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Abstract

Time imaging is stable and frequently used in seismic processing and stacking is an
integral part of it. Stacking is usually performed along the offset in the common-
midpoint (CMP) domain. Since the turn of the millennium, more advanced stacking
methods are available, e.g. common-reflection-surface (CRS) and multifocusing
methods. Additionally to the offset, neighbouring CMP traces are used as well,
increasing data redundancy. To describe the traveltime moveout, in the CMP
method only one parameter, the moveout velocity, is required which can be picked
during velocity analysis. To describe the moveout of the traveltime surface of CRS-
type operators and multifocusing, three parameter are necessary which causes a
need for an automated parameter estimation. At the time CRS was proposed,
the computational demands of a simultaneous three parameter search without an
adequate initial solution were to expansive. A three step search strategy, named
pragmatic approach was proposed, that searches the individual parameters in
subdomains of CRS. This omits the high amount of data redundancy CRS provides,
neglecting the main advantages of the method. Another problem of CRS is the
occurrence of conflicting dips which is caused by intersecting events, e.g., diffractions
and reflections. An deeper investigation of CRS on pure noise data shows, that
steep dipping events can be caused by pure noise as well. Previous methods try
to find conflicting events during the first step of the parameter estimation, simply
stacking every possible operator along a parameter space using a simplified operator
or interpolate from different neighbouring locations to account for them. However,
they are either not reliable or very expansive and further attribute-based methods
might not be able to benefit from those methods.
In this work, I suggest to use differential evolution, a global optimization method, to
estimate CRS parameters reliably. Furthermore, I suggest to divide the search space
in smaller cluster and apply the parameter estimation for each cluster. Therefore,
the intersecting events can be found separately, allowing to treat conflicting dips
properly. A comparison on complex synthetic, marine and challenging hard rock
land data shows significant improvements to previous methods and demonstrate
the impact on CRS wavefront attribute-based methods like diffraction separation
and data enhancement which can take advantage of the proposed method to treat
conflicting dips as well. A comparison of the frequency content from the CMP, CRS
and CRS with the proposed parameter estimation shows, that the method does
not distort the frequency content as previously. An investigation of CRS and other
multiparameter stacking operators from literature shows that non-hyperbolic CRS



provides the best trade-off between accuracy and computational cost.



Zusammenfassung

Seismische Abbildungsverfahren im Zeitbereich sind stabil und werden häufig
in seismischen Prozessierungs- und Stapelverfahren verwendet. Die Stapelung
wird normalerweise entlang des offset in der common-midpoint (CMP) Domäne
angewandt. Seit dem Jahrtausenwechsel sind fortgeschrittenere Stapelverfahren
verfügbar, wie zum Beispiel common-reflection-surface (CRS) und multifocusing.
Diese Methoden stapeln zusätzlich zum offset benachbarte CMP Spuren auf, was
die Datenredundanz erhöht. Um den moveout der Laufzeitkurve in der CMP
Methode zu beschreiben, benötigt man lediglich einen Parameter, die moveout
Geschwindigkeit, die während der Geschwindigkeitsanalyse bestimmt werden kann.
Um den moveout der Laufzeitfläche zu beschreiben, werden drei Parameter benötigt,
die automatisch bestimmt werden müssen. Als CRS publiziert wurde, war
die Rechenanforderung einer simultanen drei Parametersuche ohne angemessene
initiale Lösung zu hoch. Eine drei Schritte Suchstrategie, genannt pragmatische
Annäherung, wurde vorgeschlagen. Die drei Parameter werden in kleineren
Domänen von CRS gesucht. Dadurch wird aber die hohe Datenredundanz von
CRS vernachlässigt, einer der Hauptvorteile von CRS. Ein weiteres Problem is
das Auftreten von sich kreuzenden Signalen mit verschiedenen Einfallswinkel, wie
Diffraktionen und Reflektionen. Eine tiefere Analyse von CRS anhand verrauschter
Daten zeigt, dass diese Signale auch von reinem Rauschen erzeugt werden können.
Bisherige Methoden versuchen, die sich überlagernden Signale unterschiedlich zu
berücksichtigen. Während des ersten Schrittes der Suche, durch Stapelung aller
möglichen Operatoren entlang eines Parameters oder interpolieren von benachbarten
Spuren. Allerdings sind diese Methoden entweder instabil, teuer oder können nicht
in weiteren Attribut basierten Methoden genutzt werden.
In dieser Arbeit schlage ich vor, differential evolution, eine globale Opti-
mierungsmethode, für die Parameterbestimmung zu nutzen. Zusätzlich sollte man
den Suchraum in kleinere Suchräume unterteilen und in jedem kleineren Suchraum
eine Parametersuche vollziehen. Dadurch können sich überlagernde Signale in
unterschiedlichen Suchräumen identifiziert und berücksichtigt werden. Ein Vergleich
an komplexen synthetischen, marinen und Hartgestein Landdaten zeigt deutliche
Verbesserungen zu früheren Methoden. Er demonstriert den Einfluss in CRS
Wellenfrontattribut basierten Methoden wie die Separation von Diffraktionen und
Datenverbesserung, die mit der vorgeschlagenen Methode überlagernde Signale
berücksichtigen können. Ein Vergleich der Frequenzgehalte der CMP, CRS und
vorgeschlagenen erweiterten CRS Methode zeigt, dass die vorgeschlagene Methode



den Frequenzgehalt nicht verändert, anders als zuvor. Eine Analyse von CRS
und anderen Operatoren, die von mehreren Parametern abhängen, zeigt, dass non-
hyperbolic CRS den besten Kompromiss zwischen Genauigkeit und Rechenaufwand
darstellt.
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Chapter 1.

Introduction

The common-reflection-surface (CRS) (Müller, 1999; Jäger et al., 2001; Mann, 2002)
stack increases the signal-to-noise ratio significantly and its attributes can be used for
further applications like diffraction separation (Dell and Gajewski, 2011), pre-stack
data enhancement (Baykulov and Gajewski, 2009), multiple suppression (Dümmong,
2010), time migration (Spinner and Mann, 2007) and normal-incidence-point (NIP)
wave tomography (Duveneck, 2004). However the handling of conflicting dips with
the CRS operator (Mann, 2001; Höcht et al., 2009; Müller, 2009) is often not reliable
and leads to suppression of the less dominant events. Similar to the dip-moveout
(DMO) Soleimani et al. (2009a) proposed the common-diffraction-surface (CDS)
method, which stacks along all angles, thus fixing the angle and estimating a
mixed curvature parameter called RCDS. This approach uses the CRS operator
for diffractions which lacks information about either RNIP or RN depending on
the choice of aperture and can not be used for most further CRS attribute based
methods. Therefore, I propose a new method to account for conflicting dips which
divides the search space into smaller dip cluster and stacks all cluster contributions.

The pragmatic approach (Müller, 1999) is a fast and efficient method to get initial
CRS wavefront parameters for the common-reflection-surface (CRS) stack (Hubral,
1983; Müller, 1999; Mann, 2002). The estimated initial set of parameters can be
optimized locally afterwards by a multidimensional search. This approach has been
used for a decade and delivered decent results in a manageable amount of time.
However, it is not well suited for the handling of conflicting dips, since multiple
operators are required and the pragmatic approach mostly works for the most
dominant event. Common strategies in other scientific fields to solve complex
optimization problems are evolutionary and swarm intelligence based algorithms
(Kitano, 1990; Morris et al., 1998). This work uses an algorithm of the family of
evolutionary algorithms called differential evolution originally introduced by Storn
and Price (1997).
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In the recent past, four multiparameter stacking approaches have been introduced:
multifocusing (MF, Gelchinsky et al., 1999a), the common-reflection-surface (CRS)
stack (Jäger et al., 2001), implicit CRS (iCRS, Schwarz et al., 2014b) and non-
hyperbolic CRS (nCRS, Fomel and Kazinnik, 2013). These stacking approaches
can all be expressed in terms of three kinematic wavefront attributes introduced by
Hubral (1983) but differ in their mathematical expression. Comparisons between
these methods have been done in the past (e.g., Dell et al., 2013; Schwarz et al.,
2015a). However, some promising stacking methods were not included in these
previous studies. Dell et al. (2013) compared the CRS variants using a normal-
moveout (NMO) velocity guide function to estimate the attributes. In their study
conflicting dips, which often are mainly caused by diffractions, are not carefully
accounted for. It was shown that double-square-root operators perform better for
diffraction events. Due to their comparably low amplitudes diffractions are often
masked by stronger primary reflections. The full potential of higher-order CRS-
type approximations can therefore not be revealed, when conflicting dips are not
properly treated. In addition, although a quantitative comparability is generally
difficult to achieve, a comparison of the computational efficiency, thus far, has not
been addressed in this context.

Schwarz et al. (2015a) introduced a new parametrization for CRS-type stacking
operators in terms of time and slowness shifts. multifocusing, in contrast to all other
approaches, utilizes a different mechanism, a time shift, to perturb the moveout,
whereas the other methods shift the slowness in order to account for overburden
heterogeneity. Schwarz et al. (2015a) also introduced a recipe to translate time
shifts into slowness shifts and vice versa, which allows the comparison of all the
operators in the same domain. However, in this study the authors used a synthetic
model and estimated attributes based on an initial solution obtained by the so called
pragmatic approach (Jäger et al., 2001) which can be inaccurate for complex geology.
Since in all previous studies, hyperbolic and higher-order CRS expressions including
multifocusing were formulated in terms of the two aforementioned mechanisms, they
were not compared on common ground, i.e., the gained results are hard to appreciate.
In this work, we present an unbiased comparison of the double-square-root operators
and conventional hyperbolic CRS for both possible mechanisms consistently, using a
global optimization scheme and sophisticated conflicting dip processing on a strongly
scattering industrial field data set.

In this thesis I describe the concept of the CDS and extend it to the CRS method. I
introduce the general scheme of an evolutionary and genetic algorithm and describe
the variation I use in the examples. Finally I compare the conventional simplex
based optimization approach with the proposed one. I apply it to a synthetic and a
field data set and discuss occurring issues. Additionally I perform a CRS attribute
based diffraction separation.
In the following, I will give a brief overview of the structure of this thesis.
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Chapter 2 explains conventional and modern seismic stacking methods which are
used within the thesis. It introduces the conventional common-midpoint stacking,
connects it with multiparameter stacking and the concept of slowness and time
shifts. Furthermore, advanced methods are revisited like diffraction separation and
prestack data enhancement.

Chapter 3 elaborates on the necessity of optimization methods and their
importance in the parameter estimation. I comment on the difference between local
and global optimization and introduce the well known genetic algorithm and its
variant differential evolution which is used in this thesis.

Chapter 4 reviews existing methods to account for conflicting dips in the CRS
framework and develop a new workflow to incorporate conflicting dip processing
into the CRS framework while improving the parameter estimation reliably.

Chapter 5 investigates the behaviour of CRS in the presence of data containing
only zero and pure noise of Gaussian and uniform distribution. I highlight pitfalls
that are of importance when CRS is applied to challenging noisy data.

Chapter 6 shows the application of CRS on an industrial field data set.
Furthermore, I compare the different operators available and show improvements
in CRS attribute-based methods. It proves the viability of the proposed method
which enables new future possibilities.

Chapter 7 proves the necessity of conflicting dip processing in a crystalline
environment within the framework of CRS. I compare results of the conventional
common-midpoint (CMP) processing with conventional CRS processing and the
methodology developed in this thesis and show improvements achieved, which can
help to gather more information such as the velocity content.

Chapter 8 concludes the thesis and Chapter 9 provides an outlook to future
possibilities, in particular diffraction imaging and multiple suppression.





Chapter 2.

Seismic stacking

Stacking is a stable and integral part of seismic data processing. It can be done in
various stages of the processing sequence. A rough constant velocity brute stack for
example can be done in the very beginning with less effort in order to get an idea of
the acquired data or in field for quality control. In later stages, after pre-processing,
stacking can be performed to increase the quality (signal-to-noise ratio) of the data
and provide input for poststack processing like poststack migration methods. It is
also possible to use more advanced stacking methods to further increase the signal-to-
noise ratio or use estimated attributes for certain applications. A common method is
to migrate common-offset or common-shot-gather and sum them up. However, it is
also possible to use more advanced multiparameter methods like common-migrated-
reflector-element stacking (Dell et al., 2012). In this chapter I give an overview of the
most common classical CMP stacking and more advanced multiparameter stacking
methods that can be expressed with the same parametrization. Furthermore, I
investigate a commonly used efficient method to estimate initial parameters.
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2.1. The seismic experiment

x

z

xs xg1 xg2 xg3 xg4 xg5 xg6 xg7

Figure 2.1.: Exemplary layout of a marine data acquisition. Each shot xs is
measured at several receiver xg leading into a common-shot-gather.

In order to image the subsurface with seismic data, it is necessary to record them
with a suitable acquisition. The type of acquisition depends on the target and the
environment. In a marine environment, e.g., the traditional method is a ship towing
a seismic source like an airgun and a long streamer containing hydrophones. The
data is recorded at every hydrophone for a specific recording time, where reflected
and scattered wavefields of one source signal are measured. Each shot generates new
data for all receivers that are ideally allocated along a straight line. The data has
two dimensions, namely the recoding time and the distance of source and receiver
called offset. This is known as a common-shot-gather. Modern acquisitions are
usually done in three dimensional experiments where receivers are not allocated
along a line but on a grid. Rather than a recording time and offset, the data in this
case depends on two orthogonal offsets. This translates on larger data and longer
processing. Most of the processing steps however are similar. In my thesis I will
stick to 2-D data due to the required computational effort. However, The methods
can be in principle applied to 3-D data as well.

Common-shot-gather are used in modern migration algorithms. However,
traditional processing (before migration) often requires another sorting. Since many
shots are acquired and usually a high number of receiver are available it is desirable to
sort the data based on the midpoint between the shot and a corresponding receiver.
Due to different source and receiver locations with each shot, a common-midpoint
(CMP) is illuminated many times. The amount of source and receiver combinations
that contribute to a midpoint is called fold. A high fold is often the aim but not
always possible for various reasons, like difficult terrain, an urban environment,
permissions or economic reasons.
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2.2. Common-midpoint stack

x

z

xs3 xg3xs2 xg2xs1 xg1CMP

Figure 2.2.: Data sorted into common-midpoint-gather where midpoints of source
and receiver locations coincide.

Seismic data can be sorted from common-shot-gather to common-midpoint-gather
by a simple rearrangement following

m =
xs + xg

2
, (2.1)

where m is the common-midpoint, xs the source and xg the receiver position. Each
resulting midpoint contains as many traces as offsets are available for the specific
midpoint. In case of the horizontal reflector the common-midpoint is also the
reflection point as can be seen in Figure 2.2. If source and receiver positions coincide,
the traveltime of the seismic ray is minimal in isotropic media. With an increasing
offset, the traveltime of the ray increases accordingly. In applied seismic this is
called moveout. In a homogeneous isotropic medium the traveltime of the ray is
hyperbolic

t(h, t0) =

√

√

√

√

t2
0

4
+

2h2

V 2
NMO

, (2.2)

where t0 is the zero-offset traveltime, h = (xg − xs)/2 the half-offset and VNMO the
moveout velocity. For a homogeneous isotropic medium with a horizontal reflector
VNMO is the actual medium velocity. In field data this assumption is not valid as
there are more than one reflector in the subsurface and a reflector is also usually
not horizontal. In the common-midpoint stack (Mayne, 1962) the data is summed
up along the offset using Equation 2.2 to increase the signal-to-noise ratio, decrease
the amount of data and provide a first non-migrated image of the subsurface.
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Equation 2.2 is a simple formula that is valid within the hyperbolic limit. In
more complicated media, extensions are possible to account for heterogeneity or
anisotropy. This will lead to traveltime expressions that differ. Following Fomel and
Kazinnik (2013) a more general formulation for the CMP stack S is

S(t0, m0) =
∫

P (t(h, t0), m0, h)dh . (2.3)

The stack of a CMP m0 is achieved by a summation of the prestack data P along
the offset h using an operator t(h, t0) which can be Equation 2.2 or another one.

The desired fold is not always achievable, as mentioned previously. Furthermore,
data in challenging environments like crystalline rocks can be of poor quality where
barely anything is visible. To increase the image quality more advanced stacking
methods are required.

2.3. Multiparameter stacking

Challenging data where CMP processing does not produce desired results benefit
from stacking techniques where the stacking is done in offset and midpoint direction

S(t0, m0) =
∫∫

P (t(∆xm, h, t0), m, h)dmdh , (2.4)

where ∆xm = m0 − m is the midpoint displacement. Since neighbouring midpoints
m are stacked into the midpoint under consideration m0 as well, a higher amount
off traces are summed which results in a better signal-to-noise ratio. However,
the traveltime description depends on more parameters compared to classical CMP
stacking. Hubral (1983) introduced wavefront attributes that can be used as a
parametrization to describe the required traveltime surface t(∆xm, h, t0) shown in
Figure 2.3. Traveltime operators that use these attributes can be classified as
common-reflection-surface (CRS) type operators. They differ in their mathematical
expressions which stem from the underlying assumptions. While CRS itself is a
hyperbolic single square root traveltime expression, the other three introduced in
the following sections are double square root operators.

2.3.1. Common-reflection-surface stack

The CRS stack is a multiparameter stacking technique developed by the WIT
Consortium group in Karlsruhe, Germany (Müller, 1999; Mann et al., 1999; Jäger
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Figure 2.3.: Two hypothetical experiments: The normal-incidence-point wave is
shown in the middle with its radius of curvature RNIP . The normal
wave with the radius of curvature RN , is caused by an exploding reflector
experiment (right). Both have the angle of emergence α (left).

et al., 2001; Mann, 2002) that considers neighbouring midpoints as well as the offset
(see Figure 2.4) while the CMP method uses only offsets. It describes an event in the
vicinity of the zero-offset (ZO) sample by a second-order traveltime approximation.
Since more traces are stacked, the signal-to-noise ratio is improved significantly.

The CRS operator consists of three wavefront attributes, which are related to two
hypothetical one-way experiments as shown in Figure 2.3. The resulting two waves
are described by the angle of emergence α of the ZO ray and the corresponding radii
of curvature: RN for the normal (N) wave and RNIP for the normal-incidence-point
(NIP) wave (Hubral, 1983). The N wave is generated by an exploding reflector
model around the normal-incidence-point. The NIP wave is generated by a point
source at the normal-incidence-point for a specific reflector.

The CRS formula in its hyperbolic expression is given by

t2(∆xm, h, t0) =
(

t0 +
2 sin α

v0

∆xm

)2

+
2t0 cos2 α

v0

(

∆x2
m

RN

+
h2

RNIP

)

. (2.5)

The parameter v0 is the near surface velocity. The red colour indicates the wavefront
attributes that are estimated during the fitting process.

2.3.2. Implicit common-reflection-surface stack

The implicit common-reflection-surface (iCRS) stack is a further development of
the common-reflection-surface (CRS) stack. In contrast to the conventional CRS
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Figure 2.4.: The CRS method stacks along the fat black traveltime surface and assign
the value to the point (x0, t0). The Figure is modified after Schwarz et al.
(2015b).

technique, iCRS is a model based approach that assumes a circular reflector in the
subsurface.

x

z

R

HV ts

V tg

(xr, zr)

xs xg xc

θ

Figure 2.5.: Deviation of the iCRS operator modified after Schwarz (2011).

The iCRS operator is another multiparameter stacking technique derived by a model
based approach by the Wave Inversion Technology (WIT) Consortium group in
Hamburg, Germany (Schwarz et al., 2014a). It assumes a locally circular reflector
as shown in Figure 2.5. It depends on three parameters of the circle (xc, H and R)
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as well as the background velocity of the medium V and reads

ts(∆xm, h) =
1

V

√

(∆xm − h − ∆xc − R sin θ)2 + (H − R cos θ)2 ,

tg(∆xm, h) =
1

V

√

(∆xm + h − ∆xc − R sin θ)2 + (H − R cos θ)2 ,

t(∆xm, h) = ts(∆xm, h) + tg(∆xm, h) , (2.6)

where ∆xm is the midpoint displacement, h the half-offset, θ the reflection point
angle on the circle and ∆xc the displacement of the circle. Additionally the reflection
angle θ on the circle has to be calculated. It depends on the traveltimes ts and tg

tan θ = tan θ0 +
h

H

ts − tg

ts + tg

(2.7)

and can be solved in an iterative fashion with the first assumption of an zero offset
ray, where the dependence on ts and tg vanishes

tan θ0 =
∆xm − ∆xc

H
. (2.8)

Schwarz (2011) showed, that a few iterations are already sufficient. The parameters
of the circle can be related to wavefront attributes by

VNMO =

√

2v0RNIP

t0 cos2 α

V =
VNMO

√

1 +
V 2

NMO

v2

0

sin2 α

∆xc =
−RNIP sin α

cos2 α
(

1 +
V 2

NMO

v2

0

sin2 α
)

H =
v0RNIP

VNMO cos2 α
(

1 +
V 2

NMO

v2

0

sin2 α
)

R =
v0RN

VNMO cos2 α
− VNMOt0

2
√

1 +
V 2

NMO

v2

0

sin2 α
. (2.9)

2.3.3. Non-hyperbolic common-reflection-surface stack

Fomel and Kazinnik (2013) introduced another extension of CRS. In contrast
to iCRS the non-hyperbolic common-reflection-surface (nCRS) method assumes a
hyperbolic reflector since there is no closed form solution for a circular reflector. This
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requires additional iterations to estimate the reflection point angle θ for the iCRS
operator. The nCRS does not need this iterations and therefore saves computation
time.

The CRS operator from Equation 2.5 can be formulated as

t(∆xm, h, t0) =
√

f(∆xm, t0) + b2h2 , (2.10)

f(∆xm, t0) = (t0 + a1∆xm)2 + a2∆x2
m . (2.11)

The coefficients a1, a2 and b2 can be related to the wavefront attributes α, RNIP

and RN as

a1 =
2 sin α

v0

a2 =
2 cos2 αt0

v0RN

b2 =
2 cos2 αt0

v0RNIP

. (2.12)

The extension to nCRS

t(∆xm, h, t0) =

√

√

√

√

f(∆xm, t0) + ch2 +
√

F (∆xm − h, t0)f(∆xm + h, t0)

2
, (2.13)

apart from some prefactors, adds an additional square root which makes it very easy
to implement in existing CRS codes. Furthermore, the calculating of the second
square root is not as problematic since most quantities can be calculated before.

2.3.4. Multifocusing

Planar multifocusing introduced by Gelchinsky et al. (1999a) and revisited by Landa
et al. (2010) attempts to express the traveltime in terms of the traveltime of a central
ray and two corrections at the source S and receiver G positions from a paraxial ray.
To achieve this, a parameter to focus the NIP and N wave for a planar reflector is
required which reads

γ =
∆xs − ∆xg

∆xs + ∆xg + 2 sin α
RNIP

∆xs∆xg

, (2.14)
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where ∆xs = ∆xm − h and ∆xg = ∆xm + h. It is called focusing parameter, which
together with the equations

t(∆xm, h) =
1

v0

√

(R+)2 + 2R+∆xs sin α + (∆xs)2

+
1

v0

√

(R−)2 + 2R−∆xg sin α + (∆xg)2 (2.15)

R± =
1 ± γ

1

RN
± γ

RNIP

, (2.16)

leads to the multifocusing operator. However, multifocusing as presented here and
in literature uses a time shift to account for heterogeneity. Therefore, previous
comparisons of multifocusing with other CRS type operators as in Tygel et al.
(1999), Landa et al. (2010) and Fomel and Kazinnik (2013) are not on common
ground. In the next section I explain the difference and introduce a method to
transform multifocusing to a slowness shifted operator.

2.3.5. Time shift and slowness shift

ti
m
e

half-offset

0

ti
m
e

half-offset

0

p p

p

Figure 2.6.: Illustration of the two possible mechanisms to perturb the moveout to
account for overburden heterogeneity. The solid line represent the actual
unperturbed (black) and perturbed (red) moveout. For the slowness
shift, the slope of the moveouts asymptote (meshed) is changed. In case
of the time shift, the time of origin of the asymptote is changing. After
Walda et al. (2016)

In the recent work of Schwarz et al. (2015a), the authors showed that
the multifocusing moveout, despite being parametrized in terms of the same



14 CHAPTER 2. SEISMIC STACKING

kinematic wavefront attributes, behaves differently from all other approaches when
heterogeneity is present. In this study they found, that a time shift is responsible
for perturbing the moveout, whereas for all other moveouts mentioned in this thesis,
a slowness shift allows to account for velocity changes in the overburden. In Figure
2.6 the conceptual difference between either shifting the time or the slowness is
illustrated. Schwarz et al. (2015a) introduced a simple recipe to transform time
shifts to slowness shifts and vice versa,

p2
shift = p2

0x +
t0

tshift

(p2
0 − p2

0x) , (2.17)

where p0x = p0 sin α is the emergent horizontal slowness, p0 the near surface
slowness, t0 the zero-offset reference traveltime and tshift = p02RNIP the shifted
zero-offset traveltime. Equation 2.17 connects both parametrizations. The time
shift mechanism can be appealingly illustrated in the framework of geometrical
optics and since the dip is naturally accounted for, Equation 2.17 can be considered
as a generalized osculating equation. This allows to freely choose the desired
mechanism to account for heterogeneity. However, this also means each operator
introduced in literature has two versions. Four CRS type operators are available in
literature, namely CRS (Jäger et al., 2001), multifocusing (MF, Gelchinsky et al.,
1999b), implicit CRS (iCRS, Schwarz et al., 2014b) and non-hyperbolic CRS (nCRS)
introduced by Fomel and Kazinnik (2013). This means there is a choice of eight
CRS type traveltime expressions that can be used in Equation 2.4. In order to
evaluate differences in the practical application I apply all operators under the same
conditions to a marine industrial field data in chapter 6.5.

2.4. Conventional parameter estimation

At the time the common-reflection-surface method was developed, the computa-
tional capacities where lower than today. Therefore, an efficient method to estimate
the wavefront attributes was required which lead to a three step search called
pragmatic approach by Müller (1999). In the first step a classical CMP stack is
performed using ∆xm = 0

t(h, t0) =

√

√

√

√

t2
0

4
+

2h2

V 2
NMO

, (2.18)

with

VNMO =

√

2v0RNIP

t0 cos2 α
=

2v0

qt0

. (2.19)
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The moveout equation in this formulation only depends on one parameter q, which
contains information about α and RNIP .

The next step assumes a zero offset section, where h = 0 under the assumption of a
plane wave where RN → ∞. Under this assumptions the CRS operator reduces to

t(∆xm, t0) = t0 +
2 sin α

v0

∆xm . (2.20)

This estimates the angle of emergence α. With Equation 2.19 the second wavefront
attribute RNIP can be calculated. In the third and final step the CRS operator for
the zero offset case (h = 0) is used for an one parameter optimization of RN

t(∆xm, t0) =
(

t0 +
2 sin α

v0

∆xm

)2

+
2∆x2

mt0 cos2 α

v0RN

. (2.21)

While the parameter estimation in this fashion is efficient, it ignores most of the
prestack data volume. This does not take advantage of the improved signal-to-noise
ration CRS is capable of. Furthermore, strong assumptions are involved like a plane
wave. Since modern computers are magnitudes faster than seventeen years ago, I
suggest to take advantage of the rich prestack data volume and perform a three
parameter simultaneous global optimization described in detail in Chapter 3. The
obtained CRS wavefront attributes not only describe the traveltime surface which
stacks the data. They contain useful information about the subsurface as well. In
the next section I introduce methods that take advantage of those CRS wavefront
attributes and are used within this thesis.

2.5. CRS attribute-based methods

The wavefront attributes have a physical meaning and provide a lot of information
that can be exploited in different ways. Many CRS attribute-based methods have
been developed since CRS was introduced like normal-incidence-point tomography
(Duveneck, 2004), multiple suppression (Dümmong, 2010), partial CRS (Baykulov
and Gajewski, 2009), diffraction separation (Dell and Gajewski, 2011) and data-
driven time migration (Bobsin et al., 2015). In this section I briefly introduce those
methods I use within this work.
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Figure 2.7.: The partial CRS method stacks neighbouring traces (fat black surface)
of a specific point on a CMP traveltime curve. It coincides with a sub-
surface of the CRS surface as shown in Figure 2.4. After Schwarz et al.
(2015b).

2.5.1. Partial common-reflection-surface stack

The common-reflection-surface method stacks all offsets into a zero offset section.
While this increases the signal-to-noise ratio, CRS wavefront attribute-based
applications are limited to poststack processing.

Baykulov and Gajewski (2009) introduced the partial CRS stack to interpolate,
regularize and enhance the prestack data using the CRS concept to stack locally
at a specific offset as shown in Figure 2.7. The wavefront attributes from the
zero-offset CRS stack are used at the considered offset to calculate the CRS
surface. However, an additional search for t0 is required to find the best hyperbola
due to the discrete sampling rate. This is achieved by minimizing the deviation
between computed and observed traveltime. The t0 is calculated from the wavefront
attributes corresponding to the discrete sample by

t0 = −h2 cos2 α

v0RNIP

+

√

√

√

√

(

h2 cos2 α

v0RNIP

)2

+ t2(∆xm, h) . (2.22)

This t0 is used in Equation 2.5. The result is prestack data of better quality which
can improve the performance of migration.
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2.5.2. Diffraction separation

Dell and Gajewski (2011) introduced a method to separate diffractions from
reflections by the wavefront attributes. It is an exponential function that can be used
as a binary threshold or to weight contributions. It depends on the two curvature
attributes RNIP and RN and reads

Wf1 = exp
(

−
∣

∣

∣

∣

RNIP − RN

RNIP + RN

∣

∣

∣

∣

)

. (2.23)

In a recent work by Wissmath (2016) an adjustment was introduced to reduce the
value of the exponential function for reflections. This allows to use the function as
a threshold like before, or as a simple weight to avoid truncation of events. It reads

Wf2 = exp
(

−1

2

∣

∣

∣

∣

(

1 − RNIP

RN

)

+
(

1 − RN

RNIP

)∣

∣

∣

∣

)

. (2.24)

Previously, the separation suffered from conflicting dip situations. In such situations,
two or more events, like reflections and diffractions, intersect with each other.
The required attributes were usually available for the strongest event but not
necessarily for weaker events when the conflicting dip handling by Mann (2002)
was not successful. I introduce an improved conflicting dip handling in Chapter
4 that improves the separation dramatically. It is also possible to apply the
diffraction separation threshold in conjunction with the partial CRS method to
generate prestack data which ideally only contains diffractions. This allows to
directly pick time migration velocities (Dell and Gajewski, 2011) during velocity
analysis. Furthermore, it allows for a reliable diffraction imaging workflow.

2.5.3. Data driven time migration

Based on the Equations 2.9 it is possible to calculate the moveout velocity VNMO

from wavefront attributes and apply a dip correction to estimate an effective medium
velocity V that represents the root-mean-square velocity VRMS which can be used
for time migration (Bobsin et al., 2015). The advantage is a solely data driven
estimation of the time migration velocity as a by-product of the CRS stack. This
velocity can be used in pre- and poststack time migration similar to a manually
derived velocity field. However, the estimated velocity field might lack information
when no events are present. A simple and straight forward way to deal with this
problem is to take only velocities from samples of high coherence and interpolate
resulting gaps. This has the disadvantage of strong smoothing over areas where
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only low coherent events are present. However, the obtained velocity information
can certainly help to build a more refined time migration velocity field Glöckner
et al. (2016).

Another problem can occur when different events are fitted as in case of conflicting
dip situations. This might lead to a significant difference in velocities of neighbouring
samples leading to errors in the migrated section. If information for different dips
α are available, it is possible to weight the moveout velocity contributions based on
the coherence of the intersecting events:

ṼNMO =
VNMOS̃

S̃N

. (2.25)

The semblance of the corresponding moveout velocity is S̃, while the sum of all
semblance contributions is S̃N . The same dip correction can be applied for V as in
Equation 2.9 with the difference of using ṼNMO instead of VNMO. This is applied to
every dip available and finally summed

Ṽtmig =
∫

ṼNMO

(

1 +
Ṽ 2

NMO

v2
0

sin2 α

)−
1

2

dα . (2.26)

This leads to a smooth velocity field where lateral inhomogeneities are still present
as can be seen in Figure 9.1.

Independent of the explicit choice of the multiparameter stacking operator, the CRS
wavefront attributes need to be determined. Since previous implementations only
use a small amount of data redundancy, I propose to use a global optimization
scheme with a simultaneous multiparameter search in order to find the best
CRS wavefront attributes possible using all available data redundancy. Modern
computing facilities provide magnitudes of increased computing power compared to
the time those previous implementations were suggested. Thus, a multiparameter
global optimization for seismic data is applicable. In the following chapter I
introduce the optimization scheme used within the thesis.



Chapter 3.

Optimization

Numerical optimization is necessary, e.g., when no adequate information of the
problem at hand or no analytical solutions are available. Furthermore, it is always
required when a model needs to be obtained from measurements, e.g. inversion,
which is a primary goal in applied seismics, since it is required for depth imaging.
In the context of my thesis, I use numerical optimization to fit the CRS traveltime
operator to seismic data in order to find suitable CRS wavefront attributes for
reflected and scattered events.

In a mathematical description the goal of an optimization is to find the best solution
(minimum or maximum) of an objective function f(x). By definition a minimum or
maximum is achieved when the first derivative (gradient) of the objective function

is zero: ~∇f(x) = 0. Whether a minimum or maximum is found can be determined
by the second order derivative of the objective function. A maximum is achieved
for ~∇2f(x) < 0 and a minimum for ~∇2f(x) > 0. Most optimization methods are
designed to find a minimum. If a maximum is sought, most of the time the negative
objective function −f(x) is minimized. These criteria require a differentiability of
the objective function which is not always the case. Fortunately, derivative free
algorithms where developed for this case.

Optimization problems are usually formulated to solve a given problem where a priori
information might be available and/or certain criteria need to be fulfilled. Examples
are physical limitations, to maximize profit, or not exceed a certain amount of cost.
In optimization they are formulated as constraints. While physical limitations can
be used to constrain the search space of the variables that determine the objective
function or the objective function itself, other limitations can guide algorithms into
a specific direction or exclude undesired possible solutions. A priori information
can be further used to define a starting point. In general, better constraints yield
a higher chance to find a good solution fast. If the shape of the objective function
or its behaviour is known, specialized algorithms are suited best. If gradients can
be computed reliably, Quasi-Newton or conjugate gradient methods are useful. The
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Hessian matrix can be used in Newton methods. However, a gradient or Hessian is
not always available or very noisy. Unfortunately, the objective function in seismic
problems tends to be very noisy, especially in challenging data and in the vicinity of
weak events. Therefore, I use an optimization method called differential evolution
(DE) that does not rely on derivatives. Instead, it tries to explore the search space
based on available information.

3.1. Objective function

In the common-reflection-surface method it is required to search for three attributes.
Optimization algorithms try to minimize or maximize a given function. Therefore,
the three attributes must be represented by a meaningful mathematical expression
that can be compared to the data. In case of the CRS operator, the three attributes
are used to estimate a traveltime surface. Since seismic data is band-limited
and therefore, contains waveforms, a simple traveltime fit is not sufficient. Taner
and Köhler (1969) developed a coherency measurement named semblance (CS) to
estimate the coherent energy along a traveltime curve, or in case of CRS: traveltime
surface

CS =

∑M
i=1

(

∑N
j=1 A2

ij

)

N
∑M

i=1

∑N
j=1 A2

ij

, (3.1)

where N is the number of traces, M the number of samples within the time window
and Aij the amplitudes. The width of the time window is called coherence band
and should cover the waveform of the source signal. The semblance is one when the
energy along the operator is in phase within the time window. This represents a
perfect fit. In case no coherent energy along the operator can be found the coherence
becomes zero.

The goal of stacking is to sum data along coherent signals to increase the signal-
to-noise ratio and reduce the data volume. Therefore, maximizing the semblance
delivers a great criterion which an optimization algorithm can use to measure
whether a solution is an improvement or not. The function maximized as the
optimization criterion is called an objective function and of tremendous importance
in optimization. However, depending on initial information, it is not necessary to try
every possible solution. With a priori information the range of possible solutions can
be constrained. When the room of possible solutions is small, a local optimization
is preferable. Otherwise, a more expansive global optimization scheme becomes
necessary.
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3.2. Local vs. global optimization

While in general, the search space of most optimization problems can be limited
and a starting solution can be guessed. The difference between the needs of a
local or global optimization method often lies in the accuracy or confidence in these
information. If the starting estimation is already quite accurate and the space of
possible solutions small, it is sufficient to search the nearest minimum/maximum.
Algorithms that achieve this are often referred to as local optimization methods.
Global optimization methods are often used if less about the optimization problem
is known and/or many local extrema are present, which should be avoided. They can
be used as a black box, where no constraints and starting information are provided.
Their goal is to provide a solution that is good enough in those cases. Since the
amount of possible solutions is higher and the constraints worse than in the local
optimization, they are more computational demanding. These demands, can be
reduced by better constraints, better starting information and so on, making the
transition between local and global optimization fluent. In fact, many optimization
methods can be used local or global or even adapt from a global to a local scale
like the particle swarm optimization and others. With modern computing facilities
becoming more powerful, global and local optimization algorithms are often used
together to improve obtained solutions. However, depending on the shape of
the objective function different algorithms can perform very differently on various
objective functions. The sheer amount of optimization methods available, the
continuous excessive research on them and discovery of new optimization algorithms
show that there is no perfect method and the choice can be quite challenging. Since
in my work, I use field data, the general shape of the objective function is unknown
and constraints as well as a priori information heavily depend on the investigated
data. Therefore, I choose a global optimization algorithm that does not rely on a
specific shape nor differentiability or starting information to be able to estimate good
attributes without any knowledge in general. However, if information are available
they can be optionally used as constraints.

3.3. Evolutionary algorithms

Evolutionary algorithms (EA) are meta-heuristics that use lower-level heuristics
to provide a good solution to a given problem. Heuristics are experience based
strategies for problem solving that are able to learn and therefore adapt to a problem.
The solution is usually not guaranteed to be optimal but is mostly sufficient for a
certain task.
Evolutionary algorithms are inspired by nature, e.g. biological evolution (Eigen,
1973). In contrast to the pragmatic approach evolutionary algorithms use a starting
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population of potential solutions rather than one initial solution. The Population
is usually randomly generated. After the initialization, the fitness (here coherence)
of each individual is evaluated. It follows a loop until a certain criterion is fulfilled
like number of iterations, calculation time and/or accuracy. Within this loop, the
fittest parents are used for reproduction. The reproduction is done by mutation
and crossover of parent genes (or chromosomes) to produce the next generation.
The fitness of the new generation is evaluated again and a substitution of the old
generation with the new generation is performed. There are several ways to do that
but the fittest individuals should always be kept to avoid losing the current best
solutions and achieve a better convergence. The two EAs presented in this thesis
differ in the way the reproduction is performed.

3.3.1. Genetic Algorithm

Since genetic algorithms (GA) are evolutionary algorithms the overall strategy is
very similar to other algorithms of this kind. The main differences origin in the way
how the selection of parents, the crossover of their genes and mutations are done.
For each of them there are various variations suited for different tasks and shapes of
the objective function as well as encoding dependent. The encoding defines the way
chromosomes, the attributes of the operator, are parametrized. The most common
is a binary encoding where the attributes are encoded in a bit string containing ones
and zeros. Another method of encoding the attributes is to represent them as real
numbers. Janikow and Michalewicz (1991) found that real encoding usually is more
stable and converges faster then binary encoding for real number problems.

The most common selection method is the roulette wheel scheme, where the
individuals are sorted by their fitness and their probability to be chosen as a parent
is determined by their fitness value (Bäck, 1996). Another approach is the rank
based selection. The individuals are again sorted but instead of a probability based
on their fitness, a probability dependent on their rank is used. This increases the
chance of less fit individuals to become parents while the fittest are less likely to
become a parent (Baker, 1985). This is used to avoid strong bias in the optimization.
For a parallel implementation tournament selection (Goldberg, 1990) is useful. In
this method two or three random individuals are chosen where the fittest individual
becomes a parent for the new offspring.

The crossover determines how chosen parents pass their genes to the next generation.
One can use an addition of the parameters from the parents with a weight w

Oi = w · Y 1
i + (1 − w) · Y 2

i . (3.2)

The parameter Oi is the i-th attribute of the offspring, Y 1
i the i-th attribute of the
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first parent and the Y 2
i the i-th attribute of the second parent. If w = 1, the child

takes the value of the first parent. In case w = 0 the child gets the same value as
the second parent. There are various other crossover methods that can be used.
However simple arithmetics are easy to implement and work well.

Mutation is often considered to be the main reason (or only reason) why a genetic
algorithm converges. The most common form of mutation is a random mutation
where a value gets replaced with a new random value. The probability decreases
with iterations.

The reason why genetic algorithms work for most problems is still not solved,
Holland (1975) introduced the schema theorem. However Grefenstette and Baker
(1989) found issues applying the theorem. Mühlenbein (1992) even showed that
an evolutionary algorithm solely based on mutations works well for simple tests.
Furthermore hybrid approaches (usually genetic algorithms combined with hill-
climbing methods) are better suited for optimization (Davis, 1991). However, the
building block hypothesis (Goldberg, 1989) is still an easy to grasp explanation.

Independent of the chosen implementations of selection, crossover and mutation it
is highly recommended to use elitism. It means passing the best individual(s) to the
next generation in order to preserve the already best obtained solution(s) and further
improve the convergence. The performance of genetic algorithms can be enhanced
by a combination with other optimization methods, especially in the context of CRS
(Walda and Gajewski, 2015b). Within the time frame of this work, I tested several
optimization methods. The best trade-off between results and performance where
achieved by genetic algorithm and differential evolution, which is introduced in the
following section.

3.3.2. Differential Evolution

Differential evolution (DE) is a meta-heuristic optimization algorithm that
iteratively optimizes an objective function, without any assumptions about the
physical problem itself. In my case the objective function is the semblance (Taner
and Köhler, 1969). DE was originally introduced by Storn and Price (1997) and
can be classified as an evolutionary algorithm. Heuristics do not rely on gradients,
specific type of functions or continuity which is beneficial for very complex shapes of
the objective function. In practice the algorithm converges more often to the desired
result than other optimization schemes, especially when the shape of the objective
function is unknown in general.

DE is popular as a modern global optimization technique and is used in a variety of
scientific fields (see, e.g. Das and Suganthan (2011)). DE is very similar to the better
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known genetic algorithm, described in the previous section, since both are EAs. Like
all EAs both algorithms use a number of initial solutions. In most cases they are
randomly distributed and called starting population in the algorithms. It is also
possible to provide previously determined solutions into the starting population, for
example neighbouring samples or velocity estimations. In the next step information
obtained from the initial solutions is used to generate a new set of trial solutions.
Each iteration, which generates new potential solutions, is called generation. The
process of creating new generations is done until a satisfying solution is found. DE
and GA differ in the way the next generations are generated.

In DE for each candidate solution (or individual) xi a trial vector ui (or agent) is
generated which only gets into the next generation if its fitness value (i.e., semblance)
is better, than the original candidate solution. The trial vector is generated by
mutation and crossover. The index i denotes the individual in the population. The
mutation of an individual xi is done by the formula

yj = aj + F · (bj − cj) , (3.3)

where a, b and c are randomly selected individuals of the population that are different
from each other and xi. The index j denotes one dimension of the problem, here
the number of parameters, and F ∈ [0, 2] is called the differential weight. The
crossover parameter CR ∈ [0, 1] is chosen by the user. A random number ri ∈ [0, 1] is
generated and if ri < CR equation 3.3 is applied. The crossover parameter therefore
determines the permutation probability of a dimension. To ensure that at each
iteration a trial vector different from the candidate solution is tested, at least one
randomly determined dimension j is forced to mutate. If the fitness value of the
trial vector f(ui) is higher than the fitness of the former solution f(xi) the trial
vector becomes the new candidate solution, otherwise it is discarded. This process is
called reproduction. Figure 3.1 shows an iteration exemplary on the 2-D Rosenbrock
function which reads

f(x1, x2) = 100(x2 − x2
1)2 + (1 − x1)2 , (3.4)

where x1 and x2 are the two dimensions.

DE has three control parameters CR, F and NP which is the size of the population.
They dramatically influence the computational effort and accuracy. A trend is to
adapt them within the process of optimization (Price, 2005; Brest et al., 2006; Liu
and Lampinen, 2005; Qin and Suganthan, 2005; Qin et al., 2009). This introduces
new parameters and more complexity rather than a simple solution. I decided to stay
with the simple standard DE, as described in this section, denoted as DE/rand/1/bin
in literature. DE stands for differential evolution, rand how the individual a is
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Figure 3.1.: One iteration of the differential evolution algorithm for an individual
x. On the left hand side the initial state is shown. A trial solution
u is generated by mutating both coordinates using equation 3.3 and
a crossover probability of 1. The objective function of the individual
f(x) and its trial solution f(u) are compared. In this example the trial
solution is better and it becomes the new solution in the next iteration
shown on the right hand side.

chosen, 1 is the number of difference vectors considered perturbing xi and bin refers
to the crossover operation performed (Das and Suganthan, 2011). There are various
guidelines on how to choose the parameters CR, F and NP (Storn, 1996; Price,
2005; Liu and Lampinen, 2002). However, I used parameters determined by a meta-
optimizer by Pedersen (2010) as they performed best. The choices were NP = 20,
CR = 0.7455 and F = 0.9362. Barros et al. (2015) applied differential evolution in
the context of CRS successfully on land data. However, they did not treat conflicting
dips. A stacking velocity model can be used to constrain the search, accelerating
and stabilizing the convergence. In case of the marine data, I just fixed lower and
upper limits without a previously obtained velocity field. The attributes for the
land data were obtained using a velocity guide function that served as a constrain.
However, to not rely to much on the picked velocities a variation 20% is allowed
(Walda and Gajewski, 2015a).

For consistency reasons, all results shown here were obtained by DE, however, similar
results can be achieved with GA as well.

Since optimization algorithms try to find the global maximum, it will search for the
most coherent event. However, if events intersect with one another, e.g. diffraction
tail and reflection, the weaker event is represented by a local and the stronger by the
global maximum. The purpose of global optimization is to not get trapped in such
a local maximum. However, in order to image both events in the context of CRS,
it is necessary to find both maxima, including the local one. Therefore, I propose a
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method to find several maxima in the search space to account for conflicting events
within the CRS wavefront parameter search and consequently stack in the following
chapter.



Chapter 4.

Conflicting dip handling

In multiparameter processing conflicting events become an important issue since
they need to be recognized in the data to be imaged. Conflicting events are
usually caused by reflections, diffractions, multiples and noise that interfere with one
another. As described in the previous chapter, optimization algorithms in principal
can only detect the most coherent event. Other, weaker events are usually masked
and cannot be recognized as shown for a synthetic data example in Figure 4.1. Strong
diffractions, caused by a rough top of salt topography, cut through reflections and
other diffractions of the salt body. On the left side, within the layered structure,
are diffractions masked by the layered events. This example shows that a strategy
to find weaker events, local maxima in the context of optimization, is needed.

In the context of CRS-type operators, several strategies were proposed that all have
limitations. The first approach was by Mann (2002) who proposed an extended
pragmatic approach that tries to detect conflicting events during the angle scan.
However, only a subset of the redundant data is used in this step, which contradicts
the idea of CRS and is more susceptible to noise. Additionally, the semblance of
intersecting events can be very different which makes it difficult to differentiate
between weak events and noise.

A conceptually different approach (target oriented) was propose by Höcht et al.
(2009), who interpolate target traces from neighbouring data traces. The CRS
method estimates attributes at data traces. The amplitude at the target trace is
a weighted sum from neighbouring data traces within the aperture. If two events
intersect another at the location of the target trace, they mostly diverge in the
vicinity, e.g., a diffraction tail crosses a horizontal reflector. Contributions from data
traces in the vicinity of the target trace should contain information from different
events. The density of data traces can be sparse which is the major benefit of this
method. However, this interpolation only works for the amplitude, not for the CRS
wavefront attributes.
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Soleimani et al. (2009a) proposed to simply estimate the CRS operator for every
angle and stack each contribution. This is a brute-force method which is expansive.
To compensate for that, the authors use the CRS operator for the diffraction case and
fix the angle during the parameter estimation. This reduces the required parameter
from three to one but has limitations. The operator leads to a poor fit for reflections
and poorly estimated CRS parameters since the angle is fixed.
In this chapter I review operator oriented methods by Mann (2002) and Soleimani
et al. (2009a) and develop a new approach and compare their performance on a
complex synthetic data set.
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Figure 4.1.: Conventional CRS stack the synthetic Sigsbee 2A data. Only the most
coherent event is visible.

4.1. Extended pragmatic approach

In the second step of the previously described pragmatic approach (Chapter 2.4)
the angle of emergence α is estimated from the zero offset geometry using a plane
wave assumption. An investigation of the objective function by Mann (2002)
showed, that several additional local maxima can be observed besides the global
maximum, if several events intersect. The authors therefore proposed to search for
these maxima to determine multiple CRS operators. The missing attributes are
determined based on the found angles. Thus, all found events during the angle
search are treated separately and describe a different event. Since operators for
different events are available, they can be treated during stacking and other CRS
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attribute-based methods. However, since only zero offsets are taken into account and
a plane wave assumption is used, the approach is not stable in practical applications.
Furthermore, this approach relies on the three step search strategy of the pragmatic
approach and cannot be used in a simultaneous parameter estimation using the full
data redundancy CRS offers.

4.2. Common-diffraction-surface stack

Soleimani et al. (2009a) suggested to stack along all possible angles. This has the
advantage that every event which does not come from the same direction and is
recorded at the same time will be recognized. This makes it in principle a very stable
approach. However, considering every angle is impossible since it would require
infinite dense sampling. In practice a predefined grid is required. Depending on the
density of the grid, a high amount of operators needs to be determine, which results
in a high computational cost. If the grid is too coarse, the wavefront attributes will
become inaccurate.

Due to the high computational cost, Soleimani et al. (2009a) suggest to use the
CRS operator for the diffraction case where two wavefront attributes become equal
(RNIP = RN) and reads

t2(α, xm, h) =
(

t0 +
2 sin α

υ0

∆xm

)2

+
2t0 cos2 α

υ0RNIP

(

∆x2
m + h2

)

. (4.1)

Since the angle α is fixed, only an one parameter search is required. Depending
on the size of the aperture, the estimated attribute might take either the value of
RNIP or RN . Furthermore, the approximation is not valid for reflections which leads
to a poor semblance shown in chapter 4.4. This makes its usage for further CRS
attribute-based methods like partial CRS (Baykulov and Gajewski, 2009) unreliable.
Therefore, the full CRS operator is preferable but more expansive. However, due
to the fixed angle, inaccuracies are represented in the estimated curvatures and
thus leading to undesired behaviour shown in chapter 6.1. In the following section,
I introduce a new method to account for conflicting dips that takes advantage of
advanced optimization techniques and the full data redundancy of CRS to avoid
such problems.
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4.3. Angle domain decomposition

Instead of one attribute for the CMP case the Common-reflection-surface stack
requires to determine three wavefront attributes. This is a more expansive search,
however, there are also exploitable advantages. Since the wavefront attributes can
be physically interpreted, they contain useful information. Figure 4.2 shows the
α-RNIP plane for a constant RN . The attributes α and RNIP can be related to
the classical moveout by Equation 2.9. Three events can be observed which have
a similar RNIP value but different dip angles which also means different moveout
velocities. In conventional CMP processing however, only the moveout velocity of
the event with the highest semblance would be considered, which is a reflection in
this example. The reflection event is clipped for the purpose of the other two events.
These are diffraction tails that intersect with the reflection. Since they differ in their
dip angle a proper choice of three smaller cubes would allow to find all three events
with three individual searches.

I take advantage of this by a discretization of the α space with varying discretization
steps. In each of the α intervals all wavefront attributes are searched using a
global optimization scheme called differential evolution. The search algorithm was
successfully applied recently by Barros et al. (2015). They achieved significant
improvements in their case study. The partitioning of the parameter cube into
smaller ones reduces the search space and increases the performance of the
optimization. Furthermore, if the discretization is chosen properly, intersecting
events are recognized in different sub-cubes. This enables many possibilities for
quality-control and filtering. Since it is not a priori known at which dip angles α an
event is located there is no general choice of interval possible. However, since most
intersecting events are either diffractions and reflections or multiples and reflections,
a denser discretization is required at smaller dips while the grid can become coarse
for higher dips since the chance of intersecting events with a similar high dip angle
is rather small.

Each dip range creates their own attribute sections and stack. Therefore, they can
be used in further CRS attribute based methods like prestack data enhancement
(Baykulov and Gajewski, 2009), diffraction separation (Dell and Gajewski, 2011)
or wavefront tomography (Duveneck, 2004) allowing for conflicting dip treatment
in these applications as well. Furthermore, the user can conveniently choose in the
decomposed sections what to stack or where to apply masks and thus filter unwanted
energy like noise and artefacts or use only specific information, depending on the
task. This is possible since every dip cluster creates their own attributes.

In the next section, I verify the proposed method on a complex synthetic data set
and compare it to previous methods.



CHAPTER 4. CONFLICTING DIP HANDLING 31

Figure 4.2.: Slice of the 3-D search space with a constant RN . The colour indicates
the semblance value of the attribute triplet.
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4.4. Synthetic data example

0

2

4

6

8

D
ep

th
 [k

m
]

0 5 10 15 20
Distance [km]

1500

2000

2500

3000

3500

4000

4500

V
el

oc
ity

 [m
/s

]

Figure 4.3.: Sigsbee 2A data set representing a geological setting of the Gulf of
Mexico. The model contains a large salt body displayed by a white
colour due to high velocities.

In order to validate the proposed approach I compare previous existing conflicting
dip methods with the developed one on a synthetic data set. The data is provided by
the Subsalt Multiples Attenuation And Reduction Team (SMAART) Joint Venture
consisting of BHP Billiton, BP and Chevron Texaco and represents a geological
setting in the Gulf of Mexico shown in Figure 4.3. The model contains a large salt
body with a rough surface causing lots of diffractions intersecting with reflection
events. This feature makes it suitable for the purpose of conflicting dip treatment
during the CRS workflow. The used processing parameters and apertures are listed
in Table 4.1.

The first approach to handle conflicting dips was introduced by Mann (2002) and is
shown in Figure 4.4. While conflicting events are mostly imaged in the layered part
on the left hand side, diffractions caused by the top of salt cut through reflections
which are hidden beneath. In general events of similar amplitude are mostly imaged
while conflicting events of differing amplitudes are barely imaged correctly.

Figure 4.5 shows the approach by Soleimani et al. (2009a), where the CRS operator
for the diffraction case (RNIP = RN) was used. Conflicting events are imaged
very well even those stemming from stair stepping effects of the velocity model
during the modelling process. The stack shows, that this method is very well suited
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General parameters
Dominant frequency 20 Hz
Coherence measurement Semblance
Coherence time window 56 ms

Velocity constraints
Near surface velocity 1500 m/s
Lower moveout velocity constraints 1400 m/s
Upper moveout velocity constraints 6000 m/s

Search apertures
Minimum midpoint aperture 300 m at 2 s
Maximum midpoint aperture 500 m at 11 s
Minimum offset aperture 750 m at 2 s
Maximum offset aperture 3000 m at 11 s

Conflicting dip handling
Number of dip intervals 17
Dip intervals in ◦ [-90,-45], [-45,-30], [-30,-20],

[-20, -12.5], [-12.5,-7.5], [-7.5,-3], [-3,3],
[3, 7.5] ,[7.5,12.5], [12.5,20],

[20,30], [30,45], [45,90]

Global optimization parameters
Algorithm Differential evolution
Number of individuals 20
Crossover probability 74.55 %
Differential weight 0.9362
Minimum number of iterations 30
Maximum number of iterations 200
Number of allowed stagnated iterations 10

Local optimization parameters
Lower coherence threshold 1.00 at 0 s
Upper coherence threshold 1.00 at 10 s
Maximum Number of iterations 100
Minimum deviation required 10−5

Transformation radius of RN 100 m
Initial variation of emergence angle 2 ◦

Initial variation of RNIP 3 %
Initial variation of RN 4 ◦

Table 4.1.: Search parameters used for the Sigsbee 2A data set. A local optimization
was not performed. Stacking and search parameters are identical.
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Figure 4.4.: CRS stack of the Sigsbee 2A data using the extended pragmatic
approach by Mann (2002).
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Figure 4.5.: CRS stack of the Sigsbee 2A data using the CDS concept by Soleimani
et al. (2009a) on the full CRS operator.
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to image conflicting dip situations. However, drawbacks are the high amount of
operators needed and the limited accuracy of the estimated parameters due to the
fixed emergence angle. In the example I used 121 dips with a spacing of 1◦ from
-60◦ to +60◦ which requires 121 operators to be determined per sample. This is
not necessary with the suggested angle decomposition approach which requires less
operators but achieves a higher accuracy since the wavefront attribute α is not fixed.
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Figure 4.6.: CRS stack of the Sigsbee 2A data using the proposed angle
decomposition.

Figure 4.6 shows the stack of the Sigsbee 2A data using the proposed method.
Conflicting dips are imaged correctly similar to the approach by Soleimani et al.
(2009a). However, the quality of the stack is much better due to the better parameter
estimation of the wavefront attributes. This can be seen especially at events from
the salt body, which are mainly diffractions. The events are more consistent and
diffraction tails are imaged much better. Furthermore, in this example I used
nine dip intervals which is far less than previously. This allows a more advanced
optimization technique due to a much lower computational cost.

The stacks show the improvements achieved by more advanced techniques to image
conflicting dips from the extended approach over the CDS up to the proposed
method. However, the stack is not necessarily the best method to evaluate the
improvements. A better criterion is the semblance since this is the objective function
in the optimization process. This means, a better semblance is equivalent to a better
fitted operator. Since it is very difficult to compare the semblance for every event
found at every sample in a fair way for all presented methods, I will compare the
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highest semblance found at every sample, as it should be, in principal, the same for
all methods.

Figure 4.7.: Semblance overlay of the CRS stack using the extended pragmatic
approach by Mann (2002).

The extended pragmatic approach shows a high semblance for reflections and top
of salt diffractions. This means most parts of the data are estimated correctly.
However, the section is noisy indicating many samples where no proper operator
could be found. This shows evidence that a better optimization scheme is
required. The problem is, the conflicting dip handling cannot benefit from a
better optimization scheme since it relies on the initial three step search strategy to
recognize conflicting dips.

The semblance section of the most coherent event obtained by the method of
Soleimani et al. (2009a) is shown in Figure 4.8. Since the diffraction operator
(Equation 4.1) is used, reflections are fitted poorly with a low semblance compared
to Figure 4.7. However, for diffractions the semblance is slightly improved. The
poor semblance of reflections indicates a poor wavefront attribute estimation which
will not provide good results in further attribute-based methods.

Figure 4.9 shows the semblance of the proposed angle decomposition method. The
semblance has similar high values as for the extended pragmatic approach but is
less noisy. Since the method encourages a better optimization technique than the
extended pragmatic approach, events are fitted better at challenging areas like events
stemming from the salt body and diffraction tails. This indicates that the wavefront
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Figure 4.8.: Semblance overlay of the CRS stack using the CDS method by Soleimani
et al. (2009a).

Figure 4.9.: Semblance overlay of the CRS stack using the proposed angle
decomposition.
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attributes are continuous and of high quality and can be used reliably in further
methods as diffraction separation or partial CRS.

Since in the angle decomposition CRS all contributions are available as individual
sections as well, more information become available. A directly available information
is the dip of the individual events. Figure 4.10 shows contributions from a dip
range of [-22.5◦,-11.25◦], Figure 4.11 from dip ranges of [-5.625◦,5.625◦] and Figure
4.12 from dip ranges [11.25◦,22.5◦]. In the dip range around 0◦ mostly horizontal
layering and diffraction apexes are visible. In the other dip ranges diffraction flanks
are the most dominant events, even at locations where diffractions and reflections
overlap. Since reflections and diffractions are decomposed in different sections the
stack contains both information.
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Figure 4.10.: CRS stack of the Sigsbee 2A data using a single decomposed dip range
of [-22.5◦,-11.25◦].

The synthetic data example is free of noise which is not the case for field data. To
understand the behaviour of CRS-type operators in the presence of noise, the next
chapter investigates pitfalls and challenges of CRS-type operators in the presence of
noise.
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Figure 4.11.: CRS stack of the Sigsbee 2A data using a single decomposed dip range
of [-5.625◦,5.625◦].
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Figure 4.12.: CRS stack of the Sigsbee 2A data using a single decomposed dip range
of [11.25◦,22.5◦].





Chapter 5.

CRS in the presence of noise

Depending on the environment the data is acquired, noise becomes an important
aspect of the seismic processing. Since the land data examples in chapter 7 are
acquired in a crystalline environment the noise level is very high. In order to
appropriately validate, if I observe signal or noise it is necessary to understand how
the used operator behaves in the presence of noise. Therefore, I test three cases and
apply a CRS-type operator to those to evaluate possible pitfalls. The first pre-stack
data contains only zeros, the second uniformly distributed normalized noise and the
third Gaussian (normal) distributed normalized noise. The Gaussian probability
distribution is given by

pn(x) =
1

σ
√

2π
exp

(

−(X − µ)2

2σ2

)

, (5.1)

where X is the random variable, µ the mean value and σ the standard deviation. I
chose the standard normal distribution where µ = 0 and σ = 1. The CRS attribute
search and stack was obtained using the processing parameters shown in Table 5.1.

5.1. Zero data

In order to validate unexpected bias of the parameter estimation and wavefront
attributes in general, I apply the developed CRS workflow without conflicting dip
processing on pre-stack data containing only zeros. In this case I expect the CRS
parameters (Figure 5.1) to contain only noise and no bias or any kind of pattern.
The α section in Figure 5.1(a) indeed seems noisy where no pattern is visible which
is confirmed by the histogram in Figure 5.1(b) where an uniformly distributed angle
besides boundary effects can be seen. However, the RNIP parameter in Figure 5.1(c)
shows a gradient which is related to the initial choice of the near surface velocity that
CRS requires. Investigations from Guntern (2016) show, that the choice of the near
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General parameters
Dominant frequency 30 Hz
Coherence measurement Semblance
Coherence time window 20 ms

Velocity constraints
Near surface velocity 2000 m/s
Lower moveout velocity constraints 1400 m/s
Upper moveout velocity constraints 4000 m/s

Search apertures
Minimum midpoint aperture 500 m at 0 s
Maximum midpoint aperture 500 m at 4 s
Minimum offset aperture 2000 m at 0 s
Maximum offset aperture 2000 m at 4 s

Conflicting dip handling
Number of dip intervals 1
Dip intervals in ◦ [-90,90]

Global optimization parameters
Algorithm Differential evolution
Number of individuals 20
Crossover probability 74.55 %
Differential weight 0.9362
Minimum number of iterations 30
Maximum number of iterations 200
Number of allowed stagnated iterations 10

Local optimization parameters
Lower coherence threshold 0.01 at 0 s
Upper coherence threshold 0.01 at 4 s
Maximum Number of iterations 100
Minimum deviation required 10−5

Transformation radius of RN 100 m
Initial variation of emergence angle 2 ◦

Initial variation of RNIP 3 %
Initial variation of RN 4 ◦

Table 5.1.: Processing parameters for all noise data sets. In these cases, the stacking
apertures were the same as the search apertures.
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surface velocity can have significant influence on the estimated parameters which is
corresponding with this observation. For this test I chose a near surface velocity
of 2000 m/s. The inverse of the RN parameter represents normal distributed noise
similarly to the α section.
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Figure 5.1.: Wavefront attributes and histogram of data containing purely zeros.
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(c) CRS stack on Gaussian noise
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Figure 5.2.: CRS (Figure (a) and (c)) and CMP stack (Figure (b) and (d)) of data
containing uniform and Gaussian noise.

5.2. Noise

I demonstrated in the previous section that at least the angle section of α and the
Radius of the normal wave RN show no initial bias. In field applications however,
the data does not contain zeros but rather signals and noise. Therefore, seismic data
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usually does not contain zeros. I investigate the behaviour of the CRS method on
data of uniformly and Gaussian distributed noise to learn which arbitrary patterns
can be generated by the application of CRS in presence of strong noise.

Unfortunately the CRS method shows clearly visible coherent patterns in the stack
(Figure 5.2(a)) of uniformly distributed noise compared to the CMP stack in Figure
5.2(b). In case of Gaussian noise the coherent patterns are hidden beneath a bias
towards a non zero value for the CRS stack (Figure 5.2(c)). However, differences to
the CMP stack (Figure 5.2(d)) are still visible.

The observed patterns become more apparent in the semblance in Figure 5.3.
Especially in case of Gaussian noise (Figure 5.3(b)) I observe preferred directions.
This indicates that coherent noise can be hidden in the CRS stack while still having
strong impact on the semblance and the estimated attributes I show in the following.
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Figure 5.3.: Semblance of the estimated CRS traveltime surface of input data
containing uniform and Gaussian noise.

The α section is shown in Figure 5.4 for the uniform (Figure 5.4(a)) and Gaussian
noise (Figure 5.4(b)). While the general appearance is similar, the histogram for
the Gaussian noise (Figure 5.4(d)) shows two preferred directions at ±70◦ compared
to the uniform noise (Figure 5.4(c)). The general distribution in both cases is a
Gaussian bell curve. This is expected for Gaussian noise, however, not for uniformly
distributed noise. One possible explanation is a low number of random values.
Another possibility is that a limited discretization never leads to purely uniform
noise. Boundary effects of the search space might also play a role. I suggest a
deeper investigation of the origin for future work.
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Figure 5.4.: CRS attribute α and histograms of data containing uniform and
Gaussian noise. The histogram the Gaussian noise (d) shows undesired
preferred directions at roughly ±70◦.

In Figure 5.1(c) I showed, similar to Guntern (2016) that the radius of the normal-
incidence-point wave RNIP has a bias due to the choice of the near surface velocity.
The same gradient can be observed for apparent events which are not present in the
actual pre-stack data as the stacks have shown. However, their position coincides
with coherent events in the angle section shown before.

According to Equation 2.9 α and RNIP can be translated to the moveout velocity
VNMO which is shown in Figure 5.6. The Gaussian noise (Figure 5.6(b)) shows
more coherent events than the uniformly distributed noise (Figure 5.6(a)) which is
undesired. In principal, the input data should ideally not show any coherence at all.
Some apparent events have hyperbolic shape and can be mistaken as diffractions,
which is really troublesome when diffraction imaging is an aim.
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Figure 5.5.: CRS attribute RNIP of data containing uniform and Gaussian noise.

The radius of the normal wave RN is the least stable parameter of the CRS parameter
estimation and shows very few coherent signals in case of uniform noise (Figure
5.7(a)). Like in the other attribute sections before, Gaussian noise shows more
coherent events (Figure 5.7(b)) in principle. However, the differences for RN are not
as pronounced as in other attribute sections.

Noise is an issue in CRS processing as it can introduce non-existing events. If
misinterpreted and/or not removed prior to migration they will be migrated as well,
disrupting the final image. Therefore, interpretation of steep dipping events and
hyperbolic events in CRS stacks need to be done carefully.

In the next chapter I show results of the introduced method on an industrial marine
data set.
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Figure 5.6.: Moveout velocity VNMO of data containing uniform and Gaussian noise.
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Figure 5.7.: CRS attribute KN = 1/RN of data containing uniform and Gaussian
noise.



Chapter 6.

Marine data

The marine field data set was acquired by TGS-NOPEC and is located in the
Levantine basin in the Eastern Mediterranean Sea (Figure 6.1). The Levantine
basin extends to Cyprus in the north, the Egyptian coast in the south and the
Levantine coast in the east. The Levantine basin is rich of salt tectonics (Netzeband
et al., 2006) leading to a complex geological setting, which becomes challenging in
seismic imaging, especially time processing.

The data was acquired by the company TGS-NOPEC from September to December
2001. The processed profile is a 2-D line in SW-NE orientation from a large number
of profiles in Strike (SW-NE) and Dip (NW-SE) orientation. The shot point interval
is 25 m and the group interval of the receiver is 12.5 m. It has a minimum offset of
150 m and a maximum offset of 7338 m covered by 576 recording channels resulting
in a nominal fold of 144. The covered subsurface contains a fault system in the
central part of the data, salt rollers beneath and a slump complex surrounded by
sediments, shown in Figure 6.2 (Netzeband et al., 2006). Due to the faults and the
rough top of salt topology, a high amount of diffractions can be observed in the
data. Therefore, it is particularly suited for diffraction imaging and suffers severely
from conflicting dip situations, making it an excellent data set to demonstrate the
potential of the proposed method. During early stages of the work, Walda and
Gajewski (2015a) showed first results. However, no constraints during optimization
were used. The required processing parameters to perform the CRS attribute search
are listed in Table 6.1. Apertures used in ZO and partial stack as well as diffraction
separation and migration are shown in Table 6.2. The threshold for the diffraction
weight is applied for Equation 2.24.
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Figure 6.1.: Location of the marine profile (black line) in the Mediterranean Sea
(modified after Netzeband et al., 2006).
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Figure 6.2.: Geological setting of the marine data after Netzeband et al. (2006).
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General parameters
Dominant frequency 40 Hz
Coherence measurement Semblance
Coherence time window 26 ms

Velocity constraints
Near surface velocity 1480 m/s
Lower moveout velocity constraints 1300 m/s
Upper moveout velocity constraints 4000 m/s

Search apertures
Minimum midpoint aperture 300 m at 0 s
Maximum midpoint aperture 500 m at 5 s
Minimum offset aperture 750 m at 0 s
Maximum offset aperture 3000 m at 5 s

Conflicting dip handling
Number of dip intervals 17
Dip intervals in ◦ [-90,-45], [-45,-22.5], [-22.5,-15],

[-15, -10], [-10,-7], [-7,-4], [-4,-2],
[-2, -0.75] ,[-0.75,0.75], [0.75,2],

[2,4], [4,7], [7,10], [10,15],
[15,22.5], [22.5, 45], [45,90]

Global optimization parameters
Algorithm Differential evolution
Number of individuals 20
Crossover probability 74.55 %
Differential weight 0.9362
Minimum number of iterations 30
Maximum number of iterations 200
Number of allowed stagnated iterations 10

Local optimization parameters
Lower coherence threshold 1.00 at 0 s
Upper coherence threshold 1.00 at 5 s
Maximum number of iterations 100
Minimum deviation required 10−5

Transformation radius of RN 100 m
Initial variation of emergence angle 2 ◦

Initial variation of RNIP 3 %
Initial variation of RN 4 ◦

Table 6.1.: Search parameters for the marine data. For this data the local
optimization was not used.
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Stacking parameters
Minimum midpoint aperture 50 m at 0 s
Maximum midpoint aperture 150 m at 5 s
Minimum offset aperture 100 m at 0 s
Maximum offset aperture 3000 m at 5 s
Velocity tolerance for multiple prediction 5 %

Diffraction separation
Minimum midpoint aperture 50 m at 0 s
Maximum midpoint aperture 150 m at 5 s
Minimum offset aperture 750 m at 0 s
Maximum offset aperture 3000 m at 5 s
Diffraction weight threshold 0.5

Partial stacks
Regularized receiver interval 25 m
Minimum local midpoint aperture 50 m at 0 s
Maximum local midpoint aperture 150 m at 5 s
Local offset aperture 50 m

Migration
Minimum midpoint aperture 1000 m at 0 s
Maximum midpoint aperture 2000 m at 5 s
Minimum offset aperture 2000 m at 0 s
Maximum offset aperture 4000 m at 5 s

Table 6.2.: Stacking parameters for the marine data. In case of a post-stack
migration the offset aperture is zero.
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6.1. Stack and attributes

The stack is mostly the first interpretable image of the subsurface available during
the processing. It is important to identify important geological features that need
to be taken into account in further processing steps, particularly velocity model
building. Furthermore, it is the input for poststack migration algorithms. Events
lost during this processing step cannot be recovered in poststack migration and lead
to misinterpretation.

The CRS wavefront attributes are of importance for many CRS applications as
described in Chapter 2. Better estimated attributes improve the result of, e.g., data
enhancement and diffraction separation. The quality of the estimated attributes are
measured by the obtained semblance. In general, the higher the semblance the more
energy is stacked constructively. This happens when the traveltime curve or surface
fits the data accurately. In the following section I compare the stacks obtained by
the previously introduced methods from literature and the proposed method using
the hyperbolic second order CRS operator (Equation 2.5).

6.1.1. CRS stack

The conventional CRS stack result is shown in Figure 6.3. The stack shows
the main features of the data set but provides very little information on smaller
details due to truncated and hidden events. The CRS stack obtained by the idea
of Soleimani et al. (2009b) using the full CRS operator introduces a number of
problems (Figure 6.4). In principle conflicting events are imaged but an undesired
signal stretch can be observed which causes several problems (Walda and Gajewski,
2015c). This is equivalent to a major change in the frequency content, destroying
amplitude information. Also events are balanced unreasonably. Diffractions scatter
in every direction while reflections reflect all incoming energy according to Snell’s
law. Assuming a similar impedance contrast between two layers, this means the
measured energy at a receiver for a diffraction should be far lower. This is not
the case in Figure 6.4 where diffraction tails from faults are of higher energy than
slightly dipping reflections. Furthermore, 161 operators had to be determined. This
leads to a tremendous computational cost. Figure 6.5 shows the proposed method
with 19 dip cluster. Conflicting events are well imaged, no signal stretch or change
in frequency content is observable and the amplitude distribution is more consistent
with Figure 6.3. In this case I used far more dip clusters then necessary to obtain a
good image. Similar results are achievable with 8-10 dip cluster. Compared to before
this means roughly 20 times fewer operators need to be determined. Therefore, this
approach is less computational demanding.
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Figure 6.3.: Conventional CRS stack of the marine data from the Levantine Basin.
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Figure 6.4.: CDS stack of the marine data from the Levantine Basin using the full
CRS operator.
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Figure 6.5.: Proposed angle decomposition CRS stack of the marine data from the
Levantine Basin.

6.1.2. CRS wavefront attributes

The estimated CRS wavefront attributes are critical for a high quality stack and
additional applications like prestack data enhancement, diffraction separation and
time migration. Wrongly estimated parameters will lead to an inaccurate velocity
and moveout estimation as well as noisy fluctuations which requires parameter
smoothing. This however, smoothed over small scale information. The CRS
wavefront attributes consist of two wavefront curvatures, which are of second order,
and a first order angle of incidence or scaled slope. Therefore, the angle α is the
most impactful and thus the most stable and reliably estimated parameter. The
NIP wave radius RNIP is in general more stable than the N wave radius RN . Since
it is not possible to show all results here, I demonstrate the improvements of the
developed method on the most stable parameter α and the least stable parameter
RN . Furthermore, the objective function optimized, the semblance is shown to
evaluate the optimization success.

Figure 6.6 shows an overlay of the estimated angle α and the corresponding
conventional CRS stack. The attribute becomes noisy at the beginning of the salt
body and below. furthermore, small angles of reflections cut through diffractions
which leads to very inconsistent attributes in further applications. Figure 6.7 shows
the angle of incidence of the most coherent event per sample found in the 121
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Figure 6.6.: Overlay of the conventional CRS stack with the wavefront attribute α.

estimated CRS operators. While each operator delivers their own angle section,
they cannot be displayed here since there are too many. They also do not deliver
any information when no event is found for a specific angle. The accuracy of the
angle attribute is rather low, since in the extension of the CDS method, the angle
is fixed with a 1◦ spacing. However, a difference of 1◦ can have a significant impact
in the accuracy of other attributes. In principle, the section should deliver similar
results as Figure 6.6 which is the case. However, within and below the salt body
the angle is more noisy, indicating worse attributes. Figure 6.8 shows the angle
of the most coherent event for the proposed angle decomposition method. The
estimated angles are much more consistent and less noisy, even in and below the
salt body. Almost no parameter noise indicates reliable attributes which is important
for further applications.

To visualize the radius of the N wave, it is not suitable to choose the Radius itself,
as nearly horizontal reflections will lead to an infinite radius of the N wave and
depending on the shape, also might alternate between positive and negative algebraic
sign. It is more practical to plot the inverse, KN , where a plus/minus infinite radius
becomes 0. Another advantage of this is, that diffractions have high positive values
and are easy to spot. This directly indicates if they can be identified in diffraction
separation methods. Figure 6.9 shows the KN section of the conventional CRS stack.
While the most prominent diffractions can be identified, the slump complex between
the two layer parts above the salt body is very diffuse and noisy. The values indicate
diffractions but non are clearly visible. The results of the most coherent sample for
the extended CDS method in Figure 6.10 show better results for the slump complex
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Figure 6.7.: Overlay of the CDS stack with the wavefront attribute α using the full
CRS operator. The blue area at the top was not calculated.

Figure 6.8.: Overlay of the proposed angle decomposition CRS stack with the
wavefront attribute α.
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Figure 6.9.: Overlay of the conventional CRS stack with the wavefront attribute KN .

where diffractions can be identified. However, within and below the salt, the section
becomes very noisy. It seems that the attribute is smeared arbitrarily in some areas
of the image. This is not so much the case for the proposed method shown in Figure
6.11. The estimated attribute coincides better with the events and are not smeared
as much. Furthermore, much more details can be observed in the slump complex,
showing a highly scattering complex.

One way to evaluate the estimated CRS wavefront attributes is to investigate the
obtained section as done above. Another important asset to analyse is the value
of the actual objective function that is maximized. The semblance varies between
zero and one. A value of one means that all energy in the used window is fitted
perfectly which is rarely ever the case in field data. However, high semblance values
indicate a good fit. This is best criterion available to decide, whether the estimated
attributes are accurate or not. The semblance of the conventional CRS stack is
shown in Figure 6.12. The layered area shows quite high semblance values which
means they are fitted well. The slump complex and the salt body have lower values
which indicates a less accurate fit for the more complex areas of the data. The
semblance along diffraction events becomes noisy and very low. This is equivalent
to a bad fit for diffractions due to the parameter estimation. Another problem is
a truncation of fitted events, mostly in the deeper parts, leading to inconsistent
results. Diffractions are fitted better by the extended CDS method (Figure 6.13),
however reflections show a much lower semblance. This means overall, the fit is
worse and the estimated attributes are less reliable. This is especially visible in the
lower part of the data. Using the obtained attributes of such worse fits can lead
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Figure 6.10.: Overlay of the CDS stack with the wavefront attribute KN using the
full CRS operator.

Figure 6.11.: Overlay of the proposed angle decomposition CRS stack with the
wavefront attribute KN .
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Figure 6.12.: Section showing the highest semblance found per sample of the
conventional CRS. The stack is overlain.

to errors, e.g. in data enhancement or velocity estimation. Figure 6.14 shows the
semblance of the most coherent event for the proposed method. The reflections are
fitted as well as in the conventional CRS method while diffractions are fitted as
nicely as in the extended CDS method. The results show the best of both previous
methods without most of the disadvantages like signal stretch or bias towards either
diffractions or reflections. Furthermore, the overall semblance is the highest which
means more energy is fitted constructively. Since the objective function has higher
values, the used optimization method delivers a better result in the sense of function
maximization.

Since the CMP method is used for more than fifty years, the corresponding attribute:
normal-moveout velocity VNMO is better known within the community. It can
be calculated from the CRS attributes α and RNIP using Equation 2.9. Figure
6.15 shows the overlay of the estimated moveout velocity with the stack for the
most coherent event of the proposed method. It should be noted, that every
operator provides a moveout velocity field which can be used to approximate a
better migration velocity, shown in Chapter 6.3. The velocity field is very smooth
which is expected in time imaging. However, smaller features like strongly dipping
events near faults, which show a higher moveout velocity, are still visible. Since no
velocity guide function is used for the marine data, the algorithm images multiples
well, which show a higher semblance than events beneath. This is not necessarily a
disadvantage. In principle, it can be used to image and remove multiples as touched
briefly in the outlook (Chapter 9).
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Figure 6.13.: Section showing the highest semblance found per sample of the CDS
method using the full CRS operator. The stack is overlain.

Figure 6.14.: Section showing the highest semblance found per sample of the
proposed angle decomposition CRS. The stack is overlain.
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Figure 6.15.: Improved CRS stack of the marine data from the Levantine Basin
overlain with the estimated moveout velocity.

6.2. Data enhancement

A highly valuable application of the shown wavefront attributes is the partial CRS
stack, where regularized and enhanced prestack data is generated from extrapolated
traveltimes based on ZO wavefront attributes. Results for one CMP are shown in
figure 6.16. A general reduction of noise and regularized offsets can be observed
while all conflicting events are recovered which was not possible so far. This is
further shown in common-offset gather for an offset of 2000 m of the original data
(Figure 6.17), the CRS method without conflicting dip treatment (Figure 6.18)
and the proposed workflow shown in Figure 6.19. In this case the original data
is of good quality. Therefore, I expect to recover and enhance all events present
in the data. CRS without conflicting dips is able to enhance the data but loses
of information, especially in the slump complex, the salt body and when multiples
occur. The angular decomposition workflow enhances the data quality as well while
not losing any visible information. The prestack data shows that a correct treatment
of conflicting dips in data enhancement is mandatory. Otherwise, useful energy is
filtered out during the enhancement process and filtering out important energy leads
to wrong results.
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Figure 6.16.: Original (a) and partial CRS (b) CMP gather 3946 using 19 dip ranges
and DE optimization algorithm.
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Figure 6.17.: Common-offset gather of the original data at an offset of 2000 m.
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Figure 6.18.: Common-offset gather of, by partial CRS without conflicting dips,
enhanced data at an offset of 2000 m.
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Figure 6.19.: Common-offset gather of, by partial CRS with conflicting dips,
enhanced data at an offset of 2000 m.
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Figure 6.20.: Post-stack migration using the dip corrected velocity of Equation 2.9.

6.3. Migration

Since the CRS wavefront attributes contain velocity and dip information the
obtained moveout velocity model can be dip corrected. This represents the root-
mean-square velocity which is appropriate for the use in time migration. Figure 6.20
shows the time migration result of the data where the velocity is taken from the most
coherent event, i.e. global maximum. However, the proposed method delivers the
CRS attributes for all intersecting events. Therefore, using all contributions by
Equation 2.26 improves the velocity model and therefore the migration result shown
in Figure 6.21. The main improvements are visible for the salt roller, especially the
bottom of salt at 2.8 s to 3 s. The velocity model is more consistent and smoother
while the migration shows more precise boundaries.

6.4. Diffraction separation

Diffractions contain tremendous amounts of useful information and can contribute
significantly, if exploited well. In recent years, a lot of research is going in this
direction and the CRS method is a particularly useful tool since the CRS wavefront
attributes differ in case of reflections and diffractions. This can be used for diffraction
separation. The application to the marine data set is displayed in Figure 6.22, where
I calculated a diffraction weight using Equation 2.24. The weight function is close to
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Figure 6.21.: Post-stack migration using the semblance weighted and dip corrected
velocity of Equation 2.26.

zero for almost all reflections visible in the data while diffractions have high values,
thus making a separation in principle feasible. However, most diffractions are hidden
beneath reflections since they are weaker signals. A simple diffraction separation by
the choice of a threshold (here 0.5) for the most coherent event delivers only very
few and partly truncated diffractions as shown in Figure 6.23. The proposed angular
decomposition is able to provide CRS wavefront attributes for the weaker diffraction
events as well, which results in a tremendous amount of recovered diffraction energy
(Figure 6.24) compared to Figure 6.23. The diffraction separation can be applied in
conjunction with partial CRS to generate prestack diffraction only data. This data
can be used in prestack time migration to characterize faults. A basic diffraction
summation migration result is shown in the outlook (Chapter 9) as a first result.
However, diffraction imaging still suffers from problems regarding artefacts and
incontinuous events after separation.

The results up to this point are obtained using the second order hyperbolic
CRS operator. As introduced in the theory (Chapter 2), higher order double
square root operators are available. In the next section I will use the proposed
method to competitively compare all those operators without initial bias, the same
parametrization and algorithm. This ensures that all differences are caused solely
by the investigated operator.
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Figure 6.22.: Weight function of the most coherent event for the diffraction
separation overlain with the stack.
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Figure 6.23.: Diffraction separation without conflicting dip treatment. A few
diffractions can be seen. However, most diffractions within the data
are hidden.
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Figure 6.24.: Diffraction separation considering conflicting dips. Most diffractions
can be successfully separated. However, residuals are left at the
seafloor, the bottom of salt and the respective multiples.
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6.5. Comparison of CRS type operators

In the previous sections, only the performance of the proposed angular
decomposition method with previously existing ones are investigated. However,
there are more CRS-type operators available than the conventional CRS method.
In Chapter 2 alternatives are introduced, i.e. non-hyperbolic CRS, implicit CRS and
multifocusing. In order to find the most suited operator, especially for diffraction
imaging, their performance under the very same conditions, e.g., algorithm, aperture
and parametrization, are compared. The sole difference is the operator used for
traveltime fitting to calculate the semblance.

A method to gain more insight on the behaviour of the operators and how they
shape the objective function is to calculate the objective function on a specific
test case. Figure 6.25 shows the location of a test sample where the objective
function is investigated in the following. The α-RNIP planes of constant RN of
every operator is plotted in Figure 6.26. The aperture is rather small in this case,
with a midpoint aperture of 200 m and an target-offset ratio of roughly 0.5. The
colour coded semblance is clipped to show the diffractions, since the reflection has
a much higher semblance. The chosen aperture is within the hyperbolic limit of a
target-offset ratio of roughly 1:1, therefore all operators fit the events well and we
do not observe significant differences between each operator. This changes when
the aperture is increased as in Figure 6.27. The midpoint aperture in this case is
800 m and the target-offset ratio approximately 2:1. Since this is far beyond the
hyperbolic limit, the CRS operator cannot fit the diffractions anymore and they
are hardly recognizable. Furthermore, the estimated attributes differ as well as the
general shape of the objective function. This is not so much the case for the higher
order operators multifocusing, iCRS and nCRS. They do not differ at the event
location, only further away in the noisy part of the objective function.

In the same way as the last section, a comparison of the fitted semblance value
allows to evaluate how successful the operators fitted the data. Since every operator
has their slowness and time shifted version (see Chapter 2.3.5), it is necessary to
investigate which representation is better suited for stacking. Figure 6.28 shows the
semblance of slowness shifted nCRS as a reference and the difference plots of three
exemplary chosen operators. In the difference plots, a red colour represents higher
semblance values for the slowness shifted version whereas blue colours show higher
semblance for the time shifted operator. Independent of the actual operator, the
slowness shifted versions show a higher coherence almost everywhere and a better
fit for the same events.

Figure 6.29 shows the semblance obtained by nCRS as well as difference plots
of nCRS and the other operators in their slowness shifted version. Red colours
represent a better fit for nCRS, blue colours for CRS, iCRS or multifocusing. The
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Figure 6.25.: Stacked section in the north east of the profile. The arrow indicates
the location of the sample investigated in Figures 6.26 and 6.27.
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(a) Objective function of CRS (b) Objective function of multifocusing

(c) Objective function of nCRS (d) Objective function of iCRS

Figure 6.26.: Objective function of the sample shown by an arrow in Figure 6.25.
The offset-target ratio is 0.5 where a hyperbolic assumptions is still
valid. Therefore, no differences between the non-hyperbolic operators
and conventional CRS can be observed.

difference plots of nCRS minus iCRS and nCRS minus multifocusing show primarily
white colours which means no significant differences are observable. In terms of
accuracy they perform similarly on the marine field data. However, they show
differences compared to the hyperbolic CRS represented by the difference plot of
nCRS minus CRS. Differences for reflections are not visible, since those are white.
In case of diffractions, mainly red colours appear which means a better fit for nCRS.
Since the differences of nCRS to iCRS and multifocusing are almost nonexistent,
the differences are the same for all non-hyperbolic operators compared to hyperbolic
CRS. This is no surprise, since diffractions are higher order phenomena. The fit of
diffractions is better for non-hyperbolic operators. This also shows in the estimated
attributes, exemplarily shown for the moveout velocity in Figure 6.30. A reference
velocity field, estimated using nCRS and difference plots of nCRS minus CRS, iCRS
and multifocusing are shown. Red colours show a higher moveout velocity of nCRS
while blue colours show higher moveout velocities for the other operators. The
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(a) Objective function of CRS (b) Objective function of multifocusing

(c) Objective function of nCRS (d) Objective function of iCRS

Figure 6.27.: Objective function of the sample shown by an arrow in Figure 6.25.
The offset-target ratio is 2.0 which exceeds the hyperbolic limit
significantly. Therefore, the objective function of the conventional
CRS operator differs severely from the non-hyperbolic variants. The
difference between the individual non-hyperbolic expressions however,
is negligible.

biggest differences are visible for nCRS minus CRS. In case of diffractions, CRS
shows higher moveout velocities close to the apex while at the diffraction tail,
nCRS shows higher moveout velocities, which seems more accurate because the
semblance of nCRS is higher. Non-hyperbolic CRS and multifocusing show very
similar moveout velocities apart from areas of very low coherence. Interestingly,
even though the differences in the coherence between nCRS and iCRS are almost
nonexistent, the moveout velocities show small differences. For dipping events, the
moveout velocity of iCRS is higher than for nCRS. Unfortunately it is impossible to
evaluate, which is more accurate. Therefore, the obtained velocities should be used
carefully.

The observation, that non-hyperbolic operators perform better in case of diffractions
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(a) nCRS reference semblance
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(c) Multifocusing
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(d) nCRS

Figure 6.28.: Semblance section obtained by the slowness shifted nCRS operator
and difference plots of slowness shifted operators to their time
shifted counterparts. A red colour indicates a higher semblance for
the slowness shifted operator, while blue colours indicate a better
semblance of time shifted operators.

than hyperbolic CRS, is further supported by a diffraction separation shown in
Figure 6.31. An excerpt of the diffraction separation using nCRS and CRS is
compared on the right hand side. The excerpt area is highlighted by the red box.
In case of nCRS, more diffractions become visible and are more continuous. The
arrows highlight diffractions where this can be observed in particular. Therefore, the
results obtained in previous sections, particularly for diffractions, can be improved
using one of the higher order non-hyperbolic operators.
Figure 6.32 shows a comparison of the computational cost of the compared operators.
The additional computational overhead of the slowness shifted nCRS is very small
(about 5 %) while the better accuracy for diffractions and lower sensibility with
respect to the aperture are strong benefits. Depending on the task, nCRS shows the
best trade-off between accuracy, stability and computational effort.
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(a) nCRS reference semblance
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(b) nCRS - CRS
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(c) nCRS - MF
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(d) nCRS - iCRS

Figure 6.29.: Semblance section obtained by the slowness shifted nCRS operator and
difference plots of slowness shifted nCRS to the other slowness shifted
CRS-type operators. A red colour indicates a higher semblance for the
slowness shifted nCRS operator, while blue colours indicate a better
semblance the other slowness shifted operator.
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(a) nCRS reference velocity
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(b) nCRS - CRS
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(c) nCRS - MF
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(d) nCRS - iCRS

Figure 6.30.: Comparison of the estimated moveout velocities obtained by the
different operators. The results from nCRS serve as reference for
difference plots, since the differences are small. A red colour indicates
a velocity for the slowness shifted nCRS operator, while blue colours
indicate a lower velocity compared to the other slowness shifted
operator.
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Figure 6.31.: Stacked section of the fault system. The red box shows the excerpt
shown on the right, where a diffraction separation is performed
using attributes obtained by the CRS and nCRS operators. Red
arrows indicate improvements achieved by nCRS compared to CRS.
Multifocusing and iCRS are not shown since they performed similar to
nCRS.

(a) Slowness shift (b) Time shift

Figure 6.32.: Comparison of the computation time for each operator in their slowness
(a) and time shifted version (b). The hyperbolic CRS in the slowness
shifted version is the reference (100 %). The yellow colour represents
the calculation time of CRS while the red colour is the additional
computational cost of the corresponding operator.
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Land data

The data set was acquired within the DOBREflection 2000 project by the Ukrainian
national oil company Ukrgeofisika in 2000 and crosses the Donbas Foldbelt next to
the Dniepr-Donets basin (Figure 7.1). The data was processed before by Menyoli
et al. (2004) using the CRS method. In their work they did not account for
conflicting dips. An interpretation of the deep seismic profile can be found in
the work of Maystrenko et al. (2003). Structures like outcrops which indicate an
inversion of the Donbas Foldbelt are shown in Saintot et al. (2003). The processing
parameters for the CRS parameter estimation used in the CRS workflow are listed
in Table 7.1. Table 7.2 shows the apertures used for zero-offset and partial stacks.

7.1. CRS stack

The data set was acquired within the DOBREflection 2000 project by the Ukrainian
national oil company Ukrgeofisika. The profile crosses the Donbas Foldbelt next to
the Dniepr-Donets basin (Figure 7.1) from the south east to the north west. The
maximum offset is 12,800 m. In contrary to sedimentary data, hard rock data has
a lower signal-to-noise ratio caused by mining and heterogeneity of rocks hosting
mineralization. This leads to discontinuous reflections and diffractions (Górszczyk
et al., 2015).

The data was processed before by Menyoli et al. (2004) using the CRS method. In
their work they did not account for conflicting dips. An interpretation of the deep
seismic profile from CMP processing can be found in the work of Maystrenko et al.
(2003). Structures like outcrops which indicate an inversion of the Donbas Foldbelt
are shown in Saintot et al. (2003).

The stacks image the Moho (Figures 7.2, 7.3 and 7.4), the Ukrainian shield (Figures
7.5, 7.6 and 7.7) and the beginning of the Donbas Foldbelt (Figures 7.8, 7.9 and
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General parameters
Dominant frequency 30 Hz
Coherence measurement Semblance
Coherence time window 44 ms

Velocity constraints
Near surface velocity 4213 m/s
Lower velocity variation from guide function 20 %
Upper velocity variation from guide function 20 %

Search apertures
Minimum midpoint aperture 300 m at 0 s
Maximum midpoint aperture 500 m at 10 s
Minimum offset aperture 2000 m at 0 s
Maximum offset aperture 10000 m at 10 s

Conflicting dip handling
Number of dip intervals 17
Dip intervals in ◦ [-90,-30], [-30,-20], [-20,-12.5],

[-12.5, -7.5], [-7.5,-4], [-4,-2], [-2,2],
[2, 4] ,[4,7.5], [7.5,12.5],

[12.5,20], [20,30], [30,90]

Global optimization parameters
Algorithm Differential evolution
Number of individuals 20
Crossover probability 74.55 %
Differential weight 0.9362
Minimum number of iterations 30
Maximum number of iterations 200
Number of allowed stagnated iterations 10

Local optimization parameters
Lower coherence threshold 1.00 at 0 s
Upper coherence threshold 1.00 at 15 s
Maximum Number of iterations 100
Minimum deviation required 10−4

Transformation radius of RN 100 m
Initial variation of emergence angle 2 ◦

Initial variation of RNIP 3 %
Initial variation of RN 2 ◦

Table 7.1.: Search parameters for the land data. No local optimization was
performed.
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Figure 7.1.: Location of the profile after Menyoli et al. (2004).

Stacking parameters
Minimum midpoint aperture 300 m at 0 s
Maximum midpoint aperture 500 m at 10 s
Minimum offset aperture 2000 m at 0 s
Maximum offset aperture 10000 m at 10 s

Partial stacks
Regularized receiver interval 35 m
Minimum local midpoint aperture 50 m at 0 s
Maximum local midpoint aperture 150 m at 10 s
Local offset aperture 50 m

Table 7.2.: Stacking parameters for the land data.
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7.10). The CMP stacks, especially, contain a lot of noise. The most prominent
events are visible, however deeper events like the Moho in Figures 7.2, 7.3 and
7.4 are barely recognizable. The nCRS stacks reduce the noise significantly but
also introduce a smearing of events. Furthermore, they enhance strongly coherent
dipping noise, indicated by white arrows in Figure 7.3. However, when considering
conflicting dips, nCRS stacks attenuate the coherent dipping noise, do not introduce
smearing, but still show an improved signal-to-noise ratio (Figure 7.4). Therefore,
subsurface events become more apparent and can be followed continuously which
becomes important, e.g., for horizon tracking.

The conventional CRS without conflicting dip treatment seems to generate least
noisy images. However, these images should be considered with care since not every
apparent event is desired as demonstrated in Figures 7.2, 7.3 and 7.4 for the Moho.
White arrows mark events in the stack with conflicting dips (Figure 7.4) that were
previously masked by steep dipping coherent noise in Figure 7.3. In the excerpt of
the data, that images the Ukrainian shield, small structures marked by white arrows
in Figures 7.5, 7.6 and 7.7 are smeared and masked when conflicting dips are not
considered. This is also the case for the shallower sediments at the beginning of the
Donbas Foldbelt, where the data is of better quality (Figure 7.8, 7.9 and 7.10). As
before we also observe masked events in this part of the data that we could not see
with conventional CRS processing. This behaviour is of particular importance when
prestack data enhancement (Baykulov and Gajewski, 2009) is performed, which
can achieve considerable improvements in quality on poor data like this. For this
method, the CRS wavefront attributes are required. However, if performed with
conventional CRS processing, valuable information gets lost since the attributes are
only available for the most dominant event, which might not be the desired event
as our results show. Since the presented workflow provides attributes for all events
that are imaged in the stacked sections, the regularized interpolated and therefore
enhanced data will contain those events as well, which is important for follow up
applications like time or depth migration.

Our results show that CRS with appropriate conflicting dip handling can suppress
coherent steep dipping noise very effectively, which can be observed in various data.
This improves identification and interpretation of horizons severely. Since we simply
apply CRS for specific dip clusters, the same principle can also be applied to 3-D
data. However, the computational cost becomes much higher as well, since 3-D CRS
would need to be applied for dip and azimuth clusters.
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Figure 7.2.: Conventional CMP stack of an excerpt of the Moho.

Figure 7.3.: Conventional nCRS stack of an excerpt of the Moho. Steep events seem
truncated.
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Figure 7.4.: Improved nCRS stack of an excerpt of the Moho using conflicting dip
processing. Events seen in Figure 7.2 can be identified as noise and
masked events become visible.
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Figure 7.5.: Conventional CMP stack of an excerpt of deeper parts of the Ukrainian
Shield in the south west of the profile.

Figure 7.6.: Conventional nCRS stack of an excerpt of deeper parts of the Ukrainian
Shield in the south west of the profile.
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Figure 7.7.: Improved nCRS stack of an excerpt of deeper parts of the Ukrainian
Shield in the south west of the profile.

Figure 7.8.: Conventional CMP stack of the south west of the Donbas Foldbelt in
the north east.
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Figure 7.9.: Conventional nCRS stack of the Donbas Foldbelt in the north east.

Figure 7.10.: Improved nCRS stack of the Donbas Foldbelt in the north east.



86 CHAPTER 7. LAND DATA

7.2. Data enhancement

Data enhancement in noisy land data is more important than in marine data since
the data is of poor quality. This is especially important to obtain a reliable velocity
model for, e.g., stacking or migration. The CMP gather for CMP 6486 in the middle
of the Donbas Foldbelt in the north east of the profile is shown in figure 7.11.
Compared to the CMP gather of the original data (Figure 7.11(a)), the enhanced
CRS gather obtained without conflicting dip processing, shown in Figure 7.11(b),
shows artificial low frequency noise in the middle and lower part of the CRS gather
which is not visible in the CRS gather obtained by conflicting dip processing (Figure
7.11(c)). Furthermore, starting at 5 s, horizontal and dipping high frequency events
appear in the CRS gather without conflicting dip processing. Those can also be seen
in the corresponding frequency sections in Figure 7.12. The frequency content of the
original CMP gather is shown in Figure 7.12(a). The CRS gather without conflicting
dip processing (Figure 7.12(b)) changes the frequency content dramatically. Between
30 and 40 Hz is an additional plateau visible, that was not apparent before. A correct
treatment of conflicting dips in the CRS framework (Figure 7.12(c)) however, does
not change the frequency content, it just enhances the respective energy content as
desired.

A velocity spectrum of CMP 6486 from the Donbas Foldbelt is shown in Figure 7.13.
The velocity spectrum in the original CMP gather (Figure 7.13(a)) shows reliable
maxima in the sedimentary part up to 4 s. In the crystalline part below, no reliable
picks can be made. The enhanced CRS gather in Figure 7.13(b) shows the same
spectrum obtained from data enhancement by partial CRS without conflicting dip
handling. Maxima are better distinct and a few events in the crystalline rock can be
picked. However, compared to Figure 7.13(c) where the proposed dip decomposition
was applied, events are missing, especially at about 6 and 10 s. The maxima obtained
by enhanced CRS gather show a higher semblance and can be picked more precisely
than in the CMP gather, especially in the deeper part of the data which contains of
crystalline rocks and the Moho at roughly 12.5 s.

In the next chapter, I conclude and discuss the results obtained.
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(c) CRS gather with conflicting dips

Figure 7.11.: CMP gather from the Donbas Foldbelt from offsets of 1000 m to 6000 m. The offset for the original data (a)
starts at 1890 m due to missing traces in acquisition for this CMP. Events in the enhanced data (c) are better
recognizable and contains more and regularized traces. Furthermore, events are not truncated as in (b) but
interfere with other events constructively and destructively.
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Figure 7.12.: Spectra of the CMP 6486 shown in Figure 7.11. The original frequency
content (a) is changed by CRS without conflicting dip handling (b),
while CRS with conflicting dip handling (c) just enhances the energy.
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(a) Velocity spectrum of original data
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(b) Velocity spectrum of enhanced data
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(c) Velocity spectrum of enhanced data

Figure 7.13.: Velocity spectra used for velocity analysis. The enhanced data (b) and (c) show better peaks with more distinct
maxima, especially in the deeper parts of the data. However, some events in (b) are missing.
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Conclusions

As mentioned in the introduction the main aim of this thesis is to propose a
reliable workflow that incorporates conflicting dip processing in the CRS framework
without the necessity of a lower data redundancy or simplified operators while
preserving the possibility of CRS attribute-based methods like data preconditioning.
The developed workflow allows to do that without drawbacks, except a higher
computational cost compared to most previously existing methods. The extended
pragmatic approach shows areas on synthetic data where the conflicting dip
treatment was not successful. An application to more complex field data is
therefore not promising. The common-diffraction-surface method deals with a signal
stretch which is equivalent to a change in the frequency content. This destroys
amplitude information and loses valuable subsurface information. Furthermore,
many operators have to be determined, leading to a very expensive method.

The obtained results from the proposed method show tremendous improvements
for complex synthetic, marine and challenging land data. Moreover, the results
from hard rock land data lead to the conclusion that the proposed method not
only enhances the data quality but also preserves the frequency content, making it
amplitude friendly which means it does not destroy amplitude information during
the process, even in a very noisy environment.
An important reason for such improvements are the use of the full data redundancy,
provided by the CRS method, during the parameter estimation. This is achieved
by the adaption to a global optimization scheme, compared to a three step search
strategy as before, which improves the quality of the estimated CRS wavefront
attributes. The improved quality of the CRS wavefront attributes is also caused
by the chosen algorithm called differential evolution which does not need a priori
assumptions. However, a priori information can be used in the algorithm to improve
its convergence. Since this algorithm is population based, it does not depend on a
good initial solution as the previous method which further improves the stability
and convergence of the parameter estimation algorithm.
The incorporation of conflicting dips is achieved by a simple partitioning of the
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search space along the angle dimension. This has two major benefits, a smaller
search space for the parameter estimation, further increasing its stability, and a
detected maximum in each cluster. Stacking all cluster results in the interference of
the found events which leads to proper treatment of conflicting dip situations as the
applications have shown.

Investigations of the available operators in literature that can be parametrized by
the CRS wavefront attributes show, that in general a non-hyperbolic operator should
be used rather than the hyperbolic CRS. They can be fitted more accurately and
depend less on the choice of aperture. Which specific operator should be used in
terms of accuracy cannot be answered since multifocusing, iCRS and nCRS perform
similarly in that aspect. However, if computational costs matter, nCRS uses less
time since the function evaluation is not as expensive as in iCRS and multifocusing
who require additional computations such as focusing parameter or calculation of
the reflection angle.
Every operator can be formulated using a slowness or time shift. The comparison
shows that slowness shifted versions perform better computationally and lead to
a more accurate fit. Since multifocusing is written in the time shifted version in
literature, it is recommended to transform it into its slowness shifted version to
obtain a better performance. However, slowness shifted nCRS provides the best
trade-off between accuracy and computational cost.

In the land data, high dipping events are present in the whole data set. In this
case, they are most likely noise, even though they also might be interpreted as
diffractions. However, the investigation of pure noise data has shown, that CRS can
fit diffractions in noise as well. Therefore, apparent diffractions in noisy data should
be taken with care and need further investigation in order to be able to decide,
whether they are truly diffractions or not.

The benefits of the proposed method can be used in existing CRS wavefront
attribute-based methods shown exemplary by data enhancement, diffraction
separation, time migration and velocity model building. In case of time migration,
each dip cluster provides a velocity field. The combination of those velocities,
with the corresponding semblance to decide whether they come from actual events
or noise, allows to improve the automatically obtained velocity field for complex
regions, i.e. salt body.
In principle, the proposed approach to handle conflicting dip situations does not
even require a change in existing software. An application of existing CRS software
with the appropriate parameter limitations lead to the same results apart from
the quality of the attributes. This depends on the implementation and choice of
the search algorithm. Therefore, the method is immediately available without a
necessity of new software which is a significant benefit.
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Outlook

Usually, the extension of a method to 3-D is rather complicated. Fortunately, the
proposed method is simple to extent. The major difference is, rather than choosing
pure dip cluster, dip and azimuth cluster need to be build. This requires more
operators, which are also more expansive to determine since more traces are involved
and eight instead of three attributes need to be estimated. Since azimuth and dip
information are used in 3-D, only a few dip cluster should be required in dip and
azimuth direction. The chance of intersecting events from similar dips and azimuths
is low. The success of the correct treatment of conflicting dips in 3-D also depends
on the azimuth coverage. Conflicting dip treatment for narrow azimuth data will be
similar to the 2-D case, since very few azimuths are available. Therefore, more dip
cluster and less azimuth cluster need to be determined. In case of wide and/or full
azimuth data, more azimuths are available which yields the benefit of more available
azimuth cluster, which reduces the necessity of a high number of dip cluster. An
alternative solution might be to identify the global maximum, measure its extent
in the search space and remove it. Afterwards a new search can be applied until
all coherent maxima are found. The resulting discontinuous search space can be
handled by the differential evolution algorithm making this approach in principle
viable.

The search algorithm, used within the thesis, is straightforward to extent and was
successfully applied to much higher dimensions than eight (Pedersen (2010)) as in
3-D ZO CRS. The main issue is the computational cost and the relatively high
amount of function evaluations required. A solution can be the combination of DE
with a local optimization scheme, accelerating the convergence.

The obtained dip corrected velocity field can not only be used for migration as shown
in this thesis, but also demigration as suggested recently by Glöckner et al. (2016).
In this work, only time processing is considered. However, the CRS wavefront
attributes can also used to build an interval velocity model (Duveneck, 2004).
Currently, this method is investigated more to incorporate informations stemming
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from diffractions in particular (Bauer et al., 2016b). This is not even restricted to
active seismics. It can be used in passive seismics as well, shown by Schwarz et al.
(2016). Furthermore diffractions contain valuable offset information, even in the
ZO domain, which can make these approaches viable for other aspects like ground
penetrating radar (Schwarz, 2015). The estimated attributes and the availability of
CRS wavefront attributes for diffractions are crucial for these methods, which the
proposed method provides. The merging of the proposed method and those ideas is
ongoing research at the applied seismics group at the University of Hamburg.

Another interesting possibility is to use the developed method and apply it to
converted ways, since a method based on CRS attributes is already available
(Abakumov et al., 2012). However, an additional parameter is required, the ratio of
the velocity of the primary Vp and the velocity of the shear wave Vs. Fortunately,
differential evolution can be extended by a dimension easily, which not only allows
to estimate the CRS wavefront attributes to account for converted waves, but also
the Vp/Vs ratio. Applied iteratively, it would also reduce the impact of a constant
Vp/Vs ratio assumption, since it can be updated at each iteration.
Diffractions play a major part in this thesis, therefore, the next section focuses on
the use of this information for possible future applications.

9.1. Diffraction imaging

A diffraction separation is shown for the marine data within this thesis. An
immediate question raised is: can this be used to do diffraction imaging?

Migration algorithms can be used on such data in order to focus the diffractions to
provide an image of scattering points in the subsurface that can indicate faults or
rough topography of subsurface structures like salt. Figure 9.1 shows a poststack
time migrated image of diffraction separated data. In this case, a simple diffraction
summation migration is used. Due to errors during the diffraction separation,
artefacts appear which are suppressed by an applied dip filter in the frequency-
wavenumber domain. Therefore, amplitude information are lost but the focused
diffractions become easier to spot. Please note, the diffraction separation left
reflection residuals in the data as previously shown in Figure 6.24. A comparison
of the migrated diffractions with a poststack time migration of the full wavefield in
Figure 9.2 shows that diffraction imaging can highlight major faults and improve the
ability to spot and track them. However, this are just first tests to demonstrate the
potential of diffraction imaging using the proposed CRS workflow. A recent work
by Bauer et al. (2016a) introduces a method to obtain prestack diffraction data by
traveltime decomposition, using CRS attributes. This is a promising technique for
diffraction imaging which benefits from results obtained in this work.
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Figure 9.1.: Poststack time migration of diffraction only data from Figure 6.24.
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Figure 9.2.: Poststack time migration of the marine data.
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9.2. Multiple prediction

Since the wavefront attributes are estimated automatically, sea floor multiples can
be imaged, if not removed in pre-processing. However, the wavefront attributes can
be used to remove multiples as well (Dümmong, 2010). Another simple method that
takes almost no additional computational effort might be to take advantage of the dip
corrected velocities. A horizontal sea floor produces multiples that bounce within the
water column and arrive at times that are integral multiples of the primary reflection
with the same moveout velocity as the primary reflection. Later arriving multiples
intersect with deeper primary reflections but can be identified as multiples due to
their differing moveout velocity. This is not necessarily the case for a dipping sea
floor, as the apparent dip increases with each order of multiple. Since the moveout
velocity is dip depended, the moveout velocity is not a valid choice to characterize
multiples in general. The formulation of the implicit CRS operator allows a dip
correction in form of Equation 2.26 which solves the problem of dipping sea floor
multiples. Therefore, the dip corrected velocity can be used to predict multiples.

The approximate first arrival of the sea floor has to be predicted which can be
done based on the coherence. The sea floor is a large impedance contrast with
a more or less homogeneous overburden that produces a high coherence in most
cases. Therefore, the sea floor should be the first layer of a significant increase of
coherence. The first sea floor multiples are expected at traveltimes twice of the
primary sea floor reflection. During the stacking process the algorithm can build an
average of the dip corrected velocities at lower traveltimes and compare it to the
moveout velocity at the considered sample. If it is lower than the average and similar
to the dip corrected moveout velocity at the sea floor, the event can be considered
as a multiple and stacked into a second section containing solely multiples.

After the application to every sample a CRS stack (Figure 9.3) and a stack of
multiples (Figure 9.4) are available which, together with the moveout velocity field,
can be used to adaptively subtract multiples from the prestack data. The predicted
multiples are reliable for most parts, apart from salt body multiples. Particularly
the bottom of salt is troublesome for this approach since the moveout velocity of
the bottom of salt multiple does not differ much from the surrounding environment.
However, this are just some first ideas and can be improved in the future.
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Figure 9.3.: Stack of the marine data set. The seafloor and deeper multiples blend
with the subsurface at roughly 3 s.
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Figure 9.4.: Predicted multiples of the stack (Figure 9.3) based on the estimated
dip corrected moveout velocity of Equation 2.26 shown in Figure 6.15.
Most multiples are recognized except for salt body multiples, especially
bottom of salt.
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Appendix A.

Nomenclature

Symbol Meaning

A Amplitude
α Angle of emergence
CR Crossover parameter in differential evolution
CS Semblance
γ Focusing parameter
h Half-offset
H Depth of circle
KN Curvature of normal wave
M Width of time window
m Coordinate of midpoint
µ Mean value
N Number of traces
NP Size of population
~∇ Gradient
O Offspring in genetic algorithm
P Prestack volume
p Slowness
pn Gaussian probability distribution
R Radius of circle
RCDS Radius of curvature for NIP or N wave in CDS operator
RN Radius of curvature of normal wave
RNIP Radius of curvature of normal-incidence-point wave
S Stack
σ Standard deviation
t Traveltime
tg Traveltime from reflection point to receiver
ts Traveltime from source to reflection point
t0 Zero-offset traveltime
θ Reflection angle



102 APPENDIX A. NOMENCLATURE

V Medium velocity
v0 Near-surface velocity
VNMO Normal-moveout velocity
Vp Velocity of primary wave
Vs Velocity of shear wave
Vtmig Time migration velocity
w Weight in genetic algorithm
Wf Diffraction weight
xc Central coordinate of circle
xg Coordinate of receiver
xs Coordinate of source
∆xm Midpoint displacement
Y Parent in genetic algorithm
y Mutation vector in differential evolution
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List of abbreviations

Abbreviation Meaning

CDS Common-diffraction-surface
CMP Common-midpoint
COG Common-offset gather
CRS Common-reflection-surface
DE Differential evolution
DMO Dip-moveout
EA Evolutionary algorithm
GA Genetic algorithm
iCRS Implicit common-reflection-surface
MF Multifocusing
nCRS Non-hyperbolic common-reflection-surface
NE North-east
NIP Normal-incidence-point
NMO Normal-moveout
NW North-west
SE South-east
SW South-west
ZO Zero-offset





Appendix C.

Summary of publications

This is a list of works published during the course of the doctorate. Most of the
works are cited in the text and therefore, appear in the bibliography as well.

Journal Papers

• Walda, J. and Gajewski, D. Determination and application of wavefront
attributes by differential evolution and conflicting-dip processing. submitted
to Geophysics.

Conference abstracts

• Walda, J. and Gajewski, D. (2015a). Common-reflection-surface stack
improvement by differential evolution and conflicting dip processing. SEG
Technical Program Expanded Abstracts, pages 3842–3847.

• Walda, J. and Gajewski, D. (2015b). Global optimization of the CRS operator
using a genetic algorithm. 77th EAGE Conference and Exhibition 2015.

• Walda, J. and Gajewski, D. (2015c). Handling the conflicting dip problem in
the CRS/i-CRS method. 77th EAGE Conference and Exhibition 2015.

• Walda, J., Schwarz, B. and Gajewski, D. (2016). A Competitive Comparison of
Multi-parameter Stacking Approaches. 78th EAGE Conference and Exhibition
2016.





Used software

Throughout the thesis I used a PC with a Unix operating system (Debian OS) under
the GNU General Public License and part of a cluster called Thunder, operated by
the Central IT Services (CIS), available to the applied geophysics working group in
Hamburg.

The thesis is written with the typesetting software LATEX.

The software developed in the framework of the thesis is based on a CRS
implementation by Jürgen Mann with contributions from Sergius Dell and Mikhail
Baykulov and is written in C++. It uses the Message Passing Interface (MPI) and
is property of the Wave Inversion Technology (WIT) consortium.

Visualization and simple processing was done using the Seismic Un*x (Colorado
School of Mine), Inkscape and PSTricks.
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• Martina Glöckner for many discussions, all your feedback and proofreading
as well as the many coffee sessions we shared.

• Ivan Abakumov for providing better insight to the zoo of multiparameter
operators and particularly for testing first simple applications of the algorithm
with your converted waves ideas.

• Benjamin Schwarz for many discussions and important critical yet
constructive disputes.

• Jesper Dramsch who has become a good friend of mine over the years since
we joined forces for semester exams in the master degree. Also thanks for
company at the interesting open source software workshop and best of luck for
your PhD program in Denmark.

• Denys Zhurovich a very interesting and great person who made working
with the land data set possible.

• Khawar-Ashfaq Ahmed who is always cheerful and made the everyday life
in the institute much more enjoyable. Also thanks for the trip to the NASA
and the great experiences at the SEG annual meeting 2013 in Houston.

• Philipp Witte who is a major reason I looked more deeply into the
optimization business.

• Xie Yujiang for important discussions and continuing the work for the 3-D
case.

• DOBREflection for the land data.

• TGS-NOPEC for providing marine data.

• SMAARTJV for the synthetic data.

• Family for all the support I received during my studies. Without You I
wouldn’t have been able to achieve what I achieved.

• Linnea Kemme, my girlfriend who gave me all the support I needed at any
given time. No words can describe how thankful I am to everything you did
for me.



Bibliography

Abakumov, I., Kashtan, B., Schwarz, B., Vanelle, C., and Gajewski, D. (2012).
Double-square root traveltime approximation for converted waves. SEG Technical
Program Expanded Abstracts.
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