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Abstract
In drug development, there is a constant demand for new, synthesizable molecules
with desirable properties. Molecules with a certain physicochemical profile have
a higher probability of having a biological effect, i.e., the ability to enter the body
and to bind to a specific protein. Computational tools present a convenient and
efficient way to quickly generate such molecules. In this thesis, two new deter-
ministic algorithms were developed to facilitate the generation of large libraries of
promising, synthesizable molecules. They both utilize the fragment space model,
which describes a chemical space by a set of fragments and rules. The latter
determine how fragments can be connected. Due to their combinatorial nature,
fragment spaces may represent virtually infinite chemical space.

The first algorithm takes a fragment space as input and exhaustively enumer-
ates all molecules with a user-defined physicochemical profile. It is implemented
with constant main memory requirements by utilizing file-based data structures
in order to enable the enumeration of millions of molecules. For this purpose,
several enumeration experiments were carried out using various physicochemical
constraints. The second algorithm constructs fragment spaces from molecular
building blocks and synthetic chemical reactions. Molecules retrieved from such
spaces have a high likelihood of being synthesizable because they were assem-
bled based on actual chemical reactions. In addition, this information can be
translated into a synthetic route for each molecule. Several fragment spaces were
constructed from well-established synthetic reactions.

Finally, the third topic of this thesis is the development of a graphical user
interface that combines several fragment space methods. This tool, called Frag-
ment Space Commander, enables users to create, visualize and edit fragment
spaces and generate new molecules in a convenient way.
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Kurzfassung
In der Arzneimittelforschung besteht ständiger Bedarf an neuen, synthetisier-
baren Molekülen mit erstrebenswerten Eigenschaften. Moleküle mit bestimmten
physikochemischen Merkmalen besitzen mit höherer Wahrscheinlichkeit eine bi-
ologische Wirkung, das heißt, die Fähigkeit vom Körper aufgenommen zu werden
und sich an ein bestimmtes Protein zu binden. Computergestützte Verfahren
stellen hierbei eine einfache und effiziente Möglichkeit dar, solche Moleküle schnell
zu generieren. In der vorliegenden Dissertation wurden zwei neue deterministische
Algorithmen entwickelt, um die Generierung großer Bibliotheken von erfolgsver-
sprechenden, synthetisierbaren Molekülen zu ermöglichen. Beide Algorithmen
nutzen das Fragmentraum-Modell, welches einen chemischen Raum anhand einer
Menge von Fragmenten und Regeln beschreibt. Diese Regeln wiederum definieren,
wie Fragmente miteinander verbunden werden können. Aufgrund ihres kom-
binatorischen Charakters können Fragmenträume einen praktisch unbegrenzten
chemischen Raum darstellen.

Der erste Algorithmus arbeitet mit einem Fragmentraum als Eingabe und
enumeriert vollständig alle Moleküle mit benutzerdefinierten physikochemischen
Eigenschaften. Um die Enumeration von Millionen von Molekülen zu ermöglichen,
wurde dieser Algorithmus mit konstantem Arbeitsspeicherbedarf unter Verwen-
dung von dateibasierten Datenstrukturen implementiert. Zu diesem Zweck wur-
den mehrere Experimente mit einer Reihe von verschiedenen physikochemischen
Randbedingungen durchgeführt. Der zweite Algorithmus erstellt Fragmenträume
aus molekularen Bausteinen und Synthesereaktionen. Die aus solchen Räumen
gewonnenen Moleküle weisen eine hohe Wahrscheinlichkeit auf, im Labor herstell-
bar zu sein. Dies liegt daran, dass sie basierend auf Information zusammenge-
baut wurden, die von tatsächlichen chemischen Reaktionen abgeleitet wurde. Des
Weiteren kann diese Information genutzt werden, um für jedes Molekül einen Syn-
theseweg zu entwickeln. Mit dieser Methode wurden mehrere Fragmenträume aus
gängigen Reaktionen erstellt.

Gegenstand der vorliegenden Dissertation ist schließlich auch die Entwick-
lung einer grafischen Benutzeroberfläche, welche verschiedene Fragmentraum-
Methoden kombiniert. Dieses Tool, genannt Fragment Space Commander, er-
möglicht es Nutzern, Fragmenträume zu erstellen, zu visualisieren und zu bear-
beiten und, darüber hinaus, neue Moleküle auf einfache Art und Weise zu gener-
ieren.
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1
Introduction

1.1 Motivation

The search for medicinal drugs has changed dramatically over the past century.
It has evolved from a purely empirical process of trying different herbal and an-
imal products into a highly complex, interdisciplinary endeavor [6]. The goal of
rational drug design is to develop small organic molecules that bind to a spe-
cific protein and exhibit ideal properties regarding bioavailability. For the most
part, this process is based on well-established experimental techniques. In re-
cent decades more and more computational tools were incorporated in the drug
development workflow because they allow researchers to much more quickly as-
sess a situation. These tools help to enhance the drug development process as
idea-generating tools, especially in early stages of the process [7, 8]. At the begin-
ning, knowledge about function-determining features of desired ligand molecules
is scarce and new ideas are required that lead to patentable molecules. In this
phase, similarity searching, pharmacophore mapping, or virtual screening are usu-
ally applied (see 2.2). These techniques are intended to identify initial hits and
require virtual compound libraries as input.

Due to the enormous extend of the chemical space, it is not possible to simply
synthesize or computationally generate all molecules and test them. Bohacek et
al. estimate the size of the interesting chemical space (i.e. molecules with up to
30 atoms) with 1060 molecules [9]. The “virtual chemistry space” is estimated to
even contain 10100 molecules [10]. On the other hand, the “known drug space”,
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4 1.1. Motivation

i.e., molecules that may actually be an active substance with a desirable effect,
is estimated with only 1.1− 2.0 ∗ 106 molecules [11]. Trying to generate all mole-
cules in order to find the desired ones by brute-force computation quickly leads to
combinatorial explosion. To compile a virtual molecular library for further test-
ing, only molecules with desirable properties must be considered to increase the
chance that the resulting set of molecules represents a promising chemical sub-
space. The common strategy is to incorporate certain constraints in the building
process in order to limit the search space.

Depending on the progress of the campaign and how much is known about the
target protein, constraints can be derived from different sources. In the context
of library design, physicochemical properties of molecules play an important role
[12–19]. They are ideal constraints since they are single numeric values that can
be measured experimentally for actual molecules and computed efficiently for
virtual ones. In addition, certain properties serve as indicators for bioavailability
[13, 15–18], i.e., the ability of a molecule to enter into an organism and arrive at
the target location.

In addition to physicochemical properties, the ability to synthesize a mole-
cule is of utmost importance. A predicted molecule may exhibit the most ideal
properties in theory but if it cannot be created in the laboratory it is worthless.
Unfortunately, this is neglected by many computational methods. By including
information about chemical reactions, an increased chance of synthetic tractabil-
ity is achieved [20, 21].

In the laboratory, reactions are used to create larger molecules from smaller
ones. These small organic molecules are called fragments and can be incorporated
in the design process from the beginning. In recent years, fragment-based meth-
ods have gained popularity in drug discovery and have been successfully applied
[7, 22, 23]. Fragments are an interesting basis for experimental and computational
drug development for several reasons: They are accessible; vendors offer large li-
braries of so called building blocks, i.e., small molecules for the use in synthetic
reactions. They are chemically motivated constraints that limit the search space
at no extra (computational) cost. A fragment describes a set of atoms that form
a chemically stable, functional unit. These units can be combined into larger
entities.

In this work, fragments are utilized to construct novel molecules. The com-
putational methodology for working with them is a fragment space. A fragment
space is an implementation of a combinatorial space consisting of molecular frag-
ments and connection rules derived from reactions or retrosynthetic rules. By
storing only the building blocks and connection rules, a fragment space represents
a potentially very large amount of molecules in a very space efficient manner. In
order to retrieve the interesting molecules from such a space, algorithms are re-
quired that implement strategies to avoid combinatorial explosion. A number of

Chapter 1. Introduction



1.1. Motivation 5

such algorithms for very different use cases already exist They include similarity
searching [24], structure based molecular design [25, 26], scaffold replacement [27,
28], enumeration [29, 30], and substructure searching [31–33]. For the construc-
tion of fragment spaces, an automated method for retrosynthetic fragmentation
exists [34]. Synthetic reaction information has been used solely to manually con-
struct a fragment space [35]. Figure 1.1 gives an overview of the existing methods
and the ones that are subject to this thesis.

Apart from designing promising molecules, it is very important to make com-
putational tools available to researchers for convenient access. Chemists, in par-
ticular, may have reservations regarding computational methods. Providing tools
with a command-line interface enables the use of pipelining tools, but discourages
users without computational background from using – or even trying – them. In
order to raise acceptance for cheminformatics methods, their usage should not
only be possible for cheminformaticians but also for users without computational
training. This requires user-friendly interfaces with sensible default parameters.
Graphical user interfaces (GUIs) constitute a much more convenient and contem-
porary way of accessing scientific algorithms. Especially for the researchers in the
laboratory, they provide additional value due to visualization of both input and
output data for instant inspection.

Novel Molecules

Combinatorial Space

Querying

Interactive Browsing and 
Visualization

Modification
• Focused Libraries 
• Diversity (exploration of scaffolds)
• Property-based filtering

Generation

Fragmentation

Reaction-based Design

Retrosynthetic Rules Molecules
(drug-like)

Synthetic Reactions Molecules
(synthetic library)

• Substructure Search
• Property constrained enumeration
• Pocket growing

• Scaffold replacement
• Lead Optimization

Figure 1.1: Overview of the combinatorial space pipeline leading to novel molecules.
Rounded blue boxes hold strategies and applications for generation, manipulation, and
querying. Arrows denote the flow of information. The method highlighted in green
are the subject of this thesis. This figure is an updated version of a figure originally
published in [2].
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6 1.2. Research Goals

1.2 Research Goals

In drug development, there is a constant need for new ideas for marketable drugs.
The main challenge is to design novel (i.e. not patented), target specific, bioactive,
and chemically feasible molecules. The problem addressed in this thesis is the
generation of large amounts of molecules for the use as input to (high-throughput)
methods that are designed to identify interesting candidates in the early stages of
the drug development pipeline. Due to the size of chemical space, a brute force
approach of generating all possible molecules is not feasible. Instead, constraints
must be applied in order to limit the search space to interesting candidates.
In addition, reaction based information must be incorporated to increase the
likelihood of a molecule to be synthesizable. This should be realized in the context
of fragment spaces because this methodology allows to separate the generation
of the combinatorial chemical space from the method to generate molecules. A
valid fragment space – no matter how it was generated – can be the input to any
of the existing algorithms [24, 25, 27, 29, 31, 32].

Three goals are defined:

1. Development of a new, deterministic algorithm to enumerate all possible
molecules that are represented by a fragment space and a set of ranges of
physicochemical constraints such as molecular weight, number of hydrogen
bonding groups, or calculated logP. The algorithm must be able to enumer-
ate large chemical spaces and create large amounts of molecules.

2. Development of an automated method for generating combinatorial space
in the form of fragment spaces based on information about synthetic chem-
ical reactions. By utilizing reaction information, the chemical feasibility of
molecules retrieved from such a fragment space – regardless of the query
method – is increased.

3. Development of a graphical user interface for working with fragment spaces.
The tool should provide functionality to create, visualize, and invoke new
and existing methods for querying fragment spaces.

1.3 Outline

This thesis is structured as follows. Chapter 2 introduces the basic principles of
drug discovery, including the biochemical basics relevant for understanding the
underlying molecular processes, the typical drug discovery pipeline as employed
by many pharmaceutical companies, and the principles of fragment-based lead
discovery (FBLD). In chapter 3 the concept of chemical and combinatorial space
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is introduced including a discussion of the number of interesting and possible
molecules. Furthermore, fragment space as a way of modeling combinatorial space
is introduced. Then, existing strategies and algorithms for exploring chemical
space are discussed in chapter 4. Chapter 5 follows with a description of how
molecules and molecular properties are modeled in order to describe chemical
space. Next, the newly developed algorithms for reaction-based construction and
constraint-based enumeration of fragment spaces as well as the re-implemented
algorithm for retrosynthetic fragmentation are described in chapter 6. Chapter 7
introduces the different sources of data used for the validation and experiments
discussed in chapter 8. The latter discusses several experiments utilizing the
previously developed algorithms and describes the optimization process of the
enumeration. In chapter 9 the graphical user interface for working with fragment
spaces, Fragment Space Commander, is introduced. Furthermore, all command-
line tools that implement either an algorithm or functionality used for the analysis
of data are described. Finally, chapter 10 summarizes the work and discusses
possible improvements.
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Principles of Drug Discovery

Drug discovery is a multidisciplinary endeavor where the fields of biology, chem-
istry, medicine, and more recently informatics, in the form of bio- and cheminfor-
matics, are joined. The development of new drug molecules requires a detailed
understanding of biochemical processes that can lead to disease and the ability to
design organic molecules that can interact with macromolecules, such as proteins.
Informatics provides computational models of an organism – or parts thereof –
to speed up the development process by shifting experiments from the laboratory
into the computer. On what information a model is based on and what it repre-
sents depends on the specific use case. This chapter describes the traditional drug
discovery pipeline and will elucidate how computational methods can provide as-
sistance in this process. Then, the features of fragment-base lead discovery are
highlighted. First, an introduction to the most important biochemical principles
and terminology is provided.

2.1 Biochemical Background

Every living organism is composed of a multitude of molecules. They range from
very small inorganic molecules such as water or ions, over medium-sized, organic
molecules such as sugars or lipids, to macromolecules such as proteins, ribonucleic
acid (RNA), and deoxyribonucleic acid (DNA). Proteins often congregate to even
larger functional units, e.g., anti bodies, the nuclear pore complex, or virus capsids
[36–38].

9



10 2.1. Biochemical Background

Figure 2.1: Water, Glucose, acetylsalicylic acid (Aspirin), Omeprazole, lipid,
hemoglobin, RNA, antibody, nuclear pore complex, and Faustovirus capsid.

While DNA is a passive molecule, proteins – and some types of RNA – are
actively involved in the processes of an organism. Therefore, they are the major
target in drug development efforts. They are responsible for a vast array of
cellular functions including structure and motility, catalysis of chemical reactions
(enzymes), transport and storage of molecules, regulation of cellular processes,
the immune system, cell-cell recognition, signaling and DNA replication. They
consist of one or more chains of amino acid residues that are connected via peptide
bonds. These bonds are formed when the amine and the carboxylic acid functional
groups of two residues react (see Figures 6.3 and 6.4). Proteins consist of 20
different naturally occurring amino acids, which are connected according to the
order encoded in the DNA. The sequence of amino acid residues determines the
3D shape into which the chain folds. This 3D shape, i.e., the structure of a
protein, determines its function.

Small organic molecules also fulfill a variety of functions in an organism.
They serve as building blocks of proteins, RNA, and DNA (amino acids and
nucleotides), as carriers of energy (e.g. ATP), as energy storage (e.g. triglyc-
erides), as biochemical messengers (e.g. hormones), and others. Small molecules
can either be produced by the organism itself or absorbed from the environment,
for example by ingesting food. In either case, proteins are involved. They interact
with these molecules in order to detect, transport, and metabolize them.

A small molecule that binds to a protein is called a ligand. Ligand binding
can be reversible or irreversible. For an irreversible interaction, the ligand and
the protein chemically react to form a covalent bond. In the reversible case, a
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molecule and a protein form a complex, meaning that both molecules remain sep-
arate chemical entities. Instead of a covalent bond, the interaction comprises of
attractive and repulsive non-covalent intermolecular forces, i.e., hydrogen bonds,
ionic interactions, metal complexes, hydrophobic interactions, and cation-π in-
teractions. Complementary interaction profiles in a protein and a ligand lead to
the formation of a protein-ligand-complex, for which the overall energy is lower
than for both molecules in solution. This is often compared to a lock, the protein,
and a key, the ligand. Emil Fischer first coined the term lock-and-key principle
in 1894 [38]. The goal of rational drug design is to develop new molecules with
complementary features so that they bind to proteins involved in a disease. De-
pending on the disease and the proteins involved, a new molecule can enable or
prevent the function of a protein. The major challenge is to design a molecule
that is specific to the protein in question. If the molecule binds to other proteins
as well, this most likely leads to undesired side effects.

For certain protein classes, ligands are named after their function, i.e., the
effect on the protein. In the context of enzymes – the largest class of drug targets
[39] – a ligand is either a substrate or an inhibitor. Substrates are molecules for
which the enzyme catalyzes a reaction. An inhibitor, on the other hand, binds
to the enzyme and prevents, i.e., inhibits, its catalytic function. The mechanism
of action can be different. A competitive inhibitor binds to the same site as a
substrate while blocking it. Uncompetitive and non-competitive inhibitors bind at
other sites of the enzyme. The former molecule binds to both the enzyme and the
enzyme-substrate-complex, while the latter binds exclusively to the complex. A
drug molecule can be of either type [39]. The inhibition is initiated either by the
fact that a molecule blocks a site that is required for the proper function, or by
allosteric inhibition, i.e., by introducing a conformational change in the protein
and therefore changing its structure. The second largest class of drug targets are
receptors, i.e., proteins that receive chemical signals from outside a cell. Ligands
that bind to a receptor and trigger a response within the cell are called agonists.
Their counterpart are antagonists, i.e., ligands that bind, but prevent the function
of the receptor. Another type of ligand is an inverse agonist. It induces a response
opposite to that of the agonist. This is only possible in case the receptor has a
constitutive activity, i.e., a basic activity in the absence of any agonist. For this
class too, drug molecules can be of either type [39].

2.2 The Drug Discovery Pipeline

The drug discovery pipeline can be divided into several phases in which different
experimental and computational methods are applied. In each phase, the number
of potential new drug candidates is reduced. In the following, the different phases
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are described, a depiction is shown in Figure 2.2.

Figure 2.2: Generic Drug Discovery Pipeline with experimental and computational
methods listed. Virtual compound libraries as generated by the enumeration method
in this thesis represent the input for many of the computational methods listed.

2.2.1 Target Identification

The first step towards developing a therapeutic molecule is to investigate the
disease on a molecular level. This investigation is mostly done in the laboratory
by applying experimental techniques from molecular biology, biochemistry and
physics (i.e. imaging). The knowledge gained in this phase establishes the basis
for the rational drug design process. First, one must identify proteins or a protein
pathway involved in the disease in order to find a protein that can be influenced.
Depending on the disease, this can be a human protein, for example in the case
of cancer, or a protein of a pathogen such as a bacterium or a virus. Then, a
target must be chosen from this set having the right properties. Since the goal
is to develop a ligand that can bind to the protein in order to affect its activity
and/or conformation, usually proteins are chosen that already interact with small
molecules and therefore exhibit distinct binding sites. Such proteins are enzymes,
receptors, or transporters [39, 40]. It is important that this binding site exhibits a
certain specificity so that a molecule can be designed that binds exclusively to this
protein. If the protein natively binds different molecules – if it is promiscuous –
its binding site will be less specific and harder to target. Similarly, if the designed
ligand binds to multiple proteins, it may cause side effects in the patient. Neither
case is desirable. Furthermore, the protein should have a very slow mutation rate,
so that it does not change during the lengthy drug development process. This is
especially critical when targeting viral or bacterial diseases. Finally, it should be
possible to express and isolate the protein in large amounts so that it is available
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in later stages of the pipeline, e.g., for the production of protein crystals, high
throughput screening, or affinity measurements during lead optimization.

2.2.2 Structure Determination

The next step is the determination of the 3D structure of the selected protein. It is
the basis for structure-based methods since it allows to examine the function of a
protein and the exploitable structural features. Known structures can be found in
the publicly available Protein Data Bank1 [41] (PDB) or in an in-house database.
If no structure is available, it can be determined via experimental techniques such
as X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The
former is the most widely used technique and requires that the protein has been
crystallized. If crystallization is not possible, NMR spectroscopy can be used. It
is more elaborate since it requires isotopic labeling of the molecule. In addition,
it is only applicable to relatively small macromolecules. In the case that the
structure cannot be determined by experiment, homology modeling can be used.
This is a computational method to generate a structure from the sequence of the
protein and a known homologous structure, e.g., a protein with the same function
from different organisms. In general, homologous proteins are related because of
a shared ancestry. If a structure can neither be determined nor generated, only
ligand-based methods can be applied in the next steps.

2.2.3 Lead Identification

The goal in this phase is to find molecules that can be used as starting points
for the development of potent binders. For this purpose, the exact mechanism of
action for known ligands is investigated first. Then, an array of experimental and
computational methods is used to find non-naturally occurring and synthesizable
molecules. Most prominently, this is high throughput screening (HTS) and virtual
high throughput screening (VHTS). HTS is an experimental method in which
each molecule of a compound library is tested for activity against the protein
under investigation. This is a mostly automated process, which requires large
amounts of purified protein. Virtual high throughput screening (short: virtual
screening) is the computational equivalent to HTS. It uses a model of the 3D
structure of a protein and a virtual library of molecules. The individual molecules
are placed into the binding pocket by a docking algorithm. Then, the binding
mode is scored by means of a scoring function that assesses the strength of the
non-covalent interactions between the molecule and the protein. The output of
both screening methods is a list with measured or computed binding affinities,

1http://www.rcsb.org
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respectively. Virtual screening is usually applied first since it is cheaper and faster.
In case a protein structure is not available, pharmacophore based methods can be
applied. This is an abstract, spatial description of molecular features that form
interactions with the target protein and are thus relevant for a pharmacological
effect. Such a model can be built from known ligands or homologous proteins.
In order to compile a virtual compound library after an initial hit was found, a
number of computational techniques to generate novel patentable molecules can
be applied (see chapter 4).

The techniques described in this chapter are usually not applied once and in a
specific order, but rather in an incremental and interlinked fashion to reduce the
number of potential molecules to a manageable amount [42]. They act as filters
and idea generation tools for the expert. Ultimately, it takes the knowledge and
experience of a medicinal chemist to select molecules that can be further modified
and optimized.

2.2.4 Lead Optimization

During the optimization phase, a lead molecule is developed into a drug molecule
with the necessary properties to go into clinical trial. The goal is to increase
affinity and specificity towards the target protein and to improve absorption and
duration of action in the organism. At the same time, side effects and toxicity
must be reduced, if not eliminated. While a variety of structural modifications
can be applied, it is important to keep the interaction profile unchanged or only
slightly changed. This is accomplished by exchanging parts of the molecule with
bioisosteres, i.e., groups with similar steric and electronic properties. For instance,
a Carbonyl (CO) can be replaces with a (larger) Sulfonyl (SO2) to increase the
number of hydrogen bonds that can be formed. Bioisosteric exchange results in
different molecules with the same biological properties. Another strategy is to
make the molecule more rigid by introducing ring systems or to make it more
flexible by adding aliphatic carbon chains. In the former case, the number of
rotatable bonds is decreased, in the latter, it is increased. By increasing the
lipophilicity, the absorption rate and affinity are usually increased as well.

In this phase, many computational tools are used since they enable researchers
to conveniently create new molecules and quickly evaluate their properties. This
includes calculation of physicochemical properties, analysis of conformational
space, alignment of molecules, docking and scoring, or molecular dynamics sim-
ulation. Many of these require the 3D structure of the protein. If a structure
is not available, statistical tools like quantitative structure activity relationship
(QSAR) models can be applied. A QSAR model is trained with known experi-
mentally determined or calculated properties and measured biological activities
of a set of known molecules. It then estimate the activities of new molecules
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based on their properties. Statistical methods also play a role in the prediction of
ADMET properties, i.e., how a compound is absorbed, distributed, metabolized
and excreted concerning the organism and whether it is toxic. In addition, tools
for the visualization of molecular interactions are used to inspect the outcome of
the prediction or experiment. Finally, each interesting virtual molecule has to be
synthesized and experimentally validated.

2.2.5 Pre-clinical and Clinical Testing

In this phase, the remaining compounds are tested in vitro (i.e. with cell cultures
or isolated tissue cells) and in vivo (i.e. with mammals such as mice and dogs)
for activity, bioavailability, and toxicity. Usually only a very small number of
molecules or even just one passes these tests. Only then is the remaining molecule
moved into the clinical phase, where it is tested on humans.

In phase I, a very small dose is administered to a small number of healthy
volunteers to rule out toxicity and serious side effects. In phase II, the thera-
peutic effect and the proper dosage are determined. In phase III, the efficacy is
demonstrated on a large scale to show that the new treatment is advantageous.
Finally, the new drug is released. Only around 10% of the molecules that enter
clinical trials become purchasable drugs [43].

2.3 Fragment-based Lead Discovery

In the last two decades, an alternative method to the traditional lead discov-
ery process utilizing high throughput screening has evolved [44–49] and was es-
tablished in pharmaceutical companies [23, 49]. Fragment-based lead discovery
(FBLD) is based on very small molecules (fragments) rather than drug-sized
molecules. The understanding of what qualifies as small, or fragment-like, differs
slightly. For Carr et al. fragments are molecules with a molecular weight in the
range of 120–250 Da [46], while Congreve et al. define a "Rule of three", which
sets only an upper bound for the molecular weight to 300 Da [50].

The overall strategy of fragment screening is essentially the same as for high
throughput screening with few differences in certain details. Fragment screening
is usually done with a smaller library of molecules. Since the number of possible
molecules rises exponentially with the number of atoms (molecular weight), there
are fewer small molecules than larger ones. Therefore, a library of fragments cov-
ers a higher proportion of the available chemical space than drug-sized molecules
[46]. Due to the smaller size of the molecules, the binding affinity that can be
measured is much smaller. This is also an advantage since the binding affinity per
atom is usually higher than for a non-fragment molecule hit [46, 48]. There are
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a number of alternative experimental techniques well suited for fragment-based
lead discovery that differ in their throughput and resource requirements [46].

After one or several hits have been identified, these fragments can be com-
bined to a drug-sized molecule. This gives medicinal chemists the opportunity
to build a molecule with desirable drug properties, rather than try to modify an
already large molecule [49]. A number of computational techniques were devel-
oped to support FBLD by finding appropriate linkers for these fragments [7, 22,
25]. Fragment-based computational methods will be discussed in more detail in
chapter 4. First, the concept of chemical space as a means to describe interesting
molecules is introduced in chapter 3. Within this context, it is discussed how
fragments are utilized to model such space.
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Chemical Space

During the drug development process, large amounts of molecules are encountered
and reduced to the most promising entities. All methods employed in this field,
whether experimental or computational, are indented to systematically search
for molecules in this chemical space. The term is used ambiguously in the lit-
erature. In the most general sense, it refers to all possible molecules that could
exist. However, this is better described by the term chemical universe, stressing
the comprehensive and possibly infinite nature of this space. In the context of
drug development, chemical space usually refers to ”all the small carbon-based
molecules that could in principle be created” [51]. A more precise description is
provided by the same authors and was used to develop the following definition:

Definition 3.1. A chemical space is a multi-dimensional descriptor space, i.e.,
it is spanned by "a particular choice of [molecular ] descriptors and the limits
placed on them" [51].

These descriptors can be very concrete, as in "molecular mass" or "number
of atoms"; or less concrete as in "all molecules that bind to a particular pro-
tein". Chemical spaces can be interpreted as subsets of the chemical universe
and treated as mathematical sets; they can overlap, contain each other, or be
disjoint. In drug development, one of the first steps is to get a feeling for how the
chemical space of interest must be constituted, in other words, what properties
molecules must exhibit to qualify as a ligand to a protein of interest. In the
following, estimations for the size of interesting chemical spaces are discussed.
Then, interesting chemical spaces are described based on their descriptors and
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respective thresholds. Finally, combinatorial chemical space as a basis for de
novo design and fragment space as a model of combinatorial chemical space are
introduced.

3.1 Size of Chemical Space

Molecules are of combinatorial nature. They are made of building blocks (atoms)
that can be combined in various ways. Organic chemistry is mostly limited to
six elements (hydrogen, carbon, nitrogen, oxygen, phosphorous, and sulfur), with
carbon being the most common. All atoms have a limited set of valence states,
i.e., electron configurations in which they can stably bind. Although the number
of building blocks and their individual states are quite clear, the possibilities
for combining these atoms are virtually infinite. Therefore, "finding" the one
molecule with just the right properties is very difficult.

Several estimations for the size of the interesting chemical space exist. The
most often referenced number is 1060 molecules, which is the result of a thought
experiment constructing molecules with 30 atoms by Bohacek et al. [9]. Assuming
an average of six atom types, 630 (≈ 2∗1023) linear molecules exist. When taking
ring closure and branching into account, there are 30∗ 28

2
and 302 possibilities per

molecule, respectively. This results in 1040 non-linear structures for each linear
molecule and in a total of 1063 molecules. The authors conclude: ”Although this is
a rough estimate, it seems likely that when all the different possible combinations
of ring closure and branching are taken into account, the true number will be well
in excess of 1060 and will rise steeply with increasing molecular weight” [9].

Walters et al. assume that ”there are perhaps millions of chemical libraries that
a trained chemist could reasonably hope to synthesize” and that ”each library can,
in principle, contain a huge number of compounds – easily billions” [10]. Based
on this, the authors conclude that a ’virtual chemical space’ may contain 10100

molecules [10].
An estimation based on the analysis of an exhaustive set of known molecules

was done by Drew et al. [11]. Therefore, the size of the chemical space is consid-
ered a function of the number of carbon atoms and was fitted to a power-function
used for predictions. The authors estimate that the chemical space containing
organic compounds with less than 100 carbon atoms contains 3.4∗109 molecules,
a much lower number than the previous estimations. Furthermore, the known
drug space and the drug-like chemical space are predicted to contain 2 ∗ 106 and
1.1 ∗ 106 compounds, respectively.

These examples show that the estimated numbers vary greatly depending on
the parameters and models used. The most extensive database is the CAS registry
of the Chemical Abstract Service (CAS), which contains ”more than 109 million
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Table 3.1: Different estimations for the size of chemical space.

drug-like [11] KDS [11] Drew et al. [11] Bohacek et al. [9] Walters et al. [10]

1.1 ∗ 106 2 ∗ 106 3.4 ∗ 109 1063 10100

unique organic and inorganic chemical substances” as of February 2016 [52]. Re-
gardless of the estimation considered, it is obvious that only a tiny fraction of the
chemical universe is known to date. Taking the most frequently cited number by
Bohacek et al. as a basis, one can easily determine that only every 1052th possible
molecule is present in this database. Furthermore it becomes obvious that sys-
tematically generating all possible molecules is not feasible: Imagine a very fast
computational method for generating molecules with a rate of 106 molecules per
second (mols

s
), that is run in parallel on a cluster with 106 nodes, thus working

with an effective rate of 1012 mols
s

. In order to enumerate all molecules estimated
by Bohacek et al. a runtime of

1060mols

1012mols
s

= 1048s = 3 ∗ 1040years

must be expected. Suffice it to say that such an efficient method does not exist.
Since it is impossible to systematically create all imaginable molecules, one must
limit the search space to interesting parts of the chemical universe. In the next
section, these chemical spaces are introduced.

3.2 Chemical Property Spaces
There are several chemical spaces that are interesting in drug development. They
have been defined based on statistical analyses of known molecules regarding their
properties. One of the most important qualities is bioavailability, i.e., whether
a molecule can be absorbed by the human body and transported to its target
location, often referred to as drug-like. Although there are several studies de-
scribing properties for drug-like molecules [13, 16–19], the most prominent and
frequently referred one is the Rule of five (Ro5) by Lipinski et al., which is also
referred to as "Lipinski’s rule of 5" [15]. The name originates from the fact that
the values are all integer multiples of five. It is based on simple and easy to
compute physicochemical descriptors. The Ro5 states that molecules that exceed
certain properties are less likely to be orally bioavailable, more precisely, that
"poor absorption or permeation are more likely when" a molecule exhibits two
or more of these properties [15]:

• molecular weight (MW) is over 500
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Figure 3.1: Artistic depiction of different chemical property spaces and their relation to
each other with respect to molecular weight (MW) and solubility (logP).

• logP 2 is over 5
• more than 5 hydrogen-bond donors
• more than 10 hydrogen-bond acceptors

By inverting these values, one can define the drug-like space as a subset of the
chemical universe. Hence, a molecule is considered drug-like if its properties do
not exceed the given upper bounds. More stringent criteria are used to describe
molecules that are more likely to cross the blood brain barrier and enter the
central nervous system (CNS-drug-like) [17]. An extension to the Rule of five
defines "qualifying ranges" of properties rather than single number thresholds
[13]. A simpler description that uses only two properties is provided by Veber
et al. [16]. Please refer to Table 3.2 for an overview. Ursu et al. ”summarize
18 papers focused on drug-likeness, and provide a comprehensive overview of
progress in the field” [18].

As established in section 2.2, the first step in developing a drug is to identify
lead structures. These molecules usually exhibit less molecular complexity than
drugs to leave room for their optimization through bioisosteric exchange. Ac-
cording to Tudor Oprea and his coworkers, leads are not adequately described by
the Rule of five [14]. The researchers, define a lead-like space that is described in
several publications [12, 14]. The latter publication suggests that in the design of
combinatorial libraries for lead discovery "care should be exercised not to exceed
the following property values" [14]:

• 450 Dalton in MW
2logP is the octanol-water partition coefficient, a measure for the lipophylicity of a molecule.
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• -3.5 <clogP <+4.5
• 4 rings
• 10 nonterminal single bonds
• 5 hydrogen-bond donors
• 8 hydrogen-bond acceptors

Alternatively, Congreve et al. describe the Rule of three (Ro3) wich is used to
describe lead-like or fragment-like properties [50] (see Table 3.2).

Physicochemical properties are often used to describe chemical space since
they are part of the characterization of a molecule, easy to compute, and usually
stored in a database for convenient access. However, more complex measures
can be used as well. For instance, a Bayesian model trained on natural prod-
ucts to describe natural product-likeness [53]. In this way, many more chemical
spaces can be defined, while the particular choice of descriptors and their range
of values is usually determined by the specific use case. Although descriptors
and their values may be well-defined, it is difficult to reliably predict how large
these chemical spaces truly are. Therefore, all available boundary conditions are
usually employed in order to find new molecules.

Table 3.2: List of sets of molecular properties that describe different bioavailable chemi-
cal spaces. (*) This number refers to the sum of H-bond donors and acceptors. Brackets
denote alternatives.

Drug-like
Lipinski [15]

Drug-like
Ghose [13]

Drug-like
Veber [16]

CNS-like
[17]

Lead-like
[14]

Fragment-
like [50]

MW ≤ 500 160–480 ≤ 450 ≤ 450 ≤ 300
logP ≤ 5 -0.4–5.6 ≤ 3 -3.5–4.5 ≤ 3
H-bond Donors ≤ 5 ≤ 4 ≤ 5 ≤ 3
H-bond Acceptors ≤ 10 [≤ 12*] ≤ 8 ≤ 8 ≤ 3
Rings ≤ 4
Atoms 20–70
Non-terminal
single bonds ≤ 10

Molar refractivity 40–130
Rotatable bonds ≤ 10 ≤ 3
TPSA [≤ 140]

3.3 Combinatorial Spaces

A chemical space represents a set of molecules. As discussed before, it is not
possible to create all molecules in order to subsequently search the interesting
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ones. Therefore, another way of modeling chemical space is required, which can be
accomplished with a combinatorial approach. This concept is called combinatorial
chemical space (short: combinatorial space) and is defined as follows [2]:

Definition 3.2. A combinatorial chemical space is a tuple of unique atomic
or molecular building blocks and connection rules. Connection rules determine
how building blocks relate and in which case a connection can be introduced.

Instead of storing millions of molecules in a database, only the building blocks
and connection rules need to be stored. In this manner, large chemical libraries
can be described efficiently [54, 55]. However, this poses a certain challenge when
retrieving molecules and requires efficient algorithms for evaluating combinatorial
spaces. To retrieve molecules, a graph representation of the space has to be
created, in which the instance of a building block represents a node and edges
are introduced based on connection rules. The manner in which connection rules
are modeled and facilitated depends on the nature of the building blocks.

Several examples for combinatorial chemical spaces exist in nature, such as
DNA and proteins. The "DNA space" consists of the four nucleotides as building
blocks and the creation of phosphoester bonds as connection rules. For proteins,
the building blocks are the 20 amino acids and amide bond formation represents
the connection rule. Both spaces contain only a very small number of building
blocks and a single connection rule based on a chemical reaction. Nevertheless,
both spaces are huge because building blocks can in principle be combined in
arbitrary order.

The first chemically relevant space was already mentioned at the beginning of
section 3.1; it consists of atoms and their respective valence rules. However, since
most atoms do not occur as single entities in nature, using this model may not
result in synthesizable molecules. The largest class of computationally modeled
combinatorial space is based on molecular fragments and connection rules that
are inspired by chemical reactions. Peng reviewed several published combinatorial
spaces of this kind "with sizes ranging from 1011 to 1020 compounds" [55]. Chapter
4 will discuss a variety of methods for modeling chemical space and for obtaining
molecules from chemical space. Next, the fragment space model, which forms the
basis of this thesis, is introduced.

3.4 Fragment Space
Fragment space is an elegant way to describe combinatorial chemical space and
was developed by Matthias Rarey and Martin Stahl [24]. It is based on the
preliminary work of Schneider et al. [56]. The fragment space data structure is
part of the NAOMI library as well as its predecessor Flex*. It forms the basis
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for this project and numerous other methods [24, 25, 27, 29, 31, 32], which are
described in more detail in section 4.3.4. Here, we will discuss the fragment space
model.

The term fragment describes different entities depending on the context. It
can mean an actual real life molecule, which is discussed in section 2.3, a model of
such a molecule, and the data structure implementing the model. In the context
of this thesis and the fragment space context in general, the following definition
is used.

Definition 3.3. A fragment is a virtual molecule with at least one reactive site
modeled as artificial atom, so called link atom or linker. A linker corresponds to
an open valence, i.e., a position where a molecule can react with another molecule.
A linker has a specific link type.

In terms of combinatorial space, fragments represent the building blocks of a
fragment space (see Definition 3.2). The second component of a fragment space is
the set of connection rules that describe the compatibility of link types. In other
words, the connection rules define which link types are allowed to react with
each other. A single connection rule consists of a pair of link types and a bond
type. This information is used by an algorithm to determine which fragments
can be connected. In principle, any string can be used to name a link type. In
the examples presented in this thesis, per convention, link types are denoted by
either letter L or R3 followed by an integer, e.g., L1, R34, etc.

Figure 3.2: Depiction of the processing steps for connecting two fragments. a) Two
fragments with one linker each are shown. Linkers are marked with green circles and
decorated with link type L1 and L2, respectively. b) Intermediate state after processing
step 1: Linkers and adjacent bonds are removed. The open valence at the reactive atom
is highlighted with an asterisk. c) The resulting molecule after processing step 2: A new
bond was added between the reactive atoms. The molecule is amphetamine (Drugbank
DB00182).

The general procedure of creating molecules and the components of a fragment
space are depicted in Figure 3.3. When two fragments are connected, the two
compatible linkers that are involved in the connection are removed and a new

3In chemistry, R is used in structural formulae to denote a group that is attached to the rest
of the molecule.
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bond is added, thus connecting the two fragments in accordance with a connection
rule (see Figure 3.2). This process essentially models a reaction that happens
between two small organic molecules. Connection rules are derived from chemical
reactions in order to facilitate synthesizable molecules. There are two ways this
information is generated and used to construct a fragment space: Either via
retrosynthetic fragmentation or forward-synthetic annotation. These processes
are a principal subject matter of this thesis and are discussed in more detail in
section 4.3 as well as in chapter 6.

Figure 3.3: Depiction of the components of a fragment space and how a molecule is
assembled from them. On the top, a fragment space with four fragments and the
corresponding connection rule matrix are shown. Linkers are marked with green circles
and their link type: L1, L2, or L3. The compatibility matrix defines which types of
linkers can be connected and the bond type of the connection. On the bottom, a
molecule that was assembled from the fragments above is shown. Newly formed bonds
are depicted in green.

After several fragments have been connected, one or more open linkers may
still remain. Since a valid molecule must not contain unsaturated linkers, i.e.,
open valences, a terminal fragment must be defined for each link type. These
are usually very small fragments consisting of a single atom (e.g. hydrogen) or
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a very small functional group (e.g. methyl). Figure 3.4 shows two examples for
both "unterminated" and "terminated" fragments.

Figure 3.4: Two molecules constructed from fragment space fragments. a) and b)
each depict the unterminated or chemically unsaturated molecule, on the left, and its
terminated or saturated form, on the right. Termination was done based on BRICS
rules [34]: R8, R14, and R16 are terminated with a hydrogen, R3 and R11 with a
methyl group (see section 7.2.1)

Fragments are always connected via one bond only, thus forming a new sin-
gle, double, or triple bond. Due to the history of fragment spaces, the formation
of rings by creating ring bonds is not possible. The initial publication [24] used
fragment spaces constructed with retrosynthetic rules of the Retrosynthetic Anal-
ysis Procedure (RECAP), which "cleave only acyclic bonds so that ring motifs
are left intact" [57]. In addition, the feature tree descriptor [58], which is used
for searching fragment spaces [24], uses rings as atomic functional units, i.e., as
nodes.

3.4.1 Implementation

The fragment space data structure was first introduced in Flex* [24], the predeces-
sor of the NAOMI cheminformatics library. NAOMI is developed in the research
group of Matthias Rarey [59] in collaboration with BioSolveIT4. It implements
a unique chemical model for representing molecules. A molecule is a graph with
atoms as nodes and bonds as edges. In addition, several levels of chemical in-
formation are annotated to a single atom, i.e., element, valence state, and atom

4www.biosolveit.com
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type [60, 61]. Bond types are annotated in accordance with the molecular envi-
ronment, e.g., valence states. Most importantly, NAOMI includes functionality
to initialize molecules from files in a reliable and deterministic way. The NAOMI
library provides an application programming interface (API) to query this data
structure. This forms the basis for a range of algorithms for the calculation of
molecular properties and molecular descriptors (see chapter 5) as well as a variety
of bio- and cheminformatics tools and methods [31, 32, 60–69].

The fragment data structure is essentially a wrapper for the NAOMI mole-
cule extending it with functionality to annotate linkers as described in Definition
3.3. The molecule data structure natively supports linkers by providing custom
element and atom type. Therefore, linkers can be read from and written to the
supported file formats (i.e. SMILES, Mol2, SDF). The fragment data structure
additionally stores a fragment ID to identify a fragment within the context of a
fragment space.

The fragment space data structure of NAOMI holds a list of fragment instances
and a compatibility matrix for link types. It provides basic functionality to add,
retrieve, and delete individual fragments as well as connection rules. Besides the
core data structure, the NAOMI library provides additional classes and modules
to conveniently access and work with fragment spaces. This includes an index
data structure that allows to efficiently query for lists of compatible fragments
or fragments with a certain link type, functionality to read fragment spaces, and
convenience functions to work with fragment space instances. The algorithms
developed in this project became part of the fragment space library and the
NAOMI code repository.
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Strategies for Exploring Chemical Space

This chapter will give an overview of the different strategies used for the explo-
ration of chemical space, i.e., the generation of (virtual) molecules. This includes
a characterization of the different methods and a discussion of their advantages
and disadvantages. There are numerous de novo design methods [7, 8, 54] that
face the problem of finding the right molecule(s) in the vast chemical universe,
i.e., molecules with ideal properties concerning bioavailability, specificity, and
toxicity. The common strategy of all methods is to limit search space by apply-
ing constraints including physicochemical properties, molecular topology, three-
dimensional shape, protein-structure, and chemical function. A given method
may use any combination of constraints. In addition, the methods differ in vari-
ous other aspects of their workings. They can be categorized according to their
building blocks, primary target constraints, search strategy, structure sampling or
scoring function as done by Schneider et al. [7]. Other categories are the type of
algorithm (whether a stochastic or a deterministic strategy is used) and synthetic
feasibility (whether the resulting molecule has a chance of being synthesized),
with the former determining whether a chemical space is searched exhaustively
or incompletely. The latter is the most crucial aspect and the biggest challenge
for computational methods. Arbitrarily assembled atoms do not necessarily con-
stitute valid molecules. Valid in this case means whether it is possible to create
this molecule based on known organic chemistry. Therefore, synthetic feasibility
should always be considered when generating molecules by computation.

In the following, methods are categorized according to their most significant
feature with respect to the algorithms developed and implemented for this work.
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This takes into consideration whether they are stochastic or deterministic, how
they "navigate" chemical space, how they utilize combinatorial chemical space,
and how they utilize chemical reactions. Furthermore, the underlying building
blocks, i.e., the level at which modifications are performed, are incorporated as
well. These are atom-, fragment-, or (molecular) graph-based. However, this is
not a disjoint classification since methods may combine several strategies.

4.1 Stochastic Exploration

There are methods that are based on stochastic algorithms, such as evolutionary
[53, 56, 70–75] or Monte Carlo [76] algorithms. The former is a class of opti-
mization algorithms, which is inspired by biological evolution. It uses a fitness
function, a set of modifications, and requires a starting point, usually a molecule
with desired properties. The general strategy is as follows: Modifications are
applied randomly to the input molecule, thus creating a set of new molecules,
the first generation. Every molecule in this generation is evaluated by the fitness
function. For each generation, the following steps are repeated until a termination
criterion is reached. (1) The molecules with the highest fitness are selected and
(2) randomly modified. (3) The fitness is calculated for all new molecules and
(4) the least-fit molecules from the previous generation are replaced. Approaches
differ mainly in the type of fitness function, the selection criterion, and the level
at which modifications are applied.

Most methods are fragment-based [56, 70, 71, 74], while only a few are atom-
based [53, 72]. Although atom-based modification may yield very promising theo-
retical molecules, they are not very realistic. Chemical reactions that exchange or
add just a single atom are not common. Fragment-based modification resembles
actual chemical reactions much more closely if chemical reaction information is
modeled into the method. This will be discussed in more detail in section 4.3.

The types of fitness functions utilized range from physicochemical properties
[53, 72] over molecular descriptor similarity [56, 74] to docking scores [71]. Some
methods use more than one approach and/or combine several. An interactive
method uses the knowledge of the user as fitness function [72]. All previously
mentioned methods use a fitness function to calculate the similarity to a query.
Yet, there is one method that uses a diversity function to produce a "representa-
tive universal library" rather than a set of similar molecules [73, 75].

Monte Carlo algorithms are randomized algorithms that accept wrong solu-
tions with a small probability. Although the result may not be correct, Monte
Carlo algorithms are usually much faster than deterministic methods. The al-
gorithm can be run several times with independent random numbers in order to
reduce the error probability. Hu et al. use a Monte Carlo approach based on quan-
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tum mechanical considerations rather than a combinatorial chemistry approach
[76].

Stochastic algorithms limit the search space in addition to initial constraints
by applying a certain amount of randomness. As a result, they do not consider
all possible solutions and cannot exhaustively search chemical space.

4.2 Exhaustive Exploration

Structure elucidation algorithms represent a large class of deterministic methods
for enumerating chemical space [77–83]. They were developed in the context of
chemistry from the need to derive molecular structure from experimental data
such as mass spectroscopy or similar techniques. The outcome of these exper-
iments is essentially just the mass from which a chemical formula can be de-
rived. Structure elucidation in mathematical terms is graph enumeration with
constraints. For each chemical formula, one builds a (molecular) graph with nodes
representing atoms. The valence of an atom defines the degree of the correspond-
ing node and thus serves as a constraint. By systematically trying all possible
bond configurations, all valid molecular isomers are enumerated. All methods al-
low to define additional constraints such as allowed or disallowed substructures.
Substructures are parts of the molecular graph for which the bond configuration
is known, e.g., a ring system or a functional group. This information can only be
derived from knowledge about the experiment by an experienced scientist.

The problem of structure elucidation is considered a "logically straightforward
task and, assuming an error-free coding, is 100% reliable" [80]. These methods
work well for the purpose for which they were intended, i.e., for enumerating small
molecules namely those encountered in mass spectroscopy. However, generating
large molecular libraries with this approach is not feasible due to combinatorial
explosion. Peironcely et al. show several examples of molecules that "were not
generated due to excessive computational time needed to generate all the candi-
date structures" by the open molecule generator (OMG) [83]. Two of the chemical
formulae that failed were C5H4N4O3 and C9H11NO2, with 12 heavy atoms each.
These molecules are not very big in comparison to actual drug molecules. Of the
1528 unique molecules in the approved set of DrugBank (Version 4.3) [84], only
10% (154) of the molecules have 12 or less heavy atoms.

4.2.1 Chemical Universe Database

A very ambitious project related to structure elucidation algorithms is the chem-
ical universe database GDB. This project attempts to systematically create all
organic molecules starting with the enumeration of graphs. The only constraints
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are an upper bound for the number of heavy-atoms and the fact that the set
of elements used is limited. The dataset has been published for molecules with
11 (GDB-11), 13 (GDB-13), and 17 (GDB-17) heavy-atoms, yielding 1.3 ∗ 107,
9.7 ∗ 108, and 1.6 ∗ 1011 molecules, respectively [85–87]. Molecules from the dif-
ferent iterations have been used in docking and virtual screening studies [88–94].
The following description briefly summarizes the most recent approach, GDB-17.

As elements carbon, nitrogen, oxygen, sulfur, and halogens are considered.
The process consists of four steps. First, a graph enumeration algorithm (GENG,
[95]) is used to enumerate all graphs with up to 17 nodes. The degree of a node
is limited to four, i.e., the maximal valence of a carbon atom. Second, graphs
are translated into hydrocarbon molecules by replacing nodes with carbon atoms.
Third, the single bonds in the hydrocarbons are systematically substituted with
double, triple, and aromatic bonds thus creating so called skeletons. Finally,
skeletons are subject to a diversification step that replaces suitable carbon atoms
with oxygen and nitrogen atoms. Furthermore, halogens are added at distinct
positions and functional groups are annotated. In each step, filter rules based
on organic chemistry are applied to remove unsuitable structures. This process
yields 1.6 ∗ 1011 molecules, which were then compared to molecules with up to
17 atoms from other databases. The authors found that "57% of PubChem-17,
60% of ChEMBL-17, and 68% of DrugBank-17 are compatible with the GDB-
17 enumeration rules" [87]. GDB-17 represents a specific area of the chemical
space to a large degree and probably contains a lot of promising lead structures.
However, many of these molecules may not be synthesizable. Furthermore, the
majority of the molecules of interest contain more than 17 atoms. The "Approved
Drugs" set of DrugBank [84] contains 1713 unique molecules of which 1286 (75%)
have more than 17 heavy atoms5.

4.3 Reaction-based Exploration

The biggest reservation of medicinal chemists towards computational methods is
the – for the most part – theoretical nature of molecules. Therefore, the ultimate
goal is to design molecules that can be synthesized in the laboratory immediately.
Incorporating information about chemical reactions to suggest synthetic routes
will hopefully improve the acceptance of computational tools. In order to im-
prove the quality of the outcome, synthetic reactions selected for application in
computational methods should be widely applicability and have high yields [96].

Although there are fragment-based methods that do not consider reaction
information [70, 71, 74], all reaction-based methods use fragments. Reaction-

5Analysis based on DrugBank 4.3, filtered with MONA [63, 66]
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and fragment-based methods are naturally intertwined because organic reactions
require (small) molecules as reactants.

4.3.1 Combinatorial Libraries

A simple and widely used method to describe combinatorial space utilizing re-
actions is a combinatorial library. It is the virtual equivalent of a combinatorial
chemistry experiment, where two types of reactants are mixed. A library is lim-
ited to a single reaction (connection rule) and contains two sets of preselected,
compatible molecules (building blocks). For example, for two sets A and B, each
element An can, in principle, react with each element Bm: An + Bm Cnm.
Thus, the number of molecules represented by the library is |A| ∗ |B|.

There are a number of different tools utilizing combinatorial libraries, that
each bear their own advantages and limitations. The first examples are MoSE-
LECT [97] and AutoClickChem [98], which both apply the reaction to the re-
actants of a combinatorial library. MoSELECT uses a genetic algorithm that
explores multiple objectives (e.g. several physicochemical properties) simulta-
neously to find product molecules with desired properties. AutoClickChem [98]
uses only reactions from click chemistry, i.e., reactions that are fast, cheap, and
comparatively easy to carry out in the laboratory. The advantage of this method
is that it explicitly takes the 3D configuration of the reactants into account and
uses it when a new molecule is constructed. Yet, the output molecules are not
optimized towards their properties. Since the input for both methods is already
tailored to the reaction, the synthetic protocol for all resulting molecules is the
same. Both methods cover a relatively small chemical space because they are lim-
ited to one reaction at a time. However, through repeated application of different
reactions to intermediate products, they could in principle be used to generate a
larger number of molecules. Methods that natively apply multiple reactions will
be discussed in sections 4.3.2 and 4.3.3.

4.3.2 Explicitly Modeled Reactions

This type of algorithm implements the repeated application of reactions inher-
ently. Information about specific reactions must be provided explicitly as input.
In each iteration, the reactive atoms are identified in each molecule. After a
selection process, the reaction is applied to compatible reactants. The result is
a sequence of synthesis steps that lead to the construction of a molecule with
desired properties.

The method by Schürer et al. [99] as well as the tools SYNOPSIS [20] and
DOGS [21] use explicitly modeled reactions. Schürer et al. use a genetic algo-
rithm with a user defined fitness function. Reactions are provided in the SMIRKS
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reaction transform language [100]. The algorithm uses an iterative scheme that
translates input molecules and intermediate products into combinatorial libraries,
which is evaluated by the genetic algorithm to generate products in compliance
with desired properties. SYNOPSIS (synthesize and optimize system in silico)
is a stochastic approach which utilizes a user-defined fitness function similar to a
genetic algorithm [20]. Molecules are chosen for extension according to the fitness
function, while reactions and reaction partners are chosen randomly. DOGS (de-
sign of genuine structures) is closely related to SYNOPSIS and is a deterministic
method that iteratively assembles fragments into new molecules by completely
enumerating all possible solutions in each step [21]. For each initial molecule and
intermediate product, all compatible reactions and all compatible reactants are
used. A greedy strategy is applied that allows only for the best scoring products
to advance. This behavior renders the method deterministic but it not exhaustive.
The output of both methods is not only molecules, but also a list of reactants
and the reactions used to join them. In the accompanying study to SYNOPSIS,
"18 of the 28 designed molecules could readily be synthesized, and 10 of the syn-
thesized molecules showed [...] inhibitory activity in vitro" [20]. DOGS has been
applied in a prospective study and "following the proposed synthesis route, the
[selected] compound was accessible and found to have the desired biological effect
and selectivity profile in vitro" [21].

A recent method utilized reaction information to build a database of product
molecules named SCUBIDOO (Screenable Chemical Universe Based on Intuitive
Data OrganizatiOn) [101]. In order to construct this database, 58 commonly
used, robust reactions [96] were applied to 18,561 common molecular building
blocks [102]. The building blocks were first filtered down to 7805 molecules by
imposing the following constraints:

• molecular weight ≤ 250
• rotatable bonds ≤ 2
• number of chiral centers ≤ 1

All pairs of molecules that are compatible regarding a certain reaction were con-
nected based on the bond configuration defined by this reaction. This yields
2.1107 new molecules after generation of stereoisomers. The database is freely
accessible and provides "three representative samples of different sizes (S, M, and
L)" [101].

4.3.3 Implicitly Modeled Reaction

In the case of implicitly used reactions, a preprocessing step to construct a combi-
natorial chemical space is required. Here, the knowledge about synthetic reactions
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is folded into this space and thus not explicitly considered when retrieving mole-
cules. There are two options for the construction of such a combinatorial space,
i.e., using reactions in a forward- or retro-synthetic way.

The latter uses known, larger molecules which are cleaved into fragments
at specific bond types. These bonds were identified to originate from common
chemical reactions by retrosynthetic analysis [34, 57]. During fragmentation, the
bond type information is attached to the cleaved site via a marker or linker.
This marker denotes reactive compatibility. The two prominent methods are RE-
CAP (retrosynthetic combinatorial analysis procedure) [57] and BRICS (breaking
of retrosynthetically interesting chemical substructures) [34] defining 11 and 16
bond types, respectively. Since BRICS plays an important role for this work,
its strategy is discussed in chapter 6. A comparison of both methods is given in
section 7.2.

The RECAP approach is used by several tools that utilize combinatorial space
to generate novel molecules. A number of tools using stochastic algorithms has
been developed by Gisbert Schneider and his coworkers [56, 103–105] following a
similar scheme. First, RECAP is applied to generate a library of fragments. Then,
a stochastic algorithm is applied to generate new molecules. TOPAS (topology
assigning system) uses a template structure as a starting point for its evolutionary
procedure [56]. The input structure is cleaved based on the retrosynthetic rules
defined by RECAP. Individual fragments are substituted by randomly selected,
compatible ones from the library, yielding 100 newly generated structures. These
molecules are selected for further modification based on one of two possible fitness
functions, either 2D-structural similarity or topological pharmacophore distance.
FLUX (fragment-based ligand builder reaxions) is an advancement of TOPAS
employing a similar evolutionary scheme [103]. Other than in TOPAS, input
and intermediate molecules are fragmented based on a randomly selected rule
from RECAP and all possible molecules are generated by utilising the fragment
library. To assess fitness, two descriptors can be used with either Tanimoto
similarity or Euclidean Distance (see section 5.2.1). In a second publication,
different mutation and crossover operators were evaluated [104]. COLIBREE
(combinatorial library breeding) uses a different approach as the algorithm is
also of stochastic nature, but uses particle swarm optimization for generating
new molecular structures [105]. The initial scaffold with several linkers remains
constant during optimization. At the linker positions, different building blocks
from the combinatorial space are attached as side chains. The fitness of a product
molecule is assessed based on pharmacophore similarity to reference ligands.

The second option for folding chemical knowledge into a combinatorial space
is similar to the explicit case discussed earlier. It uses reaction information for
forward-synthesis. Starting from small molecules, their reactive groups are re-
placed by markers specific to a synthetic reaction. The difference is that the
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information about reactions is only required during preprocessing. The type of
algorithm that utilizes the resulting combinatorial space is irrelevant at this point.
This approach is accessible via the commercial tool CoLibri (compound library
toolkit) [106]. It was used to construct the freely available KnowledgeSpace6

[35] and the in-house space BI-CLAIM (Boehringer Ingelheim Comprehensive Li-
brary of Accessible Innovative Molecules) [107]. The former was assembled from
82 reactions, contains 10,879 fragments, and may describe as many as 1.2 ∗ 1010
molecules. Nikitin et al. describe the construction of a combinatorial space "from
about 400 combinatorial libraries" [108]. The authors claim that this space con-
tains "more than 1013 chemical compounds" [108]. Peng reviewed eight methods
for constructing virtual compound spaces [55], several of which are combinatorial
spaces based on reaction information.

The result of both retrosynthetic fragmentation and (forward) synthetic an-
notation is a set of fragments that can be combined in new ways based on the
rules utilized in the build process. Section 4.3.4 gives an overview of existing
methods utilizing a concrete implementation of such combinatorial spaces.

4.3.4 Fragment Space-based Methods

This section summarizes existing methods for construction of fragment spaces as
well as using them to construct new molecules. Figure 1.1 gives an schematic
overview of how these methods relate.

In the past, fragment spaces were used to describe both retrosynthetic [24, 34]
and forward-synthetic [35, 106] combinatorial space. BRICS [34] was developed
in the fragment space context as an advancement of RECAP [57]. Since the
construction and search of fragment space are decoupled, a number of methods
for retrieving molecules were developed. FTreesFS is an algorithm for similarity
searching in fragment spaces [24]. Rather than searching this space in a stochastic
fashion, the algorithm deterministically searches all molecules with a user-defined
similarity regarding a query structure. It uses the Feature Trees descriptor [58],
which is well suited for the fragment-based context.

FlexNOVO is a structure-based tool for ligand design [25]. It uses fragments
from a fragment space to sequentially grow a molecule and the docking algorithm
FlexX to place and score the fragments. Recore is a tool for scaffold replace-
ment [27]. Based on a query ligand with 3D-structure, it replaces the core of this
molecule with fragments from a fragment space. During the construction of the
fragment space, 3D coordinates are conserved so that they can be used by Recore.
SmartsFS implements a substructure search [31, 32] based on the SMARTS pat-
tern language [100]. Other than search algorithms, a method for the construction

6http://www.biosolveit.de/FTrees-FS/
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of combinatorial libraries based on fragment spaces, LoFT, exists [109]. Since
the resulting combinatorial libraries can be output as fragment spaces, they can
subsequently be subjected to available search algorithms or enumeration.

There also is a method for the systematic enumeration of fragment spaces by
Pärn et al. based on the Flex* library [29]. The only constraints this method uses
are physicochemical properties, thus potentially very large molecular libraries may
be created. However, the algorithm relies on the main memory of a computer
and is therefore limited in the number of molecules that can be generated. As
a result, very stringent constraints were used for the enumeration and relatively
small libraries were generated (21 – 779,213 molecules). This method is discussed
in more detail in section 6.3.

4.4 Unsolved Challenges

The algorithms and tools for the exploration of chemical space all have advantages
and disadvantages. The first group of methods cannot exhaustively enumerate a
chemical (sub)space because they use stochastic algorithms [53, 56, 70–76]. They
are intended to design molecules that are similar to a query structure. The chemi-
cal space is usually very localized and restricted by different molecular descriptors
(see definition 5.1) and the choice of similarity measure (see definition 5.2). Due
to the utilization of random numbers, these algorithms are not guaranteed to find
the best solution, or all possible solutions.

The second group of algorithms is designed to exhaustively explore chemical
space [77–83]. These methods are structure elucidation tools intended to gener-
ate all possible molecules that are described by a chemical formula. They were
designed to aid the evaluation of experimental data describing small molecules.
They work very well for the intended usage, but struggle with larger structures,
i.e., molecules with 12 atoms and more. A special case in this group is the Chem-
ical Universe Database [85–87], which contains a large number of molecules that
only contain 17 or less atoms.

The last class of methods discussed incorporates reaction information and
utilizes a range of algorithms [20, 21, 56, 97–99, 101, 103–106]. Some exhaustively
enumerate combinatorial libraries, only covering a single reaction [97, 98] (section
4.3.1). Others apply chemical reactions directly to molecules (section 4.3.2), but
use a stochastic algorithm [20, 99], a greedy strategy [21], or are limited to one
reaction step [101]. The last group builds combinatorial spaces [25, 31, 32, 35,
55, 56, 103–109] that can subsequently be evaluated by different algorithms. This
includes many algorithms using stringent constraints such as molecular similarity
– while both stochastic [56, 103–105] and deterministic [24] methods exist – or
3D-structural constraints [25, 27]. By incorporating reaction information, the
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likelihood of being able to synthesize molecules is increased [20, 21]. In this
context, the concept of fragment spaces was introduced [24], which is also applied
in this project.

To sum up, most algorithms do not enumerate chemical space exhaustively
due to their stochastic nature or application of very stringent constraints. Deter-
ministic approaches, on the other hand, only enumerate small subspaces because
they also apply stringent constraints. These methods are mostly used in later
stages of the drug development pipeline, when certain properties about the tar-
get molecule and possible ligands, i.e., specific constraints, are already known.
In earlier stages, these properties may not be known thus larger chemical space
must be investigated. Methods for generating large diverse sets of molecules with
less specific constraints are required. That is why in this work, the problem of
exhaustive enumeration of large chemical space is addressed. Another important
aspect that is often ignored is whether generated molecules are synthesizeable. A
lot of methods apply unrealistic modifications to molecules neglecting informa-
tion about chemical reactions. In order to increase the likelihood that generated
molecules can be synthesized, in this work, reaction-based modifications are em-
ployed. In particular, a method for reaction-based construction of fragment spaces
was developed. By utilizing fragment spaces, the construction and evaluation of
combinatorial space is decoupled, thus allowing to address one problem at a time.
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Modeling Chemical Information

Molecules are the central body of interest in cheminformatics and drug discovery.
In order to work with them, they must be transformed into a numeric representa-
tion that allows for mathematical and algorithmic processing. This representation
is a model of the actual molecule, i.e., an interpretation of the physical world.
This chapter addresses the following questions. How can chemical information,
especially molecules and chemical property space, be modeled? And, how can
the quality of a generated molecular library be assessed based on these models?

With respect to the latter, the answer is not that easy. Ultimately, designed
molecules should be synthesized and experimentally characterized. However, this
is not feasible and not possible in many cases. The straightforward approach
would be to subject them to the virtual drug-discovery pipeline (see section 2.2),
i.e., virtual screening, consecutive filtering steps, QSAR analysis, and other meth-
ods. Yet, setting up individual screening campaigns and further analysis is not
within the scope of this thesis. It is time consuming, requires setting up many
additional experiments and, to do it right, requires expert knowledge. In order to
evaluate the results generated, an easy to apply, fast to compute, objective, and
reproducible approach based on molecular similarity was used (see section 8.2.3).
Generated molecules are compared with existing, well characterized molecules
and assessed based on their pairwise similarity.

In this chapter, the concept of molecular descriptors as a means to describe
molecules and their properties is discussed (section 5.1). This includes the intro-
duction of descriptors suited for the comparison of large chemical libraries and
measures to determine the similarity based on these descriptors (section 5.2).
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The methods presented here were implemented in the NAOMI library, but are
discussed independent of an implementation. The implementation of the NAOMI
molecule model and the tools developed in this project are discussed in chapter
9.

5.1 Molecular Descriptors

A great number of different molecular descriptors (short: descriptors) containing
different types of (physico-)chemical information about a molecule exist [110].
They are used to condense complex information of a molecule into a compact for-
mat to make it accessible for efficient and simple comparison, e.g., to quickly check
whether a molecule fulfills certain criteria regarding solubility, molecular weight,
or other physicochemical properties. Others are used to describe a molecule in
great detail to enable exchange of information, e.g., file formats for molecular
information. Todeschini and Consonni define the term as follows:

Definition 5.1. "The molecular descriptor is the final result of a logic and mathe-
matical procedure which transforms chemical information encoded within a sym-
bolic representation of a molecule into a useful number or the result of some
standardized experiment." [110]

This definition thus divides molecular descriptors into two categories – experi-
mental and theoretical – thus differentiating between the way they were obtained.
Experimental measurements are derived from experiments in standardized labora-
tory conditions. They are physicochemical properties, e.g., logP, dipole moment,
or polarizability, or even more complex information such as 3-dimensional struc-
ture. Theoretical descriptors are computed by an algorithm, based on a model
of a molecule. Some of these computational methods predict the same physico-
chemical properties as measured in an experiment. The advantage is that they
can be calculated much faster and be computed for theoretical molecules. In the
latter case, they can predict properties before a molecule is synthesized.

The usefulness of theoretical descriptors arises from their flexibility. They al-
low for diverse information to be connected and combined to illuminate properties
that cannot be determined via experiments, e.g., topological properties as defined
by the extended connectivity fingerprint (ECFP) descriptor [111]. Furthermore,
they can be used for comparison since they are calculated in a standardized way.

Molecular descriptors can be classified according to the dimensionality of the
information they contain:

0D single value (e.g. number of hydrogen-bond donors, logP)
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1D list of values, linear data (e.g. fingerprints, ECFP [111], Simplified Molecular
Input Line Entry Specification (SMILES) [100])

2D matrix of values, tabular data (e.g. graph representation of a molecule)

3D 3-dimensional data (e.g. spatial representation of molecules, surface or vol-
ume descriptors)

4D 3D plus supplementing information as 4th dimension (e.g. conformational
space)

In the enumeration algorithm that was developed in this project (see 6.4)
0D-descriptors are used to describe chemical space. They represent those physic-
ochemical properties most often used to characterize molecules (see 3.2) and can
be efficiently compared to thresholds. Many properties are trivially computed
by counting, e.g., number of atoms, number of non-hydrogen atoms and bonds,
or molecular mass. Some properties are derived from molecular topology, e.g.,
rotatable bonds, stereo centers, or hydrogen-bond donors and acceptors. There
are also properties for which more sophisticated algorithms are required, e.g.,
the computation of solubility as logP [112]. All computations are based on the
NAOMI molecule data structure and are readily accessible via NAOMI functions.

In addition, 1D-descriptors are utilized in two cases. The first is duplicate
checking. During the enumeration algorithm introduced in chapter 6, molecules
are compared in order to determine whether a newly generated molecule is iden-
tical to a previously encountered molecule. A simple binary decision has to be
made, whether two molecules are identical or not. For this, the molecular line
notation SMILES [113, 114] is used. The functionality to compute a SMILES
descriptor for a molecule is provided by the NAOMI library. The second applica-
tion is the comparison of large sets of molecules. This is required in chapter 8 in
order to analyze the results. Since very large numbers of molecules are encoun-
tered, it is required to do this efficiently. In this project, topological fingerprint
descriptors are used for this purpose, This type of descriptor is discussed next.

5.1.1 Fingerprint Descriptors

Molecules have to be available in a well-defined numeric form in order to be
compared. The most precise comparison would be via molecular graphs. However,
since the determination of graph isomorphism is in NP [115, 116], this is not a
desirable approach. In addition, graph isomorphism is not necessarily suited to
determine the level of similarity between molecules since it does not encompass
chemical information. For this purpose, molecular descriptors are much more
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appropriate. How the level or amount of similarity is quantified will be discussed
in section 5.2.1. First, a suitable descriptor will be discussed.

From the vast amount of available descriptors [110], only a few are used for
similarity comparison [117, 118]. Fingerprint descriptors are well established for
this purpose since they are easy to compute and efficient to store. A fingerprint
or feature vector consists of a fixed-size bit-array in which every position denotes
whether a certain feature, such as a functional group, is present (1) or not (0).
Comparison of these fingerprints is very efficient since merely two equally sized
bit arrays must be compared. Fingerprints are sometimes criticized because they
do not account for how often a feature occurs in a molecule. This is taken into
account by integer fingerprints. They are modeled just as binary fingerprints, but
several bits are used to describe a feature instead of just one bit [118].

A further critique of fingerprints is that they are limited to a fixed number
of features. A solution to this is to store the indices of the encountered features
rather than using a fixed-size array. This approach is used by the Extended-
connectivity fingerprint, the functional-class fingerprint (FCFP) [111], and the
topological torsions descriptor [119]. These fingerprints do not use a fixed set of
predefined features, but rather define a function to calculate a feature based on
the properties of a molecule. This function combines the values of the individual
properties and maps them onto a finite number range by means of a hash function,
e.g., 32- or 64-bit integer. The resulting numbers are stored in a vector or set.
In this way, only the indices of the features present are stored and used in the
similarity calculation. On the one hand, the number of features is still limited to
32- or 64-bit integer, on the other hand this means that there are 232 ≈ 4.2 ∗ 109
and 264 ≈ 1.8 ∗ 1019 possible features, respectively.

Extended-connectivity fingerprints have been developed around the year 2000
[111]. In 2010, Rogers et al. published the details of the algorithm, listing more
than 80 publications in which ECFPs are used successfully [111]. FCFPs were
introduced in the same publication and operate on the same principle. ECFPs
take information about molecular topology into account by incorporating neigh-
boring atoms. First, for each atom, the binary values of the following properties
are combined into a single number: "the number of immediate neighbors who are
’heavy’ (non-hydrogen) atoms; the valence minus the number of hydrogens; the
atomic number; the atomic mass; the atomic charge; and the number of attached
hydrogens (both implicit and explicit)" [111] and "whether the atom is contained
in at least one ring" [111]. The resulting number is subjected to a 32-bit hash
function, thus creating the atom identifier, which is subsequently added to the
identifier set (see Figure 5.1 a). Then, the iterative update step is carried out a
user-specified number of times. Each atom identifier is combined with the iden-
tifiers of the neighboring atoms from the previous iteration and then hashed (see
Figure 5.1 b). The resulting atom identifier is added to the identifier set. This
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way, in each iteration a larger environment of the respective atom is folded into
the current identifier. Thus, atoms having the same environment will have the
same atom identifier. After the iteration phase has ended, the current identifier
set represents the ECFP.

FCFPs are computed identically to ECFP except for the use of initial descrip-
tors. They use "a more abstract, pharmacophoric set of initial atom identifiers
[...]. Each atom is identified by a six-bit code, where a given bit is ’on’ if the
atom plays the associated role. The atom roles are: hydrogen-bond acceptor and
donor; negatively and positively ionizable; aromatic; and halogen" [111].

The bond diameter d of both ECFP and FCFP is a function of the number
of iterations i:

d(i) = i ∗ 2

The number of iterations "depends on the desired use of the fingerprint" [111]. To
specify the diameter, Rogers et al. suggest the following convention (see Figure
5.1 c): "[name of the] fingerprint using a four-character string (e.g., "ECFP"),
followed by an underscore, followed by a number" describing the effective diameter
[111], e.g., ECFP_4 for a diameter of four.

Both ECFP and FCFP are well suited for use with molecules constructed from
fragments since the substructure that a fragment introduces to the molecule leads
to the same fingerprint, regardless of orientation within the molecule. However,
different identifiers will be assigned to the atoms at the borders of the fragment,
i.e., at the connection points, naturally, accounting for the specifics of the new
molecule.

Another related fingerprint descriptor uses topological torsions (TT) [119].
A "topological torsion [is] a linear sequence of four consecutively bonded non-
hydrogen atoms, each described by its atomic type, the number of non-hydrogen
branches attached to it, and its number of π electron pairs" [119]. Similar to the
ECFP approach, the information about each atom is transformed into a 32-bit
word, while "each atom-type field occupies 4 bits; the number of π electrons and
the number of non-hydrogen-atom branchings each occupy 2 bits. To prevent the
same TT type from being coded in two different ways, a canonical packing scheme
is used." [119]. Analogous to the ECFP, each of the generated 32-bit integers are
added to a set, which represents the TT fingerprint. The TT descriptor can be
schematically described as follows:

(NPI-TYPE-NBR)-(NPI-TYPE-NBR)-(NPI-TYPE-NBR)-(NPI-TYPE-NBR)
In the end only ECFP was used for evaluating experimental results (see chap-

ter 8). A brief validation study for the ECFP implementation is shown in Ap-
pendix C.
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Figure 5.1: Visual representation of the algorithm for Extended-connectivity finger-
prints computation using the example of acetylsalicylic acid. a) Initial computation of
identifiers: For each atom denoted in the molecule (left), an initial identifier is calcu-
lated (middle). Several atoms have the same environment and thus the same identifier
as denoted by color. The unique set of initial identifiers represents the initial fingerprint,
ECFP_0 (right). b) Depiction of the relationship between iteration and diameter. The
numbers in the molecule denote the iteration.
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5.2 Molecular Similarity
This is either a similarity or a distance coefficient [117]. While molecular de-
scriptors encode the chemical information, these measures determine the level of
similarity. In the following, the molecular descriptors used for similarity assess-
ment and similarity measures are discussed. Although none of these descriptors
were newly developed, they were implemented for use with the NAOMI library
during this project.

5.2.1 Similarity Measures

The descriptors capture which chemical features are present in the molecule.
In order to quantify the similarity of two molecules, a metric is required that
converts this information into a single number. These measures are not limited to
molecules, but can be used to determine (dis-)similarity of various objects, given
a numeric representation. As input, these methods require two lists of numeric
values, such as bit arrays or sets of integers. In practice, one differentiates two
types of measures: similarity and distance coefficients.

Similarity coefficients measure similarity. These measures can be and mostly
are normalized to the range of [0.0, 1.0]. The maximum value (1.0) denotes iden-
tity. A simple definition is given by Maggiora et al.:

Definition 5.2. "Similarity measures, also called similarity coefficients or indices,
are functions that map pairs of compatible molecular representations that are of
the same mathematical form into real numbers usually, but not always, lying on
the unit interval." [118]

Distance coefficients measure dissimilarity and are often analogous to distance
in geometrical space. The value for identity is 0 and the higher the value, the
more dissimilar the molecules. For a distance coefficient D to be a metric in a
mathematical sense, it must exhibit the following properties [117]. Values must
be:

1. non-negative D(x, y) ≥ 0

2. zero for identical objects D(x, x) = D(y, y) = 0

3. greater than zero for nonidentical objects A ̸= B ⇔ D(x, y) > 0

4. symmetric D(x, y) = D(y, x)

5. and obey the triangular inequality D(x, z) ≤ D(x, y) +D(y, z).

Table 5.1 lists measures that are most frequently used in cheminformatics
[117]. It contains the general formula and a set-theoretic definition for each
measure. The former is intended to be used with bit array-like fingerprints,
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where values are either 0 or 1. In this case, vectors a and b are defined as
follows: a = (ai)1≤i≤n and b = (bi)1≤i≤n, respectively. However, in the case of
ECFP and related fingerprints, the fingerprint vector contains integer values that
represent the indices of the bits set to 1. In this case, the set-theoretic definition
is applicable, where A and B represent sets of indices; A = {i : ai = 1}, B = {i :
bi = 1}.

Table 5.1: List of frequently used similarity coefficients in cheminformatics. a and b
denote vectors (a = (ai)1≤i≤n, b = (bi)1≤i≤n); A and B sets (A = {i : ai = 1}, B = {i :
bi = 1}).

Name
general formula set-theoretic definition

Tanimoto or Jaccard coefficient

Ta,b =

∑n
n=1 aibi∑n

n=1 a
2
i +

∑n
n=1 b

2
i −

∑n
n=1 aibi

TA,B =
|A ∩B|
|A ∪B|

Dice coefficient

Da,b =
2
∑n

n=1 aibi∑n
n=1 a

2
i +

∑n
n=1 b

2
i

DA,B =
2|A ∩B|
|A|+ |B|

Cosine coefficient

Ca,b =

∑n
n=1 aibi√∑n

n=1 a
2
i

∑n
n=1 b

2
i

CA,B =
|A ∩B|√
|A||B|

Hamming distance

Ha,b =
∑n

i=1 |ai − bi| HA,B = |A ∪B| − |A ∩B|

Euclidean distance

Ea,b =
√∑n

i=1(ai − bi)2 EA,B =
√
|A ∪B| − |A ∩B|
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6
Fragment Space Algorithms

In this chapter, three methods are discussed. They are organized in the order of
how they are used in a fragment space workflow. First, two algorithms for the
construction of fragment spaces are introduced. The first is based on retrosyn-
thetic fragmentation and was developed by Degen et al. [34]. For this project, it
was implemented based on the NAOMI cheminformatics library [59] and is used
for data generation in numerous experiments. The second represents a newly
developed, fully automated approach to construct fragment spaces based on syn-
thetic reactions. Fragment spaces that were constructed in this manner are much
more likely to produce synthesizable molecules. Second, an algorithm for the
enumeration of molecules from fragment spaces is discussed. This newly devel-
oped method is based on the NAOMI library. It uses a deterministic approach to
systematically generate all molecules with a user-defined physicochemical profile.
In this manner, it can exhaustively construct all molecules in a certain chemical
space.

6.1 Fragmentation

During fragmentation, a set of molecules is cut at specific bonds and thus con-
verted into fragments (see Figure 6.1). This approach is analogous to retrosyn-
thetic analysis used in the planning of organic syntheses. The molecule of interest
is transformed into precursor molecules by separating it at bonds for which a syn-
thetic reaction is known. In this way, information about chemical reactions is used
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in a ’backwards’-directed manner, i.e., to deconstruct a molecule into accessible
and available building blocks. The underlying hypothesis is that it is more likely
to generate new compounds from the building blocks of known molecules. These
fragments have been part of an actual molecule and may therefore be synthetically
more accessible than molecules designed with other methods.

Figure 6.1: Depiction of how a molecule is fragmented with BRICS rules. Top: SMARTS
pattern of the three rules that match at least one bond in the molecule. The link types
are marked in red. Middle: Molecule Eletriptan (DrugBank DB00216) with the four
matched bonds marked by red dashed lines. The number denotes the respective BRICS
rule. Bottom: The resulting five fragments after fragmentation.

The selection of initial structures is an important part of the success of this
method and should be carried out diligently. The same applies to the selection
of suitable fragments. The goal is to avoid large fragments or the introduction of
toxic groups to a drug-like chemical space. However, the most important part is to
choose the right set of retrosynthetic rules in order to facilitate the generation of
molecules in the laboratory. A list with suitable bonds and their environments has
to be compiled for the desired reactions. RECAP (retrosynthetic combinatorial
analysis procedure) [57] and BRICS (breaking of retrosynthetically interesting
chemical substructures) [34] represent such sets (see section 7.2). BRICS attempts
to improve the RECAP fragmentation approach by using a more elaborate set
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of 16 rules and additional post-processing filters. After fragmentation, fragments
with more than 16 heavy-atoms, containing rings with more than eight heavy-
atoms, or matching a reactive or toxic group according to Kazius et al. [120] are
removed. The implementation requires precise information about these bonds as
input. Therefore, bonds are defined as SMARTS, i.e., a language for describing
molecular patterns based on SMILES [100].

The fragmentation procedures in both cases are very similar. The one for
BRICS was originally developed in the Flex* context as part of FlexNovo [25]
and is documented in the dissertation of Jörg Degen [26]. Within the scope of
this thesis, it was implemented in the NAOMI library. Although the general pro-
cedure is straightforward, a few aspects have to be considered when implementing
fragmentation of molecules for fragment spaces:

1. In order to be able to recombine fragments efficiently, one must assure that
fragments are the smallest possible building blocks. To avoid overlapping
fragments, all rules are matched to a single molecule at a time in order to
identify all cut bonds. Then these cuts are applied exhaustively. If each
rule would be applied to an independent instance of a molecules, many
redundant fragments would be created.

2. A fragment must occur in a fragment space only once to avoid unnecessary
computation when retrieving molecules. The fact that molecules may con-
tain the same substructure can lead to identical fragments. Therefore, the
generated candidate fragments need to be filtered for redundant fragments.

The resulting algorithm is depicted in Figure 6.2 and works as follows. First,
all valid bonds matching the cut rules are identified for a given molecule using
SMARTS patterns [100]. Then, matching bonds are compared with each other
to check whether a bond in the molecule has been matched multiple times (see
example in Figure 6.2). If this is the case, a bond was found that can be cut with
two (or more) retrosynthetic rules. These rules must be applied independently
to that bond. Therefore, two (or more) sets of matches are generated, each
containing one of the multiple matches. Each resulting set is then translated into
cut instructions, which are then applied to separate copies of the molecule. While
a bond is removed from the molecule, reaction specific linkers are attached to each
adjacent atom7. In the case of multiple matches, multiple copies of the fragment
with different link types are created. These fragments are added to a set data
structure as unique SMILES [114], thus eliminating redundant fragments. After
processing all input molecules, fragments are filtered according to BRICS rules.
The result is a non-redundant set with little or no overlap between individual
fragments.

7This is exactly opposite to the process of connecting fragments as depicted in Figure 3.2.

Chapter 6. Fragment Space Algorithms



48 6.1. Fragmentation

Figure 6.2: Shredding procedure shown for Acetylsalicylic acid (DrugBank DB00945)
and fictitious cut rules shown in red, blue, and green. The first processing step matches
the cut rules onto the molecule. Note that the list contains bond 4-5 twice because it
was matched by different cut rules. Then, multiple matches are detected and two sets
with cut bonds are created. Finally, the molecule is fragmented with each set resulting
in fragments that are identical except for the link types (color of circles). The faded
fragment is the only one that was generated twice.

This functionality is available as standalone command-line tool. For more
information see section 9.4.

Retrosynthetic fragmentation can handle large amounts of molecules to quickly
generate fragment spaces. Although fragmentation rules are based on reaction
information there is some uncertainty inherent to this approach. There is no
guarantee that a certain bond between two fragments can in fact be formed with
the reaction that the cut rule is based on. In the following section, an alternative
approach using reactions in a more direct manner is described.

Chapter 6. Fragment Space Algorithms



6.2. Reaction-based Construction 49

6.2 Reaction-based Construction
In contrast to the retrosynthetic fragmentation approach, reactions can also be
used in a ’forward-directed’ way for generating fragment spaces. This corresponds
to the actual synthesis carried out in the laboratory, i.e., molecules are mixed in
a reaction vessel and thus form a new molecule. The reaction-based approach
requires two inputs, a list of molecules and a list of reactions. The former should
be a library of small, accessible molecules that are in stock or readily synthe-
sizable, for example an in-house library or molecules that can be ordered from
a vendor. The functional groups for each reaction are identified and annotated
based on information extracted from the reactions. Then, linkers are added to
the molecule at the bond that would be newly formed by this reaction. When
two fragments are connected, the linkers are removed and a bond is added (see
Figure 3.2).

In the following, the method for generating reaction-based fragment spaces
will be described in detail. The algorithm has been newly developed and was
implemented as part of the NAOMI library. As a very first version of this new
concept, it should be considered a "proof of concept" because there is still room
for optimization of the method and adjusting its functionality to specific use
cases.

6.2.1 Description of Reactions

The SMIRKS reaction transform language is used to describe reactions. It is
based on SMILES and SMARTS [100]. A SMIRKS reaction consists of a list
of SMARTS expressions that describe reactants, products and optional agents.
These components are separated by greater-than signs (>) thus denoting the
direction of the reaction. Chemical entities that have the same role, e.g., several
products, are separated by dots (.). For example, the SMIRKS for peptide bond
formation is:

[C;$(CCN):1](=[O:2])O.[N:4][C;$(CC(=O)O):5]>>[C:1](=[O:2])[N:4][C:5]

The reaction has two reactants, one product and no agents. The latter would be
placed in-between the two greater-than signs.

Two aspects should be mentioned at this point: First, only the simplest case of
a reaction with two reagents and one product is considered in the following, which
is a generally accepted strategy for making these reactions computationally man-
ageable. Second, graph terminology is used in the following since substructure
matching with SMARTS is essentially a sub-graph matching problem.

SMIRKS must follow certain rules in order to be valid. The most important
ones are:
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1. "The reactant and product sides of the transformation are required to have
the same numbers and types of mapped atoms and the atom maps must be
pairwise. However, non-mapped atoms may be added or deleted during a
transformation" [100].

2. "Atomic expressions may be any valid atomic SMARTS expression for nodes
where the bonding (connectivity & bond order) doesn’t change. Otherwise,
the atomic expressions must be valid SMILES" [100].

This means that every atom involved in a reaction is uniquely numbered and can
be unambiguously matched from reactant to product. Also, the description of
a reaction can use the versatile SMILES and SMARTS syntax for defining the
environment of an atom to precisely describe the structural conditions required
for a reaction to take place. An example is shown in Figure 6.3.

Figure 6.3: Peptide bond formation as described by the SMIRKS [C;$(CCN):1]
(=[O:2])O.[N:4][C;$(CC(=O)O):5]>>[C:1](=[O:2])[N:4][C:5], de-
picted as visual SMARTS pattern [62]. The stars (*) in the SMARTS represent the
rest of the molecule not considered in the reaction. The fragments in the boxes
denoted with "1" describe the environment at the reactive site that is required for (but
not changed by) the reaction. The numbers on the atoms are the unique numbering
required to map the changes made by the reaction. The reaction introduces a new
bond between nodes 1 and 4 thus splitting off a hydroxyl group and a hydrogen.

The implementation uses the SMARTS parsing and matching capabilities of
the NAOMI library [62, 121]. In order to determine whether the substructure
described by a SMARTS graph is present in a molecule, the nodes of the SMARTS
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graph are matched onto the atoms of that molecule. This returns a list of matched
atoms for each complete match in the molecule.

6.2.2 Processing of Reactions

In the first phase of the algorithm, the SMIRKS expression is parsed and used to
identify the involved atoms for each input reaction. The following steps are carried
out on the SMARTS graphs of the two reactants and the product, exclusively.
First, the node IDs are retrieved from each reactant graph. Then, these IDs are
used to find the new edge in the product graph, i.e., the bond that forms during
the reaction (see Code Listing 6.1). The two adjacent nodes of the product graph
are then marked in the reactant graphs as ’connecting nodes’. These nodes later
identify the connecting atoms in the molecules that match a reactant. Each
reactant is associated with a specific link type which is used in the construction
of a fragment. It denotes to which reaction the annotated fragment is compatible
and is used to construct connection rules for the fragment space (see section
3.4). The link type must be provided by the user in the same file as the SMIRKS
strings. Figure 6.4 shows an example of which atoms are matched and annotated,
what the resulting fragments are, and possible molecules assembled from these
fragments.

Code listing 6.1 Pseudocode of the function to identify the connecting atoms.

Find-Connecting-Node(reaction)
1 for each Node n1 ∈ reaction.reactant1
2 for each Node n2 ∈ reaction.reactant2
3 if (n1, n2) ∈ reaction.product
4 Mark_as_Connecting_Node(n1)
5 Mark_as_Connecting_Node(n2)
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Figure 6.4: Reaction matching for peptide bond forming reaction (Figure 6.3) and two
amino acids glutamine (left) and phenylalanine (right). a) Matching of the SMIRKS
pattern for reactant 1 shown in blue, and reactant 2 shown in green. Numbers denote
the atom ID as defined in the reaction. Atoms 1 and 4 are connecting atoms (see c). b)
Resulting fragments with annotated linkers. c) Product molecules that may be formed
by the two fragments. The newly formed bond is depicted in red.
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6.2.3 Matching of Molecules

In the context of reaction-based fragment space construction, the requirement for
the matching strategy is that a single fragment should be annotated with reactive
sites of different reactions. In this respect, there are two points to consider: First,
a functional group may be involved in several reactions and, second, a molecule
may have several functional groups.

The first aspect is dealt with by the fragment space model itself. By definition,
a given link type can be compatible to several other link types. As a result, a
single fragment is stored when multiple identical fragments would be generated
that only differ in their link type. This is the case when the same functional
group can be involved in the same reaction. This reduces the number of generated
fragments significantly and helps to store large amounts of molecules in a compact
format. At the moment, the user is required to provide the link types for each
reaction. An automated assignment is also possible and could be added as an
improvement.

The second part needs more consideration. By annotating a single molecule
with a single reaction, the resulting fragments have one linker type only, thus
essentially representing a combinatorial library. If this is repeatedly done, a
fragment space can represent several but disjoint libraries. Although this is a
valid use case for fragment spaces, one can only retrieve molecules built from
two fragments connected by a single reaction. To utilize the full potential of
fragment spaces, it should be possible to use several reactions to build a new
product molecule. In order to facilitate the construction of such fragment spaces,
two different strategies were implemented and compared:

(I) The first strategy iterates all molecules in the outer loop and all reactions
in the inner loop. For each molecule, it matches all reactions at once, thus
generating a potentially large number of matches. In order to apply these
matches, it determines which matches overlap. From this information, non-
overlapping match sets are generated and applied to a copy of the molecule
independently, each resulting in a distinct fragment. By matching all reac-
tions at once, the reactive sites for different reactions can be annotated at
once.

(II) The second strategy iterates all reactions in the outer loop and all molecules
in the inner loop (see Code listing 6.2). For each reaction, the algorithm
iterates all molecules and, in addition, all fragments from previous itera-
tions. It matches a single reaction to a single molecule (or fragment) and
annotates the reactive sites of this reaction only. In this manner, func-
tional groups are annotated in an iterative fashion rather than at once. By
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matching existing fragments, reactive sites belonging to different reactions
are annotated as well.

Code listing 6.2 Pseudocode of the general strategy of the reaction-based con-
struction of fragment spaces.

RXN-FS(molecules, reactions)
1 fragments = Set.init()
2 for each Reaction r ∈ reactions
3 for each Fragment f ∈ fragments
4 Match-and-Annotate(r, f , fragments)
5 for each Molecule m ∈ molecules
6 Match-and-Annotate(r, m, fragments)
7 return fragments

In either case, the following procedure is used to determine if a reaction can
be applied to a molecule. Please refer to Code listing 6.3 for an overview. Both
reactant graphs of a reaction are matched onto a single molecule independently,
which is necessary because molecules may have several functional groups and serve
as either reactant8. The matches from both reactants are combined. There are
occasions were reactant SMARTS match the same atoms so that matches overlap
and the annotation of both reactive groups is not possible (see Figure 6.5). This is
similar to the overlapping bond matches occurring in the fragmentation algorithm
(see section 6.1). Here, this is dealt with by assigning unique match IDs to each
match. After all matches have been identified, they are sorted into sets that
only contain the IDs of non-overlapping matches. Once all distinct match sets
are created, each is translated into a cut instruction. A cut instruction describes
which atom to remove from the connecting atom identified during the initial
processing of the reaction. This atom can either be an implicit hydrogen or an
unlabeled heavy atom. The latter is described by rule 1 of the SMIRKS definition
(see 6.2.1); an example for this is the single-bonded oxygen of the first reactant in
Figure 6.3. The identified atom is subsequently replaced by the reaction-specific
linker. The resulting sets of cut instruction are applied to separate copies of the
molecule, thus generating all possible permutations of linkers.

Any reaction may introduce bond changes in the molecule that lead to changes
in the valence state of individual atoms. The resulting fragment must exhibit
the bond and valence state as present in the product when it is entered into a

8A prominent example for this is amino acids (see Figure 6.4).
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Figure 6.5: Example of overlapping reactive groups. The matching atoms for two
artificial reactant SMARTS are encircled in the molecule. The first SMARTS matches
a carboxylic acid at a aromatic ring, the second matches an alcohol. The resulting
fragments for both cases are shown on the right. The molecule is part of the ChemBridge
Building Blocks dataset (ZINC4050446).

fragment space so that no modifications are required when it is later retrieved
from a fragment space. Currently, only bond changes at the connecting atom and
the atom that is replaced with a linker are considered, i.e., changes that can be
compensated by adding or splitting off a hydrogen at the connecting atom. For
example, in the case of reductive amination (see Figure 6.6), a double bonded
oxygen is removed and a single bonded linker is added because the product only
contains a single bond. This results in an open valence that is saturated by
adding a hydrogen to the reactive atom. More complicated bond changes are not
modeled at the moment, as further discussed in section 8.3.

Determining Non-overlapping Matches

Determining all non-overlapping match sets is a relatively expensive computa-
tion. The algorithm computes the pairwise overlap of all matches and stores this
information in the overlap matrix. This matrix is symmetrical and forms the
basis for the following computation. For each row, the algorithm carries out the
following steps: First, it adds all match IDs as initial members of a match set.
This set is added to a queue, which is subsequently processed until it is empty. A
match set from the queue is iterated via two nested loops to carry out a pairwise
comparison of all members. If two members are found to overlap based on the
compatibility matrix, two sets are created from the initial set: Each set contains
one of the incompatible match IDs and all previously added match IDs. These
sets are added to the queue. If no overlap is found, the set only contains non-
overlapping matches and becomes part of the result list. This list may contain
subsets of larger match sets, which are filtered out subsequently.
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Code listing 6.3 Pseudocode of the matching process. First, all possible matches
are searched and combined, then, they are applied.

Match-and-Annotate(reaction,molecule, fragments)

1 matches1 = List.init()
2 matches2 = List.init()
3 disjoint_matches = List.init()
4
5 SMARTS-Matcher(molecule, reaction.reactant_smarts1, matches1)
6 SMARTS-Matcher(molecule, reaction.reactant_smarts2, matches2)
7 Combine-List-of-Matches(matches1,matches2, disjoint_matches)
8
9 for each MatchSet match_set ∈ disjoint_matches

10 split_bonds = List.init()
11 for each Match m ∈ match_set
12 cut_bond = Bond.init(m.connecting_atom, m.split_atom)
13 split_bonds.insert(cut_bond)
14 Split-Molecule-and-Add-Linker(m, split_bonds, fragments)

The current implementation is not very efficient and could be optimized in
future versions. It requires frequent lookups in the overlap matrix and uses sev-
eral nested loops. The more matches are involved, the larger the compatibility
matrix and the more complex the computation of permutations. This turned out
to be problematic for strategy I discussed above. When applying all reactions at
once, some molecules lead to an impractically long computing time. As a conse-
quence, strategy I was discarded in favor of strategy II. During the latter, much
fewer matches per molecule occur since only one reaction is matched at a time.
Consequently, strategy II was implemented into a command-line tool. For more
information, see 9.3.

6.2.4 Conclusion

In the sections above, a second approach to generate fragment spaces based on
reaction information was introduced. Utilizing reactions in a forward-directed
way has two major advantages over retrosynthetic fragmentation. One is the use
of non-theoretical building blocks in the form of synthetically available molecules
and the other advantage is the use of organic synthesis reactions in a direct, non-
abstract way. These two features are the basis for an easy transition into the
laboratory. For each product molecule, a synthesis protocol can be derived based
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Figure 6.6: Reductive amination as an example for a reaction with a bond change. The
information to annotate fragments is extracted from the reaction definition as shown
on top. The resulting fragments are shown on the bottom. The connecting atoms are
marked with an asterisk, the annotated linkers are shaded in green. In this case, R1-R4
denote those parts that differ between molecules and are not relevant for the reaction.

on the building blocks and the connection rules involved. In chapter 8, experi-
ments for the construction of fragment spaces with this method are presented.
Improvements for this proof-of-concept implementation are discussed in chapter
10.

6.3 Existing Enumeration Algorithm

The previous implementation of the fragment space enumeration algorithm by
Pärn, Degen, and Rarey is based on the Flex* library [29]. The user must pro-
vide a fragment space and physicochemical constraints as min-max range. Flex-
Enum uses a tree data structure to represent molecules during enumeration. The
generated trees are systematically extended by adding one fragment at a time
and confirming the validity of the properties of the tree. This is done recur-
sively. In the corresponding publication, three problems are defined: "how to
access fragments with certain properties in an efficient way, how to neglect re-
dundant fragment-trees as soon as possible and how to confirm the uniqueness of
a generated molecule effectively" [29].

The first problem is addressed by utilizing a kD-tree as an index for fragments.
This tree can be queried with property ranges and returns a list of fragments
that do not violate the boundary constraints. The problem of redundant trees
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is dealt with by defining rules for the attachment of fragments. Since these
rules are also part of the new implementation that was developed during this
project, they are discussed in detail in section 6.4.5. In order to determine the
uniqueness of a molecule, a self-balancing binary search tree is used to store a
string representation of the corresponding molecule. The unique SMILES [114]
line notation is used for this.

In the accompanying study, 40 fragment spaces were generated with modified
RECAP rules and enumerated. The spaces contained 4 to 271 fragments and
yielded between 21 and 779,213 molecules. Nine enumerations did not finish as
"a consequence of the limited memory on the Linux nodes [...] and also due
to the size of the fragment spaces." In addition, an experiment to demonstrate
the performance of the redundancy filter was discussed. Therefore, two artificial
fragment spaces with 47 and 48 fragments were used, yielding 73,147 and 95,713
molecules. This space was also enumerated with the newly developed algorithm
using the same constraints (see B.4).

In the following, the new enumeration algorithm is described. It is related
to this approach and uses the same overall strategy. Molecules are extended one
fragment at a time and are kept as a tree data structure on which redundancy pre-
vention strategies can be applied. Then, newly generated molecules are checked
for redundancy. However, most of the implementation was done in a different and
improved way. For instance, instead of a recursive strategy an iterative one was
used, the redundancy prevention strategy was expanded, and redundancy check-
ing was done in a memory-independent way. The differences of both methods are
highlighted throughout section 6.4.

6.4 Enumeration

In the following, the Fragment Space exhaustive enumeration system (FSees) is
described9 [1]. The goal of this new enumeration algorithm is to find all molecules
within a chemical subspace that is defined by the following constraints:

1. the structure of the fragments in the fragment space,

2. the synthetic rules encoded in the connection rules, and

3. the physicochemical properties that the user has entered.

In order to accomplish this, the enumeration procedure works as follows. It
uses every fragment in the fragment space as a starting point. For each fragment,

9The status of the accompanying publication “FSees: Customized Enumeration of Chemical
Subspaces with Limited Main Memory Consumption” [1] is "2016".
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it exhaustively explores all possibilities for extension within the given physico-
chemical constraints. For each open link, all fragments with compatible linkers
are attached to a copy of the initial fragment. These new, conjugated fragments
are then subject to the same attachment strategy until no further extension is
possible. This process is deterministic and exhaustive. The extension of an
individual molecule is stopped only when its physicochemical properties are out-
side the user-defined range, if the user-defined maximal number of fragments is
reached, or if it is identical to a previously encountered molecule.

In order to be able to enumerate a large chemical space with millions of
molecules, several strategies to save computer resources were implemented. First,
the algorithm is designed to operate with constant main memory consumption.
Therefore, it uses file-based data structures thus rendering the disk space the
limiting factor rather than the main memory (see section 6.4.4 and 6.4.6). Second,
unnecessary computation is prevented by avoiding redundant molecules. This
leads to a reduction of runtime and overall resource requirements. As discussed
in section 6.4.5 and 6.4.6, redundancy cannot be completely avoided, but it can be
detected. Third, the calculation of physicochemical properties is done efficiently
(see section 6.4.2 and 6.4.3). This is combined with the detection of redundant
structures so that expensive calculations are carried out only after all other filters
were passed (see section 6.4.7).

6.4.1 Topology

In order to calculate properties, it would suffice to keep all involved fragments
in a simple list. However, structural information would not be stored. When
connecting several fragments, it is important to preserve the information about
which linker of fragment A is used to connect to fragment B and vice versa. This
information determines the topology of a molecule.

The straightforward way to preserve the topology is to simply connect the
fragments thus creating a new molecule. However, connecting fragments is an
expensive operation since all atoms, bonds, and associated data of the underlying
molecule instance must be copied. Due to their properties, many molecules will
be sorted out anyway. Executing an expensive operation to immediately discard
the resulting molecule is a waste of resources. In addition, it is not required since
many properties can be calculated on individual fragments (see section 6.4.2).
Hence, fragments are connected only when absolutely necessary. Until then, a
list of fragments, which are meant to be connected into a molecule, needs to be
stored in a way that allows for it to be processed as a molecule with respect to
its topology. A tree data structure is utilized for this purpose (see 6.4.3).
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6.4.2 Property Computation

The FSees algorithm systematically combines fragments in order to assemble new
molecules. Each new molecule must be evaluated with respect to its physicochem-
ical properties. However, combining fragments into a molecule is an expensive
operation. In order to calculate the properties of a molecule, this can be avoided
in certain cases. The properties considered in this algorithm can be described by
a single numerical value, which is either an integer or a real number. They are
computed by NAOMI library functions [59] based on the molecule data structure.
Since a fragment is simply a small molecule (see section 3.4), these functions can
calculate the respective properties for a fragment only and hence it is not neces-
sary to connect fragments in order to calculate certain properties for a molecule.

There are two categories of properties, i.e., those that are monotonously ad-
ditive and those that are not. This differentiation was also made by Pärn et al.
in the previous implementation [29].

Definition 6.1. A property X is named monotonously additive, if X can
be calculated for a molecule by adding up the individual values of X for each
fragment of which the molecule consists and the sign of X is constantly either
non-positive or non-negative. 10

Many of the physicochemical properties fulfill the criterion for monotonously
additive and can therefore be calculated for each fragment individually. Conse-
quently, it suffices to sum up the individual values of a list of fragments in order
to calculate the value for a molecule. Examples are the number of hydrogen bond
donors, the molecular mass, or – less obviously – the calculated volume (tVol-
ume). The latter is an approximation of the volume of a molecule not taking an
overlap between atoms into account [58]. For a complete list of properties, please
refer to Table 6.1.

Linkers are treated as atoms without properties. More precisely, the values
for their atomic properties, e.g., volume or mass, are zero. For the computation
of molecular properties they are not considered by the particular library function.

The available non-monotonously properties are clogP (calculated according to
Wildman et al. [122]), rotatable bonds, stereo-centers, and topological polar sur-
face area (tPSA). The algorithms for computing these properties take neighboring
atoms with varying depth into account. Therefore, the contribution of a single
fragment is dependent on neighboring fragments. In these cases, a new molecule
is actually created from these fragments in order to compute these properties.

An alternative approach could be the adaption of each algorithm to work with
unconnected fragments. When encountering a linker, the algorithm would have

10This definition was first used in [1]
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to continue processing the fragment adjacent to this position. This could, in fact,
be realized based on the fragment tree data structure that will be introduced
in the next section. However, this was not done because it would require a
new algorithm every time a non-monotonously additive property was added to
the FSees enumeration algorithm. Using native NAOMI functionality allows for
convenient extension of the method with additional properties. In order to limit
the effect of the expensive construction of a molecule on runtime, this operation
is only carried out when all other filters were passed (see section 6.4.7).

Table 6.1: List of properties that can be used for enumeration and their category. Other
refers to the fact that these are not molecular properties.

Property Monotonously
additive

Non-monotonously
additive Other

Atoms ×
clogP ×
Fragments ×
H-bond acceptors ×
H-bond donors ×
Lipinski-style acceptors ×
Lipinski-style donors ×
Molecular weight ×
Non-hydrogen atoms ×
Non-hydrogen bonds ×
Rings ×
Rotatable bonds ×
Stereo-centers ×
tPSA ×
tVolume [58] ×

6.4.3 Fragment Tree

The fragment tree data structure stores how fragments are interconnected, it is
used to calculate molecular properties efficiently, and serves to identify redundant
structures. It is the central data structure of the FSees algorithm. A node
of the fragment tree represents a specific fragment and an edge represents a
bond between these fragments. Hence, a fragment tree constitutes a topological
representation of the molecule.

A node contains a pointer to the fragment instance so that fragments exist
in memory only once. It has as many edges as the corresponding fragment has
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linkers. The edges on the node are sorted according to the atom IDs of the
corresponding linkers on the fragment, i.e., a molecule instance. This sorting is
important for the unambiguous assignment of linkers regarding the construction of
a descriptor that is used to uniquely identify a tree. Edges are modeled implicitly,
i.e., as pointers to other nodes. Hence, a node contains a list of pointers to its
child nodes and one to its parent node. The root node represents a special case;
it only has child nodes. When a node is added to a tree, i.e., when two fragments
are connected, these pointers are set accordingly: The child pointer of the parent
node is pointed at the new node and the parent pointer of the new node is pointed
at the parent node.

Fragment trees are iteratively extended during the enumeration process one
fragment and node, at a time. Therefore a fragment may still have several open
linkers after it has been added to a tree. To ensure that the resulting molecule
does not have open linkers, a terminal fragment is added to the tree for each
unconnected edge. The saturation of open linkers is necessary since link atoms
do not represent chemically valid atoms, but rather open valences. This is par-
ticularly important for the computation of properties. Terminal fragments are
provided by the corresponding fragment space for each link type.

Since fragment trees represent a precise description of a molecule, they are
used to detect redundancy. Therefore, a means to compare fragment trees is
required and for this purpose, a linear string representation is generated by a
DFS-based algorithm. This string representation uses a human readable format
that was used for debugging. A node is uniquely identified via its fragment ID,
followed by a list of child nodes. The node ID is followed by a colon and the list
of children is put in square brackets. In this list, the parent node and a terminal
fragment are represented by the letter P and T, respectively. Since children
are sorted according to their atom ID as described earlier, this representation is
unambiguous. An example is shown in Figure 6.7.

6.4.4 Enumeration of Fragment Trees

The FSees algorithm is designed to exhaustively explore the chemical space of
a fragment space. The overall strategy was outlined at the beginning of section
6.4. The core of the algorithm is the extension protocol, which was developed in
conjunction with the fragment tree in order to efficiently create new molecules.
In the following, a detailed description of the enumeration algorithm is provided.
First, the queue data structure is introduced, which is key to this algorithm.
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Figure 6.7: Depiction of a fragment tree (left) and the corresponding linear descriptor
(right): large numbers denote the node ID, small green numbers the edge ID, and an
asterisk the unsaturated linker. The edge ID has no significance outside the node; it
is used internally to map a certain edge to the same linker on the fragment in every
instance.

Fragment Tree Queue

In the version by Pärn et al., a recursive approach was used to extend a fragment
tree [29]. However, this poses a problem regarding memory consumption. For
every open linker and every compatible fragment, a copy of the current fragment
tree is needed, to which the compatible fragment can be attached. In the re-
cursive case, these copies all need to be kept in memory. This is not a sensible
strategy especially since the goal is to be independent of main memory. The algo-
rithm developed for this project, FSees (Fragment Space exhaustive enumeration
system), uses an iterative approach based on a queue.

To avoid the exhaustive use of memory, a custom, file-based queue data struc-
ture was implemented to store fragment trees for further processing. This imple-
mentation uses the SQLite library, which "implements a self-contained, serverless,
zero-configuration, transactional SQL database engine" [123]. SQLite was chosen
because it is file-based and provides a convenient API through the Qt application
framework11, which is employed by the NAOMI library. During the development
of this algorithm, it was first used for redundancy testing, which is described in
section 6.4.6.

The database contains a single table with a single column storing serialized
fragment trees. This serialized version is different from the linear descriptor (see
6.4.3). Its purpose is to efficiently serialize and deserialize a fragment tree without
the requirement for easy comparability. The fragment tree is converted to a byte
array and stored as a BLOB in the database. For efficiency, the queue data
structure uses a buffer, which is a memory-based queue that stores fragment tree
instances. The buffer queue is allowed to contain a certain amount of elements
sb. If this amount is exceeded by the chunk size sc, the last sc added molecules

11http://www.qt.io/
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are serialized and written to the database queue. If the buffer queue is empty,
the database queue is queried for the first sc elements which are then deserialized
and added to the buffer queue.

At the beginning of the enumeration, a single instance of this queue, i.e., the
tree queue is initialized. The next section explains how it is utilized.

Extension Protocol

The extension protocol represents the central logic responsible for the construc-
tion of molecules. It utilizes an iterative procedure based on the tree queue rather
than a recursive scheme. A depiction of the algorithm is shown in Figure 6.8.

To exhaustively enumerate a given fragment space, all fragments are used as
starting points. The fragment space is iterated to prepare fragments for pro-
cessing. For each starting fragment, a fragment tree is constructed with this
fragment as root. The resulting trees are processed individually. An initial tree
is only processed after the previous one has been completely explored.

The extension protocol is triggered when an initial tree is added to the tree
queue (see Figure 6.8 black arrow). First, only one tree is present in the queue.
While the algorithm explores all possibilities for extension, new trees are added
constantly. Only when the queue is empty, the next fragment tree corresponding
to a starting fragment is added and the extension protocol is carried out again.
The algorithm terminates when every starting fragment has been processed by
the extension protocol.

The extension protocol consists of three nested loops (see Figure 6.8):

Loop 1 accesses the tree queue by dequeuing fragment trees until it is empty,
i.e., until all trees have been processed. For each tree, it then retrieves all
open linkers.

Loop 2 iterates open linkers of the current tree and determines all compatible
fragments. This is done efficiently by querying the fragment space index
provided by the NAOMI library (see section 3.4.1).

Loop 3 iterates these compatible fragments. Each fragment is attached to a copy
of the current tree as a new node. In this way, a new fragment tree instance
is created for each fragment. At this point, a simple yet efficient strategy
to prevent unnecessary computation is implemented. The fragments in the
fragment space are sorted according to their mass. As soon as the first
fragment is attached, which violates a potential upper bound criterion, this
loop is aborted. In cases where no such criterion is defined, this abort
criterion does not take effect. The new tree is then subject to property
filters and redundancy tests. The different steps of these filters are described
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in detail in the section 6.4.7. During these tests, valid fragment trees are
translated into molecules. If the tree and the corresponding molecule pass
all tests, the latter is written to the output file. The tree, in turn, is added
to the tree queue to become subject to further rounds of attachment until
no more fragments can be attached.

In the following, the types of redundancy that can occur on tree level will be
discussed. Efficient strategies for avoiding redundancy are introduced accordingly.
In conjunction with the redundancy tests, a strategy for preventing the exhaustive
use of main memory was developed and will be discussed subsequently. During
this discussion, the different filter steps in loop 3 will be described in detail.

Figure 6.8: Overview of the Enumeration Algorithm. Solid boxes show the three nested
loops. A circle with a number represents a fragment, while a circle with a letter rep-
resents a fragment tree from a previous iteration. A green line depicts open and com-
patible linkers. initial fragment trees are added to the tree queue via the black arrow,
new extended fragment trees via the white arrow. This figure was originally published
in [1].

6.4.5 Avoiding Redundancy

When enumerating fragment trees, several configurations would lead to the same
molecule. They can be prevented when constructing the fragment tree before
a compatible fragment is attached to a tree (see section 6.4.4). Some of these
cases can be prevented by simple tree-topological considerations (see Figure 6.9
I-III). Cases I and II have been previously discussed by Pärn et al. [29] and use the
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fragment ID. Case III prevents redundancy that stems from symmetric fragments
and was first developed within the scope of this project.

Figure 6.9: Overview of the resolved types of redundancy. I-III: On the left fragment
trees are shown. The green background depicts the fragment tree that occurs first, red
the identical tree that occurs later during enumeration. The latter are prevented by the
rule on the right. * marks symmetric fragments. This figure was originally published in
[1].

Fragment ID

Assuming a fragment space contains fragments 1, 2, and 3 as depicted in Figure
6.9.

Case I: When fragment 1 is the starting fragment, a resulting tree could be
the one in the green box. Later, when fragment 2 becomes the starting fragment,
the tree in the red box may be created. Assuming fragment 2 and 3 are connected
to the same linker of fragment 2 in both cases, both trees represent the exact same
molecule. A simple order rule developed by Pärn et al. can prevent the occurrence
of such redundant trees [29], reducing the number of redundant trees substantially
in an efficient way: A fragment can only be attached, if its ID is greater than or
equal to the ID of the root fragment.

Case II: If fragment 1 is the starting fragment, attaching fragment 2 first
and 3 later leads to the same molecule as attaching fragment 3 first and 2 later.
This case can be prevented too, with a simple order rule by Pärn et al. [29]: A
fragment can only be attached, if its ID is greater than or equal to the ID of any
already existing sibling fragment.

These two simple rules prevent identical trees to a large degree. However,
they do not consider symmetric fragments, which also cause redundant trees to
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occur.

Symmetry

Symmetry in this case refers to topological symmetry in a fragment concerning
the arrangement of linkers. Consider Case III in Figure 6.9. If fragment 1 is
symmetrical, attaching a fragment to either linker leads to the same molecule.
This causes the generation of many redundant molecules every time a symmetric
fragment is encountered. The solution is to use a symmetric linker position only
once per iteration. This ensures that a specific molecule is created only once and
therefore becomes subject to extension only once. The rule that can be derived
for symmetric fragments is: Attach an additional fragment only to the first open
linker per iteration. The exclusion of all but one linker position assures that
during each iteration, only the first of the remaining open linkers is considered. In
this way, symmetric linkers are saturated in consecutive iterations rather than in
the same one. Figure 6.10 shows an example of the generated fragment tree with
and without the additional rule. Without this rule, a large number of redundant
structures is generated, which would have to be sorted out later. With the new
rule, each tree is created only once instead.

In oder to consider symmetry during enumeration, symmetric fragments have
to be identified first. Therefore, the automorphism generator from the NAOMI
library was used. For a given molecule, it generates all permutations of atom IDs
that represent automorphisms and then it checks if the atom IDs of the linkers are
at the same position in each permutation. If they are not, they are symmetric.
The sorted list of symmetric linkers is stored in the fragment tree node. Every
time the algorithm encounters a symmetric fragment, the compatible fragment is
attached to the first open linker.

Although a lot of redundant fragment trees can be prevented by adding this
simple rule, this approach works only for fragments with two and three symmetri-
cally placed linkers. The resolution for fragments with four and more symmetric
linkers – possibly of different link types – is cumbersome for combinatorial rea-
sons (see Figure 6.11 a). Since fragments with four and more linkers are rare,
they are not taken into consideration. Another type of symmetry called implied
symmetry occurs when a fragment has linkers with different types but the same
compatibility so that identical fragments can be attached (see Figure 6.11 b).
Preventing this kind of symmetric fragment by tree-topological considerations
alone is not possible since knowledge about the fragment space needs to be taken
into account. Therefore, this source of redundancy is not considered either at
this point in the algorithm.
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Figure 6.10: Fragment trees generated in each iteration for a symmetric fragment a)
without symmetry rule, and b) with symmetry rule. * marks the linker position where
a fragment has been attached. Since fragment A is symmetric, all trees on the same
level represent the same molecule. An example for a symmetric fragment is shown in
the box.

Other Types of Redundancy

By utilizing the previously introduced rules, many redundant structures are
avoided. The remaining cases of redundancy cannot be easily resolved based
on the fragment tree topology (see Figure 6.11 a-d). The first three cases are
directly related to symmetry: (a) and (b) were discussed in section 6.4.5. In case
(c), the connection of two or more fragments results in a symmetric substructure,
which leads to the same problem as a symmetric fragment. The last case (d)
occurs when two or more fragments are connected and the result is identical to
another fragment or to several other connected fragments. These cases either re-
quire complicated rules for each special case (a), or additional information from
the fragment space (b), or can only be detected by a comparison of substructures
or molecules (c, d). The simplest solution would be to generate all molecules and
apply a subsequent filtering step to remove duplicates. However, it is better to
detect redundancy as early as possible to avoid unnecessary computation due to
structures that have already been encountered.
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Figure 6.11: Overview of the types of redundancy that cannot be detected based on
fragment tree topoplogy. a) Examples for symmetric fragments with more than three
linkers. b) Fragment with different link types that is symmetric due to the compatibility
rules depicted in the compatibility matrix. c) Example for two fragments that results
in a symmetric product. d) Example for two fragments that, upon connection, have the
same substructure as a third fragment. This figure was originally published in [1].

6.4.6 Detecting redundancy

In the previous section, the different strategies for preventing redundancy were
discussed. Yet, there are still cases when it is not possible or feasible to avoid
redundancy during the construction of fragment trees and molecules. However,
repeated exploration of search space is not the best scenario either, because it
results in a significant amount of unnecessary computation. Therefore, the de-
tection of redundancy is a sensible strategy.

In order to reliably check for redundant structures, the FSees algorithm keeps
track of all fragment tree and molecule instances that occur during the enumer-
ation. Pärn et al. used a similar strategy base on a binary search tree that was
kept in memory. However, since a very large number of fragment trees and mol-
ecules may be encountered, an efficient storage with requirements for little main
memory is needed. A SQLite database [123] is used here as well because it fulfills
all requirements: it is file-based, it can hold large numbers of entries, it provides
very efficient duplicate checking, and provides an easy to use API, so that an own
implementation is not required.

Two database instances are used, the tree database and the molecule database
containing fragment trees and molecules, respectively. Each database contains a
single table with a single column to hold a string representation of either fragment
tree or molecule. The string representation of the fragment tree is described in
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section 6.4.3 (see also Figure 6.7). For molecules, a NAOMI specific linear de-
scriptor is used, yet any unique linear descriptor will suffice, e.g., unique SMILES
[114] or InChi [124].

Two strategies are applied to make database access more efficient. First, a
Bloom-filter [125] is utilized. This is a probabilistic data structure that allows to
efficiently check whether an element is not present in a storage yet. It consists
of a bit array and a set of k hashing functions. At the beginning, all bits are
set to 0. Upon addition of a new element, k hash values are calculated and the
corresponding k bits are set to 1. A lookup operation also calculates k hashes for
the input and checks whether the corresponding bits are set. If this is not the
case – even if only one bit is not set – the element is not present in the database.
If all bits are set, the element either exists or it is a false positive match. In
this case, the underlying database must be queried in order to rule out a false
positive. Since elements cannot be removed from a Bloom filter, the string storage
data structure only supports the addition of elements. This suits this use case
well since all elements that have ever occurred should be stored. The number
of hashing functions is hardcoded; four different functions are used. The size of
the Bloom-filter is a parameter, the user can set when starting the enumeration.
The ideal size m of the Bloom-filter can be estimated based on the number of
expected elements n, the number of hashing functions k, and the desired false
positive probability p:

m = − n ln p

(ln 2)2

If the size of the Bloom-filter is underestimated, the enumeration will still finish
successfully. In this case, all queries to the Bloom-filter will simply result in a
query to the database.

The second strategy is a buffer for writing operations. By writing several ele-
ments to the database at a time, the costly operation of rebuilding the database
index does not have to be carried out for every element. The effect of this pa-
rameter is discussed in the results section 8.1.

6.4.7 Prioritization of Filters

The procedure for detecting redundancy is carried out within loop 3 after a new
fragment tree has been assembled. It is combined with the computation of proper-
ties of a fragment tree and the corresponding molecule for efficiency. A depiction
of the different filtering steps is shown in Figure 6.12. The most efficient or-
der of filters was empirically tested. First, monotonously additive properties are
calculated based on the fragment tree. This step is the computationally least
expensive since it merely requires the iteration over fragments of a fragment tree
and the summation of values (see 6.4.2). Second, it is checked whether the tree
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is redundant: The tree is added to the tree database and the Bloom-filter is
updated accordingly. The next filters are based on the NAOMI molecule data
structure an for that purpose atoms, bonds, and associated data of each fragment
are copied and connected to create a new molecule instance. Third, it is checked
whether the molecule has been encountered before. A string representation is
generated and added to the molecule database. Finally, the non-monotonously
additive properties are calculated.

Figure 6.12: Flowchart of the property and redundancy tests carried out in loop 3. The
part of the algorithm that works on the fragment tree is shaded in green, the part that
works on the molecule data structure in blue. X denotes the rejection of a tree or a
molecule. This figure was originally published in [1].

This order has proven to be the fastest in the scenarios presented in sec-
tion 8.2.3. The reason is the costly computation of clogP (see section 8.1.1).
Although the computation of TPSA and rotatable bonds is very fast, the calcula-
tion of clogP is not. This fact combined with its frequent use in many constraint
sets, e.g., lead-like [12, 14] and drug-like [15], makes it the bottleneck of non-
monotonously property computation. In the following, the different filters and
how they interact are discussed in detail.

The computation of monotonously additive properties is carried out after a
new fragment has been attached to the tree. At this point, the calculated values
(e.g. number of hydrogen bond donors or acceptors) are compared to user-defined
lower and upper thresholds with respect to an optional tolerance value k. The
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latter describes how many properties are allowed to be out of range while the
molecule is still considered valid. There are three possibilities.

1. If more than a number k of properties is above the upper threshold, the
tree is discarded since it does not represent a valid molecule.

2. If less than k property values are above the upper threshold, the tree rep-
resents a valid molecule. It is checked for redundancy by means of the tree
database. If it is new, its linear descriptor is added to the tree database
and its fragment tree to the tree queue.

3. If more than k property values are below the lower threshold, the tree does
not represent a valid molecule. However, up to this point, only monotonously
additive properties were considered. Therefore, adding more fragments may
result in a valid molecule. In this case, the tree is added to the tree queue for
further extension and the tree database to prevent redundant computation.

A fragment tree is only added to the queue if the number of fragments is
still less than a user-defined threshold. This is a simple but efficient check to
prevent unnecessary computation. Otherwise, a tree would be added to the queue,
extended with another fragment, and immediately discarded since it defies the
upper threshold for the maximal number of fragments.

As discussed before in section 6.4.3, terminal fragments have properties of
their own, which affect the overall properties of the resulting molecule. For ex-
ample, if a linker is connected to an oxygen atom, then terminating this linker
with a hydrogen atom adds a hydrogen bond donor. This may lead to an ex-
clusion of the molecule if the number of hydrogen bond donors now exceeds the
upper bound. However, it would be possible to attach another fragment at the
same position that would not result in a hydrogen bond donor. If the fragment
tree would be discarded at this point, this valid molecule could not be found.
Therefore, the decision to add a fragment tree to the tree queue is based on the
properties of a fragment tree without terminal fragments. The decision to fur-
ther process a molecule is based on property values including terminal fragments.
By considering these two cases separately, potential precursor molecules are not
rejected.

When trees are translated into molecules, a copy of the associated fragment is
retrieved from the fragment space for each node. The same is done for terminal
fragments. Then the tree is traversed and for each edge between two nodes, a
bond is created in the respective fragments. For this, the linkers are removed and
the bond is connected to the adjacent atoms. After the molecule construction has
finished, the linear descriptor for this molecule is generated by NAOMI function-
ality. The descriptor is then used to query the molecule database to determine

Chapter 6. Fragment Space Algorithms



6.4. Enumeration 73

whether the molecule has been seen before or not. This step is necessary since the
same molecule may have been constructed from a different tree, by exhibiting any
of the unresolved reasons for redundancy discussed in section 6.4.5. Due to the
differentiation between fragment tree and molecule instance, this does not lead
to the exclusion of molecules. If the molecule is unique, its descriptor is added to
the molecule database.

Finally, non-monotonously additive properties are calculated and compared to
user-defined thresholds. The values are either in range or out of range. Unlike the
monotonously additive properties, the non-monotonously additive properties are
not considered for the exclusion of fragment trees. The aforementioned tolerance
is applied here as well, while all previous validations are also taken into account. If
less than k values deviate from the desired range, the molecule fulfills all property
requirements. It is subsequently written to the output file as unique SMILES
[114].

6.4.8 Alternative Enumeration Strategy

The strategy described above simply uses all fragments as starting points. Al-
though there are use cases where the enumeration of all molecules described by a
fragment space is neither necessary, nor desired. In molecular modeling, a certain
scaffold or functional unit of a molecule is oftentimes known. This knowledge can
be used to pre-select interesting fragments as a way of further restricting the
search space. FSees features an alternative enumeration mode, that allows for
the selection of such starting fragments by the user. These fragments are then
used as starting points only and excluded from being attached during the enu-
meration. Hence, the resulting molecules are guaranteed to contain exactly one
of these fragments. The selection of such starting fragments is used for several
experiments discussed in section 8.2.

At this point, there is no explicit mode for building several starting fragments
into a single molecule. However, this can be achieved by running the algorithm
individually for each starting fragment. In this case, it is necessary to filter redun-
dant molecules and those not made of desired fragments after the enumeration.
In order to prevent such a post-filtering, it would be possible to add this and
other enumeration strategies in future versions.
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7
Data Sets and Parameters

In the context of fragment-based enumeration, several data are required: Mol-
ecules and chemical reactions as input for the construction of fragment spaces,
physicochemical properties as parameters for the enumeration algorithm, and
molecules for validation. This information is either directly or indirectly derived
from experiments. Experimental data play a crucial role in the development of
novel computational models and algorithms. They are used as a basis for the un-
derlying model or to validate the predicted outcome. Fragment spaces are built
utilizing this data in order to create new, meaningful molecules. In this chapter,
the different sources of input data are discussed.

7.1 Sources of Molecules

Sets of molecules are required for two purposes. One is the construction of frag-
ment spaces and the other is the validation of enumerated molecules. In the
former case, molecules are used as input for fragmentation or reaction-based con-
struction. During fragmentation, molecules are decomposed into their building
blocks in order to be assembled into novel molecules. In this case, molecules are
used that are drug-sized, bioactive, and non-toxic – if not actual drug molecules
– in order to create promising building blocks. For reaction-based construction,
small, synthetically accessible molecules are used that must be available via pur-
chase or in-house synthesis. Every molecule is translated into a single fragment.
The latter case requires molecules that have a confirmed activity for a desired
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target. These molecules must be experimentally well-characterized.
A number of resources from which molecules can be downloaded exist. In the

following, a description of the datasets and databases that were used as input
and for validation is given, including a discussion of which data was retrieved
for which purpose. Every set of molecules that was downloaded was subject to
a filtering step with NAOMI. This was done by opening the molecules in the
NAOMI file format converter [59] and exporting it again. This way, a molecule is
read and translated into the NAOMI chemical model. If this molecule contains
errors and cannot be read, it is not converted. Due to the canonization procedure
in NAOMI [59], molecules that are identical will lead to identical output and can
then be filtered out.

7.1.1 ChEMBL

ChEMBL is an open, manually curated database for bioactivity data [126, 127],
accessible via https://www.ebi.ac.uk/chembldb/. It contains binding, functional,
and ADMET information for many drug-like bioactive compounds. The data are
manually extracted from literature, curated, and standardized to make them con-
veniently accessible. The database contains a range of different drug-types, such
as synthetic small molecule, natural product-derived, inorganic, polymer, anti-
body, peptide/protein, oligonucleotide or oligosaccharide. In this work, version
20 – released on 14th January 2015 – was used. It contains 1.7 million compounds
and 13.5 million bioactivity measurements for 10,774 protein targets. The infor-
mation stored in the database is used in chemical biology, biochemistry, medicinal
chemistry and drug-discovery research. ChEMBL is considered an extensive, high
quality resource for bioactivity data.

In this project, ChEMBL was queried to retrieve known bioactive molecules
for a number of targets. These molecule sets were either used as input for frag-
mentation in order to create a fragment space or as a reference set to which
enumerated molecules were compared.

7.1.2 SureChEMBL

SureChEMBL is an open database containing compounds from patent documents
[128]. The data are automatically extracted from literature utilizing text and
image-mining techniques. The SureChEMBL database provides a web-based in-
terface for searching molecules based on structure (e.g. substructure or molecular
similarity) and for searching the corresponding patent documents. Furthermore,
the set of extracted molecules is available for download. Both are accessible via
https://www.surechembl.org. In patents, many molecules are described that are
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not part of any publicly available resource and have only existed in in-house com-
pound libraries. In this work, SureChEMBL was used as a reference to compare
enumerated molecules with patented ones. The SureChEMBL dataset included
all molecules up to the "Q3 2015" release. This includes 15,592,586 molecules of
which 12,790,627 are unique and valid according to NAOMI.

7.1.3 Drugbank

DrugBank is an open database of drug molecules and corresponding protein tar-
get information [84], accessible via http://www.drugbank.ca. Drug molecules are
divided into "small molecule drug" and "biotech drug" categories. The latter
encompasses protein and peptide molecules. Data is manually curated, checked
by automatic procedures, and reviewed by experts. The DrugBank interface pro-
vides extensive functionality to browse and search drugs according to numerous
characteristics, such as name, enzymatic reaction, pathway, chemical class or tar-
get; as well as structure, molecular weight, sequence, or associated experimental
results, respectively. This is accomplished by associating more than 80 data fields
with a single entry. In this project, the "group" assignment is particularly inter-
esting. Group designations are approved, experimental, nutraceutical, illicit, or
withdrawn. Drugs in the approved group have been approved in at least one coun-
try. In this project, version 4.2 of DrugBank was used, which contains 7759 drug
entries. These include 6813 entries for small molecules and 1554 molecules in the
approved group. After filtering with NAOMI, 1537 unique and valid molecules
remained.

7.1.4 DUD-E

The “Database of Useful Decoys: Enhanced” (DUD-E) is a collection of ac-
tive compounds and decoys for 102 diverse target proteins [129], available from
http://dude.docking.org. The active compounds are ligands with experimentally
measured activity data that are supported by a literature reference. The authors
used data from ChEMBL09 [126] to compile this data set. Since DUD-E was
originally developed to benchmark docking algorithms, decoys in this case are
molecules that have similar physicochemical properties as the active compounds,
but are topologically different so that they most likely do not bind to the target
protein. The set contains 50 decoys for each target and a total of 22,886 active
compounds. It thus represents a valuable resource not only for docking studies,
but for all applications where well characterized bioactive molecules are required.
For this project, only the active ligands, also denoted as "known actives", are
considered. They are used to construct a fragment space for each of the 102
target classes via fragmentation that are then enumerated.
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7.1.5 ZINC

ZINC is an open database containing commercially available compounds [130,
131]. It is intended as a resource for ligand discovery and hence supplies molecules
in "popular ready-to-dock formats" [131]. Molecules are presorted into a variety
of subsets according to their physical properties, e.g., lead-like, fragment-like,
or drug-like; and according to their source, i.e., the vendor that supplies these
molecules. The web site – accessible via http://zinc.docking.org – provides an
interface to search molecules by a variety of criteria including name, structure,
biological activity, physical property, or vendor. Furthermore, it allows users to
create their own custom subsets to share or download. The web-based interface
was recently updated. For this work, both versions ZINC12 and ZINC15 were
used. ZINC contains over 35 million purchasable compounds and represents one
of the most extensive resources of directly available molecules.

In this project, the "drug-like" subset containing 1.5 ∗ 107 molecules was used
as a reference in the comparison of existing and enumerated molecules; the "lead-
like" set comprising 7 ∗ 106 molecules was used to assess the overlap of a large
enumerated space with the known chemical space. Furthermore, ZINC was used
to download the ChemBridge Building Blocks [102] (see section 7.1.6). All down-
loaded collections were filtered with the NAOMI converter, so that they only
contain unique and valid molecules according to NAOMI.

7.1.6 ChemBridge Building Blocks

The ChemBridge Building Blocks is a collection of molecules available for pur-
chase. It contains relatively small molecules that can be used for the synthesis of
larger structures. Use cases include "combinatorial lead generation, hit-to-lead,
lead optimization and medicinal chemistry programs" [http://www.chembridge.
com/building_blocks/]. In the cheminformatics context, the dataset was used
for constructing the SCUBIDOO database [101]. According to the ChemBridge
website, the collection contains over 14,000 products. Although there is no direct
download option, ChemBridge is a vendor that can be found in ZINC. The Chem-
Bridge Building Blocks collection deposited in ZINC contains 18,053, of which
17,974 remain after uniqueness filtering. In this work, this collection was used to
generate a reaction-based fragment space.

7.2 Reaction Sets
Chemical reaction information is required for the construction of fragment spaces.
As described in section 4.3, reactions can be used as retrosynthetic rules using
a fragmentation approach or directly to annotate synthetic libraries. There are

Chapter 7. Data Sets and Parameters

http://zinc.docking.org
http://www.chembridge.com/building_blocks/
http://www.chembridge.com/building_blocks/


7.2. Reaction Sets 79

a few sets of retrosynthetic rules that are available for automated processing as
well as sets of reactions in machine readable format.

7.2.1 Retrosynthetic Rules

The set of retrosynthetic rules used for RECAP (Retrosynthetic Combinatorial
Analysis Procedure) contains 11 chemical bond types corresponding to common
chemical reactions [57]. Although RECAP was not directly used during this
project, its cut rules are available in Fragment Space Commander (see section
9.1). More importantly, it has inspired the development of BRICS (Breaking of
Retrosynthetically Interesting Chemical Substructures) [34].

BRICS attempts to improve RECAP by using a more elaborate set of rules
and additional post-processing filters. This is accomplished by taking the ad-
jacent substructure into account for a particular bond type. BRICS defines 16
such substructures in SMARTS pattern language [100]. Each substructure de-
fines one side of the cut bond and is identified with a unique linker name. Since
several substructures are compatible, a total of 55 bond types are defined as
depicted in Figure 7.1. The complete list of SMARTS patterns is provided in
Appendix C. Besides identifying suitable cut positions, these substructures serve
as filters to avoid the generation of unwanted chemical motifs and small termi-
nal fragments, i.e., hydrogen and halogen atoms, or hydroxy, nitro, carboxylate,
methoxy, methyl, ethyl, and isopropyl groups. Both RECAP and BRICS only
define acyclic bonds, so that ring structures are left intact. After fragmentation,
fragments with more than 16 heavy-atoms, containing rings with more than eight
heavy-atoms, or matching a reactive or toxic group according to Kazius et al.
[120] are removed. Furthermore, BRICS defines terminal fragments for each link
type (Figure 7.2) as required for the construction of valid molecules discussed in
section 3.4. In addition to cut rules, BRICS also refers to three fragment spaces
of different size, which are publicly available for download from www.zbh.uni-
hamburg.de/BRICS/. However, they were not used in this project. The BRICS
fragmentation and filtering procedure was implemented (see section 6.1) and the
retrosynthetic rules were used to generate numerous fragment spaces for enumer-
ation (see section 8.2).

7.2.2 Synthetic Reactions

The set published by Hartenfeller et al. contains 58 unique organic synthesis re-
actions that were specifically compiled for computer-based molecule construction
[96]. The reactions are provided as SMIRKS [100] in order to be compatible with
a variety of tools and modeling libraries. The set contains 29 simple reactions
that form one additional bond between reactants. Furthermore, it contains 29
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Figure 7.1: Depiction of chemical environments used for the generation of BRICS frag-
ment spaces. L1 through L16 denote (dummy) link atoms used for identification of
compatible bond types. Lines between fragments indicate that a bond can be formed
between the atoms adjacent to the link atom of each respective fragment, thus removing
the link-atom. R-groups are used to describe the diversity of the fragments and may
contain additional link atoms. The R groups may also consist of hydrogen only. Frag-
ment depictions were generated with SMARTSViewer [62] This figure was originally
published in [2].

ring formations that cannot be directly represented by a fragment space. A list
of the Reaction SMARTS pattern is provided in Appendix C.3.

7.3 Constraints

The main parameter for the enumeration algorithm are constraints for physico-
chemical properties. Meaningful values can be derived from individual reference
molecules or molecule collections. These values can be queried from a database or
computed with software tools. The values for the individual properties determine
which part of the chemical universe is enumerated. Several studies determined
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Figure 7.2: List of BRICS terminal fragments [34] and the respective link types.

interesting chemical spaces through statistical analysis of large molecule sets [12–
14, 16–19, 53] as discussed in section 3.2. The thresholds for two of these spaces
are used as enumeration constraints, thus creating only molecules belonging to
these spaces. The first is the drug-like chemical space as defined by Lipinski
et al. [15], also known as Rule of five (see section 3.2). The second was derived
from lead-like chemical space. In the experiments, lead-like constraints as de-
fined by ZINC (lead-likeZ) were used, which are directly derived from Oprea’s
lead-like definition (lead-likeO) described in section 3.2 [14]. Table 7.1 lists the
physicochemical properties used and their values.

Table 7.1: Physicochemical constraints for lead-like and drug-like molecule classes.
Lead-likeO describes constraints according to Oprea et al. [14] and lead-likeZ according
to ZINC [131].

drug-like lead-likeO lead-likeZ

Molecular Weight ≤ 500 ≤ 450 250 – 350
clogP ≤ 5.0 -3.5 – 4.5 ≤ 3.5
H-bond Donors ≤ 5 ≤ 5
H-bond Acceptors ≤ 10 ≤ 8
Rotatable bonds ≤ 7
Non-terminal single bonds ≤ 10
Rings ≤ 4
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8
Evaluation and Experiments

This chapter describes the experiments carried out with the two newly developed
algorithms for reaction-based construction and enumeration of fragment spaces
and discusses the results. Since FSees was developed first and experiments were
done based on fragment spaces from retrosynthetic fragmentation, it is discussed
first. The first section describes the optimization of the enumeration strategy.
Then, various enumeration experiments are discussed. Finally, experiments for
the construction of reaction-based fragment spaces are presented.

8.1 Optimization of Enumeration

The enumeration algorithm is the result of a continuous optimization process
that has accompanied the development of the algorithm. In this section, strate-
gies relevant to runtime are discussed. All computations were carried out on a
workstation with an Intel i5 processor (i5-4570 CPU @ 3.20GHz) and 16 GB
RAM. The database files were stored on the internal hard drive rather than the
network file system and no other disk or CPU intensive jobs were running during
computations.

8.1.1 Prioritization of Filters

This investigation was carried out to show the effect of the computation of logP
on the performance of the enumeration. Three different sets of constraints were
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used, based on drug-like values: with logP, without logP, and with a rotatable
bonds cutoff instead of logP. The first constraint triggers the relatively costly
computation of logP, the second only uses monotonously additive properties (see
Definition 6.1), and the third substitutes logP with a less costly computation.
The same study was carried out for three different fragment spaces for DUD-
E targets [129] Androgen Receptor (ANDR), Hexokinase type IV (HXK4), and
Thymidylate synthase (TYSY) (see section 7.1 and 8.2.3). The results are shown
in Figure 8.1. Since the different parameter sets result in different numbers of
molecules, the absolute runtimes cannot be compared so that the average rate
with which molecules are generated is used instead.

Figure 8.1: Average rate of molecule generation for three different fragment spaces
(ANDR, HXK4, and TYSY) with three different sets of parameters (with logP, without
logP, and rotatable bonds). The average runtime for each fragment space is given on
the bottom in h:m:s.

The results are very similar for all three fragment spaces. The constraint set
with logP (green) results in the slowest rate, while the set without logP (blue)
results in the highest rate. The rate for the set including rotatable bonds (yellow)
is in between the first two. In two cases, ANDR and HXK4, it is almost as high
as the rate for without logP. The difference in the rates between fragment spaces
arises from the different runtimes. At the beginning, the rate is usually higher
since a lot of new molecules are generated (see also 8.1.3) and shorter enumera-
tions consequently have higher average rates. The difference between the highest
and lowest rates is much more distinct for longer running enumerations. For
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ANDR, the lowest and highest rates are 446 Mols/s and 740 Mols/s, respectively.
This represents a 65% increase. For TYSY, the increase is only 18% (from 1666
and 1975 Mols/s).

Two conclusions can be drawn: 1. The computation of a non monotonously
additive property affects the performance. In the case of logP this effect is much
more significant than in the case of rotatable bonds. 2. The longer the runtime,
the stronger the effect because proportionately more molecules must be processed.

8.1.2 Performance Improvements

When new strategies to increase performance were introduced, their effect on the
runtime was measured. Improvements include the adjustment of the algorithmic
procedures and database parameters. Results for two fragment spaces from the
DUD-E data set are shown, i.e., insulin-like growth factor I receptor (IGF1R)
and TGF-beta receptor type I (TGFR1). The effect of algorithmic strategies are
depicted in Figure 8.2, of database parameters in Figure 8.3. The former were
implemented iteratively, so that each step includes the changes from the previous.

Baseline represents the starting configuration, i.e., the initial implementation
with file-based data structures and redundancy prevention according to Pärn et al.
(see section 6.4.5). The first optimization was implemented by sorting fragments
according to their molecular mass (Sorted fragments). This stops the extension
of a fragment tree as soon as the first fragment is attached that results in a higher
molecular weight than the respective upper bound. As a second improvement, a
buffer was added to the tree and molecule databases. This way, several elements
are added to the database at once, rather than having a separate transaction for
each newly added molecule or tree. Different buffer sizes were tested with the
capacity to store 103, 104, and 105 elements, respectively. Although a buffer size
of 105 performed best for TGFR1, this could not be observed in other cases (e.g.
IGF1R); therefore, a buffer size of 104 is used. The Symmetry Rule is described
in detail in section 6.4.5. It prevents symmetrical fragments to cause redundant
molecules. The effect of this change is quite different for the two fragment spaces
shown since it strongly depends on the presence of symmetric fragments. The
different performance improvements in the cases of IGF1R and TGFR1 show that
the latter contains fewer symmetric fragments than the former.

The last test was carried out to show the effect of the Bloom-filter, which
was added at an early stage of the project and has therefore been in use during
the previous tests. Not using the Bloom filter results in a significant increase in
runtime, i.e, 45% (108 min.) in the case of IGFR1 and 22% (110 min.) in the
case of TGFR1.

In addition to algorithmic improvements, the database parameters for the
fragment tree and molecule storage were optimized. The SQLite implementa-
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Figure 8.2: Runtime of enumeration runs for DUD-E targets IGF1R and TGFR1 with
different optimization strategies. Please refer to section 8.1.2 for details.

tion allows for a user to configure a vast number of parameters [123], some of
which significantly affect database performance. For the initial implementation,
database parameters were set to reasonable values. The systematic investigation
of the effect of individual parameters was done after all algorithmic optimization
strategies had been implemented. The systematic optimization of parameters
resulted in an additional decrease of runtime by 34% (79 min.) for IGF1R and
36% (165 min.) for TGFR1. These values were derived from a comparison of the
perfromance after algorithmic optimization, i.e., Symmetry rule from Figure 8.2,
and after database optimization, i.e., best combined from Figure 8.3.

In each test, the default database parameters were used, except for the pa-
rameter tested. Default values are:

• page_size = 1024
• synchronous = FULL
• temp_store = FILE
• mmap_size = 0
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The first value, a page size of 1 KB (1024 byte), represents the starting point
of the optimization (see Figure 8.3). For the last test the best values of each
parameter were combined. This represents the final configuration used in the
enumerator.

A page is the smallest unit of data in a database, the page_size therefore
determines its size in bytes. Adjusting this parameter had one of the largest
effects on runtime as shown in Figure 8.3. A similar decrease in runtime resulted
from the adjustment of the synchronous flag. It determines how data is written
to the hard drive. In the default mode (FULL) it is ensured "that all content
is safely written to the disk surface prior to continuing. This ensures that an
operating system crash or power failure will not corrupt the database" [123].
With synchronous = OFF, "SQLite continues without syncing as soon as it has
handed data off to the operating system." [123]. In this case, the database may
become corrupted if the computer crashes. This is not an issue since the database
is only created for a single enumeration. If the enumeration must be restarted, a
new database instance is created. The temp_store parameter determines where
temporary tables and indices are kept. The value MEMORY specifies that they
are stored in memory rather than on the hard drive. For TGFR1 this parameter
leads to a significant increase in runtime compared to the initial test. In this
case, the process runs out of main memory so that the linux operating system
starts "swapping". Finally, mmap_size determines "the maximum number of
bytes of the database file that will be accessed using memory-mapped I/O" [123].
Although the last parameters increases the runtime in the case of TGFR1, it
proved to decrease the runtime for shorter running simulations, such as IGF1R
(6% decrease). However, due to its small impact at a high value it was not used.

One more parameter that is always used is the size of the database cache,
cache_size. This has been implemented as a user-definable parameter that can
be adjusted according to the available main memory. In the previous tests it was
set to 1024 MB.
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Figure 8.3: Runtime of enumeration runs for DUD-E targets IGF1R and TGFR1 with
different database parameters. Please refer to section 8.1.2 for details.
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8.1.3 Memory Consumption

The FSees algorithm is designed to be resource-efficient, especially with respect
to main memory. This is mainly accomplished by using file-based data structures
based on SQLite. Some memory is still required, but it can be limited by setting
the appropriate parameters. There are two customizable parameters that affect
the amount of memory used, the database cache and the Bloom-filter size. Both
values can be set at the beginning of the enumeration and must be specified in
MegaBytes (MB).

In the following test, the database cache was set to 1024 MB and the Bloom
filter to 1280 MB (1010 bits) per database. This results in a memory requirement
of 5.5 GB for the databases. In addition, the process itself requires memory for
certain permanent and temporary instances, e.g., the fragment space, fragments,
product trees, molecules, descriptor strings, database buffers, etc. The behavior
of the algorithm regarding memory consumption and storage utilization is inves-
tigated. Therefore, the fragment space for the DUD-E target Beta-2 adrenergic
receptor (ADRB2) was enumerated and the result is shown in Figure 8.4. Two
more examples, FA7 and FABP4, are shown in Figure 8.5.

All curves show a distinct progression that is similar in all examples. At the
beginning of the process, the main memory consumption (grey) rises steeply un-
til it levels off around 5.5 GB, as expected. The memory usage of non-database
instances is negligible. As the algorithm progresses, each fragment is used as a
starting point. After a starting fragment has been completely explored, the tree
database is emptied since new trees cannot contain fragments previously used as
starting points. Therefore, trees from previous iterations are discarded to save
memory and speed up the tree database. This is reflected in the progression of
the tree database fill state (green) while the tree queue shows the complementary
behavior (brown). The tree database grows until all possibilities for extension
have been explored. It is then emptied and the curve drops to zero. The tree
queue reaches its maximal fill state quickly and decreases when less new trees are
generated. The last two curves show the number of molecules (blue) generated
and the corresponding rate in molecules per second (purple). The number of mol-
ecules increases steadily, while the slope of the curve decreases slightly. The curve
of the rate behaves complementarily; it is very high at first but then decreases
slowly. The longer the enumeration runs, the more molecules have been generated
and stored in the database. Consequently, queries to the molecule database, i.e.,
redundancy checks, take more time.
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Figure 8.4: Progression of different resources during the enumeration process of target
ADRB2 of DUD-E dataset. From top to bottom: Memory consumption, tree database,
tree queue, molecule database, and rate of generated molecules. This figure was origi-
nally published in [1].
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Figure 8.5: Progression of resources during the enumeration of fragment spaces for (a)
Coagulation factor VII (FA7) and (b) Fatty acid binding protein adipocyte (FABP4) of
the DUD-E dataset. See also Figure 8.4.
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8.2 Enumeration Experiments

This section describes several enumeration experiments. For this purpose, frag-
ment spaces of various sizes were created and different sets of enumeration con-
straints were used. In a large scale experiment, 102 fragment spaces were cre-
ated and then enumerated with individual constraints. They are each based on
one target class of the “Database of Useful Decoys: Enhanced” (DUD-E) [129].
This dataset was described in section 7.1. Then, potential kinase inhibitors and
microtubule-destabilizing anticancer agents were generated. In these cases, an
alternative enumeration strategy is applied focusing on particular fragments of
interest demonstrating how the enumeration algorithm can be applied to typi-
cal use cases of fragment-based design. Finally, another enumeration strategy is
applied to enumerate a very large fragment space derived from approved drug
molecules. In this case 0.5 billion lead-like molecules, named Hamburg enumer-
ated lead-like set (HELLS), were generated.

8.2.1 Experimental Setup

The overall experimental setup is similar for all enumerated fragment spaces.
First, a fragment space was created by retrosynthetic fragmentation of known
active molecules for each target class. Then, each fragment space was enumer-
ated. Therefore, either target-specific constraints were used or general-purpose
constraints, such as drug-like [15] or lead-like [12, 14] (see section 7.3). Finally,
the resulting molecules are subject to analysis.

The lead-like chemical space contains molecules that are usually used in ear-
lier phases of the drug-discovery pipeline because they are relatively small. This
leaves much room for the optimization of a structure. Thus, these constraints are
used for the generation of a large set of molecules that can be used with other
lead-finding technologies. Drug-like constraints may be more interesting at later
stages, e.g., when optimizing a structure. It can be used to find molecules with
the same physicochemical properties but different scaffolds or decorations. Since
the drug-likeness filter employed here only defines upper bounds that are rela-
tively large, it may lead to a great number of molecules in a wide range of sizes. In
practice, it is better to use constraints specific to the target in order to allow for a
tailored library, a manageable amount of enumerated molecules, and a reasonable
runtime. Hence, the majority of constraints are derived from properties of known
active molecules, oftentimes the same molecules used for the construction of the
fragment space. Due to the fact that these molecules already exhibit an activity
for a certain target, the assumption is that newly generated molecules show sim-
ilar behavior with respect to activity and bioavailability. Drug-like constraints as
defined by the Rule of five [15] were only used for one experiment. Most other
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constraint sets are target specific while using the same descriptors as drug-like,
i.e., molecular weight, number of H-bond donors and acceptors, and cLogP.

Besides physicochemical constraints, the maximal number of fragments was
limited in all experiments to further limit the search space. This parameter
greatly affects the number of resulting molecules due to combinatorics. Further-
more, the database cache was set to 3 GB, i.e., 1 GB per database instance, in
all experiments. For the DUD-E and HELLS enumeration, the size of the Bloom
filter was set to 5 GB (4 ∗ 1010 bits) and to 1.25 GB (1010 bits) for target-specific
experiments.

8.2.2 Evaluation Strategy

In order to evaluate a large library of enumerated molecules and asses their qual-
ity, an easy to apply, fast to compute, objective, and reproducible approach is
required (see introduction of chapter 5). Here, each generated library was com-
pared to known bioactive molecules. Individual molecules were compared based
on Tanimoto similarity of the Extended Connectivity Fingerprint (ECFP) de-
scriptor [111] (see section 5.2). A diameter of four bonds was used in all cal-
culations (ECFP_4). The ECFP is well suited for large scale comparison since
it is quick to calculate. Pairwise similarities were calculated and the resulting
similarity distributions were analyzed according to the experiment.

8.2.3 DUDE Enumeration

For this large scale experiment, the "known active" molecules for each target of
the DUD-E dataset (see section 7.1) were fragmented in order to generate 102
target specific fragment spaces. Here, the BRICS set of retrosynthetic rules [34]
was used (see section 7.2). For each target class, the physicochemical property
constraints were derived from the input molecules using the same descriptors as
drug-like. Therefore, the values of the lower and upper quartile of the property
distributions for molecular weight, number of H-bond donors and acceptors, and
cLogP were used. The individual values for all classes are listed in Table B.2
in Appendix B. The maximal number of fragments was set to four. This was
estimated based on the average molecular weight of all fragments, which is 120
Da. Connecting four average fragments results in a molecular weight of almost
the upper bound for drug-like, i.e., 500 Da. In addition, a runtime constraint
was applied. The computing time on a single core was limited to seven days to
avoid the generation of vast amounts of molecules. Yet, the algorithm is able to
enumerate large chemical space and run for a long time; oftentimes it is neither
reasonable nor necessary to generate a great number of molecules because working
with them can be tedious. For these long running cases it is recommended to
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either revise the underlying fragment space by reducing the number of fragments,
or to further limit the search space by applying more stringent constraints.

As a result, eight of the 102 computations were terminated after 7 days, i.e.,
EGFR, FA10, HIVPR, MK14, PGH2, SRC, TRY1, CP3A4 (for the full names
please refer to Table B.1). Until this point, between 4.1∗107 and 1.1∗108 molecules
had been generated. Figure 8.6 shows a summary of the 94 successfully finished
enumerations, a list of the individual results is shown in Table B.4 in Appendix
B.
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Figure 8.6: Distributions of results from DUD-E experiment as boxplots (outliers omit-
ted). From left to right: Number of bioactive molecules in ChEMBL sets, number of
enumerated molecules, average rates of individual enumerations, computing times of
individual enumerations, percent of recovered molecules used for the construction of a
fragment space. This figure was originally published in [1].

Two targets, PUR2 and SAHH, were excluded at this point since these enu-
merations resulted in 0 and 2 molecules, respectively. The fragment spaces only
contained 16 and 42 fragments, respectively. Although this is a relatively small
number of fragments it is not too small. The reason for not retrieving more mol-
ecules was the set of constraints (see Table B.2). In the case of PUR2, molecules
with exactly 11 H-bond acceptors and in the case of SAHH, molecules with ex-
actly 4 H-bond donors, were requested. These constraints are too stringent to
enumerate with such a small number of fragments. The reason for these values
are the composition of initial molecules. In both cases they are all very similar
and show a very narrow distribution for the properties in question.

The enumerated molecules were compared to known inhibitors from ChEMBL
[127]. Therefore, molecules were retrieved from ChEMBL first. Each target PDB
ID was manually mapped onto a ChEMBL target ID for this purpose (see Ta-
ble B.3). Five targets could not be found in ChEMBL, i.e., ADRB1, HIVINT,
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HIVPR, HIVRT, and INHA. All corresponding bioactive molecules were down-
loaded via the ChEMBL Web Services, which provides access to the database via
web request. It returns XML files that were processed with Python.

For the remaining 88 targets, the "known actives" were removed from the
ChEMBL set. This was done in order for the ChEMBL set to not contain mol-
ecules that were used in the construction of the fragment space. The goal is to
investigate how similar enumerated molecules are to known bioactive molecules
and whether new promising molecules can be found. Initial molecules that were
generated during enumeration would cause similarity of 1.0 and therefore create
an unwanted bias.

After assembling the necessary data for each target, the ChEMBL compounds
for each class were used as a reference set. All enumerated molecules were com-
pared to all ChEMBL compounds of the respective class. The same computation
was carried out for the "drug-like" subset of the ZINC database [131] The ZINC
set contains 1.5 ∗ 107 molecules12 and was compared with the target specific sets
of ChEMBL compounds. The goal is to assess the performance of the enumer-
ated library compared to a library of available molecules. Both comparisons –
enumerated vs. ChEMBL and ZINC vs. ChEMBL – yield similarity distributions
that are compared as follows: A receiver operating characteristic (ROC) curve
was computed to assess whether an enumerated library or the ZINC set is more
similar to the respective ChEMBL subset. Each bin of the similarity distribution
contains the number of molecules in a certain similarity range, e.g. [0.1..0.2). To
compute the ROC, for each similarity bin, the number of molecules in the range
from the current bin i to N (where N is the number of bins) was computed.
The values were stored as ECi for enumerated vs. ChEMBL and ZCi for ZINC
vs. ChEMBL. The values of ECi and ZCi were plotted onto the X and Y axes,
respectively (see Figure 8.7 and B.3) Then, the area under the curve (AUC) was
calculated by means of the following formula:

AUC =
∑N−1

i=0
ECi ∗ |ZCi+1 − ZCi|

In the following analysis, the resulting AUCs were classified into three ranges:
[0.0− 0.4) for "ZINC more similar to ChEMBL", [0.4− 0.6] for "no clear distinc-
tion", and (0.6− 1.0] for "enumerated more similar to ChEMBL".

Figure 8.7 shows the similarity distribution and the ROC curve for two targets,
i.e., MAP kinase-activated protein kinase 2 (MAPK2) and Cytochrome P450
2C9 (CP2C9). The AUC for MAPK2 is 0.91 and 0.39 for CP2C9, hence the
enumerated molecules of MAPK2 are more closely related to ChEMBL-MAPK2
than the molecules from the ZINC set. For CP2C9, the situation is reversed
because the enumerated set is less similar than ZINC. This analysis was applied

12Accessed on September 15th, 2015
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to all 88 target classes, see Figure B.2 and B.3. There are 78 cases where the
enumerated sets had an AUC above 0.6, 2 cases had an AUC below 0.4, and 8
cases where the AUC was in the 0.5 ±0.1 range.

The two cases that showed weak performance are Thymidylate synthase (TYSY)
and Cytochrome P450 2C9 (CP2C9). There are two reasons for this in the case
of TYSY: One is the choice of enumeration parameters, most importantly the
molecular weight range of 427 to 533. Only 11 of the 64 ChEMBL-TYSY actives
are in this range, while most ChEMBL molecules are smaller and – as a result –
have less features in the ECFP. The reason for this is that most of the DUD-E
actives cover a different molecular weight range than ChEMBL-TYSY, as shown
in Figure 8.8. Since the constraints are derived from DUD-E, the enumerated
molecules exhibit different properties than the ChEMBL actives. Besides, only
two molecules were removed from the ChEMBL set that were also present in the
DUD-E set. The second reason for the weak performance is the composition of
the fragment space. Most ChEMBL-TYSY molecules exhibit a distinct pattern,
namely a ring system with two aromatic rings and either a six-ring with one
Oxygen atom or some similar ring (see Figure 8.9). This pattern is not present
in the fragment space, neither as fragment nor as part of a larger fragment, and
can therefore not occur in molecules generated from this space. Since this pat-
tern leads to distinct values in the ECFP, its absence also severely affects the
molecular similarity.

The reason for the bad performance of CP2C9 is not as clear. First of all, the
ChEMBL-CP2C9 set contains more than 21,000 molecules and therefore covers
a much larger chemical space than most of the other classes (see "ChEMBL"
in Figure 8.6). This is due to the nature of Cytochrome P450 enzymes since
they bind a variety of molecules as substrate, activator, and inhibitor. The most
plausible explanation is that the large amount of diverse molecules prohibits a
clear signal.

In the previous analysis, the ROC curve was used to compare two distribu-
tions. For this, the whole range of similarities was taken into account. However,
one should not overlook that in the similarity range of 0.5 to 1.0, the number of
enumerated molecules is often distinctly higher than the number of ZINC mole-
cules (see Figure 8.7). In the case of MAPK2, the ratio is 0.055 for enumerated
molecules and 0.002 for ZINC molecules. In addition to the desired physico-
chemical properties, these molecules also have a significant topological similarity
to known and active molecules as defined by the ECFP. This implies that the
enumerated set contains numerous promising molecules, which makes it an in-
teresting input for techniques that require molecular libraries, such as virtual
screening.
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Figure 8.7: Two examples for results from the analysis of the DUD-E experiment show-
ing a favorable (MAPK2, left column) and unfavorable (CP2C9, right column) case.
Plots a-d show the distribution of similarity values for ranges 0.0 to 1.0 (a, b) and 0.5
to 1.0 (c, d). The black line shows the similarity distribution of the enumerated mole-
cules versus the ChEMBL set, the gray area the similarity distribution of ZINC versus
ChEMBL. Plots e and f show the corresponding ROC curve for the similarity distri-
bution and the AUC as numeric value. TP denotes the case where more enumerated
molecules have a higher similarity to ChEMBL, FP the case where more molecules from
ZINC have a higher similarity to ChEMBL. This figure was originally published in [1].
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Figure 8.8: Histogram of the Molecular Weight distribution of the "actives final" and
ChEMBL bioactives for thymidylate synthase (TYSY) from DUD-E.

Figure 8.9: Four bioactive molecules from the ChEMBL-TYSY set (Thymidylate syn-
thase).
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8.2.4 Specific Targets

The two experiments discussed next describe different scenarios encountered in
fragment-based drug discovery. For this purpose an alternative enumeration pro-
tocol is utilized (see section 6.4.8). The experimental setup is very similar to the
DUD-E large scale experiment except that enumeration focuses on specific frag-
ments of interest here. The first experiment is the enumeration of a core fragment
with multiple linkers and the second the extension of a fragment with a single
linker. The use cases are the enumeration of a class of molecules that exhibits a
central fragment as a functional feature and the exploration of possibilities after
an initial hit fragment was identified by fragment screening, respectively.

For this experiment, fragment spaces were constructed from ChEMBL ac-
tives. The list of known bioactive molecules for the corresponding class were
downloaded, filtered for duplicates, and fragmented according to BRICS frag-
mentation rules [34].

Table 8.1: Depiction of fragments of interest and results of the enumeration experiments
for the serine/threonine-protein kinase and Tubulin. This table was originally published
in [1].

Serine/Threonine-Protein Kinase Inhibitors

The first target is a kinase, more precisely a serine/threonine-protein kinase. Ki-
nases are enzymes that add a phosphate group (PO 3–

4 ) to a protein or another
organic molecule. In the case of proteins, this phosphorylation leads to an ac-
tivation in most cases, sometimes to inactivation. Kinases play a critical role
in cellular signaling and thus represent an interesting target for the treatment
of cancer. There are two main classes of protein kinases, one adds phosphate
groups to a serine or threonine side chain (serine/threonine-protein kinase) the
other to a tyrosine side chain (tyrosine kinases). Kinases constitute important
targets and are subject to intense pharmacological research. Protein kinase in-
hibitors are usually relatively linear molecules that often contain a distinct bi-
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Table 8.2: Enumeration constraints for serine/threonine-protein kinase experiment.

Molecular Weight logP Donors Acceptors

250 – 500 1.0 – 5.0 1 – 4 5 – 9

or trycyclic fragment [132–135]. This experiment demonstrates how the FSees
enumeration algorithm is used to exhaustively enumerate all molecules contain-
ing such a fragment. The protein targets considered for this experiment are the
closely related serine/threonine-protein kinase 32A, 32B, and 32C from Homo
sapiens (CHEMBL6150, CHEMBL5912, and CHEMBL5405, respectively). All
bioactive compounds were downloaded from ChEMBL, merged, and duplicates
were removed. A fragment space with 242 fragments was created from 131 unique
molecules (see Figure 8.10). Nine of these molecules were not processed because
no BRICS rule could be applied.

Figure 8.10: Property distributions of the serine/threonine-protein kinase fragment
space.

Two fragments were selected for enumeration, F196 and F199 (see Table 8.1).
They represent good scaffold fragments since they are relatively large and inflex-
ible due to the ring system and have two linkers where they can be extended.
As before, enumeration constraints were derived from the properties of the initial
molecules (see section 8.2). The enumerations yield 2.7 ∗ 106 and 2.8 ∗ 106 mole-
cules, respectively. Table 8.1 shows the precise number and the computing times.
The property distributions of the enumerated molecules are shown in Figure 8.11
All molecules are in the desired range.

The resulting molecules were then compared to the initial ChEMBL actives
by ECFP-Tanimoto similarity. In this case, no background distribution as for
the DUD-E experiment was generated. The resulting similarity distribution for
fragments F196 and F199 is depicted in Figure 8.12. There are 2296 molecules
with similarity values greater than 0.5 for fragment F196 and 2463 for fragment
F199. Only one molecule has a similarity value of 1.0 meaning that it is iden-
tical to an input molecule (CHEMBL2425646). It contains fragment F196 al-
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Figure 8.11: Property distributions of enumerated Kinase molecules. Results for frag-
ment F_196 on top and F_199 on bottom.

though, interestingly, it is not the molecule from which fragment F196 was derived
(CHEMBL300138). In the enumerated molecule, fragment F196 is connected only
via the linker adjacent to the aromatic nitrogen (R9); the linker adjacent to the
aromatic carbon (R16) was terminated with a hydrogen (see Table 8.1). At this
point, it should be mentioned that fragment F196 with this linker configuration
is only present in one initial molecule, while the indole pattern is found in 14
molecules.

None of the other molecules in the ≥ 0.5 range exceeds a similarity of 0.8,
which is partially due to the fact that the core fragments with this linker config-
uration are underrepresented in the initial set. Both fragments occur in only one
molecule each. However, the other molecules still have significant structural simi-
larity to initial molecules and may represent interesting new alternatives to these
inhibitors. The five highest scoring molecules for fragments F196 and 199 with
the corresponding bioactive molecules from ChEMBL are shown in Figure 8.13 a,
b. The fact that there are no high similarity values observed does not represent a
bad result. It merely means that there are not many highly similar molecules in
the set to which the enumerated molecules were compared. Whether the result is
satisfying depends on the application and the goal of the enumeration. If, for in-
stance, the goal is to enumerate a chemical space of underrepresented inhibitors,
this must be seen as a success.
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Figure 8.12: Similarity distribution of enumerated molecules compared to bioactive
serine/threonine-protein kinase binders from ChEMBL for different starting fragments.
Results for fragment F196 are shown on the left, for fragment F199 on the right. First
row shows similarity values from 0.0 to 1.0, second row shows range 0.5 to 1.0. This
figure was originally published in [1].
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Figure 8.13: The five highest scoring enumerated molecules that are not identical to
input molecules for a) Serine/threonine-protein kinase fragment F196, b) fragment F199,
and c) Tubulin. The top row of each subfigure shows enumerated molecules, bottom row
shows the corresponding bioactive molecule from ChEMBL. The number indicates the
Tanimoto similarity of ECFP_4 between the enumerated molecule and the CHEMBL
molecule below. Molecule depictions created with MONA [63, 66]. This figure was
originally published in [1].
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Microtubule-Destabilizing Molecules

The second experiment in this section demonstrates how the enumeration algo-
rithm can be used to generate a diverse set of molecules with a distinct functional
group. In this case, the fragment of interest only contains a single open linker to
which other fragments can be attached. The target that is investigated is a het-
erodimer consisting of α- and β-tubulin (PDB 4O2A). These dimers assemble into
larger structures, called microtubules, which are a component of the cytoskele-
ton of a cell. The cytoskeleton is responsible for the shape of a cell, transport
of material within a cell, and coordination of cell division. The involvement in
these cellular functions makes these proteins an interesting target for cancer re-
search. Therefore, molecules are designed that prevent the formation of these
dimers. In a recent publication, La Regina et al. synthesized and tested a num-
ber of microtubule-destabilizing anticancer agents [136]. All molecules exhibit
a distinct trimethoxyphenyl moiety, which will be used during enumeration (see
Table 8.1).
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Figure 8.14: Property distributions of the fragment space constructed from Microtubule-
Destabilizing molecules.
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Figure 8.15: Property distributions of the enumerated molecules with trimethoxyphenyl
moiety.

ChEMBL was queried with PDB 4O2A, which La Regina et al. used for their
docking studies. This led to ChEMBL target ID CHEMBL3394 for which 360
unique bioactive compounds could be downloaded. 75 molecules could not be
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Table 8.3: Number of enumerated potential microtubule-destabilizing molecules for high
similarity ranges.

≥ 0.6 ≥ 0.6 ≥ 0.7 ≥ 0.8 ≥ 0.9 = 1.0

37,488 6624 995 136 67 30

fragmented with BRICS rules. The resulting fragment space contains 165 frag-
ments, three of which contain the trimethoxyphenyl pattern (F58, F61, F64) and
are shown in Table 8.1. They are used as starting points for the enumeration. For
this experiment, plain drug-like constraints were used (see section 7.3) and during
enumeration, a total of 575,864 molecules were generated. These molecules were
compared to the initial ChEMBL actives by ECFP-Tanimoto similarity as shown
in Figure 8.16. 37,488 molecules have a Tanimoto similarity greater than or equal
to 0.5, see Table 8.3 for a detailed breakdown. As with the previous experiment,
the molecules with the highest similarity values are depicted in Figure 8.13 c
together with the corresponding active molecules.
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Figure 8.16: Similarity distribution of enumerated molecules with trimethoxyphenyl
moiety compared to bioactive α- and β-tubulin binders from ChEMBL. Similarity range
from 0.0 to 1.0 is shown on the left, 0.5 to 1.0 in the middle, and 0.75 to 1.0 on the
right.

8.2.5 Enumeration of a Large Lead-Like Library

In the previous experiments, target specific fragment spaces were enumerated
that were composed of fragments from already known inhibitors, whereas in this
experiment, a diverse set of molecules is used to create a fragment space. This
fragment space is enumerated with lead-likeZ properties (see section 7.3) in order
to generate a large library of molecules that can serve as a starting point for idea
generation, HELLS.

In order to construct the fragment space, the "Approved Drugs" set was down-
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loaded from DrugBank13 [84]. 1537 molecules were then fragmented according to
BRICS rules [34]. 528 molecules could not be processed since none of the BRICS
rules could be applied. The remaining 1009 molecules were fragmented into 1214
fragments. An overview of the properties of these fragments is provided in Fig-
ure 8.17. Since all fragments are directly derived from actual drug molecules,
the resulting enumerated molecules will consequently be composed of patterns
that have previously been observed in approved agents. Therefore, HELLS may
contain a lot of new, promising molecules.
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Figure 8.17: Property distribution of the fragments from the "Approved Drugs" frag-
ment space.

The enumeration of a fragment space of this size would result in an extremely
long runtime. In order to enumerate this space in a reasonable amount of time,
an alternative strategy is used: Instead of a single long running enumeration, the
problem is partitioned, so that several shorter running enumerations are carried
out. By starting one process for each (initial) fragment on a computer cluster, the
enumeration is parallelized. In oder to further limit the search space to interesting
and diverse structures, the starting fragments were selected accordingly. Only
fragments with at least two linkers and at least one ring of five or more atoms were
considered. 183 of the 1214 fragments fulfill these criteria, thus 183 individual
enumerations were performed. In this experiment, the runtime was not limited.

In an accumulated computing time of 1441 CPU hours more than 820 Mil-
lion molecules were generated. The individual enumeration times and number of
molecules are listed in Appendix B.3. Since all enumerations were carried out in-
dependently, the same molecule may have been generated by separate processes.
In order to eliminate redundant molecules, all molecules need to be merged and
filtered for duplicates. This was done based on their unique SMILES represen-
tation [114]. The SMILES strings were merged into one file and then sorted
and made unique on the command line with an invocation of the GNU command
sort14. The initial set of 820,467,614 molecules was reduced to 503,974,653 unique

13Version 4.2, see section 7.1
14http://www.gnu.org
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molecules. Figure 8.18 shows an overview of the properties of the enumerated
molecules. The Hamburg enumerated lead-like set was made available free of
charge [1].
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Figure 8.18: Property distributions of the HELLS library.

Enumerated molecules were compared to actual molecules from ZINC [131]
and SureChEMBL [128] based on unique SMILES. Therefore, both sets were
converted into unique SMILES with the NAOMI converter [59] thus filtering
out erroneous molecules. The "lead-like" set of ZINC contains 7,096,16415 and
SureChEMBL 12,790,627 molecules16. HELLS contains 48,814 molecules from
ZINC and 21,825 molecules from SureChEMBL. In other words, 0.0097% of
HELLS were found in ZINC, 0.0043% in SureChEMBL. Although neither col-
lection exhaustively covers the known chemical universe, ZINC as a big resource
of purchasable compounds and SureChEMBL as a resource of patented molecules
represent good approximations. This becomes even clearer when comparing ZINC
to the most exhaustive resource to date, i.e., the CAS registry of the Chemical
Abstract Service [52]. It contains "more than 109 million unique organic and
inorganic chemical substances" [52]. Considering that it also contains a lot of in-
organic compounds and ZINC contains over 35 million organic compounds [131],
the coverage of ZINC is quite impressive.

8.3 Reaction-based Fragment Spaces

This section discusses experiments that utilize the algorithm for the construction
of reaction-based fragment spaces, which is described in section 6.2. The input
for the method is a set of molecules and a set of reactions. The fragment spaces
constructed in this way have a high likelihood of generating synthesizable mole-
cules when subject to one of the existing methods [24, 25, 27, 29, 31, 32] or the
FSees algorithm.

15Accessed on September 15th, 2015
16Accessed on January 27th, 2016
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The ChemBridge Building Blocks library (see section 7.1.6) that was down-
loaded from ZINC [131] serves as source for input molecules. It contains pur-
chasable building blocks that are typically used to synthesize larger molecules.
The set contains 17,974 unique molecules that have molecular properties much
lower than drug-like molecules (see Figure 8.19). Reactions were extracted from
the supplemental material of Hartenfeller et al. [96] (see 7.2).

Figure 8.19: Properties of the ChemBridge Building Blocks dataset. Red lines de-
note the median, blue lines the upper bound of the drug-like constraints for applicable
properties.

8.3.1 Preparation of Reactions

The reaction set provided by Hartenfeller et al. contains a total of 58 reactions
specifically compiled for use in a computational context. Although these reactions
can be read, they cannot be applied directly due to conceptual challenges of
fragment spaces (see section 6.2). 29 of these reactions constitute ring forming
reactions that can currently not be modeled. These reactions were removed.
The remaining 29 reactions introduce one single or double bond between two
compatible fragments. Their names are listed in Table 8.4, the corresponding
SMIRKS in appendix C.3. During tests, it became apparent that a few reactions
could not be processed with the proof of concept implementation in the current
state. These unsuitable reactions were not considered for the experiments below.
The reason for their failure is discussed on a case-by-case basis in the following.
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Table 8.4: List of non ring-forming reactions from the set of Hartenfeller et al. [96].
Reactions marked with an asterisk could not be processed and are discussed in the text.

Buchwald-Hartwig
decarboxylative coupling*
Grignard alcohol*
Grignard carbonyl*
Heck non-terminal vinyl
Heck terminal vinyl
heteroaromatic nuc sub
Mitsunobu imide
Mitsunobu phenole
Mitsunobu sulfonamide
Mitsunobu tetrazole 1
Mitsunobu tetrazole 2*
Mitsunobu tetrazole 3*
Mitsunobu tetrazole 4
N-arylation heterocycles

Negishi
nucl sub aromatic ortho nitro
nucl sub aromatic para nitro
piperidine indole
reductive amination
Schotten-Baumann amide
Sonogashira
Stille
sulfon amide
Suzuki
thiourea*
urea*
Williamson ether
Wittig

In the case of decarboxylative coupling, one of the reactants cannot be matched
to any molecule in the building blocks set. Although the other reactant is found
1573 times, it does not make sense to construct a fragment space with this reaction
since no connections can be made.

Reactions Mitsunobu tetrazole 2 and Mitsunobu tetrazole 3 are identical to
Mitsunobu tetrazole 4 and Mitsunobu tetrazole 1, respectively, except for the
position where the hydrogen is split off. At the moment, the algorithm only
splits off hydrogens from the atom at which the linker is attached, i.e., where the
reaction takes place. Because all four reactions match the same molecules and
reactions 2 and 4 as well as 1 and 3 result in the same product, cases 2 and 3 can
be neglected due to redundancy.

The following four reactions – as depicted in Figure 8.20 – were excluded
because the bond changes that are introduced are rather complex or do not take
place at the reactive atom, as described in section 6.2.3. Reactions urea and
thiourea are identical, except that an oxygen atom is present and in the latter a
sulfur atom. In both cases, a double bond to a neighboring atom must be broken
up and the neighboring atom must subsequently be saturated with a hydrogen.
Since this change does not take place at the reactive atom, it is currently not
modeled. In the Grignard reaction alkyl-, vinyl-, or aryl-magnesium halides react
with electrophilic groups. In the case of Grignard alcohol the situation is identical
to the previous case: a double bond between the reactive atom and a neighboring
oxygen is removed. The case of Grignard carbonyl is even more complex; here,
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Figure 8.20: Four reactions that cannot be modeled, currently: a) Urea b) Thiourea c)
Grignard carbonyl d) Grignard alcohol. See text for details. In this case, R1-R3 denote
parts that differ between molecules, not linkers.

the reaction takes place at a nitrile group. The triple bond is removed and the
nitrogen is split off and substituted by a double bonded oxygen. The latter only
occurs in the product and must therefore be created and added to the reactive
atom.

8.3.2 Fragment Space Construction

For each of the 22 reactions that can be modeled, a fragment space was created.
Since only one reaction was used, such a fragment space essentially represents
a combinatorial library. The results are summarized in Table 8.5. The num-
ber of fragments per space varies from 68 to 9,280 fragments and adds up to
65,913. Most fragments have only one linker, 36 fragments feature two and only
one fragment features three linkers. 26 of the fragments with more than one
linker matched both reactants of the respective reactions (Buchwald-Hartwig and
Negishi). Several reactions show the same number of fragments for one of the
link types. In these cases, the functional groups are identical, although the sec-
ond reactant is always different (e.g. Heck non-terminal vinyl and Heck terminal
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Table 8.5: Composition of fragment spaces for individual reactions as number of frag-
ments. Link types L1 and L2 correspond to the first and second reactant of the corre-
sponding reaction.

Reaction Total No. of linkers Link type
1 2 3 L1 L2 both

Buchwald-Hartwig 7028 7014 13 1 5635 1383 10
Heck non-terminal vinyl 2029 2029 0 0 2017 12 0
Heck terminal vinyl 2019 2019 0 0 2017 2 0
Mitsunobu imide 863 863 0 0 27 836 0
Mitsunobu phenole 1187 1187 0 0 352 835 0
Mitsunobu sulfonamide 885 885 0 0 50 835 0
Mitsunobu tetrazole 1 858 858 0 0 23 835 0
Mitsunobu tetrazole 4 843 843 0 0 8 835 0
N-arylation heterocycles 994 994 0 0 835 159 0
Negishi 5413 5397 16 0 2789 2608 16
Schotten-Baumann amide 9280 9277 3 0 6676 2604 0
Sonogashira 888 888 0 0 34 854 0
Stille 2972 2972 0 0 2165 807 0
Suzuki 1764 1764 0 0 1618 146 0
Williamson ether 2027 2027 0 0 593 1434 0
Wittig 2294 2292 2 0 593 1701 0
heteroaromatic nuc sub 4766 4766 0 0 4493 273 0
nucl sub aromatic ortho nitro 4503 4503 0 0 4493 10 0
nucl sub aromatic para nitro 4500 4500 0 0 4493 7 0
piperidine indole 68 68 0 0 42 26 0
reductive 6195 6193 2 0 4456 1739 0
sulfon-amide 4537 4537 0 0 4493 44 0

All 65913 65876 36 1 47902 17985 26

vinyl). This analysis quantifies how many fragments are essentially identical and
differ only in the link type at the reactive site.

Then, all reactions were used together in order to create a multi-reaction
fragment space. The way reactions and molecules are processed by the algorithm
leads to a dependence on the order of reactions. Reactions are iterated in an
outer loop, while molecules and – previously generated – fragments are iterated
repeatedly for each reaction. In the case of a molecule that has functional groups
for two reactions, linkers are added for the first reaction resulting in a fragment.
This fragment is subject to matching of the second reaction. When the earlier
reaction removed an atom that is relevant for the second reaction, the second
reaction cannot be matched to the fragment. If the order were reversed, this
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fragment may have been matched twice. This is a drawback of the implemented
matching strategy II as described in section 6.2.3. A solution to this problem
is to run the algorithm with all possible reaction orders and merge the resulting
fragments into a unique set; or to apply a possibly modified version of strategy I
(see section 6.2.3). In the following, four reaction orders were used to show the
variability caused by this.

Two strategies regarding assignment of the link types were used. The naive
approach uses different link types for each reaction (reaction-level), the second
the same link types for the same functional groups (functional group-level). The
latter describes a more realistic scenario since functional groups do take part in
different reactions. For example, in the case of all Mitsonobu reactions, one
of the reactants is always a ketone, as described by the following SMARTS:
[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1]. In the first case, a dif-
ferent link type is assigned for each reaction, in the second case, the same link
typ is always assigned, i.e., L17. Applying the different strategies to all reactions,
the resulting fragment space contains 44 link types in the first case and only 34
in the second. More importantly, in the second (functional group-level) case, the
number of fragments is reduced significantly (see Table 8.6). A molecule that
can take part in multiple reactions is represented by a single instance rather than
by multiple copies that are structurally identical but only differ in the link type.
This "reuse" of a fragment is one of the major advantages of a fragment space
since it allows to represent a large amount of molecules in a compact way.

Table 8.6 shows the results from these construction experiments. Each of the
two strategies was applied four times with different input regarding the order
of reactions. The average number of fragments is 201,906 for the reaction-level
strategy and 102,746 for the functional group-level strategy. Applying the more
realistic scenario hence results in a reduction of fragments by almost 50%. The
reduced number of fragments in the case of functional group-level link types shows
that the previous set contained many redundant fragments. This effect increases
with the number of linkers. When comparing the generation of individual reaction
fragment spaces with multiple reaction fragment spaces, it can be seen that the
number of molecules with one linker is identical in the case of reaction-level link
types, i.e., 65,876 (see Tables 8.5 and 8.6). However, the number of fragments
with multiple linkers is significantly higher than the initial 36 and the maximal
number of linkers increases from three to seven. This indicates that many of the
molecules in the input set can be subject to multiple reactions. This behavior
was expected for a library that was designed as building blocks for molecular
synthesis. The reduced number of fragments in the case of functional group-level
link types shows that the previous set contained many redundant fragments. This
effect is increasing with the number of linkers as shown by the percentage in the
last row of Table 8.6.
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Table 8.6: Composition of fragment spaces for all working reactions from the Harten-
feller set [96] as number of fragments. Letters A-H denote that the reaction input was
differently sorted. The percentages in the last row refer to how many molecules from the
reaction-level set are in the functional group-level set. The percentage was computed
from mean values.

Link
Type Order
Set Total No. of linkers

1 2 3 4 5 6 7

re
ac

ti
on

-le
ve

l A 208194 65876 89165 41029 8413 1775 1395 540
B 196382 65876 82148 36911 7890 1721 1325 510
C 196247 65876 83161 36771 7272 1481 1220 465
D 206802 65876 88399 41184 8161 1496 1220 465

Mean 201906 65876 85718 38974 7934 1618 1290 495

fu
nc

ti
on

al
gr

ou
p-

le
ve

l

E 101867 46235 40145 13101 2076 155 108 46
F 104087 46235 41487 13528 2252 264 224 96
G 98970 46235 38246 12245 1931 164 104 44
H 106059 46235 42048 14480 2609 318 256 112

Mean 102746 46235 40482 13339 2217 225 173 75
51% 70% 47% 34% 28% 14% 13% 15%

From the 22 working reactions, several fragment spaces with an average num-
ber of 102,746 molecules were successfully constructed. More than half of these
molecules exhibit more than one linker and many of these may partake in multiple
reactions. Therefore, molecules can be constructed from more than one fragments
in contrast to combinatorial libraries, where only pairwise reactions are modeled.
The fragment spaces constructed here are of great value since they are composed
of building blocks and concrete synthetic reactions. Every molecule retrieved
from this space comes with a list of building blocks and the reactions to connect
them so that the transition to the laboratory is facilitated.

When working with these spaces to construct molecules, several aspects have
to be considered. Depending on the desired search algorithm, it may be required
to reduce the size of the fragment space. For a similarity search with FTrees-FS
[24] or a substructure search [32, 33], this space is feasible, for enumeration it is
not. In section 8.2, several spaces with less than 500 fragments were described
that could not be enumerated. To reduce the size, filtering rules could be applied
to the input, during the construction, or in the fragment space itself. The size of
the fragment space can be influenced by using a smaller input library or a smaller
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Table 8.7: Computing times for the construction of fragment spaces with functional
group-level link types (see Table 8.6).

Order Set Time [hh:mm:ss]

E 00:40:38
F 00:46:44
G 00:51:46
H 00:56:40

number of reactions, e.g., reactions that are often consecutively used in organic
synthesis. In this way, a number of fragment spaces could be constructed, e.g., for
often used synthesis protocols. During construction, an automated filtering step
could be added to sort out fragments with impractical properties. For instance,
fragments with seven linkers may partake in up to seven different reactions, which
is not a manageable number. All these modifications may also be applied on the
fragment space data structure after successful construction. The tool to do this
is Fragment Space Commander and will be introduced next in chapter 9.
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Software and Tools

During the course of this project, a number of tools and NAOMI library func-
tions were implemented to work with fragment spaces and molecules. This in-
cludes several command line tools that provide interfaces to the newly developed
and existing algorithms, i.e., fragment space enumeration (FSees, section 9.2),
fragment space construction based on reactions (section 9.3) and retrosynthetic
fragmentation (section 9.4), fingerprint similarity (section 9.5), as well as the
graphical user interface Fragment Space Commander that enables to interactively
work with fragment spaces (section 9.1). Furthermore, the functionality of the
NAOMI library was extended by a fragment space file format. This chapter cov-
ers the additions made to the NAOMI library and the tools implemented for this
project. A special focus is put on Fragment Space Commander, which represents
one of the major efforts of this project and took up a large part of the software
development time.

9.1 Fragment Space Commander

Software usability is an important aspect for bio- and cheminformatics tools.
Many methods are quite complex and have many parameters. Providing easily
accessible tools with sensible default values is key to the success of a method.
In addition, related methods are not always developed and published together.
However, sometimes it would make sense to use them together. There are work-
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Figure 9.1: Window of Fragment Space Commander with highlighted components. The
Navigation Bar provides a list of available tools shown in Figure 9.2. The Fragment
Space List on the left shows loaded fragment spaces and available fragment sets. The
Tool Area is variable and changes depending on the selected tool. Here, fragments of
the "Drugbank Approved Drugs" fragment space are shown (see section 8.2.5).

flow tools such as Knime17, Pipeline Pilot18, or Orange19 to connect individual
tools that are available as executables and to carry out powerful data analysis.
They are convenient when designing a workflow that is used very often and mod-
ified seldom. However, they are not very convenient for interactive work or to
quickly "try something out". Graphical user interfaces (GUIs) fill this gap and
allow interested users to both quickly evaluate a method and use several related
methods conveniently together. They provide convenient access to cheminformat-
ics algorithms and – at the same time – enable the visualization of parameters,
both input and output. Especially for scientists that are not programmers, ca-
sual users, or reviewers who want to quickly evaluate a method, such a graphical
interface is valuable.

Within the scope of this project a tool for working with fragment spaces was
developed. Fragment Space Commander (FSC) provides access to the newly

17http://www.knime.org
18http://accelrys.com
19http://orange.biolab.si
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developed methods for reaction-based construction and enumeration as well as
previously published fragment space methods that were to date only accessible via
command line tools [24, 31, 32, 34]. It allows to create, edit, and query fragment
spaces in a number of ways. Figure 9.1 shows the FSC window and its components
highlighted. The hierarchy of the different tools and related views is shown in
Figure 9.2. This section features several screenshots of FSC showing different
components of interface. A complete list of all views is shown in Appendix A.1.

For the visualization of fragments and molecules, FSC uses NAOMI function-
ality, which was developed by Matthias Hilbig for use in MONA [63, 66].

Figure 9.2: Hierarchy of the tools and views of Fragment Space Commander.

9.1.1 Creation

To create fragment spaces, the tool provides access to the fragmentation approach
described in section 6.1 as well as the reaction-based approach in section 6.2.
Molecules can be provided as SMILES, mol2, or SDF files.

The fragmentation procedure requires retrosynthetic cut rules to be supplied
as SMARTS pattern [100] and terminal fragments as SMILES strings [113]. If
no terminators are provided, default terminators will be used, i.e., hydrogen for
a single bond, CH2 for double bonds, and CH for triple bonds. Both modified
RECAP and BRICS rules are available as pre-defined sets and can be accessed via
a single click. In addition, a list of SMARTS pattern used to filter out unwanted
fragments can be supplied. This post-filtering is also used by the BRICS method
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[34]. In BRICS, the toxicity filters by Kazius et al. were used. FSC provides
one-click access to two sets of toxicophores (approved and all) [120].

The reaction-based construction method requires a list of SMIRKS [100] each
with a reaction name and the link types associated with both reactants as input.
No other data is required.

Figure 9.3: Fragmentation view of Fragment Space Commander. Three entry fields
are displayed with data for a fragmentation based on BRICS [34], cut rules (top left),
terminators (top right), and filter rules [120] (bottom). Four fragment spaces are open
and shown in the fragment space list.

9.1.2 Modification

Modification of fragment spaces is possible for the first time with a graphical
tool. Before, fragment space files had to be modified by hand. This functionality
allows to create tailored spaces to which search algorithms can be applied more
efficiently since the search space is smaller. Two strategies for filtering fragments
are available: The first is based on molecular properties and it allows the user to
filter fragments according to physicochemical properties, functional groups, and
linker types. Filtered sets can be used to create new fragment spaces. The second
strategy is based on substructure searching and requires a user defined SMARTS
pattern. SmartsFS was developed and published by Ehrlich et al. [32]. The
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algorithm finds all fragments and fragment combinations containing the pattern
and creates a new fragment space from them.

Figure 9.4: Filter tool view of Fragment Space Commander. Four fragment spaces
respective fragment sets are displayed in the fragment space list. The tool area shows
the filter view with the three filters used for the enumeration of the HELL set (see
section 8.2.5).

9.1.3 Search

FSC provides access to two algorithms to retrieve molecules from a given frag-
ment space. This is the enumeration algorithm discussed in section 6.4 and the
FTreesFS similarity search algorithm [24]. The latter requires a query molecule
as input, as well as a similarity cutoff and it deterministically generates a ranked
list of molecules that are similar to a query molecule. Similarity is assessed based
on the feature tree descriptor [58], which represents a molecule as a tree of frag-
ments. It has been developed in the fragment space context and is therefore
tailored to the problem.
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Figure 9.5: Enumeration view of Fragment Space Commander. Four fragment spaces
respective fragment sets are displayed in the fragment space list. The tool area shows
the parameters for an enumeration with drug-like properties based on the Rule of five.

9.1.4 Workflow

Fragment Space Commander unites these methods into a single user interface.
Fragment spaces cannot only be created, but they can also be loaded from Frag-
ment Space Format (FSF) and Fragment Space Database (FSDB) files, as well
as saved to FSDB files (see 9.1.5). Once a fragment space is loaded, the different
methods can be used independently or in an interactive workflow.

An example of a workflow to recreate the enumeration experiment for a DUD-
E target (see 8.2.3) is as follows:

1. Select the Fragmentation View and load the file with known actives.
2. Click on the BRICS button to load the BRICS rules.
3. Click on the all toxicophores button to load the post processing rules.
4. Switch to the Query View and select the Physicochemical Properties Tab.
5. Enter the enumeration constraints from Table B.2 in Appendix B.
6. Click Enumerate and wait until the enumeration finishes20.
7. Switch to the Results View to view the resulting molecules.

20Note that enumerations for some targets may have a very long runtime.
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Figure 9.6: Result view of Fragment Space Commander. Enumeration results for the
enumeration of the DUD-E COMT fragment space with drug-like properties as depicted
in Figure 9.5.

A second example describes the creation of a tailored fragment space and a
similarity search in this space:

1. Click the + button in the Fragment Spaces List View on the left to load a
fragment space.

2. Select the Filter tab in the Edit View.
3. Click any of the filter buttons to add filters as desired.
4. Click Apply Filter.
5. Select the newly created fragment set in the Fragment Spaces List View.
6. Right Click and select New Fragment Space From Set.
7. Select the newly created Fragment Space.
8. Switch to the Query View and select the Similarity Search tab.
9. Enter a SMILES string as query molecule.

10. Click Search and wait until the search has finished.
11. Switch to the Results View tab to view the resulting molecules.
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9.1.5 Fragment Space Storage

In conjunction with the development of Fragment Space Commander a new way
of storing fragment spaces was added. Instead of using the existing text-based
format, for which no writing capabilities exist in the NAOMI library, a new
SQLite based format was developed. It uses database functionality from the
NAOMI library, which was contributed by Therese Inhester and is also used in
MONA [63, 66]. The SQLite based format has the advantage that additional
tables can be added easily, e.g., for storing fragment sets, and the information in
the database can be accessed conveniently, e.g., for filtering of fragments. This
new format is the basis for Fragment Space Commander (FSC).

9.1.6 Fragment Space Format

A fragment space consists of fragments with annotated linkers and connections
rules (see section 3.4). The fragment space file (FSF) format encodes this infor-
mation in a text file (see C.1 for an example). There are four sections: link_types,
fragment_files, link_terminal_groups, and link_compatibility_matrix. link_types
simply lists all valid link names. fragment_files contains a list of fragment files in
either SMILES, Mol2, or SDF format. link_terminal_groups contains a lists of
terminal fragments, one for each link type. This can either be a SMILES string or
a filename. link_compatibility_matrix contains a lists of all compatible pairs of
link types. Both link_terminal_groups and link_compatibility_matrix contain
information about bond distance and angles. This information is an artifact from
the Flex* library and is not required by NAOMI anymore to connect fragments.

The format is text based. The advantage of this is that it can be easily
read and changed by hand, whereas the disadvantage is that this process is quite
error prone, because each section uses a column based format. In addition, no
functionality exists in the NAOMI library to write this format. A revision of this
format was not undertaken.

9.1.7 Fragment Space Database

The Fragment Space Database (FSDB) format is built based on NAOMI func-
tionality. It uses several NAOMI libraries: DBConnection to create and access
databases, MoleculeDB to store fragments; and PropertiesDatabase to annotate
molecules. The latter enables tools to conveniently search fragments for their
properties, e.g., molecular mass, number of linkers, etc. PropertiesDatabase also
provides an interface to add custom properties. This was used to annotate frag-
ments with their link types in order to provide a search in Fragment Space Com-
mander based on link type. In order to store connection rules, terminal fragments,
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and fragment sets, custom classes were implemented. Each class represents a ta-
ble in the SQLite database schema (see Table 9.1 and Figure 9.7). Connection
rules are stored as pairs of compatibility link types and terminators are stored as
SMILES. Fragment sets are used by the Fragment Space Commander as a means
to store fragment IDs. These sets can be generated by filtering fragments based
on properties or by manual selection. The tables related to fragment sets are only
relevant for FSC and are ignored by other applications.

Table 9.1: Mapping between C++ classes and database tables and their origin. An
asterisk ’*’ denotes that the information is stored in several tables.

C++ SQL Origin

MoleculeDatabase MoleculeDB_* NAOMI
PropertyDatabase PropertyDB_* NAOMI
ConnectionRulesDatabaseFragspaceDB_connectionrules new
TerminatorDatabase FragspaceDB_terminators new

FragmentSetDatabase
FragspaceDB_fsetfragments
FragspaceDB_fsetnames

new

Figure 9.7: Database schema for the Fragment Space Database file format. Tables
framed in dark grey were newly implemented, lighter tables are provided by the NAOMI
library. An asterisk ’*’ denotes that the data is stored in several tables and that it is
accessed via the C++ API.
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9.2 FSees
The FSees command line tool implements the FSees algorithm described in sec-
tion 6.4 and [1]. It can be used for long running enumerations on a local computer
or on a cluster where GUI usage is not possible. The program takes two manda-
tory parameters, i.e., a path to a fragment space in FSF or FSDB format and a
path to an output file (SMILES format). Other parameters are optional. This
includes the size of the database cache and Bloom-filter in MB, a list of initial
fragments for the alternative enumeration mode described in section 6.4.8, and
a tolerance value, i.e., the number of properties that are allowed to be outside
their thresholds. Furthermore, individual threshold ranges can be defined for
each property (see Table 6.1). For a complete list of parameters, please refer to
Appendix A.2. Upon execution and depending on the verbosity parameter, the
FSees tool may write status information to cout, like fragment space information
and which fragment is currently processed.

9.3 Fragspace Reaction
This command-line tool implements the algorithm for the construction of frag-
ment spaces based on synthetic reactions as described in section 9.3. The pro-
gram does not require any operational parameters, but several filenames for in-
and output. As input, it requires a list of molecules (in SMILES, Mol2, or SDF
format) and a list of reactions (as SMIRKS [100]). The only mandatory output
parameter is a filename for the resulting fragment space, which will be written
in FSDB format. Optional output includes a list of linker names with the corre-
sponding reaction and a list of plain fragments in the NAOMI-supported molecule
file formats.

9.4 Molecule Shredder
The molecule_shredder command-line tool provides access to the BRICS
fragmentation strategy described in section 6.1 [34]. There are three types of
parameters, i.e., input, output, and optional post-processing filters. Mandatory
parameters are a path to a molecule file, a list of cut rules as SMARTS pattern,
and a path to an output file. The output can be a list of fragments (in SMILES,
Mol2, or SDF format) or a fragment space file (FSDB), or both. An optional input
parameter is a list of terminators to be used in fragment space construction. The
two post processing options are a flag to trigger the removal of large fragments
(see section 7.2.1 ) and a list of exclusion rules in SMARTS pattern notation.
During processing and depending on the verbosity parameter, the tool may write
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status information to cout. This is for instance the ID of the molecule being
currently processed and the number of molecules that were not fragmented. For
a complete list of parameters, please refer to Appendix A.4.

9.5 Fingerprint Similarity Tool

The fingerprint-similarity tool is a command line tool that was used for analysis
of the enumeration results. Since computing molecule similarity is an every-day
task in drug development, this tool may be useful in a number of projects. It
requires two files with molecules, a fingerprint identifier, a similarity measure, and
the processing mode as input. Fingerprint identifiers describe which fingerprint
should be generated and, in the case of ECFP and FCFP, also the maximal
bond diameter (see section 5.1.1), e.g., ECFP_2, ECFP_4, ECFP_6, etc. The
similarity measure is either one of Tanimoto, Cosine, Hamming, Euclidian, or Dice
(see section 5.2.1). Molecules are compared in a pairwise fashion. A molecule
from the first file is compared to all molecules from the second file. The processing
mode determines which value is written to the output:

all All similarity values with a similarity greater than a user specified cutoff are
generated. The cutoff value is specified via the –cutoff parameter.

best Only the highest similarity value for a given molecule of the first set and
all molecules of the second set are output. The –cutoff parameter has no
effect in this case.

If no file is given as output parameter, similarity values are written to cout. The
fingerprint tool uses the Intel Threading Building Blocks library21 for paralleliza-
tion. An optional parameter is therefore the number of threads; a single thread
is used per default. A complete list of command line parameters can be found in
Appendix A.5.

9.6 Other Tools

This section lists a few command line tools that were developed during this project
and became part of the NAOMI repository. The fragment space tools were devel-
oped for convenience and are not directly relevant to the experiments presented
here. The PMI (principle moment of inertia) tool was developed while evaluating
different methods for the characterization of large sets of molecules, although, it
was not used in the end.

21https://www.threadingbuildingblocks.org
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fragspace_converter converts a FSF formatted fragment space file into FSDB.

fragspace_creator creates a fragment space file from a list of fragments, con-
nection rules, and terminators.

fragspace_info prints information about a given fragment space in FSF or
FSDB format.

molecule_calc_pmi calculates normalized PMI ratios (NPR) for a list of mol-
ecules. The principle moment of inertia (PMI) can be used to characterize
the shape of a molecule [137]. It either uses the 3D coordinates from a file or
generates coordinates. In the latter case, two methods are offered: A sim-
ple NAOMI procedure that generates a clash free initial conformation and
a more elaborate method for generating conformational ensembles [138].
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Conclusion and Outlook

In this thesis, two new algorithms and a graphical user interface were developed
based on fragment spaces as a representation of combinatorial chemical space.
One of the algorithms was implemented as a proof-of-concept and represents a
completely novel method for generating fragment spaces in a fully-automated
fashion by applying synthetic chemical reactions to a set of input molecules. The
other algorithm represents a deterministic and exhaustive enumeration strategy
for molecules with a user-defined physicochemical profile, implemented with con-
stant main memory consumption to allow enumeration of large chemical spaces.
The graphical user interface, Fragment Space Commander, enables the user to
conveniently work with fragment spaces by creating, modifying, and searching
them. All three parts were implemented based on the fragment space implemen-
tation of the NAOMI cheminformatics library [24, 59]. It was shown how these
tools can be of use in rational drug design and aid the development of new mol-
ecules with desirable physicochemical properties. In the following, each tool is
summarized and improvements are discussed.

In addition to the three main research subjects, several smaller components
and tools were developed in order to facilitate the work done in this project. Con-
sequently, they became part of the NAOMI source code repository. This includes
the implementation of an existing algorithm for retrosynthetic fragmentation of
molecules [34] that was used for data generation, several fingerprint methods [111,
119] and similarity measures [117] that were used to analyze enumerated libraries,
as well as additional helper tools.
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10.1 Enumerator

The goal of this project was to develop an algorithm for the enumeration of mol-
ecules with user-defined physicochemical properties from fragment spaces. This
is challenging due to handling of redundancy and the fact that such a chemical
space can describe a virtually infinite number of molecules. The FSees algorithm
was newly implemented utilizing the molecule model of NAOMI [59] and designed
to overcome the limitations of a previous prototype algorithm based on the Flex*
library [29]. This ability to enumerate large chemical space is accomplished by
using file-based data structures instead of main memory. Furthermore, efficient
strategies to avoid and detect redundant molecules were developed. For the for-
mer, symmetry in fragments was considered for the first time, for the latter, an
efficient database with a Bloom-filter was used to keep track of duplicates.

In three experiments, a total of 105 fragment spaces were generated by frag-
mentation [34] and enumerated with different sets of constraints (section 8.2).
The first experiment was a large scale enumeration of fragment spaces generated
from 102 inhibitor classes (section 8.2.3). The enumerated molecules and a gen-
eral purpose screening library were compared to known active molecules regarding
their similarity. It could be observed that the enumerated molecules contain a
higher ratio of closely related molecules than the general purpose library and
are therefore a source of promising lead structures. In the second experiment,
an alternative enumeration mode was applied in two cases (section 8.2.4). Both
were modeled after a typical fragment-based design problem and demonstrate
the usefulness of the algorithm in this context. For the last experiment, a very
large fragment space was built from approved drug-molecules first (section 8.2.5).
Then, this space was enumerated with lead-like properties generating a library of
0.5 billion molecules named Hamburg enumerated lead-like set [1]. This library
contains mostly novel compounds and therefore represents an interesting source
for lead discovery projects.

Validation of enumerated molecules was done purely based on molecular sim-
ilarity. In order to asses the quality of the results better, the next logical step –
with respect to the (virtual) drug discovery pipeline – would be to subject them
to virtual screening. This was unfortunately not within the scope of this thesis
(see introduction of chapter 5).

As demonstrated by the experiments, the algorithm works well in the dis-
cussed scenarios and is able to enumerate very large spaces. The largest single
enumeration, i.e., DUD-E VGFR2, yielded 113,625,393 molecules and took 82.3
hours. Yet, there are aspects of the algorithm that could be improved. In the
following, it is distinguished between conceptual and technical improvements.
The former, which describes changes to the logic of the algorithm, are discussed
first. A first improvement is the handling of symmetry in more complex cases,
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i.e., fragments with more than three linkers and the detection of symmetry in
intermediate products (see Figure 6.11). Furthermore, the repertoire of enumer-
ation strategies as described in section 6.4.8 could be extended: For instance, a
fragment could be limited to occur in a molecule only up to a defined number of
times or a fragment cannot be connected to itself (see ENUM299192 in Figure
8.13 c). Technical improvements concern the implementation and are equivalent
to performance improvements. Currently, one of the bottlenecks is the process-
ing power of a CPU core because a single thread is used for all computations. A
sensible strategy to increase the rate of molecule generation is to use threading.
In this case, it must be ensured that the database is always current because it is
used for redundancy checking. The second bottleneck is database performance.
Because the only task of the database is to efficiently determine whether an object
is present or not, a relational model as provided by SQLite is not required and
provides a certain amount of computational overhead. A simple key-value store
or some other type of NoSQL database may be better suited for this use case.

10.2 Reaction-based Fragment Spaces

The generation of fragment spaces from reactions and synthetically available mol-
ecules represents an attractive approach for rational drug design as it eventually
results in molecules that are likely to be synthesizable in the laboratory. Previous
methods were either based on retrosynthetic fragmentation [34] or used reaction
information indirectly by combining combinatorial chemistry libraries (CoLibri
[106]). The goal of this project was to automize the matching and annotation
process in order to conveniently and quickly generate custom fragment spaces
from building block libraries. By constructing a fragment space, the reaction in-
formation need only to be used once rather than every time the tool is executed,
like in other methods [20, 21, 99]. Furthermore, fragment spaces can be used
by a variety of methods [24, 25, 27, 29, 31, 32]. In a validation experiment, it
was shown how fragment spaces representing combinatorial libraries can be con-
structed and how the same input can be used to construct a combined fragment
space representing 22 different reactions.

The algorithm was implemented as a proof-of-concept and is limited to rel-
atively simple organic reactions. Naturally, there is much room to improve
this implementation. First, the reaction matching based on SMIRKS should be
made more robust to overcome the limitations discussed in section 8.3, i.e., bond
changes are only considered at the connecting atom. Second, custom terminators
should be used that are built from atoms or concrete functional groups that are
split off during a reaction. Since this is not considered at the time, default termi-
nators are used, hence a fragment may be terminated with a different fragment

Chapter 10. Conclusion and Outlook



130 10.3. Fragment Space Commander

as the initial one. This may result in molecules with missing groups. Third, a
strategy for the automatic assignment of link types should be added. Currently,
link types are a required user-defined input that is read from the same file as
reactions. Fourth, the tool could be parallelized using threading. This could
be realized easily by incorporating the Intel Threading Building Blocks library22

– as used in other tools (see chapter 9) – because molecules can be processed
independently.

The biggest challenge is the inclusion of ring forming reactions. 50% of the
reactions published by Hartenfeller et al. are ring forming reactions [96] and can
currently not be considered. During a simple reaction, only one bond is formed
when two fragments are connected. In the case of ring formation, at least two new
bonds are usually formed (see Figure 10.1 a and b). In order to model this, pairs
of linkers must be dependent in the fragment space compatibility description.
This would require a significant change to the fragment space data structure to
accommodate complex compatibility definitions and the adjustment of existing
algorithms, which usually utilize a tree data structure to model molecules [24,
25, 27, 29, 31, 32]. However, ring forming reactions can be modeled differently.
Instead of connecting fragments via two linker pairs, the ring resulting from the
reaction is stored as a ring fragment. Linkers are added to the ring fragment at
the position where it connects to the rest of the initial fragment, i.e., the part
that is not involved in the reaction. In other words, all atoms that are involved
in the reaction are cleaved off and the fragment is annotated with a linker only
compatible to the ring fragment. An example is shown in Figure 10.1: Instead of
adding multiple linkers to the reactive atoms in the reactants (see left side of the
reaction equation in a and b), an additional fragment is introduced (c, middle)
that serves as a linking fragment. This strategy would require no changes to
existing algorithms, nor the fragment space data structure, but requires some
more advanced construction algorithm.

10.3 Fragment Space Commander
Graphical user interfaces represent a convenient way to access scientific software
and provide interested parties without computational background with an easy
to understand interface. Fragment Space Commander (FSC) is a graphical user
interface to visualize, create, modify, and query fragment spaces utilizing various
methods, which was developed within the scope of this thesis. It provides access
to the fragment space framework that is part of the NAOMI library and enables
the user to interactively work with fragment spaces in a single program for the first
time. Fragment spaces can be created by shredding of molecules or by applying

22 https://www.threadingbuildingblocks.org
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Figure 10.1: Example for a ring forming reaction, i.e., synthesis of oxadiazole according
to Hartenfeller et al. [96]. a) Depiction of the atoms involved in the reaction except that
another nitrogen is added, which is not accounted for on the reactant side. The reaction
has been simplified for computational processing, as discussed in 6.2.1. b) Example
reaction with molecules from the ChemBridge Building Blocks (see section 7.1.6). c)
Fragments necessary to model this reaction in a fragment space. The fragment in the
middle is introduced as a linking fragment, connecting the two reactive molecules.

synthetic reactions to molecules. After creating a fragment space or loading it
from a file, its content (fragments and connection rules) is visualized and can be
edited by applying various filters. Aside from providing access to the constraint-
based enumeration algorithm, query-based search methods – similarity [24] and
substructure searching [32, 33] – can be accessed as well. Once result molecules
are available, they can be browsed directly in FSC and saved to a file.

In order to improve FSC, the data entry process could be enhanced. Cur-
rently, cut rules and reactions must be pasted into several fields as SMARTS
and SMIRKS, respectively. A wizard based system that visualizes – and possibly
allows to edit – cut rules and reactions would be much more convenient. Another
improvement could be the addition of a task manager and progress bar showing
how far along the respective processes are. In this context, it would be interest-
ing to implement a client-server design as used by Molpher [139]. Since several
computations take more than a few seconds to compute, it might be desirable
to transfer the heavy processing to a dedicated computer with more processors
and memory. FSC could also be integrated with existing tools from the NAOMI
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framework, such as MONA [63, 66] or SMARTSEditor [140]. For example, it
would be possible to store generated molecules directly in a MONA database
file instead of SMILES, Mol2 or SDF files from where they have to be read and
processed again.

10.3.1 Storing Fragment Spaces

The FSDB format was designed in the FSC context to replace the outdated and
error-prone FSF format and allow for interactive filtering of fragments. It does
have several advantages as discussed in section 9.1.5, but towards the end of the
project, it became apparent that it is not ideal for exchanging information. It
provides the basis for Fragment Space Commander and as such could be developed
further, for example, to store multiple fragment spaces so that only one database
instance is required. However, in order to modify or even merely view the raw
data in an FSDB file, a SQLite client and basic knowledge about SQL is required,
which may not be ideal for many users. To reliably store the information of a
fragment space, a human-readable, text-based format such as XML is much more
convenient. This would allow to make simple modifications to fragment spaces if
manual adjustments were necessary.
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Tools

A.1 Fragment Space Commander

Figure A.1: Fragment Space Commander windows after startup.
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Figure A.2: View mode of Fragment Space Commander with selected fragment view.

Figure A.3: View mode of Fragment Space Commander with selected connection rule
view.
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Figure A.4: View mode of Fragment Space Commander with selected terminator view.

Figure A.5: Fragmentation view of Fragment Space Commander.
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Figure A.6: Reaction-based construction view of Fragment Space Commander.

Figure A.7: Edit mode of Fragment Space Commander with selected filter view.
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Figure A.8: Search mode of Fragment Space Commander with selected similarity search
view.

Figure A.9: Search mode of Fragment Space Commander with selected enumeration
view.
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Figure A.10: Results view of Fragment Space Commander showing molecules from a
similarity search.
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A.2 FSees

======================================================================
Fragment Space Exhaustive Enumeration System

======================================================================

This tool enumerates all molecules of a given Fragment Space according
to the connection rules of the space and constraints provided by the
user as command line parameters.

General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3 =
Info)

Input/Output parameters:
-i [ --input ] arg Input Fragment Space (*.fsf or *.fsdb)
-o [ --output ] arg File for generated molecules in SMILES format
-m [ --memory ] arg (=1024) Total amount of memory in MB for database

cache. Default: 1024
-f [ --filter ] arg (=1024) Total amount of memory in MB for Bloom filter.

Default: 1024
-t [ --tolerance ] arg (=0) Number of properties that may not be

fulfilled. Default: 0
Number of fragments is never excluded.

-c [ --initialFragments ] arg Comma seperated list of fragment ids.
Corresponding fragments are used as starting
points for the enumeration. Default: None

Properties of generated molecules as ranges (e.g. 1.2:5.6, 2:, :5.4):
--nofFragments arg (=:5) Number of Fragments
--nofAtoms arg Number of Atoms
--molWeight arg Molecular Weight
--nofNonHydrogenAtoms arg Number of Non-Hydrogen Atoms
--nofNonHydrogenBonds arg Number of Non-Hydrogen Bonds
--nofRings arg Number of Rings
--nofHBondAcceptors arg Number of H-bond Acceptors
--nofLipinskiAcceptors arg Number of H-bond Acceptors as defined in the

Lipinski rule-of-5
--nofHBondDonors arg Number of H-bond Donors
--nofLipinskiDonors arg Number of H-bond Donors as defined in the

Lipinski rule-of-5
--volume arg Volume
--nofRotatableBonds arg Number of Rotatable Bonds
--nofStereoCenters arg Number of Stereo Centers
--logP arg Calculated logP
--tpsa arg Topological Polar Surface Area
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Example - Lipinski’s rule of five
fragspace_enumerator -i FRAGSPACE.fsf -o output.smi --molWeight :500 \
--nofHBondAcceptors :10 --nofHBondDonors :5 --logP :5.0 -t 1

A.3 fragspace_reaction
======================================================================

Reaction-based Fragment Space Creator
======================================================================

This tool creates a fragment space based on synthetic reactions and
a list of molecules.

Available options:

General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3 = Info)

Input options:
-m [ --molecules ] arg List of molecules (suffix is required)
-r [ --reactions ] arg List of reactions as SMIRKS

Output options:
-o [ --output ] arg fragment space output file as SQLite database

e.g., *.db, *.fsdb
-l [ --linker ] arg linker names and corresponding reaction

e.g. *.txt, *.tab
-f [ --fragments ] arg list of fragments

A.4 molecule_shredder
======================================================================

ReiSSwolf - A Molecule Shredder
======================================================================

This tool shreds a set of molecules into a list of fragments according
to user specified cut rules. It then generates a fragment space from
these fragments deriving connection rules from the cut rules.

Supported file formats for -m and -f options:

*.mol *.mol2 *.pdb *.sdf *.smi *.smiles

Available options:
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General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3
= Info)

Input options:
-m [ --molecules ] arg Input Molecule file (suffix is

required)
-c [ --cutRules ] arg Input cut rules as SMARTS pattern

(*.sma)
-t [ --terminators ] arg Terminators file (suffix is required)

Output options (at least one option is required):
-o [ --output ] arg fragment space output file as SQLite

database
e.g., *.db, *.fsdb

-f [ --fragments ] arg fragments-only output file (suffix is
required)

Filter options:
-r [ --removeLargeFrags ] [=arg(=1)] remove fragments with heavy atoms > 16

or ring size > 8
-p [ --post ] arg post-processing rules as SMARTS pattern

(*.sma)

A.5 molecule_fingerprints
======================================================================

Fingerprint Tool
======================================================================

Calculates pairwise similarities between two sets of molecules.
Fingerprint Type and Similarity measure can be choosen by user.

General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3 = Info)
-j [ --jobs ] arg (=1) Number of threads to use (0 = auto, 1 = single

[default]), e.g.: -j 4

Input/Output parameters:
-m [ --molecules ] arg Molecule Sets (*.smi, *.mol2, *.sdf), e.g.: -m

file1 file2
-o [ --output ] arg Similarity Values

Fingerprint parameters:
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-d [ --mode ] arg Mode: all, best [default]
all: all pairwise similarities above cutoff (see
--cutoff)
best: only the highest value of similarity between
m_x in set X and all m_y of set Y
(--cutoff is ignored)

-c [ --cutoff ] arg Cutoff for similarity, only values above cutoff
will be saved.
Does not apply for mode best.

-f [ --fingerprint ] arg Fingerprint type: TT, ECFP_<0,2,4,6,8,10>,
FCFP_<0,2,4,6,8,10>

-s [ --similarity ] arg Similarity measure: Tanimoto, Cosine, Hamming,
Euclidian, Dice

Example:
Tanimoto Similarity of ECFP_4 fingerprints
fingerprints -m set1.smi set2.smi -f ECFP_4 -s Tanimoto

A.6 Other Tools

A.6.1 fragspace_converter
Available options:

General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3 = Info)

Input options:
-i [ --input ] arg Input file(s), suffix *.fsf is required.

Output options:
-o [ --output ] arg Output file, suffix *.fsdb is required.

A.6.2 fragspace_creator
======================================================================

Fragment Space Creator
======================================================================

This tool creates a fragment space file from a list of fragments,
connections rules, and terminators.

Available options:
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General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3 = Info)

Input options:
-f [ --fragments ] arg fragments file (suffix is required)
-c [ --cutRules ] arg Input cut rules as SMARTS pattern (*.sma)
-t [ --terminators ] arg Terminators file (suffix is required)

Output options:
-o [ --output ] arg fragment space output file as SQLite database

e.g., *.db, *.fsdb

A.6.3 fragspace_info
======================================================================

Fragment Space Info Tool
======================================================================

This tool prints information about a given Fragment Space.

General options:
-h [ --help ] Prints help message

Input/Output parameters:
-i [ --input ] arg Input Fragment Space (*.fsf or *.fsdb)

A.6.4 molecule_calc_pmi
======================================================================

Calculate Normalized PMI Ratios (NPR) for a list of molecules.
======================================================================

This calculates the principle moments of inertia for a list of
molecules and therefrom the NPR values. If 3D Coordinates are not
supplied, coordinates are generated although this might not be the
lowest energy conformation.

Valid file types are: *.mol *.mol2 *.sdf *.smi *.smiles

Input options:
-i [ --molecules ] arg Input Molecule file (suffix is required)
-m [ --mode ] arg (=1) Mode: (1) Use coordinates from file (default), (2)

generate simple coordinates, (3) use ensemble from
conformation generator

-j [ --jobs ] arg (=1) Number of threads to use (0 = auto, 1 = single
[default]), e.g.: -j 4
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General options:
-h [ --help ] Prints help message
-v [ --verbosity ] arg Set verbosity level

(0 = Quiet, 1 = Errors, 2 = Warnings, 3 = Info)
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B
Additional Experimental Results

B.1 ECFP Validation
The NAOMI-ECFP implementation was validated based on the reference imple-
mentation in Pipeline Pilot23. Molecules from two classes of the DUD-E dataset
[129] were used: FAK1 and AKT2 with 100 and 117 molecules respectively. For
each class, an all-by-all similarity comparison of ECFP_6 was carried out using
Tanimoto similarity. The results of Pipeline Pilot [141, 142] and NAOMI are com-
pared in Figure B.1. The correlation is very good. Small deviations arise from
the differences in the underlying molecule models, i.e., how certain properties are
assigned to atoms. Unfortunately, this is not consistent across cheminformatics
frameworks. For instance, many file formats do not include hydrogens so that
these must be added on initialization of a molecule instance. Depending on the
automatic assignment this may lead to different protonation states and charges of
a certain atom. Since ECFP values in this project were all created with NAOMI
and only compared amongst themselves this has no effect on the results presented.

23http://accelrys.com
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Figure B.1: Scatterplots of similarity values computed with Pipeline Pilot and NAOMI
based on ECFP_6 and Tanimoto coefficient. For each DUD-E class, an all-by-all com-
parison of the molecules was carried out.

B.2 DUDE Enumeration

Table B.1: List of DUD-E Targets

Target Name PDB Molecules Description

AA2AR 3eml 482 Adenosine A2a receptor
ABL1 2hzi 182 Tyrosine-protein kinase ABL
ACE 3bkl 282 Angiotensin-converting enzyme
ACES 1e66 453 Acetylcholinesterase
ADA 2e1w 93 Adenosine deaminase
ADA17 2oi0 532 ADAM17
ADRB1 2vt4 247 Beta-1 adrenergic receptor
ADRB2 3ny8 231 Beta-2 adrenergic receptor
AKT1 3cqw 293 Serine/threonine-protein kinase AKT
AKT2 3d0e 117 Serine/threonine-protein kinase AKT2
ALDR 2hv5 159 Aldose reductase
AMPC 1l2s 48 Beta-lactamase
ANDR 2am9 269 Androgen Receptor
AOFB 1s3b 122 Monoamine oxidase B
BACE1 3l5d 283 Beta-secretase 1
BRAF 3d4q 152 Serine/threonine-protein kinase B-raf
CAH2 1bcd 492 Carbonic anhydrase II
CASP3 2cnk 199 Caspase-3
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CDK2 1h00 474 Cyclin-dependent kinase 2
COMT 3bwm 41 Catechol O-methyltransferase
CP2C9 1r9o 120 Cytochrome P450 2C9
CP3A4 3nxu 170 Cytochrome P450 3A4
CSF1R 3krj 166 Macrophage colony stimulating factor receptor
CXCR4 3odu 40 C-X-C chemokine receptor type 4
DEF 1lru 102 Peptide deformylase
DHI1 3frj 387 11-beta-hydroxysteroid dehydrogenase 1
DPP4 2i78 533 Dipeptidyl peptidase IV
DRD3 3pbl 480 Dopamine D3 receptor
DYR 3nxo 231 Dihydrofolate reductase
EGFR 2rgp 542 Epidermal growth factor receptor erbB1
ESR1 1sj0 383 Estrogen receptor alpha
ESR2 2fsz 367 Estrogen receptor beta
FA10 3kl6 537 Coagulation factor X
FA7 1w7x 114 Coagulation factor VII
FABP4 2nnq 47 Fatty acid binding protein adipocyte
FAK1 3bz3 100 Focal adhesion kinase 1
FGFR1 3c4f 139 Fibroblast growth factor receptor 1
FKB1A 1j4h 111 FK506-binding protein 1A
FNTA 3e37 592 Protein farnesyltransferase/geranylgeranyltransferase

type I alpha subunit
FPPS 1zw5 85 Farnesyl diphosphate synthase
GCR 3bqd 258 Glucocorticoid receptor
GLCM 2v3f 54 Beta-glucocerebrosidase
GRIA2 3kgc 158 Glutamate receptor ionotropic, AMPA 2
GRIK1 1vso 101 Glutamate receptor ionotropic kainate 1
HDAC2 3max 185 Histone deacetylase 2
HDAC8 3f07 170 Histone deacetylase 8
HIVINT 3nf7 100 Human immunodeficiency virus type 1 integrase
HIVPR 1xl2 536 Human immunodeficiency virus type 1 protease
HIVRT 3lan 338 Human immunodeficiency virus type 1 reverse tran-

scriptase
HMDH 3ccw 170 HMG-CoA reductase
HS90A 1uyg 88 Heat shock protein HSP 90-alpha
HXK4 3f9m 92 Hexokinase type IV
IGF1R 2oj9 148 Insulin-like growth factor I receptor
INHA 2h7l 44 Enoyl-[acyl-carrier-protein] reductase
ITAL 2ica 138 Leukocyte adhesion glycoprotein LFA-1 alpha
JAK2 3lpb 130 Tyrosine-protein kinase JAK2
KIF11 3cjo 116 Kinesin-like protein 1
KIT 3g0e 166 Stem cell growth factor receptor
KITH 2b8t 57 Thymidine kinase
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KPCB 2i0e 135 Protein kinase C beta
LCK 2of2 420 Tyrosine-protein kinase LCK
LKHA4 3chp 171 Leukotriene A4 hydrolase
MAPK2 3m2w 101 MAP kinase-activated protein kinase 2
MCR 2aa2 94 Mineralocorticoid receptor
MET 3lq8 166 Hepatocyte growth factor receptor
MK01 2ojg 79 MAP kinase ERK2
MK10 2zdt 104 c-Jun N-terminal kinase 3
MK14 2qd9 578 MAP kinase p38 alpha
MMP13 830c 572 Matrix metalloproteinase 13
MP2K1 3eqh 121 Dual specificity mitogen-activated protein kinase ki-

nase 1
NOS1 1qw6 100 Nitric-oxide synthase, brain
NRAM 1b9v 98 Neuraminidase
PA2GA 1kvo 99 Phospholipase A2 group IIA
PARP1 3l3m 508 Poly [ADP-ribose] polymerase-1
PDE5A 1udt 398 Phosphodiesterase 5A
PGH1 2oyu 195 Cyclooxygenase-1
PGH2 3ln1 435 Cyclooxygenase-2
PLK1 2owb 107 Serine/threonine-protein kinase PLK1
PNPH 3bgs 103 Purine nucleoside phosphorylase
PPARA 2p54 373 Peroxisome proliferator-activated receptor alpha
PPARD 2znp 240 Peroxisome proliferator-activated receptor delta
PPARG 2gtk 484 Peroxisome proliferator-activated receptor gamma
PRGR 3kba 293 Progesterone receptor
PTN1 2azr 130 Protein-tyrosine phosphatase 1B
PUR2 1njs 50 GAR transformylase
PYGM 1c8k 77 Muscle glycogen phosphorylase
PYRD 1d3g 111 Dihydroorotate dehydrogenase
RENI 3g6z 104 Renin
ROCK1 2etr 100 Rho-associated protein kinase 1
RXRA 1mv9 131 Retinoid X receptor alpha
SAHH 1li4 63 Adenosylhomocysteinase
SRC 3el8 524 Tyrosine-protein kinase SRC
TGFR1 3hmm 133 TGF-beta receptor type I
THB 1q4x 103 Thyroid hormone receptor beta-1
THRB 1ype 461 Thrombin
TRY1 2ayw 449 Trypsin I
TRYB1 2zec 148 Tryptase beta-1
TYSY 1syn 109 Thymidylate synthase
UROK 1sqt 162 Urokinase-type plasminogen activator
VGFR2 2p2i 409 Vascular endothelial growth factor receptor 2
WEE1 3biz 102 Serine/threonine-protein kinase WEE1

Appendix B. Additional Experimental Results



B.2. DUDE Enumeration 161

XIAP 3hl5 100 Inhibitor of apoptosis protein 3

Table B.2: Physicochemical constraints used for individual DUD-E enumerations. The
values represent the upper and lower quartile of the property distribution for each
property.

Target Molecular Weight logP Donors Acceptors

AA2AR 343 – 448 7 – 10 2 – 3 1.66 – 3.38
ABL1 399 – 526 6 – 8 1 – 3 4.11 – 5.67
ACE 365 – 457 6 – 8 2 – 3 1.88 – 3.39
ACES 379 – 515 4 – 6 0 – 2 3.94 – 6.35
ADA 275 – 369 6 – 7 2 – 3 1.88 – 3.13
ADA17 431 – 519 7 – 10 2 – 3 2.21 – 3.75
ADRB1 375 – 499 5 – 7 3 – 4 2.78 – 4.57
ADRB2 363 – 512 5 – 8 2 – 4 2.82 – 4.68
AKT1 398 – 508 5 – 8 2 – 4 3.72 – 5.4
AKT2 390 – 529 6 – 9 2 – 4 2.49 – 5.62
ALDR 306 – 394 5 – 7 1 – 2 2 – 3.65
AMPC 237 – 346 5 – 7 1 – 2 0.48 – 3.11
ANDR 310 – 417 3 – 5 0 – 1 3.19 – 4.92
AOFB 235 – 330 3 – 5 0 – 1 2.33 – 3.87
BACE1 479 – 566 6 – 8 3 – 4 3.41 – 5.36
BRAF 374 – 519 6 – 8 1 – 3 3.95 – 5.82
CAH2 333 – 478 6 – 10 2 – 4 1.09 – 3.09
CASP3 411 – 527 8 – 10.5 0 – 3 1.44 – 3.36
CDK2 338 – 442 6 – 8 2 – 4 2.69 – 4.2
COMT 231 – 346 6 – 8 2 – 3 1.21 – 3.19
CP2C9 356 – 522 4 – 7 1 – 2 3.68 – 5.97
CP3A4 386 – 534 5 – 8 1 – 2 3.74 – 5.13
CSF1R 386 – 483 6 – 9 1 – 3 3.32 – 4.99
CXCR4 357 – 421 4 – 5 1 – 3 3.34 – 4.72
DEF 336 – 418 6 – 7 2 – 3 1.85 – 3.31
DHI1 326 – 442 4 – 6 0 – 1 3.29 – 4.82
DPP4 338 – 421 5 – 7 2 – 2 1.19 – 2.99
DRD3 365 – 465 4 – 6 0 – 1 3.62 – 5.05
DYR 328 – 447 6 – 10 4 – 7 1.63 – 3.37
EGFR 376 – 496 6 – 8 1 – 3 3.67 – 5.15
ESR1 331 – 482 3 – 5 1 – 2 4.44 – 6.14
ESR2 314 – 476 3 – 5 1 – 2 4.06 – 6.04
FA10 479 – 548 7 – 9 2 – 5 3.09 – 4.95
FA7 430 – 529 7 – 9 4.25 – 7 2.94 – 5.41
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FABP4 318 – 447 3 – 5 1 – 1.5 4.28 – 6.58
FAK1 400 – 477 7 – 9 1 – 3 3.48 – 4.26
FGFR1 390 – 511 6 – 9 2 – 3 3.09 – 5.13
FKB1A 386 – 485 5 – 7 0 – 0 3.24 – 4.76
FNTA 445 – 525 6 – 7 0 – 2 4.16 – 5.59
FPPS 268 – 309 7 – 8 5 – 5 0.02 – 0.99
GCR 392 – 489 3 – 5 1 – 2 4.62 – 6.46
GLCM 288 – 395 5 – 8 3 – 5 – 0.28 – 2.71
GRIA2 293 – 422 6 – 10 2 – 4 0.92 – 3
GRIK1 249 – 342 5 – 9 2 – 4 – 0.49 – 1.84
HDAC2 326 – 442 5 – 8 2 – 3 2.66 – 4.27
HDAC8 324 – 425 5 – 7 2 – 3 2.47 – 4.23
HIVINT 336 – 443 6 – 9 2 – 4 1.69 – 3.37
HIVPR 487 – 576 6 – 9 2 – 4 3.86 – 5.87
HIVRT 314 – 391 4 – 6 1 – 2 3.14 – 4.35
HMDH 429 – 521 5 – 8 1 – 3 4.32 – 5.46
HS90A 371 – 467 6 – 8 2 – 4 3.2 – 4.18
HXK4 369 – 465 6 – 8 1 – 2 4.09 – 4.98
IGF1R 459 – 537 7 – 9 2 – 4 3.58 – 5.54
INHA 294 – 380 3 – 4 1 – 2 4.33 – 5.24
ITAL 491 – 562 5 – 7 0 – 1 4.47 – 6.34
JAK2 347 – 464 7 – 8 1 – 2 2.96 – 4.42
KIF11 361 – 455 4 – 6 0 – 3 3.62 – 4.62
KIT 400 – 497 6 – 9 2 – 4 3.88 – 5.23
KITH 343 – 496 7 – 9 3 – 3 1.13 – 2.76
KPCB 406 – 512 6 – 8 1 – 3 3.21 – 4.52
LCK 401 – 520 6 – 9 2 – 3 3.98 – 5.54
LKHA4 313 – 440 3 – 7 0 – 2 3.43 – 4.92
MAPK2 320 – 434 5 – 7 2 – 4 2.42 – 4.09
MCR 379 – 438 4 – 6 1 – 2 4.24 – 5.52
MET 427 – 528 7 – 9 1 – 2 3.57 – 5.68
MK01 374 – 475 6 – 7 3 – 4 3.66 – 4.93
MK10 367 – 441 6 – 7 1 – 3 3.18 – 4.74
MK14 386 – 502 5 – 8 1 – 3 4.03 – 5.69
MMP13 430 – 516 7 – 10 2 – 3 2.25 – 4.26
MP2K1 383 – 510 5 – 8 1 – 4 3.75 – 5.61
NOS1 207 – 370 3 – 5 2 – 3 1.81 – 3.89
NRAM 308 – 366 6 – 8 4 – 6 – 0.13 – 1.06
PA2GA 400 – 491 6 – 7 1.5 – 3 2.98 – 4.58
PARP1 298 – 421 5 – 7 1 – 3 1.78 – 3.27
PDE5A 404 – 497 6 – 10 1 – 1 2.8 – 4.45
PGH1 300 – 375 3 – 5 0 – 2 3.67 – 5.11
PGH2 331 – 415 3 – 5 0 – 2 3.9 – 5.23
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PLK1 410 – 510 6 – 8 2 – 3 3.5 – 5.66
PNPH 246 – 292 5 – 8 4 – 5 0.01 – 1.86
PPARA 438 – 511 5 – 7 1 – 1 5.09 – 6.49
PPARD 440 – 522 5 – 6 1 – 1 5.47 – 6.68
PPARG 426 – 507 5 – 7 1 – 1 4.93 – 6.5
PRGR 310 – 420 3 – 4 0 – 1 4.26 – 6.02
PTN1 439 – 557 5 – 8 1 – 3 3.84 – 6.84
PUR2 449 – 478 11 – 11 7 – 8 1.03 – 1.62
PYGM 364 – 462 6 – 8 2 – 3 3.06 – 4.58
PYRD 355 – 414 4 – 5 1 – 2 4.12 – 5.64
RENI 496 – 577 6 – 9 1 – 5 3.04 – 5.64
ROCK1 311 – 390 5 – 8 2 – 3 2.06 – 3.85
RXRA 365 – 435 2 – 5 1 – 1 5.6 – 6.9
SAHH 247 – 282 7 – 9 4 – 4 – 1.19 – – 0.1
SRC 439 – 531 6 – 9 1 – 3 3.98 – 5.9
TGFR1 319 – 419 5 – 7 1 – 2 3.68 – 4.66
THB 408 – 494 4 – 7 2 – 3 4 – 5.48
THRB 447 – 539 8 – 10 4 – 6 1.27 – 3.23
TRY1 443 – 538 7 – 10 4 – 6 1.5 – 3.96
TRYB1 443 – 542 8 – 10 2 – 5 1.6 – 3.53
TYSY 427 – 533 7 – 12 3 – 5 1.57 – 3.74
UROK 344 – 460 5 – 9 4 – 5 2.46 – 5.09
VGFR2 401 – 504 6 – 9 1 – 3 3.8 – 5.65
WEE1 425 – 520 6 – 8 2 – 3 3.84 – 5.24
XIAP 442 – 534 7 – 9 3 – 5 1.44 – 3.16

Table B.3: List of DUD-E targets and corresponding ChEMBL target ID and the
number of unique molecules in this set.

Target ChEMBL ID # Molecules

AA2AR CHEMBL251 6822
ABL1 CHEMBL1862 2870
ACE CHEMBL1808 685
ACES CHEMBL4780 232
ADA CHEMBL2966 444
ADA17 CHEMBL3706 1311
ADRB1 -
ADRB2 CHEMBL210 4243
AKT1 CHEMBL262 4708
AKT2 CHEMBL2431 2053
ALDR CHEMBL1900 697
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AMPC CHEMBL2026 61868
ANDR CHEMBL1871 2804
AOFB CHEMBL2039 2188
BACE1 CHEMBL4822 4245
BRAF CHEMBL5145 1153
CAH2 CHEMBL205 5239
CASP3 CHEMBL2334 2393
CDK2 CHEMBL301 3444
COMT CHEMBL2023 79
CP2C9 CHEMBL3397 21294
CP3A4 CHEMBL340 25976
CSF1R CHEMBL1844 2174
CXCR4 CHEMBL2107 539
DEF CHEMBL4976 2
DHI1 CHEMBL4235 2186
DPP4 CHEMBL284 3747
DRD3 CHEMBL234 4169
DYR CHEMBL202 1273
EGFR CHEMBL203 7810
ESR1 CHEMBL206 5003
ESR2 CHEMBL242 3723
FA10 CHEMBL244 5756
FA7 CHEMBL3991 457
FABP4 CHEMBL2083 102
FAK1 CHEMBL2695 1609
FGFR1 CHEMBL3650 2902
FKB1A CHEMBL1902 546
FNTA CHEMBL271 1
FPPS CHEMBL1782 217
GCR CHEMBL2034 3544
GLCM CHEMBL2179 11847
GRIA2 CHEMBL3503 95
GRIK1 CHEMBL2919 113
HDAC2 CHEMBL1937 585
HDAC8 CHEMBL3192 959
HIVINT -
HIVPR -
HIVRT -
HMDH CHEMBL402 1187
HS90A CHEMBL3880 1488
HXK4 CHEMBL3820 1037
IGF1R CHEMBL1957 3166
INHA -
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ITAL CHEMBL1803 123
JAK2 CHEMBL2971 2898
KIF11 CHEMBL4581 913
KIT CHEMBL1936 2082
KITH CHEMBL1075130 15
KPCB CHEMBL3045 1079
LCK CHEMBL258 4674
LKHA4 CHEMBL4618 497
MAPK2 CHEMBL2208 2751
MCR CHEMBL1994 879
MET CHEMBL3717 4069
MK01 CHEMBL4040 16384
MK10 CHEMBL2637 1639
MK14 CHEMBL260 5807
MMP13 CHEMBL280 2075
MP2K1 CHEMBL3587 1817
NOS1 CHEMBL3048 1517
NRAM CHEMBL3377 167
PA2GA CHEMBL3474 473
PARP1 CHEMBL3105 1243
PDE5A CHEMBL1827 2364
PGH1 CHEMBL2949 2329
PGH2 CHEMBL4321 940
PLK1 CHEMBL3024 2398
PNPH CHEMBL4338 267
PPARA CHEMBL239 2929
PPARD CHEMBL3979 2290
PPARG CHEMBL235 4460
PRGR CHEMBL208 1941
PTN1 CHEMBL335 3521
PUR2 CHEMBL3972 104
PYGM CHEMBL4696 651
PYRD CHEMBL1966 743
RENI CHEMBL286 2780
ROCK1 CHEMBL3231 2198
RXRA CHEMBL2061 1119
SAHH CHEMBL2664 200
SRC CHEMBL3655 322
TGFR1 CHEMBL4439 984
THB CHEMBL1947 6070
THRB CHEMBL204 7095
TRY1 CHEMBL3769 854
TRYB1 CHEMBL2617 207
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TYSY CHEMBL2555 64
UROK CHEMBL3286 1197
VGFR2 CHEMBL279 7249
WEE1 CHEMBL5491 424
XIAP CHEMBL4198 875

Table B.4: Enumeration Results for all 102 DUD-E Targets. The enumerations marked
DNF (did not finish) show in brackets how many fragments had been processed when
the process was terminated.

Target Fragments Molecules Time [h:m:s] Rate [Mol/s] Redundant

AA2AR 360 16,934,058 61:35:39 85 40,275,428
ABL1 217 13,016,906 12:25:31 97 12,654,599
ACE 248 1,228,793 1:23:06 353 2,517,936
ACES 314 10,141,931 7:22:04 92 14,616,811
ADA 96 3,240 0:02:28 66 1,609
ADA17 322 6,393,032 17:04:37 54 5,940,002
ADRB1 273 2,104,870 9:55:27 44 4,983,250
ADRB2 270 8,896,562 31:08:05 235 12,899,482
AKT1 273 54,693,813 99:35:26 286 51,266,881
AKT2 138 16,432,334 27:45:30 416 4,597,172
ALDR 132 83,076 0:03:49 316 51,824
AMPC 53 489 0:00:34 11 2
ANDR 217 443,056 0:21:06 327 645,276
AOFB 123 18,565 0:02:12 71 46,758
BACE1 235 4,380,710 19:34:10 123 5,828,697
BRAF 164 24,275,229 58:45:09 265 31,974,434
CAH2 276 9,593,829 33:39:49 221 21,195,511
CASP3 194 1,152,554 2:44:29 314 807,003
CDK2 406 49,568,201 112:18:38 357 46,218,093
COMT 17 27 0:00:26 1 3
CP2C9 196 19,675,689 53:18:28 378 19,496,096
CP3A4 295 56,606,000 DNF(45%) 168
CSF1R 184 5,252,607 22:34:40 412 4,550,848
CXCR4 30 113 0:01:07 3 159
DEF 85 2,878 0:03:38 20 2,060
DHI1 321 6,406,879 32:38:03 251 12,304,094
DPP4 506 10,566,795 17:20:46 194 15,476,815
DRD3 430 13,484,611 17:42:04 242 16,763,265
DYR 159 332,070 0:33:26 193 375,414
EGFR 461 117,733,000 DNF(10%) 195
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ESR1 282 51,166,308 89:44:07 158 122,564,595
ESR2 277 35,767,722 116:07:51 107 70,354,152
FA10 438 56,914,000 DNF(17%) 94
FA7 123 648,424 0:42:07 188 925,506
FABP4 50 378,851 0:13:55 356 245,043
FAK1 128 449,719 0:25:23 226 655,374
FGFR1 156 4,004,127 2:37:10 194 3,938,795
FKB1A 89 58,326 0:03:07 237 51,846
FNTA 445 76,310,547 129:47:46 163 104,799,787
FPPS 38 15 0:00:34 0 23
GCR 170 461,344 0:26:38 228 804,574
GLCM 55 1,526 0:00:48 16 1,592
GRIA2 156 476,172 0:22:28 289 965,921
GRIK1 78 3,098 0:01:07 25 1,674
HDAC2 147 294,359 0:21:25 185 400,932
HDAC8 135 344,212 0:28:22 160 383,341
HIVINT 78 13,297 0:02:05 118 50,888
HIVPR 467 41,855,000 DNF(13%) 69
HIVRT 291 1,643,228 0:59:52 415 1,631,167
HMDH 164 7,155,310 20:38:42 69 10,724,561
HS90A 74 82,490 0:03:25 489 55,420
HXK4 88 284,224 0:10:07 346 331,272
IGF1R 182 6,552,487 9:37:28 60 6,196,609
INHA 43 1,473 0:00:41 21 241
ITAL 132 615,852 0:34:57 221 488,496
JAK2 136 1,032,168 0:47:32 286 1,826,275
KIF11 95 48,997 0:02:56 230 25,374
KIT 182 3,556,245 3:40:30 272 5,095,650
KITH 50 4,488 0:01:46 69 2,714
KPCB 130 1,268,162 1:18:55 214 1,680,782
LCK 335 63,836,639 114:41:30 177 67,527,021
LKHA4 147 1,022,403 0:55:39 165 1,489,258
MAPK2 75 42,284 0:02:29 205 49,522
MCR 84 27,561 0:01:52 151 7,436
MET 176 5,482,021 6:02:26 494 3,959,301
MK01 80 23,706 0:02:38 99 14,644
MK10 148 7,027,819 13:41:19 114 8,157,594
MK14 450 45,650,000 DNF(2%) 75
MMP13 338 7,612,905 14:44:31 103 7,358,221
MP2K1 117 694,273 0:20:35 405 436,397
NOS1 81 29,918 0:02:24 151 50,009
NRAM 73 371 0:01:08 4 1,089
PA2GA 91 154,990 0:16:10 168 216,815
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PARP1 359 8,804,693 9:11:15 105 13,241,795
PDE5A 313 27,481,391 42:08:34 212 32,783,734
PGH1 228 17,221,670 12:02:14 306 24,910,688
PGH2 402 99,803,000 DNF(6%) 165
PLK1 137 562,693 0:23:56 291 319,576
PNPH 83 251 0:01:12 3 990
PPARA 394 80,387,488 150:07:39 149 71,362,698
PPARD 281 10,073,914 21:19:43 76 10,144,790
PPARG 433 83,068,500 150:07:48 159 85,729,872
PRGR 217 2,880,427 1:58:41 145 4,389,914
PTN1 159 9,759,166 6:26:34 339 7,268,369
PUR2 16 0 0:00:15 0 0
PYGM 52 446 0:00:47 12 93
PYRD 60 8,532 0:01:35 112 21,191
RENI 160 1,205,371 0:46:17 361 350,516
ROCK1 111 238,033 0:20:08 204 427,179
RXRA 107 26,902 0:03:18 252 11,702
SAHH 52 2 0:00:40 0 0
SRC 400 108,955,000 DNF(21%) 180
TGFR1 143 4,839,797 6:47:22 55 11,909,977
THB 120 176,715 0:13:12 163 259,853
THRB 423 23,477,718 41:08:46 165 29,824,465
TRY1 473 65,197,000 DNF(15%) 108
TRYB1 150 826,988 1:17:51 295 569,181
TYSY 82 40,800 0:05:27 140 15,634
UROK 168 969,043 0:59:23 285 1,531,109
VGFR2 350 113,625,393 82:21:12 235 87,702,744
WEE1 56 712 0:00:55 7 557
XIAP 76 65,396 0:04:47 202 54,804

Figure B.2: Similarity Distribution of DUD-E datasets: Enumerated (black) and ZINC
drug-like (grey) vs ChEMBL bioactives. The actual figure is shown on the next page.
This figure was originally published in [1].

Figure B.3: ROC Curves with AUC for the similarity distribution plots of B.2. The
actual figure is shown on the page after the next. This figure was originally published
in [1].

Appendix B. Additional Experimental Results







B.3. Hamburg Enumerated Lead-like Set 171

B.3 Hamburg Enumerated Lead-like Set

Table B.5: Enumeration results for all 183 fragments from the "Approved Drugs" frag-
ment space. The enumerated molecules from these enumerations were merged to form
HELLS.

Fragment Time [hh:mm:ss] Molecules Rate [Mols/s]

1 1:27:10 2525780 482.94
33 5:34:21 2799699 139.56
55 0:30:15 280678 154.64
58 0:02:20 7289 52.06
61 20:54:32 10762708 142.98
76 20:24:58 9976646 135.74
80 0:05:13 98786 315.61
86 0:03:52 63680 274.48
90 0:09:04 83117 152.79
94 2:41:16 1870889 193.35
96 9:31:10 4775056 139.34
114 17:46:22 6135178 95.89
120 0:00:56 5984 106.86
122 0:15:30 169202 181.94
129 0:07:00 42859 102.05
133 0:42:38 160184 62.62
136 0:00:51 4394 86.16
137 9:36:24 7144159 206.57
145 0:45:32 1568085 573.97
150 1:37:01 2113897 363.15
155 2:02:36 4169602 566.83
159 0:00:15 473 31.53
171 0:00:12 348 29.00
174 14:15:37 7638213 148.79
177 2:58:16 1741981 162.86
180 0:00:01 3 3.00
189 1:34:18 1958121 346.08
195 54:59:01 22481053 113.57
213 0:09:21 60373 107.62
222 0:37:52 360373 158.61
225 0:26:48 399761 248.61
245 0:02:26 6286 43.05
257 33:18:12 10744144 89.62
263 27:16:57 10981921 111.81
281 0:02:50 12828 75.46
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287 0:11:17 97682 144.29
290 0:14:17 151577 176.87
299 9:25:22 9907425 292.06
310 11:23:51 4673656 113.91
322 0:00:46 3784 82.26
334 26:04:00 10082065 107.44
337 1:08:00 1642599 402.60
352 0:49:15 211371 71.53
361 3:22:32 1473506 121.26
363 3:52:40 2822788 202.21
364 5:43:58 2036032 98.65
370 0:29:20 447782 254.42
372 4:45:17 4169602 243.59
375 3:48:06 3318127 242.45
392 0:02:35 11246 72.55
395 2:41:30 1087796 112.26
399 0:12:09 63469 87.06
401 0:04:06 7909 32.15
408 2:39:55 1226889 127.87
414 0:22:12 568539 426.83
422 0:03:56 41266 174.86
428 2:34:23 2537878 273.98
435 34:57:37 13359055 106.14
444 4:17:47 2285774 147.78
447 8:06:09 3890886 133.39
448 0:27:52 125031 74.78
451 61:25:56 29772623 134.62
463 15:45:41 9178010 161.75
464 11:41:34 5130589 121.88
473 18:06:03 8147581 125.03
489 7:40:46 3647314 131.93
496 0:10:17 62182 100.78
501 0:21:49 138438 105.76
520 10:48:21 5887598 151.35
541 14:05:31 7850050 154.74
556 9:24:17 8095577 239.11
558 1:45:08 2060404 326.63
573 1:14:27 1461030 327.07
584 8:57:33 5290754 164.04
589 17:50:15 13415834 208.92
598 0:15:07 173374 191.15
614 1:12:37 1263043 289.89
617 8:39:42 2424000 77.74
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623 0:04:13 19560 77.31
625 0:00:42 1860 44.29
643 0:31:56 63952 33.38
645 0:07:35 44693 98.23
657 0:21:52 112164 85.49
658 10:47:39 4790220 123.27
675 4:10:37 1743242 115.93
679 0:57:25 193247 56.09
684 4:41:06 2008980 119.11
689 65:55:42 27583263 116.22
692 1:11:19 1194255 279.10
700 135:00:13 110132768 226.60
707 0:12:54 41734 53.92
721 4:23:18 2987386 189.10
742 0:00:26 1775 68.27
749 5:57:19 5003417 233.38
762 0:03:29 54878 262.57
769 0:12:50 21704 28.19
771 0:32:01 106729 55.56
784 0:33:33 147334 73.19
787 16:19:52 7290319 124.00
788 0:00:00 0
789 9:08:05 5116637 155.59
797 1:44:49 1663559 264.52
803 27:33:25 35965659 362.54
808 0:15:17 127916 139.49
809 5:36:11 5291716 262.34
816 18:20:19 30407774 460.59
823 11:44:57 9978905 235.92
849 0:02:31 66991 443.65
853 1:52:59 1257835 185.55
855 0:11:56 84618 118.18
863 27:06:42 9962880 102.08
867 8:23:59 2467839 81.61
870 15:45:52 7432961 130.97
871 6:47:03 5041883 206.44
875 0:02:07 6216 48.94
880 0:03:06 33548 180.37
895 0:18:14 205865 188.18
901 132:05:55 90987009 191.33
902 7:43:17 9418509 338.83
903 0:08:01 8040 16.72
905 5:06:06 2936181 159.87
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906 20:38:20 4774360 64.26
912 2:32:29 2468938 269.86
922 17:13:49 5134955 82.78
947 1:39:47 1105248 184.61
948 0:14:54 51766 57.90
970 10:00:06 8615348 239.28
978 0:00:32 1380 43.13
980 7:20:11 4034705 152.77
982 0:52:58 214288 67.43
984 0:24:14 205410 141.27
987 16:50:26 1930894 31.85
995 9:49:04 4100012 116.00
998 1:39:35 714831 119.64
1001 7:47:28 5277696 188.17
1009 0:45:19 360373 132.54
1012 0:28:10 451723 267.29
1016 2:16:22 749481 91.60
1020 0:13:42 61013 74.23
1021 0:36:43 125382 56.91
1022 0:42:33 201734 79.02
1024 1:30:01 1431530 265.05
1029 10:49:06 5404774 138.78
1034 1:30:54 618490 113.40
1038 0:12:23 28386 38.20
1047 0:09:24 27250 48.32
1049 1:10:57 682813 160.40
1053 10:02:34 2649263 73.28
1055 1:43:37 502967 80.90
1057 22:59:07 6604629 79.82
1068 0:05:50 26887 76.82
1071 0:33:30 217213 108.07
1073 0:36:18 62698 28.79
1092 4:59:53 6710588 372.96
1096 0:03:09 3444 18.22
1099 1:08:33 410815 99.88
1106 12:52:27 6034843 130.21
1110 4:12:12 2286896 151.13
1117 1:52:43 1163915 172.10
1118 0:16:07 130084 134.52
1124 0:09:43 65802 112.87
1128 0:46:26 380308 136.51
1131 0:22:31 45023 33.33
1137 9:57:08 1175497 32.81
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1140 40:46:17 27435622 186.92
1144 0:32:36 459968 235.16
1150 21:44:05 7777207 99.40
1151 2:41:05 1171491 121.21
1155 3:44:37 1271482 94.34
1160 2:22:23 2158524 252.67
1161 0:31:21 134711 71.62
1165 17:27:25 13511914 215.00
1166 9:39:03 9237852 265.89
1169 0:38:48 81258 34.90
1173 15:24:41 2557426 46.10
1174 26:33:08 2161977 22.62
1177 11:40:59 6488748 154.28
1179 1:55:23 1784488 257.76
1181 9:58:24 1360706 37.90
1186 3:08:53 892796 78.78
1199 1:24:41 756420 148.87
1204 1:34:37 585571 103.15
1208 0:06:25 3895 10.12

Sum 1441:28:01 820,467,614
Average 7:54:44 4,483,430 152.61

B.4 FragEnum
In order to validate FSees and compare the performance with the previous im-
plementation (FragEnum), two fragment spaces (WDI 47 and WDI 48) by Pärn
et al. [29] were enumerated. All enumerations were carried out on the same com-
puter. FSees is significantly faster than FragEnum while yielding identical results.
Other comparisons were not conducted.

Table B.6: Comparison of enumeration results and runtime of FragEnum [29] and FSees
[1].

WDI 47 WDI 48
time [mm:ss] molecules time [mm:ss] molecules

FragmEnum 01:48 73,147 31:47 95,713
FSees 00:54 73,147 07:51 95,713
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Data

C.1 Fragment Space Format

Example for the Fragment Space Format file.
# Fragment space file for FlexNovo representing the BRICS space
# ----------------------------------------------------------------------
# (c) Joerg Degen*, Christof Gerlach#, Andrea Zaliani*, Matthias Rarey*
# [*] ZBH Center for Bioinformatics, University of Hamburg, Germany
# [#] Bayer Schering Pharma AG, Berlin, Germany
#
# syntax description:
# @link_types <nof links>
# <link name 1> <link name 2> ...
# <link name k> <link name k+1> ... <link name <nof links>>
#
# @fragment_files <nof files>
# < frag file 1>
# < frag file 2>
# :
# < frag file <nof files>>
#
# @link_terminal_groups
# <link name 1> <group> [<atom type> <bond type> <bond length> <torsion angle>]
# <link name 2> <group> [<atom type> <bond type> <bond length> <torsion angle>]
# :
# <link name <nof links>> <group> [<atom type> <bond type> <bond length> <torsion

angle>]
#
# @link_compatibility_matrix
# <name of> <name of> [<aatom type> <aatom type>] <bond> <bond> [<torsion>]
# link 1 link 2 for link 1 for link 2 type length angle
# :
# ----------------------------------------------------------------------

176



C.1. Fragment Space Format 177

@link_types 16
R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16

@fragment_files 1
brics/brics_4k.mol2

@link_terminal_groups
# link group aatom bond blen torsion
R1 terminal_groups/r1.mol2 * 1 1.507 *
R2 terminal_groups/r2.mol2 * am 1.337 180
R3 terminal_groups/r3.mol2 * 1 1.429 *
R4 terminal_groups/r4.mol2 * 1 1.090 *
R5 terminal_groups/r5.mol2 * 1 1.398 *
R6 terminal_groups/r6.mol2 * 1 1.507 *
R7 terminal_groups/r7.mol2 * 2 1.316 180
R8 terminal_groups/r8.mol2 * 1 1.090 *
R9 terminal_groups/r9.mol2 * 1 1.465 *
R10 terminal_groups/r10.mol2 * 1 1.465 *
R11 terminal_groups/r11.mol2 * 1 1.815 *
R12 terminal_groups/r12.mol2 * 1 1.816 *
R13 terminal_groups/r13.mol2 * 1 1.080 *
R14 terminal_groups/r14.mol2 * 1 1.080 *
R15 terminal_groups/r15.mol2 * 1 1.080 *
R16 terminal_groups/r16.mol2 * 1 1.080 *

@link_compatibility_matrix
# link1 link2 aatom1 aatom2 bond blen torsion
R1 R2 * * am 1.355 180
R1 R3 * * 1 1.362 *
R1 R10 * * am 1.355 180
R2 R12 * * 1 1.656 *
R2 R14 * * 1 1.398 *
R2 R16 * * 1 1.398 *
R3 R4 * * 1 1.452 *
R3 R13 * * 1 1.429 *
R3 R14 * * 1 1.362 *
R3 R15 * * 1 1.429 *
R3 R16 * * 1 1.362 *
R4 R5 * * 1 1.469 *
R4 R11 * * 1 1.815 *
R5 R13 * * 1 1.469 *
R5 R15 * * 1 1.469 *
R6 R13 * * 1 1.507 180
R6 R14 * * 1 1.473 180
R6 R15 * * 1 1.507 180
R6 R16 * * 1 1.473 180
R7 R7 * * 2 1.316 180
R8 R9 * * 1 1.465 *
R8 R10 * * 1 1.465 *
R8 R13 * * 1 1.507 *
R8 R14 * * 1 1.473 *
R8 R15 * * 1 1.507 *
R8 R16 * * 1 1.473 *
R9 R13 * * 1 1.465 *
R9 R14 * * 1 1.355 *
R9 R15 * * 1 1.465 *
R9 R16 * * 1 1.355 *
R10 R13 * * 1 1.465 *
R10 R14 * * 1 1.355 *
R10 R15 * * 1 1.465 *
R10 R16 * * 1 1.355 *
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R11 R13 * * 1 1.816 *
R11 R14 * * 1 1.762 *
R11 R15 * * 1 1.816 *
R11 R16 * * 1 1.762 *
R13 R13 * * 1 1.530 *
R13 R14 * * 1 1.507 *
R13 R15 * * 1 1.530 *
R13 R16 * * 1 1.507 *
R14 R14 * * 1 1.473 *
R14 R15 * * 1 1.507 *
R14 R16 * * 1 1.473 *
R15 R15 * * 1 1.530 *
R15 R16 * * 1 1.507 *
R16 R16 * * 1 1.473 *

C.2 BRICS Rules
BRICS retrosynthetic rules as SMARTS pattern.
[C;!D4;!D1;!R;!$(C=[C,O,S,N]);$(C([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R8?:8]-;!

@[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]
[C;!D4;!D1;!R;!$(C=[C,O,S,N]);$(C([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R8?:8]-;!

@[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]
[C;!D4;!D1;!R;!$(C=[C,O,S,N]);$(C([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R8?:8]-;!

@[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]
[C;!D4;!D1;!R;!$(C=[C,O,S,N]);$(C([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R8?:8]-;!

@[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]
[C;D3;!R;$(C(=O)([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R6?:6]-;!@[C;D3;R;$([C]@[N

,n,S,s,O,o]),?R13?:13]
[C;D3;!R;$(C(=O)([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R6?:6]-;!@[c;X3;R;$([c]@[N

,n,S,s,O,o]),?R14?:14]
[C;D3;!R;$(C(=O)([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R6?:6]-;!@[C;D3;R;!$([C]@[

N,n,S,s,O,o]),?R15?:15]
[C;D3;!R;$(C(=O)([#6;R])!=[#6;!D1]~[!D1]);!$(C[O,S,N;!R]),?R6?:6]-;!@[c;X3;R;!$([c]@[

N,n,S,s,O,o]),?R16?:16]
[#6;!D1;!$([#6]-;!@[#6]=;!@[C,O,S;!@]);$([#6][!H;!D1]!=[!H;!D1]),?R7?:7]=;!@[#6;!D1;!

$([#6]-;!@[#6]=;!@[C,O,S;!@]);$([#6][!H;!D1]!=[!H;!D1]),?R7?:7]
[C;!D4;!D1;!R;!$(C(=O));$(C([O;D2])[#6;!D1]~[!D1]),?R4?:4]-;!@[O;D2;$(O([C;!D1;!R])

[#6;!D1][!D1]);!$(OCO);!$(OC=*);!$(O[P,S]),?R3?:3]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[O;D2;$(O([#6;!D1;R])[#6;!D1;R][!D1]);!$(

OCO);!$(OC=;!@*);!$(O[P,S]),?R3?:3]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[O;D2;$(O([#6;!D1;R])[#6;!D1;R][!D1]);!$(

OCO);!$(OC=;!@*);!$(O[P,S]),?R3?:3]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[O;D2;$(O([#6;!D1;R])[#6;!D1;R][!D1]);!$(

OCO);!$(OC=;!@*);!$(O[P,S]),?R3?:3]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[O;D2;$(O([#6;!D1;R])[#6;!D1;R][!D1]);!$(

OCO);!$(OC=;!@*);!$(O[P,S]),?R3?:3]
[C;!D4;!D1;!R;$(C(=O));$(C([O;D2])[#6;!D1]!=[!D1]),?R1?:1]-;!@[O;D2;$(O(C(=O))[#6;!D1

][#6;!D1]);!$(OCO);!$(O[P,S]),?R3?:3]
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[P,S]-;!@[O;D2;$(O([P,S])[#6;!D1][!D1]);!$(OCO);!$(OC=*),?R3?:3]
[C;!D4;!D1;!R;$(C(=O));$(C([N;!D1])[!S;!D1][!D1]),?R1?:1]-;!@[N;!D1;!$(N(C=O)(C=O));$

(N(C(=O))[!S;!D1][!D1]),?R2?:2]
[S;X4;$(S(=O)(=O)),?R12?:12]-;!@[#7;X3;!D1;$([#7](S(=O)(=O))[#6;!D1][!D1]);!$([#7]C(=

O)),?R2?:2]
[C;!D4;!D1;!R;$(C(=O));$(C([n])[!S;!D1][!D1]),?R1?:1]-;!@[n;!$(n@[#6](=O)),?R9?:9]
[C;!D4;!D1;!R;!$(C(=O));$(C([N;X3;!D1])[#6;!D1][!D1]),?R4?:4]-;!@[N;X3;!D1;!$(NC=;!@[

N,O,S]);$(N([C;!D1;!R])[#6;!D1]!=[!D1]),?R5?:5]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[N;X3;!D1;!$(NC=;!@[N,O,S]);$(N([#6;!D1;R])

[#6;!D1;R]!=,@[!D1]),?R5?:5]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[N;X3;!D1;!$(NC=;!@[N,O,S]);$(N([#6;!D1;R])

[#6;!D1;R]!=,@[!D1]),?R2?:2]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[N;X3;!D1;!$(NC=;!@[N,O,S]);$(N([#6;!D1;R

])[#6;!D1;R]!=,@[!D1]),?R5?:5]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[N;X3;!D1;!$(NC=;!@[N,O,S]);$(N([#6;!D1;R

])[#6;!D1;R]!=,@[!D1]),?R2?:2]
[C;!D4;!D1;!R;!$(C=[C,O,S,N]);!$(C[O,S,N;!R]);$(C([n])!=[#6;!D1]~[!D1]),?R8?:8]-;!@[n

;!$(n@[#6](=O)),?R9?:9]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[n;!$(n@[#6](=O)),?R9?:9]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[n;!$(n@[#6](=O)),?R9?:9]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[n;!$(n@[#6](=O)),?R9?:9]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[n;!$(n@[#6](=O)),?R9?:9]
[C;!D4;!D1;!R;!$(C=[C,O,S,N]);!$(C[O,S,N;!R]);$(C([#7;R;D3])!=[#6;!D1]~[!D1]),?R8

?:8]-;!@[#7;R;D3;$([#7]@[#6](=O)),?R10?:10]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[#7;R;D3;$([#7]@[#6](=O)),?R10?:10]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[#7;R;D3;$([#7]@[#6](=O)),?R10?:10]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[#7;R;D3;$([#7]@[#6](=O)),?R10?:10]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[#7;R;D3;$([#7]@[#6](=O)),?R10?:10]
[C;!D4;!D1;!R;$(C(=O));$(C([#7;R;D3])[!S;!D1][!D1]),?R1?:1]-;!@[#7;R;D3;$([#7]@[#6](=

O)),?R10?:10]
[C;!D4;!D1;!R;!$(C(=S));$(C([S;D2])[#6;!D1]~[!D1]),?R4?:4]-;!@[S;D2;$(S([C;!D1;!R])

[#6;!D1][!D1]);!$(SCS);!$(SC=*);!$(S[P,S]),?R11?:11]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[S;D2;$(S([#6;!D1;R])[#6;!D1;R][!D1]);!$(

SCS);!$(SC=;!@*);!$(S[P,S]),?R11?:11]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[S;D2;$(S([#6;!D1;R])[#6;!D1;R][!D1]);!$(

SCS);!$(SC=;!@*);!$(S[P,S]),?R11?:11]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[S;D2;$(S([#6;!D1;R])[#6;!D1;R][!D1]);!$(

SCS);!$(SC=;!@*);!$(S[P,S]),?R11?:11]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[S;D2;$(S([#6;!D1;R])[#6;!D1;R][!D1]);!$(

SCS);!$(SC=;!@*);!$(S[P,S]),?R11?:11]
[C;!D4;!D1;!R;$(C(S=O)[#6;!D1][!D1]),?R4?:4]-;!@[S;$(S(=O)([C;!D1;!R])[#6;!D1][!D1])

,?R11?:11]
[C;D3;R;$([C]@[N,n,S,s,O,o]),?R13?:13]-;!@[S;$(S(=O)([#6;!D1;R])[#6;!D1;R][!D1]),?R11

?:11]
[c;X3;R;$([c]@[N,n,S,s,O,o]),?R14?:14]-;!@[S;$(S(=O)([#6;!D1;R])[#6;!D1;R][!D1]),?R11

?:11]
[C;D3;R;!$([C]@[N,n,S,s,O,o]),?R15?:15]-;!@[S;$(S(=O)([#6;!D1;R])[#6;!D1;R][!D1]),?

R11?:11]
[c;X3;R;!$([c]@[N,n,S,s,O,o]),?R16?:16]-;!@[S;$(S(=O)([#6;!D1;R])[#6;!D1;R][!D1]),?

R11?:11]

C.3 Reaction SMARTS

Reaction SMARTS from Hartenfeller et al. [96].
[cH1:1]1:[c:2](-[CH2:7]-[CH2:8]-[NH2:9]):[c:3]:[c:4]:[c:5]:[c:6]:1.[#6:11]-[CH1;R0

:10]=[OD1]>>[c:1]12:[c:2](-[CH2:7]-[CH2:8]-[NH1:9]-[C:10]-2(-[#6:11])):[c:3]:[c
:4]:[c:5]:[c:6]:1 Pictet-Spengler
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[c;r6:1](-[NH1;$(N-[#6]):2]):[c;r6:3](-[NH2:4]).[#6:6]-[C;R0:5](=[OD1])-[#8;H1,$(O-[
CH3])]>>[c:3]2:[c:1]:[n:2]:[c:5](-[#6:6]):[n:4]@2
benzimidazole_derivatives_carboxylic-acid/ester

[c;r6:1](-[NH1;$(N-[#6]):2]):[c;r6:3](-[NH2:4]).[#6:6]-[CH1;R0:5](=[OD1])>>[c:3]2:[c
:1]:[n:2]:[c:5](-[#6:6]):[n:4]@2 benzimidazole_derivatives_aldehyde

[c;r6:1](-[SH1:2]):[c;r6:3](-[NH2:4]).[#6:6]-[CH1;R0:5](=[OD1])>>[c:3]2:[c:1]:[s:2]:[
c:5](-[#6:6]):[n:4]@2 benzothiazole

[c:1](-[OH1;$(Oc1ccccc1):2]):[c;r6:3](-[NH2:4]).[c:6]-[CH1;R0:5](=[OD1])>>[c:3]2:[c
:1]:[o:2]:[c:5](-[c:6]):[n:4]@2 benzoxazole_arom-aldehyde

[c;r6:1](-[OH1:2]):[c;r6:3](-[NH2:4]).[#6:6]-[C;R0:5](=[OD1])-[OH1]>>[c:3]2:[c:1]:[o
:2]:[c:5](-[#6:6]):[n:4]@2 benzoxazole_carboxylic-acid

[#6:6]-[C;R0:1](=[OD1])-[CH1;R0:5](-[#6:7])-[*;#17,#35,#53].[NH2:2]-[C:3]=[SD1:4]>>[c
:1]2(-[#6:6]):[n:2]:[c:3]:[s:4][c:5]([#6:7]):2 thiazole

[c:1](-[C;$(C-c1ccccc1):2](=[OD1:3])-[OH1]):[c:4](-[NH2:5]).[N;!H0;!$(N-N);!$(N-C=N)
;!$(N(-C=O)-C=O):6]-[C;H1,$(C-[#6]):7]=[OD1]>>[c:4]2:[c:1]-[C:2](=[O:3])-[N:6]-[C
:7]=[N:5]-2 Niementowski_quinazoline

[CH0;$(C-[#6]):1]#[NH0:2]>>[C:1]1=[N:2]-N-N=N-1 tetrazole_terminal
[CH0;$(C-[#6]):1]#[NH0:2].[C;A;!$(C=O):3]-[*;#17,#35,#53]>>[C:1]1=[N:2]-N(-[C:3])-N=N

-1 tetrazole_connect_regioisomere_1
[CH0;$(C-[#6]):1]#[NH0:2].[C;A;!$(C=O):3]-[*;#17,#35,#53]>>[C:1]1=[N:2]-N=N-N-1(-[C

:3]) tetrazole_connect_regioisomere_2
[CH0;$(C-[#6]):1]#[CH1:2].[C;H1,H2;A;!$(C=O):3]-[*;#17,#35,#53,OH1]>>[C:1]1=[C:2]-N

(-[C:3])-N=N-1 Huisgen_Cu-catalyzed_1,4-subst
[CH0;$(C-[#6]):1]#[CH1:2].[C;H1,H2;A;!$(C=O):3]-[*;#17,#35,#53,OH1]>>[C:1]1=[C:2]-N=

NN(-[C:3])-1 Huisgen_Ru-catalyzed_1,5_subst
[CH0;$(C-[#6]):1]#[CH0;$(C-[#6]):2].[C;H1,H2;A;!$(C=O):3]-[*;#17,#35,#53,OH1]>>[C

:1]1=[C:2]-N=NN(-[C:3])-1 Huisgen_disubst-alkyne
[CH0;$(C-[#6]):1]#[NH0:2].[NH2:3]-[NH1:4]-[CH0;$(C-[#6]);R0:5]=[OD1]>>[N:2]1-[C:1]=[N

:3]-[N:4]-[C:5]=1 1,2,4-triazole_acetohydrazide
[CH0;$(C-[#6]):1]#[NH0:2].[CH0;$(C-[#6]);R0:5](=[OD1])-[#8;H1,$(O-[CH3]),$(O-[CH2]-[

CH3])]>>[N:2]1-[C:1]=N-N-[C:5]=1 1,2,4-triazole_carboxylic-acid/ester
[#6;!$([#6](-C=O)-C=O):4]-[CH0:1](=[OD1])-[C;H1&!$(C-[*;!#6])&!$(C-C(=O)O),H2:2]-[CH0

;R0:3](=[OD1])-[#6;!$([#6](-C=O)-C=O):5]>>[c:1]1(-[#6:4]):[c:2]:[c:3](-[#6:5]):n:
c(-O):c(-C#N):1 3-nitrile-pyridine

[c:1](-[C;$(C-c1ccccc1):2](=[OD1:3])-[CH3:4]):[c:5](-[OH1:6]).[C;$(C1-[CH2]-[CH2]-[N,
C]-[CH2]-[CH2]-1):7](=[OD1])>>[O:6]1-[c:5]:[c:1]-[C:2](=[OD1:3])-[C:4]-[C:7]-1
spiro-chromanone

[#6;!$([#6](-C=O)-C=O):4]-[CH0:1](=[OD1])-[C;H1&!$(C-[*;!#6])&!$(C-C(=O)O),H2:2]-[CH0
;R0:3](=[OD1])-[#6;!$([#6](-C=O)-C=O):5].[NH2:6]-[N;!H0;$(N-[#6]),H2:7]>>[C
:1]1(-[#6:4])-[C:2]=[C:3](-[#6:5])-[N:7]-[N:6]=1 pyrazole

[c;r6:1](-[C;$(C=O):6]-[OH1]):[c;r6:2]-[C;H1,$(C-C):3]=[OD1].[NH2:4]-[NH1;$(N-[#6]);!
$(NC=[O,S,N]):5]>>[c:1]1:[c:2]-[C:3]=[N:4]-[N:5]-[C:6]-1 phthalazinone

[#6:5]-[C;R0:1](=[OD1])-[C;H1,H2:2]-[C;H1,H2:3]-[C:4](=[OD1])-[#6:6].[NH2;$(N-[C,N])
;!$(NC=[O,S,N]);!$(N([#6])[#6]);!$(N~N~N):7]>>[C:1]1(-[#6:5])=[C:2]-[C:3]=[C
:4](-[#6:6])-[N:7]-1 Paal-Knorr pyrrole

[C;$(C-c1ccccc1):1](=[OD1])-[C;D3;$(C-c1ccccc1):2]~[O;D1,H1].[CH1;$(C-c):3]=[OD1]>>[C
:1]1-N=[C:3]-[NH1]-[C:2]=1 triaryl-imidazole

[NH1;$(N-c1ccccc1):1](-[NH2])-[c:5]:[cH1:4].[C;$(C([#6])[#6]):2](=[OD1])-[CH2;$(C
([#6])[#6]);!$(C(C=O)C=O):3]>>[C:5]1-[N:1]-[C:2]=[C:3]-[C:4]:1 Fischer indole

[NH2;$(N-c1ccccc1):1]-[c:2]:[c:3]-[CH1:4]=[OD1].[C;$(C([#6])[#6]):6](=[OD1])-[CH2;$(C
([#6])[#6]);!$(C(C=O)C=O):5]>>[N:1]1-[c:2]:[c:3]-[C:4]=[C:5]-[C:6]:1 Friedlaender
chinoline

[*;Br,I;$(*c1ccccc1)]-[c:1]:[c:2]-[OH1:3].[CH1:5]#[C;$(C-[#6]):4]>>[c:1]1:[c:2]-[O
:3]-[C:4]=[C:5]-1 benzofuran

[*;Br,I;$(*c1ccccc1)]-[c:1]:[c:2]-[SD2:3]-[CH3].[CH1:5]#[C;$(C-[#6]):4]>>[c:1]1:[c
:2]-[S:3]-[C:4]=[C:5]-1 benzothiophene

[*;Br,I;$(*c1ccccc1)]-[c:1]:[c:2]-[NH2:3].[CH1:5]#[C;$(C-[#6]):4]>>[c:1]1:[c:2]-[N
:3]-[C:4]=[C:5]-1 indole

[#6:6][C:5]#[#7;D1:4].[#6:1][C:2](=[OD1:3])[OH1]>>[#6:6][c:5]1[n:4][o:3][c:2]([#6:1])
n1 oxadiazole

[#6;$([#6]~[#6]);!$([#6]=O):2][#8;H1:3].[Cl,Br,I][#6;H2;$([#6]~[#6]):4]>>[CH2:4][O
:3][#6:2] Williamson ether
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[#6:4]-[C;H1,$([CH0](-[#6])[#6]):1]=[OD1].[N;H2,$([NH1;D2](C)C);!$(N-[#6]=[*]):3]-[C
:5]>>[#6:4][C:1]-[N:3]-[C:5] reductive amination

[#6;H0;D3;$([#6](~[#6])~[#6]):1]B(O)O.[#6;H0;D3;$([#6](~[#6])~[#6]):2][Cl,Br,I
]>>[#6:2][#6:1] Suzuki

[c;H1:3]1:[c:4]:[c:5]:[c;H1:6]:[c:7]2:[nH:8]:[c:9]:[c;H1:1]:[c:2]:1:2.O=[C:10]1[#6;H2
:11][#6;H2:12][N:13][#6;H2:14][#6;H2:15]1>>[#6;H2:12]3[#6;H1:11]=[C:10]([c:1]1:[c
:9]:[n:8]:[c:7]2:[c:6]:[c:5]:[c:4]:[c:3]:[c:2]:1:2)[#6;H2:15][#6;H2:14][N:13]3
piperidine_indole

[#6;$([#6]~[#6]);!$([#6]~[S,N,O,P]):1][Cl,Br,I].[Cl,Br,I][#6;$([#6]~[#6]);!$([#6]~[S,
N,O,P]):2]>>[#6:2][#6:1] Negishi

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[NH1;$(N(C=O)C=O):2]>>[C:1][N:2]
Mitsunobu_imide

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[OH1;$(Oc1ccccc1):2]>>[C:1][O:2]
Mitsunobu_phenole

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[NH1;$(N([#6])S(=O)=O):2]>>[C:1][N:2]
Mitsunobu_sulfonamide

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[#7H1:2]1~[#7:3]~[#7:4]~[#7:5]~[#6:6]~1>>[C
:1][#7:2]1:[#7:3]:[#7:4]:[#7:5]:[#6:6]:1 Mitsunobu_tetrazole_1

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[#7H1:2]1~[#7:3]~[#7:4]~[#7:5]~[#6:6]~1>>[#7
H0:2]1:[#7:3]:[#7H0:4]([C:1]):[#7:5]:[#6:6]:1 Mitsunobu_tetrazole_2

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[#7:2]1~[#7:3]~[#7H1:4]~[#7:5]~[#6:6]~1>>[C
:1][#7H0:2]1:[#7:3]:[#7H0:4]:[#7:5]:[#6:6]:1 Mitsunobu_tetrazole_3

[C;H1&$(C([#6])[#6]),H2&$(C[#6]):1][OH1].[#7:2]1~[#7:3]~[#7H1
:4]~[#7:5]~[#6:6]~1>>[#7:2]1:[#7:3]:[#7:4]([C:1]):[#7:5]:[#6:6]:1
Mitsunobu_tetrazole_4

[#6;c,$(C(=O)O),$(C#N):3][#6;H1:2]=[#6;H2:1].[#6;$([#6]=[#6]),$(c:c):4][Cl,Br,I
]>>[#6:4]/[#6:1]=[#6:2]/[#6:3] Heck_terminal_vinyl

[#6;c,$(C(=O)O),$(C#N):3][#6:2]([#6:5])=[#6;H1;$([#6][#6]):1].[#6;$([#6]=[#6]),$(c:c)
:4][Cl,Br,I]>>[#6:4][#6;H0:1]=[#6:2]([#6:5])[#6:3] Heck_non-terminal_vinyl

[#6;$(C=C-[#6]),$(c:c):1][Br,I].[Cl,Br,I][c:2]>>[c:2][#6:1] Stille
[#6:1][C:2]#[#7;D1].[Cl,Br,I][#6;$([#6]~[#6]);!$([#6]([Cl,Br,I])[Cl,Br,I]);!$([#6]=O)

:3]>>[#6:1][C:2](=O)[#6:3] Grignard_carbonyl
[#6:1][C;H1,$([C]([#6])[#6]):2]=[OD1:3].[Cl,Br,I][#6;$([#6]~[#6]);!$([#6]([Cl,Br,I])[

Cl,Br,I]);!$([#6]=O):4]>>[C:1][#6:2]([OH1:3])[#6:4] Grignard_alcohol
[#6;$(C=C-[#6]),$(c:c):1][Br,I].[CH1;$(C#CC):2]>>[#6:1][C:2] Sonogashira
[C;$(C=O):1][OH1].[N;$(N[#6]);!$(N=*);!$([N-]);!$(N#*);!$([ND3]);!$([ND4]);!$(N[O,N])

;!$(N[C,S]=[S,O,N]):2]>>[C:1][N+0:2] Schotten-Baumann_amide
[S;$(S(=O)(=O)[C,N]):1][Cl].[N;$(NC);!$(N=*);!$([N-]);!$(N#*);!$([ND3]);!$([ND4]);!$(

N[c,O]);!$(N[C,S]=[S,O,N]):2]>>[S:1][N+0:2] sulfon_amide
[c:1]B(O)O.[nH1;+0;r5;!$(n[#6]=[O,S,N]);!$(n~n~n);!$(n~n~c~n);!$(n~c~n~n):2]>>[c:1]-[

n:2] N-arylation_heterocycles
[#6:3]-[C;H1,$([CH0](-[#6])[#6]);!$(CC=O):1]=[OD1].[Cl,Br,I][C;H2;$(C-[#6]);!$(CC[I,

Br]);!$(CCO[CH3]):2]>>[C:3][C:1]=[C:2] Wittig
[Cl,Br,I][c;$(c1:[c,n]:[c,n]:[c,n]:[c,n]:[c,n]:1):1].[N;$(NC)&!$(N=*)&!$([N-])&!$(N

#*)&!$([ND3])&!$([ND4])&!$(N[c,O])&!$(N[C,S]=[S,O,N]),H2&$(Nc1:[c,n]:[c,n]:[c,n
]:[c,n]:[c,n]:1):2]>>[c:1][N:2] Buchwald-Hartwig

[C;$(C([#6])[#6;!$([#6]Br)]):4](=[OD1])[CH;$(C([#6])[#6]):5]Br.[#7;H2:3][C;$(C(=N)(N)
[c,#7]):2]=[#7;H1;D1:1]>>[C:4]1=[CH0:5][NH:3][C:2]=[N:1]1 imidazole

[c;$(c1[c;$(c[C,S,N](=[OD1])[*;R0;!OH1])]cccc1):1][C;$(C(=O)[O;H1])].[c;$(c1aaccc1)
:2][Cl,Br,I]>>[c:1]-[c:2] decarboxylative_coupling

[c;!$(c1ccccc1);$(c1[n,c]c[n,c]c[n,c]1):1][Cl,F].[N;$(NC);!$(N=*);!$([N-]);!$(N#*);!$
([ND3]);!$([ND4]);!$(N[c,O]);!$(N[C,S]=[S,O,N]):2]>>[c:1][N:2]
heteroaromatic_nuc_sub

[c;$(c1c(N(~O)~O)cccc1):1][Cl,F].[N;$(NC);!$(N=*);!$([N-]);!$(N#*);!$([ND3]);!$([ND4
]);!$(N[c,O]);!$(N[C,S]=[S,O,N]):2]>>[c:1][N:2] nucl_sub_aromatic_ortho_nitro

[c;$(c1ccc(N(~O)~O)cc1):1][Cl,F].[N;$(NC);!$(N=*);!$([N-]);!$(N#*);!$([ND3]);!$([ND4
]);!$(N[c,O]);!$(N[C,S]=[S,O,N]):2]>>[c:1][N:2] nucl_sub_aromatic_para_nitro

[N;$(N-[#6]):3]=[C;$(C=O):1].[N;$(N[#6]);!$(N=*);!$([N-]);!$(N#*);!$([ND3]);!$([ND4])
;!$(N[O,N]);!$(N[C,S]=[S,O,N]):2]>>[N:3]-[C:1]-[N+0:2] urea

[N;$(N-[#6]):3]=[C;$(C=S):1].[N;$(N[#6]);!$(N=*);!$([N-]);!$(N#*);!$([ND3]);!$([ND4])
;!$(N[O,N]);!$(N[C,S]=[S,O,N]):2]>>[N:3]-[C:1]-[N+0:2] thiourea
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