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Zusammenfassung 

1 

1 Zusammenfassung  

Maladaptive Herzhypertrophie führt zu Herzinsuffizienz, eine der häufigsten Ursachen für 

einen stationären Krankenhausaufenthalt in der westlichen Welt. Chronische Aktivierung 

ɓ-adrenerger, PKA-abhängiger Signalwege trägt zur Entwicklung einer maladaptiven kar-

dialen Hypertrophie bei. Dies wird durch die therapeutische Wirksamkeit von ɓ-Adreno-

zeptor-Antagonisten verdeutlicht. CRTC1 ist ein cAMP-regulierter transkriptioneller Koak-

tivator der Gentranskription. CRTC1 wird durch ɓ-adrenerg-induzierte Erhöhung der intra-

zellulären cAMP-Konzentration und folgender PKA und Calcineurin Aktivität dephospho-

ryliert und damit aktiviert. Dephosphoryliertes CRTC1 transloziert in den Zellkern, wo es 

die CREB-abhängige Gentranskription aktiviert. 

Um die Funktion von CRTC1 im Herzen zu erläutern, wurden für diese Arbeit Mäuse, in 

denen das Crtc1 Gen global ausgeschaltet ist, untersucht. Die Funktion der Herzen wurde 

mittels Echokardiografie ermittelt; die mRNA- und Protein-Expressionen wurden per quan-

titativer Reverse-Transkriptase PCR und Immunoblot-Analyse ermittelt. In isolierten Kar-

diomyozyten von adulten Mäusen wurden Veränderungen der Signaltransduktion hinsicht-

lich veränderter Proteinphosphorylierung unter Verwendung von Immunoblot-Analysen 

untersucht.  

Die Crtc1-/- Mäuse wiesen Zeichen einer kardialen Hypertrophie und einer verminderten 

Herzfunktion auf. Ventrikuläre Kardiomyozyten der Crtc1-/- Mäuse zeigten eine vermin-

derte Phosphorylierung der Sarkomer-Proteine Troponin I und cMybpC in Reaktion auf 

eine akute ɓ-adrenerge Behandlung. Die Phospholamban-Phosphorylierung war ver-

gleichbar mit den Wildtyp-Geschwistertieren. 

Die mRNA- und Protein-Expression des antihypertrophen regulator of G-protein signaling 

2 (RGS2) war in Herzen von Crtc1-/- Mäusen vermindert. Zusätzlich wurde CRTC1 an den 

Rgs2-Promoter in murinem Herzgewebe sowie in isolierten neonatalen Mauskardiomy-

ozyten rekrutiert. Es ist bekannt, dass RGS2 GŬ q/11-gekoppelte Rezeptoren inhibiert und 

damit die Übermittlung hypertropher Signalwege hemmt. Die nachgeschalteten Signal-

kinasen Akt und PKD wurden, verglichen mit Wildtyp-Kardiomyozyten, in Crtc1-/- ventriku-

lären Kardiomyozyten vermindert phosphoryliert, während ERK vermehrt phosphoryliert 

wurde.  

Als Modell einer ɓ-adrenerg-vermittelten Hypertrophie wurde Crtc1-/- Mäusen und ihren 

Wildtyp-Geschwistertieren über eine Woche Isoprenalin verabreicht. Dadurch verbesserte 

sich die Herzfunktion der Crtc1-/- Mäuse auf das Niveau der Wildtyp-Geschwistertiere. 
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Zusammengefasst zeigt diese Arbeit, dass CRTC1 eine protektive Funktion bei der Ent-

wicklung einer maladaptiven Hypertrophie einnimmt und vermutlich den Krankheitsverlauf 

hinauszögert. Durch den geläufigen Gebrauch von ɓ-Adrenozeptor-Antagonisten zur Be-

handlung der Herzhypertrophie könnte dieser schützende Mechanismus übergangen wer-

den. 
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2 Abstract 

Maladaptive cardiac hypertrophy leads to heart failure, one of the common causes for 

hospitalization in the western world. Chronic ɓ-adrenergic, PKA-dependent signaling con-

tributes to the development of cardiac hypertrophy, elucidated by the therapeutic success 

of ɓ-adrenoceptor antagonists. CRTC1 is a cAMP-regulated transcriptional coactivator ac-

tivated by ɓ-adrenergic signaling-induced increases in cAMP and subsequent PKA and 

calcineurin activation. Active CRTC1 translocates to the nucleus where it contributes to 

the CREB dependent gene transcription.  

To elucidate the role of CRTC1 in the heart, mice globally deficient in Crtc1 were investi-

gated in this thesis. The heart function was studied by echocardiography; mRNA and pro-

tein expression were investigated by quantitative reverse transcription PCR and immuno-

blot analysis. In isolated adult ventricular myocytes changes in signaling transduction con-

cerning protein phosphorylation were studied by immunoblot analysis.  

Crtc1-/- mice exhibited cardiac hypertrophy and reduced cardiac function. Crtc1-/- ventricu-

lar cardiomyocytes showed a reduced phosphorylation of the sarcomeric proteins troponin 

I and cMybpC in response to acute ɓ-adrenergic signaling; phospholamban phosphoryla-

tion was comparable to wild-type ventricular myocytes.  

The antihypertrophic regulator of G-protein signaling 2 (RGS2) was reduced in mRNA and 

protein expression in hearts of Crtc1-/- mice. Additionally, CRTC1 was recruited to the Rgs2 

promoter in murine heart tissue and in neonatal cardiomyocytes. RGS2 is known to inhibit 

GŬ q/11-coupled receptor-mediated signaling. The downstream signaling kinases Akt and 

PKD were found to be less phosphorylated in Crtc1-/- ventricular myocytes than in wild-

type cardiomyocytes while ERK phosphorylation was increased. 

To induce ɓ-adrenergic-induced cardiac hypertrophy, Crtc1-/- mice and their wild-type litter-

mates received isoprenaline for 7 days. This treatment ameliorated cardiac function in 

Crtc1-/- mice to wild-type functional level. 

Taken together, this thesis provides evidence that CRTC1 plays a protective role in the 

development of cardiac hypertrophy presumably prolonging disease progression. By the 

common use of ɓ-adrenoceptor antagonists in the treatment of cardiac hypertrophy this 

protective mechanism might be reduced. 
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3 Introduction  

3.1 Heart structure and function 

The heart is a muscular organ pumping blood through the vessels to provide the body with 

oxygen and nutrients. It is usually situated in the middle of the thorax and consists of four 

chambers, two upper atria and two lower ventricles, separated by a muscular structure 

called the septum. Four heart valves are responsible for one-way directed flow by prevent-

ing backflow. The heart pumps blood by rhythmic, repeated contractions determined by 

pacemaking cells in the sinoatrial node. They generate a depolarizing action potential, 

which stimulates the atria to contract and travels through the atrioventricular node to the 

His bundle and the Purkinje fibers to the ventricular myocytes, which leads to contraction 

of the ventricles. 

Venous blood low in oxygen enters the heart from the venae cavae superior and inferior 

into the right atria. It passes through the tricuspid valve into the right ventricle from where 

it is pumped through the pulmonary artery into the lungs, where carbon dioxide is ex-

changed for oxygen. Blood high in oxygen enters the heart through the pulmonary veins 

into the left atria and then the left ventricle. From the left ventricle the blood is pumped into 

the aorta and into the body (Figure 3.1). Cardiac physiological properties are characterized 

by inotropy (the force of contraction), chronotropy (the heart rate), dromotropy (the rate of 

electrical impulses), bathmotropy (the ability to respond to mechanical stimulation), and 

lusitropy (the rate of myocardial relaxation).   

The heart consists to 30% of cardiomyocytes, accounting for 70-80% of cardiac mass. 

Other cardiac cells include fibroblasts, vascular smooth muscle cells, endothelial cells, and 

immune cells (Bernardo et al. 2010). Cardiomyocytes mostly lose the ability to proliferate 

after birth and mainly grow in size. 
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Figure 3.1: Cardiac anatomy. Cross section of a heart showing its anatomical structures. Blue arrows 
indicate the flow of oxygen-low blood from the venae cavae into the right atrium, the right ventricle, and 
through the pulmonary artery into the lungs. Red arrows indicate the flow of oxygen-rich blood from the 
lungs through the left atrium and the left ventricle to the aorta and the rest of the body. Illustration taken 
from the website of the Texas Heart Institute.  
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3.2 Cardiac hypertrophy 

Cardiovascular diseases rank among the number one causes of mortality in the western 

world. Heart failure is the greatest growing subclass of cardiovascular diseases with a five 

year survival rate of 50% (Heineke and Molkentin 2006). In response to increased work-

load due to, among others, arterial hypertension, aortic stenosis, genetic mutations, or 

diabetic cardiomyopathies, myocytes grow to increase cardiac pump function and de-

crease wall tension. This adaptive remodeling of the heart leads to left ventricular hyper-

trophy (LVH) and can result in the loss of cardiomyocytes, ventricular dilation, decrease in 

contractile function and ultimately heart failure, if chronic stress or underlying disease per-

sist. LVH is associated with an increase in fibrosis and beginning cardiac dysfunction while 

cardiac dilation and subsequent heart failure are associated with extensive fibrosis, ad-

vanced cardiac dysfunction, and myocyte death (Heineke and Molkentin 2006; Hill and 

Olson 2008; Heinzel et al. 2015) (Figure 3.2). The Framingham Heart Study identified LVH 

as an independent cardiovascular risk factor (Levy 1991).  

A widely accepted model differentiates three types of morphological left ventricular growth: 

concentric remodeling, concentric hypertrophy, and eccentric hypertrophy. In concentric 

remodeling, relative wall thickness increases while cardiac mass remains normal. In con-

centric hypertrophy, often caused by pressure overload, relative wall thickness, and car-

diac mass increase with an increase in myocyte thickness by addition of sarcomeres in 

parallel. In eccentric hypertrophy, caused by volume overload or infarction, cardiac mass 

and chamber volume increase while relative wall thickness may remain normal, de- or 

increase. Sarcomere series are added longitudinally leading to myocyte elongation 

(Ganau et al. 1992; Barry and Townsend 2010). In maladaptive cardiac hypertrophy genes 

normally expressed during embryogenesis are induced. This induction of genes includes 

the natriuretic proteins atrial natriuretic peptide (ANP, encoded by Nppa) and brain natriu-

retic peptide (BNP, encoded by Nppb), ɓ-myosin heavy chain (ɓ-MHC, encoded by Myh7), 

and Ŭ-skeletal actin (encoded by Acta1) and is referred to as the reactivation of the fetal 

cardiac gene program (Kuwahara et al. 2003; Harvey and Leinwand 2011). 

LVH is also often observed in well-trained athletes and during pregnancy. This physio-

logical hypertrophy serves to enhance performance and satisfy the higher oxygen demand 

of the body. It is not associated with fibrosis, apoptosis or cardiac dysfunction. Physio-

logical hypertrophy is fully reversible. It seems as if the type of trigger, not the duration, is 

responsible for the development of either physiological or pathological cardiac hypertrophy 

(Maillet et al. 2013).  
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Figure 3.2: Morphometric alterations in cardiac hypertrophy. Physiological hypertrophy is associ-
ated with an increase in myocyte size without development of fibrosis or cardiac dysfunction. Concentric 
hypertrophy is associated with an increase in mainly left ventricular wall thickness, fibrosis, and begin-
ning cardiac dysfunction. It is only partly reversible and can develop into eccentric hypertrophy. Eccen-
tric hypertrophy is associated with an increase in chamber dimension, extensive fibrosis, myocyte death, 
and cardiac dysfunction. LV, left ventricle; RV, right ventricle. Adapted from Chung and Leinwand, 2014.  
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3.3 ɓ-adrenergic signaling 

As cardiac output decreases, due to an infarct or hypertension, the sympathetic nervous 

system is activated and signals via catecholamines. Activation of ɓ-adrenoceptors in the 

heart leads to an initial increase in inotropy, chronotropy, and lusitropy to preserve blood 

pressure and cardiac output under increased energy consumption and cardiomyocyte 

growth. Chronic activation leads to a decrease in ɓ-adrenoceptor density and a desensiti-

zation of the ɓ-adrenergic signaling pathway, decreasing force, frequency, and cardiac 

output (El-Armouche and Eschenhagen 2009).  

The healthy heart contains mainly ɓ1-adrenoceptors (75-80%), about 15% ɓ2-adrenocep-

tors, and about 5% ɓ3-adrenoceptors. In the failing heart, ɓ1-adrenoceptor density de-

creases and ɓ2-adrenoceptors become nonfunctional. ɓ1-adrenoceptors are associated 

with apoptotic signaling while ɓ2-adrenoceptors are associated with anti-apoptotic signal-

ing (Siryk-Bathgate et al. 2013). 

ɓ-adrenoceptors are seven transmembrane heterotrimeric guanine nucleotide-binding (G) 

protein coupled receptors. The G proteins consist of the three intracellular subunits Ŭ, ɓ, 

and ɔ. Upon activation of the receptor, guanosine diphosphate (GDP) bound to the GŬ-

subunit is exchanged for guanosine triphosphate (GTP). This exchange triggers the dis-

sociation of the GŬ-subunit from the receptor until GTP is again hydrolyzed to GDP and 

the GŬ-subunit re-associates with the ɓ/ɔ-subunit complex. Depending on the class of GŬ-

subunit, for example GŬ s (stimulatory), GŬ i (inhibitory), or GŬ q/11, different effector enzymes 

are activated or inhibited (Aktories et al. 2013). 

ɓ-adrenoceptors in the healthy heart are coupled to the GŬ s-subunit. The dissociated GŬ-

subunit activates the enzyme adenylyl cyclase (AC), which catalyzes the formation of cy-

clic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Two cAMP 

molecules each bind to a regulatory subunit of the serine/threonine protein kinase A (PKA), 

releasing its two catalytic subunits (Whelan et al. 2013). The catalytic subunits phosphor-

ylate long-lasting (L)-type calcium (Ca2+) -channels, resulting in an increase in intracellular 

Ca2+-concentration, a larger systolic Ca2+-transient, and therefore increased inotropy. This 

effect is supported by PKA-induced phosphorylation of the ryanodine receptor, which leads 

to increased Ca2+-flow out of the sarcoplasmic reticulum (SR) and phospholamban (PLN) 

phosphorylation, leading to increased Ca2+-reuptake into the SR. Phosphorylation of the 

myofilament proteins troponin I (TnI) and cardiac myosin binding protein C (cMybpC) leads 

to decreased myofilament Ca2+-sensitivity resulting in an accelerated relaxation. 

In the failing heart, ɓ-adrenoceptors uncouple from the GŬ s-subunit and increase binding 

to the GŬ i-subunit, inhibiting AC activity (El-Armouche and Eschenhagen 2009).  
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3.4 Therapeutic options for maladaptive cardiac hypertrophy 

Current therapeutic options for cardiac hypertrophy include ACE-inhibitors, angiotensin II-

receptor antagonists, aldosterone-receptor antagonists, ɓ-adrenoceptor antagonists, diu-

retics, and Ca2+-channel antagonists. Activation of the sympathetic nervous system leads 

to subsequent activation of the renin-angiotensin-aldosterone system resulting in in-

creased blood pressure. Induced by ɓ1-adrenergic activation, decreases in blood pressure, 

or decreases in blood sodium concentration, renin is secreted from juxtaglomerular cells 

in the kidney. Renin is an enzyme that converts the peptide angiotensinogen to angiotensin 

I, which is then converted to angiotensin II by the angiotensin-converting enzyme (ACE). 

Angiotensin II acts as a potent vasoconstrictor and stimulates the secretion of aldosterone 

from the adrenal cortex, which increases reabsorption of sodium in the kidneys. ACE-in-

hibitors such as ramipril, angiotensin II-receptor antagonists such as candesartan, aldos-

terone-receptor antagonists such as spironolactone, as well as ɓ-adrenoceptor antago-

nists such as metoprolol decrease blood pressure by reducing the activity of the renin-

angiotensin-aldosterone system, resulting in a decreased afterload and conserving the 

heartôs energy. Through inhibition of ɓ-adrenoceptors in the heart, ɓ-adrenoceptor antag-

onists diminish inotropy, chronotropy, and lusitropy resulting in reduced energy consump-

tion of the heart. Activation of GŬ q/11-coupled receptors in the heart by angiotensin II, en-

dothelin-1, or Ŭ-adrenergic signals such as phenylephrine leads to activation of phospho-

lipase C-ɓ (PLC-ɓ) which induces generation of the second messengers diacylglycerol 

(DAG) and inositol-1,4,5-triphosphate (IP3). DAG activates protein kinase C (PKC), which 

phosphorylates L-type Ca2+-channels and myofilament proteins. IP3 leads to increased 

Ca2+-release from the sarcoplasmic reticulum by enhancing the open probability of the 

ryanodine receptor. Angiotensin II-receptor type 1 in cardiomyocytes can also be activated 

by mechanical stretch, without involvement of angiotensin II (Hill and Olson 2008). Chronic 

activation of GŬ q/11-coupled receptors can cause cardiac hypertrophy (Wettschureck et al. 

2001). Angiotensin II-receptor antagonists are a valuable part of the treatment of cardiac 

hypertrophy and heart failure while endothelin-receptor antagonists are currently used for 

the treatment of pulmonary arterial hypertension.  
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3.5 The transcriptional coactivator CRTC 

ɓ-adrenergic signaling has been researched intensively, but mechanisms leading to car-

diac hypertrophy after intracellular cAMP increases have not been completely understood. 

The cAMP regulated transcriptional coactivator (CRTC), formerly known as transducer of 

regulated CREB (TORC), has been found to increase the expression of cAMP responsive 

genes. CRTC is a coactivator of the ubiquitously expressed transcription factor cAMP re-

sponse element (CRE) binding protein (CREB), first identified by Conkright et al. and    

Iourgenko et al. (Conkright et al. 2003; Iourgenko et al. 2003). The CRTC family consists 

of three members, CRTC1, CRTC2, and CRTC3. They are evolutionarily conserved pro-

teins. Functional homologues have been identified in Takifugu rubripes, Drosophila mela-

nogaster, and Caenorhabditis elegans (Conkright et al. 2003; Iourgenko et al. 2003). Hu-

man CRTC2 and CRTC3 share 30-40% homology with CRTC1. All three members of the 

CRTC family are expressed in most tissues while the amount of expression differs between 

isoforms. CRTC1 is most highly expressed in the brain, mainly in the prefrontal cortex and 

the cerebellum. CRTC1 is associated with long-term memory, energy balance, neuronal 

function, and mood disorders (Kovacs et al. 2007; Altarejos and Montminy 2011; Breuillaud 

et al. 2012). CRTC2 is predominantly expressed in the liver where it promotes glucose 

homeostasis (Koo et al. 2005). Mice deficient in Crtc2 show reduced glucose production 

without leading to hypoglycemia (Wang et al. 2010). Under diet-induced obesity Crtc2-/- 

mice show improved insulin sensitivity (Le Lay et al. 2009). CRTC3 is highly expressed in 

white and brown adipose tissue and is involved in energy balance (Conkright et al. 2003; 

Altarejos and Montminy 2011). Crtc3-/- mice appear to be more insulin sensitive than wild-

type mice on a normal chow diet and have 50% lower adipose tissue mass, despite normal 

food intake. On a high fat diet, Crtc3-/- mice gain less weight than wild-type littermates and 

have elevated energy expenditure (Song et al. 2010). 

 

3.5.1 Structure of CRTC 

Human CRTC2 and CRTC3 genes share 32% identity with CRTC1. The CRTC proteins 

display a highly conserved predicted N-terminal coiled-coil domain which mediates the 

association with the dimerized leucine zipper domain of the transcription factor CREB. 

Conkright et al. showed in a glutaraldehyde crosslinking assay that CRTCs oligomerize 

and bind to CREB as tetramers (Conkright et al. 2003). Analysis of CRTC2 revealed a 

nuclear localization signal (NLS) within the amino acid region 56-144 and two nuclear ex-

port signals (NES) within the amino acid region 145-320 (Figure 3.3). These NLS and NES 
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are conserved among the CTRC isoforms. Only CRTC3 presents an alteration of amino 

acid 282 within the NES 1, which leads to a disrupted nuclear export activity and greater 

transcriptional activity compared to CRTC2. Phosphorylation of serine 171 in CRTC2 and 

the conserved serine in the isoforms is responsible for complex formation with 14-3-3 pro-

teins, inhibiting nuclear translocation of CRTC. All three CRTC isoforms contain a con-

served 200 amino acid C-terminal transactivation domain (Screaton et al. 2004).    

 

 
Figure 3.3: Structure of the CRTC2 protein. N-terminally, CRTC2 contains a highly conserved pre-
dicted coiled-coil domain with which it binds to the dimerized leucine zipper of CREB (CBD=CREB bind-
ing domain). Further C-terminally, CRTC2 contains a nuclear localization signal (NLS) and two nuclear 
export signals (NES 1 and NES 2). At the C-terminus, CRTC2 contains an about 200 amino acid long 
transactivation domain (TAD). ñPò indicates phosphorylation sites at amino acids 171 and 275 leading 
to 14-3-3 protein interaction. aa, amino acid; N, N-terminus; C, C-terminus. 

 

3.5.2 Regulation of CRTC 

CRE sites are found in about one third of the mammalian genome (Conkright et al. 2003). 

The transcription factor CREB recognizes palindromic CRE sites (5ô-TGACGTCA-3ô) or 

CRE half-sites (5ô-TGACG-3ô or 5ô-CGTCA-3ô) of promoter regions, initiating gene tran-

scription. Upon serine 133 phosphorylation by PKA the coactivator CREB binding protein 

(CBP) is recruited to CREB. CRTC is another coactivator of CREB dependent gene tran-

scription, binding to CREB in a serine 133 phosphorylation-independent way. (Screaton et 

al. 2004; Altarejos and Montminy 2011). Under basal conditions of the cell CRTC is phos-

phorylated and therefore retained in the cytoplasm. It has been shown that the salt induc-

ible kinase (SIK) directly phosphorylates CRTC2 at serine 171 and thereby induces the 

association with 14-3-3 phosphoprotein binding-proteins leading to a cytosolic sequestra-

tion (Screaton et al. 2004). Upon activation of the ɓ-adrenoceptor and concomitant in-

creases in intracellular cAMP and PKA activity, SIK is phosphorylated at serine 577 and 

thereby inactivated (Katoh et al. 2004; Kanyo et al. 2009). Increased intracellular Ca2+-

concentrations lead to the binding of the Ca2+-binding adaptor protein calmodulin to the 

serine/threonine protein-phosphatase calcineurin, which leads to its subsequent activation 

and thereby CRTC dephosphorylation. Dephosphorylated CRTC is liberated from 14-3-3 

proteins and translocates into the nucleus (Bittinger et al. 2004; Kang et al. 2007). In the 

nucleus, CRTC interacts with the dimerized leucine zipper of the transcription factor CREB. 

Conkright et al. showed that the CRTC N-terminal coiled-coil domain interacts with the 
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dimerized leucine zipper domain of CREB forming a homotetramer (Conkright et al. 2003). 

It has been shown that CRTC-binding to CREB is sufficient to initiate transcriptional activ-

ity. Furthermore, CRTC is able to interact with CBP, stabilizing the transcriptional activation 

complex (Figure 3.4) (Ravnskjaer et al. 2007; Xu et al. 2007; Heinrich et al. 2013). Phos-

phorylation of CRTC2 by SIK in the nucleus terminates coactivation of gene transcription 

and leads to CRTC2 translocation to the cytoplasm (Dentin et al. 2007).   

 

 

 
 
Figure 3.4: Regulation of CRTC. Under basal conditions, CRTC is sequestered in the cytoplasm 
through phosphorylation by the salt inducible kinase (SIK) and subsequent association with 14-3-3 pro-
teins (14-3-3). Upon ɓ-adrenergic stimulation, adenylyl cyclase (AC) catalyzes the formation of cyclic 
adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). cAMP activates protein kinase 
A (PKA) which in turn inhibits SIK through phosphorylation. Increased intracellular Ca2+-concentrations 
lead to an activation of the phosphatase calcineurin which dephosphorylates CRTC. Dephosphorylated 
CRTC translocates into the nucleus where it binds to the dimerized leucine zipper of the DNA-bound 
cAMP response element binding protein (CREB) and coactivates gene transcription. Phosphorylation 
of CREB at serine 133 leads to interaction with CREB binding protein (CBP). CRTC is able to interact 
with CBP and stabilize the transcriptional activation complex (not shown). ñPò indicates inhibitory phos-
phorylation. 
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3.6 Aim of the thesis 

The role of CRTC has been evaluated in various tissues while its role in the heart remains 

unknown. Previous results from the group of Prof. Elke Oetjen showed increased CRTC1 

protein content in human heart tissue with acquired (aortic valve stenosis) and inherited 

(hypertrophic cardiomyopathy) hypertrophy. They showed the same increase in CRTC1 

protein in two distinct mouse models of cardiac hypertrophy, either induced by afterload 

enhancement by transverse aortic constriction or by genetic mutation of the cMybpc gene. 

In neonatal rat cardiomyocytes ɓ-adrenergic treatment resulted in CRTC1 dephosphory-

lation and therefore activation. 

The goal of this study was to determine the role of CRTC1 in the heart and its influence on 

the pathogenesis of cardiac hypertrophy.  

For that purpose mice globally deficient in Crtc1 were investigated regarding their cardiac 

phenotype. Hypertrophic development in the heart was assessed on morphological, func-

tional, mRNA, and protein levels. Hypertrophic signaling and phosphorylation of contractile 

proteins were researched in isolated ventricular myocytes from neonatal and adult mice. 

As a model for ɓ-adrenergic-induced hypertrophy, mice were treated with the ɓ-adreno-

ceptor agonist isoprenaline for one week. The effect of CRTC1 on cardiac function and 

mRNA expression was assessed in these mice. 
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4 Results 

4.1 Crtc1-deficient mice 

In order to investigate the role of CRTC1 in the heart, mice globally deficient in Crtc1  

(Crtc1-/-) were investigated. These mice were previously generated and described regard-

ing neuronal function and behavior by the laboratory of Dr. Jean-René Cardinaux (Univer-

sity of Lausanne, Switzerland). The mice were mostly investigated at an age of 10 to 13 

weeks, if not otherwise stated, and compared to their wild-type littermates (WT).   

mRNA and immunoblot analysis confirmed the lack of Crtc1 on transcriptional and protein 

levels in the hearts of Crtc1-/- mice (Figure 4.1 A and B). Furthermore, mRNA of the two 

isoforms Crtc2 and Crtc3 was not differentially expressed in Crtc1-/- mice compared to their 

wild-type littermates (Figure 4.1 C and D). 
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Figure 4.1: No expression of Crtc1 and unchanged Crtc2 and Crtc3 mRNA expression in Crtc1-/- 

mice. A. Protein lysates from hearts of Crtc1-/- mice (KO) and their wild-type littermates (WT) were an-
alyzed by immunoblot using an antibody against CRTC1 and normalized to calsequestrin (CSQ). Typical 
immunoblot (top); quantitative evaluation (bottom). B-D. Quantitative evaluation of mRNA expression of 

Crtc1, Crtc2, and Crtc3, respectively, normalized to GŬS using DDCt-method. Data are expressed as 
mean±SEM; number of samples is given within the bars.  
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4.1.1 Cardiac hypertrophy 

To investigate the effect of Crtc1 absence on cardiac size, the ratio of heart weight to body 

weight was determined as a marker for hypertrophy. Since it has previously been de-

scribed that Crtc1-/- mice express a hyperphagic phenotype at the age of 16 weeks 

(Breuillaud et al. 2009), the ratio of heart weight to tibia length was measured as well. 

Crtc1-/- mice show an increase in the ratio of heart weight to body weight as well as to tibia 

length by 20±6% and 27±9%, respectively (Figure 4.2).  

 

Figure 4.2: Cardiac hypertrophy in Crtc1-/- mice. In Crtc1-/- mice (KO) and their wild-type littermates 
(WT), the ratio of heart weight (HW) to body weight (BW) or to tibia length (TL) was determined as a 
marker for cardiac hypertrophy. A. Representative formalin fixed hearts. B. Quantitative evaluation of 
HW/BW and HW/TL. Data are expressed as meanÑSEM. *p<0.05; unpaired Studentôs t-test; number 
of mice is given within the bars. 
 

For the analysis of cardiomyocyte size, cross sections from hearts of mice aged 25 to 27 

weeks were stained with an antibody against dystrophin. Dystrophin is a protein of the 

sarcolemma expressed in muscle fibers. Using ImageJ®, the outlines of single cells were 

surrounded and the cardiomyocyte area was calculated by the program. In Crtc1-/- mice, 

cardiomyocyte size was increased by 17±2% in the septum and 12±2% in the left ventricle 

but remained unchanged in the right ventricle (Figure 4.3 A and B).  

To support these findings, isolated adult mouse ventricular myocytes (AMVM) were 

stained for Ŭ-actinin, a protein of the sarcomere, and measured by the Opera® High Con-

tent Screening System in cooperation with Maksymilian Prondzynski (University Medical 

Center, Hamburg, Germany). This analysis revealed an increase in cardiomyocyte size by 

17±4% in total; 11±4% in width and 6±1% in length indicating a concentric hypertrophy 

(Figure 4.3 C and D). 
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Figure 4.3: Increased cardiomyocyte size in Crtc1-/- mice. Cross sections of hearts from Crtc1-/- mice 
(KO) and their wild-type (WT) littermates (25-29 weeks old) were stained with an antibody against dys-
trophin. A. Representative cross sections. B. Quantitative evaluation of cardiomyocyte area. Isolated 
adult mouse ventricular myocytes (AMVM) were stained for Ŭ-actinin and analyzed by the Opera® High 
Content Screening System. C. Representative AMVM. D. Quantitative evaluation of cardiomyocyte total 
size, width, and length. Data are expressed as mean±SEM. *p<0.05; unpaired Studentôs t-test; number 
of cells and hearts is given within the bars. 
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4.1.2 Fibrosis 

In many cases, cardiac hypertrophy goes along with an increase in fibrosis (Hill and Olson 

2008). To assess the amount of collagenous tissue in cross sections of Crtc1-/- and WT 

hearts, a Massonôs-Trichrome staining was performed. This standard staining method 

stains muscle tissue red, collagenous tissue blue, and cell nuclei brown. Microscopic eva-

luation of these cross sections showed no difference between WT and Crtc1-/- hearts (Fig-

ure 4.4 A). A second collagen staining was conducted. Sirius Red/Fast Green staining Kit 

stains collagenous tissue red and non-collagenous tissue green. Microscopic evaluation 

of this staining supported the findings from the Massonôs-Trichrome staining (Figure 4.4 

B).    

  

 

Figure 4.4: No fibrosis in Crtc1-/- mice. A. Cross sections of hearts from Crtc1-/- mice (KO) and their 
wild-type littermates (WT; 25 weeks old) were subjected to Massonôs-Trichrome staining; representative 
cross sections after staining. B. Cross sections of hearts from Crtc1-/- mice (KO) and their wild-type 
littermates (WT; 31 weeks old) were subjected to Sirius Red/Fast Green staining; representative cross 
sections after staining. 

 

To further evaluate the presence of fibrosis, mRNA expression of the connective tissue 

growth factor (Ctgf), a factor associated with tissue remodeling (Koshman et al. 2015), of 

collagen 1Ŭ1 (Col1a1), and collagen 3Ŭ1 (Col3a1) was assessed. This evaluation showed 

no differences between WT and Crtc1-/- heart tissue (Figure 4.5).   
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Figure 4.5: Unchanged Ctgf, Col1a1, and Col3a1 mRNA expression in Crtc1-/- mice. Quantitative 
mRNA expression of the connective tissue growth factor (Ctgf), collagen 1Ŭ1 (Col1a1), and collagen 
3Ŭ1 (Col3a1) normalized to GŬS in heart tissue from Crtc1-/- mice (KO) and their wild-type littermates 
(WT) analyzed by quantitative real time PCR. Data are expressed as mean±SEM relative to WT using 

DDCt-method. Number of samples is given within the bars. 

 

4.1.3 mRNA marker for hypertrophic development 

Under maladaptive hypertrophic conditions, the activation of the so called ñfetal gene pro-

gramò can be observed (Kang et al. 2007). To identify if the fetal gene program was acti-

vated in Crtc1-/- mice, genes encoding for atrial natriuretic peptide (ANP, encoded by 

Nppa), brain natriuretic peptide (BNP, encoded by Nppb), Ŭ-skeletal actin 1 (encoded by 

Acta1), and ɓ-myosin heavy chain (ɓ-MHC, encoded by Myh7) were analyzed by RT-

qPCR. ANP and BNP are natriuretic peptides released by the atria and ventricles upon 

cardiac wall stress. ANP and BNP induce local vasodilation and reduce blood volume sys-

temically. Under conditions of maladaptive hypertrophy, Ŭ-skeletal actin 1 and the ɓ-MHC 

are upregulated. MHC initiates contraction by directly interacting with actin molecules in 

the thin filament. It carries the ATPase activity, which is required for physical translocation. 

In mice, the Ŭ-MHC isoform is predominant in postnatal life. It has a higher ATPase activity 

with increased shortening velocity and higher energy consumption. In cardiac hypertrophy, 

it is replaced by the slower but more efficient ɓ-MHC isoform (Nadal-Ginard and Mahdavi 

1989; Kang et al. 2007; Harvey and Leinwand 2011).  

In Crtc1-/- mice, none of these fetal genes were upregulated. Moreover, Acta1 mRNA ex-

pression was downregulated (Figure 4.6). According to the CREB target gene database 

designed by the group of Prof. Marc Montminy (Salk Institute, La Jolla, USA), the Nppb, 

Acta1, and Myh7 promoters contain a CRE half-site and might therefore be regulated by 

CRTC1. 
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Figure 4.6: mRNA expression of fetal genes in Crtc1-/- mice. Quantitative evaluation of mRNA 
expression of Nppa, Nppb, Acta1, and Myh7, respectively, normalized to GaS in heart tissue from    

Crtc1-/- mice (KO) and their wild-type littermates (WT) using DDCt-method. Data are expressed as 
mean±SEM relative to WT; *p<0.05; unpaired Studentôs t-test; number of samples is given within the 
bars. 

 

4.1.4 Micro-array based expression analysis of mRNA 

To identify a broader field of genes differentially regulated in Crtc1-/- mice, a micro-array 

based expression analysis for mRNA sequencing (mRNA-Seq) was conducted.  

Heart powder from 3 WT and 3 Crtc1-/- mice was used for mRNA extraction. The obtained 

mRNA was analyzed by the group of Prof. Norbert Hübner (MDC, Berlin, Germany). Dif-

ferentially expressed mRNA is depicted in figure 4.7. The analysis did not reveal differen-

tially expressed mRNAs involved in cardiac disease. This might be due to the small sample 

number of three mice per genotype.  

mRNA expression upregulated in Crtc1-/- mice is mainly involved in morphogenesis, met-

abolic, and signaling processes according to the Kyoto Encyclopedia of Genes and Ge-

nomes (KEGG) database. mRNA expression downregulated in Crtc1-/- mice is mainly in-

volved in the regulation of the immune system. 
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The upregulated chondroadherin (Chad) mRNA expression in Crtc1-/- mice might have an 

influence on cardiac growth. According to the KEGG database, it can be involved in the 

PI3K-Akt-signaling pathway.  

 

 

Figure 4.7: Differentially expressed mRNA in Crtc1-/- mice. mRNA from Crtc1-/- mice (KO) or WT was 
subjected to mRNA sequencing. Volcano plot showing - log10 p-values plotted against log2 KO/WT. 
Horizontal line at y=1.3 represents a p-value of 0.05, vertical lines at x=- 0.58 and x=0.58 represent a 
fold change of 1.5. Blue indicates downregulation > 1.5 fold change and red indicates upregulation > 
1.5 fold change with p<0.05. Unpaired Studentôs t-test; n=3 per genotype. 
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4.1.5 Proteomics 

To evaluate differentially expressed proteins in Crtc1-/- mice, a proteomics analysis was 

performed in cooperation with the laboratory of Prof. Marcus Krüger (CECAD, Cologne, 

Germany). Proteins were separated by molecular mass using gel electrophoresis, di-

gested in-gel and analyzed by mass spectrometry. Proteins differentially expressed in 

Crtc1-/- mice are shown in figure 4.8. Three differentially expressed proteins involved in 

morphogenesis linked to cardiac function, Ŭ-actinin-3 (downregulated in Crtc1-/-), myosin 

heavy chain 2 (downregulated in Crtc1-/-), and Ankyrin repeat domain-containing protein 1 

(upregulated in Crtc1-/-), were identified. Other differentially expressed proteins are in-

volved in cellular component organization (both up- and downregulated in Crtc1-/-) and 

metabolic processes (mostly downregulated in Crtc1-/-).   

 

A discrepancy between the mRNA-Seq and proteomics analysis was detected. Proteomics 

revealed more differentially expressed proteins involved in cardiac function than mRNA-

Seq. Differentially expressed proteins were found to be involved in cellular component 

organization and metabolic processes, as were differentially expressed mRNAs. No up- or 

downregulated protein matched a differentially expressed mRNA. Down-regulation of 

mRNAs involved in the regulation of the immune system was not confirmed on protein 

level.  

For subsequent mRNA and protein quantifications, RT-qPCR and immunoblot methods 

were used to allow the increase of sample number and the analysis of specific mRNAs 

and proteins.  
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Figure 4.8: Differentially expressed proteins in Crtc1-/- mice. Total protein from hearts of Crtc1-/- 
mice (KO) or WT was subjected to proteomics analysis. Volcano plot showing - log10 p-values plotted 
against log2 KO/WT. Horizontal line at y=1.3 represents a p-value of 0.05, vertical lines at x=- 0.58 and 
x=0.58 represent a fold change of 1.5. Blue indicates downregulation > 1.5 fold change and red indicates 
upregulation > 1.5 fold change with p<0.05. Unpaired Studentôs t-test; n=3 per genotype. 

 
 
 










































































































































































































































