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Summary

This thesis deals with the application of structural estimation methods in the context of the

so-called news shocks. The main focus is on two estimation approaches for time series,

the vector autoregressive model and the subspace algorithm. While the former approach

is a standard procedure employed in empirical business cycle analysis, using the subspace

algorithm is less common in this field. There exist only a few examples of the usage of

the subspace algorithm in the literature, in particular, when taking potential cointegration

properties among the underlying time series into account. The thesis addresses this issue

and provides a comprehensive comparison of both estimation methods by means of simu-

lation studies and empirical investigations.

Another key aspect of the thesis is its focus on the concept of news-driven business cycles

and the challenge of identifying the corresponding shocks in the empirical data. The idea

behind news-driven business cycles is that the change in the agents’ expectations about the

future state of the economy caused by an exogenous event (i.e., the news shock) can generate

macroeconomic fluctuations. Considering news shocks as a driving force of business cycle

phenomena is controversial in the literature. First, there are several other possible candi-

dates for this role. Second, the identification of news shocks can be more difficult than in the

case of the other potential causes of business cycle fluctuations. The intricacy is to uncover

the quantitative importance of the agents’ forward-looking behavior in macroeconomic data

with the aforementioned estimation methods. Since these methods are typically limited to a

small number of variables, there might be insufficient information for identifying the actual

anticipation effects.

In this thesis, two scenarios are distinguished, each of which considers a particular type of

news shock. The first kind of news shock is supposed to reflect market rush behavior of

firms which immediately invest in new startups after receiving a signal about future mar-

ket opportunities in order to secure monopoly rents in newly opened markets. The second

type of news shock implies that the economic agents anticipate future productivity growth

induced by technical progress. In the first scenario, the above-mentioned difficulty does not

exist, meaning that the estimation methods are, in principle, capable of correctly identifying

the underlying shocks and the corresponding dynamics in the data. By contrast, the infor-

mation set in the second scenario is theoretically not sufficient for empirically determining

news shocks and their implications in a precise way. Simulation studies are carried out for

both scenarios to analyze the goodness of fit of the estimation methods. Finally, I follow

two recently published studies and conduct empirical analyses of the US data to explore the

quantitative importance of these two types of news shocks. As opposed to these publica-

tions, I apply the subspace algorithm in addition to the vector autoregressive model.

The main results of the thesis can be summarized as follows. In the simulation exercises, I

xi



show that the subspace algorithm represents a promising alternative to the vector autore-

gressive model, even though the findings depend on the parameterization of the underlying

data generating process. Moreover, I demonstrate that a suitable modification of both esti-

mation procedures can mitigate the above identification problem in the case of the second

scenario. As regards the empirical examinations, my results support the findings in the liter-

ature to some extent. While market rush shocks prove to be an important driver of business

cycles in the very short-run (i.e., within the one-year-horizon), the role of technological news

shocks in explaining macroeconomic fluctuations is slightly ambiguous. At horizons beyond

the first year, technological news shocks are a dominant source of US business cycles when

a vector autoregressive model is used for estimation, whereas this kind of shock is more

a medium- and long-run determinant of fluctuations according to the subspace algorithm

analysis.
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Zusammenfassung

Die vorliegende Arbeit behandelt die Anwendung von strukturellen Schätzmethoden im

Kontext der sogenannten Nachrichtenschocks. Im Mittelpunkt stehen dabei zwei Ansätze

zur Schätzung von Zeitreihen, das vektorautoregressive Modell und der Subspace-Algo-

rithmus. Während erstgenanntes zum Standardinstrumentarium in der empirischen Kon-

junkturanalyse gehört, ist die Anwendung des Subspace-Algorithmus in diesem Bereich

weniger verbreitet. Insbesondere, wenn es bei der Analyse um die Berücksichtigung mögli-

cher Kointegrationseigenschaften der zugrunde liegenden makroökonomischen Zeitreihen

geht, gibt es in der Literatur bisher wenige Beispiele für den Einsatz des Algorithmus. Die-

se Arbeit greift diesen Umstand auf und dokumentiert einen umfassenden Vergleich der

beiden Schätzmethoden mit Hilfe von Simulationsstudien sowie empirischen Analysen.

Ein weiterer Schwerpunkt der Arbeit ist der besondere Fokus auf das Konzept der nach-

richtengetriebenen Konjunkturzyklen und der Herausforderung der Identifikation entspre-

chender Schocks in den empirischen Daten. Die Idee hinter nachrichtengetriebenen Kon-

junkturzyklen ist, dass die durch einen exogenen Impuls (in Form des Nachrichtenschocks)

ausgelöste Änderung der Erwartungshaltung von Wirtschaftssubjekten über den zukünfti-

gen Zustand der Ökonomie gesamtwirtschaftliche Fluktuationen verursachen kann. Nach-

richtenschocks als treibende Kraft hinter konjunkturellen Schwankungen einzuordnen ist in

der Literatur umstritten. Erstens gibt es zahlreiche andere Kandidaten, die ebenfalls dafür in

Frage kommen. Zweitens ist die Identifizierung der Nachrichtenschocks mitunter schwie-

riger als im Fall der anderen potentiellen Konjunkturtreiber. Die Schwierigkeit besteht dar-

in, mit Hilfe der zuvor erwähnten Schätzmethoden die quantitative Bedeutung von vor-

ausschauendem Verhalten der Individuen in den makroökonomischen Daten aufzudecken.

Da diese Methoden üblicherweise nur eine begrenzte Anzahl an Variablen berücksichtigen,

kann dies zur Folge haben, dass nicht ausreichend Informationen genutzt werden können,

um die tatsächlichen Antizipationseffekte offenzulegen.

In der Arbeit werden zwei Szenarien unterschieden, in denen jeweils die Rolle einer be-

stimmten Art von Nachrichtenschocks betrachtet wird. Bei der ersten Form von Nachrich-

tenschocks wird angenommen, dass Unternehmen, ähnlich wie bei einem Goldrausch, als

Reaktion auf eine Ankündigung zukünftiger Markterschließungsoptionen frühzeitig inves-

tieren, um entsprechende Monopolrenten auf den neu entstehenden Märkten abschöpfen

zu können. Bei der zweiten Art von Nachrichtenschocks wird unterstellt, dass die Wirt-

schaftsakteure zukünftiges Produktivitätswachstum, welches durch technischen Fortschritt

hervorgerufen wird, antizipieren. Im ersten Szenario tritt die oben genannte Schwierigkeit

nicht auf. Das bedeutet, dass die vorgestellten Schätzmethoden dabei grundsätzlich in der

Lage sind, die wahren zugrunde liegenden Schocks und die damit verbundenen Dynamiken

in den Daten korrekt zu identifizieren. Im zweiten Szenario wird hingegen davon ausgegan-
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gen, dass die Informationsmenge theoretisch nicht ausreicht, um die Nachrichtenschocks

und deren Implikationen empirisch eindeutig bestimmen zu können. Für beide Szenari-

en werden zunächst Simulationsstudien durchgeführt, um die Güte der zuvor genannten

Schätzmethoden zu analysieren. Den Abschluss der jeweiligen Untersuchungen bilden em-

pirische Analysen von US-Daten in Anlehnung an zwei neuere Studien, in denen die quan-

titative Bedeutung der betrachteten Nachrichtenschocks erforscht wird. Im Gegensatz zu

diesen Publikationen, welche nur auf der Anwendung von vektorautoregressiven Model-

len basieren, wird dabei auch der Subspace-Algorithmus eingesetzt.

Die wichtigsten Ergebnisse der Arbeit können wie folgt zusammengefasst werden. In den

Simulationsübungen zeigt sich, dass der Subspace-Algorithmus im Rahmen einer struk-

turellen Schätzung eine vielversprechende Alternative zum vektorautoregressiven Modell

darstellt, wenngleich die Ergebnisse von der Parametrisierung des zugrunde liegenden da-

tengenerierenden Prozesses abhängen. Zudem wird im Rahmen des zweiten Szenarios ver-

deutlicht, dass durch eine geeignete Modifikation der beiden Schätzverfahren dem obigen

Identifikationsproblem entgegengewirkt werden kann. Im Hinblick auf die empirischen

Untersuchungen unterstützen die dazugehörigen Resultate die Befunde in der einschlä-

gigen Literatur in gewissem Maße. Während sich die Goldrauschschocks als bedeutender

Auslöser von konjunkturellen Schwankungen in der sehr kurzen Frist (d. h. innerhalb des

Ein-Jahres-Horizonts) erweisen, ist die Rolle der technologischen Nachrichtenschocks bei

der Erklärung von gesamtwirtschaftlichen Fluktuationen nicht ganz so eindeutig. Sofern

die Schätzung auf einem vektorautoregressiven Modell beruht, dominieren die technolo-

gischen Nachrichtenschocks die Erklärung von US-Konjunkturzyklen in Bezug auf einen

Zeithorizont ab einem Jahr, wohingegen diese Art von Schock im Fall der Analyse mit dem

Subspace-Algorithmus eher als Ursache für mittel- bis langfristige Schwankungen angese-

hen werden kann.
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Chapter 1

Introduction

Empirical business cycle analysis covers a broad range of topics. One branch explores the

sources of macroeconomic fluctuation and examines the relevant explanatory approaches.

These approaches are characterized by considerable variety and reflect a wide spectrum of

theories and hypotheses. The concept of news-driven business cycles is one of these issues.

Its basic core is that economic agents adjust their expectations or perceptions of future states

of the economy such that its actual development is affected substantially. The notion that

expectations matter for macroeconomic fluctuations dates back at least to authors, such as

Pigou (1927), Keynes (1936) and von Haberler (1937), who assigned an important role to

expectations in their explanatory theories of dynamics and interactions within economies.

Among these authors, John Maynard Keynes has been the most prominent, and his thoughts

and ideas still influence contemporary research in economics.

I refer to the following three quotes of the aforementioned authors to highlight the historical

relevance of expectations in the profession. For instance, Keynes describes expectations as

important determinants of the production and employment levels in the economy.

... a mere change in expectation is capable of producing an oscillation of the same kind of

shape as a cyclical movement, in the course of working itself out. (Keynes (1936), p. 49)

Likewise, Pigou sees variation in agents’ expectations as trigger of business cycle move-

ments.

Thus, (...) we conclude definitely that they [i.e., varying expectations], and not anything

else, constitute the immediate and direct causes or antecedents of industrial fluctuations.

(Pigou (1927), p. 29)

Furthermore, von Haberler hints at the challenge of capturing and quantifying the agents’

expectations and perceptions.

1
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We cannot observe states of mind; but it is possible to make certain observations from

which states of mind or changes of mind can be inferred. (von Haberler (1937), p. 147)

It took almost seven decades for macroeconomists to address expectations-driven business

cycles in detail. In this context, Paul Beaudry and Franck Portier have to be mentioned as pi-

oneers who devote themselves to the relevance of expectations-driven business cycles from

a theoretical and an empirical perspective. The core of their approach is to model and iden-

tify so-called news shocks as potential sources of macroeconomic fluctuation. Beaudry and

Portier characterize news shocks as signals about future productivity growth received by the

agents at least one period in advance such that the agents adapt their behavior immediately

after the arrival of that new information. In theoretical modeling, building a corresponding

business cycle model that generates comovement between macroeconomic aggregates, such

as output, consumption, investment and hours worked, in response to a news shock is dif-

ficult.1 With respect to empirical business cycle analysis, the challenge, as indicated by von

Haberler, is to filter out from the macro data only those elements that reflect agents’ expec-

tations using appropriate econometric methods. In their very recent publication, Beaudry

and Portier (2014a) provide a comprehensive overview of the concept of the news-driven

business cycle and its related issues.

The articles by Beaudry and Portier can be considered the key starting points for extensive

subsequent research. On the one hand, the work of Beaudry and Portier serves as inspira-

tion and guide for further studies that emphasize the importance of agents’ expectations but

may differ in how they model news shocks. On the other hand, the econometric method-

ology used by Beaudry and Portier is at the heart of a debate about the suitability of their

strategy for identifying news shocks. In my thesis, I refer to several previous studies that

deal with the aforementioned aspects. A focal point is the examination of the second issue,

that is, the appropriateness of the methodological procedures of Beaudry and Portier. There-

fore, I concentrate on the main criticism, which is based on the argument that the strategies

of Beaudry and Portier are not adequate for studying anticipation behavior of economic

agents because they simply rely on the usage of an insufficient information set. Due to the

limited number of observation variables, the degree of information is constrained such that

the empirical methods applied are not capable of identifying news shocks or their impli-

cations in the data. In this thesis, I elaborate this problem and explore whether particular

approaches represent possible solutions.

The contribution of this thesis becomes apparent when considering developments over re-

cent years, wherein the role of expectation and anticipation in the economic context has

been clearly revealed.2 In the wake of the financial and debt crises, there has been intense

1Nonetheless, a few articles published before those of Beaudry and Portier point to this issue, e.g., the contri-
butions by Barro and King (1984), Cochrane (1994b) and Danthine et al. (1998).

2See Matheson and Stavrev (2014) and Girardi (2014) for addressing developments in the US and the euro area.
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discussion of various related issues, including the monetary policy stance of central banks.

In view of the crises and the zero lower bound of interest rates, central banks have been

forced to deploy unconventional policies, for instance, changing the design of central bank

communication, which has focused more strongly on controlling market expectations.3 An

example is the forward guidance strategy, as recently undertaken by the US Federal Reserve

(and Bank of England), wherein the monetary policy measure is directly coupled with the

future path of a macroeconomic indicator (in terms of the unemployment rate).4

Reappraisal of the financial and debt crises over recent years has included the role of rat-

ing agencies, which has also been the focus of public attention. Rating agencies provide

information about the current and future conditions and performance of institutions, such

as banks or states. Thus, whether these agencies can be held responsible for the occurrence

of the financial crisis, e.g., due to the assignment of misleading ratings to collateralized debt

obligations, has been discussed. Since the outbreak of the debt crisis, the focus has been di-

rected more toward the agencies’ assessment of countries’ debt sustainability. In this respect,

Durdu et al. (2013) pick up Beaudry and Portier’s concept of anticipated future productiv-

ity shocks in order to study the impacts of a change in agents’ expectations in a model of

sovereign debt and default risk, wherein news shocks contain information about the gov-

ernment’s ability to repay its debts. Likewise, Gunn and Johri (2013) adopt Beaudry and

Portier’s idea to present a theoretical explanation of the Great Recession in the US, which

they interpret as consequence of revised expectations about efficiency in the financial sector.

Though this thesis does not take up such policy considerations, it highlights the practi-

cal relevance of an empirical analysis of the expectations-driven behavior of agents from

a macroeconomic perspective and addresses corresponding research questions. If the goal

is to analyze whether expectation shocks, especially news shocks, can trigger business cy-

cles, it is necessary to examine the tools that are applied in this context. This investigation is

the main contribution of my thesis.

Beaudry and Portier’s empirical approach relies on structural vector autoregression (SVAR)

models, which explain the dynamics of (or within) an economy with a very limited number

of macroeconomic variables that are regressed on their own past values thereby allowing

for interdependencies among them. SVARs are used to identify structural shocks in the data

3Barakchian and Crowe (2013) provide empirical evidence that US monetary policy has tended to become
more forward-looking since 1988.

4A detailed explanation of forward guidance can be found, e.g., in the article by Justiniano et al.
(2012). The communication strategy of the European Central Bank (ECB) also represents a type of for-
ward guidance, although it is not directly linked to a macroeconomic indicator. However, the ECB at-
tempts to strongly influence market expectations by giving concrete statements on the future path of
monetary policy. As examples, one could mention the press conferences of Mario Draghi, who an-
nounced on 26 July 2012 that “the ECB is ready to do whatever it takes to preserve the euro” (see
http://www.ecb.europa.eu/press/key/date/2012/html/sp120726.en.html) and further emphasized on 4
July 2013 that the ECB expects the future path of the ECB’s policy interest rates to remain unchanged or
even lower (see also ECB Monthly Report, July 2013, pp. 5-10).
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as exogenous drivers of the dynamic behavior of economic agents. These shocks are then

construed as sources of business cycle movement. Their identification requires appropriate

restrictions, which are based on theoretical considerations that permit an economic interpre-

tation of the shocks and their implications. Restrictions on the short-run and/or long-run

variable responses to the shocks are imposed. To motivate the selected restrictions, a specific

business cycle model can be chosen, but usually, the analysis is not conditioned on a partic-

ular model, as is the case with other more theory-oriented methods. The heart of the VAR

approach is to let the data speak freely to a large extent rather than putting it into a precise

theoretical straightjacket.

Subspace algorithm analysis can be applied in a similar fashion. This method originates

in linear systems theory and represents a well-established tool for empirical analysis in en-

gineering. It is based on the state space model representation in which one or more state

variables determine the state of the remaining variables in the system. While the latter vari-

ables are observable, state variables are generally not. Hence, the challenge of estimating a

state space model is to correctly capture the impact of the unobservables. As will be seen in

this thesis, subspace algorithm analysis is one possible way to do this. As in the VAR proce-

dure, it does not presume a particular state space model and allows the data to behave more

flexibly. Likewise, the implementation of the subspace algorithm analysis depends on the

usage of a limited set of available (i.e., observable) data series. The aforementioned prob-

lems with the identification of news shocks à la Beaudry and Portier evidently also arise in

this context.

To the best of my knowledge, there are only a few empirical studies in business cycle re-

search in which subspace algorithm analysis is used. This is even more the case for situations

in which cointegration relationships can be found in the data. Cointegration is a statistical

concept describing the property of time series to exhibit comovement that is driven by one

(or more) common stochastic trend(s). Macroeconomic time series are often proved to have

this feature. Dietmar Bauer and Martin Wagner have developed a modified version of the

subspace algorithm accounting for cointegration. This thesis is probably the first empiri-

cal business cycles analysis in which Bauer and Wagner’s subspace algorithm is applied to

structural estimation. The restrictions that are necessary for identification can be employed

in the same way as in SVAR, so a comparison of SVAR and structural subspace algorithm

analysis is an important goal. Such a comparison involves carrying out Monte Carlo simula-

tions in which artificial time series are generated on the basis of a theoretical business cycle

model and, in turn, used for estimation via the above-mentioned methods. The individual

performance of a method is evaluated in how well it can reproduce the dynamics of the

underlying theoretical model. Thereby, the corresponding impulse responses and the iden-

tified structural shocks provide the foundation for the assessment. A subsequent empirical

application of the methods completes the comparative study.
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Throughout my thesis, I conduct two comparative studies that deal with two different sce-

narios. In the first, I assume that the available information set coming from the observable

data is sufficient to uncover the structure of the underlying data generating process (DGP).

In contrast, the second scenario considers the situation in which there is misalignment be-

tween the available and the theoretically sufficient information sets. The latter scenario re-

flects the situation that has been indicated above with respect to the work of Beaudry and

Portier. It should be noted that the classification of an information set as sufficient is referred

as the asymptotic case here. In this thesis, I designate an information set as insufficient if

it cannot disclose the true DGP with the help of the applied methods even if the data used

for the analysis contained an infinite number of observations. Of course, there are addi-

tional difficulties in practice, such as limited sample sizes, which affect the performance of

the estimation methods. Such issues will also be addressed in the Monte Carlo simulations.

Differentiating between the two scenarios enables a convenient treatment to systematically

identify how various aspects influence the success of the estimation methods and to show

how potential problems can be handled appropriately.

My thesis is thus organized as follows. Chapter 2 outlines the theoretical framework, which

establishes the basic setting for the subsequent chapters. To classify the suitability of an

information set, it is helpful to distinguish between two perspectives. On the one hand, there

is the perspective of the economic agents whose actions are represented by a corresponding

business cycle model. This model is supposed to be the true DGP from which the observable

time series originate. In my thesis, I call the associated representation of the model the fully

informed agents (FIA) model. This name is derived from the assumption that all agents

in the model economy have access to all relevant information that could influence their

decision making. On the other hand, there is the econometrician’s perspective. As opposed

to the agents, the econometrician is faced with the constraint that her analysis relies only

on the results of the agents’ decisions that are captured by the available observations in

terms of the limited number of macroeconomic time series. In the following, I consider the

econometrician someone who applies the previously introduced empirical instruments, i.e.,

VAR and subspace algorithm analysis. The perspective of the econometrician is described

by the limitedly informed econometrician (LIE) model.

The FIA and LIE models are based on their respective state space representations. They

are equivalent in the case wherein the information sets of agents and econometrician are

the same, so the latter can expose the true DGP. In Chapter 2, I deduce the condition, i.e.,

the invertibility condition, necessary for this situation to hold. This condition is used to

distinguish between the two scenarios I have explained above. Furthermore, I derive the

corresponding VAR and moving average (MA) representations of the FIA and LIE models in

Chapter 2 to illustrate the connections among the state space, VAR and MA representations.

The MA representation describes the observables as an infinite weighted sum of present
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and past (structural) shocks driving the system. Impulse responses can directly be derived

from the MA representation. The closing section of Chapter 2 is devoted to the prototypical

business cycle model, which serves as benchmark for the DGP in the simulation studies

conducted in the following chapters. The model is presented in a rather general form but

will be specified in the relevant chapters to perform the role of the FIA model.

The subsequent chapters are divided into two parts. In Chapters 3 and 4, I consider the sce-

nario in which the information sets of the econometrician and the agents are equal, whereas

Chapters 5 to 8 consider the scenario in which equivalence between both information sets is

not satisfied. First, Chapter 3 introduces subspace algorithm analysis as an alternative to the

VAR approach for structural estimation. The focus of the chapter is more on explaining its

practical application rather than a detailed description of its statistical background. Particu-

lar attention is paid to the context of cointegration and the adapted version of the subspace

algorithm as designed by Bauer and Wagner. Afterwards, I apply the subspace algorithm

cointegration analysis in a Monte Carlo simulation to compare it to its VAR counterpart,

namely, the vector error correction model (VECM). In a first experiment, the workhorse

model in Chapter 2 is used to build the DGP. In the second exercise, I resort to a more com-

plex model that can be viewed as comprehensive expansion of the workhorse model. The

expanded model is attributable to Beaudry et al. (2011) and motivates the empirical exami-

nation in Chapter 4.

The idea behind the model by Beaudry et al. (2011) is to picture the market rush behav-

ior of firms, which receive a signal about new market opportunities in the next period. In

the model, firms respond to the signal immediately by boosting their investments in new

startups to achieve profits in newly opened markets. Beaudry and Portier (2014a) argue

that this type of model is an alternative way of interpreting the literature on technological

news-driven business cycles. However, as specified by Beaudry et al. (2011), the model does

not imply the above-mentioned misalignment between the econometrician and the agents’

information sets.5

Beaudry et al. (2011) constructed their model to provide a theoretical justification for their

examination of US data in which they estimate a structural VECM (SVECM) to identify mar-

ket rush shocks as triggers of very short-term macroeconomic fluctuations. In Chapter 4, I

carry out a comparable investigation using the subspace algorithm cointegration analysis in

addition to the SVECM. Moreover, I provide evidence that the market rush interpretation

of the structural shocks identified by these methods seems plausible. The results associ-

ated with the subspace algorithm method, in particular, appear convincing and constitute a

serious alternative to the SVECM, thereby supporting the findings of Beaudry et al. (2011).

Chapter 5 marks the beginning of the second part of my thesis dealing with the situation

5This is mainly due to the model assumption about the agents’ anticipation horizon, which is just supposed to
be one period long, i.e., there is only one period between the occurrence of the signal and the materialization.
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in which the information sets of the econometrician and agents do not match. Therefore,

the econometrician should principally be unable to unveil the structure of the FIA model on

the basis of the LIE model. In the literature, this scenario is often called nonfundamental-

ness (or noninvertibility). In Chapter 5, I offer an explanation of this terminology and show

how nonfundamentalness affects the econometrician’s analysis and results, e.g., how it can

bias the corresponding impulse response functions. To this end, I present analytical and

numerical examples based on the workhorse model. Chapter 5 concludes with a discussion

of different solutions proposed in the literature to cope with the problem of nonfundamen-

talness. These approaches aim to expand the econometrician’s information set so that there

is no disadvantage relative to the information possessed by the agents. Popular examples

include adding a large number of further macroeconomic variables or considering specific

information variables, such as survey data.

There may not be such a multitude of macroeconomic series or particular information vari-

ables available, e.g., because of an insufficient number of observations due to a shorter sam-

ple period or lower frequency; thus, I explore other potential solutions in the last three chap-

ters of my thesis. Chapter 6 addresses the question of whether it is possible to extract the

necessary information from the results of the structural estimation in order to adequately

modify the procedure to correct for bias and to obtain proper findings. Unfortunately, this

is not the case, as I will illustrate through analytical and numerical examples.

While the method presented in Chapter 6 can be considered empirically based, Chapter 7 is

devoted to the theory-based approach of Mertens and Ravn (2010). In their analysis of US

data, the authors modify the standard SVAR/SVECM procedure in order to investigate the

impacts of anticipated fiscal shocks. Their approach is characterized by its ability to detect

the true impulse responses at least asymptotically. Mertens and Ravn (2010) explain how to

adapt the conventional SVAR/SVECM when only a few particular parameters of the under-

lying FIA model are known. In Chapter 7, I show that this technique can be carried over to

subspace algorithm analysis and can be applied to the context of technology-related news

shocks. I conduct Monte Carlo simulations on the basis of the workhorse model to compare

the performance of the standard with the modified versions of SVAR/SVECM and sub-

space algorithm analysis. My results indicate that the modified subspace algorithm analysis

achieves the best outcome. I also use robustness tests to ascertain whether the improvement

due to the modification steps proposed by Mertens and Ravn (2010) depends on certain

factors.

The closing chapter, Chapter 8, presents a framework bringing together the techniques of

the preceding chapters in order to examine the empirical relevance of news shocks in the

US data. I draw on the study by Beaudry and Portier (2014a) and use their original data set.

In addition to the SVECM approach of Beaudry and Portier (2014a), I perform a subspace

algorithm analysis and apply the theory-based root flipping method, the latter with both the
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SVECM and the subspace algorithm. The findings support the hypothesis that technological

news shocks can trigger macroeconomic fluctuations in the US to some extent. In particular,

the SVECM results provide, in comparison to the subspace algorithm analyses, a more un-

ambiguous picture of the relevance of this type of news shock, including that its dominance

is not related to the very short-term horizon. The latter outcome is complementary to the

previous finding of Chapter 4, which revealed the superior role of market rushes, as another

kind of news shock, in explaining US business cycles over the very short-run. The chapter

closes the thesis with a discussion about the challenge to set up a framework in which both

types of news shocks coexist and which permits identification of both in empirical appli-

cations. Irrespective of this challenge, my thesis contributes to the literature that builds on

the view of Pigou (1927) and Keynes (1936) and emphasizes the importance of changes in

agents’ expectations for business cycle phenomena.



Chapter 2

Theoretical framework

In this chapter, I sketch the general framework that forms the basis for most of the analyses

presented in this thesis. In the first section, I present various types of time series represen-

tations that follow from an economic model. Following the introductory remarks, I describe

the original state space representation of the model. The original state space representation

reflects the true dynamics of the agents’ behavior in the economy. I label this representation

the FIA model. Then, the innovations form, which is an alternative representation associ-

ated with the FIA model, is provided in the subsequent subsection. The innovations form is

another way of representing a state space system, but in contrast to the original state space

representation, it relates to the perspective of an econometrician who seeks to expose the

original model when carrying out an empirical analysis. I call this representation the LIE

model. The description of the FIA and LIE models is complemented by the MA and VAR

representations, which can be derived from them and help establish the link to the empiri-

cal tools employed in the thesis. Then, I expound on the condition that ensures that the FIA

and LIE models perfectly match. The first section is completed by highlighting important

connections between the FIA and LIE models.

The second section of this chapter outlines the workhorse model that will provide the theo-

retical foundation for several analyses in the subsequent chapters wherein it adopts the role

of the FIA model. It can be seen as a prototypical dynamic stochastic general equilibrium

(DSGE) model. As I trace different issues and results back to this model throughout the the-

sis, I introduce the model in a rather simplified version and present its basic components and

properties. The workhorse model will be augmented in the following chapters according to

the needs of the corresponding subject while keeping its structure as tractable as possible.

9
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2.1 State space models and their representations1

2.1.1 Introductory remarks

Formulating a DSGE model usually requires certain elements to be defined. First, one has

to characterize the environment in which the agents, i.e., the decision makers in the econ-

omy, interact. Second, one has to establish the decision rules that determine the agents’

behavior. Last but not least, agents’ choices are influenced by the degree of uncertainty they

are confronted with. Hence, building a DSGE model needs a specification of the stochastic

environment. Combined, these three components finally form a nonlinear system of expec-

tational difference equations.

Following this preparation stage, the next step is to solve the model, i.e., to find the policy

functions that describe the dynamic evolution of the economy. As most of these models do

not have a closed form solution, numerical methods have to be used to solve them approxi-

mately. There are various solution methods available. The well-known procedures by Blan-

chard and Kahn (1980), Uhlig (1999), Klein (2000) and Sims (2002) rely on the computation

of a linear or log-linear approximation around a nonstochastic steady state. Alternatively,

linear quadratic approximation methods can be applied (see Anderson et al. (1996) or Díaz-

Giménez (1999), among others). In the latter case, optimization problems with quadratic

objective functions subject to linear constraints are solved. All these methods yield model

solutions in form of linear approximations of the policy functions.2

Linear policy functions are highly attractive for the purposes of this thesis, which is why I

limit the scope of the thesis to the class of DSGE models for which the solution is mapped

onto a linear system of equations. Of course, I thus implicitly impose strong restrictions

because I assume that the model class considered here explains economic behavior while

ignoring any nonlinearities in the real data. However, focusing on linear dynamic systems

allows me to draw direct connections between the theoretical models and the empirical tools

I present and develop throughout the thesis. This coherence could not be illustrated in such

a clear and demonstrative way using nonlinear systems.

Having obtained a linear(ized) model solution, there are different ways of taking the model

to the data. In general, methods for evaluating a DSGE model can be categorized into at least

two groups. The first category includes calibration exercises and moment-based estimation

1In this section, I draw on Fernández-Villaverde et al. (2005, 2007) as well as Hansen and Sargent (2014). See
Hannan and Deistler (1988) for a more sophisticated treatment on state space models. Because the latter offer
a statistical perspective, my main references are the former authors who provide more economic intuition.

2There are also approaches, such as perturbation or projections methods, for obtaining high order approxima-
tions. For a detailed description and review of such methods, I refer the reader to, e.g., Aruoba et al. (2006)
or DeJong and Dave (2007). In a comparative study of several numerical solution techniques, e.g., second
order approximations or value function iterations, Heer and Maußner (2008) find that log-linearization yields
the best results in terms of accuracy and adequacy for business cycle analysis when applied to the stochastic
growth model with flexible labor, i.e., my workhorse model.
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procedures, such as the Generalized Method of Moments (GMM) or Simulated Method of

Moments (SMM). These methods involve only a (rather small) subset of observable variables

included in the DSGE model. By concentrating on this subset, the aim of the procedures is to

match the behavior (in terms of moments) of the selected variables with the behavior of their

counterparts in the real data. The second group of methods comprises Maximum Likelihood

(ML) and Bayesian estimation. Unlike the first group, these techniques are normally based

on a larger set of observables and attempt to appraise a larger set of empirical implications

of the chosen DSGE model.

All the preceding methods premise a particular DSGE model upon which they build their

analysis. They can be used to test whether the model under investigation is adequately sup-

ported by the data. As will be described below, calibration and moment-based procedures

aim to match specific empirical objects in order to parameterize the underlying model. ML

and Bayesian estimation rest on the assumption that the DSGE model completely character-

izes the data from a statistical point of view. Empirical performance is assessed either by

defining a second set of empirical targets (as in the case of calibration), by testing hypothe-

ses (as in moment-based and ML approaches) or by comparing conditional probabilities

assigned to the model under examination and its alternatives (as in Bayesian estimation).

In a calibration exercise, the model parameters are set to specific values, which can be traced

back to micro-level analysis or long-run averages of certain time series (e.g., the labor in-

come share). The empirical target then depends on the question posed in the experiment.

For example, one could assess the predictions of the model produced by varying a selected

parameter. Matching moments involves estimating the model parameters such that the re-

sulting parameterization leads to the best fit of the underlying economic model regarding

the collection of moments chosen (in advance) by the econometrician. An example of a

moment-based procedure is the minimization of an objective function that determines the

distance between the theoretical moments (as implied by the economic model) and the em-

pirical moments (as estimated by, e.g., a reduced-form VAR) subject to the set of chosen

parameters. By testing the statistical significance of the difference between both sets of mo-

ments, it can be evaluated whether the model should be rejected as potential DGP.

ML and Bayesian estimation conduct a likelihood analysis. That is, based on the state space

representation of the observable data and a distributional assumption for the structural

shocks in the model, the likelihood function is initially formed. The likelihood function is

the joint probability of observing the data as function of the model parameters. As its name

indicates, ML maximizes the likelihood function subject to the parameters, i.e., the objec-

tive is to find the parameterization that maximizes the probability that the data could have

been generated by the theoretical model. ML estimation represents the classic approach to

likelihood analysis – the data are treated as random and the parameters as fixed (but un-

known). In particular, the observable data are considered a realization of a random draw
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from a sampling distribution that is captured by the likelihood function.

The Bayesian approach presumes the opposite in the sense that the parameters to be es-

timated are treated as random while the data are fixed. The likelihood function is cou-

pled with a distributional assumption for the parameters to incorporate a priori information

about them in order to compute their posterior distribution. From the definition of the pos-

terior distribution, the marginal likelihood associated with the particular model is derived.

It can be interpreted as expected value of the likelihood conditioned on the parameters’ prior

distribution. The empirical plausibility of the model can then be assessed by comparing it

with an alternative model in terms of the so-called posterior odds ratio. This ratio relates

the marginal likelihood of one model to the marginal likelihood of the alternative, whereby

each marginal likelihood is also multiplied by a (prior) probability assigned to the respective

model. The evidence provided by the data in favor of one model over another can be eval-

uated by means of this ratio. The larger the posterior odds ratio, the stronger the evidence

against the model represented in the denominator.3

A third group of empirical methods, which I treat separately from the previous two cate-

gories, is at the core of this thesis. This group contains the estimation methods introduced

in the first chapter: (structural) VAR and subspace algorithm analysis. As in the first group,

these procedures typically incorporate a small set of (observed) variables. In contrast to all

the aforementioned methods, the econometrician who utilizes them does not usually con-

dition on a particular (fully specified) economic model but imposes only a minimum of

theoretical structure on her analysis. As a result, her conclusion about which theory gains

empirical support from the data might be more general. There is a controversy in the lit-

erature about whether this approach is generally capable of exposing the true DGP.4 This

discussion is mainly related to the VAR procedure. A key goal of this thesis is to revisit this

debate under various scenarios and to broaden it in the subspace algorithm analysis. Note

that, henceforth, whenever I allude to the econometrician, I presume that she applies VAR,

subspace algorithm analysis or both.

To acquaint the reader with the debate about whether the true DGP can be adequately cap-

tured by VAR (and subspace algorithm) analysis, it is helpful to establish a benchmark repre-

sentation (i.e., the FIA model) that typifies the theoretical model and to derive the associated

representation on which the econometrician’s analysis is founded. This allows me to depict

the conditions under which the econometrician is, in principle, able to recover the true DGP.

My course of action draws on Fernández-Villaverde et al. (2005, 2007), who use state space

representations to illustrate the connections between the theoretical model and the econo-

metrician’s model. In referring to Fernández-Villaverde et al. (2005), my presentation can be

seen as an engineering exercise in which I provide a direct mapping between the parameters

3A comprehensive overview of the above-mentioned methods and their implementations is given by DeJong
and Dave (2007).

4See Section 3.1 for more details and references.
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of the economic model and those of the econometrician’s model.

2.1.2 Fully informed agents model

State space representation

Based on the above explanations, I presume that the solution to a DSGE model can be ex-

pressed in terms of a linear policy function. It describes a set of state variables that evolve

according to a first order autoregressive process driven by a certain number of economic

shocks. Using a definition from dynamic programming, state variables dictate the posi-

tion of the system before the agents in the economy make their current decisions. I dis-

tinguish between endogenous and exogenous state variables. Endogenous states are pre-

determined variables, i.e., their current value depends on the agents’ choices in the previ-

ous period. Exogenous states incorporate stochastic processes that are additional sources of

model dynamics and cannot be influenced by the agents’ decisions. In addition, all other

(non-predetermined) endogenous variables can be constructed as linear combination of the

states.5

A DSGE model can have the following state space representation

xt = Axt−1 + Bwt , (2.1)

yt = Πxt , (2.2)

where the constants are omitted for illustrative purposes. yt is the (k × 1) vector of (non-

predetermined) endogenous variables, and xt denotes the (n× 1) state vector. wt represents

the zero mean (m× 1) vector of economic shocks satisfying the white noise properties with

E (wtw
′
t) = Im and E (wtwt−j) = 0 for integer j > 0. The system matrices have the corre-

sponding dimensions in brackets: A (n× n), B (n×m) and Π(k × n). These matrices are

nonlinear functions of the deep model parameters designating, e.g., technology, preferences

and endowments. Equation (2.1) is the state equation. Equation (2.2) expresses the linear

mapping between (non-predetermined) endogenous and state variables.

Next, I reformulate the state space representation above following the notation of Fernández-

Villaverde et al. (2005, 2007). After substituting equation (2.1) into equation (2.2) and setting

C = ΠA and D = ΠB, I arrive at the system

xt = Axt−1 + Bwt , (2.3)

yt = Cxt−1 +Dwt , (2.4)

5In this context, Sargent (1989) was one of the first to propose that economic models could be formulated
in state space form. He illustrates how an economic model can be mapped onto a setup that enables the
application of recursive methods, such as the Kalman filter, to evaluate the model’s likelihood function.
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where C and D represent matrices of dimension (k × n) and (k ×m), respectively.

The above system of equations represents the original state space. It describes the true dy-

namics in the underlying economic model. To be precise, the state space system (2.3) and

(2.4) can be summarized as a quadruple, (A,B, C,D), which provides a complete character-

ization of the agents’ behavior in terms of the model parameters. I also adopt the usual as-

sumption in standard DSGE models that all agents know the complete model, including its

parameters as well as the current and past realizations of all variables and shocks. Hence, the

agents’ information set in period t can be defined as IAt ≡ {yτ , xτ , wτ for τ ≤ t;A,B, C,D}. I

thus exclude DSGE models that have an imperfect or asymmetric information structure on

the part of the agents from my analysis, as these features would complicate my course of

action. I call the state space system given in equations (2.3) and (2.4) the FIA model.

The number of variables in yt is not often equal to the number of economic shocks. Primar-

ily, it holds that k > m, implying a singular FIA model. This situation is described in the

literature as stochastic singularity. In this case, there are linear combinations of a subset of

variables in yt, which are purely deterministic. If the data were generated by a singular FIA

model, they would have a singular variance-covariance matrix, whereas the econometri-

cian’s empirical methods suppose a nonsingular variance-covariance matrix. Ingram et al.

(1994) illustrate that it is thus impossible for the econometrician to infer the realization of the

economic shocks from the realization of the variables in yt. Note that the problem demon-

strated by Ingram et al. (1994) is due to a prediction of a singular FIA model: only a small

number of shocks explains a larger number of variables in yt. This differs from the scenario

described in the first chapter, where the existence of a particular type of economic shock,

e.g., a news shock, produces misalignment between the information sets of the agents and

the econometrician such that the econometrician does not have enough information to iden-

tify the shocks. While the latter issue is part of my thesis, I rule out the case of stochastic

singularity.6

To cope with the problem of stochastic singularity, various proposals exist in the literature.

All of these aim to equalize the dimensions of yt and wt. The first approach adds error terms

to equation (2.2). These error terms can be specified as uncorrelated across variables and

therefore constructed as pure measurement errors.7 Hence, they lack a structural meaning

and should simply be viewed as misspecification errors. Ireland (2004) also allows for corre-

lated errors across variables so that they can capture (co)movements in the data, which the

underlying theoretical model does not indicate and which do not reflect simple measure-

ment bias.

As an alternative, Ingram et al. (1994) introduce the multiple-shock approach in which the

6Stochastic singularity does not affect only the empirical methods that I consider in this thesis. Ruge-Murcia
(2007) shows that the procedures for matching moments and likelihood analysis are also vulnerable to
stochastic singularity.

7See, e.g., Altug (1989), Sargent (1989), McGrattan (1994), Hall (1996) or McGrattan et al. (1997).
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dimension of wt is enlarged by augmenting the theoretical model with additional economic

shocks until there are as many economic shocks as variables in yt.8 This extended model

facilitates further sources of stochastic uncertainty, which might help explain variations in

the data. A disadvantage of this procedure is that the extended model does not retain the

structure of the original model, as appending economic shocks normally increases the state

dimension in contrast to the addition of measurement errors.9

While the previous approaches expand the vector wt, the third one decreases the dimension

of yt by dropping some of the variables (see, e.g., Lubik and Schorfheide (2004) or Smets and

Wouters (2007)). Thus, it is presumed that there is a one-to-one mapping between the model

variables and corresponding (perfectly measured) indicators in real data. In the following, I

allude to this approach when I base my analysis on the subsequent assumption in order to

exclude stochastic singularity from the forthcoming subjects:

Assumption 1. The number of variables in yt equals the number of economic shocks wt, i.e.,

k = m, and the matrix D has full rank.10

MA representation

For my purposes, I continue with another assumption at first. The assumption is related

to the eigenvalues of the system matrix A. These eigenvalues are decisive for the dynamic

properties of the state process (as given by xt) and, as a consequence, for the dynamic prop-

erties of the process given by yt. The following assumption ensures that (xt and hence) yt
describes a stationary process:

Assumption 2 (temporary). All eigenvalues of A are less than one in modulus.

I consider Assumption 2 temporary throughout the thesis because I will also address nonsta-

tionary processes in the subsequent chapters. The assumption is later relaxed to allow for

eigenvalues of A equal to one such that the process captured by yt is integrated of order one.

In Chapter 3, I show how to derive the corresponding vector MA and VAR representation

of (the first difference of) yt when A has unit eigenvalues. To ease the explanations in the

remaining paragraphs of this subsection, yt is considered stationary at this point.

The vector MA representation of the FIA model is obtained as follows. I write the state equa-

tion as xt−1 = (L−1 −A)
−1 Bwt and substitute into equation (2.4), whereby the lag operator

L shifts the respective variable(s) one period backward (or forward, in the case of L−1):

yt =
[
D + C

(
L−1 −A

)−1 B
]
wt . (2.5)

8See Leeper and Sims (1994), Smets and Wouters (2003) or Adolfson et al. (2008), for instance.
9Refer to Ruge-Murcia (2007) and Tovar (2009) for a deeper discussion of these issues.
10Notice that this assumption is not necessary for the derivation of the LIE model.
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This equation can also be formulated in more convenient form

yt =
[
D + C (In −AL)−1 BL

]
wt . (2.6)

Thus, the MA representation describes yt as a linear combination of all the economic shocks

that occurred in the current and (infinite number of) past periods. I use the MA repre-

sentation to picture the dynamics of the model in terms of impulse response functions.

The impulse responses can be extracted from the coefficients in the MA operator [D +

C (In −AL)−1 BL].11

VAR representation

Contrary to the MA representation, the VAR representation of the FIA model does not al-

ways exist. The VAR representation can be derived from the MA representation in equation

(2.6) under the condition that the MA lag operator is invertible in nonnegative powers of

the lag operator L. In technical terms, this is formulated as the condition that the roots of

the characteristic polynomial det
[
D + C (zIn −A)−1 B

]
are less than one in absolute value,

where det [•] denotes the determinant, and z stands for a scalar that can take any complex

value. I refer the reader to the appendix for more details on the terminology of roots and

polynomials. By applying the rules related to the algebra of partitioned matrices, I also

show in the appendix that the aforementioned roots equal the eigenvalues of (A− BD−1C).12

Therefore, I can document the necessary condition for the existence of the VAR representa-

tion of the FIA model, whereby I utilize the terminology of Fernández-Villaverde et al. (2007)

to state the

(poor man’s) invertibility condition. All eigenvalues of (A− BD−1C) are less than unity in

modulus.

Only if the invertibility condition holds, the FIA model has an (infinite) order VAR represen-

tation, which can be determined by inverting the MA operator in equation (2.6). This is

essential for the econometrician who conducts VAR analysis. Even if the econometrician is

not reliant on VAR methods, the invertibility condition is crucial. To improve the reader’s

sense about this, I present the LIE model in the next subsection and discuss the implications

of the invertibility condition afterwards.

11Using the power series expansion with respect to equation (2.6) may be helpful, which yields yt = Dwt +∑
∞

i=0
CAiBwt−1−i. See the appendix for general explanations of the terminology used in this section.

12In the appendix, I also differentiate between the characteristic polynomial and the lag polynomial. Us-
ing the above MA representation as example, I would write the associated MA lag polynomial as

det
[
D + C (In −A)

−1 BL
]
. Consequently, the roots of the lag polynomial are the reciprocals of the roots

corresponding to the characteristic polynomial.
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2.1.3 Limitedly informed econometrician model

State space representation

In this subsection, I introduce the LIE model, which is directly associated with the FIA

model. The econometrician who seeks to detect the FIA model (or at least its dynamics)

is confronted with a limited information set in relation to the agent because the state vector

comprises unobservable variables. Thus, the econometrician can only retrieve information

from yt. In that sense, yt can be interpreted as vector of observables and equations (2.2) and

(2.4) as observation equations (of the FIA model).

The LIE model is a way of representing the observable process yt from the perspective of the

econometrician. The derivation of the LIE model requires computations that are inherent in

the Kalman filter algorithm, which originates in the work by Kalman (1960). The eponymous

Kalman filter is applied to the data for various purposes. For example, it can be used to

estimate the parameters of the system matrices of the FIA model when conducting a ML

estimation procedure.13 Alternatively, Hansen and Sargent (2014) explain how to use the

computational steps of the Kalman filter to deduce the innovations form from which I derive

the LIE model.

I concentrate on a key step of the Kalman filter algorithm: the estimation of the unobserved

state by incorporating the underlying FIA model structure and information that can be fil-

tered out from the observations. Thereby, the state is calculated as the linear least squares

projection from the available information, i.e., x̂t ≡ Ê [xt | Y t], where Ê [•] denotes the linear

least squares projection operator, and Y t is the set of observations in the history of yt, includ-

ing period t. It is then possible to estimate the state conditional on current and past values

of yt as a weighting average between the prediction of the model and a correction from the

observations:

x̂t = Ax̂t−1 +Kt (yt − Cx̂t−1) , (2.7)

where Kt represents the so-called Kalman gain, which weights the correction term in this

equation. It is calculated as

Kt = (AΣt−1C ′ + BD′) (CΣt−1C ′ +DD′)
−1

, (2.8)

where Σt is defined as E
{
(xt − x̂t) (xt − x̂t)

′} and can be interpreted as the prediction error

variance of the state. It is updated via the recursive formula

Σt = AΣt−1A′ + BB′

− (AΣt−1C ′ + BD′) (CΣt−1C ′ +DD′)
−1

(AΣt−1C ′ + BD′)
′
. (2.9)

13Hamilton (1994) provides a corresponding explanation.
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This equation is called a matrix Riccati difference equation.14

As for the definition of x̂t, I define the analogous prediction of yt conditional on its own

history as ŷt ≡ Ê [yt | Y t−1]. Next, defining the one period ahead forecast error in yt as

at ≡ yt − ŷt, it is straightforward to see that the correction term in equation (2.7) is equal

to at, i.e., at = yt − Cx̂t−1.15 In rearranging the latter equation and replacing the correction

term in (2.7), I can build the system that Hansen and Sargent (2014) call the innovations

representation:

x̂t = Ax̂t−1 +Ktat , (2.10)

yt = Cx̂t−1 + at , (2.11)

with E (ata
′
t) = CΣt−1C ′ + DD′. The innovations representation results from the recursions

given in the equations (2.7)–(2.9), which can be initialized from arbitrary values of x̂0 and

Σ0. The LIE model represents the time-invariant version of the innovations representation.

To obtain the time-invariant version of the state space system in equations (2.10) and (2.11),

I have to set up appropriate conditions under which the recursions converge to a steady

state as t −→ ∞. These conditions are common in the linear quadratic Gaussian control

literature, where a quadratic return function is optimized subject to a linear transition law.

There is a vast literature dealing with the conditions that lead to the existence of solutions to

linear regulator problems, including terms such as detectability, stabilizability, reachability,

controllability and observability. Anderson and Moore (1979) provide an overview of these

attributes.16 Ljungqvist and Sargent (2004) show that the optimal linear regulator problem

and Kalman filtering are equivalent concepts. I therefore adopt certain aspects of control

theory in the following.

The Kalman filter is time-invariant and asymptotically stable if a constant or limiting solu-

tion to the Riccati difference equation (2.9) exists. The conditions are usually imposed in

terms of definitions related to the system matrices. For my purposes, I formulate the follow-

ing definitions:17

Definition 1. The pair (A, C) is observable if the rank of
(

C ′ A′C ′ . . . (A′)n−1 C ′
)′

is equal to

the number of states n.

Definition 2. The pair (A, B) is reachable if the rank of
(

B AB . . . An−1B
)

is equal to the

number of states n.

14Its derivation is presented in the appendix.
15Replace yt in the definition of ŷt by the right-hand side of equation (2.4), i.e., ŷt = Ê

[
Cxt−1 +Dwt | Y t−1

]

and recall the definition of x̂t. It follows that ŷt = Cx̂t−1.
16See also the discussion in Anderson et al. (1996).
17Note that the more common term is controllability rather than reachability. These attributes are equivalent

only if the matrix A is nonsingular (see Aoki (1987), p. 59). Because I also want to allow for singular A, I
use the term reachability in the following. Observability means that for a given output sequence {yt}, one
can uniquely reconstruct the initial state at finite time. Reachability says that the system can be transferred
to any desired state target for a given input sequence, i.e., here {wt} for a finite time (see Gu (2012)).
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The properties in Definitions 1 and 2 guarantee a unique limiting solution to the Riccati dif-

ference equation (2.9).18 These attributes also ensure that the dimension of the state vector

in the FIA model is minimal, i.e., that no superfluous state variable has an effect on the dy-

namics of the system.19 The minimum number of state variables (i.e., n in Definitions 1 and

2) is substantial for the development of the subspace algorithm analysis in Chapter 3.

Given the Definitions 1 and 2, I make the following assumption:

Assumption 3. The pair (A, C) is observable, and the pair (A, B) is reachable.

As a result of this assumption, I can determine the unique limiting solution Σ in terms of the

system matrices as the solution to the algebraic Riccati equation

Σ = AΣA′ + BB′ − (AΣC ′ + BD′) (CΣC ′ +DD′)
−1

(AΣC ′ + BD′)
′
. (2.12)

This result is accompanied by the fact that all eigenvalues of (A−KC) are less than one in

modulus,20 where K is the steady state Kalman gain that fulfills

K =
(
AΣC ′ + BD′) (CΣC ′ +DD′)−1

. (2.13)

In the literature, the result with respect to the eigenvalues of (A−KC) is often stated as the

following condition:

Minimum phase condition. All eigenvalues of (A−KC) are less than unity in modulus.

Hence, I obtain the time-invariant version of the innovations representation

x̂t = Ax̂t−1 +Kat , (2.14)

yt = Cx̂t−1 + at , (2.15)

with Ωa ≡ E (ata
′
t) = CΣC ′ + DD′. I denote the state space representation in equations

(2.14) and (2.15) as the LIE model (in reduced form) because it reflects the bounded state

of knowledge of the econometrician. It can be summarized as the quadruple (A, C, K,Ωa).

In Chapter 3, I show that the elements of this quadruple can be estimated by the subspace

algorithm analysis.

The econometrician only observes yt and does not see the state. She can only forecast the

state conditioned on the history of yt (and an initial state). Thus, her information set is

exclusively governed by the observations yt and the corresponding forecast errors at: IEt ≡
{yτ , aτ for τ ≤ t;A, C, K,Ωa}. Of course, the econometrician’s information set is also limited

18The reader is directed to d’Andréa Novel and Lara (2013) for a corresponding proof in which they presume
the initial matrix Σ0 to be positive semidefinite.

19A proof is given by Gu (2012), for instance.
20See also the proof by d’Andréa Novel and Lara (2013) for further details.
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by a finite sample size in practical applications. However, because I use the LIE model as

a theoretical construct to analyze the systematic connections between FIA and LIE model, I

take IEt to be the information set that is available to the econometrician on the basis of an

infinite set of observations yt. The reason is that, at this stage, I wish to avoid well-known

shortcomings of small samples.

The econometrician who intends to detect the dynamics and sources of the true DGP usu-

ally proceeds by imposing a structure on her reduced form model based on theoretically

founded restrictions. Structural identification implies that one assumes that the reduced

form innovations at are linear combinations of the structural innovations ε̂t with the iden-

tity covariance matrix. This means that the relationship at = D̂ε̂t holds, where D̂ denotes

the rotation matrix (assumed to have full rank), which has to be determined by sufficient

restrictions on the LIE model. Note that it also follows that Ωa = D̂D̂′. At this point, sup-

pose that structural identification has already been conducted, so I can write the LIE model

in structural form as

x̂t = Ax̂t−1 + B̂ε̂t , (2.16)

yt = Cx̂t−1 + D̂ε̂t , (2.17)

where B̂ = KD̂ and E (ε̂tε̂
′
t) = Ik.

The econometrician is successful if the dynamics and shocks she recovers from the LIE

model in structural form are equivalent to those of the FIA model, i.e., if the system ma-

trices (A,B, C,D) and true shocks wt conform to their counterparts in equations (2.16) and

(2.17). Before addressing this issue in detail, I conclude this subsection with the MA and

VAR representations of the LIE model.

MA representation

As in the case of the FIA model, I refer to (temporary) Assumption 2 at this point. I repeat the

computations and apply them to the LIE model (in structural form) to obtain

yt =
[
Ik + C (In −AL)−1KL

]
D̂ε̂t . (2.18)

Following the same algebraic rules as above, it can be verified that the roots of the character-

istic polynomial det
[
Ik + C (zIn −A)−1K

]
equal the eigenvalues of (A−KC). As the mini-

mum phase condition is satisfied due to Assumption 3, the MA operator
[
Ik + C (In −AL)−1K

]

is invertible in nonnegative powers of the lag operator L so that the structural innovations

ε̂t lie in the space spanned by current and past realizations of yt, i.e., the series {ε̂t} can be

constructed using the sequence of observations {yt}. Equation (2.18) is known as the Wold

representation. Its main properties are that the MA lag operator is invertible (in nonnegative
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powers of L) and that ε̂t satisfies white noise characteristics.21 The latter holds because ε̂t
is a linear combination of the one period ahead forecast error in yt based on a linear least

squares projection of yt on its past.

Structural identification is conducted by imposing appropriate restrictions on the MA op-

erator in order to determine the rotation matrix D̂. Having found the rotation matrix, the

structural innovations ε̂t can be computed as well as the associated impulse responses. In

this thesis, I consider short-run and/or long-run restrictions, i.e., the instantaneous and/or

total impact of shocks on certain variables are constrained for shock identification. I pro-

vide several examples in the subsequent chapters. Furthermore, Chapter 3 contains more

detailed explanations of these identification strategies.22

VAR representation

Due to the invertibility of the MA lag operator in equation (2.18), the associated VAR repre-

sentation can be achieved by using the algebraic rule given in the appendix:

yt = C [In − (A−KC)L]−1Kyt−1 + D̂ε̂t . (2.19)

In contrast to the FIA model, the VAR representation of the LIE model always exists because

of the fulfillment of the minimum phase condition (under Assumption 3). The econometrician’s

success in uncovering the FIA model depends on whether the invertibility condition is met. In

the next subsections, I consider this aspect and show that it is not related only to the econo-

metrician who uses VAR analysis. Indeed, even when using subspace algorithm analysis,

the econometrician’s success is connected to the invertibility condition.

2.1.4 Perfect match

Note that for the econometrician, I have defined x̂t as a linear projection of the state on

current and past values of yt. Using the FIA model equations, I can derive an analogous

expression in terms of the quadruple (A,B, C,D) for the agents. Solving the observation

equation for wt yields wt = D−1 (yt − Cxt−1). By substituting this expression into the state

equation and solving backward, I obtain

xt =
(
A− BD−1C

)t
x0 +

t−1∑

i=0

(
A− BD−1C

)i BD−1yt−i , (2.20)

21For a more detailed description and discussion of the Wold representation, see Rozanov (1967) and Sargent
(1987).

22There are also other possibilities for identification, which are not taken into account in this thesis. These
strategies employ either medium-term or sign restrictions on the impulse responses (see the references pro-
vided in Section 3.4). Another option is the identification procedure undertaken by Barsky and Sims (2011)
(in the context of news shocks) to which I allude to in Section 8.1.
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where x0 denotes the initial state vector. Hence, the state xt lies in the space spanned by

current and past realizations of yt and an initial state. If all eigenvalues of (A− BD−1C)
are inside the unit circle, the first term on the right-hand side of equation (2.20) vanishes

as t → ∞, so the state is perfectly explained only by the history of observations. This is

exactly the case in which xt = x̂t holds such that Σt is a zero matrix that, therefore, solves

the algebraic Riccati equation (2.12).

The foregoing presentation implies that the FIA and LIE models fully coincide (when the

econometrician correctly identifies the structural form of the LIE model, i.e., when she finds

the matrix D̂, which is equal to D in this case). Correspondingly, the invertibility condition

represents the criterion for whether the econometrician is able to detect the dynamics and

sources of the FIA model irrespective of her estimation technique. This statement is based

on the fact that I focus on the impulse responses of the FIA model as the true model dy-

namics. In the case of the subspace algorithm analysis, the econometrician estimates the

system matrices of the LIE model in order to compute the MA representation (2.18). In the

other case, the econometrician estimates a VAR model on the basis of equation (2.19) and

inverts the VAR operator to produce the same MA representation. Therefore, there is no

difference between the estimation approaches. Note that this chapter is a theoretical treat-

ment, so I ignore issues that may arise in practical applications here, such as lag truncation

or small sample bias.23 I broach these issues in the chapters that present the simulation and

empirical studies.

The perfect match between the FIA and LIE models designates the scenario in which the

invertibility condition holds such that the econometrician is able to recover the true dynamics

(that follow from the quadruple (A,B, C,D)) and the true shocks wt. Alternatively, I char-

acterize this scenario as the situation wherein the information set of the agents, IAt , is equal

to the information set of the econometrician, IEt . This scenario is covered by Chapters 3

and 4, whereas Chapters 5 to 8 deal with the opposite scenario whose main implications are

elucidated in the next subsection.

2.1.5 Factorization identity

If the (poor man’s) invertibility condition does not hold, the FIA and LIE model do not match

completely. Nevertheless, both systems are alternative representations that describe the

same observed process yt. Hence, the covariance generating functions of yt associated with

both models are equal. I use their state space representations to express the corresponding

covariance generating functions of yt in terms of the system matrices.24

According to Sargent (1987), the covariance generating function of yt is defined as a function

23For example, equation (2.19) represents an infinite order VAR whose estimation is not practically possible.
Thus, it is approximated by truncating high ordered lags.

24To ease the explanation in this subsection, Assumption 2 is supposed to hold.
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of a complex scalar z as gy (z) =
∑∞

τ=−∞Covy (τ) z
τ , where Covy (τ) = E

(
yty

′
t−τ
)

for integer

τ . When applying this formula to the FIA model (see equation (2.5)), it can be written as

gFIAy (z) = M (z) ΩwM (z−1)
′, where M (z) = D + C (zIn −A)−1 B, and Ωw is the covariance

matrix of wt. Because of E (wtw
′
t) = Ik, I thus obtain

gFIAy (z) =
[
D + C (zIn −A)−1 B

] [
D′ + B′ (z−1In −A′)−1 C ′

]
. (2.21)

Because E (ε̂tε̂
′
t) = Ik and D̂D̂′ = CΣC ′ + DD′, I can analogously calculate the covariance

generating function of yt in the LIE model as

gLIEy (z) =
[
Ik + C (zIn −A)−1K

] (
CΣC ′ +DD′) [Ik +K ′ (z−1In −A′)−1 C ′

]
. (2.22)

Equating both expressions yields the so-called spectral factorization identity (see Hansen

and Sargent (2014))

[
D + C (zIn −A)−1 B

] [
D′ + B′ (z−1In −A′)−1 C ′

]
=

[
Ik + C (zIn −A)−1K

] (
CΣC ′ +DD′)

×
[
Ik +K ′ (z−1In −A′)−1 C ′

]
. (2.23)

The main message of the factorization identity is that the FIA and LIE models are obser-

vationally equivalent. Recall that the econometrician resorting to the observable process yt
faces the task of finding the true underlying DGP (when there are at least two possible can-

didates).25 However, she is confined to the LIE model so that she cannot disclose the true

process given that the invertibility condition is violated. Consequently, the impulse responses

she estimates do not match the impulse responses obtained from the FIA model. The same

holds for the identification of the shocks.

Of course, the magnitude of deviation depends on the exact specification of the FIA model

and cannot be demonstrated at this stage. Regarding the respective shocks, I can provide

more detail by rearranging equations (2.16) and (2.17) as

x̂t = (A−KC) x̂t−1 +Kyt , (2.24)

D̂ε̂t = yt − Cx̂t−1 . (2.25)

Substituting the observation equation of the FIA model into the previous equations, I com-

25Theoretically, a much larger number of other models could have generated the same observable sequence
{yt}.
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bine them with the state equation of the FIA model to obtain


 xt

x̂t


 =


 A 0

KC A −KC




 xt−1

x̂t−1


+


 B

KD


wt , (2.26)

D̂ε̂t =
(

C −C
)

 xt−1

x̂t−1


+Dwt . (2.27)

Violation of the invertibility condition implies that xt 6= x̂t. Thus, I can use the above system

to calculate ε̂t as a function of current and lagged values of wt. Recall the stability properties

of A and (A−KC), which allow me to connect equations (2.26) and (2.27) to

D̂ε̂t =



(

C −C
)

Ik −


 A 0

KC A −KC


L




−1
 B

KD


L+D


wt . (2.28)

This equation contains a central result. The innovations to the econometrician’s information

set correspond to “old news” for the agents in the model economy as long as the invertibil-

ity condition does not hold. Equation (2.28) is therefore a way of describing the scenario in

which the information set of the agents is not equal to the information set of the econome-

trician. This scenario is explored in the second part of the thesis in which I present several

examples and approaches that are conjectured to help the econometrician solve this prob-

lem. To conduct such an examination, I rely on, inter alia, various versions of a business

cycle model that serves as the FIA model, as introduced in the following section.

2.2 Workhorse model

2.2.1 Introductory remarks

In this second section of the chapter, I introduce the prototypical DSGE model. This model

is a simple real business cycle (RBC) model, such as those found in standard textbooks.26

Pioneering work has been conducted by Kydland and Prescott (1982) and Long and Plosser

(1983), who launched a new category of dynamic equilibrium models. They focus on a styl-

ized economy in which supply-side shocks are the driving forces of macroeconomic fluc-

tuations, and there are no imperfections, asymmetries or sources of friction. The model

primarily indicates that business cycles result from optimal market behavior stimulated by

exogenous (technological) shocks. In general, a standard RBC model can be seen as merely

26Usual references for canonical RBC models are the articles by Hansen (1985) and King et al. (1988).
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an extension of the neoclassical growth model that is augmented with a household labor-

leisure choice.

Over the years, the RBC model has become a matter of considerable debate because it re-

flects a rather simplified environment, and it is questioned whether such a model is able

to explain real world phenomena.27 Consequently, many modifications and extensions of

the standard RBC model as well as alternative models, e.g., New Keynesian models (NKM),

which emphasize the role of nominal rigidities, market imperfections and monetary factors,

have been studied.28 The core of most of these models includes the typical elements of an

RBC model, which encourages me to use it as the benchmark model.

The model is presented in a rather compact way by emphasizing its basic elements without

specifying concrete functional forms of the representative household’s utility function or the

firm’s production function, for instance. I leave the specifications open, as I use particular

modifications or extended versions of the workhorse model in the subsequent chapters.

Depending on the subject, I also vary the model’s complexity. My objective is to elaborate

precise interrelationships between estimation methods and the data generating theoretical

model. Therefore, I limit the model’s framework to the extent that allows me to explain

important implications and results that are not obscured by the intricacy of the model.

The agents in the model economy have rational expectations and at point t symmetric in-

formation about all events that have occurred up to that date. The agents are characterized

by optimal behavior in the sense that they solve optimization problems based on their ratio-

nal nature in order to make economic choices. All goods and assets are traded on perfectly

competitive markets within a closed economy, and all agents are price-takers. The economy

is populated by a continuum of identical infinitely lived households and a large number of

identical firms. As they are identical, their economic decisions can be assembled into the

optimization problems of a representative household and a representative firm.

The household owns capital stock Kt, which it lends at a rental rate to the representative

firm. Furthermore, the household’s labor force Nt is rented to the firm at the wage rate. The

representative firm uses capital and labor to produce a single good Yt, which is sold in the

final goods market. The price of the final good is the numeraire and thus set to unity. In

every period, the firm chooses the amount of capital to use and labor to employ subject to a

production function F (•) in order to maximize profits. The production function satisfies the

neoclassical properties, i.e., it is strictly increasing in both arguments, strictly concave, twice

continuously differentiable, homogeneous of degree one, and it fulfills the Inada conditions.

The representative household solves an intertemporal maximization problem. The house-

hold gains utility u (•) from consumption Ct and leisure. The usual assumptions on u (•) are

27See Rebelo (2005) for a review of this discussion.
28The articles in Cooley (1995) review the variation within the RBC framework. Galí (2008) provides a textbook

insight into the NKM literature.
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that it is strictly increasing in both arguments, twice continuously differentiable and strictly

concave. As leisure is typically restricted by a given time endowment, i.e., it reflects the

share of time (normalized to one) that is not assigned to work, I use labor Nt instead of

leisure as the argument in the utility function. Hence, the instantaneous utility can be spec-

ified as u (Ct, Nt) so that it implicitly takes the time restriction into account. Conditional on

its information in the present period, the household maximizes its expected lifetime utility

subject to its budget constraint. The household receives income from lending capital and

labor. Income is used to finance either consumption of the final good and/or investment

It to build up the capital stock. The capital stock evolves according to a standard capital

accumulation equation.

In the following subsection, I establish the social planner program in order to derive the

analytical setting and the corresponding equilibrium conditions. As there are no externali-

ties, distortions or imperfections, the first welfare theorem holds, i.e., perfectly competitive

markets entail a Pareto optimal equilibrium. According to the second welfare theorem, the

Pareto optimal allocation implies a competitive equilibrium. Therefore, the solution to the

social planner program associated with the model is equivalent to the competitive equilib-

rium.

2.2.2 Social planner program

Suppose that there is a benevolent social planner who maximizes the welfare of the repre-

sentative household subject to the resource constraints of the economy given some initial

conditions. I can formulate her optimization problem as follows:

max

{Ct, Nt, Kt}
Et

∞∑

j=0

βju (Ct+j, Nt+j) (2.29)

s.t. Yt = AtF (Kt−1, Nt) , (2.30)

Yt = Ct + It , (2.31)

Kt = (1− δ)Kt−1 + It , (2.32)

K0 given ,

where β denotes the discount factor, and At is a stochastic process that is described by a

law of motion for the exogenous technological progress in the economy. Expression (2.29)

represents the expected lifetime utility as a discounted sum of all present and future utilities.

Equation (2.30) states the neoclassical production function, depending on capital, labor and

technological progress. Equation (2.31) is the aggregate resource constraint, and equation

(2.32) is the capital accumulation equation, where δ is the depreciation rate.
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The associated first order conditions of that problem can be combined into

uC (Ct, Nt) = βEt [uC(Ct+1, Nt+1) (At+1FK(Kt, Nt+1) + 1− δ)] , (2.33)

uN(Ct, Nt) = uC(Ct, Nt)AtFN(Kt−1, Nt) , (2.34)

and supplemented with the transversality condition

lim

s→ ∞
Et
[
βt+suC (Ct+s, Nt+s)Kt+s

]
= 0 .

Note that ui (•) and Fj (•) with i = C, N and j = K, N denote the partial derivatives with

respect to the functions’ arguments. Equation (2.33) is known as the Euler equation, which

indicates that the expected marginal benefit of shifting consumption forward by one period

is equal to the marginal costs of abstaining from consumption in the present period. Thus,

it determines the optimal consumption-savings choice. According to equation (2.34), the

marginal disutility of an extra unit of labor equals the marginal utility of additional con-

sumption due to higher labor compensation. The transversality condition guarantees that

no resources are left unconsumed (in the infinite future).

Equations (2.30)–(2.34), in conjunction with a specified law of motion for At, form a set of

equations that determine the equilibrium dynamics of the model economy. Depending on

the functional forms of the utility and production functions as well as on the specification of

At, further steps (such as detrending or log-linearizing) might be necessary to prepare the

equilibrium conditions for solving the model and transforming into the (linear) FIA model

form given in equations (2.3) and (2.4). These steps are documented to some extent when

establishing the specific model environments in the subsequent chapters.

2.2.3 Decentralized economy

Finally, I illustrate a decentralized interpretation of the basic RBC model presented in the

preceding section. This interpretation is helpful when studying the asset price implications

of the model and the relevance of the forward-looking behavior of asset prices in the context

of news shocks. As the latter will be emphasized in Chapters 5 and 7, I provide the the-

oretical framework at this stage. My exemplification of the decentralized model economy

refers to the well-known article by Jermann (1998), but it can also be found more recently in

Gershun and Harrison (2008), for instance.29

29In this context, Danthine and Donaldson (2002) provide an overview of alternative interpretations of the
decentralized economy.
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In this interpretation, there exists a stock market in which equity shares are traded at price

Pt. These securities are claims to the net cash flow stream of the representative firm. The

representative households sells and purchases fractions St of these assets from period to

period and receives dividend payments Dt. The number of equity shares is normalized to

one. Contrary to the above situation, the household does not own the capital stock directly.

Rather, it undertakes its savings decisions based on its shareholder status. The representa-

tive household maximizes lifetime utility, i.e.,

max

{Ct, Nt, St}
Et

∞∑

j=0

βju (Ct+j, Nt+j) (2.35)

subject to its budget constraint

WtNt + St−1 (Pt +Dt) = Ct + StPt . (2.36)

The representative firm maximizes its stock market value, i.e., the present discounted value

of an infinite sequence of net cash flows to the owners, i.e.,

max

{Kt, Nt}
Pt = Et

∞∑

j=0

βjMt+j (Yt+j −Wt+jNt+j − It+j) (2.37)

subject to the production function (2.30), the capital accumulation equation (2.32) and share-

holders’ preferences in terms of the stochastic discount factor Mt. The latter is given by

Mt+j =
uC(Ct+j ,Nt+j)

uC(Ct,Nt)

for integer j ≥ 0, i.e., the owners’ marginal rate of substitution. The firm finances new capital

completely through retained earnings rather than by issuing new shares. The dividends

disbursed to shareholders are given by the period net cash flow of the firm, i.e., the residual

of the output value after the wage bill has been paid and investments have been financed:

Dt = Yt −WtNt − It .

It is straightforward to derive and combine the first order conditions of the household and

firm’s optimization problems to obtain the Euler equation (2.33) and the condition for the

optimal labor choice (2.34). In equilibrium, it is assumed that the shareholders hold all

outstanding equity claims. Along with the goods market clearing equation, the laws of
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motion for capital and technology, and the transversality condition

lim

s→ ∞
Et
[
βt+sMt+sPt+s

]
= 0 ,

I arrive at the same system of equations, which defines the equilibrium as in the previous

subsection.
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Chapter 3

Using subspace algorithm cointegration

analysis for structural estimation

In this chapter, I focus on the application of the econometrician’s structural estimation tech-

niques. These methods involve a relatively small set of observable time series to make infer-

ences about the structure of the underlying DGP. In terms of the terminology of the previous

chapter, structural estimation means that the econometrician imposes restrictions on her LIE

model motivated by economic theory to identify the sources and dynamics of the agents’

behavior, as captured by the FIA model. SVAR is a well-known approach in this context.

The main object of this chapter is the introduction of an alternative to the SVAR procedure,

namely, subspace algorithm analysis and its extension to the particular framework of coin-

tegrated systems. Because cointegration is a common feature among many macroeconomic

time series, so-called subspace algorithm cointegration analysis seems to be another appro-

priate tool for the empirical investigation of business cycle dynamics.

Note that the starting point in this chapter is the LIE model because it reflects the perspec-

tive of the econometrician. Throughout the chapter, I assume that the invertibility condition

of Chapter 2 is satisfied. Hence, the econometrician’s information set IEt is theoretically

sufficient to uncover the relevant dynamics and shocks of the FIA model. This means that I

consider the scenario in which the LIE model coincides with the FIA model if potential prob-

lems, such as those caused by small sample uncertainty or incorrect identification schemes,

are ignored.

After presenting the motivation for this chapter in the first section, I provide further expla-

nation for the connection between state space models and VAR representations based on the

theoretical setup of Chapter 2 in order to expand the scope to the cointegration framework.

Furthermore, I give a description in the third section of how to implement the subspace al-

gorithm because it is less commonly employed than VAR estimation. To lay the foundation

for its application in the face of cointegration systematically, I begin by emphasizing the sta-

31
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tionary settings and augment the field to allow for cointegrated variables afterwards. In the

fourth section, I present the econometrician’s identification strategies for structural estima-

tion, which are used in this chapter and in the rest of the thesis. The chapter is concluded by

subjecting the VAR and subspace algorithm analysis to two Monte Carlo simulation studies

to compare their performance ability for structural estimation.

3.1 Motivation and related literature

SVAR models have become widely used tools in empirical business cycle research. On the

one hand, SVAR estimation of macroeconomic time series may reveal stylized facts that eco-

nomic models, especially DSGE models, should replicate. On the other hand, the SVAR

approach is used to test the empirical validation of a theoretical model. Its basic core is the

estimation of structural shocks, i.e., to find the economic shocks, which drive the macroeco-

nomic aggregates as linear combinations of the reduced form innovations in an unrestricted

VAR. These structural shocks can be identified by appropriate, i.e., theoretically founded,

restrictions. Such restrictions are usually imposed on the short-run and/or long-run effects

of the shocks. Moreover, SVARs have been applied to discriminate between different eco-

nomic models that imply the same theoretical restrictions. In recent years, there has been

substantial controversy in the literature as to whether SVAR models can serve this purpose.

Galí (1999)’s empirical finding of a negative impact effect of a technology shock on hours

worked intensified the debate about the usefulness of SVAR methods. The most promi-

nent contributions are the papers by Chari et al. (2005, 2008) and Christiano et al. (2007).

In these studies, the authors simulate artificial time series using a simple RBC model and

estimate SVARs using these artificial data sets in order to compare the true with the esti-

mated impulse responses. The authors investigate potential bias caused by lag truncation

or small samples.1 While Chari et al. (2005, 2008) conclude that SVAR methods with long-

run restrictions fail to depict the true impulse responses, Christiano et al. (2007) counter that

these findings depend on the chosen model parameters. Under a different parameteriza-

tion, Christiano et al. (2007) achieve results that favor SVARs regardless of the identification

scheme (i.e., over either the short-run or long-run).

In a recent paper, Kascha and Mertens (2009) resume this discussion and let the SVAR ap-

proach compete with other estimation methods, notably, vector autoregressive moving av-

erage (VARMA) and state space models. They motivate their analysis using the frequently

stated argument that VARMA and state space estimation methods outperform VARs be-

cause they assemble the complete structure of the underlying DSGE model, whereas VARs

1For a detailed discussion on lag truncation bias, see Ravenna (2007). Lippi and Reichlin (1993) and Cooley
and Dwyer (1998) are early contributions that emphasize the difficulties of low order VAR models, whereas
Faust and Leeper (1997) and Erceg et al. (2005) address bias due to the sample size. See also Poskitt and Yao
(2016) for a very recent article.
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are only finite order approximations of the VARMA process indicated by the structural

model. Kascha and Mertens (2009) re-examine the simulation studies by Chari et al. (2005,

2008) and Christiano et al. (2007) but focus on the estimated impact and long-run effect of

technology shocks instead. Their findings disclose that a certain subspace algorithm for

state space model analysis performs substantially better than the SVAR in terms of mean

squared error (MSE) between the true and estimated shock effects. This algorithm origi-

nates from the article by Larimore (1983) and is also known as the canonical correlation al-

gorithm (CCA). Due to their results, the authors deduce that problems in identifying struc-

tural shocks with long-run restrictions are not exclusively attributed to SVAR models but

can affect any of the methods considered if specific properties, such as near-noninvertibility

or near-nonstationarity, characterize the underlying DGP.

For nonstationary processes, cointegration plays an important role because it takes possi-

ble long-run relationships among nonstationary times series into account. In this context,

SVECMs are popular instruments in empirical research (see the seminal paper by King et al.

(1991) or more recent articles by Gonzalo and Ng (2001), Breitung et al. (2004) and Beaudry

et al. (2011)).2 SVECMs represent SVARs with nonstationary variables that also allow for

cointegration. Likewise, there is an analogous counterpart to the CCA that takes account of

cointegration. In a series of papers, Bauer and Wagner (2002, 2003, 2009) establish the con-

cept of subspace algorithm cointegration analysis.3 Bauer and Wagner (2002, 2003) extend

the theoretical framework of state space estimation by including unit roots and modify the

standard CCA procedure accordingly. Henceforth, I will denote the modified algorithm as

adapted CCA (ACCA). Simulation studies by Wagner (2004) and Bauer and Wagner (2009)

show that ACCA performs at least as well as the standard methods of cointegration analysis,

in particular, the Johansen (1995) VECM approach.

Based on the above discussion, the aim of this chapter is the usage of ACCA for structural

estimation to pursue the subspace algorithm cointegration analysis developed by Bauer and

Wagner (2002, 2003, 2009). I show that, after estimating the state space system via ACCA,

it is straightforward to derive a vector MA representation of the multivariate time series in

first differences, which can be used to identify structural shocks and investigate impulse re-

sponses by employing the same identification restrictions as for SVECMs.4 Furthermore, I

follow Kascha and Mertens (2009) in comparing the performance of this structural estima-

tion approach to its standard opponent, i.e., SVECM, in a Monte Carlo simulation. I deviate

from their procedure by analyzing the estimated impulse responses and structural shocks

2One also has to cite Beaudry and Portier (2006) and Beaudry and Lucke (2010). However, because they address
the role of anticipated shocks, which is the topic of the second part of this thesis, I do not emphasize their
prominence here. I highlight their relevance further in the corresponding chapters.

3The published article by Bauer and Wagner (2012) is a more recent and modified version of Bauer and Wagner
(2003). See also Wagner (2010) in that context.

4This vector MA representation does not restrict the analysis to the usage of ACCA. Alternative state space
models for cointegration analysis, such as that of Aoki (1987), could be applied in the same way.
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and relate them to their true counterpart in terms of correlation and root MSE (RMSE). My

results illustrate that structural ACCA is a serious alternative to the standard estimation

technique. Yet, it should be noted that the findings depend on the underlying model param-

eterization.

3.2 Equivalent representations of the state space system

3.2.1 Stationary processes

In this and the following section, I tie in the representations derived in Chapter 2. I work

with the representations stemming from the LIE model but keep in mind that, given a suc-

cessful structural identification, the econometrician is able to discover the FIA model be-

cause the invertibility condition is supposed to hold. The objective is to depict the equivalence

of the VAR, VARMA and state space representations of the model. I also pay some attention

to the VARMA representation to refer to the remarks in Section 3.1, but the focus is on the

VAR and state space representations.

In this subsection, I rely on Assumption 2, i.e., that A is a stable matrix, and hence consider

a stationary state space system. Recall the infinite VAR representation of the LIE model in

reduced form (as given in equations (2.14) and (2.15))

yt = C [In − (A−KC)L]−1Kyt−1 + at (3.1)

or by using power series expansion

yt =
∞∑

i=0

C (A−KC)iKyt−1−i + at . (3.2)

Furthermore, one can find an algebraically equivalent VARMA representation for yt (see

Zellner and Palm (1974)). I rearrange equation (2.14) to obtain

(In −AL) x̂t = Kat . (3.3)

Multiplying both sides by the adjoint of (In −AL), i.e., adj [In −AL] yields

adj [In −AL] (In −AL) x̂t = adj [In −AL]Kat . (3.4)

Using adj [In −AL] (In −AL) = det [In −AL] gives

det [In −AL] x̂t = adj [In −AL]Kat . (3.5)
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In multiplying both sides of equation (2.15) by det [In −AL] and substituting equation (3.5),

I achieve a VARMA(n,n) representation5

det [In −AL] yt = Cadj [In −AL]Kat−1 + det [In −AL] at . (3.6)

It should be clear that there is equivalence among the state space form in equations (2.14) and

(2.15), the finite order VARMA model in equation (3.6) and the infinite order VAR represen-

tation in equation (3.2). With respect to the introductory discussion in the previous section,

it is not possible to exactly maintain the equivalence of the VAR model in practical appli-

cations because it can only be estimated by truncating the autoregressive terms. Moreover,

the extent of the related bias depends on the eigenvalues of (A−KC) (or (A− BD−1C)).
The rate of decay is determined by the largest eigenvalue of this matrix in modulus (at least

asymptotically). Hence, the closer this eigenvalue is to one, the more lagged VAR terms

would be necessary to obtain an appropriate approximation of the infinite order VAR repre-

sentation. Therefore, estimation methods based on the VARMA or state space form may be

superior to the VAR model because they aim at providing an exact description of the under-

lying DGP, while a VAR model is merely a loose approximation of the complete structure of

the DGP.

3.2.2 Nonstationary processes

I restrict the class of nonstationary processes that I discuss to series that are integrated of

order one, i.e., I (1). Many macroeconomic time series show trending behavior that can be

described by unit root processes.6 Moreover, it is well-known that these time series often

move together along a common stochastic trend, so the concept of cointegration provides

an appropriate basis for the analysis. To introduce cointegrated processes in my framework,

I relax Assumption 2 and allow for eigenvalues of A (less than or) equal to one in absolute

value. Note that this does not affect the other assumptions of Chapter 2 or the overall pre-

sumption in this chapter that the invertibility condition holds. To illustrate the connection

between the eigenvalues of A and the cointegration property, I reconsider the VAR rep-

resentation of the previous subsection.7 Based on the VAR model, I establish the VECM

representation and a related state space system that corresponds to the LIE model.8

Recall that solving equation (2.15) for at and substituting into equation (2.14) yields equation

5Aoki and Havenner (1991) provide an alternative way to compute the VARMA representation in equation
(3.6) by applying the Cayley-Hamilton theorem.

6Nelson and Plosser (1982) were the first to detect the presence of unit roots in US macroeconomic time series.
7The derivation of the VAR representation is still applicable because I adhere to the minimum phase condition.
8In Section 3.4, I also derive a VARMA representation in the case of cointegration.
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(2.24). I use the lag operator and solve for x̂t to obtain

x̂t = [In − (A−KC)L]−1Kyt . (3.7)

Substituting this expression back into equation (2.15) leads to the infinite VAR representation

as in equation (3.1), which can be written as

yt =
∞∑

i=1

Aiyt−i + at (3.8)

or more compactly as

A (L) yt = at , (3.9)

where the VAR operator is A (L) = Ik −
∑∞

i=1AiL
i. The coefficient matrices Ai for i = 1, ...∞

are defined as given in equation (3.2).9

If at least some of the variables in yt are cointegrated, then the matrix A (1) is rank deficient.

In particular, its rank r is a positive integer smaller than the number of observable variables

k. Hence, there are r cointegrating relations, i.e., r linear combinations of variables in yt that

are I (0). In other words, c ≡ k − r common stochastic trends drive the system, i.e., the lag

polynomial det [A (L)] has c roots equal to one, whereas all other roots exceed one in modu-

lus. As a consequence, the VAR process in equation (3.8) is unstable. Due to cointegration,

simple differencing would imply misspecification because this would ignore the long-run

information that is captured in the levels of the variables.10

A standard procedure is to formulate the following VECM representation by subtracting

yt−1 from both sides of equation (3.8) and rearranging the right-hand side:

△yt = Πyt−1 +

p−1∑

i=1

Γi△yt−i + at , (3.10)

where p → ∞, Π = − (Ik − A1 − . . .− Ap) and Γi = − (Ai+1 + . . .+ Ap), i = 1, . . . , p − 1.

Hence, rank (Π) = r. Then, Π can be decomposed as Π = α̃β̃′, where α̃ denotes the (k × r)

loading matrix, and β̃ is the (k × r) matrix of cointegrating vectors. As for the VAR in the sta-

tionary setting, the estimation of a VECM requires cutting the number of lagged differences

to a finite number. The lag length p is usually quite small in practical applications. How-

ever, for the remaining discussion in this section, I presume that the lag length is sufficiently

large, so the VECM is (more or less) an exact representation of the state space system.

In the following, I develop the particular form of the LIE model starting at the VAR rep-

resentation in levels so that the direct link to the cointegration properties can be deduced.

9I draw the reader’s attention to the different notation concerning the state space system matrix A and the VAR
operator A (L) as well as its related coefficients Ai.

10See, e.g., Lütkepohl (2005) for a detailed introduction to cointegration and VECMs.
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I thereby draw on Benes and Vavra (2005). Note that Bauer and Wagner (2003) follow a

similar but more elaborate approach. First, define

yt =
(
Ik 0k . . . 0k

)




yt

yt−1

...

yt−p+1




≡ HYt (3.11)

so that I can write the VAR representation in levels in the so-called companion form:

Yt =


 A1 . . . . . . Ap

Ik(p−1) 0k(p−1)×k


Yt−1 +




Ik

0k
...

0k



at

≡ TYt−1 +H ′at . (3.12)

Second, I compute a Jordan decomposition of T such that T = PΛP−1, where Λ has block-

diagonal structure.11 Next, I premultiply equation (3.12) by P−1 and set x̂t = P−1Yt to obtain

x̂t = Λx̂t−1 + P−1H ′at . (3.13)

Finally, I formulate equation (3.11) using x̂t = P−1Yt and substitute equation (3.13):

yt = HPP−1Yt

= HPx̂t

= HPΛx̂t−1 +HPP−1H ′at

= HPΛx̂t−1 + at . (3.14)

By setting A = Λ, C = HPΛ and K = P−1H ′, I arrive at the LIE model (see equations (2.14)

and (2.15)).

To describe the relationship between the structure of A and the integration orders of the

variables, I draw on some results from the literature. For the sake of exposition, I simply

point to the references for details and proofs in the following. Given that the state vector has

minimal dimension, the unit root structure of yt conforms to the unit root structure of the

state (see Bauer and Wagner (2003)). Thus, in studying matrix A, I uncover the integration

properties of yt.

11Further description of Jordan decomposition can be found in the appendix.
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Suppose that the eigenvalues in A are organized in decreasing order. According to Archon-

takis (1998) and Bauer and Wagner (2003), the Jordan blocks associated with the unit roots

are all of size one for I (1) processes. This means, in technical terms, that in the case of I (1)

processes, the algebraic multiplicity is equal to the geometric multiplicity of the eigenvalues

of A equal to one.12 Therefore, the upper left block of A is an identity matrix of dimension

c. The matrix in the lower right block is associated with the eigenvalues smaller than one in

modulus. All other entries are zero. Analogously to the structure of A, the other matrices

can be partitioned accordingly:

A =


 Ic 0c×(n−c)

0n−c Ast


 , K =


 K1

Kst


 , C =

(
C1 Cst

)
, (3.15)

where the indices 1 and st denote the blocks corresponding to the nonstationary and sta-

tionary parts of the system, respectively. The submatrices have the following dimensions in

brackets: Ast ((n− c)× (n− c)), K1 (c× k), Kst ((n− c)× k), C1 (k × c) and Cst (k × (n− c)).

Minimality of the system (i.e., the minimal state dimension) implies that C1 and K1 have full

rank (see Bauer and Wagner (2003)).

Using the partitioned matrices, the LIE model can be solved under the assumption of zero

initial condition of the state:13

yt =
t−1∑

i=1

C1K1ai + at +
∞∑

j=0

CstAj
stKstat−j−1 . (3.16)

Equation (3.16) corresponds to the Granger representation in the case of the VECM. yt is

decomposed into an I(1) part (i.e., the first term of the right-hand side) and an I(0) part

(i.e., the remaining terms of the right-hand side). Because the I(1) component consists of k

random walks, the rank of C1K1 determines the number of common stochastic trends c. The

orthogonal complement to the column space of C1, C⊥
1 , determines the cointegrating space.

The cointegration rank is given by the number of columns of the latter, i.e., r = k− c. Hence,

C⊥
1 is the analogous element to β̃ in the VECM representation.

12Algebraic multiplicity is the multiplicity of an eigenvalue that solves the characteristic polynomial. Geo-
metric multiplicity is the number of Jordan blocks associated to an eigenvalue. See the appendix for further
details and some illustrative examples.

13This can be done by recursive substitution of the equation (2.14) into equation (2.15), thereby accounting for
the structure of the system matrices as presented in (3.15).
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3.3 Estimating linear dynamic systems using subspace meth-

ods

3.3.1 Stationary processes

In the literature, several subspace methods are proposed, e.g., numerical methods for sub-

space state space system identification (N4SID) introduced in Overschee and Moor (1994),

the multivariate output error state space (MOESP) method by Verhaegen (1994) and the

aforementioned CCA.14 In this context, Bauer (2005b) suggests using CCA because the other

methods do not estimate the system matrices related to the error terms. In addition, Bauer

(2005b) highlights its success in econometric applications, such as the estimation of multi-

variate linear systems. As one of my aims is the identification of structural shocks, CCA

seems to be a reasonable choice.

Recall that I start my discussion with stationary processes (i.e., the stability assumption on

A is supposed to hold) to illustrate the idea of subspace algorithms in the following. The

extension of the concept to cointegrated systems is based on these derivations and described

in the subsequent subsection. In both subsections, I present the basic steps for estimating

the system matrices of the LIE model in reduced form. The procedure for determining its

structural form is explained afterwards in Section 3.4.

I begin with some remarks on the unique identification of the state space system, the LIE

model in reduced form. As shown in the previous section, state space and VARMA systems

are equivalent representations of the same underlying process. In general, there are differ-

ent possibilities of representing the underlying process by means of a state space or VARMA

model. This aspect is crucial when it comes to the estimation, which needs a unique repre-

sentation, i.e., a unique set of parameters, to be specified. With the VARMA representation

in the previous section, I implicitly achieved identification because I have formulated the

VARMA model in final equations form.15 Concerning the state space estimation, further re-

strictions on the parameter matrices are required for unique identification of the state space

system. To shed more light on this point, I consider some system theory issues.

In system theory, one speaks of a transfer function that encompasses the underlying mech-

anism behind the state space system. The transfer function maps input signals onto out-

put signals. The state space system is then the operator that describes this transformation

process. In terms of system theory, the transfer function is a z-transform of its impulse re-

sponse.16 A specific transfer function admits various state space realizations of different

14A general review of subspace methods can be found in Viberg (1995).
15The VARMA representation in equation (3.6) is in final equations form because it has a scalar VAR operator

(multiplied by the identity matrix) and an MA operator, which both are equal to the identity matrix when
evaluated at L = 0.

16In general, a z-transform converts discrete signals (i.e., a discrete sequence of complex values) in the time
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state dimensions. Therefore, identification places two demands on the corresponding state

space system: it has to be minimal, and a particular basis for the state has to be identified.

While minimality of the state dimension has already been presumed in the previous section

(due to Assumption 3), the second aspect needs further explanation.

As the state is unobservable (in general), its basis can be selected arbitrarily. In other words,

there can be different realizations of the same transfer function. To clarify this point, I use

recursive substitution to write equation (2.14) as

x̂t = AT x̂t−T +
T−1∑

i=0

AiKat−i . (3.17)

Shift it one period backward and substitute it into equation (2.15) to obtain

yt = CAT x̂t−T−1 +
T−1∑

i=0

CAiKat−i−1 + at . (3.18)

With T → ∞, equation (3.18) reduces to the vector MA representation

yt =
∞∑

i=0

CAiKat−i−1 + at , (3.19)

so the transfer function is directly seen to be k (z) = Ik + zC (In − zA)−1K. Given the min-

imal state dimension, a nonsingular transformation of the state vector would lead to a dif-

ferent realization of the transfer function. This aspect can be demonstrated by defining the

transformation of the state as ft ≡ F x̂t, resulting in another representation form of the LIE

model

ft = FAF−1ft−1 + FKat , (3.20)

yt = CF−1ft−1 + at , (3.21)

with the associated transfer function k (z) = Ik + zCF−1
(
In − zFAF−1

)−1
FK, which im-

plies the same impulse responses as above.

Therefore, a canonical form of the state space system is necessary, which defines a particular

basis for the state and guarantees the uniqueness of the model. There are different avail-

able approaches for obtaining a canonical form, e.g., echelon parameterization (see Bauer

(2005b)) or stochastic balancing (see Bauer (2005a)). I refer the reader to the stated articles

for elaborate explanations of these possibilities. With stochastic balancing, the system iden-

domain (described by a difference equation) into complex signals in the frequency domain (described by an
algebraic equation). The (z-transform) transfer matrix represents the impulse response matrix of the state
space system (see Subsection 6.2.6 in Kwakernaak and Sivan (1972)).
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tification is achieved via singular value decomposition (SVD) of a particular matrix, which

is inherent in the following estimation procedure.

The crucial idea underlying the subspace algorithm is that, if I know the state, the sys-

tem matrices of the state space model can be estimated using simple regression techniques.

Therefore, the predictive properties of the state are decisive for the success of the algorithm

in the estimation. I begin by solving the LIE model equations for yt+j with integer j > 0,

which yields

yt+j = CAj−1x̂t +

j−1∑

i=1

CAi−1Kat+j−i + at+j . (3.22)

Because x̂t and the innovations at+l, where integer l > 0, are uncorrelated by assumption,

equation (3.22) shows that the best linear predictor of yt+j , based on the knowledge of an

initial state and all past realizations of yt, is simply a function of the current state x̂t. Solving

the state space system for x̂t reveals that the state lies in the space spanned by yt−i, where

integer i ≥ 0, and an initial state for some integer p > 0:17

x̂t = (A−KC)p x̂t−p +
p−1∑

i=0

(A−KC)iKyt−i . (3.23)

Defining the following vector of variables Y−
t ,p ≡

(
y
′
t ,y

′
t−1 , . . . , y

′
t−p+1

)′
, equation (3.23) can

be written as

x̂t = (A−KC)p x̂t−p +KpY−
t,p , (3.24)

where Kp =
(
K, (A−KC)K, . . . , (A−KC)p−1K

)
. Under the minimum phase condition,

(A−KC)p vanishes for large p. Thus, the state can be approximated by KpY−
t,p. Moreover,

defining the vector of “future” variables Y+
t ,f ≡

(
y
′
t+1 ,y

′
t+2 , . . . , y

′
t+f

)′
for some integer f > 0,

equation (3.22) can then be expressed as

Y+
t,f = OfKpY−

t,p + EfE+
t,f = βf,pY−

t,p +N+
t,f , (3.25)

where βf,p = OfKp, N+
t,f = EfE+

t,f with Of =
(
C ′,A′C ′, . . . ,

(
Af−1

)′ C ′
)′

,

Ef =




I 0 0 . . . 0 0

CK I 0 . . . 0 0

CAK CK I . . . 0 0
...

...
...

...
...

...

CAf−2K CAf−3K . . . . . . CK I




,

17Note that this is the same exercise as in Chapter 2 with respect to equation (2.20).
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and E+
t,f denotes the prediction errors.

The application of the subspace algorithm is based upon equation (3.25). This equation

is essential and illustrates the eponymous character of the subspace algorithm. The main

idea is to estimate the system matrices of the LIE model based on a projection of “future”

observations on the subspace spanned by past realizations. Equation (3.25) motivates the

following procedure:18

Step 1: Select integers f and p.

Step 2: Regress Y+
t,f on Y−

t,p to obtain β̂f,p as an estimator of OfKp.

Step 3: Construct a rank n approximation of β̂f,p with decomposition Ôf K̂p to obtain K̂p.

Step 4: Estimate the state x̂t by K̂pY−
t,p.

Step 5: Use equation (2.15) and regress yt on x̂t−1 to obtain Ĉ and residuals ât = yt − Ĉx̂t−1.

Step 6: Use equation (2.14) and regress x̂t on x̂t−1 and ât to obtain Â and K̂.

For the first step, several criteria are suggested in the literature to determine the lags and

leads of observations in the stacked vectors Y−
t ,p and Y+

t ,f .19 The fundamental elements of the

procedure are the next three steps. On the one hand, because the true order of the state space

system (i.e., the state dimension) is n, it follows that OfKp has rank n for f, p > n. However,

the estimator β̂f,p of OfKp has full rank equal to min {f, p} · k. Hence, the estimation of βf,p
requires a reduced rank restriction.

The rank approximation is performed on a transformed matrix Ŵ+
f β̂f,pŴ−

p instead of β̂f,p
itself, where Ŵ+

f and Ŵ−
p are weighting matrices that differ among the various subspace

algorithms. In the case of CCA, the choice

Ŵ+
f =

(
Γ̂+
f

)− 1

2

and Ŵ−
p =

(
Γ̂−
p

) 1

2

with

Γ̂+
f =

1

T − p− f + 1

T−f+1∑

t=p+1

Y+
t,f

(
Y+
t,f

)′
and Γ̂−

p =
1

T − p− f + 1

T−f+1∑

t=p+1

Y−
t,p

(
Y−
t,p

)′

determines its name, where T is the number of observations. Note that
(
Γ̂+
f

)− 1

2

and
(
Γ̂−
p

) 1

2

represent the inverse of the Cholesky factor of Γ̂+
f and the Cholesky factor of Γ̂−

p , respectively.

As Γ̂+
f and Γ̂−

p denote the noncentered sample covariances of Y+
t,f and Y−

t,p, they are estimators

of the canonical correlations of Y+
t,f and Y−

t,p.

18See Bauer (2005b) for a related discussion on the asymptotic properties.
19In the following applications of the subspace algorithm, I use the criterion suggested by Bauer and Wagner

(2002), which will be described in Subsection 3.5.1.
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The rank n approximation is obtained via SVD of the transformed matrix Ŵ+
f β̂f,pŴ−

p = Û Ξ̂V̂ ′,

where Û and V̂ contain the left and right singular vectors, respectively, and Ξ̂ is a diagonal

matrix with min {f, p} · k singular values in decreasing order as corresponding elements.

Replacing OfKp by β̂f,p leads to the fact that all singular values in the SVD of Ŵ+
f β̂f,pŴ−

p are

nonzero, whereas a SVD of Ŵ+
f OfKpŴ−

p only results in n nonzero singular values because

the rank of Ŵ+
f OfKpŴ−

p is n.

Therefore, knowledge of n is essential. To set its value, Bauer and Wagner (2009) propose

an order estimation procedure that relies on minimizing a specific criterion function.20 For a

given choice of n, the SVD can be portioned into two parts:

Ŵ+
f β̂f,pŴ−

p = Û Ξ̂V̂ ′ = ÛnΞ̂nV̂
′
n + R̂n ,

where the first part contains the n dominant singular values in decreasing order and its

corresponding left and right singular vectors. All remaining singular values are included in

R̂n and omitted. The rank n approximation and decomposition of β̂f,p yields

β̂f,p = Ôf K̂p =
(
Ŵ+

f

)−1

ÛnΞ̂nV̂
′
n

(
Ŵ−

p

)−1

so that K̂p = Ξ̂nV̂
′
n

(
Ŵ−

p

)−1

. Finally, the implementation of Steps 5 and 6 is straightfor-

ward by running simple ordinary least square regressions so that the estimation procedure

is completed.

3.3.2 Extension to cointegration analysis

My focus is the application of the subspace cointegration approach rather than its theoretical

foundation; thus, I refer the reader to Bauer and Wagner (2003) for a detailed description

and simply emphasize the necessary modification of the procedure previously presented.

Thereby, I draw on Bauer and Wagner (2002), who show how to adapt the CCA algorithm

to allow for cointegration properties.

As in the stationary case, I begin with a remark on system identification. Reconsider the

particular state space form of the LIE model and the corresponding solution in equation

(3.16), where the system matrices are partitioned in block-diagonal structure. This permits

decoupling the nonstationary from the stationary system. Concerning the nonstationary

part, the solution only provides the product C1K1. Thus, C1 and K1 cannot be uniquely de-

termined from this product. In applying a nonsingular transformation of the nonstationary

20The order estimation criterion is given by SV C (n) = −log
(
1− σ̂2

n+1

)
+ 2nkHT /T , where n, k and T are

defined as in the main text. σ̂n+1 denotes the (n+ 1)th dominant singular value, and HT /T is a penalty
term, where HT is set equal to log (T ). The smallest argument that minimizes the information criterion
determines the (estimated) state dimension (see Bauer and Wagner (2002, 2009) for details).
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part by the usage of a nonsingular (c× c) matrix S, it is obvious that one can find another

representation of the nonstationary part, which is observationally equivalent, i.e., there is

another realization (Ic, SK1, C1S
−1) associated with the nonstationary part, which also im-

plies a state space system with matrix A in Jordan normal form. For this reason, additional

restrictions have to be imposed on C1 and K1 for unique identification. Bauer and Wagner

(2003) assume C1 to satisfy C ′
1C1 = Ic. In this case, an orthogonal complement of C1 exists

with
(
C⊥
1

)′ C⊥
1 = Ir and

(
C⊥
1

)′ C1 = 0. This restriction guarantees the uniqueness of C1 and K1

when determined from the product C1K1 (see the proof of Lemma 2 in Bauer and Wagner

(2003)).21

Based on the previous remarks, Steps 2 to 4 of the CCA algorithm have to be adapted to take

the cointegration properties into account. At first, a consistent estimate of C1 is obtained

by regressing yt on the first c components of the state estimated by the standard algorithm.

Then, a new weighting matrix

Ŵ+
f,C1

=

[(
If ⊗ Ĉ

) T∑

t=1

Y +
t,f

(
Y +
t,f

)′ (
If ⊗ Ĉ

)′
]−1/2 (

If ⊗ Ĉ
)

is calculated, where Ĉ =
(
Ĉ1, Ĉ⊥

1

)′
. Because of the new weighting matrix, the matrix of left

singular values Ûn discussed hitherto needs to be replaced by

Ûn,c =


 Ic 0c×(n−c)

0(fk−c)×c Ûn (2, 2)


 ,

where Ûn (2, 2) denotes the lower right block of Ûn , i.e., the matrix obtained after eliminating

the first c rows and columns of Ûn. Because Ûn is a unitary matrix, an alternative way to write

K̂p is Û ′
nŴ+

f β̂f,p. The adapted estimate of the state therefore follows as

x̂t = K̂adap
p Y−

t,p with K̂adap
p = Û ′

n,cŴ+
f,C1

β̂f,p .

3.4 Structural estimation

The basic goal of the structural estimation is to obtain an estimate of the contemporaneous

impact matrix of the structural shocks. In terms of the LIE model in structural form, I de-

note this matrix as D̂ (see equations (2.16) and (2.17)). Because the invertibility condition is

assumed to hold, this matrix should be equivalent to the matrix D of the FIA model repre-

sentation. Having found D̂, it is possible to discover the true dynamics and to detect the

21Note that unique identification of the stationary part of the system is achieved by SVD of the transformed
matrix in the estimation procedure, as already explained in Subsection 3.3.1.
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structural innovations ε̂t, which are equal to the economic shocks wt in this case.

There are different strategies to identify the parameters of D̂. The focus of my thesis are

restrictions imposed on the short-run and/or long-run responses of the variables to the

structural shocks. However, there are also alternative identification schemes that operate

on the medium-term (see, e.g., Uhlig (2004) or Francis et al. (2014)) or sign restrictions (see,

e.g., Faust (1998), Canova and Nicoló (2002) or Uhlig (2005)).22 Widely used identification

schemes in the literature are the short-run identification introduced by Sims (1980) and the

long-run identification by Blanchard and Quah (1989). A common step is the assumption

that the structural shocks are orthogonal to each other. Because at = D̂ε̂t and I normalize the

variances of ε̂t to unity, the relationship

Ωa = D̂D̂′

yields k (k + 1) /2 restrictions. Therefore, k (k − 1) /2 additional restrictions are necessary to

determine all parameters of D̂.

Sims (1980) suggests imposing these restrictions on the impact matrix D̂ itself. In estab-

lishing a recursive ordering of the variables in yt and using a Cholesky decomposition of

the variance-covariance matrix of the reduced form residuals Ωa, D̂ is identified as a lower

triangular matrix. This short-run identification is already possible at this stage in both the

stationary and the nonstationary cases of Section 3.3 because I can estimate the state space

system by CCA or ACCA, respectively, and decompose the estimated covariance matrix of

the residuals.

The long-run identification is more extensive. I begin with the stationary case. Blanchard

and Quah (1989) restrict the structural long-run matrix to be lower triangular, i.e., the

k (k − 1) /2 further restrictions are imposed on the cumulative effects of the shocks. From

equation (3.19), I write the MA lag operator as T (L) = Ik +
∑∞

i=0 CAiKLi+1 to express

yt = T (L) at . (3.26)

Because at = D̂ε̂t, it follows that

yt = M̂ (L) ε̂t , (3.27)

where M̂ (L) = D̂ +
∑∞

i=0 CAiKD̂Li+1. The total impact matrix of the reduced form innova-

tions is T (1) = Ik + C (In −A)−1K. Thus, the total impact matrix of the structural shocks

22See also recent articles by Kilian (2011) and Fry and Pagan (2011). Kilian (2011) provides an overview of
various identification procedures. Fry and Pagan (2011) review sign restrictions from a critical perspective.
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equals M̂ (1) = T (1) D̂. Because

M̂ (1)
(
M̂ (1)

)′
= T (1) Ωa (T (1))′ ,

M̂ (1) can be calculated as lower triangular matrix by a Cholesky decomposition of the right-

hand side. Then, I can obtain D̂ as T (1)−1 M̂ (1).

Unfortunately, in the nonstationary case of Subsection 3.3.2, T (1) is singular because A has

eigenvalues equal to one. Hence, this long-run identification cannot be employed. For this

reason, I show an alternative way to calculate the long-run multiplier matrix that can be used

for identification. Furthermore, the cointegration property of the system inherently entails

restrictions that have to be taken into account when choosing the (long-run) identification

scheme.

Recall equation (3.6), which is derived from the LIE model in reduced form. In the non-

stationary case, yt is supposed to be I (1) with c = k − r common stochastic trends (see

also Subsection 3.2.2). Hence, A has c eigenvalues equal to one, i.e., the lag polynomial

det [In −AL] has c roots that lie on the unit circle. This implies that adj [In −AL] has c − 1

unit root components so that I can eliminate c− 1 unit roots on both sides leaving

Ã (L)△yt = CĂ (L)Kat−1 + Ã (L)△at , (3.28)

where Ã (L) denotes the scalar polynomial determined by the eigenvalues of A less than

one and Ă (L) represents a matrix polynomial that remains after eliminating the unit roots

in adj [In −AL]. Finally, multiplication of both sides by Ã (L)−1 gives the vector MA repre-

sentation in first differences

△yt =
[
Ik +

(
Ã (L)−1 CĂ (L)K − Ik

)
L
]
at . (3.29)

By writing T (L) = Ik +
(
Ã (L)−1 CĂ (L)K − Ik

)
L, the total impact matrix of the struc-

tural innovations is again given as M̂ (1) = T (1) D̂. In the case of cointegration, M̂ (1) has

reduced rank of c = k − r. In general, this means that there are r transitory shocks and

k − r shocks that have a permanent effect. Thus, r columns of M̂ (1) are restricted to zero,

which indicates r (k − r) independent restrictions, so k (k − 1) /2 − r (k − r) restrictions are

still required for full identification. According to Lütkepohl (2005), r (r − 1) /2 restrictions

that have to be imposed on D̂ are needed to identify the transitory shocks. The remaining

(k − r) ((k − r)− 1) /2 restrictions are placed on the nonzero columns of M̂ (1).23 Finally,

after having determined D̂, impulse responses directly follow from (3.29).

23In that context, Amisano and Giannini (1997) propose a scoring algorithm for parameter identification. More-
over, Breitung et al. (2004) show how to use the scoring algorithm for simultaneous short- and long-run
identification.
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3.5 Monte Carlo experiments

3.5.1 General design

In the following subsections, I conduct two simulation studies that differ in the underlying

DGP. As mentioned in the introductory section, structural estimation methods are often used

to investigate business cycle fluctuations empirically. Because I present the structural ACCA

as an alternative to the SVECM approach, it is appropriate to compare these methods in such

a framework. I use typical DSGE models as the basis of the experiments.

The first DGP is defined by a simplified version of the RBC model, which has been intro-

duced in Chapter 2. The idea is that I start with a simple model that allows me to show the

relationship between the eigenvalues of A and (A− BD−1C) and the deep model parame-

ters. I keep the number of parameters as small as possible so that it is easier to control for

the properties of the DGP and to evaluate the performance of the estimation methods. The

second DGP ought to deepen the analysis. The DGP is based on a DSGE model recently

developed by Beaudry et al. (2011). This model has a far more complex structure than the

preceding candidate, so it facilitates the comparison of ACCA and VECM in a more elabo-

rate environment.

Regarding the methodology, my course of action is the same in all exercises. In small sample

experiments, I generate 1000 samples of the series {yt} with 200 observations. I then apply

structural VECM and ACCA estimation to each sample. The lag length of the VECM is cho-

sen by the Akaike information criterion (AIC).24 In addition, using the subspace algorithm

requires specifying values for the integers f, p and the system order n. Bauer and Wagner

(2002) propose to set f and p equal to 2 · p̂AIC , where p̂AIC denotes the optimal lag length for

an autoregressive approximation of yt determined by the AIC. The system order is estimated

by minimizing the specific criterion function given in Subsection 3.3.1.25

My goal is to detect the true shocks and to recover the dynamics of the DGP in terms of

impulse responses. Depending on the underlying model that serves as the DGP, I impose

appropriate restrictions for structural identification. Finally, the comparison of the VECM

and ACCA outcomes requires certain criteria. With respect to the identified shocks, I calcu-

late correlations of the estimated residuals and true shocks as well as the associated RMSEs.

Furthermore, I compare the estimated impulse responses with the true responses and com-

24It is well-known in the literature that the lag order can be crucial for the performance of VAR models. Because
this discussion is not the goal of my thesis, I point the reader to the publications by Braun and Mittnik (1993)
and Kilian (2001) for further insights into this topic. I select the lag order according to the AIC, which is
common in practical applications. Furthermore, it can be argued that the AIC is preferable to other criteria,
such as the Schwarz criterion, because it tends to suggest a longer lag length (see, e.g., Lütkepohl (2005)),
which might be more convenient for approximating an infinite order VAR.

25I am grateful to Martin Wagner for sharing his program codes for the subspace algorithm analysis and system
order estimation.
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pute the corresponding RMSEs.

3.5.2 Data generating process 1

Model description

The neoclassical model economy comprises a standard production function, a log utility

function and a conventional capital accumulation equation. I simplify the version presented

in Section 2.2 by assuming a fixed labor supply. Thus, the representative agent maximizes

expected lifetime utility solely over consumption Ct. The production level of output Yt
varies with the capital input and exogenous technical progress. Capital stock Kt grows by

investment It minus depreciation. Two stochastic shock processes and a resource constraint

complete the model, which can be written as a social planner’s problem (given some initial

conditions):

max

{Ct, Kt}
Et

∞∑

j=0

βj (ψt+jlog (Ct+j)) (3.30)

s.t. Yt = AtK
1−α
t−1 ,

Yt = Ct + It ,

Kt = (1− δ)Kt−1 + It ,

log (At) = log (At−1) + wAt ,

log (ψt) = (1− ρψ) log
(
ψ
)
+ ρψlog (ψt−1) + wψt ,

where δ denotes the depreciation rate on capital, and (1− α) is the production elasticity of

capital with 0 < α < 1. At represents the exogenous state of technology, which is a drift-

less random walk with wAt as a technology shock. Preferences are described as a stationary

AR(1) process for ψt with autoregressive parameter 0 < ρψ < 1 that measures the degree

of persistence of the preference shock wψt . Both shocks are independently and identically

distributed random variables with zero mean and unit standard deviation.

After combining the first order conditions, I compute the solution of the corresponding

stochastic second order difference equation in the capital stock

Et

[
K̃t+1

]
+ φ1K̃t + φ2K̃t−1 = Θ1log (At) + Θ2Et [log (At+1)] + Θ3ψ̃t +Θ4Et

[
ψ̃t+1

]
, (3.31)

where “~” denotes the log deviation from the steady state value. The coefficients are derived

as follows:

φ1 = −
(
1 +

1

β
+ α (1− β (1− δ))

(
1− β (1− δ)

(1− α) β
− δ

))
,
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φ2 =
1

β
,

Θ1 = −
(
1− β (1− δ)

(1− α) β

)
,

Θ2 = β (1− δ)

(
1− β (1− δ)

(1− α) β
− δ

)
+ δ ,

Θ3 =
1− β (1− δ)

(1− α) β
− δ ,

Θ4 = −
(
1− β (1− δ)

(1− α) β
− δ

)
.

I solve the stable root backward and the unstable root forward. After some rearrangement,

I obtain the policy function in terms of the capital stock

log (Kt) = φK + φKK log (Kt−1) + φKAlog (At) + φKψψ̃t , (3.32)

where φKK is the stable root of the solution to the difference equation. Like φK and all the

remaining coefficients in equation (3.32), φKK depends on the deep model parameters. The

law of motion for any other endogenous variable Zt has the form

log (Zt) = φZ + φZK log (Kt−1) + φZAlog (At) + φZψψ̃t . (3.33)

The set of observables comprises consumption and output. Using the decision rules for

consumption and output, I can derive the vector MA representation in first differences as


 △log (Ct)

△log (Yt)


 =




φCKφKA
(1−φKKL)L+ φCA (1− L)

(
φCKφKψ

(1−φKKL)(1−ρψL)
L+

φCψ

(1−ρψL)

)

φYKφKA
(1−φKKL)L+ φY A (1− L)

(
φYKφKψ

(1−φKKL)(1−ρψL)
L

)





 wAt

wψt


 .

(3.34)

Notice that φY ψ is zero, and denote the MA operator on the right-hand side of equation (3.34)

as M (L). Using the definitions of the various coefficients, the roots of the MA lag polyno-

mial det [M (L)] are calculated as 1
1−δ and one. The unit root results from the cointegrating

relationship between consumption and output.26

Furthermore, I can express the solution as FIA model representation as




K̃t

ψ̃t

log (At)


 =




φKK φKψρψ φKA

0 ρψ 0

0 0 1







K̃t−1

ψ̃t−1

log (At−1)


+




φKA φKψ

0 1

1 0





 wAt

wψt


 ,

(3.35)

26I present further remarks on MA roots in the nonstationary case in the appendix. Note that a decision rule
for investment follows from the resource constraint.
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 C̃t

Ỹt


 =


 φCK φCψρψ φCA

φY K φY ψρψ φY A







K̃t−1

ψ̃t−1

log (At−1)


+


 φCA φCψ

φY A 0




 wAt

wψt


 . (3.36)

Equation (3.35) is the state equation, and equation (3.36) is the observation equation. The

system matrices A, B, C and D are defined accordingly. Note that the system is minimal, i.e.,

the rank of the observability and reachability matrix is equal to the number of states n, so it

is not possible to formulate the system with a smaller state dimension. The eigenvalues of A
are φKK , ρψ and one. The latter implies that there is one common stochastic trend, i.e., that

log consumption and log output are cointegrated. There is only one nonzero eigenvalue of

(A− BD−1C), which equals (1− δ). Consequently, the invertibility condition is satisfied for

the plausible space of values for δ, where 0 < δ ≤ 1. In the following, the FIA model given

in equations (3.35) and (3.36) is used to generate the artificial time series. Then, structural

estimation is implemented as described above.

Basic exercises

In the basic exercises, I calibrate the model parameters as follows. α is set to 2/3 so that the

production elasticity of capital is 1/3. Furthermore, I use ψ = 1, β = 1/1.01 and fix ρψ at 0.5.

For the depreciation rate, I consider two cases so that I can directly control for the eigenvalue

of (A− BD−1C). Variation in the depreciation rate aims at demonstrating the sensitivity

of the estimation methods to the noninvertibility region. As will be seen below, a higher

depreciation rate increases the speed of adjustment of the variables to the shocks. To put it

in the words of Erceg et al. (2005), a rise in the depreciation rate decreases the “endogenous

persistence” in the FIA model. My particular values for δ are 0.025 and 0.2. The magnitude

of δ also affects the value of φKK , which equals 0.9625 and 0.7882, respectively. Note that

φKK is determined irrespective of ρψ. Changing ρψ, i.e., varying the exogenous persistence

in the FIA model, is part of the robustness check following the basic exercises.

I start with two exercises (Exercises 3.1 and 3.2) in which I use the fact that the preference

shock has no contemporaneous effect on output, as is visible from equation (3.36), and im-

pose a corresponding zero short-run restriction for the structural identification. Exercise 3.1

uses the lower depreciation rate of 0.025 while Exercise 3.2 relies on the higher depreciation

rate of 0.2. I then repeat these experiments in Exercises 3.3 and 3.4 but focus on a different

identification scheme. I thereby refer to the discussion about the performance of structural

VAR and state space models identified with long-run restrictions (see the references given

in Section 3.1) and analyze the outcomes for the VECM in comparison to the ACCA in my

setting. Because the FIA model specified above also implies that the preference shock has no

long-run effect on consumption or output, I employ a corresponding identification strategy

in Exercise 3.3 (with the lower depreciation rate) as well as in Exercise 3.4 (with the higher
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Table 3.1: EXERCISES 3.1 & 3.2 - SIMULATION RESULTS (BASIC, SHORT-RUN RESTRICT.)

EXERCISE 3.1:
δ = 0.025 ,

ρψ = 0.5
EXERCISE 3.2:

δ = 0.2 ,

ρψ = 0.5

VECM ACCA VECM ACCA

CORRELATIONS (SHOCKS) mean (prct.) mean (prct.) mean (prct.) mean (prct.)

wA 0.99

(
0.94

1.00

)
0.97

(
0.87

0.99

)
0.99

(
0.95

1.00

)
0.98

(
0.92

0.99

)

wψ 0.93

(
0.90

0.96

)
0.93

(
0.88

0.96

)
0.98

(
0.95

0.99

)
0.97

(
0.92

0.99

)

RMSE (SHOCKS)

wA 0.2025 0.2777 0.1895 0.2428

wψ 0.3735 0.3841 0.2449 0.2656

RMSE (IMPULSE RESP.)

wA → consumption 0.1887 0.2009 0.2626 0.2450

wψ → consumption 0.1874 0.1750 0.2043 0.1942

wA → output 0.2380 0.2536 0.2652 0.2489

wψ → output 0.1946 0.1699 0.2101 0.1990
Note: The table reports the median correlations (and 5th and 95th percentile correlations in parentheses) between the true shocks and
the structural shocks (top block row) identified in VECM and ACCA as well as the associated RMSEs (middle block row). The bottom
block row contains the corresponding RMSEs w.r.t. the impulse responses.

depreciation rate).

Table 3.1 reports the results of the first two exercises (Exercises 3.1 and 3.2). I document

the correlations between the true shocks and the corresponding identified structural inno-

vations as well as the associated RMSEs. For the correlations, I compute the median over all

simulation runs for each shock. The 5th and 95th percentile correlations are given in paren-

theses. Additionally, the RMSEs for the impulse responses are presented. These RMSEs

describe the bias between the true and the estimated impulse responses over a time horizon

of 32 periods.

In Exercise 3.1, VECM shows better performance than does ACCA because the identification

of the structural shocks is more accurate in terms of correlation and RMSE for both shocks.

VECM yields a median correlation estimate between the identified technology shocks and

the true ones of 0.99, whereas the median correlation in the case of the ACCA is 0.97. Al-

though this difference is not significant when looking at the confidence bounds given by

the 5th and 95th percentiles, the ACCA suffers from higher uncertainty, as indicated by the

wider confidence intervals. As for the median correlation concerning the preference shocks,

both methods achieve a coefficient of 0.93, but ACCA is outperformed by the VECM in

terms of the confidence bounds and the shock-related RMSEs. Furthermore, the estimated

responses to the technology shock evolve in a closer match to the true theoretical ones for
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the VECM relative to the ACCA according to the RMSEs. The latter outcome is reversed for

the estimated responses to the preference shock due to more precise estimates by the ACCA.

Figure 3.1 illustrates the theoretical impulse responses and median estimates associated with

ACCA and VECM as well as the corresponding confidence bounds. The latter are computed

as the 5th and 95th percentiles of the estimated impulse responses. The estimated responses

to the technology shock display a higher degree of uncertainty in the case of ACCA, as indi-

cated by wider confidence intervals. The difference between the two methods with respect

to the response to the preference shock is not that visible. Notice that the scale of the vertical

axis is decreased in the respective lower right graphs because the true response of output to

the preference shock is quite small under the chosen parameterization, especially in relation

to the distribution of the estimated responses. In fact, ACCA and VECM do not find a sta-

tistically significant response to the preference shock at all. In Exercise 3.2, VECM is slightly

better than ACCA in the identification of the structural shocks, whereas ACCA dominates

in matching the impulse responses with respect to both shocks.

In comparing the results of both exercises, it is not appropriate to contrast the RMSEs of

the impulse responses. The increase in the depreciation rate affects the dynamics of the

model, particularly the impulse responses. As capital depreciation is higher in Exercise 3.2,

investment has a stronger reaction in order to smooth the consumption path, which also

impacts the other endogenous variables, e.g., output. Thus, there are sharper movements in

the impulse responses, and it would be questionable to compare the RMSE of the impulse

responses because they would be based on different patterns. Therefore, I only focus on the

identification of the shocks in the following.

Raising the depreciation rate lowers the eigenvalue of (A− BD−1C) from 0.975 to 0.8, i.e.,

I move further away from the region of noninvertibility in Exercise 3.2 in comparison to

Exercise 3.1. My findings confirm that this affects the estimation results of both methods.

The performance of both VECM and ACCA improve in this exercise. Both methods gain

precision in terms of correlation and RMSE of the shocks; an increase in the correlations is

mainly observed with respect to the preference shock. Moreover, the confidence intervals

of the correlations narrow for both technology and preference shocks, i.e., estimation un-

certainty is reduced. However, one should be cautious in attributing the result of Exercise

3.2 solely to variation in the MA root. As mentioned above, varying the depreciation rate

means changing the dynamics of the underlying model, which is essentially reflected by the

stable root in the solution to the difference equation in capital. An increase in δ reduces the

value of φKK , which is one of the eigenvalues of A. It implies that I cannot isolate the effect

of the MA root completely.

It is worth studying the performance of VECM and ACCA under a different identification

scheme. Note that a zero long-run restriction on the preference shock is also valid in my

setting. Using the same calibrated parameter values, I conduct exercises analogous to the
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Figure 3.1: EXERCISES 3.1 & 3.2 - IMPULSE RESPONSES (BASIC, SHORT-RUN RESTRICT.)
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VECM (Exercise 3.2)
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ACCA (Exercise 3.1)
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ACCA (Exercise 3.2)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wA are shown in the left column and impulse responses to wψ in the right
column of each panel.
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Table 3.2: EXERCISES 3.3 & 3.4 - SIMULATION RESULTS (BASIC, LONG-RUN RESTRICT.)

EXERCISE 3.3:
δ = 0.025 ,

ρψ = 0.5
EXERCISE 3.4:

δ = 0.2 ,

ρψ = 0.5

VECM ACCA VECM ACCA

CORRELATIONS (SHOCKS) mean (prct.) mean (prct.) mean (prct.) mean (prct.)

wA 0.97

(
0.83

0.99

)
0.94

(
0.74

0.99

)
0.97

(
0.90

0.99

)
0.96

(
0.87

0.99

)

wψ 0.92

(
0.80

0.95

)
0.91

(
0.70

0.95

)
0.96

(
0.89

0.98

)
0.95

(
0.87

0.98

)

RMSE (SHOCKS)

wA 0.3515 0.4465 0.2744 0.3151

wψ 0.4370 0.4748 0.3116 0.3372

RMSE (IMPULSE RESP.)

wA → consumption 0.2579 0.2763 0.2509 0.2514

wψ → consumption 0.1441 0.1816 0.0735 0.0792

wA → output 0.3157 0.3546 0.2497 0.2528

wψ → output 0.0897 0.1350 0.0695 0.0761
Note: The table reports the median correlations (and 5th and 95th percentile correlations in parentheses) between the true shocks and
the structural shocks (top block row) identified in VECM and ACCA as well as the associated RMSEs (middle block row). The bottom
block row contains the corresponding RMSEs w.r.t. the impulse responses.

previous ones but implement the zero long-run instead of the zero short-run restriction (see

Table 3.2 and Figure 3.2 for the corresponding results). In Exercise 3.3, the VECM approach

clearly outperforms ACCA in terms of all categories. A large part of the estimated impulse

responses exhibit a high degree of uncertainty in the case of the ACCA resulting in insignif-

icant results with respect to the responses to the technology shock to some extent. As in

Exercise 3.2 (compared to Exercise 3.1), the performance of ACCA improves substantially in

Exercise 3.4, wherein the depreciation rate is higher, and moves closer to the performance of

the VECM, although the VECM is still slightly more accurate.

It can be ascertained that the long-run identification scheme is less successful than the short-

run identification scheme, both with ACCA and the VECM, in obtaining the true shocks

and impulse responses. This is true without limitation when comparing Exercise 3.1 with

Exercise 3.3. A comparison of Exercises 3.2 and 3.4 confirms this outcome with respect to

the identification of the shocks. In Exercise 3.4 (compared to Exercise 3.2), the RMSEs of the

responses to the technology shock worsen only in the ACCA case, whereas the VECM shows

some enhancement. Note that an assessment based on the impulse responses regarding the

preference shock is difficult because there is perfect identification only on impact in the one

case (Exercise 3.2), whereas there is perfect identification in the long-run in the other case so

that uncertainty is much lower in Exercise 3.4 due to the relatively rapid convergence of the

system.
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Figure 3.2: EXERCISES 3.3 & 3.4: IMPULSE RESPONSES (BASIC, LONG-RUN RESTRICT.)
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VECM (Exercise 3.4)
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ACCA (Exercise 3.3)
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ACCA (Exercise 3.4)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wA are shown in the left column and impulse responses to wψ in the right
column of each panel.
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Robustness exercises

I implement two more exercises, Exercises 3.5 and 3.6, to check the robustness of the above

results. The theoretical model I have used so far is highly stylized and exhibits a very simple

structure. In the following, I extend the characteristics of the model and allow for variable

labor supply. Hence, labor becomes an additional argument of the household and firm’s

optimization problems. I assume a new functional form of the instantaneous utility function

u (Ct, Nt) = log (Ct) + log (1− ψtNt) , (3.37)

and a production function of the Cobb-Douglas type

Yt = K1−α
t−1 (θtNt)

α , (3.38)

where Nt denotes the new argument. Technological progress θt is labor-augmenting and

evolves according to a unit root process as modeled previously.27 The inclusion of vari-

able labor supply augments the household’s decision problem. Besides the intertempo-

ral consumption-savings trade-off, the household has to balance consumption and labor

within a period. The parameters are calibrated as before, i.e., α = 2/3, β = (1.01)−1 and

ψ = 1. The eigenvalues of A are the same, i.e., φKK , ρψ and one, as well as the eigen-

value of (A− BD−1C), which equals (1− δ). I fix the depreciation rate at δ = 0.025, yielding

φKK = 0.953.

Though I cannot separately control for the eigenvalues of (A− BD−1C), I am able to govern

the eigenvalues of A associated with the exogenous stochastic processes. As I am interested

in considering a cointegrating relationship in the model, I keep the unit root in the tech-

nology process but use two different persistence levels for the stationary preference shock.

While I set ρψ in Exercise 3.5 to the same level (0.5) as above, I increase its value to 0.95 in Ex-

ercise 3.6. Thus, I have a quite similar eigenvalue structure in Exercise 3.5 as in Exercise 3.3

(and Exercise 3.1). In Exercise 3.6, I can see the implications when the stationary stochastic

process has almost permanent effects. My identification strategy is a zero long-run restric-

tion of the preference shock in both exercises. Note that the extension of the theoretical

model no longer permits a zero short-run restriction of the preference shock because output

now immediately responds to the preference shock in the FIA model.

The corresponding results of Exercises 3.5 and 3.6 are presented in Table 3.3 and Figure

3.3. In Exercise 3.5, the VECM approach dominates the ACCA with respect to the shock

identification, as has already been the case in Exercise 3.3. However, the median correlation

and RMSE worsen. Moreover, ACCA provides a better average match of the responses to

27Note that setting θt = A
1

α

t would provide the Hicks-neutral technology as in the simple model with fixed
labor.



CHAPTER 3: USING SUBSPACE ALGORITHM COINTEGRATION ANALYSIS 57

Table 3.3: EXERCISES 3.5 & 3.6 - SIMULATION RESULTS (EXTENDED, LONG-RUN RESTRICT.)

EXERCISE 3.5:
δ = 0.025 ,

ρψ = 0.5
EXERCISE 3.6:

δ = 0.025 ,

ρψ = 0.95

VECM ACCA VECM ACCA

CORRELATIONS (SHOCKS) mean (prct.) mean (prct.) mean (prct.) mean (prct.)

wθ 0.92

(
0.77

0.98

)
0.89

(
0.74

0.97

)
0.73

(
0.55

0.88

)
0.72

(
0.52

0.87

)

wψ 0.87

(
0.74

0.94

)
0.86

(
0.72

0.94

)
0.72

(
0.57

0.88

)
0.71

(
0.52

0.88

)

RMSE (SHOCKS)

wθ 0.4267 0.4826 0.7308 0.7509

wψ 0.5264 0.5433 0.9032 0.9290

RMSE (IMPULSE RESP.)

wθ → consumption 0.1933 0.1684 0.1546 0.1650

wψ → consumption 0.0850 0.0903 0.3907 0.3839

wθ → output 0.2774 0.2394 0.2688 0.2743

wψ → output 0.0838 0.0945 0.5233 0.5166
Note: The table reports the median correlations (and 5th and 95th percentile correlations in parentheses) between the true shocks and
the structural shocks (top block row) identified in VECM and ACCA as well as the associated RMSEs (middle block row). The bottom
block row contains the corresponding RMSEs w.r.t. the impulse responses.

the technology shock than the VECM in Exercise 3.5. Neither method estimates a significant

effect on consumption of the preference shock at all horizons, which is similar to the result

in Exercise 3.3 concerning the response of output to the preference shock. Overall, I assess

that both techniques lead to qualitatively similar results as in Exercise 3.3.

When the persistence of the preference shock is increased, both ACCA and the VECM lose

precision dramatically in uncovering the true shocks, which becomes apparent in the sub-

stantial reduction of the correlation measures and the increasing RMSEs. The sole excep-

tion to this exacerbation relates to the responses of consumption to the technology shock,

where the RMSEs are smaller compared to Exercise 3.3 but accompanied by higher estima-

tion uncertainty. In contrast, the two estimation methods fail dramatically in detecting the

responses to the preference shock. This finding demonstrates that both procedures exhibit

severe shortcomings in capturing the dynamics when facing slowly diminishing effects of

the preference shock.

Remarks and large sample exercise

At this stage, I can conclude that ACCA can be seen as an alternative to the standard tool,

but it cannot surpass the performance of the VECM in the settings hitherto considered. I

show that both methods underperform when the underlying parameterization of the DGP
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Figure 3.3: EXERCISES 3.5 & 3.6 - IMPULSE RESPONSES (EXTENDED, LONG-RUN RESTRICT.)
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ACCA (Exercise 3.5)
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ACCA (Exercise 3.6)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ are shown in the left column and impulse responses to wψ in the right
column of each panel.
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induces an eigenvalue of (A− BD−1C) close to one, whereas the ACCA is more sensitive to

that situation. In Subsection 3.2.1, I have already stated that the magnitude of this eigen-

value is crucial for the VAR (VECM) identification. My findings seem to reveal the same for

the ACCA. An explanation for this phenomenon might be inherent in the derivation of the

subspace algorithm.

Due to the coincidence of FIA and LIE model, I can express equation (3.23) as

xt =
(
A− BD−1C

)p
xt−p +

p−1∑

i=0

(
A− BD−1C

)i BD−1yt−i . (3.39)

Under the invertibility condition, the state can be approximated by the past of the observables,

implying that there is the same decisive connection between the eigenvalues of (A− BD−1C)
and the past values of yt. The lower the decay rate (in terms of the largest eigenvalue in

modulus of (A− BD−1C)), the greater the number of past observations would be required

to estimate the state sufficiently. In practical applications with finite samples, these past

values have to be truncated, implying that the integer p is rather small. Therefore, I end up

with a problem analogous to the lag truncation bias of the VAR/VECM in the case of ACCA.

This problem becomes more severe in situations when long-run restrictions are used for

identification and stationary exogenous processes are highly persistent. Exercises 3.5 and

3.6 illustrate this issue. I verify my explanation from above for this result by conducting two

large sample exercises in which I increase the sample size up to 40000 observations. Thus,

I eliminate potential errors caused by small sample uncertainty. The two exercises differ in

the way the lag length is chosen for both methods. In Exercise 3.7, I apply the same lag

order choice as before, i.e., I use the AIC for the VECM and twice the result of the AIC as

the default for the lags and leads in the ACCA. In Exercise 3.8, I use a fixed lag length of 200

instead of the AIC suggestion.

The results are presented in Figure 3.4. A comparison of both exercises confirms my expec-

tations. The poor performance of both techniques can mainly be attributed to lag truncation

bias and sample size uncertainty. Small sample bias is largely diminished, as can be seen

from the relatively tight confidence intervals in all cases. But both methods significantly

underestimate the effects of all shocks at almost all horizons when the AIC is selected. Ex-

ercise 3.8 then clearly demonstrates that choosing a high lag order of sufficient length helps

remove this bias.

3.5.3 Data generating process 2

Model description

In this subsection, I use another model as the DGP, which provides a more complex frame-
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Figure 3.4: EXERCISES 3.7 & 3.8 - IMPULSE RESPONSES (EXTENDED, LARGE SAMPLE)

VECM (Exercise 3.7)

0 10 20 30

periods

0

0.5

1

1.5

2

%
 d

ev
ia

tio
n

consumption 

0 10 20 30

periods

-0.5

0

0.5

%
 d

ev
ia

tio
n

consumption 

0 10 20 30

periods

0

0.5

1

1.5

2

%
 d

ev
ia

tio
n

output      

0 10 20 30

periods

-0.5

0

0.5

1

1.5

%
 d

ev
ia

tio
n

output      

VECM (Exercise 3.8)
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ACCA (Exercise 3.7)
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ACCA (Exercise 3.8)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ are shown in the left column and impulse responses to wψ in the right
column of each panel.
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work in which VECM and ACCA can compete. Moreover, the model represents the theo-

retical basis for the empirical study in the next chapter. It offers several important features

that are known to give a suitable description of what can be found in macroeconomic data.

The DGP is simulated from a (slightly extended) version of the gold rush fever model by

Beaudry et al. (2011) in the following. Beaudry et al. (2011) show that such a model can

explain important properties of the US data. The interesting element of the model is the

incorporation of market rushes into a standard DSGE model. A market rush occurs because

agents receive a signal about a new market opportunity. Expecting future profits, agents

found startups to produce new varieties of a good and to compete with each other. The win-

ner of the competition becomes the monopolist in the new market. The perception of such

an opportunity initiates a market rush and causes an economic expansion.

Beaudry et al. (2011) demonstrate that such a market expansion shock can be a major trigger

of business cycle fluctuation, primarily over the first year. Hence, it provides an alterna-

tive and meaningful explanation for short-run movements of macroeconomic aggregates

because this role is usually attached to other shocks, e.g., preference shocks as in Beaudry

and Lucke (2010). Beaudry et al. (2011) build a theoretical model that can replicate the empir-

ical features of a VECM comprising consumption and output. As highlighted by Cochrane

(1994a) using such a VECM, consumption is mainly driven by a permanent component and

output by a transitory component. A technology shock is a prominent instance of a perma-

nent shock, whereas a market rush could be considered a transitory shock.

In an extended version of the Beaudry et al. (2011) model, Beaudry et al. (2006) use two

types of intermediate firms both of which exhibit the possibility of a variety expansion in

their goods. Variety expansion in the first type generates no long-run impact on productiv-

ity, whereas it does in the second type. The Beaudry et al. (2006) model version also includes

two types of market rush shocks. In their quantitative assessment, Beaudry et al. (2006) as-

certain that only market rushes without long-run effects on productivity contribute to the

(short-run) dynamics of the economy. Therefore, I omit the second category of intermedi-

ate goods and market expansion shocks. Instead, I add the variable capacity utilization,

which is not included in the original model but is typical for DSGE models, especially when

incorporating investment-specific technology (IST) shocks, as will be the case in Chapter 4.28

The gold rush fever model can be characterized as follows.29 A representative firm produces

a raw final good Qt using capital Kt utilized at rate ut, labor ht, and a set of intermediate

goods Xt (j) with mass Nx,t according to the production function

Qt = (utKt)
1−αx−αh (θtht)

αh N ξ
x,t




Nx,t∫

0

Xχ
itdi




αx
χ

, (3.40)

28See Smets and Wouters (2007) or Schmitt-Grohé and Uribe (2012), for instance.
29A detailed explanation is given in the NBER working paper by Beaudry et al. (2006).
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with αx, αh ∈ (0, 1), αx + αh < 1 and χ ≤ 1. χ denotes the elasticity of substitution between

intermediate goods. A variety expansion has no long-run impact, which is guaranteed by

setting ξ = −αx(1−χ)
χ

. θt represents a Harrod-neutral technology process. Its log follows a

random walk with drift term γθ (see below). Nx,t is the number of effectively produced

intermediate goods. Each good is produced by a monopolist using the raw final good as the

input. The capital accumulation function is given by

Kt+1 = (1− δ (ut))Kt +

[
1− S

(
It
It−1

)]
It , (3.41)

where δ (ut) is the depreciation rate depending on the degree of utilization. S
(

It
It−1

)
repre-

sents investment adjustment costs satisfying S (γθ) = S ′ (γθ) = 0 and ϕ ≡ S ′′ (γθ) γ
2
θ .

In each period, potential new varieties are produced if they are profitable enough, i.e., if

the present value of expected future profits exceeds the setup costs of the startup. Let Ns,t

denote the total number of startups. The probability of becoming a functioning new firm

with a product monopoly is endogenously determined, whereas existing monopolies die

out at an exogenous rate µ. Hence, the dynamics of the number of active firms is given by

Nt+1 = (1− µ)Nt + ρtNs,t . (3.42)

In principle, the model distinguishes between the number of active and potential varieties.

The law of motion for the latter is described by

Nt+1 = (1 + ηt − µ)Nt , (3.43)

so the potential varieties vanish at exogenous rate µ. ηt represents the aforementioned mar-

ket rush shock. It carries information about the number of potential products in the next

period. Beaudry et al. (2006, 2011) assume that the optimal behavior of entrepreneurs im-

plies the exploitation of all potential varieties. Therefore, Nt = Nt ∀t in equilibrium.

The representative household maximizes expected lifetime utility

Et

∞∑

τ=0

βτ
(
log (Ct+τ − bCt+τ−1) + ψ

(
h− ht+τ

))
(3.44)

subject to the budget constraint

Ct + PM
t EMt + P S

t ESt = Wtht +RtutKt + EMt Πt + (1− µ)PM
t EMt−1 + ρPM

t ESt−1 . (3.45)

β is the discount factor. The household chooses consumption Ct and labor supply ht as

well as its investment in startups ESt and equity holdings in monopolies EMt , where the cor-

responding prices are P S
t and PM

t , respectively. In addition to wages wt, the household
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Table 3.4: CALIBRATED PARAMETERS (GOLD RUSH FEVER MODEL)

β 0.9926 ρ 0.9166

αx 0.3529 σx 0.2865

αh 0.4235 σθ 0.0131

δ 0.0250 b 0.5900

χ 0.8333 ϕ 0.4376

γθ 1.0060 εδ 0.42

µ 0.0086

receives earnings Rt from supplying capital services and dividend payments Πt. The goods

market clearing condition is given by

Yt = Ct + It + St , (3.46)

where Yt denotes value added, and St denotes total startup expenditures.

Finally, there are two stochastic processes, a unit root process for technology and a transitory

process for the nonproductive market expansion shock,

log (θt) = log (γθ) + log (θt−1) + σθw
θ
t (3.47)

and

log (ηt) = (1− ρ) log (µ) + ρlog (ηt−1) + σηw
η
t , (3.48)

where wθt and wηt are Gaussian white noise with standard deviations σθ and ση.

I use the same calibrated and estimated parameter values as Beaudry et al. (2006), with one

exception. Because I abandon the second set of intermediate goods in my version of the

model, the elasticity of output to intermediate goods X equals the value that is distributed

to both types in the original model. Additionally, I calibrate the elasticity of marginal de-

preciation εδ

(
≡ δ′′(u)

δ′(u)
u
)

to a value of 0.42 following Greenwood et al. (1988). All parameter

values are given in Table 3.4.

As there are two shocks to identify, I construct an artificial data set by generating time se-

ries for two variables. To explicitly allow for cointegration and refer to the previous re-

marks, consumption and output are the chosen observables. Therefore, the following state

space representation of the model is my theoretical benchmark. After detrending and log-

linearizing around the steady state, I solve the model by applying the method of Uhlig
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(1999). Finally, I formulate the state space representation




k̃t+1

c̃t

ĩt

η̃t

log (θt)




= const1 +A




k̃t

c̃t−1

ĩt−1

η̃t−1

log (θt−1)




+ B


 wθt

wηt


 , (3.49)


 log (Ct)

log (Yt)


 = const2 + C




k̃t

c̃t−1

ĩt−1

η̃t−1

log (θt−1)




+D


 wθt

wηt


 , (3.50)

where lowercase letters with “~” denote log-deviations of the detrended variables from their

steady state level, and consti, i = 1, 2, are vectors of constants.

The FIA model is used to generate the artificial time series.30 Under the chosen parame-

terization, the eigenvalues of A are 0.5706, 0.7712, 0.9166, 0.9313 and one. There are two

nonzero eigenvalues of (A− BD−1C) with magnitudes of 0.7894 and 0.9116. The selection of

lags (and leads) in the VECM (ACCA) is again based on the AIC. The identification scheme

is a zero long-run restriction on the second shock, i.e., the innovation to output has no effect

on consumption over the long-run. To judge the quality of the estimation methods with re-

spect to the structural shock identification and their dynamics, I calculate the same statistics

as in the first simulation study.

Results

Table 3.5 displays the results of both estimation procedures from the simulation exercise. In

relation to the results of DGP 1, things have slightly changed, as the ACCA outperforms

VECM in terms of correlations when looking at the confidence intervals. In terms of the

median correlation, both techniques are very close to each other. The comparison of the

corresponding RMSE reveals better performance of ACCA only for the preference shock,

whereas the RMSE associated with the technology shock is nearly the same. VECM offers

slightly lower RMSEs than the ACCA in three of four estimated impulse responses. In the

case of the reaction of output on the technology shock, the ACCA dominates the VECM.

Figure 3.5 illustrates the theoretical impulse responses and median estimates associated with

30For this purpose, I use the Matlab command ss(sys,’minimal’) to compute the minimal realization of the state
space system given in equations (3.49) and (3.50).



CHAPTER 3: USING SUBSPACE ALGORITHM COINTEGRATION ANALYSIS 65

Table 3.5: SIMULATION RESULTS (GOLD RUSH FEVER MODEL)

VECM ACCA

CORRELATIONS (SHOCKS) mean (prct.) mean (prct.)

wθ 0.95

(
0.53

1.00

)
0.94

(
0.65

0.99

)

wη 0.94

(
0.50

0.99

)
0.94

(
0.66

0.99

)

RMSE (SHOCKS)

wθ 0.4082 0.4089

wη 0.4392 0.4203

RMSE (IMPULSE RESP.)

wθ → consumption 0.2156 0.2273

wη → consumption 0.1509 0.1571

wθ → output 0.3789 0.3256

wη → output 0.2067 0.2147
Note: The table reports the median correlations (and 5th and 95th percentile correlations in parentheses) between the true shocks and
the structural shocks (top block row) identified in VECM and ACCA as well as the associated RMSEs (middle block row). The bottom
block row contains the corresponding RMSEs w.r.t. the impulse responses.

ACCA and VECM as well as the corresponding 90% confidence bounds. The graphical

analysis does not give further insights except that, for both methods, the response of con-

sumption to a market expansion shock suffers from high uncertainty, as shown by the wide

confidence intervals.

The results of the large sample simulation in Figure 3.6 shed more light on these aspects. The

figures disclose that both estimators have large finite sample biases because the asymptotic

errors are relatively small. The VECM still induces some deviations from the true impulse

responses with respect to the technology shock. These shortcomings can be attributed to lag

truncation bias, as the lag length is fixed by the AIC in the large sample simulation. When

setting a fixed lag length of 200 and repeating the large sample simulation, the deviation

disappears.31

3.6 Concluding remarks

In this chapter, I have shown that extending subspace algorithm cointegration analysis to

structural estimation can provide an alternative to standard estimation methods. However,

its property of capturing the full structure of the underlying DGP does not emerge consid-

erably in a simple simulation study. My explanation is that this procedure might also suffer

from lag truncation bias as the VECM does. Nevertheless, when applying this approach

31A graphical illustration is omitted to save space.
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Figure 3.5: IMPULSE RESPONSES (GOLD RUSH FEVER MODEL, SMALL SAMPLE)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ are shown in the left column and impulse responses to wη in the right
column of each panel.

Figure 3.6: IMPULSE RESPONSES (GOLD RUSH FEVER MODEL, LARGE SAMPLE)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ are shown in the left column and impulse responses to wη in the right
column of each panel.



CHAPTER 3: USING SUBSPACE ALGORITHM COINTEGRATION ANALYSIS 67

within a more complex setting in terms of the second DGP, my simulations demonstrate

that this approach can perform at least comparably to its standard counterpart. The gold

rush fever model used as the second DGP lays the foundation for the empirical examination

in the subsequent chapter.
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Chapter 4

Identifying market rushes in the US data

One goal of empirical business cycle analysis is to uncover the sources of macroeconomic

fluctuation. Many studies aim to quantify the contribution of structural shocks to variations

in relevant variables. My focus in this chapter is the analysis of very short-run movements.

In particular, I am interested in identifying the drivers of economic activity within their first

year of unfolding. I thereby pick up on the idea of the market rush shocks introduced in

Subsection 3.5.3 and pioneered by Beaudry et al. (2011), who show by examining US data

that a market expansion shock accounts for 80% of the variation in output on impact, which

remains approximately 50% within the first year. According to the Burns and Mitchell (1946)

definition of a business cycle, the typical duration of a business cycle ranges from six to 32

quarters. For that reason, I label shocks that dominate in the forecast error variance decom-

position (FEVD) of output (or some other proxy for economic activity) over a maximum

horizon of one year as very short-run triggers of macroeconomic fluctuations. In this chap-

ter, I provide further evidence that market rushes can be assigned this role.

4.1 Motivation and related literature

I refer to two bodies of literature. The first category relates to a variety of empirical findings

from investigations of driving forces of output fluctuations. As most existing studies focus

on explaining longer horizons than I do here, the results reviewed in the following are often

merely by-products of the analyses. Thus, I demonstrate by citing the following articles that

the diversity of findings does not provide a clear picture of the true triggers of output varia-

tion over the very short-run. I find support in this chapter for the market rush interpretation

of Beaudry et al. (2011), which helps their approach stand out among disparate results in the

literature.

One explanation is a study by Fisher (2006), who utilizes the SVAR method and stresses that

nontechnology shocks dominate the first four quarters of output fluctuations by more than
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80% when examining postwar US data until 1979. For the post-1982 period, he discovers

that neutral technology shocks account for 50–80% of very short-run variation in output.1

Forni and Gambetti (2010) analyze a much larger data set that consists of 101 quarterly US

macroeconomic time series covering the period from 1959 to 2007 and estimate a structural

factor model. The authors interpret the shock accounting for 60–70% of the forecast error

variance in output in the first year as a supply-side disturbance. Zeev and Khan (2015) are

more precise about the nature of the identified shock. According to their SVAR analysis of

the US data, a surprise shock in total factor productivity (TFP) boosts output variation on

impact by nearly 60%.

There are also contributions in the literature that highlight the role of demand-side distur-

bances as drivers of output fluctuations over the very short-run. Smets and Wouters (2007)

estimate a medium-scale DSGE model of the US economy using Bayesian techniques and

decompose the FEVD of output into the contributions of seven shocks. Focusing on the first

two quarters, an exogenous spending shock explains the largest part of output variance,

with the immediate impact being the highest by approximately 40%.2 Beaudry and Lucke

(2010) apply a cointegrated SVAR model and disclose that a shock that can be interpreted

as preference shock is the dominant source of output variation in the first quarters. Milani

(2012) builds on the model of Smets and Wouters (2007) and uncovers a risk premium shock

as main trigger of output over the very short-run. Last but not least, market rushes à la

Beaudry et al. (2011) supplement the list of structural shocks as driving forces of output

movements at very high frequencies.

The second body of related literature addresses the role of news shocks in explaining busi-

ness cycles. A market rush shock can be seen as a specific type of news shock, as it offers the

typical news shock characteristic in the sense that agents adjust their behavior in anticipation

of future economic outcomes. News shocks have become a popular subject of study in recent

years, as evidenced by the wide variety of examples. The most prominent are news about

future exogenous events, such as technology growth (as introduced by Beaudry and Portier

(2007) and Jaimovich and Rebelo (2009)), tax rates (see Leeper et al. (2008, 2013), Leeper and

Walker (2011) and Sirbu (2013)) or government spending (e.g., in Mertens and Ravn (2010),

Kriwoluzky (2012), Schmitt-Grohé and Uribe (2012)). Another instance of a news shock is

anticipated monetary policy (see Cochrane (1998) or Milani and Treadwell (2012) for a recent

publication). In the case of the Beaudry et al. (2011) market rushes, agents anticipate the cre-

ation of new markets in the next period and use this (exogenous) information to adapt their

decisions in the current period. Therefore, the following empirical investigation of market

rushes can be considered a contribution to the news shock literature.

It should be noted that market rushes, as modeled in the previous chapter, do not lead to

1Note that Fisher (2006) identifies IST shocks as major drivers of output for longer horizons.
2Exogenous spending not only reflects government expenditures but also net exports in the Smets and Wouters
(2007) model.
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the widely debated problems of nonfundamentalness because the theoretical model is not

subject to a noninvertible MA representation.3 As nonfundamentalness is the focus of the

upcoming chapters, I concentrate solely on the application of the previously presented esti-

mation methods and the corresponding findings in the remainder of this chapter. The goal is

to identify structural shocks in data for the US and to confirm the market rush interpretation

of Beaudry et al. (2011). In addition to their SVECM approach, I use structural ACCA for

estimation and conduct a Granger causality test to show that the identified shocks exhibit

market rush features. My results provide further evidence in support of the idea that market

rushes are important drivers of business cycles in the very short-run.

4.2 Empirical examination

4.2.1 Course of action

Having shown that structural ACCA is an appropriate alternative to the SVECM in the pre-

vious chapter, I take the next step and apply it to the US data. I begin with a system consist-

ing of two variables, consumption and output, and employ both aforementioned estimation

methods as in Subsection 3.5.3. Lag lengths are chosen based on the AIC as before. In a

second step, I test for Granger causality between the shock series, which I identify through

the zero long-run restriction on consumption and conjecture to reflect the market rush phe-

nomenon, and an additional data series representing the developing number of firms in

the economy. I thereby follow the approach of Haertel and Lucke (2008) and Lucke (2013),

who find that (neutral) technological news shocks detected through an SVECM are Granger-

causal for German and US patent data.

This procedure is repeated for a system of three variables wherein an IST variable is added

to the former two aggregates. The reason is that the bivariate system above might be biased

due to omitted variables such that the structural shocks uncovered in this system are insuffi-

cient to provide a distinct picture of the origins of macroeconomic fluctuations, as they could

be a mixture of different sources. One might argue that the expansion to a third dimension

is also insufficient, but as my results will show, it seems to be adequate for a nonambiguous

finding. Another argument for the inclusion of IST is that it has become a standard element

in DSGE models that suggest comprehensive explanations of business cycle dynamics (see

Smets and Wouters (2007) or Schmitt-Grohé and Uribe (2012)).

3The corresponding eigenvalues of
(
A− BD−1C

)
are smaller than one in absolute value (see the model de-

scription in Subsection 3.5.3).
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4.2.2 Data description

The sample for my quarterly data set spans the 1955Q1–2010Q4 period. For the output and

consumption variables, I use the time series of gross domestic product (GDP) and personal

consumption expenditures, which can be found in the National Income and Product Ac-

counts (NIPA) offered by the U.S. Bureau of Economic Analysis (BEA). To obtain per capita

values, I divide them by the number of employed persons measured as the civilian, nonin-

stitutional population aged over 16. The proxy for IST is constructed as the relative price

of investment, i.e., as the log-difference of the NIPA deflator for consumption and the NIPA

investment price index.

Concerning the number of firms, one could think of appropriate candidates, such as some

series provided by the BEA and used in Lewis and Stevens (2012). The BEA’s Survey of Cur-

rent Business publishes data on net business formation and the number of new incorpora-

tions. Unfortunately, these are discontinued series that cover data only until 1996. Beaudry

et al. (2011) also motivate their idea of gold rush fever using a recent example, the dot-com

boom at the end of the 1990s; thus, I consider an alternative measure drawn from the Bureau

of Labor Statistics (BLS), which also contains values for the nineties. On its website, the BLS

offers data on private sector establishment births. A detailed explanation and treatment of

this series is given by Sadeghi (2008). The series starts in the second quarter of 1993 and is

updated quarterly by the BLS. Hence, it seems convenient to use the series for my test for

market rush interpretation.

4.2.3 Results

Figure 4.1 displays the estimated impulse responses. Comparing the findings of the bi-

variate system (solid lines), both methods yield similar results in terms of the shape of the

impulse responses. The main difference is that there is much more uncertainty with respect

to the ACCA indicated by much wider confidence bounds. Another aspect to be mentioned

is the fact that the estimated long-run effect of the technology shock is substantially higher

in the case of the ACCA, and it evolves more gradually. Turning to the designated market

rush shock, both methods induce a positive effect on consumption, which is insignificant for

all horizons. This positive (but insignificant) effect contradicts the implications of the theo-

retical model, but as the gold rush fever model admits only a negligible negative response

of consumption, I do not pay closer attention to this aspect. The estimated responses of

GDP are quite close to the theoretical responses and emphasize the transitory and positive

character of a market rush.

It is interesting to analyze whether this identified shock can definitely be interpreted as a

market rush. I therefore test the hypothesis of a potential causal effect of the structural

shock on the above described data on establishment births by estimating a bivariate VAR
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Figure 4.1: MARKET RUSH ANALYSIS (ESTIMATED IMPULSE RESPONSES)
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Note: The figure depicts estimated impulse responses of the 2-VAR system (solid black lines) and estimated impulse responses of the
3-VAR system (dotted black lines). Dashed red lines mark the 95% bootstrapped (Hall) confidence intervals w.r.t. the 2-VAR system.
Impulse responses to the neutral technology shock are shown in the left column and impulse responses to the market rush shock in the
right column of each panel.

model comprising both series and a Granger causality test.4 The results are presented in

(the first block column of) Table 4.1. Unfortunately, the results for the causal relationship are

not clear. The p-values for the null hypothesis that the shocks Granger-cause establishment

births are relatively low, with values of approximately 7% (ACCA) and 8% (VECM), but

testing in the opposite direction reveals p-values that are either slightly lower (6% for the

ACCA residuals) or higher (12% for the VECM shocks).

As these findings are not convincing, I modify the analysis by expanding the set of observ-

able variables as explained above, and I use personal consumption expenditures only on

nondurables and services as the consumption measure.5 Adding an IST variable to the sys-

tem implies a third structural shock, which can be identified as will be described below.

Maintaining the gold rush fever model of the previous chapter as the theoretical founda-

tion of the analysis would mean appending another stochastic process to the model, e.g., an

exogenous IST process as proposed by Greenwood et al. (1997, 2000).

A Johansen cointegration test to the trivariate system (i.e., consumption, relative price of

investment and output) verifies a cointegration rank of one, that is, the system is driven

by two common stochastic trends. This result coincides with the theoretical benchmark in

which the IST process and the neutral technology process are modeled as unit root pro-

cesses. Structural estimation thus requires three identifying assumptions. In addition to the

zero long-run restriction from above, I impose two zero short-run restrictions: the shocks

4I include a constant as a deterministic variable and choose the lag length according to the AIC.
5The usage of consumption expenditures on nondurables and services is more common in the literature (see
also Cochrane (1994a) and Beaudry et al. (2011)). The exclusion of expenses on durable goods is theoretically
justified because it seems to not be a good proxy for the corresponding service flow from which consumers
derive their utility rather than from the expenditures (see Flavin (1981) or Campbell (1987)).
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Table 4.1: MARKET RUSH ANALYSIS (GRANGER CAUSALITY TESTS)

2-VAR SYSTEM 3-VAR SYSTEM

ESTABLISHMENT BIRTHS

Market rush shocks (VECM)
0.0848 0.0032

0.1284 0.5099

Market rush shocks (ACCA)
0.0698 0.0473

0.0580 0.5508
Note: Upper left corner depicts p-value for null: row variable does not Granger-cause column variable. Lower right corner shows
p-value for null: column variable does not Granger-cause row variable.

to consumption and output have no contemporaneous impact on IST. This identification

scheme is therefore in line with my theoretical model.

To check whether this procedure works well in distinguishing among the three structural

shocks, I examine the FEVD for the modified gold rush fever model and the empirical find-

ings of the ACCA and VECM in Figure 4.2.6 Consumption apparently captures the neutral

technology shock (blue) as predicted by the model. My measure for IST also seems appropri-

ate for conveying the effects of an IST shock (green). Looking at the FEVD of output, market

rushes (red) are dominant over the very short-run with an approximately 80% share of the

variance on impact. The first ranking position is replaced after three quarters by the neutral

technology shock increasing from 15–20% to over 80% of the variation over the medium-

run. The contribution of the IST shock is virtually zero in the case of the VECM and closer to

the outcome of the theoretical model for the ACCA. I conclude that IST shocks do not play a

significant role in explaining output (or consumption) fluctuations over the entire business

cycle horizon.

For completeness, I add the associated impulse responses of the trivariate system to Figure

4.1 (dotted black lines). The qualitative pattern is similar to what I have shown before for

the bivariate system. The typical feature of the market rush shock is still obvious.7

Finally, I owe the reader evidence supporting the market rush interpretation. The corre-

sponding results for the Granger causality tests in the right block column of Table 4.1 pro-

vide confirmation of that interpretation. The market rush shocks (identified in the trivariate

system) significantly Granger-cause establishment births at the 5% level. This result is not

invalidated by the causality test in the opposite direction as in the bivariate case: the null

hypothesis that establishment births Granger-cause the structural shocks can be clearly re-

jected.

6I use the same calibrated parameter values as in Subsection 3.5.3. The standard deviation of the IST shock is
set to one-third of the standard deviation of the neutral technology shock.

7The estimated effect of a neutral technology shock in the case of the ACCA is now lower and closer to the
VECM and the theoretical model.
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Figure 4.2: MARKET RUSH ANALYSIS (FEVD, 3-VAR SYSTEM)

THEORETICAL MODEL

VECM

ACCA

Note: The figure depicts the FEVD shares of consumption (left column), IST (middle column) and output (right column) due to the
neutral technology shock (in blue), the IST shock (in green) and the market rush shock (in red) in the theoretical model (top panel),
VECM (middle panel) and ACCA (bottom panel).
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4.3 Concluding remarks

This chapter concludes the first part of this thesis. I have introduced structural ACCA as an

alternative to SVECM and shown that they are on a par with each other. In summarizing

this chapter, I draw several conclusions. The modified version of the gold rush fever model

by Beaudry et al. (2011) provides a convincing theoretical framework of what is discovered

in the US data. Furthermore, my results contradict the findings of Fisher (2003, 2006) in the

sense that IST shocks explain only a minor share of output variations. Over the short-run,

the market rush shock surpasses its competitors in explaining output fluctuations, whereas

the neutral technology shock dominates the medium- and long-run variation in output. By

applying a Granger causality test, I find evidence in favor of the market rush interpretation

of the structural shock (identified in the trivariate system) through my estimation proce-

dures. Hence, I provide support for the Beaudry et al. (2011) hypothesis and a robustness

check that emphasizes the important role of market rushes in stimulating business cycles

over the very short-run.

As market rushes represent a particular type of a news shock, I also contribute to the debate

about the relevance of news shocks as sources of macroeconomic fluctuation. However,

market rushes, as specified in my theoretical model, do not generate a noninvertible MA

representation of the model solution. Usually, this characteristic is a central subject in the

discussion of news shocks and poses a special challenge for both the VAR and subspace

algorithm analysis. In the subsequent chapters, I will address this topic and give detailed

insights and examinations of potential solutions.



Chapter 5

Anticipation effects and their

consequences for structural estimation

In this chapter, I change the focus and analyze the situation when the invertibility condition

of Chapter 2 is not satisfied. Hence, the match between the FIA and the LIE model ceases

to exist. In this case, the econometrician is not able to uncover the true dynamics of the FIA

model. She makes a systematic error due to the fact that her information set IEt is smaller

than that of the agents in the FIA model, IAt . The size and implication of this error depend

on the underlying FIA model structure. This situation is often designated by the term non-

fundamentalness. I explain how to quantify this error without implementing a Monte Carlo

study. Given an economic model solution in terms of the FIA model representation, it is

possible to calculate the structural form of the LIE model, i.e., to compute the representation

that would be estimated by the econometrician who applies standard structural estimation

techniques. As a consequence, I can isolate the systematic error due to nonfundamentalness

from other error sources, such as model misspecification, lag truncation or small sample

uncertainty. I provide analytical and numerical examples demonstrating the effects when

news shocks are present within the theoretical framework. The chapter concludes with a

discussion of the relevance of adding variables to the econometrician’s information set in

order to reduce her informational disadvantage relative to the agents.

5.1 Motivation and related literature

A recent development in macroeconomics is related to the observation that information can

be a decisive factor affecting people’s behavior and thus helps explain social and economic

phenomena. There are different channels through which information influences individuals

and their actions in the economy. Information economics studies these channels. Standard

theory postulates that agents’ information sets encompass the entire history of realizations
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of relevant variables. Information economics moves away from this assumption and inves-

tigates the related consequences. What are the implications of imperfect information in the

economy? How does asymmetric information arise and how does it impact economic deci-

sions? What are the outcomes when agents have information on future events in addition

to their knowledge of past incidents? All these questions include a substantial role of the

design of the agents’ information sets. Based on this design, theoretical models are built to

provide explanations for certain puzzles. Empirical testing of such models poses an essential

challenge for the researcher.

In the following, I consider the case where the agent’s information set also contains infor-

mation about future realizations of variables, i.e., I consider situations in which agents an-

ticipate future shocks. Typical examples in the business cycle literature include news about

future technology growth, tax foresight or anticipation of government spending shocks. In

all these situations, the econometrician who intends to run an empirical test of related theo-

retical models only has access to current and past observations of variables. Hence, she can

be confronted with the problem of having a smaller information set than the agents in the

model economy. Consequently, the empirical test may lead to false conclusions.

Specifically, VAR models are a matter of considerable debate in this context. In an envi-

ronment with anticipation effects, the general claim of VAR econometricians to let the data

speak freely becomes a weakness. VAR models are usually limited to a rather small num-

ber of variables and therefore constrain the econometrician’s information set. Furthermore,

structural estimation methods are applied in order to give the estimated shocks an economic

interpretation. They require parameter restrictions for identification but try to impose only

minimal structure on the data. It can be shown that SVAR models can generally produce sys-

tematic errors in the face of anticipation effects. These errors arise because the underlying

theoretical model, i.e., the FIA model, exhibits a nonfundamental MA representation. More-

over, the systematic failure is related not only to the VAR models but also to the subspace

algorithm analysis, which I have presented in the previous chapter.

This chapter refers to several recent papers that investigate the consequences of nonfun-

damentalness for the performance of VAR methods in identifying news shocks and their

dynamic effects. Leeper and Walker (2011) and Leeper et al. (2013) point to the difficulties

an econometrician is faced with when estimating SVAR models that aim at the identification

of anticipation effects. In a simple neoclassical model, they show that tax foresight induces

model dynamics that cannot be identified correctly by an econometrician using standard

SVAR estimation. At worst, she might draw completely incorrect conclusions from her ex-

ercise.1

As emphasized by Fernández-Villaverde et al. (2007), nonfundamentalness produces a

wedge between the true economic shocks and the innovations that result from SVAR estima-

1I revisit this aspect in Section 7.5 and present an illustrative example in the appendix.
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tion. To reduce this wedge, several solutions are proposed and discussed in the literature. A

recommendation that is often stated is the incorporation of forward-looking variables, such

as stock prices, to resolve this problem. A well-known empirical example is the pioneer-

ing work by Beaudry and Portier (2005, 2006), who identify news shocks by estimating an

SVECM of TFP and stock prices. Their analysis is theoretically founded on a simple Lucas

asset tree model, which has an invertible MA representation. The authors demonstrate that

stock prices seem to be an appropriate candidate for identification of news about future tech-

nological improvements. Nevertheless, Forni et al. (2014) show that a slight modification of

the underlying stochastic process that describes the evolution of technology in the model

generates nonfundamentalness. Thus, the true shocks cannot be recovered even when stock

prices are included in the VAR.

Fève and Jidoud (2012, 2014) use rather stylistic models to show that the impulse responses

to news shocks identified from SVARs imposing either short-run or long-run restrictions

are biased. The authors stress that this bias is smaller the more the news shocks account

for the variation in the variables included in the VAR. Sims (2012) conducts Monte Carlo

simulations using a DSGE model with real and nominal frictions as well as news shocks as

the DGP to analyze the effects of nonfundamentalness on the reliability of SVARs in dis-

covering the true dynamic responses to the news shocks. He refers to the terminology of

Fernández-Villaverde et al. (2007) and the findings of Fève and Jidoud (2012, 2014) to em-

phasize that the wedge due to nonfundamentalness decreases with the relative importance

of the news shocks. Sims (2012) concludes that the problem of nonfundamentalness is a

problem of missing states in the VAR and that the choice of “observable variables (...) in-

cluded in a VAR might matter - some observables may do a better job of forecasting the

missing states, hence leading to (...) a closer mapping between VAR innovations and struc-

tural shocks.”2 He also suggests that including as many observable variables as possible

represents a remedy for the problem. Because this procedure aims at enlarging the informa-

tion set of the econometrician, it has its natural consequence in switching from (large scale)

VAR to dynamic factor models, e.g., as introduced by Forni et al. (2000), Forni et al. (2009)

and implemented by Forni et al. (2014).

In this chapter, I first focus on the situation in which the number of observable variables is

limited to the econometrician and consider the expansion of the econometrician’s informa-

tion set at the end of the chapter. In contrast to Sims (2012), I demonstrate that the afore-

mentioned wedge not only affects the estimated responses to the news shocks but also the

responses not associated with this type of shock. I argue that the choice of observable vari-

ables might matter for this aspect but does not influence the general size of the wedge of

nonfundamentalness. Prior to that, I begin with a description of the concept of nonfunda-

mentalness followed by examples on how to quantify the systematic error that arises as a

2Note that Sims (2012) uses the term structural shocks to label the true economic shocks from the underlying
FIA model.
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result.

5.2 Nonfundamentalness (and noninvertibility)

5.2.1 The concept of nonfundamentalness

Consider the following covariance stationary zero mean stochastic process with rational

spectral density. It has a vector MA representation of the form

yt = M (L)wt , (5.1)

where yt is the vector of observables, and wt denotes a white noise vector that satisfies

E (wt) = 0, E (wtw
′
t) = Ik and E (wtwt−j) = 0 for integer j > 0. Suppose that I know

the true model describing the economy and I can express the solution to that model as in

equation (5.1). In Chapter 2, I have presented the above vector MA representation in terms

of the system matrices of the FIA model (see equation (2.6)). wt represent the innovations to

the agents’ information set, which I have already labeled as (true) economic shocks.

According to Lippi and Reichlin (1994), a MA representation is called fundamental if

(i) the disturbances are white noise,

(ii) the MA operator is a matrix of rational functions in L with no poles inside the unit

circle, and

(iii) the MA lag polynomial has no roots smaller than one in modulus.3

The conditions given in (i) and (ii) hold for equation (5.1). If (iii) was also satisfied, I would

say thatwt is fundamental for yt – meaning thatwt lies in the linear space spanned by current

and lagged values of yt.

In the literature, the terms nonfundamentalness and noninvertibility are often used inter-

changeably. If one would be more precise, both terms have to be distinguished from each

other (see Alessi et al. (2011)). In particular, one can differentiate among three cases:

(1) If all roots of det [M (L)] are larger than unity, the representation is fundamental and in-

vertible (in the past), i.e., the inverse ofM (L) has a representation only in nonnegative

powers of L.

3Note that the above conditions for fundamentalness refer to the square case, i.e., the number of shocks m
equals the number of observables k (see Assumption 1). If k 6= m, the third condition has to be replaced.
Instead, one has to state that the MA representation in equation (5.1) is fundamental if the rank of M (L) is
equal to m (see, e.g., Rozanov (1967) or Proposition F in Forni et al. (2009)).
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(2) If at least one root of det [M (L)] is less than unity while the remaining roots are larger

than unity, the representation is nonfundamental and noninvertible (in the past), i.e.,

the inverse of M (L) has a representation not only in nonnegative powers of L but also

in negative powers of L.

(3) If at least one root of det [M (L)] is equal to one in modulus while the remaining roots

are larger than unity, the representation is fundamental and noninvertible (in the past

and in the future), i.e., the inverse of M (L) does not exist.

An example of the third possibility would be if I thought of yt denoting the first difference of

an I (1) process. A root of unity would indicate a cointegrating relationship between the ob-

servables. It is well known that, in this case, an associated VAR representation in first differ-

ences does not exist due to noninvertibility.4 I keep this possibility in mind but nonetheless

abide by the literature and use nonfundamentalness and noninvertibility synonymously,

i.e., whenever I use these terms, I refer to the first and second category, respectively. The

first case has already been covered in the previous chapters, and I examine the second case

in the following.

Suppose that the FIA model exhibits a nonfundamental representation, i.e., that the previous

condition (iii) is violated. As I have already shown in Chapter 2, there is no perfect match

between the FIA model and the LIE model (in structural form) in this case. Consequently, the

true shocks and the structural innovations that would be identified by the econometrician

do not coincide because she cannot detect the true shocks by conditioning on the history of

the observations yt. In particular, the structural innovations are an infinite sum of (present

and) past realizations of the true shocks (see equation (2.28)). Then, the impulse responses

do not accord with each other as a result of the different MA representations.

Throughout the thesis, I exemplify two ways of deriving the Wold MA representation with

which the econometrician is faced. In the subsequent sections, I show that applying the time-

invariant version of the Kalman filter leads to such a fundamental representation. A second

way of converting a nonfundamental into a fundamental representation will be illustrated in

Chapter 6. While the first method makes use of the state space representation of the model,

the second approach directly relates to the MA representation.

5.2.2 Quantifying the wedge of nonfundamentalness

Recall from Chapter 2 that the FIA model can be expressed as

xt = Axt−1 + Bwt , (5.2)

yt = Cxt−1 +Dwt , (5.3)
4One possible way of proceeding would then be to estimate a VECM.
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where wt are the true shocks that are supposed to be white noise with the corresponding

variance-covariance matrix normalized to the identity matrix. The associated LIE model in

reduced form is

x̂t = Ax̂t−1 +Kat , (5.4)

yt = Cx̂t−1 + at , (5.5)

where at represents the one period ahead forecast errors in yt. Defining vt ≡ Dwt yields the

direct counterpart as a linear combination of the true shocks. I can calculate the variance-

covariance matrices of the (reduced form) shocks vt and at to obtain E (vtv
′
t) = DD′ and

E (ata
′
t) = CΣC ′ + DD′. If there is nonfundamentalness in the FIA model, the state is not

completely observable, implying that xt 6= x̂t so that its forecast error variance Σ > 0.Hence,

E (ata
′
t)−E (vtv

′
t) is a positive definite matrix, i.e., at captures less information about yt than

does vt.

Thus, the ratio of the determinants of E (ata
′
t) and E (vtv

′
t) can be used as an indicator of the

wedge between (fundamental) innovations and (nonfundamental) economic shocks. Specif-

ically, I construct the indicator as the log of this ratio:5

ϕ ≡ log (det [E (ata
′
t)])− log (det [E (vtv

′
t)]) . (5.6)

This calculation necessitates finding a solution to the algebraic matrix Riccati equation given

in (2.12), which can also be written as

Σ = ÃΣÃ′ + Q̃ − ÃΣC ′ (CΣC ′ +DD′)
−1 CΣÃ′ , (5.7)

where Ã = A−BD′ (DD′)−1 C and Q̃ = BB′−BD′ (DD′)−1 DB′.6 Normally, there are several

(numerical) algorithms at hand for solving this equation.7 In general, these algorithms hinge

on the assumption that A (or Ã) is nonsingular. In the case of anticipation effects in a DSGE

model, this assumption can fail (see the benchmark model from Chapter 7 or the simple

model in Subsection 5.3.3). When the assumption fails, one can make use of a particular

algorithm, e.g., the one proposed by Pappas et al. (1980), which is based on the solution of

a generalized eigenvalue problem and does not require the transition matrix (i.e., A or Ã) to

be invertible.8

5Note that my way of computing this measure is similar to the determination of standard statistical criteria,
such as the AIC or Schwarz information criterion, for lag order selection in VAR models. Sims (2012) uses
only the determinant of CΣC′ as an indicator of the wedge. I argue that this is not a convenient choice for the
comparison of E (ata

′

t
) and E (vtv

′

t
) because it neglects the information contained in DD′.

6This transformation originates in the typical conversion of an optimal linear regulator problem with cross
products in states and controls into one without interdependencies between states and controls. Both prob-
lems remain equivalent as do the closed loop transition matrices and the associated matrix Riccati equations
(see Ljungqvist and Sargent (2004)). I demonstrate the equivalence of equations (5.7) and (2.12) in the ap-
pendix.

7See Anderson et al. (1996) for a description and discussion.
8A demonstrative calculation is given in the appendix with respect to the multivariate example of Subsection
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One way to analyze the implications caused by nonfundamentalness is to contrast the im-

pulse responses of the FIA model with their counterparts from the LIE model. I therefore

need a further step that allows the comparison because solving the Riccati difference equa-

tion yields only the reduced form representation of the LIE model. Accordingly, I have to

impose appropriate restrictions on the reduced form representation to compute the rotation

matrix D̂, which connects the forecast errors in yt with the structural innovations identified

by the econometrician as at = D̂ε̂t . The econometrician would orient herself based on what

she conjectured to be the true model, so these restrictions have to be in line with the FIA

model. After determining D̂, the impulse responses can be calculated for the LIE model (see

equation (2.18)).

To measure the discrepancy between the impulse responses coming from the (nonfunda-

mental) FIA model and the (fundamental) LIE model representation, I compute an indicator

that I call the mean average weighted error (MAWE). It builds the average of all percentage

deviations (in absolute terms) between the impulse responses at each point i of response

horizon h, where each deviation is separately weighted by the relative share of the response

at point i to the sum of all response estimates over the entire horizon h:

MAWEjk ≡ 1

h

h∑

i=1

(
|m̂ijk −mijk|

mijk

mijk∑h
l=1 |mljk|

)
=

1

h

h∑

i=1

(
|m̂ijk −mijk|∑h

l=1 |mljk|

)
, (5.8)

where mijk (m̂ijk) is the response of variable j to shock k at point i in the FIA model (LIE

model). This statistic is more convenient for my purposes than standard measures because

it better accounts for the general shape and magnitude of the impulse responses. As will be

seen in the upcoming examples, some of the impulse responses feature a weak reaction of

the variables to the news shock during the anticipation horizon followed by a distinct jump

when the anticipated shock actually materializes. In this case, a standard measure that com-

putes the error as percentage deviation would punish small absolute deviations between the

LIE and FIA impulse responses within the anticipation horizon relatively severely in com-

parison to deviations between the LIE and FIA impulse responses after materialization of

the shock. The MAWE indicator might be more suitable in this context due to its weight-

ing scheme. Moreover, the MAWE also allows me to compare the performance of different

compositions of the vector of observables yt, which would not be appropriate when using a

measure whose calculation is based on the deviation in levels, as will be shown in Subsection

5.3.4.

Thus, I use two indicators to quantify the outcomes in cases of nonfundamentalness: a single

measure ϕ, which delivers a general statement about the extent of the systematic error, and

the impulse response deviations captured by the MAWEs, which provide more detailed

insight into how the systematic error is distributed among the chosen variables. I utilize

5.3.3.
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both measures in the following examples.

5.3 Implications of nonfundamentalness in the presence of

news shocks

5.3.1 General setup

In Chapter 3, I have derived the policy function for capital in the workhorse model intro-

duced in Chapter 2 in which I assumed two stochastic processes for technology and pref-

erences. In the following, I consider only one stochastic process to keep the setting for my

discussion simple. The objective is to present analytical examples that disclose the general

idea in the upcoming chapters and make connections to Chapter 2. In this respect, the cost

of analytical computations is the usage of a simplified setting. Nevertheless, I choose a set-

ting that permits a fairly generalization in terms of model extensions within the theoretical

framework.

In the analytical examples, I initially leave the specific type of the exogenous process open,

i.e., I use a proxy st that can reflect neutral technology, IST, taxes or government spending,

for instance. My goal is to illustrate the implications of nonfundamentalness, which arise

because of the inclusion of a commonly used kind of news shock in the theoretical frame-

work. Consequently, I specify that particular setup in terms of my workhorse model and

designate the stochastic process. The labeling of the process does not generally affect the

implications I show, but it sets the direction of the forthcoming sections and topics.

If I assume a standard utility function as in Chapter 3, I obtain the well-known second order

difference equation after log-linearizing the model around its nonstochastic steady state,

φ0Et

[
k̃t+1

]
+ φ1k̃t + φ2k̃t−1 = φ3s̃t + φ4Et [s̃t+1] , (5.9)

where k̃t is the log deviation of (the optionally stationarized stock of) capital from its steady

state value, and s̃t is the log-linearized stochastic process. The coefficients φj (with j =

0, 1, 2, 3, 4) depend on the deep model parameters. Solving the stable root backward and the

unstable root forward unveils how the decision rule for capital depends on future expected

shocks:

k̃t = φkkk̃t−1 −
φkkφ3

φ2

s̃t −
φkk (φ4 + ωφ3)

φ2

∞∑

j=0

ωjEt [s̃t+j+1] , (5.10)

where φkk is the stable root of the characteristic polynomial associated with the second order

difference equation in k̃t. ω denotes the inverse of the unstable root to the characteristic
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polynomial.9 Note that I only consider model specifications for which ω has positive values

so that I can adhere to the outcome such that 0 < ω < 1. According to Mertens and Ravn

(2010), ω can be interpreted as an anticipation rate because it measures the magnitude at

which agents discount expected future shocks in terms of their effect on the current capital

stock.

Incorporating anticipated shocks into the model reveals how nonfundamentalness can

emerge. A simple way to do that is to introduce a delay between the announcement of

a shock and its materialization. For example, I can write the stochastic process in log-

linearized form as

s̃t = wsq,t−q , (5.11)

where wsq,t−q is supposed to be white noise. It is the news that arrives q periods prior to

its effect on the exogenous variable and affects the economy. This type of news shock is

commonly used in the literature.10 The policy function of capital is then given by

k̃t = φkkk̃t−1 + φksw
s
q,t−q + φks,1

q−1∑

i=0

ωq−1−iwsq,t−i , (5.12)

where φks = −φkkφ3
φ2

and φks,1 = −φkk(φ4+φ3ω)
φ2

. This function is the starting point for the

following examples.

5.3.2 Univariate example

To ease the computations in this subsection, I assume that φ3 = 0, implying that φks = 0. This

presumption restricts the potential underlying model specifications, but I lift the assumption

in the subsequent section in which I find similar outcomes to those observed here.

Consider the last term on the right-hand side of equation (5.12), which reflects the effects

of the expected future path of the exogenous variable. Because the agents anticipate future

changes, discounted values of the latter impinge on the current level of capital. What might

be irritating at first sight is the “pervasive” (Leeper and Walker (2011), Leeper et al. (2013))

result that the older the news, the less it is discounted (i.e., the more it is weighted) by

the agents. This makes sense: the further in the past the news is announced, the closer

the associated (future) materialization to the current period. Thus, it is discounted less.

Notice that this “pervasive” effect leads to the nonfundamental property. As will be seen, the

econometrician weights the news conversely. Note that as long as the anticipation horizon q

does not exceed one period, nonfundamentalness does not arise because the policy function

9See Ljungqvist and Sargent (2004) for more details.
10Examples can be found in the web appendix for Beaudry and Lucke (2010), in Mertens and Ravn (2010) and

in Gunn and Johri (2013). For the investigation of other types of information flows, I refer the reader to the
articles by Leeper and Walker (2011), Leeper et al. (2013) and Beaudry and Portier (2014a).
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reduces to a simple AR(1) process with q = 1.

Supposing q = 2 leads to an ARMA(1,1) representation of the policy function, which can be

formulated in terms of the FIA model representation. Therefore, write the ARMA process in

state space form by setting

xt =
1

ωφks,1
k̃t − ws2,t , yt =

1

ωφks,1
k̃t−1 andwt = ws2,t−1 .

The state and observation equations then read

xt = φkkxt−1 +

(
1

ω
+ φkk

)
wt , (5.13)

yt = xt−1 + wt . (5.14)

When assigning the system matrices A, B, C and D to the above representation, one can

compute (A− BD−1C) as −1/ω to see that the invertibility condition is not satisfied.

This simple example easily allows the calculation of the LIE model representation. Because

there is only one state variable, and the observability and reachability matrices are trivially

given as the coefficients captured by C and B, Assumption 3 holds so that the conditions for

convergence of the Kalman filter are fulfilled. One can solve the associated Riccati equation

straightforwardly to obtain

Σ =
1

ω2
− 1 .

The corresponding Kalman gain is

K = φkk + ω .

The LIE model in reduced form is then given by

x̂t = φkkx̂t−1 + (ω + φkk) at , (5.15)

yt = x̂t−1 + at . (5.16)

Thus, A−KC = −ω, i.e., the minimum phase condition is maintained.

The econometrician identifies at = 1
ω
ε̂t, as E (ata

′
t) = CΣC ′ + DD′ = 1

ω2 , and thus estimates

the LIE model in structural form as

x̂t = φkkx̂t−1 +

(
φkk
ω

+ 1

)
ε̂t , (5.17)
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yt = x̂t−1 +
1

ω
ε̂t , (5.18)

where ε̂t has unit variance. Solving equation (5.17) for x̂t, substituting into equation (5.18)

and multiplying both sides by (1− φkkL), I obtain the ARMA(1,1) process yt − φkkyt−1 =
1
ω
ε̂t+ ε̂t−1, in which the lagged error is relatively less weighted (by one) than the error in the

current period (by 1/ω). The econometrician attaches more importance to more recent news

in contrast to the agents. The lower the anticipation rate, the less the agents discount older

news relative to more recent news, i.e., the lower the anticipation rate, the more “pervasive”

the implications.

The preceding result suggesting that the extent of the difference between the agent and

econometrician’s model depends on the magnitude of the anticipation rate finds support

when considering the two measures of Subsection 5.2.2. Because vt ≡ Dwt with D = 1,

the wedge of nonfundamentalness is simply ϕ = −2log (ω), i.e., the lower the anticipation

rate, the higher the wedge. The same outcome is expected for the gap between the impulse

response of the agents and the one computed by the econometrician. To show this, I derive

the MA representation of the FIA model as

yt =

(
1 +

( 1
ω
+ φkk

1− φkkL

)
L

)
wt (5.19)

=

(
1 + 1

ω
L

1− φkkL

)
wt .

The MA representation of the LIE model is

yt =

(
1

ω
+

(
1 + φkk

ω

1− φkkL

)
L

)
ε̂t (5.20)

=

(
L+ 1

ω

1− φkkL

)
ε̂t .

Evidently, the impact effect on the Wold representation is larger than that in the original

model, whereas this result is reversed for the effects at longer horizons. Obviously, the lower

the ω, the higher the deviation between the impulse responses. I calculate the total deviation

in absolute terms as 2 (1/ω − 1). Division by (1 + 1/ω) / (1− φkk) yields the MAWE measure

as 2 (1− φkk) (1− ω) / (1 + ω) with the only difference that I do not divide this term by the

length of a specific horizon because I deal with the infinite horizon here. It can be confirmed

that the MAWE indicator is, as in the description of the “pervasive” implications above,

negatively correlated with the anticipation rate.
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5.3.3 Extension to the multivariate case

I now relax the assumption that φ3 = 0 and augment the stochastic process such that it

includes another shock that is a standard surprise (white noise) shock ws0,t:

s̃t = ws0,t + λsw
s
q,t−q , (5.21)

where λs represents the relative standard deviation of the news shock in comparison to the

surprise shock. According to equation (5.21), agents no longer have perfect foresight on the

level of s̃t. For q = 2, I can write the policy function in capital as11

k̃t = φkkk̃t−1 + φksw
s
0,t + ωφks,1λsw

s
2,t + φks,1λsw

s
2,t−1 + φksλsw

s
2,t−2 , (5.22)

where all the coefficients are defined as before. Because there are two shocks, I set up a two-
dimensional vector of observables to formulate the state space system in terms of the FIA
model representation




k̃t

ws2,t

ws2,t−1


 =




φkk φks,1λs φksλs

0 0 0

0 1 0




︸ ︷︷ ︸
= A




k̃t−1

ws2,t−1

ws2,t−2


+




φks ωφks,1

0 1/λs

0 0





 1 0

0 λs




︸ ︷︷ ︸
= B


 ws0,t

ws2,t


 ,

(5.23)


 s̃t

k̃t


 =


 0 0 λs

φkk φks,1λs φksλs




︸ ︷︷ ︸
= C




k̃t−1

ws2,t−1

ws2,t−2


+


 1 0

φks ωφks,1




 1 0

0 λs




︸ ︷︷ ︸
= D


 ws0,t

ws2,t


 .

(5.24)

Thereby, I take a simplifying step of assigning the endogenous state variable k̃t and the ex-

ogenous state variable s̃t to the vector of observables, which contradicts the usual assump-

tion about the unobservability of the states but is convenient for demonstration purposes.

Notice that s̃t does not appear in the state vector because I have already documented the

minimal state space representation in equations (5.23) and (5.24). To check this, one can ver-

ify that the rank of the observability and the reachability matrix is equal to three (see the

appendix), which is the dimension of the state vector, i.e., q + 1.

If ws0,t and ws2,t are interpreted as technology shocks, for instance, one could think of s̃t as an

11Eliminating the assumption that φ3 = 0 leads to the inclusion of the news shock that dates back q peri-
ods. This shock does not fit in the weighting scheme of all other news shocks of the interval t to t − q + 1.
Nevertheless, the main conclusion of the previous subsection still holds within this setting.
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observable measure of technological progress. In the literature, there are different attempts

to quantify technological improvement, which range from a simple Solow residual to more

sophisticated approaches, e.g., those by Basu et al. (2006). Capital is chosen as the second

observable for ease of computation. In principle, the implications I highlight will not be

different if I use any other endogenous variable as the second component in the vector of

observables.

Having defined the new state space system, it is now possible to derive the corresponding

LIE model representation. First, I ensure that nonfundamentalness is existent by calculating

the nonzero eigenvalue of

A− BD−1C =




0 0 0

− φkk
ωφks,1λs

− 1
ω

0

0 1 0




as −1/ω. Because the conditions with respect to the convergence of the steady state Kalman

filter are satisfied, I can find a unique solution to the algebraic matrix Riccati equation. In the

appendix, I compute the analytical expressions. Here, I only concentrate on selected results

that bear further commonalities with the foregoing univariate example.

The solution to the Riccati equation is given as

Σ =

(
1− ω2

1 + λ2sω
4

)



0 0 0

0 1 −ω
0 −ω ω2


 .

Hence, I can calculate the variance-covariance matrix of the forecast errors in yt, which reads

E (ata
′
t) =


 χ1 χ2

χ2
(χ2

2
+λ2sφ

2
ks,1)

χ1


 ,

where χ1 = 1+λ2sω
2

1+λ2sω
4 and χ2 =

φks(1+λ2sω2)−λ2sωφks,1(1−ω2)
1+λ2sω

4 . The determinant of the variance-

covariance matrix is λ2sφ
2
ks,1. Because the determinant of

DD′ =


 1 φks

φks λ2sω
2φ2

ks,1 + φ2
ks




is λ2sω
2φ2

ks,1, I end up, as in the univariate example, with the wedge of nonfundamentalness

ϕ = −2log (ω).

In the above examples, I have focused on situations where q = 2. In the appendix, I general-
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ize the result for the wedge as −2 (q − 1) log (ω). However, anticipation horizons longer than

two periods lead to analytical expressions that are difficult to handle. Therefore, I switch to

numerical calculations, which also facilitate the illustration in the case of further model ex-

tensions, in the following subsection.

5.3.4 Numerical simulations

For the numerical exercises, I use a neoclassical production function of a Cobb-Douglas type

with constant returns to scale, where α denotes the output elasticity of labor (Nt), and the

standard accumulation equation for capital (Kt), as presented in Chapter 2. I specify the

other relevant functions in the workhorse model as follows. The household’s instantaneous

utility at time t is described by

u (Ct, Nt) =
C1−σ
t (1− ψNt)

1−σ − 1

1− σ
, (5.25)

where Ct is consumption and σ, ψ > 0. I include one stochastic variable, which is labor-

augmenting technology that follows an autoregressive process of order one subject to a sur-

prise (wθ0,t) and an anticipated shock (wθq,t−q):

log (θt) = ρθlog (θt−1) + σθw
θ
0,t + λθσθw

θ
q,t−q , (5.26)

where 0 < ρθ < 1. σθ denotes the standard deviation of the technology shocks, which are

supposed to be white noise. λθ is the relative weight of the standard deviation of the an-

ticipated shock with respect to the surprise shock. The model solution for any endogenous

variable zt (including capital) in terms of log-deviation from its corresponding steady state

value (indicated by lowercase letters with “~”) is then given by the policy function

z̃t = φzkk̃t−1 + φzθθ̃t + φzθ,1

q−1∑

i=0

ωq−1−iλθσθw
θ
q,t−i . (5.27)

Because equation (5.26) represents a zero mean process, θ̃t is simply log (θt). Notice that the

“pervasive” discounting occurs for all endogenous variables.

Using the policy functions, assuming that technology is observable and defining a two-

dimensional vector of observables, I derive the vector MA representation of the model solu-

tion as12

12Recall the previous explanations of the possibility of finding a measure of technological progress. I could,
e.g., easily define a variable that represents the Solow residual (or TFP) by setting At = θα

t
.
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 θ̃t

z̃t


 =




1
(1−ρθL)

Lq

(1−ρθL)

(
φzθ

(1−ρθL) +
φkθφzk

(1−φkkL)(1−ρθL)L
)


(

φzθ
(1−ρθL) +

φkθφzk
(1−φkkL)(1−ρθL)L

)
Lq

+
(
φzθ,1 +

φkθ,1φzk
(1−φkkL)L

)
Θ(L)





Σw

︸ ︷︷ ︸
=M (L)


 wθ0,t

wθq,t


 ,

(5.28)

where

Σw =


 σθ 0

0 λθσθ




and

Θ(L) = ωq−1 + ωq−2L+ . . . ωLq−2 + Lq−1 .

The roots of Θ(L) can be computed as q − 1 roots of unity multiplied by ω.13 Hence, these

roots lie all on one circle with radius ω in the complex plane.14 These roots are the zeros of

the MA lag polynomial det [M (L)]. Because my previous assumption that 0 < ω < 1 still

holds, there is nonfundamentalness when the anticipation horizon exceeds one period.15

Notice that det [M (L)] has one additional root that is not directly related to ω or Θ(L). It can

be calculated as φzθ,1/ (φzθ,1φkk − φzkφkθ,1).16

13Any complex number Z that satisfies the equation Zm = 1, where m is some integer, is called a root of unity.
14Notice that one root of Θ(L) is equal to −ω when q is even.
15See also my explanations in Subsection 5.3.1 with respect to the assumption of possible values for ω.
16In the case that capital is the second observable, the additional root would not exist.
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Moreover, I set up the FIA model representation17




k̃t

θ̃t

wθq,t

wθq,t−1

...

wθq,t−q+2

wθq,t−q+1




=




φkk ρθφkθ ωq−2φkθ,1 . . . ωφkθ,1 φkθ,1 φkθ

0 ρθ 0 . . . 0 0 1

0 0 0 . . . 0 0 0

0 0 1
λθσθ

. . . 0 0 0
...

... · · · . . .
...

...
...

0 0 0 . . . 1
λθσθ

0 0

0 0 0 . . . 0 1
λθσθ

0




Σ1

︸ ︷︷ ︸
= A




k̃t−1

θ̃t−1

wθq,t−1

wθq,t−2

...

wθq,t−q+1

wθq,t−q




+




φkθ ωq−1φkθ,1

1 0

0 1
λθσθ

0 0
...

...

0 0

0 0




Σw

︸ ︷︷ ︸
= B


 wθ0,t

wθq,t


 , (5.29)


 θ̃t

z̃t


 =


 0 ρθ 0 . . . 0 0 1

φzk ρθφzθ ωq−2φzθ,1 . . . ωφzθ,1 φzθ,1 φzθ


Σ1

︸ ︷︷ ︸
= C




k̃t−1

θ̃t−1

wθq,t−1

wθq,t−2

...

wθq,t−q+1

wθq,t−q




+


 1 0

φzθ ωq−1φzθ,1


Σw

︸ ︷︷ ︸
= D


 wθ0,t

wθq,t


 , (5.30)

17Notice that the state space representation presented in equations (5.29) and (5.30) is not minimal. To obtain
the minimal realization of the state space representation (for the numerical as well as the Monte Carlo sim-
ulations below), I use the Matlab command ss(sys,’minimal’). In this case, the state vector has dimension
q + 1.
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where

Σ1 =


 I2 02×q

0q×2 λθσθ · Iq


 ,

and Σw is the same as in (5.28). Recall from Chapter 2 that the roots of det [M (L)] are the

reciprocals of the (nonzero) eigenvalues of (A− BD−1C). Hence, the matrix (A− BD−1C)
has q − 1 eigenvalues with modulus 1/ω and one equal to (φkkφzθ,1 − φkθ,1φzk) /φzθ,1.18

After deriving the FIA model, I can use the system matrices A, B, C and D in combination

with the suitable algorithm to solve the associated Riccati equation. This leads to the LIE

model in reduced form. To obtain the corresponding structural form, I imitate the econo-

metrician’s procedure, i.e., imposing appropriate restrictions on the system to identify the

structural innovations. Because I have a bivariate vector of observables, one restriction is

necessary (in addition to the conventional assumption of the orthogonality of the structural

shocks). I constrain the contemporaneous impact matrix D̂ to be lower triangular, i.e., the

news shock has no immediate impact on technology, which is in line with the FIA model. It

thus becomes possible to calculate the impulse responses of the LIE model and to compare

them with the true responses.

In the following, I provide some illustrative examples. I choose output as the second ob-

servable and calibrate the model parameters as follows: α = 2
3
, β = 1.01−1, σ = 1, ψ = 1

and ρθ = 0.95. Moreover, I set the standard deviation σθ and the relative weight of the news

shock λθ equal to one. Given this calibration, I can calculate the eigenvalues of (A− BD−1C).
The anticipation rate equals 0.9435, so there are q − 1 eigenvalues with modulus 1.06. The

additional eigenvalue not related to ω equals 0.9.

I visualize the systematic error made by the econometrician by comparing her impulse re-

sponses with the original responses. Figure 5.1 presents the true impulse responses (green

lines) and those resulting from the standard identification procedure of the econometrician

(blue lines) for the case when q = 2. The upper graphs show the responses of technology,

the lower graphs display the responses of output to the surprise shock (left column) and the

anticipated shock (right column), respectively.

Recall that the model that has served until now as the DGP is a standard RBC model. Thus,

I observe the well-known reactions of output on the surprise and the anticipated technology

shock. Because I have specified a standard utility function, i.e., without habit formation, for

example, a news shock generates a wealth effect such that agents increase consumption and

reduce labor supply on impact. Output decreases and is accompanied by a decline in invest-

ment due to the resource constraint. During the anticipation phase, the household continues

to slowly raise its level of consumption and leisure, whereas output and investment slightly

decrease. When the news shock materializes, productivity boosts output to a higher level,

18In the special case when capital is the second observable, the latter eigenvalue is zero. See also footnote 16.
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Figure 5.1: IMPULSE RESPONSES IN WORKHORSE MODEL WITH NEWS SHOCK (q = 2)
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Note: The figure depicts the FIA model impulse responses (in green) and the LIE model impulse responses (in blue). Impulse responses
to wθ

0,t are shown in the left column and impulse responses to wθ
2,t in the right column.

and the reaction of all aggregates copy their responses as in the case of the surprise shock

(with a delay of q periods).

There is no substantial deviation between the true and the estimated impulse responses

in this simulation. This finding changes with a longer anticipation horizon, as will be de-

scribed below. Nevertheless, the contrary implications are less severe than those found by

Leeper et al. (2013), for instance.19 However, the econometrician might have to care about

her conclusions about the impulse responses when addressing anticipated shocks and an

anticipation horizon that is relatively long. These findings also suggest that nonfundamen-

talness affects not only impulse responses corresponding to the news shocks but also to the

other conventional (surprise) disturbances associated with the same stochastic process.

Figure 5.2 displays the result when the anticipation horizon is fixed at q = 8.20 The econo-

metrician overestimates the impact effect of the surprise shock. This overshooting ends after

three or four periods and transitions to underestimation thereafter until the variables con-

verge back to their steady state values. Concerning the anticipated shock, the first eight

periods are characterized by impulse responses in the LIE model, which lie above the true

responses. In the original model, there is a distinct jump in both variables when the news

shock materializes eight periods after its anticipation. The LIE model responses also show a

jump after eights periods but exhibit a gradual increase in the periods before the spike and

then overestimate the increase when the spike occurs.

19Leeper et al. (2013) present an example in which the econometrician would estimate a positive response of
capital to an anticipated tax shock, although the opposite holds true for the underlying standard growth
model. See also my explanations in Section 7.5 and the appendix to Chapter 7.

20See also my remarks on the length of the anticipation horizon in Subsection 7.4.1.
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Figure 5.2: IMPULSE RESPONSES IN WORKHORSE MODEL WITH NEWS SHOCK (q = 8)
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Note: The figure depicts the FIA model impulse responses (in green) and the LIE model impulse responses (in blue). Impulse responses
to wθ

0,t are shown in the left column and impulse responses to wθ
8,t in the right column.

I quantify the deviations between the FIA and the LIE model by computing the correspond-

ing MAWEs, as explained above. Table 5.1 presents the results. Each cell contains 2× 2 ma-

trices that include the computed MAWEs associated with the respective impulse responses.

For example, the upper left element of a matrix corresponds to the response of technology to

the surprise shock, whereas the lower right element is linked to the response of output to the

news shock. I include two additional columns in the table, which display the findings for

different values of λθ. For an illustrative comparison, I also portray the impulse responses

in Figure 5.3.

The size of the relative weight λθ determines the structural shock on which the differences

between the FIA and the LIE model become stronger. The more important the news shock,

as indicated by a higher λθ, the lower the relative errors on its side but the higher the de-

viations with respect to the surprise shock. These implications reverse for small values of

λθ. In the appendix, I show that my measure of the wedge of nonfundamentalness ϕ equals

−2 (q − 1) log (ω) and is therefore not influenced by λθ. The magnitude of λθ only shifts the

systematic error in terms of the wedge to one side, but it does not affect its total level. It is

not surprising that the econometrician who tries to disentangle both shocks can identify the

dynamics of the shock that has a higher variance more easily. Consequently, discovering the

news shock comes at the cost of disregarding the surprise shock and vice versa.

Furthermore, ϕ = −2 (q − 1) log (ω) is also independent of the choice of the second observ-

able in the system because the policy function in equation (5.27) holds for any endogenous

variable of the model, i.e., the decision about their current level inherits the same inverse

weighting scheme of old news for all variables, which leads to the nonfundamentalness

property. As in the previous case with varying values of λθ, the choice of the second observ-
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Figure 5.3: IMPULSE RESPONSES IN WORKHORSE MODEL WITH NEWS SHOCK (VARYING λθ)
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Note: The figure depicts the FIA model impulse responses (in green) and the LIE model impulse responses (in blue) for three cases:
λθ = 1 (solid), λθ = 2 (dashed) and λθ = 1/2 (dotted). Impulse responses to wθ

0,t are shown in the left column and impulse responses

to wθ
8,t in the right column.

Table 5.1: MAWE RESULTS W.R.T. WORKHORSE MODEL WITH NEWS SHOCK (q = 8)

λθ = 1 λθ = 2 λθ = 1/2

MAWE
0.6951 0.6197

0.6504 0.6433

1.2789 0.2690

1.1962 0.2827

0.2486 0.9209

0.2331 0.9484
Note: The table reports the computed MAWEs associated with the impulse responses displayed in Figure 5.3. MAWE values are
calculated as in equation (5.8) multiplied by 100.

able only matters for how the wedge is divided between the impulse responses to the two

structural shocks but not for the general magnitude of ϕ. To provide support for this point,

I compare the dynamic responses of output and investment, respectively, to both shocks

depending on whether output or investment is selected as the second observable.

Figure 5.4 presents the responses of output to the surprise shock (left column) and to the

news shock (right column) in the top row and the respective impulse responses associated

with investment in the bottom row for both the FIA model and the LIE model. Obviously,

investment exhibits a much stronger reaction to the shocks, and the deviation between the

FIA model and the LIE model becomes more apparent in this case. To enable a fair compar-

ison, I compute the corresponding MAWEs presented in the second column of Table 5.2 to

which a third row that contains the ratio of the MAWEs of investment and the MAWEs of

output (i.e., the middle row divided by the top row) is added. The findings indicate that, in

this setting, investment as the second observable seems to be the better choice if the goal is a

closer match for the dynamic responses to the news shock but a worse choice if one wishes

to concentrate on the impulse responses to the surprise shock. Note that I add a third col-
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Figure 5.4: IMPULSE RESPONSES IN WORKHORSE MODEL WITH NEWS SHOCK (DIFFERENT

VARIABLES)
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Note: The figure depicts the FIA model impulse responses (in green) and the LIE model impulse responses (in blue) related to the
second observable variable in the respective system. The upper row plots the impulse response of output as the second observable,
the lower row displays the impulse responses of investment as the second observable. Impulse responses to wθ

0,t are shown in the left

column and impulse responses to wθ
8,t in the right column.

Table 5.2: MAWE RESULTS W.R.T. WORKHORSE MODEL WITH NEWS SHOCK (DIFFERENT

VARIABLES)

2nd observable MAWE RMSE

Output 0.6504 0.6433 0.1219 0.1244

Investment 0.8621 0.4844 0.3527 0.3646

Ratio 1.3255 0.7530 2.8926 2.9308
Note: In the upper two rows, the table reports the computed MAWEs and RMSEs associated with the impulse responses displayed in
Figure 5.4. MAWE values are calculated as in equation (5.8) multiplied by 100. The bottom row shows the ratio between the values in
the middle row and the values in the top row.

umn to Table 5.2, which contains the RMSEs with respect to the aforementioned impulse

responses, to show that the RMSE is not a convenient indicator in this context. Accord-

ing to the RMSE, one would draw the misleading conclusion that output should be strictly

preferred to investment.

I conclude this subsection with a final exercise in which I am concerned with the anticipation

rate because this seems to be a crucial element when the implications of nonfundamental-

ness in the presence of news shocks are studied. I return to the system comprising output as

the second observable and present the MAWE of each impulse response depending on the

size of the anticipation rate in Figure 5.5. I vary the value of the discount factor β between

0.909 and 0.995 such that I obtain a range of values for ω between 0.78 and 0.96.

The more the agents discount future utility, the lower the anticipation rate and the higher
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Figure 5.5: MAWE RESULTS W.R.T. WORKHORSE MODEL WITH NEWS SHOCK (VARYING ω)
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Note: The figure depicts the computed MAWEs w.r.t. the impulse responses of technology (in black) and output (in violet) depending
on the value of the anticipation rate ω. MAWE values are calculated as in equation (5.8) multiplied by 100. Solid lines correspond to
MAWEs associated with impulse responses to wθ

0,t. Dashed lines show the MAWEs associated with the impulse responses to wθ
8,t.

the systematic error made by the econometrician. Mertens and Ravn (2010) conduct other

experiments in this context and emphasize that, for a reasonable parameter space, standard

DSGE models imply an anticipation rate between 0.9 and one. Although this statement

might reassure the econometrician that she need not care about nonfundamentalness, it is

worth noting that even in the range of values for ω between 0.9 and one, the magnitude of

the error more than doubles.

5.4 The role of additional variables in the econometrician’s

information set

A frequently recited practical recommendation to handle the problem of nonfundamen-

talness is to include “forward-looking” variables in the set of observables. Because news

shocks reflect agents’ anticipation of the future, the econometrician faces the challenge of

finding data that reveal this information. Popular proxies for this purpose are stock prices

because standard theory models these as the expected discounted sum of future profits, div-

idends or cash flows. Early contributions, e.g., by Fama (1990) and Schwert (1990), find

that stock prices mirror changes in agents’ expectations about future economic movements.

Beaudry and Portier (2006) consider this aspect and show that stock price innovations,

which are orthogonal to surprise changes in TFP, comprise anticipated future TFP shocks.

Many subsequent studies relate to this result and estimate SVAR models to quantify the

contribution of news shocks to macroeconomic fluctuation (see Haertel and Lucke (2008),



CHAPTER 5: ANTICIPATION EFFECTS AND THEIR CONSEQUENCES 99

Beaudry and Lucke (2010) and Barsky and Sims (2011), for instance). Additionally, Barsky

and Sims (2011) use a measure of consumer sentiment to capture the forward-looking char-

acteristics of this variable (see also Barsky and Sims (2012) in that context). Forni et al. (2014)

address this issue as well. The authors assert that the bivariate SVAR model by Beaudry and

Portier (2006) as well as higher-dimensional models similar to that by Beaudry and Lucke

(2010) have nonfundamental representations. Forni et al. (2014) argue that if models similar

to that by Beaudry and Lucke (2010) include consumer sentiment as an additional variable,

nonfundamentalness does not arise; they corroborate this statement with an empirical test of

nonfundamentalness. By contrast, I base my argumentation on a more theoretical perspec-

tive in the subsequent paragraphs without leaving the framework developed in Chapter

2.

Recall the policy function in (5.27). It holds for any endogenous variable of the model, i.e.,

the decision about their current level inherits the inverse weighting scheme of old news for

all variables, which leads to nonfundamentalness. Note that it is possible to modify the

workhorse model (e.g., by adding capital adjustment costs, as will be conducted in Chapter

7) such that it involves a variable that can be interpreted as stock price and computed as the

present value of the future dividend stream. This variable would exhibit the same structure

in the policy function as the other endogenous variables. Hence, as long as the set of ob-

servables is extended by such endogenous variables, conditioning on more information by

including them in the system does not help. A test of this is to compute the wedge of nonfun-

damentalness for the workhorse model augmented with further standard surprise shocks,

such as a surprise preference or government spending shock, so that the vector of observ-

ables can be enlarged without facing the problem of stochastic singularity. One would end

up with the same value for the wedge of nonfundamentalness as in the lower-dimensional

systems.

The “forward-looking” feature of a variable, such as the stock price, is therefore not sufficient

for eliminating the nonfundamentalness problem. In fact, the assumption of rational expec-

tations is relevant for the existence of that problem. Under rational expectations, agents

determine their actions using all available information about all kind of shocks, whereas the

econometrician can only condition on a limited set of observable aggregates. The econo-

metrician cannot condition on the shocks because they are not directly observable, and the

objective of the econometrician is to detect them. As a result, there is misalignment between

the agent and the econometrician’s information sets such that nonfundamentalness mani-

fests.

Alternatively, one could argue more generally and enlarge the econometrician’s information

set with variables from “outside” the model solution. Giannone and Reichlin (2006) show

that this helps solve the problem only under certain assumptions. In principle, if the true

shocks are nonfundamental for the small set of variables included in the vector of observ-
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ables, then they cannot be fundamental for a larger set of observables. To see that, reconsider

the vector MA representation of the general model solution in equation (5.1). For the mo-

ment, I do not provide a concrete specification but assume that it describes the true structural

model, which has a nonfundamental MA representation. Hence, det [M (L)] has at least one

root inside the unit circle. One could expand the system by augmenting yt with additional

variables y>t , which might also involve further economic shocks. Thus, in general, I obtain


 yt

y>t


 =


 M (L) S (L)

M> (L) S> (L)




 wt

w>

t


 . (5.31)

Because equation (5.1) is presumed to be the true model, the additional shocks w>

t ought to

explicitly affect y>t . It implies that S (L) = 0. Then, the roots of the MA lag polynomial in

equation (5.31) are the roots of det [M (L)] · det [S> (L)]. Unless all the roots of det [M (L)]

inside the unit circle are not canceled out by some of the roots of det [S> (L)], the larger

system is also nonfundamental.

The question is whether there are possibilities for a remedy? In this context, nonfundamen-

talness is a problem of missing states in the set of observables, in particular, those states

that represent the lagged news shocks. This can be seen in the state space representations in

Subsections 5.3.3 and 5.3.4, where the state vector comprises such terms. If the econometri-

cian finds candidates that are directly related to lagged news, she could augment the set of

observables and reduce the discrepancy between her own and the agent’s information set.

In the literature, there are some attempts that proceed in this direction. One strand of the

literature is based on the idea of using instrumental variables as proxy for the news. The

studies in that body of literature differ in how they find these proxies. One way is to use

identified shocks from conventional SVAR models as instruments. Other approaches incor-

porate forecasts that are generated by other models. A detailed and comprehensive discus-

sion of these topics can be found in Leeper et al. (2008, 2013), but they mainly concentrate

on fiscal foresight.

A different approach is undertaken by researchers who estimate factor models of various

types.21 The basic idea behind those models is to describe the entire economy using a very

large set of variables, which are driven by a small number of latent factors. Hence, all the rel-

evant information can be reduced to a small set of factors. In a recent paper, Forni et al. (2014)

suggest estimating a dynamic factor model (cf. Forni et al. (2000) and Forni et al. (2009)) or

amending the basic VAR model with those factors (i.e., estimation of a factor-augmented

VAR (FAVAR) model à la Bernanke et al. (2005)) if it does not contain enough information to

cope with nonfundamentalness. Related to the explanations above, this proposition can be a

useful way to overcome the dilemma. The idea is tested by Sims (2012), who shows in a sim-

21For a general overview of factor models and their implications, see Stock and Watson (2005, 2010).
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ulation study that adding “information variables” to the conventional VAR helps curtail the

wedge of nonfundamentalness in the presence of news shocks. In this study, “information

variables” are modeled as noisy signals about the news and are extracted from the factor

structure of the generated data.22

In the following chapters, my objective is to explore alternatives to the aforementioned pro-

cedures and to test their ability to resolve the problem of nonfundamentalness when news

shocks are considered. I focus on situations in which the applied researcher estimates a

small-scale VAR model (or conducts a corresponding subspace algorithm analysis) because

she has only limited access to a small number of observable variables.

22A very recent example of how to create a direct measure of news is given by Larsen and Thorsrud (2015)
and Thorsrud (2016). They use textual data from a Norwegian newspaper to develop a corresponding news
index.
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Chapter 6

Examining empirically based root flipping

In this chapter, I address the question of whether it is possible to handle the problem of non-

fundamentalness without extending the econometrician’s information set. What is known

in this thesis up to now is that DSGE models with news shocks can have a nonfundamental

MA representation, i.e., at least one root of the MA lag polynomial associated with the FIA

model lies inside the unit circle. It is also known that, in this case, the econometrician would

estimate a corresponding form of the LIE model that has the same autocovariance structure

as the FIA model but differs in the location of the MA roots that are originally inside the

unit circle. Specifically, estimation of the LIE model flips those roots from the inside to the

outside of the unit circle, i.e., these estimated roots represent reciprocals of the originals. Is

it then feasible to switch these roots back in order to retrieve the true model?

6.1 Motivation and related literature

Lippi and Reichlin (1993, 1994) give a formal introduction and illustration of the usage of

so-called Blaschke matrices to transform fundamental into nonfundamental MA represen-

tations. Generally, there exists an infinitely large set of nonfundamental representations

having the same autocovariance structure as the fundamental representation. An econo-

metrician who estimates a standard VAR model ignores them a priori. Lippi and Reichlin

(1994) show that the roots of the MA polynomial can produce circles of complex roots in the

determinant of the VAR operator. This aspect helps limit the space of relevant nonfunda-

mental representations. Furthermore, it allows their construction from the estimated VAR

coefficients. As the econometrician uses only information coming from her estimated model,

I call this approach empirically based root flipping. The general procedure of Lippi and Re-

ichlin (1993, 1994) can be summarized by the following steps: estimate a VAR model, flip

the estimated roots of its vector MA representation and impose standard restrictions based

on theory to identify the structural dynamics.

103
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This procedure unfortunately involves some drawbacks: how does the econometrician know

which roots have to be flipped? Moreover, the success of the procedure crucially depends

on the accuracy of the VAR estimation. Lippi and Reichlin (1993, 1994) apply this approach

to pick out specific examples of nonfundamental representations that have either quite sim-

ilar or different implications in comparison to the corresponding fundamental ones. Hence,

if economic theory does not enable the econometrician to be sure about the location of the

roots (i.e., whether they are inside or outside the unit circle), the estimation of the standard

VAR model can produce misleading conclusions about the true underlying structure.

My goal is to explore whether the method of empirically based root flipping works in prin-

ciple, i.e., whether it is generally possible to uncover the true dynamics by implementing

this procedure. I find that the resulting nonfundamental representations are false, as is the

fundamental candidate.

6.2 Background and basic concepts

Flipping the roots of a polynomial can be achieved by means of Blaschke matrices in both

directions. To highlight the role of Blaschke matrices in flipping roots, I recapitulate the

analytical univariate example of Subsection 5.3.2 in which the nonfundamental MA repre-

sentation (resulting from the FIA model) is given by

yt =

(
1 + 1

ω
L

1− φkkL

)

︸ ︷︷ ︸
= m (L)

wt , (6.1)

and the fundamental MA process (originating from the LIE model) is

yt =

(
L+ 1

ω

1− φkkL

)

︸ ︷︷ ︸
= m̂ (L)

ε̂t , (6.2)

where both shocks are white noise with unit variance and 0 < φkk, ω < 1. Both representa-

tions fulfill the conditions in (i) and (ii), which characterize fundamentalness in conjunction

with (iii) (see Subsection 5.2.1). The latter is only satisfied in the case of equation (6.2). As

both processes have the same autocovariance structure, they are observationally equivalent,

i.e., the econometrician who has access to the sequence of observations {yt} discovers equa-

tion (6.2), although the true DGP is equation (6.1). The reason for this is that the MA operator

in equation (6.1) is invertible in negative powers of the lag operator L only. In other words,

the space spanned by the present and past values of wt is not contained in the information

set with which the econometrician is equipped. That is, the sequence of shocks {wt} cannot



CHAPTER 6: EXAMINING EMPIRICALLY BASED ROOT FLIPPING 105

be detected by employing the history of yt. The econometrician’s information set is smaller

than the agent’s. She would need future realizations of yt to identify the true shocks wt. This

is (usually) not the case, so she recovers only the sequence of shocks {ε̂t}.

A so-called Blaschke factor can be applied to transform equation (6.2) into equation (6.1)

and vice versa. Formulating the function B (L) = L+ω
1+ωL

helps move from equation (6.2) to

equation (6.1). Setting m (L) = m̂ (L)B (L) and wt = B (L)−1 ε̂t yield the nonfundamental

representation in equation (6.1). L+ω
1+ωL

is called a Blaschke factor, which flips the root from

−1/ω to −ω by postmultiplying φ̂ (L) by B (L) in the above example. Alternatively, one

can use B (L−1) = L−1+ω
1+ωL−1 to switch the opposite way, i.e., m̂ (L) = m (L)B (L−1) and ε̂t =

B (L)wt. Additionally, ε̂t is a linear combination of current and past realizations of wt in this

example.

The Blaschke factor is defined for any complex scalar z and not only for the lag operator.

Furthermore, this concept can be extended to the case with k variables. Then, there is a k-

dimensional identity matrix with one diagonal element being the Blaschke factor so that an

elementary Blaschke matrix has the form

R (z, λ) =


 Ik−1 0

0 z−λ
1−λz




with |λ| < 1, and λ denotes the complex conjugate of λ (allowing for the case of complex

roots). In the case of a single root, a complete Blaschke matrix is the product of the ele-

mentary one with an orthogonal matrix G (described below), either by pre- or postmulti-

plication, e.g., B (z) = G · R (z, λ). If there are m roots, λ1, ..., λm, to be flipped, B (z) =

G1 ·R (z, λ1) ·G2 ·R (z, λ2) · · ·Gm ·R (z, λm).

In general, a Blaschke matrix B (z) satisfies the following two conditions:

(I) B (z) has no poles inside the (closed) unit circle; and

(II) B (z)BT (z−1) = I , i.e., B (z)−1 = BT (z−1),

where BT (z−1) is obtained after transposing and taking conjugates of B (z).

To illustrate how to flip roots in a multidimensional case, now suppose that a k-dimensional

vector MA process is given by

yt = N̂ (L) ηt , (6.3)

where ηt is a k-dimensional white noise vector with E (ηtη
′
t) = Ik. I assume that the MA

lag polynomial det
[
N̂ (L)

]
has only one (real) root at λ−1 with |λ| < 1. Using the Blaschke
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matrix as introduced above, I can write

yt = N (L)µt , (6.4)

where N (L) = N̂ (L)B (L), µt = B (L)−1 ηt with E (µtµ
′
t) = Ik and

B (L) = G ·


 Ik−1 0

0 L−λ
1−λL


 .

G represents the rotation matrix that determines the last column of N̂ (L)G to include the

factor L − λ−1. The other columns of G are fixed due to the orthogonality condition. Thus,

the choice of G is not unique. One way of computing the rotation matrix is to take a SVD

of N̂ (L) at L = λ−1 and use the matrix of right singular vectors as G. Postmultiplication

of N̂ (L)G by the elementary Blaschke matrix finally replaces the root λ−1 by its reciprocal

value.

As in the univariate example, it is also possible to move from the nonfundamental to the

fundamental representation. The analytical example in Section 6.4 illustrates this aspect.

Prior to that, I describe the procedure of empirically based root flipping in the subsequent

section and argue that this procedure fails to discover the true MA representation.

6.3 Empirically based root flipping

Suppose that the FIA model is characterized by a nonfundamental vector MA representation

of the form

yt = M (L)wt , (6.5)

where wt denotes the k-dimensional vector of economic shocks with E (wtw
′
t) = Ik. By

definition, det [M (L)] has at least one root inside the unit circle. A corresponding reduced

form of the representation in equation (6.5) is

yt = M (L)M (0)−1 vt , (6.6)

where vt =M (0)wt.

As described above, the representation in equation (6.5) has its fundamental counterpart in

form of the Wold decomposition

yt = M (L)B1 (L)
−1B1 (L)wt

= M̂ (L) εt , (6.7)



CHAPTER 6: EXAMINING EMPIRICALLY BASED ROOT FLIPPING 107

where M̂ (L) = M (L)B1 (L)
−1 and εt = B1 (L)wt. B1 (L) now denotes an appropriate

Blaschke matrix that flips all roots smaller than unity in absolute value from the inside to the

outside of the unit circle, i.e., det
[
M̂ (L)

]
has all roots larger than one in modulus. Notice

that E (εtε
′
t) = Ik.1

The econometrician using standard structural estimation procedures seeks to identify the

structural innovations εt and their dynamics in reckoning to find the true shocks.2 In partic-

ular, the econometrician does not estimate equation (6.7) directly but its reduced form

yt = M̂ (L) M̂ (0)−1 M̂ (0) εt

= T (L) at , (6.8)

where T (L) = M̂ (L) M̂ (0)−1, and at

(
= M̂ (0) εt

)
are the reduced form innovations with

E (ata
′
t) = M̂ (0) M̂ (0)′. Thereby, I assume that the econometrician estimates equation (6.8)

correctly. By indirect estimation, I mean that the econometrician applies the estimation pro-

cedures, such as VAR or subspace algorithm analysis, and then computes the vector MA

representation, which is given in equation (6.8). In that sense, correct estimation indicates

that all possible errors due to issues such as small sample uncertainty or lag truncation are

neglected here. After the reduced form has been determined, identifying restrictions on

M̂ (L) by means of zero short-run and/or zero long-run restrictions are imposed. In the

standard procedure, these restrictions are based on (what is reckoned to be) the true model,

i.e., on M (L) rather than on M̂ (L). Hence, if the restrictions are not consistent with M̂ (L),

the econometrician obtains another structural form, which I write as

yt = T (L) D̂ε̂t , (6.9)

where D̂ is the identified impact matrix (known from the LIE model in structural form) and

ε̂t = D̂−1M̂ (0) εt.3 D̂ is computed such that E (ε̂tε̂
′
t) = Ik, i.e., the matrix D̂−1M̂ (0) has to

be orthogonal. Note that if the identifying restrictions are in accordance with M̂ (L), one

trivially has D̂ = M̂ (0), and therefore, ε̂t equals εt.

The econometrician is not successful in both steps of structural estimation. Obviously, the

econometrician fails in the first step because M (L) 6= M̂ (L). She also fails in the latter step

because there can be no matrix D̂ for which T (L) D̂ is equal to M (L). Consequently, the

econometrician only detects a linear combination of current and past true shocks. Thus, she

uncovers dynamics that differ from the true dynamics.

To avoid this shortcoming, one could attempt the approach of Lippi and Reichlin (1993,

1Additionally, note that εt is also white noise due to the particular property of the Blaschke matrix, i.e., the
Blaschke matrix transforms a white noise process into another white noise process (see, e.g., Lippi and Reich-
lin (1994)).

2Recall that the terminology distinguishes between the structural innovations εt and the true shocks wt.
3This is the case in the analytical example of Subsection 6.4.2.
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1994). The application of their procedure flips the MA roots from outside to inside of the unit

circle after the reduced form in equation (6.8) has been estimated and before the restrictions

are imposed. This step leads to the following representation

yt = T (L)B2 (L)B2 (L)
−1 at

= T̃ (L) ãt , (6.10)

where T̃ (L) = T (L)B2 (L) and ãt = B2 (L)
−1 at.4 B2 (L) denotes the Blaschke matrix chosen

by the econometrician. In the final step, one would proceed by implementing the identifica-

tion scheme as in the standard approach above. My claim is that this standard identification

procedure is also invalid in the case of empirically based root flipping.

Consider the last representation in equation (6.10), where T̃ (L) =M(L)B1(L)
−1M̂(0)−1B2(L).

Standard identification yields a rotation matrix, say D̃. To compute the structural form,

T̃ (L) is postmultiplied by D̃. Evidently, there can be no such matrix D̃ for which T̃ (L) D̃
equals M (L). I conclude that empirically based root flipping collapses as well. A solution

to this problem by adjusting the identification scheme appropriately is possible, but only if

the econometrician has knowledge of the Blaschke matrix B1 (L). This case is discussed in

Chapter 7, but I first present some examples that illustrate the failure of empirically based

root flipping.

6.4 The Lippi and Reichlin (1993) model

6.4.1 The model setup

The Lippi and Reichlin (1993) model is a modified version of the one presented by Blanchard

and Quah (1989). Blanchard and Quah (1989) provide a theoretical framework for their em-

pirical analysis in which they try to separate transitory from permanent effects of two struc-

tural shocks to US output. By estimating a bivariate SVAR model that comprises output

growth and the unemployment rate, Blanchard and Quah (1989) introduce a long-run re-

striction scheme to identify both temporary and permanent sources of output fluctuations.

They interpret a permanent innovation as a supply-side shock and a transitory disturbance

as a demand shock. One of their findings is that the demand shock substantially contributes

to output fluctuations over the short- and medium-term.

4Note that root flipping as in the representation in equation (6.10) can lead to complex coefficients in T̃ (L).
Furthermore, the MA operator evaluated at L = 0 is probably not equal to the identity matrix. It is possible to
take an intermediate step that guarantees real coefficients and the identity matrix at L = 0 by postmultiplying
T̃ (L) with T̃ (0)

−1. The corresponding residuals are then given by ăt = T̃ (0) ãt. Note that this step does not
alter the rationale of my arguments in the main text.
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Lippi and Reichlin (1993) take up the Blanchard and Quah (1989) study and question their

results by alluding to the possible existence of nonfundamental representations. They state

that the theoretical model used as motivation by Blanchard and Quah (1989) exhibits poor

dynamics in relation to what can be found in the data. Lippi and Reichlin (1993) suggest in-

corporating a learning-by-doing technology into that theoretical model, which generates a

more complex pattern than does the productivity process in the Blanchard and Quah (1989)

model. This more complex structure produces a model solution that implies nonfundamen-

talness and therefore violates the standard assumption of VAR analysis regarding the roots

of the corresponding MA lag polynomial. Consequently, Lippi and Reichlin (1993) assess

that Blanchard and Quah (1989) simply rule out other possible and economically relevant

representations from their analysis by construction and without justification. These alterna-

tives might have different implications compared to those obtained by Blanchard and Quah

(1989).

In the following, I use the modified model version of Lippi and Reichlin (1993) to show

that the nonfundamental alternatives, as detected by the empirically based root flipping

procedure, are as wrong as the fundamental one derived from the standard VAR approach.

The theoretical model describes a Keynesian-type economy and consists of the following

equations

log (Yt) = log (Mt)− log (Pt) + a · log (θt) , (6.11)

log (Yt) = log (Nt) + log (πt) , (6.12)

log (Pt) = log (Wt)− log (πt) , (6.13)

log (Wt) = log (W ) |
{
Et−1 [log (Nt)] = log

(
N
)}

, (6.14)

where Yt, Nt and θt are the levels of output, employment and productivity, respectively. Mt,

Pt and Wt denote the nominal variables of money supply, price level and wages, respec-

tively. N reflects full employment, and πt represents a learning-by-doing technology, which

is explained below.

Equation (6.11) describes the aggregate demand as a function of real balances and the term

a · ln (θt), which can be interpreted as the investment demand, where a is the respective

elasticity parameter. According to equation (6.12), output is produced by a constant returns

to scale production function that only includes labor inputs. Firms set prices as specified in

equation (6.13). The fourth equation (6.14) characterizes the wage setting rule in the spirit

of Fischer (1977). Nominal wages in period t are set conditional on the expectation in the
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previous period that employment in t equals full employment.

The model is closed by specifying the laws of motion for log (Mt), log (θt) and log (πt). The

first two variables are supposed to follow driftless random walks:

log (Mt) = log (Mt−1) + wdt , (6.15)

log (θt) = log (θt−1) + wst , (6.16)

where wdt and wst are the demand and supply shocks, respectively, assumed to be orthogonal

and to have unit variance.

In the original model of Blanchard and Quah (1989), equations (6.12) and (6.13) include θt
instead of πt. Lippi and Reichlin (1993) integrate the additional variable πt into the model,

which is described by

log (πt) = log (πt−1) + d (L)wst , (6.17)

where d (L) is a lag polynomial used to induce a certain diffusion pattern of the productivity

process. The model solution can be expressed by the vector MA representation


 △log (Yt)

Ut


 =


 a (1− L) + d (L) 1− L

−a −1




 wst

wdt


 , (6.18)

where Ut denotes the unemployment rate defined as Ut ≡ log
(
N
)
− log (Nt). Note that

the solution of the original Blanchard and Quah (1989) model can be reproduced by setting

d (L) = 1.

It is straightforward to see that the roots of the MA lag polynomial are the roots of d (L).

Lippi and Reichlin (1993) emphasize that a specification of d (L), which generates more com-

plex dynamics than the trivial ones of Blanchard and Quah (1989), gives rise to a nonfunda-

mental representation. As an example, they set d (L) = d0 (1 + 2L+ 4L2 + 4L3 + L4 + 0.5L5),

where d0 is a scaling factor. Such a polynomial produces an S-shaped diffusion process and

has roots inside the unit circle.

6.4.2 Testing empirically based root flipping

I start my discussion of testing the empirically based root flipping procedure with the rep-

resentation in equation (6.18) but use a simpler structure of d (L). I assume that a = 1 and

d (L) = 1 + 1
ϑ
L, where 0 < ϑ < 1. As the MA lag polynomial has one root at −ϑ, the vector

MA representation is nonfundamental. Note that the simple process that I assume for d (L)
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is not decisive for my subsequent arguments. It is chosen merely to ease the computations

and without loss of the relevant implications.5 In fact, a more complex structure of d (L)

would highlight the implications even more clearly.

The resulting vector MA representation is given by


 △log (Yt)

Ut


 =




2ϑ+(1−ϑ)L
ϑ

1− L

−1 −1


wt , (6.19)

where wt =
(
wst wdt

)′
. I use a Blaschke matrix to flip the root from −ϑ to −ϑ−1, i.e., I can

write equation (6.19) as


 △log (Yt)

Ut


 = M (L)B1 (L)

−1B1 (L)wt

=

√
2

2




(1−2ϑ)L+3ϑ
ϑ

− (1+ϑL)
ϑ

−2 0




︸ ︷︷ ︸
= M̂ (L)

εt , (6.20)

where εt = B1 (L)wt with

B1 (L) =


 1 0

0 L+ϑ
1+ϑL


G−1

1 , G1 =

√
2

2


 1 −1

1 1




and E (εtε
′
t) = I2.6

The econometrician estimates the reduced form

 △log (Yt)

Ut


 = M̂ (L) M̂ (0)−1 M̂ (0) εt

=


 1 + ϑL

(3ϑ2+2ϑ−1)L
2ϑ

0 1




︸ ︷︷ ︸
= T (L)

at , (6.21)

5Note that it is helpful to use a symbolic algebra package, such as MuPAD or Mathematica, in order to follow
the calculations in this subsection.

6The rotation matrix G1 is determined by the usage of SVD, as described at the end of Section 6.2.
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where at = M̂ (0) εt are the reduced form innovations with E (ata
′
t) = M̂ (0) M̂ (0)′ and

M̂ (0) =

√
2

2


 3 − 1

ϑ

−2 0


 .

The root of det [T (L)] is then −ϑ−1.

Equation (6.21) is the starting point for standard structural estimation methods. An econo-

metrician estimating a VAR model of
(

△log (Yt) Ut

)′
computes the vector MA represen-

tation in equation (6.21) and then imposes restrictions to identify the innovations εt while

supposing to find the true shocks. Recall that her choice of the restriction is contingent upon

the true model in equation (6.19) and not upon the representation in equation (6.20).

I imitate the identification procedure of Blanchard and Quah (1989), i.e., a zero long-run

restriction of the second shock (which is supposed to be a demand shock) on output growth,

which is in line with the theoretical model. As a result, I obtain

D̂ =
1

2


 3 + 1/ϑ 3− 1/ϑ

−2 −2




and the vector MA representation


 △log (Yt)

Ut


 =




1+3ϑ+L(1−ϑ)
2ϑ

(3ϑ−1)(1−L)
2ϑ

−1 −1




︸ ︷︷ ︸
= T (L) D̂

ε̂t , (6.22)

which differs from equation (6.19) as well as from equation (6.20).7 Likewise, the identified

shocks ε̂t differ from wt and εt, respectively.

Empirically based root flipping is also based on equation (6.21) but flips the root of det [T (L)]

before imposing the restriction for structural identification. Note that the estimation of T (L)

(and its root) crucially depends on the underlying estimation method in practice, and the

econometrician does not know the root of det [T (L)] a priori. I ignore such problems, as

mentioned in the introduction of this chapter. Notice that T (L) is arranged such that the

factor (1 + ϑL) only appears in the first column.8 In general, the econometrician is free to

choose where to pin down this factor by selecting an appropriate rotation matrix G2 so that

she can control for the column that should include (1 + ϑL). Without loss of generality, I

7D̂ is computed as T (1)
−1
Tchol, where Tchol results from a Cholesky decomposition of T (1)ΩaT (1)

′ with Ωa

defined as E (ata
′

t
).

8Due to the postmultiplication of M̂ (L) by M̂ (0)
−1.
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assume that the econometrician selects the first column.9 Then, the identity matrix is sim-

ply a convenient choice for the rotation matrix G2. Thus, applying the Blaschke matrix to

equation (6.21) provides


 △log (Yt)

Ut


 = T (L)B2 (L)B2 (L)

−1 at

=


 L+ ϑ

(3ϑ2+2ϑ−1)L
2ϑ

0 1




︸ ︷︷ ︸
= T̃ (L)

ãt , (6.23)

where ãt = B2 (L)
−1 at with

B2 (L) = G2 ·




L+ϑ
1+ϑL

0

0 1




and G2 = I2. The variance-covariance matrix of ãt is E (ãtã
′
t) = G−1

2 M̂ (0) M̂ (0)′G2. This

procedure flips the root back to −ϑ.

Finally, the implementation of the standard long-run restriction yields


 △log (Yt)

Ut


 =




3ϑ2+ϑ+(2+ϑ−3ϑ2)L
2ϑ

(3ϑ−1)(1−L)
2

−1 −1




︸ ︷︷ ︸
= T̃ (L) T̃ (0)−1 D̃

ε̃t , (6.24)

where ε̃t = D̃−1T̃ (0) ãt, and

D̃ =
1

2


 3ϑ+ 1 3ϑ− 1

−2 −2




is the estimated impact matrix.10

To sum up, the analytical example demonstrates that both the standard approach (see equa-

tion (6.22)) and the empirically based root flipping procedure (see equation (6.24)) yield a

vector MA representation that deviates from the original. The difference from the true re-

sponses only refers to the impulse responses of output growth with respect to the impact

effect of both shocks. This aspect is due to the simplicity of my example. The resulting rep-

9If the econometrician selects the second column, setting G2 equal to

(
0 1

1 0

)
would achieve that.

10D̃ is calculated as T̃ (1)
−1
T̃chol, where T̃chol results from a Cholesky decomposition of T̃ (1)ΩãT̃ (1)

′ with Ωã

defined as E (ãtã
′

t
).
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resentations are simple MA(1) processes. If I chose a more complex diffusion process for

d (L), e.g., the process suggested by Lippi and Reichlin (1993), the divergence from the true

responses would arise at longer horizons as well. Furthermore, the exclusive deviation from

the true responses in the case of one variable is not the general finding, as will be shown in

the following example.

6.5 A Lucas asset tree model with news shocks

6.5.1 The model setup

In this section, I focus on a setting with news shocks. The relevance of anticipated shocks in

explaining macroeconomic fluctuations has become an important topic in empirical business

cycle research since the work of Beaudry and Portier (2005, 2006). In a first step, they show

that structural innovations to stock prices identified by a short-run identification scheme

(i.e., the stock price innovation has no impact effect on TFP) in a bivariate structural VECM

comprising TFP and stock prices are (almost) perfectly collinear to structural innovations to

TFP, which have been identified by imposing a long-run restriction (i.e., the TFP shock is

the only driving force of TFP over the long-run) in the same VECM. Their conclusion is that

stock price news, which are orthogonal to surprise changes in TFP, reflect anticipated future

TFP shocks. In a second exercise, the authors reveal that such shocks can explain a major

part of the forecast error variance of output and consumption, for example. Their results

receive confirmation in several papers (see, e.g., Beaudry and Lucke (2010)), but also meet

with criticism stressing that the underlying theoretical model features a nonfundamental

representation. Forni et al. (2014) address this problem by using a simple Lucas asset tree

model including news shocks to demonstrate the critique. I take on their example as second

benchmark for the test of empirically based root flipping. I differ from Forni et al. (2014)

only in assuming a stationary technology process. My conclusions would not change if I

used a unit root in the technology process.

In the model economy, expected lifetime utility of the representative household only de-

pends on consumption as follows:

U = E0

∞∑

t=0

βtCt , (6.25)

where β denotes the discount factor. In every period t, the household consumes Ct and buys

tree shares St+1 at the unit price Pt. The household’s expenditures are constrained by its

wealth that is decomposed into the value of the tree shares held at period t, PtSt, and the

value of the period flow of dividends DtSt. In equilibrium, there is one unique tree such

that the stock market value equals a unit price Pt. Moreover, dividends equal technology θt,
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which follows a stationary AR(1) process

θt = ρθθt−1 + wθ0,t + wθq,t−q , (6.26)

where 0 < ρθ < 1. wθ0,t represents a surprise shock to technology, whereas wθq,t−q displays the

anticipated shock to technology, which materializes after q periods. Both shocks are white

noise with unit standard deviation.

The representative household maximizes lifetime utility subject to the budget constraint. I

obtain

Pt = βEt (Pt+1 +Dt+1) , (6.27)

which is the first order condition of the optimization problem. Solving forward and impos-

ing the transversality condition yields

Pt = βEt (β (Pt+2 +Dt+2)Dt+1) = Et

∞∑

τ=1

βτDt+τ . (6.28)

Finally, taking the technology process into account and using the lag operator L, I determine

the stock market value of the tree in terms of current and past shocks:

Pt =
βρθ

(1− βρθ) (1− ρθL)
wθ0,t +

(
βq

1− βρθ

q−1∑

i=0

β−iLi +
βρθ

(1− βρθ) (1− ρθL)
Lq

)
wθq,t . (6.29)

Defining a bivariate vector of observables with technology and stock prices, I arrive at the

following vector MA representation, e.g., for q = 2,


 θt

Pt


 =




1
1−ρθL

L2

1−ρθL
βρθ

(1−βρθ)(1−ρθL)
β2

1−βρθ +
β

1−βρθL+ βρθ
(1−βρθ)(1−ρθL)L

2




︸ ︷︷ ︸
=M (L)


 wθ0,t

wθ2,t




︸ ︷︷ ︸
.

= wt

(6.30)

6.5.2 Testing empirically based root flipping

I begin testing empirically based root flipping by setting q = 2 and considering the cor-

responding vector MA representation of
(
θt Pt

)′
in equation (6.30). I later extend this

example by increasing the anticipation horizon q. The case q = 2 allows me to illustrate my

main arguments by another analytical example for which I can provide simple expressions

for the Blaschke matrices. I refer the reader to the appendix for some of the computational

details to save space.

The MA lag polynomial in equation (6.30) has one root at −β. As β denotes the discount-

ing factor, the root is smaller than one in modulus. I therefore have a nonfundamental
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Figure 6.1: IMPULSE RESPONSES IN LUCAS ASSET TREE MODEL WITH NEWS SHOCK (q = 2)
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Note: The figure depicts the FIA model impulse responses (in green) and the impulse responses resulting from the empirically based
root flipping procedure (in red). Impulse responses to wθ

0,t are shown in the left column and impulse responses to wθ
2,t in the right

column.

representation. In Figure 6.1, I depict the impulse responses resulting from the empirically

based root flipping procedure (red lines) together with the true impulse responses from the

original model (green lines). The chosen identification scheme is a zero restriction on the

contemporaneous effect of wθ2,t on θt. The calibrated parameters are β = 0.99 and ρθ = 0.9.

Although there is no substantial visible divergence, the impulse responses from empirically

based root flipping do not match the true responses in any of the four cases – even at longer

horizons. These deviations are far from what an econometrician should be concerned with

if one takes other sources of uncertainty and misspecification into account, but the relevance

of nonfundamentalness becomes more substantial with an increasing anticipation horizon.

Raising the anticipation horizon to q = 8 emphasizes this claim. In this case, det [M (L)] has

seven roots that all have modulus β. When applying the empirically based root flipping

procedure, I again assume that the econometrician estimates all roots exactly and knows to

flip them all. Figure 6.2 displays the corresponding impulse responses together with the im-

pulse responses produced by the standard approach (blue lines), i.e., the impulse responses

detected by the econometrician without empirically based root flipping. As indicated in the

figure, the error of empirically based root flipping grows remarkably with the length of the

anticipation horizon. Furthermore, an econometrician applying standard techniques gener-

ates impulse responses with much less deviation from the true responses than when using

empirically based root flipping.
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Figure 6.2: IMPULSE RESPONSES IN LUCAS ASSET TREE MODEL WITH NEWS SHOCK (q = 8)
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Note: The figure depicts the FIA model impulse responses (in green), the impulse responses resulting from the empirically based root
flipping procedure (in red) and the impulse responses related to the standard approach (in blue), i.e., the LIE model. Impulse responses
to wθ

0,t are shown in the left column and impulse responses to wθ
8,t in the right column.

6.6 Remarks

In this chapter, I have demonstrated that empirically based root flipping cannot solve the

problem of nonfundamentalness. I presented two examples in which empirically based root

flipping produces errors in terms of deviations from the true dynamics. These errors surely

depend on the structure of the underlying theoretical model. Testing the approach in a setup

that includes news shocks reveals that the length of the anticipation horizon amplifies this

bias. Moreover, the findings indicate that empirically based root flipping can produce larger

errors than the standard SVAR approach.

Thus, it does not seem feasible to find the correct nonfundamental representation using

small-scale VAR without embedding additional information that cannot be filtered out of

the estimated VAR coefficients. It is worth exploring alternative approaches that make use of

supplemental information that diminish the misalignment between the agent and econome-

trician’s information sets effectively. Successful work in this direction has been conducted,

e.g., by Mertens and Ravn (2010), whose method I pursue in the next chapter.
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Chapter 7

Testing theory-based root flipping

In the previous chapter, I used simple models to explicate the concept of root flipping

through analytical examples. In this chapter, I extend the setting and use the more complex

workhorse model for my computations and simulations. Because I need a theoretical foun-

dation for the theory-based root flipping procedure, I revisit the description of the model

specified in Chapter 5 and then explain the procedure in this framework.

The theory-based technique applies to a situation in which the econometrician has addi-

tional knowledge of the Blaschke matrix that connects the true (nonfundamental) vector

MA representation with the estimated (fundamental) vector MA representation. Equipped

with this information, the econometrician can compensate for her informational disadvan-

tage relative to the agents. I examine the goodness of fit of the estimation procedure with a

Monte Carlo simulation study at the end of the chapter.

7.1 Motivation

The concept of theory-based root flipping originates from Mertens and Ravn (2010). They

introduce an estimator adapted from an SVAR model that incorporates auxiliary informa-

tion drawn from the underlying theoretical model. Based on theory, it is possible to flip

the relevant roots and uncover the true impulse responses in the presence of news shocks

(at least asymptotically). In a Monte Carlo simulation, Mertens and Ravn (2010) show that

this augmented SVAR estimator performs better in comparison to the standard SVAR pro-

cedure. When applied to US data, they also report a puzzle, that is, a result that is contrary

to the implications of standard theory: consumption rises in response to both surprise and

anticipated government spending shocks.

In this chapter, I test the augmented SVAR approach of Mertens and Ravn (2010) in a dif-

ferent environment, a model economy subject to both surprise and anticipated technology

shocks. Such a setting is interesting because the relevance of anticipated technology shocks
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has become a controversial topic in empirical business cycle research (see also the next chap-

ter). In many studies, technological news shocks are identified through the inclusion of stock

prices in the set of observables. Stock prices are considered as an appropriate candidate for

identifying news shocks due to their forward-looking character. However, as I have already

discussed in Section 5.4 and shown in the Lucas asset tree model in the preceding chapter,

the inclusion of stock prices in the set of observables alone may not solve the problem of

nonfundamentalness.

I extend the basic concept of the estimator of Mertens and Ravn (2010) and implement it in

combination with the subspace algorithm analysis. As shown in Kascha and Mertens (2009)

and Chapter 3, subspace algorithm analysis can be a serious alternative to standard SVAR

models. Both Chapter 3 and Kascha and Mertens (2009) investigate only the performance

of subspace algorithm analysis with respect to models that do not imply nonfundamental-

ness. In general, subspace algorithm analysis encounters the same problem as SVARs when

nonfundamentalness is present, as the derivation of the algorithm rests upon the minimum

phase assumption. Nonetheless, the nonfundamentalness problem can be eluded as in SVAR

models. I compare the performance of the augmented SVAR method and the augmented

subspace algorithm analysis in the Monte Carlo simulation that concludes the chapter.1

7.2 Specification of the workhorse model

In this section, I use the fully specified workhorse model from Chapter 5, which serves as

the theoretical foundation for the computations and simulations as well as for the empirical

analysis in the next chapter in which I will examine the role of news shocks using US data.

Thus, I closely align my procedure with other studies, such as Beaudry and Portier (2005,

2006), which select stock prices as a relevant variable that captures technological news.

To incorporate stock prices into the workhorse model, I augment it by introducing capital

adjustment costs into the model setup. In particular, I redesign the capital accumulation

equation as

Kt = (1− δ)Kt−1 +

[
1− SK

(
It

δKt−1

)]
It , (7.1)

where SK (•) represents a capital adjustment cost function that satisfies SK (1) = S ′
K (1) = 0

and S ′′
K (1) > 0 in the steady state. Its introduction permits a Tobin’s q interpretation within

the model, which implies that the shadow price of installed capital is allowed to deviate

from the price of an additional unit of capital. I model the stock price as firm value, which I

compute as Tobin’s q multiplied by the capital stock.2

1See also Sims (2012), Beaudry et al. (2013) and Beaudry and Portier (2014b) for Monte Carlo simulations in
the context of news shocks, but these studies only address the performance of the standard SVAR technique.

2Note that Tobin’s q is not related to the anticipation horizon in the case of news shocks, which I denote q in
this thesis.
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All other elements of the model as well as the solution technique are as in Chapter 5. The

general model solution in terms of the FIA model and the vector MA representation are

the same as presented therein. I repeat the vector MA representation of the model solution

(equation (5.28)) as a reminder and refer the reader to Chapter 5 for further details and the

corresponding FIA model (see equations (5.29) and (5.30)):


 θ̃t

z̃t


 =




1
(1−ρθL)

Lq

(1−ρθL)

(
φzθ

(1−ρθL) +
φzkφkθ

(1−φkkL)(1−ρθL)L
)


(

φzθ
(1−ρθL) +

φzkφkθ
(1−φkkL)(1−ρθL)L

)
Lq

+
(
φzθ,1 +

φzkφkθ,1
(1−φkkL)L

)
Θ(L)





Σw

︸ ︷︷ ︸
=M (L)


 wθ0,t

wθq,t


 ,

(7.2)

where

Σw =


 σθ 0

0 σθλθ




and

Θ(L) = ωq−1 + ωq−2L+ . . . ωLq−2 + Lq−1 .

As already stated in the discussion in Section 5.4, stock prices are also part of the model so-

lution such that the nonfundamental characteristic in equation (7.2) remains when replacing

the proxy for any endogenous variable zt by the stock price as the second observable.

7.3 The concept of theory-based root flipping

Having established the theoretical framework, I can adopt the approach of Mertens and

Ravn (2010). This approach acts on the transformation of the nonfundamental vector MA

representation in equation (7.2) into its fundamental counterpart. As shown in the preced-

ing chapter, one has to formulate particular Blaschke matrices to flip the roots of the MA lag

polynomial from the inside to the outside of the unit circle. Because the relevant roots of

det [M (L)] lie on a circle with radius ω separated by the same angle, this task is straightfor-

ward because it only requires one specific rotation matrix G. After M (L) has been postmul-

tiplied by G, all the roots associated with M (L)G can be flipped successively. Consecutive

multiplication by elementary Blaschke matrices provides the fundamental vector MA rep-
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resentation.

Setting yt =
(
θ̃t z̃t

)′
and wt =

(
wθ0,t wθq,t

)′
, I formalize these computations as

yt = M̂ (L) εt , (7.3)

where M̂ (L) =M (L)B (L)−1 and εt = B (L)wt. B (L)−1 is formulated as

B (L)−1 = G ·R1 (L)
−1R2 (L)

−1 . . . Rq−1 (L)
−1

with

Ri (L)
−1 =


 1 0

0 1−ωiL
L−ωi


 ,

G =
1√

1 + (λθωq)
2


 1 −λθωq

λθω
q 1


 ,

where ωi denotes the complex conjugate of ωi. The reduced form is given by

yt = T (L) at , (7.4)

where T (L) = M̂ (L) M̂ (0)−1. Again, at = M̂ (0) εt are the reduced form innovations with

E (ata
′
t) = M̂ (0) M̂ (0)′.

Following the procedure by Mertens and Ravn (2010) exposes the true impulse responses

from the observables.3 It presupposes the knowledge of the Blaschke matrix B (L), i.e.,

the knowledge of three additional parameters, ω, λθ and q. Under this assumption, it is

possible to disclose the model dynamics because the identifying restrictions can be chosen

appropriately.

For example, a zero short-run restriction on the upper right element of the impact matrix

M (0) would be qualified in the bivariate model. However, an econometrician who uses

standard techniques would mistakenly place this restriction on M̂ (0). Therefore, a valid

way of proceeding is to impose a proper (but not a zero) restriction on M̂ (0), which implies

a zero restriction on the [1, 2]-element of M (0). Because M̂ (0) = M (0)B (0) and B (L) are

known, a correct restriction is m̂0
12 = −ωλθm̂0

11, where m̂0
ij denotes the [i, j]-element of M̂ (0).4

Having found M̃ (0), the true impulse responses captured by M (L) can be computed by

3Notice that it does not identify the true shocks in practice because premultiplying εt = B (L)wt by B (L)
−1

and combining with at = M̂ (0) εt yields wt as an infinite sum of the reduced form innovations, i.e., wt =

B (L)
−1
M̂ (0)

−1
at.

4Note that this restriction does not yield a unique result. As in the standard case, one has to impose the
usual sign restrictions on the diagonal elements of M (0). However, only the diagonal elements of M (0) are
uniquely determined. In using elements of B (0), it is possible to identify the [2, 1]-element of M (0) as well.
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postmultiplying T (L) by M̂ (0)B (L).

While Mertens and Ravn (2010) conduct this procedure within a structural VAR framework,

I extend it to the subspace algorithm analysis. Recall that the subspace algorithm analy-

sis relies on essentially the same assumption as the VAR estimation, i.e., it results in the

same representation in equation (7.4).5 Thus, the connection between the FIA model and the

LIE model is the same as the link between the (true) vector MA representation in equation

(7.2) and the corresponding reduced form representation in equation (7.4). In the context of

vector MA representations, one speaks of the roots of the MA lag polynomial. The MA lag

polynomial in equation (7.2) has roots inside the unit circle, whereas these roots are replaced

by their reciprocals in the MA operator in equation (7.4). In the case of the state space sys-

tems, one can state this relation in terms of the eigenvalues of (A− BD−1C) and (A−KC).
All eigenvalues of (A− BD−1C), which are larger than one in modulus, have a reciprocal

counterpart in (A−KC). In Chapters 2 and 3, I have demonstrated that the minimum phase

condition (i.e., all eigenvalues of (A−KC) are less than unity) is crucial for the derivation

of the subspace algorithm and is a result of the assumptions that lead to convergence of the

Kalman filter. This duality between VAR and subspace algorithm analysis suggests that the

theory-based root flipping procedure can be implemented analogously in both cases.

7.4 Monte Carlo simulation

7.4.1 Monte Carlo design

In the simulation study, I use the FIA model representation, where the stock price is chosen

as the second observable, as the DGP. I calibrate the model parameters as before: α = 2/3,

β = 1.01−1, σ = 1, ψ = 1 and ρθ = 0.95. The remaining two parameters, S ′′
K (1) and λθ,

are chosen such that the variance ratio of investment and stock prices and the variance ratio

of consumption and output approximately match their empirical counterparts in the US

postwar data. Namely, I set S ′′
K (1) = 0.5 and the relative weight of the news shock λθ

equal to two. The anticipation horizon q is fixed at eight periods. Note that the choice of q

differs in the literature. On the one hand, there are some conservative candidates, such as

Sims (2012) who picks a value of two, for instance. On the other hand, Beaudry and Lucke

(2010) use an anticipation horizon of eight periods for the simulation study presented in

their web appendix. Their empirical results as well as the findings of Beaudry and Portier

(2006) reveal point estimates that legitimate this choice rather than the lower values. Given

the calibration, I can calculate the roots of the MA lag polynomial. The anticipation rate

equals 0.9675. Because q = 8, there are seven roots of the MA lag polynomial with modulus

5Using the notation of the system matrices in the LIE model representation, I can derive T (L) =(
Ik + C (In −AL)−1

KL
)

.
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Figure 7.1: IMPULSE RESPONSES IN WORKHORSE MODEL WITH NEWS SHOCK (q = 8)
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Note: The figure depicts the FIA model impulse responses (in green) and the LIE model impulse responses (in blue). Impulse responses
to wθ

0,t are shown in the left column and impulse responses to wθ
8,t in the right column.

0.9675. The additional root not related to ω equals 1.05.

As in Chapter 5, I begin with a graphical presentation in Figure 7.1, which shows the true im-

pulse responses (green lines) and the ones coming from the standard approach for structural

identification (blue lines). The picture is similar to the one in Chapter 5, i.e., the systematic

error mainly occurs with respect to the responses to the surprise shock.6

I can use Figure 7.1 to visually test whether the estimation methods with and without root

flipping work correctly. The figure reflects the asymptotic results for the estimation proce-

dures, i.e., if I chose a sufficiently large sample size, the methods should reproduce the blue

and green lines, respectively. I start the analysis with a large sample simulation in which

I generate 1000 sets of data series each with a sample size of 20000 observations. In the

subsequent small sample exercises, I generate 1000 sets of data series each containing 500

observations. The first 300 observations are then discarded to eliminate effects of presample

values, so my effective sample size is 200.

The theory-based root flipping procedure is incorporated into two frameworks, the SVAR

model and subspace algorithm analysis. In the latter case, I conduct the CCA, which origi-

nates from Larimore (1983).7 The lag length of the VAR model in the large sample exercise

is set equal to 200. I perform the large sample experiment only to test the validity of the root

flipping procedures quasi-asymptotically. By using such a long lag length, I want to exclude

any other potential source of bias. In the small sample exercises, the lag length is chosen

6Remember that this finding is associated with the relative weight of the news shock. The lower the weight,
the smaller the error on the side of the surprise shock and the larger the error with respect to the anticipated
shock, and vice versa.

7I remind the reader of the description of the subspace algorithm provided in Section 3.3.
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according to the AIC, but I also consider fixed lag lengths, as will be described below. In

the case of the AIC, I set the maximum number of lags equal to eleven. For the subspace

algorithm, I set the number of lead and lagged observations as described in Chapter 3. The

system order is determined by the criterion proposed by Bauer and Wagner (2002) (see also

Chapter 3).

In each exercise, I implement the standard structural estimation approaches, i.e., I estimate

the conventional SVAR model and apply structural CCA, where I erroneously impose a

zero short-run restriction on M̂ (0) in both cases. Alternatively, I carry out the theory-based

root flipping procedure using both methods. Thus, four methods compete, and I investi-

gate whether the root flipping yields any improvement in comparison to the standard ap-

proaches. To compare the performance of these methods, I measure the distance between

the estimated and the true impulse responses by means of the MAWE indicator developed

in Chapter 5.

7.4.2 Benchmark system

Contrary to the usual course of action, I initially turn to the large sample exercise to convince

the reader that theory-based root flipping works. In the following graphs, I present the esti-

mation results for the standard methods, VAR and CCA, as well as the approaches with root

flipping. Figure 7.2 is composed of four boxes, each associated with one of the estimation

procedures. Each box includes four graphs that illustrate the estimated impulse responses

in black and the true impulse responses in green. The upper graphs show the responses of

technology. The lower graphs display the responses of the second observable, stock prices,

to the respective surprise and anticipated shock. The estimated impulse responses are com-

puted as the median over all simulation runs. The dashed red lines mark the confidence

intervals that I calculate as the 5th and 95th percentiles of the estimated impulse responses.

It is evident that the estimation methods work as expected. The standard approaches repro-

duce the shape of the blue lines in Figure 7.1 while the root flipping procedures cover the

green lines.

Next, I carry out the small sample experiment and investigate the performance of the meth-

ods in face of finite sample uncertainty. Figure 7.3 presents the corresponding estimation

results. In the case of the VAR, the visual analysis does not clearly reveal whether there is

any improvement due to root flipping. Conspicuously, the impulse responses of the VAR

with root flipping exhibit a very choppy pattern. In contrast, the impulse responses of the

CCA look much smoother even after the roots have been switched. Moreover, there is some

progress visible regarding the responses of both variables to the surprise shock. On aver-

age, the estimated impulse responses under theory-based root flipping are closer to the true

responses than in the standard case.



CHAPTER 7: TESTING THEORY-BASED ROOT FLIPPING 126

Figure 7.2: EXERCISE 7.1 - IMPULSE RESPONSES (LARGE SAMPLE SIMULATION)
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VAR with flip
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Standard CCA
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CCA with flip
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ

0,t are shown in the left column and impulse responses to wθ
8,t in the right

column of each panel.
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Figure 7.3: EXERCISE 7.2 - IMPULSE RESPONSES (SMALL SAMPLE SIMULATION)
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VAR with flip
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Standard CCA
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CCA with flip
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ

0,t are shown in the left column and impulse responses to wθ
8,t in the right

column of each panel.
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Table 7.1: EXERCISE 7.2 - MAWE RESULTS (STOCK PRICES)

MAWE (VAR) MAWE (CCA)

Standard
1.4169 1.3349

1.1926 1.1998

1.3437 1.0528

1.1987 0.9369

With flip
1.4899 1.3546

1.2870 1.2522

1.0949 1.0457

0.9638 0.9449

Ratio (flip/standard)
1.0515 1.0147

1.0792 1.0437

0.8149 0.9932

0.8040 1.0085
Note: In the upper two block rows, the table reports the computed MAWEs associated with the impulse responses displayed in Figure
7.3. MAWE values are calculated as in equation (5.8) multiplied by 100. The bottom block row shows the ratio between the values in
the middle block row and the values in the top block row.

I quantify the differences in the impulse responses by computing the corresponding MAWEs.

Table 7.1 reports the results. Each cell contains 2×2 matrices that include the MAWEs (or ra-

tios) associated with the respective impulse responses. For instance, the upper left element

of each matrix corresponds to the response of technology to a surprise shock, whereas the

lower right element is linked to the response of stock prices to a news shock. The composi-

tion of the first two block lines (standard, with flip) is the same as in Figure 7.3. Additionally,

the lower block line shows the ratio of each pair of the MAWEs so that the relative change

due to root flipping can be directly seen. The numbers suggest that the VAR with root flip-

ping yields inferior results, but there is some considerable improvement in the CCA with

root flipping. The gain in precision on the side of the surprise shock is approximately 20%

for the CCA, whereas there is virtually no change in the responses to the news shock.

The question is whether these findings can be generalized and if there is an explanation for

the poor VAR performance. In this context, the choice of the lag length is a key issue. From

that reason, I repeat the simulation exercise by estimating the same artificial data sets as

above but varying the lag length for the VAR model. I begin with a VAR including one lag

and conduct the 1000 replications. I reiterate this procedure and increase the number of in-

cluded lags stepwise to a maximum of 25 lags. Hence, I can calculate the MAWE depending

on the fixed lag length. Figure 7.4 shows the resulting MAWEs for the whole range of fixed

lags. The solid line marks the standard VAR estimation, and the dotted line indicates root

flipping. It is straightforward to recognize that a lag length that is smaller than (or equal to)

the anticipation horizon leads to a relatively large bias.

It is therefore useful to consider the specifications with lag lengths above the anticipation

horizon in more detail. This is done in Figure 7.5, where I add the corresponding results

for the VAR based on AIC and the MAWEs of the CCA methods. First, the MAWE values

of the VAR based on AIC (red lines) appear quite similar to those using a fixed lag length

of nine or ten (black lines). This indicates that the AIC mainly chooses lag lengths close to

these values. Furthermore, if the lag length exceeds a certain number, root flipping provides
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Figure 7.4: EXERCISE 7.2 - MAWE RESULTS (VAR LAG LENGTH VARIATION)
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Note: The figure depicts the computed MAWEs associated with the estimated impulse responses related to the standard SVAR model
(solid lines) and the SVAR model augmented by the root flipping procedure (dotted lines), depending on selected lag lengths. MAWE
values are calculated as in equation (5.8) multiplied by 100. MAWEs corresponding to impulse responses to wθ

0,t are shown in the left

column and MAWEs w.r.t. impulse responses to wθ
8,t in the right column.

Figure 7.5: EXERCISE 7.2 - MAWE RESULTS (SELECTED VAR LAG LENGTHS)
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Note: The figure depicts the computed MAWEs associated with the estimated impulse responses resulting from different estimation
approaches. These approaches are based on the SVAR model depending on selected lag lengths (in black), SVAR using the lag length
suggested by the AIC (in red) and CCA (in blue). Solid lines refer to the standard application of these techniques and dotted lines to the
corresponding root flipping procedure. MAWE values are calculated as in equation (5.8) multiplied by 100. MAWEs associated with
the impulse responses to wθ

0,t are shown in the left column and MAWEs w.r.t. impulse responses to wθ
8,t in the right column.



CHAPTER 7: TESTING THEORY-BASED ROOT FLIPPING 130

Figure 7.6: EXERCISE 7.2 - IMPULSE RESPONSES (VAR WITH FLIP, 17 LAGS)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ

0,t are shown in the left column and impulse responses to wθ
8,t in the right

column.

improvement related to the surprise shock responses, whereas this is not the case for the

anticipated shock. If one could speak of the optimal VAR lag length with respect to the

MAWE, one might suggest a lag length of seventeen. This specification is an ambivalent

choice because the minimal MAWE on the news shock side could be achieved without root

flipping.

I present the estimation results for the VAR with seventeen lags and root flipping in Figure

7.6, which reveals that increasing the lag length to seventeen helps smooth the estimated im-

pulse responses, primarily with respect to the surprise shock responses. This gain in shapes

of the functions is accompanied by only minimal improvements in terms of the MAWE com-

pared to the AIC specification as shown before.

At this stage, it can be stated that the CCA approach clearly outperforms the VAR model.

Even CCA without root flipping dominates almost all VAR specifications. This conclusion is

disappointing for the VAR econometrician because both methods should provide the same

results at least asymptotically.

Hence, it seems reasonable to analyze the finite sample properties. I therefore conduct two

more exercises in which I increase the sample size to 300 (Exercise 7.3) and 500 (Exercise

7.4) observations. Of course, such sample sizes are quite unrealistic when quarterly data are

present. This aspect originates in the fact that finding a proxy for technology that is more fre-

quent than a quarterly basis is rather difficult, whereas the availability of appropriate stock
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Table 7.2: EXERCISES 7.3 & 7.4 - MAWE RESULTS (STOCK PRICES & SAMPLE SIZE)

MAWE (VAR) MAWE (CCA)

Sample size t = 300 t = 500 t = 300 t = 500

Standard
1.3297 1.0063

1.1023 0.8725

1.1038 0.7102

0.9139 0.6118

1.0974 0.8031

0.9652 0.7035

0.9143 0.6111

0.7948 0.5342

With flip
1.2078 1.0015

1.0088 0.8847

0.9683 0.6901

0.8148 0.6048

0.8205 0.7822

0.7120 0.6967

0.5923 0.5792

0.5135 0.5160

Ratio (flip/stand.)
0.9083 0.9952

0.9152 1.0139

0.8773 0.9718

0.8915 0.9885

0.7477 0.9740

0.7377 0.9903

0.6479 0.9479

0.6460 0.9659
Note: Analogously to Table 7.1, the table reports the computed MAWEs (and ratios) resulting from the simulation exercises in which
the sample size is increased up to 300 and 500 observations. MAWE values are calculated as in equation (5.8) multiplied by 100.

price data is given without problems at a monthly or even higher frequency. Nevertheless,

the goal of these exercises is to clarify the effects of small sample uncertainty on the results

in general. Although I have shown above that the VAR lag length is a crucial determinant of

the results, I use the AIC again in the next exercises. With a higher number of observations,

I also increase the maximum number of lags that can be suggested by the AIC. In fact, the

MAWE results, depending on the fixed lag lengths, indicate that the VAR model based on

the AIC seems represent a good compromise in the end (see the appendix).

Table 7.2 displays selected findings, and each cell is organized as in the previous table. In

combination with Table 7.1, I interpret the results as follows. Increasing the sample size leads

to higher precision of the CCA and VAR methods. The relative gain due to root flipping

increases with the sample size. For example, CCA diminishes the MAWE of the response

to the surprise shock by approximately 25% (for t = 300) and 35% (for t = 500) due to root

flipping. The VAR with root flipping yields an improvement as well but to a lesser extent.

As regards the responses to the news shock, CCA with root flipping raises precision by 1–3%

(for t = 300) and 3–5% (for t = 500), whereas VAR with root flipping appears successful only

for t = 500. Yet, the CCA approach is strictly superior to its VAR opponent.

The previous findings point to a substantial advantage of the CCA approach when handling

nonfundamentalness. In the following robustness check, I investigate several aspects that

could be suspected to have an influence on the results. From Chapter 5, I know that the

choice of the second observable and the relative standard deviation of the news shock matter

for how the wedge of nonfundmentalness is split between the impulse responses to the two

shocks. To test whether the choice of the second observable is an issue for the performance

of the estimators, I first analyze systems in which stock prices are replaced by other variables

(see Exercises 7.5 to 7.8). Afterwards, I alter the relevance of the news shocks by decreasing

their relative standard deviation in the stochastic process (see Exercises 7.9 to 7.11). Chapter

5 also documented that the length of the anticipation horizon affects the magnitude of the

wedge of nonfundamentalness: the longer the anticipation horizon, the larger the wedge. I
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address this issue and investigate the implications of variation in q for the goodness of fit

of the estimators in Exercises 7.12 to 7.17. In the final exercise, I lay the foundation for the

empirical analysis in the subsequent chapter and extend the framework by adding another

stochastic process to the model and allowing for nonstationarity.

7.4.3 Robustness check

Other variables

I repeat the experiments from above by replacing stock prices in the model with either out-

put (Exercises 7.5 & 7.6) or investment (Exercises 7.7 & 7.8), but I report only the results

for sample sizes t = 200 and t = 500 to save space. The findings from these exercises are

summarized in Table 7.3.8

The experiments with output and investment as the second observables verify the previ-

ous outcome that theory-based root flipping can work even with small samples contain-

ing 200 observations. For the most part, the improvement is registered on the side of the

surprise shock as before. According to the ratio computed as the MAWE of the root flip-

ping technique divided by the MAWE of the standard method, root flipping yields MAWEs

that are approximately 4% (for the technology-output system) and 11% (for the technology-

investment system) lower in the VAR model and 21% (for the technology-output system)

and 15% (for the technology-investment system) lower in the subspace algorithm analysis

in comparison to the standard approaches. Increasing the sample size enhances the preci-

sion gain. CCA shows a quite robust performance in that context. In the technology-output

system, improvement due to root flipping changes from 21% to 40% when increasing the

sample size from 200 to 500 observations. In the technology-investment system, it rises from

15% (for t = 200) to 30% (for t = 500) in this case. VAR with root flipping improves in the

technology-output system up to 20% for t = 500, whereas the change is negligible in terms

of the MAWE when investment is the second observable.

Regarding the responses to the news shock, there is improvement in the experiments even

with 200 observations for the subspace algorithm as well as for the VAR model. The im-

provement turns out to be of smaller magnitude in comparison to what is seen with respect

to the surprise shock responses. Again, more observations lead to better performance and

to greater benefits of root flipping. In the system including output, the benefit in terms of

lower MAWEs increases from approximately 1% (for t = 200) to 4% (for t = 500) in the VAR

model and from approximately 2% to 7% when CCA is applied. With investment as the

second observable, the VAR method does not perform much better, but the CCA improves

8As before, I use the AIC to determine the lag length in the VAR model in all the remaining robustness exercises.
In the appendix, I present the MAWE results of the VAR models for Exercises 7.5 to 7.8, depending on the fixed
number of lags. The findings support my assessment in the previous exercises that the AIC is an appropriate
candidate for selecting the VAR lag length in the simulations rather than fixing it at a particular number.
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Table 7.3: EXERCISES 7.5–7.8 - MAWE RESULTS (OUTPUT & INVESTMENT)

MAWE (VAR) MAWE (CCA)

Sample size t = 200 t = 500 t = 200 t = 500

Output
Standard

1.3147 1.3009

1.1849 1.2242

1.2419 0.7049

1.1294 0.6554

1.5161 1.0729

1.4398 1.0143

1.0916 0.5995

1.0298 0.5633

With flip
1.2586 1.2819

1.1385 1.2201

0.9954 0.6737

0.8994 0.6314

1.1998 1.0512

1.1297 1.0013

0.6572 0.5540

0.6157 0.5245

Ratio

(flip/std.)

0.9574 0.9854

0.9608 0.9967

0.8015 0.9557

0.7964 0.9634

0.7914 0.9797

0.7846 0.9872

0.6021 0.9241

0.5979 0.9312

Investment
Standard

1.9633 1.1076

1.9083 1.0675

1.1963 0.6848

1.1759 0.6586

1.3677 1.0463

1.3489 1.0031

0.9065 0.5922

0.8822 0.5661

With flip
1.7345 1.0813

1.7036 1.0431

1.0290 0.6677

1.0253 0.6424

1.1559 1.0408

1.1412 0.9957

0.6303 0.5700

0.6236 0.5443

Ratio

(flip/std.)

0.8835 0.9763

0.8927 0.9772

0.8601 0.9752

0.8719 0.9755

0.8452 0.9948

0.8460 0.9926

0.6953 0.9627

0.7069 0.9614
Note: Analogously to Table 7.1, the table reports the computed MAWEs (and ratios) resulting from the simulation exercises in which the second observable is replaced either by output or investment.
The table contains the results of the exercises in which the sample size is set to 200 and 500 observations, respectively. MAWE values are calculated as in equation (5.8) multiplied by 100.
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from approximately 1% (for t = 200) to 4% (for t = 500).

If I consider the MAWE levels rather than the relative change, the subspace algorithm anal-

ysis strongly outperforms the VAR estimation. In nearly all cases, CCA is more successful

than VAR – both with and without root flipping. The only exceptions are some of the sur-

prise shock responses in the technology-output system.

Relevance of news shocks

As described in Chapter 5, the relative weight of the anticipated shock, λθ, is a crucial pa-

rameter in the theoretical model. The higher its value, the greater the systematic bias due to

nonfundamentalness shifted toward the side of the surprise shock and vice versa. I investi-

gate the implications of reducing the weight of the news shock for the estimation methods

in further simulation exercises. Table 7.4 contains the corresponding findings. I present the

MAWE results for three bivariate systems that include stock prices (Exercise 7.9), output

(Exercise 7.10) or investment (Exercise 7.11) as the second observable. The sample size is

again set to 200 observations.

Standard VAR and CCA reduce the MAWE with respect to the surprise shock. The gain due

to root flipping is smaller than before. The difference in the precision of both methods is

diminished, but CCA still performs somewhat better, except for the technology-investment

system. Concerning the news shock, the MAWE substantially increases for the estimation

procedures. Root flipping succeeds in decreasing the MAWE in only one case, namely, when

the VAR method is applied to the technology-investment system.

I conclude that the relevance of the anticipated shock has strong implications for the estima-

tion results. If the standard deviation of the news shock is small in relation to the surprise

shock, the root flipping approach is less successful. Conversely, a more relevant news shock

makes theory-based root flipping more effective.

Anticipation horizon

The length of the anticipation horizon is also relevant for the magnitude of the wedge of non-

fundamentalness and for the performance of the estimators. To illustrate the latter point, I

carry out two more exercises for each of the three bivariate systems, technology and stock

prices (Exercises 7.12 and 7.13), technology and output (Exercises 7.14 and 7.15), and tech-

nology and investment (Exercises 7.16 and 7.17), in which I fix the anticipation horizon at

four and twelve periods. The sample size is kept at 200 observations. Table 7.5 displays the

corresponding MAWEs.

In combination with the results for q = 8, it can be assessed that the longer the anticipation

horizon, the more effective root flipping for CCA and VAR. While there is a relatively small

or even no benefit of the root flipping procedure for the short anticipation horizon, its gain
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Table 7.4: EXERCISES 7.9–7.11 - MAWE RESULTS (LOW WEIGHT)

MAWE (VAR) MAWE (CCA)

2nd observable Stock prices Output Investment Stock prices Output Investment

Standard
1.0986 2.0217

0.9526 1.8818

1.0981 2.0277

1.0236 1.9245

1.1734 1.6888

1.1514 1.6436

1.0211 2.4052

0.9365 2.3000

1.0344 2.7088

0.9894 2.6597

1.0804 2.0169

1.0684 1.9864

With flip
1.0840 2.0875

0.9403 2.0344

1.0770 2.0274

1.0027 1.9678

1.1187 1.6429

1.0996 1.6077

0.9909 2.4356

0.9095 2.3826

1.0110 2.8026

0.9665 2.7834

1.0401 2.0236

1.0319 1.9966

Ratio

(flip/std.)

0.9867 1.0326

0.9871 1.0811

0.9808 0.9999

0.9796 1.0225

0.9534 0.9728

0.9550 0.9782

0.9704 1.0127

0.9712 1.0359

0.9774 1.0346

0.9768 1.0465

0.9627 1.0033

0.9659 1.0051
Note: Analogously to Table 7.1, the table reports the computed MAWEs (and ratios) resulting from the simulation exercises in which the relative standard deviation of the news shock is reduced.
The table contains the results of the exercises in which the second observable is either stock prices, output or investment. MAWE values are calculated as in equation (5.8) multiplied by 100.
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Table 7.5: EXERCISES 7.12–7.17 - MAWE RESULTS (VARIOUS q)

MAWE (VAR) MAWE (CCA)

Anticipation horizon q = 4 q = 12 q = 4 q = 12

Stock prices
Standard

1.3697 1.1896

1.1617 1.0836

1.4292 1.4229

1.1531 1.2373

1.1533 0.9566

1.0456 0.8641

1.7984 1.4295

1.5995 1.2692

With flip
1.3899 1.2042

1.1846 1.1085

1.3092 1.3787

1.1113 1.2362

1.0870 0.9611

0.9770 0.8725

1.3791 1.3592

1.2076 1.2299

Ratio

(flip/std.)

1.0148 1.0123

1.0197 1.0230

0.9161 0.9689

0.9637 0.9991

0.9425 1.0047

0.9344 1.0097

0.7668 0.9508

0.7550 0.9690

Output
Standard

1.2874 1.1479

1.1834 1.0876

1.4815 1.3698

1.3311 1.2820

1.1999 0.9332

1.1496 0.8879

1.9634 1.4637

1.8532 1.3856

With flip
1.2767 1.1550

1.1718 1.0993

1.1778 1.2714

1.0515 1.2038

1.1113 0.9342

1.0579 0.8913

1.4885 1.3877

1.3906 1.3289

Ratio

(flip/std.)

0.9917 1.0062

0.9902 1.0107

0.7950 0.9282

0.7899 0.9390

0.9262 1.0011

0.9202 1.0038

0.7581 0.9481

0.7504 0.9591

Investment
Standard

1.8313 1.0136

1.7825 0.9926

1.9822 1.2359

1.9122 1.1738

1.1316 0.9333

1.1063 0.9050

1.7804 1.3959

1.7652 1.3355

With flip
1.7807 1.0149

1.7411 0.9955

1.5420 1.1504

1.5060 1.0880

1.0784 0.9390

1.0562 0.9105

1.3834 1.3353

1.3792 1.2695

Ratio

(flip/std.)

0.9724 1.0012

0.9768 1.0030

0.7779 0.9308

0.7876 0.9270

0.9529 1.0060

0.9547 1.0061

0.7770 0.9565

0.7813 0.9506
Note: Analogously to Table 7.1, the table reports the computed MAWEs (and ratios) resulting from the simulation exercises in which the length of the anticipation horizon is set equal to four and
twelve, respectively. Note that, in the exercises with q = 12, it is also ensured that the maximum number of lags suggested by the AIC exceeds the anticipation horizon. The table contains the results
of the exercises in which the second observable is either stock prices, output or investment. MAWE values are calculated as in equation (5.8) multiplied by 100.
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in precision becomes obvious for q = 12. It should be noticed that for the long anticipation

horizon, i.e., q = 12, VAR outperforms CCA in some cases, e.g., the MAWE in terms of levels

associated with the estimated impulse responses to the surprise shock in the technology-

stocks and technology-output systems and the MAWE ratios with respect to the news shock

in the systems, where output and investment are selected as the second observables. CCA

seems more vulnerable to such a long anticipation horizon because the relative increase in

the MAWE levels is much larger in comparison to the VAR when increasing q from four to

twelve.

Model extension

If the goal is to employ theory-based root flipping in an empirical investigation, other factors

than those thus far considered regarding the performance of the estimation methods have to

be taken into account. The preceding theoretical model might not yet be sufficient, as it only

features stationary behavior and only two kinds of technology shocks. I therefore augment

the model by replacing the stationary stochastic process of technology by a unit root process

and adding another stochastic process to the model, which represents a preference shock.9

The technology process is now described by

log (θt) = log (γθ) + log (θt−1) + σθw
θ
0,t + σθλθw

θ
q,t−q , (7.5)

where γθ displays the deterministic growth factor of technology. The preference shock is

given by a stationary AR(1) process of the form

log (ψt) = (1− ρψ) log (ψ) + ρψlog (ψt−1) + σψw
ψ
t , (7.6)

where 0 < ρψ < 1, and wψt is white noise with standard deviation σψ.

I arrange the vector of shocks in the empirical model such that the preference shock is in

the third position. Because there are three shocks in the setting, I extend the vector of ob-

servables to be three-dimensional. The complete Blaschke matrix, which transforms M (L)

into M̂ (L), is now given by the identity matrix in which the upper left (2× 2) block is still

represented by the former Blaschke matrix as defined in equation (7.3). Consequently, there

is no difference between the dynamics of the preference shock in M (L) and M̂ (L).

In the simulation exercise (Exercise 7.18), I use the calibration γθ = 1.004 , ρψ = 0.5 and

σψ = 1/3. For all the remaining parameters, I keep the calibrated values of the benchmark

system, especially the relative weight of the news shock, which is set to a value of two. As

in the bivariate case, I generate 1000 sets of artificial data with an effective sample size of

200 and compute the median over all estimation runs. I choose technology, stock prices and

9Note that adding the preference shock to the system increases the state dimension by one unit.
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consumption as observables for the empirical model. As estimation methods, I use the VAR

and CCA counterparts in the framework of cointegrated time series, namely, VECM and

ACCA, as introduced in the third chapter.

The higher system dimension also requires the adjustment of the identification scheme.

Compared to the bivariate case above, I need two more restrictions for the structural shock

identification. Theoretically justified restrictions are a zero short-run and a zero long-run

restriction of the preference shock on technology. Note that there is no distinction between

imposing these restrictions appropriately on M (0) and M (1) or on M̂ (0) and M̂ (1). Be-

cause the preference shock does not affect the nonfundamentalness property of the system,

I follow the standard approach with regard to these two additional restrictions. Hence, the

only source of error in the standard approach comes from the incorrect restriction on the

news shock. Furthermore, the theory-based root-flipping procedure does not have an ef-

fect upon the estimated impulse responses to the preference shock. Thus, as before, I only

concentrate on the impulse responses to the two technology shocks in the analysis.

Figures 7.7 and 7.8 illustrate the estimated impulse responses for the VECM and ACCA.10

As in the bivariate exercises, the visual comparison between standard and root flipping

technique mainly permits a qualitative rather than a quantitative appraisal. The impulse

responses of the VECM with root flipping show jagged behavior, which is slightly seen in

the ACCA-related functions. The VECM exhibits wider confidence bounds while the ACCA

is subject to a lower degree of uncertainty with respect to the surprise shock responses.

Regarding the news shock responses, a significant difference is not visible for both VECM

and ACCA.

To shed more light on the quantitative effects, Table 7.6 presents the computed MAWE statis-

tics. Because the root flipping procedure does not affect the estimates with respect to the

preference shock, I only present the statistics associated with the two technology shocks,

i.e., each cell contains 3 × 2 matrices, where the order of the three rows corresponds to the

order of the vector of observables (technology, stock prices and consumption). As in most of

the previous exercises, I experience precision gains due to root flipping, whereby the success

occurs primarily on the side of the surprise shock. Root flipping provides an improvement

of approximately 25% in the ACCA and approximately 20% in the VECM according to the

computed MAWE ratio. The dominance of the subspace algorithm over the VAR method

(i.e., VECM here) is reduced in the current example in comparison to the exercises above.

Now, it needs root flipping to maintain its superior position over the VECM. Nevertheless,

ACCA can outperform VECM in terms of MAWE levels. This is not the case for responses to

the news shock for which the VECM offers higher accuracy, albeit root flipping helps only

slightly. This result is also in line with my previous findings.

10For various lag lengths of the VECM, I find similar outcomes to the bivariate cases above. Therefore, I specify
the VECM according to the lag length suggested by the AIC.
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Figure 7.7: EXERCISE 7.18 - IMPULSE RESPONSES (VECM RESULTS)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ

0,t are shown in the left column, impulse responses to wθ
8,t in the middle

column and impulse responses to wψt in the right column of both panels.
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Figure 7.8: EXERCISE 7.18 - IMPULSE RESPONSES (ACCA RESULTS)
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Note: The figure depicts FIA model impulse responses (in green) and estimated impulse responses (in black). Dashed red lines mark
two-sided 90% confidence bounds. Impulse responses to wθ

0,t are shown in the left column, impulse responses to wθ
8,t in the middle

column and impulse responses to wψt in the right column of both panels.
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Table 7.6: EXERCISE 7.18 - MAWE RESULTS (NONSTATIONARY SYSTEM)

MAWE (VECM) MAWE (ACCA)

Standard
1.5811 1.0307

1.3919 0.9248

1.4861 0.9706

1.3125 1.1100

1.2021 1.0257

1.2633 1.0504

With flip
1.2624 1.0090

1.1030 0.9071

1.1836 0.9632

0.9921 1.0910

0.9036 1.0173

0.9515 1.0471

Ratio (flip/standard)
0.7984 0.9789

0.7925 0.9809

0.7965 0.9924

0.7559 0.9829

0.7517 0.9919

0.7532 0.9968
Note: Analogously to Table 7.1, the table reports the computed MAWEs (and ratios) resulting from the simulation exercise in which the
set of observables comprises three variables (technology, stock prices and consumption), which are driven by one common stochastic
trend. MAWE values are calculated as in equation (5.8) multiplied by 100.

It should be noted that my foregoing conclusions are not independent of the chosen val-

ues for γθ, ρψ and σψ. The value of γθ is selected such that it roughly matches the average

quarterly growth rate of the TFP series used in the empirical analysis in Chapter 8. While

γθ affects the anticipation rate, the two parameters related to the preference shock do not.11

Nevertheless, persistence and volatility of the preference shock influence the performance

of the estimation methods in small sample experiments, but in contrast to γθ, they are not

relevant for the specification of the theory-based root flipping estimator when it is applied

practically. I therefore do not deepen the analysis here and move on to the empirical exami-

nation after summarizing the main aspects of this chapter.

7.5 Summary and discussion

Nonfundamentalness implies that the econometrician’s information set is smaller than the

information set of the agents in the model economy. As a consequence, the econometri-

cian is not able to uncover the true model dynamics. One needs to find estimation methods

that are not vulnerable to that problem and/or use additional information that helps elim-

inate misalignment between the different information sets. In this chapter, I have explored

an alternative way of addressing nonfundamentalness in a situation in which only a small

number of observables is available and, thus, the econometrician’s access to information is

strongly limited.

As a possible solution, I presented an estimator that is primarily targeted to environments in

11Including the preference shock in the workhorse model adds expressions such as the s̃t and E [s̃t+1] terms
to the second order difference equation (5.9). However, as it only represents a surprise shock, solving the
unstable root forward offsets any future expected preference shocks so that the anticipation rate remains
untouched.
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which economic agents anticipate shocks to future fundamentals. Originally introduced by

Mertens and Ravn (2010), I applied their procedure to a new setting – when agents receive

news about future technology growth. This context has attracted much attention in recent

years in both theoretical and empirical business cycle research. The estimator combines

theory with empirical methods to deal with the difficulties caused by nonfundamentalness.

Endowing the econometrician with auxiliary information based on theory can reduce the

discrepancy in relation to the agents’ information set. Although this approach provokes

limitations in terms of additional restrictions on the regression model, the proposed estima-

tor maintains the basic idea behind traditional SVAR models to impose a minimum structure

on the data because it only requires limited information about the anticipation rate and hori-

zon as well as the relative weight of news compared to other structural shocks. In contrast,

alternative methods that can tackle nonfundamentalness, such as dynamic factor models or

Bayesian estimation of fully specified models, either necessitate a sizable set of observable

variables or complete knowledge of the entire economic model.

A contribution of this chapter is in embedding of the theory-based estimator into the frame-

work of subspace algorithm analysis. In the simulation experiments, I demonstrated that

this technique can provide improvements over its SVAR counterpart and constitutes a step

toward coping with the problem of nonfundamentalness in small scale systems without us-

ing external information.

It must be noted that my workhorse model might be viewed as being not realistic enough

in terms of typical DSGE model features, e.g., nominal or more real frictions, to study the

performance of the presented estimators in Monte Carlo experiments. This has been done

by Sims (2012), Seymen (2013) and Beaudry et al. (2013), for instance, but not with respect

to the subspace algorithm analysis or root flipping procedure. A possible modification of

the workhorse model could also be the specification of the technology process such that

it exhibits a delayed but slow diffusion news as proposed by Portier (2015) rather than a

distinct jump after the anticipation period.

Another outcome of this chapter has already been indicated in the previous chapters and

in the Monte Carlo studies by Sims (2012), Seymen (2013) and Beaudry et al. (2013): non-

fundamentalness seems not to be a matter of serious concern for the econometrician in the

context of technology-related news because the bias in the estimated impulse responses is

relatively small compared to other sources of bias, such as small sample uncertainty.12 Does

this mean that testing the theory-based root flipping procedure has been worthless? No,

not if one thinks of the Mertens and Ravn (2010) puzzle mentioned in Section 7.1 or the ex-

emplification of Leeper et al. (2013) that the econometrician can infer mistaken conclusions

from her impulse responses, which contradict the true responses in the environment of the

12See also Beaudry and Portier (2014b) and Beaudry et al. (2015) for a discussion of the importance of nonfun-
damentalness in a setting with technological news shocks. Beaudry et al. (2015) suggest a diagnostic test to
check whether the quantitative implications of nonfundamentalness are relevant for the empirical analysis.
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neoclassical growth model augmented with anticipated tax shocks. I resume the example of

Leeper et al. (2013) in the appendix, wherein I disclose this finding in another version of my

workhorse model extended with tax news. By applying the tools developed in Chapter 5, I

show that the responses to a tax news shock, as detected by the econometrician, differ not

only in shape but also in sign from the FIA model impulse responses. Therefore, this chap-

ter’s results concerning the possible gain from reducing the bias in the impulse responses

due to root flipping can indeed be seen as promising, and it is worth studying the concept of

theory-based root flipping further. However, as my focus is the idea of news shocks in the

spirit of Beaudry and Portier (2006), I leave the last example as motivation for future related

research and turn to the empirical investigation of news shocks in the following and final

chapter.
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Chapter 8

Exploring the empirical relevance of news

shocks

In this chapter, I conduct an empirical analysis of the US data focusing on the role of news

shocks in explaining business cycles. The objective is to bring together the estimation meth-

ods I have presented in this thesis in a common framework and to conclude my thesis with

a practical application of these tools.

8.1 Motivation and related literature

News shocks as triggers of macroeconomic fluctuation have become an important topic in

empirical business cycle analysis in recent years. Their factual relevance is a controversial

subject and has attracted considerable debate in the profession. Since the influential work

by Beaudry and Portier (2005, 2006), the subject of technology-related news has become a

central point of the discussion.1

Structural innovations in stock prices identified in a structural VECM that comprises a proxy

for technology, stock prices and macroeconomic aggregates can be a decisive source of busi-

ness cycle fluctuation. In examining quarterly postwar data for the US, Beaudry and Portier

(2006) find that anticipated neutral technology shocks account for more than one-half of

the forecast error variance of output, consumption and hours at business cycle frequencies.

Beaudry and Lucke (2010) extend the set of possible shocks as drivers of the business cy-

cle to candidates such as IST, monetary policy and preference shocks, and they confirm an

outstanding role for anticipated technology shocks in a five-dimensional system including

TFP, stock prices, relative price of investment, interest rate and an activity measure. Ac-

1My focus is the empirical relevance of rather than a theoretical perspective on news shocks. One of the
challenges of the latter context is building a model in which news shocks generate comovement between
macroeconomic quantities. For related contributions, see the articles by Beaudry and Portier (2007), Jaimovich
and Rebelo (2009), Christiano et al. (2010), Pavlov and Weder (2013) and Dupor and Mehkari (2014).
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cording to their findings, news about TFP growth explain approximately 70% of variation

in hours worked at forecast horizons that exceed 1–2 years, whereas surprise changes in

neutral and investment-specific technology or monetary shocks play a minor role at all hori-

zons. The only exception is what Beaudry and Lucke (2010) interpret as a preference shock,

which dominantly contributes to very short-run movements. Similar results are obtained

with respect to other activity variables, such as output, consumption and investment, where

the technological news shock explains at least a 50% share in the variance decomposition at

horizons longer than one year.

The results of Beaudry and Portier (2006) and Beaudry and Lucke (2010) are challenged

by several studies that relate to three key areas of concern: the identification procedure,

the problems caused by nonfundamentalness and the estimation methodology (and its re-

sults) in general. Barsky and Sims (2011) undertake an SVAR-based analysis that differs in

the identification methodology (and the choice of the data series) from the approach in the

aforementioned articles. While Beaudry and Portier (2006) and Beaudry and Lucke (2010)

deploy traditional zero short-run and long-run restrictions to identify all structural shocks in

their systems, Barsky and Sims (2011) develop an alternative partial identification strategy

to uncover surprise and anticipated changes in technology. They identify the news shock as

being orthogonal to the unanticipated shock in technology and maximizing the forecast er-

ror variance share of TFP over a fixed horizon. Moreover, they use the utilization-corrected

TFP series from Basu et al. (2006) included in a seven-dimensional VAR with output, con-

sumption and hours as well as inflation, stock prices and consumer confidence. Their find-

ings do not debunk the pivotal role of anticipated neutral technology shocks in fluctuations

over the business cycle horizon. For example, news shocks dominate hours variation only

over the very short-run with a fraction of 60% of the FEVD, whereas this share declines to

below 10% at lower frequencies. In the case of output and consumption, TFP news explain

approximately 40% to 50% of the FEVD but not until a medium-term horizon of four years.

As explicated in the preceding chapters, VAR-based identification of news shocks faces the

criticism that the underlying theoretical model might feature a nonfundamental represen-

tation, so it cannot uncover the true shocks and their dynamics. This point is raised by,

e.g., Schmitt-Grohé (2010) regarding the VECM of Beaudry and Lucke (2010), whereas Forni

et al. (2014) address the nonfundamental representation underlying the VECM of Beaudry

and Portier (2006). Based on an empirical test of detecting nonfundamentalness in the data,

Forni et al. (2014) infer that the inclusion of consumer sentiment in the set of observables,

as in the case of Barsky and Sims (2011), prevents the consequences of nonfundamental-

ness.2 They further propose to estimate a FAVAR model and apply the Barsky and Sims

(2011) identification procedure. Forni et al. (2014) find that TFP news explain from 5% to

43% of the volatility in hours (5%), investment (17%), output (21%) and consumption (43%)

2See also Forni and Gambetti (2014), who introduce the empirical test of detecting nonfundamentalness.
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at business cycle frequencies.

A different approach to quantifying the contribution of news shocks to aggregate fluctu-

ations can be found in, e.g., Fujiwara et al. (2011), Schmitt-Grohé and Uribe (2012) and

Khan and Tsoukalas (2012), who rely on the application of a full-information method by

estimating a fully specified DSGE model via Bayesian techniques. These studies all have a

common outcome that the relative importance of anticipated technology shocks is limited

to a small portion of the variance decomposition of the main macroeconomic aggregates.

Fujiwara et al. (2011) find that the corresponding fraction of technological news shocks in

macroeconomic fluctuations lies approximately between 3% and 13% while Schmitt-Grohé

and Uribe (2012) and Khan and Tsoukalas (2012) estimate variance shares of technological

news shocks between 1% and 3%. The latter two analyses expose the potential relevance

of non-technological news shocks, which account for a sizable fraction ranging from 60% to

70% in the variation in hours and, to a lesser extent, in consumption and output. The main

part of the variation in the latter variables is captured by wage markup shocks.

It is worth mentioning that there are also various contributions in the literature, which,

in turn, give rise to reasonable doubt about the critique of the news shock hypothesis of

Beaudry and Portier (2006). Beaudry et al. (2011) argue that the Barsky and Sims (2011)

identification method is sensitive to the choice of the truncation horizon that is used in this

procedure. Moreover, Beaudry et al. (2013) demonstrate in a Monte Carlo simulation study

that the discrepancy between the findings of Beaudry and Portier (2006) and Barsky and

Sims (2011) is related more to the informational content of the variables used in the SVARs

or the small sample uncertainty rather than to the different identification schemes.3

The second issue of concern, i.e., the consequences of nonfundamentalness, is somehow re-

futed by means of Monte Carlo evidence by Beaudry and Lucke (2010) and Sims (2012).

Beaudry and Lucke (2010) show in their web appendix that their estimation procedure

works successfully in a simulation study. Sims (2012) emphasizes that nonfundamental-

ness is not an “either/or proposition” because VAR models still perform quite convincingly

in his Monte Carlo experiments (see also the previous chapter of this thesis).

Recently, Beaudry and Portier (2014a) revisit their own study and address inter alia the

third point of concern, i.e., the DSGE model-based findings that wage markup shocks play

a dominant role in explaining business cycles while the role of technological news is neg-

ligible. Beaudry and Portier (2014a) propose that the importance of wage markup shocks

is disputed in the literature and may hint at model misspecification. The authors use an

updated data set and replicate the Beaudry and Portier (2006) results with various types

of SVAR models that differ, e.g., in the number and choice of variables. Furthermore, they

question the FAVAR model outcome of Forni et al. (2014) by including the (first two) es-

3See also Sims (2016), who demonstrates that using the most recent vintage of the TFP series constructed by
Fernald (2014) in the Barsky and Sims (2011) model can produce results in favor of the Beaudry and Portier
(2006) findings.
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timated factors of Forni et al. (2014) in their own SVAR model and discovering that stock

prices do not immediately respond to the news shock. As stock prices are chosen in order

to segregate the news shock from other structural shocks, it is therefore unconvincing that

stock prices are not affected by this kind of shock on impact.

The aim of this chapter is to contribute to the previously presented literature and to reinvesti-

gate the empirical relevance of technological news. Thereby, I use the core model in Beaudry

and Portier (2014a) as a benchmark and test the estimators of the preceding chapter in an

empirical environment. The chapter brings together the findings and tools considered in the

foregoing chapters of this thesis.

8.2 Empirical application

8.2.1 Course of action

My course of action follows Beaudry and Portier (2014a). I consider the trivariate system

presented in Chapter 7, i.e., TFP, stock prices and consumption, which is the baseline system

of Beaudry and Portier (2014a). The data set is described in the following subsection.

The goal is to identify three structural shocks in the system. One shock is supposed to be

a surprise technology shock while the second is presumed to be an anticipated technology

shock. The interpretation of the third shock is left open at this stage and will be discussed

in a separate subsection. Prior to that, like Beaudry and Portier (2014a), I focus on the im-

plications of the technological news shock in terms of the corresponding impulse responses

and the FEVD. In a first step, I reproduce the results of Beaudry and Portier (2014a) in es-

timating a SVECM comprising the three variables with three lags in differences and two

cointegrating relations. The identification scheme corresponds to the scheme in Chapter 7.

That is, I impose two zero short-run restrictions: the anticipated technology shock and the

third structural shock do not affect TFP on impact. I also impose a zero long-run restriction:

the third shock has no effect on TFP in the longer term.

The results are supplemented by the findings for alternative estimation techniques. Similar

to Chapter 7, I use the subspace algorithm analysis and apply the theory-based root flip-

ping procedures associated with the SVECM and the subspace algorithm introduced therein.

Some of the details regarding the procedures are addressed below when presenting the re-

sults. In the final step, I shift the focus and elaborate the interpretation of the third structural

shock. This step completes the circle by referring to the first part of my thesis and provides

closing statements.
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8.2.2 Data set

I use the quarterly data set of Beaudry and Portier (2014a), which is available on the com-

panion website for the article. The sample covers the 1947Q1–2012Q3 period. The TFP series

is taken from Fernald (2014). Stock prices are represented by the Standard & Poor’s 500 in-

dex series drawn from Federal Reserve Economic Data (FRED). Real personal consumption

expenditures on goods and services from the NIPA serve as the consumption series. For de-

flating stock prices, the NIPA output deflator is used. To form per capita values, stock prices

and consumption are divided by the series of total population from the FRED database.

8.2.3 Results

At first, I begin with the outcomes of the SVECM replicating the findings of Beaudry and

Portier (2014a). The top panel of Figure 8.1 displays the estimated impulse response of TFP

to the news shock (black lines) with the corresponding confidence intervals (dashed red

lines), which shows the typical feature that TFP increases with a delay of approximately

ten quarters.4 There is some negative reaction in the first quarters, which Portier (2015)

interprets as a “consequence of an excessive correction for utilization.” The FEVD of TFP, as

presented in (the upper panel of the second column of) Table 8.1, supports the technological

news interpretation of the identified shock. The news shock does not explain a substantial

part of the TFP forecast error variation for the first years, but its share steadily increases to

more than 80% over the long-run.

In the middle panel of Figure 8.1, I present the estimated impulse response of stock prices to

the news shock and the associated confidence bounds. Stock prices jump by 7.5% on impact

and remain at approximately this level thereafter. The FEVD of stock prices (in the middle

panel of the second column of Table 8.1) indicates that stock prices capture the news shock

adequately because the news shock accounts for nearly 90% or more of the variation at all

horizons.

The estimated impulse response of consumption to the news shock is illustrated in the lower

panel of Figure 8.1. Consumption increases slightly on impact and increases further in the

first year after the shock occurs, remaining at a level of approximately 1% higher thereafter.

Within the first year, the news shock explains only a small part of the forecast error variance

of consumption, which is reversed at longer horizons (see the bottom panel of the second

column of Table 8.1). After four quarters, the news shock is the dominant source of move-

ments in consumption.

Next, I turn to the alternative approaches, i.e., the subspace algorithm analysis and theory-

based root flipping procedures applied to the VECM and the subspace algorithm. The find-

4The first positive point estimate of the impulse response is in the ninth quarter while the first significant
positive response of TFP occurs after eleven quarters.
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Figure 8.1: ESTIMATED IMPULSE RESPONSES TO NEWS SHOCK IN US DATA
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Note: The figure depicts the estimated impulse responses resulting from different estimation approaches. These approaches are stan-
dard SVECM (solid black), SVECM with root flipping (dotted black), standard structural CCA based on the [1,3]-restriction (solid blue),
structural CCA based on the [1,3]-restriction with root flipping (dotted blue) and standard structural CCA based on the [3,3]-restriction
(solid green). Dashed red lines mark the 16% and 84% quantiles of the distribution of the impulse responses w.r.t. the standard SVECM,
obtained by the approach as discussed in Doan (1992).



CHAPTER 8: EXPLORING THE EMPIRICAL RELEVANCE OF NEWS SHOCKS 151

Table 8.1: SHARE OF FORECAST ERROR VARIANCE EXPLAINED BY NEWS SHOCK

SVECM Structural CCA

Horizon Standard Root-flip
Standard

[1,3]-restr.

Root-flip

[1,3]-restr.

Standard

[3,3]-restr.

TFP

1 0.00 0.00 0.00 0.00 0.00

4 0.02 0.05 0.00 0.00 0.00

8 0.03 0.09 0.00 0.02 0.00

16 0.03 0.07 0.03 0.03 0.03

24 0.10 0.10 0.11 0.07 0.10

32 0.22 0.18 0.23 0.16 0.21

50 0.48 0.40 0.53 0.44 0.50

120 0.83 0.76 0.91 0.91 0.88

Stock prices

1 0.87 0.82 0.98 0.93 0.99

4 0.91 0.87 0.98 0.92 1.00

8 0.91 0.89 0.98 0.93 0.98

16 0.92 0.90 0.98 0.93 0.97

24 0.93 0.92 0.99 0.93 0.97

32 0.94 0.93 0.99 0.94 0.97

50 0.95 0.94 0.99 0.94 0.97

120 0.96 0.96 0.99 0.95 0.97

Consumption

1 0.21 0.17 0.00 0.00 0.01

4 0.53 0.45 0.05 0.04 0.15

8 0.61 0.54 0.15 0.11 0.28

16 0.64 0.57 0.26 0.23 0.42

24 0.65 0.57 0.37 0.34 0.53

32 0.67 0.58 0.45 0.44 0.62

50 0.72 0.61 0.58 0.60 0.74

120 0.88 0.78 0.75 0.81 0.84
Note: The table reports the FEVD shares of TFP (top panel), stock prices (middle panel) and consumption (bottom panel) due to the
technological news shock identified via the various estimation techniques as labeled in each column.
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ings are added to the aforementioned figure and table to allow a direct comparison with the

previous results. With the subspace algorithm analysis, it is difficult to identify a cointegra-

tion relationship among the chosen variables. Note that performing a standard Johansen

cointegration test does not provide a fully convincing picture either, as it implies a cointe-

gration rank of one only at the 10% significance level. The difficulty concerning the subspace

algorithm is reflected in the result that three eigenvalues of the A-matrix in the state equa-

tion are estimated to be very close to one, i.e., the system might be driven by three common

trends instead of one as Beaudry and Portier (2014a) presume.

A possible step could be to impose a cointegration rank of one by estimating the system

matrices of the state equation via a reduced rank procedure (see Bauer and Wagner (2009))

so that (only) one eigenvalue of the A-matrix is restricted to an exact value of one while

the other two eigenvalues are not fixed at this value but instead estimated to be smaller

than one. However, in this case, the corresponding estimated values are nearly one. Then,

proceeding with the above-mentioned identification scheme, where the zero long-run re-

striction is placed on the total impact matrix derived from the MA representation of the LIE

model (as described in Chapter 3), leads to results that are not convincing and seem highly

sensitive.

A natural strategy when faced with nonstationary time series without cointegrating features

would be to estimate the system in first differences, but this would ignore the long-run prop-

erties of the data. I therefore choose a different way inspired by the common procedure to

estimate a VAR in levels as an alternative to a VECM.5 I adopt this approach to the subspace

algorithm analysis, i.e., I deploy the CCA instead of the ACCA but set up the corresponding

observation equation for the vector of observables in terms of levels and not in terms of first

differences. This technique is an ad hoc and unconventional way of dealing with the data,

but it produces more plausible results than in the case of the ACCA. Moreover, it allows

using the same identification scheme as Beaudry and Portier (2014a) because three restric-

tions are necessary for the identification of the three structural shocks in a trivariate system

in levels. The difference to the approaches based on the cointegration assumption is that the

long-run effect of the third shock is only constrained with respect to one variable instead of

all three variables in the system. I impose the zero long-run restriction of the third shock

on TFP that is the variable ordered first in the system, i.e., I restrict the [1,3]-element of the

total impact matrix to zero. In the discussion below (Subsection (8.2.4)), I also consider the

case wherein the restriction is applied to the [3,3]-element of the total impact matrix (i.e., to

consumption).

5Asymptotically, a VAR in levels and the corresponding VECM representation are equivalent. See also the
derivation of equation (3.10). On the one hand, estimating a VAR in levels ignores restrictions that are imposed
on the coefficients when using a VECM. On the other hand, Sims et al. (1990) propose to apply a VAR in levels
rather than a VECM when the degree of integration in the system is uncertain. I follow their suggestion and
focus on the estimation of the system in levels. I thereby proceed without providing a formal treatment of
that issue, as this would exceed the scope of this thesis.
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Before turning to the corresponding results, I point to a particular issue that has come up

in Chapter 7 and has been suppressed thus far: the presumption that the roots related to

the MA representation, which are associated with the nonfundamentalness property of the

underlying theoretical model, lie on a circle that has a radius smaller than one. Mertens and

Ravn (2010) address this subject in their empirical application and essentially find an empir-

ical circle of roots in their VAR system. As a by-product of the subspace algorithm analysis,

I can also uncover the (estimated) MA roots in the data. Recall that the econometrician es-

timates the reciprocals of the true MA roots in the case of nonfundamentalness. Because,

in turn, the estimated MA roots are equivalent to the reciprocals of the estimated (nonzero)

eigenvalues of the matrix (A−KC), I simply use the estimated eigenvalues of (A−KC) as

direct counterparts of the true MA roots.

The first attempt of producing results that are consistent with the theoretical framework

above is not successful. When letting the data speak and using the criterion by Bauer and

Wagner (2002) to estimate the number of states, I obtain four states yielding eigenvalues of

(A−KC) equal to absolute values of 0.08, 0.10 and 0.60, where the latter value appears in a

pair. My second attempt is justified by theory and guided by the VECM result from above.

The theoretical model implies q + 2 states. As I use q = 10 as a benchmark based on the

observation in the case of the VECM that TFP does not respond positively to the news shock

within a horizon of approximately ten quarters, I fix the number of states at n = 12 and

reestimate the state space model by applying the subspace algorithm.

Figure 8.2 plots the estimated eigenvalues of (A−KC) in the complex plane. Ten eigenval-

ues lie close to a circle with a radius of approximately 0.75. Although this is relatively low

compared to the value of ω in the theoretical models in the previous chapters, it verifies the

findings of Mertens and Ravn (2010), who identify an empirical circle with radius 0.77 in the

US postwar data. As regards the anticipation horizon, it should be stressed that only nine

eigenvalues are relevant. The reason is that in the case of the polynomial expression Θ(L)

from equation (7.2), the corresponding roots appear in complex conjugate pairs except for

even q, where one of these roots is real and equal to −ω. Thus, the positive real eigenvalue

lying close to the red circle cannot be taken into account. It follows that the remaining nine

eigenvalues indicate an anticipation horizon of ten quarters.

The estimated impulse responses are added to Figure 8.1 (see the solid blue lines). They

confirm the findings of Beaudry and Portier (2014a) with a few exceptions. In the case of

the TFP response, the adjustment within the first periods, as has also been found for the

VECM, is only weakly indicated. The gradual increase (with positive point estimates) starts

after approximately two years, approaching very close to the response from the VECM.

Likewise, the response of stock prices from the subspace algorithm analysis is qualitatively

similar to the VECM finding, but the point estimates of the former surpass the ones of the

VECM by around two percentage points at the end of the displayed horizon. There is no



CHAPTER 8: EXPLORING THE EMPIRICAL RELEVANCE OF NEWS SHOCKS 154

Figure 8.2: ESTIMATED EIGENVALUES OF (A−KC) IN US DATA
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Note: The figure depicts the eigenvalues of the estimated matrix (A−KC) in the case of the subspace algorithm analysis (in blue). The
red line marks a circle with a radius of 0.75.

significant difference between the two responses because the solid blue line is embedded in

the confidence interval of the VECM.

The most obvious deviation from the VECM result can be seen in the response of consump-

tion to the news shock. In the subspace algorithm analysis, consumption has virtually no

positive response on impact, followed by a steep increase that continues two years later

as in case of the VECM. Nevertheless, there is no significant difference between the sub-

space algorithm analysis and the VECM at the end of the plotted horizon. Note that the

near-zero impact effect on consumption does not refute the news shock interpretation com-

pletely. Beaudry and Portier (2014a) show that their baseline dynamic general equilibrium

model generates a zero impact response of consumption to a technological news shock un-

less the model is extended by certain properties, e.g., decreasing returns to capital, which

allow richer dynamics of the relevant variables.

In terms of the FEVD, the VECM findings are supported for the TFP and stock price vari-

ation but only to a lesser extent for consumption (see the fourth column of Table 8.1). For

consumption, the dominant role of the news shock in explaining the forecast error variance

seems to be a more medium- and long-term phenomenon. The main reason for this is the

strong sustainable effect of the third structural shock in the system to which I will turn be-

low.

For completeness, Figure 8.1 (see the dotted black and blue lines) and Table 8.1 (see the

columns three and five) are supplemented by the outcomes for the root flipping techniques.

The relevant parameters are set as in the Monte Carlo experiment of Chapter 7, i.e., the

anticipation rate is fixed at the value implied by my theoretical model, ω = 0.9627, and

the relative weight of the news shock, λθ, equals two.6 In general, the results of the root

6I follow Mertens and Ravn (2010) in using the theoretical value for ω instead of the estimated value for the
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flipping procedures do not deviate much from their standard counterparts except for the

jagged pattern of the impulse responses. The issue has already been discussed in the Monte

Carlo simulation study regarding the VAR models, where the number of lags in the VAR is

smaller than the anticipation horizon of the news shock. This is the case here because the

VECM is estimated with three lags in differences. The jagged movements also apply to the

impulse responses in the subspace algorithm analysis because the VECM, and its number of

lags in particular, serve as benchmark for the subspace algorithm to pin down the number

of lags and leads used in the procedure. The Monte Carlo simulation exercises in Chapter 7

hint at a direct coherence between the length of the anticipation horizon in the underlying

theoretical model and the number of VAR lags suggested by the AIC.7 Unfortunately, this

coherence cannot be maintained in this empirical analysis.

The jagged pattern of the impulse responses might also depend on the fact that the theo-

retical values of ω and λθ used in the root flipping procedure differ from their empirical

counterparts. While the subspace algorithm analysis offers a way to estimate a value for ω

(as well as for q), the identification of λθ is unclear at this stage. A solution to the latter prob-

lem would help move from theory-based to (an appropriate method of) empirically based

root flipping. However, a further investigation of the aforementioned aspects is left for fu-

ture work. Instead, I continue with a final discussion related to the third structural shock

identified in the system above.

8.2.4 Discussion

The implications of the third structural shock identified above are discussed because, as re-

vealed in the previously presented FEVD, the TFP news shock does not play the superior

role in the variation in economic activity during the first quarters. Such a candidate has been

introduced in the first part of this thesis: the market rush shock. Therefore, the natural ques-

tion arises whether the third structural shock identified in the trivariate system comprising

TFP, stock prices and consumption reflects a market rush phenomenon.

A first glimpse at the FEVD findings in Table 8.2 related to the third structural shock might

lead to a positive answer to this question (at least for the VECM results in the second col-

umn of the table).8 According to the VECM, this shock is replaced by the anticipated TFP

shock as the major determinant of the forecast error variance of consumption not before the

fourth quarter. According to the subspace algorithm analysis, the dominance of the third

shock is maintained for at least the first eight years (see the third column of Table 8.2), thus

contradicting the property of the market rush shock as being (only) a very short-run driver

root flipping procedure.
7Note that the AIC suggests only one lag more than Beaudry and Portier (2014a) have selected for their VECM,
i.e., four lags in differences instead of three.

8Recall from Chapter 7 that the identification of the third structural shock is not affected by whether the stan-
dard procedure or the root flipping method is applied.
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Table 8.2: SHARE OF FORECAST ERROR VARIANCE DUE TO 3RD STRUCTURAL SHOCK

SVECM Structural CCA

Horizon Standard
Standard

[1,3]-restr.

Standard

[3,3]-restr.

Consumption

1 0.69 0.86 0.85

4 0.43 0.90 0.80

8 0.35 0.80 0.67

16 0.29 0.70 0.55

24 0.25 0.61 0.45

32 0.21 0.53 0.37

50 0.15 0.38 0.23

120 0.05 0.15 0.06
Note: The table reports the FEVD share of consumption (bottom panel) due to the third structural shock identified via the various
estimation techniques as labeled in each column.

of economic activity. One reason for the difference between the two results could be that the

VECM forces the third structural shock to have no long-run effect on any of the variables

by construction, whereas in the case of the subspace algorithm analysis, it has only been

restricted to have no long-run impact on TFP. Hence, I also conduct the subspace algorithm

analysis in combination with a different long-run restriction on the third shock that it has

no long-run effect on consumption instead of TFP, i.e., restricting the [3,3]-element of the

total impact matrix to zero. As the fourth column of Table 8.2 shows, there is no decisive

change in the results (between the [1,3]- and the [3,3]-restriction) with respect to the first

years. Consequently, I concentrate on the outcomes of the VECM in order to deepen the

discussion about the market rush interpretation.9

Figure 8.3 plots the estimated response of consumption to the third structural shock (in

black).10 Two aspects have to be addressed in this context. First, one might argue that the

identified shock cannot reflect a market rush, as characterized in Chapters 3 and 4, because

consumption exhibits a significant reaction to the shock, which has not been the case in the

Beaudry et al. (2011)-type examination of the response of consumption to the market rush

shock therein. An explanation for this discrepancy could be that, in the gold rush fever

analysis, a bivariate VECM is used, where consumption captures the technology shock and

output is driven, over the very short-run, by the market rush shock, whereas TFP encom-

passes the (surprise) technology shock and consumption represents the activity measure

that might be influenced by a kind of a market rush shock in the trivariate system of this

chapter. The second aspect is independent of the aforementioned issue and can be seen as

9Note that there is a mentionable change in the FEVD share of consumption w.r.t. the technological news shock
(see the sixth column of Table 8.1), indicating a higher relevance of this type of shock than found in the case
of the [1,3]-restriction.

10The estimated responses stemming from the subspace algorithm analysis are included for completeness.
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Figure 8.3: ESTIMATED RESPONSE OF CONSUMPTION TO 3RD STRUCTURAL SHOCK
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Note: The figure depicts the estimated impulse responses resulting from different estimation approaches. These approaches are stan-
dard SVECM (black), standard structural CCA based on the [1,3]-restriction (blue) and standard structural CCA based on the [3,3]-
restriction (green). Dashed red lines mark the 16% and 84% quantiles of the distribution of the impulse responses w.r.t. the standard
SVECM, obtained by the approach as discussed in Doan (1992).

a stronger argument against the market rush hypothesis with respect to the third structural

shock: the estimated response of economic activity (in terms of consumption) displays a

very persistent reaction as opposed to the very short-run effect of the market rush shock in

Chapter 4. Beaudry et al. (2011) emphasize the nonproductive characteristic of the market

rush shock as a very short-run driver, which has to be distinguished from a productive ver-

sion of this type of shock for which they do not find a relevant role in explaining US business

cycles.

Thus, a final point could be raised in the sense that the third structural shock mirrors not the

(nonproductive) market rush shock in the spirit of Beaudry et al. (2011) but a productive one.

In this case, finding a proper label for that shock can be difficult. Beaudry and Portier (2014a)

define nonproductive market rush shocks as those that “create cycles driven by competition

of monopoly rents, which are socially inefficient as investment only redistributes rents with-

out having any productive impact.” Productive market rushes can arise in models that al-

low for increasing returns to variety in the goods market, for instance. Beaudry and Portier

(2014a) give a corresponding example and state that changes in the number of firms “will

play the exact same role as changes in productivity” in this case. As a consequence, news

about the opening of new markets and news about future productivity growth can have the

same implications, which make them difficult to differentiate in empirical investigations.

Note that there are not only empirical but also theoretical challenges when combining firm

dynamics with the concept of news-driven business cycles. Fan and Xu (2014) show that

a typical DSGE model, such as the one used by Jaimovich and Rebelo (2009) in the news

shock context, cannot generate comovement between stock prices and the number of firms,

as can be found in the data, unless the model is extended by an endogenous survival rate
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governing the entrance of new firms into the market. However, fully endogenizing the

process of firm entry in a business cycle model somehow disposes of the idea of market

rushes as introduced by Beaudry et al. (2011), who model market rushes as firm dynamics

resulting from an exogenous expansion of the product variety.

8.3 Concluding remarks

This chapter concludes my thesis, which provided a suitable framework to compare the

standard VAR/VECM estimator with an alternative tool, subspace algorithm (cointegration)

analysis. The framework was based on state space representations that helped reconcile the

commonalities and differences between both approaches. Moreover, the usage of state space

representations facilitated the illustration of the implications of nonfundamentalness when

the information sets of the agents and the econometrician do not match. My analysis re-

lied on a prototypical, theoretical business cycle workhorse model, which is flexible enough

to provide intuitive and analytical examples on the one hand and to allow appropriate ex-

tensions of the model to offer a comprehensive setting on the other hand. The workhorse

model (with its several corresponding specifications) served as the DGP in the Monte Carlo

simulation studies conducted in the thesis.

The Monte Carlo simulations showed that subspace algorithm cointegration analysis can be

an adequate alternative to the standard VECM for structural estimation. However, I dis-

closed that it also suffers from lag truncation bias in small samples. While lag truncation

bias is a well-known issue, I consider another source of systematic bias in the second part of

the thesis wherein I placed special attention to the situation in which nonfundamentalness

occurs. In this situation, estimates can be biased due to misalignment between the agent

and econometrician’s information sets. The Monte Carlo experiments revealed that a conve-

nient adjustment of the estimation procedures, i.e., the theory-based root flipping technique,

improves the performance of the subspace algorithm analysis and the VAR/VECM.

Nevertheless, two warnings have to be stressed in that context. First, the systematic errors

and the corresponding success of the modified estimator depend on the underlying DGP.

Second, one could suspect that (at least in the case of a setting in which news about future

technology growth are apparent) nonfundamentalness does not appear to be the most influ-

ential determinant of the estimation results. Other factors, such as small sample uncertainty

or the general accuracy of the estimation technique, are more decisive. Hence, there might

not be an “either/or proposition” regarding the issue of considering nonfundamentalness,

but this proposition might be applicable to the basic estimation method, VAR or subspace

algorithm analysis. My simulation results highlighted the relatively good performance of

the latter but also demonstrated that this finding, in turn, is driven by the underlying DGP.

Finally, the empirical investigations using US macro data led to the conclusion that news
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shocks can be seen as important triggers of macroeconomic fluctuation over the entire busi-

ness cycle horizon. Over the very short-term, market rushes, as introduced by Beaudry et al.

(2011) and interpreted as one kind of news shock, explain a sizable fraction of US economic

activity. At horizons beyond the first year, technological news shocks represent a dominant

driver of US business cycles when a VECM is used for estimation, whereas such shocks

are more a medium- and long-run determinant of fluctuations according to the subspace

algorithm analysis. The examination in this chapter has also indicated that there is an open

question in terms of how to address both types of shocks, market rushes and technological

news, in a common environment. This task appears challenging because the general concept

of market rushes can imply outcomes similar to those of technological news shocks. Thus,

one has to find a proper theoretical and empirical framework to obtain a clear distinction

between them, which guarantees unambiguous identification in the data. In this context,

the final discussion in the last subsection laid a foundation for future research.
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Appendix

Appendix to Chapter 2

Basic remarks

In order to show how to compute the roots of the characteristic (and/or lag) polynomials, I

begin with some definitions that can be found in Lütkepohl (1996), page 12:

Definition 3. The equation det [λIn − A] = 0 is the characteristic equation of the (n× n) matrix

A.

Definition 4. The polynomial in λ given by det [λIn − A] is the characteristic polynomial of the

(n× n) matrix A.

Definition 5. A number λ for which p (λ) = p0 + p1λ + ... + pnλ
n = 0 is called a root of the

polynomial p (·).

Based on these definitions, I use the terms characteristic equation and characteristic polyno-

mial to refer to the expressions that include z ∈ C. Note that the root(s) of the characteristic

polynomial above equal/s the eigenvalue(s) of A. Moreover, I call the expression that in-

cludes the lag operator L the (VAR or MA) lag polynomial, e.g., det [In − AL]. Hence, λ = 1
L

is called a root of the (VAR or MA) lag polynomial. This root is the reciprocal of the corre-

sponding root of the characteristic polynomial det [λIm − A]. Thus, the root of the (VAR or

MA) lag polynomial equals the inverse of the corresponding eigenvalue of A.

According to Lütkepohl (2005), I use the terms VAR or MA operator to refer to equations

such as A (L) yt = M (L) at, where A (L) denotes the VAR operator, and M (L) represents

the MA operator. det [A (L)] is called the VAR lag polynomial and det [M (L)] the MA lag

polynomial. Furthermore, I apply a rule related to the algebra of partitioned matrices (see

Lütkepohl (1996) or Hansen and Sargent (2014)) as follows.

161
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Assume a and d as nonsingular matrices and appropriate dimensions of all four matrices to

write

det [a] det
[
d− ca−1b

]
= det [d] det

[
a− bd−1c

]
.

Another rule is given by the following identity, where the assumptions with respect to the

four matrices still hold:

(
a− bd−1c

)−1
= a−1 + a−1b

(
d− ca−1b

)−1
ca−1 .

Computation of roots

Consider the vector MA representation in equation (2.5) in the main text

yt =
[
D + C

(
L−1 −A

)−1 B
]
wt . (A.1)

I apply the first rule from above to calculate the roots of the characteristic polynomial det[D+

C(zIn −A)−1B]. Setting

a = zIn −A ,

b = B ,
c = −C ,
d = D ,

it follows that

det
[
D + C (zIn −A)−1 B

]
=

det [zIn −A+ BD−1C]
det [zIn −A]

=
det [zIn − (A− BD−1C)]

det [zIn −A]
.

Because the roots of the characteristic polynomial det [zIn − (A− BD−1C)] are the eigen-

values of (A− BD−1C), these eigenvalues are the roots of the characteristic polynomial

det
[
D + C (zIn −A)−1 B

]
.

Next, using the lag operator L by setting z = L−1, I obtain the MA operator [D + C(L−1 −
A)−1B] as given in equation (A.1) or more conveniently as

M (L) = D + C (In −AL)−1 BL .

Hence, the roots of the MA lag polynomial det [M (L)] equal the reciprocals of the corre-

sponding eigenvalues of (A− BD−1C).
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Derivation of Riccati difference equation

Starting from equation (2.7), I derive the Riccati difference equation (2.9). In substituting yt
by the observation equation of the FIA model, equation (2.7) can be written as

x̂t = (A−KtC) x̂t−1 +Kt (Cxt−1 +Dwt) . (A.2)

Next, I subtract this equation from the state equation of the FIA model to obtain

xt − x̂t = (A−KtC) (xt−1 − x̂t−1) + (B −KtD)wt . (A.3)

Multiplying both sides by their transposes and using the expectation operator, I formulate

E
{
(xt − x̂t) (xt − x̂t)

′} = E
{
(A−KtC) (xt−1 − x̂t−1) (xt−1 − x̂t−1)

′ (A−KtC)′

+ (B −KtD)wtw
′
t (B −KtD)′

}
. (A.4)

Because E (wtw
′
t) = Ik and Σt ≡ E

{
(xt − x̂t) (xt − x̂t)

′}, I write this equation as

Σt = (A−KtC) Σt−1 (A−KtC)′ + (B −KtD) (B −KtD)′ . (A.5)

Next, I factor out Kt on the right-hand side of the equation:

Σt = AΣt−1A′ + BB′ +Kt (CΣt−1C ′ +DD′)K ′
t

−Kt (CΣt−1A′ +DB′)− (AΣt−1C ′ + BD′)K ′
t . (A.6)

Substitution of Kt by equation (2.8) and some rearrangements yield equation (2.9) in the

main text:

Σt = AΣt−1A′ + BB′

+(AΣt−1C ′ + BD′) (CΣt−1C ′ +DD′)
−1

(AΣt−1C ′ + BD′)
′

− (AΣt−1C ′ + BD′) (CΣt−1C ′ +DD′)
−1

(CΣt−1A′ +DB′)

− (AΣt−1C ′ + BD′) (CΣt−1C ′ +DD′)
−1

(AΣt−1C ′ + BD′)
′

⇔ Σt = AΣt−1A′ + BB′

− (AΣt−1C ′ + BD′) (CΣt−1C ′ +DD′)
−1

(AΣt−1C ′ + BD′)
′
. (A.7)

Inverting the MA operator of the LIE model representation

The vector MA representation is given in equation (2.18), where L denotes the lag operator.
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Applying the second algebraic rule from above by setting

a = Ik ,

b = −C ,
c = KL ,

d = In −AL ,

it follows that the inverse of the MA operator can be written as

[
Ik + C (In −A)−1KL

]−1
= Ik − C (In − (A−KC)L)−1KL .

Using this identity, the VAR representation given in equation (2.19) can be derived.
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Appendix to Chapter 3

Jordan decomposition

In the case of a Jordan decomposition of matrix T (that is supposed to have q distinct eigen-

values λ1, ..., λq) such that T = PΛP−1, Λ has block-diagonal structure (i.e. Jordan form),

Λ =




Λ1 0
. . .

0 Λs


 ,

with (Jordan) blocks defined as

Λi =




λqi 1 0 · · · 0

0 λqi 1
. . . 0

0 0
. . .

...
...

...
. . . 1

0 0 . . . . . . λqi




for i = 1, ...s ≥ q and {q1, ...qs} = {1, ..., q} (see, e.g., Lütkepohl (1996)). It can be the case

that more than one Jordan block is associated with a particular eigenvalue. Then, the cor-

responding Jordan blocks form a Jordan segment (with the additional zeros off the block

diagonal).

Illustrative examples

I provide some illustrative examples to show the connection between the integration order

of a (state) process and the multiplicity of the corresponding unit root. Algebraic multiplicity

is the multiplicity of an eigenvalue that solves the characteristic polynomial. Geometric

multiplicity is the number of Jordan blocks associated with an eigenvalue. I draw on an

example by Bauer and Wagner (2003) and present some related variations.

The first system includes only random walks, the second system contains an I (2) process,

and the third system involves a process integrated of order three. With respect to the descrip-

tion of a Jordan decomposition above, the geometric and algebraic multiplicity can easily be

detected.
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System 1:




x1,t

x2,t

x3,t


 =




1 0 0

0 1 0

0 0 1







x1,t−1

x2,t−1

x3,t−1


+




1

1

1


wt (A.8)

=⇒ △x1,t = wt ,

△x2,t = wt ,

△x3,t = wt .

System 2:




x1,t

x2,t

x3,t


 =




1 1 0

0 1 0

0 0 1







x1,t−1

x2,t−1

x3,t−1


+




0

1

1


wt (A.9)

=⇒ △x1,t = x2,t−1 ,

△x2,t = wt ,

△x3,t = wt .

System 3:




x1,t

x2,t

x3,t


 =




1 1 0

0 1 1

0 0 1







x1,t−1

x2,t−1

x3,t−1


+




0

0

1


wt (A.10)

=⇒ △x1,t = x2,t−1 ,

△x2,t = x3,t−1 ,

△x3,t = wt .

In all three systems, the algebraic multiplicity is equal to three. In System 1, the geometric

multiplicity is also equal to three. All three processes are I (1). In System 2, the geometric

multiplicity is equal to two, x1,t is I (2), and the other two processes are I (1). In System 3,

the geometric multiplicity equals one, x1,t is I (3), x2,t is I (2), and x3,t is I (1). Note that only
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System 1 is minimal.

Remarks on MA roots in the nonstationary case

Note that I refer to nonstationary cases in which I consider cointegrated, observable vari-

ables driven by common stochastic trends. In my framework, perpetual growth arises be-

cause of external I (1) impulse processes, i.e., there is no intrinsic propagation mechanism

that generates (co)integration properties of the endogenous variables. I model these external

I (1) impulse processes as conventional random walks.

This section is decomposed into three steps. In the first step, I present an alternative way

to derive the vector MA representation in first differences associated with the FIA model

when facing cointegration. Thereby, I use the rule for a square (m×m) matrix A, as given

in Lütkepohl (1996) (on page 27),

A · adj [A] = adj [A] · A = det [A] · Im , (A.11)

where det [•] and adj [•] denote the determinant and adjoint, respectively. The first step

allows me to detect the origin of the roots of the corresponding MA lag polynomial. In the

second step, I exemplify that the number of endogenous states determines the number of

the aforementioned roots. The final step demonstrates the linkage between these roots and

the eigenvalues of (A− BD−1C) by taking into account the findings of the previous steps.

My explanations refer to the theoretical model solution, i.e., I proceed in terms of the FIA

model. Because the invertibility condition is supposed to hold, the conclusions of this section

can be carried over to the LIE model. In the main text, I show how to derive a vector MA

representation in first differences for the LIE model in the case of cointegration (see equa-

tion (3.29)). I can proceed similarly for the FIA model to obtain the following vector MA

representation

△yt =
[
D +

(
Ã (L)−1 CĂ (L)B −D

)
L
]

︸ ︷︷ ︸
= M̃ (L)

wt , (A.12)

where the roots of the MA lag polynomial det
[
M̃ (L)

]
are the reciprocals of the nonzero

eigenvalues of (A− BD−1C) and a unit root.

An equivalent expression can be derived from an alternative representation of the FIA model,

where the state vector is partitioned into endogenous and exogenous states:

yt = Rst−1 + Szt , (A.13)

st = Pst−1 +Qzt , (A.14)
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zt = N zt−1 + wt . (A.15)

I omit possible constants to simplify the notation. st is the (ns × 1) vector of endogenous

states. zt is the (nz × 1) vector of exogenous states. yt and wt are the same as before. The

coefficient (and further) matrices have the corresponding dimensions. Suppose that all ex-

ogenous states evolve according to standard AR(1) processes. Because I consider some of the

exogenous states as random walks, some of the eigenvalues of N are equal to one, whereas

all the remaining eigenvalues are smaller than one (in modulus). Furthermore, the number

of exogenous states equals the number of shocks and thus the number of observables, i.e.,

nz = k. For the following explanations, I assume that P and S are nonsingular. As it will

turn out, S is equivalent to the system matrix D, so Assumption 1 covers the invertibility

property of S .

Solve equation (A.14) for st−1 and use backward substitution:

st−1 =
[
P−1 (Ins − PL)−1 Q−P−1Q

]
zt . (A.16)

Insert equation (A.16) into equation (A.13) and rearrange:

yt =
[
RP−1 (Ins − PL)−1 Q−RP−1Q+ S

]
zt

=
[
S −RP−1

(
Ins − (Ins − PL)−1)Q

]
zt

=
[
Ik −RP−1

(
Ins − (Ins − PL)−1)QS−1

]
Szt

=
[
Ik −RP−1 (−PL) (Ins − PL)−1 QS−1

]
Szt

=
[
Ik +R (Ins − PL)−1 QS−1L

]
Szt . (A.17)

Applying the rule as given in equation (A.11), I can write equation (A.15) as

det [Inz −NL] zt = adj [Inz −NL]wt . (A.18)

Multiply both sides of equation (A.17) by (the scalar polynomial) det [Inz −NL] and substi-

tute equation (A.18):

det [Inz −NL] yt =
[
Ik +R (Ins − PL)−1 QS−1L

]
Sadj [Inz −NL]wt . (A.19)

If N has c eigenvalues equal to one, then det [Inz −NL] and adj [Inz −NL] have c − 1 com-

mon factors (1− L). Thus, I can formulate

det [Inz −NL] = (1− L)c Ñ (L) ,

adj [Inz −NL] = (1− L)c−1 N̆ (L) ,

where Ñ (L) denotes the scalar polynomial determined by the eigenvalues of N less than
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one, and N̆ (L) represents a matrix polynomial that remains after eliminating the common

factors (1− L) in adj [Inz −NL]. Note that there is still one unit root left in det
[
N̆ (L)

]
.

Using the expressions from above, I can write equation (A.19) as

Ñ (L)∆yt =
[
Ik +R (Ins − PL)−1 QS−1L

]
SN̆ (L)wt . (A.20)

Multiplication of both sides of equation (A.20) by the inverse of Ñ (L) yields the vector MA

representation in first differences

△yt =
[
Ik +R (Ins − PL)−1 QS−1L

]
SÑ (L)−1 N̆ (L)wt , (A.21)

which is equivalent to equation (A.12), i.e., M̃(L) = [Ik+R(Ins−PL)−1QS−1L]SÑ(L)−1N̆ (L).

The roots of det
[
M̃ (L)

]
can be computed as follows. First, notice that det

[
Ñ (L)

]
and

det
[
N̆ (L)

]
have the same roots except the unit root in det

[
N̆ (L)

]
. Hence, det[Ñ(L)−1N̆ (L)]

and thus det
[
M̃ (L)

]
have one unit root that indicates the cointegration relationship among

the variables in yt. Second, the remaining roots of det
[
M̃ (L)

]
are given as the roots of

det
[
Ik +R (Ins − PL)−1 QS−1L

]
. These roots can be calculated analogously to the steps

presented in the appendix to Chapter 2. Hence, the roots of the characteristic polynomial

det
[
Ik +R (zIns − P)−1 QS−1

]
are the eigenvalues of (P −QS−1R), and the reciprocals of

the (nonzero) eigenvalues of (P −QS−1R) are the additional roots of the MA lag polyno-

mial det
[
M̃ (L)

]
. Furthermore, this means that the number of endogenous states determines

the number of non-unit roots of det
[
M̃ (L)

]
.

In the following, I show two examples supporting the claim that the number of non-unit

roots of det
[
M̃ (L)

]
is equal to the number of endogenous states that are not in the set of

observables. The examples should be considered only as tentative rather than a general

proof. These examples illustrate that my claim holds for the particular models used in the

chapter.

Example 1:

Consider the simple RBC model as specified in Subsection (3.5.2). I can formulate the FIA

model in the state space form of equations (A.13)-(A.15) as


 C̃t

Ỹt


 =


 φCK

φY K




︸ ︷︷ ︸
= R

K̃t−1 +


 φCA φCψ

φY A φY ψ




︸ ︷︷ ︸
= S


 log (At)

ψ̃t


 , (A.22)
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K̃t = φKK︸︷︷︸
= P

K̃t−1 +
(
φKA φKψ

)

︸ ︷︷ ︸
= Q


 log (At)

ψ̃t


 , (A.23)

and

 log (At)

ψ̃t


 =


 1 0

0 ρψ




︸ ︷︷ ︸
= N


 log (At−1)

ψ̃t−1


+


 wAt

wψt


 . (A.24)

Using the definitions of the system matrices, I obtain

P −QS−1R = [φCK (φKψφY A − φKAφY ψ)

+φCA (φKKφY ψ − φKψφY K)

+φCψ (φKAφY K − φKKφY A)]

× (φCAφY ψ − φCψφY A)
−1 .

If capital belongs to the vector of observables instead of output, it is easy to see that, in this

case, this expression would be zero. Following Ravenna (2007), it is possible to show that

the model solution can be expressed as a VAR(2) model in this case. For this purpose, define

the vector yt ≡
(
C̃t K̃t

)′
and combine the system equations to obtain

yt = Ayt−1 + Bzt , (A.25)

where A =
(

02×1 R
)

and B = S . Given that B has full rank, it is possible to solve

equation (A.25) for zt and substitute it into equation (A.24). Finally, the resulting expression

is plugged into equation (A.25), so I end up with a VAR(2) representation

yt =
(
A+BNB−1

)
yt−1 −BNB−1Ayt−2 + Bwt . (A.26)

Example 2:

Suppose a model with two observables and two endogenous states so that all system matri-

ces have a 2 × 2 dimension. Moreover, assume that one of the endogenous states (which is

ordered at first position in the state vector, for instance) is included in the vector of observ-



CHAPTER A: APPENDIX 171

ables. Then, the system matrices can be partitioned as

P =


 p11 p12

p21 p22


 , Q =


 q11 q12

q21 q22


 ,

R =


 r11 r12

p11 p12


 , S =


 s11 s12

q11 q12


 ,

=⇒ P −QS−1R =




0 0

[p11 (q22s11 − q21s12)

+p21 (q11s12 − q12s11)

+r11 (q12q21 − q11q22)]

× (q11s12 − q12s11)
−1

[p12 (q22s11 − q21s12)

+p22 (q11s12 − q12s11)

+r12 (q12q21 − q11q22)]

× (q11s12 − q12s11)
−1




.

Simple calculation of (P −QS−1R) reveals that its first row has only zero entries, i.e., one

eigenvalue of (P −QS−1R) is equal to zero.1 If both endogenous states form the set of

observables, then P is equal to R, and Q is equal to S . Example 2 could easily be extended

to a higher-dimensional case. However, because this would complicate the illustrative goal,

I stop at this stage.

Finally, I point to the linkage between the eigenvalues of (P −QS−1R) and (A− BD−1C). It

is convenient to start with the state space representation in equations (A.13)-(A.15) again and

derive the FIA model representation given in the main text. This can be done by stacking

the endogenous and exogenous states into one vector:


 st

zt


 =


 P QN

0nz×ns N




︸ ︷︷ ︸
= A


 st−1

zt−1


+


 Q

Inz




︸ ︷︷ ︸
= B

wt , (A.27)

yt =
(

R SN
)

︸ ︷︷ ︸
= C


 st−1

zt−1


+ S︸︷︷︸

= D
wt . (A.28)

1Note that this result does not require the number of endogenous states to be equal to two.
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Using the definitions, I can compute

A− BD−1C =


 P −QS−1R 0ns×nz

−S−1R 0nz×nz


 .

It is straightforward to show that the eigenvalues of (A− BD−1C) are given as the eigenval-

ues of (P −QS−1R) (plus nz zero eigenvalues).

Let M = A− BD−1C, M11 = P −QS−1R and M21 = −S−1R . If λ is an eigenvalue, it solves

the characteristic equation

det [λIns −M11] = 0 .

If λ is an eigenvalue of M , it solves

det
[
λIns+nz −M

]
= 0 .

I can write this equation, using the blockwise notation of M , as

det




 λIns+nz −M11 0ns×nz

M21 λInz




 = 0

Applying the rule for determinants of triangular partitioned matrices (see Lütkepohl (1996)),

I formulate

det
[
λIns −M11

]
det
[
λInz

]
= 0 .

Hence, if λ (or λ) is an eigenvalue of the submatrix M11, it is also an eigenvalue of M , i.e., an

eigenvalue of (A− BD−1C).



CHAPTER A: APPENDIX 173

Appendix to Chapter 5

Equivalent representations of the matrix Riccati equation

I show that equation (5.7) is equivalent to equation (2.12). Note that Σ is symmetric. It thus

holds that

(CΣC ′ +DD′)
−1

= (DD′)
−1
(
Ik − CΣC ′ (CΣC ′ +DD′)

−1
)

and

(CΣC ′ +DD′)
−1

=
(
Ik − (CΣC ′ +DD′)

−1 CΣC ′
)
(DD′)

−1
.

I use these identities in the following calculations.

Starting from equation (5.7) and using the definitions of Ã and Q̃ in the main text yields

Σ =
(
A− BD′ (DD′)

−1 C
)
Σ
(
A− BD′ (DD′)

−1 C
)′

+BB′ − BD′ (DD′)
−1 DB′

−
(
A− BD′ (DD′)

−1 C
)
ΣC ′ (CΣC ′ +DD′)

−1 CΣ
(
A− BD′ (DD′)

−1 C
)′
. (A.29)

Next, I document some computational steps to illustrate the equivalence to equation (2.12):

Σ = AΣA′ + BB′ −AΣC ′ (CΣC ′ +DD′)
−1 CΣA′

−AΣC ′ (DD′)
−1 DB′ +AΣC ′ (CΣC ′ +DD′)

−1 CΣC ′ (DD′)
−1 DB′

−BD′ (DD′)
−1 DB′ + BD′ (DD′)

−1 CΣC ′ (DD′)
−1 DB′

−BD′ (DD′)
−1 CΣC ′ (CΣC ′ +DD′)

−1 CΣC ′ (DD′)
−1 DB′

−BD′ (DD′)
−1 CΣA′ + BD′ (DD′)

−1 CΣC ′ (CΣC ′ +DD′)
−1 CΣA′

⇔ Σ = AΣA′ + BB′ −AΣC ′ (CΣC ′ +DD′)
−1 CΣA′

−AΣC ′
(
Ik − (CΣC ′ +DD′)

−1 CΣC ′
)
(DD′)

−1 DB′

−BD′
(
Ik − (DD′)

−1
(
Ik − CΣC ′ (CΣC ′ +DD′)

−1
)
CΣC ′

)
(DD′)

−1 DB′

−BD′ (DD′)
−1
(
Ik − CΣC ′ (CΣC ′ +DD′)

−1
)
CΣA′

⇔ Σ = AΣA′ + BB′ −AΣC ′ (CΣC ′ +DD′)
−1 CΣA′

−AΣC ′ (CΣC ′ +DD′)
−1 DB′

−BD′ (CΣC ′ +DD′)
−1 DB′
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−BD′ (CΣC ′ +DD′)
−1 CΣA′

⇔ Σ = AΣA′ + BB′ − (AΣC ′ + BD′) (CΣC ′ +DD′)
−1

(AΣC ′ + BD′)
′
. (A.30)

Note that formulating the matrix Riccati equation as in equation (5.7) implies that the asso-

ciated Kalman gain is given by

K̃ = ÃΣC ′ (CΣC ′ +DD′)−1
,

where Σ is the solution to the matrix Riccati equation. Hence, it is straightforward to show

that the matrix
(
Ã − K̃C

)
is equal to the matrix (A−KC) by using the expressions of Ã and

K̃:

Ã − K̃C =
(
A− BD′ (DD′)

−1 C
)(

In − ΣC ′ (CΣC ′ +DD′)−1 C
)

= A−AΣC ′ (CΣC ′ +DD′)−1 C
−BD′ (DD′)

−1
(
Ik − CΣC ′ (CΣC ′ +DD′)−1

)
C

= A−AΣC ′ (CΣC ′ +DD′)−1 C
−BD′ (DD′)

−1 (CΣC ′ +DD′)−1 C
= A−

(
AΣC ′ + BD′) (CΣC ′ +DD′)−1 C .

Recalling that K =
(
AΣC ′ + BD′) (CΣC ′ +DD′)−1

(see equation (2.13)) completes the com-

putations.

Derivation of the LIE model representation in the multivariate example of

Subsection (5.3.3)

The observability matrix is

O =
(

C ′ A′C ′ (A′)2 C ′
)′

=




0 0 λs

φkk φks,1λs φksλs

0 λs 0

φ2
kk (φkkφks,1 + φks)λs φkkφksλs

0 0 0

φ3
kk φkkλs (φkkφks,1 + φks) φ2

kkφksλs




,
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and it has full column rank of n = 3. The reachability matrix is

R =
(

B AB A2B
)

=




φks ωφks,1λs φkkφks φks,1λs (1 + ωφkk) φ2
kkφks (φkkφks,1 (1 + ωφkk) + φks)λs

0 1 0 0 0 0

0 0 0 1 0 0


 ,

and it has full row rank of n = 3.

My calculations are based on Pappas et al. (1980). I present only the necessary steps to

compute the solution to the algebraic Riccati equation. For further details, the reader is

directed to the article by Pappas et al. (1980). The basic idea is to compute the generalized

eigenvectors (and generalized principal vectors) of the generalized eigenvalue problem

Mz = ΛNz , (A.31)

with

M =


 Ã 03×3

−Q̃ I3


 and N =


 I3 C ′ (DD′)−1 C

03×3 Ã


 ,

where the system matrices Ã, C, D and Q̃ are defined in the main text. The solution of the

Riccati equation can be derived from the stable generalized eigenspace of the problem.

Note that a generalized principal vector is characterized as follows. Suppose Λ is a general-

ized eigenvalue with multiplicity r > 1. A chain of generalized principal vectors is a set of

vectors that satisfy

Mz1 = ΛNz1 ,

(M − ΛN) zi = Λzi−1 for i = 2, 3, ..., j with j ≤ r .

The vector zi is called a generalized principal vector of grade i.

In a first step, I solve the generalized characteristic equation to find the generalized eigen-

values. Because

det [M − ΛN ] = −Λ2 (1 + ωΛ) (Λ + ω)

ω2
,

the generalized eigenvalues are Λ1 = Λ2 = 0, Λ3 = −ω and Λ4 = −ω−1. The generalized

eigenvector corresponding to the zero eigenvalue is easy to find as u1 = ( 1 0 0 0 0 0 )′.

Due to the multiplicity of two, I calculate one generalized principal vector u2, satisfying

(M − Λ2N) u2 = Nu1 ,
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as u2 =
(

0 −ωφks,1λs
φkk

−φks,1λs
φkk

0 0 0
)′
. The last generalized eigenvector conforms to

(M − Λ3N) u3 = 06×1 ,

and it is computed as u3 =
(

− φkk(1+λ2s)
λ2sωφks,1(1−ω2)

1+λ2sω
2

ω3−ω −λ2s 0 − 1
ω

1
)′

.

Finally, define the stable generalized eigenspace and partition it into two 3 × 3 blocks, U1

and U2, as

U =
(
u1 u2 u3

)

≡


 U1

U2


 .

Hence, I compute the solution to the algebraic Riccati equation as

Σ = U2U
−1
1

=

(
1− ω2

1 + λ2sω
4

)



0 0 0

0 1 −ω
0 −ω ω2


 .

Computation of the wedge of nonfundamentalness for q ≥ 2

For this purpose, I have to resort to the explanations of Chapters 6 and 7. Starting with the

true model solution as in the main text

yt = M (L)wt , (A.32)

which is supposed to exhibit a nonfundamental representation, I show how to derive the

Wold representation that would be estimated by the econometrician. This procedure uses

Blaschke matrices (see Chapter 6 for a detailed definition and explanation). Choosing an

appropriate Blaschke matrix B (L), the Wold representation can be calculated as

yt = T (L) at , (A.33)

where T (L) = M (L)B (L)−1B (0)M (0)−1 and at = M (0)B (0)−1 εt with εt = B (L)wt.

B (L) is defined such that the lag polynomial associated with M (L)B (L)−1 has all roots

outside of the unit circle. Note that, due to the characteristics of B (L) and that wt has unit

standard deviation, E (εtε
′
t) = Ik. Hence, the variance-covariance matrix of the forecast er-

rors in yt is E (ata
′
t) = M (0)B (0)−1 (M (0)B (0)−1)′. In the main text, I define their direct

counterpart in the FIA model vt, i.e., related to the vector MA representation above, I ob-
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tain vt = M (0)wt. Thus, I can apply the rules of linear algebra to compute the wedge of

nonfundamentalness as follows:

ϕ = log
(
det [M (0)] det

[
B (0)−1] det

[(
B (0)−1)′] det

[
M (0)′

])

−log
(
det [M (0)] det

[
M (0)′

])

= log
(
det [M (0)] det

[
B (0)−1] det

[
B (0)−1] det [M (0)]

)

−log (det [M (0)] det [M (0)])

= 2log (det [M (0)]) + 2log
(
det
[
B (0)−1])− 2log (det [M (0)])

= 2log
(
det
[
B (0)−1]) .

For my workhorse model, the definition of B (L)−1 is given in Chapter 7 (see equation (7.3))

by

B (L)−1 = G ·R1 (L)
−1R2 (L)

−1 . . . Rq−1 (L)
−1

with

Ri (L)
−1 =


 1 0

0 1−ωiL
L−ωi


 ,

G =
1√

1 + (λθωq)
2


 1 −λθωq

λθω
q 1


 ,

where ωi denotes the complex conjugate of ωi. I can use this Blaschke matrix for the model

in Chapter 5 (but replace λθ by λs).

If q is even, q − 2 roots appear as complex conjugate pairs, and the (q − 1) th root is simply

given by −ω. Then

det
[
B (0)−1] = det

[
G · R1 (0)

−1R2 (0)
−1 ...Rq−1 (0)

−1]

= det [G]︸ ︷︷ ︸
= 1

det
[
R1 (0)

−1R2 (0)
−1 ...Rq−2 (0)

−1]
︸ ︷︷ ︸

= 1
ωq−2

det
[
Rq−1 (0)

−1]
︸ ︷︷ ︸

= 1
ω

=
1

ωq−1
.

If q is uneven, there are q − 1 roots that appear as complex conjugate pairs and

det
[
B (0)−1] = det

[
G ·R1 (0)

−1R2 (0)
−1 ...Rq−1 (0)

−1]
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= det [G]︸ ︷︷ ︸
= 1

det
[
R1 (0)

−1R2 (0)
−1 ...Rq−1 (0)

−1]
︸ ︷︷ ︸

= 1
ωq−1

=
1

ωq−1
.

In both cases, ϕ = −2 (q − 1) log (ω) . Notice that this result is independent of the relative

weight of the news shock.
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Appendix to Chapter 6

Additional remarks to Subsection 6.5.2

Lippi and Reichlin (1994) propose an alternative way to calculate an appropriate rotation

matrix that is part of the Blaschke matrix in order to flip the root of a two-dimensional MA

lag polynomial det [T (L)]. Let tij (z0) denotes the [i, j]-element of T (z) evaluated at z0. The

rotation matrix can be computed as

G = h−1


 t12 (z0) t11 (z0)

−t11 (z0) t12 (z0)


 ,

where h =
√

|t11 (z0)|2 + |t12 (z0)|2, and upper bars denote the complex conjugate elements.

However, G is written such that the first column of T (z)G is determined. If I want to deter-

mine the second column, I have to change the columns of G.

Because the second column is associated with the news shock in my Lucas asset tree exam-

ple, I apply the formula above (whereby changing the columns) to determine the rotation

matrix when transforming the nonfundamental representation into the fundamental repre-

sentation. The corresponding Blaschke matrix is then given by (the inverse of)

B1 (L) =


 1 0

0 L+β
1+βL


G−1

1

with G1 =




1√
1+β4

β2√
1+β4

β2√
1+β4

− 1√
1+β4


.

The Blaschke matrix that I use for flipping the root back to −β is

B2 (L) = G2 ·


 1 0

0 L+β
1+βL




with G2 =
√
2
2


 1 1

1 −1


.
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Appendix to Chapter 7

Additional figures w.r.t. Section 7.4
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Figure A.1: EXERCISES 7.3 & 7.4 - MAWE RESULTS (SELECTED VAR LAG LENGTHS, STOCK

PRICES)
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Exercise 7.4 (t = 500)
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Note: The figure depicts the computed MAWEs associated with the estimated impulse responses resulting from different estimation
approaches. These approaches are based on the SVAR model depending on selected lag lengths (in black), SVAR using the lag length
suggested by the AIC (in red) and CCA (in blue). Solid lines refer to the standard application of these techniques and dotted lines to the
corresponding root flipping procedure. MAWE values are calculated as in equation (5.8) multiplied by 100. MAWEs associated with
the impulse responses to wθ

0,t are shown in the left column and MAWEs w.r.t. impulse responses to wθ
8,t in the right column.
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Figure A.2: EXERCISES 7.5 & 7.6 - MAWE RESULTS (SELECTED VAR LAG LENGTHS, OUT-
PUT)
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Exercise 7.6 (t = 500)
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Note: The figure depicts the computed MAWEs associated with the estimated impulse responses resulting from different estimation
approaches. These approaches are based on the SVAR model depending on selected lag lengths (in black), SVAR using the lag length
suggested by the AIC (in red) and CCA (in blue). Solid lines refer to the standard application of these techniques and dotted lines to the
corresponding root flipping procedure. MAWE values are calculated as in equation (5.8) multiplied by 100. MAWEs associated with
the impulse responses to wθ

0,t are shown in the left column and MAWEs w.r.t. impulse responses to wθ
8,t in the right column.
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Figure A.3: EXERCISES 7.7 & 7.8 - MAWE RESULTS (SELECTED VAR LAG LENGTHS, IN-
VESTMENT)
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Exercise 7.8 (t = 500)
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Note: The figure depicts the computed MAWEs associated with the estimated impulse responses resulting from different estimation
approaches. These approaches are based on the SVAR model depending on selected lag lengths (in black), SVAR using the lag length
suggested by the AIC (in red) and CCA (in blue). Solid lines refer to the standard application of these techniques and dotted lines to the
corresponding root flipping procedure. MAWE values are calculated as in equation (5.8) multiplied by 100. MAWEs associated with
the impulse responses to wθ

0,t are shown in the left column and MAWEs w.r.t. impulse responses to wθ
8,t in the right column.
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The workhorse model with tax news shocks

To illustrate the implications of tax news in the workhorse model, I use the standard RBC

model as specified by Chari et al. (2008), which is an extended version of the workhorse

model in Chapter 2. To incorporate tax shocks into the model, the workhorse model is aug-

mented by a government sector. Public spending in terms of lump-sum transfers to the

households is financed by a tax on labor. The exogenous labor tax rate follows a conven-

tional AR(1) process with a white noise shock. As opposed to Chari et al. (2008), I model

this shock not as a surprise shock but as a news shock that is anticipated by the agents q

periods before it materializes. I refer the reader to the technical appendix for Chari et al.

(2008) for details of the model and its solution.2

I derive the corresponding state space representation of the model by solving the second

order difference equation of the capital stock analogously to my explanations in Chapter 5.

The resulting FIA model representation is very similar to the one given in equations (5.29)

and (5.30):




k̃t+1

τ̃t

wτq,t

wτq,t−1

...

wτq,t−q+2

wτq,t−q+1




=




φkk ρτφkτ ωq−2φkτ,1 . . . ωφkτ,1 φkτ,1 φkτ

0 ρτ 0 . . . 0 0 1

0 0 0 . . . 0 0 0

0 0 1
στ

. . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1
στ

0 0

0 0 0 . . . 0 1
στ

0




Σ1

︸ ︷︷ ︸
= A




k̃t

τ̃t−1

wτq,t−1

wτq,t−2

...

wτq,t−q+1

wτq,t−q




+




φkθ ωq−1φkτ,1

0 0

0 1
στ

0 0
...

...

0 0

0 0




Σw

︸ ︷︷ ︸
= B


 wθ0,t

wτq,t


 (A.34)

2The technical appendix can be found on Ellen McGrattan’s website:
http://www.econ.umn.edu/~erm/research.php.
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 (ỹt − ñt)

ñt


 =


 φynk ρτφynτ ωq−2φynτ,1 . . . ωφynτ,1 φynτ,1 φynτ

φnk ρτφnτ ωq−2φnτ,1 . . . ωφnτ,1 φnτ,1 φnτ


Σ1

︸ ︷︷ ︸
= C




k̃t

τ̃t−1

wτq,t−1

wτq,t−2

...

wτq,t−q+1

wτq,t−q




+


 φynθ ωq−1φynτ,1

φnθ ωq−1φnτ,1


Σw

︸ ︷︷ ︸
= D


 wθ0,t

wτq,t


 , (A.35)

where

Σ1 =


 I2 02×q

0q×2 στ · Iq


 and Σw =


 σθ 0

0 στ


 .

The notation is equivalent to the notation used in Chapter 5. τ denotes the tax rate and its as-

sociated parameters. The vector of observables comprises (the log deviations of detrended)

labor productivity, i.e., output Yt divided by labor Nt, and labor itself. The parameters la-

beled as φ and the anticipation rate ω are functions of the deep model parameters. I calibrate

the deep model parameters as in the original model.3

The resulting impulse responses for the FIA and the LIE model are plotted in Figure A.4,

where q is set equal to four. The right column of A.4 reveals that there is a remarkable

difference between the responses to the tax news shock in the FIA model and the responses

to the tax news shock in the LIE model over the anticipation horizon.

3See the Matlab file “pu.m” in the additional files for Chari et al. (2008) on Ellen McGrattan’s website
(http://www.econ.umn.edu/~erm/research.php) for the original calibration.
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Figure A.4: IMPULSE RESPONSES IN RBC MODEL WITH TAX NEWS SHOCK (q = 4)
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Note: The figure depicts the FIA model impulse responses (in green) and the LIE model impulse responses (in blue). Impulse responses
to wθ

0,t are shown in the left column and impulse responses to wτ
4,t in the right column.
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