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In High-TC cuprates superconducting Cu-O planes alternate with insulating layers along 

the crystallographic c-axis, making the materials equivalent to Josephson junctions connected in 

series. The most intriguing consequence is that the out-of-plane superconducting transport occurs 

via Cooper pairs tunneling across the insulating layers and can be predicted by the Josephson 

tunneling equations.  

Nonlinear interaction between light fields and the superconducting carriers serves as a 

powerful dynamical probe of cuprates, while offering opportunities for controlling them in an 

analogous fashion to other stimuli such as pressure and magnetic fields. The main goal of this 

thesis work is to use intense transient light fields to control the interlayer superconducting 

transport on ultrafast time scales. This was achieved by tuning the wavelength of such light 

pulses to completely different ranges, in order to either directly excite Josephson Plasma Waves 

in the nonlinear regime, or efficiently melt the competing charge and spin order phase, which in 

certain cuprates quenches the Josephson tunneling at equilibrium.  

In a first study, I have utilized strong field terahertz transients with frequencies tuned to 

the Josephson plasma resonance (JPR) to coherently control the c-axis superconducting transport. 

The Josephson relations have a cubic nonlinearity which is exploited to achieve two related, 

albeit slightly different, phenomena. Depending on the driving pulse, solitonic breathers were 

excited with narrow-band multi-cycle pulses in La1.84Sr0.16CuO4 while broad-band half-cycle 

pulses were employed to achieve a parametric amplification of Josephson Plasma Waves in 

La1.905Ba0.095CuO4. These experiments are supported by extensive modeling, showing exceptional 

agreement. A comprehensive study illustrates the strong enhancement of the nonlinear effects 

near the JPR frequency. 

Then, I turned to investigate the competition between superconductivity and charge- and 

spin-order (the so called stripe phase) in La1.885Ba0.115CuO4. I have demonstrated selective melting 

of the stripe phase through the irradiation with high photon energy pulses, which results in a 

transient enhancement of the c-axis superfluid density. The dependence of the effect on the 

wavelength of the pump pulse suggests a dominant energy scale which is at play with 

superconductivity, supporting the competing nature between the stripe and the superconducting 

order.
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Im Aufbau von Hochtemperatur-Kuprat-Supraleitern wechseln sich entlang der 

kristallographischen c-Achse Cu-O Ebenen und isolierende Schichten ab, was diese 

Materialklasse zu in Serie geschalteten Josephson-Kontakten gleichsetzt. Die faszinierendste 

Konsequenz dieser Anordnung ist, dass der supraleitende Transport senkrecht zu den 

Materialebenen über das Tunneln von Cooper-Paaren durch die isolierenden Schichten geschieht 

und durch die Josephson-Gleichungen vorhergesagt werden kann. 

Nichtlineare Wechselwirkungen zwischen Lichtfeldern und dem supraleitenden Zustand 

dienen als hilfreiche dynamische Sonden zur Untersuchung solcher Materialien. Gleichzeitig 

eröffnen sie Kontrollmöglichkeiten analog zu denen anderer Stimuli wie Druck und 

Magnetfeldstärke, allerdings für ultraschnelle Zeitskalen. In dieser Arbeit nutze ich ultraschnelle 

Terahertzspektroskopie zur Untersuchung der supraleitenden Eigenschaften zweier Klassen 

einlagiger La-214 Kupratproben mit und ohne Ausbildung konkurrierender Ladungsstreifen-

Ordnung. Die nichtlineare Wechselwirkung der Proben mit Lichtfeldern wird zudem zur gezielten 

Steuerung der Materialeigenschaften eingesetzt. 

Zur kohärenten Kontrolle der c-Achsen-Supraleitung habe ich starke Terahertztransienten 

eingesetzt, deren Frequenzen an die Josephson-Plamsaresonanz des jeweiligen Materials 

angepasst wurde. Die supraleitenden Eigenschaften der Kuprate entlang ihrer c-Achse werden 

maßgeblich duch die Josephson-Beziehungen bestimmt. Ihre kubisch-nichtlineare Natur wird 

dazu genutzt in Abhängikeit vom anregenden Lichtpuls die folgenden zwei zwar in Beziehung 

stehenden aber dennoch unterschiedlichen Phänomene zu erzeugen: Durch schmalbandige 

mehrzyklische Pulse werden in La1.84Sr0.16CuO4 "solitonische Atmer" (engl.: solitonic breathers) 

angeregt, wohingegen breitbandige halbzyklische Pulse eine parametrische Verstärkung der 

supraleitenden Phasenfluktuationen in La1.905Ba0.095CuO4 bewirken. Die eingehende 

Untersuchung zeigt eine deutliche Verstärkung der nichtlinearen Effekte in der Nähe der 

Resonanzfrequenz auf. 

Außerdem stelle ich in dieser Arbeit die optische Verstärkung der c-Achsen 

Superfluiddichte in Kupraten mit konkurrierender Ladungsstreifen-Ordnung dar. In 

La1.885Ba0.115CuO4 konnte ich das selektive Schmelzen der sich ausbildenden streifenförmigen 

Phasen mittels Lichtpulsen hoher Photonenenergie zeigen. Dies resultiert in einem stetigen 

Zusamenfassung 



 

 

Anstieg der c-Achsen Superfluid-Dichte. Die Abhängigkeit des Effekts von der Wellenlänge des 

Pumppulses spricht für eine dominante Energieskala, die in einer Beziehung zur der Supraleitung 

steht. Dies unterstützt die Konkurrenz zwischen der streifenförmigen Ladungsträgerdichtewellen-

Phase und der supraleitenden Phase. 
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Introduction 

 

 

1.1. Strongly correlated materials 

Conventional band theory successfully describes the electronic properties of many 

solids. Within this framework, the concept of quasiparticles is invoked to describe 

electronic excitations. Quasiparticles are free-electron like particles with a renormalized 

mass that is attributed to the complex many body interactions. However, in materials 

where Coulomb interactions are important, the quasiparticle picture and the predictions of 

band theory fail to reproduce their properties. Indeed, in such systems, electron 

correlations lead to a variety of exotic ground states and complex phase diagrams [1]. 

Among these states, one of the most exciting state and thus the most studied, is 

unconventional superconductivity.  

The macroscopic behavior of the superconducting condensate can be successfully 

described by a single wave function which maintains phase-coherence over long 

distances. One of the most intriguing manifestations of the macroscopic phase coherence 

is observed when two superconductors are separated by a thin insulating barrier; this 

configuration forms the so-called Josephson junction. In this case, a zero voltage 
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supercurrent flows across the barrier, with an amplitude determined by the 

superconducting order parameter phase difference across the link.  These junctions can be 

fabricated based on niobium technology [3]; however they turned out to naturally occur 

in several classes of anisotropic superconductors, such as cuprates. 

Cuprates are high-temperature superconductors with a layered crystal structure, 

comprising of superconducting Cu-O planes separated by insulating layers. Adjacent 

layers are coupled by the Josephson effect which mediates the superconductivity across 

the planes, making superconductivity three-dimensional. The inductive coupling, together 

with the capacitive behavior, gives rise to a collective plasma oscillation of Cooper-

paired electrons, resulting in a plasma resonance (the so-called Josephson resonance) at 

terahertz frequencies. 

1.2. Photo-induced phenomena 

Understanding microscopic interactions and engineering collective responses to 

tailor material functionalities has been of central importance in the fields of condensed 

matter physics and material science, both from a fundamental and technological point of 

view. In particular, much effort has been made to increase the transition temperature of 

high-Tc superconductors to realize practical applications of superconducting materials 

beyond the cryogenic confines of a laboratory. 

Conventional methods to modify and control the properties of superconductors 

include chemical doping, application of pressure and magnetic or electric fields and 

varying the temperature. These stimuli can modify the thermodynamic landscape, thereby 

rendering control over such systems. 

In addition to the methods mentioned above, a conceptually different path consists 

in perturbing the properties of a material using light. Depending on the energy of the 

photons, the effects of photoexcitation vary from carrier excitation to photo-induced 

structural and electronic phase transitions.  

In particular, terahertz science is of critical importance in the field of condensed 

matter physics, as many fundamental excitations in metals and semiconductors (e.g. 

phonon modes, intraband transitions), as well as superconductors (e.g. superconducting 

gap, Josephson plasma resonance) are observed at THz frequencies. It is the aim of this 
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thesis to investigate, through ultrafast spectroscopy, the nonlinear physics of Josephson 

tunneling in cuprates. 

In particular, the direct excitation of the Josephson plasma resonance by ultra-

short intense terahertz light has proven to be an extremely efficient route towards driving 

the system into the nonlinear regime. Indeed, the studies presented in the first part of this 

thesis report on two distinct phenomena: optical excitation and detection of solitonic 

breathers in cuprates and parametric amplification of Josephson plasma waves. 

The second part of the thesis focuses on cuprates for which the Josephson 

tunneling is suppressed at equilibrium by the existence of charge and spin density waves. 

In this particular case, high energy photons were used to directly melt the competing 

orders, thus restoring the interlayer Josephson coupling.  

1.3. Structure of the thesis 

Chapter 2 introduces the physics of Josephson junctions, in close connection to 

the c-axis optical response of high-TC cuprates. Chapter 3 presents a theoretical study 

based on numerically solving the sine-Gordon equation which describes the nonlinear 

behavior of terahertz driven high-TC cuprates along the c-axis. The simulations are 

successfully compared to corresponding experimental data. Chapter 4 introduces the 

concepts of charge (and spin) order, with emphasis on the interplay (and competition) 

that this phase has with superconductivity in cuprates. Chapter 5 presents an 

experimental study on the enhancement of c-axis superconducting transport by direct 

melting of charge and spin order, upon photo-excitation. Chapters 3 and 5 present the 

main results of this work. All chapters can be read independently.  

Details of the experimental methods and the Matlab code used for simulations are 

reported in the appendices. 
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C-axis properties of  

High-TC Cuprates 

  

 

High-TC cuprates were discovered in 1986 in a mixed metal copper oxide, La2-

xBaxCuO4 (LBCO) at TC = 30 K [5]. The crystal structure of La2CuO4 is layered, with 

alternating Cu-O and La-O planes, with the heavy La ions acting as charge reservoirs for 

the planes. The layered crystal structure also accounts for a strong anisotropy of their 

physical properties. A partial substitution of La
3+

 by Ba
2+

 in the parent compound 

introduces holes into the copper-oxygen layers and causes the newly-substituted 

compound to become metallic, and exhibit superconductivity with a maximum of TC = 35 

K. In the similar manner, substitution of divalent Sr
2+

 for trivalent La
3+

 in the parent 

compound results in the similar superconducting compound La2-xSrxCuO4 (LSCO) [6]. 

LSCO has a maximum TC of ≈ 38 K for a doping level of x = 0.16. Both LBCO and 

LSCO are part of the same HTS cuprate family, La-214, which has a rather simple crystal 

structure (i.e. high-quality crystals free from twinning are relatively simple to grow), 

making them appealing for experimental studies [7]. After their initial discovery, the 
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transition temperature in cuprates raised rapidly above the melting point of nitrogen, T = 

77 K. This was achieved in cuprate families such as YBa2Cu3O6+y (YBCO) [8] with TC = 

93 K and higher or Ba2Sr2CaCu2O8+y [9]. In the latter, bismuth can also be replaced with 

thallium or mercury, which results in the highest critical temperature material known to 

date (TC = 138 K), at ambient pressure [10], [11]. 

The central theme of this thesis involves investigation and control of the 

superconducting coupling along the direction perpendicular to the CuO2 planes (or 

Josephson coupling) through nonlinear light-matter interaction on LBCO and LSCO 

samples. In this chapter I will present some of the most intriguing characteristics of 

cuprates, with emphasis on out-of-plane properties of the La-214 family and Josephson 

physics.  

2.1. Crystal structure of the La-214 cuprate family 

With the mechanism of HTS yet to be understood, there are nonetheless a number 

of points that are certain. In the case of cuprates, the Cooper pairs responsible for 

superconductivity are mainly localized in the CuO2 planes of the perovskite structure, 

imprinting highly anisotropic properties on the material.  

 From the microscopic point of view, cuprates can be considered as a stack of 

quasi-two-dimensional superconducting CuO2 planes (ab-planes), separated by an 

insulating layers (built of ions such as Lanthanum, Strontium, Barium) with a thickness 

comparable to (or, to some extent, greater than) the c-axis coherence length. The 

anisotropy of the system is determined by the thickness of the insulating layers and this 

translates in a confined 2D electronic motion, despite Coulomb interactions between 

carriers being three-dimensional. The ratio of the normal-state resistivities along and 

perpendicular to the c-direction , ρc/ρab, is of the order of 10
2
 to 10

5
, while in the 

superconducting state the critical current across the layers can be orders of magnitude 

lower than in the ab-plane. 

In Figure 2.1 the crystal structure of LBCO / LSCO is shown. The CO2 planes 

form a checkboard pattern, with the Cu
2+

 ions positioned at the centers of squares, while 

the O
2-

 ions lay in the corners. Oxygen ions surround the copper ions to form octahedral 

cages, separated from each other by sheets containing lanthanum and strontium ions. The 
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unit cell is rotated by 45 ̊from the checkerboard pattern, where the center and corners are 

occupied by the copper ions [12], [13]. In panel b the two-dimensional CuO2 layers are 

shown. As ‘x’ holes per Cu ion are introduced into the layer by doping, the charge 

carriers become mobile and metallic conductivity develops. For a critical level of doping 

the material becomes superconductor, with this property becoming three dimensional, 

due to tunneling of Cooper pairs from one superconducting layer to another.  

2.2. The cuprates as stacks of Josephson junctions 

As a consequence of structural anisotropy, cuprates turn out to act as stacks of 

Josephson junctions. In these materials, in the superconducting phase, superconducting 

carriers move without resistance within the copper-oxygen planes, while the out-of-plane 

(c-axis) electrodynamics are dominated by tunneling between the CuO2 layers [14]. Thus, 

tunneling between planes makes possible three-dimensional coherent transport in 

 

Figure 2.1: Crystal structure of LBCO/LSCO a. The unit cell of LBCO/LSCO, 

highlighting the perovskite crystal structure.  b. Two dimensional CuO2 layer. As holes are 

introduced in the Cu sites, the charge carriers can hop from one site to another, thus becoming 

mobile. 
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cuprates, and the c-axis electrodynamics can be understood by considering a Josephson 

junction array configuration. The validity of this analogy was demonstrated by Kleiner et 

al. after they directly measured the d.c. and a.c. Josephson effects in a Bi2Sr2CaCu2O8 

single crystal [15]–[17]. Thus, in order to explain the c-axis transport in cuprates, we 

need to first illustrate the basics of a Josephson junction, which is based on the assertion 

that electrons can tunnel between two superconductors separated by a thin insulating 

layer. This effect was predicted by B. D. Josephson in 1962 [18]. 

  In his analysis, Josephson considered two superconductors connected by a thin 

insulating layer (Figure 2.2a). The insulating barrier has to be thin enough to allow the 

tunneling of the Cooper pairs. As mentioned before, one essential characteristic of the 

superconducting state is the existence of a many-particle condensate wave function 

maintaining phase coherence over a macroscopic distance. For a single junction, one can 

write the following equations for the wave functions: 

𝜓1 = √𝜌1𝑒
𝑖∅1 

𝜓2 = √𝜌2𝑒
𝑖∅2, 

where ∅1and ∅2 are the phases of the condensate wave functions on both sides of the 

junction respectively, and 𝜌2 and 𝜌2 are the corresponding Cooper-pair densities. 

The two Josephson equations are: 

𝐼𝑆 = 𝐼𝐶𝑠𝑖𝑛∅ 

𝑑

𝑑𝑡
∅ =

2𝑒𝑉

ħ
 

and describe the dynamics of the difference in the phase of the superconducting order 

parameter between the two superconducting layers (∅ = ∅1 − ∅2). The first equation 

states that, between two superconducting electrodes separated by a thin insulating layer 

there exists a supercurrent, IS, determined by the phase difference ∅. In the ideal case in 

which there is no voltage drop across the junction, the supercurrent can take any value 

between –IC and IC; therefore IC denotes the maximum supercurrent that the junction can 

support. The second equation describes the temporal evolution of the relative phase, ∅, in 

case a voltage difference were established and maintained across the link. From here, it 

follows that the supercurrent will oscillate sinusoidally for a constant voltage drop, with 
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amplitude IC and frequency 2eV/ħ. These predictions are known as the d.c. and a.c. 

Josephson effects and stay at the core of Josephson physics. 

The Josephson junction is equivalent to an LC circuit (Figure 2.2 b): a real 

junction is modelled by an ideal weak link J (which gives the inductive response, L = J) 

shunted in parallel by a voltage independent resistance R (corresponding to dissipation 

via tunneling of non-superconducting quasiparticles) and a capacitance C (which 

accounts for charging effects, due to the junction geometry). This is the so-called RCSJ 

circuit model of the Josephson junction, with the resonance frequency 𝜔𝑝 corresponding 

to 1 √𝐿𝐶⁄  in the case of the undamped oscillator circuit. 

2.3. Sine–Gordon equation 

In long Josephson junctions, where the spatial dependence of the phase in the 

direction perpendicular to the junction has to be taken into account, the two Josephson 

relations are supplemented with Maxwell’s equations. The phase evolution, ∅(𝑥, 𝑡), in 

one dimension, follows the sine-Gordon equation: 

1

𝜔𝑝
2

𝜕2∅

𝜕𝑡2 − 𝜆𝐽
2 𝜕2∅

𝜕𝑥2 + sin (∅) = 0    

 

 

Figure 2.2: Josephson junction and equivalents a. Conventional Josephson junction, 

with 𝝍𝟏,𝟐 being the microscopic wave functions describing the superconducting electrons on 

each side of the barrier b. Equivalent RCSJ circuit model of a Josephson junction c. I-V 

characteristic of a Josephson junction d. Mechanical analogue of the Josephson effect: the 

angle of deviation corresponds to the phase difference, the angular velocity to the voltage, and 

the torque to the current. 
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The time modulation of ∅ scales with 1/𝜔𝑝, while the spatial variation scales with 

the Josephson penetration depth 𝜆𝐽. The sine-Gordon equation is a nonlinear partial 

diff erential equation which describes the electrodynamics of the long Josephson junction. 

A general solution for the sine-Gordon equation has not yet been found, but some special 

cases can be treated analytically and will be presented throughout this chapter (for a more 

general overview, also consult Table 2.1). In complex physical systems, some of the 

solutions of sine-Gordon equation (i.e solitons, kinks and breathers) appear in various 

situations, including dislocations in crystals [19], nonlinear spin waves in superfluids 

[20], waves in ferromagnetic and anti-ferromagnetic materials [21], [22], and nonlinear 

excitations in living cellular structures [23]. Moreover, this equation also exactly 

describes a bunch of simple, plane pendula coupled together by the spatial derivative 

term. 

In particular, in the case of Josephson physics, the sine-Gordon equation 

encapsulates all the well-known phenomena of the Josephson junctions in different limits, 

as described below. First, if both temporal and spatial variation are considered in the limit 

of small phase amplitudes, sin(∅) = ∅, the sine-Gordon equation describes the linear 

wave equation, leading to Josephson plasma waves (JPWs), with the phase taking the 

form ∅ ~ 𝑒𝑖(𝑘𝑥𝑥−𝜔𝑡). For plane waves of this type, the dispersion relation takes the form: 

𝑘𝑥
2 =

𝜀∞ 

𝑐2 (𝜔2 − 𝜔𝑝
2). Thus, for 𝜔 < 𝜔𝑝, the wave vector 𝑘𝑥 becomes imaginary and 

wave propagation inside the material is forbidden, due to screening, while for 𝜔 > 𝜔𝑝, 

JPWs can propagate inside the material. As mentioned above, in cuprates the JPWs 

consist of collective oscillations of Cooper-paired electrons and lead to a Josephson 

plasma resonance in the superconducting state. This is presented in detail in the next 

section of this chapter. 

It is worth mentioning that there is a mechanical analogue to the Josephson 

junction, that can aid us in assimilating the physics behind: the dynamics of the relative 

phase, ∅, obeys the equations of motions as the angular displacement of the simple 

pendulum, θ. Thus, in the case of the physical pendulum attached to a pulley (Figure 

2.2d), the angle of deviation corresponds to the phase difference, the torque is the 

analogue of the superconducting current, while the average angular velocity of the 

mechanical pendulum corresponds to the voltage across a weak link. In the limit of small 
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angles, 𝑠𝑖𝑛𝜃 ≈ 𝜃, the resonance frequency of the pendulum corresponds to small 

amplitude oscillations around the equilibrium position, 𝜃 = 0. This mechanical resonance 

is the analogue of Josephson plasma waves. 

2.3.1. The Josephson plasma resonance (JPR); c-axis optical 

properties of cuprate superconductors 

The interplay between the capacitive coupling and the tunneling between the 

CuO2 planes gives rise to a collective oscillation of Cooper-paired electrons, or 

Josephson plasma waves [24]. The insulating planes in layered cuprates have thicknesses 

of the order of interatomic distances (i.e. the lattice parameters of LSCO are a = 0.3773 

nm and c = 1.3166 nm), resulting in plasma frequencies in the terahertz regime, as 

opposed to the resonances that are found in macroscopic Josephson junctions, which fall 

in the megahertz to gigahertz range. The Josephson plasma resonance (JPR) in cuprates, 

typically investigated using frequency domain techniques, can be observed directly by 

time-domain terahertz spectroscopy [25] and modelled by the sine-Gordon equation.  

In the following I will introduce the equilibrium optical response of LSCO along 

the c direction, as obtained from terahertz spectroscopy measurements and from 

simulations of the sine-Gordon equation. A full description of the numerical model will 

be made in Chapter 3. 

Figure 2.3 shows steady-state terahertz time-domain spectroscopy measurements 

probing the out-of-plane response of La1.84Sr0.16CuO4. Panel a depicts typical traces of the 

single cycle THz electric field pulse reflected from the sample both below (T = 5K) and 

above (T = 40K) the superconducting transition temperature of the material. The electric 

field is polarized along c-axis and sent on the LSCO sample. At low temperatures, clear 

long-lived oscillations are observed on the trailing edge of the reflected pulse (red), 

which are not there for temperatures above TC (black). These oscillations stand as 

evidence for the Josephson plasma resonance, which, in this material is at 𝜔𝑝 = 2 𝑇𝐻𝑧. 

The plasma resonance is also clearly visible in the simulations (panel b), where the 

reflected field also shows clear oscillations with a half a picosecond period. 
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Figure 2.3: Measured (continuous lines) and simulated (dotted lines) c-axis optical 

properties of LSCO x = 0.16 associated with the JPR phenomenon. a. Time-

dependent terahertz transient field detected after reflection from the sample, above (black lines) 

and below (red) TC. For T < Tc, long lived oscillations on the trailing edge of the pulse signal 

the onset of interlayer Josephson coupling. b. Incident electric field used for the simulation 

(black) together with the field reflected from the sample surface (red), which shows clear 

oscillations with 0.5 ps period. In panels c, d, e and f the reflectivity 𝒓(𝝎), complex dielectric 

function 𝜺(𝝎), complex conductivity 𝝈(𝝎), and the energy loss function – Im(𝟏/�̃�(𝝎)) are 

shown respectively. 
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In order to deduce the absolute sample reflectivity, the incident pulse is also 

recorded for comparison. The frequency-dependent complex reflection coefficient is then 

derived as the ratio of the Fourier transforms of the reflected and incident fields: 

𝑟(𝜔) =
𝐸𝑟𝑒𝑓𝑙(𝜔)

𝐸𝑖𝑛𝑐(𝜔)
. 

The reflectivity calculated as 𝑅 = |𝑟(𝜔)|2 is displayed in Figure 2.3 c. Above the 

superconducting transition temperature (T > TC), the c-axis response is insulator-like and 

the reflectivity essentially featureless. As the sample undergoes the superconducting 

transition (T < TC), the reflectivity characteristics change dramatically (red line). The 

reflectivity approaches unity at low frequency, drops sharply at 𝜔 = 𝜔𝑝, and then 

recovers to the value of the normal state for higher frequencies. These measurements, 

which are reminiscent of the plasma edge observed in conventional metals [2], reproduce 

the well-characterized Josephson plasma resonance in this compound [4], [26], [27]. 

Simulations (red dotted line) show a good agreement with experimental data, reproducing 

the edge in reflectivity at around 2 THz. 

From the complex reflection coefficient, all other optical properties can be 

deduced using Fresnel's equations. The complex dielectric permittivity 𝜀(𝜔) is displayed 

in panel d. The real part of the permittivity, 𝜀1(𝜔), which is almost frequency 

independent above TC, evolves from positive to negative values for below TC 

measurements, with the zero crossing taking place near 𝜔𝑝. Panel e displays the real and 

imaginary part of the conductivity, reflecting a flat 𝜎1(𝜔) and a ~𝜔𝑝
2/𝜔 divergence 

in 𝜎2(𝜔). The energy loss function, defined as – Im(1/𝜀̃(𝜔)), is displayed in panel f. 

Therein, the JPR is well captured by a peak appearing at 𝜔 = 𝜔𝑝. The loss function 

captures also another important feature of the interlayer Josephson coupling, as its width 

reflects the scattering rate or, equivalently, the inverse coherence length for 

superconducting tunneling. All these optical properties are well reproduced by the 

solution of the sine-Gordon equation, which are displayed in dotted lines on the 

plots. The simulated edge in the reflectivity and the Lorentzian shape of the Loss 
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Function are sharper than the experimental analogues, given that the model does not 

account for inhomogeneous broadening that might be at play in the experiment. 

I now continue reviewing the special cases of the sine-Gordon equation and the 

corresponding solutions, applied to the Josephson junction and the c-axis physics of 

cuprates. 

2.3.2. Zero Frequency: the Meissner effect and the Josephson 

vortex lattice (Nonlinear effects) 

If a static magnetic field is applied to the junction and the time dependence is 

disregarded ( 
𝜕2∅

𝜕𝑡2 = 0), the sine-Gordon equation reads: 

−𝜆𝐽
2 𝜕2∅

𝜕𝑥2 + sin (∅) = 0, 

and describes the screening of the magnetic field by the superconducting Josephson 

currents. 

In the limit of a short Josephson junction (𝐿 ≪ 𝜆𝐽), a magnetic flux can thread the 

junction. In this case, a Fraunhofer-type dependence of the Josephson critical current is 

observed [16], [28]. 

For long junctions (𝐿 ≳ 𝜆𝐽) and small applied magnetic fields – H much smaller 

than the lower critical field, Hc1 – thus small phase, sin(∅) can be approximated to ∅, and 

the sine-Gordon equation reduces to 𝜆𝐽
2 𝜕2∅

𝜕𝑥2 = ∅, with the solution taking the 

form ∅~𝑒−𝑥 𝜆𝐽⁄ . This solution incorporates the well-known Meissner effect: the applied 

magnetic field is expelled from the inside of the junction and directed towards its edges, 

being effectively screened by the Josephson currents. 

For long junctions and large magnetic fields (H > Hc1), the junction is driven in its 

nonlinear regime. The small phase approximation breaks, and the phase follows 𝜆𝐽
2 𝜕2∅

𝜕𝑥2 =

sin (∅), describing the magnetic flux penetration in the form of Josephson vortices, in 

which the Josephson currents are positive and negative as the phase advances in steps of 

2𝜋 with a periodicity of the Josephson penetration depth, driving the tunneling current in 

a vortex loop. In the case of a stack of Josephson junctions, the vortices spread over more 

than one junction, and inductive coupling arranges the Josephson vortices in a lattice. 
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Note that Josephson vortices are different from the so called pancake-vortices or 

Abrikosov-vortices which occur for magnetic fields applied along the c-axis and are 

pinned to the ab-plane. Extending the pendulum analogy, the penetration of the 

Josephson vortices into the junction is equivalent to the energy transmission (in the forms 

of solitons) in the forbidden gap of a nonlinear chain of oscillators [29]. 

2.3.3. Finite Frequency: emission of THz radiation (Nonlinear 

effects) 

One of the most interesting consequences of the physics discussed above is the 

emission of THz radiation for the application of a d.c. current [30]. Radiation of 

electromagnetic waves is rooted in the a.c Josephson effect, best depicted by the 

nonlinear RCSJ circuit model, qualitatively described in section 2.2. 

In this case, due to conservation of the current, the total current across the 

junction is: 

𝐼 =  𝐼𝐶𝑠𝑖𝑛∅ +
𝑉

𝑅
+ 𝐶�̇� 

In the short junction model (i.e. spatial dependence is disregarded), this adds a 

source term to the sine-Gordon equation, which reads: 

1

𝜔𝑝
2

𝜕2∅

𝜕𝑡2
+ 𝛽

𝜕∅

𝜕𝑡
+ sin(∅) =

I

𝐼𝑐
, 

Here, 𝛽 = 𝐿/𝑅 determines the damping, and 𝜔𝑝 = 1 √𝐿𝐶⁄  corresponds to the resonance 

frequency of the undamped oscillator circuit. 

Below the critical current 𝐼 < 𝐼𝑐, this equation has a solution ∅(𝑡) = ∅0 which is 

time-independent. Physically, the junction is in the zero resistance state, where 

superconducting carriers “short” the normal carriers.  

When the junction is biased above its critical current 𝐼𝑐, oscillations of the 

tunneling current appear. The junction develops a finite voltage 𝑉𝑑𝑐 for which, according 

to the first Josephson relation, the phase evolves as ∅(𝑡) =
2𝑒

ℏ
𝑉𝑑𝑐𝑡. Consequently, the 

Josephson current 𝐼(𝑡) = 𝐼𝑐sin (
2𝑒

ℏ
𝑉𝑑𝑐𝑡) oscillates at a frequency 𝜈 =

2𝑒

ℎ
𝑉𝑑𝑐 and radiation 

is emitted. 
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2.3.4. Nonlinear solutions of sine-Gordon equation by 

accounting for both the temporal and spatial 

dependences 

I now turn to the limit in which none of the above approximations are valid, and 

space and time dependences are to be considered, together with large perturbation of the 

phase. In this nonlinear regime, the sine-Gordon equation exhibits travelling wave 

solutions, such as kink, anti-kink, small and large amplitude breathers (See Table 2.1). 

All these solutions are solitons, i.e. coherent waves that preserve their shape while 

propagating through a system, or after collision with other stationary waves: 

 The moving kink and anti-kink solutions represent a twist of the phase 

from 0 to 𝟐𝝅 (kink) or from 𝟐𝝅 to 0 (antikink) and have the form: 

𝝓(𝒙, 𝒕) = 𝟒𝐚𝐫𝐜𝐭𝐚𝐧(𝐞𝐱𝐩 (±
𝒙−𝒖𝒕

√𝟏−𝒖𝟐
)), where u is their propagation speed. 

Here, u is dimensionless and can take values between 0 and 1. The 

maximum speed of propagation is defined by 𝒄𝒔𝒘 = 𝝀𝑱𝝎𝒑, where 𝒄𝒔𝒘 is 

called the Swihart velocity. 

 The unperturbed sine-Gordon equation has also the exact solution: 

𝝓(𝒙, 𝒕) = 𝟒𝐚𝐫𝐜𝐭𝐚𝐧 [
𝒔𝒊𝒏𝒉(

𝒖𝒕

√𝟏−𝒖𝟐
)

𝒖 𝒄𝒐𝒔𝒉(
𝒙

√𝟏−𝒖𝟐
)
]. This is a large amplitude breather, 

which can be viewed as a bound kink – antikink state oscillating with an 

internal frequency. Both the standing breather (u=0) and the moving 

breather (u≠0) are solutions of the equation. 

All the solutions presented above were derived from the one dimensional sine-

Gordon equation (i.e. accounting for only on spatial coordinate, x). For the solutions 

including two spatial dimensions see Ref. [31].  

As cuprate superconductors consist of stacks of intrinsic Josephson junctions, 

they are expected to give rise to these nonlinear phenomena when subject to sufficiently 

strong terahertz fields. This problem is extensively studied in Chapter 3, both by 

simulation and experimental tools. 



 

 

 Approximation Sine-Gordon equation and 
solution 

Φ in a single 
Josephson Junction 

Phase dynamics 

 

 

 

No 

time 

dependence 

 

𝜕2∅

𝜕𝑡2
= 0 

 

 

Weak external 

fields 

sin (∅) ≈ ∅ 

 

𝜆𝐽
2
𝜕2∅

𝜕𝑥2
= ∅ 

with solution: 

∅~𝒆−𝒙 𝝀𝑱⁄  

Meissner effect

 

 

 

 

 

Strong external 

fields 

sin (∅) ≠ ∅ 

 

𝜆𝐽
2
𝜕2∅

𝜕𝑥2
= sin (∅) 

 

Static vortex lattice 

 

 

 
  

 

 

 

 

  

 

 

 

 

 

  Time 

dependent 

 

𝜕2∅

𝜕𝑡2
≠ 0 

 

 

Weak external 

fields 

sin (∅) ≈ ∅ 

 

1

𝜔𝑝
2

𝜕2∅

𝜕𝑡2
− 𝜆𝐽

2
𝜕2∅

𝜕𝑥2
+ ∅ = 0 

with solution: 

𝜙(𝑥, 𝑡) = 𝐴𝑒𝑖(𝑘𝑥−𝜔𝑡) 

Josephson plasma 
waves 

 

 

 

 

 

 

Strong external 

fields 

sin (∅) ≠ ∅ 

1

𝜔𝑝
2

𝜕2∅

𝜕𝑡2
− 𝜆𝐽

2
𝜕2∅

𝜕𝑥2
+ sin (∅) = 0 

Travelling wave solutions: 

 

Kink, antikink solutions 

𝜙(𝑥, 𝑡) = 

4 arctan(exp (±
𝑥 − 𝑢𝑡

√1 − 𝑢2
)) 

u = the velocity of the soliton 

 

Large amplitude breather 

𝜙(𝑥, 𝑡) = 

4 arctan [

𝑠𝑖𝑛ℎ (
𝑢𝑡

√1 − 𝑢2
)

𝑢 𝑐𝑜𝑠ℎ (
𝑥

√1 − 𝑢2
)
] 

u = breather’s velocity 

 

Small amplitude breather 

(Its envelope is that of a large 

amplitude breather) 

 

  

 
 

 

 

 
 

 

   

 

 

 

 

 
 

 
 

  
 

 

Table 2.1: Solutions of the sine-Gordon equation together with the pictorial view of the 

phase dynamics in a Josephson junction.
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Nonlinear physics of  

Josephson Junctions 

 

  

In cuprates, superconductivity is made three dimensional by the tunneling of 

Cooper pairs across the CuO2 planes trough the insulating barriers (consisting of the La, 

Ba, Sr, Y, etc. atoms). Cuprates are in fact stacks of Josephson junctions with distributed 

tunneling inductance, between capacitively coupled planes. The first signatures of 

Josephson coupling along the c-axis of cuprates were detected in Bi2Sr2CaCu2O8+δ [15], 

[16]. These d.c. transport measurements revealed the presence of multiple branches in the 

I-V curves, which is a signature in the response of a stack of Josephson junctions 

connected in series [32]. More recent experiments exposed other aspects of Josephson 

physics, such as: Shapiro steps, microwave emission via a.c. Josephson effect or 

macroscopic quantum tunneling of the Josephson phase [33], [34]. Furthermore, artificial 

stacks of Josephson junctions (e.g. Nb/Al-AlOx/Nb) can be prepared. In these materials, 

by varying the thickness of the superconducting layers, one can adjust the coupling, thus 

controlling the frequency of the plasma resonance. 
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Optical pump-probe techniques based on femtosecond lasers give important 

insight on the out-of-equilibrium physics of cuprates [35]. However, photons with 

wavelengths of 800 nm (~ 1.5 eV) can break the Cooper-pairs and induce dissipation, 

giving that the superconducting gap in cuprates is of the order of several milli-

electronvolts (~ 30 meV) [4], [36]. For non-dissipative control, the photon used as 

excitation should have energies below the pair-breaking threshold, as in the case of 

terahertz radiation.  

A recent study found that the out-of-plane conductivity of La1.84Sr0.16CuO4 can 

be periodically modulated by an intense single cycle THz pump pulse of picosecond 

duration [37]. In this experiment, the spectrum of the incident pulse (centered 

at ωpump = 450 GHz and limited below 1.2 THz) was well below the JPR frequency 

of La1.84Sr0.16CuO4 (ωp = 2 THz); thus the pump electric field, polarized along c axis, 

was screened as an evanescent wave within the penetration depth, 𝜆𝐽 ~ 5 𝜇𝑚. However, 

within the length of the penetration depth, the Josephson phase was driven to high 

amplitudes, thus modulating the interlayer Josephson coupling. The transient complex 

conductivity of the perturbed material was determined as a function of pump-probe delay 

by time-resolved THz spectroscopy, for both in-plane and out-of-plane polarizations. The 

out-of-plane optical conductivity, 𝜎𝑐(𝜔), was strongly modulated by the excitation, 

showing fast oscillations on a sub-picosecond time scale. Thus, these measurements 

reveal a state in which the material switches on an ultrafast timescale between 

superconducting and resistive states of the interlayer transport. Under this non-resonant 

excitation conditions, this modulation occurs only for the duration of the pump pulse. 

Throughout the oscillations of 𝜎𝑐(𝜔), the in-plane conductivity, 𝜎𝑎𝑏, remains 

unperturbed, demonstrating the preservation of the in-plane superconductive properties 

(i.e. no Cooper pair breaking and no quasiparticle formation is observed). 

Thus, the experiment presented above reported on the possibility to gate the 

interlayer superconducting transport by driving the Josephson phase with an intense, non-

resonant THz pulse. In contrast, here, we are looking into how to control the Josephson 

coupling in high-TC cuprates using THz radiation resonant to the plasma frequency. 

Tuning the excitation in resonance to the JPR discloses new interesting nonlinear 

phenomena, as high-amplitude Josephson plasma waves are excited and propagate into 
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the material. We will focus on two distinct phenomena that depend on the characteristic 

of the incident light: 

 optical excitation of solitonic breathers occurs when La1.84Sr0.16CuO4  is 

excited with intense narrow-band, long THz pulses; 

 parametric amplification of Josephson plasma waves in La1.905Ba0.095CuO4 

is triggered upon excitation with broad-band, single-cycle THz pulses.  

The problems are addressed both experimentally, by manipulating the phase with 

strong THz-frequency pulses in pump-probe configuration measurements (see Figure 3.1) 

and theoretically (i.e. by numerically solving the sine-Gordon equation, thus capturing 

the dynamics of the Josephson phase).The Matlab code used for the simulations is shown 

in Appendix B. In both experiments, the pump and probe pulses are polarized along the 

c-axis. 

 

3.1. Modeling the Josephson junction 

Because radiation at photon energies below the superconducting gap of LSCO (~ 

20 meV) [38] does not perturb the order-parameter amplitude (number of Cooper pairs), 

the electrodynamics is determined only by deformations of the space and time dependent 

 

Figure 3.1: Caricature of the THz pump - THz probe configuration used for the 

experiments and simulations on La(Ba,Sr)CuO4 samples presented in this chapter 
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order-parameter phase, and it’s well captured by the sine-Gordon equation described 

above. 

For the numerical simulation, we consider a cuprate with layers stacked along the 

c direction (equivalent of the z-axis in the Cartesian coordinate system) and a free surface 

at x = 0. Input optical pump and probe pulses come at normal incidence (propagating 

along x-direction), with the electrical field vector in z-direction. We assume translational 

invariance of the system in y-direction, and the propagation of the Josephson phase 

difference across each layer of the cuprate is described by a one-dimensional sine-Gordon 

equation (see discussion in Chapter 2) which, in the presence of damping can be re-

written as: 

 𝜕2∅

𝜕𝑥2
−

1

𝛾

𝜕2∅

𝜕𝑡
−

𝜀

𝑐2

𝜕2∅

𝜕𝑡2
=

𝜔𝑝
2𝜀

𝑐2
sin (∅) 

 

(1) 

The Josephson phase evolution is therefore affected by the following boundary 

conditions at the vacuum-sample interface. 

 
[Ei(t) + Er(t)]x=−0 = Ec(x, t)|x=+0 = H0

1

ωp√ε

∂∅(x, t)

∂t
|x=+0 

 

(2) 

 
[Hi(t) + Hr(t)]x=−0 = Hc(x, t)|x=+0 = −H0λJ

∂∅(x, t)

∂x
|x=+0 

 

(3) 

The subscripts i, r, and c denote the incident, reflected and propagating fields inside the 

cuprate, respectively. Here, H0 = Φ0/2πDλJ , where Φ0 is the flux quantum (Φ0 =
ℎ𝑐

2𝑒
), 

D is the distance between adjacent superconducting layers and λJ is the Josephson 

penetration depth. In the simulations, the equilibrium plasma frequency is an input 

parameter chosen to be that of La1.84Sr0.16CuO4 (ωJPR = 2 THz) or of La1.905Ba0.095CuO4 

(ωJPR = 0.5 THz). 

For fields in vacuum (𝑥 < 0), the Maxwell’s equations imply 

 Ei − Er =
ωμ

ck
(Hi + Hr) = Hi + Hr 

 

(4) 

By combining equation (4) with equations (2) and (3), we obtain the boundary condition: 

 2√ε

H0
Ei(t)|x=−0 =

∂∅(x, t)

ωp ∂t
|x=+0 − √ε

∂∅(x, t)

∂x/λJ
|x=+0 

 

(5) 

After solving the Josephson phase through equation (1) and equation (5), the reflected 

field is calculated from equation (2). The equilibrium reflectivity of the cuprate is 
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obtained by computing the ratio between the Fourier transforms of the reflected field and 

a weak input field 

 requilibrium(ω) = Er
equilibrium

(ω)/Ei(ω) 
 

(6) 

The complex optical properties are then calculated from requilibrium(ω): 

 the equilibrium dielectric permittivity takes the form: 

 
ε(ω) = ((

1 − requilibrium(ω)

1 + requilibrium(ω)
)

2

) 

 

(7) 

 the loss function is computed as: 

 
L(ω) = −Imag((

requilibrium(ω) + 1

requilibrium(ω) − 1
)

2

) 

 

(8) 

In the simulation, the input field is renormalized as Ei
𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛(t) =

2√ε

H0
Ei(t) and 

Ei
simulation(t) = 1 corresponds to Ei ≈ 30kV/cm. 

In the following, I will first present a theoretical study (i.e. numerical solutions of 

the sine-Gordon equation) on the linear and nonlinear optical properties of the optimally 

doped single layer compound La1.84Sr0.16CuO4 (TC = 38 K). Experimental discussion will 

follow, with the simulations and experimental data in very good agreement. A systematic 

study as a function of the central frequency of the driving field is presented. Both in 

simulations and experiment the excitation frequency was tuned far above, close to or 

slightly below the plasma frequency. We conclude that the nonlinearities in the 

Josephson coupling get enhanced for excitation tuned into resonance with 𝜔𝑝.  

3.2. Linear optical excitation of Josephson Plasma Waves 

For plane waves of the type ∅~𝑒𝑖(𝑘𝑥𝑥−𝜔𝑡), the dispersion relation takes the form: 

𝑘𝑥
2 =

𝜖∞ 

𝑐2 (𝜔2 − 𝜔𝑝
2).  For 𝜔 < 𝜔𝑝, the wave vector 𝑘𝑥 becomes imaginary and wave 

propagation inside the material is forbidden, due to screening. For 𝜔 > 𝜔𝑝, JPWs can 

propagate inside the material.  

In the color plot of Figure 3.2, the calculated space and time dependent phase 

oscillations excited by a narrowband THz pulse is displayed. The evolution of the 

Josephson phase ∅(𝑥, 𝑡) is shown on a color scale as a function of time 𝑡 and depth 𝑥 
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inside the material. The phase evolution is calculated for an excitation of 𝐸 = 9𝑉/𝑐𝑚 at 

two frequencies above (𝜔 = 1.1𝜔𝑝 and 𝜔 = 1.05𝜔𝑝) and one below the plasma 

frequency (𝜔 = 0.97𝜔𝑝). The spectrum of the excitation pulse is shown in red in the 

upper panels of Figure 3.2, while the spatial profile at one particular time after excitation 

is plotted in black immediately below each two-dimensional plot. 

 𝝎𝒑𝒖𝒎𝒑 ≫ 𝝎𝒑 

In the linear regime, in the transparent region above the plasma 

resonance, 𝜔𝑝𝑢𝑚𝑝 = 1.1𝜔𝑝, a mode is found to propagate inside the material (Figure 3.2 

a.2). The estimated group velocity extracted from the simulations is 𝑣𝑔 =
𝑑𝜔

𝑑𝑘
≈ 2.5 ∗

107𝑚/𝑠𝑒𝑐. In panel a.3, a lineout of the phase profile as a function of x is shown at a 

fixed time, t = 40 ps. The JPWs have a linear profile, and the amplitude in this regime 

does not exceed a small fraction of π. 

 𝝎𝒑𝒖𝒎𝒑 > 𝝎𝒑 

For an excitation with a frequency closer to the plasma frequency, 𝜔𝑝𝑢𝑚𝑝 =

1.05𝜔𝑝, a very similar propagating mode was found: the waves have a slightly smaller 

group velocity 𝑣𝑔 ≈ 2 ∗ 107𝑚/𝑠𝑒𝑐 and similar amplitude. 

 𝝎𝒑𝒖𝒎𝒑 < 𝝎𝒑 

The phase profile calculated in panel c.2, corresponds to an electromagnetic 

excitation with the frequency lower than the plasma frequency of the material, 𝜔𝑝𝑢𝑚𝑝 =

0.97 ∗ 𝜔𝑝. In the weak field regime (𝐸 = 9𝑉/𝑐𝑚) only an evanescent wave is excited, 

with screening occurring over a distance of less than 20 m, as best seen in the spatial 

profile of the interlayer phase at 40 ps (panel c.3). As already discussed, this mode is 

characteristic of linear excitation below the plasma resonance. 
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Figure 3.2: Numerical solution of the sine-Gordon equation. LINEAR regime. 

Calculated space- and time-dependent interlayer phase, ∅(𝒙, 𝒕), as a function of pump 

wavelength: a. 𝝎 = 𝟏. 𝟏𝝎𝒑, b. 𝝎 = 𝟏. 𝟎𝟓𝝎𝒑 and c. 𝝎 = 𝟎. 𝟗𝟕𝝎𝒑. The amplitude of the pump 

pulse is E = 9 V/cm. Upper panels show the pump spectrum (red) superimposed on the 

calculated equilibrium reflectivity (black) of La1.84Sr0.16CuO4. Intermediate panels show the 

calculated ∅(𝒙, 𝒕) and the temporal profile of the pump pulse. Lower panels show selected 

lineouts of the phase at 40 ps.  
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3.3. Nonlinear dynamics of the Josephson junction; Optical 

excitation of Josephson Solitons 

For intense fields, the electrodynamics of the JPR becomes greatly nonlinear. 

Figure 3.3 shows the calculated phase, ∅(𝑥, 𝑡), for two pump wavelengths above the 

plasma frequency,  𝜔 = 1.1𝜔𝑝, and 𝜔 = 1.05𝜔𝑝. The amplitude of the pump pulse is 

𝐸 = 39𝑘𝑉/𝑐𝑚. 

 𝝎𝒑𝒖𝒎𝒑 ≫ 𝝎𝒑 

Far above the plasma frequency, increasing the field strength makes little 

difference in the velocity of the propagating mode found in the linear regime. The 

amplitude of the phase reaches ∅𝑝𝑒𝑎𝑘(𝑥, 𝑡) = 𝜋/10, but the nonlinear response in this 

regime was found to be small (Figure 3.3 a). In panel a.3 ∅(𝑥, 𝑡 = 40𝑝𝑠) is displayed in 

black, showing no qualitative difference from the linear response which is shown in red. 

 𝝎𝒑𝒖𝒎𝒑 > 𝝎𝒑 

Closer to the plasma resonance (i.e. 𝜔𝑝𝑢𝑚𝑝 = 1.05𝜔𝑝) the effects of a strong 

excitation become evident, and the phase profile is significantly perturbed. The 

oscillations of the phase increase and sharpen as the wave propagates into the material. 

Finally, the pulse-shape breaks up in a train at later times and for a propagating distance x 

≥ 300 μm (panel b.2). Hence, the shape of the phase profile deviates from a plane wave 

shape, as further emphasized in the one-dimensional plot of ∅(𝑥, 𝑡 = 50𝑝𝑠) in panel b.3. 

The maximum amplitude of the nonlinear phase in this case reaches ∅𝑝𝑒𝑎𝑘(𝑥, 𝑡) = 𝜋/4, 

twice as much as for 𝜔𝑝𝑢𝑚𝑝 = 1.1𝜔𝑝.  

 𝝎𝒑𝒖𝒎𝒑 < 𝝎𝒑 

Next, I will present the nonlinear dynamics of the Josephson phase calculated for 

pump excitation immediately below the plasma frequency, 𝜔𝑝𝑢𝑚𝑝 = 0.97𝜔𝑝, where the 

most interesting results were obtained. The results are displayed in Figure 3.4, as a 

function of pump fluence. For fields of E = 38 kV/cm (panel a), the evanescent wave 

suffers a strong deformation, with the maximum phase amplitude reaching π/4. However, 

the material remains opaque. 
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Figure 3.3: Numerical solution of the sine-Gordon equation. Strong driving fields 

with 𝝎𝒑𝒖𝒎𝒑 > 𝝎𝒑. Calculated space- and time-dependent interlayer phase, ∅(𝒙, 𝒕), for E = 

39 kV/cm tuned at two pump wavelengths above the plasma frequency: a. 𝝎 = 𝟏. 𝟏𝝎𝒑, and b. 

𝝎 = 𝟏. 𝟎𝟓𝝎𝒑. Upper panels show the pump spectrum (red) superimposed on the calculated 

equilibrium reflectivity (black) of La1.84Sr0.16CuO4. Intermediate panels show the calculated 

∅(𝒙, 𝒕) and the temporal profile of the pump pulse. Lower panels show in black selected line 

cuts of the phase at t = 40 ps for 𝝎 = 𝟏. 𝟏𝝎𝒑 (a.3) and 50 ps for 𝝎 = 𝟏. 𝟎𝟓𝝎𝒑 (b.3). In red, the 

linear response in the same excitation conditions is presented for comparison. 
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Remarkably, for E = 39 kV/cm a propagating mode emerges, as can be seen in the 

two-dimensional plot in panel b.1. Spatial line cuts of the phase for 50 and 55 ps time 

delay (panel b.2) show a single solitonic mode of amplitude ∅𝑝𝑒𝑎𝑘(𝑥, 𝑡) = 𝜋/4. The 

propagating mode evolves from the exponentially evanescent wave at early times and 

concentrates the electromagnetic energy in space and time without any noticeable 

distortion of its shape as it propagates. This mode (i.e. Josephson Plasma Soliton, JPS), is 

a breather solution of the sine Gordon equation (see discussion in Chapter 2). As 

previously discussed, the breather can be thought of as pair of oppositely-oriented phase 

kinks, or a bound vortex anti-vortex pair. Note that the unbound vortex anti-vortex pair 

would correspond to two oppositely-phased 2 phase kinks, whereas the peak of the 

bound state is , corresponding to a lower total energy. The JPS propagates close to the 

surface of the material, 𝑥 < 100𝜇𝑚, at a group velocity of vg = 8·10
5
 m/s. As the field 

strength is further increased to 42 kV/cm (panel c), the velocity of the soliton increases, 

with the breather propagating deep in the material, x > 600 μm. Also, the peak phase 

increases to  ∅𝑝𝑒𝑎𝑘(𝑥, 𝑡) = 𝜋/2. A first conclusion is that the velocity of the breather is 

an extremely steep function of the excitation field. 

At even higher fields more than one soliton is launched during the pulse. For E = 

50 kV/cm, two solitons are obtained, with a fast soliton penetrating into the material and 

a slow soliton propagating close to the surface. The second soliton is injected 10 ps after 

the first one, and has smaller amplitude. Increasing the excitation field even higher gives 

rise to a train of fast solitons, as seen for E = 75 kV/cm (panel e) and E = 100kV/cm 

(panel f). Thus, the characteristics of the solitons (such as their precise shape, their 

propagation velocity or oscillation frequency) depend sensitively on the excitation 

conditions. Also, the prompt emergence of the breather at E = 39 kV/cm indicates that the 

injection of solitons inside the material is a threshold phenomenon. Further discussion 

will follow. 

As a mechanical analogue, it is worth mentioning that Geniet and Leon [29], [39] 

experimentally showed the nonlinear transmission of energy in the forbidden gap of a 

chain of oscillators. The process occurred above a threshold amplitude of the external 

driving which in many cases is exactly predictable, as demonstrated both numerically 

(from sine-Gordon calculations) and experimentally, by driving the chain of oscillators 
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coupled by a coil spring by one end and observing the emergence of the nonlinear modes. 

 

 

 

 

Figure 3.4: Numerical solution of the sine-Gordon equation. NONLINEAR 

regime, ωpump≤ωp. Calculated space- and time-dependent interlayer phase, ∅(𝒙, 𝒕), for a 

pump wavelength below the plasma frequency, 𝝎 = 𝟎. 𝟗𝟕𝝎𝒑 is presented as a function of 

pump fluence: a. E = 38 kV/cm, b. E = 39 kV/cm, c. E = 42 kV/cm, d. E = 50 kV/cm, e. E = 

75 kV/cm, f. E = 100 kV/cm. The left panel shows the pump spectrum (red) superimposed on 

the calculated equilibrium reflectivity (black) of La1.84Sr0.16CuO4. Right panels show selected 

lineouts of the phase for t = 50 ps (solid) and t = 55 ps (dashed lines) for each pump fluence. 
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Breather intrinsic frequency 

In Figure 3.5 a caricature of a JPS is presented in which two Josephson vortices, 

kink and antikink, propagate along the planes oscillating against one another at a 

frequency determined by the strength of the binding. As a consequence, the peak of the 

phase pulse oscillates between positive and negative values, with an intrinsic frequency 

of the breatherp, thus with a period of only few hundred femtoseconds, fs. In 

a cuprate (i.e. in a stack of long Josephson junctions), the breathers extend over many 

layers and are not confined between two planes. The magnetic field associated to the 

resulting breather is presented in red and is confined in the ab-planes of the cuprate. 

 

Threshold field for breather formation 

As mentioned above, the prompt injection of the first breather that propagates into 

the material suggests that a threshold amplitude of the driving field is required for soliton 

formation. To further investigate this matter, we consider an oscillating electric field of 

constant amplitude E = 50 kV/cm (left panel of Figure 3.6) that excites the sample in the 

same geometry as before. 

The solitons are injected in the material at a constant rate, as depicted in the two 

dimensional plot on the left panel of Figure 3.6. We define τ as the time between the 

appearances of two consecutive breathers. In the middle panels we plot τ as a function of 

 

Figure 3.5: Pictorial representation of a Josephson breather as it propagates in 

time. A bound kink - antikink pair (blue), with associated oppositely phased magnetic fields 

along the y axis (red) oscillates as it propagates. The equivalent representation in terms of 

oscillating vortex anti-vortex pair is included in the insets. 
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excitation amplitude, for three field frequencies: 𝜔𝑝𝑢𝑚𝑝 = 𝜔𝑝, 𝜔𝑝𝑢𝑚𝑝 = 0.97𝜔𝑝, 

and 𝜔𝑝𝑢𝑚𝑝 = 0.95𝜔𝑝. The decay of τ with increasing field amplitude obeys the formula:  

𝜏 ∝ (𝐸 − 𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)
𝛼. 

This equation provides very good fits to the data (red lines), which return the threshold 

values: 𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 5, 𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 21 and 𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30 𝑘𝑉/𝑐𝑚 for 𝜔𝑝𝑢𝑚𝑝 =

𝜔𝑝, 𝜔𝑝𝑢𝑚𝑝 = 0.97𝜔𝑝, and 𝜔𝑝𝑢𝑚𝑝 = 0.95𝜔𝑝 respectively. In the right panels the quantity 

𝜏1/𝛼 as a function of field amplitude is shown to correctly be fit by a linear function, as 

expected. Note that τ is defined only if two or more breathers are injected in the material, 

thus the threshold values correspond to the first two breathers being formed. For only one 

breather to be injected, one expects lower values. The lowest value for the threshold field 

is registered when the frequency of the excitation is tuned in resonance with the plasma 

frequency. Consequently, it strongly increases as you go further from the JPR: a 5% 

decrease in the pump frequency accounts in a six time increase of the amplitude field 

needed for breather formation. Also, for higher fields, there is a saturation in the breather 

formation, as the breather’s velocity cannot exceed the Swihart velocity, 𝑐𝑠𝑤 =

𝜆𝐽𝜔𝑝 (depicted in dark blue on the two dimensional plot). 
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Figure 3.6: Threshold behavior of breather formation. Left: Calculated space- and 

time-dependent interlayer phase, ∅(𝒙, 𝒕), for a pump wavelength  𝝎 = 𝟎. 𝟗𝟕𝝎𝒑 and field 

𝑬 ≈ 𝟓𝟎 𝒌𝑽/𝒄𝒎 with the profile shown in the lower panel. τ is the time between 2 breather 

formations and 𝒄𝒔𝒘 is the Swihart velocity; Middle: Simulation of the pump field amplitude 

dependence of τ, for three field frequencies 𝝎 = 𝝎𝒑, 𝝎 = 𝟎. 𝟗𝟕𝝎𝒑, and 𝝎 = 𝟎. 𝟗𝟓𝝎𝒑. Red 

lines are fits to the data, following the formula 𝝉 = (𝑬 − 𝑬𝒕𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅)
𝜶. Right: the quantity 

𝝉𝟏/𝜶shows a linear dependence on the field amplitude. 
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Simulating the transient optical response at THz frequencies 

After studying the different modes that can be excited in a high-TC cuprate by an 

external narrow band THz pulse, we will now discuss simulations of the transient 

properties of the sample, by employing a second, weak broad band THz pulse, impinging 

onto the sample after a certain time delay. All experiments and simulations in this thesis 

are performed in a so-called pump-probe configuration, which is explained in Appendix 

A. 

In the simulations, for the pump-probe configuration, we consider that the input 

field is the sum of the pump and probe fields (with a defined delay between them): 

 Ei(t) = Epump(t) + Eprobe(t) (9) 

Correspondingly, the Josephson phase can be written as 

 ∅ = ∅pump + ∅probe  (10) 

Substituting this equation in the sine-Gordon equation and using the 

relation sin(∅𝑝𝑢𝑚𝑝 + ∅𝑝𝑟𝑜𝑏𝑒) = sin(∅𝑝𝑢𝑚𝑝) cos(∅𝑝𝑟𝑜𝑏𝑒) + cos (∅𝑝𝑢𝑚𝑝)sin (∅𝑝𝑟𝑜𝑏𝑒), 

one obtains two coupled equations: 

 𝜕2∅𝑝𝑢𝑚𝑝(𝑥, 𝑡)

𝜕𝑥2
−

1

𝛾

𝜕∅𝑝𝑢𝑚𝑝(𝑥, 𝑡)

𝜕𝑡
−

𝜀𝑟

𝑐2

𝜕2∅𝑝𝑢𝑚𝑝(𝑥, 𝑡)

𝜕𝑡2

=
𝜔𝑝

2𝜀𝑟
2

𝑐2
sin ∅𝑝𝑢𝑚𝑝(𝑥, 𝑡) cos ∅𝑝𝑟𝑜𝑏𝑒(𝑥, 𝑡) 

 

(11) 

 

 𝜕2∅𝑝𝑟𝑜𝑏𝑒(𝑥, 𝑡)

𝜕𝑥2
−

1

𝛾

𝜕∅𝑝𝑟𝑜𝑏𝑒(𝑥, 𝑡)

𝜕𝑡
−

𝜀𝑟

𝑐2

𝜕2∅𝑝𝑟𝑜𝑏𝑒(𝑥, 𝑡)

𝜕𝑡2
 

                           =
𝜔𝑝

2𝜀𝑟
2

𝑐2
sin ∅𝑝𝑟𝑜𝑏𝑒(𝑥, 𝑡) cos ∅𝑝𝑢𝑚𝑝(𝑥, 𝑡) 

 

(12) 

For a weak probe (∅ ≪ 1), cos ∅probe ≈ 1 and the effect of ∅probe on ∅pump can be 

neglected in Equation (11). Thus, ∅pump and ∅probe are calculated as follows: 

 Equations (11) and (5) are solved with the driving field 𝐄𝐢 = 𝐄𝐩𝐮𝐦𝐩 to get 

∅𝐩𝐮𝐦𝐩(𝐱, 𝐭);  

 Equation (12) and (5) are solved by substituting ∅𝐩𝐮𝐦𝐩(𝐱, 𝐭) with the input 

field 𝐄𝐢 = 𝐄𝐩𝐫𝐨𝐛𝐞, to obtain ∅𝐩𝐫𝐨𝐛𝐞(𝐱, 𝐭) and the reflected probe field 𝐄𝐫
𝐩𝐞𝐫𝐭𝐮𝐫𝐛

. The 

reflectivity of the transient state is given by: 
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rperturb(ω, t) =

Er
perturb(ω, t)

Ei(ω)
. 

 

(13) 

The optical response functions of the perturbed material are extracted from the complex 

optical reflectivity rperturb.  

 the transient dielectric permittivity takes the form: 

 
ε(ω) = ((

1 − rperturb(ω)

1 + rperturb(ω)
)

2

) 

 

(14) 

 while the perturbed loss function is calculated as: 

 
L(ω, t) = −Imag((

rperturb(ω, t) + 1

rperturb(ω, t) − 1
)

2

) 

 

(15) 

The steady-state optical properties obtained from the simulations were presented in detail 

in Chapter 2, where I introduced the concept of Josephson Plasma Resonance (see Figure 

2.3).  We will focus here on the transient properties that the material exhibits upon 

excitation, with emphasis on the loss function, which exhibits a clear peak at the plasma 

frequency in the equilibrium superconducting state. 

Figure 3.7 shows the frequency-dependent loss function of the material as a 

function of pump-probe delay, for a nonlinear excitation (E = 39kV/cm) tuned above the 

plasma frequency. 

 𝝎𝒑𝒖𝒎𝒑 ≫ 𝝎𝒑 

For excitation pulses with the central wavelength far above the plasmonic 

frequency, i.e. for 𝜔𝑝𝑢𝑚𝑝 = 1.1 𝜔𝑝, simulations predict a slight shift to the red of the loss 

function during and immediately after the pump pulse.  

 𝝎𝒑𝒖𝒎𝒑 > 𝝎𝒑  

The effect increases as the pump wavelength is tuned closer to the plasma 

resonance, i.e. for 𝜔𝑝𝑢𝑚𝑝 = 1.05 𝜔𝑝. Remember that in this case, fast nonlinear waves 

are propagating into the material and interact with the probe pulse. At later delays, after 

the pump pulse has propagated beyond the probe penetration depth, no significant effect 

appears. The redshift is readily understood by qualitative considerations: as the tunneling 

current depends nonlinearly on the phase difference (𝐽 ∝ 𝑠𝑖𝑛∅), the inductance follows as 
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𝐿 ∝ 1/𝑐𝑜𝑠∅, and in turn the Josephson plasma resonance frequency decreases as 

𝜔𝑝 = 2𝜋/√𝐿𝐶. Thus, the plasma frequency shifts towards lower frequencies for strong 

excitation fields [40].  

 

 

 𝝎𝒑𝒖𝒎𝒑 < 𝝎𝒑  

For an excitation pulse with the central wavelength immediately below the plasma 

frequency, we showed a plethora of emergent phenomena (e.g. nonlinear evanescent 

wave, slow and fast moving breathers, train of breathers), depending on the fluence of the 

pump pulse. In 

 

Figure 3.7: Calculated frequency and time-dependent loss functions, for 

ωpump>ωp. The pump amplitude is of E = 39 kV/cm and pump wavelength of 𝝎 = 𝟏. 𝟏𝝎𝒑 

(upper panels) and 𝝎 = 𝟏. 𝟎𝟓𝝎𝒑 (lower panels). On the right hand side, lineouts depict the 

loss function before (-10ps) and after (+10ps) pump excitation. The shaded line is a Gaussian 

fit to the pump spectrum. 
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Figure 3.8 the loss functions as a function of pump-probe delay are presented for 

three selected fluences, as obtained from the simulations. For all excitation fluences, 

during the pump pulse (t < 50 ps), as the probe interacts with the highly nonlinear waves, 

the simulations predict a strong reshaping of the loss function, accompanied by a 

pronounced broadening.   

At time delays after the excitation (t > 50 ps), the loss function goes back to the 

equilibrium position for pump fluences of 38 kV/cm and 75 kV/cm. On the contrary, for 

an amplitude of 39 kV/cm of the excitation pulse, a long-lived di p in the loss function 

line shape is observed. In this case, the emerged soliton propagates slowly through the 

material (the mode is presented in Figure 3.4 b), thus it interacts with the probe pulse on a 

long timescale. The first remark is that the long-lived perturbation observed in the loss 

function is highly sensitive to the field strength. This comes directly from the sensitive 

dependence of the soliton velocity on the amplitude of the applied excitation: a fast 

soliton escapes the probe penetration depth within the duration of the pump pulse and 

does not interact with the probe pulse after t = 50 ps. Lineouts for the loss functions at 80 

and 100 ps time delay are compared on the right hand side plots of 



37  Nonlinear physics of Josephson Junctions 

 

 

 

Figure 3.8. Note that the dip is very pronounced at 80 ps, and slowly reduces with 

increasing time delay, but it is still apparent at 100 ps. The calculated decay time of the 

dip is 40 ps, that matches the escape time of the soliton from the probed volume (5-20 μm 

depending on the wavelength). 

The split lineshape with a dip is understood by considering the optical properties 

of the solid in presence of the soliton. Interference occurs throughout the spectrum, 

resulting from the interaction between the soliton (for which ∅(𝑥, 𝑡) ≫ 0) and the 

Josephson plasma waves (i.e. ∅(𝑥, 𝑡)~0) employed to probe it. The dip in the loss 

function  is analougus with a Fano-like lineshape observed in physical systems in which 

continuum excitations are anharmonically coupled to discrete ones [41]–[43]. 
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3.4. Experimental implementation 

The strong reshaping of the loss function was also experimentally observed, 

validating the simulations discussed above. I will now present experimental data acquired 

and analyzed by Andreas Dienst and coworkers at the FELBE THz Free Electron Laser 

(FEL) [44]. The FEL emitted intense, narrowband (~1%) pulses of 25-ps duration, 

and could be tuned around the 2-THz Josephson Plasma Resonance (JPR) of the 

La1.84Sr0.16CuO4 sample measured. The resulting transient excited state of the cuprate was 

then probed in the time domain using single-cycle, broadband THz pulses, which were 

generated by a photoconductive antenna illuminated with a femtosecond laser. Both 

 

 

Figure 3.8: Calculated frequency and time-dependent loss functions, for ωpump<ωp 

a. Calculated space- and time-dependent interlayer phase, ∅(𝒙, 𝒕), for a pump wavelength, 

𝝎 = 𝟎. 𝟗𝟕𝝎𝒑 and three different excitation field strengths. b. Corresponding frequency and 

time delay dependent loss function. The lineouts displayed on the right hand side depict the 

perturbed loss function at 80ps (c) and 100 ps (d) time delay (red curves), compared to a 

Gaussian fit to the pump spectrum, shaded. The gray dotted lines show the equilibrium loss 

function. 
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pump and probe fields were polarized along the c axis, perpendicular to the 

superconducting planes. 

The excitation by the FEL could be tuned around the plasma resonance, at 

𝜔𝑝𝑢𝑚𝑝 = 1.1 𝜔𝑝, 𝜔𝑝𝑢𝑚𝑝 = 1.05 𝜔𝑝 and 𝜔𝑝𝑢𝑚𝑝~ 𝜔𝑝. The Free Electron Laser 

wavelength was measured by using a grating spectrometer, which allowed for a precision 

better than 1%. The pump pulse peak strength was about 10 kV/cm. 

 For the equilibrium, linear properties of unexcited bulk La1.84Sr0.16CuO4, review 

Figure 2.3 and the corresponding discussion. I will now proceed with presenting the 

pump-induced effects and discuss the similarities between experiment and simulations. 

Thus, the time-dependent optical properties of the photo-excited superconductor are 

extracted as follows.  

 Firstly, the incident electric field was calibrated, by measuring it after reflection 

from a gold-coated portion of the sample. Further, the frequency-dependent reflectivity is 

derived as 𝑟equilibrium(ω) = E𝑟
equilibrium

(ω)/Ei(ω). For the transient state, the non-

equilibrium reflectivity is extracted as 𝑟equilibrium(ω) + 6∆𝑟(𝜔). We use 6 as a scaling 

factor, because the response is probed at 78 MHz, while the pump repetition rate is only 

13 MHz; thus, only one pulse out of six probes the light-induced dynamics. The transient 

response was fitted by taking into account the mismatch between the penetration depth of 

the pump and probe pulses, with a model that considers a surface layer of unknown 

permittivity over an unperturbed semi-infinite superconductor. This procedure will be 

further used in this thesis for data analysis and it is presented in Ref. [45]. From these 

measurements, the time- and frequency-dependent loss function is extracted, as displayed 

in Figure 3.9. All observations qualitatively follow the simulations presented above. 

When the free electron laser is tuned well above the Josephson plasma frequency, 

𝜔𝑝𝑢𝑚𝑝 = 1.1 𝜔𝑝 , the loss function remains unperturbed (panel a). However, for 

excitation just above the resonance, 𝜔𝑝𝑢𝑚𝑝 = 1.05 𝜔𝑝, a rigid shift of the loss function to 

lower frequencies can be observed (panel b). Good agreement is found in between 

theoretical and experimental loss functions for all the above-resonance excitation 

wavelengths. As in the case of the simulations, the dynamics are short-lived and persist 

only as long as the pump field is present. In the experiment, the resolution is not as sharp 
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as in the simulations, and the red shift is clearly visible only for  𝜔𝑝𝑢𝑚𝑝 = 1.05 𝜔𝑝. The 

red-shift of the resonance achieved here experimentally was theoretically predicted in the 

literature as self-induced transparency [46]. 

As in the case of the simulations, the experimental data show that tuning the excitation 

just below the plasma resonance (𝜔𝑝𝑢𝑚𝑝~ 𝜔𝑝) triggers the most nonlinear response. 

During the first 50 ps, the time-dependent loss function shows a broadening to the red, 

accompanied by a strong re-shaping. After the pump pulse (i.e. in the un-driven regime), 

for time delays greater than 50 ps, the formation of a long-lived dip similar to the one 

 

Figure 3.9: Experimental frequency and time-dependent loss functions. Left: Two 

dimensionnal plots representing the time evolution of the frequency resolved loss function as a 

function of pump-probe delay for different pump wavelengths: (a) 𝝎𝒑𝒖𝒎𝒑 = 𝟏. 𝟏 𝝎𝒑, (b) 

𝝎𝒑𝒖𝒎𝒑 = 𝟏. 𝟎𝟓 𝝎𝒑 and (c) 𝝎𝒑𝒖𝒎𝒑~ 𝝎𝒑. Right: Respective selected lineouts before (dotted 

black lines) and after (red dots) excitation. The shaded curve represents a Gaussian fit to the 

pump spectrum. 
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predicted by the simulations is observed, extending over the whole temporal window of 

the measurement (which corresponds to a delay between pump and probe of 150 ps). A 

first important observation is that incoherent quasi-particle excitations cannot be 

responsible for this peculiar line-shape in the loss function. In the sine-Gordon equation, 

the quasi-particle damping is taken into account in the term 
1

𝛾

𝜕2∅

𝜕𝑡
, with 𝛾 being a damping 

constant. Thus, quasi-particle excitations could only act towards broadening the loss-

function linewidth. 

In the following, the loss function measured experimentally for 𝜔𝑝𝑢𝑚𝑝~ 𝜔𝑝 is 

compared to the one predicted by the calculations. The main features are closely 

reproduced by the simulations, albeit some quantitative differences are apparent: 

 Firstly, the experiments are performed at pump frequencies of 𝝎𝒆𝒙𝒑
𝒑𝒖𝒎𝒑~ 𝝎𝒑, but 

are best described by calculations performed at 𝝎𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏
𝒑𝒖𝒎𝒑 = 𝟎. 𝟗𝟕𝝎𝒑. Note 

that the confidence level on the relative calibration of the pump wavelength and 

the probe is approximately 1%, difference which appears to be significant. 

 Simulations cannot reproduce accurately the dynamics of the optical response 

during the pump pulse (delays < 50 ps), due to the high nonlinearity. However, 

there is a clear broadening of the loss function in this regime. 

 As already discussed, the main feature represented by the dip in the loss function 

at time delays after the excitation (t > 50 ps), is predicted by simulations. The 

calculated decay time of the dip is ~ 40 ps, as opposed to the measured value of 

150 ps. Thus, simulations overestimate the velocity of the breather by a factor of 3 

to 4. This could be qualitatively explained by the fact that in real materials 

disorder may cause the soliton to slow down further from the ideal case, 

represented by the single Josephson junction without disorder.  

 In the calculations, the formation of a slow soliton (which causes the long lived 

dip) occurs for an excitation field of 39 kV/cm, four times higher than the pump 

field used in the experiment, 10 kV/cm. Thus, experimental conditions seem to 

favor the nonlinear coupling of the light into the material. This might be also 

because the cuprate is approximated by a stack of Josephson junctions which may 

amplify the nonlinearity, while in the simulations we only consider one junction. 
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 The experimental linewidth of the loss function for delays > 50 ps is broader than 

the one obtained in the simulations, and it also shows a low-frequency shoulder 

not reproduced by the theory. As already mentioned, this could be the effect of 

inhomogeneous broadening which plays a role in the experiment. 

The main observation of this work is that, by exciting a La1.84Sr0.16CuO4 sample 

with narrow-band pulses centered at the 2 THz JPR, optical signatures of soliton 

formation are observed. The theoretical work is in very good agreement with the 

experimental measurements.  

In the following, we turn our attention to broadband THz pump pulses, and 

investigate the effect a resonant excitation of this type has on layered cuprates. The 

broad-band pulses are obtained here by tilted pulse front technique in lithium niobate 

(LiNbO3) (see Appendix A.4). This allows for generating THz pulses with a typical 

spectrum centred around 0.5 THz (Figure 3.10 a, green curve). In order to be resonant to 

the JPR of the system, the sample chosen was La1.905Ba0.095CuO4, for which the JPR is at 

~ 0.5 THz. All experimental data are supported by simulations. 

3.5. Parametric amplification of Josephson Plasma Waves 

When a low amplitude broadband THz pump pulse is tuned resonantly with the 

JPR, JPWs propagate into the material (see discussion in Chapter 2). These waves are 

linear, as the phase is much smaller than 1, corresponding to the regime where the 

Josephson tunneling could be approximated as sin (∅) ≈ ∅. If the pump field is increased 

to a few tens of kV, high amplitude Josephson plasma waves are excited and propagate 

within the penetration depth of the superconductor. Here, I will show that Josephson 

Plasma Waves in cuprate superconductors can be driven to large amplitudes. In this 

regime phase fluctuations are parametrically amplified. This is shown by simulating the 

sine-Gordon equation in the same manner as presented in Section 3.1 of the current 

chapter, and is achieved experimentally in barium-doped lanthanum single-layer copper 

oxide (La1.905Ba0.095CuO4) when it is illuminated with an intense broadband THz pump 

pulses tuned in resonance with the plasma frequency of the material. The equilibrium 

value for the plasma frequency of La1.905Ba0.095CuO4 is 𝜔𝑝0 = 0.5 𝑇𝐻𝑧, as seen by 
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measuring the c-axis equilibrium optical reflectivity  (Figure 3.10, panel a). For the 

pump-probe configuration, both pump and probe were polarized perpendicular to the Cu-

O planes, maintaining the geometry of the previously presented experiment. The results 

of the simulations are presented at first.  

According to the second Josephson equation, the interlayer phase difference, ∅(𝑡), 

advances in time with the integral of an applied voltage. Thus, for a sinusoidal electric 

field of the form 𝐸 =  𝐸0sin (𝜔𝑝0𝑡), if one disregards the spatial dependence, one can 

write the interlayer phase difference as:  

 ∅(𝑡) =
2𝑒𝐸0𝑑

ℎ𝜔
cos(𝜔𝑝0𝑡) = ∅0 cos(𝜔𝑝0𝑡). (16) 

Correspondingly, the oscillator strength, 𝑓~𝜔𝑝
2 for the plasma oscillations also becomes a 

function of the interlayer phase, and takes the form: 

 𝑓(𝑡) = 𝑓0 cos(∅0
2 cos(𝜔𝑝0𝑡)) 

≈ 𝑓0((1 − ∅0
2 − ∅0

2 cos(2𝜔𝑝0𝑡))/4). 

(17) 

Thus, although in linear response the plasma frequency is 𝜔𝑝0
2 =

1

𝐿0𝐶
, for stronger electric 

fields, as the phase difference (∅0) becomes sizeable, one expects a redshift of the plasma 

resonance (i.e. an average reduction of the interlayer coupling strength) and a modulation 

of the oscillator strength at twice the JPR frequency, 2𝜔𝑝0. For La1.905Ba0.095CuO4 the 

interlayer spacing is ~ 1nm and, in the case of ~ 1ps period of the applied field (1 THz 

frequency), sizeable phase ∅0 are expected for only a few tens of kV/cm fields, according 

to the second Josephson equation.  

 Going back to the sine-Gordon equation, which accounts for both temporal and 

spatial coordinates of the phase, it reads: 

 𝜕2∅(𝑥,𝑡)

𝜕𝑡2 = −𝜔𝑝
2 sin(∅0 cos(𝜔𝑡)). (18) 

Figure 3.10 displays solutions of the sine Gordon equation for two pump fluences. In the 

linear regime (E << 1 kV/cm), the space and time dependent phase propagates into the 

superconductor as plasma waves.  In this limit, the oscillator strength remains virtually 

unaltered (panel b.2). In the case of strong electromagnetic fields (E ~ 200 kV/cm), 

calculations show the excitation of large phase amplitudes. One can observe an average 

reduction of the oscillator strength and a clear oscillatory modulation at 2𝜔𝑝 (panel c.2).  
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Figure 3.10: a. Comparison between the Fourier spectrum of the THz pulse (purple area) 

used for simulations and the JPR characterized by a plasma an edge in the reflectivity (red 

curve). The green line is the THz pulse used in experiments. b-c. Solutions of the sine-Gordon 

equation in the linear and nonlinear regimes: b.1 Simulated phase ∅(𝒙, 𝒕) induced by a weak 

probe THz field. b.2 The interlayer superfluid inductance (or a measure of the oscillator 

strength). c.1 and c.2 are the corresponding plots for strong pump THz field used in the 

experiment. 
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We will now focus only on the nonlinear dynamics induced in the sample, i.e. by 

using electric fields 𝐸 > 30𝑘𝑉/𝑐𝑚.  In  

 

Figure 3.11, we report the measured response upon sample excitation with pump 

pulses having peak field strengths of 40 and 80 kV/cm (enough to drive the phase close to 

∅0~𝜋/2). Panel a.1 shows the frequency-integrated THz probe pulse as a function of 

pump-probe delay. For both 40 (blue) and 80 (purple) kV/cm a reduction in the signal 

and clear oscillations are observed. The oscillatory part of the signal shown in panel a2 

was obtained by subtraction of a frequency independent background displayed as the blue 

dashed line in panel a1.  Fourier transform of the extracted oscillations, show a peak at 

1 THz (at 5K – red line) and 0.75 THz (at 30 K – lack line). Note that 1 THz and 0.75 

THz represents twice the equilibrium plasma frequency measured at a temperature of 5K 

and 30K in this material, i.e. 𝜔𝑝0 = 0.5 𝑇𝐻𝑧 and 0.37 THz. Also, the measurements at 

different temperatures indicate a red shift of these oscillations, with their frequency 

always twice the static plasma frequency, as the equilibrium frequency also red-shifts 

with temperature. 
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Further, the simulated spectrally integrated response replicating the measured 

pump-probe response is displayed in panels b.1 and b.2. A very good agreement found 

with the experimental data. A comparison of the oscillation frequency between 

experiment and theory is made in panel c, both returning a value close to 2𝜔𝑝0, as 

expected. 

The time dependence of the sine-Gordon equation with oscillator strength 

modulated at twice its plasma frequency (as given by equations 17 and 18) resembles the 

Matthieu equation for parametric amplification, 

𝑖. 𝑒.  
𝜕∅

𝜕𝑡2 + 𝜔𝑝
2𝜀𝑟∅(1 −

∅0
2

4
−

∅0
2 cos(2𝜔𝑝0𝑡)

4
) = 0.  

Hence, for intense enough pump fields, parametric amplification of the JPWs is expected, 

with the mechanism being indeed reminiscent of the third order nonlinearity in optical 

parametric amplifiers. 
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This is manifest in the time- and frequency-dependent loss function as measured 

by the THz probe pulse, as displayed in Figure 3.12 for a pump field of ~ 80 kV/cm. The 

loss function redshifts upon excitation and also becomes successively negative and 

positive as a function of pump probe delay. This corresponds respectively to 

amplification and dissipation of the Josephson plasma waves excited by the THz probe 

pulse, and occurs at ~ 1THz (i.e. equivalent of ~ 2𝜔𝑝0). 

The simulated loss functions are shown in Figure 3.12 b. Good agreement is 

observed between the simulated and experimentally obtained loss functions. Furthermore, 

 

 

Figure 3.11: Frequency-integrated THz probe pulse as a function of pump-probe delay. 

a.1 Measured experimental data for two fluences, the blue dotted line indicates the subtracted 

background to obtain the oscillatory component. a.2 the extracted oscillations, after applying a 

high pass Fourier filter (0.2 THz). a.3 Fourier transforms of the extracted oscillations show a 

peak at 1 THz (at 5K) and 0.75 THz (at 30 K).  b.1 and b.2 are the corresponding simulated 

data. c A comparison of the oscillation frequency between experiment and theory. 
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very good agreement in the pump field strengths is observed between the experiments 

and the simulations, reiterating the validity of the model in describing the observed non-

equilibrium effects. 

 

 

 

 

 

 

Figure 3.12: Time evolution of the frequency resolved loss function as a function 

of pump-probe delay. a.1 Experimental loss function as a function of pump-probe delays. 

Note that the loss functions at negative time delays have been multiplied by a factor of 5. a.2 

Line-cuts of the loss function at pump-probe delays of t = -4 (static), 1.5 and 2 ps. b.1 and b.2 

are the corresponding loss functions obtained from simulations. 
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3.6. Conclusions 

The work presented in this chapter reports on the nonlinear optics of Josephson 

junctions in a cuprate superconductor. The strong field terahertz pulses used as 

stimulation allow for non-dissipative excitation and control of the interlayer tunneling 

between the Cu-O planes. The experimental data were accurately reproduced by 

numerically solving the one-dimensional sine-Gordon equation. 

In the first experiment performed on La1.84Sr0.16CuO4, the frequency of 

narrowband THz pulses was tuned across the Josephson plasma resonance of the sample, 

to explore different excitation regimes. The strongest nonlinear effect was observed for 

resonant driving at the plasma frequency, where a slowly propagating soliton is emitted. 

This mode could be optically detected by a subsequent probe pulse, as it induces a 

transparency window caused by interference.  

In the second study, La1.905Ba0.095CuO4 was resonantly excited with broadband 

terahertz pulses. In this case, the Josephson plasma waves were driven to a regime in 

which phase fluctuations were parametrically amplified, exhibiting an oscillatory 

dependence at twice the frequency of the drive. 

Due to the non-dissipative superconducting nature of the plasma waves, both 

experiments presented above show the potential of layered superconductors for 

applications in ultrafast electronics. 



 

 

4  

 

 

Competing phases in the La-214 

cuprate family 

 

 

It is known that in low-dimensional Fermi liquids, which are ordinary metals, 

weak electron-phonon and electron-electron interactions can lead to broken symmetry 

ground states. Among the most striking examples of this behavior are charge (CDWs) 

and spin density waves (SDWs). CDWs that occur in non-correlated Fermi liquids are a 

consequence of electron-phonon coupling and can be explained within the BCS theory. 

However, charge order was also find to occur in strongly correlated systems, such 

as high temperature superconductors. In such systems, the mechanism behind the 

formation of charge order often eludes simple explanations and remains a subject of 

much debate in modern condensed matter physics. Moreover, the interplay between 

charge order and superconductivity is of particular interest, with studies supporting either 

the coexistence or the competition between these different degrees of freedom. Indeed, 

even early attempts to explain superconductivity were based on a sliding CDW resulting 

in infinite conductivity in the absence of defects [47]. Furthermore, it has been observed 
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that high-temperature superconductivity arises in proximity to density wave orders in 

many different systems including Fe-based and organic superconductors, chalcogenides, 

and, in particular, cuprates.  Whether these orders are competing or working together is a 

question which still has to be answered in many of the materials mentioned before.  

The experiments presented in chapter 5 concentrate on manipulating the c-axis 

coherent transport in cuprates with charge stripes; for our purpose, the basic 

understanding of a CDW is essential. Thus, in this chapter, the electronic properties of 

cuprates and their temperature-doping phase diagram will be presented, followed by a 

discussion on CDWs and the theories behind their mechanism.  

4.1. Electronic properties of cuprates 

As mentioned above, in materials where electron correlations become strong, the  

conventional band theory breaks and the measured properties can become vastly different 

from the single electron picture predictions. This was first experimentally proven by Boer 

and Verwey in the case of transition metal oxides [48]. These compounds have only 

partially filled 3d bands, so according to band theory should be metals; in fact, they turn 

out to be insulators, and this can only be explained by taking into account electron-

electron interactions [49]. This is also the case for cuprates, for which most of the rich 

features in the temperature-doping phase diagram can be explained by accounting for 

Coulomb interactions. 

In the parent compound of cuprates, i.e. at zero doping, all the Cu
2+

 ions in the 

CuO2 planes are in the 3d
9
 configuration. Due to the orthorhombic crystal field, the 

energy levels of the Cu
2+

 and O
2−

 ions are modified. 
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The crystal field removes the five-fold d-orbital degeneracy in a way that depends 

on the details of the Cu-ion environment. However, in all cuprates, the square Cu-O 

lattice makes the dx
2

−y
2
 orbital the less energetically favorable since in that case most of 

the electron density is allocated in the direction of the negatively-charged O
2−

 ions. At 

zero doping, as all the d levels are filled with 9 electrons, the dx
2

−y
2
 level is half filled. 

The O
2−

 ions are in the 2p
6
 configuration, which is split in three completely filled levels 

(π⊥, π‖, σ) by the crystal field. We now consider the hybridization between the Cu and O 

levels (Figure 4.1). The comparison of the final Cu dx
2

−y
2
 energy with the O σ energy 

suggests that the bonding level has a predominant oxygen character, while the 

antibonding level has a predominant copper character. Since the latter is half filled, 

according to band theory, this should lead to a Cu-like conduction band, thus a 

conductive behavior. However, the experimental evidence on the undoped parent 

compound, La2CuO4, shows them to be antiferromagnetic (AF) insulators with a rather 

high Néel temperature, TN ≃ 300 K. The reason for this discrepancy can be found in 

electron correlations, as described below. 

The simplest model for electron correlation was first proposed by Hubbard in 

1963 [50]. This model introduces a term that corresponds to the Coulomb repulsion U 

when two electrons occupy the same lattice site, hence removing the two-fold spin 

degeneracy and creating two states separated by the energy U. In a solid, the two states 

 

Figure 4.1: Hybridization between the Cu 3d and the O 2p electronic level in cuprates. 
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become two energy bands called the Lower Hubbard Band (LHB) and the Upper 

Hubbard Band (UHB).  

A schematic application of the Hubbard model to the transition metal oxides was 

developed by Zaanen, Sawatsky and Allen [51] in which three electronic bands are 

considered: the Cu 3d, split in the UHB and LHB, and the O 2p (Figure 4.2). At half 

filling, the LHB and the O 2p bands are occupied, allowing two kind of charge 

excitations: 

 a charge fluctuation between the two Cu bands, which creates a doubly-

occupied Cu site, associated to the energy U; This happens for U < Δ and 

gives rise to the so-called Mott-Hubbard insulators. 

 a charge transfer excitation from the O 2p band to the UHB, associated to the 

energy Δ; This arises when Δ < U and the compounds are called Charge 

Transfer insulators. 

In copper oxides, the Coulomb repulsion between two electrons occupying the 

same Cu orbital is of the order of U ~ 10eV, suppressing the charge fluctuations within 

the Cu-3d
9
 orbitals. The lowest excitation remains the charge transfer of a localized Cu- 

3dx
2

−y
2
 hole into its neighboring O-2p orbitals, with an energy cost of Δ ~ 2eV. Thus, the 

experimental results indicate that the cuprates are charge transfer insulators, since Δ < U 

[51], [52]. 

One of the main consequences of the strong correlations in cuprates is that usually 

independent energy scales become intertwined, with low-energy phenomena strongly 

affecting the electronic properties at the energies of several eV. This stays at the core of 

the rich phase diagrams that these materials exhibit, including the existence of 

superconductivity, and the formation of charge and spin density waves.   
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4.2. Phase diagram 

Cuprate materials undergo radical modification when a moderate density of 

charge carriers is introduced into the system. This leads to complex doping-temperature 

phase diagrams which have been extensively studied in the last three decades by a wide 

variety of techniques. In Figure 4.3 a generic phase diagram of hole-doped high-TC 

cuprates is shown (adapted from [7]). The salient features of the phase diagram are: 

 Parent compound properties –  

o A long range antiferromagnetic ordering is found in the undoped 

parent compound, which persists for low doping levels (x < 0.05 holes 

 

Figure 4.2: Band diagram of a transition metal oxide. The d-orbital of the transition 

metal is split in LHB and UHB. The p-orbital of oxygen is filled. (a) If U < Δ, the compound is 

a Mott insulator. (b) If U > Δ, the transfer of charge occurs from 2p oxygen site to UHB of 

neighboring transition metal. The compound is a charge transfer insulator 
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/ Cu atom). Above this level, a spin-glass state with short-range 

magnetic order is formed. 

 Superconducting dome –  

o Superconductivity appears at low doping, with TC increasing with 

doping (underdoped region), then reaching a maximum value (optimal 

doping, x ≈ 0.16), but being suppressed with further increasing the 

doping level (overdoped regime). This results in a dome-shaped 

dependence on doping [53]. 

 Pseudogap –  

o The normal state for temperatures above the critical temperature (T > 

TC) and x < 0.16 is strikingly different from a conventional metal, 

exhibiting high levels of resistivity and a depletion in the density of 

states around the Fermi energy. This region is usually referred to as the 

pseudogap region. The existence of the pseudogap was revealed by a 

plethora of experiments: resistivity technique [54], IR spectroscopy 

[55], [56], angle-resolved photoemission spectroscopy (ARPES) [57], 

[58], etc. With increasing x, the system moves towards the normal 

Fermi-liquid state (the overdoped side of the phase diagram). 

 The 1/8
th

 anomaly and stripe ordering – 

o The superconducting dome of the La-214 cuprate family exhibits an 

anomalous dip near x = 1/8 doping. In the barium based compound, 

LBCO, the bulk superconductivity is completely destroyed at this 

doping. 

o The suppression of superconductivity is accompanied by the formation 

of charge stripes (i.e. the charges introduced by doping into the 

antiferromagnetic lattice align parallel). The onset of charge stripe 

order (CO) is accompanied by spin order below TSO [59]. In other 

families of cuprates, like YBCO, a similar apparent suppression of 

superconductivity near p = 1/8 occurs, with recent experiments 

unveiling stripe ordering (SO). In this case spin excitations appear to 
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be gapped out, with gapping an order of magnitude larger than in 

lanthanides [60]. 

o The Sr (Ba) substitution for La in LSCO (LBCO) induces also a 

structural phase transition driven by soft phonons from the high-

temperature tetragonal (HTT) to low-temperature orthorhombic (LTO) 

phase, below ~ 240K. In LBCO, on further cooling, the LTO 

configuration evolves into the low temperature tetragonal phase, LTT. 

This occurs below the TLT temperature. This later configuration has 

been shown to stabilize the charge order phase [61], [62].  

In the CO2 planes of a cuprate, signature of preformed pairs was shown to occur 

at high temperatures. However, for cuprates to become superconducting, coherence has to 

establish between the various layers, i.e. superconducting tunneling along c-axis has to 

arise. The magnitude of the normal state c-axis resistivity, ρc, is orders of magnitude 

larger of that expected from band calculations, leading to considerable resistivity 

  

Figure 4.3: Generic phase diagram of La-214 as a function of temperature and hole 

doping concentration, adapted from [63]. TN, T*, TC indicate the Neel, pseudogap and 

superconducting temperatures, respectively. AF, SC, SO and CO stand for antiferromagnetic, 

superconducting, spin-order and charge-order phases. 
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anisotropy. Also, the temperature dependence of ρc is in most cases typical of a 

semiconductor or insulator, while the in-plane resistivity, ρab, exhibits a metallic 

behavior. The c-axis transport in the normal state of the cuprates is dictated by the 

tunneling of incoherent carriers. However, as extensively discussed in previous chapters, 

in the superconducting state tunneling relies on Cooper pairs which obey the Josephson 

equations; this further leads to a Josephson plasma resonance in the superconducting 

state. These peculiar c-axis transport properties of high-TC cuprates are the manifestation 

of the unusual electronic states of these materials discussed above [64], [65]. 

4.3. Charge Density Waves  

Strong electron-electron and electron-phonon interactions can result in a ordering 

of the electron density in a solid. In a simple picture, charge density waves (CDW) are a 

modulation of the conduction electron density throughout the crystal, accompanied by a 

periodic lattice distortion, and occur predominantly in low-dimensional materials. The 

existence of CDW was first predicted by Peierls in the 1930s, who observed that a one-

dimensional chain of equally-spaced atoms is not stable at low temperatures [66]. The 

assertion was that, in these conditions, the elastic energy cost to modulate the atomic 

positions is less than the gain in conduction electron energy, thus favoring CDW as a 

ground state. At high temperatures, however, the electronic energy gain is reduced by 

thermal fluctuations, so the metallic state is stable. A consequence of the Peierls model is 

the transition of the material from the metallic high-temperature state to the insulating 

ground state at a critical temperature (also known as Peierls transition). The electron-

phonon coupling responsible for the formation of CDWs seems to be particularly 

favorable when the phonon modes soften, such as in the case of Kohn anomaly [67].  

However, this simple picture regarding the origin of CDWs does not seem to be 

correct in many materials. Density functional theory calculations performed for a one-

dimensional chain of Na atoms (which approximates a perfect Peierls system) showed no 

sign of a purely electronic density wave, and relaxation of the ion positions in the 1D 

chain failed to produce any distortion [68]. However, when the dimensionality of the 

system was increased (i.e. the atoms were allowed to move in two dimensions), the 

lowest energy state was a zig-zag chain, but the electronic gap anticipated by the Peierls 
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CDW phase was missing. Similar computational attempts to stabilize a CDW without 

allowing the ions to move have failed also for NbSe2, which is a prototypical quasi-two 

dimensional CDW metal. 

The failure of the Peierls picture comes from considering the lattice distortion a 

secondary effect that comes as a result of the charge redistribution which would occur 

regardless of whether or not the ions subsequently shift from their initial positions. This 

is not valid in real materials, where the electronic and ionic instabilities always occur 

simultaneously.  

A large number of materials undergo a transition to a CDW state, especially in 

low-dimensional systems. Classical materials that exhibit the CDW phase are NbSe3 and 

K0.3MoO3, with CDW emerging below T = 145 K and T = 180 K respectively. Moreover, 

CDW transport was observed also above room temperature, in materials like NbS3, T = 

340K. 

 Early discussions on CDWs were developed in the attempt to explain 

superconductivity. H. Frohlich (1954) predicted the formation of collective charge 

transport and in particular of CDWs in his theory explaining ‘one-dimensional 

superconductivity’ [47]. 

The interplay between CDW and superconductivity has led to much debate also in 

the field of high-TC superconductivity [69], [70]. One point of view is that the CDW 

represents a state that competes with superconductivity. An alternate point of view is that 

the formation of stripes is a part of the mechanism of superconductivity itself [71]. 

4.4. CDW and the superconducting order in the La-214 family 

Many materials that host superconductivity exhibit various forms of charge and 

spin ordering, such as the BCS superconductor 2H-NbSe2 [72], [73], cuprates [74]–[76], 

and even certain organic compounds [77].  

Among the cuprate materials, a typical example is the La-214 family. In the case 

of both LSCO and LBCO, the superconducting dome exhibits an anomaly in the form of 

a dip (far more pronounced in LBCO, where there is a complete suppression of 

superconductivity) at x = 1/8 which is attributed to spin and charge stripe fluctuations 

[78], [79]. In this states, the charges introduced by doping into the antiferromagnetic 
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lattice align parallel to form equidistant charge and spin stripes [80] which arise from a 

balance between phase separation (the AFM insulator expelling the doped holes) and 

long-range Coulomb repulsion. The stripes have been shown to be either statically 

ordered (in LBCO) [79], [81] or slowly fluctuating (in LSCO) [82] and are pinned down 

by a low-temperature tetragonal structure. Moreover, due to the subtle interplay between 

Coulomb repulsion and phase separation, in LBCO the uniaxial stripes alternate in 

alignment along the a and b crystalline axes in neighboring planes, with a stripe 

periodicity that locks with every fourth unit cell hence suppressing c-axis 

superconductivity. 

A recent experiment using the grating spectroscopy technique to generate 

collective modes (amplitudon and phason) of the CDW state in LSCO thin films supports 

that the fluctuating CDW state most probably competes with superconductivity [82]. 

CDW materials provide an ideal playground for time-resolved studies, where the 

excitation of the CDW modes or collapse of the CDW gap lead to an understanding of the 

collective behavior of the system [83], [84]. By using intense laser pulses at mid-

infrared and terahertz frequencies tuned resonantly to some specific vibrational 

mode of the crystal lattice, superconducting coherence was transiently enhanced (or 

induced), possibly by melting some competing phase (e.g. stripe order or charge 

density waves) [85]–[87]. 

The first vibrational control experiment on high-TC cuprates was performed 

on La1.675Eu0.2Sr0.125CuO4 [85]. Similar to LBCO, this material also exhibits an LTT 

phase for T < TLT = 135 K and stripe order for T < TSO = 25 K. In this experiment the 

crystal lattice was dynamically perturbed by selectively driving the IR active, in-

plane Cu-O stretching mode with femtosecond pulses centered around ~20 THz 

frequency. The transient state was shown to be superconducting by detecting a 

Josephson Plasma Resonance edge at ~ 2 THz, with the effect persisting up to 10-20 

K, near the spin order transition temperature. The hypothesis for the light-induced 

interlayer Josephson coupling was an instantaneous melting of the stripe order, 

which was further confirmed by a subsequent experiment. Thus, the evolution of the 

stripe order and the LTT distortion was investigated by femtosecond resonant soft 

X-ray diffraction in the related compound La1.875Ba0.125CuO4 after ~ 20 THz phonon 
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excitation [86]. Stripe order was found to melt promptly on the same sub-ps time 

scale of light-induced superconductivity in LESCO, underlying the close connection 

between the two phenomena. In contrast, the LTT distortion was only weakly 

reduced and on a much longer time scale (~ 15 ps), suggesting that it plays only a 

minor role (if at all) in the onset of three-dimensional superconductivity.  

 As concluded in the previous experiment, lattice distortion seems not to play an 

important role in relation to c-axis superconductivity. Thus, the work presented in the 

next chapter will focus on other optical excitation schemes (i.e. as opposed to lattice 

excitation), in order to melt stripes and enhance the superconducting interlayer coupling. 



 

 

5  

 

 

Optical enhancement of 

superconducting interlayer 

coupling in LBCO  

 

 

As presented above, the presence of charge and spin stripe order in several 

families of high-TC cuprates (which includes LBCO) and its interplay with 

superconductivity is still not completely understood, despite the plethora of experimental 

effort on the matter. It has been shown that spin and charge stripes are compatible with 

in-plane superconducting pairing, but, due to their orthogonal arrangement in adjacent 

planes (see Figure 5.1), can compete with interlayer superconducting phase coherence. 

In the present chapter, enhancement of the Josephson interlayer coupling in 

LBCO is demonstrated through the suppression of charge order. The results further 

support the competing nature between the stripe order and SC order. The melting of the 

stripe phase is achieved by the use of femtosecond laser pulses with high photon energy 
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(800-nm wavelength), thus performing a purely electronic excitation in LBCO crystals, 

with light polarized perpendicular to the CuO2 planes (i.e. along the c axis).  

In the past, above-gap charge excitation at near-infrared and visible wavelengths 

has been extensively studied in conventional and high-temperature superconductors. In 

high-TC cuprates, ultrafast studies with probing frequencies in the near- and mid-infrared 

allowed to identify different time scales in the response dynamics during the recovery of 

the superconducting condensate and of the pseudogap correlations  [88], [89]. Optical 

pump-terahertz probe studies provided additional information by monitoring the 

dynamics of excess quasiparticles and the condensate recovery in the energy scale of the 

superconducting gap [35]. These experiments directly demonstrated how Cooper pairs 

are broken right after photo-excitation and how they recombine at later times, by directly 

following the evolution of superfluid density. 

All these high-energy charge excitation experiments on high-TC cuprates have 

been performed by pumping the system with light pulses polarized parallel to the CuO2 

planes (ab direction), thus exciting the Cooper-pair condensate above the 

superconducting gap. Furthermore, the pump fluences used therein were usually in the ~ 

10 µJ/cm
2
 range and below, just enough to destroy the condensate and to study its 

recovery dynamics. 

Here, we set out to excite “striped” high-TC cuprates of the LBCO family with 

much stronger laser fields (fluences up to ~3 mJ/cm
2
) polarized perpendicular to the 

planes, aiming at directly melting the stripe order and enhancing superconducting 

interlayer coherence. The detailed study also includes the dependence of this effect on the 

pump wavelength, which is tuned between the mid-infrared (5 µm) and the visible (400 

nm) with the aim of understanding how stripe order is melted most effectively (Figure 5.1 

a), and to determine a dominant energy scale that affects the nonlinear time-dependent 

interplay with superconductivity. We complement the THz time domain spectroscopy 

studies with soft X-ray measurements which show a prompt decrease in the stripe peak 

upon optical excitation (Figure 5.1b). 
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5.1. Light induced superconductivity by NIR excitation  

Samples 

The La2-xBaxCuO4 single crystals investigated in the present study were grown 

[90] using the traveling-solvent floating-zone method for a series of three nominal Ba 

concentrations x = 9.5%, 11.5%, and 12.5%, thus covering the most underdoped region of 

the phase diagram in Figure 5.2 (a).  

The x = 9.5% and 11.5% samples are superconducting with transitions at TC ≃ 32 

and 13 K, respectively, while superconductivity in the x = 12.5% sample is strongly 

suppressed with TC ≲ 2.4 K.  This value is below the lowest temperature achievable in 

our experiments, which is T = 4K. For the three samples used in the current work, all 

values of TC were determined by magnetic susceptibility measurements [90], [91].  

At 9.5% doping, the appearance of superconductivity, charge- and spin-order, as well as 

the structural transition, are reported to occur at the same temperature: 

 x = 9.5%: TCO ≃ TSO ≃ TLT ≃ TC ≃ 32 K.  

As one increases the holes concentration, these transitions decouple, occurring within a 

15 K temperature window:  

 x = 11.5%: TCO ≃ TLT ≃ 53 K and TSO ≃ 41 K,  

 x = 12.5%: TCO ≃ TLT ≃ 55 K and TSO ≃ 42 K. 

 

 

Figure 5.1: Schematics of the pump-probe set up used for THz time domain 

spectroscopy measurements (a) and of the 800nm pump - soft x-ray probe experiment (b). 

The orthogonal arrangement of charge stripes is visible in panel (a). 
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All three crystals were cut and polished along the ac direction. The resulting ac surfaces 

measured between 5 and 15 mm
2
 and were large enough for performing long-wavelength 

time-domain spectroscopy in the sub-THz regime.  

Experimental implementation 

The time-domain THz spectroscopy measurements presented in this thesis were 

performed in reflection geometry. A detailed description and a sketch of the pump-probe 

setup is presented in Appendix A.1. Single-cycle THz pulses were generated by 

illuminating a large-area photoconductive antenna with near-infrared laser pulses from a 

Ti:Sa amplifier. After generation, the optical pulses with frequency bandwidth covering a 

range between 150 GHz and 3 THz, were focused on a ~ 1 mm spot diameter onto the 

sample surface, at 30° incidence. The polarization of the THz light was kept 

perpendicular to the CuO2 planes (c direction). The reflected electric field was measured 

by electro-optic sampling in a 1 mm thick ZnTe (see Appendix A.2).  The equilibrium 

optical properties were obtained by comparing the THz reflected field measured at 

equilibrium with our setup at different temperatures against the c-axis broadband 

reflectivity reported in Ref [91]. 

The transient optical properties were obtained as a function of pump-probe delay 

by measuring the pump-induced change in the reflected THz electric field. The transient 

response was processed by taking into account the mismatch between the penetration 

depth of the pump pulses (~ 0.1 - 10 µm, depending on the excitation wavelength) and 

the THz probe pulses (~ 50 - 500 µm), assuming a thin photo-excited layer on top of an 

unperturbed bulk (i.e. which retains the optical properties of the sample at equilibrium). 

Figure 5.2, (b) shows the absorption coefficients corresponding to the different pump 

wavelengths used in this experiment, revealing a factor of 100 difference between the 

absorbance at the lowest (400 nm) and highest (5000 nm) pump wavelength. The effect 

of this difference and how was it accounted for in the data analysis will be discussed in 

detail while presenting the pump-wavelength dependent transient data. 

A detailed analysis of the transient response upon optical excitation was 

performed at different temperatures, both bellow and above TC (see circles on phase 
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diagram in Figure 5.2 a), and different pump wavelengths and fluences, for all three 

doping levels mentioned above.  

Equilibrium optical properties 

The c-axis equilibrium reflectivity of all three samples at the lowest measured 

temperature (T = 5 K) is shown in the shaded region of  Figure 5.2 c).  

 At x = 9.5% doping (blue line), the superconducting transition is evidenced by 

the appearance of a clear Josephson Plasma Resonance at ~ 500 GHz; 

 For x = 11.5% (red line), the response is very similar to the x = 9.5% sample, 

with a JPR emerging in the reflectivity spectrum slightly below ~ 200 GHz; 

 At x = 12.5% doping (green line), no JPR feature is visible down to the lowest 

measured frequency (~150 GHz), the reflectivity remaining flat. We stress again 

that for this compound we are above the critical temperature, TC < 4 K [92]. 

In the spectrum of the real part of the conductivity no feature is present at low 

frequencies, independent of the doping level. The arrows indicate the different pump 

photon energies that will be used in these measurements. One can clearly see that, along 

the c-axis, the optical conductivity shows a strong absorption in the 3 eV region (400 nm 

wavelength), while around 1.5 eV (800 nm) only a tale of a higher frequency band is 

found. Below 0.6 eV (5 μm) the optical conductivity stays gapped. The fact that linear 

absorption increases with photon energy has to be accounted for in the pump-wavelength 

dependent study. 
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Figure 5.2: (a) Phase diagram of La2-xBaxCuO4 as a function of temperature and hole doping 

concentration (discussed in detailed in Chapter 4). Colored circles indicate the different doping 

levels and temperatures at which the pump-probe experiment of the present work has been 

carried out. (b) Absorbtion coefficient of the optical pump pulse as a function of the pump 

wavelength. (c) and (d) Equilibrium c-axis optical properties of LBCO. The gray-shaded 

region is the one investigated in the present experiment, while the high-frequency c-axis data 

for which the doping dependence is negligible are taken from Ref [91] The THz reflectivity at 

T = 5 K is depicted in blue (9.5% doping), red (11.5%) and green (12.5%). The arrows indicate 

the region of the optical excitation performed in this experiment and the color code coincides 

with the one of panel (b). 



67                                                        Optical enhancement of superconducting interlayer coupling in LBCO 

 

Out of equilibrium transient optical properties 

Although the pump excitation wavelength was varied, I first discuss the observed 

effects when the LBCO crystals were photo-excited with ~100 fs laser pulses with 800 

nm central wavelength, polarized along the c axis. While in the in-plane direction this 

region around 1.5 eV shows a strong absorption (the so-called charge transfer resonance) 

[93], along the c axis only the tail of a higher frequency band in the optical conductivity 

is found. Thus, in this case, the effects of excitation of incoherent, hot quasi-particles 

should be reduced with respect to in-plane pump experiments. 

By measuring the pump-induced changes in the amplitude and phase of the 

reflected electric field polarized perpendicular to the planes, the behavior of all complex 

c-axis optical functions could be retrieved as a function of pump-probe delay. As 

mentioned before, by calculating the coupled Fresnel equations of a multi-layer system 

which takes into account the penetration mismatch between pump and  probe, the 

transient optical response of the photo-excited layer could be derived.   

In Figure 5.3, the reflectivity R(ω) of the photo-excited LBCO sample is shown 

for all measured doping levels and temperatures at +1.5 ps pump-probe delay, and 

compared with the same quantity at equilibrium. Some salient features include: 

 At the lowest doping, x = 9.5%, for temperatures below the superconducting 

transition temperature, T < Tc, a slight blue-shift of the JPR (about 3%) is 

observed (panel a.1), suggestive of a photo-induced increase in the interlayer 

Josephson coupling. For the same material above Tc (panel a.2), no considerable 

photo-induced dynamics could be measured at any pump-probe delay.  

 In the sample for which x = 11.5%, the effect is much more pronounced: below 

Tc (panel b.1) a substantial blue-shift of the JPR (from ~200 to 600 GHz) is 

observed upon photo-stimulation. Above Tc, in the spin-ordered phase (panel b.2) 

an edge-like feature is photo-induced in the flat, featureless normal-state R(ω). 

The induced feature appears at ~500 GHz and strongly resembles the JPR 

detected below Tc.  
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Figure 5.3: Reflectivity of the photo-excited LBCO samples. THz reflectivity of La2-

xBaxCuO4 displayed at different doping values and temperatures at equilibrium (grey) and 1.5 

ps after near-infrared excitation (colored). Data in panels a, b and c correspond to doping 

levels of 9.5%, 11.5% and 12.5% respectively. Data in panels a and b have been acquired with 

a pump fluence of ~2 mJ/cm2, while those in panel c with ~3 mJ/cm2.  In the insets, the 

parameters at which the measurements are taken are indicated in the LBCO phase with colored 

circles. 
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By increasing the temperature further to T = 45 K (panel b.3), above TSO, one 

finds a similar effect: a reflectivity edge at ~300 GHz can be clearly distinguished 

in the reflectivity spectrum of the transient state. 

The temperature was increased even higher, above TCO (panel b.4), with no 

evidence of a JPR-like feature in the reflectivity of the perturbed material.  

 Finally, in the 1/8-doped material, x = 12.5%, no measurable effect was observed 

at any temperature and pump-probe delay (panels c.1 and c.2). As will be 

discussed further, even when increasing the near-infrared beam fluence to 3 

mJ/cm
2
, the transient reflectivity remained featureless. 

Inducing a JPR-like feature in the reflectivity of the x = 11.5% sample above TC together 

with the complete absence of any pumped induces response in the x = 12.5% sample 

were highly surprising, so further investigation was carried out in order to have a 

quantitative comparison between the pump-induced effects in the three samples, at 

different temperatures. 

It is illustrative to characterize the transient response with the following 

quantity: ∆𝐸𝑅/𝐸𝑅 , that tracks the normalized transient changes in reflectivity at the 

maximum amplitude of the THz response. Figure 5.4 (a) depicts three such curves, taken 

after excitation of La1.885Ba0.115CuO4 sample at T = 5K, for three different pump fluences. 

A clear trend emerges: the changes in reflectivity increase with increasing pump fluence. 

In panels (b) and (c), the peak of the optical response (at time delay t
peak,

 i.e. at the peak 

of the curves in panel a) of La2-xBaxCuO4 is plotted at various temperatures, as a function 

of pump fluence (which was tuned between 0.01 mJ/cm
2
 and a maximum of 3 mJ/cm

2
): 

 For the x = 11.5% sample (panel b), the effect saturates with pump fluence, 

exhibiting a threshold behavior for temperatures below the spin order 

temperature, i.e. at 5K and 30K. The effect decreases with increasing 

temperature, and almost no changes in reflectivity are detected for T > TCO (T = 

70K).  

 For x = 9.5% (panel c), a smaller but similar effect exists below TC (dark blue 

squares), while above TC (light blue) only a residual change in reflectivity can be 

detected.  
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 Finally, the x = 12.5% doped material (green squares in panel c) shows no 

change in the optical reflectivity, up to the highest pump-fluence measured. The 

absence of the effect seems to also be independent of temperature. This 

experimental evidence suggests that the 1/8-doped material, where the charge 

order parameter and correlation length are stronger and superconductivity is 

quenched, has a much lower photo-susceptibility than the other samples. 

As clearly shown so far, the most striking effects induced by light in the optical 

response of LBCO appear in the stripe phase of the x = 11.5% sample. Thus, I will focus 

the analysis to this specific material, by exploring the behavior of the relevant complex 

optical constants as a function of temperature, pump-probe delay, pump fluence and 

pump wavelength. 

In Figure 5.5 (lower panels), the real and imaginary part of conductivity, 

σ1(ω)+iσ2(ω), and the energy loss function [– Im(1/𝜀̃)] of La1.885Ba0.115CuO4 are 

displayed in color scale throughout the whole dynamics after photo-excitation, for T < 

TC. Selected lineouts are shown in the upper panels at three pump-probe delays:  t < 0 

(equilibrium - gray), t = 1.5 ps (corresponding to the reflectivities in Figure 5.3 b.1 - red), 

and t = 5 ps (after the first relaxation process has occurred - blue). 

 

Figure 5.4: Fluence dependence of the pump-induced response in LBCO. (a) One 

dimensional traces of ∆ER/ER as a function of time delay, at three different fluences. The 

fluence dependence of the peak of reflectivity changes in the samples was measured at 

different temperatures, 1.5 ps after photo-excitation and is shown in panels (b) (x = 11.5%) and 

(c) (x = 9.5% and x = 12.5%). The lines in panels (b) and (c) are guides to the eye. 
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As expected, in the superconducting state at equilibrium, the out of plane 

superconducting nature is evidenced by a fully gapped σ1(ω) (Figure 5.5 a.1, grey curve) 

and a 1/ω-like divergence in the low-frequency σ2(ω) (panel b.1, grey curve). The 

quantity lim𝜔→0 𝜔𝜎2(𝜔) is an indication of the strength of the c-axis superfluid density. 

As already discussed, the Josephson-like tunneling, evidenced by an edge in the 

reflectivity, is expressed by a sharp peak in the loss function corresponding to the JPR 

frequency (c.1, grey curve). 

The maximum pump induced effect is observed 1.5 ps after photo-excitation (red 

curves), when a strong enhancement in σ2(ω) is observed down to the lowest measured 

frequency, while σ1(ω) stays gapped. In the outlines of the loss function, the same strong 

increase in the JPR frequency (~ 400 GHz) reported in the reflectivity analysis is 

apparent. The observed electrodynamics is compatible with interlayer superconducting 

transport. 

 

Figure 5.5: Below TC dynamics of the LBCO 11.5% system upon optical 

excitation. Lower panels: Frequency dependent optical conductivity, both real [σ1(ω)] and 

imaginary part [σ2(ω)], and energy loss function [– Im(𝟏/�̃�)] of LBCO 11.5% as a function of 

pump-probe delay. Upper panels: Selected lineouts of the optical properties are shown in the 

upper panels at three pump-probe delays: t < 0 (equilibrium - gray), t = 1.5 ps (red), and t = 5 

ps (blue). All data have been taken using a pump fluence of 2 mJ/cm
2
. 
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At later delays, ~ 2.5 ps after excitation (see color plots), a well-defined 

absorption peak develops in the low-frequency σ1(ω), while σ2(ω) is peaked at finite ω≠0. 

After t = 5 ps, a relaxation towards a state with a finite carrier scattering time is observed. 

Most importantly, the pump-probe dependence of the loss function (panel c.2) shows that 

there is a continuous evolution of the JPR frequency below TC: it increases from its 

equilibrium value (~200 GHz) up to ~1200 GHz (at ~2.5 ps delay), and then relaxes back 

to lower values. 

For a temperature higher than TC, but lower than the spin order temperature (TC < 

T = 30K < TSO), where the system is non-superconducting at equilibrium, a similar 

qualitative pumped induced response is observed (Figure 5.6). Here, starting from the 

complex conductivity of an insulator (𝜎1(𝜔) ≃ 0 and lim𝜔→0 𝜎2(𝜔) = 0, grey curves in 

panels a.1-b.1), the material shows a strong light-induced enhancement in the low-

frequency σ2(ω), which turns positive and diverges down to the lowest measured ω. 

Concomitantly, σ1(ω) is gapped, suggesting that in such transient state the charge carriers 

exhibit an anomalously coherent behavior, which resembles that of the Cooper pairs 

tunneling between the CuO2 layers below TC. In the case of the energy loss function, a 

peak is photo-induced on a flat and featureless background, it first blue-shifts, and then 

relaxes back to lower frequencies. As in the case of the below TC data, the peak tends to 

progressively broaden with increasing pump-probe delay (see panels c1 and c2). For later 

delays, the evolution of all optical properties are indicative of a relaxation to a more 

incoherent state (t = 5 ps). 
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Plasma frequency (ωP) and carrier scattering time (τS) 

The evolution of the charge transport properties of photo-excited LBCO (x = 

11.5%) can be better quantified by fitting the transient complex conductivity spectra with 

a Drude model: 

𝜎1(𝜔) + 𝑖𝜎2(𝜔) =
𝜔𝑃

2

4𝜋

1

1 − 𝑖𝜔𝜏𝑆
, 

where ωp is the plasma frequency and τs the carrier scattering time. Examples of the fits 

are shown in Figure 5.6 (a.1 and b.1) – dashed lines. In order to mimic the background in 

the optical spectra, mainly caused by phonon absorptions, two high-frequency Lorentz 

oscillators have been added and kept constant in all fits. The central frequencies of the 

oscillators were fixed at 1.35 THz (45 cm
-1

) and 7.13 THz (237.9 cm
-1

), with a weight of 

2.7 THz (90 cm
-1

) and 34 THz (1135.6 cm
-1

) respectively.  

 

Figure 5.6: Above TC (TC < T < TSO) dynamics of the LBCO 11.5% system upon 

optical excitation. Lower panels: Frequency dependent optical conductivity, both real 

[σ1(ω)] and imaginary part [σ2(ω)], and energy loss function [– Im(𝟏/�̃�)] of La1.885Ba0.115CuO4 

as a function of pump-probe delay. Upper panels: Selected lineouts of the optical properties 

are shown in the upper panels at three pump-probe delays:  t < 0 (equilibrium - gray), t = 1.5 ps 

(red), and t = 5 ps (blue). All data have been taken using a pump fluence of 2 mJ/cm2. In panels 

a.1 and b.1 examples of fits with a Drude model (dashed lines) and with a perfect-conductor 

model (orange dots) are displayed. 
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The extracted fit parameters, i.e. the screened plasma edge frequency �̃�𝑃 =

𝜔𝑃 √𝜀𝐹𝐼𝑅⁄  (where 𝜀𝐹𝐼𝑅 ≃ 27) and τs, are displayed in Figure 5.7 a and b, both below and 

above TC as a function of pump-probe delay. Below Tc (black dots), at delays t ≲ 1.5 ps 

the transient optical properties are described equally well by a Drude model with 

scattering time τS ≳ 10 ps. In other words, a fit could be obtained by assuming a perfect 

conductor (or superconductor) with infinite τS →∞: 

𝜎1(𝜔) + 𝑖𝜎2(𝜔) =
𝜔𝑃

2

8
𝛿[𝜔 = 0] +

𝜔𝑃
2

4𝜋

𝑖

𝜔
 

Therefore, the system stays in an extremely high mobility state (with carrier 

mobilities µ ~ 10
3
 - 10

4
  

cm2

V∙s
, see also Ref. [45]), compatible with interlayer Josephson 

tunneling, for a duration lasting longer than 1 ps after photo-excitation. During this early-

time dynamics, the plasma frequency �̃�𝑃 =
4𝜋𝑁𝑒2

𝑚∗   (where N, e, and m* are the carrier 

density, charge, and effective mass, respectively) progressivley increases, reaching values 

which are compatible with the highest ones observed within the LBCO family [91]. The 

same early-time dynamics can be extracted also from the fits to the 30 K data, where, 

starting from the non-conducting ground state, a high-mobility state, also compatible with 

interlayer superconducting coupling,  develops. Fits to σ1(ω)+iσ2(ω) at t = 1.5 ps with the 

perfect-conductor formula are displayed as red dots in Figure 5.7. When analyzing the 

relaxation dynamics of the photo-induced response at longer time delays (t ≳ 2 ps), one 

can see that, both at 5K and 30 K, the high-mobility state found at t ≲ 2 ps progressively 

loses its coherence, with a finite carrier scattering time τS ~ 5 ps setting in, which reduces 

down to τS ~ 1 ps at later delays. Concomitantly, �̃�𝑃 keeps on increasing, exceeding 1 

THz at t ≃ 2.5 ps, and relaxing then back to about 500 GHz. 
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The scattering times estimated during the relaxation process (τs ~ 1 - 5 ps) are 

anomalously high for conventional incoherent charge transport. This seems to suggest 

that, unlike high-energy charge excitation parallel to the CuO2 planes, light polarized 

along the c axis may not substantially affect the superconducting condensate and rather 

act directly on the competing stripe order, thus transiently enhancing interlayer Josephson 

tunneling. In this framework, the relaxation process observed at t ≳ 2 ps may be dictated 

by a progressive increase of temporal fluctuations of superconductivity, in analogy with 

the interpretation of the equilibrium THz response of La2-xSrxCuO4 right below and above 

Tc reported in Ref [94], which qualitatively matches the above observations.  

The experimental evidence suggests that interlayer Josephson coupling is 

enhanced by light below Tc both at x = 9.5% and 11.5% doping and even induced above 

Tc in the stripe phase of La1.885Ba0.115CuO4, combined with the absence of any effect 

above TCO. This further points towards a possible light-induced melting of the stripe 

order, which would induce 3D superconductivity in a material where the CuO2 planes are 

already superconducting at equilibrium, but interlayer Josephson tunneling is prevented.  

 

 

Figure 5.7: Parameters extracted from the Drude fits as a function of pump-probe 

delay. The grey shaded region indicates the non-conducting regime, where no Drude fit could 

be carried out. The red shaded area refers to the highly coherent state, where data could be 

fitted equally well by any τS ≳ 10 ps. Data are shown both below (black dots) and above TC 

(red dots). 
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Soft X-ray data: evidence for stripe melting  

In support of this view, I report here a time-resolved experiment carried out at 

the DIAMOND light source in Oxford, with the aim of measuring the stripe-peak 

relaxation dynamics after out-of-plane high-energy charge excitation, using resonant 

soft X-ray diffraction (RSXD) at the oxygen K-edge (530 eV). The c-axis surface 

normal cut of the La1.885Ba0.115CuO4 samples makes possible both out-of-plane laser 

excitation at grazing incidence and RSXD at the relevant wave vector. 

The wave vector (h k l) which contains information on the spatial correlations 

of the doped holes in La1.885Ba0.115CuO4 is (0.23 0 0.65) [95]. This can be seen in 

Figure 5.8 a, which depicts the x-ray diffraction scan on the charge order peak at T = 

10K (blue points), for a phonon energy of 526.6 eV. A Gaussian fit to the data (blue 

line) shows a clear peak at (0.23 0 0.65). The same scan reported at T = 60K > Tco (red 

dots) displays a featureless profile. 

The x-ray scan was repeated as a function of pump-probe delay upon excitation 

with 800-nm light in the saturation regime of ~ 1 mJ/cm
2
 (i.e corresponding to10

20
 

absorbed photons/cm
3
). As shown in Figure 5.8 b, the transient intensity of the charge 

stripe order diffraction peak displays a prompt decrease of about 40% after photo-

excitation. This supports the hypothesis that the observed light enhanced (for T < TC) 

and the light induced (for TC < T< TSO) Josephson coupling is related to the melting of 

the stripe phase. 

Furthermore, in a recent study by Khanna et al. it was also shown that the 

fluence dependence of the enhanced interlayer coupling follows closely that of the 

stripe order melting [96]. This further corroborates the competing interplay between the 

two phases. 
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In-plane pumping 

We analyze here another particularity of these measurements, by emphasizing the 

polarization selective character of the enhancement of the Josephson interlayer coupling 

by melting of the stripe phase. Figure 5.9 compares the complex optical conductivity 

measured in the stripe phase (T = 30 K) 1.5 ps after excitation with 800 nm light 

polarized perpendicular (red lines) and parallel (black lines) to the CO2 planes. The 

coherent coupling - evidenced by an increase in σ2() at low frequencies - is far more 

pronounced in the case of out-of-plane excitation (i.e. along c-axis). Moreover, the 

quasiparticle response in σ1(ω) is lower than for in-plane excitation. 

This underlines further that out-of-plane optical excitation couples only weakly to 

quasiparticle excitations in quasi-two-dimensional cuprates. 

 

Figure 5.8: Soft x-ray diffraction measurement. (a) Resonant soft X-ray diffraction 

scan of the La1.885Ba0.115CuO4 charge stripe order peak at 10 K (blue), using a photon energy of 

526.6 eV (near the oxygen K edge). The blue line is a Gaussian fit to the data. For comparison, 

the same scan is reported at T > TCO (red), showing a featureless profile. (b) Intensity change in 

the stripe order peak measured at Qstripe = (0.23 0 0.65) as a function of time delay, after photo-

excitation. The pump pulses were tuned to 800-nm wavelength, with polarization 

perpendicular to the CO2 planes and a fluence of ~ 1 mJ/cm2, corresponding to ~ 1020 

photons/cm3. The gray line is a guide to the eye. 
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5.2. Wavelength dependence 

In order to understand how to melt stripe order most efficiently, we also studied 

the dependence of light-induced superconductivity on the pump wavelength, which is 

tuned between the mid-infrared (5 µm) and the visible (400 nm) spectral region. 

The polarization of the optical pulses was maintained perpendicular to the CuO2 

planes, and tuned to central wavelengths of 5 µm, 2 µm and 400 nm, in addition to the 

800 nm case studied above. Nonlinear optical rectification of 800-nm wavelength 

pulses from a Ti:Sa laser was used to generate the tunable pump pulses: the excitation 

pulses with ωpump = 2 µm wavelength, difference frequency generation between signal 

and idler pulses resulted in pulses with ωpump = 5 µm central wavelength, while for 

obtaining the 400 nm pump pulses we used second harmonic generated from a 1 mm 

thick BBO crystal. For further details on the pump-pulses generation, consult Appendix 

A.3. 

As previously, the experiments were performed at temperatures below and 

above TC, T = 4 K (T < TC) and T = 30 K (TC < T < TSO). In Figure 5.10, the frequency 

dependent reflectivity is shown as a function of temperature and pump wavelength both 

at equilibrium (black curves) and at t = 1.5 ps after excitation (colored lines), pump-

probe delay which corresponds to the peak amplitude of the transient response.  

  

Figure 5.9: Complex optical conductivity of La1.885Ba0.115CuO4 at T = 30 K, 1.5ps upon 

optical excitation with light polarized perpendicular (red) and parallel (black) to the CO2 

planes. Data are taken at a pump fluence of 2 mJ/cm2. 
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 For excitation pulses with a central wavelength of ωpump = 5 µm, no pump-

induced effects were detected at any temperature (panels a.1. and a.2), even 

when applying the highest achievable fluence. As the pump pulses were tuned 

to shorter wavelengths, a signal of increasing strength emerged.  

 For ωpump = 2 µm wavelength pump pulses, a shift of the equilibrium plasma 

resonance toward higher frequencies was observed below TC (panel b.1) and a 

reflectivity edge appeared at ~220 GHz from the f eatureless equilibrium 

reflectivity at 30 K (black curve in panel b.2).  

 The case of ωpump = 800 nm optical pump was extensively discussed 

previously, and it shows the strongest response, with a striking shift of the 

equilibrium JPR from ~200 GHz to ~600 GHz (panel c.1) at T < TC and a 

transient edge observed near 500 GHz for TC < T < TSO (panel c.2). 

 Finally, in the case of optical excitation with ωpump = 400 nm central 

wavelength, there is an increase in the sample reflectivity at all frequencies 

below 1 THz, effect observed also in the above-TC data (panel d.2.), but no 

sharp edge was found. 

Hence, two opposing trends could be identified when tuning the pump wavelength, 

both below and above TC. A transient photo-induced reflectivity edge is measured at 

frequencies that grow with shorter wavelengths. However, the “quality” of such edge, 

as identified by its size and width, deteriorates for higher photon energies. 

To analyze the origin of these observations quantitatively, we note again that 

linear optical absorption in this compound increases with photon energy (as seen in the 

optical conductivity, Figure 5.2). Hence, for a given fluence, the total energy and the 

number of photons deposited per unit volume varies with the wavelength of the pump 

pulses. Figure 5.11 shows the fluence dependent spectrally integrated response 

(measured as the change in the THz electric field peak ΔER/ER at a pump-probe delay t 

= 1.5 ps) for all excitation wavelengths where the sample showed optical-induced 

effects. The pump-probe response shows saturation with fluence for all the excitation 

light pulses; ΔER/ER exhibits a well-defined threshold behavior. The data were fit with 

sigmoid functions (orange lines) which returned threshold fluences anywhere between 
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less than 1 mJ/cm
2
 (for ωpump = 400 nm) and 3 mJ/cm

2 
(for ωpump = 2 µm), as presented 

in detail in Table 5.1. 

However, taking into account the different penetration depths which vary from 

2.5 µm to 100 nm for different pump pulses and renormalizing against the total number 

of absorbed photons per unit volume (see upper scale for each panel), we found that the 

optical response always saturates for ~10
20

 photons/cm
3
. This experimental evidence 

emphasizes that the difference in blue shift and in edge width does not depend on the 

different excitation conditions. 

Pump 

wavelength  

λ 

Pump 

penetration 

depth 

Saturation 

fluence 

(mJ/cm2) 

Saturation 

fluence  

Es(mJ/cm3) 

Es * λ 

(mJ/cm2) 

Nr of 

photons 

/ cm3 

400nm 100nm 0.75 0.31 * 105 1.24 1.2 * 1020 

800nm 400nm 1.1 0.15 * 105 1.20 1.2 * 1020 

2µm 2.5µm 3 0.058 * 105 1.16 1.2 * 1020 

Table 5.1: Fluence and number of photons corresponding to the different pump pulses. 

 

Figure 5.10: Frequency-dependent reflectivity of La1.885Ba0.115CuO4 measured at 

equilibrium (black lines) and 1.5 ps after excitation with different pump wavelengths. 

Data are shown at two different temperatures: T = 4 K (blue) and T = 30 K (red). All data were 

taken at saturation fluences for all pump wavelengths, corresponding to ~ 2·1020 photons/cm3. 
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The two competing phenomena of enhanced coupling (blue shift of the plasma 

edge) and increased width of the resonance (decoherence) can be better understood by 

analyzing the transient complex optical conductivity σ1(ω) + iσ2(ω) of the photo-

excited material, depicted in Figure 5.12. As already observed in the transient 

reflectivities, no effect was induced by the 5 µm pump pulses in the real (σ1) and 

imaginary (σ2) part of conductivity at any temperature (panels a.1-a.4).  

 In contrast, 1.5 ps after exciting the material with 2 µm light pulses below TC, 

an increase in the imaginary part of the conductivity (panel a.2.) was observed 

down to the lowest measured frequency, while σ1(ω) (panel b.2.) was not 

affected by the pump pulses. Thus, at early time delays, the ohmic response 

remains gapped and that quasi-particle heating is initially negligible. 

 The 800 nm transient response was already discussed: it is qualitatively similar 

to the 2 µm optical response, even more pronounced. 

 Finally, in the case of 400 nm light pulses, both below and above TC, the 

imaginary part of the conductivity, σ2(ω), increases (panel a.4.), alongside with 

a considerable enhancement of  σ1(ω) at all measured frequencies, which is 

most likely due to resonant quasiparticle excitation. This indicates a mixed 

 

Figure 5.11: Differential time-domain transient ΔER/ER measured at the THz 

electric field peak, 1.5 ps after photo-excitation, plotted as a function of pump fluence for 

different excitation wavelengths. The black lines are sigmoid function fits, indicating threshold 

fluences of 3.0 mJ/cm2, 1.1 mJ/cm2 and 0.75 mJ/cm2 for 2-µm, 800-nm and 400-nm excitation 

wavelength, respectively. On the top horizontal scale, the fluence is expressed in terms of total 

number of absorbed photons per unit volume, returning a saturation value of ~1.2· 1020 

photons/cm3, independent of pump wavelength. 
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response involving an enhancement in interlayer tunneling and an increase in 

the incoherent transport properties.  

A qualitatively similar, however less pronounced response is reported for the 

striped state above TC (Figure 5.12, panels a.3 – d.3, a.4 – d.4). 

 

As already mentioned in the analysis for the 800 nm pump pulse, the energy 

loss function captures key features of the excited state: it exhibits a peak where 𝜀̃ 

crosses zero, that is, at the frequency of the plasma edge. Also, the width of the loss 

function reflects the scattering rate for superconducting tunneling. In Figure 5.13 the 

frequency dependent loss function is presented as a function of pump-probe delay and 

temperature, for all pump-wavelengths. The loss function plots reinforce the 

 

Figure 5.12: Complex optical conductivity of La1.885Ba0.115CuO4 at equilibrium 

(black) and 1.5 ps after excitation with different pump wavelengths (colored). All data 

were taken at a pump fluence corresponding to ~ 2 · 1020 photons/cm3, both below (blue) and 

above (red) TC. 
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observations discussed above: there is a progressive strengthening of the loss function 

peak frequency for shorter pump wavelengths. Also, the number of incoherent 

quasiparticles excited by the pump pulses rises with increasing excitation energy, effect 

indicated by the broadening of the loss function alongside with the enhancement of the 

real part of conductivity already discussed. The two dimensional plots show clearly 

how the incoherent broadening becomes progressively stronger and sets in at earlier 

delays for shorter wavelength excitation. 

 

Figure 5.13: Frequency-dependent Energy Loss Function of La1.885Ba0.115CuO4 for 

different excitation wavelengths, as a function of pump-probe delay, measured below (upper 

panels) and above (lower panels) TC. The color plots show the light-induced dynamical 

evolution of the loss function, while selected line cuts are reported at negative (black), + 1.5 ps 

(blue and red) and + 5 ps (cyan and orange) time delay. All data corresponds to a pump fluence 

of  ~ 2 · 1020 photons/cm3. 
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Similar to the analysis performed for 800 nm pump, we now fit the loss function 

and the other transient optical properties with a Drude model. We extract the screened 

plasma frequency �̃�𝑝 (loss function peak frequency) and the scattering time τS (inverse 

width of the loss function peak) at all measured temperatures, pump wavelengths and 

time delays. These two quantities are plotted in Figure 5.14 (a) and (b) at t = 1.5 ps 

pump-probe delay as a function of excitation wavelength. The scattering time (panel b) 

shows a dramatic reduction with decreasing pump wavelength. Thus, one can conclude 

that the carrier lifetime is strongly degraded at short pump wavelengths. 

While the induced carrier density scales up with increasing excitation energy, the 

relaxation into an incoherent state is faster for high-energy light pulses. The balance of 

these two effects results in an “optimal” excitation condition for light-induced 

superconductivity in the 800-nm range, as emphasized by the peak in Δσ2 response 

showed in Figure 5.14 (c) the pump induced changes in the imaginary conductivity 

were estimated at ω = 300 GHz, 1.5 ps after the optical excitation).  

 

Figure 5.14: Screened plasma frequency (a), scattering time (b) and pump induced changes in 

the imaginary conductivity estimated at ω = 300 GHz (c) displayed as a function of pump 

wavelength, for temperatures below (blue dots) and above (dark yellow dots) TC. ωp and τs 

were evaluated from the Loss Function curves shown in Figure 5.13, while Δσ2 was estimated 

from the σ2 curves shown in Figure 5.12. All parameters are represented 1.5 ps after optical 

excitation with a pump fluence corresponding to ~ 2 · 1020 photons/cm3. The parameters  �̃�𝒑 

and τS were also extracted from Drude fits to the optical spectra, in perfect agreement with 

those estimated from the loss function. 
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The analysis discussed above reveals that light-induced enhancement of 

interlayer coupling is most pronounced for intermediate pump wavelengths. This is 

deconvolved from the progressive deterioration of this signal, which becomes strongest 

for hot quasi-particles at 400 nm. 

5.3. Conclusions 

In this chapter I have presented THz time domain spectroscopy studies 

demonstrating the out-of-plane superfluid density of LBCO can be transiently increased 

by light polarized perpendicular to the CO2 planes. Highly coherent dynamics were 

also be induced above TC, in the stripe phase. Furthermore, the soft x-ray experiment 

showed that, for this polarization, coupling to the charge stripes is very efficient, with 

the stripe peak melting promptly following near-infrared photoexcitation.  

The data is essentially in favor of the competing orders scenario, proving that 

enhancement of the Josephson interlayer coupling can be achieved at the expense of the 

stripe order phase. In this framework, as already discussed above, the absence of any 

light-induced response in the stripe phase of the 1/8-doped sample can be attributed to 

the fact that here the CO order parameter and correlation length are stronger and 

superconductivity is heavily quenched, resulting in a much lower photo-susceptibility 

of this material. 



 

 

6  

 

 

Summary and outlook 

 

 

In this thesis two different mechanisms for controlling the c-axis Josephson 

coupling in layered high-TC superconductors with light fields have been demonstrated 

and discussed. A brief summary of the results achieved is stated below. 

6.1. Coherent control of Josephson physics with Terahertz 

pulses 

 Soliton excitation 

This work presents a theoretical and experimental study of the   Josephson 

physics initiated by an intense terahertz pulse in a layered superconductor. The main 

observation is that direct excitation of the plasma resonance with narrowband (~ 25 

picoseconds long) terahertz pulses results in the creation of a transparency window in the 

optical properties. This phenomenon is due to the generation of a slowly propagating 

mode, confirmed to be a Josephson plasma soliton by the simulations. In order to further 
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validate the soliton formation, additional experiments combining imaging techniques and 

free electron laser radiation could be performed. 

Vortex excitations are key to a number of fundamental properties of 

superconductors and have been statically studied with various techniques such as 

magnetization [97], calorimetry [98], optical spectroscopy [99], [100] and neutron 

scattering [101]. However, the current study focuses on the out-of-equilibrium dynamic 

response, which hitherto has largely remained out of reach. The phenomenon observed is 

also reminiscent to the electromagnetic induced transparency (EIT). This ultrafast optical 

method of creating flux-carrying phase kinks might be optimized for information 

transport and storage in fields such as quantum computing [102], [103]. 

 Amplification of plasma waves 

This work exploits the nonlinearity of interlayer Josephson tunneling in cuprate 

superconductors, and demonstrates the possibility to parametrically amplify a terahertz 

plasma wave. In this case, for strong single-cycle terahertz pulses in resonance with the 

JPR frequency, a modulation of the optical response around the JPR is observed as a 

function of pump-probe delay. This translates into a strong reshaping of the optical 

properties, with the loss function oscillating between positive and negative values, 

corresponding to damping and amplification of the plasma oscillations. All the theoretical 

predictions were confirmed by experiment. 

These parametric phenomena could, for example, be used to  achieve squeezed 

light at terahertz frequencies [104]. Further, as the Josephson coupling is sensitive to 

phase fluctuations, new experiments may become possible in which the fluctuations of 

the superconducting order parameter phase are controlled in the time domain, possibly 

stabilizing the superconducting state [105], [106]. 

6.2. Enhancing the interlayer Josephson tunneling through 

suppression of competing stripe order 

This study demonstrates the enhancement of the Josephson interlayer coupling 

when the competing stripe (charge- and spin-) order is suppressed in the high TC 

cuprate La2-xBaxCuO4. This is achieved by using high photon energy pulses in the NIR 
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and MIR range, and is identified in the transient optical response at THz frequencies by 

a considerable light-induced blue shift of the plasma resonance (below TC). 

Furthermore, a similar transient response is found in the non-superconductive state 

above TC, indicative of light induced coherent c-axis transport throughout the stripe 

phase. 

Systematic soft x-ray scattering measurements could corroborate the 

suppression of the CO and of the LTT distortion. The results further support the 

competing nature between the stripe order and the superconducting phase. 

Although the superconducting state was identified in the optical response such as 

reflectivity, conductivity and loss function, it would be far more compelling to confirm 

the superconducting nature through the measurement of the Meissner response. Such 

measurements in a transient state are inherently challenging, however attempts could be 

undertaken to increase the lifetime of the transient superconducting state. The 

experiments presented in this work offer the advantage of using 800 nm excitation (as 

opposed to mid infrared pulses), easing the experimental demands and facilitating the 

study of the transient state as a function of external parameters, such as magnetic field. 

One approach to achieve this might also involve the utilization of longer duration light 

fields to stimulate the transient state.  

 

 

 



 

 



 

 

Appendix A 

 

Experimental methods 

 

 

In the following I will present in some detail the pump-probe setups employed in 

this work. A pump-probe measurement is a technique for studying ultrafast phenomena in 

solids, where an optical pump pulse is used to excite the investigated sample, and a 

subsequent pulse (the probe) is used for probing the sample after an adjustable time 

delay. 

In particular, for THz time-resolved spectroscopy, the pump pulse (which could 

have NIR, MIR or THz wavelength) beam which initiates a change in the far-infrared 

properties of the sample, on a sub-picosecond time scale, that is further probed by a 

subsequent THz beam. By varying the time delay, t, between the pump and the probe 

pulses, the full dynamics of the transient state upon excitation can be recovered. One can 

define t = 0 in multiple fashions, but here it will be defined as the moment when the 

pump pulse arrives at the sample surface.  

A.1. Near-IR and MIR pump – terahertz probe setup 

The time-domain THz spectroscopy measurements presented in this thesis were 

performed in a reflection geometry. For the table top setup employed for all experiments 

presented in Chapter 5, the laser source is a Ti:sapphire laser with an output beam of 

∼100 fs and 800 nm central frequency (Figure A.1). The repetition rate is 1 kHz, while 

the output power is ∼ 3.5 W. The beam is split in two by a first beam-splitter, with 
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most of the beam used for the pump pulse. Due to the tunable wavelength of the 

pump pulses, different methods were employed for different wavelengths: 

 800 nm light was shined directly onto the sample; 

 the 800 nm pulse was shined onto a 1 mm thick β-barium borate (BBO) 

crystal to obtain the 400 nm pump pulses via second harmonic 

generation; 

  the 800 nm  was used as an input for the TOPAS. => 2 µm light 

 the 800 nm  was used as an input for the TOPAS. Difference frequency 

generation between the signal and idler pulses (i.e. by using a DFG setup) 

resulted in pulses with ωpump = 5 µm central wavelength. For more detail 

on the OPA and DFG processes see section A.3.  

After generation, the pump pulse hits the sample at normal incidence. 

The residual 800 nm beam that is not employed for the pump pulses is 

further divided in two, with the main part used for generating THz light (the probe 

pulse) and the rest for the EOS detection setup. In order to obtain single-cycle THz 

pulses, the NIR beam illuminates a large-area photoconductive GaAs-based antenna, 

which basically consists of a semiconductor device patterned with electrodes that 

apply a bias across a small (submillimeter scale) strip of semiconductor. The 800 nm 

light excites carriers from the valence band into the conductance band of the 

semiconductor. Thus, the applied bias accelerates the charges across the electrode, 

releasing dipole radiation in the THz regime, as the timescale of this process is in the 

picoseconds range for GaAs-based antennae. The THz probe pulses generated through 

the antenna cover a frequency range between 150 GHz and 3 THz, with a controllable 

polarization via antenna alignment. Note that the time resolution of the experiment is 

limited instead by the spectral content of the THz.  
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After generation, the pulses were focused on a ~ 1 mm spot diameter onto the 

sample surface, at a 30° angle incidence. The reflected electric field was measured by 

electro-optic sampling in a 1 mm thick ZnTe, procedure that is briefly described below. 

The THz was generated and detected within a vacuum chamber, which eliminates ringing 

of the pulses in the time domain due to water absorption. 

A.2. Electro-optic sampling (EOS) 

Electro-optic sampling is an optoelectronic detection technique used for directly 

measuring the electric field profile of a THz pulse. A depiction of the electro-optic 

sampling scheme is shown in Figure A.2. In this procedure, the THz light pulse and a 

short gating beam are spatially and temporally overlapped, in order to interact in a 

 

Figure A.1 Scheme of the THz time domain spectroscopy setup used for the measurements, 

most of which is encapsulated in a vacuum chamber. The MIR (or NIR) pump pulse is focused 

onto the sample at normal incidence. The THz probe pulse is generated in a photoconductive 

antenna and impinges on the sample at 30° incidence. The reflected beam is focused onto a 

ZnTe crystal. A residual 800 nm beam (EOS beam) is focused onto the same position on the 

crystal, for detection via electro-optic sampling, which makes use of a half wave plate, a 

Wollaston prism (WP), and two balanced photodiodes. 
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nonlinear detection crystal via the Pockels effect. The THz field induces a transient 

birefringence in the nonlinear detection crystal, which is proportional to the electric field 

of the pulse. This varying birefringence can be measured by observing the change in 

polarization state of the gating pulse, at the arrival time of the gating pulse. By shifting 

the delay between the THz and the sampling pulse, the full spectrum of the THz pulse 

can be retrieved. 

Further, the gating light is decomposed in two orthogonal polarization 

components by the use of a half waveplate and a Wollaston prism. The resulting beams 

are measured with a balanced detection including two photodetectors and a lock-in. The 

instantaneous THz field is proportional with the subtracted signals. In the absence of the 

THz beam, the sampling beam is initially polarized such that the Wollaston prism splits is 

into two pulses of equal intensity but opposing polarization. This procedure is very 

sensitive, allowing detection of THz pulses with less than a nJ energy. 

 

The nonlinear crystals, which stay at the core of the electro-optic technique, that 

are most frequently used are: ZnTe, GaP, GaSe, inorganic semiconductors (e.g. GaAs, 

InP, InSb), organic compounds (e.g. DAST, SDTMS) [107], [108]. For our experiment 

the detection crystal is 110 cut ZnTe with a thickness of 500µm. 

 

 

Figure A.2 Electro-optic sampling. The THz pulse (blue) and the gating beam (red) are 

focused on a nonlinear (NL) crystal. The polarization of the gating beam is rotated in 

proportion with the applied THz field. The rotation of the polarization is then measured by 

splitting the polarization components with a half waveplate (λ/2) and a Wollaston prism (WP) 

and using a balanced detection scheme. Red arrows indicate the polarization of the sampling 

beam after various optical elements. 
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A.3. Optical Parametric Amplification (OPA) and Difference 

Frequency Generation (DFG) 

The wavelength range of the pump light used for the experiment shown in 

Chapter 5 scales from 400 nm to 5000 nm, values which cannot be reached by the 

fundamental line of the commercial Ti:sapphire lasers. In order to achieve the desired 

value, we make use of different techniques, such as optical parametric amplification 

(OPA) for the generation of short near-infrared (NIR) pulses and difference frequency 

generation (DFG) to achieve mid-infrared (MIR) pulses. 

Both OPA and DFG rely on second order optical processes like difference 

frequency mixing, which will briefly be discussed below. An applied external electric 

field E will induce a polarization within a medium, which can be expressed as follows:  

𝑃 =  𝜒(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + ⋯+ 𝜒(𝑛)𝐸𝑛, 

where 𝜒(𝑛) denotes the n-th order susceptibility. The nonlinear order susceptibility terms 

of the series, 𝜒(𝑛>1), are much smaller than the linear response 𝜒(1), and become relevant 

only when strong enough external fields are applied.  

For an incident field of the form 

𝐸(𝑡) = 𝐸1𝑒
−𝑖𝜔1𝑡 + 𝐸2𝑒

−𝑖𝜔2𝑡 + 𝑐. 𝑐., 

the second order polarization will contain several contributions at frequencies 𝜔 = 0 

(optical rectification), 2𝜔1 and 2𝜔2 (second harmonic generation), 𝜔1 + 𝜔2(sum 

frequency generation), 𝜔1 − 𝜔2 (difference frequency generation, described by a term of 

the type: 𝑃 = 𝜒(2)𝐸1𝐸2
∗). 

 

Optical parametric amplification uses the difference mixing of a high intensity pump 

beam of frequency 𝜔𝑝 and a second so-called signal beam at 𝜔𝑠 in order to amplify the 

later one. In the process of energy transfer from the pump beam to the signal beam, a 

third idler beam is also generated, at frequency 𝜔𝑖 = 𝜔𝑝 − 𝜔𝑠. If 𝑘𝑝, 𝑘𝑠,𝑘𝑖 are the 

wavevectors of pump, signal and idler beam respectively, conservation of momentum 

requires that: 𝑘𝑝
⃗⃗⃗⃗ = 𝑘𝑠

⃗⃗  ⃗ + 𝑘𝑖
⃗⃗  ⃗. This condition is called phase-matching and it is rather 
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difficult to achieve in practice, given that 𝑘 = 𝑛(𝜔)𝜔/𝑐, with the refractive index being 

frequency dependent. 

Difference frequency generation also uses the 𝜒(2) process described above to generate 

the difference frequency between the signal and idler beams produced by optical 

parametric amplification. By this, the spectral range of the OPA is extended to mid-

infrared (MIR). The main distinction between OPA and DFG consists in the intensity 

ratio between the pump and the signal beam. In a typical OPA, the pump is usually 

several orders of magnitude stronger than the initial signal beam (i.e. the process is in the 

undepleted pump regime). In the MIR generation the two beams have nearly the same 

intensity. 

As already mentioned, for the experiments in Chapter 5 a commercial Ti:sapphire 

laser source was used, which emits pulses centered at 800 nm wavelength. Optical 

parametric amplification was used to convert the 800 nm pulses to NIR light, and then 

combined with DFG to tune the wavelength of the final output pulses from 5 µm up to 17 

µm. 

The optical parametric amplifier (OPA) was a commercial TOPAS from Coherent, which 

is schematically depicted in Figure A.4. This is a two-stage OPA which uses 800 nm light 

to generate a near-infrared (NIR) signal beam in the first stage, which is then amplified in 

the second stage. 

The initial 800 nm beam is split in two, with most of the light used for the second-

stage amplification process. The fraction of the beam sent to the first stage is further split 

in two, with part of the beam used to generate ‘white light’ (after going through a 

sapphire crystal) which will provide the tunable seed beam for the parametric 

amplification. The white light is mixed with the rest of the first stage 800 nm beam in a 

 

Figure A.3 Sketch of difference frequency mixing 



Appendix A: Experimental methods  96 
 

 

nonlinear crystal: the 800 nm pulse should arrive at the same time with the chosen color 

of the white light spectrum. Phase matching for optical parametric amplification can be 

achieved in a birefringent crystal (in this case, β-barium borate (BBO), due to its efficient 

phase matching in the NIR).  

The signal beam is sent on to the second stage, where it is mixed again in a second BBO 

crystal with the higher power 800 nm beam. In the second stage the relative propagation 

of the signal and the pump beams are collinear, to maximize the amplification efficiency. 

In the end, the pump beam will be separated from the NIR beams using a dichroic mirror. 

One could also use dichroic mirrors to separate the signal and idler beams (not the case 

here). If the beams are cross-polarized, a waveplate can also be used to select a single 

beam.  

In order to extend the spectral range of the OPA into the MIR, the co-propagating signal 

and idler beams are guided into a commercial Coherent NDFG system. This is built in a 

non-collinear geometry, so the MIR light is spatially separated from the residual signal 

and idler beams as they propagate. The resulting MIR pulse spectra are measured by 

using a Michelson interferometer and a MCT detector. As mentioned above, the TOPAS 

 

Figure A.4 Schematic diagram of a two stage optical parameter amplifier. Red lines represent 

the pump light at 800 nm, the blue line – white light, purple light – output NIR beams (orange 

– idler, green - signal). BBO - β-barium borate, DM – dichroic mirror. 
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OPA used in the experiments described in this thesis, combined with the NDFG system, 

gives output pulses up to 17 µm in wavelength. 

A.4. Tilted pulse front technique for intense THz pulses 

generation 

The generation of high intensity broad-band THz radiation can be achieved 

through optical rectification of femtosecond near-infrared laser radiation in nonlinear 

crystals. In particular, the tilted pulse front technique in materials with high nonlinear 

susceptibility, such as lithium niobate (LiNbO3), allows for the generation of microjoule 

pulse energies and electric fields reaching megavolts per centimeter. 

In this insulator the gap is much larger than the NIR photon energy, thus 

preventing two-photon absorption and allowing for higher excitation powers [109]. 

Efficient optical rectification requires that the group velocity of the near-infrared beam, 

𝑣𝑁𝐼𝑅 , matches the phase velocity of the generated terahertz pulse, 𝑣𝑇𝐻𝑧. Unfortunately, in 

LiNbO3 the near-infrared group velocity is about twice as large as the terahertz phase 

velocity [110]. This issue can be overcome by tilting the intensity front of the near-

infrared radiation by an angle γ, such that the modified phase matching condition 

becomes: 

𝑣𝑁𝐼𝑅𝑐𝑜𝑠𝛾 = 𝑣𝑇𝐻𝑧. 

In the case of LiNbO3 the optimum tilt angle inside the crystal is γ = 63°. This is achieved 

by diffracting the 800 nm light off a grating [106]. 
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Figure A.5 depicts a simplified sketch of the experimental implementation of the 

tilted pulse front setup. The 800 nm light impinges on a blazed grating; the beam is 

polarized parallel to the plane of incidence. After diffraction off the grating, a λ/2-wave 

plate rotates the polarization of the light by 90°, to be parallel to the optical axis of the 

LiNbO3 crystal. Next, the beam is collimated by passing through a lens and then shined 

onto the nonlinear crystal. 

 

Figure A.5 Tilted pulse front technique for THz generation in LiNbO3 crystals 



 

 

Appendix B 

 

Matlab code for numerically solving the 

sine-Gordon equation 

 

 

clear all; 
  

% material parameters 

%--------------------------------------------------------------------- 

    epsilon_inf = 27;   % high frequency permittivity 

    omega_J = 0.5*2*pi; % Josephson Plasma resonance (in THz) 

    lambda_J = 20;      % Josephson penetration depth (in micrometers) 

%--------------------------------------------------------------------- 

  

% pump field parameters: 

%--------------------------------------------------------------------- 

    E0 = 8.0;        % Intensity: E0=1.0 <=> E0=30kV/cm 

    omega_field =1;  % frequency: multiple of omega_J 

    T = 2*pi / omega_field; 

    delta_pulse = 0.5*T;              % width of the pulse 

    center_pulse = 3*delta_pulse;     % center of the pulse 

%--------------------------------------------------------------------- 

  

% probe field parameters: 

%--------------------------------------------------------------------- 

    E0_probe = 0.001; % Intensity  

    omega_probe = 1.0; % frequency: multiple of omega_J 

    delta_probe = 1*T; 

%--------------------------------------------------------------------- 

    

% other input parameters: 

%--------------------------------------------------------------------- 

    delay_probe = 0.2*T;   % pump-probe delay 

    n_sampling = 50;       % number of sampling points per cycle 

    dt = T/n_sampling;     % time resolution 
  

t_i = 0; 

t_f = floor((1*center_pulse + 150*T)/dt)*dt; 

z_max = t_f/dt+1;        % number of steps in time 

t = t_i:dt:t_f;          % time variable used for numerical calculation 
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t_real = t./omega_J;     % time variable used for plotting (in ps) 

  

K = 0.2;   % K=dt/dx is a numerical parameter 

           % K<1 to guarantee convergence 

  

deltax = dt/K; 

nr_i = ceil(z_max*K);  % number of steps in x 

                       % for nr_i<z_max*K, reflection at the backend 

                       % of the sample may occur 

m = nr_i+1; 

x_i = 0.0; 

x_f = nr_i*deltax; 

x = x_i: deltax: x_f;  % space variable used for numerical calculation 

x_real = x*lambda_J;   % space variable for plotting (in micrometers) 

  

phi = pi/2;            % phase difference between pump and probe pulses 

n_phi = size(phi,2); 
  

df = 1/(t_f-t_i); 

f_i = 0; 

f_f = df*(z_max-1); 

f = f_i:df:f_f; 

omega = f*2*pi; 

domega = df*2*pi; 
  

ind_j = round(1/domega); 

ind_delta = ceil(2*pi/delta_pulse/domega/100); 

ind_omega_i = max(ind_j-30*ind_delta); 

ind_omega_f = min(ind_j+30*ind_delta); 

n_omega = ind_omega_f - ind_omega_i +1 ; 

n_delays = size(delay_probe,2); 

Loss_matrix = zeros (n_delays, n_omega); 

%--------------------------------------------------------------------- 
 

n_iter=1; 

for n_iter = 1:n_phi 
  

center_probe = center_pulse + delay_probe; 

      

Eprobe_r_sum = zeros(size(t)); 

Eprobe_r_sum_static = zeros(size(t)); 

  

E_pump = zeros(1, z_max);   

E_probe = zeros(1, z_max);  

     

Eprobe_r_plus = zeros(1, z_max); 

omega_J_inhom = 1.0*ones(size(x));  

% inhomogeneities are accounted by a space dependent JPR 

% omega_J_inhom = 1.0 <=> no inhomogeneity 

  

 

% defining pump and probe pulses: 

%--------------------------------------------------------------------- 
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    E_probe = E0_probe*sin(omega_probe*t) 

.*(exp(-(t-center_probe).^2/delta_probe^2)); 

    E_pump = E0*sin(omega_field*t+phi(n_iter)) 

.*(exp(-(t-center_pulse).^2/delta_pulse^2)); 

    E = E_pump + E_probe; 

%--------------------------------------------------------------------- 

         

    tau = 10;  

    y_B = zeros(m, length(t));    

     

% pump-probe procedure (used in the current code):  

% calculate the space and time dependent phase difference  

     % after the pump pulse; then probing the resulting state 

% an alternate procedure (not shown here) 

% calculate the phase given by the pump, 

    % then the phase given by the pump and probe;  

% take the difference 

%--------------------------------------------------------------------- 

    t_probe = 100; 

    [Epump_r, phase_J_B] = Loop_sine_Gordon(E_pump, epsilon_inf, K, 

nr_i, x, t, deltax, dt, omega_J, lambda_J, tau, y_B', omega_J_inhom, 

omega_field, t_probe); 
         

    tau = 40;     

    [Eprobe_r_static, phase_J] = Loop_sine_Gordon(E_probe, epsilon_inf, 

K, nr_i, x, t, deltax, dt, omega_J, lambda_J, tau, y_B', omega_J_inhom, 

omega_field, t_probe); 

    [Eprobe_r_breather, phase_J] = Loop_sine_Gordon(E_probe, 

epsilon_inf, K, nr_i, x, t, deltax, dt, omega_J, lambda_J, tau, 

phase_J_B', omega_J_inhom, omega_field, t_probe); 
         

    Eprobe_r_sum = Eprobe_r_sum + Eprobe_r_breather; 

    Eprobe_r_sum_static = Eprobe_r_sum_static + Eprobe_r_static; 

%--------------------------------------------------------------------- 

 

% calculating optical properties 

%---------------------------------------------------------------------        

    E_f = conj(fft(E_probe)); 

    E_r_f = conj(fft(Eprobe_r_breather)); 

    reflectivity = E_r_f./E_f; 

    I = find(abs(reflectivity(1:round(z_max/2)))<=10); 

    Loss = imag(-((reflectivity+1)./(reflectivity-1)).^2); 

    Loss_matrix (n_iter, :) = Loss(ind_omega_i: ind_omega_f); 

  

    E_r_f_bre = conj(fft(Eprobe_r_breather)); 

    E_r_f_sta = conj(fft(Eprobe_r_static)); 

    reflectivity_bre = E_r_f_bre./E_f; 

    reflectivity_sta = E_r_f_sta./E_f; 

    Loss_bre = imag(-((reflectivity_bre+1)./(reflectivity_bre-1)).^2); 

    Loss_sta = imag(-((reflectivity_sta+1)./(reflectivity_sta-1)).^2); 

%--------------------------------------------------------------------- 
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end 
  

% example of plotting various optical properties  

% reflectivity and Loss function): 

%--------------------------------------------------------------------- 

figure; 

plot(omega(ind_omega_i:ind_omega_f), 

abs(reflectivity_sta(ind_omega_i:ind_omega_f))); 

hold on; 

plot(omega(ind_omega_i:ind_omega_f), 

abs(reflectivity_bre(ind_omega_i:ind_omega_f)), 'r'); 

xlabel('Frequency (w/w_J_P_R)'); ylabel('Reflectivity');  

  

figure; 

plot(omega(ind_omega_i:ind_omega_f), 

Loss_sta(ind_omega_i:ind_omega_f)); 

hold on; 

plot(omega(ind_omega_i:ind_omega_f), 

Loss_bre(ind_omega_i:ind_omega_f), 'r'); 

xlabel('Frequency (w/w_J_P_R)'); ylabel('Loss Function'); 

%--------------------------------------------------------------------- 

%--------------------------------------------------------------------- 
 

 
function [Ereflect, phase_J] = Loop_sine_Gordon(E, epsilon_inf, K, 

nr_i, x, t, deltax, dt, omega_J, lambda_J, tau, y_B, omega_J_inhom, 

omega_field, t_probe) 

% output parameters: 

% the reflected field  

% the phase as a function of time and space 

  

m = nr_i +1; 

x_i = min(x); 

x_f = max(x); 

  

y = zeros(1,m);        % variable phase at current time, t 

y_minus = zeros(1,m);  % variable phase at previous moment in time, t-1 

y_plus = zeros(1,m);   % variable phase at a latter moment in time, t+1 

g = zeros(1,m);        % dy/dt at t=0 

  

r = 1/tau;             % damping factor 

  

B_xt = zeros(round(m/10),length(t));  

                      % saves the phase as a function of time and space 

  

for index = 1: length(t) 

    y_B_vec = [y_B(index, :), zeros(1, m-round(m/10))]; 

     

    % implementing boundary conditions:  

    if index == 1 
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        y_plus(1) = (1-r*dt/2 

-K/sqrt(epsilon_inf)*(omega_J_inhom(1))^2)*dt*g(1)  

+(1-K^2)*y(1)+K^2*y(2) 

-dt^2/2*(omega_J_inhom(1))^2*sin(y(1)).*cos(y_B_vec(1)) 

+K/sqrt(epsilon_inf)*dt*E(index); 

        y_plus(m) = (1-r*dt/2 

-K/sqrt(epsilon_inf)*(omega_J_inhom(m))^2)*dt*g(m) 

+(1-K^2)*y(m)+K^2*y(m-1) 

-dt^2/2*(omega_J_inhom(m))^2*sin(y(m)).*cos(y_B_vec(m)); 

        y_plus(2:m-1) = (1-r*dt/2)*dt*g(2:m-1) 

+(1-K^2)*y(2:m-1)+K^2/2*(y(3:m)+y(1:m-2)) 

-dt^2/2*(omega_J_inhom(2:m-1)).^2.*sin(y(2:m-1)) 

.*cos(y_B_vec(2:m-1)); 

        Er(index) = 2*(omega_J_inhom(1))^2*g(1)-E(index); 

         

        y_minus = y; 

        y = y_plus; 

    else 

        y_plus(1) = ((r*dt/2+K/sqrt(epsilon_inf)*(omega_J_inhom(1))^2 

-1)*y_minus(1)+2*(1-K^2)*y(1)+2*K^2*y(2) 

+2*dt*K/sqrt(epsilon_inf)*E(index) 

-cos(y_B_vec(1)).*dt^2*(omega_J_inhom(1))^2*sin(y(1))) 

/(1+r*dt/2+K/sqrt(epsilon_inf)*(omega_J_inhom(1))^2); 

        y_plus(m) = ((r*dt/2+K/sqrt(epsilon_inf)*(omega_J_inhom(m))^2 

-1)*y_minus(m)+2*(1-K^2)*y(m)+2*K^2*y(m-1) 

-cos(y_B_vec(m)).*dt^2*(omega_J_inhom(m))*sin(y(m))) 

/(1+r*dt/2+K/sqrt(epsilon_inf)); 

        y_plus(2:m-1) = ((r*dt/2-1)*y_minus(2:m-1)+2*(1-K^2) 

*y(2:m-1)+K^2*(y(3:m)+y(1:m-2))-dt^2 

*cos(y_B_vec(2:m-1)).*(omega_J_inhom(2:m-1)) 

.^2.*sin(y(2:m-1)))/(1+r*dt/2); 

        Er(index) = (omega_J_inhom(1))^2*(y_plus(1) 

-y_minus(1))/dt-E(index); 

         

        y_minus = y; 

        y = y_plus; 

    end 

         

   B_xt(:, index) = y_plus(1:round(m/10)); 

     

end 

x_real = x.*lambda_J; 

t_real = t./omega_J; 

 

% output parameters of the Loop_sine_Gordon function: 

% the reflected field  

% the phase as a function of time and space 

%--------------------------------------------------------------------- 

Ereflect = Er; 
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phase_J = B_xt; 

%--------------------------------------------------------------------- 

  

% example of 2D plot of the phase as a function of time and space  

%--------------------------------------------------------------------- 

figure; 

image(t_real, x_real(1:round(m/10)), B_xt(1:round(m/10),:), 

  'CDataMapping', 'scaled'); 

xlabel('time (ps)'); ylabel('x (um)');  

colorbar;   

axis xy; 

%--------------------------------------------------------------------- 
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