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Abstract
The static hybridization mean-field (HybMF) approach is generalized to the nonequi-
librium case for Kondo systems by employing the nonequilibrium perturbation theory
for Keldysh-Matsubara Green’s functions. This time-dependent hybridization mean-field
(tHybMF) is a conserving approximation, readily accessible by Runge-Kutta methods and
can be generally used to address various problems concerning Kondo systems far from
thermal equilibrium, such as time-dependent Kondo screening as well as the time- depen-
dent competition of the Kondo effect with the Ruderman-Kittel-Kasuya-Yosida indirect
magnetic exchange interaction. Another line of research comprises the Kondo model as a
paradigmatic system to study the longitudinal and transversal dynamics of spins coupled
to a conduction-electron system, which will be in the focus of the present work. Here,
the equations of motion for charge, hybridization and spins are derived. Subsequently,
the focus is set on the transversal spin dynamics, which appears to be a more classical
phenomenon, and relations to previous approaches to classical spin dynamics such as the
quantum-classical hybrid method and the linear-response spin dynamics are established.
In addition the Landau-Lifshitz-Gilbert equation and in particular the Gilbert-damping
term is re-derived revealing that this concept is ill-defined for the case of a non-interacting
one-dimensional system. Moreover, a numerical study of the real-time dynamics of a
classical spin subject to an external magnetic field and locally exchange coupled to a
one-dimensional system of conduction electrons is performed. It is shown, that (i) the re-
laxation of the spin results from retardation effects in the coupled electron-spin dynamics;
(ii) as total energy and spin are conserved in the relaxation process, energy and spin car-
ried by dispersive wave packets of excitations are dissipated into the bulk of the system;
(iii) in contrast to the classical theory, the nutational motion of a quantum spin is effi-
ciently damped on a femtosecond time scale, which is explained in the strong-coupling
(JS →∞) limit as quantum dephasing of the eigenmodes in an emergent two-spin model
that is weakly coupled to the bulk of the system. Finally, the effect of electron correla-
tions on the spin dynamics is explored. At quarter-filling, correlation-induced time-scale
separation is observed in terms of two main electronic dissipation channels, namely the
transport of excitations via correlated hopping and via excitations of correlation-induced
magnetic moments become active on largely different time-scales. At half-filling, it is
demonstrated that strong electron correlations can lead to an incomplete relaxation on
intermediate time scales which is reminiscent of prethermalization and so far has been
observed in purely electronic systems only.





Zusammenfassung
Die Hybridisierungs-Mean-Field Theorie wird unter Verwendung der diagrammatischen
Störungstheorie für die Keldysh-Matsubara Greensche Funktion verallgemeinert, um
Kondo-Systeme im Nichtgleichgewicht zu beschreiben. Die zeitabhängige Mean-
Field Näherung respektiert mikroskopische Erhaltungsgrößen, ist numerisch effizient
lösbar mit Runge-Kutta Methoden und erlaubt im Allgemeinen die Behandlung
verschiedener Probleme im Bereich der Kondo-Physik, darunter die zeitliche En-
twicklung des Kondo-Effektes sowie die Beschreibung der konkurrierenden Wechsel-
wirkung zwischen Kondo-Effekt und der Ruderman-Kittel-Kasuya-Yosida indirekten
magnetischen Wechselwirkung im Nichtgleichgewicht. Insbesondere kann die lon-
gitudinale und transversale Dynamik von an Leitungselektronen gekoppelten Spins,
beschrieben durch das Kondo-Modell, untersucht werden, was den Forschungsschw-
erpunkt dieser Arbeit darstellt. Zunächst werden Bewegungsgleichungen für die
Ladung, die Hybridisierung sowie die Spins hergeleitet. Anschließend wird der
Fokus auf die transversale Spindynamik gelegt, welche eher ein klassisches Phänomen
darstellt. Diese wird mit bereits existierenden Methoden in der Li-teratur ver-
glichen, darunter die quanten-klassische Hybridmethode sowie Linear-Response Spin-
dynamik. Weiterhin werden die Landau-Lifshitz-Gilbert Bewegungsgleichung sowie
die Gilbert-Dämpfungskonstante aus der transversalen Spindynamik hergeleitet und es
wird gezeigt, dass diese für nicht-korrelierte Systeme in einer Dimension nicht wohl-
definiert sind. Darüberhinaus wird die Dynamik von einem klassischen Spin im äußeren
Magnetfeld, welcher lokal durch die Austauschwechselwirkung an ein itinerantes Elek-
tronensystem gekoppelt ist, numerisch untersucht. Hierbei wird Folgendes gezeigt: (i)
Retardierungseffekte in der gekoppelten Spin- und Elektronendynamik führen zur Relax-
ation des Spins. (ii) Da der Gesamtspin sowie die Gesamtenergie erhalten sind, werden
während des Relaxationsprozesses Energie und Spin, getragen durch dispersive Wellen-
pakete, an das Elektronensystem abgeleitet. (iii) Im Gegensatz zum klassischen Spin,
ist die Nutation eines Quantenspins sehr wirksam innerhalb von wenigen Femtosekun-
den gedämpft. Dies wird im Limes starker Kopplung (JS → ∞) als Dephasierung der
Eigenmoden eines Zwei-Spin Systems erklärt, welches schwach an ein Elektronensys-
tem gekoppelt ist. Abschließend wird der Einfluss der elektronischen Korrelation auf die
Spindynamik numerisch untersucht. Bei Viertelfüllung führen Korrelationen im elektron-
ischen System zu einer Separation der Zeitskalen, was zur Aktivierung zweier
Dissipations- Kanälen auf sehr unterschiedlichen Zeitskalen führt, nämlich Transport
von Anregungen über korrelierte Hoppingprozesse sowie über magnetische Anregungen.
Bei Halbfüllung wird gezeigt, dass starke Elektronenkorrelation die Relaxation des Spins
zwischenzeitlich unterdrückt, ähnlich wie bei dem Phänomen der Präthermalisierung, was
bisher nur in rein elektronischen Systemen beobachtet wurde.
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1 Motivation and Introduction

The advent of ground breaking development of electronic devices based on semicon-
ductor transistors has lead to the ubiquitous information society in which we are living
today. This progress has been achieved by the miniaturization of electronic devices, i.e.
a shrinking in size of the semiconductor transistors in previous decades, as postulated by
Moore [1965]. However, transistors cannot be scaled down infinitely due to fundamental
physical limitations [Lundstrom, 2003] and Moore’s law may reach its end in the very
near future [Iwai, 2016; Waldrop, 2016]. The emerging scaling limits of the charge-based
semiconductor devices towards atomic-scale structures have led to a rethinking and the
development of alternative information processing technologies. One promising approach
is called spintronics [Wolf et al., 2001], which either adds the spin degree of freedom to
conventional charge-based electronic devices in macro-scale systems or exploits the spin
alone to develop atomic-scale spin-based devices.

In particular, the all-spin-based device concept realized by Khajetoorians et al. [2011]
to process information is a promising approach with key advantages compared to the
charge-based concepts, such as non-volatility, and as a result shows high energy effi-
ciency and compatibility with non-volatile storage technology. Further advantages com-
prise increased data processing speed as well as increased integration densities. Also, non-
volatile storage technology based on spin degrees of freedom has made striking progress
in recent years. Here, the ultimate objective to code data in single-atom bits is clearly
reached [Donati et al., 2016; Natterer et al., 2016]. The fabrication of such systems,
i.e. atomic-scale spin chains or single atoms adsorbed on a metallic substrate is read-
ily technically viable either by self-assembly [Bode et al., 2007; Nadj-Perge et al., 2014]
or by combined bottom-up atomic fabrication with spin-resolved scanning-tunneling mi-
croscopy (STM) [Wiesendanger, 2009]. Moreover, STM-based methods are established
as reliable tools to resolve magnetic structures with subnanometer spatial resolution. In
particular, the time-resolution of STM-based tools has been recently improved to charac-
terize localized spin dynamics and detect spin relaxation times [Loth et al., 2012, 2010;
Nunes and Freeman, 1993; Spinelli et al., 2014; Yoshida et al., 2014].

The theoretical analysis of the spin dynamics and relaxation observed in the above
STM-based experiments is a demanding and interesting task. A localized spin switched
by an external magnetic field shows precessional motion. However, if the spin is coupled
to an extended bath, e.g. a conduction electron system, the spin relaxes and eventually
reaches a new equilibrium state, as the energy and angular momentum can be transferred
into the electronic system.
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This process has been extensively studied on a phenomenological level by means of
the Landau-Lifshitz-Gilbert equation (LLG) [Gilbert, 2004; Landau and Lifshitz, 1935],
consisting of precessional and a pure phenomenological damping terms. The LLG equa-
tion was originally developed to study magnetization dynamics of macroscopic samples,
but nowadays it has become an essential approach to atomistic simulations of magnetic
materials [Evans et al., 2014; Skubic et al., 2008; Tatara et al., 2008]. The obvious ad-
vantage of the LLG approach is its broad applicability to systems of practical interest
up to a 100-nanometer length scale and time regimes up to picoseconds Evans et al.
[2014], which comes from the fact that in the LLG equation, only the time-scale of
the spins must be taken into account. However, the LLG concept has some signifi-
cant weakpoints: Firstly, although the Gilbert damping constant has been computed nu-
merically from a more fundamental model including electron degrees of freedom ex-
plicitly [Bhattacharjee et al., 2012; Onoda and Nagaosa, 2006; Umetsu et al., 2012] or
in some cases even from first principles [Antropov et al., 1995; Capelle and Gyorffy,
2003; Ebert et al., 2011; Kuneš and Kamberský, 2002a; Sakuma, 2012], in general it is
not clear how to define Gilbert damping for atomistic models. Thus in general, the
LLG approach possesses no predictive power due to the inherent phenomenological
damping term. The same applies to inertia effects which become important for ultra-
fast processes on a femtosecond time-scale [Kimel et al., 2009], which have been intro-
duced and studied phenomenologically by an additional term to the LLG equation with
a second-order time derivative of the spin [Ciornei et al., 2011; Olive et al., 2012]. As
in the case of the damping term, the nutational term can also be derived on a micro-
scopic level [Bhattacharjee et al., 2012; Kikuchi and Tatara, 2015]. However, there have
been only few studies with realistic parameters taken from first-principles calculations
[Böttcher and Henk, 2012; Thonig et al., 2016]. Secondly and more importantly, the LLG
theory relies on two partially related assumptions: (i) the electron-spin coupling is as-
sumed to be weak and can be treated perturbatively to lowest order. (ii) a separation of
time-scales is assumed, i.e. the impurity spin dynamics is slow compared to the electron
dynamics. Consequently this concept must break down, for (i) strong spin-electron cou-
plings and (ii) when time scale of the impurity spin becomes comparable to the electronic
dynamics. This situation occurs in fast magnetization processes in a sub-femtosecond
regime, experimentally realized, e.g., by ultrafast optical manipulation of magnetic order
[Kirilyuk et al., 2010].

On the atomistic level, the Gilbert damping must originate from the coupling of the spin
to its environment. Thus, a successful approach beyond the LLG concept must in general
take into account the interdependent interactions of the impurity spin to the host material
[Koopmans et al., 2010], which are active on different length and time scales, such as the
coupling of the spin to the conduction-electron system [Cinchetti et al., 2006] and lattice
degrees of freedom (phonons) [Koopmans et al., 2010] and electron-magnon scattering
[Carpene et al., 2008]. In addition, such an approach must overcome assumptions (i) and
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(ii) in order to be valid for all coupling strengths and time-scales to explore the physics
beyond the LLG theory.

This is the starting point of our work, which is devoted to the development of a com-
putationally efficient formulation in terms of the electronic one-particle reduced density
matrix explicitly including electronic degrees of freedom, which is applicable to arbitrary
coupling strengths and does not assume a separation of electron and spin time-scales.
Here, we neglect lattice degrees of freedom as well as electron-magnon interactions and
rather focus on the interaction of the impurity spins with the conduction-electron sys-
tem as presented by the well known Kondo model [Kondo, 1964] as a paradigmatic
system to study the real-time dynamics of the spins. To this end, we generalize the
static hybridization mean-field theory [Lacroix and Cyrot, 1979] to the nonequilibrium
case and multi-impurity Kondo systems. This time-dependent hybridization mean-field
(tHybMF) approach can be numerically evaluated by standard Runge-Kutta methods
[Verner, 2010] and opens up different interesting lines of research: Firstly, the spatial
and temporal formation or breaking of a Kondo singlet [Lechtenberg and Anders, 2014;
Medvedyeva et al., 2013; Nuss et al., 2015a] can be studied on a mean-field level. (ii)
Secondly, the competition of the Kondo effect with the Ruderman-Kittel-Kasuya-Yosida
(RKKY) indirect magnetic exchange interaction for systems with many magnetic impu-
rities, which has yet not been studied on the time domain, is accessible to the tHybMF
theory. (iii) Finally, another line of research comprises longitudinal and transversal spin
dynamics on an atomistic level representing the main focus of this thesis, which is orga-
nized as follows:

After this introduction, the correlated quantum lattice models of interest, such as
the Hubbard, Anderson and Kondo model and physics behind these models are intro-
duced first in Chapter 2. Subsequently, the nonequilibrium theory for quantum many-
body systems as well as the nonequilibrium perturbation theory in the context of the
Kadanoff and Baym [1962] equation are presented. Finally, a time-dependent mean-field
equation for the reduced one-particle density matrix is derived.

Based on the preliminary work of Chapter 2, we formulate the time-dependent hy-
bridization mean-field theory in Chapter 3. In addition we derive equations of motion for
hybridization, charge and spin dynamics for the multi-impurity Kondo model and discuss
potential applications of the tHybMF theory to impurity systems far from equilibrium.

In the following Chapter 4, we relate our theory to previous approaches in the literature.
To this end, we neglect the hybridization terms reflecting the longitudinal spin dynamics
and the time-dependent Kondo effect and focus mainly on transversal spin dynamics,
which appears to be a more classical phenomenon. Thereby the exact quantum-classical
hybrid spin dynamics (QCH-SD) [Elze, 2012; Hall, 2008] for the classical-spin Kondo
model is recovered, which includes electronic degrees of freedom explicitly. In addition,
LLG theory and in particular the Gilbert damping term is re-derived from the quantum-
classical hybrid approach in two steps: Firstly, in the weak-coupling limit, applying
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lowest-order linear-response theory in the spin-electron coupling, the electron degrees of
freedom can be integrated out altogether [Bhattacharjee et al., 2012; Onoda and Nagaosa,
2006], resulting in an equation of motion for the classical spins only, denoted as linear-
response spin dynamics (LR-SD), which possesses a temporally and spatially non-local
structure. Secondly, assuming a separation of time-scales, the LR-SD can be simplified
further by applying a Markov approximation resulting in the LLG equation. Finally, we
discuss the dependency of the Gilbert damping constant on the low-energy electronic
structure.

Chapter 5 is devoted to a comprehensive numerical study of the real-time dynam-
ics of a single classical spin coupled to a conduction electron system subject to a local
magnetic field. In Secs. 5.1 and 5.2 a noninteracting conduction electron system is ad-
dressed. Later on, in Sec. 5.3, we focus on a strongly correlated conduction electron
system to which the spin is coupled. Following a sudden quench of the magnetic field,
the real-time dynamics of the classical spin and of the conduction electron spins are ex-
amined rigorously. In particular, the microscopic cause of the relaxation is identified and
the reversal time as a function of the interaction and the field strength is analyzed. In
addition, we study the nutational behavior in the dynamics of a classical spin as well
as a quantum spin in Secs. 5.2. Moreover, we explore quantum effects by a system-
atic time-dependent density-matrix renormalization group (tDMRG) [Haegeman et al.,
2011, 2016; Schollwöck, 2011] study for different spin quantum numbers S and by
comparing with QCH-SD theory for the classical-spin Kondo model. In the follow-
ing Sec. 5.2, we study directly the effect of electronic correlations on the real-time
dynamics of a classical spin coupled to a Hubbard chain by means of a combination
of the LR-SD approach [Bhattacharjee et al., 2012; Onoda and Nagaosa, 2006] for the
spin dynamics and the tDMRG method for the correlated electronic system. We demon-
strate that correlation-induced time-scale separation elicits qualitatively new effects in
the spin dynamics similar to prethermalization [Kollar et al., 2011; Marcuzzi et al., 2013;
Moeckel and Kehrein, 2008, 2010] or metastability of excitations due to lack of phase
space for decay [Hofmann and Potthoff, 2012; Rausch and Potthoff, 2016; Rosch et al.,
2008; Strohmaier et al., 2010], i.e., physics which so far has been observed in purely
electronic quantum systems only.

Finally, in Chapter 6, we conclude this thesis by giving a summarized overview
followed by a brief outline of future prospects and potential applications of the time-
dependent hybridization mean-field theory as well as the quantum-classical hybrid spin
dynamics.



2 Models and methods

In this chapter we briefly introduce fermionic Hamiltonians for quantum many-body prob-
lems in solid state systems. To this end, it is convenient to use the formalism of the second
quatization for interacting many electron systems, as the proper symmetry of the many-
electron wave function is imposed from the very beginning in terms of commutation rules
for electron creation and annihilation operators. The Hamiltonian itself is written in terms
of field operators and reads:

H =
∑
αβ

Tαβ c
†
αcβ +

1

2

∑
αβδγ

Vαβγδ c
†
αc
†
βcδcγ , (2.1)

where the Greek letters label the spin projection, orbitals and lattice sites. The first term
in the Hamiltonian is an one-particle operator and describes the hopping of Fermions
between arbitrary sites with amplitude Tα,β , which is in general determined by an overlap
integral between the local wave functions and the crystalline structure. c†α and cα are
the corresponding creation and annihilation operators. The second term is a two-particle
operator and represents the interaction between fermions on different sites, where Vαβγδ
denotes the interaction matrix element between two-particle states. In solid state systems
the two-particle matrix element describes the screened Coulomb interaction.

In Sec. 2.1 and Sec. 2.2 we briefly introduce the Hubbard, Anderson and Kondo Hamil-
tonian as paradigmatic models for interacting fermionic quantum lattice systems. These
models capture the relevant elementary electro-magnetic interactions between electrons in
a solid state system, which leads to interesting phenomena such as collective magnetism,
Mott insulating behavior, super conductivity, Kondo screening or non-Fermi liquid be-
havior [Coleman, 2016].

The nonequilibrium theory for quantum many-body systems is presented in Sec. 2.3.
Here, we introduce the contour Green’s function method and discuss the nonequilibrium
perturbation theory in the context of the Kadanoff and Baym [1962] equation. Finally, a
time-dependent equation for the reduced one-particle density matrix is derived.

2.1 Hubbard model

In this section, we begin with the simplest paradigm model of correlated electrons, the
single-band Hubbard model and discuss the metal-insulator transition based on the book
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by Gebhard [1997]. The nowadays so-called Hubbard model was introduced to approx-
imately model of electron interaction in narrow energy band models independently by
Gutzwiller [1963], Hubbard [1963] and Kanamori [1963]. The Hamiltonian of the single-
band Hubbard model reads as

H =
∑
ijσ

Tijc
†
iσcjσ +

U

2

∑
iσ

niσni−σ . (2.2)

The parameters of the Hubbard model are the interaction U (local screened Coulomb
interaction), the lattice dimension d and the structure of the lattice, which is determined
by the hopping matrix elements Tij . Further parameters are given by the temperature
kBT/W and the density of electrons with spin σ denoted as nσ = Nσ/L, where L stands
for the number of sites, Nσ =

∑L
i=1 niσ for the number of electrons with spin σ and W

denotes the bandwidth.
The Hubbard Hamiltonian (2.2) is a minimal model for studying low-energy and low-

temperature phenomena as the theory of itinerant magnetism [Tasaki, 1998], the metal-
insulator transition [Imada et al., 1998] and recently also superconductors in doped Mott
insulators. In the following, we describe basic properties of the Hubbard model, in par-
ticular we will focus on the metal to insulator transition, as we will address this effect in
Sec. 5.3 in the context of the relaxation of a classical spin coupled to a one-dimensional
Hubbard model. The Hubbard model is integrable [Shastry, 1986] in 1d and was solved
analytically by Lieb and Wu [1968] via the Bethe approach. However, in higher dimen-
sion d > 1 the model is not integrable and an exact solution is accessible only in a few
limiting cases like the Fermi-gas limit and the atomic limit [Hubbard, 1963]. Now we
focus on the large-U limit and discuss the metal to Mott insulator transition. In the case
of N < L with N = N↑ + N↓ (less than half band-filling) the Hamiltonian (2.2) de-
scribes in any dimension an ideal metal, as holes are mobile charge carriers. In the case
of an exactly half filled band N↑ = N↓ = L/2 the Hubbard model describes a metal for
U < Uc, where Uc is the critical interaction which depends on the microscopic detail of
the model. However, for large interactions U � W , electrons becomes localized and the
model Hamiltonian (2.2) describes an antiferromagnetic insulator and can be mapped via
the Schrieffer-Wolff transformation to the antiferromagnetic Heisenberg model, namely

H = JH
∑
i

sisi+1 , (2.3)

where JH ∼ 4T 2/U > 0 is the antiferromagnetic exchange interaction between rigid s =
1/2 spins. Proceeding from the aforementioned behavior at small U < Uc and large U �
W , the Hubbard model should be able to capture the Mott transition at a critical interaction
Uc. One exception is the 1d Hubbard model. Taken literally, in 1d the metallic phase only
occurs at U = 0 and the system is an insulator for any finite value of U . However a
residual hopping processes remains, as the charge gap ∆ ∼ e−1/U is small compared
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to the hopping amplitude T in the weak-coupling limit U → 0 as obtained from Bethe
approach by Ovchinnokov [1969].

2.2 Quantum impurity models in a nutshell

This section is based on the textbooks of Coleman and Hewson and describes the physics
of local moment formation and subsequently the interaction of this local moment with
the itinerant electrons of a non-magnetic host material, which leads to the Kondo effect,
a paradigm example of collective phenomena in the field of strongly correlated electrons.
The Kondo problem, and later the heavy Fermion physics, started essentially with the
observation of the so-called ’resistance minimum’ in the resistivity of gold, copper and
lead reported by de Haas et al. [1934]. However, the study of individual impurities be-
came technically manageable only 30 years later. In 1962 Clogston et al. published ex-
perimental studies on local magnetic moment formation, with an iron atom dissolved in
various transition metal alloys and demonstrated that the magnetic moments does not al-
ways survive. Later on, in 1964 Sarachik et al. confirmed the former experimental study
by de Haas et al. with a measurement of the resistivity of Mo-Nb and Mo-Re alloys con-
taining only 1% Fe concentration. These seminal experimental discoveries raised two
important questions for theoreticians:

• How is the formation of local magnetic moments possible in a host metal?
• How does the localized magnetic moment interact with the see of the itinerant con-

duction electrons of the host metal?

In the following we will briefly discuss theoretical attempts to explain both questions in
almost historical order. Initial studies, focused on identifying the cause of local moment
formation in metals, were made by Mott and Peierls [1937] and also Van Vleck [1953].
Their studies suggested that a sufficiently strong Coulomb interaction between electrons
on an atomic state would lead to localization of electrons and transform a metal into a
Mott insulator. However, the question of interaction between a magnetic impurity and the
host metal remained unstudied. Friedel and Blandin [1956] addressed the problem of a
magnetic impurity without local Coulomb interaction, coupling to the conduction electron
system and argued that the electrons scattering off metal transition atoms will hybridize
with the Bloch states of the host metal leading to resonant bound states. However, in the
absence of Coulomb interaction this concept does not explain the formation of localized
magnetic moments and also the resistance minimum as a consequence of screening of the
local moments remains unclear. Hence we need a unification of both above ideas, which
was realized by Anderson [1978] by the proposition of an appropriate Hamiltonian, which
nowadays is well-known as the Anderson model.
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2.2.1 Anderson model

The Anderson model in its simplest form as introduced by Alexander and Anderson
[1964] reads as

H = Hc +Hf +Hcf

=
∑
kσ

εkc
†
kσckσ + εf

∑
σ

nfσ + Unf↑nf↓ +
∑
k,σ

(V (k)c†kσfσ + H.c) , (2.4)

where Hc describes the non-interacting conduction-electron sea, Hf captures the atomic
physics of the impurity state and Hcf denotes the interaction between the impurity state
and the conduction band. c† (c) and f † (f ) are, respectively, the creation (annihilation)
operators for the conduction and the impurity electrons. εk stands for the energy of an
electron with momentum k and εf is the energy of the impurity state in absence of U ,
which is the Coulomb repulsion between two electrons in the impurity state. The impurity
local moment results from partially filled d- or f - orbitals, as they are highly localized
and narrow in shape and one cannot neglect the Coulomb repulsion in contrast to the s-
orbitals. The tunneling process between localized d- or f -orbitals and the Bloch states of
the conduction band, the hybridization process, with the amplitude V (k) is given by the
third expression Hcf .

The atomic limit: If the hybridization vanishes (V = 0), the Hamiltonian Hf remains
and describes the atomic physics of an isolated ion and one can study local moment for-
mation. Neglecting orbital degeneracy the atomic Hubbard model spectrum is given by
E(|nf = 0〉) = 0 (empty), E(|nfσ = 1〉) = εf (singly occupied with spin degeneracy)
andE(|nfσ = 2〉) = 2εf +U (doubly occupied). For U/2 > |εf +U/2| and repulsive U > 0
a singly occupied state with only two-fold spin degenerate degrees of freedom remains
and the d- or f -orbitals act effectively as a local moment. The immersion (V 6= 0) of
this system to a conduction-electron sea leads to different phenomena dependent on the
parameters of the model and the temperature.

Virtual bound state: If U = 0, the formation of electronic resonance, i.e. the concept
of Friedel and Blandin [1956] is recovered, which states that hybridization in the absence
of interaction broadens the localized impurity density of states. The width of the latter
can be calculated via Fermi’s golden rule and results in an average of the density of state
and the hybridization |V (k)|2 given by ∆ = π

∑
k |V (k)|2δ(εk − εf ). The mean-field

treatment of the full Hamiltonian (2.4) [Anderson, 1961], where both Coulomb interac-
tion and hybridization are active and competing with each other, confirms the result of
Friedel and Blandin [1956] at weak U < π∆. In contrast, in the case of strong cou-
pling U > π∆ two Lorentzian peaks corresponding to the up and down components of
the resonance are found at E ∼ ±U/2 for the particle-hole symmetric case. Hence, the
mean-field results presented by Anderson [1961] explain qualitatively the experimentally
observed formation of local moments. However the immersion of a local moment to a
conduction-electron sea at low temperatures is more involved as it leads to a strongly
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correlated collective phenomenon called Kondo effect. The very fundamental manifes-
tation of the Kondo effect is the appearance of a resonance peak in the impurity density
of states, the Kondo resonance at the Fermi energy, which occurs below the so-called
Kondo temperature TK ∝ exp(−U/∆) (for the symmetric Anderson model). However
the Kondo effect cannot be captured by the mean-field solution of Anderson [1961] and
is only accessible by non-perturbative methods. The Kondo effect arises primarily due
to the interaction between a localized magnetic moment or spin with the spin of the itin-
erant electrons of the host metal, consequently an effective spin Hamiltonian describing
the interaction between the spin of localized and itinerant electrons would be essentially
adequate to describe the Kondo effect. Such an effective Hamiltonian can be derived
from the Anderson model in the limit V 2/U � 1 by the Schrieffer-Wolff transformation
[Schrieffer and Wolff, 1966] leading to the Kondo model which we will discuss in the
following section.

2.2.2 Kondo model

Historically, the Kondo effect is associated with electron transport at low temperature
and in particular with the resistance minimum in metals doped with magnetic impuri-
ties. The experimental evidence of the correlation of a local magnetic moment (Curie-
Weiss term in the impurity susceptibility) and the resistance minimum in the host metal
by Sarachik et al. suggests to focus primarily on the interaction between the spins of lo-
calized and conduction electrons and neglect all remaining hypothetical effects coming
for instance from the impurity charge or the crystal field. Therefore Kondo [1964] used
the s-d interaction model or, equivalently, the Kondo model to calculate the scattering
probability of the conduction electrons up to the second Born approximation.

The Kondo model captures the interaction between the spins of a localized (impurity
spin) and itinerant conduction electrons of the host material. Its Hamiltonian reads

H =
∑
kσ

εkc
†
kσckσ + JSsi0 , (2.5)

where S denotes the impurity spin operator and si0 the conduction-electron spin at site i0
with si0 = 1/2

∑
σσ′ c

†
i0σ
σσσ′ci0σ′ . The exchange coupling parameter is given by J and

the Kondo effect is obtained for anti-ferromagnetic coupling i.e. J > 0. Using the above
Hamiltonian (2.5), Kondo [1964] discovered that the resistivity contribution from the spin
scattering to the local moment is temperature dependent and scales asR ∼ − ln(T ) which
combined with the other contributions to the resistivity arising from phonon-interaction
(R ∼ T 5) and a temperature-independent term coming from the impurity potential ex-
plains the experimental studies by Sarachik et al. rigorously. As a result at low tem-
peratures, the resistance of a metal increases logarithmically when the temperature is
decreased. Kondo’s observation solved the longstanding and fundamental question about
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the resistance minimum in metals. Nevertheless, it makes also wrong predictions as the
observed upturn in the resistance, occurring approximately at the Kondo temperature TK ,
does not saturate and diverges in the limit T → 0, indicating that Kondo’s perturbation
theory breaks down below the Kondo temperature TK .

A loophole theoretical framework for understanding the nature of the strongly cor-
related many-particle quantum state below the Kondo temperature was introduced by
Kenneth Wilson [1975] with a non-perturbative approach called Numerical Renormal-
ization Group, which provides exact numerical results. A new picture emerges from
Wilson’s calculation, which describes the following crossover: At energies larger than
TK ∝ exp(−1/J) the impurity is asymptotically free. In contrast at energies below the
characteristic Kondo scale TK the impurity is progressively screened into a singlet state
by the itinerant electrons of the host metal with energies close to the Fermi energy εF .
This screening process happens via virtual excitation which effectively flip the spin of the
impurity and create at the same time a spin excitation in the Fermi sea. Many of such
processes coming together lead to a new state, the Kondo resonance at the Fermi level,
which relates to a singlet ground state between impurity and conduction electrons. The
singlet state consists of the impurity and a screening cloud, which loosely speaking con-
tains all itinerant conduction electrons which are entangled with the impurity spin. The
length scale of the Kondo interaction, which describes the spatial extent of the Kondo
screening cloud, is given by the Kondo length scale ξK ∼ vF/TK , where vF is the Fermi
velocity. The scattering of the itinerant electrons with energies close to εF , which are
relevant for the conductivity, at the Kondo cloud results in enhanced resistivity in met-
als at low temperatures when doped with magnetic impurities. After Wilson’s numerical
renormalization approach, also analytic solutions via Bethe ansatz were presented inde-
pendently by Andrei [1980] and Wiegmann [1980a], which revealed the integrable nature
of the Kondo model and thus its full many body spectrum can be exactly diagonalized.
Later on Paul Wiegmann [1980b] proved that the original Anderson impurity model is
also completely integrable.

Today, in theoretical physics the Kondo and the Anderson impurity models are of-
ten used as "impurity solvers" for the dynamical mean-field approach to the physics
of strongly correlated materials in equilibrium [Georges et al., 1996] as well as in non-
equilibrium [Aoki et al., 2014]. Furthermore, the Kondo model is considered as a paradig-
matic system to study the real-time dynamics of a spin coupled to a conduction elec-
tron systems, which is experimentally accessible by spin-sensitive scanning probe meth-
ods, such as spin-polarized scanning-tunneling microscopy (SP-STM) [Loth et al., 2010;
Morgenstern, 2010; Nunes and Freeman, 1993; Wiesendanger, 2009; Yan et al., 2015].
The STM method allows for accurate spatial manipulation and resolution of atomic-scale
spin structures and the Kondo resonance can be measured via the current-versus-voltage
characteristic. Moreover the detection of spin-dependent exchange and correlation forces,
such as the Ruderman-Kittel-Kasuya-Yosida (RKKY) indirect magnetic exchange inter-
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action [Kasuya, 1956; Ruderman and Kittel, 1954; Yosida, 1957] allows for the study
of the competition between Kondo screening and magnetic ordering in multi-impurity
systems. A minimal realization where this competition already appears is given by the
two-impurity Kondo problem as studied by Jones et al. [1988]. The RKKY coupling is
an indirect inter-impurity magnetic interaction: A magnetic impurity couples to the con-
duction electrons locally and leads to the modulation of the spin density of the conduction
electron system, known as Friedel oscillation, which affects another impurity placed at a
certain distance. This indirect magnetic interaction between the two localized impurity
spins Si and Sj mediated via an oscillatory spin polarization of the conduction band can
be derived formally in second order perturbation theory [Nolting and Ramakanth, 2009]
and results in the effective Hamiltonian:

HRKKY = −JRKKYij Si · Sj , (2.6)

where the JRKKY is essentially the non-local static spin-susceptibility of the conduction
electrons χi,j at J = 0 and can be expressed as

JRKKYij = J2χij ∝ J2ρ
cos(kF r)

|i− j|d , (2.7)

with kF being the absolute value of the Fermi wave vector. d is the dimension of the
substrate and ρ denotes the conduction electron density of state. Doniach [1977] provided
a qualitative understanding of the competition between Kondo screening and magnetic
ordering via RKKY interaction by comparing the binding energy of the Kondo singlet
TK ∼ e−1/J with that of the antiferromagnetic state ERKKY ∼ J2, resulting in the famous
Doniach phase diagram: In the weak coupling limit below a certain critical value J < JD,
where ERKKY � TK , the RKKY interaction dominates over the Kondo effect leading to
magnetic ordering. In contrast if J is increased past a critical value JD where ultimately
TK � ERKKY, the Kondo singlet binding dominates. The validity of the above argu-
ments emerging from a mean-field calculation of a simplified one-dimensional "Kondo
necklace" model was later confirmed via the renormalization group method for a Kondo-
lattice model Hamiltonian by Jullien et al. [1977] showing that the transition between the
Kondo and the RKKY regimes is a continuous quantum phase transition.
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2.3 Nonequilibrium many-body theory

In this section we define the nonequilibrium problem for correlated many-body electrons
in condensed matter systems, which for a typical experiment consists of two challenging
tasks: Firstly, one has to describe the systems initial state in equilibrium, which is of-
ten achieved by deploying Green’s-function approaches in the case of strongly correlated
electron systems. To this end, the Matsubara [1955] Green’s function and diagrammatic
perturbation theory based on Wick’s theorem provide a very convenient approach to de-
scribe the physics in solid state systems. Secondly, a description of the system’s time
evolution far from equilibrium due to a time-dependent and possibly strong perturbation
is required. Here, an extension of the equilibrium Green’s function based techniques to
the nonequilibrium circumstance is a very promising approach. Originally nonequilib-
rium Green’s function methods were developed by Baym and Kadanoff [1961a], Keldysh
[1965] and others, assuming that the initial state of the system under consideration is
not correlated, which is appropriate describing, e.g. scattering processes in high-energy
physics. However, this requirement is a considerable limitation for condensed matter
applications, as the initial state at t0 = 0 in solid state systems is in general strongly cor-
related. Consequently, one needs a unified Green’s function approach, which describes
initial correlations and the subsequent time evolution by means of the same technique. A
unified theory which combines Keldysh and Matsubara Green’s functions, for a general
initial state, was introduced finally by Danielewicz [1984] and later by Wagner [1991].

Before introducing the contour Green’s function, we would like to define the nonequi-
librium problem we are dealing with in this work: we study closed systems as well as open
systems, such as effective classical spin dynamics, where the electron degrees of freedom
are integrated out altogether. However, for this section we assume a closed quantum sys-
tem which is entirely characterized via a time-dependent Hamiltonian H(t). The second
issue concerns the initialization of the dynamics, which can be achieved in general by
changing the systems parameters slowly or quickly. In this work, we exclusively deal
with local parameter quenches (a sudden change of the corresponding parameters), which
include interaction or external field parameter quenches. As a result, all timescales are due
to the intrinsic energy scales of the underlying model. However, the subsequent (quan-
tum) dynamics can enforce new time scales and especially a separation of time scales (see
Sec. 5.3)

In this setup, the equilibrium state of a typical experiment of a correlated many-particle
system is characterized by a mixed state at a temperature T and chemical potential µ given
by the grand-canonical statistical operator of the Hamiltonian B(t0) at time t = t0:

ρ(t0) =
e−(βB)

tr(e(−βB))
, (2.8)

with an many-body operator B(t0) = B(t0)− µN . The inverse temperature of the initial
state is given by β and N denotes the total particle number operator. Considering the zero
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temperature limit β → ∞, the density matrix reduces to a pure state ρ = |Ψ〉〈Ψ|. Here,
|ψ〉 is in general the (interacting) N -particle ground state of the Hamiltonian B(t0) =
B0(t0) + B′(t0), where B0 is quadratic in the field operators and B′ denotes the more
complicated interacting part.

At times t larger than t0 a perturbation described by a Hamiltonian H(t) = H0(t) +
H ′(t) fulfilling the condition [H(t), B]− 6= 0, is applied to the system’s initial state, which
drives the system out of the initial equilibrium state and thereby initializes the nonequilib-
rium dynamic. Both Hamiltonians B and H(t) are given in the second quantized form as
introduced in Eq. (2.1). The explicit time-dependence in H(t) arises from the interaction
parameter, but also an additional external bilinear time-dependent magnetic field can be
included in the non-interaction part given by H0.

The central issue in nonequilibrium physics is how to calculate average values of ob-
servable quantities 〈OH(t)〉0 at times t > t0, where operators OH(t) are given in the
Heisenberg picture with respect to the HamiltonianH(t) = H(t)−µN . The time depen-
dence of OH(t) is determined by the Heisenberg equation of motion:

i
d

dt
OH(t) = [OH(t),H(t)] + i

∂

∂t
OH(t) , (2.9)

with the initial condition OH(t0) = O(t0) which fixes the reference time at which
Schrödinger and Heisenberg pictures coincide. The Heisenberg equation of motion (2.9)
may be formally integrated as

OH(t) = UK(t0, t)O(t)UK(t0, t) , (2.10)

where UK is the unitary time evolution operator obeying the Heisenberg equation with
respect to the HamiltonianH(t) with the formal solution:

UK(t, t0) =

{
TKe−i

∫ t
t0
dt′H(t′) for t > t0

TKei
∫ t
t0
dt′H(t′) for t < t0

, (2.11)

where TK (T K) is the chronological (anti-chronological) time-ordering operator, which
implies TK(H(t0)H(t)) = θ(t0−t)H(t0)H(t)+θ(t−t0)H(t)H(t0) and T K(H(t0)H(t))
= θ(t−t0)H(t0)H(t)+θ(t0−t)H(t)H(t0) and Θ(t) denotes the Heaviside step function.

Considering again the initial state, in analogy to Matsubara Green’s functions the grand
canonical statistical operator in Eq. (2.8) can be formally rewritten as a time evolution
operator in imaginary time on the Matsubara branch:

e−(βB) = e−i
∫ β
0 dτ B = TMe−i

∫ t0−iβ
t0

dz B = UM(t0 − iβ, t0) (2.12)

with z = t0 − iτ and 0 ≤ τ ≤ β. The chronological (anti-chronological) time-ordering
operator on the Matsubara branch is denoted by TM (T M) and assuming t0 − iβ to be
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’later’ in time than t0, the time-dependent expectation value of the observable O(t) for a
system in an initial state ρ can be formulated as:

〈O(t)〉 = tr[ρ(t0)OH(t)]

=
tr[UM(t0 − iβ, t0)UK(t0, t)O(t)UK(t, t0)]

tr[UM(t0 − iβ, t0)]

=
tr[TC exp(−i

∫
C dt

′K(t′))O(t)]

tr[TC exp(−i
∫
C dt

′K(t′))]
, (2.13)

where the time integration is carried out on the Keldysh-Matsubara contour C, which ex-
tends along the upper and lower Keldysh branch (real time axis) from t′ = t0 to t′ = ∞,
subsequently back to t′ = t0 and finally from t′ = t0 to t′ = t0 − iβ along the Matsubara
branch (imaginary time axis). The contour ordering operator TC merges the ordering op-
erators TK,T K and TM and operates on the Keldysh-Matsubara contour C after expanding
the exponential as follows: TCK(t)K(t′) = θC(t, t

′)K(t)K(t′)− θC(t, t′)K(t′)K(t), where
the Heaviside function θC(t, t′) = 1 on the contour C if t is later on C than t′ and otherwise
zero. Finally, K(t) = K0(t) + K′(t) replaces H(t) on the Keldysh branch CK and B on
the Matsubara branch CM. Apart from that, TC also acts on O(t), where the time argu-
ment of O(t) is the time at which the observable is located and evaluated on the contour
C. The integration along the Keldysh branch in the enumerator can be limited to t′ < t,
as the results of integrating along the upper and lower Keldysh branches cancel out each
other within the interval t < t′ < ∞. For the denominator, only the Matsubara branch
contributes to the integration, resulting in tr[exp(−βB)].

2.3.1 Nonequilibrium Green's function

So far we have considered expectation values of single operators with single time argu-
ments 〈O(t)〉. In this section, we extend this to time-dependent correlation function of
observables with different time arguments, e.g. 〈O1(t)O2(t′)〉, where in general a single
time-ordering operator is not sufficient and an extra ordering operator has to be intro-
duced [Wagner, 1991]. As a consequence standard perturbation theory is not applicable,
as Wick’s theorem requires a single time-ordering principle. A convenient way to resolve
this problem, is to focus on the contour-ordered Green’s function:

iGα,α′(t, t
′) = 〈TCcK,α(t)c†K,α(t′)〉 , (2.14)

which according to Wagner [1991] and the notation being inline with Balzer and Potthoff
[2011] can be formulated as follows:

iGα,α′(t, t
′) =

〈TCe−i
∫
C dt̃K

′
K0

(t̃)cK0,α(t)c†K0,α
(t′)〉(0)

〈TCe−i
∫
C dt̃K′K0

(t̃)〉(0)

. (2.15)
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In expression (2.15), all operators are given in the Dirac picture, thus evolving in time
according to K0 only. The expectation value 〈· · · 〉(0) ≡ tr(ρ0 · · · ) is defined with respect
to the ’free’ density operator ρ0

−βB0/Z0 only, which is a fundamental requirement for
applying Wick’s theorem and standard perturbation theory. The expression (2.15) is valid
for all times t and t′ on the contour C. However, if the Hamiltonian K is entirely time-
independent, the Keldysh-Matsubara contour C reduces to the Matsubara branchM and
thereby the contour Green’s function reduces to the Matsubara Green’s functionG(t, t′) =
iGM(τ − τ ′). The most important advantage is that time-dependent expectation values of
any one-particle observable quantity O(t) = −i∑αβ Oαβ(t)c†αcβ are directly connected
to the contour-ordered Green’s function in the equal time-limit:

〈O〉(t) = −i
∑
α,β

Oα,β(t)Gβα(t, t+) , (2.16)

where t+ is infinitesimally later than t on the contour C. But also a few two-particle
observables, such as the interaction energy and the double occupancy can be obtained
from the one-particle Green’s function with the aid of the self-energy, which we will
introduce in the subsequent section.

2.3.2 Equation of motion and perturbation theory

The aim of this section is to derive a time-dependent equation for the reduced one-particle
density matrix. To this end we introduce the equation of motion for the contour Green’s
function and discuss the Hartree-Fock approximation. The Green’s function as expressed
in Eq. (2.15) meets all prerequisites for applying Wick’s theorem, a general proof of
which was given by Danielewicz [1984]. We briefly summarize the requirements of
Wick’s theorem: (i) A single time-ordering principle is ensured. (ii) The expectation
values are taken with respect to some one-particle density matrix ρ0. (iii) Finally, all
operators are given in the Dirac picture.

Applying n-th order perturbation theory directly to the Green’s function may result in
approximations that do not guarantee basic conservation laws of the underlying Hamilto-
nian. In order to avoid this problem, it is convenient to set up perturbation theory for the
self-energy, which we introduce in the context of the Kadanoff and Baym [1962] equa-
tion.

The equation of motion for contour Green’s function is refereed to as the
Kadanoff and Baym [1962] equation (KB) and can be obtained by the differentiation of
Eq. (2.14) or deduced from the Heisenberg equation (2.9) for the construction operators.

i
∂

∂t
Gαβ(t, t′) =

〈
TC
( ∂
∂t
cK,α(t)

)
c†K,α(t′)

〉
+ δC(t, t

′)δα,β

= −i
〈
TC
(

[cK,α(t),K(t)]−

)
c†K,α(t′)

〉
+ δC(t, t

′)δα,β , (2.17)
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where
∫
C dt

′δC(t, t
′)f(t′) = f(t) defines the delta-function on the contour for an arbi-

trary contour function f(t). As mentioned earlier, K = K0(t) + K′(t) consists of a
quadratic term K0(t) and a quartic term K′(t) describing the interaction. Whereas the
former only results in a one particle Green’s function again the latter term generates
higher-order Green’s function in Eq. (2.17). An analogous equation of motion for the
higher-order Green’s function leads to an infinite hierarchy of coupled equations for the
Green’s function, which is known as Martin-Schwinger-hierarchy. Formally, the Martin-
Schwinger-hierarchy is decoupled via the self-energy Σ, defined as:∑

γ

∫
C
dt′′Σαγ(t, t

′′)Gγβ(t′′, t′) = −i
〈
TC
(

[cK,α(t),K′(t)]−
)
c†K,α(t′)

〉
. (2.18)

The self-energy is a functional of the one-particle Green’s function and includes all inter-
action effects. By inserting the expression (2.18) in Eq. (2.17), we obtain:

i
∂

∂t
Gαβ(t, t′) =

∑
γ

T (K0)
αγ (t)Gγβ(t, t′)

+
∑
γ

∫
C
dt′′Σαγ(t, t

′′)Gγβ(t′′, t′) + δα,β δC(t, t
′) , (2.19)

where T (K0) denotes the hopping matrix of the one-particle contribution K0. Applying
diagrammatic perturbation theory to the self-energy Σ, which is defined as a sum over
all distinct proper self-energy diagrams, provides a systematic expansion of the contour
Green’s function. Here, essentially the same diagram techniques as for Matsubara Green’s
function, see e.g. Negele and Orland [1998], can be applied to the non-equilibrium situa-
tion. The first order contribution to the self-energy Σ is called Hartree-Fock and contains
two diagrams, which are local in time−iΣHF

αβ(t)δ(t− t′) and replace an interacting many-
body problem by an effective one-particle problem. Note that on the Matsubara branch
the Hartree-Fock term is given by a static field iΣHF

αβδ(τ) and must be calculated in a
self-consistent way. The Hartree-Fock approximation treats interactions in a many-body
system at a mean-field level and neglects all correlation effects, which, however, are in-
cluded in diagrams of higher order. Hence, it is convenient to subdivide the self-energy
Σ into Hartree-Fock ΣHF

αβ(t) and all higher order self-energy expressions, referred to as
ΣCORR

αβ (t). To this end, Eq. (2.19) can be recast as

i
∂

∂t
Gαβ(t, t′) =

∑
γ

(T (K0)
αγ (t) + ΣHF

αγ(t))Gγβ(t, t′)

+
∑
γ

∫
C
dt′′ΣCORR

αγ (t, t′′)Gγβ(t′′, t′) + δα,β δC(t, t
′) . (2.20)

However, it is advantageous with respect to computational cost to neglect all higher or-
der self-energy contributions ΣCORR altogether and consider the Hartree-Fock contribution
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ΣHF only, which is time-local and therefore the corresponding Green’s function is much
easier accessible in equilibrium as well as in nonequilibrium case. Moreover, from a phys-
ical perspective the Hartree-Fock approach is considered as a reasonable approximation,
e.g., in the case of small interactions.

Neglecting the self-energy contribution Σcorr, subtracting from Eq. (2.20) the complex
conjugate of Eq. (2.20) and considering only time-diagonal components of the Green’s
function, which is the reduced one-particle density-matrix ραβ(t) ≡ Gαβ(t, t+), leads to
a time-dependent mean-field equation:

i
d

dt
%αβ(t) =

[
T (K)(%(t)), %(t)

]
−,αβ , (2.21)

where, T (K)(t) is an effective hopping matrix, which is replaced by T (B)
αγ = TBαγ + ΣHF

αγ

at time t = t0 and by T (H)
αγ (t) = THαγ + ΣHF

αγ(t) at times t > t0. Here, ΣHF and ΣHF(t)
are the static and time-dependent self-energy contributions to the interaction part of the
underlying Hamiltonian B andH(t), respectively.

The time-dependent mean-field equation provides two important advantages: (i) The
equilibrium and nonequilibrium self-energy contributions ΣHF(t) are functional deriva-
tives of a truncated Luttinger-Ward function Φ(G) consisting of Hartree and Fock di-
agrams. Consequently, the Hartree-Fock mean-field approach is a conserving approxi-
mation in the sense of Baym and Kadanoff [1961b], i.e. macroscopic conservation laws
stemming from the continuous symmetries of the underlying Hamiltonian are respected.
(ii) The equation of motion (2.21) is a system of non-linear differential equation of first
order and can be solved efficiently by standard Runge-Kutta methods, see e.g. Verner
[2010], thus long-time propagation of quite large systems is accessible.

In the following chapter, using the nonequilibrium perturbation theory, we calculate the
Hartree-Fock self-energy contributions to the multi-impurity Kondo model and derive a
time-dependent hybridization mean-field theory for quantum-impurity models.



3 Static and time-dependent

mean-�eld approach

Our basic concern in this chapter is to derive a time-dependent mean-field theory for
quantum-impurity problems, which we refer to as the “time-dependent hybridization
mean-field” approach (tHybMF). As a limiting case, for a time-independent Hamiltonian,
the previously known static hybridization mean-field approach [Lacroix and Cyrot, 1979]
is recovered. To this end, we use the aforementioned equation of motion for the reduced
one-particle density matrix (2.21) derived from the non-equilibrium Green’s function per-
turbation method, which requires the Hartree-Fock self-energy contribution of the under-
lying problem. Therefore we need to determine the Hartree-Fock self-energy contribution
of the quantum-impurity model.

However, before proceeding, we introduce the multi-impurity Kondo Hamiltonian and
specify the numerical setup as used in this study. Even though we study exclusively
single-impurity Kondo model numerically later on, for the sake of generality, within this
chapter a multi-impurity Kondo model on a lattice of finite size is considered:

H = −
∑
〈i,j〉,σ

Tijc
†
iσcjσ +

M∑
m=1

sim · J · Sm −
M∑
m=1

BmSm , (3.1)

where the first term corresponds to the uncorrelated system of N itinerant conduction-
electrons hoping with amplitude Tij = T = 1 between non-degenerate orbitals on nearest-
neighboring sites i, j of a lattice. Here, c†iσ (ciσ) creates (annihilates) an electron at site i =
1, ..., L with spin projection σ =↑, ↓, and si = 1

2

∑
σσ′ c

†
iσσσσ′ciσ′ is the local conduction-

electron spin at site i, where σ =
∑

α σ
αeα is the vector of Pauli matrices and α = x, y, z.

The second term consists of M spins Sm with spin-quantum numbers 1/2, which are
coupled via an antiferromagnetic exchange to the local spins si of the conduction electron
system. Impurity spins couple to the local conduction-electron spins at the sites im where
m = 1, ...,M . The tensor of coupling strengths J is assumed to be diagonal Jαβ = δαβJα
with Jx = Jy = J⊥ ≥ 0 and Jz = J‖ ≥ 0. Finally, a local magnetic fieldBm coupling to
the m-th impurity spin is introduced to prepare the system’s initial magnetic state.

For the sake of simplicity and in order to benchmark the mean field results with the
time-dependent density matrix renormalization group (tDMRG) calculations, we inves-
tigate one-dimensional systems with open boundaries at zero temperature only. If not
stated otherwise, systems are studied at half-filling.
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In order to take advantage of the diagrammatic perturbation expansion, we express the
Hamiltonian Eq. (3.1) in the “fermionized” form, as the Wick theorem can only be ap-
plied to fermions. By introducing Fermi operators fm = (fm↑, fm↓)

T, f †m = (f †m↑, f
†
m↓) on

the impurity sites, the impurity spins can be represented as Sm = 1
2
f †mσfm. However, the

constraint f †mfm =
∑

σ f
†
mσfmσ ≡ 1 must be complied to suppress f-charge fluctuations

and thereby ensure the conservation of the total particle number at each sitem. The spinor
notation is also used for the conduction-electron system, ci = (ci↑, ci↓)

T. This results in

H = −
∑
〈i,j〉,σ

Tijc
†
iσcjσ −

1

2

M∑
m=1

Bmf
†
mσfm +

1

4

M∑
m=1

c†imσcim · J · f †mσfm . (3.2)

The Hamiltonian possesses global U(1) and SU(2) gauge invariance given by ciσ 7→
e−iϕciσ, fmσ 7→ e−iϕfmσ and ci 7→ e−iϕσ/2ci, fm 7→ e−iϕσ/2fm, respectively. This en-
sures conservation of the total particle number and the total spin. In addition, there is a
local U(1) gauge symmetry, fmσ 7→ e−iϕmfmσ for each m, characterizing the conserva-
tion of the f -charge at each impurity sitem, consistent with the aforementioned constraint
f †mfm ≡ 1.

3.1 Time-dependent hybridization mean-�eld

As mentioned earlier, in this study we assume that the Hamiltonian (3.1) determines the
system’s time evolution and the Hamiltonian B characterizes the system’s initial state
given by the statistical operator %stat(t = 0) = e−βB/tr e−βB. Here, B is the Hamiltonian
(3.2) and just contains different model parameters 1 J ini andBini.

As discussed previously in chapter 2.3, the diagrammatic perturbation theory is a
convenient method to treat interacting many-particle systems and thereby construct a
conserving time-dependent mean-field approach to compute the thermal and the non-
equilibrium self-energy of the c and the f electrons as the functional derivative of a trun-
cated Luttinger-Ward functional consisting of the Hartree and of the Fock diagram. In
this context the central object of interest is the reduced one-particle density matrix

%(t) =

(
ρ(cc)(t) ρ(cf)(t)
ρ(fc)(t) ρ(ff)(t)

)
, (3.3)

which consists of the conduction-electron and the f -electron one-particle density matrix
with elements

ρ
(cc)
ii′,σσ′(t) = 〈c†i′σ′ciσ〉t , ρ

(ff)
mm′,ττ ′(t) = 〈f †m′τ ′fmτ 〉t (3.4)

1As we do not consider geometrical quenches, we set TH = TB ≡ T
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and of the hybridizations

ρ
(cf)
im,στ (t) = 〈f †mτciσ〉t = ρ

(fc)
mi,τσ(t)∗ . (3.5)

Within the framework of the Hartree-Fock approximation, the one-particle density matrix
can be evaluated by solving an effective problem where the interaction term H ′(t) of the
Hamiltonian (3.2) is approximated by an effective one-particle mean-field Hamiltonian

H ′(t) ≈
∑
m

c†imΣ(cc)
m (t)cim +

∑
m

f †mΣ(ff)
m (t)fm

+
∑
m

f †mΣ(fc)
m (t)cim +

∑
m

c†imΣ(cf)
m (t)fm . (3.6)

The Hartree-Fock self-energy Σm(t) arises from the decoupling scheme f †fc†c 7→
〈f †f〉c†c+ 〈c†c〉f †f + 〈f †c〉fc† + 〈fc†〉f †c (Wick’s theorem) as

Σm(t) =

(
Σ

(cc)
m (t) Σ

(cf)
m (t)

Σ
(fc)
m (t) Σ

(ff)
m (t)

)
, (3.7)

where

Σ
(cc)
m,σσ′(t) =

1

2
〈Sm〉t · J · σσσ′ ,

Σ
(ff)
m,σσ′(t) =

1

2
〈sim〉t · J · σσσ′ ,

Σ
(cf)
m,σσ′(t) = −1

4

∑
ττ ′

〈f †mτcimτ ′〉t σστ ′ · J · στσ′ ,

Σ
(fc)
m,σσ′(t) = −1

4

∑
ττ ′

〈c†imτ ′fmτ 〉t στ ′σ′ · J · σστ . (3.8)

It is important to observe that the self-energy contributions Σm(t) depend on the elements
of the one-particle density matrix and thereby become time-dependent.

As mentioned before, the original interacting Hamiltonian (3.2) is invariant under a lo-
cal U(1) gauge symmetry, which implies the conservation of the impurity particle number
at each site m consistent with the constraint f †mfm ≡ 1, and as demonstrated by Elitzur
[1975], it is impossible to spontaneously break local symmetries. However, exceptions
to the rule, such as infinite-dimensional systems and mean-field theories, were reported
by Maślanka [1988]. Consequently, the hybridization mean-field spontaneously breaks
local symmetries as well, e.g. the local U(1) gauge symmetry. Hence, the f-charge at
each site m is conserved only on average 〈f †mfm〉 = 1, which can be ensured by introduc-
ing time-dependent local Lagrange parameters µ(f)

m (t). With the effective hopping matrix
T H = T + ΣHF defined as

T H(t) =

(
T (cc)(t) T (cf)(t)
T (fc)(t) T (ff)(t)

)
, (3.9)
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the mean-field Hamiltonian reads

HMF(t) =
∑
ii′

c†iT (cc)
ii′ (t)ci′ +

∑
mm′

f †mT (ff)
mm′(t)fm′

+
∑
mi′

f †mT (fc)
mi′ (t)ci′ +

∑
im′

c†iT (cf)
im′ (t)fm′ , (3.10)

where the matrix elements are given by:

T (cc)
ii′σσ′(t) = −Tii′ +

∑
m

δiimδi′imΣ
(cc)
m,σσ′(t) ,

T (ff)
mm′σσ′(t) = δmm′

(
Σ

(ff)
m,σσ′(t)−

1

2
Bmσ − µ(f)

m (t)

)
,

T (fc)
mi′σσ′(t) = δi′imΣ

(fc)
m,σσ′(t) ,

T (cf)
im′σσ′(t) = δiim′Σ

(cf)
m′,σσ′(t) . (3.11)

Using Eqs. (3.8), (3.10) and (3.11), we can then rewrite the mean-field Hamiltonian as

HMF(t) =
∑
m

〈Sm〉t J sim +
∑
m

〈sim〉t J Sm

−
∑
m

BmSm −
∑
〈i,j〉,σ

Tijc
†
iσcjσ

−1

4

∑
m,σσ′ττ ′

c†imσfmσ′〈f †mτcimτ ′〉t σστ ′ J στσ′ + H.c. . (3.12)

Next, we introduce charge and spin hybridization operators as follows:

K(0)
m =

1

2

∑
σ

c†imσfmσ , Km =
1

2

∑
σσ′

c†imσσσσ′fmσ′ . (3.13)

By employing the identities

c†imσfmσ′ = K(0)
m δσσ′ +Kmσσσ′ (3.14)

and

σστ ′ · J · στσ′ = J‖δστ ′δτσ′zσzτ + 2J⊥δσ−τ ′δτ−σ′δσ−τ , (3.15)

with z↑ = +1 and z↓ = −1, in the isotropic case J‖ = J⊥, the mean-field Hamiltonian
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can be expressed in terms of the hybridization and spin operators:

HMF(t) =
∑
m

〈Sm〉t J sim +
∑
m

〈sim〉t J Sm

−
∑
m

BmSm −
∑
〈i,j〉,σ

Tijc
†
iσcjσ

−3

2

∑
m

(
J〈K(0)

m

†〉tK(0)
m + H.c

)
+

1

2

∑
m

(
J〈K†m〉tKm + H.c

)
. (3.16)

Notice that the time dependence of the Hartree-Fock Hamiltonian arises as a result of
the time dependence of the self-energy. Further properties of the Hamiltonian will be
discussed in the subsequent sections.

But for now, returning to the system’s dynamics, with the aid of the equation of motion
of the one-particle density matrix (2.21) as derived in chapter 2.3.2 and the effective
hopping matrix T H given in expressions (3.9) and (3.11), we obtain a time-dependent
hybridization mean-field (tHybMF) equation:

i
d

dt
%(t) = [T H(%(t)), %(t)]− (3.17)

with the initial condition

%(0) =
1

eβ(T B) + 1
, (3.18)

where T B is the effective hopping matrix (3.11), but again with different model parame-
ters J ini and Bini stemming from the Hamiltonian B describing the system’s initial ther-
mal state. It must be emphasized that T B depends on the initial one-particle density matrix
%(0) as can be seen from Eq. (3.11). Consequently, Eq. (3.18) presents a non-linear sys-
tem of equations that must be solved self-consistently for %(0), which will be discussed in
detail in the subsequent section concerning the static hybridization mean-field approach.

3.2 Static hybridization mean-�eld

In this section we present the static hybridization mean-field approach (HybMf), origi-
nally introduced by Lacroix and Cyrot [1979], generalizing a method of functional inte-
gration to the Kondo lattice first reported by Yoshimori and Sakurai [1970] for the single
impurity case. Later on, it was reformulated as a large-N approximation by Coleman
[1983] and Read et al. [1984] in an adaptation to particular impurity systems, see for e.g.,
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Coqblin and Schrieffer [1969] (rare-earth compounds), where N is the degeneracy of the
localized spins. However, magnetic interactions are included only at 1/N2 order and vanish
in large-N limit. In contrast, the HybMF approach treats the Kondo effect and magnetic
interactions on an equal footing and has been used to study the metamagnetic transition
in heavy fermions by, e.g., Beach [2005] and Viola Kusminskiy et al. [2008]. Even the
so-called Kondo box problem, systems with a discrete energy spectrum resulting in an
energy-level spacing as a new energy scale which competes with the Kondo scale, has
been studied within the HybMF approach as reported by Bedrich et al. [2010].

Here, we use the standard diagram perturbation techniques for the Matsubara Green’s
function, see, e.g., Negele and Orland [1998], to calculate the Hartree and Fock self-
energy diagrams and replace an interacting many-body problem in Eq. (3.2) by an ef-
fective hybridization mean-field Hamiltonian:

BMF =
∑
m

〈Sm〉J ini sim +
∑
m

〈sim〉J ini Sm

−
∑
m

Bm,iniSm −
∑
ij,σ

(Tij + µδij)c
†
iσcjσ

−3

2

∑
m

(
Jini〈K(0)

m

†〉K(0)
m + H.c

)
+

1

2

∑
m

(
Jini〈K†m〉Km + H.c

)
. (3.19)

As mentioned previously, we assume that initially, the system is in a thermal state given
by the statistical operator ρstat(0) = e−βB

MF

/tr e−βBMF and characterized by the inverse
temperature β and the chemical potential µ. However, here again the central object of
interest remains the reduced one-particle density matrix as this is the initial condition for
the time-dependent hybridization mean-field equation (3.17) and is given by:

%(0) =
1

eβ(T B) + 1
, (3.20)

where T B is the effective hopping matrix (see Eq. (3.9) and Eq. (3.11)), but again with
different model parameters J ini and Bini stemming from the Hamiltonian B describing
the system’s initial thermal state.

As already mentioned in the last section, T B depends on the initial one-particle density
matrix %(0), as evident from Eq. (3.11). It is apparent that in general both the effective
hopping T B and the reduced one-particle density matrix %(0) are not known a priori.
As a result, the non-linear system of equations (3.20) must be solved self-consistently
for %(0), as detailed in Fig. 3.1. The numerical procedure is as follows: Starting from
an initial guess for the hybridization functions 〈K(0)

m 〉 and 〈Km〉 and the impurity and
conduction electron spins 〈Sm〉 and 〈sim〉, which can be incorporated into the self-energy
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T (B) = T + ΣHF

%α,β =
∑

k Uβ,k
1

eβ(ε(k)−µ)+1
U∗k,α

ΣHF(%) BMF =
∑

k ε(k)a†kσakσ

Figure 3.1: Hybridization mean-�eld self-consistency loop using the self-energy ΣHF(%) as
the adjustable quantity.

Σm in Eq. (3.8), the effective hopping matrix is obtained from Eq. (3.11). Notice that the
self-energy in the initial state is the same as in Eq. (3.8), but time-independent and with
different parameters J ini and Bini. Next, the effective hopping T B can be diagonalized
T B = UεU † resulting in the diagonal correlation functions:

〈a†kσakσ〉 =
1

eβ(ε(k)−µ) + 1
, (3.21)

where the new operator akσ is a linear combination of the original operators ckσ and
fkσ. The diagonal correlation function (3.21) can be transformed back via the matrix U ,
resulting in the one-particle density matrix, which is simply a correlation function in real
space.

%α,β =
∑
k

Uβ,k
1

eβ(ε(k)−µ) + 1
U∗k,α , (3.22)

where the indices α and β label sites, spins and the location of the density matrix element
ρii′,σσ′ within the matrix % in Eq. (3.3). Finally, the self-energy can be calculated from
% using Eq. (3.8). The self-consistency loop is iterated until the convergence measure
δ = ||T Bold − T Bnew|| becomes smaller than a prescribed value. In the majority of cases
the self-consistency loop converges after few iterations. However, in a few cases linear
mixing is required to enforce convergence, e.g., in order to stabilize a self-consistent
solution with finite 〈K(0)

m 〉 6= 0 and 〈Km〉 6= 0. It should also be noted that from the
numerical study it seems that an induced magnetic state 〈Sm〉 6= 0 and 〈sim〉 6= 0 does
coexist with a finite 〈K(0)

m 〉 6= 0. In contrast, 〈Km〉 vanishes in presence of any finite
magnetic fieldB 6= 0.

Kondo effect. The equilibrium hybridization mean-field theory provides a simple but
very tempting picture to describe the Kondo effect and captures the two key characteristics
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Figure 3.2: Left panel: The Kondo scale obtained from the self-consistent HybMF calcu-
lation for a one-dimensional chain of length L = 13 at half-�lling with open boundaries and
a single impurity at site i0 = 6 (red dots) and i0 = 7 (blue dots), respectively. In a system
of �nite size, a competition between the energy-level spacing ∆ of the conduction electron
system and the Kondo scale TK arises if the bulk TK becomes comparable to ∆. In this
case, logarithmic Kondo correlations are cut o�, resulting in an unconventional spatially
dependent linear-in-J Kondo e�ect for odd sites (i0 = 7) and in free magnetic moments
(absence of Kondo e�ect) for even sites (i0 = 6) below the critical value J < J∆ with J∆ be-
ing approximately the point where TK = ∆. However, for J > J∆ ∼ 0.7, the conventional
picture, namely the bulk TK ∼ e−1/J , is reconstructed. The inset shows ln(TK) versus 1/J
to visualize the exponential behavior marked by the orange line. Right Panel: The charge
hybridization 〈K(0)〉 corresponding to the system with the single impurity placed at site
i0 = 7 is shown for di�erent temperatures in ascending order from left to right. The dark
blue lines indicate the temperature range T ∈ [0.001, 0.01] in steps of 0.001, the light blue
lines correspond to T ∈ [0.02− 0.1] in steps of 0.01. Finally, the red lines comply with the
temperature range T ∈ [0.2, 1.0] in steps of 0.1. For each temperature, the hybridization
〈K(0)〉 is calculated as a function of the exchange coupling J . The onset of 〈K(0)〉 6= 0
de�nes the corresponding value of J to the preassigned temperature T .

of the Kondo physics: At temperatures lower than the Kondo scale T < TK : a finite
〈K(0)

m 〉 indicates screening of the impurity spin and the formation of a Kondo singlet, i.e.
the charge hybridization plays the role of an order parameter and the Kondo temperature
TK is defined as the temperature for which a charge hybridization 〈K(0)

m 〉 6= 0 sets in (as
detailed in Fig. 3.2, right panel). Only in the case of antiferromagnetic exchange J > 0,
there is an exponentially small energy scale TK ∝ e−1/ρ0J below which a finite 〈K(0)

m 〉
can be stabilized self-consistently for the single-impurity model as shown by fig. 3.2. For
temperatures above the Kondo scale T > TK , the hybridization vanishes, 〈K(0)

m 〉 = 0,
thus the two subsystems, conduction electrons and spins, are decoupled completely at the
mean-field level (see Eq. (3.16)). The Kondo effect is thus described as a spontaneous
symmetry breaking (“singlet condensation”) of the the mean-field Hamiltonian, and TK

plays the role of a critical temperature. However, this strongly simplified description
neglects fluctuations which turn the phase transition into a smooth crossover.
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Kondo effect in a quantum box. As mentioned before, we study an one-dimensional
lattice of conduction electrons of size L with open boundaries at half-filling to which
the impurity spins couple, as described by the Hamiltonian (3.1). The finite-size tight-
binding part can be analytically diagonalized resulting in nondegenerate conductionband
energies εk = −2t cos(k) with discrete values k = nπ/(L+1) with integers n = 1, . . . , L.
At half-filling (N = L), the finite nature of the system results in an energy-level spacing
∆ = 2t sin[π/(L+1)] and a discrete local density of states consisting of finite delta-peaks
given by ρii(ω) =

∑
k U

2
ikδ[ω − (εk − εF )] at site i, where Uik =

√
2/(L+1) sin(ik).

According to Schwabe et al. [2012], if the level-spacing ∆ becomes comparable to the
bulk Kondo temperature TK , two effects must be considered: (i) An even/odd effect in
the number of conduction electrons is observed: if N is even, εF is located in a finite-size
gap of the single-conduction-electron spectrum ("off-resonant"). For J < J∆, the Kondo
effect is absent, as the Fermi sea is nondegenerate and thus a finite energy ∆ would be
required to screen the spin. In contrast, if N is odd, the highest one-particle eigenenergy
εkF is singly occupied at the Fermi level resulting in a twofold spin degeneracy of the
ground state. Thus the impurity can be screened even for J → 0 ("on-resonant").

(ii) In the "on-resonant" case and for an energy-level spacing ∆ being comparable to
the bulk Kondo temperature TK , second-order perturbation theory for the Kondo problem
is regularized due to the finite-size gap ∆ and results in an effective Hamiltonian:

Heff =
M∑
m=1

(J (1)
m + J (2)

m )SmsF −
M∑

m,n=1

JmnSmsn , (3.23)

where sF denotes the spin of the entirely delocalized kF -electron and
Jmn ∝ (−)|m−n|J2/|m − n| is the RKKY coupling constant. At kF = π/2, the effective
coupling constants in first and second order J (1)

m = J |UimkF |2 and J (2)
m = 2J2|UimkF |2×∑

p>kF
|UimkF |

2/εp−εkF vanish for even sites (i = 2, 4, . . . , L− 1), for which |UimkF |2 = 0.
In contrast |UimkF |2 6= 0 for odd sites (i = 1, 3, . . . , L− 2), which results in a linear-in-J
Kondo effect.

We found the aforementioned finite-size effects studied previously by Schwabe et al.
[2012] using exact diagonalization, perturbation theory and density matrix renormaliza-
tion group (DMRG) within the hybridization mean-field approach as can be observed
from Fig. 3.2 (left panel). Here, the "on-resonant" case L = 13 is considered. If the
impurity is placed on an even site i0 = 6, the Kondo effect is absent for J < J∆. On the
other hand, for the impurity being located at an odd site i0 = 7, a linear-in-J Kondo effect
is observed for small but finite J → 0.

Kondo versus RKKY. As mentioned above, in contrast to the large-N approach, the
hybridization mean-field is an appropriate method to describe the competition between
Kondo screening and indirect magnetic exchange interaction. Although it is beyond the
scope of this study to enter the debate on this topic, we would like to discuss briefly
how the Doniach picture changes in the presence of finite-size effects: As discussed in
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chapter (2.2.2), the conventional Doniach picture [Doniach, 1977] states that in the weak-
coupling limit below a certain critical value JD the RKKY interaction dominates over
the Kondo effect, which also remains unchanged for a system of finite size in the "off-
resonant" case. In contrast, the perturbation theory by Schwabe et al. [2012] resulting in
Eq. (3.23) reveals that the finite-size gap ∆ in the "on-resonant" case leads to a modified
Doniach phase diagram: The Kondo effect for impurities located at odd sites results in
a linear-in-J Kondo scale dominating over the RKKY scale ∼ J2 in the weak-coupling
limit and J < J∆. The remaining impurities located on even sites are coupled via the
RKKY interaction. We would like to point out that both the conventional and the modified
Doniach phase diagram due to finite-size effects are accessible to the hybridization mean-
field approach.
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3.3 Spin and charge dynamics

Spin dynamics. We now derive equations for spin (and charge) dynamics via the Heisen-
berg equation of motion by evaluating the commutator of spin (and charge) with the mean-
field Hamiltonian (3.16), which we repeat here:

HMF(t) =
∑
m

〈Sm〉t J sim +
∑
m

〈sim〉t J Sm

−
∑
m

BmSm −
∑
ij,σ

Tijc
†
iσcjσ

−3

2

∑
m

(
J〈K(0)

m

†〉tK(0)
m + H.c

)
+

1

2

∑
m

(
J〈K†m〉tKm + H.c

)
. (3.24)

The first two terms on the right-hand side generate torques on the conduction-electron
and on the impurity spins at sites im, respectively, resulting in classical spin dynamics.
The Zeeman term causes an external torque exerted on the impurity spins (if Bm 6= 0 is
assumed). The fourth term induces charge and spin currents in the conduction-electron
system which dissipate local excitations. Finally, the last term leads to a spin current
between the two subsystems at sites im. The resulting spin dynamics for the impurity and
conduction electron spins reads:

d

dt
〈Sm〉t = J〈sim〉t × 〈Sm〉t −Bm × 〈Sm〉t

− i J
(
〈K(0)

m

†〉t〈Km〉t − c.c.
)

(3.25)

and

d

dt
〈si〉t =

∑
m

δiimJ〈Sm〉t × 〈sim〉t

− i
∑
j

Tij
1

2

∑
σσ′

(
〈c†iσσσσ′cjσ′〉t − c.c.

)
− i J

∑
m

δiim
(
〈K†m〉t 〈K(0)

m 〉t − c.c.
)
. (3.26)

Next we turn to the physical interpretation of the above equations. To this end, it is
reasonable to distinguish between transversal (classical) and longitudinal spin dynamics.
Whereas the first is characterized by a constant spin length |〈Sm〉t| = const., the latter ex-
hibits fluctuating spin length. Notice that in both cases, the length of conduction electron
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spins |〈sim〉t| fluctuates due to the electron hopping. However, the longitudinal fluctua-
tion of the impurity spins Sm stems from the hybridization spin and charge (〈Km〉t and
〈K(0)

m 〉t) only.
The torque on Sm in Eq. (3.25) results from the external field B, and the conduction-

electron local moment at im acting as an effective time-dependent internal field J〈sim〉t,
as well as the hybridization spin and charge current. Vice versa, this holds for 〈sim〉t as
well, as can be observed from Eq. (3.26). In addition, the second term on the r.h.s. of Eq.
(3.26) describes the coupling of the local conduction electron spin to its environment and
the dissipation of spin and energy into the conduction-electron system.

For the sake of completeness, we specify the equations of motion for the charge and
spin hybridization:

i
d

dt
〈K(0)

m 〉t = −1

2
Bm〈Km〉t −

∑
i

Tiim
1

2

∑
σ

〈c†iσfmσ〉t

− 3

4
J〈Km〉t

(
〈Sm〉t − 〈sim〉t

)
+

3

4
J〈K(0)

m 〉t
1

2

∑
σ

(〈f †mσfmσ〉t − 〈c†imσcimσ〉t) . (3.27)

Furthermore, for the spin hybridization we find

i
d

dt
〈Km〉t = −1

2
Bm〈K(0)〉t − i

1

2
Bm × 〈Km〉t

−
∑
i

Tiim
1

2

∑
σσ′

〈c†iσσσσ′fmσ′〉t

+
1

4
J〈K(0)

m 〉t
(
〈Sm〉t − 〈sim〉t

)
− i

1

4
J〈Km〉t ×

(
〈Sm〉t + 〈sim〉t

)
. (3.28)

Apparently, the possible couplings of the charge and spin hybridizations among each
other, to the impurity-spin and to the conduction-electron charge and spin degrees of
freedom are highly constrained by the rotational invariance of the mean-field Hamiltonian.

As already described, the f -charge is conserved at each site on average
∑

σ〈f †mσfmσ〉 =

1. In addition, the average c-charge is also
∑

σ〈c†imσcimσ〉 = 1 in the particle-hole-
symmetric case at half-filling, thus the last term in Eq. (3.27) vanishes identically. More-
over Eq. (3.27) and Eq. (3.28) can be used to study the spatiotemporal formation of the
Kondo effect on a lattice at mean-field level. However, in the more general case, the time-
dependent competition of the Kondo effect with the RKKY interaction is also accessible
to the tHybMF approach.

Finally, three more points should be mentioned. Firstly, the conservation of total spin
(for B = 0) is easily verified from the equations above. Secondly, by omitting the
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hybridization terms 〈Km〉t = 0 and 〈K(0)
m 〉t = 0 in Eqs. (3.25) and (3.26), we can relate

our approach to theories with classical impurity spins, which we will discuss in chapter
(4). Thirdly, the system of equations of motion (3.25) and (3.26) as well as the Eqs.
(3.27) and (3.28) can only be closed by considering the complete one-particle density
matrix equation (3.17).

Charge dynamics. For the dynamics of the conduction-electron charge density 〈ni〉t =∑
σ〈niσ〉t and the charge density on the impurity sites, the Heisenberg equation of motion

results in:

d

dt

〈∑
σ

f †mσfmσ

〉
t

= 0 , (3.29)

d

dt
〈ni〉t = i

n.n.∑
j,σ

Tij

(
〈c†iσcjσ〉t − c.c.

)
. (3.30)

Here, we observe that neither the local spin-spin coupling, nor the hybridization terms of
the Hamiltonian (3.24) contribute, i.e. there is a charge current in the conduction-electron
system only, and the conservation of total particle number is easily verified from the
above equations. In particular, though [

∑
σ f
†
mσfmσ,HMF(t)] 6= 0 due to the hybridization

terms, the impurity charge density is conserved on average. As a result, we can set the
Lagrange multiplier µ(f)

m (t) = 0 for the final-state dynamics, while a time-independent
Lagrange multiplier µ(f)

m is sufficient to impose the constraint on the initial state. In con-
clusion, while there is a complex spin dynamics, the charge dynamics is entirely trivial in
hybridization mean-field theory.

3.4 Conclusions

In this chapter, we have proposed a generalization of the hybridization mean-field the-
ory [Lacroix and Cyrot, 1979; Yoshimori and Sakurai, 1970] to Kondo systems far from
thermal equilibrium. To this end, we have used the equation of motion for the reduced
one-particle density matrix derived in chapter 2.3.2 and have calculated the corresponding
Hartree-Fock self-energy contributions of the underlying multi-impurity Kondo model.

As a limiting case, for a time-independent Hamiltonian the static hybridization mean-
field approach is recovered and the self-consistent scheme for the resulting non-linear
equation of motion for the equilibrium one-particle density matrix is discussed in detail.
In addition, the Kondo effect for a single impurity is studied in terms of the hybridization
mean-field theory, which provides a very simple picture. However, key characteristics of
the Kondo effect are captured on a mean-field level. While a finite hybridization implies
the formation of the Kondo effect at temperatures lower than the Kondo scale T < TK ,
for temperatures above the Kondo scale, T > TK , the hybridization vanishes and the
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impurity decouples from the conduction-electron system. Thus, the Kondo effect is char-
acterized as a spontaneous symmetry breaking of the the mean-field Hamiltonian, and the
hybridization plays the role of an order parameter, while TK can be seen as a critical tem-
perature. However, this strongly simplified picture neglects fluctuations which turn the
phase transition into a smooth crossover.

Furthermore, we derived equations of motion for the charge, hybridization and spin
dynamics. It became apparent that the charge dynamics is completely trivial in the hy-
bridization mean-field approach. While the impurity charge density is conserved on av-
erage, there is a charge current in the conduction-electron system only.

However, the hybridization and the spin dynamics remain still complex. From the
equations of motion for the impurity and conduction electron spins it is evident that the
real-time dynamics of a spin in an external magnetic field exhibits not only a spin preces-
sion, but also spin relaxation due to the coupling of the local conduction-electron spin to
its environment and the dissipation of spin and energy into the bulk of the electronic sys-
tem. In addition to the transversal spin dynamics, which appears as a more classical phe-
nomenon, also the longitudinal spin dynamics, such as arising from the time-dependent
Kondo screening is captured by the hybridization spin and charge terms.

To conclude this chapter, we give a brief overview of the various applications of
the time-dependent hybridization mean-field approach. Firstly, the spatial and tem-
poral formation or breaking of on a Kondo singlet [Lechtenberg and Anders, 2014;
Medvedyeva et al., 2013; Nuss et al., 2015a] can be studied on mean-field level. To this
end, the impurity spin is initially fully polarized by an external magnetic field B > TK
and subsequently the polarizing external field is switched off suddenly. Another possibil-
ity comprises an interaction quench through the phase boundary of the finite-temperature
equilibrium phase diagram of the Kondo impurity Hamiltonian (see Fig. 3.2).

Secondly, details of the spatial and temporal formation of the Kondo screening are also
of basic importance for the understanding of the competition of the Kondo effect with the
RKKY interaction for systems with many magnetic impurities, which has not yet been
studied on the time domain. This scenario can be realized by interaction or external field
quenches across the phase boundary of the Doniach diagram [Doniach, 1977].

Finally, the Kondo model is the prototypical system to study the real-time dynamics of
a spin coupled to a Fermi sea. Thus another line of research comprises spin dynamics on
an atomistic level. For the remainder of this thesis, we concentrate on the transversal spin
dynamics, which is apparently a more classical phenomenon. We relate our approach to
previous methods in current literature. Subsequently, a comprehensive numerical study
of the real-time dynamics of a classical spin coupled to a Fermi sea is performed in order
to study the microscopic cause of relaxation and inertia effects beyond phenomenolog-
ical LLG-type approaches [Evans et al., 2014]. Moreover, we identify quantum effects
by a systematic comparison of the classical spin dynamics with the exact quantum spin
dynamics for different spin quantum numbers S. Finally, we study the effect of electronic
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correlations on the real-time dynamics of a classical spin coupled to a correlated electron
system by means of a combination of linear-response spin dynamics [Bhattacharjee et al.,
2012; Onoda and Nagaosa, 2006] for the spin dynamics with time-dependent density-
matrix renormalization group [Haegeman et al., 2011, 2016; Schollwöck, 2011] for the
correlated electronic subsystem.



4 Relation to theories with

classical impurity spins

In the previous chapter we introduced the time-dependent hybridization mean-field ap-
proach and derived equations of motion for charge, hybridization and spin dynamic.
The purpose of this chapter is to focus exclusively on spin dynamics and relate our
approach to previous ones.2 To this end, firstly, we neglect longitudinal fluctuations
altogether and point out that the remaining equation of motion is equivalent to that
of a quantum-classical hybrid spin dynamics (QCH-SD) [Elze, 2012] obtained from
the classical-spin multi-impurity Kondo model. Secondly, in the weak-coupling limit,
the conduction-electron degrees of freedom can be integrated out altogether by ap-
plying linear-response-theory which results in an equation for the classical spins only
[Bhattacharjee et al., 2012; Onoda and Nagaosa, 2006]. Finally, assuming separation of
time scales, i.e., the classical spin dynamics is slow as compared to the electron dynam-
ics, the linear-response spin dynamics (LR-SD) can be simplified further by applying the
Markov approximation which results in the Landau-Lifshitz-Gilbert equation [Gilbert,
2004; Landau and Lifshitz, 1935].

4.1 Exact quantum-classical hybrid dynamics

In this section we demonstrate that the transversal spin dynamic in Eqs. (3.25) and (3.26),
i.e. without the hybridization terms 〈K(0)

m 〉t = 0 and 〈Km〉t = 0, which results from the
mean-field treatment of the quantum-model in Eq. (3.1), can be related to the classical spin
dynamics resulting from a hybrid quantum-classical Kondo model. To this end, consider
the quantum-classical variant of the multi-impurity Kondo model, Eq. (3.1), where the
quantum spins Sm are replaced by classical spins S(cl.)

m resulting in:

H(cl.) = −
∑
〈i,j〉,σ

Tijc
†
iσcjσ +

M∑
m=1

sim · J · S(cl.)
m −

M∑
m=1

BmS
(cl.)
m , (4.1)

2Some of the results obtained in this chapter are applied to the classical-spin Kondo-impurity model
and published as M. Sayad and M. Pottho�: Spin dynamics and relaxation in the classical-spin

Kondo-impurity model beyond the Landau-Lifschitz-Gilbert equation, New J. Phys. 17, 113058
(2015) - Copyright c© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft.
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which is a quantum-classical hybrid model, as classical degrees of freedom are coupled di-
rectly to quantum-mechanical degrees of freedom. Here, the conduction-electron and the
impurity-spin systems are completely decoupled on the operator level, while only para-
metrical coupling is retained, which, however, induces a non-trivial quantum-classical hy-
brid dynamics, which is determined via the Liouville-equation by the Hamiltonian func-
tionHF ≡ 〈H(cl.)〉:

d

dt
S(cl.)
m (t) = {S(cl.)

m ,HF} . (4.2)

This is the only known way to consistently describe the dynamics of a quantum-classical
hybrids as previously studied by, e.g, Heslot [1985], Hall [2008] and Elze [2012].

For this purpose, the classical Poisson bracket on the r.h.s. of Eq. (4.2) must be gener-
alized to include classical spins3 [Lakshmanan and Daniel, 1983; Yang and Hirschfelder,
1980], which then satisfies the following algebraic relations between arbitrary functions
A and B of the spin components :

{A,B} =
∑

m,α=x,y,z

εαβγ
∂A

∂Smα

∂B

∂Smβ
Smγ , (4.3)

where εαβγ is the antisymmetric ε-tensor. With this in mind, the r.h.s. of Eq. (4.2) yields:

d

dt
Sm(t) = J〈sim〉t × Sm(t)−Bm × Sm(t) , (4.4)

which has the same structure as the Landau-Lifshitz equation, but the classical spin is
coupled to the conduction-electron spin 〈sim〉t which is again time-dependent. The equa-
tion of motion of the conduction-electron spins obeys the Heisenberg equation of motion
with respect to the HamiltonianH(cl) in Eq. (4.1) and reads as:

d

dt
〈si〉t = δiimJS(t)× 〈sim〉t − T

n.n.∑
j

1

2i

∑
σσ′

(〈c†iσσσσ′cjσ′〉t − c.c.) , (4.5)

Apparently, the system of equations of motion can only be closed by considering the
complete one-particle density matrix equation of motion given in Eq. (3.17), which was
derived in chapter (2.3.2) using nonequilibrium diagrammatic perturbation theory. How-
ever, the reduced one-particle density matrix equation of motion can be also easily derived
from the Heisenberg equation of motion for the annihilators and creators, which leads to
a closed set of equations of motion, since the quantum-classical hybrid Hamiltonian (4.1)
is quadratic on the operator level. As is evident from the equations of motion, the real-
time dynamics of the quantum-classical multi-impurity Kondo model on a lattice with a

3In the following we omit the index "(cl)" and denote the classical spin vector by S.
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finite but large number of sites L can be treated numerically exactly. However, the model
implies highly nontrivial physics as the electron dynamics becomes effectively correlated
due to the interaction with the classical spin. Apart from that, the effective electron-
electron interaction mediated by the classical spin is retarded: electrons scattered from
the spin at time t will experience the effects of the spin torque exerted by electrons that
have been scattered from the spin at earlier times t′ < t. Furthermore, the conservation
of the total energy, total spin and total conduction-electron number is easily verified for
the hybrid system. We also note that Eq. (4.4) implies ‖Sm(t)‖ = const. while the length
of 〈sim〉 is not fixed but fluctuates due to electron hopping. Finally, as we exactly re-
cover Eqs. (3.25) and (3.26), we can conclude that the mean-field treatment of the quan-
tum model is equivalent with the classical-spin case if the charge or spin hybridization
〈K(0)

m 〉t = 0 or 〈Km〉t = 0 vanishes.

4.2 Linear-response spin dynamics

As already mentioned, Eqs. (4.4) and (4.5) do not form a closed set of equations of mo-
tion but must be supplemented by the full equation of motion for the reduced one-particle
conduction-electron density matrix. As a consequence, the fast electron dynamics must
be propagated in real-time with small time steps explicitly, even if the spin dynamics is
much slower and could be resolved with much larger time steps within a corresponding
spin-only time-propagation method. It is therefore advantageous with respect to com-
putational costs to integrate out the conduction-electron degrees of freedom altogether.
Recently, this has been done by expressing the partition function of the system as a path-
integral over the fermionic degrees of freedom and of a classical action for the classical
spins on the Keldysh contour, which includes the Wess-Zumino-Witten-Novikov term de-
scribing the Berry phase of the classical spins, see, e.g., Onoda and Nagaosa [2006] and
Bhattacharjee et al. [2012]. Unfortunately, a tractable effective spin-only action can be
obtained in the weak-coupling (small-J) limit only. This weak-coupling approximation
is also implicit to all effective spin-only approaches that consider the effect of conduction
electrons on the spin dynamics [Zhang and Li, 2004].

However, in the weak-coupling limit, the electron degrees of freedom can also be elimi-
nated in a more straightforward way which is completely equivalent with the path-integral
approach, namely using standard linear-response theory [Negele and Orland, 1998]. We
assume that the initial state at t = 0 is given by the conduction-electron system in thermal
equilibrium and some arbitrary configuration of the classical spins. This may be realized
by suddenly switching on the interaction J(t) at time t = 0, i.e. J(t) = JΘ(t) and by
switching the configuration of the local fields Bm(t) from some initial values, realizing
a certain initial state of the classical spins, to final values for t > 0. The response of
the conduction-electron spin at im and time t > 0 (〈sim〉t = 0 for t = 0) due to the
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time-dependent perturbation J(t)Sm′(t) coupling to the spin, is

〈sim〉t = J

∫ t

0

dt′
∑
m′

χ
(ret)
mm′(t, t

′) · Sm′(t′) (4.6)

up to linear order in J for the final-state dynamics. Here, the free (J = 0) retarded spin
susceptibility of the conduction electrons χ(ret)

mm′(t, t
′) is a tensor with elements

χ
(ret)
mm′,αα′(t, t

′) = −iΘ(t− t′)〈[sαim(t), sβim′ (t
′)]〉 , (4.7)

where α, β = x, y, z. Using this in Eq. (4.4), we obtain an equation of motion for the
classical spins only,

d

dt
Sm(t) = Sm(t)×Bm − Sm(t)×

∫ t

0

dt′
∑
m′

JRKKYmm′ (t− t′) · Sm′(t′) , (4.8)

where the time-dependent coupling of the indirect magnetic interaction is given by
JRKKY = J2χ

(ret)
mm′(t, t

′), as previously discussed in chapter (2.2.2). The Eq. (4.8) repre-
sents an integro-differential equation for the classical spin only and possesses a spatially
and temporally non-local structure, as a spin at sitem and time t is coupled via the equilib-
rium and homogeneous-in-time conduction-electron spin susceptibility χ(ret)(t− t′) to an
spin at site m′ and earlier time t′. Compared with the results of the full quantum-classical
theory, we expect that the perturbative spin-only theory breaks down after a propagation
time t ∼ 1/J at the latest. However, if the spin dynamic is nearly adiabatic, it will pro-
duces rather a very weak torque∝ Sm(t)×Sm(t′) and the first-order perturbation theory
could become reliable on much larger time scales t� 1/J .

The integro-differential equation (4.8) can be solved numerically by a combination of
Runge-Kutta method [Verner, 2010] and Newton–Cotes quadrature rule (required for the
evaluation of the integral [Press et al., 2007]). To this end, the time-dependent RKKY
indirect magnetic interaction must be calculated in advance, as this fixes the kernel in the
integro-differential equation (4.8). Using Wick’s theorem the time-dependent parame-
ters of the retarded RKKY interaction can be formulated in terms of the greater and the
lesser one-particle Green’s function, G>

ii′,σσ′(t, t
′) = −i〈ciσ(t)c†i′σ′(t

′)〉 and G<
ii′,σσ′(t, t

′)

= i〈c†i′σ′(t′)ciσ(t)〉, respectively, in thermal equilibrium at inverse temperature β and
chemical potential µ:

JRKKYmm′,αα′(t− t′) =
J2

2
Θ(t− t′)× Im tr 2×2

[
σαG>

imim′
(t, t′)σα

′
G<
im′ im

(t′, t)
]
. (4.9)

Assuming that the conduction electrons are characterized by a real, symmetric and spin-
independent hopping matrix Tij (as given by the first term of Eq. (4.1)). This implies
that G>/< are unit matrices with respect to the spin indices. With tr (σασα

′
) = 2δαα′ and



4 Relation to theories with classical impurity spins 37

with the explicit representations of G>/< as functions of T (see, e.g., Balzer and Potthoff
[2011]) we find:

JRKKYmm′,αα′(t− t′) = Θ(t− t′)J2δαα′Im×
(

e−iT (t−t′)

1 + e−β(T−µ)

)
imim′

(
e−iT (t′−t)

eβ(T−µ) + 1

)
im′ im

(4.10)

Furthermore, taking advantage of time homogeneity and spatial translational symmetry,
the hopping matrix T is diagonalized by Fourier transformation:

Tij =
∑
k

Uikε(k)U †kj (4.11)

with Uik = L−1/2 exp(ikRi) and the eigenvalues of T are given by the tight-binding
dispersion relation ε(k) = 2T

∑d
α=1 cos kα of the conduction band. This leads to

JRKKYmm′,αα′(t) = Θ(t)
J2

L2
× (4.12)

Im
{(∑

k

eik(Rim−Rim′ )
e−iε(k)t

1 + e−β(ε(k)−µ)

)(∑
p

e−ip(Rim−Rim′ )
eiε(p)t

eβ(ε(p)−µ) + 1

)}
where the components of the wave vectors are given as kα, qα ∈ {−π/a + 2πz/aL |1 ≤
z ≤ L, z ∈ N} with the lattice constant a = 1. The Eq. (4.12) can be evaluated nu-
merically and an example for the time-dependence of the RKKY interaction in various
dimensions is presented in Fig. (4.1). The calculations have been done at half-filling and
at finite temperature β = 103. We find that the susceptibility is in fact peaked around
t = 0 and decays as 1/td for long times, where d is the dimension of the system. In the
following, we analyze the physical origin of the asymptotic behavior of the RKKY inter-
action for t→∞, as this is of great importance for the estimation of the Gilbert-damping
constant later on. For simplicity, we discuss its local part j(t) ≡ JRKKYm=m′,αα(t)/J2:

j(t) = Θ(t)Im
1

L2

∑
k

e−iε(k)t

1 + e−β(ε(k)−µ)

∑
p

eiε(p)t

eβ(ε(p)−µ) + 1
. (4.13)

With the Fermi function f(ω) = 1/(eβω + 1) and the noninteracting conduction-electron
one-particle spectral density

ρ(ω) =
1

L

∑
k

δ(ω + µ− ε(k)) (4.14)

we obtain

j(t) = Θ(t)Im
∫
dx ρ(x)e−ixt(1− f(x))

∫
dω ρ(ω)eiωtf(ω)

= Θ(t)Im[ρunocc(−t)ρocc(t)] . (4.15)
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Figure 4.1: RKKY indirect magnetic interaction JRKKY(t) (red line) and td JRKKY(t)mm′

(blue) as obtained from Eq. (4.12) for β = 103 in various dimensions d for a conduction-
electron system with L = 10000 (d = 1), L = 1000×1000 (d = 2) and L = 800×800×800
(d=3) sites and periodic boundary conditions. The two impurities located at sites m and
m′ in Eq. (4.12) are chosen to be nearest neighbours in all cases.

Its long-time behavior is governed by the long-time behavior of the Fourier transform

ρocc,unocc.(t) =

∫
dω eiωtρocc,unocc.(ω) (4.16)

of the occupied, ρocc(ω) = f(ω)ρ(ω), and of the unoccupied, ρunocc(ω) = (1−f(ω))ρ(ω),
part of the spectral density. For functions with a smooth ω-dependence, the Fourier trans-
form generically drops to zero exponentially fast if t→∞. A power-law decay, however,
is obtained if there are singularities of ρocc,unocc.(ω). We can distinguish between van
Hove singularities, which are, e.g., of the form ∝ Θ(ω − ω0)(ω − ω0)k (with k > −1),
and the step-like singularity ∝ Θ(ω − ω0) (i.e. k = 0), arising in the zero-temperature
limit at ω0 = 0 due to the Fermi function. These give rise to the asymptotic behavior
ρocc,unocc.(t) ∝ t−1−k, apart from a purely oscillatory factor eiω0t. Generally, the loca-
tion of the van Hove singularity on the frequency axis, i.e. ω0, determines the oscillation
period while the decay of j(t) is governed by the strength of the singularity.

Consider, as an example, the zero-temperature case and assume that there are no
van Hove singularities. The sharp Fermi edge implies ρ(occ,unocc)

loc (t) ∝ t−1, and thus
j(t) ∝ t−2. However, in general, van Hove singularities are unavoidable and their strength
depends on the lattice dimension d [Ashcroft and Mermin, 1976]:
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• One-dimensional lattice (d = 1):
The van Hove singularities with k = −1/2 leads to j(t) ∝ t−1. The strong
van Hove singularity dominates the long-time asymptotic behavior as compared
to the weak Fermi-edge singularity with a more rapid and thus negligible decay
j(t) ∝ t−2.
• Two-dimensional lattice (d = 2):

The logarithmic van Hove singularity ∝ ln |ω| leads to j(t) ∝ t−2. This, however,
applies to cases off half-filling only. At half-filling the van Hove and the Fermi-edge
singularity combine to a singularity ∝ Θ(ω) ln |ω| which gives j(t) ∝ ln2(t)/t2.
For finite temperatures, we again have j(t) ∝ t−2. We like to mention that j(t) ∝
t−3 in models where its Fourier transform is given by j(ω) ∝ ωe−|ω|/λ with some
cutoff parameter λ. In this case the singularity is of the order of k = 2.
• Three-dimensional lattice (d = 3):

Here, we have k = 1/2 and j(t) ∝ t−3 if T > 0, while for T = 0 the Fermi-edge
singularity dominates and j(t) ∝ t−2.

We conclude that the numerical results at finite temperature (β = 103) in figure (4.1)
with j(t) ∝ 1/td are in line with the analytical consideration from above. The t → ∞
behavior is important for static quantities like

∫∞
const.

dt j(t) and
∫∞

const.
dt t j(t). The latter

is related to the Gilbert damping constant, which we will discuss in the subsequent section.

4.3 Derivation of the Landau-Lifshitz-Gilbert

equation

In the preceding sec. 4.2, the linear-response approach to integrate out the electron degrees
of freedom is carefully examined. Here, we go one step further by including a discussion
of the additional approximations that are necessary to re-derive the LLG equation and the
damping term in particular. Moreover, we show that the damping constant is sensitively
dependent on the low-energy electronic structure and as a result even ill-defined in some
cases.

We begin our discussion with a brief introduction to the Landau-Lifshitz-Gilbert
[Gilbert, 2004; Landau and Lifshitz, 1935] equation, which for a suitable choice of units
and for several spins Sm(t) at lattice sites m, has the following structure:

dSm(t)

dt
= Sm(t)×B +

∑
m′

Jmm′Sm(t)× Sm′(t)

−
∑
m′

αGmm′Sm(t)× Ṡm′(t) . (4.17)

It consists of precession terms coupling the spin at site m to an external magnetic fieldB
and, via exchange couplings Jmm′ , to the spins at sites m′. Those precession terms typi-
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cally have a clear atomistic origin, such as the Ruderman-Kittel-Kasuya-Yoshida (RKKY)
interaction which is mediated by the magnetic polarization of conduction electrons. The
non-local RKKY couplings Jmm′ = J2χmm′ are given in terms of the elements χmm′
of the static conduction-electron spin susceptibility and the local exchange J between
the spins and the local magnetic moments of the conduction electrons. Other possibili-
ties comprise direct (Heisenberg) exchange interactions, intra-atomic (Hund’s) couplings
as well as the spin-orbit and other anisotropic interactions. The relaxation term, on the
other hand, is often assumed as local, αmm′ = δmm′α, and is represented by purely phe-
nomenological Gilbert damping constant α only. It describes the angular-momentum
transfer between the spins and a usually unspecified heat bath. On the atomistic level,
the Gilbert damping must be seen as originating from microscopic couplings of the spins
to the conduction-electron system (as well as to lattice degrees of freedom which, how-
ever, will not be considered here). As prevoiusly mentioned in the introductory chapter
1, there are numerous studies where the damping constant, or tensor, α has been com-
puted numerically from a more fundamental model including electron degrees of freedom
explicitly [Bhattacharjee et al., 2012; Onoda and Nagaosa, 2006; Umetsu et al., 2012] or
even from first principles. [Antropov et al., 1995; Capelle and Gyorffy, 2003; Ebert et al.,
2011; Kuneš and Kamberský, 2002a; Sakuma, 2012]. All these studies rely on two, par-
tially related, assumptions: Firstly, the spin-electron coupling J is weak and can be treated
perturbatively to lowest order, i.e., the Kubo formula or linear-response theory can be em-
ployed, as already discussed at the derivation of Eq. (4.8). Secondly, he weak-coupling
approach can be simplified further by applying a Markov approximation and may lead
eventually to the LLG equation. Assuming a separation of time scales, i.e., the electron
dynamics is much faster than the spin dynamics, [Bhattacharjee et al., 2012; Fransson,
2008] the RKKY interaction takes place almost instantaneously on the time scale of the
spin system, i.e. the memory kernel in Eq. (4.8) is peaked at t′ ≈ t, and we can replace
S(t′) by its Taylor expansion S(t′) ≈ S(t) + (t′ − t)Ṡ(t) + (t′ − t)2S̈(t)/2 in the inte-
grand. Sending the upper bound of the integral to infinity as an additional approximation,
which is a necessary step to yield constant coupling parameters and which can be justified
by noting that JRKKY(t) is peaked around t = 0, we obtain:

d

dt
Sm(t) = Sm(t)×Bm

− Sm(t)×
∑
m′

JRKKYmm′ · Sm′(t)

− Sm(t)×
∑
m′

αGmm′ · Ṡm′(t)

+ Sm(t)×
∑
m′

Imm′ · S̈m′(t) . (4.18)

Static RKKY interaction. The first two terms in the r.h.s. of Eq. (4.18) can also be
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derived from the classical Heisenberg model

Heff =
1

2

∑
mm′

SmJ
RKKY

mm′ Sm′ −
∑
m

BmSm , (4.19)

where the static RKKY interaction is defined as

JRKKYmm′ = J2 lim
t→∞

∫ t

−∞
dt′θ(t′)χ

(ret)
mm′(t− t′)

= J2

∫ ∞
−∞

dτ χ
(ret)
mm′(τ)e−iωτ | ω=0

= J2 χ
(ret)
mm′(ω = 0) , (4.20)

which can be computed by expressing the static conduction-electron spin susceptibility
as χ(ret)

mm′,αα′(ω = 0) =
∫∞
−∞ dtΠ

(ret)
mm′,αα′(t) = ∂〈sαim〉/∂bα

′
im′
|b=0 =

∫ β
0
〈sαim(τ)sα

′
im′

(0)〉dτ −
β〈sαim〉〈sα

′
im′
〉, where bi =

∑
α b

α
i eα is a local field coupling to the conduction-electron

spins via H 7→ H −∑m bimsim and sαim(τ) = eHτsαime
−Hτ . Applying Wick’s theorem,

we find (see, e.g., Ref. Antropov et al. [1995]):

JRKKYmm′,αα′ =
1

π

J2

4

∫ ∞
−∞

dωf(ω)× Im tr 2×2

(
σαGret

imim′
(ω)σα

′
Gret
im′ im

(ω)
)

(4.21)

where f(ω) = 1/(eβω + 1) is the Fermi function at inverse temperature β of the free
conduction-electron in thermal equilibrium and Gret

ii′ (ω) is the free single-electron re-
tarded Green’s function, a 2×2 matrix with elementsGret

ii′,σσ′(ω). An alternative approach
to calculate the static RKKY interaction would be the evaluation of the time integral over
the static conduction-electron spin susceptibility χ(ret)(t) in Eq. (4.20).

Gilbert damping and moment of inertia. The first- and second-order Taylor expansion
included this microscopic approach yield a spatially non-local Gilbert damping and a
non-local moment of inertia:

αGmm′ = −
∫ ∞

0

dt t JRKKYmm′ (t) , (4.22)

Imm′ = −
∫ ∞

0

dt t2 JRKKYmm′ (t) . (4.23)

The Eq. (4.22) represents the fundamental definition of the Gilbert damping constant
(αG > 0) and the limit t → ∞ is crucial to recover the LLG equation in its standard
form as given in Eq. (4.18). The existence of the integral Eq. (4.22) decisively depends
on the t → ∞ behavior and either requires a decay as JRKKY(t) ∝ t−s with s > 2, or
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an asymptotic form JRKKY(t) ∝ eiω0t/ts (and s ≥ 2) with an oscillating factor resulting
from a non-zero position ω0 6= 0 of the van Hove singularity. As previously discussed in
section (4.2), for the one-dimensional case the RKKY scales as JRKKY ∝ 1/t due to the
van Hove singularity, hence we conclude that the LLG equation (with a time-independent
damping constant) is based on an ill-defined concept. The same applies to the inertia term
in (4.23), which requires a decay as JRKKY(t) ∝ t−s with s > 3, consequently the inertia
term is even ill-defined for two-dimensional systems. This conclusion might change for
the case of interacting conduction electrons, as one would expect a regularization of van
Hove singularities due to a finite imaginary part of the conduction-electron self-energy.

Scaling properties. Finally, we analyze the scaling properties of the equation of motion
(4.18). To this end, we rescale the length of the classical spin S̃m = λSm and see im-
mediately that if Sm solves the equation for parametersB, αG and I, then S̃m solves the
same equation with rescaled parameters αG/λ and I/λ. Hence, the damping parameter
αG and the inertia constant I have a stronger impact on the dynamics of an elongated spin
(Scl. ≡ |S| > 1), i.e. smaller effective parameters

α̃G = αG/Scl. , I ′ = I/Scl. , (4.24)

result in the same dynamics as for a spin of unit length.
As is evident from the defining equations (4.22) and (4.23), the parameters αG, I are

properties of the conduction-electron system only and do not depend on the length of
the classical spin Scl.. As a result, the equation of motion (4.18) for a given system is
therefore independent of Scl.. It is worth adding, that this scaling property also applies to
the integro-differential equation (4.8).

Furthermore, for a single spin and fixed α, the relaxation time can be determined analyt-
ically [Kikuchi, 1956] and results in τrel ∝ (1 + α2S2

cl.)/(αScl.B). Hence in the large-Scl.

limit, the relaxation time scales linearly in Scl.:

τrel ∝ Scl. . (4.25)

Finally, we identify Scl. with the modulus of the angular momentumL of a fast-spinning
gyroscope. From elementary theory (see, e.g., Ref. Butikov [2006]) it is well known that
L ∼ ωN, and thus we find

ωN ∝ Scl. , (4.26)

which is consistent with results obtained by Kikuchi and Tatara [2015]. In 5.2.3 we will
check the scaling behavior found in terms of the perturbative LLG-approach in Eqs.
(4.25) and (4.26) with numerical results obtained from the quantum-classical hybrid the-
ory (QCH-SD) and from the full quantum dynamics (tDMRG method).
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4.4 Conclusions

In this Chapter, we have focused on the transversal spin dynamics which is a classical
phenomenon and compared our method to existing approaches to classical spin dynam-
ics. Firstly, we have found that the transversal spin dynamics yield from the mean-field
treatment of the quantum model is equivalent to the quantum-classical hybrid spin dy-
namics (QCH-SD) obtained from the classical-spin multi-impurity Kondo model.

Secondly, in the weak-coupling limit, we recover an equation of motion for the clas-
sical spins only [Bhattacharjee et al., 2012; Onoda and Nagaosa, 2006]. To this end,
the electronic degrees of freedom explicitly included in the quantum-classical hybrid
spin dynamics are integrated out altogether by applying standard linear-response theory
[Negele and Orland, 1998]. The resulting linear-response spin dynamics (LR-SD) is an
integro-differential equation for the classical spins only with a spatially and temporally
non-local structure and is numerically solvable by means of a combination of Runge-
Kutta method [Verner, 2010] and Newton–Cotes quadrature rule [Press et al., 2007]. On
the one hand, this weak-coupling approach is expected to break down after a propagation
time t ∼ 1/J as the dimensionless small parameter is given by Jt. However, on the other
hand, if the spin dynamics is nearly adiabatic the perturbation will produce a rather weak
torque Sm × Sm(t′) and the weak-coupling approach becomes reliable on rather large
time-scales t � 1/J . These assumptions will be checked numerically by a comparison
of the LR-SD with the exact QCH-SD in Sec. 5.1.4.

Thirdly, the Landau-Lifshitz-Gilbert equation [Gilbert, 2004; Landau and Lifshitz,
1935] and in particular the Gilbert-damping and the moment of inertia are re-derived.
Assuming separation of time-scales, i.e., the classical spin dynamics is slow as compared
to the electron dynamics, the LR-SD is simplified further by applying a Markov approx-
imation which results in the Landau-Lifshitz-Gilbert equation. Moreover, it has been
demonstrated that the Gilbert damping constant and the moment of inertia are sensitively
dependent on the low-energy electronic structure. In particular, the van Hove singularities
have the result that the Gilbert damping is ill-defined in the case of an uncorrelated one-
dimensional lattice. The same is true for the moment of inertia, which is not well-defined
in the case of an uncorrelated one- and two-dimensional lattices. However, this conclu-
sion may change for systems where the classical spin is coupled to a correlated electron
system. Here the van Hove singularities could be lifted by the finite imaginary part of the
conduction-electron self-energy.

Finally, the scaling property of the LLG equation is analyzed. It has been found that
the relaxation time scales linearly in S in the large-S limit. The Landau-Lifshitz-Gilbert
theory also predicts a linear behavior for the nutation frequency as a function of S.
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coupled to an electron system

In this chapter, we study the real-time dynamics of a single quantum and classical-spin
S coupled via an antiferromagnetic local exchange interaction to the local quantum spin
of an one-dimensional conduction electron system with open boundary conditions at zero
temperatures (β = ∞). The spin dynamics initiated by suddenly switching the direction
of a local magnetic field, is studied by means of the time-dependent density-matrix renor-
malization group (tDMRG)4, exact quantum-classical hybrid spin dynamics (QCH-SD)
and the linear-response spin dynamics (LR-SD).

In section 5.1, we discuss spin dynamics and relaxation in the classical-spin Kondo-
impurity model in terms of the QCH-SD approach [Sayad and Potthoff, 2015]. Sec-
tion 5.2 is devoted to the study of inertia effects in the real-time dynamics of a classi-
cal as well as a quantum spin coupled to a noninteracting conduction electron system
[Sayad et al., 2016a]. Here, quantum effects are identified by systematic tDMRG study
for different spin quantum numbers S and by comparing with the QCH-SD approach for
the classical-spin Kondo model. Finally, in section 5.3, we focus on the relaxation of a
classical spin coupled to a Hubbard system as a function of the local Coulomb interac-
tion U [Sayad et al., 2016b]. To this end, we combine the LR-SD approach for the spin
dynamics with the tDMRG method for the correlated electron system.

5.1 Relaxation of a classical spin coupled to a

Fermi sea

The purpose of the present section5 is to explore the physics beyond the LR-SD approach
and the LLG theory presented in chapter 4.2 and 4.3. To this end, we use the QCH-
SD method introduced in chapter 4.1 by which the dynamics of classical spins coupled
to a system of noninteracting conduction electrons can be treated numerically exactly.

4The time-dependent density-matrix renormalization group code was provided by Roman Rausch.
5Major parts of this section have been published as M. Sayad and M. Pottho�: Spin dynamics

and relaxation in the classical-spin Kondo-impurity model beyond the Landau-Lifschitz-Gilbert

equation, New J. Phys. 17, 113058 (2015) - Copyright c© 2015 IOP Publishing Ltd and Deutsche
Physikalische Gesellschaft.
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The theory applies to arbitrary coupling strengths and does not assume a separation of
electron and spin time scales. As previously discussed in chapter 4.1, this approach is
a quantum-classical hybrid theory [Elze, 2012] which may be characterized as Ehrenfest
dynamics, similar to exact numerical treatments of the dynamics of nuclei, treated as clas-
sical objects, coupled to a quantum system of electrons (see, e.g., Ref. Marx and Hutter
[2009] for an overview). Moreover, the quantum-classical hybrid theory of spin and elec-
tron dynamics reveals a precise microscopic picture of the electron dynamics, which can
be used to discuss the precession and relaxation dynamics of the spin from another,
namely from the electronic perspective. This information is in principle experimen-
tally accessible to spin-resolved scanning-tunnelling microscope techniques [Loth et al.,
2010; Morgenstern, 2010; Nunes and Freeman, 1993; Wiesendanger, 2009] and important
for an atomistic understanding of nano-spintronics devices [Khajetoorians et al., 2011;
Wolf et al., 2001]. Here, we are particularly interested in the physics of the system in
the strong-J regime or for a strong field B where the time scales of the spin and the
electron dynamics become comparable. This has not yet been explored but could be-
come relevant to understand real-time dynamics in realizations of strong-J Kondo-lattice
models by means of ultracold fermionic Yb quantum gases trapped in optical lattices
[Cappellini et al., 2014; Scazza et al., 2014].

The obvious numerical advantage of an effective spin-only theory, as given by LLG
equations of the form (4.17), is that in solving the equations of motion there is only
the time scale of the spins that must be taken care of. As compared to our hybrid the-
ory, much larger time steps and much longer propagation times can be achieved. Op-
posed to ab-initio approaches [Antropov et al., 1995; Kuneš and Kamberský, 2002b] we
therefore consider a simple one-dimensional non-interacting tight-binding model for the
conduction-electron degrees of freedom, i.e., electrons are hopping between the nearest-
neighboring sites of a lattice. Within this model approach, systems consisting of about
1000 sites can be treated easily, and we can access sufficiently long time scales to study
the spin relaxation. An equilibrium state with a half-filled conduction band is assumed
as the initial state. The subsequent dynamics is initiated by a sudden switch of a mag-
netic field coupled to the classical spin. Here, we study a single spin, i.e., we consider
a classical-spin Kondo-impurity model with antiferromagnetic local exchange coupling
J , while the theory itself, as formulated in chapter (3) and (4.1), is general and can be
applied to more than a single or even to a large number of spins as well. As compared
to the conventional (quantum-spin) Kondo model [Kondo, 1964], the model considered
here does not account for the Kondo effect and therefore applies to situations where this is
absent or less important, such as for systems with large spin quantum numbers S, strongly
anisotropic systems or, as considered here, systems in a strong magnetic field. To estimate
the quality of the classical-spin approximation a priori is difficult [Delgado et al., 2015;
Gauyacq and Lorente, 2014; Sayad et al., 2012]. For one-dimensional systems, however,
a quantitative study is possible by comparing with full quantum calculations and will be
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discussed in section 5.2.
This section is organized as follows: We first repeat the Hamiltonian and the equa-

tions of motion for the exact quantum-classical hybrid dynamics as presented in chapter
3 (and 4.1) for a single classical-spin Kondo model and discuss the numerical setup and
computational details in section 5.1.2. A comprehensive analysis of the relaxation of the
classical spin after a sudden switch of a magnetic field is provided in section 5.1.3: There,
the reversal time as a function of the interaction and the field strength is analyzed in de-
tail. Subsequently, the focus is set on the conduction-electron system which induces the
relaxation of the classical spin by dissipation of energy. Sec. 5.1.4 is devoted to the com-
parison of the LR-SD approach with the QCH-SD. Finally, section 5.1.5 summarizes the
results and the main conclusions.

5.1.1 Single classical-spin Kondo model

For a single classical spin S with |S| = 1/2, the quantum-classical hybrid Hamiltonian
introduced in Eq. (4.1) reads as

H = −T
∑
〈ij〉,σ

c†iσcjσ + Jsi0S −BS , (5.1)

where the classical spin S is coupled via a local exchange interaction of strength J to
the local quantum spin si0 at the site i0 of a system of N itinerant and non-interacting
conduction electrons. The conduction electrons hop with amplitude −T between non-
degenerate orbitals on nearest-neighboring sites of a one-dimensional lattice, see Fig. 5.1.
Energy and time units are fixed by the nearest-neighbor hopping T = 1 throughout this
this study. L is the number of lattice sites, and n = N/L is the average conduction-
electron density with N = L (half-filling). As usual, ciσ annihilates an electron at site i =
1, ..., L with spin projection σ =↑, ↓, and si = 1

2

∑
σσ′ c

†
iσσσσ′ciσ′ is the local conduction-

electron spin at i, where σ denotes the vector of Pauli matrices. The sum runs over the
different ordered pairs 〈ij〉 of nearest neighbors. B is an external magnetic field which
couples to the classical spin.

To be definite, an antiferromagnetic exchange coupling J > 0 is assumed. If S was a
quantum spin with S = 1/2, Eq. (5.1) would represent the single-impurity Kondo model
[Kondo, 1964]. However, in the case of a classical spin considered here, there is no
Kondo effect. The semiclassical single-impurity Kondo model thus applies to systems
where a local spin is coupled to electronic degrees of freedom but where the Kondo effect
is absent or suppressed. This comprises the case of large spin quantum numbers S, the
case of temperatures well above the Kondo scale, or systems with a ferromagnetic Kondo
coupling J < 0 where, for a classical spin, we expect a qualitatively similar dynamics as
for J > 0.

We assume that initially, at time t = 0, the classical spin S(t = 0) has a certain
direction and that the conduction-electron system is in the corresponding ground state,
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J
T

B

Figure 5.1: Classical spin S(t) coupled via an antiferromagnetic local exchange interaction
of strength J to a system of conduction electrons tunneling with nearest-neighbor hopping
amplitude T over the sites of a one-dimensional lattice with open boundaries. The spin
couples to the central site i0 of the system and is subjected to a local magnetic �eld of
strength B.

i.e., the conduction electrons occupy the lowest N one-particle eigenstates of the non-
interacting Hamiltonian Eq. (5.1) for the given S = S(t = 0) up to the chemical potential
µ. A non-trivial time evolution is initiated if the initial direction of the classical spin and
the direction of the field B are non-collinear. In order to analyze the spin dynamics,
we revisit the equations of motion for the real-time dynamics of the classical spin and

the conduction electron spin as discussed in section 4.1 (or 3.3 with 〈K(0)
m

†〉t = 0 and
〈Km〉t = 0), which do not change much for the single impurity case:

d

dt
S(t) = J〈si0〉t × S(t)−B × S(t) . (5.2)

This is the Landau-Lifschitz equation where the expectation value of the conduction-
electron spin at i0 is then again time-dependent, hence J〈si0〉t acts as an effective time-
dependent internal field in addition to the external field B. The equation of motion for
〈si〉t reads as

d

dt
〈si〉t = δii0JS(t)× 〈si〉t − T

n.n.∑
j

1

2i

∑
σσ′

(〈c†iσσσσ′cjσ′〉t − c.c.) , (5.3)

where the sum runs over the nearest neighbors of i. The second term on the right-hand side
describes the coupling of the local conduction-electron spin to its environment and the
dissipation of spin and energy into the bulk of the system (see below). Finally, the system
of equations of motion can be closed by considering the complete one-particle density
matrix %(t), which also determines the real-time dynamics of the electronic subsystem.
As preliminary discussed in section 2.3.2, the one-particle density matrix obeys a von
Neumann equation of motion,

i
d

dt
%(t) = [T H(%(t)), %(t)]− , (5.4)

where the initial condition %(0) = 1/(eβ(T B) + 1) has to be determined in a self-consistent
scheme as presented in section 3.2. Furthermore, the effective hopping matrix T H =
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T + ΣHF(t) as defined in Eq. (3.11) is simplified significantly for a classical spin:

T (cc)
ii′σσ′(t) = −Tδ〈ii′〉δσσ′ + δii0δi′i0

J

2
(S(t)σ)σσ′ ,

T (ff)
σσ′ (t) =

J

2

(
(〈si0〉t −B)σ

)
σσ′

. (5.5)

Note that the effective hopping matrix for the initial state given by T B = T + ΣHF is the
same matrix as T H, but with time-independent self-energy contribution ΣHF and different
parameters Jini andBini stemming from the Hamiltonian B describing the systems initial
state. As previously mentioned in section 4.1, for the classical spin Kondo model, the
charge and spin hybridization terms 〈K(0)

m 〉t = 0 and 〈Km〉t = 0 vanish, consequently
T (cf) = 0 is also zero, as evident from Eqs. (3.11) and (3.8).

As is obvious from the equations of motion, the real-time dynamics of the quantum-
classical Kondo-impurity model on a lattice with a finite but large number of sites L can
be treated numerically exactly. In the following we will discuss in detail the numerical
setup and some computational details.

5.1.2 Numerical setup and computational details

Eqs. (5.2), (5.3) and (5.4) represent a coupled non-linear system of first-order ordinary
differential equations which can be solved numerically. By blocking up the von Neumann
equation (5.4), the differential equations are written in a standard form ẏ = f(y(t), t),
where y(t) is a high-dimensional vector, such that an explicit Runge-Kutta method can
be applied. A high-order propagation technique is used [Verner, 2010] which provides
the numerically exact solution up to 6-th order in the time step ∆t. For a typical system
consisting of about L = 103 sites, about∼ 106 coupled equations must be solved for each
time step.

We consider a one-dimensional system with open boundaries consisting of L = 1001
sites and a local perturbation at the central site i0 of the system, see Fig. 5.1. For a half-
filled tight-binding conduction band, the Fermi velocity vF = 2T roughly determines
the maximum speed of the excitations and defines a “light cone” [Bravyi et al., 2006;
Lieb and Robinson, 1972]. This means that finite-size effects due to scattering at the
system boundaries become relevant after a propagation time tmax ∼ 500 (in units of
1/T ). A time step ∆t = 0.1 is usually sufficient for reliable numerical results up to
tmax, i.e., about 5000 time steps are performed. The computational cost is moderate, and
calculations can be performed in a few hours on a standard desktop computer.

Assuming, for example, that B = (0, 0, B), the Hamiltonian is invariant under rota-
tions around the z axis. It is then easily verified that not only is the length of the spin
|S| = 1/2 conserved, but also the total number of conduction electrons,

Ntot =
∑
iσ

〈c†iσciσ〉 , (5.6)
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the z-component of the total spin,

Stot,z = Sz +
∑
i

〈siz〉 , (5.7)

as well as the total energy,

Etot = 〈H〉 = tr (ρ(t)T (t))−BS(t) . (5.8)

The conservation of the above-mentioned global observables serves as a sensitive check
for the accuracy of the numerical procedure.

5.1.3 Coupled spin and electron dynamics

Spin relaxation. Fig. 5.2 shows the real-time dynamics of the classical spin for J = 1.
Initially, for t = 0, the spin is oriented (almost) antiparallel to the external local field
B = (0, 0, B) with B = 1, i.e., initially Sx(0) = 1

2
sinϑ, Sy(0) = 0, Sz(0) = −1

2
cosϑ

where a non-zero but small polar angle ϑ = π/50 is necessary to slightly break the
symmetry of the initial state and to initialize the dynamics.

For the same setup, the Landau-Lifschitz-Gilbert equation would essentially predict
two effects: first, a precession of the classical spin around the field direction with Larmor
frequency ωL = Bz, and second, a relaxation of the spin to the equilibrium state with S
parallel to B ∼ Bez for t → ∞. Both effects are also found in the full dynamics of the
quantum-classical hybrid model. The frequency of the oscillation of Sx(t) that is seen in
Fig. 5.2 is ωL, and Sz is reversed after a few hundred time units. The precessional motion
is easily explained by the torque on the spin exerted by the field according to Eq. (5.2).
The explanation of the damping effect is more involved:

Even for the high field strength considered here, the spin dynamics is slow as compared
to the characteristic electronic time scale such that it could be reasonable to assume the
electronic system being in its instantaneous ground state at any instant of time and corre-
sponding to the configuration of the classical spin. This, however, would imply that the
expectation value 〈si0〉t of the local conduction-electron moment at i0 is always strictly
parallel to S(t) and, hence, there would not be any torque mediated by the exchange
coupling J on S(t).

In fact, the direction of 〈si0〉t is always somewhat behind the “adiabatic direction”,
i.e., behind −S(t): This is shown in Fig. 5.3 for a field of strength B = 0.1 where the
spin dynamics is by a factor 10 slower, compared to Fig. 5.2, and for different stronger
exchange couplings J . Even in this case the process is by no means adiabatic, and the
angle γ(t) between S(t) and 〈si0〉t is close to but clearly smaller than γ = π at any instant
of time. This non-adiabaticity results from the fact that the motion of the classical spin
affects the conduction electrons in a retarded way, i.e., it takes a finite time until the local
conduction-electron spin 〈si0〉t at i0 reacts to the motion of the classical spin.
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Figure 5.2: Real-time dynamics of the classical spin: x and z components of S(t) (|S| =
1/2) are shown. Calculations for exchange coupling J = 1 and �eld strength B = 1 and
for a system of L = 1001 sites. (L = 1001 is kept �xed for the rest of the section 5.1).
Energy and time units are �xed by the nearest-neighbor hopping T = 1.

This retardation effect results in a torque J〈si0〉t × S(t) 6= 0 exerted on the classical
S(t) in the +z direction which adds to the torque due to B and which drives the spin to
its new equilibrium direction. Hence, retardation is the physical origin of the Gilbert spin
damping.

With increasing time, the deviation of γ(t) from the instantaneous equilibrium value
γ = π increases in magnitude, i.e., the direction of 〈si0〉t is more and more behind the
adiabatic direction, and the torque increases. Its magnitude is at a maximum at the same
time when the oscillating x, y components of S(t) are at a maximum (see Fig. 5.2). The
z-component of the torque does not vanish before the spin has reached its new equilibrium
position S(t) ∝ ez.

Fig. 5.3 shows results for different J . Generally, non-adiabatic effects show up if the
typical time scale of the dynamics is faster than the relaxation time, i.e., the time necessary
to transport the excitation away from the location i0 where it is created initially. Roughly,
this time scale is set by the inverse hopping 1/T . One therefore expects that for fixed
T = 1, a stronger J implies a stronger retardation of the conduction-electron dynamics.
The results for different J shown in Fig. 5.3 in fact show that the maximum deviation of
γ(t) from the adiabatic direction γ = π increases with increasing J (for very strong J the
dynamics becomes much more complicated, see below). This results in a stronger torque
on S(t) in z direction and thus in a stronger damping. The picture is also qualitatively
consistent with the LLG equation, as the Gilbert damping constant α increases with J .

The spin (almost) reverses its direction after a finite reversal time τ which is shown in
Fig. 5.4 (left panel) as a function of J . Calculations have been performed for an initial
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Figure 5.3: Time dependence of the angle γ(t) enclosed by S(t) and 〈si0〉t for B = 0.1
and di�erent J as indicated.

direction of the classical spin with Sz(0) = −(1/2) cosϑ with two different polar angles
ϑ1,2. If ϑ is sufficiently small, the results for different ϑ are expected to differ by a J- and
B- independent constant factor only. As Fig. 5.4 (left panel) demonstrates, the ratio τ1/τ2

is in fact nearly constant. For weak J and up to coupling strengths of about J . 30, we
find that the reversal time decreases with increasing J . With increasing J , the retardation
effect increases, as discussed above, and the stronger damping results in a shorter reversal
time.

The prediction of the LLG equation for the reversal time of a single spin τ can be
derived analytically [Kikuchi, 1956] and is given by

τ ∝ 1 + α2

α

1

B
ln
∣∣∣1/2− Sz(0)

1/2 + Sz(0)

∣∣∣ . (5.9)

However, down to the smallest J for which τ can be calculated reliably, our results for the
full spin dynamics do not scale as τ ∝ 1/J2 as one would expect for weak J assuming
that α ∝ J2 (see discussion in Sec. 4.3).

The B dependence of the reversal time is shown in Fig. 5.4 (right panel). With in-
creasing field strength, the classical spin S(t) precesses with a higher Larmor frequency
ωL ≈ B around the z axis. Hence, non-adiabatic effects increase. The stronger the field,
the more delayed is the precessional motion of the local conduction-electrons spin 〈si0〉t.
This results in a stronger torque in +z direction exerted on the classical spin. Therefore,
the relaxation is faster and the reversal time τ smaller. For weak and intermediate field
strengths, τ is roughly proportional to 1/B. This is consistent with the prediction of the
LLG equation, see Eq. (5.9).

In the limit of very strong fields one would expect an increase of the reversal time with
increasing B since the field term will eventually dominate the dynamics, i.e., only the
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J=2

J=4

Figure 5.4: Left panel: Time for a spin reversal Sz = 1
2 cos(π − ϑ) = −1

2 cos(ϑ) → Sz =
1
2 cos(ϑ) for ϑ = ϑ1 = π/50 (reversal time τ1) and for ϑ = ϑ2 = π/25 (reversal time τ2).
Calculations as a function of J for �xed B = 0.1. Right panel: Reversal time τ1 as function
of 1/B for �xed J = 2 and J = 4 as indicated.

precessional motion survives which implies a diverging reversal time. In fact, for a field
strength exceeding a critical strength Bc, which depends on J , there is no full relaxation
any longer, and τ = ∞. This strong-B regime cannot be captured by the LLG equation
and deserves further studies.

The strong-J regime is interesting as well. For coupling strengths exceeding J ≈ 30 the
reversal time increases with J (see Fig. 5.4, left panel). Eventually, the reversal time must
even diverge. This is obvious, as the dynamics is described by a simple two-spin model
in the limit J = ∞ which cannot show spin relaxation. The corresponding equations of
motion are obtained from Eqs. (5.2) and (5.3) by setting T = 0 andB = 0:

d

dt
S(t) = J〈si0〉t × S(t) ,

d

dt
〈si0〉t = JS(t)× 〈si0〉t . (5.10)

Note that we have |〈si0〉t| = 1/2 for J → ∞. The equations are easily solved by ex-
ploiting the conservation of the total spin Stot = S(t) + 〈si0〉t. Both spins precess with
constant frequency ω0 = JStot around Stot. Their components parallel to Stot are equal,
and their components perpendicular to Stot are anti-parallel and of equal length.

However, the two-spin dynamics of the J =∞ limit is not stable against small pertur-
bations. Fig. 5.5 shows the classical spin dynamics of the full model (with T = 1 and
B = 0.1) for a very strong but finite coupling J = 100. Here, the motion of the classical
spin gets very complicated as compared with the highly regular behavior in the weak-J
regime (cf. Fig. 5.2). In particular, the z-component of S(t) is oscillating on nearly the
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Figure 5.5: Real-time dynamics in the strong-J regime: J = 100 and B = 0.1. First

panel: Classical spin S(t). Second panel: Torque on S(t) due to the exchange interaction.
Third panel: Torque on S(t) due to the �eld term. Fourth panel: Angle enclosed by S(t)
and 〈si0〉t.

same scale as the x and y components. This characteristic time scale ∆t ≈ 4 of the
oscillation corresponds to a frequency ω ≈ 1.5 which differs by more than an order of
magnitude from both, the Larmor frequency B = 0.1 and from the exchange-coupling
strength J = 100. Note that the oscillation of Sz(t) is actually the reason for the ambigu-
ity in the determination of the precise reversal time and gives rise to the error bars in Fig.
5.4 (left panel) for strong J .

We attribute the complexity of the dynamics to the fact that the torque due to the field
term and the torque due to the exchange coupling are of comparable magnitudes, see
second and third panel in Fig. 5.5. It is interesting that even for strong J , where one
would expectS(t) and 〈si0〉t to form a tightly bound local spin-zero state, there is actually
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a small deviation from perfect antiparallel alignment, i.e., γ(t) 6= π, as can be seen in the
fourth panel of Fig. 5.5. This results in a finite z-component of the torque on S(t) which
leads to a very fast reversal with Sz(t) ≈ +0.5 at time t ≈ 2.1. Contrary to the weak-
coupling limit, however, the z-component of the torque changes sign at this point and
drives the spin back to the −z-direction. At t ≈ 3.2, however, the z-component of S(t)
once more reverses its direction. Here, the torque due to the exchange coupling vanishes
completely as S(t) and 〈si0〉t are perfectly antiparallel (see the first zero of γ(t) in the
fourth panel). The motion continues due to the non-zero field-induced torque. This pattern
repeats several times. S(t) mainly oscillates within a plane including and slowly rotating
around the z-axis.

Eventually, there is a perfect relaxation of the classical spin for large t but in a very
different way as compared to the weak-coupling limit. While the deviation from γ = π is
small at any instant of time as for weak J , the most apparent difference is perhaps that the
new ground state is approached with an oscillating behavior of γ(t) around γ = π, i.e.,
〈si0〉t may run behind or ahead of S(t) as well. This behavior is identified as an inertia
effect, which is well known in classical spin dynamics [Kikuchi and Tatara, 2015] and
can be described by an additional term to the standard LLG equation with second-order
time-derivative of the spin (see, e.g., Bhattacharjee et al. [2012]). Inertia effects will be
discussed in depth in Sec. 5.2.

At this point, we summarize the main differences between the quantum-classical
hybrid and the effective LLG dynamics of the classical spin: For weak J and B, the
qualitative behavior, precessional motion and relaxation, is the same in both approaches.
Quantitatively, however, the LLG equation is inconsistent with the observed J depen-
dence of the reversal time when assuming α ∝ J2. The B dependence of 1/τ is linear
as expected from the LLG approach. For strong J , the spin dynamics qualitatively
differs from standard LLG dynamics and gets more complicated with a new time scale
emerging. Absence of complete relaxation, as observed in the strong-B limit, is also not
accessible to the LLG theory.

Energy dissipation. To complete the picture of the relaxation dynamics of the classical
spin, the discussion should also comprise the dynamics of the electronic degrees of free-
dom. The spin relaxation must be accompanied by a dissipation of energy and spin into
the bulk of the electronic system since the total energy and the total spin are conserved
quantities, see Eqs. (5.7) and (5.8), while conservation of the total particle number, Eq.
(5.6), is trivially ensured by the particle-hole symmetric setup considered here where the
average conduction-electron number at every site is time-independent:

∑
σ〈niσ〉t = 1.

The total energy is given by Etot = 〈H〉, see Eq. (5.8), and is a sum over different
contributions, Etot = EB(t) + Ehop(t) + Eint(t), namely the interaction energy with the
field

EB(t) = −BS(t) , (5.11)
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Figure 5.6: Di�erent contributions to the total energy as functions of time for J = 5 and
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the kinetic (hopping) energy of the conduction-electron system

Ehop(t) = −T
∑
〈ij〉

∑
σ

〈c†iσcjσ〉t , (5.12)

and the exchange-interaction energy

Eint(t) = J〈si0〉tS(t) . (5.13)

The time dependence of those contributions is shown in Fig. 5.6 for J = 5 and B = 1.
The top panel of Fig. 5.6 shows that the system releases the interaction energy |2BS|
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Figure 5.7: Spatiotemporal evolution of the total-energy density ei(t), as de�ned in Eq.
(5.14). Calculation for J = 5, B = 1.

of the classical spin in the external field by aligning the spin to the field direction. In
the long-time limit, this energy is stored in the conduction-electron system: The average
kinetic energy per site (L = 1001) increases by the same amount as shown in the second
panel (note the different scales). The exchange-interaction energy changes with time but
is the same for t = 0 and t→∞ (see third panel). The total energy is constant as can be
observed from the second panel.

The relaxation of the classical spin in the external fieldB implies an energy flow away
from the site i0 into the bulk of the conduction-electron system such that locally, in the
vicinity of i0 the system is in its new ground state. To discuss this energy flow, it is
convenient to consider the total energy as a lattice sum Etot =

∑
i ei(t) over the total

energy “density” defined as

ei(t) = −T
n.n.(i)∑
j

∑
σ

〈c†iσcjσ〉t + δii0(J〈si0〉t −B)S(t) , (5.14)

where the sum over j runs over the nearest neighbors of site i. The time dependence of
the energy density in the vicinity of i0 and at distances 50 and 100 is shown in the fourth
panel of Fig. 5.6.

At any site in the conduction-electron system, the energy density increases from its
ground-state value, reaches a maximum and eventually relaxes to the energy density of
the new ground state. Since the latter is just the ground state with the reversed classical
spin, the new ground-state energy density is the same as in the initial state at t = 0.
As can be seen in the fourth panel of Fig. 5.6, there is also a slight spatial oscillation
of the ground-state energy density which just reflects the Friedel oscillations around the
impurity at i0.
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Figure 5.8: Spatiotemporal evolution of the total-spin density 〈si〉t (left panel: x-
component, right panel z-component) for J = 5 and B = 0.1. See Fig. 5.9 for snapshots
at times indicated by the arrows.

Complete relaxation means that the excitation energy is completely removed from the
vicinity of i0 and transported into the bulk of the system. That this is in fact the case
as can be seen by comparing the energy density at different distances from i0. It is also
demonstrated by Fig. 5.7 which visualizes the energy-current density which symmetri-
cally points away from i0: The total energy of the excitation flowing through each pair of
sites i0±∆i is constant, i.e., the time-integrated energy flux,

∫
dt ei(t) is the same for all

lattice sites i.
As is seen in Fig. 5.6 (fourth panel) and Fig. 5.7, there is a considerable dispersion of

the excitation wave packet carrying the energy. For example, at i0 +100 it takes more than
four times longer, as compared to i0 + 1, until most of the excitation has passed through
(note the logarithmic time scale).

The broadening of the wave packet, due to dispersion, is asymmetric and bound by
an upper limit for the speed of the excitation which is roughly set by the Fermi velocity
vF = 2T . This Lieb-Robinson bound [Bravyi et al., 2006; Lieb and Robinson, 1972]
determines the “light cone” seen in Fig. 5.7.

Spin dissipation. The same upper speed limit, given by the Fermi velocity of
the conduction-electron system, is also seen in the spatiotemporal evolution of the
conduction-electron spin density 〈si〉t. This is shown in Fig. 5.8 for a different mag-
netic field strength B = 0.1 where the classical spin dynamics is slower. Apparently, the
wave packet of excitations emitted from the impurity not only carries energy but also spin.
It symmetrically propagates away from i0 and, at t ≈ 300, reaches the system boundary
where it is reflected perfectly. Up to t = 500 there is hardly any effect visible in the local
observables close to i0 that is affected by the finite system size.

Snapshots of the conduction-electron spin dynamics are shown in Fig. 5.9 for the initial
state at t = 0 and for states at four later times t > 0 which are also indicated by the arrows
in Fig. 5.8. At t = 0 the conduction-electron system is in its ground state for the given
initial direction of the classical spin. The latter basically points into the−z direction, apart
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Figure 5.9: Snapshots of the conduction-electron magnetic moments 〈si〉t at di�erent
times t as indicated on the right and by the corresponding arrows in Fig. 5.8. Red lines:
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J = 5, B = 0.1.

from a small positive x-component (ϑ = π/50) which is necessary to break the symmetry
of the problem and to initiate the dynamics. This tiny effect will be disregarded in the
following.

From the perspective of the conduction-electron system, the interaction term JSsi0
acts as a local external magnetic field JS which locally polarizes the conduction elec-
trons at i0. Since J is antiferromagnetic, the local moment 〈si0〉 points into the +z
direction. At half-filling, the conduction-electron system exhibits pronounced antiferro-
magnetic spin-spin correlations which give rise to an antiferromagnetic spin-density wave
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structure aligned to the z axis at t = 0, see first panel of Fig. 5.9.
The total spin Stot = 0 at t = 0, i.e., the classical spin S is exactly compensated

by the total conduction-electron spin 〈stot〉 =
∑

i〈si〉 = −S in the ground state. This
can be traced back to the fact that for a D = 1-dimensional tight-binding system with
an odd number of sites L, with N = L and with a single static magnetic impurity, there
is exactly one localized state per spin projection σ, irrespective of the strength of the
impurity potential (here given by JS = 0.5Jez). The number of spin-up one-particle
eigenstates therefore exceeds the number of spin-down states by exactly one.

Since the energy of the excitation induced by the external field B is completely dis-
sipated into the bulk, the state of the conduction-electron system at large t (but shorter
than t ≈ 500 where finite-size effects appear) must locally, close to i0, resemble the
conduction-electron ground state for the reversed spin S = +0.5ez. This implies that
locally all magnetic moments 〈si〉t must reverse their direction. In fact, the last panel in
Fig. 5.9 (left) shows that the new spin configuration is reached for t = 250 at sites with
distance |i − i0| . 100, see dashed line, for example. For later times the spin configu-
ration stays constant (until the wave packet reflected from the system boundaries reaches
the vicinity of i0). The reversal is almost perfect, e.g., 〈si0〉t=0 = 0.2649→ 〈si0〉t≥250 =
−0.2645. Deviations of the same order of magnitude are also found at larger distances,
e.g., i = i0−100. We attribute those tiny effects to a weak dependence of the local ground
state on the non-equilibrium state far from the impurity at t = 250, see right part of the
last panel in Fig. 5.9.

The other panels in Fig. 5.9 demonstrate the mechanism of the spin reversal. At short
times (see t = 60, second panel) the perturbation of the initial equilibrium configuration
of the conduction-electron moments is still weak. For t = 80 and t = 100 one clearly
notices the emission of the wave packet starting. Locally, the antiferromagnetic structure
is preserved (see left part) but superimposed on this, there is an additional spatial structure
of much longer size developing. This finally forms the wave packet which is emitted from
the central region. Its spatial extension is about ∆ ≈ 300 as can be estimated for t = 250
(last panel on the right) where it covers the region 200 . i . 500. The same can be read
off from the upper part of Fig. 5.8. Assuming that the reversal of each of the conduction-
electron moments takes about the same time as the reversal of the classical spin, ∆ is
roughly given by the reversal time times the Fermi velocity and therefore strongly depends
on J andB. For the present case, we have τ1 ≈ 150/T which implies ∆ ≈ 150×2 = 300
in rough agreement with the data.

In the course of time, the long-wavelength structure superimposed on the short-range
antiferromagnetic texture develops a node. This can be seen for t = 100 and i ≈ 40
(fourth panel, see dashed line). The node marks the spatial border between the new (right
of the node, closer to i0) and the original antiferromagnetic structure of the moments and
moves away from i0 with increasing time.

At a fixed position i, the reversal of the conduction-electron moment 〈si〉t takes place
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in a similar way as the reversal of the classical spin (see both panels in Fig. 5.8 for a fixed
i). During the reversal time, its x- and y-components undergo a precessional motion while
the z-component changes sign. Note, however, that during the reversal |〈si〉| gets much
larger than its value in the initial and in the final equilibrium state.

5.1.4 Comparison with linear-response spin dynamics

As preliminary discussed in section 4.2, the Eqs. (5.2) and (5.3) do not form a closed set of
equations of motion but must be supplemented by the full equation of motion for the one-
particle conduction-electron density matrix (5.4). Moreover, under certain circumstances,
e.g., separation of time scales (i.e. fast electron and much slower spin dynamics) it is
advantageous with respect to computational cost to integrate out the conduction-electron
degrees of freedom altogether by using standard linear-response theory in the weak-J
limit [Negele and Orland, 1998]. For a single spin, the Eqs. (4.7) and (4.8) are simplified
and read as:

d

dt
S(t) = S(t)×B − J2S(t)×

∫ t

0

dt′ χ(ret)(t− t′) · S(t′) , (5.15)

where the free (J = 0) local retarded spin susceptibility of the conduction electrons
χ(ret)(t, t′), which can be interpreted as an effective retarded self-interaction of the spin,
is a tensor with elements

χ
(ret)
αβ (t, t′) = −iΘ(t− t′)〈[sαi0(t), s

β
i0

(t′)]〉 , (5.16)

with α, β = x, y, z. The equation of motion for the classical spin Eq. (5.15) has a tempo-
rally nonlocal structure and includes an effective interaction of the classical spin at time
S(t) with the same classical spin at earlier times t′ < t. In the full quantum-classical
theory where the electronic degrees of freedom are taken into account exactly, this re-
tarded interaction is mediated by a non-equilibrium electron dynamics starting at site i0
and time t′ and returning back to the same site i0 at time t > t′. Unfortunately, a sim-
ple effective spin-only action can be obtained in the weak-coupling (small-J) limit only
[Zhang and Li, 2004]. Hence, we expect that the perturbative spin-only theory breaks
down after a propagation time t ∼ 1/J at the latest, as Jt is the dimensionless small pa-
rameter. This implies that the fast electron dynamics must be taken into account explicitly
even if the spin dynamics is much slower.

In the following, we study deviations of the perturbative LR-SD approach from the
exact QCH-SD numerically. To this end, the integro-differential Eq. (5.15) that is ob-
tained in first-order-in-J perturbation is solved numerically as described in section 4.2.
We assume that the initial state at t = 0 is given by the conduction-electron system in its
ground state or in thermal equilibrium and an arbitrary state of the classical spin. This
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Figure 5.10: Left panel: Components Sx(t) and Sz(t) of the classical spin after a sudden
switch of the �eld from x- to z-direction at t = 0. Calculations for B = 1 and J = 1 (left
panel) and J = 3 (right panel). Colored lines: results of the LR-SD, Eq. (5.15). Black
lines: results of the exact QCH-SD for L = 1001.

may be realized formally by suddenly switching on the interaction J(t) at time t = 0, i.e.,
J(t) = JΘ(t) and by switching the local field from some initial value Bini at t = 0 to a
final value B for t > 0. We again consider the system displayed in Fig. 5.1 with a single
classical spin coupled via J to the central site i0 of a chain consisting of L = 1001 sites.
Finite-size artifacts do not show up before tmax = 500.

Fig. 5.10 shows the resulting linear-response spin dynamics of the classical spin after
preparing the initial state of the system with the classical spin pointing into the +x direc-
tion while B = (0, 0, B). The external magnetic field induces a precessional motion of
the classical spin: there is a rapid oscillation of its x-component (and of its y-component,
not shown) with frequency ω ≈ B (blue lines). Damping is induced by dissipation of
energy and spin: for large times, the z-component aligns to the external field (red lines).

For weak coupling, up to J = 1 (Fig. 5.10, left panel), there is an almost perfect
agreement between the results of the exact QCH-SD (black lines) and the LR-SD (colored
lines) up to the maximum propagation time tmax = 500. We note that, compared to the
full theory, there is a tiny deviation of the linear-response result for the z component of
S(t) visible in Fig. 5.10 (left panel) for times t & 10. Hence, on this level of accuracy,
t1 ≈ 10 sets the time scale up to which the linear-response theory is valid. This may
appear surprising as this implies t1 J = 10 for the “small” dimensionless parameter of
the perturbation theory. One has to keep in mind, however, that even if the perturbation is
“strong”, its effects can be rather moderate since only non-adiabatic terms∼ S(t)×S(t′)
contribute in Eq. (5.15).
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For J = 3, see Fig. 5.10 (right panel) , damping of the classical spin sets in much
earlier. Visible deviations of the linear-response theory from the full dynamics already
appear on a time scale that is almost two orders of magnitude smaller as compared to the
case J = 1. A simple reasoning based on the argument that the dimensionless expansion
parameter is t1 J fails as this disregards the strong enhancement of retardation effects
with increasing J , which have been discussed in Sec. 5.1.3. These effects make the per-
turbation much more effective, i.e., lead to a torque, which is exerted by the conduction
electrons on the classical spin, growing stronger than linear in J .

We conclude that the LR-SD approach is highly attractive formally, as it provides a
tractable spin-only effective theory. On the other hand, substantial discrepancies com-
pared to the (non-perturbative) QCH-SD method show up as soon as damping effects
become stronger. Note that, with increasing time, these deviations must diminish and dis-
appear eventually since both, the full and the effective theory, predict a fully relaxed spin
state for t → ∞ – see the right panel of Fig. 5.10, for example. At least for simple sys-
tems with a single classical spin, as considered here, this implies that the effective theory
provides qualitatively reasonable results.

5.1.5 Conclusions

Hybrid systems consisting of classical spins coupled to a bath of non-interacting conduc-
tion electrons represent a class of model systems with a non-trivial real-time dynamics
which is numerically accessible on long time scales. Here we have considered the sim-
plest variant of this class, the Kondo-impurity model with a classical spin, and studied the
relaxation dynamics of the spin in an external magnetic field. As a fundamental model
this is interesting of its own but also makes contact with different fields, e.g., atomistic
spin dynamics in magnetic samples, spin relaxation in spintronics devices, femto-second
dynamics of highly excited electron systems where local magnetic moments are formed
due to electron correlations, and artificial Kondo systems simulated with ultracold atoms
in optical lattices.

We have compared the coupled spin and electron dynamics with the predictions of the
widely used Landau-Lifshitz-Gilbert equation which is supposed to cover the regime of
weak local exchange J and slow spin dynamics. For the studied setup, the LLG equation
predicts a rather regular time evolution characterized by spin precession, spin relaxation
and eventually reversal of the spin on a time scale τ depending on J (and the field strength
B). We have demonstrated that this type of dynamics can be recovered and understood on
a microscopic level in the more fundamental quantum-classical Kondo model. It is traced
back to a non-adiabatic dynamics of the electron degrees of freedom and the feedback of
the electronic subsystem on the spin. It turns out that the spin dynamics is essentially a
consequence of the retarded effect of the local exchange. Namely, the classical spin can
be seen as a perturbation exciting the conduction-electron system locally. This electronic
excitation propagates and feeds back to the classical spin, but at a later time, and thereby
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induces a spin torque.
We found that this mechanism drives the relaxation of the system to its local ground

state irrespective of the strength of the local exchange J . As the microscopic dynamics
is fully conserving, the energy and spin of the initial excitation which is locally stored
in the vicinity of the classical spin, must be dissipated into the bulk of the system in the
course of time. This dissipation could be uncovered by studying the relaxation process
from the perspective of the electron degrees of freedom. Dissipation of energy and spin
takes place through the emission of a dispersive spin-polarized wave packet propagating
through the lattice with the Fermi velocity. In this process the local conduction-electron
magnetic moment at any given distance to the impurity undergoes a reversal, characterized
by precession and relaxation, similar to the motion of the classical spin.

The dynamics of the classical spin can be qualitatively very different from the pre-
dictions of the LLG equation for strong J . In this regime we found a complex motion
characterized by oscillations of the angle between the classical spin S(t) and the local
conduction-electron magnetic moment at the impurity site 〈si0〉 around the adiabatic value
γ = π which takes place on an emergent new time scale. However, we could identify this
behavior as an inertia effect, which is well known in classical spin dynamics and can be
described by an additional term to the standard LLG equation with second-order time-
derivative of the spin.

In the weak-J limit, the classical spin dynamics is qualitatively predicted correctly by
the LLG equation. At least partially, however, this must be attributed to the fact that the
LLG approach, by construction, recovers the correct final state where the spin is parallel to
the field. In fact, quantitative deviations are found during the relaxation process. The LLG
approach is based on first-order perturbation theory in J and on the additional assumption
that the classical spin is slow, as preliminary discussed in Sec. 4.3. To pinpoint the
source of the deviations, we have numerically solved the integro-differential equation that
is obtained in first-order-in-J perturbation theory, the LR-SD approach, and compared
with the full hybrid dynamics (QCH-SD). The deviations of the perturbative approach
from the exact dynamics are found to gradually increase with the propagation time (until
the proximity to the final state enforces the correct long-time asymptotics). This is the
expected result as the dimensionless small parameter is Jt. However, with increasing
J the time scale on which perturbation theory is reliable decreases much stronger than
1/J due to a strong enhancement of retardation effects which make the perturbation more
effective and produce a stronger torque.

Generally, the perturbation can be rather ineffective in the sense that it produces a torque
∝ S(t) × S(t′) which is very weak if the process is nearly adiabatic. This explains that
first-order perturbation theory and the LLG equation is applicable at all for couplings of
the order of hopping J ∼ T . For the present study this can also be seen as a fortunate cir-
cumstance since the regime of very weak couplings J � T is not accessible numerically.
In this case the spin-reversal time scale gets so large that the propagation of excitations in
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the conduction-electron subsystem would be affected by backscattering from the edges of
the system which necessarily must be assumed as finite for the numerical treatment.

For the one-dimensional lattice studied here, a direct comparison between the LLG
equation and the exact QCH-SD approach is not meaningful, as the damping constant α
is ill-defined in this case. As discussed in detail in sections 4.2 and 4.3, this problem
results from the strength of the van Hove singularities in the conduction-electron den-
sity of states which dictates the long-time behavior of the memory kernel of the integro-
differential equation which is given by the equilibrium spin susceptibility. As the type
of the van Hove singularity is characteristic for all systems of a given dimension, we can
generally conclude that the LLG approach reduces to a purely phenomenological scheme
in the one-dimensional case. However, this conclusion may change for systems where the
Coulomb interaction among the conduction electrons is taken into account additionally,
as a regularization of van Hove singularities could arise due to a finite imaginary part of
the conduction-electron self-energy.
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5.2 Inertia e�ects of a spin coupled to a Fermi see

In the previous section, we focused on transversal spin dynamics, which appears as a
more classical phenomenon, in terms of the quantum-classical hybrid theory. Here6, we
explore whether there are quantum effects which are possibly overlooked by the semi-
classical approach to transversal spin dynamics (i.e., apart from the Kondo effect). To
this end we compare numerical results from the exact QCH-SD approach (see Sec. 4.1
and Sec. 5.1) with those of exact quantum theory, computed with the tDMRG method
[Haegeman et al., 2011; Schollwöck, 2011], for different spin quantum numbers S. It
turns out that even for S = 1/2 there is a surprisingly good qualitative agreement
of quantum with semiclassical dynamics. However, we also identify a physical phe-
nomenon, namely nutational motion, where remarkable differences are found between
Classical and quantum nutation. Besides precession and damping, inertia effects are well
known in classical spin dynamics [Butikov, 2006; Wegrowe and Ciornei, 2012] and can
be described by an additional term to the LLG equation with a second-order time deriva-
tive of the spin. Similar as for the Gilbert damping term, the resulting nutation of the
spin motion has been introduced and studied phenomenologically [Ciornei et al., 2011;
Olive et al., 2012] and with realistic parameters taken from first-principles calculations
[Böttcher and Henk, 2012; Thonig et al., 2016] but can also be derived on a microscopic
level [Bhattacharjee et al., 2012; Fähnle et al., 2011; Kikuchi and Tatara, 2015] within the
general framework of semiclassical spin dynamics [Evans et al., 2014; Fähnle and Illg,
2011; Tatara et al., 2008] (see also Sec. 4.3).

In case of a quantum spin, inertia effects have not yet been studied. As compared to
spin precession and damping, nutation is a higher-order effect [Bhattacharjee et al., 2012],
so that it is not a priori clear whether or not spin nutation is suppressed by quantum
fluctuations. Here, by applying the tDMRG to the spin-S Kondo impurity model in a
magnetic field, we are able to show for the first time that nutation also shows up in the full
quantum spin dynamics. Remarkably, however, quantum nutation turns out to be strongly
damped and shows up on a much shorter time scale as compared to the relaxation time. On
a fundamental level, this pinpoints an unconventional new quantum effect in transversal
spin dynamics, but is also relevant for experimental studies suggesting, e.g., inertia-driven
spin switching [Kimel et al., 2009; Kirilyuk et al., 2010] opposed to standard precessional
switching [Gerrits et al., 2002; Tudosa et al., 2004].

6Major parts of this section have been published as M. Sayad, R. Rausch and M. Pottho�: Inertia
e�ects in the real-time dynamics of a quantum spin coupled to a Fermi sea, Europhys. Lett. 116,
17001 (2016) - Copyright c© 2016 EPLA.
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Figure 5.11: Classical spin |S| = Scl. with Scl. =
√
S(S + 1) or quantum spin S char-

acterized by quantum number S = 1
2 , 1, 2, 3..., coupled via an antiferromagnetic local

exchange interaction of strength J to a system of conduction electrons tunneling with
nearest-neighbor hopping amplitude T over the sites of a one-dimensional lattice with
open boundaries. The spin couples at the �rst site i0 = 1 of the chain and is subject to a
local magnetic �eld of strength B.

5.2.1 Numerical setup and computational details

We once again consider the single impurity Kondo Hamiltonian, as a paradigmatic model
of a spin coupled to a Fermi sea:

H = −T
n.n.∑
i<j

∑
σ=↑,↓

(c†iσcjσ + H.c.) + Jsi0S −BS . (5.17)

Here, ciσ is the annihilator of an electron with spin projection σ =↑, ↓ at site i = 1, ..., L
of an open one-dimensional chain of length L. The hopping T = 1 between nearest-
neighboring (n.n.) sites defines the energy and the time scale (~ ≡ 1). We assume a
half-filled band with N = L conduction electrons. The impurity spin S is coupled anti-
ferromagnetically with exchange coupling constant J to the local spin si0 of the itinerant
conduction-electron system at the first site of the chain, i0 = 1 (see Fig. 5.11). With
the vector of Pauli matrices τ , we have si =

∑
σσ′ c

†
iσσσσ′ciσ′/2. S is a quantum spin

characterized by quantum number S = 1
2
, 1, 2, 3, ..., and for S > 1/2, Eq. (5.17) is the

underscreened Kondo model. Alternatively, S is considered as a classical spin with fixed
length |S| = Scl., as already discussed in Eq. (5.1), where Scl. =

√
S(S + 1) for a

meaningful comparison with results for a quantum spin.
Real-time dynamics. To initiate the spin dynamics we consider a local magnetic

field B which, at time t = 0, is suddenly switched from B = (Bini, 0, 0), forc-
ing the spin to point in x direction, to B = (0, 0, Bfin). This addresses, e.g., spin-
resolved scanning-tunneling microscope experiments [Loth et al., 2010; Morgenstern,
2010; Nunes and Freeman, 1993; Wiesendanger, 2009; Yan et al., 2015]. We choose
Bini = ∞ to initially fully polarize the impurity spin. Note that the conduction-electron
spin si0 in the initial state is also polarized, but typically much weaker, depending on
the internal Weiss field Beff ≡ JS produced by the exchange interaction and the im-
purity spin. The dynamics is (predominantly) transversal if Bfin � TK which ensures
that the Kondo singlet remains broken and that there are no (significant) longitudinal spin
fluctuations.
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For t → ∞ we expect complete relaxation. This is achieved if the classical spin S(t)
or, in the quantum case, S(t) ≡ 〈S〉t = 〈Ψ(t)|S|Ψ(t)〉 fully aligns with the z-axis.
Likewise the expectation value si0(t) ≡ 〈si0〉t of the local conduction-electron spin at i0
is expected to orient itself antiparallel to S(t) for t→∞.

Computational details. As regards the classical spin, the numerical method applied to
study the real-time dynamics in terms of the quantum-classical hybrid theory remains the
same as in Sec. 5.1.2. However, to study the quantum time-evolution of S(t) and si0(t)
after the sudden switch of the field, we employ the tDMRG method in the framework
of matrix-product states and operators [Schollwöck, 2011]. The implementation of a
quantum spin with arbitrary S is straightforward. For an impurity model with the spin
attached to the first site of the chain, the numerical effort is essentially independent of
S, as only the dimension of the local Hilbert space at i0 scales with 2S + 1. Due to the
global U(1)×U(1) symmetry of H , the total particle number and the z component of the
total spin are conserved. For a sudden field switch from x̂ to ẑ direction, however, only
particle-number conservation can be exploited in the tDMRG calculation. As compared to
a purely longitudinal dynamics, this implies an increased computational effort. The time
evolution of matrix-product states is computed using the two-site version of the algorithm
as suggested in Ref. [Haegeman et al., 2011, 2016], which is based on the time-dependent
variational principle. The maximum bond dimension reached during the propagation is
about 2000.

5.2.2 Quantum versus classical spin dynamics

Quantum-spin dynamics. We start the discussion with the tDMRG results, see the red
lines in Fig. 5.12. The calculations have been performed for a chain with L = 80 sites.
For a quantum spin S = 1/2 (Fig. 5.12, top panel), and for J = 1 and Bfin = 2, the
dynamics is sufficiently fast, i.e., the main physical effects take place on a time scale
shorter than the time where finite-size artifacts show up. In the bulk of the noninter-
acting conduction-electron system, wave packets typically propagate with group velocity
vF = dε(k)/dk|kF = ±2T at the Fermi wave vectors k = kF = ±π/2 for half filling.
This roughly determines the maximum speed of the excitations and defines a “light cone”
[Bravyi et al., 2006; Lieb and Robinson, 1972]. Hence, a local perturbation at i0 = 1
starts to show artificial interference with its reflection from the opposite boundary at i = L
after a time of about tinter = 2L/vg = L/T , i.e., after about 80 inverse hoppings – which
is well beyond the time scale covered by Fig. 5.12.

The most obvious effect in the time dependence of S(t) (see upper part of the top
panel) is the precessional motion around the ẑ-axis: Sx(t) (and likewise of Sy(t) which is
not shown in the figure) oscillate with Larmor frequency ωL ≈ Bfin. Note that |S(t)| =
|〈Ψ(t)|S|Ψ(t)〉| is nearly constant, i.e., there are no substantial longitudinal fluctuations
or Kondo screening. In addition to the spin precession, there is damping: The spin relaxes
to its new equilibrium direction ∝ ẑ on the relaxation time scale τrel ≈ 50. Despite the
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Figure 5.12: Top panel, upper part: Dynamics of S(t)/Smax for the Kondo impurity
model, Eq. (5.17), for J = 1 and B = Bfinẑ with Bfin = 2. Only x and z components
are shown. At t = 0, the system is prepared with S(0)/|S(0)| = x̂. Time units are �xed
by the inverse hopping 1/T ≡ 1. Red lines: tDMRG calculations for a quantum spin,
S(t) ≡ 〈Ψ(t)|S|Ψ(t)〉, and S = 1/2 (Smax = S). Blue lines: QCH-SD approach with a
classical spin S(t) of length Scl. =

√
S(S + 1) =

√
3/2 (Smax = Scl.). Top panel, lower

part: Local conduction-electron moment si0(t) ≡ 〈si0〉t. Middle: The same for S = 5.
Bottom: z components of S(t) and si0(t) for S = 50.

fact that the total energy and the z component of the total spin are conserved (as is also
checked numerically), this is the expected result: At t = 0 the system is locally in an
excited state; for large t, spin relaxation is achieved by dissipation of energy into the bulk
of the chain. The dynamics does not stop until the excitation energy ∼ SBfin is fully
dissipated into the bulk, and the system is – locally, close to i0 – in its ground state. In the
ground state of the system at time t = 0, the local conduction-electron spin at i0 is partially
polarized in −x direction, i.e., antiparallel to S(t = 0) due to the internal magnetic field
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JS(0) (see top panel of Fig. 5.12, lower part). For t > 0 we find that si0(t) follows the
dynamics of the impurity spin S(t) almost adiabatically, i.e., at a given instant of time t it
is slightly behind the (instantaneous) ground-state expectation value 〈si0〉g.s. ↑↓ S(t) for
the conduction-electron system with a “given” Weiss field JS(t). This slight retardation
effect is clearly visible in Fig. 5.12 (compare the location of the first minimum of Sx(t)
with the first maximum of si0x(t), for instance). In the semiclassical picture retardation
has been identified to drive the relaxation of S(t), as previously studied in-depth in Sec.
5.1.3.

Quantum nutation. In addition to the expected precessional motion and relaxation of
si0(t), there is a weak additional superimposed oscillation visible in si0z(t). For S = 1/2
the frequency is close to the precession frequency. However, the results for higher spin
quantum numbers (see lower part of the middle panel, S = 5) show that these oscillations
have a characteristic frequency ωN and hence a physical cause which may require but is
independent of the precessional motion. The z component of the impurity spin actually
shows oscillations with the same frequency and almost the same amplitude (which can
hardly be seen in the first two panels of Fig. 5.12 due to the rescaling of S(t) by Smax)
but becomes obvious in the bottom panel (no rescaling, S = 50). By comparing with
the semiclassical spin dynamics, we will argue that this is in fact nutation of the quantum
spin.

Results of the semiclassical approach. Most (but not all) features of the transversal
quantum dynamics are qualitatively captured by the numerically much cheaper quantum-
classical hybrid spin dynamics (QCH-SD). The QCH-SD results are shown by light blue
lines in Fig. 5.12. To make contact with the tDMRG data, we again consider L = 80
sites although much larger systems could be treated numerically (see Sec. 5.1). Overall,
the semiclassical theory produces qualitatively very similar results as compared to the
quantum dynamics. This concerns the precessional motion, the relaxation time scale and
also the occurrence of nutation and the nutation frequency and amplitude.

However, we can identify basically three quantum effects which are different or even
absent in the QCH-SD:

(i) Initially the local conduction-electron spin at i0 is less polarized in the quantum
case, and this has some quantitative consequences for the subsequent spin dynam-
ics. The reason is that with Scl. =

√
S(S + 1) the classical Weiss field is stronger:

JScl = J
√

3/2 > J/2 = JS.

(ii) Opposed to the classical-spin case, which exclusively comprises transversal dynam-
ics, we find |S(t)| 6= const in the quantum case, i.e., there are residual longitudinal
fluctuations (see top panel, upper part). Due to the suppression of the Kondo effect
by the magnetic field, these are moderate, such that the deviations from the QCH-
SD are small. One should note, however, that nevertheless (weak) longitudinal
fluctuations are essential for true quantum spin dynamics: Assuming the complete
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absence of longitudinal fluctuations, we would have 〈S〉t = S n̂(t) with some unit
vector n̂(t). Aligning the momentary quantization axis to n̂(t), the quantum state
at time t is a product state with zero impurity-bath entanglement. For the impurity-
spin equation of motion, d〈S〉t/dt = J〈si0 × S〉t − B × 〈S〉t, this implies the
factorization 〈si0 × S〉t = si0(t)× S(t), resulting in the equation:

d

dt
S(t) = Jsi0 × S(t)−B × S(t) . (5.18)

With an analogous factorization in the equations of motion for the conduction-
electron degrees of freedom, we obtain:

d

dt
si0(t) = JS(t)× si0(t)− T Im

∑
σσ′

〈c†i0σσσσ′ci0+1σ′〉t . (5.19)

The above equations imply classical-spin behavior as discusses in detail in Secs.
4.1 and 5.1 (cf. Eqs. (5.2) and (5.3)). Hence, longitudinal fluctuations produce
entanglement and quantum effects.

(iii) The nutational motion is strongly damped in the quantum-spin case. Oscillations of
Sz(t) and of si0z(t) with frequency ωN decay on a finite time scale τN while there is
no visible damping of the nutation for a classical spin on the scale displayed in Fig.
5.12. This is most obvious for S = 50 (bottom panel), but also for S = 5 (middle
panel, lower part).

S-dependence. For large spin quantum numbers, one expects that the quantum-spin
dynamics becomes equivalent with that of a classical spin of length Scl. =

√
S(S + 1)

[Garanin et al., 2000; Garanin, 2008; Kladko et al., 1999; Lieb, 1973; Sayad et al., 2012].
Indeed, the agreement constantly improves with increasing S, see Fig. 5.12. The common
trends found with increasing S are the following:

(i) There is a stronger and stronger initial polarization of the local conduction-electron
spin at i0 due to the increasing magnitude of the Weiss fieldBeff ≡ JS coupling to
si0 . For S = 5 it is more than 80% polarized.

(ii) The relaxation time τrel increases with increasing S. For S = 5 (see Fig. 5.12,
middle panel) Sz(t) has reached only 50% of its final saturation value, and for S =
50 (bottom panel) there is hardly any damping visible on the time scale accessible
to the tDMRG computations. Within weak-J perturbation theory and assuming
that the spin dynamics is slow as compared to the electronic time scales (Markov
approximation), we expect τrel ∝ S in the large-S limit, as is detailed in Sec. 4.3.
However, for both the semiclassical and the quantum theory, we find τrel ∝ S2 from
the data given in Fig. 5.13 (right panel). This indicates that the effective theory is of
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limited use for reproducing the exact results of QCH-SD on the semiclassical level
for large Scl. and is furthermore inconsistent with the quantum dynamics as well.
One may reject the Markov-type approximation (LLG equation (4.18)) and describe
the spin dynamics with the linear-response theory and Eq. (4.8). The same scaling
argument as above again tells us that an elongated (λ > 1) spin S′(t) ≡ λS(t)
solves the same integro-differential equation,

S′(t,B, J ′) = S(t,B, J) , (5.20)

but with a rescaled exchange coupling

J ′ = J/
√
λ . (5.21)

Thus a weaker interaction J ′ < J (for λ > 1) leads to the same dynamics.

Now, from the numerical evaluation of the linear-response equation (4.8) in Sec.
5.1.4, it is known that for fixed Scl., the damping becomes stronger and the relax-
ation time shorter with increasing J . Hence, for fixed J , with the argument leading
to Eq. (5.21), the dynamics of an elongated classical spin must therefore show a
stronger damping, i.e., a shorter relaxation time. As this conflicts with our obser-
vations here (see Fig. 5.12 and Fig. 5.13, right panel), we must conclude that the
linear-response approximation (4.8), is no longer valid for the parameter regime
studied here. This furthermore implies that, besides damping, also the nutational
motion of a spin exchange coupled to an unpolarized Fermi sea cannot be captured
by the perturbative approach (despite the fact that the linear trend Eq. (4.26) is re-
produced). This is not too surprising in view of the explanation for the inertia effect
as will be described in Sec. 5.2.3, namely the formation of a bound state of the
impurity spin with the exchange-coupled conduction-electron spin and the weak
interaction of this bound state with the bulk of the system. Those details of the
electronic structure are obviously not accounted for in a simple effective spin-only
theory, such as Eq. (4.8), where the electron dynamics only enters via the J = 0
spin susceptibility.

(iii) For the nutation frequency we find ωN ∝ S in the large-S limit (see also the dis-
cussion below). The amplitude of the nutation vanishes for S → ∞ in both, the
quantum- and the classical-spin case. In this way quantum- and classical-spin dy-
namics become equivalent in the large-S limit despite the absence of damping of
the nutational motion in the classical case.

(iv) We finally note that |S(t)|/Smax becomes constant in the quantum case as S →∞.
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Figure 5.13: Left panel: Angle γ(t) between S(t) and si0(t) in the spin dynamics after
the sudden switch of the �eld from x to z direction. QCH-SD results for J = 1, L = 400,
Bfin = 0.1 and di�erent Scl. =

√
S(S + 1) as indicated. Inset: schematic illustration of the

nutational motion, see text. Right panel: QCH-SD results, obtained for J = 1, L = 600
and Bfin = 1, showing the reversal time τ as a function of the classical spin length Scl. of
a spin after the sudden switch of the �eld from x towards z direction.

5.2.3 Microscopic cause of the nutation

The nutational motion can be understood easily within the semiclassical approach (except
for damping): Recall that the impurity spin precession with frequency ωL ≈ Bfin is mainly
caused by the torque due to the magnetic field and note that the second term on the right-
hand side of Eq. (5.18) is small if si0(t) and S(t) are nearly collinear. In fact, in the
instantaneous ground state at time t, the conduction-electron local moment si0(t) would
be perfectly aligned antiparallel to S(t) due to the antiferromagnetic exchange coupling
J such that si0(t) exhibits a precessional motion with the same frequency ωL ≈ Bfin. Fig.
5.13 (left panel) demonstrates that the stronger the effective field JS, the smaller is the
deviation of the angle γ(t) between S(t) and si0(t) from γ = π. Generally, however,
γ(t) < π (for all t) since, due to the damping, it takes a finite time for si0(t) to react to
the new position of S(t) (see the inset of Fig. 5.13, left panel). Note that for very large
S only the time average γ(t) is smaller than π (for instance, see S ≥ 20 in Fig. 5.13, left
panel). This retardation effect results in a finite (average) torque JS(t)× si0(t) acting on
si0(t), as can be seen from its equation of motion (5.19), where the second term on the
right-hand side is important for energy and spin dissipation into the bulk of the system
and causes the usual damping of the precession of si0(t) (and of S(t)) around B. The
first term in Eq. (5.19), however, leads to nutational motion.

This is most easily understood if there is a separation of time scales, i.e., if the nutation
frequency ωN is large compared to the Larmor frequency ωL ≈ Bfin. In this limit, Eq.
(5.19) implies that si0(t) precesses with frequency ωN ≈ JScl. approximately around the
momentary direction of S(t) (which itself slowly precesses around the field direction).
Actually, however, due to the retardation, si0 precesses around an axis which is slightly
tilted as compared to the momentary direction of S(t). This is nicely demonstrated by
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Figure 5.14: Nutation frequency ωN as a function of S for J = 1 (left) and as a function of
J for S = 20 (right). Dynamics initiated by a switch of the �eld from x to z direction with
Bfin = 0.1. Results for di�erent Scl. or S, respectively, as obtained by QCH-SD (crosses)
and tDMRG (circles) in comparison with the classical two-spin model (�lled dots).

the oscillations of γ(t) with time-average γ(t) < π as displayed in Fig. 5.13, left panel.
Furthermore, the equations of motion, Eq. (5.18) and Eq. (5.19), with the second term
disregarded, imply that Sz(t)+si0z(t) = const and, therefore, the impurity spin shows the
same nutational motion, but with opposite amplitude.

In the middle panel of Fig. 5.12 we in fact observe a fast oscillation of si0(t) with a
frequency almost perfectly given by JScl. (with J = 1 and S = 5). Note that the nutation
of S(t) is hardly visible due to the rescaling with Smax.. The third panel for S = 50 nicely
demonstrates the nutational motion of both, si0(t) and S(t), with opposite amplitudes and
common frequency ωN � ωL.

Fig. 5.14 displays the results of systematic QCH-SD calculations which demonstrate
the linear dependence of ωN on J and S for large JS. These calculations have been
performed for a much weaker field Bfin = 0.1 resulting in a much slower precession
of S(t) around B. Note the nearly perfect agreement between classical- and quantum-
spin calculations also for smaller JS where there is a significant deviation from a linear
behavior.

The mechanism described above also explains that the amplitudes of the nutational
oscillations vanish in the limit S → ∞: An increasing internal Weiss field JS more and
more aligns si0(t) to S(t), i.e., γ(t)→ π. Consequently, torque JS(t)× si0(t) acting on
si0(t) vanishes in the large-S limit.

Two-spin model. Fig. 5.14 additionally presents the results for ωN as obtained by a
semiclassical two-spin model:

H2−spin = JsS −BS . (5.22)
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Figure 5.15: Entanglement entropy of the two-spin subsystem (impurity spin and site
i0 = 1) in the environment (i = 2, ..., L) as a function of S for J = 1 and at di�erent times
t = 0 and t = 20. tDMRG results for Bfin = 2 and L = 50.

This model disregards the coupling of the site i0 to the bulk of the conduction-electron
system and thus cannot describe the damping of the precessional motion. Due to the
absence of damping, the time-averaged angle is γ(t) = π.

From the numerical solution of Eq. (5.22) we also learn that it does not predict any
damping of the nutational motion. The nutational oscillations themselves, however, are
qualitatively captured by H2−spin and, in fact, the whole line of reasoning explaining
the inertia effect also applies to this model. The nutation frequencies as computed from
H2−spin fit the QCH-SD and tDMRG results rather well for strong effective fields Beff ≡
JS � T = 1; stronger deviations are found for JS → 2 (see Fig. 5.14). For JS < 2,
there are clear nutational oscillations in the spin dynamics of the full model (5.17), as is
seen in the top panel of Fig. 5.12, but ωN cannot be defined accurately.

Bound states. Beff,cr = 2 is actually the critical value of the local effective field Beff ≡
JS which couples to the local conduction-electron spin at i0. For Beff > Beff,cr there are
two one-particle eigenenergies of the Hamiltonian (5.17) corresponding to bound states
which symmetrically split off the continuum at the lower and at the upper band edge,
respectively. Note that Beff,cr vanishes for a site i0 in the bulk of an infinite chain as is
well known for one-dimensional systems. Contrary, at the edge (i0 = 1) there is a finite
critical field, as is reminiscent of the physics in higher dimensions.

The sudden switch of the field excites the system locally at i0. Consequently, if JS >
Beff,cr, the subsequent dynamics is predominantly local since the excitation is mainly
carried by a state whose amplitude is exponentially suppressed with increasing distance
from i0. The dynamics should be understood in this case as a weak perturbation of the
dynamics of the two-spin model Eq. (5.22).
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That this also applies to the quantum-spin case is demonstrated with Fig. 5.15 which
shows the entanglement entropy Si0 of the subsystem consisting of the quantum impurity
spin and the conduction-electron site i0. In the ground state at t = 0, the entropy decreases
with increasing effective field JS. For JS = 50 it nearly vanishes which implies that
ground-state expectation values of local observables at i0 are almost perfectly described
with the (quantum version of the) two-spin model Eq. (5.22). With increasing time t, the
entropy generally increases, while for strong effective fields JS is stays close to zero, i.e.,
the two-spin model also well captures the dynamics of local observables in this case.

Damping of quantum nutation. To explain the efficient damping of the nutational mo-
tion on a very short time scale τN in the quantum-spin case, we first consider the quantum
variant of the two-spin model Eq. (5.22), i.e., both, S and s, are considered as quantum
spins with spin quantum numbers S and 1/2, respectively. The time-dependent expec-
tation value Sz(t) after the sudden switch of the field is readily computed and shows
oscillations with frequency ωN. Already in the two-spin model those are damped on a
time scale τN which agrees with that seen in the results of the full model in Fig. 5.12 for
S ≥ 5. Writing Sz(t) = 〈Sz〉t =

∑
m,n cm,n exp(i(Em − En))t with energy eigenstates

m and n of H2−spin and coefficients cm,n depending on the preparation of the initial state,
it becomes obvious that this damping results from the dephasing of oscillations with the
excitation energies Em − En of the system.

Due to the small Hilbert-space dimension of the two-spin model, however, there are
strong revivals of the oscillations occurring at finite revival times. In fact, for S = 5, the
first revival of nutational oscillations of si0z(t) can be seen in the tDMRG result around
t = 20 (Fig. 5.12, middle panel, lower part). With increasing S and thus with increas-
ing Hilbert space, however, the revival times quickly exceed the time scale accessible to
tDMRG in the full model. Furthermore, as the example for S = 5 in Fig. 5.12 shows,
the revivals themselves are strongly damped in the full theory, opposed to the nearly per-
fect revivals in the two-spin-model dynamics. As this (secondary) damping of nutation is
caused by the residual effective coupling of the two-spin model to the bulk of the system,
it becomes less and less efficient with increasing S, while at the same time the revival
time strongly increases and the amplitude of the oscillations decreases.

5.2.4 Conclusions

Inertia effects in spin dynamics have been discussed intensively in the recent years,
mainly in the context of applications for magnetic devices [Bhattacharjee et al.,
2012; Böttcher and Henk, 2012; Butikov, 2006; Evans et al., 2014; Fähnle et al., 2011;
Kikuchi and Tatara, 2015; Kimel et al., 2009; Kirilyuk et al., 2010; Olive et al., 2012;
Tatara et al., 2008; Wegrowe and Ciornei, 2012]. The most fundamental system which
covers the essentials of spin dynamics, however, namely a single spin coupled to a Fermi
sea has not yet been addressed in this respect. Applying exact quantum and semiclas-
sical numerical techniques to the Kondo impurity model, we could demonstrate that the
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real-time dynamics, initiated by switching the direction of a magnetic field coupled to
the spin, not only exhibits spin precession and spin relaxation but also nutational motion
known from a gyroscope. The effect not only shows up in the impurity-spin dynamics
but also in the dynamics of the conduction-electron local magnetic moments. It is very
robust and found in a large regime of coupling constants using quantum-classical hybrid
spin dynamics and treating the spin as a classical observable. We find that nutation am-
plitudes are small as compared to amplitudes in precessional motion. The frequency is,
in the strong-coupling limit, linear in J and Scl..

It has been demonstrated that nutational motion is not restricted to classical-spin sys-
tems, but is robust against quantum fluctuations. Despite the fundamental differences
between semiclassical and quantum dynamics, quantum-spin nutation is found to be very
similar to the classical-spin case in many respects. There is a qualitative, and with increas-
ing spin-quantum numbers also quantitative agreement between quantum and semiclas-
sical dynamics. Kondo screening of the impurity spin represents an important exception
which, however, in the present study plays a minor role only as Kondo-singlet formation
is inhibited by the external field.

The main effect of the quantum nature of the spin is a very efficient damping of the
nutational motion on a very short (femtosecond) time scale which is basically independent
of the relaxation time scale for the precessional motion. In the strong-coupling (JS →∞)
limit, the spin dynamics is essentially local and captured by an emergent two-spin model
which has served to understand the physical origin of the damping of quantum nutation,
namely dephasing of local spin excitations with revivals suppressed by the coupling to the
bulk of the system.

An important implication of this study is that direct observation of nutational motion,
e.g., of magnetic nanoparticles with a (quantum) macrospin S coupled to the conduction-
electron band of a nonmagnetic metallic surface, requires a sub-picosecond time resolu-
tion. On the other hand, inertia-driven spin switching in antiferromagnets [Kimel et al.,
2009; Kirilyuk et al., 2010] has already been demonstrated successfully.
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5.3 Classical spin coupled to a strongly correlated

electron system

As up to now, we have concentrated on identifying the cause of relaxation and iner-
tia effects in the real-time dynamics of a classical spin exchange-coupled to a non-
interacting conduction-electron system, which in the weak-coupling limit can be suc-
cessfully described on a phenomenological level by the Landau-Lifschitz-Gilbert (LLG)
equation [Gilbert, 2004; Landau and Lifshitz, 1935] and extensions of this concept
[Bhattacharjee et al., 2012; Tatara et al., 2008] as discussed previously in Secs. 4.3 and
5.1.

In contrast, this section7 is devoted to the study of a classical spin coupled to a strongly
correlated electron system, as electron correlations are expected to have an important
effect on the spin dynamics. This has been demonstrated in a few pioneering studies
[Garate and MacDonald, 2009; Hals et al., 2015; Hankiewicz et al., 2008] – within dif-
ferent models and using various approximations – but only indirectly by computing the
effect of the Coulomb interaction on the Gilbert damping. One hallmark of strong corre-
lations, however, is the emergence and the separation of energy (and time) scales – with
the correlation-induced Mott insulator [Gebhard, 1997] as a paradigmatic example.

With the present study we address correlation effects beyond an LLG-type approach
and keep the full temporal memory effect. It is demonstrated that correlation-induced
time-scale separation has profound and qualitatively new consequences for the spin dy-
namics. These are important, e.g., for the microscopic understanding of the emerging
relaxation time scales in modern nano-spintronics devices involving various transition
metals and compounds [Khajetoorians et al., 2011; Loth et al., 2010; Morgenstern, 2010].

Concretely, we consider a generic model with a classical spin S that is antiferromag-
netically exchange-coupled (J > 0) to a Hubbard system and study the spin dynamics as a
function of the Hubbard-U . To tackle this quantum-classical hybrid problem, we develop
a new approach which combines the linear-response theory for the spin dynamics (see
LR-SD approach in Sec. 4.2) with time-dependent density-matrix renormalization group
(tDMRG) [Haegeman et al., 2011, 2016; Schollwöck, 2011] for the correlated electron
system. For technical reasons we consider a Hubbard chain, but concentrate on generic
effects which are not bound to the one-dimensionality of the model.

In the metallic phase at quarter filling, a complex phenomenology is found where two
different channels for energy and spin dissipation, namely dissipation via correlated hop-
ping and via excitations of local magnetic moments, become active on characteristic time
scales, depending on U . While magnetic excitations give the by far dominating contri-
bution to the Gilbert damping in the strong-coupling limit, they contribute to the spin

7Major parts of this section have been published as M. Sayad, R. Rausch and M. Pottho�: Relax-
ation of a classical spin coupled to a strongly correlated electron system Phys. Rev. Lett. 117,
127201 (2016) - Copyright c© 2016 American Physical Society.
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dynamics to a much lesser extent and on later and later time scales when U is increased.
It is demonstrated that electron correlations can have extreme consequences:

At half-filling and strong U , the spin relaxation is incomplete on intermediate
time scales. This represents a novel effect in a quantum-classical hybrid model
which is reminiscent of prethermalization [Kollar et al., 2011; Marcuzzi et al., 2013;
Moeckel and Kehrein, 2008, 2010] or metastability of excitations due to lack of phase
space for decay [Hofmann and Potthoff, 2012; Rausch and Potthoff, 2016; Rosch et al.,
2008; Strohmaier et al., 2010], i.e., physics which so far has been observed in purely
electronic quantum systems only.

5.3.1 Numerical setup and computational details

The simple LLG equation (4.18) for a classical spin can only provide an overall picture
of the spin dynamics and in fact ignores the electronic time-scale separation as discussed
in Sec. 4.3. We therefore apply a refined approach which explicitly accounts for the
conduction-electron degrees of freedom in a semiclassical Kondo-impurity model with
finite Hubbard-U :

H = He +He−spin

= −T
n.n.∑
i<j

∑
σ

(c†iσcjσ + H.c.) + U
L∑
i=1

ni↑ni↓ + Jsi0S −BS , (5.23)

where the first two terms presents the Hubbard modelHe forN electrons on an open chain
of length L as a prototypical model of correlated conduction electrons (see, Sec. 2.1) with
nearest-neighbor (n.n.) hopping T = 1, which sets the energy and time scale. The third
expression includes the local and isotropic coupling between si0 and the classical spin S
(|S| = 1/2). Finally, a local magnetic field B is added, which at time t = 0, is suddenly
switched from B = Binix̂, forcing the spin to point in x direction, to B = Bfinẑ with
Bfin = 1 to initiate the spin dynamics. Complete relaxation is achieved if S(t) → 1

2
ẑ for

t→∞.
As already discussed in Sec. 2.1, at half-filling and in the limit U →∞ the low-energy

physics of the Hubbard model is captured by an antiferromagnetic Heisenberg model,

Hs =
∑
i

(JHsisi+1 + J ′Hsisi+2) , (5.24)

where up to orderO(T 2/U) the nearest-neighbor and the next-nearest-neighbor couplings
[Buleavskiǐ, 1967] are JH = 4T 2/U and J ′H = 0, and up to order O(T 4/U3),

JH =
4T 2

U
− 16T 4

U3
, J ′H =

4T 4

U3
. (5.25)
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J
T

B

U

Figure 5.16: Classical spin S with |S| = 1/2 coupled via an antiferromagnetic local
exchange interaction of strength J to a system of correlated conduction electrons with an
on-site interaction U tunneling with nearest-neighbor hopping amplitude T ≡ 1 over the
sites of an one-dimensional lattice with open boundaries. The spin couples to the site
i0 = 1 of the system and is subject to a local magnetic �eld of strength B.

Alternatively, the classical spin S is coupled to a (quantum) Heisenberg chain

H =
∑
i

(JHsisi+1 + J ′Hsisi+2) + Jsi0S −BS , (5.26)

for which much larger system sizes and therefore longer time scales are accessible to
tDMRG.

The classical-spin approximation is justified for a strong local field Bfin, which sup-
presses the dynamical Kondo effect [Nuss et al., 2015b] that would show up in case of a
quantum-spin S = 1/2. The quantum-classical hybrid model in Eq. (5.23) also results in
the limit of large spin quantum numbers S [Garanin, 2008] of a correlated quantum-spin
Kondo impurity model. As previously discussed in Sec. 4.1, the classical spin S(t) sat-
isfies the classical equation of motion Ṡ(t) = S(t)×B − JS(t)× 〈si0〉t. Furthermore,
in Sec. 4.2 it was shown that the electronic degrees of freedom can be integrated out alto-
gether by applying lowest-order perturbation theory in J . To this end, the Kubo formula
yields 〈si0〉t = J

∫ t
0
dt′ χloc(t − t′)S(t′) where the retarded local spin correlation χloc(t)

now plays the role of the linear-response function. Here, we repeat the resulting effective
integro-differential equation of motion given in Eq. (4.8):

Ṡ(t) = S(t)×B − J2S(t)×
∫ t

0

dt′ χloc(t− t′)S(t′) , (5.27)

with the local (diagonal and isotropic) retarded spin susceptibility

χloc(t) = −iΘ(t)〈0|[si0z(t), si0z(t′)]|0〉 (5.28)

at the site i0 where the classical spin is coupled to. In contrast to Sec. 4.2 and Eq. (4.7),
|0〉 is now the ground state of a correlated conduction electron system, i.e. the ground state
of the Hubbard HamiltonianHe, siz(t) = eiHetsize

−iHet, and siz is the z-component of the
local conduction-electron spin si =

∑
σσ′ c

†
iσσσσ′ciσ′/2. Using the equation (5.27) which

is numerically accessible by Runge-Kutta [Verner, 2010] and Newton–Cotes quadrature
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rule [Press et al., 2007], we must compute the integral kernel8 χloc(t) (Eq. (5.28)) in
advance. To this end, we apply tDMRG and the framework of matrix-product states
[Schollwöck, 2011] for systems with L = 80–120 sites. Here, the exchange coupling
parameter is set J = 1 to generate relaxation times accessible to the tDMRG approach.

We choose i0 = 1 for two reasons: (i) As compared to the symmetric choice i0 = L/2,
this allows us to double the accessible time scale (before finite-size effects set in). (ii) As
previously discussed in Sec. 4.3, the Gilbert damping is given by the expression

αG = −
∫ ∞

0

dt t χloc(t) , (5.29)

which depends on the Hubbard-U via the local retarded spin susceptibility χloc(t). This
timeintegral is sensitive to the long-time behavior of χloc(t) which, at least for U =
0, is related to the strength of the van Hove singularities in the local density of states
as explicitly analyzed in Sec. 4.2. At the edge of the open chain, those are weak and
characteristic for a three-dimensional system.

Finally, we would like to note that the LR-SD approach in Eq. (5.27) is perfectly re-
liable even for fairly strong couplings J and up to the time scale necessary for complete
spin relaxation, as it has been demonstrated in Sec. 5.1.4 for U = 0. This was explained
by the observation, that even for moderately strong couplings J , the linear-response con-
tribution J2S(t) × 〈si0〉t to the equation of motion for S(t) is small (and the quadratic
and higher-order corrections are expected to be even smaller).

In the case of correlated conduction electrons, |S(t) × 〈si0〉t| remains small (of the
order of 0.1 or smaller), for weak and for strong U , as has been checked numerically for
all data that will be presented in this section. This ensures that the spin dynamics is nearly
adiabatic and hence the LR-SD approach provides qualitatively correct results.

5.3.2 Correlation e�ects at quarter �lling

Electron correlations are expected to speed up the relaxation of the classical spin since
electron scattering facilitates the transport of energy and spin density from i0 to the bulk
of the system. An increasingly efficient dissipation implies an increase of α with U . This
can be nicely seen in χloc(t), which determines α via Eq. (5.29) and which is shown in Fig.
5.17 (upper panel) for quarter filling n ≡ N/L = 0.5 where we have a (correlated) metal
in the entire U range. In fact, the absolute value of the integral weight

∫
dt χloc(t) grows

with increasing U . Note that via the fluctuation-dissipation theorem, the total weight∫
dt χloc(t) is given by the negative local static spin susceptibility. This explains that

χloc(t) is mainly negative.

8The integral kernel χloc(t) was provided by Roman Rausch. Concretely, the two-site version of
the algorithm suggested in Ref. Haegeman et al. [2011, 2016] was used, which is based on the
time-dependent variational principle (TDVP).
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Figure 5.17: Upper panel: Local spin correlation χloc(t) at i0 = 1 for an open Hubbard
chain with L = 80 sites as obtained by tDMRG for quarter �lling and di�erent U as
indicated. (U ≥ 32: t− J model with three-site terms9, L = 100 sites; U =∞: L = 120).
Energy and time scales are �xed by the n.n. hopping T = 1. Lower panel: Resulting
real-time dynamics of a classical spin S(t) (with |S(t)| = 1

2 , only Sz is shown) coupled at
i0 to the local conduction-electron spin as obtained from Eq. (5.27) for J = 1 and di�erent
U . The spin dynamics is initiated by switching the local magnetic �eld in Eq. (5.27) at
time t = 0 from x- to z-direction (Bfin = 1). Inset: U -dependence of the relaxation time
τ , de�ned as Sz(τ) = 0.98|S|.

Separation of time scales. A central observation is that χloc(t) develops a pronounced
two-peak structure for strong U . For U = 0 and in the weak-coupling regime, there is
essentially a single (negative) peak around t ∼ 1 only. This corresponds to fast correlated-
hopping processes on a scale set by the inverse hopping 1/T . As is seen in the figure, the
contribution of these processes to the Gilbert damping grows with increasing U .

The second (negative) peak is clearly present for U & 8. The almost linear shift of its
position with U hints towards a time scale set by an effective magnetic interaction JH ∼
1/U between local magnetic moments formed by strong correlations in the conduction-

9Strong correlations in the metallic phase is particularly interesting but also di�cult to investigate
due to the heavy computational costs. However, in the large-U limit U/T → ∞ the Hubbard
model can be mapped via a canoncal transformation to an e�ective t − J − t3 Hamiltonian
[Ammon et al., 1995], which is readily accessible to the tDMRG algorithm.
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electron system. Even for U → ∞, however, local-moment formation is not perfect at
quarter filling: We have 〈s2

i 〉 = 3
4
n = 3

8
< s(s + 1) with s = 1/2 for the size of the

correlated local moment [Gebhard, 1997]. This explains the residual contributions from
correlated hopping processes (first peak).

For strong U the Gilbert damping is dominated by magnetic processes: Because of the
extra factor t under the integral in Eq. (5.29), the contribution of the second peak in χloc(t)
by far exceeds the hopping contribution (note the logarithmic scale in Fig. 5.17). Clearly,
α strongly increases with U , though a precise value cannot be given due to limitations of
the tDMRG in accessing the long-time limit.

Correlation effects in the spin dynamics. The resulting spin dynamics (Fig. 5.17, lower
panel) is characterized by precessional motion (Sx(t), Sy(t) not shown) with Larmor fre-
quency ωL ∝ B around the ẑ axis, and by relaxation driven by dissipation of energy and
spin into the bulk of the electronic system. In the final state there is complete alignment,
S(t) ↑↑ B.

Comparing the results for the different U , we observe the following points:

(i) Significant relaxation starts at times t ∼ 1/T , i.e., on the time scale for dissipation
through correlated-hopping processes.

(ii) Correlation effects lead to a considerably shorter relaxation time, e.g., by about a
factor two when comparing the results for U = 0 and U = 16 (see inset).

(iii) To some extent this is due to an additional damping mechanism, namely via excita-
tions of correlation-induced magnetic moments – at least for moderate U .

(iv) For strong U , however, the relaxation time increases again. This is counterintu-
itive but easily explained: Since the second, “magnetic” peak in χloc(t) shifts with
increasing U to later and later times, relaxation is already completed before dis-
sipation through spin-flip processes can become active. This is most obvious for
U → ∞ where magnetic damping is never activated, and where a renormalized
band picture may apply.

(v) At intermediate U , however, the picture is different. Here, spin-flip processes do
contribute to the relaxation but more than an order of magnitude later (t & U/T 2)
than the hopping time scale. Despite their dominating contribution to α, their effect
is weaker as compared to the correlated-hopping processes. Still, spin-flips leave
a clear characteristic in Sz(t): their additional torque produces oscillations (with
a period largely independent of U ) which superimpose the monotonic relaxation
dynamics. The onset of these “magnetic” oscillations grows linearly with U .

Finally, we emphasize that the interpretation of these (and the following) findings does
not rely on the one-dimensionality of the model.
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Figure 5.18: The same as Fig. 5.17 but for n = 1 (L = 60). Thin black lines: Heisenberg

model with JH = 4T 2

U (L = 400) and, for improved accuracy at U = 8, with n.n. and n.n.n.

couplings JH = 4T 2

U − 16T 4

U3 and J ′H = 4T 4

U3 [Buleavski�i, 1967] (L = 300).

5.3.3 Correlation e�ects at half -�lling

Dissipation through correlated hopping is impeded or even suppressed at half-filling
where the system is a Mott insulator for all U > 0. Fig. 5.18 (upper panel) shows the
tDMRG data for χloc(t) at n = 1 and different U . Its time dependence is dominated
by a single (negative) structure which grows with increasing U up to, say, U ≈ 8. In
the weak-coupling regime, U . 4, the local magnetic moments are not yet well-formed
since the charge gap ∆ ∼ e−1/U (as obtained from the Bethe ansatz [Ovchinnokov, 1969]
for U → 0) is small as compared to T . Hence, residual hopping processes still con-
tribute significantly, as already mentioned in Sec. 2.1. In the strong-coupling limit,
on the other hand, spin-flip processes dominate. Here, we observe scaling behavior,
χloc(t) = F (4tT 2/U) with a universal function F (x). Indeed, due to the suppression
of charge fluctuations, the long-time, low-energy dynamics is captured by a Heisen-
berg chain with antiferromagnetic interaction JH = 4T 2/U between nearest-neighbour
s = 1/2-spins. As JH is the only energy scale remaining, we have χloc(t) = F (t JH) for
arbitrary JH where F (x) is a function independent of JH. This implies that the dominant
(negative) peak of χloc(t) shifts to later and later times as JH decreases as illustrated by
Fig. 5.19, upper panel.
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As expected, with F (x) obtained numerically by means of tDMRG applied to the
Heisenberg chain with L = 400 spins at JH = 1, the tDMRG data for strong U are
fitted perfectly (see Fig. 5.18). Significant deviations from the scaling behavior can be
seen in Fig. 5.18 for U = 8 and t ≈ 3, for instance.

Scaling can be exploited to determine the U -dependence of the Gilbert damping for a
Mott insulator. From Eq. (5.29) we get

α =
J2

J2
H

∫ ∞
0

dx xF (x) =
J2

J2
H

α0 =
J2U2

16T 4
α0 , (5.30)

and thus, for fixed J, T , we have α ∝ U2. For the universal dimensionless Gilbert damp-
ing constant α0 we find

α0 ≈ 4.8 . (5.31)

For a correlated Mott insulator, Eqs. (5.30) and (5.31) completely describe the U -
dependence of the classical-spin dynamics in the weak-J , weak-B limit where the t-
dependence of S(t) is so slow, as compared to the typical memory time τmem characteriz-
ing χloc(t), that the Taylor expansion S(t′) ≈ S(t) + Ṡ(t)(t′ − t) can be cut at the linear
order under the t′-integral in Eq. (5.27), such that the LLG equation is obtained (see also
Sec. 4.3).

Incomplete spin relaxation. As demonstrated with Fig. 5.18 (lower panel), there is an
anomalous U -dependence of the spin dynamics at n = 1:

(i) Only in the weak-coupling regime, U . 2, do damping effects increase and lead
to a decrease of the relaxation time with increasing U . For U = 4, however, the
relaxation time increases again.

(ii) In addition, as for n = 0.5, we note a non-monotonic behavior of Sz(t) with super-
imposed oscillations (see U = 6, for example). With increasing U these oscillations
die out at a “critical” interaction Uc ∼ 8.

(iii) For all U > Uc the relaxation time seems to diverge. Namely, the z-component of
S(t) approaches a nearly constant value which decreases with increasing U while
Sx (and Sy) still precess around B (see inset). Hence, on the accessible time scale,
Uc marks a transition or crossover to an incompletely relaxed but “stationary” state.

(iv) For strong U > Uc the z-component of the spin develops oscillations at short times.

The same type of dynamical transition is also seen for a classical spin coupled to a
Heisenberg chain, as can be observed in Fig. 5.19. One clearly notes that for J . Jc ∼
0.5 (corresponding to Uc ∼ 8) the time dependence of Sz develops a prethermalization-
like plateau on an intermediate time scale t ∼ 100 (in units of 1/JH). Moreover, using
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Figure 5.19: Upper panel: Local susceptibility χloc(t) = F (tJH) at i0 = 1 for an open
Heisenberg chain with L = 400 spins at JH = 1 as obtained by tDMRG illustrated for
di�erent JH as indicated. Lower panel: Resulting real-time dynamics of a classical spin
S(t) (with |S(t)| = 1

2 , Sx and Sz are shown) coupled at i0 to the local spin of the Heisenberg
chain as obtained from Eq. (5.27) for J = 1 and di�erent JH (and J ′H ≡ 0). The spin
dynamics is again initiated by switching the local magnetic �eld in Eq. (5.27) at time t = 0
from x- to z-direction (Bfin = 1).

the scaling property of χloc(t) for the Heisenberg model, it is easily possible to perform
calculations up to t = 1000. On this longer time scale, it is clearly visible (see Fig. 5.19)
that Sz does not approach a constant value asymptotically. For JH = 0.4 and JH = 0.2
the z-component of S(t) is even found to decrease and appears to approach the trivial
solution Sz(t) ≡ 0. Also, the oscillations of the z-component of the spin at short times
are present for weak JH.

In addition to the numerical study of the Heisenberg model on the longer time scale,
also analytical arguments clearly indicate that a state with Sz = const. 6= 1/2 is unstable
and that finally, for t → ∞, the fully relaxed state with S(t) ↑↑ B is reached. It is
straightforwardly seen that a “stationary state” of the form

S(t) = Sz ẑ + S⊥ cos(ωt+ ϕ)x̂+ S⊥ sin(ωt+ ϕ)ŷ (5.32)

with arbitrary parameters S⊥, ω, ϕ and with constant (time-independent) Sz does not solve
the integro-differential equation (5.27) for t → ∞. There is one exception only, namely
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the trivial case where χloc(t) ≡ 0 which can be realized, up to arbitrarily long times, in
the limit JH → 0. For small but finite JH > 0, we therefore expect that the classical
spin develops a dynamics on an extremely long time scale t� 103, the onset of which is
already seen in Fig. 5.19, which finally terminates in the fully relaxed state with S(t) →
S0 ↑↑ B. It is in fact easy to see from the integro-differential equation that, if there is
spin relaxation to a time-independent constant, S(t) → S0 for t → ∞, the relaxed state
has S0 = 0.5ẑ. This implies that if there is complete relaxation at all, the spin relaxes to
the equilibrium direction.

The Oscillations of the z-component of the spin at short times for weak JH, which
can also be seen for the case of the Hubbard model for strong U , can be also understood
analytically in the following way:

Firstly, by perturbation theory in x = 4tT 2/U = tJH, one verifies the linear short-time
behavior of the local susceptibility

χloc(t) = Θ(t) t
2

3
(JH〈si0si0+1〉+ J ′H〈si0si0+2〉) +O(x2) , (5.33)

valid to leading order for both, the Hubbard and the effective Heisenberg model. Sec-
ondly, inserting the expression (5.33) with J ′H = 0 for the behavior of χloc(t) at short
times into the LR-SD in equation (5.27), results in

Ṡ(t) = S(t)×B − 2

3
J2JH〈si0si0+1〉S(t)×

∫ t

0

dt′(t− t′)S(t′) +O(t3J4) . (5.34)

Finally, approximating S(t) by the J = 0 result S0(t) = S(cosωt, sinωt, 0) (with
B = Bẑ, ω = B, S = 1/2) in the second term on the right-hand side of Eq. (5.34),
a straightforward calculation yields:

Sz(t) =
2

3
J2JH〈si0si0+1〉S2 ωt sinωt+ 2 cosωt− 2

ω3
+O(t4J2J2

H) . (5.35)

This is found to perfectly describe the short-time oscillations for weak JH in Fig. 5.19 and
for strong U in Fig. 5.18. For longer times the oscillations are damped and eventually die
out.

Mechanism for incomplete relaxation. In the following, we describe the mechanism,
which leads to the strongly suppressed relaxation of the spin at half filling and large U
on the basis of linear-response theory as follows: The x and y components of the linear
response

〈si0〉t =

∫ t

0

dτ χloc(τ)S(t− τ) , (5.36)

tend to zero if the characteristic memory time τmem of the kernel χloc(τ) is much larger
than the precession time scale τB = 2π/B since the integral produces a vanishing average
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in this case. This means that the corresponding torque,−J2S(t)×〈si0〉t, is perpendicular
to the field direction and hence there is no relaxation of the spin. The same argument can
also be formulated after transformation to frequency space: After some transient effect,
we have 〈si0〉ω = χloc(ω)S(ω), and thus the x- and y-components of the linear response
will vanish if χloc(ω = B) = 0, i.e., if B is stronger than the bandwidth of the magnetic
excitations. Note that this can be studied in detail already for U = 0, as shown in Sec.
5.1.3 (see Fig. 5.4, right panel), but requires an unrealistically strong field in case of
noninteracting conduction electrons.

At half-filling and for strong U , the memory time τmem ∝ J−1
H ∝ U , i.e., τmem can

easily become large as compared to τB, and thus incomplete spin relaxation can occur
at comparatively weak and physically meaningful field strengths. For example, from the
Bethe ansatz [Essler et al., 2005] we have

Wspinon = 2

∫ ∞
0

dx

x

J1(x)

cosh(Ux/4)
→ π

2
JH for U →∞ (5.37)

for the spinon bandwidth Wspinon where J1(x) is the first Bessel function. Hence, for
strong Hubbard interaction, Bc ≈ 2Wspinon = πJH.

Finally, we also point out that the incomplete spin relaxation can also be under-
stood as a transient “phase” similar to the concept of a prethermalized state. The lat-
ter is known for purely electronic systems [Kollar et al., 2011; Marcuzzi et al., 2013;
Moeckel and Kehrein, 2008, 2010] which, in close parametric distance to integrability,
do not thermalize directly but are trapped for some time in a prethermalized state. Here,
for the quantum-classical hybrid, the analogue of an “integrable” point is given by the
U → ∞ limit where, for every finite t, the integral kernel χloc(t) ≡ 0, and Eq. (5.27)
reduces to the simple (linear) Landau-Lifschitz equation [Landau and Lifshitz, 1935].

The situation is also reminiscent of quantum excitations which are metastable on
an exponentially long time scale due to a small phase space for decay. An exam-
ple is given by doublons in the Hubbard model which, for U much larger than the
bandwidth and due to energy conservation, can only decay in a high-order scattering
process [Hofmann and Potthoff, 2012; Rausch and Potthoff, 2016; Rosch et al., 2008;
Strohmaier et al., 2010]. The relaxation time diverges in the U → ∞ limit where the
doublon number is conserved. Here, for a classical spin, one would expect that relax-
ation via dissipation of (arbitrarily) small amounts of energy is still possible. Our re-
sults show, however, that this would happen on a longer time scale not accessible to the
linear-response approach while the “stationary state” on the intermediate time scale is
well captured.

5.3.4 Conclusion

By Combining the tDMRG with non-Markovian classical spin dynamics, we have pre-
sented a new method to link the fields of strongly correlated electron systems and spin
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dynamics. In addition we could demonstrate that correlation-induced time-scale sep-
aration has qualitatively new consequences on the spin dynamics, which is of great
importance for the microscopic understanding of the emerging relaxation time scales
in modern nano-spintronics devices involving various transition metals and compounds
[Khajetoorians et al., 2011; Loth et al., 2010; Morgenstern, 2010]

Concretely, we have studied the spin dynamics of a generic model with a classical
spin S that is antiferromagnetically exchange-coupled (J > 0) to a Hubbard system as a
function of the local Coulomb interaction U .

In the metallic phase at quarter-filling, by comparing the results for different Coulomb
interaction U , we have identified the two main electronic dissipation channels, transport
of excitations via correlated hopping and via excitations of correlation-induced magnetic
moments, become active on largely different time scales. While slow correlation-induced
magnetic scales dominate the Gilbert damping α, their contribution to spin dynamics is
progressively reduced with increasing U .

At half-filling, we found that electron correlations can have even more extreme impact
on the spin dynamics. It has been demonstrated that correlations can lead to a strongly
suppressed relaxation which so far has been observed in purely electronic systems only
and which is governed here by proximity to the divergent magnetic time scale in the
infinite-U limit.

Finally, we pointed out that correlation-induced time-scale separation and incomplete
spin relaxation is similar to the notion of prethermalization, which has been studied ex-
tensively in purely electronic systems only, [Kollar et al., 2011; Marcuzzi et al., 2013;
Moeckel and Kehrein, 2008, 2010] or metastability of excitations due to the lack of phase
space for decay [Hofmann and Potthoff, 2012; Rausch and Potthoff, 2016; Rosch et al.,
2008; Strohmaier et al., 2010].



6 General conclusions and

perspectives

In this thesis, a generalization of the static hybridization mean-field (HybMF) ap-
proach [Lacroix and Cyrot, 1979; Yoshimori and Sakurai, 1970] to the nonequilibrium
case has been proposed. To this end, the nonequilibrium perturbation theory for Keldysh-
Matsubara Green’s functions is employed and the full thermal and nonequilibrium self-
energy expressions of the correlated many-fermion problem are replaced by the thermal
and nonequilibrium Hartree-Fock self-energy contributions to the Kondo-lattice model,
respectively. In equilibrium, the previously known static HybMF is recovered. In the
nonequilibrium, this leads to a time-dependent hybridization mean-field (tHybMF) the-
ory presented by an equation of motion for the reduced one-particle density matrix which
gives access to the time-dependent expectation values of any one-particle observable.
The tHybMF approach comprises several advantages; (i) As the Hartree and Fock self-
energy contributions can be expressed as functional derivatives of a truncated Luttinger-
Ward functional, the tHybMF approach is a conserving approximation in the sense of
Baym and Kadanoff [1961b], i.e. macroscopic conservation laws originating from the
continuous symmetries of the underlying Hamiltonian are ensured. (ii) The tHybMF ap-
proach is a computationally efficient method consisting of a system of non-linear dif-
ferential equation of first order which can routinely be solved by standard Runge-Kutta
methods, see e.g., Verner [2010]. Numerical calculations of large systems consisting of
aboutL = 103 sites and propagation times up to t ∼ 103 (in units of 1/T) can be performed
in a few hours on a standard desktop computer. This is important as small systems suffer
from recurrences after only a few propagation steps, which leads to irregular oscillations
due to finite size effects. Here, if the impurity is placed at the edge of the chain, finite
size effects only occur at t ∼ 103. (iii) The tHybMF method is in general applicable to a
wide range of problems concerning classical or quantum spins coupled to a fermionic lat-
tice. The time-dependent Kondo screening as well as the time-dependent competition of
Kondo effect versus RKKY indirect magnetic exchange interaction are treatable by this
approach. In particular, the transversal and longitudinal dynamics of Kondo impurities
are readily accessible, which represents the main focus of this work.

Concerning the spin dynamics, equations of motion for the impurity and conduction-
electron spins as well as for the hybridization terms reflecting the time-dependent Kondo
effect are derived. This reveals, that the real-time dynamics of a spin in an external mag-
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netic field shows a precessional motion. In addition, the spin may relax to a new equilib-
rium state due to the coupling of the local conduction-electron spin to its environment and
the dissipation of spin and energy into the bulk of the electronic subsystem. Furthermore,
it has been distinguished between longitudinal and transversal spin dynamics. While the
former arises due to the time-dependent Kondo screening, the latter represents a classical
phenomenon. Focusing on the classical spin dynamics, we have related our approach to
previous ones in the current literature.

Firstly, we have found that the transversal spin dynamics obtained from the time-
dependent mean-field approximation of the quantum model is equivalent to the exact
quantum-classical hybrid spin dynamics (QCH-SD) [Elze, 2012; Hall, 2008] obtained
from the classical-spin multi-impurity Kondo model, which is a quantum-classical hy-
brid model as classical degrees of freedom are coupled directly to quantum-mechanical
degrees of freedom. This hybrid model system exhibits non-trivial spin dynamics and
is valid for all time scales and coupling strengths. The real-time dynamics of the clas-
sical spin is determined via the Liouville-equation by the classical Hamilton function
Hcl. = 〈H〉, which is the only known way to consistently describe the dynamics of quan-
tum–classical hybrids [Elze, 2012; Hall, 2008]. In addition, as in the case of the tHybMF
approach, the real-time dynamics of the electronic subsystem is included explicitly in
terms of the reduced one-particle density matrix, which obeys the von Neumann equa-
tion.

Secondly, in the weak-coupling limit, the conduction-electron degrees of freedom are
eliminated by employing standard linear-response theory, which results in the linear-
response spin dynamics (LR-SD) presented by an equation of motion for the classi-
cal spins only [Bhattacharjee et al., 2012; Onoda and Nagaosa, 2006]. This integro-
differential equation possesses a spatially and temporally non-local structure and is nu-
merically accessible by means of a combination of Runge-Kutta method [Verner, 2010]
and Newton–Cotes quadrature rule [Press et al., 2007]. As this weak-coupling approach
is characterized by the dimensionless small parameter Jt, deviations of the LR-SD from
the exact QCH-SD are expected to gradually increase with the propagation time and sub-
sequently the approximation is expected to break down after a propagation time t ∼ 1/J
at latest. However, if the spin dynamics is nearly adiabatic the perturbation will produce
a rather weak torque Sm(t) × Sm(t′) and the LR-SD becomes reliable on rather large
time scales t � 1/J . Both hypotheses have been checked numerically by comparison
of the LR-SD with the exact QCH-SD for a classical spin in an external magnetic field
and locally exchange coupled to a one-dimensional conduction electron system with open
boundaries. The dynamics is initialized by a sudden switch of the field from the x- to
the z-direction at t = 0. The numerical study revealed that for couplings of the order
J ∼ T the magnitude of the torque Sm(t) × Sm(t′) is of the order 0.01 as the angle
enclosed by Sm(t) and Sm(t′) is very close to π for all times t. Hence the process is
nearly adiabatic and we find an almost perfect agreement between the results of the ex-
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act QCH-SD and the LR-SD during the entire transient dynamics to the new equilibrium
state. However, as expected, with increasing J the retardation effects are enhanced, which
results in a non-adiabatic process and the LR-SD shows strong deviations as compared
to the exact QCH-SD results. Furthermore, it was found that a simple argument based
on the dimensionless expansion parameter Jt seems to fail in any case, as this overlooks
retardation effects entirely. Summarizing, the LR-SD is a computationally highly efficient
approach, as it provides a tractable spin-only effective theory, which is applicable in the
nearly adiabatic regime.

Thirdly, the Landau-Lifshitz-Gilbert equation (LLG) [Gilbert, 2004;
Landau and Lifshitz, 1935] and in particular the Gilbert-damping and the moment
of inertia are re-derived from the QCH-SD in two steps, as the LLG concept is based
on two assumptions: (i) The electron-spin coupling is assumed to be weak and hence
treatable perturbatively to lowest order. (ii) A separation of time-scales is assumed, i.e.
the impurity spin dynamics is taken to be slow compared to the electron dynamics. The
first step towards LLG has been taken by the LR-SD, which is simplified further in a
second step by applying a Markov approximation. The microscopic derivation of the
LLG equation revealed its inherent disadvantages; the Gilbert-damping is ill-defined
in the case of an uncorrelated one-dimensional lattice. The moment of inertia is even
ill-defined in the case of a (uncorrelated) two-dimensional lattice. This finding has been
traced to the strength of the van Hove singularities in the conduction-electron density, on
which the Gilbert-damping constant and the moment of inertia are sensitively dependent.
As the strength of the van Hove singularities is characterized for all systems by the lattice
dimension only [Ashcroft and Mermin, 1976], we can generally conclude that in this
case the LLG theory reduces to a purely phenomenological concept without predictive
power. However, this conclusion may change for systems where the classical spin is
coupled to a correlated electron system. Here, the van Hove singularities are expected to
be regularized by the finite imaginary part of the conduction-electron self-energy.

While the emphasis of the first part was on generalizing the static HybMF approach
to time-dependent tHybMF theory for describing multi-impurity Kondo systems in non-
equilibrium situations and relating our theory concepts for the classical spin dynamics to
previous ones in the literature, the second part is devoted to the numerical study of the
real-time dynamics of a classical spin subject to an external magnetic field and locally
exchange coupled to a one-dimensional system of conduction electrons. The spin dy-
namics is initialized by a sudden switch of the field direction at t = 0. The numerical
results are obtained from tDMRG, QCH-SD and LR-SD plus tDMRG approach and can
be summarized as follows:

(i) As expected from the equations of motion for the impurity and conduction-electron
spins, the exact QCH-SD shows precessional motion with Larmor frequency and damp-
ing, which eventually aligns the spin to the final field direction (the new equilibrium state).
While the precession term is easily explained by the torque exerted by the magnetic field,
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the damping term is more complex, namely it has been found that the relaxation of the
spin results from the retarded effects of the local exchange in the coupled electron-spin
dynamics, i.e. the classical spin can be interpreted as a local perturbation exciting the
conduction-electron system. However, the electronic excitation propagates and feeds back
to the classical spin, but at a later time. This non-adiabatic dynamics of the electronic sub-
system and its temporally delayed feedback on the spin induces a spin torque parallel to
the field direction.

(ii) The QCH-SD approach also provides a precise microscopic picture of the electron
dynamics, which revealed that the energy and spin of the initial excitation is locally stored
in the vicinity of the classical spin and subsequently dissipated by dispersive wave packets
of excitations into the electronic subsystem with the Fermi velocity. This process is a
prerequisite for the relaxation of the impurity spin, as the microscopic dynamics is fully
conserving.

(iii) Besides precession and damping, the QCH-SD is further suitable to describe iner-
tia effects in the real-time dynamics of classical spins. Moreover, the precise microscopic
picture of the electronic subsystem uncovers also nutational motion in the dynamics of
the conduction-electron local magnetic moments. It has been found that in both cases
nutation amplitudes are small as compared to amplitudes in precessional motion. Further-
more, the frequency scales, in the strong-coupling limit, linearly in J and in Scl. (length
of the classical spin). In addition, in order to identify quantum effects, we have compared
the QCH-SD results for the classical-spin Kondo model with the real-time dynamics of
the quantum Kondo model studied by means of the tDMRG approach for different spin
quantum numbers S. A qualitative, and with increasing spin-quantum numbers also quan-
titative agreement between quantum and classical spin dynamics has been found. How-
ever, also fundamental differences have been observed; Firstly, as expected the quantum
spin dynamics exhibits longitudinal fluctuations reflecting the time-dependent Kondo ef-
fect. Secondly, we have shown for the first time that nutational motion is not restricted
to classical spin systems but is stable against quantum fluctuations. However, in contrast
to the classical spin, the nutational motion of a quantum spin is efficiently damped on a
femtosecond time scale, which is essentially independent of the relaxation and precession
time scales. This can be explained in the strong-coupling (JS → ∞) limit, where the
spin dynamics is essentially local and can be described in terms of an emergent two-spin
model. Within this simple two-spin model the damping of the quantum nutation is easily
understood as a quantum dephasing of the eigenmodes with revivals suppressed by the
coupling to the bulk of the system.

Finally, the effect of electron correlations on the spin dynamics has been addressed and
it has been shown that correlation-induced time-scale separation, which is one hallmark
of strong correlations, has dramatic and qualitatively new consequences for the spin dy-
namics. In order to link spin dynamics to the field of strongly correlated electron systems,
we have introduced a new numerically efficient method, namely a combination of the
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LR-SD for the spin dynamics with the tDMRG for the correlated electronic subsystem.
Concretely, we have studied the spin dynamics of a classical spin S that is antiferromag-
netically exchange coupled to a Hubbard system. Correlation effects are identified by
systematic computations for different local Coulomb interactions U.

In the metallic phase at quarter-filling, we have shown that correlation effects induce
two main electronic dissipation channels, namely the transport of excitations via corre-
lated hopping and via excitations of correlation-induced magnetic moments, respectively,
become active on largely different time-scales as a function of the Hubbard U . With
increasing U and up to U = 16 correlation effects results in a considerably shorther re-
laxation time as compared to U = 0. To some extent and for moderate U this is due
to the additional dissipation channel, namely excitations of correlation-induced magnetic
moments. However, in the strong-coupling regime U > 16, the relaxation is partially or
fully completed, before dissipation through spin-flip processes can become active. This
results in an increase of the relaxation time.

At half-filling, the system is a Mott insulator for any finite U > 0 and therefore dissi-
pation through correlated hopping is suppressed. However, only in the weak-coupling
regime U . 4, the charge gap ∆ ∼ e−1/U is small as compared to the hopping T
[Ovchinnokov, 1969]. Thus, in addition to dissipation through spin-flip processes, also
residual hopping processes still contribute significantly, which leads to a decrease of the
relaxation time with increasing interaction strength up to U . 2. In the strong-coupling
limit, charge fluctuations are strongly suppressed and only spin-flip processes remain ac-
tive and indeed the long-time, low-energy dynamics can be also captured by the Heisen-
berg model. This has strong consequences for the spin dynamics; For U ≥ 4, the re-
laxation time increases again. Even more profound changes occur from a “critical” in-
teraction Uc ∼ 8 onward, where the relaxation time seems to diverge and a transition or
crossover to an incompletely relaxed but “stationary” state is observed. The “stationary
state” on an intermediate time scale arises whenever the bandwidth of magnetic exci-
tations becomes smaller than the field. We emphasize in particular that this effect has
been observed for the first time in a quantum-classical hybrid system and is reminiscent
of prethermalization [Kollar et al., 2011; Marcuzzi et al., 2013; Moeckel and Kehrein,
2008, 2010] or metastability of excitations due to the lack of phase space for decay
[Hofmann and Potthoff, 2012; Rausch and Potthoff, 2016; Strohmaier et al., 2010], i.e.,
physics which so far has been demonstrated exclusively in purely electronic quantum
systems.

Summarizing, we have introduced two different numerical methods, namely the
tHybMF for Kondo systems out of equilibrium, a special case of which com-
prises the QCH-SD, and a combination of the LR-SD with the tDMRG ap-
proach to link classical spin dynamics to the field of strongly correlated elec-
tron systems. Both methods have been applied within the scope of this study
to systems consisting of a single classical-impurity spin coupled to an elec-
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tronic subsystem. However, there are further interesting directions of research
which are based on the present work and could be studied with the above
numerical methods in the future.

Firstly, the time-dependent Kondo-screening could be studied on a mean-field
level and compared to numerically exact methods [Lechtenberg and Anders, 2014;
Medvedyeva et al., 2013; Nuss et al., 2015b]. Also longitudinal spin dynamics
[Anders and Schiller, 2006] reflecting the time-dependent Kondo effect is accessible to
the tHybMF theory, a systematically numerical study of which remains for future works.
Secondly, the competition of the Kondo effect with the RKKY interaction for systems
with many magnetic impurities on the time-domain has not been addressed. Here, it
should be possible to establish a ”dynamical” Doniach phase diagram. Thirdly, another
line of research comprises classical spin dynamics of systems with more than a single spin
where, e.g., the effects of a time-dependent and retarded RKKY interaction can be studied
by means of a numerically exact method, as the tHybMF theory reduces in this case to the
exact QCH-SD approach. In this context, also the application of the LR-SD plus tDMRG
approach to multi-impurity classical-spins coupled to a correlated conduction-electron
system to explore the effect of electronic correlations on the time-dependent RKKY in-
teraction appears highly interesting for future research.

Furthermore, the classical-spin Kondo lattice model is highly interesting to address the
time-dependent phase transitions [Gebauer, 2015]. However, the combination of the static
mean-field for the equilibrium phase diagram and the exact QCH-SD for the transient dy-
namics to the new equilibrium state is rather inconsistent. In particular, the long-time limit
of the final state dynamics obtained from the exact QCH-SD must be compared with sta-
tistical predication, in order to determine whether or not the system is equilibrated. Here,
we propose a combination of numerically exact methods such as DMRG or Monte-Carlo
methods for the thermal state [Yunoki et al., 1998] with the exact QCH-SD approach to
address the transient dynamics.

Finally, we remark that generally a wide range of quantum and classical concepts,
such as eigenstate thermalization, prethermalization, (non)integrability, etc. [Rigol et al.,
2008] have not yet been addressed in the context of quantum-classical hybrid systems and
remain an important task for future studies.
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