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CHAPTER 1
Introduction

This thesis splits into two parts concerning two problems in extremal combi-
natorics. In the first part we analyse thresholds for Ramsey-type properties in
random discrete structures (see Theorem 5 and Theorem 8). In the second part we
consider a generalisation of Dirac’s theorem on Hamiltonian cycles to hypergraphs
(see Theorem 12). For the basic notation which is not defined here we refer to the

textbooks by Diestel [10], Bollobas [4], and Bondy and Murty [5].

§1.1. SHARP THRESHOLDS

1.1.1. Thresholds for Random Graphs. In Part 1 we consider a question
on random discrete structures, in particular, in Chapter 3 on random graphs.
Random graph theory has its origin in the 1940s. In one of the first applications of
random graphs Erdés [12] proved the existence of a certain combinatorial object
for which no constructive proof is known until now.

Throughout the years the systematic study of random graphs grew into a field
within graph theory on its own. While random graphs were initially used as a tool
to prove existence results, Erdos and Rényi studied in a series of papers starting
in 1959 [13] random graphs as objects themselves. Their paper [14] from 1960
is considered one of the most important ones on random graphs. There they
investigate the so-called evolution of the random graph, i.e. they analyse how the
structure of a random graph changes if the density increases, e.g. they contribute
to answer questions such as “when is the random graph connected”. In general the
most common question is “for which density does the random graph with high

probability satisfy a given property”. For an overview about classic results we refer
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1.1. SHARP THRESHOLDS 2

to the books by Bollobés [3] and by Janson, Luczak, and Rucinski [32]. Nowadays
random graph theory is an established branch of discrete mathematics lying at
the focal point of graph theory, combinatorics, and probability theory.

In this thesis we use the binomial random graph model G(n, p) which considers
graphs with vertex set [n] = {1,...,n} where each edge appears independently
with probability p. Formally G(n,p) can be constructed by the following random
procedure. Let €2, be the set of all graphs with vertex set [n], let P(£2,) be
the powerset of €2,,, and let Pg(, ;) be a probability measure such that for each
graph G € Q, holds Pg(n)({G}) = p“9(1 — p) (5)=¢(®)_ Then G(n,p) is a short
hand notation for the probability space (£2,, P(2,), Pa(np))-

In this thesis we are interested in large graphs, which means we consider the
behaviour of the random graph for n — oo. Moreover, in our case p depends on n
and mostly in interesting cases lim,_,,, p(n) = 0 holds. Let A,, < 2, be a family of

graphs with vertex set [n] and let A = | J, . An. We then call A a graph property,

neN
e.g. for A, = {G € Q,: G is connected} we obtain the property that a graph is
connected (up to isomorphisms). In the following we will suppress the index n
in A, if it is clear which n is meant. We say that G(n,p) satisfies A asymptotically
almost surely (a.a.s.) if lim, ., P(G(n,p) € A) = 1, where we use the standard
notation P(G(n,p) € A) for the the term Pgn ) (An).

A key concept in this area is the so-called threshold function, that is for a given
property A a function p = p(n) such that

lim P(G(n,p) e A) = O tp=olp),

n—0o0

1, ifp=w(p).

This threshold function determines the critical value of p where the probability
that G(n,p) satisfies A “jumps” from zero to one. Note that a threshold function
is not unique as any multiplication with a constant would also yield a threshold
function. However, we talk about the threshold and often mean the order of

magnitude of a threshold which is unique. Note also that the definition of threshold
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consists of two statements. We refer to the statement “lim,, ., P(G(n,p) € A) =0
if p =o0(p)” as the O-statement and to “lim,_,, P(G(n,p) € A) = 1 if p = w(p)” as
the 1-statement.
As it turns out, most “natural” graph properties have a threshold, for example
it is easy to show that monotone graph properties have a threshold (see, e.g. [22]).
Consequently, this leads to the question whether this result is sharp or in other
words: Is it possible to improve p = o(p) and p = w(p)?
In this sense we define a threshold to be semi-sharp if there are constants
Ci = Cy > 0 such that
J%P(G(n,p) cA) - 0, ifp<Cop,
1, ifp=Cip
and sharp if for all e > 0

0, ifp<(1—¢)p,
lim P(G(n,p) € A) = ( )

n—o0

L, ifp=(1+¢e)p.

If a threshold is not sharp we call it coarse. For example the threshold for the
property “G(n,p) is connected” is a sharp threshold of order 10%, while for the
property “G(n,p) contains a triangle” it is %, coarse, and not even semi-sharp.

Concerning sharp thresholds only few results are known. The most important
work in this area was done by Friedgut [19] who basically characterised the graph
properties that do not have a sharp threshold as the ones that can be approximated
by local properties. In Part 1, Chapter 3 we will investigate the sharpness of
the threshold for some Ramsey-type properties of graphs. In Part 1, Chapter 4

we study the threshold for monochromatic Schur triples in colourings of random

subsets of the integers.



1.1. SHARP THRESHOLDS 4

1.1.2. Thresholds for Ramsey-type Properties. Ramsey theory is a
branch of extremal combinatorics which started in 1930 with Ramsey’s theo-
rem [42]. The finite version states that for all k,r € N there is ny € N such that
for all vertex colourings of the complete graph K, with r colours, where n > ng,
there exists a monochromatic Kj. There are also some other versions including
an infinite version, a version with edge colourings instead of vertex colourings or
versions with more general graphs then cliques. We define the following common
short notation G — (F')¢ that means: For each edge colouring of G with r colours
there is a monochromatic copy of F. When we talk about vertex colourings
we use v instead of e, however, in this thesis we are mainly interested in edge
colourings.

A common theme in recent years was the transfer of different results to a sparse
random setting, for example this was done for the classical theorems of Ramsey,
Turdn and Szemerédi (see, e.g. [8,25,46,52]).

Here we are interested in the threshold behaviour for Ramsey properties of
random graphs, in this thesis especially in the sharpness of a threshold for the
case of edge colourings. For the case of vertex colourings we refer to [23], where it

was shown that for strongly strictly balanced graphs F', i.e.

, : N — ()
VF' < F with v(F') > 1: o) =1 < o(F) = o(F')

the threshold for the property G(n,p) — (F)Y is sharp and it has order of

1/mq(F

magnitude n~ ), where

mi(F) = max {e(F")/(v(F')—1)}.

FICFu(F)>2

Heuristically a probability p = @(n_l/ ma(F )) yields that in average a fixed
vertex v should be contained in a constant number of copies of . Then for p = w(p)
we expect many copies of F' in the whole graph and consequently that somewhere

there should exist a monochromatic copy of F. On the other side if p = o(p)
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we expect only few copies of F' which should make it possible to find an F-free
colouring of G(n, p).

For the case of edge colourings the order of magnitude changes. For star forests
and an arbitrary number of colours r and d = A(F") the threshold coincides with
the threshold for appearance of a vertex of degree r(d — 1) + 1 which is of order

1

R Ce (see [14]). For other graphs which are not a star forest the threshold

depends on the msy-density
mo(F) = max{dy(F"): F' < F and e(F") > 1},

where

=L if (B > 2,

by = | e TUED )
1, it I/ =K,.

In [46] Ro6dl and Ruciniski proved the following semi-sharp behaviour of the

threshold (parts of the theorem had been shown before, see also [17], [40] and [45]).

THEOREM 1 (Rodl & Rucinski [46]). For all r = 2, for all graphs F that
are not a star forest the function p = p(n) = n=Y™2F) s the threshold for the
property G(n,p) — (F)¢. In fact, there exist constants C1 = Cy > 0 such that

0, if p < Coyn~V/m2(F),
lim P(G(n,p) — (F)?) = =
1, if p>= Cyn~Ym2),

Note that p = O(n~Ym2(F)) yields a similar behaviour as p = ©(n~1/m )
in the context of vertex colourings. We expect for each fixed edge e a constant
number of copies of F' containing e.

Overall, the order of magnitude for edge colourings is known for all graphs F'
and for all number of colourings » > 2. In contrast to this the question whether
the threshold is sharp seems to be much more complicated compared to the vertex

colouring case and only few results were proved.
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1.1.3. Sharp Thresholds for Ramsey Properties of Random Graphs.
In the before mentioned paper [23] Friedgut and Krivelevich showed that the

threshold for most trees and an arbitrary number of colours r > 2 is sharp.

THEOREM 2 (Friedgut & Krivelevich [23]). For all r = 2, for every tree T
which is not a star and in case of r = 2 not Py (a path of three edges), there exist
constants C; = Cy > 0 and a function p(n) = c(n)n=Y™E) with Cy < c¢(n) < Oy
such that

Jim B(Gn,p) (1 = 40 =
1, ifp=(1+¢e)pn).
In another involved paper Friedgut et al. showed that the threshold for a

triangle K3 (the complete graph on three vertices) and two colours is sharp.

THEOREM 3 (Friedgut, Rodl, Rucinski & Tetali [24]). There exist positive
constants ¢y and ¢; and a function c¢(n) with co < ¢(n) < ¢1 such that for all e > 0

we have

. . 0, ifp<(1—eg)e(n)n=2,
iy P(Gn,p) — (Ks)§) = a

1, ifp=(1+e)c(n)n V2,
Recently Friedgut, Han, Person and Schacht [21] developed in a paper on
arithmetic progressions in random subsets of the integers a method that works to
prove the sharpness for all bipartite graphs and two colours. We use this method

to show the following extension of [24] for arbitrary cycles. In particular, we

obtain a shorter proof of their theorem.

THEOREM 4 (Schacht & Sch.). For a cycle Cy of length k > 3 there exist
positive constants ¢y and ¢1 and a function c(n) with ¢y < ¢(n) < ¢y such that for

all e > 0 we have

, 0, if p<(1—e)e(n)n -2/,
7}1_1)130 P(G(n7p) e (Ck)g) =

1, ifp> (1 + g)c<n)n—(k—2)/(k—1)'
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In fact, our proof also works for a more general class of graphs. We say a
graph F is nearly bipartite if e(F) > 2 and there is a bipartite graph F” and some
edge e such that F' = F' + e = (V(F'), E(F’) u {e}). Related to the definition
of mo-density we call a graph strictly balanced if do(F') < do(F) for all F < F.
Note that all cycles are nearly bipartite since removing one edge yields a bipartite
graph, and they are strictly balanced. There are also other strictly balanced and
nearly bipartite graphs, for example there exist such graphs which result from a
cycle by adding some cords. Our main theorem which also implicates Theorem 4

is the following.

THEOREM 5 (Schacht & Sch.). For all strictly balanced and nearly bipar-
tite graphs F there exist positive constants ¢y and ¢y and a function c(n) with

co < ¢(n) < ¢y such that for all e > 0 we have

. 0, ifp< (1—e)e(n)nt/maP),
lim P(G(n,p) — (F)3) =

A 1, if p=(1+e&)c(n)n=t/mlF),

We will give the proof of Theorem 5 in Chapter 3. Similar to the proofs in [24]
and [21] the proof starts with a result by Friedgut and Bourgain given in [19] which
yields a characterisation of graph properties with a coarse threshold (remember
that coarse equals not sharp) as properties that can be approximated by local
properties. A second main tool that we use is the recent hypergraph container
theorem by Saxton and Thomason and by Balogh, Morris, and Samotij ([51], [1]).

We will present these main tools as well as some concentration results of probability

theory in Chapter 2.

1.1.4. Sharp Threshold for Monochromatic Schur Triples. In Ramsey
theory we are not only interested in graphs but also in other discrete structures.
For instance we can ask for integer value solutions of linear equations. Here one

prime example is the following theorem by van der Waerden.
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THEOREM 6 (van der Waerden 1927 [58]). For all integers r > 1 and k > 1
the following holds. For any partition F1 v ... w E,. = N of the natural numbers
there exists some j € [r]| such that E; contains an arithmetic progression of length
k, that means there exist a,A\ € N with X > 0 such that a + i\ € E; for all
1=0,...,k—1. OJ

We can consider arithmetic progressions as solutions of special linear equations,
for example a triple (z,y, z) with y = x + X and z = x + 2\ is a solution of the
equation = + z = 2y. The same can be done for longer arithmetic progressions,
in general an arithmetic progression of length k is a solution ¥ = (xy,...,z) of
the equation system x; + x;,0 = 22,41 for all e = 1,..., k — 2. Clearly this can be
expressed as a set of solutions of a homogeneous linear equation system given by a
matrix A and more generally we can ask for solutions of such an equation system
for arbitrary integer value matrices A.

We are also mainly interested in “non degenerated” solutions such that x; # z;
for all ¢« # j, which leads to the following definition. A matrix A is called
irredundant if there exists a solution & = (xy,..., ;) of A7 = 0 with x; # z; for
all ¢ # j. These solutions are called proper solutions.

Rado [41] found a characterisation when there are monochromatic solutions
of A¥ = 0. A Matrix A is called partition regular if for arbitrary » € N and
sufficiently large n every partition of [n] into 7 classes has a partition class that
contains a proper solution of A7 = 0.

All of these definitions and concepts can be done for [n] as well as for Z,,
the quotient ring Z/nZ. A related question is the following where we consider
arbitrary subsets of [n] respectively of Z,, of linear size instead of partitions. Which
matrices A satisfy that for all ¢ > 0 and sufficiently large n every subset of [n]
respectively Z,, of size at least en contains a proper solution of A¥ = 07 Matrices
that satisfy this condition are called density regular and it turns out that for
example the matrix corresponding to arithmetic progressions of length k is density

regular.
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Another natural linear equation is given by the matrix Agr = (1 1 —1)

which characterises triples (x,y, z) such that z + y = z. We call the set
{(z,y,2)en> y+2=2 or 2+z2=y or x+y=2z)

(and analogue for Z,, instead of [n]) the set of Schur triples and Schur proved in [54]
that for all r € N for every partition of [n] into r classes there exist monochromatic
proper Schur triples providing n is sufficiently large. In other words: On the one
hand he showed that Agr is partition regular. On the other hand it is clear that
Agr is not density regular since for example the set of all odd numbers up to n
does not contain a Schur triple. Note that in this thesis a triple (z,y, z) is called
a Schur triple if one element is the sum of the other two, independently of the
position of the elements in the triple.

Similar to questions in graph theory, theorems about solutions of linear equa-
tions had been transferred to a random setting that means to [n], or Z, ,, where
for some finite set I" we denote by [I'], the binomial random subset such that each
element of I' is contained in [I'], independently with probability p, and we use
the short hand notation Z,,, = [Z,],. As noted before we are interested in the
threshold behaviour which in some sense is determined by the “densest subset” of
a solution, similar to the m;-density in case of vertex colourings for graphs or the
mo-density in the case of edge colourings.

For an ¢ x k matrix A and a partition W v W = [k] of the columns of A, we
denote by Ay the matrix obtained from A by restricting to the columns indexed

by W. Then we define the density m 4 of A by

_ Wi-1
A= Wuwrf[%]),(\vv\ﬂ [W| — 1 + rank(Ayy) — rank(A)

?

where we use rank (A7) = 0 for W = @.
We define the arrow notation also for random subsets of integers, that means
for a subset X < [n] or X < Z, we write X — (A), if for any partition of X

into r classes there is a proper solution of AZ = 0 contained in one partition class.
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In [47] Rodl and Rucinski showed that irredundant, density regular matrices
have a semi-sharp threshold for the property [n], — (A), which is of order n=1/m4.
Friedgut, Rédl and Schacht verified the same semi-sharp threshold of order n=/m4
for all irredundant, partition regular integer matrices (see [25]). The special case
for Schur triples and two colours was shown in [26] before, where as short hand

notation we write ST instead of Agp.

THEOREM 7 (Graham, Rodl & Rucinski [26]). There exist constants
Cy = Cy > 0 such that the following holds.

0, ifp<Con™?,
lim P([n], — (ST)2) = m
1, ifp>=Cin 2.

Recently Friedgut, Han, Person and Schacht [21] verified the first sharp thresh-
old result in this area by showing that in case of two colours and arbitrary k € N
the threshold for Z,, , — (Ay)2 is sharp. The method used there also gives the, in
the graph section mentioned, sharpness concerning bipartite graphs.

We adapted the proof for the case of two colours and Schur triples, a non

density regular matrix. The main result in this section is the following.

THEOREM 8. There exist positive constants co and c¢; and a function c(n) with

co < ¢(n) < ¢y such that for all e > 0 we have

0, if p<(l—e)e(n)n=1?,
lim P(Z,,, — (ST)3) = (L=e)eln) 0

A 1, ifp=(1+e)c(n)n 12

This proof also uses some of the main tools of Theorem 5 from Chapter 2. The
details of the proof (which follows the same method as the proof in [21]) will be
presented in the second half of Part 1, in Chapter 4.
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§1.2. FORCING HAMILTONIAN CYCLES IN HYPERGRAPHS

In Part 2 of this thesis we consider minimum degree conditions that guarantee
the existence of Hamiltonian cycles in hypergraphs. A fundamental result in the

theory of Hamiltonian cycles is Dirac’s theorem from 1952.

THEOREM 9 (Dirac [11]). Every graph G on n = 3 wvertices with minimum

degree 6(G) = n/2 contains a Hamiltonian cycle. O

Here we want to investigate minimum degree conditions for hypergraphs. As
there are several ways to generalise the notion of minimum degree or of cycle,
we start with the following definitions. For a k-uniform hypergraph H = (V, E)
and 1 <s<k—1let Se (‘8/) We denote by deg(S) the number of edges that
contain S and by N(S) the neighbourhood of S, i.e. sets T' € (k‘:s) such that
T v S € E, consequently |N(S)| = deg(S). We call

5.(H) = min{deg S: S (Z)}

the s-minimum degree of H. Note that an ¢-minimum degree condition yields also
some useful information about j-minimum degree conditions if j < i since every
j-set is contained in some i-set. In general the opposite is not true.

Let ke Nand 1 < ¢ < k—1. An f-cycle is a k-uniform hypergraph C, if a cyclic
ordering of its vertices exists such that every edge of C, consists of k consecutive
vertices, the intersection of two consecutive edges (order given by the contained
vertices) is precisely ¢, and every vertex is contained in at least one edge. Note
that if 2¢ < k there are vertices which are contained in exactly one edge and
vertices that are contained in exactly two edges, while for £ = k£ — 1 each vertex is
contained in exactly k edges.

These definitions allow for different generalisations of Dirac’s theorem depending
on the choice of the minimum degree and the value of ¢ and a lot of work was
accomplished over the last 20 years (see e.g. [43] and the references therein). The

starting point in this area is a conjecture by Katona and Kierstead [33] that for all
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k = 3 each k-uniform hypergraph H on n vertices with d5_1(H) = (1/2 4 o(1))n
contains a Hamiltonian (k—1)-cycle. This conjecture was verified by Rodl, Rucinski
and Szemerédi ([48], [49]) by introducing a new method, the so-called absorbing
method. In the absorbing method one tries to find a special large cycle that contains
almost all vertices of H. Afterwards the cycle can be extended by local changes to a
Hamiltonian cycle. The difficulty in proving derives from the necessary preparation
for the properties of the almost spanning cycle, which allow to conclude the missing
vertices. We will also use this method in our proof and explain the details in
Part 2.

The same question can be asked for 1-cycles instead of (k — 1)-cycles. What
is the necessary degree condition? Kithn and Osthus [39] gave the answer for
3-uniform hypergraphs. Is do(H) = (1/4 + o(1))n then H contains a Hamiltonian
1-cycle. In a next step Han and Schacht gave in general an asymptotic version
for arbitrary k£ € N and ¢-cycles with 1 < £ < k/2 in [27] (see also [34]). In this
context asymptotic means that we can choose v > 0 in the next theorem arbitrary

small such that for sufficiently large n the degree condition is sufficient.

THEOREM 10 (H. Han & Schacht [27]). For all integers k = 3 and 1 < £ < k/2
and every vy > 0 there exists an ng such that every k-uniform hypergraph H = (V, E)

on |V| =n = ng vertices with n € (k — ()N and

5o (M) = (Q(kl_ 7+ 7) n

contains a Hamiltonian £-cycle. 0

The case ¢ = k — 2 is solved in [38] by Kiithn, Mycroft and Osthus. Recently
J. Han and Zhao [28] improved the last theorem to a sharp version, i.e. they
managed to remove . To get a feeling about the improvement from an asymptotic
to a sharp version it is useful to look at the so-called extremal case.

Consider an extremal example (i.e. one that maximises the number of edges)

of a k-uniform hypergraph H on n vertices that does not contain a Hamiltonian
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(-cycle. Tt is known that such hypergraph looks as follows (for simplicity assume

n e 2(k — ¢)N). Take a set A of size

— 1, aset B of size n — 572 + 1, and

Q(kn—z) 2(k—0)

let a hyperedge e be contained in F(#) if and only if e contains at least one vertex
from A. Then on one hand H does not contain a Hamiltonian ¢-cycle since each
edge has to contain at least one vertex from A. For 2¢ < k each vertex in an
(-cycle is contained in at most two edges and consequently it is not possible to
find (k — ¢)n edges that form a cycle such that each vertex contains an element

from A. On the other hand this hypergraph satisfies d_1(H) = (Q(kl—Z) — Ln, ie.

it is not possible to improve the degree condition to d;_1(H) = (m — v)n for

some v > 0 and arbitrary hypergraphs.

The proof of the sharp result is split into two cases. Either a hypergraph is
in some sense close to the extremal example shown in the last paragraph, which
yields some structure to work with, or it is not close, in which case it is possible
to use the asymptotic result by Han and Schacht. In Chapter 5, for this we define

the notion of (¢, £)-extremal graphs that are graphs which contain a set B of size

[2(/@—@—1
2((k—20)

n| with e(B) < £(}). We can think of “H is close to the extremal example”
as “H is (¢, &)-extremal for some small £ > 0”.

One of the natural questions in this field is to find s-minimum degree conditions
for smaller s, so the next step is to deal with s = £ — 2. Buf}; H. Han and Schacht
proved the 3-uniform case, which was later extended to the sharp version by J. Han

and Zhao [29].

THEOREM 11 (Buf}, H. Han & Schacht [6]). For all v > 0 there exists an nyg
such that every 3-uniform hypergraph H = (V, E) on |V| = n = ng vertices with
n € 2N and

7

contains a Hamiltonian 1-cycle. O

The extremal example for this condition remains the same and one can calculate

to which (k — 2)-minimum degree condition this leads. A quick estimation yields
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the following for a set S < B of size k — 2.

aeg(s) = 14151+ (151) = (M o) (5)-

It turns out that the corresponding minimum degree condition is sufficient. Our

main result is the following asymptotic version.

THEOREM 12 (Bastos, Mota, Schacht, Schnitzer & Sch.). For all integers k = 4
and 1 < 0 < k/2 and every v > 0 there exists an ng such that every k-uniform

hypergraph H = (V, E) on |V| = n = ny vertices with n € (k — ()N and

o0 () )

contains a Hamiltonian £-cycle.

In fact we show the following version for non (¢, ¢)-extremal hypergraphs.
Theorem 12 follows directly from Theorem 13 since for given ¢, k, and v we can
choose ¢ sufficiently small and n sufficiently large such that the degree condition

in Theorem 12 prevents the graph to be (¢, £)-extremal.

THEOREM 13 (Bastos, Mota, Schacht, Schnitzer & Sch.). For any 0 < & < 1
and all integers k = 4 and 1 < 0 < k/2, there exists v > 0 such that the following

holds for sufficiently large n. Suppose H is a k-uniform hypergraph on n vertices

with n € (k — )N such that H is not (¢, )-extremal and

Then H contains a Hamiltonian (-cycle.

Moreover, a proof for the sharp version is in preparation at the moment.
However, this will not be covered in this thesis. The proof of Theorem 13 will be

presented in Part 2.



Part 1

Sharp Thresholds



CHAPTER 2

Main Tools

Large parts of Chapter 2 and almost all of Chapter 3 are based on the Ar-
ticle [53], joint work with Mathias Schacht. Chapter 4 follows the same proof
strategy and uses the ideas from [21] as well as from [53].

In this chapter we present the main tools which are similarly used in both
parts about sharp thresholds, in Chapter 3 about nearly bipartite graphs and in
Chapter 4 about Schur triples. These tools are mainly Friedgut’s and Bourgain’s
criterion to characterise coarse thresholds and the recently developed hypergraph
container lemma by Balogh, Morris, and Samotij and by Saxton and Thomason.

Furthermore, we will recall some standard probabilistic estimates.

§2.1. FRIEDGUT’S CRITERION FOR COARSE THRESHOLDS

In [19] Friedgut characterised graph properties with a coarse threshold as those
properties that can be approximated by local ones. We use the following version
from [20, Theorem 2.4], where for a graph B and n > v(B) we define ¥, as the
set of all injective embeddings of B into the complete graph K.

THEOREM 14. Let A be a monotone graph property with a coarse threshold.

Then there ezist p = p(n), constants % >a>0,e>0,7>0, and a graph B
satisfying

(i) a <P(G(n,p) e A) < 1—3a and

(ii) P(B< G(n,p)) > T
such that for every graph property G with a.a.s. G(n,p) € G there exist infinitely
many n € N and for each such n a graph Z € G on n vertices such that the following

holds.
16
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(1) P(ZUh(B) e A) > 1—a«, where h € Vg, is chosen uniformly at random,
(2) P(Z U G(n,ep) e A) < 1—2a,

where the random graph G(n,ep) and Z have the same vertez set. O

Note that P(:) in (7), (i), (1), and (2) concern different probability spaces.
While in (7) and (#7) it concerns the random graph G(n,p), we consider h chosen
uniformly at random in (1) and the random graph G(n,ep) in (2).

Roughly the theorem can be read as: If A has a coarse threshold and p is in
range of the threshold, then there exists a small graph B (the “booster”) and for
infinitely many n a typical graph Z on n vertices with Z ¢ A such that the following
holds. Adding a random copy of B to Z increases the probability to maintain
property A more than adding epn? edges to Z. This is remarkable because B has
at most K? edges which is much less then epn? in typical applications. All in all
we can conclude that property A depends on the local property that the small
graph B is contained in G(n, p).

Also in [19] (see the appendix there) Bourgain gave a similar characterisation
for a more general setting than graphs, but with weaker conclusions. In particular,

for Z,, the theorem says.

THEOREM 15. There exist functions 6(C, 1) and K(C,T) such that the following
holds. Let p = o(1), let A be a monotone family of subsets of Z,, with

T < up,A) =P(ZppeA) <1—r1, (2)

and assume also p - %}’A) < C. Then there ezist some B < Z,, with |B| < K such

that
P(Znp € AlB € Zyy) > P(Zny € A) +6. 3)

OJ

In [20] it was observed that the proof of the last theorem in fact also yields

the following stronger version with more than one B.
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THEOREM 16. There exist functions §(C, 1), K(C,7) and n(C,T) such that
the following holds. Let p = o(1), let A be a monotone family of subsets of Z,, with

T<ulp, A) =PZ,peA) <1—71, (4)

and assume also p - %})’A) < C. Then there exist a family B of subsets of Z,, such

that
P(B < Zy,,, for some B € B) >n

and for all B € B holds |B| < K and

P(Zyny € AIB S Zny) = P(Zppe A)+ 6. (5)

We will use the last theorem in Chapter 4 about Schur triples.

§2.2. HYPERGRAPH CONTAINERS

We shall also use a recent result concerning independent sets in hypergraphs,
which was obtained independently by Saxton and Thomason [51] and Balogh,
Morris, and Samotij [1]. Here we will use the version from [51].

Let H be an (-uniform hypergraph on m = |V(H)| vertices. For a subset
o < V(H) we define its degree by

d(o) =|{ee E(H): o < e}].

For a vertex v € V and an integer 57 with 2 < 7 < ¢ we consider the maximum

degree over all j-element sets ¢ containing v
d9V(v) = max{d(c): ve o < V(H) and |o| = j}.

We denote by d = (|E(H)|/m > 0 the average degree of H and, following the

notation of [51], for 7 > 0 and j = 2,..., ¢ we set

1 .
== (9)
%; 7i-Imd ve;’}{)d )
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and

5. ) = 200 319703,

We write P(X) for the power set of X and denote by P*(X) = P(X) x --- x P(X)
the s-fold cross product of P(X). Then the hypergraph container theorem in the

version by Saxton and Thomason reads as follows.

THEOREM 17 (Saxton & Thomason [51]). Let H be an (-uniform hypergraph

on the vertex set [m] and let 0 < ¢ < % Suppose that for T > 0 we have both
8(H,7) < /120! and T < 1/1440%(. Then there exist a constant ¢ = ¢({) and a

collection J < P([m]) such that the following holds

(a) for every independent set I in H there exists T = (T,...,Ts) € P*(I)
with |T;| < etm, s < clog(1/e) and there exists a J = J(T) € J only
depending on T such that I < J(T) e J,

(b) e(H[J]) <ee(H) for all J € T and

(¢) log|J| < erlog(1/7)log(1/e)m. O

§2.3. PROBABILISTIC INEQUALITIES
We will frequently use the following standard probabilistic estimates (see for

example [32]).

LEMMA 18 (Markov’s inequality). Let X be a non-negative random variable

and a > 0, then

E[X]

P(X > a) <
(X >a) <=

0

LEMMA 19 (Chebyshev’s inequality). Let X be a random variable with finite

expectation and finite non-zero variance and let t > 0, then

Var(X)
2

P(|X —E[X]| = 1) <
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LEMMA 20 (Chernoff’s inequality). Let X be a binomial distributed random

variable and t > 0, then

2
P(|X —E[X]| > ¢) < 2exp <—2(E[Xt]+t/3)> .
Similarly, for e < 3/2 holds
P(X > cE[X]) < exp <—62 ]Eé[X]) . O

For Janson’s inequality we refer to [30] (see also [31]).

LEMMA 21 (Janson’s inequality). Let I', be a random subset of a finite set T’
and let § be a family of subsets of I'. Let 14 be the characteristic function for the

event AT, and X = ,.s1a be the number of elements of S that are contained

in I'y. Then
E[X]?
P(X =0) < -
(X' =0) exp< 5A )

where

A= > E[1,15]. O
A#BeS, AnB#0



CHAPTER 3

Nearly Bipartite Graphs

This chapter is based on [53], joint work with Mathias Schacht. Here we will
prove the first main result, Theorem 5. We start with a section about the main
lemmas, concepts and ideas of the proof. Afterwards we present the proof of
Theorem 5 in Section 3.2. The proof of the two main lemmas are finally presented
in Section 3.3 and Section 3.4, respectively.

The proof of Theorem 5 refines ideas from the work in [21] and also uses
Friedgut’s criterion for coarse thresholds [19] and the recent hypergraph container
theorem of Balogh, Morris, and Samotij [1] and Saxton and Thomason [51]. In
Section 3.1 we will reformulate Friedgut’s criterion and in addition we will state
the two main technical lemmas, Lemmas 23 and 24, which we will need in the
proof of the main result. Section 3.2 is devoted to the proof of Theorem 5 based
on these tools. In Section 3.3 and Section 3.4 we then prove Lemmas 23 and 24,
respectively. We close with a few remarks concerning possible generalisations of

Theorem 5 and related open questions.

§3.1. MAIN LEMMAS AND IDEAS OF THE PROOF

In this section we give an overview of the proof as well as an introduction
of the necessary concepts for the proof of the main result. In particular we will
present two probabilistic lemmas.

For definiteness we may assume that the vertex sets of K,, and G(n, p) coincides
with [n]. We use the following notation: For a graph B and n > v(B) we define
Up ,, as the set of all injective embeddings of B into the complete graph K,,. So ¥,

corresponds to the unlabelled copies of B in K,, and, clearly, |¥p,| = ©(n"?)).
21
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The starting point of the proof is the Rodl-Rucinski theorem, Theorem 1,
which establishes that n~/™2(") is the threshold for the property G(n,p) — (F)
for most graphs F. In view of Theorem 5 we restrict our discussion below to two
colours and to strictly balanced and nearly bipartite graphs F'. In particular, we
have my(F') > 1 for every strictly balanced and nearly bipartite graph F since
every nearly bipartite graph is required to have at least two edges by definition
and we defined dy(K3) = 1. The assumptions of Theorem 5 are never met by
forests F' and for sharp thresholds of Ramsey properties of trees we refer to [23].
Consequently in the following we can exclude all forests (some forests exhibit a
slightly different behaviour in this context see [32, Theorem 8.1] for details).

We will strengthen Theorem 1 and show that these thresholds are sharp. For
that we will appeal to Friedgut’s criterion (Theorem 14) for coarse thresholds and
to a recent structural result on independent sets in hypergraphs (see Section 2.2)
which play a crucial role in our proof. In Section 3.1.2 we introduce two somewhat
technical probabilistic lemmas needed for the proof of Theorem 5. Section 3.1.3
establishes the connection between independent sets in hypergraphs and colourings
of the edges of the random graph without monochromatic copies of the given

graph F' considered in our setting.

3.1.1. Friedgut’s Criterion for Coarse Thresholds. Below we reformu-

late Theorem 14 suited for our application.

COROLLARY 22. Let F' be a strictly balanced and nearly bipartite graph. Assume
that the property G — (F)§ does not have a sharp threshold. Then there exists a
function p(n) = c(n)n=V™2) with Cy < c(n) < Cy for some Cy, Cy > 0, there are
constants % > a >0 and e > 0, and there is a graph B with B - (F)§ such that
for infinitely many n € N and for every family of graphs G on n vertices with a.a.s.
G(n,p) € G there exists a Z € G such that the following hold

(1) P(Z 0 h(B) — (F)5) > 1 —a, with h € Vg, chosen uniformly at random,
(2) P(Z U G(n,ep) — (F)5) < 1—2a.
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Corollary 22 is just a reformulation of Theorem 14 in our context. We give the

details below.

PrROOF OF COROLLARY 22. Note that conclusions (1) and (2) of Corollary 22
are identical to (1) and (2) of Theorem 14 for the monotone graph prop-
erty A={G: G — (F)3}. Owing to Theorem 1 we infer that because of (7)
in Theorem 14 the probability p(n) must satisfy p(n) = c(n)n="/"2) where
Co < ¢(n) < C} for constants Cy, C; given by Theorem 1. It is only left to show
that B - (F')§ is a consequence of (7i) of Theorem 14.

Recall that it was shown in [44, Theorem 6] that if B — (F)5 then

m(B) = Zgg; > mgy(F'). Thus a standard application of Markov’s inequality yields
P(H < G(n,p)) = o(1) for every H with H — (F)§ and p = ©(n~Y/™(). Conse-
quently the graph B provided by Theorem 14 must satisfy B - (F)5, due to (i7)
of Theorem 14.

O

3.1.2. Main Probabilistic Lemmas. In this section we define an auxiliary
hypergraph H. The hypergraph H to which we will apply Theorem 17 depends
on the graph Z € G which will be provided by Friedgut’s criterion (Corollary 22)
applied for the strictly balanced, nearly bipartite graph F. For the verification of
the assumptions of Theorem 17 we will restrict the family G containing Z. Recall
that G can be chosen to be any graph property which is satisfied a.a.s. by G(n, p)
for every p with p = O(n=Y/™2)), In what follows we discuss the restrictions for
the family G (see Lemmas 23 and 24 below) and for that we introduce the required
notation.

Let Z and B be two subgraphs of the complete graph K,,. We say z € E(Z)
focuses on b e E(B) if there exists a copy of F'in Z U B which contains z and b.

We set

M(Z,B) = {z € E(Z): there is b € E(B) such that z focuses on b}.  (6)
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The pair (Z, B) is called interactive if E(Z)nE(B) = @, Z - (F)$, and B - (F)S,
but Zu B — (F)5. For a collection = < Up, of embeddings of B into K, the pair
(Z,Z) is called interactive if (Z, h(B)) is interactive for all h € Z. Furthermore,
a pair (Z,2) is regular if for all h € Z every z € E(Z) focuses on at most one
b e E(h(B)). We call h € Vg, reqular w.rt. Z if (Z,{h}) is regular. The
hypergraphs #H considered here are defined in terms of regular pairs (Z,Z).

For a pair (Z,Z) with Z < K, and = < Vg, we define the hypergraph
H = H(Z,Z) with vertex set

and edge set
EH)={M(Z,h(B)): he Z}.

For our presentation it will be useful to consider orderings of the edges of the
involved graphs and “order consistent” embeddings. For that we fix an arbitrary
ordering of E(K,) and an ordering of F(B). For an interactive and regular pair
(Z,Z) and h € Z we say that z € M(Z, h(B)) = {e1,...,e;} withe; <es < -+ < ¢
has index i if z = e;. Furthermore, we call (Z,=2) and H(Z,Z) index consistent if
for all ze E(Z) and all h,h' € Z with z € M(Z,h(B)) n M(Z,(B)) the indices
of zin M(Z,h(B)) and in M(Z,h'(B)) are the same. Let by < --- < byp) be
the ordering of the edges of B. Then the profile of M(Z,h(B)) is the function
7 [|[M(Z,h(B))|] — [e(B)] defined by m(i) = j if and only if e; focuses on h(b;).
Since the pair (Z, =) is regular, for each edge of H each e; focuses on at most
one h(b;) and, hence, the profile is well defined. We say (Z,Z) has profile 7
if all edges M(Z,h(B)) for h € = have profile 7. Note that in this case all
sets M (Z, h(B)) have the same cardinality and |M(Z, h(B))| is called the length
of the profile .

Having established this notation we now state the following technical lemma

which gives one part of the graph property G for the application of Corollary 22.
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Moreover, we shall also apply Theorem 17 which results in useful properties of the

hypergraph H(Z,Z) for Z € G and some appropriately chosen = < Vg ,,.

LEMMA 23. For all constants C; > Cy > 0, é >« > 0 and graphs F and B,
where F' is strictly balanced, there exist o/, 3,~v > 0 and L € N such that for every
p = c(n)n= V™) with Cy < c¢(n) < C a.a.s. Z € G(n,p) satisfies the following.
If

P(ZUh(B)— (F)3) >1—a«

then there exists =g, S Vg, with |25, = o/n?® and Z U h(B) — (F)§ for all
h € Zg,, such that the hypergraph H = H(Z,=Zg,,) is index consistent for some
profile w of length ¢ < L and there is a family C of subsets of V(H) satisfying
(1) log|C| < e(Z)'77,
(2) |C| = pe(Z) for all C € C and
(3) every hitting set A of H contains a C € C, i.e. for every A < V(H) with
enA# O forall e e E(H) there exists C € C with C' < A.

Note that in contrast to the assumptions of Theorem 5 for Lemma 23 it is
not required that the given graph F'is nearly bipartite. However, for the proof of
Theorem 5 we need another restriction on the family G (in Corollary 22) which
is satisfied a.a.s. by G(n,p) and makes use of the near-bipartiteness of F. For
a nearly bipartite graph I’ = F’ 4+ e we consider those pairs of vertices in K,
which complete a copy of the bipartite subgraph F’ in a given subgraph of G(n, p)
to a full copy of F'in K,. Hence, for a graph G < K,, we define the basegraph
Baser(G) < K,, with edge set

{{z,y}: IF" = G such that F’ + {z,y} forms a copy of F'}.

We require that for every relatively dense subgraph G’ of G(n,p) the basegraph
spans many copies of F' itself. More precisely, for a graph G on n vertices and a

nearly bipartite graph F' = F'+e and A\, > 0 we say G has the property T'(\, n, F')
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if for every subgraph G’ ¢ G with e(G’) = Ae(G) we have that the basegraph
Baser(G') contains at least nn"") copies of F.

Lemma 24 gives the second restriction for the family G for our application of
Corollary 22. Assuming that there is no copy of F' in the bigger colour class of Z,
Lemma 24 will be helpful to find a copy of F' in the intersection of Z n G(n,ep)

with the other colour class.

LEMMA 24. For all A > 0, C; > Cy > 0 and every strictly balanced and nearly
bipartite graph F there exists n > 0 such that for Con= /™) < p < Cyn~1/ma2(F)
the random graph G(n,p) a.a.s. satisfies T(A\,n, F).

3.1.3. Colourings and Hitting Sets. In this section we establish the con-
nection between hitting sets of the hypergraph H(Z,Z) and F-free colourings
of Z.

Recall that the definition of an interactive pair (Z, =) says that for every
embedding h € = < Vg, the graphs Z and h(B) are edge disjoint and Z —» (F))§
and B - (F)§ but Z U h(B) — (F)S. Let by,...,bx be an enumeration of E(B)
and fix an F-free colouring o: F(B) — {red,blue}. We copy this colouring for
every h € Z by setting o,: E(h(B)) — {red,blue} with o,(h(b;)) = o(b;) for
all i =1,..., K. Furthermore, let ¢ be an arbitrary F-free colouring of Z.

Since Z U h(B) — (F)$, the joint colouring of Z u h(B) given by ¢ and o,
yields a monochromatic copy of F' and this copy must contain edges of both
graphs, of Z and of h(B). Thus each edge M (Z, h(B)) of the hypergraph H(Z, =)
contains an e € E(Z) which focuses on some h(b) with b € E(B), where we have
p(e) = on(h(b)) = o(b). We say such an edge e € E(Z) (resp. vertex e € V(H)) is
activated by ¢, o, and h. We define the set of activated vertices by

A7 = A%(Z,2) = U{e € E(Z): e is activated by o, p and h} < V(H). (7)

he=
Note that by definition for an interactive pair (Z, Z) every edge M(Z,h(B)) of

H(Z,=Z) contains an activated vertex and, hence, the set of activated vertices A7
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is a hitting set of H(Z,=Z). In what follows we will use different colourings ¢ of Z
but we will always restrict to the same colouring ¢ of B.

Suppose that in addition we have a fixed ordering of FE(Z) and
E(B) = {by,...,bk}. Further suppose that the interactive pair (Z,Z) is also
index consistent with profile 7 of length ¢. In particular, the hypergraph H(Z, =)
is (-uniform.

It also follows from the definitions that for z € A7 n A7, for two colourings ¢
and ¢’ we have ¢(2) = ¢'(2). In fact, for 2z € A7 there exists an h € = such that 2
is activated by o, ¢ and h. Let i be the index of z in M(Z, h(B)), then z focuses
on h(br;)) and, therefore, ¢(2) = o(br;)). Repeating the same argument for ¢’,
we obtain from index consistency that ¢'(2) = o(brs)) = ¢(2). We summarise

these observations in the following fact.

Fact 25. Let (Z,Z) be an interactive, reqular and index consistent pair with
profile m and let o be an F-free colouring of E(B) and ¢ be an F-free colouring
of E(Z). Then

(A1) AZ(Z,E) is a hitting set of H(Z,=) and

(A2) for all F-free colourings @' of E(Z) and for all z € A7 n A7, we have

p(z) = ¢'(2). [

Now we are prepared to give the proof of the main theorem based on the

lemmas and theorems of this section.

§3.2. PROOF OF THE MAIN THEOREM

The starting point of the proof is Friedgut’s criterion (see Corollary 22) applied
to the contradictory assumption, that the Ramsey property G — (F')§ for a given
strictly balanced and nearly bipartite graph F' has a coarse threshold. For that
we define a family of graphs G having “useful” properties and Lemma 23 and
Lemma 24 show that a.a.s. G(n,p) displays these properties. Then Friedgut’s

criterion asserts for infinitely many n € N the existence of an n-vertex graph Z € G,
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a graph B (called booster), constants é > a > 0, ¢ > 0 and a family of embeddings
Uy, € Vg, with Z U h(B) — (F); for all h e Uy, and [Wp, | = (1 - a)|¥p,l,
but P(Z u G(n,ep) — (F)5) <1 —2a. The goal is to find a contradiction to the
last fact by showing P(Z u G(n,ep) — (F)5) = 1 — o(1).

Let ® be the set of all F-free colourings of Z. We have to show that for any
¢ € @ the probability to extend ¢ to an F-free colouring of Z u G(n,ep) is very
small. We are able to show that this probability is of order exp(—(pn?)). Now we
would like to use a union bound for all ¢ € . However, we have only little control
over |®| and the trivial upper bound 20(m*) s too large to combine it with the
bound from above exp(—£(pn?)) to obtain for P(Z U G(n,ep) - (F)5) a bound
of order o(1) by the union bound.

7?) classes such that two colourings

Instead we shall find a partition of ® into 2°¢
from the same partition class always agree on a large subset of Z. These subsets are
called cores. Then we will show that the colouring of ¢ restricted to the associated
core implies that ¢ is only with probability at most exp(—£(pn?)) extendible to
an F-free colouring of Z U G(n,ep). This allows us to use a union bound over all
partition classes to get the desired upper bound on P(Z u G(n,ep) - (F)5) of
order o(1).

For the definition of the cores we will appeal to the hypergraph H = H(Z, =)
which was defined in Section 3.1.2. Recall that V(#H) = e(Z) and hyperedges of H
correspond to embeddings of B in K,,, which are given by a carefully chosen subset
E < Uy, In fact, we shall select = < W5, in such a way that we can apply the
structural result on independent sets of hypergraphs by Saxton and Thomason [51]
to H (see Lemma 23). In fact, the cores then correspond to the complements
of the almost independent sets from J given by the Saxton-Thomason theorem
(Theorem 17). This yields a small family C of subsets of V(#), that means of

size 2°"*) " such that the elements C € C are not too small and every hitting set

of H contains at least one element from C.
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We then associate every F-free colouring ¢ of Z with a hitting set A7 of H (for
some F-free colouring o of B, see part (Al) of Fact 25) and thus we can associate
to each such colouring ¢ a core C' € C contained in A7. This allows us to define
the desired partition of the set of colourings ® using the “small” family of cores C.
Finally, we use the union bound to estimate the probability that there is an F-free
colouring of Z that can be extended to an F-free colouring of Z U G(n,ep) by o(1),
which contradicts P(Z u G(n,ep) — (F)5) <1 —2a. Below we give the details of
this proof.

PROOF OF THEOREM 5. Let F' = F’ + {a;, a2} be a strictly balanced, nearly
bipartite graph with F’ being bipartite and assume for a contradiction that the
property G — (F')§ does not have a sharp threshold.

We apply Corollary 22 and obtain a function p(n) = c(n)n=V/m) with
Co < ¢(n) < C; for some C; > Cy > 0, constants é >a >0, >0 and a
graph B with B - (F)5.

For these parameters we apply Lemma 23 and obtain constants o/, 3,y > 0
and L € N. Set A = (/2 and apply Lemma 24, which yields n > 0. Then
let G,, be the family of graphs G on n vertices that satisfy the conclusions of
Lemma 23 and Lemma 24 for the chosen parameters and ipn2 < e(G) < pn*

Since these properties hold a.a.s. in G(n,p), it follows from Corollary 22, that

there are infinitely many n € N for which there is some Z € G, satisfying

(R1) P(Z U h(B) — (F)3) > 1 —«, with h € ¥, chosen uniformly at random,
(R2) P(Z u G(n,ep) — (F)5) <1 -2«

as well as by Lemma 24
(T) Z has the property T'(\,n, F')

and
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Owing to Z € G,, and (R1) we can use Lemma 23 to find some =p, < Up,, of
size at least a/n? with Z U h(B) — (F)§ for all h € Zp,, such that the hypergraph
H = H(Z,Ep,) is index consistent with a profile 7 of length ¢ < L and such that
there is a family C of subsets of V(#H) with

(C1) log|C| < e(2)'7,

(C2) |C| = Pe(Z) for all C e C and

(C3) every hitting set A of H contains a set C € C.

Our proof is by contradiction and we shall establish such a contradiction to
the assertion (R2).

Let ® be the set of all F-free edge colourings of E(Z) and pick an arbitrary
F-free colouring o of B. We want to split ® into “few” classes. For this we use the
correspondence between any colouring ¢ € ® and the hitting set A7 = A;(Z . EBn)

of ‘H given by part (A1) of Fact 25. Moreover, for C' € C we define
(I)C:{QOE(I)Z CQAZ}

Then ¢ = Jooe e (not necessarily disjoint) since by (C3) for every ¢ € ® the
hitting set A7, contains some C' € C and hence ¢ € ®¢.

Part (A2) of Fact 25 asserts that ¢(z) = ¢/(2) for all z € A7 n A7, and
colourings ¢, ¢’ € ®. In other words, all colourings in ®- agree on C' and,
hence, there exists a monochromatic subset Ro < C, say coloured red, of size at
least |C/2 = Be(Z)/2 = Xe(Z) (see (C2) and the choice of A). For the desired
contradiction we add G(n,ep) to Z. We have to show that

P(Z U G(n,ep) - (F)5) = o(1).

For this purpose we find for all F-free colourings ¢ of Z an upper bound for the
probability that ¢ is extendible to an F-free colouring of Z U G(n,ep). For ¢ we
use only the colouring on the associated core C' © A7, instead of the colouring on
all edges of Z. In this way we can deal with all embeddings ¢ € ®¢ at once since

they coincide on C.
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Since the red colour class R contains at least \e(Z) edges it follows from
Property (T), that there are at least nn*"") copies of F' in the basegraph Baser(R¢)
of Ro w.r.t. F. In an F-free colouring of Z U G(n,ep) all edges in

Uc = G(n,ep) n Basep(R¢)

have to be coloured blue since every edge in Baser(R¢) completes a red copy of F”
in Re to a copy of F'. Consequently, ¢ cannot be extended to an F-free colouring of
Z UG(n,ep) if Ug spans a copy of F. However, since Baser(R¢) contains Q(n¥(F))
copies of F' and p = Q(n~"m2()) it follows from Janson’s inequality [30] (see
also [31]) that it is very unlikely that Uc is F-free. In fact, a standard application
of Janson’s inequality asserts that there exists some 7' = +/(g,n, Cy, C1, F') such

that
P(F & G(n,ep) n Baser(R¢)) = P(F & Uc) < exp (—7'7127%) . (8)

We then deduce the desired contradiction to (R2) by

P(Z v G(n,ep) = (F);) < |C] maxP(Ip e Do @ is extendible to Uc)
€
Qo (7)) - mas PP & Ue)
x exp (e rg?g( C
< exp (pn?)' ) - maxP(F ¢ Uo)
N cec ¢
®) o 1 o1
< «,

for sufficiently large n, since v > 0 and C, =, and ~' are constants independent

of n. This concludes the proof of Theorem 5. O

§3.3. PROOF OF LEMMA 23

The key tool to prove Lemma 23 is the container theorem (see Section 2.2).
We shall apply Theorem 17 to the hypergraph H(Z,Zg,,). In order to satisfy the

assumptions of Theorem 17 we may enforce some properties on the typical graph Z
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and the family of embeddings =g ,,. Firstly in Section 3.3.1 we will formulate some
properties on Z that hold a.a.s. for G(n,p) and which will turn out to be useful
for locating a suitable family of embeddings =g, € Vg, (see Section 3.3.2). In
Section 3.3.3 we finally check that for those choices the assumptions of Theorem 17

are satisfied by the hypergraph H(Z,Zp.,).

3.3.1. Some Typical Properties of G(n,p). Corollary 22 yields a family
of embeddings of B into K,. We restrict ourselves to regular embeddings with
foresight to the later parts of the proof. Actually we want that for every edge
e € E(Z) and every embedding h there is at most one b € E(B) such that e focuses
on h(b). In addition there should be exactly one copy of F' that contains e and h(b)

if e focuses on h(b). There are three ways such that this fails.

DEFINITION 26. Let F, B, Z be graphs with Z < K,,. An embedding h € ¥,
is bad (with respect to F' and Z) if one of the following holds

(B1) either there is a copy Fy of F' in Z U h(B) that contains at least one edge
of E(Z)~ E(h(B)) and at least two edges of E(h(B)),

(B2) or there are distinct copies Fy and Fy of F in ZUh(B) and edges e, f1 # fo
with e € E(Z) ~ E(h(B)) and e € E(Fy) n E(Fy), fi1, f2 € E(h(B)) such
that f1 € E(Fy) and fo € E(Fy)

(B3) or there are distinct copies Iy and Fy of F in Z U h(B) and edges e, f
with e € E(Z) ~ E(h(B)) and e € E(F\) n E(Fy), f € E(h(B)) and
f e E(F)n E(F).

Note that (B3) would be a special case of (B2) if we did not require f; # fo
there. However, for the later discussion it is better to distinguish these cases, and
the idea of excluding embeddings h because of (B3) will be used in the proof of

Lemma 23 (see Lemma 36).
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Fact 27. For F, B and Z let Eg, < VY, be a family of embeddings such that
properties (B1) and (B2) fail for every h € Zg,,. Then clearly the pair (Z,=Zp,,) is

reqular. O

We shall show that for the random graph Z = G(n,p) only a few embeddings
h € ¥p, are bad (see (Z5) in Definition 28 and Lemma 29 below), which enables us
to focus on regular pairs (Z,Zp,,). Moreover, we shall restrict to typical graphs Z,
which render a few more somewhat technical properties such as containing roughly
the expected number of some special subgraphs. We discuss those properties
below.

Let F_ be the family of spanning subgraphs of F' obtained by removing some
edge and for a graph G we denote by F_(G) the copies of the members of F_
in G. Furthermore, for an edge e € E(G) let F_(G, e) be those copies in F_(G)
that contain e. For e, ey € (V(QG)) let P(G, ey, ez) be the set of pairs (Fi, Fy) of

two edge disjoint subgraphs of G such that

e F} and F; are copies of (possibly different) spanning subgraphs of F', each
of which obtained from F' by removing two edges,

e the intersection V(F}) n V(F,) = {x1,2,...,2,} contains at least two
vertices, and

o Iy +{x1,22} + e and Fy + {1, x2} + ey are isomorphic to F.

For s = 2 let P,(G,e1,e2) < P(G, e1,€2) be the set of pairs as in P(G, ey, e5) such
that F} and F3; intersect in exactly s vertices. Note that for ¢ = 1,2 by definition
e; # {r1, 2} and e; is not required to be an edge of G.

These concepts lead to the following definition of “good” graphs Z, where we
impose that the sizes of the introduced families defined above are close to the
respective expectation in G(n,p). Then Lemma 29 states that a.a.s. G(n,p) is

indeed good for the right choice of parameters.
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DEFINITION 28. For graphs F' and B and constants D > 0, ( > 0, 6 > 0
and p € (0,1) we consider the set of graphs Gg (D, (,6) on n vertices that is
giwen by Z € Gp pnp(D,(,0) if and only if
Z1) pn* < e(Z) < pn?,

72) |F_(Z)| < Dn?,

73) |F-(Z,e)| < 2 for all e € E(Z),

74) |P(Z,e1,e2)| < ]% for all but at most D£?2 pairs of distinct edges
e1, e € E(Z) and

(Z5) {heVp,: his bad w.r.t. F and Z}| < LEETy

n(

(
(
(
(

The following Lemma shows that a.a.s. G(n,p) € Gp rnp(D,(,0) for D suf-
ficiently large and ¢ and ¢ sufficiently small (in fact, our choice of § will imply

pn’ — 0).

LEMMA 29. For every strictly balanced graph F', for every graph B, and

for all constants Cy, = Cy > 0 there are constants D > 0, ( > 0, and ¢ with

0 <d <min {m21(F), 1- m21(F)} such that for Con=Ym2(F) < p < Cyn~Vm2F) gq.s.

G(n,p) € gB,F,n,p(D7 Ca (S)

We will split the proof into two parts: First we consider (Z1)-(Z4) which deals
with subgraphs of Z (Lemma 30), and then we deal with the bad embeddings
considered in (Z5) (Lemma 32).

LEMMA 30. For constants C; = Cy > 0, a strictly balanced graph F', and p

and n with Con™ /") < p < Cin~Ym2E) the following holds. There exist

constants D > 0 and 0 with 0 < § < min {m21(F), 1— m21(F)} such that a.a.s. G(n,p)
satisfies the properties (Z1), (22), (Z3), and (Z4) with the parameters p, D, and §
and for the graph F.

For the proof of Lemma 30 we note that property (Z1) follows directly from
the concentration of the binomial distribution and (Z2) follows from (Z1) and (Z3).
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The proof of (Z3) will make use of Spencer’s extension lemma (Theorem 31 stated
below). Finally, (Z4) follows from a standard second moment argument. Below we
introduce the necessary notation for the statement of Theorem 31.

For a graph H and an ordered proper subset R = (z1,...,x,) of V/(H) the pair
(R, H) is called rooted graph with roots R. For an induced subgraph H' = H[S]
of H with {zy,...,2,} € S we say (R, H') is a rooted subgraph of (R, H). We
define the density of a rooted graph (R, H) by

e(H) — e(H[R])
v(H) —|R|

dens(R, H) =

Let V(H) ~ {x1,..., 2.} = {y1,...,y,} for some v = 1. For a graph G with

some marked vertices (2, ...,x,) an ordered tuple (y1,...,y,) is called an (R, H)-

)

extension of (2%, ,...,xl) if

e the y; are distinct from each other and from the 7,

o {7},y;} € E(G) whenever {z;,y;} € E(H) and

o {yz’,y;} € E(G) whenever {y;,y;} € E(H).
The number of (R, H)-extensions (v, ...,v,) is denoted by N(z},...,.). Finally,
we define mad(R, H) as the maximal average degree of a rooted graph (R, H) by

mad(R, H) = max{dens(R, H'): (R, H') is rooted subgraph of (R, H)}.

THEOREM 31 ([55, Theorem 3]). Let (R, H) be an arbitrary rooted graph and
let ¢ > 0. Then there exist t such that if p = n~Y/™dEH) (logn)V/t then a.a.s.

in G(n,p)
(1—¢e)E[N(2')] < N(z') < (1 +¢)E[N(z')]

forallx' = («,... 2!

) chosen from [n]. O

ProoF oF LEMMA 30. (Z1) This follows from an application of Chernoff’s

inequality, Lemma 20.
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(Z2) As already mentioned this property follows from (Z1) and (Z3). However,
here is a standard direct proof based on the subgraph containment threshold in
random graphs.

For F_ € F_ let X be the random variable that counts the number of copies
of F_ contained in G(n,p). Using that p = ©(n~/™()) combined with the

balancedness of F' yields

Moreover, by the definition of the 2-density the expected number of copies of every
non-trivial subgraph of F_ < F is of order Q(pn?) and tends to infinity for n — oo.
Consequently, X converges to E[X] in probability (see, e.g. [32, Remark 3.7]) and
we have P(X > 2E[X]) — 0 for n — co. Summing over all F_ € F_ yields the
claim.

(Z3) Consider a graph F_ € F_ and remove some edge {x,z2} from F_ and
call the resulting graph F_,. For e € ([g]) let X, be the random variable that
counts the number of copies of F_5 that build a copy of F_ by adding e and let X
be the random variable that counts the number of copies of F_5 contained in
G(n,p).

Now we can use Spencer’s extension lemma (Theorem 31). We consider the
rooted graph ((x1,22), F_). Let F be an induced subgraph of F_ such that
((x1,22), F) is a rooted subgraph of ((x1,22), F_) which maximizes the density
dens((x1, z2), a ). Since the graph F 2 F_ 2 F' is strictly balanced we have

e(F)—1

mao(F) > do(F') = m = dens((z1, x2), F') = mad((z1, x2), F_).

:_ij/>

Consequently, Theorem 31 applied with € = 1 implies a.a.s.

N (), ) < 2E(X,) = O(p" ) =2n»(7)-2)



3.3. PROOF OF LEMMA 23 37

for every ) # ), € [n]. Owing to p = O(n~/™2(")) and the (strict) balancedness
of F' we have that p*@n*") = ©(pn?) and, consequently, for sufficiently large D
the claim follows by summing over all choices of F_ € F_ and {x1, 25} € E(F_).

(Z4) We show that this property holds a.a.s. for

.
6 = min { o 1 - b | (9)

and some D > 0 independent of n. In the proof below we distinguish several cases.
In the first case we only look at configurations from Py(G(n, p), €1, €2). Afterwards
we consider configurations from Py(G(n, p), e1,ez) for s > 2.

Case 1: s = 2. For two pairs e; # ey € ([72‘]) let X, ¢, be the random variable
given by |P2(G(n,p), e, es)| and denote by vy and u; the elements of e; and by v
and uy the elements of e;. We want to use Chebyshev’s Inequality to obtain the
claimed bound for most pairs. Consequently, we estimate the expectation and
variance of X, .,. We distinguish between the cases e; N es = @ and |e; ney| = 1.

First let e; N ey = @. Since Con~ V™) < p < Cyn~Ym2F) and F is strictly

balanced we have n(¥)pe() = ©(pn?) and
nv(F)—2pe(F)—1 < Cle(F)—l ) (10)

For Fy < F with v(Fp) > 2 it follows from F' being strictly balanced that there is
some d > 0 only depending on F' and Cj such that

nv ) petfo) > gpp? . (11)
The expectation of X, ., is
(10) e(F)—
E[Xelm] < 6<F)4n2v(F)—6p26(F)—4 < e(F)4C'12 (F) 2n_2p_2 (12)

and E[X,, .,] — 0 for n tending to infinity since p = O(n~Y™2(F)) and my(F) > 1.

Now we estimate the variance of X,, .,. We will show

1
Var(Xe, e,) < _c <1 + )

n?p? " np?
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for some constant ¢ > 0 depending only on F', Cy and (. For this purpose let
(Fy, Fy) and (F, F;) be two different pairs of graphs that contribute to the number
"PQ(G(nJ))v €1, 62)‘ with

V(Fa) nV(Fy) = {1, 22}, V(E) 0 VI(Fa) = {y1, 92}
and
V(F,) nV(EF,) 2{ui, v} =e1, V() nV(F;) 2 {ug,ve} =es.

Recall that e; and e, are by definition of Py (G(n, p), e1, €2) not necessarily contained
in G(n,p) and they are not contained as edges in any of the subgraphs F,, F}, Fy,
and F; (where s = 2 is used). We denote by P2

e, e, the family of isomorphism types

of possible pairs ((Fy, F}), (Fe, Fy)) such that the conditions above are satisfied. If
it is clear from the context we will sometimes drop the subscripts e; and e; to
further ease the notation.

For Q = ((F., Fy), (Fe, Fy)) € P ., let S be the set of subsets of [n] of size
v(F, u Fy u F, U Fy) that contain uy, vy, ug, and vy. For S € Sg let 1g be the
indicator random variable for the event “there exists a copy of @ in G(n,p) on the
vertex set S”. Then

Var(Xel,@) < E[Xm,ez] + Z Z P(lg = 1) (13)
QEPZ, ., S€5Sq

For the estimation of the term 3, pe ZSGSQ P(1g = 1) we use the following

notation. For o, 5 € {a,b,c,d} and o € {U, n} we set
Vaop = V(Fp 0 Fp) and  eqp = e(F, 0 Fp),

where Fi, n Fg and F, U F3 denotes the normal union and intersection of two graphs.
Moreover, we can extend this to longer expressions of unions and intersections,
like v(ang)uy, and we will make use of this short hand notation in the calculations

below. We also set

Vanpg = Vo — Vang and Canpf = €a — Cang - (14)
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Note that e, g denotes the number of edges exclusively contained in F,,, which does
not necessarily coincide with e(F, —V(Fp)). We estimate X5 ps ZSesQ P(lg=1)
by counting the number of choices for the vertices of the desired conﬁguration and

determine the number of needed edges. Recalling that every @ € P, corresponds

o ((Fu, ), (Fe, F;)) we count those by first choosing (F,, F}), then FC and then Fy
and deal with the vertices and edges that are counted several times by looking at

the intersections between the different copies of F'.

> ¥ Pis=1

QeP? SeSq

< Z (4U(F>)' . n2U(F)_6p26(F)_4 . nvc\(aub)pec\(aub) . nvd\(aubuc)ped\(aubuc) (15)

QeP?

Z n 6 46 F) -8 n_ycn(aub)p_ecr\(aub) . n_vdﬁ(aubuc)p_edm(aubuc)
QeP?
2”2 _4 F) 2 e(F) ) vcr\(aub)p_ecﬁ(aub)n_vdn(aubuc)p_edr\(aubuc)
QeP?

(10)

< O Z n2p_4 . n_vcf\(aub)p_ecﬁ(aub) . n_vdr\(aubuc)p_edr\(aubuc) , (16)

QeP?

where C' > 0 is a constant depending only on F' and (. For the estimation of
fQ(HJP) = n2p74 . nfvcﬁ(avb)pfecm(aub) . nfv(aubuc)ndpfe(aubuc)md (17)

we distinguish several cases depending on the structure of Q).

First we consider terms in (16) with {zi,2o} < V/(F,). Since
{1, 29,01, w1} S V(F,nF.) and F, n F. < F, < F we also know that
Fy = (F, n F.) 4+ {x1, 22} + 1 < F. Therefore,

1 p? (2) p? D
n’Uar‘\cPear\c n’U(Fo)pE(FO) = dan B dn2 )
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Similarly, (F, N F.) + {x1, 22} € F and ((F, U Fp, U F.) 0 Fy) +{y1,y2} +e2 S F.
The same argument yields
1 B 1 1 _ b

1 .
n“bmcpebmc = dn2 a d nv(aubuc)r\dpe(aubuc)md = dn2

Applying these bounds and the facts that v4qpne < 2 and egqpne = 0 to (17)
yields

fQ(n7p) — n2p74 . nfvamcpfeanc . nfvbm(;pfebmc . nvambr‘\c . nfv(aubuc)mdpfe(aubuc)md

n2p74.i.i.n2.iz;
dn? dn? dn?  d3p?n?-

N

(18)

By symmetry we obtain the same estimate in the case that {z;, 22} < V(F;) and
in the remaining case we may assume
() |V(F,) n{x1,22}] <1 and |V(Fy) n {z1, 22} < 1.
Next we consider those terms in (16) with (I) and vp~. = 2. By (I) we have
Varbne < 1. We proceed in a similar way as above. This time we use that
(F, n F.) + e; € F and similarly that ((F, u Fy U F.) 0 Fy) + es + {1,192} S F

and, therefore,

1 w1 . 1 W p
/n/'l)amcpeamc = an an nv(aubuc)mdpe(uubuc)md = dnz ’

Moreover, since we assume vy~ = 2 we can apply (11) with Fy = F, n F,
1 1
< .
nvbmcpebr\c dpn2

Combining these bounds with (17) and vgnpne < 1 and egqpne = 0 yields

—4 . nfvaﬁcpfeaﬁc . nfvbmc]?*ebﬁc -n - nfv(aubuc)r\dpfe(aubuc)md

fQ (n?p) < n2p
o 4 1 1 n. P _ 1
dn?  dpn? dn?  dBp*n3’

Next we consider the subcase of (I) when

Upne = 1 and V(F.) n{xy, 20} = 2.
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Then we have ep~. = 0 and v4pne = 0. Since (F, n F.) + e € F and
((Fa u Fj, u FC) N Fd) + e9 + {yl,yg} c F we get

11 . 1 w p
nvar\cpear\c = dn2 an n”(aubuc)r\dpe(aubuc)r\d = dn2 ’

Consequently, in this case we have

fQ(n;p) — n2p*4 . n*”ar\c*mec+Uambmcfv(aubuc)mdp*eaﬁc*ebmc+eambmc*e(aubuc)r\d

< n2p*4 A n*’l)amcp*eaﬁe . nfl . nfv(aubuc)mdpfe(aubuc)md
1 P 1
2 —4 -1 _

ST GE Y kT g (20)
For the last remaining cases we consider summands in (16) with (I) and
(A1) either vy~ = 1 and V(F.,) n {x1,22} # @ (and, hence,

V(E) nV(F) < {21, 22}),
(A2) or vy~ = 0.
In both cases together with (I) we get
vbm(auc)md = |{$1,$2} M V<Fd)’ < 1. (21)

Based on (21) we treat both subcases in same way. We consider

((Fa ) Fb) N FC) +e1 © F, (Fb N Fd) +e CF and ((Fach>ﬂFd)+{y1,y2} CF

and get
1 (2) 1 1 (2) 1 d 1 (2) 1
aln
nv(aub)mcpe(aub)mc = dn2 ’ n’l)bmdpebﬁd = d/n/2 nv(auc)r\dpe(auc)ﬁd = dn2 ’

which leads to
fQ(n p) — n2p74, nfv(aub)r\cfvbmdfv(auc)md+vbm(auc)md, pfe(aub)mcfebﬁdfe(auc)md‘i'ebr\(auc)md
Y

(21) 2 —4 - —e -, —e —v —e
g n p -n (aub)r\(;p (aub)me . n bmdp bnd n (auc)mdp (avc)nd . n

et (L) no L (22)
= dn?2 d3p4n3'
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Using the bounds from (18), (19), (20) and (22) and pn — o« for n — oo we
summarize that there are constants ¢’, ¢ > 0 only depending on F,Cy and C; such
that for sufficiently large n

fQ(n,p)éc'( ! + ! )

p?n2 | pind

Since the sum in (16) has finitely many summands, together with (13) and (16) it
follows that

Var(X,,.,) < p;nz (1 + len) . (23)
Recall that we want to show that there are at most Dpn?n~? pairs of edges

e1, ez in G(n,p) so that X., ., > Dp~'n~° for some constant D > 0 independent

of n and § > 0 chosen in (9). For this purpose we use Markov’s Inequality and

Chebyshev’s Inequality. Let t = p~'n =, then Chebyshev’s Inequality tells us

< Var(Xe, e,) '

P(Xevr = B[ Xeper] +1) <~y

Let X be the number of pairs (e, es) € (E(QZ)) with X, ., = 2p~'n % and

e Ney = @. Since E[X,, .,] <t we have

2
B < (7 )P > Bl 40 (21)
2.4 2,26
pnt cp'n 1 15 s 1
< : 1+ — ) == 1+—. 25
2 pn? ( +np2> 2" e (25)

We distinguish the cases n™!p™2 > 1 and n='p~2 < 1. For n=!p~2 > 1 we have

for sufficiently large n

1426 225
<en'™ < pnt

where the last inequality follows from our choice of § < %(1 — m;( F)).

For the case n~!'p~2 < 1 we have for sufficiently large n



3.3. PROOF OF LEMMA 23 43

where the last inequality follows by the choice of § < m. Consequently,
E[X] < pn?~2 and by Markov’s Inequality

E[X] _ s
5 <n

P(X > pn® %) <
(X >pn?) =

thus a.a.s. X < pn?7%. For sufficiently large n this finishes the case e; N ey = @.
It remains the case when |e; N ey| = 1. Now let e, eq € ([Z]) with |e; N es| = 1.

We repeat essentially the same calculations of the first case e; N es = @ with the

following differences.

in (12) we get

e For the expectation of X, .,

E[X,,.,] = o( ! ) |

np?

e For the variance we will show

1
Var(Xe, e,) < ¢ <1+ ) :

np? \" - np?
In the calculation of the variance there is essentially one difference com-

pared to the case e; N es = &. In (15) we get
Vaub — |{x1, X2} U {v1,u1} U {vg, us}| < 20(F) — 5

instead of 2v(F') — 6 which leads to an additional n factor. This n factor

carries over to

fQ(nap) = ngp_4 . n_vcm(aub)p_ecm(aub) . n_v(aubuc)mdp_e(aubuc)md (26)

in (17).
For the following case distinction we repeat in the case {x1, 22} < V(F})

the calculation, but keep the additional n factor. Consequently we get

in (18)
fatnn) =0 (5

p*n
Similarly we get with the additional n factor in (19)

fatnp) =0 (i)

p4n2
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The case vy~ = 1 and V(F,.) n {z1,22} = @ disappears since F}
and F, intersect at least in e; N ey S {x1,x2}. For the same reason the
case Up~e = 0 disappears. For the last remaining case in (22) we get again
the same bound with an additional factor of n

1
fo(n,p) =0 oz )
Consequently
c 1
Var(XeLCQ) < nip2 (1 + pr2) .
e The expectation still satisfies E[X,, .,] < t for the same choice of
t=ptn=° This follows since E[X, .,] = O(:%), t = p:ﬁ and

e 1
b<1-— #(F)

e Let X’ be the number of pairs (e, e5) € (E(QZ)) satisfying X, o, = 2p~n=°
and |e; nep| = 1. We know by the condition |e; nep| = 1 that X' < 2p*n?,
thus we get with X’ instead of X in (24) a factor of 2p?n? instead of (pZQ)
which results in a factor of n=! compared to the first case. Consequently
the n~! factor cancels with the n factor above which leads to the same
order of magnitude in (25). Then the rest of the proof is the same as in

the first case.

Setting D’ > 2 sufficiently large such that 2p~'n=% < %6”2 then yields

D/
Z < — 27
P2(Z, 1, €2)] e (27)
for all but at most 2 ;ﬁ;”z pairs of edges e, ey € E(Z).

Case 2 : s > 2. We consider for s > 2 configurations from Ps(G(n, p), €1, €2),

[n]

2) let Y., ., be the random variable given by

so for two pairs e; # ey € (
|Ps(G(n,p),e1,ex)|. Here it is sufficient to use Markov’s inequality instead of
Chebyshev’s inequality which will allow us to avoid the calculation of the variance,

but we still have to distinguish the cases e; n ey = @ and |e; N ey] = 1.
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For the first case let e; n ey = &. The expectation of Y, ., is

(10 _
E[}/el,eg] <e(F)4n2v(F)f4fsU(F>sp2e(F)f4 <)€(F)4U<F)scl26(F) anspr SCf/n73p72

with C' = e(F)4v(F)SCfe(F)—2, We use Markov’s inequality and get
1
P (Yeuez = 5) <Cn3p~2.pn® = C'p~In T3,
pn

Let Y be the number of pairs ey, e; € E(Z) with e; neg = @ and Yy, ., = p~tn°.
Then

2 ! prn 146
E[Y] < <p7; >Cln—3+6p—1 < Cp;l

and a second use of Markov’s inequality yields

/ 1+0
2—6) < C pn

=o0(1)

= 2pn2-9
where the last inequality follows from our choice 6 < 1/2 and for sufficiently
large n.

We repeat the same proof for the case |e; ney| = 1 with the following differences.

e E[Y,, e,] < C"n?p~2 for some C” > 0.
o P(Yoren = 35 ) <O
o E[Y] < 2p*n3C"p~In=210 < 2C"pn'*°,

« P(Y = pn*%) < 22205 — o(1),

Consequently for all s = 3 we have |P,(G(n, p), e1, )| < p~in~° for all but at
most pn?~? pairs of edges ey, ey € E(Z). Together with (27) this concludes the
proof of (Z4) and finishes the proof of Lemma 30. O

The next lemma concerns property (Z5), which bounds the number of bad

embeddings as defined in Definition 26.

LEMMA 32. For all graphs B and all strictly balanced graphs F', for all
Cy=Cy>0 and for Con= ) < p < Cyn~ V™) there exists ¢ > 0 such

that a.a.s. G(n,p) satisfies (25).
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Proor or LEMMA 32. We shall show that there exist a £ > 0 such that for

any given h € g, we have for sufficiently large n
P(h is bad w.r.t. F and G(n,p)) <n%.

Then the lemma follows from Markov’s inequality with ¢ = £/2.

Let h € U, be fixed. We first consider the case that h is bad w.r.t. F' and
G(n,p) because of (B1). Since F is strictly balanced, for all proper subgraphs
Fy & F with e(Fy) = 2 we have

e(Fo)nv(Fo) _ 2 e(Fo)—lnv(FO)—2

p pn--p

2 CS(FO)—lnfm(e(F0)71)+v(F0)72

2 cetF) 1 ) 1) (U ~ b

> Cg(Fo)—ln(e(Fo)*l)(@%Fo)*ﬁ)

2.p¢ (28)

for some & > 0. We bound the probability for h being bad because of case (B1)
by estimating the number of configurations leading to this event. In this case Fj
stands for the part of F' that is contained in h(B) and hence consists of at least

two edges. Using again nv®)=2pe)=1 < ¢! vields

P(hisbad by (B1)) < > o(B)"F)nr(F) (o) pelf)=e(Fo)
FQQF,e(FQ)ZQ
(28) Fo) re(F)—1_ g/ _
< Z v(B)" POy n <t

F()QF,G(F())BQ
for some & > 0 and sufficiently large n.

When we address the case (B2) we can assume that h is not bad because of
case (B1). Hence, it suffices to consider copies F; and F; of F' each intersecting
h(B) in precisely one edge and Fy := F; n Fy having no edge in h(B). Again
we will use nv@)=2pet=1 < CCFI71 4nq that nvE)pe) > dpn? for Fy < F with

e(Fy) = 1 for some d > 0 only depending on F' and Cj (see (11)). Note that two
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fixed edges of h(B) determine at least three vertices of Fy U Fy.

P(h is bad by (B2) and not by (B1)) < ) wv(B)*p?(F)-vo)=8p2e()—e(fo)=>

FocF
E(Fo)Zl

< Y u(B)crt? "

- pe(Fo)nv(Fo)
< Nupyicrn L
= 1

o dpn

< ZU(B)4C'126(F)_3d_1n7(17m21<F)) <n%
Fo

for some & > 0 since mo(F) > 1.

For case (B3) we assume that & is not bad because of case (B1) or case (B2).
Again we bound the probability by the expected number of options to obtain a
configuration as in (B3). In this case Fj stands for the intersection of two different
copies of F' and includes at least two edges, e and f from (B3), where f is also

contained in h(B).

P(h is bad by (B3) and not by (B1) or (B2))

2, 2v(F)—v(Fp)—2,.2e(F)—e(Fp)—1

< v(B)n P
Foc F
e(F0)>2
2e(F)—2 1
< D uBPOr ot
Fo p=n
(2<8) -

for some & > 0 and, hence, P(h is bad) < n™ for any 0 < £ < min{¢;, &, &3} and

sufficiently large n. O

3.3.2. Restricting Embeddings of B. In this section we focus on restricting
the family W, of all embeddings B in K, to a suitable subset =p,, so that we
can apply Theorem 17 for the proof of Lemma 23. In particular, our choice

of Ep,, will ensure conditions on the maximum degree and maximum pair degree
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of H = H(Z,ZEg,). For the control of the pair degree of H the following definition

will be useful.

DEFINITION 33. For a pair of edges ey,es € FE(Z) and an embedding
heZpn < Vg, we write e; ~, e if e; and ey both focus on h(B). Moreover, if e;
and ey focus jointly on only one edge of h(B), then we write e; ~p, e5. We denote

by cz,., (€1, €2) the number of h € Zp,, such that e; ~j, ;.

In the next definition and lemma we define the properties of the desired family

of embeddings.

DEFINITION 34. Let F, B be graphs and let o« > 0. We call a family
ZBn S Vg, of embeddings of B into K,, a-normal if the following conditions
are satisfied.

(N1) |Z5.,| = an® and

(N2) |[V(h(B)) n V(K(B))| <1 for allh # I € Zg .

1

LEMMA 35. Let F' and B be graphs. For all constants 3 > a > 0, D > 0,

L} >8>0, and C; > Cy > 0 there exists ng € N

ma(F)
such that for all n = ng and Con™ /"2 < p < Cyn= "2 the following holds.

If Z € Gg pnyp(D,(,6) and

1> ¢ >0, min{, 7,1 -

P(ZUWB)— (F);)>1—a

where h € Y, chosen uniformly at random then there exists EOBn c Up, such

that

1

BB E) > Vs

=%, is d-normal for & = A(B) =

Z U h(B) — (F); for all he 2%,
2

h is not bad w.r.t. F and Z for all h e 2%, (see Definition 26), and

(Z25) for all h e E%,, we have E(h(B)) n E(Z) = &.

(21)
(22)
(E3) for all pairs {e1, es} € (E(Z)) we have CE%,n(el’ e2) < zﬁ’
(24)

A family 2%, is (&, Z)-normal if it satisfies conditions (21), (22), (23), (24),
and (Z5) for a given Z € Gp pn (D, (. 9).
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Proor or LEMMA 35. Given F, B and the constants as above we set

1
13v(B)*v(B)!"

Let Z € Gg pnyp(D, (,6) and suppose P(Z U h(B) — (F)3) > 1 —a.

a:

For the construction of 2%, we start with the family ¥p, and remove em-
beddings that do not satisfy property (Z2), embeddings that do not satisfy
property (=4 ) and embeddings that will later lead to problems for (=3). After
that we choose at random 2an? embeddings which will induce property (Z3)
and show that after deleting the embeddings that intersect in more than one

2

vertex we keep Can® of them with C' > 1. Afterwards we remove embeddings

not satisfying (Z25). Since e(Z) = O(pn?) we keep at least (Ca — o(1))n? > an?
embeddings h, which finishes the proof.

Since P(Z U h(B) — (F)5) > 1 — a > 2/3 there is a family ¥, < ¥p, of
embeddings of B of size 2|Up,| such that Z U h(B) — (F)5 for all h e Up,, ie.
Wy, satisfies (22).

Moreover, since Z € Gp (D, (,8) there are at most n=¢|¥p,| embeddings
that are bad w.r.t. F and Z. We remove those bad embeddings from W . In this

way for sufficiently large n we obtain a family W%, < W of size at least 3|V p,|

that contains no bad embedding and, therefore, U3, = satisfies (Z4).

Since Z € Gprnp(D,(,0) there are at most Dfl’?z pairs of distinct edges
e1,e9 € E(Z) such that [P(Z,eq1,e2)| > 1%‘ For those pairs of edges e, es we
delete all embeddings h € W%, with e; ~j e;. Since |F_(Z,e)| < % for all
ee E(Z) for Z € G pnp(D,(,6) we delete at most

Don2 D D2u(F)? v(B)
pn . 7U(F)2nv(B)72 _ U( ) n _ 0<|\I[B,n|>

embeddings from W%, . So we get for sufficiently large n a family W% < W% | of

size at least |¥p,| such that for all distinct ey, e; € E(Z) we have

(F1) if ey ~p e for some h € U} then [P(Z, e1,e2)] < z%‘
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Next we will select a subset ¥, < \I/?]’B,n, which allows us to bound c\p%,n(el, es)

for every pair of edges of Z. For this purpose for

2

£ =20 = (B (B)]

we select with repetition en® times an element of W% . where we assume for
simplicity that en? is an integer. For every selection S we define a family of
embeddings Vg < \IJSB’H by taking all embeddings that were chosen at least once in .S.
We will show that the random selection S a.a.s. satisfies that cy (€1, €3) < zﬁ
for all e, e5 € E(Z) and that with probability less than 3 there are more than $n?
embeddings that share at least two vertices with some other embedding in the
selection.

First we show that a.a.s. cyg(eq, e2) < ﬁ for all ey, e € F(Z). Since there
are no bad embeddings w.r.t. F' and Z in ¥}, we know that if e focuses on h(B)
then e focuses on exactly one edge in E(h(B)) (see property (B1) in Definition 26).
Hence, for e; ~j e; we may consider the following two cases. Either e; ~j es or e;
and es focus on two different edges in h(B).

For the first case we shall use (F1) and [¥% | > %(U&Lg)) to bound the probability
that e; ~p,, 5. In fact,

Pler ~a e2) < 5ol 22 ("_2@' <|n—v<B>+1>
3Dv(F)*v(B)*v(B)!
< DV AB )

In the second case we shall use (Z3) of Definition 28 for the upper bound on

|F_(Z,e)|. This and the fact that two edges fix at least three vertices yield

D? B)3 . —3)... —u(B 1
]P)(el %hi €9 and not €1 ~h; 62) < - U(F>4 . U( ) (n ’)‘113 (n /U( ) + )
B

p? nl
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Consequently

Pl 0, e0) < 300(FPu(Bf0(8)! (g PO o)

1
ma(F)

Therefore the right hand side of (29) is of order ©( Zﬁ) and we can bound

_ 1
Since § < 1 — we infer n® < Con' m® < pn for sufficiently large n.

Dy

IP’(el Xh,; 62) < W

where Dy = 4Dv(F)?v(B)?*v(B)!. For the expected number of connections we get

E[C\ps(el,(EQ)] < ZP(@l Xh, 62) < —

i=1

Consequently, Chernoft’s Inequality yields

3 5D0 1 g-DO
ot =5 ) <o (o5

Note that }# > n” for some 3 > 0 since § < #(F), hence, we can apply the union

bound for all pairs of edges e;, e, € F(Z) and get that a.a.s.

3eDy 1
cyg(er, e2) < s < PR
Finally we verify that most pairs of selected embeddings intersect in at most
one vertex. In fact, for i = 1,...,en? let 1;, be the indicator random variable for
the event “there is some j € [en?] \ {i} such that v(h;(B) N h;(B)) = 2” and set
Y = 35" 1. Then

E[1p,] < (en®* - 1) (") - v(B)(v(B) - 1?@5” —2)---(n—v(B)+1)

< D1€

nl

for some constant Dy = D;(B) with 0 < D; < 3v(B)*v(B)! independent of e.
Hence,

E[Y] < en®’Die = Die?n?
and by Markov’s Inequality we get

P(Y > 2E[Y]) <

Y

DO | —
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so there is a selection S of en? embeddings such that ¥ < 2D;e?n? and
cugler, e2) < zﬁ for all pairs of edges. For this choice of S we can simply delete
all those embeddings h; that intersect with some other embedding h; in at least
two vertices. We call the remaining family W% . Using D; < 3v(B)*v(B)!/2 and
the definition € = 2a = #), yields

13v(B)%v(B

W%, | = en® — 2D1e%n? = Can®

for some C' > 1 and, hence, U satisfies (21)-(Z4).

To achieve (25) we make use of e(Z) < pn? (see (Z1) of Definition 28). Since
no two embeddings from ‘Ifj‘g’n share an edge, we may remove all embeddings from
\If‘g,n which share at least one edge with Z and this results in the desired family

=0
=

Bn S Uh,, of size at least &n?, which finishes the proof. O

For Lemma 23 we have to show that there is a family of embeddings =g, such
that the hypergraph H(Z,=p,,) is index consistent with a profile 7. Lemma 36

will ensure this.

LEMMA 36. For all constants 1 > a > 0 and D > 0, for all graphs F and B
with F being strictly balanced and with E(B) = {e1,...,ex}, there exist o/ > 0
and L € N such that every graph Z on n vertices with a fized ordering of its edge

set and the property

(2) |F-(Z)| < Dn?
satisfies the following.

For every (&,Z)-normal family =%, there is an (o, Z)-normal family
EBn C E%,, and there is a profile w of length at most L such that (Z,Zp) is

index consistent with profile .

Below we consider Z and B to be fixed graphs and for a simpler notation we
set

My, = M(Z, h(B))
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for h € Up, (see (6) for the definition of M(Z, h(B))). Note that it is rather
unlikely that M, and M) of H are equal for distinct h,h’ € E%m and, hence,
Lemma 36 follows by a simple averaging argument. We will use Lemma 36 for

Z € G pnp(D,(,0) which satisfies (Z) by (Z2) from Definition 28.

PROOF OF LEMMA 36. Let 1 >a >0, D > 0, F and B be given. We define

L= (e(F)— 1);’0(F>2D and o = M.

Given some Z satisfying (Z) and an (&, Z)-normal family 2%, < ¥, we will
restrict E%m to the promised set =g, with the desired properties.

Note that the family Zp, < Z%, inherits the properties (22)-(Z5) from
the (&, Z)-normality of 2%, since they are independent of &. Consequently, to
establish that Zp, is indeed (¢, Z)-normal, we only have to focus on (Z1). Since
again property (N2) of Definition 34 is inherited from the normality of E%m, it
suffices to show that [Ep,| = o/n?.

Because of (Z) we know that Z contains at most Dn? copies of some F' < F
with e(F") = e(F) — 1. Also due to Z%,, being (&, Z)-normal (see (Z4)) there are
no bad embeddings w.r.t. F and Z in Z% , and thus by Fact 27 the pair (Z,Z%,)
is regular. In particular, for every h € E%,n we have that every edge e € M,
focuses on exactly one b € E(h(B)). Furthermore, since every h € 2 also does
not satisfy (B3) of Definition 26, each e € M), focuses on one b € E(h(B)) in
only one way, i.e. there is only one copy of F' in Z u h(B) containing b and e.
Therefore, ¢, = |Mp,| is a multiple of e(F')—1 and each M, gives rise to £}, /(e(F)—1)
copies of graphs F’ in Z, where each such F” is obtained from F' by removing some
edge. Clearly, each such (e(F") — 1)-element subset of M}, might be completed to a
copy of F' in at most (”(QF)) —e(F) + 1 < v(F)* ways.

Applying the upper bound on the number of copies of F' with one edge removed
from (Z) yields
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So there are at most an?/2 embeddings h € E%,n with ¢, > L, and, consequently,
at least an?/2 embeddings h € E%m with ¢, < L. Since there are at most K*
different profiles of length ¢, there must be a profile 7 of length ¢ < L and a subset

=/

EpnEE % n With
1 a,
=5 nl 2 LKL 5”
such that (Z,Z%,,) has profile 7.

Next we apply another averaging argument to achieve index consistency.
We consider some partition Z; v ... v Z; of Z into ¢ classes chosen uniformly
at random. Recall that we ordered the edges of Z. For h € Zj, consider
My, = (z1,...,2) with the inherited ordering of Z. We include h in Zp, if z; € Z;

foralli =1,...,0. Clearly P(h € Zp,) = & and E[|Zp,[] = EIZ’”', which means

there is an =Zp,, < Zf5,, with

~ 2
- an
Zpal = [Ep,l /0 = LL STRE = a'n?.

Now let h,h' € Zp,, and let z € M}, n My. Since z € Z; for some partition class

Z; we know that z has index j in both M;, and M. Therefore (Z,Zp,,) is index

consistent which finishes the proof. OJ

3.3.3. Proof of Lemma 23. Finally we prove Lemma 23. The previous
lemmas will be utilised to show that the hypergraph H(Z, Z) satisfies the conditions

of Theorem 17 of Saxton and Thomason about independent sets in hypergraphs.

PrROOF OF LEMMA 23. Let constants C} > Cy > 0, 1 > a > 0 and graphs F'
and B with F' being strictly balanced be given.

First we fix all constants used in the proof. For the given graphs F' and B and
the given constants C} and Cy Lemma 29 yields constants D > 0, ( > 0, and 9
1— m21( 7 } Similarly Lemma 36 applied to F', B, D and

Wlth0<(5<m1n{ S

1
13v(B)*v(B)!

&:
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yields o’ and L. Fixing an auxiliary constant
b L v(F)
~\e(F) -1 2

o J
= DEo(F)? and = 0L (30)

allows us to set

B

We shall show that o', 3, v, and L defined this way have the desired property. For
that let p = p(n) = c(n)n=Y™2F) for some c(n) satisfying Cy < c¢(n) < C;. We
shall show that G(n,p) a.a.s. satisfies the property of Lemma 23. Hence, in view
of Lemma 29 we may assume that the graphs Z considered in Lemma 23 are from
the set Gg pnp(D, C,0). Moreover, let n be sufficiently large, so that Lemma 35
applied with F', B, o, D, (, 0, C; and Cj holds for n.

Now let Z € Gg g (D, (, 6) such that for h € U, chosen uniformly at random

we have
P(Z U h(B)— (F)5) >1—a.

Then Lemma 35 yields an (&, Z)-normal family of embeddings 2%, < ¥, i.e.
the family 20, , satisfies properties (Z1)-(Z5) of Lemma 35 for the parameters
chosen above.

Since Z € Gpranp(D,(,0) it satisfies property (Z2) of Definition 28 and,
hence, Z satisfies in particular assumption (Z) of Lemma 36. Consequently,
Lemma 36 yields an (o, Z)-normal family Zp, < =%, and a profile 7 of length
¢ < L such that the pair (Z,=Zp,,) is index consistent for .

Next we consider the hypergraph H = H(Z,Zp,) defined by
V(H)=E(Z) and E(H)={M(Z,h(B)): heZp,},
where

M(Z,h(B)) = {z € E(Z): there is b € E(h(B)) such that z focuses on b} .
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Clearly, H is an f-uniform hypergraph on m = e(Z) vertices. Below we show

that H satisfies the assumptions of Theorem 17 for

5
and T=n D,

™
I
=

Since Z € Gp pnp(D,(,0) it displays properties (Z21)—(Z5) of Definition 28. In
particular, the property (Z1) guarantees

lean <e(Z)=m < pn® <n?. (31)

Now we bound e(#). Since =g, is o/-normal, it follows from (N1) and (N2) of
Definition 34 that o/n? < |Zp,| < n? and, consequently, we have e(H) < n? On
the other hand, for any hyperedge M), of size ¢ there are at most (6( Fé)q) different
copies of some F’ < F with e(F’) = e(F) — 1 in M}, and each such copy can be
extended to F' by at most (”(2F )) different boosters since all boosters are edge
disjoint. Consequently, M} could be the hyperedge for at most (e( Fé)_l) (”(5 )) <k

different embeddings h € Ep,, and, therefore, we have

/.,2

Q
3
no

<e(H)<n®. (32)

o

., e(H) om® 1 Lo
d(H)—E-U(H)>€~ e

We denote by Ay(H) = max,cv(x) |{e € E(H) : e contains v}| the maximum
vertex degree and by Aq(H) = A, 41)e (VG0) |{e € E(H) : e contains v and v'}|
the maximum codegree of H and below we will bound A;(H) and Ay (H).

We start with A;(?). Suppose e € M(Z, h(B)) for some h € Eg,. Since Eg,
contains no bad embeddings w.r.t. F' and Z and E(h(B)) n E(Z) = & there exists
a unique copy F_ € F_(Z,e) with e € E(F_) and f € h(B) such that F_ + f
forms a copy of F. Moreover, since every two distinct embeddings h, h' € Ep,,

intersect in at most one vertex the degree of e in H is bounded by |F_(Z, e)|- (”(QF )).
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Consequently, it follows from property (Z3) given by Z € Gp (D, (,d) that

For Ay(H) we have to look at pairs of edges of Z. Two edges e, e € E(Z)
. By (23) we know

are both contained in M(Z, h(B)) if and only if e; ~ e

CEByn(GMGQ) < ]ﬁ, SO
1
NAy(H) < —5 .
pn2

%/2 0 for n — oo since §
In order to verify the assumptions of Theorem 17 we estimate 0(H, 7) for &

Note that pn
and 7 defined above. Indeed we have
(9137 9-(3)
_ 1\ 9-(751) &)
5(H,7) =2 Zz 2 ]lmd Z dV)(
Jj=2 UEV (H)

where the last inequality holds for sufficiently large n
By Theorem 17 there exist some constant ¢ = ¢(f) and a family 7 < P(V(H))

satisfying (@), (b) and (¢) from Theorem 17. We define

{CcV(H): C=V(H)\ J for one J e J}

Below we show that C has the desired properties (1), (2) and (3) of Lemma 23
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(1) follows from (c¢) since |C| = |J| and
log | 7| < erlog(1/7)log(1/e)m < m - n_4(25—1>clog(1/7') log(1/e) <m'™7,
where the last inequality follows for sufficiently large n from
(31) (30)

r
mY < n? < nee,

since ¢ = ¢(¢) and log(1/¢) are constants independent of n and log(1/7) < logn.
(2) follows from (b). Assume for a contradiction that there is C' € C with
|C| < pmand let J =V N C e J. Then we count the number of hyperedges of H.

e(H) < e(H[V NC]) +|C| - A(H)

with a contradiction, so |C| = pm for all C' € C.

(3) For a hitting set A of H consider the independent set I =V ~ A. Hence
by (a) of Theorem 17 there exists J € J such that I < J and, therefore, we have
A2V ~J = C which is an element of C. 0
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§3.4. PROOF OF LEMMA 24

The proof of Lemma 24 follows the proof in [24, Lemma 2.3| and is based on
an application of the regularity method for subgraphs of sparse random graphs
which we introduce first.

Let ¢ > 0, pe (0,1] and H = (V, E) be a graph. For X, Y < V non-empty

and disjoint let
e(X,Y)
pIXIY]

dup(X,Y) =

and we say (X,Y) is (e, p)-regular if
|dup(X,Y) —dp (X', Y| <e

for all subsets X' € X and Y’ € Y with |X'| = ¢|X| and |Y’| = ¢]Y|. We will use

the sparse regularity lemma in the following form (see, e.g. [35]).

LEMMA 37. For all ¢ > 0 and t, there exists an integer Ty such that for every
function p = p(n) » 1/n a.a.s. G € G(n,p) has the following property. Every
subgraph H = (V| E) of G with |V| = n vertices admits a partition V =V v...0vV;
satisfying

(i) to <t <Tp,
(i) Vi < - < Vil < Vi + 1 and
(i) all but at most et?® pairs (V;,V;) with i # j are (¢, p)-reqular. O

For a partition P as in the last lemma we call the graph R = R(P,d,¢) with
vertex set V(R) = {V4,...,V;} and edges

{Vi,Vi} e E(R) < (V;,V;) is (e, p)-regular with dy ,(V;,V;) = d

the reduced graph w.r.t. P, d, and e.

The next lemma is a counting lemma for subgraphs of random graphs from [1,
9,51|. For the proof of Lemma 24 we only need this (and the following lemma)
for fixed bipartite graphs. However, we state those auxiliary lemmas in its general

form.
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LEMMA 38. For every graph F with vertex set V(F) = [{] and d > 0 there
exist € > 0 and & > 0 such that for every n > 0 there exists C' > 0 such that for
p > COn~Ym2(F) g q.5. G e G(n,p) satisfies the following.

Let H= (Vi v...vVy, Ey) be an {-partite (not necessarily induced) subgraph
of G with vertex classes of size at least nn and with the property that for every edge
{i,j} € E(F) the pair (V;,V;) in H is (¢, p)-regular with density dg,(Vi,V;) = d.
Then the number of partite copies of F' in H is at least

¢
T il
i=1
where a partite copy is a graph homomorphism ¢: F' — H with (i) € V;. O

The next lemma bounds the number of edges between large sets of vertices
of G(n,p) as well as the number of copies of some bipartite graphs F* with two

vertices from a prescribed set W.

LEMMA 39. Let F* be a graph with two wvertices aj,as € V(F*) with
ajas ¢ E(F*). For all (logn)/n < p = p(n) < 1 the random graph G € G(n,p)
satisfies a.a.s. the following properties.

(A1) For all disjoint subsets U, W < V(G) with |U|, |W| = n/loglogn we have

plUP/3 < ec(U) <plUF* and p|U||W|/2 < ec(U,W) < 2p|U||W].

(A2) For all subsets W < V(G) there exists a set of edges Ey < E(G)
with |Ey| = nlogn such that there are at most 2p*F In?(F)=2|)}/|2
many copies p(F*) of F* in the graph (V(G),E(G) ~ Ey) with
V(e(F)) n W = {p(ar), p(az)}-

The proof of (A1) follows directly from Chernoff’s inequality and the proof

of (A2) is based on the so-called deletion method in form of the following lemma.
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LEMMA 40. [32, Lemma 2.51] Let " be a set, S < [T']* and 0 <p < 1. Then
for every k > 0 with probability at least 1 — exp(—f—s) there exists a set By < I'), of
size k such that I'), \ Ey contains at most 2 sets from S where p is the expected

number of sets from S contained in I',. OJ

PRrROOF OF LEMMA 39. Since part (Al) follows from Chernoff’s inequality, we
will only focus on property (A2), which is a direct consequence of Lemma 40.

In fact, let V be a set of n vertices, W < V and a graph F™* with two fixed
vertices a1, as € V(F*) not forming an edge in £*. We use Lemma 40 with I = (}),

§ = e(F*)J
S = {copies @(F*) of F* in (V,I') with V(¢(F*)) n W = {¢(a1), p(a2)}},

p, and k = nlogn. In particular, Iy = G(n, p) in our setup here. With probability

nlogn
2e(F*)

at least 1—exp (— ) there exists a set Ey = E(G(n, p)) of size at most nlogn

such that there are at most
2,“ < 2pe(F*)nv(F*)—2yw|2

many copies @(F*) with V(p(F*)) 0 W = {(ar), plaz)} in (V, B(G(n,p)) ~ Eo).
The lemma then follows from the union bound applied for all 2" possible choices

WecV. L]

Finally, we can prove Lemma 24. Let F' be a strictly balanced and nearly
bipartite graph. Let G be a typical graph (with respect to the properties of
Lemmas 37-39) in G(n,p) and let H be a subgraph of G with |E(H)| = A\ E(G)|.
First we apply the sparse regularity lemma (Lemma 37) to H. Since H is relatively
dense in G(n,p) we infer that the corresponding reduced graph R (for suitable
chosen parameters) has many, i.e. Q(|V(R)|*) edges. So we can find many large
complete bipartite graphs in R. We conclude that there is some partition class

Vi € V(R) contained in many complete bipartite graphs.
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We analyse the graph Gy = Basey (F')[V;] on the vertex set V; with edges being
those pairs in (‘;) that complete a copy of the bipartite graph F/ € F' +e = F
in H to a copy of F'. We say that Gy is (g, d)-dense if for all W < V(Gy) with
[W| = o|Vi| we have eg,(W) = d(""). Tt is well known that sufficiently large
(0, d)-dense graphs contain any fixed subgraph (see e.g. [46]).

LEMMA 41. For all d > 0 and F there exist o, co > 0 and ng € N such that

F)

every (o,d)-dense graph Gy with v(Go) = n = ngy contains at least con® ) copies

of F. 0

To show the (o, d)-denseness of Gy we consider W < V; with |WW| = o|V;|. Then
by Lemma 38 we will find many copies of F’ in H where the missing edge has
to be in (Ig/) Together with an upper bound for the number of graphs that are
combinations of two different copies of F’ ((A2) of Lemma 39) we ensure that not
too many copies of F’ are completed to F' by the same pair in W. Thus there are

many edges in Basey (F)[W] and Gy is (g, d)-dense.

PROOF OF LEMMA 24. Let A > 0,C; > Cy > 0 and let F' be a strictly
balanced nearly bipartite graph such that I’ = F’ + {ay, as}, where F’ is bipartite
with partition classes A = {ay,...,a,} and B = {by, ..., by}.

The Sparse Counting Lemma (Lemma 38) applied with F’ and dcr, = A\/4
yields constants ec;, > 0 and ¢, > 0. Since we don’t know whether the given

constant () is at least 1 or not, we find it convenient to fix an auxiliary constant
C! = min{1, C{ 1Y (33)

Furthermore, we set

_ ey T
64 - a2eb? - (v(F) + 1)2() . Cf(e(F)—l) ‘
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Next we appeal to Lemma 41. For F' and for this choice of d this lemma yields

constants g, ¢g > 0 and ng € N. Furthermore, set

. feecL A _ 48ab
g—mm{ 1 ’48} and o= - (35)

Lemma 37 applied with € and ¢y yields Ty € N and Lemma 38 applied with

neL = 0/(21y) yields Ccr. Finally, we fix the promised

n=coT, v(F)

and let Con~ V™) < p = p(n) < Oyn~Ym2(E) | For later reference we note that

due to the balancedness of F' we have
pr ) < o) =12 (36)
and owing to the choice of C in (33) we have
o) > Ofpn? (37)

for every subgraph Fy; © F with e(F}) = 1. Moreover, since we applied Lemma 38
for F' < F, the strict balancedness of F' implies my(F') > mo(F"). Consequently,

for sufficiently large n we have
CCLnfl/mQ(F/) < Confl/mg(F) < p

Since we have to show that G(n,p) a.a.s. satisfies T'(\,n, F') we can assume
that n is arbitrarily large. Consider any G' € G(n, p) that satisfies the properties
of Lemma 37 and Lemma 38, as well as property (Al) and property (A2) of
Lemma 39 for all bipartite graphs F* such that F* is the union of two different
copies ¢1(F") and o (F’) of F with {p1(a1), ¢1(az)} = {p2(a1), p2(az)}. In other
words, for the rest of the proof we consider a fixed graph G to which we can apply
the Lemmas 37-39 and we will show that such a G satisfies T'(\, n, F'). For that
let H < G with

e(H) = Xe(G) > ;)\pn2

where the second inequality follows from property (A1) of Lemma 39.
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Lemma 37 applied to H yields a partition P of the vertices V =V, v ... vV}
with at least (1 — ¢) (;) many (g, p)-regular pairs for some t with ¢y <t < Ty. We
assume w.l.o.g. that ¢ divides n. We infer that there are at least %(;) regular pairs

with edge density at least ﬁp since otherwise we could bound the number of edges

of H by

i) < 3(5) () () 4 () () (B e ()

< L2 (2p2 02
< -pnt | 5+ - -
2P \3 7% ;

(3\<5) zl)))\pnz,
which would contradict the derived lower bound e(H) > $Apn?.
Let R = R(P,dcy,€) be the reduced graph w.r.t. the partition P and relative
density dcp, = %. In particular R has exactly t > t, vertices and at least %(;) edges.
It follows from the theorem of Kévari, S6s and Turdn [37] (see, e.g. [15, Lemma 1])

that there are at least v2¢™*~! copies of the complete bipartite graph K, 1, in R

(a—1)b
v =7(FA) = ;(a_ll)albb (2) : (38)

where!

Hence, there is a partition class V,, of P such that V,, is contained in at least
7t9T*=2 copies of K, 1, in R where V,, is always contained in partition class A of
K, for these copies.

Our goal is to show that the graph Gy induced by Baser(H) on V,, is (o, d)-
dense, which due to our choice of ¢y and 7 above leads to cy(n/t)*™) > nnv(F)
copies of F'in Gy (see Lemma 41). So let W <V, with |W| = o|V,,| and fix some
partition W = Wy v Wy with |[W;| = [Ws| = |W|/2 (for simplicity, we may assume

IStrictly speaking, in [37] no such lower bound on the number of copies of complete
graphs in dense large graphs is given. However, the proof from [37] combined with standard
convexity arguments gives the bound stated here and such an argument can be found for example

in [15, Lemma 1].
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that [W] is even). Note that for any j for which (V,,,V;) is (e, p)-regular we still
have that (W, V;) and (W, V;) are (2¢/0, p)-regular.

We will ensure many copies of F’ with a; € W; and ay € W5 which force edges
in Gy = Basep(H)[V,,]. However, we have to make sure that not too many copies
force the same edge in Gy. For this purpose we delete some edges by (A2) of
Lemma 39 to restrict the number of graphs F™* that are unions of two different
copies of F” that force the same edge in Gy.

Let o1 (F") and po(F") be two copies of F” satisfying ¢ ({a1, as}) = p2({a1,as})
and let F* = @1 (F") U @o(F"). We find by (A2) of Lemma 39 at most nlogn edges

Er« such that there are at most
2pe(F*)nv(F*)—2|W|2 (39)

copies of F* in (V(H), E(H) \ Ep+) with 1(a1),¢1(as) € Wi u W,. We repeat
this argument for all possible graphs F* that can be created this way and we
denote by F* the family of those graphs. Since there are at most 2(a+1)*"2(b+1)°

such graphs F*, in total we delete at most
2(a +1)2(b + 1)’nlogn = o(pn?)
edges of H, i.e. for H' = H — Jpscr+ Ep+ we have
e(H') = (1 —o(1))e(H).

In particular, for sufficiently large n the density and the regularity of the pairs
in the partition P is not affected much and (0, p)-regular pairs in H are still
(26, p)-regular in H'.

Lemma 38 yields many copies of F' in H'. In fact, since my(F’) < mao(F) we
get

N S 1 _
p=Con mE > Corn m2(E) |

For any copy of K, 1, in the reduced graph R that contains V,, among the a — 1
classes of the bipartition of K,_;;, Lemma 38 applied with ecp, = 4¢/0 (see (35))
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yields at least

n n

B v(F)—2 1 o(F)— v(F)—2
s ™ () IWAlIWa] = g™ (5) T

partite copies of F" in H' with a; € W, and ay € W,. Repeating this for the y¢*+*—2
different copies of K,_;; in R that contain V,, in the described way, in total we

obtain at least

St F)=2 i§CLpe(F)—1 (”)”(F)2 W2 = vécL ‘pe(F)—lnv(F)—Q‘WIZ

t 4
> ViCL _CS(F)71|W|2 (40)
copies of F’' in H' with a; € Wi and ay € W,. For a pair of vertices e € (VQV) we
define
z. = [{p(F') copy of F" in H': e = {¢(a1), p(az)}}| -
By (40) we know that
Z 5, > ’YZCL L (41)

ec('y)

Let W-q = {e € (V;/) P T F 0} and N = |[W|. Since this N corresponds to the
number of edges in Basey/(F')[W] < Basey (F)[W] we shall show that N > d("g').
For this purpose we use (41) and an upper bound for Ze&_(vv) x? that follows

from (39). In fact,

(39) ; a
> a2 € P OO (12)
ec(%)
where F'is a graph in F* that maximises the value of p?&In*F)=2 for F* € F*.
We will show that pe(ﬁ In?(F)=2 ig bounded by a constant only depending on Cj,
Cy and F. In fact, for F* = p1(F') U @o( F') € F* let Fy = o1(F") n p2(F’) and
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e = {pi(a1),p1(az)}. In particular, Fi + e € F and we have

() o(F*)—2 pe(F*+€)nv(F*+e) B (pe(F)nv(F))2 (36) 012@(F)72pn2
p n - pn2 o pe(Fo+e)nv(Fo+e) ,pn2 = pe(F0+e)nv(Fo+e)
(37) O2eF) =2
< —
Co

Combining (42) with the simple upper bound |F*| < (v(F) + 1)*") and the last
inequality yields

CQ(e(F
D1 a2 <2(v(F) + 1) T\WIQ (43)
ee("V) 0

Finally, we establish the (g, d)-denseness of Gy. In fact, from the Cauchy-
Schwarz inequality we know
2
(er)=<2xe> NZx—N Zx
)

ee(W eEW=o eeW-o )
2

and, consequently,

(e ol
N = Zee(‘g/) 2

_ 2
(i) 49 ('yé“CLCS(F) w2 /4)
T 2((F) + GOy

e G (W
16(v(F) _|_1)U(F)C’12(6(F)_1) 2

34
oy ().
2

Recalling that W < V,, with |[WW| = o|V,,| was arbitrary, implies that G is
(0, d)-dense which finishes the proof. O

§3.5. OPEN PROBLEMS

3.5.1. Ramsey Properties of Nearly Partite Hypergraphs. Instead of

nearly bipartite graphs one may consider nearly k-partite k-uniform hypergraphs,
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i.e. k-uniform hypergraphs with vertex partition V; w...w Vy and the property that
at most one hyperedge is contained in V; and the remaining hyperedges contain
exactly one vertex from each vertex class. Again one may require additional
balancedness assumptions (similar as in Theorem 5). However, for the proof of a
lemma corresponding to Lemma 24 one would need a sparse version of the so-called
weak regularity lemma for hypergraphs and a corresponding embedding/counting
lemma for subhypergraphs of random hypergraphs (see, e.g. [9, Section 5.1]).
For the more relaxed version of nearly partite, which would allow the additional
hyperedge to span across more than one vertex class, one would likely need sparse
analogues of the strong hypergraph regularity method for subhypergraphs of
random hypergraphs.

3.5.2. Ramsey Properties for More Colours and General Graphs. It
would be very interesting to extend Theorem 5 to more general graphs F'. The
class of nearly bipartite graphs contains the triangle K3 and an extension for
all cliques would be desirable. The main obstacle seems to establish a suitable
analogue of Lemma 24 for this case.

Another limitation is the restriction to two colours only. The Rédl-Ruciniski
theorem [46] applies, up to very few exceptions (see, e.g. [32, Section 8.1]), to
arbitrary graphs and any number of colours r > 2. However, besides for the case
of trees (see [23]), all known sharpness results address only the two-colour case
and extending these results to more than two colours appears an interesting open
problem in the area.

Finally, we mention that due to Friedgut’s criterion the ¢ = ¢(n) in Theorem 5
is bounded by constants, but it may depend on n. It seems plausible, that a
strengthening of Theorem 5 for some constant ¢ independent of n also holds.

However, this would likely require a very different approach to these problems.



CHAPTER 4

Schur Triples

Here we will prove Theorem 8. The proof builds on similar ideas as in [21,53].

§4.1. MAIN LEMMAS

The proof of Theorem 8 has a very similar structure as the proof of Theorem 5

in Chapter 3. We start with a reformulation of Friedgut’s and Bourgain’s Criterion.

4.1.1. Friedgut’s Criterion for Coarse Thresholds. We want to apply
Bourgain’s Criterion, Theorem 16. For that we need symmetric properties of
the given ground set. To achieve the symmetry we switch from subsets of [n] to
subsets of Z,,.

As a starting point for the application of Bourgain’s Criterion we also need the
result by Graham, Rodl & Rucinski that the corresponding threshold is semi-sharp.
Theorem 7 concerns random subsets of [n], however, the proof given in [26] also
works similarly for random subsets of Z,,. The 1-statement follows directly from
the [n]-case. The O-statement requires only slight changes in the calculations and

we obtain the following Lemma

LEMMA 42. There exist constants C; = Cy > 0 such that the following holds.

0, if p<Cyn 2,
7}1_1)1010 P(Zyp — (ST)s) = OJ

1, ifp>=Cin 2,
The starting point of the proof of Theorem 8 is again the criterion of properties
with a coarse threshold by Friedgut and Bourgain. Since we deal with a monotone

property in random subsets of Z,, this time we will use the version by Bourgain,

Theorem 16 from Section 2.1.

69
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We do not want that the booster set B already satisfies B — (ST),. Since B

is small the following lemma will guarantee that B - (ST)s.

LEMMA 43. Let B be a family of subsets of Z,, such that every B € B satisfies
|B| <logn and B — (ST)y. Then for every function p = p(n) = O(n~"?) holds
P(B < Z,,, for some B € B) = o(1).

The proof is very similar to the proof of Theorem 2 in [26] and we only
sketch the main differences. First in [26] the proof is given for random subsets
of [n] instead of random subsets of Z,,. In the proof we only have to estimate
the expectation of special configurations. Since all of those expectations have
the same order of magnitude in [n] and in Z,, the proof can be adapted to this
setting. Secondly we want to prove the lemma for every p = ©(n~"/?), where
in [26] p = cn~Y/2 for a sufficiently small constant c. However, for the expectations
mentioned above we do not need ¢ to be small since in the proof this is only used
for large configurations which are excluded here by |B| < logn. This concludes
the discussion of Lemma 43.

Recall, that in the graph case we used random embeddings of B, while in [21]
for arithmetic progressions in Z, , random shifts of a booster B were used. Note
that in both cases the property B - (F)§ respectively B - (AP)s also hold
with B replaced by h(B) respectively B replaced by B + x for some embedding h
respectively some shift x € Z.

For Schur triples we cannot use shifts of B since it can happen that B - (ST)
as well as B +x — (ST),. Instead we take scalings of B, that means for g € Z,, we
take ¢B = {gb: b € B}. It turns out that scalings preserve the property B - (ST),
at least for ¢ coprime to n. Let Q) = {q € Z,: gcd(g,n) = 1} be the elements
of Z, that are coprime to n. Then |Q}| is given by Euler’s totient function and it
is known that for n > 2

n

@7l =

_3

e’ loglogn + Toglog Tt
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holds where * ~ 0.577 is Euler’s constant [50, Theorem 15], ¢ ~ 1.78. Since we
do not want to distinct cases for different order of magnitude of |@,| later in the
proof, we fix for each n > 2 a subset Q),, < @}, of size

n
|@nl = [67* loglogn + —>— w ’

loglogn

in particular, we have for sufficiently large n

n n
< |@nl <

< . 44
loglog n (44)

2loglogn

For ¢ € ),, the function v¢,: Z,, — Z,,,n — gn is a bijection and for each Schur
triple (z,y, z) also (¢,(x), ¥4(y), ¥4(2)) is a Schur triple. Similarly the preimage of
any Schur triple is a Schur triple. With these preparations we can adapt Friedgut’s
and Bourgain’s criterion, in this case Theorem 16, to our setting to obtain the

following lemma.

LEMMA 44. Assume that the property {Z < Z,,: Z — (ST)a} does not have a
sharp threshold. Then there exist constants K € N, a,e, 0 > 0 and Cy = Cy > 0
and a function c: N — R with Cy < c¢(n) < Oy such that for p(n) = c(n)n="? and
for infinitely many n € N the following holds.

There is a subset B,, < Z, with |B,| < K and B, - (ST)s such that for every
family Z of subsets from Z,, with P(Z,, € Z) > 1 — p there exists a Z € Z such
that

(1) P(Z v qB, — (8T)2) > «, with q € Q,, chosen uniformly at random,
(2) B(Z U Zoy) — (ST):) < 2.

PrROOF. Let A = {Z < Z,: Z — (ST)y}, then Lemma 42 yields that a
threshold function of A has order of magnitude ©(n~2). We assume that this
threshold is not sharp. It follows that there are constants C,7 > 0, C} = Cy > 0
and a function ¢ : N — R with Cy < ¢(n) < C; such that for p = p(n) = c(n)n="1/?

there are infinitely many n € N with

T<ulp,A) =PZ,p,cA) <1—71
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and p- %};A) < (', which are exactly the assumptions of Theorem 16. Consequently

there are §(C, 7),n(C,7) > 0 and K(C,7) € N and for each of the infinitely many n
there exists a family B,, of subsets from Z, with the properties as in Theorem 16.
Finally let A = P(Z,) ~ A = {Z < Z,: Z » (ST),} be the complement of A

and set

OP(Z,, € A)
—

Since we assume that the threshold of A is not sharp there exists a sufficiently

< (45)

small € > 0 and a > 0 with 0 < @ < §/2 such that the following holds.
P(Zny€ 2| Zppe A) =1—5/4
where 2’ € A is the family of sets Z € A with
P(Z U Zpep — (ST)2) < /2,

otherwise this would yield a contradiction to p - %}’A) <C.

We know from Theorem 16 that P(B, < Z,, for some B, € B,) > n and
from Lemma 43 that a.a.s. all B,, ¢ Z, of size at most K satisfy B,, - (ST),.
Consequently for each n there exists a B, € B,, with |B,| < K, B, - (ST), and

P(Zy,, € AlB < Zyp) =P(Zp,e A)+9.

By symmetry for all g € @, also ¢B,, satisfies these three properties: |[¢B,| < K
follows directly since v, is bijective. For ¢B, — (ST)2 we use that 1, yields a
bijection between the Schur triples: Any ST-free colouring of B,, can be transferred
via 1, to an ST-free colouring of ¢B,, and vice versa since there is always a
multiplicative inverse to ¢ in Z, which is also coprime to n. The third property
follows from the same argument as the second combined with the fact that for any
A < Z, the probability P(A < Z,,) only depends on the size of A. Consequently
for all ¢ € ), holds

P(Zyy € AlgBy, € Zyyp) = P(Zype A) + 9. (46)
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Let Z” be the family of subsets Z < Z,, such that
4
IP’(ZquneA)>§>a,

where here the probability comes from choosing ¢ uniformly at random from @,,.
Then it follows from (46) that P(Z,, € Z"|Z,, € A) = §/2.

By the choice of p in (45) it follows for any property Z with P(Z,, € Z2) > 1—u
that

) ) )
P(Zny¢t Zn 2 ' 2"Zpye A) <§+7+ (1) <1-—2
and consequently

P(ZpnpeZnZ nZ") >

0| >
|
(@2
3

P(ZppeA) = —.

Consequently Z n Z' n Z” # @ and any Z in this intersection satisfies the desired
properties. 0

4.1.2. Main Probabilistic Lemmas. Similarly as in Chapter 3 we will apply
the hypergraph container theorem, Theorem 17, to a hypergraph H that depends
on B, Z,=Z < 7Z,, where B, Z are directly given by Bourgain’s lemma (Lemma 44)
and = stands for a suitable family of scalings of B and will be a subfamily of the
family of scalings that is given by Lemma 44.

The main work in the proof is to make suitable choices for Z and =. We can
guarantee that Z € Z satisfies properties that hold for Z, , with probability at

least 1 — p for p given by Lemma 44. On the other hand we can also restrict = as

n

long as the remaining family has size @(@

). In this way we can ensure that =
only contains typical scalings.

Next we translate the definitions from Chapter 3 to the setting in Z, with
Schur triples. For given B, Z < Z, we say that z € Z focuses on b € B if there
exists x € Z such that (z,z,b) is a Schur triple. The set of focusing elements we

call

M(Z,B) = {z € Z: there is b € B s.t. z focuses on b} .
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The pair (Z, B) is called interactive it Z n B = @, Z - (ST)y, B - (ST),, but
Z U B — (ST),. For a set = of scalings of B we call the pair (Z, Z) interactive if
(Z,qB) is interactive for every ¢ € E.

We call (Z,Z) regular if for all ¢ € = every z € Z focuses on at most one gb € ¢B.
Compared to Chapter 3 we need a new definition since we cannot exclude the case
that there is some z € Z that focuses on two elements of ¢B if there exist b, b’ € B
with b+ b0 = 0. We say (Z,2) is almost regular if for all ¢ € = every z € Z
focuses on at most two ¢b, qb' € ¢B and if in the case that z focuses on exactly
two gb # qb' € ¢B then there exists x € Z such that x — 2z = ¢gb and z — x = ¢b'.

For a booster B and an almost regular and interactive pair (Z,=Z) we define a

hypergraph H = H(Z,=Z) with vertex set
V(H)=Z

and edge set
EMH)={M(Z,qB): qe =}.

For an interactive and almost regular pair (Z,Z) and ¢ € = we say that
ze€ M(Z,qB) = {z1,..., 2} with z; < 2z < --- < z has index i if z = z; (for that
we fix the canonical ordering on Z,). Furthermore, we call (Z,Z) and H(Z, =)
index consistent if for all z € Z and all ¢,¢' € = with z € M(Z,qB) n M(Z,q B)
the indices of z in M(Z,¢B) and in M(Z, ¢ B) are the same. Let by < --- < by
be the natural ordering of the elements of B induced by the fixed one of Z,.
Then the profile of M(Z,qB) is the function 7: [|[M(Z, ¢B)|] — [|B|]? defined by
7(i) = (j,7) if 2 focuses only on ¢gb; and by 7 (i) = (7, k), if z; focuses on gb; as well
as on qby in a way such that there exist x € Z with z; — x = ¢b; and x — z; = ¢by.
Note that in this case it follows that = € M(Z,¢B) and ©(x) = (k,j). Since
the pair (Z, Z) is almost regular, for each edge of H each z; focuses on at most
two ¢b; and, hence, the profile is well defined. We say (Z, Z) has profile 7 if all
edges M (Z,qB) for q € Z have profile . Note that in this case all sets M(Z, ¢B)
have the same cardinality and |M (Z, ¢B)| is called the length of the profile 7.
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Recall that we fixed for all n € N a family @,, of coprimes to n. With these
definitions at hand we can formulate our main technical lemma which will similarly

to Chapter 3 yield the desired family of cores.

LEMMA 45. For all constants C; > Cy > 0, a,u > 0, K € N and any sequence
(Bim)men of subsets By, < Zy, with |B,,| < K for all m, there exist o, 3,7 > 0 and
L,ng € N such that for all n = ny and every p = c(n)n™"? with Cy < c¢(n) < Oy

with probability at least 1 — & we have that Z € 7y, satisfies the following. If

P(Z U ¢B, — (ST)s2) > «

for q € Q, chosen uniformly at random, then there exists =, < @, with

and Z v qB, — (ST)y for all ¢ € =, such that the hypergraph

20| = foglog 1
H =H(Z, Z,) is almost reqular and index consistent for some profile w of length
¢ < L and there is a family C of subsets of V(H) satisfying

(1) loglC| < [Z]',

(2) |C| = B|Z| for all C € C, and

(3) every hitting set A of H contains some C' € C, i.e. for every A < V(H)

with e n A # @ for all e € E(H) there exists C' € C with C' < A.

The main part of the proof (which will be given in Section 4.3) deals with the
preparation of Z and = such that the hypergraph container theorem, Theorem 17,
can be applied to H(Z,Z).

The second probabilistic lemma is a preparation step for the second round
when we will add epn elements to Z, where p = ©(n~"?). For S € Z, we define

the base set of S by
Base(S) = {2 € Z,: 3s,5' € S s.t. (5,5, 2) is a Schur triple} .

We can consider Base(S) as the set of elements that complete a pair in S to a

Schur triple. The next lemma shows that a.a.s. a random subset of size (n!/?)
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contains at least a constant fraction of the expected number of Schur triples in its

base set.

LEMMA 46. For all A > 0, C; > Cy > 0 there exists n > 0 such that for
Con™Y% < p < Cyn~Y2 the following a.a.s. holds. For every subset S < Z,, of

size at least \pn there are at least nmm* Schur triples in Base(S).
The proof follows the proof in [21]and is given in section 4.4.

4.1.3. Colourings and Hitting Sets. In the following we define the hitting
set of H depending on a colouring of B and one of Z that establishes a connection
between ST-free colourings of Z U ¢B and the hypergraph container theorem,
Theorem 17.

For B,Z < 7Z, and a family = of scalings of B let (Z,Z) be an interactive
pair, i.e. Z - (ST)s, B - (ST)s but Z u ¢B — (ST); for all g € =. In particular
there exists an ST-free colouring o: B — {red,blue} of B. We copy o for all ¢ € =
to ¢B by setting o,: ¢B — {red,blue} with o,(gb) = o(b). Furthermore, let ¢ be
an arbitrary ST-free colouring of Z.

As (Z,Z) is interactive, for each g € = for every 2-colouring of Z U ¢B there
exists a monochromatic Schur triple in Z U ¢B, in particular, for the colouring
defined by o, and ¢ (later in the proof we will ensure that Z n ¢B = @ for all
elements ¢ in the chosen family = and we assume this for now).

Since o and ¢ both are ST-free it follows that there is a monochromatic Schur
triple in Z U ¢B that uses elements from Z as well as elements from ¢B. We call
the elements from Z that are contained in such a Schur triple activated by o, ¢,
and ¢ and define for H the set of activated vertices by

A7 = A7(Z,2) = U {z€ Z: z is activated by o, and ¢} =< V(H).
qe=
In Chapter 3 we looked for an interactive, regular and index consistent

pair (Z,Z) at A7 to obtain that p(z) = ¢'(2) for all z € A7 n A7, and ST-free
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colourings ¢, ¢" of Z. For Schur triples, however, we cannot exclude the following
configuration where there are x # z € Z and ¢b # qb' € ¢B such that z — x = qb
and r — z = ¢b/. If we try to follow the same way as before it could happen
that p(z) = p(2) = o(b) = red while ¢'(z) = ¢/(z) = o(b') = blue which would
contradict ¢(2) = ¢'(z) for all z € A7 n AZ,.

To solve this issue we define E; < A7 in the following way. Let (Z,Z) be an
interactive, almost regular, and index consistent pair with profile = (compared
to Chapter 3 we changed regular to almost regular). Remember that by index
consistency each z € Z focuses for all ¢ € = on ¢b; for exactly the same indices j,
in fact, on at most two different gb; and in the case that there are two different
gb; # qby, then there exists x € Z such that z —x = ¢b; and v — 2 = ¢b. It follows
that such elements which focuses on two different qb; # by, appear in pairs (z, 2)
with z — 2 = ¢b; and © — 2 = gby,.

The idea is to include in /ng c A7 all elements from A7 which focuses on
exactly one ¢b;, and to make choices for each pair (z, z) of elements which focuses
on ¢gb; # gb; depending on the profile of  and z and the colour of ¢gb; and gby.
The index consistency allows to make the definition of ﬁ; by considering only

one ¢ € Z. For given ¢, 0 and ¢ € Z let z € A7 and let i(2) be the index of 2

in M(Z,qB), then

(A1) if there is only one gb; € ¢B such that z focuses on gb; let z € E;;,

(A2) if there are gb; # qby, € ¢B with o(b;) = o(b;) such that z focuses on ¢b,
as well as on ¢by then let z € ﬁg,

(A3) if there are ¢b; # ¢by € ¢B with o(b;) # o(b;) and j < k such that
(i(2)) = (j, k) then let z € A7,

(A4) if there are gb; # ¢by € ¢B with o(b;) # o(by) and j < k such that
m(i(2)) = (k) then let z ¢ A7
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Note that in Case (A4), when z ¢ ﬁ;, then there is some = € Z with index i(x)
such that z —z = gby and x — z = ¢b;. Consequently by definition z € A7 as well
as 7(i(z)) = (j, k) and by (A3) holds x € A7,

Consequently the definition ensures that ﬁg contains at least one element from
all pairs (z, z) of elements which focuses on two different elements of ¢B. Since A7
is a hitting set of H(Z, Z) it follows that also ﬁ;‘o is a hitting set of H(Z, =).

It remains to show that for any two ST-free colourings ¢, ¢’ of Z and for
T € gg N gg, holds p(z) = ¢'(x). This follows since ¢(x) is determined by the
elements of ¢B on which x focuses (the profile) as well as by the colouring o
on B. Since we have index consistency the focusing is the same for all ¢ € =. The
colouring of o clearly does not depend on ¢. Consequently the colour of z can be
determined by the profile of the index of = in M(Z, ¢B) and by ¢ which both do
not depend on ¢ and we obtain ¢(z) = ¢'(z). We summarise these consequences

in the following fact.

FacT 47. Let (Z,2) be an interactive, almost reqular and index consistent pair
with profile w, let o be an ST-free colouring of B and p, ¢’ be ST-free colourings
of Z. Then

(A1) IZ;(Z, =) is a hitting set of H(Z,Z) and
(A2) for all x € ﬁg N Eg, holds p(x) = ¢'(z). O

§4.2. PROOF OF THEOREM 8§

We adapt the proof of Chapter 3 to Schur triples. As starting point we
apply Bourgain’s criterion (see Lemma 44) to the contradictory assumption that
Zn, — (ST)s has a coarse threshold. At this point we also have to define a
family Z of subsets of Z, with typical properties, which in our case are the
properties of Lemma 45 and Lemma 46 that are guaranteed to hold simultaneously

with probability at least 1 — u for sufficiently large n.
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Lemma 44 yields constants «, ¢, K, i1, Cy, and Cy and for infinitely many n and
p = c(n)n~? with Cy < ¢(n) < C, a set Z < Z, of size at most K and a small

booster set B,, < Z,, such that

(B1) P(Z u ¢B,, — (ST)s) > «, with g € @,, chosen uniformly at random,
(B2) P(Z U Zyzp) — (ST)a) < 2.

We will find a contradiction to (B2).

Let ® be the family of all ST-free colourings of Z and consider an arbi-
trary ¢ € ®. We shall show that the probability that ¢ extends to an ST-free
colouring of Z U Z,, ., is at most exp ( — Q(pn)) This part uses in particular
Lemma 46 and Janson’s inequality.

To obtain the contradiction to (B2) we want to use a union bound over all
ST-free colourings, but there are in total 2°®) ST-free colourings. This problem
is solved by Lemma 45 which yields a family C of cores C with |C| = 2°"™ such
that we can partition ® in |C| classes and all colourings in the same class agree on
the corresponding C'.

The proof of Lemma 45 basically applies the hypergraph container theorem
(Theorem 17) to the hypergraph #H(Z,Z), which works for carefully chosen Z
and = (this will be done in Section 4.3). Afterwards the hitting set ﬁg establishes
a connection between the cores and the colourings in ®.

Finally the union bound yields that with probability at most o(1) there is an
ST-free colouring ¢ € ® that extends to an ST-free colouring of Z U Z,, ., which

contradicts (B2). Below we show the details of the proof.

PROOF OF THEOREM 8. Assume for a contradiction that the property
Z,, — (ST)y does not have a sharp threshold. We apply Lemma 44 and ob-
tain constants K € N, a, e, 0 > 0, C; > Cy > 0 and a function p(n) = c¢(n)n="/?2
with Cy < ¢(n) < C; such that for infinitely many n € N there is B,, € Z,, of size

at most K and B, - (ST),. Let I < N be the set of these n € N. Let (B,,)nen
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be a sequence of subsets B, < Z, that is formed by B, forne [ and B, = &
forné¢l.

Next we apply Lemma 45 to get o/, 3,7 > 0 and L € N. Set A = [3/4, then
Lemma 46 yields n > 0.

For n € N let Z, be the family of subsets of Z,, that satisfy pn/2 < |Z| < 2pn
and that satisfy the conclusions of Lemma 45 and of Lemma 46 for the chosen
parameters. Since the properties in Lemma 45 hold for sufficiently large n with
probability at least 1—£ and the property in Lemma 46 as well as pn/2 < |Z| < 2pn
hold a.a.s. Lemma 44 yields some Z < Z,, such that

(B1) P(Z u gB,, — (ST)s) > a, with g € @,, chosen uniformly at random,

(B2) P(Z U Znep) = (ST)2) < 5,
and such that the conclusion of Lemma 46 holds. By (B1) we can apply Lemma 45
to obtain a profile 7 of length ¢ < L and =, < @, with |Z,| > % and
Z U qB, — (ST), for all g € =, such that the hypergraph H = H(Z,Z,) is almost
regular and index consistent for m and such that there is a family C of subsets
of V(H) satisfying

(C1) log|C| < |Z|'7,

(C2) |C| = p|Z] for all C € C, and

(C3) every hitting set A of H contains some C € C.

We shall establish a contradiction to the assertion (B2). Let ® be the set of
all ST-free edge colourings of Z and pick an arbitrary ST-free colouring o of B,.
We want to split ® into “few” classes, for that we use the correspondence between
any colouring ¢ € ® and the hitting set ﬁg = Zlg(Z, Epn) of H given by Fact 47.

Moreover, for C' € C we define
Do ={ped: Cc A7}

Then ® = | Jo e, where this is not necessarily a disjoint union, since by (C3) for

every o € @ the hitting set ﬁg contains some C' € C and hence ¢ € ®¢. Fact 47 also
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guarantees that ¢(z) = ¢/(2) for all z € ﬁg N ;lg, and arbitrary colourings ¢, ¢’ € ®.
That means that all colourings in ¢ agree on C' and, consequently, there exists
a monochromatic subset Ro < C of size at least |C|/2 > 5|Z|/2 = A\pn. For the

desired contradiction we add Z,, ., to Z. If we show that

P(Z U Zpep = (ST)2) = o(1)

this will contradict (B2).

We shall find for all ST-free colourings ¢ of Z an upper bound for the probability
that ¢ is extendible to an ST-free colouring of Z U Z,,.,. Instead of using the
complete colouring given by ¢ we only need parts of the colouring on the associated
core, on Ro < C < ﬁg such that we can deal with all colourings from ®4 at once.

We know that |Rc| = Apn and therefore by the conclusion of Lemma 46
there are at least nn? Schur triples in the corresponding base set Base(R¢) of Re.
Since all edges in Ro are coloured with one colour, lets say red, all elements
in Uc = Base(R¢) N Zy,.p have to be coloured with blue to prevent a red Schur
triple. Consequently ¢ cannot be extended to a ST-free colouring of Z U Z,, ., if
there is a Schur triple in Ug.

However, Base(R¢) contains nn? Schur triples and p = ©(n~/2) and so we can
use Janson’s inequality [30] (see also [31]) to show that it is unlikely that U¢ is
ST-free.

In fact Janson’s inequality implies that there exists some v = +/(g,n, Cy, C})

such that

P(Base(Rc) N Zy,.p is ST-free ) = P(Uc is ST-free ) < exp (— vln_m) . (47)

By combining (C1) and (47) we deduce the desired contradiction:
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P(Z U Zyge = (ST)2) < |C]- max P(3¢ € D¢ ¢ is extendible to Up)
€

< exp (|Z]'77) -Iggg{IP(Uc is ST-free )

< exp((2pn)'7) - max P(Uc is ST-free )

< exp (20137 sexp (—y'n'/?)

< a,

for sufficiently large n, since v > 0 and C, =, and ~' are constants independent

of n. This concludes the proof of Theorem 8. 0

§4.3. PROOF OF LEMMA 45

In this section we will give the proof of our main probabilistic lemma, Lemma 45,
which includes the preparation step to choose the family Z of typical sets Z < Z,
and a convenient subset = < @), of scalings of the booster. Afterwards we apply

the hypergraph container theorem to obtain the family of cores.

4.3.1. Some Typical Properties of Z,,. We need properties that hold
with high probability for Z, , and which give us some control over the hyper-
graph H(Z,Z). In particular we want to bound the number of pairs that build
with some element of a booster a Schur triple and we want to get some information
on d(H), A(H), and Ay(H). For that we define the following for Z < Z,, and
z € Z,,. Let

P(n,z,Z) ={(z,y) € Z*: x # y and (z,y,2) isa ST}, (48)
be the pairs in Z?2 that form a Schur triple with z and let for B € Z, and q € Q,
S(n,z,B,q) ={xe€Z,:Ibe B s.t. (x,qb,z) isa ST} and

S(n,z,B) = U S(n,z, B, q) (49)

qEQn
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be the elements of Z,, that complete a Schur triple with z € Z and some qb € ¢B
for fixed g € Q,, respectively an arbitrary g € Q),,. Further, for 2’ € Z,, let

Sy(n, 2,7, B,q) ={(x,y) € Z: & # y,3b # V' € B: (2, ¢b, z) and (2, g/, y) are ST}

Sa(n, 2,2, B) = U Se(n, 2,2, B, q). (50)

q€Qn
be the pairs in Z2 that complete z € Z and gb € ¢B to a Schur triple as well as 2’
and ¢b’ € ¢B for fixed g € Q),, respectively an arbitrary q € Q,,.
We will use |P(n,z,Z)| to bound the number of Schur triples that can use
elements of a given booster, while S(n, z, B) yields some information on A;(H)
and Sy(n, z,2', B) on Ay(H). Finally we define when a scaling of a booster is

untypical.

DEFINITION 48. We say q € Q,, is bad w.r.t. B and Z if there are either

(B1) be B, z € Z such that (z, z,qb) is a Schur triple, or

(B2) be B, z€ Z, and, v # x' € Z ~ {z} such that (z,x,qb) and (z,2',qb) are
Schur triples, or

(B3) b#V e B and z€ Z, x # a2’ € Z ~ {z} such that (z,x,qb) and (z, 2, qbt)
are Schur triples, or

(B4) b #V € B and x # z € Z such that (z,x,qb) and (z,z,qb") are Schur

triples but not simultaneously x — z = qb and z — x = qb'.

Note that any z € Z can focus onto two booster elements gb # gb’ € ¢B for ¢
not bad only in the case if there is an element x € Z with x —z = ¢b and z —x = ¢b’
(all other cases are excluded by (B3) and (B4)). In this case gb + ¢gb' = 0 and
consequently b + b = 0 follows. We deal with this case in another way later in the
proof. In the following we define which properties a typical subset Z < Z,, should

have.
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DEFINITION 49. For K € N and a subset B,, < Z,, with |B,| < K, forpe (0,1),
and for constants D € N, a, ( > 0 we consider the set Z, , g, (a, ¢, D, K) of subsets
from Z,, that is given by Z € 2, , 5, (o, (, D, K) if and only if

(Z1) spn < |Z| <2pn, 0 ¢ Z,

(Z2) |P(n,z,Z)| <
(Z3) |S(n,z, B,) n Z| < 8pK|Qy| for all z € Zy,
(Z4) |
(Z5)

< D for all but at most 53 |Qn| many z € g, ¢Bn,

74) |S8%(n, z,2', By) 0 Z2| < n'/* for all pairs (z,2') € Z2 with z # 2/,
75) {q € Qn: q is bad w.r.t. B, and Z}| < n'~¢.

In the following lemma we show that Z, , with probability close to one satis-

fies (Z1)—(Z5).

LEMMA 50. For all constants K € N, a,u > 0, and C; = Cy > 0 and for
all sequences (Bp)men of subsets from Z,, with |B,,| < K there are constants
¢ > 0 and D,nyg € N such that for n = ng and Con="? < p < Cin~Y? holds
P(Znyp € Zppp,.(a,(, D, K)) > 1— 5.

We remark that in fact all properties but (Z2) hold a.a.s.

PRrOOF. We have to show that properties (Z1)—(Z5) with Z replaced by Z,,
hold with probability at least 1 — /2. (Z1) and (Z3)—(Z5) even hold a.a.s.

(Z1) %pn < |Z] < 2pn follows a.a.s. directly from Chernoff’s inequality,
Lemma 20, and 0 ¢ Z a.a.s. since P(0 € Z,,,,) = p.

(Z2) holds with probability at least 1 — 11/3 for any D > *“I. For fixed
2 € U,eq, 4Bn we estimate the expectation of X, = |P(n, z, Z, ;)| and use Markov’s
inequality. There are at most 3n possibilities to find a pair x,y € Z2 such that
(x,y,2) is a Schur triple, but (z,y) € P(n,z,Z,,) only if x and y both are

contained in Z, ,. We get

E[X.] < 3np* < 3CF,
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and Markov’s inequality, Theorem 18, yields

30?2
P(X,>D+1)< L
( <5

Now we can calculate the expected number of z € @, 4Bn with X, > D by

302

E[‘{ze U qB,: X, > D}H < Dl

q€Qn

and using Markov’s inequality a second time gives

2
P<|{z€ Uan:Xz>D}‘>301K|Q"|.3><M

et (D+1) u

Consequently with probability at least 1 — & we have X, < D for all but at most

9IC2K|Qn
(I1)+l)u‘ < grz|@n| many z € quQn qB,.

(Z3) follows a.a.s. from Chernoff’s inequality. For z € Z,, the expectation of

|S(n, z, B,) n Z] clearly has size p|S(n, z, B,)|. We show |S(n, z, B,)| = ©(|Qx])-

For any g € @), there is at least one b € B, and at least one = € Z, \ {z, gb} such
that (2, ¢b, x) is a Schur triple. For example 2 = z 4+ ¢b works since we may assume
z # 0 and ¢b # 0. In this way we get x € S(n, z, B,,), where each element from
Zy, is reached at most 6K times (three choices for the orientation of (z, gb, z), two
choices which element is multiplied by ¢, each element can be used by at most
K different ¢) which yields the lower bound. On the other hand each ¢ € @,
contributes at most 4K different elements to S(n, z, B,) (for each b at most 3
different = and maybe ¢b itself). Consequently we get

Q.
< B,)| < 4K|Qy,
< |S(n, 2, B)| < AKQu|

in particular,

o nl/2
B frm— - fr— .
p|S(n, z, B,)| = ©(n~77|Q,]) = © (loglogn)

Now Chernoff’s inequality together with a simple union bound yields the

statement.
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(Z4) is done in a similar way as (Z3). For two fixed z # 2’ € Z,, we will estimate
the size of the family of pairs (z,y) € Z2 such that = # y and for each (z,y) there
are b # 0 € B with (z,¢b, z) and (z'qV/,y) are Schur triples. We call such pairs
connecting pairs and we will show that such a family has size O(i—%—). Then

loglogn

the expected value of |S?(n, 2, 2', B,) n Z?| is at most O(pgloglr(L)gn) = O(@).

Then we want to use Chernoft’s inequality and a union bound again, but in
contrast to (Z3) here the probabilities P((z,y) € Z?) and P((«’,y’) € Z?) for two
connecting pairs are not independent if the pairs intersect. We solve this issue by
splitting the family of connecting pairs into a constant number of families such
that in each family all pairs are disjoint.

Let z # 2 € Z,. First we estimate the number of pairs (z,y) € Z2 that
connect z and 2’. For any ¢ € ),, there are at most 9K ? possible connecting pairs for
(2, 2') that use the booster ¢B. Consequently we get |S*(n, z,2', B,)| = O(ogioan)-

Now consider the auxiliary graph G where the connecting pairs are the vertices
of G and {(z,y), (z/y)} is an edge of G if and only if (z,y) and (2',y') are not
disjoint. Consequently v(G) = |S§%(n, 2,2", B,)| = O(5455) and A(G) < 18K2.
Since in general for the chromatic number x(G) < A(G) + 1 holds there is a
partition of the vertices into m < 18K? independent sets. Each independent
set corresponds to a family of disjoint connecting pairs. In this way we get a
partition of 8?(n, 2,2/, B,) into m families S7,...,S? of connecting pairs. For

each family S? we get

1
2 2] < p?|S? =

and Chernoff’s inequality yields
v
P (|Sf NZ% = ) <exp (— Q).
m

Clearly |8%(n, 2,2/, B,) n Z?| < 3", |8? n C| and consequently

P(|S*(n, 2,2, B,) n Z°| = n1/4) < exp ( — Q(n1/4)) )
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Now we can use a union bound over all pairs z, 2’ € Z,, which yields the claim.
For (Z5) we will show that there exists £ > 0 such that for all ¢ € @,, and

sufficiently large n
P(q is bad w.r.t. B, and Z,,) <n*.

Then (Z5) follows from Markov’s inequality with ¢ = £/2.

For fixed q € Q),, and b € B there are at most two different z € Z such that
(z,2,gb) is a Schur triple. Each z appears with probability p and a union bound
yields

P(q is bad w.r.t. B, and Z,, because of (B1)) < K -2-p<n™*

for some & < 1/2 and sufficiently large n.
For fixed ¢ € Q),, we count configurations withb € B, z € Z, and x # 2’ € Z~{z}
such that (z, z, ¢b) and (z, 2’, gb) are Schur triples. Then each configuration appears

with probability p? and consequently
P(q is bad w.r.t. B, and Z,, because of (B2)) < K -n-3-3-p* <n~®

for some & < 1/2 and sufficiently large n.

For the case that a fixed ¢ € @, is bad because of (B3) or (B4) we count
configurations with b # b € B and z,z, 2’ € Z such that (z,z,gb) and (z,2’, qb’)
are Schur triples and distinguish between the cases z # x’ and x = /. First let

x # o', then each configuration appears with probability p* and consequently
P(q is bad w.r.t. B, and Z,, because of (B3)) < K*-n-3-3-p* <n™®

for £&5 < 1/2 and sufficiently large n.

For the last case assume z = z’. For each b, b, ¢ the assumptions that (z, x, qb)
and (z, ', gb") are Schur triples lead to a system of two linear equations (depending
on the orientation of the Schur triples) which x and z have to satisfy. There are
nine cases, but using symmetries between x and z and between ¢b and ¢b’ we can

restrict to the following four cases.
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Case Aigb=z+ zand ¢/ = = + z,

Case B: gb =z — z and ¢/ = = — z,

Case C:qgb=x—zand ¢t/ = z — x,

Case D: ¢b =z —x and ¢t/ =z + z,
Case A and B do not have a solution since gb # ¢b' for b # b and ¢ € Q,.
Solutions of case C' do not lead to configurations that are bad in sense of (B4) by
the formulation of (B4). It is left to deal with case D.

Let gb = z — x and ¢gb' = x + z, hence, the equations 2z = ¢b' — ¢gb and
2z = qb' + gb hold. Consequently there are at most two possible solutions for x
which determine the value of z. Each such x appears with probability p (and

similarly each such y) and there are at most K? choices for b, b’ so we conclude
P(q is bad w.r.t. B, and Z,, because of (B4)) < K*-2-p < n~%

for some & < 1. With £ = min{{, &, &3,&} and ¢ = £/2 Markov’s inequality
yields (Z5). O

4.3.2. Restricting Embeddings of B. In addition to the properties of Z
we also need some properties for ¢ € (), that is why we restrict the family of

scalings @),,. In that sense we define normal scalings.

DEFINITION 51. For constants & > 0, D e N and Z, B,, < Z,, a set =, V' Z, is

called (a, By, D, Z)-normal if the following properties are satisfied
= logol[:gn’

=2) Zu qB — (ST)y for all ge =2,

=3

(21) |=
(22)
(23)
(24) qB, n¢'B, =& forall q #q € =
(E5)
(26)
(E7)

q is not bad w.r.t. B, and Z for all g € =2,

25) for all q € Z° we have ¢B, N Z = @,
E6) |P(n,z,Z)| < D for all z € ez 4Bn,
27) for all g € Z2 there are no b,b' € B,, and z € Z such that (z,qb,ql) is a

Schur Triple.
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Now we will show that in the setting given by Bourgain’s criterion, Lemma 44,

we can find an (&, B, D, Z)-normal family of scalings.

LEMMA 52. For all constants a,( > 0, K,D € N, and C; > Cy > 0 and
for a sequence (By)men of subsets By, € Zy, with |B,,| < K there exists ng € N
such that for all n = ng and Con™? < p < Cyn~Y? the following holds. If
ZeZ,,p,(,(,D,K) and

P(Z U ¢B, — (ST)s) > a (51)

where q € Q,, chosen uniformly at random, then there exists Z° < Q,, such that =°

is (&, By, D, Z)-normal with & = a/(50K°).

PROOF. Given (B, )men and the constants as above set a@ = 3% and let n
be sufficiently large. Let Con 2 <p < Cin Y2 let Z € Z,,5,(a, ¢, D, K), and
let (51) hold. We will obtain the desired set =% by starting with @,, and removing
step by step elements.

We start with the family of coprimes @, which has size |Q,| > Tosbogn- BY
assumption (51) there is a family Q. < @, of size at least «|Q,| such that for
all ¢ € Q! we have Z U ¢B,, — (ST),.

Next we remove from @} all elements ¢ such that ¢ is bad w.r.t. B, and Z.
Since Z € 2, , 5, (a, ¢, D, K) the family Y,, of bad elements w.r.t. B,, and Z has
size at most n'~¢ and we conclude that for sufficiently large n and Q2 = Q. \ Y,
we have Q2] = §|Qn|.

Now we want to ensure (Z4). Since ¢ € @), is coprime w.r.t. n, the function
Vg1 Ly — Ly, n — gn is bijective, and thus for every z € Z,, there are at most K
many ¢ € ), such that qb = z for some b € B. In fact, these are the unique ¢; with
¢;b; = z if we denote by b; the elements from B,,. In a first step we pick greedily
any q € Q2 and remove all ¢’ € Q2 with ¢B, n ¢ B, # @. By the argument above

in this way we pick at least one and remove at most K2 — 1 elements from Q2.
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Repeating the same procedure as often as possible yields a set Q2 = Q? with
Q3] = 5|Q2%] = 5%|Q,] such that ¢B, n ¢'B,, = @ for all ¢,¢ € Q3.

To obtain property (Z25) we remove all elements ¢ from Q2 with ¢B,, n Z # @.
By (Z4) we remove at most |Z| many elements from Q2 and because of
Z e Z,pp,(a,(,D,K) we know |Z| < 2pn = O(n'/?). On the other hand
Q3| = O(iogicsn) and we obtain a set Qn = Q3 of size at least 325]Q,| that
satisfies (£5).

In the next step we remove all ¢ € Q! that contain some z € ¢B with
|P(n,z,Z)| > D. By Z € Z,,5,(a,(,D,K) (we use (Z2)) there are at most
572|@nl| such z and by (Z4) each z belongs to exactly one ¢q. Consequently we
remove at most 5o |Q,| many ¢ € Q;, and obtain a set Q5 of size at least 75 |Qy|
that satisfies (Z6).

To ensure (Z7) we do a preparation step first. For ¢ € Q,, let

A, ={aeZ,~{0}:3,b € B, st.a=qb—gb or a=qgb+ qb'}

be the set of distances between elements of ¢B,, and sums of two elements of ¢B,,.
Pick an arbitrary ¢ € @2 and remove from @ all ¢ € Q> with Ay n A, # @. We
count the number of ¢’ € Q> that will be removed in this way. For each of less than
2K? many a € A, and for each of at most K? many combinations by, b, € B there is
at most one ¢’ € @, such that a = ¢/(b; — b2) (and the same for all a = ¢/(by + bs)).
It follows that less than 4K* different ¢’ are removed from Q3 and consequently we
can repeat this procedure to get a set QS = Q3 of size at least 7=|Q0| = 355 |Qnl
such that A, n A, = @ for all ¢,¢ € Q8.

Now for any z € Z and b,V € B there is at most one ¢ € Q¢ such that z
completes gb and ¢b’ to a Schur triple: For z # 0 this is ensured by 4, n Ay = @,
and Z € Z,,p,(a,(, D, K) yields 0 ¢ Z. Consequently we can obtain (Z7) by

removing at most |Z| = o(|Q,|) many g € Q.
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—0

The resulting set has the desired properties of the set =), because

Eb| = 555 |Qnl = bgﬁ for sufficiently large n and (Z2)-(Z7) are inherited

in each step.

O

Since there is only a bounded number of profiles we can use a simple averaging

argument to achieve index consistency for a given family of scalings.

LEMMA 53. For all constants & > 0 and K, D € N, for all sequences (B )men
of subsets B, S Zy, with |By,| < K for all m € N there exist o >0 and L,nge N
such that for all n = ngy every subset Z < Z, satisfies the following.

For every (&, By, D, Z)-normal family =2 there is an (!, Bn, D, Z)-normal

0
n

family =, < =0 and there is a profile w of length at most L such that (Z,=,) is

almost reqular and index consistent with profile .

PRrROOF. Let @, D and (By,)men be given. We define

~

’ (67

L=2DK and (6] :W

and let ng be sufficiently large. Given some Z < Z,, and an (&, B, D, Z)-normal
set 2V < Q,, we restrict Z0 to =, with the desired properties.

Properties (Z2)-(Z7) from Lemma 52 are inherited from =Y to =, since
restricting does not destroy this properties that are independent of a. We only

have to ensure (Z1) that means we have to keep a sufficiently large proportion of
0

n*

Consider the pair (Z,Z%). Since (Z3) and (Z7) the pair (Z,Z) is by definition

the elements from =

0

. uniquely on

almost regular and, in particular, each z € Z focuses for each g € =
at most two gb € ¢B. If z € Z focuses for ¢ € Z0 on exactly two ¢b;, qby, € ¢B then
there is x € Z such that z — x = ¢b; and v — 2 = ¢by.

By the regularity we also know that each ¢ € 2% has a profile of length ¢,

and by (Z6) this length is at most ¢, < 2DK = L since for each of at most K
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elements qb € ¢B there are at most L pairs that form a Schur triple with gb. Only
the elements of the pairs can be contained in M,.

By the pigeonhole principle there is some ¢ < L such that at least %]Em
many ¢ € =0 have a profile of length exactly ¢. Since there are at most (K?2)
different profiles of length exactly ¢ there is a profile 7 of length ¢ and there are at
least LK%E?A different ¢ € Z° which have all the same profile 7. Let =/, be the
set of these q.

Next we apply another averaging argument to achieve index consistency. We
consider some partition Z; w...w Z, of Z into ¢ classes chosen uniformly at random.
For g € 2! consider M, = (21, ..., 2z,) with the natural ordering of Z. We include ¢

in =, if z € Z foralli = 1,...,0 Clearly P(q € Z,) = % and E[|Z,[] = B2,

which means there is an =,, € =/, with

n —n

¢ 7 LL LKL

_ |= | 1= an a'n
|:n| = =

=

L1 2L Joglogn - loglogn

Now let ¢,¢' € Z,, and let z € M, n M,. Since z € Z; for some partition class Z; we
know that z has index j in both M, and M. Therefore (Z,=,,) is index consistent
which finishes the proof. 0

4.3.3. Proof of Lemma 45. Finally in this section we combine the prepara-
tory lemmas for a typical set Z and a normal family of scalings = to apply the

hypergraph container theorem to H(Z,=).

Proor oF LEMMA 45. First, we fix all constants used in the proof. Let
constants C; > Cp > 0, a,u > 0, K € N and a sequence (B,;)men of subsets
By, € Z,, with |B,,| < K for all m be given. Lemma 50 applied with the constants
above yields ( > 0 and D, njy € N. Similarly Lemma 53 applied with

.«
“ 50KS
yields o/ > 0 and L,ns3 € N. We set
/
1
54 a and = -— (52)

~ 96C2K (1)
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and show that o/, 8, v and L defined in this way have the desired properties.
Further, let p = p(n) = c¢(n)n~2 for some c(n) satisfying Cy < c(n) < C;. We
shall show that Z,, , satisfies with probability at least 1 — £ the properties of
Lemma 45, hence, by Lemma 50 we can assume that for sufficiently large n, in
particular n > max{nsg, ns3}, the set Z considered in Lemma 45 is from the
set Z,p.8,(a, ¢, D, K). Moreover, let n be sufficiently large such that Lemma 52
applied with «, ¢, D, K, Cy, C1, and (B, )men holds for n.

Now let Z € Z,,5,(c,(, D, K) such that for ¢ € @), chosen uniformly at

random we have
P(Z u¢B, — (ST)2) > a.

then Lemma 52 yields an (&, B,,, D, Z)-normal family =0 < Q,, with & = o/(50K9).

0
n

By the choice of o and L Lemma 53 yields an (o, B, D, Z)-normal family =, < =
and a profile m of length ¢ < L such that (Z,=,) is almost regular and index
consistent with profile 7. Removing embeddings from Z,, does not destroy any of

the properties (Z2)—(Z7), regularity, index consistency or a profile, so we can

a'n ‘|

assume w.l.o.g. that |=,,| < [loglogn

Consequently now we work with a set Z € Z,,, =, < @Q,, and a profile 7 such
that (Z1)—(Z5) from Lemma 50 are satisfied as well as (21)—(Z7) from Lemma 52
and (Z,Z,) is index consistent with profile 7.

We consider the hypergraphs H = H(Z,Z,,) defined by
V(H)=7 and E(H)={M(Z,qB,): q€=,},
where
M,=M(Z,qB,)={z€ E(Z): 3be B, s.t. z focuses on ¢b} .

Since (Z,Z,,) is index consistent with a profile of length ¢ we know that H is

an (-uniform hypergraph on |Z| vertices. Our goal is to show that H satisfies the
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assumptions of the hypergraph container theorem for

1 1
e=— and T =mn 81,

4
For that we estimate v(H) = |Z|, e(H), d(H), A2(H), and finally §(H, 7). To

conclude the properties of Lemma 45 we will also need a bound on A;(H).

By (Z1) we know

1
Spn < v(H) = |Z| < 2pn. (53)

For a bound on e(#H) remember that =, is (¢/, B,, D, Z)-normal and by (Z1)

/ —_ ’
logo;iorg;n S ":'"| < [loggozn]'

(Z,Z,) is almost regular and Z,, does not contain bad scalings w.r.t. B and Z, so
each hyperedge M, of length ¢ consists of ¢/2 pairs z;,y;, ¢ = 1...,£/2, such that z;
and y; focus onto the same element ¢b; respectively onto the same elements ¢b
and gb’. There are at most (5) pairs x;,y; in M, and each pair can be extended to
a Schur triple by at most three different ¢ € =,,, since the boosters ¢B,, and ¢'B,,
are disjoint by (Z4). Consequently M, can be the hyperedge for at most 3(5)
different g € =,, and we get that

a'n a'n
—m—— < e(H) < ) 54
3(%) loglogn () [loglog n} (54)
For the average degree we get
! 1 ! 1
d(H)zE-e(H) a'n «

v(H) =t 3(5) loglogn 2pn Z 5 ploglogn

Next we look at Aj(H), that means we count for z € Z the number of g € =,
such that z focuses on ¢B,. Since ¢B, n ¢'B, = @ an upper bound follows
from (Z3) and we get

SKpn
loglogn

(44)
Ay(H) = max {|S(n, z, By) n Z|} < max {8Kp|Qu|} < (55)

z€Z

For Ay(H) we consider pairs z, 2’ € Z that focus on the same ¢B,,. By definition

of Sy and since ¢B,, n ¢'B,, = & for ¢ # ¢, an upper bound of Ay(H) is given by
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max, .ez2{S2(n, 2, 2', B,)}. Then Property (Z4) yields that

Ag(H) < max {Sy(n, 2,2, B,)} < n*/*.

z,2'€Z?

Now we are prepared to estimate §(#,7) to check the assumptions of Theo-

rem 17. We have

S(H, ) = 2()1 ZZ: (7)1 S a9 ()

j=2 veV (M)
BNGEE S Ay
= ]z_;‘ I Imd(H) m - Aa(H)
< o)1 N 1 Ao (H
b ~ T1d(H) 2(H)

=

3¢
<206)-1.p. pi8. —ploglogn - n'/*
a

302C
< 2(s)-1. 7/1 -n"Y®loglogn
o
€
g -
120!

for sufficiently large n.
By the hypergraph container theorem, Theorem 17, there exist some constant
¢ = c(f) and a family J < P(V(H)) satistying (a), (b), and (¢ ) from Theorem 17.
We define
C={CcV(H):C=V(H)~JforoneJeT}.

We claim that C has the desired properties (1), (2), and (3) of Lemma 45.
(1) follows from (¢) since |C| = |J| and

log | J| < erlog(1/7)log(1/e)v(H) < | Z| -n_ﬁclog(l/ﬂ log(1/e) < |Z|1_7,

where the last inequality follows for sufficiently large n from

(

52)
1Z]" <n” <

1 1
nioL < nioe ,

since ¢ = ¢(¢) and log(1/e) are constants independent of n and log(1/7) < logn.
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(2) follows from (b). Assume for a contradiction that there is C' € C with
|C| < p|Z] and let J =V \ C € J. Then counting the number of hyperedges

of H will yield a contradiction:

e(H) < e(H[V N C]) +|C] - A1 (H)

55) K
L e + plz) - ShPn

. loglogn

(53) 9
< ee(H) + B16C2K

n

loglogn
(54) 18C2K (¢
n) + PR " (2)e<H)

< eef
(-2

Oé/

so |C| = p|Z]| for all C eC.

(3) For a hitting set A of H consider the independent set [ =V ~ A. Hence
by (a) of Theorem 17 there exists J € J such that I < J and, therefore,
A2V ~J = C which is an element of C. O

§4.4. PROOF OF LEMMA 46

Let Y < Z,. In the following we consider the single row matrix
A:<—1 1 -1 11 —1)

that is chosen in a way such that a solution @ = (xy, T2, y1,%2,21,22) € Y to
A7 = 0 corresponds to a Schur triple in Base(Y'): If ¥ is such a solution, then
obviously (z2 — 1) + (Y2 — y1) = (22 — 2z1). On the other hand x5 — 1, y2 — v,
and z — z1 are elements from Base(Y') and they form a Schur triple (which could
be degenerated). Most of these solutions, however, will lead to non degenerated

Schur triples.
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FacT 54. Let n > 7 and the single row matriz A = (—1 1 -1 11 —1)
be given. Consider the system AU = 0 with ¢ € Z8. Then A is irredundant, density

5

reqular and has density m(A) = 7.

PRrROOF. Remember that in the introduction we defined A as irredundant if
there exists a solution ¥ = (vq,...,v;) of AU = 0 with v; # v; for all i # j
(note that in [16] another definition of irredundant is used that is equivalent
for sufficiently large n). These solutions are called proper solutions. For n > 7
obviously there is a proper solution of A7 =0 in Z,, so A is irredundant.

Clearly (1,1,1,1,1,1)7 is a solution (but not a proper solution) to Av' = 0
In [16, Theorem 2| it is shown that in this case (A has full rank and is irredundant)
A is also density regular.

We defined the density m(A) by

_ w1
A= WuWIil[%]},(\W|>2 |W| — 1+ rank(Ay;) — rank(A)

and for W = @ also rankgy = 0. For W # & obviously rankgy = 1. It follows that

6—1 5
m“):f““{l’a_uo_l}n-

in our case

O

The next theorem follows from [52] and it is true even more generally for
arbitrary irredundant, density regular matrices and p = Cn=""™4 for some C > 0.
Although the theorem (Theorem 2.4.) presented there only guarantees one proper
solution, the proof of the main lemma yields at least a constant fraction of the

expected number of proper solutions (see Lemma 3.4.).

THEOREM 55 ([52]). For A = (—1 1 -1 11 —1> and for all A > 0
there exist C > 0,& > 0 such that for every sequence p = p(n) = Cn=5 the
following a.a.s. holds. Every subset of Z,,, of size at least A\pn contains at least

Ep®n® proper solutions of Av = 0.
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We conclude this part with the proof of Lemma 46 which uses the ideas of the

corresponding proof for arithmetic progressions in [21].

PrOOF OF LEMMA 46. Let A > 0, C; > Cy > 0 be given and consider the

matrix
A=<—1 1 -1 1 1 —1).

Owing to Fact 54 for n > 7 the matrix A has rank 1, is irredundant, and density

regular with m(A) = 2. Theorem 55 yields constants C,{ > 0. We define the

2016
auxiliary constant ¢ = max{12, C?} and set n = jszcc%' Let Con™ "2 <p < Cyn~ Y2,

Since we want to show that a.a.s. for every subset S € 7Z,, , of size at least Apn
there are at least nn? Schur triples in Base(S) we can assume that n is sufficiently
large, in particular p = Con=Y2 > Cn=45 = Cn=1/™AW),

For X € Z, let
ST(X) = {(z,y,2) € X*: x,y and z form a Schur triple}

be the set of (possibly degenerated) Schur triples that are contained in X. Note that
every Schur triple in X appears at most 6 times in ST(X) and each non degenerated
Schur triple exactly 6 times. For a Schur triple (x,y,2) € ST(Z,) and Y < Z,
we denote by degy-(z,y, z) the number of six tuples (z1, z2, Y1, Y2, 21, 22) € Y with
pairwise distinct entries such that x = 29 — x1, ¥y = yo — y1 and z = 21 — 2o.
Since (z,y, z) is a Schur triple all proper solutions to A = 0 are six tuples that
contribute to U(Y') = >}, o1z, degy (2, y, 2).

We are also interested in W(Y) = >, corz,) (degygx’y’z)) which can be
bounded from above for all Y < Z,, ,, simultaneously by W (Z,,,). In the following
we will estimate the expectation and variance of W(Z,,). For that we count
for each triple (z,y,z) € ST(Z,) (which are at most 6 times the number of
Schur triples in Z,) the number of pairs of six tuples (z1, 2, y1, Yo, 21, 22) € ng
and (@, 2%, ¥}, Y5, 21, 25) € 25, each with pairwise distinct entries such that both

contribute to degy (z,y,2). If we count the number of possible choices for
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these tuples we see that there are at most n choices for x;. Any choice of z;
determines the value of x5 since o = x + 21, any choice of y; determines 5, and z;
determines zy. So for the first six tuple there are at most n(n —2)(n —4) < n?
possible configurations in Z, and since all entries are pairwise distinct each
configuration appears with probability p® in Z,,,,.

Now for fixed x,y, z, 1, T2, Y1, Y2, 21, 22 We count the number of possible con-
figurations for the second six tuple. First consider the two elements x| and .
Similar to the calculations for the first six tuple we see that as long as x] and
are distinct from the elements of the first six tuple this will yield a factor of at
most np? for E[W(Z,,)]. If they are not distinct from the first six tuple then
there are either only six choices for z or only six choices for zi,. In both cases
the remaining element is uniquely determined and we conclude that the resulting
factor for E[W(Z,,,)] for the number of possible choices of (2], %) is at most the
constant 12. The same argument works for the pair yj, v, and for the pair 21, 25.

Summarising we get
E[W (Zn,)] < |ST(Z,)] - (np*)® max{12, np*}* < 6n* - *n’p® = O(n?).

The estimation of the variance uses similar calculations. For (x,y, z) € ST(Z,)
we are looking for four six tuples (24,25, vi,v5, 21, 23) € Z; ,,, i € [4], each with
pairwise distinct entries such that all of them contribute to degy, (x,y,2). For
the first two six tuples we get exactly the same calculation as for E[W(Z,,)].
For the third six tuple we repeat the calculation as for the second one with the
following difference: If the pair a3, x3 is not disjoint from the elements chosen
for the first two six tuples, then we get instead of 6 at most 12 choices for x}
respectively 3 (and similarly for the pairs ¥, y3 and 23, 25). Consequently the
factor for Var(W(Z,,)) is equal to max{24,np?}*. Similarly the factor for the

fourth six tuple is max{36, np?}>. As np* = ©(1) we get in total

Var(W(Zn,)) = OE[W (Zn,)]) = O(n) .
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Then Chebyshev’s inequality, Lemma 19, yields that a.a.s.
W(Zyp) < 2E[W (Zn,)] < 126°0°p°.

Now let an arbitrary S < Z,,, of size at least Apn be given. Since Theorem 55
as well as W(Z,,,,) < 12¢3n°p® hold a.a.s. for Z,, , we can assume that in S there are
at least EnSp® proper solutions to Av = 0 and that W(S) < W(Z,,) < 12¢*n°p°
We conclude that

UlS)= > degg(,y,2) = Enpf
(2,y,2)eST(Zy)
and
d
ws) =Y ( egS(g’y’ 2)) < 1280%p5 .
(z,y,2)eST(Zn)

Note that in U(S) and W(S) the term (x,y,z) € ST(Z,) can be replaced
by (z,y,z) € ST(Base(S)) since by definition triples in ST(Z,) ~ ST(Base(.5))
satisfy degg(z,y,2) = 0. Finally the Cauchy-Schwarz inequality yields

(Sn;’p6> < (U(QS)> < [ST(Base(S))| - W(S) < | ST(Base(S))| - 12¢*n%p°

and consequently

£2n10 12 52 5 €2
3126050 3665 P> s

| ST (Base(95))| = > 02 — 12nn?.

In ST(Base(S)) we count each Schur triple of Base(S) at most six times,
consequently there are at least 2nn? Schur triples contained in Base(S). On the
other hand there are only ©(n) degenerated Schur triples contained in Z, and
consequently for sufficiently large n there are at least nn? non degenerated Schur

triples contained in Base(Y’) which finishes the proof. O
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Hamiltonian Cycles in Hypergraphs



CHAPTER 5

Hamiltonian Cycles

In this chapter we will prove Theorem 13. This chapter is based on [2], joint
work with Bastos, Mota, Schacht, and Schnitzer.

§5.1. MAIN LEMMAS

5.1.1. Outline of the Proof of Theorem 13. The proof follows the Ab-
sorbing Method introduced by Rodl, Ruciriski, and Szemerédi in [48]. For this, we
derive the following lemmas. The Absorbing Lemma (Lemma 58), the Reservoir
Lemma (Lemma 57), and the Path-Tiling Lemma (Lemma 65).

We call an (-path A < H a [-absorbing path for a k-uniform hypergraph H
if for every subset U < V(H) of size at most [Sn there exists an {-path Q such
that V(Q) = V(A) u U and Q have the same ends as A, for some § > 0. The
Absorbing Lemma (Lemma 58) ensures the existence of a S-absorbing path A.
This reduces the problem of finding a Hamiltonian /-cycle to that of finding an
almost spanning ¢-cycle that contains A.

To obtain an almost spanning ¢-cycle, we first find a bounded number (inde-
pendent of |V(H)|) of ¢-paths covering almost all vertices of V(H) . A and then
connect them using only vertices from a small set, a so-called reservoir set that
we fix beforehand. The Reservoir Lemma (Lemma 57) shows that it is possible to
find this reservoir set R such that any bounded number of disjoint /-paths can be
connected to an f-cycle, only using vertices from R.

We can choose the sizes of A4 and R small enough, so that the remaining
hypergraph satisfies almost the same degree condition as H. Then the Path-Tiling

Lemma (Lemma 65) ensures the existence of a collection of ¢-paths covering almost

102
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all vertices of V(#H) ~ (A u R). This is the only point in the proof where we use
the exact value of the degree condition and the non-extremality of H. (In fact, a
proof for the corresponding version of the Path-Tiling Lemma for a direct proof of
Theorem 12, which allows us to utilize a slightly larger degree condition, is a bit
simpler.)

As mentioned before, the paths from the Path-Tiling Lemma and A can be
connected by using vertices from R to an almost spanning ¢-cycle containing A.
Since this /-cycle contains almost all vertices of H, the absorbing property of A
allows us to absorb the leftover vertices, i.e. vertices that are not contained in
any of the /-paths and vertices that were not used to connect the ¢-paths. The

resulting /-cycle is the desired Hamiltonian /-cycle.

5.1.2. Connecting. In order to construct an almost spanning ¢-cycle of a
k-uniform hypergraph H, we first find some ¢-paths and connect them at their
ends. Formally, given an ¢-path P = vy ---v; in ‘H, we define the ends of P as the
sets {v1,...,ve} and {vs_g41,...,v:}. For a collection of 2m mutually disjoint sets
of £ vertices X;,Y; we say that a set of {-paths Ty,..., T, connects (X;,Y;)icpm) if
all paths are vertex-disjoint and X; and Y; are the ends of T;, for all i € [m]. The
connections for a given collection of disjoint ¢-paths are given by the following
lemma. In addition the lemma allows to restrict the edges used for the connection

to a given “well-connected” subset R of vertices.

LEMMA 56 (Connecting Lemma). Letn > 0 and let k =>4, 1 < { < k/2, and
m =1 be integers. Let H = (V, E) be a k-uniform hypergraph and R < V with
. .. v
|R| = r = 32km/n?. For every collection of 2m mutually disjoint sets X;, Y; € ()
and V' = Uie[m] (X; uY:) U R the following holds.
If |N(K) N (]2%)‘ > n(g) forall K € (k‘i;), then there exist {-paths T1,...,Tm

of size at most 4 connecting (X;,Y;)iepm], which contain vertices from V' only.
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N
D)
| S

FIGURE 1. The path connecting (X;,Y;).

PrROOF. Given > 0 and integers k > 4, 1 < ¢ < k/2 and m > 1, let
H = (V,E), RV, X;,Y; for i € [m], and V' satisfy the assumptions of the
lemma.

Suppose we have constructed ¢-paths 7y, ..., 7,1 connecting for some j < m
the pairs (X, Y;)ie[;—1] using only vertices from V. We want to construct a path
7; with ends X; and Y;. We define F; = {J;c,,1(Xi U Y3) U Ue;1 V(T0) as the
set of forbidden vertices for T;.

Ifk—2>20=|X;0Y)| fixaset Z of size k —2 —2¢ from R\ Fj. Since
|R| = r = 32km/n?, we know that

wenenoan ()=o)~ () (2= () - (")

Hence, there exists a hyperedge X; u'Y; u Z' with Z' < R \ F};, which realizes the
path 7;.
It is left to consider the case that 2¢ = kK — 1. See Figure 1 for a drawing of the

path we will construct in this case. For a set A <V, let N4(S) = N(S) n (k‘:ls).

R\Fj

OBSERVATION. For any Z € {X;,Y;} and L € (*,}

), there are at least nr/4
many vertices z € R~ (F; U L) with |[Ng r,(Z U L U {z})| = nr/4.

To see the observation note that we can consider Ng. r,(Z U L) as the edge set

of a 2-graph with vertex set R~ (F; u L). Since r = 32km/n?, it follows from the
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degree condition of H into the set R that this graph has edge density at least 7/2
and the observation follows.

Let L € (RE:?) and let z, y € R~ (F; u L) be distinct. We say that (z, L,y) is
an extendable triple in R\ Fj if

[Newr, (Xjw Loz} Znr/4 and  |Neog (Y 0 Lo {y})] = nr/4,

The observation yields at least (nr/4)(nr/4 — 1) > (nr/8)* extendable triples
(x, L,y) for any fixed L e (Re\jﬂ)

Given S € (Rg\_};) and an extendable triple (z, L, y) disjoint from S, SuLuU{z, y}
is a (k—2)-element set. Consequently, the minimum degree condition of the lemma
yields at least 77(2) pairs M € (g) such that S U M u L U {z,y} is an edge of H.
Moreover, similarly as in the proof of the observation at least (1/2) (lR\QF ]'l) of these
pairs avoid F}. Since this is true for every extendable triple and there are at least
('Rgifj') (nr/8)? extendable triples, there exists an M € (R;F i ) that, together with .S,
forms an edge of H with at least (77/2)(777“/8)2(”%[1}17”) extendable triples. Since
r = 32km/n?, this is more than the number of triples that any single extendable
triple can intersect with, so there exist two completely disjoint extendable triples
(x,L,y) and (2/, L, y’) that form an edge of H together with M’ = M U S.

By the definition of extendable triples we have
|Npp,(X; UL u{a})| =nr/d>k+1=|M oL vy, yl
and
|Nper,(V; UL O{y' Y| znr/d>k+2=|M OLU{z,yz}+1
Consequently there are v, v’ € R \ F}j such that the hyperedges
{X;uLuf{v,x}}, {M'oLu{z,y}}, {M'OL'u{z,y'}}, and {Y;uL'u{y v'}}

are edges of H, which form a path of size 4 connecting (Xj,Y;). O
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In the main proof we will connect /-paths to an almost spanning ¢-cycle. The
Reservoir Lemma (stated below) ensures the existence of a small set R such that
we can connect an arbitrary collection of at most 2m many /-sets, only using

vertices of R.

LEMMA 57 (Reservoir Lemma). Let n,e > 0 and let k > 4, 1 < { < k/2,
and m = 1 be integers. Then for every sufficiently large k-uniform hypergraph
H = (V, E) on n vertices with 6x_o(H) = n(5) there is a set R < 'V with |R| < en
such that the following holds.

For every collection X;,Y; fori € [j] of 2) mutually disjoint sets of € vertices,
where j < m, there exist (-paths T1,...,T; of size at most 4 connecting (X;,Y;)ie[]

that, moreover, contain vertices from Uie[j] (X; uY;) U R only.

Lemma 57 is a consequence of Lemma 56, since one can show that with high
probability a suitably sized random subset R < V' inherits an appropriately scaled
minimum degree condition from H. As a consequence such a set satisfies the
assumptions of Lemma 56 (with 7/2) and the lemma yields the conclusion of

Lemma 57 (see, e.g. [6, Lemma 6] for a very similar argument).

5.1.3. Absorption. Given a k-uniform hypergraph H and U < V with
|U| € (k — )N, we say that an ¢-path A absorbs U if there exists an (-path Q with
the same ends as A and V(Q) = V(A) u U. At the end of the main proof we will
absorb all vertices outside of an almost spanning /-cycle to obtain a Hamiltonian
(-cycle using an absorbing path A, i.e. a path that can absorb any set U of small

linear size. The existence of such a path A is given by the following lemma.

LEMMA 58 (Absorbing Lemma). For every n, ¢ > 0 and all integers k > 4
and 1 < ¢ < k/2 there exists € > 0 such that the following holds for sufficiently
large n. Let H = (V, E) be a k-uniform hypergraph on n vertices that satisfies
Sk—2(H) = n(3). Then there is an (-path A with |V (A)| < (n such that for all

subsets U < V \V(A) of size at most en with |U| € (k—{)N there exists an {-path
Q c H with V(Q) = V(A) uU such that A and Q have the same ends.
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PROOF. Let n,{ > 0 and let £ >4 and 1 < ¢ < k/2 be integers, and assume

w.l.o.g. that ( < 1. Fix auxiliary constants

~ Ui
=1 and q=3k—20

and set

~10
o q]

56k
Let n be sufficiently large and let H = (V, E) be a k-uniform hypergraph on n
vertices that satisfies 6y_o(H) = n(}). First, we will show that for any S € (k‘i )
there exist many, i.e. 2(n9), 3-edge ¢-paths that absorb S (see Claim 1 below). For
that we will use the following consequence of the minimum degree condition. Let

A, B < V(H) be disjoint sets of vertices with |A| < k —2 and |B| < ¢ + k. Then,

n—JAD)- - -(n—k+3 n
detu(A) > | ||)(k—|A(|)! + >.n(2

>—|B|nk|A|1 > fnk Al (56)
Claim 1. For every S € (k‘:e) there exist at least 7°n? many 3-edge (-paths that

absorb S.

PROOF. Let S; U S5 = S be chosen in some way such that
|S1| = S| = |S1| —1 and max{0,30 — k} < |S1 n So| </ (57)
and set s; = |S1], s2 = |92, and s3 = |S1 N Sy|. Clearly, we have
S1+ 82— 83=|S|=k—"(. (58)

It follows from the choices above that s; + s = 2¢. Indeed, since s3 > 3¢ — k we

have k — 0 = s1 + s — 83 < 81+ $9 — 3/ + k and, hence, s; + s, = 2¢. Furthermore,
S1 = So = 51 — 1 yields

S1 Z S92 2 g (59)

We then select the following sets. See Figure 2 for a drawing of the chosen sets

and edges containing them. In each step, we will only select sets that are disjoint

from S and anything chosen in a previous step.
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(i) Since s; < k— £ —1 < k — 2, by (56) there exist 7n*~*! choices for a
(k—s1)-set X such that f; = X'w.S) is an edge of H. Since |X| = k—s; (58)
{+ s9 — s3 it follows from (59) that we may partition X = L1 v F v F}
such that [L;| = ¢ and |F| = ¢ — s3 @ 0.

(7) Since k = 4 we have k — ¢ > 3 and, consequently, s; > [(k — ¢)/2] = 2.
Thus, by (56) and [Sy U F| = so + ¢ — s3 = k — s, there exist 7jn®' choices
for a set Y of size s; such that fo = Sy w F v Y is an edge of H. Again
owing to (59) we may partition Y = Ly w Fy such that |Ly| = /.

(77) Fix L} < Ly and L}, < Ly subsets of size £ — 1. Note that

LlwlywFouF vk =|X|+|Y|-2=kF—2.

Therefore, there exist at least 7in? choices for a pair of vertices {x1, zs}
such that ey = {1, 25} w L] w L, w F v Fy v Fy is an edge of H.

(iv) Since k = 4 we have ¢ + 1 < k — 2. Therefore, there exist fn*~(¢+1)
choices each for two disjoint edges e; and eg such that {z1} v L; < e; and

{IQ} ) LQ C es.

By construction we have
ep ey ={xr1}wl] and ey;nes={x2}w L),
so the edges eq, €9, and ez form an ¢-path P in H. Moreover, since
einfi=Li, |finfl=[SnS)uF2e and fones= Lo,

the edges eq, f1, f2, and e3 form an ¢-path P’. Since k — ¢ — 1 > ¢, we may select
for P and P’ the same ends in e; and e3. Moreover, V(P') = V(P) u S and,
therefore, the (-path P absorbs S. From (7)—(iv) it is clear that there are at least
7°n? choices for P. O

Following the scheme from [48], let F < V(H)? be a family of ordered g-sets of

vertices such that each of these sets are selected from V()¢ independently with
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FIGURE 2. The path P, consisting of ey, e5, and e3, that absorbs S.

probability
4e

o 77an-1'
An (-path in V(H)? is an ordered set (vy,...,v,) of vertices such that

€1 = {Uh ce 7Uk}, €2 = {Uk7£+17 e ;U2k7€}7 and e3 = {U2k72£+17 ce ;U3kf2z}
are edges in H. Using Chernoft’s inequality, with high probability we have
| F| < 2pn? = —n.
Ui

By Claim 1, for each set S of size k — £, at least 7°n? {-paths in V(H)? absorb S.
By Chernoft’s inequality w.h.p. for all S € (kX z)’ there are at least 2en (-paths
in F that absorb S. The expected value of the number of intersecting pairs of
g-sets in F is at most
nn??2p? = p?1! (f)2 = gnﬁ < Ln
Pnat

So by Markov’s inequality the number of intersecting pairs of ¢-sets in F is at
most en with probability at least 1/2.

Let F be a family that satisfies the above conditions. For each of the intersecting
pairs in F, delete one of the ¢g-sets and let 7' < F be the remaining family. Using
Lemma 56 with R = V (so r = |R| is sufficiently large), we can connect all {-paths
in 7' to an {-path A with

56k
V(A < |F|- 4k +t) <2pn? - Tk = ﬁsn <(n

and this path absorbs all sets U < V\V(A) with |U| € (k—¢)N and |U| <en. O
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5.1.4. Path-Tiling. In this part we will find a path-tiling of /-paths in H
that covers all but a small fraction of the vertices of H. For that purpose we use
the so-called weak regularity lemma for hypergraphs, which is the straightforward
extension of Szemerédi’s regularity lemma for graphs [57] (see also Lemma 37).
Roughly speaking, we will show that there exists a fractional C,-tiling, a so-called
p-hom(Cy)-tiling in the resulting reduced hypergraph R of H, where C, is the
k-uniform “cherry” consisting of two hyperedges that share exactly 2¢ vertices.
The fractional Cy-tiling of R will transfer to a path-tiling of H.

First, we introduce the standard notation for the regularity lemma. Let
H = (V, E) be a k-uniform hypergraph and let V3, ..., Vi be non-empty, mutually
disjoint subsets of V. We denote the number of edges with one vertex in each V;
by ey (Vi,..., Vi) and define the density of H w.r.t. (V4,..., Vi) by

67{(‘/1, .. ,Vk)
Vil [ Vil

For ¢ > 0 and d > 0, a k-tuple (V4,...,Vs) of mutually disjoint subsets of

dy(Vi,..., Vi) =

vertices is called (e, d)-regular if for all k-tuples (Ay,..., Ay) of subsets A; < V;

with |A4;| = €|V;|, we have
|dH(A17 s 7Ak> - d| SE

Moreover, the tuple (Vi,..., V) is called e-reqular if it is (g, d)-regular for some

d > 0. Below we state the weak hypergraph regularity lemma (see, e.g. [7,18,56]).

LEMMA 59 (Weak regularity lemma). For all integers k = 2 and to = 1 and
for every € > 0, there exists Ty = Ty(k,to,e) such that for every sufficiently
large k-uniform hypergraph H = (V, E) on n vertices, there exists a partition
V=VyuWViu...uV; satisfying

(1) to <t <Th,
(i) V1| = -+ = |Vi| and |Vo| < en, and
(éi) for all but at most £(,) many k-subsets {i1,... iy} < [t], the k-tuple
(Viy, ..., Vi) is e-regular.
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A vertex partition of a hypergraph #H satisfying (i)—(4i7) of the conclusion
of Lemma 59 will be referred to as an e-regular partition. For ¢ > 0 and d > 0,
we define the reduced hypergraph R = R(e,d) of H w.r.t. such a partition as the
k-uniform hypergraph on the vertex set [t] and

{ir,...,ix} € E(R) <= (Viy,..., Vi) is (g,d)-regular, for some d’ > d.

In typical applications of the regularity lemma, the reduced hypergraph inherits
some key features of the given hypergraph . In fact, the following observation
shows that the reduced hypergraph inherits approximately the minimum degree
condition of the original hypergraph. A similar result can be found in [27, Propo-

sition 16] and for completeness we include its proof below.

LEMMA 60. Given c,e,d > 0 and integers k = 3 and to = 2k/d. Let H be a

k-uniform hypergraph onn >t >ty vertices such that

Sra(H) = c(Z)

If H has an e-regular partition VowViw. . .wV; with reduced hypergraph R = R (e, d),
then at most \/e(,.",) many (k — 2)-subsets K of [t] violate

doga1) > (e~ 20— vE) ).

PROOF. Let D = D(d) and N' = N (g) be the hypergraphs with vertex set [¢]

and

e E(D) consists of all sets {iy,...,4} such that d(V;,,...,V;,) = d,

e E(N) consists of all sets {i1, ..., ix} such that (V;,,...,V;, ) is not e-regular.
Note that the reduced hypergraph R (e, d) is the hypergraph with vertex set [¢]
and edge set E(D) \ E(N). For an arbitrary K = {i1,...,is_2} € ( [t ) we will

k—2
show that

degp(K) > (c — 2d) (;) (60)
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Let n/t > |V;,| = m = (1 — €)n/t be the size of the partition classes and let x be
the number of edges in H that intersect each V;, in exactly one vertex for each

j € [k —2]. By the condition on §;_o(H) and t =ty = 2k/d, we obtain

ot (o(2) 2 = a2 (2),

If (60) did not hold, then we would find for = the upper bound

< (c—2d) (;) m* + <;> dm* < (c— d) mh=2 (Z)

contradicting the lower bound for x.

Next we observe that at most +/z(,',) many (k — 2)-sets K satisfy
degy (K) < 4/2(}) since the number of non-e-regular k-tuples in R is at most
5(2) Consequently, it follows from the degree conditions on D and N that all but
at most \E(kf2) many (k — 2)-sets K satisfy

degr(K) = (c —2d — \/¢) (;)
O

We will find a suitable fractional C,-tiling in the reduced hypergraph R, where
the cherry C; is the k-uniform hypergraph with vertex set [2k — 2¢] and edges
{1,...,k}and {k —20+1,... 2k — 2(}.

DEFINITION 61. Let C and R be k-uniform hypergraphs, 5 > 0, and let
® be a multiset of hypergraph homomorphisms from C to R. A function
h: ® — {af: a € Nog} is called a B-hom(C)-tiling if the weight wp(v) of a ver-

tex v satisfies

wn(®) = Y M) <1

ueV (C) peP:v=0¢(u)
forallve V(R). We call

w(h) = Y, wa(v) = Y h(@)V(C)

veV(R) ped

the weight of the tiling.
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The following building block allows us to easily define a tiling on a single edge.

FACT 62. Given an edge e = {vy,...,v}, there ezists a o1 -hom(Cy)-

1
k—0—1)
tiling h that is non-zero only on e, such that wy(v;) = 1 for i € [k — 2] and

wp(vp—1) = wp(vg) = ﬁ Note that we may scale the weight of h by any

M—hom(Cg)—tilmg with wy,(v;) = q for i € [k — 2]

q(k—2)
2(k——1) *

q € (0,1] and obtain a

and wy(vk—1) = wi(vg) = Similarly, for any q € (0,1] there exists a

ﬁ—hom(@)-tilmg with wy,(v;) = q fori € [k].

PROOF. For this consider the homomorphism that maps C, to e such that
U1, ..., U o,Vx_1 and v are the image of the intersection of the two edges of C;,.
By cyclically shifting the image of the first 2¢ — 2 vertices of the intersection and
appropriate scaling, we obtain all homomorphisms for the required tiling. We
obtain the even weight distribution for the last part of the fact by cyclically shifting

the whole image k times. O

The following lemma is the main part of the proof of the Path-Tiling Lemma.
For this we introduce a fractional notion of extremality. We say that a k-uniform
hypergraph R on t vertices is B-fractionally (¢, §)-extremal if there is a function
b: V(R) — {0} u [, 1] with

2(k—-10)—1 t
Ue;n)b(v) > <2(k_>£)t and eEEE(R) gb(v) < §<k)
Note that the function b can be viewed as a set of weighted vertices, which plays

the role of the vertex set B in the definition of extremality.

LEMMA 63. For all integers k = 3 and 1 < ¢ < k/2, there exist C' and vy
such that for all « > 0 and v € (0,7), there exist 5 > 0 and € > 0 such that
the following holds for sufficiently large t. Let R be a k-uniform hypergraph on t
vertices that is not B-fractionally (¢, C~)-extremal and
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holds for all but at most g(ka) sets K € (‘I/CERZ)) Then there ezists a -hom(Cy)-

tiling h with weight at least (1 — )t.

Proor. Clearly, it is sufficient to prove the lemma for small values of «.
Consequently the quantification of the lemma allows us to fix the parameters and

auxiliary constants C’ and ¢ to satisfy the following hierarchy of constants

11 1 1
7 >>5>>6>>70>fy>>a>>c,5, (62)

where “» x” denotes that x is chosen sufficiently small with regard to all constants

to its left. Moreover, we fix § inductively such that

1=0» B> > Bue =0 and 16 k! divides 5%,

i+

and let ¢ be sufficiently large such that ¢, e, 5 » 1/t. Note that any f;-hom(Cy)-
tiling is also a S-hom(Cy)-tiling as f3; is a multiple of 5. To prove the lemma, we
show that given a f;-hom(Cy)-tiling h with weight w(h) < (1 — «)t, there exists
a fi+1-hom(Cy)-tiling A" with weight w(h') = w(h) + c¢t. We can begin with the
trivial 1-hom(Cy)-tiling with weight zero and hence, after at most 1/c steps, we
obtain a -hom(C,)-tiling with weight at least (1 — «)t.

For the rest of the proof fix a 5;-hom(Cy)-tiling h with weight w(h) < (1 — a)t
and assume for a contradiction that there is no f3;,1-hom(Cy)-tiling with weight
w(h) + ct. It follows from the upper bound on the weight that there are at least
at/2 vertices v € V(R) with wp(v) <1 — /2 and we may fix a subset W of them
of size at/2.

Although a tiling with bigger weight implies the existence of more edges, we
will not use these edges for an improvement. So we may actually assume w.l.o.g.

that
(1 -2a)t <w(h) < (1—al,

as we can otherwise add edges on V' ~. W until this weight can be trivially achieved

and remove these edges after the improvement step.
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We view @, the set of homomorphisms from C, to R, as a multiset, where we
include ¢ with multiplicity %, so that we can assume h: & — {5;}. With this

notion the following bounds on the size of ® follow from the above

t t
(1 —QQ)M <P < (1 —a)ﬁiv(ce).

Also, we identify a homomorphism ¢ in ® with the — not necessarily distinct

(63)

— vertices (vy,...,Uy_9¢) in its image, where v; = ¢(7) so that {vy,..., v} and
{Uk—2041,-..,Vop—2¢} form edges in R. We refer to the elements of ® as cherries
Ced.

Consider the (k — 2)-sets in W that satisfy the degree condition (61) of the
lemma. Since o » ¢, among those (k — 2)-sets we find a collection W whose
elements are pairwise disjoint and cover at least [WW|/2 vertices. For later reference

we note

W at
_ >
2(k—2) 4k
For K € W we consider the link graph Ly of K in R, which is the (2-uniform)

graph containing all edges e such that K ue e E(R). At most é(”(gz)) < ’Y(;)

W| = (64)

edges have both ends in the same C € ® and at most at?/2 < ’y(;) edges contain a
vertex from W, so let L be the graph obtained from Lg by removing all these

edges. Combined with the degree condition (61) we have

for every such (k — 2)-set K e W.

We will find pairs C,C" € ® on which the link graph allows us to find a better
tiling. For this we only want to consider edges in the bipartite induced link graph
Lk(C,C"). Formally the vertex classes of Lk (C,C’) are given by two disjoint copies
of [2k — 2¢]. In particular, Lx(C,C’) has 4k — 4¢ vertices even when C and C’
intersect or when C or C’ are not given by injective homomorphisms from C,.
Moreover, two vertices ¢ and j from different classes are adjacent in L (C,C’) if

{vi,v}} is an edge in the link graph Ly, where v; is the image of i € V/(C;) in C
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and v’ is the image of j in C’. However, similar as above we canonically identify
the vertices of Lk (C,C’) with the vertices of C and C'.

We show in the following that for most K € WV the bipartite link graph between
most C and C’ has a very specific structure. We call C,C’ € ® an extremal pair
for K if there exist special vertices u € C and u’ € C’ such that Lg(C,C’) contains

exactly all edges incident to these two vertices. In particular, in such a case
Li(C,C") has 4(k — ¢) — 1 edges.

Claim 2. There exists a 3;11-hom(C,)-tiling " with w(h') > w(h) + ct, or for every
C € ® there exists uc € C such that the following holds. For all but at most y|W)|
sets K € W all but at most C'y|®|? pairs C,C' € ®? are extremal for K with

special vertices uc and uc:.

PRrROOF. The proof of the claim consists of three steps. First we show that if
for a given (k — 2)-tuple K € W and some pair of cherries C,C’ € ® the induced
bipartite link graph Ly (C,C’) contains more than 4(k — ¢) — 1 edges, then there
is a local improvement of the tiling by a weight of at least (3;/4. In a second step
we shall bound the number of possible local improvements, as otherwise we could
combine them to arrive at a desired tiling A’ with a weight increased by ct, which
would conclude the proof. In the last step we utilise this bound on the number of
local improvements to show that “typically” Lx(C,C’) contains only 4(k —¢) — 1
edges and displays the structural conditions stated in the claim.

For the first step we consider two cases. Suppose that there is a matching with
three edges in Lk (C,C’) for some K € W and C, C' € ®. Recall that Lg(C,C’) is
a bipartite graph with partition classes of size 2(k — ¢). Then we assign weight
Wﬁ, to the vertices of the matching edges and weight (; to the vertices
of K. Setting in addition A'(C) = R'(C’) = (1 ﬁ)ﬁl, this defines a valid
Bi+1-hom(C,)-tiling A’ by applying Fact 62 (with ¢ = 3/3;) to the three edges in R
corresponding to the matching edges in the link graph. Note that the weights on

the vertices of K remain unchanged, and by considering the vertices on which the
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weight has changed, it is easy to see that

k—2

w(h’)=w(h)+(k—2—(4k—4£—6)‘6<k_g_1)

)51’ > w(h) + ;@7

which yields a local improvement in this case.

For the next case suppose that there are two vertices in C each incident to two
edges such that all four neighbours in C" are distinct. On the vertices of these edges
we put weights k = st 1yP% and f; on the vertices of K. Set (C)=(1- k . 1))52
and A/ (C') = (1

m)ﬁz Again, this defines a tiling A’ with

w(k) = w(h)+ (k—2 — (2k — 20— 2)4(1{:]“__62_1) —(2k — 20 - 4)8(]{;16__42_&@'

]{;;2@- > w(h) + i@-. (66)

> w(h) +
This establishes a local improvement for this case and concludes the discussion of
the first step.

For the second step suppose that there is a subset W < W of size at least
v|[W]/2, such that for each K € W' we can define a local improvement for ~|®|?
cherry pairs. We apply these local improvements greedily, only using each cherry
C € ® at most once (over all K € W), to increase the weight of the tiling. This
procedure may end, either when every K € W contains a saturated vertex, in
which case we enlarge the total weight by at least § - [)W'|, or when for every
K € W' for each of the v|®|? pairs of cherries at least one cherry was used for
some local improvement already. Since any collection of «|®|? pairs of cherries
contains v|®|/2 such pairs none of which share a cherry, then the latter case would
imply that we applied v|®|/2 local improvements before.

In summary we showed that if for at least y|W|/2 > 7§ (see (64)) many
K € W we can define a local improvement for v|®|* cherry pairs then we can
aggregate local improvements leading to a ;,1-hom(C,)-tiling h” with weight at
least
ot ’} 63)

w(h") = w(h) + min{g - —|

5 ~'y@ 4 5 w(h) + ct,
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which would conclude the proof of Claim 2.

Consequently, for the third step we need only consider those K € W for which
at most a y-fraction of its cherry pairs C, C" allow one of the two local improvements
discussed in the first step. In particular, those pairs induce no matching of size
three in Lg(C,C’) and by Konig’s theorem [36] Lk (C,C’) spans at most 4(k — ()
edges. On the other hand, in view of (63) the degree condition (65) of K € W
translates to an average number of edges of at least 4(k —¢) —1—4(3y +4a) (k —()*
in the link graphs. So, as ¢’ was chosen big enough, all but (C” — 1)~|®|? cherry
pairs C, C’ induce exactly 4(k — ¢) — 1 edges in Li(C,C’). Since in addition these
pairs allow no local improvement as considered in (66), there must be a vertex on
each side that has a complete neighbourhood on the other side, so most pairs are
indeed extremal.

It remains to show that typically the special vertex u € C in an extremal pair
Lk(C,C') is independent of K and C’. So assume for a moment that there are
two vertices v and v in C € ® such that u is a special vertex for an extremal
pair Ly (C,C’) and v is special for an extremal pair Lg/(C,C") for some (possibly
non-distinct) K, K’ € W and C’, C" € ®. In this case we can define a local
improvement by “splitting” the case with four edges above. Indeed choose four
edges incident with w in Lk (C,C’) and four for v in Lx/(C,C"). Assign weights 1;
to the vertices of K and K’ and m B; to the vertices of the eight chosen edges.
Set h'(C) = (1 —

Bi in case C" = C”). Similar calculations as in (66) lead to a local

)B; and reduce the weights on C" and C” by

4(k—£ 1) 16k - 1)52

(or by ﬁ
improvement of (;/4 involving the three cherries C, C’, and C”.

For each cherry C fix uc € C as the vertex that occurs most often as a special
vertex over all extremal pairs L (C,C’). If for at least y|WW|/2 many K € W we
can define a local improvement for v|®|? extremal pairs, i.e. pairs C, C’ for which

there exist K’ and C” as above, we can aggregate them as in the second step.

Otherwise the chosen u¢ satisfy the statement of the claim. 0
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We call C € ® good if it is contained in at least %|<I>| extremal pairs for at
least 3|W| many K € W and bad otherwise. As a f(;11-hom(C,)-tiling &’ with
w(h') > w(h) + ¢t would complete the proof of Lemma 63, it follows from Claim 2
that at most 5C’v|®| cherries are bad. Moreover, for every vertex v € V' we denote
by ®pap(v) the set of bad cherries C € ® that contain it.

To complete the proof of Lemma 63 we will show that we find a matching M
in R such that every vertex v € e € M is contained in “many” good cherries. For
each good cherry C € ® there are a lot of choices for ¢’ and K € W such that C
and C' are an extremal pair for K. We will redistribute the weights to transfer
weight from the non-special vertices of C (and C’) to K, which will reduce the
weight on v (since we will ensure that v is a non-special vertex). Repeating this
for every v € e will allow us to obtain a local improvement for the tiling and
repeating this for sufficiently many hyperedges e € M leads to the desired global
improvement.

We define the function a: V(R) — [0,1] by v — B; - > ece 1wy (uc), which
assigns to a vertex the sum of weights used by special vertices. As any cherry
contains 2(k — £) vertices, it is clear that 3 i,z a(v) < m and, therefore, we
can utilise the S-fractional non-extremality of R for b(-) = 1 — a(-) and obtain

RILCE oy(li).
ccE(R) vee
Since there are at most 5C"y|®| bad cherries, they contribute at most
(63)
Bi Y5 [®ow()] < Bw(Cr) -5C"|@| < 5C"yt (67)

veV(R)

to the overall weight of the ;-hom(Cy)-tiling h. We shall only use good cherries to
redistribute weights for the desired f;,1-hom(Cy)-tiling, so we consider the function

b:V(R)— [0,1] given by

b'(v) = max {O, b(v) — ;- |(I)BAD(U)|}
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and in view of (67) and C" « C' (cf. (62)) we have
> 10> 5o().
ecE(R) vee
By a simple double counting argument there is a matching M < E(R) with

NILOEE SR

ecM vee

and since ' (v) € [0, 1] we have

2 kmin{t'(0)} = 3 k] V() (68)

eeM eeM  vee

In particular, we may assume that min,.{0/'(v)} > 0 for every e € M, since this
has no effect on inequality (68). Moreover, from the definition of the function b'(-)
it then follows that min,e.{b'(v)} = f; for every e € M.

For each vertex v € | JM, we consider good cherries that contain v as a
non-special vertex. Assume that we have K € W and an extremal pair C, C’
such that v is a non-special vertex in C. Recall that this means that Ly (C,C’)

contains all edges incident to the two special vertices. We define a local weight

shift as follows. Assign weights ST Z) : (k Z 1 B; to the vertices of all edges

incident with exactly one of the spe01al vertices, (; to the vertices of K and set
h,(c) = h/(cl) = (1 - 4(kk__42_1)
valid (;41-hom(Cy)-tiling A" with w(h’) = w(h). On the other hand, the Weight of

)B;. By similar calculations as before, this defines a

the vertex v and all other non-special vertices in L (C, C’) is reduced by 4( —5i,
i.e.
k—2
wpy (v) = wp(v) — mﬁi-

It follows from the definition of &' (v) that we have at least &' (v)/f; many good cher-
ries that contain v as non-special vertex and we shall apply at most min,e.{0'(u)}/f5;
local weight shifts for a vertex v e ee M.

For every edge e € M we would like to apply these local weight shifts for every
vertex v € e, where we cycle through all k vertices and apply one shift at a time.

In other words, we evenly reduce the weights on the vertices of e. Note that we
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can apply these local weight shifts using K, C, and C’' unless we have saturated the
vertices in K or used one of the cherries before. The procedure stops as soon as
we reach a vertex for which no local weight shift is possible.

We first discuss the ideal case that this procedure does not stop, i.e. for every
e € M and every v € e we applied min,.{V'(u)}/f3; local weight shifts. In this case,

for every e € M we reduced the weight of all vertices v € e by at least

r .., k—2 k—2 e
E I}}gefl{b (w)} - mﬁi = m I}}Elgl{b (w)}.

Consequently, we may appeal to Fact 62 to increase the tiling on the edge e by
the same amount. Repeating this for all e € M, we obtain a f3;1-hom(C,)-tiling

h" satisfying

k—2
w(h")y = wh)+ > k- min{t'(u)}
S
(68) CHt k—2
> .
wh) + == = =2
(62)
> w(h) + ct,

which would conclude the proof of Lemma 63 in this case.

In the case that the procedure stops, there is some v € V(M) and a good
cherry C for v such that C cannot be used for a local weight shift for v. This means,
since C is a good cherry, that either %|W| many K € W contain a saturated vertex
or that at least §|®| cherries were used in local weight shifts before. In the case
that 1|W| many K € W contain a saturated vertex, each of these vertices was
used in at least % local weight shifts, so in total we have applied

2
local weight shifts. If on the other hand all $|®| possible cherries C' were used in

=

local weight shifts before, then we have applied at least %\CID| local weight shifts.

As in the ideal case, using Fact 62, we conclude that we can increase the tiling on
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the edges in M and obtain a (;1-hom(C,)-tiling h” with

ot |®|} B k) ~ (k—=2)B; (62)(63)
16k3;" 4 4

w(h”) > w(h) + (min{ h—0)—2 > w(h)+ct,
which concludes the proof of Lemma 63. O

Next we want to transfer the -hom(C)-tiling of R into a path-tiling of H. For

that purpose we will use the following lemma from [28, Lemma 2.7].

LEMMA 64. Fix k > 3, 1 < ¢ < k/2 and e, d > 0 such that d > 2. Let
m > #2_6). Suppose V = (V1,..., Vi) is an (e, d)-reqular k-tuple with

Vi| =+ = |Va| = m and |Vagr| = -+ = |Vi| = 2m.
Then there are at most (dilz)e vertex disjoint (-paths that together cover all but at
most 2kem vertices of V. O

Finally, by using Lemma 64 on the edges of the S-hom(Cy)-tiling of R given by

Lemma 63, we obtain a path-tiling from H of the desired size.

LEMMA 65 (Path-Tiling Lemma). For all integers k = 3 and 1 < £ < k/2,
there exist C vy > 0 such that for all a > 0, v < 7o there exists an integer s
such that the following holds for all sufficiently large n. Let H be a k-uniform

hypergraph on n vertices and

Then either there is a family of at most s disjoint £-paths that cover all but at most

an vertices of H or H is (¢, Cy)-extremal.

PROOF. Let k>3 and 1 < ¢ < k/2 be given. Let C” and - be the constants
given by Lemma 63 for k and ¢. Set C' = 6C" and vy = %, and let a > 0 and
7 < 7o Following the quantification of Lemma 63 with § and v we obtain 3 and

¢’ and a sufficiently large tq. Let ¢ be sufficiently small. Then the weak regularity
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lemma (Lemma 59) for g = % < 72 and ty yields Tp. Let s be a sufficiently large

constant. Let H be a k-uniform hypergraph on n vertices such that

and n is sufficiently large. By the regularity lemma there exists an gq-regular
partition Vo w ... vV, of H with |[Vi| =--- =|V| =m, || <eon and t, <t < Tp

and the corresponding reduced hypergraph R = R(eg,y) on t vertices satisfies, by

degg (K) = (w - 47) <;>

for all but at most \/%(k;) < 8’( ! ) many (k — 2)-sets K € (k[i). We split the

Lemma, 60,

k—2
remainder of the proof in two cases, depending on whether R is f-fractionally

(¢,4C"y)-extremal.

Suppose that R is not [-fractionally (¢,4C"y)-extremal. Then Lemma 63
implies that there exists a S-hom(C,)-tiling h of R with weight (1 — §)t. Let ®*
be the set of homomorphisms ¢ from C, to R with h(¢) > 0, which implies in fact
h(¢) = 5. We will use Lemma 64 to obtain ¢-paths covering almost all vertices
of H and for this we split the partition classes according to the tiling h. Let
(RY,. .. ,Rfk_2e}¢eq>+ be a family such that for all ¢ # ¢’ € *

o R} < Vy for all i € [2k — 2¢],
o R? n RY = o forall i,j  [2k — 2¢],
o [RY| =227 for all i e [2k — 20].
For each ¢ € ®* and all i € {k— 20+ 1,...,k} let S U U? = R? be a partition

of R? into two classes of equal size. Note that
¢ @ ¢
(Rf7 SR Ri—%a Slf—2£+17 tr Sk) and (UI?—2€+17 SRR UI?7 Rk+17 ce 7R2k—2€)

are (g,7v)-regular, where we used that h(¢) = § for all ¢ € ®*. Then, with

2k
(o)

Applying this to each homomorphism ¢ € ®* we obtain at most s many ¢-paths.

Lemma 64 we obtain at most many (-paths that cover all but k€|Rf | vertices.
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We claim that the number of vertices in V' (#) that are not covered by these
paths is less then an. For this note that the uncovered vertices are the vertices
from the partition class V{, the vertices that are not contained in any Rf’ and those
vertices in some Rf that are not contained in any f-path. At most $n vertices are
not in any R? due to the weight of the S-hom(Cy)-tiling h and we lose at most %
vertices due to the rounding in the definition of Rf. The ¢-paths cover all but a
(ke)-fraction of vertices in (J; 4 R?. Consequently the total number of uncovered

vertices is at most

o 2t
6on+§n+—+kan<an.

p
Now suppose that R is S-fractionally (¢,4C"+)-extremal. This means by

definition that there is a function b: V(R) — {0} u [, 1] with

20k —0) — 1 e
Z b(v Wt and > Hb 407(]{).

ueV eEE vEe
For each i € [t] we fix a subset A; € V; with |A4;| = [b(z)MH and define B= | J; ., A
Thus, recalling the definition of the reduced hypergraph R = R(go,7)

< 3 TI007)+ () () =) )+ () (")

o 1t
0050
< 5C'y (Z)

Note that
B e L e L

Therefore, by adding at most ggn vertices from V' ~. B to B we obtain a set B’

with |B'| = lQ(Qk(;Z;an such that

en(B') < en(B) + gon (k " 1) < 6C"y (Z) — Oy (Z)

from which we conclude that H is (¢, Cy)-extremal. O
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§5.2. PROOF OF THEOREM 13

Below we give the proof of the main technical result, which details the outline

from Section 5.1.1 and is based on the lemmas from the last section.

PROOF OF THEOREM 13. Let 0 < ¢ < land let k >4 and 1 < ¢ < k/2 be
integers. Let C and 7o be given by the Path-Tiling Lemma (Lemma 65) for k and ¢.
Let v < 79 be a sufficiently small constant, in particular we may assume v « £. By
the Absorbing Lemma (Lemma 58) for 7, ( = =, k, and ¢ we obtain . Following
the quantification of the Path-Tiling Lemma for a@ = £/2 and 5y we obtain an

integer s. We will use the Reservoir Lemma (Lemma 57) with n = 45(3;_2)_21 - 37,

¢ = min{e/2,~}, k, and m = s + 1. Let n € (k — ¢)N be sufficiently large and
let H be a k-uniform hypergraph on n vertices.

Suppose H is not (¢, )-extremal and

Let A be the absorbing path obtained with the Absorbing Lemma and let X
and Y be the ends of A. Then |V (A)| < yn and A has the following absorption
property: for every subset U < V N\ V(A) with |U| < en and |U| € (k — ¢)N there
exists an (-path @ < H such that V(Q) = V(A) u U and Q has the ends X
and Yj.

Let V' = (VN V(A)) u {Xo, Yy} and let H' = H[V'] be the subhypergraph
of H induced by V’. Note that

The Reservoir Lemma guarantees the existence of a set R < V' with |R| < ¢'n < yn
such that for every j < s + 1 and every family (X;,Y)i[;) of mutually disjoint
pairs of sets of ¢ vertices can be connected by paths that contain vertices of

Use(Xi v Yi) U R only.
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Let V" =V~ (V(A) u R) and let H" = H[V"] be the subhypergraph of H
induced by V”. Then

Now we apply the Path-Tiling Lemma to H” and obtain a family of at most s

disjoint f-paths that cover all but at most «a|V”| < an vertices of H", or H"

is (¢, Cy)-extremal. Set n” = |V”| and suppose for a contradiction that H" is
(¢, C)-extremal. Then there exists a set B < V” such that |B| = [Q(Qk(i)égln”J

and e(B) < Cvy(n")*. By adding at most n — n” < 2yn vertices from V \ B to B,

we obtain a vertex set B’ < V such that |B'| = [Q(Qk@f)eglnj and
/ "k n—1 k
e(B") < Cy(n")" + 2yn E 1 < én”,

a contradiction to the fact that H is not (¢, {)-extremal. Therefore, we may assume
that there exist disjoint ¢-paths Py, ...,P; with j < s that cover all but at most
alV"| < an vertices of H”.

For all i € [j], we denote the ends of P; by X; and Y;. Let Y;,; = Y;. By using
the Reservoir Lemma to connect the family (X, Yii1)o<i<;, We connect the ¢-paths
A, P1,...,Pj toan l-cycle C < H.

Let U =V \ V(C) be the set of vertices not contained in C, i.e. the vertices
that were leftover in the reservoir R or uncovered by the path-tiling. We have
|U| < (¢ + a)n < en. Furthermore, since C is an f-cycle and n € (k — )N, we
have |U| € (k — ¢)N. Therefore, we can utilise the absorbing property of A to
replace A in C by a path Q with the same ends as A, obtaining a Hamiltonian
(-cycle of H. O
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Appendix

Summary/Zusammenfassung

In this thesis we investigate two problems in extremal and probabilistic combi-
natorics. In the first part we analyse sharp thresholds for Ramsey-type properties
of random discrete structures, which contributes to the common theme in recent
years to transfer classical results to sparse random structures. For two graphs F
and G let G — (F')¢ denote that for every edge colouring of G with r colours there
exists a monochromatic copy of F. In 1995 Rodl and Rucinski determined the
threshold p = p(F,r) for G(n,p) — (F)¢ for the binomial random graph G(n,p)
and any F' and r. Furthermore, in 2006 Friedgut et al. proved that in the case
that r = 2 and I being a triangle the threshold is sharp. In the first part we gener-
alise Friedgut’s result to a larger class of graphs F' including all cycles. Related to
this question we also show that the property that a random subset of the integers
contains in every 2-colouring a monochromatic Schur triple has a sharp threshold.

In the second part we present a result concerning Hamiltonian cycles in hyper-
graphs. In 1952 Dirac showed that every graph on n > 3 vertices with minimum
degree at least n/2 contains a Hamiltonian cycle. Transferring Dirac’s Theorem
to hypergraphs leads to multiple open questions since there are several notions of
cycles and of minimum degree in k-uniform hypergraphs for & > 3. Over the last
20 years various researchers proved such extensions to hypergraphs. In this thesis
we continue this line of research and obtain an approximate version for so-called

loose ¢-cycles and a dp_o-degree condition in k-uniform hypergraphs.

In dieser Arbeit werden zwei Probleme der extremalen Kombinatorik unter-
sucht. Eine typische Fragestellung der letzten Jahre in diesem Forschungsbereich
beschéftigt sich mit der Ubertragung klassischer Resultate auf diinne zufillige
Strukturen. In dieses Themengebiet fallt auch der erste Teil dieser Arbeit, in der

Ramsey-Eigenschaften von zufalligen Teilmengen diskreter Strukturen analysiert
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werden. Fur zwei Graphen F' und G schreibe dabei G — (F)¢, wenn fir jede
Kantenfiarbung von GG mit r Farben eine einfarbige Kopie von F' existiert. Im Jahr
1995 haben R6dl und Rucinski fiir den binomialen Zufallsgraphen G(n, p) sowie
alle Graphen F' und jede Anzahl an Farben r den Schwellenwert p = p(F,r) der
Eigenschaft G(n,p) — (F)S bestimmt. Friedgut et al. erweiterten dies 2006 fiir
den Fall eines Dreiecks F' und r = 2, indem sie zeigten, dass der Schwellenwert
dann scharf ist. In dieser Arbeit wird Friedgut’s Ergebnis auf eine grofiere Klasse
von Graphen inklusive aller Kreise F' erweitert. Auf eine dhnliche Weise wird
zudem gezeigt, dass die Eigenschaft, dass eine zuféllige Teilmenge der ganzen
Zahlen in jeder 2-Farbung ein einfarbiges Schur Trippel enthélt, einen scharfen
Schwellenwert hat.

Der zweite Teil der Arbeit beschéftigt sich mit Hamiltonkreisen in Hyper-
graphen. 1952 hat Dirac gezeigt, dass jeder Graph auf n > 3 Ecken mit Minimal-
grad mindestens n/2 einen Hamiltonkreis enthélt. Die Ubertragung von Dirac’s
Theorem auf Hypergraphen fithrt zu verschiedenen Fragestellungen, da es fiir
Kreise und Minimalgrad unterschiedliche Konzepte in Hypergraphen gibt. Uber
die letzten 20 Jahre haben unterschiedliche Forscher Ergebnisse zu diesem The-
menkomplex beigetragen. In dieser Arbeit wird diese Forschung fortgesetzt und
eine approximative Version des Falles von sogenannten diinnen /-Kreisen und einer

0r_o-Gradbedingung in k-uniformen Hypergraphen vorgestellt.
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