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Introduction
In this thesis, a class of optimal control problems governed by the heat
equation is considered. The task is – roughly speaking – to track a desired
given state yd by an optimal state y = y(u). This state is realized as the
solution of the heat equation, the optimal control u being its right-hand
side. This control is sought for. More precisely, we want to minimize the
tracking-type functional

J(u) := 1
2‖y(u)− yd‖2Y + α

2 ‖u‖
2
U

where the optimal control has to lie in a set of admissible controls Uad ⊂ U ,
for some properly chosen time-dependent function spaces U and Y . We
assume control constraints of box type, i.e., a ≤ u ≤ b should hold almost
everywhere in space and time for fixed bounds a and b.
Via the parameter α ≥ 0 the possibility to weight the influence of (the

norm of) the control is given. In many applications, this norm is interpreted
as a measure for the control costs. For example, heating processes can be
modeled in the above setting. The control might be a temperature source,
and since temperature and energy costs are proportional, minimizing the
temperature by fixing a nonzero α is thus meaningful from a modeling
viewpoint.

However, if the control costs are negligible or even not meaningful at all,
one might be interested in the limit problem α = 0.
For example, in biochemical processes, the control might be the concen-

tration of an activator of a reaction in a substrate with concentration y,
which one wants to get close to a certain desired one. Here, control costs
in terms of concentrations seem to be not meaningful in general.

Let us also mention as a second example the optimal control approach
to inverse problems. Consider the heat equation yt − ∇ · D∇y = f with
a fixed function f and a matrix-valued diffusion coefficient D which might
depend on space and time and is unknown. A solution yδ, for example
from a measurement, is known, and the task is now to identify D. Writing
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y = y(D) for the solution of the equation in dependence of the diffusion
matrix, one can tackle this problem in the framework of the control problem
from above: D is the control, y(D) the state and yd = yδ the solution one
wants to get close to. In this parameter identification problem, setting
α = 0 is again a natural choice.

Apart from the modeling question of selecting α positive or zero, the
nonzero choice has mathematical benefits: The functional to minimize has
by choosing α > 0 a unique solution which fulfills a projection equation.
This equation can be used to numerically solve the problem by a fixed-point
iteration or the more efficient semismooth Newton method.

The limit case differs from the case α > 0. The projection equation does
not hold anymore and one is confronted with a loss of regularity in the
function space where u lives in. We therefor call the problem in the case
of α > 0 the regular problem.
The optimal control in the limit case is often discontinuous, but has a

special structure: It takes values only on the bounds a and b of the set of
admissible controls Uad. Such controls are called bang-bang controls.

In order to numerically solve the limit case, a famous idea from the
theory of inverse problems can be applied, since the limit problem can be
interpreted as an inverse problem with convex constraints. The idea of the
so-called Tikhonov regularization consists in solving the regular case α > 0
as an approximation of the limit problem. By the convergence of uα to
u0 when α tends to zero, this method is justified. In this step, an error is
introduced, the so-called regularization error ‖uα − u0‖U .
As a next step, the control problem with α > 0 is discretized in space

and time (parameters h and k, respectively) to solve it on a computer. We
thereby introduce a second error, the discretization error ‖uα − ukhα ‖U .

The total error consists thus of two ingredients: The regularization and
the discretization error. If a-priori error estimates are at hand for both,
one can derive a coupling rule for α, k and h for an efficient numerical
solving.

It is the aim of this thesis to establish a numerical analysis with error
estimates as described above.

In chapter one, the class of optimal control problems depending on
α ≥ 0 mentioned above is introduced in detail.

The functional analytic setting is provided, existence and uniqueness of
the state equation and the optimal control problem are discussed, as well as
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regularity issues. A necessary and also sufficient condition to characterize
the solution of the optimal control problem is established, which is a key
ingredient in the later analysis.

We then analyze the error introduced by the Tikhonov regularization.
We first recall some well-known results from the general theory of inverse
problems. After that, we show that under additional conditions assumed to
hold for the limit problem, better results for the rate of convergence can be
given. Here we present some new convergence rates, which improve known
results. We show that the additional conditions required to obtain the
improved convergence rates are not only sufficient but in some situations
even necessary.

Finally, for bang-bang solutions a second sufficient condition is intro-
duced, from which one can derive the same convergence rates. Almost-
necessity of the condition and the relation to the previously used one are
analyzed. With this second condition, an error bound on the time deriva-
tive of the control with respect to α is derived, which will be useful later
to improve convergence rates for the discrete regularized solutions.

Having error estimates for the regularization error at hand, in chapter
two an appropriate discretization of the optimal control problem is set up.

Therefor, we first consider a finite element discretization of the state
equation (the heat equation) and an adjoint equation. The particular choice
used here, a Petrov–Galerkin scheme, was recently proposed by Hinze,
Vierling and the author in [DHV15]. We recall the results of the semi-
discretization in time carried out there and enlarge the analysis to a full-
discretization in time and space. Stability and error estimates are derived
in different norms.

After that, we formulate and analyze the discretization of the optimal
control problem. Here, the Variational Discretization concept introduced
by Hinze in [Hin05] is used. At first, estimates for the error between reg-
ularized control and discrete regularized control are shown, which are not
robust if α tends to zero and lead to non-optimal estimates for the total
error. They are however of independent interest and later used to derive
refined estimates.

We also show that although the state is approximated only roughly, a
projection of the state available without further effort converges with a
higher order.

We then derive robust estimates, which lead to better estimates for the
total error if the limit problem is sufficiently regular.
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Finally, using an estimate derived at the end of the first chapter, we
improve these robust estimates further.

In the third chapter, we report and comment on some numerical cal-
culations to support the analytical findings. We start with the non-robust
error estimates, i.e., α > 0 fixed, and consider the asymptotic behavior of
the time (k → 0) and space (h→ 0) discretization.
After that, we look at the regularization error in dependence of a problem

specific parameter κ. We observe in the control the improved estimates
from the first chapter.

Finally, we couple regularization and discretization parameters to ap-
proximate the limit problem, i.e., α = 0. We observe the behavior predicted
by the theorems from the second chapter.

vi



1 The continuous optimal control
problem

In this chapter the class of optimal control problems depending on α ≥ 0
is introduced, which we are interested in.

The functional analytic setting is provided in detail with the associated
time-dependent function spaces. Thereafter, existence and uniqueness of
the state equation and the optimal control problem is discussed, as well as
regularity issues. A necessary and also sufficient condition for the solution
is established, which is a key ingredient in the later analysis.

Here, we mention the monographs [Eva98], [Hin+09], [Wlo87], [LM72],
[Trö05] and [GGZ74] as background references for the theory of optimal
control with PDE constraints, partial differential equations, and the time-
dependent function spaces. For functional analytic issues, we refer to the
books of [Alt02] and [Bre10].

We then analyze the error introduced by the Tikhonov regularization.
We first recall some well-known results from the general theory of inverse
problems with convex constraints, mainly taken from [EHN00], see also
[Neu86]. Afterwards, we show that under additional conditions assumed
to hold for the limit problem, better results for the rate of convergence are
given. Here we present some new convergence rates, which improve known
results from the elliptic case (using the Laplace equation instead of the
heat equation), where several ideas have been taken from.

We show that the additional conditions required to obtain the improved
convergence rates are not only sufficient but even necessary, at least in
some situations.

Finally, for bang-bang solutions a second sufficient condition is intro-
duced, from which one can derive the same convergence rates. Almost-
necessity of the condition and the relation to the previously used one are
analyzed. With this second condition, an error bound on the time deriva-
tive of the control with respect to α is derived, which will be useful later
to improve convergence rates for the discrete regularized solutions.
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1 The continuous optimal control problem

1.1 Problem setting
Let Ω ⊂ Rd, d ∈ {2, 3}, be a spatial domain which is assumed to be bounded
and convex with a polygonal boundary ∂Ω. Furthermore, a fixed time
interval I := (0, T ) ⊂ R, 0 < T < ∞, a desired state yd ∈ L2(I, L2(Ω)), a
non-negative real constant 0 ≤ α ∈ R, and an initial value y0 ∈ L2(Ω) are
prescribed.

With the Gelfand triple

H1
0 (Ω) ↪→ L2(Ω) ↪→ H−1(Ω)

we consider the following optimal control problem

min
y∈Y,u∈Uad

J(y, u) with J(y, u) := 1
2‖y − yd‖

2
L2(I,L2(Ω)) + α

2 ‖u‖
2
U ,

s.t. y = S(Bu, y0)
(P)

where Uad ⊂ U is the set of admissible controls, B a properly chosen control
operator (see below), and

Y := W (I) :=
{
v ∈ L2(I,H1

0 (Ω))
∣∣ vt ∈ L2(I,H−1(Ω))

}
is the state space. We use the notation vt and ∂tv for weak time derivatives.

The operator

S : L2(I,H−1(Ω))× L2(Ω)→W (I), (f, g) 7→ y := S(f, g), (1.1)

denotes the weak solution operator associated with the heat equation, i.e.,
the linear parabolic problem

∂ty −∆y = f in I × Ω ,

y = 0 in I × ∂Ω ,

y(0) = g in Ω .

The weak solution is defined as follows. For (f, g) ∈ L2(I,H−1(Ω)) ×
L2(Ω) the function y ∈ W (I) satisfies with 〈·, ·〉 := 〈·, ·〉H−1(Ω)H1

0 (Ω) the
two equations

y(0) = g (1.2a)∫ T

0

〈
∂ty(t), v(t)

〉
+ a(y(t), v(t)) dt =

∫ T

0

〈
f(t), v(t)

〉
dt

∀ v ∈ L2(I,H1
0 (Ω)).

(1.2b)
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1.1 Problem setting

Note that by the embedding W (I) ↪→ C([0, T ], L2(Ω)), see, e.g., [Eva98,
Theorem 5.9.3], the first relation is meaningful.
In the preceding equation, the bilinear form a : H1(Ω) × H1(Ω) → R is
given by

a(y, v) :=
∫

Ω
∇y(x)∇v(x) dx.

We show below that (1.2) yields an operator, the operator S mentioned
above.

For the admissible set Uad, the control space U , and the control operator
B we consider two situations.

1. (Distributed controls) With a control region ΩU := I × Ω, D := 1,
U := L2(ΩU ,RD), and fixed bounds a, b ∈ L∞(ΩU ,RD) with a ≤ b
almost everywhere (a.e.) in I×Ω, we consider the closed and convex
set

Uad := {u ∈ U | a(t, x) ≤ u(t, x) ≤ b(t, x) a.e. in I × Ω} .

The control operator B : U → L2(I,H−1(Ω)) is given by B := Id, i.e.,
the identity mapping induced by the standard Sobolev embedding
L2(Ω) ↪→ H−1(Ω).

2. (Located controls) Given D ∈ N>0, bounds a, b ∈ L∞(I,RD) with
a(t) ≤ b(t) (by components), we consider with ΩU := I the control
space U := L2(ΩU ,RD) and its closed and convex subset

Uad := {u ∈ U | ∀ i ∈ {1, . . . , D} : ai(t) ≤ ui(t) ≤ bi(t) a.e. in I } .

With D fixed functionals gi ∈ H−1(Ω) the linear and continuous
control operator B is given by

B : L2(I,RD)→ L2(I,H−1(Ω)) , u 7→

(
t 7→

D∑
i=1

ui(t)gi

)
. (1.3)

For later use we observe that the adjoint operator B∗ is given by

B∗ : L2(I,H1
0 (Ω))→ L2(I,RD),

(B∗q)(t) =
(
〈g1, q(t)〉H−1(Ω)H1

0 (Ω) , . . . , 〈gD, q(t)〉H−1(Ω)H1
0 (Ω)

)T
.

(1.4)

3



1 The continuous optimal control problem

If furthermore gi ∈ L2(Ω) for all 1 ≤ i ≤ D holds, we can consider B
as an operator

B : L2(I,RD)→ L2(I, L2(Ω))

and get the adjoint operator B∗ : L2(I, L2(Ω))→ L2(I,RD) as

(B∗q)(t) =
(
(g1, q(t))L2(Ω) , . . . , (gD, q(t))L2(Ω)

)T
. (1.5)

Note that the adjoint operator B∗ (and also the operator itself) is
preserving time regularity, i.e.,

B∗ : Hk(I,X)→ Hk(I,RD) for k ≥ 0 (1.6)

where X is a subspace of L2(Ω) depending on the regularity of the
gi (as noticed just before), e.g., X = L2(Ω) or X = H1

0 (Ω).

1.2 Existence and uniqueness
Lemma 1 (Properties of the solution operator S).

1. For every (f, g) ∈ L2(I,H−1(Ω)) × L2(Ω) a unique state y ∈ W (I)
satisfying (1.2) exists. Thus the operator S from (1.1) exists. Fur-
thermore the state fulfills

‖y‖W (I) ≤ C
(
‖f‖L2(I,H−1(Ω)) + ‖g‖L2(Ω)

)
. (1.7)

2. Consider the bilinear form A : W (I)×W (I)→ R given by

A(y, v) :=
∫ T

0
−
〈
vt, y

〉
+ a(y, v) dt+

〈
y(T ), v(T )

〉
(1.8)

with 〈·, ·〉 := 〈·, ·〉H−1(Ω)H1
0 (Ω). Then for y ∈ W (I), equation (1.2) is

equivalent to

A(y, v) =
∫ T

0

〈
f, v

〉
dt+ (g, v(0))L2(Ω) ∀ v ∈W (I). (1.9)

Furthermore, y is the only function in W (I) fulfilling equation (1.9).

4



1.2 Existence and uniqueness

Proof. The first part is a standard result, see, e.g., [Eva98, Theorem 7.1.3,
7.1.4] in combination with [Hin+09, Theorem 1.33] or [Hin+09, Theorem
1.35, 1.37].

For the second part, we first note that (1.2) can be rewritten as one
equation if the test space is minimized, i.e.,∫ T

0
〈∂ty(t), v(t)〉H−1(Ω)H1

0 (Ω) + a(y(t), v(t)) dt+ (y(0), v(0)L2(Ω)

=
∫ T

0
〈f(t), v(t)〉H−1(Ω)H1

0 (Ω) dt+ (g, v(0))L2(Ω) ∀ v ∈W (I).

From this the claim follows with integration by parts of functions in W (I),
see [Hin+09, Theorem 1.32] or [GGZ74, Satz IV.1.17].

Note that in (1.8) we have due to the Gelfand triple

〈y(T ), v(T )〉H−1(Ω)H1
0 (Ω) = (y(T ), v(T ))L2(Ω).

The reason why we use the left expression is given in the discussion after
(2.16).

An advantage of the formulation (1.9) in comparison to (1.2) is the fact
that the weak time derivative yt of y is not part of the equation. Later in
discretizations of this equation, it offers the possibility to consider states
which do not possess a weak time derivative.

We can now establish the existence of a solution to problem (P).

Lemma 2 (Unique solution of the o.c.p.).
The optimal control problem (P) admits a unique solution (ȳ, ū) ∈ Y ×
U , which can be characterized by the first order necessary and sufficient
optimality condition

ū ∈ Uad, (αū+B∗p̄, u− ū)U ≥ 0 ∀ u ∈ Uad (1.10)

where B∗ denotes the adjoint operator of B, and the so-called optimal ad-
joint state p̄ ∈W (I) is the unique weak solution to the adjoint problem

−∂tp̄−∆p̄ = h in I × Ω ,

p̄ = 0 on I × ∂Ω ,

p̄(T ) = 0 on Ω

5



1 The continuous optimal control problem

with h := ȳ− yd. This weak solution is defined and uniquely determined by
the equation

A(v, p̄) (1.8)=
∫ T

0
−〈p̄t, v〉H−1(Ω)H1

0 (Ω) + a(v, p̄) dt+ (v(T ), p̄(T ))L2(Ω)

=
∫ T

0
〈h, v〉H−1(Ω)H1

0 (Ω) dt ∀ v ∈W (I),

(1.11)
which has by integration by parts the equivalent formulation

∫ T

0
〈vt, p̄〉H−1(Ω)H1

0 (Ω) + a(v, p̄) dt+ (v(0), p̄(0))L2(Ω)

=
∫ T

0
〈h, v〉H−1(Ω)H1

0 (Ω) dt ∀ v ∈W (I).

Proof. This follows from standard results, see, e.g., [Hin+09, Theorem
1.46, p. 66] or [Trö05, Satz 2.14]. Note that the theorem remains valid
even in the case α = 0 since in our setting Uad is bounded and the cost
functional is strictly convex. Note further that p̄ = S̃∗(ȳ − yd) where
S̃ : L2(I,H−1(Ω)) → L2(I, L2(Ω)) is the operator f 7→ S(f, 0) ∈ W (I) ↪→
L2(I, L2(Ω)), which is the solution operator from above in combination
with a canonical embedding.

As a consequence of the fact that Uad is a closed and convex set in a
Hilbert space we have the following lemma.

Lemma 3. In the case α > 0 the variational inequality (1.10) is equivalent
to

ū = PUad

(
− 1
α
B∗p̄

)
(1.12)

where PUad : U → Uad is the orthogonal projection.

Proof. See [Hin+09, Corollary 1.2, p. 70] with γ = 1
α .

The orthogonal projection in (1.12) can be made explicit in our setting.

Lemma 4. Let us for a, b ∈ R with a ≤ b consider the projection of a real
number x ∈ R into the interval [a, b], i.e., P[a,b](x) := max{a,min{x, b}}.

6



1.2 Existence and uniqueness

1. In the case of distributed controls there holds for v ∈ L2(I, L2(Ω))

PUad(v)(t, x) = P[a(t,x),b(t,x)](v(t, x)) a.e.

2. In the case of located controls we have for v ∈ L2(I,RD)

PUad(v)(t) =
(
P[ai(t),bi(t)](vi(t))

)D
i=1 a.e.

Proof. Since L2(I, L2(Ω)) ∼= L2(I × Ω) and L2(I,RD) ∼= L2(I,R)D hold,
the claim is a consequence of the fact that the projection can be character-
ized by an inequality (see, e.g., [Hin+09, Lemma 1.10, p. 67]), which by a
Lebesgue point argument holds pointwise, see, e.g., [Trö05, S. 54].

We now derive an explicit characterization of the optimal control.

Lemma 5. If α > 0, then for almost all (t, x) ∈ I × Ω there holds for the
optimal control

ū(t, x) =


a(t, x) if B∗p̄(t, x) + αa(t, x) > 0,
−α−1B∗p̄(t, x) if B∗p̄(t, x) + αū(t, x) = 0,
b(t, x) if B∗p̄(t, x) + αb(t, x) < 0,

(1.13a)

in the case of distributed controls, and for every 1 ≤ i ≤ D and almost all
t ∈ I there holds

ūi(t) =


ai(t) if (B∗p̄)i(t) + αai(t) > 0,
−α−1(B∗p̄)i(t) if (B∗p̄)i(t) + αūi(t) = 0,
bi(t) if (B∗p̄)i(t) + αbi(t) < 0,

(1.13b)

in the case of located controls.
Suppose α = 0 is given. Then the optimal control fulfills a.e. in the case

of distributed controls

ū(t, x) =
{
a(t, x) if B∗p̄(t, x) > 0,
b(t, x) if B∗p̄(t, x) < 0,

(1.14a)

and in the case of located controls

ūi(t) =
{
ai(t) if (B∗p̄)i(t) > 0,
bi(t) if (B∗p̄)i(t) < 0.

(1.14b)

7



1 The continuous optimal control problem

Proof. We only consider distributed controls. The case of located controls
follows by obvious modifications.

Let us first note that the variational inequality (1.10) is for α ≥ 0 equiv-
alent to the following pointwise one.

∀′(t, x) ∈ I × Ω ∀ v ∈ [a(t, x), b(t, x)] :
(αū(t, x) +B∗p̄(t, x), v − ū(t, x))R ≥ 0. (1.15)

This can be shown via a Lebesgue point argument, see the proof of [Trö05,
Lemma 2.26]. By cases, one immediately derives (1.13) and (1.14) from
(1.15).

As a consequence we have in the case of distributed controls and α = 0:
If B∗p̄ vanishes only on a subset of I ×Ω with Lebesgue measure zero, the
optimal control ū only takes values on the bounds a, b of the admissible set
Uad. In this case ū is called a bang-bang solution, accordingly defined in
the case of located controls.

1.3 On regularity
In this section we recall some regularity results concerning the weak solu-
tion y of the state equation (1.2) and the weak solution p of the adjoint
state equation (1.11). Afterwards we pose an assumption on the regular-
ity of the data of problem (P), from which we can derive more regularity
of the optimal solution triple (ū, ȳ, p̄). This regularity is needed for the
convergence rates in the numerical realization of the problem.

We use here and in what follows the notation

‖·‖ := ‖·‖L2(Ω) and ‖·‖I := ‖·‖L2(I,L2(Ω)),

and similarily we write for scalar products

(·, ·) := (·, ·)L2(Ω) and (·, ·)I := (·, ·)L2(I,L2(Ω)).

Let us start with the following standard result.

Lemma 6 (More regularity). For f, h ∈ L2(I, L2(Ω)) and g ∈ H1
0 (Ω) the

solutions y of (1.2) and p of (1.11) satisfy

y, p ∈ L2(I,H2(Ω) ∩H1
0 (Ω))

⋂
H1(I, L2(Ω)) ↪→ C([0, T ], H1

0 (Ω)). (1.16)

8



1.3 On regularity

Furthermore, with some constant C > 0 there holds

‖y‖I + ‖∂ty‖I + ‖∆y‖I + max
t∈[0,T ]

‖y(t)‖H1(Ω) ≤ C
(
‖f‖I + ‖g‖H1(Ω)

)
,

and
‖∂tp‖I + ‖∆p‖I + max

t∈[0,T ]
‖p(t)‖H1(Ω) ≤ C‖h‖I .

Proof. See [Eva98, Theorems 7.1.5 and 5.9.4].

Remark 7. As an immediate consequence we get: The optimal adjoint
state p̄ has the regularity (1.16). If we assume y0 ∈ H1

0 (Ω) and in the case
of located controls gi ∈ L2(Ω), the same holds true for the optimal state ȳ.

In order to achieve second order convergence in time we need more reg-
ularity, i.e., at least two weak time derivatives.

Lemma 8 (High regularity). Let f, h ∈ H1(I, L2(Ω)), f(0), h(T ) ∈ H1
0 (Ω),

and g ∈ H1
0 (Ω) with ∆g ∈ H1

0 (Ω). Then the weak solutions y of (1.9) and
p of (1.11) satisfy

y, p ∈ H1(I,H2(Ω) ∩H1
0 (Ω))

⋂
H2(I, L2(Ω)) ↪→ C1(Ī , H1

0 (Ω)). (1.17)

With some constant C > 0 we have the a priori estimates

‖∂2
t y‖I + ‖∂t∆y‖I + max

t∈[0,T ]
‖∇∂ty(t)‖

≤ C
(
‖f‖H1(I,L2(Ω)) + ‖f(0)‖H1(Ω) + ‖g‖H1(Ω) + ‖∆g‖H1(Ω)

)
,

and

‖∂2
t p‖I +‖∂t∆p‖I + max

t∈[0,T ]
‖∇∂tp(t)‖ ≤ C

(
‖h‖H1(I,L2(Ω)) + ‖h(T )‖H1(Ω)

)
.

Proof. This can be found in [MV11, Proposition 2.1].

We will also make use of three weak time derivatives, which the optimal
adjoint state possesses in the case α > 0. To this end, we need the following
Lemma.

9



1 The continuous optimal control problem

Lemma 9. Let p be the weak solution of (1.11) for a right-hand side h with
regularity h ∈ H2(I, L2(Ω))

⋂
H1(I,H2(Ω)∩H1

0 (Ω)) and ∆h(T ) ∈ H1
0 (Ω).

Then p fulfills

p ∈ H3(I, L2(Ω))
⋂
H2(I,H2(Ω) ∩H1

0 (Ω)) ↪→ C2(Ī , H1
0 (Ω)), (1.18)

and with some constant C > 0 the estimate

‖∂3
t p‖I+‖∂

2
t ∆p‖I+ max

t∈[0,T ]
‖∇∂2

t p(t)‖ ≤ C
(
‖∂2
t h‖I + ‖∇(∂th(T ) + ∆h(T ))‖

)
(1.19)

holds true.

Proof. This follows along the lines of the proof of [SV13, Lemma 2], making
use of Lemma 6 and Lemma 8.

To derive high regularity for the optimal state ȳ and the adjoint state p̄,
we have to assume more regularity on the data than stated at the beginning
of this chapter.

Assumption 10. Let yd ∈ H2(I, L2(Ω))
⋂
H1(I,H2(Ω) ∩ H1

0 (Ω)) with
∆yd(T ) ∈ H1

0 (Ω) and y0 ∈ H1
0 (Ω). Furthermore, we expect ∆y0 ∈ H1

0 (Ω).
In the case of distributed controls, we assume a, b ∈ H1(I, L2(Ω))

⋂
C(Ī , H1

0 (Ω)∩C(Ω̄)). In the case of located controls, we assume gi ∈ H1
0 (Ω),

i = 1, . . . , D, and a, b ∈W 1,∞(I,RD).

In view of the relation (1.12), the following lemma is useful to derive
regularity for the optimal control ū. It is sometimes called Stampacchia’s
lemma, since its core can be traced back to [Sta64, Lemme 1.1].

Lemma 11 (Stability of the projection). With a, b ∈ U where U is a
Hilbert space specified below, consider the orthogonal projection onto the
set Uad := {u ∈ U | a ≤ u ≤ b a.e.} and one of the following situations
with k ∈ {0, 1}, 1 ≤ p ≤ ∞.

1. U := L2(Ω) and V := W k,p(Ω) or V := H1
0 (Ω),

2. U := L2(I,RD) and V := W k,p(I,RD),

3. U := L2(I, L2(Ω)) and V := Hk(I, L2(Ω)) or V := L2(I,Hk(Ω)),

4. U := L2(I, L2(Ω)) and V := C(Ī , H1
0 (Ω)),

10



1.3 On regularity

5. U := L2(I, L2(Ω)) and V := C(Ī , C(Ω̄)) ∼= C(Ī × Ω̄).
Then there holds the following stability result. If a, b, and v are in V , so
is PUad(v) and the inequality

‖PUad(v)‖V ≤ C (‖a‖V + ‖b‖V + ‖v‖V ) (1.20)

is fulfilled with a constant C > 0.
Furthermore in the situations 1, 2, and 3, the projection PUad : V → V is

Lipschitz continuous if k = 0 and continuous if both k = 1 and 1 ≤ p <∞.
Proof. Let us first note that by Lemma 4 the projection Pu := PUadu can
be written as

Pu = a+ [(u− b)− + b− a]+ (1.21)
where u+ is (almost everywhere) the positive part of the function u, i.e.,

·+ : U → U, u 7→ u+, with u+(x) =
{
u(x) u(x) > 0
0 u(x) ≤ 0

. (1.22)

Accordingly, u− is the negative part.
Situation 1.

The fact that P is V -preserving and the representation

Dv+ =
{
Dv v > 0
0 v ≤ 0

(1.23)

for the weak derivative Dv+ of v+ are classic results, see, e.g., [Sta64,
Lemme 1.1] and [Zie89, Corollary 2.1.8, p. 47]. From this representation,
estimate (1.20) immediately follows from (1.21) and (1.22).

It remains to prove continuity. Since (pointwise) Lipschitz continuity is
obvious for u+, it immediately carries over to P : Lp → Lp for 1 ≤ p ≤ ∞
by (1.21).

Let now V = H1(Ω) or V = H1
0 (Ω) and a sequence (vn) with V 3 vn →

v ∈ V be given. We have to show ‖Dv+
n −Dv+‖L2(Ω) → 0.

With the help of (1.23) we get

‖Dv+
n −Dv+‖2L2(Ω)

≤ ‖Dvn −Dv‖2L2(Ω) +
∫
{vn>0, v≤0}

|Dvn(x)|2dx+
∫
{vn≤0, v>0}

|Dv(x)|2dx

=: I + II + III. (1.24)

11



1 The continuous optimal control problem

By construction of (vn), the first term vanishes if n goes to infinity. Thus
it remains to estimate the terms II and III.
From (vn) we select a subsequence converging almost everywhere to v,

denoted again by vn, see, e.g. [Alt02, Lemma 1.18, p. 52].
Consider now term III. We will show that the Lebesgue measure of

the sets En := {vn ≤ 0, v > 0} vanishes if n approaches infinity. As a
consequence, term III itself goes to zero by [Alt02, Lemma A 1.16, p. 82].

Let us fix an ε > 0. Continuity from above of the image measure guar-
antees

∃ ε2 > 0 : meas({0 < v < ε2}) <
ε

2 .

By Egorov’s theorem, see, e.g. [Alt02, A 1.17, p. 83], we conclude the
existence of a set Ẽε such that meas(Ω\Ẽε) < ε

2 and vn → v uniformly on
the set Ẽε.

Therefore, we can choose an N(ε) ∈ N such that there holds

∀ n ∈ N : n > N(ε)⇒ ‖vn − v‖L∞(Ẽε) <
ε2
2 .

With the subset E1
n := {vn ≤ 0, 0 < v < ε2} of En we conclude for

n > N(ε)

meas(En) ≤ meas(Ω\Ẽε) + meas(Ẽε ∩ En) < ε

2 + meas(Ẽε ∩ E1
n)

≤ ε

2 + meas({0 < v < ε2}) <
ε

2 + ε

2 = ε.

Thus meas(En)→ 0 holds for n→∞.
Consider now term II. We estimate for a measurable subset X of Ω∫

X

|Dvn|2 ≤ C
(∫

X

|Dvn −Dv|2 +
∫
X

|Dv|2
)
,

where the first addend vanishes by assumption if n tends to infinity. Taking
X := {vn > 0, v ≤ 0}, we only have to estimate

∫
En
|Dv|2, now with

En := {vn > 0, v < 0}, since Dv = 0 a.e. on {v = 0} by [EG92, Theorem
4(iv), p. 130]. Estimating

∫
En
|Dv|2 can be done analogously as for III.

Note finally that we have shown: Every sequence V 3 vn → v ∈ V
possesses a subsequence with Dv+

n → Dv+. Thus by contradiction the
convergence is valid for the whole sequence.

12



1.3 On regularity

For V := W k,p(Ω), the above proof has to be changed at obvious places.
Situation 2.

By the isomorphism W k,p(I,RD) ∼= W k,p(I,R)D, the claim is an im-
mediate consequence of Situation 1, since for the projection there holds
PC1×C2(x1, x2) = PC1(x1) × PC2(x2) where Ci denote nonempty closed
convex subsets of two Hilbert spaces Hi and xi ∈ Hi.
Situation 3.

Since the isomorphisms

Hk(I, L2(Ω)) ∼=
{
f ∈ L2(I × Ω)

∣∣ Dk
t f ∈ L2(I × Ω)

}
and

L2(I,Hk(Ω)) ∼=
{
f ∈ L2(I × Ω)

∣∣ Dk
xf ∈ L2(I × Ω)

}
are known to hold (see [LM72, Vol. II, p.5]), this case reduces to Situa-
tion 1.

Situation 4.
Well-definedness follows from the a.e. equality v+(t) = (v(t))+ in H1(Ω)
(compare Lemma 4) and continuity in Situation 1.

Situation 5.
Since (pointwise) Lipschitz continuity is obvious for u+, it immediately
carries over to P : C(Ī × Ω̄)→ C(Ī × Ω̄) by (1.21).

We can now derive regularity for the triple (ū, ȳ, p̄) from the Assump-
tion 10. The result is an extension of [MV11, Proposition 2.3] and [SV13,
Lemma 2].

Lemma 12 (Regularity of problem (P), α > 0). Let Assumption 10 hold
and let α > 0. For the unique solution (ȳ, ū) of (P) and the corresponding
adjoint state p̄ there holds

• p̄ ∈ H3(I, L2(Ω))
⋂
H2(I,H2(Ω) ∩H1

0 (Ω)) ↪→ C2(Ī , H1
0 (Ω)),

• ȳ ∈ H2(I, L2(Ω))
⋂
H1(I,H2(Ω) ∩H1

0 (Ω)) ↪→ C1(Ī , H1
0 (Ω)), and

• ū ∈W 1,∞(I,RD) in the case of located controls or

• ū ∈ H1(I, L2(Ω))∩C(Ī , H1
0 (Ω))∩C(Ī × Ω̄) in the case of distributed

controls.
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1 The continuous optimal control problem

With some constant C > 0 independent of α, we have the a priori estimates

‖∂2
t ȳ‖I + ‖∂t∆ȳ‖I + max

t∈[0,T ]
‖∇∂tȳ(t)‖

≤ d1(ū) := C
(
‖Bū‖H1(I,L2(Ω)) + ‖∇Bū(0)‖+ ‖∇∆y0‖

)
,

‖∂2
t p̄‖I + ‖∂t∆p̄‖I + max

t∈[0,T ]
‖∇∂tp̄(t)‖

≤ d0(ū) := C
(
‖yd‖H1(I,L2(Ω)) + ‖∇yd(T )‖+ ‖Bū‖I + ‖∇y0‖

)
, and

‖∂3
t p̄‖I + ‖∂2

t ∆p̄‖I + max
t∈[0,T ]

‖∇∂2
t p̄(t)‖

≤ d+
1 (ū) := d1(ū)+

C
(
‖∂2
t yd‖I + ‖∇∂tyd(T )‖+ ‖∇∆yd(T )‖+ ‖∇Bū(T )‖

)
. (1.25)

Proof. From Lemma 6 we conclude that the optimal state ȳ – for the
present – has regularity H1(I, L2(Ω)), and ȳ(T ) ∈ H1

0 (Ω). Thus, by
Lemma 8 the optimal adjoint state p̄ has regularity

p̄ ∈ H2(I, L2(Ω)) ∩ C(Ī , H1
0 (Ω)) ∩ C(Ī × Ω̄), (1.26)

and the a priori estimate with ‖∂2
t p̄‖I is valid.

In the case of located controls, we by (1.6) conclude B∗p̄ ∈ H2(I,RD) ↪→
W 1,∞(I,RD). Finally, from Lemma 11, 2., and the projection formula
(1.12) we get the regularity for ū.

In the case of distributed controls, by Assumption 10 and Lemma 11,
3.-5., the regularity of p̄ as given above in (1.26) is almost preserved when
switching from p̄ to ū but the term H2(I, L2(Ω)) has to be replaced by
H1(I, L2(Ω)).

Using Lemma 8 again, we obtain the regularity for ȳ (note: Bu(0) ∈
H1

0 (Ω)) and the estimate with ‖∂2
t ȳ‖I .

With this estimate, the estimate ‖∇(∂tȳ(T ) + ∆ȳ(T ))‖ ≤ C‖∇Bū(T )‖,
which holds since Bū ∈ C(Ī , H1

0 (Ω)) as we just saw, and Lemma 9, we
conclude the existence of three weak time derivatives for p̄ and the estimate
with ‖∂3

t p̄‖I .

Remark 13 (Regularity in the case α = 0). In the case α = 0, we by in-
specting the proof of Lemma 12 can only derive less regularity. The adjoint
p̄ now has the regularity given in Lemma 8, for ȳ we can only conclude the
regularity from Lemma 6, compare Remark 7.
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1.4 Tikhonov regularization

Since (1.12) does not hold, we can not derive regularity for ū from that of
p̄ as above. We only know from the definition of Uad that ū ∈ L∞(ΩU ,RD),
but might be discontinuous as we will see later.

1.4 Tikhonov regularization
In this section, we collect some results concerning the convergence of the
Tikhonov regularized solution to the limit problem. Furthermore, conver-
gence rates will be given. We start with results which are well-known from
inverse problem theory and can be directly applied to our situation. Af-
terwards we state more refined results, where we benefit from and extend
recent results for elliptic optimal control problems.

For this section, it is useful to rewrite problem (P) in the reduced form

min
u∈Uad

Jα(u) with Jα(u) := 1
2‖Tu− z‖

2
H + α

2 ‖u‖
2
U (Pα)

with H := L2(I, L2(Ω)), fixed data z := yd − S(0, y0) and the linear and
continuous control-to-state operator T : U → H, Tu := S(Bu, 0).
We declare the notation (ūα, ȳα, p̄α) for the unique solution of problem

(Pα), which coincides with (ū, ȳ, p̄) from Lemma 2.
The limit problem, i.e.,

min
u∈Uad

J0(u) = min
u∈Uad

1
2‖Tu− z‖

2
H , (P0)

can be interpreted as an inverse problem with convex constraints (given by
Uad), which is the starting point of the analysis below.

Let us finally mention that all results of this section hold in a more gen-
eral setting: One can replace the operator T = S(B·, 0) : U → H by an
arbitrarily chosen continuous linear operator T , mapping from some L2

space to some Hilbert space, if the Hilbert space adjoint T ∗ maps contin-
uously to L∞, at least on the range of T . Lemma 12 and (1.5) show that
this property is fulfilled for problem (Pα).

1.4.1 Convergence results from general inverse problem
theory

From Lemma 2 we already know that a unique solution ū0 of (P0) exists.
As a consequence, we get convergence ūα → ū0 if α → 0 and even a first
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1 The continuous optimal control problem

convergence rate for the error of the optimal state ȳα, as the following The-
orem shows. This Theorem is a collection of classic result from the theory
of inverse problems with convex constraints, see, e.g., [EHN00, Chapter
5.4] or [Neu86].

Theorem 14. For the solutions (ūα, ȳα) of (Pα) and (ū0, ȳ0) of (P0),
there holds

1. The optimal control and the optimal state depend continuously on α.
More precisely, the inequality

‖ȳα′ − ȳα‖2H + α′‖ūα′ − ūα‖2U ≤ (α− α′)(ūα, ūα′ − ūα)U (1.27)

holds for all α ≥ 0 and all α′ ≥ 0.

2. The regularized solutions converge to the unregularized one, i.e.,

‖ūα − ū0‖U → 0 if α→ 0. (1.28)

3. The optimal state satisfies the rate of convergence

‖ȳα − ȳ0‖H = o(
√
α). (1.29)

4. The optimal control ūα and the optimal state ȳα depend Lipschitz
continuously on the data z. More precisely, consider two solutions
ūα and ū′α of (Pα) for data z and z′, respectively. Then there holds

√
α‖ūα − ū′α‖U + ‖ȳα − ȳ′α‖H ≤ ‖z − z

′‖H (1.30)

Proof. 1. From the definition of ūα and ū0 we infer

α‖ūα‖2U ≤ ‖T ūα − z‖
2
H − ‖T ū0 − z‖2H + α‖ūα‖2U ≤ α‖ū0‖2U ,

thus
∀ α ≥ 0 : ‖ūα‖U ≤ ‖ū0‖U . (1.31)

Let us repeat (1.10) in the new notation:

ūα ∈ Uad, (αūα +B∗p̄α, u− ūα)U ≥ 0 ∀ u ∈ Uad.

We now consider for some α, α′ ≥ 0 this inequality once with (α, u) :=
(α, ūα′), and once with (α, u) := (α′, ūα). Adding both, we obtain

16



1.4 Tikhonov regularization

(αūα − α′ūα′ +B∗(p̄α − p̄α′), ūα′ − ūα)U ≥ 0. (1.32)

We rewrite this inequality as

∀α ≥ 0 ∀α′ ≥ 0 : ‖ȳα′ − ȳα‖2H + α′‖ūα′ − ūα‖2U ≤ (α− α′)(ūα, ūα′ − ūα)U ,

which gives the desired continuity.
2. and 3. Taking α′ = 0 we can estimate

‖ȳ0 − ȳα‖2H ≤ α‖ūα‖U‖ū0 − ūα‖U . (1.33)

Thus with the help of (1.31), we conclude

lim
α→0

ȳα = ȳ0. (1.34)

Let (αn) be a sequence with αn → 0 for n → ∞. From (1.31) we get
the existence of an element ũ0 and a subsequence of (αn), again denoted
by (αn), with ūαn ⇀ ũ0. Since Uad is closed and convex, it is weakly
sequentially closed. We thus have ũ0 ∈ Uad. From weak continuity of T
we conclude with the help of (1.34): T ũ0 = T ū0. Since ū0 is the unique
solution to problem (P0), we conclude ũ0 = ū0, thus ūα ⇀ ū0 as α → 0.
Strong convergence now follows from (1.31), as shows

‖ūα − ū0‖2U = ‖ūα‖2U + ‖ū0‖2U − 2(ūα, ū0)U ≤ 2(ū0 − ūα, ū0)U
α→0−→ 0.

We have thus shown
lim
α→0

ūα = ū0, (1.35)

which, together with (1.33), gives ‖ȳα − ȳ0‖H = o(
√
α).

4. Let us now consider the Lipschitz continuity with respect to the data
z. We get in the same way as (1.32) the inequality

(α(ūα − ū′α) +B∗(p̄α − p̄′α), ū′α − ūα)U ≥ 0,

which can be rewritten as

‖ȳ′α − ȳα‖
2
H + α‖ū′α − ūα‖

2
U ≤ (z′ − z, ȳ′α − ȳα)H .

This gives the desired estimate of the Lipschitz continuity at once.
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1 The continuous optimal control problem

1.4.2 Refined convergence rates under additional
assumptions

We now consider better regularization error estimates which are tailored
to optimal control problems rather then general inverse problems. We
use ideas from recent results for elliptic optimal control problems to derive
estimates for the parabolic case. We improve known results with the help of
an L1-norm estimate, which usefulness is revisited also later in the analysis
of the discretization error.

From now onwards we assume

a ≤ 0 ≤ b (1.36)

in a pointwise almost everywhere sense where a and b are the bounds of
the admissable set Uad. For (P0), the problem we finally want to solve, this
assumption can always be met by a simple transformation of the variables.

To prove better rates of convergence with respect to α, we rely on the
following assumption.

Assumption 15. Let distributed controls be given. There exist a set A ⊂
ΩU , a function w ∈ H with T ∗w ∈ L∞(ΩU ,RD), and constants κ > 0 and
C ≥ 0, such that there holds the inclusion {x ∈ ΩU | B∗p̄0(x) = 0} ⊂ Ac

for the complement Ac = ΩU\A of A and in addition

1. (source condition)

χAc ū0 = χAcPUad(T ∗w). (1.37)

2. ((p̄0-)measure condition)

∀ ε > 0 : meas({x ∈ A | 0 ≤ |B∗p̄0(x)| ≤ ε}) ≤ Cεκ (1.38)

with the convention that κ :=∞ if the left-hand side of (1.38) is zero
for some ε > 0.

In the case of located controls, the preceding conditions have to be fulfilled
by each of the D components of ū0 – add a subscript index i ∈ {1, . . . , D}
to B∗p̄0, Uad, T ∗, and ū0.

Source conditions of the form ū0 = PUad(T ∗w) are well known in the the-
ory of inverse problems with convex constraints, see [Neu86] and [EHN00].

18



1.4 Tikhonov regularization

However, since they are usually posed almost everywhere, thus globally,
they are unlikely to hold in the optimal control setting. For example, the
condition ū0 = PUad(T ∗w) together with continuous bounds a and b im-
plies in our parabolic situation (compare (1.26) in Lemma 12) that ū0 is
continuous, too. However, discontinuous controls in the case α = 0 are
often observed, see, e.g., the test examples in the numerics chapter later.
Therefore a localized variant of the general source condition is more useful.

Similar measure conditions were previously used for control problems
with elliptic PDEs, starting with the analysis in [WW11a] and [DH12].
In the latter paper, Deckelnick and Hinze used the measure condition to
derive a-priori error estimates for discretization errors of (P0).
A condition related to the measure condition was also used to establish

stability results for bang-bang control problems with autonomous ODEs,
see [Fel03, Assumption 2]. There, a condition on the gradient of p̄0 is
imposed, thus no measure enters the formulation. The measure condition
can be interpreted as a weakening of this gradient condition, as was shown
in [DH12, Lemma 3.2].

In all above-mentioned references, the measure condition was assumed
to hold globally, i.e., Assumption 15 holds with meas(Ac) = 0. Together
with (1.14) one immediately observes that this implies bang-bang controls.

The combination of both conditions in Assumption 15 turned out to be
very useful in the context of elliptic optimal control problems, see [WW11b;
WW13]. Although we are actually interested in the investigation of bang-
bang controls, we use this more general condition due to the low additional
effort.

Key ingredient in our analysis of the regularization error and also of
the discretization error considered later is the following lemma, which is
extracted from the proof of [WW11b, Theorem 3.20]. For its origins see
also the discussion at the end of the bibliography.

Lemma 16. Let Assumption 15.2 hold. For the solution ū0 of (P0), there
holds with some constant C > 0 independent of α and u

C‖u− ū0‖1+1/κ
L1(A,RD) ≤ (B∗p̄0, u− ū0)U ∀ u ∈ Uad. (1.39)

Proof. Let us consider distributed controls first.
For ε > 0, we define Bε := {x ∈ A | |B∗p̄0| ≥ ε}. Using the (pointwise)

optimality condition (1.15) and Assumption 15.2, we conclude for some
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1 The continuous optimal control problem

u ∈ Uad∫
ΩU

(B∗p̄0, u− ū0)R =
∫

ΩU
|B∗p̄0||u− ū0| ≥ ε‖u− ū0‖L1(Bε)

≥ ε‖u− ū0‖L1(A) − ε‖u− ū0‖L1(A\Bε)

≥ ε‖u− ū0‖L1(A) − ε‖u− ū0‖L∞(ΩU ) meas(A\Bε)

≥ ε‖u− ū0‖L1(A) − cε
κ+1‖u− ū0‖L∞(ΩU )

where without loss of generality c > 1.
Setting ε := c−2/κ‖u− ū0‖1/κL1(A)‖u− ū0‖−1/κ

L∞(ΩU ) yields∫
ΩU

(B∗p̄0, u− ū0)R ≥ C̃‖u− ū0‖1+1/κ
L1(A) ,

since ‖u − ū0‖L∞(ΩU ) ≤ C for some C = C(a, b) > 0 independent of u by
the definition of Uad.
In the case of located controls, observe first that (1.39) is valid for each

component ūi0, 1 ≤ i ≤ D, of ū0. This can be shown as above. From this
and the estimate∫

A

(
D∑
i=1
|u− ūi0|

D

)1/D1+1/κ

≤
(
C
∑∫

|u− ūi0|
)1+1/κ

≤ C
∑(∫

|u− ūi0|
)1+1/κ

,

the claim follows at once.

With the previous Lemma, we can now improve the inequality (1.27)
(setting there α := 0) from general inverse problem theory, since the error
in the control in the L1 norm now appears on the left-hand side with a
factor C>0 independent of α. This is in contrast to the error in the L2

norm.

Lemma 17. Let Assumption 15.2 hold (with possibly meas(A) = 0). Then
there holds for some C > 0 independent of α

‖ȳα − ȳ0‖2H + C‖ūα − ū0‖1+1/κ
L1(A,RD) + α‖ūα − ū0‖2U

≤ α(ū0, ū0 − ūα)U ∀ α > 0.
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Proof. Adding the necessary condition for ūα (1.10) with u := ū0, i.e.,

0 ≤ (αūα +B∗p̄α, ū0 − ūα)U ,

to the estimate (1.39) of Lemma 16 with u := ūα, we get

C‖ūα − ū0‖1+1/κ
L1(A,RD) ≤ (B∗(p̄α − p̄0), ū0 − ūα)U + α(ūα, ū0 − ūα)U

≤ −‖ȳα − ȳ0‖2H + α(ūα − ū0, ū0 − ūα)U
+ α(ū0, ū0 − ūα)U

≤ −‖ȳα − ȳ0‖2H − α‖ūα − ū0‖2U + α(ū0, ū0 − ūα)U .

The following Lemma is extracted from the proof of [WW11b, Lemma
3.9]. It shows how the source condition (Assumption 15.1) is taken into
account to reduce the error estimate to the set A.

Lemma 18. Let Assumption 15.1 (source condition) be satisfied. Then
there holds with a constant C > 0

(ū0, ū0 − u)U ≤ C(‖T (u− ū0)‖H + ‖u− ū0‖L1(A,RD)) ∀ u ∈ Uad.

Proof. The source condition is equivalent to

0 ≤ (χAc(ū0 − T ∗w), u− ū0)U ∀ u ∈ Uad.

Using this representation, we can estimate

(ū0, ū0 − u)U ≤ (χAcT ∗w, ū0 − u)U + (χAū0, ū0 − u)U
≤ (w, T (ū0 − u))H + (−T ∗w + ū0, χA (ū0 − u))U .

Since T ∗w ∈ L∞(ΩU ,RD), we get the claim.

Using this Lemma, we can now state regularization error estimates. We
consider different situations with respect to the fulfillment of parts of As-
sumption 15.

Theorem 19. For the regularization error there holds with positive con-
stants c and C indepent of α > 0 the following.
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1 The continuous optimal control problem

1. The error in the optimal state fulfills the rate of convergence

‖ȳα − ȳ0‖H = o(
√
α).

2. Let Assumption 15.1 be satisfied with meas(A) = 0 (source condition
holds a.e. on the domain). Then the optimal control converges with
the rate

‖ūα − ū0‖U ≤ C
√
α, (1.40)

and the optimal state converges with the improved rate

‖ȳα − ȳ0‖H ≤ Cα. (1.41)

3. Let Assumption 15.2 be satisfied with meas(Ac) = 0 (measure condi-
tion holds a.e. on the domain). Then the estimates

‖ūα − ū0‖L1(ΩU ,RD) ≤ Cα
κ (1.42)

‖ūα − ū0‖U ≤ Cα
κ/2 (1.43)

‖ȳα − ȳ0‖H ≤ Cα
(κ+1)/2 (1.44)

hold true. If κ > 1 holds and in addition

T ∗ : range(T )→ L∞(ΩU ,RD) exists and is continuous, (1.45)

we can improve (1.44) to

‖ȳα − ȳ0‖H ≤ Cα
κ. (1.46)

4. Let Assumption 15 be satisfied with meas(A) ·meas(Ac) > 0 (source
and measure condition on parts of the domain). Then the following
estimates hold true.

‖ūα − ū0‖L1(A,RD) ≤ Cα
min(κ, 2

1+1/κ ) (1.47)

‖ūα − ū0‖U ≤ Cα
min(κ, 1)/2 (1.48)

‖ȳα − ȳ0‖H ≤ Cα
min((κ+1)/2, 1) (1.49)

Proof. 1. The estimate is just a repetition of (1.29).
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3. Let us recall the estimates of Lemma 17, i.e.,

‖ȳα− ȳ0‖2H+C‖ūα− ū0‖1+1/κ
L1(A,RD) +α‖ūα− ū0‖2U ≤ α(ū0, ū0− ūα)U . (1.50)

By Young’s inequality we can estimate

α‖ūα − ū0‖L1(A,RD) ≤ Cα
κ+1 + C‖ūα − ū0‖1+1/κ

L1(A,RD). (1.51)

If A = ΩU up to a set of measure zero, we can combine both estimates,
since ū0 ∈ Uad ⊂ L∞, and move the second summand of the just mentioned
estimate to the left. This yields the claim since

κ+ 1
1 + 1/κ = κ.

The improved estimate (1.46) can be obtained with the help of (1.42) as
follows

‖ȳα − ȳ0‖2H = (T ∗(ȳα − ȳ0), ūα − ū0)U ≤ C‖T ∗(ȳα − ȳ0)‖L∞‖ūα − ū0‖L1

≤ C‖ȳα − ȳ0‖H‖ūα − ū0‖L1 ≤ C‖ȳα − ȳ0‖H α
κ.

2.+4. We combine (1.50) with the estimate of Lemma 18 (with u := ūα),
invoke Cauchy’s inequality and get

‖ȳα − ȳ0‖2H + C‖ūα − ū0‖1+1/κ
L1(A,RD) + α‖ūα − ū0‖2U

≤ α(ū0, ū0 − ūα)U ≤ Cα(‖ȳα − ȳ0‖H + ‖ūα − ū0‖L1(A,RD))

≤ Cα2 + 1
2‖ȳα − ȳ0‖2H + Cα‖ūα − ū0‖L1(A,RD).

We now move the second addend to the left.
If meas(A) = 0 (case 2.), we are done. Otherwise (case 4.) we continue

estimating, making use of (1.51), to get

‖ȳα − ȳ0‖2H + C‖ūα − ū0‖1+1/κ
L1(A,RD) + α‖ūα − ū0‖2U ≤ Cα

min(2,κ+1),

from which the claim follows.
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Some remarks on the previous theorem are in order.
Let us compare the first with the other cases, where Assumption 15 is

taken (partially) into account. In all cases, we get an improved convergence
rate for the optimal state.

The second estimate replicates a well known estimate from the theory of
inverse problems with convex constraints, see, e.g., [Neu86] and [EHN00,
Theorem 5.19]. However, as indicated in the discussion after Assump-
tion 15, this situation is unlikely to hold in the context of optimal control
problems.

Concerning the “min”-functions in the estimates, we note that the left
argument is chosen if κ < 1, the right one if κ > 1. In the case κ = 1,
both expressions coincide. Thus the worse part of Assumption 15 with
respect to the items 2. and 3. dominates the convergence behavior of the
regularization errors.

As mentioned after Assumption 15, case 3. implies bang-bang controls.
By Lemma 12 and Remark 13 we can immediately see that the assump-

tion (1.45) on T ∗ is fulfilled for our parabolic problem. We even more get
the estimate

‖p̄α − p̄0‖L∞(Ω×I) ≤ C‖ȳα − ȳ0‖H ≤ Cα
κ

for the optimal adjoint state.
Let us finally mention that the cases 3. and 4. unify (with respect to

κ) and improve (for κ < 1) recently obtained regularization estimates from
[WW11b, section 3.3].

1.4.3 Necessity of the additional assumptions
Let us now consider the question of necessity of Assumption 15 to obtain
convergence rates, thus a converse of Theorem 19.

We first show that a convergence rate ‖ȳα − ȳ0‖H ≤ Cα implies the
source condition (1.37) to hold at least on {x ∈ ΩU | B∗p̄0(x) = 0}.
The following Theorem is mainly taken from [WW13, Theorem 4]. It

resembles a necessity result known from inverse problem theory, see, e.g.,
[EHN00, Theorem 5.19] or [Neu86]. However, in inverse problems, the
condition T ū0 = z is typically assumed.

Theorem 20. If we assume a convergence rate ‖ȳα − ȳ0‖H = O(α), then
there exists a function w ∈ H such that ū0 = PUad(T ∗w) holds pointwise
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a.e. on K := {x ∈ ΩU | B∗p̄0(x) = 0}. Thus (1.37) holds on K instead of
Ac.
If even ‖ȳα − ȳ0‖H = o(α), then ū0 vanishes on K.

Proof. Let us first define a test function û ∈ Uad for x ∈ ΩU by

û(x)


= a(x) if B∗p̄0(x) > 0,
∈ [a(x), b(x)] if B∗p̄0(x) = 0,
= b(x) if B∗p̄0(x) < 0.

We consider the necessary condition (1.10) for ūα, i.e.,

(αūα +B∗p̄α, u− ūα)U ≥ 0 ∀ u ∈ Uad,

for the special case u = û and add the necessary condition for ū0, evaluated
at u = ūα. We obtain

0 ≤ (αūα +B∗ (p̄α − p̄0) , û− ūα)U + (B∗p̄0, û− ūα + ūα − ū0)U .

By construction of û and the representation of ū0 from Lemma 5, we con-
clude that the second scalar product vanishes. Thus we end up with

0 ≤ (αūα + T ∗T (ūα − ū0) , û− ūα)U ,

and dividing the expression by α and taking the limit we get with the help
of (1.28) the inequality

0 ≤ (T ∗ẏ0 + ū0, û− ū0)U

for any weak subsequential limit ẏ0 of 1
α (ȳα − ȳ0), which exists due to the

assumption of the Theorem. The first assertion is now a direct consequence
of the construction of û.
The second assertion follows from the equality ẏ0 = 0 in case of ‖ȳα −

ȳ0‖H = o(α).

Remark 21. In the assumptions of the previous Theorem, one can replace
the norm ‖ȳα − ȳ0‖H by the norm ‖B∗(p̄α − p̄0)‖L2(K,RD), which follows
from the proof.

We next show that if (1.45) and κ > 1 hold true, convergence as in
Theorem 19.3 implies the measure condition (1.38).
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Theorem 22. Let us assume {x ∈ ΩU | B∗p̄0(x) = 0} ⊂ Ac for some
given set A ⊂ ΩU . Let us further assume that

∃ σ > 0 ∀′ x ∈ ΩU : a ≤ −σ < 0 < σ ≤ b. (1.52)

If κ > 1 and convergence rates ‖ūα−ū0‖pLp(A,RD)+‖B
∗(p̄α−p̄0)‖L∞(A,RD)

≤ Cακ are known to hold for some real p ≥ 1, then the measure condition
(1.38) from Assumption 15 is fulfilled.

Proof. We consider distributed controls only. The case of located controls
is obtained in the same way by considering the D component functions of
the involved functions.

Let us split the set A into the subsets

A0 := {x ∈ A | −B∗p̄0 < 0 and αa ≥ −B∗p̄α } ,
A1 := {x ∈ A | −B∗p̄0 < 0 and αa < −B∗p̄α < αb} ,
A2 := {x ∈ A | −B∗p̄0 < 0 < αb ≤ −B∗p̄α } ,
A3 := {x ∈ A | −B∗p̄0 > 0 and αa < −B∗p̄α < αb} ,
A4 := {x ∈ A | −B∗p̄0 > 0 > αa ≥ −B∗p̄α } , and
A5 := {x ∈ A | −B∗p̄0 > 0 and αb ≤ −B∗p̄α } .

Thus A = A0 ∪A1 ∪A2 ∪A3 ∪A4 ∪A5, and from Lemma 5 we infer∫
A

|ū0 − ūα|p =
∫
A1

|a+ α−1B∗p̄α|p +
∫
A3

|b+ α−1B∗p̄α|p +
∫
A2∪A4

|a− b|p

≥
∫
A1

|a+ α−1B∗p̄α|p +
∫
A3

|b+ α−1B∗p̄α|p

≥ (σ2 )p meas(
{
x ∈ A

∣∣∣ |B∗p̄α| ≤ σ

2α
}

).
(1.53)

Thus from ‖ūα − ū0‖pLp(A) ≤ Cακ and (1.53) we conclude

meas({x ∈ A | |B∗p̄α| ≤ C1α}) ≤ C2α
κ.

Since κ > 1 and ‖B∗(p̄α − p̄0)‖L∞(A) ≤ Cακ, we get for some arbitrarily
chosen x ∈ A with |B∗p̄0(x)| ≤ αC1/2 the estimate

|B∗p̄α(x)| ≤ |B∗p̄0(x)|+ |B∗(p̄α − p̄0)(x)| ≤ C1

2 (α+ ακ−ε) ≤ C1α
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for some sufficiently small ε = ε(C1, κ) > 0. Consequently, we have

meas(
{
x ∈ A

∣∣∣∣ |B∗p̄0| ≤
C1

2 α

}
) ≤ C2α

κ.

Concerning the previous Theorem, let us mention the related result
[WW13, Theorem 8]. It has the same implication, but assumes (1.43)
and (1.44), which imply the prerequisites of Theorem 22 in case of (1.45).

For the case κ ≤ 1, it is an open question whether the previous Theorem
(and likewise [WW13, Theorem 8]) is valid.

Let us also note that the assumption a ≤ −σ < 0 < σ ≤ b in the previous
Theorem can be replaced by the weaker one

a ≤ −σ < 0 on B∗p̄0 > 0 and 0 < σ ≤ b on B∗p̄0 < 0,

as an inspection of the previous proof shows.

1.4.4 On the time derivative of the regularized control for
bang-bang solutions

In this subsection, we consider bang-bang solutions, i.e.,

meas({x ∈ ΩU | B∗p̄0(x) = 0}) = 0. (1.54)

We introduce a second measure condition. This new condition implies
the same convergence results as in Theorem 19.3, thus it can replace the
p̄0-measure condition (1.38) from Assumption 15.

We then show that the new condition is almost necessary to obtain these
convergence rates.

Finally, it turns out that the new and the old measure condition coincide
if the limit problem is of certain regularity.

The reason to introduce this new condition is that it leads to an improved
bound on the decay of smoothness in the derivative of the optimal control
when α tends to zero. This bound will be useful later to derive improved
convergence rates for the discretization errors.

Definition 23 (p̄α-measure condition). Let distributed controls be given.
If for the set

Iα := {x ∈ ΩU | αa < −B∗p̄α < αb} (1.55)
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the condition

∃ ᾱ > 0 ∀ 0 < α < ᾱ : meas(Iα) ≤ Cακ (1.56)

holds true (with the convention that κ :=∞ if the measure in (1.56) is zero
for all 0 < α < ᾱ), we say that the p̄α-measure condition is fulfilled.
In the case of located controls, the modifications mentioned in Assump-

tion 15 have to be applied.

The equality in the estimate (1.53) from the proof of Theorem 22 shows
that if the p̄α-measure condition holds and we assume the additional con-
dition meas(A2 ∪ A4) ≤ Cακ (with Ai as in that proof), we get the con-
vergence rate ‖ūα − ū0‖pLp(A,RD) ≤ Cα

κ for each 1 ≤ p <∞.
Interestingly, this additional condition is not needed to obtain conver-

gence in the control, as we will now show.

Theorem 24. If the p̄α-measure condition (1.56) and the conditions (1.52)
and (1.45) are fulfilled, the convergence rates

‖ūα − ū0‖L1(ΩU ,RD) ≤ Cα
κ and ‖ȳα − ȳ0‖I ≤ Cα

(κ+1)/2 (1.57)

hold true. If κ > 1, we have the improved estimate

‖ȳα − ȳ0‖I ≤ Cα
κ. (1.58)

Proof. We consider distributed controls only. The case of located controls
is obtained in the same way by considering the D component functions of
the involved functions.

Let u ∈ Uad be arbitrarily chosen. For the active set Icα of p̄α, which is the
complement of the inactive set Iα defined in (1.55), we have by Lemma 5,
making use of (1.52), the estimate

(B∗p̄α, u− ūα)Icα =
∫
Icα

|B∗p̄α||u− ūα| ≥ σα‖u− ūα‖L1(Icα). (1.59)

Invoking the p̄α-measure condition (1.56), we get on the inactive set itself
the estimate

|(B∗p̄α, u− ūα)Iα | ≤ Cα‖u− ūα‖L1(Iα) ≤ CCabα
κ+1 (1.60)
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with Cab = max(‖a‖∞, ‖b‖∞). Consequently, with L1 := L1(ΩU ) we get

σα‖u− ūα‖L1 − ακ+1
(1.56)
≤ σα‖u− ūα‖L1 − σα‖u− ūα‖L1(Iα)

= σα‖u− ūα‖L1(Icα)

(1.59)
≤ (B∗p̄α, u− ūα)Icα
= (B∗p̄α, u− ūα)− (B∗p̄α, u− ūα)Iα

(1.60)
≤ (B∗p̄α, u− ūα) + Cακ+1.

(1.61)

Rearranging terms, we conclude

σα‖u− ūα‖L1 ≤ (B∗p̄α, u− ūα) + Cακ+1. (1.62)

Taking u := ū0 in the previous equation and adding the necessary condition
(1.10) for ū0 for the special case u := ūα, i.e.,

(−B∗p̄0, ū0 − ūα) ≥ 0, (1.63)

we get the estimate

σα‖ū0 − ūα‖L1 ≤ (B∗(p̄α − p̄0), ū0 − ūα) + Cακ+1

= −‖ȳα − ȳ0‖2I + Cακ+1,
(1.64)

from which the claim follows.
The improved estimate can be established as in the proof of Theorem 19.

The p̄α-measure condition (1.56) is slightly stronger than what actually
is necessary in order to obtain convergence rates.

Corollary 25. Let us assume {x ∈ ΩU | B∗p̄0(x) = 0} ⊂ Ac for some
given set A ⊂ ΩU . Let us further assume that (1.52) is valid.
If the convergence rate ‖ūα − ū0‖pLp(A,RD) ≤ Cακ is known to hold for

some real p ≥ 1 and some real κ > 0, then the measure condition

meas({x ∈ A | α(a+ ε) ≤ −B∗p̄α(x) ≤ α(b− ε)}) ≤ C

εp
ακ (1.65)

is fulfilled for each 0 < ε < σ.
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Proof. This follows from the proof of Theorem 22.

If the limit problem is of certain regularity, the p̄α-measure condition is
not stronger than the p̄0-measure condition, and, as we show afterwards,
both conditions coincide.

Lemma 26. Let Assumption 15 hold with meas(Ac) = 0 (p̄0-measure con-
dition is valid a.e. on ΩU ). Let furthermore κ ≥ 1 and (1.45) be valid.
Then the p̄α-measure condition (1.56) is fulfilled.

Proof. Since the set Iα from (1.55) fulfills Iα ⊂ {x ∈ ΩU | |B∗p̄α| ≤ Cα}
with C = max(‖a‖∞, ‖b‖∞), we conclude with (1.45) and Theorem 19 that
if x ∈ Iα and κ ≥ 1, we have

|B∗p̄0| ≤ |B∗p̄α|+ |B∗(p̄0 − p̄α)| ≤ Cα.

With the p̄0-measure condition (1.38) we obtain the estimate

meas(Iα) ≤ meas({x ∈ ΩU | |B∗p̄0| ≤ Cα}) ≤ Cακ,

which concludes the proof.

Corollary 27. Let a bang-bang solution be given, i.e., (1.54) holds true.
In the case of κ > 1, (1.45), and (1.52), both measure conditions are equiv-
alent.

Proof. One direction of the claim, namely “p̄0-m.c. ⇒ p̄α-m.c.”, has already
been shown in Lemma 26.

For the other direction, we know from Theorem 24 that the convergence
rates (1.57) hold, which by (1.45) and Theorem 22 imply the p̄0-measure
condition.

Let us now consider located controls. Since p̄α ∈ C1(Ī , L2(Ω)) for α ≥ 0
by Lemma 12 and Remark 13, we conclude

‖∂tB∗p̄α‖L∞(I,RD) ≤ C‖∂tp̄α‖L∞(I,L2(Ω)) ≤ C + C‖ūα‖U ≤ C

with a constant C > 0 independent of α due to the definition of Uad. With
this estimate, the projection formula (1.12) and (the proof of) Lemma 11
we obtain with L := L∞(ΩU ,RD) the bound

‖∂tūα‖L ≤
1
α
‖∂tB∗p̄α‖L + ‖∂ta‖L + ‖∂tb‖L ≤ C

1
α
, (1.66)
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if α > 0 is sufficiently small.
If the p̄α-measure condition (1.56) is valid, this decay of smoothness in

terms of α can be relaxed in weaker norms, as the following Lemma shows.

Lemma 28 (Smoothness decay in the derivative). Let the p̄α-measure
condition (1.56) be fulfilled and located controls be given. Then there holds
with Cab = ‖∂ta‖L∞(ΩU ,RD) + ‖∂tb‖L∞(ΩU ,RD) for sufficiently small α > 0
and 1 ≤ p <∞ the inequality

‖∂tūα‖Lp(ΩU ,RD) ≤ C max(Cab, ακ/p−1) (1.67)

with a constant C > 0 independent of α. Note that Cab = 0 in the case of
constant control bounds a and b.

Proof. We invoke (1.56) and (1.66) to get the estimate

‖∂tūα‖pLp(ΩU ,RD) ≤ meas(Iα)‖∂tūα‖pL∞(ΩU ,RD) + meas(ΩU )Cpab
≤ C max(ακ−p, Cpab)

with the set Iα from (1.55).
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2 The discretized problem
For the numerical treatment of problem (P) we introduce finite element dis-
cretizations of the state equation and the adjoint equation. In a first step we
only discretize in time. We use piecewise linear continuous Ansatz functions
and piecewise constant (discontinuous) test functions for the discretization
of the adjoint equation. This yields a semidiscrete Crank–Nicolson scheme.
For the state equation we switch Ansatz and test space. The spatial dis-
cretization is obtained in a second step by usual conforming finite elements.
We carefully seperate the discretization errors into the influences of time
and space, respectively. Stability and error estimates are derived in differ-
ent norms.

After that, we formulate and analyze the variational discretization of
the optimal control problem. At first, estimates for the error between
regularized control and discrete regularized control are shown, which are
not robust if α tends to zero and lead to non-optimal estimates for the
total error. We then derive robust estimates, which lead to better estimates
for the total error if the limit problem is sufficiently regular. Finally, we
improve these robust estimates further for bang-bang controls.

2.1 Time discretization of the state and adjoint
equation

Let us as a first step consider a time discretization. Since the space variables
are not touched, we remain in an infinite dimensional but semidiscrete
setting.

Large parts of this section rely on recent results obtained in [DHV15],
which itself is founded on the paper [MV11].

Consider a partition 0 = t0 < t1 < · · · < tM = T of the time interval
Ī. With Im = [tm−1, tm) we have [0, T ) =

⋃M
m=1 Im. Furthermore, let

t∗m = tm−1+tm
2 for m = 1, . . . ,M denote the interval midpoints. By 0 =:
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t∗0 < t∗1 < · · · < t∗M < t∗M+1 := T we get a second partition of Ī, the
so-called dual partition, namely [0, T ) =

⋃M+1
m=1 I

∗
m, with I∗m = [t∗m−1, t

∗
m).

The grid width of the first mentioned (primal) partition is given by the
parameters km = tm − tm−1 and

k = max
1≤m≤M

km.

Here and in what follows we assume k < 1. We also denote by k (in a
slight abuse of notation) the grid itself.

For the L2 stability of the operator πP∗
k
given in Lemma 33, we need the

following condition on sequences of time grids.

Assumption 29. There exist constants 0 < κ1 ≤ κ2 <∞ independent of
k such that

κ1 ≤
km
km+1

≤ κ2

holds for all m = 1, 2, . . . ,M − 1.

Furthermore, for the analysis of the pointwise-in-time stability and for
error estimates, a second condition on sequences of time grids has to be
presumed.

Assumption 30. There exists a constant µ > 0 independent of k such
that

k ≤ µ min
m=1,2,...,M

km.

On these partitions of the time interval, we define the Ansatz and test
spaces of the Petrov–Galerkin schemes. These schemes will replace the
continuous-in-time weak formulations of the state equation and the adjoint
equation, i.e., (1.9) and (1.11), respectively. To this end, we define at first
for an arbitrary Banach space X the semidiscrete function spaces

Pk(X) : =
{
v ∈ C([0, T ], X)

∣∣∣ v∣∣
Im
∈ P1(Im, X)

}
↪→ H1(I,X), (2.1a)

P ∗k (X) : =
{
v ∈ C([0, T ], X)

∣∣∣ v∣∣
I∗m
∈ P1(I∗m, X)

}
↪→ H1(I,X), (2.1b)

and
Yk(X) : =

{
v : [0, T ]→ X∗

∣∣∣ v∣∣
Im
∈ P0(Im, X)

}
. (2.1c)
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Here, Pi(J,X), J ⊂ Ī, i ∈ {0, 1}, is the set of polynomial functions in
time of degree at most i on the interval J with values in X. We note that
functions in Pk(X) can be uniquely determined byM+1 elements from X.
The same holds true for functions v ∈ Yk(X) but with v(T ) only uniquely
determined in X∗ by definition of the space. The reason for this is given
in the discussion below (2.16). Furthermore, for each function v ∈ Yk(X)
we have [v] ∈ L2(I,X) where [.] denotes the equivalence class with respect
to the almost-everywhere relation.

2.1.1 Interpolation operators
In the sequel, we will frequently use the following interpolation operators.

1. (Orthogonal projection) PYk(X) : L2(I,X)→ Yk(X)

PYk(X)v
∣∣
Im

:= 1
km

∫ tm

tm−1

v dt, m = 1, . . . ,M, PYk(X)v(T ) := 0 (2.2)

2. (Midpoint interpolation) ΠYk(X) : C([0, T ], X)→ Yk(X)

ΠYk(X)v
∣∣
Im

:= v (t∗m) , m = 1, . . . ,M, ΠYk(X)v(T ) := v(T ). (2.3)

3. (Piecewise linear interpolation on the dual grid)
πP∗

k
(X) : C([0, T ], X) ∪ Yk(X)→ P ∗k (X)

πP∗
k

(X)v
∣∣∣
I∗1∪I∗2

:= v(t∗1) + t− t∗1
t∗2 − t∗1

(v(t∗2)− v(t∗1)) ,

πP∗
k

(X)v
∣∣∣
I∗m

:= v(t∗m−1) +
t− t∗m−1
t∗m − t∗m−1

(
v(t∗m)− v(t∗m−1)

)
for m = 3, . . . ,M − 1,

πP∗
k

(X)v
∣∣∣
I∗
M
∪I∗
M+1

:= v(t∗M−1) +
t− t∗M−1
t∗M − t∗M−1

(
v(t∗M )− v(t∗M−1)

)
.

(2.4)

The interpolation operators are obviously linear mappings. Furthermore,
they are bounded, and we have error estimates, as the following lemma
shows.
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2 The discretized problem

In addition to the notation introduced at the beginning of section 1.3,
adding a subscript Im to a norm will indicate an L2(Im, L2(Ω)) norm in
the following. Inner products are treated in the same way.

Note that in all of the following results C denotes a generic, strict positive
real constant that does not depend on quantities which appear to the right
or below of it.

Lemma 31. For the midpoint interpolation and the orthogonal projection
there holds continuity in the sense

‖ΠYk(X)v‖L2(I,X) ≤ C
√
T ‖v‖C([0,T ],X) ∀ v ∈ C([0, T ], X),

and
‖PYk(X)v‖L2(I,X) ≤ ‖v‖L2(I,X) ∀ v ∈ L2(I,X).

Let y ∈ H1(Im, X) ↪→ C(Īm, X). Then the error estimates

‖y−ΠYk(X)y‖L2(Im,X)+‖y−PYk(X)y‖L2(Im,X) ≤ Ckm‖∂ty‖L2(Im,X) (2.5)

and

‖y −ΠYk(X)y‖L∞(Im,X) + ‖y − PYk(X)y‖L∞(Im,X) ≤ C
√
km‖∂ty‖L2(Im,X)

(2.6)
hold true.

Proof. The proof follows from direct calculations.

By squaring, summing up over time, and taking the square root, the pre-
ceding error estimates remain valid if all indices m are removed, especially
y ∈ H1(I,X) is assumed.

The following lemma, see also the proof of [DHV15, Corollary 4.3], pro-
vides a link between the orthogonal and the midpoint interpolation.

Lemma 32. Let y be a function with y ∈ H2(I,X). For the error between
the orthogonal projection and the midpoint interpolation, defined in (2.2)
and (2.3), respectively, there holds

‖ΠYk(X)y − PYk(X)y‖L2(Im,X) ≤ k
2
m‖∂2

t y‖L2(Im,X). (2.7)
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2.1 Time discretization of the state and adjoint equation

Proof. Let ‖·‖ := ‖·‖X for this proof and suppose w ∈ C2(Im, X) ∩
H2(Im, X). With a Taylor expansion of w at t∗m we obtain∥∥∥∥∫ tm

tm−1

w(t)−w(t∗m)dt
∥∥∥∥2

=
∥∥∥∥∫ tm

tm−1

(t−t∗m)∂tw(t∗m)+
∫ t

t∗m

(t−s)∂2
tw(s)dsdt

∥∥∥∥2

≤ km
∫ tm

tm−1

∥∥∥∥∫ t

t∗m

(t− s)∂2
tw(s)ds

∥∥∥∥2
dt ≤ k4

m

∫ tm

tm−1

∫ t

t∗m

∥∥∥∥∂2
tw(s)

∥∥∥∥2
dsdt

≤ k5
m

∫ tm

tm−1

∥∥∥∥∂2
tw(s)

∥∥∥∥2
ds, (2.8)

where we have used the Cauchy-Schwarz inequality twice. With this in-
equality, we conclude

‖ΠYk(X)w − PYk(X)w‖
2
L2(Im,X)

= km

∥∥∥∥ 1
km

∫ tm

tm−1

w(t)− w(t∗m)dt
∥∥∥∥2
≤ k4

m‖∂2
tw‖

2
L2(Im,X),

which is (2.7) for w instead of y. The result now follows by density of the
space C2(Im, X) ∩H2(Im, X) in H2(Im, X).

Lemma 33. Let Assumption 29 be met. The interpolation operator πP∗
k

(X)
defined in (2.4) is stable in the sense

‖πP∗
k

(X)wk‖L2(I,X) ≤ C‖wk‖L2(I,X) ∀ wk ∈ Yk(X)

where C > 0 is a constant independent of k, and fulfills the error estimate

‖w − πP∗
k

(X)w‖L2(I,X) ≤ Ck
2‖∂2

tw‖L2(I,X) ∀ w ∈ H2(I,X).

Proof. See [MV11, Lemma 5.6] for a similar result.

2.1.2 Schemes, stability, and error estimates
The first step in the semidiscretization of problem (P) consists in defining
a discrete adjoint function pk as a counterpart of p given by (1.11). Here
we use more regular ansatz functions compared to the state discretization
introduced below, namely functions in Pk. The reason will become clear in
the later analysis of the error in the control.
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2 The discretized problem

In this subsection, we now consider the concrete case X := H1
0 (Ω) if not

otherwise stated and abbreviate

Pk := Pk(H1
0 (Ω)), P ∗k := P ∗k (H1

0 (Ω)), and Yk := Yk(H1
0 (Ω)). (2.9)

We extend the bilinear form A of (1.8) in its first argument toW (I)∪Yk,
thus consider the operator

A : W (I) ∪ Yk ×W (I)→ R, A given by (1.8). (2.10)

Definition 34 (Time-discrete adjoint equation). For h ∈ L2(I,H−1(Ω))
find pk ∈ Pk such that

A(ỹ, pk) =
∫ T

0
〈h(t), ỹ(t)〉H−1(Ω)H1

0 (Ω) dt ∀ ỹ ∈ Yk. (2.11)

This problem admits a unique solution pk ∈ Pk. This follows from the
subsequent considerations. We have a unique decomposition of a function
pk ∈ Pk via

pk(t) =
M∑
i=0

piΛi(t)

with coefficients pi ∈ H1
0 (Ω) and Λi ∈ Pk(R) being the usual hat functions

defined by Λi(tj) = δij for i, j ∈ {0, 1, . . . ,M}. Using this representation,
the coefficients pi are determined by the following backward in time Crank–
Nicolson scheme

pM = 0 ,

(pi−1 − pi, φ) + 1
2ki (∇(pi + pi−1),∇φ) =

〈∫
Ii

h(t) dt, φ
〉
H−1(Ω)H1

0 (Ω)

∀ i ∈ {M,M − 1, . . . , 1} ∀ φ ∈ H1
0 (Ω).
(2.12)

Remark 35. Note that if the data has the regularity h ∈ L2(I, L2(Ω)), we
have from (2.12) and elliptic regularity theory that ∆pk

∣∣
Im
∈ P1(Im, L2(Ω))

for all m = 1, . . . ,M .

We start the analysis of this scheme by giving a stability result, which
is a variant of [MV11, Lemma 4.2]. For a second stability result assuming
nonsmooth data, see also Corollary 41.

38



2.1 Time discretization of the state and adjoint equation

Lemma 36. Let pk ∈ Pk solve (2.11) with h ∈ L2(I, L2(Ω)). Then there
exists a constant C > 0 independent of k such that

‖pk‖H1(I,L2(Ω)) + ‖∇pk‖C(Ī,L2(Ω)) + ‖PYk∆pk‖I ≤ C‖h‖I .

If furthermore h ∈ L2(I,H1
0 (Ω)) holds, we have

‖∂t∇pk‖I + ‖∆pk‖C(Ī,L2(Ω)) ≤ C‖∇h‖I .

Proof. For a fixed m ∈ {1, . . . ,M} we define ỹ ∈ Yk by ỹ
∣∣
Im

:= −∂tpk
∣∣
Im

and zero elsewhere. Testing with ỹ in (2.11) we obtain using integration
by parts in the space W (I)

A(ỹ, pk) = 1
2‖∇pk(tm−1)‖2L2(Ω) + ‖∂tpk‖2Im

=
∫
Im

〈h, ỹ〉H−1(Ω)H1
0 (Ω) + 1

2‖∇pk(tm)‖2L2(Ω)

≤ ‖h‖Im‖∂tpk‖Im + 1
2‖∇pk(tm)‖2L2(Ω)

≤ 1
2

(
‖h‖2Im + ‖∂tpk‖2Im + ‖∇pk(tm)‖2L2(Ω)

)
,

where we used the Cauchy-Schwarz inequality and Cauchy’s inequality.
Rearranging terms yields

‖∇pk(tm−1)‖2L2(Ω)+‖∂tpk‖
2
Im
≤ ‖h‖2Im+‖∇pk(tm)‖2L2(Ω) ∀m = 1, . . . ,M.

Since pk
∣∣
Im
∈ P1(Im, H1

0 (Ω)) and pk(tM ) = 0, we arrive at

‖∂tpk‖I + ‖∇pk‖C(Ī,L2(Ω)) ≤ C‖h‖I . (2.13)

The first estimate except for the last summand now follows by the fun-
damental theorem of calculus for H1(I,X) functions, see, e.g., [Eva98,
Theorem 5.9.2].

From Remark 35 we know ∆pk
∣∣
Im
∈ P1(Im, L2(Ω)). Therefore, using

integration by parts in space, we derive from (2.11) the equation

(−∂tpk, ỹ)I − (∆pk, ỹ)I + 〈ỹ(T ), pk(T )〉H−1(Ω)H1
0 (Ω) = (h, ỹ)I ∀ ỹ ∈ Yk.

(2.14)
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2 The discretized problem

Since no space derivatives of ỹ appear in (2.14) anymore, we can extend
the equation by density to the space

Ŷk :=
{
v : [0, T ]→ H−1(Ω)

∣∣∣ v∣∣
Im
∈ P0(Im, L2(Ω))

}
.

We test (2.14) with the function ŷ := −PYk∆pk ∈ Ŷk and get since pk(T ) =
0

(−∂tpk,−PYk∆pk)I − (∆pk,−PYk∆pk)I = (h,−PYk∆pk)I ,

from which by orthogonality, i.e.,

(∆pk − PYk∆pk,PYk∆pk)I = 0,

and (2.13) the estimate ‖PYk∆pk‖I ≤ C‖h‖I follows.
Let us now assume that h ∈ L2(I,H1

0 (Ω)). With some m ∈ {1, . . . ,M}
fixed, we test (2.14) with a function ŷ ∈ Ŷk, given by ŷ

∣∣
Im

:= ∂t∆pk
∣∣
Im

,
and zero elsewhere. We obtain

‖∂t∇pk‖2Im + 1
2‖∆pk(ti−1)‖2 − 1

2‖∆pk(ti)‖2

= (∇h, ∂t∇pk)Im ≤
1
2

(
‖∇h‖2Im + ‖∂t∇pk‖2Im

)
∀ m = 1, . . . ,M.

From this, the second estimate follows as above.

Lemma 37. Let p ∈ H1(I,H2(Ω) ∩H1
0 (Ω))

⋂
H2(I, L2(Ω))) solve (1.11)

for some h, which is, e.g., the case (compare Lemma 8) if h ∈ H1(I, L2(Ω)),
h(T ) ∈ H1

0 (Ω). Let furthermore pk ∈ Pk solve (2.11) for the same h. Then
there holds

‖pk − p‖I ≤ Ck
2 (‖∂2

t p‖I + ‖∂t∆p‖I
)
.

Proof. See [MV11, Lemma 6.3] for a similar result.

Let us consider the discretization of the state equation (1.9).

Definition 38 (Time-discrete state equation).
For (f, g) ∈ L2(I,H−1(Ω))× L2(Ω) find yk ∈ Yk, such that

A(yk, vk) =
∫ T

0
〈f(t), vk(t)〉H−1(Ω)H1

0 (Ω) dt+ (g, vk(0)) ∀ vk ∈ Pk. (2.15)
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2.1 Time discretization of the state and adjoint equation

In view of (1.9), this is a Petrov–Galerkin discretization of the state and
by decomposing yk ∈ Yk as

yk =
M∑
i=1

yiχIi + yM+1χT

with yi ∈ H1
0 (Ω) for i = 1, . . . ,M , yM+1 ∈ H−1(Ω), we end up with

the following scheme, which has to hold for arbitrary φ ∈ H1
0 (Ω) with

〈·, ·〉 := 〈·, ·〉H−1(Ω)H1
0 (Ω).

(φ, y1 − g) + 1
2k1 (∇y1,∇φ) =

〈∫
I1

−(t− t1)
k1

f(t) dt, φ
〉

(φ, yi+1 − yi) + 1
2ki (∇yi,∇φ) + 1

2ki+1 (∇yi+1,∇φ)

=
〈∫

Ii

t− ti−1

ki
f(t) dt, φ

〉
+
〈∫

Ii+1

− t− ti+1

ki+1
f(t) dt, φ

〉
∀ 1 ≤ i ≤M − 1

〈
yM+1 − yM , φ

〉
+ 1

2kM (∇yM ,∇φ) =
〈∫

IM

t− tM−1

kM
f(t) dt, φ

〉
(2.16)

These equations can be solved subsequently from above to below yielding
unique coefficients y1, y2, . . . , yM+1 and therefore finally yk ∈ Yk. This
follows from the fact that each of the first M equations is a uniquely solv-
able elliptic equation (by the Lax-Milgram lemma) and the last equation
determines yM+1 ∈ H−1(Ω) uniquely from yM .
Note that the first equation can be interpreted as a (Rannacher) start-

up step, see [Ran84], for the Crank–Nicolson scheme given by the next
equations except the last one.

Remark 39. Note that if the data has the regularity f ∈ L2(I, L2(Ω)), we
have from (2.16) and elliptic regularity theory that ∆yk

∣∣
Im
∈ P0(Im, L2(Ω))

for all m = 1, . . . ,M . Finally we get yM+1 ∈ L2(Ω).

As a first step in the analysis of this scheme, we consider the stability
for different norms depending on the assumed smoothness of the data.
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2 The discretized problem

Lemma 40. Let yk ∈ Yk be the solution of (2.15) for data (f, g) ∈
L2(I,H−1(Ω)) × L2(Ω). Then there holds with a constant C > 0 inde-
pendent of k the stability estimate

‖yk‖I ≤ C
(
‖f‖L2(I,H−1(Ω)) + ‖g‖

)
.

If furthermore f ∈ L2(I, L2(Ω)) is fulfilled, we have

‖∇yk‖I ≤ C (‖f‖I + ‖g‖) .

If even f ∈ L2(I,H1
0 (Ω)) and g ∈ H1

0 (Ω), there holds

‖∆yk‖I ≤ C (‖∇f‖I + ‖∇g‖) .

If f ∈ Yk and g ∈ H1
0 (Ω), we have

‖∆yk‖I ≤ C (‖f‖I + ‖∇g‖) .

Proof. Let pk := pk(yk) ∈ Pk be the solution of (2.11) with right-hand side
yk. Using yk as a test function, too, we get using integration by parts in
the space W (I)

‖yk‖2I = A(yk, pk)

=
∫ T

0
〈f, pk〉H−1(Ω)H1

0 (Ω) dt+ (g, pk(0))

≤ C
(
‖f‖L2(I,H−1(Ω))‖pk‖L2(I,H1

0 (Ω)) + ‖g‖‖pk(0)‖
)

≤ C
(
‖f‖L2(I,H−1(Ω)) + ‖g‖

)
‖yk‖I .

Note that Lemma 36 was used in the last step.
For the second assertion, we now assume f ∈ L2(I, L2(Ω)). From Re-

mark 39 we know ∆yk
∣∣
Im
∈ P0(Im, L2(Ω)) and yk(T ) ∈ L2(Ω). Therefore,

using integration by parts in space, we derive from (2.15) the equation

(−∂tvk, yk)I − (vk,∆yk)I + (yk(T ), vk(T ))
= (f, vk)I + (g, vk(0)) ∀ vk ∈ Pk. (2.17)

Since no space derivatives of vk appear in (2.17) anymore, we can extend
the equation by density to the space

P̂k :=
{
v ∈ C([0, T ], L2(Ω))

∣∣∣ v∣∣
Im
∈ P1(Im, L2(Ω))

}
.
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2.1 Time discretization of the state and adjoint equation

Let vk := vk(yk) ∈ Pk be the solution of (2.11) with right-hand side yk.
Since by Remark 35 we have ∆vk ∈ P̂k, we get by (2.14), integration by
parts in space, and (2.17) the estimate

‖∇yk‖2I = (−∆yk, yk)I
= (−∂tvk,−∆yk)I − (∆vk,−∆yk)I
= (−∂t(−∆vk), yk)I − (−∆vk,∆yk)I
= (f,−∆vk)I + (g,−∆vk(0))
≤ C(‖f‖I + ‖g‖)‖∇yk‖I ,

with the help of the second part of Lemma 36.
The third assertion can be derived like the preceding one, using vk :=

vk(−∆yk), i.e., vk is the solution of (2.11) with right-hand side −∆yk. We
get

‖∆yk‖2I = (−∂tvk,−∆yk)I − (∆vk,−∆yk)I
= (−∂t(−∆vk), yk)I − (−∆vk,∆yk)I
= (f,−∆vk)I + (g,−∆vk(0))
= (∇f,∇vk)I + (∇g,∇vk(0))I
≤ C(‖∇f‖I + ‖∇g‖)‖∆yk‖I ,

again with the help of Lemma 36.
If f ∈ Yk, we use the first part of the previous estimate to get with the

help of orthogonality and the first estimate from Lemma 36

‖∆yk‖2I = (f,−∆vk)I + (g,−∆vk(0))
= (f,−PYk∆vk)I + (∇g,∇vk(0))
≤ C‖∆yk‖I(‖f‖I + ‖∇g‖),

from which the fourth assertion follows.

With the help of this lemma we can establish stability of the discrete
adjoint solution given data with minimal smoothness.

Corollary 41. Let pk ∈ Pk solve (2.11) with h ∈ L2(I,H−1(Ω)). Then
there exists a constant C > 0 independent of k such that

‖pk‖I ≤ C‖h‖L2(I,H−1(Ω)).
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2 The discretized problem

Proof. Let yk := yk(pk, 0) be the solution of (2.15) with right-hand side pk
and initial datum zero. We obtain

‖pk‖2I = A(yk, pk) =
∫
I

〈h, yk〉H−1(Ω)H1
0 (Ω)

≤ ‖h‖L2(I,H−1(Ω))‖yk‖L2(I,H1
0 (Ω)) ≤ C‖h‖L2(I,H−1(Ω))‖∇yk‖I

≤ C‖h‖L2(I,H−1(Ω))‖pk‖I , (2.18)

where the Poincaré inequality in space and Lemma 40 were used.

Although we consider nonconforming discretization schemes, the follow-
ing important property still holds due to the dense embedding W (0, T ) d

↪→
L2(I,H1

0 (Ω)).
Remark 42. Let y be the solution of (1.9) for some (f, g) ∈ L2(I,H−1(Ω))
×L2(Ω) and yk ∈ Yk be the solution of (2.15) for the same (f, g). Consider
also the solution p of (1.11) for some h ∈ L2(I,H−1(Ω)) and let pk ∈ Pk
solve (2.11) for the same h.
Then for the bilinear form A defined in (2.10), we have the property of

Galerkin orthogonality, which reads
A(ỹ, p− pk) = 0 ∀ ỹ ∈ Yk,
A(y − yk, p̃) = 0 ∀ p̃ ∈ Pk.

(2.19)

We now consider the error of the time discretization and establish -
as a byproduct - a superconvergence result, which will be useful in the
later analysis. The error estimate is an adaptation of [MV11, Lemma
5.2], whereas the superconvergence result is a slightly improved variant of
[DHV15, Corollary 4.3].
Lemma 43. Let (f, g) fulfill the requirements of Lemma 6, y ∈ W (I) be
the solution of (1.9), yk ∈ Yk be the solution of (2.15). Then for the error
we have the estimate

‖y − yk‖I ≤ Ck (‖∂ty‖I + ‖∆y‖I) ≤ Ck
(
‖f‖I + ‖g‖H1(Ω)

)
. (2.20)

If furthermore (f, g) has the regularity of Lemma 8, there holds the super-
convergence result

‖yk − PYky‖I ≤ Ck
2‖∂t∆y‖I

≤ Ck2
(
‖f‖H1(I,L2(Ω)) + ‖f(0)‖H1(Ω) + ‖g‖H1(Ω) + ‖∆g‖H1(Ω)

)
. (2.21)
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2.1 Time discretization of the state and adjoint equation

Proof. Let pk := pk(yk − PYky) ∈ Pk solve (2.11) with h := yk − PYky.
With the help of Galerkin orthogonality (2.19), the definition of PYk , and
integration by parts in space we derive

‖h‖2I = A(h, pk) = A(y − PYky, pk)
= −(∂tpk, y − PYky)I + (∇pk,∇(y − PYky))I
= (∇pk,∇(y − PYky))I = −(pk,∆(y − PYky))I
= −(pk − PYkpk,∆y − PYk∆y)I
≤ Ck2‖∂tpk‖I‖∂t∆y‖I ≤ Ck

2‖h‖I‖∂t∆y‖I .

(2.22)

In the last steps, we used the estimate (2.5) and Lemma 36. Invoking
Lemma 8, we get (2.21).

To prove (2.20), we use the first part of (2.22) to get

‖h‖2I = (∇pk,∇(y − PYky))I = (∇pk − PYk∇pk,∇(y − PYky))I
= (∇pk − PYk∇pk,∇y)I = −(pk − PYkpk,∆y)I
≤ Ck‖∂tpk‖I‖∆y‖I ≤ Ck‖h‖I‖∆y‖I .

(2.23)

Making use of the splitting

‖y − yk‖I ≤ ‖y − PYky‖I + ‖PYky − yk‖I ,

the estimate (2.20) is now a consequence of (2.23), (2.5) and Lemma 6.

As a consequence of this result, for Petrov–Galerkin approximations yk ∈
Yk of solutions y ∈ W (I) of (1.9) we can only expect O(k) convergence.
Since yk is piecewise constant in time, this is of course no surprise.

To obtain O(k2) convergence for the control approximations and even for
discretized states in problem (P), we rely on the following superconvergence
result for the midpoint interpolation ΠYk , which was given above for the
orthogonal projection PYk in (2.21). Note that the result can also be found
in [MV11, Lemma 5.3], but with another proof.

Corollary 44. Let y, yk solve (1.9) and (2.15), respectively, with data
f and g. Assume that y has the regularity y ∈ H1 (I,H2(Ω) ∩H1

0 (Ω)
)⋂

H2 (I, L2(Ω)
)
, which, e.g., is fulfilled if f and g satisfy the regularity

requirements of Lemma 8. Then there holds

‖yk −ΠYky‖I ≤ Ck
2 (‖∂2

t y‖I + ‖∂t∆y‖I
)
. (2.24)
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2 The discretized problem

Proof. With the result of Lemma 32 at hand, the claim is an immediate
consequence of (2.21).

Let us now consider stability and error estimates of time-discrete states
in L∞(I, L2(Ω)).

Lemma 45. Let Assumption 30 hold and y ∈W (I) and yk ∈ Yk be the so-
lution of (1.9) and (2.15), respectively, both for data (f, g) ∈ L2(I, L2(Ω))×
H1

0 (Ω). Then there holds the stability estimate

‖yk‖L∞(I,L2(Ω)) ≤ C(
√
k + 1)

(
‖f‖I + ‖g‖H1(Ω)

)
. (2.25)

For the error we have the estimate

‖y − yk‖L∞(I,L2(Ω)) ≤ C
√
k (‖∂ty‖I + ‖∆y‖I) . (2.26)

Proof. In view of Lemma 6, the stability estimate (2.25) is an immediate
consequence of (2.26). Thus it remains to show (2.26). Making use of the
properties (2.5) and (2.6) of the midpoint interpolation from Lemma 31,
and

‖y‖Im =
√
km ‖y‖L∞(Im,L2(Ω)) ∀ y ∈ P0(Im, L2(Ω)), (2.27)

we get

‖y − yk‖L∞(Im,L2(Ω))

≤ ‖y −ΠYky‖L∞(Im,L2(Ω)) + ‖ΠYky − yk‖L∞(Im,L2(Ω))

≤ ‖y −ΠYky‖L∞(Im,L2(Ω)) + k−1/2
m ‖ΠYky − yk‖Im

≤ ‖y −ΠYky‖L∞(Im,L2(Ω)) + k−1/2
m

(
‖ΠYky − y‖Im + ‖y − yk‖Im

)
≤ C

(√
km‖∂ty‖Im + k−1/2

m

(
km‖∂ty‖Im + ‖y − yk‖Im

))
.

(2.28)

With the help of (2.20) from Lemma 40 and Assumption 30, we are done.

A better convergence rate of the error is possible if the continuous state
y has more regularity, as the next Lemma shows.
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2.1 Time discretization of the state and adjoint equation

Lemma 46. Let Assumption 30 be fulfilled and let y and yk be as in
Corollary 44. For the error of the state, we have the improved estimate

‖y − yk‖L∞(I,L2(Ω)) ≤ Ck
(
‖∂ty‖L∞(I,L2(Ω)) + ‖∂t∆y‖I

)
. (2.29)

Proof. With (2.21) and (2.27) we deduce similarly as in (2.28)

‖y − yk‖L∞(Im,L2(Ω))

≤ ‖y − PYky‖L∞(Im,L2(Ω)) + ‖PYky − yk‖L∞(Im,L2(Ω))

≤ ‖y − PYky‖L∞(Im,L2(Ω)) + k−1/2
m ‖PYky − yk‖Im

≤ C
(
‖y − PYky‖L∞(Im,L2(Ω)) + k−1/2

m k2‖∂t∆y‖I
)

≤ C
(
km‖∂ty‖L∞(Im,L2(Ω)) + k−1/2

m k2‖∂t∆y‖I
)
.

We have seen above in Lemma 43 that if the state is discretized piecewise
constant in time, we can only expect first order convergence. The following
Lemma shows that a projected version of the discretized state converges
with order two to its continuous counterpart, if both depend on the same
given data. This will be used later to derive a similar result about the
optimal state and a projection of its discrete analogon.

Lemma 47. Let Assumption 29 be fulfilled and y and yk be given as in
Corollary 44. Then there holds

‖πP∗
k
yk − y‖I ≤ Ck

2 (‖∂2
t y‖I + ‖∂t∆y‖I

)
.

Proof. Making use of the splitting

‖πP∗
k
yk − y‖I = ‖πP∗

k
(yk −ΠYky)‖I + ‖πP∗

k
ΠYky − y‖I

= ‖πP∗
k

(yk −ΠYky)‖I + ‖πP∗
k
y − y‖I ,

the claim is an immediate consequence of Lemma 33 and Corollary 44.

One essential ingredient of our convergence analysis is given by the fol-
lowing result, a slightly improved version of [DHV15, Lemma 4.9].
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2 The discretized problem

Lemma 48. Let y and yk be as in Corollary 44, and let pk(h) ∈ Pk denote
the solution to (2.11) with right-hand side h. Then we have

‖pk(yk − y)‖C(Ī,L2(Ω)) ≤ Ck
2‖∂t∆y‖I .

Proof. By definition of the orthogonal projection we have

(yk − y, ỹ)I = (yk − PYky, ỹ)I ∀ ỹ ∈ Yk,

and since pk solves (2.11) one immediately obtains

pk(yk − y) = pk(yk − PYky).

Hence by Lemma 36 and (2.21) we get

‖pk(yk − y)‖C(Ī,L2(Ω)) = ‖pk(yk − PYky)‖C(Ī,L2(Ω))

≤ C‖yk − PYky‖I ≤ Ck
2‖∂t∆y‖I ,

which is the claim.

2.2 Space and time discretization of state and
adjoint equation

Using continuous piecewise linear functions in space, we can derive fully
discretized variants of the state and adjoint equation.

We consider a regular triangulation Th of Ω with mesh size

h := max
T∈Th

diam(T ),

see, e.g., [BS08, Definition (4.4.13)], and N = N(h) triangles. We assume
that h < 1. We also denote by h (in a slight abuse of notation) the grid
itself.

With the space

Xh :=
{
φh ∈ C0(Ω̄)

∣∣ φh∣∣T ∈ P1(T,R) ∀ T ∈ Th
}

(2.30)

we define Xh0 := Xh ∩H1
0 (Ω) to discretize H1

0 (Ω).
For the space grid we make use of a standard grid assumption, as we did

for the time grid. This assumption is also referred to as quasi-uniformity.
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2.2 Space and time discretization of state and adjoint equation

Assumption 49. There exists a constant µ > 0 independent of h such
that

h ≤ µ min
T∈Th

diam(T ).

With this assumption, the inverse estimate

‖∇φh‖ ≤ Ch−1‖φh‖ ∀ φh ∈ Xh (2.31)

is known to hold, see, e.g., [BS08, (4.5.12)].
Furthermore, the grid assumption guarantees that for every xh ∈ Xh0

the discrete Sobolev inequality

‖xh‖L∞(Ω) ≤ C`(h)‖∇xh‖ (2.32)

is valid where

`(h) =
{
|log h|

1
2 if d = 2,

h−
1
2 if d = 3.

(2.33)

For a proof of this result, we refer for d = 2 to [Tho06, Lemma 6.4] or
[Xu89, Theorem 3.4]. From the inverse inequality

‖xh‖L∞(Ω) ≤ Ch
−1/2‖xh‖L6(Ω),

which can be found in [BS08, (4.5.12)], the case d = 3 follows with the help
of the Sobolev embedding H1(Ω) ↪→ L6(Ω).

2.2.1 Interpolation operators
Lemma 50 (Ritz projection). By Rh : H1

0 (Ω) → Xh0 we denote the Ritz
projection which is defined by the relation

(∇Rhf,∇φh) = (∇f,∇φh) ∀ φh ∈ Xh0. (2.34)

It is stable in H1
0 (Ω) with

‖∇Rhf‖ ≤ ‖∇f‖ ∀ f ∈ H1
0 (Ω)

and it fulfills the error estimate

‖f −Rhf‖+ h‖∇(f −Rhf)‖ ≤ Chs‖f‖Hs(Ω)

∀ f ∈ Hs(Ω) ∩H1
0 (Ω), 1 ≤ s ≤ 2.
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2 The discretized problem

If furthermore Assumption 49 is satisfied, the Ritz projection has the almost
maximum-norm stability property

‖Rhf‖L∞(Ω) ≤ C|log h|‖f‖L∞(Ω),

from which the error estimate

‖Rhf − f‖L∞(Ω) ≤ C|log h|h2‖f‖W 2,∞(Ω)

follows.

Proof. The L2 results are well known, see, e.g., [Tho06, (1.24), Lemma
1.1, and chap. 19], and so are the L∞ results for d = 2, see, e.g., [Tho06,
Theorem 1.4 and the discussion afterwards] or [BS08, chap. 8.5]. The case
d = 3 was recently established in [LV16, Theorem 12].

We now extend the Ritz projection to a time-dependent operator.

Lemma 51 (Time-extended Ritz projection). The time-extended Ritz pro-
jection Rh : L2(I,H1

0 (Ω))→ L2(I,Xh0) is defined by the relation

(∇Rhf,∇φh)I = (∇f,∇φh)I ∀ φh ∈ L2(I,Xh0). (2.35)

It is stable in Lp(I,H1
0 (Ω)) with

‖∇Rhf‖Lp(I,L2(Ω)) ≤ ‖∇f‖Lp(I,L2(Ω)) ∀ f ∈ Lp(I,H1
0 (Ω)), 2 ≤ p ≤ ∞,

(2.36)
and it fulfills the error estimate

‖f −Rhf‖Lp(I,L2(Ω)) + h‖∇(f −Rhf)‖Lp(I,L2(Ω)) ≤ Ch
s‖f‖Lp(I,Hs(Ω))

∀ f ∈ Lp(I,Hs(Ω) ∩H1
0 (Ω)), 1 ≤ s ≤ 2 ≤ p ≤ ∞. (2.37)

If furthermore Assumption 49 is satisfied, the Ritz projection has the almost
maximum-norm stability property with respect to space

‖Rhf‖Lp(I,L∞(Ω)) ≤ C|log h|‖f‖Lp(I,L∞(Ω)) ∀ 2 ≤ p ≤ ∞, (2.38)

from which one can derive the error estimate

‖Rhf−f‖Lp(I,L∞(Ω)) ≤ C|log h|h2‖f‖Lp(I,W 2,∞(Ω)) ∀ 2 ≤ p ≤ ∞. (2.39)
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2.2 Space and time discretization of state and adjoint equation

Proof. By a Lebesgue point argument, one can show that (2.35) is equiva-
lent to “(2.34) holds for almost all t ∈ I”. Therefore, invoking Lemma 50,
one can immediately derive the claim.

For the error analysis of the fully discrete adjoint equation, we need the
following time projection, mapping time-differentiable function to piecewise
linear ones.

Definition 52 (Piecewise linear projection). The operator P t : H1(I,X)→
Pk(X) is defined by the relation

P tw(tm) = w(tm) ∀ 0 ≤ m ≤M. (2.40)

Note that since Pk(X) is a space of piecewise linear functions, the op-
erator P t is just the interpolation in time. Therefore, we have stability in
the sense

‖P tw‖L∞(I,X) ≤ C‖w‖L∞(I,X) ≤ C‖w‖H1(I,X), (2.41)

and by standard techniques one can show the error estimate

‖w − P tw‖Hs,l(I,X) ≤ Ck
r−s‖w‖Hr,l(I,X) (2.42)

where 0 ≤ s ≤ 1 ≤ r ≤ 2 ≤ l ≤ ∞, and w is supposed to have the regularity
on the right-hand side. See, e.g., [AM89, Lemma 2.2] for a similar result.

If X is a Hilbert space with inner product (., .)X , there is another possi-
bility to define P t, which will be useful in the later analysis, namely{

P tw(T ) = w(T ),∫
I
((P tw)t, pkt )X dt =

∫
I
(wt, pkt )X dt ∀ pk ∈ Pk(X).

(2.43)

To see the equivalence of both definitions, we define some pk ∈ Pk(X) by

pk(t) :=
{

(t− tm)φ if tm < t ≤ T ,
0 if t ≤ tm

where φ ∈ X is arbitrary and m ∈ {0, 1, . . . ,M − 1}. Plugging pk into
the second equation of (2.43) and making use of the first one, we conclude
(2.40).

To see the converse, note that (2.40) implies
∫
Im

(P tw)t dt =
∫
Im
wt dt

for all 1 ≤ m ≤ M by the fundamental theorem of calculus. Since the
derivatives of functions in Pk(X) are piecewise constant inX, we get (2.43).
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2 The discretized problem

2.2.2 Schemes, stability, and error estimates
We now define fully discrete ansatz and test spaces, directly derived from
their semidiscrete counterparts from (2.1), namely

Pkh := Pk(Xh0), P ∗kh := P ∗kh(Xh0), and Ykh := Yk(Xh0). (2.44)

These spaces lead to fully discrete state and adjoint equations, naturally
derived from the semidiscrete counterparts given by Definition 38 and 34,
respectively.

Definition 53 (Fully discrete adjoint equation). For h ∈ L2(I,H−1(Ω))
find pkh ∈ Pkh such that

A(ỹ, pkh) =
∫ T

0
〈h(t), ỹ(t)〉H−1(Ω)H1

0 (Ω) dt ∀ ỹ ∈ Ykh. (2.45)

Definition 54 (Fully discrete state equation). For (f, g) ∈ L2(I,H−1(Ω))×
L2(Ω) find ykh ∈ Ykh, such that

A(ykh, vkh) =
∫ T

0
〈f(t), vkh(t)〉H−1(Ω)H1

0 (Ω) dt+ (g, vkh(0)) ∀ vkh ∈ Pkh.

(2.46)

Existence and uniqueness of these two schemes follow as in the semidis-
crete case discussed above.

Remark 55. Note that in view of Remark 39 and Remark 35, in the
fully discrete setting we can only conclude ∆ykh

∣∣
Im
∈ P0(Im, H−1(Ω)) and

∆pkh
∣∣
Im
∈ P1(Im, H−1(Ω)) for allm = 1, . . . ,M , even if f ∈ L2(I, L2(Ω)).

The reason is the fact that Xh0 6⊂ H2(Ω).

As in the semidiscrete case, we start the analysis of the fully discrete
schemes with some stability results.

Lemma 56. Let pkh ∈ Pkh solve (2.45) with h ∈ L2(I, L2(Ω)). Then there
exists a constant C > 0 independent of k and h such that

‖pkh‖H1(I,L2(Ω)) + ‖∇pkh‖C(Ī,L2(Ω)) ≤ C‖h‖I .

Proof. Following the proof of Lemma 36 with the obvious modifications
gives the claim.
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2.2 Space and time discretization of state and adjoint equation

Similar to Remark 42, we have the following.

Remark 57. Let y be the solution of (1.9) for some (f, g) ∈ L2(I,H−1(Ω))
× L2(Ω) and let ykh ∈ Ykh be the solution of (2.46) for the same (f, g).
Consider also the solution p of (1.11) for some h ∈ L2(I,H−1(Ω)) and let
pkh ∈ Pkh solve (2.45) for the same h.
Then for the bilinear form A defined in (2.10), we have the property of

Galerkin orthogonality which reads

A(ỹ, p− pkh) = 0 ∀ ỹ ∈ Ykh,
A(y − ykh, p̃) = 0 ∀ p̃ ∈ Pkh.

(2.47)

In addition to Remark 42, we have

A(ỹ, p− pk) = 0 ∀ ỹ ∈ Ykh,
A(y − yk, p̃) = 0 ∀ p̃ ∈ Pkh.

(2.48)

The next Lemma is used in the proof of the next but one Lemma. It is
a variant of [MV11, Lemma 5.4, Corollary 5.5].

Lemma 58. Let yk = yk(f, g) ∈ Yk and ỹk = yk(PYkf, g) ∈ Yk be the
solutions of (2.15) for some (f, g) ∈ L2(I, L2(Ω)) × L2(Ω). By ykh =
ykh(f, g) ∈ Ykh and ỹkh = ykh(PYkf, g) ∈ Ykh we denote the solutions of
(2.46).
Then it holds with a constant C > 0 independent of k and h

‖yk − ỹk‖I + ‖ykh − ỹkh‖I ≤ Ck‖f‖I .

If in addition f ∈ H1(I, L2(Ω)) holds, we have

‖yk − ỹk‖I + ‖ykh − ỹkh‖I ≤ Ck
2‖∂tf‖I .

Proof. We substract the defining equation (2.15) for yk from the corre-
sponding one for ỹk, using vk ∈ Pk as a test function defined by ∂tvk :=
yk − ỹk and vk(T ) := 0. Using orthogonality, we get

‖yk − ỹk‖2I − (∇vk, ∂t∇vk)I = (vk, f − PYkf)I = (vk − PYkvk, f − PYkf).

Using integration by parts, we conclude

‖yk − ỹk‖2I + 1
2‖∇vk(0)‖2 ≤ C‖vk − PYkvk‖I‖f − PYkf‖I
≤ Ck‖∂tvk‖I‖f − PYkf‖I ≤ Ck‖yk − ỹk‖I‖f − PYkf‖I ,
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2 The discretized problem

where (2.5) was used. Depending on the regularity of f , one can now invoke
(2.5) again or make use of the stability of PYk given in Lemma 31.
In the same way the estimate for ykh can be derived.

We now use Galerkin orthogonality and the Ritz projection to establish
stability of the gradient of a fully discrete state ykh. Note that we can not
argue as in the proof of Lemma 40. We also provide an error estimate.

Lemma 59. Let y be the solution of (1.9) for some (f, g) ∈ L2(I,H−1(Ω))
× L2(Ω) and let ykh ∈ Ykh be the solution of (2.46) for the same (f, g).
Then with a constant C > 0 independent of k and h, it holds

‖ykh‖I ≤ C
(
‖f‖L2(I,H−1(Ω)) + ‖g‖

)
.

If furthermore Assumption 49 is satisfied as well as f ∈ L2(I, L2(Ω)), we
have

‖∇ykh‖I ≤ C (‖f‖I + ‖g‖) .
If in addition, without requiring Assumption 49, the regularity g ∈ H1

0 (Ω)
is fulfilled, we have the error estimate

‖y − ykh‖I ≤ C(h2 + k) (‖f‖I + ‖∇g‖) . (2.49)

Proof. Following the proof of Lemma 40 using Lemma 56 leads to the first
estimate.

For the second estimate, let pkh = pkh(h̃) be the solution of (2.45) with
right-hand side h̃ ∈ Ykh given by

h̃ :=
{
ykh −Rhyk if 0 ≤ t < T ,

0 if t = T

where yk = yk(f, g) is the solution of (2.15). We then get by Galerkin
orthogonality, the definition of the Ritz projection (2.35), and Lemma 56

‖h̃‖2I = A(h̃, pkh)
= −(∂tpkh, yk −Rhyk)I + (∇(yk −Rhyk),∇pkh)I
≤ ‖∂tpkh‖I‖yk −Rhyk‖I ≤ C‖h̃‖I‖yk −Rhyk‖I .

(2.50)

Together with the error estimate of the Ritz projection (2.37) we obtain

‖ykh −Rhyk‖I ≤ Ch‖∇yk‖I .
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2.2 Space and time discretization of state and adjoint equation

Using the inverse estimate (2.31), with the help of (2.36) we get

‖∇ykh‖I ≤ ‖∇(ykh −Rhyk)‖I + ‖∇Rhyk‖I
≤ Ch−1‖ykh −Rhyk‖I + ‖∇Rhyk‖I
≤ Ch−1h‖∇yk‖I + C‖∇yk‖I .

Using Lemma 40, we conclude the second estimate.
For the error estimate, consider the solutions ỹk and ỹkh from Lemma 58.

We split the error into four parts

‖y − ykh‖I ≤ C‖y − yk‖I + ‖yk − ỹk‖I + ‖ỹk − ỹkh‖I + ‖ỹkh − ykh‖I
= I + II + III + IV,

We can estimate I by Lemma 43, and the summands II and IV can be
treated by Lemma 58.

Thus it remains to estimate summand III. We use (2.50) together with
(2.37) and the last estimate of Lemma 40 to get

‖ỹkh − ỹk‖I ≤ ‖ỹkh −Rhỹk‖I + ‖Rhỹk − ỹk‖I
≤ Ch2‖∆ỹk‖I ≤ Ch

2(‖f‖I + ‖∇g‖). (2.51)

For completeness, let us also mention the stability of the solution of the
fully discrete adjoint equation for nonsmooth data.

Corollary 60. Let Assumption 49 be satisfied. Let pkh ∈ Pkh solve (2.45)
with h ∈ L2(I,H−1(Ω)). Then there exists a constant C > 0 independent
of k and h such that

‖pkh‖I ≤ C‖h‖L2(I,H−1(Ω)).

Proof. The proof can be established as the corresponding one in Corol-
lary 41 making use of Lemma 59.

In the previous corollary, the Assumption 49 is redundant and stability
can be established even pointwise in time.

Lemma 61. Let pkh ∈ Pkh solve (2.45) with h ∈ L2(I,H−1(Ω)). Then
there exists a constant C > 0 independent of k and h such that

‖pkh‖L∞(I,L2(Ω)) ≤ C‖h‖L2(I,H−1(Ω)).
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2 The discretized problem

Proof. To prove this, combine [AM89, Theorem 3.1] with the formula (2.6)
loc. cit.

Let us now consider the error of the fully discrete adjoint state. We begin
with an L2(I, L2(Ω)) norm result.

Lemma 62. Let p solve (1.11) for some h such that p has the regularity
p ∈ H1 (I,H2(Ω) ∩H1

0 (Ω)
)⋂

H2 (I, L2(Ω)
)
, which is fulfilled, e.g., if h

satisfies the regularity requirements of Lemma 8. Let furthermore pkh ∈
Pkh solve (2.45) for the same h. Then it holds

‖pkh − p‖I ≤ C(k2 + h2)(‖ptt‖I + ‖∆pt‖I).

Proof. We start with the splitting

‖p− pkh‖I ≤ ‖p− P
tRhp‖I + ‖P tRhp− pkh‖I ,

and estimate

‖p− P tRhp‖I = ‖p− P tp‖I + ‖P tp− P tRhp‖I
≤ C(k2‖ptt‖I + h2‖∆pt‖I),

where (2.42), (2.41), and (2.37) were used. We set

ekh := P tRhp− pkh ∈ Pkh,

and observe that ekh(T ) = 0 by (2.40). Consider the solutions y = y(ekh, 0)
and ykh = ykh(ekh, 0) of the state equation (1.9) and the fully discrete state
equation (2.46), respectively, with right-hand side ekh and initial value zero.
By Galerkin orthogonality, the definition of the Ritz projection (2.35), and
(2.43) we conclude

‖ekh‖2I = A(ekh, ykh) = A(P tRhp− p, ykh)
= −(∂t(P tRhp− p), ykh)I + (∇(P tRhp− p),∇ykh)I
= −(Rhpt − pt, ykh)I − (∆(P tp− p), ykh − y)I − (P tp− p,∆y)I
≤ C(h2‖∆pt‖I‖ykh‖I + k‖∆pt‖I(k + h2)‖ekh‖I + k2‖ptt‖I‖∆y‖I),

where in the last step the error estimates for the Ritz projection (2.37),
the projection P t given by (2.42), and (2.49) were used.
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2.2 Space and time discretization of state and adjoint equation

Consequently, since k < 1 was assumed at the beginning of the chapter,
we arrive at

‖ekh‖I ≤ C(h2 + k2)(‖∆pt‖I + ‖ptt‖I).

Remark 63. Since the underlying scheme of the fully discrete adjoint
equation is the Crank–Nicolson scheme, the convergence rate h2 + k2 is a
well known result. It can also be found in [AM89, Corollary 3.4], where
more smoothness on p is assumed than we just did above. This difference
is crucial for p̄ if α = 0.

We next give a superconvergence result which is the key ingredient to
establish a pointwise-in-time error estimate for the fully discrete adjoint
state.

Lemma 64. Let the assumptions of Lemma 62 be fulfilled. Then there
holds

‖∂t(P tRhp− pkh)‖I + ‖∇(P tRhp− pkh)‖C(Ī,L2(Ω)) ≤ C
(
h2 + k

)
‖∆pt‖I .

If furthermore p has the additional regularity p ∈ H2(I,H2(Ω) ∩H1
0 (Ω)),

the superconvergence property

‖∂t(P tRhp− pkh)‖I + ‖∇(P tRhp− pkh)‖C(Ī,L2(Ω))

≤ C
(
h2‖∆pt‖I + k2‖∆ptt‖I

)
is valid.

Proof. From Galerkin orthogonality we conclude

A(p− P tRhp+ P tRhp− pkh, ykh) = 0.

Setting p1 := p− P tRhp and p2 := P tRhp− pkh ∈ Pkh, we rewrite this as

−(∂t(p1 + p2), ykh)I + (∇(p1 + p2),∇ykh)I = 0.

Seperating p1 and p2, we obtain

−(∂tp2, ykh)I + (∇p2,∇ykh)I = (∂tp1, ykh)I − (∇p1,∇ykh)I .
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2 The discretized problem

Plugging in ykh ∈ Ykh defined by ykh
∣∣
Im

:= −∂tp2
∣∣
Im

for some fixed interval
Im and zero elsewhere, applying integration by parts, and making use of
the relations (2.35) and (2.43) gives

‖∂tp2‖2Im + 1
2‖∇p2(ti−1)‖2

= 1
2‖∇p2(ti)‖2 − (∂tp1, ∂tp2)Im + (∇p1,∇∂tp2)Im

= 1
2‖∇p2(ti)‖2 − (∂t(p−Rhp), ∂tp2)Im − (∇(p− P tp),∇∂tp2)Im

= 1
2‖∇p2(ti)‖2 − (∂t(p−Rhp) + ∆(p− P tp), ∂tp2)Im .

Using the Cauchy-Schwarz and Cauchy’s inequality, we end up with

1
2

(
‖∂tp2‖2Im + ‖∇p2(ti−1)‖2

)
≤ 1

2

(
‖∇p2(ti)‖2 + ‖pt −Rhpt‖2Im + ‖∆p− P t∆p‖2Im

)
.

We recall p2(T ) = 0, and since Pkh is piecewise linear in time, we conclude

‖∂tp2‖I + ‖∇p2‖C(Ī,L2(Ω)) ≤
(
‖pt −Rhpt‖I + ‖∆p− P t∆p‖I

)
≤ C

(
h2‖∆pt‖I + k‖∆pt‖I

)
,

where (2.42) and (2.37) were used.
If p fulfills the additional regularity, one can replace the term “k‖∆pt‖I”

by “k2‖∆ptt‖I”.

Lemma 65. Let the assumptions of Lemma 62 be fulfilled. Then it holds

‖p− pkh‖L∞(I,L2(Ω)) ≤ C(h2 + k)
(
‖∆pt‖I + ‖pt‖L∞(I,L2(Ω))

)
.

If in addition p ∈ H2(I,H2(Ω)∩H1
0 (Ω)) and ptt ∈ L∞(I, L2(Ω)) is known

to hold, the improved estimate

‖p− pkh‖L∞(I,L2(Ω)) ≤ C(h2 + k2)
(
‖∆pt‖I + ‖pt‖L∞(I,L2(Ω))

)
+ Ck2

(
‖∆ptt‖I + ‖ptt‖L∞(I,L2(Ω))

)
is valid.
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2.2 Space and time discretization of state and adjoint equation

Proof. We split the error into two parts and use Lemma 64 to conclude
with L := L∞(I, L2(Ω))

‖p− pkh‖L ≤ ‖P
tRhp− pkh‖L + ‖p− P tRhp‖L

≤ ‖∂t(P tRhp− pkh)‖I + ‖P tp− P tRhp‖L + ‖p− P tp‖L
≤ C

(
(h2 + k)‖∆pt‖I + ‖p−Rhp‖L + ‖p− P tp‖L

)
,

where stability of P t given by (2.41) and the fact that (P tRhp−pkh)(T ) = 0
were used. With the error estimate of the Ritz projection (2.37) and the
error estimate of the time projection (2.42), we finally get

‖p− pkh‖L∞(I,L2(Ω))

≤ C
(

(h2 + k)‖∆pt‖I + h2‖∆p‖L∞(I,L2(Ω)) + k‖pt‖L∞(I,L2(Ω))

)
.

If the additional regularity holds, the modifications are obvious.

Let us now establish the analog of Lemma 48 and the superconvergence
result of Lemma 43, i.e., (2.21) for fully discretized objects.
Lemma 66. Let y ∈ Y and ykh ∈ Ykh solve (1.9) and (2.46), respectively,
with data (f, g) as in Lemma 8. By pkh(h) ∈ Pkh we denote the solution
to (2.45) with right-hand side h. Then it holds

‖ykh − PYky‖I + ‖pkh(ykh − y)‖C(Ī,L2(Ω)) ≤ C(k2F1(f, g) + h2F2(f, g))

with
F2(f, g) := ‖f‖I + ‖g‖H1(Ω)

and

F1(f, g) := F2(f, g) + ‖∂tf‖I + ‖f(0)‖H1(Ω) + ‖∆g‖H1(Ω).

Proof. We first observe that the estimate (2.21) in combination with (2.51)
and Lemma 58 yields the inequality

‖ykh − PYky‖I ≤ C(k2F1(f, g) + h2F2(f, g)).

From this, we get analogously to the proof of Lemma 48
‖pkh(ykh − y)‖C(Ī,L2(Ω)) = ‖pkh(ykh − PYky)‖C(Ī,L2(Ω))

≤ C‖ykh − PYky‖I ,

where Lemma 56 was used. Combining both estimates proves the claim.
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2 The discretized problem

2.3 Discretization of the optimal control problem
With the results of the previous sections, we are now able to introduce the
discretized optimal control problem which reads

min
ykh∈Ykh,u∈Uad

J(ykh, u) = min 1
2‖ykh − yd‖

2
I + α

2 ‖u‖
2
U ,

s.t. ykh = Skh(Bu, y0)
(Pkh)

where α, B, y0, yd, and Uad are taken as in (P) and Skh is the solution
operator associated to the fully discrete state equation (2.46). Recall that
the space Ykh was introduced in (2.44).
For every α > 0, this problem admits a unique solution triple (ūkh, ȳkh,

p̄kh) where ȳkh = Skh(Būkh, y0) and p̄kh denotes the discrete adjoint state
which is the solution of the fully discrete adjoint equation (2.45) with right-
hand side h := ȳkh−yd. The first order necessary and sufficient optimality
condition for problem (Pkh) is given by

ūkh ∈ Uad, (αūkh +B∗p̄kh, u− ūkh)U ≥ 0 ∀ u ∈ Uad, (2.52)

which can be rewritten as

ūkh = PUad

(
− 1
α
B∗p̄kh

)
. (2.53)

The before mentioned facts can be proven in the same way as for the
continuous problem (P).

Note that the control space U is not discretized in the formulation (Pkh).
In the numerical treatment, the relation (2.53) is instead exploited to get
a discrete control. This approach is called Variational Discretization and
was introduced by Hinze in [Hin05], see also [Hin+09, Chapter 3.2.5] for
further details.
Remark 67. In the case α = 0, problem (Pkh) has at least one solution,
but only ȳkh and p̄kh are unique, whereas an associated optimal control is
in general non-unique. The reason is that f 7→ Skh(f, y0) is not injective
in contrast to f 7→ S(f, y0).

2.3.1 Error estimates for the regularized problem
In what follows, we use the notation ykh(v) := Skh(Bv, y0) with v ∈ Uad,
and pkh(h) is an abbreviation of the solution to (2.45) with right-hand side
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2.3 Discretization of the optimal control problem

h ∈ L2(I,H−1(Ω)). Furthermore, y(v) and p(h) denote the continuous
counterparts. Note that therefore we have ȳ = y(ū), ȳkh = ykh(ūkh),
p̄ = p(ȳ − yd), and p̄kh = pkh(ȳkh − yd).
The following Lemma provides a first step towards an error estimate

with respect to the control and state discretization. It is the fully discrete
variant of [DHV15, Lemma 5.1].

Lemma 68. Let ū and ūkh solve (P) and (Pkh), respectively, both for the
same α ≥ 0. Then there holds

α‖ūkh − ū‖2U + ‖ȳkh − ykh(ū)‖2I
≤
(
B∗
(
pkh(ȳ − yd)− p̄+ pkh(ykh(ū)− ȳ)

)
, ū− ūkh

)
U
.

Proof. Inserting ūkh into (1.10) and ū into (2.52) and adding up the re-
sulting inequalities yields(

α(ūkh − ū) +B∗(p̄kh − p̄), ūkh − ū
)
U
≤ 0.

After some simple manipulations we obtain

α‖ūkh−ū‖2U ≤
(
B∗
(
pkh(ȳ − yd)− p̄+ pkh(ykh(ū))− pkh(ȳ)

)
, ū− ūkh

)
U

+
(
B∗
(
p̄kh − pkh(ykh(ū)− yd)

)
, ū− ūkh

)
U
,

and since the last line equals −‖ȳkh−ykh(ū)‖2I , we end up with the desired
estimate by moving this term to the left.

We can now prove an error estimate, which resembles the standard esti-
mate for variational discretized controls. It is build upon [DHV15, Theorem
5.2]. Since we are interested in the limit behavior α→ 0, we try to give a
precise dependence of the right-hand side on α. Note the splitting in terms
of the quantities d0 and d1. In contrast to d0, the term d1 is not bounded
if α→ 0.

Theorem 69. Let ū and ūkh solve (P) and (Pkh), respectively, both for
the same α ≥ 0. Then there exists a constant αmax > 0 independent of k
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2 The discretized problem

and h, so that for all 0 ≤ α ≤ αmax (with the convention “1/0 =∞ = d1”
in the case of α = 0) the estimate
√
α‖ūkh − ū‖U + ‖ȳkh − ykh(ū)‖I

≤ C min
(
k2 + h2
√
α

d0, (k + h)
√
‖ūkh − ū‖U

√
d0

)
+ C min

(
k2d1, kd0

)
+ Ch2d0

≤ C max(d0 + 1,
√
d0) min

(
k2

α
+ h2
√
α
, k + h

) (2.54)

is satisfied. Here, the constants

d0 = d0(ū) = ‖yd‖H1(I,L2(Ω)) + ‖∇yd(T )‖+ ‖Bū‖I + ‖∇y0‖

and
d1 = d1(ū) = ‖Bū‖H1(I,L2(Ω)) + ‖∇Bū(0)‖+ ‖∇∆y0‖

are from the estimates (1.25) in Lemma 12.

Proof. We split the right-hand side of the estimate from Lemma 68 and
get with the Cauchy-Schwarz inequality

α‖ūkh − ū‖2U + ‖ȳkh − ykh(ū)‖2I
≤ ‖pkh(ȳ−yd)−p̄‖I‖ū−ūkh‖U+(B∗ (pkh (ykh (ū)− ȳ)) , ū− ūkh)U = I+II.

With the help of Lemma 62 and Lemma 12, we conclude

‖pkh(ȳ − yd)− p̄‖I ≤ C(k2 + h2)(‖p̄tt‖I + ‖∆p̄t‖I) ≤ C(k2 + h2)d0.

Now we use Cauchy’s inequality to obtain

I ≤ C

α
‖pkh(ȳ − yd)− p̄‖2I + α

2 ‖ū− ūkh‖
2
U .

Here, the second addend can be moved to the left. Both estimates can be
summarized as

√
I ≤ C min

(
k2 + h2
√
α

d0, (k + h)
√
‖ūkh − ū‖U

√
d0

)
.
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2.3 Discretization of the optimal control problem

The addend II can be estimated as

II = (ykh(ū)− ȳ, ykh(ū)− ȳkh)I ≤
1
2(‖ykh(ū)− ȳ‖2I + ‖ykh(ū)− ȳkh‖2I).

We move the second term to the left. Note that in the previous estimate
ȳ can be replaced by PYk ȳ by definition of PYk . We thus can invoke ei-
ther the error estimate of the state equation (2.49) from Lemma 59 or the
superconvergence result from Lemma 66. In conclusion, we have
√
II ≤ C min

(
(k + h2)d0, k

2d1 + h2d0
)

= min
(
kd0, k

2d1
)

+ h2d0.

Together with the estimate for
√
I, we obtain the first inequality of the

claim.
For the second inequality, we first note that with the help of the projec-

tion formula (1.12), Lemma 11, and Lemma 6 one immediately derives the
estimate

‖ū‖H1(I,Ũ) + ‖Bū(0)‖H1(Ω)

≤ C

α
(‖p̄‖H1(I,L2(Ω)) + ‖p̄(0)‖H1(Ω)) + C(a) + C(b)

≤ C

α
(‖yd‖I + ‖ū‖U + ‖y0‖H1(Ω)) + C(a) + C(b)

(2.55)

where Ũ ∈ {RD, L2(Ω)}, depending on whether located or distributed con-
trols are given, and C(x) = ‖x‖H1(I,Ũ) + ‖x(0)‖X with X = H1(Ω) (dis-
tributed controls) or X = RD (located controls). This term is bounded
due to Assumption 10.

Since there exists an αmax > 0, depending only on the data a, b, y0, yd,
such that

∀ 0 ≤ α ≤ αmax : d1 + d+
1 ≤ C

1
α

(d0 + 1) (2.56)

holds with d+
1 := d+

1 (ū) from the estimates (1.25) in Lemma 12, and since√
‖ūkh − ū‖U is bounded independently of α due to the definition of Uad,

we get the claim.

From the proof of the previous Theorem, one can immediately derive a
first robust (with respect to α→ 0) error bound for the optimal state.
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2 The discretized problem

Corollary 70. Let ū and ūkh solve (P) and (Pkh), respectively, both for
the same arbitrarily chosen α ≥ 0. Then there holds with a constant C > 0
independent of α that

‖ȳ − ȳkh‖I ≤ C(k + h) max(d0 + 1,
√
d0)

with d0 as in Theorem 69.

Proof. Combining

‖ȳ − ȳkh‖I ≤ ‖ykh(ū)− ȳkh‖I + ‖ȳ − ykh(ū)‖I

with the previous Theorem and (2.49) from Lemma 59 proves the claim.

Now, from the above Theorem we derive further non-robust estimates
for the discrete state and adjoint state. Finally, we prove second order
convergence for πP∗

k
ȳkh, i.e., the piecewise linear interpolation on the dual

grid of the optimal state. This function is obtained for free from ȳkh, since
ȳkh only has to be evaluated on the dual time grid. Compare [DHV15,
Theorem 5.3] for the convergence of the interpolation in the semidiscrete
case.

Corollary 71. Let ū and ūkh denote the solutions to (P) and (Pkh), re-
spectively, both for the same sufficiently small α > 0 (in the sense of The-
orem 69). With d0 and d1 as in Theorem 69 and

d+
1 := d+

1 (ū) = d1(ū)+C(‖∂2
t yd‖I+‖∇∂tyd(T )‖+‖∇∆yd(T )‖+‖∇Bū(T )‖

from the estimates (1.25) in Lemma 12, the estimates

‖ū− ūkh‖U ≤ C(k
2d1√
α

+ k2 + h2

α
d0) ≤ C( k2

α3/2 + h2

α
)(d0 + 1),

‖ȳ − ȳkh‖I ≤ C(k + k2

α
+ h2
√
α

)(d0 + 1), and

α‖ū− ūkh‖L∞(I,Ũ) + ‖p̄− p̄kh‖L∞(I,L2(Ω)) + ‖ȳ − πP∗
k
ȳkh‖I

≤ C(k2d+
1 + k2 + h2

√
α

d0) ≤ C(k
2

α
+ h2
√
α

)(d0 + 1)

hold with Ũ ∈ {RD, L2(Ω)} depending on whether located or distributed
controls are given.
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2.3 Discretization of the optimal control problem

Proof. The first estimate for the optimal control and the estimate for the
optimal state follow from Theorem 69. For the latter, we argue as in the
proof of Corollary 70.

For the optimal adjoint state, we split the error into three parts to obtain
with L := L∞(I, L2(Ω))

‖p̄− p̄kh‖L
≤ ‖p̄− pkh(ȳ− yd)‖L + ‖pkh(PYk ȳ− ykh(ū))‖L + ‖pkh(ykh(ū)− ȳkh)‖L.

With the second error estimate from Lemma 65, the regularity given in
Lemma 12, and the estimate from Lemma 66, we conclude

‖p̄− pkh(ȳ − yd)‖L + ‖pkh(PYk ȳ − ykh(ū))‖L ≤ C(h2d0 + k2d+
1 ),

since d1 ≤ d+
1 .

Stability from Lemma 56 combined with Theorem 69 gives the estimate

‖pkh(ykh(ū)− ȳkh)‖L ≤ C
k2 + h2
√
α

d0 + Ck2d1 + Ch2d0.

From this, we get

‖p̄− p̄kh‖L ≤ C
k2 + h2
√
α

d0 + Ck2d+
1 .

The projection formulae (1.12) and (2.53), Lipschitz continuity of the
projection given in Lemma 11, and stability of B∗ yield

‖ū− ūkh‖L∞(I,Ũ) ≤ C
1
α
‖p̄− p̄kh‖L.

Together which with the just established estimate this yields the pointwise-
in-time error estimate for the optimal control.

Let us now treat the error ‖ȳ − πP∗
k
ȳkh‖I . We split the norm into three

parts:

‖ȳ − πP∗
k
ȳkh‖I

≤ ‖ȳ − πP∗
k
yk(ū)‖I + ‖πP∗

k
(yk(ū)− ykh(ū))‖I + ‖πP∗

k
(ykh(ū)− ȳkh)‖I .

For the first term we use the superconvergence Lemma 47 and regularity
from Lemma 12 to get the estimate

‖ȳ − πP∗
k
yk(ū)‖I ≤ Ck

2d1. (2.57)
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2 The discretized problem

The second addend can be estimated using stability of the interpolation
operator given by Lemma 33, the connection between semidiscrete and fully
discrete state given by the estimate (2.51) and Lemma 58. Altogether, this
yields

‖πP∗
k

(yk(ū)− ykh(ū))‖I ≤ C‖yk(ū)− ykh(ū)‖I ≤ C(k2d1 + h2d0).

Finally, for the third term, we use again Lemma 33 and Theorem 69 to
obtain the estimate

‖πP∗
k

(ykh(ū)− ȳkh)‖I ≤ C(k2d1 + k2 + h2
√
α

d0).

Collecting all estimates leads to

‖ȳ − πP∗
k
ȳkh‖I ≤ C(k2d1 + k2 + h2

√
α

d0).

Using the inequality (2.56), we can finally reduce the non-robust con-
stants d1 and d+

1 to the robust one d0.

Let us comment on the estimates of Theorem 69 and Corollary 71. These
estimates show that if α > 0 is fixed, we have convergence rates h2 + k2

except for the state error. Invoking the regularization error, one obtains
estimates for the total error between the limit problem and the discrete
regularized one. From this, a coupling rule for the parameters α, k and h
can be derived.

As an example, consider the error in the projected state for the special
case κ = 1. With the help of Theorem 19.3 (or 4), and Corollary 71 we get
with the inequality (2.56) the estimate

‖ȳ0 − πP∗
k

(ȳkh)‖I ≤ ‖ȳ0 − ȳα‖I + ‖ȳα − πP∗
k

(ȳkh)‖I

≤ C(α+ k2d+
1 + k2 + h2

√
α

d0) ≤ C(α+ k2

α
+ h2
√
α

)(d0 + 1), (2.58)

which implies ‖ȳ0− πP∗
k

(ȳkh)‖I ≤ Ck = Ch4/3 when setting α = k = h4/3.
However, if the decay estimate d+

1 ≤ C
α , i.e., (2.56), can be improved, we

can get a better convergence rate (with respect to k) for the total error. In
subsection 1.4.4 we saw that this is indeed possible in the bang-bang case.
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2.3 Discretization of the optimal control problem

Unfortunately, space convergence of order h2 is not achievable in the
above mentioned estimates if α tends to zero due to α in the denominator.
To overcome this, we establish other estimates in the next subsection. The
question of improving the decay estimate (2.56) is discussed in the next
but one subsection using the estimates of the next subsection.

2.3.2 Robust error estimates

All the previous estimates (except Corollary 70) are not robust for α→ 0,
since α appears always in a denominator on the right-hand side. Especially,
convergence of order h2 is not achievable as discussed at the end of the
previous subsection. With some refined analysis, however, one can show
estimates which are robust with respect to α→ 0.
A key ingredient is Lemma 16, which was also very important for the

derivation of the regularization error.
Recall the notation from the beginning of subsection 2.3.1.

Theorem 72. Let Assumption 15 be fulfilled so that either (1.42) or (1.47)
from Theorem 19 holds. We denote the valid convergence rate for the con-
trol by αω1 . Then, either (1.44) or (1.49) is fulfilled. We abbreviate the
corresponding convergence rate by αω2 .
Let ū0 be the solution of (P0) with associated state ȳ0. For some α ≥ 0

let in addition ūd := ūα,kh ∈ Uad be a (compare Remark 67) or (if α > 0)
the solution of (Pkh) with associated discrete state ȳd and adjoint state p̄d.
Recall that we fix D := 1 in the case of distributed controls. Then there
holds

‖ū0 − ūd‖L1(A,RD) ≤ C(αω1

+‖B∗(pkh−p)(y(ūd)−yd)‖κL∞(A,RD) +‖B∗(pkh−p)(y(ūd)−yd)‖
1

1+1/κ
L1(Ac,RD)

+‖B∗pkh(ykh(ūd)−y(ūd))‖κL∞(A,RD)+‖B
∗pkh(ykh(ūd)−y(ūd))‖

1
1+1/κ
L1(Ac,RD))

(2.59)
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2 The discretized problem

for the error in the control and

‖ȳ0 − ȳd‖I ≤ C(αω2

+‖B∗(pkh−p)(y(ūd)−yd)‖
1+κ

2
L∞(A,RD) +‖B∗(pkh−p)(y(ūd)−yd)‖1/2L1(Ac,RD)

+‖B∗pkh(ykh(ūd)−y(ūd))‖
1+κ

2
L∞(A,RD) +‖B∗pkh(ykh(ūd)−y(ūd))‖1/2L1(Ac,RD)

+ ‖ykh(ūd)− y(ūd)‖I) (2.60)

for the error in the state.

Proof. To the estimate (1.39) from Lemma 16 with u := ūd, i.e.,

C‖ūd − ū0‖1+1/κ
L1(A,RD) ≤ (−B∗p̄0, ū0 − ūd)U , (2.61)

we add the necessary condition (2.52) for ūd with u := ū0, which can be
rewritten as

α‖ū0 − ūd‖2U ≤ (αū0 +B∗p̄d, ū0 − ūd)U . (2.62)
We end up with

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖y(ū0)− y(ūd)‖2I

≤ C
(
−B∗p(y(ūd)− yd) +B∗pkh(ykh(ūd)− yd) + αū0, ū0 − ūd

)
U

≤ C
(
B∗(pkh − p)(y(ūd)− yd)︸ ︷︷ ︸

I

+B∗pkh(ykh(ūd)− y(ūd))︸ ︷︷ ︸
II

+ αū0︸︷︷︸
III

, ū0 − ūd
)
U
. (2.63)

We now use Lemma 18, Cauchy’s and Young’s inequality to estimate III
as

α(ū0, ū0 − ūd)U ≤ αC
(
‖T (ūd − ū0)‖H + ‖ūd − ū0‖L1(A,RD)

)
≤ Cα2 + 1

4‖T (ūd − ū0)‖2H + Cα1+κ + 1
4‖ūd − ū0‖1+1/κ

L1(A,RD).

The α-free terms can now be moved to the left, since ‖T (ūd − ū0)‖H =
‖y(ūd)−y(ū0)‖I . Note that Cα2 can be omitted if A = Ω, compare (1.51).
Thus only the term Cα2ω2 remains on the right-hand side.
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2.3 Discretization of the optimal control problem

For I and II, we proceed with the help of Young’s inequality to obtain

(∼, ū0 − ūd)U
= (∼, ū0 − ūd)L2(A,RD) + (∼, ū0 − ūd)L2(Ac,RD)

≤ C‖∼‖1+κ
L∞(A,RD) + 1

4‖ū0 − ūd‖1+1/κ
L1(A,RD) + ‖∼‖L1(Ac,RD)‖b− a‖L∞(Ac,RD)

and move the second addend to the left.
Finally, we end up with

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖y(ū0)− y(ūd)‖2I ≤ C(α2ω2

+‖B∗(pkh−p)(y(ūd)−yd)‖1+κ
L∞(A,RD)+‖B∗(pkh−p)(y(ūd)−yd)‖L1(Ac,RD)

+‖B∗pkh(ykh(ūd)−y(ūd))‖1+κ
L∞(A,RD)+‖B

∗pkh(ykh(ūd)−y(ūd))‖L1(Ac,RD).

From this we conclude the claim for the optimal control.
The just established estimate together with the decomposition

‖ȳ0 − ȳd‖I ≤ ‖ykh(ūd)− y(ūd)‖I + ‖y(ūd)− y(ū0)‖I

yields the claim for the optimal state.

Remark 73. The error estimate (2.59) in the previous Theorem for α > 0
is also valid if ū0 is replaced by ūα, i.e., the solution of (P) for some α > 0,
since by Theorem 19 we can estimate

‖ūα − ūd‖L1(A,RD) ≤ ‖ūα − ū0‖L1(A,RD) + ‖ū0 − ūd‖L1(A,RD)

≤ Cαω1 + ‖ū0 − ūd‖L1(A,RD).
(2.64)

Likewise, in (2.60) the state ȳ0 can be replaced by ȳα.
We will make use of this fact in the proof of the next Theorem.

Remark 74. In the previous Theorem, both total errors turned out to be
of two ingredients: A discretization error and a regularization error, the
latter given by the terms αω1 and αω2 , respectively, which are precisely the
regularization errors from Theorem 19. However, there is one exception:
The bang-bang case with κ > 1. Here, we expect from (1.46) a regularization
error of order ακ, which is weakend to α(κ+1)/2 in (2.60). Fortunately,
with some more effort, this setback can be overcome if all norms in (2.60)
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2 The discretized problem

(without taking into account their exponents) show the same asymptotic
behavior. This is the case for our discretization from above. Thus, we can
improve the theorem in this special case, see the next theorem.

In combination with the error estimates for the state and adjoint state
equations previously derived, we can now prove a first error estimate be-
tween solutions of (Pkh) and (P0), which is robust if α tends to zero. In
view of the numerical verification, we restrict ourselves now to the situation
A = ΩU and located controls.

Theorem 75. Let the assumptions of Theorem 72 be fulfilled. Further,
we assume located controls and A = ΩU (measure condition on the whole
domain).
Then there hold the estimates

‖ū0 − ūd‖2U + ‖ū0 − ūd‖L1(ΩU ,RD) ≤ C
(
α+ h2 + k

)κ (1 + d0(ūd)κ) (2.65)

for the error in the control, for the auxiliary error

‖ȳd − ykh(ūα)‖2I ≤ C(h2 + k)d0(ūα)
(
ακ + (h2 + k)κd0(ūd)κ

)
(2.66)

where by ūα we denote the solution of (P), and

‖ȳd−ȳ0‖I ≤ C
(
α

1+κ
2 + (h2 + k)min(1, 1+κ

2 )
)(

1 + d0(ūd)min(1, 1+κ
2 )
)

(2.67)

for the error in the state.
If κ > 1, we have the improved convergence rate

‖ȳd − ȳ0‖I ≤ C(ακ + h2 + k)(1 + max
(
d0(ūd)κ, d0(ūα)

)
), (2.68)

thus observe the regularization error (1.46).

Proof. Combining Theorem 72 with the adjoint error estimate in Lemma 65,
the adjoint stability from Lemma 56, the error estimate (2.49) in Lemma 59,
and the regularity given in Lemma 12 and Remark 13, we achieve (2.65)
and (2.67) except for the U error in the control. This error can be derived
from the corresponding L1 error by the estimate

‖ū0 − ūd‖2U ≤ ‖ū0 − ūd‖L∞(ΩU ,RD)‖ū0 − ūd‖L1(ΩU ,RD)

≤ ‖b− a‖L∞(ΩU ,RD)‖ū0 − ūd‖L1(ΩU ,RD),
(2.69)
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2.3 Discretization of the optimal control problem

which follows immediately from standard Lp interpolation, see, e.g., [AF03,
Theorem 2.11], and the definition of Uad.
Let us now tackle the improved state convergence, thereby proving the

estimate (2.66). We split the error into three parts and obtain with the
help of (1.46) and the error estimate (2.49) from Lemma 59

‖ȳd − ȳ0‖2I
≤ C

(
‖ȳd − ykh(ūα)‖2I + ‖ykh(ūα)− y(ūα)‖2I + ‖y(ūα)− y(ū0)‖2I

)
≤ C

(
‖ȳd − ykh(ūα)‖2I + (h2 + k)2d2

0(ūα) + α2κ
)
,

where we also used (1.25) from Lemma 12.
For the remaining term, we invoke Lemma 68 in combination with (2.59)

and Remark 73 and setting L := L∞(I, L2(Ω)) we obtain with the stability
of B∗ for located controls

‖ȳd − ykh(ūα)‖2I
≤ C

(
‖pkh(ȳα − yd)− p̄α‖L + ‖pkh(ykh(ūα)− ȳα)‖L

)
‖ūα − ūd‖L1(ΩU ,RD)

≤ C
(
‖pkh(ȳα − yd)− p̄α‖L + ‖pkh(ykh(ūα)− ȳα)‖L

)
·(

ακ + ‖(pkh − p)(y(ūd)− yd)‖κL + ‖pkh(ykh(ūd)− y(ūd))‖κL
)
.

(2.70)
Invoking again Lemma 65, Lemma 56, estimate (2.49) from Lemma 59,
and Lemma 12, we get

‖ȳd − ykh(ūα)‖2I ≤ C(h2 + k)d0(ūα)
(
ακ + (h2 + k)κdκ0 (ūd)

)
,

which is the auxiliary estimate (2.66) of the statement.
If κ > 1, we can use the Cauchy-Schwarz inequality to get from it the

estimate

‖ȳd − ykh(ūα)‖2I ≤ C
(

(h2 + k)2d2
0(ūα) + α2κ + (h2 + k)1+κd0(ūα)dκ0 (ūd)

)
.

Since κ > 1, collecting all estimates yields the inequality

‖ȳd − ȳ0‖2I ≤ C(α2κ + (h2 + k)2 max
(
d2κ

0 (ūd), d2
0(ūα)

)
),

from which we finally get (2.68).
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2 The discretized problem

Corollary 76. Let the assumptions of the previous theorem hold. For the
adjoint state we have the error estimate

‖p̄0 − p̄d‖L∞(I,L2(Ω)) ≤ C(αmax( 1+κ
2 ,κ) + (k + h2)min(1, 1+κ

2 )C(ūd, ūα))

with C(ūd, ūα) = max(1, d0(ūd), d0(ūα))max(1, 1+κ
2 ).

Proof. Inspecting the proof of Corollary 71, we get the estimate

‖p̄α − p̄d‖L∞(I,L2(Ω)) ≤ C((k + h2)d0(ūα) + ‖ykh(ūα)− ȳd‖I).

The last addend can be estimated with the auxiliary estimate (2.66) from
the previous theorem and Cauchy’s inequality. We obtain

‖p̄α − p̄d‖L∞(I,L2(Ω)) ≤ C(αmax( 1+κ
2 ,κ) + (k + h2)min(1, 1+κ

2 )C(ūd, ūα)).

Invoking the regularization errors (1.44) and (1.46) proves the claim.

2.3.3 Improved estimates for bang-bang controls
As motivated at the end of subsection 2.3.1, improving the decay estimate
(2.56) with the help of the results of subsection 1.4.4 leads to improved
(non-robust) error estimates. However, the convergence rate h2 is not
achievable in these estimates, but the robust estimates from Theorem 72
overcome this problem. On the other hand, in Theorem 72 we have ūd on
the right-hand side instead of ūα, so that the results of subsection 1.4.4
can not be directly applied. Therefor, we have to estimate some additional
terms in combination with Theorem 72 to finally get the desired improved
estimates.

Theorem 77. Let the assumptions of Theorem 72 be fulfilled. Further, we
assume located controls and A = ΩU up to a set of measure zero (measure
condition on the whole domain). If κ < 1, we additionally require the p̄α-
measure condition (1.56). (For κ ≥ 1, this condition is automatically met
by Lemma 26.)
Then, for α > 0 sufficiently small, d0 := d0(ūα) given as in Theorem 69,

and Cab defined in Lemma 28 it holds

‖ū0 − ūd‖2U + ‖ū0 − ūd‖L1(ΩU ,RD)

≤ C
(
α+ h2 + k2 max(1, Cab, ακ/2−1)

)κ
(1 + dκ0 )
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2.3 Discretization of the optimal control problem

for the error in the control.

Proof. Let us recall the estimate (2.63) from the proof of Theorem 72, i.e.,

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖y(ū0)− y(ūd)‖2I

≤ C
(
−B∗p(y(ūd)− yd) +B∗pkh(ykh(ūd)− yd) + αū0, ū0 − ūd

)
U
,

which we rearrange as follows:

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(
−B∗p(y(ū0)− y(ūα))︸ ︷︷ ︸

I

−B∗p(y(ūα)− yd) +B∗pkh(ykh(ūα)− yd)︸ ︷︷ ︸
IIa

+αū0︸ ︷︷ ︸
IIb

+B∗pkh(ykh(ū0)− ykh(ūα))︸ ︷︷ ︸
III

, ū0 − ūd
)
U
.

(2.71)
For term III, we use Cauchy’s inequality to get

(ykh(ū0)− ykh(ūα)), ykh(ū0)− ykh(ūd))I

≤ C‖ykh(ū0)− ykh(ūα)‖2I + 1
16‖ykh(ū0)− ykh(ūd)‖2I ,

and move the latter addend to the left-hand side of (2.71). We split the for-
mer addend with the help of (2.49) from Lemma 59 and the regularization
errors (1.43) and (1.44) to obtain with the help of Young’s inequality

‖ykh(ū0)− ykh(ūα)‖2I ≤ C(‖(ŷkh − ŷ)(ū0 − ūα)‖I + ‖y(ū0)− y(ūα)‖I)
2

≤ C((k + h2)ακ/2 + α
1+κ

2 )2

≤ C(k + h2)2(κ+1) + Cα1+κ

(2.72)
where ŷkh and ŷ denote the solution operators for the state equation with
initial value zero.

For IIb, we invoke again Young’s inequality and the inclusion ū0 ∈ Uad ⊂
L∞ to get the estimate

α(ū0, ū0− ūd)U ≤ Cα‖ūd− ū0‖L1(ΩU ,RD) ≤ Cα
κ+1 + 1

16‖ūd− ū0‖1+1/κ
L1(ΩU ,RD).
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2 The discretized problem

We now move the second summand to the left of (2.71) since A = ΩU up
to a set of measure zero.

The addend IIa can be rewritten and estimated with again the help of
Young’s inequality to get(
−B∗p(y(ūα)− yd) +B∗pkh(ykh(ūα)− yd), ū0 − ūd

)
U

≤ C
(
B∗(pkh − p)(y(ūα)− yd) +B∗pkh(ykh(ūα)− y(ūα)), ū0 − ūd

)
U

≤ C‖B∗(pkh − p)(y(ūα)− yd) +B∗pkh(ykh(ūα)− y(ūα))‖1+κ
L∞(ΩU ,RD)

+ 1
16‖ū0 − ūd‖1+1/κ

L1(ΩU ,RD).

The last addend can now be moved to the left of (2.71).
For summand I, we add an additional term to get(
−B∗p(y(ū0)− y(ūα)), ū0 − ūd

)
U

=
(
B∗(pkh − p)(y(ū0)− y(ūα))−B∗pkh(y(ū0)− y(ūα)), ū0 − ūd

)
U
.

We estimate the second addend with the help of the regularization error
(1.44) as(
y(ū0)− y(ūα), ykh(ū0)− ykh(ūd)

)
I
≤ Cα1+κ + 1

16‖ykh(ū0)− ykh(ūd)‖2I ,

and move the second addend to the left of (2.71). For the remaining ad-
dend, we use again the above mentioned results and the estimate (2.69) to
obtain (

B∗(pkh − p)(y(ū0)− y(ūα)), ū0 − ūd
)
U

=
(
y(ū0)− y(ūα), (ŷkh − ŷ)(ū0 − ūd)

)
≤ C‖y(ū0)− y(ūα)‖2I + C‖(ŷkh − ŷ)(ū0 − ūd)‖2I
≤ Cα1+κ + C(k + h2)2‖ū0 − ūd‖2U
≤ Cα1+κ + C(k + h2)2‖ū0 − ūd‖L1(ΩU ,RD)

≤ Cα1+κ + C(k + h2)2(κ+1) + 1
16‖ū0 − ūd‖1+1/κ

L1(ΩU ,RD)
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2.3 Discretization of the optimal control problem

and move the last term to the left of (2.71).
Collecting all previous estimates, we with L := L∞(I, L2(Ω)) obtain

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(
ακ+1 + (k + h2)2(κ+1) + ‖(pkh − p)(y(ūα)− yd)‖1+κ

L

+ ‖pkh(ykh(ūα)− PYky(ūα))‖1+κ
L

)
.

Note that we introduced the orthogonal projection PYk in the last ad-
dend, which is possible due to the definition of the fully discrete adjoint
equation (2.45). Furthermore, we used stability of B∗ for located controls.
We combine the previous estimate with the (improved) adjoint error

estimate from Lemma 65, the adjoint stability from Lemma 56, and the
superconvergence result from Lemma 66, making use of the regularity given
in Lemma 12, to get

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(
α+ h2d0 + k2(1 + d+

1 (ūα))
)1+κ

.
(2.73)

With the help of the estimate given in Lemma 28 for p = 2, i.e.,

‖∂tūα‖L2(ΩU ,RD) ≤ C max(Cab, ακ/2−1),

we conclude that for α > 0 sufficiently small it holds

d+
1 (ūα) ≤ C + C max(Cab, ακ/2−1). (2.74)

In conclusion, we get

‖ū0 − ūd‖1+1/κ
L1(A,RD) + α‖ū0 − ūd‖2U + ‖ykh(ū0)− ykh(ūd)‖2I

≤ C
(
α+ h2d0 + k2 max(1, Cab, ακ/2−1)

)1+κ
.

Finally, recall that the U error in the control can be derived from the
corresponding L1 error using the estimate (2.69).

From the previous theorem we get coupling rules for α and k, always
with α = h2, and convergence rates, which are depicted in the following
table.

Note that in any case we get a better rate than kκ proven in Theorem 75.
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2 The discretized problem

α = ‖ūd − ū0‖L1(ΩU ,RD) ≤ C . . . if
k4/(4−κ) ακ = h2κ = k4κ/(4−κ) κ < 2
k2 ακ = h2κ = k2κ κ ≥ 2

Table 2.1: Coupling and convergence implied by Theorem 77.

Corollary 78. Let the assumptions of the previous Theorem hold. For the
adjoint and the projected state we have the error estimate

‖p̄0 − p̄d‖L∞(I,L2(Ω)) + ‖ȳ0 − πP∗
k
ȳd‖I

≤ Cαmax(κ+1
2 ,κ) + C

(
h2d0 + k2 max(1, Cab, ακ/2−1)

)min(1,κ+1
2 )
.

Proof. Inspecting the proof of Corollary 71, we obtain the estimate

‖p̄α− p̄d‖L∞(I,L2(Ω)) +‖ȳα−πP∗
k
ȳd‖I ≤ C(k2d+

1 +h2d0 +‖ykh(ūα)− ȳd‖I).

To estimate the last addend, let us first combine the estimate (2.73) from
the proof of Theorem 77 with Remark 73 to get

‖ūα − ūd‖L1(A,RD) ≤ C
(
α+ h2d0 + k2(1 + d+

1 (ūα))
)κ
.

With this estimate, we now follow the proof of Theorem 75 from the entry
point (2.70) onwards. We obtain

‖p̄α − p̄d‖2L∞(I,L2(Ω)) + ‖ȳα − πP∗
k
ȳd‖2I

≤ C
((
h2d0 + k2d+

1
)2 +

(
h2d0 + k2d+

1
) (
α+ h2d0 + k2 (1 + d+

1
))κ)

.

With Young’s inequality, the regularization error (1.44), property (1.45),
and the decay estimate (2.74), we finally get the claim.
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3 Numerics

We will now consider some test examples in order to finally validate nu-
merically the results of the previous chapters.

As we have previously said, we solve numerically the regularized problem
(Pkh) for some α > 0 as an approximation of the limit problem (P0). Thus,
we have the influence of two errors: The regularization error in dependence
of the parameter α > 0 and the discretization error due to space and time
approximation. The second error depends on the fineness of the space and
time grid, respectively, thus on the parameters h and k.

We first consider the time discretization error for fixed positive h and
α by taking k → 0. Here, we mainly recall the discussion of [DHV15].
In addition to the semidiscrete error analysis in [DHV15], the discussion
is now founded on the fully discrete estimates of the previous chapter.
Therefore, the numerical behavior of the error is added if h→ 0, again for
fixed α > 0, but now of course with fixed k instead of h.
Second, we investigate the regularization error for fixed small discretiza-

tion parameters k and h in dependence of the parameter κ from the measure
condition (1.38) if α→ 0.
As a third step, we couple regularization and discretization parameters

as proposed by Theorem 77 and Table 2.1.
In all examples we make use of the fact that instead of the linear control

operator B, given by (1.3), we can also use an affine linear control operator

B̃ : U → L2(I,H−1(Ω)) , u 7→ g0 +Bu (3.1)

where g0 is a fixed function. If we assume that g0 is an element of the
space H1(I, L2(Ω)) with g0(0) ∈ H1

0 (Ω) and g0(T ) ∈ H1
0 (Ω), the preceding

theory remains valid since g0 can be interpreted as a modification of yd.
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3.1 The discretization error for fixed α > 0
The following first example is taken from [DHV15, Section 6.2]. It is an
example for (P) with α > 0 fixed. Here, we denote the optimal solution
triple by (ū, ȳ, p̄).

With a space-time domain Ω × I := (0, 1)2 × (0, 0.5), we consider one
located control function ū, i.e., D := 1, and a constant a := 2, not to be
confused with the lower bound a1 of the admissible set Uad defined below.
This constant a influences the number of switching points between the
active and inactive set. Furthermore, we define the functions

g1(x1, x2) := sin(πx1) sin(πx2) ,

wa(t, x1, x2) := cos
(
t

T
2πa

)
· g1(x1, x2) ,

ȳ(t, x1, x2) := wa(t, x1, x2) , and (3.2)

p̄(t, x1, x2) := wa(t, x1, x2)− wa(T, x1, x2) .

Consequently, the initial value of the optimal state ȳ is

y0(x1, x2) = ȳ(0, x1, x2) = g1(x1, x2) ,

and for the other problem data we obtain

g0 = g12π
(
− a
T

sin
(
t

T
2πa

)
+ π cos

(
t

T
2πa

))
−Bū , (3.3)

yd = g1

(
cos
(
t

T
2πa

)(
1− 2π2)− 2πa

T
sin
(
t

T
2πa

)
+ 2π2 cos (2πa)

)
,

and the optimal control

ū = PUad

(
− 1

4α cos
(
t

T
2πa

)
+ 1

4α

)
.

Here, we use the fact that the adjoint operator of B is given by

(B∗z)(t) =
∫

Ω
z(t, x1, x2) · g1(x1, x2) dx1dx2 ,

compare (1.4). Note that we consider the adjoint of B, not of B̃.
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3.1 The discretization error for fixed α > 0

Finally, we choose the regularization parameter α := 1 and define the
bounds of the admissible set Uad as a1 := 0.2 and b1 := 0.4.

Note that this example fulfills Assumption 10.
We solve (Pkh) numerically with the above data using a fixed-point iter-

ation for equation (2.53). Each fixed-point iteration is initialized with the
starting value u(0)

kh := a1 which is the lower bound of the admissible set. As
a stopping criterion for the fixed-point iteration, we require for the discrete
adjoint states belonging to the current and the last iterate that

‖B∗
(
p

(i)
kh − p

(i−1)
kh

)
‖L∞(Ω×I) < t0

where t0 := 10−5 is a prescribed threshold.

3.1.1 Error in time (k → 0, h and α > 0 fixed)
We discretize in space with a fixed number of nodes Nh = (27+1)2 = 16 641.
We examine the behavior of the temporal convergence by considering a
sequence of meshes with Nk = (2` + 1) nodes at refinement levels ` =
1, 2, 3, 4, 5, 6, 7, 8.

Table 3.1 shows the behavior of several errors in time between the exact
control ū and its computed discretized counterpart ukh, obtained by the
fixed-point iteration. Furthermore, the experimental order of convergence
(EOC) is given. The table indicates an error behavior of O(k2) for the L2

error in the control, which is in accordance with Theorem 69. Furthermore,
the error of the adjoint, see Table 3.4, shows the same behavior as expected
by Corollary 71. Here, we note that the EOC deteriorates in our numerical
example if the temporal error reaches the size of the spatial error, which in
the numerical investigations is fixed through the choice of Nh given above.
See, e.g., the last lines in Table 3.1, Table 3.4, and Table 3.6.

Since the state is discretized piecewise constant in time, the order of
convergence is only one. This is depicted in Table 3.2.

A better and second order convergent approximation of the state is given
by the projection πP∗

k
ykh of the computed discrete state ykh, see Corol-

lary 71 and for the corresponding numerical results see Table 3.3. This
better approximation of the state can be obtained without further numer-
ical effort: One only has to interpret the vector containing the values of
yk on each interval Im as a vector of linearly-in-time linked values on the
gridpoints of the dual grid t∗1 < · · · < t∗M .
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Figure 3.1 illustrates the convergence of ukh to ū. Note that the inter-
section points between the inactive set Ikh := {t ∈ I | a < ukh(t) < b} and
the active set Akh := I\Ikh need not coincide with the time grid points
since we use variational discretization for the control.

Let us further note that the number of fixed-point iterations does not
depend on the fineness of the time grid size. In our example, two iterations
suffice to reach the above mentioned threshold t0.

‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.04925427 0.09237138 0.20000000 / / /
2 0.00256632 0.01106114 0.07336869 4.26 3.06 1.45
3 0.00403215 0.01144324 0.04704583 -0.65 -0.05 0.64
4 0.00069342 0.00204495 0.00893696 2.54 2.48 2.40
5 0.00016762 0.00050729 0.00249463 2.05 2.01 1.84
6 0.00003989 0.00011939 0.00064497 2.07 2.09 1.95
7 0.00000948 0.00003227 0.00020672 2.07 1.89 1.64
8 0.00000764 0.00002142 0.00009457 0.31 0.59 1.13

Table 3.1: First example: Errors and EOC in the control (α > 0, k → 0).

‖ȳ − ykh‖ ‖ȳ − ykh‖ ‖ȳ − ykh‖ EOC EOC EOC
` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.19644927 0.41294081 2.24551425 / / /
2 0.12998104 0.25395823 1.25550373 0.60 0.70 0.84
3 0.05657200 0.11245327 0.66590819 1.20 1.18 0.91
4 0.02614960 0.05648390 0.38823773 1.11 0.99 0.78
5 0.01277718 0.02830060 0.19379413 1.03 1.00 1.00
6 0.00634467 0.01413902 0.09325101 1.01 1.00 1.06
7 0.00316732 0.00702903 0.04324651 1.00 1.01 1.11
8 0.00158309 0.00343000 0.01843334 1.00 1.04 1.23

Table 3.2: First example: Errors and EOC in the state (α > 0, k → 0).
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3.2 Behavior of the regularization error

‖ȳ − πP∗
k
ykh‖ ‖ȳ − πP∗

k
ykh‖ ‖ȳ − πP∗

k
ykh‖ EOC EOC EOC

` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.19734452 0.42154165 2.65669891 / / /
2 0.13173168 0.25800727 1.39668789 0.58 0.71 0.93
3 0.03422500 0.07418402 0.40783930 1.94 1.80 1.78
4 0.01080693 0.02168391 0.15176831 1.66 1.77 1.43
5 0.00282859 0.00567595 0.04685968 1.93 1.93 1.70
6 0.00071212 0.00143268 0.01229008 1.99 1.99 1.93
7 0.00017551 0.00035509 0.00311453 2.02 2.01 1.98
8 0.00004104 0.00008530 0.00078765 2.10 2.06 1.98

Table 3.3: First example: Errors and EOC in the projected state (α > 0,
k → 0).

3.1.2 Error in space (h→ 0, k and α > 0 fixed)
Let us now examine the behavior of the spatial convergence by considering
a sequence of meshes with Nh = (2` + 1)2 nodes at refinement levels ` =
1, 2, 3, 4, 5, 6. In time, we discretize with a fixed number of nodes Nk =
(213 + 1) = 8 193. All other parameters remain unchanged.
From the Tables 3.5, 3.6, 3.7, and 3.8, we observe a convergence rate of

O(h2) for the quantities from above, where a O(k2) behavior was observed.
This second order convergence in space also holds for the optimal state,
which is in accordance with the theory, see again Corollary 71.

For the convergence in the optimal control, see also Figure 3.2.

3.2 Behavior of the regularization error
We now want to validate the improved convergence rates for the regular-
ization error given in Theorem 19.3.

Here, we report only on the errors in the optimal control since we ob-
served no or only poor convergence in the error of the optimal state and
adjoint state, respectively. This might be due to the fact that the influ-
ence of the space- and time-discretization error is much larger than that of
the regularization error in higher dimensions. This phenomenon was also
observed for elliptic problems, compare [WW11a].
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Figure 3.1: First example: Optimal control ū (solid) and computed coun-
terpart ukh (dashed) over time at refinement level ` (α > 0,
k → 0). For ` ≥ 4, a difference is not visible any more.
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Figure 3.2: First example: Optimal control ū (solid) and computed coun-
terpart ukh (dashed) over time at refinement level ` (α > 0,
h→ 0). For ` ≥ 4, a difference is not visible any more.
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3.2 Behavior of the regularization error

‖p̄− pkh‖ ‖p̄− pkh‖ ‖p̄− pkh‖ EOC EOC EOC
` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.20659855 0.46853028 2.86360259 / / /
2 0.03491931 0.08118048 0.56829981 2.56 2.53 2.33
3 0.01994220 0.04100552 0.20495644 0.81 0.99 1.47
4 0.00440890 0.00895349 0.05815307 2.18 2.20 1.82
5 0.00105993 0.00215639 0.01668075 2.06 2.05 1.80
6 0.00026116 0.00053258 0.00447036 2.02 2.02 1.90
7 0.00006984 0.00014824 0.00116014 1.90 1.85 1.95
8 0.00004199 0.00008530 0.00046798 0.73 0.80 1.31

Table 3.4: First example: Errors and EOC in the adjoint state (α > 0,
k → 0).

‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.04086721 0.08276876 0.20000000 / / /
2 0.00945532 0.02308470 0.08258124 2.11 1.84 1.28
3 0.00210310 0.00583995 0.02197847 2.17 1.98 1.91
4 0.00051500 0.00146824 0.00557569 2.03 1.99 1.98
5 0.00012813 0.00036763 0.00139896 2.01 2.00 1.99
6 0.00003200 0.00009195 0.00035003 2.00 2.00 2.00

Table 3.5: First example: Errors and EOC in the control (α > 0, h→ 0).

As a second example, we consider the limit problem (P0) and choose the
optimal control to be the lower bound of the admissible set, i.e., ū := a1 :=
−0.2 for some fixed κ > 0. For the upper bound we set b1 := 0.2. The
optimal adjoint state is chosen as

p̄(t, x1, x2) := (T − t)1/κg1(x1, x2) ,

from which we derive

−∂tp̄−∆p̄ = 1
κ

(T − t)1/κ−1g1 − (T − t)1/κ∆g1 = ȳ − yd .

From this relation, keeping ȳ as defined in (3.2) we get yd. We define g0 as
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3 Numerics

‖ȳ − ykh‖ ‖ȳ − ykh‖ ‖ȳ − ykh‖ EOC EOC EOC
` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.01983293 0.06277033 0.26858776 / / /
2 0.00843691 0.01822315 0.07296899 1.23 1.78 1.88
3 0.00242357 0.00478896 0.01962996 1.80 1.93 1.89
4 0.00062702 0.00121437 0.00528421 1.95 1.98 1.89
5 0.00015867 0.00031824 0.00161243 1.98 1.93 1.71
6 0.00005127 0.00012228 0.00069019 1.63 1.38 1.22

Table 3.6: First example: Errors and EOC in the state (α > 0, h→ 0).

‖ȳ − πP∗
k
ykh‖ ‖ȳ − πP∗

k
ykh‖ ‖ȳ − πP∗

k
ykh‖ EOC EOC EOC

` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.01983293 0.06277028 0.26830125 / / /
2 0.00843691 0.01822290 0.07258642 1.23 1.78 1.89
3 0.00242354 0.00478800 0.01924801 1.80 1.93 1.91
4 0.00062688 0.00121058 0.00490340 1.95 1.98 1.97
5 0.00015806 0.00030345 0.00123143 1.99 2.00 1.99
6 0.00003959 0.00007589 0.00030816 2.00 2.00 2.00

Table 3.7: First example: Errors and EOC in the projected state (α > 0,
h→ 0).

in (3.3) but with ū = a1. All other data remain unchanged with respect to
the preceding section. Thus besides ū, only p̄, yd, and g0 are altered.

This example fulfills the measure condition (1.38) of Assumption 15 with
meas(Ac) = 0 and exponent κ from above.

We solve the regularized problem (Pkh) again using a fixed-point iteration
procedure. To this end, we consider a fixed fine space-time mesh with
Nh = (25 + 1)2 nodes in space and Nk = (211 + 1) nodes in time. The
regularization parameter α = 2−` is considered for ` = 1, 2, 3, 4, 5, 6.

The problem is solved for different values of κ, namely κ = 0.3, 0.5, 1, 2.
Note however, that Assumption 10 is only fulfilled if κ ≤ 1.
Let us remark that the convergence of the fixed-point iteration does not

depend on the starting value.
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3.2 Behavior of the regularization error

‖p̄− pkh‖ ‖p̄− pkh‖ ‖p̄− pkh‖ EOC EOC EOC
` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.07287573 0.24360487 1.09944996 / / /
2 0.03553656 0.07951728 0.34753670 1.04 1.62 1.66
3 0.01030205 0.02112693 0.09132732 1.79 1.91 1.93
4 0.00267154 0.00535947 0.02309948 1.95 1.98 1.98
5 0.00067405 0.00134469 0.00579137 1.99 1.99 2.00
6 0.00016890 0.00033647 0.00144891 2.00 2.00 2.00

Table 3.8: First example: Errors and EOC in the adjoint state (α > 0,
h→ 0).

As one can see from the Tables 3.9, 3.10, 3.11, and 3.12, the improved
convergence rates of Theorem 19 for the optimal control, more precisely
(1.42) and (1.43), can be observed numerically. It seems that they cannot
be improved any further.

Let us also comment on the convergence in the L∞ norm of ū depicted in
Table 3.12. This phenomenon is due to the simplicity of our test example. If
α is taken sufficiently small with fixed k and h, the regularized numerical
solution coincides with the lower bound of the admissible set, which is
the solution of the limit problem. Compare Figure 3.3 to see this. This
behavior can be observed also in the L1 and L2 norm and for other values
of κ.

‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.09417668 0.13354708 0.19999938 / / /
2 0.08837777 0.12648809 0.19999875 0.09 0.08 0.00
3 0.07681662 0.11533688 0.19999751 0.20 0.13 0.00
4 0.06212895 0.10353644 0.19999505 0.31 0.16 0.00
5 0.05008158 0.09264117 0.19999018 0.31 0.16 0.00
6 0.04011694 0.08237596 0.19998064 0.32 0.17 0.00

Table 3.9: Second example: Errors and EOC in the control (κ = 0.3, α→
0, h, k fixed).
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‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.07912861 0.11494852 0.19999937 / / /
2 0.05957289 0.09753159 0.19999875 0.41 0.24 0.00
3 0.04204449 0.08187630 0.19999757 0.50 0.25 0.00
4 0.02963509 0.06865675 0.19999536 0.50 0.25 0.00
5 0.02084162 0.05749818 0.19999143 0.51 0.26 0.00
6 0.01463170 0.04811089 0.19998479 0.51 0.26 0.00

Table 3.10: Second example: Errors and EOC in the control (κ = 0.5,
α→ 0, h, k fixed).

‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.04006495 0.07304858 0.19993848 / / /
2 0.02000722 0.05160925 0.19987712 1.00 0.50 0.00
3 0.00998774 0.03646496 0.19975470 1.00 0.50 0.00
4 0.00498724 0.02576440 0.19951038 1.00 0.50 0.00
5 0.00249053 0.01820019 0.19902435 1.00 0.50 0.00
6 0.00123906 0.01282180 0.19804869 1.01 0.51 0.01

Table 3.11: Second example: Errors and EOC in the control (κ = 1, α→ 0,
h, k fixed).

3.3 Coupling regularization and discretization
parameters

We now couple the regularization parameter α with the discretization pa-
rameters h and k in a way which allows for optimal convergence.
For the limit problem (P0), we consider a third test example which is a

bang-bang problem with meas(Ac) = 0 and κ = 1 in Assumption 15. We
choose an optimal adjoint state

p̄ := −T2πa sin
(
t

T
2πa

)
g1 ,
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3.3 Coupling regularization and discretization parameters
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Figure 3.3: Second example: Optimal control ū (solid) and computed coun-
terpart ukh (dashed) over time after level ` (κ = 1, α → 0, h,
k fixed).

‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.01081546 0.03305084 0.19723389 / / /
2 0.00279478 0.01690248 0.19446840 1.95 0.97 0.02
3 0.00074507 0.00878066 0.18893681 1.91 0.94 0.04
4 0.00020543 0.00463711 0.17787362 1.86 0.92 0.09
5 0.00005823 0.00246523 0.15574724 1.82 0.91 0.19
6 0.00001564 0.00125068 0.11149448 1.90 0.98 0.48

Table 3.12: Second example: Errors and EOC in the control (κ = 2, α→ 0,
h, k fixed).

which is nonzero almost everywhere, and since

−∂tp̄−∆p̄ = cos
(
t

T
2πa

)
g1 −

T

2πa sin
(
t

T
2πa

)
2π2g1 = ȳ − yd ,

we get the function yd by taking ȳ as in (3.2). From the relation (1.14) we
conclude that the optimal control is given by

ū =
{
a1 if B∗p̄ > 0,
b1 if B∗p̄ < 0

where a1, b1, and all other data are taken from the first example. Note
that B∗p̄(t) = (g1, p̄(t))L2(Ω) and (g1, g1)L2(Ω) = 0.25.
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Since κ = 1 in this example, we conclude with Theorem 77, Corollary 78,
and the second line of Table 2.1 the estimate

‖ū0 − ūd‖2U + ‖ū0 − ūd‖L1(A,R) + ‖p̄0 − p̄d‖L∞(I,L2(Ω)) + ‖ȳ0 − πP∗
k
ȳd‖I

≤ C(α+ h2 + k4/3). (3.4)

Consequently, we set Nh = (2` + 1)2, Nk = (23/2`+1 + 1), and α = 2−2`

with ` = 1, 2, 3, 4, 5, 6, to obtain second order convergence with respect to
h in (3.4).

The results are given in Tables 3.13, 3.14, 3.15, and 3.16. We also refer
to Figure 3.4.

As one can see from the tables, the coupling shows the expected behavior
for the error in the optimal control, projected state, and adjoint state.

Note that for the state ȳ, we observe convergence of order 3/2, which
means by the coupling from above (k = h3/2) first order convergence in k.
Thus, it is in accordance with our expectation.

‖ū− ukh‖ ‖ū− ukh‖ ‖ū− ukh‖ EOC EOC EOC
` L1(I,R) L2(I,R) L∞(I,R) L1 L2 L∞

1 0.05208333 0.10206207 0.20000000 / / /
2 0.05156250 0.10155048 0.20000000 0.01 0.01 0.00
3 0.01551730 0.05249039 0.20000000 1.73 0.95 0.00
4 0.00395214 0.02696386 0.20000000 1.97 0.96 0.00
5 0.00100074 0.01375946 0.20000000 1.98 0.97 -0.00
6 0.00026290 0.00704586 0.20000000 1.93 0.97 0.00

Table 3.13: Third example: Errors and h-EOC in the control (α = k4/3 =
h2).

3.4 Final remarks
Let us mention that the convergence of the fixed-point iteration is in gen-
eral guaranteed only for values of α not too small. This is an immediate
consequence of Banach’s fixed-point theorem in combination with (2.53).
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3.4 Final remarks

‖ȳ − ykh‖ ‖ȳ − ykh‖ ‖ȳ − ykh‖ EOC EOC EOC
` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.04168338 0.14344433 0.77006182 / / /
2 0.02298795 0.05061771 0.24946457 0.86 1.50 1.63
3 0.00877452 0.01795226 0.08863801 1.39 1.50 1.49
4 0.00314952 0.00624197 0.02943581 1.48 1.52 1.59
5 0.00111871 0.00218973 0.00994956 1.49 1.51 1.56
6 0.00039580 0.00077075 0.00339060 1.50 1.51 1.55

Table 3.14: Third example: Errors and h-EOC in the state (α = k4/3 =
h2).

‖ȳ − πP∗
k
ykh‖ ‖ȳ − πP∗

k
ykh‖ ‖ȳ − πP∗

k
ykh‖ EOC EOC EOC

` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.03984472 0.12699052 0.67616861 / / /
2 0.01063414 0.02423705 0.15855276 1.91 2.39 2.09
3 0.00235558 0.00482756 0.02588151 2.17 2.33 2.61
4 0.00059757 0.00116777 0.00526572 1.98 2.05 2.30
5 0.00015345 0.00029551 0.00128779 1.96 1.98 2.03
6 0.00003968 0.00007581 0.00032323 1.95 1.96 1.99

Table 3.15: Third example: Errors and h-EOC in the projected state (α =
k4/3 = h2).

In the numerical examples we considered, no convergence problems oc-
curred, even for very small values of α. This might be due to the fact
that we consider controls which “live” in one space dimension only. For
higher dimensions, the situation is more delicate. There, the application
of semismooth Newton methods has turned out to be fruitful, see [HV12]
for its numerical analysis in the case of variational discretization of elliptic
optimal control problems.

For a discretization of (P) in the regular case (α > 0), let us finally
mention a discontinuous Galerkin approach analyzed recently in [SV13],
based on the results in [MV08a] and [MV08b].
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‖p̄− pkh‖ ‖p̄− pkh‖ ‖p̄− pkh‖ EOC EOC EOC
` L1(I, L1(Ω)) L2(I, L2(Ω)) L∞(I, L∞(Ω)) L1 L2 L∞

1 0.00175355 0.00559389 0.02497779 / / /
2 0.00052886 0.00120225 0.00578048 1.73 2.22 2.11
3 0.00012807 0.00026289 0.00128201 2.05 2.19 2.17
4 0.00003156 0.00006214 0.00028508 2.02 2.08 2.17
5 0.00000786 0.00001530 0.00006829 2.01 2.02 2.06
6 0.00000195 0.00000377 0.00001649 2.01 2.02 2.05

Table 3.16: Third example: Errors and h-EOC in the adjoint state (α =
k4/3 = h2).
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Figure 3.4: Third example: Optimal control ū (solid) and computed coun-
terpart ukh (dashed) over time after level ` (α = k4/3 = h2).

90



Bibliography
[AF03] Robert A. Adams and John J. F. Fournier. Sobolev spaces.

2nd ed. Elsevier Science Ltd, 2003.
[Alt+12] Walter Alt et al. “Error bounds for Euler approximation of li-

near-quadratic control problems with bang-bang solutions”. In:
NACO 2.3 (2012), pp. 547–570.

[Alt02] Hans Wilhelm Alt. Lineare Funktionalanalysis. 4th ed. Sprin-
ger, 2002.

[AM89] A. Kadir Aziz and Peter Monk. “Continuous finite elements
in space and time for the heat equation”. In: Math. Comp. 52
(1989), pp. 255–274.

[AS11] Walter Alt and Martin Seydenschwanz. “Regularization and
discretization of linear-quadratic control problems”. In: Control
Cybern. 40.4 (2011), pp. 903–920.

[AS14a] Walter Alt and Martin Seydenschwanz. “An implicit discretiza-
tion scheme for linear-quadratic control problems with bang-
bang solutions”. In: Optim. Meth. Softw. 29.3 (2014), pp. 535–
560.

[AS14b] Walter Alt and Martin Seydenschwanz. “Improved Error Esti-
mate for an Implicit Discretization Scheme for Linear-Quadratic
Control Problems with Bang-Bang Solutions”. In: Lecture Notes
in Computer Science 8353 (2014), pp. 57–65. url: http://dx.
doi.org/10.1007/978-3-662-43880-0_5.

[Bre10] Haïm Brezis. Functional Analysis, Sobolev Spaces and Partial
Differential Equations. Springer, 2010.

[BS08] Susanne C. Brenner and L. Ridgway Scott. The Mathematical
Theory of Finite Element Methods. 3rd ed. Springer, 2008.

91

http://dx.doi.org/10.1007/978-3-662-43880-0_5
http://dx.doi.org/10.1007/978-3-662-43880-0_5


Bibliography

[DH12] Klaus Deckelnick and Michael Hinze. “A note on the approx-
imation of elliptic control problems with bang-bang controls”.
In: Comput. Optim. Appl. 51 (2012), pp. 931–939.

[DHV15] Nikolaus von Daniels, Michael Hinze, and Morten Vierling.
“Crank–Nicolson time stepping and variational discretization
of control-constrained parabolic optimal control problems”. In:
SIAM J. Control Optim. 53.3 (2015), pp. 1182–1198.

[EG92] Lawrence C. Evans and Ronald F. Gariepy.Measure theory and
fine properties of functions. CRC Press, 1992.

[EHN00] Heinz W. Engl, Martin Hanke, and Andreas Neubauer. Reg-
ularization of Inverse Problems. Kluwer Academic Publishers,
2000.

[Eva98] Lawrence C. Evans. Partial Differential Equations. AMS, 1998.
[Fel03] Ursula Felgenhauer. “On Stability of Bang–Bang Type Con-

trols”. In: SIAM J. Control Optim. 41.6 (2003), pp. 1843–1867.
url: http://dx.doi.org/10.1137/S0363012901399271.

[GGZ74] Herbert Gajewski, Konrad Gröger, and Klaus Zacharias. Nicht-
lineare Operatorgleichungen und Operatordifferentialgleichun-
gen. Akademie-Verlag Berlin, 1974.

[GY11] Wei Gong and Ningning Yan. “Robust error estimates for the
finite element approximation of elliptic optimal control prob-
lems”. In: J. Comput. Appl. Math. 236.6 (2011), pp. 1370–1381.
url: http://dx.doi.org/10.1016/j.cam.2011.09.001.

[Hin+09] Michael Hinze et al.Optimization with PDE Constraints. Sprin-
ger, 2009.

[Hin05] Michael Hinze. “A Variational Discretization Concept in Con-
trol Constrained Optimization: The Linear-Quadratic Case”.
In: Computational Optimization and Applications 30.1 (2005),
pp. 45–61. issn: 0926-6003. doi: 10.1007/s10589-005-4559-
5.

[HV12] Michael Hinze and Morten Vierling. “The semi-smooth New-
ton method for variationally discretized control constrained el-
liptic optimal control problems; implementation, convergence
and globalization”. In: Optimization Methods and Software 27.6
(2012), pp. 933–950. doi: 10.1080/10556788.2012.676046.

92

http://dx.doi.org/10.1137/S0363012901399271
http://dx.doi.org/10.1016/j.cam.2011.09.001
https://doi.org/10.1007/s10589-005-4559-5
https://doi.org/10.1007/s10589-005-4559-5
https://doi.org/10.1080/10556788.2012.676046


Bibliography

[LM72] Jacques-Louis Lions and Enrico Magenes. Non-Homogeneous
Boundary Value Problems and Applications: Vol. I, II. Springer,
1972.

[LV16] Dmitriy Leykekhman and Boris Vexler. “Finite element point-
wise results on convex polyhedral domains”. In: SIAM J. Num.
Ana. 54.2 (2016), pp. 561–587. doi: 10.1137/15M1013912.

[MV08a] Dominik Meidner and Boris Vexler. “A Priori Error Estimates
for Space-Time Finite Element Discretization of Parabolic Op-
timal Control Problems Part I: ProblemsWithout Control Con-
straints”. In: SIAM Journal on Control and Optimization 47.3
(2008), pp. 1150–1177.

[MV08b] Dominik Meidner and Boris Vexler. “A Priori Error Estimates
for Space-Time Finite Element Discretization of Parabolic Op-
timal Control Problems Part II: Problems with Control Con-
straints”. In: SIAM Journal on Control and Optimization 47.3
(2008), pp. 1301–1329.

[MV11] Dominik Meidner and Boris Vexler. “A priori error analysis
of the Petrov–Galerkin Crank–Nicolson scheme for parabolic
optimal control problems”. In: SIAM Journal on Control and
Optimization 49.5 (2011), pp. 2183–2211.

[Neu86] Andreas Neubauer. “Tikhonov-Regularization of Ill-Posed Li-
near Operator Equations on Closed Convex Sets”. Dissertation.
Johannes Kepler-Universität Linz, 1986.

[Ran84] Rolf Rannacher. “Finite Element Solution of Diffusion Prob-
lems with Irregular Data”. In:Numerische Mathematik 43 (1984),
pp. 309–327.

[Sey13] Martin Seydenschwanz. “Improved error estimates for discrete
regularization of linear-quadratic control problems with bang-
bang solutions”. In: Technical report, Univ. Jena (2013).

[Sey14] Martin Seydenschwanz. “Diskretisierung und Regularisierung
linear-quadratischer Steuerungsprobleme mit Bang-Bang Lö-
sungen”. Dissertation. Univ. Jena, 2014.

93

https://doi.org/10.1137/15M1013912


Bibliography

[Sey15] Martin Seydenschwanz. “Convergence results for the discrete
regularization of linear-quadratic control problems with bang-
bang solutions”. In: Comput. Optim. Appl. 61.3 (2015), pp. 731–
760. url: http://dx.doi.org/10.1007/s10589-015-9730-
z.

[Sta64] Guido Stampacchia. “Équations elliptiques du second ordre à
coefficients discontinus”. In: Séminaire Jean Leray 3 (1963-64),
pp. 1–77. url: http://www.numdam.org/item?id=SJL_1963-
1964___3_1_0.

[SV13] Andreas Springer and Boris Vexler. “Third order convergent
time discretization for parabolic optimal control problems with
control constraints”. In: Computational Optimization and Ap-
plications (2013), pp. 1–36. issn: 0926-6003. doi: 10.1007/
s10589-013-9580-5.

[Tho06] Vidar Thomée. Galerkin Finite Element Methods for Parabolic
Problems. 2nd ed. Springer, 2006.

[Trö05] Fredi Tröltzsch. Optimale Steuerung mit Partiellen Differenti-
algleichungen. Vieweg, 2005.

[Wac13] Daniel Wachsmuth. “Adaptive regularization and discretiza-
tion of bang-bang optimal control problems”. In: ETNA 40
(2013), pp. 249–267.

[Wac14] Daniel Wachsmuth. “Robust error estimates for regularization
and discretization of bang-bang control problems”. In: Comp.
Opt. Appl. 62 (2014), pp. 271–289.

[Wlo87] Joseph Wloka. Partial differential equations. Cambridge Uni-
versity Press, 1987.

[WW11a] Daniel Wachsmuth and Gerd Wachsmuth. “Convergence and
regularization results for optimal control problems with spar-
sity functional”. In: ESAIM Control Optim. Calc. Var. 17(3)
(2011), pp. 858–886.

[WW11b] Daniel Wachsmuth and Gerd Wachsmuth. “Regularization er-
ror estimates and discrepancy principle for optimal control
problems with inequality constraints”. In: Control and Cyber-
netics, 40(4) (2011), pp. 1125–1158.

94

http://dx.doi.org/10.1007/s10589-015-9730-z
http://dx.doi.org/10.1007/s10589-015-9730-z
http://www.numdam.org/item?id=SJL_1963-1964___3_1_0
http://www.numdam.org/item?id=SJL_1963-1964___3_1_0
https://doi.org/10.1007/s10589-013-9580-5
https://doi.org/10.1007/s10589-013-9580-5


Bibliography

[WW13] Daniel Wachsmuth and Gerd Wachsmuth. “Necessary condi-
tions for convergence rates of regularizations of optimal control
problems”. In: System Modelling and Optimization, Springer
(2013), pp. 145–154.

[Xu89] Jinchao Xu. “Theory of Multilevel Methods”. Dissertation. Cor-
nell University, 1989.

[Zie89] William P. Ziemer. Weakly differentiable functions. Springer,
1989.

95



Bibliography

Let us comment on literature related to this thesis. We restrict ourselves
to more or less recent papers which are concerned with discretizations of
bang-bang optimal control problems (ocp) and which present error esti-
mates.

We try to formulate the cited results in the notation of this thesis for
easy comparison.

Let us start with the numerical treatment of bang-bang ocps governed by
ordinary differential equations (ODEs), which has attracted some interest
in recent years.

A related ODE problem to (P) with α = 0 reads

min
y∈Y,u∈Uad

J(y, u) with J(y, u) := 1
2

∫ T

0
y(t)TW (t)y(t)dt,

s.t. ẏ = B(t)u(t) ∀′ t ∈ I := [0, T ],
y(0) = y0,

(OQ)

with Uad ⊂ U := L2(I,Rm) defined by pointwise box constrains, a state
space Y = H1(I,Rn), and Lipschitz continuous functions W : [0, T ] →
Rn×n and B : [0, T ] → Rn×m. It is also assumed that the matrices W (t)
are symmetric and positive semidefinite. This problem has at least one
solution.

In this context, the variational inequality (1.10) is called minimum prin-
ciple and one can establish, analogously to our parabolic setting, an adjoint
ODE for some quantity p with right-hand side y and p(T ) = 0. Note that yd
from (P) is zero in (OQ). An explicit characterization for the optimal con-
trol holds true, depending on the values of the so-called switching-function
σ(t) := B(t)T p(t), analogously to the located case of (1.14). It is now
assumed that

(A1) There exists a solution (u∗, y∗) of (OQ) such that each
of the components of σ has finitely many zeros, all collected in
Σ = {s1, . . . , sl} with 0, T 6∈ Σ,

and for the set of active indices I(sj) := {1 ≤ i ≤ m | σi(sj) = 0} of the
components of the switching function we demand the property

(A2) There exist σ̄ > 0, τ̄ > 0, such that

∀ j ∈ {1, . . . , l} ∀ i ∈ I(sj) ∀ τ ∈ [sj−τ̄ , sj+τ̄ ] : |σi(τ)| ≥ σ̄|τ−sj |

and σi changes sign in sj , i.e., σi(sj − τ̄)σi(sj + τ̄) < 0.
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Both assumptions (A1) and (A2) ensure uniqueness of the optimal control
u∗ and imply the measure condition (1.38) on the whole interval [0, T ] with
κ = 1.
In [Alt+12], the Euler discretization is used to discretize this problem

directly (as no regularization is used) and O(
√
h) convergence is shown

for any discrete optimal control in L1 and for the discrete state and the
discrete adjoint state in L∞ where h is the mesh size in time. Concerning
the non-uniqueness of u0,h, recall Remark 67. With an implicit method,
the same convergence order is achieved in [AS14a].

In [Alt+12], a stronger condition than (A2) is introduced, too, namely

(A3) The function B is differentiable with Lipschitz continuous
derivative and there exists σ̄ > 0 such that

min
1≤j≤l

min
i∈I(sj)

(|σ̇i(sj)|) ≥ 2σ̄.

In the elliptic context, let us mention the gradient condition [DH12, Lemma
3.2] related to (A3). It implies the measure condition (1.38) in the case of
κ = 1.
With condition (A3), an improvement of the convergence of the above

mentioned quantities from O(
√
h) to O(h) is shown. These results have

later been carried over to an implicit scheme in [AS14b].
Discretization combined with regularization provides an interesting al-

ternative to the direct solution of the limit problem since the regularized
problems possess more regularity. We already saw this in the parabolic
context, but this also holds in the ODE case.

In [AS11], the problem (OQ) is regularized by adding a term α
2 ‖u‖

2
L2(I,Rm),

i.e., by an L2 regularization as in our problem (P). Then, the projection
formula (1.12) is available in the ODE context, too.

A result similar to Lemma 16 with κ = 1, extracted from [Fel03, Lemma
3.3], is used to derive linear convergence of the regularization error in the
control in the L1 norm and in the state in the W 1,1 norm. This motivated
us to formulate and use Lemma 16 in the PDE context.

Without assuming (A2), convergence of the state in the L2 norm of order
O(
√
α) can be shown, which corresponds in our context to the uncondi-

tional convergence (1.29). With (A1) and (A2) and the Euler discretization,
they obtain ‖uα,h − u0‖L1 ≤ C h

α + Cα ≤
√
h with the coupling α =

√
h.
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Note that non-robust estimates as in Corollary 71 have been used to derive
this result.

Replacing (A2) by (A3), this estimate is improved in [Sey13] to ‖uα,h −
u0‖L1 ≤ Ch with the coupling α = h. For state and adjoint state, a
convergence rate of O(h) in L∞ is also shown.

In [Sey15], a refinement of condition (A2) is introduced, namely

(A2k) There is a smallest natural number k ∈ N for which there
exist constants σ̄, τ̄ > 0 such that

∀ j ∈ {1, . . . , l} ∀ i ∈ I(sj) ∀ τ ∈ [sj−τ̄ , sj+τ̄ ] : |σi(τ)| ≥ σ̄|τ−sj |k.
(3.5)

Note that this condition implies the measure condition (1.38) with κ =
1/k. With the condition (A2k), a variant of Lemma 16 is established, and
convergence, e.g., in the control ‖uα − u0‖L1 ≤ Cα1/k is shown. This is in
accordance with (1.42). With the coupling α = h an error ‖uα,h−u0‖L1 ≤
Ch1/(k+1) in the control is shown for the Euler discretization. Errors for
state and adjoint state are also derived.

In [Sey14], much of the above discussed material is collected in one refer-
ence (in German language). Moreover, the discrete regularization assuming
(A2k) is additionally analyzed for an implicit discretization. The conver-
gence rates are the same as for the explicit Euler discretization. This also
holds true if (A2k) is replaced by (A3), and hence, e.g., linear convergence
in the control in the L1 norm can be achieved.
Let us now consider elliptic problems. Here, the heat equation in our set-

ting is replaced by the Poisson equation with, e.g., homogeneous Dirichlet
boundary values and a control acting as right-hand side.

In [DH12], variational discretization with piecewise linear and continuous
discretizations of state and adjoint state is applied to the limit problem
α = 0. This yields linear convergence for state and adjoint state in L2 and
L∞, respectively, without any further assumptions, compare Corollary 70.
Note that similar to Remark 67, the discrete control u0,h is non-unique.
Discrete state and adjoint state, however, are unique.

Better rates are obtainable, e.g., O(h2) in the above mentioned quantities
if κ = 1, if the measure condition (1.38) holds a.e. on the domain, and if p
is sufficiently regular.

A convergence estimate for discrete controls in L1(A) is also derived.
These estimates are comparable to Theorem 72 in the special case of α = 0.
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We note that with our proof technique one can improve the rates in [DH12]
with respect to κ.

Key ingredient to prove the error estimates is the estimate

‖u0 − u0,h‖L1(A) ≤ C‖p0 − p0,h‖κL∞ . (3.6)

In [GY11], this estimate is generalized (with respect to α) to

‖uα − uα,h‖L1(Ω) ≤ C‖pα − pα,h‖L∞

assuming a measure condition stronger than the p̄α-measure condition
(1.56) in the special case of κ = 1 on the whole domain. However, for
the total error ‖u0 − uα,h‖L1(A), which is not considered in [GY11], this
strengthening does not improve the estimates.

In [WW11a], first estimates for the regularization error assuming the
measure condition (1.38) are derived together with non-robust finite ele-
ment estimates. Let us also mention that a-posteriori error estimates as
well as an additional L1 term in the cost functional are considered. The
L1 term is also included in [WW11b] and [WW13].
In [WW11b], improved regularization error estimates are obtained, and

the measure condition is generalized to the Assumption 15. As noted above,
in Theorem 19 we further improved these estimates.

It is also discussed how the condition (1.45), which is fulfilled in our
situation, can be weakened. A weakening of the source condition (1.37) to
so-called power type source conditions is also derived. Additionally, noise
of level δ in the desired state (i.e., ‖yd − yδd‖ ≤ δ) and a parameter choice
rule α(δ) are discussed.

The paper [WW13] discusses necessity and sufficiency of conditions for
convergence rates in the regularization, similar to Theorem 20 and Theo-
rem 22. See also the remarks near these theorems.

In [Wac13], a parameter choice rule α(h) is developed to select α adap-
tively depending on a-posteriori available quantities. The rule selects α(h) ∼
h2 for an example with κ < 1. This is theoretically justified by the a-priori
robust estimates derived in [Wac14]. We note that with our proof tech-
nique, one can improve these rates with respect to κ.
Let us finally refer to the discussions after Assumption 15 and at the end

of the numerics chapter for further literature.
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Abstract
In this thesis, a class of optimal control problems governed by the heat equation
is considered. The task is to minimize the tracking-type functional

J(u) := 1
2‖y(u)− yd‖2

Y + α

2 ‖u‖
2
U

in the limit case α = 0.
The optimal control in the limit case is often discontinuous, but has a special

structure: It takes values only on the bounds a and b of the set of admissible
controls Uad = {u ∈ U | a ≤ u ≤ b}. Such controls are called bang-bang controls.

To stabilize the limit problem, the case α > 0 is considered, which is a Tikhonov
regularization and introduces a regularization error.

As a next step, the control problem with α > 0 is discretized in space and
time. We thereby introduce a second error, the discretization error.

If a-priori error estimates are at hand for both errors, one can derive a coupling
rule for discretization and regularization parameters for an efficient numerical
solving. It is the aim of this thesis to establish such a numerical analysis.

In chapter one, the class of optimal control problems is introduced. Exis-
tence, uniqueness and regularity are discussed. We then analyze the Tikhonov
regularization error. We first recall some well-known results. After that, we show
that under additional conditions, better results for the rate of convergence can
be given. For bang-bang solutions, a second sufficient condition is introduced.
With it, an error bound on the time derivative of the control with respect to α is
derived, which will be useful later to improve convergence rates for the discrete
regularized solutions.

Having estimates for the regularization error at hand, in chapter two an ap-
propriate discretization of the optimal control problem is set up. Therefor, we
first consider finite element discretizations of the state and adjoint equation. Sta-
bility and error estimates are derived in different norms. After that, we formulate
and analyze the variational discretization of the optimal control problem. At first,
estimates for the error between regularized control and discrete regularized con-
trol are shown, which are not robust if α tends to zero and lead to non-optimal
estimates for the total error. We then derive robust estimates, which lead to
better estimates for the total error if the limit problem is sufficiently regular.
Finally, we improve these robust estimates further for bang-bang controls.

In the third chapter, we report and comment on some numerical calculations
to support the analytical findings.



Zusammenfassung
Diese Arbeit beschäftigt sich mit einer Klasse von Optimalsteuerungsproblemen
mit der Wärmeleitungsgleichung. Ziel ist die Minimierung eines Tracking-Type-
Funktionals

J(u) := 1
2‖y(u)− yd‖2

Y + α

2 ‖u‖
2
U

im Grenzfall α = 0.
Die optimale Steuerung im Grenzfall ist oft unstetig, hat aber eine spezielle

Struktur: Sie nimmt nur Werte an auf den Schranken a und b der Menge zuläs-
siger Steuerungen Uad = {u ∈ U | a ≤ u ≤ b}. Solche Steuerungen werden Bang-
Bang-Steuerungen genannt.

Zur Stabilisierung des Grenzproblems wird der Fall α > 0 betrachtet, eine
Tichonow-Regularisierung, die einen Regularisierungsfehler einführt.

Als nächster Schritt wird das Kontrollproblem mit α > 0 in Zeit und Ort
diskretisiert. Dadurch wird ein zweiter Fehler, der Diskretisierungsfehler, einge-
führt.

Sind A-priori-Fehlerschätzer etabliert, kann eine Kopplungsregel zwischen Dis-
kretisierungs- und Regularisierungsparametern hergeleitet werden zur effizienten
numerischen Lösung. Ziel dieser Arbeit ist eine solche numerische Analyse.

Im ersten Kapitel wird die Klasse von Optimalsteuerungsproblemen einge-
führt. Existenz, Eindeutigkeit und Regularität werden diskutiert. Danach ana-
lysieren wir den Tichonow-Regularisierungsfehler. Wir wiederholen zunächst
bekannte Resultate. Danach zeigen wir unter zusätzlichen Bedingungen bessere
Ergebnisse für die Konvergenzrate. Für Bang-Bang-Steuerungen wird eine zweite
hinreichende Bedingung eingeführt. Mit ihr wird eine Fehlerschranke für die
Zeitableitung der Steuerung bezüglich α hergeleitet. Damit können später Kon-
vergenzraten für die diskreten regularisierten Lösungen verbessert werden.

Im zweiten Kapitel wird eine geeignete Diskretisierung des Kontrollproblems
betrachtet. Zuerst werden Finite-Elemente-Diskretisierungen von Zustands- und
Adjungierten-Gleichung eingeführt. Stabilität und Fehlerabschätzungen in ver-
schiedenen Normen werden hergeleitet. Danach formulieren und analysieren wir
die variationelle Diskretisierung des Kontrollproblems. Zuerst werden Fehler-
abschätzungen zwischen regularisierter Kontrolle und diskreter regularisierter
Kontrolle gezeigt, welche nicht robust sind, falls α gegen Null strebt, und zu
nicht-optimalen Abschätzungen für den Gesamtfehler führen. Danach leiten wir
robuste Abschätzungen her, die zu besseren Abschätzungen für den Gesamtfehler
führen, falls das Grenzproblem hinreichend regulär ist. Am Ende verbessern wir
diese robusten Abschätzungen weiter für Bang-Bang-Steuerungen.

Im dritten Kapitel berichten wir von einigen numerischen Berechnungen, die
die analytischen Ergebnisse bestätigen.
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