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Abstract

Intelligent assistive robots have recently taken their first steps toward entering

domestic scenarios. It is thus expected that they perform tasks which are often

considered rather simple for humans. However, for a robot to reach human-like

performance diverse subtasks need to be accomplished in order to satisfactorily

complete a given task. These subtasks include perception, understanding of the

environment, learning strategies, knowledge representation, awareness of its own

state, and manipulation of the environment.

An open challenging issue is the time required by a robot to autonomously learn

a new task. A strategy to speed up this apprenticeship period for autonomous

robots is the integration of parent-like trainers to scaffold the learning. In this

regard, a trainer guides the robot to enhance the task performance in the same

manner as caregivers may support infants in the accomplishment of a given task.

In this thesis, we focus on these learning approaches, specifically on interactive

reinforcement learning to perform a domestic task. We use parent-like advice to

explore two set-ups: agent-agent and human-agent interaction.

First, we investigate agent-agent interactive reinforcement learning. We use an

artificial agent as a parent-like trainer. The artificial agent is previously trained

by autonomous reinforcement learning and afterward becomes the trainer of other

agents. This interactive scenario allows us to experiment with the interplay of

parameters like the probability of receiving feedback and the consistency of feed-

back. We show that the consistency of feedback deserves special attention since

small variations on this parameter may considerably affect the learner’s perfor-

mance. Moreover, we introduce the concept of contextual affordances which allows

to reduce the state-action space by avoiding failed-states, i.e., to avoid a group of

states from which it is not possible to reach the goal-state of a task. By avoiding
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failed-states, the learner-agent is able to collect significantly more reward. The ex-

periments also focus on the internal representation of knowledge in trainer-agents

to improve the understanding of what the properties of a good teacher are. We

show that using a polymath agent, i.e., an agent with more distributed knowledge

among the states, it is possible to offer better advice to learner-agents compared

to specialized agents.

Thereafter, we study human-agent interactive reinforcement learning. Initially,

experiments are performed with human parent-like advice using uni-modal speech

guidance. The experimental set-up considers the use of different auditory sensors

to compare how they affect the consistency of advice and the learning performance.

We observe that an impoverished speech recognition system may still help interac-

tive reinforcement learning agents, although not to the same extent as in the ideal

case of agent-agent interaction. Afterward, we perform an experiment including

audiovisual parent-like advice. The set-up takes into account the integration of

multi-modal cues in order to combine them into a single piece of consistent advice

for the learner-agent. Additionally, we utilize contextual affordances to modulate

the advice given to the robot to avoid failed-states and to effectively speed up the

learning process. Multi-modal feedback produces more confident levels of advice

allowing learner-agents to benefit from this in order to obtain more reward and to

gain it faster.

This thesis contributes to knowledge in terms of studying the interplay of multi-

modal interactive feedback and contextual affordances. Overall, we investigate

which parameters influence the interactive reinforcement learning process and show

that the apprenticeship of reinforcement learning agents can be sped up by means

of interactive parent-like advice, multi-modal feedback, and affordances-driven en-

vironmental models.
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Zusammenfassung

Intelligente Assistenzroboter werden vermehrt in häuslichen Umgebungen

eingesetzt, wo sie entsprechende Aufgaben übernehmen, die für Menschen einfach

umzusetzen sind. Um eine ähnliche Performanz mit einem Roboter zu erreichen, ist

es häufig nötig, Teilaufgaben zu definieren. Diese beinhalten die Perzeption, sowie

das Wissen und Verstehen der Umwelt, Lernstrategien, Wissensrepräsentationen,

das Bewusstsein über den eigenen Zustand und Handlungsmöglichkeiten in der

jeweiligen Umgebung.

Das Erlernen autonomen Handelns hinsichtlich einer speziellen Aufgabe durch

einen Roboter ist bis heute ein nicht vollständig gelöstes Problem. Eine mögliche

unterstützende Lernstrategie für autonome Roboter ist das Bereitstellen eines

sogenannten “Lehrers” oder “Trainers”, dessen Rolle es ist, den Roboter in der

Ausführung einer Aufgabe anzuleiten, ähnlich wie Eltern ihren Kindern beim

Erlernen von Fähigkeiten helfen. In der vorliegenden Dissertation konzentrieren

wir uns daher auf genau solche Lernszenarien, insbesondere auf das interaktive,

verstärkende Lernen (“interactive reinforcement learning”, IRL) zur Ausführung

von häuslichen Aufgaben. Wir verwenden das o.g. Lehrerprinzip zur Untersuchung

von zwei Fallstudien: die Agenten-Agenten-Interaktion und Mensch-Agenten-

Interaktion.

Als Erstes untersuchen wir die Agenten-Agenten-Interaktion mit der verstärkenden

Lernstrategie (IRL). Ein künstlicher Agent dient dabei als Lehrer, welcher zuvor

mit der “reinforcement”-Methode trainiert wurde um autonome Aufgaben erfüllen

zu können. Dieses Wissen wird dann auf den anderen Agenten übertragen.

Diese Art der Interaktion erlaubt die Untersuchung des Zusammenspiels von

Parametern wie z.B. der Wahrscheinlichkeit ein Feedback zu erhalten oder dessen

Zuverlässigkeit. Wir zeigen, dass die Beständigkeit bzw. Zulässigkeit von Feedback
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eine entscheidende Rolle spielt, da schon kleine Variationen Einfluss auf die

Lernperformanz haben. Wir führen außerdem das Konzept von kontextuellen

Affordanzen ein, die es erlauben den Zustands-Aktions-Raum durch das Vermeiden

von sogenannten “failed states” zu minimieren. Dies sind Zustände von denen aus

es unmöglich ist, weitere sinnvolle Handlungen zu generieren. Diese Reduktion

des Aktionsraumes hat einen signifikant positiven Einfluss auf die verwendete

Lernmethode für den Lehrer. Unsere Experimente konzentrieren sich auch auf

die internen Repräsentationen des Agenten um ein verbessertes Verständnis über

die wichtigen Eigenschaften eines guten Lehrers zu gewinnen. Wir zeigen, dass das

Einsetzen eines sogenannten “polymath”-Agenten, d.h. ein Agent mit verteiltem

Wissen über seinen Zustandsraum, zu einer Verbesserung von Hinweisen in

Lernszenarien spezialisierter Agenten führt.

Desweiteren erforschen wir die IRL Strategie für die Mensch-Agenten Interaktion.

Die Experimente beinhalten das Erteilen von Ratschlägen, wie es für uns

Menschen üblich ist, wobei uni-modale Sprachsignale verwendet werden. Der

experimentelle Aufbau enthält verschiedene auditive Sensoren, um deren Effekt auf

die Zuverlässigkeit der erteilten Hinweise im Hinblick auf die Lernperformanz zu

vergleichen. Unsere Beobachtungen haben dabei gezeigt, dass schon ein einfaches

Spracherkennungssystem ein IRL-Szenario unterstützen kann, allerdings nicht im

selben Umfang wie im idealen Fall der Agenten-Agenten-Interaktion. Darauf

aufbauend zeigen wir Experimente, die audio-visuelle Hinweise verwenden. Das

Szenario beschreibt die Integration von multi-modalen Stimuli zur Bereitstellung

konsistenter Ratschläge für den lernenden Agenten. Wir verwenden außerdem

kontextuelle Affordanzen zur Modulierung von Hinweisen für den Roboter, was

zur Vermeidung von genannten “failed states” führt und damit zur Beschleunigung

des Lernverfahrens. Das multi-modale Feedback führt zu einer höheren Konfidenz

gegebener Ratschläge, was dafür sorgt, dass der lernende Agent seine Belohnung

erhöhen und diese schneller erhalten kann.

Diese Arbeit leistet einen Beitrag zum Wissen über das Zusammenspiel

zwischen multi-modalem interaktivem Feedback und kontextuellen Affordanzen.

Zusammengefaßt untersuchen wir den Einfluss von Parametern im IRL und zeigen,

dass das Erlernen von Fähigkeiten autonomer Agenten durch interaktives Handeln,

multi-modales Feedback und mit Hilfe von durch Affordanzen beschriebenen

Umgebungsmodellen erheblich verbessert werden kann.
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Chapter 1

Introduction

1.1 Motivation

There has been considerable progress in robotics in the last years allowing robots to

successfully contribute to our society. We can find them from industrial contexts,

where they are well established, to domestic environments, where their presence

is steadily rising. A reasonable concern is then: How well prepared are assistive

robots to be social actors in daily-life home environments in the near future.

Big challenges in robotics involve to work with service and assistive robots in home

environments and develop plausible robot domestic applications. The underlying

intention is the development of highly interactive intelligent robots to perform

tasks in new and complex environments while being able to anticipate and resolve

conflictual situations that may lead to mistakes or incomplete performance.

Intelligent robots operating around people should be able to know where they

are located, detect users, learn and recognize faces, learn new objects, understand

action-object opportunities, and furthermore, they should learn to behave coopera-

tive in domestic scenarios. In order to accomplish these complex tasks successfully,

robots have to deal with many challenges such as perception, pattern recognition,

navigation, and object manipulation, all of that in varying environmental condi-

tions. Such challenges can only be addressed if the robot constantly acquires and

learns new skills, either autonomously or from parent-like trainers.

This thesis principally targets bio-inspired developmental learning and psycholog-
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ically motivated learning approaches within the context of home applications for

a domestic cleaning scenario. These methods are inspired by how humans develop

knowledge through interactions with their environment.

1.2 Problem Statement and Research Questions

Reinforcement Learning (RL) is a learning approach supported by behavioral psy-

chology where an agent, e.g., an infant or a robot, interacts with its environment

trying to find an optimal policy to perform a particular task. In every time step,

the agent performs an action reaching a new state and, sometimes, may obtain

either a reward or a punishment. The agent tries to maximize the obtained reward

by choosing the best action in a given state (Sutton and Barto, 1998).

One RL problem, that still remains open, is the time spent by an RL agent during

learning. It often requires excessive time to find a proper policy (Knox and Stone,

2009), mainly due to a large and complex state action space which leads to excessive

computational costs. To overcome this issue, sometimes an RL agent may be

guided by a trainer in order to help the agent to finish the task more rapidly,

like parents assisting their children. In this regard, when interacting with their

caregivers, infants are subject to different environmental stimuli which can be

present in various modalities. Nevertheless, when more modalities are considered,

issues can also emerge regarding the interpretation and integration of multi-modal

information, especially when multiple sources are conflicting or being ambiguous,

e.g., yielding low confidence levels (Ozasa et al., 2012). As a consequence, the

advice to follow may not be clear and may be misunderstood, and hence, may lead

the apprentice agent to a decreased performance when solving a task (Cruz et al.,

2016a).

In this thesis, we explore approaches aiming to speed up the RL method, such

as interactive feedback using both agent-agent and human-agent interaction, com-

plemented by the use of contextual affordances, which are a generalization of the

affordance concept (Gibson, 1979), as a way to model possible actions in the en-

vironment. Therefore, the main research question can be stated as: Can RL be

sped up by using parent-like advice and affordance-driven environmental models?

A subset of supplementary research questions arise in order to answer the main one
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Review and analysis of 
existing approaches

Problem statement

Set-up of the 
experimental scheme

Result verification
 and analysis

Report of results

Figure 1.1: Five steps carried out into the scientific method.

and to obtain a better understanding of interactive reinforcement learning (IRL):

• How can an affordance-based model of the environment support the IRL

framework?

• What constitutes a good teacher-agent when considering internal knowledge

representation and interaction parameters?

• How beneficial is uni- and multi-modal advice during the apprenticeship pro-

cess?

These questions will be addressed in this document one by one with the aim of

answering the main research question. In the context of a robot learning a new

task with an advisor suggesting actions in order to complete the task successfully,

we hypothesize that a concrete range of advice level is needed to obtain a good

performance by the robot. The advice level is measured in terms of the probability

of feedback and the robot performance in terms of the collected reward and number

of actions to finish the task.

1.3 Research Methodology

The presented research can be divided into five main steps based on the scientific

method (see Fig. 1.1), as described by Nola and Sankey (2014):
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• Problem statement: As stated in the previous section, RL requires excessive

time to find a proper policy. Moreover, by using IRL, if more modalities

are considered, issues can also emerge regarding the interpretation and inte-

gration of multi-modal information, especially when multiple sources are in

conflict or ambiguous.

• Review and analysis of existing approaches: A comprehensive review of the

theoretical framework and recent research has been carried out. Since this

was a four-year research project, new approaches have emerged during the

time that this thesis has been developed in and have also been surveyed.

As a result, a detailed overview of useful approaches and their biological

and psychological representations has been obtained describing all methods

which are used in our project.

• Set up the experimental scheme: The methods found in the previous step

have been integrated into a common robotic scenario, including parent-like

advice to speed up the acquisition of the knowledge on how to perform a

domestic task. In this regard, different kinds of parent-like trainers have

been used to evaluate the learner-agent performance.

• Results verification and analysis: The results on achieving the goal of com-

pleting the domestic task have been evaluated systematically. To this end,

the collected rewards of different learner-agents have been used to assess the

convergence point and speed of convergence.

• Report results: All the obtained results have been reported through dif-

ferent scientific publications in high-impact conferences and journals. Ad-

ditionally, this thesis itself also represents a way to report the final ob-

tained results. In terms of code, all the routines developed during this re-

search project are available in a git repository. For further details, refer to

https://git.informatik.uni-hamburg.de/cruz/IRL.

1.4 Novelty and Contribution of the Work

This work presents methods, experimental set-ups, and novel results on interactive

reinforcement learning. The main contribution to the state of the art of IRL can
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be summarized in the following points:

• Study of interaction parameters. Learning is dissimilarly affected when

trainers with different interaction characteristics are used. We study the

probability of receiving feedback, consistency of feedback, and learner-agent’s

obedience. The consistency of feedback deserves special attention, given

that even very few mistakes in the advice given by trainers may lead to a

considerably worse learning process.

• Investigation of impact of different internal representations on IRL.

We contribute to a better understanding of the impact of different internal

representations of the knowledge on the performance of IRL. Results sug-

gest that using polymath agents (agents with more distributed knowledge

among the states) as trainers benefits the learning process leading to greater

collected reward and faster convergence in comparison to specialized agents.

• Extension toward contextual affordances. The classic idea of affor-

dances relates objects, actions, and effects. We have introduced the concept

of contextual affordances to model the actions in the environment taking into

consideration an additional variable for the state of the agent leading to a

more accurate representation of affordances.

• Interplay of interactive feedback and contextual affordances. By us-

ing IRL along with contextual affordances, learners take advantage of parent-

like trainer knowledge and a better understanding of the environment. Thus,

the learner is able to collect a greater reward and for this converges more

rapidly. Both approaches have not been utilized altogether in the RL frame-

work.

• Analysis of effects of uni- and multi-modal advice on IRL. Results

show that multi-modal stimuli benefit learners using RL in comparison to

uni-modal signals. Moreover, multi-modal advice modulated by contextual

affordances enables to collect greater and faster reward in comparison to

autonomous RL and non-affordances IRL.

Finally, from a more general view, the main contribution of this work is to show

that learning of RL agents can be sped up by using parent-like advice, multi-modal

feedback, and affordance-driven environmental models. All the aforementioned ap-
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proaches help individually, but, the combined use of them leads to greater benefits

on the performance of IRL. All these results are described and explained during

this thesis by means of different experimental set-ups.

1.5 Structure of the Thesis

The present document is organized into four main parts, each one of them is

described as follows:

I. Preamble and Basics: After a brief introduction to the problem and the way

to address it, we present the state of the art and a robotic scenario which

will be utilized in the course of this work.

1. Introduction: This is the current chapter which briefly describes what

motivates this thesis, states the problem along with defining the main

research questions, and shows the methodology utilized to address the

problem. It also presents a brief description of the main novelties and

contributions.

2. Theoretical Framework and Related Approaches: The state of the art is

presented from four different perspectives, all of them related and used

during the development of the work. Initially, we present the RL frame-

work and its components as well as the learning techniques utilized to

solve Markovian decision processes. Subsequently, we show the main

elements of artificial neural networks, including learning and training

methods. Consecutively, we present the affordance concept from the

classic perspective to the current use in robotics and agent control. Fi-

nally, we survey the main methods in IRL in autonomous agents show-

ing the main problems of the classic RL approach and defining different

kinds of IRL.

3. Robotic Cleaning-table Scenario: This chapter defines a domestic sce-

nario for a robotic agent. The scenario consists of a robot standing in

front of a table with the aim of cleaning it. The proposed scenario is

described as a Markovian decision process, and actions, states, transi-

tions, and a reward function are defined. The scenario description is
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an important section in this document since all proposed methods are

assessed throughout this scenario. The task is initially learned by an

agent autonomously and afterward, a second agent learns the same task

assisted by an external trainer, either artificial or human.

II. Agent-Agent Interactive Reinforcement Learning: The second part of the

document presents a general proof of concept for the proposed methods in

the sense of an artificial agent trained autonomously to after becoming itself

into a parent-like trainer. An artificial trainer-agent enables to better control

some experimental variables as well as repeat the apprenticeship process more

quickly. Moreover, it presents the basis to subsequently introduce a human

parent-like trainer in the next part.

4. Interactive Feedback and Contextual Affordances: It is introduced the

concept of contextual affordance to model the actions in the environ-

ment. This is linked with the first research question: How can an

affordance-based model of the environment support the IRL framework?

Contextual affordances are implemented by an artificial neural network

and then combined with IRL using an artificial parent-like trainer. Fur-

thermore, we allow a decreasing frequency of feedback over time in order

to mimic human-agent interactive scenarios. Our results show that IRL

using affordances benefits the learner-agent performance in terms of

collected reward and executed actions on each episode.

5. Influence of Different Trainer Types on Learner-Agents: This chapter is

directly related to the second research question: What constitutes a good

teacher-agent? We investigate what characteristics are relevant for an

agent to become a good teacher. To this end, the frequency of feedback

and the consistency of feedback, as well as the learner-agent’s obedience

are analyzed. The obtained results show that even using a polymath

trainer-agent with a low probability of feedback and high consistency of

feedback as an advisor, a learner-agent may learn in few episodes.

III. Human-Agent Interactive Reinforcement Learning: In the third part of the

thesis, the IRL is presented as an approach using human parent-like trainers

this time, at first with uni-modal auditory guidance only and then with

multi-modal audiovisual feedback. In this regard, this part of the document
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shifts our approach closer to naturalistic scenarios, considering multi-modal

stimuli complemented by an affordance-driven approach later.

6. Speech Guidance Using a Domain-specific Language: We show the

IRL approach working with human parent-like trainers. To deliver in-

structions or guidance we use an automatic speech recognition system

through different kinds of microphones in order to evaluate how the

hardware configuration affects the speech recognition and consequently

the guidance for a learner-agent. We also perform experiments with

environmental noise created by keeping an arbitrary distance from the

input sensors. Our results show that the speech-driven IRL approach

improves the learner-agent performance in terms of the performed ac-

tions over each episode.

7. Multi-modal Feedback Using Audiovisual Sensory Inputs: We extend

the speech-driven IRL approach in order to incorporate multi-modal

guidance which is related to the third and last posed research question:

How beneficial is uni- and multi-modal advice during the apprenticeship

process? We use audiovisual feedback identifying the advice associated

with the sensory input incorporating a confidence value. When using

multi-modal signals, it is necessary to deal with inconsistencies of the

inputs, therefore, we propose a mathematical transformation to relate

the likeness level considering congruent and incongruent sensory inputs.

Afterward, we complement this multi-modal integration model with an

affordance-driven approach to modulate the advice sent to the learner-

agent. Our best results are obtained by using multi-modal information

with contextual affordances during the apprenticeship process.

IV. Closing: The fourth and last part of the document presents the final conclu-

sions as well as appendices with additional material which is related to this

research but not directly utilized to address the posed research questions.

8. Conclusions: In this chapter, we summarize the main ideas, insights,

and methods described throughout the thesis. After analyzing the ob-

tained results, we develop the main conclusions and the contributed

knowledge to the state of the art in IRL. Moreover, this chapter dis-

cusses the open issues, describes limitations of the proposed model, and
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gives the main directions in order to address future improvements.

A. Contextual Affordances with an Associative Neural Architecture: This

first appendix shows an alternative method to learn contextual affor-

dances using an associative neural network. The robotic scenario is

based on the aforementioned domestic scenario with slight adjustments.

The obtained results show that the self-organized architecture is able

to learn the contextual affordances in the proposed scenario rapidly by

mapping the network inputs into a complex-domain output.

B. State Transitions of the Cleaning-table Scenario: The second appendix

shows more details of the search space in the robotic cleaning-table

task. States and transitions are shown by means of nodes and edges

respectively in a state machine.

C. Published Contributions Originating from this Thesis: This appendix

lists the scientific publications produced during the research for the

present thesis. Publications include journal articles, conference, and

workshops papers.
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Chapter 2

Theoretical Framework and

Related Approaches

2.1 Reinforcement Learning and Interaction

Learning is the process of acquiring knowledge, abilities, behavior, or principles

through study, experience, or education, and as such, it is one of the foundations

of intelligence, either human or artificial (Russell and Norvig, 1995). To use an

approach that includes learning is appropriate when full knowledge of the environ-

ment is not available at the moment of designing a solution (Mitchell, 1997). It is

by learning that systems are provided with autonomy.

Reinforcement Learning (RL) (Sutton and Barto, 1998) is a kind of learning that

allows autonomous agents to learn using feedback received from the environment

(Szepesvári, 2010; Busoniu et al., 2010; Rieser and Lemon, 2011). The basic idea

is inspired by nature itself, based on the manner that people and animals learn

(Niv, 2009). RL is based on trying actions and observing what happens in the

environment. If actions lead to better situations, there is the tendency of applying

such behavior again, otherwise, the tendency is to avoid such behavior in the

future. Therefore, the problem is reduced to learn how to select optimal actions

to be performed in each situation to reach a given goal (Rieser and Lemon, 2011).

Aims may be expressed by a function (of reward) which assigns a numerical value

to each action performed by the agent from a particular situation. Positive values
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s0 ...a0

r0 S2s1 a1 a2

r1 r2

Figure 2.1: An RL agent must associate what actions to select in each state in

order to maximize the collected reward.

indicate to the agent that the just performed action is good and negative values

indicate a bad action (Mitchell, 1997). Moreover, each performed action leads the

agent to a variation of the current state.

RL implies to acquire new knowledge to improve the performance of an agent

interacting with its environment. However, the agent is not told what actions to

take. The agent has to discover by itself what actions lead to more reward by

trial and error (Marsland, 2015). Hence, the agent has to associate situations (or

states) with actions which maximize:

r0 + λ · r1 + λ2 · r2 + ... (2.1)

where ri is the reward in episode i and λ ∈ [0, 1) the discount factor, a parameter

that indicates how influential future actions are. Fig. 2.1 depicts such a situation

for the three first episodes.

2.1.1 First Insights

One of the first ideas which are related to RL is what Aristotle called the contiguity

law. The philosopher expressed his idea as “things that occur near each other in

time or space are readily associated”. The contiguity law is one of the laws of

association proposed by Aristotle around the year 350 B.C. (Warren, 1916).

One other important idea for the conception of RL is the classic conditioning also

known as Pavlovian conditioning or stimulus-response learning (Pavlov, 1927).

Pavlov observed that when putting food in front of dogs, they started to salivate,

but also observed a similar response to other stimuli as seeing the person who

brought the food. Therefore, he experimented by ringing a bell each time he fed

the dogs. Afterward, Pavlov rang the bell without feeding the dogs. The dogs
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started to salivate regardless of the presence of food. Thus, dogs were giving a

response (salivation) to a stimulus (the bell). Learning by conditioning is based on

stimulus-response rules, which means that Pavlov’s dogs made no decisions, they

simply salivated because the ring of the bell reminded them of the food.

If we take into consideration that taken actions have consequences, the learning

is not only through stimulus-response associations anymore. This is known as

instrumental or operational conditioning (Thorndike, 1911). Thorndike examined

cats trying to escape from a box. The needed time to get out was monitored as

the learning metric and showed a decreasing learning curve. With his experiments,

Thorndike was able to establish that animals cannot only learn stimulus-response

relations, but also arbitrary behavior based on such stimuli.

Later on, Rescorla and Wagner (1972) introduced the error-driven learning princi-

ple, i.e., the update of an association value is proportional to the difference between

the prediction and observed values. Let st be a state and V (st) the association

value in the state st at time t, then we may call st+1 the next state and V (st+1)

the predicted value associated to the next state. The update of the predicted value

can be described as:

V ′(st)← V (st) + α[V (st+1)− V (st)] (2.2)

with α being a small positive value called learning rate, V (st+1) − V (st) the pre-

diction error, and V ′(st) the updated association value in the state st at time t.

Eq. (2.2) constitutes an example of a temporal-difference learning method given

that the update is done based on the difference V (st+1)− V (st) corresponding to

two estimations at different time steps.

2.1.2 Elements of Reinforcement Learning

Additionally to the agent itself and the environment, four main elements in RL

tasks can be identified (Sutton and Barto, 1998; Rieser and Lemon, 2011):

• The control policy.

• The reward function.

• The value function.

15



Chapter 2. Theoretical Framework and Related Approaches

• Optionally, a model of the environment.

Each of these elements will be explained in the following subsections.

2.1.2.1 Policy

The control policy defines the way the agent behaves at every moment. It is a

correspondence between the state the agent is in and the actions that can be taken

in such a state. Moreover, it resembles the stimulus-response association from

psychology.

In some occasions, the policy may be a function or a table, in other occasions more

complex approaches are necessary, such as artificial neural networks (Szepesvári,

2010). The policy is the core of RL in the sense that it is enough to determine the

agent’s behavior.

2.1.2.2 Reward Function

The reward function defines the objective of an RL problem. It establishes a

correspondence between each state of the environment (or state-action pair) and

a value which indicates the desirability of every state. The only aim of an agent

during the learning process is to maximize the overall received reward. In other

words, the reward function defines what events are good or bad for the agent in

terms of the aim, being the only way to indicate it (Mitchell, 1997).

In biological systems, the reward may be related to pleasure and pain which are

also associated with the level of the dopamine neurotransmitter in the brain (Niv,

2009). Obviously, the function is external to the agent and therefore it cannot be

modified by it.

2.1.2.3 Value Function

Alternatively, to the policy, the agent may also learn a function which indicates

how good each state is with respect to the aim, the so-called value function. On

the one hand, the reward function says what it is good in an immediate sense, on

16



2.1. Reinforcement Learning and Interaction

the other hand, the value function indicates what it is good for the whole task

execution (Busoniu et al., 2010).

The value of a state is the total amount of reward that an agent can expect

to accumulate in the future starting from that state. Rewards are given by the

environment whereas values must be estimated from sequences of observations that

an agent accumulates through the operation.

2.1.2.4 Model of the Environment

The model is something that imitates or mimics the behavior of the environment.

For instance, given a state and an action, the model might predict the result of

the next state and the next reward. Models are used to plan since the action

to perform can be decided considering possible future situations before they have

actually occurred.

One way to model the environment is by the use of affordances (Jamone et al.,

2017; Min et al., 2016). In fact, affordances allow anticipating the effect of an

action which is performed by the agent in the environment. This model will be

presented further in Sec. 2.2 since it represents a fundamental part of the performed

experiments.

2.1.3 The Reinforcement Learning Framework

RL is a learning method which allows an apprentice agent to learn from interactions

with the environment to reach an aim. The interaction is continuous, namely, the

agent selects actions and the environment responds to these actions presenting new

situations to the agent. Furthermore, the environment sends numerical rewards

that the agent attempts to maximize over time (Russell and Norvig, 1995).

At each instant t, the apprentice agent receives some representation of the state of

the environment st ∈ S, where S is the set of possible states. In that state st, the

agent selects an action at ∈ A(st), where A(st) is the set of available actions in st.

Afterward, as consequence of the performed action, the agent receives a numeric

reward rt+1 ∈ R and transits to a new state st+1 (Sutton and Barto, 1998). Fig.

2.2 shows the classic RL framework where an agent in st performs an action at
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Environment

Agent

rt+1
st+1

action
at

state
st

reward
rt

Figure 2.2: The classic reinforcement learning loop between the agent and the

environment. Figure adapted from (Sutton and Barto, 1998).

in the environment which takes the agent to a new state st+1 besides obtaining a

reward rt+1.

Each time, the agent updates the association between states and selection prob-

abilities of every possible action. This association is named policy and denoted

by π with πt(st, at) being the probability of performing action at in state st. RL

methods specify how the agent should change the policy as a result of its experi-

ence. Basically, the problem is to approximate a function π : S → A where S is

the set of states and A the set of actions. The agent aims to maximize the amount

of total reward obtained during the execution.

2.1.4 Markov Decision Processes

Markov Decision Processes (MDPs) are the base of RL tasks. In an MDP, transi-

tions and rewards depend only on the current state and the selected action by the

agent (Puterman, 1994). In other words, a Markov state contains all the informa-

tion related to the dynamics of a task, i.e., once the current state is known, the

history of transitions that led the agent to that position is irrelevant in terms of

the decision-making problem.

An MDP is characterized by the 4-tuple < S,A, δ, r > where:

• S is a finite set of states,

• A is a set of actions,
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• δ is the transition function δ : S × A→ S, and,

• r is the reward function r : S × A→ R.

As aforementioned, at each time t, the agent perceives the current state st ∈ S

and selects the action at ∈ A to perform it. The environment returns the reward

rt = r(st, at) and the agent transits to the state st+1 = δ(st, at). The functions

r and δ depend only on the current state and action, i.e., it is a process with no

memory.

To formalize the problem we should consider that the agent wants to learn the

policy π : S → A which, from a state st, produces the greatest accumulated

reward over time (Rieser and Lemon, 2011). Therefore, we can extend Eq. (2.2)

as follows:

rt + γ · rt+1 + γ2 · rt+2 + ... =
∞∑
i=0

λi · rt+1 = V π(st) (2.3)

where V π(st) is the accumulated reward by following the policy π from an initial

state st and λ is a constant (0 ≤ λ < 1) which determines the relative importance

of immediate rewards with respect to the future rewards. If λ = 0, then the agent

is short-sighted and maximizes only the immediate rewards. If λ→ 1 the agent is

more foresighted and takes more the future rewards into account.

2.1.5 Action Selection Methods

An agent choosing actions usually has to deal with the exploration/exploitation

trade-off problem, that is, the available information depends on the previously

performed actions and as such the agent has to explore the action space offsetting

the already explored good actions with others that it never tried (Marsland, 2015).

The agent needs a strategy to choose actions to perform in a given state. In

the following, we review different alternatives to implement such action selection

strategies.
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2.1.5.1 Greedy Method

The greedy method selects always the action a which reports the greatest value

from a state st. However, it is risky because by exploiting good actions, identified

at the beginning of the learning process, the agent could get stuck in local min-

ima and not consider potentially better actions (Szepesvári, 2010). Formally, the

probability P (st, a) of selecting an action a in a state st is defined as follows:

P (st, a) =


1 if a = argmax

ai∈A(st)
Q(st, ai)

0 otherwise

(2.4)

2.1.5.2 ε-Greedy Method

The ε-greedy method explores more in comparison to a greedy policy. To achieve

this, it utilizes an exploration factor ε, randomly chosen from a uniform distribu-

tion. Thus, the probability P (st, a) of selection action a in state st can be formally

defined as:

P (st, a) =


1− ε if a = argmax

ai∈A(st)
Q(st, ai)

ε otherwise

(2.5)

However, a drawback of this method is that if Q(s, a1) >> Q(s, a2) then actions

a1 and a2 have the same probability of being chosen at the moment of exploration

(Szepesvári, 2010). When comparing the greedy strategy with ε-greedy strategies,

it is observed that the greedy strategy may quickly get stuck in a local minimum

while the ε-greedy strategies in general converge to greater reward (Sutton and

Barto, 1998).

2.1.5.3 Softmax Method

The softmax method uses a parameter T (so-called temperature) to determine the

level of exploration. On the one hand, if T →∞, then all the available actions are

equally likely. On the other hand, if T → 0, then the softmax method becomes
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greedy (Szepesvári, 2010). The probability P (st, a) of selecting action a from state

st is formally defined as follows:

P (st, a) =
eQ(st,a)/T∑

ai∈A e
Q(st,ai)/T

(2.6)

Generally, T is reduced over time to benefit the convergence. Nevertheless, not

always it is easy to define T because it depends on the order of magnitude of

Q(s, a). Moreover, it is difficult to state whether ε-greedy or softmax performs

better since this may depend on other task-related factors and the set parameters

(Sutton and Barto, 1998).

2.1.6 Temporal-Difference Learning

Actions are selected according to a policy π, which in psychology is called a set of

stimulus-response rules or associations Kornblum et al. (1990). Thus, the value of

taking an action a in a state s under a policy π is denoted qπ(s, a) which is also

called the action-value function for a policy π.

In essence, to solve an RL problem means to find a policy that collects the highest

reward possible over the long run (Mitchell, 1997). If there exists at least one policy

which is better or equal than all others this is called an optimal policy. Optimal

policies are denoted by π∗ and share the same optimal action-value function which

is denoted by q∗ and defined as:

q∗(s, a) = max
π

qπ(s, a) (2.7)

This optimal action-value function can be solved through the Bellman optimality

equation for q∗ as follows:

q∗(s, a) =
∑
s′

p(s′|s, a)[r(s, a, s′) + γmax
a′

q∗(s′, a′)] (2.8)

where s is the current state, a is the taken action, s′ is the next state reached by

performing action a in the state s, and a′ are possible actions that could be taken

in s′. In the equation, p represents the probability of reaching the state s′ given
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that the current state is s and the selected action is a, and r is the received reward

for performing action a in the state s to reach the state s′.

For solving Eq. (2.8) diverse learning methods exist. Algorithm 2.1 shows a general

learning method with an iterative update of Q(s, a) based on temporal-difference

learning (Busoniu et al., 2010). Following, we revise two of these iterative methods.

Algorithm 2.1. General algorithm of temporal-difference learning.

1: Initialize Q(s, a) arbitrarily

2: for (each episode) do

3: Choose an action at

4: repeat

5: Take action at

6: Observe reward rt+1 and next state st+1

7: Choose an action at+1

8: Update Q(st, at)

9: st ← st+1

10: at ← at+1

11: until s is terminal

12: end for

2.1.6.1 On-policy Method SARSA

In the SARSA method, the update of Q(st, at) depends on the 5-tuple < st, at, rt,

st+1, at+1 >, which gave rise to the name SARSA (state, action, reward, state,

action). SARSA is an on-policy algorithm because it learns and follows the action

selection policy (based on the values Q(st, at)) at the same time. Furthermore, the

value Q(st, at) is updated using the value Q(st+1, at+1) of the next action at+1 that

the agent will perform in the next iteration (Mitchell, 1997).

The on-policy method SARSA solves the Eq. (2.8) considering transitions from

state-action pair to state-action pair instead of transitions from state to state only

(Rummery and Niranjan, 1994). Every state-action value can be updated using

the following Eq. (2.9):

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (2.9)
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2.1.6.2 Off-policy Method Q-learning

The Q-learning method is an off-policy algorithm because it learns the action

selection policy independently of the actions performed by the agent. The update of

the valueQ(st, at) is carried out utilizing the value maxa∈A(st+1)Q(st+1, a), although

the agent might perform a different action in the next iteration (Mitchell, 1997).

Therefore, state-action values are updated according to the Eq. (2.10) (Watkins,

1989; Watkins and Dayan, 1992):

Q(st, at)← Q(st, at) + α[rt+1 + γ max
a∈A(st+1)

Q(st+1, a)−Q(st, at)] (2.10)

Sutton and Barto (1998) carried out a task-oriented comparison between SARSA

and Q-learning. They used a grid world called cliff walking. The task consisted

of reaching a goal position, going through intermediate states receiving a negative

reward of −1 for each. In case that the agent stepped into a forbidden region (the

so-called cliff), the agent received a negative reward of −100 and it must restart

the task. Results showed the RL agent using SARSA to learn the longer but

safer path, keeping itself away from the cliff, while the RL agent using Q-learning

learned the shorter and riskier path.

2.1.7 Learning and Behavior

To autonomously explore the environment is one of the first developing behaviors

for a human. An infant is constantly exploring its surroundings and learning from

it most of the time without the need of a trainer to instruct it on how to perform

a task.

Learning in humans and animals has been widely studied in neuroscience yielding

a better understanding of how the brain can acquire new cognitive skills. We

currently know that RL is associated with cognitive memory and decision-making

in animals’ and humans’ brains in terms of how behavior is generated (Niv, 2009).

Fig. 2.3 shows how the brain interacts with the world and processes the sensory

inputs to generate motor actions. In general, computational neuroscience has

interpreted data and used abstract and formal theories to help to understand

about functions in the brain.
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brain
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motor processing

world
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Figure 2.3: The brain-world interactive framework. The brain processes sen-

sory information from the world using cognitive memory and decision-making to

perform motor actions which are previously processed in the brain.

RL is, therefore, a method used to address optimal decision-making, attempting

to maximize collected reward and minimize the punishment over time. It is a

mechanism utilized by humans and in robotic agents. In developmental learning,

it plays an important role since it allows infants to learn through exploration of the

environment and connects experiences with pleasant feelings which are associated

with higher levels of dopamine in the brain (Wise et al., 1978; Gershman and Niv,

2015).

The frontal cortex is known to play an important role in planning and decision-

making (Payzan-LeNestour et al., 2013). Moreover, neurophysiology has shown

the role of the basal ganglia and the frontal cortex in mammalian reinforcement
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learning (Wimmer et al., 2012). Based on neuroscience evidence, the basal ganglia

can be modeled by an actor-critic version of temporal difference learning (Rivest

et al., 2004). RL has been shown in infant studies (Hämmerer and Eppinger, 2012;

Deak et al., 2014) and in robotics (Kober et al., 2013; Kormushev et al., 2013)

to be successful in terms of acquiring new skills, mapping situations to actions

(Cangelosi and Schlesinger, 2015).

In developmental robotics (Cangelosi and Schlesinger, 2015) different tasks such

as navigation, grasping, vision, speech recognition, and pattern recognition among

others, can be tackled by different machine learning paradigms, like supervised,

unsupervised or reinforcement learning (Bishop, 2011; Rieser and Lemon, 2011). In

this thesis, we focus mainly on cognitive memory and decision-making which is the

central part in Fig. 2.3, but, we also include some ideas about sensory processing

to complement the decision-making process. In our approach, the autonomous

agents are provided with no previous knowledge on how to perform tasks and they

can learn only by making decisions when interacting with the environment and

through the reward obtained. Therefore, the learning process is carried out with

RL.

2.1.8 Interactive Reinforcement Learning in Autonomous

Agents

As aforementioned, RL is a plausible method to develop goal-directed action strate-

gies. During an episode, an agent explores the state space within the environment,

selecting random actions which bring the agent into a new state. Over time, the

agent learns the value of the states in terms of future reward, or reward proximity,

and how to get to states with higher values to reach the target by performing

actions (Weber et al., 2008).

To learn a task autonomously, an RL agent has to interact with its environment in

order to collect enough knowledge about the intended task. RL has demonstrated

to be a very useful learning approach; nevertheless, on some occasions, it is imprac-

tical to leave the agent to only learn autonomously, mainly due to time restrictions

or in other words, the excessive time spent during the learning process (Knox and

Stone, 2009), mainly due to large and complex state spaces which lead to excessive
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Figure 2.4: Interactive reinforcement learning extension including an external

trainer. The trainer provides interactive feedback over the policy to the agent.

computational costs to find a suitable policy (Ammar et al., 2012). Therefore,

we aim to find a way to accelerate the learning process. There are different ap-

proaches that attempt to speed up RL. Among them, interactive reinforcement

learning (IRL) involves an external trainer who provides some instructions on how

to improve the decision-making (Suay and Chernova, 2011; Grizou et al., 2013).

Fig. 2.4 shows a general view of the IRL approach where an external trainer is

added to the learning process to communicate feedback to the learner-agent. Fig.

2.5 shows a typical human-robot interaction where a robot is assisted in its learning

by a human parent-like trainer who sometimes delivers advice on what action to

perform in order to complete the task faster.

In domestic and natural environments, adaptive agent behavior is needed, utilizing

approaches used by humans and animals. IRL allows to speed up the apprentice-

ship process by using a parent-like advisor to support the learning by delivering

useful advice in selected episodes. This allows to reduce the search space and thus

to learn the task faster in comparison to an agent exploring fully autonomously

(Suay and Chernova, 2011; Cruz et al., 2015). In this regard, the parent-like teacher

guides the learning robot, enhancing its performance in the same manner as ex-
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Figure 2.5: A scenario with human-robot interaction where the apprentice robot

is supported by a parent-like trainer to complete the task.

ternal caregivers may support infants in the accomplishment of a given task, with

the provided support frequently decreasing over time. This teaching technique has

become known as parental scaffolding (Breazeal and Velásquez, 1998; Ugur et al.,

2015).

When working autonomously, the next action is selected by choosing the best

known action at the moment, represented by the highest state-action pair, but

IRL speeds up the learning process by including the external advice in the appren-

ticeship loop. When using IRL, an action is interactively encouraged by a trainer

with a priori knowledge about the desired goal (Thomaz et al., 2005; Thomaz and

Breazeal, 2006; Knox et al., 2013b).

Early research on IRL (Lin, 1991) shows that external guidance plays an important

role in learning tasks, performed by both humans and robots, leading to a decrease

of the time needed for learning. Furthermore, in large spaces where a complete

search through the whole search space is not possible, the trainer may lead the

apprentice to explore more promising areas at early stages as well as help to avoid

getting stuck in suboptimal solutions.
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The external guidance can be implemented through different strategies of inter-

action between an agent and an external trainer for developing joint tasks, such

as learning by imitation (Bandera et al., 2012), demonstration (Konidaris et al.,

2012; Rozo et al., 2013; Peters et al., 2013), and feedback (Thomaz and Breazeal,

2006; Thomaz et al., 2005; Knox et al., 2013a).

In particular for learning by feedback two main approaches are distinguished: pol-

icy and reward shaping. Whereas in reward shaping an external trainer is able to

evaluate how good or bad performed actions by the RL agent are (Thomaz et al.,

2005; Knox and Stone, 2012), in policy shaping the action proposed by the RL

agent can be replaced by a more suitable action chosen by the external trainer

before it is executed (Cederborg et al., 2015; Amir et al., 2016). When the ex-

ternal trainer does not give feedback, acceptance of the action a or reward r is

assumed. In both cases, an external trainer gives interactive feedback to the ap-

prentice agent to encourage it to perform certain actions in certain states to reach

a better policy leading to faster performance. Novel strategies can emerge from

mixing both, namely, the advice on performing the action a and manipulating the

received reward r as well.

Pilarski and Sutton (2012) propose that human training and direction methods

can be projected to a two-dimensional space in terms of the explicitness and the

bandwidth of the feedback signal. Explicitness refers to the content of explicit

semantics in the signal with the reward (reward shaping) in one extreme and

the instruction (policy shaping) in the other extreme. Bandwidth describes the

complexity of the signal being the case of reward the simplest one and the case

of instruction the most complex one including multisensory cues and real-time

operation.

Fig. 2.6 shows the policy shaping approach in IRL through feedback, where in-

teraction from an external trainer is given during the robot’s action selection.

Manipulating actions is a way to tell the agent that what it is currently doing is

wrong and should be corrected in the future (Thomaz and Breazeal, 2007). The

reward shaping approach is shown in Fig. 2.7. In this case, the external trainer

may modify the reward r and send its own reward to the agent specifying how

good or how bad the latest performed action a was. Examples of this approach

were developed by Thomaz and Breazeal (2006) and Knox and Stone (2012).
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Figure 2.6: Policy shaping feedback approach for interaction between a robotic

agent and an external trainer. In this case, the external agent is able to change a

selected action to be performed in the environment.

Figure 2.7: Reward shaping feedback approach for interaction between a robotic

agent and an external trainer. In this case, the external agent is able to modify

the proposed reward.

In an IRL scenario it is desired to keep the rate of interaction with an external

trainer as low as possible; otherwise, with a high rate of interaction, RL becomes

supervised learning. Also, the consistency or quality of the feedback should be

considered to determine whether learning is still improving given that the external

trainer could also make mistakes (Griffith et al., 2013). Supportive advice can be

obtained from diverse sources like expert and non-expert humans, artificial agents
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with perfect knowledge about the task, or previously trained artificial agents with

certain knowledge about the task. In this thesis, we use both human and artificial

trainer-agents. The artificial trainers are themselves previously trained through

autonomous RL and afterward, they are used to provide advice, which has been

formerly used in other works. For instance, in (Cruz et al., 2014, 2016a) advice is

given based on an interaction probability and consistency of feedback. In Taylor’s

works, the interaction is based on a maximal budget of advice and they studied

which moment is better to give advice during the training (Torrey and Taylor,

2013; Taylor et al., 2014).

In the following section, we will review affordances as an alternative method which

enables to speed up RL. We will introduce it into the IRL framework in order to

allow a learner-agent to speed up the learning process working with both interactive

feedback and affordances.

2.2 Affordances

A promising alternative method to improve RL convergence speed by modeling

the actions in the environment is the use of affordances (Wang et al., 2013), where

cognitive agents favor specific actions to be performed with specific objects. Af-

fordances represent neither agent nor object characteristics, but rather the char-

acteristics of the relationship between them (Gibson, 1979). Affordances limit the

number of meaningful actions in some states and can reduce the computational

complexity of RL.

2.2.1 Gibson’s Proposal

Affordances are often seen as opportunities for action of an agent (a person, an

animal, a robot, or an organism). The original concept comes from cognitive

psychology and was proposed by Gibson (1966, 1979) as:

“When the constant properties of constant objects are perceived (the

shape, size, color, texture, composition, motion, animation, and posi-

tion relative to other objects), the observer can go on to detect their
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affordances. I have coined this word as a substitute for values, a term

which carries an old burden of philosophical meaning. I mean simply

what things furnish, for good or ill. What they afford the observer, after

all, depends on their properties.”

For instance, a soccer ball and a skateboard are objects which afford different

actions. An agent interacting with these objects may kick the soccer ball or ride

the skateboard, whereas the agent may not do the opposite. Let us consider another

example: a cup and a sofa afford different actions to a person who is able to grasp

the cup and sit down on the sofa but cannot do it the other way around. Thus,

an agent is able to determine some object affordances, e.g., the caused effect of

performing a specific action with an object.

In Gibson’s book, many diverse examples are given but no concrete, formal defini-

tion is provided. Even nowadays, we find marked differences among cognitive psy-

chologists about the formal definition of affordances (Horton et al., 2012; Chemero,

2011) and these discrepancies could even be stronger between them and artificial

intelligence (AI) scientists (Şahin et al., 2007; Chemero and Turvey, 2007).

Horton et al. (2012) distinguish three essential characteristics of an affordance:

• The existence of an affordance is associated with the capabilities of an agent;

• An affordance exists regardless whether the agent is able to perceive it or

not;

• Affordances do not change, unlike necessities or goals of an agent.

2.2.2 Developmental Robotics Perspective

In developmental robotics, affordances are aligned with basic cognitive skills which

are acquired on top of previous skills by interacting with the environment (Moldovan

et al., 2012). It is expected that domestic service robots learn, recognize, and ap-

ply some social norms in the same way as humans do. Commonly these social

rules are learned by interaction and socialization with other agents of the group.

In this regard, an object can be used in a restricted manner not considering all

its action opportunities but only socially accepted actions. These constraints of

use are usually shaped by the group norms and are called functional affordances
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(Awaad et al., 2015) which also lead to a reduced action space. Such a human-like

behavior is an important issue in developmental robotics (Sigaud and Droniou,

2016).

In the literature we can find different approaches for learning affordances in robotics;

for instance, Lopez et. al address the imitation learning problem using affordance-

based action sequences (Lopes et al., 2007). Moldovan et al. (2012) extend the

affordance model allowing the robot to work with a second object using an en-

larged Bayesian network to represent affordances.

Jamone et al. (2017) recently studied affordances taking into consideration three

main aspects from different areas: psychology, neuroscience, and robotics. Fur-

thermore, Min et al. (2016) surveyed affordance research particularly in the field

of developmental robotics showing interesting insights on how affordances could

serve as a basis to develop architectures and algorithmic principles within artificial

cognitive systems. In the following subsection, we present a formal computational

definition based on the original concept of Gibson.

2.2.3 Formalization of the Model

Affordances have been particularly useful to establish relationships between actions

performed by an agent with available objects. They have been utilized in a way to

represent object/action information (Cruz et al., 2016a). Montesano et al. (2008)

define an affordance as the relationship between an object, an action, and an effect

as the 3-tuple which can be written as:

affordance :=< object , action, effect > (2.11)

Hence, it is possible to predict the effect using objects and actions as domain

variables, i.e.:

effect = f (object , action) (2.12)

Fig. 2.8 shows the relationship between the previous components, where objects

are entities which the agent is able to interact with; actions represent the behavior
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Figure 2.8: Affordances as relations between objects, actions, and effects. Objects

are entities which the agent is able to interact with, actions represent the behavior

that can be performed with the objects, and effects are the results caused by

applying an action (Montesano et al., 2008).

Table 2.1: Uses of learned affordances by utilizing bi-directional

mapping.

Input Output Functionality

(object, action) effect Predict effect

(object, effect) action Action planning and recognition

(action, effect) object Object selection and recognition

or motor skills that can be performed with the objects; and the effects are the

results of an action involving an object (Montesano et al., 2008; Atıl et al., 2010).

It is also important to note that the object in Eq. (2.12) can also be a place or a

location, for instance, a hill affords climbing. From here onwards, we employ the

term object to refer to the affordance component but we consider also locations.

Once affordances are recognized and learned through the components of the 3-

tuple, it is possible to establish bi-directional mappings with different purposes

(Lopes et al., 2007), as shown in Table 2.1.
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Figure 2.9: All the objects in the picture afford to grasp. Nevertheless, if a human

agent has no free hand in a particular moment, then the affordance of graspability

is temporally unavailable in that state until the agent releases an object.

2.2.4 Implications for Agent Control

The use of affordances in robotics allows to address much more interesting problems

by reducing the action space due to retrieved relevant information from the world or

environment, allowing to identify what actions are possible for a robot to perform

(Şahin et al., 2007). Nevertheless, although the aforementioned formalized model

has been shown to be suitable for many scenarios, it does not include context

information which allows anticipating effects in all situations properly (Kammer

et al., 2011).

For instance, let us consider the following scenario in which we are given a set of

objects which afford to grasp (as do the ones shown in Fig. 2.9). In case we have

an agent with both hands already occupied with objects, then the agent cannot

grasp a new object. In other words, the affordance of graspability is temporarily

unavailable until the agent places one object back on the table which in turn

modifies the context.

The fact of not considering the context leads the agent to face issues at the moment

of deciding what actions to take. Therefore, to control the agent, in terms of the

performed actions with an object and trying to predict the caused effect, presents
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a more complex task to the learner-agent. Later on in this thesis, we will define an

extension of the proposed model by Montesano et al. (2008) to take environmental

variables into account and enable the agent to better decide between available

actions and the corresponding effects.

2.3 Discussion

In this chapter, we have reviewed the main approaches related to our work, which

will be used throughout this thesis. First, we have reviewed the RL basics and the

IRL framework. In this thesis, we address a scenario modeled as a Markov decision

process using RL agents with temporal-difference learning inspired by behavioral

approaches. Autonomous agents are provided with interactive advice using the

IRL framework.

Afterward, we have reviewed affordances as an alternative to model the actions in

the environment. One alternative to implementing affordances is to use artificial

neural networks in which actions and objects may be used as inputs to anticipate

the effect of such an action. With this, we conclude the review of the theoretical

framework and the main related works.

In the following chapter, we introduce a robotic scenario as a Markov decision

process in which we test the proposed methods in different experimental set-ups.

The set-ups are shown in an agent-agent IRL framework and a human-agent IRL

framework.
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Chapter 3

Robotic Cleaning-table

Scenario

3.1 Introduction

With the aim of evaluating the proposed methods and answering the research

questions, we have designed a simulated domestic scenario focused on cleaning a

table. We model the problem as a Markov decision process as described in Sec.

2.1.4. Therefore, the task can be learned by an agent if a definition of the states, the

actions, the transition function, and the reward function is given. In this scenario,

we have included objects, locations, and actions. Initially, a robotic agent has a

sponge and is standing in front of a table, in particular in front of a specific area

of the table which is desired to be cleaned.

We implement the robotic home scenario with an agent interacting with a parent-

like trainer to perform the cleaning task. The task of cleaning the table is performed

with the use of the robot’s right arm. To successfully complete the cleaning task,

it is necessary to carry out additional subtasks such as interacting with objects

on the table. The trainer is able to advise the learner robot on what action to

perform next.

Initially, we implement the proposed scenario by using agent-agent interaction and

later on we extend it to human-agent interaction. By using agent-agent interaction

we attempt to mimic a real human-agent interaction as much as possible and
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at the same time, having an artificial trainer-agent allows to better control the

experimental variables. By using human-agent interaction we first developed the

IRL scenario with automatic speech recognition only to guide an apprentice robot

in the achievement of a task and, afterward, we extend the approach to incorporate

visual information and integrate it with audio as a more robust guidance during

the apprenticeship process.

3.2 Domestic Scenario

The scenario is motivated by the increasing presence of robots in home environ-

ments. For robots to reach human-like performance on challenging tasks, they still

need to be boosted in order to satisfactorily complete a given task. Therefore, the

proposed cleaning-table scenario shows a daily-based task which can be performed

by robots assisted by human trainers as advisors.

The proposed scenario comprises three locations, two objects, and seven actions.

The robot is assumed to be placed in front of a table in order to clean it. The

three locations defined in the cleaning-table scenario are:

i. left, the left section of the table;

ii. right, the right section of the table;

iii. home, an additional position that is the initial and final position of the robot’s

arm.

The scenario comprises two objects that the robot can manipulate using its gripper.

The two objects are:

i. sponge, used to clean both sections of the table. The sponge is placed at the

home position while not being used by the robot;

ii. goblet, initially placed in one of the sections of the table and, therefore, it must

be moved from one section to the other during cleaning in order to end the

task successfully.

In this thesis, the experiments are conducted using artificial agents and simulated

robots. Fig. 3.1 shows an example of the domestic scenario in a simulated envi-
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Figure 3.1: The simulated domestic scenario with the NICO robot. Our scheme

is composed of two objects, 3 locations, and 7 action classes.

ronment. In the figures, it is possible to observe the robot in front of the table

with two objects: the goblet and the sponge.

3.3 Markov Decision Process Definition

In our domestic task, transitions and rewards depend only on the current state

and the chosen action by the agent, hence, we model the task as an MDP problem.

The following section defines the robot scenario as an MDP. Following the actions,

the states, the transitions, and the reward function are presented.

3.3.1 Actions

The robot can perform seven different actions. These actions may be chosen by the

robot autonomously or through advice given by either an artificial trainer-agent

or a parent-like trainer using multi-modal feedback for audiovisual advice.

Available actions are as follows:
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Table 3.1: List of defined objects, locations, and actions for the

cleaning-table scenario.

Objects Locations Actions

sponge left go <location>

goblet right get drop

home clean abort

(i) GET: allows the robot to pick up the object which is placed in the same

location as its hand.

(ii) DROP: allows the robot to put down the object held in its hand. The object

is placed in the location where the hand is.

(iii) GO HOME: moves the hand to the home position.

(iv) GO LEFT: moves the hand to the left position.

(v) GO RIGHT: moves the hand to the right position.

(vi) CLEAN: allows the robot to clean the section of the table at the current hand

position if holding the sponge.

(vii) ABORT: enables to cancel the execution of the cleaning task at any time and

return to the initial state.

Table 3.1 shows a summary of objects, locations, and actions defined for this

domestic cleaning scenario. For instance, let us now suppose that the goblet is

located on the left side of the table at the beginning. The initial position of the

robot’s hand is the location home, and we want to finish with the hand free and

above home with both sides of the table clean. In this context, an episode is defined

as one attempt to reach the goal. The following example shows the shortest episode

to complete this task successfully: get, go right, clean, go home, drop, go left, get,

go right, drop, go home, get, go left, clean, go home, drop. The example shows,

for one initial situation, the shortest sequence of actions to reach the final state;

therefore, the minimum number of actions to complete the cleaning-table task is

|Amin| = 15.

40



3.3. Markov Decision Process Definition

3.3.2 States

To implement the described scenario we developed a state machine with two final

states; each state is represented by a state vector of four variables. These variables

are:

i. handObject: the object which is currently in the robot’s hand, i.e., sponge,

goblet, or free;

ii. handPosition: the position of the robot’s arm, i.e., left, right, or home;

iii. gobletPosition: the position of the goblet on the table, i.e., left, right, or

home;

iv. sideCondition[]: a 2-tuple with the current condition of every side of the

table surface, that is, whether the table location has already been cleaned or

not.

Therefore, the state vector at any time t is characterized as follows:

st =< handObject, handPosition, gobletPosition, sideCondition[] > (3.1)

At the beginning of each training episode, the robot’s hand is free at the home

location, the sponge is also placed at the home position, while the goblet is at

either the left or the right location, and both table sections are dirty. Therefore,

the initial state s0 may be represented as:

s0 =< free, home, left |right , [dirty , dirty ] > (3.2)

To complete the task, the robot must clean both sections of the table by moving

the goblet from one section to the other during the process of cleaning. After the

robot has cleaned both sections, the task is finished when the sponge is placed at

the home position and the robot is with the hand free. Therefore, the final state

sf can be represented as:

sf =< free, home, left |right , [clean, clean] > (3.3)
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Chapter 3. Robotic Cleaning-table Scenario

From certain states, the agent can perform non-reversible actions which lead to

a failed-state from where it is not possible anymore to complete the task. These

actions include getting an object when the robot’s hand is occupied, to lose either

the goblet or the sponge due to an incorrect drop, or cleaning a section of the table

where the goblet is also placed on.

.

Definition 3.1. Failed-state: Let us consider the set of states S and the set of

actions A. Given one sequence of states ψs = {st, st+1, st+2, ..., sn} with si ∈ S and

one sequence of actions ψa = {at, at+1, at+2, ..., an} which leads to ψs with ai ∈ A.

Then si = f(si−1, ai−1) for 0 < i ≤ n. Now, let ΨA(st) be the set of all possible ψa

from a state st ∈ S. If @ ψa ∈ ΨA(st) which produces a ψs | sf ∈ ψs with sf the

final state =⇒ st is a failed-state.

For instance, let us assume that the robot’s hand and the goblet are at the left lo-

cation and the robot has just performed the action get from the state st = <free,

left, left, [dirty, dirty]> transiting to the next state st+1 = <goblet,

left, left, [dirty, dirty]> according to the four previous state variables;

therefore now the goblet is held in its hand over the left position. If the robot then

cleans the left section of the table with the goblet in its hand instead of a sponge,

it may shatter the goblet ; hence, it is not feasible to finish the cleaning task from

the following state st+2.

The scenario consists of 53 regular states, i.e.: the agent is still able to complete

the task successfully from these states. Some regular states are shown in Table

3.2 where the initial state is labeled as state number 1 and the final states are the

numbers 52 and 53. The states between number 16 and 30, and the states between

31 and 45 are not shown since they are the same as the first 15 states apart from

the sideCondition which are [clean, dirty] and [dirty, clean] respectively (for more

details, refer to Apendix B).

3.3.3 Transition Function

From the initial state, the state vector is updated every time after performing an

action according to the state transition table as shown in Table 3.3. The table

shows the seven possible actions. For the action go <pos> there are three different
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3.3. Markov Decision Process Definition

Table 3.2: Regular states defined for the cleaning-table scenario.

States labeled as 52 and 53 represent final states once the task is

completed.

Number handObject handPosition gobletPosition sideCondition[]

1 free home

2 sponge

3 free

4 sponge left left

5 goblet

6 free right

7 sponge

8 free home [dirty, dirty]

9 sponge

10 free left

11 sponge right

12 free

13 sponge right

14 goblet

15 goblet home home

... ... ... ... ...

46 sponge right

47 sponge left left

48 sponge home

49 sponge left [clean, clean]

50 sponge right right

51 sponge home

52 free home left

53 free home right

43



Chapter 3. Robotic Cleaning-table Scenario

Table 3.3: State vector transitions. After performing an action the

agent reaches either a new state or a failed-state, if the latter, the

agent starts another training episode from the initial state s0. In the

proposed scenario, the action go <pos> includes three different

possibilities, i.e., go home, go left, and go right.

Action State vector update

Get if handPos == home && handObj == goblet then FAILED

if handPos == gobletPos && handObj == sponge then FAILED

if handPos == home then handObj = sponge

if handPos == gobletPos then handObj = goblet

Drop if handPos == home && handObj == goblet then FAILED

if handPos != home && handObj == sponge then FAILED

otherwise handObj = free

Go <pos> handPos = pos

if handObj == goblet then gobletPos = pos

Clean if handPos == gobletPos then FAILED

if handPos == home then FAILED

if handObj == sponge then sideCond[handPos] = clean

Abort handPos = home

handObj = free

gobletPos = random(pos)

sideCond = [dirty]*|pos|

possibilities, i.e., go home, go left, and go right. In the current scenario, considering

the state vector features, the 53 regular states represent two divergent paths to

two final states.

Assuming that the goblet is on the left side of the table at the beginning, there are

two feasible paths for reaching a final state from the initial state. The upper path

(Path A) consists of cleaning first the empty side of the table and then moving the

goblet in order to clean the second side. The lower path (Path B) would consist
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3.3. Markov Decision Process Definition

of moving the goblet first to the right side and cleaning the left, and after that

returning the goblet to its original side for cleaning the second one. In each case,

a final state is reached involving different numbers of intermediate states. The

ending sequence of each path contains four states in which the robot returns its

hand to the home location and drops the sponge.

Fig. 3.2 depicts a summarized illustration of the state transitions to reach a final

state assuming the goblet to be at the left position initially. It can be observed at

the initial state that both sides of the table are dirty and from there on the two

possible paths to finish the task. Internally, in our algorithm we do not use left or

right, but rather side1 and side2, where side1 is the side of the table where the

goblet is at the beginning of an episode, and it is feasible to start cleaning any side

of the table because both paths can lead to a final, successful state. The figure

also shows the number of intermediate states involved in each path. In order to

visualize the whole search space, all the state transitions can be seen in Appendix

B. Each path leads to a different number of transited states which in turn also leads

to a different accumulated reward (see Sec. 3.3.4). As we already stated above,

the shortest path is composed of 15 actions for reaching the final state through the

path A.

As defined, the same transitions may be used in scaled-up scenarios with more

locations on the table in a larger grid, since the definition of transitions includes

only the object held by the robot and the hand position in reference to either the

home location or the goblet position.

3.3.4 Reward Function

As long as the agent successfully finishes the task, a reward equal to 1 is given to it,

whereas a reward of −1 is given if a failed-state has been reached. Furthermore, it

is given a small negative reward of −0.01 for each transition in order to discourage

longer paths and loops. Therefore, the reward function can be summarized as

follows:
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Chapter 3. Robotic Cleaning-table Scenario

Figure 3.2: Outline of state transitions in the defined cleaning-table scenario.

Two different paths are possible to reach a final state. Each path implies a different

number of intermediate states which influence the total amount of collected reward

during a learning episode. Path A comprises 23 states and B 31 states. See more

details in Appendix B.

r(s) =


1 if s is the final state

−1 if s is a failed-state

−0.01 otherwise

(3.4)

3.4 Parent-like Advice

Although the robot is able to perform actions autonomously using RL, by using

a parent-like trainer to advise the robot at specific steps about what action to

perform next, we want to reduce the time required to learn the sequence of actions
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3.4. Parent-like Advice

Figure 3.3: Gestures used as advice in the robotic scenario. Red arrows represent

the hand movement performed to advise the robot.

for finishing the task.

For our scenario, we define a set of possible advice classes that can be given to

the robot by a trainer. The trainer can be either another previously-trained ar-

tificial agent or a human with knowledge about the task. When using artificial

trainer-agents, we assume the advice cues to be directly observable, however in the

case of a human parent-like trainer, they may use audiovisual signals to provide

interactive feedback to the learner-agent, therefore, each advice class has a spo-

ken representation in a domain-based language and a visual representation with

gestures from vision.

The advice can be delivered at any time with the following advice classes: go left,

go right, go home, get, drop, clean, and abort. In the case of audio inputs, we use

33 voice commands belonging to the seven aforementioned classes. For example,

the instruction go right could also be stated as go to the right, move (to the) right,

or change (to the) right, but all of them would belong to the same advice class.

In the case of visual inputs, we include seven gestures, each of them representing

an advice class. Additionally, since gesture labels are continuously predicted from
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Figure 3.4: An example of the simulated home scenario where agents perform

the actions in the environment which is created in a robot simulator. The trainer-

agent to the left advises the learner-agent in selected states what action to perform

next.

depth map video sequences, we add the label still to indicate no advice at that

moment. Fig. 3.3 shows the gesture advice classes using RGB-D information from

a depth sensor.

The cleaning-table task is carried out by a robot in a simulated environment using

the V-REP simulator (Rohmer et al., 2013). All actions are performed using only

one arm and one effector. Fig. 3.4 shows an example of the domestic robotic

scenario with two robotic agents where one agent, which has already learned the

task by using autonomous RL, becomes the trainer of a second robot. The second

agent performs the same task supported by the trainer-agent with selected advice

using the IRL framework. We did not focus on investigating grasping since the

main aim of this work is to learn the right sequence quickly. Nevertheless, for

reaching the defined locations we employed direct planning and for grasping inverse

kinematics as a support for low-level control. Both approaches are available in the

robot simulator (Rohmer et al., 2013).
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3.5 Discussion

In this chapter, we have presented a domestic robot scenario. The scenario is

defined as a Markov decision process with actions, states, the transition function,

and the reward function. Moreover, in the IRL context, we have introduced the

parent-like advice in terms of auditory and visual feedback. The defined simulated

scenario is used in the following chapters to investigate different experimental set-

ups in order to test our proposed methods and compare the results between the

RL and IRL frameworks.

First, we will show an agent-agent IRL scenario with an artificial agent, previously

trained by RL, being the trainer-agent. In this context, we introduce an affordance-

driven model to avoid failed-states and we also explore the internal representation

of the knowledge in trainer-agents and the effects by considering such different

representations. Moreover, we study the interplay of interaction parameters as

the probability of receiving feedback, the consistency of feedback, and the learner-

agent’s obedience.

Subsequently, we will show a human-agent IRL scenario with human parent-like

trainers advising the learner-agents. We perform experiments using as advice uni-

and multi-modal feedback cues in terms of audio and audiovisual signals respec-

tively.
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Chapter 4

Interactive Feedback and

Contextual Affordances

4.1 Introduction

In robotics, there has been considerable progress in the last years allowing robots

to be successful in diverse scenarios, from industrial environments where they are

nowadays established to domestic environments where their presence is still limited

(Tadele et al., 2014). In domestic environments, tasks often require active parent-

like participation in order to execute the tasks more effectively. In particular,

in the simulated home scenario which we have proposed in chapter 3, the agent

has to perform the task assisted by an external trainer giving different degrees of

guidance.

In this chapter, we present an IRL approach for the domestic task of cleaning a

table and compare three different learning methods using simulated robots: re-

inforcement learning (RL), RL with contextual affordances to avoid failed-states,

and the previously trained robot serving as a trainer to a second apprentice robot

in an interactive reinforcement learning (IRL) framework. The experimental set-

up is designed and performed in order to answer the first research question of this

thesis: How can an affordance-based model of the environment support the IRL

framework?

Contextual affordances are a generalization of Gibson’s affordance concept. The
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latter has recently been used successfully in robotics (Horton et al., 2012; Min et al.,

2016; Jamone et al., 2017). As mentioned before, we are interested in introducing

contextual affordances into the IRL framework in order to allow learner-agents

to speed up the overall learning process working with both interactive feedback

and affordances. In this regard, contextual affordances allow to avoid failed-states

which enable the agent to complete the task in fewer episodes. We implement con-

textual affordances with an artificial neural network (ANN) to estimate either the

robot’s next state or whether the affordance is temporally unavailable. Although

the agent working autonomously must be able to complete the task with RL, the

learning process is expected to be slow and with a low rate of success. We want to

show that working with RL and contextual affordances, fewer actions are needed

and can reach higher rates of success.

Afterward, we test different levels of interaction and consistency of feedback to

show how they influence the IRL performance. For good performance with IRL,

considering the level of consistency of feedback is essential, since inconsistencies

can cause considerable delay in the learning process. In general, we want to demon-

strate that interactive feedback provides an advantage for learner-agents in most

of the learning cases.

4.2 Contextual Affordances

As stated, we are interested in reducing the needed actions of an episode to reach a

reasonable performance in both approaches, RL and IRL. This becomes especially

important when it is desired to work in real scenarios, because, while in simulated

environments it is feasible to run many episodes in a short time, in a real environ-

ment one cannot afford to run excessive episodes until reaching a suitable policy.

To this aim, we use affordances to reduce the number of actions involved in each

episode.

If an affordance exists and the agent has awareness of it, the actual, next step is

to determine if it is possible to utilize it considering the agent’s current state. If

the affordance is temporally unavailable, as shown in Fig. 2.9, this does not mean

that the affordance does not exist, to the contrary, the affordance is still present

but it just cannot be used by the agent in that particular situation.
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Kammer et al. (2011) proposed to consider the dynamics in the environment in

which the object was embedded rather than dynamic states of the agent. The

awareness of this extra variable is called situated affordances (Kammer et al.,

2011). Even though a formal definition was provided, neither applications nor

results are shown in their work. Nevertheless, we use the same concept to address

the problem when the agent’s state is also dynamic. Thus, we propose a model

where the current state of an agent is also considered for the effects of an action

performed with an object, we call this contextual affordance. In this case, the

affordances 3-tuple shown in Eq. (2.11) is now extended to:

contextualAffordance :=< state, object , action, effect > (4.1)

Now, to predict the effect after performing an action, we consider the following

function:

effect = f (state, object , action) (4.2)

For instance, given an agent performing the same action a with the same object

o, but from a different agent’s state s1 6= s2: when action a is performed, different

effects e1 6= e2 could be generated, since the initial states s1 and s2 are different. It

is unfeasible to establish differences in the final effect when we utilize affordances

to represent it, because e1 = (a, o) and e2 = (a, o). Hence, to deal with the current

states s1 6= s2, an agent must distinguish each case and learn them at the same

time utilizing contextual affordances defined by e1 = (s1, a, o) and e2 = (s2, a, o),

establishing clear differences between the final effects.

Fig. 4.1 shows the relationship between object, action, effect, and the agent’s

current state. We use contextual affordances to provide knowledge about actions

that lead to undesirable or failed-states from which it is not possible to reach

the goal. Therefore, the action space is reduced by avoiding these states. In our

approach, the set of possible actions is filtered for every state that the agent is in.

At first, we ran a classic RL algorithm to confirm that failed-states are not a

problem as such; they can be handled and controlled by giving punishment (or

negative reward). In this case, the agent is discouraged to perform that action

from the same state in the future. However, a more suitable strategy is to consider
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Figure 4.1: Contextual affordances as relations between state, objects, actions,

and effects. The state is the agent’s current condition and different effects could

be produced for different occasions.

the use of affordances which have been shown to improve the convergence speed

of learning algorithms (Koppula et al., 2013; Kober and Peters, 2012).

The contextual affordance model allows us to determine beforehand when it is

possible to apply an affordance. Given the robotic scenario defined in Sec. 3, we

are able to set the presence of four different contextual affordances which allow

us to determine whether objects are graspable, droppable, movable, or cleanable

according to the robot’s current state.

4.3 Experimental Set-up

To carry out the experiments, first, we used the classic RL approach to train a

robot for reaching the final state. Afterward, we introduced contextual affordances

attempting to reduce the needed episodes to obtain a satisfactory performance

in terms of collected reward and performed actions for reaching the final state.

Finally, a second agent was trained using IRL and receiving feedback from the

previously trained robot that sometimes showed which action to choose in a specific

state. The detailed implementation of these methods is explained in this section,

while the obtained results are shown in the following section.
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4.3.1 Learning Contextual Affordances with a Neural

Architecture

The model with contextual affordances enables us to predict the effects of specific

actions by using a simplified artificial neural network that learns the relationship

of the states, the actions, and the objects. Contextual affordances are used in

both autonomous RL and IRL, i.e., the selected action either by the agent or the

parent-like trainer may be disallowed if the effect of performing such an action

leads the agent to a failed-state.

It has been shown that a multilayer feedforward neural network with only one

hidden layer and a sufficient number of neurons in this layer is able to approxi-

mate any continuous non-linear function with arbitrary precision (Cybenko, 1989;

Funahashi, 1989; Hornik et al., 1989). Therefore, to learn the relationship between

inputs and outputs when using contextual affordances we implemented a multilayer

perceptron (MLP) which is a feedforward network with one hidden layer.

We encode all the variables as presented in Table 4.1 where we show a localist

data representation for objects, locations, side conditions, and actions. In side

conditions, letters d and c represent the fact of being dirty or clean for each part

of the table. Afterward, we use this representation to design the neural model

as shown in Fig. 2.9. As input, we use vectors with 20 components in order to

represent the information about the current state and the action as the affordance

input. The current state is represented by the first 13 components in the input

vector considering the data representation for the four variables that define a state,

i.e., hand object, hand position, goblet position, and side condition. The output

corresponds to the effect from contextual affordances encoded as a vector with 13

components representing the next state. If the performed action leads to a failed-

state, then all components of the output vector are equal to zero. The multi-layer

perceptron has 30 hidden neurons with a sigmoid transfer function and the neurons

in the output layer use a linear transfer function. The number of neurons selected

in the hidden layer is empirically determined related to our scenario. We use

Nguyen-Widrow weight initialization (Nguyen and Widrow, 1990) and the second

order training method Levenberg-Marquardt Hagan and Menhaj (1994) for 100

epochs.
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Table 4.1: Representation of training data used for neural network

classification.

Data Representation

Objects Locations Side conditions

free [1 0 0] home [1 0 0] dd [1 0 0 0]

sponge [0 1 0] left [0 1 0] dc [0 1 0 0]

goblet [0 0 1] right [0 0 1] cd [0 0 1 0]

cc [0 0 0 1]

Actions

grasp [1 0 0 0 0 0 0] go right [0 0 0 0 1 0 0]

place [0 1 0 0 0 0 0] clean [0 0 0 0 0 1 0]

go home [0 0 1 0 0 0 0] abort [0 0 0 0 0 0 1]

go left [0 0 0 1 0 0 0]

Figure 4.2: Multi-layer perceptron architecture for future state prediction. In

our scenario, the next state reached by the robotic agent represents the affordance

effect.
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To obtain data, we initially used a previous run of autonomous RL to collect ac-

tions that lead to failed-states. The total number of data samples is 371 instances

for the training of the multi-layer perceptron. The MLP is employed as an asso-

ciative memory to map states, actions, and objects to the subsequent effect, as in

Eq. (4.2). Therefore, the neural network is able to store not only failed-states but

also transitions when an action leads to another valid state. The neural network

training is carried out in an offline fashion before the IRL execution with the pre-

viously collected data. Information about failed-states may be gathered by others

sources as well, like the transition function or when the trainer-agent is performing

autonomous reinforcement learning. Thus, to compare fairly an affordance-driven

approach to other approaches, it is necessary to have information about failed-

states first, otherwise this must be learned in an online manner.

4.3.2 Interactive Reinforcement Learning Approach

Since RL is used, most of the time the robot performs actions autonomously by

exploring the environment unless guidance is delivered by the previously trained

robot which already has full knowledge on how to carry out the task. The appren-

tice robot takes advantage of this advice in these periods during a learning episode

and performs the suggested actions trying to complete the task with fewer actions.

In the learning algorithm, to solve equation Eq. (2.8), we allow the robot to

perform actions considering transitions from state-action pair to state-action pair

rather than transitions from state to state only. Therefore, we implement the

on-policy method SARSA (Rummery and Niranjan, 1994) to update every state-

action value according to Eq. (4.3):

Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)] (4.3)

where st and st+1 are the current and next state respectively, at and at+1 are the

current and next action, Q(st, at) is the value of the state-action pair, rt+1 the

collected reward, α is the learning rate and γ the discount factor. The parameters

used in Eq. (4.3) are empirically set to α = 0.3 and γ = 0.9 considering values

∈ (0, 1). Furthermore, we use the ε-greedy method for action selection with ε = 0.1.

Therefore, 10% of the time the agent selects an exploratory action and 90% of the
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time the next action at is determined as shown in Eq. (4.4):

at = argmax
a∈A

Q(st, a) (4.4)

where st is the current state at time t, a is an action, and A corresponds to the set

of all actions. Algorithm 4.1 shows this action selection method, whereas algorithm

4.2 presents the classic RL approach where it is used as a subroutine.

Using contextual affordances we slightly modify the policy for the action selection

shown in Eq. (4.4) as in the following expression:

at = argmax
a∈As

Q(st, a) (4.5)

where st is the current state in time t, a is an action, and As corresponds to a subset

of available actions in the current state st. The subset is determined based on the

contextual affordances (see Eq. (4.1) and Fig. 4.1). In this regard, it is possible to

anticipate the effect of performing the action with an object in a particular state.

Algorithm 4.3 shows the action selection method used during RL with contextual

affordances where the subset As is created by observing the contextual affordances

in each state and populated with the actions which return a valid next state value.

Algorithm 4.1. selectAction method used in the classic reinforcement learn-

ing approach

Input: Agent’s current state st

Output: Next action at to perform

1: function selectAction(st)

2: if rand(0, 1) < ε then

3: at ← choose any random action a from A

4: else

5: at ← argmax
a∈A

Q(st, a)

6: end if

7: return at

8: end function

We use the advise method parameters (Griffith et al., 2013) for interaction, i.e.,

probability of feedback L and consistency of feedback C. Algorithm 4.4 shows the
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Algorithm 4.2. Classic reinforcement learning approach with the on-policy

method SARSA
1: Initialize Q(s, a) arbitrarily

2: for each episode do

3: Choose an action using at ← selectAction(st)

4: repeat

5: Take action at

6: Observe reward rt+1 and next state st+1

7: Choose an action using at+1 ← selectAction(st+1)

8: Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

9: st ← st+1

10: at ← at+1

11: until s is terminal

12: end for

Algorithm 4.3. selectActionWithAffordances method used in the rein-

forcement learning with contextual affordances approach

Input: Agent’s current state st

Output: Next action at to perform

1: function selectActionWithAffordances(st)

2: Create subset As

3: if rand(0, 1) < ε then

4: at ← choose any random action a from As

5: else

6: at ← argmax
a∈As

Q(st, a)

7: end if

8: return at

9: end function

method used when advice is required. The higher the values of C, the more often

a good advice is given. In this context, the best advice is obtained from the subset

of available actions As considering the highest state-action pair from the trainer-

agent, whereas the worst action advised is also taken from As but considering the

lowest state-action pair. In Algorithm 4.4, we use the worst advice instead of

random advice to distinguish it with an exploratory action.
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Algorithm 4.4. getAdvice method used in the interactive reinforcement learn-

ing approach with contextual affordances

Input: Agent’s current state st

Output: Next action at to perform

1: function getAdvice(st)

2: Create subset As

3: if rand(0, 1) < C then

4: at ← best advice from As

5: else

6: at ← worst advice from As

7: end if

8: return at

9: end function

Algorithm 4.5. Interactive reinforcement learning approach using contextual

affordances and interaction
1: Initialize Q(s, a) arbitrarily

2: for (each episode) do

3: Choose an action using at ← selectActionWithAffordances(st)

4: repeat

5: Take action at

6: Observe reward rt+1 and next state st+1

7: at+1 ← selectActionWithAffordances(st+1)

8: if rand(0, 1) < L then

9: Change action at+1 ← getAdvice(st+1)

10: end if

11: Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

12: st ← st+1

13: at ← at+1

14: until s is terminal

15: end for
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In our experiments we use the policy shaping method described in Sec. 2.1.8. Algo-

rithm 4.5 shows the IRL approach using contextual affordances and interaction by

means of the subroutines selectActionWithAffordances and getAdvice

shown in algorithms 4.3 and 4.4 respectively. The conditional statement in line 8

of algorithm 4.5 represents the fact that the external trainer delivers advice and

changes the next action at+1 by calling the method getAdvice where contextual

affordances are used.

Each set-up was carried out 100 times using the obtained average values for the

subsequent analysis. The Q-values were initialized randomly using a uniform prob-

ability distribution between 0 and 1.

4.4 Experimental Results

4.4.1 Training an Agent Using Classic RL

In this first step, simulations are performed to train the first agent with the SARSA

algorithm (see Eq. (4.3)) using the reward function shown in Eq. (3.4). Due to

a large number of states, and since many of them are actually failed-states, the

agent needs more than 400 episodes of training to reach the final state at least

once in 100 attempts. Fig. 4.3 shows the average number of actions involved in

every episode until reaching the final state with green crosses. Here, the number

of actions is only shown when the final state was reached; hence, in the episodes

where no cross is shown, only failed-states were reached. In the first half of the

training the final state was reached just a few times, but in the last part the agent

becomes more successful and furthermore, in these cases close to 15 actions are

being performed which in fact is the minimal number of possible actions.

The dashed green line shown in Fig. 4.3 with a different scale on the y-axis repre-

sents the percentage of successful runs. This curve is calculated by a convolution

using 50 neighbors to make it smoother and we observe that the initial percentage

of success is very low. Nevertheless, additional tests have shown that the curve

keeps growing, although it only reaches success rates of 35%. This clearly shows

the difficulty in obtaining a stable behavior by RL and the corresponding long

training times. When comparing to previous work (Cruz et al., 2014), we have
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Figure 4.3: Average number of actions needed for reaching the final state for

classic RL (green) and RL with contextual affordances (blue) over 100 runs in

1000 episodes. For classic RL, the average number of actions is shown as a green

cross only if at least one run was successful. Dashed lines show the rate of success

of runs that have reached the final state, which is always 1 in the case of RL with

contextual affordances since failed-states cannot be reached anymore. The rate of

success was smoothed by a moving average with window size 50.

obtained a substantial improvement. By including a small negative reward after

each performed action, the robot is encouraged to choose shorter paths towards

the final state. This negative reward leads to faster convergence and improved the

success rate considerably from previously 4% to the level close to 35%.

The average collected reward over 100 runs in 1000 episodes is shown in Fig. 4.4.

It is possible to see that the reward curve starts with values of -1 which mean that

in the beginning the robot fails the task immediately and up to 600 episodes later

is still failing most of the time. However, after 600 episodes the robot is able to

finish the task more regularly and thus increasing its collected reward.
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Figure 4.4: Average collected reward over 100 runs using classic RL in 1000

episodes. The collected reward starts at -1 which means the robot failed on per-

forming the cleaning task most of the time immediately. From there onwards and

until approximately 600 episodes the robot still mostly fails the task and then

completes it more and more often.

4.4.2 Training an Agent Using RL with Contextual

Affordances

As mentioned in the previous subsection, excessive episodes are required in order

to reach a stable system. Even though this is computationally expensive it would

be feasible in a simulated environment. Nevertheless, it would be unfeasible to

perform these quantities of episodes in a real scenario. Therefore, we decided to

explore the benefit of contextual affordances which are implemented to reduce

the valid action space for the agent by avoiding failed-states. Fig. 4.3 shows

the number of actions in each episode with this set-up. Using this approach, we

manage to reduce the number of episodes considerably, i.e., we need less than 100

episodes to obtain a stable behavior and an average number of performed actions

close to the minimum.
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Figure 4.5: Average collected reward over 100 runs using RL with contextual

affordances in 80 episodes. The collected reward starts already near to 0 since

in the beginning the robot does not have knowledge on how to perform the task

but the final average reward is much bigger than in the previous case since no

failed-state is reached anymore.

Whereas in the classic RL method the probability of success is still low in the first

episodes of training, in this set-up no episode ends in a failed-state because of the

use of contextual affordances since an episode can only end when the agent reaches

the final state (see dashed blue line in Fig. 4.3), which also produces considerably

lower variation in comparison to the preceding method.

Fig. 4.5 shows the average collected reward over 100 runs in only 80 episodes to

highlight the behavior in the first part of the training. It can be seen that the

reward curve starts with values close to 0 (−0.0024 in the first episode) since in

the beginning, the robot needs many intermediate actions until completing the

task but around 60 episodes later the robot is able to finish the task performing

a number of actions near to the minimum and increasing the average collected

reward.
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Figure 4.6: Average number of actions needed for reaching the final state for

RL with contextual affordances approach (blue diamonds) and IRL approach with

different probabilities of interaction L and a fixed probability of consistency C = 1

over 100 runs. The agent takes advantage of probabilities of interaction as small

as L = 0.3 by reducing the total number of performed actions.

4.4.3 Training a Second Agent Using IRL with Contextual

Affordances

Once a first agent has been trained, a second agent is trained with an IRL approach

that allows manipulating selected actions as shown in Fig. 2.6. In this method,

the external trainer that provides feedback is the trained agent which already has

knowledge about the task to be performed. Furthermore, we base the interaction

model on the advise method (Griffith et al., 2013) which uses two likelihoods, C to

refer to the consistency of feedback which comes from an external human agent,

and L to refer to the probability of receiving feedback, i.e., a likelihood that an

external human agent delivers guidance at some point.

First, we tested diverse values for L and C to investigate the influence within the
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Figure 4.7: Average collected reward over 100 runs for RL with contextual af-

fordances approach (blue line) and IRL approach with different probabilities of

interaction L and a fixed probability of consistency C = 1. After 50 episodes all

approaches reach a reward over 0.8.

learning process in terms of performed actions and collected reward. Fig. 4.6

shows the average number of performed actions with L ∈ [0.1, 0.9] and C = 1. As

a reference, the number of performed actions with RL using contextual affordances

is shown with blue diamonds which is equivalent to have L = 0. We can see that

even with a probability of feedback as small as L = 0.3 the agent can improve its

performance, especially in the first episodes. Moreover, Fig. 4.7 shows the average

collected reward by the agent over episodes for different values of L.

Afterward, we explored the learning behavior with different values for the consis-

tency of feedback C. The higher the consistency, the more accurate the advice

which means that fewer mistakes are made during the learning process. We also

use contextual affordances but in this case, the worst guidance is advised as shown

in algorithm 4.4 and as a result, a bad advice is selected among the actions which

still do not lead to a failed-state.
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Figure 4.8: Average number of actions needed for reaching the final state for

RL with contextual affordances approach (blue diamonds) and IRL approach with

different probabilities of consistency C and a fixed probability of interactions L =

0.5 over 100 runs. The agent takes advantage of probabilities of interaction larger

than C = 0.5 by reducing the total number of performed actions as small as RL

with contextual affordances approach.

To investigate the consistency of feedback C, we fixed the average probability of

feedback to L = 0.5 and then performed experiments with different consistency

C ∈ [0.1, 0.9]. Fig. 4.8 depicts the results and also shows the number of actions

for RL with contextual affordances which are equivalent to have L = 0 and C = 0.

It is clear that a more consistent trainer leads to better results or in this context

to perform fewer actions. However, even with a consistency of C = 0.5 the agent

can improve its performance over time, especially in the beginning of the training.

Additionally, Fig. 4.9 shows the average collected reward by the agent over episodes

for different values of C.

Finally, we ran an additional experiment where we decreased the probability of

feedback L and therefore the contribution of advice over time to simulate the
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Figure 4.9: Average collected reward over 100 runs for RL with contextual af-

fordances approach (blue line) and IRL approach with different probabilities of

consistency C and a fixed probability of interaction L = 0.5. The final reward in

all cases is less than RL with contextual affordances approach, nevertheless with

probabilities of consistency over 0.5 is observed a similar behavior than a perfect

trainer.

fatigue of an external trainer to provide feedback during the whole learning process.

We made a reduction of the feedback after every episode as:

Lt+1 = ηLt (4.6)

starting from different initial values of L and with η = 0.95 for all cases. Fig.

4.10 shows the average number of actions performed in every case. It is possible

to observe that as interaction is decreasing, the number of performed actions in-

creases after the first episodes where the agent explores non-optimal actions in the

absence of guidance. Nevertheless, after 25 episodes even with a very low amount

of interaction the agent is able to reduce the number of performed actions due to

its own knowledge on how to perform the cleaning task.
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Figure 4.10: Average number of actions needed for reaching the final state for

RL with affordances approach (blue diamonds) and IRL approach with different

initial probabilities of interaction L0 and decreasing over time.

4.5 Discussion

In this chapter, three particular learning methods were realized to test the per-

formance. The first method consisted of a robotic agent learning to execute the

cleaning task in an autonomous fashion using classic RL. The agent was not able to

learn the task before 400 episodes and still with a low success rate which increased

slowly to 35% in episode number 1000. Furthermore, collected reward decreased

in the first 600 episodes because of the low success rate and from there onwards it

increased to values around −0.4 showing that the agent was able to learn slowly.

In the second method using RL with affordances, the robotic agent also learned

the task in an autonomous fashion but this time utilizing contextual affordances

to avoid failed-states. The agent mastered the task faster in comparison to the

method used previously, reducing the number of actions needed to complete the

task from 100 actions in the beginning to fewer than 20 actions within 100 episodes.
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Furthermore, with this method collected reward was always positive, reaching

values over 0.8 because the success rate, in this case, is always 100% as a result of

the usage of contextual affordances.

The third method consisted of IRL with affordances, and in this method, the

robotic agent which had previously learned to execute the task became the trainer

of a second agent. In this scheme, the second robot was the learner-agent which

was advised in certain periods of the training process by the trainer-agent which

had acquired knowledge on how to perform the cleaning task.

Training robotic agents with interactive feedback and contextual affordances pre-

sented an advantage over classic RL in terms of the number of performed actions

and collected reward. Even low levels of interaction showed progress in comparison

to RL working without an external trainer. Moreover, the agent was able to learn

the proposed cleaning task even when being misadvised or receiving inconsistent

feedback in some time steps during the learning process.

The applicability of the proposed method in more realistic scenarios is an open

question to be addressed, therefore, we will transfer the present set-up to a human-

robot interaction scenario, where advice is given by human trainers who must not

necessarily be experts on developmental robotics or machine learning. In this

regard, human advice can be interpreted as parental scaffolding (Ugur et al., 2015)

and therefore it is interesting to investigate it in terms of the number of given

instructions and the frequency of these.

To transfer this scenario to real environments in a more plausible manner more

advanced architectures have to be developed considering also different modalities

(Farkas̆ et al., 2012), e.g., the audio modality using a microphone or the vision

modality using a depth sensor, to make it more realistic and integrate it in a

multi-modal system to control the robot interactively. This enables to get much

closer to real environments in which any human trainer even without a background

in robotics can teach a robot. This kind of set-up will be deeper developed and

described in chapters 6 and 7 within Part III. Human-Agent Interactive Reinforce-

ment Learning.
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4.5. Discussion

While this chapter has shown how an affordance-based model, so-called contextual

affordance, may benefit the IRL framework as a tool to reduce the search space

during the apprenticeship process, we have also investigated parameters of interac-

tion as frequency and consistency of feedback. The following chapter will focus on

the features of trainer-agents and bring additional details about agent-agent inter-

action to deeper discuss what makes a good teacher, considering the parameters of

interaction and learner-agent’s obedience. Subsequently, in the following chapters,

we will focus on whether the theoretical, idealized parameters can be transferred

to human teachers.
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Chapter 5

Influence of Different Trainer

Types on Learner-Agents

5.1 Introduction

Interactive reinforcement learning (IRL) has become an important apprentice-

ship approach to speed up convergence in classic reinforcement learning problems

(Thomaz and Breazeal, 2007; Knox et al., 2013b; Taylor et al., 2014). In this re-

gard, a variant of IRL is policy shaping which uses a parent-like trainer to propose

the next action to be performed and by doing so reducing the search space by

advice. On some occasions, as shown in the previous chapter, the trainer may

be another artificial agent which in turn was trained using reinforcement learning

methods to afterward becoming an advisor for other learner-agents.

In this chapter, we not only study this situation, i.e., utilizing artificial trainer-

agents, but rather assessing teacher performance over learner-agents. Initially,

we look into the internal representation and visited states of prospective advisor

agents in order to explore which features may be important to act as a good

trainer. Afterward, we compare the behavior of both the advisor and the learner in

terms of the internal representation, visited states, and collected rewards. Finally,

we evaluate the system interaction parameters along with the learner behavior

in terms of learner-agent’s obedience. We hypothesize that the inclusion of this

additional parameter may be beneficial in presence of a low consistency of feedback
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allowing to ignore bad advice. Experiments and results in this chapter have been

designed and obtained in order to answer the second research question posed in

this thesis: What makes a good teacher-agent when considering internal knowledge

representation and interaction parameters?

By using artificial agents as teachers, some properties have been studied so far

such as different effects of delivering advice in different episodes and with differ-

ent strategies during the learning process (Torrey and Taylor, 2013; Taylor et al.,

2014) and effects of different probabilities and consistency of feedback (Griffith

et al., 2013; Cruz et al., 2014, 2016a) as shown in the previous chapter. Nonethe-

less, the implications of utilizing artificial teachers with different characteristics

and different internal representations of the knowledge based on their previous

experience have not been studied. Moreover, the effects when the learner ignores

some of the advice have also not been studied in artificial agent-agent interaction,

although some insights are given in Griffiths’ work using human-human interaction

with a computational interface (Griffiths et al., 2012).

We study effects of agent-agent interaction in terms of achieved learning when

parent-like teachers differ in essence and when learner-agents vary in the way they

incorporate the advice. Therefore, we analyze internal representations and char-

acteristics of artificial agents to determine which agent may outperform others to

become a better trainer-agent. We hypothesize that certain agents, acting as ad-

visers, may lead to a larger reward and faster convergence of the reward signal

and also to a more stable behavior in terms of the state visit frequency of the

learner-agents. Moreover, we further analyze system interaction parameters in or-

der to determine how influential they are in the apprenticeship process, where the

consistency of feedback may be much more relevant than other parameters when

dealing with different learner obedience parameters.

5.2 Interactive Reinforcement Learning with

Artificial Trainers

As aforementioned, RL has been used to allow robotic agents to autonomously

explore their environment in order to develop new skills (Wiering and Otterlo,
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Figure 5.1: An interactive reinforcement learning approach with policy shaping.

In selected states, the trainer advises the learner-agent changing the action to be

performed in the environment.

2012; Mnih et al., 2015). The gray box in Fig. 5.1 shows the general description of

the RL framework, with the environment represented by domestic objects which

are related to our scenario which is described in the Sec. 3. Furthermore, Fig.

5.1 shows a general overview of the agent-agent scheme where the trainer provides

advice in selected episodes to the learner-agent to bootstrap its learning process.

Even though in an IRL scenario reward and policy shaping are alternatives to

train a learner-agent, in a domestic scenario, a robotic agent is expected to work

with humans as external trainers. However, there exist asymmetries when humans

quantify a reward including sometimes feedback about the past actions and also

about actions they predict the robot will do (Thomaz and Breazeal, 2006, 2007).

Hence, we decided to use the policy shaping method with artificial trainer-agents

in this chapter, shown in Fig. 2.6. To this aim, in the cleaning-table scenario a

learner-agent has previously been trained using classic RL and then this learner

becomes the external trainer. Therefore, this agent has full knowledge of all possi-

ble actions and has to deliver it to a second agent which is thus trained with IRL.

We use an artificial trainer to have better control over the feedback compared to

experiments with a human trainer. Nevertheless, diverse information sources can

be employed to obtain feedback from, for instance, a person (as shown in the next

chapters), another robot, or any other artificial system.

Although interactive advice improves the learning performance of learner-agents,

something that may significantly affect the agent’s performance is the need of a
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good trainer since consecutive mistakes may lead to a worse training time as shown

is the previous chapter. In principle, one may think that the agent with the largest

accumulated reward should be a good candidate to become the trainer. However,

when we look into the internal knowledge representation this may not necessarily

be the best option. In some occasions, agents with lower overall performance may

be better trainers due to a possibly vast experience about less common states (i.e.,

states that not necessarily lead to the optimal performance) and therefore may

give better advice in those states.

For a good trainer to emerge with knowledge of most of the situations or in all pos-

sible states we suggest an agent with small standard deviation σs from the mean

frequency over all visited states which represents a better distribution of the expe-

rience during the training. Therefore, we select the trainer-agent T ∗ computing:

T ∗ = argmin
i∈Ag

σis (5.1)

where Ag is the set of all the trained agents and σis the standard deviation of the

visited states during the learning process for the agent i.

To test the implemented methods in this chapter, we use the previously defined

RL scenario in Sec. 3. However, with the aim of comparing pure RL agents serving

as trainers and test other variables, we do not include here contextual affordances

and, therefore, we do not have to previously learn them, which results in a shorter

training time, in general.

5.3 Experimental Set-up and Results

In the following section, we show the performed experiments and the obtained

results. All experiments include the training of 100 agents through 3000 episodes.

Q-values are randomly initialized using a uniform distribution between 0 and 1.

Other parameter values selected after performing a grid search are learning rate

α = 0.3 and discount factor γ = 0.9. Besides this, we use ε-greedy action selection

with ε = 0.1. To assess the interaction between learner and trainer-agents we

initially used a probability of feedback L = 0.25; nevertheless, we afterward

vary this parameter along with the consistency of feedback and learner behavior.
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All the aforementioned parameters were empirically determined and related to our

scenario.

5.3.1 Choosing an Advisor Agent

To acquire a sample of trainer-agents, autonomous RL was performed with 100

agents, each of them a prospective trainer for the IRL approach. In the presented

scenario, there are agents with diverse behaviors which differ mostly in the path

they choose until reaching a final state in the cleaning-table scenario, where there

are 2 possible paths towards a final state. First, there are agents which most of the

time choose the same path to complete the task, either path A or path B (see Fig.

3.2), which leads to a biased behavior due to the way the knowledge is acquired

during the learning process. From this kind of behavior and taking into account our

scenario, there exist agents that regularly take the shorter path (path A) and others

that take the longer one (path B), we refer to them as the specialist-A and the

specialist-B agents respectively. In both cases, agents successfully accomplish the

task, although they accumulate different amounts of average reward. Obviously,

specialist-A agents are the ones with better performance in terms of collected

reward since fewer state transitions are needed to reach the final state. Secondly,

there are agents with a more homogeneously distributed experience, meaning that

they do not have a favorite sequence to follow and have equally explored both

paths. We refer to such agents as polymath agents.

To illustrate this, Fig. 5.2 shows a frequency histogram of visited states for two

potential trainer-agents over all training episodes. The histogram shows two dis-

tinct distributions, one for a specialist-A agent in gray and one for a polymath

agent in blue. The specialist-A agent decided to clean the table following the

shorter path most of the time and, therefore, there is an important concentration

of visits among the states from 16 to 29 which are intermediate states to complete

the task on this path. Furthermore, there is a clear subset of states which was

never visited during the learning. In contrast, the polymath agent visited all the

states and transits on both paths to a similar extent. In the case of the specialist-B

agent, there is also a concentration of visits among a subset of states, similarly to

the specialist-A agent. The specialist-B agent decided most of the time to clean

following the longer path along the states from 30 to 48 and barely visiting states
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Figure 5.2: Frequencies of visits per states for two agents. It is possible to

observe two different behaviors. The biased (specialist-A) agent gained experience

mostly on the shorter path, whereas the homogeneously-distributed (polymath)

agent gained experience through most states.

from 16 to 29. Therefore, we do include this agent in the results hereafter but we

do not present it in some plots to make the relevant information more accessible.

To further analyze the agents’ behavior we took three representative agents, one

per class, that we will from now on use with the respective names: A specialist-A

agent with biased behavior for the shorter path, a specialist-B agent with biased

behavior for the longer path, and one polymath agent with unbiased behavior.

The specialist-A agent visited each state with an average of s1 = 1121.21 times, a

standard deviation of σ1
s = 1570.75, an accumulated average reward of r1 = 0.11105

per episode, and R1 = 333.15 during the whole training. The specialist-B agent

visited each state on average s2 = 1561, 15 times obtaining more diverse experience

than the previous agent but certainly not homogeneously distributed, which can

also be seem in the standard deviation of σ2
s = 1628.70. The specialist-B agent

accumulated an average reward of r2 = −0.17839 for each episode and a total

of R2 = −535.18. In the case of the polymath agent, each state was visited
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Table 5.1: Visited states, standard deviation, reward accumulated

per episode, and total collected reward for three agents from classes

with different behavior. The agents show different properties as result

of the autonomous learning process.

Agent sss σsσsσs rrr R Properties

Specialist-A

agent

1121.21 1570.75 0.11105 333.15 Largest accumu-

lated reward

Specialist-B

agent

1561.15 1628.70 -0.17839 -535.18 Largest amount of

experience

Polymath

agent

1307.51 947.96 -0.00427 -12.82 Smallest standard

deviation

an average of s3 = 1307.51 times with standard deviation of σ3
s = 947.96. The

accumulated average reward was r3 = −0.00427 per episode and the total reward

was R3 = −12.82 during the whole training. Table 5.1 shows a summary of

the performance of the three aforementioned agents. The table shows that the

specialist-A agent accumulated the largest reward, the specialist-B agent visited

more states, and the polymath agent obtained the smallest standard deviation.

Nevertheless, accumulating plenty of reward does not necessarily lead to becoming

a good trainer, in fact it only means that the agent is able to select the shorter

path most of the time from the initial state, but the experience collected in other

states not involved in that route is absent or barely present and therefore such an

agent cannot give good advice in those states where it does not know how to act

optimally.

Therefore, as shown in Eq. (5.1), we propose that a good trainer is, in essence,

an agent which not only collects more reward but also with fairly distributed

experience. From the three agents shown above, the polymath agent has a standard

deviation of σs = 947.96 and thus might be a good advisor. In Fig. 5.2 the

experience distribution of such an agent is shown in blue, which suggests that the

agent has the knowledge to advise what action to perform in most of the states. In

the case of the initial state, the frequency is much higher in comparison since this

state is visited every time at the beginning of a learning episode. In fact, similar
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+

-
S

ta
te

s

Actions

S
ta

te
s

S
ta

te
s

Actions Actions

R
ew

ar
d

b) The specialist-B agent

Figure 5.3: Internal knowledge representation for three possible parent-like ad-

visors, namely the specialist-A, the specialist-B, and the polymath agent. The

specialist-A agent shown in figure a), despite collecting more reward, does not

have enough knowledge to advise a learner in every situation represented by the

blue box. A similar situation is experienced in the specialist-B agent, shown in fig-

ure b). The polymath agent shown in figure c) has overall much more distributed

knowledge which allows it to better advise a learner-agent.

frequencies are observed in this state for a biased distribution.

We also recorded the internal representation of the knowledge through the Q-values

to confirm the lack of learning in a subset of states. Fig. 5.3 shows a heat map

of the internal Q-values of three agents, the specialist-A, the specialist-B, and the

polymath agent. Warmer regions represent larger reward and colder regions lower

values. In fact, the coldest regions are associated with failed-states from where the

agent should start a new episode, obtaining a negative reward of r = −1 according

to Eq. (3.4). In Fig. 5.3 can be observed that the specialist-A agent may be an

inferior advisor since there exists a whole region uniformly yellow, which shows

no knowledge about what action to prefer. In the case of the specialist-B agent,

there exists a region which shows much less knowledge on what action to prefer

when comparing with the two other agents. In other words, the learned policies are

partially incomplete as highlighted by the blue boxes in Fig. 5.3. On the contrary,

the policy learned by the polymath agent is much more complete when observing
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Figure 5.4: Visited states for the specialist-A RL trainer-agent and average state

visits of IRL learner-agents. The averaged frequency for IRL agents moreover

includes the standard deviation for visited states showing that in many cases the

trainer-agent does not know how to advise and in consequence leads the learner-

agent to dissimilar behavior.

the same regions as highlighted by the green boxes. It is important to note that

the region on top is in all cases colder than the rest because it is the most distant

one from the final states where a positive reward r = 1 is given, but in spite of

that, the polymath agent is still able to select a suitable action according to the

learned policy.

5.3.2 Comparing Advisor and Learner Behavior

Once we have chosen trainer-agents, we are able to compare how influential such

a trainer is in the learning process of a learner. We use two agents shown in the

previous subsection, the specialist-A and the polymath agent, the former with the

largest accumulated reward and the latter with the smallest standard deviation.

Fig. 5.4 shows the frequency with which each state was visited for 100 learner-
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Figure 5.5: Visited states for the polymath RL trainer-agent and average state

visits of IRL learner-agents. The averaged frequency for IRL agents includes the

standard deviation which in this case is considerably lower as the learners are

assisted by a trainer with more knowledge about the task-space which also leads

learner-agents to have more stable behavior as they are consistently advised.

agents in average using the specialist-A agent with biased frequency distribution

as a trainer. We can observe a large standard deviation for visited states in IRL

agents in most of the cases, which suggests diversity in terms of frequency for

those states among the learner-agents. Fig. 5.5 shows the average frequency of

visits for each state for 100 learner-agents using the polymath agent as a trainer

which has a more homogeneous frequency distribution. It can be observed that the

standard deviation for visited states in IRL agents is much lower in comparison to

the previous case. This shows a more stable behavior in terms of visiting frequency

in learner-agents when using the polymath trainer-agent.

By using the specialist-A agent as a trainer in our IRL approach the average col-

lected reward is slightly higher in comparison to autonomous RL. In general, the

IRL approach collects the reward faster than RL but in a similar magnitude after

400 episodes. Fig. 5.6 depicts the average collected reward during the first 500
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Figure 5.6: Average collected reward by 100 agents using RL and IRL approaches.

In this case, a biased trainer (the specialist-A agent) is used to advise the learner-

agents. The advice slightly improves the performance in terms of accumulated

reward and convergence speed. The gray curves show the convoluted collected

reward inside of a window of 30 values to smooth the results shown.

episodes using autonomous RL and IRL approaches with yellow and red respec-

tively using the specialist-A agent as the trainer in the case of IRL. The gray curves

show the convoluted collected reward inside of a window of 30 values to smooth

the results shown.

On the other hand, by using the polymath agent as the trainer the IRL approach

converges both faster and to a higher amount of reward when compared to the

previous case. This is due to the polymath agent which knows the task-space

better and is able to advise correctly in more situations than the specialist agent.

In consequence, this allows the learner to complete the task faster and therefore

accumulate more reward since the learner-agent receives less incorrect advice from

the trainer-agent, i.e., with a higher consistency of feedback. Fig. 5.7 shows the

average collected reward in 500 episodes for RL and IRL approaches. Once again,
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Figure 5.7: Average collected reward by 100 agents using RL and IRL approaches.

When using an unbiased trainer-agent (the polymath agent) the accumulated re-

ward is higher and the convergence speed faster in comparison to the previous case

using a biased agent as an advisor. The gray curves show the convoluted collected

reward inside of a window of 30 values to smooth the results shown.

the gray curves show the convoluted collected reward inside of a window of 30

values to smooth the results shown. In the following experiments, only smooth

curves will be used to simplify the analysis of the results.

5.3.3 Evaluating Interaction Parameters

As shown in previous section, IRL is in general beneficial for a learner-agent in

terms of accumulated reward and convergence speed. Nevertheless, the selection of

the trainer can have significant implications on learner’s performance. To further

study the trainer-learner interaction, we evaluated the involved interaction param-

eters along with the effect whether the learner follows the received advice or not in

order to mimic actual human-human behavior where the learner occasionally does

not follow the advice (Griffiths et al., 2012). The inclusion of this parameter may
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Figure 5.8: Collected reward for different values of learner obedience using fixed

probability of feedback of 0.25 and four different values for consistency of feedback

between 0.25 and 1.0.

be beneficial in presence of a low consistency of feedback allowing to ignore bad

advice. We called this parameter learner obedience O ∈ [0, 1], 0 meaning that the

learner-agent never follows the advice and thus corresponds to a pure autonomous

RL learner.

Initially, we used a fixed probability of feedback L = 0.25. The idea then was to test

the system over a number of different values of consistency of feedback and learner

obedience. Fig. 5.8 shows the collected reward during 500 episodes for the different

values of consistency of feedback C ∈ {0.25, 0.5, 0.75, 1.0} and learner obedience

O ∈ {0.0, 0.25, 0.5, 0.75, 1.0}. In all cases, the learner obedience O = 0, shown

in black, corresponds to autonomous RL which is shown in yellow. The collected
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rewards indicate generally that the more consistent the feedback was, the better the

performance. Even though that difference in the performance seems to be intuitive,

it is important to note that even with comparatively high values of consistency like

C = 0.75 the learner does not achieve significantly better performance compared to

autonomous RL while on the other hand, an idealistic perfect consistency (C = 1)

allows the learner-agent to achieve much higher collected reward than autonomous

RL even when the learner obedience is as low as O = 0.25. Therefore, in the

current scenario, wrong advice has an important negative effect since it does not

only lead to the execution of more intermediate steps but also, in many cases, leads

to failed-states and thus to a high negative reward (−1) and the start of a new

learning episode.

In Fig. 5.8, agents which follow the advice only 25% of the time (O = 0.25),

depicted in green, show much better performance when the consistency of feedback

C is lower which is due to the agent being able to ignore the suggested wrong advice

and select an action on its own. On the contrary, agents which follow the advice

all the time (O = 1.0), depicted in red color, show much better performance in

presence of consistent feedback.

Thereupon, we modified the probability of feedback for the purpose of testing

how influential different consistencies of feedback C and different learner obedi-

ence levels O are. Fig. 5.9 shows the accumulated reward during 500 episodes

for probability of feedback L ∈ {0.5, 0.75, 1.0} (the outcome using probability

of feedback of 0.25 is already shown in Fig. 5.8) and consistency of feedback

C ∈ {0.25, 0.5, 0.75, 1.0} using learner obedience O ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.

In Fig. 5.9 the columns show the performance over different probabilities of feed-

back, while the rows show the performance over different values of consistency.

Observing each row, it can be seen that higher probabilities of feedback do not con-

siderably improve the outcomes in terms of the collected reward, suggesting that

often interactive feedback does not necessarily enhance the overall performance

but it is rather the consistency of feedback that makes prominent differences. In

fact, observing the outcomes down the columns, thus with the same probability

of feedback, different values of consistency lead to significant improvements in the

collected reward and consequently, consistency of feedback has much more impact

on the final learning performance. For instance, when using the consistency of
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Figure 5.9: Collected reward for different learner obedience levels using several

probabilities and consistencies of feedback. Higher probabilities of feedback do not

necessarily lead to discernible improvements in the overall performance; however,

important differences can be noted as higher consistencies of feedback are used.
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Figure 5.10: Collected reward for different values of learner obedience using fixed

probability of feedback 0.25 and for four different cases for higher consistencies of

feedback between 0.8 and 0.95.

feedback C = 1.0 (fourth row in Fig. 5.9) in all cases the accumulated reward is

higher than 0.5, but on the other hand, when using the consistency of feedback

C = 0.75 (third row in Fig. 5.9), the accumulated reward tends to slightly decrease

as trainer advice increases, meaning that more interactive feedback does not help

in the presence of poor consistency of feedback, or in other words of bad advice.

Ultimately, since the consistency of feedback shows considerable sensibility in the

presence of small variations, we performed one additional experiment keeping the

probability of feedback fixed to L = 0.25 as in Fig. 5.8 since we use this value as

a base as aforementioned. We tested the consistency of feedback with values C ∈
{0.8, 0.85, 0.9, 0.95} (consistency of 0.75 and 1.0 were already shown in Fig. 5.8)
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to evaluate how these slight changes impact on the overall performance. Fig 5.10

shows the accumulated rewards for learner obedience O ∈ {0.0, 0.25, 0.5, 0.75, 1.0}.
It can be seen that such small differences in the consistency of feedback can lead

to dissimilar outcomes, ranging from behavior similar to autonomous RL when

C = 0.8 to behavior similar to a fully correctly advised learner-agent when C = 0.95.

Therefore, even a small proportion of bad advice can considerably impoverish the

learning process, which shows how important it is to select trainers that can give

useful advice in most states since specialised trainers, despite being more successful

themselves from the initial state, have limited knowledge when it comes to states

that lie outside their specialised policy.

5.4 Discussion

In this chapter, we presented a comparison of artificial agents that are used as

parent-like teachers in an IRL cleaning scenario. We have defined three classes of

trainer-agents related to our scenario, two of them being specialists in a particular

path and another with no preference in any of them. Thus, the agents differ not

only in their characteristics but also in the obtained performance during their own

learning process and in turn as trainers. The differences in their main properties

reflects in their behavior as i) the specialist-A agent with the largest accumulated

reward, ii) the specialist-B agent with the largest amount of experience in terms

of the number of explored states, and iii) the polymath agent with the smallest

standard deviation.

The polymath agent is a better candidate to become an advisor since has experi-

ence in most of the states, and, therefore, it is able to properly advice in most of

situations. Results show that using the polymath agent as an advisor, a learner-

agent is able to both collect more reward and faster converge. Furthermore, the

scenario has been tested on diverse parameter values for probability of feedback,

consistency of feedback, and learner-agent’s obedience showing differences in accu-

mulated rewards especially regarding the consistency of feedback suggesting that

slightly variations on the consistency affect considerably the learner-agent perfor-

mance.

In this part of the thesis, we have introduced an agent-agent IRL approach. In
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chapter 4 we have focused on IRL complemented by an affordance-based model,

so-called contextual affordances. We have confirmed contextual affordances to be

an efficient strategy to reduce the search space and, therefore, enabling a faster

learning. Moreover, in chapter 4, we have studied interaction parameters such as

the probability of feedback and consistency of feedback. We have observed that

the consistency of feedback seems to be very important since small differences

may affect the performance considerably. In chapter 5 we have analyzed what

features of trainers are more relevant to become a good teacher. The polymath

agent has shown the best results since it has more general knowledge about all

the states, which is reflected in the smallest standard deviation. Furthermore, in

this chapter, we have investigated in deeper the previous interaction parameters

plus the learner-agent’s obedience observing that the inclusion of this parameter

improves the learner performance in presence of low consistencies of feedback.

In the following part of the thesis, we focus on implementing the cleaning-table

scenario adding human parent-like trainers in the IRL loop using uni- and multi-

sensory inputs. By using a human parent-like trainer, we expect not only to

have a more realistic scenario but also to investigate how the sensory processing

affects the learning process in terms of performed actions and accumulated rewards.

In chapter 6, we introduce an architecture utilizing uni-modal input signals to

guide the robot during the learning process. Afterward, in chapter 7, we will

extend the approach to incorporate multi-modal inputs to enrich the feedback

signal attempting to speed up the learner-agent performance.
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Chapter 6

Speech Guidance Using a

Domain-specific Language

6.1 Introduction

In the present chapter, we implement the cleaning-table scenario adding a human

parent-like trainer in the IRL loop using uni-sensory inputs. By adding a human

trainer, we move the scenario into a more realistic set-up, but additionally, we are

able to investigate how the sensory processing affects the learning process. During

this chapter, due to the good results obtained in chapter 4, we use again contextual

affordances. Moreover, a robotic learner-agent obtains interactive feedback via a

speech recognition system which is tested to work with five different microphones

concerning their polar patterns and distance to the teacher to recognize sentences of

different instructions. The designed experiments and obtained results are oriented

to answer, in part, the third research question of this thesis: How beneficial is

uni- and multi-modal advice during the apprenticeship process. This question is

relevant in the IRL context, since it allows us to determine how uni-modal advice

from humans may affect some parameters such as the consistency of feedback

where small variations may impoverish the overall learning performance. In this

chapter, we focus on uni-modal sensory inputs represented as audio input signals

and processed by an automatic speech recognition (ASR) system. We use speech

guidance during the apprenticeship in order to reduce the number of actions needed

to complete the task by the learner-robot.
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Agent in
state s Environment

action a
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reward r’
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Parent-like 
Trainer

Figure 6.1: Interactive reinforcement learning with a human parent-like trainer

to deliver spoken advice to the agent on how to perform the task faster with respect

to the agent’s autonomous exploration.

In the domestic scenario, the robot performing the cleaning-table task may be as-

sisted receiving a degree of external guidance. In this regard, robots working in

domestic scenarios may benefit from human expertise on how to perform a partic-

ular task (Thomaz and Breazeal, 2007; Suay and Chernova, 2011; Knox and Stone,

2012). Therefore, in our scenario, the robot receives spoken advice from a human

trainer which is recognized by the ASR system. This way of giving instructions is

natural for humans, but we need to control the probability of supplying feedback

by the teacher, as humans can decide if they provide an instruction in a given

situation. Hence, we use an artificial agent with full knowledge about the task to

provide the spoken advice.

The implemented IRL approach allows to speed up the learning process by using

a human parent-like advisor (as in Fig. 6.1) to support the learning by deliver-

ing useful spoken advice in selected episodes using policy shaping (Thomaz and

Breazeal, 2007; Griffith et al., 2013). This approach reduces the search space and

allows to learn the task faster in comparison to a fully autonomous agent (Suay

and Chernova, 2011; Cruz et al., 2015). Hence, an apprentice agent can be taught

by a parent-like trainer in a similar way as caregivers assist infants during the

learning of new tasks.

Moreover, the implemented IRL approach uses contextual affordances to allow the

robot to complete the cleaning task in every episode anticipating when chosen ac-

tions are possible to be performed. We hypothesize that contextual affordances
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along with spoken advice may improve the convergence speed of reinforcement

learning, avoiding wrong instructions that result from errors of the speech recog-

nition system.

6.2 Automatic Speech Recognition

The given scenario originates from the Human-Robot Interaction (HRI) domain.

For this reason, we do not only employ a humanoid robot as the learner, but there

is also a humanoid teacher. Now, since the human way of instructing a robot is

employing speech, the teacher also uses speech to instruct the learning robot by

providing pre-recorded audio data that was spoken by a human. To understand

the verbal commands, the apprentice processes audio data and recognizes the given

guidance by applying an ASR system.

The ASR system we employ for our approach is the DOCKS system developed

by Twiefel et al. (2014). The DOCKS system is based on Google Voice Search

(Schalkwyk et al., 2010) which is a cloud-based ASR service processing audio data

captured by a local microphone and generating hypotheses for the corresponding

text representation. As Google Voice Search is generally applied in web searches,

the involved language models are optimized for this task. The given HRI scenario

differs from this field as robot instructions are verbalized which are not the first

preference in web search-based ASR hypotheses. One possibility to overcome this

issue is to integrate a local open-source ASR system which can be configured by

providing a domain-specific language model for the given HRI scenario. However,

the acoustic models employed by local open-source ASR systems provide a lower

quality due to the lower amount of training data available during training.

To overcome the issues of either weak acoustic models or out-of-domain language

models, DOCKS uses a post-processing technique to fit the ASR provided hy-

potheses by Google Voice Search to the given HRI domain. To be able to exploit

the quality of the well-trained acoustic models employed by Google Voice Search,

the ASR hypothesis is converted to a phonemic representation (Bisani and Ney,

2008). The converter is capable of creating a phoneme sequence for unknown words

based on the provided training data and so overcomes the issue of unknown words

contained in the ASR hypothesis provided by Google Voice Search.
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Figure 6.2: Functional principle of the ASR system. The left side shows the ASR

hypotheses provided by Google and the right side contains the list of sentences for

the given HRI scenario. In the middle, the Levenshtein distances are calculated.

For the given HRI scenario, a fixed set of robot commands is defined and repre-

sented by a list of sentences. To receive the best-matching hypothesis out of the

list of sentences, the phonemic representation of the ASR hypothesis is compared

to the phonemic representations of each sentence in the list. For this task, the

Levenshtein distance (Levenshtein, 1966) is employed to calculate the difference

between phoneme sequences. After calculating the Levenshtein distance between

the ASR hypothesis and each sentence of the list, the sentence possessing the short-

est distance is chosen as the best-matching result. To improve the technique, the

Levenshtein distance is calculated for the ten best hypotheses provided by Google

Voice Search. Fig. 6.2 summarizes the mentioned functional principle.

6.3 Experimental Set-up

This section presents an integrated system to teach a robot to perform the cleaning-

table task using a parent-like trainer with occasional spoken instructional feedback.

The system architecture consists of three modules which are shown in Fig. 6.3. At

the top, there is the interface module where the external trainer provides a voice
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Figure 6.3: System architecture in three levels using speech guidance. At the top

is the interface module which interacts with the external teacher, in the middle

is the control module and at the bottom the robot module where the actions are

performed.

stream which is processed by the ASR system and sent to the control module in

the middle. The control module runs the learning algorithm that is able to perform

autonomous RL and IRL generating choices for actions. These are passed to the

robot module to be executed by a simulated Baxter robot combining two different

approaches for low-level control, namely direct planning and inverse kinematics.

We use a simulated Baxter robot because the low-level control model has been

already implemented and runs quite stable in the V-REP simulator (Rohmer et al.,
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Figure 6.4: A simulated Baxter robot performs the actions in the environment

which is created in the V-REP simulator.

2013). This allows us to set the focus into the analysis of the interaction parameters

as well as into the uni-modal robot interface.

The cleaning-table task is carried out by the Baxter robot in a simulated environ-

ment using the V-REP simulator. All actions are performed using only one arm

which has seven degrees of freedom (DoF). Fig. 6.4 shows the scenario while the

Baxter robot is cleaning the table using the sponge. The Baxter robot has as end

effector a vacuum cup, also called suction pad. We do not employ a gripper to

grasp the object since the main focus of this work is to learn the right sequence

quickly. Moreover, to reach the defined locations direct planning is used and then

afterward inverse kinematics for low-level control is used to grab objects.

To make the scenario more complex, we created variations for every guidance in-

struction, expanding to 33 domain-specific instructions belonging to the 7 different

classes of advice. For instance, advice get the sponge could also be stated as pick
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up the sponge, take the sponge, grasp the sponge, or lift the sponge, but all of them

represent the same instruction.

We use the IRL approach to training the robot utilizing the ε-greedy method for

action selection with the following parameters determined by a grid search, α = 0.3,

γ = 0.9, and ε = 0.1. Therefore, in most of the cases, the next action is selected

as shown in Eq. (6.1):

at = argmax
a∈As

Q(st, a) (6.1)

where st is the current state at time t, and As corresponds to a subset of all available

actions. The subset of available actions is determined based on the contextual

affordances using a similar ANN architecture as shown in Fig. 4.2. This way,

it is possible to anticipate the effect of performing an action with an object in a

particular state.

To train the contextual affordances model, data were obtained considering all pos-

sible states mentioned in Sec. 3.3.2 as well as the instructive classes taking into

account the combination of actions and states. This led to 371 data for the training

process.

Our parent-like trainer possesses instructional recordings of the different advice

classes. Therefore, the parent-like trainer is able to deliver selected interactive

feedback to the robot using ASR at certain times during the learning process. Our

IRL approach uses probability of feedback L = 0.2 and consistency of feedback

C = 0.9 as interaction parameters.

Algorithm 6.1 shows the IRL approach using contextual affordances, interaction

and speech recognition. The conditional statement starting in line 19 represents the

fact that the external teacher delivers advice and changes the next action at+1 by

formulating a verbal instruction that is processed by the ASR system. Conditions

in lines 8 and 18 represent the response of the neural network about the feasibility

of performing the action in the current state which is called contextual affordance

(method CAff(at, o, st) in the algorithm).

101



Chapter 6. Speech Guidance Using a Domain-specific Language

Algorithm 6.1. Interactive reinforcement learning approach using contextual

affordances, interaction and speech recognition

Input: Previous definition of states and actions

1: Initialize Q(s, a) arbitrarily

2: repeat

3: if rand(0, 1) <= ε then

4: Choose at randomly from A

5: else

6: Choose at according to a = argmax
a=as

Q(s, a)

7: end if

8: until CAff(at, o, st) <> −1

9: repeat

10: Take action at

11: Observe reward rt+1 and next state st+1

12: repeat

13: if rand(0, 1) <= ε then

14: Choose at+1 randomly from A

15: else

16: Choose at+1 according to a = argmax
a=as

Q(s, a)

17: end if

18: until CAff(at+1, o, st+1) <> −1

19: if rand(0, 1) <= feedbackProbability & ...................................................

......... rand(0, 1) <= consistencyProbability then

20: get advice from teacher voice using ASR

21: if CAff(at+1, o, st+1) <> −1 then

22: at+1 ← advice

23: end if

24: end if

25: Q(st, at)← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

26: st ← st+1

27: at ← at+1

28: until s is terminal
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(a) Snowflake (b) UB1 (c) Digital

(d) Headset (e) Pro1 (f) Pro1(Details)

Figure 6.5: Microphones used in the experiments.

6.4 Experiments and Results

6.4.1 Automatic Speech Recognition Module

To carry out the cleaning-table task we consider different microphones to measure

how the hardware affects quality in the ASR system and consequentially in the

IRL approach. Therefore, we made simultaneous recordings using 5 different kinds

of microphones and evaluated the answers of our ASR system. Afterwards, we

made the scenario more difficult by positioning the microphones at a distance of

1m away from the speaker, which leads to the necessity of increasing the strength

of the audio signal to compensate for the lower volume of the speech instructions

and with this also increasing the level of environmental noise contained in the au-

dio signal. As a hypothesis, we claim that more noisy audio data leads to worse

ASR performance and so we can measure the robustness of the learning system

by providing incorrect instructions. The microphones were Snowflake, UB1, Dig-

ital, Headset, and Pro1 which are shown in Fig. 6.5. Snowflake’s polar pattern

is cardioid, UB1 is omnidirectional, Digital is supercardioid, Headset is unidirec-

tional, and the Pro1 is omnidirectional. Only 16kHz, mono channel audio data

was utilized.
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Table 6.1: Word and Sentence Error Rate (%) in ASR for all

microphones used at normal and at 1m distance.

Microphone
Normal distance 1m distance

WER SER WER 1m SER 1m

Snowflake 0 0 0.88 3.03

UB1 0 0 1.75 6.06

Digital 0.88 3.03 1.75 6.06

Headset 0.88 3.03 3.51 12.12

Pro1 11.40 27.27 14.91 30.30

The response of the ASR module for the domain-specific language model measured

in Word Error Rate (WER) and Sentence Error Rate (SER) is shown in Fig. 6.6

and in table 6.1 as percentages for normal distance and 1m distance. In this

context, normal distance means that the microphone is placed in its normal working

position depending on its characteristics, i.e., on the table just in front of the user

for Snowflake, UB1, and Digital, on the ears of a wood head placed in front of

the user for Pro1, and on the user’s head for Headset. The SER depends on the

sentence accuracy SAcc as shown in the following equation:

SER = 1− SAcc (6.2)

We observed that the microphone with the best results working with and without

noise is Snowflake and the microphone with the worst result in both cases is Pro1.

6.4.2 Learning Module

To test the learning module three different set-ups were implemented: first the

robot working autonomously, second the robot working with advice taken from

the Pro1 microphone, and third the robot working with advice taken from the

Snowflake microphone. The two latest set-ups were run with the best and the

worst microphone performances in the domain-specific language model. In both

cases, microphones at a distance of 1m away from the teacher were used. The
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Figure 6.6: Response of the ASR system to the list of sentences using differ-

ent microphones at normal and at 1m distance. WER and SER are shown as

percentages.

motivation is to test how influential the quality of the microphone is in improving

the speed of convergence in IRL. This is a relevant question in the IRL context,

since, as shown in the previous chapter, small differences in the consistency of

feedback impoverish the learning performance.

Each set-up was carried out 100 times and the results were averaged. Fig. 6.7

shows the average number of actions performed during 100 episodes. The y-axis is

truncated at 200 actions to highlight the difference between the 3 set-ups. In each

episode, the cleaning task was always finished because of contextual affordances

which allowed to avoid performing actions that, according to the robot’s current

state, were not feasible.

In Fig. 6.7, we show that both IRL approaches perform better than RL working

autonomously, nevertheless, none of them outperform the previous IRL approaches

shown in chapter 4. These results are in connection with using an ASR system

that implies a bigger error rate from recognition mistakes which can also be seen

as a lower consistency of feedback. Moreover, there is no significant difference

between IRL with Pro1 and Snowflake microphones. To analyze this, we defined

the actual interactive feedback rate (I) which is the percentage of steps where a
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Figure 6.7: Average number of actions performed to finish the task using an RL

agent (blue) and an IRL agent with two different microphones (red and green).

Despite the differences in the hardware quality, the IRL approaches show improve-

ment compared to the RL approach.

correct instruction was properly received by the agent:

I = L ∗ C ∗ SAcc (6.3)

We computed I from the feedback probability (L = 0.2), consistency probability

(C = 0.9), and the SAcc. Given SER ∈ [3.03%, 30.30%] the results are I = 12.55%

for Pro1 and I = 17.45% for Snowflake, these values are already enough for

the agent to benefit from the interaction. This is consistent with a study where

it is shown that large improvements of RL by IRL are already achieved at low

interaction rates (Stahlhut et al., 2015). In fact, it is possible to observe in Fig.

6.7 that there is a small variation in the first ten episodes but in the following

episodes variations get even smaller. This leads to a system which is able to

perform the task properly and which is robust for a variety of audio hardware.
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6.5 Discussion

In this chapter, we have shown ASR to be an effective method to work in IRL

scenarios to improve the speed of convergence of RL agents. For scenarios where

a human would verbally instruct a robot during IRL, our results indicate that

interaction helps to increase the learning speed robustly even with an impoverished

ASR system. However, the IRL approach using uni-modal spoken advice does not

outperform agent-agent approaches reviewed in chapters 4 and 5 due to the error

rate of the ASR system.

Although we have shown uni-modal interactive feedback to benefit IRL appren-

ticeship process, it is still an open question how multi-modal advice may favor

a learner-agent in comparison to autonomous RL and uni-modal IRL. In the fol-

lowing chapter, we incorporate another sensory modality in order to compose a

stronger advice signal. Our hypothesis is that multi-modal inputs may lead to

higher consistency of feedback, i.e., more confidence level of advice and therefore

to a faster learning process. Moreover, in multi-modal IRL, contextual affordances

may contribute not only in terms of faster convergence but also in modulating the

integration of signals from multiple sources by representing the expectation of a

learner-agent. These issues will be addressed in the next chapter.
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Chapter 7

Multi-modal Feedback Using

Audiovisual Sensory Inputs

7.1 Introduction

Robots in domestic environments are receiving more attention, especially in scenar-

ios where they should interact with parent-like trainers for dynamically acquiring

and refining knowledge. In the previous chapter, we have proposed an uni-modal

control interface that is limited to audio signals and thus do not take into account

multiple sensor modalities. In this chapter, we propose the integration of audio-

visual patterns to provide advice to the agent using multi-modal information. In

this approach, advice can be given using either speech, gestures, or a combination

of both. The performed experiments are designed in order to complement the an-

swer of the third research question: How beneficial is uni- and multi-modal advice

during the apprenticeship process? This question has been partially addressed in

the previous chapter where an uni-modal IRL approach has been implemented by

using an ASR system. In this chapter, we hypothesize that processing audiovi-

sual input information as interactive feedback may lead the learner-agent to faster

convergence by receiving a more accurate, consistent advice. Furthermore, we in-

vestigate the multi-modal integration model modulated by the use of contextual

affordances.

In real domestic scenarios, caregivers interact with infants through diverse stimuli
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(e.g., speech, gestures) that can be seen as multiple modalities. These stimuli are

seen as guidance from the parent-like teacher to the learner-agent. Nevertheless,

when multiple modalities are taken into account, this may lead to misinterpre-

tations and problems with the integration of such multi-modal signals, especially

when the information from multiple sources is in conflict or ambiguous (Bauer

et al., 2015). Consequently, instructions may not be clear and may be misunder-

stood, thereby leading to a decreased performance in the apprentice agent when

solving a task, as shown in the previous chapter 4. Although IRL approaches have

been implemented in robotic scenarios (Suay and Chernova, 2011; Knox et al., 2012,

2013b), an open issue is that the communication interface between the teacher and

the robot may not be straightforward for non-expert trainers in a domestic envi-

ronment. Therefore, there is a motivation to develop easier interactive scenarios

where parent-like teachers can provide instructions using their natural communi-

cation skills such as speech and gestures. In this setting though, the feedback

provided by the user may be incongruent or noisy. The integration of multiple

modalities should also consider this case in order to provide the learning algorithm

with robust perceptual cues.

Our algorithm integrates multi-modal information to provide robust commands

from sensory cues along with a confidence value indicating the trustworthiness of

the feedback. The integration considers also the case in which the two modalities

convey incongruent information. We utilize a neural network-based approach to

integrate multi-modal information from uni-modal modules based on their confi-

dence. Additionally, we modulate the influence of sensory-driven feedback in the

IRL task using environmental knowledge in terms of contextual affordances. This

is motivated by neurobehavioral studies on multi-modal processing in which human

subjects exposed to audiovisual stimuli integrate multiple sources of information

driven by a combination of sensory representations and prior expectations (Ode-

gaard et al., 2015). In this regard, we use a neural network architecture to predict

the effect of performed actions to avoid failed-states.

During the apprenticeship process, advice can be provided by a parent-like trainer

using audiovisual inputs, respectively speech and gestures. Our proposed architec-

ture is able to process information from multiple sources with the use of a neural

associative memory that computes multi-modal advice as a function of the recog-

nition and confidence of uni-modal modules. We present a set of experiments using
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the 7 possible advice classes from audiovisual inputs. We want to show that multi-

modal integration may lead to a better performance of IRL, with the robot being

able to learn using a smaller number of training episodes compared to uni-modal

scenarios.

With this aim, we conduct a set of experiments to explore the interplay of external

feedback and task-oriented affordances in the cleaning-table scenario in which a

robot can interact with objects with the goal of cleaning the surface of the table.

We compared the learning performance in terms of speed of convergence and accu-

mulated reward under 3 different conditions: different threshold of minimal confi-

dence, uni- and multi-modal advice comparison, and integration of environmental

knowledge by contextual affordances. For this purpose, we varied the percentage

of available feedback and contextual affordances during the learning process.

7.2 Interactive Reinforcement Learning

Interfaces

Although IRL has been implemented in robotic scenarios, a general problem is

that the communication interface between the trainer and the robot has not been

developed in a natural manner for domestic scenarios. For instance, Suay and

Chernova (2011) addressed an IRL task where the parent-like trainer was able to

deliver guidance using a graphic interface built from a camera image and adding

buttons and bars for interaction. Another IRL approach was proposed by Knox

et al. (2012), in which the device utilized to deliver feedback to the robot was a

presentation control (a presenter), allowing to switch between positive and negative

reward.

In the aforementioned approaches, the interfaces are useful in terms of accomplish-

ing the interaction with an external trainer. Nevertheless, these interfaces are quite

tedious and impractical for non-expert trainers who may not be familiar with the

use of technological interfaces and hence have to spend longer time learning how to

use the interaction device which, in the case of unsuccessful attempts, may lead to

trainer’s frustration. In home-like environments, external trainers should be able

to use their natural communication skills (e.g., speech and gestures).
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Therefore, it is much more desirable to have more natural interactive scenarios

where external parent-like trainers can deliver their instructions similar to care-

givers instructing infants. To this aim, in the previous chapter, we already pre-

sented an uni-modal IRL approach restricted to the use of an ASR system to guide

an apprentice robot in the achievement of the cleaning-table task. To add more nat-

ural communication manners, in this chapter, we also incorporate visual patterns

and integrate it with audio patterns as consistent guidance for the learner-agent

during the apprenticeship process.

7.3 Multi-modal Integration in Robotics

People are constantly subject to different perceptual stimuli through different

modalities such as vision, audition, and touch among others. Such modalities

are used to perceive information and process it independently, in parallel, or in-

tegrating the received information to provide a coherent and robust perceptual

experience. Similarly, humanoid robots work with many of these sensory modali-

ties and the way of processing and integrating the information coming from various

sources is currently an important research issue in autonomous robotics. In HRI

scenarios, robots can take advantage of such multi-sensory information in order to

improve their capabilities by improving the frequency and consistency of feedback

when any sensory modality is limited, lacking, or unavailable.

For instance, early work by Andre et al. (1998) proposed a multi-modal integra-

tion of speech and gestures for human-computer interaction using a tactile glove

to identify hand gestures and a microphone array for speech recognition. The sys-

tem functionality was limited to manipulate geometric objects on topographical

maps. In robotic scenarios, Wermter et al. (2003) designed a neurobiologically

inspired robot for multi-modal integration and topological organization of actions

with an associative memory. Their work integrated motor, vision, and language

representations for learning by demonstration.

Lacheze et al. (2009) presented an approach for the recognition of static patterns

fusing audio and video. In their work, auditory information was used to recog-

nize objects that were partially occluded and therefore difficult to detect using

only vision. Sanchez-Riera et al. (2012) presented a scenario with a robot com-
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panion that performs audiovisual fusion for speaker detection using a multi-modal

Gaussian mixture model. The approach detected multiple speakers in a domestic

scenario with information from two microphones and two cameras mounted on a

humanoid robot.

Kimura and Hasegawa (2015) used an incremental neural network to integrate real-

time information in order to estimate attributes for unknown objects. The method

used an RGB-D camera, a stereo microphone, and pressure and weight sensors to

process different modalities. Ozasa et al. (2012) proposed the integration of image

and speech recognition confidence values to improve the recognition accuracy of

unknown objects using a logistic regression. In their approach, the confidence

integration does not consider the case in which predicted labels are in contradiction.

Moreover, in order to obtain improved recognition, it is also necessary to estimate

proper logistic regression coefficients.

In all the aforementioned approaches, the confidence level was either not used or

used only when the predicted labels are identical which is not always the case

in HRI scenarios. Therefore, in domestic scenarios and dynamic environments,

assistive robot companions still need to understand and interpret instructions faster

and more efficiently, yielding the integration of available multi-sensory information

with different confidence levels in a consistent mode considering equal and different

predicted labels.

7.4 Experimental Set-up

In our architecture, a parent-like trainer interacts with an apprentice robot using

speech and gestures as guidance for the cleaning-table scenario. In this chapter,

we are particularly focused on processing audiovisual inputs and their integration.

Fig. 7.1 shows the overall extended architecture of our system, where we now use

a microphone and a depth sensor to capture the advice from the parent-like trainer

that is subsequently integrated and sent to the IRL algorithm as one single piece

of consistent advice. The integrated advised action is then sent to a NICO (Neural

Inspired COmpanion) robot to be performed using the pypot library (Lapeyre

et al., 2014), allowing to control the robot actuators either in real or simulated

environments.
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Multi-modal Advice
Audio and 

Visual Capture

Learning Algorithm

Interface Environment

Control Environment

Robot 
Environment

Low Level 
Control

Neural-
Inspired

Companion
Robot
(NICO)

Multi-modal Associative 
Memory

Figure 7.1: Overall view of the system architecture in three levels using multi-

modal advice. In the interface environment, we use the robot with a microphone

and a depth sensor to capture advice from the parent-like trainer. In the control

environment, we integrate the advice and send it to the IRL algorithm associated

with a confidence value to decide when a valid advice is considered according

to a defined threshold. The integrated advised action is then sent to the robot

environment where a NICO robot performs the action using the pypot library which

allows to control the robot actuators either in the real or simulated environment.
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In this approach, RL is performed using the SARSA algorithm with learning rate

α = 0.3, discount factor γ = 0.9, and ε-greedy action selection with ε = 0.1.

As before, the parameters are selected using the grid search method. In the IRL

approach, we use probability of advice L = 0.3. The following subsections describe

how each modality module is implemented and how they are integrated in order to

obtain a unified advice to provide a more effective guidance for the robot learning

task.

7.4.1 Automatic Speech Recognition

To understand the verbal commands, the apprentice robot processes audio data

and recognizes the given advice by applying the same ASR system used in the

previous chapter proposed by Twiefel et al. (2014) (see Sec. 6.4.1). Box A in Fig.

7.2 shows in context the functional principle of the ASR system employed in our

architecture.

Given the set H of the 10-best sentence hypotheses and the set S of the in-domain

sentences, the predicted auditory class label is computed as:

λA = argmin L(hi, sj) (7.1)

where L is the Levenshtein distance in our ASR system. The confidence value is

computed as:

γA = max(0, 1− L(hi, sj)/|sj|) (7.2)

with hi ∈ H and sj ∈ S, both represented as phonemes.

7.4.2 Gesture Recognition

For gesture recognition, we used an extended version of the HandSOM framework,

developed by Parisi et al. (2014), that extracts hand-independent gesture features

from depth map sequences. The learning model consists of a set of two hierarchi-

cally arranged Growing When Required (GWR) self-organizing networks (Mars-

land et al., 2002) that learn the spatiotemporal structure of the input sequences
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Multi-modal
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Figure 7.2: Overall view of the system processing scheme. The domain-based

ASR system (on top) processes the audio input modality to obtain an audio advice

label λA and an audio confidence value γA and the neural network-based gesture

recognition system (at bottom) processes the visual input modality to obtain a

visual advice label λV and a visual confidence value γV . Afterward, they become

the input of the multi-modal integrative system to obtain the integrated advice

label λI and the integrated confidence value γI (Cruz et al., 2016b).

in terms of gesture features (box B in Fig. 7.2). The GWR training algorithm for

attaching labels to neural activation trajectories and the training parameters were

discussed in (Parisi et al., 2015) and (Cruz et al., 2016b) respectively.

Along with a predicted label, we also estimate a confidence value that expresses the

degree of belief that the prediction is correct based on sensory-driven observations.

Training videos were recorded with an ASUS Xtion depth sensor from which we

estimated the 3D skeleton model.

A label prediction is carried out every 3 frames to attenuate noise in a sliding

window scheme. We consider the last 5 observations and compute the statistical

mode that returns the most frequent value given the set of predictions ΛV , from

which we compute the gesture class as:

λV = Mo(ΛV ) (7.3)

Let N be the number of occurrences of λV in ΛV so that the confidence value can
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be defined as:

γV = N/|ΛV | (7.4)

thus yielding a confidence value in the range between 1 and 0.2.

7.4.3 Multi-modal Integration of Audiovisual Patterns

A general overview of the processing scheme including the speech and gesture

approaches is depicted in Fig. 7.2, where λ and γ are the label and the confidence

value respectively. First, the audio and visual sensory inputs are individually

processed. Then, the outputs, i.e., predicted labels and confidence values, become

inputs for the multi-modal integration system. To ingrate the two aforementioned

sensory modalities, we propose a mathematical transformation.

Our mathematical function receives as inputs the predicted advice classes and con-

fidence pairs from the uni-sensory inputs respectively denoted as (λA, γA) for audio

and (λV , γV ) for vision. As outputs, the proposed model calculates an integrated

advice and confidence value denoted by (λI , γI)

We compute the integrated label λI using the highest confidence value:

λI =

 λA if γA > γV

λV otherwise
(7.5)

Therefore, when λA and λV are equal, any of them is assigned to λI regardless the

confidence level. In case that λA and λV are different, then the label with a greater

confidence is assigned to λI .

The integrated confidence value is determined by:

γI = ln (1 + φ) (7.6)

with φ being a dynamic parameter depending on each congruent or incongruent

pair of predicted labels and their confidence values. We refer to this time-varying

parameter as the likeliness parameter which we compute as follows:
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(b) Integrated confidence with different uni-modal predicted labels

(a) Integrated confidence with equal uni-modal predicted labels

Figure 7.3: Confidence values used in the neural network-based associative ar-

chitecture. While in (a) the corresponding output labels for audio and visual

modalities are the same, in (b) they are different.

φ =

 γA + γV if λA = λV

|γA − γV | if λA 6= λV
(7.7)

The likeliness parameter strengthens the integrated confidence value γI when the
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Figure 7.4: A diagram of the processing scheme for the IRL task including

multi-modal integration (MMI) contextual affordances. Integrated feedback labels

are used as input to compute contextual affordances (e.g., the effects of action λI

given the current state). Contextual affordances modulate the influence of external

feedback on the IRL algorithm, i.e., actions that lead to a failed-state are bypassed

by the IRL algorithm.

predicted labels for audio and vision are congruent, whereas γI diminishes if the

predicted uni-modal labels are incongruent.

The integration function yields an integrated confidence value γI ∈ [ln (1), ln (3)] =

[0, 1.0986]. Therefore, after applying the transformation function, the confidence

value is rescaled using a unity-based normalization to rescale the range of confi-

dence between 0 and 1 as follows:

γI =
γI −min(Γ)

max(Γ)−min(Γ)
(7.8)

where Γ is the set of all possible confidence values γI . Fig. 7.3 shows the behavior

of the integrated confidence from audiovisual confidence values when the predicted

labels are (a) congruent and (b) incongruent.

Additionally, we use contextual affordances to modulate the multi-modal integra-

tion. An updated diagram of the processing scheme including contextual affor-

dances is illustrated in Fig. 7.4. The integrated feedback label λI is used as input

to compute the contextual affordances to determine the effect of an action λI given

the current state. Thus, the IRL algorithm may consider or not the feedback, e.g.,

disregarding the feedback that leads to the agent to a failed-state from which the

task cannot be successfully carried out. In our IRL approach, we use different

levels of availability for contextual affordances to modulate the learning process.
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Figure 7.5: Confusion matrices with the average confidence values for predicted

(a) speech and (b) gesture labels. The input speech advice of get was predicted in

one occasion as go home with a confidence of 0.5. Nevertheless, all other predicted

labels were correctly classified with high confidence values over 0.75. The gesture

still was in some occasions misclassified with low confidence of 0.4 and 0.2. This

was due to the transition from one gesture to the next and the use of the last three

consecutive frames for the prediction. Regardless, all the gestures were correctly

classified with high confidence values over 0.84.

7.5 Experiments and Results

7.5.1 Uni-modal Predictions

The robotic domestic scenario described in Sec. 3 has been implemented in or-

der to test our proposed method. For this, we made recordings of audio and

visual sequences from a parent-like teacher. Each advice class was recorded four

times. Recordings enabled us to better control the conducted experiments in or-

der to repeat the process under different learning conditions. After the training

was completed, our goal was to predict the feedback labels from novel audio and

video sequences (λA, λV ) along with their confidence values (γA, γV ). After pro-

cessing each modality independently, the predictions were integrated using the

multi-modal integration model to compute λI and γI .
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Figure 7.6: Collected rewards using autonomous RL and IRL with multi-modal

feedback. We use different minimum confidence thresholds to consider an advice

as valid. The best performance was observed for θmin = 0.25 (red line) (Cruz et al.,

2016b).

Fig. 7.5a shows the confusion matrix with the average confidence values for the

predicted speech labels whereas the confusion matrix with the average confidence

values for the predicted gesture labels is shown in Fig. 7.5b. In the latter, we

added the label still since the depth sensor is always processing visual information

and this label allows to represent the fact that no gesture belonging to the advice

classes is being recognized.

7.5.2 Multi-modal Interactive Reinforcement Learning

The RL approach is performed using SARSA with a discount factor γ = 0.9,

learning rate α = 0.3, and ε-greedy action selection with ε = 0.1. IRL is carried

out using a probability of feedback L = 0.3, meaning that 30% of the time we

use the recorded advice to assist the robot in the task execution. We considered

γI > θmin with θmin as the minimum confidence value to be considered as a valid
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Figure 7.7: Collected rewards using autonomous RL, IRL with uni-modal feed-

back, and IRL with multi-modal feedback. A minimum confidence threshold of

θmin = 0.25 is used in IRL approach. The multi-modal IRL approach converges

faster and to a greater reward than the uni-modal IRL approaches (Cruz et al.,

2016b).

advice. Then, we use different θmin in order to verify whether smaller confidences

are still beneficial. The thresholds used are θmin ∈ {0.0, 0.25, 0.5, 0.75} observing

that in general IRL works better with θmin = 0.25 in comparison to the other

thresholds. The average convoluted rewards are shown in Fig. 7.6 for 100 agents

and 500 episodes.

In order to evaluate differences in the uni-modal and multi-modal approaches, we

use a threshold of θmin = 0.25. The results for 100 agents and 500 episodes are

shown in Fig. 7.7 where is possible to observe that both uni-modal approaches

lead to similar learning behavior, i.e.: similar convergence speed and accumulated

reward. When using multi-modal integrated advice, the approach converges faster

and collects greater reward in comparison with audio and visual advice only.
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(a) Affordance availability η = 0.3 (b) Affordance availability η = 0.5

(c) Affordance availability η = 0.8 (d) Affordance availability η = 1.0

Figure 7.8: The plots show the collected reward for different values of affordance

availability using autonomous RL and IRL. The results are compared to respect

to RL and IRL without using contextual affordances. In all cases, the affordance-

driven approaches yield a better performance in terms of the collected reward and

convergence speed.

7.5.3 Contextual Affordance Integration

Both previously performed experiments did not use contextual affordances after

the multi-modal integration. Therefore, we introduced the proposed affordance-

driven model to avoid failed-states. This way, we do not only reduce the action

space, but also the likelihood of a failed-state during an episode is diminished so

that the agent is less likely to receive a punishment of −1. Consequently, using
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the affordance-driven IRL approach increases the average accumulated reward and

yields faster convergence (shown in Fig. 7.8). For a better comparison of our

results, all plots in Fig. 7.8 show the autonomous RL and IRL approaches without

the use of affordances using integrated feedback with minimal confidence threshold

θmin = 0.25.

We evaluate our scenario using different percentages of available contextual af-

fordances. We define a parameter η to be the likelihood of having a contextual

affordance available. We set values for η ∈ {0.3, 0.5, 0.8, 1.0} with η = 1 meaning

that the affordance is fully available. We can observe in Fig. 7.8a that even a

reduced availability of affordances (η = 0.3) allows to improve the learning pro-

cess. Furthermore, the affordance-driven RL approach working autonomously (in

green) accomplishes similar performance as IRL without affordances in terms of

accumulated reward. In the case of affordance-driven IRL, it also reaches a bet-

ter performance than IRL with no affordances. Fig. 7.8b shows the results for

an affordance availability of η = 0.5. In this case, even the affordance-driven

autonomous RL approach (in green) obtains bigger accumulated reward in com-

parison to the IRL approach where affordances are not used. Whereas in Fig. 7.8c

with η = 0.8, both approaches with affordances outperform the traditional RL and

IRL approaches in terms of accumulated reward and convergence speed.

Finally, we use an agent with full affordance availability, i.e., η = 1.0. Fig. 7.8d

shows that with affordances being fully available, the agent quickly converges to its

maximal possible reward in both RL and IRL approaches, with a slight difference

in the maximal reward between both approaches when using affordances.

7.6 Discussion

In this chapter, we studied the interplay of multi-modal feedback with task-related

knowledge in terms of contextual affordances in an IRL scenario with the aim of

obtaining a more consistent advice to enhance the learning process in comparison

to uni-modal IRL. The obtained results show that integrated audiovisual repre-

sentations yield more robust feedback for an IRL task with respect to uni-modal

approaches. In particular, audiovisual integration provides the means to solve con-

flicts, i.e., situations in which predicted feedback labels from the auditory and the
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visual modules are incongruent.

In our approach, the integration is carried out taking into account the predicted

labels and the confidence values from uni-modal cues. In the case of incongruent

audiovisual predictions, the modality yielding the higher confidence value will be

preferred. Gesture labels are predicted by the neural network processing of hand

motion features, whereas vocal commands are predicted using in-domain automatic

speech recognition. Consequently, these two approaches provide robust feedback

predictions with confidence values computed as a function of a fully sensory-driven

process, i.e., a high confidence value indicates that it is very likely that the feedback

perceived by the agent matches the one actually given by the trainer. This proce-

dure, however, does not give any information on whether the piece of feedback is

correct or not in terms of the next actions required to accomplish the task.

Neurobehavioral studies in multi-modal processing have shown that human sub-

jects exposed to audiovisual stimuli integrate multiple sources of information bi-

ased by a combination of sensory representations and prior expectations (Odegaard

et al., 2015). In other words, signals from multiple sources are combined in the

brain taking into account a combination of the reliability of low-level sensor rep-

resentations and the expectations of an agent in a specific situation (e.g., in terms

of task-oriented knowledge). Therefore, we integrated this aspect to our model in

order for the study in the combination of sensory-driven multi-modal feedback and

environmental knowledge in the context of our IRL task.

In the extended architecture, we integrated task-related knowledge in terms of

contextual affordances which represent an effective method to anticipate the effect

of actions performed by an agent interacting with objects based on its current

state. We trained a neural network to predict the effect of performed actions with

different objects in order to avoid states from which it is not possible for the agent

to complete the cleaning-table task. Thus, contextual affordances modulate the

influence of multi-modal feedback in the IRL algorithm, i.e., if an action provided

by the trainer leads to a failed-state, it may be disregarded irrespective of a high

(sensory-driven) confidence value.
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Chapter 8

Conclusions

8.1 Summary of the Thesis

From an experimental point of view, the present thesis was divided into two parts:

Agent-Agent Interactive Reinforcement Learning and Human-Agent Interactive

Reinforcement Learning. When analyzing agent-agent IRL, we first presented a

method for training agents using interactive feedback and contextual affordances.

Three different experimental set-ups were carried out: (i) training an agent with

autonomous RL, used as the base to compare the results, (ii) training an agent

with RL and contextual affordances to avoid failed-states, and (iii) training a sec-

ond agent with IRL and contextual affordances. Moreover, in the IRL approach,

we also tested the interplay of the probability of feedback and consistency of feed-

back. From this experimental set-up, we have shown that even small amounts of

interaction are beneficial to the learner-agent performance in terms of performed

actions and accumulated reward. The case of the consistency of feedback deserves

special attention since small decreases in the probability of consistency diminish

the performance considerably. Moreover, we have shown contextual affordances

to be an effective method to avoid failed-states improving thus the overall IRL

performance.

In agent-agent IRL, we implemented additional experiments to study what makes

an agent a good teacher. We performed three additional experiments in order

to: (i) study the differences of trainer-agents in terms of their internal knowledge
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representation, (ii) investigate trainer and learner behavior to compare how the

experience is distributed and how this affects the collected reward, and (iii) evaluate

interaction parameters along with the learner-agent’s obedience. In this regard, we

have shown that the agent with the best performance may not be the best teacher

due to its high specialization. On the contrary, using a polymath trainer-agent,

with a more distributed experience, allows to advise the learner-agent properly

in more situations. Additionally, an important finding from this set-up, since

the learner-agent is much more sensitive to small variations in the consistency of

feedback in comparison to the probability of feedback, is that the changes on the

learner-agent’s obedience may benefit the learning performance in the presence of

low consistency in feedback.

Afterward, we studied two approaches in human-agent IRL, namely uni- and multi-

modal feedback, with the aim of having a more realistic scenario but also to in-

vestigate how the reliability of the sensory processing affects the learning process.

When using uni-modal feedback we used speech guidance with an ASR system.

We used two different experimental set-ups: (i) ASR using different auditory sen-

sors with presence of noise to evaluate how influential the hardware differences in

the learning approach are with respect to consistent feedback, and (ii) IRL us-

ing speech guidance with contextual affordances using two different voice sensors

which differ in the recognition error rate. We were able to verify that although

speech guidance improved the performance of RL agents, in terms of the performed

actions in comparison to autonomous RL and RL with affordances, an impover-

ished input sensor or the presence of a noisy communication channel may affect

the consistency of feedback leading to worse IRL performance.

Finally, we extended our method to include multi-modal feedback and environmen-

tal knowledge in terms of contextual affordances. We incorporated multi-modal

advice with the aim of producing a higher consistency of feedback, i.e., a higher

confidence level of advice and therefore a faster learning process. Moreover, contex-

tual affordances were added not only for faster convergence but also to modulate

the integration of signals from multiple sources by representing the expectation of

the learner-agent. We performed three different experimental set-ups: (i) multi-

modal integration of speech and gestures using an associative architecture, (ii)

comparing IRL using uni- and multi-modal advice with a minimal threshold to be

considered as valid advice, and (iii) IRL using multi-modal advice modulated by
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contextual affordances. We have shown multi-modal feedback to be an effective

method to provide a stronger advice signal, allowing the IRL approach to accu-

mulated more reward in comparison to uni-modal approaches. Furthermore, we

have seen that using multi-modal advice incorporating environmental knowledge in

terms of contextual affordances benefits the learner-agent by avoiding failed-states

and accumulating more reward.

8.2 Discussion

The research presented in this thesis aimed at addressing the following main ques-

tion: May RL be sped up by using parent-like advice and affordance-driven en-

vironmental models? This research question was addressed from three different

perspectives by a subset of three more focused research questions. Although our

experiments are related to the particular properties of the proposed scenario, our

approach may be scaled up to more complex conditions in order to generalize our

findings. In this regard, the transition function is defined in a general manner

and therefore is feasible to extend it to consider more locations. The inclusion of

additional objects or actions would consequently lead to more states. However,

since the representation is discrete, the use of additional objects or actions would

lead only to a limited number of new states. A different situation is the case of RL

problems with continuous state-action representation, where the interactive feed-

back has to be modeled taking this continuous representation into consideration.

This situation was out of the scope of this thesis.

In comparison to other previously presented discrete IRL approaches, our approach

not only uses interactive feedback but we also integrate it with contextual affor-

dances and we propose a more natural advice method using trainer’s skills by

means of the multi-modal integration of audiovisual signals. Although some re-

sults have already been discussed partially in the course of the thesis after each

experimental chapter, we now turn to discussing the main results and findings that

we obtained from the different performed experiments in the light of the research

questions.
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8.2.1 Interactive Feedback and Affordance-based Model

In this research, the first posed research question was: How can an affordance-based

model of the environment support the IRL framework? In this regard, through the

three different learning methods explained in chapter 4, we may verify significant

differences in terms of the particular learning performance of each of them. In the

case of classic RL, we obtained a substantial improvement by including a small neg-

ative reward after each performed action to encourage the robot to choose shorter

paths towards the final state. This negative reward led to faster convergence and

improved the success rate considerably in RL.

Nevertheless, despite the improvements in the classic RL paradigm, this approach

still led to a lower performance than RL utilizing contextual affordances. Certainly,

this performance was because the robotic agent on this occasion did not reach

failed-states because the neural network architecture (using the current state, the

action, and the object as input) anticipated the next state or the caused effect

before the task execution, avoiding failed-states when necessary. This effectively

decreased the search space for the learning. Better performance was furthermore

observed in the collected reward. The maximal reward value reached by the robotic

agent with classic RL was still less than the minimal reward value when RL with

contextual affordances was used in all tested cases.

Results of the IRL approach showed that interaction provides advantages over RL

with affordances in most of the tested levels of feedback. Even a small amount of

interactive feedback helped the robot to finish the cleaning-table task faster. This

is illustrated by a smaller number of performed actions as well as a bigger amount

of collected reward. When the consistency of feedback was considered, it was ob-

served that even small reductions of this parameter can make the learning process

much slower. Therefore, we believe this parameter deserves special attention since

small decreasing of it may be detrimental to the learning process substantially.

Nevertheless, the learner-agent was still able to learn in the long run since an im-

portant part of the time the robot performed actions with reinforcement learning

by autonomously exploring the environment. This also suggests that the consis-

tency of feedback has a different impact on learning according to the probability

of feedback used.
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8.2.2 What Makes a Good Teacher?

The second research question posed in this research was: What constitutes a good

teacher-agent when considering internal knowledge representation and interaction

parameters? In chapter 5, it was shown that IRL generally helps to improve the

performance of an RL agent using parent-like advice. Nonetheless, it is important

to take into account that higher levels of interaction do not necessarily have a

direct impact on the total accumulated reward. More importantly, the consistency

of feedback seems to be more relevant when dealing with different learner obedience

parameters (or a noisy or unreliable communication channel) since small variations

can lead to considerably different amounts of collected reward. Therefore, the

learner-agent’s obedience is an effective way to ignore inconsistent feedback and

an adaptive value of this may benefit the learner even further on.

Moreover, we have shown that there is divergence in the internal representation of

the knowledge of the agents through state-action Q-values since there are states in

which it is not possible to distinguish what action leads to greater reward. Agents

with a smaller standard deviation among the visited states are preferred candidates

to be parent-like teachers since they have a much better distribution of knowledge

among the states. This allows them to adequately advise learner-agents on what

action to perform in specific states. Agents with biased knowledge distributions

collect more reward themselves, but nevertheless, have a subset of states where

they cannot properly advise learners. This leads to a worse performance in the

apprenticeship process in terms of maximal collected reward, convergence speed,

and behavior stability represented as the standard deviation for each visited state.

Using the polymath agent as an advisor leads to both greater reward and faster

convergence of the reward signal and also to more stable behavior in terms of the

state visit frequency of the learner-agents, which can also be seen in the standard

deviation of visited states when compared to the case of a specialist agent as a

trainer.

8.2.3 Uni- and Multi-modal Advice

The final research question asked was: How beneficial is uni- and multi-modal

advice during the apprenticeship process? In this regard, we presented a uni- and
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a multi-modal IRL approach, in chapter 6 and chapter 7 respectively, to investigate

how the reliability of the sensory processing affects the learning process in terms of

consistent feedback and, consequently, performed actions and accumulated reward.

The presented multi-modal IRL approach uses dynamic audiovisual input as feed-

back in terms of vocal commands and hand gestures for guidance. Our approach

integrates uni-modal cues to provide multi-modal feedback. The multi-modal in-

tegration module estimates a joint label and confidence value based on uni-modal

predictions. The integration is of particular importance in the case in which the

two modalities convey incongruent information, i.e., feedback classes predicted by

the modules of speech and gesture recognition do not match. Therefore, our in-

tegration function takes into account the confidence level of the predictions to

provide the IRL algorithm with more consistent feedback.

Although both sensory modalities show good advice prediction and confidence

levels, the integrated advice leads to a better performance in our domestic scenario

in terms of the accumulated reward and required learning episodes. In this regard,

we have shown that our integration function allows to produce stronger unified

advice with higher confidence levels and, consequently, to enhance the performance

of a learning robot using multiple sources of information for a more natural parent-

like learning procedure.

We have evaluated the learning performance under 3 different conditions: varia-

tions over the threshold of minimal confidence, comparison of uni- and multi-modal

advice, and integration of environmental knowledge by contextual affordances with

different values of availability. We have observed that multi-modal feedback allows

to provide more confident advice to the learner-agent which leads to greater ac-

cumulated reward. Moreover, multi-modal integration modulated by contextual

affordances enables the learner-agent to disregard the advice when this leads to

failed-states improving further the IRL performance.

Multi-modal IRL allows the agent to interact in a more natural way with parent-like

trainers for dynamically acquiring and refining task-related knowledge with respect

to traditional IRL approaches. Together, our results demonstrate the contribution

of multi-modal sensory processing integrated with environmental knowledge to

significantly enhance the interaction between users and agents in robotic learning

tasks.
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8.3 Future Work

The obtained results motivate the extension of our approach in several directions.

It would be an interesting improvement to investigate variations on the action se-

lection method such as semi-uniform strategies like the adaptive ε-greedy strategy

based on value differences (VDBE) (Tokic, 2010) where epsilon is reduced on the

basis of the learning progress. On the one hand, high fluctuations in the estimates

of value differences lead to a higher epsilon and further exploration and, on the

other hand, low fluctuations lead to a lower epsilon and more exploitation. The

method can also be combined with softmax-weighted action selection (Tokic and

Palm, 2011). We hypothesize that a stronger classic RL approach which is the

base for the other methods can lead to the necessity of less external advice al-

lowing to reduce the number of iterations or needed episodes for training which is

fundamentally important considering real scenarios where running through a large

number of episodes would be impractical.

Furthermore, either the same or decreasing probability of feedback has been applied

during the whole training process, i.e., we have not tested what the best time steps

are to deliver interactive feedback. Evidence indicates that there are diverse factors

which affect the ultimate performance of an apprentice agent using IRL methods

such as the time period when the feedback is received (Torrey and Taylor, 2013;

Taylor et al., 2014) as well as the magnitude of the problem where the method is

applied (Stahlhut et al., 2015). Therefore, adjustments to the frequency of feedback

in the implementation of the method getAdvice (see Sec. 4.3.2) should also be

investigated.

Further important future work is to investigate how the obtained results can scale

in continuous scenarios. It can be expected that RL agents have similar behavior

since they are designed to find the optimal solution, maximizing the collected

reward. Moreover, adaptive learner behavior can be explored, thus allowing to

decide which advice to follow depending on the collected knowledge about the

current state that the learner-agent has at a specific time. Then, the learner-agent

would act with diverse values for the learner obedience parameter, adapting it

in real time. Greater learner obedience can be expected at the beginning of the

learning process, but over time the learner-agent should take its own experience

more into account and therefore follow its own policy instead of the parent-like
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advice, leading to smaller obedience values. In the same way, if new space is

explored and consequently less reward is received, then parent-like advice could

be used once again, leading to a dynamic learning process, and taking advice into

account when necessary while avoiding bad advice if possible.

So far, the proposed integration function considers two cues for predicting multi-

modal feedback and computing its confidence. On the one hand, we could think of

naturally extending our function to consider input from additional sensory sources,

e.g., RGB information as an additional visual cue. It has been shown that com-

bining depth and RGB information leads to a better recognition accuracy with

respect to using a single cue (Koppula et al., 2013; Ni et al., 2013). In the case

of our robotic task, conflicting input in terms of incongruent predictions from the

auditory and visual modules may be solved by considering multiple visual cues and

assuming that visual information is more reliable with respect to speech recogni-

tion. On the other hand, we could think of extending our function for additional

modalities, e.g., haptics. In such a setting, parent-like advice may be delivered to

the agent by providing haptic feedback to its actuators, e.g., moving its arm to

grasp an object.

In its current version, our integration function considers each modality as equally

contributing to multi-modal perception. Therefore, although our architecture

scales up to a larger number of modalities, it does not account for crossmodal

learning aspects, e.g., in an embodied robot perception scenario where motor con-

tingencies may influence audiovisual representations (Morse et al., 2015). Thus,

the extension of our approach in such a direction would require additional mecha-

nisms for the crossmodal learning of spatiotemporal contingencies built on the basis

of modality-specific properties (Noda et al., 2014; Giese and Rizzolatti, 2015) and

the interplay with affordance-driven reinforcement learning.

Currently, our IRL scenario runs in an offline manner, i.e., with no dynamic hu-

man advice. Therefore, future work directions should also consider experiments

accounting for online interactions. Furthermore, experiments should also consider

a wider number of parent-like trainers with different teaching characteristics.

In this thesis, we have used robotic agents or simulated robots to perform the

actions in the proposed task, therefore, another direction of extension is to move the

proposed application onto more realistic robot platforms. For this, it is necessary

136



8.4. Conclusion

to count on robots which are able to grasp and place objects correctly in order to

execute the subactions needed to complete the cleaning-table task.

8.4 Conclusion

This thesis contributes to the field of interactive reinforcement learning by explor-

ing approaches aiming to speed up reinforcement learning methods, more specif-

ically interactive feedback using both agent-agent and human-agent interaction.

This was complemented by the use of contextual affordances as an approach to

model the actions in the environment.

In conclusion, our experiments demonstrate that autonomous, classic reinforce-

ment learning can be sped up by using parent-like trainers who are able to use

their natural skills to deliver advice to the robot in terms of speech and gestures.

Additionally, an affordance-driven environmental model, as contextual affordance,

is beneficial to the learning process in terms of decreasing the training time by re-

ducing the search space and using environmental knowledge to modulate sensory-

driven parent-like advice.
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Appendix A

Contextual Affordances with an

Associative Neural Architecture

A.1 Introduction

Affordances are an effective method to anticipate the effect of actions performed

by an agent interacting with objects. In this appendix, we present an additional

implementation of contextual affordances in the framework of the robotic cleaning-

table task.

We implement an associative neural architecture containing a layer with a quadratic

complex neuron (Georgiou, 2006; Georgiou and Voigt, 2013) to learn the contextual

affordances for predicting the effect of performed actions with different objects to

avoid failed-states. The associative architecture shapes a virtual grid in a complex

plane to map inputs into the output space.

Experimental results on a simulated robot environment show that our associative

memory is able to learn in few iterations to predict future states with high accuracy

using a humanoid robot that must clean the table interacting with different objects.

Moreover, in this experiment, we adjust the domestic scenario in terms of the

allowed actions and data representation for the neural model. During the execution

of the task, the robot will transit different states by performing actions and using

objects until a desired final state is achieved.
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A.2 Experimental Set-up

The robotic scenario used in this appendix differs from the one used during the

thesis in terms of the available actions and their representation since, originally,

we did not work with vision modality and, therefore, the scenario was modeled

differently. As before, the task consists of a robot standing in front of a table to

clean it. For this task, we used the same defined objects and locations. The scenario

includes then a sponge and a goblet, and three zones, the left and right table sides

and the home position. Differently, we allow the robot to perform actions as: get

<object>, drop <object>, go to <location>, and clean. Therefore, now the actions

are also linked to either objects or locations.

To implement the contextual affordance learning, we utilized an associative neural

architecture as described in (Cruz et al., 2016c) using a complex-valued quadratic

neuron to map inputs into a two-dimensional grid output. In this neural architec-

ture, the output Y is computed according to Eq. (A.1) and the gradient descent

learning rule as in Eq. (A.2) as follows:

y =
n∑
j=1

n∑
k=1

x̄jxkajk (A.1)

4 A = αεX̄XT (A.2)

where α is a small real-valued learning rate.

For a given input vector X, the desired output Y to be used in the learning

algorithm is defined as the nearest intersection point of the grid lines of the complex

plane. In practice, a function Ψ is defined that rounds to the nearest integer for

grid lines spaced at a fixed distance δ in both directions:

Ψ(Y ) =
round(δRe(Y ))

δ
+ i

round(δIm(Y ))

δ
(A.3)

All the variables are encoded as presented in Table A.1, which shows the data rep-

resentation for side conditions, locations, actions, and objects. In side conditions,

letters d and c represent the fact of being dirty or clean respectively.
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Table A.1: Representation of training data used for neural

classification.

Data Representation

Side conditions Locations Actions Objects

dd 1 0 0 0 home 1 0 0 get 1 0 0 0 sponge 1 0

dc 0 1 0 0 left 0 1 0 drop 0 1 0 0 goblet 0 1

cd 0 0 1 0 right 0 0 1 go to 0 0 1 0 free 0 0

cc 0 0 0 1 none 0 0 0 clean 0 0 0 1

Figure A.1: Associative neural architecture for next state prediction. In our

scenario, the state reached by the robot represents the affordance effect.

A.3 Experimental Results

Our approach uses contextual affordances to predict the effect of an action after it

has been performed by the robot. We use the representation shown in Table A.1

for the training data. As input, we use vectors with 21 variables containing infor-

mation about the current state, the action, the object and/or the location, whereas

each state is contained in the first 12 components of the vector considering the four

variables that define a state (see Fig. A.1). Our architecture comprises an associa-

tive neural layer that maps the current state of the system into the expected effect

that corresponds to the effect from contextual affordances encoded as 12 variables

representing the next state. When a performed action leads to a failed-state, all

components of the output vector are equal to zero.
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Figure A.2: Mean squared error over 10 training iterations.

During the training, we associate the desired output state label l(Ψ(Y )) for classi-

fication purposes. After the training phase, when a new sample is presented to the

neuron, we compute y′ and return the state label that minimizes ‖Ψ(y′)−Ψ(Y )‖.
For our implementation, we set δ = 0.001 and use the decaying learning rate:

αt = α0 ∗ e
−t(t+3)

k (A.4)

where t is the iteration number, α0 = 0.01 and k = 5000.

Experiments show that our architecture with an associative layer is able to classify

all the instances correctly after training. The mean square error decreased from

2.92e-3 to 2.37e-5 after 10 iterations as shown in Fig. A.2. The final distribution

of the output after 10 iterations is shown in Fig. A.3, where the x-axis and y-axis

are the real and imaginary parts respectively of the complex plane.
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Figure A.3: Final distribution of the output projected into the complex domain.

A.4 Discussion

Our proposed architecture is able to successfully predict the effect of performing

an action using an object by using contextual affordances. We use additional state

information to distinguish different situations in the robotic cleaning scenario and

avoid failed-states to effectively finish the task. The associative complex architec-

ture is, therefore, an interesting alternative to implementing contextual affordance

since it allows to map the input vectors into valid states with few training iter-

ations, which represents an advantage for online learning applications where the

response time plays a crucial role.

143



Appendix A. Contextual Affordances with an Associative Neural Architecture

144



Appendix B

State Transitions of the

Cleaning-table Scenario

In order to visualize the whole search space of the cleaning-table scenario, a more

detailed diagram for the state transitions is shown in Fig. B.1. The figure does

not pursue to show all the involved transitions between states in detail, but rather

to show how the search space is structured. Transition details can be seen in the

state transition table as shown in Table 3.3.

Fig. B.1 shows the 53 states plus a garbage collector state which represents the

failed-states. All the involved transition are displayed in the figure, i.e., for every

node, there are 7 output edges representing the 7 defined actions in the cleaning-

table scenario.

A simplified version of the transitions is shown in Fig. B.2 where the edges for the

action of abort (to cancel the task execution and return to the initial state) and

the edges for actions which lead to a failed-state are omitted. In Fig. B.2, we can

see the path A to the left and the path B to the right. As stated in chapter 3, the

path A comprises 23 states and the path B 31 states.

The state transitions were represented using the graph description language DOT

and the plot layouts were created with the graph visualization software Graphviz

for rendering. For more details, the source files of the vectorial figures can be found

at https://git.informatik.uni-hamburg.de/cruz/IRL.
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Figure B.1: Full transition diagram of the cleaning-table scenario.
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Figure B.2: Simplified transition diagram of the cleaning-table scenario.

147



Appendix B. State Transitions of the Cleaning-table Scenario

148



Appendix C

Published Contributions

Originating from this Thesis

C.1 Journals

• Francisco Cruz, Sven Magg, Cornelius Weber, and Stefan Wermter. Train-

ing Agents with Interactive Reinforcement Learning and Contextual Affor-

dances. Journal IEEE Transactions on Cognitive and Developmental Sys-

tems (TCDS), Vol. 8, Nr. 4, pp. 271-284, December 2016.

• Francisco Cruz, Sven Magg, Yukie Nagai, and Stefan Wermter. Improving

interactive reinforcement learning: What makes a good teacher? Submitted

to Connection Science, 2017.

C.2 Conferences

• Francisco Cruz, German I. Parisi, Johannes Twiefel, and Stefan Wermter.

Multi-modal Integration of Dynamic Audiovisual Patterns for an Interactive

Reinforcement Learning Scenario. Proceedings of the IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), pp.759-766,

Daejeon, Korea, 2016.

149



Appendix C. Published Contributions Originating from this Thesis

• Francisco Cruz, German I. Parisi, and Stefan Wermter. Learning Contextual

Affordances with an Associative Neural Architecture. Proceedings of the Eu-

ropean Symposium on Artificial Neural Networks, Computational Intelligence

and Machine Learning (ESANN), pp. 665-670, Bruges, Belgium, 2016.

• Francisco Cruz, Johannes Twiefel, Sven Magg, Cornelius Weber, and Stefan

Wermter. Interactive Reinforcement Learning through Speech Guidance in a

Domestic Scenario. Proceedings of International Joint Conference on Neural

Networks (IJCNN), pp. 13411348, Killarney, Ireland, 2015.

• Francisco Cruz, Sven Magg, Cornelius Weber, and Stefan Wermter. Im-

proving Reinforcement Learning with Interactive Feedback and Affordances.

Proceedings of the Fourth Joint IEEE International Conference on Devel-

opmental Learning and Epigenetic Robotics (ICDL-EpiRob), pp. 125-130,

Genoa, Italy, 2014.
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