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Kurzbeschreibung
Der Large Hadron Collider (LHC) ist aktuell der weltgrößte Teilchenbeschleuniger
mit der höchsten Schwerpunktsenergie bei Teilchenkollisionsexperimenten. Für die
maximal erreichbare Leistungsfähigkeit eines solchen Beschleunigers ist die Kontrolle
über die Teilchenstrahlfokussierung unabdingbar. Zur Charakterisierung der Fokuss-
iereigenschaften wird am LHC die Position des zum Schwingen angeregten Strahls
für jeden Umlauf an zahlreichen Messinstrumenten (BPMs) entlang des Beschleu-
nigers aufgezeichnet. In der vorliegenden Arbeit wird ein neues Analyseverfahren für
diese Messungen (N -BPM Methode) basierend auf einer detaillierten Untersuchung
von systematischen und statistischen Fehlerquellen und ihren Korrelationen gezeigt.
Während der Inbetriebsetzung des LHC bei einer bisher unerreichten Energie von
6.5TeV wurde dieses Analyseverfahren angewandt. Die dabei erreichte Fokussierung
ist stärker als im LHC Design vorgesehen. Dies führt zu kleineren transversalen
Strahlgrößen an den Kollisionspunkten und ermöglicht so eine höhere Rate von Teil-
chenkollisionen.
An vielen Synchrotron-Lichtquellen werden zur Bestimmung der Fokussierparameter
die Abweichungen der periodischen Teilchenbahn beobachtet, die durch absichtliche
Veränderungen der Magnetfelder induziert werden (Orbit Antwortmatrix). Im Gegen-
satz dazu liefert für viele dieser Maschinen aufgrund der Abstände zwischen den BPMs
die Analyse der gemessenen Strahlpositionsdaten pro Umlauf weniger genaue Ergeb-
nisse. Die begrenzte Messgenauigkeit wird durch die N -BPM Methode überwunden,
indem es die Analyse der Messdaten von mehreren BPMs ermöglicht. Sie wurde an
der ALBA Synchrotron-Lichtquelle angewandt und mit der Orbit Antwortmatrix Me-
thode verglichen. Die deutlich schnellere Messung mit der N -BPM Methode stellt
hierbei einen entscheidenden Vorteil dar.
Abschließend wird ein Ausblick auf kommende Herausforderungen in der Kontrolle der
Strahlfokussierung am HL-LHC, einer zukünftigen Erweiterung des LHC, gegeben.



Abstract
The Large Hadron Collider (LHC) is currently the world’s largest particle accelerator
with the highest center of mass energy in particle collision experiments. The con-
trol of the particle beam focusing is essential for the performance reach of such an
accelerator. For the characterization of the focusing properties at the LHC, turn-by-
turn beam position data is simultaneously recorded at numerous measurement devices
(BPMs) along the accelerator, while an oscillation is excited on the beam. A novel
analysis method for these measurements (N -BPM method) is developed here, which
is based on a detailed analysis of systematic and statistical error sources and their
correlations. It has been applied during the commissioning of the LHC for operation
at an unprecedented energy of 6.5TeV. In this process a stronger focusing than its
design specifications has been achieved. This results in smaller transverse beam sizes
at the collision points and allows for a higher rate of particle collisions.
For the derivation of the focusing parameters at many synchrotron light sources,
the change of the beam orbit is observed, which is induced by deliberate changes of
magnetic fields (orbit response matrix). In contrast, the analysis of turn-by-turn beam
position measurements is for many of these machines less precise due to the distance
between two BPMs. The N -BPM method overcomes this limitation by allowing to
include the measurement data from more BPMs in the analysis. It has been applied at
the ALBA synchrotron light source and compared to the orbit response method. The
significantly faster measurement with the N -BPM method is a considerable advantage
in this case.
Finally, an outlook is given to the challenges which lie ahead for the control of the
beam focusing at the HL-LHC, which is a future major upgrade of the LHC.
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1. Introduction

Accelerator physics is a relatively young branch in the physics domain. It describes the
machines that are used for accelerating, storing and transporting elementary charged
particles by means of electromagnetic fields, which are in the following referred to as
particle accelerators, or simply accelerators. It furthermore describes the dynamics
of these particles in an accelerator.

The history of particle accelerators dates back to the 1920s, where R. Widerøe suc-
cessfully accelerated ions up to an energy of 50 keV [1], based on a linear accelerator
concept of G. Ising [2]. Subsequently, accelerators were advanced, reaching higher
beam energies and intensities, while repeatedly new technical concepts were devel-
oped. For a detailed report on the history of particle accelerators, the reader is
referred to [3–5].

Since then, accelerators have become an important technology with applications in
various different fields, e.g. fundamental and applied research, medical therapy, in-
dustry and defense [6–9].

In the following sections, the Large Hadron Collider (LHC) is introduced, which is a
hadron accelerator, designed to operate at an unprecedented beam energy of 7TeV
and used for fundamental particle physics research.

The performance characteristics of such an accelerator are introduced, as well as the
nomenclature which is used to describe the beam dynamics. Furthermore, techniques
to measure and correct certain aspects of the beam motion are explained, which
are crucial for the operation of this machine. In Chapter 2 a new method, named
N -BPM method, is developed for the measurement of the focusing properties of the
accelerator. This new method represents a significant improvement in the precision
and accuracy compared to previous methods.

It is benchmarked in simulations and in comparison with other measurement tech-
niques. Moreover its successful application at the ALBA accelerator is presented. In
Chapter 3 the N -BPM method is shown in practice during the commissioning of the
LHC at an energy of 6.5TeV. An outlook is given in Chapter 4 to the challenges that
lie ahead for the High Luminosity Large Hadron Collider (HL-LHC), which is a major
upgrade of the LHC.
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1. Introduction

1.1. The Large Hadron Collider
The LHC is a circular accelerator located at the European Organization for Nuclear
Research (CERN) in Switzerland. The purpose of this machine is to study rare
high energy physics events by colliding two proton beams at dedicated interaction
points (IPs), which are surrounded by detectors for the collision products [10]. The
most prominent achievement was the discovery of the Higgs boson1. A part of the LHC
operation time is dedicated to the collision of lead ions. These heavy ion collisions
allow to study matter interaction in extreme conditions of high temperature and high
particle densities [11].
The particles for the LHC are accelerated in steps, using several smaller accelerators,
c.f. Fig. 1.1. This is not only an efficient approach, as in this case the smaller ac-
celerators already existed, but also inevitable, as e.g. the required precision of the
magnetic fields in a circular accelerator are technologically difficult to achieve for an
acceleration from rest. Furthermore, the beam charge distribution limits the maxi-
mum beam intensity for a given injection energy of a circular accelerator [12], which
sets bounds to the ratio of injection energy to maximum energy.
The first acceleration of protons up to energies of 50MeV takes place in the lin-
ear accelerator LINAC2. Afterwards the particles are transferred consecutively to
the Proton Synchrotron (PS), Proton Synchrotron Booster (PSB) and Super Proton
Synchrotron (SPS), where they reach at the end an energy of 450GeV before they
are injected into the LHC. A complete fill of the LHC includes according to design
parameters, up to 2808 bunches of 1.15×1011 particles each2. This corresponds to an
energy of 362MJ which is stored in each beam after acceleration to 7TeV [14].
Special care needs to be taken to protect the machine elements from its beams. For
example, collimators are used to ensure that the beam size stays within limits [15].
The beam loss detection and beam dump system are responsible for a safe and fast
extraction of the beams in case of problems [16]. Most of the LHC magnets are
superconducting (sc), due to the required high magnetic fields. The process, when
an sc magnet exceeds the critical temperature and becomes normal conducting, is
referred to as quenching. Another crucial safety system is the quench protection
system (QPS) [17]. It monitors the resistance of the sc magnets and mitigates the
effects of a quench. An incident in 2008 showed the severe damage that may result due
to a quench, when a fault in the electrical connection from a dipole to a quadrupole
occurred, which delayed the LHC start by several months [18].

1The discovery of the Higgs boson has been announced in July 2012 at CERN. In 2013 the Nobel
Prize in Physics has been awarded to Francois Englert and Peter Higgs for the theoretical derivation
of the Higgs mechanism.

2An acceleration which uses radio frequency (rf) fields allows only for a beam which consists of
bunches of particles with a specific length and distance between two bunches, depending on the rf
frequency.

2



1.1. The Large Hadron Collider

Figure 1.1.: Illustration of the CERN accelerator complex. Colored arrowheads indi-
cate the possible paths of different particles. ©CERN [13].

1.1.1. Performance characteristics

The purpose of a high energy particle collider is to induce particle interactions
(events), which are suitable for analysis by the experimental detectors. Its perfor-
mance is therefore characterized by the amount of events that are produced.

Center of mass energy

The energy in the center of mass frame defines the possible particle interaction pro-
cesses, as e.g. for the production of a particle at least its mass at rest is required.
For ultra-relativistic particles, head-on collisions of two particle beams are preferred
compared to a fixed target collision, cf. Fig. 1.2, as the later becomes less efficient.
For example, in case of the LHC which is designed to operate at a beam energy of

3



1. Introduction

a) b)

Figure 1.2.: Illustration of a collision experiment where particles either collide a) with
other particles which are in rest (fixed target), or b) head on with particles
of same momentum.

E1 = 7TeV, the energy available for particle production in head-on collisions would
be E = 2E1 = 14TeV. A fixed target experiment with the same beam energy would
only result in a center of mass energy of E =

√
2E1mc2 = 115GeV, cf. [5]. Hence,

colliding beams are used for high energy particle physics experiments.
Furthermore, the cross section, i.e. the likelihood of a certain event, depends on the
energy. For example, the cross section for a Higgs boson production in a proton-
proton (pp) collider, for center of mass energies from 14TeV to 100TeV, is increasing
with energy [19]. This means that a pp collider which is operated at larger energies,
will produce more of these particles.

Luminosity

A second measure for the performance of a collider is the rate of particle collisions.
The higher this rate is, the faster a rare event may be detected with statistical signif-
icance. The rate for a certain event is described as Lσ, where σ is the cross section of
this event, and L the luminosity. The luminosity describes the probability of particle
encounters in the colliding beams. While the cross section is determined by the beam
energy, the luminosity depends on further parameters of the accelerator. For two
Gaussian beams colliding head-on it is defined as

L =
1

4π

N1N2fNb

σxσy
, (1.1)

where N1,2 are the number of particles per bunch for the two beams, and σx,y are the
horizontal and vertical size of the beam [20]. L depends furthermore on the rate of
crossings which is described by the revolution frequency f and the number of bunches
Nb in the accelerator. Since the parameters in Eq. (1.1) change with time, as e.g. the
amount of particles decreases or the beam sizes change, it is important to assess the
integrated luminosity

Lint =

∫
L dt. (1.2)

4



1.1. The Large Hadron Collider

s

y

x

transverse plane

design orbit

Figure 1.3.: Schematic of the Frenet-Serret coordinate system, which is used to de-
scribe the particle motion in an accelerator in the vicinity of a design
orbit.

1.1.2. Linear beam dynamics

In this section the basic principles and the nomenclature which is used to describe
the beam motion in an accelerator is introduced. The focus is on the transverse beam
dynamics and on circular accelerators. For a more general explanation and especially
for longitudinal and acceleration related effects, the reader is referred to [4, 5, 21].
The motion of charged particles can be controlled using electric and magnetic fields
as described by the Lorentz force

⇀

FL = q(
⇀

E +
⇀
v ×

⇀

B). (1.3)

For the deflection of charged particles, magnetic fields become more efficient for larger
velocities of the particles. Magnetic fields are therefore preferred for steering of the
beam. For example, a velocity of 14% of the speed of light is for protons1 already
achieved in LINAC2, which is the first linear accelerator of the LHC proton acceler-
ation chain, cf. Fig. 1.1.
In the following equations, a coordinate system which moves along the design orbit
as described in Fig. 1.3 will be used.
In a continuous dipole field in the vertical direction, |

⇀

B| = By, a charged particle will
be moving along a circle. The radius r is determined by setting the Lorentz force
equal to the centripetal force, which gives

1

r
=
q

p
By, (1.4)

for a particle with charge q and momentum p. The size of an accelerator and the
maximum magnetic field determine the maximum achievable particle momentum.
For example for the LHC with a circumference of 27 km and a kinetic energy of 7TeV

1at 0.14 c the relativistic and non-relativistic momentum of a proton deviate by 1%
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1. Introduction
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Figure 1.4.: Magnetic field lines of a quadrupole magnet. The resulting force is in-
dicated for a positively charged particle moving perpendicular into the
drawing plane. Particles with a transverse offset from the quadrupole
center will be focused in the vertical plane and defocused in the horizon-
tal plane.

of the protons, a magnetic field of B = 5.4T would be needed. Since the magnetic
field for bending is not continuous, but interrupted to place other elements in the
accelerator, in practice a magnetic field of more than 8T is used.
For an ideal vertical magnetic dipole field with Bx = Bz = 0 and By = B0, any
perturbation which causes a particle to move in the vertical direction, will not receive
a restoring force. With each turn the particle will deviate further from the design
orbit, until it gets lost due to an interaction with the beam pipe. In the horizontal
plane there is a natural focusing, as a particle which deviates from the design orbit will
move on a displaced circle of same size. Hence, it will for small deviations periodically
return and cross the design orbit. A focusing in both planes can for example be
achieved with curved dipole fields, as described in [22]. However, this method which
is also called weak focusing, is unfeasible for higher energies, as the maximum particle
displacements from the design orbit become too large [21]. Another method to focus
particles is to use quadrupole magnets which are illustrated in Fig. 1.4.
Though a quadrupole is focusing only in one plane and defocusing in the other plane,
it has been demonstrated in [23, 24], that a sequence of alternating quadrupoles can
have an net focusing effect in both planes. The magnetic quadrupole field is of the
form

⇀

B = B1

(
y
x

)
. (1.5)

In analogy to the dipole strength 1/r in Eq. (1.4), the quadrupole strength is defined
as

k =
q

p
B1 =

q

p

∂By

∂x

∣∣∣∣
x=y=0

. (1.6)
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1.1. The Large Hadron Collider

Equations of motion

Linear beam dynamics is restricted to drift spaces without magnetic fields and to
dipolar and quadrupolar magnetic fields, which are either constant or depend linearly
on the transverse coordinates. In linear approximation the equations of motion can
be written in this case as

x′′(s) +

(
1

r(s)2
− k(s)

)
x(s) = 0, (1.7)

y′′(s) + k(s)y(s) = 0, (1.8)

with the derivatives after the longitudinal coordinate s, i.e. x′′(s) ≡ d2x/ds2. r(s) and
k(s) define the dipole and quadrupole fields along s. It is furthermore assumed that
Bz = 0 and that all particles have the same momentum. The equation of motion for
the vertical plane are equivalent to the horizontal plane in the absence of dipole fields.
Hence, without omitting generality, the following derivations will be restricted to the
horizontal plane. For the case of constant r(s) and k(s) a solution of the equations
of motions can be written as [24]

x(s) = C(s)x0 + S(s)x′0, (1.9)
x′(s) = C ′(s)x0 + S ′(s)x′0. (1.10)

C(s), S(s) and their derivatives with respect to s, C ′(s) and S ′(s), whose form is
shown later, describe the transfer of a particle with coordinates (x0, x′0) at position
s0 to the position s with the new coordinates (x, x′). This expression is often written
in matrix form as (

x
x′

)
= M ·

(
x0
x′0

)
, (1.11)

where M is the transfer matrix, which describes the change of particle coordinates
between two locations. This method can be extended from constant to step-wise
constant functions r(s) and k(s), by multiplying the resulting transfer matrices for
the constant ranges. The transfer matrix for a segment as in Fig. 1.5 can be written
as

Msegment = M5 ·M4 ·M3 ·M2 ·M1. (1.12)

This is a good approach for accelerators, assuming that each magnet has a longitu-
dinally constant magnetic field.

Courant-Snyder parameters

For solving the equation of motion (1.7) in circular accelerators, one can assume
periodicity, i.e. k(s) = k(s+L) and r(s) = r(s+L). A solution of this so called Hill’s

7



1. Introduction

M1 M2 M3 M4 M5

s

k(s)
r(s)

k1 −k1
r

0 0 0
∞∞ ∞ ∞

Figure 1.5.: Illustration of a typical segment in an accelerator of a focusing quadrupole
followed by a dipole and a defocusing quadrupole. The transfer matrices
M1 to M5 denote the regions where constant magnetic fields along the
longitudinal axis are assumed.

differential equation, can be written in the form of a harmonic oscillator with varying
amplitude and phase

x(s) = A(s) cos(φ(s) + φ0). (1.13)

In [24] the Courant-Snyder parameterization was introduced with

β(s) =
A(s)2

ε
, (1.14)

α(s) = −1

2

dβ(s)

ds
, (1.15)

γ(s) =
1 + α(s)2

β(s)
. (1.16)

The amplitude A(s) of the particle oscillation around the design orbit is described by
a constant part ε, which is called the emittance, and the β-function β(s), which varies
along the accelerator. This oscillation is referred to as the betatron oscillation and is
illustrated in Fig. 1.6. Using the Courant-Snyder parameters the transfer matrix M
from Eq. (1.11) can be written as

M(s0, s) = √
β(s)
β(s0)

(cos ∆φ+ α(s0) sin ∆φ)
√
β(s)β(s0) sin ∆φ√

1
β(s)β(s0)

[(α(s0)− α(s)) cos ∆φ− (1 + α(s)α(s0)) sin ∆φ]
√

β(s0)
β(s) (cos ∆φ− α(s) sin ∆φ)

 ,

(1.17)

where ∆φ = φ(s)− φ(s0) is the phase advance of the betatron oscillation from s0 to
s. The phase at position s is defined defined as

φ(si) =

∫ si

0

1

β(s)
ds. (1.18)

8



1.1. The Large Hadron Collider
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Figure 1.6.: Particle trajectories computed from Eq. (1.13). The maximum amplitude√
εβ(s) defines an envelope for all particles with emittance ε.

The Courant-Snyder parameters can be propagated using a transfer matrix as well,
whose elements are a combination of the transfer matrix elements from Eq. (1.11)βα

γ

 =

 C2 −2CS S2

−CC ′ CS ′ + SC ′ −SS ′
C ′2 −2C ′S ′ S ′2

 ·
β0α0

γ0

 . (1.19)

Phase space

The solution of the Hill differential equation Eq. (1.13) and its derivative can be
rewritten by removing the phase φ(s) to

γ(s)x(s)2 + 2α(s)x(s)x′(s) + β(s)x(s)′2 = ε, (1.20)

which is defining an ellipse in the phase space for a particle with emittance ε. While
the shape of this ellipse is changing along the accelerator depending on the optical
functions β, α and γ, the area of this ellipse A = πε is invariant. From one turn to an-
other the particle position on the ellipse will change, depending on the phase advance
for one revolution in the accelerator, cf. Fig. 1.7. This phase advance, normalized to
2π, is referred to as the tune Q.

Qx,y =
1

2π

∮
1

βx,y(s)
ds. (1.21)
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√
εβ

−√εβ

√
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↑
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→ x
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Figure 1.7.: The phase space ellipse defines the possible configurations of transverse
position and angle for a particle with emittance ε. It is specified at a
certain location in the accelerator by the local optical functions.

The beam emittance for an ensemble of particles with different single particle emit-
tances is usually defined as the value for which the corresponding phase space ellipse
contains a certain fraction of the particles. For a beam whose transverse particle
density is described by a Gaussian distribution

ρ(x, y) =
1

2πσxσy
exp

(
− x2

2σ2
x

− y2

2σ2
y

)
, (1.22)

with the horizontal and vertical one standard deviation beam size σx,y, the beam
emittance can be defined as

εx,y =
σx,y(s)

2

βx,y(s)
. (1.23)

1.1.3. Perturbations and instabilities

In the previous section the linear beam dynamics were discussed under ideal conditions
of the magnetic fields. In the following, the effect of deviations from design parameters
is described.

Magnetic field imperfections

Higher order magnetic fields, where the field strength depends non-linearly on the
transverse position of the particle, are referred to as non-linear magnetic multipoles.
Purely transverse magnetic fields can be described with the following multipole ex-
pansion [25]

By + iBx = B0

∞∑
n=1

(bn + ian) (x+ iy)n−1 , (1.24)
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1.1. The Large Hadron Collider

with

bn =
1

B0(n− 1)!

∂n−1By

∂xn−1

∣∣∣∣
x=y=0

and an =
1

B0(n− 1)!

∂n−1Bx

∂xn−1

∣∣∣∣
x=y=0

.

The order of the magnetic field is described by n, where n = 1 corresponds to a
dipole, n = 2 to a quadrupole, n = 3 to a sextupole and so forth. If Eq. (1.24) is
evaluated using Eq. (1.5) for a quadrupole field, the only non-zero component is b2.
If the quadrupole is rotated, a2 would become non-zero as well, as in this case the
horizontal field depends additionally on the horizontal particle position. Therefore,
bn are referred to as the normal multipole components and an the skew multipole
components.
Due to imperfections of real magnets, higher order multipoles occur in every acceler-
ator and perturb the beam dynamics.

The limitation for the particle oscillations due to the geometry of the beam pipe
is referred to as the mechanical aperture. Certain oscillation amplitudes would cause
a particle to interact with the material of the beam pipe and result in a loss of this
particle from the beam.
Likewise, non-linear magnetic fields cause certain oscillation amplitudes to be unstable
with the consequence of particle losses. Similar to the mechanical aperture, a dynamic
aperture (DA) can be defined to describe the maximum oscillation amplitude for
which a particle oscillation is stable in the presence of non-linear magnetic fields. Its
value can be estimated with tracking simulations of particles through the accelerator
for many turns1. The study and correction for these non-linear effects is of great
interest for complex machines like the LHC.

β-beating

Deviations from the design β-function occur due to focusing errors. The perturbed
transfer matrix Mp due to a quadrupole error ∆k at position s0 can be derived by
multiplying the unperturbed transfer matrix M , cf. Eq. (1.11), with a matrix that
describes the quadrupole gradient error

Mp(s, s0) =

(
Cp Sp
C ′p S ′p

)
=

(
C S
C ′ S ′

)
·
(

1 0
−∆k 1

)
=

(
C −∆kS S
C ′ −∆kS ′ S ′

)
. (1.25)

The perturbed β-function can be derived from Eq. (1.19) as

βp(s) = β(s0)C
2
p − α(s0)2SpCp + γ(s0)S

2
p . (1.26)

1Computationally extensive tracking studies for 105 to 106 turns still only correspond to a few
seconds to a few minutes of the operation time of the LHC.
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1. Introduction

Using Eqs. (1.17),(1.25) and (1.26) the perturbed β-function can be written as

βp(s) =β(s0)

{√
β(s)

β(s0)
[cosφ+ α(s0) sinφ]−∆k

√
β(s)β(s0) sinφ

}2

− α(s0)2
√
β(s)β(s0) sinφ

·

{√
β(s)

β(s0)
[cosφ+ α(s0) sinφ]−∆k

√
β(s)β(s0) sinφ

}
+ γ(s0)

[√
β(s)β(s0) sinφ

]2
(1.27)

=β(s)
[
cosφ2 +((((

((((
(

2α(s0) cosφ sinφ +���
���

�
α(s0)

2 sinφ2
]

− 2∆kβ(s)β(s0) cosφ sinφ−
((((

((((
((((

(

2∆kβ(s)β(s0)α(s0) sinφ2

+ ∆k2β(s)β(s0)
2 sinφ2 −

((((
((((

(((
2α(s0)β(s) sinφ cosφ

−(((((
((((

(
2α(s0)

2β(s) sinφ2 +
(((

((((
(((

(((

2∆kβ(s)β(s0)α(s0) sinφ2

+ β(s) sinφ2 +((((
((((

(
α(s0)

2β(s) sinφ2 (1.28)
=β(s)

[
cosφ2 + sinφ2

]︸ ︷︷ ︸
=1

−β(s)β(s0)∆k sin(2φ)

+ ∆k2β(s)β(s0)
2 sinφ2. (1.29)

With ∆β(s) = βp(s)− β(s) follows

∆β(s)

β(s)
= −β(s0)∆k sin(2φ) + β(s0)

2∆k2(sinφ)2. (1.30)

In linear order in ∆k and in the general case of more than one error source, the
resulting deviation of the β-function will be a superposition of Eq. (1.30) with different
amplitudes and initial phases for each error source, the β-beating. According to [26]
this oscillation will still propagate with the same phase advance, but with an in general
unknown initial phase and amplitude. The β-beating propagation in regions with
negligible focusing errors can be described by an oscillation with constant amplitude
A, which propagates with twice the betatron oscillation phase advance

∆β(s)

β(s)
= A · sin(2 · φ(s) + φ0). (1.31)

A sudden change of the β-beating amplitude is an indicator for a strong focusing error
at that location. This can be seen very clearly in measurements before optics correc-
tions, for example in Fig. 3.21, where the β-beating amplitude changes significantly
in IR1 and IR5.
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1.1. The Large Hadron Collider

Feed down

Magnetic multipole fields of higher order than quadrupoles can perturb the optics
due to feed down effects. For a sextupole magnet with b3 6= 0, Eq. (1.24) gives

By = B0b3(x
2 + y2), (1.32)

with
b2 =

1

B0

∂By

∂x

∣∣∣∣
x=y=0

= 2xb3|x=y=0 = 0. (1.33)

If this magnet is horizontally displaced by ∆x, the field becomes

By = B0b3((x+ ∆x)2 + y2). (1.34)

This gives a non zero quadrupole component

b2 =
1

B0

∂By

∂x

∣∣∣∣
x=y=0

= 2(x+ ∆x)b3|x=y=0 = 2∆xb3. (1.35)

This effect is called feed down, which makes it necessary to consider misalignments
of higher order magnetic fields for linear optics perturbations.

Dispersion

For the equations of motion Eqs. (1.7) and (1.8) it was assumed that all particles
have the reference momentum p0 as defined by the dipole field in Eq. (1.4). For small
momentum deviations ∆p = p− p0 the equation of motion becomes

x′′(s) +

(
1

r(s)2
− k(s)

)
x(s) =

1

R

∆p

p0
. (1.36)

The solution of the homogeneous part xH(s) of this differential equation has been
shown in the previous section, yielding Eq. (1.9). The periodic solution for the inho-
mogeneous differential equation can be written as

x(s) = xH(s) +D(s)
∆p

p
, (1.37)

with the dispersion function D(s). It describes the additional transverse offset of a
particle due to its momentum deviation. Often, the normalized dispersion is used,
which is defined as

η(s0) =
1√
β(s0)

D(s0) =
1

2 sin(πQ)

∫ so+L

s0

√
β(s)

ρ(s)
cos(φ(s)− φ(s0)− πQ)ds, (1.38)

as it is nearly constant for FODO cell latices [5].

13
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Coupling

So far it was assumed that the horizontal and vertical plane can be treated inde-
pendently. Equation (1.24) shows, that even a small rotational misalignment for a
quadrupole introduces coupled motion in both planes. In this case the transfer matrix
needs to be extended to 

x
x′

y
y′

 =

(
Mx C1

C2 My

)
·


x0
x′0
y0
y′0

 , (1.39)

whereMx,y are the 2× 2 transfer matrices for each plane in the uncoupled case, and
C1,2 the 2 × 2 matrices which describe the coupling effect. Coupling is the origin
of further tune resonances, as described in the following paragraph, and reduces the
DA [27]. Another effect of coupling prevents the fractional part of the two tunes to
approach each other up to equality, i.e. there will be a minimum distance ∆Qmin [28].
This observable can be used to minimize the coupling effects by the use of skew
quadrupoles [29].

Tune resonance

Equation (1.38) for the normalized dispersion already indicates that certain tune
values need to be avoided. For integer tune values, i.e. Q = n, with n ∈ N, η(s)
would become infinitely large, due to sin(πQ) in the denominator. As it describes
the transverse particle offset, no stable motion would exist even for the smallest
momentum deviations.
The same can be shown for the case of magnetic field errors instead of momentum de-
viations [4]. Higher order field errors additionally excite tune resonances described by
mQ = n, with (m,n) ∈ N2, for a resonance ofmth order. As a result of coupling of the
horizontal and vertical plane further resonances can be excited if m1Qx +m2Qy = n
is fulfilled with (m1,m2, n) ∈ N3.
Due to the shared vacuum pipe for both beams around the IPs, bunch encounters
in the vicinity of the IP and especially the head-on collisions lead to a defocusing
of the particles in a bunch, which effectively causes tune shifts, also referred to as
beam-beam tune shifts [30, 31]. The tune working point of an accelerator needs to be
chosen such that the relevant resonance lines are not crossed by the resulting spread
of possible tunes inside a bunch. For the LHC resonances up to the 12th order have
been considered. An intriguing method to describe the resonance lines uses Farey
sequences [32], which have been used to draw the tune diagrams in Fig. 1.8.
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Figure 1.8.: Full tune diagram (left) and a zoom around the LHC working point
(right) for resonances up to the 12th order. The first order (red), second
order (blue) and third order (orange) resonances are highlighted with col-
ors. Higher order resonances are drawn with decreasing line widths and
brighter gray tones.

Chromaticity

Equation (1.6) shows that the focusing strength of a quadrupole depends on the
particle momentum. Hence, a particle with a momentum deviation will experience a
different focusing strength, which will result in a change of the tune for this particle.
Chromaticity describes the overall tune change for the whole accelerator and is defined
as

ξ =
∆Q

∆p/p
=

1

4π

∮
k(s)β(s)ds. (1.40)

The biggest contribution comes from magnets with large quadrupole strength k(s) at
locations where the β-function is large as well. The absolute value of the chromaticity
is desired to be small, as it is the scaling factor to relate a momentum spread to a tune
spread. A large tune spread potentially crosses resonance lines in the tune diagram,
and could therefore cause unwanted beam losses.

The chromaticity can be controlled with sextupole magnets [33], and for the LHC a
small positive value is chosen, as this avoids the head-tail instability [34].
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Figure 1.9.: Layout of the LHC illustrating the eight octants. In each octant the
purpose of its IR is shown. The crossing of beam 1 (blue) and beam 2
(orange) is indicated in the four experimental insertions. For octant 1
the sequence of arcs, dispersion suppression (DS) and matching section
(MS) with the interaction point (IP) in the center, is shown.

1.1.4. Magnet lattice design

The LHC has been placed in a tunnel which was used before for the Large Electron-
Positron Collider (LEP). Its circumference of 27 km was defined by this constraint.
The LHC can be divided into eight octants, and consists of eight bending sections,
the arcs, which are separated by eight straight sections. The straight sections, also
referred to as insertion regions (IRs), serve a specific purpose such as housing an
experimental detector, beam acceleration, beam collimation and beam extraction,
cf. Fig. 1.9. Each of the IRs has different requirements for the beam optics which will
be described in the following paragraphs.

Arcs

The main purpose of the arcs is to bend the beam around the circular design orbit.
The optics design in the arcs needs to weigh up between achieving a high integrated
dipole field, while keeping a small beam size to reduce the aperture requirements in
the dipole magnets [14]. For round beams, i.e. εx ≈ εy, the optimal phase advance per
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Figure 1.10.: β-function and horizontal dispersion in an LHC arc FODO cell. The
top graph indicates the position of dipole (blue) and quadrupole (red)
magnets.

FODO cell for minimizing the beam size in both planes is 90◦ [35]. This defines the
product k·∆s of the quadrupole strength k and distance ∆s between two quadrupoles.
A larger FODO cell is preferred to increase the integrated dipole field in the arc,
however the maximum length is limited by the optics stability in the presence of
field errors [36]. For the LHC a FODO cell length of 107m has been chosen, and
each arc consists of 23 of these cells. The dispersion which is created in the arcs due
to the dipole fields needs to be reduced, as it is unwanted in the insertion regions.
A dispersion suppressor section is connecting each arc with the IRs, which uses the
missing dipole scheme together with individually powered quadrupole magnets to
correct the dispersion [35].

Experimental IRs

Four IRs in the LHC are housing experiments. The two high-luminosity experiments
are the ATLAS detector in IR1 and the Compact Muon Solenoid (CMS) in IR5.
Two medium-luminosity experiments, A Large Ion Collider Experiment (ALICE) and
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Figure 1.11.: β-function and horizontal dispersion in IR1 for a β∗ of 40 cm. The top
graph indicates the position of quadrupole magnets and their integrated
field gradient (K1L). The IP is surrounded by the final focusing triplet
magnets.

Large Hadron Collider beauty (LHCb), are located in IR2 and IR8. The luminosity
for each experiment depends according to Eq. (1.1) on the transverse beam size at
the IP, which is related to the β-function at this point (β∗), cf. Eq. (1.23). All
experimental IRs share the requirement on the optics of allowing for different β∗
without changing the overall phase advance for the IR. Characteristic for the optics
with low β-functions at the IPs are the large β-functions at the three final focusing
quadrupole magnets (triplet), cf. Fig. 1.11. Close to the IP no beam focusing can be
performed as this space is occupied by the detector. From Eq. (1.19) one can derive
the evolution of the β-function around the IP, where k(s) = 0, r(s) =∞ and α ≡ 0,
as it is the location of the minimum β-function

β(s) = β∗ +
s2

β∗
. (1.41)
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1.1. The Large Hadron Collider

For a distance from the IP to the first quadrupole (L∗) of 23m, as in the LHC, and
β∗ = 0.4m the approximated β-function at the beginning of the quadrupole becomes
β(L∗) = 1322m. Since the first quadrupole focuses only in one plane and defocuses in
the other one, even larger β-functions occur in the following quadrupole of the triplet.
These magnets are therefore prone for introducing a large β-beating. Furthermore,
the minimum β∗ is limited by the more rapidly increasing β-functions and thereby
larger transverse beam sizes in the triplet magnets.

Non-experimental IRs

IR3 and IR7 comprise the collimation system for beam cleaning. The collimation
system uses a two-step approach. In IR3 the momentum cleaning takes place, en-
suring that a certain momentum deviation is not exceeded by the beam particles.
Therefore, it is desired to have a large normalized dispersion ηx = Dx/

√
βx, so that

the transverse offset of the particles is dominated by their momentum deviation [37].
Particles exceeding a certain transverse offset are then intercepted by the collima-
tors [37]. In IR7 the betatron collimation is done, where particles with too large
betatron oscillation amplitudes are intercepted. Due to similar consideration, in this
case a very low normalized dispersion is needed at the collimator positions. Further-
more, specific phase advances between two collimators are crucial for the efficiency of
this system [38, 39].

IR4 includes the rf cavities for beam acceleration. Inside the cavities a small disper-
sion is desired.

In IR6 the extraction of the beam at the end of a physics fill, or due to unexpected
problems or instabilities is performed. It includes a larger drift space between the
extraction kicker and septum magnet, in order to reduce the required strengths of
these magnets. This results in larger β-functions and constrains the aperture of the
system elements [40].

1.1.5. Operational cycle

In this section the operational cycle of the LHC is described with a focus on the
different optics that are used in each stage. A typical cycle is illustrated in Fig. 1.12.
Particles are injected into the LHC at an energy of Einj = 450GeV. The optics during
injection have a β∗ in the experimental IRs of (10–11)m. Furthermore, the tune
working point is different from the one described in Fig. 1.8, with the fractional tunes
Qx = 0.28 and Qy = 0.31. Tracking studies have shown that these tunes improve the
DA at injection [41]. Moreover, it reduces the effect of coupling errors [42].
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Figure 1.12.: Illustration of the LHC operational cycle.

Table 1.1.: Top energy over time for the LHC.

Year Etop (TeV)

up to 2011 3.5
2012 4.0
from 2015 6.5

During the energy ramp particles will be accelerated, while the gradients of the mag-
nets are increased, which ensures the same beam orbit and focusing. The maximum
particle energy, also referred to as top energy, has increased over the years, as shown
in Table 1.1.
After the energy ramp, the optics are the same as at injection. This state is often
referred to as flattop.
In a next step the β-functions at the experimental IPs are reduced, which is called the
β∗ squeeze. This is necessary to increase the luminosity for collisions, cf. Eq. (1.1).
After a change to the fractional tunes for collision of Qx = 0.31 and Qy = 0.32, and
after final adjustments, stable beams will be declared.
At the end of a physics fill, the beam will be extracted, and the magnets will be
ramped down to prepare for the next cycle.

1.2. Optics measurement techniques

Deviations from the model lattice, which arise from imperfection of magnetic fields
and misalignment of the elements, have potentially negative effects for the acceler-
ator performance. Equation (1.30) shows how a quadrupole field error results in an
oscillating deviation of the β-function, a β-beating wave. Accelerators with strong
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1.2. Optics measurement techniques

focusing magnets, as for example particle colliders which need to achieve small beam
sizes in the interaction points, cf. Fig. 1.11, will experience larger deviations of the
β-function, due to the large β-functions at the focusing quadrupoles. The maximum
tolerable β-beating for the LHC due to machine imperfections is shown in Table 1.2.
Measurements of the LHC optics before corrections show β-beating values of up to

Table 1.2.: Maximum tolerable β-beating due to machine imperfections as specified
in [43].

Optics Peak ∆β/β (%)

horizontal vertical

Injection 14 16
Collision 15 19

100%, cf. Appendix B.2. The lower the β∗ is, which is one way to increase the lumi-
nosity, cf. Eq. (1.1), the larger the β-beating due to machine imperfections becomes.
It is therefore crucial for the operation of the LHC, to measure and correct the optics.
In the following chapters, three optics measurement techniques, which are relevant for
the context of this thesis, will be introduced. A more detailed review of the different
optics measurement methods is given in [44].

1.2.1. Turn-by-turn orbit

Turn-by-turn (TbT) optics measurements are based on probing the betatron oscil-
lation with the measurement of the transverse beam center position for many con-
secutive turns. The betatron oscillation for single particles, described by Eq. (1.13),
is difficult to measure, as it is superposed by the oscillation of other particles in the
beam with different initial phases. Therefore, the whole beam needs to be displaced
in the phase space, so that the beam center is performing betatron oscillations. The
oscillations are excited either by a single turn dipole field from a kicker magnet, or a
continuous excitation using an alternating current (ac) dipole [45]. The latter has the
advantage of adiabatically increasing and decreasing the excitation amplitude, which
prevents to increase the beam emittance [46]. The TbT data are recorded using beam
position monitors (BPMs) [47], of which the LHC is equipped with more than 500 per
plane and per beam [48]. TbT measurements are very fast, as the beam excitation
and data recording takes only a few seconds, and is done in parallel for all BPMs.
The large amount of BPMs allows furthermore for an efficient noise reduction of
the TbT data, using a singular value decomposition (SVD) technique for filtering
uncorrelated signals [49].
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β-function from phase

The method to derive β-functions from the phase advance of the betatron oscillation
has been developed at LEP [50, 51]. According to Eqs. (1.13) and (1.21), the TbT
data which is recorded at a specific location by a BPM is of the form

xi = A cos(2πQi+ φ0) + xCO, (1.42)

where i is the turn number and xCO the closed orbit offset at this position. The two
sums

C =
N−1∑
i=0

xi cos(2πQi) and S =
N−1∑
i=0

xi sin(2πQi), (1.43)

can be approximated for large number of turns to

C =
AN

2
cos(φ0) and S = −AN

2
sin(φ0). (1.44)

This allows to derive the phase of the betatron oscillation at the BPM position

φ0 = − arctan

(
S

C

)
. (1.45)

Hence, the measurement of the phase is not influenced by an offset of the beam or a
wrong excitation amplitude due to BPM calibration errors. The phase of the betatron
oscillation can be derived by this harmonic analysis at every BPM position. With the
phase advances and the model transfer matrix in between three BPMs, the β-function
can be calculated at the position of the three BPMs [50, 51]. The Courant Snyder
parameters βi and αi at the positions si are obtained with

βi =
εijk cot(φi,j) + εikj cot(φi,k)

εijk
M11(i,j)

M12(i,j)
+ εikj

M11(i,k)

M12(i,k)

(1.46)

and

αi =
εijk

M11(i,k)

M12(i,k)
cot(φi,j) + εikj

M11(i,j)

M12(i,j)
cot(φi,k)

εijk
M11(i,j)

M12(i,j)
+ εikj

M11(i,k)

M12(i,k)

, (1.47)

where φi,j = φj − φi is the phase advance and Mmn(i,j) are the model transfer matrix
elements from si to sj, cf. Fig. 1.13. εijk is the Levi-Civita symbol which allows for
a compact notation of the three cases of deriving the Courant Snyder parameters at
the different BPMs. No summation over equal indices is implied. In case of using
an ac dipole for the beam excitation, the forced oscillation will differ from the free
oscillation [52, 53]. The effect on the analysis of the β-function can be corrected by
introducing a quadrupole error in the optics model at the ac dipole position [54].
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Figure 1.13.: Illustration of the β-function measurement from phase. The phase ad-
vances φi,j in between three positions si are needed to derive the β-
functions at those positions.

β-function from amplitude

The β-function can furthermore be derived from the amplitude of the excited betatron
oscillation. The amplitude from Eq. (1.13) can be written as

A(s) =
√

2Jβ(s), (1.48)

with the action J , which depends on the strength of the beam excitation. The equa-
tion is similar to Eq. (1.14) for the single particle emittance. The action, which is an
invariant, can be computed by evaluating the following average around the ring

2J =

〈
A(s)2

βm(s)

〉
, (1.49)

using the model β-functions βm(s). This introduces a systematic error as the real
average β-function might deviate from the model. For the LHC at injection optics
this effect is below 0.5% for an rms β-beating up to 12% [55]. For collision optics
with a β∗ of 40 cm however this effect introduces a systematic error of 4% for the
same rms β-beating, cf. Fig. 1.14.
Additionally this method relies on an accurate calibration of the BPMs. According
to Eq. (1.48), the uncertainty of the derived β-function would be twice as large as a
linear scaling uncertainty at the BPM, i.e. a 1% uncertainty in the BPM calibration
would result in a 2% uncertainty of the β-function.

Further derivable quantities

TbT measurements are very versatile, as they allow to derive many more quantities.
This includes e.g. coupling [56–58] or the tune change for larger oscillation amplitudes
(detuning with amplitude) [59, 60]. By performing the measurements for different rf
settings of the accelerating cavities, off momentum effects can be probed. Dispersion
can be computed by observing the orbit change due to the induced momentum change
according to Eq. (1.37). Furthermore, chromaticity, chromatic coupling [61, 62] and
chromatic β-functions [63, 64] can be derived.

23



1. Introduction

0 2 4 6 8 10 12 14
rms ∆β/β (%)

−4

−2

0

2

4

6

8
∆
β

av
er

ag
e/
β

av
er

ag
e,

m
od

el
(%

)

horizontal
vertical

Figure 1.14.: The relative deviation of the average β-function from the model value
is shown for different lattices where quadrupole errors were introduced
for the LHC optics with β∗ = 40 cm. The data has been binned in steps
of 1% according to the rms β-beating.

1.2.2. K-modulation

A method to derive the β-function at the position of quadrupole magnets varies their
integrated field, while observing the resulting tune change. It is called k-modulation
as the quadrupole strength k from Eq. (1.6) is varied.
The expected tune change can be computed by multiplying the transfer matrix for
a complete revolution in the accelerator with a transfer matrix which describes the
perturbation of the quadrupole field changes, cf. [29]. Solving this equation for the
β-function yields

βx,y = ± 2

∆k
[cot(2πQx,y) {1− cos(2π∆Qx,y)}+ sin(2π∆Qx,y)] , (1.50)

with the tune change ∆Qx,y for a quadrupole strength change ∆k. The ± sign
differentiates the solution for the horizontal and vertical plane. For small ∆Qx,y and
for an unperturbed tune Qx,y which is far from an integer or half integer value the
equation can be approximated to

βx,y ≈ ±4π
∆Q

∆k
. (1.51)
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1.3. Optics correction methods

K-modulation measurements can only be performed at individually powered quad-
rupole magnets. In the LHC, these measurements are performed for example at the
final focusing triplet for the computation of the β∗ [65, 66].

1.2.3. LOCO

Small dipole corrector magnets can be used to introduce deflection angles Θi at the
position si, which results in a deviation of the closed orbit [24]

∆x(s) =

√
β(s)

2 sin(πQ)
Θi

√
β(si) cos(φ(s)− φ(si)− πQ). (1.52)

An orbit response matrix can be constructed for every available corrector dipole,
with the measured closed orbit deviation at every BPM position. Linear optics from
closed orbit (LOCO) allows to fit for example quadrupole gradient changes in an
accelerator model by minimizing the deviations of the measured and the model orbit
response matrices [67]. LOCO is the standard method for optics measurements at
many storage rings [68–73]. LOCO is used at the LHC as well, especially for transfer
lines and injection tests [74]. For an optics fit of the whole machine however this
method becomes very time-consuming due to the large size of the LHC [75].

1.3. Optics correction methods

Optics corrections for the LHC are performed in two steps. First, strong local error
sources in the IRs are corrected, which come mainly from the final focusing triplet
magnets. In a second iteration global corrections are computed using a response
matrix approach. These methods are described in the following chapters.

1.3.1. Correction of strong local error sources

The segment-by-segment (SbS) technique was developed at the LHC for the computa-
tion of optics corrections for local, strong error sources [76]. The concept is to model
the optics in a part of the accelerator in between two BPM locations, and is usually
done for the different IRs. The optical functions which were derived from measured
TbT data at the BPMs are the start parameters. The propagation inside the seg-
ment is done by using the optics modeling tool MAD-X [77]. For optics corrections
the simulated phase advances between BPMs are compared to the measured ones,
as they are more directly observable than e.g. the β-function. Possible correction
settings aim at eliminating the deviations in the phase advance, which is illustrated
in Fig. 1.15. This method has been very successful at finding local optics corrections

25



1. Introduction

23100 23300 23500 23700 23900
s (m)

-2
-1
0

∆
φ
y

(2
π
·1

0−
3 )

Model
Measurement

K
1L

0
2
4
6

∆
φ
x

(2
π
·1

0−
3 )

Figure 1.15.: The simulated measurement of the phase advance deviation between
consecutive BPMs is shown for one IR. On the top of the plot the po-
sition of quadrupole magnets is illustrated with the two triplets around
the center where the IP is. An artificial error in a magnet results in a pe-
riodic deviation of the phase advances starting at that magnet position
(red line). The gradients in the lattice model in MAD-X are adjusted to
reproduce the observed deviations (black line). Applying these gradients
with negative sign will correct these deviations.

for the LHC, where it was once even able to identify a cable swap between the two
beam apertures in a quadrupole which caused an unexpectedly large β-beating [64,
78]. SbS was also successfully tested at the Relativistic Heavy Ion Collider (RHIC)
and is fully implemented there [79].
To facilitate finding optics correction, an automatic routine has been developed to fit
the measured and simulated phase advances [80, 81].
Another purpose of SbS is the propagation of optical functions from the BPM posi-
tions to other lattice elements. This allows for example to derive the β∗. It has also
been used to propagate the optical functions to beam wire scanners for an emittance
study [82] and to collimators for a comparison to beam sizes as they are measured in
beam-based collimator alignment [83]. These studies require very precisely measured
β-functions and improvements to SbS were required to comply with these demands.
Previously, the uncertainties in SbS were only roughly estimated by running two
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1.3. Optics correction methods

MAD-X simulations where the start parameters were changed once by adding their
uncertainty and once by subtracting it. This is also more time consuming than the
evaluation of analytic equations, since more MAD-X runs are necessary. For a tool
which is used online during optics measurements, time efficiency is very important
to ensure an efficient use of the beam time. An improved error propagation for the
phase advance, the β- and the α-function and for coupling was implemented as shown
in [84].

1.3.2. Effective global corrections

Global corrections are computed using a response matrix method. Based on an ideal
model, the response matrix R which relates the change of quadrupole gradients to a
deviation of the optics is constructed using MAD-X simulations [85]

R∆
⇀

k = (∆
⇀

φ,∆
⇀
η,∆Qx,∆Qy). (1.53)

Again, instead of the β-function, the phase advances are used, as they are a more
direct observable. Based on the measured optics parameters, the quadrupole strengths
of the correction

⇀

kcorr can be computed as

∆
⇀

kcorr = −R−1(ωφ∆
⇀

φmeas, ωD∆
⇀
ηmeas, ωQ∆Qx,meas, ωQ∆Qy,meas), (1.54)

where R−1 is the generalized inverse of the response matrix and ωi weights which can
be assigned to the different parameters.
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2. N -BPM method

The N -BPM method is based on the calculation of β-functions from the phase in-
formation of TbT orbit measurements, recorded at BPMs, which was introduced in
Section 1.2.1. The accuracy of this method depends on the knowledge of the op-
tics model, the precision of the measured phase, and also on the value of the phase
advances between the BPMs. From Eq. (1.46) it can be seen that, for example, a
phase advance between two BPMs should not be close to a multiple of π, as the
cotangent becomes infinite at those points. Figure 2.1 shows the propagated error of
the β-function for a specific location in the LHC, depending on the phase advances
between the three BPMs.
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Figure 2.1.: Expected error of a measured β-function at position s1, depending on
the phase advances to the other two BPMs. The six used phase ad-
vances (three BPM combinations each, for the horizontal and vertical
plane) for a BPM position in IR4 from the neighboring BPM method
are indicated by triangles. When an increased range of 7 BPM is used
(N -BPM method), 15 different combinations of phase advances are pos-
sible per plane, including the ones that are indicated by triangles. Six
better suited combinations from the range of 7-BPMs are indicated by
circles.
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2. N -BPM method

From Eq. (1.46) one can derive two conditions for the optimal phase advances. The
phase advance from the probed BPM (i) to the other two (j,k) should be

φi,j =
π

4
+ n1

π

2
,

φi,k =
π

4
+ (2n2 + 1− n1)

π

2
,

(n1, n2) ∈ Z2. (2.1)

The method that has been used so far uses three neighboring BPMs for the calculation
of the β-functions at these three BPM positions. In the LHC arcs, cf. Section 1.1.4,
where in general the phase advance between consecutive BPMs is about π/4, this
method is already close to the optimum configuration, when probing the middle
BPM. However, in the case that the probed BPM is not in the middle of the other
two BPMs, the optimum would be to skip the farther BPM and use instead the next
following BPM, as shown in Fig. 2.2.

φ1,3

φ1,2

Figure 2.2.: In the arcs the phase advance between two consecutive BPMs is about
π/4. If the blue BPM is probed, it is better to skip the grey BPM and
use the two red BPMs. The resulting phase advances are approximately
φ1,2 = π/4 and φ1,3 = 3π/4, which is the optimum according to Eq. (2.1).

In the IRs, the phase advances between BPMs can be very different, as the optics do
not follow the regular FODO structure of the arcs in order to fulfill other constraints,
cf. Section 1.1.4. For example in the ATLAS and CMS IRs, where the β-function
reaches very high values, the phase advances between consecutive BPMs close to the
IPs may only be a few degrees. If in this case only neighboring BPMs are used, this
results in large uncertainties, which prevented β∗ measurements at the IPs in 2012
[64].
An improved algorithm is developed here, which allows to use more BPM combina-
tions from a larger range of BPMs. This makes it possible to include BPM com-
binations with better phase advances and also increases the amount of information
that is used in the measurement of the β-function. A range of N BPMs is chosen, as
illustrated in Fig. 2.3. The amount m of possible combinations of three BPMs, out
of N BPMs with one fixed BPM, is

m =
(N − 1)(N − 2)

2
. (2.2)
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s1 s2 sN−1 sNsp

Figure 2.3.: In the N -BPM method, N BPMs at position s1 to sN are used to derive
the β-function at a probed BPM at position sp. The probed BPM is
usually set at the center of the N BPMs, as optics errors decrease the
gain of using further BPMs in both directions.

To find the best estimate of the real β-function out of the β-functions βi, which are
inferred from the m combinations of three BPMs, a least squares minimization is
performed. It considers the residuals βi − β̂, where β̂ is the estimate of the real
β-function. The least square method minimizes the squared residuals, which can be
weighted if the individual uncertainties σi of the βi are known

S(β̂) =
(βi − β̂)2

σ2
i

(2.3)

The more general case which includes correlations between the different βi is described
in [86], and the function to minimize can be written as

S(β̂) =
m∑
i=1

m∑
j=1

(βi − β̂)V −1ij (βj − β̂), (2.4)

where Vij are the elements of the covariance matrix for the different βi.
Therefore, the minimization of S(β̂) is considering the individual uncertainties and
correlations of the βi from the m different BPM combinations, which allows for a
better estimate of the β-function. The measured β-function at the probed BPM
position is a weighted average of the m β-functions

β =
m∑
i=1

wiβi. (2.5)

From the minimization of Eq. (2.4) one can derive the weights

wi =

∑m
k=1 V

−1
ik∑m

k=1

∑m
j=1 V

−1
jk

. (2.6)

This equation replaces the simple average introduced in [76]. The uncertainty for this
measurement is

σ2
β =

m∑
k=1

m∑
j=1

wjwkVjk. (2.7)
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2. N -BPM method

The covariance matrix V is an element-wise sum of the covariance matrices for the
systematic and statistical errors [87]

Vij = Vij,stat + Vij,syst. (2.8)

For this method it is fundamental to have a precise knowledge of these covariance
matrices, which will be derived in the following sections.

2.1. Statistical uncertainties
If Eq. (1.46) is used to derive the β-function, two phase advances between BPMs are
used (φi,j, φi,k) in which the BPM (i) appears twice. This introduces a correlation
which must be regarded in the error propagation, since the same phase measurement
at BPM (i) was used in the calculation of both phase advances. More correlations
will occur when the BPM combinations to calculate the different βi in Eq. (1.14) have
common BPMs, which all contribute to the covariance matrix Vstat.
The error of the measured phase advance can be derived from the standard deviation
of n measurements

σφi,j = t(n)

√√√√ 1

n− 1

n∑
k=1

(
φi,j − φi,j,(k)

)2
, (2.9)

where φi,j is the average phase advance from BPM (i) to (j) and t(n) is the t value
correction from the Student’s t distribution, which compensates the underestimation
of the uncertainty for a small sample size. During the LHC Run I the error was
calculated from a normal standard deviation without the t value correction and by
dividing the sum by n instead of (n-1). This has been changed, since the mean value
of the phase advance is also obtained from the measurements, and there are only (n-1)
degrees of freedom left for the calculation of the standard deviation. Table 2.1 shows
t(n) for different amount of measurements, which shows that this correction is needed,
since due to constraints on the available beam time, the amount of measurements is
always limited.
The correlation between two phase advances which have one BPM in common, φi,j
and φi,k, depends on the uncertainty of the single phase φi at the common BPM.
The error of the single phase φi is not known, because it cannot be compared among
the measurement results, since its value is arbitrary and may vary. One can use the
ansatz σφ ∼ β−

1
2 as shown in [50] to derive the single phase uncertainties φi from the

uncertainty of the phase advance φi,j, based on the β-functions at the two locations
si and sj

σ2
φi

= σ2
φi,j

(
1 +

βi
βj

)−1
. (2.10)
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2.1. Statistical uncertainties

Table 2.1.: t value correction for a confidence interval of 68.3%.

Number of measurements t(n)

2 1.84
3 1.32
4 1.20
5 1.15
10 1.06

The correlation coefficient between two phase advances φi,j and φi,k, with j 6= k, can
be derived by transforming the covariance matrix of the single phase uncertainties

U =

σ2
φi

0 0
0 σ2

φj
0

0 0 σ2
φk

 , (2.11)

to a covariance matrix of the phase advances by using the transformation matrix

T1 =



∂φi,j
∂φi

∂φi,k
∂φi

∂φi,j
∂φj

∂φi,k
∂φj

∂φi,j
∂φk

∂φi,k
∂φk


. (2.12)

With the transformation T T
1 UT1 one gets the covariance matrix for the two phase

advances φi,j and φi,k in the standard form

T T
1 UT1 =

(
σ2
φi,j

ρ(φi,j, φi,k)σφi,jσφi,k
ρ(φi,j, φi,k)σφi,jσφi,k σ2

φi,k

)
, (2.13)

from which the correlation coefficient can be extracted as

ρ(φi,j, φi,k) =
∂φi,j
∂φi

∂φi,k
∂φi

σ2
φi

σφi,jσφi,k
. (2.14)

Let the phase at the probed BPM be φ1, all other phase advances can be calculated
with respect to this BPM. The elements of the covariance matrix for the different
phase advances φ1,2 to φ1,n are defined by

Ci−1,j−1 = ρ(φ1,i, φ1,j)σφ1,iσφ1,j ,

i ≥ 2, j ≥ 2,
(2.15)
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which is σ2
φ1,i

when i = j and ±σ2
φ1

elsewhere. Using the transformation matrix

T2 =


∂β1
∂φ1,2

· · · ∂βm
∂φ1,2

... . . . ...
∂β1
∂φ1,n

· · · ∂βm
∂φ1,n

 , (2.16)

the covariance matrix for the phases can be transformed to a covariance matrix for the
m β-functions (Vstat) which are calculated from using different BPM combinations,

Vstat = T T
2 CT2. (2.17)

This covariance matrix is to be used in Eq. (2.8).
As a test of the correct implementation of the equations for the statistical errors in
the optics analysis code, simulations of the optics measurement have been performed.
TbT measurements were simulated for every BPM positions with enhanced noise and
without SVD cleaning. This has been done to create 500 sets of BPM TbT data,
which corresponds to 500 measurements.
Since in contrast to a real measurement, in this simulation the phase at each BPM
is known in absolute values, it is possible to derive the uncertainty of the phase
for each BPM position from its variation. As the uncertainties of the single phases
and also of the phase advances are known, they were used directly in Eq. (2.14)
to create the covariance matrix. The afore described error propagation was applied
and the β-function derived according to Eq. (1.14), with its uncertainty according
to Eq. (2.7). Systematic errors are neglected here, as they are not depending on the
amount of measurements.
The distribution of the β-function in these 500 data sets has been fitted to a Gaussian
distribution for each BPM. The value of the σ from the fit was then compared to
calculated uncertainties of the β-function using Eq. (2.7), cf. Fig. 2.4. The calculated
values of the uncertainty agree well to the expected value from the variations of the
β-function, which is not the case for the old equations for the error calculation, where
the error bars were too pessimistic. In this plot one can furthermore see, that most
of the points are located at two levels. This is due to the fact, that the BPMs in the
arcs, where most BPMs are, alternate between a β-function of 30m and 170m, and
the phase can be measured with a higher relative precision at a BPM with a larger
β-function, due to the larger oscillation amplitude.

2.1.1. Uncertainty of the calculated error bars

The study of the uncertainty of the error bar gives an important insight in the ac-
curacy of the measurement method. Simulated TbT data with the same noise level
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Figure 2.4.: Relative uncertainty of the β-function derived in the error propagation
compared to a fit of the variation of calculated β-functions.

as in Section 2.1 were used for this analysis. Several measurement files are now used
together for one analysis, which implies that the error of the phase advance is now to
be calculated from Eq. (2.9), by using the standard deviation of the phase advances
from the different measurements. This was done for the cases of using two to ten mea-
surement files together, and repeated for the 500 measurement files. The deviations
of the calculated error bar of the β-function to the uncertainty, which is calculated
from the known phase uncertainty, is fitted with a Gaussian distribution. The σ of
this fit is shown in Fig. 2.5 as a distribution for all BPMs. This plot shows that the
uncertainty of the error bar reaches up to 60%, if only three measurements are used.
Significantly more precise is the error bar when five measurements are used, where
its uncertainty varies from (20–35)%. This number further decreases when more
measurements are used. For ten measurements the uncertainty is only at (10–22)%.
The mean value of fitting the deviation of the error bar to the real uncertainty with
a Gaussian distribution shows, if either the error bar is biased towards smaller or
larger values, which is shown in Fig. 2.6. One can see in this plot, that for three
measurements the distribution is not centered around zero, but at a positive value,
which means that there is tendency to overestimate the error bar. Additionally, the
width of the distribution is rather large when using less than five measurements. This
also shows that the t value correction is useful, as without it the error bars would be
biased to underestimate the real error.
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Figure 2.5.: The distribution shows for all BPMs the width of the deviation of the
derived uncertainty of the β-function compared to the calculated error
bar from the known phase uncertainty.
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Figure 2.6.: The distribution shows for all BPMs the mean of the deviation of the
derived uncertainty of the β-function compared to the calculated error
bar from the known phase uncertainty.

36



2.2. Accuracy of the transfer matrix model

2.2. Accuracy of the transfer matrix model
A precise knowledge of the model transfer matrix is essential for the computation
of the β-function in Eq. (1.46). In this section improvements to the nominal optics
model are studied, based on known systematic errors.

Dipole b2 errors

Due to imperfections, every dipole magnet has a non-zero quadrupole field component
(b2), cf. Eq. (1.24). The 1232 main dipoles of the LHC have additionally a geometric
b2 component, due to the design with two apertures for the two beams (twin aperture),
which is of opposite sign in both apertures and changes with the main field strength.
The distribution of the measured b2 component is shown in Fig. 2.7. The following
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Figure 2.7.: Distribution of the b2 component for the LHC main dipole magnets, sep-
arately for both apertures, at 450GeV and 6.5TeV.

equation allows to analytically estimate the deviation of the measured β-function up
to the first order of quadrupole field errors ∆k, and has been derived in [88].

∆β

β
=

h13 − h12
cot ∆φ12 − cot ∆φ13

, (2.18)

with

hij = ∓
∑

i<w<j βw∆kw sin2 ∆φwj

sin2 ∆φij
, (2.19)
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Figure 2.8.: The β-function is derived at the BPM with phase φ1. The phase advances
to two other BPMs are used, with φ12 = φ2 − φ1 and φ13 = φ3 − φ1.
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Figure 2.9.: Illustration of the betatron phase deviation due to the dipole b2 compo-
nents and after an arc-by-arc correction with MQT magnets. The slope
of the phase deviation changes when the beam changes from the inner to
the outer aperture after an interaction point.

gives the relative deviation of the measured β-function due to quadrupole field errors
∆kw, which are in between three BPMs with the phase advances φ12 and φ13, as
shown in Fig. 2.8. For an LHC arc cell, cf. Fig. 1.10, the phase advance between
consecutive BPMs is π/4, i.e. φ12 = π/4 and φ13 = π/2. The first main dipole (MB)
magnet in this cell has a horizontal β-function of 133m in its center, and a phase
advance of 0.023π from the first BPM. In this case Eq. (2.18) gives a relative error
of the measured β-function of 5 · 10−5, which by its own is negligible. However, in
between two BPMs there are three MBs magnets, and this number increases if larger
amounts of BPMs are used, e.g. for a range of eleven BPMs, 30 MB magnets are
involved. The effect of the b2 component will add up as the b2 component for one
aperture systematically perturb the optics in the same direction.
Moreover, the b2 component of MBmagnets cause a phase shift, which is corrected arc-
by-arc using tune trim quadrupole (MQT) magnets, as shown in Fig. 2.9. A typical
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Figure 2.10.: Relative deviation of the computed β-function for a measurement of
beam 1 at a β∗ of 80 cm, between using either a model with the nominal
setting of MQT magnets, or the real setting of the magnets during the
measurement.

correction strength of an MQT magnet at 450GeV, will cause a relative deviation
of the measured β-function of 1.5% according to Eq. (2.18). These error sources
deteriorate the measurement of the β-function in a non-negligible way. Therefore, the
measured values for the dipole b2 component and the correction with MQT magnets
are included in the optics model, which is used to derive the β-function.

MQT magnet settings

MQT magnets are not only used for the correction of the dipole b2 errors as shown the
previous paragraph, but also to set a specific tune value of the machine. For a specific
measurement, the deviations of the measured β-functions between using the nominal
setting of the MQT magnets or the real setting during that measurement are shown in
Fig. 2.10. Deviations are only visible around the positions of MQT magnets, and the
absolute values are below 3% in the horizontal and 1% in the vertical plane, with the
exceptions of one 4.5% deviation in the horizontal and one −1.5% deviation in the
vertical plane. It is therefore necessary to consider the real settings of these magnets
as well. The optics analysis code has been improved to allow for an extraction of the
MQT magnet setting for a specific time, so that these can be included in the optics
model for deriving the β-functions.
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2. N -BPM method

2.3. Assessment of significant systematic errors
In this section, significant systematic errors which deteriorate the measurement of
the β-function are evaluated and a covariance matrix for the systematic errors Vsyst
is derived, which is to be used in Eq. 2.8. The following uncertainties are considered
in the estimate of the systematic error: (i) the uncertainty of the b2 component of
the dipole magnets, (ii) an individual uncertainty of the gradient for each quadru-
pole magnet family, (iii) a Gaussian distributed misalignment uncertainty of 1mm
along the longitudinal axis for quadrupole magnets and (iv) a Gaussian distributed
misalignment uncertainty of 1mm in the transverse plane for sextupole magnets.
Sextupole magnets perturb the linear optics if they are transversely displaced, as in
this case they would have a non-zero b2 component, cf. Eq. (1.24). The gradient
uncertainties for the different quadrupole families have been derived from magnetic
measurements [89, 90] and are shown in Table 2.2. The influence of deviations in the

Table 2.2.: Gradient errors of different quadrupole magnet families for the systematic
error calculation.

Quadrupole Error relative to the
family main field (10−4)

450GeV 6.5TeV

MQ 14 18
MQM 13 12
MQY 11 8
MQX 3 4
MQW 33 15
MQT 72 75

optics model to the measurement of the β-function can be determined by introducing
errors in the optics model following a Monte-Carlo approach. The β-function is
then calculated using the phase advances from the perturbed model and the transfer
matrix elements from the ideal model. The variation of the β-functions corresponds
to the error for every given set of BPM combinations. This has been done for 103

cases where the errors have been varied following Gaussian distributions, truncated
at three standard deviations. From this Monte-Carlo simulation one can derive the
covariance matrix of the systematic errors Vsyst. In Table 2.3 the average systematic
error at arc BPMs is shown for different BPM combinations. In this table several
combinations of three BPMs have been omitted, since they show the same results
due to the symmetry and regular distribution of BPMs in the arcs. The minimum
systematic error is around 0.4% when neighboring BPMs are used. It increases to
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2.3. Assessment of significant systematic errors

(0.9–15.0)% if one allows to skip one BPM, i.e. for a range of 7 BPM. A range of
9 BPMs is omitted in this table, as the systematic error would be very large, since
the phase advance to the fourth BPM left or right of the probed BPM is around π.
Although the systematic errors increase for larger ranges of BPMs, for a range of 11
BPMs some combinations of three BPMs can be found with uncertainties below 2%.

Table 2.3.: Average systematic error of the measured horizontal (H) and vertical (V)
β-function at arc BPMs for using different BPM combinations. The phase
advance between consecutive BPMs is approximately π/4.

BPM combination Systematic error (%)

: probed, : used, : unused H V

0.5 0.4
0.5 0.4
1.2 0.9
7.5 15.4

1.9 1.3
1.2 0.9
8.3 15.0
2.2 2.1
1.7 1.4

77.3 286.4
1.4 1.3
2.1 2.1
6.3 16.5
1.1 1.1
3.2 2.0
5.1 10.8
7.9 295.5
1.9 1.5
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2. N -BPM method

2.4. Evaluation of the measurement precision and
accuracy

The N -BPM method allows in general to use the measured TbT data of all avail-
able BPM. However, the farther away two BPMs are, the larger become systematic
uncertainties of the transfer matrix elements, and the improvement of the measure-
ment uncertainty will therefore become smaller. Furthermore, the computation of the
covariance matrix is more time consuming for larger ranges of BPMs. The gain in
precision and accuracy was studied with simulations for a range of up to 13 BPMs.
Furthermore, instead of using all m BPM combinations, cf. Eq. (2.2), the simulations
were done separately for different amount j of BPM combinations, with 0 < j ≤ m.
The BPM combinations were sorted according to the expected error for the β-function
based on their model phase advances. The BPM combinations which are used for the
computation of the β-function are drawn from this sorted list starting with the com-
binations with the best phase advances.
Another simulation was performed with a sample size of 103, where random model
uncertainties were applied according to the previous section, as well as a Gaussian
noise of 200 µm to the BPM data for an oscillation amplitude of 1mm in the arcs.
From the fit of a Gaussian distribution to the variation of the derived β-functions at
each BPM one can derive the following two parameters, which describe the uncertainty
of the measurement. The mean value of the distribution of the β-functions is the
accuracy, as it shows a bias towards larger or smaller results. The width of the
distribution is the precision, which describes how large the spread is of the results,
cf. Fig. 2.11. The average accuracy for all BPMs is always below 0.3% which shows
that the bias towards a wrong result is very low, cf. Fig 2.12. The improvement for
the average precision is shown in Fig. 2.13. The gain in precision is very little when
increasing the BPM range from 11 to 13. The amount of BPM combinations increase
the precision noticeably up to using six BPMs and seem to saturate after that. For
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Figure 2.11.: Illustration of the precision and accuracy.
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Figure 2.12.: Accuracy of the derived β-functions from simulations for different ranges
of BPMs and different amount of BPM combinations. The oscillation
amplitude was 1mm in the arcs and a Gaussian noise of 200 µm was
applied.
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Figure 2.13.: Precision of the derived β-functions from simulations for different ranges
of BPMs and different amount of BPM combinations. The oscillation
amplitude was 1mm in the arcs and a Gaussian noise of 200 µm was
applied.

43



2. N -BPM method

calculations at the LHC in the following, a range of 11 BPMs will be used, which is
a good compromise between computational time efficiency and precision.

2.5. Verification with other optics measurement
techniques

At the LHC, optics measurements can be performed with k-modulation, cf. Sec-
tion 1.2.2, for individually powered quadrupoles. This is usually done for the triplet
magnet to derive the β∗, and in IR4 where beam diagnostics elements are located.
A comparison to TbT measurements is presented for measurements which have been
taken in 2015.
Furthermore, a collaboration allowed to perform TbT optics measurements at the
ALBA1 accelerator. ALBA is a 3rd generation synchrotron light source with an op-
eration energy of 3GeV, which is operated as a user facility since 2012 [91, 92]. This
allows to test the N -BPM method at a different machine and to compare the results
with LOCO, cf. Section 1.2.3, which is the standard method for optics measurements
and corrections at ALBA [69].

2.5.1. K-modulation

Several k-modulation measurements were performed during the LHC commissioning
in 2015 [93], which allow for a comparison to TbT measurements. The details of
the measurements which are compared here are shown in Table 2.4. For injection
optics at 450GeV, TbT measurements were also performed at the beginning of the
commissioning at 10th April 2016, however these measurements suffered from issues
with the BPMs, cf. Section 3.2.1, and a comparison to k-modulation measurements
showed a significant discrepancy for two out of 24 data points [94]. A comparison of
the results from both measurement methods is shown in Figs. 2.14 and 2.15 for twelve
magnets in IR4. Figure 2.16 shows the results for IP1 for a β∗ of 20m at 6.5TeV, for
which k-modulation data only exist for beam 1. In the comparison of the β-function
at a magnet, the results from TbT measurement needed to be propagated from BPM

Table 2.4.: K-modulation and TbT measurement details.

Measurement date Location Energy

k-modulation TbT

5th May 2016 28th August 2016 IR4 450GeV
27th April 2016 9th May 2016 IP1 6.5TeV

1from spanish alba, ‘sunrise’
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Figure 2.14.: Comparison of the measured β-functions using k-modulation and turn-
by-turn measurements for magnets in IR4 for beam 1 at 450GeV.

positions to the magnet, while k-modulation measurements directly give the average
β-function at the magnet. This increases the uncertainty of TbT measurements if
the propagation includes quadrupole magnets for which a gradient uncertainty is
assumed.
To assess the agreement of both methods the χ2 value can be computed as explained
in Appendix A.1. For the hypothesis H0, that both measurements agree, the χ2 can
be computed for the deviation of both measurements

yi = βi,k−mod − βi,TbT, (2.20)

with the uncertainty
σi =

√
σ2
i,k−mod + σ2

i,TbT. (2.21)

The correlation term is omitted in the error propagation as both measurement meth-
ods are independent. The expected value, given H0, is yt,i = 0. Computing

χ2/ν =
1

n

n∑
i=1

(βi,k−mod − βi,TbT)2

σ2
i,k−mod + σ2

i,TbT

, (2.22)

for the measurements at IR4 gives χ2/ν = 1.13. The probability, given H0, to get
this χ2 value or a larger one is P (χ2, ν) = 30 %. The observed results are therefore
very likely if both measurements agree.

45



2. N -BPM method

-10 -5 0 5 10
∆βx/β (%)

MQY.5L4.B2

MQY.6L4.B2

MQM.7L4.B2

MQY.5R4.B2

MQY.6R4.B2

MQM.7R4.B2

k-modulation turn-by-turn

-15 -10 -5 0 5 10
∆βy/β (%)

Figure 2.15.: Comparison of the measured β-functions using k-modulation and turn-
by-turn measurements for magnets in IR4 for beam 2 at 450GeV.
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Figure 2.16.: Comparison of the measured β-functions using k-modulation and turn-
by-turn measurements in IP1 for beam 1 at 6.5TeV.
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2.5. Verification with other optics measurement techniques

The same conclusion can be made for the measurement in IP1, where all data points
agree within their error bars. In this case the uncertainty of the k-modulation mea-
surement is larger due to a larger noise in the tune signal [95].

2.5.2. Optics measurements at the ALBA light source

TbT measurements can provide faster optics measurements than LOCO and are of
great interest also for other light sources [70, 72, 96, 97]. Recently, efforts have been
put in developing optics measurements based on BPM TbT data at ALBA. However,
first measurement attempts of the β-function using the phase information of TbT data
were futile. The precision was notably worse compared to the β-functions that were
inferred from the amplitude information which showed a discrepancy of (4–10)% to
LOCO measurements [98]. Improvements of the BPM electronics, their timing setup
and synchronization were a prerequisite for an advancement in the calculation of the
β-function from the TbT amplitude information [73]. Also at SOLEIL1 significant
discrepancies were observed when comparing the β-beating from TbT measurements
to LOCO and an optics correction study at SLS2 found an inferior performance of
turn-by-turn measurements compared to LOCO. Studies in ESRF3 [58, 88] show that
the model which arises from a fit to the phase advances from TbT data is comparable
to their standard orbit response matrix (ORM) based model. The phase advances of
consecutive BPMs are shown in Fig. 2.17 for the nominal ALBA lattice. Especially
in the vertical plane, there are many consecutive BPMs with a small phase advance,
and considering BPM combinations within a larger range of BPMs, as it is the case
in the N -BPM method, would allow for better phase advances for the measurement.

In the following sections, systematic and random errors are evaluated, which is a
prerequisite for using the N -BPM method. An estimate of the precision and accuracy
of the measured β-functions is given based on tracking simulations. The precision of
the LOCO method at ALBA has been studied in simulations and is expected to be
0.89% in the horizontal and 1.06% in the vertical plane [99].

Systematic errors of the N -BPM method

For the N -BPM method it is crucial to consider the effect of model uncertainties and
their correlations for the β-function measurement, in order to derive the covariance
matrix for the systematic errors Vsyst, which is used in Eq. (2.6) to derive the weights

1SOLEIL is a 2.75GeV electron synchrotron, located near Paris, France
2Swiss Light Source (SLS) is a 2.4GeV electron synchrotron at the Paul Scherrer Institute (PSI)

in Villigen, Switzerland
3European Synchrotron Radiation Facility (ESRF) is a 6GeV electron synchrotron in Grenoble,

France
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Figure 2.17.: Phase advances of consecutive BPMs in the nominal model. Many phase
advances close to 0◦ impair the calculation of β-functions when using
only neighboring BPMs.

for the computation of the β-function. The calculation of systematic errors is based on
the uncertainties of magnetic measurements and alignment uncertainties, which can
be found in Table 2.5. The Monte-Carlo simulation was performed for 103 iterations
and the error sources were varied randomly following a Gaussian distribution. One can
perform the Monte-Carlo simulations additionally separately for each contribution,
to study how much each error source is contributing to the total systematic error,
cf. Fig 2.18. The dominant contribution comes from quadrupolar gradient errors and
transverse misalignment of sextupole magnets. In contrast to the vertical plane, in
the horizontal plane the dipole b2 errors have a negligible effect. This is because βy
is much larger at the dipole magnets than βx.
The systematic errors can furthermore be assessed separately for different BPM com-
binations. In Table 2.6 the average systematic error of the measured β-function is
shown for different BPM combinations. The lowest error is in both planes achieved
for neighboring BPMs, if the BPM in the middle is probed. For other BPM combina-
tions the systematic errors are increasing more quickly in the horizontal than in the
vertical plane.

Precision and accuracy of the N -BPM method

The uncertainty of the β-function measurement depends additionally on the statistical
error of the phase measurement, which is expressed by the covariance matrix Vstat.
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2.5. Verification with other optics measurement techniques

Table 2.5.: Uncertainties which are considered in the computation of system-
atic errors. Quadrupolar errors are specified relative to their main
field (quadrupoles), respectively relative to their quadrupole component
(dipoles).

Quadrupolar errors Uncertainty

Dipole b2 component 0.1%
Quadrupole gradient 0.1%

Misalignments Uncertainty

Quadrupole, longitudinal 300 µm
BPM, longitudinal 300 µm
Sextupole, transverse 150 µm

A simulation of the TbT measurement was done to assess the overall uncertainty of
the N -BPM method. 500 lattices were created by randomly adding errors to the
nominal model according to Table 2.5. For each lattice, 5 measurements of BPM
TbT data with 103 turns each were simulated. In simulations, the noise which is
applied to the TbT data, e.g. a Gaussian noise, would be cleaned too efficiently
with the SVD technique which is used for noise cleaning in real measurements [49,
100]. Instead of applying an empirical noise value to the data, the BPM noise and
the beam excitation amplitude were adjusted to reproduce the standard deviation
of the measured phase advance, as it is observed in a typical measurement. For
the measurements which are analyzed here, the average uncertainty of the measured
phase advances in units of 2π are 8.2 · 10−3 for the horizontal and 7.8 · 10−3 for the
vertical plane. To achieve similar uncertainties in the simulation, a Gaussian noise
of 14 µm / 13 µm (horizontal / vertical) was applied to the TbT data, while the beam
excitation amplitude was set to 1mm (peak to peak) at a β-function of 12m. No
additional cleaning with SVD was performed. This ensures that the calculation of
the β-function in the simulation is using phase advances with similar random errors
as they are in measurements. It should be noted that the real TbT data may likely
have larger noise before cleaning than the (13–14) µm, which were used to reproduce
the observed phase uncertainty after cleaning using SVD.
The β-functions were derived using the N -BPM method for different ranges of BPM.
Furthermore, instead of using all possiblem combinations of three BPM, cf. Eq. (2.2),
j combinations were used with 0 < j ≤ m. For each BPM, the deviation of the mea-
sured β-function to the β-function of the perturbed lattice was fitted with a Gaussian
distribution. The mean value of this distribution is the accuracy of the measurement,
as it indicates a bias towards larger or smaller values. The width of the distribution is
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Figure 2.18.: Contribution of the uncertainties from Table 2.5 to the total variance of
the derived β-function. The average value over all BPMs is shown for
the case of probing the middle BPM of neighboring BPMs, as it is the
combination which has the smallest systematic error. The top bar is for
the horizontal plane (H) and the bottom one for the vertical plane (V).
Quadrupolar errors are shown in blue and misalignment uncertainties
in red.

Table 2.6.: Systematic error of the measured β-function for using different BPM com-
binations. The five best combinations are shown for each plane.

BPM combination Average systematic error (%)
: probed, : used,
: unused

horizontal plane
0.18
0.24
0.77
0.87
0.88

vertical plane
0.12
0.18
0.22
0.26
0.42
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Figure 2.19.: Precision of the derived horizontal β-functions from simulations for dif-
ferent ranges of BPMs and different amount of BPM combinations.

the precision and describes how much the measurement spreads. Figures 2.19 and 2.20
show exemplary for the horizontal plane the evolution of the average precision and
accuracy for all BPM for different ranges of BPM (N) and different number of BPM
combinations (j) that were analyzed together. One can see how a larger number
of BPM combinations will increase the precision and accuracy of the measurement
until they saturate, as the information from further BPM combinations is negligible.
The different BPM ranges start at a different value for the precision and accuracy,
as the order of the BPM is not the same in every case. However, if enough BPM
are used, a larger range of BPM will result in a better precision and accuracy as
more information is used to derive the β-functions. Table 2.7 shows the precision and
accuracy that can be achieved for using different BPM ranges. The precision of the
vertical β-function saturates already for a 7-BPM range, whereas in the horizontal
plane benefits are still visible up to a range of 13 BPMs.

Measurements

The ALBA synchrotron is equipped with 120 BPMs and TbT data was acquired using
the moving average filter acquisition mode (MAF) [73]. The value of the β-function
at the BPM positions vary approximately between 4m and 13m. For the excitation
of the betatron oscillation, a pinger magnet was used. The peak-to-peak value of
the amplitude for the betatron oscillation was 1mm in the horizontal plane and
1.4mm in the vertical plane, for BPMs with a β-function of 12.7m (both planes).
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Figure 2.20.: Accuracy of the derived horizontal β-functions from simulations for dif-
ferent ranges of BPMs and different amount of BPM combinations.

Table 2.7.: Achievable precision and accuracy of the measured horizontal (H) and
vertical (V) β-functions for using different BPM ranges.

BPM range Precision (%) Accuracy (%)

H V H V

5 0.93 0.61 0.30 0.07
7 0.79 0.58 0.29 0.07
11 0.74 0.58 0.29 0.08
13 0.72 0.58 0.29 0.08
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Figure 2.21.: Turn-by-turn oscillations at BPMs where β = 12.7m.

40 measurements were performed, from which only 31 were used in the analysis,
since some cases needed to be excluded due to BPM synchronization problems. The
analysis was limited to 1024 turns, where the oscillation amplitude decreased by a
factor of 2 in the horizontal plane, cf. Fig. 2.21. In contrast to using an ac dipole, like
at the LHC, the pinger magnet performs a single beam excitation. This causes the
TbT oscillation amplitude to damp over time due to the tune spread of the beam, and
is referred to as decoherence [101]. The analysis was performed separately for using
five different start turns, and averaging the results, to avoid distortions due to the
decoherence. The rms deviation of the β-function among the five cases was 0.36% in
the horizontal and 0.19% in the vertical plane. A correction formula, which can also
be used to mitigate the decoherence effects is presented in [102]. A cleaning of the
TbT data was performed using the SVD technique and keeping only the 12 strongest
modes. Non-linear errors in the BPM calibration have been studied in [103], and
are for oscillation amplitudes of 0.5mm expected to be 2 µm. Non-linear effects due
to sextupoles are assumed to be negligible as well for these oscillation amplitudes,
as they were included in the tracking simulations where an accuracy of below 0.3%
of the measured β-function was achieved, as shown in Fig. 2.12. These assumptions
are supported by analyzing the frequency spectrum in Fig. 2.22, where no cubic
distortions are visible, as it was for example the case in [72].
Figure 2.23 shows the β-beating as computed from the phase of the betatron oscilla-
tion with the N -BPM method in comparison with the results obtained with LOCO.
The error bars for the N -BPM method cover systematic and statistical uncertainties,
whereas the error bars for LOCO account only for the reproducibility of the results.
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Figure 2.22.: Frequency spectrum of the horizontal (H) and vertical (V) turn-by-turn
oscillations. The two peaks correspond to the tunes Qx = 18.15 and
Qy = 8.36. No additional lines which correspond to cubic distortions at
3Qx and 3Qy are visible.
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Figure 2.23.: Comparison of the β-beating as derived from BPM turn-by-turn data
using the phase of the betatron oscillation (N -BPM method with an
11-BPM range) to the β-beating from LOCO.
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There is a good agreement for many data points between both methods, however
in general the deviations from LOCO to the nominal model are smaller, as shown
in Table 2.8. Another method which can be used to obtain the β-function uses the
amplitude information of the betatron oscillation, cf. Section 1.2.1. A prerequisite
for this method is the knowledge of the kick action, as well as the gain of the BPMs.
Instead of assessing these values, a normalized β-function was computed [73]. The
β-beating from the amplitude method is compared to theN -BPMmethod in Fig. 2.24.
The rms β-beating to the nominal model is for each method shown in Table 2.8.
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Figure 2.24.: Comparison of the β-beating as derived from BPM turn-by-turn data
using either the amplitude information or phase of the betatron oscilla-
tion (N -BPM method).

Furthermore, in the second part of Table 2.8, the results which are obtained by the
different methods are compared pairwise, by computing the rms deviation of the
β-function between two methods.
The amplitude method shows the largest deviation from the nominal model. Using
the normalized β-function on the one hand does not suffer from uncertainties of
the computed kick action or BPM gains, but on the other hand introduces further
systematic errors, as shown in Section 1.2.1.
Since the N -BPM method uses model transfer matrix elements, it was also tested to
run the analysis not with the ideal model, but the model that has been fitted with
LOCO. The idea is that if the LOCO model is closer to the real machine, then using
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Table 2.8.: The first part shows the rms deviation of the β-function to the nominal
model as computed from the different methods. The second and third
part compares the deviation of the β-functions which are obtained by two
different methods. In the third part for the N -BPM method the LOCO
fitted model was used in the analysis instead of the ideal model.

rms β-beating (%)

horizontal vertical

Method vs. nominal model

N -BPM (phase) 1.4 2.0
From amplitude 2.0 2.7
LOCO 1.1 1.6

Method 1 vs. Method 2

N -BPM (phase) vs. LOCO 1.0 1.3
N -BPM (phase) vs. amplitude 1.7 1.9
From amplitude vs. LOCO 1.4 1.7

N -BPM using LOCO model

N -BPM (phase) vs. LOCO 0.8 1.1

the LOCO model for the N -BPM method should also provide a result that is closer
to the LOCO result. There is an improvement of the rms β-beating from the N -BPM
method to LOCO of 20% in both planes. These results are in excellent agreement
considering the estimated uncertainties of the N -BPM method of in this case 1.01%
horizontally and 0.66% vertically for a linear addition of the systematic and random
uncertainties, in comparison with the LOCO uncertainties of 0.89% in the horizontal
and 1.06% in the vertical plane [99].
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3.1. Re-analysis of run I measurements
Optics measurements from the first run of the LHC have been re-analyzed using
the N -BPM method. In contrast to the analysis in 2012, the dipole b2 errors are
considered in the optics model, together with a new calibration of MQY magnets,
which has been tested in a machine development (MD) session [104]. The SVD
technique, cf. Section 1.2.1, was used to reduce the noise in the measured BPM TbT
data [49, 100]. Only the 12 strongest singular modes were kept, since simulations
showed only marginal improvements for smaller cuts. Figure 3.1 shows the resulting
β-beating for the β∗ = 60 cm optics for beam 1, comparing the 2012 analysis with
the results from the N -BPM method. The corresponding plot for beam 2 is shown in
Fig. B.3 in Appendix B.2. The error bar for many BPM positions has significantly
improved, in particular in the IRs. The IRs can be easily depicted in the 2012 analysis
due to the large error bars in these regions, which is not the case in the N -BPM
method. The root mean square (rms) and peak β-beating are shown in Table 3.1.
Compared to the 2012 analysis the rms β-beating is similar [64], as well as the peak
β-beating with a maximum value of (9± 1)%. From this measurement, the β∗ values
at the interaction points have been derived, cf. Table 3.2. In 2012 no β∗ values have
been published due to their large uncertainties.
Figure 3.2 shows the average uncertainty of the measured β-functions for different
measurements from 2012 in comparison to a re-analysis with the N -BPM method.
An improvement of at least a factor three of the average error bar is observed. The
larger uncertainties in both methods for the ATS optics, which is a novel optics
concept foreseen for the HL-LHC, is discussed in Section 4.1.

Table 3.1.: rms and peak β-beating after local and global corrections at β∗ = 60 cm.

Beam 1 Beam 2

x y x y

∆β
β

(%)
peak 9± 1 9± 1 7.0± 0.6 6.7± 1.7
rms 2.6 2.3 2.4 2.2
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Figure 3.1.: β-beating for Beam 1 after local and global corrections at β∗ = 60 cm.

Table 3.2.: Measured β∗ values for squeezed optics at β∗ = 60 cm after local and global
corrections.

Beam 1 β∗
x (m) β∗

y (m)

IP1 0.589± 0.019 0.61 ± 0.03
IP2 2.85 ± 0.19 2.86 ± 0.06
IP5 0.595± 0.010 0.595± 0.011
IP8 3.03 ± 0.08 3.03 ± 0.11

Beam 2 β∗
x (m) β∗

y (m)

IP1 0.592± 0.015 0.61 ± 0.02
IP2 3.0 ± 0.2 3.02 ± 0.08
IP5 0.59 ± 0.03 0.594± 0.013
IP8 3.06 ± 0.09 2.92 ± 0.15
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Figure 3.2.: Average uncertainty of the measured β-functions for different measure-
ments from 2012.

3.2. Commissioning at 6.5TeV

In this section the procedure and the results of the LHC optics commissioning for
run II at an unprecedented energy of 6.5TeV are presented. The higher energy poses
challenges for the optics commissioning, as the larger damage potential of the machine
limits the maximum oscillation amplitude and beam charge during optics measure-
ments. The focus is on the application of the N -BPM method from chapter 2. This
includes directly the measurement of the β-function, and based on this the calculation
of optics corrections which benefits additionally from improvements to the SbS tech-
nique [84]. Furthermore, during the first long shutdown (LS1), hardware and software
upgrades were performed which allow for a longer acquisition of turn-by-turn data
with the ac dipole [105]. The benefit of this is discussed in section 3.4. During the
optics commissioning and during MD sessions further measurements were performed
to assess other aspects of the optics quality and to better understand the non-linear
optics model [57, 60, 106–110]. This includes for example the measurement and cor-
rection of coupling between the horizontal and vertical plane, and the influence of
non-linear errors which can be assessed for example in the measurement of detuning
with amplitude or chromaticity.
The N -BPM method was used for the first time online for measurements in the
control center during the LHC optics commissioning in 2015. Its results were fur-
thermore directly used for the calculation and verification of optics corrections. The
optics commissioning started with measurements of the injection optics at an en-
ergy of 450GeV [111]. This is shown together with the correction of this optics in
Section 3.2.1. A successful correction of the injection optics paves the way for accel-
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erating the particles up to an energy of 6.5TeV. In Section 3.2.2 the results of the
optics commissioning at top energy are presented up to the squeezed optics with a
β-function at the ATLAS and CMS interaction points (β∗) of 40 cm. For the first
time, three different optics with a β∗ of 40 cm, 60 cm and 80 cm were commissioned
together. A common correction which is constant in the range of the three β∗ has
been derived. This is not only a more time efficient approach for the commissioning,
but would also facilitate β∗-leveling [112, 113].

3.2.1. Injection optics

Injection energy measurements exposed the N -BPM method and all other tools which
are involved in the optics measurement to unexpected hardware and software related
issues. During the first measurements at injection energy more than half of the BPMs
were malfunctioning, and no reasonable measurements could be performed. While at
the 2nd attempt of injection optics measurements this problem was resolved, further
issues became visible. The oscillation amplitude of the recorded TbT data showed
abrupt changes for beam 1 vertically, which was later attributed to a bad electronic
connection of the AC dipole [111]. Furthermore, many BPMs showed a spike in the
recorded TbT data, i.e. a value which is larger than 20mm while the usual oscillation
amplitude is below 2mm. These spikes occurred randomly at different BPMs and at
different turn numbers. It was decided to reject the BPMs where a spike occurred for
the online analysis, since no simple workaround would ensure not to deteriorate further
analysis. In order to keep a larger number of BPMs the TbT data was limited to 1700
turns, so that fewer spikes would occur and less BPMs are rejected. This issue was
soon identified to be caused due to an incompatibility of the TbT acquisition mode
and the average orbit acquisition, which can be avoided by disabling the latter during
optics measurements. Thus it was not interfering with subsequent measurements at
top energy.
The β-beating before optics correction is shown in Fig. 3.3 for beam 1 in comparison to
measurements from 2012. The amplitude and pattern of the β-beating is very similar,
although a few differences can be seen. In the horizontal plane, the β-beating in 2015
is slightly lower from IR2 to IR7 and slightly higher elsewhere. In the vertical plane
the β-beating is even more similar, only between IR4 and IR5 it is smaller in 2015,
and larger in between IR7 and IR8. Qualitatively one can draw similar conclusions
for beam 2. For all plots in this section, the corresponding ones for beam 2 are
shown in Appendix B.1. Since no strong local optics errors could be identified, global
corrections were directly calculated as explained in section 1.3.2. Figure 3.4 shows
the resulting β-beating after global optics corrections for beam 1, cf. Appendix B.1
for beam 2.
The β-beating was significantly reduced from a peak value of more than 30% to 14%.
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Figure 3.3.: β-beating at injection for beam 1. The measurement from 2015 was
analyzed with the N -BPM method, while the one from 2012 used the
previous neighboring BPM method.
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Figure 3.4.: β-beating at injection for beam 1 before and after optics correction. Both
measurements were analyzed with the N -BPM method.
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This is a good result, which is meeting the specified tolerable β-beating at injection,
which is shown in Table 1.2, especially considering the unfavorable conditions of these
measurements.

3.2.2. Squeeze of the interaction point β-functions

The optics commissioning for squeezed optics begins again with the measurement of
the uncorrected machine, since many magnetic errors are energy dependent and the
correction derived for injection energy will not be suitable at 6.5TeV. During the
squeeze, the β-function in the four interaction points is being reduced. The steps of
the squeeze will in the following be characterized by the β-function in the ATLAS and
CMS interaction point (β∗). Measurements were performed for several intermediate
matched points of the optics along the squeeze from a β∗ of 10m to 40 cm. The
minimum β∗ of 40 cm in this commissioning is lower than in 2012, where it was 60 cm
and even lower than the original design value for the LHC of 55 cm [14]. The results
of the measured β-beating along the squeeze are shown in Fig. 3.5 in comparison to
the measurements in 2012 at an energy of 4TeV.
The rms β-beating for beam 1 vertically and beam 2 horizontally is very similar com-
pared to 2012. The rms value is in general better suited for comparisons as it is more
robust than a potentially very localized peak value. However, for machine protec-
tion considerations the peak value might be more important as certain deviations to
larger β-functions could not be tolerated even if they occur only in a small region.
The β-beating for beam 1 horizontally and beam 2 vertically are significantly smaller
than in 2012, which is an indication that the optics errors significantly changed dur-
ing LS1. This is discussed in more detail in Section 3.4. The maximum observed
β-beating is larger than 110% for a β∗ of 40 cm, which is more than the 100% that
was observed in 2012 for a β∗ of 60 cm.

Local corrections

Local corrections were computed using the SbS technique, cf. Section 1.3.1. The
corrections for the final focusing magnets in the ATLAS and CMS interaction region
are listed in Table 3.3, which also suggest a difference of the optics errors in 2015
compared to 2012. A complete list of all local corrections can be found in Appendix C.
The resulting β-beating after local corrections is shown in Fig. 3.6 and compared
to 2012. The maximum β-beating after local corrections is 15%/ 13% (horizon-
tally / vertically) which was 20%/ 25% in 2012. The β-beating after local corrections
in 2015 was already below the specified maximum tolerable β-beating for squeezed
optics, cf. Table1.2, which was not the case in 2012 [43]. The significantly better local
corrections in 2015 compared to 2012 indicate furthermore the good performance of
the N -BPM method.
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given for different β∗ along the squeeze. Measurements at 4TeV were
performed in 2012, and at 6.5TeV in 2015.

63



3. LHC optics measurements

Table 3.3.: Local correction strengths from run II compared to run I for final focusing
quadrupoles in the ATLAS (IR1) and CMS (IR5) insertion region.

Location Circuit ∆k (10−5m−2) Relative (%)

2012 2015 2015

IR1 ktqx1.r1 1.0
ktqx2.l1 1.0 0.35 −0.04
ktqx2.r1 −1.4 −0.7 +0.08

IR5 ktqx1.l5 2.0 −0.23
ktqx1.r5 −2.0 −0.23
ktqx2.r5 1.05 1.9 0.22
ktqx2.l5 0.70 −0.09 0.01
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Global corrections

As explained in Section 1.1.4, a smaller β∗ is one way to increase the performance
of a collider. The baseline for operation in 2015 foresaw an optics with a β∗ of
80 cm [114]. Optics measurements and corrections were done up to a minimum β∗ of
40 cm during the commissioning and MD sessions in 2015 [106], as the commissioning
progress could reveal additional margins, e.g. in the aperture or from beam beam
instabilities, that could be used up for an optics with a smaller β∗. Furthermore, it
demonstrates that the optics are well under control for the smaller β∗, which might
become operational in a future run. Measurements after local corrections were done
for the low-β∗ optics with a β∗ of 80 cm, 65 cm and 40 cm. For the first time instead
of deriving separate global corrections for each β∗, it was investigated whether a
common correction would be possible for a range of β∗. This was already done for
local corrections in 2012 [64]. It has the advantage of being more time efficient during
the commissioning, as for the verification of the global corrections one does not have
to remove the previous correction and apply a new correction when moving from
one β∗ to the next one. Furthermore, a constant correction for a range of β∗ would
facilitate β∗-leveling which might become important for future runs.
Global corrections were calculated for each β∗ separately from the measured phase
advances and dispersion as explained in Section 1.3.2. The expected β-beating after
global corrections can be calculated by adding the β-beating that would arise from
applying the corrections to the measured β-beating. This is shown in Fig. 3.7 for
all possible combinations of applying the three calculated corrections to the three
different β∗.
The expected β-beating shows, that the lowest β-beating is achieved if the correction
is applied for the same optics from which it was derived. The β-beating becomes
larger for larger differences between the β∗ at which the correction is applied and
the one from which it was computed. At this point during the commissioning it was
clear that the β∗ of 80 cm will be used for the physics run in 2015 [115]. Therefore, a
preference was given to correct the 80 cm optics as good as possible. It was decided
to use the 80 cm correction for all optics, since the maximum expected β-beating of in
this case 12% at a β∗ of 40 cm is still acceptable according to the specified tolerable
maximum β-beating in Table 1.2. The measured β-beating after applying the global
corrections is shown in Fig. 3.7. The lowest β-beating is as expected achieved for
the optics with a β∗ of 80 cm. However, even the β∗ = 60 cm optics is slightly better
corrected than the optics with the same β∗ in 2012 at an energy of 4.0TeV, with a
(10 – 20)% lower rms β-beating, cf. Table 3.1. For a deviation of a factor two, between
the β∗ at which the correction is computed, and the β∗ at which it is applied, the
expected average rms β-beating increases by a factor two as well.
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correction for the same optics from which they were computed. The mea-
sured rms β-beating is shown for the three cases of applying the global
corrections computed at β∗ = 80 cm to the three optics with a β∗ of
80 cm, 60 cm and 40 cm.

3.2.3. Overcoming the limiting factors of 2015

After the optics commissioning for the proton run in 2015, several issues were dis-
covered which affected the optics measurements and limited ultimately the correction
performance. These issues are discussed in the following paragraphs, together with
ways to mitigate them. Finally, results from the optics commissioning in 2016 are
shown.

Dispersion measurements

Quadrupole movements in IR8 [116], which resulted in drifts of the beam orbit, have
disturbed many dispersion measurements. This limited global corrections, since the
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betatron phase and dispersion are corrected together, cf. Section 1.3.2. In Figure 3.8
the measured normalized dispersion is shown before and after global corrections. The
very large error bars are a direct effect of the orbit drifts. Moreover, the values of the
normalized dispersion before and after correction are very similar, which shows that
the correction performance was limited. The quadrupole movements were found to be
caused by a problem with a regulation valve of the cryogenic system [117]. After this
issue has been fixed, reliable dispersion measurements and corrections were possible
again in 2016.
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Figure 3.8.: Normalized dispersion before and after global corrections for beam2 and
β∗ = 80 cm.

Interaction point β-functions

Despite the globally very well corrected optics, an average discrepancy of 6% was ob-
served in the interaction point β-function measured with k-modulation, cf. Table 3.4,
which came along with an average absolute shift of the β-function waist of 19.1 cm,
cf. Table 3.5.
First k-modulation results mistakenly suggested no significant deviation of the mea-
sured β∗ to the model values in IR1 and IR5 [66]. An accurate analysis of the
k-modulation measurements was only done at the end of the proton run, so that no
correction of this effect was possible during the commissioning [119, 120]. Further-
more, the gradient errors of the triplet magnets that could cause the measured waist
shift are 4 times larger than the assumed gradient uncertainties. The assumptions of
the gradient uncertainties were based on WISE [89, 90], which provides smaller un-
certainty values than [121]. Both references however do not fully explain the observed
errors in the triplet magnets, which could possibly be related to larger misalignment
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Table 3.4.: β∗ for the 80 cm optics from k-modulation measurements [118].

β∗ (cm)

horizontal vertical

Beam 1 IP1 87.8± 1.3 86.5± 0.7
IP5 86.2± 1.1 86± 5

Beam 2 IP1 81.9± 1.3 82.7± 0.6
IP5 86.7± 1.4 83± 2

Table 3.5.: Waist shift of the β∗ for the 80 cm optics for the proton run from k-
modulation measurements [118]. A positive value indicates a shift towards
the focusing quadrupole in the corresponding plane.

ω (cm)

horizontal vertical

Beam 1 IP1 24± 1 23± 1
IP5 20± 1 15± 1

Beam 2 IP1 17± 2 21± 1
IP5 22± 1 11± 1

uncertainties of these magnets. Therefore, neither was this deviation of the β-function
waist expected, nor were turn-by-turn measurements sensitive enough to detect it.
Based on the k-modulation measurements, corrections for the β∗ waist shift were
calculated and successfully tested with protons during the optics commissioning for
the ion run [118]. The relative quadrupole gradient changes of the corrections are
for three of the triplet magnets as large as 0.23%. The resulting waist shift after
corrections is shown in Table 3.6, showing significantly smaller deviations, with an
average absolute value of 3.9 cm.
An improved optics correction procedure was proposed which includes k-modulation
measurement results already in the calculation of local and global optics correc-
tions [122]. This required improved k-modulation tools which provide analysis results
online for a direct use in the calculation of optics corrections [123].
Another approach to assure a good correction of the β∗ values is based on TbT
measurements. While the N -BPM method is less sensitive close to the IPs as the
phase advance for consecutive BPMs is very small, the β-function from amplitude
method, cf. Section 1.2.1, might provide more precise values. This requires however
a good knowledge of the BPM calibration. Recent efforts try to calibrate the BPMs
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close to the IPs in beam based measurements of special optics where the final focusing
magnets are switched off, the so called ballistic optics [124]. For this optics very precise
results are expected from the N -BPM method which could be used to calibrate the
BPMs close to the IPs.

Table 3.6.: Waist shift of the β∗ for the 80 cm optics for the ion run from k-modulation
measurements [118]. A positive value indicates a shift towards the focusing
quadrupole in the corresponding plane.

ω (cm)

horizontal vertical

Beam 1 IP1 2± 4 5± 2
IP5 −4± 5 1± 2

Beam 2 IP1 4± 3 −4± 2
IP5 2± 4 −9± 3

Record low β-beating

For the LHC run in 2016 a smaller β∗ was foreseen with β∗ = 40 cm as the ultimate
goal [125]. Since no k-modulation measurements existed for the 40 cm optics, devi-
ations of the β∗ were unknown. The evolution of the β-function around its waist is
described by

β(∆s) = β∗ +
(∆s)2

β∗
, (3.1)

where β∗ is the minimum β-function at the waist and ∆s the longitudinal distance
from the waist. Using this equation for the β∗ = 80 cm optics, the average waist shift
of 19.1 cm from Table 3.5 would cause a 6% deviation of the β∗, which is in accordance
with the values observed in Table 3.4. Extrapolating this to the β∗ = 40 cm optics
under the assumption of a similar waist shift results in a deviation of 25% of the β∗.
Since this would undermine the gains in luminosity of using the smaller β∗ optics, a
re-commissioning of the β∗ = 40 cm was done in 2016.
This commissioning showed the full potential of the improved optics measurement
and correction techniques, as it was not limited from the aforementioned dispersion
issue, and included k-modulation measurements in the correction procedure. The
resulting β-beating after corrections is shown in Fig. 3.9 for beam 1 and in Fig. B.12
in Appendix B.2 for beam 2. The peak and rms β-beating values are compared in
Table 3.7 to the results from previous years. Excellent low values for the rms β-beating
of (1.4–1.6)% have been achieved. For the first time, a high-energy hadron collider
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is demonstrating an optics quality which is on par with low energy synchrotron light
sources [126].

Table 3.7.: Achieved rms and peak β-beating after local and global corrections in the
optics commissioning in 2012, 2015 and 2016.

Beam 1 Beam 2 Year Energy β∗

x y x y (TeV) (cm)

peak 9± 1 9± 1 7.0± 0.6 6.7± 1.7 2012 4.0 60
9.6± 1.6 5.0± 1.0 11.2± 1.1 6.8± 1.2 2015 6.5 40∆β

β
(%) 7.8± 0.7 4.5± 0.7 5.0± 0.4 4.2± 0.3 2016 6.5 40

rms 2.6 2.3 2.4 2.2 2012 4.0 60
∆β
β

(%)
3.2 1.7 4.0 2.0 2015 6.5 40
1.6 1.4 1.6 1.5 2016 6.5 40

−0.10
−0.05

0.00
0.05
0.10

∆
β
x
/β

x

LHCB1 6.5 TeV

0 5000 10000 15000 20000 25000
Longitudinal location (m)

−0.10
−0.05

0.00
0.05
0.10

∆
β
y
/β

y

IR1IR2 IR3 IR4 IR5 IR6 IR7 IR8

2015 2016

Figure 3.9.: β-beating for beam 1 at β∗ = 40 cm after corrections in 2015 and 2016.

3.3. β-functions during the energy ramp
In the commissioning of the LHC optics measurements and corrections are performed
both at injection energy and at top energy. While the particles are accelerated to
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higher energies, the gradient uncertainties for the magnets are changing. Furthermore,
orbit errors during the energy ramp could introduce additional optics errors due to
feed down effects. It is therefore of interest to assess the optics quality during the
energy ramp as well. Besides, the optics behavior during the ramp is also of interest
for other studies, e.g. for emittance measurement [82].
Performing optics measurements during the energy ramp is more challenging, since
it is a continuous process which cannot be stopped at intermediate energies. K-
modulation, which is generally used to measure the β-function with high precision
at the location of certain quadrupoles, cannot be used during the energy ramp, since
these measurements require stable optics over a period comparable to the length
of the ramp. TbT measurements however are executed in less than one second,
and are therefore ideally suited for these kind of measurements. A repetition of the
measurement for several consecutive ramps is desired to estimate the uncertainty of
the derived phase advances. This requires a precise coordination of the measurements,
since the same points of the energy ramp need to be measured in every repetition.

3.3.1. Energy ramp to 4TeV

A set of optics measurements in 2012 has been performed during the energy ramp from
450GeV to 4TeV. In 2012 during the energy ramp, an increase of the beam emittance
was observed [127]. Furthermore, the emittance evolution showed an unexpected
behavior by decreasing for a short time during the energy ramp. This triggered
optics measurements during the energy ramp, to study how the β-function at the
location of the wire scanners, which are used in the emittance measurements, evolves.
The resulting β-functions at the wire scanners are shown in Fig. 3.10 together with
the values from k-modulation measurements [128]. Beam 1 shows a deviation of
the vertical β-function at 3TeV, which might explain why an emittance shrinking is
observed if only interpolated β values are used [129]. More measurements at different
energies during the ramp are needed to further investigate this.

3.3.2. Combined ramp and squeeze to 6.5TeV

In the current operation of the LHC the optics squeeze, i.e. the process of reducing
the β-function in the IPs, is following the energy ramp. Studies have been done in the
past for starting the squeeze already during the energy ramp, which would be a more
time efficient approach [130, 131]. In 2015 the combined ramp and squeeze (CRS)
was successfully tested for the first time with beam [132]. Optics measurements have
been performed when the squeeze reached a β∗ of 7m, 4m and 3m in IP1 and IP5.
Two ramps were performed and measured data of both ramps was analyzed together.
The measured β-beating is shown in Fig. 3.11 for a β∗ of 7m and compared to a static
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Figure 3.10.: Measured β-function at the wire scanners during the energy ramp. β
values from a k-modulation measurement at 0.45 TeV and 4 TeV are
shown as a comparison. The dashed line connects the two points from
the k-modulation measurement at injection and top energy.

measurement of the standard squeeze. β-beating plots for the other β∗ are listed in
Appendix B.3. Measurement results are only available for beam 2, as beam 1 was
lost at the beginning of both ramps. This issue was caused by a wrong setting and
was not related to the CRS [132].
Although the precision of the measurement is lower compared to a static measure-
ment, due to fewer acquired turns and fewer repetitions of the measurement, the
agreement to measurements at 6.5TeV is very good. The optics quality is no limit
for a CRS to a β∗ of 3m and likely to even lower values.
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Figure 3.11.: β-beating for beam2 during the CRS at an energy of 4.22TeV and a β∗
of 7m in IP1 and IP5 in comparison to a static measurement at 6.5TeV
with the same β∗.

3.4. Optics stability

In this section the optics stability is studied for different time scales. During LS1
the BPM acquisition system and the ac dipole have been upgraded to allow for 6600
turns of beam excitation plateau and TbT acquisition for optics measurements. This
corresponds to a duration of 587 ms with a sampling rate of one turn (89 µs). For
measurements before LS1, the beam excitation and TbT acquisition were limited to
2200 turns (196ms). The increased length of the TbT data allows for a closer look
on the optics stability during beam excitations, which is discussed in Section 3.4.1.
For an optics measurement at a specific machine state, the TbT measurement is
repeated several times. Single measurements are separated by at least one minute,
to avoid overheating of the ac dipole [45]. For a usual measurement, five or more
measurements are analyzed together to derive the optical functions, cf. Fig. 3.12.
Potential changes from one beam excitation to the next one are analyzed in Sec-
tion 3.4.2. Furthermore, the benefit from the increased TbT acquisition time is dis-
cussed.
For larger time periods one can look at the stability of the optics for measurements
which were performed on a different day, i.e. using a different beam, which is done in
Section 3.4.3.
Finally, in Section 3.4.4 differences of the measured optics are investigated before and
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TbT measurements (587ms each)

2-3min

time

Figure 3.12.: Illustration of the time scale for a set of TbT measurements. Taking
at least five measurements is recommended, based in the observations
in Section 2.1.1. Additional measurement sets with different rf settings
can be performed for probing off-momentum effects.

after LS1, which corresponds to a time period of 3 years.

3.4.1. Single beam excitations

The increased TbT data acquisition length allows for a more detailed look on the sta-
bility of the optics and the instrumentation used for the measurements on a time scale
below one second. To study potential changes over time from the measurement files
of 6600 turns only 2000 turns were used in the analysis, starting from different turn
numbers in steps of 500 turns. The analyses of these files were performed according
to Section 1.2.1. The noise reduction with an SVD was however performed on each
file separately in order not to add additional correlations among the single files. One
can now look at the evolution of observables like the driven (ac dipole) and natural
tunes in both planes as well as the phase advances between BPMs. Figure 3.13 shows
the evolution of the driven tune over time for beam 1 in both planes.
An increase of the driven tune in the order of 10−6 can be seen at turns 1000 to 2000.
This behavior is neither seen in the vertical plane nor in any plane for beam 2. It
is furthermore visible for different measurement days and different optics. No such
behavior can be seen for the natural tunes of the machine. Therefore, an artifact of
the ac dipole is suspected. The effect of this on the optics measurement precision is
shown in Section 3.4.2.
The same evaluation can be done for the measured phase advances. In this case one
has about 2000 observables (>500 BPMs per beam and per plane). The evolution of
the phase advances for some BPMs show a tendency for a linear increase or decrease
over time. To assess if this behavior is significant, for all BPMs a linear regression
was performed for the evolution of the phase advance. This was done separately per
plane and per BPM and for different optics. Figure 3.14 shows the distribution of the
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Figure 3.13.: Measured deviation of the ac dipole tune when 2000 turns out of 6600

were analyzed, starting from different turn numbers. The plots show six
different measurements at a β∗ of 80 cm.

two-sided p-values for a hypothesis test whose null hypothesis is that the slope of the
linear regression is zero, cf. Appendix A.2, for beam 1 at a β∗ of 80 cm. Under the
hypothesis that there are significant drifts of the phase advances, one would assume
a bias towards smaller p-values. Due to the uniform distribution this hypothesis is
rejected. With the current measurement precision no drifts of the phase advances on
time scales below one second are visible.

0
10
20
30
40

co
un

t

0.0 0.2 0.4 0.6 0.8 1.0
p-value

0
10
20
30
40

co
un

t

horizontal vertical

Figure 3.14.: Distribution of the p-values for a linear regression of the measured phase
advances from six consecutive TbT analysis of 1100 turns each. The data
was generated by splitting a measurement of 6600 turns into six pieces.
The plot shows the case of a β∗ of 80 cm for beam 1.
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3.4.2. Repeated beam excitations

Repeated beam excitations allow to assess the uncertainty of the phase advance mea-
surement, by computing its standard deviation for the different beam excitations at
each BPM position. Depending on the number of measurements, a correction factor
according to Section 2.1 is applied to the uncertainty. Figure 3.15 shows the distri-
bution of the uncertainty of the phase advance measurement from within one beam
excitation where the TbT data was split into six parts of 1100 turns, in comparison to
using six different consecutive beam excitations. For the consecutive beam excitations
also only 1100 turns were analyzed to obtain comparable results. The phase advance
uncertainty remains the same independent of whether the standard deviation is com-
puted from within one beam excitation or among separate ones. This indicates that
with the current precision of the measurement no optics changes between consecutive
beam excitations can be seen.
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Figure 3.15.: Uncertainties of the measured betatron phase advances calculated from
six measurement files of 1100 turns from one (∆t≈0.1 s) or multiple
(∆t≈2-3min) beam excitations for beam 1 at a β∗ of 80 cm.

Figure 3.16 shows the distribution of the phase advance uncertainties for measure-
ments from 2012 where up to 2200 turns of TbT data were recorded compared to 2015
(6600 turns of TbT data). One can clearly see, how the longer TbT data acquisition
improves the precision of the measured phase advances. Moreover, a significant differ-
ence of the uncertainty is visible for the different planes. In both cases the horizontal
phase advance has a larger uncertainty.
One reason for this can be attributed to the fact that the excitation amplitude in the
horizontal plane was usually lower than in the vertical plane, which will decrease the
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Figure 3.16.: Uncertainties of the measured betatron phase advances for both beams
for optics with β∗ = 60 cm (2012) and β∗ = 80 cm (2015).

signal to noise ratio and therefore increase the measurement uncertainty, cf. Fig. 3.17.
This happened because the strengths of the ac dipole kick need to be set manually
and different values are required in both planes to achieve the same oscillation am-
plitude. This seemed to favor lower oscillation amplitudes for the horizontal plane.
The graphical user interface (GUI) for these settings has been improved to display
the peak-to-peak amplitudes of the betatron oscillations which should avoid this im-
balance for future measurements [133].

Another contribution comes from the technical problem with the ac dipole which was
already observed in Section 3.4.1. Figure 3.18 shows how the phase advance uncer-
tainty depends on the number of turns analyzed. For beam 1 horizontally, where the
measured ac dipole tune unexpectedly changes in between turn number 2000 to 3000,
also the phase advance uncertainty increases with larger numbers of turns analyzed.
The small deviation of the ac dipole frequency became only visible in a combined
analysis of the TbT data from all BPMs, which made it difficult to find the source
for this issue. In 2016, an amplifier of the beam 1 ac dipole for the horizontal plane
stopped working and had to be replaced [134]. Measurements after the replacement
confirmed, that the problem with the small frequency deviations disappeared. This
highlights the resolution of the TbT analysis, which made discrepancies of the ac
dipole visible before a complete defect occurred.
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Figure 3.17.: Distribution of the beam oscillation amplitudes during TbT measure-
ments at all BPMs for low-β∗ optics in 2015. The two peaks in this
distribution are due to the fact that most of the BPMs are located in
the arcs where the β-function alternates between 30m and 170m at the
BPM positions.
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Figure 3.18.: Average precision of the measured phase advance for different number
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3.4.3. Repeated measurements with a different beam

In this section potential changes of the optics are investigated for time periods which
are larger than one day. In contrast to the previous sections this implies that the mea-
surements are taken with different particle beams. It is therefore affected by further
uncertainties from the reproducibility of a certain machine state, since the machine
will have undergone several operational cycles in between. For injection optics a
repeated measurement after the commissioning was taken during a machine devel-
opment session on the 28th August 2015. Figure 3.19 shows the measured β-beating
in comparison to the measurement during the commissioning. Both measurements
are separated by 4 months. In general the β-beating is very similar in both cases.
However, a few differences can be seen, for example the β-beating in the horizontal
plane increased in the arc between IR5 and IR6 and similarly decreased in the arcs
between IR8 and IR2. The changes of the β-beating are in the order of 2% in these
regions.
Repeated measurements exist also at an energy of 6.5TeV with β∗ = 40 cm which are
also separated by 4 months, cf. Fig. 3.20 and Fig. B.11 in Appendix B.2 for beam 2.
Unfortunately, the second measurement was done with a smaller oscillation amplitude
and fewer repetitions, which resulted in large error bars. Also for squeezed optics no
larger deviations are observed, however not enough measurements of the same optics
under the same conditions with reasonable error bars exist.
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Figure 3.19.: Repeated measurement of the β-beating for beam 1 at injection after a
time period of 4 months.
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Figure 3.20.: Repeated measurement of the β-beating for beam 1 at a β∗ of 40 cm
after a time period of 4 months.

3.4.4. Differences after the long shutdown

Measurements before and after LS1 are separated by three years. Not only could
changes over time be more expressed than in the previous section, but further errors
could have been introduced due to the mechanical work during the shutdown. Fig-
ure 3.21 shows the β-beating before optics corrections for similar squeezed optics in
2012 and 2015, cf. Fig. B.10 in Appendix B.2 for beam 1. Significant differences can
be seen in the β-beating especially in IR1 and IR5.
Also the local corrections which were derived in 2012 and 2015 deviate substantially,
cf. Table 3.3. The effect on the betatron phase of the corrections from 2012 and 2015
is shown in Fig. 3.22 exemplary for beam 1 in IR1.
The deviations indicate that the 2012 corrections could not be reused after three years.
Possible reasons for the discrepancy are (i) the different energy (4TeV to 6.5TeV), (ii)
effects from the long technical stop, (iii) new misalignments and (iv) magnet ageing.
A counterargument to the energy difference as the source of the discrepancy is the
fact, that the optics errors that were observed in measurements at 2.51 TeV in 2015
were compatible with the ones at 6.5 TeV [135].
To further understand the behavior of optics perturbances over time, regular optics
measurements once a year would be useful, especially since with the currently available
data the optics stability for squeezed optics cannot be demonstrated for time scales
of more than one year, and significant differences were observed after LS1.
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Figure 3.21.: β-beating before optics corrections for beam 2 at a β∗ of 60 cm (2012 at
4TeV) and 65 cm (2015 at 6.5TeV).
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Figure 3.22.: Resulting deviations of the betatron phase for local corrections in IR1
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The HL-LHC is a major upgrade of the LHC with significant performance improve-
ments. The upgrades in the main IRs will be performed during the third long shut-
down of the LHC in the 2020s. The goal on the integrated luminosity for HL-LHC
of 3000 fb−1 is ten times more, than the expected value for the LHC up to the up-
grade [136, 137]. This is achieved by enhancing key parameters which contribute to
the luminosity, as shown in Table 4.1. A more precise equation for the luminosity
than Eq. (1.1), includes a reduction factor 0 < R ≤ 1,

L =
1

4π

N1N2fNb

εβ∗
R, (4.1)

which considers the hourglass effect due to the rapidly changing β-function around
the IP, as well as the impact of the crossing angle of the two beams [20]. These effects
are not negligible for the HL-LHC with its larger crossing angle, and would render
the improvements for the luminosity ineffective. Therefore, an envisaged constituent
of the HL-LHC is the compensation of the crossing angle effect by using crab cavi-
ties [138, 139] which are illustrated in Fig. 4.1. Moreover, the higher beam intensity
increases the stored energy in the beam by about a factor of two, which increases the
machine protection challenges [140]. For example, stronger dipole magnets, which
achieve the same bending angle in a shorter distance, will make space available for
additional collimators [141, 142]. Further improvements are new final focusing triplet
magnets with a wider aperture, to allow for larger beam sizes. Together with a novel
optics focusing concept, the achromatic telescopic squeezing (ATS) scheme, which is

Table 4.1.: Parameters for the HL-LHC in comparison to LHC, as shown in [136].

Parameter LHC HL-LHC

N1,2 1.15× 1011 2.2× 1011

Nb 2808 2748
εN 3.75 µrad 2.5 µrad
Crossing angle 285 µrad 590 µrad
β∗ 55 cm 15 cm
Virtual luminosity 1.2× 1034cm−2s−1 2× 1035cm−2s−1
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Beam 1

a) b)

Beam 2 Luminous region

θ

Figure 4.1.: Illustration of bunch crossings at an IP. In a) the effect of the crossing
angle θ between the beams is shown, which reduces the luminous region
where particle collisions occur. The luminous region becomes smaller for
larger crossing angles. In b) the same setting is shown with additional
crab cavities before and after the crossing. The transverse deflection of
the bunches allows effectively for head-on collisions and compensates the
luminosity reduction due to the crossing angle.

foreseen for the HL-LHC, this will allow for lower β∗ [143].

4.1. ATS optics measurements

Tests of the ATS optics have been performed in the LHC during MD sessions in
2011 and 2012 [144–147]. In 2012, optics measurements were performed for a β∗

of 40 cm, 20 cm and 10 cm. Local corrections were computed and tested at a β∗ of
20 cm. Only beam 1 was available for measurements at β∗ = 10 cm, as beam 2 was
lost at β∗ = 14 cm, due to a wrong setting [147]. These measurements have been re-
analyzed with the N -BPM method. The β-beating before and after local corrections
at β∗ = 20 cm is shown in Fig. 4.2 for beam 1. β-beating plots for the other cases
are listed in Appendix B.4. Unexpectedly, the local corrections did not improve
the β-beating. During the re-analysis, it was found that the reason for this was an
incompatibility between magnetic strength definitions in MAD-X for ATS optics and
the software for finding optics corrections, which effectively overwrote the correction
value for one quadrupole powering circuit. As a consequence the applied correction
differed from the envisaged one. It was possible to re-construct the actual magnet
settings as they were applied to the accelerator. The prediction from the actual
correction is in excellent agreement with the measured phase deviation after local
corrections, as shown in Fig. 4.3. It is therefore very likely that local correction could
significantly improve the observed β-beating for ATS optics, however an experimental
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Figure 4.2.: Beta-beating for beam1 for ATS optics with β∗ = 20 cm, before and after
local corrections.

23500 23700 23900 24100

s (m)

0.00
0.02
0.04
0.06

∆
φ
y

(2
π

)

Predicition
Measurement

K
1L

−0.04
−0.02

0.00
0.02

∆
φ
x

(2
π

)

Figure 4.3.: Deviation of the propagated phase advance in SbS after local corrections
for ATS optics for beam 1 at β∗ = 20 cm. For successful corrections a
flat line would be expected, cf. Section 1.3.1. Due to a wrong magnet
setting in the corrections, the actual prediction of the phase deviation
differs from this expectation. However, it is in excellent agreement with
the measurement.
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Figure 4.4.: Average relative uncertainty of the measured β-functions. Injection mea-
surements are performed at 450GeV, while all other measurements are
at 4TeV.

demonstration is still required.
The uncertainties of the measured β-functions are shown in Fig. 4.4 exemplary for a β∗
of 20 cm. The uncertainties are compared to further measurements from 2012 with
different optics configuration, namely at injection, after the energy ramp to 4TeV
(Flattop), and for a β∗ of 60 cm. ATS optics measurements show about a factor
two larger random and systematic uncertainties. One reason for the larger systematic
uncertainties is the larger β-function in several arcs and in the experimental IRs [148].
Furthermore, random uncertainties of the measured phase are expected to increase as
well, due to the larger average β-function, which results in a larger phase jitter [149].

4.2. Optics correction challenges

The impact of perturbations on the optics, and their correctability is simulated for
the HL-LHC in comparison to the LHC. For the HL-LHC simulation, the lattice and
optics version HLLHCV1.1 is used [150]. The same field errors from Table 2.2 and
the b2 uncertainty of the main dipoles, as described in Section 2.2, are used for both
the LHC and the HL-LHC. Additional uncertainties are assumed for the new magnet
types of the HL-LHC, as shown in Table 4.2. The following error tables are used for the
b2 uncertainty of IR dipole magnets, D2_errortable_v5_spec, MBH_errortable_v1
and D1_errortable_v1_spec [151]. In this simulation, global corrections are tested.
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It is assumed that previous local correction would have successfully corrected errors
of the final focusing triplet magnets, cf. Table 4.2.

Table 4.2.: Gradient errors of different quadrupole magnet families. For MQYL the
same uncertainty as for the LHC MQY magnet is assumed as they are
of the same magnet type, cf. Table 2.2. For the final focusing triplet
magnets (MQX) a residual uncertainty is assumed after successful local
corrections.

Quadrupole Error relative to the
family main field (10−4)

MQYL 8
MQYY 10
MQX 2

103 lattices are simulated by randomly applying the uncertainties, following a Gaus-
sian distribution, truncated at three standard deviations. The distribution of the
resulting peak β-beating is shown in Fig. 4.5. The peak β-beating distribution for
the LHC is consistent with measurements after local corrections, cf. Appendix C
and [64]. The resulting β-beating due to the optics perturbations is about a factor
two to three worse for the HL-LHC.
A response matrix, based on the ideal model, is calculated according to Section 1.3.2.
For each case a global optics correction is calculated according to Eq. (1.54), assuming
no uncertainty of the phase advances. The peak β-beating distribution after the
correction is shown in Fig. 4.6.
Even after one iteration of global optics corrections, the peak β is still a factor two
worse in comparison to the LHC. This emphasizes the challenges that lie ahead for
optics corrections at the HL-LHC.
As shown in Section 3.2.3, the β-function from phase advance computation, reaches
its limits around the IP for very low β∗, as the phase advance in between BPMs is
in the order of the measurement uncertainty. Using only the phase information in
SbS for local optics corrections is insufficient for the HL-LHC [152]. Several improve-
ments are under development to cope with this, by including the results from different
measurement methods in SbS. K-modulation measurements were successfully used
in the calculation of local and global optics corrections in the 2016 optics commis-
sioning [123]. Furthermore, improvements of the BPM calibration with beam based
measurements are developed, which will allow to derive precise β-functions from the
amplitude information of TbT measurements [124], cf. Section 1.2.1. This method
can give precise results at positions where the β-functions are very large, which is
exactly the region where the N -BPM method is limited.
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Figure 4.5.: Peak β-beating distribution before optics correction.

The use of ballistic optics, where the triplet magnets are not powered, can furthermore
be used to disentangle optics corrections of the triplets from other IR magnets, which
has been tested in an MD [153].
Combining the results from these different available measurement techniques, each
with different weaknesses and strengths, is a promising approach to cope with more
demanding optics correction scenarios.
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Figure 4.6.: Peak β-beating distribution after one iteration of global optics correction.
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Conclusion

In this thesis, advancements in the measurement and control of the beam focusing
properties of the Large Hadron Collider were presented. Measurement and control
of the beam optics, specifically the β-functions, are essential for the performance
reach of a particle collider. Furthermore, the LHC has tight tolerances on the allowed
maximum deviation from its design parameters.
The β-function can be computed from the phase advance of the betatron oscillation
between at least three beam position monitors (BPMs), which is derived from turn-
by-turn (TbT) orbit measurements at these BPMs while an oscillation of the beam
is excited. The measurement of the β-functions at one BPM position deteriorates,
if too many BPMs are used with equal weights, as contributions from model errors
increase. The N -BPM method, which is developed here, overcomes this limitation
by performing a detailed analysis of statistical and systematic error sources and their
correlations. This allows to use the measurement information from more BPMs to
improve the precision and accuracy of the derived β-function. This method has been
tested in simulations, as well as in comparison with k-modulation measurements at
the LHC, and with the linear optics from closed orbit method (LOCO) at the ALBA
accelerator. A re-analysis of the LHC measurement data from 2012 with the N -BPM
method showed an improvement in the average error bar of the derived β-functions
of at least a factor three, compared to the analysis from 2012.

The N -BPM method has been used online in the LHC control room during the optics
commissioning at an unprecedented energy of 6.5TeV. Its results were used to derive
optics corrections which are used in operation. An improved optics quality has been
demonstrated for optics with a stronger focusing, and hence smaller beam sizes at
the collision points, than its design values. A new record low β-beating is achieved,
and for the first time a high energy hadron collider is demonstrating an optics quality
which is on par with synchrotron light sources.
Measurements during the energy ramp confirmed the good control of the optics during
acceleration. This is a prerequisite for the combined ramp and squeeze scheme, which
can reduce the turnaround time from one particle fill to the next one, and hence
increase the integrated luminosity.
Studies of the optics stability were presented for different time scales. This benefited
from recent upgrades of the ac dipole and TbT acquisition system, which allowed
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to increase the length of the beam excitation time for optics measurements. In this
analysis a subtle change of the ac dipole excitation frequency was observed, which
became only visible in the combined analysis of TbT data from more than 500 BPMs.
No other available measurement technique had the required resolution to observe this
deviation, which effectively increased the uncertainty of the measured betatron phase
for beam 1 in the horizontal plane. The issue was resolved after an amplifier of the
ac dipole was replaced.
Optics measurements which are separated by several months show that deviations
of the measured β-function of up to 2% may occur at injection. However, only few
measurements under the same conditions were available. Measurements before and
after the first long shutdown of the LHC (LS1), which are separated by three years,
deviate significantly, so that optics corrections from 2012 could not be used again
in 2015. The energy increase from 4TeV to 6.5TeV was ruled out as the source for
this discrepancy, as measurements in 2015 at 2.5TeV showed errors compatible with
those observed at 6.5TeV. To further understand this behavior, regular optics mea-
surements once a year should be performed.

Large efforts for optics measurements from TbT orbit data at ALBA resulted in
a great step forward in the calculation of β-functions from the phase of the betatron
oscillation at synchrotron light sources. Deriving systematic errors and correlations
in the N -BPM method successfully increased the optics measurement precision. The
agreement with LOCO is now at a level of 1%. For the first time TbT measurements
and LOCO show the same level of precision in the measurement of β-functions at a
synchrotron light source. This also sparked the interest at other machines, and the
N -BPM method was tested at ESRF with great success [154].

Measurements with a new optics scheme which is foreseen for HL-LHC had been
performed in 2012, where the computed local corrections were unsuccessful in im-
proving the β-beating. A re-analysis of these measurements was presented, revealing
that due to a software incompatibility different correction settings were applied to the
machine than the envisaged one. Taking this into account, the measurement after
correction was in good agreement with the expectation, which indicates that there
was in principle no obstacle for optics corrections for this optics.
Optics corrections for the HL-LHC were studied in simulations. It was shown how
the stronger focusing will significantly increase the β-beating before corrections. It
will moreover challenge optics measurements with the N -BPM method around the
collision points, due to even smaller phase advances between BPMs. Furthermore,
optics measurements will become more difficult, as the increased average β-function
amplifies the phase jittering, which results in larger random errors. Simulations show
that systematic errors are expected to increase as well. Several approaches were de-
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scribed, which are under development, to cope with the more challenging scenarios for
optics measurements and corrections. This includes combining the data from differ-
ent measurement techniques, which will complement the N -BPM method in regions
where it becomes less efficient.

In summary, the present work highlights the benefit of a careful analysis of sys-
tematic and statistical errors and their correlations, to increase the accuracy and
precision of the derived parameters. The N -BPM method sets new standards for
optics measurements at high energy particle colliders and synchrotron light sources.
The improvements condensed into a significantly enhanced quality of the beam optics
at the LHC. This provides additional margins for the aperture requirements of the
beam, which could be used to increase the machine performance by operating with
stronger beam focusing. As a result, the LHC is since 2016 operating with a smaller
β∗ at the collision points, than its design specifications. The N -BPM method will
continue to play a crucial role for further advancements of the machine performance
and future upgrades.
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Acronyms

ac alternating current

ALICE A Large Ion Collider Experiment

ATLAS A Toroidal LHC ApparatuS

ATS achromatic telescopic squeezing

BPM beam position monitor

dof degrees of freedom

DS dispersion suppression section

CERN European Organization for Nuclear Research

CMS Compact Muon Solenoid

CRS combined ramp and squeeze

DA dynamic aperture

FODO focusing and defocusing quadrupoles in alternating order

GUI graphical user interface

HL-LHC High Luminosity Large Hadron Collider

IP interaction point

IR insertion region

IR1 ATLAS interaction region

IR2 Alice interaction region

IR3 Momentum cleaning insertion

IR4 Insertion for beam acceleration
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IR5 CMS interaction region

IR6 Beam extraction insertion

IR7 Betatron cleaning insertion

IR8 LHCb interaction region

LEP Large Electron-Positron Collider

LHC Large Hadron Collider

LHCb Large Hadron Collider beauty

LINAC2 50MeV linear proton accelerator

LOCO linear optics from closed orbit

LS1 the first long shutdown

LS3 the third long shutdown

MAD-X Methodical Accelerator Design

MB main dipole

MD machine development

MQT tune trim quadrupole

MQY wide aperture quadrupole in the insertion

MQX final focusing triplet magnets

MS matching section

ORM orbit response matrix

pp proton-proton

PS Proton Synchrotron

PSB Proton Synchrotron Booster

QPS quench protection system

rf radio frequency
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RHIC Relativistic Heavy Ion Collider

sc superconducting

SPS Super Proton Synchrotron

rms root mean square

SbS segment-by-segment

SVD singular value decomposition

TbT turn-by-turn
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A. Hypothesis testing

Statistical auxiliary means, which have been used in this thesis for the test of hy-
potheses, are briefly introduced in the following sections.

A.1. χ2-test
Assuming independent random variables xi, which follow a Gaussian distribution with
the probability density

f(xi, µ, σ) =
1√

2σ2π
exp

[
−(xi − µ)2

2σ2

]
. (A.1)

For µ = 0 and σ = 1, the sum of the squares

χ2 =
n∑
i=1

x2i , (A.2)

follows a χ2 distribution with n degrees of freedom (ν), whose probability density
function is given by [86]

p(χ2, ν) =
(χ2)(ν−2)/2e−χ

2/2

2ν/2Γ(ν/2)
. (A.3)

The χ2 test can be used to evaluate the agreement of a measurement result with a
theoretical model, if one has measurement variables yi, which are independent and
follow a normal distribution with µi and σi. This assumption is approximately valid
in many cases due to the central limit theorem [155]. If the measurement results yi
are compatible with the theoretical expectation yt,i, which is the hypothesis H0, then
the assumptions of Eq. (A.2) are fulfilled if the χ2 is calculated as

χ2 =
n∑
i=1

yi − yt,i
σi

. (A.4)

The expected value of the χ2 distribution is equal to the degrees of freedom, E[χ2] = ν.
Therefore, χ2/ν, also referred to as the reduced χ2, is expected to be close to one. A
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A. Hypothesis testing

value which differs, could mean that the measurement uncertainty is overestimated,
if χ2/ν < 1, or underestimated, if χ2/ν > 1. However, it could also mean that H0 is
wrong.
More precisely one can evaluate the level of agreement by computing

P (χ2, ν) =

∫ ∞
χ2

p(z, ν) dz, (A.5)

which gives the probability to achieve a certain χ2 or a larger one. This means P (χ2, ν)
is the probability, assuming H0 is correct, to achieve the observed level of agreement
or a poorer one. If the probability is too low, this is an indication that there might
be problem with the theoretical model, or with the assumed uncertainties.

A.2. p-value
The p-value is the probability to achieve the observed result or a more extreme one,
assuming the hypothesis H0 is true. A more extreme result could mean for example,

pr
ob

ab
ili

ty
de

ns
ity

xi

p-value

possible results

Figure A.1.: Illustration of the p-value for the observed result xi, where a more ex-
treme results would be larger than xi.

a result which is larger than the observed one, as shown in Fig. A.1, which gives a
one-sided p-value. A two-sided p-value covers both tails of the probability density
function and is computed as two times the minimum of the two one-sided p-value for
the left and right side.
For the χ2-test in the previous section, the p-value would be equal to P (χ2, ν), if H0

is true. By their definition, the p-values, if H0 is true, follow a uniform distribution.
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B. Measured β-beating

B.1. Injection energy
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Figure B.1.: β-beating at injection for beam 2 in 2015 in comparison to 2012.
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Figure B.2.: β-beating at injection for beam 2 before and after optics correction.
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B.2. Squeezed optics
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Figure B.3.: β-beating for Beam 2 after local and global corrections at β∗ = 60 cm.
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Figure B.4.: β-beating after local and global optics corrections along the machine for
beam 1 at a β∗ of 40 cm.
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Figure B.5.: β-beating after local and global optics corrections along the machine for
beam 2 at a β∗ of 40 cm.
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Figure B.6.: β-beating after local and global optics corrections along the machine for
beam 1 at a β∗ of 60 cm.
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Figure B.7.: β-beating after local and global optics corrections along the machine for
beam 2 at a β∗ of 60 cm.
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Figure B.8.: β-beating after local and global optics corrections along the machine for
beam 1 at a β∗ of 80 cm.
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Figure B.9.: β-beating after local and global optics corrections along the machine for
beam 2 at a β∗ of 80 cm.
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Figure B.10.: β-beating before optics corrections for beam 1 at a β∗ of 60 cm (2012)
and 65 cm (2015).
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Figure B.11.: Repeated measurement of the β-beating for beam 2 at a β∗ of 40 cm
after a time period of 4months.
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Figure B.12.: β-beating for beam 2 at β∗ = 40 cm after corrections in 2015 and 2016.
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B.3. Energy ramp
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Figure B.13.: Beta-beating for beam2 during the CRS at an energy of 5.08TeV and
a β∗ of 4m in IP1 and IP5.
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Figure B.14.: Beta-beating for beam2 during the CRS at an energy of 5.96TeV and
a β∗ of 3m in IP1 and IP5 in comparison to a static measurement at
6.5TeV with a β∗ of 2m.
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B.4. ATS optics
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Figure B.15.: Beta-beating for beam1 for ATS optics with β∗ = 40 cm.
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Figure B.16.: Beta-beating for beam2 for ATS optics with β∗ = 40 cm.

129



B. Measured β-beating

−0.2
0.0
0.2
0.4

∆
β
/β

x

LHCB2 4.0 TeV

0 5000 10000 15000 20000 25000
Longitudinal location (m)

−0.4
−0.2

0.0
0.2

∆
β
/β

y

IR1 IR2 IR3 IR4 IR5 IR6 IR7 IR8

before correction after loc. corr.

Figure B.17.: Beta-beating for beam2 for ATS optics with β∗ = 20 cm, before and
after local corrections.
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Figure B.18.: Beta-beating for beam2 for ATS optics with β∗ = 10 cm.
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C. Local optics corrections for run II

Table C.1.: Local correction strengths from run II compared to run I for interaction
region (IR) quadrupoles. The circuits of the final focusing quadrupoles
are highlighted with a bold font.

Location Circuit ∆k (10−5m−2) Relative (%)

2012 2015 2015

IR1 ktqx1.r1 1.0
ktqx2.l1 1.0 0.35 −0.04
ktqx2.r1 −1.4 −0.7 +0.08

kq4.l1b2 −0.5
kq9.l1b1 1.5

IR2 ktqx2.l2 −2.0 −0.21
ktqx2.r2 2.0 −0.21

IR5 ktqx1.l5 2.0 −0.23
ktqx1.r5 −2.0 −0.23
ktqx2.r5 1.05 1.9 0.22
ktqx2.l5 0.70 −0.09 0.01

kq4.l5b2 3.80

IR6 kq5.l6b1 −3.9
kq5.r6b1 0.9
kq5.l6b2 4.8
kq5.r6b2 1.0

IR8 ktqx2.l8 −1.0 −0.11
kq4.l8b1 4.0
kq4.r8b2 −10.0
kq5.r8b1 8.0
kq5.r8b2 −3.0
kq6.l8b1 2.0 −2.0 0.46
kq6.l8b2 −3.0 2.0 0.35
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