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Abstract

Quantum gases of Alkaline-Earth like (AEL) atoms like Ytterbium provide novel and intricate
new features which make them particularly interesting for the investigation of quantum many-body
physics. Their rich level structure gives rise to long-lived meta-stable states and the possibility to
create state-selective optical lattice potentials. Ytterbium is a particular well-suited species because
it offers all benefits of AELs including multiple stable fermionic as well as bosonic isotopes.

In this thesis, the setup of a quantum gas machine capable of producing ultracold samples of different
isotopes of Ytterbium is presented. A new bichromatic, three beams optical dipole trap which realizes
deep initial trapping with high trap frequencies, while still able to create an ultracold sample with
low average trap frequencies of ω̄ = 2π × 36 Hz is implemented. Pure Bose-Einstein condensates
with up to N = 2 ·105 and degenerate Fermi gases with six spin components with up to 1 ·105 atoms
at T/TF = 0.18 are realized.

For the study of strongly correlated many-body systems a new optical lattice setup is presented which
consists of two substructures: a one-dimensional lattice used for addressing the meta-stable state
and a two-dimensional lattice formed by three interfering laser beams creating a triangular lattice
structure. The lattice is operated at the magic wavelength thereby suppressing intensity dependent
broadening and shifting of the clock transition. The beam shaping optics of the lattice are carefully
characterized and found to provide a very homogeneous phase front with phase front deviations
significantly below ∆φ = λ/4. Parametric heating, as well as lattice modulation spectroscopy, is
used to determine the depth of the lattice.

A new scheme based on a rapid-adiabatic passage on the meta-stable state transition allows efficient
and reliable meta-stable state preparation. Due to two-body losses a significant difference in the
adiabatic passage particle number dynamics for a spin polarized fermionic sample and a sample
consisting of atoms in six spin-states is found. The polarized gas shows a high transfer efficiency
while the spin state mixture shows a particle number dependent efficiency loss. This loss is explained
in terms of doubly occupied lattice sites and compared to the theoretical ground state atomic
distribution. To independently detect the number of excited state atoms a new detection system for
the meta stable state atoms based on a repumping is implemented.

By loading atoms in the meta-stable state into 1D-lattice tubes a dissipative Fermi-Hubbard model
is realized. By observing the time evolution of the particle number for a spin mixture a significant
deviation from a simple two-body loss model is observed. This is attributed to an effective decrease
in nearest neighbor particle correlation function g(2) on the order of a factor of five.

The here presented quantum gas machine and the developed techniques for preparation and detection
of excited state Ytterbium atoms is an ideal starting point for the investigation of strongly correlated
quantum many-body models and the study of dissipative Fermi-Hubbard systems.





Zusammenfassung

Quantengase aus Erdalkali-ähnlichen Atomen, wie z.B. Ytterbium, besitzen komplexe atomare Ei-
genschaften. Sie sind hervorragend geeignet, neuartige quanten viel-teilchen Systeme zu untersu-
chen. Die komplexe Energie-Niveau Struktur führt zu metastabilen Zuständen und der Möglichkeit
zustandsabhängige Optische Gitter zu erzeugen.

Diese Arbeit beschäftigt sich mit der Erzeugung und Untersuchung von Ytterbium Quantengasen,
sowohl fermionischer als auch bosonischer Spezies. Dafür wird neben dem Aufbau zur Kühlung von
kalten Ytterbium-Gasen insbesondere die optische Dipolfalle beschrieben. Diese Falle erlaubt das
effiziente fangen der Atome aus der Magneto-Optischen-Falle während gleichzeitig niedrige mittlere
Fallenfrequenzen von ω̄ = 2π × 36 Hz realisiert werden. Mit dieser Falle werden Bose-Einstein Kon-
densate mit N = 2 · 105 Teilchen und Entartete Fermi-Gase mit bis zu 1 · 105 bei einer Temperatur
von T/TF = 0.18 erzeugt.

Das neu aufgebaute optische Gitter besteht aus zwei Substrukturen: ein ein-dimensionales Git-
ter welches insbesondere zur Anregung des metastabilen Zustands benötigt wird, sowie ein zwei-
dimensionales welches aus drei interferierenden Strahlen besteht und eine dreieckige oder heaxa-
gonale Gitterstruktur erzeugt. Das Gitter wird durch einen Laser erzeugt der nahe der magischen
Wellenlänge operiert. Dies unterdrückt Intensitäts abhängige verschiebung und verbreiterung des
ultraschmalen optischen Übergangs. Die Phasenfronten die von der Strahlformungsoptik für das
Gitter mit dreieckiger Struktur erzeugt werden, werden mittels eines Interferometrischen Aufbaus
untersucht und Verzerrungen kleiner ∆φ = λ/4 ermittelt. Parametrisches Heizen als auch Gitter
Modulations Spektroskopie wird genutzt um die Gittertiefe zu bestimmen.

Die Erzeugung von Ytterbium Gasen im Metastabilen Zustand ist ein zentrales anliegen dieser Ar-
beit. Dazu wurde ein neues Verfahren entwickelt, welches auf einem schnellen adiabatischen Trans-
fer mittels des optischen Übergangs in den Metastabilen Zustand realisiert wurde. Durch Zwei-
Körper Verluste wird ein signifikanter unterschied in der Transfereffizienz zwischen einem Spin-
Polarisierten Gas und einer Spin-Mischung festgestellt. Dieser Unterschied wird durch doppelt be-
setzte Gitterplätze erklärt. Die experimentellen Daten passen qualitativ gut zu einem theoretischen
Grundzustandsdichte-Modell. Um die Teilchenzahl im angeregten Zustand zu bestimmen wurde ein
neues Detektions-System für die metastabilen Atome auf Basis eines Rückpumpers entwickelt und
charakterisiert.

Durch das Laden von metastabilen Atomen in ein ein-dimensionales optisches Gitter und unter Aus-
nutzung der Zweikörper-Verluste, wird ein dissipatives Fermi-Hubbard Modell untersucht. Die beob-
achtete Teilchenzahldynamik einer Spin-Mischung weicht deutlich von einem einfach Zwei-Körper-
Verlustmodell ab. Dies wird durch eine Abnahme der nächsten-nachbarn Korrelations-Funktion g(2)

um einen Faktor fünf erklärt.



Der hier dargestellte experimentelle Aufbau zum Realisieren von ultrakalten Ytterbium Gasen sowie
die entwickelten Methoden zur Erzeugung und Detektion von Gasen aus metastabilen Ytterbium
Atomen sind ein idealer Ausgangspunkt um stark korrelierte Quanten Viel-Teilchen Systeme und
dissipative Fermi-Hubbard modelle zu untersuchen.



Contents

1. Introduction 1

2. A Short Ytterbium Introduction 7
2.1. General Ytterbium Properties and Isotopes . . . . . . . . . . . . . . . . . . 7
2.2. Optical Transitions and their Properties . . . . . . . . . . . . . . . . . . . . 8

2.2.1. Broad Blue Transition . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2. Narrow Green Intercombination-Transition . . . . . . . . . . . . . . 10
2.2.3. Ultranarrow Clock-Transition . . . . . . . . . . . . . . . . . . . . . . 10

2.3. Properties of Ground- and Excited-State . . . . . . . . . . . . . . . . . . . . 11
2.3.1. Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2. Scattering Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3. Polarizabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Degenerate Quantum Gases of Yb 17
3.1. Laser Cooling and General Experimental Setup . . . . . . . . . . . . . . . . 18

3.1.1. Vacuum System and Laser Cooling . . . . . . . . . . . . . . . . . . . 19
3.1.2. Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3. 2D- & 3D-Magneto Optical Trap Performance . . . . . . . . . . . . . 21

3.2. Bichromatic Dipole Trap Setup . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1. Fundamental Relations . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2. Design Considerations for the Bichromatic Dipole Trap . . . . . . . 25
3.2.3. Beam Alignment and Evaporation Scheme . . . . . . . . . . . . . . . 27

3.3. Bose-Einstein Condensation with the Bichromatic Dipole Trap . . . . . . . 28
3.3.1. Temperature and Particle Number during the Evaporation . . . . . 28
3.3.2. Trap Frequency Measurement . . . . . . . . . . . . . . . . . . . . . . 31
3.3.3. Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4. Ultracold Fermi Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1. Spin Preparation and Spin Detection . . . . . . . . . . . . . . . . . . 33
3.4.2. Degenerate Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35



4. A Magic Optical Lattice for Yb 37
4.1. Design of the Optical Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1. Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.1.2. Wavelength and Laser . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3. Achievable Lattice Depth, Trap Frequencies, and Recoil Suppression 40
4.1.4. Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2. Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3. Beam Shaping Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1. 1D-Beam Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3.2. 2D-Beam Shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4. Integration and Characterization of the Optical Lattice . . . . . . . . . . . 48
4.4.1. Beam Alignment and Polarization . . . . . . . . . . . . . . . . . . . 50
4.4.2. Momentum Distribution of Bosons and Fermions out of the 2D-lattice 50
4.4.3. Lattice Depth Calibration . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.4. Characterization of the Fiber Noise Cancellation System . . . . . . . 54

4.5. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5. Excited State Preparation and Detection 59
5.1. Adressing the Clock-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.1.1. High-Finesse Resonator and High-Bandwidth Control Loop . . . . . 60
5.1.2. Switching-Setup and Frequency-Sweeping . . . . . . . . . . . . . . . 62

5.2. Excited State Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2.1. Repumping Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.2.2. Imaging sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.3. Repumper Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3. Rapid Adiabatic Passage on Clock Transition . . . . . . . . . . . . . . . . . 66
5.3.1. Principle of Adiabatic Passages . . . . . . . . . . . . . . . . . . . . . 66
5.3.2. Experimental RAP Sequence . . . . . . . . . . . . . . . . . . . . . . 69
5.3.3. RAP using a Polarized Gas . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.4. RAP using a Spin-Mixture . . . . . . . . . . . . . . . . . . . . . . . 71
5.3.5. Differential Rabi Frequencies . . . . . . . . . . . . . . . . . . . . . . 72
5.3.6. Influence of Double-Occupancies on the RAP . . . . . . . . . . . . . 73
5.3.7. Initial Higher-Band Population . . . . . . . . . . . . . . . . . . . . . 77
5.3.8. Summary of Spin Mixture RAP . . . . . . . . . . . . . . . . . . . . . 77

5.4. RAP for the Study of the Kondo Lattice Model . . . . . . . . . . . . . . . . 78
5.4.1. Broadening of the Clock Transition in a Non-Magic Lattice . . . . . 78
5.4.2. Experimental Parameters for a RAP in the Non-Magic Optical Lattice 80

5.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6. Dissipative Dynamics with Ultracold 173Yb 81
6.1. Dissipative 1D-Fermi-Hubbard Model . . . . . . . . . . . . . . . . . . . . . 82

6.1.1. Theoretical Description of Open Quantum Systems . . . . . . . . . . 82



6.1.2. Effective Loss-Rate and Rate-Equation . . . . . . . . . . . . . . . . . 83
6.1.3. Mott-Insulator vs. Zeno-Insulator . . . . . . . . . . . . . . . . . . . 86

6.2. Experimental Realization of a Dissipative-Fermi Hubbard Model . . . . . . 86
6.2.1. Experimental Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.2.2. Lifetime of a Polarized-Fermi-Gas in the Excited-State . . . . . . . . 88
6.2.3. Lifetime of Spin-Mixtures in Shallow 1D-Lattices . . . . . . . . . . . 92
6.2.4. Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3. Possibility of Loss-Measurements as a Probe for the Initial State . . . . . . 98
6.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7. Summary and Outlook 101

A. Comparison of Lifetime Models 103

B. Rapid Adiabatic Passage Interaction Hamiltonian 107

Bibliography 109





1. Introduction

One of the major challenges in physics is the understanding and description of interacting
quantum many-body systems. Even though the fundamental interactions of atoms among
each other are well understood, physical systems consisting of a large amounts of atoms
embedded in complex spatial structures are very difficult to describe because of the expo-
nential growth of the Hilbert space [1]. This holds especially true for the case of strong
interactions where static as well as dynamical properties are heavily influenced by corre-
lations. A prime example of this are high-temperature superconductors whose behavior is
attributed to strong correlations [2]. Heavy-Fermion materials are another example of a
solid-state material where the emerging macroscopic behavior is attributed to correlations
and interations [3]. One path to mitigate the problem of growing complexity is reducing the
studied systems to its fundamental building blocks. The continuous development of new
tools and techniques to exert control over the quantum state and search for new ways of
extracting informations about the correlations of the system is a major effort undertaken
by experimental and theoretical physicists around the world.

One very successful approach to study quantum many-body systems in great detail is the
field of ultracold quantum gases. When such a gas is loaded into an optical lattice [4, 5],
these systems provide a reliable and highly controllable structure which allows the re-
alization of a simplified, yet powerful and important model of solid-state systems: the
Hubbard-model [6]. This model incorporates the fundamental processes which are present
in solid-state materials, namely inter-atomic interactions and tunneling from one lattice site
to the next. When this is realized in a quantum gas experiment with bosonic atoms, the
result is a simulation of the Bose-Hubbard model. Within this model, the Mott-insulator
state was realized and the associated phase transition detected [7]. The implementation of
the Fermi-Hubbard model followed shortly thereafter [8, 9] and provided another fundamen-
tal cornerstone for the simulation of complex materials by adding the additional complexity
of Fermi-Dirac statistics.

Since these experimental milestones, a lot of experimental work has been performed to in-
crease the understanding and control of these systems. The single-site resolved detection of
atoms in optical lattices for bosons [10, 11] and recently fermions [12–15] opened up not only
new possibilities to observe dynamics but enabled completely new ways for quantum state
engineering [16]. These advances lead to the detection of anti-ferromagnetic correlations in
a Fermi-Hubbard model [17] and the study of entanglement in many-body systems [18] to
name only a few very recent examples.
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Another similarly successful route to simulate more complex, but still easily controllable
artificial materials is the implementation of driven and non-cubic lattice structures [19–
21]. The non-cubic structure not only creates intricate ground state band structures but is
most often accompanied with the possibility to fundamentally alter the band structure and
ground state by lattice shaking techniques. These techniques opened up the possibilities to
study topological bands and even access the Berry curvature [22] with momentum resolution
[23]. The emulation of artificial gauge fields and the simulation of an Ising-XY spin model
[24] or the observation of chiral superfluidity [25] are equally impressive demonstrations of
the versatility of driven or non-cubic optical lattices.

A third actively pursued direction in expanding the possibilities of quantum gas experiments
is the use of atoms with new atomic properties. Besides atoms with a large dipole moment
like Erbium [26] or Dysprosium [27] a prominent example of this effort is the trapping and
cooling of Ytterbium which was pioneered by the Kyoto group [28] and is now pursued
in different research facilities around the world. Alkaline-earth like (AEL) atoms like Yt-
terbium but also Strontium [29] and Calcium [30] have two outer electrons which lead to
the existence of long-lived meta-stable electronic states. This allows AELs to be used as a
reference oscillator for the most stable optical lattice clock in the world [31]. Further, the
meta-stable states allow the implementation of model systems with additional orbital de-
grees of freedom, one of the most prominent being the Kondo-Lattice model (KLM) [32, 33].
The KLM describes a system of mobile and immobile spins on a lattice which interacts via
a spin-exchange interaction [34, 35]. Heavy fermion materials are expected to be described
by the KLM. These materials are characterized by a huge increase in electron mass and
show a variety of exotic ground state phases governed by correlations [3]. Using a state-
selective lattice producing a shallow trapping potential for ground state and a deep optical
lattice of the meta-stable excited state atoms the KLM can be realized using a Ytterbium
quantum gas. These are only two examples of the huge success and potential of quantum
gases consisting of Ytterbium atoms. The prediction and observation of a novel kind of
orbital Feshbach resonances [36–38], realized spin-orbit-coupling [39, 40], the possibility to
realize quadrupole interactions [41], the observation of chiral edge states [42] and schemes
for implementing quantum computation [43] are further examples for the versatility of an
AEL atom like Ytterbium in the context of quantum many-body physics.

The realization and success of quantum gases as a means to study complex many-body
phenomena was largely enabled by the large degree of control and strong decoupling from
the environment. While the decoupling is absolutely necessary to realize a quantum gas,
decoherence and dissipative processes are a fundamental aspect of real-world quantum sys-
tems. The understanding of decoherence, particle loss and in general the influence of a bath
coupled to a quantum system on the buildup or destruction of correlations is not only of
interest for fundamental research but has very practical purposes in the fields of quantum
information processing and quantum cryptography [44–46]. In the context of quantum gases
in optical lattices, most often dissipation is present in some form of particle loss. The rate
at which a loss occurs can influence the dynamics of the studied system heavily. Two-body

2



Introduction Chapter 1

losses, which occur when two atoms occupy the same lattice site, are a type of loss which
is highly correlated because it occurs only when two atoms interact with each other. The
loss acts as a continuous measurement of the double occupancy of a lattice site. Due to
the quantum Zeno effect [47, 48] this can lead to a suppression of tunneling to occupyed
lattice sites. The strength of this suppression depends on the loss-rate, tunneling rate and
elastic interaction strength. A scenario with strong two-body losses in an optical lattice was
studied experimentally in [49] and theoretically in [50]. In these studies, bosonic molecules
are loaded into 1D-lattices and allowed to tunnel. These molecules posses a strong two-
body onsite loss-rate. From the time evolution of the number of particles, the creation of a
highly correlated many-body state was deduced. A comparable experiment using fermionic
molecules was performed in [51] and theoretically discussed in [52]. The experiment used
the loss measurement to determine a filling fraction of the atoms in the optical lattice while
theoretical studies revealed the importance of multiband calculations when the loss-rate is
large. The crossover from the weak to strong measurement regime was observed in [53].
Using photo-association of atom pairs the two-body loss rate could be tuned over a wide
range and an effective localization of atoms in the strong measurement regime was observed.
Quantum Zeno-like dynamics can also be observed by a single particle loss. This path was
taken by an experiment using a scanning electron microscope (SEM) [54]. This setup used
an electron beam and its superior spatial resolution to induce a localized loss in a BEC and
the onset of Quantum-Zeno dynamics could be observed. Recently the creation of a highly
entangled many-body state through dissipation was proposed when an AEL atom is loaded
into 1D-lattice tubes [55] and it was theoretically shown how dissipation can be used for
quantum state engineering [56]. These experimental realizations, as well as the proposed
experiments, show the huge opportunities for studying fundamental questions in quantum
many-body physics with dissipative interactions.

In this thesis two of the frontiers outlined above are addressed: a quantum gas machine
capable of producing ultracold samples of bosonic as well as fermionic Ytterbium samples is
realized and a non-cubic lattice with a triangular or honeycomb structure. Additionally, a
new preparation scheme to create ultracold samples of excited state atoms based on a rapid
adiabatic passage is presented. These ingredients are then combined to study a dissipative
Fermi-Hubbard model which allows the observation of a reduction in the nearest-neighbor
correlation function g(2).

Structure of this Thesis

The thesis begins with a short introduction to the most important properties of Ytterbium
in chapter 2. The focus lies on the features most relevant for the remainder of the text. The
quantum gas machine itself is based on the all-optical creation of Ytterbium Bose-Einstein
condensates (BEC) or degenerate Fermi gases (DFG) using a three-beam optical dipole
trap. The dipole trap is loaded directly from a Magneto-Optical trap (MOT). The setup

3
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Figure 1.1. | Lifetime of a two-spin 173Yb mixture in 6ER deep 1D-lattice tubes. Shown
is a lifetime measurements for a two-spin state mixture with loss-rate fits for short and long
times of the data. The fits show two-particle losses N(t) ∼ N2 with constant nearest-neighbor
correlation function g(2) for short and long timescales.

used to create and detect quantum gases is the focus of chapter 3. A previous dipole trap
setup [57, 58] was able to create ultracold samples of Ytterbium but had the drawback of
high average trap frequencies. The new setup based on two distinct evaporation phases with
three different trapping beams reduces the trap frequencies by almost a factor of three. The
new evaporation scheme is characterized in terms of phase-space density and evaporation
efficiency as well as lifetime and trap frequency measurements. The new dipole trap is
an ideal starting point for loading atoms in the optical lattice which will be the focus of
chapter 4. This chapter presents the implementation of a non-cubic, triangular lattice and
the control of the lattice depth. A major concern while setting up the lattice system was
the quality of the beam shaping optics and thus is an important topic of this chapter. In
chapter 5 the optical lattice and a fermionic Ytterbium quantum gas is used to develop and
characterize a preparation method to create fermionic Ytterbium samples in the meta-stable
state. The method is based on a rapid adiabatic passage (RAP) using the ultranarrow clock
transition which allows highly stable and repeatable creation of meta-stable Ytterbium
samples. In particular, the difference between samples consisting of atoms in one spin-
state and samples consisting of atoms in more than one spin-state will be discussed in

4
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depth. Further, a new detection system for direct atom counting of atoms in the excited-
state is presented. Chapter 6 bridges all topics discussed in the chapters before. Here a
Fermi-Hubbard model in 1D-lattice-tubes with a dissipative component is realized. The
dissipation is the result of two-body losses between interacting atoms in the meta-stable
state. A typical lifetime measurement for a sample consisting of atoms in two different
spin-states in this system is shown in figure 1.1. From this measurement, it already can
be seen that distinctive timescales are present in the data and a simple two-body loss rate
equation model is not enough to capture the observed dynamics. The reduction in loss-rate
is attributed to a decrease in nearest-neighbor particle correlations as will be discussed in
the chapter. Chapter 7 summarizes the experimental results obtained in this thesis and will
show future research possibilities along the lines of the loss-measurements presented here
but also in terms of the possibility to implement the KLM.

5
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Publication

Publikationen
Im Rahmen der vorliegenden Arbeit ist die
folgende wissenschaftliche Veröffentlichung
entstanden.

Publications
The following research article has been pub-
lished in the course of this thesis.

[P1] S. Dörscher, A. Thobe, B. Hundt, A. Kochanke, R. LeTargat, P. Windpassinger,
C. Becker, and K. Sengstock, Creation of quantum-degenerate gases of ytterbium in
a compact 2D-/3D-magnetooptical trap setup, Review of Scientific Instruments 84,
043109 (2013)
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2. A Short Ytterbium Introduction

In recent years alkaline earth like (AEL) atoms attracted a lot of attention in the field
of ultracold quantum gases. Their rich level structure, governed by two electrons in the
outermost shell, open up new and exciting possibilities for metrological as well as quantum
many-body research. This chapter serves as an introduction as well as a reference for the
most important atomic properties of Yb, focussing on the aspects relevant to this thesis.
For more and complementary information see e.g. [57–60].

Starting with a general introduction to Ytterbium in section 2.1 the remainder of this
chapter focusses on optical transitions and their properties (section 2.2) as well as the
magnetic and scattering properties of the two most relevant atomic states (section 2.3).

2.1. General Ytterbium Properties and Isotopes

Ytterbium belongs to the group of Alkaline-Earth-like (AEL) atoms with completely filled
inner shells and two outer s-shell electrons. The two s-shell electrons not only allow Ytter-
bium to be used as an optical clock but gives rise to many fascinating, in terms of quantum
gases new and sometimes limiting atomic properties, like state-selective trapping potentials
[61], optical Feshbach resonances [62] or strong two-body losses.

In terms of ultracold quantum gases and laser cooling, the properties of AEL atoms are
governed by the low lying energy states. In the 1S0 (also labeled |g〉) ground state the two
valence electrons form a spin-singlet with total spin S = 0. Transitions to and from the
ground state which changes the spin state are electric-dipole forbidden (∆S = 0 selection
rule) and thus suppressed. This gives rise to a Helium-like structure. Transitions which
change from a spin-singlet into a spin-triplet are called intercombination-transitions. Be-
cause of perturbations of pure LS-coupling (Russel-Saunders coupling) a small admixing of
allowed states (especially the dipole allowed transition to 1P1) opens up the possibility for
transitions into the 3P0,1,2 manifold [63] (3P0 also labeled |e〉 and called excited state or clock
state). The Helium-like splitting into singlet and triplet-states gives rise to one of the most
interesting features of Ytterbium which is the existence of narrow-linewidth states allowing
e.g. efficient cooling and trapping in a magneto-optical trap (MOT) and to transfer atoms
into states which can be regarded as stable on experimental timescales. These states can
be used as another degree of freedom in the system. A sketch of the transitions discussed
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3P0

3P1

3P2

1P1

1S0

λ=399nmΓ=29MHz

λ=578nmΓ < 10mHz

λ=556nmΓ=182kHz

singlet triplet

Figure 2.1. | Lowest lying energy levels and optical transitions of Ytterbium. Shown
are the lowest energy levels of Ytterbium and the most relevant optical transitions. The level
structure is governed by a Helium-like splitting in spin-singlet and spin-triplet states. Intercom-
bination transitions connecting singlet- and triplet-states are suppressed as indicated by their
narrow linewidth. The states 3P0,2 are called clock states because of their long lifetime in the
multiple second regime. The transition into the 3P2 state is omitted here.

here is shown in figure 2.1. There exists a multitude of other transitions which are omitted
here. Some of them will be discussed in the course of this thesis when needed.

Beside the existence of long-lived meta-stable excited states a second striking feature of
Ytterbium is the existence of seven radiative stable isotopes. Two of these isotopes are
fermions and five are bosons. All of them are naturally available but with significantly
different abundances. All stable isotopes with their percentage of abundance and nuclear
spin are shown in table 2.1.

From these seven isotopes, Bose-Einstein condensation (BEC) has first been achieved by
the Kyoto group using 174Yb [65]. 174Yb has very favorable properties regarding abundance
(see table 2.1) and scattering properties (discussed below) which make it an ideal choice for
the production of bosonic Ytterbium quantum gases. Next a degenerate Fermi-gas (DFG)
of 173Yb was reported [66]. Most other isotopes have been cooled to degeneracy and various
isotope mixtures were realized [67, 68].

2.2. Optical Transitions and their Properties

In the following the optical transitions and their properties in terms of laser-cooling and
their usage in the experimental cycle are discussed.

8
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A Abundance (%) I Statistic

168 0.12 0 boson
170 2.98 0 boson
171 14.09 1/2 fermion
172 21.68 0 boson
173 16.10 5/2 fermion
174 32.03 0 boson
176 13.00 0 boson

Table 2.1. | Ytterbium isotopes and their natural abundance. This table lists all stable
isotopes of Ytterbium. Shown is their atomic mass number, relative abundance, total nuclear
spin and whether the isotope is a fermion or boson. Data taken from [64].

2.2.1. Broad Blue Transition

The 399 nm blue transition connects the 1S0 and the 1P1 spin-singlet state. The transition
is dipole allowed which results in a broad linewidth of [69]

Γ 399nm = 2π × 29 MHz. (2.1)

This large linewidth (approx. a factor of five larger compared to the Rubidium D1 or D2
transition [70]) results in a high Doppler temperature [71] of

TD = ~Γ 399nm
2kB

≈ 696µK. (2.2)

The large linewidth allows efficient capture of thermal atoms. The blue transition is thus a
very well suited candidate for precapture and precooling of atoms with a thermal velocity
distribution, e.g. cooling in a 2D-MOT or slowing an atomic beam from an atomic oven
in a Zeeman-slower configuration. Additionally the 1S0 → 1P1 transition is well suited for
absorption imaging of atomic clouds [72]. Typical imaging laser systems have linewidths
of few 100 kHz which is two orders of magnitude smaller then the natural linewidths of
the blue transitions making the imaging somewhat insensitive to frequency fluctuations.
Additionally, the large linewidth results in a high saturation intensity of Isat ≈ 60 mW/cm2

and thus the low-intensity regime for absorption imaging is easily reached.

All bosonic isotopes of Ytterbium have F = 0 in the ground state and F ′ = 1 in the 1P1
state. This means that there is only one transition F = 0 → F ′ = 1 available for cooling.
For the fermionic isotope 173Yb F = 5/2 and in the 1P1 state F ′ = 7/2, F ′ = 5/2 and
F ′ = 3/2. Cooling is typically performed on the F = 5/2→ F ′ = 7/2 transition. Details of
the transitions, energy shift etc. can be found in [57, 58].

For the bosonic isotopes with F = 0 Subdoppler-cooling is not possible and thus the
Doppler-temperature is the limit in achievable cooling performance. 700µK is too hot

9
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for starting an efficient evaporative cooling and thus another optical transition is needed
for achieving a colder temperature for efficient transfer from a MOT into the dipole trap.

2.2.2. Narrow Green Intercombination-Transition

The green intercombination transition 1S0 → 3P1 is the solution to the problem of the high
Doppler-temperature of the blue transition.

For pure LS-coupling transitions with ∆S 6= 0 are electric-dipole forbidden [73] and thus
no transitions between 1S0 and 3P1 should exist. However in the case of heavy nuclei the
spin-orbit interaction can not be treated as a perturbation to the LS-coupling scheme [73, p.
88]. The state 3P1 is in reality a mixture of the pure LS-states 3P0

1 and 1P0
1 [63]. The pure

state 1P0
1 is electric-dipole coupled to the ground-state and thus a small coupling between

1S0 and 3P1 exists. See the aforementioned references and [59] for details. This coupling is
still small resulting in a narrow linewidth of [74]

Γ 556nm = 2π × 182 kHz. (2.3)

This linewidth corresponds to a Doppler-temperature of

TD = ~Γ 556nm
2kB

≈ 4.4µK. (2.4)

This temperature is again a limit for atoms without magnetic substructure as for the bosonic
Ytterbium isotopes. The narrow linewidth allows creating cool samples which can be loaded
and evaporatively cooled in e.g. optical dipole traps. It is thus very well suited as a second
cooling stage after precooling on the broad blue transition.

2.2.3. Ultranarrow Clock-Transition

For the physics to be studied with Ytterbium the clock transition is arguably the most
important optical transition. The transition from the ground state to the clock state 3P0
in LS-coupling is doubly forbidden (∆S = 0 and J = 0 6↔ J ′ = 0).

The spin-orbit interaction weakens the selection rule ∆S = 0 as before but J = 0 6↔ J ′ = 0
is still valid. This can only by circumvented by hyperfine interactions effectively coupling
3P0 to 1S0 [63]. Because only the fermionic isotopes have a nuclear spin only the fermions
have a small but finite transition probability and thus only with 173Yb or 171Yb a direct
excitation of the clock transition is possible. To transfer atoms into 3P0 in one of the bosonic
isotopes a technique called magnetic field-induced spectroscopy [75] can be employed. The
linewidth of 173Yb and 171Yb was determined to [76]

Γ578nm < 10 mHz. (2.5)

As for the ground-state, the electronic angular momentum J is zero.

10
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2.3. Properties of Ground- and Excited-State

For the creation of ultracold gases of Ytterbium and for the study of many-body dynamics
the elastic and inelastic scattering properties of Ytterbium are very important. Together
with the magnetic properties of the ground and excited state, they are discussed in this
section.

2.3.1. Magnetic Properties

1S0 as well as the 3P0 have both electronic angular momentum of J = 0. The total angular
momentum is therefore given by the nuclear spin I. In the case of the bosonic isotopes
I = 0. The fermions possess a nuclear spin (I = 5/2 and I = 1/2 respectively) so the
atoms are susceptible to external magnetic fields. The Zeeman-effect shifts the energy E of
a atomic level in a magnetic field B according to [77]:

∆EZ = gFµBmFB (2.6)

with mF being the Hyperfine substate and µB the Bohr-magneton. gF is the Landé-factor
which in the case of J = 0 is

gF = µN
µB

gI (2.7)

where µN is the nuclear magneton and gI is the nuclear Landé-factor. The nuclear-magneton
is approximately 1800 times smaller compared to the Bohr-magneton and thus the sensitiv-
ity to magnetic fields is suppressed accordingly. As a downside, this means that practically
magnetic trapping of all isotopes of Ytterbium is very difficult because of the large magnetic
fields needed. Furthermore, a spatial separation of atoms in different spin-states during
time-of-flight (TOF) using magnetic gradients is also impractical (Stern-Gerlach separa-
tion). On the upside, the insensitive to magnetic fields allows high precision metrology
applications where insensitivity to external stray fields is paramount.

Differential Zeeman Shift In principle, both states 1S0 and 3P0 should be equally sensitive
to magnetic fields. However due to the mixing of other states into 3P0 as discussed in the
previous chapter the excited-state has a slightly different nuclear Landé-factor. This results
in a differential Zeeman shift between the two states. The two states have Zeeman shifts of
[78]:

∆EZ,|g〉 ≈ −207.15 Hz/G×mfB

∆EZ,|e〉 ≈ −93.77 Hz/G×mfB
(2.8)

and with this numbers a total differential Zeeman shift of:

δZ = 113.4 Hz/G×mfB (2.9)

11
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Isotope 168Yb 170Yb 171Yb 172Yb 173Yb 174Yb 176Yb
168Yb 252 117 89 65 38 2 -358
170Yb 64 36 -2 -81 -517 209
171Yb -3 -8 -577 428 141
172Yb -598 417 200 106
173Yb 199 138 80
174Yb 105 54
176Yb -24

Table 2.2. | Scattering lengths between all Yb isotopes in the ground state. Given are
the elastic s-wave scattering lengths between all combinations of Yb isotopes in the 1S0 in units
of a0. Data from [80].

2.3.2. Scattering Properties

Elastic Scattering

At low enough temperatures (below ∼ µK [79]) collisions between atoms are governed
by s-wave scattering which is characterized by the sign and the magnitude of the s-wave
scattering length a. The scattering length a for Ytterbium atoms in the 1S0 or 3P0 state
is independent of the particular nuclear spin setting. Furthermore, the spin states are
conserved during elastic scattering events. This can be seen when considering the direct
coupling of the nuclear spins between two colliding atoms is expected to be extremely weak
[32]. The only way a collision could change the nuclear spin is via the electronic cloud. Both
states 1S0 and 3P0 have no net electronic angular momentum and therefore the nuclear spin
does not couple to the electronic cloud [32]. Therefore collisions between atoms in the
1S0 and/or 3P0 state conserve the nuclear spin setting during scattering events. The spin
conserving interaction between |g〉 ↔ |g〉, |e〉 ↔ |e〉 and |g〉 ↔ |e〉 atoms is said to be SU(N)
symmetric (with N the number of spin states) and it is predicted that this symmetry leads
to novel magnetic phases [32]. The ground state scattering lengths between all Ytterbium
isotopes have been measured and are presented in table 2.2.

Notably the intraspecies scattering lengths of 173Yb and 174Yb are very well suited for direct
evaporative cooling (compare with the 87Rb s-wave scattering lengths of about 100a0 [81]
which is known for efficient evaporative cooling). Due to the almost vanishing scattering
length for 171Yb it is not possible to perform homo-nuclear evaporative cooling. However
sympathetic cooling with 173Yb is possible [68] and thus opens up the possibility to study
systems with negligible atom-atom interactions which will be become relevant in the future
as discussed in chapter 6.

Note that while the scattering lengths are independent of mf they are dependent on the

12
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Isotope 173Yb 171Yb

agg 199 −3
aee 306 -
a+
eg 3300 −25
a−eg 220 -

Table 2.3. | Scattering lengths for the fermionic isotopes. Given are the elastic s-wave
scattering lengths for both fermionic isotopes for scattering between ground- and excited-states.
Data given in a0. Table from [59] with data from [34, 35, 80, 82].

electronic state of the atoms. Beside |g〉 ↔ |g〉 and |e〉 ↔ |e〉 the symmetric as well as
anti-symmetric collision channels between |g〉 ↔ |e〉 need to be taken into account. This
leads to four different scattering lengths:

|gg〉 ⊗ |s〉 → agg

|ee〉 ⊗ |s〉 → aee

(|eg〉+ |ge〉)⊗ |s〉 → a+
eg

(|eg〉 − |ge〉)⊗ |t〉 → a−eg

(2.10)

Here |s〉 labels the spin-singlet state and |t〉 labels the spin-triplet and are included to cor-
rectly anti-symmetrize the wavefunction. The four scattering lengths have been measured
for 173Yb but are only partially known for 171Yb. The known values are presented in table
2.3. Note the vastly different scattering lenghts for a+

eg and a−eg which is a result of the
particular molecular potential of 173Yb.

Inelastic Scattering

While the 3P0 state has long radiative lifetimes it is not the energetic ground state of
the atom. Interactions with other atoms can induce relaxation processes. During these
collisions, the energy stored in the atom is released and converted to kinetic energy [83, 84]
while the atoms undergo transitions into the 1S0 state. Typically the energy released is so
large that the atoms are lost from all trapping potentials. The details of these collisions
are complicated and depend on the molecular potential of the involved isotopes and their
respective electronic state. The shape and properties of these potentials are only partially
known. For Strontium some theoretical, as well as experimental work in this area, has
been done [83, 85–89]. Experimental loss measurements for Ca are found in [90]. For
Ytterbium fewer theoretical studies on the molecular potentials are available. See [91] for
calculations of the lowest molecular energy states in Yb2. Experimental work regarding loss
measurements can be found in [34, 79, 82, 92].

In the context of this thesis two loss processes involving the 3P0 state are of interest:

13
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Isotope 173Yb 171Yb

βee 2.2× 10−11 5× 10−11

β+
eg 3.9× 10−13

β−eg < 3× 10−15

βeg 5× 10−11

Table 2.4. | Inelastic scattering coefficients for the fermionic isotopes. Loss coefficients
for the two fermionic isotopes. For 171Yb the loss coefficient was measured at µK temperatures
thus p-wave scattering is included in the values given. For lower temperatures a slight decrease
of the values are expected [79]. The authors in [34] note that β+

eg for 173Yb was measured
in a quasi 2D system and expect a significant increase of the values for 3D-systems [59]. All
numerical values given in cm3/s. Table from [59].

• 1S0 ↔ 3P0 inelastic scattering.

• 3P0 ↔ 3P0 inelastic scattering.

These scattering processes are two-body losses and are characterized by a loss coefficient
β. The loss coefficient relates the time evolution of the density of an atomic sample to the
density of the two involved scattering partners:

dne
dt = −βeen2

e (2.11)

βee is the loss-coefficient for 3P0 ↔ 3P0 inelastic scattering while 1S0 ↔ 3P0 losses are
denoted with β+

eg and β−eg. The total time evolution of a mixture of unpolarized |g〉 and |e〉
atoms is described by [79]:

ṅg = −Γgng − βegngne
ṅe = −βeen2

e − Γene − βegngne
(2.12)

where single particle losses Γg and Γe are included but the difference in β+
eg and β−eg is ne-

glected for brevity. Numerical values for βee and β±eg for the fermionic isotopes are available
and are shown in table 2.4.

In the experiments described in this thesis typical atomic densities in optical lattices are in
the order of 1014/ cm3. Using the data for 173Yb from table 2.4 loss-rates of

Γee = βee × 1014 cm3/s ≈ 1000/ s
Γeg = βeg × 1014 cm3/s ≈ 10/ s

(2.13)

are expected.
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2.3.3. Polarizabilities

Laser light interacting with an atom induces an atomic dipole moment [93]. The induced
dipole moment interacts with the electromagnetic field. The interaction energy in a laser
field with intensity I is:

Udip ∝ Re(α) I (2.14)

The strength of the interaction is given by the complex polarizability α. Due to the different
electronic structure of 1S0 and 3P0 these polarizabilities are different for the two states and
depend on the laser wavelength. By summing up the contributions of the individual optical
transition connecting the two states with higher energy levels αe/g is calculated. The result
is shown in figure 2.2.
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Figure 2.2. | Real part of complex polarisability of Yb. Shown is the real poart of the
complex polarisability of the the ground and excited state of Ytterbium. Re(α) is calculated
by summing up relevant optical transitions connecting the two states to other energy levels.
The 556 nm intercombination transition as well as the 3P0 ↔ 3S1 transition at 649 nm are
clearly visible. To the right side the beginning of the 3P0 ↔ 3D1 transition at 1388 nm can
be identified. The points of equal polarisability (“magic” wavelength) is experimentally and
theoretically determined to be 759 nm. The discrepancy between the here presented calculation
can be resolved by a relativistic many body calculation [94].

The dominant transition for the ground state is the principal 399 nm transition which results
in an attractive dipole potential for almost all wavelengths above 399 nm with the exception
of the region around 556 nm. For the exited state the dominant contribution is 3P0 ↔ 3S1
at λ = 649 nm which results in an attractive potential from λ = 649 nm up to about
λ = 950 nm. Beyond λ = 950 nm the influence of the 3P0 ↔ 3D1 transition at 1388 nm
dominates resulting in a repulsive interaction for the excited state while the ground state
still experiences an attractive potential. The wavelength where αe = αg is called “magic”
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wavelength and is important to suppress intensity induced broadening and shifting of the
clock-transition (see section 4.1.2 and section 5.4). The magic wavelength was measured to
λm = 759 nm [95]. This differs by more then ∆λ > 30 nm from the polarisability crossing
calculated here. The difference is resolved by a relativistic many-body calculation performed
in [94].

The possibilities offered by the differential polarisabilities will be discussed further in chapter
5.4 but it is already apparent that the electronic structure of Yb allows working with
mixtures of 1S0 and 3P0 in trapping potentials which are trapping, anti-trapping or do not
influence atoms in the ground or excited state at all.

2.4. Conclusion

In this chapter, the most fundamental properties of Ytterbium were presented. Most impor-
tantly is the fact that next to elastic scattering there exists significant inelastic scattering
channels when atoms in the excited state scatter with other atoms, either in the ground
or excited state. While losses are often seen as an obstacle to performing meaningful mea-
surements later in this thesis it is shown how these losses can be used to study many-body
dynamics and extract useful information about Fermi-Hubbard systems.
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3. Degenerate Quantum Gases of Yb

The cooling of Alkaline-Earth like (AEL) atoms like Ytterbium or Strontium is a very active
field of research because of their unique atomic features. While quantum degenerate gases
of Ytterbium [66] as well as Strontium [29] have already been realized a couple of years ago,
laser cooling and trapping and successive evaporative cooling is a challenging task. The
negligible ground state magnetic moment makes trapping using standard magnetic traps
impossible. To reach the quantum degenerate regime, trapping and cooling using optical
dipole traps [93] is the solution to this problem. While a standard in the field of ultracold
quantum gases after precooling in a magnetic trap, the all optical creation of degenerate
gases brings its own set of challenges: the initial temperature of the atoms need to be as
low as possible while the initial depth of the dipole trap needs to be deep enough, the
trap frequencies need to be high to be able to evaporate quickly and on the other hand
low final trapping frequencies at the end of the evaporative cooling cycle are required to
create a homogeneous sample which can be effectively loaded into the optical lattice. These
requirements can contradict itself because of finite laser power which can make it impossible
to find a single, crossed dipole trap which is able to fulfill all requirements.

The solution to this problem presented here is a three beam crossed dipole trap. The system
is based on three focussed laser beams operated at different wavelengths, beam waists, and
intensities. Initial loading from the magneto-optic trap (MOT) is carried out by a tightly
focused, high power beam. The gas is cooled near quantum degeneracy and is then loaded
into two crossed beams with significantly larger beam waists. Final evaporative cooling
yields a quantum degenerate gas for bosons as well as for fermions.

In this chapter first an overview of the experimental setup is given and precooling and cool-
ing in the 2D-/3D-MOT setup is briefly described and characterized (section 3.1). There-
after the dipole trap system and evaporative cooling scheme is presented (section 3.2) and
characterized in detail using a quantumgas of bosons (section 3.3). The same evapora-
tion scheme as for the bosons is used in section 3.4 to create a Fermi gas with arbitrary
spin-states.

The MOT cooling scheme and MOT performance characteristics have been described in
detail in the PhD thesis of Sören Dörscher [58] and Alexander Thobe [57] and published in
[96]. The vacuum system, as well as laser cooling laser systems, have been planned and setup
by A. Thobe and S. Dörscher. The laser cooling systems and evaporative cooling schemes
using a single color dipole trap (the “old” setup) have been implemented by A. Thobe, S.
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Figure 3.1. | Scheme of the experimental setup. Shown is the vacuum system and the laser
beams for cooling Ytterbium to µK temperatures. The atoms are released from a dispenser
which is heated by a current flow. After capture and precooling in the 2D-MOT on the blue
transition the atoms are pushed from the upper glass cell to the lower cell by a pushing beam.
There the atoms are captured by the green 3D-MOT.

Dörscher, and the author. The new bichromatic dipole trap setup described in this thesis
was planned by A. Thobe and setup by A. Thobe, André Kochanke, Thomas Ponath and
the author. Trapping and cooling schemes have been developed by A. Kochanke and the
author. The high-resolution detection was planned and characterized by Torben Sobottke
and implemented by A. Kochanke and the author. Data analysis was performed by the
author.

3.1. Laser Cooling and General Experimental Setup

This section will give a brief overview of the experimental setup used to create quantum
degenerate gases of Ytterbium. Details are found in [57, 58]. The first part describes the
general layout and the 2D-/3D-MOT system. It is kept brief. The second part describes the
detection system in more detail. This system was implemented mainly by Torben Sobottke
and the author. Afterwards, the performance of the 2D-MOT is characterized.
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3.1.1. Vacuum System and Laser Cooling

General Layout and Vacuum System

The heart of the setup is a vacuum system consisting of two glass cells connected by a
differential pumping stage. Located on top of each other the system is relatively compact
and allows good optical access from almost all directions. The setup is schematically shown
in figure 3.1.

2D-MOT

The upper glass cell and vacuum system is used a source for Ytterbium atoms. A commer-
cially available dispenser is heated by a constant current and emits a beam of thermal atoms
with an isotope distribution given by the natural abundance. These atoms are captured
in a 2D-MOT operated on the principal λ = 399 nm transition. The 2D-MOT consists of
two retroreflected, elongated beams as shown in the top of figure 3.1. The result is a cigar-
shaped cloud of atoms. The atoms are cooled in two dimensions thus leaving the 2D-MOT
volume along the y-direction. A pushing beam (approx ∆ = 1× Γ399 red detuned) is used
to increase the flux of atoms from the upper cell to the lower cell by transferring momen-
tum along the differential pumping stage. To suppress resonant scattering of λ = 399 nm
photons in the 3D-MOT, the pushing beam is carefully aligned to hit the inner part of the
pumping stage.

3D-MOT

In the lower glass cell, all experiments are performed. The starting point is a retroreflected
3D-MOT operated on the λ = 556 nm intercombination transition. While the narrow
intercombination transition allows a low Doppler temperature of TD ≈ 4µK the velocity
class of atoms captured by the 3D-MOT is equally narrow, effectively reducing the loading
rate of the 3D-MOT. The problem was circumvented by an artificial broadening of the
light to a width of 7 MHz using an acusto-optic modulator (AOM). The broadening is
subsequently reduced and finally switched off to reach the lowest possible temperatures (for
MOT performance see section 3.1.3). The magnetic field for the 3D-MOT is created by
a pair of water-cooled coils. These coils can be used to generate field gradients as well as
homogeneous fields.
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Magnetic Compensation Coils

For compensation of stray magnetic fields, another set of coils surrounds the 3D-MOT cell
(not shown in figure 3.1). These stray fields are for example generated by ion-getter-pumps
of the vacuum system. Beside of stray field compensation, these coils are used to apply
fields in arbitrary directions which is not possible by the main coils used for the 3D-MOT.
This enables applying a defined quantization axis when specific optical spin transitions need
to be addressed.

3.1.2. Detection

The detection system is based on standard cold-atom absorption imaging [72]. Imaging is
performed on the spectrally broad blue transition (see section 2.2.1). This transition offers
two advantages in terms of absorption imaging: first because of the large linewidth the
detected number of atoms is robust against small laser frequency fluctuations. Second, the
large linewidth causes a large saturation intensity Isat ≈ 60 mW/cm2 which means that it
is easy to fulfill the requirement of undersaturated imaging [97] with a good signal to noise
ratio on the cameras.

Absorption imaging is possible along the z-axis and x-axis of the experiment. The principle
of detection is the same in both axes: two images are taken, one with the atomic cloud
and another without the atomic cloud. The first image is called absorption image A, the
second reference image R. Additionally, two dark DR,A images without the imaging laser
are taken shortly after the absorption or reference image. This allows the calculation of the
atomic 2D-density distribution n(x, y) according to [97]:

−n(x, y)σ = ln R−DR

A−DA
(3.1)

Here σ is the absorption cross section and is calculated from known atomic properties. The
two axis have vastly different imaging properties because of optical elements obstructing
the optical path or distortion of the wavefront by transmission through non-planar optical
elements.

Detection 1 along the x-axis

The detection along the x-axis has mostly unobstructed view on the atomic cloud and
is therefore the significantly better axis in terms of achievable resolution. Details of the
detection on this axis can be found in the bachelor thesis of Torben Sobottke [98] which
was supervised by the author.
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The heart of the detection along the x-axis is a commercially manufactured diffraction
limited objective. It was designed for maximal numerical aperture while being compact
enough to allow easy alignment in between the 3D-MOT coils. The objective has a numerical
aperture of NA = 0.27 and a working distance of dw = 37.55 mm. In figure 3.2 the objective
is schematically shown. It is compensated for the optical aberrations introduced by the walls
of the glass cell. Using the imaging wavelength of λ = 399 nm this allows a resolution of d =
1.07µm with coherent light calculated according to the Sparrow resolution criterion [99].
Experimentally the resolution was determined to be at least d = 1.35µm but was limited by
the availability of a structure small enough: the diameter of the pinhole used to determine
the resolution is the same size as the resolution itself, violating the requirement of a point
source. The resolution is not enough to resolve atoms individually in the optical lattice
which would require a resolution on the order of 500 nm but is still very good compared to
typical quantum gas machines and allows in-situ imaging of the atoms in the dipole trap.

The objective collimates the image of the atomic cloud. The collimated image is subse-
quently focussed onto a camera. The ratios of front focal length and back focal length
determine the magnification of the imaging system. The camera on this axis has a pixel
size of dpx ≈ 13µm. This means for magnifications below m ≈ 13 the imaging system
is limited by the pixel size and not by the resolution of the objective. However, larger
magnifications limit the available field of view (FOV). During the course of this thesis, all
measurements were performed with an intermediate magnification of m = 4.71.

Detection 2 along the z-axis

The second detection axis is limited by multiple mirrors transmitting the imaging beam
through a glass substrate with an angle of incidence of 45◦. These nonplanar surfaces are
extremely bad for the wavefront and introduce large optical aberrations. Imaging on this
axis is only usable for large expanded clouds. The camera used on this axis has a pixel
size of dpx ≈ 6.7µm and a magnification of m ≈ 2.2 is used. Because of the bad optical
properties of the beam, it was decided to use a simple achromatic lense to collimate the
image of the atomic cloud and another achromatic lense to focus the image onto the camera.
The whole imaging system was again analyzed in detail in [98].

3.1.3. 2D- & 3D-Magneto Optical Trap Performance

The setup of a blue 2D-MOT and green 3D-MOT for the creation of Ytterbium quantum
gases has never been implemented before. Thus a comprehensive characterization of the
whole system has been performed [57, 58] and published [96]. The central result of this
characterization is shown in figure 3.3. Here the loading rate from the 2D-MOT into the
3D-MOT has been studied for different detunings Γ and magnetic fields gradients. The
number of atoms was determined by absorption imaging.
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Figure 3.2. | Layout of absorption detection setup. Absorption imaging for counting atoms
and imaging the atomic density or momentum distribution (mostly after time-of-flight (TOF))
is performed on two perpendicular axis shown in the schematic above.

An optimal 3D-MOT loading rate at a magnetic field gradient of around 60 G/cm and
a detuning of ∆ ≈ −1.2Γ is found for 174Yb and 173Yb. For the fermionic isotope, a
sharp decline of the loading rate at ∆ ≈ −1.7Γ is observed. This loss of loading rate is
attributed to the disadvantageous hyperfine structure of 173Yb in the 1P1 state which is
shown in figure 3.4. The 2D-MOT is operated red detuned to the F = 5/2 ↔ F ′ = 7/2
transition. Unfortunately the transition F = 5/2 ↔ F ′ = 3/2 is red detuned to the
F = 5/2↔ F ′ = 7/2 with a splitting of 72 MHz. With a linewidth of the blue transition of
Γ399 = 2π×29 MHz the F ′ = 3/2 transition is about −2.5Γ399 red detuned to the 2D-MOT
transition. This means that the laser beams, when red detuned to the 2D-MOT transition,
are blue detuned to the F ′ = 3/2 transition and thus hinder efficient MOT operation. The
loading rates of the two isotopes differ by almost one order of magnitude. A factor of
two is explained by the difference in abundance of the two isotopes (see section 2.1). The
remaining factor four is attributed to the level structure explained above. As it turns out
the effect of the F ′ = 3/2 level is so severe that the polarization of the 2D-MOT beams has
to be actively misaligned to achieve the loading rates presented above. This is currently
not well understood. A comprehensive discussion of this problem can be found in [57].

3.2. Bichromatic Dipole Trap Setup

After the brief overview of the experimental setup for laser cooling and detection the all-
optical creation of quantum degenerate gases of fermionic and bosonic Ytterbium is now
discussed. The setup presented here is mostly new and was planned after the realization
that the old dipole trap system had significantly too large final trapping frequencies (ω̄old =
91 Hz) to load significant amounts of fermionic atoms into the lowest Bloch band. The main
goal was thus to retain the transfer efficiencies of atoms from the MOT into the dipole trap
but reduce the final trapping frequencies considerably. The setup described here is based
on a three-beam optical dipole trap. The laser system and the beam shaping optics will be

22



Degenerate Quantum Gases of Yb Chapter 3

Figure 3.3. | 3D-MOT Loading rate depending on 2D-MOT detuning and gradient.
The loading rate from the 2D-MOT into the 3D-MOT is shown depending on the 2D-MOT
gradient and frequency detuning for 174Yb in a and for 173Yb in b. The fermionic isotope
shows a significant decrease in loading rate at ∆ ≈ −1.7Γ. This decrease is attributed to the
F = 5/2↔ F ′ = 3/2 transition at around −2.5Γ.

explained in the Ph.D. thesis of André Kochanke. The characterization and implementation
at the experiment ist described in the following.

3.2.1. Fundamental Relations

The basis for optical dipole traps is the interaction between atoms and laser beams operated
off resonance. The oscillating electric field of the laser beam induces an electric dipole
moment in the atoms which interacts with the electromagnetic field of the light. The result
is an induced potential described by [93]:

Udip = − 1
2ε0c

Re(α) I(r) (3.2)

Note that in section 2.3.3 the plotted polarisability includes the factor −1/(2ε0c). By
approximating the real potential with a harmonic potential a trap frequency can be assigned
to each spatial direction. The trap frequency scales as:

ω ∼
√
Udip ∼

√
I (3.3)
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Figure 3.4. | Hyperfine structure of 173Yb for blue 1S0 ↔ 1P1 transition. Shown is the
hyperfine structure of 173Yb for the transition from 1S0 into the 1P1 state. The 2D-MOT is
operated approximately one linewidth red detuned to F = 7/2: ∆ = −Γ399. The F = 3/2
state is only 2.5Γ399 red detuned to F = 7/2 and thus 2D-MOT operation is severely impacted.

Typically optical dipole traps are formed by laser beams focussed to waists w0 in the order
of some ten to a couple of hundred of µm. In most cases, the beams are Gaussian TEM00
modes. These beams have Gaussian shaped transversal intensity distributions and their
transversal width w(z) along the propagation axis is given by [93]:

w(z) = w0

√
1 +

(
z

zR

)2
(3.4)

Here w0 is the minimal waist of the beam, z the position along the propagation vector and
zR the Rayleigh range. Due to gravity the atoms will not be trapped at the center of the
gaussian beam but at the point where the gravitational force is balanced by the dipole force.
This sag is calculated by:

1
2mω

2
yz

2
y = mgzy

zy = 2g
ω2
y

(3.5)

To find whether a dipole trap is able to hold the atoms against gravity one has to consider
the total potential consisting of the dipole potential and the gravitational potential and
check whether a potential barrier deep enough compared to the kinetic energy of the atoms
exists. Thus for very shallow dipole traps the scaling of the trapping frequencies differ
significantly from ∼

√
I and will be much lower than expected.

For ultracold quantum gas experiments where the atoms are supposed to be loaded into an
optical lattice, low trap frequencies are desired. In general, a dipole trap superimposed to
an optical lattice creates an additional energy scale resulting for example in Mott insulator
shells [100]. For a spin-polarized fermionic gas the atoms are not able to form doubly
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Figure 3.5. | Number of atoms loaded into the lowest Bloch band. Shown is the number
of fermionic atoms loaded into the lowest Bloch band of an cubic 3D-optical lattice depending
on the average trap frequency of the optical dipole trap.

occupied states in the lowest band and therefore there exists an upper limit for the number
of atoms loaded into the lowest band. The number of fermions which are loaded from a
dipole trap into the lowest band of a cubic optical lattice with average trap frequency ω̄ is
[101]:

N ≈
(

π2~
2mω̄d2

)3

∼ 1
ω̄3 (3.6)

Here d is the lattice spacing. N ist plotted for various trap frequencies in figure 3.5 for
a lattice spacing of d = 400 nm. The old dipole trap had an average trap frequency of
91 Hz which yields a maximum number of atoms N = 7700. The new setup described here
increases this number by two orders of magnitude.

3.2.2. Design Considerations for the Bichromatic Dipole Trap

A dipole trap suitable for experiments with ultracold atoms intended to be loaded into the
lowest Bloch-band of an optical lattice need to fulfill a couple of requirements: first, the
initial trap depth and volume needs to be as large as possible to allow efficient capture of
atoms from the 3D-MOT. As a rule of thumb, the initial trap depth needs to be a factor
of ten larger than the temperature of the MOT [102]. High trap frequencies are desired to
allow fast evaporative cooling. Moreover, low trap frequencies at the end of the evaporative
cooling cycle are desireable to minimize the distortion of the optical lattice band structure.
Mostly because of finite available laser power these requirements are at odds with each
other and thus it is complicated or impossible to find a compromise which fulfills all those
requirements. Here the problem was mitigated by implementing a crossed dipole trap based
on three laser beams. One beam with a tight focus is used for transfer from the 3D-MOT
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Figure 3.6. | Schematic of the three beam bichromatic dipole trap. The dipole trap setup
consists of three beams. The beams DT1 and IR1 are propagating on the same axis while
the confinement along the z-axis is created by IR2. DT1 is tightly focussed and only used at
the beginning of the evaporative cycle to increase the amounts of atoms transferred from the
3D-MOT into the dipole traps. After ramping down and switching off DT1 the atoms are held
in IR1 and IR2. Further evaporation yield gases with temperatures below TC or TF respectively.

and initial evaporation while the other two have significantly larger waists and are used for
final evaporation and transfer to the optical lattice. A schematic of the three dipole trap
beams is shown in figure 3.6 and described in detail in the next few sections.

DT1

The first beam (called DT1 ) was described in [57, 58]. It is based on a high intensity
λ = 532 nm laser. The beam is shaped ellipticaly and propagates along the z-axis. The
1/e2 radii are w0,x = 29µm and w0,y = 18µm. The beam has a maximal power of around
PDT1 = 9 W. These parameters yield a initial trap depth of 616µK along the gravity
direction.

IR1

The second beam is called IR1. It propagates along the same axis as DT1. Operated at a
wavelength of λ = 1064 nm with a round shape with mean radius of w0, IR1 = 54µm and
a maximal power of PIR1 = 1 W at the position of the atoms. With this parameters an
maximal trap depth of 4.9µK is possible. The beam by itself is not able to hold the atoms
against gravity thus the depth is given in terms of the theoretical dipole potential without
the influence of gravity.
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IR2

The third beam is called IR2 and propagates along the x-axis. It is elliptically shaped
with waists of w0,y = 65µm and w0,z = 225µm and, like IR1, operated at a wavelength of
λ = 1064 nm with P = 10.5 W. This trap is able to hold the atoms against gravity with a
depth of 2.6µK.

3.2.3. Beam Alignment and Evaporation Scheme

The three beam dipole trap needs to be carefully aligned to increase atom transfer efficiency
and thereby evaporation performance. The first step is aligning DT1. By changing the beam
alignment and the focus position at full power the number of atoms transferred from the
3D-MOT is optimized. Next IR1 is aligned to propagate along DT1. At full power of IR1
the power of DT1 is decreased to a point where the combined trap of DT1 and IR1 hold
the atoms. Then by finetuning the position of IR1 the final alignment is performed. Next
IR2 is switched to full power and DT1 is switched off. The atoms are now located in the
crossed region of IR1 and IR2. By changing the position of IR2 the number of atoms in the
crossed region is maximized. Finally, the complete evaporation ramp (described below) is
used to perform fine adjustments of the beam position of IR2.

The complete evaporation ramp is sketched in figure 3.7. It is based on two phases. At the
beginning of the first phase, all dipole trap beams are switched on to full power. DT1 is
subsequently lowered to 200 mW during a 5 s exponential ramp. In the next two seconds,
DT1 is ramped to its minimal value of about 10 mW and then switched off. During this first
phase, both IR beams remain at full power. While DT1 cools the ensemble the atoms are
captured in the crossed region of the two infrared (IR) beams. The temperature at the end
of phase one is still above the critical temperature for bosonic isotopes and above the Fermi-
temperature for the fermionic isotope. In the second evaporation phase, the power of IR1 is
reduced to 55 mW while IR2 is ramped to 7.7 W. The ramp for both IR beams is exponential
and its duration is 8 s. This last step results in quantum degenerate gases. To stop the
evaporation and ensure constant particle numbers, the two IR trapping beams are linearly
ramped up to about 5% above their lowest value at the end of the complete evaporation
process. The complete ramp has been developed experimentally and all parameters were
optimized for particle numbers and temperatures.

The ramp presented here is for the bosonic isotope 174Yb. For the fermionic isotope 173Yb
the second phase is extended to 12 s which was again determined experimentally and slightly
improved the number of particles in the final trap. The necessary increase in the time of
the last phase is attributed to the reduction of evaporation efficiency as the gas gets cooled
into the quantum degenerate regime [103, 104] and the overall worse performance of the
experimental setup for the fermionic isotope.
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Figure 3.7. | Evaporation Scheme for the bosonic isotope in the bichromatic crossed
dipole trap. The evaporation is based on two phases. In the first phase, the tightly focussed
green dipole trap beam is exponentially ramped down and switched off. The ramp has two-time
constants with the slower evaporation during the last two seconds of the first phase. During
the second phase the IR traps are ramped down and at the end quantum degenerate gases are
created. A small increase of the power of both beams ensures stopping of the evaporation and
constant particle numbers.

3.3. Bose-Einstein Condensation with the Bichromatic Dipole
Trap

Using the evaporation ramp described above the bosonic isotope 174Yb was used to optimize
and characterize the new trapping potential.

3.3.1. Temperature and Particle Number during the Evaporation

The number of atoms and the temperature during the evaporation ramp is shown in figure
3.8 where the temperature of the thermal cloud was determined by the rate of expansion
of the atoms after time-of-flight (TOF). The number of atoms is counted by standard
absorption imaging. The transfer from the green dipole trap DT1 into IR1 and IR2 is
clearly visible in the temperature measurement starting at around t = 6 s (figure 3.8a). The
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temperature reduction is slowed because the atoms are mainly trapped by IR1 and IR2.
The further reduction of the power of DT1 is not significantly lowering the trap barrier and
thus evaporation is slowed. After starting the ramp for IR1 and IR2 cooling is resumed.
First signs of BEC are observed at around T = 100 nK. This number is significantly lower
compared to the dipole trap setup used before [57] which showed first signs of BEC at
T = 500 nK. The reduction in critical temperature is attributed to the lower trapping
frequencies of the new IR trap which is almost a factor of three lower (see next section).
The decrease in temperature at t = 14 s is attributed to fit problems because of the very
small thermal cloud. At t = 15 s a pure BEC is created and therefore no temperature is
given.
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Figure 3.8. | Characterization of evaporation ramp in bichromatic dipole trap. Shown
are the number of atoms (a) and the temperature (b) during the evaporation ramp. The
temperature is deduced from individual measurements of the cloud expansion rate. The first
signs of a bimodal distribution indicating the presence of a BEC is observed at around 100 nK.
Atom numbers could not be determined for the first part of the ramp because the cloud is too
large to be imaged on the camera. The grey line separates the two evaporation phases. At
t = 15 s a pure BEC is created and therefore no temperature is given.

From the measurement of the number of atoms (see figure 3.8a) an increase in the rate
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of atom loss is observed near the transition to the BEC phase. This efficiency decrease
was also observed in the old dipole trap setup and is explained in terms of a reduced
dimensionality of the effective evaporation. When the dipole traps is lowered the influence of
gravity increases. Thus at lower powers, the trapping potential is more and more deformed
with the lowest barrier of escape at the (geometrically) lowest point in the trap. The
atoms are predominantly lost at this point. The evaporation becomes more and more one
dimensional. This effective decrease in dimensionality reduces the efficiency of evaporative
cooling [105, 106].

A phase transition to a BEC is only possible if the phase-space density ρ can be increased
sufficiently so that ρ ≈ 2.612 [107]. From the temperature, particle number and the trapping
frequencies the phase-space density is determined according to [107]:

ρ = n(ω̄, T )λDB(T )3 (3.7)

where n(ω̄, T ) is the density of the gas depending on the average trap frequency and tem-
perature and λDB(T ) is the thermal DeBroglie-wavelength which is again temperature de-
pendent. In figure 3.9a the phase-space density is shown for phase two of the evaporation
ramp. The last two points are omitted here because of the aforementioned problems in
determining the temperature. At the beginning of the second phase of the evaporation at
t = 7 s a decrease in phase-space density is observed. It is currently not well understood
why the phase-space density decreases but it seems that the transfer from DT1 into IR1 and
IR2 slightly heats the sample. Figure 3.9a additionally shows the raw images of the atomic
cloud at t = 12 s and t = 13 s. At t = 12 s a pure thermal cloud is observed while at t = 13 s
a bimodal distribution is present. This observation fits very well with the theoretically
predicted phase-space density at which the BEC transition should occur.

The efficiency of evaporative cooling is characterized by the evaporation efficiency γeff which
is defined by [102]:

γeff = − ln (ρf/ρi)
ln (Nf/Ni)

(3.8)

The evaporation efficiency is a measure for the gained phase space density per lost particle.
Here ρf is the final pase space density, ρi is the initial pase space density, Nf the final atom
number and Ni the initial number of atoms. The second step of the evaporation scheme
yields (see figure 3.9b):

γeff ≈ 3.42 (3.9)
This efficiency fits well to efficiencies listed in [102] which lie in the range of γeff = 2.5−3.5,
measured at various experimental setups.

At the end of the dipole trap evaporation cycle, a pure BEC with about 6 × 104 atoms is
created. Note that after this measurement had been performed it was possible to increase
the size of the BEC by a factor of 3 by iterating the alignment process outlined in 3.2.3
and overall improvements in the experimental performance. The measurements shown here
should, therefore, be regarded as a relative measure of the evaporative cooling efficiency.
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Figure 3.9. | Phase-space density for the second evaporation phase. a shows the phase-
space density during the second evaporation phase. The two last steps of the ramp are omitted
here because no thermal distribution could reliably be fitted to the data. The horizontal line
indicates the theoretical value of ρ = 2.612 where the BEC phase transition should occur. In the
raw images, the first sign of a bimodal distribution indicating the presence of a BEC is observed
at t = 13s. In b the phase space density is plotted against the number of atoms. From the
final and initial phase space density and the initial and final number of atoms the evaporation
efficiency γeff is calculated.

3.3.2. Trap Frequency Measurement

For all later measurements, the precise knowledge of the trapping frequencies in the final
trap configuration is of vital importance. To determine the actual trapping frequencies
oscillations along all three axes of the trapping potential were induced. Successive measure-
ment of the position allows the determination of the trap frequencies. To induce oscillations
misaligned lattice beams are used. A short light pulse displaces the atoms and oscillations
can be observed. The result of this measurement is presented in figure 3.10.
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Figure 3.10. | Trap frequency measurement along all trapping directions. Shown are
trap frequency measurements of a BEC in the final trap depth. Trap oscillation is induced by
displacing the BEC using a misaligned lattice beam and observing the resulting oscillations. A
sine fit is shown as a blue line extracts the trapping frequency. The errors of the determined
trap frequencies are the fit errors. Data is averaged over three (x-axis) and five experimental
runs (y- and z-axis).

The trap frequencies are determined to ωx,y,z = 2π × (27, 70, 24) Hz. From the knowledge
of the beam waists and power, the trap frequencies are expected to be (30, 78, 28) Hz. Thus
our actual trapping frequencies are about 10% lower than expected. This is in reasonable
agreement when considering the multitude of mirrors with different coatings which are in
the beam path between the point at which the power of the beams can be measured and the
point of the atoms. The average trap frequency for our actual dipole trap is ω̄ = 2π×36 Hz
which is almost a factor of three lower compared to the old setup.

3.3.3. Lifetime

During the course of this thesis lifetime and loss measurements for ultracold fermi gases in
the excited state of Ytterbium will be presented. As a baseline for these measurements, the
lifetime of the BEC particle number in the IR trap was measured. The corresponding data
is presented in figure 3.11.

The very good agreement between the simple exponential fit and the data suggests pure
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Figure 3.11. | Particle number lifetime of a BEC in the IR traps. Shown are the particle
numbers in the IR dipole trap after different waiting times. The solid line shows an exponential
decay fit to the data. The uncertainty is the error of the regression. The data is averaged over
three experimental runs.

single particle loss on the observed timescale. The measured lifetime is τexp ≈ 42 s and is
compared to the photon scattering rate by the two IR beams. The expected lifetime due to
photon scattering is τsc ≈ 119 s which is significantly longer compared to the measured value
of τexp ≈ 42 s. This indicates that the occurring loss can not be fully attributed to dipole
trap photon scattering. Other relevant processes are collisions with background gas (the
measurement was performed at a pressure of p ≈ 2.5×10−11 mBar) and also thermal lensing
in the dipole trap beams because of the long experimental cycle times. Still, the observed
lifetime is long enough to perform experiments on typical quantum gas timescales.

3.4. Ultracold Fermi Gases

After the characterization of the BEC in the new dipole trap setup, the next step is the
creation of degenerate fermi gases. The evaporation scheme remains the same. Only the
time of the second phase was increased from 8 s to 12 s which showed a slightly improved
performance. Because of the similar evaporation technique, only the quantum degenerate
Fermi gas and the detection and preparation scheme for different spin mixtures is presented
here. An extensive characterization will be found in the Ph.D. thesis of André Kochanke.

3.4.1. Spin Preparation and Spin Detection

The scheme for spin preparation and spin detection is the same as described before in
[57]. Spin preparation is based on spin-resolved optical pumping before the beginning of
evaporative cooling. For this purpose, the green intercombination transition is suitable
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because the scattering rate is high enough while it is easily possible to induce a Zeeman
splitting which is large enough to address individual spins using magnetic fields. A field of
B = 67 G is used to separate the individual spin components by a differential Zeeman shift
of 40 MHz. The magnetic field is applied along DT1. Subsequently, resonant light with σ+

polarization along the DT1 axis is used to pump atoms into the desired state. Pumping is
performed on the F ′ = 7/2 transition.

A spin-polarized gas is created by pumping most of the atoms into the desired spin state
leaving a couple of percent of atoms in all the other states. Cooling is then carried out as
before and a few other spin components are used as a mediator for thermalization. Gases
with more than one spin state are pumped into the desired spin states and afterward normal
evaporation is carried out.

In Alkali quantum gas experiments the spin distribution is measured using a magnetic field
gradient applied during time-of-flight. This kind of spin detection is impractical because
of the small magnetic moment (see section 2.3.1). Another technique called Optical Stern
Gerlach (OSG) [108, 109] is employed which uses a σ± polarized laser beam close to the
F ′ = 7/2 resonance of the 1S0 ↔ 3P1 transition. This beam induces a mF dependent
dipole force. The beam is aligned such that the slope of the Gaussian intensity distribution
lies on the atomic sample. Immediately after releasing the atomic cloud from all trapping
potentials the beam is switched on for 1 ms. During successive time-of-flight expansion,
the different spin states are spatially separated. Due to the inhomogeneous intensity of
the OSG beam and photon scattering the cloud of atoms gets distorted. Thus OSG spin
detection allows only counting of atoms. For temperature measurements, the OSG beam is
not applied.

3.4.2. Degenerate Fermi Gas

For the fermionic isotope 173Yb the second phase of the evaporation ramp is prolonged
by 4 s to a total evaporation time of 19 s. This results in degenerate fermi gases (DFG)
with different temperatures depending on the spin mixture. In figure 3.12 three different
combinations of spin states are shown with temperature and number of particles. The
temperature was determined by fitting a Thomas-Fermi distribution to the data.

In 3.12a the gas was evaporated to quantum degeneracy without prior spin preparation
resulting in N = 105 atoms at a temperature of T = 0.18TF. At the expense of particles, it
is possible to decrease the temperature to about 10%TF. When optical pumping is applied
prior to evaporative cooling a significant decrease in cooling performance is observed. The
temperature rises to T > 0.2TF and only N = 5× 104 atoms remain after the evaporation
process. Interestingly the performance for the two spin components and spin-polarized gas
is comparable. Two reasons for this behavior can be identified: first, the optical pumping
which is used to perform spin preparation heats the atoms and thus more energy has to
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Figure 3.12. | Temperature and particle number for different ultracold fermionic spin
mixtures. Shown are three different spin mixtures at ultracold temperatures with their cor-
responding temperatures and particle numbers. The upper part shows the absorption image
while in the lower panel a linecut through the center of the cloud with the corresponding fitted
Thomas-Fermi distribution is plotted. In b prior to evaporative cooling a laser resonant with
the green transition was used to pump all atoms in the mF = 5/2 and mF = 3/2 state. In c
most atoms are pumped into the mF = 5/2 state. No pumping was performed in a. Note that
a was imaged at a longer time-of-flight.

be dissipated by the evaporative cooling. Second, for lower number of spin components
at low temperatures, the number of available states to scatter into during thermalization
gets smaller because of Pauli blocking. A reduced efficiency is thus expected and was also
observed in our setup with the previous dipole trap setup. Similar behavior is presented in
[110].

3.5. Conclusion

This chapter gave a brief overview of the experimental setup and the techniques used for
laser cooling of bosonic as well as fermionic isotopes. A new dipole trap was implemented
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and presented here. The main goal was a reduction in average trap frequency. The new
bichromatic dipole trap shows good performance for both isotopes. The measured average
trap frequency could be reduced by almost a factor of three compared to the previous setup.
The evaporation scheme, as well as the optical setup, is robust on a day to day basis and
thus is a good starting point for lattice quantum many-body studies.
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4. A Magic Optical Lattice for Yb

Optical lattices have developed into the standard tool for ultracold quantum gas experiments
to reach the regime of strong correlations [4, 7, 111, 112]. They allow precise control over
tunneling rates and interaction energies and opened up a dynamic research field. Based on
the interference of laser beams the most straightforward design for an optical lattice is a
Gaussian laser beam reflected back onto itself. Whereas such lattices are easy to implement
and have enabled many successful experiments [7], more complex lattice structures open up
new possibilities. A prime example for this is the triangular structured lattice formed by
three laser beams intersecting at 120◦. This structure, as well as the phase control of the
individual lattice beams, allows easy manipulation of the lattice band structure by moving
the lattice in real space. It was used successfully to simulate frustrated classical magnetism
[113] and reconstructing the Berry curvature in a Floquet Bloch bands [23].

This chapter describes the implementation of a 3D-optical lattice for the specific needs of
Ytterbium. It consists of a 1D-lattice formed by a standing wave pattern and a 2D-lattice
with triangular structure. Besides its primary function as a lattice structure, the 1D-lattice
needs to be deep enough to suppress any recoil momentum transfer by the clock laser (Lamb-
Dicke regime). These and other considerations are taken into account when choosing the
waists and powers of the lattice beams (section 4.1). The laser system used to distribute
and control the lattice beams is described in section 4.2. The quality of the lattice beams is
a prime concern because distorted wavefronts lead to distorted lattice structures. Therefore
the beam shaping optics as well as their characterization is described in section 4.3. Finally,
the depth of the lattice is determined using fermions as well as bosons (section 4.4) and the
question whether an active fiber noise cancellation system is needed is evaluated.

The laser system, as well as the 1D-lattice beam shaping optics, were built by the author.
The 2D-lattice beam shaping optics were planned by the author and built and characterized
by Niels Petersen [114] and the author. The lattice was setup and characterized at the
experiment by Alexander Thobe, André Kochanke, Niels Petersen and the author.

4.1. Design of the Optical Lattice

An optical lattice is based on interference of laser beams [112]. The interference creates
spatial intensity variations on the order of the wavelength of the light. Due to the dipole
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force, the atoms experience a conservative potential either localizing the atoms at the in-
tensity maxima or minima (depending on the polarizability). The tunneling amplitude and
the onsite interaction determine the dynamics of the atoms in the lattice and are controlled
by the intensity of the laser beams. Additionally, the Gaussian intensity distribution of
typical laser beams used for the creation of optical lattices induces an inhomogeneity of the
band structure. This effect is enhanced by the optical dipole trap from which the lattice
is loaded. Typically the goal for the design of an optical lattice setup is to be able to
access regimes of strong interactions while simultaneously a homogeneous lattice structure
is desired. Because of finite laser power these requirements contradict each other and a
reasonable compromise has to be found. The effect of the inhomogeneity of the band struc-
ture against achievable depth are only two design considerations one has to consider. For
the use of the excited state of Ytterbium additional considerations need to be addressed.
This section will describe all of the design considerations which were considered during the
planning of the optical lattice and will present the resulting lattice beam specifications.

4.1.1. Geometry

Because of its versatility and the considerable experience of different experimental projects
in the group [19], it was early on decided to use a combination of a retroreflected 1D-lattice
and a 2D-lattice formed by three-phase coherent beams with an angle of 120◦ with respect
to each other. The plane formed by the 2D-lattice beams forms a 90◦ angle with the beams
for the 1D-lattice. A sketch of the setup and the resulting potential is shown in figure 4.1.

By adjustment of the polarizations of 2D-lattice beams a triangular or honeycomb lattice
structure in the 2D-plane is realized. The 1D-lattice is frequency offset by 160 MHz with
respect to the 2D-beams to prevent interference between the 1D- and 2D-lattice. The phase
between the three 2D-lattice beams is in principle controllable and thereby a shaking of the
lattice is possible. This can be used to induce an effective tunneling matrix element allowing
to completely alter the ground state of the atoms in the lattice.

The 1D-lattice intensity around the point of minimal size of the beam and on the axis of
the lattice is described by:

V1D(z) ≈ V0 cos2(kLz) (4.1)

Here kL = 2π/λL with λL is the wavelength of the lattice laser, z the position along kL. The
depth of the lattice is denoted V0 and is related to the maximal dipole potential Udip,max
created by the laser beam:

V0 = 4Udip,max (4.2)

Thus the individual potential wells are four times deeper than the depth of the dipole
potential created by a lattice laser beam without reflecting it back into itself. A factor of
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Figure 4.1. | Schematic of the lattice geometry. a The 2D-lattice is formed by three phase
coherent beams intersecting at an angle of 120◦ resulting in either a triangular or honeycomb
lattice structure depending on polarization of the beams. b The 1D-lattice is formed by one
retroreflected beam. A cut through the resulting lattice structure is shown below for the 1D-
lattice as well as the 2D-lattice. Image mostly taken partly from [57].

two is due to the interference and the other factor of two due to the retroreflected beam.
The depth is measured in terms of the recoil energy and for λL = 759 nm:

ER = (~kL)2

2m
173Yb≈ h× 2 kHz (4.3)

The 2D-lattice potential in triangular configuration (polarization perpendicular to the plane
of the lattice) is described by [115]:

V ∆
2D(r) = V0

(3
4 + 1

2 (cos(b1 · r) + cos(b2 · r) + cos((b1 − b2) · r))
)

(4.4)

Here b1 and b2 are the reciprocal lattice vectors. V0 is the depth of the lattice and is
measured in ER and is again based on the dipole potential depth of one single lattice beam.
Note that the three beam lattice creates 9/4 deeper potential wells compared to a 1D-lattice
with the same power.
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4.1.2. Wavelength and Laser

While the wavelength of the optical lattice for Alkali experiments is mainly determined by
the available laser power, the wavelength plays a crucial role when high spectral resolution
of the clock transition is desired. This is easily seen when considering the differential light
shift due to the difference in polarizability of the states 1S0 and 3P0. The difference in
polarizability of the clock transition leads to an intensity dependent spectral broadening
according to (see section 5.4.1):

δf = −1
h

1
2ε0c

∆αeg∆I (4.5)

Here ∆I is an intensity difference and ∆αeg = αe − αg is the differential polarisability.
When two atoms are located on different lattice sites they experience a differential intensity
due to the transversal gaussian intensity distribution of the lattice beams. The differential
intensity is always present in optical lattices formed by non-“flat-top” beams. Thus the
broadening can only be circumvented by decreasing the differential polarisability. The
wavelength where αe = αg is called magic wavelength and is at λm = 759 nm [95] (see also
section 2.3.3). It is thus desirable to operate the optical lattice at this wavelength if high
precision clock spectroscopy is needed. On the other hand, the different polarizability can
be actively used to generate potentials which allow the two states to experience different
tunneling and interactions in the lattice (see section 5.4). For example, a lattice at a
wavelength of λ > 1000 nm could be used to induce artificial gauge fields [39].

It was therefore decided to use a laser which is able to be tuned over a large wavelength
in the visible red and near infrared. An optically pumped Ti:Sa is an ideal choice because
it delivers high power (here at least 3.5 W, depending on the wavelength up to 5 W) with
output wavelength of 700 nm to 1030 nm.

4.1.3. Achievable Lattice Depth, Trap Frequencies, and Recoil Suppression

The available laser power and the waist of the lattice beams determine the achievable lattice
depth. The depth is a very important quantity determining the tunneling strength as well
as the strength of the interatomic interaction. The depth thus determines if it is possible
to access the regime where interaction dominates the energy scales. Deep lattices are most
easily achieved by creating beams with small waists. As for the optical dipole trap, this has
the downside of increased average trap frequencies which will hinder loading atoms into the
lowest Bloch band and distort the band structure.

While the possibility of achieving large lattice depths is desirable in general, our experimen-
tal setup demands large lattice depths for a second reason. For experiments using resonant
light for atomic excitation, the strength of the confinement plays another important role.
A photon exciting an atom from the ground into the excited state (e.g. excitation of the
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clock state) not only transfers energy but also momentum. This could transfer the atom in
an excited motional state (i.e. a higher band). The momentum transfer can be suppressed
when the band spacing is significantly larger than the recoil energy [116]:

~ωR � ~ωnn′ (4.6)

Here ~ωR is the recoil energy of a clock laser photon and ωnn′ is the energy spacing between
band n and n′. The parameters for which this condition is fullfilled is called Lamb-Dicke
regime. It is characterized by the parameter η

η =
√

ωR
ωnn′

(4.7)

and the Lamb-Dicke regime is reached when:

η2 � 1 (4.8)

The probability to transfer the atom into another “neighboring” motional states is sup-
pressed by a factor of η2 compared to the strength of the carrier transition, i.e. the transi-
tion where the motional state remains unchanged. To summarize: the Lamb-Dicke regime
allows the decoupling of external and internal degrees of freedom and to reach it sufficient
deep trapping potentials are needed. In the setup presented in this thesis, the clock laser
beam will be aligned colinear with the 1D-lattice. Thus the 1D-lattice needs to be able
to reach the Lamb-Dicke regime. Above it was argued that the lattices need to be deep
enough to reach strongly correlated states like the Mott-Insulator state. Typically for cubic
optical lattices, a depth of 20ER is enough to reach this regime. A depth for the 1D-lattice
of V1D = 150ER would result in η = 0.20 while at V1D = 50ER the Lamb-Dicke parameter
would still be η = 0.27.

4.1.4. Final Design

The final design was reached by an iterative process where it was tried to incorporate all the
considerations above but also respect optomechanical constraints at the experimental setup
as well as available lenses for the beam shaping optics. The following design was chosen:

Power

In total four beams need to be supplied with laser power. Using the available power from
the laser and the losses due to fiber coupling, AOM diffraction efficiency and non-perfect
reflective surfaces, an estimate for the available laser power at the position of the atoms per
beam is made:

Ptot, laser = 3× 1
η2D

P2D + 1
η1D

P1D (4.9)
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Here η2D ≈ 0.52 and η1D ≈ 0.45 are the efficiencies of the beam paths. A reasonable
Lamb-Dicke parameter is achieved for a 1D-lattice depth of 150ER. With a beam waist of
approximately 80µm this results in P1D = 1 W of laser power. With a total laser power of
Ptot, laser = 4.5 W the available power for the 2D-lattice is 400 mW per beam at the position
of the atoms.

Beam Waists

With the power estimate from above, the following waists for the four lattice beams are
chosen: The 1D-lattice will be formed by a retroreflected beam with a waist of w0,1D =
83µm. The 2D-lattice is formed by three beams with waists of w0,2D = 96µm. With
these powers and waists a Lamb-Dicke parameter of η ≈ 0.2 at a depth of V1D ≈ 150ER is
reached. The 2D-lattice in triangular configuration reaches depths of up to V2D, tri = 50ER
where V2D, tri is the total potential well depth.

4.2. Laser System

The laser used to produce the laser beams is a commercial Ti:Sa laser. The output power
has to be split into the four beams fo the different lattices. The optical setup for this is
shown in figure 4.2. Behind the laser, the light is split into the four beam paths by polarizing
beam splitters (PBS). Because of the high intensities optically contacted PBSs are used at
these points in the setup.

1D-Beam Path

The first beam path is used for the 1D-lattice. An AOM is used for switching and active
intensity regulation. The light is coupled into an optical fiber and distributed to the exper-
iment. Because the lattice is retroreflected the beam is coupled back into the optical fiber
an optical isolator is necessary to avoid back reflection into the laser cavity.

2D-Beam Path

The next three paths are similar and are used for the three beams of the 2D-lattice. The
2D-lattice beams need to be phase coherent with respect to each other. To suppress phase
fluctuations introduced due to acoustic noise acting on the optical fibers an active fiber
noise cancellation (FNC) system is used. It stabilizes the phase of each beam onto a local
oscillator (LO). For the LO a small amount of light is picked before the light is passed
through the AOM and coupled into the optical fiber. The fiber is polished flat at the end
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Figure 4.2. | Schematic of the lattice laser system. In a the principal setup of the laser
system used to generate the light for the optical lattice is shown. The light is split up into the
four paths for the four lattice beams and coupled into optical fibers. The 2D-lattice beams need
to be phase coherent with respect to each other so an active Fiber Noise Cancellation (FNC)
(shown in b) is used to stabilize the phase of each beam to a local oscillator. See main text for
details. Image taken partly from [57].

so a small amount of light is reflected back through the fiber. It is ensured that the fiber
acts as a λ/4 waveplate thus the light reflected from the end of the fiber has a polarization
turned by 90◦ with respect to the light coupled into the fiber. A PBS is used to separate the
back reflected light from the incoming beam. Afterward, the LO and the back reflected light
are superimposed on a photodiode. Because the back reflected light has passed the AOM
two times a beat signal of two times the AOM frequency is detected by the photodiode. By
using a stable reference frequency and mixing the beat signal with this reference an error
signal is created. This signal is then used to change the AOM frequency accordingly. Any
noise picked up by the light on the way through the fiber is thereby canceled. For more
details on the FNC see [115].

Wavemeter Beam Path

A small part of the light from the Ti:Sa is coupled into a fiber and sent to a wavelength meter.
This is necessary to check whether the lattice runs as close to the desired wavelength (here
the magic wavelength) as possible. It is further possible to actively stabilize the wavelength
of the laser using a controller system build into the wavemeter. This control loop has only
a low bandwidth (on the order of Hertz) so it is mainly used to keep the laser roughly at
the same frequency. The laser by itself is specified with a linewidth of 75 kHz and is locked
to single-frequency operation.
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4.3. Beam Shaping Optics

After the light leaves the optical fibers each lattice beam needs its own set of beam shaping
optics to achieve the respective waists at the correct working distance.

4.3.1. 1D-Beam Shaping

Optical Assembly

The target waist of w0,1D = 83µm needs to be reached at a working distance of 500 mm.
The optical setup of the beam shaping telescope is shown in figure 4.3.

PBS

15mm

achromat

500 mm

achromat

APC fiber

connector

Figure 4.3. | Beam shaping optics for the 1D-lattice. The light is emitted from an optical
fiber with an angled physical contact (APC) connector. The beam is collimated by a short wave-
length achromatic lens. A PBS ensures only linearily polarized light is transmitted. A 500 mm
achromatic lens focusses the beam to the desired working distance. The use of achromatic
lenses minimizes spherical aberrations.

The beam shaping optics was built using a tubus system. Only two achromatic lenses were
used which results in a very compact design. The first achromatic lens collimates the beam.
This collimation is where the light gets diffracted the most and thus this lens will be the
major source of optical aberrations. Spherical aberrations are a major concern for rotational
symmetric and single wavelength beams. After the collimation, the light is passed through
a PBS. The PBS ensures only linearly polarized light at the right angle is used for the
creation of the 1D-lattice. The last achromat focusses the beam to the desired waist and
working distance.

Beam Profile

After building the optical system the quality of the telescope was characterized by measuring
the beam profile along the optical axis. For this, the transversal size of the beam was
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determined at various points along the optical axis. For a perfect zero order gaussian mode
the transversal width of the beam should evolve like

w(z) = w0

√
1 +

(
M2z

zR

)2
(4.10)

where z is the position along the optical axis, zR is the Rayleigh range, w0 the waist andM2

the beam quality factor. The beam quality factor is M2 = 1 for a perfect Gaussian TEM00
mode. The measured beam profile with a fit to the equation above is shown in figure 4.4.
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Figure 4.4. | Beam profile of the 1D-lattice beam shaping optics. Shown is the beam
radius along the optical axis for the two principle directions (denoted V/W). A best fit of the
profile is plotted as a solid line. A discrepancy between the theoretically expected opening of the
beam left and right of the focus positions is observed. The deviation is attributed to spherical
aberrations. See main text for details.

The profile shows an average waist of 84µm at the correct working distance. In both
transversal directions, a very similar decrease and increase of the beam waist is observed
which means the beam is very round over the whole measured region. This indicates very
few optical aberrations due to misalignments of the beam propagation axis with respect to
the optical axis of the lenses. However also a nonsymmetric opening in front and behind
the focus position is observed. At the time of the characterization, it was not apparent that
these deviations are a sign of spherical aberrations [117]. Because the individual transversal
profiles looked very good and the waist was almost as planned the telescope was therefore
built into the experiment. In retrospective, a short focal length achromat is not the best
choice to collimate a high numerical aperture beam. It is apparent that the achromat used
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here is working at its limit in terms of optical aberrations and should, therefore, be replaced
by an aspheric lens or a multiplet with lower spherical aberrations.

4.3.2. 2D-Beam Shaping

Optical Assembly

Three beam shaping assemblies are needed for the 2D-lattice. Because of geometric con-
straints, one of them needs to have a slightly longer working distance (500 mm vs. 400 mm).
Therefore two variants were built. Both are in principle the same optical setup but are using
slightly different lenses. The setup is shown in figure 4.5.

λ/2500/400 mm

achromatλ/4
PBS

60 mm

achromat

4,51 mm

asphere

20/25 mm

achromat

PC fiber

connector

Figure 4.5. | Beam shaping optics for the 2D-lattice. The light from the fiber is collimated
by a short focal length aspheric lens. Two achromats expand the beam which is focussed by a
long focal length achromat. The light emitted by the fiber is circularly polarized which is needed
for the FNC (see main text above). A quarter waveplate is placed behind the asphere to linearize
the polarization. The PBS cleans any nonlinear polarized light. The last element of the whole
setup is a halfwave plate which is used to set the polarization and thereby enables changing the
lattice structure from triangular to honeycomb. One of the three beam shaping optic assemblies
needs to be placed slightly farther away. Therefore a slightly different combination of lenses is
needed. Image taken from [114].

As discussed in the previous section it was decided to use a short focal length aspheric lense
to collimate the beam. This requires an additional set of lenses to expand the beam before
focussing it onto the atoms. As explained before the fiber noise cancellation (FNC) system
requires that the fiber acts as a quarter waveplate. A quarter waveplate is therefore put
in place to linearize the polarization. A PBS cleans the light from any residual circular
polarization. Next two achromats form a beam expansion telescope. Depending on which
working distance is needed two different lens combinations are used. One combination
expands the beam by a factor of three, the other by a factor of 2.5. A final lens focusses
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the light onto the atoms. Last a rotateable half waveplate is used to change the geometry
of the 2D-lattice.

Transversal Beam Profile

As for the 1D-lattice objective, the axial beam profile as analyzed. Extensive details are
found in the master’s thesis of Niels Petersen [114] and here only a brief overview of the
results are given.

One of the beam profiles is shown exemplary in figure 4.6. The transversal beam profile for
each of the three assemblies looks fine along the optical axis. The profile along the optical
axis in the region around the focus shows a good agreement between a fit of equation 3.4
and the measured profile. However, a decreasing opening angle is observed in front of
the focus and behind of the focus. In contrast to the 1D-lattice objective, there is barely
any asymmetry visible. It is unclear what the reason for this decrease is but spherical
aberrations are the most probable cause. No off-axis errors are observed and the individual
transversal beam profiles look good along the complete optical axis.
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Figure 4.6. | Beam profile of one of the 2D-lattice beam shaping optics. Shown is the
transversal beam radius along the optical axis for the two directions (denoted V/W). The waist
is slightly smaller than expected. The profile around the waist agrees well with the theoretical
profile. Further away from the waist the opening angle decreases.
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Phase-Front Analysis

Because of the decreased opening angle, the quality of the optics is checked by an interfer-
ometric analysis of the phase fronts.

Figure 4.7a shows the optical setup for the interferometer. After clean up of the polarization,
the two beams are overlapped at a beam splitter (BS). Afterward the two ports of the
interferometer are imaged onto a camera. The camera is positioned a couple of Rayleigh
ranges behind the focus. One beam is passed directly onto the camera (intensity distribution
called I3). The second port is reflected by a mirror and then passed onto the camera chip
as intensity pattern I4. A typical image obtained from this setup is shown in figure 4.7b.
From this measurement it is possible to calculate the phase difference of the two beams by
[114]

∆φ(x, y) = arcsin
(

I3(x, y)− I4(x, y)
2rt(I3(x, y) + I4(x, y))

)
(4.11)

where r and t are the reflection and transmission coefficients for the beam splitter.

In figure 4.7c ∆φ is shown for a cut through the middle of the intensity profile along the two
principal directions. The data shows strong fluctuations at the edges of the beam profile.
This is attributed to the low intensities at the wings of the gaussian-shaped beams. The
overall profile shows a global, slowly varying, gaussian-shaped phase difference between the
two beams. This overall phase difference is explained by the different path lengths of the
two beams from the BS to the camera. The beam reflected by the mirror (creating intensity
profile I4) expanded slightly more compared to the other beam. This global phase difference
can be described by applying a far-field approximation and calculating the resulting intensity
distribution [114]. The dashed line shows a best fit regression of this model to the data. It
is apparent that no strong phase front distortions at the center of the beam are present.
Even the largest deviations at the edge of the beam remain significantly below λ/4.

Conclusion of Beam Optics Characterization

This section showed the setup and the mechanical optics assembly of the 2D-lattice beam
shaping optics. The transversal beam profiles are satisfactory, the longitudinal profiles show
deviations from the expected trend. Subsequent analysis of the phase front of the Gaussian
beams shows little distortion of the phase front at the center of the beam where most of
the atoms will be trapped.

4.4. Integration and Characterization of the Optical Lattice

After the successful construction and external characterization of the beam shaping optics,
the complete lattice was integrated into the experimental setup.
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Figure 4.7. | Interferometric analysis of the 2D-lattice phase front distortion. The phase
front distortion of the 2D-lattice beam shaping optics is analyzed using the interferometer
setup shown in a. The two beams are overlapped at a beam splitter (BS). Both ports of the
interferometer are imaged on a CCD camera (denoted I3 and I4). A typical image obtained
from the setup is shown in b. By using both ports of the interferometer the overall intensity
can be normalized and a phase difference between the two incident beams is calculated which
is shown in c as a solid line. An overall phase curvature is observed which can be attributed to
the different path length of the two observed beams (dashed lines). Especially the fluctuations
of the phase around the center of the beam are below 1/20λ which indicates a low distortion
of the phase front. For more details see main text.
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4.4.1. Beam Alignment and Polarization

Beam Alignment

All lattice beams are aligned by creating an ultracold gas (either a degenerate Fermi gas
(DFG) or a Bose-Einstein condensate (BEC)) and using the lattice beam which shall be
aligned to induce trap oscillations by applying a light pulse. Subsequently, the oscillations
are minimized along all directions. The same procedure is used for the 1D-lattice beam
while the retro reflection mirror is blocked. After the incoming 1D-lattice beam is aligned
the reflected beam is coupled back into the fiber as good as possible.

Polarization Alignment of the 2D-lattice

All measurements in this thesis have been performed using a triangular 2D-lattice and thus
the polarization of the 2D-lattice beams needs to be precisely aligned perpendicular to
the plane of the 2D-lattice. To align each polarization the retroreflected 1D-lattice beam
is blocked. The 1D-lattice polarization is aligned to be perpendicular to the propagation
direction of the 2D-lattice beam which shall be adjusted. Therefore interference between
the 1D-lattice beam and the 2D-lattice beam is possible if the 2D-lattice beam polarization
is not precisely aligned to be parallel to the propagation vector of the 1D-lattice beam. By
using a BEC and employing Kapitza-Dirac diffraction the interference between all three 2D-
lattice beams with the 1D-lattice beam is minimized. Afterward, the 1D-lattice polarization
is set back to its original setting.

4.4.2. Momentum Distribution of Bosons and Fermions out of the 2D-lattice

a b

Figure 4.8. | Typical absorption image for bosons and fermions loaded into the triangular
2D-lattice after TOF. Shown are typical absorption images taken after cloud expansion from
shallow triangular 2D-lattices. In a a BEC was loaded into the lattice and the characteristic
momentum peaks are visible. In b a Fermi gas was loaded into the 2D-lattice. Because of the
Pauli-principle the atoms occupy all energy states up to the Fermi-energy and thus the complete
first Brioullin-zone is visible. Images are averaged over multiple experimental runs.
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Figure 4.8 shows typical time-of-flight images of bosons as well as fermions loaded into a
shallow 2D-lattice. The triangular structure of the underlying lattice is clearly visible. For
the BEC the lattice was switched off and thus the quasimomentum states are projected
onto the free momentum states. The characteristic diffraction peaks are clearly visible and
indicate a superfluid state in the lattice. Fermions on the other hand occupy all energy states
up to the Fermi-energy because the Pauli-exclusion principle. Here a multi component spin-
mixture with N = 6 spin states was loaded into the lattice. The image was taken after band
mapping (band mapping time of 2 ms) which maps the quasimomentum to real momenta.
The complete first Brillouin zone is clearly visible.

4.4.3. Lattice Depth Calibration

One of the central “tuning knobs” for the physics in optical lattices is the depth which
is controlled by the intensity of the laser beams. It is therefore necessary to know and
control the individual lattice depths precisely. The intensities are monitored and controlled
by intensity regulation loops using photo diodes and servo controllers which control the
rf-power driving the AOMs. The calibration of the lattice depth is based on resonant
excitation of the atoms by lattice beam intensity modulation [118].

Lattice Depth Calibration with Bosons

1D-Lattice Depth Calibration using a BEC A BEC adiabatically loaded into the lat-
tice occupies the lowest Bloch band and the lowest energy quasimomentum state (q = 0).
Resonant lattice modulation conserves the quasimomentum. Because of parity conservation
transitions from the lowest Bloch band (n = 1) into n = 2, 4, 6, ... are suppressed. Therefore
the lattice is modulated with frequencies resonant to the n = 1↔ n′ = 3 transition. From
the number of remaining atoms as a function of the modulation frequency, a resonance fre-
quency is obtained. By comparing the resonance frequency to a band structure calculation
the lattice depth experienced by the atoms is extracted

An example of such a spectrum obtained in the 1D-lattice is shown in figure 4.9. The
spectrum was measured by modulating the lattice depth with a sinusoidal shape for 100 ms
with a modulation amplitude of about 1%. After modulation, the number of remaining
atoms is counted. By varying the modulation frequency the spectrum shown in figure 4.9b
is obtained. From the resonance position, a lattice depth is deduced by comparing with
a theoretical band structure calculation as shown in 4.9a. The small asymmetry in the
resonance curve is attributed to interatomic interaction which leads to a slight widening of
the momentum distribution.
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Figure 4.9. | Band structure of the 1D-lattice resolved by lattice depth modulation. In
a a calculated band structure for the 1D-lattice at V1D = 17.1ER is shown. In b the number of
atoms as a function of the modulation frequency is shown. A fit to the data is used to determine
the resonance frequency (solid line).

2D-Lattice Depth Calibration using a BEC The determination of the 2D-lattice depth
is slightly more involved because not only the total lattice depth needs to be measured but
also the three beams should be equal in intensities. Therefore the three beams are calibrated
in pairs forming individual 1D-lattices. The procedure for the determination of the lattice
depth is similar to the procedure explained above. Sample modulation spectra for the three
1D-lattices created by the three beam pairs of the 2D-lattice are shown in figure 4.10.

Lattice Depth Calibration with Fermions

In contrast to bosons, fermions with the same spin setting occupy not only the q = 0 state
but all available energy states up to the Fermi energy. Because of this, there is not a single
transition frequency from one band to another but each atom sits at a slightly different
quasimomentum in the band structure. There are two possibilities to circumvent this prob-
lem in the context of determining the depth of the optical lattice: The first possibility is
to use low lattice depths with large band curvatures and use momentum resolved lattice
modulation spectroscopy [119–121] and band mapping [111] to spectroscopically obtain the
energy and momentum and therefore reconstruct the complete band structure. The second
possibility is to perform the modulation at large lattice depths where effectively no band
curvature is present and therefore all atoms experience roughly the same transition fre-
quency. Subsequent counting of remaining atoms leads to resonance curves similar as seen
with bosons. The two possibilities are schematically shown in figure 4.11.

In general, the first method is preferred. The method relies on reliable band mapping
which means finding a band mapping time fast enough compared to the trap frequency to
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Figure 4.10. | 2D-lattice depth calibration and intensity balancing. The 2D-lattice is
calibrated by forming effective 1D-lattices out of pairs of lattice beams and using parametric
heating to find the transition frequency into the second excited band. Here the spectra for the
three beam pairs are shown after depth and intensity calibration has been performed. Taken
from [114].

not destroy the momentum state and being slow enough to not wash out the momentum
distribution. Unfortunately, in the 2D-lattice, it was not possible to achieve the repro-
ducibility of the excitation and band mapping necessary to employ the first method and
therefore the second method was employed. For the 1D-lattice both methods are employed:
lattice modulation spectroscopy was applied to lower lattice depths (up to V1D = 20ER)
and the atom counting method was applied to deeper lattices (up to V1D = 50ER). In fig-
ure 4.12 a typical absorption image taken at shallow lattice depths after lattice modulation
spectroscopy and band mapping is shown. Spin-polarized fermions are used to suppress any
interaction which could shift the resonance frequency. For the atom counting method the
lattice was modulated for 5 ms and for the modulation spectroscopy a modulation time of
10 ms was used. In figure 4.13 the results of these measurements are shown and a linear
fit is applied to the data (forced to (0, 0)). The insets in the figure show typical data used
to obtain the depth. In the left inset, which shows data obtained using modulation spec-
troscopy, the problems are apparent: at low and high quasimomenta it was not possible
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Figure 4.11. | Possibilities for lattice depth calibration using fermions. For fermions two
possibilities to determine the lattice depth are available. By using momentum resolved lattice
modulation spectroscopy it is possible to spectroscopically access the complete band structure
which is shown in a. In b another possibility is shown where a very deep lattice leads to almost
flat bands which results in a single transition frequency.

to excite enough atoms to extract a momentum. Therefore the depth was determined by
fitting the slope of the 3rd band to the data. Despite the problems the calibration between
the two methods fits very well and the obtained depth is within the fit error. Therefore
it was concluded that both methods could be used to find the lattice depth and the atom
counting method was employed for the 2D-lattice.

Both of the methods rely on modulating the lattice depth and therefore it is not possible
to detect problems which result from the excitation method. The clock state of Ytterbium
offers another possibility for lattice depth calibration. By addressing the clock state it is not
only possible to change the electronic state but also transfer the atom into another band
(resolved sideband spectroscopy [122]). Therefore by performing clock spectroscopy on the
first blue sideband (corresponding to a transition into the first excited band) an independent
depth determination is possible. Because of time constraints, it was not possible to employ
this method.

4.4.4. Characterization of the Fiber Noise Cancellation System

The fiber noise cancellation (FNC) system is used to suppress phase noise introduced by
mechanical vibrations of optical components or optical fibers. The system was originally
built at another experiment where the optical fibers transported the light over 30 m from
one room to another. The laser system described here is located on the same optical table
as the main experiment chamber. Furthermore, the optical fibers are significantly shorter
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Figure 4.12. | Lattice modulation spectroscopy. In a a typical absorption image taken using
ultracold fermions in the 1D-lattice after lattice modulation and band mapping is shown. In b
a sum profile along the vertical direction of the data is shown. A small part of the atoms is
excited to the second excited band (third Brillouin zone). The excitation energy is momentum
dependent and thus the complete band structure is accessible. Note that no clear “holes” are
present in the first Brioullin zone. The depth of the 1D-lattice is V1D = 7Erec and a band
mapping time of tbm = 500µs was used.

(only 5 m) and are mechanically fixed to the optical table and experimental setup. Therefore
the necessity for the FNC system is questionable.

To check whether an FNC is needed a BEC was loaded into the 2D-lattice at different
lattice depths and the 1/e-lifetime of the condensate fraction and visibility are extracted.
The condensate fraction was determined by fitting a bimodal distribution to the central peak
of the diffraction pattern while the visibility is determined by the contrast of the interference
peaks. These measurements are repeated for an active FNC (analog PID servo loop with
a high-quality digital reference) and a high-quality digital phase coherent source delivering
the rf-signal to the three AOMs without active noise control. The lifetimes determined
by this experiment are shown in figure 4.14. For both methods, a significant difference
between the lifetimes is observed. In both cases, the digitally driven AOM delivers almost
a factor of two longer lifetimes from a lattice depth of V0 = 3ER onwards. Similar behavior
is observed at other experimental setups in the group. The exact reason for the lifetime
increase is unknown but could be related to the fact that the analog FNC is based on a
voltage controlled oscillator (VCO) which has a significantly larger instantaneous linewidth
compared to the digital frequency source. Thus the FNC not only removes noise introduced
by mechanical vibrations but also needs to reduce the linewidth of the VCO. Therefore the
hope exists that a combination of an FNC and a digital frequency source will increase the
lifetime even further. Such a digital FNC is currently in development. All measurements
presented later in this thesis were performed using the digitally driven system without active
FNC.
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Figure 4.13. | Comparison of lattice modulation spectroscopy and atom counting for
lattice calibration with fermions. Shown are the measured depth of the 1D-lattice obtained
at various intensities. The green round data points are obtained using momentum resolved
modulation spectroscopy while the red square points represent the depths obtained through
excitation and counting of atoms in the 1st Brillouin zone. The solid line shows a linear fit
through the data. The left inset shows data obtained through lattice modulation spectroscopy
while the right inset shows typical data obtained using parametric heating and atom counting.

4.5. Conclusion

In this chapter, the experimental setup of an optical lattice with non-cubic symmetry was
presented. The lattice consists of two substructures: the triangular 2D-lattice formed by
three interfering lattice beams and a 1D-lattice perpendicular to the 2D-lattice. For both
structures, the achievable lattice depth plays a significant role to reach the strongly corre-
lated regime. Furthermore, the lattice with its axis of symmetry parallel to the clock laser
beam (here the 1D-lattice) needs to achieve a sufficient Lamb-Dicke parameter. With this
constraints the laser setup and beam shaping optics were planned and built. The experimen-
tally determined beam waists corresponded reasonably well to the planned waists. However,
all beams showed some signs of optical aberrations in their on-axis intensity profiles. An in-
terferometric analysis carried out for the 2D-lattice showed only very little distortion of the
phase fronts of the beams and thus were determined to be usable. Further, the techniques
used for calibration of the lattice depth with fermions as well as bosons where shown. Fi-
nally, it could be determined that the active fiber noise cancellation technique at the setup
presented here significantly decreased the lifetime of a bosonic sample. A digital frequency
source was subsequently used to drive the AOMs used in the 2D-lattice setup.
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Figure 4.14. | Lifetime measurement with and without fiber noise cancellation. In a the
1/e-lifetime of bosons in the 2D-lattice is shown determined by fitting a bimodal distribution to
the central peak of the interference pattern. In b the same measurement is presented but the
visibility of the interference peaks is plotted. In both cases the digital frequency source shows a
significantly longer lifetime.

Additional characterization not relevant in the context of this thesis are described in [57]
and [114]. Beside the realization of the Mott-insulator to superfluid transition [7] in the
triangular lattice, the alignment of the three 2D-lattice beams with respect to each other
was checked to be as close to 120◦ as possible.
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5. Excited State Preparation and Detection

The very narrow transition connecting the ground state and the 3P0 excited state is em-
ployed for state-of-the-art optical lattice clocks [31] and can be utilized for quantum sim-
ulation of solid-state models with orbital degrees of freedom like the Kondo-Lattice model
(KLM) [32, 33, 123, 124]. The large two-body loss rate of 3P0 atoms furthermore opens up
the possibility to investigate correlated system characterized by dissipation.

The excited state is coupled to the ground state via an optical transition on the order of
∆f ≈ 10 mHz. To achieve useful coupling strengths it is necessary to deliver high optical
power in a comparable frequency interval. For this, a laser stabilized to a high-finesse
optical resonator using a high-bandwidth servo-loop is employed. The standard method to
transfer population is applying a π-pulse. These pulses have a total pulse area so that the
probability to find all atoms in the excited state is unity. Details can be found in the PhD-
Thesis of Alexander Thobe [57]. While this method is very well suited for spectroscopic
measurements it has experimental drawbacks. One of the problems is the high demand on
the frequency stability of the laser system. The probability of excitation depends directly on
the detuning from the transition. Thus a small detuning results in nonoptimal population
transfer. The second important drawback is the dependence of the pulse-time on the power
of the clock-laser beam which makes precise control of the laser intensity necessary. In short:
the pulse area has to be very well controlled and needs to be very stable from experimental
run to experimental run.

A well-known solution to this problem is the Rapid Adiabatic Passage (RAP) technique
[125]. A RAP coherently transfers atoms to an another state by time-dependent dressing
of the atomic states. In this thesis, the RAP is employed by sweeping the clock laser
frequency over the resonance. As long as the initial detuning remains significantly larger
then the Rabi-frequency and the sweep-speed remains small enough, a complete population
transfer from the ground to the excited state should be achieved. In practice fluctuations
in the laser power have almost no influence on the transfer probability. Similarily drifts
of the laser frequency are insignificant as long as the initial and end detuning remain high
enough. Notably a RAP allows population transfer of atoms in a non-magic optical lattice
where due to the inhomogeneous Rabi frequencies simple π-pulses are difficult or impossible.
Non-magic optical lattices are a cornerstone of the aforementioned KLM.

After preparation of the excited-state, it is necessary to detect the atoms. Ideally, a detec-
tion scheme which is independent of the preparation step is used to cancel imperfections in
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the preparation scheme. Here a repumper [31, 126] is used which incoherently transfers the
atoms back to the ground-state where standard absorption imaging is performed.

This chapter is organized as follows: the laser system and the important components used to
address the clock state are briefly described in section 5.1. Next the detection part and the
repumping-method is presented (section 5.2). Afterward the RAP on the clock transition
is described in section 5.3 for a spin-polarized as well as for a spin mixture with N = 6 spin
states. The focus here lies on the influence of the many-body state and inelastic collisions
between excited state atoms on the observed dynamics. Finally, the necessity of a RAP in
non-magic optical lattice setups is discussed and parameters for the RAP in a KLM-lattice
are presented in section 5.4.

The clock laser-system was built and characterized by Alexander Thobe and is described
here very briefly. Details can be found in his PhD-Thesis [57]. The clock laser switching
setup was implemented by the author. The repumping-system has been built by André
Kochanke. The detection scheme and the RAP-scheme were implemented and characterized
by André Kochanke, Thomas Ponath and the author. Numerical simulations and data
analysis were performed by the Author.

5.1. Adressing the Clock-State

In the first part of this section the clock laser system used to address the 1S0 → 3P0
transition is briefly described. The second part presents a new optical setup used to remove
any Doppler shifts between the atoms and the clock laser beam due to small movements of
the retro-reflex mirror of the 1D-lattice. This setup was implemented in the framework of
this thesis.

5.1.1. High-Finesse Resonator and High-Bandwidth Control Loop

Addressing very narrow optical transitions require narrow laser sources. Typical semicon-
ductor or solid state lasers are 10 kHz to 100 kHz broad. To reach linewidths on the order
of Hz a high-finesse optical cavity is needed. The narrow transmission lines of such a cavity
provide a high gain frequency discriminator. A high bandwidth servo loop controlling the
frequency of the laser then narrows the linewidth of the laser down to the 1 Hz regime.

The optical cavity used in the experiment described here is a vertically mounted planocon-
cave cavity fabricated from “Ultra Low Expansion”-glass (ULE, trademarked by Corning
Inc.) designed by the group of Hall [127]. The cavity is shielded against environmen-
tal influences (temperature and vibrations) by a vacuum-system and active and passive
heat-shields. ULE has a coefficient-of-thermal-expansion (CTE) which crosses zero near
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Figure 5.1. | Important components of the laser-system used to address the clock-
transition in 173Yb. An frequency-doubled (SHG) External-Cavity-Diode-Laser (ECDL) is
used to create laser-light at 578 nm. The laser-light is then frequency-stabilized to a High-
Finesse optical cavity using a Pound-Drever-Hall (PDH) locking scheme. Fast corrections are
performed via an acoustic-optic-modulator (AOM) while slow and long-term drifts are corrected
by changing the ECDL cavity length. The light used at the experiment is switched on and off
via an AOM which is additionally used to suppress noise introduced by the fiber-link (fiber-
noise-cancellation, FNC). Another AOM in front of the reference cavity is used to control the
absolute frequency of the laser-light.

room-temperature. The finesse of the cavity used in this thesis is F = 148120 and has a
linewidth of ∆ν = 13.03 kHz [57].

The laser itself is a commercially available, frequency-doubled (SHG) diode based system
where the fundamental wavelength is amplified by a tapered-amplifier. The SHG stage is
based on a non-linear crystal inside a ring-cavity and produces around 300 mW light at the
clock-transition wavelength of 578nm.

The laser is locked to the reference cavity via an Pound-Drever-Hall (PDH) locking-scheme
[128]. The active-component is an acousto-optic-modulator (AOM) and a high-bandwidth
“proportional-integral-derivative” (PID) controller. The servo loop has a bandwidth of
900 kHz.
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Further AOM’s are used to shift the frequency of the laser near the desired cavity resonance.
Additional AOMs are used to control the frequency of the light used at the experiment which
will be discussed in more detail in the next section. See figure 5.1 for a schematic drawing
of the clock-laser setup. With this setup, it was possible to observe a laser-linewidth of
1.1 Hz on second-timescales. All further details are described in detail in [57].

5.1.2. Switching-Setup and Frequency-Sweeping

The part of the clock-laser system used to switch the clock-beam on and off and to dy-
namically sweep the clock-laser frequency for the rapid adiabatic passage (RAP) is now
described. Additionally, this system allows stabilizing the phase of the clock laser beam to
the reference frame of the atoms. Movements of optical elements along the path can in-
duce a Doppler shift between the reference frame of the clock beam and the atoms trapped
in the 1D-lattice. A relative movement of ∆v = 100µm/s results in a Doppler shift of
∆f = ∆v/λ ≈ 170 Hz.

The complete setup consists of three parts: the fiber noise cancellation (FNC) and switching
AOM, an AOM used for frequency sweeps and an optical setup to compensate relative
longitudinal movement between the 1D-lattice and clock-beam.

The complete setup is shown in figure 5.2. The FNC part is similar to the setup described in
the last chapter for the 2D-lattice beams (section 4.2). It is based on a beat measurement of
a local oscillator (LO) beam picked up in front of the optical fiber and a back reflected beam.
The back reflected part acquires phase noise introduced by vibrations of the fiber and by
vibrations of the 1D-lattice retroreflector and any optical elements in it’s path. If any noise
is detected it is corrected by the FNC AOM using a servo loop. Because the back reflection
beam is picked up near the glass cell and as near as possible to the 1D-retrorelfector not
only noise introduced by the fiber but also noise due to acoustics and vibrations of mirrors
are compensated. The FNC AOM is also used for switching the clock beam on and off by
a rf-switch.

Another AOM placed next to the experimental setup offers the possibility to dynamically
change the frequency of the clock beam during the experimental cycle. The AOM is driven
by a rf-synthesizer which can be controlled externally. The 0th AOM order is used for the
FNC lock. A mechanical shutter is used to suppress as much light as possible in certain
phases of the experimental cycle.

The clock beam passes through the concave retroreflection mirror (R = −600 mm). Two
mode-matching lenses (f1 = 1000 mm, f2 = 750 mm) in front of that mirror allow adapting
the spot size and shifting the focus position. For all experiments described in this thesis a
spot size of w0 = 200µm was used. A polarizing beam splitter (PBS), a quarter waveplate
(QWP) and a half waveplate (HWP) clean the polarisation of the beam and align it with
the desired axis. In this thesis, all measurements are performed using π-polarized light.
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Figure 5.2. | Schematics of the setup used to switch and sweep the clock laser beam.
The clock laser phase is stabilized to the 1D-lattice retroreflector. When the retroreflector is
moving because of e.g. vibrations the fiber noise cancellation (FNC) servo loop compensates the
resulting doppler shift between atoms and clock laser beam. The FNC AOM is further used for
switching the clock beam. Frequency sweeps are performed via the second AOM in front of the
1D-lattice retroreflection mirror and are controlled via the central experiment control software.

The lenses, waveplates, and retroreflector are mounted on a monolithic aluminum structure
to suppress vibrations of the 1D-lattice mirror relative to the FNC reflection mirror. The
FNC servo loop has a servo bandwidth of approximately 100 kHz.

5.2. Excited State Detection

As described in the introduction a repumper is used to transfer atoms from the excited
state into the ground state. In this section first the experimental setup of the repumping
laser is described and then the implementation at the main experiment is shown.
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Figure 5.3. | Repumping level scheme and laser setup. In a the energy levels of 173Yb
relevant for the repumping scheme are shown. The 1388 nm repumper pumps atoms from 3P0
to the 3D1 state from where most of the atoms spontaneously decay into the ground state via the
3P1 state. b shows the simple laser system used for repumping. A distributed feedback (DFB)
laser emits about 10mW of light. The laser is not frequency locked. To minimize frequency
drifts the DFB diode is spectrally broadened by modulating the pump current. The light is
passed to the experiment via a fiber link and is directly imprinted onto the atoms. An AOM as
well as a mechanical shutter allows fast switching and completely blocking the light.

5.2.1. Repumping Setup

The repumping transition connects the 3P0 clock state with the 3D1 level with a transition
wavelength of 1388nm as shown in figure 5.3. The 3D1 state spontaneously decays into
either 3P2, 3P1 or 3P0 with branching ratios of 0.9%, 35.4% and 63.7%. 3P2 is meta-stable
and thus atoms decaying into this state are lost from the repumping cycle. Assuming a
constant depopulation of all 3P0 atoms and transfer into 3D1, a total branching ratio into
the ground state of 97.5% is estimated. A complete model (which will be described in the
Ph.D. thesis of André Kochanke) using rate-equations incorporating the possible transfer
back to the clock state confirms this simple estimate.

The laser used for repumping is a commercially available distributed feedback (DFB) laser.
It outputs about 10 mW of power. The laser is free running without active frequency
stabilization. The frequency is adjusted and passively stabilized by a temperature control
servo loop which is set to the desired wavelength using an optical spectrum analyzer. To
minimize effects of temperature drifts the laser is spectrally broadened by modulating the
pump power, thereby modulating the frequency. The light is controlled by a single pass

64



Excited State Preparation and Detection Chapter 5

AOM and a mechanical shutter. About 5 mW of light reach the experiment via a fiber
link and is directly sent to the atoms. The beam diameter is large (about 2 mm collimated
beam) compared to the atomic cloud minimizing adjustment and allowing to repump the
atoms during time of flight (TOF).

5.2.2. Imaging sequence

The imaging sequence including the repumper consists of two steps. First, the remaining
ground state atoms are imaged using normal absorption imaging on the principal 399 nm
transition. This first imaging is performed after typically 15 ms TOF. The second step is the
repumping stage where the repumper is activated for 1 ms. 2 ms later the next imaging is
performed where the atoms which originally have occupied the excited state are imaged.

As in standard absorption imaging, two images are taken, the absorption image and the
reference image allowing to normalize the intensity distribution of the imaging laser. For
the repumping cycle, the ground state atoms are imaged using the first imaging pulse while
the excited state atoms are recorded on the second image. This procedure simplifies the
readout of the image because only two images have to be taken which allows using existing
analysis software and speeds up the image transfer from camera to the computer. This
simplified procedure works only if the TOF between the two clouds is large enough to
separate them.

A typical image showing the ground state as well as excited state atoms are presented in
figure 5.4 which shows a 50% population transfer to the excited state.

5.2.3. Repumper Efficiency

To check how efficient the repumping scheme is Rabi-oscillations on a spin-polarized gas
of 173Yb were performed and it was checked whether oscillations on the sum of detected
ground state and detected excited state atoms are detectable. A spin-polarized (mf = 5/2)
sample of 173Yb is therefore loaded into the deep (V1D = 50ER) optical lattice and the
pulse time of the clock laser is varied. Detection of ground and excited state is performed
as described above. The corresponding data is shown in figure 5.5. A Rabi frequency of
Ω = 2π × 2.7 kHz is extracted from damped sine fits to the data.

To check for oscillations on the total number of atoms (ground state atoms plus excited
state atoms) a Fourier transform (FFT) on the data is performed. The result is presented
in figure 5.6.

No oscillations at the Rabi frequency are observed. Thus the repumping process does not
introduce errors in the detected number of atoms beyond the limits of our normal absorption
detection. A decrease in atom number at the end of the Rabi cycle is observed which is
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Figure 5.4. | Typical absorption image of atoms in 1S0 and 3P0 imaged using the
repumper. The image was taken after 50% of the atoms were transferred to the excited state
using a Rabi-pulse on the clock transition. Images are averaged and are only intended for
illustration. Standard absorption imaging with two successive images (“absorption image” and
“reference image”) was performed. The first image taken after 15 ms TOF reveals the ground
state atom distribution. 1 ms repumping and further 2 ms TOF reveals the repumped excited
state atoms. The excited state atoms are imaged onto the second image (“reference image”)
and thus exhibit a negative optical density because the images were normalized to the “reference
image”.

attributed to a drift in the experimental setup. It is observed in the FFT as a low-frequency
signal.

5.3. Rapid Adiabatic Passage on Clock Transition

In this section the rapid adiabatic passage (RAP) in the context of optical clock transitions
is discussed. First, the concept of adiabatic passages is introduced and then the implemen-
tation of the experiment is presented. Finally, the observed time dynamics of a RAP on a
spin-polarized gas and a gas with multiple spin states is studied.

5.3.1. Principle of Adiabatic Passages

The discussion of adiabatic passages follows [125] and [129]. The fundamental principle of
a rapid adiabatic passage (RAP) is best understood in terms of a two-level atom. Assume
a two-level system with eigenstates and eigenenergies according to

ĤA |g〉 = Eg |g〉
ĤA |e〉 = Ee |e〉

(5.1)
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Figure 5.5. | Rabi oscillations on a spin polarized gas imaged using the repumper. Rabi
oscillations on a spin polarized sample of 173Yb in the mF + 5/2 state is shown. The excited
state atoms are counted using the repumper.

and a transition frequency between the states of ω0 = Ee−Eg

~ . The two states are coupled
with a coupling strength given by the Rabi frequency Ω(t). The Hamiltonian describing
this system in the rotating wave approximation (RWA) is written as [130]:

Ĥ(t) = ~
2

[
∆(t) Ω(t)
Ω(t)∗ −∆(t)

]
(5.2)

∆(t) = ω0 − ω(t) is the detuning of the photon energy ω(t) with respect to the atomic
transition energy ω0. Diagonalization of Ĥ(t) yields eigenenergies

E2 = ~
2

√
∆(t)2 + Ω(t)2

E1 = −~
2

√
∆(t)2 + Ω(t)2

(5.3)

and eigenstates
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Figure 5.6. | FFT spectrum of Rabi oscillations imaged using the repumper. Shown is
the FFT of the sum of ground and excited state atom undergoing Rabi oscillations. No distinct
feature is observed at the Rabi frequency (blue shaded area) indicating that detection is not
limited by the repumping process.

|2〉 = sin Θ(t) |g〉+ cos Θ(t) |e〉
|1〉 = cos Θ(t) |g〉 − sin Θ(t) |e〉

(5.4)

with a mixing angle Θ(t) = 1
2 arctan Ω(t)/∆(t). The states |1〉 and |2〉 are called “adiabatic”-

states while the states |g〉 and |e〉 are called “bare”. The condition for adiabatic time
evolution is formulated by requiring that the rate of change of the mixing angle of the
two states is significantly smaller than the difference of the eigenfrequencies of the adiabtic
states [129] which is evaluated to [125]:

1
2 |Ω̇∆− Ω∆̇| �

(
Ω2 + ∆2

)3/2
(5.5)

This result shows that an atom prepared in an adiabatic state will remain in this state if ∆
and Ω are changed sufficiently slow. In particular, consider the case of an atom prepared
in the bare state |g〉 with a constant coupling strength (Ω̇ = 0). When the detuning is set
to large negative values the adiabatic state |1〉 consists mostly of the bare state |g〉. Slowly
sweeping ∆ to large positive values keeps the atom in state |1〉. For large positive detunings
the adiabatic state |1〉 consists mostly of bare state |e〉. Thus a complete population transfer
between atomic states |g〉 and |e〉 has been performed.

To illustrate this behavior equation 5.2 was solved and integrated numerically with a Runge-
Kutta method. A constant coupling strength of Ω ≈ 3.8 kHz was used and the detuning
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Figure 5.7. | Rapid adiabatic passage in a two-level system. a shows the energy spectrum
of a coupled two-level system with a coupling strength of Ω ≈ 3.8 kHz. The coupling leads to
new eigenstates of the coupled system and an avoided crossing at ∆ = 0. b shows a numerical
simulation of a RAP with constant coupling and a linear frequency sweep as seen in a. Initially,
the system is in the atomic ground state which is mostly identical to the adiabatic state |1〉.
If the frequency sweep is slow enough the system follows the eigenstates adiabatically and the
population is transferred to the excited state. Increasing the sweep speed results in reduced
transfer to the excited state and the observation of residual oscillations.

was varied between ∆(t = 0) = −100 kHz and ∆(t = T ) = 100 kHz. The sweep time T was
varied between 1 ms and 100 ms. Equation 5.5 shows that a sweep time of T = 1 ms does
not fulfill the adibaticity condition which is confirmed by the simulation shown in figure 5.7.
A sweep time of 100 ms fulfills condition 5.5 showing complete population transfer from the
atomic ground state to the atomic excited state.

5.3.2. Experimental RAP Sequence

The starting point of the RAP is a quantum degenerate gas with one or six spin components.
The gas has been prepared as described in chapter 3 in the crossed optical dipole trap.
A constant homogeneous magnetic field of B = 3 G is applied throughout the complete
sequence ensuring a well-defined quantization axis. The atoms are loaded into the magic
optical lattice by first ramping up the triangular 2D-lattice thereby suppressing tunneling
perpendicular to the 1D-lattice. Next, the 1D-lattice is ramped up. The depth was chosen
to 50ER which yields a Lamb-Dicke parameter of η2 = 0.07 thus suppressing higher band
transitions. After the lattice ramp, the crossed optical dipole trap is ramped down and
switched off. This is necessary to prevent shifting and broadening of the clock transition.
The clock laser is switched on while red detuned to −50 kHz from the carrier transition.
Sweeping the frequency of the clock laser frequency to higher values initiates the RAP.
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Figure 5.8. | Experimental sequence of the RAP on the clock transition in 173Yb. The
experimental sequence for the adiabatic passage on the clock transition starts with a quantum
degenerate gas of 173Yb. After the lattice is ramped to its final value the dipole trap (DT) is
ramped down and switched off to suppress intensity dependent light shifts and broadening. The
RAP is performed by switching on the clock laser and linearly sweeping its frequency. Finally, the
atoms are released from the trap and the atoms are imaged using the repumper. By changing
the duration of the frequency sweep and the endpoint of the sweep (dashed lines) it is possible
to study the time evolution of the RAP process.

When total population transfer is needed the final frequency is +50 kHz. A sweep time of
20 ms is chosen which fulfills the adiabaticity condition 5.5 for Rabi frequencies of about
Ω = 2π × 1 kHz and larger. For the RAP characterization, the passage is interrupted
at certain points during the sweep thus enabling us to study the time evolution. The
described sequence is illustrated in figure 5.8. Finally, the atoms are released from the trap
and imaging of ground and excited state atoms as described in section 5.2 is performed.

5.3.3. RAP using a Polarized Gas

The above described sequence was employed using a spin polarized gas of 173Yb in the +5
2

state. For this configuration a Rabi frequency of Ω = 2π × 3.8 kHz was used. All other
parameters were choosen as described above. The time evolution of the population was
observed in 1 ms intervals and is shown in figure 5.9.

This sequence was performed for different numbers of atoms at the beginning of the RAP by
decreasing the final dipole trap power before loading the atoms into the lattice. A complete
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Figure 5.9. | RAP with a spin polarized 173Yb sample. a and b show excited and ground
state atom numbers for a rapid adiabatic passage on the clock transition. The sweep time is set
to 20 ms and all atoms are in the mF = +5/2 state. A lower initial atom number was prepared
in a compared to b by decreasing the final dipole trap power before ramping up the optical
lattice. Complete population transfer is observed.

population transfer from the ground into the excited state is observed as predicted by
equation 5.5. The observed dynamics is independent of the number of atoms.

5.3.4. RAP using a Spin-Mixture

The same sequence is employed using a sample with six spin components. Equal distribution
of all six spin states is assumed. All other parameters (frequency sweep time, clock beam
power etc.) are chosen as before. The result of this measurement for four different amounts
of atoms in the ground state at the beginning of the RAP is shown in figure 5.10.

A significantly different time behavior compared to the spin-polarized measurement is ob-
served. The important observations are:

• For all but the lowest initial particle number, a significant difference between the
remaining atoms and the initial particle number is observed.

• For the lowest particle number a small difference between initial and remaining atoms
is observed while at the end of the RAP more atoms remain in the ground state, i.e.
an overall worse RAP efficiency compared to the spin polarized RAP is observed.

• For the two highest particle numbers a small transfer of ground state atoms into the
excited state is visible at a distinct detuning of approximately ∆ = −30 kHz.

The next three sections will discuss this observation in detail.
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Figure 5.10. | RAP with six spin components. RAP on a six spin mixture of 173Yb for
different initial particle numbers. A significant atom loss is observed for the three high particle
numbers. Further a decrease in the ground state particle nummber at approximately −30 kHz
is detected. The former particle loss is attributed to double occupancies. The latter particle
loss is attributed to higher-band occupations. See main text for details.

5.3.5. Differential Rabi Frequencies

The transition 1S0 → 3P0 is addressed using π-polarized light so the hyperfine state of the
atom is conserved. While the elastic scattering length is spin independent the 1S0 → 3P0
coupling strength (Rabi frequency) depends on the particular mf setting. Furthermore,
the Rabi frequency is not only dependent on the spin state but can either be positive or
negative. The relevant coupling coefficients are presented in figure 5.11b. The sign of
the Rabi frequency will play a significant role when two atoms on the same lattice site are
addressed using the clock laser and will be discussed in the next section. On lattice sites with
only one atom only the magnitude of the coupling influences the RAP dynamics. The time
behavior of the RAP on a singly occupied lattice site is simulated for the three different
Rabi frequencies and the experimental parameters introduced above. The Hamiltonian
from equation 5.2 is used. A term to include the linear Zeeman effect due to the applied
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quantization axis is added:

Ĥ(t) = ~
2

[
∆(t) + 2Zg Ω

Ω∗ −∆(t) + 2Ze

]
(5.6)

Here Zg and Ze are the spin, electronic state and magnetic field dependent Zeeman energies.
This Hamiltonian is time evolved using a 3rd order Runge-Kutta method with a linear
detuning sweep. The simulation was performed for all coupling strengths and the propability
of transfering a ground state atom into the excited state is presented in table 5.1.

Spin State Propability of transfer Clebsch-Gordon coefficient

|±5/2〉 0.99 ±0.845
|±3/2〉 0.81 ±0.507
|±1/2〉 0.16 ±0.169

Table 5.1. | Probabilities of transfer of a ground state atom into the excited state by a
RAP. The probability for transfer from the ground state into the excited state is calculated by a
numerical simulation of the RAP process. Due to the different Rabi frequencies the adiabaticity
condition is violated for the mF = ±1/2 transitions and only a low transfer probability is
observed.

The results of the simulation indicate a low transfer probability for the lowest Rabi frequen-
cies / Clebsch-Gordon coefficients. Averaging over all probabilities gives an overall RAP
efficiency of 65%. For the lowest particle numbers presented in figure 5.10 RAP efficiencies
of more then 80% are observed. It is currently unclear why the simulation yields worse
transfer efficiencies compared to the experiment but it can be concluded that the difference
in Rabi frequencies yields worse transfer probabilities and thus explains the second obser-
vation stated in chapter 5.3.4. For future experiments, the initial detuning and the sweep
time of the detuning should be adapted to mitigate this effect.

5.3.6. Influence of Double-Occupancies on the RAP

The overall particle number dependence of the RAP efficiency is attributed to doubly oc-
cupied lattice sites as will now be explained.

Amount of Double Occupancies

In 5.3.4 a particle number dependent loss was observed. The loss is observed on resonance
where the population changes from the ground to the excited state. This loss process is
attributed to doubly occupied lattice sites where both atoms are lost when transferred
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to the excited state due to inelastic scattering between excited state atoms. To confirm
this the atomic distribution of the ground state of a fermionic spin mixture in the optical
lattice for the experimental conditions has been performed. The simulation “sorts” each
atom into the lowest available energy state of an optical lattice including the harmonic
confinement induced by the lattice and dipole trap beams. No tunneling (J = 0 limit) and
zero temperature were assumed while interactions and the Pauli principle is accounted for.
From this simulation, the number of atoms on singly occupied lattice sites is deduced. The
following parameters were assumed for the calculation of the density distribution:

ωx = 2π(70 + 51) Hz
ωy = 2π(24 + 51) Hz
ωz = 2π(27 + 55) Hz
U = 1.56ER

(5.7)

The harmonic frequencies stem from the confinement due to the optical dipole trap (first
number in the table above) and the additional confinement due to the lattice beams (second
number in the table). The interaction energy U is based on calculated Wannier functions
for the complete 3D-lattice.
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Figure 5.11. | Singly occupied lattice sites and Clebsch-Gordon coeficients for clock
transition. In a the normalized number of atoms on singly occupied lattice sites depending on
the total number of atoms for the experimental parameters is shown. The solid line shows a
J = 0 simulation while the datapoints are extracted from the measurement of the spin mixture
RAP sequence. b shows the different Clebsch-Gordan coefficients for the 1S0 → 3P0 transition
of 173Yb.

The simulation is compared to the data of figure 5.10 by averaging the atom number of the
first three ground state datapoints and the last three excited state datapoints and assuming
all remaining excited atoms are on singly occupied lattice sites. The result of this analysis is
shown in figure 5.11a showing good qualitative agreement. For lower particle numbers the
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agreement between the theoretically expected double occupancies and the observed atom
number is worse. This is understood in terms of the overall slightly worse RAP efficiency
due to differential Rabi frequencies as explained in the section above.

Two Body Interaction Hamiltonian

To solidify the assumption of inelastic scattering of excited states on doubly occupied sites
playing a large role the observed behavior it was checked whether two atoms on a lattice
site can be simultaneously transferred to the excited state. The time evolution of two
ground state atoms on a lattice site coupled to the excited state with the RAP sequence
is simulated. Here only the result of the simulation will be presented while details of the
interaction Hamiltonian can be found in appendix B. The states and the Hamiltonian are
also analyzed in [82] and in [57].

Starting from the Pauli exclusion principle two fermions in different spin states on a lattice
site can be in either of four quantum states [82]:

|gg〉 = 1√
2
(
|g, ↑〉1 |g, ↓〉2 − |g, ↓〉1 |g, ↑〉2

)
|+〉 = 1

2
(
|e, ↑〉1 |g, ↓〉2 − |e, ↓〉1 |g, ↑〉2 + |g, ↑〉1 |e, ↓〉2 − |g, ↓〉1 |e, ↑〉2

)
|−〉 = 1

2
(
|e, ↑〉1 |g, ↓〉2 + |e, ↓〉1 |g, ↑〉2 − |g, ↑〉1 |e, ↓〉2 − |g, ↓〉1 |e, ↑〉2

)
|ee〉 = 1√

2
(
|e, ↑〉1 |e, ↓〉2 − |e, ↓〉1 |e, ↑〉2

)
(5.8)

Here |e/g〉 denotes the states 3P0 and 1S0 and |↑ / ↓〉 represents one of the two spin states.
The Hamiltonian Ĥ(t) describing the system consists of an inter-atomic interaction term,
an atom-light interaction term, an Zeeman-interaction term and the electronic term. No
direct coupling between |gg〉 and |ee〉 exists while states |gg〉 / |ee〉 and |+〉 / |−〉 couple:

〈ee|Ĥ(t)|gg〉 = 0

〈+|Ĥ(t)|gg〉 ∝
√

2
4 (Ω↑ + Ω↓)

〈+|Ĥ(t)|ee〉 ∝
√

2
4 (Ω↑ + Ω↓)

〈−|Ĥ(t)|gg〉 ∝
√

2
4 (Ω↑ − Ω↓)

〈−|Ĥ(t)|ee〉 ∝
√

2
4 (Ω↑ − Ω↓)

(5.9)

Ω↑/↓ is the spin state dependent Rabi frequency depending on the particular mF transition.
Figure 5.12 shows the time evolution of the transfer propabilities for a 5

2 +−5
2 mixture with

Ω↑ = −Ω↓.
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Figure 5.12. | Simulation of RAP on a doubly occupied lattice site. Shown is the numerical
simulation of a RAP on a lattice occupied with atoms in the |5/2〉 and |−5/2〉 state. A complete
population transfer from |gg〉 to |ee〉 is observed.

In figure 5.12 strong residual oscillations are visible. This is explained by the coupling
strength which is increased by a factor of

√
2 compared to the case of only one atom per

lattice site (compare with equations 5.9). As a result, the initial detuning is not large
enough for the increased effective Rabi frequency. The second observation is a complete
(neglecting the residual oscillations) population transfer from |gg〉 to |ee〉 via intermediate
state |−〉.

As already seen in equation 5.9 the particular dynamics and the particular intermediate
state depends crucially on the difference of Ω↑ and Ω↓ but it is noteworthy that a transfer
to |ee〉 is possible for every spin state combination. For brevity figures similar to figure 5.12
for all combinations of spin states is not shown but a list the approximate probability of
populating state |ee〉 is shown in table 5.2.

As in section 5.3.5 the difference in Rabi frequencies yields very different transfer proba-
bilities. Averaging all transfer probabilities yields a total theoretical efficiency of 66%. As
before this efficiency is lower compared to the experimentally observed efficiency. This is
seen very well in section 6.2.3 where RAP based measurements are presented which only
use a 5/2 + 3/2 mixture which shows good experimental transfer efficiencies in contrast to
the theoretically predicted efficiency. The reason for the difference in theoretical description
and experiment is unknown. Regardless of the details, this analysis proves that a simul-
taneous two atom transfer is possible for every spin state combination. This means that
the assumption of excited state losses on doubly occupied lattice sites leading to the sharp
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Mixture | 〈ee|ψ(T )〉 |2 Mixture | 〈ee|ψ(T )〉 |2

5/2 + 3/2 0.15 3/2 + -5/2 0.99
5/2 + 1/2 0.77 1/2 + -1/2 0.17
5/2 + -1/2 0.99 1/2 + -3/2 0.79
5/2 + -3/2 0.99 1/2 + -5/2 0.98
5/2 + -5/2 0.98 -1/2 + -3/2 0.18
3/2 + 1/2 0.17 -1/2 + -5/2 0.80
3/2 + -1/2 0.83 -3/2 + -5/2 0.14
3/2 + -3/2 0.99 - -

Table 5.2. | Probabilities of finding two atoms on a lattice site in the excited state after
a RAP. Small probability variations between symmetric spin combinations are due to small
numerical errors.

decrease in particle numbers is valid.

5.3.7. Initial Higher-Band Population

A last open question is the third observation stated in section 5.3.4. A particle loss is
observed far off resonance with regard to the principal clock transition. The loss occurs
at approximately −30 kHz. While at the same frequency a small increase in the number
of excited state atoms is visible the total number of atoms decreases at that point. For
a 1D-lattice depth of 50ER the transition energy between the ground band and the first
excited band is approximate 26 kHz. This corresponds reasonably well with the observed
loss frequency which would indicate a small excited band population. The RAP could
drive a sideband transition thereby transferring an atom into the electronic excited state
and simultaneously transferring it into the lowest band of the lattice. Then a loss due to
inelastic scattering between ground and excited state atoms could occur.

5.3.8. Summary of Spin Mixture RAP

In the last sections, a characterization of the RAP employed on a six-component spin
mixture was presented. The observed dynamics is explained in terms of higher-band popu-
lation, doubly occupied lattice sites and differential Rabi frequencies between the different
spin transitions. While details of the behavior are not understood the overall dynamics is.
Depending on the requirements of the particular experiment conducted it is necessary to
limit the initial number of ground state particles in order to limit the amount of “holes”
created by the loss of doubly occupied lattice sites. Here a reasonable tradeoff between
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signal-to-noise and influence by the holes needs to be found. An efficient RAP on a six-spin
component is possible and therefore all benefits of adiabatic passages are available.

5.4. RAP for the Study of the Kondo Lattice Model

The Kondo Lattice Model (KLM) is a fundamental model in solid state physics describing
the interaction of localized spins with mobile spins in a lattice structure [131, 132]. It has
been proposed to use atoms such as fermionic Sr or fermionic Yb as a means to study
this model in a quantum gas environment [32, 33, 124]. Implementing such a model would
require a mixture of 1S0 and 3P0 atoms in a state-dependent optical lattice. The lattice
needs to trap 3P0 while the other component (here 1S0) is allowed to tunnel and would,
therefore, simulate the mobile spin. The two species interact via an onsite spin exchange
interaction Vex = (U+

eg − U−eg)/2 given by the difference in the two interaction energies
between the states |+〉 and |−〉.

Because the lattice depth for the two species needs to be significantly different it is obvious
that the optical lattice can not be operated at the magic wavelength where both states
experience the same polarisability. From figure 2.2 a wavelength region around 660 nm is
identified where the above-stated requirements for the polarisability difference are found.
This polarizability difference leads to a shift of the clock transition which is intensity depen-
dent. Because of the transversal Gaussian intensity distribution of the lattice beams, every
atom experiences a slightly different intensity and therefore clock transition frequency. This
means excitation through π-pulses is very difficult. Therefore the questions arise whether
an adiabatic passage can be used as a preparation tool in a non-magic lattice. To answer
that questions the expected broadening of the transition line is calculated and afterward
the RAP adiabaticity condition is used to find detunings and sweep times to ensure efficient
population transfer. Note that an adiabatic passage is in principle very well suited for a
complete population transfer. Preparing a mixture of excited and ground state atoms is
more intricate and is not the focus of this section.

5.4.1. Broadening of the Clock Transition in a Non-Magic Lattice

The energy shift induced by a varying electromagnetic-field given in Hertz is [93]:

f(α, I) = −1
h

1
2ε0c

Re(α)I (5.10)
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Here α is the complex polarisibility and I the intensity of the laser beam. The intensity
dependendent differential frequency shift of the excited and ground state is:

∆feg(I) = −1
h

1
2ε0c

( Re(αe)− Re(αg))I

= −1
h

1
2ε0c

∆αegI
(5.11)

Finally the observed broadening of the transition for an intensity difference ∆I is calcu-
lated:

δf = −1
h

1
2ε0c

∆αeg∆I (5.12)

The following parameters were chosen in accordance with the planned implementation of
the KLM: lattice at 660 nm, lattice beam waist of 80µm, transversal lattice site distance of
506 nm and a power in the non-magic lattice of 200 mW. These parameters result in a lattice
depth for the ground state atoms of 26ER while the excited state experiences a 140ER deep
lattice. This very deep lattice is necessary to fulfill the Lamb-Dicke criterion for excitation
to the excited state. The lattice would subsequently be lowered to allow tunneling in one
component. For this parameters δf is plotted in figure 5.13.
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Figure 5.13. | Broadening of the Clock Transition due to Intensity Dependent AC-
Stark Shifts. Shown is the effective broadening of the clock transition due to the Gaussian
intensity distribution in a non-magic optical lattice at 660 nm. The x-axis is given in lattice sites
transversal to the non-magic lattice.

Assuming a dense atomic distribution and symmetric harmonic confinement 104 spin-
polarized atoms occupy about 22 lattice sites. As seen from figure 5.13 this results in
a broadening of the clock transition of 13 kHz. Doubling the number of atoms results in a
broadening of 20 kHz.
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Chapter 5 Excited State Preparation and Detection

5.4.2. Experimental Parameters for a RAP in the Non-Magic Optical Lattice

Here a clock transition broadened to 20 kHz is assumed. Assuming only singly occupied
lattice sites each atom has a slightly shifted resonance position but by itself experiences an
undisturbed RAP. It is, therefore, straightforward to choose viable RAP parameters. Using
the same Rabi frequency as before (Ω = 2π × 3.8 kHz) and a linear frequency sweep the
adiabaticity condition is fulfilled for a sweep span of 150 kHz and a sweep time of 30 ms. The
larger span and therefore slightly slower sweep time is chosen to incorporate the shifting of
the resonance position.

Non-Magic Lattice Preparation Summary

To conclude, a RAP in a non-magic optical lattice should not pose fundamental problems
regarding the possibility of performing a complete population transfer into the excited state.
However, for the KLM a mixture of excited and ground state atoms is needed. Ideally, the
density of ground state atoms (“mobile spins”) can be tuned. The production of this mixture
is more complicated and different initial atomic distributions (unity filling vs. half filling)
and different preparation schemes (π-pulses, RAP) need to be explored.

5.5. Summary

In this chapter methods and techniques to prepare and detect 173Yb in the meta-stable
3P0 state using the ultranarrow clock transition and a repumping detection scheme were
presented. The repumper allows reliable detection of excited state atoms with a simple
experimental setup. The RAP allows the preparation of excited state polarized gases as
well as excited state spin mixtures. By performing numerical simulations, limits for sweep
time and sweep width due to the differential Rabi frequencies of the various spin transitions
were identified. While not limiting the experiments discussed in the next chapter of this
thesis small adaptions of the RAP parameters for future experiments are necessary. Further,
it was shown that the RAP on a sample with inelastic interatomic losses can be used as
a means to study the density distribution of spin mixtures. In the future, the adiabatic
passage will most likely play an important role in preparation of the KLM or other systems
relying on state-dependent optical lattice potentials.
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6. Dissipative Dynamics with Ultracold 173Yb

Quantum gases in the laboratory are most often very well isolated from the environment
which allows highly precise, controlled and reproducible experiments. In reality though,
most physical systems are coupled to some kind of environment. This coupling can change
the behavior of the system under study significantly. The physical mechanisms of this
coupling and resulting properties of the open system are of great interest not only for
fundamental studies but for applications like quantum computing [44, 45].

The study of open quantum systems using ultracold quantum gases in optical lattices is
in no way straightforward. Because the creation of a quantum gas is based on reliable
and strong isolation from the environment, introducing a controlled coupling to a bath
poses a challenging task. Only in recent years, cold gas experiments started to investigate
dissipative dynamics and decoherence. Pioneering work has been performed using ultracold
bosonic molecules in 1D-optical lattices where very strong two-body losses induced particle
number correlations [49], which was supported by extensive theoretical work [50]. Using
fermionic molecules comparable experiments were able to show quantum Zeno dynamics
and used the time evolution of the system to deduce important experimental parameters
[51]. Theoretical studies further suggested the importance of multiband effects for systems
with dissipation as the dominant energy scale [52]. It was proposed that dissipation can
drive a fermionic quantum gas in a highly entangled spin-state [55] even for comparable high
temperatures. A system with localized particle dissipation was realized using a scanning
electron microscope [54].

In this chapter the experimental situation is similar to [52] where a fermi gas with very
strong two-body losses in a 1D-optical lattice is studied. In the cited experiments the two-
body loss rate is the dominant energy scale of the system. For the experiments presented
here, the two-body loss rate is comparable to the on-site interaction so a more intricate
interplay of energy scales is expected.

In section 6.1 the open quantum system under study is described from a more conceptual
point of view. The experimental sequence and the experimental results are presented in
section 6.2. A discussion of the data is found in section 6.2.5. In section 6.3 the lossy
Fermi-Hubbard model is proposed as a way to extract information about the initial state of
the system. Finally open questions and future research possibilities are discussed in section
6.4.



Chapter 6 Dissipative Dynamics with Ultracold 173Yb

The experimental data described in this chapter was obtained together with André Kochanke
and Thomas Ponath. The analysis was performed by the author.

6.1. Dissipative 1D-Fermi-Hubbard Model

6.1.1. Theoretical Description of Open Quantum Systems

The dynamics of a quantum system consisting of interacting fermions in a 1D-optical lattice,
which is subject to two-body losses, is sketched in figure 6.1. This system can be thought
of as an open quantum system where the system of interest is coupled to a bath. In this
case, the bath is the continuum of motional states. The coupling between the two systems
is the inelastic two-body scattering between two 173Yb atoms in the 3P0 meta-stable state
as discussed in section 2.3.2.

J U

Γ

Figure 6.1. | Sketch of the basic processes involved in the dissipative Fermi-Hubbard
model. The dynamics in the Fermi-Hubbard model with two-body losses is governed by three
major energy scales sketched in the picture above: the inter-atomic interaction U for particles
with different spin on the same lattice site, the tunneling J between neighboring lattice sites
and a two-body loss rate Γ. The small arrows depict the spin of the corresponding atom.

From the description above the challenges in predicting the time evolution of this system
are immediately obvious: for a full description, the Hilbert space of the complete system has
to be taken into account. This quickly becomes impossible. A bath which does not retain
information about the system at earlier times (Markov approximation, see for example [133])
allows describing the system by a master equation [133, 134] which is used in [55] to find
the formation of a many-body entangled state. For the purposes of this thesis, the particle
number evolution is described by a rate equation with an effective loss rate.
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6.1.2. Effective Loss-Rate and Rate-Equation

The system under study is a 1D-Fermi-Hubbard model with onsite, two-body losses. Of
interest are the particle number dynamics of such a system and the growth and decay of
correlations. The three most relevant energy scales of the system are the onsite elastic
interaction Uee, the nearest neighbor tunneling J and the onsite two-body loss-rate Γee.

The onsite interaction is given by the onsite Wannier states and scales linearly with the
elastic s-wave scattering length:

Uee = 4π~2aee
m

∫
|w0(r)|4dr (6.1)

The scattering length for 173Yb is aee ≈ 306.2 a0 [34]. The on-site loss rate is given by [51]

~Γee = ~βee
∫
|w0(r)|4dr (6.2)

where βee ≈ 2.2× 10−11 cm3 s−1 for 173Yb [34]. In figure 6.2 the relevant energies for 173Yb
in a 3D-optical lattice for the experimental parameters used throughout this chapter are
shown. Atoms can tunnel along the 1D-lattice while the transversal 2D-triangular lattice
remains at V ∆

0 = 18.8ER. This results in a the tunneling energy of 0.0066 Hz in the plane
of the 2D-lattice and thus no dynamics on experimental relevant time scales is expected.
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Figure 6.2. | Tunneling, onsite interaction, two-body loss and effective loss-rate as a
function of 1D-lattice depth. a shows the onsite interaction energy, tunneling energy and
loss-rate as a function of the 1D-lattice depth. In b the effective loss rate calculated from
the paramters in a is shown. All values are calculated in a 3D-lattice consisting of a deep
2D-triangular lattice and the 1D-lattice at various 1D-lattice depths.

It is important to note that Uee and Γee scale exactly the same with the lattice depth.
Consequently the ratio between Uee and Γee is constant. For 173Yb it is:
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~Γee
Uee

= ~βee
4π~2aee

m

= 0.29 (6.3)

The three fundamental energy scales influence the observed dynamics. Since particle loss
is one of the fundamental processes characterizing this system, the question how many
particles remain after a certain amount of time (i.e. the observed or effective loss rate) is
natural. Assuming J � ~Γee an effective (or observed) loss-rate is found [50–52, 121, 135]:

Γeff = 4J2

~2Γee

( 1
1 + (2Uee/~Γee)2

)
(6.4)

This relation shows intriguing physics which will be discussed in the next paragraph. A
plot of the effective loss rate for the experimental parameters is shown in figure 6.2.

It can be further shown that the observed particle number can be described by a rate
equation of the following form [50]:

dN
dt = − κ

N0
N2 (6.5)

Here N is the particle number and N0 the particle number at the beginning of the loss
sequence. One atom can only be lost if another atom is present. Thus Ṅ ∼ N2 in contrast
to single body losses which scale ∼ N . The loss coefficient κ is closely related to the effective
loss rate introduced in equation 6.4 [51]:

κ = 4qΓeffg
(2)η0 (6.6)

Here q is the number of nearest neighbors (the experiments here are performed in a 1D-
lattice so q = 2), η0 is the initial filling of the lattice where the convention of η = 0.5 for
one particle per lattice site is adopted.

The nearest neighbor correlation function

g(2) = 〈n̂in̂j − 4ŜiŜj〉
〈n̂i〉2

(6.7)

plays an important role in the observed loss process. It describes the influence of spin
correlations between neighboring lattice sites (Ŝi is the spin operator at site i) and particle
number correlations (n̂i is the number of atoms at site i) on the evolution of the particle
number. For the case of a Mott-insulator state without any spin correlations g(2) = 1. In
a Mott like state where each other lattice site is empty g(2) = 0 which is also the case for
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a spin polarized band isolator. With equal amounts of spin up and down and each spin up
sits next to a spin down g(2) = 2.

Assuming a time independent loss coefficient κ, i.e. a time independent g(2) a simple
analytical solution for the rate equation 6.5 exists:

N(t) = N0
1 + κt

(6.8)

In general one can not assume that the correlations remain constant when the system
is allowed to tunnel. Through interactions and losses, correlations will start to build or
change. In figure 6.3a three numerical solutions to equation 6.5 are shown. One curve
depicts a constant g(2) (no change in the nearest neighbor correlation function) and thus
shows the behavior of equation 6.8. The other example assumes exponential decay of g(2)

according to
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Figure 6.3. | Time evolution of the particle number found in a dissipative lattice model.
In a numerical solutions to the rate equation 6.5 for time dependent and time independent
correlation functions are shown. b shows a exponentially decreasing g(2) for different timescales
of correlation function decrease.

g(2)(t) = exp (−γt) (6.9)

while the last example shows exponential growth:

g(2)(t) = 2(1− exp (−γt)) (6.10)

All three examples assume arbitrarily γ = κ = 100 1
s . One can clearly observe the significant

influence of the correlations on the observed loss dynamics. In figure 6.3b the solution to
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equation 6.5 for an exponentially decaying g(2) is plotted for different values of γ/κ. For a
slow decrease of g(2) the number of atoms decreases faster while for a fast correlation function
decrease the number of atoms are lost slower. Thus the number of atoms remaining in the
system is a measure of the buildup of nearest neighbor particle and spin correlations.

6.1.3. Mott-Insulator vs. Zeno-Insulator

The effective loss rate introduced in equation 6.4 depends on the onsite elastic interaction
as well as the inelastic scattering properties and the tunneling parameter. Two limiting
cases are instructive to consider. In the case of strong elastic onsite interaction U � Γ
equation 6.4 reduces to:

ΓUeff = J2

~U
~Γ
U

(6.11)

This limit shows an effective loss rate which gets smaller with larger onsite interaction. This
means that the two-body loss is suppressed by the creation of Mott-Insulator like particle
correlations. The effective loss rate scales with J2/U because ~Γ/U is constant for varying
lattice depths. J2/U is now the dominant time scale for the observed losses.

In the case of very strong losses Γ� U the effective loss rate becomes:

ΓΓ
eff = 4J2

~2Γ (6.12)

In this regime, the observed losses are again suppressed but this time the physical mechanism
can be understood in terms of quantum Zeno-like dynamics. The continuous measurement
of particle correlations inhibits tunneling [47, 48] and forces the system in a state with one
particle per lattice site. Note that both limits scale equally with the depth of the lattice.
To check whether the system is in one or the other regime can thus only be checked by
scaling U or Γ individually.

The effective loss-rate for various two-body loss rates Γ is plotted in figure 6.4. The two
regimes described above are clearly visible and separated by a maximum of the observed
loss-rate at ~Γ/U = 2. For 173Yb ~Γ/U = 0.29 and thus the dynamics for 173Yb are
expected to be dominated by a Mott-insulator like behavior.

6.2. Experimental Realization of a Dissipative-Fermi Hubbard
Model

This section presents the experimental results for the dissipative Fermi-Hubbard system.
In section 6.2.1 the experimental procedure is described while the experimental results are
presented in section 6.2.3. In section 6.2.2 a lifetime measurements of a spin-polarized gas
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Figure 6.4. | Effective loss rate. Shown is the effective loss rate for variable strength of the
two-body loss rate Γ. Two kinds of loss-rate suppression regimes can be distinguished: For
loss-rates small compared to the onsite interaction the observed loss-rate is reduced due to the
repulsive onsite interaction which drives the system in a correlated Mott-state. For very strong
two-body losses the system is again driven into a correlated, lossless state due to the continuous
quantum Zeno effect. The maximum loss rate is observed at ~Γ/U = 2.

is used to characterize the behavior of the system without the presence of two-body losses
between excited state atoms.

6.2.1. Experimental Procedure

In this section, the experimental implementation of the dissipative Fermi-Hubbard model
is described. The description of most of the techniques will be kept brief and details can be
found in the corresponding chapters of this thesis.

Quantum Gas

All experiments presented here are performed using an ultracold fermi gas of 173Yb. The
gas is created with N = 1, N = 2 or N = 6 spin components with temperatures of about
T/TF = 0.25. Details of the creation of the gas can be found in section 3. The total
number of atoms was chosen to N0 = 18.000. This number is a compromise between the
number of doubly occupied sites and signal-to-noise (compare with chapter 5). A small
vertical magnetic field of By = 3 G is applied throughout the whole experimental sequence
to provide a defined quantization axis.
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Preparation

The preparation scheme is described in detail in chapter 5 and is based on the rapid adiabatic
passage (RAP) scheme. The preparation starts by ramping into a very deep 3D-lattice
(V1D = 50ER, V2D = 18.8ER). The 2D-lattice is ramped up first during a time of 50 ms.
Afterwards the 1D-lattice is ramped up in 50 ms to a depth of V1D = 50ER. Due to the very
deep lattice the atoms are in a Mott-Insulator state with about 20% double occupancies
for the N = 2 and N = 6 spin component case. A 20 ms clock laser frequency sweep
(∆ = ±50 kHz) on the clock transition transfers the atoms into the excited state. See
section 5.3.4 for details.

Lattice Geometry

The dissipative dynamics is initiated by ramping down the 1D-lattice to a finite value
where a significant tunneling matrix element exists but the condition of Γee � J is fulfilled
(see section 6.1.2). Here, this means a 1D-lattice depth of at least V1D = 3ER (compare
with figure 6.2). The 2D-lattice is kept at a deep value with a tunneling rate of J1D/h =
0.0066 Hz. There are two reasons to keep the 2D-lattice deep: first, the 2D-lattice is needed
to hold the atoms against gravity. Second, a deep 2D-lattice compresses the wannier-
function and thus increases the bare loss-rate. The 1D-lattice ramp down time is chosen
to tramp = 300µs. This very fast ramp assures no losses occur during the ramp while
minimizing higher band occupation through induced inter-band transitions. Note that
such short ramping times will induce breathing modes in the trap for shallow 1D-lattices
(V1D < 5ER) and higher band population can not be avoided completely.

Time Evolution and Detection

After the 1D-lattice ramp, the system is allowed to evolve in time. After the time evolution,
the complete lattice is ramped down and the atomic cloud is allowed to expand freely.
The number of atoms in the ground state is counted by absorption imaging. Repumping
the excited state atoms into the ground state and successive imaging allows counting the
excited-state atom number as described in section 5.2.

6.2.2. Lifetime of a Polarized-Fermi-Gas in the Excited-State

In all measurements effectively the reduction of the lifetime of the sample relative to the
“natural” lifetime of the atoms in the optical lattice is measured. Thus it is important to
understand the fundamentally limiting timescale of the lifetime of excited state atoms. In
figure 6.5 the lifetime of spin-polarized ground state atoms and spin-polarized excited state
atoms is shown. A rather long lifetime of τg ≈ 18.5 s for the ground state atoms is measured.
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A simple exponential decay is used to determine the value for γg = 1/τg = 1/18.5 s. The
lifetime for the excited state is τe = 2.3 s. Additionally, a transfer of atoms from the excited
state into the ground state is observed. This ground state atom growth is approximated by
a simple exponential growth:

NRAP
g (t) = N0

(
1− exp

(
−γRAPg t

))
(6.13)

The following rates are extracted from the data:

γRAPe = 0.428/ s± 0.123/ s
γRAPg = 0.228/ s± 0.020/ s

γg = 0.054/ s± 0.034/ s
(6.14)

Here the subscript “RAP” indicates whether a RAP has been performed before the atoms
were counted. γg is the ground-state loss rate obtained from the measurement without a
transfer of atoms into the excited state.

Time (s)

N
um

b
er

 o
f A

to
m

s 
(1

03 )

0 2 4 6 8
0

2

4

6

8

10

12

14

16

18

20
Excited−State after RAP
Ground−State after RAP
Ground−State w/o RAP

τ=4.4s

τ=2.3s

τ=18.5s

Figure 6.5. | Lifetime of a spin-polarized gas in deep 3D-lattice. The lifetime of ground-
and excited-state atoms for a spin-polarized gas with and without a transfer to the excited
state by RAP. Additionally exponential decay regressions are performed and their corresponding
1/e-lifetimes are given. See main text for details and discussion.
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A significantly lower lifetime of the excited state compared to the ground state atoms is
observed. This lifetime is also smaller than the lifetime of the excited state for a free atom
which is on the order of tens of seconds. The reduction of the lifetime is attributed to the
influence of the electromagnetic field of the lattice laser beams. The atoms are trapped by
the dipole force which is based on the mixing of energy states. While small this mixing
effectively lowers the lifetime of the atoms.

The excited state atoms are not lost from the trap but decay into the ground state. This is
seen by the growth of ground state population. The rate of ground state population growth
is smaller than the decay of the excited state into the ground state. This is explained in
terms of density losses resulting from the inelastic collision of excited state atoms and atoms
decayed from the excited state into the ground state: after a decay into the ground state,
the atoms are no longer in the same quantum state. Tunneling between lattice sites is
therefore allowed. A ground state atom and an excited state atom can scatter inelastically
(see section 2.3.2) and both are lost from the trapping potential.

To conclude: the dynamics of the atom number is governed by three different processes:

• Excited state atoms decay into the ground state.

• Inelastic scattering of ground and excited state atoms.

• Ground and excited state atoms loss due to single particle processes (e.g. background
gas collisions).

These processes are simulated by a rate-equation model which incorporates onsite density
dependent loss between excited-state and ground-state atoms. The model consists of two
coupled differential equations.

The first equation describes the time evolution of the number of excited state atoms Ne. It
assumes a single-particle loss due to decay into the ground-state with a rate γe. Further,
it is assumed that the excited state atoms are lost from the trap due to the same processes
which remove ground-state atoms from the trap. This single particle decay is incorporated
by a term with the rate γg. γg is taken from the fit as shown in equation 6.14. The last
term describes inelastic scattering between ground- and excited-state atoms (i.e. a density
term):

dNe

dt = −γgNe − γeNe − γegNeNg (6.15)

The second rate equation describes the number of ground-state atoms. Atoms from the
ground state are lost by single-particle decay with a rate γg and two-body losses between
ground and excited state atoms as before. The gain of atoms from the decay of the excited
state is modeled with the rate γe:
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Figure 6.6. | Simulation of the Lifetime of a Spin-Polarized Gas in Deep 3D-Lattice.
Shown is the fit of a lifetime model incorporating density dependent losses to experimental
lifetime data. See main text for details.

dNg

dt = −γgNg + γeNe − γegNeNg (6.16)

Here γg = 0.054/ s is the single-particle loss-rate of ground-state atoms as shown in equation
6.14. The loss-rate γeg describes onsite inelastic scattering.

This model neglects excited-state decay into higher bands (Lamb-Dicke regime) and it
assumes the same γg for the ground- and excited-state.

The lifetime model is fitted to the data. The regression yields the following values (for
completeness also γg is given but is held constant during the fit):

γg = 0.0540/ s
γe = 0.1558/ s
γeg = 0.0045/ s

(6.17)

The experimental data together with the fitted lifetime model is shown in figure 6.6. The
data and the lifetime model seem to agree well and the behavior for longer time scales is

91



Chapter 6 Dissipative Dynamics with Ultracold 173Yb

reasonable. The lifetime model presented here shows the best fit results compared to simpler
models which do not include a density-dependent term. See appendix A for details.

To conclude this section a lifetime measurements in a deep optical lattice of 173Yb in the
metastable excited state was presented. The behavior of the atom-number was simulated
using rate equations. A density-dependent loss-term has to be incorporated in order to
describe the observed particle number dynamics. This means the loss process between
excited and ground state atoms plays a significant role on the time scales considered here.

6.2.3. Lifetime of Spin-Mixtures in Shallow 1D-Lattices

This section presents the central measurements performed to implement the dissipative
Fermi-Hubbard model. The data obtained using the experimental sequence outlined in
section 6.2.1 is presented first. The lifetime of a Fermi-gas consisting of excited-state atoms
loaded into the lattice with one-, two- and six-spin states is measured. The 1D-lattice depth
was set to 3ER, 5ER, 6ER, 8ER, 11ER and 14ER. The results of this measurement are shown
in figure 6.7. First, important aspects of the data are described. Numerical analysis will
follow in the next section.

All measurements except 11ER and 14ER show a fast particle loss for the spin-mixtures at
the beginning of the lifetime measurement. While for longer time scales some dynamics for
the spin-polarized gas is visible only very moderate particle loss is observed. This is expected
because tunneling and therefore particle loss is forbidden due to the Pauli principle.

The measurements for 11ER and 14ER show almost no difference in the loss rates for the
three different spin configurations. This and the growth of ground-state populations suggest
that the observed loss process is mainly due to radiative decay of the excited state (compare
section 6.2.2).

The measurements further show that the initial particle number for different lattice depths
is not stable. This makes it hard to compare absolute particle numbers. This effect is
attributed to particle number and temperature fluctuations from day to day. Nevertheless,
the relative particle number suggest that half of the particles are not lost at the end of the
measurement.

6.2.4. Data Analysis

Loss-Coefficients and Initial Filling Fraction

From the data in figure 6.7 a particle number time evolution governed by at least two
different time scales is observed: a fast loss process at the beginning and a slower loss
process at longer times. Equation 6.8 is used and fitted to the first and to the second half of
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Figure 6.7. | Lifetime of spin-mixtures for different 1D-lattice depths. a-f show lifetime
measurements for different 1D-lattice depths. For each lattice depth a spin polarized sample
(square data points) as well as two and six spin mixtures are shown (round and diamond shaped
data points). Note the different timescales.
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Figure 6.8. | Fit to the data for a two-spin mixture in a 6ER deep 1D-lattice. Shown is
the lifetime measurements for a two-spin mixture with loss-rate fits to the head and the tail of
the data. Similar fits have been performed for six-spin componentes and all other lattice depths.

the data. An example for these fits for one lattice depth and a N = 2 spin state mixture is
shown in figure 6.8. Similar fits have been performed for all data. The fit finds an optimal
value for κ = 4qΓeffg

(2)η0.

Equation 6.4 shows that the observed loss-rate is ∼ J2/Uee. It is therefore intuitive to fit
equation 6.6 to the extracted loss coefficients κ. The fit is allowed to find an optimal value
for the product of the correlations function and initial filling g(2)η0. Assuming a Mott-
insulator as the initial state the value of the correlation function is set to g(2) = 1. This
allows the extraction of the initial filling η0 [51].

The result of this fit is shown in figure 6.9 for a two- and six-spin mixture. The data points
for 11ER and 14ER are omitted from the fit because the loss there is mainly due to the
decay of excited-state atoms into the ground-state. This also means that measurements
at deeper lattice depths will not help to gain more insight into the system. Further, the
data point for 6ER is omitted because of stability problems of the experimental machine
at the day the data was taken (including that data point affects the fitted filling only very
slightly).
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Figure 6.9. | Extracted loss-coefficients κ for head of data. a and b show the loss-
coefficients κ extracted from the fits to the head of the loss-rate measurements. The solid line
shows a single-parameter fit to the data. The light datapoints are excluded from the fit.

The fit yields:
η0,N
1/N


N=2= 0.42±0.02

1/N ≈ 84%± 4%
N=6= 0.14±0.01

1/N ≈ 84%± 6%
(6.18)

where N is the number of spin states and η0,N is the filling fraction for the two- or six-spin
mixture. The filling fraction has been normalized to the case of one particle per lattice site.
Note that κN=6 = 4κN=2 because in the six-spin case there are four more possible particles
to scatter with. Besides determining the initial filling fraction the correct scaling of κ is
confirmed: κ should scale with J2/Uee which is observed in figure 6.9.

Nearest Neighbor Correlations

For longer timescales, a significant decrease in the loss rate is observed. For the slower loss,
the loss-coefficient is extracted from a fit of equation 6.6 to the data points at the end of
the time series. Again the extracted loss coefficients are plotted against J2/Uee which is
shown in figure 6.10.

During the analysis of the loss coefficient for the head of the data a Mott insulator state
and thus g(2) = 1 was assumed. For the tail of the data, the atoms had time to interact
and g(2) can start to deviate from unity. The fit to the tail yields the factor g(2)η0. η0 is
used from the fit to the beginning of the time series and allows deducing g(2) for the long
timescales to:
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g
(2)
N=2 = 0.17± 0.07

g
(2)
N=6 = 0.14± 0.02

(6.19)

Note that the loss coefficients for the long timescales are very similar to the loss coefficient
observed for the spin-polarized gas in the deep lattice (data points for lattice depths from
5ER to 14ER). Only the loss coefficient for 3ER is significantly different indicating that loss-
processes scaling with J2/Uee are observed. Further measurements at intermediate lattice
depths are needed to confirm this.

Remaining Atom Number

As a final analysis step, the atom number observed during the loss processes is analyzed.
In figure 6.11 the ratio of N0 determined by the fit to the beginning of the loss sequences
and the number of atoms at approximately two times the time constant of the fast loss is
plotted.

No significant difference for the remaining number of atoms for the different lattice depths is
observed. Further a slightly lower number of remaining atoms for the six-spin components
mixture compared to two spins can be seen.
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6.2.5. Discussion

The loss sequences show two distinct characteristics: a strong suppression of atom loss after
approximately half of the atoms are lost and a slightly lower number of remaining atoms
for the six-spin state mixture.

The reduction in loss-rate can stem from different mechanisms: A suppression of losses is
expected for a thinning of the sample. This means that due to the already occurred losses
an atom needs to tunnel (multiple) times to find another partner with which it can interact.
This explanation would allow concluding that a real reduction in g(2) is observed as stated
above. However, other mechanisms can also lead to a reduction of the loss-rate: due to the
harmonic confinement by the lattice beams an energy offset between adjacent lattice sites
exists which effectively reduces the tunneling rate and localize atoms which sit at the edge
of the trap. While this will reduce the loss rate to some degree the atoms still can find
loss-partners at the region where they are located. The reduction of loss rate due to the
offset from site to site is on the order of 10% for the experiments conducted here. Another
mechanism for a loss-rate reduction is the presence of ground state atoms which are present
because of imperfections in the excited state preparation scheme. On the one hand, these
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atoms have different interaction energies (potentially very large, see table 2.3) and at the
same time will be lost from the trapping potentials with a lower rate compared to excited
state - excited-state collisions. Thus it is possible that the ground-state atoms significantly
reduce the observed loss rate. This effect needs further investigation in the future. Another
potential mechanism for loss suppression is a severe spin imbalance which could suppress
tunneling and losses due to the Pauli principle. This effect is unlikely because the initial spin
mixture can be prepared very well and the remaining ground state atoms after excited state
preparation give an upper bound for the amount of spin imbalance. While not completely
understood it is probable that the thinning of the sample leads to the reduction of the
loss-rate and therefore a reduction in the nearest-neighbor correlation function is observed.
This assumption is supported by the fact that the tunneling rate along the 1D-tubes is
comparable to Γeff which means that the redistribution rate of atoms has a significant effect
on the loss.

The second observation, the lower number of remaining atoms for the six spin state mixture,
can be explained in terms of the number of available atoms to scatter with. Because on
average the six spin state mixture has four more partners to induce a loss the probability of
formation of spin domains which shield atoms from a loss is significantly smaller. However,
the difference in remaining atoms is small which means the effect if present at all, is very
small and both spin-mixtures behave essentially the same. The fact that both mixtures
behave essentially the same is a further sign that the reduction of the loss rate can be
attributed to a reduction in nearest-neighbor loss partners.

Note that a similar reduction of the loss rate was also observed in [52, Supp. Material] but
was explained due to the low number of particles per lattice tube which is not the case for
the experiments described here.

6.3. Possibility of Loss-Measurements as a Probe for the Initial
State

After the presentation of the data the question arises which information about the lossy
fermionic system can be extracted from similar loss sequences. The Rey group showed that
the combination of a lossy fermionic system with spin-independent interaction will lead to
an entangled many-body state [55]. In the cited paper the system evolves into a state where
Dicke-type spin entanglement is formed through the loss process. The correlations build up
over time. It is possible to turn the argument around and ask if the loss-sequences could
be used to determine the initial state of the system.

Assume a simple double-well potential with two fermions with opposite spin, a two body
loss process, onsite interaction and tunneling between the wells. The spatial wave function
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with is denoted by |L〉 or |R〉 for the left and right well and the spin degree of freedom is
labeled by |↑〉 and |↓〉. The states the system is able to occupy are then [136]:

|LR〉+ = (|LR〉+ |RL〉)⊗ (|↑↓〉 − |↓↑〉)
|LR〉− = (|LR〉 − |RL〉)⊗ (|↑↓〉+ |↓↑〉)
|LL〉+ = |LL〉 ⊗ (|↑↓〉 − |↓↑〉)
|RR〉+ = |RR〉 ⊗ (|↑↓〉 − |↓↑〉)

(6.20)

Here ± denote the symmetry of the spatial wavefunction. A two particle loss can only
occur in states where both particles occupy the same well, i.e. |LL〉+ or |RR〉+. When
tunneling between the states is allowed the system will be in an arbritrary superposition
of |LR〉+ and |LR〉−. The spin wavefunction is in general conserved so that only the state
|LR〉+ is coupled to |LL〉+ and |RR〉+. Thus the symmetric part of the spatial wavefunction
will decay through two body loss while |LR〉− is conserved. Therefore, after some time the
system will evolve into a symmetric spin state with average occupation given by the initial
state. This is exactly the behavior which was invesigated for a lattice chain and a many
body system in [55].

This argument is now turned around: when the system is in one of the two states it will
experience no loss (for |LR〉−) or a complete loss of all particles (for |LR〉+). The amount
of atom loss observed is thus directly connected to the initial state of the system.

For a lattice system, the situation is more complex and more involved simulations are
necessary to study a dissipative system with respect to the influence of the initial state on
the loss dynamics which is beyond the scope of this thesis. One could hope that similar
arguments as for the double well hold. A similar idea as presented here was formulated in
[137].

6.4. Summary

This chapter showed experiments using a quantum gas of neutral, fermionic atoms subject
to two-body losses in a 1D-lattice structure. The observed loss sequences show a strong
initial loss which is quickly suppressed. From the first loss, the initial filling fraction of
the lattice is extracted. For the cases of only two spin states as well as for six spin states
a filling of 84% was extracted. The slower loss at the end of the loss sequences yields a
value for the initial filling times the nearest neighbor correlation function g(2). Because the
initial filling is known from the initial strong loss an effective reduction of η0g

(2) by a factor
of five is observed. The number of remaining atoms is about 50% of the initial number of
atoms while the six-spin mixture shows a small but consistent lower amount of remaining
atoms.
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The measurements presented here should be regarded of a proof of concept and a starting
point for further studies. First, additional measurements should repeat the loss sequences
presented here for all spin combinations offered by 173Yb (one spin state up to all six spin
states). Here the most interesting questions is whether a consistent dependence of the
remaining atom number on the number of spin states is shown. Another interesting tuning
knob is the balance between the spin states and the influence of unbalanced mixtures which
should influence the number of atoms remaining but the specific way this influence scales
with the imbalance could allow extracting information about the formation of regions in the
lattice which is shielded from losses because of the Pauli principle. Equally important the
question whether the remaining ground-state atoms influence the observed dynamics needs
to be clarified. Thus the measurements presented here should be repeated with forcefully
removing the ground state atoms using a resonant laser pulse.

The second future measurement along those lines is the use of another isotope with similar
two-body losses but significantly different onsite interaction. Yb171 is a perfect candidate
for such experiments. It has a ground state s-wave scattering length of as = −4a0. This
interaction strength would result in a ratio ~Γ/U ≈ 15 which is well in the Zeno-isolator
regime (compare with figure 6.4). The s-wave scattering length for the excited state is not
known but one could hope that it is significantly different compared to 173Yb. Here again,
the question of the influence of the number of spin state arises and whether a significantly
different loss behavior is observed. A setup for the production of isotope mixtures is cur-
rently been set up and therefore both of the ideas for future measurements are feasible in
the near future.
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In this thesis, the setup and characterization of a quantum gas machine capable of produc-
ing ultracold samples of bosonic and fermionic Ytterbium were presented. The experimen-
tal apparatus allows the cooling, trapping and detection of such samples in a triangular
magic optical lattice which was specifically designed to enable the creation of atoms in the
metastable state. Further, a new and robust preparation scheme for the creation of meta-
stable state Ytterbium atoms based on a rapid adiabatic passage was implemented. This
new method not only allows the production of excited state atoms but also allowed insights
into the initial quantum state by analyzing the observed atom number dynamics during
the transfer. The loading of meta-stable state atoms occupying different spin states into
1D-lattice tubes allowed the realization of a Fermi-Hubbard model with two-body losses.
This model was used to study the particle number dynamics of a spin-polarized gas loaded
into a deep optical lattice. From this measurement, it was found that the number of excited
state atoms decays significantly faster than expected from the lifetime of a free atom. This
effect is attributed to the influence of the lattice laser beams and a density loss between
the excited state and ground state atoms. The same principle measurement was then used
to study the particle number dynamics of a spin mixture in shallow 1D-lattice tubes. A
fast initial two-body loss followed by a slower particle loss is observed. The reduction in
loss-rate was attributed to an effective reduction in nearest-neighbor correlations.

The loss measurements presented in this thesis should be regarded as a starting point for
the further investigation of dissipative Fermi-Hubbard systems. In particular, the open
questions posed in the corresponding chapter are a great point to deepening the under-
standing of the system. One of the central questions, which could not be answered in this
thesis, is whether the remaining ground state atoms influence the observed particle number
dynamics. This question can be tackled by forcefully removing atoms using a resonant light
pulse. One would need to check whether this light pulse results in additional heating of the
excited state atoms. Additionally, the question remains if the slow loss rate observed at
longer timescales can be described by a loss-rate which scales with J2/Uee. While the data
suggests that this is indeed the case, more data at various intermediate 1D-lattice depths
and additional averaging and measurements for longer timescales are necessary. Another
major question is the influence of the number of occupied spin-states. This could be inves-
tigated with other spin-state mixtures and spin-imbalanced mixtures and the question is
whether the occupied spin-states have an influence on the remaining number of atoms. This
could hint at the buildup of spin correlations and the formation of a spin-domains reducing
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the observed loss. Another very interesting question is what happens to the observed dy-
namics when the dominant energy scale is not given by the elastic interaction and if and how
this affects the observed loss-rate reduction. This could be investigated using 171Yb which
has a negligible s-wave scattering length in the ground-state. The scattering length for the
excited-state is currently not known but one could hope that it is significantly different from
the scattering length of 173Yb. This could allow accessing the Zeno-Effect dominated loss-
regime. Because of the vanishing ground state scattering length direct evaporative cooling
is not feasible but sympathetic cooling has been demonstrated. If the s-wave scattering
length of the excited state is not low enough to reach the Zeno-dominated regime another
path could be the use of a photoassociation resonance on the 1S0 ↔1 P1 transition which
would allow inducing onsite two-body losses in the ground state. A setup for addressing a
photoassociation resonance is already implemented and the experimental setup is currently
modified to allow the creation of quantum gases of 171Yb.
171Yb is also a key ingredient for the study of the Kondo-Lattice model (KLM) which is
the second major modification to the experimental setup which is currently pursued. The
KLM relies on the interaction of localized and mobile spins via an exchange interaction.
Ytterbium in its excited state will play the role of immobile atoms while ground state atoms
will play the role of mobile atoms. This setup is realized with a state-dependent optical
1D-lattice at λ = 660 nm which will complement the magic lattice currently in use. Because
the KLM assumes no interaction between the mobile species, 173Yb with its nonnegligible
s-wave scattering length is not well suited for studying the “pure” KLM. This is why the
creation of 171Yb quantum gases is important not only for the loss measurements presented
above. To implement the KLM two main questions remain and need to be studied in
detail before specific phases of the KLM can be realized and detected: first, the 3P0 ↔1 S0
interaction, elastic as well as inelastic, need to be characterized well to understand the
limits of the simulated system. Second, ideally each lattice site is occupied by one excited
state atom (“immobile spin”) while a variable ground state density is realized. This allows
accessing the whole phase space. While the inelastic scattering properties can be measured
with similar techniques as the loss measurements presented in this thesis, the preparation
is in no way straightforward task. Here, the rapid adiabatic passage could be a helpful tool.
One idea would be the creation of an ultracold two spin-mixture with enough particles to
create as much doubly occupied lattice sites as possible. Afterward, a RAP is performed
which is interrupted at the detuning where the probability in finding either |−〉 or |+〉
is large while |ee〉 is still mostly unoccupied. If and how this works needs to be checked
very carefully, especially with regard to long-term stability. When realized the KLM in an
optical lattice not only allows to explore the theoretically well understood 1D-KLM but
also opens up the possibility to study the KLM in higher dimensions. The tuning of the
ground state atom density will open up the possibility to access the regime of longer range
RKKY-interactions [32] where an interaction of the localized atoms among each other is
mediated by the mobile atoms. Using 173Yb could answer the question how an interaction
between the mobile species influences the dynamics of the system.
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Appendix A.

Comparison of Lifetime Models

In section 6.2.2 a rate-equation model to describe the lifetime of 173Yb excited-state atoms
in a deep optical lattice was introduced. The model described by equation 6.15 and equation
6.16 incorporated density dependent losses because of inelastic scattering between ground-
and excited-state atoms and two different loss-rates for the excited-state. One loss-rate
describes loss from the trap and the other one describes decay into the ground state.

Here the full lifetime-model is compared to three simpler models neglecting certain aspects
of the full model. It will be shown that a model without density dependent losses is not
able to capture the experimentally observed dynamics.

Our first model removes all density dependence from the full model and assumes that all
excited state atoms decay into the ground-state. This model is called “single-e-Loss-Rate”
and it is described by:

dNe

dt = −γeNe

dNg

dt = −γgNg + γeNe

(A.1)

In the second model the excited state as allowed to decay to the ground state as well as
to the continuum (i.e. excited-state atoms are lost from the trap). In contrast to the full
model it is not assumed that the background loss-rate (i.e. γg and γ) is the same for the
excited and the ground-state. The model is described by:

dNe

dt = −γNe − γeNe

dNg

dt = −γgNg + γeNe

(A.2)

By including a density term but removing the possibility for the excited-state atoms to be
lost from the trap without first occupying the ground-state is called “density-only” and is
given by:
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Figure A.1. | Comparison of Lifetime Models. a shows the simple lifetime-model wihtout
density dependent losses and with a single excited-state loss-rate. In b two diffeerent loss-rates
for the excited state are allowed where one of them is coupled to the gain of atoms in the
ground-state while the other losses atoms from the trap. c shows the lifetime-model with a
simple density dependence.

dNe

dt = −γeNe − γegNeNg

dNg

dt = −γgNg + γeNe − γegNeNg

(A.3)

For each of the models fits to the experimental data are performed. The result is presented
in figure A.1. From the figure it is obvious that loss-rate models without including two-body
losses are not able to describe the observed experimental dynamics. While the “Double-e-
Loss-Rate” model is better compared to the first model it still deviates significantly from
the data. The density model resembles the data well and only by comparing the residual
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errors of the third model and the full model a difference is found. In the following table the
residual least-squares errors for the four models are shown:

ESingleRate = 77.62
EDoubleRate = 6.72
EDensityOnly = 1.59
EFullModel = 0.96

(A.4)

This comparison shows that the full model indeed gives the best result in terms of least
square error. However the difference between the “Density-Only”-model and the full-model
is small. The important result from this appendix and section 6.2.2 is that density-
dependent losses play a significant role in the lifetime of the excited-state even for a spin-
polarized Fermi-gas.
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Appendix B.

Rapid Adiabatic Passage Interaction
Hamiltonian

In chapter 5 the rapid adiabtic passage (RAP) process for a doubly occupied lattice site
was simulated. The Hamiltonian Ĥ(t) used for the simulation consists of an interatomic
interaction term, an atom-light interaction term, an linear Zeeman-term and the electronic
term. Details can be found in [57]. The complete interaction Hamiltonian for the states
|gg〉, |ee〉, |+〉 and |-〉 is then written in the rotating wave approximation (RWA) as:

Ĥ(t) =


Ugg + ∆(t)/2 + Zg 0

√
2/4 (Ω↑ + Ω↓)

√
2/4 (Ω↑ − Ω↓)

0 Uee + ∆(t)/2 + Ze
√

2/4 (Ω↑ + Ω↓)
√

2/4 (Ω↑ − Ω↓)√
2/4 (Ω↑ + Ω↓)

√
2/4 (Ω↑ + Ω↓) U+

eg + Z+ Z−√
2/4 (Ω↑ − Ω↓)

√
2/4 (Ω↑ − Ω↓) Z− U−eg + Z+


(B.1)

All energies are assumed to be given in Hz. Ω↑/↓ is the spin state dependent Rabi frequency
depending on the particularmF transition. Zg/e = Zg/e,↑+Zg/e,↓ are the total Zeeman shifts
for two atoms in the ground or excited state and Z± = 1/2 (±Zg,↑ + Zg,↓ + Ze,↑ ± Ze,↓). The
onsite interaction is given by Ugg, Uee, U+

eg and U−eg for the various electronic configurations.
∆(t) is the laser detuning.

The hamiltonian is numerically solved with a third order Runge-Kutta method. Conver-
gence of the method is checked by varying the time step.
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