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Abstract

This work focuses on the development of a new semi-implicit SPH scheme for the shallow water equa-
tions, following the semi-implicit finite volume and finite difference approach of Casulli [25]. The
numerical solution of the shallow water equations on a staggered particle configuration has been derived
and discussed.

In standard explicit numerical methods, there is often a severe limitation on the time step due to
the stability restriction imposed by the CFL condition. This thesis proposes, a new semi-implicit SPH
scheme, which leads to an unconditionally stable method. To this end, the discrete momentum equation
is substituted into the discrete continuity equation to obtain a symmetric positive definite linear system
for the free surface elevation. The resulting system is sparse which can easily be solved by a matrix-free
conjugate gradient method. Once the new free surface location is known, the velocity at the new time
level can directly be computed and the particle positions can subsequently be updated. This staggered
semi-implicit SPH method stands out from the existing SPH schemes, the staggered approach makes
the resulting system for the free surface elevation sparse.

This work involves wetting and drying, this phenomena is treated by the nonlinear algorithm proposed by
Casulli [26]. We derive a mildly nonlinear system for the discrete free surface elevation from the shallow
water equations by taking into consideration a correct mass balance in wet regions and in transition
regions, i.e., the regions from wet particles to dry particles and those from dry particles to wet particles.
Unlike in other approaches, our algorithm does not place screens or threshold values at some points to
deal with the treatment of wetting and drying. Simple and yet non-trivial 1D, 2D and wetting/drying
test problems for the shallow water equation are presented to validate the method. Comparisons have
been made in all the cases considered with very reliable numerical reference solutions.
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Zusammenfassung

In der vorliegenden Arbeit befassen wir uns mit der Entwicklung eines neuen semi-impliziten SPH
(smoothed particle hydrodynamics) Verfahrens zur numerischen Lösung der Flachwassergleichungen.
Dabei verwenden wir den semi-impliziten Finite Volumen und Finite Differenzen Ansatz von Casulli [25].
Die numerische Lösung auf einer verteilten Partikelkonfiguration wird hergeleitet und diskutiert.

Für klassische explizite numerische Verfahren erfordert die CFL-Stabilitätsbedingung häufig erhebliche
Einschränkungen bei der Wahl des Zeitschrittes. Das in dieser Arbeit entwickelte semi-implizite SPH-
Verfahren ist unbedingt (d.h. unabhängig von der Größe des Zeitschrittes) stabil. Hierzu wird die
diskrete Impulsgleichung in die diskrete Kontinuitätsgleichung eingesetzt. Dies führt zu einem sym-
metrischen, positiv definiten linearen System für die freie Oberfläche. Das resultierende System ist dünn
besetzt und kann effizient mit einem matrixfreien CG-Verfahren gelöst werden. Sobald die neue freie
Oberfläche bekannt ist, kann die Geschwindigkeit zum neuen Zeitpunkt direkt berechnet werden. Die
Partikelpositionen werden dann entsprechend aktualisiert. Die neuartige semi-implizite Version des hier
entwickelten SPH-Verfahrens unterscheidet sich von vorherigen Varianten: mit dem verteilten Ansatz
ist das System für die freie Oberfläche dünn besetzt.

Wir befassen uns außerdem mit Simulationen der Überflutung und Austrocknung (wetting and drying)
von Regionen. Dies geschieht mithilfe des nichtlinearen Algorithmus von Casulli [26]. Wir leiten eine
schwach nichtlineare Bedingung für die diskrete freie Oberfläche her, indem wir die korrekte Massebi-
lanz in gefluteten Regionen und in Übergangsregionen (d.h. in Regionen, in denen ein Übergang von
gefluteten zu trocken Partikeln und umgekehrt stattfindet) betrachten. Im Gegensatz zu vorherigen
Ansätzen legen wir keine Schwellen beim Übergang von gefluteten zu trockenen Regionen fest. Ein-
fache aber dennoch aussagekräftige Beispiele in 1D und 2D demonstrieren die Leistungsfähigkeit des
hier entwickelten Verfahrens. Die resultierenden Algorithmen werden schließlich durch Vergleiche mit
zuverlässigen Referenzlösungen validiert.
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1. Introduction

1.1 Motivation for this Thesis

The mathematical models describing real life phenomena i.e., physical, biological, technological are often
proposed to solve these complex processes. These models usually consists of partial differential equations
(PDEs) which describe the problems. With the advent of technological advancement, the increase in
scale of problems; analytical solutions for partial differential equations for particular cases such as very few
number of degrees of freedom, simplified models with easy geometry can be computed. Therefore, there
is the need to build a numerical technique for solving and better understanding of fluid flow phenomena.
Computational fluid dynamics (CFD) problems are often modeled by a class of PDEs called hyperbolic
conservation laws e.g. the shallow water equations (SWEs), Euler equations of gas dynamics. They
possess different mathematical structures as compared to parabolic or elliptic equations. Conventionally,
numerical techniques for solving PDEs are mainly categorized into three classes namely: Finite Difference
Methods (FDM), this method approximates the solutions at grid points of the computational domain,
these grid points are connected by a mesh. Finite Volume Methods (FVM), see [43, 49, 69, 74, 75] this
method uses an integral formulation of the PDEs which relies on the tessellation of the computational
spatial domain defined by control volumes, FVM uses cell averages rather than point values as the case
in FDM. Finite Element Methods (FEM) see [20, 38] is a variational formulation of the PDEs but relies
on the usage of suitable test functions. However, the above mentioned numerical techniques require
a mesh for computation; this property mainly characterize these methods. But they possess some
disadvantages when applied to problems with complicated geometry, large deformations, multiphase
flows and problems with fragmentation. They are often plagued with the problem of maintaining the
grid and constructing them, this can become very computationally costly especially for problems with
multivariate approximations. In the same same spirit, the time incurred in meshing and remeshing of
time-dependent computational domains become expensive and demanding.

Since, we are interested in solving some practically relevant problems but the above mentioned problems
have prohibited the application of gridbased methods. Therefore, the development of meshfree methods
which allows the solution of practically industrial problems have been of interest recently. The family
of meshfree methods possesses some notable advantages namely: they can easily treat simulations of
very large deformations [36, 76], this is because the nodes are an integral part of the computation and
they vary with time; they can easily adapt to the varying topological structure of the continuum e.g. in
problems such as underwater explosions, crack growth [15], these methods can also incorporate a priori
knowledge about the local behavior of the solution in the interpolation space, in any dimension they can
provide smooth higher order interpolation field, they provide an accurate representation of geometrical
objects [78], they possess a good computational paradigm for multiscale problems because of there
non-local interpolation property and they support flexible refinement procedure, because particles can
be added where refinement is needed and vice-versa.

Meshfree particle methods are methods that need no mesh for the computation of field variables, they
instead use particles for the discretization of the equations. Examples include: the Smoothed Particle
Hydrodynamics method (SPH), the Finite Volume Particle Method (FVPM), Finite Point Mass Method
(FPM), the Meshfree Galerkin Methods. The Smoothed Particle Hydrodynamics (SPH) considered
as a truly meshfree approach have been designed to overcome the above mentioned drawbacks. SPH
was developed by Lucy [83], Gingold and Monaghan [48] to simulate astrophysical and cosmological
problems. Over the years, the SPH method has grown and was applied to model structures in the

1
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80’s and then to free-surface flows [89] in the 90’s and consequently, in the 2000’s, the method was
successfully used to study fluid dynamics problems. Its wide range of applications includes geotechnical
engineering problems, free-surface flows, marine problems, reservoir flushing, landslide problems see
[84, 89, 95, 96, 111], and even to port hydrodynamic simulations [109]. The SPH method; with a
Lagrangian description discretizes the fluid domain by a finite number of particles which can move. The
particles move with the velocity of the fluid. The basic idea behind SPH is that flow quantities are
smoothed by a kernel function with respect to the measure that is associated with the mass density of
the flow. Flow quantities at a point are approximated as a weighted average around the set of nearby
particles.

In this thesis, the Semi-implicit Smoothed Particle Hydrodynamics (SISPH) will be designed, developed
and analysed. Our SISPH scheme follows from the semi-implicit finite volume and finite difference
approach of Casulli [25]. In numerical methods, explicit and implicit schemes exists but a major problem
of explicit schemes in numerical methods is their severe time step restriction, where the Courant-
Friedrichs-Lewy (CFL) condition imposes the time step size in terms of the wave propagation speed
and the mesh size. Hence, the major advantage of a semi-implicit approach is that stable schemes are
obtained which allow large time step sizes at a reasonable computational cost. We have considered in
this thesis flows which are governed by the shallow water equations which we can derive from the three
dimensional Navier-Stokes equations with the assumption of a hydrostatic pressure distribution, see [28,
29]. In a staggered mesh-based approach for finite differences and volumes, discrete variables are often
defined at different (staggered) locations. The pressure term, which is the free surface elevation is defined
in the cell center while the velocity components are defined at the cell interfaces. In the momentum
equation, pressure terms are due to the gradients in the free surface elevations and the velocity in
the mass equation (i.e., free surface equation) are both discretized implicitly whereas the nonlinear
convective terms are discretized explicitly. The semi-Lagrangian method is one of the techniques to
discretize the convective terms explicitly (see [18, 56, 73]). Recently, the semi-implicit SPH scheme for
the one dimensional shallow water model has been discussed and validated on some one dimensional
test examples by Bankole et al. (see [7]) for details.

In recent years, some authors have worked on a semi-implicit method for particle methods. In the
specific, Koshizuka and Oka [66, 67] presented the moving-particle semi-implicit method (MPS) where
a deterministic interaction models for the gradient, Laplacian operators and free surfaces are presented.
Incompressibility condition is imposed by setting the rate of change of density with time to zero at each
time step, likewise a modified kernel function which has a unique property that the value of the kernel
goes to infinity as distance between particles tends to zero; a kernel function which has been validated
to avoid particle clumping. Ataie-Ashtiani and Farhadi [3, 4] worked in the same direction and presented
a stable MPS method for free surface flows using a fractional step idea of discretization to split the
time step into two steps. A number of authors modified, extended and improved on the MPS method
of Koshika and Oka (see [62, 63, 64, 65, 119]) even more for the enhancement of performance, stability
and accuracy of the MPS method.

In this thesis, the new semi-implicit Smoothed Particle Hydrodynamics (SPH) scheme presented by
Bankole et al. [7] for the numerical solution of the shallow water equations will be extended to the shallow
water equations on 2D particle configuration is therefore proposed, derived and discussed. The flow
variables in this thesis are the particle free surface elevation, particle total water depth and the particle
velocity. The discrete momentum equations are substituted into the discretized mass conservation
equation to give a discrete equation for the free surface leading to a system in only one single scalar
quantity, the free surface elevation location. The system is solved for each time step as a linear
algebraic system. The components of the momentum equation at the new time level can be directly
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computed from the new free surface. This can be conveniently solved by a matrix-free version of the
conjugate gradient (CG) algorithm [99]. Consequently, the particle velocities at the new time level are
computed and the particle positions are updated. In this semi-implicit SPH method, the stability is
independent of the wave celerity. Hence, a relatively large time steps can be permitted to enhance
the numerical efficiency [28]. In this thesis, we have introduced a staggered velocity framework in the
sense of meshfree methods. This application of a staggered velocity between particles is one of the
novelty in this thesis. The staggeredness of the velocity improves the sparsity of the resulting linear
system significantly. Moreover, an integral part of the resulting numerical method, the discrete free-
surface equation has been treated to represent the accurate mass balance when wetting and drying are
expected. The resulting system is nonlinear while a mass conservation and nonnegative water depths
are guaranteed everywhere in the flow domain for all time steps. And a few number of iterations are
needed to solve the resulting nonlinear system.

The thesis is organized as follows: In Chapter 2, we give the preliminaries and basics on the mathematical
modeling of fluid flows based on hyperbolic conservation laws. In Chapter 3, we present the theory of
shallow water equations, the derivations of the two dimensional shallow water equations and their
characteristics is presented. In Chapter 4, we give the fundamental theory of the Smooth Particle
Hydrodynamics method, we explain the SPH approximations of the partial differential equations involved
and the constitutive models used in particle approximations. In Chapter 5, the key ideas of the proposed
semi-implicit SPH scheme will be presented, derived, discussed and analyzed. Chapter 6 presents a
nonlinear wetting and drying algorithm applied to the shallow water equation and the solution algorithm
used in the sense of an efficient Newton-type algorithm for solving the resulting mildly nonlinear system
will be presented and derived. In Chapter 7, we present numerical examples and we validate against
very reliable numerical reference solutions. The thesis is rounded up in Chapter 8 with some concluding
remarks and outlook for possible future work.

Parts of the results of this thesis have been accepted/published in:

1. A.O. Bankole, M. Dumbser, A. Iske, and T. Rung, A Meshfree Semi-implicit Smoothed Particle
Hydrodynamics Method for Free Surface Flow : Accepted for publication in: Lecture Notes in
Computational Science and Engineering - Meshfree Methods for Partial Differential Equations
VIII, M. Griebel and Marc A. Schweitzer, editors, Springer-Verlag, 2017.

2. A.O. Bankole, M. Dumbser, A. Iske, and T. Rung. A Wetting and Drying Semi-implicit SPH
Algorithm for the Shallow Water Equations. Proceedings of the 11th SPHERIC International
Workshop, Munich, Germany, pp. 260–267, 2016.

3. A.O. Bankole, M. Dumbser, A. Iske, and T. Rung. A Semi-implicit SPH Scheme for the Two-
dimensional Shallow Water Equations. Proceedings of the 10th SPHERIC International Workshop,
Parma, Italy, pp. 252–258, 2015.

4. A.O. Bankole, M. Dumbser, A. Iske, and T. Rung. A Semi-implicit SPH Scheme for the Shallow
Water Equations. Proceedings of the 9th SPHERIC International Workshop, Paris, France, pp.
419–424, 2014.



2. Preliminaries

In this chapter, we present the basic ideas in the mathematical modeling of fluid flows. The laws
governing fluid dynamics have been well established and in particular the equations of fluid dynamics
describe the motion of a general fluid. The models rely on the conservation of mass and momentum i.e,
during the evolution of a fluid, properties such as mass, momentum are not destroyed during the whole
process at all times. We will present the key ideas in the theory of hyperbolic conservation laws. To
solve our proposed semi-implicit smoothed particle hydrodynamics (SISPH) numerical method in this
thesis we need to mention some matrix properties and definitions from numerical linear algebra. We
finish this chapter by outlining some meshfree numerical methods available.

2.1 Mathematical Models for Fluid Flow

In applications, we model physical processes mathematically relying and governed by some fundamental
principles of conservation. Let us start with defining a particle.

Definition 2.1.1 (Particle). Let Ω0 ⊂ Ω ⊂ R
d be an open and bounded spatial domain, where d is

the dimension in space. The elements say p in Ω0 i.e. p ∈ Ω0 are called particles.

Let us consider a fluid particle which at time t0 is located at the position ξ = (ξ1, ξ2, ξ3), the same
particle at time t is at position x = (x1, x2, x3). Without loss of generality, let t0 = 0. The motion of
a particle in the time interval [0, t] can be described by the function

x = x(ξ, t). (2.1)

Equation (2.1) at any time t, describes the position in space of a particle that was in ξ at t = 0 where
ξ is called the material or Lagrangian coordinates as a particular value of ξ identifies a material particle
that at t = 0 was in ξ. x is called the spatial or Eulerian coordinates as a particular value of x identifies
a given position in space.

We assume the motion is continuous, for a given time a single particle cannot occupy two different
positions and conversely, a single point in space cannot be occupied simultaneously by two particles. By
inverting Equation (2.1) we obtain

ξ = ξ(x, t). (2.2)

Equation (2.2) gives the initial position (at t = 0) of a material particle that at time t is in x. Mathe-
matically inverting (2.1) can be defined as

J = det

[
∂(x1, x2, x3)

∂(ξ1, ξ2, ξ3)

]
(2.3)

where J > 0 is condition of invertibility of the Jacobian (see [1]).

Definition 2.1.2 (Particle Trajectory). Let x in (2.1) be a parametric equation of a curve in space
and t as the parameter. The curve that goes through the point ξ at t = 0 is called the particle trajectory
or particle path or pathline.

4
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Definition 2.1.3 (Particle Velocity). The function

dx

dt
= v(x, t), x(0) = ξ. (2.4)

is the particle velocity field. We obtain particle trajectories of the flow by integration of the velocity
field.

Definition 2.1.4 (Steady Flow). A flow is said to be steady if the velocity field v described by the
vector field v(x, t) does not depend on time.

Remark 2.1.5 (Steady Flow). The steadiness of flow does not imply that each material particle has
a constant velocity in time as v(ξ, t) might still depend on time.

Definition 2.1.6 (Streamlines). For a given velocity field v(x, t), curves which are at all points in
space parallel to the velocity vector are called streamlines. Mathematically, they are defined as

dx× v = 0 (2.5)

where dx is an infinitesimal segment along the streamline

Definition 2.1.7 (Streaklines). For a given time t, a streakline joins all material points that have
passed through (or will pass through) a given place x at any time.

In (2.1), let x = x′ and t = t′ represents a material point which was at point x′ at t′. For this particle,
the path coordinates are given by

x = x(ξ(x′, t′), t). (2.6)

At a given point t, t′ represents the curve parameter of a curve in space which passes through the given
point x′. This curve in space is called a streakline. In Fig. 2.1 we observe the evolution of a particle in
the initial configuration D(0) ≡ Ω(0) at time t = 0 to the current configuration D(t) ≡ Ω(t) at time t.

Theorem 2.1.8 (Reynold Transport Theorem). Let F(x, t) be either scalar or vector valued function,
assume F : (0, t) × R

d → R
d is differentiable, with d fixed. Let Ω(t) be a material volume entirely

occupied by the fluid. Then

D

Dt

∫

Ω(t)

F(x, t)dV =

∫

Ω(t)

[
∂F
∂t

+∇ · (Fv)

]
dV. (2.7)

Equation (2.7) can be formulated as

D

Dt

∫

Ω(t)

F(x, t)dV =

∫

Ω(t)

∂F
∂t

dV +

∫

∂Ω(t)

Fv · ndA

∂Ω(t) is the bounding surface of the domain Ω(t) and n is the outer normal to the surface ∂Ω(t). It
explains that the material derivative of a fluid property F integrated over a material control volume
Ω(t) can be written as the integral of ∂F

∂t over the volume Ω(t) plus the flux of F through the bounding
surface ∂Ω(t). We can find the proof in [37]

The Reynold transport theorem formulated in the one-dimensional version is given as

D

Dt

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)
(ft + (vf)x)dx (2.8)
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The velocity field v(x, t) be a given function of position and time, x is a displacement along the line,
the interval (a(t), b(t)) is a material interval whose endpoints satisfy the ordinary differential equations
ODEs ȧ = v(a, t), ḃ = v(b, t) and f(x, t) is any real-valued function of position and time. To derive
equation (2.8), let the antiderivative of f be given as

F (x, t) =

∫ x

0
f(x′, t)dx′ (2.9)

Then we have, ∫ b(t)

a(t)
f(x, t)dx = F (b(t), t)− F (a(t), t) (2.10)

Differentiating with respect to time t, making use of the chain rule, we have

D

Dt

∫ b(t)

a(t)
f(x, t)dx = Ft(b, t)− Ft(a, t) + Fx(b, t)ḃ− Fx(a, t)ȧ (2.11)

The time differentiation of equation (2.9) gives

Ft(x, t) =

∫ x

0
ft(x

′, t)dx′ (2.12)

We have

Ft(b, t)− Ft(a, t) =

∫ b

0
ft(x, t)dx−

∫ a

0
ft(x, t)dx =

∫ b

a
ftdx (2.13)

Then,

Fx(b, t)ḃ− Fx(a, t)ȧ = f(b, t)v(b, t) − f(a, t)v(a, t) (2.14)

=

∫ b

a
(vf)xdx (2.15)

Figure 2.1: Time evolution of the domain D(0)
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The first equality makes use of Fx = f , ȧ = v(a, t) and ḃ = v(b, t). The second equality uses the
fundamental theorem of calculus. Thus we have the desired result in one dimension

D

Dt

∫ b(t)

a(t)
f(x, t)dx =

∫ b(t)

a(t)
(ft + (vf)x)dx (2.16)

Conservation of Mass

The principle of conservation of mass imposes that the material derivative of the mass of fluid in a
material volume Ω is equal to zero. Conservation of a flow quantity means the quantity is neither
created nor destroyed. Let the mass of a fluid particle in V be given as

∫

Ω(t)

ρdV. (2.17)

Applying the material derivative we have

D

Dt

∫

Ω(t)

ρdV (2.18)

Using Theorem 2.1.8 we have ∫

Ω(t)

∂ρ

∂t
+∇ · (ρv)dV = 0. (2.19)

Because Ω(t) is an arbitrary control volume, then the following differential equation holds

∂ρ

∂t
+∇ · (ρv) = 0 (2.20)

This equation (2.20) is called the continuity equation. In particular, when the particle density ρ is
constant, the fluid is incompressible and (2.20) becomes

∇ · v = 0 (2.21)

This explains that the velocity field of an incompressible fluid is divergence free.

Conservation of Momentum

Newton’s law states that the material derivative of the momentum of a fluid in Ω(t) is equal to sum of
all external forces acting on the volume i.e., the temporal change of momentum is equal to all resultant
of all acting forces. Momentum is defined as the product of mass and velocity by

∫

Ω(t)

ρvdV. (2.22)

Therefore we have:
D

Dt

∫

Ω(t)

ρvdV =

∫

Ω(t)

ρfdV +

∫

∂Ω(t)

t(n)dS. (2.23)
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where t(n) = σn. Applying Theorem 2.1.8 and the Gauss theorem we obtain

∫

Ω(t)

ρ
Dv

Dt
− ρf −∇ · σdV = 0. (2.24)

Because Ω(t) is an arbitrary control volume the following differential equation must hold

ρ
Dv

Dt
− ρf −∇ · σ = 0, (2.25)

which in spatial coordinates is given as

ρ
∂v

∂t
+ ρ(v · ∇)v − ρf −∇ · σ = 0. (2.26)

σ is called the Cauchy stress tensor which also determines the character of the equations either viscous
or nonviscous. Equation (2.26) holds for any continuum.

Having outlined the mathematical models for fluid flow and the fundamental laws governing the flow of
fluid, we proceed by discussing the concept of hyperbolic conservation laws.

2.2 Hyperbolic Conservation Laws

In this section, we explain the basic properties of hyperbolic conservation laws and their solutions. The
so called shallow water equations belongs to this class of partial differential equations, to mention a
few of them: the Euler equations of gas dynamics, the magneto-hydrodynamics equations (MHD) are
all of hyperbolic structure (see, e.g., [69, 74, 75] for more details). We will start with the definition of
conservation laws.

Definition 2.2.1 (Conservation Laws). A system of partial differential equations of the form

∂tv+∇ · F(v) = 0 ∀x ∈ R
d, t > 0 (2.27)

with the initial conditions
v(x, 0) = v0(x) ∀x ∈ R

d (2.28)

where v : Rd×R+ → R
m i.e. v = (v1, . . . , vm)T ∈ R

m, F = (f1, . . . , fd) : R
m → R

m×d, v0 ∈ L∞(Rd)
is called a system of conservation laws in d spatial dimensions

v is the vector of conserved variables, F denotes the flux vector function, the divergence operator
∇ · F(v) is given as

∑d
j=1 ∂xj fj(v). By conservation, we mean that the flow quantity v is conserved

in the control volume Ω(t) up to the flux v through the bounding surface ∂Ω(t). Integrating equation
(2.27) and applying the divergence theorem we obtain

∫

Ω(t)

vdV +
d∑

j=1

∫

∂Ω(t)

fj(v)tj(n)dS = 0. (2.29)

Basically, this equation explains that
∫
Ω vdV changes in time only due to the flux of v across the

bounding surface ∂Ω(t).
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Remark 2.2.2 (Balance Laws). When the right hand side of (2.27) does not vanish, we say the partial
differential equation is a balance law. It takes the form

∂tv +∇ · F(v) = S(v) ∀x ∈ R
d, t > 0 (2.30)

the vector function S(v) is called the source term.

Definition 2.2.3 (Hyperbolicity). A system of conservation laws of the form (2.27) is called (strictly)
hyperbolic if for any vector of conserved quantity v ∈ R

d and n = (n1, . . . , nd)
T ∈ R

d, where n 6= 0,
the Jacobian matrix

A(v,n) =

d∑

j=1

njDfj(v) (2.31)

has eigenvalues λ1, . . . , λm that are real and distinct with m linearly independent right eigenvectors
R(i).

A major property of hyperbolic equations is that information propagates at a finite speed by the eigen-
values. For a hyperbolic system, the characteristic speed λi(v) defines the characteristic field, called
the λi-field. We also speak of the Ri-field simply called the i-field. Let ∇λi(v) be the gradient of the
eigenvalue λi(v).

Definition 2.2.4 (Linearly Degenerate). A λi- characteristic field is said to be linearly degenerate if

∇λi(v) ·R(i)(v) = 0, v ∈ R
m (2.32)

Definition 2.2.5 (Genuinely Non-linear). A λi- characteristic field is said to be genuinely non-linear
if

∇λi(v) ·R(i)(v) 6= 0, v ∈ R
m (2.33)

where R
m is the set of real-valued vectors of m components, called the phase space or state space.

For a m × m system we speak of the phase plane. We proceed by giving an example of a system
of hyperbolic conservation laws that will be studied in this thesis. This is the so called shallow water
equations, these equations arise in the modeling of a wide variety of physical phenomena, such as water
flows, atmospheric flows, dense gas dispersion, avalanches and also in astrophysical flows.

Example 2.2.6 (Shallow water Equations). The nonlinear shallow water equations are a system of
hyperbolic conservation laws. In two-dimensional case, it reads

∂tv +∇ · F(v) = 0, (2.34)

with the vectors of conserved variables given as

v =




h
hu
hv


 , f1 =




hu

hu2 +
1

2
gh2

huv


 , f2 =




hv
hvu

hv2 +
1

2
gh2


 , F = (f1, f2),

where h is the depth, u and v are the x and y components of the velocity, g is the constant of acceleration
due to gravity.
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λ1 = v− c

Genuinely nonlinear

λ2 = v

Linearly degenerate

λ3 = v+ c

Genuinely nonlinear

Figure 2.2: Characteristic fields for the two-dimensional shallow water equations.

The eigenvalues of the Jacobian matrix A(v,n) for the two-dimensional shallow water equations read

λ1 = u− c, λ2 = u, λ3 = u+ c, (2.35)

λ̃1 = v − c, λ̃2 = v, λ̃3 = v + c. (2.36)

where the term c is called the wave celerity defined by

c =
√

gh. (2.37)

Equations (2.35) and (2.36) are the eigenvalues in the x and y directions. Eigenvalues λ1, λ̃1, λ3, λ̃3 are
genuinely non-linear characteristic fields and λ2, λ̃2 are linearly degenerate characteristic fields as seen
in Fig. 2.2. Likewise, the eigenvalues are all real, also distinct under all circumstances except for the
case when h = 0, in which case c = 0 then λ1 = λ2 = λ3 = u.

Definition 2.2.7 (Classical Solutions). A function v ∈ L∞(Rd × R+,R
m) is said to be a classical

solution of the hyperbolic conservation law (2.27) if

v ∈ (C1 ∩ L∞)(Rd × R+,R) (2.38)

and if v satisfies (2.27) ∀ (x, t) ∈ Rd × R+ and x ∈ Rd.

In the study of the solution of hyperbolic equations, the method of characteristics (MOC) is often
employed to analytically solve for instance in a linear one-dimensional sense. However, in using the
MOC and even more for smooth initial data v0, characteristic lines cross. Therefore, the method of
characteristics is not always giving a solution, in some cases not for all time t, in some cases only up to
a certain critical time and in some cases for all times. Because of this short coming, this will not be a
a kind of solution we seek. Since, even smooth initial data can lead to discontinuities, then we delve to
a more larger class of solutions called weak solutions.
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Definition 2.2.8 (Weak Solutions). A function v ∈ L∞(Rd × R+,R
m) is said to be a weak solution

of the hyperbolic conservation law (2.27) if
∫

Rd

∫

R+

(vϕt + F(v)∇ϕ)dtdx +

∫

Rd

v0(x)ϕ(x, 0)dx = 0 (2.39)

holds for all test functions ϕ ∈ C1
0 (R

d × R+,R).

This class of weak solutions does allow discontinuous solutions. The weak solution concept is motivated
by the fact that smooth solutions are indeed weak solutions. Equation (2.27) is multiplied by the
test function ϕ and we integrate over x and t, the third term in (2.39) represents the only boundary
term. In general, weak solutions are not unique. To pick a physically meaningful solution from the
array of non-physical solutions, the entropy solution is used. To pick from the alternative solutions,
we need additional conditions which are not included in (2.27). The additional conditions are called
entropy conditions. This name originates from physical models where additional conditions are based
on physical entropy. We proceed to give an example of an entropy condition from the ground-breaking
work of Lax [71].

Example 2.2.9 (Limit of Small Viscosity). Equation (2.27) is modified into a viscous problem. We
add a small diffusive term in (2.27) as follows

∂tv +∇ · F(v) = ε∆v ∀x ∈ R
d, t > 0, , ε > 0 (2.40)

This is a parabolic equation which gives a unique solution ∀ ε > 0. We only accept solutions to (2.27)
as limits of solutions to the modified viscous problem (2.40) as ε → 0 i.e. the correct physical solution
(2.27) should coincide with the parabolic solution (2.40) as ε → 0.

Definition 2.2.10 (Entropy Solution). A function v ∈ L∞(Rd × R+,R
m) is said to be an entropy

solution of the hyperbolic conservation law (2.27) if
∫

Rd

∫

R+

(vϕt + F(v)∇ϕ)dtdx +

∫

Rd

v0(x)ϕ(x, 0)dx = 0 (2.41)

holds for all test functions ϕ ∈ C1
0 (R

d ×R+,R) with compact support and if there is a constant C ≥ 0
such that ∀ x ∈ R, z ∈ R, z ≥ 0, t ∈ R,t ≥ 0 the relation

v(x+ z, t) − v(x, t) ≤ C(1 +
1

t
)z (2.42)

holds almost everywhere in x and t.

Definition 2.2.11 (Convexity). A flux function F is said to be uniformly convex if there exists a
constant C > 0 such that

F′′(v) ≥ C > 0 (2.43)

holds for all v.

Theorem 2.2.12. Let the flux function F be smooth, uniformly convex and let v0 ∈ L∞(Rd). Then
there exists a unique entropy solution of (2.27).

In the next section, we give some succinct definitions and properties in matrix theory. The idea and the
structure of matrices obtained will be useful in designing our solution strategy.
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2.3 Matrix Properties and Concepts

More often in applications, after discretizing partial differential equations matrices eventually end up
whose properties and structure must be understood. See the books of Horn, Johnson and Varga [55, 113]
for more details.

Definition 2.3.1 (Spectral Radius). Let A = [ai,j] be an n × n real matrix with eigenvalues λi, 1 ≤
i ≤ n. Then,

ρ(A) = max
1≤i≤n

|λi| (2.44)

is called the spectral radius of the matrix A.

Definition 2.3.2 (Spectral Norm). Let A = [ai,j] be an n× n real matrix, then

||A||2 = sup
x 6=0

‖Ax‖2
‖x‖2

(2.45)

is called the spectral norm of the matrix A

The basic properties of the spectral norm of a matrix is analogous to the Euclidean norm of a vector x.

Definition 2.3.3 (Reducible/Irreducible Matrices). For n > 2, an n×n matrix A is called reducible
if there exists an n×n permutation matrix P (a square matrix which in each row and each column has
some one entry unity with all others being zero) such that

PAP T =

(
A1,1 A1,2

0 A2,2

)
,

where A1,1 is an r × r submatrix and A2,2 is an (n − r)× (n − r) submatrix, where 1 ≤ r ≤ n. If no
such permutation matrix exists, then A is irreducible.

Definition 2.3.4 (Diagonally Dominant Matrices). An n×nmatrix A = [ai,j ] is diagonally dominant
if

|ai,i| ≥
n∑

j=1
j 6=i

|ai,j | (2.46)

for all 1 ≤ i ≤ n.

An n × n matrix A is strictly diagonally dominant if the strict inequality in (2.46) is valid for all
1 ≤ i ≤ n. In the same vein, matrix A is irreducibly diagonally dominant if A is irreducible and
diagonally dominant, with strict inequality holding in (2.46) for at least one i.

Definition 2.3.5 (Nonnegative/Positive Matrices). Let A = [ai,j], we say that A ≥ 0 (A is nonneg-
ative) if all its entries ai,j are real and nonnegative. We say that A > 0 (A is positive) if all its entries
ai,j are real and positive.

Lemma 2.3.6. If A ≥ 0 is an irreducible n× n matrix, then

(I +A)n−1 > 0. (2.47)

The proof can be found in [113]
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Definition 2.3.7 (Symmetric Matrices). A real n× n matrix A = [ai,j ] is said to be symmetric if

AT = A. (2.48)

Definition 2.3.8 (Positive Definite/Semidefinite Matrices). A real n×n symmetric matrix A = [ai,j ]
is said to be positive definite if

xTAx > 0 (2.49)

for all nonzero x ∈ R
d. It is positive semidefinite if

xTAx ≥ 0 (2.50)

for all nonzero x ∈ R
d. And we say it is indefinite if there are vectors y, z ∈ R

d such that yTAy < 0 <
zTAz.

Definition 2.3.9 (M-matrices). A real n×n matrix A = [ai,j ] with ai,j ≤ 0 for all i 6= j is an M-matrix
if A is nonsingular and A−1 ≥ 0.

Definition 2.3.10 (Stieltjes Matrices). A real n× n matrix A = [ai,j] with ai,j ≤ 0 for all i 6= j is a
Stieltjes matrix if A is symmetric and positive definite.

Corollary 2.3.11. If A is a Stieltjes matrix, then A is also an M -matrix. Evenmore, A is irreducible if
and only if A−1 > 0.

Corollary 2.3.12. If a n × n matrix A = [ai,j ] is strictly diagonally dominant or irreducibly diagonally
dominant matrix with positive real diagonal entries, then A is positive definite.

In the next section, we will outline some meshfree particle methods for the numerical solution of partial
differential equations. In particular, meshfree particle methods are numerical methods that do not have
a mesh connecting the grid points in the computational domain but rather based on a scattered data
interpolation strategy.

2.4 Some Meshfree Particle Methods

Though, in this thesis the SPH method is the main method of solution. In this section, we will however
make some brief overview of some meshfree particle methods. A quite number of them have been
developed over the years but we will outline just a few.

Reproducing Kernel Particle Method

The reproducing kernel particle method (RKPM) was developed by Liu et al. [82]. The RKPM is
an integral representation, this method ensures that certain degree of consistency of the finite integral
approximation. The idea of the method is that a correction function is added to the kernel function. The
aim of the correction is to improve particle approximation near boundaries or stated in a mathematical
sense, making particle approximation linearly or C1 consistent near boundaries. The finite integral
representation of a function together with the corrected function is given by

vh(x) =

∫

Ω(t)

v(ξ)C(x, ξ)W (x− ξ, h)dξ (2.51)
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where C(x, ξ) is the correction function. An example of a correction is a linear combination given as

C(x, ξ) = c1(x) + c2(x)(ξ − x) (2.52)

The coefficients c1(x), c2(x) are found by enforcing the corrected kernel to reproduce the functions
c1(x), c2(x) with the aid of some moment functions. After discretizing equation (2.51), we take a
summation over surrounding particles:

vh(x) =
N∑

j=1

C(x,xj)W (x− xj)vj∆Ωj =
N∑

j=1

φj(x)vj (2.53)

where φj(x) represents the RKPM shape functions given by

φj(x) = C(x,xj)W (x− xj)∆Ωj . (2.54)

Moving Least Squares Method

The moving least squares method (MLS) originated in data fitting and surface construction by math-
ematicians. It was termed the name local regression and loss [39]. In the paper by Lancaster and
Salkauskas [70], we can find an excellent description of the MLS method. The method has been widely
employed for constructing meshfree shape functions for meshless approximations. The first group to use
the MLS was Nayroles et al. [94]. For mechanics problems they used MLS approximations to construct
shape functions for diffuse element method (DEM). The MLS method has two major characteristics
which makes it standout namely:

• The approximated function is continuous and smooth in the entire problem domain

• It can produce an approximation with the desired order of consistency

The construction procedure is as follows: Let the approximations of v(x) at a point in the domain be
denoted by vh(x). Then the MLS writes the field function approximation as:

vh(x) =

m∑

j=1

pj(x)aj(x) ≡ pT (x)a(x), (2.55)

where m is the number of terms in the monomial(polynomial basis), a(x) is a vector of coefficients
given by the

aT (x) = {a0(x)a1(x) . . . am(x)} (2.56)

which are functions of x, p(x) is a vector of basis functions most often of monomials of the lowest
orders to ensure minimum completeness. A complete polynomial basis of order m in 1D is given by

pT (x) = {p0(x), p1(x), . . . , pm(x)} = {1, x, x2, · · · , xm} (2.57)

in 2D
pT (x) = pT (x, y) = {1, x, y, xy, x2, y2, . . . , xm, ym} (2.58)

and in 3D space

pT (x) = pT (x, y, z) = {1, x, y, z, xy, yz, zx, x2 , y2, z2, . . . , xm, ym, zm} (2.59)
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The local approximation is defined by

vh(x,xj) =

m∑

j=1

pj(xj)aj(x) = pT (xj)a(x). (2.60)

The coefficients aj(x) are obtained by doing a weighted least square fit for the local approximation this
is done by minimizing the difference between the local approximating function and the function. This
gives the quadratic form:

J =

N∑

j=1

W (x− xj)(v
h(x,xj)− vh(xj))

2 (2.61)

=

N∑

j=1

W (x− xj)
[
pT (xj)a(x)− vj

]2
(2.62)

where W (x − xj) is a compactly supported weight function and vj = v(xj) is the nodal parameter.
The minimization condition to find the coefficients a(x) requires that

∂J

∂a
= 0 (2.63)

For more details on the MLS method, we advice to check the work by Lancaster and Salkauskas [70].

H-p Clouds Method

The h-p clouds method was introduced by Duarte and Oden [41], it is an adaptive strategy by introducing
p-enrichment in a meshfree discretization. The name h-p cloud came when they attached a sequence of
Legendre polynomials together with a moving least square interpolant to construct a p-version meshfree
interpolant. The main idea in the h-p cloud method is the construction of hierarchical basis using the
partition of unity Φl

I(x). The class of functions F l,p
N to be constructed should have the property that

for an appropriate choice of vector say P, Pp ⊂ span{F l,p
N } where Pp denotes the space of polynomial

of degree ≤ p. Let Lp denote a set of tensor-product complete polynomials Lijk ∈ R
3, then Lijk is

given as
Lijk(x) = Li(x1)Lj(x2)Lk(x3), 0 ≤ i, j, k ≤ p (2.64)

where Li is a Lengendre polynomial of degree i in R. The partition of unity Φl
I(x) is called Ll reducible

if it can reproduce any element Lijk ∈ Ll i.e.

Lijk(x) =
∑

I

Lijk(xI)Φ
l
I(x) (2.65)

With the h-p clouds adaptive nature, it adds hierarchically appropriate basis elements to the original
partition of unity {Φl

I(x)} such that the resulting basis can reproduce the polynomial of degree p > l.

The hierarchical family of functions constructed F l,p
N has the structure expressed as

F l,p
N =

(
{Φl

I(x)}
⋃

Φl
I(x)Lijk(x) : 0 ≤ i, j, k ≤ p, i or j or k > l; p ≥ l

)
(2.66)
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Duarte and Oden in [41] showed that F l,p
N can reproduce Lijk ∈ Lp. In a 1D sense, the h-p clouds

hierarchical interpolation takes the form

vh(x) =
∑

I

Φn+1
I (x)LIJ(x)bJ (2.67)

=
∑

I

Φn+1
I (x)

(
vIL0 +

l∑

i=1

biILi(x)

)
(2.68)

where Φn+1
I (x) is the n+ 1 order moving least square interpolant. The Legendre polynomial has been

used because of their better conditioning features.

Partition of Unity Finite Element Method

The partition of unity method (PUM) was developed by Babuska and Melenk [5]. This method tries to
replace the status of the finite element shape function. We define a partition of unity as follows:

Definition 2.4.1 (Partition of Unity). Let Ω ⊂ R
d be an open and bounded domain. Let Ω1,Ω2, · · · ,ΩN

be a family of open sets in R
d, and

• The family of a open set {ΩI} generates a covering for the domain Ω,

Ω ∈
⋃

I

ΩI (2.69)

• There exists a family of functions, ΦI ∈ Cs
0(R

d), s ≥ 0, and supp { ΩI } ∈ Ω̄I

•
0 ≤ ΦI(x) ≤ 1,∀x ∈ ΩI (2.70)

• The summation
Φ1(x) + Φ2(x) + · · · + ΦN(x) = 1,∀x ∈ Ω (2.71)

This family of generating functions {ΦI} is called a partition of unity subordinate to the open cover
{ΩI}.

Equation (2.71) gives the name called partition of unity. Practically, the condition in Equation (2.70)
may not be satisfied and it is also possible for ΦI(x) to be negative in some region in the domain.
The condition in (2.70) is not necessary for the PUM method but is often the case and only necessary
for other properties. A very important property with the PUM is that the set of open supports can
overlap, since they do not necessarily form a sub-division of Ω, so far they generate a covering for Ω.
In the work by Babuska and Melenk, they are called patches. Griebel and Schweitzer [51] proposed a
particle-partition of unity method, that is based on operator splitting, the method of characteristics, and
the generalized partition of unity method, where they applied it on all possible classes of PDEs: elliptic,
parabolic and hyperbolic.
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Element Free Galerkin Method

The element free Galerkin (EFG) method is a meshless method developed by Belytschko et al. [14].
This method is based on the diffuse elements methods of Nayroles et al. [94]. The method possesses
some major features namely:

• The construction of the shape function is done by the moving least square (MLS) approximation

• A Galerkin weak form is done to obtain the discretized system equations

• The cells of the background mesh for integration are required to carry out the integration to
compute the system matrices

In EFG, MLS interpolant is used as both the trial and test functions in a Galerkin procedure as similar
to the finite element methods. The difference is how to modify the Galerkin statement to accomodate
MLS interpolant. One of the main difficulties in EFG is how to impose essential boundary conditions for
non-interpolating MLS shape functions. Belytschko et al. [14] made use of Lagrange multiplier method
in changing the variational statement to enforce essential boundary conditions, other method called the
penalty method has been used by Zhu and Atluri [120] as well.

Maximum Entropy Approximants

The maximum entropy approximants started from the maximum entropy principle of Shannon and
Jaynes [57, 100] from information theory. The idea is approximating an unknown function and chosing
basis functions that are least biased, the basis functions are viewed as discrete probability distribution.
Maximum entropy basis functions, denoted by pj(x), j = 1, . . . , N with x ∈ R

d, where d is the space
dimension, are forced to be non-negative and to satisfy the zeroth and first-order consistency conditions

pj(x) ≥ 0, (2.72)

N∑

j=1

pj(x) = 1, (2.73)

N∑

j=1

pj(x)xj = x, (2.74)

where the last equation allows to identify the vectorial weights xj with the positions of the nodes
associated with each basis function. Arroyo and Ortiz [2] transformed the principle of Shannon and
Jaynes to obtaining local maximum entropy basis functions. The approach is defined by the node set
and belong to the general class of convex approximation schemes - these are schemes based on positive
shape functions and interpolate affine functions exactly. Their convex approximation schemes represents
a compromise in the sense of Pareto optimality - between two competing objectives:

• Unbiased statistical inference based on the nodal data;

• the definition of local shape functions of least width.
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Arroyo and Ortiz wrote the following optimization problem to select the approximants using the above
mentioned requirements. For fixed x,

minimize
N∑

j=1

βjpj|x− xj |2+
N∑

j=1

pj lnpj (2.75)

subject to pj(x) ≥ 0, j = 1, . . . , N

N∑

j=1

pj(x) = 1,

N∑

j=1

pj(x)xj = x

where βj is a non-negative nodal parameters. The first term in equation (2.75) characterizes the second
moment with a non-negative width and the second term gives the entropy of the associated probability
distribution function. The maximum entropy approximant method possesses a weak Kronecker-Delta
property at the boundary, so it allows the imposition of essential boundary conditions, i.e, every basis
function associated with a node not belonging to the boundary is zero at the boundary.



3. Shallow Water Equations

In this chapter, we want to provide a background on the theory of the two-dimensional shallow water
equations (SWEs) in particular the depth-averaged version of the equations and give some insights
into free surface flows. We will proceed and derive the two-dimensional shallow water equations from
the Navier-Stokes equations. Since the SWEs are hyperbolic in nature we will explain the hyperbolic
characteristics of the equations, we give the eigenstructure of the SWEs in physical variables and we will
prove some propositions needed to understand the eigenstructure. We round up the chapter by giving
the Riemann invariant property of the SWEs.

3.1 Shallow Water Flows

Physical phenomena such as tides in oceans, breaking of waves on shallow beaches, tsunami waves,
surges and breaking of dam are governed by the mathematical models of the shallow water form.
Shallow water flows are also called free surface flows which are mostly flowing under the influence of
gravity. It is called free in the sense that we can attribute a large difference in the densities of fluids,
i.e., the density ratio of water to air is around 1000kg/m3. This means the inertia of the gaseous state
with low density can be ignored if compared to the liquid with higher density, so the liquid can move
freely with respect to the gas. However, the gas exerts its pressure on the liquid surface. So, we can
say the gas-liquid surface is free, i.e., not constrained.

A very key assumption employed in the derivation of approximate shallow water equations is the pressure
distribution called hydrostatic approximation. This assumption states that the vertical acceleration of
water particles are negligible when compared to velocity of the water particles in the horizontal direction.
The equations governing the flow of fluid are derived by considering a differential elemental volume of
fluid and describing them mathematically by the conservation of mass and momentum. In modeling
two-dimensional shallow water flows, it can be done through: the vertically averaged modeling (2Dxy)
applicable in flow circulation in a class of well-mixed estuaries, lakes and coastal embayments and, the
laterally averaged modeling (2Dxz) which are applicable in flows in narrow and deep estuaries.

x

z

η

Free surface under gravity (s)

Bottom (b)

h

Figure 3.1: Flow Domain
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Figure 3.2: Coordinate convention for flow with free surface under gravity, x − y give the horizontal
plane and z give the vertical direction.

Let us consider in a three-dimensional domain the flow of water with a free surface under gravity. Figure
3.2 represents the convention for spatial coordinates; x−y determines the horizontal plane and z defines
the vertical direction that we have associated with the free surface elevation. In Figure 3.1 we consider
the flow domain and we assume that the bottom bathymetry or profile can be expressed as single valued
function

z = −h(x, y) (3.1)

a similar condition at the bottom boundary is that

ubhx + vbhy + wb = 0 (3.2)

where h(x, y) is the water depth measured from the undisturbed water surface, and ub = u(x, y,−h, t),
vb = v(x, y,−h, t) and wb = w(x, y,−h, t) are the velocity components at the bottom. Equation (3.2)
means that the velocity component that are perpendicular to the solid boundaries should vanish, so
when there exists a no slip boundary condition there is no normal flow. The bottom shear stress is given
as

ν(uxhx + uyhy + uz)|z=−h = γbu
b (3.3)

ν(vxhx + vyhy + vz)|z=−h = γbv
b (3.4)

where γb is a nonnegative bottom friction coefficient.

Also at the free surface, we assume the free surface can be expressed as a single valued function

z = η(x, y, t) (3.5)

we call the free surface equation, also referred to as the kinematic condition of the free surface, given
by

ηt + usηx + vsηy = ws (3.6)
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where η(x, y, t) denotes the water surface elevation measured from the undisturbed water surface, and
us = u(x, y, η, t), vs = v(x, y, η, t) and ws = w(x, y, η, t) are the velocity components at the free
surface. This equation means there is no relative normal flow. The surface shear stress is given as

ν(−uxηx − uyηy + uz)|z=η = γt(ua − us) (3.7)

ν(−vxηx − vyηy + vz)|z=η = γt(va − vs) (3.8)

where ua, va are the horizontal wind velocity components and γt is a nonnegative wind stress coefficient.

3.1.1 Hydrostatic Pressure Distribution

In geophysical flows the vertical acceleration is often small when compared to the gravitational accel-
eration and to the pressure gradient in the vertical direction as in the case of our flow domain in Fig
5.1. For instance, if we consider tidal flows in the ocean the velocity in the horizontal direction is of
the order of 1m/s, while the velocity in the vertical direction is much smaller of the order of one meter
per tidal cycle i.e., 10−5m/s [27]. To this end, if the advective and viscous terms are neglected in the
vertical momentum equation of the Navier-Stokes equation, we have the equation for pressure which
reads

dp

dz
= −ρg. (3.9)

Integrating equation (3.9)
∫ η

z

∂p

∂z
dz = −

∫ η

z
ρgdz (3.10)

p(x, y, η, t) − p(x, y, z, t) = −ρg[η(x, y, t) − z] (3.11)

where we have used the surface condition p(x, y, η, t) = 0, we let p0(x, y, η, t) denote the surface
condition. The solution that satisfies (3.9) is given by the hydrostatic pressure

p(x, y, z, t) = p0(x, y, η, t) + g[η(x, y, t) − z], (3.12)

where p0(x, y, η, t) marks the atmospheric pressure at the free surface which without loss of generality
is taken as a constant. Equation (3.12) is called the hydrostatic pressure distribution. Then we can
have px = gηx, and similarly for py.

Remark 3.1.1. The pressure represents a normalized pressure, that is we mean the pressure is divided
by constant density.

3.2 Derivation of the SWE

Starting from the governing three-dimensional setting, written in primitive variables and assuming con-
stant density, the free surface flow of an incompressible fluid are the Navier-Stokes equations (NSE) that
describes the conservation of mass and momentum. The NSE written in Cartesian coordinates have the
form

ux + vy +wz = 0 (3.13)

ut + (uu)x + (uv)y + (uw)z = −px + (νux)x + (νuy)y + (νuz)z (3.14)

vt + (uv)x + (vv)y + (vw)z = −py + (νvx)x + (νvy)y + (νvz)z (3.15)

wt + (uw)x + (vw)y + (ww)z = −pz + (νwx)x + (νwy)y + (νwz)z − g (3.16)
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where u(x, y, z, t), v(x, y, z, t) and w(x, y, z, t) are the velocity components in the horizontal x, y and
vertical z− directions; t is the time; p is the normalized pressure, i.e., the pressure divided by constant
density; g is the gravitational acceleration and ν is the viscosity coefficient.

Given the initial conditions at time t = 0 and the boundary conditions at the bottom bathymetry and
at the free surface, the solution of the problem is given by the solution of equations (3.13 - 3.16)
for the unknowns u, v, w, p. Solving equations (3.13 - 3.16) is always computationally demanding and
challenging, the main difficulty in solving the full problem is associated with the free surface. This
is a boundary, and boundary conditions are to be satisfied, but the position of this boundary itself
is unknown and hence the domains on which the equations are to be solved are not known a priori.
However, approximate theories that leads to simpler models should be adopted. In deriving the SWE,
some assumptions could be made such as

• Linear theory approximation: this approximation assumes that the amplitude of the free-surface
from an undisturbed position is small when compared to the characteristic length, such as wave
length and thus this assumption leads to linear boundary value problems.

• Non-linear approximation: this approximation assumes that the water depth is small when com-
pared to the wave length or free surface curvature and this assumption leads to non-linear initial
value problems.

Even, in spite of these simplifying assumptions in deriving the non-linear shallow water model, its
numerical treatment is still computationally challenging.

Now we start the derivation of the SWEs, we integrate the continuity equation i.e., ∇ · v = 0 from the
bottom bathymetry to the free surface, z = −h to z = η. We can apply the Leibniz integral rule since
η depends on x, y, t and h depends on x, y.

0 =

∫ η

−h
∇ · vdz (3.17)

=

∫ η

−h
uxdz +

∫ η

−h
vydz +

∫ η

−h
wzdz (3.18)

=

(∫ η

−h
udz

)

x

− usηx + ub(−h)x +

(∫ η

−h
vdz

)

y

− vsηy + vb(−h)y + ws − wb (3.19)

Using equations (3.2) and (3.6), we obtain the free surface equation

ηt +

(∫ η

−h
udz

)

x

+

(∫ η

−h
vdz

)

y

= 0 (3.20)

Defining the depth averaged velocities as

U =
1

H

∫ η

−h
udz, and V =

1

H

∫ η

−h
vdz (3.21)

and using boundary conditions to get rid of the boundary terms, we have the depth averaged continuity
equation given as

Ht + (HU)x + (HV )y = 0 (3.22)

where H(x, y, t) is the total water depth written as

H(x, y, t) = η(x, y, t) + h(x, y). (3.23)
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For the momentum equation, if we integrate over the depth the left-hand side of (3.14), the x−momentum
equation, we have

∫ η

−h
(ut + (uu)x + (uv)y + (uw)z)dz =

(∫ η

−h
udz

)

t

+

(∫ η

−h
uudz

)

x

+

(∫ η

−h
uvdz

)

y

− us(ηt + usηx + vsηy − ws) + ub(ub(−h)x + vb(−h)y − wb)

= (HU)t + (HUU)x + (HUV )y

+

(∫ η

−h
(u− U)2dz

)

x

+

(∫ η

−h
(u− U)(v − V )dz

)

y

(3.24)

We should note that in equation (3.24), the product of the two integrands is not the product of the
averages. We will get a similar result for the left-hand side of the y−momentum equation. The vertical
integration of the viscous terms on the right-hand side of equation (3.14) yields

∫ η

−h
((νux)x + (νuy)y + (νuz)z)dz =

(∫ η

−h
νuxdz

)

x

+

(∫ η

−h
νuydz

)

y

− ν(uxηx + uyηy − uz)|z=η+ν(ux(−h)x + uy(−h)y − uz)|z=−h

=

(∫ η

−h
νUxdz

)

x

+

(∫ η

−h
νUydz

)

y

+

(∫ η

−h
ν(u− U)xdz

)

x

+

(∫ η

−h
ν(u− U)ydz

)

x

+ γt(ua − us)− γbu
b

= (ν̃HUx)x + (ν̃HUy)y + γt(ua − U s)− γbU

+

(∫ η

−h
ν(u− U)xdz

)

x

+

(∫ η

−h
ν(u− U)ydz

)

x

− γt(us − U)− γb(u
b − U) (3.25)

where

ν̃ =
1

H

∫ η

−h
νdz

is the depth averaged viscosity coefficient. We can obtain similar results for the y− momentum equa-
tions. Then, we obtain the two-dimensional, depth averaged shallow water equations as

Ht + (HU)x + (HV )y = 0 (3.26)

(HU)t + (HUU)x + (HUV )y = −gHηx + (ν̃HUx)x + (ν̃HUy)y + γtua − γU (3.27)

(HV )t + (HUV )x + (HV V )y = −gHηy + (ν̃HVx)x + (ν̃HVy)y + γtva − γV (3.28)

where the total friction coefficient is γ = γb + γt should be nonnegative. The SWEs when written in
differential conservation law form with source terms, the equations are

Ut +F(U)x +G(U)y = S(U), (3.29)

where U, F(U), G(U) and S(U) are the vectors of conserved variables, fluxes in the x and y directions
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and sources, they are given by

U =




h
hu
hv


 , F(U) =




hu
hu2 + 1

2gh
2

huv


 ,

G(U) =




hv
huv

hv2 + 1
2gh

2


 , S(U) =



s1
s2
s3


 .

S(U) is the source term vector which accounts for various physical and geometric effects. Mostly, when
the bottom bed bathymetry is varying, the source term vector becomes

S =




0
−ghbx
−ghby


 .

Forces such as bottom friction, wind stresses and Coriolis forces enter into the vector S(U).

3.3 Characteristics of the SWE

In this section, we will give the characteristic properties of the shallow water equations.

3.3.1 Hyperbolicity

Hyperbolicity remains the most important property of the shallow water equations. When we consider the
systems of partial differential equations, this property defines the eigenvalues of the Jacobian matrices
of flux functions. For hyperbolic systems, considering special initial conditions we arrive at the so-
called Riemann problems which divides the solution into separate waves which can be determined either
analytically or approximately.

Definition 3.3.1 (Hyperbolic System). A system is said to be hyperbolic if the Jacobian matrix
of flux functions has m real eigenvalues and a corresponding complete set of m linearly independent
eigenvectors.

Remark 3.3.2. For hyperbolicity, the eigenvalues are not required to be all distinct. The crucial point is
that there is a complete set of linearly independent eigenvectors corresponding to the real eigenvalues.

Definition 3.3.3 (Strictly Hyperbolic System). A hyperbolic system is said to be strictly hyperbolic
if all the eigenvalues of the system are distinct.

Definition 3.3.4 (Weakly Hyperbolic System). A system may have real but not distinct eigenvalues
but still be hyperbolic if a complete set of linearly independent eigenvector exists. However, if all
eigenvalues are real but no complete set of linearly independent eigenvectors exists then the system is
called weakly hyperbolic.
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3.3.2 Eigenstructure in Terms of Physical Variables

The aim of this section is to present some theoretical results and properties of the SWEs in terms
of primitive variables. This is because our proposed semi-implicit numerical method SISPH which is
designed and developed in chapter 5 in this thesis is formulated in primitive variables. We can formulate
the shallow water equations in terms of physical variables or primitive variables. Equation (3.29) with
variable bottom bathymetry can be written as

ht + uhx + hux + vhy + hvy = 0, (3.30)

ut + uux + ghx + vuy = −gbx, (3.31)

vt + uvx + vvy + ghy = −gby. (3.32)

Writing the conservative equations in non-conservative(quasi-linear) form in compact notation becomes

Ut +A(U)Ux +B(U)Uy = S, (3.33)

where the coefficient matrices A(U) and B(U) and the vectors U and S are given as

A(U) =



u h 0
g u 0
0 0 u


 , B(U) =



v 0 h
0 v 0
g 0 v


 ,

U =



h
u
v


 , S =




0
−gbx
−gby


 .

Definition 3.3.5 (Eigenvalues). The eigenvalues of system (3.33) are the roots of the characteristic
polynomial

P (λ) ≡ |A− λI| = 0. (3.34)

I is a m×m unit matrix, λ is a parameter, λi are eigenvalues in increasing order

λ1 ≤ λ2 ≤ . . . ≤ λi ≤ . . . ≤ λm−1 ≤ λm. (3.35)

Definition 3.3.6 (Right Eigenvector). A right eigenvector Ri of A corresponding to λi is

R(i) = (r1i, r2i, . . . rii, . . . , rmi)
T , (3.36)

such that
AR(i) = λiR

(i). (3.37)

The m right eigenvectors corresponding to the eigenvalues (3.35) are

R(1),R(2), . . . ,R(i), . . . ,R(m−1),R(m). (3.38)

Definition 3.3.7 (Left Eigenvector). A left eigenvector Li of A corresponding to λi is the row vector

L(i) = (ri1, ri2, . . . rii, . . . , rim) , (3.39)

such that
L(i)A = λiL

(i). (3.40)

The m left eigenvectors corresponding to the eigenvalues (3.35) are

L(1),L(2), . . . ,L(i), . . . ,L(m−1),L(m). (3.41)
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Proposition 3.3.8. The eigenvalues of A and B in equation (3.33) are respectively given by

λ1 = u− c, λ2 = u, λ3 = u+ c (3.42)

and
λ̃1 = v − c, λ̃2 = v, λ̃3 = v + c. (3.43)

Proof. The definition of the eigenvalues of the matrix A are given by the roots of the characteristic
polynomial

|A− λI| = 0, (3.44)

where |J| = |A − λI| denotes the determinant of matrix J, λ is a scalar and I denotes the identity
matrix. Evaluating the determinant in (3.44) we obtain

u− λ(u− λ)2 − gh(u − λ) = 0,

(u− λ)
[
(u− λ)2 − gh

]
= 0,

where we obtain the roots to be

λ1 = u− c, λ2 = u, λ3 = u+ c,

where c =
√
gh. We note that the eigenvalues are real and distinct under all possible circumstances,

except in the case of dry bed h = 0, which implies c = 0 and λ1 = λ2 = λ3 = u. Similarly, we get the
eigenvalues of B by solving the characteristic polynomial |B− λ̃I| = 0.

Proposition 3.3.9. The right eigenvectors of A in equation (3.33) are

R(1) = α1




h
−c
0


 , R(2) = α2



0
0
1


 , R(3) = α3



h
c
0


 ,

where α1, α2 and α3 are scaling factors. The left eigenvectors of A in equation (3.33) are

L(1) = α̂1 (c, −h, 0) ,

L(2) = α̂2 (0, 0, 1) ,

L(3) = α̂3 (c, h, 0) ,





(3.45)

where α̂1, α̂2 and α̂3 are scaling factors.

Proof. The right eigenvector of the matrix A corresponding to an eigenvalue λ is a column vector
R = (r1, r2, r3)

T such that
AR = λR, (3.46)

where we write in full notation as
ur1 + hr2 = λr1,

gr1 + ur2 = λr2,

ur3 = λr3.





(3.47)



Section 3.3. Characteristics of the SWE Page 27

For λ = λ1 = u− c, we wish to find the right eigenvector R(1) corresponding to it. We obtain

ur1 + hr2 = (u− c)r1, (3.48)

gr1 + ur2 = (u− c)r2, (3.49)

ur3 = (u− c)r3. (3.50)

We should note that equations (3.48) and (3.49) are equivalent since c =
√
gh. This means, we have

only two independent equations for the three unknowns r1, r2, r3. So, we use equation (3.48) that gives
a one-parameter family of solutions. Prescribing the parameter as α1, we obtain the right eigenvector

R(1) = α1




h
−c
0


 .

We do similar calculations for λ = λ2 = u by substituting into (3.47) to obtain R(2) and λ = λ3 = u+c
to obtain R(3) respectively as claimed.

For the left eigenvector of the matrixA corresponding to an eigenvalue λ, the row vector L = (l1, l2, l3)
is found by solving the equation

LA = λL, (3.51)

Written in full notation as
ul1 + gl2 = λl1,

hl1 + ul2 = λl2,

ul3 = λl3.





(3.52)

For λ = λ1 = u− c, We wish to find the left eigenvector L(1) corresponding to it. We obtain

ul1 + gl2 = (u− c)l1, (3.53)

hl1 + ul2 = (u− c)l2, (3.54)

ul3 = (u− c)l3. (3.55)

Also, we should note that (3.53) and (3.54) are equivalent since c =
√
gh. We have only two independent

equations for the three unknowns l1, l2, l3. After solving we obtain, a one-parameter family of solutions.
Prescribing the parameter as α̂1, we obtain the left eigenvector

L(1) = α̂1 (c, −h, 0)

We do similar calculations for λ = λ2 = u by substituting into (3.52) to obtain L(2) and λ = λ3 = u+c
to obtain L(3) respectively as claimed.

Proposition 3.3.10. The right eigenvectors of B in equation (3.33) are

R(1) = β1




h
0
−c


 , R(2) = β2



0
1
0


 , R(3) = β3



h
0
c


 ,

where β1, β2 and β3 are scaling factors. The left eigenvectors of B in equation (3.33) are

L(1) = β̂1 (c, 0, −h) ,

L(2) = β̂2 (0, 1, 0) ,

L(3) = β̂3 (c, 0, h) ,





(3.56)

where β̂1, β̂2 and β̂3 are scaling factors.
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Proof. The calculations for for the right eigenvectors and left eigenvectors of matrix B follows similar
calculations as we have shown for A above.

Remark 3.3.11 (Bi-orthonormality). The left and right eigenvectors of the Jacobian matrix A are
bi-orthonormal, that is they satisfy the relations

L(i) ·R(j) =

{
1 if i = j,

0 if i 6= j.

Theorem 3.3.12. The two-dimensional shallow water equations are strictly hyperbolic for c > 0.

Proof. From the coefficient matrices A(U) and B(U), we solve the characteristic polynomial (3.44)
and obtain the eigenvalues. The eigenvalues are distinct for c =

√
gh 6= 0, therefore the two-dimensional

shallow water equations are strictly hyperbolic for gh > 0.

Let us consider a matrix C(U) that is a linear combination of the two Jacobian coefficient matrices
A(U) and B(U) as

C(U) = ω1A(U) + ω2B(U), (3.57)

where ω1, ω2 ∈ R define a non-zero vector ω = [ω1, ω2] such that

|ω| =
√

ω2
1 + ω2

2 > 0. (3.58)

Therefore, the matrix C(U) is given by

C(U) = ω1



u h 0
g u 0
0 0 u


+ ω2



v 0 h
0 v 0
g 0 v




Then we have

C(U) =



uω1 + vω2 hω1 hω2

gω1 uω1 + vω2 0
gω2 0 uω1 + vω2


 (3.59)

This leads us to the following propositions

Proposition 3.3.13. The eigenvalues of C in equation (3.59) are given by

λ1 = uω1 + vω2 − c|ω|, λ2 = uω1 + vω2, λ3 = uω1 + vω2 + c|ω| (3.60)

Proof. The definition of the eigenvalues of the matrix C are given by the roots of the characteristic
polynomial

|C− λI| = 0, (3.61)

Evaluating the determinant in (3.61) we obtain

uω1 + vω2 − λ
[
(uω1 + vω2 − λ)2

]
− hω1 [gω1(uω1 + vω2 − λ)] + hω2 [−gω1(uω1 + vω2 − λ)] = 0,

uω1 + vω2 − λ
[
(uω1 + vω2 − λ)2 − ghω2

1 − ghω2
2

]
= 0,

uω1 + vω2 − λ
[
(uω1 + vω2 − λ)2 − gh(ω2

1 + ω2
2)
]
= 0

where we obtain the roots to be

λ1 = uω1 + vω2 − c|ω|, λ2 = uω1 + vω2, λ3 = uω1 + vω2 + c|ω| (3.62)

as claimed.
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Proposition 3.3.14. The right eigenvectors of C are

R(1) = α1




−c|ω|
c2

h
ω1

c2

h
ω2


 , R(2) = α2




0
−ω2

ω1


 , R(3) = α3




c2

h
ω1

c|ω|
c2

h
ω2


 ,

where α1, α2 and α3 are scaling factors. The left eigenvectors of C are

L(1) = α̂1 (−c|ω|, hω1, hω2) ,

L(2) = α̂2 (0, −ω2, ω1) ,

L(3) = α̂1 (c|ω|, hω1, hω2) ,





(3.63)

where α̂1, α̂2 and α̂3 are scaling factors.

Proof. The right eigenvector of the matrix C corresponding to an an eigenvalue λ is a column vector
R = (r1, r2, r3)

T such that
CR = λR, (3.64)

where we write in full notation as

(uω1 + vω2)r1 + hω1r2 + hω2r3 = λr1,

gω1r1 + (uω1 + vω2)r2 = λr2,

gω2r1 + (uω1 + vω2)r3 = λr3.





(3.65)

For λ = λ1 = uω1 + vω2 − c|ω|, we find the right eigenvector R(1) corresponding to it. We obtain

(uω1 + vω2)r1 + hω1r2 + hω2r3 = (uω1 + vω2 − c|ω|)r1, (3.66)

gω1r1 + (uω1 + vω2)r2 = (uω1 + vω2 − c|ω|)r2, (3.67)

gω2r1 + (uω1 + vω2)r3 = (uω1 + vω2 − c|ω|)r3. (3.68)

Solving (3.67) and (3.68) we a get a one parameter family of solutions. Prescribing the parameter as
α1, we obtain the right eigenvector

R(1) = α1




−c|ω|
c2

h
ω1

c2

h
ω2


 .

We do similar calculations for λ = λ2 = uω1 + vω2 by substituting into (3.65) to obtain R(2) and
λ = λ3 = uω1 + vω2 + c|ω| to obtain R(3) respectively as claimed.

For the left eigenvector of the matrix C corresponding to an eigenvalue λ, the row vector L =
(l1, l2, l3) by solving the equation

LC = λL, (3.69)

Written in full notation as

(uω1 + vω2)l1 + gω1l2 + gω2l3 = λl1,

hω1l1 + (uω1 + vω2)l2 = λl2,

hω2l1 + (uω1 + vω2)l3 = λl3.





(3.70)
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For λ = λ1 = uω1+vω2−c|ω|, we wish to find the left eigenvector L(1) corresponding to it. We obtain

(uω1 + vω2)l1 + gω1l2 + gω2l3 = (uω1 + vω2 − c|ω|)l1, (3.71)

hω1l1 + (uω1 + vω2)l2 = (uω1 + vω2 − c|ω|)l2, (3.72)

hω2l1 + (uω1 + vω2)l3 = (uω1 + vω2 − c|ω|)l3. (3.73)

Using (3.72) and (3.73), we have only two independent equations for the three unknowns l1, l2, l3. After
solving we obtain, a one-parameter family of solutions. Prescribing the parameter as α̂1, we obtain the
left eigenvector

L(1) = α̂1 (−c|ω|, hω1, hω2) .

We do similar calculations for λ = λ2 = uω1 + vω2 by substituting into (3.70) to obtain L(2) and
λ = λ3 = uω1 + vω2 + c|ω| to obtain L(3) respectively as claimed.

Definition 3.3.15 (Hyperbolic System). A system of m conservation laws with Jacobian coefficient
matrices A(U) and B(U) is said to be hyperbolic if the matrix C(U) formed by the linear combination
of the Jacobian coefficient matrices A(U) and B(U),

C(U) = ω1A(U) + ω2B(U), (3.74)

has m real eigenvalues for any vector U of conserved variables and any vector ω = [ω1, ω2] such that
ω 6= 0. The system is called strictly hyperbolic if in addition the eigenvalues are all distinct.

Nature of Characteristic Fields

If we consider the hyperbolic system of m conservation laws of the form

Ut +A(U)Ux = 0, (3.75)

with real eigenvalues λi(U) and corresponding right eigenvectors R(i)(U). The characteristic speed
λi(U) defines a characteristic field, the λi field. The gradient of an eigenvalue λi(U) is given by

∇λi(U) =

(
∂

∂u1
λi,

∂

∂u2
λi, · · · ,

∂

∂um
λi

)T

. (3.76)

Proposition 3.3.16 (Nature of the characteristic fields). For the x- split shallow water equations

Ut +A(U)Ux = 0, (3.77)

the λ2(U) characteristic field is linearly degenerate and the λ1(U) and λ3(U) characteristic fields are
genuinely nonlinear.

Proof. Firstly, we show that the λ2(U) characteristic field is linearly degenerate, we mean i.e.,

∇λ2(U) ·R(2)(U) = 0

for all vectors U written as

U =



u1
u2
u3


 =



h
u
v
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and therefore

∇λ2 =

(
∂

∂u1
λ2,

∂

∂u2
λ2,

∂

∂u3
λ2

)T

= (0, 1, 0)T . (3.78)

Since we have established the right eigenvector to be R(2)(U) = α2 (0, 0, 1)
T . Clearly, the dot product

∇λ2(U) · R(2)(U) vanishes for all vectors U and therefore the λ2(U) characteristic field is linearly
degenerate as claimed and the first part of the proposition is proved. In the same vein for the λ1(U)
characteristic field

∇λ1 =

(
∂

∂u1
λ1,

∂

∂u2
λ1,

∂

∂u3
λ1

)T

=

(
−1

2

√
g

h
, 1, 0

)T

. (3.79)

As R(1)(U) = (h,−c, 0)T , the dot product

∇λ1(U) ·R(1)(U) =

(
−1

2

√
g

h
, 1, 0

)
· (h,−c, 0)

=

(
−1

2

√
g

h
h− c+ 0

)

= −1

2
c− c

= −3

2
c 6= 0 ∀ U ∈ R

m

And lastly similarly, for the λ3(U) characteristic field

∇λ3(U) ·R(3)(U) =
3

2
c 6= 0 ∀ U ∈ R

m

Therefore the λ1(U) and λ3(U) characteristic fields are genuinely nonlinear and we complete the proof
of the proposition.

3.3.3 Riemann Invariants

Riemann invariants are relations that holds true, i.e., remain constant across the wave structure for
rarefaction waves and contact discontinuities which leads to m− 1 ordinary differential equations.

dw1

r
(i)
1

=
dw2

r
(i)
2

=
dw3

r
(i)
3

= · · · = dwm

r
(i)
m

. (3.80)

They relate ratios of changes dws of a quantity ws to the respective components r
(i)
s of the right

eigenvector R(i) corresponding to a λi wave family. The family of ordinary differential equations are
obtained from the following proposition.

Proposition 3.3.17. The Riemann invariants for the shallow water equations are given as u± 2c.

Proof. We consider a no wind stress, no Coriolis force, no bed variation bathymetry for the two-
dimensional shallow water equations

∂η

∂t
+

∂

∂x
((η + h)u) +

∂

∂y
((η + h)v) = 0, (3.81)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0, (3.82)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0. (3.83)
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We consider a 2d, i.e., in the xz plane, assume v ≡ 0 and ∂
∂y ≡ 0, the shallow water equations become

∂

∂t
(η + h) + u

∂

∂x
(η + h) + (η + h)

∂u

∂x
= 0, (3.84)

∂u

∂t
+ u

∂u

∂x
+ g

∂

∂x
(η + h) = g

∂h

∂x
. (3.85)

We define the wave celerity c2(x, y, t) = g(η + h). Multiply equation (3.84) by gravity g we have

∂c2

∂t
+ u

∂c2

∂x
+ c2

∂u

∂x
= 0 (3.86)

which is written as

c

[
∂(2c)

∂t
+ u

∂(2c)

∂x
+ c

∂u

∂x

]
= 0. (3.87)

Because c2(x, y, t) 6= 0, from equation (3.87) we have

∂(2c)

∂t
+ u

∂(2c)

∂x
+ c

∂u

∂x
= 0. (3.88)

Similarly, in equation (3.85) we have

∂u

∂t
+ u

∂u

∂x
+ c

∂(2c)

∂x
= g

∂h

∂x
. (3.89)

Adding and substracting equations (3.89) and (3.88) we have

∂

∂t
(u+ 2c) + u

∂

∂x
(u+ 2c) + c

∂

∂x
(u+ 2c) = g

∂h

∂x
, (3.90)

∂

∂t
(u− 2c) + u

∂

∂x
(u− 2c)− c

∂

∂x
(u− 2c) = g

∂h

∂x
. (3.91)

Equation (3.90) says that along the curves in the (x, t) plane we have

dx

dt
= u+ c, (3.92)

where u+ 2c evolves according to

∂

∂t
(u+ 2c) +

dx

dt

∂

∂x
(u+ 2c) =

d

dt
(u+ 2c) = g

∂h

∂x
(3.93)

Also along the curves defined by
dx

dt
= u− c, (3.94)

Equation (3.91) can be written as

∂

∂t
(u− 2c) +

dx

dt

∂

∂x
(u− 2c) =

d

dt
(u− 2c) = g

∂h

∂x
(3.95)

Hence, if h is constant, u+2c and u− 2c are Riemann invariant, that is the functions remain constant
along the curves.



Section 3.3. Characteristics of the SWE Page 33

Definition 3.3.18 (Riemann problem). Let uL and uR be left states and right states of Ω ⊂ R
d.

Then, the initial value problem
∂u

∂t
+

∂

∂x
f(u) = 0, (3.96)

with the initial condition

u(x, 0) =

{
uL if x ≤ 0,

uR if x > 0.

is called a Riemann problem.

Looking for piecewise smooth continuous functions u : (x, t) → u(x, t) solutions of (3.96). Godlewski
and Raviart [49] shows that we restrict ourselves to self-similar solutions of the Riemann problem.
Self-similar solutions are solutions of the form

u(x, t) = s
(x
t

)
. (3.97)

If we consider classical self-similar solutions of (3.96), these solutions satisfy the equation

∂u

∂t
+A(u)

∂u

∂x
= 0

in the classical sense. We should have

−
( x

t2

)
s′
(x
t

)
+

(
1

t

)
A
(
s
(x
t

))
s′
(x
t

)
= 0,

if we set ξ = x
t , we have

(A(s(ξ)) − ξI) s′(ξ) = 0.

Therefore, either we obtain
s′(ξ) = 0

or ∃ an index k ∈ 1, . . . , p such that

s′(ξ) = α(ξ)rk(s(ξ)), λk(s(ξ)) = ξ.

If we differentiate the second equation with respect to ξ, we have

Dλk(s(ξ)) · s′(ξ) = 1,

substituting into the first equation, we have

α(ξ)Dλk(s(ξ)) · rk(s(ξ)) = 1. (3.98)

We cannot solve this equation if the kth characteristic field is linearly degenerate but only solvable if it
is genuinely nonlinear. Normalizing the equation with

α(ξ) = 1

Hence, we find either
s′(ξ) = 0

or
s′(ξ) = rk(s(ξ)), λk(s(ξ)) = ξ. (3.99)
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and s is therefore an integral curve of the field rk. Thus, assume that the kth characteristic field is
genuinely nonlinear and that the function s is a solution of (3.98) with

s(λk(uL)) = uL, s(λk(uR)) = uR

From the above analysis the function

u(x, t) =





uL if
x

t
≤ λk(uL),

s
(x
t

)
if λk(uL) ≤

x

t
≤ λk(uR),

uR if
x

t
≥ λk(uR)

is a continuous self-similar weak solution of (3.96).

Definition 3.3.19 (k-centered simple wave). The self-similar weak solution of (3.96) is called a
k-centered simple wave or k-rarefaction wave connecting the uL and uR states.

Definition 3.3.20 (k-Riemann invariant). A smooth function w : Ω → R is called a k-Riemann
invariant if it satisfies

Dw(u) · rk(u) = 0, ∀u ∈ Ω. (3.100)

A k-Riemann invariant w is constant on a curve v : ξ ∈ R → v(ξ) ∈ R
d if and only if

d

dξ
w(v(ξ)) = Dw(v(ξ)) · v′(ξ) = 0, (3.101)

which holds if v is an integral curve of rk

v′(ξ) = rk(v(ξ)). (3.102)

The definition above implies that a k-Riemann invariant is constant along the trajectories of the vector
field rk.

Remark 3.3.21. When the kth field is linearly degenerate, λk is a k-Riemann invariant.

Theorem 3.3.22. On a k-rarefaction wave, all k-Riemann invariants wk are constant, i.e., the relation

wk(uL) = wk(uR) (3.103)

is satisfied.

Proof. Let u be a k−rarefaction wave of the form the self-similar weak solution, let w be a k−Riemann
invariant, let s(xt ) be the integral curve of rk which connects the left state uL and the right state uR.
For t > 0, the function w(u) : (x, t) → w(u(x, t)) is continuous. To start with, w(u) is constant for
x
t ≤ λk(uL) and

x
t ≥ λk(uR). If we derive wk along s(xt ) then we have

∇wk(s) · s′
(x
t

)
= ∇wk(s) · rk

(
s
(x
t

))
= 0. (3.104)

This means that wk is constant along the trajectories of the vector field rk. Also, for λk(uL) ≤ x
t ≤

λk(uR), u is an integral curve of rk, u is continuous, wk is a smooth function , then wk is thus
constant on the k−rarefaction wave and also for the left state uL and the right state uR, which proves
the result.



4. Smoothed Particle Hydrodynamics Method

In this chapter, we will present introduction to the SPH method, the formulation, i.e., integral and
particle approximation of SPH, we will ontline the consistency issues and present techniques to restore
consistency at the particle level in the SPH method.

4.1 Introduction to SPH

The Smoothed Particle Hydrodynamics numerical method was formulated by Lucy, Gingold and Mon-
aghan [48, 83] in the 70’s. Originally, the SPH method was formulated for astrophysics problems, i.e.,
formation and evolution of proto-stars or galaxies. Unlike other numerical discretization techniques that
discretizes continuum into a finite set of nodal points, SPH consolidates a set of discrete particles into a
quasi-continuum. Because astrophysical particles moves collectively in a large scale which is comparable
to the movement of a fluid, it is modeled by SPH as a quasi-fluid governed by the equations of classical
hydrodynamics. In astrophysical applications the real process is discrete, a local continuous field is
generated to connote the collective behavior of the discrete system to avoid singularities.

Figure 4.1: 2D particle discretization under gravity

4.2 Formulations of SPH

4.2.1 Kernel Approximation

The main idea behind the Smoothed Particle Hydrodynamics is that the method uses an integral rep-
resentation of functions. Let us consider a function of f(x) at any point x = (x, y, z) in space, the

35
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integral representation is given by

f(x) =

∫

Ω

f(x′)δ(x − x′)dx′, (4.1)

where f(x′) denotes the neighboring function values, δ(x− x′) is the Dirac delta function given by

δ(x− x′) =

{
1 if x = x′

0 if x 6= x′

and Ω is the control volume of the integral that contains x. We should note that the integral represen-
tation of a function as given in Equation (4.1) is exact since the Dirac delta function is used. However,
it is difficult to use for numerical analysis from the mathematics point of view. The Dirac delta is
strictly not a function because any real valued function that is equal to zero everywhere but a single
point must have a total integral to be zero. Therefore, to this effect the Dirac delta function is replaced
by a smooth kernel function W (x− x′, h) then the integral or kernel formulation reads

fI(x) :=

∫

Ω

f(x′)W (x− x′, h)dx′ (4.2)

and it holds that fI(x) ≈ f(x), where W is the so-called smoothing/kernel function, h is called the
smoothing length in SPH. The smoothing length defines the influence area of the smoothing functionW ,
it controls the size of the compact support domain Ω called the smoothing domain or influence domain.
This approximated integral can be termed as a finite integral representation which is conventionally
called kernel approximation.

Kernel Approximation of Function Derivatives

We approximate the derivative of the function f(x) by simply employing Equation (4.2) but replacing
fI(x) by ∇ · fI(x) which reads

∇ · fI(x) :=
∫

Ω

[
∇ · f(x′)

]
W (x− x′, h)dx′ (4.3)

and it holds that ∇ · fI(x) ≈ ∇ · f(x). With the identity

[
∇ · f(x′)

]
W (x− x′, h) = ∇ ·

[
f(x′)W (x− x′, h)

]
− f(x′) · ∇W (x− x′, h) (4.4)

∇ · fI(x) ≈
∫

Ω

∇ ·
[
f(x′)W (x− x′, h)

]
dx′ −

∫

Ω

f(x′) · ∇W (x− x′, h)dx′ (4.5)

and applying the Gauss’s theorem on the first integral in Equation (4.5)

∇ · fI(x) ≈
∫

∂Ω

f(x′)W (x− x′, h) · ndS −
∫

Ω

f(x′) · ∇W (x− x′, h)dx′ (4.6)

where n is the unit normal to the bounding surface.
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With the requirement that W is compactly supported, the surface integral in equation (4.6) vanishes.
Thus, we have

∇ · fI(x) ≈ −
∫

Ω

f(x′) · ∇W (x− x′, h)dx′ (4.7)

From equation (4.7), it can be noted that the differentiation operator has transfered to the smoothing
kernel function. So in short words from the above derivation, we can say that the SPH integral (kernel)
approximation of the derivative of a function permits the gradient to be obtained from the combination
of the function values and the derivative of the smoothing kernel function W , rather than the derivative
of the function itself.

Proposition 4.2.1. The SPH kernel approximation is second order accurate, or has O(h2) accuracy.

Proof. We can show this by using the Taylor series expansion of f(x′) around x. From equation (4.2)

fI(x) =

∫

Ω

[
f(x) + f ′(x)(x′ − x) + HOT((x′ − x)2)

]
W (x− x′, h)dx′ (4.8)

= f(x)

∫

Ω

W (x− x′, h)dx′ + f ′(x)

∫

Ω

(x′ − x)W (x− x′, h)dx′ + HOT((x′ − x)2) (4.9)

where HOT stands for the residual higher order terms. We must take into consideration that the kernel
function is an even function with respect to x. This means that (x′ − x)W (x− x′, h) must be an odd
function so therefore ∫

Ω

(x′ − x)W (x− x′, h)dx′ = 0 (4.10)

Making use of the normalization condition
∫

Ω

W (x− x′, h)dx′ = 1 (4.11)

we obtained
fI(x) = f(x) + HOT(h2) (4.12)

We can see that the integral or kernel approximation of a function is of second order accuracy.

Remark 4.2.2. The kernel approximation is not necessarily of second order accuracy if the smoothing
function is not an even function, or if the normalization condition is not satisfied.

4.2.2 Particle Approximation

In this section, the kernel (integral) approximations are transformed into discrete summations. Since
SPH is a method that characterize the entire system by a finite number of particles which carry prop-
erties like mass, density, viscosity etc. and which occupy individual space. This is termed particle
approximation. How do we perform this approximation?

Let the infinitesimal volume d(x′) in the above kernel approximation be substituted by a finite vol-
ume of particle say ∆Vj . The mass of a particle j is given as

mj = ρj∆Vj (4.13)
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ρj marks the density of particle j with (j = 1, 2, . . . , N) and N is the number of particles that is inside
the support domain of the focal particle. From the integral approximation

fI(x) ≈
∫

Ω

f(x′)W (x− x′, h)dx′ (4.14)

≅

N∑

j=1

f(xj)W (x− xj, h)∆Vj (4.15)

=
N∑

j=1

f(xj)W (x− xj, h)
1

ρj
(ρj∆Vj) (4.16)

=

N∑

j=1

f(xj)W (x− xj, h)
1

ρj
(mj) (4.17)

Then we have

fS(x) :=

N∑

j=1

mj

ρj
f(xj)W (x− xj, h) (4.18)

and it holds that fS(x) ≈ f(x), where fS(x) is the summation approximant at the particle level.

Figure 4.2: Illustration of the kernel function W , its support domain Ω, with boundary S. Neighboring
particles j and focal particle i.

Similarly, the errors accrued in the summation interpolant is different, this is because approximations of
integrals by summations over particles does not guarantee that these terms integrate exactly. From the
summation interpolant evaluated at particle i, we do the Taylor series expansion of f(xj) = fj around
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xi, we have

N∑

j=1

mj

ρj
fjWij = fi

N∑

j=1

mj

ρj
Wij +∇fi ·

N∑

j=1

mj

ρj
(xj − xi)Wij +O(xj − xi)

2 (4.19)

where Wij ≡ W (xi − xj , h).

Remark 4.2.3. The summation interpolant is exact for constant functions only when the interpolant is
normalized by dividing by the interpolation of unity.

Particle Approximation of Function Derivatives

In the same spirit, the particle approximation for a function spatial derivative is given as

∇ · fS(x) := −
N∑

j=1

mj

ρj
f(xj) · ∇W (x− xj , h) (4.20)

where we have taken the derivative of W with respect to the particle j, and thus we eventually have

∇ · fS(xi) := −
N∑

j=1

mj

ρj
f(xj) · ∇iWij (4.21)

and it holds that ∇ · fS(xi) ≈ ∇ · f(xi), where

∇iWij =
xi − xj

rij

∂Wij

∂rij
=

xij

rij

∂Wij

∂rij
. (4.22)

Equation (4.20) expresses that the value of the gradient of a function at particle i is approximated using
the average of values of the function at all the neighboring particles in the support domain of particle i
now weighted by the gradient of the smoothing function.

There are a number of approaches to derive the SPH formulation of PDEs. Benz [16] derived the SPH
equations for PDEs by multiplying the terms by the smoothing function, integrate by parts over the
volume and Taylor series expansions. Monaghan [88] employed a straight forward approach by placing
the density inside the gradient operator, the identities are

∇ · f(x) = 1

ρ
[∇ · (ρf(x))− f(x) · ∇ρ] (4.23)

∇ · f(x) = ρ

[
∇ ·
(
f(x)

ρ

)
+

f(x)

ρ2
· ∇ρ

]
(4.24)

These identities are now substituted into the integral representation (4.3) and evaluated at the particle
i itself we obtain

∇ · fS(xi) :=
1

ρ




N∑

j=1

mj [f(xj)− f(xi)] · ∇iWij


 (4.25)

This approximation has the advantage that the first derivative of a constant function is zero exactly.
This property is known as zeroth-order consistency

∇ · fS(xi) := ρi




N∑

j=1

mj

[
f(xj)

ρ2j
+

f(xi)

ρ2i

]
· ∇iWij


 (4.26)
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A very good feature of these two equations is that the field function f(x) appears in the form of paired
particles. Equation (4.26) is not zeroth-order consistent, but has the advantage that forces leads to
local momentum conservation because of the symmetric formulation.

A renormalized approximation introduced by Randles and Libersky [97], Bonet and Lok [19] and Vila
[115] is given as

∇ · fS(xi) :=

N∑

j=1

mj

ρj
[f(xj)− f(xi)]Bi · ∇iWij (4.27)

where

Bi = −




N∑

j=1

mj

ρj
rij · ∇iWij



−1

(4.28)

is the renormalized tensor where rij = ri−rj is the relative distance between particles i and j. Because,
∇iWij is parallel to rij , the renormalized tensor B is symmetric. This approach has the merit that it is
first-order consistent which means by definition that the approximation can reproduce the gradient of a
linear function exactly.

The errors arising from the gradient evaluation can be done in a similar fashion by expanding in Taylor
series f(x′) around x, we have

∇f(x) =

∫

Ω

[
f(x) + (x′ − x)α

∂f

∂xα
+

1

2
(x′ − x)β(x′ − x)γ

∂2f

∂xβ∂xγ
+O(x′ − x)3

]
∇Wdx′(4.29)

= f(x)

∫

Ω

∇Wdx′ +
∂f

∂xα

∫

Ω

(x′ − x)α∇Wdx′ +

1

2

∂2f

∂xβ∂xγ

∫

Ω

(x′ − x)β(x′ − x)γ∇Wdx′ +O[(x′ − x)3], (4.30)

= ∇f(x) +
1

2

∂2f

∂xβ∂xγ

∫

Ω

(x′ − x)β(x′ − x)γ∇Wdx′ +O[(x′ − x)3], (4.31)

where we have used the fact that ∫

Ω

∇Wdx′ = 0 (4.32)

holds for even kernels and the second term integrates to unity, satisfying the normalization condition
for even kernels. The errors in the interpolant for the gradient are therefore also second order, O(h2).

For the gradient summation interpolant, we Taylor series expand f(xj) = fj around xi, f(xi) = fi,
thus we have

∇fi =
N∑

j=1

mj

ρj
fj∇iWij (4.33)

= fi

N∑

j=1

mj

ρj
∇iWij +

∂fi
∂xα

N∑

j=1

mj

ρj
(xj − xi)

α∇iWij + (4.34)

1

2

∂2fi
∂xβ∂xγ

N∑

j=1

mj

ρj
(xj − xi)

β(xj − xi)
γ∇iWij +O[(xj − xi)

3] (4.35)
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which is also second order. The Greek indices α, β and γ denotes the coordinate directions, with
repeated indices meaning Einstein summation.

Particle Approximation of the Laplacian

Second order differential operators called Laplacian are inevitable when dealing with modeling involving
viscous terms, diffusion terms, temperature and to express the pressure Poisson equation when dealing
with incompressible techniques. In the work of Fatehi and Manzari [45], they outlined some Laplacian
approximations. To approximate the second derivative ∇2f(x) in the spirit of SPH, if we apply the
approximant defined earlier for the first derivation we will obtain the particle approximation for the
Laplacian

∇2fS(xi) :=

N∑

j=1

mj

ρj
(∇ · fS,j) · ∇iWij, (4.36)

∇2fS(xi) :=

N∑

j=1

mj

ρj
[(∇ · fS,j −∇ · fS,i)] · ∇iWij , (4.37)

or alternatively we have

∇2fS(xi) :=
N∑

j=1

mj

ρj
[(∇ · fS,j +∇ · fS,i)] · ∇iWij . (4.38)

where ∇ · fS,i and ∇ · fS,j denotes the first order particle approximation for particle i and j. The above
schemes were employed to incorporate physical viscosity in astrophysical problems [47, 116] and to solve
the two dimensional heat conduction problems [58] and to study low-Reynolds number incompressible
flows [19]. Flebbe et al. [47] and Watkins et al. [116] used the approximation for astrophysical problems
and stated some non-physical oscillations in their solution. Using these approximations in a heat-like
equation with discontinuous initial data, essentially leads to oscillatory solutions, see [44].

Another approach to construct the Laplacian is to use the second derivative of the kernel function

∇2fS(xi) :=

N∑

j=1

mj

ρj
f(xj)∇ · ∇iWij, (4.39)

∇2fS(xi) :=
N∑

j=1

mj

ρj
(f(xj)− f(xi))∇ · ∇iWij , (4.40)

or alternatively

∇2fS(xi) :=

N∑

j=1

mj

ρj
(f(xj) + f(xi))∇ · ∇iWij . (4.41)

These formulations were used by Takeda et al. [104] and Chaniotis et al. [34].

Since this involves the second derivative of the kernel function, the inflection point of the kernel function
must be farther than the nearest particle to have a monotonicity preserving. But because general kernel
functions have inflection points between 0 and h however in a complicated flow problem this condition
is hard to satisfy. This is only valid for ordered particles, see [44].
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Another scheme by Brookshaw [21] uses a finite-difference-like form for the first order derivative and
uses a SPH summation for the second order derivative. This form is given as

∇2fS(xi) :=

N∑

j=1

2
mj

ρj

f(xj)− f(xi)

rji
nji · ∇iWij, (4.42)

where rji = |rji| and nji =
rji

rji
is the unit vector in the interparticle direction. Basa et al. [11] in

their work showed that this approximation is the best among available SPH approximation of second
derivatives.

Convergence and Accuracy of Particle Approximation

The convergence and accuracy of SPH approximations is largely connected to the particle distribution.
Because SPH is a truly meshless method with a Lagrangian description, particles move in the computa-
tional domain and their location changes in time, hence it hard to ensure a continuous convergence rate
and accuracy. Mas-Gallic and Raviart [85] showed that convergence in SPH should satisfy the conditions

h

∆x
→ ∞ (4.43)

and
h → 0 (4.44)

with ∆x given as the distance between particle i and j. Practically, the second condition is mostly used.
Generally, the convergence order of SPH is of first order.

However, there are techniques available to improve the order of accuracy of SPH approximation. The
Shepard normalization process, tries to ensure that the equality sums to 1 at the particle and discrete
level.

N∑

j=1

mj

ρj
W (x− x′, h) = 1 (4.45)

A term referred to as partition of unity. This is achieved by correcting the kernel function by

W̃ (x− x′, h) =
W (x− x′, h)

∑N
j=1

mj

ρj
W (x− x′, h)

(4.46)

where W̃ (x−x′, h) is the Shepard corrected kernel. This correction ensures first order convergence rate
of the SPH approximation.

Another technique for improving the convergence order and accuracy is the renormalization technique
given by Randles and Libersky [97]. The aim of this method is to ensure the equality

N∑

j=1

mj

ρj
∇W (x− x′, h) = 0. (4.47)

which we can term as partition of zero. And the approximation is corrected by

∇ · fS(xi) :=

N∑

j=1

mj

ρj
[f(xj)− f(xi)]Bi · ∇iWij (4.48)

where Bi as stated earlier is the renormalization matrix.
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4.3 Smoothing Functions

The smoothing kernel W (x− x′, h) is such that it satisfies some properties as summarized in the book
of Liu and Liu [80] namely :

• Unity:
The smoothing kernel function must be normalized over its support domain

∫

Ω

W (x− x′, h)dx′ = 1 for all x and h > 0. (4.49)

This unity condition, assures the zeroth-order consistency (C0) of the integral representation of
the function at the continuous level. But this condition does not necessarily guarantee (C0)
consistency of the discrete approximation.

• Compact support:
The smoothing kernel function must be compactly supported

W (x− x′, h) = 0 for |x− x′| > kh (4.50)

where the scaling factor k determines the spread of the smoothing function.

The support domain of a particle at point x is given by |x− x′| ≤ kh. This is very important to
the SPH method because it enables the approximation to be done from a local representation of
particles inside the smoothing domain Ω for which W is nonzero.

• Positivity:
The smoothing kernel must be positive i.e.

W (x− x′, h) ≥ 0 for all x,x′ and h > 0. (4.51)

for any point at x′ within the support domain of particle at point x. This requirement may not
be necessarily mathematical as a function, however it is important from a physical point of view
of phenomena. For instance, density can never be negative in fluid dynamics problems etc.

• Decay:
The smoothing kernel W should be monotonically decreasing with the increase of the distance
away from the target particle. This requirement explains that a force exerted by a particle on
another particle decreases with the increase in distance between the two particles.

• Dirac delta function property:
The smoothing function should satisfy the Dirac delta function property as the smoothing length
tends to zero.

lim
h→0

W (x− x′, h) = δ(x− x′) for all x,x′, (4.52)

where

δ(x − x′) =

{
1 if x = x′

0 if x 6= x′

Though this condition enables us to observe explicitly that the SPH method converges to its exact
form.
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• Symmetric property:
The smoothing function W should be an even function. This property explains that particles with
the same distance from a target or focal particle but different positions should have equal effects
on the target particle.

W (x− x′, h) = W (x′ − x, h) for all h > 0 (4.53)

• Smoothness:
The kernel function W and its derivatives W ′ should be continuous and sufficiently smooth. This
requirement is important to obtain good approximations. Because particle disorder will always
occur at certain levels in SPH simulations, a continuous and smooth function is not very sensitive
to this kind of disorders and this keep the errors in approximating the kernel interpolations small.

We can employ any function that possesses the above named property in the SPH method as our
smoothing function. We will mention some smoothing functions

Gaussian Kernel

In the work of Monaghan [88], he stated that in finding a physical interpretation of an SPH equation,
it is best to assume the smoothing function as Gaussian. The following Gaussian kernel has been used
by Gingold and Monaghan [48] to simulate non-spherical stars

W (q, h) = Kde
−q2 (4.54)

The gradient is given as
W ′(q, h) = −2Kdqe

−q2

To satisfy the normalization requirement, the normalization constant Kd is given as 1
π1/2h

, 1
πh2 and

1
π3/2h3

in one-, two- and three- dimensional space respectively. In equation (4.54), q is the relative

distance between two particles at positions x and x′, q = r
h = |x−x

′|
h , where r is the distance between

the two particles. Though, the Gaussian kernel is sufficiently smooth even for higher orders derivatives.
The downside of the Gaussian kernel is that it is not really compact, i.e., it never goes to zero theo-
retically except q goes to infinity. Also, it is computationally expensive to use since it will take more
distance for the kernel function to approach zero. Thus, resulting in a larger support domain for particle
approximation which invariably costs more time to solve.

Cubic Spline Kernel

This kernel function has been mostly widely used in SPH because it resembles the Gaussian function
and most importantly, it has a more narrower compact support. So, computationally, this is optimal.
We have used the cubic spline in our numerical experiments presented in this thesis. The cubic spline
function is given as

W (q, h) = Kd ×





1− 3

2
q2 +

3

4
q3 for 0 ≤ q ≤ 1,

1

4
(2− q)3 for 1 < q ≤ 2,

0 for q > 2

(4.55)
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The normalization condition provides the constants Kd = 2
3h ,

10
7πh2 and 1

πh3 in one-, two- and three-
dimensional space respectively. Its derivative is given by

W ′(q, h) = Kd ×





−3q +
9

4
q2 for 0 ≤ q ≤ 1,

−3

4
(2− q)2 for 1 < q ≤ 2,

0 for q > 2

(4.56)

Since we have used the cubic spline in this thesis, we provide the plot and the derivative in one dimension
in Figure 4.3

Figure 4.3: The cubic spline kernel and its first derivative, the cubic spline function in coloured dots
and its first derivative in black dots.

Quartic Spline Kernel

The spline kernel of order 4 called the quartic spline kernel is given as

W (q, h) = Kd ×





(
5

2
− q

)4

− 5

(
3

2
− q

)4

+ 10

(
1

2
− q

)4

for 0 ≤ q ≤ 0.5,
(
5

2
− q

)4

− 5

(
3

2
− q

)4

for 0.5 < q ≤ 1.5,
(
5

2
− q

)4

for 1.5 < q ≤ 2.5,

0 for q > 2.5

(4.57)
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with the normalization constant Kd = 1
24h ,

96
1199πh2 and 1

20πh3 in one-, two- and three- dimensional
space respectively. Its derivative gives

W ′(q, h) = −4Kd ×





(
5

2
− q

)3

− 5

(
3

2
− q

)3

+ 10

(
1

2
− q

)3

for 0 ≤ q ≤ 0.5,
(
5

2
− q

)3

− 5

(
3

2
− q

)3

for 0.5 < q ≤ 1.5,
(
5

2
− q

)3

for 1.5 < q ≤ 2.5,

0 for q > 2.5

(4.58)

Quintic Spline Kernel

In the same spirit, the spline kernel of order 5 called the quintic spline kernel is given as

W (q, h) = Kd ×





(3− q)5 − 6(2− q)5 + 15(1 − q)5 for 0 ≤ q ≤ 1,

(3− q)5 − 6(2− q)5 for 1 < q ≤ 2,

(3− q)5 for 2 < q ≤ 3,

0 for q > 3

(4.59)

with the normalization constant Kd = 1
120h ,

7
478πh2 and 1

120πh3 in one-, two- and three- dimensional
space respectively. Its derivative gives

W ′(q, h) = −5Kd ×





(3− q)4 − 6(2− q)4 + 15(1 − q)4 for 0 ≤ q ≤ 1,

(3− q)4 − 6(2− q)4 for 1 < q ≤ 2,

(3− q)4 for 2 < q ≤ 3,

0 for q > 3

(4.60)

Wendland Kernel

We wish to mention the Wendland kernels [117], they are based upon one algebraic equation so they
are advantageously uniform and they are compactly supported. A Wendland kernel of order 4 is written
as

W (q, h) = Kd ×





(
1− q

2

)4
(1 + 2q) for 0 ≤ q ≤ 2,

0 for q > 2
(4.61)

with normalization constant Kd = 3
4h ,

7
4πh2 and 21

16πh3 in one-, two- and three- dimensional space
respectively. Its derivative is given by

W ′(q, h) = Kd ×




−5q

(
1− q

2

)3
for 0 ≤ q ≤ 2,

0 for q > 2
(4.62)
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Consistency of SPH approximation

In numerical analysis, after performing Taylor series expansions on some smooth functions for the finite
difference method, we say the approximation is consistent to a given order. Consistency is defined as
follows by Strikwerda [103]

Definition 4.3.1 (Consistency). A scheme Lhu = f that is consistent with the differential equation
Lu = f is accurate (consistent) of order p if for any sufficiently smooth function v

Lv − Lhv = O(hp) (4.63)

where p is the order of consistency.

It is necessary that p > 0 for convergence, and generally we require that p ≥ 1, h is a parameter that
depicts the mesh size.

The conditions of consistency, stability and convergence are related to each other, and we can find this
relation in the fundamental Equivalence Theorem of Lax, the proof can be found in the classical book
of Richtmyer and Morton [98]. For a well-posed initial value problem and a consistent discretization
scheme, stability is the necessary and sufficient condition for convergence. This theorem shows that in
order to analyze a time-dependent problem two tasks have to be performed:

• Analyze the consistency condition; this leads to the determination of the order of accuracy of the
scheme and its truncation error.

• Analyze the stability properties; this leads to detailed information on the frequency distribution of
the error.

And from the two steps convergence can be concluded without further analysis. Similarly, the consistency
concept in finite element methods, for a FEM approximation to converge, the solution must approach
the exact solution when the nodal distance approaches zero. To ensure convergence, the FEM shape
function must satisfy a certain degree of consistency. The degree of consistency is characterized by the
order of the polynomial that can be exactly reproduced by the approximation using the shape function.
If an approximation can reproduce a constant exactly, the approximation is said to have zero-th order or
C0 consistency. In general, if an approximation can reproduce a polynomial of up to k-th order exactly,
the approximation is said to have k-th order or Ck consistency.

Following the consistency idea from FEM, we argue that for an SPH kernel approximation to exactly
reproduce a function, the smoothing function should satisfy some conditions, which we represent by the
polynomial reproducibility of the kernel approximation.

Definition 4.3.2 (Reproducibility condition, completeness). An approximation fS(x) is complete
to order k if any polynomial up to order k can be represented exactly. Then, fS(x) is given by

fS(x) =

N∑

j=1

f(xj)W (x− xj , h). (4.64)

If f(xj) are given by a polynomial of order k, the approximation fS(x) should reproduce the polynomial
exactly if the approximation is complete to order k.
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Consistency of Integral Representation

Proposition 4.3.3 (Constant consistency). For a constant (zero order polynomial) field function
f(x) = a to be exactly reproduced by the SPH kernel approximation, we should have

f(x) =

∫

Ω

aW (x− x′, h)dx′ = a (4.65)

which implies ∫

Ω

W (x− x′, h)dx′ = 1 (4.66)

Clearly, we can see that the normalization condition is in fact the condition for the kernel approximation
to have zero order consistency.

Proposition 4.3.4 (Linear consistency). For a linear (first order polynomial) field function f(x) =
ax+ b to be exactly reproduced by the SPH kernel approximation, we should have

f(x) =

∫

Ω

(ax′ + b)W (x− x′, h)dx′ = ax+ b (4.67)

which given the normalization condition in equation (4.66) leads to

∫

Ω

x′W (x− x′, h)dx′ = x (4.68)

Proof. Multiplying x to both sides of equation (4.66), we have

∫

Ω

xW (x− x′, h)dx′ = x (4.69)

Substracting equation (4.68) from the above equation leads to

∫

Ω

(x− x′)W (x− x′, h)dx′ = 0 (4.70)

For equation (4.70) to be satisfied, the smoothing function must be even (symmetric) so that the first
moment can vanish.

To reproduce higher order polynomials, similar conclusions are derived [12].

Consistency of Particle Approximation

At the particle level, the above propositions derived from the continuous form of integral representation
do not ensure consistency for the discrete form after particle approximation. The phenomenom where the
discretized equations for conditions (4.66) and (4.70) are not satisfied is termed particle inconsistency
[13, 92]. This means that particle approximation may not satisfy exactly the zero-th order consistency
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Figure 4.4: SPH behaviour at and near the boundaries.

condition near boundaries or for non-uniform particle distribution. The constant and linear consistency
conditions are given as

N∑

j=1

mj

ρj
W (x− xj, h) = 1 (4.71)

and
N∑

j=1

mj

ρj
(x− xj)W (x− xj , h) = 0 (4.72)

where N is the total number of particles in support domain for the focal particle x. Equations (4.71)
and (4.72) are not always satisfied. A very simple explanation can be seen pictorially in Fig. 4.4 for
particles near or at the boundary of the computational domain where the support domain intersects with
the boundary. Also, when particles are non-uniformly distributed, in this case even for interior particles
whose support domain are not truncated, the constant and linear consistency conditions at the particle
level will not be exactly satisfied, this is due to the unbalanced particle contribution. Generally the
conditions are less than unity and will not vanish.

The reproducing conditions can be written as given below: Let the nodal values be represented by a
polynomial, that is,

fj = a0 + a1xj + a2x
2
j + · · ·+ akx

k
j (4.73)

Then, the reproducing conditions (completeness) of order k are satisfied if

fS(x) =

N∑

j=1

fjW (x− xj, h) = a0 + a1xj + a2x
2
j + · · · + akx

k
j (4.74)
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Because this equation must hold for arbitrary ai, then we have the following conditions in one dimension:

N∑

j=1

W (x− xj , h) = 1 (4.75)

N∑

j=1

xjW (x− xj , h) = x (4.76)

N∑

j=1

x2jW (x− xj , h) = x2 (4.77)

· · ·
N∑

j=1

xkjW (x− xj , h) = xk (4.78)

In two spatial dimensions, the linear reproducing conditions is given as

N∑

j=1

W (x− xj , h) = 1 (4.79)

N∑

j=1

xjW (x− xj , h) = x (4.80)

N∑

j=1

yjW (x− xj , h) = y (4.81)

where given in indices notation
N∑

j=1

xjαW (x− xj, h) = xα (4.82)

and x0 = xj0 = 1, x1 = x, x2 = y, xj1 = xj, xj2 = yj. Likewise, requiring that the derivatives of a
polynomial is correctly reproduced. In two dimensions, the derivative reproducing conditions for a linear
field area are given as

N∑

j=1

W,x(x− xj, h) = 0,
N∑

j=1

W,y(x− xj , h) = 0 (4.83)

N∑

j=1

xjW,x(x− xj, h) = 1,

N∑

j=1

xjW,y(x− xj, h) = 0 (4.84)

N∑

j=1

yjW,x(x− xj, h) = 0,
N∑

j=1

yjW,y(x− xj , h) = 1 (4.85)

These are the derivative of equations (4.80), (4.81), (4.81). In general, the linear derivative reproducing
conditions can be written as

N∑

j=1

W,k(x− xj, h) = 0 (4.86)

N∑

j=1

xjmW,k(x− xj, h) = δkm (4.87)
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Correction Techniques

There are ways to restore consistency conditions at the particle level using kernel correction functions.
Through a correction transformation, completeness in kernel approximations can be restored. The
transformation is developed by enforcing the reproducibility conditions. Completeness correction of two
types have evolved

• Completeness corrections of the kernel functions

• Completeness corrections of the derivatives of the kernel functions

Shepard [101] gave a correction for approximating the kernel function, this correction provides for
constant reproducing conditions. Belytschko et al. [14] gave a complete correction that ensures for
linear reproducing conditions. And for the correction of the derivatives the following approaches exists

• Symmetrization technique [86]

• Johnson and Beissel correction [60]

• Randles and Libersky renormalization [97]

• Correction by Krongauz and Belytschko [68]

• Chen and Beraun correction [35]

• Liu and Liu correction [81]

Correction of the Kernel Function

We need to correct the kernel function so as to ensure completeness in the kernel approximation. The
resulting correction leads to the required reproducibility conditions and its derivative leads to corre-
sponding derivative reproducibility conditions. We start with constant completeness, an approximation
used in fitting data by Shepard [101] is given as

fS(x) :=
N∑

j=1

f(x′)W̃ (x− x′, h) (4.88)

where

W̃ (x− x′, h) =
W (x− x′, h)

∑N
j=1

mj

ρj
W (x− x′, h)

(4.89)

Proposition 4.3.5. The Shepard functions reproduce constant functions.
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Proof. Let fj = c for all j = 1 · · ·N , then

fS(x) =
N∑

j=1

f(x′)W̃ (x− x′, h) (4.90)

=

N∑

j=1

c · W̃ (x− x′, h) (4.91)

=

∑N
j=1W (x− x′, h)

∑N
j=1W (x− x′, h)

c (4.92)

= c (4.93)

which completes the proof.

Clearly, the Shepard functions will also correctly reproduce the gradient of a constant function, i.e.,
∇fS(x) = 0 and thus the derivative of a constant function is reproduced exactly. Shepard approximants
are advantageous because they can be computed at a relatively low cost.

For linear completeness. This can be achieved by either using a moving least-squares (MLS) approx-
imation or by adopting a correction to the kernel function. We will highlight the second approach,
modifying the approximation by a linear function βα(x)xα, i.e., define

fS(x) =

N∑

j=1

fjΦj(x) (4.94)

where
Φj(x) = βα(x)xjαW (x− x′, h) (4.95)

The reproducing conditions yield the equations for the coefficients βα(x)

N∑

j=1

(xjαW (x− x′, h)xjγ)βα(x) = δαγ (4.96)

where for instance in two dimensions, the equation for βα(x) are given by

β(0) =




N∑

j=1

W (x− x′, h)




1 xj − x yj − y
xj − x (xj − x)2 (xj − x)(yj − y)
yj − y (xj − x)(yj − y) (yj − y)2






−1 

1
0
0


 (4.97)

By shifting the origin improves the conditioning of the matrix and thus reduces roundoff error. By
construction, this approximation produces linear functions.

Correction of the Derivative of Kernel Function

We can correct the derivatives of the kernel functions, we do this by modifying the approximation to
the derivatives. Derivative completeness corrections are implemented through linear transformations
of the original derivatives. To achieve zero-th order completeness, the approximation must be able to
reproduce the exact derivative for a constant function, that is if fj = 1 for all j, then ∇fS(x) = 0.
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Monaghan proposed the simplest correction for the derivatives, the symmetrization technique. It is a
skew symmetric form. It has been widely used in the momentum equation for stability purposes. This
modification applied to standard SPH approximation for the gradient of a function gives

∇fS(xi) := −
N∑

j=1

mj

ρj
(fj − fi)∇Wij (4.98)

Clearly we can see that when f(x) is a constant, the fj = fi for all i, j and the derivatives must vanish.
When we observe the zero-th order approximation correction of Shepard, the Shepard correction is at any
point in the domain while the symmetrization correction technique of Monaghan can only be imposed
at the nodal points. Even more, in the Shepard corrections, the derivatives are integrable because they
arise from a function that is well-defined. The symmetrization technique modifies the derivatives of an
approximation, and thus they are usually not integrable.

In this thesis, we have made use of the Krongauz and Belytschko correction [68]. They developed a
correction whereby the derivatives are reproduced exactly for any constant and linear functions. These
corrected derivatives are called pseudo-derivatives because the corrected derivatives are not integrable.
The corrected derivatives are given as Gij(x)

∇fS(x) =
N∑

j=1

fjGij (4.99)

where Gij are linear combinations of the derivatives of the Shepard functions, i.e.,

Gj = α · ∇W̃ (x− x′, h) (4.100)

In two space dimensions, we have

Gjx = α11W̃j,x(x) + α12W̃j,y(x) (4.101)

Gjy = α21W̃j,x(x) + α22W̃j,y(x) (4.102)

Because the Shepard functions satisfy zero-th order completeness, the corrected gradients Gij automati-
cally satisfy zero-th order completeness. The coefficients αij are computed by imposing the reproducing
conditions on the derivatives of linear functions. Let fS,i(x) = xi, then the reproducing condition for
the derivatives requires

∇fS,i(x) =

N∑

j=1

fjGij(x) (4.103)

=

N∑

j=1

xijGij(x) (4.104)

=

N∑

j=1

αikxijW̃j,k(x) (4.105)

= δij (4.106)

The above equation gives d sets of d equations in the unknowns αij , where d is the number of spatial
dimensions. In two dimensions, the linear algebraic equations for the corrected derivatives are given as

Aα = I (4.107)



Section 4.3. Smoothing Functions Page 54

where I is the identity matrix and matrix A is given as

A =
N∑

j=1

[
W̃j,x(x) W̃j,y(x)

W̃j,x(x) W̃j,y(x)

]
(4.108)

This correction produces derivatives of constant and linear functions exactly. So, the gradient approxi-
mation satisfies first-order completeness. For computational reasons, the origin should be shifted to x

for better conditioning of matrix A and the reduction of round-off error.

Derivatives can also be corrected with the form

Φj = (α11(x) + α12(x)xj + α13(x)yj)W̃j(x) (4.109)

Gjx = (α21(x) + α22(x)xj + α23(x)yj)W̃j(x) (4.110)

Gjy = (α31(x) + α32(x)xj + α33(x)yj)W̃j(x) (4.111)

The coefficients α are obtained by equation (4.107) where A as

A =

N∑

j=1

W̃j(x)




1 xj − x yj − y
xj − x (xj − x)2 (xj − x)(yj − y)
yj − y (xj − x)(yj − y) (yj − y)2


 (4.112)

In this case we need to invert a 3 × 3 matrix. But it has the advantage that linearly complete shape
functions together with corrected derivatives are obtained.

Another approach to construct linearly consistent complete kernel function derivatives is given as the
form

Φj(x) = α11(x)W̃j,x(x) + α12(x)W̃j,y(x) + α13W̃j(x) (4.113)

Gjx(x) = α21(x)W̃j,x(x) + α22(x)W̃j,y(x) + α23W̃j(x) (4.114)

Gjy(x) = α31(x)W̃j,x(x) + α23(x)W̃j,y(x) + α33W̃j(x) (4.115)

where α(x) are obtained by requiring the approximation Φj to reproduce linear functions and the
derivatives Gjx and Gjy approximations to reproduce derivatives of linear functions. Similarly, we
obtain the coefficients α using equation (4.107) where A is now given as

A =

N∑

j=1




W̃j,x(x) W̃j,y(x) W̃j(x)

W̃j,x(x)xj W̃j,y(x)xj W̃j(x)xj
W̃j,x(x)yj W̃j,y(x)yj W̃j(x)yj


 (4.116)

This approach involves a higher computational cost with also inverting a 3 × 3 matrix. The kernel
functions themselves can reproduce linear functions rather than just constant functions as was the case
in the earlier constructions.



5. Semi-implicit SPH Method for Shallow Water
Flows

After the theoretical properties of flow phenomena, the derivation of the shallow water equations and the
SPH method in the preceding chapters, we now consider the proposed semi-implicit Smoothed Particle
Hydrodynamics (SISPH) method designed for the shallow water equations in the present chapter. We
discuss the design, development and analysis of the SISPH method following the work of Casulli [25],
we will mention its significant properties.

5.1 Introduction

In this section, we will discuss possible numerical methods that can be employed to solve the shallow
water equations. For clarity into the subject, the numerical treatment of free surface flows will be
presented by using simple advection-diffusion equation

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
+ w

∂C

∂z
= D

[
∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

]
− γC (5.1)

where C(x, y, z, t) denote the unknown function; u, v, w are advective coefficients; D is the nonnegative
diffusion coefficient; and γ is the nonnegative dissipative coefficient. We assume all these coefficients
to be constants for simplicity.

Definition 5.1.1 (CFL Stability Condition). The CFL stability condition expresses that the mesh ratio
has to be chosen in such a way that the domain of dependence of the differential equation should be
contained in the domain of dependence of the discretized equations.

Theorem 5.1.2 (CFL Theorem). The CFL condition is a necessary condition for the convergence of
a numerical approximation of a partial differential equation, linear or nonlinear.

Definition 5.1.3 (Maximum-minimum property). The maximum-minimum property expresses that
for any non-constant analytical solution of the advection-diffusion equation (5.1) it can only assume a
positive maximum and a negative minimum at the initial time or at the boundary point.

The solution of equation (5.1) possesses the maximum-minimum property. The maximum-minimum
property is very important because mostly in the description of physical phenomena the unknown function
C may represent a physical quantity which would lose its significance if assumed negative values. If
the prescribed initial and boundary conditions are nonnegative, then the solution of equation (5.1) is
everywhere nonnegative. This property is important when dealing with the shallow water equations
because we do not want water height to be negative.

Remark 5.1.4. The maximum-minimum property is a sufficient condition for the numerical stability of
the proposed numerical method.

We will discretize (5.1) by finite difference numerical methods, these methods possess the discrete
maximum-minimum property. The aim of doing this is to bring out some cogent points about stability
which is important for us to understand the goals in this thesis.

55
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Explicit Methods

Explicit Central Difference

The explicit central difference is one of the ways to numerically solve (5.1). Discretizing the time
derivative by forward differences and central differences to approximate the advective and diffusive
terms in (5.1) and let ∆t be the time step, ∆x, ∆y and ∆z are the spatial increments in the x, y, z
directions respectively, the resulting explicit central difference scheme is given as

Cn+1
i,j,k =

[
1−∆t

(
2D

∆x2
+

2D

∆y2
+

2D

∆z2
+ γ

)]
Cn
i,j,k

+∆t

(
D

∆x2
− u

2∆x

)
Cn
i+1,j,k +∆t

(
D

∆x2
+

u

2∆x

)
Cn
i−1,j,k

+∆t

(
D

∆y2
− v

2∆y

)
Cn
i,j+1,k +∆t

(
D

∆y2
+

v

2∆y

)
Cn
i,j−1,k

+∆t

(
D

∆z2
− w

2∆z

)
Cn
i,j,k+1 +∆t

(
D

∆z2
+

w

2∆z

)
Cn
i,j,k−1 (5.2)

The stability of the scheme can be analyzed as follows; It is easy to check that if the time step ∆t
satisfies the inequality

∆t ≤ 1
2D
∆x2 + 2D

∆y2
+ 2D

∆z2
+ γ

(5.3)

then the coefficient of Cn
i,j,k on the right-hand side of equation (5.2) is nonnegative. But this inequality

is insufficient to assure stability and maximum principle of the numerical solution. To to this effect, the
coefficients of Cn

i±1,j,k, C
n
i,j±1,k and Cn

i,j,k±1 in equation (5.2) must be nonnegative too. Eventually,
this requirement leads to the following restrictions on the space

|u|∆x ≤ 2D (5.4)

|v|∆y ≤ 2D (5.5)

|w|∆z ≤ 2D (5.6)

When the inequalities including (5.3) are satisfied, the right-hand side of equation (5.2) can be regarded
as a weighted average between zero and the values of C at time level tn. Hence, Cn+1

i,j,k is bounded
above and below by the maximum and by the minimum, respectively, of zero and Cn. However, the
inequalities are too restrictive in advection dominated diffusion problems and this cannot apply in the
absence of diffusion (D = 0).

Explicit Upwinding

The upwind method is a method that does not require any limitation on the mesh sizes. By taking a
forward finite difference to approximate the time derivative, using upwind finite differences to approx-
imate the advective terms and central differences to approximate the diffusive terms in equation (5.1)
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we obtain the explicit upwind scheme

Cn+1
i,j,k =

[
1−∆t

( |u|
∆x

+
|v|
∆y

+
|w|
∆z

+
2D

∆x2
+

2D

∆y2
+

2D

∆z2
+ γ

)]
Cn
i,j,k

+∆t

(
D

∆x2
+

|u| − u

2∆x

)
Cn
i+1,j,k +∆t

(
D

∆x2
+

|u|+ u

2∆x

)
Cn
i−1,j,k

+∆t

(
D

∆y2
+

|v| − v

2∆y

)
Cn
i,j+1,k +∆t

(
D

∆y2
+

|v|+ v

2∆y

)
Cn
i,j−1,k

+∆t

(
D

∆z2
+

|w| − w

2∆z

)
Cn
i,j,k+1 +∆t

(
D

∆z2
+

|w|+ w

2∆z

)
Cn
i,j,k−1 (5.7)

It is easy to check that if the time step ∆t satisfies the inequality

∆t ≤ 1
|u|
∆x + |v|

∆y + |w|
∆z + 2D

∆x2 + 2D
∆y2 + 2D

∆z2 + γ
(5.8)

then the right-hand side of equation (5.7) can be regarded as a weighted average between zero and
values of C at tn. The values for Cn+1

i,j,k are bounded above and below by the maximum and minimum.

Implicit Methods

Implicit Central Difference

We can improve the stability of a numerical scheme by taking an implicit discretization of the spatial
derivative contributions. Using the backward finite difference to approximate the time derivative and
central differences to approximate the advective and diffusive terms, the implicit central difference
scheme is given by

[
1 + ∆t

(
2D

∆x2
+

2D

∆y2
+

2D

∆z2
+ γ

)]
Cn+1
i,j,k = Cn

i,j,k

+∆t

(
D

∆x2
− u

2∆x

)
Cn+1
i+1,j,k +∆t

(
D

∆x2
+

u

2∆x

)
Cn+1
i−1,j,k

+∆t

(
D

∆y2
− v

2∆y

)
Cn+1
i,j+1,k +∆t

(
D

∆y2
+

v

2∆y

)
Cn+1
i,j−1,k

+∆t

(
D

∆z2
− w

2∆z

)
Cn+1
i,j,k+1 +∆t

(
D

∆z2
+

w

2∆z

)
Cn+1
i,j,k−1 (5.9)

Obviously, equation (5.9) contains seven unknowns, namely Cn+1
i,j,k , C

n+1
i±1,j,k, C

n+1
i,j±1,k and Cn+1

i,j,k±1. So,
with a properly prescribed boundary conditions, equation (5.9) constitute a seven-diagonal linear system
with NxNyNz equations and NxNyNz unknowns. This system must be solved at every time step in
order to determine the solution at the new time level tn+1.

It is easy to check that the coefficient of Cn+1
i,j,k on the left-hand side of equation (5.9) is always strictly

positive for any time step size ∆t and for any ∆x, ∆y and ∆z. The discrete maximum principle requires
that the coefficients of Cn+1

i±1,j,k, C
n+1
i,j±1,k and Cn+1

i,j,k±1 on the right-hand side of equation (5.9) must be
nonnegative. This requirement leads to the following restrictions

|u|∆x ≤ 2D (5.10)

|v|∆y ≤ 2D (5.11)

|w|∆z ≤ 2D (5.12)
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When the inequalities are satisfied, Cn+1
i,j,k can be expressed as a weighted average between zero and

values of C. Hence, the discrete maximum principle and stability of the implicit scheme is obtained
without any limitation on the time step size.

Remark 5.1.5. The implicit central difference does not require any limitation on the time step size

Implicit Upwinding

Similarly, the implicit upwind method can be written as
[
1 + ∆t

( |u|
∆x

+
|v|
∆y

+
|w|
∆z

+
2D

∆x2
+

2D

∆y2
+

2D

∆z2
+ γ

)]
Cn+1
i,j,k = Cn

i,j,k

+∆t

(
D

∆x2
+

|u| − u

2∆x

)
Cn+1
i+1,j,k +∆t

(
D

∆x2
+

|u|+ u

2∆x

)
Cn+1
i−1,j,k

+∆t

(
D

∆y2
+

|v| − v

2∆y

)
Cn+1
i,j+1,k +∆t

(
D

∆y2
+

|v|+ v

2∆y

)
Cn+1
i,j−1,k

+∆t

(
D

∆z2
+

|w| − w

2∆z

)
Cn+1
i,j,k+1 +∆t

(
D

∆z2
+

|w|+ w

2∆z

)
Cn+1
i,j,k−1 (5.13)

We can see that for any time step ∆t, the numerical approximates obtained by (5.13) admits the discrete
maximum-minimum property. Hence, the scheme is unconditionally stable.

Eulerian-Lagrangian Methods

The Eulerian-Lagrangian methods performs much better in terms of both accuracy and stability of an
explicit finite difference method. Since, the SPH method is a Lagrangian description, we will like to
describe the advection-diffusion equation in the Lagrangian form. We write equation (5.1) in Lagrangian
derivatives

DC

Dt
= D

[
∂2C

∂x2
+

∂2C

∂y2
+

∂2C

∂z2

]
− γC (5.14)

where D/Dt denotes the substantial derivative which means the rate of change of time is considered
along the streamline given by

Dx

Dt
= u,

Dy

Dt
= v,

Dz

Dt
= w (5.15)

An explicit discretization of equation (5.14) reads

Cn+1
i,j,k =

[
1−∆t

(
2D

∆x2
+

2D

∆y2
+

2D

∆z2
+ γ

)]
Cn
i−a,j−b,k−d

+∆t
D

∆x2
Cn
i−a+1,j−b,k−d +∆t

D

∆x2
Cn
i−a−1,j−b,k−d

+∆t
D

∆y2
Cn
i−a,j−b+1,k−d +∆t

D

∆y2
Cn
i−a,j−b−1,k−d

+∆t
D

∆z2
Cn
i−a,j−b,k−d+1 +∆t

D

∆z2
Cn
i−a,j−b,k−d−1 (5.16)

where a = u∆t
∆x , b = v ∆t

∆y and d = w ∆t
∆z are the Courant numbers in the x, y and z directions

respectively. In equation (5.16), the value of C at time level tn+1 at the node (i, j, k) is related to the



Section 5.1. Introduction Page 59

value of C at time level tn in (i − a, j − b, k − d) which actually diffuses in time ∆t. The equation
accounts for both advection and diffusion. However, a, b and d are not integers and (i− a, j− b, k− d)
is not a grid point but an interpolation formula should be used to define Cn

i−a,j−b,k−d in equation (5.16).
From equation (5.16), if the time step satisfies

∆t ≤ 1
2D
∆x2 + 2D

∆y2 + 2D
∆z2 + γ

(5.17)

then the right-hand side of (5.16) is a weighted average between zero and Cn. Thus, Cn
i,j,k is bounded

above and below by the maximum and minimum respectively of zero and values of Cn
i−a,j−b,k−d. This

stability restriction (5.17) can be eliminated if we use an implicit Eulerian-Lagrangian method which is
given as

Cn+1
i,j,k − Cn

i−a,j−b,k−d

∆t

= D
Cn+1
i+1,j,k − 2Cn+1

i,j,k + Cn+1
i−1,j,k

∆x2
+D

Cn+1
i,j+1,k − 2Cn+1

i,j,k + Cn+1
i,j−1,k

∆y2

+D
Cn+1
i,j,k+1 − 2Cn+1

i,j,k + Cn+1
i,j,k−1

∆z2
− γCn+1

i,j,k (5.18)

The equation constitute a linear seven-diagonal system of NxNyNz equations with NxNyNz unknowns
and the system is symmetric and positive definite for any ∆t.

Semi-implicit Methods

As discussed in the earlier sections for explicit and implicit methods. The difference between both
methods is that explicit methods are simple, but they are possibly plagued by severe stability condition.
Whereas, unconditional stability can be achieved by implicit methods but with a high cost attributed
to computational complexity. In order to derive numerical methods which are stable at a minimal
computational cost, an implicitness factor Θ is introduced. The semi-implicit approximation for (5.14)
is

Cn+1
i,j,k − Cn

i−a,j−b,k−d

∆t

= Θ1D

[
Cn+1
i+1,j,k − 2Cn+1

i,j,k + Cn+1
i−1,j,k

∆x2
+

Cn+1
i,j+1,k − 2Cn+1

i,j,k +Cn+1
i,j−1,k

∆y2

]

+Θ2D
Cn+1
i,j,k+1 − 2Cn+1

i,j,k + Cn+1
i,j,k−1

∆z2
−Θ3γC

n+1
i,j,k

+ (1−Θ1)D
Cn
i−a+1,j−b,k−d − 2Cn

i−a,j−b,k−d + Cn
i−a−1,j−b,k−d

∆x2

+D
Cn
i−a,j−b+1,k−d − 2Cn

i−a,j−b,k−d + Cn
i−a,j−b−1,k−d

∆y2

+ (1−Θ2)D
Cn
i−a,j−b,k−d+1 − 2Cn

i−a,j−b,k−d + Cn
i−a,j−b,k−d−1

∆z2

− (1−Θ3)γC
n
i−a,j−b,k−d (5.19)
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where Θ1, Θ2 and Θ3 are the implicitness factors for the horizontal diffusion, vertical diffusion, and for
the sink term respectively.

Remark 5.1.6. In equation (5.19), if Θ1 = Θ2 = Θ3 = 0, then the scheme reduces to the explicit
scheme. If Θ1 = Θ2 = Θ3 = 1, then the scheme becomes an implicit scheme

The resulting scheme is a semi-implicit method which also possesses the maximum-minimum property
if the time step ∆t satisfies the inequality

∆t ≤ 1

(1−Θ1)
(

2D
∆x2 + 2D

∆y2

)
+ (1−Θ2)

2D
∆z2

+ (1−Θ3)γ
(5.20)

With the preceding discussions made above, we can proceed into the derivation of the proposed scheme
in this thesis.

5.2 Derivation of the SISPH Method

Now we consider our meshfree method. In this section, we look into the core aim in this thesis towards
the derivation of the semi-implicit SPH method for the shallow water equations. There are several
numerical methods that can be employed to solve the shallow water equations. These methods can
be finite differences or finite elements, explicit or implicit, conservative or non-conservative or meshless
methods. In this section, following the semi-implicit finite volume and finite difference approach of
Casulli [25], we will delve into the derivation of the semi-implicit SPH scheme applied to the two
dimensional shallow water equations.

In recent years, some authors have worked on a semi-implicit method for meshfree particle methods.
In the specific, Koshizuka and Oka [66, 67] presented the moving-particle semi-implicit (MPS) method
where a deterministic interaction models for the gradient, Laplacian operators and free surfaces are
presented. Incompressibility condition is imposed by setting rate of change of density with time to zero
at each time step, likewise a modified kernel function which has a unique property that the value of
the kernel goes to infinity as distance between particles tends to zero; a kernel function which has been
validated to avoid particle clumping. Ataie-Ashtiani and Farhadi [3, 4] worked in the same direction and
presented a stable MPS method for free surface flows using a fractional step idea of discretization to
split the time step into two steps. A number of authors modified, extended and improved on the MPS
method of Koshika and Oka (see [62, 63, 64, 65, 119] ) even more for the enhancement of performance,
stability and accuracy of the MPS method.

A considerable amount of work has been done for both structured and unstructured meshes using
finite difference, finite volume and finite element schemes [28, 29, 30, 42, 105]. As we justified in the
introductory section, a major problem of explicit schemes in numerical methods is their severe time step
restriction, where the Courant-Friedrichs-Lewy (CFL) condition imposes the time step size in terms of
the wave propagation speed and the mesh size. Hence, the major advantage of a semi-implicit approach
is that stable schemes are obtained which allow large time step sizes at a reasonable computational cost.

In a staggered mesh approach for finite differences and volumes, discrete variables are defined at different
(staggered) locations. The pressure term, which is the free surface elevation is defined in the cell center
while the velocity components are defined at the cell interfaces. In the momentum equations, pressure
terms are due to the gradients in the free surface elevations and the velocities in the mass equation
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(i.e., free surface equation) are both discretized implicitly whereas the nonlinear convective terms are
discretized explicitly. The semi-Lagrangian method is one of the techniques to discretize these terms
explicitly, see [18, 56, 73].

In standard explicit numerical methods, there is a severe limitation due to the stability restriction
imposed by the CFL condition. The restriction requires a much smaller time step size than permitted
by accuracy considerations. Fully implicit discretization often leads to unconditionally stable methods
but they typically lead to the simultaneous solution of a large number of coupled nonlinear equations.
For accuracy, the time step cannot be chosen arbitrarily large. To this effect, a stable, efficient, robust
and simple semi-implicit SPH numerical method is derived.

In this thesis the new semi-implicit Smoothed Particle Hydrodynamics (SPH) scheme presented by
Bankole et al. [7, 8, 10] for the numerical solution of the shallow water equations on 2D particle config-
uration will be proposed, derived and discussed. The flow variables in the present study are the particle
free surface elevation, particle total water depth and the particle velocity. The discrete momentum
equations are substituted into the discretized mass conservation equation to give a discrete equation for
the free surface leading to a system in only one single scalar quantity, the free surface elevation location:
a unique feature that makes our method stands out from other semi-implicit approaches. The system
is solved for each time step as a linear algebraic system. The components of the momentum equation
at the new time level can be directly computed from the new free surface. This can be conveniently
solved by a matrix-free version of the conjugate gradient (CG) algorithm [50, 99]. Consequently, the
particle velocities at the new time level are computed and the particle positions are updated. In this
semi-implicit SPH method, the stability is independent of the wave celerity. Hence, a relatively large
time steps can be permitted to enhance the numerical efficiency [28]. The application of a staggered
velocity between particles is one of the novelty of the present study. The staggered velocity improves the
sparsity of the resulting linear system significantly. Moreover, an integral part of the resulting numerical
scheme, the discrete free-surface equation has been treated to represent the accurate mass balance. The
resulting system leads to a nonlinear system while a mass conservation and nonnegative water depths
are guaranteed everywhere in the flow domain and for all time steps. A few number of iterations are
needed to solve the resulting nonlinear system.

Governing Equations

The governing equations considered in this thesis are nonlinear hyperbolic conservation laws of the
generic form

Lb(Φ) +∇ · (F (Φ,x, t)) = 0 for t ∈ R
+,Φ ∈ R (5.21)

together with the initial condition

Φ(x, 0) = Φ0(x) for x ∈ Ω ⊂ R
d,Φ0 ∈ R

where Lb is the transport operator given by

Lb(Φ) =
∂Φ

∂t
+∇ · (bΦ)

and
x = (x1, ..., xd), F = (F 1, ..., F d), b = (b1, ..., bd),

where b is a regular vector field in R
d, F is a flux vector in R

d, and x is the position.
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Figure 5.1: Sketch of the flow domain: the free surface (light) and the bottom bathymetry (thick).

Fig. 5.1 gives a sketch of the flow domain, i.e., the free surface elevation and the bottom bathymetry. In
this configuration, the vertical variation is much smaller than the horizontal variation, as typical for rivers
flowing over long distances of e.g. hundreds or thousands of kilometers. We consider the frictionless,
inviscid two dimensional shallow water equations in Lagrangian derivatives, given as

Dη

Dt
+∇ · (Hv) = 0 (5.22)

Dv

Dt
+ g∇η = 0 (5.23)

Dr

Dt
= v (5.24)

where η = η(x, y, t) is the free surface location,

H(x, y, t) = h(x, y) + η(x, y, t)

is the total water depth with bottom bathymetry h(x, y), and where v = v(x, y, t) is the particle velocity,
r = r(x, y, t) the particle position, and g the gravitational acceleration.

Classical SPH Formulation

The standard SPH formulation explained in Chapter 4, discretizes the computational domain Ω(t) by a
finite set of N particles, with particle positions ri. According to Gingold and Monaghan [48], the SPH
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discretization of the shallow water equations (5.22)-(5.24) by an explicit time discretization are given as

ηn+1
i − ηni

∆t
+

N∑

j=1

mj

ρj
Hn

ijv
n
j∇Wij = 0 (5.25)

vn+1
i − vn

i

∆t
+ g

N∑

j=1

mj

ρj
ηnj ∇Wij = 0 (5.26)

rn+1
i − rni

∆t
= vn

i (5.27)

where the particles are advected by (5.27), with ∆t being the time step size, mj the particle mass, ρj
the particle density, and ∇Wij is the gradient of kernel Wij w.r.t. xi. In the scheme [48, 90] of Gingold
and Monaghan, ∇ · (Hv) and ∇η are explicitly computed. We remark that eqns. (5.25)-(5.27) follow
from a substitution of the flow variable with corresponding derivatives, using integration by parts, and
the divergence theorem.

SPH formulation of Vila and Ben Moussa

In the construction of our proposed semi-implicit SPH scheme, we use the concept of Vila & Ben
Moussa [93, 115], whose basic idea is to replace the centered approximation

(F (vi, xi, t) + F (vj , xj , t)) · nij

of (5.21) by a numerical flux G(nij , vi, vj), from a finite difference scheme in conservation form,
2G(n, u, v), which is required to satisfy

G(n(x), v, v) = F (v, x, t) · n(x),

G(n, v, u) = −G(−n, u, v).

where the numerical viscosity Q(n, u, v) and the incremental coefficient C(n, u, v) are defined classically
in the scalar case as

Q(n, u, v) =
F (u, x, t).n − 2G(n, u, v) + F (v, x, t).n

v − u
,

C(n, u, v) =
F (u, x, t).n −G(n, u, v)

v − u
.

With using this formalism, the SPH discretization of equations (5.22)-(5.24) become

ηn+1
i − ηni

∆t
+

N∑

j=1

mj

ρj
2Hn

ijv
n
ij∇Wij = 0,

vn+1
i − vn

i

∆t
+ g

N∑

j=1

mj

ρj
2ηnij∇Wij = 0,

rn+1
i − rni

∆t
= vn

i
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In this way, we define for a pair of particles, i and j, the free surface elevation ηi, ηj and the velocity
vi, vj , respectively (see Fig. 5.2). In our approach, we, moreover, use a staggered velocity vij between
two interacting particles i and j as

vij =
1

2
(vi + vj) · nij

in the normal direction n
d=1,2
ij at the midpoint of the two interacting particles, where

n1
ij =

xj − xi
‖xj − xi‖

and n2
ij =

yj − yi
‖yj − yi‖

for the two components of vector nij. Moreover,

δ1ij = ‖xj − xi‖ and δ2ij = ‖yj − yi‖

gives the distance between particles i and j. Since the velocities at the particles’ midpoint are known,
we can use kernel summation for velocity updates, i.e., between the midpoint velocities and the natural
velocities.

ηi vi

ηj vj

nij

vn
ij

Figure 5.2: Staggered velocity defined at the midpoint of two pair of interacting particles i and j.

The Semi-implicit SPH Scheme

For the derivation of the semi-implicit SPH scheme, let us consider the governing equations (5.22)-
(5.23). Writing equations (5.22)-(5.23) in a non-conservative quasi-linear form by expanding derivatives
in the continuity equation and momentum equations (with assuming smooth solutions), this yields

ut + uux + vuy + gηx = 0 (5.28)

vt + uvx + vvy + gηy = 0 (5.29)

ηt + uηx + vηy +H(ux + vy) = −uhx − vhy. (5.30)

Rewriting (5.28)-(5.30) in matrix form, we obtain

Qt + AQx + BQy = C, (5.31)
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where

A =




u 0 g

0 u 0

H 0 u


 B =



v 0 0
0 v g

0 H v




Q =



u
v
η


 C =




0
0

−uhx − vhy


 .

Equation (5.31) is a strictly hyperbolic system with real and distinct eigenvalues. The characteristic
equation, given by

det(qI+ rA+ sB) = 0 , (5.32)

can be simplified as
(q + ru+ sv)

[
(q + ru+ sv)2 − gH(r2 + s2)

]
= 0 , (5.33)

where the solution (r, s, q) of equation (5.33) are the directions normal to a characteristic cone at the
cone’s vertex. When solving the two-dimensional shallow water equations, a very important feature
arises in the so called characteristic cone, see Fig. 5.3. Characteristics ending at point (xj , t

n+1), at
the apex of the cone are not finite in number anymore but they belong to a cone around the speed of
advection (u, v). Hence, propagation of the solution cannot be treated by following all characteristics
- this also motivates why the semi-implicit technique remains a very good choice. We split equation
(5.33), whereby we obtain

q + ru+ sv = 0

and
(q + ru+ sv)2 − gH(r2 + s2) = 0, (5.34)

with the characteristic curves u = dx/dt and v = dy/dt. If the characteristic cone has a vertex at
(x, y, t), then this cone consist of the line passing through vertex (x, y, t) and parallel to the vector
(u, v, 1), see Fig. 5.3, satisfying

((x− x)− u(t− t))2 + ((y − y)− v(t− t))2 − gH(t− t)2 = 0. (5.35)

In particular, the gradient of the left hand side of (5.35) satisfies (5.34) on the cone surface. After
solving (5.32), the solution yields

λ1 = v −
√

gH, λ2 = v, λ3 = v +
√

gH.

When the particle velocity v is far smaller than the particle celerity
√
gH, i.e., |v| ≪ √

gH , the particle
flow is said to be strictly subcritical and thus the characteristic speeds λ1 and λ3 have opposite directions.
The maximum wave speed is given as

λmax = max(
√

gHi,
√

gHj).

In this case,
√
gH represents the dominant term which originates from the off diagonal terms g and H

in the matrices A and B.

We now have tracked back where the term
√
gH originates from in the governing equations. We remark

that the first part of the characteristic cone in (5.33) depends only on the particle velocity u and v.
Equation (5.34), defining the second part of the characteristic cone, depends only on the celerity

√
gH .

As we can see, gH in (5.33) comes from the off-diagonal terms g and H in the matrices A and B. The



Section 5.2. Derivation of the SISPH Method Page 66

y

t

x

(u, v)

Figure 5.3: Characteristic cone for the two-dimensional shallow water equations.

terms g and H represent the coefficients of the derivative of the free surface elevation ηx in (5.28), the
coefficient of the derivative ηy in (5.29) for the momentum equations, and the coefficient of velocity ux
and vy in the volume conservation equation (5.30). We want to avoid the stability to depend on the
celerity

√
gH , therefore we discretize the derivatives ηx, ηy and ux, vy implicitly.

Further along the lines of the above analysis, we now develop a semi-implicit SPH scheme for the two-
dimensional shallow water equations. To this end, the derivatives of the free surface elevation ηx and ηy
in the momentum equation and the derivative of the velocity in the continuity equation are discretized
implicitly. The remaining terms, such as the nonlinear advective terms in the momentum equation, are
discretized explicitly, so that the resulting equation system is linear.

The derivative of the velocity v and the free surface elevation η are discretized implicitly, whereas
the total water depth H is discretized explicitly. In our following notation, for implicit and explicit
discretization, we use n+ 1 and n for the superscript, respectively, i.e.,

vn
t + g · ∇ηn+1 = 0

ηnt +∇ · (Hnvn+1) = 0.

We discretize the particle velocities and free surface elevation in time by the Θ method, for the sake of
time accuracy and computational efficiency, i.e., n+ 1 = n+Θ, and so

vn
t + g · ∇ηn+Θ = 0 (5.36)

ηnt +∇ · (Hnvn+Θ) = 0 (5.37)

where the Θ-method notation reads

ηn+Θ = Θηn+1 + (1−Θ)ηn
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vn+Θ = Θvn+1 + (1−Θ)vn.

The implicitness factor Θ should be in [1/2, 1], according to Casulli & Cattani [28].

Theorem 5.2.1 (Casulli and Cattani). A semi-implicit finite difference scheme is stable in the von
Neumann sense if 1

2 ≤ Θ ≤ 1 and if the time time step ∆t satisfies the following inequality

∆t ≤
[
2D

(
1

∆x2
+

1

∆y2

)]−1

. (5.38)

The proof may be found in [28].

The general semi-implicit SPH discretization of (5.36)-(5.37) then takes the form

vn+1
ij − Fvn

ij

∆t
+

g

δij
Θ(ηn+1

j − ηn+1
i ) +

g

δij
(1−Θ)(ηnj − ηni ) = 0 (5.39)

ηn+1
i − ηni

∆t
+Θ

N∑

j=1

mj

ρj
(2Hn

ijv
n+1
ij )∇W ij · nij

+ (1−Θ)
N∑

j=1

mj

ρj
(2Hn

ijv
n
ij)∇W ij · nij = 0

(5.40)

where
Hn

ij = max(0, hnij + ηni , h
n
ij + ηnj ).

In a Lagrangian formulation, the explicit operator Fvn
ij in (5.39) has the form

Fvnij =
1

2
(vni + vnj ),

where vi and vj denote the velocity of particles i and j at time tn. The velocity at time tn+1 is obtained
by summation,

vn+1
i = vni +

N∑

j=1

mj

ρj
(vn+1

ij − vni )Wij . (5.41)

Note that in (5.39) we have not used the gradient of the kernel function for the discretization of the
gradient of η. We rather used a finite difference discretization for the pressure gradient. This increases
the accuracy, since F in (5.39) corresponds to an explicit spatial discretization of the advective terms.
Since SPH is a Lagrangian scheme, the nonlinear convective term is discretized by the Lagrangian
(material) derivative contained in the particle motion in (5.27). Equation (5.41) is used to interpolate
the particle velocities from the particle location to the staggered velocity location. In equation (5.41),
we have inherently exploited the advantages of the extended version of SPH suggested by Monaghan
[87] where the particles are moved with a smoothed velocity. The smoothed velocity v̂i is defined by an
average over the velocities of the neighboring particles according to

v̂i = vi + ǫ

N∑

j=1

mj

ρj
(vj − vi)Wij, (5.42)

where ǫ is a parameter that is typically chosen to be 0.5.
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The Free Surface Equation

Let the particle volume ωi in (5.40) be given as ωi = mi/ρi. Irrespective of the form imposed on F ,
equations (5.39)-(5.40) constitute a linear system of equations with unknowns vn+1

i and ηn+1
i over the

entire particle configuration. We solve this system at each time step for the particle variables from the
prescribed initial and boundary conditions. To this end, the discrete momentum equation is substituted
into the discrete continuity equation. This reduces the model to a smaller model, where ηn+1

i is the
only unknown.

Multiplying (5.40) by ωi and inserting (5.39) into (5.40), we obtain

ωiη
n+1
i − gΘ2∆t2

δij

N∑

j=1

2ωiωj

[
Hn

ij(η
n+1
j − ηn+1

i )∇W ij · nij

]
= bni , (5.43)

where the right hand side bni represents the known values at time level tn given as

bni = ωiη
n
i −∆t

N∑

j=1

2ωiωjH
n
ijFvn+Θ

ij ∇W ij · nij

+ gΘ(1−Θ)
∆t2

δij

N∑

j=1

2ωiωj

[
Hn

ij(η
n
j − ηni )∇W ij · nij

]
,

(5.44)

with Fvn+Θ
ij = ΘFvn

ij + (1 − Θ)vn
ij . Since Hn

ij, ωi, ωj are non-negative numbers, equations (5.43)-

(5.44) constitute a linear system of N equations for ηn+1
i unknowns.

The resulting system is symmetric and positive definite. Therefore, the system has a unique solution,
which can be computed efficiently by an iterative method. We obtain the new free surface location by
(5.40), and (5.39) yields the particle velocity vn+1

i .

5.3 Some Numerical Aspects

5.3.1 Boundary Conditions

In SPH, being a meshless particle method, the boundary of the computational domain is never well
defined. The SPH method is plagued by the particle deficiency problem because the integral of the
kernel function is truncated by the boundary as we can see earlier in Figure 4.4 in chapter 4, the SPH
method needs a sufficient and necessary number of particles inside the support domain κh. In one, two
and three dimensions the number of neighboring particles should be around 5, 21, and 57 respectively.
Therefore, it is evident for particles near or on the boundary only particles inside the boundary contribute
to the summation, so a one-sided contribution will lead to incorrect solutions. Over the years, several
authors have proposed different solutions to the boundary treatment in SPH.

Ghost Particles

One of the first solution is the introduction of ghost particles. Libersky, Petscheck and Randles [79, 97]
introduced ghost particles to reflect a symmetrical surface and Monaghan [89] introduced and used a
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line of virtual particles located right at the solid boundary to give a highly repulsive force to the particles
near the boundary, this is done to avoid penetration - the Lennard-Jones potential. Particle position is
mirrored from the flow to an external fictitious layer, particles nearby the wall are mirrored and a new
ghost particle is created outside the domain that has the same properties of the SPH particle, Free-slip
or no-slip conditions are easily realized with this technique. The velocity slip condition

vg · n = −vj · n (5.45)

vg · t = vj · t (5.46)

or the no slip condition
vg = vj (5.47)

where vg denotes the velocity to the adjacent fluid, n and t respectively denote the outer normal and
tangential vector of the boundary. The Neumann condition on the free surface elevation η reads

∂η

∂n
= 0, (5.48)

ηg = ηj . (5.49)

Ghost particle approach has some advantages such as, it is easy to implement and code for plane bound-
aries, it is computationally efficient, it prevents efficiently particle penetration and restores consistency
at the boundaries. However, it has some disadvantages such as, in computational domains with corners
there is the duplication of ghost particles and also for curved boundaries, there is the generation of
coarser or finer particle distribution. In this thesis, we have employed the ghost particles approach to
solve a discontinuous Riemann problem in Chapter 7.

5.3.2 Time Integration

Courant Condition

In order to integrate in time the particle positions ri and velocities vi, there are approaches to mention a
few, i.e., Euler, Runge-Kutta, leap-frog integration schemes. Explicit time integration schemes are sub-
ject to the CFL condition for stability reasons. Since, the CFL condition explains that the computational
domain of dependence in the numerical simulation must include the physical domain of dependence,
in another words the maximum speed of numerical propagation must exceed the maximum speed of
physical propagation. Particularly in SPH, the CFL condition requires that the time step is proportional
to the smallest spatial particle resolution which denotes the smallest smoothing length. The time step
is determined by the Courant condition

∆t = Ccflmin

(
h

c

)
(5.50)

where h is the smoothing length taken as h = min(hi, hj), Ccfl is the Courant number and c is the
maximum signal velocity between particle pairs.

Euler Scheme

The Euler scheme is the simplest time integration scheme. The particle positions are updated for particle
i by

rn+1
i = rni +∆tvn

i (5.51)

The Euler method is first order accurate.
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Runge-Kutta Scheme

Let L(r) = Dr/Dt be an operator representing particle velocities. The optimal second order total
variation diminishing (TVD) Runge-Kutta is given by

r(1) = rn +∆tL(rn), (5.52)

rn+1 =
1

2
rn +

1

2
r(1) +

1

2
∆tL(r(1)). (5.53)

In the same vein, the optimal third order TVD Runge-Kutta is given by

r(1) = rn +∆tL(rn), (5.54)

r(2) =
3

4
rn +

1

4
r(1) +

1

4
∆tL(r(1)), (5.55)

rn+1 =
1

3
rn +

2

3
r(2) +

2

3
∆tL(r(2)). (5.56)

Leap-Frog Scheme

In the leap-frog as defined by Hernquist and Katz [53], the particle positions and velocities are updated
for particle i by

r
n+1/2
i = r

n−1/2
i +∆tvn

i , (5.57)

vn+1
i = vn

i +∆ta
n+1/2
i . (5.58)

The velocity is updated in two stages to maintain second order accuracy. Initially, a predicted estimate,

v
n+1/2
i is obtained by

v
n+1/2
i = vn

i +
1

2
∆ta

n−1/2
i . (5.59)

The value of v
n+1/2
i is then used to compute the time-centered acceleration, a

n+1/2
i which now allows

the velocity to be updated via vn+1
i .

5.3.3 Nearest Neighbor Search

In this section, the neighboring search strategy used will be discussed. Since, SPH is a truly meshless
method with a Lagrangian description. The search for surrounding particles j of the focal particle i at the
position xi is a major challenge that must be solved efficiently. This is because the neighboring search
has to be done at every time step for each particle. In SPH, the neighboring particles are not known
a priori, hence the SPH approximation of a field variable requires the search of neighboring particles j.
Hence from a computational point of view, most of the time is spent searching for nearest neighbor
particles. this is often computationally expensive. So to this effect, we will delve into neighboring search
techniques which are less computationally demanding at least for the numerical examples considered in
this thesis.

Pair-wise Search

The pair-wise search is a direct and simple search algorithm. As we illustrate in Fig. 5.4, for a given
particle i given in red color, the pair-wise search calculates the distance rij from particle i to every
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neighboring particle j, for j = 1, 2, · · · , N , where N is the total number of particles. If the relative
distance rij is smaller than the dimension of the support domain of particle i, κh, then particle j is found
to belong to the support domain of particle i. Hence, i and j are pairs of neighboring particles. This
search is done for all the particles. This means, the pair-wise search is done for particles i = 1, 2, · · · , N
and done for all neighbor particles j = 1, 2, · · · , N . Clearly, the computational complexity of the
pairwise search is of the order O(N2). This approach will not be practically useful for problems with
large number of particles since the search will be done at all time steps.
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Figure 5.4: Pairwise Search Technique

Linked-list Nearest Neighbor Search

In this thesis, the following strategy called linked-list search algorithm is used, we define a background
fictitious Cartesian grid as shown in Fig. 5.5. This grid contains the fluid domain with a mesh size of
2L, the grid is kept fixed all through the simulation. Within the grid, comprises of macro cells which
consists of particles as we can see details in [91]. The idea is analogous to the bookkeeping cells as
used by Monaghan in [89], only particles in the neighboring cells can contribute to the value of a fluid
variable in a given cell. To compute the free surface elevation η and the fluid velocity v, only particles
inside the same macro-cell or in the immediate surrounding macro-cells will contribute. Ferarri et al.
[46] explained the efficiency of the neighboring search. The idea is building the list of particles in a
given macro cell and also the indices pointing to macro-cell containing the particle. The coordinates of
each particle in the macro-cell is stored in an integer format, the indices are computed from the particle
position xi by

x∗
i = floor

( xi

2L

)
(5.60)

This strategy of storing coordinates of each particle reduces the time for accessing data in the neighbor
search technique. So in our neighboring search, a particle can only interact with particles in its macro-
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Figure 5.5: Fictitious Cartesian Grid: Neighboring search is done within the 9 cells in a two-dimensional
space. The smoothing length is constant and the support domain for the particles is 2L.

cell or in the neighboring macro-cells. As we can see in Fig. 5.5, we loop over the bounding box of 9
macro-cells. Once the neighbors of any particle is easily identified, we build the list of particles inside
a given macro-cell and the list of indices pointing to the macro-cell containing a given particle. This
operation is updated periodically, computationally cheap when compared to the pair-wise algorithm.

Tree Search

The tree search algorithm is very good for problems with variable smoothing lengths. The idea is creating
trees that are ordered with respect to the particle positions. After the tree structure is created, it can be
used to find the nearest neighboring particles. The tree technique recursively splits the global problem
domain into octants which contains particles, until the leaves on the tree are individual particles. We
refer to the book of Liu and Liu [80] for details.

5.4 The Conjugate Gradient Algorithm

The conjugate gradient algorithm (CG) discovered by Hestenes and Stiefel [54] is the original Krylov
subspace iteration and one of the mainstays of scientific computing. The conjugate gradient algorithm is
one of the best known iterative techniques for solving sparse symmetric positive definite linear systems.

Definition 5.4.1 (Krylov Subspaces). Given a matrix A ∈ R
N×N and a vector b ∈ R

N , the sequence
of Krylov subspaces is defined as

Kn(A, b) = span
{
b,Ab, . . . , An−1b

}
⊂ R

N , n = 0, 1, . . . (5.61)
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Clearly, the Krylov subspaces are increasing, i.e., it holds that {0} = K0(A, b) ⊂ K1(A, b) ⊂ . . . .

Definition 5.4.2 (A-conjugate). Given a matrix A ∈ R
N×N that is symmetric, positive definite. The

given vectors d0, d1, . . . dm−1 ∈ R
N\ {0} are called A-conjugate if the following holds:

〈Adk, dj〉2 = 0 k 6= j (5.62)

Remark 5.4.3. The A-conjugate property is therefore equivalent to pairwise orthogonality with respect
to the scalar product 〈·, ·〉A.

The CG method is a realization of the of an orthogonal projection technique onto the Krylov subspace
Kn(r0, A) where r0 is the initial residual.

By assuming that A is not only real and symmetric but also positive definite, this means that the
eigenvalues of A are all positive, or in other words, we have xTAx > 0 for every nonzero x ∈ R

N . With
this assumption, the function ‖ · ‖A defined by

‖ · ‖A =
√
xTAx (5.63)

is a norm on R
N called the A–norm. Basically, the vector whose A–norm we will consider is en =

xn − x∗, the error at step n. The conjugate gradient iteration can be paraphrased as follows. It is
a system of recurrence formulas that generates the unique sequence of iterates {xn ∈ Kn} with the
property that at step n, ‖en‖A is minimized.

The matrix based CG method is summarized in the following algorithm.

Algorithm 1 Calculate x

Input: A, b
Compute r0 := b−Ax0, p0 := r0.
For j = 0, 1, · · · , until convergence Do:

αj :=
(rj , rj)

(Apj, pj)
xj+1 := xj + αjpj
rj+1 := rj − αjpj

βj :=
(rj+1, rj+1)

(rj , rj)
pj+1 := rj+1 + βjpj

End For
Output: x

In algorithm (1), together with the matrix A, we need to store four vectors, x, p,Ap and r. The CG
algorithm admits an existence and unique solution property. The following theorem explains the minimal
property valid for orthogonal residual technique.

Theorem 5.4.4. Given a symmetric, positive definite matrix A ∈ R
N×N and, for n = 1, 2, . . . , the

vectors xn determined by the orthogonal residual are uniquely determined, it holds that

‖xn − x∗‖A = min‖xn − x∗‖A, n = 1, 2, . . . , (5.64)

Proof. To prove uniqueness, we consider two vectors xn, x̂n, with n fixed satisfying

xn ∈ Dn,

Axn − b ∈ D⊥
n

}
(5.65)
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where Dn are finite or infinite linear subspaces. Then,

〈A(xn − x̂n), xn − x̂n〉2 = 0  xn = x̂n. (5.66)

where A(xn − x̂n) ∈ D⊥
n and xn − x̂n ∈ Dn

To prove existence one proceeds as the following with an arbitrary basis d0, d1, . . . , dm−1 of Dn,

xn =
m−1∑

j=0

αjdj (5.67)

from which xn satisfies
Axn − b ∈ D⊥

n (5.68)

where

〈Axn − b, dk〉2 = 0 for k = 0, . . . ,m− 1, (5.69)
m−1∑

j=0

〈Adj , dk〉2αj = 〈b, dk〉2 for k = 0, . . . ,m− 1, (5.70)

which represents a system of m linear equations for m coefficients α0, . . . , αm−1. With the uniqueness
already shown above, the system of equations is solvable.

To prove the minimal property, one calculates the following for an arbitrary vector x ∈ Dn

‖x− x∗‖2A = ‖xn − x∗ + x− xn‖2A (5.71)

= ‖xn − x∗‖2A + 2〈A(xn − x∗), x− xn〉2 + ‖x− xn‖2A (5.72)

≥ ‖xn − x∗‖2A (5.73)

Since, 〈A(xn − x∗), x− xn〉2 = 0, this completes the proof.

Remark 5.4.5. We wish to remark that in the earlier theorem, the spaces Dn = Kn(A, b) are considered
for symmetric, positive definite matrix A ∈ R

N×N .

Theorem 5.4.6. Let the CG iteration (Algorithm (1)) be applied to a symmetric positive definite matrix
problem Ax = b. As long as the iteration has not yet converged that is, (rj 6= 0), the algorithm proceeds
without divisions by zero, and we have the following identities of subspaces

Kn = 〈x1, x2, . . . , xn = 〈p0, p1, . . . , pn−1〉 (5.74)

= 〈r0, r1, . . . , rn−1 = 〈b,Ab, . . . , An−1b〉 (5.75)

Moreover, the residuals are orthogonal,

rTn rj = 0 (j < n), (5.76)

and the search directions are A-conjugate,

pTnApj = 0 (j < n), (5.77)

The proof can be found in [108].
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The CG method will converge to the exact solution in at most N steps for N degrees of freedom. From
the iterates step k, there is a projection of the exact solution into the solution space generated by the
A-conjugate basis vectors. The CG method will converge to an acceptable error-tolerance in less than
N iterations. The convergence and error of the CG algorithm is given in the following theorem.

Theorem 5.4.7. Given matrix A ∈ R
N×N that is symmetric, positive definite, then the following error

estimate holds for the CG method:

‖xn − x∗‖A ≤ 2γn‖x∗‖A n = 0, 1, . . . , (5.78)

‖xn − x∗‖2 ≤ 2
√
κAγ

n‖x∗‖2 n = 0, 1, . . . , (5.79)

with κA := cond2(A) and

γ :=

√
κA − 1

√
κA + 1

. (5.80)

where x∗ is the exact solution, and xn is the approximate solution after n steps

The proof can be found in [99]. The greatest strength of the CG method is the fast convergence rate.

5.4.1 The Matrix-free Conjugate Gradient Algorithm

Because of the computational cost that will be needed in storing matrices and vectors coupled with the
fact that the SPH method is inherently computationally demanding, the matrix-based version of the CG
algorithm will consume a lot of computational time. To this effect, we give the matrix-free version of the
CG algorithm. The matrix-free version do not explicitly store the matrix coefficients however, it access
the matrix by calculating matrix-vector products. Matrix-free methods are much better to be employed
if the matrix is very large such that its storage and other operations on the matrix will consume a lot
of computational time and computer memory.

The construction of our iterative procedure inside the SISPH scheme does not involve the actual matrix
A. Therefore the matrix-vector product Awj in the conjugate gradient algorithm is done as follows: In
this thesis, we develop a user-defined matrix-vector product which is called inside the CG algorithm (1).
The user-defined matrix-vector product is done per particle as we see in the following algorithm (2).
Let the matrix-vector product y 7→ Aw.

Algorithm 2 Matrix-vector calculation of y = Aw

Input: A, w
Guess y := 0
For i = 1, 2, . . . N(# of Particles), Do:

For j = 1,Neigh(# of Neighbors) Do:
yi := yi +Aijwj

End For
End For
Output: y

We therefore call our matrix-free function with the vector w as input and receive as output the vector y
without ever storing or creating the system matrix A. By knowing the structure of matrix A, we create a
function which calculates the matrix-free matrix-vector products between matrix A, and thus we program
this without the need to store A, with this construction we save a valuable portion of memory. Having
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Algorithm 3 Matrix-free matrix-vector to calculate x

Input: A, b
Call matrix-vector product - algorithm (2) y := Ax
Compute r0 := b−Ax0, p0 := r0.
For j = 0, 1, · · · , until convergence Do:

Call matrix-vector product - algorithm (2) y := Ap

αj :=
(rj , rj)

(Apj, pj)
xj+1 := xj + αjpj
rj+1 := rj − αjpj

If (‖r‖ < ǫ) Then
Exit

End If

βj :=
(rj+1, rj+1)

(rj , rj)
pj+1 := rj+1 + βjpj

End For
Output: x

calculated the matrix-vector product, we now incorporate our user-defined matrix-vector product and
hence we arrive at the matrix-free version of the CG algorithm used in this thesis in the algorithm(3).



6. Wetting and Drying Semi-implicit SPH
Methodology for Shallow Water Flows

Following the SISPH scheme presented in the preceding chapter, we now consider a semi-implicit SPH
wetting and drying technique in this chapter.

6.1 Introduction

In this section of the thesis, we propose a new wetting and drying semi-implicit SPH algorithm applied
to the shallow water equations. We consider the inviscid hydrostatic free surface flows. Such flows are
governed by the shallow water equations which we can derive by vertically or laterally averaging the fully
three dimensional incompressible Navier-Stokes equations with the assumption of a hydrostatic pressure
distribution (see [28, 29]).

Wetting and drying is a common phenomena in shallow water flows where water level rises, called
wetting, and where water level recedes, called drying. This process can occur during events, such as
inundation of coastal regions that are often due to storm surges and wave driven run-up on beaches,
even more in biological processes i.e., during the drying phase on a tidal mud flat algal mats [52]. These
processes occur on periodic time intervals. Since the shallow water equations are well defined in a fully
wetted region in the domain, when water height recedes and goes to zero, this affects the numerical
solution of the equations, where the arising problems may become ill-posed. Viable approaches to tackle
such problems are essentially incorporating wetting and drying into the numerical scheme or a dynamic
adaptivity in the computational domain as the water level moves. Pioneering work in wetting and drying
on two-dimensional shallow water equations is due to Leendertse [72], whose approach makes use of an
alternating direction implicit ADI method to discretize the governing equations. There is a considerable
amount of work relying on finite volume and finite element schemes to treat wetting and drying, e.g.,
[6, 17, 24, 33, 59, 61, 102, 118], to mention but a few.

All these techniques make use of mesh adaptation (by deforming domains and meshs) and mesh reduc-
tion. The latter is by putting ’screens’ at velocity points of the flow configuration when the water height
drops below a certain drying threshold and removing the screens when the water height rises above a
wetting threshold. This approach is problem-dependent and the threshold parameters must be tuned,
where the thin water layer technique uses a fixed mesh to maintain a thin layer of water in nominally
dry elements. Vater, Beisiegel and Behrens [114] propose a limiter-based approach in the velocity and
water height to prevent instabilities.

The treatment of wetting and drying in shallow water equations using a truly meshfree numerical method
is a new approach. In fact, to the best of our knowledge, only [110, 112] solved the Thacker’s test case
[106] and flooding problem with a shallow water SPH model using a dynamic particle coalescing and
splitting method.

This thesis proposes a new wetting and drying semi-implicit Smoothed Particle Hydrodynamics (SPH)
algorithm for the numerical solution of the shallow water equations, following the semi-implicit SPH
scheme in [8]. The wetting and drying relies on the work of Casulli [26] for unstructured meshes, where
the resulting numerical algorithm can directly be developed from the governing equations. In this way,
a correct mass balance is assured in wet particle regions and in transition regions, i.e., particle regions,

77
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from wet to dry and from dry to wet regions, with maintaining a nonnegative water height. The approach
taken boils down to solving a mildly nonlinear system. When wetting and drying occurs, more iterations
are needed for the solution of the mildly nonlinear system.

6.2 Wetting and Drying Methodology

In this section we introduce the methodology employed towards the construction of our proposed wetting
and drying semi-implicit SPH algorithm. Fig. 6.1 depicts a simple hydraulic wetting and drying pattern.
When the water level drops below or above a threshold water depth, a null value is assigned to the
particle velocity components at dry particles and set the free surface elevation to the bed elevation and
at a wetted particle, since the boundary is moving, the moving boundary is evaluated by extrapolating
the free surface elevation at surrounding wet particles. Below the free surface, the domain is fully wetted
with a non vanishing velocity i.e., v 6= 0,H > 0 and at the dry region both velocity and total water
depth is zero, v = 0,H = 0.

v 6= 0

H > 0

Free surface elevation

H = 0

v = 0

Figure 6.1: Wetting and drying hydraulic pattern

6.2.1 Subparticle Modeling

When wetting and drying processes are modeled and simulated, the shallow water equations are defined
on a time dependent domain Ω(t) as

Ω(t) = {(x, y) : H(x, y, t) > 0} (6.1)

where Ω(t) is intrinsically one of unknowns to be determined numerically. Also, since the fluid boundary
is also moving and one can not determine the position a priori. To circumvent this difficulty, Casulli [26]
defined a piecewise constant function. For a specified bathymetry h(x, y) we give a precise description
of the flow by a saturation function a(x, y, z) defined by

a(x, y, z) =

{
1 for h(x, y) + z > 0

0 otherwise
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for (x, y) ∈ Ω and −∞ < z < ∞. At z = ηni , the horizontal integral for each particle i at time level
t = tn given by

ai(η
n
i ) =

∫

Ωi

a(x, y, ηni )dxdy (6.2)

represents the free-surface area. We can state clearly that when ai(η
n
i ) = 0, the ith particle is dry, when

ai(η
n
i ) = Vi, the ith particle is wet and when 0 < ai(η

n
i ) < Vi, the ith is partially wet respectively. The

piecewise constant function defined by a(x, y, z) means that ai(η
n
i ) is nonnegative, nondecreasing and

bounded. For each particle i, the total water depth is given by

H(x, y, ηni ) =

ηni∫

−∞

a(x, y, z)dz

= max [0, h(x, y) + ηni ]

(6.3)

so that H(x, y, ηni ) ≥ 0, and strict inequality identifies a wet particle. Hence, the wet region is given by

Ωn
i = {(x, y) ∈ Ωi : H(x, y, ηni ) > 0} (6.4)

The water volume for particle i is given by

Vi(η
n
i ) =

ηni∫

−∞

ai(z)dz =

∫

Ωi

H(x, y, ηni )dxdy (6.5)

Because ai(η
n
i ) is nonnegative, nondecreasing and bounded, we have Vi(η

n
i ) ≥ 0 and strict inequality

necessarily implies ai(η
n
i ) > 0, in particular 0 ≤ ai(η

n
i ) ≤ Vi. Clearly when

• ai(η
n
i ) = 0, the ith particle is dry

• ai(η
n
i ) = Vi, the ith particle is wet

• 0 < ai(η
n
i ) < Vi, the ith particle is partially wet

6.2.2 The Free Surface Equation and Mass Conservation

Substituting the discrete momentum equation into the discrete continuity equation. The model is
reduced into a smaller model in ηn+1

i as the only unknown. Multiplying (5.40) by ωi and inserting
(5.39) into (5.40) we obtain

V (ηn+1
i )− gΘ2∆t2

δij

N∑

j=1

2ωiωj

[
Hn

ij(η
n+1
j − ηn+1

i )∇W ij · nij

]
= bni , (6.6)

where the right hand side bni represents the known values at time level tn given as

bni = V (ηni )−∆t

N∑

j=1

2ωiωjH
n
ijFvn+Θ

ij ∇W ij · nij

+ gΘ(1−Θ)
∆t2

δij

N∑

j=1

2ωiωj

[
Hn

ij(η
n
j − ηni )∇W ij · nij

]
,

(6.7)
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where V (ηn+1
i ) is the water volume where the nonlinearity resides as we have defined in the piece-

wise constant saturation function a(x, y, z), Fvn+Θ
ij = ΘFvn

ij + (1 − Θ)vn
ij . Since Hn

ij, ωi, ωj are

non-negative numbers, equations (6.6) - (6.7) constitute a nonlinear system of N equations for ηn+1
i

unknowns due to the piecewise constant water volumes.

Having computed the free surface and water velocity, the new total depth Hn+1
ij has to be updated.

Since, the bathymetry hij are specified at the locations. A negative value for H is physically meaningless,
then our discrete total depth Hij at the next time are defined as

Hn+1
ij = max(0, hn+1

ij + ηn+1
i , hn+1

ij + ηn+1
j ) (6.8)

where we note that Hij = Hji.

But a zero value for H simply means a particle is dry which can be later on wetted when the total water
depth H becomes positive. So, if H is positive, the particle is wet and the vertical variation of the
particle will be non zero whereas when H is zero, the particle is dry and the particle’s vertical variation
will be zero.

In this numerical model, considering Equation (6.6) we can inspect clearly that the resulting semi-
implicit SPH equation for the free surface equation accurately accounts for the treatment of positive
and zero values for the total water depth H. We can further see that the treatment of wetting and
drying is naturally present in the present study without taking into account special treatment. And this
formulation guarantees mass conservation while accounting for wetting and drying fronts. When the
total water depth of a particle is zero, this implies a no mass flux or a zero velocity until at a later
time when H becomes positive. In Equation (6.6), if we set H to be zero, the free surface equation
becomes that the water volume at time level n+1 equals water level at time level n. This means there
is no variation in the free surface elevation for a dry particle. On a dry particle the velocity equations
are replaced by vn+1

ij = 0, so when wetting and drying of particles occurs, we still solve the same SPH
equations having satisfied the condition of no mass flux.

In the entire particle configuration, when the total water depth is zero, Hn
ij = 0, the free surface equation

(6.6) trivially implies
V (ηn+1

i ) = V (ηni ), (6.9)

hence we can assume
ηn+1
i = ηni . (6.10)

In this scenario, equation (6.6) does not form part of the system to be constructed. The remaining
set of the free surface equation i.e., where there exist at least one Hn

ij that is nonzero the system

is assembled into a mildly nonlinear sparse system for ηn+1
i . Brugnano and Casulli have presented

convergent iterative schemes to solve this system even for piecewise polynomials for the definition of
the water volume V (η), (see [22, 23]) for details.

6.3 Solution Algorithm

6.3.1 Mildly Nonlinear System

We hereby write system (6.6) in a compact vector notation:

V(η) + Tη = b (6.11)
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where

V(η) =




V1(η1)
V2(η2)

...
VN (ηN )


 , η =




ηn+1
1

ηn+1
2
...

ηn+1
N


 , b =




bn1
bn2
...
bnN


 ,

where T is a sparse and symmetric Nη ×Nη matrix which comes from the second and third term in the
left hand side of equation (6.6), matrix T is positive definite, then its inverse is also positive definite, b
is a vector of Nη components from the right hand side of equation (6.6). Let us assume that the matrix
T is irreducible. From Equation (6.6) we write the coefficient of ηn+1

i the ith main diagonal element of
the matrix T given as

ti,i = gΘ2∆t2

δij

N∑

j=1

2ωiωjH
n
ij∇Wij · nij (6.12)

In the same vein, if we consider the non-zero off diagonal elements in each row of the matrix T which
represents the coefficients of ηn+1

j in Equation (6.6), we have

ti,j = −gΘ2∆t2

δij

N∑

j=1

2ωiωjH
n
ij∇Wij · nij (6.13)

From the assumption that T to be irreducible we have that ti,j ≤ 0 for all particles i = 1, 2. · · ·N , so
we have atleast one of ti,j is nonzero. From the above, such that ti,i > 0 for each particle i and ti,j ≤ 0
whenever particle i is different from particle j, i 6= j, then we conclude that the T is an irreducible
symmetric and positive semidefinite matrix. We can say that

∑N
j=1 ti,j = 0 for i = 1, 2. · · ·N . If we

denote for any nonzero diagonal matrix by P, from the above considerations, we have P ≥ 0, then
we have that P + T is an irreducible symmetric M-matrix. Therefore, P + T is positive definite and
consequently (P+ T)−1 > 0. From a physical point of view, the contribution of matrix T denotes the
mass fluxes between pair of interacting particles.

For clarity, we define the water volumes and its corresponding gradient as

V(η) =

{
η + h if η + h > 0 for wet case

0 if η + h ≤ 0 for dry case
(6.14)

The gradient of the water volumes is given as

∂V

∂η
=

{
1 if η + h > 0 for wet case

0 if η + h ≤ 0 for dry case
(6.15)

The matrix P evaluated at ηi corresponds to the diagonal entries

P =

(
∂V

∂η

)
(6.16)

evaluated at the ith particle and P is given as

P = diag(a11, . . . , a1n) (6.17)

where aij corresponds to the gradient of the water volume.
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η

V

Figure 6.2: Non-differentiability of water volume

From the definition of the water volumes and in Fig. 6.2, we see that the function is not differentiable
in zero i.e., at the black dot (red broken lines).

Before solving the free surface equation, we will state under the condition whereby the solution to (6.11)
exists and is unique.

Theorem 6.3.1. Let the vertical integral of the surface area for particle i be given as

Vi(ηi) =

ηi∫

−∞

ai(z)dz (6.18)

with ai(z) nonnegative, nondecreasing and bounded ∀ i. Also, let T be an irreducible, symmetric and
positive semidefinite matrix such that ti,j ≤ 0 whenever i 6= j and

∑N
j=1 ti,j = 0 for i = 1, 2. · · ·N . If∑N

j=1 bj > 0, then there is existence and uniqueness of solution to the system (6.11).

Proof. Assume ηα and ηβ solves system (6.11). Therefore, we have

V(ηα) + Tηα = b (6.19)

and
V(ηβ) + Tηβ = b (6.20)

Let the difference between particle volumes at different free surface elevation ηαi and ηβi be given as

Vi(η
β
i )− Vi(η

α
i ) =

ηβi∫

−∞

ai(z)dz −
ηαi∫

−∞

ai(z)dz (6.21)

=

ηβi∫

ηαi

ai(z)dz (6.22)

= âi(η
α
i , η

β
i )(η

β
i − ηαi ) (6.23)
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where âi(η
α
i , η

β
i ) represents the average water volumes. Substracting (6.19) from (6.20), we obtain

[
V(ηβ) + Tηβ

]
− [V(ηα) + Tηα] =

[
P̂(ηα, ηβ) +T

]
(ηβ − ηα) = 0 (6.24)

P̂(ηα, ηβ) is a diagonal matrix whose values are the nonnegative values âi(η
α
i , η

β
i ).

Since
∑N

j=1 bj > 0, From (6.11), it implies

N∑

i=1

Vi(η
α
i ) =

N∑

i=1

Vi(η
β
i ) =

N∑

j=1

bi > 0 (6.25)

Therefore, some Vi(η
α
i ) and Vi(η

β
i ) are strictly positive. But since, ai(z) is nonnegative, nondecreasing,

then the values âi(η
α, ηβ) are strictly positive. Hence, P̂(ηα, ηβ) is nonzero and nonnegative. We can

further infer that P̂(ηα, ηβ) + T is an M-matrix, therefore matrix P̂(ηα, ηβ) + T is nonsingular.

From Equation (6.24) we have that
ηα = ηβ (6.26)

Hence uniqueness follows.

6.3.2 A Newton Method

We arrive at the piecewise system which is strongly diagonally dominant, symmetric and positive definite.
Hence, a unique solution can be efficiently obtained by a matrixfree version of the conjugate gradient
method and solved exactly in a Newton-type iteration. A nested Newton-type method can be see in the
work of Casulli and Zanolli (see [31, 32]).

Initializing the free surface elevation η, for all k = 1, 2, · · · where ηk,0 = ηk−1 a sequence of iterates ηµ

is obtained from Equ. (6.11). Linearizing V (η) as follows we have,

[
V(ηk,µ−1) + P(ηk,µ−1)(ηk,µ − ηk,µ−1)

]
+ Tηk,µ = bk−1, (6.27)

we obtain the iterates from the linear systems

(Pk,µ−1 + T)ηk,µ = gk,µ−1, µ = 1, 2, · · · (6.28)

where
Pk,µ−1 = P(ηk,µ−1) (6.29)

and
gk,µ−1 = bk−1 − Vk,µ−1 + Pk,µ−1ηk,µ−1

The (k, µ)th residual r is given as

rk,µ = V(ηk,µ) + Tηk,µ − b, (6.30)

and a stopping criterion for the iterates is given as ‖rk,µ‖ < ǫ where ǫ is a sufficiently small tolerance
value. The nonlinear problem to solve reads:

ηk+1 = ηk −
[
P(ηk) + T

]−1 [
V(ηk) +Tηk − b

]
, k = 0, 1, · · · (6.31)
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Algorithm 4 Calculate η

Input: V, P, T, b, and ǫ
Do k = 1, 2, · · ·

Set P k,0 = I

Do µ = 1, 2, · · ·
Solve [P(ηk,µ−1 + T)]ηk,µ = b− P(ηk,µ−1)
If ‖rk,µ‖ < ǫ

set ηk = ηk,µ and Exit
End If

End Do
End Do
Output η

where k denotes the iteration index, P(ηk) is a diagonal matrix. The iterative scheme in (6.31) is hereby
summarized into Algorithm (4).

Now coupled together with the semi-implicit algorithm presented in the preceding chapter, the one time
step of the algorithm is summarized as follows:

1. Initialize v
n+1,0
ij and ηn+1,0

ij ;

2. Newton-type iteration over k = 1 . . . N :

• Compute v
n+1,k+1
ij , i.e., convective terms are discretized explicitly;

then set Fv
n+1,k+1
ij := v

n+1,k+1
ij ,

• Discretize the gradient of v and η implicitly,

• Substitute discrete momentum into discrete continuity equation,

• Compute ηn+1,k+1
ij by solving the free surface equation (6.6),

• Update v
n+1,k+1
ij explicitly from (5.39),

3. Set vn+1
ij = v

n+1,k+1
ij .

Once the free surface location ηi is computed. Equation (5.39) constitute a linear system for vn+1
i , the

systems are independent of each other and are symmetric and positive definite. This is conveniently
solved to determine vn+1

i throughout the particle configurations and the particle positions can be subse-
quently updated. Following our mildly nonlinear construction in equation (6.6), a correct mass balance
is always achieved in all particle regions irrespective of the specified bottom bathymetry. Nonnegative
water volumes and water heights are assured.



7. Numerical Examples

7.1 The 1D and 2D Shallow Water Equations

In this section, following the semi-implicit SPH scheme that has been derived in Chapter 5 and the
wetting and drying algorithm presented in Chapter 6, the scheme will be validated on the one and two
dimensional shallow water equations test problems. In this section, three numerical examples will be
validated namely: smooth solution, discontinuous solution and an oscillating lake in a parabolic basin
to validate wetting and drying phenomena. In the following section, we present two dimensional test
case of a collapsing Gaussian bump. In the subsequent test problems, the acceleration due to gravity
constant g is set to g = 9.81.

7.1.1 Smooth Surface Wave Solution

In this example, we consider a smooth free surface wave propagation. We consider the following initial
value problem within the domain Ω = [−1, 1] with the data

η(x, 0) = 1 +
1

2
e−

1

2
(x2/σ2), (7.1)

together with the initial condition
v(x, 0) = 0, (7.2)

with flat bottom, where σ = 0.1,
h(x) = 0. (7.3)

The computational domain Ω is discretized with N = 200 particles. We simulate till the final time
t = 0.15, a fixed time step is chosen to be∆t = 0.01, an implicitness factorΘ = 1 is used. The numerical
solution is given in Fig. 7.1. The upper profile in Figure 7.1 depicts the free surface elevation with a
flat bottom bathymetry and the lower profile depicts the particle velocity. In Figure 7.2, to demonstrate
that the method permits larger timesteps, we simulated for different times ∆t = 0.0025s, 0.005s, 0.01s,
a very good agreement can be seen. The tolerance for solving the linear system was set to tol = 10−14.
The total mass during the simulation is conserved as we see in Figure 7.3, the total mass is given as
2.125331. We solve the example with a matrix-free implementation of the CG method, without making
use of any preconditioner. We compare our SISPH solution with a reference solution obtained by solving
the one-dimensional shallow water equation with the finite difference mesh based approach of Casulli
[25] on a fine mesh of 10, 000 points. The comparison between our numerical results obtained with
semi-implicit SPH scheme and the reference solution is shown. A very good agreement between the two
solutions is observed in Figure 7.1.
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Figure 7.1: Smooth surface wave: Semi-implicit SPH scheme solution with 200 particles (solid line -
blue) versus reference solution (solid line - red) - finite difference approach with a mesh of 10,000 points.
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Figure 7.2: Smooth surface wave: Semi-implicit SPH solution, free surface elevation/bottom (upper
profile), velocity (lower profile) computed at different time steps ∆t = 0.0025s (green), ∆t = 0.005s
(red), ∆t = 0.01s (blue) at final time t = 0.15s.
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Figure 7.3: Smooth surface wave: Total mass conservation at time t = 0.15s.

7.1.2 Discontinuous Solution

In this example, we consider the following Riemann problem. Riemann problems are very important
cases in initial value problem for PDE systems. The initial data is prescribed by two piecewise constant
states often separated by a discontinuity:

q(x, 0) =

{
ql x < 0,

qr x > 0
(7.4)

where q = (v(x, 0), η(x, 0), h(x)). The computational domain Ω = [xl, xr] given as Ω = [−1, 1] is
discretized with the semi-implicit SPH scheme using 200 particles. In this example with flat bottom,
the exact solution is given by the exact Riemann solver for the shallow water equations [107]. The left
state ql and the right state are given as qr

ql =



−1
1
0


 , qr =



1
1
0


 .

In this present simulation, an implicitness factor Θ = 1 is used, we simulated to the final time t = 0.15,
with a fixed time step ∆t = 0.01. We have used ghost particle boundary conditions in this example.
The rarefaction solution of the one dimensional shallow water equation is presented in Figure 7.4, the
solution consists of a left moving rarefaction fan and a right moving rarefaction fan solution both moving
away from the discontinuity. To demonstrate that the method permits larger timesteps, we simulated
for different times ∆t = 0.0025s, 0.005s, 0.01s, a very good agreement can be seen in Figure 7.5. The
tolerance for solving the linear system was set to tol = 10−14. The total mass during this simulation is
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also conserved as we see in Figure 7.6, the total mass is obtained as 2.00000. We solve the example
with a matrix-free implementation of the CG method, without making use of any preconditioner. We
compare our semi-implicit SPH solution with the reference solution of the exact Riemann solver for the
one dimensional shallow water equation. A very good agreement is observed in Figure 7.4. The upper
profile in Figure 7.4 depicts the free surface elevation with a flat bottom bathymetry and the lower
profile depicts a rarefaction particle velocity, respectively.
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Figure 7.4: Discontinuous solution: Semi-implicit SPH scheme rarefaction solution (solid line - blue)
versus exact solution (solid line - red). 200 particles is used in the numerical solution.
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Figure 7.5: Discontinuous solution: Semi-implicit SPH solution, free surface elevation/bottom (upper
profile), velocity (lower profile) computed at different time steps ∆t = 0.0025s (green), ∆t = 0.005s
(red), ∆t = 0.01s (blue) at final time t = 0.15s.
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Figure 7.6: Discontinuous solution: Total mass conservation at time t = 0.15s.
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7.1.3 An Oscillating Lake Problem
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Figure 7.7: An oscillating lake

In this example, we consider fluid flow oscillating in a parabolic basin in Figure 7.7. The initial value
problem in the domain Ω = [−5, 5] is given as:

η(x, 0) = 0.1x, (7.5)

u(x, 0) = 0, (7.6)

h(x) = 1− 0.1x2, (7.7)

in a parabolic basin with bottom bathymetry h. In this present example, the flow is restricted below
by a fixed bottom boundary h and bounded above by a moving free surface η, both free surface and
bottom boundary are given by Equ. (7.5) and (7.7). The computational domain Ω is discretized with

400 particles. In our simulation, a variable smoothing length taken as li = α(ωi)
1

d , where α ∈ [1.5, 2]
and d = 1, implicitness factor Θ = 0.85, a time step size of ∆t = 0.01 and final time of simulation of
t = 7.2s is chosen. The plots of the evolution of the free surface inside the fixed parabolic basin is given
at times t = 0s, t = 1.8s, t = 3.6s, t = 5.4s, and t = 7.2s respectively in Figure 7.8. In this example,
we solve a nonlinear system with the Newton method described in chapter 6, the tolerance for solving the
nonlinear system was set to tol = 10−14, the total mass is conserved as we see in Figure 7.9, the total
mass is obtained to be 4.384533 at time t = 7.2s. We obtain a reference solution by solving the shallow
water equation with a finite difference approach of Casulli and Cheng [29]. The comparison between our
numerical results obtained with wetting and drying semi-implicit SPH and reference solution is shown. A
very good agreement between the two solutions is observed in Figure 7.8 even at the transition regions.
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(a) Free surface at initial state t = 0s
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(b) Free surface at time t = 1.8s
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(c) Free surface at time t = 3.6s
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(d) Free surface at time t = 5.4s
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(e) Free surface at time t = 7.2s

Figure 7.8: Oscillating lake: Semi-implicit SPH wetting and drying solution for an oscillating lake
problem at t = 0.0s, t = 1.8s, t = 3.6s, t = 5.4s, t = 7.2s (blue dots) versus reference solution (red -
solid line), the bottom bathymetry (black - solid line).
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Figure 7.9: Oscillating lake example with wetting and drying: Total mass conservation at time t = 7.2s.

The 2D Shallow Water Equations

In this section, the semi-implicit SPH scheme will be validated on the two dimensional shallow water
equation test problems. In this section, the following numerical examples will be validated namely:
smooth surface wave propagation solution (collapsing Gaussian bump). In our subsequent test problems,
the acceleration due to gravity constant g is also set to g = 9.81. In the numerical examples presented,
we wish to mention that the particles are moved simply by Dri

Dt = vi. Our semi-implicit SPH solution
will be benchmarked against reliable reference solutions.

7.1.4 A Collapsing Gaussian Bump

In this example, we consider the following initial value problem in the domain Ω = [−1, 1] × [−1, 1]:

η(x, y, 0) = 1 + 0.1e
−
1

2





r2

σ2





,

u(x, y, 0) = v(x, y, 0) = h(x, y) = 0,

where σ = 0.1 and r2 = x2 + y2 with flat bottom bathymetry, i.e., h(x, y) = 0, The computational
domain Ω is discretized with 124, 980 particles. The final simulation time is t = 0.15, and the time step
is chosen to be ∆t = 0.0015. We have used the implicitness factor Θ = 0.65. The smoothing length
is taken as hi = α(ωi)

1/d, where α = [1.5, 2] and d = 2. The obtained numerical solution is shown
in Figure 7.12. The profiles in Figure 7.10 show the three dimensional surface plots of the free surface
elevation at times t = 0.0s, 0.05s, 0.10s, 0.15s. Due to the radial symmetry of the problem, we obtain
a reference solution by solving the one-dimensional shallow water equations with a geometric source
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term in radial direction: a method based on the high order classical shock capturing total variation
diminishing (TVD) finite volume scheme is employed for computing the reference solution using 5, 000
points and the Osher-type flux for the Riemann solver, see [107] for details. The comparison between
our numerical results obtained with semi-implicit SPH scheme and the reference solution is shown. The
planar view and colour plots of the free surface elevation is given in Figure 7.11. A very good agreement
between the two solutions is observed in Figure 7.12. We attribute the (rather small) differences in the
plots to the fact that the SPH method has a larger effective stencil, which may increase the numerical
viscosity. We have used a higher resolution of particle numbers of 195, 496, the cross section of the free
surface elevation and the velocity at final time t = 0.15s can be seen in Figure 7.13. We observe similar
results compared to particle numbers 124,980.
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(a) Free surface at initial state t = 0s (b) Free surface at time t = 0.05s

(c) Free surface at time t = 0.1s (d) Free surface at time t = 0.15s

Figure 7.10: Collapsing Gaussian bump: Three-dimensional view of the smooth surface wave propagation
example: The free surface evolution Semi-implicit SPH scheme solution at times t = 0s, t = 0.05s,
t = 0.1s and t = 0.15s. A total of 124, 980 particles is used in the numerical solution.
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(a) Planar view at initial state t = 0s (b) Planar view at time t = 0.05s

(c) Planar view at time t = 0.1s (d) Planar view at time t = 0.15s

Figure 7.11: Collapsing Gaussian bump: Planar view of the smooth surface wave propagation example:
The free surface evolution semi-implicit SPH scheme solution at times t = 0s, t = 0.05s, t = 0.1s and
t = 0.15s. A total of 124, 980 particles is used in the numerical solution.



Section 7.1. The 1D and 2D Shallow Water Equations Page 96

(a) Free surface at initial state t = 0s (b) Velocity at time t = 0s

(c) Free surface at time t = 0.05s (d) Velocity at time t = 0.05s

(e) Free surface at initial state t = 0.10s (f) Velocity at time t = 0.10s

(g) Free surface at time t = 0.15s (h) Velocity at time t = 0.15s

Figure 7.12: Collapsing Gaussian bump: Cross section of semi-implicit SPH solution (green) versus
reference solution (red): Free-surface (left), velocity (right) in the x− direction.
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Figure 7.13: Collapsing Gaussian bump: Cross section of semi-implicit SPH solution (green) versus
reference solution (red): Free-surface (left), velocity (right) in the x-direction at times t = 0.15s with
a higher resolution of 195,496 particles.



8. Conclusions and Outlook

8.1 Conclusion

This thesis deals with the design, development and analysis of a new semi-implicit Smoothed Particle
Hydrodynamics method (SISPH), a meshfree method designed for the numerical treatment of fluid
flows governed by conservation laws which in particular we deal with the shallow water equations
(SWEs). The need to develop new numerical methods can not be overemphasized because one can
refine existing numerical methods and improve them depending on the inherent drawbacks that accrue
to them. Therefore, it is advantageous to develop a new SISPH method which is relatively simple,
unconditionally stable, efficient, flexible and guarantees mass (volume) conservation. The summary of
the thesis is given below.

In Chapter 2, we introduced basic concepts in the mathematical modeling of fluid flows, the conservation
of mass and momentum, we presented the key ideas in the theory of hyperbolic conservation laws
which the SWEs is a family of, and we give some matrix properties and definitions. In Chapter 3, we
provided the theory of the two-dimensional SWEs in particular the depth-averaged version, we derived
the SWEs from the Navier-Stokes in primitive variables. Because, the SISPH method developed in
this thesis is formulated in primitive variables, we proceed by giving the characteristics and derived the
eigenstructure of the SWEs in terms of the physical variables (primitive variables) in order to show that
the eigenstructure do not differ from the case of using conservative variables. In Chapter 4, we gave
the fundamental theory of the SPH method, we explained the consistency issues inherent in the SPH
method. To this effect, we proceed by giving correction techniques that restore consistency of the SPH
method at the particle level.

In Chapter 5, we have proposed a meshfree semi-implicit smoothed particle hydrodynamics (SISPH)
method for the shallow water equations in one and two space dimensions, the SPH formulation is
based on Ben Moussa and Vila. In our scheme, the momentum equation is discretized by a finite
difference approximation for the gradient of the free surface and the SPH approximation for the mass
conservation equation. The velocity and the free surface elevation have been defined at staggered
positions, an artificial velocity was defined and a smoothing kernel interpolation has been used to
interpolate between particle velocities and the staggered velocities: a technique analogous to the XSPH
method of Monaghan. By substitution of the discrete momentum equations into the discrete mass
conservation equations, we arrive at a single equation in one unknown this leads to a sparse linear
system for the free surface elevation, a very unique feature that makes our method stands out from
other semi-implicit approaches, this makes our method very flexible and robust. We solve this system
efficiently by an iterative matrix-free version of the conjugate gradient (CG) algorithm.

The key features of the proposed semi-implicit SPH method are briefly as follows: The method is mass
conservative; efficient; time steps are not restricted by a stability condition (coupled to the surface wave
speed), thus large time steps are permitted. In Chapter 7, we presented standard model problems in
one and two dimensions for the shallow water equations that validates the above mentioned features.

In Chapter 6, we propose a new wetting and drying semi-implicit SPH algorithm that is based on the
novel semi-implicit SPH discretization. The semi-implicit SPH algorithm with wetting and drying applied
to the shallow water equations has been derived and discussed, this involves solving a nonlinear system
and in particular a problem with nonflat bottom bathymetry. The momentum equation is discretized by
a finite difference approximation for the gradient of the free surface elevation and SPH approximation

98
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for the mass conservation equation. Because we substituted the discrete momentum equations into the
discrete mass conservation equations and because we define the water particle volume as a piecewise
constant function, we arrive at a mildly nonlinear sparse system for the free surface elevation. We
thereby solve some Newton-type iterations when wetting and drying is encountered. We conveniently
solve this mildly nonlinear system with the matrix-free version of the conjugate gradient ( CG) algorithm.
Our semi implicit algorithm automatically accommodates the treatment of wetting and drying. In all
the test cases in this thesis, we have solved them with a matrix-free implementation of the CG method,
without the usage of a preconditioner. A very good sparsity structure of the system for the free surface,
leads to a computationally efficient scheme.

The key features of the proposed wetting and drying algorithm are as follows. The method does not
involve putting screens at velocity points of the flow configuration when the water height drops below a
certain drying threshold and removing the screens when the water height rises above a wetting threshold,
the method achieves a correct mass balance in wet regions and in transition regions i.e., the regions
from wet particles to dry particles and those from dry particles to wet particles. In our nonlinear wetting
and drying algorithm, there is no thin water film or a small tolerance to deal with dry particles, the
method is designed to perfectly treat dry particles with zero particle volume. The wetting and drying
algorithm is simple and efficient, and it guarantees the production of non-negative water depths. Finally,
the method’s time step is not restricted by stability conditions that are dictated by the surface wave
speed, thereby allowing large time steps. An oscillating lake example in Chapter 7 was presented that
emphasizes and validates the above mentioned features for wetting and drying.

8.2 Outlook

Since the SISPH method in this thesis is still in its developmental stage, the proposed method has its
weaknesses which can be improved. Therefore, there exists more research topics to be investigated:

Application to shock problems; the SISPH method presented in this thesis is done in primitive variables
(nonconservative formulation), primitive variables are set of variables such that the mathematical and
computational manipulation of the conservation laws become more easy and convenient. In most
problems involving solutions to hyperbolic conservation laws whose solutions may develop discontinuities,
shock solutions are mostly inevitable. In the past decades, it is an accepted practice to utilize conservative
methods. Shock waves are the solution features that demand conservative methods. Computational
experience proves that the use of a nonconservative method results in the wrong shock strength and
consequently the wrong propagation speed. We note however that simulating problems involving shocks
will give solutions converging to the wrong solution. Hence, there are very good reasons this aspect is
worth looking into for consideration by recasting the formulation into a conservative form. Once the
conservative formulation is done, we believe it will be possible to simulate the shallow water equations
not only with fixed bed but with a mobile bed.

One area of further research could concern the extension of the scheme to high order of accuracy in
time. Also since, the choice of discretization of the convective terms in the momentum equation affects
the accuracy of the method. There is the need to improve the accuracy of the scheme by investigating
on a high order velocity field reconstruction, this can be achieved by reconstructing high order velocity
field in a semi-Lagrangian approach to discretize the nonlinear convective terms.

In the same spirit, as concerning solving the incompressible Navier-Stokes equations, further investiga-
tions is needed so as to see how our SISPH method behaves and with this we can compare solutions
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with the incompressible SPH (ISPH) technique.

Extension of the scheme to the fully three-dimensional case; the SISPH scheme developed in this thesis
is flexible and robust so it can easily be extended to higher dimensional fluid flow configuration which
includes application of the scheme to real life river flooding and drying scenarios, i.e., lakes, estuaries.
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