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Abstract

In drug discovery, the identification of lead structures as basis for the development

of new drugs is of vital importance. Computational methods present an efficient

way to search for promising structures without the costs of exhaustive experimental

evaluations in the first stages of the drug discovery process. Ligand-based virtual

screening is a well established method to search for new lead structures based on

known active ligands for a certain target of interest. In this thesis, the development

of a new method for highly efficient ligand-based virtual screening is presented.

The mRAISE method furthermore addresses open challenges of the field, utilizing

new approaches for partial-shape matching.

mRAISE uses special triangle descriptors, originally developed for structure-based

virtual screening, to initially compare molecules on a coarse level and subsequently

uses matching descriptors to calculate molecular alignments. To enable rapid screen-

ing, the descriptors of a compound library are preprocessed and the descriptors

of all compounds are stored in a special bitmap index. Molecular alignments are

scored using atom-centered Gaussian functions with weights representing the sim-

ilarity of physicochemical properties of the respective atoms. Based on the local

shape description of the utilized descriptor, partial shape constraints are incorpo-

rated into the screening procedure. These constraints can either be automatically

derived from protein-ligand complexes or be manually defined via an atom selec-

tion of the user.

The method has been evaluated on multiple datasets in terms of active enrichment

as well as alignment accuracy. In comparison to other methods, mRAISE is always

among the top ranks regarding the screening performance as well as the runtime.

For the interactive features of mRAISE, a graphical user interface has been devel-

oped providing the complete functionality of the method combined with further

options to visualize query descriptors and screening results. Furthermore, the

graphical user interface is necessary for the manual definition of partial shape

constraints by the user.
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Kurzfassung

Die Identifikation von Leitstrukturen als Grundlage für die Entwicklung neuer

Medikamente ist von entscheidender Bedeutung für den Wirkstoffentwurf. Compu-

tergestützte Methoden stellen hierbei eine effiziente Möglichkeit dar nach vielver-

sprechenden Strukturen zu suchen, ohne die Kosten für erschöpfende Experimente

in den ersten Phasen des Wirkstoffentwurfs. Ligandbasiertes virtuelles Screening

ist eine etablierte Methode für die Suche nach neuen Leitstrukturen, basierend

auf bekannten, aktiven Liganden für ein bestimmtes Zielprotein. In dieser Arbeit

wurde eine neue Methode für effizientes ligandbasiertes virtuelles Screening entwi-

ckelt. Die mRAISE Methode widmet sich außerdem ungelösten Herausforderungen

durch die Nutzung von neuen Ansätzen für einen partiellen Formvergleich.

mRAISE nutzt spezielle Dreiecksdeskriptoren, die ursprünglich für strukturbasier-

tes virtuelles Screening entwickelt wurden, um Moleküle zunächst grob zu verglei-

chen und anschließend auf Basis von übereinstimmende Deskriptoren molekulare

Überlagerungen zu berechnen. Um einen schnellen Vergleich zu ermöglichen, wer-

den die Deskriptoren einer Molekülbibliothek vorberechnet und in einem speziellen

Bitmap Index gespeichert. Molekulare Überlagerungen werden bewertet mithilfe

von Atom-zentrierten Gauß Funktionen mit Gewichtungen zur Berücksichtigung

der physikochemischen Eigenschaften der jeweiligen Atome. Basierend auf der

Beschreibung der lokalen Form des Deskriptors werden Einschränkungen für

den partiellen Formvergleich in das Screening integriert. Diese Einschränkungen

können entweder automatisch von Protein-Ligand Komplexen abgeleitet oder ma-

nuell durch einen Nutzer mittels der Selektion von Atomen definiert werden.

Die Methode wurde auf mehreren Datensätzen evaluiert, sowohl mit Hinblick

auf die Anreicherung von aktiven Liganden als auch auf die Genauigkeit der

Überlagerungen. Im Vergleich mit anderen Methoden ist mRAISE immer auf den

besten Plätzen bezüglich der Screening Leistung sowie der Laufzeit.

Für die interaktiven Funktionalitäten von mRAISE wurde eine grafische Benut-

zeroberfläche entwickelt, welche die volle Funktionalität der Methode zusammen

mit weiteren Optionen zur Visualisierung von Anfragedeskriptoren und Screening-

resultaten zur Verfügung stellt. Außerdem ist die graphische Benutzeroberfläche

erforderlich für die manuelle Definition von Beschränkungen für den partiellen

Formvergleich durch den Nutzer.
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RAISE RApid Index-based Screening Engine

RMSD Root Mean Square Deviation

ROC Receiver Operator Characteristic

SBVS Structure-based Virtual Screening

SQL Structured Query Language

TP True Positive

VLS Virtual Ligand Screening

VS Virtual Screening

ix





Contents

1. Introduction 1

1.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Overview of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. State of the Art 5

2.1. Rational Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1. Virtual Screening . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2. Ligand-based Virtual Screening . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. Similarity Searching . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2. Evaluation and Benchmarking . . . . . . . . . . . . . . . . . . 16

2.2.3. Evaluation Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Open Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3. Research Aims and Preconditions 21

3.1. Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2. Preconditions and Course of the Project . . . . . . . . . . . . . . . . . 23

4. Methods 25

4.1. Basic Libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1. NAOMI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1.2. Conformation Generation . . . . . . . . . . . . . . . . . . . . . 26

4.1.3. MoleculeDB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1.4. Three-dimensional Visualization . . . . . . . . . . . . . . . . . 27

4.2. mRAISE Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1. Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2. Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3. TrixX Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3.1. Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3.2. Descriptor Generation . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.3. Descriptor Index . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.4. Descriptor Matching . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.5. Alignments Calculation . . . . . . . . . . . . . . . . . . . . . . 38

4.3.6. Partial Shape Approach . . . . . . . . . . . . . . . . . . . . . . 38

xi



Contents

4.4. mRAISE Adaptations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.4.1. Interaction Points . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5. Knowledge-based Partial Shape Constraints . . . . . . . . . . . . . . 43

4.5.1. Complex-based Partial Shape Constraints . . . . . . . . . . . . 43

4.5.2. Manual Partial Shape Constraints . . . . . . . . . . . . . . . . 45

4.6. Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.7. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8. GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.8.1. Query Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.8.2. Screening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.8.3. Result Visualization . . . . . . . . . . . . . . . . . . . . . . . . 52

5. Datasets 53

5.1. The Directory of Useful Decoys . . . . . . . . . . . . . . . . . . . . . . 54

5.2. The Directory of Useful Decoys Enhanced . . . . . . . . . . . . . . . 55

5.3. The mRAISE Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1. Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6. Evaluation 61

6.1. Criteria and Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.2. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.1. Enrichment Study on the DUD . . . . . . . . . . . . . . . . . . 66

6.2.2. Enrichment Study on a DUD Subset . . . . . . . . . . . . . . . 66

6.2.3. Enrichment Study on the DUD-E . . . . . . . . . . . . . . . . . 66

6.2.4. The Influence of Manual Partial Shape Constraints . . . . . . 67

6.2.5. Alignment Quality Evaluation . . . . . . . . . . . . . . . . . . 67

7. Results and Discussion 69

7.1. Enrichment Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.1.1. Enrichment Study on DUD . . . . . . . . . . . . . . . . . . . . 70

7.1.2. Enrichment Study on a DUD Subset . . . . . . . . . . . . . . . 77

7.1.3. Enrichment Study on DUD-E . . . . . . . . . . . . . . . . . . . 77

7.1.4. Manual Partial Shape Constraints . . . . . . . . . . . . . . . . 82

7.2. Alignment Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.2.1. Alignment Quality Evaluation . . . . . . . . . . . . . . . . . . 84

7.3. Computing Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

8. Conclusion 95

8.1. Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8.2. Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.3. Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 101

xii



Contents

Appendices

A. Detailed Results 115

B. Implementation 129

B.1. Dependencies to the NAOMI-library . . . . . . . . . . . . . . . . . . . 130

B.2. Dependencies to the External-library . . . . . . . . . . . . . . . . . . . 131

B.3. Used Modules of the Trixx-library . . . . . . . . . . . . . . . . . . . . 131

B.4. Used Modules of the FastBitIndex-library . . . . . . . . . . . . . . . . 132

C. mRAISE User Guide 133

C.1. Starting mRAISE cmdline . . . . . . . . . . . . . . . . . . . . . . . . . 133

C.2. Example Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

C.2.1. Creating a Descriptor Index . . . . . . . . . . . . . . . . . . . . 136

C.2.2. Screening a Descriptor Index . . . . . . . . . . . . . . . . . . . 136

C.2.3. Evaluation of Screening Results . . . . . . . . . . . . . . . . . 137

D. mRAISE GUI User Guide 139

D.1. Starting mRAISE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.2. Screening Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

D.3. Query Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

D.4. Screening Solution Visualization . . . . . . . . . . . . . . . . . . . . . 142

D.5. Alignment Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . 143

E. mRAISE Dataset 145

F. Publications 147

F.1. Publications in Scientific Journals . . . . . . . . . . . . . . . . . . . . . 147

F.2. Publications in Scientific Books . . . . . . . . . . . . . . . . . . . . . . 147

F.3. Conference Posters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xiii





1
Chapter 1.

Introduction

1.1. Motivation

Rational drug discovery aims at identifying small molecules, which interact in a

beneficial way with a protein associated with a disease. Hereby, large amounts of

available compounds have to be investigated systematically. The development of a

new Drug is, therefore, a time consuming and expensive process. Starting from the

definition of a therapeutic target until the marketing of a new drug is estimated to

take between 12 and 14 years and costs approximately 1 billion dollars. [1, 2]

Therefore, computational methods used in this process aim on reducing the costs

and duration as well as on identifying the most promising candidates for a new

drug. This process of identifying compounds, which are potentially able to inter-

act with a certain target and influence its activity, is realized by screening large

compound libraries and is called “hit” identification or lead structure search. The

screening procedure can either be realized in vitro using high throughput screening

(HTS) or in silico by using virtual ligand screening (VLS). In todays drug discovery

processes, it is well established to use combinations of both approaches [3].

The advantage of in silico methods is that they are relatively fast, depending on

the computational capacities of the research group, and require only little financial

investment [4]. Therefore, these methods are generally used as a first filtering step

on large compound libraries, and only the most promising predicted candidates

are further considered for experimental evaluation [5].

The computational approaches for VLS can be divided into two broad categories,

structure-based and ligand-based virtual screening. Methods for ligand-based vir-

tual screening (LBVS) require known bioactive ligands and search for potential lead

structures usually based on ligand-similarity. For structure-based virtual screening

(SBVS), the three-dimensional structure of the target protein needs to be available
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1. Introduction

to which the binding affinity of compounds is predicted based on shape comple-

mentarity as well as possible intermolecular interactions.

Both categories have their own strengths and weaknesses. Therefore, the decision

on which method should be used in a screening project not only depends on the

available information, i.e. if only an active ligand or also the structure of the protein

is known, but also on its individual capabilities. In general, LBVS allows a variety

of queries based on different molecule descriptors and representations. Due to the

comparably low complexity of these queries, it is a lot more efficient for the screen-

ing of large compound libraries than SBVS. However, SBVS has a higher selectivity

since it also implies the restrictions of the protein structure. The high complexity

of these constraints ideally allows more descriptive solutions but also restrict the

practical use on large libraries. In recent years, methods for SBVS and LBVS are

often combined to exploit all available chemical as well as structural information

and, therefore, benefit of the strengths of both approaches. [6] Therefore, for the

development of new methods, it should be considered that all available information

can be used to enhance the screening performance. This presents new opportuni-

ties to address open challenges in virtual screening. For example, new methods

for LBVS could combine the effectiveness of the ligand-based approach with the

selectivity of constraints derived from the protein structure. Since often only certain

parts of a ligand interact with a protein and are therefore important for binding,

only partial constraints need to be applied to a query ligand. Another promising

source for such constraints even if no protein structure is available, is the knowledge

of an experienced user about the most important regions of a molecule. Ideally,

a new method should provide integrated functionality to efficiently incorporate

different partial shape constraints into the LBVS approach.

1.2. Overview of Content

In the following, the content of this thesis is shortly summarized.

Firstly, the current status of lead structure identification in drug design is discussed

in detail in Chapter 2. Methods for this purpose can basically be divided into

experimental and computational methods. The chapter will mainly focus on the

computational side and discusses the advantage and disadvantage of different

approaches. A consecutive analysis of the open challenges and unsolved problems

in LBVS highlights the issued, which shall be addressed in the research project of

this thesis.

Following this description, the aims and objectives of the thesis are listed and

discussed, and the preconditions of the work are described in Chapter 3.

In Chapter 4, the used and developed methods of the new LBVS method mRAISE

are described.

2



1.2. Overview of Content

Then, in Chapter 5, the datasets for evaluation and comparison studies used in this

thesis are described. This includes datasets from the literature as well as a newly

designed dataset for the evaluation of the accuracy of molecular alignments. Fur-

thermore, in this chapter, the performed experiments using the respective datasets

are described.

Following the general description of the experiments, in Chapter 6 the used evalua-

tion strategies as well as the used performance metrics are explained and discussed.

In Chapter 7, the results of the previously introduced experiments using the respec-

tive evaluation metrics are shown. Individual interesting cases are discussed and

mRAISE is compared to other methods of the field. Furthermore, the influence of

the different partial shape constrain approaches realized are analyzed.

Finally, in Chapter 8, the results and conclusions of the performed experiments

are summarized and remaining problems and challenges are discussed. Further

possible developments to increase the performance of mRAISE and to address

remaining challenges are discussed in an outlook.

3





2
Chapter 2.

State of the Art

In this chapter, the state of the art in rational drug discovery and virtual screening

is described. The main focus hereby lies on LBVS, since this is the focus of this

research project.

Section 2.1 explains the different phases of the drug discovery process and high-

lights the application areas of virtual screening methods. Subsequently, the basic

concepts of different virtual screening approaches are described.

Finally, in Section 2.2, the state of the art in LBVS is discussed in detail. This not only

includes existing methods and different approaches but also common evaluation

strategies, benchmark datasets and open challenges.

2.1. Rational Drug Discovery

At the end of the 19th century, Ehrlich developed the concept of drugs binding

selectively to certain receptors [7], based on the principle of lock and key introduced

by Fisher [8]. This was followed by further considerable work of Langley [9] who

introduced the idea of receptors as molecular switches that can be turned on and

off, as well as further work of Ehrlich [10] introducing the idea of exhaustively

testing variations of ligands to find new active substances. Today, this can be seen

as the origin of modern drug discovery.

In the following decades, drug discovery evolved from a field depending on

serendipities and individual imagination to focused research projects run by in-

terdisciplinary teams. Further developments the 20th century of technologies like

x-ray crystallography [11] and nuclear magnetic resonance spectroscopy [12, 13]

allowed the scientists to investigate molecular structures on an atomic level and to

this day the amount of available structural information is increasing rapidly.

5



2. State of the Art

Due to the growing number of solved protein structures, the drug discovery process

shifted to more rational approaches for identification of active compounds. With

the introduction of experimental HTS and combinatorial chemistry in the 1980s, the

capabilities to explore the chemical space for potential drug candidates increased

massively. Nevertheless, the high expectations and hopes on finding high amounts

of new active compounds were not met [14–17] and the amount of considerable

information is growing to a scale, which is hardly manageable using only experi-

mental methods. As a consequence, nowadays computer-aided approaches play an

essential role in the drug discovery process.

The modern drug discovery pipeline is a complex system divided in multiple stages

and involving a variety of different technologies. Computer-based methods are

a well-established part of this process. The pipeline is divided into the following

stages:

• Target-identification: Drugs target special proteins, which are associated

with the disease that should be cured, to regulate their activity. Therefore the

first step in a drug discovery project is the identification of the target protein.

This is mostly done by experimental evaluation. An identified protein has

to be validated, to ensure its modulation has an influence on the state of

the disease. Furthermore, activity assays have to be established to later test

the activity of possible candidates on the respective target. If the structure

of the target of interest is available or it is possible to obtain it by X-ray

crystallography, NMR or homology models, this information is acquired as

well.

• Lead-identification: In the next stage, lead structures are searched for the

identified target. A lead structure is a ligand, which already has a high affinity

i.e. binds strongly to the target. These can be either known, natural ligands,

other reported binders from the literature or completely new compounds.

Based on one or multiple known active ligands, LBVS can be used to screen

compound libraries for new lead structures which are easier to synthesize,

directly obtainable by vendors or already show higher affinities than known

ligands. If the structure of the protein is known, SBVS can also be applied for

this purpose. If no active ligand is known for the target, HTS can be used to

screen compound libraries in search for potential lead structures.

Hits identified by VS methods still have to be validated experimentally. How-

ever, the use of these methods allows the evaluation of much larger compound

libraries and experimental methods only have to focus on small subsets of

the libraries which are considered as promising hits by the computational

methods.

6



2.1. Rational Drug Discovery

• Lead-optimization: The optimization of lead structures in terms of activity, se-

lectivity and the very important ADMET properties (absorption, metabolism,

excretion and toxicology) is a very important part of the drug discovery

process. Also in this stage VS methods can be used, for example to pre-

dict ADMET properties or to predict the affinity as consequence of certain

substitutions (QSAR).

• Clinical trials: The last phase of the drug discovery process are pre-clinical

and clinical studies. The first test drugs in animal models and the second

perform actual clinical studies with human patients. If this phase is successful,

a new drug can be introduced to the market.

As can be seen, the use of computational methods highly depends on the available

information, which determines what methods are applicable at a certain stage. In

general, computational methods can assist the drug discovery pipeline in multiple

ways: binding mode elucidation, active cite prediction and analysis, binding site

comparison, lead identification, lead optimization, and de-novo design.

VS hereby mainly assists in the lead identification, providing efficient methods for

a rapid screening of large compound libraries without the need of a high resolution

protein structure. This drastically decreases the costs for experimental evaluation

and synthesis of inactive compounds.

In the following, VS technologies in general and subsequently, the special field of

LBVS will be described.

2.1.1. Virtual Screening

Virtual screening has been defined by the International Union of Pure and Applied

Chemistry (IUPAC), as a process which selects compounds based on the rating

scheme of an underlying computational model. [18] Methods for VS can be divided

into multiple categories depending on criteria like the required input information

and the requirements for hits in the screening library. The most common classifica-

tion of VS methods divides the field into LBVS methods, searching for compounds

similar to a query ligand and SBVS methods, searching for compounds fitting into

the targets binding site. The first require an active ligand as input and the second

requires the structure of the target protein. Both approaches can be applied for

lead structure identification without any other preconditions or restrictions and are

discussed in the following in more detail.

In recent years, multiple attempts have been started to combine LBSV and SBVS

methods to exploit all available information and benefit from the advantages of

both approaches [19–25]. These approaches use methods from broth areas either in

an hierarchical oder parallel manner. In hierarchical concepts, the faster method is
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used as first filter and the computational more expensive method is used on the

most promising results of the previous method. In parallel approaches, the meth-

ods are executed on the same data and hits are determined either complementary

(taking the best hits from each methods) or consensual (taking the best hits found

by both methods). Although the results of this concept are mixed [26], the idea of

exploiting all available information holds significant potential [6].

Ligand-based Virtual Screening

Ligand-based approaches focus on the identification of lead structures based on

their similarity to a known active ligand for the target of interest. Therefore, these

methods work without the need of a solved protein structure.

The focus of this work lies on LBVS methods working with three-dimensional ligand

structures: In the first step, the actual molecular alignment of a query molecule

and compounds of the screening library are calculated. This is a complex problem

and multiple different approaches to achieve meaningful alignments have been

evaluated. This calculation includes many degrees of freedom like translation,

rotation and the flexibility of the ligands. Based on the calculated alignments,

the similarity of the ligands is quantified using so called scoring functions. Since

mRAISE is a method for LBVS, different methodologies for this approach, as well

as common evaluation strategies and datasets are presented in more detail in

Section 2.2.

Structure-based Virtual Screening

In SBVS, new lead structures are searched based on their complementarity to the

binding site of the target protein. This process therefore requires high quality

protein structures either generated by experimental methods or homology models.

SBVS methods need to address two problems: First, the ligands of the screening

library have to be docked into the active site with respect to sterical fit as well as the

creation of favorable protein-ligand interactions. Secondly, the calculated binding

poses have to be scored using a mathematical algorithm, i.e. scoring function to

predict the binding affinity of the ligand. Based on the ranking of all compounds

with respect to their calculated scores, top ranked hits are then selected for further

experimental evaluation.

For docking methods, it is best to separately analyze the part of the methods

generating the ligand poses in the binding site and the scoring functions for affinity

prediction, since both parts show a variety of different approaches.

8



2.1. Rational Drug Discovery

Search Strategies

• Methods using multiple ligand conformations: These algorithms address

the molecular flexibility of the compounds by previously generating multiple

conformations for the molecules of the screening library. During the actual

docking procedure, both the ligand and the binding site are then handled as

being rigid, which eliminates multiple degreed of freedom during the calcu-

lation of ligand poses. Methods following this approach, like DOCK 3.0 [27],

FLOG [28], FRED [29], and TrixX-BMI [30] calculate transformations placing

the compounds into the binding site based on a simplified representation of

the ligands as well as the descriptor. These representations are for example

graphs, atom-centered Gaussian functions, pharmacophoric features or sur-

face descriptions. Complex algorithms are used to detect matches between

the respective descriptors and transformations are calculated accordingly.

• Fragment-based methods: Fragment-based methods create possible ligand

conformations iteratively within the protein binding site and therefore try to

avoid the generation of clashing conformations. Therefore, all molecules of

the compound library are initially fragmented by cutting the molecules at

each rotatable bond. Algorithms then either the place one initial fragment into

the binding site and then connect the remaining parts incrementally while

evaluating multiple different torsion angles (e.g. FlexX [31], HAMMERHEAD

[32], and DOCK 4.0 [33]), or try to fit all fragments into the binding site and

connect them afterwards (e.g. SURFLEX [34], EHITS [35]).

• Stochastic methods: Stochastic methods use optimization algorithms to ide-

ally find an optimal solution for the placement of a ligand into the binding

site at minimal energy costs. Based on the target function, this can allow

different degrees of freedom up to full flexibility of all structures. The al-

gorithm then tries to vary parameters at random to find the best possible

solution (global minimum). A variety of optimization algorithms has been

used for this purpose in the past including Monte-Carlo methods (ICM [36],

QXP [37]), genetic algorithms (AUTODOCK [38], GOLD [39]) and ant colony

optimization algorithms (PLANTS [40]).

• Simulation methods: The simulation of molecular dynamics with algorithms

like MD-simulations are extremely complex and time consuming and there-

fore usually can not be used for real VS experiments. They can however be

used for post optimization of individual poses.

• Hierarchical methods: Hierarchical methods use combinations of the above

described approaches. An example of a method combining systematic with

stochastic methods is GLIDE [41].

9
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Scoring Functions

• Empirical scoring: Empirical scoring functions try to estimate the Gibbs free

energy based on a simple sum of uncorrelated energy terms. These terms

for example estimate the contributions of hydrogen bonds, ionic interactions

and lipophilic contacts. An empiric scoring function is for example used in

FlexX [31].

• Knowledge-based scoring: Knowledge-based scoring functions try to esti-

mate the affinity based on observations in studied protein-ligand complexes.

Frequently observed contacts between pairs of ligand and protein atoms are

considered as favorable for the binding energy and based on the frequency

distribution of observed contacts, distance dependent pairwise atom poten-

tials are calculated. For new ligand pose by a docking algorithm, a score is

calculated as the sum of all pairwise potentials between protein and ligand

atoms. An example for such a scoring function is the potential of mean

force[151].

• Forcefield-based scoring: Forcefield-based scoring functions are used for

example in GOLD [39], GLIDE [41] and AUTODOCK [42] and usually quan-

tify the sum of the protein-ligand interaction energy and the internal ligand

energy by classic potentials of interactions between individual atoms.

• Consensus Scoring: Consensus scoring again combines different scoring

functions to overcome weaknesses of the individual scoring functions and

re-ranks the hits accordingly.

2.2. Ligand-based Virtual Screening

Like VS in general, LBVS can be further divided into different approaches based

on the required data required in order to use the respective methods. For example,

Sheridan and Kearsley, actually divided VS into 4 categories, namely docking

(SBVS), similarity searching, QSAR methods, and substructure search [43]. While

the first category has already been discussed, similarity searching will be the actual

focus of this section, since the research project of this dissertation focused on the

development of a method for similarity searching based on one known, active

ligand. Furthermore, similarity searching is of special interest, since it generally is

the most widely used approach in VS [6].

QSAR and substructure search can to a certain degree also be applied to lead

structure identification, but require a lot more previous knowledge of known

actives with measured affinity values or of special substructure patterns that are

mandatory for the ligands activity. Therefore, both approaches are only briefly
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described in the following, since they are not in the focus of this work. Another

recent trend in LBVS, which requires high amounts of data of active ligands are

machine learning approaches. These trends will also be briefly described in the

following:

• QSAR: The abbreviation QSAR stands for Quantitative Structure-Activity

Relationship. QSAR methods try to quantify the relation between the struc-

ture of physicochemical properties of a ligand with its bioactivity [44]. The

underlying models have to be trained on a preferably large set of known

actives with measured affinity values in order to subsequently predict the

affinity of other compounds. Since the required preconditions for QSAR

methods are quite high, they are best suited for already well studied targets

or later stages of the drug discovery process like the lead optimization.

• Substructure search: Methods searching for special substructures in a com-

pound library can be applied if a special scaffold is known, which is directly

related to the affinity of a ligand. Depending on the complexity of the sub-

structure, this will most likely results in close analogues of the query structure

and the found hits are likely to be active to the same target as well. [45] Since

such information is not necessarily available at the first stages of a drug dis-

covery process, these methods can not be generally applied for lead structure

identification. Furthermore. and the aim of virtual screening initially is the

identification of structurally diverse compounds as lead structures [46].

• Machine learning: In recent years, the amount of publicly available bioac-

tivity data has increased significantly, this led to a rising interest in data

mining and machine learning algorithms to make active use of this data [46].

The general hope is to be able to train models based on known active and

inactive compounds using different molecule descriptors and to subsequently

used these models to predict the likelihood of other molecules to be active

as well. The most common methodologies applied in this field are support

vector machines, Bayesian methods and decision trees. The quality of the

trained models depends on factors like training set diversity and the ability of

parameters to cover the active and inactive chemical space [47]. Nevertheless,

machine learning models capable of screening large compound libraries can

be developed if datasets of sufficient size and diversity are available [48–50].
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2.2.1. Similarity Searching

As mentioned earlier, similarity searching is the main focus of LBVS and the most

applied VS approach in general. The key advantage of this approach is that it

does not require a structure of the target protein and is applicability using only

one known, active ligand as input. In general, similarity searching follows the

assumption that globally similar compounds are most likely to show the same

bioactivity [51].

In the following, different approaches for ligand-based similarity searching are

presented. The methods are hereby divided into alignment-free descriptor-based

methods and alignment-based methods.

Descriptor-based Similarity

Alignment-free descriptor-based approaches usually encode multiple different

molecular properties in fingerprints, i.e. binary feature vectors. The similarity

of two molecules based on fingerprint representations can then be quantified

according to matching and mismatching features using different metrics like the

Tanimoto similarity or the Euclidean distance. Based on the utilized information,

these methods can be further divided as follows:

1D Methods: One-dimensional properties can be derived directly simple count-

able features, which can be directly derived from the structural formula of by

summing up properties of the individual atoms. Examples for one-dimensional

properties are the number of heavy atoms, the number of rotational bonds, the

number of potential hydrogen-bond forming groups, the molecular weight or the

logP value of a molecule. These properties are usually used for basic filtering of

compound libraries, for example to retrieve only leadlike compounds following the

rules of Lipinski [52] or Oprea [53].

2D Methods: Two-dimensional methods describe the topological connectivity

of a molecule. This can for example be used in form of canonic SMILES descrip-

tions and SMARTS pattern matching, to identify and filter unwanted structures

or substructures in a screening library. Other approaches compare molecules us-

ing fingerprints registering the presence or absence of certain previously defined

molecular fragments like MACCS and BCI descriptors [54]. More complex topo-

logical fingerprints like the Daylight fingerprint [55] enumerate all substructures

up to a certain length present in the molecule. The ECFP (Extended Connectivity

Fingerprint) [56], encodes the atom types, charges and connectivity information of
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the circular surroundings of individual atoms. ECFPs can achieve high hit rates, but

due to using topological descriptors, the results lack structural diversity [57, 58]. To

increase the diversity of the results, FCFPs (Function Class Fingerprint), a variant

of the ECFP, abstract the atoms to functional features like hydrogen bond acceptors

and donors, aromatic and halogens. Finally, the CATS descriptor [59] annotates all

atoms of a molecule with one of five functional features and measures pairwise dis-

tances between atoms with the same features. The resulting distance histograms can

also be encoded in a topological fingerprint. The advantage of the actual structure

to more functional representations has the advantage to be less strict concerning

the topology and therefore allows the discovery of new scaffolds during VS.

3D Methods: Three-dimensional methods depend on the conformation of the

individual compound because they exploit the information of atomic coordinates.

Therefore, the problem of molecular flexibility has to be addressed in these methods.

This can either be done by enumerating possible conformations of a molecule or

by flexible alignments procedures, which adept the atomic coordinates as needed.

Three-dimensional descriptors can for example be numeric like the van der Waals

volume, the molecular-, and polar surface area or pairwise distances between atoms.

An interesting recent approach for alignment-free similarity-based LBVS is LisiCa

(ligand similarity using clique algorithm [60], which can use either 2D or 3D repre-

sentations of the molecules as input. In general, the method represents molecules

as graphs and calculates the similarity of the molecules based on the size of the

maximum common subgraph (MCS) determined using maximum clique detection

on a calculated product graph. While for 2D representations, the graphs represent

atoms as vertices and bonds as edges as usual, in 3D representations, edges are

placed between all pairs of vertices and annotated with the pairwise distance of the

respective atoms. Therefore, this algorithm allows the detection atom mappings

between the molecules in 3D space.

Molecular Alignments

While 1D methods only rate the similarity of molecules based on simple physic-

ochemical properties and 2D methods can only incorporate the topology of the

molecules, 3D methods have the opportunity to compare the actual structural

similarity in 3D space. However, the structural similarity can only be evaluated

based on molecular alignments of the query ligand and the compounds of the

screening library. The task to find optimal alignments of two different molecules is

a challenging problem and a variety of methods has been developed to address

this problem by different ways of molecular representations and scoring schemes.

To incorporate the molecular flexibility, which is a crucial part in order to find
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meaningful alignments, either alternative conformations have to be generated for

the compounds followed by a rigid alignments process, or the alignments algorithm

has to somehow allow flexible alignments. In the following, an overview of multiple

different methods and alignment approaches is given. The focus of the list lies on

recently developed methods as well as the methods used for the comparison of

mRAISE. The presented methods are divided into rigid and flexible approaches:

Rigid alignment methods:

ROCS (Rapid Overlay of Chemical Structures) [61, 62], abstracts molecules to

a continuous description of the molecular shape using atom-centered Gaussian

functions for all heavy atoms of the molecule. Initially four differently oriented

starting alignments are created by superimposing the ”shape centroids” of the

molecules. Starting from these orientations, the alignments are optimized by rota-

tion operations around different axis with respect to a scoring function using the

Gaussian-based shape description to maximize the volume overlap of the molecules.

During this process, similarity and dissimilarity of user-defined physicochemical

properties of the underlying atoms can be incorporated. This includes charges,

hydrogen-bond donors and acceptors, hydrophobicity as well as ring membership.

SimG [63], is a similar approach to the previously introduced ROCS. Additional to

the basic concepts of ROCS, SimG is also capable of structure-based virtual screen-

ing by deriving a shape representation from protein binding sites and matching

ligands into this shape. Furthermore, the scoring function used for the alignment

optimization differs, besides a term describing the volume overlap of the molecules,

a second scoring term has been introduced representing the sum of aligned similar

pharmacophoric features of the underlying atoms with respect to the total number

of features.

SHAEP [64] combines the strengths of shape-based approaches with that of field-

based approaches. For the calculation of the initial alignment, two molecules are

represented as graphs encoding the electrostatic potential as well as the local shape

at points near the molecular surfaces. The maximal common subgraph between

both graphs is then used as basis for the alignment. A subsequent optimization is

then again performed to optimize the volume overlap of the molecules with respect

to a Gaussian based shape description.

Other methods following the general principals of Gaussian-based shape represen-

tation followed by rigid volume overlap optimization are for example Align-It [65]

and MolShaCS [66].

In LigMatch [67] a geometric hashing algorithm is used to calculate possible

alignments. Herein molecules are represented by a set of triangle descriptors with
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atoms as corners and interatomic distances as side lengths. All matching triangles

with the same atom types as corners and similar distances are then used to align

the molecules. An alignment is scored with respect to the number of coincident

atoms in an alignment.

Flexible alignment methods:

LIGSIFT [68], is a very recent approach for flexible alignments using a Gaussian-

based shape descriptions of the molecules. In this case, the initial alignments are

generated by aligning the molecules with respect to their principal axes of the

moment of inertia tensors and by aligning enumerated triplets of atoms with

similar chemical nature. Based on the sub-optimal initial alignments, a flexible

optimization is performed using a Metropolis Monte-Carlo simulation.

In Screen3D [69] an initial alignment is calculated by calculating the largest possible

mapping of ligand features based on atom-atom distance histograms. To obtain

the best possible starting alignment, the molecules are aligned using an RMSD

minimization algorithm on the respective atom mappings. Starting from this initial

alignment, an optimization algorithm is used to again maximize the volume overlap

of the aligned molecules. The method can perform this optimization either flexible,

allowing changes in the rotatable binds of the molecule during the optimization

of completely rigid. In the second case, initially a certain number of random

conformations of one ligand are enumerated.

FlexS [70] is a LBVS approach based on the flexible SBVS method FlexX. Like

in the previously described docking algorithm, the compounds of the screening

library are divided into fragments by cutting them at rotational bonds. Based

on an initially aligned fragment, the remaining fragments of the compound are

iteratively reassembled during the search process guided by a similarity-based

scoring function. Each assembly step hereby tries different torsion angles to account

for molecular flexibility.

Surflex-sim [71] is another adaptation of an SBVS method for the purpose of

LBVS. it uses a modified version of the fragmentation and reconstruction algorithm

used in HAMMERHEAD for a flexible alignment of rigid fragments onto an also

rigid query structure. The key feature of this method is the representation of

the query molecule as surface points, to which the fragments are aligned during

the reconstruction phase and scored according to the achieved accuracy of the

alignment.

pharmACOphore [72] is an LBVS method based on the previously introduced

SBVS method PLANTS. As in the docking approach, ant colony optimization is

used to calculate the most favorable alignment according to the scoring function by
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allowing translational and rotational movements within a defined sphere around

the query structure. The algorithm furthermore allows flexible superimposition

onto a rigid query structure by adapting the rotational bonds of the target structure

during the optimization. For the scoring function, each atom is assigned with a

pharmacophoric feature and all correlating pharmacophoric features contribute to

the score based on their pairwise distance.

ICMsim [73] is the LBVS version of the ICM [74] approach also calculates fully

flexible alignments using a Monte-Carlo simulation for the optimization of an initial

alignment.

Pharmacophore Matching

The search for lead structures based on pharmacophore concepts can actually either

be based on ligand or protein-ligand complex structures. Nevertheless, it is usually

associated more with LBVS than SBVS [6], because it does not necessarily need a

protein structure as input, although it can benefit from the additional information.

A pharmacophore is an abstract model representing the essential features of a

ligand to bind to a certain target. It is defined by IUPAC as a set of electronic as

well as steric features, which is required to trigger or block the biological response

of a compound [18].

The abstract definition of pharmacophoric features is independent from the actual

molecular structure, since it encodes features and not special functional groups.

Represented features can for example be hydrogen-bond interactions or lipophilic

areas. A pharmacophore can either be derived based on common features of

aligned active ligands or based on complementary features between the ligand

and the target protein. A once derived pharmacophore can then be encoded using

descriptors and is then used as input to a similarity search on the screening library.

Prominent methods for VS using pharmacophore matching are for example Phase

[75], Pharmer [76] and LigandScout [77].

Like all methods based on 3D structures, pharmacophore matching is conformation

dependent and relies on strategies to handle molecular flexibility.

2.2.2. Evaluation and Benchmarking

To ensure the predictive power of VS methods and to allow a user to make a

reasonable decision on which method to choose for a drug discovery project, eval-

uation studies have to be performed. Ideally, these studies should be performed

with a consecutive experimental verification of the binding affinity of predicted

hits. [78] However, the necessary resources for such evaluation studies are often

not available. [79]
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The alternative for the evaluation of VS methods is the execution of retrospective

experiments allowing the assessment of two important criteria, the enrichment of

active compounds in the respective data as well as the accuracy of the predicted

binding modes. [80]

Another important aspect for the introduction of a new methods to the field of LBVS

is besides the general evaluation of its capabilities in those aspects, an extensive

comparison to other state of the art methods in order to proof its value for the field.

Critical for such comparison studies are not only commonly used datasets, but also

the identical preparation and handling of the respective data as well as an accurate

documentation of the experiments.

2.2.3. Evaluation Data

In general, benchmarking datasets for virtual screening methods include two

types of compounds for one or multiple targets. Firstly, a dataset needs to include

active compounds with a known, documented activity to the respective target and

secondly, a large set of inactive compounds. In general, the inactive compounds

are only assumed not to bind to the respective targets (decoys), since validated

inactive compounds are seldom reported in the literature and therefore generally

not available in the necessary quantities [80]. An overview of available benchmark

datasets for VS enrichment studies can be seen in Table 2.1.

To evaluate the quality of molecular alignments calculated by 3D LBVS methods,

special datasets of prealigned ligand ensembles are required. Such ensembles

consist of different ligands binding to the same protein. The reference alignment

poses of those ligands are obtained indirectly by superimposing the identical

binding sites along with the bound ligands. Ideally, LBVS methods should be able

reproduce the reference alignments when comparing ligands of the same ensemble.

This evaluates their capability on aligning the most important similar regions of

similar ligands and to reproduce the conserved binding mode of the members of

the ensemble needed to bind to their common target.

In contrast to the datasets composed for enrichment evaluation, no recent, com-

monly used benchmarking datasets existed for the purpose of alignment quality

evaluation at the start of this project. As a matter of fact, the evaluation of this aspect

of LBVS was rarely performed in recent publications introducing new methods and

if it was addressed, most of the time only small datasets were used, which were

not publicly available afterwards.
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Table 2.1.: Average AUC values for all DUD targets.

dataset publication year targets actives decoys

Bissantz et al. [81] 2000 2 20 1980

McGovern et al. [82] 2003 10 2200 95579

Diller et al. [83] 2003 6 958 32000

Lorber et al. [84] 2005 7 2201 98500

Irwin et al. [85] 2005 5 862 95579

Miteva et al. [86] 2005 4 49 65611

Pham and Jain [87] 2006 29 226 1861

DUD [88] 2006 40 2950 95316

DUD-E [89] 2012 102 66695 1420433

GLL - GDD [90] 2012 147 25145 980655

DEKOIS 2.0 [91] 2013 81 3240 97200

NRLiSt BDB [92] 2014 54 9905 458981

MUDB-HDACs [93] 2015 14 631 24609

Data taken from [94]

2.3. Open Challenges

Despite the large amount of available methods introduced in recent years using a

variety of different approaches, the field of LBVS still remains interesting for future

developments and there are still open challenges, which can be addressed.

Firstly, the alignment problem is not yet solved in a completely satisfying manner

[95]. Algorithms following flexible approaches are usually slow in comparison and

therefore not as practical as other methods for lead-structure identification in large

compound libraries. Efficient ways have to be developed achieving highly accurate

alignments without exhaustive flexible optimization algorithms, for example by

somehow discretizing the space of possible alignments by meaningful descriptors

with a high likelihood to produce nearly optimal alignments.

A topic related to the quality of the calculated alignments, is the general handling

of molecular flexibility. Molecular alignments can only be as good as the available

conformations of the compared molecules. Solutions for this issue might be better

methods for the enumeration of conformations, faster flexible optimizations or

general concepts matching molecules without the need of global shape similarity.

Another remaining challenge in the field of LBVS is the complex topic of partial

shape matching [96], which could also address other problems like the dependency

on similar molecular conformations for screening compounds in order to find

meaningful alignments. The focus only on the most important parts of a ligand,
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responsible for its bioactivity could result in more diverse but still active hits and

allow the user new ways to influence the screening procedure as desired.

Despite the fact that the number of targets for which both, an active ligand as well

as a 3D protein structure assist, combinations of LBVS and SBVS approaches are

still quite rare [6]. New methods could introduce new ways to make use of all

available information for VS.

It is also important to note that the problem of correct similarity-based compound

ranking is also far from being solved and there is still a need for better scoring

functions for the ranking of screened compounds.

Generally, new methods have to face the classic challenges of providing high quality

results in reasonable amounts of time in order to be applicable for real VS projects It

is therefore of great importance that this is proofed in comparison to other methods

of the field.
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Chapter 3.

Research Aims and
Preconditions

Based on the overview of the state of the art of LBVS in the preceding chapter, the

following chapter will define the main aims and objectives of this dissertation. A

special focus hereby lies on the obstacles and open challenges of the field, which

shall be addressed in this project. Furthermore, the preconditions at the beginning

of the project will be shown.

3.1. Aims and Objectives

The main aim of this dissertation project is the development of a new computational

method for LBVS that provides the ability to define special partial shape constraints.

Furthermore, the method should be able to compete with state of the art LBVS

methods both in terms of screening result quality as well as computing time

requirements.

The analysis of the literature has shown how competitive the field of LBVS is but

at the same time pointed out that there are still open challenges in the field. There-

fore, primarily a new method that is introduced to the field has to compete with

existing methods both in terms of screening capabilities as well as computing time.

Furthermore, for the purpose of this project, the challenging topic of meaningful

partial shape matching will be addressed.

Thus, for this research project, the following obstacles are defined:

• Efficient data handling: For the performance as well as the reliability of

a LBVS method, it is important to handle the compounds of a screening
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library consistently and efficiently, including the calculation and storage of

conformations.

• Meaningful abstraction of ligand information: An efficient to handle rep-

resentation of the most important features of a ligand is needed to enable a

rapid comparison of complex three-dimensional structures. Furthermore, in

a pre-processing step, this representation allows the elimination of obviously

dissimilar candidates in the compound library.

• Knowledge-based partial shape constraints: The integration of meaningful

partial shape matching in LBVS is a difficult task, since the constraints have

to be created based on accurate knowledge of the most important regions of

a query ligand.

• High quality three-dimensional alignments: Accurate molecular alignments

are an important part of 3D LBVS methods. Only good alignments allow

an accurate similarity rating by superimposing the most important common

features of two ligands.

• Scoring of molecular similarity: A detailed scoring function needs to cap-

ture the most important similarities as well as the dissimilarities of two

aligned ligands. The similarity score should provide an accurate ranking of

compound library hits.

• Evaluation data: New methods need to be evaluated on reliable datasets.

Herby, highlighting the strengths and weaknesses of a method is just as

important as the comparison to other state of the art methods. However, there

is no diverse dataset of statistically sufficient size available in the literature

that could be used as standard for the evaluation of alignment quality.

• Usability: In addition to the basic development of a new method, also the

usability for potential users is of great importance. Therefore, the software

should be easy to use and assist the user in all important steps of its applica-

tion. While a good, easy to use command line interface might be sufficient

for general screening runs, a graphical user interface becomes necessary as

soon as constraints can be derived manually. Furthermore, a graphical user

interface allows the visualization of results for evaluation purposes as well as

of query ligands and the respective descriptors to get a better understanding

of the method.
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3.2. Preconditions and Course of the Project

The work at hand was prepared at the Center for Bioinformatics (ZBH) at the

University of Hamburg in the research group for Computational Molecular Design

from February 2012 to November 2016.

Herein ’mRAISE’ is introduced, a new software for LBVS. Fundamentally this work

is based on algorithms developed for indexing and screening in Trixx BMI by Dr.

Jochen Schlosser in his dissertation [30]. These algorithms were reimplemented by

K. Schomburg, S. Urbaczek and A. Henzler at the beginning of this dissertation

as the ’Trixx’ and the ’FastBitIndex’ libraries. This includes the functionality for

interaction point calculation and descriptor generation. Furthermore, this work

makes use of the MoleculeDB as developed by M. Hilbig for MONA [97] and the

’NAOMI’ library developed at the ZBH and the BioSolveIT (www.biosolveit.de). As

external libraries, mRAISE uses Qt (http://qt-project.org) and FastBit [98]. Qt was

used for the development of a graphical user interface for mRAISE, which uses the

3D visualization library developed by the BioSolveIT also utilizing Qt.

The mRAISE method has been published in the Journal of Computer Aided Molecular

Design in one publication that is already published as of writing this thesis and

a second, which is still in reviewing status. Furthermore, the results have been

presented at an international conference in form of a poster. A list of all publications

and posters can be seen in Appendix F.
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Chapter 4.

Methods

In the following chapter, the different methods used in mRAISE are described. A

special focus lies hereby on the aspects that have been either adapted or newly

developed for the ligand-based setup in mRAISE.

The basis of mRAISE is formed by modules that were already available in libraries

developed at the Center for Bioinformatics Hamburg (see Section 4.1). Utilizing

those libraries made it possible to focus the development mainly on the special

challenges of LBVS as well as on the new concepts for partial shape constraints. The

libraries provide a wide range of functionality including, among others, functions

to read and write molecule and protein files, a chemically accurate digital represen-

tation of molecular structures, a generator for alternative conformations of small

molecules, databases for the efficient storage of molecules alongside associated

information, and a basic framework for three-dimensional visualization.

Following the basic components, a general description of the workflow of mRAISE

is given (see Section 4.2.

The key technologies used in mRAISE are a triangle descriptor representation of

the molecules specially developed for virtual screening and a bit encoded index

to efficiently store and access those descriptors. Therefore, the descriptor as well

as the index are described in more detail in Section 4.3. This is followed by the

required adaptations to the descriptor for the purpose of LBVS (Section 4.4), and

new developments for partial shape constraints (Section 4.5). Afterwards, another

important part for a LBVS method, the scoring function for the evaluation of molec-

ular similarity based on structural alignments, is introduced (Section 4.6). Finally,

the output formats of mRAISE are explained (Section 4.7) and a newly developed

graphical user interface (GUI) for the visualization of screening results as well as the

manual definition of query constraints is shown (Section 4.8). A user guide for the

command line version (Appendix C) as well as for the GUI version (Appendix D)

of mRAISE can be found in the Appendices.
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4.1. Basic Libraries

This section introduces the existing basic concepts and modules that have been

used in mRAISE.

4.1.1. NAOMI

The NAOMI library developed at the Center for Bioinformatics Hamburg provides

the basic functionalities needed to work with chemical structures in a chemoinfor-

matical context. This includes the initialization of molecule and protein structures

from various available file formats as well as the functionality to write the initial-

ized structures back into such formats. During the initialization, the molecules and

proteins are converted into complex data structures following a very strict chemical

model. As a result, files containing chemically invalid information are discarded to

maintain the integrity of the model. A further limitation of the NAOMI library is

that it can not initialize ligands with covalently bound metals. [99, 100]

4.1.2. Conformation Generation

To take into account the flexibility of molecular structures during virtual screening,

the most common approach is the generation of multiple conformational represen-

tations of the molecules in the compound library. In mRAISE, conformations are

generated automatically using the knowledge-based CONFECT [101] algorithm.

This algorithm enumerates conformations for a given molecule by assigning new

torsion angles to rotatable bonds based on a torsion library which has been derived

from crystallographic data [102]. This way, the accessible conformational space

is explored using only the most likely and, therefore, low-energy torsion angles.

For the sampling of ring conformations, CONFECT uses a set of precalculated

forcefield-optimized templates. After the enumeration of conformations, a con-

clusive clustering reduces the number of generated structures down to a desired

ensemble size while trying to maintain the diversity of the enumerated ensemble.

In the latest iteration of CONFECT, as introduced in UNICON [103], the torsion

library has been refined [104] and a new RMSD-based clustering algorithm has been

integrated to further increase the diversity of the generated ensemble. This version,

furthermore, introduces three quality levels for the conformation generation and

the most accurate (quality level 3) is used as default in mRAISE.
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4.1.3. MoleculeDB

During the development of the molecular filtering tool MONA [97, 105], an SQLite

database for the efficient storage and retrieval of molecules has been developed. For

the purpose of filtering chemical libraries in MONA, additionally physicochemical

properties of the molecules are calculated and stored as associated data to the

molecule entries. However, the implementation of the database also allows to add

further information or to plainly store the molecules.

This so called MoleculeDB has consecutively been used in other software de-

velopments working with large molecule libraries like cRAISE [106] and now

mRAISE [107]. The primary representation of a molecule in the database is the so

called MolString, a canonized string-representation of all atoms and bonds of the

molecule which is suited as an identifier for molecules with the same topology. As a

consequence, the database differentiates between unique molecules and additional

instances with the same topology as an already registered molecule. If an entry with

the same MolString exists in the database, the new molecule is simply inserted as

an additional instance. Therefore, only the alternative coordinates of the atoms are

stored and a special ID refers to the existing molecule entry to which this instance

belongs. The MolString representation together with a BLOB (Binary Large Object)

encoding the Cartesian coordinates of all atoms and some additional data like the

molecule’s name allows a complete and fast reinitialization of the stored molecules.

Besides the usage as efficient storage for the molecules of the screening library,

the MoleculeDB has also been used to optionally store screening results for later

reexamination and visualization.

4.1.4. Three-dimensional Visualization

To visualize screening results as well as to explore and define query ligands and

partial shape constraints, mRAISE does not only provide a command-line interface

but also a GUI. Herein, query molecules, descriptors, structural alignments, and

molecule surrounding residues derived from a complex structure can be visualized

in three-dimensional space.

This visualization has been realized utilizing a component available at the ZBH and

developed by the BioSolveIT, designed for user interfaces created with the cross-

platform GUI development framework Qt(http://qt-project.org). This component is

a special implementation of the Qt class QWidget and allows to easily create areas in

a GUI to display and interact with three-dimensional structures. Together with this

QWidget a multitude of utilities are provided for example to create visualizations

of molecules and proteins directly from the internally used data structures as well

as to visualize a variety of geometric primitives like additional spheres and lines.
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Figure 4.1.: Overview of the mRAISE workflow divided in registration (above) and

screening (below). Reprinted from [107] with permission of Springer.

4.2. mRAISE Workflow

The general workflow of mRAISE and all other applications using the TrixX tech-

nology as developed in TrixX-BMI [30] and now RAISE, can be divided into two

basic steps, a registration phase and a screening phase. An overview of the mRAISE

workflow can be seen in Figure 4.1.

4.2.1. Registration

In the registration phase, molecules of a compound library are initialized and the

descriptor index is created as described in Section 4.3.3 for efficient screening. In

detail this includes the following steps:

1. Screening Library

• Molecule initialization from an input file

• Generation of additional conformations for each input molecule (if

desired)

• Storage of all molecules and conformations in a MoleculeDB

2. Calculation of descriptors for each structure

3. Creation of a descriptor index
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4.2.2. Screening

During the screening phase descriptors are calculated for a query molecule and then

matched against a previously prepared descriptor index as described in Section 4.3.4.

Matching molecules are aligned to the query molecule and the similarity of the

molecules is scored. In mRAISE the phase can be divided into the following steps.

1. Initialization of the query molecule from an input file

2. Calculation of query descriptors

3. Matching of each query descriptor to the entries of the descriptor index

4. Alignment of the query molecule and compounds based on matching de-

scriptors

5. Calculation of the similarity score for each alignment and storing the best

score per conformation

4.3. TrixX Methodology

The fundamental basis of mRAISE is the so called TrixX triangle descriptor which

has initially been developed for the purpose of structure-based virtual screening

by Schellhammer and Rarey [108]. Later, the descriptor has been extended by a

representation of the local surrounding shape and a bitmap-based index repre-

sentation to efficiently store and compare descriptors of preprocessed compound

libraries [30]. In its latest iteration for structure-based virtual screening this tech-

nology has been used in a tool called cRAISE [106]. This version is now based

on the NAOMI framework (see Section 4.1.1), and provides new possibilities to

efficiently guide the screening process. Besides this, the TrixX technology has also

been successfully applied to other areas of virtual screening like protein binding

site comparison in TrixP [109] and inverse protein-ligand screening in iRAISE [110].

Despite the use of this technology in other areas of virtual screening, the name

TrixX is mainly associated with the original structure-based application. As a con-

sequence, new developments refer to the descriptor index-technology as RApid

Index-based Screening Engine (RAISE) and the respective tools are named referring

to this abbreviation: cRAISE [106], iRAISE [110] and now mRAISE [107].

In the following, the descriptor and its application for virtual screening will be

explained in detail, since mRAISE only operates with ligands, the descriptor gener-

ation for proteins will not be explained here.
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Figure 4.2.: Visualization of a TrixX descriptor derived from the cdk2 kinase query

ligand of the DUD dataset. The displayed descriptor is based on three

hydrogen bond acceptors highlighted as red spheres.

4.3.1. Descriptor

For the purpose of virtual screening, the abstraction of highly complex structures

using descriptors encoding only important features reduces the complexity of

the comparison problem and therefore enables rapid screening of large libraries.

Comparing descriptors alone of course is only a very coarse measure of molecular

similarity, but on the other hand it already excludes obviously dissimilar combina-

tions. Therefore, the comparison of descriptors is usually done as a first step and is

then followed by a more complex and time-consuming evaluation procedure.

The TrixX descriptor is based on a triangle descriptor, i.e., three-point pharma-

cophore, annotated with additional information for an efficient but also meaningful

abstraction of molecular structures. An exemplary TrixX descriptor is depicted in

Figure 4.2. In general, the descriptor includes the following information:

• Triangle corners: A descriptor is defined by three so called interaction points.

These points indicate spots where interactions between a ligand and a pro-

tein might occur and can be of type hydrogen bond donor, hydrogen bond

acceptor or hydrophobic. The determination of the interaction points for a

molecule is described in Section 4.3.2.

• Coordinates: For the matching of two descriptors the types of the interac-

tion points are sufficient, however, for the superposition of the respective

molecules, the coordinates of the interaction points are needed as well. Like

in iRAISE, these coordinates are stored with the descriptor. This increases

the space requirement of a stored descriptor but at the same time avoids

recalculation of the descriptors to receive the information needed for the

superposition.
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• Directions: For polar interaction points, the descriptor also stores the poten-

tial interaction directions. For details on the determination of these directions

and their representation in the descriptor see Section 4.3.2.

• Side lengths: The side lengths of the triangle descriptor correspond to the

distances between the interaction points and are also stored in the descriptor.

• Shape representation: The shape of a molecule is represented by the lengths

of 80 canonized rays radiating from the center of the triangle. This part of the

descriptor plays an important role for partial shape matching during virtual

screening with mRAISE and is described in detail in Section 4.3.2.

• IDs: Since all molecules of the compound library and the calculated confor-

mations are stored in a MoleculeDB (see Section 4.1.3), the identifiers needed

to reinitialize the respective entry from the database are included in the

descriptor.

To ensure that the descriptor generation is deterministic and all properties of

the descriptors are directly comparable, canonization is a crucial part during the

descriptor generation. For details on the canonization process see Section 4.3.2.

Each final descriptor has an associated type expressed as a number between zero

and eight which is based on its combination of interaction points. A triangle type

of ”0” for example indicates a descriptor with three hydrogen bond donors. A

triangle of type ”1” indicates a descriptor with two hydrogen bond donors and

one hydrogen bond acceptor. Triangles with only hydrophobic interaction points

are discarded, this results in a total of nine possible triangle type values. The

triangle type plays an important role during the creation of the descriptor index

(see Section 4.3.3) and during the screening process (see Section 4.3.4).

4.3.2. Descriptor Generation

For the purpose of LBVS in mRAISE descriptors only need to be generated for small

molecules. Therefore, in the following, only the ligand-based descriptor generation

will be explained. An overview of the different steps of the generation process can

be seen in Figure 4.3.

Descriptors are generated for all possible combinations of three interaction points

of a molecule. Each resulting triangle must fulfill the following constraints not to

be discarded:

• No more than two hydrophobic interaction points

• Two interaction points can not correspond to the same atom. The involved

atoms have to be separated by at least two bonds.
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(a) (b)

(c)

Figure 4.3.: Visualization of the descriptor generation using the cdk2 query

molecule of the DUD dataset. a) Initialized ligand. b) Ligand with

interaction points (hydrogen bond donor = blue, hydrogen bond accep-

tor = red, hydrophobic = yellow) c) Example of a resulting descriptor.

• The side lengths of the triangle must all be between 1.0Å and 9.6Å.

• The internal angles of the triangle must exceed 0.15rad

The remaining triangles are canonized based on their interaction point types and

their side lengths (see Canonization). Finally, the interaction directions (see Interac-

tion Points) and the shape descriptor (see Shape Descriptor) are also annotated to

the descriptor alongside the MoleculeDB IDs of the respective ligand.

Interaction Points

The interaction points used as basis for the descriptor generation are calculated for

each ligand based on the cRAISE [106] interaction model and follow two different

approaches, one for polar interactions, i.e., potential hydrogen bond donors and

acceptors, and another one for potential hydrophobic interaction spots. For the polar

interactions, this also includes the calculation and storage of possible interaction

directions.
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Polar interactions can either be of type Donor or Acceptor. As can be seen in Fig-

ure 4.3b, Acceptor interaction points, indicated by red spheres, lie on the associated

heavy atom of a hydrogen bond acceptor. Donor interaction points on the other

hand, indicated by blue spheres, lie on a hypothetical heavy atom of an optimally

placed interacting acceptor. This is estimated at 2.8Å distance from the heavy atom

of the donor following the direction of the hydrogen atom.

Possible interaction directions are calculated based on the respective chemical group

of the interaction point. For hydrogen bond acceptors, these are the directions of

all present lone pairs. It is, therefore, possible that an Acceptor interaction point

has more than one interaction direction. In case of hydrogen bond donors, the

interaction direction is already given following the direction of the hydrogen atom.

This information is nevertheless saved for the interaction point as well. As a result,

Donor interaction points can only have one possible interaction direction.

Also included in the interaction point generation is the flexibility of rotational

groups. For a hydroxyl group, e.g., not only the direction represented in the

molecule structure is used. In addition, interaction points are sampled follow-

ing steps of 72° around the rotatable atom. All resulting interaction points and their

respective interaction directions are kept as long as they point in accessible area

and not into the ligands own volume.

For the representation of interaction directions in the descriptor an icosahedron

is centered on the hydrophilic interaction points and canonically oriented with

respect to the triangle (see Section 4.3.2). A face of the icosahedron is marked, if

an interaction direction points through that special face. This way the information

of interaction directions can be reduced to a bit vector of size 20 where each bit

corresponds to one face of the icosahedron and the bit is set if the respective face is

marked.

Apolar interactions are placed based on an initial selection of hydrophobic

candidate atoms. These candidates are:

• Carbon atoms with four single bonds, three or more of them have to bind

carbon, hydrogen or halogen atoms.

• Carbon atoms with two single bonds and one double bond and only carbon

or hydrogen neighbors.

• Carbons with one single and one triple bond.

• Sulfur and halogen atoms.

A following placement procedure decides based on these candidates where hy-

drophobic interaction points will be placed. The procedure is divided into three

hierarchical parts, each part places interaction points and removes candidate mark-

ings:
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1. All candidates that are members of the same ring, which is either aromatic

or has a maximum of nine atoms, are removed and an interaction point is

placed in the center of the ring.

2. For each bond of the molecule, the algorithm checks if the connected atoms

are both candidates. If that is the case, the markings on both atoms are

removed and an interaction point is placed at the middle of the bond.

3. All remaining isolated candidates are then used as interaction points

Shape Descriptor

Each triangle descriptor includes a description of the local surrounding shape of

the molecule. Internally, this is represented by the lengths of 80 rays radiating from

the center of the triangle and ending at the surrounding molecular surface (see

Figure 4.2). To ensure an equal distribution, the rays are sent through the center

of the faces of an icosahedron, which has been further refined into 80 faces. This

refinement is done by placing new corners at the middle of each icosahedron edge

and connecting them so that each original face is divided into four equal faces.

For each ray, the length from its origin to the point where it exists the molecular

surface of the ligand is measured and stored. Hereby, a minimum length of 1.0Å

and a maximum length of 7.1Å has to be adhered. The center of a descriptor can in

some cases lie outside of the molecular surface. In this case, the minimal length is

applied to rays that never reach the molecular surface since they point away from

the ligand (see Figure 4.4). The maximal length on the other hand is set for rays

that would exit the molecular surface but in a distance of more than specified 7.1Å.

To be able to compare the shape descriptors of two triangles, it is necessary to

canonize the descriptor relative to a local coordinate system defined by the triangle.

This way, it is ensured that after superimposing descriptors with matching triangle

corners onto each other, the 80 numbered rays of the descriptor lie perfectly on top

of their respective counterpart in the other descriptor. As a result, the 80 distance

values can be directly compared during screening (see Section 4.3.4). The details of

the canonization procedure is described in the following section.

Canonization

To allow the direct comparison of TrixX descriptors, the most crucial part of its

generation is the canonization of some of its features. Without this part, it would

not be possible to compare descriptors derived from different structures and to

obtain meaningful matches. This includes the canonization of the triangle itself by

sorting its corners as well as the deterministic orientation of the icosahedron used
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Figure 4.4.: Visualization of a descriptor with rays of minimal length.

for the representation of possible interaction direction and for the orientation of

the shape descriptor.

For the basic triangle generation based on interaction point triplets, this also means,

that not all possible combinations of the same interaction point triplet have to be

enumerated into individual triangles. For all molecules of the screening library,

it is sufficient to create one combination of each interaction point triplet if it is

deterministically canonized into the same final triangle.

In the following, we define the type of a descriptor as its combination of ordered

interaction points and represent them by three uppercase letters, e.g. ’XYZ’. The

usage of the same letter indicates same types on the respective interaction type. We

further define the edges of the triangle with e1 being the edge between the first and

the second e2 as the edge between the second and the third interaction point and e3

as the edge between the third and the first interaction point. Descriptor triangles

are canonized as follows:

• First, triangle corners are sorted ascending by type with Donor = 0, Acceptor

= 1 and Hydrophobic = 2

• Second, descriptors are sorted by side lengths while preserving the order of

interaction point types

– Descriptors of type XXX are rearranged to e1 ≤ e2 ≤ e3

– Descriptors of type XYY are rearranged to e1 ≤ e3, holding e2 in place

– Descriptors of type XXY are rearranged to e2 ≤ e3, holding e1 in place
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This procedure has more than one correct solution for isosceles triangles. Therefore,

it is important to enumerate all options to guarantee that every possible match is

found. Nevertheless, it is sufficient to do this only for the descriptors of the query

ligand.

• For isosceles triangles of type XXX all five other permutations of the triangle

corners are generated.

• For isosceles triangles of type XYY or XXY the one different ordering obtain-

able by swapping the identical interactions is generated.

The key to canonize the representation of the interaction directions as well as the

orientation of the bulk rays is the icosahedron on which both implementations

are based. Whenever an icosahedron is used, it is deterministically oriented with

respect to the respective already canonized triangle it is used in. This is achieved

by the following procedure:

• The ray pointing through the first face of the icosahedron is rotated onto the

axis from the center of the triangle to the first corner

• The second ray is rotated onto the first edge (e1) of the triangle

After this, the whole icosahedron is conclusively oriented based on a local coor-

dinate system defined by the triangle and the result will always be the same for

identical triangles.

4.3.3. Descriptor Index

For the rapid screening of large compound libraries, Schlosser and Rarey [30]

introduced a bitmap index for the efficient storage and comparison of precalcu-

lated TrixX descriptors. The FastBit index developed by Kesheng Wu [98] for the

efficient handling of data from experimental physics was found to be best suited

for the application in virtual screening. FastBit is optimized for read-only access

of consistent multidimensional data. Therefore, a key technology used in FastBit

is the Word-Aligned Hybrid compression (WAH) for the bitmaps, reducing the

space requirement while still allowing to access the data with logical operations

without the need of decompression. Here, sequences of equal bits are encoded

by a representation consisting of the bit value and the length of the respective bit

sequence. Other parts of the bitmap remain uncompressed and the bitmap is then

grouped with respect to the CPU word size. To further increase the efficiency of

queries, the bitmaps can be specially encoded to either optimize for the usage of

equality or range comparisons.

To efficiently handle all properties of the TrixX descriptor in the index, some of

them need to be binned. For the continuous properties like lengths of triangle

36



4.3. TrixX Methodology

sides and the 80 bulk rays, specific binning schemes are used. For the side lengths,

bins with a range of 0.1Å are used resulting in a representation using 85 bits

and for the bulk ray lengths bins of size 0.4Å are used resulting in a total of 15

bits. For discrete values, no binning is necessary. The same holds for interaction

directions which already are represented as a sequence of 20 bits. On basis of this

information, FastBit creates the index structure and compressed bitmaps for each

of its dimensions. Regarding the encoding of the bitmaps for efficient comparison,

the bitmaps for the side lengths and the bulk rays are encoded especially for range

queries.

Another strategy to speed up the screening process based on this index is a spe-

cial partitioning of the descriptor data. During the creation of the FastBit index,

descriptors are stored in individual partitions based on their triangle type (see

Section 4.3.1), a partition in this case is an independent subindex. The size of a

partition is hereby limited to never exceed 2 GB so that one partition can always be

held in memory completely. Thus, if necessary there might be multiple partitions

of the same triangle type in one index.

As a result of using this technology, compound libraries have to be preprocessed

for screening and a once created index can be screened as often as desired.

4.3.4. Descriptor Matching

During the screening procedure, descriptors are generated for a query molecule

and then used to formulate queries to the descriptor index. For this purpose, the

descriptors are sorted by their triangle type and only corresponding partitions of

the index are screened (see Section 4.3.3). This way, automatically only descriptors

with matching interaction points are compared. To minimize the reading operations

on the hard drive, a partition is kept in memory as long as necessary. This means

that in the case of multiple partitions per type, all query descriptors of that type

are screened against one partition before the next is loaded.

The descriptor index is addressed using SQL-like database queries comparing all

properties of the descriptor combined with a logical AND. For some properties

tolerance values are applied for a less strict comparison. Matching descriptors,

therefore, have to fulfill all of the following criteria:

• All side lengths have to match with a tolerance of ±1.0Å

• Bulk rays can be matched in two different ways depending on the area of

application:

– For protein-ligand scenarios, all rays of the ligand have to be shorter or

equal to the protein rays (+0.5Å tolerance), to fit into the binding site.
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– For protein-protein or ligand-ligand scenarios, all rays need to be of

equal lengths (±0.5Å tolerance).

• The interaction directions of polar interaction points have to match. This

is the case, if a bitwise AND operation on the bit strings representing the

directions results in at least one set bit.

4.3.5. Alignments Calculation

For each matching descriptor, the triangle corner coordinates as well as the IDs,

needed to retrieve the molecule from the MoleculeDB in its respective conformation,

are returned from the descriptor index. Using the coordinates of the triangle corners,

the transformation matrix to superimpose the matching target triangle onto the

query triangle is calculated and stored alongside the IDs in a special data structure.

These data structures are then grouped based on the conformation IDs of the

matching compounds to ensure that a molecule has to be reinitialized only once

even if it has multiple different matches.

In the final step, each matching molecule conformation is reinitialized once and

all corresponding transformations are applied to calculate the the similarity of the

molecules based on the respective structural alignment (see Section 4.6).

4.3.6. Partial Shape Approach

Some of the biggest challenges in virtual screening are the handling of molecular

flexibility and the discovery of unapparent new active ligands. Regarding these

challenges, it appears to be too restrictive if the matching criteria do not allow

tolerances and flexibility. To a certain degree, tolerance is already incorporated

in the descriptor matching in the FastBit index. Nevertheless, due to the original

design for SBVS, all 80 rays of the shape descriptor need to match at once (see

Section 4.3.4). For a protein-ligand scenario this makes perfect sense, since this

only eliminates ligand poses which would definitely clash with the protein binding

site. However, for the comparison of binding sites or ligands only, more flexibility

has is needed, especially in the shape comparison in order to not only find close

derivatives of the query structure. Since high degrees of unspecific tolerance might

lead to a lot of false positive hits, meaningful partial shape constraints, enforcing

high similarity in certain areas of a molecule while allowing flexibility in others

remains the real challenge.

A first general concept for partial shape matching using the bulk descriptor has

been developed by Christin Schaerfer in her diploma thesis [111]. This concept only

requires a certain percentage of coherent rays to match at the same time and has
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Figure 4.5.: Visualization of the partial bulk concept with 25% shape similarity

requirement. Reprinted with permission from [109]. Copyright 2013

American Chemical Society

since then successfully been applied to binding site comparison in TrixP [109] and

is now also incorporated in mRAISE. The algorithm utilizes the properties of the

icosahedron, used within the creation of the bulk rays to define multiple subsets

of neighboring rays representing a certain percentage of shape similarity. These

subsets are then individually inserted into the FastBit query and combined with a

logical OR. This way it is sufficient for a match if only one subset of rays matches a

descriptor in the index.

Different subset sizes and, therefore, different percentages of shape similarity re-

quirement can be generated as follows:

• 25% shape matching is acquired by only selecting rays going through triangles

surrounding the same icosahedron vertex. Since a vertex is surrounded by

five triangles this leads to a selection of 20 rays. Using all vertices the same

way, this leads to 12 possible subsets (see Figure 4.5).

• 40% shape matching can be achieved by selecting all rays going through

triangles surrounding the same icosahedron edge. This leads to 30 subsets of

32 selected rays.

• 50% shape matching requires the selection of all rays going through triangles

surrounding the icosahedron triangle. In total, this results in 20 subsets of 40

selected rays.

Figure 4.5 shows an example for the calculation of a subset of rays surrounding the

same icosahedron vertex for 25% shape similarity. A partial shape requirement of

25% and 50% is available as options in mRAISE.
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(a) (b)

Figure 4.6.: Comparison of interaction point placements before (a) and after (b) the

changes used in mRAISE. Blue spheres = hydrogen bond donors, red

spheres = hydrogen bond acceptors, yellow spheres = hydrophobic.

4.4. mRAISE Adaptations

In the following, the changes to the interaction points for LBVS as well as the

new concepts for knowledge-based partial shape constraints used in mRAISE are

explained.

4.4.1. Interaction Points

During the development of mRAISE an alternative placement of interaction points

representing hydrogen bond donors was found to be more efficient for the purpose

of LBVS. Furthermore, while comparing ligand descriptors, a weakness of the

original algorithm to place hydrophobic interaction points has been detected and a

new placement algorithm has been introduced. Figure 4.6 shows the influence of

the changes compared to the original version of the interaction points.

Polar Interaction Points

The original approach to generate polar interaction points as described in Sec-

tion 4.3.2 was designed for SBVS and therefore incorporated protein-ligand comple-

mentarity. This is especially the case for the placement of the hydrogen bond donor

interaction points, which are not placed on the respective ligand atoms but on

coordinates where potential interacting protein atoms might occur (see Figure 4.6a).

For LBVS applications, this is not essentially a bad thing, since matching descriptors

would not necessarily superimpose the hydrogen donor groups onto each other,

but they would superimpose the ligands in a way that both are likely to form an
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Figure 4.7.: Example of different placements of hydrophobic interaction points

depending on the order of processes bonds.

interaction to the same hydrogen bond acceptor group of a protein.

However, during the development of mRAISE, it turned out to be beneficial to

place the hydrogen bond donor interaction points on the respective heavy atom

of the ligand like it is done for the hydrogen bond acceptors. This not only guar-

antees the superimposition of the respective atoms of the ligands upon matching,

it also reduces the number of interaction points and consequently the number of

descriptors significantly. This is because hydrogen bond donors with more than

one interaction direction and especially rotatable ones no longer result in separate

interaction points for all possible interaction direction but in one interaction point

annotated with all possible interaction directions.

As a rough estimation of the influence of this change, a small statistic on all com-

pounds of the DUD dataset has been calculated. On average it reduced the number

of descriptors per conformation by 18.7% while producing comparable or even

better results.

Apolar Interaction Points

The placement of hydrophobic interaction points on the bonds of the ligand as

described before had an algorithmic problem. It turned out, that the placement

of the interaction points depended on the order of the atoms and bonds in the

respective data structures and was therefore not deterministic. In cRAISE this had

no influence because all ligands were stored in a MoleculeDB before descriptor

calculation and therefore the order of atoms and bonds was canonized for these

structures, in iRAISE this also was not significant since only one ligand at the time

is used as query structure. In mRAISE, however, library molecules are canonized

like in cRAISE but the query ligand is not. In some cases, this resulted in differ-

ent placements of hydrophobic interaction points for otherwise identical ligands.

The problem occurred during the second step of the placement of hydrophobic
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Figure 4.8.: Example of a molecule graph where each atom is annotated with the

maximum shortest path to any other atom in the molecule.

interaction points for chains of carbon atoms that were all candidates for hydropho-

bic points. An example for this problem can be seen in Figure 4.7 for five atoms

connected by four bonds. Starting from the shown initial situation, the algorithm

would process the first bond available in the data structure which could be either

one of the four and places a new interaction point on that bond while removing the

candidate markings on the connected carbons. As shown in the picture, depending

on the selected bond, this can result in four different situations with one placed

interaction point and three remaining marked atoms. Depending on the distribution

of those marked atoms either one or two bonds connecting two marked atoms

remain, which can be selected next to place another hydrophobic interaction point

on the respective bond. At the end of the second step, two of the four bonds have

an apolar interaction point on them and one marker remains on one of the carbon

atoms. As a result, the candidate marker would become an own interaction point

in the third step. As can be seen, depending on the order of the processed bonds,

there are three solutions for the placement of hydrophobic interaction points in this

example both with two interaction points on bonds and another on the remaining

atom which is not attached to that bond. For mRAISE, it is of great importance that

the same molecules always result in the same set of descriptors. Therefore, a new

algorithm for the second step of the placement procedure has been introduced. The

new algorithm makes use of the fact that molecules are internally represented as

graphs with bonds as edges and atoms as nodes in NAOMI (see Section 4.1.1). In

a first step, the Floyd–Warshall algorithm is used to compute the shortest paths

between all pairs of atoms in the molecule and to store them in a distance matrix

M of size n × n, where n is the number of atoms in the respective molecule. Each

edge is hereby handled as if it had a weight of 1. After this calculation, each row

Mi in the matrix M stores the shortest paths to all other atoms in the molecule

starting from the atom i. The maximum among this values is therefore the longest

direct path between this atom and another atom of the molecule. Next, each atom

of the molecule is annotated with that maximum value of its respective row. An
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example for such an annotation can be seen in Figure 4.8. Finally, like in the original

implementation of this placement step, the algorithm identifies all atoms which

are candidates for an hydrophobic interaction point and have at least one neighbor

which is also a candidate. An interaction point is placed directly onto this atom, if

the path annotation on that atom is an odd number.

After this step, candidate markings are removed from all atoms that became hy-

drophobic interaction points as well as from their direct neighbors. This way, the

third step can consecutively process all remaining candidates.

4.5. Knowledge-based Partial Shape Constraints

In mRAISE a new approach for meaningful partial shape constraints to guide

the screening process is introduced. These constraints make use of additional

information derived from protein-ligand complexes or the experience of the user

who can define shape constraints manually.

4.5.1. Complex-based Partial Shape Constraints

Recent applications of virtual screening methods in application studies often in-

volved combinations of structure-based as well as ligand-based approaches to make

use of all available information and achieve the best possible results. This of course

is a reasonable strategy if the structure of the protein-ligand complex is available.

Therefore, during the creation of triangle descriptors mRAISE can also make use of

this information to derive partial shape constraints with respect to the binding site

of the protein to which the query ligand is bound.

Two different modes for complex-based partial shape queries are available in

mRAISE. Based on the local shape description available in each descriptor, one

uses the information to only match descriptors that would fit into the binding site

(inclusion queries) and the other tries to maintain close contacts between the ligand

and the protein on matching (contact queries).

Inclusion Queries

Without any information about the binding site to which a query ligand binds, even

promising highly similar hits from a LBVS campaign might not show any activity

to the same targets. One reason for this might simply be steric incompatibility of

the structures. In those cases, steric constraints of the binding site would be of more

interest for virtual screening than the shape of only one ligand.
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Figure 4.9.: Simplified depiction of the selection of bulk rays for inclusion queries.

Rays are adapted and selected depending on the distance to the protein

surface (blue): Rays are selected if they reach the protein surface. The

length of the ray is set either to the distance of the ligand surface (a)

or of the protein surface (b), depending on which one is further (green

rays). Not selected are rays which never reach the binding site (c) or are

at maximum length before doing so (d) (red rays). Reprinted from [112].

Inclusion queries therefore match descriptors that would fit into the same area of

the binding site instead of those that roughly feature the same shape as the query

ligand. During the generation of the shape description of each query descriptor,

each ray is extended to not end at the point of exiting the molecular surface of the

ligand but at the point where it enters the molecular surface of the protein binding

site while still respecting the maximal possible length as described in Section 4.3.2.

An exception is made for situations where the van der Waals radii of protein and

ligand atoms overlap and the distance for a ray to enter the protein binding site

molecular surface would actually be shorter than the usually calculated distance.

In this case, the length of the ray is still set to the point where the ray exits the

molecular surface of the ligand. If a ray does not reach the protein molecular surface,

it is not considered during descriptor comparison. A depiction of this process is

shown in Figure 4.9.

During the descriptor comparison using the FastBit index, the query for the bulk

ray lengths is changed to only match descriptors with equal or shorter lengths than

the ones of the query descriptor. Since not all of the 80 rays are used, if they do not

interact with the binding site, some descriptors might become relatively unspecific

and would therefore lead to insignificant matches. To avoid this, all descriptors

with less than 40 remaining rays are discarded.
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Figure 4.10.: Simplified depiction of the selection of bulk rays for contact queries.

Rays are selected by the distance between the ligand surface (black)

and the protein surface (blue): Rays are selected if the surfaces overlap

(a) or are in close contact (b) (green rays). Not selected are rays pointing

towards bulk (c) and rays where ligand and protein surface are too far

away from each other (d) (red rays). Reprinted from [112].

Contact Queries

The contact queries are another approach to derive important information from

the protein-ligand complex. During binding, the protein and the ligand form

interaction which require geometrically close contacts. These contacts are therefore

very important for the activity and highlight the most important features of the

ligand structure. The information of close contacts can be incorporated in mRAISE

again using partial shape constraints. During the generation of the shape descriptor,

only those rays are used which would intersect with the protein molecular surface

0.5Å distant from the point where they left the ligands molecular surface. This

process is illustrated in Figure 4.10.

Like in the case of the inclusion queries, some descriptors will only have a few used

rays remaining following this approach, especially since such close contacts only

occur at a few special areas of a ligand. To prevent completely insignificant matches,

only descriptors with at least five remaining rays are used during screening.

4.5.2. Manual Partial Shape Constraints

It remains a major benefit of LBVS that it can be applied in situations where no

crystal structure of the protein is available. In such situations, the only available
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Figure 4.11.: Simplified depiction of the selection of bulk rays for manual selection

queries. Rays are selected if they end within a selected atom sphere (a)

(green rays). Not selected are all other rays (b) (red rays). Reprinted

from [112].

resource for meaningful partial shape constraints is the expert knowledge of the

user. To enable the user to incorporate his experience-based ideas about important

and unimportant regions of a molecule into the screening procedure, mRAISE

introduces a new concept for the manual definition of partial shape constraints.

A user can interact with a query molecule using a specially developed graphical

user interface (see Section 4.8) by freely selecting atoms of the ligand and, thereby,

defining regions considered as important for the activity of the ligand. As a result

of this selection, descriptors are generated and the bulk rays are used to represent

these special constraints, by only selecting rays which pierce through the molecular

surface belonging to these atoms. Depending on the number of selected atoms, the

number of used rays can again be quite low. To discard insignificant descriptors,

like in the contact queries, only descriptors with at least 5 remaining rays are used

for screening. In detail this corresponds to all rays ending within the van der Waals

radius of a selected atom and are not of maximal length. Figure 4.11 shows a

simplified depiction of this process.

An important feature of the graphical user interface is furthermore that the manually

defined queries can be saved to an annotated SDF file. This way the query can also

be loaded by the command line version of mRAISE for exhaustive screening runs

(see Section 4.8.1).

4.6. Scoring

The similarity of two aligned molecules is scored in mRAISE using basic atom-

centered Gaussian functions. This general concept is commonly used to estimate

the volume overlap of molecules. The Gaussian function basically returns a value
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Figure 4.12.: Plot of ǫ−0.5∗(x2) showing the score behavior based on the distance (x)

of two atoms.

between 0 and 1 based on the distance between two atoms and is usually pa-

rameterized with respect to the van der Waals radii of certain atoms so that a

score of 0.5 is achieved at the distance where the atom spheres would half overlap.

Physicochemical properties can also be included as weights for these functions.

The similarity between a query molecule Q and a target molecule T is calculated in

mRAISE as follows:

s(Q, T) = ∑
q∈Q

∑
t∈T

wch(q, t)wri(q, t)wia(q, t)αǫβ(qp−tp)2
(4.1)

Here q, t are the atoms of the query and target molecule and gp, tp are their respec-

tive coordinates. Furthermore, the weights wch, wri and wia incorporate matching

or mismatching features of the atoms into the score. These features are charges

(ch) (see Table A.1), ring membership (ri) (see Table A.2) and the ability to be a

hydrogen bond donor or acceptor (ia) (see Table A.3). With α set to 1.0 and β set to

−0.5, the parameters of the Gaussian function are chosen in mRAISE with respect

to the van der Waals radius of a carbon atom and used the same way for each

calculation. The function yields a score of 0.5 at an atomic distance of 1.18Å, which

is the distance at which the intersecting volume of two carbon atoms reaches half

of the atomic sphere volume (see Figure 4.12).

To obtain a normalized final score for the similarity of two molecules Q and T, the

Hodgkin Similarity is used:

hs(Q, T) =
2s(Q, T)

s(Q, Q) + s(T, T)
(4.2)
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Based on all descriptor matches between the query ligand and a matching ligand

conformation of the screening library, each possible alignment is scored using this

function and only the best score for each conformation is written to an output file

and eventually stored into a SolutionDB as explained in the following.

4.7. Results

The results of a LBVS run can be written to a file in order to be evaluated. Using the

command line version of mRAISE, each run produces a list of matching molecule

conformations with their respective score. An example of the content of such a file

is shown below:

ZINC03327557,4305,294447,0.376295

ZINC03327557,4305,294611,0.394193

ZINC00618696,2448,163516,0.357897

ZINC00618696,2448,163517,0.357079

Each line holds four entries, the first is the molecule name, the second and the

third entry are the IDs of the molecule and the respective conformation from

the MoleculeDB and the fourth entry is the calculated similarity score. A second

optional way to store the screening results is in the form of a new MoleculeDB which

stores all matching molecule conformations together with the respective score. This

option needs a lot more space on the hard drive, but it allows the visual inspection

of results using the GUI version of mRAISE (see Section 4.8). Furthermore, the

database enables more evaluation options like writing the best scored conformations

to SDF files. For the purpose of evaluation mRAISE furthermore is able to combine

multiple solution databases if the screening procedure has been split into multiple

parallel runs in order to safe time.

Using the GUI version (see Section 4.8) of mRAISE, screening results always have

to be stored in a MoleculeDB, since the preparation and visualization of the results

in the GUI is based information only available using the database.

4.8. GUI

mRAISE is available in two different versions, one is a tool with just a command

line interface and the other is a tool with a graphical user interface. Both version

are sufficient to create or load descriptor indices, to load molecules or complexes

to create queries, and to perform complete screening runs (see Appendix C and
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(a) (b)

Figure 4.13.: Visualization of query ligands. a) Only a ligand loaded. b) Ligand

loaded together with a protein structure.

Appendix D for the respective user guides).

While the command line version obviously is better suited for exhaustive screening

runs for example on computer clusters, the GUI version provides some unique

interactive features. The most important of which is definitely the interface to

create and save queries with manual selected shape constraints (see Section 4.5.2).

Another important feature of this version is the visualization of screening results,

not only as sorted lists but also by visualizing the respective molecular alignments

of selected hits.

4.8.1. Query Preparation

Figure 4.13 shows the query preparation window of mRAISE, here, molecules can

be loaded from various file formats as well as protein-ligand complexes from a

PDB file in combination with an extra file containing the ligand of interest. The

structures can be inspected and the calculated triangle descriptors as well as the

interaction points can be visualized (see Figure 4.14). Queries can be created with

all available options like 25% and 50% shape matching as well as complex derived

constraints. Furthermore, the atoms of a displayed ligand can be freely selected and

a query can be created based on the current atom selection as well (see Figure 4.15).

Defined queries are hold in storage as long as the program is not terminated.

Created queries can be inspected, used, and saved at all time. Ligand-based queries

(25% shape, 50% shape and atom selections) can furthermore be saved to annotated

SDF files which can be directly processed by the command line version of mRAISE

or be reloaded into the mRAISE GUI. Associated data can be annotated in SDF files

directly following the molecule information (indicated by ’M END’) and before

the entry separator (’$$$$’). Multiple entries can be defined using a header in the
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(a) (b)

Figure 4.14.: Visualization of query features. a) Interaction points. (yellow = hy-

drophobic, blue = hydrogen bond donor, red = hydrogen bond acceptor

b) Example of a displayed descriptor.

form of ’> <name>’, where the name can be freely chosen followed by newline

separated data entries. The header for mRAISE query information is

> <mRAISE matching>

followed by the matching mode

• mode 0 = 25% shape matching

• mode 1 = 50% shape matching

• mode 2 = atom selection

In case of ’mode 2’ the entry also stores the IDs of the selected atoms with respect to

the SDF file in separated by newlines. A random example of a saved atom selection

annotation can be seen below:

> <mRAISE matching>

mode 2

8

6

7

5

4.8.2. Screening

In the screening tab (see Figure 4.16) of the mRAISE GUI, the query preparation

window (described in the previous section) can be opened and a list of already
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(a) (b)

Figure 4.15.: Visualization of the manual selection of partial shape constraints a)

Selection of four molecules indicated by yellow spheres. b) One of

the remaining descriptors based on the atom selection with two hy-

drophobic and one hydrogen bond acceptor corners.

Figure 4.16.: Picture of the screening tab in the mRAISE GUI.

prepared queries is shown. Furthermore, new indices can be created or existing in-

dices can be loaded for screening. All indices ready for screening are also displayed

in a separate list. Once a prepared query and an initialized index are selected, a

screening run can be started.
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(a) (b)

Figure 4.17.: Visualization of screening results using the mRAISE GUI. a) Sorted

list of hits with scores. b) Alignment of two ligands with the query

ligand in green and the target ligand in green.

4.8.3. Result Visualization

Figure 4.17a shows the general visualization of screening results, here a sorted

list of hits is presented with the respective molecule names and their scores. The

data shown in the list can be adapted by choosing either one displayed entry per

Molecule, Conformation or Name. Each entry of the hit list can be selected and

a new window will open showing the respective alignments of the entry and the

query ligand (see Figure 4.17b). The visualization can be changed to either highlight

the different structures by individual colors, by just coloring both ligands based

on their atom types or by coloring each atom of the query ligand based on the

individual score it achieves. The color scale hereby goes from green (good score)

to gray (score of zero). At last, the visualization tab also allows to load results

directly from database files created by mRAISE during screening runs and to write

a specified number of best scored hit list entries to SDF files.
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Chapter 5.

Datasets

For the development of computational models in the field of chemoinformatics

reliable experimental data is indispensable. For the development of methods dedi-

cated to LBVS, ligands known to have similar activity to the same targets as well

as an ideally even larger set of ligands, which definitely have no activity to the

respective targets, are required. For the purpose of alignment validation even the

3D structures of protein-ligand complexes representing different ligands bound to

the same target are required. In the best case these complex structures are exper-

imentally determined by X-ray crystallography and available in high resolution.

Structures determined by Nuclear Magnet Resonance (NMR) are also a potential

source, but those structures are limited to solvable proteins and are still of debatable

quality [113, 114].

Different datasets are required at different stages of the development process for

a new virtual screening method. They range from small, diverse datasets for the

purpose of the initial method development and parametrization to larger datasets

for the validation of the method and for the comparison to other methods in the

field. While the first category of datasets are important for guiding the development

process, the second are inalienable for the introduction of a new method into a field

as contested as LBVS. Therefore, the following sections will focus on the datasets

used for this purpose.

The datasets used in this project were chosen by their potential to compare mRAISE

to a preferable high amount of well-known and recent methods as well as by their

quality to serve as an objective validation foundation. For this purpose, the datasets

used in comparison studies as well as in introductions of new methods have to

be publicly available and the data preparation has to be well documented. In the

following sections, first difficulties on choosing appropriate datasets and general

problems of validation studies in the literature are discussed. Following this, the
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used datasets for the validation of mRAISE and the respective preparation steps

are presented.

5.1. The Directory of Useful Decoys

The Directory of Useful Decoys (DUD) was composed by Huang et al. in 2006 [88]

as a benchmarking set for molecular docking. It consists of 2950 ligands for 40

different targets and 36 topologically distinct but physically similar selected decoys

for each of those ligands.

All targets were selected based on the availability of annotated ligands and crystal

structures as well as their eventual usage in previous docking studies. Initially, the

2950 annotated ligands available for those targets were combined with 3.5 million

molecules from the ZINC database [115], which followed the Lipinski rules for drug-

likeness [52]. The topological dissimilarity between the ligands and their respective

decoys was ensured using type 2 substructure keys of CACTVS [116] as well as the

standard Daylight fingerprint [55]. Only considering molecules with a Tanimoto

coefficient below a certain threshold to any annotated ligand using these finger-

prints already reduced the number of ZINC molecules to 1.5 million compounds

considered as topologically dissimilar. Out of these remaining molecules the 36

physically most similar compounds were selected for each annotated ligand using

QikProp(Schrödinger, LLC, New York, NY) for the calculation of physicochemical

properties and QikSim(Schrödinger, LLC, New York, NY) for the priorization of

similar compounds. Weights were used to emphasize properties important for

druglikeness (molecular weight, number of hydrogen bond acceptors and donors,

number of rotational bonds, and logP), followed by the numbers of functional

groups (amine, amide, amidine, and carboxylic acids) with a lower weight. All

other properties were ignored using a weight of zero.

It has to be noted that by following this procedure the same molecule can be

used multiple times as decoy for different ligands and the total number of decoys

therefore does not equal the amount of annotated ligands times 36. Furthermore,

Huang et al. only assume that the topologically different decoys are actually true

negatives, which is not necessarily true in each case [117]. Another important aspect

of the DUD dataset that has to be taken into account is that it includes duplicates of

the same molecules like protomers and tautomers. The consistent handling of those

compounds during a VS experiment is crucial in order to enable any conclusions

about the performance of a method in comparison to other methods.

Besides the criticism of the DUD (see Section 5.2), the dataset has been chosen for

validation studies with mRAISE, since one setup enables an objective comparison

to a variety of different methods. The data preparation is explained below and

54



5.2. The Directory of Useful Decoys Enhanced

enables a direct comparison to reported performances of: LIGSIFT, Align-It, ROCS,

ShaEP, MolShaCS, Surflex-sim, FlexS, and ICMsim.

5.2. The Directory of Useful Decoys Enhanced

The Directory of Useful Decoys Enhanced (DUD-E) was composed by Mysinger et al.

in 2012 [89] as an extended and more challenging version of the original DUD. The

dataset contains 22866 clustered ligands for 102 targets, with 50 physicochemical

similar decoys for each ligand.

The frequent use of the original DUD dataset for virtual screening benchmarks

[118–125] revealed weaknesses in the ligands as well as in the decoys. Good and

Oprea noted, that some of the ligand sets are dominated by only a few different

chemotypes, which leads to high enrichments with only one scaffold achieving

top ranks [126]. A clustering of the ligand scaffolds would reduce the size of the

dataset to only 13 targets with more than 15 remaining ligands. Furthermore, for the

decoys, multiple studies observed an imbalance in the net formal charge [127–129],

which made it easier to discriminate between actives and decoys based on this

property. It also turned out that some decoys are actually false negatives and bind

to their respective targets despite the 2D dissimilarity criteria [130]. This, combined

with the low target diversity for example concerning membrane domain proteins,

emphasized the need for more targets with more ligands and better decoys.

In the DUD-E, the number of targets was extended from 40 to 102, focusing on

targets with many ligands and multiple available structures in the RCSB PDB

[131]. The final set includes 38 of the original targets used in DUD and covers

a variety of diverse protein categories with 26 kinases, 15 proteases, 11 nuclear

receptors, five GPCRs, two ion channels, two P450s, 36 other enzymes, and five

miscellaneous proteins. All ligands included in the dataset have been drawn from

the ChEMBL09 [132] database and had to feature measured affinities reported

in the literature. To increase scaffold diversity and at the same time reduce the

ligand set sizes, all ligands of one target were clustered using the Bemis-Murcko

atomic frameworks [133], which still led to an average of 224 ligands per target.

If more than 100 clusters were created, only one representative with the highest

affinity was chosen from each cluster. For targets with less than 100 clusters,

more than one representative was drawn from each cluster until more than 100

ligands were selected. Lastly, if more than 600 clusters were present, the affinity

threshold was reduced until fewer than 600 frameworks remained. As in the

original DUD, property matched decoy sets were generated for each ligand (see

Section 5.1). In addition to the previously used properties, the net charge was

added during this procedure to address the noticed deficiencies. Furthermore, the

problem of false decoys has been addressed by a more strict filtering with regard to
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Table 5.1.: Overview of the mRAISE dataset.

Protein Class Unique Ligands

Trypsin 29

Thrombin 11

Alpha-Mannosidase II 15

Matrix metalloproteinase-12 (MMP-12) 10

CDK2 Kinase 8

Carbonic Anhydrase II 41

Thermolysin 9

CYP121 8

HIV Protease 24 (10)

Bromodomain-containing protein 4 (BRD4) 9

Isopenicillin N Synthase 16

Since the HIV Protease ensemble has more than one conformation for its

ligands, the number of unique ligands is given in brackets.

topological dissimilarity and whenever possible, experimentally validated decoys

were included. In the new approach, the topological dissimilarity is ensured using

the ECFP4 fingerprint to remove 75% of the most similar decoys.

The motivation of using the DUD-E is not the ability to compare the performance

of mRAISE to other methods, but the intent to use a second, more challenging

dataset without the flaws recognized in the DUD.

5.3. The mRAISE Dataset

The mRAISE dataset was introduced in 2016 [107] for the validation of the quality

of calculated molecular alignments in mRAISE due to a lack of freely available

prepared datasets of sufficient size and quality in the literature. It consists of

180 prealigned ligands for 11 diverse targets, which were aligned based on their

binding to identical binding sites (see Table 5.1). As basis of the dataset, a previously

published subset of the PDB consisting only of high-resolution structures [134]

has been used. This dataset has initially been compiled for a validation study on

water positions, but the high-resolution criteria (resolution ≤ 1.5Å) also ensures

good overall structural quality. Another important feature of the dataset is that it

is not filtered for unique proteins and therefore includes identical binding sites

with different bound ligands. The search for such structures and the calculation

of a superimposition of identical binding sites has been done using the protein

56



5.3. The mRAISE Dataset

ensemble assembly tool SIENA [135].

In a first step, unwanted ligands are excluded from the dataset using the list of

unwanted HET codes published with iRAISE [110]. This list includes co-factors,

solution buffer agents, crystallization agents, ions, and ligands with covalently

bound metals that can not be initialized using NAOMI (see Section 4.1.1). It was

created joining three previously published lists [136–138] and has been extended

by additional codes. All remaining ligands were used to define query binding

sites in SIENA by applying a binding site radius of 6.5 Å around each bound

ligand. The resulting queries were used to search for identical binding sites in the

high-resolution dataset and SIENA created an ensemble for each query consisting

of all found structures exhibiting a backbone RMSD of less 0.5Å or less to the query

binding site. A consecutive clustering is performed to reduce the redundancy in

the resulting ensembles and to generate a diverse final set. During this process, all

ensembles with at least one common structure were joined into the same cluster.

Afterwards, one representative ensemble is chosen out of each cluster with respect

to the highest number of included topologically unique structures. If there was

more than one valid choice for one cluster, the ensembles were ordered based on

the PDB codes of their query binding sites as well as the occurrence of reference

ligands in the PDB file. In a final step the ligands were drawn from all remaining

ensembles and were then filtered with MONA and further scripts to ensure the

following physicochemical properties and criteria:

• Each ligand consists of at least ten heavy atoms (for more pharmaceutically

relevant ligands).

• No ligand has more than 15 rotatable bonds and no macrocycles with more

than eight atoms (excluding highly flexible ligands).

• Each ensemble has to consist of at least eight unique molecules according to

the most strict initialization criteria of MONA (for statistical relevance).

• Each ligand shares more than five overlapping atoms with each other member

of the ensemble (to ensure a shared binding mode). This is described in

further detail in the following.

The overlap criteria was introduced to guarantee a shared volume of all ligands

within the binding site. Hereby, a pair of atoms was defined as overlapping if

the atom centers were less than 1Å distant from each other. After calculating the

atom overlap between all pairs of molecules within an ensemble, the molecule with

the highest count of insufficient overlaps to other molecules of the ensemble was

removed. This step has been repeated until all remaining ligands were sufficiently

overlapping. To guarantee deterministic choices during this phase, whenever there

was more than one possible decision, the ligand with smaller sum of overlapping

atoms among all insufficient cases has been removed. If this criteria still produced
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Figure 5.1.: Picture of the symmetric trypsin ligand BAK.

more than one solution, the ligand with that also had the lowest sum of overlapping

atoms in all sufficient cases has been removed.

Two of the ensembles remaining after these steps had to be handled separately.

Firstly, an ensemble of human transthyretin binding sites was excluded from the

dataset because the ligands showed no unique binding mode due to a pseudo

symmetry within this ligand family. Secondly, one ligand had to be removed from

the trypsin ensemble since it was completely planar and symmetric (HET code:

BAK, see Figure 5.1). In such a case, LBVS methods would not be able to distinguish

between the two symmetric alignment solutions possible for this ligand. Lastly, a

special feature of ensembles created with SIENA has to be considered using the

mRAISE dataset. In case of the HIV protease ensemble more than one alignment

solution might occur for the same PDB entry, this is due to the fact that the ligands

of the HIV protease bind to a symmetric interface of a homodimer. Two alignments

occur if an active site might be aligned to both units within the matching parameters

and in some cases even four solutions occur if additionally an alternative ligand

conformation is available. Of these multiple alignments and their respective binding

poses none has been discarded since they all are equally valid. Therefore, while

evaluating alignment solutions of a LBVS method, all available poses of the same

ligand are considered and the minimum RMSD between the calculated poses and

the available poses in the dataset is used.

A list of all included PDB codes together with the HET codes of the respective

ligands can be found in Table E.1.

5.3.1. Data Preparation

For each target of the DUD as well as the DUD-E dataset a descriptor index has

been created with up to 250 conformations for each ligand. As query ligand for

each created index, the respective ligand from the query complex provided by

the datasets is used. The query ligand for aa2ar in the DUD-E was not used as

provided in the dataset but downloaded from the PDB for technical reasons. During

the evaluation, the included duplicates of the same molecule (e.g. protomers and
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tautomers) are excluded from the result files. This way only the highest ranked

occurrence of a molecule is kept in the results.

For each individual ligand in each ensemble of the mRAISE dataset an index is

generated with also up to 250 conformations. During the evaluation, the input

structure in the index is skipped and only generated conformations are considered.
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Chapter 6.

Evaluation

In the following chapter, the evaluation and comparison strategy is embarked

during the introduction and development of mRAISE are described.

Within the last decades, multiple different approaches have been developed to

address the problems of LBVS. With that multitude of available options, newly

introduced methods should optimally perform exhaustive evaluation experiments

and be compared to the latest and commonly used tools of the field if possible. In

general LBVS methods are evaluated in retrospective experiments, which means

that they are tested to retrieve molecules known to be bioactive to the same target or

target class from a background of at least assumed inactive molecules. An important

criteria is therefore the choice of well suited datasets as well as the utilization of

established and well suited performance metrics for this purpose. The datasets

used for the evaluation of mRAISE have already been described in the previous

chapter (see Chapter 5) and the used performance metrics will be described in the

following (see Section 6.1).

The performed experiments basically evaluate two important features of a ligand-

based screening method: the enrichment, meaning the ability to rank true positive

hits of a dataset correctly, and the quality of the calculated molecular alignments.

While the first feature is evaluated commonly and a variety of methods can directly

be compared due to well commented reproducible experiments on freely available

datasets, the quality of the molecular alignments is often neglected during the

evaluation of new methods and no recent datasets of statistically sufficient size

existed during the development of mRAISE. For this reason, experiments have

been performed using the newly introduced mRAISE dataset for the validation of

alignments calculated by LBVS (see Section 5.3).

Since mRAISE offers a variety of different approaches to influence the virtual

screening performance by partial shape constraints, the experiments have not only

been used to compare mRAISE to other methods if possible but also to compare
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the influence of these different modes on virtual screening with mRAISE.

The different modes of mRAISE will be referred to as follows:

• mRAISE classic uses 50% shape requirement (see Section 4.3.6).

• mRAISE inclusion uses complex derived inclusion queries (see Section 4.5.1).

• mRAISE contact uses complex derived contact queries (see Section 4.5.1).

• mRAISE manual uses manually selected shape constraints (see Section 4.5.2).

The following experiments have been performed using the different modes of

mRAISE:

1. Enrichment study on the DUD

2. Enrichment study on a DUD subset

3. Enrichment study on the DUD-E

4. The influence of manual partial shape constraints

5. Alignments quality evaluation

The experiments 1, 2, 3 and 5 evaluate the performance of mRAISE classic as well as

the influence of mRAISE inclusion and mRAISE contact. Furthermore, experiments

1 and 2 also compare the performance of mRAISE to other state of the art LBVS

methods. Experiment 4 analyzes the possible impact of mRAISE manual.

In the following sections, first, the used performance metrics and evaluation criteria

are discussed and second, the performed experiments are described. For the results

of the experiments as well as their discussion see Chapter 7.

6.1. Criteria and Metrics

The evaluation criteria and measures described in the following are commonly

used and mostly chosen because they allow the direct comparison of mRAISE

to other methods. The requirement of the used measures is hereby to objectively

highlight the strengths as well as the limitations of the method and to advise a

user in which scenario mRAISE and its individual modes are beneficial. In order

to be of any value for future developments in the area of LBVS, it is important to

note that all experiments always have to be reproducible. This includes a detailed

documentation of used datasets and their preparations (see Chapter 5).

For a ligand-based screening method two basic capabilities have to be shown by

experiments. Firstly, the most important feature of an LBVS method is its ability
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to identify other active molecules among large compound libraries. In doing so,

the active molecules also have to be ranked high in the hit list because only a

small set of top-ranked hits is usually considered for subsequent experimental

evaluation. Secondly, the reliability of the calculated molecular alignments has to be

validated. Such an evaluation proofs the ability of the method to correctly quantify

the similarity of two molecules based on their most important biochemical features,

which are required for binding to the same target.

A descriptor-based approach like mRAISE does not necessarily provide a score for

each screened compound, since there might be cases with not even one matching

descriptor. In those cases, a score of 0 is assumed for the respective compound

during evaluation.

Enrichment Evaluation The evaluation of the enrichment power, especially

with respect to the early recognition of active molecules is an important task

and several metrics exist for this purpose. Here, multiple different metrics have

been chosen mostly regarding reproducible evaluation experiments of other LBVS

methods. This includes the most common and established metrics like the AUC

(Area und the ROC curve), which is an easily interpretable metric for the overall

performance of a virtual screening method, and the Enrichment Factor at different

percentages of considered ranked hits, which allows the comparison of the early

enrichment of different methods on the same data.

An important question during the calculation of these metrics is how to handle

compounds which produced no matches and are therefore unranked and have the

same score (0). In cases where there are still actives remaining in the unranked data,

an even distribution of actives among these compounds is assumed for evaluation

of used metrics.

The used metrics are defined as follows:

• Area under the ROC curve (AUC)

A ROC (Receiver operating characteristic) curve is a measure of the overall

screening performance. Therefore, the plot visualizes the true positive rate

versus the false positive rate. The area under the curve can be calculated as

follows: [139]

AUC =
1

ND

i=1

∑
ND

TPRi (6.1)

Here, ND is the total number of decoys and TPRi is the true positive rate

at decoy i (number of true positives rated higher than the decoy i divided

by the total number of actives). The value of the AUC is bound by 0 and 1,

with 1 representing a perfect enrichment and 0.5 representing a completely

random performance.
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• Enrichment Factor (EF)

EFX% =
TPx%/Hitsx%

NActives/NTotal
(6.2)

Here, TPx% is the number of true positives present within the first x% of

ranked hits, Hitsx% is the total number of hits at x% and NActives/NTotal is the

ratio of actives in the whole dataset.

The Enrichment Factor is the standard measure for the early enrichment

of actives among a fraction of ranked hits. This fraction (X%) is usually

chosen between 1% and 10% to resemble the amount of hits considered for

experimental evaluation after a LBVS campaign.

Since the EF is calculated with respect to the ratio of actives present in a

dataset and the size of the dataset, the EF is not comparable among different

experiments and the actual values are not interpretable as a good or bad

enrichment. During this evaluation, the EF is calculated at 1%, 5% and 10%.

• Enrichment (ER)

A simpler but easier to interpret metric, simply referred to as the Enrichment,

has been used by Giganti et al. [140] to compare the performance of different

methods on 11 targets of the DUD dataset. The Enrichment is the number of

actives found at a specific fraction of the dataset divided by the total number

of actives.

ERx% =
TPx%

NActives
(6.3)

For the comparison to the published data, the ER has been calculated at 1%

and 10%.

• Hit Rate (HR) The Hit Rate is an attempt to make the EF easier to interpret

by putting it in relation to the best obtainable EF on the respective dataset at

the specific fraction of data.

HRX% =
actualEFx%

idealEFx%
(6.4)

Therefore, this metric does no longer depend on the ratio of actives and

decoys in a dataset. The idealEFx% is calculated with the formula shown

above while assuming that as many actives as possible are found within x%

of the dataset. The HR has also been calculated at 1%, 5% and 10%.

Alignment Evaluation The most common approach to access the quality of

calculated molecular alignments, is the calculation of the Root Mean Square Devia-

tion (RMSD) between the two poses ppred and pre f of a molecule M. Hereby, ppred is

calculated by screening the molecule M versus a molecule N and pre f is derived

from aligning the protein-ligand complexes of M and N.
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Figure 6.1.: Example of a reference alignment with only partially overlapping lig-

ands. Displayed are the trypsin ligands from 3LJO (pink) and 2AYW

(blue). Reprinted from [107] with permission of Springer.

• Root Mean Square Deviation (RMSD)

The RMSD compares the Cartesian coordinates p of a generated pose with

the respective coordinates c in the reference alignment.

RSMD =

√

∑
i=1
n (ci − pi)2

n
(6.5)

This calculation is only done with the n heavy atoms of a molecule, since the

coordinates of hydrogen atoms are usually not resolved in a crystallographic

structure. Furthermore, for molecules with symmetric groups, no unique

assignments of atoms is possible, therefore the RMSD is calculated based on

the best mapping of topological identical atoms.

• RMSD-O

A slight modification to the RMSD calculation has been performed to restrict

the calculation of the RMSD to only those atoms of a molecule which are

actually part of a conserved binding mode represented by the reference

alignment. The RMSD-O is restricted to all atoms a of M for which at least

one atom b exists in the reference alignment of M and N that is within a

distance of 2.0Å to a. Figure 6.1 shows an example of a reference alignment of

two trypsin ligands from the mRAISE dataset. It can be seen that the ligands

overlap only partially, which makes only a part of this alignment recoverable

using LBVS. The restricted RMSD, representing the actual overlay region of

the reference alignments, is called RMSD-O and is used in all evaluations of

alignments calculated with mRAISE.

For experiments evaluating a calculated pose of a molecule with respect to a

reference derived from a crystal structure, an RMSD of less than 2.0Å is considered
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a good result. For the evaluation, average and median RMSD-O values of the best

scored pose as well as the lowest RMSD-O among the ten best scored poses for

each ensemble of the dataset are reported.

6.2. Experiments

In the following, the performed experiments are described in detail. For the prepa-

ration of the used dataset see Chapter 5.

6.2.1. Enrichment Study on the DUD

The DUD dataset (see Section 5.1) offers the opportunity to compare the enrichment

performance of mRAISE to a variety of different methods using multiple evaluation

metrics. Each of the 40 targets is screened using the respective crystallographic

query structure provided by the dataset.

The resulting ranked hit lists were used to calculate the AUC as well as the ER

and HR at 1%, 5% and 10% of ranked hits. The experiment allows a direct and

detailed comparison of the performance on each target to the methods LIGSIFT,

Align-It and ROCS. Furthermore, the average AUC values are used to compare to

the performance of ShaEP and MolShaCS, as well as to the 2D fingerprint method

ECFP4. In addition, the individual performances of different mRAISE modes are

compared and the influence of the automatically derived partial shape constraints

is analyzed.

6.2.2. Enrichment Study on a DUD Subset

A small experiment on 11 targets of the DUD dataset is performed to compare the

performance of mRAISE to the additional methods Surflex-sim, FlexS, ICMsim, and

again ROCS, using the ER metric.

The screening procedure is equal to that used in the complete DUD experiment

and the ER is calculated for 1% and 10% of ranked hits.

6.2.3. Enrichment Study on the DUD-E

Besides its frequent use, some issues of the DUD dataset motivated the creation

of the more challenging and more diverse DUD-E dataset (see Section 5.2). Repro-

ducible evaluation studies on this dataset allowing direct comparison are quite rare
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in the literature. Nevertheless, to further highlight the capabilities of mRAISE and

to have a broader basis for the statistical analysis of the influence of partial shape

constraints, the whole DUD-E dataset has been screened.

As in the classical DUD experiments, all 102 targets of the DUD-E have been

screened using the provided ligand of the query structure. All modes with auto-

matically derived partial shape constraints in mRAISE were compared using the

AUC as well as the ER and HR at 1%, 5% and 10% of ranked hits.

6.2.4. The Influence of Manual Partial Shape Constraints

The ability to define manual partial shape constraints as provided by mRAISE (see

Section 4.5.2) is an extremely complex and variable tool. Therefore, it is extraor-

dinary difficult to design experiments for an objective evaluation. The definition

of meaningful constraints requires an experienced user with a good biochemical

background and preferably expert knowledge about the target or compound class

of interest. Five targets, which were considered difficult in terms of ligand flexibility

and size as well as showing insufficiently high AUC values (less than 0.7) using

mRAISE classic were chosen from the DUD dataset to nevertheless show the possi-

ble impact of manually defined shape constraints. For these five targets, manual

shape constraints are defined and used for screening of the respective descriptor

indices. As evaluation metrics, again, the AUC as well as the ER and HR at 1%, 5%

and 10% of ranked hits have been used.

6.2.5. Alignment Quality Evaluation

To evaluate the quality of molecular alignments calculated with the automated

modes of mRAISE, each ligand of each ensemble of the mRAISE dataset has been

screened against each other member of the same ensemble. As described before,

average and median RMSD-O values are calculated based on the best scored poses

for each conformation of the target molecule and the respective pose from the

reference alignment. For the actual screening process, the query conformation is

taken directly from the input file whereas only generated conformations are used

for the screened target molecule.

Average and median RMSD-O values are reported with respect to the best scored

pose for each comparison as well as with respect to the best RMSD-O within the

ten best scored conformations.
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Chapter 7.

Results and Discussion

The following chapter presents and discusses the results of the experiments intro-

duced in Section 6.2 to evaluate and compare the performance of mRAISE as well

as to analyze the influence of the different partial shape concepts.

In the first part, the ranking capabilities and the enrichment of the method are

discussed based on experiments performed using the DUD as well as the DUD-E

dataset(see Section 7.1). Herein the DUD is primarily used to compare to other

LBVS methods, while the more challenging DUD-E is used to reinforce the per-

formance results of mRAISE. The different automated modes for the generation

of partial shape constrains are also analyzed based on their performance on both

datasets and the potential of manually selected partial shape constraints is high-

lighted on a special selection of DUD targets (see Section 7.1.4). In the second part

of the chapter, the results of the alignments experiments on the mRAISE dataset are

shown and discussed. Again, the influence of the automatically generated partial

shape constraints is analyzed (see Section 7.2). Finally, in the last part of the chapter,

the computing time of mRAISE is compared to other methods provided that this

information is available (see Section 7.3).

For the differentiation between the different possible setups of mRAISE, including

the partial shape approaches, the terminology introduced in Chapter 6 is used.

7.1. Enrichment Experiments

Enrichment studies analyze the ability of a LBVS method to separate compounds

active to the same targets as a query ligand from inactive compounds. For this

purpose, retrospective experiments are performed on datasets with annotated

actives and decoys to specific targets (see Chapter 5). Based on the used evaluation
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Table 7.1.: Average AUC values for all DUD targets.

avg. AUC median AUC

LIGSIFT 0.79 ± 0.20 0.82

mRAISE 0.76 ± 0.19 0.84

Align-It 0.75 ± 0.23 0.79

ROCS 0.73 ± 0.20 0.78

SHAEP 0.64 ± 0.17 NA

MolShaCS 0.63 ± 0.08 NA

Values with standard deviation. Reprinted from [107] with permission of

Springer.

metrics, the overall performance as well as the specific enrichment among top-

ranked hits can be validated (see Section 6.1).

7.1.1. Enrichment Study on DUD

The DUD dataset has been available for a decade and since its release it has been

used in multiple evaluation and comparison studies. In the field of LBVS it is

crucial to compare the performance of a new method with the best and most recent

available methods as well as to highlight the individual strengths of a method. This

made it almost inevitable to embrace the opportunity to use the DUD dataset as

basis for a broad comparison study using standard evaluation metrics.

Overall Enrichment

On average, mRAISE classic achieves an AUC of 0.76 ± 0.19 on the DUD dataset

(see Table 7.1). In comparison to the average performances of five other methods,

this performance is second best with only LIGSIFT showing an higher average

AUC of 0.79 ± 0.20. However, looking at the less outlier-dependent median value

of AUC on all DUD targets, mRAISE achieves the highest value with 0.84 compared

to LIGSIFT as second best with a median AUC of 0.82.

The complete overall screening results of mRAISE classic on all 40 targets of the

DUD in comparison to the performances of ROCS, Align-It and LIGSIFT can be

seen in Table A.4. Looking at the individual results for each target, mRAISE classic

achieves a performances better than random selection (AUC >0.5) in 36 of the 40

cases. Comparing the individual performances with the other methods, mRAISE

has the best or equals the best performance compared to the other three methods
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Table 7.2.: Average EF at 1%, 5% and 10 % for all targets of the DUD.

EF1% EF5% EF10%

LIGSIFT 20.8 ± 12.6 9.3 ± 6.0 5.4 ± 3.0

mRAISE 20.2 ± 12.1 9.4 ± 6.0 5.4 ± 3.0

ROCS 19.4 ± 12.9 8.4 ± 6.0 5.2 ± 3.0

Align-it 16.9 ± 12.5 8.1 ± 5.9 4.9 ± 3.2

Values with standard deviation. Reprinted from [107] with permission of

Springer.

Table 7.3.: Average HR at 1%, 5% and 10 % for all targets of the DUD.

HR1% HR5% HR10%

LIGSIFT 59.0 ± 35.6 46.6 ± 30.2 54.4 ± 29.9

mRAISE 55.5 ± 33.3 46.7± 30.0 53.9 ± 30.6

ROCS 54.6 ± 36.3 38.3 ± 30.0 46.0 ± 30.4

Align-it 48.0 ± 35.5 40.6 ± 29.6 49.4 ± 31.8

Values with standard deviation. Reprinted from [107] with permission of

Springer.

in terms of the AUC on 13 targets.

Early Enrichment

Besides the overall performance, the ability to rank true actives to especially the

top ranks of a score-ordered list can be of even more interest, since usually only

a fraction of the top scored hits is taken into consideration for further studies.

Table 7.2 shows the average EF and Table 7.3 shows the average HR at 1%, 5% and

10% of ranked hits for mRAISE, LIGSIFT, ROCS and Align-It.

Looking only at the first percent of the hit list, mRAISE achieves the second best EF

with 20.2 ± 12.1, again only just exceeded by LIGSIFT with 20.8 ± 12.6. According

to the HR, mRAISE on average retrieves 55.5% ± 33.3% of the actives which possibly

could be found only looking at 1% of the respective dataset which is about 1%

more than ROCS and 7.5% more than Align-It, but 3.5% less than LIGSIFT.

Considering the top 5% of ranked hits however, mRAISE exceeds the other methods

slightly with an EF of 9.4 ± 6.0 and an HR of 46.7± 30.0.

Finally, looking at the first 10% of ranked hits, mRAISE and LIGSIFT both have

the best EF of 5.4 ± 3.0, while the HR shows, that LIGSIFT is slightly closer to the

optimal enrichment with 54.4 ± 29.9 compared to 53.9 ± 30.6 of mRAISE.
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It has to be noted that while a comparison of the different methods is possible

based on the DUD experiments for early as well as overall enrichment capabilities,

it only allows a rough ranking of the used methods. Since the observed standard

deviations are very high, no statistically significant differences can be observed

comparing the methods. Furthermore even looking into the results per target, there

is no method superior to the other methods in all cases. Another important point

for the comparison of 3D virtual screening methods, is the fact that the performance

also depends on the quality of the used conformations. The methods presented in

this experiment used different algorithms for this purpose. For example ROCS and

LIGSIFT used conformations generated with OMEGA while the conformations used

in mRAISE were calculated using the latest version of CONFECT (see Section 4.1.2).

Nevertheless, the DUD experiment shows that mRAISE provides a good overall

as well as early enrichment of screening libraries, which is comparable and in

individual cases superior to other state of the art methods.

Class-specific Enrichment

Looking at protein families instead of single targets, can provide the insight if a

method is especially beneficial for the screening of special families. The protein

families represented in the DUD dataset are Nuclear hormone receptors, Kinases,

Serine proteases, Metalloenzymes, Folate enzymes. Figure 7.1 shows the average

AUC of mRAISE, LIGSIFT, Align-It and ROCS for the six protein families repre-

sented in the DUD dataset. All four methods show similar trends on all families

including the best performances on the Folate enzymes and the worst performance

on the Kinases. mRAISE achieves an AUC of 0.8 and better for four of the six

families and has its worst performance on the Kinases with an average AUC of 0.6.

As can be seen, the performance of mRAISE for the different protein classes follows

the same trend as the other LBVS methods and while it does not significantly

exceed the performance of the other methods in any case, it is also not inferior to

the other methods. However, it should be noted that some of the families only have

very few members, e.g. four Metalloenzymes, three Serine proteases and two Folate

enzymes. It is therefore difficult to draw statistically relevant conclusions based on

this information.

Influence of Partial Shape Constraints

histogram The most important features integrated in mRAISE are the new con-

cepts to derive partial shape constraints for virtual screening. Following the gen-

eral performance analysis of mRAISE classic on the DUD, now the influence of

mRAISE inclusion and mRAISE contact will be shown and discussed.
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Figure 7.1.: Average AUC on the protein families present in DUD using mRAISE

( , LIGSIFT ( ), Align-It( ) and ROCS( ) . Nuc = Nuclear hormone

receptors, Kin = Kinases, Ser = Serine proteases, Met = Metalloenzymes,

Fol = Folate enzymes)

Figure 7.2.: Overview of the results on the DUD dataset for mRAISE classic,

mRAISE inclusion and mRAISE contact. Reprinted from [112].
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Table 7.4.: Average and median AUC values of the ROC curves on the DUD dataset.

Mode avg. AUC median AUC

mRAISE classic 0.76 ± 0.19 0.84

mRAISE contact 0.70 ± 0.15 0.73

mRAISE inclusion 0.76 ± 0.19 0.78

Values with standard deviation. Reprinted from [112].

Table 7.4 shows the average and median AUC values for all 40 targets of the DUD

using the three different modes of mRAISE. Concerning the overall performance

the different modes perform quite similar, mRAISE inclusion has the same AUC as

mRAISE classic with 0.76 ± 0.19. Looking at the median value shows a slightly bet-

ter performance of mRAISE classic with a value of 0.84 in comparison to 0.78 using

mRAISE inclusion. mRAISE comparison on the other hand shows a weaker overall

performance with an average AUC of 0.70 ± and a median of 0.73. The overall

similar performance and the trend for mRAISE classic and mRAISE inclusion to

perform equally and at the same time slightly better than mRAISE contact can also

be seen in Figure 7.2.

Comparing the individual performances per target shows that mRAISE classic has

the best or is equal to the best performance for 23 out of the 40 targets. However,

for some targets, the partial shape constraints cause notable improvements on the

AUC. For mRAISE inclusion, the most apparent improvements can be seen on the

Progesterone receptor (+0.19), Factor Xa (+0.07), Thrombin (+0.07), Cyclooxygenase

1 (+0.06), Glucocorticoid receptor (+0.05), and Hydroxymethylglutaryl-CoA reduc-

tase (+0.05). On the other hand, mRAISE contact also shows improved screening

performance on some individual targets, e.g. on the HIV protease (+0.1), Platelet

derived growth factor receptor kinase (+0.08), and Tyrosine kinase SRC (+0.07).

Looking at the early enrichment, mRAISE classic has the highest EF1% with

20.2 ± 12.1 compared to 19.3 ± 12.1 of mRAISE contact and 19.9 ± 12.3 of

mRAISE inclusion. However looking at 5% and 10% of ranked hits, mRAISE inclusion

performs slightly better than mRAISE classic with 9.5 ± 6.0 and 5.5 ± 3.1 com-

pared to 9.4 ± 6.0 and 5.5 ± 3.1. Again, mRAISE contact shows a slightly worse

performance with 8.5 ± 5.4 and 4.8 ± 2.7 respectively.

The average HR as shown in Table 7.6 further illustrates the observations of the EF.

At 1% of ranked data, mRAISE classic shows a slightly better performance than

mRAISE inclusion, while the performance of mRAISE inclusion is best at 5% and

10% of considered hits and mRAISE contact shows the worst performance on all

three percentages. Nevertheless, individual performances on certain DUD targets

again show a significant improvement using the complex-derived constraints. Look-

ing at the detailed results of the enrichment at the first percentage of ranked hits

(see Table A.8), which is usually of the highest interest, ten out of the 40 targets
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Table 7.5.: Average enrichment factor on the DUD dataset at one five and ten percent

of ranked hits.

Mode EF1% EF5% EF10%

mRAISE classic 20.2 ± 12.1 9.4 ± 6.0 5.4 ± 3.0

mRAISE contact 19.3 ± 12.1 8.5 ± 5.4 4.8 ± 2.7

mRAISE inclusion 19.9 ± 12.3 9.5 ± 6.0 5.5 ± 3.1

Values with standard deviation. Reprinted from [112].

Table 7.6.: Average hitrate on the DUD dataset at one five and ten percent of ranked

hits.

Mode HR1% HR5% HR10%

mRAISE classic 55.5 ± 33.3 46.7 ± 30.0 53.9 ± 30.6

mRAISE contact 53.0 ± 33.2 42.1 ± 26.5 48.0 ± 27.2

mRAISE inclusion 54.6 ± 33.9 47.3 ± 30.0 54.6 ± 30.5

Values with standard deviation. Reprinted from [112].

show an improvement compared to mRAISE classic using either mRAISE contact

or mRAISE inclusion. In five of these cases, the HR increases by more than 10,

meaning that 10% more actives are found at that point. Figure 7.3 shows the average

performance of the three mRAISE modes with respect to the six protein families

represented in the DUD dataset. For all six classes, the results correspond to the

other comparisons based on the overall and early enrichment. As can be seen,

mRAISE classic and mRAISE inclusion perform similar while mRAISE contact is

generally slightly inferior to the other to modes.

The performed experiment showed that the complex derived constraints do not

generally increase or decrease the performance of mRAISE classic on average but

still can have a significant impact on individual targets, e.g. on the HIV protease

and the Progesterone receptor. A general rule for cases where the new partial shape

constraints are especially beneficial could not be derived from the 40 targets of the

DUD.

Comparison to a 2D Fingerprint

Besides the comparison to other 3D LBVS methods, the comparison to a state of

the art 2D fingerprint method is also of high interest, since such methods usually

only need a fraction of the time a 3D methods needs for a virtual screening run

and are also not dependent on the conformation of a molecule. Table 7.7 shows a

comparison of the average values for AUC, EF and HR between mRAISE and the
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Figure 7.3.: Average AUC on the protein families present in DUD using

mRAISE classic ( , mRAISE contact ( ) and mRAISE inclusion( ).

Nuc = Nuclear hormone receptors, Kin = Kinases, Ser = Serine pro-

teases, Met = Metalloenzymes, Fol = Folate enzymes)

Table 7.7.: Average performance using the ECFP4 fingerprint on the DUD in com-

parison to mRAISE.

Method AUC EF1% EF5% EF10%

ECFP4 0.74 ± 0.21 18.8 ± 11.8 8.8 ± 5.5 5.4 ± 3.0
mRAISE 0.76 ± 0.19 20.2 ± 12.1 9.4 ± 6.0 5.4 ± 3.0

HR1% HR5% HR10%

ECFP4 51.5 ± 32.4 43 ± 27.6 53.84 ± 29.6
mRAISE 55.5 ± 33.3 46.7 ± 30.0 53.9 ± 30.6

Reprinted from [107] with permission of Springer.

ECFP4 fingerprint.

While the overall performance between the 2D and the 3D method are very similar,

especially the early enrichment is worse for the ECFP4 with an HR1% of 51.5 ± 32.4

compared to 55.5 ± 33.3.

The good results of the ECFP4 fingerprint on the DUD is no surprise, since the

dataset is especially designed to have topological dissimilarity between actives and

decoys in order to prevent false negatives in the sets of decoys, which of course

is an ideal premise for a topological fingerprint. Nevertheless, mRAISE classic

performs equally in terms of overall enrichment and slightly better in terms of the

early enrichment with on average 4% more found actives at 1% of ranked hits.
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Table 7.8.: Percentage of found actives at 1% and 10% ranked results.

mRAISE Surflex-sim ROCS FlexS ICMsim
Target 1% 10% 1% 10% 1% 10% 1% 10% 1% 10%

ada 17.39 39.13 5.13 23.08 7.69 33.33 15.38 30.77 10.26 28.21
cdk2 16.00 36.00 2.78 8.33 22.22 38.89 5.56 11.11 9.72 30.56
dhfr 33.33 98.51 4.88 25.61 19.02 61.95 8.05 27.80 20.24 80.73
er ant 17.95 89.74 10.26 82.05 10.26 89.74 15.38 71.79 17.95 76.92
fxa 4.93 23.24 1.37 2.74 4.11 4.11 5.48 19.86 11.64 46.58

hivrt 20.00 40.00 9.30 18.60 20.93 25.58 27.91 58.14 18.60 39.53
na 32.65 97.96 16.33 55.10 34.69 89.80 20.41 69.39 16.33 73.47
p38 10.94 16.02 9.03 21.15 8.81 15.42 12.56 26.21 11.23 17.84
thrombin 3.08 6.15 1.39 15.28 0.75 15.28 2.78 12.5 2.78 76.39

tk 31.81 63.64 22.73 50.00 22.73 50.00 9.09 54.55 22.73 63.64

trypsin 2.27 11.36 0.00 59.18 4.08 34.69 18.37 18.37 10.20 95.92

Average 17.31 47.43 7.56 32.83 14.12 41.71 12.82 36.41 13.79 57.25

Highest values for each target highlighted in bold. Reprinted from [107] with

permission of Springer.

7.1.2. Enrichment Study on a DUD Subset

In a comparison study by Giganti et al. [141], the early enrichment of four methods

has been compared using only a subset of the DUD but otherwise under the same

conditions as the previous DUD experiments. This enables a direct comparison

to these tools even if it only is based on 11 of the 40 available targets, which have

been selected by the authors based on their use in the literature for benchmarking

studies and their diversity in terms of binding site properties. The used metric

for this experiment is the ER, the plain percentage of found actives at a certain

percentage of considered hits. The complete results can be seen in Table 7.8. As can

be seen, no method is superior to the other methods in all of the cases. However,

mRAISE classic shows the highest percentage of found actives at 1% as well as at

10% of ranked hits for five of the 11 targets.

This study allowed an even further comparison between mRAISE and other methods

of the field. Overall, for the 11 used targets of the DUD, mRAISE classic shows the

best amount of found actives at the first 1% of ranked hits and is also the second

best at 10% following ICMsim.

7.1.3. Enrichment Study on DUD-E

To underline the results of mRAISE on the DUD on a more challenging and diverse

dataset, as well as to further analyze the influence of partial shape constraints, an

experiment on the DUD-E has been performed. The detailed results on all 102
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Table 7.9.: Average and median AUC values of the ROC curves on the DUD-E

dataset.

Mode avg. AUC median AUC

mRAISE classic 0.74 ± 0.15 0.73

mRAISE contact 0.72 ± 0.16 0.76

mRAISE inclusion 0.72 ± 0.16 0.75

Values with standard deviation. Reprinted from [112].

targets of the DUD-E using mRAISE classic can be seen in Table A.5 and Table A.6,

this includes the AUC as well as the EF and HR at 1%, 5% and 10%. The same

information can also be found for mRAISE contact in Table A.9, Table A.10, and

Table A.11 and for mRAISE inclusion in Table A.12, Table A.13, and Table A.14.

Overall Enrichment

A comparison of the different mRAISE modes using the average results can be

found in Table 7.9 On average mRAISE classic achieves an AUC of 0.74 ± 0.15 on

the DUD-E with only 8 of 102 targets showing an AUC of 0.5 of less. Comparing

this performance to mRAISE inclusion and mRAISE contact shows that all three

modes almost perform equally on average with both other modes achieving an

average AUC of 0.72 ± 0.16. Looking at the median value, mRAISE contact and

mRAISE inclusion are even slightly better than mRAISE classic with 0.76 and 0.75

respectively compared to 0.73. Regarding the number of cases with worse than or

equal to random performance however, mRAISE contact has an AUC of 0.5 or less

for 14 targets and mRAISE inclusion for 10.

In Table 7.10 all targets showing an improved overall performance using complex-

derived partial shape constraints by an AUC increase of 0.05 or more. If both modes

show an increased AUC on the same target, only the best compared performance

is listed. A special case is the HIV protease, since the AUC increase is the same for

both methods.

Comparing the detailed results furthermore highlights, that the most apparent

improvements of +0.1 and more occurred almost exclusively on targets with highly

flexible actives. Apart from the Mineralocorticoid receptor (mcr), which shows an

improved AUC by +0.11 using mRAISE contact, all other cases occurred on targets

with an average of eight or more rotatable bonds within the active compounds.

This can also be seen in Table 7.11, which shows the percentage of targets showing

an improved or equal overall performance compared to mRAISE classic with at

least eight, nine, or ten average rotatable bonds within the active compounds.
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Table 7.10.: List of targets of the DUD-E which show an increased AUC using

mRAISE contact or mRAISE equality in comparison to mRAISE classic.

inclusion contact

Target Increased AUC Target Increased AUC

bace1 +0.16 pa2ga +0.16

ppard +0.12 fkb1a +0.15

xiap +0.10 mcr +0.11

fa10 +0.09 fak1 +0.10

pyrd +0.08 fnta +0.09

mapk2 +0.07 jak2 +0.08

mk10 +0.06 gcr +0.06

dhi1 +0.05 pde5a +0.05

dpp4 +0.05 pgh1 +0.05

hdac2 +0.05

cdk2 +0.05

hivpr +0.13

The increased AUC is calculated with respect to the results of mRAISE classic.

The AUC of hivpr increases by the same amount for both modes. Reprinted

from [112].

Table 7.11.: Percentage of DUD-E targets with equal or improved performance

compared to mRAISE classic and a certain number of rotatable bonds.

Average Number of

Rotational Bonds inclusion contact

≥8 52.4 52.4

≥9 72.7 63.6

≥10 100.0 100.0

Average numbers calculated using the actives for each target present in the

DUD dataset. Reprinted from [112].
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Table 7.12.: Average enrichment factor on the DUD-E dataset at one, five, and ten

percent of ranked hits.

Mode EF1% EF5% EF10%

mRAISE classic 23.45 ± 17.00 7.78 ± 4.92 4.69 ± 2.50

mRAISE contact 22.67 ± 17.10 7.37 ± 4.96 4.46 ± 2.53

mRAISE inclusion 22.76 ± 17.04 7.45 ± 4.99 4.45 ± 2.51

Values with standard deviation. Reprinted from [112].

Table 7.13.: Average hitrate on the DUD-E dataset at one, five, and ten percent of

ranked hits.

Mode HR1% HR5% HR10%

mRAISE classic 37.95 ± 26.36 38.94 ± 24.44 46.98 ± 24.78

mRAISE contact 36.79 ± 27.04 36.96 ± 24.60 44.66 ± 25.09

mRAISE inclusion 37.12 ± 27.14 37.37 ± 24.73 44.60 ± 24.93

Values with standard deviation. Reprinted from [112].

Early Enrichment

For the early enrichment, the average results of mRAISE classic, mRAISE contact

and mRAISE inclusion can be found in Table 7.12 for the EF and Table 7.13 for

the HR. As can be seen, the early enrichment shows the same trend as the overall

performance on the 102 DUD-E targets. While mRAISE classic shows a slightly

better performance at 1%, both complex-based modes exceed the performance of

mRAISE classic at 5% and 10%. However, individual cases highlight the strengths

of each mode and the benefit of the derived constraints for virtual screening.

As can be seen, the experiments executed on the DUD-E further highlight the

conclusions drawn from the DUD dataset. Overall, the three automated modes

of mRAISE show a good but also very similar performance. However, looking

into the individual cases where the complex derived constraints improved the

screening performance allows new conclusions based on the larger DUD-E dataset.

It has been shown, that the complex-derived constraints especially improve the

performance on targets with large and highly flexible ligands and therefore reduce

the dependency on the quality of the generated conformations. Since such cases are

difficult to handle for 3D virtual screening methods in general, the complex-derived

constraints could be a promising tool to address this problem in future studies.
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Figure 7.4.: Average AUC on the protein families present in DUD using

mRAISE classic ( , mRAISE contact ( ) and mRAISE inclusion( ).

Cyt = Cytochrome P450s, GPCR = GPCRs, Ion = Ion channels, Kin = Ki-

nases, Nuc = Nuclear receptors, Prot = Proteases, Misc = Miscellaneous,

Others = Other enzymes.)

Class-specific Enrichment

Since the DUD-E represents an extended number of targets compared to the DUD,

it is even better suited for the evaluation of the screening performance based on the

included protein classes. The protein classes represented in the DUD-E are Kinases,

Proteases, Cytochrome P450s, Ion Channels, GPCRs, Nuclear Receptors and two

unspecific groups containing ”other enzymes” and ”miscellaneous” proteins.

Figure 7.4 shows the average AUC values of the different mRAISE modes for each

of the respective protein classes represented in the DUD-E. Like in the previous

experiments on the DUD, the performance of all modes is very similar. Noticeable

are the Cytochrome P450s and the GPCRs which show a better performance

using mRAISE classic, and the Nuclear receptors which show a slightly better

performance for mRAISE contact as well as mRAISE inclusion.

Despite the small performance differences, the overall performance per protein class

are comparable for almost all cases and the same trends are shown for each mode.

Even looking at the classes showing a slightly improved average performance using

one mode compared to the others is difficult, since the number of members in the

specific classes is quite low and does not allow statistical significant conclusions.

Especially the Cytochrome P450s only include two and the GPCRs only five targets.

While the Nuclear receptors at least include 11 targets, the actual difference between

the average AUC values is only 0.02 with a standard deviation between ± 0.08 and

± 0.11.
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Table 7.14.: Overview of the five selected DUD targets for the mRAISE selection

experiment.

Avg number of

rotatable bonds heavy atoms AUC (mRAISE classic)

hivpr 9.3 37.6 0.58

thrombin 7.1 32.7 0.61

fxa 6.8 32.5 0.64

pde5 5.7 31.2 0.57

fgfr1 5.4 29.7 0.53

Average numbers calculated using the actives for each target present in the

DUD dataset. Reprinted from [112].

7.1.4. Manual Partial Shape Constraints

User-defined partial shape constraints via a manual selection of atoms is a very

promising tool for virtual screening but it highly depends on the expert knowl-

edge of the user. Therefore, an objective validation of this method is not a trivial

task. Nonetheless, in order to highlight the possible impact of manually defined

constraints, an experiment has been designed focusing only on a small number of

particularly challenging targets selected from the DUD dataset.

In total, five targets from the DUD were chosen which were considered as difficult

and also showed a weak performance (AUC <0.7) using mRAISE classic. Difficulty

is hereby defined by two criteria, the first is the average number of rotational bonds

and the second is the average number of heavy atoms among the sets of actives of

the target. These criteria follow the assumption that the larger and more flexible

ligands are, the more challenging it is to find optimal solutions using a LBVS

method. Both criteria in combination with the performance threshold lead to the

same five targets which can be seen in Table 7.14.

Each query ligand for the respective targets has been loaded into the GUI version

of mRAISE and a manual selection of atoms has been done only based on infor-

mation drawn from the respective PDB entries as well as visual inspections of the

protein-ligand complexes (see Figure 7.5).

The performance of these queries can be seen in Table 7.15 in comparison to the

results of mRAISE classic. For all five targets the AUC increased significantly with

differences between 0.09 and 0.22.

The shown results clearly highlight the potential of the manually selected partial

shape constraints for LBVS with mRAISE. All five cases represented difficult targets

and three of them only achieved performances just above random selection using

mRAISE classic. The actual selection of atoms will obviously always depend on the

knowledge of the user, but for experienced users the impact can be drastic. Even in
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(a) fgfr1 (b) fxa

(c) hivpr (d) pde5

(e) thrombin

Figure 7.5.: Manual selection of atoms for the query ligands of five targets of the

DUD dataset. The van der Waals radius of selected atoms is highlighted

in yellow. Reprinted from [112].

Table 7.15.: AUC values of mRAISE with and without aid of manual selection.

mRAISE classic mRAISE selection

hivpr 0.58 0.69

thrombin 0.61 0.70

fxa 0.64 0.73

pde5 0.57 0.68

fgfr1 0.53 0.75

Reprinted from [112].
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the shown cases an even better suited selection of atoms might further increase the

displayed results.

7.2. Alignment Experiments

An important but often neglected part during the evaluation of 3D LBVS methods is

the quality of the calculated three-dimensional alignments. However, the alignments

are one of the important benefits of a three-dimensional method in comparison to

two-dimensional methods which are usually faster and not necessarily far worse

regarding the overall enrichment capabilities (see Section 7.1.1). Furthermore, the

evaluation of the alignment quality shows if a method is able to correctly reproduce

the binding mode of ligands binding to the same target and to thus superimpose

the most important biochemical features of the molecules. For an experienced user,

the alignment of top-ranked hits can also provide insight into the features which

were prioritized by the respective method and especially in case of LBVS under

manually selected constraints this can lead to a refinement of the applied selections.

Lastly, the visual inspection of the alignments might encourage the user during an

individual selection of promising hits for further experiments.

7.2.1. Alignment Quality Evaluation

The experiments to access the quality of molecular alignments calculated with

mRAISE has been performed as described in Section 6.2.5. The summarized results

for mRAISE classic in comparison to the performances of mRAISE contact as well

as mRAISE inclusion can be seen in Table 7.16 and Table 7.17 for the average

and median RMSD-O values of the top-ranked conformation and for the best

RMSD-O within the ten top-ranked conformations respectively. As mentioned in

the Section 6.1, for the assessment of the alignment quality based on the RMSD of

atom coordinates, an RMSD (in case of this evaluation an RMSD-O) of less than

2.0Å is considered as a successful recreation of the real binding mode.

Looking only at the top-ranked conformation, mRAISE classic achieves an average

RMSD-O of less than 2.0Å for four of the 11 ensembles while mRAISE contact and

mRAISE inclusion achieve this for only three ensembles. However, for the ensemble

showing an average RMSD-O of less than 2.0Å only for mRAISE classic, the other

modes also achieve values only slightly above 2.0Å. Looking at the less outlier

dependent median RMSD-O values, mRAISE classic succeeds only in three cases,

while mRAISE contact and mRAISE inclusion achieve median RMSD-O values of

less than 2.0Å for seven ensembles.

The results regarding the best RMSD-O values within the ten top-ranked hits
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Table 7.16.: Comparison of the different methods on the mRAISE dataset. The

shown results are the average (left) and median (right) RMSD-O value

considering the best ranked conformations.

classic contact inclusion

Trypsin 1.64 1.06 1.80 1.06 1.63 1.06

Thrombin 2.95 2.43 2.93 1.99 3.20 2.20

ALPHA-MANNOSIDASE II 1.96 1.77 2.08 1.40 2.06 1.45

Matrix metalloproteinase-12 (MMP-12) 3.17 2.12 3.04 2.06 2.88 1.89

CDK 2 Kinase 2.83 1.98 2.50 1.81 2.44 1.93

Carbonic Anhydrase II 1.70 1.53 1.71 1.54 1.69 1.53

Thermolysin 3.19 2.16 2.18 1.57 2.07 1.47

CYP121 3.94 4.87 3.51 4.38 3.55 4.27

HIV Protease 2.93 2.56 2.26 2.16 2.51 2.44

Bromodomain-containing protein 4 3.62 4.98 4.50 5.81 3.54 3.24

Isopenicillin N Synthase 1.74 1.63 1.74 1.63 1.57 1.47

RMSD values smaller than 2.0Å highlighted in bold. Reprinted from [112].

Table 7.17.: Comparison of the different methods on the mRAISE dataset. The

shown results are the average (left) and median (right) RMSD-O value

considering the best value of the ten top-ranked conformations only.

classic contact inclusion

Trypsin 1.40 0.95 1.55 0.94 1.42 0.95

Thrombin 2.28 1.72 2.14 1.57 2.26 1.69

ALPHA-MANNOSIDASE II 1.38 0.90 1.46 0.82 1.52 0.88

Matrix metalloproteinase-12 (MMP-12) 2.74 1.95 2.52 1.73 2.34 1.55

CDK 2 Kinase 2.26 1.28 1.87 1.26 1.91 1.45

Carbonic Anhydrase II 1.23 1.19 1.29 1.21 1.27 1.19

Thermolysin 2.67 1.74 1.83 1.52 1.76 1.42

CYP121 2.85 3.35 2.77 3.30 2.83 3.69

HIV Protease 2.70 2.33 1.93 1.78 2.09 1.89

Bromodomain-containing protein 4 (BRD4) 3.16 4.55 3.85 4.84 2.75 2.40

Isopenicillin N Synthase 1.53 1.51 1.49 1.46 1.39 1.34

RMSD values smaller than 2.0Å highlighted in bold. Reprinted from [112].
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Figure 7.6.: Binding site of 4HXS and its bound ligand (blue) together with two

additional members of the BRD 4 ensemble (3U5L in brown and 4CFL

in red). Reprinted from [107] with permission of Springer.

further highlight an improved overall alignment quality using the complex-derived

partial shape constraints. mRAISE contact achieves average RMSD-O values of

less than 2.0Åfor seven and mRAISE inclusion for six of the 11 ensembles, while

mRAISE classic achieves this still only for the same four ensembles. Looking at

the median RMSD-O values shows the same trend with mRAISE contact and

mRAISE inclusion succeeding in nine cases while mRAISE classic succeeds only in

eight cases.

A detailed analysis of the performances on the different ensembles highlights

particularly difficult cases and also shows limitations of the different methods and

LBVS in general.

In the following, eight of the eleven ensembles are discussed in further detail. The

ensembles of Serine protease, ALPHA-MANNOSIDASE II and Carbonic Anhy-

drase II are omitted, since they show a good performance for all modes already

considering only the top-ranked conformation. Of special interest are the CYP121

and the BRD4 ensemble, since all mRAISE modes fail to achieve good average and

median RMSD-O values for those ensembles.

The BRD4 ensemble seems to be one of the most challenging ensembles of the

mRAISE dataset. This is due to the fact that the binding site of BRD4 is a rather

narrow and all ligand poses of the ensemble are only loosely fixed by one hydrogen

bond in the center of the pocket. Apart from that one directed interaction, substantial

parts of the ligands fold into different directions on the surrounding surface of the

binding site (see Figure 7.6). As a consequence, the ligands only overlap partially

in the are of the hydrogen bond, but besides that have no compulsion to further

lie upon each other. While neither the classic version nor the complex-derived

constraints succeed in achieving an average or median RMSD-O value of less than

2.0Å, especially mRAISE inclusion significantly decreases the median RMSD-O

value by 2.15 compared to mRAISE classic. This effect can be explained by the

fact that mRAISE classic as well as mRAISE contact are failing to find even one
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Figure 7.7.: Ligands of 3U8O, 3U8R and 3U98 with rotatable bonds highlighted in

green. Reprinted from [107] with permission of Springer.

matching descriptor for 16 and 17 pairwise comparisons respectively. However,

using mRAISE inclusion not only lowers the average RMSD-O of all pairwise

comparisons, it also finds matches for 14 of the problematic cases, explaining the

significant difference in the median value. As can be seen, using constraints based

on the binding site surface improved the performance on this structurally diverse

ensemble.

CYP121 also seems to be a difficult target for ligand-based screening, since even

looking at the ten best ranked conformations the best performance is achieved

by mRAISE inclusion with an average RMSD-O of 2.77 and a median RMSD-O

of 3.30. Looking into the ensemble shows that the included ligands do not seem

to have a conserved binding mode fixed by common hydrogen bonds, the only

observed interaction present in each protein-ligand complex is an aromatic pi-pi

interaction between hydrophobic rings of different sizes in the ligands and the

residue Phe168A in the binding site. This is aggravated by the fact that all ligands of

the ensemble have two to five functional groups that could function as a hydrogen

bond donor or acceptor despite the fact that no common hydrogen bonds can

be observed. Due to the fact that the scoring function used in mRAISE highly

prioritizes the superimposition of potential candidates for hydrogen bonds (see

Section 4.6), mRAISE struggles with the recreation of these binding poses mainly

driven by an aromatic interaction.

For the Thrombin ensemble it is conspicuous that all three modes are able to

achieve median RMSD-O values of less than 2.0Å at least within the ten top-

ranked hits, but none achieves an average RMSD-O of less than 2.0Å. This can be

attributed to three special members of the ensemble which show an overall worse

RMSD-O than all other ligands of the ensemble. All three ligands (3U8O, 3U8R

and 3U98) are conformationally very difficult with 14 rotatable bonds present in

each structure as can be seen in Figure 7.7. The conformational difficulty of these

ligands is highlighted by the fact that even the self-comparison of the respective
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Figure 7.8.: Depiction of the different interaction modes of 2CF8 (top) and 3P17

(bottom). The top picture shows the interactions of the amidino group,

which are missing only in 2ZFF and 3P17 (picture created with Poseview

[142]). Reprinted from [107] with permission of Springer.

crystal structure against generated conformations is unable to achieve alignments

with an RMSD-O of less than 2.0Å at first rank. This is further highlighted by the

fact that most screening runs using one of the three crystal structures as query

against any other member of the ensemble generally yields good RMSD-O values,

while the screening of other structures against generated conformation of the three

ligands usually results in very high RMSD-O values. Another interesting case are

the ligands of 2ZFF and 3P17, which show a different binding mode in the protein-

ligand complexes than the rest of the ensemble. While all other ligands form two

characteristic hydrogen bonds Asp189 and Gly219 residues of the protein, they

do not have such a group and form different interactions to the residues Gly216

and Ser214 (see Figure 7.8). For mRAISE classic, this fact is especially problematic

resulting in high RMSD-O values up to 7.46Å and in seven cases even no matching

descriptors. However, mRAISE contact is able to find matches for five of these cases

and mRAISE inclusion is actually able to align all seven of them.

The results for the Trypsin ligands are very good for all three modes. Nevertheless,

the ligands in 4AB9, 4ABA, 4ABD, and 4ABE are a quite interesting case, because

they are only small bound fragments. Small molecules are challenging for an

approach like mRAISE, since they result in only a small amount of descriptors,

making the matching more difficult. The best performing of the three fragments

is the one bound to 4AB9, which achieves RMSD-O values of less than 2.0Å for

a majority of the comparisons where matches are found. This is due to the fact

that the other three ligands show a slightly different shale compared to the rest of

the ensemble. This shapes leads to less prolate triangles, which are not present in
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Figure 7.9.: Badly overlapping small fragments. Reprinted from [107] with permis-

sion from Springer.

(a) (b)

Figure 7.10.: Picture of the aligned active ligands of the Matrix metalloproteinase-12

with (a) and without (b) the common sulfonamide group. Reprinted

from [112].

the other structures of the ensemble (see Figure 7.9). This different triangle base is

also the reason why there is no significant difference for these cases when using

complex-based shape constraints. Nevertheless, due to the size of the ensemble the

overall result of the ensemble is still very good. Because of the amount of cases

where no match is found while comparing other ligands to the four fragments, the

median is the more reliable value to measure the performance on this ensemble.

The MMP-12 ensemble is another case where all modes achieve a median RMSD-O

of less than 2.0Å within the ten top-ranked hits, but none achieves this for the

average RMSD-O. Again, three outliers can be identified consistently showing much

higher RMSD-O values than the rest of the ensemble (2HU6, 4GR0, and 4GR8). Due

to the relatively small size of the ensemble, the average RMSD-O value is strongly

affected by these ligands. All three structures have in common, that they do not

have a sulfonamide group which is present in all members of the ensemble, which

is a good anchoring point for the alignment of those structures (see Figure 7.10).

Comparing the three modes of mRAISE, mRAISE inclusion handles these ligands

the best which can also be seen in the reduction of the average RMSD-O by 0.4Å
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Figure 7.11.: Left ref alignment, right favorable alignments for volume overlap).

Reprinted from [112] with permission of Springer.

for the ten-top ranked conformations.

The Thermolysin shows a significant improvement using the complex-derived

partial shape constraints. While mRAISE classic only achieves an average RMSD.O

of 2.67Å even when considering the ten top-ranked conformations, mRAISE contact

as well as mRAISE inclusion achieve average RMSD-O values of less than 2.0Å. The

reason for this is the comparably very small ligand of 3QGO, which only consists of

13 heavy atoms. This is just half the number of the heavy atoms in the next smallest

ligand in the ensemble. In Figure A.1 an overview of all contained molecules is

shown. Besides the size of the ligand of 3QGO, the real problematic aspect is that

the phenyl ring in this molecule can be ideally superimposed onto respective rings

occurring in most of the other ensemble members. This superimposition is highly

preferable in order to maximize the volume overlap of the molecules, but it does

not represent the actual binding mode of the ligand and would not even place it

in the binding site at all (see Figure 7.11). For this reason, mRAISE classic is not

able to recover the actual binding mode in this case resulting in RMSD-O values

of 10Å and more at first rank in six out of nine alignments. As mentioned before,

the complex-derived constraints significantly improve the alignments quality even

in this special case. mRAISE contact achieves an average RMSD-O of 1.83Å and

mRAISE inclusion an average RMSD-O of 1.76Å. Looking at the 5 comparisons

where mRAISE classic showed RMSD-O values of 10Å and more, mRAISE inclusion

calculates alignments with an RMSD-O of less than 2.71Å for all sic cases, while

mRAISE inclusion achieves this for five of the six cases.

Finally, the ligands of the HIV protease are another example for a beneficial influ-

ence of the complex-derived partial shape constraints. What makes this ensemble

special are the highly flexible ligands, with nine out of the ten ligands having

12 or more rotatable bonds. The smaller average and median RMSD-O values of

mRAISE inclusion as well as mRAISE contact in comparison to mRAISE classic

highlight the fact that the handling of highly flexible molecules is improved and
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Table 7.18.: Percentage of pairs with an RMSD-O smaller than a certain threshold.

Combined results of all ensembles.

Method Percentage ≤ 2.5Å Percentage ≤ 2.0Å Percentage ≤ 1.5Å

mRAISE classic 87.5 80.8 62.9

mRAISE contact 86.8 80.2 62.6

mRAISE inclusion 87.8 81.1 65.7

Highest values highlighted in bold. Reprinted from [112].

the dependency on the conformational quality is reduced. Especially the queries of

mRAISE contact demanding shape similarity only in certain areas of the molecule

while allowing more flexibility in others were highly beneficial in this case. An

improved handling of highly flexible ligands using the new concepts of partial

shape constraints could already be shown for the HIV protease in the DUD and

the the general DUD-E experiment (see Section 7.1.1 and Section 7.1.3) as well

as the experiment evaluation the influence of manually defined constraints (see

Section 7.1.4).

Apart from the ensemble-based evaluation of the alignment experiment, another

interesting way to look at the results is the evaluating the overall performance

as the percentage of pairwise comparisons achieving certain RMSD-O thresholds.

Such an evaluation is shown in Table 7.18 for RMSD-O values of less than 2.5Å,

2.0Å and 1.5Å.

As can be seen, the performances of all three modes are relatively similar and

mRAISE inclusion only slightly exceeds the performance of the other two methods

87.8% achieving an RMSD-O of less than 2.5Å, 81.1% achieving an RMSD-O of

less than 2.0Å and 65.7% achieving an RMSD-O of less than 1.5Å. This perfor-

mance is closely followed by mRAISE classic then by mRAISE contact. Nevertheless,

mRAISE contact as well as mRAISE inclusion showed an higher amount of ensem-

bles with median and average RMSD-O values of less than 2.0Å (see Table 7.16 and

Table 7.17). As a consequence, both modes have significantly less outliers with high

RMSD-O values while otherwise showing equal RMSD-O values for the already

good performing cases.

7.3. Computing Time

For the decision which LBVS method should be used for a screening project, two

main aspects will be considered. The first is the performance of the methods as ana-

lyzed in the previous sections. The second aspect is the runtime of a method, which

determines of how much practical use a method can be in an actual drug discovery
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process. The time needed to separately screen the 40 targets of the DUD dataset

has been measured for mRAISE classic, mRAISE contact, and mRAISE inclusion

as well as for the freely available method LIGSIFT. The DUD dataset provides

a variety of different screening scenarios considering diverging library sizes as

well as different query complexities. To directly compare the times, LIGSIFT has

been used on the same conformations as mRAISE classic. Furthermore, a general

time performance of ROCS can be taken from the public documentation [143] for

comparison.

Using mRAISE classic the average time needed to screen one conformation is 6

milliseconds resulting in a screening performance of about 167 conformations per

second. The complex-derived partial shape constraints available in mRAISE not

only have an influence on the performance, but also on the screening time. While

the time needed for the screening of the descriptor index is significantly reduced in

both cases due to the less complex query of the shape descriptor rays, the number

of matches and therefore the scoring time increased. For mRAISE contact these

changes balance out each other on average leading to a performance of 5.5 millisec-

onds per conformation. For mRAISE inclusion this is not the case and the screening

time increases to 12 milliseconds per conformation. Based on the documented

information, ROCS is roughly a factor of four to five faster than mRAISE classic,

achieving a screening performance of 600-800 conformations per second. The com-

putational expensive flexible handling of the ligands in LIGSIFT is expressed in the

comparably higher screening of only one to two conformations per second, which

is roughly a factor of 90 slower than mRAISE classic.

It should however be noted, that the flexible approach of LIGSIFT also works

without the need of additional generated conformations. This would reduce the

screening time drastically to about the same order of magnitude of mRAISE, but

at the same time also reduce the screening accuracy. All performances of LIGSIFT

discussed in this chapter were calculated using the same number of conformations

as in mRAISE.

While this study allows a general ranking of screening times for the presented

methods, it must furthermore be noted that the runtimes varied significantly for

the different target libraries of the dataset. Multiple different aspects can have a

strong influence of the screening time. For mRAISE, first to mention is the number

of descriptors of the query ligand. The fastest performance of mRAISE classic on

all DUD targets was for a query ligand with only 20 calculated descriptors. For this

target the screening time was actually about a factor of three faster than the average

performance of ROCS. The second aspect influencing the screening time of mRAISE

is the diversity of the screening library, since the descriptor based approach could

filter out highly dissimilar ligands already in early stages of the descriptor matching.

The provided times of mRAISE were calculated on the assumption that descriptor

indices were already created beforehand. Since a descriptor index would ideally

be screened multiple times for different screening projects, the time needed for
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the initial creation of the index should be considered separately. On average, the

creation of a descriptor index with precalculated ligand conformations takes 30

milliseconds per conformation.
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Chapter 8.

Conclusion

In this thesis, a new method for LBVS has been introduced and integrated in the new

software mRAISE. The main focus of the development was on the incorporation

of knowledge-based partial shape constraints and accurate similarity scoring. In

addition to the method development, another important part of the thesis was

the evaluation of different aspects of the method and the comparison to other

LBVS methods. This included the development of a new dataset for the purpose of

alignment quality evaluation. For the manual definition of partial shape constraints

as well as for the visual inspection of query descriptors and screening solutions,

mRAISE was created in two different version. The first is a tool with a command

line interface and the second is a tool with a GUI. In the following, the achievements

of the newly developed method are discussed. Furthermore, remaining limitations

and possible future improvements are shown.

8.1. Achievements

The discussion of the achievements is structured based on the objectives defined

in Chapter 3. The evaluation of mRAISE showed that it can keep up with and in

some cases even exceed the performance of the best methods in the field of LBVS.

Hereby mRAISE achieves an excellent balance between the screening performance

and the required computing time. Furthermore, the introduced concepts for partial

shape matching are an innovation for the field and their benefits could be shown

on multiple examples.
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Efficient Data Handling

In mRAISE, molecules of a screening library can be initialized from different es-

tablished file formats and are stored in a database using a memory-saving format

and allowing rapid access during the actual screening procedure. Furthermore, the

integrated CONFECT method allows to directly enumerate additional conforma-

tions for each molecule, which are stored as alternative instances of the respective

original molecule entry in the database. Therefore, no additional software is needed

to prepare a screening library for future studies. The usage of an SQLite database

hereby allows easy portability and avoids the need of separate database servers.

Meaningful Abstraction of Ligand Information

A triangle descriptor representation for ligands, which has originally been de-

veloped for the field of SBVS is used in mRAISE for a rapid initial screening of

compound libraries. After this phase, only molecules with matching descriptors

need to be reinitialized and processed on the atomic level. The descriptor has been

updated to better fit the requirements for ligand-based screening and new methods

for partial matching of the included shape descriptor have been introduced. The

usage of a bitmap-index allows the fast comparison and efficient storage of prepro-

cessed descriptors for a whole compound library.

The information represented by the descriptor, e.g. interactions and a local shape

description abstract molecules on a high level allowing the method to discard obvi-

ously dissimilar molecules at early stages and providing meaningful alignments as

basis for the scoring procedure.

Knowledge-based Partial Shape Constraints

Three different modes for the creation of partial shape constraints based on different

information sources have been developed. Additionally, a previously developed

method matching molecules with a certain percentage of shape similarity is avail-

able as basic mode in mRAISE. Two of the newly developed modes utilize informa-

tion derived from protein-ligand complexes. The first aims at creating queries that

match molecules fitting into the same area of the binding site rather than being of

the same shape as the query ligand. The second aims at finding matches, which

are able to form close contacts to the protein in the same areas as the query ligand

does and at the same time allows more flexibility in areas where no such contacts

occur. Finally the third mode allows a user to manually define regions of the query

ligand by selecting heavy atoms to define important regions of the ligand. The
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screening procedure then matches molecules with similar shape in the respective

regions and allows arbitrary shape in other regions.

Evaluation Data

For the enrichment evaluation of LBVS methods in retrospective studies, datasets

providing known active ligands to certain targets together with a challenging set

of decoys are needed. A multitude of datasets of various sizes and diversities are

available in the literature. For the evaluation of mRAISE two of these datasets were

chose. First, the DUD dataset is chosen because it allowed the direct comparison to

a variety of different state of the art methods. Second, the more diverse as well as

more challenging DUD-E dataset has been used to further confirm the results.

For the evaluation of the quality of molecular alignments, a new dataset has been

introduced consisting of 180 prealigned ligands for 11 diverse targets.

Performance

Based on two datasets taken from the literature, enrichment experiments have

been performed and multiple different evaluation metrics have been calculated to

analyze the performance capabilities of mRAISE. Additionally, a newly developed

dataset has been used for the often neglected evaluation of the quality of calculated

molecular alignments.

The performance of mRAISE has been compared to multiple different 2D and

3D state of the art LBVS methods and the influence of complex-derived partial

shape constraints on the results of all experiments have been analyzed. The ex-

periments on the DUD dataset showed that mRAISE provides a good overall and

early enrichment, which is comparable to and in individual cases even superior to

the performance of other state of the art methods. Furthermore, the experiments

on the DUD-E dataset confirmed these results using a more diverse and better

designed dataset. While the complex-derived partial shape constraints were not

able to increase the average performance of mRAISE, it could be seen that they

especially benefit the screening performance in cases with highly flexible actives.

Finally, a small experiment on five DUD targets using the manually selected partial

shape constraints showed a significant improvement in the overall enrichment

and highlighted the possible impact of this mode especially on highly flexible

difficult targets. Concerning the alignments quality, mRAISE showed good results

in reproducing biologically relevant ligand poses and in aligning the important

features of ligands with respect to a conserved binding mode. The usage of the

complex-derived partial shape constraints showed to be beneficial in creating more

accurate molecular alignments.
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Screening of compound libraries with mRAISE on average takes between 5.5

milliseconds (mRAISE contact) and 12 (mRAISE inclusion) milliseconds per con-

formation depending on the partial shape matching mode. This allows the rapid

screening of large compound libraries in a reasonable amount of time. In compari-

son to two other methods, mRAISE achieves a good balance between computing

time and screening quality with one other method being faster but also showing

lower enrichments and another method showing slightly better enrichment results

but at the same time being much slower.

Usability

The experiments have shown that mRAISE is capable of identifying ligands active

to the same targets within a background of decoys and to align them accurately

with respect to a shared binding mode.

Another important aspect of the development of a new software is the usability

by unexperienced users without a background in computer science. For a LBVS

method the user group it should be designed for consist mostly of medicinal

chemists.

Therefore, mRAISE is not only designed as a command line tool, but also as a GUI

version providing the same functionality with additional options for 3D visual-

ization. While the command line version is important for exhaustive automated

screening runs especially on computer clusters, the command line version addition-

ally allows the user to browse query ligands and their respective descriptors as

well as to define partial shape constraints by the manual selection of heavy atoms.

Furthermore, the GUI version allows the visual inspection of the results aligned to

the query molecule, which allows a medicinal chemist to evaluate the usefulness of

top ranked hits for further investigations based on their expert knowledge.

8.2. Limitations

The research goals set for this project have mostly been addressed successfully and

the developed method showed a good performances regarding enrichment as well

as alignment quality studies. Nevertheless, the evaluation of the method showed

some limitations to the method, which are discussed in the following:

Ligand flexibility The incorporation of the structural flexibility of ligands into

virtual screening is still an ongoing challenge. For LBVS, can either be addressed

by increasing the size of the screening library by additional conformations of the
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included molecules or by computationally expensive algorithms simulating molec-

ular flexibility during the screening procedure. Both approaches are difficult in

their own way, but the generation of additional conformations is the more common

approach, since rapid screening methods generally tend to be faster and not worse

in the overall screening quality than recent approaches of flexible ligand alignments.

In mRAISE conformations generated by the CONFECT algorithm are used to ad-

dress this problem and the new methods for partial shape concepts developed in

this project also showed a better handling of highly flexible compounds. Neverthe-

less, generating a fixed number of conformations can never really reproduce the

complete conformational space of individual structures and mRAISE ist therefore

always dependent on the quality of the calculated conformations.

Hydrophobic ligands During the evaluation of mRAISE, individual problem-

atic molecules occurred, which are mostly hydrophobic. The descriptor generation

for such molecules can be very difficult especially if the are few polar interactions

present in the structure, since no descriptors with only hydrophobic triangle cor-

ners are generated. As a consequence the chance of finding matching descriptors

decreases and parts of the ligand might not be represented by descriptors at all.

mRAISE therefore struggles especially concerning the recreation of hydrophobic

driven binding modes as could be seen during the alignment quality evaluation for

the CYP121 ensemble of the mRAISE dataset.

Memory usage In the last phases of the evaluation of mRAISE, especially the

complex-derived partial shape queries showed a significant increase in the amount

of descriptor matches. For now, matches are hold in memory and are not processed

until all matches are collected. This is due to the fact that the current version of

the descriptor index does no longer follow the concept of descriptor partitioning in

terms of certain numbers of ligands per partition, but in terms of certain numbers

of descriptors per partition. As a consequence, it is no longer guaranteed that

all matches corresponding to one special ligand are found after screening one

partition. Therefore, to prevent that a ligand has to be reinitialized more than once,

all partitions need to be screened before the scoring procedure can start.

During the development of mRAISE this was no problem, since the information

stored in a descriptor match is quite small and the amount of matches in LBVS is

not comparable to the numbers reached in SBVS. However, for complex-derived

queries especially on large datasets the memory requirement is increased.
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8.3. Outlook

Based on the previously discussed limitations as well as additional ideas to further

improve the performance of mRAISE, possible future steps are presented:

• Alignment post-optimization. Individual inspection of molecular alignments

showed that in some cases small changes on just one rotational bond of a

ligand could already improve the overlap of the structures and therefore

increase the similarity score significantly. A post-optimization of the confor-

mations of matching compounds could improve the results and better cover

the actual flexibility of the molecules than just a fix number of generated

conformations.

• Partial shape constraints based on ligand ensembles. In case of multiple

known ligands for the target of interest, partial shape constraints could be

derived based on the noticeable similarities between aligned ligands. As a

start, an easy way to use this information is to automatically derive atom

selections and use them as if selected by a user for manual partial shape

constraints.

• Incorporate partial shape constraints in the scoring function. Another in-

teresting idea would be to use special weights during the scoring of atoms

which are part of the selected partial shape constraints to value these regions

of the ligands higher than the rest of the molecule.

• Hydrophobic directions. Assigning directions to hydrophobic interaction

points would make them more meaningful during matching. Such a direction

could for example represent the orientation of a respective ring or the position

of outgoing bonds of a hydrophobic atom.

• Solution database. The increasing amount of matches observed for complex-

derived queries could be faced using a database to store the match results on

the hard drive as used in cRAISE, even if this might slow down the process.

Finally, it would be very interesting to use mRAISE in some real life lead identifica-

tion processes with subsequent experimental validation of the results and to see

how the method would perform in such a scenario.
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A
Appendix A.

Detailed Results

Table A.1.: Calculation of the weight based on atom charges (wch).

None Negative Positive

None 1 0.5 0.5

Negative 0.5 1 0

Positive 0.5 0 1

An atom is considered as negatively charged, if the formal charge of that atom

split upon topological similar atoms (mesomeric structures) is less than zero.

An atom is likewise considered positively charged, if that charge is greater than

zero. Reprinted from [107] with permission of Springer.

Table A.2.: Calculation of the weight based on ring membership (wri).

In Ring Not in Ring

In Ring 1 0.5

Not in Ring 0.5 1

Reprinted from [107] with permission from Springer.
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A. Detailed Results

Table A.3.: Calculation of the weight based on potential interactions (wia).

Neutral Hydrophobic Donor Acceptor Donor/Acceptor

Neutral 1 0.5 0.5 0.5 0.5

Hydrophobic 0.5 1 0.5 0.5 0.5

Donor 0.5 0.5 2 0 2

Acceptor 0.5 0.5 0 2 2

Donor/Acceptor 0.5 0.5 2 2 2

An atoms is labeled ’Neutral’ if it is an hydrophobic atom with directly

connected hydrophilic neighbors. Reprinted from [107] with permission of

Springer.

Figure A.1.: Overview of all ligands of the thermolysin example. Reprinted from

[112].
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A. Detailed Results

Table A.4.: Detailed AUC values of the ROC curves for all DUD targets.

LIGSIFT mRAISE Align-It ROCS

ACE 0.79 0.91 0.86 0.7
ACHE 0.8 0.78 0.82 0.77
ADA 0.73 0.83 0.88 0.86
ALR2 0.69 0.65 0.71 0.57
AMPC 0.93 0.91 0.89 0.82

AR 0.83 0.85 0.79 0.79
CDK2 0.71 0.64 0.45 0.68
COMT 0.9 0.89 0.79 0.32
COX1 0.62 0.53 0.68 0.53
COX2 0.95 0.95 0.95 0.93
DHFR 0.97 0.99 0.97 0.92
EGFR 0.93 0.96 0.94 0.95

ERagonist 0.92 0.94 0.87 0.94
ERantagonist 0.9 0.92 0.94 0.98

FGFR1 0.62 0.53 0.59 0.49
FXA 0.77 0.64 0.62 0.39

GART 0.86 0.93 0.92 0.93
GPB 0.94 0.92 0.94 0.92
GR 0.87 0.61 0.56 0.79

HIVPR 0.79 0.58 0.78 0.56
HIVRT 0.78 0.74 0.63 0.66
HMGA 0.96 0.90 0.92 0.92
HSP90 0.87 0.86 0.65 0.66
INHA 0.72 0.67 0.77 0.72

MR 0.89 0.87 0.72 0.87
NA 0.96 0.99 0.88 0.97
P38 0.51 0.47 0.45 0.52

PARP 0.68 0.74 0.94 0.58
PDE5 0.57 0.57 0.64 0.53

PDGFRB 0.46 0.32 0.23 0.34
PNP 0.98 0.99 0.95 0.91

PPAR 0.85 0.96 0.91 0.92
PR 0.79 0.52 0.66 0.67

RXR 0.98 0.89 0.98 0.96
SAHH 0.97 0.97 0.96 0.97

SRC 0.38 0.45 0.38 0.38
THROMBIN 0.59 0.61 0.69 0.66

TK 0.92 0.88 0.78 0.86
TRYPSIN 0.64 0.79 0.75 0.78
VEGFR2 0.67 0.42 0.29 0.43

Average 0.79 0.76 0.75 0.73

Values for other methods taken from [144]. Reprinted from [107] with permission

of Springer.
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A. Detailed Results

Table A.5.: Detailed results for all targets of the DUD-E dataset.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

aa2ar 0.89 31.21 11.12 6.79 47.02 55.60 67.84
abl1 0.71 20.38 5.94 4.12 33.94 29.67 41.21
ace 0.87 29.51 10.36 6.74 48.54 51.77 67.38
aces 0.64 3.10 3.80 3.80 5.26 18.98 37.97
ada17 0.79 21.09 8.50 5.55 30.85 42.48 55.45
ada 0.98 48.76 15.92 8.82 81.82 79.57 88.17
adrb1 0.72 24.43 7.21 4.41 37.50 36.03 44.13
adrb2 0.64 12.58 5.20 3.29 19.08 25.97 32.90
akt1 0.67 5.13 2.73 2.66 8.98 13.65 26.62
akt2 0.67 15.41 5.82 3.33 25.71 29.06 33.33
aldr 0.83 36.69 10.58 6.04 63.74 52.83 60.38
ampc 0.84 38.57 8.75 6.04 64.29 43.75 60.42
andr 0.74 19.35 7.14 4.50 35.62 35.69 44.98
aofb 0.48 0.82 1.31 1.07 1.43 6.56 10.66
bace1 0.47 2.48 0.92 0.78 3.83 4.59 7.77
braf 0.75 33.87 8.56 4.61 51.00 42.76 46.05
cah2 0.71 1.22 1.67 1.87 1.90 8.33 18.70
casp3 0.70 7.60 3.92 2.36 13.89 19.60 23.62
cdk2 0.69 14.98 5.40 3.74 25.09 27.00 37.34
comt 0.93 32.45 12.71 6.85 34.21 63.41 68.29
cp2c9 0.57 0.00 0.83 1.00 0.00 4.17 10.00
cp3a4 0.62 5.32 2.24 2.06 7.56 11.18 20.59
csf1r 0.72 26.53 6.63 3.80 35.77 33.13 37.95
cxcr4 0.76 40.54 10.52 6.01 47.06 52.50 60.00
def 0.87 33.91 11.80 7.17 59.65 58.82 71.57
dhi1 0.67 13.69 4.67 3.21 22.96 23.33 32.12
dpp4 0.69 12.96 4.92 3.17 16.67 24.58 31.71
drd3 0.43 3.75 1.00 0.67 5.22 5.00 6.67
dyr 0.92 32.91 10.82 6.84 43.68 54.11 68.40
egfr 0.87 43.08 12.85 7.40 65.63 64.21 73.99
esr1 0.91 46.58 13.74 7.84 84.76 68.67 78.33
esr2 0.83 27.86 12.16 7.36 49.76 60.76 73.57
fa10 0.62 14.38 6.07 3.48 37.56 30.35 34.82
fa7 0.92 25.68 12.32 7.12 46.03 61.40 71.05
fabp4 0.90 35.25 11.98 8.10 59.26 59.57 80.85
fak1 0.73 32.30 9.22 6.10 59.26 46.00 61.00
fgfr1 0.47 0.85 0.44 0.65 25.00 13.04 19.15
fkb1a 0.69 11.73 3.43 2.43 22.03 17.12 24.32
fnta 0.69 22.65 7.13 4.27 25.77 35.64 42.74
fpps 0.99 71.82 18.37 9.65 71.76 91.76 96.47
gcr 0.67 29.16 6.82 3.80 49.34 34.11 37.98
glcm 0.56 3.76 0.74 0.74 5.26 3.70 7.41
gria2 0.79 46.55 13.30 7.09 61.34 66.46 70.89
grik1 0.76 26.93 8.53 4.86 40.91 42.57 48.51
hdac2 0.53 7.08 3.03 1.95 12.50 15.14 19.46
hdac8 0.79 36.53 11.43 6.18 58.49 57.06 61.76
hivint 0.64 8.05 3.80 2.30 11.94 19.00 23.00
hivpr 0.70 7.28 3.58 3.10 10.77 17.91 30.97
hivrt 0.63 15.10 4.86 3.05 26.56 24.26 30.47

Performance on the DUD-E. Reprinted from [107] with permission of Springer.
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A. Detailed Results

Table A.6.: Continuation of the detailed results for all targets of the DUD-E dataset.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%
hmdh 0.91 40.65 13.31 7.24 77.53 66.47 72.35
hs90a 0.77 32.05 10.26 6.26 57.14 51.14 62.50
hxk4 0.98 35.43 15.24 9.25 68.09 76.09 92.39
igf1r 0.79 19.68 7.04 4.46 30.85 35.14 44.59
inha 0.79 21.32 6.52 4.89 39.13 32.56 48.84
ital 0.44 18.17 3.63 2.03 29.07 18.12 20.29
jak2 0.79 26.18 8.04 4.86 42.42 40.19 48.60
kif11 0.73 37.41 10.87 5.52 62.32 54.31 55.17
kith 0.58 24.13 5.79 3.19 37.74 28.92 31.93
kit 0.48 8.79 3.87 2.29 17.24 19.30 22.81
kpcb 0.85 51.27 12.90 6.75 78.41 64.44 67.41
lck 0.64 5.48 2.33 2.00 8.27 11.67 20.00
lkha4 0.79 11.13 5.98 5.15 19.79 29.82 51.46
mapk2 0.83 31.93 11.10 6.05 51.61 55.45 60.40
mcr 0.60 17.15 3.62 2.23 30.77 18.09 22.34
met 0.85 63.29 14.22 7.23 92.11 71.08 72.29
mk01 0.83 31.83 9.38 5.83 54.35 46.84 58.23
mk10 0.48 3.85 1.73 1.35 5.97 8.65 13.46
mk14 0.65 11.28 4.15 2.80 17.91 20.76 28.03
mmp13 0.91 37.07 13.19 7.80 56.23 65.91 77.97
mp2k1 0.53 18.33 3.97 2.23 26.83 19.83 22.31
nos1 0.55 4.02 1.20 1.20 4.94 6.00 12.00
nram 0.96 32.13 14.73 8.48 50.00 73.47 84.69
pa2ga 0.62 8.15 3.84 2.33 15.38 19.19 23.23
parp1 0.83 25.43 8.15 5.06 42.30 40.75 50.59
pde5a 0.72 26.16 6.84 4.07 37.28 34.17 40.70
pgh1 0.43 2.07 1.23 0.97 3.67 6.15 9.74
pgh2 0.82 38.97 11.22 6.48 71.91 56.09 64.83
plk1 0.65 2.81 2.06 1.78 4.35 10.28 17.76
pnph 1.00 64.56 19.45 10.00 94.29 97.09 100.00
ppara 0.83 21.48 8.75 5.74 40.61 43.70 57.37
ppard 0.71 11.31 4.67 3.25 21.77 23.33 32.50
pparg 0.79 25.04 8.43 4.84 47.08 42.15 48.35
prgr 0.65 9.58 3.69 2.94 17.61 18.43 29.35
ptn1 0.57 13.98 4.78 3.08 24.66 23.85 30.77
pur2 1.00 54.88 20.03 10.01 100.00 100.00 100.00
pygm 0.51 1.30 3.39 2.08 2.50 16.88 20.78
pyrd 0.76 48.17 10.84 5.77 81.54 54.05 57.66
reni 0.61 18.42 4.24 2.79 27.14 21.15 27.88
rock1 0.56 1.02 1.60 1.40 1.59 8.00 14.00
rxra 0.93 23.12 14.52 8.17 42.86 72.52 81.68
sahh 1.00 55.76 20.07 10.01 100.00 100.00 100.00
src 0.66 11.67 4.35 2.90 17.48 21.76 29.01
tgfr1 0.85 24.15 8.88 6.32 37.21 44.36 63.16
thb 0.89 58.59 15.74 7.97 80.00 78.64 79.61
thrb 0.70 3.69 4.12 3.32 6.20 20.61 33.19
try1 0.76 10.50 6.02 4.37 17.87 30.07 43.65
tryb1 0.66 6.84 2.84 2.50 12.99 14.19 25.00
tysy 0.92 47.11 14.51 7.81 75.00 72.48 77.98
urok 0.83 14.82 7.16 5.50 24.00 35.80 54.94
vgfr2 0.61 6.61 3.67 2.81 10.67 18.34 28.12
wee1 0.99 61.27 19.25 9.61 100.00 96.08 96.08
xiap 0.86 30.26 11.01 6.51 57.69 55.00 65.00

Average 0.74 23.45 7.78 4.69 37.95 38.94 46.98
Stdev 0.15 17.00 4.92 2.50 26.36 24.44 24.78

Reprinted from [112].

Performance of all 102 targets of the DUD-E using mRAISE. The query ligand for aa2ar
was not used from DUD-E but downloaded from the PDB for technical reasons. Reprinted
from [107] with permission of Springer.
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A. Detailed Results

Table A.7.: AUC values for all targets of DUD using different mRAISE modes.
classic contact inclusion

ace 0.91 0.81 0.91
ache 0.78 0.77 0.75
ada 0.83 0.75 0.73
alr2 0.65 0.47 0.61
ampc 0.91 0.79 0.91
ar 0.85 0.81 0.89
cdk2 0.64 0.67 0.67
comt 0.89 0.67 0.85
cox1 0.53 0.56 0.59
cox2 0.95 0.87 0.94
dhfr 0.99 0.91 0.99
egfr 0.96 0.87 0.96
er agonist 0.94 0.58 0.94
er antagonist 0.92 0.78 0.92
fgfr1 0.53 0.52 0.54
fxa 0.64 0.61 0.71
gart 0.93 0.82 0.95
gpb 0.92 0.88 0.92
gr 0.61 0.64 0.67
hivpr 0.58 0.68 0.65
hivrt 0.74 0.59 0.64
hmga 0.90 0.88 0.95
hsp90 0.86 0.74 0.80
inha 0.67 0.62 0.58
mr 0.87 0.75 0.85
na 0.99 0.81 0.99
p38 0.47 0.41 0.34
parp 0.74 0.66 0.63
pde5 0.57 0.55 0.61
pdgfrb 0.32 0.40 0.35
pnp 0.99 0.92 0.99
ppar 0.96 0.90 0.96
pr 0.52 0.55 0.71
rxr 0.89 0.76 0.90
sahh 0.97 0.90 0.98
src 0.45 0.52 0.45
thrombin 0.61 0.58 0.68
tk 0.88 0.85 0.88
trypsin 0.79 0.72 0.68
vegfr2 0.42 0.45 0.44

Reprinted from [112].
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A. Detailed Results

Table A.8.: EF at one percent for all targets of DUD using different mRAISE modes.
classic contact inclusion

ace 29.85 27.72 27.72
ache 21.06 26.80 22.97
ada 18.35 13.76 9.17
alr2 4.03 8.07 4.03
ampc 25.61 30.73 30.73
ar 25.69 25.69 28.40
cdk2 16.26 14.23 14.23
comt 10.02 10.02 10.02
cox1 17.48 13.11 17.48
cox2 35.95 35.95 35.95
dhfr 33.54 33.54 33.54
egfr 32.96 33.19 32.96
er agonist 24.10 16.57 24.10
er antagonist 18.38 18.38 18.38
fgfr1 7.67 10.22 6.82
fxa 4.96 4.26 4.96
gart 5.27 0.00 5.27
gpb 34.65 34.65 32.73
gr 13.16 17.11 17.11
hivpr 3.85 1.92 1.92
hivrt 21.10 15.83 18.46
hmga 36.46 36.46 36.46
hsp90 36.83 36.83 36.83
inha 35.52 29.60 34.34
mr 36.67 36.67 36.67
na 34.46 34.46 34.46
p38 10.99 10.21 10.21
parp 3.05 6.11 3.05
pde5 24.31 18.24 24.31
pdgfrb 7.09 5.80 7.09
pnp 24.19 24.19 24.19
ppar 31.79 31.79 33.06
pr 12.27 16.36 16.36
rxr 31.20 26.00 31.20
sahh 29.55 29.55 29.55
src 1.30 1.30 0.65
thrombin 3.15 3.15 3.15
tk 32.06 32.06 32.06
trypsin 2.41 2.41 2.41
vegfr2 10.87 8.15 10.87

Reprinted from [112].
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A. Detailed Results

Table A.9.: Detailed results for all targets of the DUD-E dataset using

mRAISE contact.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

aa2ar 0.89 29.75 10.50 6.47 44.83 52.49 64.73
abl1 0.63 15.42 4.84 3.57 25.69 24.18 35.71
ace 0.89 33.07 11.71 7.06 54.39 58.51 70.57
aces 0.61 2.21 1.41 1.52 3.76 7.06 15.23
ada17 0.76 17.51 7.63 5.19 25.62 38.16 51.88
ada 0.95 45.51 14.63 7.64 76.36 73.12 76.34
adrb1 0.65 18.73 6.32 3.97 28.75 31.58 39.68
adrb2 0.55 8.67 3.55 2.47 13.16 17.75 24.68
akt1 0.57 5.13 1.84 1.77 8.98 9.22 17.75
akt2 0.56 12.84 4.96 3.16 21.43 24.79 31.62
aldr 0.79 34.16 9.45 5.47 59.34 47.17 54.72
ampc 0.84 38.57 8.75 5.63 64.29 43.75 56.25
andr 0.66 19.72 5.06 3.23 36.30 25.28 32.34
aofb 0.47 1.64 0.98 0.82 2.86 4.92 8.20
bace1 0.53 2.84 1.06 1.17 4.37 5.30 11.66
braf 0.77 34.53 8.56 4.87 52.00 42.76 48.68
cah2 0.64 1.42 1.42 1.42 2.22 7.11 14.23
casp3 0.61 8.11 3.72 2.36 14.81 18.59 23.62
cdk2 0.71 11.82 5.32 3.46 19.79 26.58 34.60
comt 0.93 32.45 12.71 7.09 34.21 63.41 70.73
cp2c9 0.49 0.00 1.00 0.67 0.00 5.00 6.67
cp3a4 0.50 5.91 2.00 1.12 8.40 10.00 11.18
csf1r 0.69 25.92 7.11 3.98 34.96 35.54 39.76
cxcr4 0.78 40.54 9.52 5.76 47.06 47.50 57.50
def 0.88 39.89 12.59 7.17 70.18 62.75 71.57
dhi1 0.72 11.86 4.79 3.64 19.90 23.94 36.36
dpp4 0.71 14.46 5.10 3.49 18.60 25.52 34.90
drd3 0.41 3.75 1.33 0.75 5.22 6.67 7.50
dyr 0.90 33.77 10.65 6.62 44.83 53.25 66.23
egfr 0.84 37.53 11.52 6.62 57.18 57.56 66.24
esr1 0.84 48.68 12.49 6.79 88.57 62.40 67.89
esr2 0.84 28.68 11.78 7.41 51.22 58.86 74.11
fa10 0.69 12.70 5.10 3.22 33.17 25.51 32.22
fa7 0.82 21.25 7.04 4.66 38.10 35.09 46.49
fabp4 0.79 35.25 7.28 5.54 59.26 36.17 55.32
fak1 0.83 35.32 11.22 6.60 64.81 56.00 66.00
fgfr1 0.47 0.85 0.59 0.65 25.00 17.39 19.15
fkb1a 0.84 11.73 5.05 3.96 22.03 25.23 39.64
fnta 0.78 18.09 7.40 4.83 20.58 36.99 48.31
fpps 0.98 70.64 18.37 9.42 70.59 91.76 94.12

Performance on the DUD-E. Reprinted from [112].
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A. Detailed Results

Table A.10.: Continuation of the detailed results for all targets of the DUD-E dataset

using mRAISE contact.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

gcr 0.73 28.38 6.82 3.84 48.03 34.11 38.37
glcm 0.55 3.76 0.74 1.48 5.26 3.70 14.81
gria2 0.78 44.00 12.04 7.03 57.98 60.13 70.25
grik1 0.77 24.93 8.72 5.15 37.88 43.56 51.49
hdac2 0.46 2.18 1.51 0.97 3.85 7.57 9.73
hdac8 0.72 24.75 8.96 5.18 39.62 44.71 51.76
hivint 0.57 6.04 3.00 2.20 8.96 15.00 22.00
hivpr 0.83 13.44 7.02 5.13 19.89 35.07 51.31
hivrt 0.60 14.51 3.97 2.49 25.52 19.82 24.85
hmdh 0.89 43.59 12.84 7.30 83.15 64.12 72.94
hs90a 0.79 28.62 10.03 6.03 51.02 50.00 60.23
hxk4 0.95 36.54 13.72 7.84 70.21 68.48 78.26
igf1r 0.79 18.32 5.55 4.06 28.72 27.70 40.54
inha 0.67 18.95 4.19 2.79 34.78 20.93 27.91
ital 0.32 18.17 3.92 2.03 29.07 19.57 20.29
jak2 0.87 29.92 10.66 6.26 48.48 53.27 62.62
kif11 0.71 33.93 8.80 5.18 56.52 43.97 51.72
kith 0.57 22.32 5.55 3.01 34.91 27.71 30.12
kit 0.38 8.79 3.52 2.11 17.24 17.54 21.05
kpcb 0.82 44.58 13.20 6.75 68.18 65.93 67.41
lck 0.55 6.19 2.05 1.81 9.35 10.24 18.10
lkha4 0.78 8.20 4.10 4.33 14.58 20.47 43.27
mapk2 0.81 33.92 10.71 6.25 54.84 53.47 62.38
mcr 0.71 13.94 4.68 3.09 25.00 23.40 30.85
met 0.89 62.08 14.47 7.59 90.35 72.29 75.90
mk01 0.81 31.83 9.89 5.45 54.35 49.37 54.43
mk10 0.43 3.85 1.35 0.87 5.97 6.73 8.65
mk14 0.59 10.23 3.98 2.66 16.25 19.90 26.64
mmp13 0.89 42.50 12.98 7.20 64.46 64.86 72.03
mp2k1 0.46 18.33 3.97 1.99 26.83 19.83 19.83
nos1 0.45 3.02 1.00 0.70 3.70 5.00 7.00
nram 0.93 29.02 13.30 8.07 45.16 66.33 80.61
pa2ga 0.78 13.24 8.29 5.66 25.00 41.41 56.57
parp1 0.76 24.44 7.64 4.69 40.66 38.19 46.85
pde5a 0.78 26.91 6.53 3.79 38.35 32.66 37.94
pgh1 0.48 2.07 1.13 1.03 3.67 5.64 10.26
pgh2 0.80 38.28 10.90 5.95 70.64 54.48 59.54
plk1 0.66 3.74 2.24 1.78 5.80 11.21 17.76
pnph 0.99 64.56 18.87 10.00 94.29 94.17 100.00
ppara 0.85 19.07 8.37 5.60 36.04 41.82 56.03
ppard 0.80 15.49 6.33 4.42 29.84 31.67 44.17

Performance of all 102 targets of the DUD-E using mRAISE equality. The query

ligand for aa2ar was not used from DUD-E but downloaded from the PDB for

technical reasons. Reprinted from [112].
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A. Detailed Results

Table A.11.: Continuation of the detailed results for all targets of the DUD-E dataset

using mRAISE contact.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

pparg 0.77 26.49 8.18 4.69 49.81 40.91 46.90
prgr 0.65 10.60 3.76 2.80 19.50 18.77 27.99
ptn1 0.49 13.98 4.47 2.46 24.66 22.31 24.62
pur2 1.00 54.88 20.03 10.01 100.00 100.00 100.00
pygm 0.50 0.00 0.26 0.91 0.00 1.30 9.09
pyrd 0.80 49.08 12.10 6.94 83.08 60.36 69.37
reni 0.65 11.64 3.86 2.50 17.14 19.23 25.00
rock1 0.40 2.03 1.00 0.70 3.17 5.00 7.00
rxra 0.88 12.33 10.39 6.88 22.86 51.91 68.70
sahh 1.00 55.76 20.07 10.01 100.00 100.00 100.00
src 0.65 10.52 4.08 2.69 15.76 20.42 26.91
tgfr1 0.83 22.64 9.94 6.62 34.88 49.62 66.17
thb 0.87 49.81 13.99 7.38 68.00 69.90 73.79
thrb 0.66 2.17 2.17 2.00 3.65 10.85 19.96
try1 0.64 4.91 3.39 2.50 8.37 16.93 24.94
tryb1 0.66 4.79 3.79 2.77 9.09 18.92 27.70
tysy 0.92 43.42 15.06 8.17 69.12 75.23 81.65
urok 0.67 11.73 3.33 2.84 19.00 16.67 28.40
vgfr2 0.58 6.61 2.49 2.08 10.67 12.47 20.78
wee1 0.99 61.27 19.64 9.90 100.00 98.04 99.02
xiap 0.95 50.43 16.02 8.71 96.15 80.00 87.00

Average 0.72 22.67 7.37 4.46 36.79 36.96 44.66
Standard deviation ± 0.16 ± 17.10 ± 4.96 ± 2.53 ± 27.04 ± 24.60 ± 25.09

Performance of all 102 targets of the DUD-E using mRAISE equality. The query

ligand for aa2ar was not used from DUD-E but downloaded from the PDB for

technical reasons. Reprinted from [112].
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A. Detailed Results

Table A.12.: Detailed results for all targets of the DUD-E dataset using

mRAISE inclusion.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

aa2ar 0.88 28.50 10.00 6.23 42.95 50.00 62.24
abl1 0.65 17.08 5.61 3.35 28.44 28.02 33.52
ace 0.87 33.07 11.49 6.99 54.39 57.45 69.86
aces 0.62 2.44 1.50 1.63 4.14 7.51 16.34
ada17 0.75 16.20 7.52 4.94 23.69 37.59 49.44
ada 0.90 41.17 13.34 7.42 69.09 66.67 74.19
adrb1 0.65 16.69 6.08 3.77 25.63 30.36 37.65
adrb2 0.56 8.24 3.46 2.51 12.50 17.32 25.11
akt1 0.56 5.13 1.43 1.50 8.98 7.17 15.02
akt2 0.61 15.41 5.14 3.16 25.71 25.64 31.62
aldr 0.76 34.80 9.07 5.03 60.44 45.28 50.31
ampc 0.81 38.57 10.00 5.63 64.29 50.00 56.25
andr 0.72 18.97 6.70 4.24 34.93 33.46 42.38
aofb 0.45 1.64 0.98 0.82 2.86 4.92 8.20
bace1 0.64 1.77 2.19 1.63 2.73 10.95 16.25
braf 0.78 33.20 8.56 4.87 50.00 42.76 48.68
cah2 0.64 1.63 1.14 1.48 2.53 5.69 14.84
casp3 0.61 5.07 3.22 2.26 9.26 16.08 22.61
cdk2 0.74 10.97 4.77 3.50 18.37 23.84 35.02
comt 0.93 32.45 12.71 7.09 34.21 63.41 70.73
cp2c9 0.55 0.84 1.00 1.00 1.33 5.00 10.00
cp3a4 0.51 5.32 2.35 1.59 7.56 11.76 15.88
csf1r 0.71 27.13 7.11 4.04 36.59 35.54 40.36
cxcr4 0.77 40.54 9.02 5.76 47.06 45.00 57.50
def 0.85 32.91 11.80 6.68 57.89 58.82 66.67
dhi1 0.73 15.51 6.00 4.03 26.02 30.00 40.30
dpp4 0.74 17.28 6.61 4.03 22.22 33.02 40.34
drd3 0.45 3.75 1.25 0.81 5.22 6.25 8.13
dyr 0.84 27.28 9.61 5.59 36.21 48.05 55.84
egfr 0.83 30.14 10.67 6.13 45.92 53.32 61.25
esr1 0.89 50.77 14.68 7.89 92.38 73.37 78.85
esr2 0.87 36.60 13.14 7.49 65.37 65.67 74.93
fa10 0.71 13.08 5.33 3.50 34.15 26.63 35.01
fa7 0.85 26.56 8.97 6.32 47.62 44.74 63.16
fabp4 0.84 35.25 7.70 5.33 59.26 38.30 53.19
fak1 0.81 31.29 9.82 5.80 57.41 49.00 58.00
fgfr1 0.46 0.85 0.59 0.79 25.00 17.39 23.40
fkb1a 0.81 10.83 4.15 3.60 20.34 20.72 36.04
fnta 0.63 1.18 1.62 1.81 1.35 8.11 18.07
fpps 0.98 67.11 16.95 9.18 67.06 84.71 91.76

Performance on the DUD-E. Reprinted from [112].
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A. Detailed Results

Table A.13.: Continuation of the detailed results for all targets of the DUD-E dataset

using mRAISE inclusion.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

gcr 0.69 26.83 6.82 3.84 45.39 34.11 38.37
glcm 0.53 1.88 0.74 0.56 2.63 3.70 5.56
gria2 0.77 41.45 11.53 6.33 54.62 57.59 63.29
grik1 0.75 28.92 8.33 4.36 43.94 41.58 43.56
hdac2 0.58 4.90 2.60 1.78 8.65 12.97 17.84
hdac8 0.77 29.46 10.61 5.89 47.17 52.94 58.82
hivint 0.56 7.05 3.00 2.10 10.45 15.00 21.00
hivpr 0.83 10.27 6.57 5.13 15.19 32.84 51.31
hivrt 0.62 12.73 4.32 2.55 22.40 21.60 25.44
hmdh 0.88 43.00 13.20 7.36 82.02 65.88 73.53
hs90a 0.78 26.33 10.03 6.14 46.94 50.00 61.36
hxk4 0.92 35.43 13.07 7.29 68.09 65.22 72.83
igf1r 0.77 16.28 5.82 4.06 25.53 29.05 40.54
inha 0.69 18.95 3.73 2.33 34.78 18.60 23.26
ital 0.32 18.17 3.92 2.03 29.07 19.57 20.29
jak2 0.85 28.05 10.66 6.17 45.45 53.27 61.68
kif11 0.75 34.80 10.35 5.87 57.97 51.72 58.62
kith 0.57 22.92 5.67 3.01 35.85 28.31 30.12
kit 0.45 8.79 3.52 2.11 17.24 17.54 21.05
kpcb 0.82 43.84 13.05 6.82 67.05 65.19 68.15
lck 0.55 6.19 2.33 1.98 9.35 11.67 19.76
lkha4 0.81 7.62 4.34 4.57 13.54 21.64 45.61
mapk2 0.91 41.91 13.48 7.63 67.74 67.33 76.24
mcr 0.65 12.86 4.04 2.55 23.08 20.21 25.53
met 0.88 62.68 13.74 7.41 91.23 68.67 74.10
mk01 0.76 31.83 7.61 4.44 54.35 37.97 44.30
mk10 0.54 2.89 2.12 1.73 4.48 10.58 17.31
mk14 0.60 8.85 3.08 2.21 14.05 15.40 22.15
mmp13 0.89 38.82 11.79 6.85 58.89 58.92 68.53
mp2k1 0.47 19.17 3.97 2.15 28.05 19.83 21.49
nos1 0.44 4.02 1.20 0.90 4.94 6.00 9.00
nram 0.89 22.80 11.66 6.84 35.48 58.16 68.37
pa2ga 0.77 32.60 11.53 6.47 61.54 57.58 64.65
parp1 0.75 24.05 7.09 4.41 40.00 35.43 44.09
pde5a 0.74 23.64 6.13 3.39 33.69 30.65 33.92
pgh1 0.44 4.65 1.75 1.23 8.26 8.72 12.31
pgh2 0.78 35.51 10.21 5.59 65.53 51.03 55.86
plk1 0.64 1.87 1.87 1.50 2.90 9.35 14.95
pnph 0.99 65.54 18.29 9.91 95.71 91.26 99.03
ppara 0.87 18.53 8.80 5.90 35.03 43.97 58.98
ppard 0.83 18.01 8.25 5.25 34.68 41.25 52.50

Performance of all 102 targets of the DUD-E using mRAISE equality. The query

ligand for aa2ar was not used from DUD-E but downloaded from the PDB for

technical reasons. Reprinted from [112].
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A. Detailed Results

Table A.14.: Continuation of the detailed results for all targets of the DUD-E dataset

using mRAISE inclusion.
Target AUC EF1% EF5% EF10% HR1% HR5% HR10%

pparg 0.78 21.94 8.23 4.77 41.25 41.12 47.73
prgr 0.65 8.21 2.66 2.15 15.09 13.31 21.50
ptn1 0.52 13.21 4.78 3.16 23.29 23.85 31.54
pur2 1.00 54.88 20.03 10.01 100.00 100.00 100.00
pygm 0.49 0.00 0.52 1.30 0.00 2.60 12.99
pyrd 0.84 50.89 12.83 7.03 86.15 63.96 70.27
reni 0.62 28.12 5.98 3.18 41.43 29.81 31.73
rock1 0.44 1.02 0.80 0.60 1.59 4.00 6.00
rxra 0.95 28.51 15.43 8.25 52.86 77.10 82.44
sahh 1.00 55.76 20.07 10.01 100.00 100.00 100.00
src 0.63 9.95 3.93 2.63 14.90 19.66 26.34
tgfr1 0.84 24.15 9.94 6.24 37.21 49.62 62.41
thb 0.91 54.69 15.35 7.87 74.67 76.70 78.64
thrb 0.63 1.95 1.74 1.65 3.28 8.68 16.49
try1 0.66 6.92 3.88 2.81 11.79 19.38 28.06
tryb1 0.59 9.57 2.98 2.16 18.18 14.86 21.62
tysy 0.90 38.80 13.96 7.71 61.76 69.72 77.06
urok 0.68 11.73 3.83 2.66 19.00 19.14 26.54
vgfr2 0.64 6.37 2.79 2.32 10.28 13.94 23.23
wee1 0.99 61.27 19.25 9.90 100.00 96.08 99.02
xiap 0.96 52.45 17.22 9.11 100.00 86.00 91.00

Average 0.72 22.76 7.45 4.45 37.12 37.37 44.60
Standard deviation ± 0.16 ± 17.04 ± 4.99 ± 2.51 ± 27.14 ± 24.73 ± 24.93

Performance of all 102 targets of the DUD-E using mRAISE equality. The query

ligand for aa2ar was not used from DUD-E but downloaded from the PDB for

technical reasons. Reprinted from [112].
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Appendix B.

Implementation

This section will provide an overview of the implementation of the software tool

mRAISE developed during this dissertation. The software has been implemented

using the coding language C++ and is available in two different versions:

• mRAISE cmdline provides a slim command line interface and is ideally

suited for large scale screening runs using automated scripts on computer

clusters.

• mRAISE provides a GUI, which can also be used for the basic screening func-

tionalities for mRAISE, but is especially designed for the query preparation

and visualization of screening results.

While no completely new libraries for the NAOMI library at the ZBH were devel-

oped, important contributions were made to the following libraries:

• FastBitIndex

• Trixx

These libraries provide the basic functionalities for descriptor generation, index

creation and descriptor matching and are shared between the different screening

approaches mRAISE, iRAISE, cRAISE and TrixP.

Besides these two libraries, the mRAISE software tools furthermore depend on

further internal components of the NAOMI-library as well as external libraries.

Figure B.1 shows all dependencies of both tools to all used libraries.
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B. Implementation

Figure B.1.: Overview of the dependencies of the mARAISE software tools. External

libraries are shown in red, Naomi libraries are shown in blue and

libraries modified during this work as well as the tools are shown in

green.

B.1. Dependencies to the NAOMI-library

• MolLib includes the functionality to initialize molecules from various file

formats into the internally used representation. Furthermore, it includes

the underlying chemical model and proves also the functionality to write

molecules back to file.

• MoleculeDB is the utilized SQLite database for the efficient storage of

molecules in multiple conformations.

• PropertyDB addition to the MoleculeDB to store additional data alongside

the molecule entries.

• Geometry3d includes three-dimensional objects like spheres and the used

icosahedron. Furthermore, this library includes the functionality to calculate

the transformations to align point triplets.

• ComplexLib provides the internal representation of protein-ligand complexes

and has dependencies to the ProLib, which provides the functionality to

initialize proteins from files as well as determining an active site.
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B.2. Dependencies to the External-library

• Interactions calculates directed interactions for molecular structures. The

interaction model of this library is the basis for the polar interactions in Trixx.

• Conformations provides the latest version of the CONFECT method for the

generation of additional conformations for a given molecule.

• Widgets includes a variety of ready to use widgets for Qt GUI applications.

It has been used primarily to include functionality needed to use a license

system in the software.

• Visualization3dLib provides the basic functionality to include a widget for

3d visualization of small molecules and proteins alongside other simple

three-dimensional objects in a Qt GUI.

B.2. Dependencies to the External-library

• boost is a basic library for C++ providing a variety of useful data structures

and algorithms.

• Qt is a framework for the platform-independent development of GUIs in

C++.

• QtSQL provides an easy to use interface for SQLite databases. SQLite is an

open software library providing an SQL database that does not need an extra

server.

• FastBit is the library used to create the compressed bitmap index for the

triangle descriptors. Since FastBit does not provide support for other systems

than Linux at the moment, mRAISE is only available for Linux operating

systems.

B.3. Used Modules of the Trixx-library

• Interactions includes the creation of interaction points based on the NAOMI

interactions and with additional algorithms for the calculation of hydrophobic

interaction points.

• InteractionTriangle provides the functionality to enumerate triangles based

on previously calculated interaction points. This also includes the algorithms

for the canonization of descriptors and the creation of the shape descriptor.
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B. Implementation

• MoleculePreprocessor uses both previously mentioned libraries to create a

Trixx-Molecule, annotated with all information needed for VS using the TrixX

descriptor.

B.4. Used Modules of the FastBitIndex-library

• TriangleIndexBuilder creates the descriptor index.

• TriangleIndexInquirer matches query descriptors against a previously de-

fined descriptor index.

• Match stores the minimally required information of a matching descriptor

pair.
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Appendix C.

mRAISE User Guide

After downloading and extracting the mRAISE package, the resulting folder in-

cludes both binaries of mRAISE together with the folders ”lib”, ”Licenses”, ”plugins”

and ”qml”. These folders include external libraries and other resources required by

mRAISE. In the following, the usage of the command line version of mRAISE will

be described in detail. For the usage of the GUI version see Appendix D.

C.1. Starting mRAISE cmdline

mRAISE cmdline can be directly started from the package folder. For an overview

of the available parameters use

./ mRAISE cmdline - -help

or just start it without any parameters. On the command line you now see all

parameters with a short description. A list of all parameters can be seen in Table C.1

and Table C.2. Please note that working with mRAISE is divided into three major

steps, which can only be used separately. Theses steps represent different use-

cases in the LBVS process and are indicated by parameters with a capital letter.

mRAISE cmdline can be used for creating a new descriptor index (I), to screen an

existing descriptor index (S) or to evaluate previous screening solutions (E). Each

of this steps can be further specified with additional parameters use-case specific

and general parameters.
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C. mRAISE User Guide

Table C.1.: Overview of all mRAISE cmdline parameters.

Parameter Description

General options

-h [ –help ] Prints the help message.

-v [ –verbosity ] arg (=1) Regulates the detail of output.

quiet(0) / basic(1)=default / detailed(2)

-s [ –summary ] arg Summary log file for statistics

of index creation or screening runs.

The file includes information like

the number of generated descriptors,

the number of matches,

and the run time statistics.

-l [ –license ] arg mRAISE uses a license system,

with this command a new license

can be provided.

-f [ –folder ] arg Folder in which a new index can

be written or in which a previously

calculated index can be found.

For the creation of a descriptor index,

a new folder will be created with the

provided name.

-o [ –output ] arg Name of the output file for screening runs.

or evaluation.

Indexing options

-I [ –Indexing ] arg Multy-mol2 or -sdf file containing all

structures that should be written into a

new descriptor index.

The index location has to be specified

using -f.

If the folder already contains an index,

molecules will be attached.

-c [ –conformations ] arg (=0) Number of conformations that should be

generated for each compound.
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C.1. Starting mRAISE cmdline

Table C.2.: Overview of all mRAISE cmdline parameters.

Parameter Description

Screening options

-S [ –Screening ] arg File containing a query molecule that

should be used for screening an index

specified with -f.

The provided file needs to be of type .mol2

or sdf.

-t [ –matching type ] arg Matching type paramter for partial bulk

comparison. 25% bulk requirement(0) / 50%

bulk requirement(1)

-r [ –referenceProtein ] arg Reference protein that should be used

together with the query molecule

in order to derive partial shape constraints.

-p [ –partial ] arg Partial Shape Constraint Type as derived

from the reference Protein. Inclusion(0) /

Contact(1)

-d [ –poseDB ] arg Name for a solution database containing

the best pose for each conformation.

Such a DB is needed to write molecules to

sdf during Evaluation. Otherwise it is

optional for screening.

Evaluation options

-E [ –Evaluation ] arg Load one or more solution databases (comma

separated)

-g [ –group ] arg (=molecule) Pick one solution for each ’conformation’,

’molecule’ or ’name’.

-w [ –write results ] arg (=100) Write down best x conformations to an

.sdf file.
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C. mRAISE User Guide

C.2. Example Use Cases

In the following, the three different use cases, which can be performed using

mRAISE cmdline are explained with examples for the used parameters. The first

use case is the creation of a new descriptor index for a compound library, the

second is the screening of an existing index, and the third writes a certain number

of top-ranked conformations to a file.

C.2.1. Creating a Descriptor Index

To create a descriptor index, a molecule file containing the screening library needs

to be provided. Furthermore, the user has to decide where the index should be

created and if additional conformations should be generated for the provided

compounds.

Therefore, the tool has to be called with the -I parameter, followed by the molecule

file, furthermore, a name needs to be given for the folder the index will be created

in. If only a name and no path is given, the directory is created in the current

directory. If a folder of this name already exists, the program will terminate.

./ mRAISE cmdline −I s c r e e n i n g l i b r a r y . mol2

−f indexFolder

If the user wants to generate conformations for the compound library, the maximum

number of conformations per compound has to be defined using the -c parameter.

./ mRAISE cmdline −I s c r e e n i n g l i b r a r y . mol2

−f indexFolder −c 200

This call is sufficient to create a new descriptor index for all compounds of the

file ’screeninglibrary.mol2’ in a new folder named ’indexFolder’ with up to 200

additional conformations for each compound.

Additionally, the user could specify the name of a log file using -s. After the index

creation, this file would contain information like the number of input molecules,

the number of generated conformations, the number of generated descriptors and

the time needed to fulfill this process.

C.2.2. Screening a Descriptor Index

Once an index has been created, is can be screened as often as desired. In this step,

the user has to choose parameters according to the kind of query he wants to use.
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C.2. Example Use Cases

The query ligand that should be used has to be provided either in mol2 or sdf

format using the -S parameter. Furthermore, the descriptor index that should be

screened has to be defined using again the -f parameter and the output file showing

the scores for all compounds has to be provided with -o.

./ mRAISE cmdline −S queryMol . mol2 −f indexFolder

−o ranking . csv

If the provided query ligand has been created using the mRAISE GUI, the query

mode defined in the file, i.e. 25% shape matching, 50% shape matching or manually

selected partial shape constraints provided in the file annotation are used.

However, if the ligand does not contains mRAISE query information, the matching

type has to be defined using -t and can be either 25%(0) or 50%(1) shape matching.

./ mRAISE cmdline −S queryMol . mol2 −f indexFolder

−o ranking . csv −t 1

Alternatively, a reference protein can be provided using -r and complex-derived

partial shape constraints are derived according to the simultaneously provided -p

parameter. For example

./ mRAISE cmdline −S queryMol . mol2 −f indexFolder

−o ranking . csv −r queryProtein . pdb

−p 0

starts a screening run using complex derived inclusion queries and matching

ligands are likely to fit into the respective binding site.

An optional parameter during the screening procedure is again -s to create a log file

with the given name including information like the number of query descriptors,

the number of matches and run time measurements. Additionally -d can be used

to write the best scored alignment poses into a database for later evaluation using

the GUI or this tool with the -E parameter as shown in the next section.

C.2.3. Evaluation of Screening Results

If a screening run has been performed and a solution database has been created

using the -d parameter, the database can be processed to write the best scored poses

to a new molecule file. If the compound library has been split to screen the different

parts of it simultaneously, the resulting solution databases can be combined and

evaluated at once.

Using the -E parameter, one or multiple solution databases can be selected and the

number of solutions provided with the -w parameter are written into a new file

provided with -o.
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C. mRAISE User Guide

./ mRAISE cmdline −E screening . db −w 50 −o top50 . sdf

By default, this writes the best 50 solutions into the top50.sdf file with only one

solution per unique molecule. Alternatively, the -g parameter can be used to instead

choose to write the best solution per molecule name or per conformation.
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Appendix D.

mRAISE GUI User Guide

The second version of mRAISE provides a fully functional GUI. Using this interface

the user can create and screen descriptor indices, visualize query ligands and

descriptors, define manual shape queries, and visualize screening results.

The following user guides introduces the different functionalities of the mRAISE

GUI.

D.1. Starting mRAISE

The mRAISE binary can be started directly and does not require any additional

parameters.

./mRAISE

D.2. Screening Preparation

LBVS runs can be prepared in mRAISE using the screening tab (see Figure D.1).

This tab shows a list of prepared queries and indices and if an index and a query are

selected, a screening run can be started directly using the ’Start Screening’ button.

In order to create a new index the ’Create Index’ button has to be clicked. In the

following pop-up dialog, a name, a directory and a molecule file containing the

compound library can be selected. If additional conformations should be generated

for the screening library, the maximum number of conformations per compound

can be selected as well. After accepting the dialog, the descriptor index is created

139



D. mRAISE GUI User Guide

Figure D.1.: Screenshot of the screening tab with explanatory text.

accordingly. To define a query based on a new ligand, the query definition dialog

can be started by clicking on the ’Add Query’ button.

D.3. Query Definition

Figure D.2 shows the query definition dialog. Here, molecules or protein-ligand

complexes can be loaded from input files to create queries for screening.

Once a ligand or complex is loaded, it can be visualized by clicking on its entry

in the respective lists. For a displayed structure, interaction points and descriptors

can be shown by clicking on the respective checkboxes.

By clicking on the ’Create Query’ button, the currently selected ligand or complex

is used to derive a new query for screening. For a ligand, the query can be defined

by selecting one of the options ’Match 25%’, ’Match 50%’ or ’Atom selection’. In

order to derive partial shape constraints based on an atom selection, first atoms

have to be selected by clicking on them as shown in Figure D.3. In case a complex is

selected when clicking on ’Create Query’, the user can decide if inclusion of contact

constraints should be derived from the complex. Defined queries are displayed in

140



D.3. Query Definition

Figure D.2.: Screenshot of the query definition dialog with explanatory text.

Figure D.3.: Screenshot of a ligand with selected atoms indicated by yellow spheres

in the query definition dialog.
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D. mRAISE GUI User Guide

Figure D.4.: Screenshot of the solutions visualization tab with explanatory text.

the ’Queries’ list of the query definition dialog as well as in the respective list of

the screening tab when the dialog is closed.

Additionally, defined queries can be saved to sdf files using the ’Save to File’ button.

This way, even queries based on atom selections can be saved and afterwards used

in the mRAISE cmdline version.

D.4. Screening Solution Visualization

If a screening run is performed using the GUI, the results are automatically dis-

played in the visualization tab (Figure D.4). Alternatively, screening solutions of

previous screening runs stored in a solution database can be loaded by clicking on

’Load Results’, providing the path to the database as well as the used query ligand.

In the bottom half of the window, a sorted list of found hits together with the

respective similarity score are shown and by clicking on the ’Show one solution per’

dropdown menu the user can select what kind of solutions should be displayed.

By clicking on the ’Write to File’ button, a selected amount of top ranked solutions

can be saved to a molecule file.
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D.5. Alignment Visualization

Figure D.5.: Screenshot of the alignment visualization of a screening solution with

explanatory text.

Furthermore, by clicking on an entry in the list, a new dialog is opened showing

the respective molecular alignment. This is shown in detail in the next section.

D.5. Alignment Visualization

For a selected hit the molecular alignment is displayed in a separate window (see

Figure D.5). By default, the query is shown in green and the aligned compound is

shown in blue. However, by clicking on ’Color by atom type’ or ’Color by Score’

the color of the ligands can be changed to display other information. In the right

corner the score of the respective alignment is displayed and with the buttons at

the bottom the visualization can switch to the previous or next hit of the sorted list.
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Appendix E.

mRAISE Dataset

The mRAISE dataset has been composed as benchmarking set for future comparison

studies. It is therefore available on the homepage of the Center for Bioinformatics

Hamburg. An overview of the dataset can be seen in Table E.1
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E. mRAISE Dataset

Table E.1.: List of all PDB–IDs of the alignment validation dataset with correspond-

ing HET codes of the ligands.
PDB HET PDB HET PDB HET PDB HET

1C1P BAI 2F18 GB1 3MHM J75 4IPW 1G7
1C1Q BAI (Fragment) 2F1B GB3 3MHO J43 4IQ9 1GB
1C5Q ESI 2F7O MSN 3MMF D9H 4KTF 1TM
1C5S ESX 2F7P 2SK 3MNA DWH 4KTJ KTJ
1C5T ESP 2F7R SK3 3MYQ E27 4KTK KTK

1GHZ 120 3BLB SWA 3MZC S6I 2AVV MK1
1GI0 BMZ 3DX2 MZB 3N0N P9B 2F80 017
1GI6 124 3DX3 YTB 3N3J WWV 2QCI 065
1GJ6 132 3DX4 GOO 3OIK WZB 3PWR ROC
1O2I 655 3EJP HN2 3OYQ OYQ 3QAA G04
1O2N 762 3EJQ HN3 3P3H 84A 3SAB F78
1O2P 972 3EJR HN4 3QYK IE2 3TH9 9Y9
1O2Q 991 3EJS HN5 3RJ7 RCS 3TOG 079

1O2R CR9 1RMZ NGH 3RYJ RYJ 4HDB G52
1O2U 847 2HU6 37A 3RYV RYV 4KB9 G79

1O33 801 3F16 HS3 3RYY RYY 3U5L 08K
1O35 802 3F17 HS4 3RYZ RYZ 3ZYU 1GH
1O37 653 3F18 HS5 3S71 EVD 4BW1 S5B
1O3D 780 3F19 HS6 3S74 03T 4BW3 9BM
1O3J 334 3F1A HS7 3S8X E59 4CFL 8DQ
1O3L 678 4GR0 R4B 3S9T E49 4F3I 0S6
2AYW ONO 4GR8 R4C 3SAX E50 4HXM 1A8
3A8A 4FZ 4H76 10B 3SBI E90 4HXN 1A7

3LJO 11U 1GZ8 MBP 3V5G 0F3 4HXS 1A3

3NKK JLZ 2R3F SC8 3ZP9 9TH hHB4 SCV
4AB9 VXQ 2R3H SCE 4BF1 9FK 1OBN ASV
4ABA SW1 2R3I SCF 4DZ7 D02 1QJF ACS
4ABD SW2 2R3Q 5SC 4DZ9 ID4 1UZW CDH
4ABE 913 2R3R 6SC 4FPT 0VZ 1W04 HCG

1C5N ESI 4EK4 1CK 4KAP 1QV 1W3V MDZ

2CF8 ESH 4GCJ X64 3FVP UB2 1W3X W2X

2CN0 F25 2AW1 COX 3QGO 0A9 2BU9 HFV
2ZFF 53U 2FOQ B15 3T74 UBY 2IVI ACW
3P17 99P 2NNG ZYX 3T87 UBZ 2IVJ BCV

3RM0 S54 2NNS M25 3T8D UBV 2JB4 A14
3U8O PRD 000940 (DTH,DPN,PRO,NH2,DAR) 2QO8 3CC 3T8F UBU 2VBB VAZ
3U8R PRD 001093 (DPN,PRO,NH2,DAR,ILE) 2QP6 MB1 3T8G UBT 2Y60 M8F
3U98 BJA 2WEG FBV 3T8H UBS 3ZKU HCV
3UWJ TIF 2WEO FBW 4D9W X32 3ZKY WT4

3VXE DPN 3DCW EZL 3G5H YTT 4BB3 KKA

1TQS SSO 3IBU O48 4G48 PZB
1TQW BLT 3M96 E38 4IPS 1G4

Ensembles are separated by horizontal lines and listed in the following order:

Trypsin, Thrombin, ALPHA-MANNOSIDASE II, Matrix metalloproteinase-12

(MMP-12), CDK 2 Kinase, Carbonic Anhydrase II, Thermolysin, CYP121, HIV

Protease, Bromodomain-containing protein 4, Isopenicillin N Synthase

Reprinted from [107] with permission of Springer.
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native algorithmic approach to ligand-based virtual screening,” J. Comput.

Aided Mol. Des., vol. 30, pp. 583–594, Aug 2016.

2. M. M. von Behren and M. Rarey, “Ligand-based virtual screening under

partial shape constraints,” J. Comput. Aided Mol. Des., Manuscript submit-

ted for publication.

3. M. M. von Behren, A. Volkamer, A. M. Henzler, K. T. Schomburg, S. Urbaczek,

and M. Rarey, “Fast protein binding site comparison via an index-based

screening technology.,” Journal of chemical information and modeling, vol. 53(2),

pp. 411–22, 2013.

F.2. Publications in Scientific Books

1. A. Volkamer, M. M. von Behren, S. Bietz, M. Rarey, “Prediction, Analysis and

Comparison of Active Sites” Chemoinformatics, Basic Concepts and Methods,

Manuscript submitted for publication.
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1. M. M. von Behren, M. Rarey, An Index-based Virtual Screening Technol-

ogy and its Application for Ligand-based Screening and Compound Li-

brary Design, Gordon Research Conference, 2015, Boston, USA
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