriya interaction has been given.
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4.4 Fe1−zCozSi

In the previous sections the transition of the spiral wave vector ks = 2π/d to zero
has been shown at a certain critical concentrations xc, yc for two kinds of germanide
based powder compounds: Mn1−xFexGe [GPS+b,SYH+] and Fe1−yCoyGe [GSM].
The monotonic behaviour of the wavevector ks indicating that the DM interaction
goes to zero at a certain critical concentration, supports the hypothesis that the
effective macroscopic DM constant D changes its sign as a function of x, y. These
findings have been considered under the existence of a sign change of the effective
macroscopic constant of the DM interaction depending on the 3d element occu-
pying metal site. In this section the question is addressed in the case of the solid
solutions Fe1−zCozSi [SAC+], which manifest chiral magnetic ordering in a certain
concentration range. Contrary to the germanides, one is able to grow these silicide
based compounds as single crystals of the size of several 100 microns, together with
close to 100% control of the structural chirality in the growth process [DGM+].
The large sample size makes it possible to determine the structural chirality Γc and
furthermore, the magnetic chirality γm by resonant x-ray diffraction (introduced in
subsection 3.3.2) and polarised neutron scattering (shown in subsection 2.3.3). In
consequence, these compounds offer the possibility to directly follow the product
of Γc × γm in the whole magnetic ordered range z, as it was not feasible before.
Single crystalline Fe1−zCozSi solid solution with z running from 0.5 to 0.8 have
been synthesised using the Tri-Arc-Czochralski method [see subsection 3.2.1]. As
stated in section 3.3.2, the single crystal x-ray diffraction measurements allow the
determination of the absolute crystal structure and due to the possible determina-
tion of the Flack parameter the ratio of domains with different handedness. The
data for all samples are in good agreement with the structural P213 model as
indicated by the low R-factor (see Tab.3.1). The unit cell dimensions follow the
Vegards law, but the atomic positions remain nearly unchanged as a function of
the composition and define thus the absolute crystalline structure (see Tab.3.1).
Using the previous definition (Refs. [TTIE,GCD+a]) of the structure according to
the metal sub-lattice with uMe ≈ 0.86 is set to be right-handed (Γc = +1). All
investigated samples show the same structural chirality as summarised in Table
3.1, as it is expected due to the chosen seed crystals for the growth process.
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4.4.1 Magnetisation measurements: SQUID

Analogous to the previous sections on the Mn1−xFexGe and Fe1−yCoyGe com-
pounds, the same SQUID-magnetometer Quantum Design MPMS-5S (see Ap-
pendix A.2 for details) has been used to carry out magnetic measurements on the
synthesised Fe1−zCozSi samples. Beille and co-workers gave the experimental ev-
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Figure 4.19: (a) The temperature dependence of the magnetisation M for
Fe1−zCozSi compounds with z = 0.5−0.8 at H = 100 mT. (b) The first derivative
of the magnetisation on the temperature dM/dT (figure taken from [SAC+]).

idence for the magnetic order of Fe1−zCozSi in the broad doping range between
0.05 ≤ z ≤ 0.8 [BVT+, BVR]. The temperature scans of the magnetisation for
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the different compounds are presented in Figure 4.19 (a). The measurements have
been carried out in a field of H = 100 mT, and thus, above Hc2 for all investigated
compounds, ergo, in the field aligned spin state. Similar to the previous com-
pounds the position of the maxima of the derivation dM/dT as given in Fig.4.19
(b) has been used to determine the ordering temperatures Tc. For the concen-
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Figure 4.20: Dependence of the critical temperature Tc on the concentration z
of Fe1−zCozSi compounds. The dashed lines are guides for the eyes (figure taken
from [SAC+]).

trations z = 0.1 − 0.5 the same procedure has been applied by Grigoriev and
co-workers [GCD+a]. The ordering temperatures of the whole concentration range
z = 0.1−0.7 is summarised in Fig.4.20. Tc increases monotonically with increasing
Co-concentration z from 0.1 to 0.4, and decreases again monotonically for z > 0.4
with reaching zero at approximately z = 0.8. Therefore, all studied compounds are
magnetically ordered till z = 0.7 (in the accessible temperature range by SQUID,
which is down to T = 5K).
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4.4.2 Investigation of the helical phase: polarised SANS

The single crystalline nature of the samples allows the direct determination of the
magnetic chirality by using polarised neutron diffraction [MBS,Blu] analogous to
MnSi and FeGe presented in section 4.2.3. The data analysis has been performed

Figure 4.21: Maps of polarised SANS intensities of MnSi (a) and of Fe1−zCozSi
with z = 0.5 (b), 0.6 (c), 0.7 (d) for polarisation +P i along the guide field at
T ≈ 3.5 K (figure taken from [SAC+]).

analogous to section 4.2.3 and [GCD+a, GPS+b]. The experiments were carried
out at the SANS-1 instrument at the Maier-Leibnitz-Zentrum (see Appendix A.3
for details), the wavelength of the neutron beam was varied in a range from 0.6 nm
and 1.2 nm depending on the required Q range. A position sensitive detector with
128 × 128 pixels and a pixel size of 8 mm was used to record the two dimensional
scattered intensity contribution. These settings allow to cover a Q range from
0.02 nm−1 to 1 nm−1. The initial degree of polarisation of the incident neutron
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beam was P0 ≈ 0.9. Similar to the previous section, the well studied MnSi has
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Figure 4.22: The integrated intensities of MnSi (a) and of Fe1−zCozSi with z = 0.5
(b), 0.6 (c), 0.7 (d) for the right Bragg peak (polarisation +P i along/opposite the
guide field at T ≈ 3.5K).

been used as a reference sample5. The polarised small angle neutron scattering
maps for the compound MnSi and Fe1−zCozSi with z = 0.5, 0.6 and 0.7 measured
at approximate 3.5 K and are presented in Fig.4.21 for the polarisation along the
magnetic field. The corresponding integrated intensities for the right magnetic
Bragg peak with the polarisation along the magnetic field direction is presented
in Fig.4.22. For all investigated Fe1−zCozSi compounds one can determine the
lower limit of the correlation length as 600 nm, using the peak width. It should be
noticed that the width is mainly determined by the low wavelength resolution of
∆λ
λ
≈ 10% and the real size of the homochiral, helimagnetic domains is assumed to

be significant larger. MnSi has a maximum of the scattering intensity at the right
part of the detector for the polarisation along the field direction as it could be seen
in Fig.4.21 (a). The associated integrated intensity is plotted in Fig.4.22 (a). In
agreement with the previously obtained results for MnSi [TTIE,GCD+a,GPS+b]

5It is remarkable to mention that the reference sample is just necessary to determine the
absolute sign value.
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Figure 4.23: Dependence of the helix wavevector |ks| on the concentration z of the
Fe1−zCozSi compounds (figure taken from [SAC+]).

the magnetic chirality for this configuration is γm = -1, i.e. the magnetic structure
is left-handed. Since the integrated intensities from the polarised SANS maps for
Fe0.5Co0.5Si and Fe0.4Co0.6Si looks similar [Figs.4.21, 4.22 (b,c)], it can be con-
cluded that also the magnetic chirality is the same. The Fe0.3Co0.7Si sample, on
the other hand, shows the opposite behaviour [Figs.4.21, 4.22 (d)] with γm = +1,
and thus, possess a right-handed spiral spin structure. The analogous measure-

Table 4.2: Crystal chirality Γc and magnetic chirality γm of the compounds with
P213 structure (+1) and (-1) corresponds to the right and left chirality, respectively
[TTIE,GCD+a,GPS+b,SAC+].

Compound Γc → γm Γc × γm
MnSi +1(−1)→ +1(−1) +1

Fe0.5Co0.5Si +1→ −1 −1
Fe0.4Co0.6Si +1→ −1 −1
Fe0.3Co0.7Si +1→ +1 +1

ments have been done for the opposite polarisation, confirming the here presented
results (see Appendix D). Besides, the magnetic chirality, the helix wavevector
|ks| can be determined from the scattering maps at T ≈ 3.5 K. Figure 4.23 (a)
illustrates the z dependence of |ks| for z = 0.1−0.7 [GCD+a,SAC+]. The value of
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the wavevector increases from |ks| = 0.121 nm−1 at z = 0.1 to its maximum value
of |ks| = 0.185 nm−1 at z = 0.2. With further increasing of z above 0.2 the value
of |ks| decreases quasi linearly until it reaches zero at the critical concentration of
zc ≈ 0.65, while thereafter it increases again to |ks| = 0.026 nm−1 for the highest
Co-concentration of z = 0.7. As already discusses earlier, the helix wavevector is
linked to the Dzyaloshinskii constant D via Eq.4.1. Since the spinwave stiffness
A and the spin value S are expected to be monotonic functions of the Co con-
tent [MSD+, GMD+a], the vanishing |ks| value implies that also the macroscopic
DM constant becomes zero, at the critical concentration zc. The availability of the
sufficiently large single crystals in the case of Fe1−zCozSi allows the direct demon-
stration of the separation in two regions with different signs of the DM constant
D at the critical concentration zc, while the crystalline chirality remains the same.

4.4.3 Discussion

In summary the results obtained for Fe1−zCozSi reveal that the chiral magneto-
lattice coupling, i.e. the link between structural and magnetic chirality, mapped
phenomenologically as the DM, could be applied to control the magnetic chi-
rality. The product sgn(D) × Γc × γm is an invariant with respect to inversion
and time-reversal operations ensuring that left-handed and right-handed poly-
morphs have the same energy. The sign of the Dzyaloshinskii constant D, con-
trolling the magnetic chirality, depends on the 3d-element occupying the metal
site in Fe1−zCozSi, and as extensively discussed in section 4.2 and 4.3 in monoger-
manides [GPS+b, SYH+, GSA+, SAC+]. For the single crystalline Fe1−zCozSi it
was for the first time possible, to directly follow the change of the product of the
structurally chirality and the magnetic chirality Γc × γm in the whole magnetic
ordered range, measuring the flip of the chiral link between structure and mag-
netism in Fe1−zCozSi. It seems likely that the dynamic of the dx2−y2-like states of
the transition metal is the responsible mechanism for the observed behaviour. As
calculated by Gayles and co-workers for Mn1−xFexGe, with increasing x (change
of the carrier density) the dx2−y2 states move from above to below the Fermi level,
become occupied, and enter the dxy state with the opposite spin (see section 4.2.4).
It is very likely that the observed change of the sign of D is based on a similar
mechanism. Moreover, the transition from the spiral spin to the ferromagnetic
spin structure at a critical concentration z → zc, in zero magnetic field, has also
been discovered in a monosilicide based compound. The obtained results allow the
conclusion that the cubic anisotropy plays the same important role in the range
of small helix wavevector |ks| as for the monogermanides (see section 4.3.3). The
products of the lattice chirality Γc and the magnetic chirality γm as function of
the concentration z are given in Figure 4.24. The lattice chirality has the same
sign for all considered samples, while the magnetic chirality has an opposite sign
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Figure 4.24: Dependence of the product of structural and magnetic chiralities
Γc × γm on the concentration z, the lines are guides for the eyes (figure taken
from [SAC+]).

for z < zc and z > zc.



Chapter 5

Conclusion and Outlook

The cubic B20 compounds have a non-centrosymmetric crystallographic structure
described by the P213 space group. The lack of a symmetry center for the crys-
talline structure produces the chiral Dzyaloshinskii-Moriya interaction [Dzyb,Mor].
The appearance of the DM interaction results in the spiral spin arrangement. Pre-
vious investigation assumed that the spin helix exists in a certain chirality γm,
rigorously determined by the structural chirality Γc via the sign of the DM in-
teraction [TTIE, IEM+, GCD+a, GCD+b, DGM+, MSK+]. However, it was known
from former investigations that the crystalline Γc and magnetic chirality γm have
the same sense for the Mn-based compounds (Mn1−xFexSi and Mn1−xCoxSi),
while for the Fe based compounds these two chiralities are opposite to each other
(Fe1−zCozSi at z ≤ 0.5). It is obvious that the magnetic chirality is not strictly
following the structural chirality and that their link may dependent on the con-
tributing sites of the individual compounds. Hence, it is of great interest to follow
the change of the link between the structural and magnetic chiralities by vary-
ing the concentration ratio between the different contributing 3d transition metal
sides. Unfortunately, for Mn1−xFexSi this is just possible in a very limited range,
because of the narrow ordered range of x ∈ [0.0 − 0.17]. In the framework of
this thesis the evolution of the chiral magnetic structure in the two monoger-
manide based compounds Mn1−xFexGe and Fe1−yCoyGe, as well as in the Si based
compound Fe1−zCozSi for z ≥ 0.5 have been investigated and correlated to their
structural chirality for the first time. The results of this work have been pre-
published in [GPS+b], [GSA+] and [SAC+], respectively. SQUID magnetisation
measurements have been used to determine the macroscopic magnetic order, while
the crystallographic chirality Γc and the magnetic chirality γm of the investigated
compounds have been determined via combined x-ray diffraction [Fla,FB,SSF] and
polarised small angle neutron scattering [MBS, Blu]. Three of the most brilliant
x-ray and neutron sources, i.e. ESRF (Grenoble, France), the MLZ (Garching,
Germany) and the ILL (Grenoble, France), have been used for the performed ex-
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Figure 5.1: Dependence of the critical temperature Tc (a,b) and the helix wavevec-
tor ks (c,d) on x and y for Mn1−xFexGe and Fe1−yCoyGe, respectively (the critical
concentrations xc and yc are marked by the dashed lines) [GPS+b,GSA+].

periments. In the framework of this work several significant new findings have been
obtained: the ability of controlling the size of the magnetic structure is for practical
reasons of great interest for future applications as for e. g. the Racetrack memory
that is mentioned in the introduction. The measurements, summarised in Figs.5.1
and 5.2, reveal the feasibility to tune the size of the helix wavevector in the order
of two magnitudes, from |ks| = 2.2 nm−1 for pure MnGe down to |ks| = 0.02 nm−1

for Mn0.2Fe0.8Ge, along with a variation of the magnetic ordering temperature up
to a maximum of approximate 280 K for pure FeGe. This corresponds to a range of
the helix length between approximately 3 nm and 300 nm. In addition, it has been
experimentally revealed that a transformation from the helix to a ferromagnetic
structure occurs at the critical concentrations xc, yc, zc for Mn1−xFexGe [GPS+b],
Fe1−yCoyGe [GSA+], and Fe1−zCozSi [SAC+]. These transformations can be inter-
preted as effect of the different signs of the Dzyaloshinskii-Moriya interaction and
consequently, resulting different helix chiralities, related to the different magnetic
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Figure 5.2: Dependence of the critical temperature Tc (a) and the helix wavevector
ks (b) on z for Fe1−zCozSi (the critical concentration zc is marked by the dashed
line) [SAC+].

atoms Mn/Co and Fe. Thus, within this work the flip of the chiral link between
structural and magnetic chirality has been discovered as generic new property of
transition metal monosilicides and -germanides.
After the presentation of the results obtained within this thesis at the Flipper-2013
workshop [GPS+a], showing the flip of the chiral link between structure and mag-
netism in the helical phase of Mn1−xFexGe, Shibata and co-workers were able to
find a similar effect for the chiral link within the so-called skyrmion structure in
the A-phase in Mn1−xFexGe using Lorentz microscopy [SYH+]. The subsequently
findings of Shibata and co-workers are consistent with the results obtained in the
framework of this thesis. Recent Monte-Carlo simulation [CXYL] as well as density
functional theory calculations [GFS+,KNA] were able to reproduce the experimen-
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tal results theoretically. The dynamic of the dx2−y2 states, moving from above the
Fermi level to below, with the change of the concentration x (due the change of
the carrier density) has been determined as driving mechanism for the change
of the sign of D. The magnetic phase diagram of the cubic B20 helimagnets is
interpreted in the frame of the widely used phenomenological model of Bak and
Jensen [BJ], that is based on the hierarchy of the ferromagnetic exchange inter-
action, the antisymmetric Dzyaloshinskii-Moriya interaction and the anisotropic
exchange interaction. The anisotropic exchange energy, as part of the exchange
interaction, cannot limit the values of ks and Hc2, therefore both values could be-
come infinitely small. Consequently, the transformation from the spiral structure
to the ferromagnetic one, in absence of a magnetic field, cannot be described in
the framework of the Bak-Jensen model. Based on the experimental results of this
work the important role of the cubic anisotropy was introduced. It competes with
the Dzyaloshinskii-Moriya interaction in the case of small ks, that may lead to a
ferromagnetic state in a cubic B20 compound with DM interaction [GSM].
Maleyev and co-workers [GSM] predicted a concentration range close to the critical
concentrations, where the second Hc2 becomes comparable with the first critical
field Hc1. This seems to be recognisable in the slightly different critical concentra-
tions of Fe1−yCoyGe (yc ≈ 0.6) and Fe1−zCozSi (zc ≈ 0.65), both concentrations
could be examples of a broader critical concentration range. A more detailed
sampling near the critical concentration could clarify the borders of this range.
Additional field dependent measurements for the two compounds Mn1−xFexGe
and Fe1−zCozSi will help to prove the behaviour of the two critical fields close to
xc and zc. The first critical field Hc1 is related to the anisotropy and the second
critical field Hc2 is related to the helix energy, as soon as these two fields become
comparable, the competition between the cubic anisotropy and the DM interaction
becomes well noticeable and destabilises the helix spin structure. The hypothesis
that Mn and Co based monogermanide/-silicide compounds have the same sense
of chirality, opposite to the Fe based compounds, will be tested by investigating
the mixed Mn1−xCoxGe compounds in the nearest future.
This work further exploits the idea to control the sign of the DM in the monosili-
cide series Fe1−zCozSi by the controlled change of the 3d element concentration.
The single crystalline nature of these compounds offers the opportunity to grow
crystals with a nearly 100 % controlled structural chirality by using the Czochral-
ski method [DGM+]. It reveals the ability to produce samples with fully controlled
structural and magnetic chirality, this is a key for crystal engineer of customised
novel spintronic application, exploiting the chirality of the magnetic structure for
information storage.



Appendix A

Instruments

A.1 PILATUS@SNBL

Figure A.1: Schematic layout of the Swiss-Norwegian beamline A (figure taken
from [ESR]).

The powder and single crystal x-ray diffraction experiments have been per-
formed using the PILATUS@SNBL diffractometer [DPDC] at the Bending Magnet
beamline 1A (BM01A) at the Swiss Norwegian Beam Line (SNBL) [schematically
shown in Fig.A.1] at the European Synchrotron Radiation Facility (ESRF) in
Grenoble, France. At the BM1A station a 2 mrad fan of radiation is firstly verti-
cally collimated by a primary mirror, with a cut-off angle of 24 keV. Afterwards
the reflected beam passes a double crystal monochromator and is finally vertical
focused by the second mirror. The diffractometer itself combines a flexible kappa-
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goniometer with a fast hybrid-pixel Pilatus2M detector, which can be translated
into two directions as well as rotated. As result, a large variety of diffraction
experiments can be performed: single crystal-, thin film- and powder diffraction,
with a broad covering of the reciprocal space and an optimal angular resolution.

A.2 SQUID

+1

+1

-1
-1

magnetic field

(a) (b)

Figure A.2: Second-order-gradiometer detection coils (a) and the output voltage
dependent on the sample position within the detection coils (b).

To measure the magnetic properties of small amounts of materials one can
use two principal methods. The first that requires the motion of the sample (e.g.
vibrating sample, SQUID), and the second measures a force or torque on the
samples (e.g. torque magnetometers, Faraday balance). The temperature depen-
dent magnetic susceptibility and field depend magnetisation measurement in this
work have been carried out by using a commercial available magnetic property
measurements system (MPMS-3S) by Quantum design, which is located at the
Institute for Physics of Condensed Matter at the Technische Universität Braun-
schweig, Germany. The accessible temperature range is between 1.8 K and 400 K
with a magnetic field range up to 5.0 T. For the measurement the magnetic mo-
ment of the samples can be approximated as a magnetic dipole with a constant sign
and value. The measurement with the MPMS is performed by moving the sample
through a superconducting, second-order-gradiometer detection coils [Fig.A.2 (a)].
The opposite electric fields in the two coils, induced by the spatial homogeneous
external field, cancel each other out, while the inhomogeneous field induced by the
sample, approximated as dipole field, induces different currents in the coils. The
detection coils are coupled to the Superconducting QUantum Interference Device
(SQUID), which works in principal as highly linear current-to-voltage converter
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[the typical measured voltage is shown in FigA.2 (b)]. The dc-SQUID device as
used in this work consists of a superconducting ring with two Josephson junctions.
A bias current is driven through the ring, if the magnetic flux in the ring changes,
the voltage oscillates. This oscillation belongs to the increase of the magnetic field
by one flux quantum Φ0 = h/2e = 2.07 ·10−15 T·m2 within the ring.

A.3 SANS-1

Figure A.3: Schematic view of SANS-1 small angle neutron scattering instrument
at the MLZ Garching, Germany [san].

The SANS-1 [GOS+, GOP, MHW+] small angle scattering instrument is lo-
cated at the 20 MW research reactor Munich II (FRM II), based at the Heinz
Maier-Leibnitz-Zentrum (MLZ) in Garching, Germany. A schematic view of the
instrument is shown in Figure A.3. During this work the monochromatically mode
has been used, with the low resolution velocity selector, which can be changed au-
tomatically to a higher resolution one, if required. The available wavelength band
is in the range of 4 Å to 30 Å. A S-shaped neutron guide, coming from the cold
source, is used in front of the velocity selector to reduce the background from fast
neutrons. Behind the selector tower, an optional Fe/Si transmission polariser can
be installed for polarised measurements, covering the full wavelength band. In the
following part a flexible 20 m collimation system, with additional slits, is attached.
The primary 1 × 1 m2 detector is located inside the detector tube and can be used
for sample-detector positions between 0.5 m and 20 m. This detector is made of
128 He3 position sensitive tubes with a spatial resolution of 8 mm × 8 mm and an
active area of 1000 × 1020 mm2. It is planned to install a second, high resolution
detector (3 mm × 3 mm, active area of 500 × 500 mm2) in 2016. Additional the
installation of a TISANE chopper disc set-up is planned for the end of 2015, enable
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kinetic neutron scattering experiments in the µs regime, a complete upgrade to
a time-of-flight (TOF) option is planned for the future. The technical data for
SANS-1 are summarised in Table A.1.

A.4 D22

Figure A.4: Schematic view of the D22 small angle neutron scattering instrument
at the ILL, Grenoble, France [d22].

The second SANS instrument used in this work is D22, which is shown schemat-
ically in Fig.A.4. Analogue to SANS-1, it is a standard, pinhole like small angle
neutron scattering machine, located at the cold source of the 58 MW reactor at the
Institute Laue Langevin (ILL) in Grenoble, France. It is operated monochromati-
cally, with a maximal collimation length of 20 m and an analogue sample detector
distance. The characteristics of D22 are also summarised in Table A.1.

Table A.1: Characteristics of the small angle neutron scattering instruments
SANS-1 [san] and D22 [d22]

SANS-1 D22
velocity selector 10 % low resolution standard:10 %, 8 - 20 % by
∆λ/λ 6 % high resolution vertical rotation of the selector

wavelength λ 4.5 - 30 Å 4.5 - 40 Å
source-to-sample 1, 2, 4, 8, 1.4, 2.0, 2.8, 4.0, 5.6,

12, 16, 20 m 8.0, 11.2, 14.4, 17.6 m
maximum flux at sample 6.1 × 107 n cm−2 s−1 1.2 × 108 n cm−2 s−1

(for ∆λ/λ 10 %) for 5.5 Å for 6 Å
sample-detector 1.2 - 20 m 1.1 - 17.6 m

Q-range 0.0005 - 1Å−1 0.0015 - 1Å−1

det. 1: active area 1000 × 1020 mm2 1024 × 980 mm2

pixel size 8 mm × 8 mm 8 mm × 8 mm
maximal count rate 1 MHz 5 MHz



Appendix B

Theoretical approach
Mn1−xFexGe

Recently, the possibility was shown to reproduce the experimentally observed
change of the sign of the DM constant D in the Mn1−xFexGe system theoreti-
cally. In this section the short overview given above in section 4.2.4 will be com-
pleted. It is very likely that the same mechanism, which is responsible for sign
change observed in Mn1−xFexGe is also responsible for the flip of the chiral link in
Fe1−yCoyGe, as well as, Fe1−zCozSi. In the first part of this chapter the results of
Chen and co-workers [CXYL], using monte carlo simulations will be presented and
afterwards the density functional calculations by Koretsune and co-workers [KNA]
and Gayles and co-workers [GFS+].

Monte Carlo simulation

Chen and co-workers used a simple spin model on a 2D lattice with a hybrid DM
interaction [CXYL]:

H =− J
∑
i

Si (Si+x̂ + Si+ŷ)

−D
∑
i

(Si × Si+x̂ · x̂+ Si × Si+ŷ · ŷ)

− A
∑
i

(
Sxi S

x
i+x̂ + Syi S

y
i+ŷ

)
−H

∑
i

Si (B.1)

H represents the magnetic field along the z-axis, J the ferromagnetic exchange
(FM) interaction, D the DM interaction, A the anisotropy between neighbouring
atoms. They simply assume the effective parameters between the Mn-Fe pairs
as: J ≡ (JMn + JFe/2), D ≡ (DMn + DFe/2) and A ≡ AMn/2. This approach
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Figure B.1: A series of typical spin lattice s with various concentration x under H
= 0.16 T for Mn1−xFexGe (Reprinted from [CXYL], with the permission of AIP
Publishing).

is phenomenological solid, but has a lack of a rigorous theoretical foundation.
For their simulations they randomly distribute the Mn and Fe species on the 2D
square lattice for x. They used a positive and negative DM constant for MnGe
(DMn =

√
6) and FeGe (DFe = −1.44), respectively. Snapshots of typical spin

lattices received by Monte Carlo simulation are shown in Fig.B.1. For pure FeGe
the spin structure has been identified as single helix [Fig.B.1 (a)], while the spin
structure of pure MnGe [Fig.B.1 (f)] has been identified as a superposition of
two orthogonal helices [CXYL]. Additional, Chen and co-workers received the
concentration dependence of 〈γm〉 given in Fig.B.2 (a) as well as the temperature
dependence of 〈γm〉 [Fig.B.2 (b)] and 〈M〉 [Fig.B.2 (c)]. The 〈γm〉-x dependence
received by Monte Carlo simulation is in a good agreement with the experimental
determined behaviour from the polarised neutron scattering experiments in the
helical phase as well as the Lorentz transmission electron microscopy measurements
in the A-phase by Shibata and co-workers [SYH+]. The change of the sign of 〈γm〉
is given at x = 0.7 accompanied by ferromagnetic-like behaviour. The temperature
dependence of 〈γm〉 fluctuates around 0 for xc = 0.7 and is positive, negative for
x < xc = 0.7, x > xc = 0.7, respectively. The additional calculated susceptibility
data χ are in a good agreement with the experimental one. The curve for the
sample with the concentration of x = 0.7 has a Curie-Weiss-like shape, typically
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Figure B.2: Plots for (a) 〈γm〉-x, (b) 〈γm〉-T and (c) 〈M〉-T for various x under
H = 0.16 for Mn1−xFexGe (Reprinted from [CXYL], with the permission of AIP
Publishing).

for a ferromagnetic spin arrangement, all other compounds show a helimagnetic-
like shape.

Density functional calculations

In addition to the Monte Carlo simulation results shown in the previous section
there are two approaches using density functional theory (DFT) calculations. Ko-
retsune and co-workers [KNA] used DFT calculation to compute the spin suscep-
tibility that is directly proportional to the DM interaction. In their approach they
used a rigid band approximation starting from the electronic structure of FeGe as
well as MnGe. Their results for the DM interaction coefficients and the anomalous
hall effect (AHE) are shown in Fig.B.3 (starting from the FeGe band structure).
From both starting points (MnGe and FeGe) they have been able to qualitatively
reproduce the change of the sign of D in Mn1−xFexGe with the variation of the
Mn/Fe ratio. Their results show D < 0 below xc (MnGe-like region) and D > 0 for
x > xc (FeGe-like region). The calculated critical concentration however differs
slightly from the experimental determined value of xc ≈ 0.75. Gayles and co-
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Figure B.3: DM interaction and AHC as function of the carrier density n starting
from the FeGe electronic structure. The inset shows the dependence of the chemical
potential µ on the carrier density n (figure taken from [KNA]).

workers [GFS+], on the other hand, have chosen two similar approaches. In their
first method, they used the expression for the DM based on the Berry phase in the
weak spin orbit interaction limit (SOI). The second one is based on the evaluation
of the linear slope of the dispersion energy of the long wavelength flat spiral solu-
tion including the SOI within the first order perturbation theory. The calculated
strength of the DM interaction is shown in Fig.4.8. The observed change of the sign
of D could be reproduced with both methods and the critical Fe-concentration has
been determined as xc = 0.8, which is in excellent agreement with the experimental
value of xc ≈ 0.75. Moreover, they developed a minimal tight-binding model which
allows to identify the main mechanism behind the change of D. They established
the dynamics of the dxy and dx2−y2-like states as the responsible mechanism for
the changing behaviour of the DM. Strictly speaking, the dxy and dx2−y2 states
move down and up, and thus become occupied and unoccupied with increasing
concentration x, respectively.



Appendix C

The role of the cubic anisotropy

To be complete, the calculations concerning the role of the cubic anisotropy trans-
forming the spiral to the ferromagnetic spin structure in B20 compounds (sum-
marised in section 4.3.3) are given here in more detail according to [GSM].

Bak-Jensen model

Resuming the results of the Bak-Jensen model from section 1.2.2, the DM interac-
tion disorders the ferromagnetic structure in cubic B20 compounds and stabilises a
helical state [BJ,Malb]. The corresponding Hamiltonian is a sum of the exchange
energy HEX , the DM energy HDM , the anisotropic exchange energy HAE and the
Zeeman energy HZ :

HEX = −1

2

∑
JR−R′SR · SR′ ;

HDM =
1

2

∑
DR−R′(∇−∇′)[SR × SR′ ];

HAE =
1

2

∑
FR−R′{(∇xS

x
R)(∇′xSxR′)

+ (∇yS
y
R)(∇′yS

y
R′) + (∇zS

z
R)(∇′zSzR′)};

HZ = −H
∑

SR, (C.1)

where H = gµBBin with an internal magnetic field Bin [Malb]. The general form
of the spin helix is given by:

SR = S[ĉ sinα + (Aeik·R +A∗e−ik·R) cosα] (C.2)

Here α is the angle between the spins and the spin rotation plane and k is the helix
wave-vector. Using A = (â − ib̂)/2 to determine vector A and the unit vectors
â, b̂, ĉ form the right handed orthogonal frame with [â × b̂] = ĉ. Thus, one has
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Figure C.1: Spherical coordinates.

(A ·A) = 0, (A ·A∗) = 1/2, [A×A∗] = iĉ/2. In spherical coordinates with the
angles φ, θ bound to the spin helix, the basics vectors â, b̂ and ĉ can be rewritten
as (see Fig.C.1 for illustration):

â = (cosφ, sinφ, 0);

b̂ = (− sinφ cos θ, cosφ cos θ,− sin θ);

ĉ = (− sinφ sin θ, cosφ sin θ, cos θ). (C.3)

The classical energy (approximated in k2) can be obtained by inserting Eq.C.2 in
Eq.C.1:

EBJ = −S
2J0

2
+

[
Ak2

S
+
F0I(k)

2
− 2D0(k · ĉ)

]
S2 cos2 α

2
− SH‖ sinα, (C.4)

with the spin wave stiffness A = S(J0− Jk)/k2 [Malb], the k-dependent functions
are determined as Jk =

∑
JR exp(k ·R), I(k) =

∑
k2
j (â

2
j + b̂2

j) is a cubic invariant
and H‖ = (H · ĉ). EBJ refers to the Bak-Jensen (BJ) model [BJ]. The energy can
be minimised with respect to k with:

Akj + SF0kj(â
2
j + b̂2

j)/2 = SD0ĉj;

Ak2 + SF0I(k)/2 = SD0(k · ĉ), (C.5)

the first line in Eq.C.5 demonstrated the weak dependence of the orientation of k
on the crystal structure. Neglecting this, one obtain:

ks = SD0ĉ/A. (C.6)
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The final expression for EBJ can be obtained by substituting D0 = Aks/S into
Eq.C.4:

EBJ = −S
2J0

2
− SAk2

s cos2 α

2

[
1− SF0I(ĉ)

2A

]
− SH‖ sinα. (C.7)

Here the second term represents the DM interaction and corresponds to the en-
ergy gain of the helical state as compared with the ferromagnetic one. The cubic
invariant I(ĉ) has the minimum I = 0 and the maximum I = 2/3 at ĉ = (1, 0, 0)
and ĉ = (1, 1, 1)/

√
3, respectively. For small magnetic fields H � |F0|k2

s the
vector ks points along the cubic edge or diagonal for F0 > 0 and F0 < 0, respec-
tively [BJ,Malb]. For the opposite case H � |F0|k2

s ∼ Hc1 one can find the helix
wave vector along the field axis ks ‖H . Not considering the F0 term (connecting
to the exchange anisotropy and minimising the energy with respect to the angle
α) in Eq.C.7:

sinα = H/Ak2
s . (C.8)

Accordingly, for H = 0, then α = 0, resulting in a plane helix. In consequence,
a field of H 6= 0 implies the existence of a conical spin alignment. Reaching the
critical field Hc2, α = π/2 and Hc2 = Ak2

s , the cone transforms to a field aligned
(ferromagnetic) state, for H > Hc2 [Malb].

Cubic anisotropy

The anisotropic exchange is small compared to the isotropic one, in consequence,
Maleyev and co-workers neglected the F0 from Eq.C.7. However, another anisotropic
term, the cubic anisotropy has to be considered:

HCA = K
∑
{(SxR)4 + (SyR)4 + (SzR)4}. (C.9)

In case of a ferromagnet: SR = S and the contribution of the cubic anisotropy to
the classical energy can be written as:

ECA = G

{
1;S ‖ (1, 0, 0),

1/3;S ‖ (1, 1, 1).
(C.10)

Here, G = KS4 and the extrema of ECA are shown in the right handed side of
Eq.C.10. The directions (1, 1, 1) and (1, 0, 0) are for this reason the easy axes for
K > 0 and K < 0, respectively. Inserting Eq.C.6 in Eq.C.9 and combine it with
Eq.C.7, one gets the helix energy in a magnetic field, taking the cubic anisotropy
into account:

E =− (SAk2
s/2) cos2 α +G[C sin4 α + (3/8)B cos4 α

+ 3I sin2 α cos2 α]− SH‖ sinα. (C.11)
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with the cubic invariants C,B, I given by:

C =
∑

ĉ4
j ; B =

∑
(â2
j + b̂2

j)
2; I =

∑
ĉ2
j(â

2
j + b̂2

j). (C.12)

They depend on the angles φ, θ determining the ĉ direction (see details at the end
of this chapter). Considering Eq.C.30 and rewrite Eq.C.11, one gets:

E =− SAk2
s

2

(
1− sin2 α

)
+
G

8
[(3− 5C) (−7 sin4 α + 6 sin2 α + 1) + 8C]

− SH‖ sinα. (C.13)

In this term the first expression gives the energy of the helical structure with the
wave vector ks, appearing as a result of the competition between the ferromagnetic
exchange and the DM interaction. The second term gives the anisotropic energy
of the spiral and depends on the angles φ, θ of the direction of the vector ĉ. In this
expression the cubic anisotropy is a function of one cubic invariant C and of the
powers of sine and conical angle α only. The spin structure and the magnetic field
behaviour of the B20 helimagnets is determined by the minimum of this energy.
The situation for zero magnetic field is discussed above in section 4.3.3. Now the
case with an applied magnetic field will be considered in more detail. Considering
a positive anisotropy G > 0 and an arbitrary oriented magnetic field in the range
of φ between 0 and π/4 and θ between 0 and π/2, the energy of the helix in the
magnetic field is given by:

E =
SAk2

s

2
sin2 α +

G

16
W (−7 sin4 α + 6 sin2 α + 1)

− SH cos(θ − θH) cos(φ− φH) sinα− SAk2
s

2
+GC, (C.14)

with θH and φH denote the angles of the magnetic field direction. Putting the
cubic invariant W (θ, φ) ≡ 10C − 6 (Eq.C.31), with increasing magnetic field
the planar spiral (α = 0), aligned along the (1, 1, 1)-axis, i.e. (θ, φ) = (π/2 −
arctan(1/

√
2), π/4), will turn toward the (θH , φH). Moreover, the conical angle

α will increase. The condition corresponding to the minimum of the energy in
respect to α, θ and φ is given by:

∂E/∂α = 0

∂E/∂(θ, φ) = 0. (C.15)

To estimate the critical field Hc1, at which the helix is aligned along the field
direction, one has to consider the limiting case of the field orientation along the
hard axis (0,0,1). Thus, θH = 0, φH = π/4 in Eq.C.14 and θ runs from π/2 −
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arctan(1/
√

2) (diagonal of the cube) to 0 with constant φ = π/4. From the
solution of Eq.C.15, with respect to α and substituting θ = 0, the conical angle at
Hc1 is given by:

sin2 αc1 =
4

7

(
1 + r −

√
r2 + 2r +

9

16

)
, r >

√
1

30
, (C.16)

with the ratio of the DM interaction r = SAk2
s/12G and the cubic anisotropy.

Combining Eq.C.15 with Eq.C.16 the corresponding critical field is given by:

Hc1 =
G

S
sinαc1

(
7 sin2 αc1 + 12r − 3

)
, r >

√
1

30
. (C.17)

It can be seen that the value of the critical field Hc1 is smaller, the closer the
applied field is to the easy axis. For the second critical field Hc2 one can consider
the equation:

SH =
7

4
GW (θH , φH) sin3 α +

(
SAk2

s −
3

4
GW (θH , φH)

)
sinα, (C.18)

where (θ, φ) are already equal to (θH , φH). Equation C.18 describes the behaviour
of the helix above Hc1. The value for Hc2 is also dependent on the field direction.
It can be seen that the cubic invariant W is negative for those (θ, φ) which are close
to the cube diagonal and is positive for those (θ, φ) close to the cube edge. One
can distinguish between two cases: for W (θH , φH) ≥ 0 the solution for sinα = 1
is given by:

Hc2 = Ak2
s +W (θH , φH)

G

S
. (C.19)

In the second case W (θH , φH) < 0, the result depends on the ratio of the DM
and the cubic anisotropy and for SAk2

s/G ≥ 18|W |/4, Eq.C.18 has a solution for
sinα = 1 at:

Hc2 = Ak2
s − |W (θH , φH)|G

S
. (C.20)

In the opposite case SAk2
s/G < 18|W |/4, a first order transition to the ferromag-

netic state takes place at the critical field:

Hc2 = sinαc2

(
2

3
Ak2

s +
1

2
|W (θH , φH)|G

S

)
. (C.21)

with the corresponding critical cone angle:

sinαc2 =

√
4

21|W |
SAk2

s

G
+

1

7
. (C.22)
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In Fig.C.2 the dependence of the critical field Hc2 on the field direction in the
particular case of the field oriented between the hard (0, 0, 1) axis and the easy
(1, 1, 1) axis is shown. Maleyev and co-workers plotted Eqs.C.17, C.18 and C.19,
for example, for Ak2

s = 12G/S and Ak2
s = 5G/S. The position of the curve along

the Hc2 axis is given by SAk2
s/G, and its form by W (Eq.C.32). In the case of

Ak2
s < 12G/S a part of the curve corresponds to the first order phase transition

described by Eq.C.21. Fig.C.3 also shows the critical field Hc2 and the critical
cone angle [Eq.C.22] as function of the ratio r for the field along (1, 1, 1). For
polycrystalline samples, one has to take the average of the magnetic field applied
to all directions. For this reason, W (θ, φ) [Eq.C.31] must be averaged on θ, φ and:

Hc2 = Ak2
s +

9

16

G

S
, G > 0. (C.23)

In the case of G < 0, the first critical field Hc1 is equal to Eq.C.17 but for r =
SAk2

s/8|G|. Eq.C.18 includes G only in the term G ·W , for the case of negative
anisotropy G < 0, the replacement G → −|G| is equivalent to replacement W →
−|W |. Averaging of W gives in this case:

Hc2 = Ak2
s −

9

16

|G|
S
, G < 0. (C.24)
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Figure C.2: Dependence of the critical magnetic field Hc2 (in units G/S) on the
orientation of the magnetic field within φ = π/4 plane changing from (0, 0, 1) to
(1, 1, 1) directions for two variants of the ratio of the DM interaction and the cubic
anisotropy. The top dashed line corresponds to the ratio SAk2

s/G, which does not
imply any first order phase transition in any field direction. The bottom dashed
line corresponds to the minimal stable value of the SAk2

s/G equals 1/3. The red
area shows the condition of the first order phase transition, which depends on
the angle θ and the ratio SAk2

s/G (Reprinted figure with permission from [GSM],
Copyright (2015) by the American Physical Society).
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Figure C.3: Dependence of the sine of the critical cone angle αc2 and the critical
magnetic field (along the (1, 1, 1) direction) of the first order phase transition Hc2

on the ratio SAk2
s/G (Reprinted figure with permission from [GSM], Copyright

(2015) by the American Physical Society).
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Cubic invariants

For completeness the expressions for the cubic invariants are given here analogously
to [GSM]. For the cubic anisotropy:

ECA = G[(cos4 φ+ sin4 φ) sin4 θ + cos4 θ], (C.25)

and Eq.C.10 is a result of the standard calculations. With Eq.C.3 insert in I(ĉ) of
Eq.C.7, one obtain:

I(ĉ) = [2 sin2 φ cos2 φ+ (1 + sin4 φ+ cos4 φ) cos2 θ] sin2 θ. (C.26)

The cubic invariant I(ĉ) has minimum I = 0 and maximum I = 2/3 at ĉ = (1, 0, 0)
and ĉ = (1, 1, 1)/

√
3, respectively. The first invariants of the two given in Eq.C.12

is given as:

C =
∑

c4
j =

{
1; ĉ ‖ (0, 0, 1)

1/3; ĉ ‖ (1, 1, 1).
(C.27)

The right handed side gives the extrema of C and the second invariant is deter-
mined as:

B =
∑

(a2
j + b2

j)
2 = (cos2 φ+ sin2 φ cos2 θ)2 + (sin2 φ+ cos2 φ cos2 θ)2 + sin4 θ,

(C.28)

and one get for the extrema:

B =

{
2; ĉ ‖ (0, 0, 1)

4/3; ĉ ‖ (1, 1, 1).
(C.29)

The simple relations between cubic invariants are given by:

C −B = 1, I + C = 1, I +B = 2. (C.30)

The extrema of cubic invariant W ≡ 10C − 6:

W =

{
4; ĉ ‖ (0, 0, 1)

−8/3; ĉ ‖ (1, 1, 1).
(C.31)

At φ = π/4 W has the simple form:

W (θ, φ = π/4) = 15 cos4 θ − 10 cos2 θ − 1. (C.32)



Appendix D

Fe1−zCozSi polarised
measurements

Figure D.1: Maps of polarised SANS intensities of MnSi (a) and of Fe1−zCozSi
with z = 0.5 (b), 0.6 (c), 0.7 (d) for polarisation +P i opposite to the guide field
at T ≈ 3.5K.

In addition to section 4.4.2 the corresponding measurements for MnSi, Fe1−zCozSi
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100 APPENDIX D. FE1−ZCOZSI POLARISED MEASUREMENTS

(z = 0.5, 0.6, 0.7) with the flipped polarisation direction opposite to the field
Fig.D.1 as well as the integrated intensities for the left Bragg peak for the flipper
off and on measurements Fig.D.2 are presented here.
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Figure D.2: The integrated intensities of MnSi (a) and of Fe1−zCozSi with z = 0.5
(b), 0.6 (c), 0.7 (d) for the left Bragg peak (polarisation +P i along/opposite the
guide field at T ≈ 3.5K).



Appendix E

Physical quantities and symbols

Notation Name

A spin wave stiffness
bj nuclear scattering length of nucleus j
D Dzyaloshinskii-Moriya constant
ki, kf initial and final wave vector of neutrons
ks helix wave vector
l lattice vector
MQ magnetic structure vector
MQ⊥ magnetic interaction vector
NQ nuclear structure factor
P i, P f initial and final polarisation vector

P̃ polarisation tensor
Q scattering vector
σ̂i Pauli matrices
Sl average spin of a magnetic atom at the site l
τ reciprocal lattice vector
V (r) neutron scattering potential
x(c) (critical) Fe concentration in Mn1−xFexGe
y(c) (critical) Co concentration in Fe1−yCoyGe
z(c) (critical) Co concentration in Fe1−zCozSi
|↑〉 , |↓〉 spin up, spin down

Quantity Name Value

e Elementary charge 1.602 176 6208 × 10−19 C
~ Planck constant over 2π 6.582119514 × 10−16 eV s
me mass of electron 9.10938356 × 10−31 kg
mn mass of neutron 1.674927471 × 10−27 kg
mp mass of proton 1.672621898 × 10−27 kg
µB Bohr magneton 9.274009994 × 10−24 J T−1

µN nuclear magneton 5.05078353 × 10−21 J T−1

µ0 vacuum permeability 1.2566370614 × 10−6 N A−2

r0 classical electron radius 2.82179403267 × 10−15 m
γN gyromagnetic ratio of the neutron 1.913

Table E.1: Symbols and values of physical quantities used in this thesis
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