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Zusammenfassung. Diese Arbeit beschreibt quantenoptische Experimente mit Röntgen-

strahlung, die das Ziel haben, den Bereich der starken Kopplung von Licht und Materie zu

erreichen. Dabei wird die besondere Wechselwirkung ausgenutzt, die resonante Materie mit Rönt-

genstrahlung in speziellen Dünnschichtsystemen erfährt, die ihrerseits als Resonatoren ausgelegt

sind. Die resonante Materie besteht hier aus Tantal-Atomen und dem Eisenisotop 57Fe. Diese

begrenzen die Zahl der Lichtmoden, mit denen die resonante Materie wechselwirkt, und verstärkt

die Wechselwirkung mit den Röntgenstrahlen. Es ist uns gelungen, mit Röntgenstrahlung so eine

Reihe von Phänomenen nachzuweisen, die der Quantenoptik schon länger bekannt sind, und als

zentrale Bestandteile möglicher und bestehender Anwendungen der Quantenoptik etwa in der

Messtechnik gelten. Dazu zählen die Beobachtung von starker Wechselwirkung zwischen Licht

und Materie, und der damit einhergehende wiederholte Austausch einzelner virtueller Photonen

zwischen zwei verschiedenen System, die sogenannten Rabi-Oszillationen. Ferner haben wir einen

in der Röntgenoptik bisher nicht verwendeten Weg, Resonatoren für Licht herzustellen, erstmals

getestet. Zu guter Letzt entwickeln wir ein neuartiges Verfahren zur Mössbauer-Spektroskopie

an Synchrotron-Beschleunigern. Es basiert auf der ursprünglich mikroskopischen Technik der

Ptychographie, und eröffnet die Möglichkeit, nicht nur hochaufgelöste Mössbauer-Spektren zu

messen, sondern auch die Phase des gestreuten Lichts zu rekonstruieren. Die Ergebnisse er-

möglichen neuartige Ansätze in der Quantenoptik mit Röntgenstrahlung, insbesondere mit Blick

auf die baldige Verfügbarkeit von hochbrillianter Strahlung aus freien Elektronenlasern.

Abstract. This thesis describes quantum optical experiments with x-rays with the aim of reaching

the strong-coupling regime of light and matter. We make use of the interaction which arises

between resonant matter and x-rays in specially designed thin-film nanostructures which form

x-ray cavities. Here, the resonant matter are Tantalum atoms and the Iron isotope 57Fe. Both limit

the number of modes available to the resonant atoms for interaction, and enhances the interaction

strength. Thus we have managed to observe a number of phenomena well-known in quantum

optics, which are the building blocks for sophisticated applications in e.g. metrology. Among these

are the strong coupling of light and matter and the concurrent exchange of virtual photons, often

called Rabi oscillations. Furthermore we have designed and tested a type of cavity hitherto unused

in x-ray optics. Finally, we develop a new method for synchrotron Mössbauer spectroscopy, which

not only promises to yield high-resolution spectra, but also enables the retrieval of the phase of

the scattered light. The results open new avenues for quantum optical experiments with x-rays,

particularly with regards to the ongoing development of high-brilliance x-ray free-electron lasers.
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Chapter I

Introduction

Since the discovery of x-rays by Wilhelm Conrad Röntgen in 1898 [1], they have become one of the

most indispensable tools of research, both basic and applied. X-rays are the yardsticks by which

we measure distances between atoms and molecules [2] and permit us to find out the structure of

the molecules that make up the organic world [3]; x-rays allow us to determine the structure of

proteins, measure the gravitational redshift [4], obtain medical images of tissue [5], estimate the

properties of matter under pressures close to those in the center of Jupiter [6], and x-rays resolve

the interactions and correlations which give complex solid-state systems the properties we hope to

harvest for future technological progress [7]. Over a hundred years the brilliance of x-ray sources

has grown by over fifteen orders of magnitude, and the advent of hard x-ray free electron lasers [8]

indicates that their importance will not wane any time soon.

The field of quantum optics is a success story of similar importance and magnitude, albeit rather

younger. Stimulated by the invention of the laser, it began in the 1960s with the study of the

quantum properties and description of radiation [9, 10]. It received a boost in the 1980s, when

the first tentative successes in controlling the interaction of light and matter by mirror cavities

surfaced [11]. This sub-field, dubbed cavity quantum electrodynamics, turned out to be the driving

force behind the ascent of quantum optics to one of the dominant fields of physics in the 21st

century, culminating with the award of the Nobel prize to David Wineland and Serge Haroche

in 2012. The triumphs it racked up along the way included successful tests of the fundamental

principles of quantum mechanics [12, 13, 14]; the advancement of metrology by a refinement

in the precision of atomic clocks [15, 16]; the production of non-classical states of light [17]

and implementations of quantum computing methods [18]. Over the years, many physical

systems and frequency bands have been used to perform quantum optical experiments. From

1



2 CHAPTER I. INTRODUCTION

the beginnings with microwaves and Rydberg atoms [19], the development ranges over infrared

radiation and excitonic quantum wells [20], until recently quantized electric circuits operated

with radiofrequencies [21], as well as visible light and ions or Bose-Einstein condensates [22] have

moved into focus.

In light of the two developments sketched above, an obvious question arises. Is it possible to

unite the fields of quantum optics and x-ray physics? Can the techniques of quantum optics

be extended to x-ray physics in order to refine our control over its properties and enhance the

range of accessible experiments? The motivation for these questions is clear. The particular

properties of x-ray radiation, especially the short wavelength and the high absorption length give

it a near-monopoly on the resolution of certain questions; for example the microscopic properties

of correlated materials in the bulk. If our control over x-rays were as advanced as it is over visible

light or microwaves, we might not only gain new insights into a great many materials, but also new

’tuning knobs’, i.e. our control over the materials’ properties and behaviour could be extended as

well.

Unfortunately there are plenty of reasons why our control over x-rays is far from perfect. The

range of optical elements available is severely limited to essentially perfect crystals [23, 24], and

thin films in grazing incidence. Recently, compound refractive lenses [25, 26] and efficient zone

plates [27] have become available as well for hard x-rays, but these are used for focusing, and

are not an option for cavity design. Even then, the reflectivities are sub-par when compared to

those achievable for visible light. As a consequence, the wide range of efficient and commercially

available tools such as polarizing beam splitters etc. are not an option in this field, or have to be

replaced by complicated custom solutions.

Nevertheless, in the last six years, the field of hard x-ray quantum optics has emerged. First

forays into the subject were performed in the 1970s by Eisenberger et al [28, 29] and early 2000s by

researchers around Adams [30, 31], who observed the first instances of non-linear x-ray optics

at laboratory and synchrotron sources respectively. In a sense, Mössbauer quantum optical

experiments with nuclear resonances have been performed much earlier, with Hamermesh and

others [32] measuring and classically calculating the transmission of single Mössbauer photons

through an absorber foil, and Harris [33, 34] supplying the quantum mechanical explanation for

the observed phenomena. Some of these authors also predicted [35] an Autler-Townes-like [36]

line splitting in the Mössbauer resonance due to strong coupling of the low-lying hyperfine

levels with a strong electromagnetic field of microwave frequency. This was later observed in

permalloy films [37]. More recently, free-electron lasers have given the field a new impetus. Both

second-harmonic generation [38] and x-ray-optical wave-mixing [39] results were published; first
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lasing in the x-ray range was observed [40, 41], and new, nonlinear regimes of Compton scattering

were explored [42].

Outside of these results, which rely on new sources, classical Mössbauer spectroscopy has also

contributed by opening new avenues for the control of single-pulse waveforms [43, 44, 45].

Additionally, a great number of theoretical proposals have surfaced, which for years to come

promise exciting work for experimentalists [46, 47, 48, 49, 50, 51].

This thesis, however, rests on another strand of that rapidly developing field. For some years now,

x-ray quantum optics has profited from the methodologies of cavity quantum electrodynamics

being applied to it via the use of thin film nanostructures. This approach has yielded a great

number of spectacular results. It was used to measure the collective Lamb shift of an ensemble of
57Fe- nuclei [52], and to observe electromagnetically induced transparency in a similar system [53].

After theoretical proposals by Heeg and Evers [54], slow light [55], spontaneously generated

inter-level coherences [56] and Fano resonances [57] could also be substantiated. On the other

hand, the important milestone of collective strong coupling between a cavity mode and a nuclear

ensemble has not been reached yet.

This is the aim of this thesis. Our approach is threefold:

• We attempt to reach the strong coupling limit by using an electronic resonance instead of
57Fe nuclei. This also extends the reach of x-ray cavity quantum electrodynamics to other

systems.

• instead of using the cavity design of the thin-film multilayer that was customary in all

previous experiments we intend to capitalize on the possibility of using periodic multilayers,

which display an enhanced light-matter interaction strength close to and at their band gaps

• Extending a previous experiment [53] and relying on theoretical proposals by Evers [58] and

Pálffy [59, 60] we plan to achieve strong coupling not between a nuclear ensemble and a

cavity, but between two nuclear ensembles by coupling them via a cavity in the dispersive

limit.

The structure of the thesis is as follows. In Chapter 2, we introduce the scientific basis of this

thesis, which includes a short, general purpose description of the effects we rely on, fundamental

x-ray optics, the Mössbauer effect, nuclear resonant forward scattering, and a brief description of

the origins of synchrotron radiation.

In Chapter 3, we will get somewhat more technical; we describe the experimental challenges of

synchrotron-radiation based nuclear resonant forward scattering, and how to solve them. We also



4 CHAPTER I. INTRODUCTION

include a description of our sample fabrication and characterization scheme, and a brief classical

discussion of the workings of our multilayers.

The next Chapter is devoted to a discussion of the theoretical tools we use. We present a

discussion of a transfer matrix algorithm for the quantitative analysis of our data. We introduce

basic quantum optics and add theoretical models pioneered by Heeg and Evers to deal with our

specific sample system, and add others we have found useful. The final Chapters are dedicated to

the experiments themselves; their technical specifics, the resulting data, and its analysis. It may

also include some theoretical discussion that has not found a place in the previous Chapter.



Chapter II

Physical Fundamentals

II.1. Introduction

This thesis is concerned with many-body x-ray quantum optics of Mössbauer nuclei in structured

reservoirs. This means that we use layered nanostructures forming both cavities and periodic

multilayers, or one-dimensional photonic crystals and optical lattices in order to (a) enhance

the x-ray interaction with the nuclei and (b) restrict the number of electromagnetic field modes

available for interaction with the nuclei. The thesis will mostly use the standard formalisms of

quantum optics, i.e. the Schrödinger equation both in its standard and more refined versions,

such as the Master equation including dissipation, the Lindblad formalism [61]. However, since

the physical system at hand is different from the usual subjects of quantum optics such as cold

atoms or excitonic nanostructures, we begin by giving a brief introduction to some aspects of it

which might be unfamiliar to readers which are more acquainted with the aforementioned fields.

This background will help those readers understand some technical and experimental subtleties

appearing in this thesis, and point out the peculiarities of this subject.

II.2. X-ray Optics

This section deals with fundamental aspects of non-resonant electronic x-ray scattering, i.e. x-ray

optics in stratified media. A good general-purpose resource on this and many other topics in

x-ray physics is found in ref. [3]. The means we use to tailor the light-nuclei interaction are, as

we said, nanostructures, specifically sputtered thin films. Under certain circumstances, these

can be used as mirrors which enclose the resonant material, forming a cavity. We will follow

several approaches, which will be outlined in Chapter IV. For the moment, we will elucidate the

5
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basic physical mechanisms and effects that allow the use of thin films as mirrors. We begin by

discussing the simplest case: non-resonant matter.

X-rays that illuminate a slab of non-resonant matter interact with it. They do so by several

processes. The most important of these is non-resonant elastic Thompson scattering, which is the

one we will be dealing with exclusively when we speak of non-resonant scattering or interaction.

A simple classical description goes thus: a free, or quasi-free electron is accelerated by the electro-

magnetic field; since accelerated charges emit electromagnetic radiation, the accelerated electron

emits light of the same frequency as the impinging light. For future calculations, we will use a

slightly different description, based on scattering theory [62]. A wave that is scattered by a particle

can be described as follows:

Ψs = eikz + f (ω)
ei~k~r

~r
(1)

where the first term describes the incoming plane wave and~r = (x, y, z) is a spatial coordinate.

ω is the frequency of the electromagnetic field, f is the so-called scattering amplitude, which

describes the strength with which the wave is scattered. For an atom, is given by [63]

f (ω) =
2π

k0
(−Zr0 + i

k0

4π
σt(ω)) (2)

where k0 is the wave vector of the impinging electromagnetic field, Z is the atomic number, and σt

is the total absorption cross-section. Obviously, the scattering amplitude depends on the number

of electrons of the atom, as one would expect. For a stratified medium, the scattering amplitude

can be expressed by multiplying it with the atomic number density ρ [62]. In order to use this in

semiclassical calculations, we rephrase this quantity as the index of refraction n:

n = 1 +
2πρ

k0.2
(−Zr0 + i

k0

4π
σt(ω)) (3)

which is usually expressed more concisely as

n = 1− δ + iβ (4)

δ and β are the so called decrements of the x-ray index of refraction. For all practical purposes

they are looked up in a suitable database, i.e. CXRO [64]. Depending on the frequency, their order

of magnitude varies between 10−4 and 10−6 for hard x-rays between, say, 10 and 30 keV. In this

form, the most unusual features of the x-ray index of refraction is clearly revealed. First of all, it

is very close to unity, the index of refraction of the vacuum. As one would expect, that makes it

very hard to use stratified, amorphous media as mirrors for x-rays (crystal optics is another matter

outside the scope of this thesis). But there is a loophole. The index of refraction is smaller than
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unity. Therefore, the phase velocity of light within the medium is superluminal, and the angle of

refraction (measuring parallel to the vacuum-matter interface) is actually smaller than the angle of

incidence. As one decreases the angle of incidence, the angle of refraction decreases more, until it

goes to zero at some particular angle. This angle, different for all materials and energies is called

the critical angle, and if a medium is illuminated below it, it effectively functions as a high-quality

mirror. This is essentially total external reflection: recall that the vacuum is the optically dense

medium. A good approximation for the value of the critical angle is

φc =
√

2δ (5)

The principle is illustrated in Fig. 1. If the surface is illuminated above the critical angle, almost

all radiation propagates into the sample, and is not reflected. Inside the stratified medium, it is

absorbed. To characterize the strength of absorption the concept of penetration depth has proved

useful. It is the distance after which the intensity of the incoming beam has been attenuated by a

factor e−1. For x-rays of the energy range we are interested in, this is typically on the order of a

few to a few dozen microns, depending on the material.

Of course, even in the case of total external reflection, the x-ray radiation partially penetrates

the material it is reflected on, before it is reflected. The depth of this penetration is only a few

nanometers; the closer the reflection is to the critical angle, the larger it is. This introduces some

absorption into the equation. Indeed, the reflectivity close to the critical angle is different from 1,

closer to 0.95 due to this absorption.

Figure 1: The principle of total external reflection of hard x-rays and the critical angle. (a) the beam illuminates the

sample above the critical angle, and is diffracted away from the normal. (b) the beam illuminates the sample

above the critical angle, and is diffracted parallel to the normal. (c) the beam illuminates the sample below the

critical angle and is fully reflected.
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II.3. The Mössbauer Effect

Discovered in 1958 by Rudolf Mössbauer in the course of experiments on the 191Ir isotope [65, 66]

and building on theoretical work by Lamb [67] and Dicke [68] the Mössbauer effect is the result

of a complicated interplay between the electromagnetic degrees of freedom of the nuclear shell,

and the collective kinetic degrees of freedom of an ensemble of atoms. Prior to the discovery of

the Mössbauer effect, most absorption and fluorescence experiments with hard x-rays had been

performed with gases [69]. At these energies, the following problem arises. Resonant absorption

or emission of radiation with frequency ω of the resonant transition by a single nucleus results in

a strong recoil due to momentum conversion, endowing the nucleus with a velocity v, where

− v =
h̄ω

Mc
(6)

and M is the mass of the nucleus, and c the velocity of light, and ω the frequency. A rough

estimate for 57Fe then gives a velocity of 76 m
s that the iron atom will take. The Doppler shift ∆ of

a moving nucleus is given by ∆ ≈ v
c ω, where c is the velocity of light. The Doppler shift is then

orders of magnitude larger than the natural linewidth which corresponds to a Doppler velocity

of 0.1 mm
s for 57Fe. Absorbed and emitted light are drastically detuned from each other, making

spectroscopic investigations virtually impossible. A way out of this dilemma is offered by the

Mössbauer effect.

The Mössbauer effect takes place in solid state systems comprising a number of nuclei. In such

systems, the movements of nuclei are coupled, and therefore the momentum is exchanged between

the x-rays and a phonon, a collective excitation of the nuclear lattice. Roughly speaking, the

immense mass of the lattice will absorb the momentum instead of just a single nucleus. If the recoil

energy of the free atom is much smaller than the average phonon energy, most of the emission or

absorption process will take place without involving phonon excitation, so that effectively, the

whole crystal acts as a rigid recoil partner. Consequently the velocity the lattice takes will be zero.

A more diligent quantum mechanical calculation is possible [70], but outside the scope of this

thesis. The nuclear resonant system which this thesis focuses on is the Mössbauer iron isotope
57Fe. It has a nuclear magnetic dipole resonance at 14.41 keV with a natural linewidth of 4.66 neV,

corresponding to a natural lifetime of 141 ns. The scattering cross section is 2464 kbarn, a value

unrivaled among Mössbauer isotopes. Furthermore, its Lamb-Mössbauer factor, which determines

how much of the incoming radiation is scattered without recoil, is 0.8 at room temperature. Many

other Mössbauer isotopes require cooling to reach similar values. If an external magnetic field is

applied, the hyperfine interaction leads to a Zeeman splitting of the levels. The basic features of
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Figure 2: The properties of the Mössbauer isotope 57Fe-transition. E is the energy, Γ0 the linewidth, fLM the Lamb-

Mössbauer factor and τ the life time. On the right we show the Zeeman splitting for a hyperfine magnetic

field of 33.6T, the most common case.

57Fe are given in Fig. 2. The convenient physical properties and the importance of Fe in magnetic

systems combine to make 57Fe the workhorse isotope for Mössbauer spectroscopy, with over 95000

published papers.

II.4. Nuclear Resonant Scattering

Conventional Mössbauer spectroscopy is an extremely important experimental technique, but

there are some experimental challenges. For one, the number of emitted photons is relatively

low and they are emitted to 4π. To produce a small, collimated beam with high intensity, as

necessary for the bulk of experiments in this thesis, is virtually impossible. The solution to this

conundrum is to use for nuclear resonance excitation synchrotron radiation. In storage rings, a

group of electrons (a so-called ’bunch’) is accelerated in a ring particle accelerator to relativistic

energies of a few GeV. They emit a wide spectrum of photon energies, depending on the electron

energy. In special insertion devices located at the electron orbit along the circumference, so-called

undulators, arrays of magnets with alternating polar orientation serve to accelerate the electrons

such that they emit radiation of high intensity in a preferred particular energy band. Most 3rd

generation synchrotron sources offer a bunch mode in which there are spacings of up to 800 ns

between the bunches. Obviously, this is ideal for the observation of the temporal decay patterns of

excited 57Fe. In the following, we discuss theoretical aspects of nuclear forward scattering, which

is essentially Mössbauer spectroscopy in the temporal domain. We will follow the lines of the
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discussion of electronic scattering in the first section, with the focus now on the nuclear scattering

contributions. The treatment is taken from [63], but the theory itself has its roots in the works

of Hannon and Trammell, [71, 72, 73], Smirnov [74] and Afanas’ev, Kagan and Kohn [75]. The

nuclear scattering length of a Mössbauer transition is expressed as

~Nµν =
4π fLM

k0

L

∑
M=−L

[~εν · ~YLM(~k0)][~YLM(~k0) ·~εµ]FLM (7)

where

FLM(ω) = ∑
α,η

pα pα(η)Γx(αMηL)
(E(η)− E(α)− h̄ω)− iΓ(η)/2

(8)

and α and η mark the initially occupied and unoccupied states, with pα and pα(η) designating

the probabilities that the states are occupied or unoccupied; Γ is the linewidth of the respective

transition; L is the multipolarity of the transition (for a dipole: L = 1); M is the change of quantum

number between the levels;~ε is the polarization vector, and ~YLM are the vector spherical harmonics,

fLM is the Lamb-Mössbauer factor (note that LM here is just an abbreviation of the names, and

not connected to the multipolarity. In Eq. (7), the terms in the brackets describe the anisotropy of

photon emission and absorption i.e. the fact that photons of one polarization can be scattered into

another by the absorption-emission process, depending on the experimental setup.

As often in the following pages, we will restrict ourselves to the case of just one nuclear transition,

equivalent to an absence of nuclear hyperfine interactions due to magnetic fields or electric field

gradients. In that case the nuclear scattering length reduces to

~Nµν = (εν · εν)
k0σ0 fL M

h̄(ω−ω0) + iΓ/2
(9)

where

σ0 =
2π

k2
0

2Ie + 1
2Ig + 1

1
1 + α

(10)

and Ig and Ie are the nuclear spins of the ground and excited states, α is the coefficient of internal

conversion. All this is valid for single atoms as well. To treat the interaction with an ensemble of

atoms, we generalize the approach taken for non-resonant x-ray optics taken in a previous section

Again, we calculate the scattering matrix first. The scattering matrix is calculated by summing

the scattering length ~N over all atoms in the sample. In the case of very many nuclei and a high

density, this can be replaced by multiplying ~N with the number density of the relevant material.

~F =
2π

k0
∑

i
ρi~N (11)

where ρi is again the density of the i-th atom species. The propagation of a wave field of amplitude

~A in a slab of material can be described by the equation
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d~A
dz

= i~F~A (12)

or

~A(z) = ei~Fz ~A(0) (13)

in the case of a homogeneous material. In case ~F is not diagonal (i.e. if the sample is magnetized

or subject to an electric field gradient), it has to be diagonalized, giving the eigenpolarizations.

After diagonalization of ~F, the exponential is easily calculated. After that, the forward propagation

matrix is transformed back into the basis of linear polarizations. As there is an intrinsic dependence

of ~F on the energy ω, this value gives the transmission through a slab of thickness z for any

particular energy. Fourier transforming the result for a range of energies gives the temporal decay

pattern for a slab of resonant matter.

A somewhat more intuitive derivation of this pattern can be given in a semiclassical approximation,

as in [74, 76, 77]. For this, we return to the index of refraction. Its original derivation can be

extended to contain resonant contributions by adding the nuclear resonant scattering length to the

electronic scattering length, and then proceeding as before. For simplicity, we here replace the

electronic part by the nuclear one.

We set

~P = χε0~E (14)

where χ is the susceptibility χ = λ2

π
~N, ~E is the electrical field, and ~P is the polarization. By

standard manipulations of the Maxwell equations and the above equation we arrive at the wave

equation

(
k2

K2 − 1)~E = χ~E (15)

with K = ω
c . Inside the material, the new wave vector k is

k = K + δK (16)

Inserting Eq. (16) into Eq. (15), ignoring higher order terms and resolving for δ gives δ = χ
2 . Of

course, the refractive index n = 1− δ, hence we have derived the relation between the refractive

index and the scattering amplitude. We set the boundary condition E = E0 where E0 is the

incident wave, and obtain an expression for the transmitted wave

Etr = E0eiωt−iK(1+χ/2)z (17)

Performing the Fourier transform of this yields

Etr = εω0 e−
µez

2 δ(t)− 1
2t0

µzeiω0t−qt/2t0
J1(
√

µzt/t0√
µzt/t0

(18)
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Figure 3: The decay caused by multiple nuclear resonant scattering in the forward direction in an extended sample.

The decay has the shape of a Bessel-function, with beats whose period increases with time. The larger the

sample, and the higher the density of nuclei in it, the more beats are visible in a fixed timespan.

Our treatment has implied that E0 has a high energetic bandwidth, corresponding to an extremely

short pulse. This is a very good approximation for synchrotron-based experiments. The term

containing the δ-function models the instantaneous transmission of the non-interacting part of the

pulse. The second term containing the Bessel-function gives the part of the pulse that results from

the system response. A typical Bessel-function is shown in Fig. 3.

II.5. X-ray absorption spectroscopy

Mössbauer nuclei have a wealth of properties to recommend them for x-ray quantum optical

experiments. The small spectral width also means that even tiny changes of the physical surround-

ings manifest themselves in measurable shifts. Besides the obvious materials science applications,

this has led to spectacular results such as the first measurement of the gravitational redshift, and

there are current proposals to use Mössbauer physics in much the same vein [78]. However, as

so often in physics, the properties that appear to be advantages from one vantage point seem

like distinct drawbacks from another. Even state-of-the-art third generation synchrotron sources

do not possess the brilliance necessary to produce more than one resonant photon per pulse
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in the standard operation modes. Free-electron laser facilities may provide bunches with up

to 50 photons resonant with the 14.41 keV line of 57Fe, but here the extremely high brilliance

leads to a host of technical and experimental problems; of course the radiation pulses, which are

monochromatized to a standard 0.5 eV bandwidth, do also carry an extremely high number of

non-resonant photons, which are detected by the APD as well. This results in too large a current

flowing through the APD with all the problems that this entails: excess noise, non-linearities and

material damage.

Electronic resonances on the other hand, are spectrally very broad. Therefore they offer in princi-

ple the opportunity to perform multi-photon quantum optics experiments with nanostructured

multilayers and hard x-rays at conventional synchrotron sources. This is beyond the scope of this

thesis, but nonetheless, the question is interesting in its own right: is it possible to repeat the

successes of nuclear quantum optics with electronic resonances? As it turns out it is. We sketch

the physical foundations in the following.

II.5.1. X-ray absorption spectroscopy and the white line

The interaction of the electronic excitations of matter and x-rays has been one of the most long-

standing subjects of x-ray physics, present from nearly the very beginning. The field has been

dominated by x-ray absorption spectroscopy, a rich and multi-faceted technique which uses the

interaction to extract information on the electronic states involved in the resonant transitions. We

here give a very brief survey of the results of the field that will be of interest to us.

X-ray absorption spectroscopy is almost exclusively performed on solid-state samples [79]. This

means that the interactions are by necessity interactions between light and collective states of

matter [80]; this is no different than in Mössbauer-based quantum optics. However, when dealing

with electronic resonances, additional phenomena which complicate the picture can come into play.

First and foremost, the only interaction between individual nuclei is mediated by their common

interaction with the vacuum or a light beam illuminating it. Atoms, however, are far larger than

nuclei. In a crystal, they are so close to each other that they interact via the Coulomb interaction.

This means that not only the electrons of different atoms repel each other, but also that electrons

are attracted to the positive nuclei of several different atoms. For even moderately-sized atoms

this results in an enormously complicated interaction resulting in the formation of electronic

bands [70]. Calculations then have to deal not with a discrete set of states which can be excited

and decay, but with bands and density of state calculations [80, 81]. We now deal with continua,

rather than discrete states, or discrete states placed near or in continua. Adding to the strains this
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Figure 4: The spectral signature of the white line at the Tantalum LI I I edge. The spectrum was taken from a Ta-layer

embedded in a multilayer cavity with the layout Pt 20 Å/ C 110 Å/ Ta 25 Å/ C 123 Å/Pt 152, more details

in Tab. V.1. The cavity was strongly angularly detuned to minimize the effect of the vacuum interaction.

The x-ray monochromator was scanned in constant-q mode (where the wave vector component perpendicular

to the sample is kept constant) over a range of 100 eV around the resonance. By placing a fluorescence

detector above the sample, we measured the photons scattered in 4π at every energy to measure the spectrum.

Counting time was 1s. The Lorentzian peak in the center is the white line corresponding to the electric

dipole transition, while the background on the right is the continuum of states corresponding to the lowest

unoccupied band. It can roughly be modeled by a Heaviside function. The linewidth is approximately 5 eV.

places on a simple theoretical explanation, it also means an enhanced background in experiments.

Furthermore, once an electron is excited to a higher band, there are new possibilities of non-

radiative decay, and intermediate states. For instance, another electron may decay into the state

left vacant by the excited electron, which then in turn may decay to the state freed by the previous

photon, a process called Auger decay [82]. Similar processes may take place with electrons hailing

from different atoms. The quantum mechanical waves corresponding to these processes may

interfere, leading to interference fringes in the spectra [83]. All these phenomena are fruitfully

used to analyze the properties of solids, such as for instance the average distance of atoms from

each other in disordered materials and cluster, information on next-neighbor interactions etc.

For x-ray quantum optical experiments, they pose a huge problem since the effects we intend
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to observe may become hidden under the spectroscopic signals of these strong and dominant

interactions. Luckily, there is a remedy in the form of some resonant effects which have very

similar properties to nuclear excitons. In x-ray absorption parlance, they are often referred to

as ’white lines’ [79]. These are strongly absorbing resonances which used to leave the detection

film unexposed hence the name. Usually, when a core electron is excited, it leaves behind an

unoccupied state, commonly called a ’hole’ [84]. Much as in semiconductor physics [70], this hole

can be treated as a fictitious positive charge attracting the negatively charged electronic states in

higher bands. A distinction between x-ray physics and semiconductor physics (which deals with

energies on the order of meV) is that in the latter, electrons from higher shells of bands are excited

into even higher bands. In x-ray physics, electrons close to the core lower shells are excited [85, 86].

The many electrons in between will often shield the higher-band electrons from the attraction, a

process called ’Coulomb-shielding’ [80, 85]. This is not present in semiconductor physics. And in

some cases this Coulomb shielding is also weak enough for higher energies to permit attractive

interactions between the excited electron and the core hole, which leads to the formation of a

strongly localized Frenkel exciton [87]. Localization in this context means that the excited electron

and the core hole are localized on the same atom, although the collective nature of the excitation

still means that every single atom in the ensemble can be excited with equal probability. Within

the realm of white lines, there are some subdivisions. The selection rules are still obeyed, so the

white lines of some transitions are electric dipoles, while others are quadrupolar transitions [79].

The latter for example appear often among the K-shell transitions of semiconductors such as Se

or Ge. Usually, quadrupolar transitions are not observed or very weak [88]. But this only holds

for transitions whose interaction Hamiltonian fulfills the electric dipole approximation, which

hold that the electric dipole contribution to the interaction Hamiltonian is dominant when the

wavelength of the energy of the transition is longer than the dimensions of the atomic system. For

hard x-rays of about 10keV this approximation tends to break down, and therefore quadrupolar

transitions may be observed easily, either in the form of white lines or so-called ’pre-edge peaks’.

We would like to point out that this may very well be a unique feature of x-ray cavity QED and

certainly deserves further attention. In the following however, we will not treat these systems,

but confine ourselves to the simple and well-explored case of an electric dipole transition. These

correspond to LI-LI I I edges. Not all of them display white lines, but they are especially prevalent

in the 3d and 5d transition metals and their oxides [79, 88]. The latter are in the 10 keV energy

range for which thin-film multilayer cavities work rather well, and therefore we will focus on

Tantalum, which displays a strong white line. In Fig. 4 we show the white line of the Tantalum

LI I I-edge. The most drastic difference to Mössbauer lines is immediately obvious. The spectral



16 CHAPTER II. PHYSICAL FUNDAMENTALS

Figure 5: An electron moves along a circular segment. The segment is decomposed into a series of linear segment, along

which the electron moves with a velocity ~v. The angle enclosed by the segment is α.

linewidth is about 5eV. This is indeed the order of magnitude of the linewidth for most white lines

- a good 10 orders of magnitude larger than that of 57Fe.

II.6. Synchrotron Radiation

Modern experiments in Mössbauer spectroscopy, and consequently in nuclear quantum optics are

based on the technique of nuclear resonant forward scattering, whose theoretical background was

briefly described in Chapter II.6. The method requires pulses that are both extremely short on the

temporal scale (picosecond range) and relatively narrowband (≈ 1meV). Ideally, the pulses should

be spaced by more than the decay time of the nuclear isotope, and have a high intensity in the

relevant energy range, as well as spatial coherence. There is only one source of x-rays which can

fulfill this host of preconditions, which is synchrotron radiation. In this chapter, we will give a

brief introduction, explaining its origins and properties.

In storage rings used for producing synchrotron radiation electrons circulate at velocities very

close to the speed of light. Beginning as a tool of experimental high energy and elementary particle

physics, from the 1970s onwards they have increasingly been used as a source for soft and hard

x-rays. On the following pages we will briefly describe the fundamentals of synchrotron radiation,

discuss some particulars pertaining to our experiments, and sketch the standard setup of nuclear

resonant forward scattering experiments. A classical, pedagogical treatment goes like this:

Suppose an electron moves straight on a series of infinitesimally small chords of a circular arc

with a velocity of v as shown in Fig. 5 In uniform motion, a charge does not radiate, but at every

bend marking the transition from one chord to another it changes its direction, and therefore

undergoes acceleration in a particular direction. Accelerated charges emit radiation. Let the time

that passes between two such accelerating bursts be ∆t′. While the electron moves on the straight

chord, the radiation it has emitted at the previous bend moves faster. By the time the electron has
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reached the second bend ∆′t the light has traveled a distance of c∆′t towards the observer, which

we suppose to be in a location downstream of the propagation of light and electrons, at a position

on the extension of the chord. In the laboratory frame, the light wave’s distance from the electron

is (c− v)∆′t. The light wave being emitted at the second bend arrives with a delay ∆t = (c− v)∆′t
c .

Following an identical argument with other bends, we arrive at an almost identical equation,

which merely introduces the effect of angular dispersion:

∆t = (v− c cos α)
∆′t
c

(19)

where α is the angle between the chords of the circular arc. Both v
c = β and cos α are very close to

unity, therefore we perform an expansion

δt ≈ 1− (1− 1
2γ2 )(1−

α2

2
) ≈ (

1 + (αγ)2

2γ2 ) (20)

where γ = 1√
1−β2

. With α close to zero, and γ very large, we can see that ∆t is minuscule. In the

laboratory frame, the time between the arrival of the first and the second pulses is compressed

so much as to be barely perceptible. The compression is of course maximal whe α = 0, and

suppressed by a factor of two if α = 1
γ . From this argument we can deduce that the opening angle

of synchrotron radiation is 1
γ . The shorter the delay is, the brighter the radiation seems to the

observer. We have not discussed the energy of the observed radiation yet. To access that, we make

use of a simple model. Suppose the magnetic field responsible for accelerating the electron is

given by ~B. Equating the Lorentz force e~v~B with the centripetal force v2

ρ where ρ is the radius

of the electron trajectory, and inserting ~p = m~v appropriately we get γmc = ρeB. This gives the

radius

ρ = 3.3
Ee[GeV]

B[T]
(21)

where Ee is the electron energy, which for modern sources is some GeV. From this we can derive

some rules of thumb. In order to get a high electron energy, which is needed for low divergence

and high intensity, strong magnets as well as large ring circumferences are required. To the

observer, an electron moving on a series of arcs roughly parallel to the optical axis seems like an

electron that undergoes a half-oscillation perpendicular to the optical axis. This is because of the

curvature of the ring. The velocity of that half-oscillation depends on the angular frequency with

which the electron traverses the ring. A segment a is passed in T
2πγ = 1

γω0
, but to the observer, as

we have seen, this appears to be shorter by a factor of 1
γ0

. This is the length of the oscillation of

the electron that the observer sees; consequently, this is the temporal shape of the pulse of dipole

radiation that the observer sees. Fourier-transforming the length of the pulse gives the energy

spectrum.
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The above considerations give a good qualitative picture of the basics of synchrotron radiation,

and explain why electrons traversing a bending magnet at relativistic speeds radiate x-rays. But

modern, 3rd generation synchrotron sources have better, more efficient ways of producing x-rays.

These are grouped under the name ’insertion devices’, a term which comprises both so-called

undulators and wigglers.

Figure 6: Sketch of two different schemes for accelerating electrons. (a) in a bending magnet, the electron is forced on a

circular path. The constant acceleration to the center of the circle forces it to emit radiation. (b) in a wiggler

or undulator opposite alternating magnets force the electron to change its direction every period, leading to

multiple acceleration periods. The light emitted from each cycle interferes constructively.

II.7. Insertion devices

A wiggler consists of two arrays of alternating opposite strong magnets. The space between them

is kept in vacuum conditions, so electrons can traverse it with minimal losses and scattering. The

electron beam is introduced between the arrays. Due to the alternating poles, the magnetic field

changes direction several times during the propagation of the electron, leading to the electron’s

being accelerated in different directions. On the whole, it is a sinusoidal trajectory through the

wiggler. In the previous section, we have argued that the time interval difference between the

electron and the light emitted by the electron leads to a compression of the wavefronts. The same

thing happens during the transmission of an electron through a wiggler, but it repeats several

times, with the light being emitted in the same direction. The path difference can be calculated

from simple geometric arguments. The electron path length is

le = λu(1 +
K2

4γ2 ) (22)



7. Insertion devices 19

where λu is the wiggler period, K = 2πγA
λu

is the so-called undulator parameter, and A is the

amplitude of the sinusoidal trajectory. K determines the opening angle of the beam; it is therefore

important to keep it low. With the Lorentz force and some geometrical approximation we can

express it as

K =
eB

mcku
(23)

where ku is the wave vector of the modulation, i.e. the inverse of λu. Examining K further, we

note that to decrease K, a smaller magnetic field strength or wiggler period is necessary.

If K is small enough (≈ 1), the light emitted from a particular wiggler period can coherently

interfere with the light emitted from the electrons in other wiggler periods. If this condition is

fulfilled, we speak of an undulator. The undulator emits radiation of a particular wavelength

(’fundamental wavelength’) and its higher harmonics.
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Chapter III

Experimental Methods

III.1. Introduction

This section is concerned with issues faced by the experimentalist in nuclear resonant scattering in

general, and how to resolve them. Furthermore, we introduce the basic experimental setup and

introduce a classical treatment of the reflectivity from stratified media.

III.2. Experimental Issues

The root of all experimental problems in nuclear resonant forward scattering of synchrotron

radiation is the sheer mass of non-resonant photons. While we have claimed in the previous section

that undulator radiation is quasi-monochromatic, the bandwidth is many orders of magnitude

larger than the linewidth of a typical Mössbauer isotope. In a way, this is the inescapable drawback

of having short pulses. With a standard monochromator available at most synchrotron beamlines,

which have bandwidths of about 1− 2 eV, this means that the bandwidth of the beam is about

8 orders of magnitude larger than the nuclear linewidth. This creates several problems. How

can we distinguish the (few) resonant photons from the (many) non-resonant ones? Does the

multitude of non-resonant photons impede our ability to measure resonant photons? Very early

on in nuclear resonant scattering, it became clear that the answer to this puzzle was to measure the

nuclear response signal in the temporal domain, instead of in the energy domain, as in Mössbauer

spectroscopy. The first experiments exploiting that effect were performed by the group of Erich

Gerdau in Hamburg in the 1980s. They employed Fe-containing crystals like Yttrium iron garnet

(YIG) or Iron borate (FeBO3) enriched with 57Fe to enhance the signal and chose crystal reflections

that strongly suppressed purely electronic scattering [89, 90, 91, 92]. As we have indicated in the

21
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Figure 7: The principle of time-resolved nuclear forward scattering. The electrons accelerated in the synchrotron move

in bunches, marked by the red dots. They are usually spaced a fixed distance apart, the distance determining

the mode. The 16-bunch mode of the ESRF for instance, has 176 ns-spaced bunches. The bunches send out

pulsed synchrotron radiation (prompts), which is scattered by a sample; the scattered signal (black solid line)

is delayed with respect to the prompt (yellow peak). The APD does not measure the prompt and the immediate

aftermath, as indicated by the transparent green window.

theoretical treatment, the signal of a pulse traversing a nuclear resonant sample consists of two

parts: first the δ-like unchanged incident pulse, which consists largely of non-resonant photons

and resonant photons which have failed to interact with the sample, and then a signal that is

delayed by a time on the order of the decay time of the sample nucleus. This is the signal due to

the complicated many-body quantum optical interaction of nuclei with light, and this is what we

are looking for. We will call the unchanged pulse ’prompt’ and the delayed signal the ’nuclear

signal’ for clarity. Simply by ignoring the first few nanoseconds of the decay signal we sort out all

non-resonant photons; from the remaining temporal signal, information about the properties of

the sample and the nature of its interaction with x-rays can be inferred. From a more technical

perspective, it is also imperative that the first few nanoseconds of response time are to be ignored;

the detector, usually an avalanche photodiode (APD) is incapable of performing single photon

counting at high intensities; and the prompt, containing even after monochromatization 106ph/s,

has a high intensity. Therefore a so-called time gate is introduced by standard nuclear instruments

module (NIM) electronics. Its width is usually on the order of 5-20 ns. A second requirement is

that some time passes between individual pulses exciting the sample, which is at least as long

as the decay time of the nuclear isotope that is being examined. Otherwise new prompt pulses

would interfere with signals from old ones, and make the measurements not just unreliable,

but impossible.To this end, the synchrotron is operated in bunch mode. A bunch that passes a
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bending magnet, or is partially funneled into an undulator emits the desired pulse. The scheme

is indicated in Fig. 7. The temporal spacing between the bunches is dependent on the mode the

ring is operated in. For example, the 16-bunch mode of the European Synchrotron Radiation

Facility (ESRF) has a spacing of 176 ns; the 40-bunch mode of PETRA III has a spacing of 192

ns. Both these spacings are larger than the decay time of 57Fe; hence both modes are suitable for

nuclear forward scattering experiments on that isotope. In the following we will discuss in some

more detail the individual components of a typical NRS experiment, all of which are employed (in

varying combinations) in our setup.

III.3. High-resolution monochromator

Instead of standard synchrotron radiation monochromators, which monochromatize the incoming

beam to a bandwidth of about 1− 2 eV, NRS employs specialized and optimized monochromators,

which currently can reach a bandwidth of about 1 meV . These monochromators have between

one and four channel-cut crystals; typically they use asymmetric Bragg reflections to match the

angular acceptance to the divergence of the incoming beam. Specifics can be gleaned from [63, 23]

III.4. The detection setup

The centerpiece of the detection setup is the avalanche photodiode. The active region is a doped

layer of silicon of several dozen µm length. The region is reverse biased. Charge carriers that

are mobilized due to the absorption of an x-ray photon form secondary electron-hole pairs in

collisions. These are accelerated equally by the voltage applied and create more electron-hole

pairs. This is the avalanche that occurs, which amounts to the amplification of the electric signal

by about 1-3 orders of magnitude. The signal from the APD is amplified again, and then fed into

a complex NIM network. A constant fraction discriminator pre-selects the signal (if it is too low,

it is discarded) and transmits a standardized short pulse. This is the start signal for a time to

amplitude converter. The stop signal is provided by the bunchclock.

III.5. Time-gated detection

The setup we have discussed so far allows measuring the temporal decay pattern of a sample. In

forward scattering geometry, this is really all we require. The measured spectrum can be fitted

with the program package CONUSS [93, 94] (COherent NUclear Scattering by Single crystals) to

retrieve the parameters of the hyperfine field. In the case of our reflectivity spectra however, there
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are many non-nuclear parameters massively influencing the field, so the parameter space is really

much larger. In order to study the spectral properties of the scattered radiation, we would like

to measure energy spectra, similar to conventional Mössbauer spectra. The synchrotron beam

remains many orders of bandwidths larger than the actual resonances. This means we cannot

simply scan the beam energy to probe the sample’s energetic response. Therefore, we use an

absorption setup. In this case, we mount a tempered stainless steel foil enriched with 57Fe on a

Mössbauer drive normally used for the radioactive source of classical 57Fe Mössbauer spectroscopy,

and insert it into the beam a f ter the sample. Upon moving, the Doppler shift slightly detunes the

energy of the stainless steel foil according the the equation

∆ = ω
v
c

(24)

where ∆ is the energy detuning, v the velocity of the drive, c the velocity of light and ω the

frequency of the resonance - in this case obviously 14.4 keV, or 2.19× 1019Hz. At the energetic

position of the resonance of the stainless steel (SS) foil, it will absorb more than off the resonance.

If we sum up the counts for one particular velocity, and do so for all velocities we will get a

Mössbauer spectrum. It will be inverted from the original one. A problem is that the more the SS

foil absorbs, the broader its line because of dynamical scattering effects; i.e. for a measurement

with a high contrast between the baseline and the features of the spectra, there are trade-offs

in energy resolution and vice versa. A final caveat is that the prompt still has to be gated away

in this scheme; the SS foil does not absorb the non-resonant radiation sufficiently to solve this

problem. This amounts to taking a time spectrum of the combined sample-SS-foil system for a

particular velocity of the foil, and summing up the photon counts outside the gating range. This

procedure is referred to as time-gating detection [95, 96, 97]. A final disadvantage is that the time

gating introduces a background modulation into the spectra so obtained; the larger the time gating

window, the smaller the oscillation periods of that modulation. A method to circumvent this will

be presented in the next section.

III.6. Polarizer-Analyzer setup

A second way to distinguish prompt and delayed signal has recently been developed and can

be applied to a particular set of experiments [98, 99]. We have already pointed out that in 57Fe

there are six different allowed transition lines, see Fig. 2. Those that involve a transition in which

the spin quantum number difference is ±1 result in a rotation by 90◦ of the polarization of the

scattered light as opposed to the incoming. If the incoming light is σ-polarized, the outgoing

is π-polarized [100]. Photons which have not interacted with the sample do not undergo this
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polarization rotation. It figures that by employing a polarizer-analyzer setup, we can distinguish

scattered light, the pure nuclear signal, from unscattered light, the prompt. Note that this is only

possible for particular combinations of magnetic field direction, direction of the incoming light,

and polarizer-analyzer configurations [63].

The setup we use, developed by Marx et al. in some of these experiments consists of two single-

channel cut silicon crystals in a crossed setting. Each crystal supports six 45◦ reflections on the

Si (800) reflex [101]. The polarizer is used to improve the polarization purity of the synchrotron

beam; the light passes through it, being scattered on the sample; light scattered into a different

polarization is deflected onto the suitably positioned APD by the analyzer. The setup reaches a

purity on the order of 10−10 [102], quite enough in order to suppress even very strong prompt

signals. Note that any crystal reflecting only light polarized in a particular direction is a polarizing

beam splitter (PBS), since all other light is transmitted. A PBS is a ubiquitous tool in quantum

optics schemes both basic and advanced. The advent of this technology in x-ray quantum optics

could help engender similar control schemes in this energy range.

The great advantage of the polarizer-analyzer setup is that it permits taking conventional Möss-

bauer spectra, but since no time-gating is necessary, the artifacts, i.e. time-window effects

mentioned in the previous section do not appear.

III.7. The Synchrotron Mössbauer Source

Another pathway to probing Mössbauer isotopes at synchrotrons, recently developed at the ESRF,

is the synchrotron Mössbauer source. The basic setup is shown in Fig. 8.

It combines the advantages of synchrotron radiation and conventional spectroscopy in that it is

essentially a monochromator able to reduce the bandwidth of the incoming light to the natural

linewidth of 57Fe. The source consists of a 57FeBO3 crystal which is inserted into the beam such

that the (333) crystal reflex is illuminated, a setup originally proposed by Smirnov [76]. This is

an electronically forbidden reflection. But due to the presence of resonant nuclei, light that is

scattered from these nuclei undergoes an additional phase shift. Resonant light can therefore be

reflected. The reflection consequently has the same bandwidth as an unperturbed 57Fe nucleus.

A problem complicating the issue is the presence of a crystal order-induced hyperfine field and

the ensuing hyperfine splitting. But by heating up the crystal to 348.5 K the crystal undergoes

a Néel phase transition, at which the hyperfine field breaks down. The quadrupole splitting

remains, but a residual interaction with the magnetic hyperfine interaction suppresses one line of

the remaining doublet [104, 105]. The reflection is then a single line. By mounting the crystal on a
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Figure 8: Setup of the synchrotron Mössbauer source at the European Synchrotron Radiation Facility [103]. From the

monochromator, the beam is guided to the FeBO3 crystal. The latter is placed on a Mössbauer drive, whose

movement shifts the energy of the resonance via the Doppler effect; an oven regulates the temperature to near

the Neel point. A deflector levels the reflected beam and guides it towards the sample. Monochromator and

deflector are schematically depicted; both consist of multiple crystals.

Mössbauer drive, the energy can be tuned, and Mössbauer spectroscopy can be performed [106].

After some development, such a scheme is now available for user operation at the ID18 beamline

of the ESRF [103].

III.8. Sample Fabrication

The vehicle we will use in this thesis to manipulate and enhance the interaction of x-rays and

matter are thin-film nanostructures. There is a wealth of modern techniques to fabricate these

sorts of samples. The choice of the technique depends strongly on the desired properties of the

thin-films. For purely monocrystalline thin films, for example, molecular beam epitaxy or pulsed

laser deposition are the most advantageous [107]. For x-ray reflectivity experiments in grazing

incidence, however, other features are more important and meaningful, chief among them a low

roughness of the thin films [108, 109, 110]. The necessary quality can be achieved by the most

important workhorse technique for thin film deposition: sputter deposition [107, 111]. Used

widely in industrial applications, sputtering employs accelerated ions to vaporize single atoms

of a desired species from the target and steers them onto the sample material. The process is

sketched in Fig. 9.
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Figure 9: A sketch demonstrating the operation principle of a sputtering setup. The sputtering target containing the

material to be deposited and the substrate on which the thin film is to be deposited are placed above a cathode

and anode respectively. A voltage is applied between them. The whole setup is placed in a low-pressure Argon

atmosphere. Argon atoms are ionized by cosmic radiation, and accelerated by the applied field. After some

acceleration, they impact on the sputtering target. The ensuing momentum transfer between the ions and the

atoms of the target material leads to the latter being ejected and traveling to the substrate.

The process can be well-controlled, which means it can be used to fabricate films as thin as a

single monolayer of a given material.

III.8.1. DC sputtering

In this case, the voltage between the cathode and the anode is constant. Free electrons coming

from arbitrary external sources such as cosmic radiation are accelerated towards the anode. On

their way there they collide with Argon atoms and ionize them, forming an Argon plasma. The

ions in turn are accelerated towards the cathode. Upon collision, secondary electrons are excited

and move towards the anode, to repeat this process. In this way, the plasma is stabilized. Some of

the ions will extract atoms or clusters from the target. These atoms now have a strong momentum
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directed towards the substrate which is placed over the anode. There, they assemble and form

first clusters, and later thin films. DC sputtering requires the sputtering target to be conducting,

otherwise the current keeping the plasma stable would break down.

III.8.2. RF sputtering

This technique uses the same setup, but the DC voltage is replaced by an AC voltage with oscillates

with a radiofrequency (RF), typically some MHz. The high frequency is mandatory, because under

a certain treshold of about 50 kHz, both electrodes would alternate as sputtering targets. Above

the treshold, free electrons start to oscillate and ionize the sputtering gas by impact ionization.

There is no current flow by gas discharge between the electrodes, but there are still argon ions

which can sputter the material off the target onto the substrate. Since there is no current, RF

radiofrequency sputtering permits sputtering with non-conducting materials.

hold, free electrons start to oscillate and ionize the sputtering gas by impact ionization. There is

no current flow by gas discharge between the electrodes, but there are still argon ions which can

sputter the material off the target onto the substrate. Since there is no current, RF radiofrequency

sputtering permits sputtering with non-conducting materials.

Beyond these founding principles, HF sputtering requires some refinements. The electrode on

which the sputtering target is mounted is wired in series with a capacitor. This is necessary

because at typical frequencies of the AC voltage the argon ions are almost stationary, while the

electrons are highly mobile. The capacitor leads to a higher net negative charge of the electrode it

is wired in series with, a process known as self-biasing. Averaged over time, this self-bias functions

as an effective negative voltage ensuring that the sputtering takes place on the target.

III.8.3. Magnetron sputtering

A further refinement valid for both AC and DC sputtering techniques is magnetron sputtering.

A permanent magnet is mounted under the cathode. The resulting Lorentz force acting on the

secondary electrons originating from the source drives them in a spiral trajectory around the axis

connecting the electrodes. This leads to a greater number of collisions and ionised atoms than a

straight trajectory would.

Magnetron sputtering is performed on round targets. The spiral trajectory of the secondary

electrons induces the risk that the sides and back of the target holder instead of the actual target

disk are sputtered off. Naturally, this gives rise to a strong degradation in thin film quality. The

solution to this problem is to include a so-called dark-field screen which has to be placed extremely
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Figure 10: Setup for the reflectivity measurements. The sample is mounted on a Θ− 2Θ-goniometer, and the angle is

varied with respect to the incoming beam. At the same time, the detector angle with respect to the beam is

changed by double the amount. Slits are used to minimize the beamsize, which results in a better quality

and less divergence of the beam, but also enhance the times necessary to get high quality reflectivity curves.

close to and around the sample holder. It has to be close enough to keep the gas ions from being

accelerated against the side of the target holder, which would sputter off the latter and result in a

degradation of the sample quality. When a gas ion collides with the substrate, the energy transfer

usually, that is in 75% of cases, results in heating of the substrate. The target has to be cooled well

during the sputtering process, otherwise the ensuing heat can reduce the permanent magnetic

field of the magnetron gun, which would deteriorate the sputtering rates dramatically. Only 1% of

the deposited energy is transfered to a target atom or cluster being detached.

III.9. Reflectivity measurements

The basic setup for reflectivity measurements is shown in Fig. 10. The incoming x-ray beam is

fixed; for every angular step that the sample is moved with respect to it, the detector is moved
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Figure 11: Sketch of a collimated beam impinging on a sample at an angle. The beam is shown in green. Due to the

angle, the beam’s cross section is larger than the sample itself, and parts of the beam are not reflected, or

even scattered from the sample. The portion of the beam that is actually impinging and not bypassing the

sample is called the footprint.

by double the amount, such that it is always positioned in the reflected beam. It measures the

reflected intensity for a range of angles. The result is called a reflectivity curve. Below the critical

angle, most radiation is reflected; significantly above that angle, the radiation penetrates into

the material and the reflectivity decreases following a q−4 law, with q being the momentum

transfer. Therefore a logarithmic depiction is often necessary. But however little radiation has been

reflected, it has been reflected from the sample below surface; the reflectivity curve at these higher

angles contains information on the structure of the thin-film sample, which can be extracted by

a fit [110]. In the following, we discuss some basic experimental issues. The incoming beam is

guided through a slit, which decreases the beam size and total intensity, but also decreases the

divergence, which serves to enhance the resolution of the setup, particularly at the small angles

which interest us. A smaller, collimated beam also reduces the footprint of the beam on the sample;

only part of the sample is illuminated by the beam, while for a large beam, the entire sample is

illuminated as shown in Fig. 11.

If the sample is inhomogeneous, as is sketched in Fig. 12, a large beam may be detrimental to

the rocking curve quality, because the detector receives a signal from different parts of the sample,

which have different thicknesses. This can be avoided if the incoming beam’s cross section is made

very small. This can be achieved by focusing it via a Kirkpatrick-Baez mirror [112] or compound

refractive lenses [113], both standard equipment at nuclear resonant scattering beamlines. They

suffer from a strong drawback, however, which is the presence of beam divergence.

This is shown schematically in Fig. 13. If the sample is fixed with a certain angle with respect

to the center of the beam, the actual illumination includes different angles, which are equally
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Figure 12: Sketch of a collimated beam impinging on an inhomogeneous sample. The three insets show the reflectivity

of three slightly different multilayers, with the angle on the x-axis, the energy detuning on the y-axis, and

the reflectivity encoded in the color map. When the sample is inhomogeneous, the effect is the same as

measuring the reflectivity from several different samples at the same angle, as indicated in the figure. As the

angle is increased, the footprint decreases, until it is so small that the sample is not homogeneous anymore

across the footprint. The reflectivity then includes differing information at different angles, complicating the

analysis.

reflected and sent to the detector. This can be ameliorated if the slits in front of the detector are

spaced closely apart, but this has the price of decreased intensity, and longer data acquisition time.

For practical purposes, one often uses a combination of small slit widths and moderate

focusing to deal with the problems at hand. To facilitate the experimental analysis, we need some

procedures to incorporate these experimental shortcomings into our description of the reflectivity;

otherwise we risk importing errors into the results we receive from simulations and fits. They will

be given in Chapter IV.1.

III.10. Thin-film cavities

Multilayer-based thin film cavities for x-rays were first pioneered from the 1970s on [114]. Their

breakthrough came in the 1990s [115, 116] and they quickly found use in providing beam com-

pression of x-ray synchrotron beams for imaging studies [117, 118, 119, 120, 121]. A first success

in using them for manipulating the light-matter interaction followed soon [122]. Interestingly,

even in one of the first papers on the matter [116] the authors remark upon spectroscopic shifts.
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Figure 13: Sketch of a focused beam illuminating a sample. The three insets above show the resonant reflectivity of the

sample, with the angle on the x-axis, the energy detuning on the y-axis, and the reflectivity encoded in the

color bar. The black lines mark slightly different angles, whose reflectivities differ strongly from each other.

The footprint is relatively small, even at small angles, so inhomogeneity plays less of a role. The distinct

drawback is that the divergence is greatly increased. This corresponds to the sample being illuminated from

different angles at the same time, as indicated in the figure.

Measuring the fluorescence intensity of a zinc layer centered in a thin film waveguide by varying

the x-ray energy, they comment that "the resonance peak position in energy is extremely sensitive

to the incidence angle". The authors do not follow up on that remark, but it is likely that they saw

something akin to the collective Lamb shift, which we will elucidate on later.

The fundamental principle of x-ray waveguides are explained easily enough. In the introduction to

the physical fundamentals of this thesis, we have already mentioned the critical angle, below which

any material functions as a mirror for hard x-rays. If we now have a combination of materials,

two of which have a high critical angle (this is true for high-Z materials) sandwiching a low-Z

material with a low critical angle, there is an angular range where the impinging light cannot

propagate in the outer materials (the mirrors of the cavity, called cladding) but can propagate in

the material between them (called core). The light can, however, tunnel through the mirrors, and

is then confined in the core for some time. As illustrated in Fig. 14, we can picture the cavity as a

finite quantum well, where the confining walls are formed by the regions whose real δ decrement
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Figure 14: On the left, a sketch of a typical thin film cavity, consisting of three layers. Typically, the outer (cladding)

layers are the same material. Their electron density should be far higher than that of the inner (core) layer.

This makes the three layer a quantum well for light, where the number of states is given by the well depth,

as indicated on the right.

of the refractive index is large. This quantum well then holds several different modes, depending

on the depth. We do not give a detailed calculation here, but remark that the Helmholtz equation

can be used to describe the problem. The Helmholtz equation being mathematically similar to the

Schrödinger equation [123], it can be solved in a very similar way, by choosing the appropriate

boundary conditions [124].

We conclude this brief overview by noting that some literature on the optimization of these

x-ray resonances has already appeared [123, 125]; however this was geared to optimizing the field

strength inside the cavity, without taking into account resonant layers, which is related, but not

identical to optimizing the coupling strength. These methods can be used but should not be relied

on uncritically when designing cavities.
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Chapter IV

Theoretical Tools

IV.1. The transfer matrix algorithm

In the course of this thesis we will introduce several quantum optical models which describe the

interaction of light with thin film nanostructures. However useful these models are for under-

standing the formers’ fundamental physics, they also have shortcomings. Not all of them deal

realistically with dissipation; they cannot deal with experimental imperfections of the sample

and the setup; and therefore we here introduce a simple model to address these shortcomings.

It is the so-called transfer matrix method, which is ubiquitous in many areas of physics dealing

with the propagation of light through matter composed of many atoms [126, 127, 128], and has

great success in the quantitatively correct description of such processes. Originally a purely

classical description of the interaction of light with a layer having the refractive index n, it has been

extended to a semiclassical description to describe the sample’s characteristics when it consists of

or includes atoms resonant with the frequency of impinging light. In the case of nuclear resonant

scattering, a fully quantum electrodynamical description for weak fields has been found [109]. In

the following, we will describe it in semiclassical terms, but note that the scattering amplitudes

and refractive indices we use were derived in a fully quantum electrodynamical way [129].

We assume that the propagation of light through a stratified medium can be described by a

transfer matrix: A+(z)

A−(z)

 = M(ω)

A+(0)

A−(0)

 (25)

where M is the transfer matrix, which is energy-dependent in general, and A+ and A− are the

forward and backward propagating wave amplitudes at depths z in the sample, with z = 0 being

35
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the position of the top surface, see Fig. 14. Supposing that the sample is not homogeneous, but

consists of different layers, we can decompose the transfer matrix:A+(z)

A−(z)

 = M1M2...Mn

A+(0)

A−(0)

 (26)

where each layer has a separate transfer matrix denoted by the index, and we have omitted the

energy dependence. The number of layers is N. For the procedure determining the transfer

matrix for nuclear resonant layers from first principles, we refer the reader to [63]. We give the

results here, remarking that the only difference to other methods is the calculation of the index of

refraction. The transfer matrix for a single layer is

M1 =

 1 r01

r01 1

 eikzz 0

0 e−ikzz

 1 r10

r10 1

 1
t01t10

(27)

where r01(r10) are the reflection coefficients from the vacuum to the first layer and vice versa,

t01(t10) are the respective transmission coefficients, k1z are the wave vector components in the

direction of growth (i.e. the direction where the layer changes) and z is the location. k1z = k0zβ

where

β =

√
1 +

2(n− 1)
k0z

(28)

and

rij =
βi − β j

βi + β j
(29)

tij =
2βi

βi + β j
(30)

and n is the index of refraction of the layer in question. All these quantities have to be calculated

for each individual layer; the transfer matrix for a stack of layers can be calculated by appending

the matrices for all layers. We will call the total transfer matrix Mtot, and D is the position where

the layer stack ends, see Fig. 14. A+(D)

A−(D)

 = Mtot

A+(0)

A−(0)

 (31)

where

Mtot =

 M++ M+−

M−+ M−−

 (32)

Now, assuming that the incident wave is incoming from the positive direction, and that there is no

field incident from the negative direction, we can set A+(0) = A0 and A−(D) = 0 where A0 is

the amplitude of the incoming wave. We then get two equations
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A−(0) = −(M−+(D)
M−− (D))A0 = RA0

A+(D) = (M++(D)− M+−(D)M−+(D)
M−−(D)

)A0 = TA0
(33)

where R and T are the reflectivity coefficients.

For periodic layer structures, we adopt the same formalism. We again decompose the electro-

magnetic field illuminating the sample into a forward- and backward propagating component

called A+ and A−. The amplitudes of both components at the upper and lower boundaries of a

given layer are connected to each other via a transfer matrixA+(m + 1)

A−(m + 1)

 = M(ω)

A+(m)

A−(m)

 (34)

Here, m is the number of the period of the periodic multilayer. The above can be expressed in

vector notation as

~A = M(ω)~A0. (35)

M can be more precisely expressed as ei~Fz, where ~F the scattering matrix of the medium, and z is

the propagation distance, i.e. the thickness of the film. Supposing that our multilayer is infinite, we

can use an alternative description for the field propagation across one period in the ML structure:A+(m + 1)

A−(m + 1)

 =

eik0za 0

0 e−ik0za

A+(m)

A−(m)

 (36)

where k0z is the z-component of the wave vector of the incident light and a is the thickness of the

period. (z is the so-called surface normal, i.e. the direction in which the multilayer is periodic,

see Fig. 14.) The above equation is the Bloch theorem for a two-beam case, which states that in

a periodic system, a wave can be described as the superposition of the wave function within a

period and a plane wave with a wave vector whose length corresponds to the period length of

the system. Upon inserting Eq. (36) into Eq. (34) we can see that eik0za are the eigenvalues of M.

Simple algebraic manipulations give

cos(k0za) =
Tr(M(ω))

2
. (37)

This is the dispersion relation of the light in the multilayer system. Conventionally, a dispersion

relation is resolved for ω; this can only be performed in special cases for periodic systems. It

can, however, be calculated numerically. To go in this direction, we have to calculate M. We have

already pointed out its relation to the scattering matrix and elaborate on that now. In a nuclear

resonant layer which is very thin, M can be given as

M = 1 + iFnd1 (38)
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where d1 is the layer thickness, Fn the nuclear scattering matrix and 1 the unity matrix. Fn is

Fn =

 fn + k0z fn

− fn − fn − k0z

 (39)

where fn = fn(ω) is the frequency-dependent nuclear scattering amplitude. We will assume

that the non-resonant parts, that is the electronic scattering amplitude of the layer is included

in the nuclear one. This comes down to adding a constant term, since the electronic scattering

is basically constant over the energy range of the nuclear scattering amplitude in almost all

Mössbauer systems. In an isotopic multilayer, which consists of alternating layers of non-resonant
56Fe and resonant 57Fe, the reflection and transmission coefficients at the interfaces are merely

due to resonant scattering, which allows us to ignore electronic contributions in the following. For

the non-resonant layer then, only changes incurred in the propagation through the layer appear;

the corresponding transfer matrix is

Mnr =

eik0znd2 0

0 e−ik0znd2

 (40)

where d2 is the thickness of the non-resonant layer. Multiplying Eqs. (38) and (40) and inserting

the product into Eq. (37), we get

cos(k0za)
2

= cos(k0znd2) + i( fn + k0z)d1sin(k0znd2) (41)

This is the dispersion relation for an infinite ML; it can be calculated numerically. Calculating the

dispersion relation for a finite ML is not possible analytically, but we can calculate the transfer

matrix for one with N layers:

MN(ω) =
sin(Nk0zd)
sin(k0zd)

M(ω)− sin((N − 1)k0zd)
sin(k0zd)

1 (42)

From this, we can calculate the reflectivity, transmittivity, and absorption as a function of ω for

this structure
R =

MN(1,2)(ω)

MN(2,2)(ω)

T =
MN(2,1)(ω)

MN(2,2)(ω)

A = 1− R− T.

(43)

This method yields quantitative predictions against which experimental results can be tested.

However, the theoretical predictions refer to the case of an ideal experiment. This includes a
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sample/multilayer of infinite lateral length (or an infinitely small beam), a beam without any

divergence and other assumptions that are not warranted in reality, but often fulfilled to a good

approximation. We now introduce the methods required to calculate the reflectivity correctly even

in imperfect experimental conditions.

For the divergence, the procedure is straightforward [110]. The reflectivity curve is simply

convoluted with a Gaussian whose FWHM corresponds to the divergence:

Rcorr(Θ) =

∫
R(Θ− φ)D(φ)dφ∫

D(φ)dφ
(44)

where D(φ) is the Gaussian describing the divergence, R is the reflectivity, and Rcorr is the

reflectivity taking into account the beam divergence. The next issue is the problem of beam width

and sample length. At zero degrees incidence angle (as mentioned we define the incidence angle

as the angle between the surface and the beam), half the beam passes the sample and is transmitted

into the detector. As the angle of the sample is changed, some of the radiation that was transmitted

before is reflected now, and is detected at double the incidence angle. Only part of the beam

actually is reflected; the size of this part is referred to as the footprint. As the angle is increased

further and further, larger parts of the beam are reflected. This has the curious effect of increasing

the reflected intensity of radiation until the tilted sample blocks the whole beam, even though

the actual reflectivity decreases as the angle is increased. This effect can be incorporated into the

transfer matrix method (TMM) used to calculate the reflectivity by multiplying the reflectivity

with an angle-dependent prefactor. The functional form of the prefactor depends on the beam

shape; the relevant cases are a square and a Gaussian beam shape. For both, the prefactors can

be derived by simple geometrical considerations, given in [130]. We give the results here for the

square beam:

f =
d

l sin α
(45)

where d is the diameter of the square beam, l is the sample length in the direction of propagation,

and α is the angle of incidence. Naturally, this prefactor has to be applied only for those angles for

which the footprint is larger than the sample length, that is from α = 0 to α = arcsin d
l .

For a Gaussian beam, the formula is more complicated:

fg =

∫ Lsin(Θ)/2 g(t)dt∫ tm
0 g(t)dt

(46)

where g is the Gaussian describing the beam, t is the variable describing the distance from its

center, tm is the position at which we assume the Gaussian to be zero (we have chosen six FWHMs

for this), L is the size of the sample, and Θ the angle of incidence.
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IV.2. Basic Quantum Optics

In this section we will discuss some of the basic problems of quantum optics in order to fix the

terminology and lay out the motivation for our experiments. This section deals with the most

fundamental description of the interaction of light with matter. We introduce the terminology

and results which form the basic building blocks of the more complicated theories which we

will introduce later on to describe our experiments. We will first discuss the interaction of an

atom with light in free space. These results are invaluable in understanding why the interaction

of light and matter is fundamentally changed when the atoms are inserted into a cavity. Later

on, we will give a brief description of the phenomena which can be observed when light and

atoms interact in a cavity, and hint at why the control thus gained is so desirable. Finally, we

introduce the theoretical description of light with a large ensemble of atoms. Not only is this a

fascinating and beautifully simple result of many-body physics in its own right, it is also vital for

the understanding of our experiments, since we will always deal with a large number of resonant

atoms or nuclei by default.

IV.2.1. Spontaneous emission and the Wigner-Weisskopf theory

Wigner and Weisskopf [131] were the first to deal with the problem of spontaneous emission of

a photon by an atom. Suppose an atom is in an excited state, while the electromagnetic field is

in the vacuum state. We denote this initial state as Ψi = |e, 0〉. In this model, the atom interacts

with all the modes in the electromagnetic vacuum, meaning the final state is Ψ f = |g, 1~k〉. The

time-dependent state of the system is then

|Ψ(t)〉 = a(t) |e, 0〉+ ∑
~k

b~k(t) |g, 1~k〉 (47)

where the sum goes over all modes~k in the electromagnetic field, and a and b are the probability

amplitudes that the system is in the respective state. We are ignoring polarization effects. The

rotating wave approximation [132] has been performed. The appropriate Hamiltonian reads

H = h̄ωσz + ∑
~k

h̄ω~ka†
~k

a~k + ∑
~k

gσ+a~k + g∗a†
~k

σ− (48)

where the first term denotes the energy of the atom/nucleus, the second term the energy of all

modes of the electromagnetic field, and the third the interaction energy between atom and field

modes. The interaction term can be related to the energy of a dipole in the electromagnetic field

Hint = −~d · ~E. (49)
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However, this stems from the dipole approximation, which implies that the resonance is an electric

dipole and that the wavelength of the light is far larger than the size of the resonant atom. The

first assumption is not a given when dealing with nuclear resonances, which are often magnetic

dipoles or electric quadrupoles; the second one is not necessarily applicable when dealing with

electronic resonances and x-rays, since the latters’ wavelength is usually smaller than an atom. The

main conclusion, important for further discussions is the following, that the interaction strength

depends mostly on (a) the matrix element of the respective transition and (b) the electromagnetic

density of states. This is valid for both electronic and nuclear resonances. In fact, it is a general

principle known as Fermi’s golden rule [133].

Our choice of quantum state involves truncating the Hamiltonian after the one-excitation

subspace. Inserting Hamiltonian and state ansatz into the time-dependent Schrödinger equation

we get the coupled equations of motion

ȧ = i ∑~k ge−i(ωk−ω0)b~k(t)

ḃ~k = ig∗ei(ωk−ω0)a(t)
(50)

Formally integrating the second equation and re-inserting it into the first yields

ȧ(t) = −∑
~k

|g|2
∫ t

0
dt′e−i(ωk−ω0)(t−t′)a(t′) (51)

Here, we perform the Markov approximation [133], i.e. we assume that the behaviour of a(t)

varies with a rate that is much slower than the rotation of the exponential term. In that case,

a(t′) does not vary much while the rest of the integrand is non zero; we can approximate it as

depending only on t itself.

ȧ(t) = −∑
~k

|g|2a(t)
∫ t

0
e−i(ωk−ω0)(t−t′)dt′ (52)

This is the so-called Markov approximation. It means that the systems behaviour depends only on

the current time, and not on its behaviour in the past. In other words, the system has no memory.

This has far-reaching implications, for example that the decay is non-reversible [133]. A rather

complicated complex integration yields the result∫ t

0
e−i(ωk−ω0)(t−t′)dt′ = πδ(ω−ωk) + iP 1

ωk −ω0
(53)

where P is the Cauchy principal value. This part is usually neglected in non-relativistic calculations

because it leads to a divergence; a renormalization treatment yields the Lamb shift. Inserting the

remainder of the result into Eq. (51) results in

a(t) = a(0)e−Γt (54)
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where Γ is the natural lifetime, and can be expressed as

Γ = πω3
0 ∑

~k

|g|2. (55)

Thus an excited atom decays exponentially and irreversibly. Obviously, this means that this

physical situation is useless for any advanced schemes of the coherent control of light, and

therefore for any practical uses of quantum optics. To alleviate this, another scheme is needed.

IV.2.2. The Jaynes-Cummings model

In the Wigner-Weisskopf approach, the atom interferes with a continuum of modes. Roughly

speaking, the atom cannot reabsorb a photon because the probability amplitudes from all modes

interfere destructively. When the atom interacts with only one mode, this is not the case. This is

the so-called Jaynes-Cummings model [132]. The Hamiltonian is identical to that in Eq. (48), but

the sum over all modes is dropped, as the atom interacts with only one mode. Proceeding as in

the last section, we get for the temporal dynamics

|Ψ(t)〉 = −i
g2

g2 + ∆2 sin(
√

g2 + ∆2t) |e, 0〉+
[

cos(
√

g2 + ∆2t)− i
∆√

g2 + ∆2
sin(

√
g2 + ∆2t)

]
|g, 1〉

(56)

where g is the coupling strength and ∆ the detuning between the frequency of the atom and

the mode. We have assumed that the atom is initially in the ground state. It follows from the

above that the mode and the atom periodically exchange populations with a frequency given by

the interaction strength and the energetic detuning. This was observed for the first time with

fine structure transitions in the microwave range by Rabi et al [134]. If the detuning is zero, the

equation simplifies to

|Ψ(t)〉 = sin(gt) |e, 0〉+ cos(gt)) |g, 1〉 (57)

In this context, g is often referred to as Ω, the Rabi frequency. For reasons that will become

clear, we will call g = Ωc and
√

g2 + ∆2 = ΩR. With the above equations, we can calculate the

probabilities of finding the atom in the excited or ground state. Clearly, this probability varies

sinusoidally with the time, with the frequency being Ωc or ΩR. A cursory inspection reveals that

the frequency becomes larger if the field and the atomic level energy are detuned, but also that

the probability of finding the atom in the excited state becomes much smaller. This phenomenon

can also be described in energy instead of temporal space. The Hamiltonian in matrix formulation

for the one-excitation subspace is [135]

H =

ωa g

g∗ ωm

 (58)
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Diagonalizing this, we get the eigenstate energies dispersion relation

ω1,2 =
ωm + ωa

2
±
√
(

ωm −ωa

2
)2 + |g|2 (59)

where clearly ωm −ωa = ∆. Evidently, the splitting between the branches corresponds to twice

the Rabi frequency. If the detuning is large, clearly one branch of this dispersion relation will have

an energy that is close to the atomic energy; we refer to it as ’matter-like’. The other one will have

an energy almost identical to the mode of the electromagnetic field, and will be called ’light-like’.

The corresponding eigenstates at zero detuning are

|+〉 = 1
2
(|g, 1〉+ |e, 0〉) (60)

|−〉 = 1
2
(|g, 1〉 − |e, 0〉) (61)

(62)

Extending this beyond the one-excitation subspace is simple. In the rotating wave approx-

imation, only states with the same number of total excitations are coupled, e.g. |g, n + 1〉 and

|e, n〉. This is the so-called Jaynes-Cummings ladder [136]. The only additional change that has to

performed in the above formulas is to replace every instance of g by g
√

n + 1.

Any practical implementation of the Jaynes-Cummings model will be in one of the many varieties

of cavity quantum electrodynamics that have sprung up in the last 30 years. The archetypical

system is a microwave cavity with spherical mirrors that permits only one mode in a reasonable

energetic range around an atom inside the cavity [19]. The atom is usually introduced into the

cavity by means of an atomic beam; the velocity of that beam determines the time the atom stays in

the cavity and is the prime way of manipulating the quantum states of the combined cavity-atom

system and of producing entanglement [13]. Naturally, all these systems share a set of flaws:

dissipativity and decoherence, though in each system one of them is dominant. In all cases, no

matter how good the cavity, it will have losses to the continuum of modes outside the cavity;

equally the atomic system will spontaneously emit photons into modes outside of the cavity,

instead of into the cavity mode. This can be quickly and largely correctly modeled by introducing

imaginary terms into the diagonal elements of the matrix representing the Hamiltonian. The

imaginary terms indicate the width (in Hz) of the cavity or atomic line.

At this point, problems appear. When g is not larger than both κ (the cavity linewidth) and γ (the

atomic linewidth), the Rabi splitting does not take place, since the width of the splitting between

the lines is proportional to 2g. At least one line is wider than the splitting, therefore the splitting

is not observed [137, 138]. At first this might sound like a spectroscopic resolution criterion,

which in principle it is. But a large linewidth of the cavity or the atom means that effectively
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the atom interacts with many modes of the electromagnetic field. Then, there is no coherent

exchange of energy between the atom and the mode, but the system as a whole undergoes a

Wigner-Weisskopf-like irreversible decay, which may only be slightly modified by the cavity - the

so-called Purcell effect [139, 140]. If, however, the splitting can be resolved, atom and cavity mode

exchange an excitation periodically. The decay is not irreversible, at least in the short term, and

offers opportunities for quantum optical manipulations. This regime is called the strong coupling

regime [141], and in the majority of most modern cavity QED experiments and schemes, it is a

precondition.

IV.2.3. Many body quantum optics and the Dicke model

The experimental situation where one photon interacts with one atom is hard to produce. While

even at modern synchrotron sources the occurrence of more than one photon in the bandwidth of

the 57Fe 14.4 keV resonance at a time is extremely rare, we will always see it interact with a huge

ensemble of atoms. The one-excitation subspace will therefore describe phenomena described

in the remainder of this thesis very well. More important for our purposes is the question of

what happens when the number of atoms or nuclei is larger than one. To deal with this question

we turn to the Dicke model [142, 143]. Dicke was the first to notice that a number of N atoms

interacting with a single mode can be described by a set of pseudo-angular momentum operators.

For a single atom i

σi
+ = |ei〉 〈gi| (63)

σi
− = |gi〉 〈ei| (64)

σi
z = |ei〉 〈ei| − |gi〉 〈gi| (65)

are the raising, lowering and population inversion measurement operators respectively. For N

atoms we define the new set of operators

S+ =
N

∑
i

σi
+ (66)

S− =
N

∑
i

σi
− (67)

Sz =
N

∑
i

σi
z (68)

The standard angular momentum commutation relations are fulfilled for the new operators. Using

these new operators requires that the Hamiltonian be transformed into the new Dicke basis of

collective states. This can be compared to a spin system. Consequently, the ground state is
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S = −N
2 . Other states available are −N

2 ≤ n ≤ N
2 . However, this accounts for only N + 1 states.

However, in the single-atom basis, the number of different combinations of excited and ground

state atoms should be 2N . Of course, several combinations of excited and ground states can have

an identical total spin. It turns out a new quantum number has to be introduced to describe this

accurately. In going with Dicke, we will call it r. It is constrained by |n| ≤ r ≤ N
2 and explains the

degeneracy. Degenerate levels have in common that they have the same number of total excitations,

but shared among the constituting atoms in different linear combinations of varying symmetry. n

and r correspond to the magnetic and azimuthal quantum numbers of angular momentum algebra

respectively. The eigenstates of the new system are described by superpositions of the states of the

previous basis.

As we shall describe later on, the truncation of our system to the one-excitation subspace (where

only one quantum of energy is involved) permits us to examine the interaction of the electromag-

netic field only with the Dicke states which have a quantum number of S = −N
2 + 1 and S = −N

2 .

We can also assume that the field excites only the maximally symmetric Dicke states, which for

the chosen subspace has a quantum number of r = −N
2 + 1, and the form

ΨDicke =
1√
N

∑
i
|gg...ei...g〉 (69)

which means that it is an equally weighted sum over all states where one atom (or nucleus) is

excited, and all others are not. Recently, a particular type of Dicke state has excited a lot of

interest in quantum optics, which is usually referred to as a ’timed’ Dicke state [144, 145, 146, 147].

The difference between a timed Dicke state and a regular one is that the timed Dicke state

displays a different phase factor for every atom included in the Dicke state. The physical situation

this corresponds to is that of a set of atoms spatially dispersed over an area much larger than

the wavelength of the resonant radiation illuminating the ensemble. As pointed out by several

authors [146], the interaction of a timed Dicke state and the electromagnetic vacuum has a very

useful aspect to it. The interaction always comes with a factor

1√
N

N

∑
i

ei(~k−~k′)ri →
∫

ei(~k−~k′)ri → δ(~k−~k′) (70)

which is valid in the limit of a large, disordered, low-density sample. This means that the timed

collective Dicke state effectively interacts with only one mode, the one from which it got excited

in the first place. We see that the nuclear exciton, which is the excitation shared by an ensemble

of nuclei is one example. Similar mathematics and reasoning was also used by Hopfield in his

derivation of the polariton [148]. So it turns out that the presence of a lot of spatially spread nuclei

in the cavity mode is really a boon for enhancing the light-matter interaction. Not only does an
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extra term
√

N enhance the collective interaction [149], but the very fact that the excitation is

phased ultimately enforces that the ensemble’s collective states only interact with the mode which

fits the phasing pattern - which is of course the mode the state was excited from. So the nuclear

ensemble interacts always with one mode only, and it is always the one we choose by illuminating

it. This does not mean that the cavity itself cannot be detuned from that mode.

In light of the fact that we are using a cavity anyway, this may not mean a great deal. But our

cavity does not quite meet the definition and requirements that are commonplace in other areas of

optics. The electric field is only quantized in one direction, the direction of growth. In the other

two dimensions, a single atom would be perfectly free to interact with a continuum of modes.

There is a huge number of publications debating whether Rabi oscillations and energy splitting

might still be observed under certain circumstances for a single atom or a non-phased ensemble,

see for example [150, 151, 152, 153].

IV.3. Quantum Optical Models

We will recap a slightly simplified version of a quantum optical model of the QED/Cavity

interaction devised by Heeg and Evers [54, 58], where the main difference will be that we restrict

ourselves to one level. We begin by modeling the cavity and the drive. The cavity is schematically

shown in Fig. 15

IV.3.1. Cavity

The Hamiltonian of the cavity in the Schrödinger picture is

HC = ωCa†a + i
√

2κr(aine−iωta† − a∗ineiωta). (71)

Here, ωC is the cavity mode frequency and a(a†) is the photon annihilation (creation) operator for

the cavity mode. Synchrotron radiation consists of a coherent electromagnetic field. Furthermore,

within the bandwidth required to excite a nucleus, the intensity of the synchrotron x-ray beam

is usually very low (on the order of 103 photons/sec), with a repetition rate of 5 × 106 Hz.

When taking into account the low brilliance of the beam, it is therefore justified to model the

driving beam as a weak classical field, whose strength is given by ain, because the number of

resonant photons is very low. κr is associated with the output noise of the cavity. To facilitate

calculations, we transform this Hamiltonian into the interaction Hamiltonian by performing the

unitary transformation
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Figure 15: The basic design of the cavity. A low-Z core is sandwiched by a high-Z cladding; in the center, where the

guided electromagnetic field is strongest, a resonant layer is placed.

H I
C = UHS

CU† − HT (72)

where HT = ωa†a and U = eiHT t. This yields

H(I)
C = ∆Ca†a + i

√
2κr(aina† − a∗ina). (73)

∆C is the detuning between drive and cavity. For practical purposes, the detuning will take place

both by illuminating the cavity with slightly different energies and by changing the angle of

incidence. The angular detuning can be transformed to energetic detuning by the formula

∆C(α) = ω0(
sin(α0)

sin(α)
− 1) (74)

where α0 is the angle at which the cavity is driven exactly at mode frequency, and α is the incidence

angle. Experimentally, we probe the system by performing reflectivity measurements. The cavity

is one-sided, the electromagnetic input and output fields couple to the cavity via the same port,

namely the upper mirror. The standard input-output formalism of quantum optics is tailor-made
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for a situation of this kind. We give its main result here, which is

aout = −ain +
√

2κra (75)

The reflection coefficient itself is

R =
〈aout〉

ain
(76)

Or with Eq. (75)

R = −1 +
√

2κr〈a〉
ain

(77)

Obviously, the reflectivity can be found by calculating the steady-state value of a, i.e. setting ȧ = 0.

IV.3.2. Nuclear ensemble

Beginning again in the Schrödinger picture, the Hamiltonian of a single nucleus is

H(S)
N = ωg |g〉 〈g|+ ωe |e〉 〈e|+ gσ+a + g∗σ−a (78)

where ωg and ωe are the ground and excited state energies respectively, g is the coupling constant

and σ± are the raising/lowering operators for the nucleus. In order to convert this Hamiltonian to

the interaction picture, we proceed as in the previous section, but replace the HT by

HT = ωa†a + ωg |g〉 〈g|+ (ωe + ω) |e〉 〈e| (79)

Note that this new transformation can be applied to both the cavity and nuclear Hamiltonian. The

nuclear Hamiltonian in the interaction picture is

H(I)
N = −∆ |e〉 〈e|+ Gσ+a + G∗σ−a (80)

where ∆ is simply the detuning between the nucleus and the drive frequency. For N nuclei, the

above can simply be summed up. Since the coupling strength g is the same everywhere, but is

phased, we write G = gei~k~rn = g(n). Since the Hamiltonian for the entire ensemble is obviously

∑N
i H(I)

N we can replace the individual ladder operators by the collective operators.

HN = −
N

∑
i

∆ |e〉i 〈e|i + gS+a + gS−a. (81)

Note that this is only valid if the coupling is identical for all nuclei involved in the collective state

that is raised or lowered by the operator
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IV.3.3. Dissipation and losses

Both cavity and nuclei are subject to energy dissipation. In the case of the nuclei, this takes the

form of spontaneous emission into non-cavity modes of the electromagnetic field or non-radiative

decay. For the cavity, standard absorption in cladding and core, as well as scattering and emission

outside the cavity make up the dissipation. For simplicity, we will ignore non-radiative loss

channels and subsume them into the radiative channels. This allows us to treat the problem with

the standard Lindblad operator [138] derived from a Master equation approach [154]. A Lindblad

operator is defined as

L(ρ, O+, O−) = O+O−ρ + ρO+O− − 2O−ρO+ (82)

where O is any operator. The Lindblad operator generally describes the irreversible emission of a

single system interacting with a bath, in our case the continuum of modes outside the cavity. The

specific decay terms for cavity and a single nucleus are

LC = −κL(ρ, a†, a),

LN = − γ
2L(ρ, σ+, σ−)

(83)

and they are added to the Hamiltonian for a full description of the system.

IV.3.4. Solutions

Broadly, there are two pathways for obtaining the reflectivity. Heeg and Evers have opted to

adiabatically eliminate the cavity mode on account of the fact that in a typical set up its linewidth

is larger than the nuclear linewidth by some 10 orders of magnitude. A photon entering the cavity

is therefore unlikely to be absorbed and emitted multiple times by the nuclear ensemble within

the cavity - the system is far outside the strong-coupling regime. This approach delivers accurate

results and is extremely convenient when dealing with Zeeman splitting of the lines. In that

case, Heeg and Evers have shown that both cavity mode-induced self-interactions of individual

nuclei resonances, as well as interactions between resonances of individual nuclei and interactions

between different resonances of different nuclei take place. In this way, they could explain a

range of observed effects, all due to interactions induced by the cavity vacuum. These were the

collective Lamb shift of the ensemble [52], and spontaneously generated coherences [56] between

the collective states of different sublevels, leading to the suppression of spontaneous emission at

certain positions in the energy spectrum. However, in the context of a single-line system, it is

straightforward to solve the system by solving the Heisenberg-Langevin equations in the steady
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state. We will first reproduce Heeg’s and Evers’ derivation involving the adiabatic elimination,

then take the second approach involving only the steady-state solution. Finally, we introduce

Heeg’s and Evers’ generalized version of their first result, involving multiple cavity modes and

layers.

The Heisenberg-Langevin equations for our model are

ȧ = i[H, a]− κa
˙σ− = i[H, σ−]− γσ−

(84)

To perform the adiabatic elimination of the cavity mode, we calculate the Heisenberg-Langevin

equation of the cavity mode, and set the derivative to zero. Resolving for a, we get

a =

√
2κrain − i ∑n g(n)

∗
σ
(n)
−

κ + i∆C
(85)

Eq. (85) can be introduced into the Master equation

ρ̇ = i[H, ρ]−L[ρ] (86)

yielding the effective Hamiltonian which describes the system and its dynamics purely in terms

of the nuclear raising and lowering operators. The effective Hamiltonian and effective Lindblad

operators are:

HΩ = ∑N
n=1 Ωgnσ

(n)
+ + h.c.

HLS = ∑N
n,m=1 δLSg(n)g(m)∗σ

(n)
+ σ

(m)
−

Le f f
cav = −ξ ∑N

n,m g(n)g(m)∗L[ρ, σ
(n)
+ , σ

(m)
− ]

(87)

where Ω =
√

2κrain
κ+i∆C

and δLS = − ∆C
κ2+∆2

C
and ξ = κ

κ2+∆2
C

. The first Hamiltonian includes the effective

driving of the ensemble of nuclei by the drive after elimination of the cavity. The second one

includes the self interaction of nuclei due to the cavity vacuum (for m = n), and the interaction of

different nuclei due to re-emission and re-absorption for m 6= n. The former term results in an

enhanced Lamb shift of a single nucleus due to the cavity vacuum; the second one results in a

collective Lamb shift.

The expression for a arising from adiabatic elimination can also be introduced into Eq. (77) for the

reflection coefficient:

R = −1 +
2κr

κ + i∆C
− i

√
2κr

ain(κ + i∆C)

N

∑
n

g(n)
∗〈σ(n)
− 〉 (88)

Recall that 〈A〉 = Tr(ρA), where A is any operator.

To proceed, we perform a change of basis. This is largely analogous to the Dicke model basis

transformation, but since our sample exceeds the Dicke-limit in one dimension, we have to add
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another phase factor. Moreover, in all calculations, we will use only one excited state, namely

(−N
2 + 1, N

2 ), which is the maximally symmetric Dicke state in the one-excitation subspace of

Dicke states. The ground state will be denoted by |G〉.

In the old basis, the singly excited state of nucleus n is

|E(n)〉 = σ
(n)
+ |G〉 (89)

In the new basis, the excited state is a coherent superposition of all singly excited states, with an

additional phase factor to account for spatial distribution. Again, this is the so-called ’timed Dicke

state’.

|E+〉 = 1√
N

N

∑
n

ei~k~rn |E(n)〉 (90)

where~k is the wave vector of the radiation exciting the timed Dicke state, and~rn is the position

of the n-th nucleus. This change of basis allows us to simplify the effective Hamiltonian and

Lindblad terms:

He f f
Ω = Ωg

√
N |E+〉 〈G|+ h.c. (91)

He f f
LS = δLS|g|2N |E+〉 〈E+| (92)

L[ρ] = −ξs|g|2NL[ρ, |E+〉 〈G| , |G〉 〈E+|] (93)

Note that |E+〉 〈G| is essentially a coherent phased superposition of raising operators ∑N
n e−i~k~rn σ

(n)
+ .

It can be interpreted as a new operator, which adds an excitation inside the symmetric subspaces

of the many body system. An equivalent argument is valid for the lowering operator. If we restrict

ourselves to the symmetric state of the one-excitation subspace, a single layer of 57Fe can be

regarded as a two-level system with an
√

N-fold enhanced interaction with the environment. It is

not entirely clear how large N is; in principle it should account for all nuclei in a cavity. However,

planar cavities, such as ours have a transverse quantum-correlation length [155], sometimes

referred to as effective area [156], which limits this number. Briefly, it can be interpreted as the

length over which resonant atoms in the cavity interact collectively with the mode. This is not

necessarily the cavity length. We therefore always give the collective coupling strength, and do

not calculate the strength for an individual nucleus or atom. We can insert the lowering operator

into the term Eq.(88). Performing the trace, we get

R = −1 +
2κr

κ + i∆C
− i

√
2κr

ain(κ + i∆C)

N

∑
n

g(n)
∗ 〈E+| ρ |G〉 . (94)

It follows that we will have to solve the Master equation

ρ̇ = i[He f f , ρ]−Le f f [ρ] (95)
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to calculate the matrix element appearing in Eq. (94). Once more, we solve the system of equations

in the steady state. We also assume that 〈G| ρ |G〉 = 1 and 〈E+| ρ |E+〉 = 0, neglecting the

possibility of population redistributions. We end up with

〈E+| ρ |G〉 = iNΩg
∆ + i γ

2 + N|g|2(iξs − δLS)
(96)

which can be inserted into Eq. (94) to calculate the reflectivity. A cursory inspection reveals that

the reflectivity spectrum around resonance is given by a modified Lorentzian, which is shifted

in energy by N|g|2δLS linewidths and has an additional decay term given by N|g|2ξs. These

changes, Lamb shift and superradiant decay enhancement, are the result of the enhancement of

the light-matter interaction due to the cavity. Keep in mind that their magnitude depends not

only on the cavity mode characteristics, but also of the detuning both angular and energetic of the

incoming beam from the resonance. Introducing additional resonances into this model results in

additional coherences between the levels induced by the cavity mode interaction.

IV.3.5. Reflectivity without adiabatic elimination

In this section we present a derivation of the reflectivity without employing the adiabatic elim-

ination, which is the same as that used in [157, 140] It has the drawback of not allowing for as

simple an interpretation of the many-body interactions within the layer, and not permitting an

easy treatment of the spontaneously generated coherences, but offers a more intuitive picture of

the interaction of the cavity mode with an ensemble of nuclei.

From the last section, we recall the collective states |E+〉. Projecting these onto the ground state

〈G|, we get essentially a new operator S+. We recall from the Dicke model that we can in a

similar manner construct a great many energy eigenstates of the ensemble of nuclei, all of which

are superpositions of excited and ground states of single nuclei. The operators obey an angular

momentum algebra. We may think of the ensemble of nuclei as a large pseudospin with the

operators Sz, S+, and S− which give the projection onto the z-axis (the m quantum number) or

raise and lower it respectively. The cavity mode is coupled to this pseudospin; if a photon in the

cavity is absorbed by the nuclear ensemble, the spin quantum number m is raised; in the opposite

case it is lowered. Without taking into account the losses for now, the Hamiltonian is given by

H = ∆ca†a + ∆Sz + (gaS+ + g∗a†S−) + ain
√

2κR(a + a†) (97)

where the first term is the energy of the cavity mode, the second that of the nuclear ensem-

ble/pseudospin, the third term gives the interaction between both, and the fourth term takes

account of the driving of the cavity mode by an outside classical field, whose interaction strength



3. Quantum Optical Models 53

with the cavity is given by
√

κR. We have already, as in the last section, transformed the Hamilto-

nian into the interaction picture, hence the energies are given by the detunings from the driving

field δC and δ of the mode and the nuclear ensemble respectively. We now calculate the Heisenberg

equations of motion:

ȧ = i[H, a]− κa (98)

˙S− = i[H, S−]− γS− (99)

The decay constants κ and γ have been added phenomenologically; they can also be more

rigorously introduced by forming the Master equation and assuming that the number of quanta

in the system is low (one-excitation subspace), as laid out in the last sections. A noise operator is

not necessary at the energies we envision. Calculating the equations of motion yields

ȧ = −i∆ca− ig∗S− − κa− ain
√

2κR (100)

˙S− = −i∆S− − igaSz − γS− (101)

Setting the left-hand side derivatives to zero to obtain the solution in the steady-state limit, and

resolving for a yields

a =

√
2κRain(κ + i∆c)

(κ + i∆c)(γ + i∆) + |g|2 (102)

which can be inserted into the result for the input-output formalism Eq. (77) and leads to

R = −1 +
2κR(κ + i∆c)

(κ + i∆c)(γ + i∆) + |g|2 (103)

Before we resume to show the reflectivity, let us briefly discuss the quantum mechanics behind

this system. A sketch is given in Fig. 16

In the one-excitation subspace, i.e. with just one energy quantum (one photon, or one nuclear

excitation) in the system, we have three possible states which interact. The first one is the state

|g0〉 where neither the cavity nor the nuclear ensemble is excited. In that case, the photon is

located in the beam with which we pump the cavity. The second state, which we pump from

the ground state, is |g1〉 where the photon is in the cavity, but the nuclear ensemble is in the

ground state. This state couples via the cavity vacuum to the third state |e0〉 in which there is no

cavity photon, but the nuclear ensemble shares one excitation. The cavity has a very high decay

constant κ, the nuclear ensemble a very low decay constant γ; the coupling g between the two

upper states is typically much larger then γ, but much lower than κ. This is almost exactly the

set-up of electromagnetically induced transparency, and the physical features of the reflectivity

can be explained as follows. We have a weak probe field, which is the classical field we use to
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Figure 16: Undressed and dressed level systems of the composite nuclear ensemble-cavity system. (a) from the ground

state, the excited cavity state is driven (blue line). It interacts with the nuclear exciton (red double-arrowed

line) and strongly decays incoherently to the ground state (thick wavy orange arrow). The nuclear exciton

decays weakly (thin green wavy arrow) to the ground state. Diagonalizing the appropriate Hamiltonian

gives the dressed state picture, shown in (b): both dressed upper states decay at the same rate. Their spectral

width is larger than the energetic splitting between them. If we try to excite any of them by driving them,

they will destructively interfere with each other, resulting in none of them getting excited.

illuminate the cavity. Describing the classical field as a coherent state |α〉, typically α� 1, i.e. there

is on average far less than one resonant photon per bunch in the synchrotron beam, supporting

this assumption. We have a relatively strong coupling field coupling the two upper levels, which

in our case is given by the cavity vacuum. In this situation, describing the system in terms of its

eigenstates yields a very particular solution. Two of the eigenstates are coherent superpositions of

all three undressed states; the third one, which has exactly the energy of the nuclear ensemble and

is dispersionless, is a superposition of the type a |g0〉+ b |e0〉, where a� b. In other words, the

eigenstate is basically identical to the ground state with the photon in the field outside the cavity.

The cavity is not excited at all; it cannot accept a photon, and therefore, all light illuminating the

cavity is reflected when it has the energy of that particular state. A slightly modified view of the

situation is shown in Fig. 16(b) for the particular case where ∆c = ∆. The upper eigenstates are

shifted symmetrically towards opposite energies around the undressed state energies; they have

the same decay width, which is larger than the energetic splitting between the states. If we try to

excite one of the states, they both destructively interfere with the probe field, and none of them

can be excited. The photon remains in the ground state of the system, which means it remains

outside the cavity. This means that the system reflects all radiation that is incoming, and none is

absorbed.
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IV.3.6. Multiple layers and multiple modes.

The treatment of multiple layers and multiple modes interacting together is a straightforward

extension of that in the last section [58]. The derivation largely follows the same lines. The

Hamiltonian, the Lindblad operator, and the input-output relation are taken over a sum of j modes.

The Hamiltonian is also a sum taken over n nuclei, which will decomposed later over the layers.

Each mode is eliminated adiabatically. The new effective Hamiltonian terms are

HΩ = ∑
n

∑
j

Ω[j] jg[j]n,jσ
(n)
+ + h.c. (104)

HLS = ∑
n,m

∑
j
(δ

[j]
LSg[j]n,jg

[j]∗
m,j )σ

(n)
+ σ

(m)
− (105)

Lcav[ρ] = ∑
n,m

∑
j
(−ξ [j]g[j]n g[j]∗m )L[ρ, σ

(n)
+ σ

(m)
− ] (106)

where δ
[j]
LS, ξ [j] and Ω[j] have the same form as in the previous section, but take mode-specific

values for the detuning and spectral mode width. Suppose we have two layers and one mode.

A term like ∑n Ωgnσ
(n)
+ + h.c. can then be split into ∑n1 Ωgn1σ

(n1)
+ + ∑n2 Ωgn2σ

(n2)
+ where n1 and

n2 count the nuclei in the first and second layer respectively. It follows that if |gn1| and |gn2| are

not identical, we have to introduce two new collective operators in the manner of the previous

section, namely S(1)
+ = |E(1)

+ 〉 〈G| = 1√
N ∑n1 ei~k~rn σ

(n)
+ and S(2)

+ = |E(2)
+ 〉 〈G| = 1√

N ∑n2 ei~k~rn σ
(n)
+ and

equivalent destruction operators. Using operators which define a nuclear exciton over the two

layers is only permissible if these two layers are coupled to the field with identical strength, and

the layers are indistinguishable in any other way. If this is violated, the angular momentum

algebra used by Dicke does not close anymore, and the state is not a Dicke state (although it can

still be used for calculations) [158].

Suppose that we set the position of one layer in the axis of cavity quantization equal to zero,

z = 0. Also,~k~r = kxx + kzz Since the electromagnetic field strength, and hence g does not greatly

vary in z-direction across one layer kzz is identical for each and every nucleus in that layer, while

it is zero in the other layer. Therefore, the excitation and deexcitation operators in the former

layer have an additional phase factor eikzz in front of them, which we ignore in the following. The

Hamiltonian can now be written

H = (Ω1S(1)
+ + h.c.) + (Ω2S(2)

+ + h.c.) + (δ1 − ∆)S(1)
+ S(1)

− + (δ2 − ∆)S(2)
+ S(2)

− +

δ1,2S(1)
+ S(2)

− + h.c.
(107)
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where

Ωl = ∑
j

Ω[j]g[j]l

√
Nl (108)

δl = ∑
j

δ
[j]
LSg2[j]

l Nl (109)

δ1,2 = ∑
j

δ
[j]
LSg[j]1 g[j]∗2

√
N1N2 (110)

where the l mark the different layers; they have potentially a different coupling strength, which is

why we assign to each a single exciton operator set. For the Lindblad operator we write equally

L = −(γ

2
+ γ1)L[ρ, |E(1)

+ 〉 〈G| , |G〉 〈E
(1)
+ |]

−(γ

2
+ γ2)L[ρ, |E(2)

+ 〉 〈G| , |G〉 〈E
(2)
+ |]

(
γ

2
− γ1,2)L[ρ, |E(1)

+ 〉 〈G| , |G〉 〈E
(2)
+ |]

(
γ

2
− γ1,2)L[ρ, |E(2)

+ 〉 〈G| , |G〉 〈E
(1)
+ |]

(111)

where

γl = ∑
j

ξg[2j]
l Nl (112)

γ1,2 = ∑
j

ξg[j]1 g[j]∗2

√
N1N2. (113)

To calculate the reflectivity, the equations of motion ρ1G and ρ2G for the coherences are derived

from the Master equation, with the result

d
dt

ρ1G = i[(∆− δ1)− γ1 − γ/2]ρ1G − iΩ1 − (iδ(1,2) + γ(1,2))ρ2G (114)

d
dt

ρ2G = i[(∆− δ2)− γ2 − γ/2]ρ2G − iΩ2 − (iδ∗(1,2) + γ∗(1,2))ρ1G (115)

Setting the derivatives on the left-hand side to zero for the steady-state solution, we obtain

ρ1G =
∆2Ω1 − (−δ(1,2) + iγ(1,2))Ω2

∆1∆2 −Ω2
C

(116)

ρ2G =
∆1Ω2 − (−δ∗(1,2) + iγ∗(1,2))Ω1

∆1∆2 −Ω2
C

(117)

(118)

where we have set

∆l = ∆− δl + i(
γ

2
+ γl) (119)

Ω2
C = (δ1,2 − iγ1,2)(δ

∗
1,2 − iγ∗1,2) (120)
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We observe that the above equations (118) have the form of the refractive index of an electromag-

netically induced transparency medium, with ΩC taking on the role of the coupling field strength.

The reflectivity of the system, much as for the one-layer case has the form

R = −1 +
2κR

κ + i∆C
− i

ain

√
2κR

κ + i∆C
g∗1
√

Nρ1G +− i
ain

√
2κR

κ + i∆C
g∗2
√

Nρ2G. (121)

Naturally, the layers couple to all allowed modes of the cavity, albeit with different strengths. The

parameters of the effective Hamiltonian need to be adjusted of course; but this amounts to taking,

for the parameters of each layer, the sum over all the modes contributing to each parameter. The

collective Lamb shift of each ensemble is then the sum of the collective Lamb shifts induced by

each mode; the superradiant decay time is the sum of the superradiant decay times induced by

each individual mode etc. Let us briefly discuss this. Naturally ξS and δLS have same functional

dependency for every cavity mode, but are angularly or energetically displaced from each other,

since their maxima are situated at zero detuning of the effective mode. Close to or at the cavity

mode zero detuning position, the effective interaction is strongest, because ξS and δLS are at

or close to their respective maximum. This is a good reason to make the assumption that we

can confine ourselves to one cavity mode only, namely the one which we are investigating by

our reflectivity experiment. The contributions of all other cavities to the Lamb shift and to the

superradiance should be negligible, on account of them being far detuned. But this would be a

mistake. While these physical effects functionally depend on ξS and δLS their actual magnitude, as

can be seen from Eq. (??) is also dependent of the collective coupling strength g
√

N. The coupling

strength itself is a function of the electromagnetic field strength at the position of the resonant

layer. This can give rise to a situation that is sketched in Fig. 17.

Two layers are coupled to two modes each. But the first layer is strongly coupled to the first

mode, and extremely weakly coupled to the second one, while the second layer is strongly coupled

to the second mode and weakly to the first one. (We use ’strongly coupled’ here in the sense that

the coupling constant is relatively high, not in the usual sense described in previous sections). If

we drive the first mode by the exterior classical electromagnetic field and monitor its reflectivity,

we will observe the spectral signatures of the two layers. The first one will display a collective

Lamb shift and a superradiance that is due to its interaction with the first mode. The second

layer however does not couple to first mode in any meaningful way. But it couples with a high

coupling constant to the second mode. It may happen that this coupling is so strong that its effects

dominate over the coupling to the first, driven mode, even though the second mode is detuned

by a large amount. In that case both layers will show spectral signatures of vacuum coupling,

although only one of them is coupled significantly to the interrogated cavity. More importantly,
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Figure 17: Sketch of two layers inside of a cavity interacting with two modes. Shown are the second and third modes of

a thin-film cavity; in reality, the first and possibly further higher-order modes also contribute. The second

mode (light green) is coupled to the first layer near one of its antinodes, the field strength is high and the

coupling therefore significant. The second layer is located in its node, with a field strength of almost zero,

and consequently almost no coupling. For the third mode (dark green) the situation is reversed. Depending

on the mode that is driven by the external field, one layer interacts chiefly with the pumped mode, while the

other interacts mostly with a far-detuned mode.

the terms δ[1,2] and ξ [1,2] become somewhat larger, i.e. the cross-coupling between the layers is

enhanced, since it takes place over multiple modes. Even more importantly the product of them

in Eq. (120) is now the product of two sums

Ω2
C = N(∑

j

g[j]1 g[j]∗2

∆[j]
C − iκ[j]

)(∑
j

g[j]∗1 g[j]2

∆[j]
C − iκ[j]

) (122)

In the extreme case where the coupling of the first layer to the second mode would be zero and

vice versa, Eq. (122) ensures that Ω2
C remains non-zero, which is equivalent to an effective strong

coupling field being applied between the two layers, i.e. a situation where the EIT-condition is

fulfilled. If there were only one mode to which both layers would couple, and the coupling of one

of the layers were very small, ΩC would also vanish. This however is not the main reason why

the model without multiple modes would fail to predict the EIT signature in a multi-resonant

layer cavity. The main reason is that in this case, one of the normal modes that form is a dark

state, which cannot be excited by the driving field, as shown in several works dealing with similar
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or equivalent systems [159, 158]. The presence of an additional mode modifying the system

results in the breakdown of that dark state, which suddenly can be excited by the external field;

hence the presence of the dip in the spectrum. Another way to look at it is this: the second layer

couples strongly to a higher-order mode. At the angle which resonantly drives the first mode,

the higher-order mode is also driven, albeit far-detuned. We then deal with an eigenstate of the

coupled system which is far detuned from the anti-crossing with the higher-order cavity mode.

This means that it is matter-like, spectrally narrow and close to the nuclear resonance, which fits

with the behaviour of the EIT-dip.

IV.3.7. Strong coupling and Rabi oscillations in the effective Hamiltonian of a

two-layer system

The following section is slightly amended from [60]. When dealing with small excitation numbers

it is permissible to ignore the third terms of the individual Lindblad operators in Eq. (93). It is

well known that the remainder can be absorbed into a Hamiltonian such that the equations of

motion are given by dρ/dt = Hρ− ρH† [160]. This effective Hamiltonian can be diagonalized to

find the eigenvalues of the system [138]. We give it here:

H =


0 Ω1 Ω2

Ω∗1 ∆− δ1 − i( γ
2 + γ1) δ(1,2) − iγ(1,2)

Ω∗2 δ∗(1,2) − iγ∗(1,2) ∆− δ2 − i( γ
2 + γ2)

 (123)

One can take this Hamiltonian to describe as system where two atoms with different decay times

and slightly different energy levels interact with each other via a dipole-dipole-like interaction,

and are each simultaneously driven by a classical field. This system is relatively simple in principle.

However, the interactions are highly untrivial, and strongly vary depending on the detuning from

the cavity, i.e. the angle, as given in Eq. (??). In Fig. 18 we plot the basic dependences of the Lamb

shift and superradiant enhancement terms. It can be seen that the former decay far slower than

the latter. This will turn out to be convenient later.

We point out a couple of interesting facts concerning the effective Hamiltonian. First of all, it

is not Hermitian. Secondly, the detuning changes more than just the magnitudes of the matrix

elements. For example, at zero detuning all off-resonant matrix elements are overwhelmingly

imaginary, as can be immediately seen by inserting ∆[j]
C = 0 into Ωi and δ[1,2]; Only tiny contribu-

tions from the far detuned modes contribute significantly to the driving and interaction terms.

But most interesting is the situation when all modes are far detuned from the nuclear resonances,

i.e. when we drive the cavity far detuned from all its modes. In that case, ∆C � κ and the Ω
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Figure 18: The real and imaginary parts of (a) δLS and (b) ξ obtained from the quantum optical model of two layers

coupled to multiple cavity modes. The coupling strengths are rather arbitrary; the main thing to look out for

are the different functional behaviours when the cavity is detuned from the resonances - the real part decays

much slower than the imaginary part. Both values depend only on the detuning from the cavity mode and

the (constant) spectral cavity width κ. In this case, κ = 1.45× 1012γ0, where γ0 is the spectral width of
57Fe. Interestingly, the dispersion is clearly similar to that of resonant matter. The units are given in Hz.

Multiplied with the coupling strenghts, they yield Lamb shifts and superradiant decay linewidths.

driving terms become overwhelmingly real. Similarly, δLS, which decays with 1
∆[j]

C

will turn out to

be far larger than ξS which decays with 1
∆[j]2

C

. This means that δ[1,2] will be far larger than ξ [1,2],

meaning that the latter, which are imaginary in the dipole-dipole like coupling transfer matrix

element between the two ensembles can be assumed to be zero. In that case, the Hamiltonian

reverts to being (to first approximation) a Hermitian Hamiltonian describing two coupled states

probed from a third level. Similar systems have been explored in a number of theoretical and

experimental papers on quantum optics, for instance [159]; it is often referred to as the dispersive

cavity limit and is used to manipulate the interaction between two or more resonant two-level

systems via virtual interactions. In our particular case it offers a particularly tantalizing option,

namely to realize strong coupling between the two layers. To see this, refer again to Fig. 18. It only

shows what we have described before: ξ decays far faster than δLS when the cavity is detuned.

Since ξ determines the speed of decay of the excitation of the corresponding layer, and δLS the

interaction between the layers and their collective Lamb shift, this offers the opportunity for

the interaction strength to outpace the decay strength of both levels, in other words, to realize

g� γ1 � γ2, or to couple the two ensembles strongly. Some care is needed here in order to not

confuse strong coupling and the collective Lamb shift. For the moment, we ignore the driving



3. Quantum Optical Models 61

terms in the effective Hamiltonian, and merely diagonalize the interaction between the two layers.

In that case the eigenenergies will be (assuming that the detunings of the cavity mode from the

resonance are far larger than the collective Lamb shifts)

E± = ∆c ±
√
(δ[1] − δ[2])2 + (Ωc)2 (124)

From comparing this with the eigenenergies for strong coupling, it is immediately clear that the

splitting is given by the term 2
√
(δ[1] − δ[2])2 + (ΩC)2, so the term can be interpreted as twice

the Rabi frequency. We will refer to it by 2ΩR. It can be seen that it depends both on the direct

interaction and on the detuning by the collective Lamb shifts. If the latter term dominates, the

Rabi oscillations will not result in the full population of the excitation of one ensemble of atoms

being exchanged with the other. We will refer to δ[1] − δ[2] as ∆. Now the analogy to the simple

Jaynes-Cummings model can be clearly seen; the cavity vacuum induced interaction Ωc plays the

role of the interaction strength of field and atom; the difference of the collective Lamb shifts ∆

plays the role of the detuning of the electromagnetic mode from the atomic transition frequency.

The two ensembles exchange a photon analogously to the Rabi oscillations.
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Chapter V

X-ray quantum optics in thin-film

cavities

V.1. Introduction

In this chapter, we will describe some experiments we have performed with the interaction of

x-rays with resonant ensembles in thin-film cavities. Before we begin, we briefly comment on the

difference between electronic and nuclear resonances. In the previous sections, we have largely

used the terms atoms and nuclei interchangeably. And indeed, when we restrict ourselves to the

use of one level, the theoretical descriptions of the x-ray - matter interaction is wholly identical.

There is no reason to think of nuclear and electronic transitions as completely different phenomena;

both of them are simply two-level systems with an energy in the x-ray range. It is one of the

aims of this thesis to prove this point, and therefore we start with an experiment on electronic

resonances. This has the added benefit that its setup corresponds to the most simple theoretical

description, that of one ensemble interacting with one field mode.

Of course, there are massive practical differences between electronic and nuclear resonances from

an experimental perspective, all stemming from the fact that they have natural lifetimes that differ

by 9− 10 orders of magnitude. This means that the decay of nuclear excitations can be observed

in the temporal domain, but not that of electronic resonances. On the other hand, the latter do

not require complicated monochromatization schemes; a simple high-heat load monochromator

suffices to reduce the bandwidth of the incoming beam. Furthermore, nuclear resonances are

not necessarily of the same type. Electric and magnetic dipoles and electric quadrupoles all react

differently to the application of external electric and magnetic fields; this offers ways to manipulate

63
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Figure 19: Experimental setup for measuring the spectroscopic features of a resonant electronic layer embedded in a

thin film multilayer cavity. The cavity is illuminated at grazing incidence. Both angle and energy of the

incoming beam is varied. The reflectivity is recorded. Additionally, a detector is positioned above the sample

to measure the fluorescence in a solid angle above the cavity.

the light-matter interaction for instance in magnetic dipoles [56] that is not available for electric

dipoles.

In later sections we will observe the coherent exchange of virtual photons between multiple layers

in several different setups, and introduce a kind of cavity setup hitherto not used in the x-ray

regime.

V.2. Cavity QED with electronic resonances

In this section, the electronic resonance which we will excite is the LI I I-edge white line of Tantalum.

It has an energy of 9881 eV, with a linewidth of approximately 5 eV. A more thorough description

of the background is given in Chapter II.5, see also Fig. 4
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V.2.1. Experiment

The experiment was performed at the P09 endstation of PETRA III in Hamburg. The experimental

setup is shown in Fig. 19. The multilayer cavity is positioned in a typical reflection geometry. The

angle is varied by steps, and for every angle the monochromator is scanned to take a reflectivity

spectrum. Furthermore, we have installed a fluorescence detector above the cavity, which measures

all fluorescence photons detected in a solid angle. It also has the capability to perform a (very

rough) energy binning. Naturally, the photons also include photons from other processes than the

resonant excitation and decay in the probe layer, so we have fluorescent photons across a whole

range of energies. In order to distinguish the resonant processes that interest us from others, we

have taken two energy spectra, one at the resonant energy of Tantalum, and one significantly below

it. In a certain energy range of the fluorescence detector, corresponding to the resonant energy,

this resulted in a marked drop of intensity between the two spectra. This region was marked as

the region of interest; the photons within this region were summed up for every monochromator

and angular position to yield resonant fluorescence spectra. This is the equivalent to time-gating

the diode for the prompt and measuring only the delayed signal for nuclei, which is of course not

an option here due to the extremely short decay time of the electronic exciton. The aim of this

experiment was to test whether quantum optics with electronic resonances is a viable path at all.

To protect the APD from damage we included several absorbers in the beam. Typically, absorbers

placed into the beam before it illuminated the sample were chosen such that they decreased the

intensity by about two orders of magnitude. We placed another layer of absorbers (700 µm) of

Aluminum between sample and APD. The aim of this was to protect the APD but also to ensure

that the beam intensity was high enough to produce a significant fluorescence signal. The beam

was also slightly focused by 20 Beryllium lenses so that most photons actually illuminated the

sample, rather than passing by it due to the small angles of coincidence. This also increased

the total intensity on the sample, helping to achieve briefer measurement times and a satisfying

fluorescence signal. This came at the price of a slight increase of divergence; however we have

taken reflectivity curves both with and without the lenses in the beam. There is a difference in

intensity of the signal, but no serious change in the shape of the reflectivity curve.
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Figure 20: Resonant reflected intensity of the cavity across a range of angles. An anticrossing-like behaviour is

observable, but the preconditions for genuine strong coupling are not met. The lower x-axis gives the angle

of the incident beam; on the upper x-axis we have indicated the corresponding energetic detuning from the

cavity center in electron Volts. The reflected intensity is given in photons counted per second. The zero

point of the y-axis is located at 9881 eV, the literature value for the Ta LI I I white line. Individual spectra are

shown along with quantum optical fits in Fig. 24

V.2.2. Results

Tantalum

In Fig. 20 we present the reflectivity data for a cavity containing a resonant Tantalum layer, which

displays a LI I I electric dipole resonance at 9881 eV with a linewidth of about 5 eV.

The spectra were taken at different angles around the first guided mode. We fixed the angle

and scanned the energy via the monochromator of beamline P09 from 9800 to 10000 eV. The

dimensions of the cavity were Pt 20 Å/ C 110 Å/ Ta 25 Å/ C 123 Å/Pt 152 as extracted from

the fit in Fig. 21 fabricated on a polished silicon substrate of 15× 20× 0.5 mm. The formation

of two branches is visible in the reflectivity; obviously some sort of normal-mode splitting takes
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Figure 21: Reflectivity curve of a thin film multilayer cavity and fit (red solid line) via the Parratt algorithm. The

cavity dimensions according to the fit are Pt 14.5 Å/ C 243 Å/ Ta 19 Å/ C 240 Å/Pt 112 Å. The first few

modes are indicated by numbers. The solid black line indicates the critical angle. Small deviations of the fit

from the data at low angles are due to the divergence of the incoming focused beam, which is not treated in

the Parratt algorithm.

place. To judge whether this corresponds to genuine strong coupling or is merely an interference

effect, we will turn to the theoretical description of the physics behind the observations. For

completeness, we begin with the reflectivity curve as calculated by the Parratt algorithm fitting

program GenX [110], shown in Fig. 21.

Cavity dimensions, layer material densities and roughnesses as well as the beam width were

fitted. The cavity dimensions and properties obtained by the fit are listed in Tab. V.1 Most of

the values obtained by the fit seem credible enough. The layer thicknesses are very close to the

design parameters, and the material densities close to the literature values, with the exception

of Tantalum, which is a littler higher, but not disturbingly so. The roughness values are getting

higher as we move from bottom to topmost layer - this is expected and physically intuitive, since

small imperfections of a surface on which a layer is sputter deposited amplify the roughness

of that layer. It is slightly worrying that the roughness of the top layer ends up to be so high,

but it turns out that this is not particularly significant; small changes of the roughness do not
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Platinum Carbon Tantalum Carbon Platinum

Thickness [nm] 2.0 11.0 2.5 12.3 15.4

Density [g/cm3] 22 2.33 17.98 2.25 21.61

Roughness rms [nm] 1.4 1.1 0.8 0.8 0.04

Table V.1: Properties of the Tantalum thin film cavity extracted from the Parratt algorithm fit. Any errors would not

be reliable, since the simulations delivers good results in a range of values around the given ones; however,

we estimate that any deviations are not above 0.5 nm; The densities and the roughness have similar ranges

relative to the given value.

worsen the fit quality noticeably. To calculate the resonant reflecivity, the numerical values of

the non-resonant index of refraction were taken from the X-Ray database of the center for x-ray

optics CXRO [64] taking into account the results for the material densities obtained from the fit.

To model the resonant refractive index contribution of the Tantalum white line we added real and

imaginary parts of a Lorentzian centered at 9881 eV with a level width of 5 eV to the CXRO data.

The strength of the Lorentzian was roughly adjusted such that the relation between the height of

the white line and the background index step function corresponded approximately to measured

data. As can be seen in Fig. 22, this procedure produces satisfying but not completely perfect

results.

The position of the center of the cavity and the dispersion is adequately retrieved, but the

relative intensities are not predicted perfectly by this method. Often, this results from beam

divergence, which leads to a beam illuminating the sample at several incident angles at the same

time. But we have already ascertained that this cannot be the case in this experiment, as the

reflectivity was found to not change appreciably around the electronic resonance. A possible

reason explaining this phenomenon is the inhomogeneity of the sample. Due to imperfections in

the sputtering process, the edges of the sample have measurably diminished thin film thicknesses

compared with the center. Since the thicknesses are among the dominant factors in determining

the angular positions of the modes, this means that the cavity has different modes at its center

and its edges. This effectively mimics the properties of divergence. Photons of a particular energy

that would couple into the cavity at the center are reflected when they impinge on the cavity

edges and vice versa. The result is a reflectivity curve different from the pure theory. Another

likely issue is the modeling of the resonance. The CXRO database does not include the effects of

white lines, so these had to be included heuristically. At the exact LI I I-edge, there is a complicated

interplay between the properties due to the onset of the continuum and the white line, which
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Figure 22: Simulation of the resonant reflectivity of a Pt 20 Å/ C 110 Å/ Ta 25 Å/ C 123 Å/Pt 152 Åsample by the

Parratt transfer matrix algorithm. The graph shows a good qualitative agreement with the measured data in

Fig. 20. Any discrepancies, such as the slight differences in dispersion and reflectivity are probably due to

sample inhomogeneity and an insufficiently accurate modeling of the index of refraction close to the white

line.

we have only treated cursorily. Nevertheless, the basic features of the reflectivity are observable

in the simulation in Fig. 22, which demonstrates that the Parratt algorithm is a good device to

theoretically examine and select other resonant systems for future use in hard x-ray cavity QED.

We now examine the experimental results by means of the quantum optical model. The phyiscal

situation permits treatment of the system by much the same means as those used for modeling

cavities containing Mössbauer cavities. Accordingly, we employ Eq. (94) to simulate the reflectivity.

This approach permits identification of the intermediate coupling regime, but it suffers from a few

drawbacks:

(a) it models the system as a collective interaction between a cavity and an ensemble with one

resonant level. The more complicated physical situation, which includes the background index of

refraction step indicating the continuum of free electrons is, avoided. This does not really change

the interaction of the white line and the cavity resonance, but it adds additional absorption and
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Figure 23: Reflectivity of the cavity according to the quantum optical model. The features of the measured data are

distinctly recognizable, with a few exceptions. One is the fact that both dips are equally deep in this

simulation, reflecting the fact that the influence of the continuum of states is unaccounted for.

refraction to light traversing the thin film cavity, which changes the cavity properties. Effectively,

the cavity is perturbed by the Tantalum layer. Of course, this approach will not be able to identify

and explain differences between the higher-energy and lower-energy branches dispersion relation

that were observed in the experimental data.

(b) The reflectivity slightly diminishes at higher angles even when they are below the critical angle.

This could be circumvented by multiplying the reflectivity with an envelope function that consists

of the reflectivity of a slab of the top cladding material. However this heuristic change does not

really add any physical understanding, so we will omit it and accept that the model will not be

able to give a quantitative fit to the data.

(c) Of course, as for the Parratt algorithm, the inhomogeneity of the sample is not taken into

account. This means that there is a distribution of detunings and cavity interactions, as the cavity

has different widths at different positions. A fit would give a kind of median value across the

whole cavity.

With this in mind, it is clear that the resulting parameters for the cavity decay, coupling strength

etc. are merely educated guesses, but cannot make any claim to great precision. We therefore
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κ κr γ
√

Ng

Strength [eV] 297 103 5 37

Table V.2: Parameters of the simulation of the quantum optical model. κ is the cavity linewidth, γ the Tantalum

resonance linewidth,
√

Ng the collective coupling strength and κr the driving strength.

omit to make a complete fit, and focus on a rough simulation; the superfically enhanced precision

such a procedure might yield would not carry the validity necessary to merit the effort. Luckily,

deviations between theory and experiment are mostly of quantitative nature; the fundamental

physics is still described very well by our simple models, as will be shown in the corresponding

figures. The reflectivity according to the quantum optical simulation is shown in Fig. 23. At first

glance, this looks like a highly satisfying simulation. We give the cavity and matter parameters we

have used to obtain it in Tab. V.2. We point out that the coupling strength is much larger than the

linewidth of the Tantalum LI I I white line, and less than an order of magnitude smaller than the

linewidth of the cavity. This means that the intermediate coupling regime is definitely reached;

the strong coupling regime has been missed by a wide margin, but it is not inconceivable that in

future experiments it can be surpassed, especially with some improvements which we will discuss

in the conclusion to this section.

Here, we resume with a more detailed discussion of the experimental results. It is clear that

in the intermediate coupling regime the Fano resonances and the dispersion that were observed

in [57] for the case of resonant 57Fe-nuclei in a cavity has been replicated for the case of an

electronic resonance in the hard x-ray energy range. To further support this point, we show

some individual spectra in Fig. 24, which clearly give a very good qualitative description of the

data. A serious quantitative description would, as mentioned, involve treatment of the continuum

background, which is beyond the scope of this thesis. Finally, let us discuss the results of the

fluorescence collective Lamb shift measurements. As shown in Fig. 25, we have observed a

fluorescent line which follows the characteristic CLS dispersion around the cavity mode.

But here, too, the continuum disturbs the image, since it emits a lot of fluorescence itself, which

partially obscures the Lorentzian. Nevertheless, we use the parameters of the quantum optical

model to calculate the Lamb shift, as prescribed in [54] by Eq. (96). The result is displayed in

Fig. 26.

It clearly reproduces the result in Fig. 25, bar the continuum fluorescence. We show additional

details in Fig. 27, where we have fitted the spectra at two angles with a simple Lorentzian each,

obtaining Lamb shifts of up to 3eV, with a superradiantly enhanced spectral width of ≈ 10 eV.
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Figure 24: Comparison of the reflectivity as simulated by the quantum optical model and the experimental data. All

theoretical curves were calculated by using the same set of parameters and multiplying it by the same

prefactor in order to normalize them. There is no quantitative, but qualitative agreement. The main

discrepancies are at higher energies, where we have omitted to include the electronic continuum which spoils

the cavity. The shown data and simulations are line cuts from Figs. 22 and 23.

V.2.3. Discussion

We have performed what is to the best of our knowledge the first experiments in hard x-ray cavity

quantum electrodynamics with electronic resonances. Some of the results are very promising. By

using an ensemble of Tantalum atoms that collectively interacts with a cavity mode via its LI I I

white line excitonic resonance, we have unambiguously shown via a quantum optical model that

the collective intermediate coupling regime has been reached. This extends the range of available

systems for hard x-ray quantum optics, and suggests new avenues for experimentalists in the field.

The experiment also shows that transfer matrix algorithms based on classical optical models are a

valid way to test and preselect excitonic resonances in the hard x-ray regime for their suitability

in cavity QED. On the other hand, in a second experiment involving the 11215 eV resonance of

Iridium, we have shown that not necessarily all white lines are appropriate for this purpose. This
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Figure 25: Measured Ta fluorescence of a cavity containing a Ta layer. The y-axis shows the energy of the incident

radiation, the lower x-axis shows the angle of the incident radiation, and the upper x-axis shows the energetic

detuning of the cavity from the white line. The fluorescence is composed of two parts: a Lorentzian-like with

a slight dispersion around 9881 eV that depends on the detuning, and a more or less flat one above 9881

eV which more or less follows the cavity dispersion. The latter is from the recombination of electrons that

got excited into the electronic continuum, the former is the due to the interaction of the x-rays with the

two-level system that corresponds to the white line.

is shown in Appendix B. The white line needs to be high relative to the background absorption

for the coupling to be well-resolved. It is also not entirely clear whether some of the white lines

exist only in bulk or whether interface effects may perturb them strongly.

We will highlight several promising possibilities in differing detail, and discuss the challenges

that they pose. To begin with, the salient limitation of x-ray cavity QED with Mössbauer resonances

is the extremely low spectral density of the synchrotron sources these experiments are performed

with. This ensures that at most one resonant photon is present in a single synchrotron pulse, since

the resonance has a linewidth of 4.7 neV. Electronic resonances, however, have linewidths of several

eV, allowing the possibility of multiple photons of that energy per pulse. If the cavity-ensemble

interaction can be manipulated suitably, this might open the door to the observation of nonlinear

hard x-ray optics in thin film nanostructures.

The second argument goes along similar lines. In previous work [55], the slow propagation of
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Figure 26: Simulation of the fluorescence of a cavity containing a tantalum layer. Around the position of zero detuning

of the cavity, the fluorescence shows the characteristic properties of the Lamb shift, i.e. a dispersion which

depends on the detuning from the cavity and vanishes at exact cavity resonance. The y-axis shows the

energetic detuning of the monochromator, the lower x-axis the angle of incidence of the incoming radiation

and the upper x-axis shows the corresponding detuning of the cavity resonance from the Tantalum white

line energy. It is obvious that the dispersion is very similar to the measured data, save for the absence of the

scattering due to the electronic continuum. The parameters
√

Ng,γ and κ are the same as for the simulation

of the reflectivity.

x-rays in thin-film nanostructures with 57Fe-nuclei has been observed. Due to the differing spectral

widths of the pulse (1 meV) and the resonant nuclei (4.7 neV) only a small part of the incident light

was delayed, which could be observed in the time domain. While the coupling regime in our case

is identical, the relevant energy widths are different. Our incident pulse has a wider bandwidth

(1 eV), but so has the resonant system (5 eV). It follows that the entire incident pulse can be

delayed upon reflection. However, the delays are tiny (on the order of 10−16 s), which is beyond

any current means of detection. It is still interesting however, that such minimal delays could be

engineered by performing relatively rough changes in the experimental setup like changing the

angle or tuning the energy.

Other thin-film structure designs could also be adapted for electronic x-ray quantum optics, such

as the resonant distributed Bragg reflectors (DBR) discussed in Chapter VI.3; equally DBR defect
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Figure 27: The collective Lamb shift of Tantalum embedded in a thin-film cavity. In (a) and (b), the fluorescence spectra

of the system at two different angles are shown. The angles correspond to equidistant positive and negative

detunings from the cavity mode. Red shows the experimental data, blue shows a simulation consisting of a

Lorentzian. The electronic continuum which manifests itself in the step function is not taken into account.

The spectra clearly show that the Tantalum resonance is shifted in opposite directions by about 3 eV, which

is particularly obvious in (c) and (d) which show enhanced details of (a) and (b).

cavity modes could be used. The latter have the distinct advantage that their modes can have

an angular acceptance that is above the incident angle; in this range it may be possible to have a

comparatively large angular acceptance but a low corresponding spectral linewidth of the cavity.

It should also be possible to introduce several layers of resonant material into the cavity mode, or

thicker layers, in order to enhance the collective coupling strength.

Finally, a different choice of resonant materials might advance the field. The K-edges of sev-

eral more complex materials, such as the chromates [161], ferrates and some manganates and

titanates [88] show extremely sharp pre-edge peaks which are well resolved from the continuum

absorption.
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V.3. Rabi Oscillations by strong coupling of two nuclear resonant

layers

V.3.1. Introduction

The experiment discussed in this section is in many ways a variation of a previous experiment

by Röhlsberger et al, which was theoretically described in Chapter IV.3.6. In that experiment,

electromagnetically induced transparency was observed in a cavity containing two resonant 57Fe-

layers, one of which was positioned in an antinode, the other of which was positioned in the

node of the 3rd mode. The experiment has since been repeated and discussed in several different

systems [162, 163, 164]. One important observation could not be explained, however. Simulations

showed that the appearance of the EIT effect depended on the relative positioning of the two layers

with respect to each other. If the layer in the antinode (strongly coupled to the cavity mode) was

uppermost, simulations indicated that EIT could not be observed. On the contrary, if the weakly

coupled layer, positioned in the mode node was the upper layer, a sharp dip indicative of EIT was

predicted by reflectivity simulations and observed experimentally. Heeg and Evers managed to

explain [58] the phenomenon by incorporating multiple cavity modes in the theoretical description

of the experiment. In that interpretation, one mode is driven at zero detuning. This mode is not

coupled to one of the layers. However, several other modes are driven, albeit at extremely large

detunings. The cavity modes are widely detuned from the nuclear resonance energy. However,

they still form eigenmodes with the layers, and may form eigenmodes with the weakly coupled

layer as well. At large detunings, these are almost dispersionless, and ’matter-like’ i.e. they have

the spectral width of the matter resonance and their eigenstates consist mostly of contributions

from the excited atoms. To examine these predictions, we endeavoured to measure the dispersion

of the cavity mode. That is, by taking the reflectivity over a range of angles around the main,

resonant mode, we wanted to verify whether the central mode was indeed dispersionless and

spectrally narrow enough to agree with the prediction of Heeg and Evers. Kong and Pálffy [60]

noticed that, when the nuclear resonance and the incoming beam are far detuned from all cavity

modes, the so-called dispersive regime, an effective interaction arises between the two layers. This

is essentially the Fano-Agarwal coupling of two states coupled to each other indirectly via a state

they are both coupled to. Here, the common state is the cavity mode, and the physical situation

allows its adiabatic elimination giving rise to an effective interaction. Under certain circumstances,

the strength of this interaction is larger than the spectral bandwidth of the excitations. In this case,

we observe strong coupling, and can additionally observe Rabi oscillations. The theoretical details
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Figure 28: Setup of the experiment. From the high-heat load monochromator, the radiation is monochromatized to a

bandwidth of 1Γ0, by the SMS, which is moved to provide the energy detuning by Doppler shift. After that,

it is focused by an KB mirror onto the sample. The reflected radiation is detected by an APD.

have been given in Chapter IV.3.7.

V.3.2. Experiment

The experiment was performed at beamline ID18 of the European Synchrotron Radiation Facility.

In order to achieve the necessary monochromatization of the synchrotron beam we employed the

synchrotron Mössbauer source (SMS) described in a previous section. To enhance the count rate

and improve the statistical quality of the measurements we focused the beam with a Kirckpatrick-

Baez mirror. Theoretically, this should make for a very smooth experiment, since no time-gating

or polarimetry was necessary. Count rates were good as well. However, the experiment was beset

by difficulties, not all of which can be completely explained. For starters, a 57FeBO3 crystal of the

SMS of inferior quality led to a strong decline of the resolution of the spectra, but we were able to

replace it in time for the experiment to finish

More importantly, there was a significant and persistent drift and/or jumps of the angular position

of the sample with respect to the beam. Since the beam impinges on the surface of the iron borate
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at an angle oblique with respect to the laboratory ground plane, and the reflected beam is in that

plane, minor deviations and misalignments of the pre-borate crystal optics may actually minimally

change the angle of incidence of the incoming beam. This might not be a problem were it the foil

whose angle was changed, but for reflectivity measurements, this is of course highly unfavourable.

We observed this behaviour by taking spectra at a particular position, and then taking a second

spectrum - without moving the motor in the meantime. This essentially makes the angle of the

reflectivity measurement an unknown quantity for the purposes of data analysis.

A second grave problem that appeared is the appearance of an uneven, sinusoidal background in

the spectra. This background vanished and reappeared in the course of the experiment without

any trace of systematic behaviour. A raw spectrum is shown in the Appendix A. Upon inspecting

these spectra, the following will be noted. During the deacceleration-acceleration round-trip of the

Mössbauer drive that the SMS is mounted on, the Mössbauer drive passes each velocity twice,

once upon accelerating from zero velocity, and once upon deaccelerating from the maximum

velocity. Each spectral point is hence twice measured, each spectrum effectively taken twice,

but mirrored. At least, that is how it is intended to work. Not only is there an issue with the

sinusoidal signal background, which may take different strengths in different spectra, but the very

spectra themselves differ! This points to a particular explanation. Since the incoming radiation

is reflected from the synchrotron Mössbauer source FeBO3 crystal, which is mounted on the

Mössbauer drive, instabilities there should be the reason. For example, a slight vibration of the

crystal, or some inhomogeneity in the drive movement might cause the beam to be reflected in

slightly different directions. In a transmission experiment, which is the usual modus operandi of

the SMS, this will be barely noticeable. But in a reflection experiment which depends extremely

sensitively on the angle such as ours, this will result in a world of difference. While we do not

have conclusive proof that this is the cause of our troubles, we strongly believe that this is the case,

at least where the different spectra are concerned. The sinusoidal background appears in the raw

data of transmission spectra as well; discussions with the responsible beamline scientists indicate

that during the MB drive movement, the crystal may temporarily move slightly out of the center

of the beam resulting in a reduced intensity of the radiation reflected from the crystal. However, a

temporary slight misalignment of the angle would show similar symptoms.

This suggests a different problem that is not immediately obvious from a glance at the raw data:

What if the angle of incidence on the sample changes continuously while the energy is varied?

Then, every point in the reflectivity energy spectrum would be taken at a slightly different angle.

Due to the multitude of problems with the raw data, we summarize them briefly, before we discuss

the steps we have taken in the data post-processing and analysis to ensure a correct interpretation
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of the experiment.

• It is not clear at which angles the spectra were taken, or at least, the information is not

reliable, since spectra taken at ostensibly the same angle are wildly different

• The occasional dissimilarity of two spectra in one set of raw data indicate that they were

taken at different angles, even if that angle was not varied at all by the experimentalists

• There is a sinusoidal background that is most likely due to differences in the intensity

reflected from the SMS.

To remove these sources of error and insecurity, we have devised a scheme given in appendix A.

While the spectra thus gained look credible enough, other problems remain unsolved, notably

the question of the angle under which a spectrum has been taken; and even more importantly,

whether the spectra are usable in general. We address them by first performing a fit by GenX [110]

of the reflectivity curve of the cavity. Having determined the cavity parameters from this fit,

we calculate the resonant reflectivity spectra with the transfer matrix method under a range of

angles. Into these simulations we also introduce some more general parameters. The resonant

layers of our cavity consist of 95% stainless steel which is untempered. While stainless steel is

essentially a single-line resonant material because of the absence of strong hyperfine interactions,

in untempered sputtered stainless steel a small hyperfine field distribution is present, leading

to an effectively broadened line. This is because sputtered thin films are disordered, leading to

electric field gradients at the position of the nuclei and a corresponding distribution of nuclear

quadrupole interactions and isomer shifts. By annealing them for some 20 minutes at 400− 550◦C,

the disordered thin films can in principle be induced to take the austenitic and/or martensitic

phases, which do not give rise to magnetic hyperfine interactions. This does not take place when

the thin film is sandwiched by carbon layers however; the interdiffusion with the carbon may

hamper the process [165]. We simulate this by convoluting the Lorentzian scattering amplitude

with a Gaussian with an FWHM of 2Γ0. This leads to an effective linewidth of about 4.5Γ0 of the

scattering amplitude. We should point out here that conventional Mössbauer studies of a 200

nm thick layer of enriched 57Fe stainless steel indicate an effective linewidth of approximately

10Γ0 [166]; however a direct comparison is not possible, since the stainless steel layers of the cavity

are surrounded by a carbon matrix; this is bound to influence the hyperfine field distribution.

We cannot assume that it is the same as for the relatively thick stainless steel layer tested in the

Mössbauer experiment, where interface and boundary effects vanish compared to a 1-2 nm thick

layer in a carbon matrix. We also introduce a shift to account for the isomer shift of stainless steel
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Figure 29: Reflectivity of a cavity with an EIT arrangement of the layers, as shown in Fig. 30

with respect to FeBO3; the shift is 3.5Γ0 which amounts roughly to the literature value [106].

We then proceed to assign the measured spectra to the resonant simulations calculated in the way

described above; spectra that do not fit satisfactorily are assumed corrupted and discarded.

In Fig. 29 we show the measured non-resonant reflectivity curve of the EIT-cavity along with

the fit obtained by GenX. The parameters of the cavity extracted from the fit are listed in Tab. V.4

Additionally, the fit has yielded that the incident beam was Gaussian with a vertical cross section

(half width) of 32µm, with a divergence of 7.8× 10−5 rad. The fitted reflectivity was multiplied

with a prefactor 5.1× 104 to account for the measured intensity.

In Fig. 30 we show a sketch of the cavity with the most relevant parameters. The plot of the

fit and data show that in particular the first mode is well described by the fit. The parameters

extracted are consequently valuable for identifying and assigning the angles of the spectra from

the data. The results of this procedure are shown in Figs. 31 and 32.

Fig. 31 (b) shows the reflectivity calculated by the TMM across a range of angles and energies

around the first mode encoded in the color map. Fig. 31 (c) shows the corresponding spectra

ordered according to their agreement with the results of the TMM. It is obvious that there is
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Platinum Stainless Steel Carbon Stainless Steel Carbon Platinum

Thickness [nm] 2.7 1.8 13.6 1.8 13.6 15.5

Density [g/cm3] 21.45 7.7 2.1 7.7 2.1 21.45

RMS [nm] 0.7 1.1 0.8 0.6 1.5 0.8

Table V.3: Cavity parameters of the EIT cavity according to the fit performed by GenX. Additional parameters important

to the fit are given in the main text.

Figure 30: Sketch of the cavity used in the experiment; widths are not to scale, but indicated to the right of the sketch.

SS means stainless steel enriched with 57Fe.

broad agreement between the two datasets, which justifies our treatment of the data, and permits

applying the quantum optical model for further analysis. Before we proceed to that, we show, in

Fig. 32 the individual spectra along with the TMM reflectivities. While the theory and the data are
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Figure 31: Overview of the spectra. (a) shows the reflectivity according to the quantum optical model, (b) the results of

the transfer matrix algorithm and (c) the actual experimental data. The intensity is encoded in the color

map.
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Figure 32: Measured spectra (blue dots) and TMM simulations (red lines) of the EIT cavity for a range of angles,

indicated in the figures. The measured spectra have been multiplied with varying prefactors to concur with

the simulations. The error bars of the spectra are Poissonian. The agreement between simulation and spectra

is very good.

not always perfectly aligned there is, on the whole, strong qualitative and quantitative agreement

between the data and the simulation.

This is an encouraging development, and we proceed to the next step, which is the comparison

with the quantum optical theory. The theory has been described in a previous section, so we jump
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Figure 33: Measured spectra (blue dots) and QO simulations (red lines) of the EIT cavity for a range of angles,

indicated in the figures. The error bars of the spectra are Poissonian. The agreement between simulation is

qualitatively excellent and quantitatively satisfying, which demonstrates that reliable parameters can be

extracted from the model.

straight to the results of the QO simulation, which are shown in Fig. 31 (a) and Fig. 33.

We point out that we have included some of the treatment of the TMM theory into this quantum

optical theory; i.e. we have convoluted the quantum mechanically calculated reflectivity with
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Cavity mode # 1 2 3 4 5

Mode spectral width κ [Γ0] 3× 1010 4.1× 1010 7× 1010 7.1× 1010 5.7× 1010

Mode driving strength κR[Γ0] 9.5× 109 1.7× 1010 2.8× 1010 3.9× 1010 2.56× 1010

Coupling Layer A gA [2× 105Γ0] 0.94 + 0.54i 3.4 + 7.06i 1.5 + 2.8i 0.53 + 1.5i 0.4 + 3.4i

Coupling Layer B gB [2× 105Γ0] 3.91 + 3.65i −0.26 + 0.3i −2.1− 2.4i 0.29− 0.15i 1 + 0.65i

Table V.4: Parameters of the quantum optical simulation which yield the data shown in Figs. 33 and 31.

the same Gaussian as the TMM reflectivity, and also included the geometrical factor describing

the footprint of the beam on the sample, in order to ensure that the data and the theory fit

quantitatively. Omitting this step would have caused a different fit results; the change in the

parameters would have been due to experimental details not related to the cavity and its properties.

The same general agreement between theory and data is evident as in the previous treatment; a

slight difference is that towards higher angles, our quantum optical simulation seems to slightly

over-estimate the coupling strength and consequently the splitting between the normal modes, but

not in any drastic manner. We also have some difficulty in getting the quantitative agreement just

right, but by and large the simulation describes the data excellently. Since, for example in Fig. 33

at 0.1514◦ we can make out a splitting and describe it accurately using the quantum optical theory,

we conclude that we have strong evidence for the presence of normal mode splitting between two

nuclear ensembles in the dispersive regime of a cavity.

Conclusive proof of this claim, however, requires the observation of Rabi oscillations in the

temporal domain. The periodicity of the oscillations is given by the Rabi frequency ΩR, which

should be half of the frequency splitting between the normal modes. Note that this is the Rabi

frequency including the detuning. The detuning here is, as shown in the quantum optical model

in the last section, not the detuning between the incoming radiation and the upper level, but the

detuning between the two nuclear ensembles, which is caused by the individual collective Lamb

shifts they experience. To observe this unambiguously is of paramount importance. We have

decided to perform another experiment to ameliorate the shortcomings present in this one. The

two most fundamental changes were that it was performed in the 40-bunch mode of the ESRF

and without the synchrotron Mössbauer source and KB focusing. This allowed for an almost

divergence-less beam, and permitted us to take time spectra to observe the Rabi oscillations. The

drawback of this setup was that we had to use time-gating (6 ns) to evade overload of the APD by

the prompt pulse, and introduce a thin enriched stainless-steel foil (1µm) mounted on a Mössbauer

drive to perform the energy discrimination. This was of course not required to observe the Rabi
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Figure 34: Measured and simulated reflectivity of the cavity at 0.162◦. In (a) we show the measured reflectivity and a

simulation taking into account the time gating and the propagation through an 57Fe absorber foil; hence the

background modulation and inversion of the dips, which is not present in direct reflectivity measurements

by the SMS, as shown in Fig. 33 In (b) the spectrum as it would appear without these measurement-induced

effects is shown. It consists of two Lorentzians each with a width of about 4Γ0 spaced apart by about 10Γ0,

which corresponds to the Rabi oscillation predicted by the QO model.

oscillations, but we took an additional energy spectrum to compare the measured splitting with

the Rabi frequency extracted from the Rabi oscillations. As described in a previous section, this

introduces oscillations into the spectra; but this can be accounted for in the data analysis. The

results are shown in Fig. 34.

The spectrum was measured at 0.162◦ and is shown in (a). The splitting is well-resolved

and consistent with the simulation, although the magnitudes are not perfectly reproduced.

The background modulation is reproduced as well; however, this was achieved by assuming a

timegating of 5 ns instead of 6 ns. This is well possible; in the time spectra we observed little

spikes which indicate a slight APD overload and reflections; this is equivalent to a slightly larger

fraction of the prompt being measured by the APD. In (b), the corresponding energy spectrum

simulation without the changes accounting for the time gating is shown. Again the splitting is

well resolved; it corresponds to about 10Γ0. Is this consistent with the quantum optical model? We

employ the parameters we obtained in the previous experiment, and plot some key values around

0.156◦ to check. In Fig. 35 (a) we show twice the Rabi frequency ΩR calculated by the model

compared to the ξL1 and ξL2 which describe the superradiant enhancements, i.e. the enhanced

bandwidths in units of natural linewidths, by which the resonances of the layers decay faster than

without the cavity. We find, as predicted before, that ΩR decays much slower when the cavity is
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detuned, and that ξL1 and ξL2 are below one linewidth at 0.162◦. Furthermore 2ΩR has a value of

about 10Γ0 which is confirmed by the spectrum we have measured, see Fig. 34. In (b), we show

2ΩR compared to 2Ωc. ΩR is extracted from the fit by the quantum optical model; so were the

collective Lamb shifts of the two ensembles. We calculated Ωc by resolving ΩR =
√

Ω2
c + ∆2 for

Ωc; ∆ = δ[1] − δ[2]. It turns out that ΩR is mostly induced by the detunings, as shown in Fig. 35.

While this will not change the frequency of the Rabi oscillations, it means that the layers will only

exchange a tiny fraction of the population, i.e. only a fraction of the probability that the photon

is in layer A will be transfered to layer B in the course of a Rabi oscillation. Fig. 35 (c) confirms

this by showing the collective Lamb shifts in the same angular range. According to the model

ΩR ≈ 5Γ0, and Ωc ≈ 0.5Γ0.

Finally, we show the measured time spectra in Fig. 36. We have added the time spectra

according the CONUSS model we have used to calculate the energy spectra, and a simple decay

which mimics the features of the Rabi oscillations which is

c(t) = e−Γtcos(ΩRt). (125)

where Γ is chosen to be 3.5Γ0 to take account of the line broadening.

There are some deviations between the measured data and the simulations, and the simulations

itself; They concern mostly the visibility of the fringes. Their source is most likely an incorrect

implementation of the line broadening due to the hyperfine field in the simulations. Recall that

stainless steel has a line broadening due to a distributed hyperfine magnetic field on its own, and

the presence of a carbon matrix around the thin layers is likely to add a distribution of isomer

shifts and the hyperfine magnetic field itself as well, and could introduce a hyperfine electric field

gradient as well, as it does for α-Fe layers in a carbon matrix [52]. As described above, in the

quantum optical model we have implemented this by assuming a linewidth of 3.5Γ0 instead of 1Γ0;

in the CONUSS simulations we have taken a slightly more sophisticated approach by assuming a

hyperfine field of 1 T which has a Gaussian distribution of. This explains why the latter model

gives a better fit to the data than the quantum optical one. There is some deviation at the end

of the spectrum as well; but this is just an effect of insufficient statistics; a beating could not be

resolved yet, since the signal-to-noise level is not high enough from about 120 ns on. All in all,

both models reproduce the most important features of the data, which are the decay time and the

beating period, and our assumptions are therefore confirmed. The only drawback is the fact that

we have not achieved full Rabi oscillations, where the population is fully coherently exchanged

several times during the lifetime. This is the focus of the next section.
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Figure 35: The effective coupling parameters, collective Lamb shifts and superradiant decay enhancement factors

obtained by fitting the measured spectra to the QO model. In (a) we show the Rabi frequency times 2

(corresponding to the splitting) compared to the superradiant decay enhancement factors of the two layers;

the latter are below 1Γ0, while the former is about 10Γ0, corresponding to a Rabi frequency of 5Γ0. In (b)

we compare the portion of the Rabi frequency that is due to the interaction between the two layers with the

total Rabi frequency, which includes the effective detuning, which we extracted from the QO model as well.

The bulk of the Rabi frequency is due to the effective detuning, as confirmed by (c) where we demonstrate

that there are significant Lamb shifts at the relevant angle, which is indicated by the black line in all three

panels. The rise of the curves to the right is due to the interaction of the first layer with the second mode,

which is relatively strong.
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Figure 36: Measured Rabi oscillations at 0.162◦ along with quantum optical and CONUSS simulations. The quantum

optical simulations consist of a simple exponentially decaying cosine with the frequency and lifetime obtained

from the QO energy spectra simulations, ΩR ≈ 5Γ0 and Γ = 3.5Γ0. Data and simulations have been

divided by the exponential decay to ensure better visibility of the low-count part of the spectrum. The

CONUSS spectra have been obtained by Fourier transforming the energy spectra obtained by CONUSS; the

resonance has been assumed to be broadened by a magnetic hyperfine field with a Gaussian distribution

around 1T. Any discrepancy between models and data is most likely a result of an insufficient theoretical

description of the line broadening. For details refer to the main text.
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Figure 37: Sketch of a coupled cavity setup. The cavities are at the same time divided and coupled via a very thin

cladding layer. The thickness of the layer needs to be carefully chosen; a thin layer means both cavities

have a high bandwidth but couple with a high J; a thick layer means the opposite. Each cavity is coupled

with a thin resonant 57Fe-layer such that the resonant layers are in the antinode of the first mode of each

cavity, ensuring that the coupling constants g1 and g2 are roughly equal. The first cavity is illuminated by

a classical external field.

V.4. Rabi Oscillations in a double cavity system

In this section, we introduce an improved scheme, which will allow us to observe Rabi oscillations

which are due to the interaction, not the Lamb-shift induced detuning of the layers. Our line of

thought is thus: the Lamb shift is red- or blue shifted depending on whether the mode which

induces it is red- or blue shifted from the resonance. We want to design a cavity where at a

particular angle, the Lamb shift contributions from two modes cancel each other. Since the

interaction between the layers depends on the magnitude squared of the Lamb shift only, it

remains and is solely responsible for the interaction and hence the Rabi oscillations. The thin-film

cavity setup we have developed is sketched in Fig. 37. It consists of two cavities, with the first

being on top of the second, and the second placed on a silicon substrate.

The cavities are divided by a thin cladding layer, through which they couple with each other.

Each cavity contains a layer of resonant 57Fe atoms, or more precisely a stainless steel layer

containing resonant 57Fe atoms. This ensures that due to the lack of magnetic ordering in stainless
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steel the nuclei are not subject to a magnetic hyperfine field; therefore the 57Fe sublevels are

degenerate and the layer functions as an effective single level layer. The Hamiltonian of the setup

is

HM = ∆Ca†
1a1 + ∆Ca†

2a2 + J(a1a†
2 + a†

1a2)

+i
√

2κr1(aina†
1 − a∗ina1) + ∑

l
(S1l+a1 + S1−a†

1) + ∑
l
(S2l+a2 + S2l−a†

2)
(126)

where we have already performed the transformation to the interaction picture. a1(a†
1) are the

destruction (creation) operators for the first mode of the upper cavity; a2(a†
2) likewise for the lower.

We omit higher order modes for both cavities; while they would lead to valuable corrections of

Lamb shifts and interaction strengths, they are not absolutely necessary to explain the phenomena

we would like to observe here. ain characterizes the driving strength with which an external field

drives the upper (and only the upper) cavity mode. The final terms describe the interaction of

the 57Fe layers with their respective cavity modes. Finally, the third term describes the interaction

between the two cavity modes by tunneling. The Hamiltonian is limited to the one-excitation

subspace. To solve it, we take a look at its matrix form:

H =


∆c J g1 0

J∗ ∆c 0 g2

g∗1 0 ∆e 0

0 g∗2 0 ∆e

 . (127)

where we have assumed that both cavities have the same frequencies of the first mode. Prediago-

nalizing the mode-mode interaction we get

H =


∆c +

J
2 0 g1

2
g2
2

0 ∆c − J
2

g1
2 − g2

2
g∗1
2

g∗1
2 ∆e 0

g∗2
2

g2∗
2 0 ∆e

 . (128)

We can see that we now have two supermodes [167] coupled to both layers each, which is the

same as in the previous section. Our theoretical treatment continues as laid out there, we proceed

to adiabatically eliminate the cavity modes. The scheme is sketched in Fig. 38 The fundamental

difference is physical. The two supermodes come into existence because of the coupling of the

bare modes. Their angular distance from each other can be tuned. Indeed, they can be spaced

apart very closely; far enough that the superradiant decay enhancement has already decayed to

zero, but still so close that the coherent interaction between the layers is enhanced much more

than it would be in a conventional cavity. What’s more, in the last section we noticed that the Rabi
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Figure 38: Sketch of the theoretical treatment of the double cavity. Interactions are given in red, driving terms in

orange, states and energy detunings in black. We have omitted dissipative terms for clarity. (a) the system,

with the cavities tuned to the nuclear energies, includes four states: photon in mode 1 (i.e. the upper cavity)

(|gg10〉), no ensemble excited; photon in mode 2, no ensemble excited (|gg01〉); ensemble 1 excited (|eg00〉),

ensemble 2 excited (|ge00〉), and finally the ground state with no excitations in the system at all (|gg00〉).

(b) after prediagonalization, we have two supermodes, which are energetically detuned by J the interaction

strength, from the nuclear energies. (c) after the adiabatic elimination, we have further detunings due to the

collective Lamb shifts δ, and an interaction term Ωc. (d) After diagonalizing the remaining Hamiltonian,

we have an additional splitting due to the interaction. If the cavity is properly designed, there will be no

contributions due to the CLS in (c).

oscillations were mostly due to the collective Lamb shifts of the layers. In the symmetric situation

we have now, the collective Lamb shifts for each layer cancel at the position between the cavity

modes, because the red- and blue-detuned cavities lead to a red- and blue-detuned Lamb shift of

equal magnitude; i.e. the total Lamb shift is zero. The coherent coupling strength depends on the

magnitude of the CLS, and not on whether it is positive or negative; hence the coupling strength
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Mode 1 Mode 2

κ [Γ0] 8× 109 4× 109

κR [Γ0] 9× 108 1.5× 109

Table V.5: Paramters of the cavity supermodes. κ are the cavity linewidths, κR the driving strengths.

remains, but the Lamb shifts vanish.

V.4.1. Experiment

The experimental setup is identical to the one for the measurements of the Rabi oscillations in the

last section. We have neglected to focus the beam in order to minimize divergence. The sample

was irradiated by 14.4 keV radiation from the ID18 beamline of the ESRF in the 16-bunch mode,

which leaves 176 ns between the bunches. The prompt was eliminated by using a 7 ns time gating

window. A stainless steel analyzer foil enriched with 57Fe was moved at velocities of ±10 mm
s . This

corresponds to an energy detuning of ±103Γ0. The slits in front of the detector had a width of 1

mm.

V.4.2. Results and Analysis

The resonant layer in the cavity consisted of 57Fe enriched steel; the cladding was made out

of Palladium, and the core of Carbon. The design parameters intended for the cavity to be

perfectly symmetric, i.e. both cavities were supposed to have the same core sizes. But we have not

managed to find a fit to the reflectivity measurements that confirms this. Therefore we analyze

the data purely with the quantum mechanical model developed in ref. [58]. In Fig. 39 we show

the reflectivity curve of the multilayer around the region of interest along with a quantum optical

fit of the cavity parameters, which are given in Tab. V.5. The angular range over which we analyze

the data is very small, and we will analyze only one spectrum, so we ignore modifications of the

reflected intensity by beam size effects and the envelope of the reflectivity. To include the effects

of the hyperfine magnetic field distribution and the possibility of isomer shift distributions etc.,

we have assumed that the nuclear resonance has a width of 4Γ0. In Fig. 40 we show the energy

spectrum measured at 0.176◦, along with a fit taking into account the time-gating detection. The

figure also shows the calculated reflectivity, without taking into account the detection process.

The splitting is obvious, and has a width of about 24Γ0. The parameters used for the fit are

given in Tab. V.6 . In Fig. 41 we show the measured temporal decay pattern of the cavity. The

beating indicative of Rabi oscillations is clearly visible. We compare the result to the Fourier
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Figure 39: Reflectivity of the double cavity around the first two supermodes along with a quantum optical simulation.

We have assumed a very slight divergence of 8× 10−6. The second supermode seems to overestimate the

quality of the cavity, but this is possible; note that the resolution of the curve is not too good. Using these

parameters in the fits of the spectra to come yields good results.

Figure 40: (a) Spectrum of the reflectivity at 0.176◦, along with a simulation taking into account the 7 ns time gating

window. The agreement is good. (b) simulation of the bare spectrum without any time gating. The splitting

is about 24Γ0, meaning ΩR ≈ 12Γ0.

transformation of the bare spectrum in Fig. 40 and a standard exponentially damped cosine with

the frequency ΩR. Both models adequately predict the periodicity of the beating, although there

are some shortcomings in the description of the intensities. In the case of the damped cosine, it
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Mode 1 Mode 2

g1 [105Γ0] 5.508 5.508

g2 [105Γ0] 6.05 6.05

Table V.6: Coupling strength parameters for the supermodes.

clearly does not take into account the additional dephasing that stems from the hyperfine magnetic

field distributions, therefore the calculated interference fringes are much more visible. The full

quantum optical model mimics these distribution effects via the interactions strength parameters,

and therefore does a much better job of predicting the intensities from about 20 ns after the

excitation on; but it fails to predict the intensity at the beginning of the spectrum. Part of that

might be just due to the leakage associated with the Fourier transform; but it is also conceivable

that this is a systematic error that results from discrepancies between the energy spectrum and

the simulation. Note that in Fig. 40 the dip in the spectrum at zero detuning is not accurately

reproduced. In the bare spectrum, this manifests itself as a peak, which should be higher. This

could be interpreted as a kind of superradiance that comes from interference between the two

normal modes; the superradiant part at the beginning of the temporal decay pattern would be

larger if this peak were larger.

We now examine whether the splitting and the decay oscillations we have observed is due to the

collective Lamb shifts or the interaction, and whether the strong coupling condition is met (i.e.

whether the splitting is larger than the superradiant decay enhancement of the eigenmodes). In

Fig. 42 we plot the superradiant decay enhancements, Lamb shifts, and interaction strengths.

The results are clear. At the angular position where we have measured the spectrum (indicated

by the black line), the Rabi frequency is almost exclusively a result of the interaction strength

between the layers, since the Lamb shifts are both almost zero there. Hence, the splitting is a

genuine splitting due to the strong coupling of two ensembles mediated by several cavity modes

and ΩR = Ωc = 12Γ0. Furthermore, as can be seen in Fig. 42, this is larger than the superradiant

decay widths. We therefore expect a strong signal showing Rabi oscillations, which are due to

the exchange of the excitation populations between the two layers. We conclude that we have

achieved strong coupling between two nuclear ensembles, and observed the coherent exchange

of population between them in the form of Rabi oscillations. The splitting has a magnitude of

24Γ0 ≈ 160 MHz. It is interesting that this is almost in the range where microwave cavities become

available commercially. This offers the tantalizing opportunity to further manipulate this system

with microwave photons, and perform quantum optics by interfacing x-rays and microwaves via



96 CHAPTER V. X-RAY QUANTUM OPTICS IN THIN-FILM CAVITIES

Figure 41: Rabi oscillations in the double cavity system. ΩR = Ωc = 12Γ0. The cosine is from the calculation of the

Rabi oscillations; The quantum optical simulation is a Fourier transform of the energy spectrum calculated

from the quantum optical model. Deviations are probably due to the hyperfine fields of the layers not being

properly implemented.

nuclear ensembles.

A more immediately accessible benefit is that this system offers the opportunity of designing

and tuning three-level systems in the hard x-ray range. Suppose, for instance, that one ensemble

was coupled to the cavity more strongly then the other. This can be achieved almost effortlessly

through layer placement, or by making one layer thinner, reducing the collective coupling strength.

Upon tuning the angle, one layer then experiences a greater Lamb shift then the other, and also

a greater superradiant decay enhancement. Right at the center between two cavity minima, the

Lamb shifts would cancel each other anyway, in what would appear as an anti - crossing, because

of the interaction strength. Closer to the cavity minima, one branch would appear very far detuned

and superradiant, with the other barely detuned and with a normal decay time, the interaction

between them remaining. The whole setup would effectively turn into an artificial three-level Λ

- atom with tunable level energies, decay times and interactions between the upper levels. And

of course there remains the opportunity to add more degrees of freedom by using the multiple

hyperfine levels available in α−57 Fe and adding more cavities. This brings closer to creating the
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foundations for some of the more complicated proposals advanced by theorists in recent years for

the coherent control of x-rays. Naturally, the principle can be extended to the electronic resonances

we have discussed in Chapter V.2, see for reference Fig. 43.
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Figure 42: (a) Interaction strengths between the layers vs. superradiant decay enhancements. The vertical black line

marks the position at which the data were taken. The interaction between the nuclear ensembles has a

frequency of about 24Γ0, obviously much stronger than the decay at the position where the reflectivity

spectrum was taken. In (b) it is obvious that the collective Lamb shifts are minuscule at that angle as well,

as laid out in the theory section. In (c) finally we compare the Rabi frequency that is due to the interaction

strength to that due to the detunings. Obviously the interaction strength contributes the lion’s share to the

Rabi frequency.
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Figure 43: (a) Parratt-simulated reflectivity of a double cavity with the dimensions 2 nm Pt/20 nm C/1 nm Ta/20 nm

C/1 nm Pt/20 nm C/1 nm Ta/20 nm C/20 nm Pt. In the center between the two supermodes, marked by the

black line, the matter-like parts of the excitation spectra are split by the effective interaction. The detailed

spectrum is shown in (b).
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V.5. A distributed Bragg reflector defect cavity for hard x-rays

V.5.1. Introduction

All cavities previously treated in this thesis were based on the strong total external reflection of

x-rays by high-Z materials under grazing-incidence illumination. Under these circumstances, the

materials form mirrors. The drawback is obvious, but not huge at first glance: the reflectivities are

restricted to small angles.

Upon further investigating the matter however, we find several reasons for wanting cavities

that can be operated at slightly higher angles than possible under total external reflection. The

most important one is that the equation relating the angular mismatch of mode and beam to

the detuning is ∆ = ( sin(α0)
sin(α1)

− 1)ω0. It is clear that for the same angular mismatch α0 − α1, the

above equation will yield vastly different values of the detunings depending on whether, say

α1 = 0.2◦ and α0 = 0.1◦ or α1 = 0.9◦ and α0 = 0.8◦. In other words, a mode centered at 0.9◦

and one centered at 0.2◦ which have the same angular acceptances have completely different

lifetimes or bandwidths, with the bandwidths for the mode centered at the higher angle being

narrower. This has many advantages, chief among them that it might bring us closer to collective

strong coupling in a conventional setup of one layer in a cavity mode. Particularly in the case

of electronic resonances, where the coupling strengths and mode linewidths are often a mere

order of magnitude apart, this could help tremendously. Whatever the advantages, the problem

remains that at angles higher than the critical angle, the reflectivity of any material is equally low,

effectively zero. And the range of energies that are of particular interest to us, say from 10-30 keV

no available material has a critical angle above 0.5◦.

The road we take to circumvent this problem is the use of a distributed Bragg reflector defect cavity.

A sketch of one is shown in Fig. 44. Thin-film Bragg reflectors have been a established tool of x-ray

optics for a considerable amount of time now [168, 169], and it has been shown that they can reach

reflectivities comparable to those of grazing incidence total external reflection far above the critical

angle and at multi-keV energies [170]. This enables us to extend a concept used with great success

in semiconductor quantum optics at the interface between visible light and the near-infrared into

the domain of hard x-rays. This concept is the DBR defect cavity [171, 172, 173, 174]. Its principle

is fairly easy: Between two DBRs a defect is introduced. This defect takes the shape of a layer

longer than the unit cell length. Depending on the length, index of refraction etc. of the periods

and the defect, a defect mode appears within the band gap of the DBR mirrors. Much as for the

modes in a conventional x-ray cavity, this defect mode coincides with a highly localized wave field
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Figure 44: A distributed Bragg reflector defect cavity. Two Bragg mirrors, stacks of double layers with alternating

indices of refraction, sandwich a defect layer, in which a wave will be localized. In our case, we use a defect

layer entirely of resonant matter; it is also possible to introduce a thin resonant layer into a low-Z defect

layer, similar as for the total external reflection cavities.

at the defect with an enhanced field strength. This is really all we require for quantum optical

experiments.

In the following, we present a brief proof-of-principle experiment. We do not observe new quan-

tum optical effects or manipulate the interaction in a fresh and interesting way. We merely prove

the viability of DBR defect cavities for applications in x-ray CQED. To our knowledge, this is the

first time such cavities have been examined in the x-ray range.

V.5.2. Experiment and Results

The experiment was performed at the ID18 endstation of the ESRF. To distinguish prompt pulse

electronic radiation and the delayed nuclear resonant scattered radiation we used the polarizer

analyzer setup. Consequently, of course, the cavity was placed in a constant external magnetic

field with the magnetization parallel to the beam (Faraday geometry) to allow only the coupling

between ±1 transitions and the incoming light. To measure electronic reflectivity curves, the
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analyzer was slightly detuned. For measuring only the resonant signal, we optimized it for

maximum suppression of the prompt pulse. To perform the energy analysis, we used a 1µm thick

stainless steel analyzer foil enriched with 57Fe which was moved at velocities between ±10 mm
s ,

permitting the detection of radiation between ±103Γ0. The sample itself consisted of two stacks

of DBR mirrors with respectively 12 and 13 periods of 1.8 nm Pt and 1.55 nm C (average sizes)

between which a layer of solid 57Fe with a length of 35.2 nm was positioned. The 57Fe was

magnetically ordered which leads to strong hyperfine interactions and an attendant splitting. Due

to the Faraday geometry, we only coupled to ±1 transitions. The reflectivity curve is given in

Fig. 45, along with a simulation performed by GenX [110] confirming the above values. The dip

indicating the defect mode is hardly visible, both in simulation and signal; this is partly a result

of the roughness, partly due to the high absorbance of Pt; repeating this experiment with Pd for

instance would yield far better results.

The most important graph of that figure is the bottom one however. This signal results purely

from nuclear resonant scattering. It turns out that the signal is the highest at the position of the

defect cavity mode, marked by 1 in the figure. This confirms our assumption that the cavity mode

enhances the interaction of the nuclear ensemble with the light.

In the figure, we have not only marked the defect mode, but also several other modes by black

lines. These modes are essentially standing waves within the DBRs, not within the defects. Since

they have some evanescent tails, they also couple to the nuclear ensemble in the defect. At any

angle, the nuclear resonant signal is probably a result of the interaction with several different

modes, as evidenced by the fact that the nuclear signal does not split into peaks which occur at

the same angular positions as the electronic dips.

To examine the cavity-mode interaction further, we have taken an energy spectrum of the reflectiv-

ity by means of the SS absorption foil. It is displayed in Fig. 46, along with a simulation. Clearly

there are some discrepancies between the spectrum and the corresponding simulation. To account

for them, recall that the simulation in Fig. 45 overestimates the quality of the cavity; the dips are

far deeper in the simulation. We have calculated the energy spectrum simulation by extracting

the cavity parameters from the GenX fit, and calculating the reflectivity spectrum via CONUSS,

accounting for the detection mechanism. Since the contrast of the electronic reflectivity is worse

than the fit can explain, it is obvious that the same must happen in the nuclear reflectivity, and

indeed, that is exactly what can be observed. The functional shape of the spectra are identical,

but the contrast between background and dips are higher in the simulation. The physical reason

behind this is probably a long-range roughness which is enhanced with every added period and

cannot be modeled straightforwardly by the fit.
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Figure 45: Reflectivity of the DBR defect cavity. The electronic reflectivity is fitted by GenX, giving an overall good fit,

although the contrast of the oscillations is not properly retrieved. This is probably a result of the roughness

increasing with increasing number of layers, which cannot be fitted by GenX. The nuclear reflectivity shows

that the interaction is strongest around the defect mode, which is marked by 1 in the figure. Several other

modes, standing waves of the Bragg mirrors and marked by black lines, also interact with the resonant layer,

even when angularly detuned from the incident beam, hence the modes cannot be resolved in the nuclear

reflectivity. This could probably be changed by making the defect layer not solid 57Fe, but introducing a

thin resonant layer into a thick non-resonant defect layer. The evanescent tails of the gap edge modes of the

mirrors will couple weakly to that layer.

In Fig. 46 (b) we have plotted the spectrum without taking into account the detection mechanism.

Here, one the splitting between the peaks than can be seen in (a) is even more pronounced. The

splitting is effectively a multi-mode based effect. To prove this, we show the energy spectra plotted

for a wide range of angles in two particular situations. In Fig. 47 (a) the reflectivity of the sample

without an external magnetic field is shown. This corresponds to a single line sample. It is obvious

that the non-defect modes at the corners of the image, although far detuned, have the matter-like

parts of their dispersion relation close to the nuclear resonance in the angular range of the defect

mode. In Fig. 47 (b) we show how this changes with a magnetic field and a polarizer-analyzer
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Figure 46: (a) The energy spectrum of the reflectivity at 0.76◦, the position of the defect mode. Evidence of quantum

mechanical interactions are obvious, but overstated by the CONUSS simulation, which takes as input

parameters for the cavity those extracted from the GenX fit. The simulation takes into account the detection

scheme involving a stainless steel 57Fe-enriched foil of 1µm thickness. (b) shows the energy spectrum

without the absorber foil. Deep dips are clearly visible, explained in the main text and in Fig. 47. The arrows

mark the ssplitting.

setup. The dips remain dispersionless and visible across the range, even if the the rest of the

dispersion relation vanishes. Although four peaks are visible in this scenario, each one interacts

with the field as a single one would; there are no spontaneously generated coherences.

In conclusion, we have performed what is to the best of our knowledge the first experiment using

a DBR defect cavity for quantum optics in the hard x-ray range. The results are very promising;

the interaction is similarly strong as for total external reflection cavities. A significant difference is

that the spectral distance of individual modes is less than for conventional cavities. This can be a

curse or a blessing, depending on whether the influence of multiple cavity modes is desirable or

not. An unambiguous advantage is the fact that the mode bandwidth is smaller even when the

angular acceptance remains identical. This offers a possible path towards strong coupling with

electronic resonances.
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Figure 47: Energy spectrum of a DBR defect cavity across a range of angles. In (a) we show that of a single-line
57Fe defect layer; the Fano-like anti-crossing is clearly visible. It is also clear that the dips derive from

the off-resonant band gap edge modes of the Bragg mirror. These modes play a similar role here as in the

experiment with two layers in the cavity. In (b) we show the reflectivity including a hyperfine field of 33.6

T, as in the real experiment. The dips can be identified with those in (a). The intensity is encoded in the

color map.
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Chapter VI

X-ray quantum optics in periodic

nanostructures

VI.1. Introduction

The aim of quantum optics is to control and tailor the interaction of light and resonant systems.

To this end, two important parameters must be controlled. One is the strength of the light-matter

interaction; the other is the number of modes of the electromagnetic field that the resonant system

interacts with. Too great a number leads to irreversible losses of excitation; the continuum of

modes acts as a heat bath for the resonant system.

The prime system for exerting this control, and the one which we have been concerned with in the

previous sections is a resonant cavity. It allows multiple modes; but for high-Q cavities, all but one

of them are so far detuned from a judiciously chosen matter resonance that they can be ignored.

However, our cavities are not single mode cavities even in that sense; them being essentially

Fabry-Perot filters, the electromagnetic fields in them are quantized in the direction orthogonal to

the surface, but continua in the two other dimensions. A scrupulous treatment of such a interaction

reveals that while it is not technically impossible to reach the strong-coupling limit or observe

other coherent effects, it is very hard and can only be done in very particular circumstances.

However, we observe such effects, because our resonant system is a collective excitation spread

in space, at least compared to the wavelength of the exciting radiation. As we have described

previously, this enforces a coupling with one particular mode of the electromagnetic field, namely

the one the nuclear exciton has been excited from. The cavity’s role is merely to enhance the

interaction strength by amplifying the electromagnetic field strength at the position of the resonant

107



108 CHAPTER VI. X-RAY QUANTUM OPTICS IN PERIODIC NANOSTRUCTURES

layer.

This points the way to another method of coherent control. Since our nuclear exciton interacts

with only one mode anyway, we can focus on enlarging the interaction without making use of a

cavity, but by enlarging the number of nuclei that partake in the nuclear exciton, as the collective

interaction strength depends on that number.

In the following, we will focus our attention in periodic multilayers or periodic resonant systems.

These, often referred to in quantum optics as resonant photonic crystals or resonant optical lattices

also restrict the number of modes the resonant matter interacts with. We will begin with a simple

quantum optical toy model describing the fundamental physical features of the propagation of

light through such systems.

VI.2. A nuclear optical lattice

The theory in this section is taken from [175]. The Hamiltonian of a system of N two-level atoms

interacting with the electromagnetic field is

H =
N

∑
i

ωσ†
i σi + ∑

~k

ω~ka†
~k

a~k −
N

∑
i

∑
~k

gσ†
i a~kei~k~ri + g∗σia†

~k
e−i~k~ri (129)

where σ†
i (σi) are the creation (destruction) operators of a single nuclear excitation at position~ri; g

is the coupling constant;~k is the wave vector of any electromagnetic field mode, and ω and ω~k are

the energies of the nuclear excitation and any field mode. The Hamiltonian is in the Coulomb

gauge; the rotating wave approximation has been performed. We suppose that the nuclei are

localized in an ordered array. Such a system of ordered resonant or near-resonant systems is

implemented in an optical lattice. While our system is not quite the same as that it bears many

similarities, and many of its features can be understood in terms of optical lattice phenomenology.

We will therefore refer to our system in the following as an optical lattice. A sketch is given in

Fig. 48.

We then perform the by now familiar transformation of defining an operator that acts upon a

state in the Dicke state space; this is basically a Fourier transform of the operator:

b~q =
1√
N

∑
i

bie−i~q~ri (130)

b†
~q =

1√
N

∑
i

b†
i ei~q~ri . (131)

~q is the reciprocal space wave vector. The sum is limited to ~q in the first Brillouin zone; anything

beyond that would imply that there were excitations in between the atoms. We also restrict our-

selves to one excitation, which means that we can ’bosonize’ the excitation [176]; the transformed
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Figure 48: Sketch of a nuclear optical lattice. It consists of periodically arrayed 57Fe-nuclei with a distance of a. Strictly

speaking, optical lattices are experimental implementations of such an array of resonant systems; we will

use the term colloquially for the structure in general, which is a toy model describing the features of the

propagation of light through our multilayers.

operators are subject to a bosonic commutation relation [b~q, b†
~q′ ] ≈ δ~q~q′ . For simplicity, we also

assume that the array of atoms is one-dimensional, and drop the vector signs. We also set G as the

reciprocal lattice vector, which will take the role of the impulse transfer vector. Substituting the

above into Eq. (129) we get

H = ∑
k

ωb†
q bq + ∑

G
(ωq+Ga†

q+Gaq+G −∑
G

ig
√

Nb†
q aq+G − ig∗

√
Na†

q+Gbq) (132)

where the sums over G involve all reciprocal lattice vectors. However, here we are merely interested

in the first one. The Hamiltonian then involves modes whose annihilation operators are aq and

aq+G, which all couple to the same collective nuclear excitation. We should expect that the modes

and the nuclear excitation mix then. The mixing is strongest when the energy of the participating

photons and nuclear excitations are equal. The mode energies are equal in two cases (a) when G

is zero and (b) when G is the first Brillouin zone vector. We can therefore restrict the sum over G

in Eq. (132) to these two photon modes. The Hamiltonian is easily diagonalized, and yields the

dressed state energy dispersion relations

E0 = ωq

E± =
ω+ωq

2 ±
√
(

ω−ωq
2 )2 + |g|2

(133)

where ωq = cq. The requirement that only the above two modes are involved in the Hamiltonian

is, of course, nothing but a restatement of the Bragg condition. If it is not quite fulfilled, the modes

will have slightly different energies, and consequently mix differently. Other modes are physically

involved, but their contributions are minimal. Of course, the Bragg condition is usually stated for
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non-resonant scatterers or atoms; therefore, we will briefly discuss the differences that arise in the

above dispersion relations. At first glance, we notice that E± corresponds exactly to the standard

polaritonic dispersion relation of light-matter coupling. Of course, with the system being periodic,

the branches of the polariton dispersion relation for which kz >
π
a have to be folded back into the

first Brillouin zone. The dispersion relation is shown in Fig. 49. The second remarkable instance

is that the dispersionless E0 branch of the dispersion relation is essentially a purely photonic

superposition of the two modes - a ’photonic’ polariton [175]. The similarity of the Hamiltonian to

the EIT Hamiltonian indeed suggests that it bears some similarities to the dark state of that system.

It is a photonic state that does not couple to the nuclei. In a true optical lattice, this is the standing

wave that forms the optical lattice. All other electromagnetic waves interact with the nuclei, and

are therefore expelled from the array. Now, what happens when the array is periodic in only one

dimension, and light illuminates it at an angle? The wave vector of the light impinging on the

structure changes only in the direction of periodicity. Expressing the wave vector component in

that direction z in terms of the angle and the index of refraction, we can rewrite the dispersion

relation of uncoupled light:

ωqz =
cq0z√

n2 − sin2(α)
(134)

where α is the angle of incidence measured from the parallel to the surface. q0z is the free-space

component of q in z-direction, and n is the (non-resonant) index of refraction of the medium.

Strictly speaking it is not necessary in this case, because we assume that all scattering contributions

stem from the resonance. In that case it can be set to one. This term can now be inserted into

Eqns. (133). Instead of changing k, the wave vector of the incoming radiation in order to probe

the system, we can change the angle of the incoming radiation and scan its energy for an angular

position to do so. For all practical purposes in our experiments, the tuning capabilities afforded

by this parameter are way too coarse, and we also have to perform some energy analysis via

Mössbauer spectroscopy-like techniques. When the system is angularly slightly detuned from

the Bragg condition, then ωq 6= ωq+G, and the diagonalization does not yield the simple form of

Eq. (133). It is more convenient to diagonalize it numerically. An example is shown in Fig. 49

(b). Now, the central band corresponding to the dark state has a slight dispersion. One can show

that it can be approximated by a harmonic oscillator potential around the Bragg peak. Just as

with excitonic systems in semiconductors, the quasiparticle associated with the band then has an

effective mass, which can be positive or negative depending on the detuning. Similar observations

in excitonic microcavities have led to interesting results [177].
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Figure 49: The dispersion relation of an optical lattice at two different angles. The lattice parameter a is 2.8nm. Q is the

wave vector for which kz = π
d . (a) Dispersion relation at the Bragg angle, 0.0158 rad. The dispersionless

contribution in the center of the band gap is clearly visible. This is the dark photonic state. (b) Dispersion

relation detuned by −11 mrad. The center allowed band is slightly deformed; we have one (upper) photonic

band gap and one (lower) polaritonic one. If the detuning were opposite, the band gaps would change their

character as well.

Figure 50: A bichromatic optical lattice. It consists of an optical lattice with two atoms per unit cell. The unit cell

length is a, the distance of the atoms within the cell is ρ.

VI.2.1. A bichromatic nuclear optical lattice

The theory of Chong et al. was extended to the case of a bichromatic optical lattice in [178]. We

give a condensed account of that work here.

We have already pointed out that the experimental system we employ to perform quantum

optical experiments consists of one-dimensional multilayers, either non-periodic ones for cavity
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QED or periodic MLs to simulate nuclear optical lattices or nuclear resonant photonic crystals.

The model discussed in the previous section is a good toy model for understanding the most

simple features of such systems. However, in experimental setups, we will usually employ 57Fe

layers which are several monolayers thick. To model this, we discuss a periodic system of resonant

nuclei which contains two nuclei per unit cell. Such a system is often referred to as a bichromatic

optical lattice; this is on account of the fact that to produce such a system with cold atoms, two

laser beams with slightly detuned frequencies, i.e. different colors are required. An example of

such a system is sketched in Fig. 50. The length of a unit cell is a; it contains two atoms, with a

mutual distance of ρ. Only minor additions to the model of the previous section are necessary, but

they yield significant differences in the photonic band structure and hence, reflection spectrum.

The obvious requirement is the introduction of a second nuclear exciton or, in more general terms,

collective excitation in momentum space. To distinguish it from the previous one, we denote its

raising (lowering) operators by d(d†):

dq =
1√
N

eiρ ∑
i

dieiqri . (135)

The reader will notice that we have appended a global phase factor of eiρ to the sum, in order to

account for the distance of the atoms in the gap. It is then intuitively clear that this nuclear exciton

is a collective excitation shared by all the second atoms of each unit cell in the crystal; bq is, as

before shared by the other ones. Again, we assume that the excitons have a low excitation number,

allowing us to bosonize them and to use bosonic commutation relations. Then, by a similar line of

thought as in the previous section, we derive the Hamiltonian

H = ∑
k

ωb†
q bq + ∑

G
ωq+Ga†

q+Gaq+G −∑
G

[
ig
√

N(b†
q + eiρd†)aq+G − ig∗

√
Na†

q+G(bq + e−iρdq)
]

.

(136)

Here, two nuclear excitons couple to two modes each, meaning that there is not only an effective

coupling between the modes, but also between the nuclear excitons. We have assumed that the

nuclear excitons have the same energy as well as the same coupling strength to the electromagnetic

field. If we curtail our interest to the region around the Bragg angle, this is well satisfied, since

in this region the z-component of the wavevector is approximately as long as the inverse period,

meaning that all nuclei of a particular nuclear exciton are coupled to the modes in phase.
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Figure 51: The dispersion relation of an infinite bichromatic optical lattice. In (a) we show the dispersion relation in

k-space for the angle of 15.9 mrad, which corresponds to the perfect Bragg position for the given parameters.

The points marked by the red crosses in the figure represent the band gap edges. Between them, there are no

allowed polaritonic states of any kind; that is why any light with a frequency in this region gets reflected.

By detuning the angle, we change the dispersion relation and the energy of the band gap edges, so that there

is a band gap dispersion, which is plotted in (b). In angular space, the band gap dispersion has a strong

similarity to the avoided crossing of polaritonic light-matter systems or single atom-cavity strong coupling

setups. We have strongly exaggerated the coupling strength in this figure so as to make the effects visible

clearly.

VI.2.2. Experiment

In Fig. 52 we show the setup we have used in this experiment, which was performed at the ID18

endstation of the ESRF in the 7/8 + 1 bunch mode.

We have used the polarizer-analyzer setup we have described in the experimental methods

section. The high purity that setup provides has permitted us to dismiss using the high-resolution

monochromator and rely entirely on the high-heat load monochromator of ID18, which provided

us with 14.4 keV radiation with a bandwidth of about 0.3 eV. The sample itself was magnetized

by a magnetic field applied in the direction of the beam, a setup often referred to as the Faraday

geometry [56, 63]. In this geometry, the 57Fe line is split into six different transitions, only four

of which can be excited, namely the ones which involve a m = ±1 change of the magnetic

quantum number. This means that every photon that is scattered by a nucleus undergoes an

orthogonal change in polarization (the system is optically active), which allows the user to

distinguish between resonantly scattered photons and the prompt. The incoming radiation was

σ-polarized, with the polarizer refining the purity. The analyzer only transmitted π-polarized

radiation onto the APD. The quality of the setup was such that even despite the absence of the
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Figure 52: Setup for measuring the reflectivity of a nuclear optical lattice. 14.4 keV radiation is guided through a

polarizer to ensure pure σ polarization. It impinges in grazing incidence on the sample, where it undergoes

strong σ→ π orthogonal scattering. An analyzer transmits al π-polarized radiation, the energy of which is

analyzed by a Mössbauer stainless steel absorption foil enriched with 57Fe to 95%. The foil is mounted on a

Mössbauer drive. The suppression of non-resonant radiation by the polarizer/analyzer setup makes both the

high-resolution monochromator and time-gating of the APD superfluous.

high-resolution monochromator, we were able to eschew the use of time gating. The energy

analysis was performed by mounting a 6µm thick stainless steel foil, 95% enriched with 57Fe on a

Mössbauer drive. The velocity of the drive was ≈ ±10 mm
s , yielding a width of the spectrum of

±103Γ0.

The sample consisted of 30 periods of 1.12 nm57Fe/ 1.6456Fe, sandwiched by 2 4-nm Ta-layers. The

bottom layer was deposited to ensure adhesion of the multilayer to the substrate; the top-layer was

added to avoid oxidation. Since the electronic reflectivity cannot distinguish between resonant and

non-resonant iron, the numbers above were extracted from the measured resonant energy spectra.

They should be interpreted as average thicknesses; it is not possible to sputter layers with such

precision. Even minimal changes in these thicknesses change the theoretical results drastically

however. The first experimental step was to take reflectivity measurements, both resonant and

non-resonant. To take the latter, the polarizer was slightly detuned from the position of maximal

extinction, whereupon the electronic signal could be measured as well. The result is shown in

Fig. 53. The peak visible in the resonant signal has no equivalent in the electronic one.

We therefore can conclude that it is of purely nuclear origin.

The second step involved tuning the sample at angles around the Bragg peak and measuring

spectra by introducing the stainless steel foil on the Mössbauer drive into the beam. We present
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Figure 53: The non-resonant and energy-integrated resonant reflectivity of the sample. The red line is a simulation of

the non-resonant reflectivity yielding average period dimensions of 1.12nm57Fe/1.64nm56Fe. The Bragg

peak is purely nuclear, i.e. it has no equivalent in the electronic reflection.

the results in Fig. 54

We begin our discussion of the results with the TMM simulations. In Fig. 55 we have plotted

real and imaginary parts of the dispersion relation of an infinite layer with a period given by

1.12 nm 57Fe/1.64 nm 56Fe. The 57Fe layers are 95% enriched. The color encodes the value of the

wave-vector of the polaritons, corresponding to the energy of the light (y-axis) illuminating the

sample at an angle (x-axis). Deep red corresponds to a wavevector of π/a, i.e. light that fulfills

the Bragg condition. The band gaps can be seen to undergo an anticrossing that is qualitatively

remarkably close to the band gap dispersion calculated by the quantum optical toy model for

a bichromatic optical lattice. An added feature is a spectrally thin, almost dispersion-less band

gap close to the nuclear resonance, shown in Fig. 56 (a). Since the nuclear resonant layer contains

about 4-5 monolayers of 57Fe, it is likely that weakly coupled extra atoms are the cause of this

feature.

The imaginary part in Fig. 55 warrants some discussion, as it cannot be interpreted straightfor-

wardly. It consists of three distinct contributions: (1) the nuclear resonant absorption, (2) the

electronic absorption, and (3), the extinction coefficient. Clearly, the resonant absorption channel

is dominant at and around zero detuning. At its peak, it is the strongest contribution to the
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Figure 54: Energy- and angle resolved reflectivity measurements and simulations. (a) overview of the measurements,

simulations are in red, measurements in blue. The agreement is excellent. The dashed red line is a guide

to the eye for the anticrossing. The section of the spectrum in the black box is reproduced in (b) for the

simulation and (c) for the data, where the x-axis shows the energy detuning, the y-axis shows the angle, and

the intensity is encoded in the color map.

imaginary part of the dispersion relation, but it follows a Lorentzian line shape, and off-resonance

quickly becomes negligible. There is no dependence on the angle of illumination. The electronic

absorption is constant over all angles and energies (at least, in this limited energy range); compared

to the nuclear absorption at zero detuning it is very weak, but far off-resonance, it dominates

over the negligible nuclear absorption. The final contribution is the extinction coefficient, which is

the most important one for the purposes of this discussion. The extinction coefficient determines

how well the sample expels and reflects incoming light. If the extinction coefficient is high, very

few periods suffice to reflect the light almost completely; if it is low a great many periods are

needed to achieve the same. The extinction coefficient depends exclusively on the difference of

the real parts of the indices of refraction of the two materials forming the multilayer. If, as in the

present case, the difference depends on a resonant, energy-dependent index of refraction, then

the extinction coefficient does too. Close to the resonance it is strong; far off, it gets progressively
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Figure 55: Simulations of the real and imaginary parts of the dispersion of an infinite multilayer calculated with the

transfer matrix method. We have chosen an ML with a 1.12 nm 57Fe/1.64 nm 56Fe period, and a single,

unsplit line. The magnitudes of the real and imaginary parts of the dispersion relation are encoded in the

color bar, and displayed for a range of angular and illuminating light energy detunings. (a) shows the

real part; Re(k0z) is given in units of π/d, i.e. the closer the value is to one, the closer the values of the

corresponding wave vector are to the Brillouin zone border. The range in which they are approximately one

constitutes a band gap, and is displayed in a dark red hue. An anticrossing between two bands is clearly

visible, as well as a spectrally narrow, dispersion-less contribution close to the nuclear resonance. In (b),

the imaginary contributions are presented. They are large around the resonance, and smaller off it, but the

off-resonance anti-crossing behaviour is still visible. Note that the magnitude is encoded logarithmically in

order to view off-resonant contributions in greater detail. For further discussion, see the text.

weaker. This makes for a rather complicated interplay between the extinction coefficient and

the absorption coefficients. At the resonance, i.e. at an energy detuning of zero or close to it,

the extinction coefficient is strong; but the nuclear absorption is stronger. Far detuned from the

resonance, the nuclear absorption is negligible, the extinction coefficient is stronger than the

nuclear absorption, but weaker than the electronic one. In between these two extremes is a region

where the extinction coefficient dominates both the electronic and nuclear absorptive channels; it

is here that we expect strong reflection even with relatively few layers. Luckily, this region is close

to the point where Bragg position and resonance coincide, i.e. around the anticrossing visible

in Fig. 56 (b). In Fig. 57 we show the reflectivities for the above structure for different numbers

of layers. For larger numbers, the splitting slightly increases, which can be interpreted in terms

of the quantum optical model: a greater number of nuclei leads to a larger collective coupling

strength g
√

N. Also, off-resonance the reflectivity increases with increasing period number; this

can be explained in terms of the fact that for a larger number of layers, the system gets closer to
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Figure 56: Details of simulations of the real and imaginary parts of the dispersion of an infinite multilayer calculated

with the transfer matrix method. The structure is the same as in Fig. 55. In (a), we show an enlarged

detail of Fig. 55 (a), so the low-dispersion band can be observed. In (b), we show the extinction coefficient

contribution to the imaginary part of the dispersion relation. The magnitude of the extinction coefficient

determines how strongly impinging light is reflected. It depends on the real part index of refraction difference

of two materials constituting a periodic multilayer. (b) was plotted by ’turning off’ all electronic and nuclear

absorptive parts in the TMM. The anticrossing of the band gaps is clearly visible. Note that the color map is

logarithmically encoded.

the ideal infinite periodic system we have based the quantum optical model on.

As final evidence that the quantum optical model of the previous section and the TMM deliver

are in agreement, let us point to Fig. 58 where we have plotted the reflectivity of our system

in (a). This is equivalent to Fig. 54 (b) but without the inversion due to the stainless steel foil

absorption. Here, we have calculated the behaviour for only one resonance line; but this is not

an issue since the four resonances of the experiment behave identically and independently from

each other. In Fig. 58 we show the reflectivity of a sample with the same period, but a number of

100 periods; and finally in (c) the dispersion of the band gaps according to the quantum optical

model. It is clear that (b) and (c) have virtually the same qualitative behaviour. We conclude that

the quantum optical model is ideally suited to describing the quantum mechanical behaviour of

resonant periodic multilayers without a background refractive index contrast, such as ours.

But what explains the differences between the model and our measurement? The most important

answer to this is obvious; we have a finite number of layers, 30 periods precisely, and this is not

enough to justify the assumption that our system is infinite - a key component of the derivation

of the QO model. But as the simulation of the reflectivity of a 100-period multilayer in Fig. 58

shows, even for a longer layer, the band gaps are not fully formed. More layers would enhance
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Figure 57: Reflectivities of a finite ML with 1.12 nm 57Fe/1.64 nm 56Fe periods. (a) 10 periods, (b) 30 periods, (c) 60

periods, (d) 100 periods. The initially small splitting grows broader; with increasing number of periods, the

off-resonance reflectivity of the band gaps is enhanced.

the reflectivity. Here, our previous discussion of the interplay of the extinction coefficient and the

electronic absorption plays a role. Far off the resonance, the extinction length is smaller than the

electronic absorption length - the light gets absorbed, and is only partially reflected. Returning to

the QO model, this means that we ought to include dissipativity and absorption to arrive at a more

precise quantitative agreement with the experiment. However, to do so is somewhat pointless. It

bears repeating that the number of nuclei per unit cell (resonant layer) in the multilayer is about

4− 5; a scrupulous treatment of such a complicated system would be unfeasible, especially since

we would have to discard the assumption of infinity of the atomic chain.

Still, the model has served its purpose: we can pinpoint the reason for the splitting we observed in

the data to a quantum mechanical reason, which is the strong coupling of two modes of radiation

with a collective of nuclei. In this sense, we have reached the strong coupling limit in the x-ray
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Figure 58: The reflectivity of a 1.12 nm 57Fe/1.64 nm 56Fe ML with (a) 30 periods (b) 100 periods, and (c) the band

dispersion of a nuclear optical lattice. As the number of layers goes closer to infinity, the predictions of the

TMM and the quantum optical model tend to agree.

range with our experiment. But can we use the model to extract the coupling parameter from

the data? In a sense, yes. Observe from Fig. 56 (b) that the extinction coefficient is consistently

the highest where the band gap edge is closest to the nuclear resonance. That means that the

reflectivity will always be highest where the band gap edge closer to the resonance is located; these

then, are the positions marked by the peaks in our sample. They can be calculated analytically in

the case of the zero detuning from the Bragg peak, see Fig. 51 (b). The edge positions in that case

are:

ωj,±(q) =
ωk0z + ω

2
±
√
(

ωk0z −ω

2
)2 + N2g2

[
1− (−1)j cos(qρ)

]
(137)

The edges then have the frequencies±
√

2Ng2(1− (−1)jcos(qρ)), and the splitting is 4g
√

N f j(qρ)

where f1(qρ) = cos( qρ
2 ) and f2(qρ) = sin( qρ

2 ) The difference arises from ρ: If it is smaller(larger)

than 0.25a the bands marked by j = 1(j = 2) form the inner edges. ρ generally plays a crucial role

in this setup; when it is for instance ρ = 0.5a, we do not have bichromatic lattice anymore, but a

monochromatic one with a period of half the length of the original one. The two central bands

then become degenerate. Even in other situations, it can greatly enhance or reduce the interaction

strength. Since we have no way of knowing ρ, we have to include it in the parameter we can give.

Assuming, without loss of generality that ρ is smaller than a, we can assign

4g
√

Ncos(
qρ

2
) ≈ 8Γ0 ≈ 57.3MHz. (138)

This is the collective coupling strength of our system.

We finish this section with a brief overview over previous work in similar systems. To the best

of our knowledge, two physical systems have yielded phenomena and observations similar to
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ours: genuine optical lattices [127, 179, 180] and gratings of excitonic quantum wells. In excitonic

quantum wells, a semiconductor is doped periodically; that way, the background refractive index

is identical throughout, but there are periodically spaced regions where quantum well excitations

are possible [181]. This medium is particular interesting, since it suffers from a similar drawback

as ours: too few layers result in an unclear or incomplete formation of band gaps. Since the

early 1990s, the results obtained from excitonic quantum wells have been described in a different

framework. Instead of assuming an infinite structure, researchers calculated the eigenmodes of

these systems for a small ≈ 10 number of layers [182, 183]. In that case, the eigenmodes are one

superradiant Bragg mode, which reflects the radiation in a band much wider than the exciton

resonance, and a number of dark modes. In a sense, this is the incipient Bragg band gap. However,

experiments [184, 185] showed that with an increasing number of layers, dips in the superradiant

mode and a saturation of its width appeared; researchers explained this later in terms of band

gaps and standing waves within the band gaps [186, 187], much as the quantum optical model of

this chapter. Something resembling a bichromatic array of quantum wells was examined in [188];

although the paper has a different focus, the observed phenomena resemble those in this section.
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VI.3. A nuclear resonant photonic crystal

In the previous section we have introduced a nuclear resonant optical lattice, i.e. a periodic system

where the background index of refraction is constant, but there is a periodic resonant modulation

of the refractive index due to the nuclear resonance of 57Fe. In this section, we will extend this

work by discussing a nuclear resonant photonic crystal. This is a periodic multilayer in which

both the background index of refraction is spatially varied and a periodic resonant modulation is

introduced. Samples of this kind have been of great interest for the semiconductor nanostructures

community for a long time now [187, 189, 190]. As we shall see, most of the theory we require to

explain the observed phenomena has been discussed in previous sections.

VI.3.1. Theory

The basic Hamiltonian for the setup is derived almost exactly like the one in the previous section

with the difference of the introduction of an electronic coupling term. We assume an infinitely

extended multilayer. In this sample, the nuclear resonant layers are thin enough for us to assume

that there is only one atom per unit cell.

H = h̄ωa†
q aq + h̄ωa†

q+Gaq+G + Ω(a†
q aq+G + a†

q+Gaq) + gq(aqS+ + a†
qS−) + gq+G(aq+GS+ + a†

q+GS−)

(139)

where aq(a†
q) is the destruction (creation) operator for the first (’incoming’) mode, aq+G(a†

q+G) for

the second (’reflected’) mode and Ω is a term describing the coupling of the two modes via the

electronic scattering from the background index of refraction variation. As is well-known from

standard optics and solid state physics, at the border of the first Brillouin zone, the bands will

split forming a band gap with energetic width Ω. Finally the last two terms describe the coupling

of the two modes with the bosonized nuclear exciton, whose creation and destruction operators

are called S+ and S− respectively. The only difference indeed to the Hamiltonian for the nuclear

optical lattice is the direct coupling term of the two modes. Previously, they had only coupled

via their common coupling to the nuclear exciton (Fano-Agarwal coupling), but now they have a

direct coupling term as well. It follows that there is bound to be some interference, between the

coupling mechanisms. A photon can be reflected either via the electronic channel or the nuclear

channel. Will the possible interference between these two different quantum paths show up in the

spectroscopic signature? As it turns out, it will.

There are two ways to solve the above Hamiltonian. We could go along the lines of the last section,

and simply diagonalize numerically. This is the most comfortable way; there are no zeros in the
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(3× 3) Hamiltonian, making a succinct presentation of the eigenvalue dispersion impossible, as the

determinant is a full cubic equation. Alternatively we can go along the lines of Askitopoulos [190]

and pre-diagonalize the part of the Hamiltonian that describes the interaction due to electronic

scattering. After truncating the Hamiltonian in the one-excitation subspace, it can be represented

in the matrix form 
∆q Ω gq

Ω∗ ∆q+G gq+G

g∗q g∗q+G 0

 . (140)

Supposing that gq = gq+G = g, we perform the pre-diagonalization of the top-left 2× 2 matrix
ω+ 0

√
2g

0 ω−
√

2g
√

2g∗
√

2g∗ 0

 (141)

where the upper two states are now symmetric and anti-symmetric superpositions of the the states

where each mode is occupied and the other is not. The eigenvalues are

ω+,− =
ωq −ωq+G

2
±
√
(

ωq −ωq+G

2
)2 + Ω2 (142)

and the anti-crossing takes place where ωq = ωq + G which is of course at the border of the first

Brillouin zone.

We have to take into account that Ω >> g, which means that the electronic band gap which

is described by the pre-diagonalization is so large that it dwarfs the reach of the nuclear-x-ray

interaction in terms of energy detuning. This means that we can effectively ignore one of the

above modes; we simply pick whether we want to describe the system at the upper or lower edge

of the band gap and only take the interaction with the relevant mode into account. The other

mode will have a negligible effect on the Hamiltonian, which reduces to

H = ∆+a†
+a+ +

√
2(ga†

+ + g∗a+) (143)

The whole derivation is really a more rigorous form of the observation that the dips close to the

band gap of a periodic multilayer can be approximated as Lorentzian close to their center, as

shown in Fig. 59

This is consistent with some earlier literature. Bendickson et al. derived a transfer matrix

method-based way of calculating the density of modes in one-dimensional periodic nanostruc-

tures [191], and found that they display peaks where the reflectivity displays dips. On a more

theoretical level, John et al. found that the properties of spontaneous emission of one [192] and
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Figure 59: Contrasting view of a cavity mode reflectivity (red) and the reflectivity of a distributed Bragg reflector close

to the band gap (blue). In the region of the dips close to the band gap, the system can be described as a cavity

to first approximation

multiple atoms [193] are strongly altered close to the band gap when the resonant medium is

inserted into a photonic crystal. They pinpointed as the reason the extremely high density of

photonic states, which rises asymptotically to infinity at the band gap border. But in real, finite

systems, the density of photonic states does not rise to infinity. Instead as Bendickson etal. have

shown, it displays Lorentzian peaks at the points where the reflectivity displays Lorentzian dips.

In other words, these dips mimic the effects of cavity modes, which is a different way to state

what we have derived above. Askitopoulos etal. used this to implement strong coupling in such a

system [190] We continue in the spirit of the derivation in Chapter IV.3.1-4. It can be easily seen,

that the final result will be the same, since under the conditions we have named (proximity to a

reflectivity dip) the reflectivity of the resonant DBR should display the same systematic behaviour

as the reflectivity of a single cavity mode. This has led some researchers to name such a resonant

DBR a ’unfolded microcavity’ [190]. Other researchers predicted and observed ’micro-cavity-like

polariton dispersion’ in similar systems [194, 195]. To reinforce this point in our system, we show

a simulation of a six period 10 nm C/1 nm 57Fe-multilayer in Fig. 60. It clearly shows that at every

reflectivity dip, an anti-crossing like behaviour occurs in the energy-resolved reflectivity. All of

this is consistent with the well-known fact that at these dips periodic structures support standing
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Figure 60: Reflectivity of a 10 nm C/1 nm 57Fe-multilayer with six periods. The lower panel shows the energy-integrated

reflectivity. The upper panel displays the energy-resolved reflectivity around the nuclear resonance. The x-

axis displays the angle of incidence, the y-axis the energy detuning. The reflectivity is encoded logarithmically

in the color bar. Around 5.5 mrad, the anticrossing of the band gap is visible; this is essentially the same effect

as described in the section on monochromatic optical lattices. More interestingly, at every position where

the energy-integrated reflectivity displays a dip, the energy-resolved reflectivity reveals an anti-crossing

behaviour of that dip. This indicates, as discussed in the text, that the dips function as single modes which

interact with the nuclear ensembles in the resonant one-dimensional photonic crystal.

waves [190, 196]

VI.3.2. Experiment

The experiment took place during the same beamtime as the work on the coupling of resonant

layers in a dispersive cavity in Chapter V.3, which we refer the reader to for details of the setup. Of

course, it suffered from much the same problems, and the data is subject to similar limitations as
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Figure 61: Fit of the reflectivity curve of the nuclear resonant one-dimensional photonic crystal. The parameters

extracted are given in table VI.1.

in the previous experiment. One exception applies; we have introduced a slit before the KB-mirror

shown in Fig. 28 which reduced the beam size and with it the divergence. Otherwise, little has

changed. For the postprocessing of the data we refer the reader to Appendix B where we have

covered the scheme in some detail.

VI.3.3. Results

As usual, we begin by taking a non-resonant reflectivity curve and using the fit program GenX [110]

to extract the parameters of the sample. The reflectivity and its fit are shown in Fig. 61; the

corresponding properties of one period are shown in Tab. VI.1.

Since the beam width was not changed from the dispersive-cavity-experiment, we expect that

it is the same, about 17µm. On the other hand, we have introduced slits in front of the KB mirror,

which reduces the divergence of the beam; the fit’s result for the divergence is 7.85× 10−5 rad. The

sample itself is a 20mm×20mm×0.5 mm silicon wafer with the nanostructure magnetron-sputtered

on top. A sketch is shown in Fig. 62.
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Carbon Stainless Steel Carbon Platinum

Thickness [nm] 3.7 0.45 3.85 1.8

Density [g/cm3] 1.96 7.56 1.96 20.7

Roughness mean squared [nm] 0.88 0.6 0.88 0.7

Table VI.1: Properties of the one-dimensional photonic crystal according to the GenX fit. Additional parameters

important to the fit are given in the text.

Figure 62: Sketch of the nuclear resonant one-dimensional photonic crystal, sizes are not to scale.

As usual, the parameters only represent averages of the actual, fluctuating widths of indi-

vidual periods. From these parameters, we proceed as outlined in Chapter V.3., by fitting the

post-processed spectra to the data and assigning the angles accordingly. Ordered spectra and

simulations are depicted in Fig. 63. Not only are the general features of this rather complicated

dispersion visible, but the quantitative agreement is excellent as well.

To support the claim we have made in the theoretical section of this chapter, in Fig. 64 we show

a detail from the spectra in Fig. 63.

The range of angles corresponds to the first minimum near the edge of the band gap, i.e. the

region we have claimed was qualitatively similar to a cavity. Our claim is clearly confirmed by

Fig. 64 (a). The anti-crossing-like behaviour is visible, and shows the same Fano-like features

as [57] and in Chapter V.II. Hence, strong coupling has not been reached, but we have achieved
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Figure 63: Reflectivity measurements and simulations of the nuclear resonant one-dimensional photonic crystal. (a)

The experimental data, post-processed and sorted by comparison with the simulation. (b) The simulation,

which was performed by using the parameters extracted from the GenX fit. The y-axes display the detuning

of the stainless steel absorber foil, the x-axes the angle of incidence. The reflected intensities are displayed

logarithmically in the color map. Agreement is very well.
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Figure 64: Detail of the measurements and simulations in Fig. 64. The y-axes show the SS absorber foil detuning,

the x-axes the angle of incidence. The reflected intensities are encoded logarithmically in the color map.

The anticrossing of the dip is well resolved and visible. The spectra display Fano resonances, as in [57].

The white lines are guides to the eye to show the anticrossing behaviour due to the mode/nuclear ensemble

coupling.
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Figure 65: Dispersive splitting between the branches of the dispersion relation in the region between two standing

waves. The angle is 0.267◦. The magnitude of the individual dips is not well retrieved, but the magnitude of

the splitting is.

our aim of demonstrating that close to the band gap of a nuclear resonant photonic crystal, cavity

QED-like phenomena appear.

We also point out that, as discussed, there are multiple cavity-like dips which are indicative of

standing waves. Consequently, we expect that between these dips there may be a dispersive

splitting of the kind we have observed in previous section. In Fig. 64 both the simulation and the

experiment show just such a splitting in the region between 0.266◦ and 0.268◦. In the simulations,

two narrow dips are visible at the same angle; in the data it is harder to discern them. We therefore

show a line cut in Fig. 65.
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VI.4. Ptychographic synchrotron Mössbauer spectroscopy

In several chapters in this thesis we have measured Mössbauer spectra with the help of synchrotron

radiation. The two techniques we have employed here are the ESRF-based synchrotron Mössbauer

source and time-gating detection of synchrotron radiation. Like all experimental schemes, these

too have drawbacks and associated problems. The SMS for instance has shown instabilities in

our experiments. It is also signally dependent on the quality of the FeBO3-crystal. If the crystal

presently used at the ESRF is damaged, dirty or lost, no others of comparable quality are available,

and the quality of the source suffers accordingly. Furthermore, the more spectrally narrow the

bandwidth of the source, the fewer photons get scattered, even adjusting for the bandwidth. This

fickleness is particularly annoying in grazing incidence measurements, or experiments that require

both a high intensity and good energy resolution. Furthermore, it is by no means clear whether

SMS devices can be replicated at other sources, due to the aforementioned dependence on crystal

quality.

Time-gated detection, on the other hand is a far more robust technique. It is widely used at

NRS beamlines worldwide, and its specifications can be changed according to the needs of the

experiment. For example the time gating window can be made shorter or longer depending on

how photon-hungry the experiment is. Furthermore, it is permissible to use even when the isotope

in question has a decay time much longer than the time window between electron bunches, like

Tantalum [197]. The drawback is, again, that there is a balance to be found between resolution and

measured intensity. Time-gated detection relies on photons being scattered in the absorber foil.

The more photons scattered, the better the signal statistics. But only thick foils scatter strongly,

and thick foils have the side effect of blurring the resolution, since multiple scattering occurs,

which broadens the linewidth.

In order to deal with these two issues, we here propose a new technique, which has the potential

to combine a high signal rate with excellent resolution. This is the spectroscopic extension of a

microscopy technique called ptychography [198, 199, 200, 201] which has received a lot of attention

in the past years, particularly in the fields of x-ray imaging. The added benefit of ptychography is

not only the reconstruction of high-resolution images, but also the retrieval of the phase of the

imaged sample.

The principle of ptychography, pictured in Fig. 66 is fairly simple. We have a semi-transparent

sample, and a so-called probe, which is the beam the sample is illuminated with. The probe

is smaller in extension then the sample, which is usually referred to as the object. Both can be

represented by N ×M matrices; N and M are ultimately the number of pixel rows and columns
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Figure 66: The concept of ptychography. A beam (green line) is scanned in discrete steps across a sample. The footprints

on the sample overlap for each step. The circles indicate the beam positions and their overlap. In the far-field,

a 2D detector measured the far-field diffraction pattern, which consists of the magnitudes squared of the 2D

Fourier transform of the sample (object) times the beam (probe).

of the detecting camera. In the case of the object matrix, its magnitudes determine the amount

of radiation transmitted through the sample; its phases determine the phase shift the radiation

undergoes at being scattered from the sample. This is a valid treatment if the sample is optically

thin enough, which is usually the case for x-rays.

The matrix of the probe determines magnitudes and phases of the incoming beam. Most ptychog-

raphy schemes require an excellent knowledge of the probe; but there are some which are able to

reconstruct both the probe and the object without prior knowledge of the two merely from the

measured diffraction patterns [202]. However, we restrict ourselves to the case where the probe is

known in the following.

In an actual experiment, the probe is scanned across the sample in discrete, but overlapping steps.

Overlapping means that the beam in one step illuminates partially the part of the sample that

was illuminated in the previous step. In the far field, the diffraction pattern of the sample is

measured by a 2D-detector. This diffraction pattern corresponds to the magnitudes squared of

the 2D-Fourier transform of the probe multiplied with the sample. Now each diffraction pattern
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contains information on the structure of the sample at the position of illumination. But due to the

overlap of the probe positions, several diffraction patterns share information on the same part

of the sample. This makes the measured information highly redundant and aids in the retrieval

of the phase and magnitude of the object. The phase retrieval algorithm’s basic steps are the

following

• (1) Start with a guess of what the object looks like. In the most general case, this should be a

random matrix. We will call this guess Og.

• (2) Illuminate Og with the probe at position~ri, P(~ri), and calculate the 2D-Fourier transform

of it: Ψ = FFT(P(~r)Og), where we call the term to be transformed ψg

• (3) Now, replace the magnitudes with the ones measured in the experiment:Ψc

√
I

abs(Ψ)
e(arg(Ψ)).

In the language of phase retrieval algorithms, this is the extremely common Fourier constraint,

also used in error reduction and Fienup algorithms [203].

• (4) Apply the inverse Fourier transform to the result of the above step: ψc,g = IFFT(Ψc).

• (5) Apply the following transformation: Og,c = Og +
|P(~ri)|
|Pmax(~ri)|

|P∗(~ri)|
|Pmax(~ri)|2+α

β(ψc,g − ψg). Here

α functions effectively as a Wiener filter. The updated guess of the object is a mixture of the

old object, and a new version which takes into account corrections calculated in the last step.

β determines how the contributions to the update are weighted.

• (6) repeat steps (2)-(5) for all diffraction patterns and probe positions measured.

• (7) repeat steps (2)-(5) for an arbitrary number of steps, or until the solution fulfills some

convergence criterion.

Rodenburg recommends values for α and β of 0.0001 and 0.9 respectively, but we have gotten

better results by assuming 0.1 for both. Since the phase retrieval converges fairly quickly, we have

usually just picked an arbitrary number of steps, or repeated the experiment for several initial

guesses and took the average.

In the case that we want to treat, we construct a analogue situation in time-energy space. In this

case the ’object’ is the reflectivity or transmittivity spectrum of a sample containing Mössbauer

nuclei. The probe is the analyzer foil which contains a single-line ensemble of the same nuclei.

The setup is similar to time-gating detection; the foil is placed into the beam downstream from the

sample on a Doppler drive. Moving the foil shifts the energy of the resonance via the Doppler

effect; this is the equivalent of moving the beam across the sample. We record the temporal

decay pattern of probe and object for a set of velocities of the Doppler drive; the velocities should
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Figure 67: Pattern used for the simulation of ptychographic data. In (a) we show a fictitious energy reflectivity

spectrum, and in (b) the corresponding phase. In (c) and (d) we show a detail from (a) and (b) respectively.

Note that the dip in the reflectivity has a linewidth of less then 1Γ0.

be spaced such that the width of the absorption window of the foil overlaps for neighbouring

velocities. The temporal decay patterns then contain plenty of redundant information which

permits us to retrieve both the energy spectrum of the sample and its phase with the measured

data, according to the above algorithm. Nothing needs to be changed, save for the replacement of

~r by ω.

To get a sense of the possibilities that ptychographic spectroscopy offers, we first show some

results where we retrieve the energy spectrum and phase from a simulated pattern. The pattern

is shown in Fig. 67, and consists of four superposed Lorentzians with different widths, with an

EIT-like dip in one of them. The dip has a linewidth of less than 1Γ0.

To prepare the data, we assume a stainless-steel foil enriched with 57Fe to 95%. We suppose

that the foil is Doppler-shifted such that it ranges over ±120Γ0. Its effective linewidth is about 10Γ0.
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Figure 68: Temporal decay patterns used for the simulation. The intensity is encoded logarithmically in the color map.

The decay consists of the amplitudes squared of the Fourier transforms of the test pattern multiplied with

the probe transform function at several positions. The slight rise at the end is due to the leakage effect of the

discrete Fourier transform.

We take 241 different spectra, each spaced 1Γ0 apart. We multiply each with the reflectivity shown

in Fig. 67, Fourier transform it, and take the absolute value squared of the resulting temporal beat

pattern. This is the set of diffraction patterns we will be working with. They are shown in Fig. 68.

Note that the length of the decay patterns are over 8000 ns. This is way longer than we could

ever measure; We therefore set most of the pixels to zero, which can be repeated with real data by

zero-padding. In real experiments we are limited to less time; for typical bunch structure modes

at major facilities, the inter-bunch time lasts between 8ns and 800 ns. Since the Nyquist theorem

states that the length of the time that the signal was measured determines the resolution of the

energy spectrum achieved, we are particularly interested in whether ptychography will be able to

retrieve the sub-linewidth structure, even when the time measured is theoretically not sufficient.



136 CHAPTER VI. X-RAY QUANTUM OPTICS IN PERIODIC NANOSTRUCTURES

Figure 69: Retrieved spectra from the simulated temporal decay patterns after running the ptychographic algorithm for

10 iterations. The original pattern is shown in red, the retrieved one in blue. (a) amplitude of the reflectivity,

(b) phase of the reflectivity, (c) and (d) show details of (a) and (b) respectively. The green background

indicates the part of the spectrum covered by the foil detuning. The retrieval is only good in this range, but

nearly perfect for both phase and amplitude for broad linewidths; even the narrow-linewidth dip is roughly

retrieved.

We therefore set all pixels above the time of 174 ns to zero and run the ptychographic algorithm

for 10 iterations. During the Fourier constraint step, the update includes updating the pixels with

a value of zero. The results are depicted in Fig. 69.

The phase and amplitude retrieval works almost perfectly in the energy range which was

probed by the probe; while the narrowband dip is not accurately reconstructed, evidence of its

presence is found. The detail shows that only tiny deviations from the test patterns turn up. When

we change the Fourier constraint slightly, and do not update the guess for pixels which are zero,
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Figure 70: Retrieved spectra from the simulated temporal decay patterns after running the ptychographic algortihm

100 times for 10 iterations and averaging the results. The original pattern is shown in red, the retrieved one

in blue. (a) amplitude of the reflectivity, (b) phase of the reflectivity, (c) and (d) show details of (a) and (b)

respectively. The green background indicates the part of the spectrum covered by the foil detuning. The

retrieval is only good in this range, but nearly perfect for both phase and amplitude for broad linewidths;

even the narrow-linewidth dip is roughly retrieved.

the retrieval shows rather strong noise. To ameliorate this issue, we repeat the retrieval 100 times

for 10 iterations, and average the results, which are shown in Fig. 70.

Despite the rather higher noise, the essential characteristics of the retrieval are still the same as

for the former variation, although we cannot explain why the noisiness rises so drastically.

In realistic experimental conditions, we will often require a time-gating window for the first few

nanoseconds after the incoming pulse. This is essentially equivalent to the beamstop which is

often used in ptychography to block the primary beam, which might damage the detector. But
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Figure 71: (a) Retrieved amplitudes and (b) phases for a ptychographic algorithm implementation where only the range

between 5 ns and 176 ns was updated by the Fourier constraint. The algorithm ran for 20 iterations for 100

times, and the results were averaged. Only in the area marked by the green square are the retrievals reliable;

this is the range over which the foil was scanned. (c) and (d) show details of (a) and (b) respectively.

of course, this might mean that some crucial information is missing from the temporal decay

patterns, which might be detrimental to the quality of phase retrieval. To gauge the damage we

inflict by the time-gating, we set the first six nanoseconds equal to zero in the diffraction patterns,

and update the Fourier constraints only between 6 and 174 ns. Again, we repeat the phase retrieval

100 times and average the results, which can be seen in Fig. 71.

In the range covered by the detuning of the probe/analyzer foil, the retrieval is excellent if noisy.

But the prediction outside of that range is now catastrophically bad. We conclude that the phase

and amplitude retrieval is only reliable in ranges covered by the probe, which fits with experience
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in optical experiments [198] Nevertheless, the final verdict can only be that ptychography is an

extremely promising tool for performing Mössbauer spectroscopy at a synchrotron with added

phase retrieval.

To further test the waters we here use a dataset from a different experiment, which fulfills all

conditions required to perform a ptychographic analysis. The data is taken from an experiment

which probed the appearance of slow-light x-ray pulses in cavities [55]; it is not in the scope of this

thesis to explain the experiment, in detail, so we just briefly sketch the setup and data acquisition

process.

The setup was as for any typical reflectivity experiment sketched many times throughout this

thesis. The polarizer-analyzer setup mentioned in the Chapter III.6 was employed; this permitted

us to work without a time-gating window. The time of arrival of a photon and the Mössbauer

drive velocity at that time were recorded in analogue and digitalized with very high precision;

this allowed us to bin the data at will and vary the overlap and number of our measured decay

patterns. This is not trivial, since it has some impact on the counting statistics; a rough binning

will result in good counting statistics at late times, potentially improving the resolution; on the

other hand it will reduce the overlap of the probe function positions, which might reduce the

retrieval quality. Of course the possibilities are ultimately limited by the fact that the spectrum

changes; we do not want to mix up parts of the spectra with distinctly different values of the

phase and amplitude in the same temporal decay pattern. At any rate, it turns out the results are

remarkably stable across many variations of the bin size. We show the measured data in Fig. 72.

The bin size is 2 ns and 2.5Γ0;

Finally, the retrieved data is shown in Fig. 73. Before performing the reconstruction, we

have zero-padded the data by 400 bins (≈ 800 ns), which means that the theoretically possible

resolution is about 1 MHz - less than a linewidth. We used the Fourier constraint where we update

the guesses even when the measured value of intensity is zero counts. Comparisons with data

obtained from simulations of the cavity reflectivity are not completely satisfactory however. These

are shown in Fig. 74. The simulations were made using the quantum optical model from [54].

Since the data was already analyzed in [55], we have employed the parameters obtained from the

fit therein.

While the qualitative agreement is acceptable for both amplitude and phase, the quantitative

agreement is far from perfect. The phase varies much more in the QO simulation; in the amplitude,

the ptychographic retrieval has resulted in a lot of superfluous, noisy structure which is not

present in the simulation. The relative heights of peaks and dips also do not agree very well.

Keep in mind however that the QO simulation is also based on a fit of the same data; it might



140 CHAPTER VI. X-RAY QUANTUM OPTICS IN PERIODIC NANOSTRUCTURES

Figure 72: Temporal decay patterns of a combined cavity/foil setup for different detunings of the foil. The intensity is

encoded logarithmically in the color map. [55]

be faulty in its own right. We conclude that more work is needed, particularly on well-known,

simple forward scattering spectra which may help us gauge the reliability of the technique.
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Figure 73: In (a) we show the retrieved intensity from the data shown in Fig. 72, in (b) the corresponding phase. The

green background indicates the range of detuning of the foil, i.e. the part of the spectrum we can rely on as

per the simulations.

Figure 74: Quantum optical simulation of the cavity reflectivity and phase response. To calculate the simulation,

the data in Fig. 72 was fitted with a quantum optical model [54, 55]. Qualitative agreement with the

ptychographically retrieved amplitudes and phases in Fig. 73 is reasonable, but quantitative agreement is

poor.
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Chapter VII

Conclusion and Outlook

The aim of this thesis was to investigate whether it was possible to observe the strong coupling of

x-rays and resonant ensembles of atoms or nuclei. We have achieved this in several ways. We have

observed, in the energy domain, a splitting of the band gap of a nuclear optical lattice - a periodic

resonant system of 57Fe-nuclei. This is the fingerprint of the strong coupling of the collective of

nuclei with the electromagnetic field that it is illuminated by. We have furthermore achieved the

strong coupling of two ensembles of iron nuclei via the vacuum interaction in two shared cavity

modes. In the latter experiment, we have observed the spectroscopic trademark of strong coupling:

two dips in the frequency spectrum that result from the interaction of two resonant systems with

the same energy. But strong coupling is of particular interest to physicists because of its temporal

dynamics. Expressed in these terms, the two ensembles exchange their excitation several times

before they ultimately decay irreversibly. We have observed the temporal beating, also known as

Rabi-oscillations, that is the tell-tale sign of this process.

We succeeded in observing the frequency-domain splitting in a periodic system where both

the resonant and the non-resonant index of refraction vary; a system that also yielded Fano

resonances and dispersionless modes in the band gap, and therefore shows an extraordinarily rich

phenomenology that ought to be examined more closely in future experiments. We have thus

shown that the interaction of x-rays and light can be controlled to a high degree. In turn, we

expect that the results of this work can be used in the future to control the properties of x-rays in

ways not achieved before.

We also performed some tentative steps in new experimental directions. Hitherto, hard x-ray

cavity quantum electrodynamics was limited to the 57Fe isotope for its resonant systems. By

observing the collective Lamb shift and the Fano resonances indicative of interference between
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resonant and non-resonant scattering with a layer of Tantalum in a cavity, we have unambiguously

demonstrated that electronic resonances can be suitable for quantum optics applications as well.

Given the ubiquity of usable electronic resonances across all x-ray energies, this opens up a whole

research programme in searching for new systems to achieve strong coupling with - and strong

coupling does not seem out of reach, either by the more indirect methods of this work, or by

straightforward optimization of cavities. Given that we have demonstrated the uses of periodic

systems for x-ray quantum optics in this work, it does not seem inconceivable that genuine crystals

with suitable resonances might be used to further the field’s agenda. Potassium chromate, for

instance, is a crystalline material that has a very strong and narrow K-edge white line. And

the bandwidths of crystal reflections are far narrower than those of nanostructured periodic

multilayers can ever hope to be.

Another way towards strong coupling might be the use of narrow-bandwidth DBR defect cavity

modes, whose use for x-ray quantum optics we have demonstrated here. This system could also

bring about the possibility of transmission measurements for x-ray cavity quantum electrodynam-

ics. Measuring the correlations between the reflected and transmitted beam could help us get a

closer look at the quantum nature of the x-ray-matter interactions.

For this type of sophisticated spectroscopy it is often convenient to know the phase of the detected

radiation. We have applied ptychography, originally a microscopic imaging technique to Möss-

bauer spectroscopy and shown that it is extremely promising not just for retrieving the phase

of the detected radiation, but also for finding the energy spectrum of the probe with far greater

precision then theoretically permitted by the foil spectrum (which determines the resolution).

This particular achievement could gain traction even beyond x-ray quantum optics since it is also

applicable for the purposes regular Mössbauer spectroscopy at synchrotron radiation sources.



Chapter VIII

Appendix

VIII.1. Appendix A: SMS data postprocessing

In this section we describe the postprocessing of the data obtained from SMS experiments. The

experimental issues are described in the relevant Chapter V.3; here we limit us strictly to the data

correction. A typical spectrum is shown in Fig. 75.

We remove the sinusoidal background by fitting a sinusoid to the high- and low-energy parts

of each spectrum. We expect that these should approximate a constant background according to

our theory; By dividing the spectra by the fitted sinusoidal function, the sinusoidal background is

removed and replaced by the expected flat one. The principle is explained in Fig. 76.

Figure 75: Example of the raw data of a reflectivity spectrum. The sinusoidal background is clearly visible; as is the

fact that both sides of the data show different spectral features. This is likely the result of some instability in

the setup, as discussed in the main text.
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Figure 76: Data postprocessing scheme. The background was fitted in the regions overlaid in green, so the actual data

would not disrupt the fit of the purely unphysical sinusoidal background. The data was divided by the

corresponding sine, and yielded the right image.
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[h!]

Figure 77: Measured reflected intensity curve (blue) at 11215 eV of a cavity with a resonant iridium layer embedded.

The cavity dimensions are Pt 1.9 nm / C 24.3 nm / Ir 2.2 nm / C 24.4 nm / Pt 16.7 nm / Si Substrate, which

was extracted from a fit (red). The fit satisfyingly reproduces the measured intensity. Small deviations stem

from sample inhomogeneity. The reflectivity is however measured only over a short angular range which

somewhat diminishes the reliability of the fit.

VIII.2. Appendix B: The Iridium white line

In this appendix we will give a brief account of an experimental attempt to observe Fano resonances

and the Lamb shift with an Iridium layer in a thin film cavity. Again, we will use the LI I I edge,

which in this case has the energy of 11215 eV and an spectral width of 5.25 eV. A particular

difference to the LI I I edge of Tantalum is the fact that the white line is somewhat smaller relative

to the continuum absorption step from the background index of refraction. We therefore expect

that the spoiling of the cavity above the white line, which we have already observed for the

Tantalum cavities, will play an even stronger role here, particularly when compared with the

magnitude of the spectral signatures of the Iridium-Cavity mode interaction. This is precisely what

we observe, although, as we shall see, to a much stronger degree than our theoretical tools predict.

We will also point out here that we have failed to observe a sufficient amount of fluorescent

radiation to measure the collective Lamb shift of Iridium in a cavity.

For now, we proceed among the lines of the experiment on the Tantal line. In Fig. 77 we have

plotted the reflectivity of the cavity in a θ − 2θ-scan along with a fit obtained by the program

GenXref.
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Platinum Carbon Iridium Carbon Platinum

Thickness [nm] 3 24.2 2.3 24.2 17.9

Density [g/cm3] 21.49 2.27 23.34 2.27 21.49

Roughness mean squared [nm] 0.43 0.35 1.8 0.0437 0.896

Table VIII.1: Properties of the Iridium thin film cavity extracted from the Parratt algorithm fit.

The properties of the cavity that were included into the fit were the thickness of individual

layers, their roughness, the density of the materials, the width of the beam, its intensity and an

offset of the angle θ from 2θ which can occur if the sample’s alignment is not sufficiently precise.

The fit is very satisfying; the resulting thin film properties are given in table VIII.1. The thicknesses

are very close to those expected from the calibration of the sputtering rates. Any deviations can be

explained by imprecisions in the amount of time the sample spent under the sputtering target - as

mentioned, this was regulated manually - and by fluctuations in the chamber pressure and the

temperature of the targets, which can change the sputtering rate. The densities are quite close

to the literature values for the materials, which gives the fit additional credibility. Concerning

the layer roughnesses, there is a huge outlier in the for the Iridium layer, which is an order of

magnitude larger than the others. This, however, is not inconceivable. Iridium was sputtered with

a small 1-inch target, while all other layers were sputtered with larger 2-inch diameter targets.

Experience indicates that the former yields higher roughnesses due to smaller deposition rates,

although we did not explore this in a systematic way. Generally, the roughnesses do not tend

to influence the fit at low angles very much; even significant changes in the roughnesses do not

deteriorate the fit quality meaningfully. We conclude that the fit is mostly reliable and that any

changes stem from sample inhomogeneity. We also point out that the third mode, which is the

one whose spectral response we will be examining, is fitted particularly well. A problem with

the fit is that it is across a very small angular range; a larger would have increased quality, but at

higher angles the effect of roughnesses etc. dominate over that of thicknesses and densities, so we

may have confidence that the results are correct.

We now introduce the parameters obtained by the fit into our own implementation of the Parratt

algorithm, and calculate the reflectivity. The result is shown in Fig. 78.

It displays the features already observed and discussed in the last section, such as an obvious

normal mode splitting, a slight decline in the quality of the higher energy normal mode. As

discussed this is the result of the electronic continuum.

In light of these promising results and simulations, it is all the more astonishing that the actual
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Figure 78: Resonant reflectivity of an Iridium-containing cavity as calculated by the Parratt-formalism. The cavity

dimensions are Pt 1.9 nm / C 24.3 nm / Ir 2.2 nm / C 24.4 nm / Pt 16.7 nm / Si Substrate. The x-axis

shows the angle of incidence, the y-axis the detuning of the energy from the Ir-LI I I white line at 11215 eV,

and the reflected intensity is encoded in the color bar. While the transfer matrix formalism manages to give

a more accurate reproduction of the experimental results, it is still not satisfying.

measurements, shown in Fig. 79 do not conform to them. The higher energy normal mode is

barely distinguishable from the background. In the Tantalum sample, and in the simulations

for this one, the spectral width of the cavity is hardly affected by the Iridium layer enhanced

absorption above resonance, only the dip is a little bit more shallow. But in this sample the cavity

seems to have a spectral width that is beyond our chosen angular range to resolve, while the lower

energy normal mode seems perfectly normal.

It is obvious that the experimental data shown in Fig. 79 can not seriously be simulated by the

quantum optical model.

We only present an extremely rough approximation in Fig. 80.

This is to give the reader an impression of the vague order of magnitude of the parameters

involved. The results are given in table VIII.2. The simulation is at odds with the data in ways so

fundamental that we will eschew comparing them in a more detailed manner. The following brief

discussion will suffice. It appears that κ is much too small for the higher energy normal mode,
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Figure 79: Reflected intensity of a cavity containing Iridium. The dimensions of the cavity are Pt 1.9 nm / C 24.3 nm

/ Ir 2.2 nm / C 24.4 nm / Pt 16.7 nm / Si Substrate, as extracted from a fit to the reflected intensity at

0 eV detuning from the Ir-LI I I white line at 11215 eV. The y axis shows the detuning, the x-axis shows

the angle of incidence of the incoming radiation, and the intensity is encoded in the color bar in terms of

reflected photons per 5 seconds. We point out that the high-energy normal mode is not observed very well.

This is likely due to the step in the imaginary part of the background index of refraction of iridium, and the

resulting enhanced absorption which spoils the cavity.

but too big for the lower-energy normal mode. It also seems that the curvature of the normal

mode dispersion is much stronger in the experimental data than in the calculated simulation. This

would point to the fact that a higher collective coupling strength should be used. But it turns

out that, upon doing just that, the reflectivity around the white line energy becomes far too high

across all angles in the simulation compared to the rather feeble measured reflection. Any attempt

to ameliorate one failing of the simulation will inexorably diminish agreement with the data at

another point. We must conclude that this experiment has been a partial success at best. What

could be the reasons for this, and how can we improve this experiment?

(a) It is possible that the failure can be blamed on beamline performance. The above series of

reflectivities was repeated several times. The first few runs did not yield usable spectra, likely
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Figure 80: Reflectivity of a cavity containing iridium as the resonant layer, as calculated by a quantum optical model of

the system. The y-axis shows the detuning from the Ir LI I I white line at 11215 eV, the upper x-axis shows

the energetic detuning of the cavity from the incident x-ray energy, the lower x-axis shows the angle of the

incident x-ray radiation. The reflectivity is encoded in the color map. The cavity’s properties are g = 15, κ

= 155, κr = 34, γ = 5.25. Even though the reflectivity seems to display a kind of normal mode splitting,

the splitting is not resolved; the enhanced intensity at 0 eV detuning is due to interference between the

normal modes, not due to a genuine splitting. The strong coupling limit is therefore not reached. While the

simulation does not really succeed in reproducing the experimental results, it is close enough to conclude

that we have not reached the strong coupling limit, but rather the intermediate coupling regime (γ < g < κ).

because of beam stability issues. In between measurements, the beam was observed to jitter

rapidly on an x-ray eye detector. At the time, it was blamed on vibrations caused by nearby

construction work. When the measurements were repeated during the night, the above data was

taken. It may be that although the situation improved, the problems were not resolved entirely. We

did not check whether the beam was indeed still unstable after the measurement of the data, and

it is not entirely clear why beam instability should result in spectra such as the ones we observed.

Hence, this is really little more than informed speculation.

(b) In contrast, it is almost certain that the relatively low contrast between the white line resonance

and the background electronic continuum absorption has contributed to the problems, though it is
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κ κr γ
√

Ng

Strength [eV] 155 34 5.25 15

Table VIII.2: Parameters of the simulation of the quantum optical model.

not clear to which extent. A possible alternative might be the use of IrO2 as the resonant material,

which has a white line of similar height as pure Ir, but a much lower background absorption. IrO2

layers should be comparatively easy to fabricate by sputtering in a mixed Ar/O2 atmosphereref,

and this should certainly be the first step to improving the experiment.

(c) related to the preceding paragraph is the possibility that in thin films of Ir the physics of the

white line might be different, or it might even be unobservable. It is not unlikely that Ir/C interface

effects result in a breakdown of the Coulomb forces between excited electrons and holes that result

in the excitonic white line resonances. This could explain our failure to gather enough statistics

to observe the Lamb shift.Another point supporting this interpretation is that it explains the

deviation between the measured data and the simulations obtained by the TMM. Finally, a cavity

of different design that we examined did show almost no serious resonant effects. The Iridium

layer in that particular cavity was designed to be a single monolayer, i.e. approximately 4-5 Å. In

this case, such hypothetical interface effects would dominate the layer of course. This hypothesis

can be checked by repeating the experiment with thicker resonant Ir layers and observing whether

the effect persists.
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