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Abstra
t

The main obje
tive of seismi
 data pro
essing is to obtain information about the subsurfa
e

stru
ture and properties from the re
orded data. Almost all imaging methods assume that

the re
orded seismograms 
ontain only primary re�e
tions. Consequently, identi�
ation

and suppression of multiples is of high importan
e in data pro
essing. In this thesis, I use

hyperboli
 formulas to estimate travel times of the multiples in the presta
k data. For this

estimation, zero-o�set traveltime of multiples are needed whi
h 
an be obtained from the

sta
ked se
tion. The estimated traveltimes are used to adaptively subtra
t the multiples

from the original data.

In this work, a new zero-o�set pi
king approa
h is introdu
ed whi
h traveltime of

the �rst layer multiples are pi
ked dire
tly from the sta
ked se
tion. This method was

applied to both syntheti
 and �led data. Moreover, a 3D dataset was examined to verify

a new automati
 pi
king approa
h. Con�i
ting dip situations are very 
hallenging for

automati
 pi
king of an event. In order to obtain a sta
ked se
tion with less 
on�i
ting

dip situations, the appli
ation of this method in Common S
atter Point (CSP) domain

was studied. To address other surfa
e related multiples as well as �rst layer multiples, I

proposed to use additional information like 
oheren
y or velo
ity as a guide for zero-o�set

traveltime pi
king.

The proposed approa
hes are 
onsidered interpretational. All the results are quite

promising. Moreover, it is fast and robust and performs stably for dipping events.

Furthermore, it is �eld appli
able and does not require a high 
omputational e�ort. Only

surfa
e related multiple attenuation was investigated but it 
ould be applied to internal

multiples as well. The method 
an be applied within any kind of sta
king operator in
luding

Common Mid Point (CMP) or Common Re�e
tion Surfa
e (CRS) staking operator.
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Zusammenfassung

Das Hauptziel der seismis
hen Datenverarbeitung ist es, aus den aufgezei
hneten Daten

Informationen über die Struktur und die Eigens
haften des Untergrunds zu erhalten.

Fast alle digitalen Bildverarbeitungsverfahren gehen davon aus, dass die aufgezei
hneten

Seismogramme nur Primärre�exionen enthalten. Folgli
h ist bei der Datenverarbeitung die

Identi�kation und Unterdrü
kung von Multiplen von groÿer Bedeutung.

In dieser Arbeit werden die Laufzeiten von Multiplen in presta
k Daten unter

Verwendung hyperbolis
her Formeln bere
hnet. Für diese Bere
hnung wird eine zero-

o�set Laufzeit von Multiplen benötigt, die aus der gestapelten Sektion erhalten werden

können. Die bere
hneten Laufzeiten werden verwendet, um die Multiplen adaptiv von

den ursprüngli
hen Daten zu subtrahieren. In dieser Arbeit wurde ein neues zero-

o�set Pi
king untersu
ht, bei dem die Laufzeit der Multiplen in der ersten S
hi
ht

direkt aus der gestapelten Sektion sowohl für synthetis
he Daten als au
h für Felddaten

ausgewählt wurde. Darüber hinaus wurde ein 3D-Datensatz untersu
ht, um eine neue

automatis
he Bestimmung der Ersteinsätze zu veri�zieren. Con�i
ting dip Situationen

sind sehr s
hwierig für die automatis
he Ersteinsatzbestimmung eines Ereignisses. Um eine

Stapelsektion mit weniger 
on�i
ting dip Situationen zu erhalten, wurde die Anwendung

dieses Verfahrens in der Common S
atter Point (CSP) Domäne untersu
ht. Um andere

ober�ä
henbezogene Multiplen sowie die Multiplen der ersten S
hi
ht zu adressieren, wird

die Verwendung eines Attributs wie zum Beispiel Kohärenz oder Ges
hwindigkeit als

Orientierungshilfe für das zero-o�set Pi
king vorges
hlagen.

Der vorges
hlagene Ansatz wird als interpretatoris
her Ansatz betra
htet. Die

Ergebnisse sind alle vielverspre
hend. Darüber hinaus ist diese Methode s
hnell und

robust und führt zu Stabilität für Dippingfälle und groÿe O�sets. Auÿerdem ist sie im Feld

anwendbar und erfordert keinen hohen Re
henaufwand. Sie wurde auf ober�ä
henbezogene

Multiplen angewandt, könnte aber au
h für interne Multiplen verwendet werden. Das

Verfahren kann mit jeder Art von Stapeloperator, z.B. Common Mid Point (CMP) oder

Common Re�e
tion Surfa
e (CRS) verwendet werden.
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Introdu
tion

Seismi
 se
tions are a�e
ted by noise whi
h 
an obs
ure re�e
tions and di�ra
tions. This

is why it should be identi�ed and suppressed prior to interpretation. One sour
e of noise

are multiple re�e
tions. Their presen
e in the data 
an be misinterpreted as, or interfere

with, primaries. Multiple attenuation, whi
h has been a longstanding topi
 in seismi
, is

still partially solved (Landa et al., 1999). Many methods are available but every method

uses di�erent assumptions. These methods are appli
able only when their assumptions

and pre
onditions are satis�ed. But there are many 
ases when these assumptions are not

valid or where the pre
onditions are di�
ult or impossible to a
hieve. Therefore, multiple

attenuation is still a 
hallenging step in a seismi
 data pro
essing work�ow.

The method whi
h is presented in this thesis is based on a previously published Common

Re�e
tion Surfa
e (CRS) work�ow (Dümmong and Gajewski, 2008). Their method is

an entirely data driven approa
h and in
ludes two steps of predi
tion: �rst, zero-o�set

multiples in a CRS sta
ked se
tion are predi
ted, and in the se
ond step, the obtained CRS

attributes are used for pre-sta
k multiple predi
tion. They proposed multiple predi
tion in

the CRS sta
ked se
tion using a series of 
onvolutions. This 
on
ept of multiple predi
tion

by 
onvolution of sta
ked tra
es i.e. poststa
k Surfa
e Related Multiple Elimination

(SRME) originates from the work of (Vers
huur et al., 1992) and (Kelamis and Vers
huur,

1996). They supposed that the sta
ked data result from propagation of a plane wave in a

homogeneous medium. The work�ow is restri
ted to 1D media; therefore, errors for dipping

events are inevitable and it is ne
essary to 
orre
t the predi
ted data. This 
orre
tion is

not easy to determine. To resolve these issues, I proposed a method whi
h in
ludes pi
king

the multiples dire
tly in the sta
ked se
tion or using an attribute as a guide. The zero-

o�set traveltime of multiples, the sta
ked se
tion and the velo
ity se
tion 
ontribute to

predi
ting the presta
k traveltime of multiples using hyperboli
 formulas. This approa
h


an be applied to surfa
e related multiples as well as internal multiples. The disadvantage

of the proposed work�ow is that it relies on interpretation.

Hyperboli
 sta
king operators are a�e
ted by spread length bias. To resolve this issue, I

applied the method separately to di�erent ranges of o�set.

Chapter 1 gives a de�nition of multiples and an overview of 
ommon multiple attenuation

methods. Then, the CRS work�ow of (Dümmong and Gajewski, 2008) is reviewed.

Afterwards, an adaptive �ltering method whi
h is a very powerful tool in seismi
 pro
essing



2 INTRODUCTION

in
luding multiple attenuation is introdu
ed. Besides from applying the method in CMP

domain, I applied it in a Common s
atter Point domain to en
ounter less 
on�i
ting dip

situation in 
omparison with CMP domain. CSP data mapping is also introdu
ed in this


hapter.

In Chapter 2, I introdu
e a presta
k multiple attenuation where multiples are pi
ked

dire
tly in the sta
ked se
tion. In this 
hapter, a 2D syntheti
 and a 2D �eld data example

of appli
ation of this method, where the multiples are pi
ked manually, are shown. A 3D

syntheti
 example is provided as well, whi
h veri�es the method within a newly introdu
ed

automati
 pi
king strategy. The last example in this 
hapter is an appli
ation of the

method in the partially migrated domain. Sin
e this domain 
ontains less di�ra
tions and


on�i
ting dip situations, pi
king multiples is less 
hallenging.

In Chapter 3, a method is proposed to address other surfa
e related multiples as well

as �rst layer multiples. In the �rst se
tion 
oheren
y is used as a guide to pi
k the zero-

o�set traveltime of multiples. Then a syntheti
 and a �eld data example are provided. In

the next step, a velo
ity se
tion is used to provide guidan
e on pi
king multiples. Again a

syntheti
 and a �eld data example of the appli
ation of the method within a CRS work�ow

are shown.

In this thesis, di�erent examples of di�erent approa
hes of the proposed method are

investigated. Chapter 4, I 
ompare these approa
hes and I give the 
on
lusions and

outlook.

In Appendix A, I review two of the most 
ommon methods for multiple attenuation,

f-k �ltering and Radon transform. Sin
e these methods are based on Normal Move Out

(NMO), prior to review these methods �rst I de�ne the NMO 
on
ept. In Appendix B

and in Appendix C, I explain the 
on
epts of 
onvolution and 
orrelation whi
h is very

fundamental in adaptive �ltering. In Appendix D, tables 
ontaining parameters whi
h I

used in this thesis to pro
ess the data are provided.



Chapter 1

Theory

In seismi
 re�e
tion measurements a sour
e is set o� near or at the surfa
e. Sound waves

propagate in all dire
tions from the sour
e, this energy is then re
orded by surfa
e or

borehole re
eivers. Seismi
 imaging methods fo
us on 
reating an image of the re�e
tion

properties of the subsurfa
e.

Most of these methods assume that energy has been re�e
ted only on
e as indi
ated by the

yellow lines in the Figure 1.1 but sometimes re�e
tion has more than one boun
e whi
h are

depi
ted with the blue lines in Figure 1.1. These re�e
tions are 
alled multiples and 
ause

additional re�e
tions of events whi
h are already present in the data. Although multiples


ontain information, that 
an be used, they are usually 
onsidered as noise and need to

be removed in order to gain an untainted image of the subsurfa
e. This pro
ess is often

referred to as multiple attenuation, multiple suppression or demultiple.

Receiver

D
e
p
th

Distance

Interface

Figure 1.1: Yellow lines show primary re�e
tions, that have only one upward re�e
tion.

Multiples, whi
h have more than one downward re�e
tion, are depi
ted with blue lines

(modi�ed after Vers
huur, 2006).
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1.1 Categorizing of multiples

There are di�erent approa
hes to 
lassify multiples. If we 
ategorize the multiples a

ording

to the shallowest interfa
e where the downward re�e
tion o

urs then we have two main


ategories:

1. Surfa
e related multiples;

2. Internal multiples;

Receiver

D
e
p
th

Distance

Interface

Figure 1.2: The multiple on the left side has one downward re�e
tion below the surfa
e

so it is 
alled an internal multiple. The multiple path on the right side has two downward

re�e
tions but the shallowest re�e
tor, where the downward re�e
tion o

urs, is the free

surfa
e so that it is 
alled a surfa
e related multiple (modi�ed after Vers
huur, 2006).

In Figure 1.2 there are two multiples, the left side has one downward re�e
tion below the

surfa
e so it is 
alled internal multiple. The multiple on the right side has two downward

re�e
tions but the shallowest re�e
tor, where the downward boun
e o

urs, is the free

surfa
e so that it is 
alled surfa
e related multiple. In other words, surfa
e related multiples

disappear if the free surfa
e was repla
ed by a transparent surfa
e. Sin
e surfa
e related

multiples are mostly issue in marine data, they are divided into sub-
ategories:

1. First layer multiples or water layer multiples: the energy of su
h multiples propagate

only in water. In other words, they never travel below the water bottom.

Figure 1.3(a) shows an example of �rst order and se
ond order water layer multiples.

2. First layer reverberation/ peg-legs: The energy of this multiple type propagates

below the water bottom but there is only one re�e
tion. Figure 1.3(b) illustrates an

example of su
h multiples. Reverberations 
an o

ur at both the sour
e or re
eiver

side.

3. Other surfa
e related multiples: These multiples, whi
h have more than one re�e
tion

below the water bottom, are important in 
ase of a strong re�e
tor like salt layering

below the water bottom. Figure 1.3(
) shows two examples of su
h multiples.
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(
)

Figure 1.3: Classi�
ation of surfa
e related multiples. (a) Multiples that travel only within

the �rst layer. (b) Multiples with one re�e
tion below the water bottom. (
) Multiples

with more than one re�e
tion below the water bottom (modi�ed after Vers
huur, 2006).

Furthermore, multiples 
an be 
ategorized based on their period: there are long period

and short period multiples. Long period multiples appear in the seismi
 data as separate

events and behave more deterministi
ally than short period multiple, Figure 1.4(a) is an

example of this type of multiple. On the 
ontrary, short period multiples do not appear

separately from primaries that generate them. They o

ur due to the presen
e of thin

layers and usually overlay the primaries, resulting in one e�e
tive event in the image

leading to falsi�ed defe
ted wavelet, whi
h is di�erent from the sour
e wavelet (O`Doherty

and Anstey, 1971). As illustrated in Figure 1.4(b) these multiples are related to thin

layers. There is no 
lear distin
tion between long period and short period multiples in

the seismi
 image but they 
an be distinguished by the length of the sour
e wavelet.
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Figure 1.4: Classi�
ation of multiples. (a) Long period multiples. (b) Short period

multiples whi
h are related to thin layers (modi�ed after Vers
huur, 2006).

If the di�eren
e between arrival times of a multiple and the related primary is shorter

than the period of the sour
e wavelet then the multiple is 
alled short period multiple

otherwise we 
onsider the multiple as a long period multiple. In this thesis, only long period

multiples will be investigated. The e�e
t of short period multiples 
an usually be removed

with the help of sour
e signature de
onvolution te
hniques like spiking de
onvolution or

minimum phase de
onvolution (Leinba
h, 1995). Moreover, in thin layers short period

multiples demonstrate another e�e
t known as e�e
tive absorption. This in�uen
es the

sour
e signature by suppression and dispersion impa
t, whi
h 
an be 
orre
ted by inverse-

Q �ltering (Bi
kel and Natarajan, 1985).

1.2 Chara
teristi
s of multiples in marine data

It is 
riti
al to re
ognize the e�e
t that multiples 
an have on a sta
ked se
tion. The

following 
hara
teristi
s of multiples help us to distinguish multiples from primaries

(Vers
huur, 2006):

� Periodi
 repetition: if some re�e
tions are repli
ated in a spe
i�
 time interval and

have amplitudes de
reasing with time, they are likely to be multiples. Figure 1.5
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shows a sta
k se
tion of data from a syntheti
 velo
ity model in
luding two horizontal

layers, the upper event is primary and the other events are multiples related to this

primary.

� In
reasing dips: if primaries are dipping, the dip of multiples in every boun
e

in
reases by the same amount as the dip of primaries. An example of a syntheti


model with a dipping re�e
tor is shown in the Figure 1.6, where in the 
orresponding

sta
k se
tion the dip of multiples in
reases in every boun
e.

� Con�i
ting dips: multiples may 
on�i
t with primary re�e
tions from deeper

interfa
es. This is illustrated in Figure 1.7, whi
h is a sta
k se
tion of a syntheti


model with two dipping re�e
tors. We 
an see that the �rst order multiple 
on�i
ts

with the primary from the deeper re�e
tor. However, any 
on�i
ting dip situation is

not ne
essarily a sign for presen
e of multiples.

� Fo
using and defo
using events: small �u
tuations in primaries will be enhan
ed in

high order multiples and will 
ause fo
using and defo
using events. The syntheti


model whi
h is used here in
ludes only one re�e
tor with small geometry variations.

Figure 1.8 shows the 
orresponding sta
k se
tion.

0
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6

ti
m

e
 (

s
)

50 100 150
CMP No.

Figure 1.5: The sta
ked se
tion of the data generated from a two horizontally layered

medium. The upper event is a primary and multiples are repeated with a 
ertain time

interval.
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Figure 1.6: The sta
ked se
tion of the data obtained from a syntheti
 model with one

dipping re�e
tor. Dip of multiples is in
reasing.Only three multiples are modeled here.
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Figure 1.7: The sta
ked se
tion of the data obtained from a syntheti
 model with two

dipping re�e
tors: multiples 
on�i
t with the primary from the deeper re�e
tor. Only

three multiple related to the primary from the upper re�e
tor are modeled.

0

2

4

6

ti
m

e
 (

s
)

200 400 600
CMP No.

Figure 1.8: The sta
ked se
tion of the data obtained from a syntheti
 model 
onsisting of

one dipping re�e
tor with small geometry variations. In higher order multiples fo
using

and defo
using events are generated.
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1.3 Conventional multiple attenuation methods

Standard sta
king pro
ess, using a proper velo
ity pro�le, and presta
k de
onvolution

suppress a large amount of multiple energy in the sta
ked se
tion (Mayne, 1962). However,

some multiples leak into the sta
ked se
tion and appli
ation of some multiple attenuation

methods is inevitable. The 
ommonly used multiple attenuation approa
hes are:

� Based on di�erent spatial behavior between multiples and primaries:

Multiples travel along di�erent paths in the subsurfa
e, therefore they have 
ome

through di�erent properties like velo
ity anomaly and depi
t di�erent re�e
ting

stru
tures in 
omparison to primaries. So with �ltering te
hniques they 
an be

separated from primaries. This �ltering 
an be applied in poststa
k domain or in

presta
k domain. Two of the most 
ommon methods related to this 
ategory are

f-k �ltering (Ryu, 1982) and Radon transform (Diebold and Sto�a, 1981) whi
h are

introdu
ed in the Appendix A.

� Based on the fa
t that multiples have periodi
 behavior and predi
tabil-

ity: Essentially there is a relationship between multiples and primaries. In other

words, multiples are events that appear in a repetitive form. This fa
t is exploited

in some multiple attenuation methods. Generally, these methods 
onsist of two

main steps: �rst, multiples are predi
ted exploiting the fa
t that primaries and

multiples have an inherent relationship. In the next step, they are subtra
ted from

the original data. Only in an ideal 
ase of zero-o�set data and horizontally layered

media multiples appear in a periodi
 pattern. Even in horizontally layered media,

in far o�sets, periodi
ity is not preserved, that is why some assumptions should

be made. Usually, these methods are used in presta
k domain. However, it is

possible to use them in poststa
k domain or after poststa
k migration but some

further assumptions like subsurfa
e behaves as a 1D medium, have to be made. One

of the most 
ommon approa
hes in this 
ategory, whi
h is also one of the oldest way

of multiple attenuation, is predi
tive de
onvolution (Robinson, 1957, 1967). Sin
e

then a plenty of methods has been developed in
luding Common Re�e
tion Surfa
e

(CRS) work�ow (Dümmong and Gajewski, 2008), whi
h I will review later in Se
tion

1.5, after introdu
ing the CRS sta
king operator.

1.4 Common Re�e
tion Surfa
e (CRS) sta
king

Sin
e the main tool for work�ow of (Dümmong and Gajewski, 2008) is CRS operator,

before reviewing this method, CRS operator is introdu
ed.

The CRS method is a powerful tool. Contrary to the CMP method where sta
king is

performed along a line, it sums up the data along a surfa
e. In fa
t, the CRS method is

a generalization of the CMP method. An example of a CRS sta
king surfa
e is shown in

Figure 1.9. The CRS sta
k 
onsiders the subsurfa
e as a 
urved re�e
tor. As a result,
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CMP gather

Reflector

x0

t0

CRS operator

Midpoint

Offset

Depth

Time

Figure 1.9: Example of a 
ommon re�e
tion surfa
e (red) (modi�ed after Müller, 1999).

Here, t0 is the referen
e traveltime at the 
entral midpoint x0.

the lo
al 
hara
terization of the subsurfa
e like: dips, anti
lines, syn
lines is in
luded.

There are di�erent ways for CRS traveltime 
omputation, su
h as hyperboli
 and paraboli


formulations. Both depend on the three CRS sta
king parameters. The hyperboli
 formula

is given by

t2(∆xm, h) = (t0 +
2 sinα

v0
∆xm)2 +

2t0 cos
2
α

v0
(
∆x2m
RN

+
h2

RNIP

),

where ∆xm = xm − x0 is the displa
ement from the 
entral midpoint x0 and h is the

half-o�set, t0 is the ZO traveltime and v0 is equal to the near-surfa
e velo
ity. The CRS

sta
king parameters are: α whi
h represents the angle of emergen
e of a ZO ray, RNIP

and RN are the Normal In
iden
e Point (NIP) wave and normal wave radii. The N-wave

or normal wave is emitted by an imaginary exploding re�e
tor segment around the NIP

whereas the NIP-wave is emitted by a �
titious point sour
e positioned at the re�e
tor,

i. e., point of the normal in
iden
e (Müller, 1999). Figure 1.10 illustrates the physi
al


on
ept of the kinemati
 wave�eld. In the 2D 
ase there are only three parameters for

CRS attributes but in the 3D 
ase the parameters in
rease to 8, sin
e RNIP and RN have

three dimensions in spa
e and α is des
ribed by two elements dip and azimuth. For more

information, see, e.g., Müller (1999); Mann (2002).

1.4.1 Implementation

There are di�erent approa
hes for estimation of the three CRS attributes. To start with,

there is pragmati
 approa
h (Mann, 2002), that was initially applied in CRS work�ow.
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RNIP

NIP

x0

NIP

a

RN

CRS

Figure 1.10: Physi
al meaning of the CRS parameters. α is the angle of emergen
e of a

zero-o�set ray and RNIP and RN are the Normal In
iden
e Point (NIP) wave and normal

wave radii (S
hwarz, 2011).

Another approa
h is simultaneous sear
h, whi
h is a 
hallenging task and has been

developed re
ently. Simultaneous sear
h may be more expensive in 
omparison with

pragmati
 approa
h but it provides more reliable attributes and yields a sta
k se
tion

with higher resolution (e.g., Walda and Gajewski, 2015a). An example of this approa
h

will be presented in Chapter 3.

Pragmati
 approa
h

In many 
ases, if the starting point is already available and the sear
h spa
e of possible

solutions is small, it is su�
ient to sear
h the nearest minimum/maximum. These

algorithms are often referred to as lo
al optimization methods. Pragmati
 approa
h, that

was initially applied in the CRS work�ow (Mann, 2002), is based on this strategy.

CMP sear
h

One of the solutions for the CRS equation with three parameters is to de
ompose it into

three separate equations. In Equation 1.1 if xm = 0, then

t2(h) = t20 +
2t0 cos

2
αh2

v0RNIP
. (1.1)

If:

v2stk =
2v0RNIP

t0 cos2 α
, (1.2)

we 
an obtain 
onventional CMP formula with a simple substitution. It shows that CMP

traveltimes to the se
ond order are not dependent on the 
urvature of re�e
tors (Hubral,

1983)

t2(h) = t20 +
4h2

v2stk
. (1.3)

Therefore, the �rst step of the parameter sear
h is standard velo
ity analysis.
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Zero o�set sear
h

The se
ond step in the pragmati
 sear
h strategy is done in zero o�set 
on�guration, i.e.,

for h = 0. In this 
ase, parameters are estimated in the post sta
k domain

t2(∆xm, h = 0) = (t0 +
2 sinα

v0
∆xm)2 +

2t0 cos
2
αx2m

v0RN

.

Now there are two unknown parameters, with the assumption of a plane wave (Hubral and

Krey, 1980) the equation 
an be simpli�ed to

t2(∆xm, h = 0) = t0 +
2 sinα

v0
∆x2m. (1.4)

In this equation, only the emergen
e angle is unknown whi
h is estimated in one parameter

optimization. Afterwards, RN 
an be determined from Equation 1.4. Then, RNIP 
an be


al
ulated from Equation 1.2.

CRS sta
k sear
h

Now, as the three initial values are available, the �nal values 
an be optimized. Nowadays,

di�erent optimization algorithm are available su
h as �exible polyhedron sear
h (Nelder

and Mead, 1965), whi
h was used by (Mann, 2002). Three �nal attributes are used in

Equation 1.1 to sta
k the data.

Global optimization sear
h

To obtain a better result, global optimization 
an be applied. In this 
ase number of

possible solution is higher than lo
al optimization, therefore, it is more 
omputationally

demanding. Sin
e 
omputing fa
ilities are improving steadily, global optimization methods

be
ome more popular. There are di�erent algorithms like di�erential evolution, whi
h has

been already applied to �eld data by (Barros et al., 2015), or geneti
 algorithm (Walda

and Gajewski, 2015b).

1.5 CRS work�ow for multiple attenuation

Be
ause the CRS work�ow of (Dümmong, 2010) was our motivation to start working in

multiple attenuation �eld, we will introdu
e their method here. It in
ludes two steps of

predi
tion: �rst, zero-o�set multiples in a CRS sta
ked se
tion are predi
ted by series

of 
onvolutions, and in the se
ond step, the obtained result is used for presta
k multiple

predi
tion.



CHAPTER 1. THEORY 13

1.5.1 Multiple predi
tion

The �rst step of CRS work�ow after sta
king is to predi
t the zero o�set traveltime of a

multiple. The raypath of the multiple in Figure 1.11 
an be seen as two individual primary

paths that are 
onne
ted at the surfa
e. Therefore, it is possible to 
onstru
t multiples

by 
onne
ting the primaries. Based on this, (Dümmong and Gajewski, 2008) introdu
ed

a predi
tion method by a series of 
onvolutions whi
h is limited to 1D media. The idea

originates from the work of (Vers
huur et al., 1992) and (Kelamis and Vers
huur, 1996). In

this 
ase, it is assumed that the earth is horizontally layered and the waves are horizontal

planes. The original idea of predi
ting multiple in 1D media is reviewed in the following

se
tion.

Receiver

D
e
p
th

Distance

Interface

Figure 1.11: The �rst order surfa
e related multiple 
an be seen as two individual primary

paths that are 
onne
ted at the surfa
e.

Predi
tion in 1D Media

For simpli
ity, we suppose the impulse response of the earth for a horizontal plane wave

with in�nite frequen
y is x(t), whi
h in
ludes primaries and internal multiples and di�erent

orders of surfa
e related multiples (Vers
huur, 2006), then

x(t) = x0(t) +m1(t) +m2(t) +m3(t) + · · · , (1.5)

where x0(t) in
ludes primary response and internal multiple and m1(t), m2(t), and m3(t)
are �rst, se
ond, and third order of multiples. Auto
onvolution of x0(t) generates the �rst
order multiple

m1(t) = −x0(t) ∗ x0(t), (1.6)

assuming that the sea surfa
e re�e
tion 
oe�
ient is −1. This multiple will arrive at the
surfa
e and will be the sour
e for the se
ond order multiple. Then we get

m2(t) = −x0(t) ∗m1(t) = x0(t) ∗ x0(t) ∗ x0(t). (1.7)
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Then Equation 1.5 
an be written as

x(t) = x0(t)− x0(t) ∗ x0(t) + x0(t) ∗ x0(t) ∗ x0(t) + · · · , (1.8)

or

x(t) = x0(t) ∗ [δ − x(t)] = x0(t)− x0(t) ∗ x(t), (1.9)

It indi
ates that all surfa
e related multiples 
an be produ
ed by 
onvolving the primary

response with the whole response. Sin
e in frequen
y domain 
onvolutions be
ome

multipli
ation, then Equation 1.8 
an be formulated as

X(f) = X0(f)−X2
0 (f) +X3

0 (f)−X4
0 (f) + · · · , (1.10)

then Equation 1.9 be
omes

X(f) = X0(f)−X0(f)X(f), (1.11)

or

X0(f) = X(f)[1 −X(f)]−1. (1.12)

This is the equation for 
al
ulating surfa
e related multiple free response from the total

response. The expansion of this equation is

X0(f) = X(f) +X2(f) +X3(f) +X4(f) + · · · . (1.13)

This equation in time domain look like (Vers
huur, 2006)

x0(t) = x(t) + x(t) ∗ x(t) + x(t) ∗ x(t) ∗ x(t) + · · · . (1.14)

This indi
ates that the multiple free response 
an be obtained by a series of 
onvolutions.

A simple example is provided in Figure 1.12a where there is a primary response and two

related multiples x(t). Figure 1.12b is the auto
onvolution of the total response x(t) ∗
x(t), Figure 1.12
 is the 
onvolution of the result in Figure 1.12b with the total response

x(t) ∗ x(t) ∗ x(t) and Figure 1.12d is the result of summation of a, b, and 
 whi
h gives us

the impulse response without multiples. In the following se
tion, to be more realisti
, the

sour
e signature is in
luded.

Predi
tion in 1D Media in
luding sour
e signature

In the example with a perfe
t impulse response, the amplitudes did not 
hange in the

generation step. With the 
onsideration of sour
e signature the pro
ess be
omes more


omplex. The response of the earth with s(t) being the sour
e signature 
an be written as

(Vers
huur, 2006)

p0(t) = x0(t) ∗ s(t), (1.15)
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Figure 1.12: (a) is a primary response and two multiples x(t), (b) is the auto
onvolution
of total response x(t) ∗ x(t), (
) is the 
onvolution of the result in (b) with total response

x(t) ∗ x(t) ∗ x(t) and (d) is the result of summation of (a), (b), and (
) whi
h gives us the

impulse response without multiple.

and the response of the earth in
luding multiples as

p(t) = x(t) ∗ s(t), (1.16)

then Equation 1.9 be
omes

p(t) = x0(t) ∗ [s(t)− p(t)] = p0(t)− x0(t) ∗ p(t). (1.17)
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With de�ning a new operator a(t) as

a(t) ∗ s(t) = −δ(t), (1.18)

we 
an rewrite Equation 1.17 in terms of the response without surfa
e related multiples

and the response with all multiples as

p(t) = p0(t) + p0(t) ∗ a(t) ∗ p(t), (1.19)

where the a(t) is a 
onvolution �lter. Equation 1.14 in
luding sour
e signature 
an be

formulated as

p0(t) = p(t)− a(t) ∗ p(t) ∗ p(t) + a(t) ∗ a(t) ∗ p(t) ∗ p(t) ∗ p(t)− · · · . (1.20)

This equation 
an also be des
ribed in the frequen
y domain (Vers
huur, 2006) as

P0(f) = P (f)−A(f)P 2(f) +A2(f)P 3(f)−A3(f)P 4(f) + · · · , (1.21)

where A(f) is
A(f) = −[S(f)]−1, (1.22)

and S(f) is de�ned as the Fourier transform of the sour
e signature s(t).

1.5.2 Corre
tion of the 1D Predi
tion

Sin
e predi
tion of multiples by a series of 
onvolutions is restri
ted to 1D media, the errors

for dipping events are inevitable and it is ne
essary to 
orre
t the predi
ted data a

ording

to the sta
ked se
tion. This is done by a 
ross
orrelation algorithm. This problem 
an

be 
onne
ted to �nding the best overlap between two images. Cross
orrelation algorithms

are widely used, e.g., for time-laps imaging (Hale, 2009), 
ell tra
king in nano-biology

(Perez-Careta et al., 2008). The normalized 
ross
orrelation 
an be formulated as follows

CC(δx, δt) =
1

ntr ∗ nt
∗ (

ntr−1
∑

x=0

nt−1
∑

t=0

Ax,t ∗Bx+δx,t+δt), (1.23)

where Ax,t represents the sta
ked se
tion, Bx,t is the predi
ted multiple se
tion, δt and
δx denote the shift in time and spa
e, ntr the number of tra
es , and nt the time sample

(Hale, 2009). The maximum 
orrelation makes an estimation of the total shift in time

and spa
e to best align the two se
tions. Sin
e with this formula only global shift 
an be

estimated, it 
an only be applied in 
ases where geologi
al setting is not too 
omplex and a

global shift is su�
ient. In 
ase of more 
omplex geology, the pro
ess 
an be implemented

in a windowed way (Hale, 2009).

1.5.3 Presta
k multiple predi
tion

As CRS attributes and ZO traveltime of multiples are available, it is possible to estimate

traveltimes of multiples using the following formula

t2 = t20 +
2t0 cos

2
αh2

v0RNIP

. (1.24)
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Note that CRS attributes at t0 are used to estimate traveltimes of multiples.

1.5.4 Adaptive subtra
tion

The predi
ted multiples are then adaptively subtra
ted from the data. Adaptive �ltering

is widely used in di�erent steps of pro
essing, in
luding the subtra
tion of multiples from

the original data (e.g., Yilmaz, 2001). In the following, I will introdu
e the 
on
ept of

adaptive �ltering .

Designing an adaptive �lter

An important tool that is needed for multiple subtra
tion is designing a �lter to mat
h

the predi
ted multiples to the original data. Put another way, the problem is designing a


onvolution �lter f(t) to reshape an input signal x(t) into a desired output signal y(t)

y(t) = f(t) ∗ x(t). (1.25)

The �rst s
ientist who reported this method was Wiener (1964), therefore, this te
hnique

is often referred to as Wiener �lter design. For more histori
al details see, e.g., (Webster,

1978). The di�eren
e between the energy of �ltered input and desired output 
an be

expressed as

E =
∑

n

(y[n]− f [n] ∗ x[n])2, (1.26)

assuming that signals are dis
rete, whi
h means x[n] has values for t = n∆t where ∆t
is the sampling interval and n denotes the total number of samples in the signal. This

equation 
an be written as

E =

M
∑

n=0

(y[n]−

N
∑

k=0

f [k]x[n− k])2. (1.27)

The value of E is minimum if the partial derivatives with respe
t to ea
h of the �lter


oe�
ient f [n] are equal to zero

∂E

∂f [n]
= 0. (1.28)

The partial derivative of E with respe
t to f [1] is

∂E

∂f [1]
=

M
∑

n=0

(

2
(

y[n]−
N
∑

k=0

f [k]x[n− k]
) δ

δf [1]

(

y[n]−
N
∑

k=0

f [k]x[n− k]
)

)

= 2

M
∑

n=0

(

(

y[n]−

N
∑

k=0

f [k]x[n− k]
)(

− x[n− 1]
)

)
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= 2
M
∑

n=0

(

y[n](−x[n− 1])−
N
∑

k=0

f [k]x[n− k](−x[n− 1])

)

= 2
M
∑

n=0

−y[n]x[n− 1] +
N
∑

k=0

f [k]
M
∑

n=0

x[n− k]x[n − 1]. (1.29)

This equation 
an be written as

= 2(−φyx[1] +
N
∑

k=0

f [k]φxx[1− k]), (1.30)

where φyx is the 
ross
orrelation of signal y with signal x and φxx denotes the

auto
orrelation of signal x. This equation should be equal to zero then

N
∑

k=0

f [k]φxx[1− k] = φyx[1]. (1.31)

In this way, we 
an 
ompute all the derivatives of E with respe
t to the f [i] for i =
0, 1, 2, · · · , n.

N
∑

k=0

φxx[i− k]f [k] = φyx[i], for i = 0, 1, 2, · · · , N. (1.32)

This equation 
an be written in a matrix form, whi
h makes it easier to understand the

stru
ture of the equation:

































φxx[0] + ǫ2 φxx[1] φxx[2] · · · φxx[N ]

φxx[1] φxx[0] + ǫ2 φxx[1] · · · φxx[N − 1]

φxx[2] φxx[1] φxx[0] + ǫ2 · · · φxx[N − 2]

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

φxx[N ] φxx[N − 1] φxx[N − 2] · · · φxx[0] + ǫ2

































































f [0]

f [1]

f [2]

.

.

.

f [N ]

































=

































φyx[0]

φyx[1]

φyx[2]

.

.

.

φyx[N ]

































,

(1.33)

where the left-side matrix represents auto
orrelation lags of the input wavelet multiplied

by the Wiener �lter 
oe�
ients and the right-side ve
tor shows the 
ross
orrelation lags of

the input wavelet with the desired output. For stabilization, ǫ2 is added to the diagonal

elements of the matrix. A 
ertain fra
tion of the maximum value of f [k] ( typi
ally a

few per
ent of the maximum value) is a good 
hoi
e for stabilization 
onstant (Vers
huur,

2006). To solve this equation, the inverse form of the auto
orrelation matrix is multiplied
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to the ve
tor of the 
ross
orrelation lags. The left-side matrix is 
alled Toeplitz matrix,

sin
e all the values along a 
ertain diagonal are 
onstant. For solving su
h a spe
ial

equation (Levinson, 1947) has suggested a re
ursion algorithm that redu
es the number of


al
ulations from the order N3
to the order N2

.

Least-square subtra
tion strategies

Adaptive �ltering is used for mat
hing the predi
ted multiples with the original data. For

this purpose some modi�
ations and strategies have to be made. Equation 1.32 
onsiders

only one tra
e but in adaptive subtra
tion usually an ensemble (e. g., 
ommon o�set

gather) is taken into a

ount. Therefore, the energy that is minimized in this 
ase should


ontain the sum of the energy of all tra
es, so Equation 1.26 is modi�ed into

E =
∑

j

∑

n

(p[j, n]− a[n] ∗m0[j, n])
2, (1.34)

where p denotes the original data, m0 is predi
ted multiple, j indi
ates the tra
e number in
the se
tion, and n des
ribes the time sample. Considering this extra summation, Equation

1.32 will be expanded into

∑

j

N
∑

n=0

φmm[j, i − n]f [n] + ǫ2a[i] =
∑

j

φpm[j, i], for i = 0, 1, 2, · · · , N, (1.35)

where φmm[j, n] indi
ates the auto
orrelation of the predi
ted multiples for tra
e j and

φpm[j, n] des
ribes the 
ross
orrelation of the predi
ted multiple and the input data for

tra
e j (Vers
huur, 2006).

Two stages least-square subtra
tion

In 1997, Berkhout and Vers
huur suggested to apply adaptive subtra
tion in two stages to

obtain a better result:

1. Global subtra
tion in every shot gather to �nd the de
onvolution �lter for sour
e

signature.

2. Lo
al subtra
tion within a smaller spa
e-time windows that overlap with ea
h other

in both spa
e and time dire
tions.

For global subtra
tion a long �lter (e.g., 200 ms) is determined, while in lo
al

subtra
tion a small variation from the overall �lter is determined. The size of the
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lo
al window size 
ould be 25 tra
es in spa
e and up to hundreds of ms in time

(Vers
huur, 2006).

1.5.5 Pro
essing tuned to the primaries

After subtra
ting multiple, the presta
k multiple free data is available for further pro
essing

steps tuned to image primaries. Figure 1.13 is a s
hemati
 illustration of the approa
h.

Multiple CRS

 stack 

Correction 

term:

image matching

 

Prestack data

 generation

with CRS

 attributes 

 

Least square 

Subtraction

 

Processing 

tuned to the 

primaries 

Figure 1.13: S
hemati
 sket
h of the CRS multiple attenuation work�ow (after Dümmong

and Gajewski, 2008).

In this thesis, I will introdu
e a zero-o�set pi
king approa
h for multiple attenuation.

Besides from applying the method in CMP domain, I also applied it in a Common S
atter

Point (CSP) domain to en
ounter less 
on�i
ting dip situations 
omparing to CMP domain.

This domain is introdu
ed in the following se
tion.

1.6 Common S
atter Point (CSP) domain

In this se
tion, I will introdu
e the Common S
atter Point (CSP) domain but before that,

the 
on
ept of time migration is des
ribed.

1.6.1 Time migration

The aim of migration is to move re�e
tions to their true spatial positions by 
orre
ting

their dip and length, to 
ollapse di�ra
tions, and to unfold tripli
ations. Thus, it not

only provides an image with a better spatial resolution, but also helps to remove the

misleading features. There are two main 
on
epts for migration, i.e., time migration and

depth migration.The migration pro
ess that produ
es a migrated time se
tion is 
alled

time migration while in depth migration the output is a depth se
tion. Depth migration

makes the se
tion look similar to the geologi
 
ross se
tion in depth. However, migration
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is 
ommonly performed in time. Presta
k time migration (PreSTM) is a 
lassi
al and

preferable tool in seismi
 pro
essing. This is be
ause it is rapid and robust and has

the ability to fo
us seismi
 events for most geologi
al settings. One of the 
onventional

PreSTM migration types is the Kir
hho� Di�ra
tion Sta
k. The physi
al explanation for

this method is as follows: a re�e
tor is assumed to be 
omposed of a su�
iently dense set

of imaginary point di�ra
tors. The re�e
tive response is obtained by superposition of the

di�ra
tion responses from these points, so that the envelope of the di�ra
tion traveltimes

is the re�e
tion traveltime surfa
e. In this 
ase, the di�ra
tions superimpose 
onstru
tively

through re�e
tors and destru
tively elsewhere. As previously mentioned, the di�ra
tors

are imaginary and 
an not be dete
ted separately. For ea
h di�ra
tor, the traveltime is

estimated separately with the time migration operator using Double Square Root (DSR)

formula. The amplitudes are summed up along the di�ra
tion traveltimes and the result

is assigned to the ZO apex of the migration operator. The 2D DSR equation reads as

tD =

√

t2
0

4
+

(m− h)2

v2
+

√

t2
0

4
+

(m+ h)2

v2
, (1.36)

where h is the half sour
e-re
eiver o�set, m is the midpoint displa
ement with respe
t to

the 
onsidered CMP position, t0 is the zero-o�set traveltime and v is assumed to be the

migration velo
ity. Please note, the time migration velo
ity does not have a real physi
al

meaning 
omparing to the depth migration velo
ity. Time migration velo
ity is a parameter

whi
h provides the best �t of the Kir
hho� migration operator to the data.

1.6.2 CSP data mapping

In 1998, Ban
roft et al. reformulated the DSR operator into a single square root as

tD = 2

√

t2
0

4
+

h2e
v2

, (1.37)

where he denotes the equivalent o�set whi
h is de�ned as

h2e = m2 + h2 − (
2mh

tv
)2. (1.38)

This o�set represents the surfa
e distan
e from the s
atter point to the 
ollo
ated sour
e

and re
eiver. They also developed a physi
al explanation for the generated gather, whi
h

they 
alled Common S
atter Point (CSP) gather. Following this idea, Dell et al. (2010)

proposed a new approa
h to generate CSP gathers by using partial time migration. The

main 
on
ept of this method is a new parametrization of the Double Square Root (DSR)

operator using the 
ommon o�set apex of migration operator. Sin
e moveout is preserved

in CSP domain, it is a suitable domain for further seismi
 pro
essing steps. The 
ommon

o�set (CO) of the time migration operator is obtained by a hyperboli
 formula (Dell et al.,

2009)

tapex =

√

t2
0
+

4h2

v2
. (1.39)
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Equation 1.36 
an be written as

tD =

√

1

4

(

t2
0
+

4h2

v2

)

+
m(m− 2h)2

v2
+

√

1

4

(

t2
0
+

4h2

v2

)

+
m(m+ 2h)2

v2
. (1.40)

With Equation 1.39 one 
an obtain

tD =

√

t2apex
4

+
m(m− 2h)2

v2
+

√

t2apex
4

+
m(m+ 2h)2

v2
. (1.41)

Figure 1.14 visualizes the di�eren
e between full and partial time migration for a model

of a homogeneous medium with a dipping re�e
tor. The re�e
tion response for a dipping

re�e
tor is depi
ted in dark blue. The migration operator is depi
ted in light blue. In

Figure 1.14(a) the migration output is assigned to the ZO operator apex for every CO

se
tion (pink line). While in Figure 2.19(b) the CSP mapped output is assigned to the CO

operator apex for every CO se
tion (orange line).
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Figure 1.14: The �gure 
ompares the prin
iples of time migration and data mapping for

a homogeneous medium with a dipping re�e
tor. The re�e
tion response for the dipping

re�e
tor is depi
ted in dark blue and the migration operator is depi
ted in light blue. In

(a) the migration output is assigned to the ZO operator apex for every CO se
tion (pink

line). In (b) the CSP mapped output is assigned to the CO operator apex for every CO

se
tion (orange line) modi�ed after (Dell et al., 2009).

In the following 
hapter, I will introdu
e a zero-o�set pi
king approa
h for multiple

attenuation whi
h 
an be applied within any sta
king operator and is not restri
ted to

1D media, it 
an be also applied to internal multiples.
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Chapter 2

Zero-o�set pi
king approa
h

In this 
hapter, I present a rapid and robust approa
h based on a work�ow for multiple

attenuation of (Dümmong and Gajewski, 2008). Their method is an entirely data driven

approa
h and in
ludes two steps of predi
tion: �rst, zero-o�set multiples in a Common

Re�e
tion Surfa
e (CRS) sta
ked se
tion are predi
ted, and in the se
ond step, the obtained

result is used for presta
k multiple predi
tion these multiples are then subtra
ted from the

original. They proposed multiple predi
tion in the CRS sta
ked se
tions using a series of


onvolutions. This work�ow is restri
ted to 1D media; therefore, errors for dipping events

are inevitable and it is ne
essary to 
orre
t the predi
ted data. This 
orre
tion is not easy to

determine. To resolve these issues, I propose to pi
k multiple events in the sta
ked se
tion

instead of predi
ting them by a 
onvolution approa
h. Pi
king multiple events allows one

to avoid the above des
ribed restri
tions and to omit the 
orre
tion. Another advantage is

that this method 
an be applied to surfa
e related multiples as well as internal multiples.

In 
ontrast to the above mentioned data driven approa
h, the proposed work�ow relies on

interpretation.

Sin
e hyperboli
 sta
king operators are a�e
ted by spread length bias, I apply the work�ow

separately to two di�erent range of o�sets. The method, whi
h is outlined in the following

se
tion, 
an be applied with any sta
king operator.

2.1 Method

Several multiple attenuation methods are based on periodi
ity of multiples or moveout

dis
rimination between multiples and primaries. My method is based on the fa
t that

multiples, like primaries, 
an be des
ribed with a hyperboli
 approa
h. Thus, it is possible

to estimate traveltimes of multiples in the presta
k domain, if zero-o�set traveltimes of

multiples and sta
king velo
ities are available.

As an initial step of the zero-o�set traveltime pi
king approa
h, I apply a sta
king operator
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to presta
k data in order to obtain a sta
ked se
tion, a sta
king velo
ity pro�le, and

a 
oheren
y se
tion. The sta
king velo
ity and the 
oheren
y se
tion are estimated by

an automati
 semblan
e optimization (Neidell and Taner, 1971), i.e., the standard data

pro
essing sequen
e. Sin
e the sta
king pro
ess should be steered in a way that multiple

events are imaged, the velo
ity sear
h interval is adjusted a

ordingly. For example, if we

aim at predi
ting surfa
e related multiples, the velo
ity sear
h interval should be set to a

lower range. The velo
ity analysis step also provides a 
oheren
y se
tion. This se
tion is

then used to di�erentiate between signal and multiples. For this purpose, a threshold fa
tor

is used to 
ut o� the events with low 
oheren
y. In the next step, zero-o�set traveltimes

are pi
ked in the obtained sta
ked se
tion. Pi
king surfa
e related multiples may be guided

by the 1D 
onvolution predi
tion.

It is 
riti
al to re
ognize multiples in a sta
ked se
tion. The following 
hara
teristi
s of

multiples help us to distinguish them from primaries (Vers
huur, 2006):

� Periodi
 repetition

� In
reasing dips

� Con�i
ting dips

� Fo
using and defo
using events

In some 
ases multiples are more 
ontinuous in the 
oheren
y se
tion in 
omparison with

the sta
ked se
tion so they are more distinguishable and easier to pi
k. It is possible to pi
k

the multiples in the 
oheren
y se
tion instead of the sta
ked se
tion. In this 
ase �rst the

multiples are re
ognized in the sta
ked se
tion then the 
orresponding events are pi
ked in

the 
oheren
y se
tion. After zero-o�set traveltime pi
king whi
h 
an be done manually or

automati
ally, presta
k traveltimes of the multiples are predi
ted. The sta
king velo
ity

se
tion, the pi
ked traveltimes, the 
oheren
y se
tion, and the sele
ted threshold fa
tor


ontribute to the predi
tion using the following well-known equation

t(h) =

√

t2
0
+

4h2

v2
0

, (2.1)

where h is the half o�set, t0 is the ZO traveltime and v0 is the sta
king velo
ity.

After multiple predi
tion, I employ an adaptive �ltering method to mat
h the predi
ted

multiples with the input data. A Wiener optimum �lter (Wiener, 1964) is used to �t

the input seismogram to the desired output, whi
h in our implementation is the original

data. After that, multiples are subtra
ted from the data. This pro
ess is 
ontrolled by a

spa
e-time window and an operator length. The window size is the amount of tra
es that

is used to determine the �lter. A single tra
e, as well as several tra
es in spa
e and up

to hundreds of ms in time are valid spa
e-time window sizes. The operator length is the

length of the de
onvolution operator applied to the data. The operator length is a 
riti
al

parameter: if it is 
hosen too large, the operator mat
hes any predi
ted tra
e with the
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input data. Therefore, primaries in the vi
inity of the multiples will also be subtra
ted.

However, with a very short operator length, predi
ted data will not be properly mat
hed

to the input data. Consequently, multiples will not be subtra
ted from the data. The best

result is obtained empiri
ally; a window length mat
hing the prevailing period of the data

is a good 
hoi
e in many 
ases. An example is provided in the next se
tion. Figure 2.1

shows a s
hemati
 illustration of the method.

Processing for 

Multiples 

Prediction of  

pre-stack 

traveltimes

Matching of the 

predicted

data with

the input data

 

Subtraction

 

Processing 

tuned to the 

primaries 

Figure 2.1: S
hemati
 illustration of the ZO pi
king approa
h

It has been shown that the hyperboli
 formula (Equation 2.1) is limited to near o�sets

and is a�e
ted by spread length bias. To use this method for larger o�sets, I apply the

method to di�erent range of o�sets separately. In the next se
tion, the method is applied

to a syntheti
 dataset.

2.2 Syntheti
 data example from Sigsbee2B

To illustrate the method, I �rst applied it to the well known syntheti
 Sigsbee2B dataset,

whi
h was 
reated by Subsalt Multiple Attenuation And Redu
tion Te
hnology Joint

Venture (SMAART JV). It was designed to better understand the problems related to

demultiple and subsalt imaging (Stoughton et al., 2001). It in
ludes a large salt body with

a very 
omplex geometry that generates many di�ra
tions and bow-ties. Figure 2.2 shows

the interval velo
ity and table 2.1 shows the a
quisition parameters of the data.

As an initial step, the sta
ked se
tion, the 
orresponding 
oheren
y se
tion, and the

sta
king velo
ity pro�le were generated for o�sets from 0 m to 4500 m. I set the

velo
ity sear
h interval between from 1450 m/s to 1700 m/s be
ause the aim was to

image surfa
e related multiples (Pro
essing parameters are provided in Appendix D).

Figure 2.3 displays the sta
ked se
tion and the 
oheren
y se
tion of the Sigsbee2B dataset

for o�sets from 0 m up to 4500 m and Figure 2.4 shows the 
orresponding velo
ity

se
tion. I manually pi
ked ZO traveltimes of multiples in the sta
ked se
tion then presta
k

traveltimes of multiples were predi
ted using the sta
king velo
ity pro�le and the 
oheren
y

se
tion. Afterwards, the multiple were adaptively subtra
ted from data. I applied
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Figure 2.2: Interval velo
ity of the Sigsbee2B model

Table 2.1: A
quisition parameters from Sigsbee2B

Number of shots 496

Shot interval 45.72 m (150 ft)

Minimum o�set 0 m (0 ft)

Maximum o�set 7932 m (26025 ft)

No. of re
eivers 348

Max. fold 87

Re
eiver spa
ing 22.86 m (75 ft)

CMP interval 11.43 m (37.5 ft)

CDP range 25-2069

Sample rate 8 ms

Peak frequen
y 20 Hz

Max. frequen
y 40 Hz

adaptive subtra
tion in the 
ommon o�set (CO) domain to investigate the result of the

implementation at di�erent o�sets. As I mentioned previously, the length of the operator

in adaptive �ltering should be 
hosen 
arefully to keep the primaries untou
hed while

attenuating the multiples. To illustrate this, an example is provided. Note that for a better

visualization a 
lose up of the se
tions is shown. Figure 2.5(a) shows a CO se
tion at 4000m
for a CMP range between 400 to 850, before multiple attenuation and Figure 2.5(b) shows

the same se
tion after multiple attenuation with a suitable operator length (10 samples).

The blue square spe
i�es a part of the multiple event that is attenuated properly while the

event in the vi
inity of a multiple is preserved and marked by a red square. An example

of too short (5 samples) and too long (100 samples) operator length is also provided.

Figure 2.6(a) shows the same CO se
tion after multiple attenuation with a short operator

length. The blue square spe
i�es a part of a multiple event that is not attenuated properly

and the red square spe
i�es a part of a primary event that is untou
hed after the multiple

attenuation. Figure 2.6(b) shows this se
tion after multiple attenuation with a too long
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Figure 2.3: In (a) the sta
ked se
tion of the Sigsbee2B dataset for o�sets from 0 m up to

4500 m is shown. In (b) the 
orresponding 
oheren
y se
tion is displayed.
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Figure 2.4: The velo
ity se
tion of the Sigsbee2B dataset, o�sets from 0 m to 4500 m. The

velo
ity sear
h interval is set from 1450 m/s to 1700 m/s.

operator length. The blue square spe
i�es a part of the multiple event that is strongly

attenuated, and the red square spe
i�es a part of a primary event in the vi
inity of the

multiple that is also suppressed after the multiple attenuation.

As indi
ated before, the sta
king operator is a�e
ted by spread length bias. This limitation

is visualized in Figure 2.7 and Figure 2.8. Figure 2.7(a) displays a CO se
tion at 500

m for the CMP range between 400 to 850 from the Sigsbee2B dataset before multiple

attenuation and Figure 2.7(b) displays this se
tion after multiple attenuation. The �rst

order multiple, whi
h is indi
ated by an arrow in Figure 2.7(a), is attenuated and not

visible in Figure 2.7(b). Sin
e the primary event 
rosses the multiple in the area spe
i�ed

by a square, it is also attenuated but only in the 
rossing spot. Considering that it is

a presta
ked se
tion, other o�sets of this primary will 
ompensate this e�e
t. Thus, the

event will not be a�e
ted in the sta
ked se
tion. Figure 2.8(a) shows a CO se
tion at

6000 m for the CMP range between 400 to 850 from the Sigsbee2B dataset before multiple

attenuation, and Figure 2.8(b) shows the same se
tion after multiple attenuation. In

Figure 2.8(b) the �rst order multiple, whi
h is depi
ted with an arrow in Figure 2.8(a)

are visible. In multiple predi
tion for both CO se
tions (500 m and 6000 m), the sta
king

velo
ity and sta
ked se
tion are determined utilizing o�sets shorter than 4500m. To resolve

this limitation, I applied the method to the o�sets larger than 4500 m separately. Sin
e I

adjusted the velo
ity sear
h interval and the apertures with a fo
us on the best possible

multiple imaging result, primaries may not be properly imaged. Figure 2.9 shows the

sta
ked se
tion using only o�sets from 4500 m up to 7000 m. Figure 2.10 displays the result

of multiple attenuation in the CO se
tion for the o�set of 6000 m, Figure 2.10(a) shows

the CO se
tion after multiple attenuation using the sta
ked se
tion and the velo
ity model
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from the data in
luding o�sets from 0 m up to 4500 m, we 
an still see the multiple, whi
h

is indi
ated by an arrow. Figure 2.10(b) shows the CO se
tion after multiple attenuation

using the sta
ked se
tion and sta
king velo
ities determined from the data in
luding only

o�sets from 4500 m up to 7000 m. Most of the multiple energy is su

essfully removed

from the se
tion.

The Sigsbee2B data was pro
essed a

ording to the above des
ribed pro
edure. The data

with the o�set larger than 4500 m and o�set shorter than 4500 m are summed up. Now the

presta
k multiple attenuated data is available for further pro
essing steps. To visualize the

result I sta
ked the multiple attenuated data and also the data before multiple attenuation.

In both 
ases, the sta
king parameters are similar.The result is shown in Figure 2.11. In

Figure 2.11(a), the sta
ked se
tion in
luding multiples is displayed and in Figure 2.11(b)

the 
orresponding sta
ked se
tion after multiple attenuation is shown. The energy from the

�rst order multiple, whi
h is indi
ated by an arrow in Figure 2.11(a), has been removed,

and it is not re
ognizable in the sta
ked se
tion in Figure 2.11(b), while the primaries

in the vi
inity of multiples are left untou
hed. Generally, the result is en
ouraging. For

further investigation of the method, I applied it to �eld data in the following se
tion.
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Figure 2.5: Sigsbee2B dataset CO se
tion at 4000 m for the CMP range between 400

to 850. (a) before multiple attenuation. (b) after multiple attenuation with a suitable

operator length (10 samples). The blue square spe
i�es a part of the multiple event that is

attenuated properly and the red square spe
i�es a part of a primary event in the vi
inity

of multiple that remains inta
t.
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Figure 2.6: Sigsbee2B dataset CO se
tion at 4000 m for the CMP range between 400 to

850, after multiple attenuation. (a) with a short (5 samples) operator length. The blue

square spe
i�es a part of a multiple event that is not attenuated properly and the red

square spe
i�es a part of a primary event that is untou
hed. (b) with a too long (100

samples) operator length. The blue square spe
i�es a part of a multiple event that is

strongly attenuated, and the red square spe
i�es a part of a primary event in the vi
inity

of a multiple whi
h is also suppressed.
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Figure 2.7: (a) displays a CO se
tion at 500 m from the Sigsbee2B dataset CMPs between

400 to 850 before multiple attenuation. (b) displays this se
tion after multiple attenuation

using the sta
ked se
tion and velo
ity model from the data, in
luding o�sets from 0 m up

to 4500 m, the �rst order multiple, whi
h is indi
ated by an arrow in (a), is attenuated and

not visible in (b). Sin
e a primary event 
on�i
ts with multiple in the area spe
i�ed by a

square, it is also attenuated. Considering that it is a presta
ked se
tion other primaries

o�sets of this primaries will 
ompensate this and there will be no e�e
t in the sta
ked

se
tion.
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Figure 2.8: (a) displays a CO se
tion at 6000 m from the Sigsbee2B dataset CMPs between

400 to 850 before multiple attenuation and (b) shows the same se
tion after multiple

attenuation using the sta
ked se
tion and velo
ity model from the data, in
luding only

o�sets from 0 m up to 4500 m. In (b), we 
an still see the �rst order multiple, whi
h is

depi
ted by an arrow.
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Figure 2.9: The sta
ked se
tion of Sigsbee2B dataset in
luding only o�sets from 4500 m
up to 7000 m; the sta
king pro
ess is optimized with regard to multiple imaging.
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Figure 2.10: The result of multiple attenuation at the o�set of 6000 m from the Sigsbee2B

dataset CMPs between 400 to 850. (a) using the sta
ked se
tion and velo
ity model from

the data, in
luding only o�sets from 0 m up to 4500 m. We 
an still see the multiple,

whi
h is shown by an arrow, in the se
tion. (b) using the sta
ked se
tion and velo
ity

model from the data, in
luding only o�sets from 4500 m up to 7000 m. Multiple energy

has been removed from this se
tion.
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Figure 2.11: Sigsbee2B dataset. In (a) the sta
ked se
tion in
luding multiples (indi
ated

by arrows) is displayed. In (b) the 
orresponding sta
ked se
tion after multiple attenuation

is shown. Most of multiple energy has been removed from the se
tion.
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2.3 Field data example

For further investigation, I applied the method to a marine seismi
 dataset. The data

originates from the Levantine basin in the eastern Mediterranean Sea whi
h is limited by

the borders of Lebanon, Israel and Egypt to the east and south and by Cyprus in the north.

Figure 2.12 shows the Eastern Mediterranean sea with bla
k line indi
ating the approximate

position of the seismi
 pro�le. This 
ommer
ial data is provided by TGS-NOPEC and

features a large o�set of about 7300 m with a maximum fold of 288. In this thesis, I will

refer to this data as TGS data. Table 2.2 shows the a
quisition parameters from TGS

data. The pro
essing parameters are also provided in Appendix D. The Levantine Basin


overs a basinal su

ession or mobile unit of the Messinian su

ession. The deformation

pattern of this unit 
ontains folds and thrust faulting whi
h proves extensive salt te
toni
s

and shortening in the depositional phase. Post-positional gravity gliding also 
reated salt

rollers in the extensional marginal, 
ompressional folds, and faults within the Levantine

basin (Gradmann et al., 2005; Netzeband et al., 2006b). Figure 2.13 shows a stru
tural

sket
h of the seismi
 line. The parallel prete
toni
 units (green), above the salt body (red),

are separated from the divergent synte
toni
 units (green) by a slump 
omplex (gray). For

further information on the geologi
al setting, see, e.g., Clauzon et al. (1996); Krijgsman

et al. (1999).

Table 2.2: A
quisition parameters from TGS data

Minimum o�set 150 m

Maximum o�set 7338 m

No. of re
eivers 576

Max. fold 288

Re
eiver spa
ing 25 m

CMP interval 12.5 m

CDP range 2351-4739

Sample rate 2 ms
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Figure 2.12: Map showing the eastern Mediterranean Sea. The bla
k line indi
ates the

approximate position of the seismi
 line (Netzeband et al., 2006a).

At the �rst step of applying the method to the presented TGS data, standard prepro
essing

steps applied to the data. Then, the sta
ked se
tion, the 
orresponding 
oheren
y se
tion,

and the sta
king velo
ity pro�le were generated for o�sets from 150 m up to 3638 m. Sin
e

in this 
ase our target was to image surfa
e related multiples in marine data, I set the

velo
ity sear
h interval from 1450 m/s to 1550 m/s, whi
h is the water velo
ity. The ZO

traveltimes were pi
ked in the sta
ked se
tion then presta
k traveltimes of multiples were

predi
ted using the sta
king velo
ity pro�le and the 
oheren
y se
tion. In order to predi
t

multiples for larger o�sets, the method was applied on
e again to o�sets from 3638 m up

to 7338 m. Sta
king velo
ity range was 
hosen with the intention to enhan
e multiples.

Figure 2.14(a) shows the sta
ked se
tion of the far o�set data. As mentioned before, it is

possible to use the 
oheren
y se
tion to pi
k multiples. This se
tion was used in this 
ase,

sin
e pi
king multiples was more 
onvenient in this se
tion. Figure 2.14 shows the sta
ked

se
tion of o�sets from 3638 m up to 7338 m in the TGS data and 
orresponding 
oheren
y

se
tion. It is easier to pi
k the multiple whi
h is indi
ated by an arrow in the 
oheren
y
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Figure 2.13: Stru
tural sket
h of subsurfa
e. The parallel prete
toni
 units (green), above

the salt body (red) are separated from the divergent synte
toni
 units (green) by a slump


omplex (gray) (Netzeband et al., 2006a).

se
tion. In Figure 2.15(a), the sta
ked se
tion before multiple attenuation is presented, and

in Figure 2.15(b) the 
orresponding sta
ked se
tion after multiple attenuation is shown.

Overall, most of the multiple energy, whi
h is depi
ted with an arrow in Figure 2.15(a), is

removed from the sta
ked se
tion in Figure 2.15(b). Although there are some residuals of

the multiples, the result is quite promising for the future development of this approa
h. In

the next se
tion, I will apply the method to a 3D syntheti
 data.
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Figure 2.14: The 
oheren
y se
tion and sta
ked se
tion of the TGS data in
luding o�sets

from 3638 m up to 7338 m. The sta
king pro
ess has been optimized to image multiples so

primaries may not be optimally imaged. In (a) the sta
ked se
tion presented the multiple

whi
h is indi
ated by an arrow is not 
ontinuous. In (b) the 
orresponding 
oheren
y

se
tion is displayed. The multiple whi
h is indi
ated by an arrow is more 
ontinuous in


omparison with the sta
ked se
tion.
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Figure 2.15: Marine data example. In (a) the sta
ked se
tion in
luding multiples is

displayed. In (b) the 
orresponding sta
ked se
tion after multiple attenuation is shown. we


an see that most of the multiple energy (indi
ated by an arrow in (a)) has been removed

from the sta
ked se
tion in (b).
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2.4 3D example

In the previous se
tion, I presented 2D examples, where multiples were pi
ked manually.

This may raise the question of the method appli
ability to 3D data where manual data

pi
king is hardly feasible. For further investigation I have provided a simple syntheti


3D example. In this 
ase, multiples are pi
ked automati
ally. To generate this data I

used Norsar 3D software. The velo
ity model 
onsists of to layers whi
h is shown in the

Figure 2.16. The velo
ity of the upper layer is 1500 m/s, velo
ity of and the lower layer is

2000 m/s. The re
eiver interval and sour
e interval are 50 m. The number of inlines and


rosslines are 41 and the distan
e between two lines is 50m. As a sour
e wavelet, I used zero

phase Ri
ker wavelet with dominant frequen
y of 20 Hz. The primary and only �rst order

multiples are modeled. I applied the method as previously des
ribed, the only di�eren
e

Figure 2.16: The syntheti
 3D velo
ity model. The velo
ity in the upper layer is 1500 m/s
and the lower layer is 2000 m/s. The re
eiver interval and sour
e interval are 50 m. There

are 41 
rosslines and inlines and the distan
e between two lines is 50 m. The bla
k lines

show the a
quisition geometry, the purple lines show the surfa
e, and the green lines show

the interfa
es.

is that for multiple pi
king the Petrel software was used. In Figure 2.17(a), the sta
ked

se
tion before multiple attenuation is presented, and in Figure 2.17(b) the 
orresponding
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sta
ked se
tion after multiple attenuation is shown. Generally, I the multiples, whi
h are

indi
ated by an arrow in Figure 2.17(a), are properly attenuated, and are not visible in

the sta
ked se
tion in Figure 2.17(b).

Automati
 pi
king is a very 
hallenging task in presen
e of 
on�i
ting dip situations, one


an apply this method in a migrated domain, where the di�ra
tions are fo
used and

tripli
ations are unfolded, thus, there will be fewer 
on�i
ting dip situations. In the

following se
tion, I investigate the appli
ation of the proposed method in the CSP domain

whi
h is a partial time migrated domain.
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(a)

(b)

Figure 2.17: 3D data example. In (a) the sta
ked se
tion in
luding multiples is displayed.

In (b) the 
orresponding sta
ked se
tion after multiple attenuation is shown. Multiple

whi
h is indi
ated by an arrow in (a) is attenuated in (b).
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2.5 Appli
ation in CSP domain

To illustrate and verify the presented zero-o�set pi
king approa
h in the Common S
atter

Point (CSP) domain, I applied it to the Sigsbee2B dataset, whi
h is introdu
ed in Se
tion

2.2. In the �rst step, I obtained partial migrated presta
k data using the CSP operator

developed by (Dell, 2012). To do this, I needed a velo
ity se
tion. This se
tion 
an be

obtained, e.g., from CRS attributes, the 
ode was provided by (Glö
kner et al., 2016):

Vmig =
vNMO

√

1 +
v2
NMO

v2
0

sinα2

, (2.2)

where

vNMO =

√

2v0RNIP

tcosα2
. (2.3)

I applied the CSP data mapping using this velo
ity se
tion. Then, I sta
ked the result but

multiples were not properly migrated. To obtain a better result, I de
ided to de
rease the

range of velo
ities (S
hlei
her and Biloti, 2006) and to smooth the velo
ity using Seismi


Unix software. Therefore, I set the velo
ity sear
h interval from 1400 m/s to 1750 m/s to
obtain a proper velo
ity se
tion. This velo
ity se
tion is then used for partial migration.

Figure 2.18(a) shows the CSP sta
ked se
tion of Sigsbee2B data using the velo
ity se
tion

whi
h was derived dire
tly form CRS attributes. The multiple whi
h is indi
ated by an

arrow is not properly migrated. Figure 2.18(b) shows the CSP sta
ked se
tion of Sigsbee2B

data using a de
reased smoothed velo
ity se
tion, the multiple, whi
h is indi
ated by an

arrow, is better migrated. Figure 2.19(a) shows the sta
ked se
tion of CMP data while

Figure 2.19(b) illustrates the sta
ked se
tion of CSP data. In both �gures the �rst order

multiple is indi
ated by an arrow. In Figure 2.19(a), there are lots of di�ra
tions that


ause 
on�i
ting dip situations, whereas in Figure 2.19(b) all di�ra
tions are fo
used, so

there are less 
on�i
ting dip situations. Sin
e pi
king multiples in a redu
ed 
on�i
ting

dip situation is less 
hallenging, espe
ially in automati
 pi
king, it is better to apply the

method in a migrated domain.

The method was implemented as des
ribed in Se
tion 2.1. Figure 2.20(a) is the sta
ked

se
tion of data before multiple attenuation, �rst and se
ond order multiples are indi
ated

by arrows. Figure 2.20(b) shows the 
orresponding se
tion after multiple attenuation. We

observe that multiples are attenuated and hardly visible. In 
on
lusion, the result shows

the prospe
t for the future investigation.

In this 
hapter, I have presented a new method, where multiples are pi
ked manually or

automati
ally. However, in some areas there are not only �rst layer multiples but also other

surfa
e related multiples whi
h are di�
ult to pi
k. To solve this problem, I suggest to

use additional information like 
oheren
y or velo
ity to di�erentiate multiples from other

events. I will introdu
e a new approa
h based on this idea, in the next 
hapter.
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Figure 2.18: The �gure 
ompares the sta
ked se
tion of Sigsbee2B data in CSP domain

obtain from velo
ity se
tion derived dire
tly from CRS attributes with the sta
ked se
tion

of the CSP data using a de
reased smoothed velo
ity se
tion. In (a) �rst order multiple,

whi
h is indi
ated by an arrow, is not properly migrated. In (b) The multiple, indi
ated

by an arrow, is better migrated.
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Figure 2.19: The �gure 
ompares the sta
ked se
tion of Sigsbee2B data in CSP domain

with sta
ked se
tion in CMP domain. (a) whi
h is in CMP domain the is �rst order

multiple is indi
ated by an arrow 
on�i
t with a lot of di�ra
tions. In (b) whi
h is in CSP

domain all the di�ra
tion are fo
used and there is less 
on�i
ting dip situation.
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Figure 2.20: Sta
ked se
tion of Sigsbee2B data in CSP domain (a) before multiple

attenuation multiples are indi
ated by arrows (b) after multiple attenuation, most of the

multiple energy is suppressed.
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Chapter 3

Multiple attenuation using additional

information as a guide

In the previous 
hapter, I introdu
ed a method whi
h in
ludes pi
king multiple events.

Pi
king multiples in some 
ases was very 
hallenging and we 
ould see some residuals after

multiple attenuation. For example, in Figure 3.1, whi
h shows a part of sta
ked se
tion of

TGS data, after the �rst order multiple (below 3 se
onds) the se
tion is 
overed by other

surfa
e related multiples. Pi
king these multiples is hardly feasible. To solve this issue,

I propose to pi
k multiple events using a 
oheren
y se
tion or velo
ity se
tion instead of

pi
king them manually or automati
ally.
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Figure 3.1: The sta
ked se
tion of the TGS data: after the �rst order multiple (below 3

se
onds) the se
tion is 
overed by other surfa
e related multiples.

3.1 Multiple attenuation using 
oheren
y as a guide

This method is similar to the method whi
h I introdu
ed in the previous 
hapter. The �rst

step of multiple attenuation using a 
oheren
y se
tion, is to obtain a sta
ked se
tion,

a sta
king velo
ity pro�le, and a 
oheren
y se
tion. Sin
e our aim is to obtain a


oheren
y se
tion where multiples have high values, the velo
ity sear
h interval is adjusted

a

ordingly. For example, if the aim is to attenuate surfa
e related multiples, then I set

the velo
ity sear
h in to a lower range (to illustrate this, an example is provided in the

following se
tion). To di�erentiate between multiples and primaries, a threshold fa
tor is

used to 
uto� the events with low 
oheren
y.

After sta
king, the upper part of the �rst-order multiple is muted to avoid attenuation

of primaries. Then, the sta
king velo
ity se
tion, the pi
ked traveltimes, the 
oheren
y

se
tion, and threshold fa
tor 
ontribute to the estimation of the presta
k traveltime of

multiples. After multiple predi
tion in the presta
k domain, they are adaptively subtra
ted

from the data.

Sin
e hyperboli
 sta
king operators are a�e
ted by spread length bias, I apply the work�ow
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separately to two di�erent o�set ranges.

3.1.1 Syntheti
 data example

To illustrate the method, I applied it to the syntheti
 BP 2004 dataset (Billette and

Brandsberg-Dahl, 2005). Figure 3.2 displays the velo
ity interval of this model. The

minimum o�set is 125 m, the maximum o�set is 8000 m. For the pro
essing, CMPs in

the range between 3550 and 3900 were 
hosen, sin
e in this ex
erpt the topography of

the sea bottom is not 
omplex and the surfa
e related multiples do not 
on�i
t with the

di�ra
tions. First, I sta
ked the data tuned to image the multiples. Sin
e our target was

surfa
e related multiples, I set the velo
ity sear
h interval between 1480 m/s to 1550 m/s (
the pro
essing parameters are provided in Appendix D). To avoid attenuating primaries,

I muted the upper part of �rst order multiples. Figure 3.3(a) shows the 
oheren
y se
tion

of the data when the sta
king is tuned to image multiples properly and Figure 3.3(b)

shows the 
oheren
y se
tion of the same data when the sta
king pro
ess is tuned to image

primaries. In Figure 3.3(a) multiples have a higher value in 
omparison to the value of the

primaries. This allows us to di�erentiate between primaries and multiples in the sta
ked

se
tion. As mentioned before, sta
king operators are a�e
ted by spread length bias. To
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Figure 3.2: Velo
ity interval of the BP 2004 dataset

resolve this limitation, I applied the method to di�erent o�set ranges separately. Sin
e I

adjusted the velo
ity sear
h interval range and the apertures in a way that I 
ould a
hieve

the best possible result for imaging multiples, primaries in this se
tion may not be optimally

imaged. Figure 3.4 shows the sta
ked se
tion using only o�sets from 3500 m to 8000 m.

After applying the method to both o�set ranges, I summed up the data. To visualize the

result, I again sta
k the data but this time the target was to image the primaries. In

Figure 3.5(a), the sta
ked se
tion in
luding multiples is displayed and in Figure 3.5(b) the


orresponding sta
ked se
tion after multiple attenuation is shown. The energy from the
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Figure 3.3: (a) shows the 
oheren
y se
tion of the BP 2004 in
luding o�sets from 125 m
up to 3500 m data of CMPs between 3550 and 3900 when the sta
king pro
ess is tuned to

image multiples properly so that the velo
ity sear
h interval is adjusted to a lower range

(1480 m/s to 1550m/s). (b) shows the 
oheren
y se
tion of the data when the sta
king

pro
ess is tuned to image primaries. In (a) multiples have a higher value in 
omparison to

the value of the primaries.
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Figure 3.4: The sta
ked se
tion of the BP 2004 dataset: o�sets ranges from 3500 m up to

8000 m. The sta
king pro
ess is performed, su
h that multiples are optimally imaged.

�rst order multiple, whi
h is indi
ated by an arrow in Figure 3.5(a), is removed and it is

not re
ognizable in the sta
ked se
tion in Figure 3.5(b). In the following se
tion, I will

investigate appli
ation of the method to the TGS data.

3.1.2 Field data example

In the next step, the method was applied to the TGS dataset, whi
h is introdu
ed in

Chapter 2. At �rst, the sta
ked se
tion, the 
orresponding 
oheren
y se
tion, and the

sta
king velo
ity pro�le were generated for o�set ranges from 150 m to 3638 m. Sin
e in

this 
ase our target was to image surfa
e related multiples in marine data, I set the velo
ity

sear
h interval from 1450 m/s to 1550 m/s whi
h is the velo
ity of water. Then, the upper

part of the �rst order multiple was muted, Figure 3.6(a) is the sta
ked se
tion of the data

and Figure 3.6(b) is the 
orresponding 
oheren
y se
tion. As you 
an see in the 
oheren
y

se
tion the multiples have the higher 
oheren
y. Then, the sta
king velo
ity pro�le and

the 
oheren
y se
tion and the sta
ked se
tion were used to predi
t pre-sta
k traveltimes of

multiples. In order to predi
t multiples for far o�sets, the method was applied on
e again,

to the o�set ranges from 3638 m to 7338 m. Figure 3.7 shows the sta
ked se
tion of the far

o�set data . In Figure 3.8(a), the sta
ked se
tion before multiple attenuation is presented,

and in Figure 3.8(b) the 
orresponding sta
ked se
tion after multiple attenuation is shown.

Overall, we 
an see that most of the multiple energy, whi
h is depi
ted with an arrow in

Figure 3.8(a), is removed from the sta
ked se
tion in Figure 3.8(b). To visualize the result

better, a 
loseup image is provided in Figure 3.9. In Figure 3.9(a) the sta
ked se
tion of the

data CMP's between 3600 and 4400 before multiple attenuation is shown and Figure 3.9(b)



56 CHAPTER 3. ADDITIONAL INFORMATION AS A GUIDE

1

2

3

4

5

ti
m

e
 (

s
)

3600 3750 3900
CMP No.

Multiple

(a)

1

2

3

4

5

ti
m

e
 (

s
)

3600 3750 3900
CMP No.

(b)

Figure 3.5: The sta
ked se
tion of the BP 2004 dataset; in (a) the sta
ked se
tion in
luding

multiples is displayed. In (b) the 
orresponding sta
ked se
tion after multiple attenuation

is shown. The �rst order multiple (indi
ated by an arrow in (a)) is removed and it is not

re
ognizable in the sta
ked se
tion in (b).
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is the 
orresponding se
tion after multiple attenuation. Some events whi
h are shown by

arrows in Figure 3.9(b) are revealed after multiple attenuation. Generally, the result in a


ertain expert of the BP 2004 dataset and TGS data is a

eptable but in more 
omplex

data the method does not yield a good result. In the next se
tion, I will use the velo
ity

se
tion as a guide, to �nd a better 
riterion for pi
king multiples.
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Figure 3.6: (a) The sta
ked se
tion of the TGS data in
luding only o�sets from 150

m to 3638 m, the velo
ity sear
h interval is between 1450m/s to 1550m/s. In (b) the


orresponding 
oheren
y se
tion is displayed.
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Figure 3.7: The sta
ked se
tion of the TGS data: o�sets from 3638 m to 7338 m. The

sta
king pro
ess has been optimized to image multiples.
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Figure 3.8: TGS data example. In (a) the sta
ked se
tion in
luding multiples is displayed.

In (b) the 
orresponding sta
ked se
tion after multiple attenuation is shown. We 
an see

that most of the multiple energy (indi
ated by an arrow in (a)) is removed from the sta
ked

se
tion in (b).
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Figure 3.9: A 
loseup of the sta
ked se
tion of the TGS data. In (a) the sta
ked se
tion

in
luding multiples is displayed. In (b) the 
orresponding sta
ked se
tion after multiple

attenuation is shown. Some events whi
h are shown by arrows in (b) are revealed after

multiple attenuation.



3.2 Multiple attenuation using velo
ity as a guide

In this se
tion, I use velo
ity as a guide sin
e the 
oheren
y method does not work in

areas with a lot of di�ra
tions and in 
ase of 
omplex geology. The method is exa
tly the

same as the method I introdu
ed in the previous se
tion. The only di�eren
e is that I

use the velo
ity se
tion as a guide to pi
k the zero-o�set traveltime of the events with a


ertain velo
ity. In this work, the velo
ities are provided using a CRS sta
king operator

whi
h is developed by Walda (2016). This operator in
ludes di�erent algorithms for global

optimization like geneti
 algorithm and di�erential evolution. Thus, it provides more

reliable attributes and sta
ked se
tions with higher resolution in 
omparison with other

operators that applied lo
al optimization. Although this operator is quite expensive and

time 
onsuming, the multiple attenuation pro
edure is fast an robust. In the next se
tion,

a syntheti
 data example is provided.

3.2.1 Syntheti
 data example

To illustrate the method, I again applied it to the syntheti
 Sigsbee2B dataset whi
h was

introdu
ed in Chapter 2. After applying CRS sta
king work�ow, I obtained a sta
ked

se
tion of data and a velo
ity se
tion as well. It is ne
essary to mute the upper part

of the �rst order multiple to avoid attenuating primaries be
ause multiples and their

related primaries have the same velo
ity. With the guide of the velo
ity se
tion zero-

o�set traveltimes of multiples were pi
ked then the traveltimes of multiples in other o�sets

were estimated. Afterwards, multiples were adaptively subtra
ted from the data (the

pro
essing parameters are provided in Appendix D). The result is shown in Figure 3.10.

In Figure 3.10(a), the sta
ked se
tion in
luding multiples is displayed and in Figure 3.10(b)

the 
orresponding sta
ked se
tion after multiple attenuation is shown. As you 
an see most

of the multiple energy is attenuated and the result is quite promising. In next step, I apply

this method to the �eld data.

3.2.2 Field data example

In the next step, the work�ow was used for attenuating multiples in the TGS dataset whi
h

was already introdu
ed in Chapter 2. The method was applied a

ording to the des
ribed

pro
edure in the previous se
tion (the pro
essing parameters are provided in Appendix

D). Figure 3.11 shows the velo
ity se
tion of this data, from this se
tion we 
an see that

multiples have a 
ertain range of velo
ity (about 1450m/s to 1600m/s), this 
an be used

as a guide to pi
k the multiples. In Figure 3.12(a), the sta
ked se
tion before multiple

attenuation is presented, and in Figure 3.12(b) the 
orresponding sta
ked se
tion after

multiple attenuation is shown. Figure 3.13 is a 
loseup of the result. Some events whi
h

are indi
ated by arrows in Figure 3.13(b), are not visible in Figure 3.13(a), are revealed

after multiple attenuation. Figure 3.14 
ompares the result of multiple attenuation using


oheren
y as an attribute (Figure 3.14(a)) with the result of multiple attenuation using
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velo
ity as an attribute (Figure 3.14(b)). The parameter for multiple attenuation and

sta
king was the same. there are some residuals of multiples in Figure 3.14(a) whi
h are

shown by squares. In general, velo
ity is a better 
riterion in 
omparison to 
oheren
y. It

yields better results and it is more reliable in the 
ase of 
omplex geology. In this work, I

employed the CRS sta
king operator (Walda, 2016), To obtain the velo
ity se
tion, sin
e

this operator in
ludes global optimisation, thus, it yields reliable attributes. However,

any sta
king operator whi
h yields a reliable velo
ity se
tion, 
an be used for velo
ity

estimation.
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Figure 3.10: Sigsbee2B dataset. In (a) the sta
ked se
tion in
luding multiples (indi
ated

by arrows) is displayed. In (b) the 
orresponding sta
ked se
tion after multiple attenuation

is shown.
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Figure 3.11: The velo
ity se
tion of the TGS dataset. Multiples have a 
ertain range of

velo
ity (about 1450 m/s to 1600 m/s).
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Figure 3.12: The TGS data example. In (a) the sta
ked se
tion in
luding multiples is

displayed. In (b) the 
orresponding sta
ked se
tion after multiple attenuation is shown.

We 
an see that most of the multiple energy (indi
ated by an arrow in (a)) is removed

from the sta
ked se
tion in (b).
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Figure 3.13: A 
loseup of the TGS data: CMPs between 3600 and 4400. In (a) the sta
ked

se
tion in
luding multiples is displayed. In (b) the 
orresponding sta
ked se
tion after

multiple attenuation is shown. Some events whi
h are shown by arrows in (b) are revealed

after multiple attenuation.
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Figure 3.14: Comparison of the result of multiple attenuation in TGS data CMP's between

3600 and 4400 In (a) the sta
ked se
tion after multiple attenuation using 
oheren
y as a

guide is shown. There are some residuals of multiples indi
ated by squares. In (b) the

same sta
ked se
tion after multiple attenuation using velo
ity as a guide is displayed.



Chapter 4

Con
lusions and Outlook

In seismi
 pro
essing it is assumed that re�e
tion data only 
onsist of primaries. Thus,

multiples are 
onsidered as noise in seismi
 data and should be suppressed prior to

migration and stratigraphi
 interpretation. In the s
ope of this thesis, I have introdu
ed

di�erent interpretational approa
hes, for presta
k multiple attenuation. The key step is

to obtain the traveltime of the multiples in the ZO se
tion. For this purpose, multiples


an be pi
ked manually or automati
ally. It is also possible to pi
k them using additional

information su
h as velo
ity or 
oheren
y. In all the examples, whi
h I have provided in

this thesis, the methods were applied within the CMP sta
king operator and the targets

were surfa
e related multiples.

In zero-o�set pi
king approa
h multiples were pi
ked manually in 2D examples and

automati
ally in a 3D example. To resolve the spread length bias e�e
t, the data was

divided into two di�erent o�set ranges and treated separately. Therefore, the method is

not limited to a 
ertain range of o�sets.

In the presen
e of 
on�i
ting dips and tripli
ations automati
 pi
king is 
hallenging. To

solve this issue, I also applied the method to a partly migrated syntheti
 dataset, where

di�ra
tions are fo
used and there are fewer 
on�i
ting dip situations.

In 2D examples, the result were satisfying and showed the potential of the method. The

main advantage of the method is its speed and robustness. Furthermore, it 
an be easily

applied to a �eld data and does not require high 
omputational e�ort.

To attenuate other surfa
e related multiples as well as �rst layer multiples, I tried to

pi
k multiples using the 
oheren
y se
tion as a guide. The result for syntheti
 data and

marine data was a

eptable. However, in the 
ase of 
omplex stru
tures and presen
e of

di�ra
tions, 
oheren
y was not a good 
riterion. To �nd a better 
riterion, I used the

velo
ity se
tion instead of the 
oheren
y se
tion as guide to pi
k the multiples. It proved

to be a more reliable 
riterion 
omparing to 
oheren
y and it performed stably in presen
e

of di�ra
tions and 
omplex stru
tures.
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In this study, the velo
ity se
tion were provided using CRS sta
king operator whi
h in
ludes

global optimisation. Thus, it yields reliable attributes. Nevertheless, any operator whi
h

provides a reliable velo
ity se
tion, 
an be used for velo
ity estimation.

To sum up, I proposed di�erent approa
hes for pi
king the ZO traveltime of multiples:

the manual or automati
 pi
king approa
h proved to be fast, robust and pra
ti
al. This

method 
an be applied in CSP domain as well as CMP domain depending on the presen
e

of 
on�i
ting dip situations or di�ra
tions. The advantage of this approa
h is that there is

less possibility to attenuate primaries in 
omparison with the guided approa
h. However,

sometimes the targets are other surfa
e related multiples as well as �rst layer multiples.

In this 
ase, pi
king multiples is unfeasible be
ause some parts of the se
tion are 
overed

by multiples. In this situation, using attributes would be a pragmati
 strategy.

I applied the ZO pi
king approa
h within the CMP sta
king operator. Any kind of sta
king

operator 
an be used in
luding the CRS operator. I suggest using CRS presta
k data

enhan
ement (Baykulov and Gajewski, 2009) to obtain a sta
ked se
tion with high S/N

ratio.

The automati
 pi
king approa
h was investigated on a very simple 3D syntheti
 dataset.

Sin
e automati
 pi
king is not an easy task in 
on�i
ting dip situation. I suggest


onsidering the appli
ation of the method in more 
omplex 3D data with 
on�i
ting dip

situations. In this 
ase, it is more reasonable to apply the method in CSP domain to

en
ounter fewer 
on�i
ting dip situations.

Multiple identi�
ation in the sta
ked se
tion is an interpretational step and should be done


arefully in order to avoid pi
king primaries instead of multiples. This step 
an be guided

by 1D 
onvolution predi
tion.

Sin
e the hyperboli
 formula is limited to near o�sets and is a�e
ted by spread length bias.

To use this method for larger o�sets, I apply the method to two di�erent range of o�sets

separately. However, it is possible to divide data into more o�set ranges to obtain a good

result for all o�set ranges. Another solution 
ould be using a nonhyperboli
 operator for

presta
k multiple predi
tion.

The presented method 
ould be applied to any hyperboli
 event. However, in this thesis,

only surfa
e related multiples were 
onsidered. For further investigation, I propose to apply

the method to internal multiples as well.

I applied the ZO pi
king approa
h in CSP domain to obtain a sta
ked se
tion with less

di�ra
tions and 
on�i
ting dip situation. After appli
ation of the method in CSP domain

data remapping from the CSP domain to the CMP domain for further pro
essing is possible

(Yang et al., 2016).

The �rst step in appli
ation the method in CSP domain is to obtain a migration velo
ity

se
tion whi
h 
an be 
hallenging in presen
e of dipping multiples. As another option, I

suggest using di�ra
tion separated data instead of appli
ation the method in CSP domain
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(e.g. Dell and Gajewski, 2011; Rad et al., 2016).

To derive the velo
ity se
tion, whi
h was used as a guide for pi
king multiples, I employed

a CRS sta
king operator (Walda, 2016). This operator also generates the sta
ked se
tion

and other attributes in di�erent dip angles, by splitting the sear
h spa
e into di�erent

angle sear
h intervals (Walda and Gajewski, 2015
). This means we have a

ess to extra

information about the subsurfa
e that 
an be used in di�erent steps of pro
essing in
luding

multiple attenuation.
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Appendix A

Reviewing f-k �ltering and Radon

transform

Before reviewing f-k �ltering and Radon transform the 
on
ept of normal moveout is

de�ned.

A.1 Normal moveout

The di�eren
e between the two-way traveltime at a 
ertain o�set and the two-way zero-

o�set traveltime in a re�e
tion event on a Common Mid Point (CMP) gather is 
alled

normal moveout (NMO). Figure A.1 shows a seismi
 se
tion whi
h is sorted by 
ommon

midpoint and then 
orre
ted for normal moveout. Re�e
tion traveltimes are NMO


orre
ted for every o�set, this moveout depends on di�erent fa
tors su
h as velo
ity above

the re�e
tor, o�set, dip of the re�e
tor, and the sour
e-re
eiver azimuth regarding the dip

dire
tion of the re�e
tor. The traveltime is given by (e.g. Yilmaz, 2001) as

∆tNMO = t− t0. (A.1)

In another way, it 
an be introdu
ed as

∆tNMO = t0[

√

1 + (
x

vNMOt0
)2 − 1]. (A.2)

For a single horizontal layer medium vNMO is equal to the velo
ity of the medium above

the re�e
tor and for a single dipping-layer medium

vNMO =
v

cosφ
, (A.3)
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Figure A.1: Seismi
 data is sorted by 
ommon midpoint and then 
orre
ted for normal

moveout (https://en.wikipedia.org/wiki/Normal_moveout).

where φ is the dip angle of the re�e
tor. In the 
ase of horizontally strati�ed media vNMO

is equal to vrms whi
h 
an be obtained by

v2rms =
1

t0

N
∑

i=1

v2i∆τi, (A.4)

where vi is the interval velo
ity of the ith layer and ∆τi is the verti
al two-way time through

the ith layer and t0 =
∑N

i=1
∆τi. In this formula, all velo
ities from the layers above are

in
orporated to obtain RMS velo
ity.

Table A.1 gives a summary of NMO velo
ities in various earth models. In many 
ases

Table A.1: NMO velo
ity for various earth models (Yilmaz, 2001).

Model NMO Velo
ity

Single horizontal layer v

Horizontally strati�ed earth vrms provided the spread is small

Single dipping layer

v
cosφ

Multilayered earth with arbitrary dips vrms provided the spread is small

and the dips are gentle

velo
ities of waves in
rease with depth and when a wave travels to the deeper layer, the

https://en.wikipedia.org/wiki/Normal_moveout
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average velo
ity it experien
es along the raypath is higher than average velo
ity in shallower

layer. The raypaths of the multiples are di�erent from primaries, as a result, the average

velo
ities whi
h they experien
e are di�erent. Most of the multiples usually travel through

the shallower parts so the velo
ity they experien
e is lower than primaries at a 
ertain

arrival time. Equation A.2 illustrates that a lower velo
ity leads to a higher moveout.

With a 
orre
t velo
ity model for the primaries we 
an obtain a 
orre
t normal move out

and then, after normal moveout 
orre
tion and before sta
king, most of the primaries will

be �attened. The events left un�attened are either primaries whi
h were not properly


orre
ted or multiples. Any �lter whi
h di�erentiates between the dip events and �at

events 
an be used for multiple suppression. There are some domains to transform the

data and suppress the multiple su
h as f-k or Radon. After transforming the data ba
k to

time domain we will have multiple-attenuated data.

A.2 f-k �ltering

In frequen
y-wavenumber (f-k) domain, frequen
y (f) is de�ned as the inverse of the period

(T) and the wavenumber (k) is the inverse of the wavelength (λ). f-k stands for frequen
y-
wavenumber �ltering. Considering that a wavelength in the spa
e is similar to period

length in time, wavenumber is the spatial equivalent of frequen
y in time.

k =
1

λ
(A.5)

f =
1

T
(A.6)

For data as a fun
tion of two 
oordinates (i.e. time and o�set for a CMP gather) the

f-k transform is a double Fourier transform over both 
oordinates. First, data(x,t) are

transformed to the temporal frequen
y domain(e.g. Oppenheim et al., 1983)

D(x, f) =

∫

+∞

−∞

d(x, t)e−j2πftdt, (A.7)

and in the se
ond step, a Fourier transform over the spatial 
oordinate 
an be applied,

whi
h is de�ned as

D(kx, f) =

∫

+∞

−∞

D(x, f)e+j2πkxxdx. (A.8)

A linear event with dip in time domain will also appear as a linear dip event in frequen
y

domain. If we 
hoose the velo
ity value whi
h is in the range between the average velo
ities

of primaries and multiples and apply NMO 
orre
tion, primaries will be over
orre
ted and

multiples will be under
orre
ted. Then, they will appear in two di�erent quadrants in the

f-k plane. We 
an exploit this to re
ognize and thus attenuate multiples. Transforming

the data again to the time domain and reverse NMO appli
ation yield multiple attenuated

data (Ryu, 1982). f-k �ltering is widely used for separating surfa
e waves from body waves

see Embree et al. (1963); Mar
h and Bailey (1983); Dun
an and Beresford (1994). f-k

�ltering 
an be applied to 3D seismi
 data. In this 
ase data will be transformed into f-k-k

domain Peardon and Ba
on (1992); Meunier (1999).
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Figure A.2: Simple sket
h of event 
onversion from time domain into frequen
y-

wavenumber domain; event with negative and positive dip angle in time domain appear in

two di�erent quadrants in the f-k plane.

A.3 Radon transform

The linear Radon transform whi
h is also 
alled τ − p or slant sta
k is given by (Diebold

and Sto�a, 1981)

m(px, τ) =

∫

+∞

−∞

d(x, t = τ + pxx)dx, (A.9)

whi
h implies that the data in time domain is summed up along a straight line with time

inter
ept τ and dip p. Summing up along a line is not always linear and di�erent radon

transforms 
an be derived. For example, paraboli
 and hyperboli
 Radon transforms are

widely used, the only di�eren
e between them is the mapping operator. The paraboli


Radon transform is de�ned as (Hampson, 1986)

m(q, τ) =

∫

+∞

−∞

d(x, t = τ + qx2)dx, (A.10)

and the hyperboli
 Radon transform 
an be expressed as (Thorson and Claerbout, 1985)

m(ν, τ) =

∫

+∞

−∞

d(x, t =

√

τ2 +
x2

ν2
)dx. (A.11)

The Radon �ltering approa
h is very similar to f-k approa
h. NMO 
orre
ted data are

transformed into Radon domain. Then multiples are muted and data will be transformed

ba
k into time domain. The disadvantage of f-k �ltering and Radon approa
h is that there

should be 
ertain di�eren
es between primary moveout and multiple moveout. Applying

these methods in near o�sets is very di�
ult be
ause there is very little or no di�eren
e in

moveout between the two.
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Convolution

Convolution of two signals means that one signal is reversed in time and moved along the

other signal. At ea
h lag, elements are multiplied in verti
al dire
tion. Then, the resulting

produ
ts are added. To illustrate this I have provided an example, Figure B.1 and Table B.1

show the 
onvolution of the sour
e wavelet (1
2
, 1) with the re�e
tivity sequen
e (−1

2
, 0, 1)

Convolution of two signals a(t) and b(t) in a 
ontinuous situation is de�ned as

Table B.1: Convolution of the sour
e wavelet (1
2
, 1)

with the re�e
tivity sequen
e (−1

2
, 0, 1)

Re�e
tivity Output

sequen
e response

−
1

2
0 1

1

1

2
−

1

4

1

1

2
−

1

2

1

1

2

1

2

1

1

2
1

c(t) = a(t) ∗ b(t) =

∫

+∞

−∞

a(τ)b(t− τ)dτ, (B.1)

where the asterisk denotes 
onvolution. Convolution in frequen
y domain is a s
alar

multipli
ation (e.g. Oppenheim et al., 1983).

C(f) = A(f)B(f). (B.2)

This shows 
onvolution is a 
ommutative operation, it means inter
hanging the order of

the input has no e�e
t on the result.
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Figure B.1: Convolution of the sour
e wavelet (1
2
, 1) with the re�e
tivity sequen
e (−1

2
, 0, 1)
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Correlation

Correlation is an operation that is used to measure the similarity or time alignment of two

signals. To do this, one signal is moved along the other signal and at ea
h lag elements are

multiplied in verti
al dire
tion then the resulting produ
ts are added. The time lag at whi
h

they have the highest similarity is de�ned. Cross
orrelation is 
orrelation of two di�erent

signals and measures how mu
h these two signals are similar to ea
h other. Correlation of

a time series with itself is 
alled auto
orrelation. Table C.1 shows the 
ross
orrelation of

the following wavelets:

Wavelet 1 : (1, 1,−2,−1, 0)
Wavelet 2 : (0, 1, 1,−2,−1)
Wavelet 2 is obtained by shifting wavelet 1 by one sample. From the Table C.1 and Figure

C.1(a) we 
an see that the time lag with the most similarity between the two signals is

observed at lag -1. This means that if wavelet 2 shifts one sample ba
k in time then these

two wavelets have the most similarity. If the order of these two wavelets is inter
hanged,

the 
ross
orrelation result would be di�erent. In this 
ase, whi
h is illustrated in the Table

C.2 and Figure C.1(a), the time lag where these two wavelets depi
t the most similarity is

1.
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Table C.1: Cross
orrelation of the wavelet (1, 1,−2,−1, 0)
with (0, 1, 1,−2,−1)

1 1 -2 -1 0 Output Lag

0 1 1 -2 -1 -1 -4

0 1 1 -2 -1 -3 -3

0 1 1 -2 -1 1 -2

0 1 1 -2 -1 7 -1

0 1 1 -2 -1 1 0

0 1 1 -2 -1 -3 1

0 1 1 -2 -1 -1 2

0 1 1 -2 -1 0 3

0 1 1 -2 -1 0 4

Table C.2: Cross
orrelation of the wavelet(0, 1, 1,−2,−1)
with (1, 1,−2,−1, 0)

0 1 1 -2 -1 Output Lag

1 1 -2 -1 0 0 -4

1 1 -2 -1 0 0 -3

1 1 -2 -1 0 -1 -2

1 1 -2 -1 0 -3 -1

1 1 -2 -1 0 1 0

1 1 -2 -1 0 7 1

1 1 -2 -1 0 1 2

1 1 -2 -1 0 -3 3

1 1 -2 -1 0 -1 4
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Figure C.1: a) ilustrate the 
ross
orrelation of the wavelet (0, 1, 1,−2,−1) with

(1, 1,−2,−1, 0) the most similarity between the two signals is observed at lag -1 while

b) ilustrate the 
ross
orrelation of the wavelet (0, 1, 1,−2,−1) with (1, 1,−2,−1, 0) the

most similarity between the two signals is observed at lag 1.
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Table C.3: Auto
orrelation of the wavelet (0, 1, 1,−2,−1)

0 1 1 -2 -1 Output Lag

0 1 1 -2 -1 0 -4

0 1 1 -2 -1 -1 -3

0 1 1 -2 -1 -3 -2

0 1 1 -2 -1 1 -1

0 1 1 -2 -1 7 0

0 1 1 -2 -1 1 1

0 1 1 -2 -1 -3 2

0 1 1 -2 -1 -1 3

0 1 1 -2 -1 0 4
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Figure C.2: The auto
orrelation of the wavelet (0, 1, 1,−2,−1). The maximum output is

observed at lag zero and the result is symmetri
.

Table C.3 and Figure C.2 show the output of di�erent lags of auto
orrelation of the wavelet

2. The maximum output is obtained at zero lag and the result is symmetri
. Correlation

of two signals a(t) and b(t) in a 
ontinuous situation is de�ned as

φab(t) =

∫

+∞

−∞

a(τ)b(t+ τ)dτ, (C.1)

where the symbol φ denotes 
orrelation. Correlation in frequen
y domain is a s
alar

multipli
ation of one signal with the 
omplex 
onjugate of the se
ond one (e.g. Oppenheim
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et al., 1983)

φab(f) = A(f)B∗(f). (C.2)

It implies 
orrelation is not a 
ommutative operation, whi
h means that if the order of

two inputs is 
hanged then the result be
omes its 
omplex 
onjugate. In other words,


orrelation reverses in time dire
tion

φba(f) = φ∗

ab(f) = B(f)A∗(f). (C.3)

Therefore, it is valid that

φba(t) = φab(−t), (C.4)

and

φaa(t) = φaa(−t). (C.5)

It means that auto
orrelation of a signal is symmetri
 in time. Thus, only the 
al
ulation

of one side of auto
orrelation lags is su�
ient.
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Table D.1: CMP sear
h parameters: Sigsbee2B

Parameters for sta
king multiples, o�sets from 0 m to 4500 m

Coheren
e measurement Semblan
e

Coheren
y 5

Minimum o�set aperture 1000 m at 0.002 s

Maximum o�set aperture 3000 m at 8 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 1700 m/s

Parameters for sta
king multiples, o�sets from 4500 m to 7000 m

Coheren
e measurement Semblan
e

Coheren
y 10

Minimum o�set aperture 4800 m at 0.002 s

Maximum o�set aperture 6000 m at 8 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 1700 m/s

Parameters for sta
king primaries

Coheren
e measurement Semblan
e

Coheren
y 5

Minimum o�set aperture 1000 m at 0.002 s

Maximum o�set aperture 3000 m at 8 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 6000 m/s
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Table D.2: CMP sear
h parameters: TGS data

Parameters for sta
king multiples, o�sets from 150 m to 3638 m

Coheren
e measurement Semblan
e

Coheren
y 15

Minimum o�set aperture 1000 m at 0.002 s

Maximum o�set aperture 1500 m at 3.5 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 1550 m/s

Parameters for sta
king multiples, o�sets from 3638 m to 7338 m

Coheren
e measurement Semblan
e

Coheren
y 20

Minimum o�set aperture 4000 m at 0.002 s

Maximum o�set aperture 5500 m at 3.5 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 1550 m/s

Parameters for sta
king primaries

Coheren
e measurement Semblan
e

Coheren
y 5

Minimum o�set aperture 720 m at 0.002 s

Maximum o�set aperture 3750 m at 3.5 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 6000 m/s
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Table D.3: CMP sear
h parameters: BP 2004 dataset

Parameters for sta
king multiples, o�sets from 0 m to 3500 m

Coheren
e measurement Semblan
e

Coheren
y 15

Minimum o�set aperture 1000 m at 0.006 s

Maximum o�set aperture 2000 m at 6 s

Lower moveout velo
ity 
onstraints 1480 m/s

Upper moveout velo
ity 
onstraints 1550 m/s

Parameters for sta
king multiples, o�sets from 3500 m to 8000 m

Coheren
e measurement Semblan
e

Coheren
y 15

Minimum o�set aperture 4800 m at 0.006 s

Maximum o�set aperture 5000 m at 6 s

Lower moveout velo
ity 
onstraints 1480 m/s

Upper moveout velo
ity 
onstraints 1550 m/s

Parameters for sta
king primaries

Coheren
e measurement Semblan
e

Coheren
y 5

Minimum o�set aperture 1000 m at 0.2 s

Maximum o�set aperture 2500 m at 8 s

Lower moveout velo
ity 
onstraints 1450 m/s

Upper moveout velo
ity 
onstraints 5000 m/s

Table D.4: Parameters whi
h was used for adaptive subtra
tion of multiples in Sigsbee2B

dataset in CMP domain

Operator length (in n of samples) 10

size of time windows (in number of samples) 50

size of spa
e windows 2

overlap of time windows 1

overlap of spa
e windows 1

Relative stabilization fa
tor 0.001

Norm 2
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Table D.5: Parameters whi
h was used for adaptive subtra
tion of multiples in Sigsbee2B

dataset in CSP domain

Operator length (in number of samples) 15

size of time windows (in number of samples) 200

size of spa
e windows 2

overlap of time windows 1

overlap of spa
e windows 1

Relative stabilization fa
tor 0.001

Norm 2

Table D.6: Parameters whi
h was used for adaptive subtra
tion of multiples in TGS dataset

Operator length (in number of samples) 10

size of time windows (in number of samples) 80

size of spa
e windows 2

overlap of time windows 1

overlap of spa
e windows 1

Relative stabilization fa
tor 0.001

Norm 2

Table D.7: Parameters whi
h was used for adaptive subtra
tion of multiples in BP 2004

dataset

Operator length (in n of samples) 10

size of time windows (in number of samples) 80

size of spa
e windows 2

overlap of time windows 1

overlap of spa
e windows 1

Relative stabilization fa
tor 0.001

Norm 2
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Table D.8: CSP data mapping parameters: Sigsbee2B dataset

Minimum o�set aperture -7932.0

Maximum o�set aperture 0

Minimum xtarget 3055.62

Maximum xtarget 27424.38

Minimum ttarget 0

Maximum ttarget 8.0

Minimum taper radius 300

Maximum taper radius 3500

Minimum aperture radius 700

Maximum aperture radius 7500

dx 11.43

v 1480
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Table D.9: CRS parameters: Sigsbee2B dataset Walda (2016).

General parameters

Dominant frequen
y 20 Hz

Coheren
e measurement Semblan
e

Coheren
e time window 56 ms

Velo
ity 
onstraints

Near surfa
e velo
ity 1500 m/s

Lower moveout velo
ity 
onstraints 1400 m/s

Upper moveout velo
ity 
onstraints 6000 m/s

Sear
h apertures

Minimum midpoint aperture 300 m at 2 s

Maximum midpoint aperture 500 m at 11 s

Minimum o�set aperture 750 m at 2 s

Maximum o�set aperture 3000 m at 11 s

Con�i
ting dip handling

Number of dip intervals 17

Dip intervals in

◦
[-90,-45℄, [-45,-30℄, [-30,-20℄,

[-20, -12.5℄, [-12.5,-7.5℄, [-7.5,-3℄, [-3,3℄,

[3, 7.5℄ ,[7.5,12.5℄, [12.5,20℄,

[20,30℄, [30,45℄, [45,90℄

Global optimization parameters

Algorithm Di�erential evolution

Number of individuals 20

Crossover probability 74.55 %

Di�erential weight 0.9362

Minimum number of iterations 30

Maximum number of iterations 200

Number of allowed stagnated iterations 10

Lo
al optimization parameters

Lower 
oheren
e threshold 1.00 at 0 s

Upper 
oheren
e threshold 1.00 at 10 s

Maximum Number of iterations 100

Minimum deviation required 10

−5

Transformation radius of RN 100 m

Initial variation of emergen
e angle 2

◦

Initial variation of RNIP 3 %

Initial variation of RN 4

◦
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Table D.10: CRS sear
h parameters: TGS data Walda (2016).

General parameters

Dominant frequen
y 40 Hz

Coheren
e measurement Semblan
e

Coheren
e time window 26 ms

Velo
ity 
onstraints

Near surfa
e velo
ity 1480 m/s

Lower moveout velo
ity 
onstraints 1300 m/s

Upper moveout velo
ity 
onstraints 4000 m/s

Sear
h apertures

Minimum midpoint aperture 300 m at 0 s

Maximum midpoint aperture 500 m at 5 s

Minimum o�set aperture 750 m at 0 s

Maximum o�set aperture 3000 m at 5 s

Con�i
ting dip handling

Number of dip intervals 17

Dip intervals in

◦
[-90,-45℄, [-45,-22.5℄, [-22.5,-15℄,

[-15, -10℄, [-10,-7℄, [-7,-4℄, [-4,-2℄,

[-2, -0.75℄ ,[-0.75,0.75℄, [0.75,2℄,

[2,4℄, [4,7℄, [7,10℄, [10,15℄,

[15,22.5℄, [22.5, 45℄, [45,90℄

Global optimization parameters

Algorithm Di�erential evolution

Number of individuals 20

Crossover probability 74.55 %

Di�erential weight 0.9362

Minimum number of iterations 30

Maximum number of iterations 200

Number of allowed stagnated iterations 10

Lo
al optimization parameters

Lower 
oheren
e threshold 1.00 at 0 s

Upper 
oheren
e threshold 1.00 at 5 s

Maximum Number of iterations 100

Minimum deviation required 10

−5

Transformation radius of RN 100 m

Initial variation of emergen
e angle 2

◦

Initial variation of RNIP 3 %

Initial variation of RN 4

◦
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Table D.11: CRS sta
king parameters: TGS data Walda (2016).

Sta
king parameters

Minimum midpoint aperture 50 m at 0 s

Maximum midpoint aperture 150 m at 5 s

Minimum o�set aperture 100 m at 0 s

Maximum o�set aperture 3000 m at 5 s

Velo
ity toleran
e for multiple predi
tion 5 %

Di�ra
tion separation

Minimum midpoint aperture 50 m at 0 s

Maximum midpoint aperture 150 m at 5 s

Minimum o�set aperture 750 m at 0 s

Maximum o�set aperture 3000 m at 5 s

Di�ra
tion weight threshold 0.5

Partial sta
ks

Regularized re
eiver interval 25 m

Minimum lo
al midpoint aperture 50 m at 0 s

Maximum lo
al midpoint aperture 150 m at 5 s

Lo
al o�set aperture 50 m

Migration

Minimum midpoint aperture 1000 m at 0 s

Maximum midpoint aperture 2000 m at 5 s

Minimum o�set aperture 2000 m at 0 s

Maximum o�set aperture 4000 m at 5 s
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