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Abstract

Regarding their climate impact, natural
peatlands are characterized by their
ability to sequester atmospheric carbon.
This trait is strongly connected to the
water regime of these ecosystems. Large
parts of the soil profile in peatlands are
water-saturated, leading to anaerobic
conditions and to a diminished decompo-
sition of plant litter. The rate of carbon
fixation by plant photosynthesis is larger
than the decomposition rate of dead
organic material. Over time, the amount
of carbon that remains in the soil, and
is not converted back to carbon dioxide,
grows. Land use of peatlands often goes
along with water level manipulations and
thereby with alterations of carbon flux
dynamics.

In the present thesis, eddy covari-
ance carbon dioxide and methane flux
measurements from two contrasting
peatlands are compared. One site is in a
pristine state (1), whereas the other one
has been degraded by peat mining. On
the latter site, two management types
are implemented: (2) drainage and (3)
rewetting. The pristine investigation site
(Rio Pipo) is located on Tierra del Fuego
in southern Argentina; seven months
of flux data are available from there.
A two year dataset is evaluated from
the degraded site (Himmelmoor) that is
situated in northern Germany. The three
investigated land use states are concep-

tually regarded as sequential, as they
can illustrate the possible path a pristine
peatland would take over degradation
and rewetting back to a natural state.

At the degraded site, the develop-
ment of rewetting over time is given
by greenhouse gas flux balances that
cover two consecutive years. Rewet-
ting does have a considerable effect
on the annual carbon gas fluxes. Car-
bon dioxide release decreases up to
40 % (from 22.16 ± 0.28 mol m-2 a-1

to 12.91 ± 0.29 mol m-2 a-1),
while methane release is up to
84 % (0.45 ± 0.01 mol m-2 a-1 vs.
0.83 ± 0.01 mol m-2 a-1) lower from the
drained surfaces. Molar carbon dioxide
fluxes are factors between 20 and 30
larger than methane fluxes from both
surface classes. One mol methane
does, however, have a different climate
warming effect than one mol carbon
dixoide, and its lifetime in the atmosphere
is shorter. Factoring in these properties
leads to a twofold interpretation of the
results. On short timescales (20 years),
the ramifications of increased methane
release offsets the climate cooling impact
of decreasing carbon dioxide emissions.
On long timescales (100 years), rewetting
shifts the investigated peatland’s green-
house gas balance towards a climate
cooling effect. While the rewetted areas
are still a carbon source today, they are
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less of a source than the drained areas
and release progressively less carbon
gases in the course of rewetting.

In contrast to the degraded site, the
pristine peatland is a net carbon sink in
summer and a smaller source of carbon
in winter. Winter source strength is two
times smaller compared to the rewetted
areas and 2.5 times smaller relative to
the drained surfaces.

In order to report fluxes integrated
over time, two methodological topics are
addressed: (1) gap-filling of gas flux time
series and (2) the assessment of eddy
covariance signals that contain informa-
tion from multiple microforms. Due to the
importance of methane flux dynamics
for the evaluation of rewetting measures,
this trace gas flux has to be included in a
comprehensive and informative wetland
greenhouse gas balance. There is, how-
ever, some ambiguity in literature about
eddy covariance methane flux gap-filling.
I propose a data-driven decision-making
framework for empirical modeling of eddy
covariance gas fluxes that includes the
selection of input variables and compares
different model types. The algorithm also
evaluates surface classification data if
fluxes were recorded over heterogeneous
terrain.

Mechanistic modeling was feasible
with carbon dioxide fluxes measured
over homogeneous terrain at the pristine
investigation site. In comparison to these
generally more robust flux estimates,
the proposed gap-filling algorithm gives
equally good results, while this notion is
based on the Akaike Information Criterion
and hence does take into account the
higher complexity of the applied empirical

models.
Individual time series related to distinct

surface classes were inferred from the
eddy covariance gas flux time series
measured over heterogeneous terrain
at the degraded site. When the derived
carbon dioxide models on surface class
level are interpreted in a mechanistic way,
the resulting plant parameters match lit-
erature values for the actual plant species
occurring on this microform. Therefore,
the applied extraction of surface class
time series from landscape-scale eddy
covariance data appears to be feasible.
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Zusammenfassung

Bezüglich ihrer Klimawirksamkeit
sind natürliche Moore durch ihre hohe
Fähigkeit atmosphärischen Kohlen-
stoff zu binden, charakterisiert. Diese
Eigenschaft ist eng mit dem Wasser-
haushalt dieser Ökosysteme ver-
bunden. Moorböden sind großteils
wassergesättigt, was zu anaeroben
Bedingungen und einem veringerten
Abbau organischer Substanz führt.
Die Festlegung von Kohlenstoff durch
Photosynthese ist größer als die Rate
mit der totes organisches Material im
Boden abgebaut wird. Mit der Zeit
wächst so die Kohlenstoffmenge, die
im Boden verbleibt und nicht wieder zu
Kohlendioxid umgewandelt wird. Ein
Absenken des Wasserstands im Zuge
der Moornutzung führt zur Belüftung des
Moorbodens und daher zum vermehrten
Abbau des seit Jahrtausenden gespei-
cherten Kohlenstoffs.

In der vorliegenden Arbeit werden
Eddy Kovarianz Kohlendioxid- und
Methanflüsse dreier verschiedener Moor-
nutzungstypen verglichen: (1) eines
unberührten Hochmoores, (2) eines
durch laufenden Torfabbau degradierten
Moores und (3) eines nach Torfabbau
wiedervernässten Moorstandorts. Das
naturnahe Untersuchungsgebiet (Rio
Pipo) befindet sich auf Feuerland in
Süd-Argentinien; von dort liegen sieben
Monate Flussdaten vor. Von dem in Nord-

deutschland liegenden, degradierten
Standort (Himmelmoor) wird ein
zweijähriger Datensatz ausgewertet. Die
Stadien der Landnutzug der drei Stand-
orte können konzeptionell als zeitlich
aufeinanderfolgend betrachtet werden.
Sie veranschaulichen den möglichen
Weg eines unberührten Moores über
Degradierung und Wiedervernässung
zurück zu einem natürlichen Zustand.

Die zeitliche Entwicklung der Wieder-
vernässung des degradierten Un-
tersuchungsstandorts ist durch die
Treibhausgasbilanzen zweier aufeinan-
derfolgender Jahre dokumentiert.
Wiedervernässung hat erhebliche
Auswirkungen auf die jährlichen
Kohlenstoffflüsse. Die Kohlendioxid-
freisetzung wird um bis zu 40 % ver-
ringert (von 22.16 ± 0.28 mol m-2 a-1

zu 12.91 ± 0.29 mol m-2 a-1),
während die Methanemissionen der
dränierten Flächen um bis zu 84 %
niedriger (0.45 ± 0.01 mol m-2 a-1 vs.
0.83 ± 0.01 mol m-2 a-1) sind. Die mo-
laren Kohlendioxidflüsse sind zwischen
zwanzig- und dreißigmal größer als
die Methanflüsse beider Oberflächen-
typen. Ein Mol Methan wirkt jedoch
anders auf die Klimaerwärmung als
ein Mol Kohlendioxid und hat eine
kürzere Aufenthaltsdauer in der At-
mosphäre. Unter Berücksichtigung
dieser Eigenschaften ergibt sich eine
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zweifache Interpretation der Ergebnisse.
Kurzfristig (20 Jahre) relativiert die
Wirkung ansteigender Methanfreisetzung
die klimakühlenden Effekte verringerter
Kohlendioxidemissionen. Langfristig
(100 Jahre) wird die Treibhausgasbi-
lanz des untersuchten Moores durch
Wiedervernässung in Richtung einer
klimakühlenden Wirkung verschoben.
Während die wiedervernässten Flächen
zur Zeit noch Kohlenstoffquellen sind,
sind sie eine geringere Quelle als die
dränierten Flächen und setzen im Zuge
der Wiedervernässung immmer weniger
Kohlenstoffgase frei.

Im Gegensatz zum degradierten
Standort ist das naturnahe Moor eine
Kohlenstoffsenke im Sommer und eine
geringe Quelle im Winter. Im Winter
sind die wiedervernässten Flächen eine
zweifach stärkere und die dränierten
Gebiete eine zweieinhalbmal größere
Kohlendioxidquelle.

Um über die Zeit integrierte Flüsse
angeben zu können, mussten zunächst
zwei methodische Themen behan-
delt werden: (1) Das Füllen von
Lücken in Gasflusszeitreihen und (2)
die Auswertung von Eddy-Kovarianz-
Datensätzen, die Informationen von
mehreren Oberflächen beinhalten.
Auf Grund der Bedeutsamkeit der
Methanflussdynamik für die Bewertung
von Wiedervernässungsmaßnahmen,
müssen die Flüsse dieses Spuren-
gases Teil einer umfassenden und
aussagekräftigen Treibhausgasbilanz
eines Feuchtgebiets sein. Die vorhan-
dene Literatur über das Füllen von
Lücken in Eddy Kovarianz Methanfluss-
zeitreihen ist jedoch nicht eindeutig.

Ich schlage ein Rahmenkonzept zur
datengesteuerten Entscheidungsfindung
für die empirische Modellierung von
Eddy Kovarianz Gasflüssen vor, das die
Auswahl von Eingansvariablen und den
Vergleich verschiedener Modelltypen
beinhaltet. Der Algorithmus wertet auch
Oberflächenklassifikationsdaten aus,
falls Flüsse über heterogenem Gelände
aufgezeichnet wurden.

Mechanistische Modelle konnten an
die Kohlendioxidflüsse, die im naturnahen
Standort über homogener Oberfläche
gemessen wurden, angepasst werden.
Im Vergleich mit diesen im Allgemeinen
belastbareren Flussabschätzungen,
erzeugt der vorgeschlagene Algorith-
mus ähnlich gute Ergebnisse. Diese
Bewertung der Ergebnisse basiert auf
der Auswertung des Akaike Information
Criterion. Die höhere Komplexität der
empirischen Modelle wurde somit in
diesem Vergleich berücksichtigt.

Separate Zeitreihen einzelner
Oberflächenklassen wurden aus den
Eddy Kovarianz Gasflüssen, die über
heterogenem Gelände gemessen wur-
den, abgeleitet. Die Interpretation der so
abgeleiteten Kohlendioxidflussmodelle
einzelner Oberflächenklassen ergibt
Pflanzenparameter, die in der Literatur
angegebenen Werten der tatsächlich
auf diesen Oberflächen vorkommenden
Pflanzen entsprechen. Die Extrahierung
von oberflächenspezifischen Zeitrei-
hen aus Eddy Kovarianz Daten auf
Landschaftsskala erscheint demzufolge
machbar.
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Chapter 1

Introduction

1.1 Objectives

The present study covers carbon gas
fluxes from two wetlands and discusses
implications for climate change mitigation
related to the management of ecosys-
tems like these. Moreover, methodolog-
ical challenges concerning the process-
ing of trace gas fluxes measured with
the eddy covariance (EC) technique (see
section 2.2 for details) are addressed.
In particular, strategies for gap-filling of
greenhouse gas (GHG) time series and
the impact of different scales of surface
inhomogeneity on EC gas fluxes are ex-
plored.

The Rio Pipo investigation site is lo-
cated in southernmost Patagonia on
Tierra del Fuego, Argentina (54.8◦ S).
The second site, Himmelmoor, is situ-
ated in NW-Germany (53.7◦ N) close to
the city of Hamburg. Both sites devel-
oped as rainfed peatlands, can be clas-
sified as raised bogs (Hammond, 1981)
and lie within temperate climate zones.
Yet, some of the two sites’ features are
very much contrasting. Rio Pipo is a liv-
ing (i. e. peat accumulating) peatmoss
dominated mire, whereas Himmelmoor
has been shifted distinctly from its pris-
tine state due to peat mining.

From an ecological perspective, the
two investigated peatland sites differ in
their land use state. Rio Pipo bog is pris-
tine, whereas Himmelmoor is degraded.
Rio Pipo can be regarded as a reference
for comparison to evaluate how far degra-
dation has shifted Himmelmoor from its
former pristine state. Moreover, Rio Pipo
carbon gas exchange balances outline
a possible long-term future scenario of
the climate change mitigation potential a
transformation of Himmelmoor back into
a peat-accumulating raised bog would im-
plicate.

From a metrological point of view, the
two sites differ with respect to the spa-
tial scales on which surface variabilities
are distributed throughout the EC foot-
print. On landscape-scale, Rio Pipo is
very homogeneous regarding relief, water
regime, vegetation cover and occurring
plant species. Nevertheless, on decime-
ter to meter scale, patterning into hum-
mocks, lawns and pools exists (Lehmann
et al., 2016; Mark et al., 1995). In con-
trast, surface inhomogeneities in Himmel-
moor display on landscape level. The
site is divided in strips with contrasting
properties that are several tens of me-
ters wide and a few hundred meters long.
The disparity in scales on which surface
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Figure 1.1: Satellite images of the investigation sites, Rio Pipo bog on the left panel and Him-
melmor on the right-hand side. Rio Pipo serves as an example for a near pristine ecosystem,
whereas Himmelmoor is under two types of management, peat mining and restoration. Coordi-
nates refer to UTM zones 19 F on the left and to 32 U on the right. Grid spacing is 200 meters.
(Images: Google, DigitalGlobe, 2015)

features vary becomes apparent in figure
1.1, where equally scaled satellite images
of the two sites are compared. The
questions addressed in this thesis can
be related to two overriding topics: (1)
The climate impact of peatland land use
change and (2) time series modeling of
EC gas fluxes measured over heteroge-
neous terrain. In particular, I followed up
on the inquiries listed below.

• What is the best procedure for a re-
producible selection of driving vari-
ables for accurate and robust empir-
ical models (such as artificial neural
networks, multilinear regressions or
marginal distribution sampling meth-
ods) of gas flux time series?

• Is it possible to extract trace gas
flux balances of individual surface
classes from a complex EC flux times
series measured over a heteroge-
neous peatland?

• Are the contrasting peatland man-
agement types also reflected in dis-

parate carbon gas flux balances?

• How does the climate change mitiga-
tion potential of a former peat-mining
site develop during the early phase
of rewetting.

1.2 Contents overview

In the methods section, I present a data-
driven decision-making framework for the
selection of model inputs. I compare five
different half-hourly flux models based on
their explanatory power, their number of
parameters and their generalization ca-
pability. I also give a structured approach
to the choice of architectural properties
for artificial neural networks (ANNs). In-
put and model selection are combined in
the presented input-sensitive input and
model selection (I-SIM) algorithm. The
obtained model results are used to fill
gaps in the methane flux (FCH4) and car-
bon dioxide flux (FCO2) time series. On
the basis of a two year dataset from Him-
melmoor, chapter 4 covers the method-
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ological concepts with an emphasis on
modeling of methane flux time series. By
evaluating half-hourly footprint statistics
(see section 2.2), the datasets are par-
titioned and gap-filled in order to calcu-
late the annual sums of carbon gas fluxes
on surface class level. These results
are furthermore interpreted in a mech-
anistic way on microform level to eval-
uate if the produced surface class time
series (SCTS) do contain reasonable in-
formation when related to plant physi-
ological parameters. This mechanistic
model is based on light saturation func-
tions for photosynthesis and an exponen-
tial temperature-respiration relation. The
continuous carbon gas flux time series
are used to calculate annual sums of gas
emissions comparing the two contrasting
types of land use that are employed in
Himmelmoor.

Seven month of carbon dioxide fluxes
are available from Rio Pipo. These fluxes
are also gap-filled using I-SIM and with an
additional half-hourly mechanistic model.
The methodological goal of this proceed-
ing is to inquire into the comparison be-
tween simplifying mechanistic and more
complex empirical models with respect to
their explanatory power for EC fluxes over
homogeneous terrain.

Finally, Carbon gas emissions from
the the three examined peatland surface
classes, that are distinguished by land
use type, are collated. Implications for the
management of peatlands regarding their
climate regulation function are discussed.
Results of I-SIM modeling are evaluated
and interpreted for gas flux time series
recorded over homogeneous and hetero-
geneous terrain. Additionally, I propose a

new quality filter for raw methane concen-
tration time series measured with LI-7700
(Licor, USA) open path methane (CH4)
sensors.

A synthesis of the results is presented
in chapter 7. Synoptic answers to the ini-
tially posed research questions are given.
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Chapter 2

Background

2.1 Links between land use
and carbon flux dynam-
ics of peatlands

Peatlands are wetland ecosystems that
accumulate peat under water-saturated
conditions. Peat formation is the result
of an imbalance between production
and decomposition of organic matter.
For a peatland to qualify as a mire, the
accumulation of peat has to be ongoing.
The term peatland is defined broader
and refers to soils that include an at least
30 cm thick peat horizon. Concerning
long-term carbon sequestration, no other
terrestrial ecosystems are as efficient as
mires. Although peatlands cover only
3 % (400 million ha) of the Earth’s land
surface, they store 550 Gt carbon (Yu
et al., 2010), which equals the amount
of carbon stored in the entire terrestrial
biomass and represents twice as much
carbon as sequestered in the Earth’s
forests respectively.

Peatlands are characterized by com-
plex interactions between vegetation,
hydrology and peat and therefore are
vulnerable to alterations of these factors
by men or climate change. Traditional
land use practices in peatlands are com-

monly paralleled by interference with the
ecosystems’ water regimes. Hydrological
manipulations can fundamentally modify
the carbon flux dynamics of peatlands,
regardless if they are undertaken to
prepare the area for commercial use
(drainage) or to restore a ”natural” state
of the ecosystem (rewetting). Anthro-
pogenic use of peatlands usually involves
their drainage. The stored carbon is than
oxidized and a C-sink is turned into a
C-source. Per year at least 3 billion tons
carbon dioxide (CO2) (Parish et al., 2008)
are emitted by degraded peatlands.
This is equivalent to 10 % of the global
annual emissions by the combustion of
fossil fuels. The rewetting of formerly
drained peatlands commonly reduces
CO2 emissions drastically and makes the
re-establishment of a CO2-sink possible
on the long run (Alm et al., 2007; Beyer
and Höper, 2015; Couwenberg, 2009a;
Tuittila et al., 1999; Vanselow-Algan et al.,
2015; Wilson et al., 2009, 2016). Under
water-saturated conditions, however,
the anaerobic decomposition of organic
matter and thereby the production of the
GHG CH4 increases. Land use change
of peatlands thus inheres the potentials
to accelerate global warming as well as
to mitigate climate change.
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For a peatland to act as a CO2 sink,
the water level may fluctuate around the
surface only to a minor degree. If it is
too low, more plant litter is decomposed
aerobically than is being produced. If
it is too high, plant production is often
inhibited, so that e.g. lakes commonly
are carbon sources. At high water tables,
CO2 emissions are low (respectively
negative when C is sequestered); with
a decreasing water table they rise.
Couwenberg et al. (2010) found a linear
correlation between FCO2 and water table
depth in a meta-analysis of flux data from
temperate European peatlands. For sites
with mean annual water levels above
40 cm below the surface, CO2 emissions
decrease with rising water tables. CH4

emissions are also linked to the water
table. At levels deeper than 20 cm below
the surface, CH4 emissions are negligible
and increase with a rising water table.
In case of inundation, diffusive CH4

release is hampered due to the large
difference in gas diffusivity of water and
air. Moreover, CH4 can be decomposed
on its comparably slow way through the
water column if enough dissolved oxygen
is present. Two alternative mechanisms
for the transport of pedogenic CH4 to
the atmosphere are known. CH4 release
via bubbles can account for a significant
portion of the overall CH4 emissions
(Glaser, 2004; Goodrich et al., 2011;
Strack et al., 2005). This process is
referred to as ebullition and describes
the sudden release of gas bubbles that
accumulate in the soil pore space until
their buoyancy is high enough for them to
ascend to the surface. The importance
of diffusion and ebullition declines with

the presence of vascular plants. The soil
and water volume can be bypassed em-
ploying plant mediated transport through
the aerenchymae of vascular plants
(Bubier, 1995; Whalen, 2005). Moreover,
higher plants also provide labile dissolved
organic carbon to the rhizosphere. These
easily decomposable carbon compounds
can act as a substrate for methanogenic
microorganisms. FCH4 dynamics are
therefore gravely impacted by vegetation
cover and type.

Wilson et al. (2009) investigated the
development of CH4 emissions and
modeled the course of CH4 emissions
for different land use types following peat
extraction. The authors conclude, that
by long-term inundation of peatlands
formerly used for peat harvesting, the
creation of a landscape scale methane
hotspot is very possible. Nevertheless,
the balance of avoided CO2 emissions
by restoration and newly created CH4

emissions results in a net-reduction of
the global warming potential (GWP) at
the site Wilson et al. (2009) describe.
When anaerobic conditions prevail after
inundation, CH4 production is mainly
controlled by the availability of fresh
organic matter (Couwenberg, 2009a; Lai,
2009; Saarnio et al., 2009) as well as
soil and water temperature (Schrier-Uijl
et al., 2010). Hahn-Schöfl et al. (2010)
performed a chamber measurement
campaign and incubation experiments
on a rewetted former grassland fen in
the Peene river valley in NE-Germany.
The authors describe the formation of an
organic sediment from the rotting former
vegetation cover. The CH4 production
potential, which lies in the anaerobic
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decomposition of this substrate, is very
high. Tiemeyer et al. (2016) investigated
GHG release from 48 grassland sites on
drained fens and bogs in Germany. They
report high CH4 emissions from relatively
nutrient-poor and acidic sites. Incubation
experiments from Hahn-Schöfl et al.
(2010) show that bare peat is compara-
tively inactive. This finding is confirmed
by Wilson et al. (2016) for drained as
well as rewetted bare peat surfaces
in temperate peatlands. In case of a
vegetation-free restored peatland site,
the risk of CH4 production depends on
which plants are established or colonize
the site respectively. Thereby, it is critical
how easily decomposable the delivered
organic matter is and if plant mediated
methane transport via their aerenchyma
(Whalen, 2005) occurs. Furthermore,
CH4 production is negatively correlated
with the availability of other electron
acceptors like iron or sulfate.

2.2 State of the art: Trace
gas flux measurement
techniques

Two main methods for measuring trace
gas fluxes are frequently described in
literature: the EC method and the cham-
ber method. With a manual chamber
method, the air volume in a closed cham-
ber is sampled over time. Gas can be
extracted with syringes and analyzed in
the lab employing gas chromatography.
Alternatively, the chamber air can be
circulated through an on-site infrared gas
analyzer. A common sampling frequency

of these kinds of devices is 1 Hz. With
an area coverage of typically less than
0.5 m2, the spatial resolution of this
technique is very high. However, the
temporal resolution of a manual chamber
method is sparse. Direct measurement of
trace gas, energy and momentum fluxes
can be provided by the EC method. Wind
blowing over a rough surface produces
turbulently moving air parcels called
eddies. Relating to small time scales,
an eddy can be regarded as being
confined in space. The atmospheric
layer that is influenced by the surface
relief within a time horizon of several
hours is called atmospheric boundary
layer (ABL) (Garratt, 1994; Stull, 1988).
Sinks and sources of energy or matter
at the surface create vertical gradients
of those features in the ABL. Turbulent
mixing leads to a net vertical transport
of these entities. The turbulent transport
of energy, momentum and matter in the
ABL is orders of magnitude more effec-
tive than diffusive transport (Lee et al.,
2004). The movement of gas molecules
along the vertical velocity component
of eddies mainly causes their exchange
between surface and atmosphere. Fluc-
tuations of gas concentrations and
three-dimensional wind speed can be
determined with an eddy covariance
setup at a sampling rate of 20 Hz and can
therefore be seen as quasi-continuous.
Depending on anemometer height, the
EC method provides flux data integrated
over a landscape scale area. Moreover,
in a setting where the EC data contains
signals from various surface classes, the
contribution of each class to the total sig-
nal can be modeled. Different methods

21



Chapter 2. Background

for computing this so called footprint are
described in literature (Hsieh et al., 2000;
Kljun et al., 2004; Kormann and Meixner,
2001). In combination with a surface
classification, fluxes can be associated to
and evaluated separately for different mi-
croforms within the EC footprint (Forbrich
et al., 2011). The spatial resolution of
the computed surface class contributions
relies on the pixel size of the available
classification and can for example be
as low as 1 m 2 if satellite footage is
used. If reliable small-scale flux time
series can be estimated depends, how-
ever, on the size of and the contrast
between the diverse surface features.
Their size determines, in relation to the
EC measurement height, the number of
half-hours with almost exclusively one
class in the EC footprint.

The earliest direct landscape scale
CH4 flux measurements date back to the
1990s. While Fan et al. (1992) used a
sensor with a flame ionization detector,
laser absorption spectroscopy (LAS)
soon became the dominant technique
(Suyker et al., 1996; Verma et al., 1992;
Zahniser et al., 1995)). Various inno-
vations in LAS, resulting in different
instrument designs, have been made
since then. Intercomparisons of the
available sensors are given by Tuzson
et al. (2010), Detto et al. (2011), Peltola
et al. (2013) and Peltola et al. (2014).
Besides high power consumption, the
major drawback of early tunable diode
laser spectrometers (TDLS) was the
necessity to cool the lasers (e. g. with
liquid nitrogen) and to frequently calibrate
them leading to a high maintenance
effort. Off-axis integrated cavity output

spectroscopy (OA-ICOS) and wavelength
scanned cavity ring-down spectroscopy
(WS-CRDS) eliminated the need for
cooling but rely on ultra-high reflective
mirrors, limiting these techniques to
closed path applications. Due to the
required high flow rates and low cell pres-
sures, these instruments still consume
too much power (& 500 W) to make
them suitable for sites without access to
the power grid. McDermitt et al. (2011)
presented an open-path sensor using
wavelength modulation spectroscopy
(WMS) that can operate at room temper-
ature while consuming only little power
(. 20 W). However, as the measuring
cell is exposed to the atmosphere, rain
and dust on the mirrors can deteriorate
the acquired data. Since methane is
an important GHG and a crucial part of
the carbon balance of many, especially
wetland ecosystems, the development of
fast sensors fostered plenty of research
as it provided the possibility to measure
long-term landscape scale methane
fluxes with the eddy covariance tech-
nique at high temporal resolution.

2.3 State of the art: Trace
gas flux time series
modeling

Since the development of fast methane
sensors, wetland carbon balances can
be reported more comprehensively. How-
ever, to be able to calculate for example
annual sums, gaps in the flux time series
have to be filled first. Compared to mod-
eling CO2 fluxes, gap-filling of methane
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fluxes is more challenging because the
relations between environmental drivers
and CH4 flux often appear to be more
intricate than for CO2. Basic gap-filling
methods include for example interpola-
tion between measured values (Dengel
et al., 2011; Hanis et al., 2013) or the
use of an average to replace all gaps
(Hatala et al., 2012; Mikhaylov et al.,
2015). Simple linear models have also
proven to be applicable in certain settings
(Alberto et al., 2014; Hanis et al., 2013).
A common approach is to fit Arrhenius-
type non-linear functions to the flux as a
function of various environmental drivers,
what has been done for half-hourly data
(Forbrich et al., 2011; Hommeltenberg
et al., 2014; Kroon et al., 2010; Sachs
et al., 2008, Goodrich et al. 2015a) as
well as for downsampled time series
(Brown et al., 2014; Friborg and Chris-
tensen, 2000; Jackowicz-Korczyski et al.,
2010; Long et al., 2010; Mikhaylov et al.,
2015; Parmentier et al., 2011; Rinne
et al., 2007; Shoemaker et al., 2015;
Suyker et al., 1996; Wille et al., 2008).
In this respect, downsamplig refers to
the procedure of fitting models to (e.
g. daily) averages of higher frequency
time series (e. g. 30 minute fluxes).
Look-up tables (LUTs) have been applied
by Pypker et al. (2013), Hommeltenberg
et al. (2014) and Bhattacharyya et al.
(2014). The mean diurnal variation
(MDV) method described by Falge et al.
(2001) for CO2 has been employed to fill
CH4 time series by Dengel et al. (2011)
and Jha et al. (2014).

A combination of the LUT and MDV
methods presented by Reichstein et al.
(2005), termed marginal distribution

sampling (MDS), has found wide appli-
cation in modeling of CO2 fluxes. The
practicability of the original MDS method
for methane gap-filling has been explored
by Alberto et al. (2014) and Shoemaker
et al. (2015). In this study, I present a
more general reformulation of the MDS
algorithm, including the possibility to
use other input variables than originally
implemented by Reichstein et al. (2005)
for CO2 gap-filling.

Artificial neural networks (ANNs) form
a category of non-parametric models that
have frequently been used to fill gaps in
EC CO2 time series. Mostly, multilayer
perceptrons (MLPs) were chosen (Järvi
et al., 2012; Menzer et al., 2015; Moffat,
2012; Moffat et al., 2007; Papale and
Valentini, 2003; Pypker et al., 2013) while
other authors utilized radial basis function
(RBF) networks (Kordowski and Kuttler,
2010; Menzer et al., 2015; Schmidt et al.,
2008). For CH4 fluxes, MLP models are
described by several authors (Dengel
et al., 2013; Deshmukh et al., 2014; Knox
et al., 2015, Goodrich et al. 2015a) as
well as a special kind of RBF network,
a generalized regression neural network
(GRNN), by Zhu et al. (2013).

In light of the diverse modeling ap-
proaches that have been successfully
applied in literature, the question re-
mains, how to decide which model is
an adequate choice for a particular
dataset. Furthermore, not only the model
type but also the input variables, which
ideally contain information about the
driving processes of the flux, have to
be decided for. Both decisions have
an impact on model complexity and
should not be made arbitrarily. The
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more complex a model is, the more
variability in the data it can potentially
explain. For noisy target data, this can
lead to a model mainly reproducing the
noise and missing physically meaningful
relationships between input and output
that are valid in a general sense. A lack
of generalization capability is problematic
when using an overfitted model for time
series gap-filling. Values of low accuracy
and high precision would be introduced
into the dataset and potentially create a
bias when for example cumulative flux
sums are reported.

2.4 A brief history of peat-
land research on Tierra
del Fuego - Can fue-
gian mires be regarded
as pristine?

Tierra del Fuego has been subject to eco-
logical research for centuries. Among
many famous visitors, Charles Darwin,
who reached the fuegian archipelago
aboard the Beagle navigated by Captain
Fitz Roy in 1832, probably stands out
the most. Before him, Philibert Com-
merson (1767), Joseph Banks and Daniel
Solander during James Cook’s first voy-
age to the region as well as Johann
Reinhold Forster and his son Johann
Georg Adam Forster who accompanied
Cook during his second expedition be-
tween 1772 and 1774, have contributed
a significant amount of information pri-
marily on the prevalent flora of Tierra del
Fuego. During the 19th and into the

early 20st century various international
expeditions from Europe, Asia, North and
South America reached southern Patag-
onia, what led to a further completion of
the botanical inventories of the contrast-
ing ecosystems that can be found in this
region. Scientist from this era include for
example Joseph D. Hooker, Per Dusén,
Otto Nodenskjöld, Carls Skottsberg, Carl
Caldenius and Giacomo Bove (Tuhka-
nen, 1990). More recent and yet more
complete descriptions of fuegian flora are
given by Moore and de Goodall (1983)
and Roig (1998). A major advance in the
biogeochemical exploration of Tierra del
Fuego is marked by the expeditions the
Geographical Society of Finnland sent
under Väinö Auer’s leadership. Between
1928 and 1952 he conducted a total of
15 extensive sampling and mapping cam-
paigns in the region. The results ob-
tained with these data cover multiple sci-
entific fields like botany, mesozoic tec-
tonics, quaternary geology, paleoecology,
paleoclimatology and volcanology. Auer
himself was the researcher who estab-
lished the view on fuegian peatlands how
it is predominant in scientific literature
until today. He analyzed 70 bog pro-
files throughout the archipelago focus-
ing on the archive function of peatlands.
From the pollen records of the profiles
he drew conclusions about past shifts in
ecological boundaries that he attributed
to fluctuating climatic conditions, sea level
changes and volcanic eruptions. For this
purpose he also used volcanic ash layers
preserved in peat and by that pioneered
the application of tephrachronology for
quaternary geology. Since Auer’s times,
peatlands have often been studied by ge-
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Figure 2.1: Location of the Rio Pipo investigation site at the Beagle Channel on Tierra del
Fuego in Argentina. (Map data: Google, Digital Globe, 2016)
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ologists to yield information on the Pleis-
tocene and Holocene that they contain (e.
g. Heusser, 1993; Rabassa et al., 2000,
1989, 2006). More recently, the focus of
publications in this discipline has shifted
towards the east (Penisula Mitre and Isla
de los Estados), beyond the extend of
the last glaciation (Björck et al., 2012;
Heusser, 1995; Ponce et al., 2016; Ponce
and Fernández, 2014). Also the inter-
est of ecologist in the peatlands of Penin-
sula Mitre has grown (Fritz et al., 2011;
Grootjans et al., 2014; Iturraspe, 2012).
Data on the occuring peatland types
and their distribution across Tierra del
Fuego has been gathered and/or com-
piled for example by Roivainen (1954),
Auer (1965), Pisano (1983), Tuhkanen
(1990), Rabassa et al. (1996), Roig et al.
(2001), Blanco and de la Balze (2004),
Moen et al. (2005), Mauquoy and Ben-
nett (2006), Iturraspe (2010) and Groot-
jans et al. (2010). In general, shifts
in peatland types follow the steep cli-
matic east-west gradient that is caused
by the mountain range of the Andes and
the Cordillera Darwin foremost affecting
the distribution of precipitation. While
prevailing winds come from the west-
northwest year-round, the relief divides
southern Patagonia in a very moist west-
ern part (up to 5000 mm yr−1) and a
steppe (below 300 mm yr−1) (Tuhka-
nen, 1992). However, local precipitation
and wind conditions can be heavily in-
fluenced by smaller scale relief features
of the landscape. At the pacific coast
on Islas de los Evangelistas (52°24’ S,
75°06 W) for example, the average an-
nual wind speed is 12 m/s coming from
the northwest, whereas Ushuaia experi-

ences mainly southwesterly winds with an
annual average of around 4 m/s (Tuhka-
nen, 1992). In general winds are stronger
in spring and summer than in winter.
Plant-ecology is, however, not mainly im-
pacted by the speed of the winds but
by the merciless constancy with which
they sweep across the region (Weischet,
1985).

The fuegian landscape as a whole
has been termed magellanic moorland
or magellanic tundra complex (Pisano,
1977, 1983) and in particular consists of
extended wetland areas interlinked with
forests. In the dry northern and cen-
tral Isla Grande de Tierra del Fuego
seasonally flooded vegas (termed ”Step-
penmoore” by Auer) that lack the pres-
ence of peat mosses can be found.
Raised Sphagnum magellanicum bogs
are distributed throughout the central and
marginal cordilleran valleys and roughly
follow the distribution of Nothofagus
pumilio forests (Tuhkanen, 1990). Cush-
ion bogs (termed ”Polstermoore” by Auer)
dominate the wet pacific coast but also
extensive parts of Peninsula Mitre in the
east of Isla Grande and the archipelagic
region south of the Beagle Channel on
Chilean territory. These cushion bogs
form a unique type of peatlands, ex-
clusively found on the southern hemi-
sphere. They grow in similar relief set-
tings like blanket bogs. Their main
peat forming species, however, are not
mosses but vascular plants like Astelia
pumila and Donatia fascicularis. More
similar to northern hemisphere bogs are
the raised Sphagnum bogs. Biodiversity
in these systems is, however, very low
in comparison to their northern counter-
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parts. They can be inhabited by as lit-
tle as 10 vascular plant species (Moen
et al., 2005). Their vegetation com-
munity consist nearly completely of one
moss species: Sphagnum magellanicum.
Apart from that, only two other peat
mosses commonly occur in transitions to
fens (S. fibriatum) or in pools (S. cuspi-
datum) as stated by Kleinebecker et al.
(2007). The magellanic moorland cov-
ers an area of 44 000 km2 (Arroyo et al.,
2005) of which 2700 km2 are located on
Argentinen territory (Iturraspe, 2012).

Gas flux measurements in fuegian
peatlands have only been done twice and
with manual chambers. Fritz et al. (2011)
measured methane fluxes six times on
three days representative for spring, sum-
mer and autumn in a cushion bog on
Peninsula Mitre close to the Beagle
Channel. Lehmann et al. (2016) investi-
gated methane fluxes during four summer
days from the Rio Pipo raised S. mag-
ellanicum bog near Ushuaia, the exact
same site the data presented here was
collected. Carbon dioxide flux measure-
ments of any fuegian ecosystem have
not been reported so far. Carbon bal-
ances of southern hemisphere peatlands
are scarce in general. Only recently, com-
prehensive CO2 (Goodrich et al. 2015b;
Campbell et al., 2014) and CH4 (Goodrich
et al. 2015a) flux records have been re-
ported from New Zealand. The omboth-
rophic raised bogs described there are
dominated by the rush Empodisma robus-
tum, distinguishing them from most global
bogs that are commonly dominated by
peat mosses.

Some authors have already stressed
the importance of fuegian ecosystems

as a basal reference to their anthro-
pocenically altered global counterparts.
Studying these landscapes allows for a
”glimpse of pre-industrial environments”
as Kleinebecker et al. (2008) put it in their
biogeochemical analysis of peat sam-
ples from an west-east Andean transect
(53°S). Fritz et al. (2011) estimated ni-
trogen deposition to be very low at 0.1
g m-2 a-1 inferring this number from data
published by Godoy et al. (2003) about
the Pacific coast of Chilean Patagonia.
There is, however, evidence that the pris-
tine state of the magellanic region is in
jeopardy. Using lichens as a biomoni-
tor, Conti et al. (2012) analyzed the at-
mospheric deposition of trace metals at
the Atlantic coast of Isla Grande close
to the industrial capital of the island, the
city of Rio Grande. Although the levels of
pollution were comparably low in general,
the authors measured beginning trace
metal contamination which they attributed
mainly to the atmospheric deposition of
soil particles. Overall, the authors con-
clude that Tierra del Fuego is suitable as
a reference whose ecosystems can be re-
garded as being only little affected by in-
dustrial progress. In context with the data
analyzed in the present study, it is impor-
tant to note that the reference material
for the comparison of Conti et al. (2012)
was taken from Parque National Tierra
del Fuego where the Rio Pipo bog is lo-
cated, too. In this respect, atmospheric
contamination of trace metals appears to
be limited to the industrial northeast of
Isla Grande. Biester et al. (2002) inves-
tigated the accumulation of heavy metals
in a cushion bog profile at the Chilean Pa-
cific coast (53°S). With 2.5 fold elevated
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mercury accumulation rates compared to
pre-industrial times, they found a clear
anthropogenic signal at this site. This sig-
nal was not present in Pb concentrations
though, what in turn proves the high mo-
bility of gaseous Hg from anthropogenic
sources and the extreme distances Hg
can cover as opposed to other metals.

pontaneous ebullition (hot moments)
can in particular be determined robustly
using these techniques concurrently.
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Study Areas

3.1 Rio Pipo

Rio Pipo mire is located at 54.83°S,
68.45°W in Parque Nacional Tierra del
Fuego. The mire is a raised Sphag-
num magellanicum bog as they are typ-
ical for the wind protected western val-
leys of Tierra del Fuego (Iturraspe, 2012).
It covers an area of around 60 ha at
the southern end of a glaciogenic val-
ley bottom. The valley stretches to the
SE and is drained by the Rio Pipo river,
which marks the northern margin of the
bog. Along its southern border, a rather
narrow lagg zone forms the transition to
the adjacent upwards sloping Notofagus
pumilo forest. S. magellanicum is with a
surface cover of around 40 % (Lehmann
et al., 2016; Mark et al., 1995) the most
abundant plant species. It occurs in wet
lawns and forms roughly N-S oriented
chains of hummocks perpendicular to the
drainage direction. Alternating strips of
lawns with pools and hummocks com-
pose most of the peatland’s surface. The
drier hummocks are commonly covered
by the dwarf-shrub Empetrum rubrum
and the rush Marsipospermum grandiflo-
rum (Lehmann et al., 2016).

The mean annual temperature at the
closest longterm meteorological station

in Ushuaia is 5.5 °C (Iturraspe, 2012),
where annual precipitation ranges from
530 mm (Iturraspe, 2012) over 545 mm
(Pisano, 1977) to 574 mm (Tuhkanen,
1992). To date, the data collected
for this thesis covers 7 months and in-
cludes precipitation as well as tempera-
ture measurements. Between February
and September the mean air temperature
was 5.1 °C with a maximum of 21.7 °C on
March 3rd and a minimum of -5.6 °C on
August 8th. Mean June temperature was
5.0 °C, which is considerably higher than
the long-term average of 1.2 °C given by
Iturraspe (2012) for Ushuaia. Precipita-
tion records sum up to 287.8 mm within
seven months. Wind came almost exclu-
sively from west-northwestern directions,
hence from the valley.
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Figure 3.1: Polar thirty minute wind direc-
tions histogram illustrating EC source area
homogeneity at the Rio Pipo site.

3.2 Himmelmoor

Himmelmoor is a temperate bog that has
been heavily degraded by peat mining.
The site is located in NW Germany, 3 km
west of Quickborn in Schleswig-Holstein
(53◦44’23.3” N, 9◦50’55.8” E). Along with
the adjacent grassland-fen of the Bils-
bek lowland and the beech-dominated
forest stand Kummerfelder Gehege, Him-
melmoor forms a nature reserve accord-
ing to the EU Fauna Flora Habitat Guide-
line (FFH) and is also protected by fed-
eral law of Schleswig-Holstein as a core
area of the local biotope network (Zeltner,
2003).

The bog developed in a river val-
ley, which was pre-formed as a glacial
meltwater valley during the Weichselian
glaciation in the depressed fringe of a salt
dome. Peatland formation from a stand-
ing water body began 10.020± 100 years
BP (Pfeiffer, 1997). Following the depo-
sition of lake sediments, a Phragmites-
Carex fen and a subsequent birch for-

est formed. Around 8000 BP a rising
groundwater level led to the extinction of
the forest vegetation and to the spread of
Sphagnum spp. peat mosses. Industrial
peat extraction began in the 132 ha large
(Grube et al., 2010) central bog area in
the mid 19th century. The extraction site
is divided into two halves by a NNW-SSE
running railroad dam. Areas on the west-
ern half have been stepwise taken out of
operation by the local peat-mining com-
pany since 2008. The eastern part was
still being harvested during the measure-
ment period , whereas most of the west-
ern section was rewetted, apart from a
90 m wide strip in the northwest (see fig-
ure 3.2). These areas of opposing wa-
ter regimes and land use will be referred
to as surface class drained (SCdra) and
surface class rewetted (SCrew) through-
out this text. In 2016, more than half of
the eastern section has also been rewet-
ted by ditch blocking. Peat extraction will
be completely ceased in 2017. 400 ha
of the 600 ha bog area are suitable for
restoration according to the FFH site de-
scription.

The soil properties of the research site
were altered by peat decomposition and
subsidence during decades of drainage
and peat extraction. The former acrotelm
layer is missing. Thereby the peatland’s
ability to self-regulate the water table for
optimal peat forming and carbon seques-
tering conditions is lost. The performed
ditch blocking leads in the early years of
rewetting (< 5 years, own observation) to
an oscillating water table over the course
of the season. The alternating conditions
from oxic (water table low, summer) to
anoxic (water table high/inundation, win-
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ter) might facilitate bacterial decomposi-
tion and prevent self intoxication (Beer
and Blodau, 2007). The leaching of re-
action products at high water levels could
hamper the slowing down of decompo-
sition. Overall, the peat’s varying physi-
cal properties lead to changing chemical
conditions that could amplify GHG pro-
duction and dissolved organic matter ex-
port at the same time.

Himmelmoor drains into the two local
creeks Bilsbek and Pinnau. The wa-
ter added to the peatland originates from
precipitation and from a series of ditches,
that were dug between 1950 and 1968
(Czerwonka and Czerwonka, 1985) and
that are distributed regularly across the
central bog area. Some of these dig-
gings reached below the peatland base
and penetrate the mineral ground. The
ditches were later refilled with peat but
still provide a connection to the aqui-
fier beneath, from which minerotrophic
groundwater is supplied. Today, fen-type
vegetation is covering these strips which
will be referred to as surface class veg-
etated (SCveg). They are between 600
and 700 m long in ENE-WSW direction
and 20 to 50 m wide in NNW-SSE direc-
tion. The plant community of SCveg in-
cludes Betula pubescens, Salix spp. (pre-
sumably Salix aurita and Salix caprea),
Eriophorum vaginatum, Eriophorum an-
gustifolium, Molinia caerulea, Calla palus-
tris, Typha latifolia, Carex spp., Juncus
effusus and Calamagrostis pseudophrag-
mites. The long-term (2000 – 2014,
Deutscher Wetterdienst, DWD) average
annual precipitation is 888.0 mm, the
mean air temperature is 10.1 ◦C. Both in-
vestigated years were considerably wet-

ter compared to the long-term average,
while precipitation in Year 2 was lower
than in Year 1. In Year 1 the relatively
high cumulative precipitation can mainly
be attributed to heavy rain in early sum-
mer. The differences in mean annual air
temperatures are mainly accounted for by
deviating winter temperatures. In Year 2
they were well above and in Year 1 below
average.
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Figure 3.2: Distribution of surface classes rewetted, drained and vegetated in Himmelmoor.
The map section shows the central extraction area. Grid spacing is 200 m, coordinates refer to
UTM zone 32U. The polar histogram in the top left corner displays two years of half-hourly wind
direction measurements binned in 2° classes.
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Figure 3.3: Climate diagram of the two investigated years from 06/2012 to 05/2013 and form
06/2013 to 05/2014 as measured in Himmelmoor and a 14 year average of a nearby DWD
station (WMO-Station ID 10146 in Quickborn).
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Material and methods

4.1 Instrumentation

4.1.1 Himmelmoor

EC methane fluxes were measured us-
ing an open path CH4 analyzer (LI-7700,
Licor, USA) and a 3-D sonic anemome-
ter (R3, Gill, UK) mounted on a tower
at 6 m height. 20 Hz water vapour
and carbon dioxide concentrations were
determined with an enclosed path CO2

and water vapor sensor (LI-7200, Licor,
USA). The data was recorded on a LI-
7550 (Licor, USA) logger. Additionally,
a HMP45 (Vaisala, Finland) temperature
and relative humidity probe was mounted
on the eddy covariance tower and logged
with the same device. A second HMP45
was installed together with a NR01 4-
component net radiometer (Hukseflux,
Netherlands) 70 m southwest of the EC
tower on a tripod at 2 m height. These
data were logged on a CR-3000 (Camp-
bell Scientific, UK). Another logger of this
type was used at the weather station ap-
proximately 500 m northeast of the EC-
Tower. The sensors there included a third
HMP45 and a tipping bucket rain gauge
(R.M. Young, USA). Per depth, redox po-
tentials were determined with three par-
allel probes and recorded on a Hypnos
II (MVH Consult, Netherlands). The re-

dox probes were installed in a vegetated
strip approximately 100 meters west of
the EC tower. Water level was measured
and logged with a Mini-Diver (Schlum-
berger Water Services, USA) around 150
m west-southwest of the EC tower. Rain
and long-term temperature data as pre-
sented in figure 3.3 was taken from a
nearby station operated by DWD (WMO-
Station ID 10146), which is located east-
southeast from the EC tower at approxi-
mately 2.4 km distance.

Two years of turbulent flux data were
available for analysis from Himmelmoor.
The EC setup did not change during that
time. The first year from June 1st 2012
to May 31st 2013 is from hereon called
Year 1, the second year from June 1st
2013 to May 31st 2014 is termed Year 2.

4.1.2 Rio Pipo

The eddy covariance system to measure
turbulent CO2 fluxes consisted of a Wind-
master Pro sonic anemometer (Gill, UK),
a LI-7200 infra-red gas analyzer and a
LI-7550 data logger (Licor, USA). Ad-
ditional atmospheric and soil variables
were recorded on a CR-3000 data logger
(Campbell Scientific, UK). Air relative hu-
midity and temperature were determined
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with a HC2-S3 probe (Rotronic, CH),
photosynthetically active radiation with a
SKP-215 sensor (Skye Instruments, UK),
precipitation with a ARG 100 raingauge
(EML, UK), incoming and outgoing short-
and longwave radiation with a NR-01 ra-
diometer (Hukseflux, NL), ground heat
flux with HFP01 heat flux plates (Huk-
seflux, NL), soil volumetric water content
with CS616 water content reflectome-
ters (Campbell Scientific, UK) and soil
temperature with PT100 probes (Camp-
bell Scientific, UK). Soil variables were
recorded at three different microsites:
One hummock and two lawns. Of the
latter, one is dominated by Empetrum
rubrum the other one by Sphagnum mag-
ellanicum.

Data from Rio Pipo presented in this
study were collected between February
8th 2016 and September 12th 2016.

4.2 Raw data processing

Turbulent fluxes were computed using
the software EddyPro 5.2.1 (Licor, USA).
Raw data processing included (1) an an-
gel of attack correction, i. e. com-
pensation for flow distortion induced by
the anemometer frame (Nakai et al.,
2006), (2) coordinate rotation to align
the anemometer x-axis to the current
mean streamlines (Kaimal and Finnigan,
1994, double rotation), (3) linear de-
trending (Gash and Culf, 1996), (4) time
lags compensation (see below for de-
tails), (5) spectral corrections (see be-
low for details) and 6) WPL-correction to
compensate for air density fluctuations
due to thermal expansion or water dilu-
tion (Burba et al., 2012).

Time lags were compensated for by us-
ing the automatic time lag optimization
(ATLO) option in EddyPro. For this pro-
cedure, prior to processing the complete
dataset, time lags are determined for a
subperiod of raw data by covariance max-
imazation. The median of the found time
lags is called nominal time lag (Tnom), a
searching window around Tnom is given
by Tnom ± 3.5 · MAD, where MAD is the
median absolute deviation of the found
time lags. When processing the com-
plete dataset, EddyPro performs a covari-
ance maximization of vertical wind speed
and the scalar of interest for each half
hour and then checks whether the found
time lag falls within the previously defined
searching window. If not, Tnom is used
as timelag. Water vapor concentration is
binned in ten RH-classes, and the proce-
dure is applied to each class, so there are
ten different nominal time lags for water
vapor. CH4 and CO2 concentrations are
not binned in humidity-classes.

Spectral attenuations of the high and
the low frequency range were both com-
pensated for. Low frequency loss due to
finite averaging time and linear detrend-
ing was corrected for following Moncrieff
et al. (2004). In order to obtain a cor-
rection factor for each flux value, true
cospectra were estimated as proposed
by Kaimal et al. (1972) and reformulated
by Moncrieff et al. (1997) for each half
hour. Frequency-wise multiplication with
a transfer function yielded an estimate of
the filtered signal in the frequency do-
main. The transfer function was selected
according to the used detrending method
as given by Moncrieff et al. (2004). After
integrating over the averaging period, a
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low-cut spectral correction factor for each
raw flux could be calculated. High fre-
quency loss due to path averaging, sig-
nal attenuation and finite time response of
the instruments was accounted for follow-
ing Fratini et al. (2012). First, the cut-off
frequency (fc) and natural frequency (fn)
were determined by fitting the amplitude
response of a first-order low-pass filter
(HIIR(fn/fc)) to the power spectrum of the
respective scalar time series (Ibrom et al.,
2007). For water vapour, fc was estimated
for nine relative humidity classes. Cor-
rection factors F1 were calculated with
two methods depending on sensible heat
and latent energy flux being above (high
fluxes) or below (low fluxes) the thresh-
olds of 10 and 5 W m-2 (Fratini et al.,
2012). For high fluxes the correction fac-
tors were calculated after Hollinger et al.
(1999) as implemented in EddyPro since
version 5.2.0. Their calculation includes
the degradation of the unattenuated sen-
sible heat flux cospectrum by multiplying
it with HIIR(fn/fc) for the previously deter-
mined fc. For low fluxes, the obtained F1,
fc dataset was fitted to the model given
in Ibrom (2007) for stable and unstable
conditions. After obtaining the model pa-
rameters, F1 can be calculated for indi-
vidual half hours as a function of fc and
mean wind speed. Spectral losses due
to crosswind and vertical instrument sep-
aration were corrected for following Horst
and Lenschow (2009).

4.3 Flux quality screening

Thirty minute fluxes were screened for
quality according to the following scheme.
Atmospheric stability and developed tur-

bulence were analyzed as described by
Mauder and Foken (2004). By this step,
fluxes were classified into three groups:
high quality fluxes (MF0), intermediate
quality fluxes (MF1) and low quality fluxes
(MF2). carbon gas fluxes flagged with
MF1 and MF2 were discarded. Due to po-
tentially faulty WPL correction, methane
and carbon dioxide fluxes of half-hours
where sensible or latent heat flux were
flagged with MF2 were discarded as well.

Certain quality flags that were derived
from raw data statistics as described by
Vickers and Mahrt (1997) were evaluated.
If skewness or kurtosis of vertical wind
or sonic temperature were assigned a
hard flag (skewness outside [-2,2], kurto-
sis outside [1,8]) or if CH4 or CO2 concen-
tration statistics were rated with a soft flag
(skewness outside [-1,1], kurtosis outside
[2,5]), trace gas fluxes where discarded.
Furthermore, half-hourly fluxes were re-
jected if the respective 20 Hz concentra-
tion time series failed the amplitude reso-
lution test.

Additionally, diagnostic values from the
LI-7700 and LI-7200 gas analyzers were
used for quality screening. LI-7200 data
was omitted when the signal strength in-
dication (AGC) lay above 63. Due to
a change in the signal quality definition
along with a software upgrade, this rule
was modified to discarding data below
a value of 75 for data acquired when
the sensor was running on firmware ver-
sion 6.6 and above. With respect to the
LI-7700, the relative signal strength indi-
cation (RSSI) and the heater diagnostics
were evaluated. As a first step, methane
fluxes were discarded if the mean RSSI
of the respective averaging interval was
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Figure 4.1: Illustration of the empirically derived threshold for the new LI-7700 open path
methane analyzer quality filter. This check evaluates raw 20 Hz RSSI statistics to remove
erroneous half-hourly methane fluxes. The filter is designed to capture concentration time se-
ries that were deteriorated by switching events in a LI-7700 mirror heater. Black data points
denote half hours, during which the heater of the bottom mirror was switched off entirely. Col-
ored points represents half hours, during which switching events (maximum: 36000) in the 20
Hz time series occured.

below 20. The bottom and top mirror
of the gas anlalyzers measurement cell
can be heated to counter condensation
and frost on the mirrors. The Li-7700
instrument software allows for user de-
fined thresholds that control the power-
on of the heaters. For the bottom heater
a RSSI threshold RSSIth, below which
the heater is turned on, can be adjusted.
For the top heater an ambient tempera-
ture offset threshold Ta, offset can be de-
fined. This mirror is heated to keep its
temperature about Ta, offset above ambi-
ent temperature. In the present case,
RSSIth was set to 20 and Ta, offset to 1 °C.
The number of samples within one half
hour, for which a heater is switched on,
is recorded. Accordingly, these diagnos-
tics (bottom heater on: BH on; top heater
on: TH on) take maximum values of 36000

if a heater is switched on for an entire
half hour. Heater diagnostics were inves-
tigated closely due to the observation that
within an averaging interval, high varia-
tion in RSSI was often accompanied by
switching events in the 20 Hz heater time
series, i.e. if BHon or TH on were nei-
ther 0 nor 36000. Moreover, methane
concentrations had the tendency to co-
vary with RSSI values if the latter showed
large changes, what renders calculated
fluxes hardly trustworthy. In general,
the top heater was switched on most of
the time whereas switching events in the
BH on time series where more common,
which is why I mainly focused on the bot-
tom heater diagnostics for the analysis
of this phenomenon. Figure 4.1 shows
the relationship between half-hourly aver-
aged RSSI values, the corresponding rel-
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ative standard deviation of 20 Hz RSSI
(RSSIrelStd) values and BHon. From this
graph, I empirically derived a RSSIrelStd

threshold of 10 % , above which the re-
spective flux records where neglected.

The next quality screening step was
only applied to the Himmelmoor dataset.
I first classified the surface using geo-
referenced orthoimages of the area. As
the surface types I aimed to discriminate
were quite large and easily distinguish-
able on the images, I could draw poly-
gons around the different classes and get
the coordinates of their corners. This
step was implemented through the Mat-
lab 8.4 Mapping and Image Processing
Toolboxes. I defined the classes SCdra,
SCrew and SCveg, the latter of which is
contained in the other two surface types.
Calculating a 2-D footprint function after
Kormann and Meixner (2001) with 1 m2

resolution and summing up the contri-
bution values of all pixels within each
of the three surface types, yielded half-
hourly contribution fractions of the differ-
ent classes to the EC signal (class contri-
bution of rewetted surfaces (CCrew); class
contribution of drained surfaces (CCdra);
class contribution of vegetated surfaces
(CCveg)). CH4 fluxes of half hours when
CCrew + CCdra < 30 % were discarded.
Thereby, flux data mainly related to the
railroad dam and to areas outside the
minig site were excluded.

Fluxes were then filtered for absolute
limits. CH4 data outside [-100 1000]
nmol m-2 s-1 and CO2 data outside [-
10 10] µmol m-2 s-1 were neglected.
The interval was left wider at [-20 20]
µmol m-2 s-1 for Rio Pipo CO2 fluxes. In
case of the CH4 flux time series, out-

lier removal was addresed furthermore
by assessing the frequency distribution
of the remaining data. Values smaller
than the bin center of the 1st (BC1) or
larger than the 99th percentile’s bin cen-
ter (BC99) were omitted. As a last step,
CH4 fluxes with random uncertainties cal-
culated with EddyPro after Finkelstein
and Sims (2001) larger than 400 nmol m-2

s-1 were filtered out.

4.4 Empirical gap-filling

4.4.1 Introduction

In order to fill gaps in the carbon gas
flux time series from Himmelmoor, five
different models were applied and com-
pared. The tested model types include
parametric and non-parametric varieties
and range from predictions of multilinear
systems to ANNs. Moreover, a data-
driven evaluation of possible model inputs
was developed and aggregated within an
automatable decision-making framework.
As input vectors, the routine accepts
measured environmental variables, EC
footprint information and artificial transfor-
mations of cyclicality expressed in fuzzy
logic. Input selection and model evalua-
tion are combined in the I-SIM algorithm.

4.4.2 Multilinear regression

I applied a stepwise multilinear regres-
sion (MLR), utilizing a combination of for-
ward selection and backward elimination
(bidirectional elimination) for the selection
of model inputs (see Draper and Smith,
1998). The calculations were made us-
ing the Matlab 8.4 Statistics and Machine
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Learning Toolbox in the following way. At
each step the p-values of an F-statistic of
models with or without each input were
evaluated by comparing them with an en-
ter condition penter = 0.05 and an exit con-
dition premove = 0.1. If inputs currently not
in the model had p-values below penter,
the one with the lowest value was in-
cluded into the model until the next step
(forward selection). If inputs currently in
the model had p-values above premove,
the one with the highest value was re-
moved from the model (backward elimi-
nation). These steps were repeated until
the model could not be further improved
by a single step. The initial model con-
tained no inputs.

4.4.3 Marginal distribution sam-
pling

Reichstein et al. (2005) presented the
MDS method for gap-filling of net ecosys-
tem exchange. I propose a redesign of
the algorithm for the use with methane
fluxes. The original algorithm takes into
account the covariation of gas fluxes
and environmental drivers (look-up ta-
ble steps) as well as the temporal au-
tocorrelation of gas fluxes (diurnal cycle
steps). A look-up table step involves
searching for similar meteorological con-
ditions within different time windows. Gas
fluxes from the found timestamps are av-
eraged to fill the respective gap. Look-up
table steps are performed with two sets
of variables, either only with global radia-
tion (Rg) or with Rg, water vapour pres-
sure deficit (VPD) and air temperature
(Tair). Similar conditions are defined by
limits within which the inputs are allowed

to vary. I replaced the original input vari-
ables used for CO2 gap-filling with mete-
orological variables of the general cate-
gories level 1 and level 2. A level 1 vari-
able is required in all look-up table steps
(steps 1, 2, 3, 6 & 7; see figure 4.2) of
the original algorithm; it replaces Rg. The
number of level 2 variables is unlimited in
my approach. They appear in steps 1, 2
and 6 and replace VPD and Tair. Thereby
the model is set up to take various inputs
that can be rated by importance. The se-
lection of model inputs is described later
in this text. Furthermore, I added a crite-
rion for the minimal number of averaging
samples nmin.

To get an estimate of the goodness
of fit, I ran a slightly modified ver-
sion (MDSQC) of the algorithm described
above. Instead of cycling through the
gaps of the time series, this routine scrolls
through the data points and calculates
an estimate without using the respective
data point itself but all other available
data. This way, an individual MSE for all
three quality classes and an overall MSE
can be calculated.

To run the look-up table steps within
the MDS model, it is necessary to de-
termine limits that define similar condi-
tions for each input. To yield these limits
I proceeded as follows. First, the disper-
sion of each input was described by cal-
culating its range (maximum minus min-
imum value) which was then divided by
two. Then, 1000 random numbers, lay-
ing between zero and the variables’ half-
range, were generated. The MDSQC rou-
tine was run 1000 times with these ran-
dom limits (Limrand); nmin was set to 5.
Subsequently, the Limrand of the 100 runs
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with the lowest MSE were binned in five
classes. The bin center of the class with
the most counts was termed initial limit
(Liminit). A second set of 1000 random
limits was generated the same way, and
MDSQC was run 1000 times for each input
with the limits of all remaining inputs kept
constant at Liminit and one being drawn
without replacement from the second list
of random limits. For each input the 100
Limrand with the lowest MSE were again
binned in five classes, and the bin cen-
ter with the most counts was used as final
limit (Limgf) for gap-filling.

In case of CO2 gap-filling, the three in-
put variables and limits proposed by Re-
ichstein et al. (2005) were used. The nmin

condition was, however, left part of the
MDS routine, what constitutes the differ-
ence between it and the original approach
of Reichstein et al. (2005).

4.4.4 Multilayer perceptron

The MLP was set up with one hidden
layer with tan-sigmoid activation func-
tions, a single output layer node with a
linear transfer function and Levenberg-
Marquardt backpropagation as super-
vised learning method. See Papale and
Valentini (2003), Dengel et al. (2013),
Sarle (1994) for details on MLP architec-
ture. The input data was divided ran-
domly in 70 % training and 30 % valida-
tion data. Inputs were re-scaled before
training to range between -1 and 1. Train-
ing data was used to optimize the network
weights and biases for low MSE. Valida-
tion data served as inputs independent
from training data to check the general-
ization capability of the model. The model

performance on these data was used to
avoid overfitting by terminating the learn-
ing process if for six consecutive itera-
tions the MSE of the validation data did
not decrease (early stopping).

Instead of using the response of a sin-
gle MLP, I calculated the ensemble av-
erage of multiple networks starting with
varying initial weights and different sets
of training and validation data each. This
method is well described in neural net-
work literature (Hashem, 1997; Haykin,
1999; Naftaly et al., 1997; Perrone and
Cooper, 1993; Wolpert, 1992) as one
type of so called committee machines. It
has been shown that dividing the input
space into many subspaces and consec-
utively combining all individual so called
expert responses to an overall prediction
is often superior to the response of a sin-
gle network.

To find an approriate number of hidden
layer nodes (#HLN), I used Akaike’s in-
formation criterion (AIC). I simulated com-
mittee machines with 100 networks each
for hidden layer sizes from 1 to 20. The
resulting relationship between #HLN and
AIC was inspected further in an effort to
find the optimal #HLN. In general, the rel-
evance of a model rises with decreasing
AIC. The #HLN optimum thus should be
found at the AIC minimum. However, for
different gases and datasets, I encoun-
tered two shapes a relation like this would
commonly assume. The more desirable
for analysis is a parabola-like curve with
a clear minimum at the function vertex.
The second type is an asymptotic func-
tion of the form AIC = #HLN−1 + a. In or-
der to programmatically decide within the
I-SIM algorithm on which #HLN to use for
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Quality controlled half-hour fluxes

xx

Flux present? Yes don’t fill

Step No

1 ≥ nmin flux values available when level 1 & level 2 Yes filling quality A
variables are in range within |dt| ≤ 5 days?

No

2 ≥ nmin flux values available when level 1 & level 2 Yes filling quality A
variables are in range within |dt| ≤ 10 days?

No

3 ≥ nmin flux values available when level 1 variable Yes filling quality A
is in range within |dt| ≤ 5 days?

No

4 flux values available within |dt| ≤ 1 hour? Yes filling quality A

No

5 ≥ nmin flux values available |dt| ≤ 1 day at Yes filling quality B
same hour of day?

No

6a ≥ nmin flux values available when level 1 & level 2 Yes filling quality B
variables are in range within |dt| ≤ 15, 20 days?

No

7a ≥ nmin flux values available when level 1 Yes filling quality B
variable is in range within |dt| ≤ 10 days?

No

6b ≥ nmin flux values available when level 1 & level 2 Yes filling quality C
variables are in range within |dt| ≤ 25, 30,... days?

No

7b ≥ nmin flux values available when level 1 variable Yes filling quality C
is in range within |dt| ≤ 15, 20,... days?

No

8 ≥ nmin flux values available within |dt| ≤ 15, 20,... Yes filling quality C
days at same hour of day?

Figure 4.2: Flow diagram of the marginal distribution sampling algorithm as implemented in
I-SIM, changed after Reichstein et al. (2005). nmin: minimum number of averaging samples.
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the final MLP architecture, the program
flow illustrated in figure 4.5 was imple-
mented. First, #HLN1 is found at the AIC
minimum. Next, an asymptotic function is
fitted to the data and differentiated. The
derivative is rounded to the nearest mul-
tiple of 10 if FCH4 is the model target or
of 100 in case of FCO2 modeling. #HLN2
is defined to be at the position where the
rounded derivative turns zero for the first
time. The decision tree is finished at this
point, and #HLN1 is used as best hid-
den layer size if it is smaller than #HLN2.
Due to observed cases of parabolic curve
shapes where #HLN2 was found left from
the vertex, a further check is included be-
fore #HLN2 is to be selected as optimum.
This revisal includes the fit of a 2nd de-
gree polynomial whose 1st derivative is
set to zero to find #HLN3 at the func-
tion vertex. If #HLN1 lies within [#HLN3
-1, #HLN3 +1] and is smaller than the
maximum number of nodes of 20 it is
used as hidden layer size optimum. Oth-
erwise, the result of the asymptotic fit
#HLN2 gets selected. The resultant num-
ber of nodes is used to construct 1000
networks whose mean response yield the
I-SIM MLP model.

4.4.5 Radial basis function neural
network

Another kind of feedforward neural net-
work, namely a RBF network, was ap-
plied and tested with our data. In contrast
to MLPs, RBF networks use Gaussian
exponential functions (see figure 4.3) as
activation functions and are non-iterative,
i.e. learning is finished after data was
passed through the network once. Also,

0.833−0.833

0.5

1

x

radbas(x) = e−x
2

(a)

−1

1

−1 1
x

tansig(x) = 2/(1 + e(−2x) − 1)

(b)

Figure 4.3: Neuron activation functions of a
radial basis function neural network (a) and a
multilayer perceptron (b).

rather than passing a linear combination
of input and weight to the activation func-
tion, the euclidean distance of the input
and weight vector is calculated, multiplied
with a bias and then passed to the ra-
dial basis function. The outputs of the ra-
dial neuron are then assigned as inputs to
the second layer consisting of linear neu-
rons with associated upstream weights
and biases. The values optimized dur-
ing learning are the linear output layer
weights and biases that are adjusted for
minimal MSE. In our case, model inputs
were normalized by subtracting the aver-
age of the respective input series from
each of its values and dividing the re-
sults by the corresponding standard de-
viations (as in Schmidt et al. (2008)). See
for example Haykin (1999), Schmidt et al.
(2008), Sarle (1994) or Beale et al. (2015)
for more details on RBF architecture.

The hidden layer weights can also be
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thought of as the centers (i.e. max-
ima) of the RBF. These centers are con-
structed from the training samples; sev-
eral different approaches on how to de-
termine these hidden layer weights are
described in literature. They can for ex-
ample be found statistically by the so
called k-means clustering algorithm us-
ing all available input vectors (Bishop,
1995; Haykin, 1999; Likas et al., 2003;
Schmidt et al., 2008). Being an unsu-
pervised learning process (i.e. indepen-
dent from targets) this method cannot
use an optimization of the performance
function to find the best centers. I in-
stead applied a parameterized version of
a forward selection algorithm proposed by
Chen et al. (1991) that uses a subset of
input-target pairs to determine the radial
node centers. In this stepwise approach,
the RBF network starts with zero hidden
layer nodes. At each step the input vec-
tor with the worst performance is used to
add one radial node by setting its weights
to be equal to this input vector. To avoid
overparameterization and decrease com-
puting time, I stopped training when a
fixed number of nodes was reached (as
in Menzer et al., 2015).

The first layer biases b are indirectly
adjusted by setting the spread parameter
s = 0.833/b to a fixed value prior to learn-
ing. By this parameter, the receptive field
(Sarle, 1994), i.e. the responsiveness of
each RBF neuron to input vectors other
than the one the neuron weight was con-
structed from, is determined. Large val-
ues of s result in many inputs triggering
the activation function, small values make
the respective neuron ”fire” only for inputs
close to the one the neuron weight was

constructed from. It is essential to se-
lect a value for s that is large enough for
the neurons to respond to overlapping re-
gions of the input space as well as small
enough, so the network does not respond
alike to all inputs.

I included an optimization procedure for
the two RBF parameters s and #HLN into
the I-SIM algorithm. I first randomly di-
vided the dataset into 60 % training and
40 % validation data. From the training
inputs and targets, I constructed 19 RBF
networks with spread values between 0.2
and 2 in 0.1 steps and simulated the re-
sulting networks with the validation in-
puts. The network with the spread value
that resulted in the lowest MSE with re-
spect to the validation targets was as-
sumed to be the most accurate and was
simulated over the entire input space. I
repeated this process 100 times with dif-
ferent data divisions each time and used
the ensemble average of these iterations
as the overall model response. To find the
appropriate #HLN, I calculated committee
machine outputs for 1 to 70 hidden layer
units and selected the #HLN with the low-
est AIC.

4.4.6 Generalized regression neu-
ral network

As a third ANN type, I applied GRNNs
which have architectural similarities with
RBF networks. The hidden layer in a
GRNN is set up as a radial basis layer
like in a RBF network. The second layer
is somewhat different as it contains only
weights and no biases. Before pass-
ing layer one outputs to the layer two
linear activation function, the dot prod-
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uct between layer two weights and layer
one outputs is calculated and normal-
ized by the number of input vector ele-
ments (Beale et al., 2015; Specht, 1991).
The network is set up with as many neu-
rons as there are input-target pairs. The
first layer weights are set to be equal to
the transposed input matrix. The second
layer weights are set to be equal to the
target vector. That way, for each input
vector there is one hidden neuron with
a net output of unity that has zero error
on the respective target if it were the only
neuron in the network. The responsive-
ness of the neuron to input vectors other
than the one it was constructed from is
tuned with the spread parameter s, just
like in a RBF network. I used the same
data division, spread optimization and en-
semble average process as with the RBF
networks.

4.4.7 Model input selection

According to the principle of parsimony,
the dimensionality of the model input
space and thereby the model complexity
should be reduced as much as possible
in order to obtain a relevant model. In
an effort to approximate such a model,
I developed a general selection proce-
dure that aims for the identification of re-
dundant as well as irrelevant input vari-
ables. In literature, the terms sensi-
tivity or importance are used alike for
mathematically different approaches that
can give contradicting results. Regard-
ing the analysis of ANNs there is no sin-
gle indisputable measure of importance,
which is on the one hand due to limita-
tions of the existing methods and more

importantly due to the fact that different
methods address different types of impor-
tance. Sarle (1997) gives a critical review
on this topic and divides the available
methods into such that yield measures
for what he terms predictive and causal
importance. In short, predictive impor-
tance measures are those that check the
change of model performance when an
input is omitted, whereas causal impor-
tance measures evaluate the change of
a performance function when inputs are
manipulated. The latter can be realized
by degrading the variability of an input
for example by replacing it partly with its
mean (as in Hunter et al., 2000; Schmidt
et al., 2008).

In case of the Himmelmoor dataset,
three categories of potential model in-
puts were presented to the selection
scheme. Meteorological and soil (biomet)
variables, fuzzy variables representing di-
urnal and seasonal cycles (following Pa-
pale and Valentini, 2003) and footprint
variables in the form of surface class con-
tribution estimates. Table 4.1 gives an
overview of the available variables. Note
that in Year 1 no soil properties were
recorded. The matrix of potential inputs
for Rio Pipo gas flux models did not con-
tain footprint variables. As a first step,
possible functional relationships between
the inputs were roughly checked by in-
specting scatter plots of all variable com-
binations. To check for time lags between
biomet inputs and methane fluxes, their
cross-correlation was calculated and nor-
malized to range between -1 and 1 (Ket-
tunen et al., 1996). The lag time for which
the absolute cross-correlation was max-
imized was used to shift the respective
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Table 4.1: Available (x: yes, -: no) model inputs sorted by type and time lags between Himmel-
moor CH4 flux and biomet variables derived from cross-correlation.

Type Name Unit Abbreviation available in... Time lag, hours
Year 1? Year 2? Year 1 Year 2

B
io

m
et

Global radiation W m-2 Rg x x 0 2
Air temperature ◦C Tair x x 1.5 2.5
Outgoing longwave radiation W m-2 Lwout x x 2 2
Air pressure kPa Pair x x -6 4.5
Rate of change in air pressure kPa/1800 s slopePair x x 5.5 6
Water vapour pressure deficit Pa VPD x x 1 1.5
Soil redox potential in 2 cm depth mV Redox2 - x n.a. -5
Soil redox potential in 5 cm depth mV Redox5 - x n.a. 1
Soil redox potential in 10 cm depth mV Redox10 - x n.a. 1
Soil redox potential in 20 cm depth mV Redox20 - x n.a. 2
Soil temperature in 2 cm depth ◦C TSoil2 - x n.a. 4.5
Soil temperature in 5 cm depth ◦C TSoil5 - x n.a. -4.5
Soil temperature in 10 cm depth ◦C TSoil10 - x n.a. -1.5
Soil temperature in 20 cm depth ◦C TSoil20 - x n.a. 2.5
Soil temperature in 40 cm depth ◦C TSoil40 - x n.a. -6.5
Water table below surface cm WT - x n.a. 7.5

Fu
zz

y

Morning n.a. fuzzymo x x
Afternoon n.a. fuzzyaf x x
Evening n.a. fuzzyev x x
Night n.a. fuzzyni x x
Summer n.a. fuzzysu x x
Winter n.a. fuzzywi x x

Fo
ot

pr
in

t Class contribution of rewetted area n.a. CCrew x x
Class contribution of drained area n.a. CCdra x x
Class contribution of vegetated n.a. CCveg, W x x
area in rewetted part
Class contribution of vegetated n.a. CCveg, E x x
area in drained part
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variable. Thus a second biomet data set
with lagged variables was derived. The
obtained time lags are also presented in
Table 4.1. Three datasets were used
for sensitivity analysis: Only the original
biomet data, only the lagged data and
both. All data sets were extended by
fuzzy and footprint data.

Four methods to estimate the impor-
tance of the individual inputs were ap-
plied. They were combined via a scoring
table (see figure 4.4). If an input was se-
lected by one method, one point was as-
signed to it. Inputs with more points were
regarded as more important. For the
scoring table I used predictive as well as
causal importance measures and yet an-
other indicator for input sensitivity termed
relative importance.

As applied previously by Dengel et al.
(2013), I used the outcome of a MLR with
bidirectional elimination which can be re-
garded as a measure of predictive impor-
tance. Inputs that remained in the model
received one point. To calculate causal
importance measures, I used the output
of a MLP whose hidden layer size had
been optimized first for all three input data
sets. I chose the output of MLPs be-
cause they, as opposed to RBF networks,
have the ability to ignore irrelevant inputs
without developing the need for increased
complexity in order to do so. This prop-
erty can be attributed to the fact that in-
puts are linearly combined in the first MLP
layer, what includes the option for the net-
work to select a linear subspace of in-
puts. Redundant inputs, however, can be
processed by both MLPs and RBF net-
works effectively. Following Schmidt et al.
(2008), I calculated two similar measures

of causal importance from the MLP out-
put. The variability of each input variable
was manipulated by replacing first 50 %
and then 100 % with its median, while all
remaining variables were left unchanged.
A network was first trained with the origi-
nal data and then simulated with the arti-
ficial input matrix. The relation of the re-
sultant mean squared errors (MSEs) was
calculated and called relative error (RE).
This process was repeated 1000 times
for all input variables to obtain diverse re-
sults for different data divisions. The re-
sulting values for RE were binned into six
classes with centers at 0.8, 0.9, 1.0, 1.1,
1.2 and 1.3. If the latter was the bin with
the most counts, one point was assigned
to this input variable in the scoring table,
meaning that the manipulation of this in-
put vector resulted in a deterioration of
the respective MSE of more than 25 %
in most cases. This method yielded two
measures of causal importance for each
input variable, RE50 and RE100, referring
to the two percentages of data being ma-
nipulated.

Next,the weights of a MLP were inter-
preted based on the algorithm of Garson
(1991) as presented in Olden and Jack-
son (2002). This method interprets the
weights of a neural network similar to the
coefficients of a linear model. Before cal-
culating the relative importance (RI) of an
input, the products of the weights that
connect this input with each hidden neu-
ron and the output layer is determined
and normalized by the sum of weight
products feeding also into the same hid-
den unit. These so called neuron contri-
butions are summed up and normalized
by the sum of all neuron contributions re-
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sulting in the RIs of all inputs. I analyzed
the RIs of 1000 MLP runs by computing
their mean, median and maximum val-
ues for all input variables. I then com-
piled three lists, where I sorted the in-
puts in descending order with respect to
the determined statistics. The lengths of
those lists were afterwards shortened to
equal the number of variables that were
included in the MLR model that was de-
rived before – only variables with the high-
est RI statistics stayed in the lists. All in-
puts that occurred at least in two of three
lists received one point in the scoring ta-
ble, which was completed with this step.

I then summed up the scores for all
input variables and calculated two score
thresholds above which an input was to
be selected. One threshold was derived
for the original and the lagged biomet
variables, one for fuzzy and footprint data.
I proceeded like this owing to the struc-
ture of the three input datasets. Each
biomet variable occurred in two of three
datasets, each fuzzy and footprint vari-
able was part of all datasets, making it
more likely for them to reach a high score.
I calculated the mean score of the respec-
tive variable category and used the next
larger integer as a score threshold.

The inputs that were selected via the
scoring table were used to fit another
MLR model. By that, the inputs were
rated with a final causal importance mea-
sure. The last step of the input selection
algorithm was to check if both a variable
and its lagged derivative remained in the
input matrix. If so, the scores of those two
variables were compared, and only the
higher scoring input stayed in the matrix.
In case there was no score difference, the

lagged derivative was removed from the
input space, whose reduction was hereby
finished. The obtained variables were re-
garded as most relevant and least redun-
dant and used as inputs for all models.
As the MDS approach is designed to ac-
cept inputs of different importance, the in-
put matrix for this model had to be divided
into level 1 and level 2 variables. The ma-
trix division was done based on the result
of the final MLR in the selection process
described above. The variable which was
selected in the first iteration of this step-
wise approach was used as level 1 input,
all others as level 2 inputs.

In case of the Rio Pipo dataset, gaps in
the input variable time series were closed
with a mean diurnal variation (MDV) ap-
proach prior to gas flux modeling. If this
algorithm encounters a gap, it looks for
available values of the same variable in
adjacent days at the same hour of day
and uses the mean of the found records
to fill the gap. At first, a window of ± 1 day
around the gap is screened. If not at least
one data point is found, the search range
is increased in steps of one day to up to
five days until the gap can be filled.

4.4.8 Measures for model com-
parison

To compare the performance of the differ-
ent model types, I used Akaike’s informa-
tion criterion

AIC = n · ln(MSE) + 2 · Pfree

or if n/Pfree < 40

AICc = AIC +
2Pfree(Pfree + 1)

n− Pfree − 1
,
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Biomet variables

Inputs Lagged inputs

Combined inputs

find time lag with cross correlation method

if time lag 6= 0 hours

extend input matrices with footprint and fuzzy variables

Predictive importance I
find inputs that can be omitted by stepwise mul-
tiliear regression using bidirectional elimination

Network optimization
hidden layer size determination of multilayer perceptron

Causal importance
replace network inputs partially with their means

and observe effect on network performance

Relative importance
interpret previously fitted network weights and neu-

ron connections and sort inputs by importance

Evaluate scoring table
calculate score thresholds and remove inputs yielding less points

Predictive importance II
find inputs that can be omitted by stepwise mul-
tiliear regression using bidirectional elimination

Redundancy removal
if both an input and its lagged derivatives are in the final list, re-

move the lower scoring one, remove lagged input if scores are equal

Scoring
table

Figure 4.4: Flow chart of input selection module within the input-sensitive input and model
selection (I-SIM) algorithm.
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Final input matrix

MLR
multilinear
regression

Target flux
CO2?

no

find limits for
determined

input variables
with statistical

MSE minimizing
approach

yes

use literature
variables
and limits

MDS
marginal

distribution
sampling

MLP hidden
layer size

optimization

Run committee
machines

(100 experts)
with 1 to 20

HLNs, inspect
#HLN vs. AICfind #HLN1

at AIC
minimum fit asymp-

tote, find
#HLN2

where first
derivative
turns zero

fit parabola,
find #HLN3
at function

vertex

#HLN1 < #HLN2 ?

yes

use #HLN1

no

#HLN1 within [#HLN3
- 1, #HLN3 + 1] ?

and
#HLN1 < 20 ?

yes

use #HLN1

no

use #HLN2

MLP
multilayer

perceptron
committee

machine with
1000 experts

RBF network
hidden layer

size & spread
optimization

Run each
expert with all
spread values

within [0.2,
0.3, 0.4,...2],
use spread
where MSE
is minimized

Run committee
machines with

[1,3,5,10,20,30,...70]

HLNs and
inspect #HLN

vs. AIC

use #HLN at
AIC minimum

RBF
radial basis

function network
committee

machine with
100 experts

GRNN spread
optimization

Run each
expert with all
spread values

within [0.2,
0.3, 0.4,...1.5],

use spread
where MSE
is minimized

GRNN
generalized
regression

network with
100 experts

Figure 4.5: Flow chart of the model calibration module within the input-sensitive input and
model selection (I-SIM) algorithm. MLR: multilinear regression, MDS: marginal distribution sam-
pling, MLP: multilayer perceptron, RBF: radial basis function, GRNN: generalized regression
neural network.
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Pearson’s correlation coefficient

r =

n∑
i=1

(mi −m)(ti − t)√√√√ n∑
i=1

(mi −m)2
n∑
i=1

(ti − t)2

,

root mean squared error

RMSE =

√√√√√√
n∑
i=1

(mi − ti)2

n
,

bias error

BE =
1

n

n∑
i=1

(mi − ti)

and mean absolute error

MAE =
1

n

n∑
i=1

|mi − ti|

where n is the number of measured tar-
get values, Pfree is the number of model
parameters, mi are modeled values, ti
are target fluxes and t and m are their
means. To characterize the spectral prop-
erties of the models, I transformed the
respective time series into the frequency
domain using the method of Lomb (1976)
and Scargle (1982) creating a so called
Lomb-Scargle periodogram. This method
allows for the estimation of a power spec-
trum (P ) similar to the Fourier spectrum,
but it can in contrast be applied to un-
equally spaced time series, hence flux
datasets with gaps. With the power spec-
trum of the time series, I could calcu-
late the scaling exponent α, which is a
measure of the noise or the autocorrela-
tion respectively contained in time series
data. The scaling exponent is given by

P (f) = fα (where f is frequency) and
was calculated as the slope of the log-log
transformed relationship between f and
P (Richardson et al., 2008). Values of
α around -2 point to high autocorrelation
(red noise), values close to 0 character-
ize equal spectral power across all fre-
quencies (white noise), whereas values
around -1 denote an intermediate corre-
lation structure in the data (pink noise).

4.5 Mechanistic gap-filling

The I-SIM methodology described in sec-
tion 4.4 was also applied to fill gaps in
the CO2 time series of the Rio Pipo site.
In addition to the five models included
in I-SIM, a sixth deterministic model was
tested in case of the Rio Pipo data set.
The Ecosystem photosynthesis respira-
tion model (EPReM) is a flux partitioning
and gap-filling tool developed by Chris-
tian Wille (v 2.2, 03/2016, unpublished)
based on work by Runkle et al. (2013).
The measured eddy covariance CO2 flux
(NEE), is described as the following func-
tion of temperature and radiation.

NEE = Rbase·Q
(T−15)/10
10 − Pmax · α · PAR

Pmax + α · PAR

The model includes the four parameters
temperature sensitivity coefficient Q10,
maximum photosynthetic rate Pmax, base
respiration Rbase and initial quantum yield
efficiency α. Model complexity is, how-
ever, reduced during this three step algo-
rithm. In step 1 the four parameter model
is fitted to data available in a five day time
window. The window is moved in steps of
one day. For every step, one set of pa-
rameters is derived. A model is only fitted
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if in a single step (1) the number of avail-
able data points is larger or equal to the
chosen window size in days times nine,
(2) the mean temperature exceeds -10 ◦

C and (3) the temperature range (Tmax -
Tmin) is larger than 12 K. From the resul-
tant daily parameter sets the ones where
none of the parameters’ 95 % confidence
intervals exceeds their respective values
are selected. Of these fits the median Q10

value is determined. If this median falls
within [1.1, 1.7], Q10 is set to this value for
steps two and three; if not, a fixed value
of 1.4 (following Mahecha et al., 2010) is
used for the subsequent steps. With Q10

being fixed at this stage, three parame-
ter models are fitted in step 2 in a similar
fashion like before. Only now, the temper-
ature range condition is not a prerequisite
for carrying out a regression any more. All
significant α values from the resultant fits
are used to find a relation between α and
day of year (DoY ). Step 2 is concluded
by finding the parameters of the Gaussian
function

α(DoY ) = k ·exp(−1· | (DoY − l)
m

2n2
|)+o

which is set up to reflect the seasonal-
ity embedded in α. In step 3, Q10 is still
held constant and a model with 3 param-
eters is fitted. However, in this iteration,
the window size is varied until significant
parameters are found. The algorithm tries
to fit models starting from a range of one
up to 30 days in steps of one day. In case
the window is at maximum length and no
parameters could be found or α is larger
than 2· α(DoY ), α is set to α(DoY ) utiliz-
ing the function from step 2. The EPReM
is then a two-parameter model.

4.6 Dataset division by mi-
croform type

The I-SIM methodology was first applied
to the carbon gas fluxes that were di-
rectly measured with the EC system.
The resulting gap-filled time series thus
represent approximations of the land-
scape scale fluxes integrated over the
whole ecosystem. These time series are
from hereon called tower view time se-
ries (TVTS). In case of the Himmelmoor
dataset, SCTS were constructed by se-
lecting all flux values for the class contri-
butions CCdra and CCrew above a thresh-
old which was set to 70 %. The obtained
four time series (Y1rew, Y1dra, Y2rew and
Y2dra) were again gap-filled using I-SIM.
Apart from the class contribution vari-
ables, the inputs presented to the selec-
tion scheme were the same as for TVTS
modeling. To gap fill the SCTS, the con-
tributions of the respectively opposite sur-
face classes were omitted from the input
space. To fill Y1rew for instance, CCdra

and class contribution of surface class
vegetated within CCdra (CCveg,E) were re-
moved from the input matrix. Also, the
surface class of interest was set to the
threshold value of 70 % at all flux gaps
that resulted from data division. The mea-
sured contributions of SCveg were binned
in ten classes and the bin-center of the
most frequent class was used to fill gaps
in the CCveg time series. Referring to
the example above, CCrew would be set
to 70 % in Y1rew gaps; class contribution
of surface class vegetated within CCrew

(CCveg,W) statistics would be evaluated
for all timestamps where Y1rew has a
record and the bin-center of the most fre-
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Figure 4.6: Half-hourly contributions above 70 % of the rewetted and drained surface class in
Himmelmoor to the EC footprint, plotted against mean wind direction. In both analyzed years,
half hours mostly associated to only one surface class, are a bit more frequent from the drained
site. The gray line indicates the direction of the central railroad dam. From this perspective, the
EC tower is located at the origin of the plot.

quent class would be put into CCveg,W

where Y1rew has a flux gap.

4.7 Mechanistic interpreta-
tion of model results on
surface class level

In case of the Himmelmoor FCO2 SCTS,
the following deterministic model was fit-
ted to monthly ensembles of the half-
hourly time series,

NEE(CCveg, PAR) =

(1− CCveg) ·Reco,bare
+ CCveg ·Reco,veg

− CCveg ·
Pmax · α · PAR
Pmax + α · PAR

where CCveg is the class contribu-
tion of the vegetated strips, PAR is
photosynthetically active radiation,

Reco, veg and Reco, bare are ecosystem res-
pirations of the vegetated strips and the
areas covered by bare peat respectively,
Pmax is the maximum photosynthetic rate
and α is the initial quantum yield. Prior to
fitting, CCveg was rescaled to sum up to 1
with CCbare so that

1− CCveg = CCbare.

The last term of the fitted model consists
of a rectangular hyperbolic Michaelis-
Menten type function to simulate plant
photosynthesis as first proposed by
Thornley (1998) and revisited by e.g.
Zheng et al. (2012). This type of light
saturation curve has found widespred ap-
plication throughout literature and has
proven to be feasible for modeling plant
carbon dioxide fixation driven by radia-
tion. As only some parts of Himmel-
moor are occupied by vegetation, I scaled
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this term with the half-hourly contribu-
tion of those surfaces (CCveg) to the EC
footprint. In order for the model to ex-
press net CO2 flux, two ecosystem respi-
ration terms were added to the formula;
the combined plant and soil respiration
Reco, veg scaled by CCveg and the mi-
crobial respiration Reco, bare taking place
in the vegetation-free areas scaled with
CCbare. This function was fitted to ev-
ery month of all four available (Y1dra,
Y1rew, Y2dra and Y2rew) CO2 SCTS, yield-
ing timeseries of the four model param-
eters each. The included scaling of the
model terms with the surface class con-
tributions facilitates comparability of the
parameter timeseries among each other
and with literature values describing the
light response of similar plant communi-
ties as found in the vegetated strips of
Himmelmoor.

4.8 Calculation of cumula-
tive fluxes

In order to obtain annual sums of car-
bon gas fluxes for the different surface
classes and years, measured fluxes of
quality class MF1 were included back into
the SCTS. All MF1 values that corre-
sponded to CCdra or CCrew ranging above
70 % were used to replace the mod-
eled SCTS data for the respective time-
stamps. The gaps remaining after this
step were closed using the MLP model
results. Time steps when the MLP model
had gaps due to missing input variables
(mostly an issue in Year 2) were filled
with MDS results since this is the only
gap-filling method used that still produces

an output when input biomet records are
missing. It does so in the diurnal cycle
steps of the algorithm (see steps 4, 5 and
8 in figure 4.2 and section 4.4.3).

Which error got assigned to the half-
hourly fluxes of the SCTS depended on
whether it was a measured, a MLP or a
MDS value. For measured fluxes, 20 % of
it were included into the uncertainty term
to account for systematic errors of the EC
method. Random uncertainty was added
to the term following Finkelstein and Sims
(2001). In case of MLP data, the uncer-
tainty estimate was based on the perfor-
mances of the 1000 individual networks
prior to ensemble averaging (see 4.5).
The optimization of each expert machine
comprised validation runs with 30 % of
the available data that were independent
from network training (see 4.4.4). The
residuals of these validation runs hence
give a conservative estimate for the in-
dividual model’s generalization capabil-
ity. The highest root mean squared er-
ror (RMSE) of all validation runs was used
as an uncertainty estimate for each MLP
data point. Values in the SCTS taken
from the MDS model received uncertain-
ties according to their quality class. RM-
SEs were computed for data of quality
A, B and C with the MDSQC routine (see
4.4.3). Uncertainties of cumulative flux
sums were calculated applying the rules
of Gaussian error propagation.
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Results

5.1 Linear flux-input depen-
dencies

Himmelmoor. To gain first insight into
the relations between input variables and
gas fluxes as well as between the in-
put variables among each other, scatter
plots were inspected and Pearson’s cor-
relation coefficient (r) was determined for
each pair (see appendix, figures A.1 to
A.6). Three biomet timeseries correlate
with r values of 0.4 or higher with FCH4

in both years: Lwout, Tair and Rg. In
Year 1, this list is extended by VPD and
PAR while the highest linear relation ex-
ists with CCrew (0.5) and CCveg,W (0.6). In
Year 2 additional connections with r val-
ues of 0.4 or higher include soil tempera-
tures TSoil20, TSoil2 and TSoil40. Footprint
variables were not as closely related as
in Year 1. Nevertheless, CCveg,W, yields
again the highest correlation among the
footprint variables.

Linear relations between model inputs
variables and FCO2 are more clear as the
only strong connections exist with PAR
and Rg (both r = 0.5 in Year 1 and r =
0.6 in Year 2).

Regarding linear dependencies be-
tween biomet variables, Rg and photosyn-
thetically active radiation (PAR) (r > 0.9

both years), Tair and VPD (r = 0.7 in
both years) as well as Tair and outgoing
longwave radiation (Lwout) (r > 0.9 both
years) were highly correlated. In Year 2,
soil temperatures were closely connected
among each other (r > 0.9) and with Tair

(r > 0.7). Water table depth (WT) was
correlated negatively with all redox mea-
surements at different positions in the soil
profile, with the largest absolute r of -
0.7 for the relation with Redox20. WT
was also correlated with TSoil20 (r = 0.3).
The seasonality embedded in soil tem-
perature measurements was reflected by
high correlation coefficients with the two
low frequency fuzzy variables fuzzy vari-
able summer (fuzzysu) and fuzzy variable
winter (fuzzywi) (see A.6). The deeper
in the soil profile the temperature mea-
surement was taken, the less amplitude
response they show to diurnal variations
and the less noisy the relation to the fuzzy
data appears to be.

Rio Pipo. The biomet and fuzzy vari-
ables that were fed into the I-SIM algo-
rithm are shown in table 5.1. Linear cor-
relations between FCO2 and the poten-
tial model inputs were inspected. Clos-
est dependencies exist between FCO2

and the radiation variables Rg (r = -0.8),
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PAR (r = -0.8) and outgoing shortwave
radiation (Swout) (r = -0.6). Connections
also appear with the fuzzy variables fuzzy
variable afternoon (fuzzyaf) (r = -0.6) and
fuzzy variable night (fuzzyni) (r = 0.5) that
contain diurnal information as well. Linear
temperature dependencies of FCO2 were
not particularly strong with the highest ab-
solut r of -0.4 with TSoilH,-2. All of the men-
tioned radiation variables are highly cor-
related among each other. The seasonal
trend in volumetric water content mea-
surements of the wet lawn microforms is
depicted by their correlations with fuzzysu

and fuzzywi, which are positive (r > 0.4)
with the latter and negative (r < -0.5) with
fuzzysu. With ground heat flux measure-
ments the relation is also strong but with
reverse signs.
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Table 5.1: Available Rio Pipo model inputs sorted by type. Time lags between carbon dioxide
flux and biomet variables derived from cross-correlation.

Type Name Unit Abbreviation Time lag, hours
B

io
m

et

Global radiation W m-2 Rg 0.0
Outgoing shortwave radiation W m-2 Swout 0.0
Incoming longwave radiation W m-2 Lwin 2.5
Outgoing longwave radiation W m-2 Lwout 2.5
Air temperature ◦C Tair 1.5
Water vapour pressure deficit Pa VPD 1
Photosynthetically active radiation mol m-2 s-1 PAR 0
Soil temperature under Empetrum lawn ◦C TSoilEL,-1 2.5
in 1 cm depth
Soil temperature under Empetrum lawn ◦C TSoilEL,-10 -3.0
in 10 cm depth
Soil temperature under Empetrum lawn ◦C TSoilEL,-20 3.5
in 20 cm depth
Soil temperature under Sphagnum lawn ◦C TSoilSL,-1 3.0
in 1 cm depth
Soil temperature under Sphagnum lawn ◦C TSoilSL,-10 -2.5
in 10 cm depth
Soil temperature under Sphagnum lawn ◦C TSoilSL,-20 1.5
in 20 cm depth
Soil temperature under Sphagnum hummock ◦C TSoilH,-2 3.0
in 2 cm depth
Soil temperature under Sphagnum hummock ◦C TSoilH,-25 3.5
in 25 cm depth
Soil temperature under Sphagnum hummock ◦C TSoilH,-50 -5.5
in 50 cm depth
Volumetric water content under Empetrum lawn m3/m3 VWCEL -6.0
Volumetric water content under Sphagnum lawn m3/m3 VWCSL -7.0
Volumetric water content under Sphagnum hummock m3/m3 VWCH -5.0
Ground heat flux under Empetrum lawn W m-2 HFEL 1.0
Ground heat flux under Sphagnum lawn W m-2 HFSL 0.0
Ground heat flux under Sphagnum hummock W m-2 HFH 4.5

Fu
zz

y

Morning n.a. fuzzymo n.a
Afternoon n.a. fuzzyaf n.a
Evening n.a. fuzzyev n.a
Night n.a. fuzzyni n.a
Summer n.a. fuzzysu n.a
Winter n.a. fuzzywi n.a

5.2 Methane flux gap-filling

Quality filtering. The effects of the
quality filters on the distribution of half-
hourly Himmelmoor CH4 fluxes are
shown in figure 5.1. Overall, 80 % of
the original data were discarded. By
far the most records (50 % compared
to the preceding step) were filtered out
due to failure of the skewness or the
kurtosis test. The average as well as the
skewness of the data distribution become
negative after this step, hence more pos-

itive than negative spikes were removed
by this filter. The amplitude resolution
test captures more negative spikes so
that the mean becomes positive again.
The footprint filter has no noticeable
effect on the distribution. The RSSI filter
removes preferably negative fluxes as
the mean is more than four times larger
and skewness jumps from -20 to about
80 after this step. In contrast, many of
the positive spikes are discarded by the
StdRSSI filter, leading to a dropping mean
and skewness. The distribution becomes
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Figure 5.1: The effects of the different quality filtering steps on the distribution of the available
two years of half-hourly Himmelmoor methane fluxes. n: number of flux values, min: minimum
flux, max: maximum flux, RSSI: signal strength of the LI-7700 gas analyzer, StdRSSI: relative
standard deviation of 20 Hz RSSI, MF1/MF2: flux quality classes after Mauder and Foken
(2004).

58



5.2. Methane flux gap-filling

Figure 5.2: Two year Himmelmoor CH4 target time series for flux modeling compared to lower
quality time series from preceding stages of the filtering process.

more symmetrical after the absolute
limits filter. Removing data flagged with
MF1 eliminates a considerable amount of
fluxes (27 % compared to the preceding
step), most of them near zero. The range
of the distribution is narrowed further by
the last step, including the removal of
fluxes with high absolute errors and the
highest and lowest percent of records
being discarded. While all these filters
have heavy effects on measures affected
by spikes, the data’s interquartile range
changes muss less vigorously throughout
the filtering process. The dispersion of
the data is therefore not altered by it.

Input selection. The outcome of the I-
SIM method is illustrated in figure 5.3. For
Year 1, 14 of the 21 available input vari-
ables were selected via the scoring ta-
ble, of which eight were left after the final
selection step. For Year 2, six variables
were chosen in the end, while 20 of the 42
inputs originally presented to the scoring
table were selected using it. For the MDS
approach, CCveg, W was used as level 1
input while fuzzysu, CCveg,E, PAir, fuzzyaf,
fuzzymo, VPD and Lwout #lag were used
as level 2 inputs. For Year 2, TSoil40 was

used as level 1 input, CCveg, W, CCveg,E,
VPD, fuzzymo, TSoil5, Redox10 and TSoil40

as level 2 inputs. The selection of model
inputs thus resulted in both years with a
focus on the footprint class contributions
CCveg and peat temperatures. In Year 1,
they were indirectly addressed by Lwout

#lag (being a measure of surface temper-
ature) and fuzzysu which is highly corre-
lated with TSoil40 (r = 0.86).

Diurnal and seasonal cycles were
highly weighted by the inclusion of higher
frequency fuzzy variables and VPD in
both years. The selection of Redox10 in
Year 2 gives further confidence that our
framework is able to identify physically
meaningful driving variables as soil re-
dox conditions are known to be a major
limiting factor for methane production in
soils. To quantify the ability of the selec-
tion scheme to remove redundant inputs,
I calculated the condition numbers of the
input matrices throughout the selection
process (see figure 5.5). I used this mea-
sure as an indicator for relations between
the inputs. The lower its value, the less
related the inputs are among each other.
The condition numbers drop by two or-
ders of magnitude between the original
dataset and the selection result in both
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years, suggesting a successful removal of
redundancy in the input matrices.

Model optimization. Results of the
performed model parameter optimiza-
tions are shown in table 5.4 and figure
5.10. Regarding the look-up table steps
within MDS gap-filling, the limits defin-
ing similar conditions were found as de-
scribed in the methods section 4.4.3. This
two-step approach mostly resulted in nar-
rowing down the limits after step two. The
AIC based #HLN optimization for the ap-
plied RBF and MLP models is also de-
scribed in the methods section. The re-
sults are presented in figure 5.10. The
#HLN of the GRNN were not optimized
due to model architecture. In this kind
of regression the number of hidden layer
units is always equal to the number of
available target values. Nevertheless, the
high #HLNs of 3007 in Year 1 and 939 in
Year 2 illustrate the fact that the complex-
ity contained in this model type is much
larger than in a MLP or RBF network. For
both these models the complexity needed
to explain the data is lower in Year 2, sug-
gesting that the information embedded in
the used soil variables is more meaning-
ful than in the meteorological inputs being
the only ones available in Year 1. Com-
paring the MLPs’ and the RBF networks’
hidden layer sizes, the MLPs are less
complex while describing the data better
in both years.

Model comparison. The different mea-
sures along which the resultant five model
types were compared are shown in ta-

bles 5.2 and 5.3. Each model type was
evaluated with five datasets. It was com-
pared to the target values used for model
calibration and to the same time series,
but extended by lower quality (MF1) mea-
surement data. This step elevates the
number of samples used in the calcula-
tion of statistics, although it most likely
also introduces noise due to the lower
quality of the new data. These values are
nevertheless independent from fitting and
thus provide a first level of generalizability
estimation. A considerably higher level of
independence was achieved by simulat-
ing the models whose parameters were
optimized with Year 1 data with input and
target records from Year 2. Results of
this generalization check are given in ta-
ble 5.3 with dataset C. This kind of model
validation was not possible the other way
around - evaluating Year 2 models with
Year 1 inputs and targets - as no soil vari-
ables were measured in Year 1. With
datasets B and A, two stages of progres-
sively lower generality are available for
evaluation of Year 1 and Year 2 mod-
els. Looking at these four sets of statis-
tics, the MLP models outperform all other
ones with respect to AIC, although differ-
ences to the RBF networks and the MLR
models are rather small. Due to their high
complexity, all GRNN models are char-
acterized by comparably large AICs al-
though their correlation coefficients are
the highest and their RMSEs, as well
as their mean absolute errors (MAEs),
are the lowest among all models. Re-
garding r and RMSE of the remaining
model types, the MLPs again outperform
all other models. The scaling exponents
α of the non-gap-filled datasets are -0.49
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5.2. Methane flux gap-filling

Figure 5.3: Result of the I-SIM input selection scheme for each of the two years of Himmelmoor
methane flux data. Fontsizes represent the points a variable received via the scoring table.
Variables highlighted in red had a score above the defined threshold and were presented to the
final stepwise MLR which selected the inputs to the right of the arrow. If ”# lag” is put behind a
variable, it means that the the time series has been shifted by the time lag given in table 4.1.
Top: Year 1, Bottom: Year 2

61



Chapter 5. Results

Figure 5.4: Hidden layer size optimization of the employed Himmelmoor methane flux ANN
models. Each black diamond marker represents the outcome of a model ensemble. These
committee machines were tested with different hidden layer sizes in order to determine an
adequate number of hidden layer nodes. Top: Year 1, Bottom: Year 2.

Table 5.2: Himmelmoor Year 1 methane flux models compared with Year 1 fitting targets (A)
and lower quality methane fluxes (B). B includes quality class MF1. RMSE, BE and MAE in
nmol m-2 s-1. MLR: multilinear regression, MDS: marginal distribution sampling, MLP: multilayer
perceptron, RBF: radial basis function, GRNN: generalized regression neural network, RMSE:
root mean squared error, BE: bias error, MAE: mean absolute error, AIC: Akaike information
criterion.

MLR MDS MLP RBF GRNN

r 0.68 0.74 0.80 0.77 0.89

A
RMSE 19.65 18.14 16.08 16.97 12.37
AIC 17945.14 - 17000.93 17696.71 51273.37
BE -0.00 1.01 -0.11 0.07 0.34
MAE 13.73 11.70 10.78 11.54 8.24
scaling exponent -0.90 -0.47 -0.91 -1.02 -0.91

r 0.57 0.63 0.68 0.66 0.72

B
RMSE 31.11 29.74 28.05 28.66 26.65
AIC 29927.26 - 29243.05 29782.75 64628.19
BE 1.98 3.36 1.62 2.06 2.14
MAE 18.10 16.14 15.23 15.90 13.38
scaling exponent -0.90 -0.62 -0.91 -1.02 -0.91
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Table 5.3: Himmelmoor Year 2 methane flux models compared with Year 2 fitting targets (A)
and lower quality fluxes (B). B includes quality class MF1. To yield dataset C, Year 1 models
were simulated with Year 2 inputs and compared with Year 2 targets. RMSE, BE and MAE in
nmol m-2 s-1.MLR: multilinear regression, MDS: marginal distribution sampling, MLP: multilayer
perceptron, RBF: radial basis function, GRNN: generalized regression neural network, RMSE:
root mean squared error, BE: bias error, MAE: mean absolute error, AIC: Akaike information
criterion.

MLR MDS MLP RBF GRNN

r 0.61 0.58 0.78 0.69 0.84

A
RMSE 18.57 19.29 14.87 17.04 13.09
AIC 5520.49 - 5246.64 5552.23 16114.30
BE -0.00 2.51 -0.10 0.15 0.87
MAE 12.79 12.05 9.95 11.32 8.65
scaling exponent -0.93 -0.35 -0.89 -0.91 -0.81

r 0.64 0.62 0.75 0.66 0.75

B
RMSE 28.55 29.99 25.32 28.26 25.08
AIC 8908.83 - 8700.83 9050.17 19791.99
BE 1.88 4.96 1.50 2.38 2.51
MAE 17.26 17.07 14.51 16.11 13.54
scaling exponent -0.93 -0.53 -0.89 -0.91 -0.81

r 0.51 0.64 0.54 0.50 0.43

C
RMSE 20.33 18.00 19.98 20.97 21.76
AIC 5690.69 - 5906.26 6316.80 41864.49
BE -0.43 1.39 0.13 5.10 3.69
MAE 14.13 11.42 13.63 13.28 14.00
scaling exponent -0.88 -0.38 -0.88 -0.90 -0.81
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Figure 5.5: Condition numbers of the differ-
ent input matrices used in Himmelmoor I-SIM
methane flux modeling. orig.: unaltered input
matrix, lagged: time shifted variables, high
score: I-SIM scoring table result, best: final
I-SIM input selection result. Top: Year 1, Bot-
tom: Year 2

Table 5.4: Initial limits (Liminit) and final limits
obtained with iterative sampling with random
values and as used for Himmelmoor FCH4
gap-filling (Limgf) with the MDS approach
(section 4.4.3). See table 4.1 for variable de-
scriptions and units.

Variable Liminit Limgf

Year 1

CCveg, W 0.02 0.10
fuzzysu 0.25 0.06
CCveg, E 0.33 0.04
PAir 0.33 1.28
fuzzyaf 0.45 0.25
fuzzymo 0.45 0.06
VPD 296.96 1296.62
Lwout #lag 24.52 15.92

Year 2

TSoil40 0.76 0.74
CCveg, W 0.11 0.06
CCveg, E 0.29 0.36
VPD 2983.31 377.66
fuzzymo 0.45 0.05
TSoil5 7.45 7.22
Redox10 176.15 106.51
TSoil20 5.14 3.13

Figure 5.6: Cumulative histogram of Himmel-
moor target values, MLR and MLP model re-
sults. The MLR model exeeds the value range
spanned by the target values, the MLP ap-
proximates the range better.

in Year 1 and -0.35 in Year 2. There-
fore, some pink noise (i. e. an in-
termediate correlation structure) is con-
tained in both years, whereas Year 2
data is closer to being governed by white
noise. Except for the MDS approach, all
model types introduce autocorrelation to
the data. These models manipulate the
time series’ frequency content in a way
that α is lowered to values of around -1
denoting pink noise. The diurnal and 1/12
hours peaks present in the original data
are enhanced by all models (see figure
A.9). The MDS model introduces addi-
tional high frequency spikes upwards of
1/6 hours. The 1/6 hours peak is also
present in the transformed RBF time se-
ries. These spikes could be the result
of overfitted variations in diurnal cycles
rather than being a depiction of real pro-
cesses. Neither have the other models
developed those spikes nor can they be
found in the transformed target time se-
ries.

The generalization check reveals over-
fitting tendencies in some models. GRNN
performance deteriorates the most from
A over B to C showing that it is overly
adapted to noise in the target data and
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not of good explanatory power in a gen-
eral sense. The relative consistency
in the performance of the MDS method
might be attributed to the fact that the
generalization check was not completely
independent from Year 2 targets. MDS
averaging samples were taken from the
Year 2 FCH4 time series due to the model
principle. The dataset C statistics of all
other models are characterized by drop-
ping correlation coefficients and rising
AICs with the MLR having the lowest AIC
and the MLP having the highest r. The
BEs of the RBF and GRNN networks
jump to comparably high values. The
bias errors (BEs) of the MLPs are con-
sistently low throughout all test datasets.
For dataset C, the absolute BE of the
MLR is more than 3 times higher than the
MLP BE. Although with this dataset, the
MLR results in a slightly better AIC than
the MLP, I found that it also extrapolates
from the range of target values quite dras-
tically (see 5.6). It produces values up
to 64 % larger than the maximum target
flux and more then ten times more nega-
tive values than the MLP model (427 vs.
34 values, 53 in the target time series).
Thereby the MLR predicts values outside
the scope of the training targets. Since no
information could be provided to the MLR
about this solution space during optimiza-
tion, results in these regions are purely
driven by noise and not by data. Overall, I
assume that the MLP models explain the
target fluxes best and in the most general
sense.

5.3 Carbon dioxide flux
gap-filling

5.3.1 Himmelmoor

Quality filtering. In order to yield a
high-quality target time series for mod-
eling, quality filtering was done rather
harsh and led to a removal of 49 % of
all measured CO2 fluxes throughout the
process illustrated in figure 5.8. The
percentages given hereafter always refer
to the preceding filtering step. While 6 %
of the fluxes were omitted due to the
instrument’s signal strength (AGC) not
fulfilling the defined requirements (see
4.2), the majority of fluxes were removed
because the gas flux itself (20 %) or
sensible or latent heat flux of the same
half hour (21 %) were assigned to quality
class MF2. Less data points (11 %)
were removed applying the skewness
and kurtosis test. However, this step was
more effective in removing outliers than
the preceding ones and reduced the time
series’ range rigorously. The footprint
filter removed another 3 %, the absolute
limits filter below 1 % of data. Up to this
point, all MF1 values had been eliminated
from the time series, thus the last filter
searching for data points of this quality
class had no effect on the final modeling
target.

Input selection. Of the 23 input
variables that were fed into the I-SIM
algorithm for Year 1, 11 were selected
using the scoring table of which nine
variables constituted the final input matrix
(see 4.4). With respect to Year 2, 41
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variables were presented to the selection
routine that resulted in 21 inputs being
passed from the scoring table to the
last two filters that reduced the input
space to its final size of 13. As also
the case with the CH4 flux models, the
I-SIM input selection led to a reduction
of linear dependencies within the input
matrix, what can be proved likewise by
dropping condition numbers (figure 5.7).
The resultant model inputs are shown in
figure 5.9. Both input matrices contain
measures for the main driver of photosyn-
thesis which is radiation. In Year 1 PAR
and Rg were selected, in Year 2 only the
lagged derivative of PAR. More emphasis
on the impact of plant-activity on CO2

fluxes is put by the inclusion of CCveg,W

and CCveg,E also in each year. In Year 2,
also CCdra was selected, what may point
towards a response of carbon dioxide
release to respiration from the drained
surface class what would furthermore be
reflected in the inclusion of surface near
time shifted soil temperatures and redox
potentials. Tair contains both seasonal
and diurnal information and is part of the
input matrices. This type of frequency
content is also divided among the slow
and fast changing fuzzy variables that
belong to both final input spaces as well.

Model optimization. In both years the
best #HLN for the MLPs was found to be
8 and came from the result of the asymp-
tote fit method (#HLN2, figure 4.5). The
RBF networks’ #HLN optimization yielded
30 hidden layer nodes (HLNs) in Year 1
and 40 HLNs in Year 2. Analogous to
FCH4 modeling, the GRNNs’ hidden layer

Figure 5.7: Condition numbers of the differ-
ent input matrices used in Himmelmoor I-SIM
carbon dioxide modeling. orig.: unaltered
input matrix, lagged: time shifted variables,
high score: I-SIM scoring table result, best:
final I-SIM input selection result. Top: Year 1,
Bottom: Year 2

size was not optimized due to the GRNN
architecture. For this model type, the
#HLN is set to be equal to the number
of available target values (4798 in Year 1
and 4752 in Year 2), resulting in models
that are far more complex than the RBFs
or MLPs, whereas the latter contain the
least parameters of all ANNs.

Model comparison. Similar to the re-
sults of FCH4 modeling, the MLP approxi-
mations of the target time series appear
to be the most trustworthy. Their AIC
values are the lowest across all evalu-
ated datasets (see tables 5.5 and 5.6).
To obtain different levels of generaliza-
tion tests, model results were evaluated
in 5 different ways. Statistics were as-
sessed for Year 1 and Year 2 in compar-
ison with the quality filtered target time
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series and with the same dataset but in-
cluding MF1 quality fluxes. Additionally,
the models estimated with Year 1 data
were tested with Year 2 inputs and tar-
gets. These statistics (dataset C in table
5.6) provide the most robust assessment
of generalization capability. The GRNNs
perform best regarding their correlation
coefficients and RMSE. The large com-
plexity of this model type deteriorates,
however, its AICs. Most importantly, only
with dataset C the GRNN model does not
result in the highest r value meaning that
the high correlations in the other compar-
isons can be attributed to overfitting. With
dataset C, the MLP models have the high-
est r and lowest AIC, what leads to the
previously anticipated conclusion of them
being the most trustworthy. The MDS
model performs r-wise equally good. It
furthermore stands out by introducing the
least autocorrelation with a scaling expo-
nent of -0.49, compared to -0.55 of the
target timeseries. The MDS method even
adds some white noise (α = 0), whereas
all other models shift the spectrum to-
wards pink noise (α = -1) and thereby
introduce intermediate correlation. The
RBFs perform very similar to the MLPs,
but in all cases not quite as good as them,
what is connected to their larger complex-
ity.

5.3.2 Rio Pipo

Input selection. Passing all inputs
through the I-SIM input selection yielded
the final model input matrix containing
13 of the 46 possible variables, 23 of
which were selected using the scoring ta-
ble outcome. The condition number of

the input matrix drops by two orders of
magnitude throughout the selection pro-
cess, indicating a removal of linear de-
pendencies. Being mainly comprised of
spectral content on seasonal and diur-
nal timescales, the radiation variables Rg,
PAR and Swout are part of the final in-
put space. The diurnal component was
further emphasized by the inclusion of
soil temperatures and the high frequency
fuzzy variables, fuzzyaf and fuzzy variable
evening (fuzzyev). Eight out of all se-
lected model inputs are soil temperatures
of which three are the lagged deriva-
tives of the original variables. The Cross-
covariance series with FCO2 show very
undistorted daily cyclicality while their
amplitudes drop with the depth of the
temperature measurement in the soil pro-
file. The timelags between input vari-
ables and target flux are calculated within
I-SIM based on the transformation of the
cross-covariance series into a normalized
cross-correlation (see 5.13). Among the
three lagged soil temperatures that are
part of the final input matrix, TSoilSL,-10

is the only one with the highest correla-
tion at a positive timelag (+ 1.5 hours),
meaning that changes in CO2 flux follow
changes in soil temperature at this depth.
Therefore, it is conceivable that a driving
process of CO2 flux on short timescales
(< 1 day) is connected to changes in
soil temperatures at this depth. The re-
maining lagged soil temperatures seem
to introduce seasonality and diurnality in
a more fundamental way into the models.

Model comparison. Missing sharp
contrasts in the surface cover of Rio
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Figure 5.8: The effects of the different quality filtering steps on the distribution of the available
two years of half-hourly Himmelmoor carbon dioxide fluxes. n: number of flux values, min:
minimum flux, max: maximum flux, AGC: signal strength of the LI-7200 gas analyzer, MF1/MF2:
flux quality classes after Mauder and Foken (2004).

Table 5.5: Himmelmoor Year 1 carbon dioxide flux models compared with Year 1 fitting targets
(A) and lower quality methane fluxes (B). B includes quality class MF1. RMSE, BE and MAE in
µmol m-2 s-1. MLR: multilinear regression, MDS: marginal distribution sampling, MLP: multilayer
perceptron, RBF: radial basis function, GRNN: generalized regression neural network, RMSE:
root mean squared error, BE: bias error, MAE: mean absolute error, AIC: Akaike information
criterion.

MLR MDS MLP RBF GRNN

r 0.61 0.72 0.79 0.78 0.85

A
RMSE 1.29 1.13 0.99 1.02 0.88
AIC 2477.63 - 71.13 944.53 62114.98
BE -0.00 0.02 -0.00 -0.00 0.01
MAE 0.89 0.73 0.66 0.68 0.58
scaling exponent -1.02 -0.49 -1.06 -1.04 -0.97

r 0.51 0.60 0.68 0.67 0.70

B
RMSE 1.34 1.27 1.15 1.16 1.11
AIC 4721.23 - 2356.92 3090.18 64998.28
BE -0.02 -0.01 -0.05 -0.05 -0.03
MAE 0.90 0.80 0.73 0.75 0.69
scaling exponent -1.02 -0.55 -1.06 -1.04 -0.97
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5.3. Carbon dioxide flux gap-filling

Figure 5.9: Result of the I-SIM input selection scheme for each of the two years of Himmelmoor
carbon dioxide flux data. Fontsizes represent the points a variable received via the scoring table.
Variables highlighted in red had a score above the defined threshold and were presented to the
final stepwise MLR which selected the inputs to the right of the arrow. If ”# lag” is put behind
a variable it means that the the time series has been shifted by the time lag given in table 4.1.
Top: Year 1, Bottom: Year 2
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Table 5.6: Himmelmoor Year 2 carbon dioxide flux models compared with Year 2 fitting targets
(A) and lower quality fluxes (B). B includes quality class MF1. To yield dataset C, Year 1 models
were simulated with Year 2 inputs and compared with Year 2 targets. RMSE, BE and MAE in
µmol m-2 s-1. MLR: multilinear regression, MDS: marginal distribution sampling, MLP: multilayer
perceptron, RBF: radial basis function, GRNN: generalized regression neural network, RMSE:
root mean squared error, BE: bias error, MAE: mean absolute error, AIC: Akaike information
criterion.

MLR MDS MLP RBF GRNN

r 0.74 0.74 0.88 0.86 0.92

A
RMSE 1.36 1.18 0.97 1.02 0.77
AIC 3003.12 - -17.13 1580.30 83279.62
BE -0.00 0.05 -0.00 0.00 0.03
MAE 1.00 0.74 0.67 0.72 0.54
scaling exponent -0.98 -0.49 -1.09 -1.13 -1.01

r 0.62 0.60 0.74 0.74 0.78

B
RMSE 1.57 1.42 1.34 1.33 1.24
AIC 7089.34 - 4822.66 5741.19 88937.49
BE 0.03 0.04 -0.03 -0.02 0.02
MAE 1.09 0.87 0.83 0.86 0.75
scaling exponent -0.98 -0.55 -1.09 -1.13 -1.01

r 0.62 0.74 0.76 0.72 0.71

C
RMSE 1.58 1.18 1.35 1.47 1.47
AIC 4412.04 - 3014.23 4315.89 66971.66
BE -0.06 0.05 -0.30 -0.28 -0.27
MAE 1.14 0.74 0.95 1.02 1.02
scaling exponent -1.01 -0.49 -1.10 -1.06 -0.95

Figure 5.10: Hidden layer size optimization of the employed Himmelmoor carbon dioxide flux
ANN models. Each black diamond marker represents the outcome of a model ensemble. These
committee machines were tested with different hidden layer sizes in order to determine an
adequate number of hidden layer nodes. Top: Year 1, Bottom: Year 2. RBF: radial basis
function, MLP: multilayer perceptron.
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Table 5.7: Rio Pipo carbon dioxide flux models compared with fitting targets (A) and lower
quality fluxes (B). B includes quality class MF1. RMSE, BE and MAE in µmol m-2 s-1. MLR:
multilinear regression, MDS: marginal distribution sampling, MLP: multilayer perceptron, RBF:
radial basis function, GRNN: generalized regression neural network, RMSE: root mean squared
error, BE: bias error, MAE: mean absolute error, AIC: Akaike information criterion.

MLR MDS MLP RBF GRNN EPReM

r 0.86 0.91 0.92 0.91 0.93 0.92

A
RMSE 0.64 0.54 0.48 0.51 0.46 0.49
AIC -3909.84 - -6246.16 -5261.64 73078.14 -6296.55
BE < 0.01 0.01 < 0.01 < 0.01 < 0.01 0.03
MAE 0.37 0.26 0.21 0.24 0.20 0.21
scaling exponent -1.49 -0.81 -1.43 -1.34 -1.34 -1.35

r 0.62 0.65 0.67 0.66 0.67 0.67

B
RMSE 1.27 1.23 1.21 1.22 1.20 1.21
AIC 3260.32 - 2744.87 3301.10 82368.90 2630.31
BE 0.07 0.07 0.07 0.07 0.06 0.09
MAE 0.59 0.50 0.45 0.48 0.45 0.46
scaling exponent -1.49 -0.84 -1.43 -1.34 -1.34 -1.35

Figure 5.11: Result of the I-SIM input selection scheme for Rio Pipo carbon dioxide flux data.
Fontsizes represent the points a variable received via the scoring table. Variables highlighted
in red had a score above the defined threshold and were presented to the final stepwise MLR
which selected the inputs to the right of the arrow. If ”# lag” is put behind a variable it means
that the the time series has been shifted by the time lag given in table 4.1.
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Figure 5.12: Condition numbers of the differ-
ent input matrices used in Rio Pipo I-SIM car-
bon dioxide modeling. orig.: unaltered input
matrix, lagged: time shifted variables, high
score: I-SIM scoring table result, best: final
I-SIM input selection result.

Figure 5.13: Cross-covariance and normal-
ized cross correlation between soil tempera-
tures and carbon dixoide flux at the Rio Pipo
site.

Pipo bog justify the assumption of the
EC footprint to be homogeneous. The
assertion of comparability between TVTS
flux values of different points in time is
further substantiated by the fact that
during the measuring period, wind came
almost exclusively from one direction
(see figure 3.1). A mechanistic approach
to modeling in such a setting seemed
feasible and was tested by employing
the half-hourly EPReM (see section
4.5). This model consists of a combined
estimation of ecosystem respiration
(Reco) and photosynthesis and is in fact
suitable to explain the variability in the
measurement data. During the first,
parameter constraining step of EPReM,
Q10 was determined to be 1.23 and fixed
at this value. Most EPReMs could be
fitted using window sizes of 2 days as
shown in figure 5.17. For each day, a
significant value for α could be inferred.
Consequently, EPReM complexity was
not reduced further and 3-parameter
models were fitted to each day. The
resultant daily EPReMs were driven with
half-hourly radiation data to generate the
time series that was compared to I-SIM
models. Using AIC as a figure of merit,
the mechanistic model type is superior to
the empirical models included in I-SIM.
The different predictions were evaluated
with the dataset used for model calibra-
tion (dataset A in table 5.7) and with a
time series containing also target fluxes
of the lower quality class MF1 (dataset
B in table 5.7). The latter is the highest
level of generalization test available with
Rio Pipo fluxes. Except for petty AIC
differences, the MLP performs similar
to the EPReM in both tests. The MLP
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outcompetes the other ANNs, whereas
the GRNN fall behind due to their high
#HLN resulting in AICs that are far off
the range of the remaining models. The
RBF and MDS statistics resemble MLP
figures in general but contain larger error
terms. The relatively equal distribution
of short and the absence of long gaps in
the target time series improves all model
performances compared to the I-SIM
results of Himmelmoor. The quality of the
MDS models benefits notably from this
circumstance as 99 % of the gaps could
be filled with output from quality class A.
The MLRs have the highest root mean
squared and mean absolute errors, but
surpass the RBF AIC in dataset B still not
outperforming the MLP or the EPReM,
though.

5.4 Parameters of mecha-
nistic ensemble models

In an effort to separate the influ-
ences of the vegetated strips and the
bare peat areas in Himmelmoor on net
FCO2 expressed in the SCTS, a com-
bined ecosystem respiration photosyn-
thesis model (see section 4.7) was fitted
to monthly ensembles of the half-hourly
Himmelmoor SCTS. The obtained param-
eter time series are shown in figure 5.15.
In general, the vegetation period, with
its productivity maximum between June
and July and its cessation between mid-
October and November is well depicted
in the seasonal course of mechanistic pa-
rameters throughout both years. More im-
portantly, also their absolute values ap-

pear to be coherent with literature data
from similar plants or vegetation commu-
nities as found in Himmelmoor (see chap-
ter 6). Using relative class contributions
of contrasting surface types to scale sin-
gle terms in a mechanistic model has thus
proven to be feasible. Moreover, the divi-
sion of the TVTS into SCTS appears to
yield reasonable flux estimates that can
be explained in a mechanistic way.

For comparability with Himmel-
moor light saturation and respiration pa-
rameters, Pipo net ecosystem exchange
(NEE) was compiled into monthly groups
to which an EPReM with fixed Q10 was
fitted. The individual monthly fits are
shown in figure 5.14, whose resultant pa-
rameters are overlaid with daily results
from EPReM in figure 5.16. The fact
that the monthly parameter time series
coincide well with the progression of the
daily parameter sets throughout the year,
gives further confidence in the ability of
the ensemble method to yield meaning-
ful plant physiological properties also on
a monthly basis. Furthermore, this re-
sult underlines the homogeneity of the EC
source area in Rio Pipo bog. More foot-
print variability in the monthly datasets
would have introduced more noise into
the relationships of PAR and NEE. If
more pronounced, dissimilar EC fetch ar-
eas could have translated into two or
more separate curve shapes within each
monthly plot, denoting properties of di-
verse plant communities.
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Figure 5.14: Light saturation fits to monthly ensembles of half-hourly Rio Pipo net ecosystem
exchange.
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Figure 5.15: Parameter time series of com-
bined photosynthesis and respiration models
fitted to monthly thirty minute flux ensem-
bles. This method allows for a mechanistic
interpretation of the surface class level results
gained with I-SIM. Top panel: Ecosystem res-
piration parameters divided by bare peat and
vegetated areas within the surface classes
drained and rewetted. Bottom panel: Photo-
synthesis parameters that were obtained by
scaling the model term with the relative con-
tribution of the vegetated surface class to the
EC footprint.

Figure 5.16: Rio Pipo EPReM parame-
ter time series. Lines represent half-hourly
model results, red bars denote the values ob-
tained from monthly ensemble fits.

Figure 5.17: Histogram of EPReM window
sizes used during Rio Pipo carbon dioxide
flux gap-filling
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5.5 Cumulative sums of car-
bon gas fluxes

Himmelmoor’s cumulative annual sums of
gas fluxes were calculated based on their
gap-filled time series as described in sec-
tion 4.8. The results are expressed as
molar fluxes (figure 5.18) and as release
of CO2eq (figures 5.19 and 5.20). Factors
to convert FCH4 into CO2eq release were
taken from the Fifth Assessment Report
of the Intergovernmental Panel on Cli-
mate Change (IPPC AR5, Myhre et al.,
2013). The impact of rewetting on the
development of vertical carbon release
is well documented with the shown re-
sults. Overall, the relations between GHG
fluxes from the rewetted and the drained
surface class as well as their trends from
Year 1 to Year 2 display the anticipated
behavior. Annual FCO2 from the restored
site undercuts the summed up CO2 emis-
sions from the drained part of Himmel-
moor in both years, whereas the differ-
ence increases with time. Annual CH4 re-
lease from the wetter surfaces exceeds
the cumulative FCH4 from the drained
mining site in both years. Both fluxes rise
from Year 1 to Year 2.

In Year 1, FCO2 from the rewetted
area was already cumulatively lower than
from the mining site (20.16 ± 0.36 vs.
22.48 ± 0.30 mol m-2). It dropped by
over 35 % in Year 2, increasing the
difference to the cumulative mining site
flux to over 40 % (12.91 ± 0.29 vs.
22.16 ± 0.28 mol m-2). At the end
and the beginning of Year 2 (i.e. in
summer) the cumulative curve of SCrew

ceases to slope upwards. By reach-
ing these vertexes, the points in time

when the rewetted area turns from a CO2

source into a sink are indicated. Nev-
ertheless, on an annual basis the peri-
ods when the sink character of SCrew pre-
vails do not yet compensate for CO2 re-
lease during timespans of reduced plant
activity. CH4 fluxes from both surface
classes rise from Year 1 to Year 2,
whereas their absolute difference stays
constant. The cumulative CH4 flux from
SCrew is 84 % higher than from SCdra

in Year 1(0.45 ± 0.01 vs. 0.83 ± 0.01
mol m-2) and 51 % higher in Year 2
(0.76 ± 0.01 vs. 1.15 ± 0.01 mol m-2).
Compared to the molar FCO2 sum of both
surface classes, cumulative CH4 release
is a factor of around 30 smaller in Year 1
and about 20 times smaller in Year 2. The
development of both molar GHG emis-
sions over time documents the rising im-
portance of CH4 in the course of rewet-
ting.

The results are also expressed as
GWP and global temperature change po-
tential (GTP). These two metrics are com-
monly used to quantify the climate im-
pact of various GHGs’ emissions. In or-
der to convert non-CO2 gas emissions
to release of CO2eq, factors from AR5
were applied. The metrics are defined in
distinct ways and yield different conver-
sion factors. GWP is the integrated ef-
fect of radiative forcing over a certain time
window. Different conversion factors are
given for different window sizes. Hence,
GWP puts weight on the period before
the time window maximum and none on
the period thereafter. In contrast, GTP
is an end-point statistic giving the tem-
perature response of the climate system
at a certain point in time, not weighing
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Figure 5.18: Cumulative molar carbon gas flux sums on surface class level. Himmelmoor
dataset.

Figure 5.19: Annual sums of Himmelmoor greenhouse gas release expressed in carbon diox-
ide equivalents (CO2eq). The conversion factors for global warming potential from IPCC AR5
including climate-carbon feedbacks are used. Results are given on 100 years and 20 years
time horizons.
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Figure 5.20: Annual sums of Himmelmoor greenhouse gas release expressed in CO2eq. The
conversion factors for global temperature change potential from IPCC AR5 including climate-
carbon feedbacks are used. Results are given on 100 years and 20 years time horizons.

the timespan before or after. While in
the preceding IPCC Assessment Report
AR4 climate-carbon feedbacks were only
included for CO2, in AR5 also factors for
CH4 including climate-carbon feedback
are reported (Myhre et al., 2013). These
values, on time horizons of 20 and 100
years, were used for conversion in this
study. Transforming the molar cumulative
sums into sums of CO2eq allows for com-
parability between the two GHG fluxes
from the two surface classes regarding
their climate impact. The sum of cumu-
lative FCO2 and FCH4 coming from SCdra

are dominated by FCO2 in both years and
across nearly all metrics, except for global
warming potential on a 20 years time
horizon (GWP20) where FCO2 and FCH4

amount to about 50 % of their sum each.
Looking at the relations between CO2 and
CH4 release from SCrew, FCH4 sums ex-
ceed CO2 emissions in two settings: on
short time horizons and/or in Year 2. Al-
though the cumulative FCH4 global warm-
ing potential on a 100 years time horizon

(GWP100) also increases from Year 1 to
Year 2, it mainly dominates the SCrew sum
due to a large drop in FCO2 from Year 1
to Year 2. On short time horizons this
interannual variability is reflected as well
but SCrew CH4 emissions exceed CO2 re-
lease in both years.

Three summer and five winter months
are available to establish a comparison
between CO2 fluxes from the undisturbed
Rio Pipo bog and the different surface
classes in Himmelmoor (see figure 5.21).
This dataset obviously does not allow for
a comparison of vertical carbon release
on an annual basis but provides insight
into the different ecological processes
contributing to the observed net carbon
fluxes. In general, Rio Pipo is a net-sink
for CO2 in summer and a source in winter,
whereas cumulative winter CO2 release
is three times smaller compared to Him-
melmoor CO2 emissions in an equivalent
time span. Himmelmoor carbon dioxide
exchange during three summer months
sums up to about the same amount as
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during five winter months, with the excep-
tion of Year 2 when cumulated CO2 fluxes
from the rewetted areas are over one third
smaller than from the drained sites. Year
2 could indicate the beginning establish-
ment of the restored areas as a summer
CO2 sink.

Looking at the average diurnal courses
of NEE at the three different surface types
(figure 5.22), the rewetted areas of Him-
melmoor reach midday CO2 fixation rate
maxima in Year 2 that are similar to those
of the pristine bog. This net-effect is,
however, not the result of similar con-
ditions. Photosynthesis of the vascular
plant species in Himmelmoor is more ef-
fective in fixing atmospheric CO2. Max-
imum photosynthesis (Pmax) of the Rio
Pipo moss-dominated plant community is
for example in February a factor of four
smaller than Pmax from SCveg in Him-
melmoor in the corresponding northern
hemisphere month of August. At the
same time, however, ecosystem respira-
tion from the strips inhabited by vascu-
lar plants in Himmelmoor is also much
higher (two-fold) compared to the Sphag-
num magellanicum bog. Ecosystem res-
piration from Rio Pipo rather resembles
the values inferred for the bare peat ar-
eas of Himmelmoor (see figures 5.16 and
5.15).
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Figure 5.21: Comparison of cumulative summer and winter carbon dioxide fluxes from the three
land use types investigated in this study. Top: Fluxes from rewetted and drained surfaces of the
degraded site, Bottom: Fluxes from pristine mire; Note the dissimilar y-axis scaling. While both
land use classes at the degraded site are carbon dioxide sources in summer and winter, the
pristine site is a summer sink and a three times smaller source in winter.

Figure 5.22: Monthly averaged diurnal cycles of summer net ecosystem exchange from all
three studied surface types. Errorbars denote standard deviations of all half-hourly measure-
ments used for calculating averages of a certain time of day.
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Discussion

6.1 Data processing and
modeling

6.1.1 Quality filtering

My approach to quality filtering of half-
hourly fluxes removed a large amount
of data and is therefore rather harsh.
Only the best available data were to be
used for model fitting. In order to compile
a gap-filled gas flux time series for the
calculation of cumulative sums, more
measurement data of lower quality was
included back into it, and part of the
filtering steps were reversed. This does,
however, not apply to the RSSIrelStd filter
presented in the methods section. I think
it is necessary to filter methane fluxes
measured with a LI-7700 sensor in this
manner. Our observations that methane
concentration covary with RSSI values
at 20 Hz and that large jumps in RSSI
appear together with switching events in
the LI-7700’s mirror heaters make this
filter essential to remove artificial high
fluxes.

6.1.2 Model input selection

Data-driven selection. Connections of
CH4 fluxes to environmental drivers can

be more complex and are to my knowl-
edge not yet consolidated in a compre-
hensive, mechanistic approach to FCH4

gap-filling. This lack of a mechanis-
tic explanations of CH4 exchange might
be owed to discontinuous features of
methane producing and consuming pro-
cesses. Above and below thresholds
in environmental drivers like soil chem-
istry or vegetation properties, the vari-
ous mechanisms leading to CH4 release
could be interconnected inherently dif-
ferent. Within a continuum of changes
in driving variables, steps might exist
in FCH4 responses when environmental
properties transgress certain boundaries
and cause ecological processes to sys-
tematically change. The complex interac-
tions between drivers and flux response
lead to empirical models commonly be-
ing employed (Dengel et al., 2013; Desh-
mukh et al., 2014; Forbrich et al., 2011;
Hommeltenberg et al., 2014; Knox et al.,
2015; Kroon et al., 2010; Sachs et al.,
2008; Zhu et al., 2013, Goodrich et al.
2015a) for the purpose of FCH4 gap-
filling. Empirical models involve paramet-
ric or non-parametric mapping of input
variables to a target FCH4. In contrast
to mechanistic explanations, the result-
ing fitting parameters do not represent a
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definable property of the measured sys-
tem, though. Anyhow, with most authors,
the choice of input variables reflects their
conceptual perception of a cause-effect
chain. This selection method takes into
account the insight one has into reasons
for variability in methane exchange prior
to data analysis. To constrain model
complexity by utilizing a priori knowledge
about a system is perfectly fair and de-
fendable. Nevertheless, the issue re-
mains that there is only limited systematic
information available about the coupling
of processes that drive FCH4. Connec-
tions might additionally be site-specific.
For this reason, I opted for a data-driven
input selection based on measurement
data and not on arbitrary assumptions
about flux driving processes. The goal
of the I-SIM selection process was to fil-
ter out irrelevant and redundant variables
from a potential input matrix containing
measured biomet inputs, EC footprint in-
formation and fuzzy variables. The I-SIM
scoring table, combines the response of
multilinear and ANN models to differently
manipulated versions of the inputs space.
Lagged biomet variables were included
as changes in environmental drivers com-
monly create shifted responses in gas
fluxes.

Relevance of selected inputs. It can-
not ultimately be appraised if the rele-
vant input-target connections have been
captured by the I-SIM routine. Nev-
ertheless, physically sound explanatory
frameworks for FCH4 variability can be
outlined with the obtained results. In
Year 2 of the Himmelmoor FCH4 dataset,
the selection scheme preferred four peat

temperatures and one soil redox poten-
tial, which are known (e. g. Couwen-
berg, 2009b) to drive methane produc-
tion in soils. In both years footprint vari-
ables were included into the final input
matrix. In Year 1, CCveg,W was cho-
sen as MDS level 1 variable. It is ev-
ident that the presence of plants with
aerenchyma in the footprint should influ-
ence the methane flux. In Year 2, four
soil temperatures were included into the
input matrix, whereas no soil variables
were available in Year 1. Instead, the
I-SIM algorithm selected fuzzy variables
which contain similar spectral peaks like
the real soil temperatures. Fuzzysu repre-
sents the low frequency portion of TSoil40

while fuzzymo and fuzzyaf emulate diur-
nal patterns included in TSoil5 and TSoil20.
Although this outcome does not mean
that the physically meaningful processes
have been captured comprehensively by
the selection routine, it points to its abil-
ity to discriminate between weaker and
stronger input-target connections which
do not necessarily have to be linear.
When cross-checked with six FCO2 target
datasets, the I-SIM selection scheme did
pick radiation inputs (five times PAR, one
time Rg) that are known to be drivers of
photosynthesis and that are thus also part
of mechanistic NEE explanations.

Remaining linear dependencies. The
removal of redundancy from the input
spaces is measurable using the matrices’
condition numbers that improved through-
out the filtering process in every test case.
Inspecting the correlation coefficients of
individual input-input pairs nonetheless
reveals that some linearly dependent in-
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puts co-occur in the final input matrices.
Linear dependency does, however, not
necessarily imply spectral similarity of two
inputs across the entire frequency band.
Two variables can for example reach high
correlation coefficients when both contain
overriding seasonal cyclicity. If additional
lower amplitude high frequency informa-
tion is modulated on top of the long-wave
content of one signal, correlation deter-
mination would still result in values close
to 1. The accessory high frequency con-
tent would appear as noise in correlation
analysis. This effect is for example visi-
ble in the relation of fuzzysu with all soil
temperatures (figure A.6).

Fuzzy logic. I found that the inclu-
sion of fuzzy variables makes particular
sense, when an enhancement of the in-
put space’s frequency content contributes
to a better approximation of the spectral
properties of the target time series. Fuzzy
logic puts a conceptual element in the
framework. Benefits and drawbacks are,
however, not easy to distinguish. Fuzzy
variables, as employed here, can be seen
as depictions of basic properties of the
earth’s orbit that drive many natural pro-
cesses in the most general way. This
leads to them being a very robust estima-
tor but for a very unspecific process. Re-
garding frequency content, it is, however,
highly likely that the record of an ecologi-
cal mechanism contains cyclicality that is
connected to orbital dynamics. If this in-
formation is missing due to gaps it should
be replaced by gap-filling.

Footprint variables. I-SIM modeling
with Himmelmoor data improves when

the relative contributions of the vegetated
areas to the EC footprint are part of the
input space. Footprint information thus
contributes to the explanation of CH4 flux
variability at this site. One reason for this
is the scale on which surface characteris-
tics change in relation to the EC tower po-
sition. The EC system is located centrally
on the 1450 x 910 m large extraction site,
adjacent to two around 30 m wide vege-
tated strips stretching ~600 m to the west
and ~700 m to the east. The anemometer
height of 6 m was initially chosen due to
these dimensions. From the footprint in-
formation contained in the data gathered
with this setup it can be inferred that for
certain wind directions, fluxes mainly re-
lated to the vegetated area are indeed
distinguishable from signals from other
surfaces. Hence, the way the measure-
ment system was set up, suits the site
characteristic scale of surface variability
in a way that the acquired data is in-
terpretable on surface class level. Be-
sides, vegetated and bare peat areas are
sharply contrasting regarding their CH4

source strength. This feature is adding
to their discriminability in the EC signal.
The coupling between FCH4 and SCveg is
that close that multilinear models can ex-
plain CH4 flux variability in Himmelmoor
adequately.

6.1.3 Artificial neural network ar-
chitecture optimization

A common practice to take a decision
for the #HLN of MLPs or RBF networks
is to use sizes other authors have used
before (i. e. Dengel et al., 2013; Järvi
et al., 2012; Menzer et al., 2015). Also the
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spread value of RBF networks is usually
set to a fixed value without further reason-
ing (i. e. Menzer et al., 2015). To my
knowledge, no structured approach for
the selection of architectural ANN proper-
ties is available in literature. The results
presented in this thesis show that data-
based decision-making for ANN architec-
ture, improves model quality and gives
more defendable predictions. With an ac-
countable method for the setup of ANNs,
they can emerge from their fate of be-
ing somehow mysterious black boxes to
being based on data analysis and being
specifically constructed for responses to
individual datasets.

6.1.4 Empirical flux models

Multilayer perceptron. The MLP mod-
els were used for Himmelmoor gas flux
gap-filling because they perform the most
consistently throughout the comparison
with the five different datasets. This no-
tion is primarily based on the AIC val-
ues the diverse performance and general-
ization tests with tower view and surface
class time series resulted in. In case of
CO2 flux modeling, the MLPs outperform
all other models in all tests with respect
to this statistic. Driving models fitted to
Year 1 data with Year 2 inputs and com-
paring the results to Year 2 targets gives
the most robust estimation of generaliza-
tion capability (datasets C in tables 5.6
and 5.3). With respect to AIC the FCO2

MLP models converge to the target flux
best in this particular comparison.

Multilayer perceptron vs. multilin-
ear regression. Regarding the FCH4

models’ AICs, the MLR undercuts the
MLP only once. Nonetheless, it does so
with respect to dataset C, which yields
the most meaningful result within the
scope of a search for the most general
explanation of fluxes. However, given
that the AIC difference between MLR and
MLP is small, further inquiries still lead
to the conclusion that the MLP performs
best in approximating CH4 exchange.
Reasons to doubt the MLR include the
comparably high BE and MAE and fore-
most the overadaption to high and low
extrema in the target data. This property
of MLRs leads to them extrapolating from
the target data range, meaning that the
MLR predictions partly lie outside the
solution space they were inferred from.
This behavior is also portrayed in the
SCTS (see figures B.13, B.14, B.15 and
B.16). Hence, the MLR gap-filling would
add information to amplitude regions of
the time series where no samples are
available in the measurement data and
where it is therefore unknown if physically
reasonable fluxes exist. Especially the
relatively high number of negative flux
outputs from the MLR leads to some
reluctance towards the credibility of this
model type, as a process that would
explain those fluxes is not known to
the writer. It is, however, notable that
a relatively simple linear model is in
terms of explanatory power almost equal
to an ANN that contains much more
complexity. I attribute the circumstance
that the MLP still provides a more likely
approximation of the target data to the
fact that architectural choices made dur-
ing MLP design do impact the quality of
its prediction. Within the I-SIM approach,
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emphasis is put on the determination of
the least complex ANN structure pos-
sible that still produces an appropriate
representation of the target time series.
Compared to a MLP that is not set up at
the lower bound of necessary complexity,
a MLR would most likely be superior.
It can probably be stated in general,
that hidden layer size optimization is
inevitable when implementing ANNs for
gap-filling. However, that MLR models
are in turn the next best choice for FCH4

modeling is probably not true for all CH4

flux datasets. In the cases presented
here, the linear correlation between
FCH4 and the footprint contributions of
SCrew and SCveg is high. Inundation and
the thereby established anaerobic soil
conditions makes these areas prone to
enhanced CH4 emissions. Moreover, by
the presence of vascular vegetation in
SCveg, an effective pathway for CH4 re-
lease is established. With regard to their
potential CH4 source strength, a sharp
contrast between neighboring surface
classes and SCrew or SCveg respectively
exists. When scale and distribution of
clearly distinct surface classes are real-
ized as they are in Himmelmoor, footprint
information alone appears to explain
a significant part of the flux variability
depicted in the landscape-scale EC
TVTS. Nearly linear coupling of footprint
variables and observed flux (see figure
A.1) may also have led to the rather good
performance of linear models with the
presented dataset.

Limits of the generalization test. The
latter interpretation of MLR quality is

based on results from a test that is
assumed to provide the most robust
estimation of generalizability. Within this
check, models fitted to Year 1 data are
evaluated by driving them with Year 2
inputs and comparing the results with
measured fluxes from Year 2. This
proceeding, however, only yields a
valid estimation of model quality if gas
flux differences between Year 1 and
Year 2 can be attributed to interannual
variations in meteorological conditions
and do not document a fundamental
change in ecosystem processes. If the
workings responsible for CH4 exchange
underwent systematic alteration from
Year 1 to Year 2, Year 1 models can
not be expected to explain Year 2 data
very well. The question, if modifica-
tions of the carbon gas balance are
the result of progressing rewetting or
depict interannual deviations of generally
unchanged ecosystem processes cannot
be ultimately resolved with the now
available dataset. EC measurements in
Himmelmoor are now recommenced so
that the evaluation of longer-term shifts in
carbon flux dynamics will be more robust
in the future.

Performance of remaining models.
Regarding the remaining tested model
types, GRNNs show the highest correla-
tion coefficients but are by far the most
complex models resulting in very high
AICs. Moreover, the generalization check
with this model as well as with the RBF
results in a overestimation of the target
data. The BEs of the MLPs vary the
least across all three datasets. The MDS
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method stands out by the addition of
high frequency signal components. It is,
however, the only approach that does not
considerably shift the scaling exponent
from the measured to the gap-filled data.
The quality of the gap-filled MDS time
series depends on the program flow step
the solution was found in. More large
gaps in Year 2 FCH4 records resulted in
more gaps being filled with model output
of quality C (see figures A.7 to A.11). The
longer gaps also lead to an increased
number of search window sizes larger
then ten days. A similar decline in quality
from Year 1 to Year 2 is apparent in
MDS FCO2 gap-filling (see figures A.12 to
A.15), while the overall quality is better
compared to FCH4 modeling. Some of the
long Year 2 gaps are due to outages in
the logging system and affect not only EC
fluxes but also certain biomet records.
In this context, the MDS method has
advantages over the other model types.
The routine can resort to lower quality
modeling by employing the diurnal cycle
steps if input variables are missing. None
of the other tested methods can output
data when input data is missing. The
MDS method is useful from a pragmatical
standpoint, when for example annual flux
sums are intended. The lower data qual-
ity can be addressed in the calculation of
annual sums by using distinct error es-
timates for class C obtained from MDSQC.

Empirical vs. mechanistic models.
Apart from one case, ANN predictions
perform superior in all generalization
checks of FCH4 and FCO2 models. In
particular, MLPs result in the most con-

sistent statistics. While EPReM results
are more accurate when compared to I-
SIM models, AIC differences to the MLP
predictions are marginal. This fact illus-
trates the ability of this ANN type to also
explain less entangled cause-effect rela-
tionships while reaching an equal level of
confidence like a mechanistic approach
that contains a priori knowledge about
ecosystem functioning in much greater
detail. I consider this outcome not to be a
feature of MLPs in general, but rather at-
tribute the comparably good performance
to the data-driven dimensionality reduc-
tion included in I-SIM.

6.1.5 Mechanistic flux models

Half-hourly models. In general, model-
ing of CO2 fluxes is more straightforward
than the prediction of FCH4 since CO2

production and fixation are the result of
ecological processes that are well un-
derstood and mechanistic explanations
(Lloyd and Taylor, 1994; Michaelis and
Menten, 1913; Thornley, 1998) have
proven to be applicable to estimate FCO2.
In case of the Rio Pipo dataset, CO2

fluxes from a homogeneous surface could
be modeled on tower view scale. Over
homogeneous terrain, the mechanistical
EPReM outcompetes the empirical I-SIM
NEE predictions as described above.

Ensemble model parameters. Mecha-
nistic models that included footprint sur-
face class contributions as scaling terms
were fitted to monthly ensembles of Him-
melmoor FCO2 data. The resultant pa-
rameter time series allow for comparisons
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with literature values and between SCrew

and SCdra. Reco is between two- and
fourfold larger in areas with than without
vegetation. The bare peat Reco fluxes
are in concordance with findings from
Vanselow-Algan et al. (2015) who con-
ducted chamber measurements on the
vegetationless peat extraction site in Him-
melmoor. The authors report mean an-
nual CO2 emissions from the mining site
of 0.53 ± 0.05 µmol m-2 s-1 with sum-
mertime maxima between around 2 and
4 µmol m-2 s-1. These values are well in
range with the seasonal course of Reco

as it displays for the bare peat areas
of SCdra and SCrew alike (figure 5.15).
Vanselow-Algan et al. (2015) additionaly
partitioned the NEE from different vege-
tation communities at the outer edge of
Himmelmoor. These areas were restored
three decades ago after being degraded
by small-scale manual peat-cutting. Al-
though the plants dominating the vege-
tated strips of the mining site were not ex-
amined by Vanselow-Algan et al. (2015),
some of the species investigated by them
also frequently occur in SCveg being the
subject of the present study.

The ”purple moor grass” microform in
Vanselow-Algan et al. (2015) for exam-
ple is dominated by Molinia caerulea; Be-
tula pubescens and Eriophorum angus-
tifolium also occur. In summer, Reco

fluxes form this site were estimated to
range above 10 µmol m-2 s-1. Beyer and
Höper (2015) report further results from
a former north German peat extraction
site that was rewetted 30 years prior to
their chamber measurement campaign.
Reco estimates from these authors are
available for a site dominated by Molinia

caerulea (up to 7 µmol m-2 s-1 in August)
and by Eriophorum angustifolium (up to
5 µmol m-2 s-1 in late July). A substan-
tial portion of the SCveg is covered by Be-
tula pubescens, Salix spp., Eriophorum
vaginatum, Eriophorum angustifolium, Ty-
pha latifolia, Molinia caerulea, Carex spp.,
Juncus effusus and Calamagrostis pseu-
dophragmites. Further combined plant
and root respiration measurements of the
species found in SCveg are not present
in literature. Nevertheless, properties of
plants from the same genera are known.
Most reported fluxes, however, only re-
fer to autotrophic respiration as they were
determined on leaf scale. Measurements
of Betula spp. dark respiration are given
by Patankar et al. (2013) and Gu et al.
(2008) (between 1 and 5 µmol m-2 s-1).
Patankar et al. (2013) also assessed au-
totrophic respiration of Salix pulchra (up
to 2 µmol m-2 s-1), Eriophorum vagina-
tum (up to 3 µmol m-2 s-1), and Carex
bigelowi (up to 1 µmol m-2 s-1). Other
Carex species are in the same range as
shown by Körner (1982) (Carex curvula
1 µmol m-2 s-1) and Murchie and Horton
(1997) (Carex flacca 1.5 µmol m-2 s-1).
Salix summer dark respiration has as well
been investigated by Kaipiainen (2009)
with Salix dasyclados (between 0.8 and
1.2 µmol m-2 s-1).

Regarding the photosynthesis parame-
ters Pmax and α in the second model term
(section 4.7), more literature values are
available for comparison. Chamber gas
exchange studies on a single birch (Be-
tula pubescens) in Himmelmoor during
three summer months in 2014 by Lienau
(2014) resulted in Pmax values between
32 and 41 µmol m-2 s-1). More Pmax
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estimates from the same tree species
have been reported by Nygren and Kel-
lomäki (1983) (4 to 17 µmol m-2 s-1)
and Hoogesteger and Karlsson (1992).
In the latter study, PAR was limited to
800 µmol m-2 s-1, Pmax was assesed to
be 8 µmol m-2 s-1. Other evaluations
of Betula spp. maximum photosynthesis
range between 10 and 15 µmol m-2 s-1

(Gu et al., 2008; Patankar et al., 2013).
With Pmax values commonly around 25
but also above 30 µmol m-2 s-1 (Chen
et al., 2010) Typha latifolia is photo-
synthically more active which is also
the case for Salix spp. ranging be-
tween 16 and 29 µmol m-2 s-1 (Ögren,
1993). Lab-experiments from Vernay
et al. (2016) provide Pmax estimates of
Molinia caerulea (7 to 15 µmol m-2 s-1).
For Juncus effusus only net photosynthe-
sis values of 6 to 11 µmol m-2 s-1 (Mann
and Wetzel, 1999) have been reported so
far.
From the north German site investigated
by Beyer and Höper (2015), compara-
bly high Pmax estimates are reported for
Molinia caerulea that commonly range
between 15 and 30 µmol m-2 s-1 but
also reach values up to 60 µmol m-2 s-1

in June. The Pmax parameters given
by these authors for Eriopohorum an-
gustifolium are also rather large (up to
70, often around 20 µmol m-2 s-1). Ini-
titial quantum yield estimates of plants
also common in SCveg span amounts be-
tween 0.02 and 0.08 (Chen et al., 2010;
Kaipiainen, 2009; Murchie and Horton,
1997; Nygren and Kellomäki, 1983; Ver-
nay et al., 2016).

Parameter differences between SCrew

and SCdra mainly emerge with respect to

SCveg and can be explained with devia-
tions in hydrological site charachteristics.
Inundation on SCrew led to a hydrological
connection of SCveg with the bare peat ar-
eas. Hampered plant productivity due to a
higher water table are expressed in lower
peak values of Pmax in SCrew. Reco of
the vegetated areas is on the other hand
elevated in comparison to SCdra. An in-
creased input of dissolved organic carbon
from the bare peat areas to the vegetated
strips might have promoted respiration.

Reco is composed of autotrophic and
heterotrophic respiration. While mosses
have no roots, vascular plants are able
to directly influence decomposition con-
ditions in the rhizosphere by providing
oxygen and root exudates that form an
easily decomposable substrate for micro-
bial respiration (Bhullar et al., 2014; Kerd-
choechuen, 2005; Neue et al., 1996).
Hence, apart from possibly elevated
plant respiration, the presence of vas-
cular plants fosters soil respiration as
well. Moreover, the labile carbon pro-
vided by these plants can potentially be
used by CH4 producing microorganisms
in case chemical conditions favor reduc-
tion of organic matter. Overall, peat
mineralization can be enhanced by the
presence of vascular plants despite their
ability to fix more carbon dioxide with
their high photosynthetic rates. Addition-
ally, they potentially promote CH4 produc-
tion and release by providing a poten-
tial substrate for methanogens and, with
their aerenchymae, an effective transport
mechanism that includes the possibility
to bypass methane-oxidizing zones within
the soil profile or water column.
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6.2 Trace gas flux balances

A carbon balance in the early years after
ditch blocking is given by two consecutive
years of GHG fluxes from the restored
surfaces as also described in section
5.5. According to these results, rewetting
does have a positive effect on the climate
impact of Himmelmoor on the long run.
In summer of Year 2, CO2 sequestration
of the rewetted areas even exceeds
CO2 release, turning them briefly from
a C-source into a C-sink. However, the
GHG flux sum of the SCrew is increasingly
dominated by CH4 release from Year 1
to Year 2. On short time horizons, this
can lead to these areas surpassing the
CO2eq emissions of the drained surfaces.
Nevertheless, increasing CH4 fluxes are
not necessarily related to a general
transition of the ecosystem into a state
where methane production is principally
more favorable. The data presented
here only spans two years. Changes
might as well be caused by interannual
variations in meteorological conditions.
While both years were relatively wet
compared to the long-term average, Year
1 is distinguished by storm rainfall in
early summer. Plant growth might have
been inhibited by that.

The annual CO2 emissions from the
drained parts of 989 ± 13 g m-2 a-1 and
975 ± 13 g m-2 a-1 are higher but in
the same range than previously inferred
from chamber data by Vanselow-Algan
et al. (2015) with 730 ± 67 g m-2 a-1.
In reference to a study by Drösler et al.
(2008) that covers 11 drained peat ex-
traction sites in Europe, Himmelmoor
ranks as a high emitter, whereas larger

sums, up to 1300 g m-2a-1, are also
reported. Including the amount of carbon
removed from the harvesting site by
peat extraction (11402 ± 670 g m-2 a-1),
CO2 emissions account for less than one
tenth of the total carbon loss per year.
This value from Vanselow-Algan et al.
(2015) is, however, expressed as CO2

and assumes the instant decomposition
of the material after removal. Restored
cut-over bogs commonly are CO2 sinks
when active peat extraction has been
ceased for several decades (Beyer and
Höper, 2015; Tuittila et al., 1999; Wilson
et al., 2016).

The CH4 flux sums of
13.3 ± 0.2 g m-2 a-1 and
18.5 ± 0.2 g m-2 a-1 from the rewet-
ted surface class are confirmed
by findings from Beyer and Höper
(2015) who report CH4 balances
between 16.2 ± 2.2 g m-2 a-1 and
24.2 ± 5.0 g m-2 a-1 from inundated
cut-over bogs in northern Germany.
Wilson et al. (2016) report annual CH4

emission sums of 12.0 ± 2.6 g m-2 a-1

from an Irish Atlantic blanket blog that
had been rewetted 14 years prior to
the investigation. Results from a bo-
real peat extraction site, 20 years after
mining had been ceased, are given by
Tuittila et al. (2000). Although only the
growing season has been covered by
these authors, the cumulative seasonal
FCH4 of 1.27 g m-2 a-1 suggests that
CH4 release from boreal peatlands is
much lower compared to temperate sites.
This circumstance has also been noted
by Tiemeyer et al. (2016), who further-
more conclude that IPCC estimates for
CH4 release from rewetted bogs, as

89



Chapter 6. Discussion

they are primarily based on data from
boreal peatlands, are not representa-
tive for temperate regions. Actual CH4

emissions from temperate bogs are most
likely higher than anticipated by the IPCC.

6.3 Himmelmoor restora-
tion

What are the chances of Himmelmoor to
regress to a near-pristine state now that
peat mining ceased? Can a colonization
with bog forming plants be expected?
First of all, with the type of rewetting
measures that have been taken and that
involve inundation of large, unvegetated,
continuous sections of the former ex-
traction site, the establishment of peat
forming mosses will take many decades
up to a few centuries (H. Joosten, per-
sonal communication, 2014), if it takes
place at all. One major limitation for
this process could be minerotrophic
water introduced into the system through
deep, the underlying aquifier penetrating
ditches. These are the areas today
vegetated by fen-type plants. Peat
forming Sphagnum spp. mosses are
adapted to nutrient-poor environments.
For the purpose of re-establishing a
degraded peatland’s natural ecosystem
functions, however, the initialization of
peat accumulation is inevitable (Gaudig,
2002; Joosten, 1992; Pfadenhauer and
Klötzli, 1996). In case of inundation, the
creation of floating vegetation mats is
the only possibility for sphagnum colo-
nization (Pfadenhauer and Klötzli, 1996).
Nevertheless, fast growing vascular

plants can support peat moss growth
by diminishing wave movement and
offering adherence area (Sliva, 1997).
Besides the need for a preferably calm
water surface, another limiting factor for
floating mat growth is the water CO2

concentration (Gaudig, 2002; Lamers,
2001; Lütt, 1992; Paffen and Roelofs,
1991; Smolders et al., 2001). This
level can be elevated by vascular plants
providing oxygen and thereby fostering
heterotrophic soil respiration. It thus
seems conceivable that the Sphagnum
spp. growth favoring effects outweigh the
negative ramifications for bog develop-
ment that the current plant cover implies.
In sections of Himmelmoor with a non-
industrial land use history, overgrowth of
the grass tussocks, formerly dominating
the area, by the bog-type Sphagnum
species magellanicum and papillosum is
in progress today (personal observation,
2016). The now prevailing plant species
on the extraction site could therefore
constitute an intermediate state that can
potentially be overcome. Established
peat accumulation by mosses could on
the long run elevate the water level and
eventually even decouple the bog’s water
regime from the groundwater.
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7.1 Conclusions

To summarize, the questions formulated
in the beginning of this thesis are an-
swered.

What is the best procedure for a re-
producible selection of driving variables
for accurate and robust empirical models
(such as artificial neural networks, multi-
linear regressions or marginal distribution
sampling methods) of gas flux time
series?

I propose the I-SIM algorithm to tackle
the tasks anticipated in the question
posed above. Data-driven input selection
resulted in physically reasonable choices
for inputs that were used to drive CH4

and CO2 flux models. In settings when
a comparison of I-SIM models with
mechanistic flux predictions was feasible,
I-SIM ANN models resulted in equally
good approximations of the target data.
I attribute this fact (1) to the input space
dimensionality reduction and (2) to the
ANN parameter optimization included in
I-SIM. I therefore conclude that when
applying empirical models to gap fill trace
gas flux time series, a thorough and
accountable method for the selection of
input variables improves model predic-

tions considerably. When ANNs are used
in particular, efforts should be made to
set them up in the least convoluted way a
sufficient approximation of the target data
allows for.

Is it possible to extract trace gas flux
balances of individual surface classes
from a complex EC flux times series
measured over a heterogeneous peat-
land?

I found that if different microforms show
contrasting gas flux features, the inclu-
sion of their footprint contributions into
flux models can improve their estimates
and allow for more robust gap-filling of
gas flux time series. Moreover, due to
the specific setup (position and mea-
surement height) of the EC system in
Himmelmoor, fluxes could be attributed
to distinct surface classes and individual
annual time series were estimated.
This subdivision of EC time series was
possible owing to the scale (hundreds of
meters) on which surface patterning ex-
ists in Himmelmoor. Additionally, a sharp
contrast in gas flux dynamics between
the different surface classes allowed for
better discriminability between EC fluxes
associated to individual surface types.
However, to be able to estimate gas flux
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time series of subsections within the EC
footprint, rigorous filtering of the original
time series is inevitable. Consequently,
a considerable amount of measurement
data is omitted and not assessed further.

Are the contrasting peatland man-
agement types also reflected in disparate
carbon gas flux balances?

The three investigated land use types
show distinct carbon gas flux features.
Regarding Himmelmoor, CO2 emissions
decrease progressively after rewetting.
The release of CH4 increases after
rewetting and within the present two
year dataset also over time. On short
timescales, the climate impact of elevated
CH4 emissions dominates over the effect
of decreasing CO2 release. Summer
NEE of Rio Pipo resembles the values
from the rewetted sites in Himmelmoor.
Flux-partitioning reveals that while this
net-flux is similar at both sites, photosyn-
thesis is more effective in Himmelmoor.
At the same time, ecosystem respiration
is much higher in Himmelmoor, what
leads to a summer NEE similar to Rio
Pipo.

How does the climate change miti-
gation potential of a former peat-mining
site develop during the early phase of
rewetting.

It is conceivable that Himmelmoor can
be transformed into a carbon accumu-
lating peatland. However, this process
will probably take centuries and will take
place only when sustained management
of the area is employed. The current
rewetting measures that involve shallow
inundation of large continuous areas are

not sufficient to re-initialize the growth of
bog-forming peat mosses. Although the
current state of restoration does result
in analogous summer NEE compared
to Rio Pipo, ecosystem respiration at
night and in winter is much higher than
in the pristine system. Organic matter
decomposition is promoted by the preva-
lent vascular plants. Pristine ecosystem
respiration rather resembles values from
the bare peat areas in Himmelmoor. A
pristine bog carbon balance will not set in
as long as vascular plants dominate.

7.2 Outlook

The GHGs that were considered within
the scope of this thesis are the most im-
portant ones when it comes to the eval-
uation of the climate impact of peatland
land use change. Other gases, like for ex-
ample nitrous oxide, could be included in
future studies in order to report an even
more comprehensive GHG balance.

Additional small-scale gas fluxes mea-
surements could be used to further sub-
stantiate the inferred flux time series on
surface class level. Chamber measure-
ments or ancillary EC towers with a lower
measurement height would be an option
to gain additional direct small-scale infor-
mation.

In order to distinguish more clearly be-
tween interannual differences in gas flux
balances and shifts in GHG emission dy-
namics related to land use change, more
long-term data from Himmelmoor has to
be analyzed. The EC system at this site is
still running what actually provides the op-
portunity to follow up on the development
of gas fluxes in the course of rewetting.
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Appendix A

Tower view gap-filling
suplementary
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Figure A.1: Pearson’s correlation coefficients of Year 1 input-target matrix. #1
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Figure A.2: Pearson’s correlation coefficients of Year 1 input-target matrix. #2
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Figure A.3: Pearson’s correlation coefficients of Year 2 input-target matrix. #1
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Figure A.4: Pearson’s correlation coefficients of Year 2 input-target matrix. #2
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Figure A.5: Pearson’s correlation coefficients of Year 2 input-target matrix. #3
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Figure A.6: Pearson’s correlation coefficient of input-target matrix Year 2. #4
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Figure A.7: Quality of Year 1 FCH4 values
within MDS gap-filling.

Figure A.8: Quality of Year 2 FCH4 values
within MDS gap-filling.
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Figure A.9: Lomb-Scargle periodograms of the measured and gap-filled transformed two year
time FCH4 series. PSD: power spectral density, MLR: multilinear regression; MDS: marginal
distribution sampling; MLP: multilayer perceptron; RBF: radial basis function network; GRNN:
generalized regression neural network
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Figure A.10: Results of MDSQC with Year 1
FCH4.

Figure A.11: Results of MDSQC with Year 2
FCH4.

Figure A.12: Quality of Year 1 FCO2 values
within MDS gap-filling.

Figure A.13: Quality of Year 2 FCO2 values
within MDS gap-filling.
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Figure A.14: Results of MDSQC with Year 1
FCO2.

Figure A.15: Results of MDSQC with Year 2
FCO2.
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Appendix B

Surface class view methane flux
gap-filling suplementary
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Figure B.1: Results of MDSQC with Year 1
FCH4 from SCdra.

Figure B.2: Quality of Year 1 FCH4 from SCdra
values within MDS gap-filling.

Figure B.3: Results of MDSQC with Year 1
FCH4 from SCrew.

Figure B.4: Quality of Year 1 FCH4 from SCrew
values within MDS gap-filling.
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Table B.1: FCH4 model statistics, Year 1 SCdra

MLR MDS MLP RBF GRNN
r 0.83 0.86 0.93 0.91 0.95
RMSE 12.35 11.48 7.96 9.09 7.08
AIC 18045.83 - 15229.58 16410.25 52772.28
BE 0.00 0.83 -0.05 0.07 0.22
MAE 8.32 6.71 3.96 4.69 3.74
scaling exponent -0.88 -0.79 -0.93 -0.89 -0.92

Table B.2: FCH4 model statistics, Year 1 SCrew

MLR MDS MLP RBF GRNN
r 0.90 0.83 0.95 0.93 0.96
RMSE 12.11 15.29 8.73 10.02 7.51
AIC 13455.71 - 12006.71 13637.19 43363.52
BE 0.00 -0.69 0.05 0.19 -0.04
MAE 7.81 10.96 3.86 5.53 4.07
scaling exponent -0.91 -0.81 -0.94 -0.93 -0.94

Figure B.5: Results of MDSQC with Year 2
FCH4 from SCdra.

Figure B.6: Quality of Year 2 FCH4 from SCdra
values within MDS gap-filling.
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Table B.3: Input selection result (bold: in fi-
nal Matrix) for Year 1 FCH4 from SCdra

Timelag Score
Lwout 1.5 7.0
Rg -0.5 4.0
slopePair 0.0 2.0
Pair 7.5 4.0
VPD 1.0 8.0
Tair 2.0 7.0
Lwout #lag - 6.0
Rg #lag - 5.0
Pair #lag - 4.0
VPD #lag - 7.0
Tair #lag - 8.0
CCveg,E - 12.0
CCdra - 1.0
fuzzymo - 8.0
fuzzyaf - 10.0
fuzzyev - 5.0
fuzzyni - 5.0
fuzzysu - 12.0
fuzzywi - 8.0

Table B.4: Input selection result (bold: in fi-
nal Matrix) for Year 1 FCH4 from SCrew

Timelag Score
Lwout 1.0 7.0
Rg -1.0 3.0
slopePair 1.5 1.0
Pair -7.0 7.0
VPD 0.0 8.0
Tair 0.5 7.0
Lwout #lag - 8.0
Rg #lag - 5.0
slopePair #lag - 3.0
Pair #lag - 3.0
Tair #lag - 8.0
CCveg,W - 12.0
CCrew - 2.0
fuzzymo - 8.0
fuzzyaf - 11.0
fuzzyev - 6.0
fuzzyni - 6.0
fuzzysu - 12.0
fuzzywi - 6.0

Table B.5: FCH4 model statistics, Year 2 SCdra. RMSE, BE and MAE in nmol m-2 s-1.

MLR MDS MLP RBF GRNN
r 0.95 0.91 0.99 0.97 0.99
RMSE 9.47 12.57 5.05 7.23 4.63
AIC 14403.28 - 10806.58 15619.14 75774.42
BE 0.00 0.28 -0.04 0.21 0.13
MAE 6.45 8.34 1.91 4.56 2.52
scaling exponent -1.01 -0.89 -1.03 -1.04 -1.03

Figure B.7: Results of MDSQC with Year 2
FCH4 from SCrew.

Figure B.8: Quality of Year 2 FCH4 from SCrew
values within MDS gap-filling.
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Table B.6: FCH4 model statistics, Year 2 SCrew. RMSE, BE and MAE in nmol m-2 s-1.

MLR MDS MLP RBF GRNN
r 0.96 0.94 0.99 0.98 0.99
RMSE 9.69 11.26 4.40 6.91 4.91
AIC 10463.63 - 7297.34 12295.15 47269.75
BE 0.00 0.73 0.00 0.27 0.24
MAE 6.92 7.31 1.61 4.32 3.05
scaling exponent -1.03 -1.05 -1.08 -1.10 -1.02

Figure B.9: Development of the input matrix
condition number throughout variable selec-
tion for Year 1 SCdra FCH4 gap-filling.

Figure B.10: Development of the input ma-
trix condition number throughout variable se-
lection for Year 1 SCrew FCH4 gap-filling.

Figure B.11: Development of the input ma-
trix condition number throughout variable se-
lection for Year 2 SCdra FCH4 gap-filling.

Figure B.12: Development of the input ma-
trix condition number throughout variable se-
lection for Year 2 SCrew FCH4 gap-filling.
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Figure B.13: Scatter plots of all Year 1 FCH4
SCdra models vs. target fluxes.

Figure B.14: Scatter plots of all Year 1 FCH4
SCrew models vs. target fluxes.

Figure B.15: Scatter plots of all Year 2 FCH4
SCdra models vs. target fluxes.

Figure B.16: Scatter plots of all Year 2 FCH4
SCdra models vs. target fluxes.
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Table B.7: Input selection result (bold: in fi-
nal Matrix) for Year 2 FCH4 from SCdra

Timelag Score
Lwout 2.5 7.0
Rg 1.0 2.0
Pair 7.5 1.0
slopePair 4.0 2.0
VPD 3.0 8.0
Tair 3.5 6.0
WT -2.5 4.0
TSoil40 -5.0 8.0
TSoil2 5.0 7.0
TSoil5 -5.5 8.0
TSoil10 -2.5 7.0
TSoil20 1.5 6.0
Redox2 2.0 7.0
Redox5 1.5 5.0
Redox10 1.0 8.0
Redox20 2.0 6.0
Lwout #lag - 5.0
Rg #lag - 1.0
Pair #lag - 1.0
slopePair #lag - 0.0
VPD #lag - 6.0
Tair #lag - 5.0
WT #lag - 6.0
TSoil40 #lag - 8.0
TSoil2 #lag - 7.0
TSoil5 #lag - 7.0
TSoil10 #lag - 8.0
TSoil20 #lag - 7.0
Redox2 #lag - 7.0
Redox5 #lag - 8.0
Redox10 #lag - 7.0
Redox20 #lag - 6.0
CCveg,E - 12.0
CCdra - 3.0
fuzzymo - 9.0
fuzzyaf - 8.0
fuzzyev - 7.0
fuzzyni - 6.0
fuzzysu - 10.0
fuzzywi - 7.0

Table B.8: Input selection result (bold: in fi-
nal Matrix) for Year 2 FCH4 from SCrew

Timelag Score
Lwout 0.5 6.0
Rg 0.0 6.0
Pair 11.0 1.0
slopePair -4.5 1.0
VPD 2.5 8.0
Tair 2.0 6.0
WT 7.0 8.0
TSoil40 -5.5 7.0
TSoil2 4.0 7.0
TSoil5 -5.5 8.0
TSoil10 -2.5 6.0
TSoil20 2.0 8.0
Redox2 2.0 6.0
Redox5 0.0 6.0
Redox10 0.0 8.0
Redox20 1.0 8.0
Lwout #lag - 5.0
Pair #lag - 1.0
slopePair #lag - 3.0
VPD #lag - 5.0
Tair #lag - 6.0
WT #lag - 8.0
TSoil40 #lag - 7.0
TSoil2 #lag - 7.0
TSoil5 #lag - 7.0
TSoil10 #lag - 6.0
TSoil20 #lag - 7.0
Redox2 #lag - 8.0
Redox20 #lag - 7.0
CCveg,W - 12.0
CCrew - 3.0
fuzzymo - 9.0
fuzzyaf - 7.0
fuzzyev - 7.0
fuzzyni - 7.0
fuzzysu - 9.0
fuzzywi - 12.0
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Appendix C

Surface class view carbon dioxide
flux gap-filling suplementary
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Figure C.1: Results of MDSQC with Year 1
FCO2 from SCdra

Figure C.2: Quality of Year 1 FCO2 SCdra val-
ues within MDS gap-filling.

Figure C.3: Results of MDSQC with Year 1
FCO2 from SCrew

Figure C.4: Quality of Year 1 FCO2 SCrew val-
ues within MDS gap-filling.
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Table C.1: FCO2 model statistics, Year 1 SCdra. RMSE, BE and MAE in µmol m-2 s-1.

MLR MDS MLP RBF GRNN
r 0.56 0.72 0.89 0.86 0.92
RMSE 0.93 0.78 0.52 0.57 0.46
AIC -479.00 - -4464.25 -2980.99 41849.63
BE 0.00 0.01 -0.00 -0.00 -0.01
MAE 0.60 0.41 0.23 0.28 0.22
scaling exponent -0.99 -0.74 -1.11 -1.09 -0.99

Table C.2: FCO2 model statistics, Year 1 SCrew. RMSE, BE and MAE in µmol m-2 s-1.

MLR MDS MLP RBF GRNN
r 0.73 0.77 0.86 0.83 0.87
RMSE 1.20 1.13 0.90 0.98 0.88
AIC 1039.93 - -437.25 380.46 34843.43
BE -0.00 0.01 -0.00 0.00 0.02
MAE 0.84 0.75 0.52 0.62 0.54
scaling exponent -1.17 -0.87 -1.21 -1.15 -1.10

Figure C.5: Results of MDSQC with Year 2
FCO2 from SCdra

Figure C.6: Quality of Year 2 FCH4 SCdra val-
ues within MDS gap-filling.

135



Figure C.7: Results of MDSQC with Year 2
FCO2 from SCrew

Figure C.8: Quality of Year 2 FCO2 SCrew val-
ues within MDS gap-filling.

Figure C.9: Development of the input matrix
condition number throughout variable selec-
tion for Year 1 SCdra FCO2 gap-filling.

Figure C.10: Development of the input ma-
trix condition number throughout variable se-
lection for Year 1 SCrew FCO2 gap-filling.

Figure C.11: Development of the input ma-
trix condition number throughout variable se-
lection for Year 2 SCdra FCO2 gap-filling.

Figure C.12: Development of the input ma-
trix condition number throughout variable se-
lection for Year 2 SCrew FCO2 gap-filling.
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Figure C.13: Scatter plots of all Year 1 FCO2
SCdra models vs. target fluxes.

Figure C.14: Scatter plots of all Year 1 FCO2
SCrew models vs. target fluxes.

Figure C.15: Scatter plots of all Year 2 FCO2
SCdra models vs. target fluxes.

Figure C.16: Scatter plots of all Year 2 FCO2
SCrew models vs. target fluxes.
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Table C.3: Input selection result (bold: in fi-
nal Matrix) for Year 1 FCO2 from SCrew

Timelag Score
Lwout 1.5 8.0
Rg 0.0 8.0
slopePair -3.0 2.0
Pair 8.0 0.0
VPD 1.0 3.0
Tair 0.5 8.0
par 0.0 7.0
Lwout #lag - 8.0
slopePair #lag - 2.0
Pair #lag - 1.0
VPD #lag - 6.0
Tair #lag - 6.0
CCveg,W - 12.0
CCrew - 3.0
fuzzymo - 10.0
fuzzyaf - 11.0
fuzzyev - 8.0
fuzzyni - 11.0
fuzzysu - 9.0
fuzzywi - 12.0

Table C.4: Input selection result (bold: in fi-
nal Matrix) for Year 1 FCO2 from SCdra

Timelag Score
Lwout 1.0 8.0
Rg -0.5 7.0
slopePair 7.0 0.0
Pair 3.0 3.0
VPD 0.5 5.0
Tair 1.0 8.0
par -0.5 7.0
Lwout #lag - 7.0
Rg #lag - 7.0
slopePair #lag - 0.0
Pair #lag - 2.0
VPD #lag - 5.0
Tair #lag - 7.0
par #lag - 3.0
CCveg,E - 12.0
CCdra - 4.0
fuzzymo - 8.0
fuzzyaf - 9.0
fuzzyev - 9.0
fuzzyni - 6.0
fuzzysu - 12.0
fuzzywi - 12.0

Table C.5: FCO2 model statistics, Year 2 SCdra. RMSE, BE and MAE in µmol m-2 s-1.

MLR MDS MLP RBF GRNN
r 0.79 0.70 0.95 0.93 0.96
RMSE 1.23 1.24 0.59 0.75 0.59
AIC 1387.20 - -2874.21 -119.67 62060.46
BE 0.00 0.02 -0.00 -0.00 -0.01
MAE 0.92 0.79 0.34 0.51 0.39
scaling exponent -0.96 -0.80 -1.16 -1.11 -1.16

Table C.6: FCO2 model statistics, Year 2 SCrew. RMSE, BE and MAE in µmol m-2 s-1.

MLR MDS MLP RBF GRNN
r 0.83 0.83 0.93 0.88 0.94
RMSE 1.00 0.92 0.64 0.85 0.61
AIC 46.52 - -1811.23 77.57 44621.70
BE -0.00 0.03 -0.00 -0.00 0.02
MAE 0.70 0.61 0.34 0.58 0.41
scaling exponent -1.22 -0.83 -1.27 -1.03 -1.07
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Table C.7: Input selection result (bold: in fi-
nal Matrix) for Year 2 FCO2 from SCrew

Timelag Score
Lwout 2.0 5.0
Rg 0.5 5.0
Pair 12.0 0.0
slopePair 3.5 2.0
VPD 2.5 3.0
Tair 2.5 8.0
WT 6.5 5.0
TSoil40 5.5 5.0
TSoil2 4.0 7.0
TSoil5 -5.0 6.0
TSoil10 -2.0 6.0
TSoil20 2.5 5.0
Redox2 1.0 5.0
Redox5 1.5 7.0
Redox10 1.0 6.0
Redox20 1.5 6.0
par 0.5 5.0
Lwout #lag - 3.0
Rg #lag - 3.0
Pair #lag - 0.0
slopePair #lag - 1.0
VPD #lag - 2.0
Tair #lag - 7.0
WT #lag - 6.0
TSoil40 #lag - 5.0
TSoil2 #lag - 6.0
TSoil5 #lag - 5.0
TSoil10 #lag - 6.0
TSoil20 #lag - 7.0
Redox2 #lag - 7.0
Redox5 #lag - 6.0
Redox10 #lag - 6.0
Redox20 #lag - 6.0
par #lag - 8.0
CCveg,E - 12.0
CCdra - 3.0
fuzzymo - 6.0
fuzzyaf - 9.0
fuzzyev - 9.0
fuzzyni - 9.0
fuzzysu - 9.0
fuzzywi - 12.0

Table C.8: Input selection result (bold: in fi-
nal Matrix) for Year 2 FCO2 from SCrew

Timelag Score
Lwout 2.0 5.0
Rg 0.0 5.0
Pair 8.5 2.0
slopePair -2.5 0.0
VPD 2.5 3.0
Tair 2.0 8.0
WT 6.0 4.0
TSoil40 -6.5 7.0
TSoil2 3.5 8.0
TSoil5 6.0 8.0
TSoil10 -3.0 8.0
TSoil20 2.0 6.0
Redox2 -1.5 6.0
Redox5 0.0 3.0
Redox10 0.5 6.0
Redox20 1.5 5.0
par 0.5 2.0
Lwout #lag - 4.0
Pair #lag - 0.0
slopePair #lag - 1.0
VPD #lag - 4.0
Tair #lag - 6.0
WT #lag - 5.0
TSoil40 #lag - 7.0
TSoil2 #lag - 7.0
TSoil5 #lag - 7.0
TSoil10 #lag - 7.0
TSoil20 #lag - 7.0
Redox2 #lag - 5.0
Redox10 #lag - 5.0
Redox20 #lag - 6.0
par #lag - 8.0
CCveg,W - 9.0
CCrew - 3.0
fuzzymo - 8.0
fuzzyaf - 9.0
fuzzyev - 9.0
fuzzyni - 9.0
fuzzysu - 11.0
fuzzywi - 11.0
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