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Zusammenfassung

PHOENIX ist ein allgemeiner Atmosphärencode. Um seine Fähigkeit bezüglich der Model-
lierung terrestrischer Bedingungen zu verbessern, wird ein neues Zustandsgleichungsmodul
benötigt. Diese sogenannte EOS (equation of state) soll die chemische Zusammensetzung
bei geringen Effektivtemperaturen von typischerweise wenigen hundert Kelvin bestimmen.
Die EOS ’SESAM’, welche auf die Methode von Villars-Cruise-Smith beruht, ist in diesem
Zusammenhang geeignet. Sie kann Umgebungen meistern, die eine große Anzahl chemi-
scher Spezies in einem breiten Temperatur- und Druckbereich aufweisen und geladene,
inerte und kondensierte Spezies beinhalten, welche auch in Spuren vorkommen können.
Zusätzlich besitzt diese EOS einen modernen und modularen Aufbau und ist leicht auf
weitere Anwendungsbereiche erweiterbar.
SESAM wurde in PHOENIX eingebaut und das Zusammenspiel der beiden Codes wurde in
dieser Arbeit diskutiert. In allen getesteten Atmosphären lieferte SESAM zu jeder Zeit
numerisch stabile chemische Zusammensetzungen, was eine geradlinige Konvergenz von
PHOENIX erzeugte. Darüber hinaus wurde SESAMs hervorragendes Konvergenzverhalten
und die Zuverlässigkeit der Ergebnisse bei Variationen der anfänglichen Spezieshäufigkeiten
präsentiert. Es folgte eine Nachberechnung der Tests mit ACES, der derzeit in PHOENIX
verwendeten EOS. Für eine bessere Vergleichbarkeit wurde ACES insofern angepasst,
dass Spezies, die in Spuren vorkommen, konsistent mit allen anderen Spezies behandelt
wurden, anstelle der sonst in ACES verwendeten Festlegung einer voreingestellten gerin-
gen Häufigkeit. Dies beeinflusste das Konvergenzverhalten von PHOENIX und erzeugte
Schwankungen in den Druckwerten zwischen den PHOENIX-Iterationen, welche bei der
Verwendung von SESAM nicht auftraten. Es wurde gezeigt, dass die von ACES berech-
neten chemischen Zusammensetzungen stark von den anfänglichen Spezieshäufigkeiten
abhängten. Dadurch erscheint die Stabilität von ACES Ergebnissen fragwürdig, wenn
Spurenspezies explizit berücksichtigt werden. Hinsichtlich der Atmosphärenstruktur und
des Spektrums waren die Abweichungen zwischen ACES und SESAM in den konvergierten
PHOENIX-Modellen insgesamt gering. Dies deutet auf eine ausreichend physikalische Über-
einstimmung der zwei EOS hin. Anschließend folgte ein Vergleich der Rechenzeiten beider
EOS. Als Resultat benötigte SESAM für die Lösung des chemischen Gleichgewichtsproblems
weniger Iterationen als ACES, wobei ACES dafür etwas weniger Zeit verwendete.
SESAM wurde erfolgreich in PHOENIX eingebaut. Obwohl eine weitere Entwicklung
von PHOENIX bezüglich einer verbesserten Behandlung von erdähnlichen Atmosphären
notwendig ist, bildet SESAM bereits eine solide Basis für zukünftige Anwendungen.
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Abstract

PHOENIX is a general-purpose atmosphere modelling code. To enhance its capability
to model terrestrial conditions, a new equation of state (EOS) module is required to
determine the chemical compositions at low effective temperatures of typically few hundred
Kelvin. The EOS ’SESAM’, based on the Villars-Cruise-Smith method, is appropriate in
this context. This EOS can handle environments with a high number of chemical species
in a wide temperature and pressure range including charged, inert, condensed, and trace
species. Furthermore, it has a modern and modular design and is easily expansible to
other applications.
SESAM has been implemented in the PHOENIX framework and the interplay between both
codes is discussed in this thesis. In all stellar models tested, SESAM produced a straight-
forward convergence of PHOENIX by providing numerically stable chemical compositions
at all times. In addition, SESAM’s excellent convergence behaviour and reliability of the
results considering variations in the initial species abundances are presented.
The tests were recalculated using ACES, which is the EOS currently used in PHOENIX. For
a better comparability, ACES was adjusted to treat trace species consistently with all other
species rather than default to an arbitrarily chosen small value. This influenced PHOENIX
convergence behaviour, resulting in pressure fluctuations between PHOENIX iterations,
which did not occur when SESAM was applied. It is shown that the chemical compositions
calculated by ACES strongly depend on the initial species abundances, questioning the
stability of ACES’s solutions when trace species are explicitly taken into account. With
respect to the atmosphere structure and the spectrum, the deviations in the converged
PHOENIX models between ACES and SESAM were overall minor. This indicates a sufficient
physical agreement of both EOS’s. Finally, the computational times of the two EOS’s were
compared. As a result, SESAM needed less iterations than ACES to solve the chemical
equilibrium problem, whereas ACES required slightly less time.
SESAM was successfully included in PHOENIX. Although further development of PHOENIX
is required for an improved treatment of Earth-like atmospheres, this new EOS provides a
solid basis for future applications.
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1 Introduction

Chapter 1

Introduction

Atmosphere modelling

The solar surface is the only stellar surface observable with high detail. For all other stars,
there are limited possibilities to directly access and understand their physical properties.
The energy in terms of radiation released by the stars is an important source of information:
photons interact with matter according to absorption, re-emission, and scattering processes,
and travel through space until they impinge onto our telescopes. The photons’ ensemble
carries the signature of the stellar electromagnetic spectrum. Only by means of atmosphere
modelling and the comparisons of observed and synthetic spectra it became possible
to understand many of the physical processes involved. Furthermore, essential stellar
properties could be determined such as, for instance, the effective temperature and the
surface gravity. Over the last decades, a number of codes were developed, which significantly
contributed to it: ATLAS (Kurucz, 1970), MARCS (Gustafsson et al., 1975), TLUSTY
(Hubeny, 1988), MULTI (Carlsson, 1988), PHOENIX (Hauschildt, 1992, 1993), PoWR
(Gräfener et al., 2002) to mention few. Since the beginning, huge progress was made by
improvements considering numerical techniques, computing power and the quantity and
accuracy of atomic data. In particular high-performance computing allowed to expand
the complexity of the simulations to multi-dimensional computations of photospheres and
are performed by, e.g., MULTI3D (Botnen and Carlsson, 1999), CO5BOLD (Freytag et al.,
2002), and PHOENIX/3D (Hauschildt and Baron, 2014, and previous). Nevertheless, these
models still rely on strong simplifications of physical and chemical processes.

Chemical equilibrium

The chemical composition of a stellar atmosphere determines the shape and features
of the spectrum. This makes a detailed consideration of the neutral atoms, molecules,
ions, and in cool stars even condensed species and dust grains, an essential requirement
for state-of-the-art atmosphere simulations. An equation of state (EOS) provides an
approximation of these chemical compositions by determining a chemical equilibrium once
the parameters of the equilibrium problem are specified. These parameters depend on the
algorithm applied and can be, e.g., the temperature, gas pressure, element abundances, a
list of species assumed to be relevant, and the species’ standard chemical potentials. The
chemical equilibrium state can be considered as the limiting case of a system of chemical
reactions. This assumption is appropriate when the chemical reactions are sufficiently
rapid to attain a locally stable equilibrium state. This condition is given in atmospheres
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1 Introduction

that are approximated as quasi-static where the chemical system adapts quicker to local
conditions than radiative and hydrodynamic processes change them.
At the end of the 19th century, major parts of the theory behind the chemical equilibrium
in ideal systems has been formulated. Scientists like Cato Maximilian Guldberg and
Peter Waage (Guldberg and Waage, 1864, law of mass action), Josiah Willard Gibbs
(Gibbs, 1873, concept of chemical potential), Jacobus Henricus van’t Hoff (Van’t Hoff,
1884, "Studies in Chemical Dynamics"), Henry Louis Le Chatelier (Chatelier, 1884, Le
Chatelier’s principle), Walther Nernst (third law of thermodynamics), to name a few,
substantially contributed to this. Especially the reinforced research in the 1940s considering
rocket science in Germany and the 1950s for space science in the United States created
the need for calculations of complex chemical systems. Building on the achievements
in the mathematical description of chemical equilibria and the initial advancements in
the development of computers, the first general-purpose algorithms did arise, e.g., the
codes described in Brinkley (1947), White et al. (1958), and Naphtali (1959). The early
algorithms mainly handled ideal, gaseous systems. Most of these codes were only partially
capable or even failing in treating complex systems that include several hundreds of
chemical species along with multi-phase systems (Smith, 1980). Within the last 60 years,
various different approaches were developed like, for instance, the stoichiometric (e.g.
Naphtali, 1959, 1961; Smith and Missen, 1982) and non-stoichiometric methods (e.g.
Brinkley, 1947; Huff et al., 1951; White et al., 1958; Gordon and McBride, 1971; Freedman,
1982), and the element-potential method (e.g. Reynolds, 1986; Pope, 2003). Chemical
non-equilibria are considered in the chemical kinetics approach (e.g. Reaction Design,
2016) and the rate-controlled constrained-equilibrium method (e.g. Keck, 1990; Bishnu
et al., 1997; Metghalchi, 2009). Now it is possible to calculate large non-ideal systems
that consist of multiple phases. The complexity of the system is mainly only limited by
the available computational power and time, while the chemical and physical accuracy is
mostly restricted by the quality of the measured and theoretically assessed thermodynamic
data of the species.

A new equation of state module for PHOENIX

A promising future application of PHOENIX is the simulation of terrestrial-like atmospheres
of objects like, e.g., the planets Venus and Mars, Saturn’s moon Titan, and extrasolar
planets. These atmospheres have typically low temperatures of only a few hundred Kelvin.
The currently used EOS in PHOENIX, ACES, was neither explicitly designed nor verified
to handle such low temperatures. The first step towards the simulation of terrestrial
atmospheres is, therefore, to utilize an EOS in PHOENIX, which is capable to handle the
respective low-temperature conditions. In addition, the new EOS must manage complex
systems involving several hundreds of species, including neutral atoms, molecules, ions, and
trace species. The chemical compositions must be determined reliably without convergence
problems for the environments of terrestrial planets. Furthermore, an expansion to all
conditions relevant in stellar atmospheres is favourable. These systems are varying from low
temperatures and pressures in cool dwarfs where mostly molecules and neutral atoms are
present in the atmosphere, to high temperatures and pressures in hot stars, dominated by
ions and neutral species. Due to the fact that PHOENIX requests equilibrium compositions
more than a thousand times in each iteration and its multi-dimensional configuration,
PHOENIX/3D, even millions of times, the EOS must rapidly converge to not significantly
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1 Introduction

increase the computational time of the simulation.
The new EOS module SESAM (Stoichiometric Equilibrium Solver for Atoms and Molecules)
meets the criteria for these essential requirements, allowing to reliably determine the
equilibrium compositions (Meyer, 2013, where it was denoted as StoiCES). Based on the
Villars-Cruise-Smith algorithm, it applies the optimised stoichiometric method. Compared
to other approaches, this method has the advantage of showing a very good convergence
behaviour, even if many condensed species and a high number of trace species are considered
(Smith and Missen, 1982; Wong et al., 2003). For instance, non-stoichiometric codes bear
the risk of convergence problems and matrix singularities that may occur when condensed
species or phase-transitions are involved (Smith and Missen, 1982). In addition, the
presence of trace species significantly prolongs the iterative processes in non-stoichiometric
codes (Ruda, 1982). In environments where the hydrodynamic time-scales are in the same
order of magnitude as the chemical reaction time-scales, a chemical kinetics approach is
required. Depending on the number of species involved, the necessary identification of
sets of reactions will result in enormous computational times. This issue is simplified by
the rate-controlled constrained-equilibrium approach. This method is sophisticated and
chemical equilibria are calculated efficiently only if the system’s constraints are specified
carefully.
All these considerations make SESAM a suitable new EOS module to improve the quality
and numerical stability of the atmosphere modelling with PHOENIX. It is a modern and
modular code, which has been designed specifically for the purpose of the low-temperature
environments. Moreover, SESAM is easily extendible to other applications like, e.g., non-
ideal systems, taking multi-phases and phase-transitions into account. This provides a
promising initial step towards the simulation of terrestrial atmospheres with PHOENIX.

Goals and chapter overview of this thesis

Stellar modelling includes a vast number of different physical processes and the radiative
transfer theory plays a major role in this context, describing the transport of photons
through matter. Chapter 2 provides an introduction to radiative transfer theory, along
with an overview of other physical phenomena, which are relevant for the simulation of
atmospheres with PHOENIX. The newly EOS SESAM is based on the Villars-Cruise-Smith
algorithm, applying the optimised stoichiometric method. The theoretical background of
this approach is given in Chapter 3, whereas a detailed description of the code can be
found in Chapter 4. Furthermore, Chapter 4 presents an overview about the PHOENIX
framework and the modifications applied to provide a positive interplay between PHOENIX
and the new EOS.
SESAM has been successfully added to PHOENIX. The corresponding tests considering
the influence of the EOS on the atmospheric temperature and pressure structure and the
spectrum of twelve different stars are presented in Chapter 5, sampling a wide stripe in the
Hertzsprung-Russel diagram. In addition, the role of initially guessed species abundances
is discussed and computational performance tests are presented. All tests have been also
performed with ACES, which is the currently used EOS in PHOENIX, to provide a direct
comparison of the two EOS’s. The results are summarised in Chapter 6 along with an
outlook regarding further tests, improvements, and applications of the new EOS.
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2 Theory: Stellar atmospheres

Chapter 2

Theory: Stellar atmospheres

The stellar atmosphere forms the outermost region of a star. For the Sun, it can be
divided into four layers: the innermost atmospheric shell is denoted as the photosphere,
above which lies the chromosphere, followed by the transition region and the corona as
the outermost layer. Although the radial extent of the photosphere is relatively small
compared to the total stellar radius, almost all energy is emitted by it. Furthermore, it
is the region where most spectral features emerge and it defines the overall shape of the
spectrum.
Concerning the PHOENIX models computed for this thesis, this chapter and the discussion
in Chapter 5 are concentrated on the photosphere. Therefore, whenever stellar atmosphere
is mentioned in this thesis, it basically refers to the photosphere.

The theory of this chapter is based on Hubeny and Mihalas (2014), Hubeny (2013), Reid
and Hawley (2005), Rutten (2003) and Mihalas (1970).
For the sake of clarity, the terms particle and chemical species simultaneously refer to
atoms, molecules, and ions.

2.1 Overview
The density and pressure of the photosphere is mainly influenced by the surface gravity
g = GM/R2, with the gravitational constant G, the radius R, and the mass M of the
star. A high gravity causes a higher absolute particle density gradient in the atmosphere,
resulting in an increase of interactions. The respective spectrum will typically show broader
spectral lines than a corresponding low-density atmosphere. Regarding super-giants, their
lines are broader due to micro-turbulence.
Consistent with the Stefan-Boltzmann law, the effective temperature, Teff , of a star is
defined by the total flux that leaves the photosphere of the amount F = σT 4

eff , with σ
as Stefan-Boltzmann constant. Furthermore, radiation might not be the only effective
energy transport mechanism in atmospheres. Convection can contribute to the total flux
so that Frad + Fconv = σT 4

eff . Specifically, in environments with increasing opacity, the
local radiative energy transport from the inner part of the atmosphere to the outer layers
can become inefficient. In those dynamically unstable regions, large scale motions of
stellar matter may arise and buoyancy forces cause displacements of the matter within
the atmosphere. If these displacements act constructively to the surroundings, they can
create a runaway effect with respect to the buoyant force, resulting in a convective flux. A
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2 Theory: Stellar atmospheres

theoretical treatment of this chaotic process is complex and requires a lot of computational
effort. In order to be able to compute the convective motions in a reasonable amount of
time, model atmospheres often rely on simple approximations. Obviously, this cannot
account for complex three-dimensional convective motions, but to consider convection in
models, the mixing length theory (Böhm-Vitense, 1958; Böhm-Vitense and Nelson, 1976)
was developed. It relates convection to rising and falling gas over a certain parametrised
length. This mixing length is calibrated with solar observations and may not necessarily
have the same value for other stars. This upwards and downwards travelling gas can be
associated with mass elements, adiabatically moving, until they dissolve in the surrounding
gas. The mass elements carry thermal energy, which is either in excess or deficiency of
heat compared to the environment where they disintegrate. This way, the local energy can
be increased or decreased. According to the Schwarzschild criterion, the ascending and
descending movements become stable convective currents dominating the energy transport
when (

d lnT
d lnP

)
bg
>

(
d lnT
d lnP

)
ad
, (2.1)

namely when the temperature gradient of the radiative background (bg) is bigger than
the adiabatic (ad) one in a certain depth.
In addition to radiation and convection, energy can be transported by heat conduction
and mechanically by waves. However, these effects are only marginal for photospheres and
occur predominantly in coronae and degenerate stellar interiors or, in the latter case, in
coronae and chromospheres of cool stars.

The chemical composition plays a critical role for the properties of stellar atmospheres. It
determines the opacity, influencing the energy transport at all scales and the spectroscopic
features. These effects depend on the quantum mechanical interactions, which couple
radiation to matter, the wavelength dependent cross sections of the species, and the number
density of the species interacting with radiation. Although the number of absorbing atoms
is associated with the strength of the absorption lines, it must not necessarily be the
decisive factor. A further important contribution may arise from the individual absorption
properties of the atom, i.e., their cross sections. Even low-abundant atoms may generate
strong spectral features if the corresponding wavelengths are located in a range where
the high-abundant atoms own only weak or no spectral lines. Analogously, the same
consideration applies for emission.
The importance of molecules to the overall opacity grows with decreasing temperatures
until they dominate the stellar spectra from effective temperatures below Teff = 3000 K.
Each molecule contains several nuclei of the constituent atoms. This causes a more
complex system of excitation transitions than in a single atom because the molecules
have additional vibrational and rotational excitation states. Therefore, one electronically
excited state in a molecule creates thousands to millions of spectral lines. Like atoms,
the chemical abundance of a molecule in an atmosphere does not have to entail its influ-
ence on the stellar spectrum. For instance, the diatomic molecules vanadium oxide and
titanium oxide usually possess only low abundances in M- and L-dwarfs but may signifi-
cantly contribute to the respective spectra due to their numerous strong transitions. This
effect occurs because the constituent nuclei have quite different masses resulting in a ten-
dency for stronger vibrational motions than in molecules consisting of similar nuclei masses.
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2 Theory: Stellar atmospheres

Regarding the chemical abundances in atmospheres, an important quantity is the metallicity.
It specifies the logarithmic abundance ratio of metals M and hydrogen H compared to
the solar one: [

M

H

]
≡ log

[
M/H

M�/H�

]
. (2.2)

Metals are referring in this context to all elements, except hydrogen and helium.

2.2 Radiative transfer

This section briefly introduces radiative transfer, which is the theory describing the trans-
port of photons trough matter and eventually allows for calculation of spectral properties
of stellar atmospheres.

The specific intensity Iλ is defined as the energy that is transported by radiation through
a surface dA into the solid angle dΩ, in a certain wavelength interval dλ, depending on its
location in space r and on the propagation direction l during a period of time dt:

dEλ = Iλ(r, l, t)(l · n) dA dt dλ dΩ, (2.3)

where the normal vector to the area dA is denoted as n.
The average of the specific intensity over all directions is the mean intensity

Jλ(r, t) = 1
4π

∮
Iλ(r, l, t) dΩ. (2.4)

The net rate of intensity, projected into the propagation direction l, is the flux

Fλ(r, t) =
∮
Iλ(r, l, t) l dΩ. (2.5)

Physical processes in the gas may reduce the energy in the radiation beam: this property
is called the opacity and is specified by the extinction coefficient χλ. Therefore, the energy
removed from the beam is

dErem
λ = χλ(r, l, t) Iλ(r, l, t) dA dt dλ dΩ. (2.6)

At the same time, energy can be added to the beam by emission, quantified by the
emissivity ηλ, so that

dEadd
λ = ηλ(r, l, t) dA dt dλ dΩ. (2.7)

The energy removed from the beam and added to it sum up linearly:

dEλ = dErem
λ + dEadd

λ . (2.8)

The ratio of emissivity and extinction coefficient is called the source function

Sλ = ηλ
χλ
, (2.9)

quantifying the energy loss or gain of the radiation in the beam.
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2 Theory: Stellar atmospheres

The optical depth scale τλ specifies how strongly the light beam gets affected by extinction
along a path length dz:

dτλ = χλ dz, (2.10)

defined so that it increases from the outer atmosphere layers to the inner ones.
The radiative transfer equation is

dIλ
dτλ

= Iλ − Sλ, (2.11)

expressing the change of intensity along dτλ.

Photons are removed from the beam by scattering and absorption. In particular in
atmospheres where the gas is almost entirely or completely ionised, scattering between
electrons and photons (Thomson scattering) increasingly affects the radiation. In cooler
atmospheres, scattering of photons by atoms and molecules (Rayleigh scattering) plays
an important role. Atoms, molecules, and ions can absorb photons of specific energies
through electronic excitations. The electron is transferred from an orbital with a lower
energy level to a higher one, with an energy shift identical to the photon’s energy.
Assuming isotropy, the extinction coefficient is now

χλ = κλ + σλ, (2.12)

where κλ and σλ are the absorption and scattering terms, respectively.
Photons are added to the beam by scattering and emission. Emission occurs when an
excited particle spontaneously or induced re-emits a photon or a cascade of photons
while the electron goes from the excited energy level to a lower level. This spontaneous
emission is a natural decay process and occurs independently of the presence or absence
of a radiation field, but relies instead on the natural lifetime of the involved state. A
stimulated emission of a photon is induced by an additional photon of the same energy
that interacts with the excited atom, molecule, or ion.
Assuming isotropy, and taking both processes into account, the emissivity coefficient is

ηλ = ηth
λ + σλJλ, (2.13)

including the thermal (th) emission and scattering into the beam.
The coefficients κλ and ηλ depend on the population density of the energy levels involved
in the respective electron transitions. These densities are strongly correlated to the
abundances of the chemical species present in the atmosphere. At the same time, a
determination of χλ and ηλ requires the particle’s ionisation and dissociation stages, their
transition probabilities, their statistical weights and, in addition, the cross sections for the
photons.

2.2.1 Energy level populations

Since a bound electron can occupy only discrete states, a detailed consideration of the occu-
pation probabilities of the involved energy levels is essential in order to make quantitative
assessments regarding the gas opacities.
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2 Theory: Stellar atmospheres

Local thermodynamic equilibrium

For a transition from level i to a higher energy level j, the electron requires the excitation
energy Φij = hc/λij = Ej − Ei, with the Planck constant h and the velocity of light c.
This is the energy difference between the respective states. Assuming local thermodynamic
equilibrium (LTE), the population of the ith energy level ni,r, relative to the one of the jth

level nj,r, is temperature dependent and is specified by the Boltzmann equation[
ni,r
nj,r

]
LTE

= gi,r
gj,r

exp
(
−Φij

kT

)
, (2.14)

considering a distribution in a specific rth ionisation stage, with the statistical weights gi,r
and gj,r describing the number of states having the energies Ei and Ej.
Summing Eq. 2.14 over all excitation levels leads to the population relative to the total
number of atoms nr, [

ni,r
nr

]
LTE

= gi,r
Qr(T ) exp

(
−Φij

kT

)
, (2.15)

introducing the LTE partition function

Qr(T ) ≡
∞∑
i=0

gi,r exp
(
−Φij

kT

)
. (2.16)

Theoretically, Qr(T ) is an infinite sum that diverges for an isolated atom but realistically
an atom has only a finite number of orbitals occupied by electrons due to the atom’s
interaction with neighbouring particles.
The population ratio between the ground state, which is the 0th energy level, of successive
ionisation stages r and r + 1, is determined by the Saha equation[

n0,r+1

n0,r

]
LTE

= 1
ne

2g0,r+1

g0,r

(
2πmekT

h2

)3/2

exp
(
− χr
kT

)
, (2.17)

by means of the electron density ne, the statistical weights of the respective ionisation
states g0,r and g0,r+1, the electron mass me, and the ionisation energy χr, required to
remove an electron from the ground state of the rth ionisation stage to the continuum.
Or, analogously, summed over all energy levels,

[
nr+1

nr

]
LTE

= 1
ne

2Qr+1(T )
Qr(T )

(
2πmekT

h2

)3/2

exp
(
− χr
kT

)
. (2.18)

The gas particles follow a Maxwell-Boltzmann velocity distribution. Characteristic for
LTE is that the level populations due to excitation and ionisation are fully described by
the Boltzmann and Saha equations.

Non-local thermodynamic equilibrium

Most of the atmosphere of a cool main-sequence star can be approximated as LTE but
there are always regions that are in distinctive non-local thermodynamic equilibrium
(NLTE). Under many circumstances, the deviations from LTE apply to only a handful of
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2 Theory: Stellar atmospheres

states of single gas species. For this reason, if the details are known, the situation can be
treated as hybrid LTE-NLTE to save computing time with little to no loss in accuracy.
NLTE conditions may, though not imperatively, arise when atomic transitions due to
radiative processes dominate over the collisional ones. However, an essential further
prerequisite is the disequilibrium of the radiation so that the intensities are not represented
by a Planck function corresponding to the same temperature as the local gas states. These
situations emerge preferentially in atmospheric zones with a strong radiation field and
low-density zones with notable temperature or density gradients.
Assuming a stationary ingoing and outgoing radiation field, rate equations must be solved,
stating that the total number of transitions out of level i into other energy levels j is equal
to the number of transitions of the reverse direction, namely the ones into the ith energy
level from other levels:

ni
∑
j 6=i

(Rij + Cij) =
∑
j 6=i

nj(Rji + Cji). (2.19)

Therefore, the collisional rate coefficient Cij and the radiative rate coefficient Rij must
be determined. These rate equations specify the level populations, which depend on the
radiation field itself. This is in contrast to the LTE approximation where they depend
only on the local gas temperature.
The deviation of the number of atoms in the ith energy state in thermodynamic equilibrium,
n∗i , from the actual NLTE number of atoms, ni, can be quantified by the departure
coefficients

bi ≡
ni
n∗i
, (2.20)

following Mihalas (1978). Under consideration of the rth ionisation stage, and similar to
LTE, the NLTE partition function is generalised as

Qr(T ) ≡
∞∑
i=0

bi,rgi,r exp
(
−Φij

kT

)
. (2.21)

2.2.2 Solutions to the radiative transfer equation

If the radiation can be approximated by LTE without scattering, the source function Sλ is
equal to a Planckian distribution function:

Bλ(T ) ≡ 2hc2

λ5
1

exp(hc/λkT )− 1 , (2.22)

which specifies the radiation density of an object at thermal equilibrium at given tem-
perature T , with the wavelenghth λ, the Boltzmann constant k, the Planck constant h,
and the velocity of light c. Thus, the radiative transfer equation is a standard linear
differential equation. Under this condition, matter and radiation are locally in equilibrium
and Kirchhoff’s law applies, stating that

ηth
λ = κλBλ(T ). (2.23)
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2 Theory: Stellar atmospheres

Assuming additionally coherent scattering, Sλ is

Sλ = κλ
κλ + σλ

Bλ(T ) + σλ
κλ + σλ

Jλ, (2.24)

or by applying the parameter
ελ ≡

κλ
χλ

= κλ
κλ + σλ

, (2.25)

the source function is
Sλ = ελ Bλ(T ) + (1− ελ) Jλ. (2.26)

The ελ is the thermal coupling parameter, associated with the probability of destruction
of a photon by extinction compared to its probability of scattering.
Stellar atmospheres generally include non-coherent scattering and/or NLTE conditions.
In this case, Sλ depends on the intensity and, therefore, Eq. 2.11 results in a non-linear
differential equation. A formal solution of the radiative transfer equation must be found,
required for iterative determination of the mean intensity Jλ. One approach to abbreviate
this procedure is the Λ-operator with

Jλ = ΛSλ. (2.27)

However, in systems with a low destruction probability ελ and large optical depths, iteration
methods like

Jλ,new = ΛSλ,old (2.28)

and
Sλ,new = ελBλ(T ) + (1− ελ)Jλ,new (2.29)

require an exhaustive number of iterations, proportional to 1/ελ, or do not numerically
converge. In these environments, more complicated numerical methods must be applied.
A possible solution is an operator splitting method where Λ is split along

Λ = Λ∗ + (Λ− Λ∗), (2.30)

with Λ∗ as the approximate Λ-operator (Cannon, 1973). The resulting iterative equation,

Jλ,new = Λ∗Sλ,new + (Λ− Λ∗)Sλ,old, (2.31)

provides the mean intensity by choosing a suitable Λ∗ in a faster way than Eq. 2.28 (see,
e.g. Hauschildt and Baron, 1999; Mihalas, 1970, and references therein).
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Chapter 3

Theory: The chemical equilibrium

An equation of state sets thermodynamic parameters in a relation. These parameters can
be, for instance, gas pressure, temperature, density or volume, and chemical composition.
The ideal gas equation of state is presented in Sec. 3.1 along with a discussion on why the
ideal gas law is valid in all stellar atmospheres that are considered in this thesis.
As shown in Chapter 2, the chemical abundances directly influence the energy level
populations of atoms, molecules, and ions and, therefore, the opacity and emission in
atmospheres. Thus, to simulate physical environments, the important chemical processes
must be known. It is mandatory to assume that all chemical reactions lead to a well-defined
equilibrium state as defined in Sec. 3.2. A fundamental quantity in this context is the
chemical potential. It crucially influences the equilibrium composition and receives a more
detailed consideration in Sec. 3.3.
The analytical equation of state, which relates the temperature, pressure and chemical
composition in one equation, must be distinguished from the numerical one, hereafter
referred to as its acronym: EOS. An EOS is an algorithm that is designed to numerically find
solutions of the chemical equilibrium problem. In the context of this thesis, requirements
like precision, calculation time and treatment of complex systems including several hundreds
of chemical species and, to a limited degree, condensed species are important. A method
that handles this well is the Villars-Cruise-Smith algorithm (Smith and Missen, 1982),
based upon optimised stoichiometry. Its mathematical properties are described in Sec. 3.4.
This method represents the basis of the new EOS module, which is included in the
atmospheric model code PHOENIX as one goal of this thesis.
Unless stated otherwise, the theory detailed in Sec. 3.1 follows Mortimer and Müller (2014),
Voigt (2012), Reid and Hawley (2005) and Schwarzschild (1958). Sections 3.2 - 3.4 are
based on Smith and Missen (1982), Smith (1980), Wong et al. (2003), Smith and Missen
(1979) and Sec. 3.3 in addition on Job and Herrmann (2006).

Frequently used terms in this chapter are chemical elements and species. A chemical
element is a neutral atom with a unique number of protons. It can be transformed into
another element only by nuclear reactions, which are ignored in this work. Similar to the
previous chapter, chemical species and particles simultaneously refer to atoms, molecules
and ions. Free electrons fulfil a special role in the EOS algorithm presented in this chapter:
they are treated as both chemical element and species. The term chemical abundance
refers to the amount of the species expressed in moles.
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3.1 The equation of state

An equation of state connects the essential thermodynamic state variables, e.g., gas pressure
P , density ρ or volume V , temperature T , and the chemical composition, which is here
expressed by the number of moles n. This makes it an important tool for the description
of the thermodynamical properties of a closed system. The simplest equation of state
is based on the ideal gas law, assuming that there are no intermolecular forces between
the species and the only interactions among themselves are collisional. In addition, the
particles have an insignificant volume. It states

Pgas = R

µ
ρT = nRT

V
, (3.1)

with the ideal gas constant R, the gas pressure Pgas, and the mean molecular weight µ.
However, depending on the gas temperatures and densities, radiative pressure Prad and
degeneracies may be important and contribute differently to the equation of state (Fig. 3.1).
This eventually induces deviations between the total gas pressure P and the ideal gas
pressure Pgas. Specifically the presence of intermolecular attraction forces is physically
necessary in this regard because, otherwise, a gas could not liquefy. The higher the gas
pressure, the spatially closer are the particles to one another, and the stronger are their
interactions. Compared to the volume of an ideal gas, this causes a reduction of the volume

Figure 3.1: Main contributions to the equation of state by the radiation pressure Prad, ideal
gas pressure Pgas, and the degeneracy effects at different densities and temperatures (adapted
from Reid and Hawley, 2005, and calculated by Schwarzschild, 1958). The lines between the
different zones mark the conditions where the respective two contributors are equal. Their exact
position is depending on the molecular weight and, therefore, on the composition. Here, pure
hydrogen was used for the boundary between the Prad and Pgas regimes and pure helium for the
separation of the Pgas and degeneracy regimes.
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occupied by them. Actually, and in contrast to the ideal gas law, each particle occupies
a certain volume. For typical energies regarded in this work, species can be considered
incompressible and the space between the particles is limited.
Regarding main-sequence stars, ranging from O-types with Teff ≥ 30000 K, to M-dwarfs
with Teff ≥ 2300 K, their atmospheric densities are typically well below ∼ 10−5 g cm−3.
The atmospheres of these stellar objects are in the gas pressure (Pgas) dominated zone of
Fig. 3.1 and, therefore, their total pressure can be described by an ideal gas law (Eq. 3.1).
Van der Waals and other forces affect the gas in stellar atmospheres marginally since most
molecules are simply far too rare to significantly disturb the equation of state directly. The
possibly abundant molecular hydrogen (H2) is extremely small, light and fast for typical
stellar atmosphere temperatures being, therefore, only weakly affected by intermolecular
forces.
The situation is different in environments with high densities, e.g., in stellar interiors.
Since electrons are fermions, they obey the Pauli exclusion principle, which states that
no quantum state can be occupied by more than one fermion. As a result, a quantum
mechanical degeneracy takes place and becomes increasingly prevailing for higher densities.
These extreme densities occur significantly in the inner parts of certain red giants and
in almost all parts of cooled white dwarfs, and the ideal gas equation of state is far from
valid there.
In addition, for low densities and very high temperatures, the interaction of the photon’s
momentum with matter gains importance. The pressure exerted by photons, i.e., radiation
pressure contributes significantly to the total gas pressure and adjustments must thus
be done for calculating P . This can be realised by simply summing up the ideal gas
pressure and the radiative pressure. With increasing temperatures, the radiative pressure
becomes a growing contribution to the total pressure, but only the outer layers of the
heaviest non-degenerated stars can exceed temperatures where Prad dominates over Pgas
(e.g. Carroll and Ostlie, 2007).

There is still no single equation of state, which is simultaneously valid under all conditions.
Nevertheless, the ideal gas law is a reasonable assumption for stellar photospheres of
main-sequence stars.

3.2 The chemical equilibrium as a minimisation prob-
lem

In a closed thermodynamic system, the equilibrium state will eventually be reached
including thermodynamic and phase equilibrium. In addition, a statistical chemical
equilibrium is attained when there is no longer a macroscopic change in composition. This
does not mean that there are no microscopic reactions occurring between the species. On
the contrary, chemical reactions are still continuously taking place but with equal rates for
their forward and reverse reactions. This is the principle of detailed balance.
To determine this chemical equilibrium state, the defining parameters of the system such
as, for instance, the gas pressure and the gas temperature, have to be specified. The
respective thermodynamic properties can be provided by a suitable equation of state. In
the following, a system in a locally stable equilibrium state is assumed, which contains a
number of chemical species N and a number of elements M , without any mass exchange
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with the surroundings. Conservation of mass must, therefore, be fulfilled at all times.
This can be expressed by a set of atom-balance equations as formulated by the following
relation between the fixed number of moles bk of the element k, and the number of moles
of the ith species ni:

N∑
i=1

akini = bk with k ∈ {1, 2, ...,M}, (3.2)

defining aki as the index of the element k in the molecular formula of the ith species. Or,
in vector-matrix-notation:

An = b, (3.3)

with A = (a1, a2, ..., aN) as a (M ×N) formula matrix, which is composed of N formula
vectors ai. The species abundance vector is represented by n = (n1, n2, ...nN)T , with
ni ≥ 0, and the element abundance vector by b = (b1, b2, ..., bM)T .
The physically crucial criterion

ni ≥ 0 ∀i ∈ {1, 2, ..., N}, (3.4)

is called the non-negativity constraint and means that a species can either be present or
not, but its abundance can never be negative.
In a closed system, a change in the element abundances is impossible and, therefore,
changes in the moles between two compositional states of the system, δn = n(2) − n(1),
must satisfy

N∑
i=1

akiδni = 0 with k ∈ {1, 2, ...,M}, (3.5)

or, analogously in vector-matrix notation,

Aδn = 0. (3.6)

The second law of thermodynamics, which defines the direction of processes (e.g. Clausius,
1856), allows to connect chemical equilibria conditions with potential functions. For
example, in an adiabatic system in an equilibrium state, the entropy S cannot decrease,

dSad ≥ 0, (3.7)

and the Gibbs function G cannot increase in systems with fixed temperatures und pressures,

dGT,P ≤ 0. (3.8)

In other words, G has its (global) minimum for systems in chemical equilibrium. The ’d’
stands for an total differential of the potential functions.
G is a function of temperature, pressure and mole numbers of involved species with

dG = −SdT + V dP +
N∑
i=1

µidni, (3.9)

with V as the system’s volume and µi is the chemical potential of the ith species.
Consequently, in an equilibrium system with fixed T and P , the differential of Gibbs
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function is
dG =

N∑
i=1

µidni (3.10)

and the corresponding chemical potential can be defined by

µi =
(
∂G

∂ni

)
T,P,nj 6=i

. (3.11)

Similarly to the minimisation of G, the equilibrium state can be determined with a
minimisation of other potential functions like, e.g., the minimisations of the Helmholtz
function A (for fixed T and V ), the enthalpy H (for fixed P and S), or the internal energy
U (for fixed V and S). Alternatively, in an isolated system, the equilibrium state can be
found by maximising the entropy for a given internal energy U .

3.3 The chemical potential

The chemical potential µ plays a crucial role in the description of chemical and physical
properties of the species, since it is a fundamental quantity in identifying the equilibrium
composition. It characterises the tendency of a species to pursue a change of composition
and aggregate state. An equilibrium state is reached if the total µ of the product species
is equal to the total µ of the reactants.
Since only the differences in the chemical potentials can be measured, the values of µ are
fixed on an arbitrarily scale to describe chemical reactions. Species with higher chemical
potentials will more likely react than the species with lower ones. The lower the µ of
the species, the more stable is its state and it will not spontaneously disintegrate into its
chemical elements. Nevertheless, this process does not only depend on the value of µ: in
addition, species have a specific resistance towards reactions, which is highly dependent
on the temperature. With increasing temperatures, the reaction resistance decreases and
the possibility for the reactions to take place grows. Although the chemical potentials are
also temperature dependent in a way that, for a classical ideal gas, a gain in T reduces
µ, the effect of the resistance has a stronger impact. Another influence on µ is given
by the pressure, insofar that a higher pressure leads to an increase in the chemical potential.

Regarding a pure species system with fixed temperatures and a change in pressure, the
partial change of µ is equal to the molar volume v = (∂V/∂n)T,P :(

∂µ

∂P

)
T

= v. (3.12)

An integration with respect to the pressure results in

µ(T, P )− µ(T, P 0) =
∫ P

P 0
v dP, (3.13)

with P 0 as the reference pressure of 1 bar for gases and of the vapour pressure for pure
liquids or solids. This equation is valid for any pure system, even for non-ideal gases and
condensed species. Assuming now an ideal system by applying the ideal equation of state,
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v = RT/P , and rephrasing µ(T, P 0) as the standard chemical potential at its reference
pressure µ0(T ), Eq. 3.13 becomes

µ(T, P ) = µ0(T ) +RT lnP. (3.14)

A solution of ideal gases follows Amagat’s law, stating that at fixed T and P , the sum of
the volumes of the respective mixed gases are equal to the total volume of the gas. In this
case, the chemical potential of the ith species is

µi(T, P, xi) = µ0
i (T ) +RT ln pi. (3.15)

The composition dependence is added by means of the partial pressures pi, defined as

pi =
(
ni
nt

)
P ≡ xiP, (3.16)

with ni as the number of moles of the considered species, nt as the total moles in the
system and xi as the mole fractions. Now, Eq. 3.15 becomes

µi(T, P, xi) = µ0
i (T ) +RT lnP +RT ln xi, (3.17)

and by setting
µ∗i ≡ µ0

i (T ) +RT lnP, (3.18)

the chemical potential for an ideal solution is in its final form:

µi = µ∗i (T, P ) +RT ln
(
ni
nt

)
. (3.19)

It shows that, next to its temperature and pressure dependence, a greater mole fraction of
the ith species increases the chemical potential. Furthermore, the species will more likely
react since µ can be regarded as the driving force that influences the species amounts.

3.4 The approach of optimised stoichiometry

As shown in Sec. 3.2, the chemical equilibrium can be obtained by treating it as a
minimisation problem of a potential function. By means of a stoichiometric approach, the
element abundance constraints are always fulfilled.
The N total species in the system can be grouped in C component and R non-component
species with

R = N − C, (3.20)

so that the non-component species are build with help of the component species in the
resulting chemical equations. Each non-component species requires an own chemical
equation. Their number R can be related to the stoichiometric degree of freedom and,
therefore, to the number of linearly independent chemical equations of the system. The
number of component species C is equal to the rank of the formula matrix,

C = rank(A) ≤M. (3.21)
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To find a solution of the element abundance equations 3.2 or 3.3 with the stoichiometric
approach, the stoichiometric coefficient vectors νννj, with νννj 6= 0, are introduced and must
satisfy

Aνννj = 0 with j ∈ {1, 2, ..., R}. (3.22)

Replacing the formula matrixA with the respective species names Ai and the stoichiometric
vector with its stoichiometric coefficient νij of species i and element j, this becomes in
scalar-notation

N∑
i=1

Aiνij = 0 with j ∈ {1, 2, ..., R}, (3.23)

and represents a complete set of stoichiometric equations. By means of a set of arbitrary
real numbers ξj, any possible solution of the element abundance equations 3.2 and 3.3 is

n = n0 +
R∑
j=1

νννjξj, (3.24)

or, respectively,

ni = n0
i +

R∑
j=1

νijξj with i ∈ {1, 2, ..., N}. (3.25)

Here, n0 and n0
i are any particular solution of Eq. 3.24 like, for instance, an initial

composition of the chemical system. If n0
i is fixed, the stoichiometric coefficient νij can be

written as(
∂ni
∂ξj

)
ξk 6=j

= νij with j ∈ {1, 2, ..., R} and i ∈ {1, 2, ..., N}. (3.26)

De Donder and Van Rysselberghe (1936) assign the real parameter ξ as the degree of
advancement of the system. It can be regarded as the reaction-extent variable.
Since the stoichiometric coefficient vectors νννj are defined according to Eq. 3.22, a multipli-
cation of Eq. 3.24 with the formula matrix A shows that the result is equal to the element
abundance vector b:

An = An0 +
R∑
j=1

ξjAνννj = b. (3.27)

Thus, Eq. 3.24 satisfies the requirement of mass conservation in a closed system.

All stoichiometric coefficient vectors can be written in a (N ×R) complete stoichiometric
coefficient matrix,

N = (ν1,ν2, ...,νR), (3.28)

and Eq. 3.22 can consequently be rewritten as

AN = 0. (3.29)

With the help of elementary row operations it is possible to form a unit matrix A∗ from
the formula matrix A:

A∗ =
(
IC Z

)
. (3.30)
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The left part IC is assigned as a (C × C) unit matrix and the right part as a (C × R)
sub-matrix Z. Using Z and a (R×R) unit matrix IR, the complete stoichiometric coefficient
matrix for A∗ is

N =
(
−Z
IR

)
. (3.31)

Applying this procedure, Z fulfils
ACZ = AR, (3.32)

with AC as the set of component species and AR as the set of non-component species of
the system. From this, Z can be written as

Z = A−1
C AR (3.33)

and Eq. 3.29 results in

AN = (AC ,AR)
(
−A−1

C AR

IR

)
= −AR + AR = 0. (3.34)

The stoichiometric procedure is independent of the system’s state. A criterion for an
existing chemical equilibrium state can be linked to the procedure by minimising the Gibbs
function G (Sec. 3.2).
G is a function of the temperature, pressure, and the chemical composition. Since the
composition can be expressed by Eq. 3.25 in the stoichiometric formulation, the following
equation is therefore a prerequisite for a minimum of the Gibbs function in systems with
fixed temperatures and pressures:

(
∂G

∂ξj

)
T,P,ξi 6=j

=
N∑
i=1

(
∂G

∂ni

)
T,P,nj 6=i

(
∂ni
∂ξj

)
ξi 6=j

= 0 with j ∈ {1, 2, ..., R}. (3.35)

This is, in consistence with Eqs. 3.11 and 3.26, equal to

N∑
i=1

νijµi = 0 with j ∈ {1, 2, ..., R}, (3.36)

and states the equilibrium conditions. Thus, next to the stoichiometric coefficients νij , the
choice of a proper chemical potential of each ith species µi has a crucial influence on the
resulting equilibrium composition.
Alternatively to Eqs. 3.35 and 3.36, the equilibrium conditions are rewritable as

∆G ≡
(
∂G

∂ξ

)
T,P

= NTµ(ξ) = 0. (3.37)

This non-linear equation can be solved by a first-order optimisation method by modifying
the reaction-extent variable ξ at each iteration step (m),

δξ
(m)
j = −

(
∂G

∂ξj

)(m)

= −∆G(m)
j = −

N∑
i=1

νijµ
(m)
i with j ∈ {1, 2, ..., R}, (3.38)
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as suggested by Naphtali (1959). Since first-order methods converge rather slowly (e.g.
Boyd and Vandenberghe, 2004), a solution of Eq. 3.37 can be found more advantageously
by means of a second-order method like the Newton-Raphson method,

δξ(m) = −
(
∂2G

∂ξ2

)−1

n(m)

(
∂G

∂ξ

)
n(m)

, (3.39)

as proposed by, e.g., Stone (1966). Further improvement has been done by Smith and
Missen (1982) who developed the Villars-Cruise-Smith (VCS) algorithm, an optimised
stoichiometric approach. In the VCS algorithm, the stoichiometric matrix N is constructed
in a way that the Hessian matrix ∂2G/∂ξ2 can be easily inverted by assuming its diagonality.
This is possible because N can be chosen arbitrarily. With the Kronecker delta δkl and
the total number of moles nt, the Hessian matrix for an ideal system in a single phase is

∂2G

∂ξi∂ξj
= ∂

∂ξj

(
N∑
k=1

νkiµk

)
= RT

N∑
k=1

N∑
l=1

νkiνlj

(
δkl
nk
− 1
nt

)
with i, j ∈ {1, 2, ..., R}.

(3.40)
Using

ν̄i =
N∑
k=1

νki, (3.41)

Eq. 3.40 can be written as

1
RT

∂2G

∂ξi∂ξj
=

N∑
k=1

νkiνkj
nk

− ν̄iν̄j
nt

with i, j ∈ {1, 2, ..., R}. (3.42)

As reminder, the C component species are forming the R non-component species in
chemical equations. Each non-component species has one stoichiometric vector ννν where
its stoichiometric coefficient is non-zero. Assuming a canonical stoichiometric matrix and
species k to be a non-component, this leads to a product of the stoichiometric coefficients
νkiνkj = 1, if the ith species is equal to the jth species, otherwise the product is zero.
Choosing the indices for the component species from 1 to M , and for the non-component
species from (M + 1) to N , Eq. 3.42 can be written as

1
RT

∂2G

∂ξi∂ξj
= δij
nj+M

+
M∑
k=1

νkiνkj
nk

− ν̄iν̄j
nt

with i, j ∈ {1, 2, ..., R}. (3.43)

If the stoichiometric matrix is constructed in a way that the most abundant species in the
system are the component species, this will result in

M∑
k=1

νkiνkj
nk

− ν̄iν̄j
nt
� δij

nj+M
, (3.44)

because the nk and nt are larger than the nj+M . Hence, the diagonality of the Hessian
matrix can be assumed and it can be easily inverted, becoming

RT

(
∂2G

∂ξi∂ξj

)−1

≈
(

1
ni+M

+
M∑
k=1

ν2
ki

nk
− ν̄2

i

nt

)−1

δij. (3.45)
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By means of Eqs. 3.39 and 3.45, the non-linear equation 3.37 can be solved in the VCS
algorithm with the corrections to the reaction-extent variables:

δξ
(m)
j = −

 1
n

(m)
j+M

+
M∑
k=1

ν2
kj

n
(m)
k

−
ν̄2
j

nt

−1
∆G(m)

j

RT
with j ∈ {1, 2, ..., R}. (3.46)

For the VCS procedure it is, therefore, crucial that the species with the largest mole
numbers are selected to be the component species.
Adjusting Eq. 3.46 to systems with πm multi-species phases α, the reaction-extent variables
are modified by

δξ
(m)
j = −

δ∗j+M,α

n
(m)
j+M

+
M∑
k=1

ν2
kjδ
∗
kα

n
(m)
k

−
πm∑
α=1

N∑
k=1

(νkjδkα)2

ntα

−1
∆G(m)

j

RT
(3.47)

at the mth iteration step. Here, δkα is the Kronecker delta and is 1 if the kth species is in
the specific phase α and, similar to this, δ∗kα is 1 if the kth species exists in at least one of
the phases α.
Finally, with Eq. 3.47 and the complete stoichiometric coefficient matrix, the iterative
changes to the species abundances can be obtained using

δn = Nδξ. (3.48)
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Chapter 4

Methods: The atmosphere model
code and its new EOS module

The main part of this thesis was to include the new EOS module named SESAM
(Stoichiometric Equilibrium Solver for Atoms and Molecules) in the general-purpose
atmosphere model code PHOENIX (Hauschildt, 1992, 1993). The EOS is based on the
optimised stoichiometry method (Sec. 3.4) and reliably determines accurate chemical
equilibrium compositions (Meyer, 2013). Next to gaseous species, it can take into account
condensed species by treating them as single species phases. In addition, an initial estimate
had been implemented to minimise the required number of iterations until the chemical
equilibrium problem is solved. A more detailed description of the code is given in Sec. 4.1.
SESAM can be used stand-alone while it is far more useful if implemented as a detailed
EOS in larger codes: from hydrodynamic codes that require the chemical compositions
for systems located within a finite volume with adiabatic boundaries, to environments
where the chemical systems proceed much faster than the changes in temperatures and
pressures allowing densities and internal energies to evolve. Whenever PHOENIX uses the
approximation of a static atmosphere, it specifically demands the EOS for the latter case.
Section 4.2 provides an overview of the basic features of the atmosphere model code and
shows the role of the EOS in its simulations.
For SESAM’s inclusion in PHOENIX, particular modifications were necessary, which are
described in Sec. 4.3.

4.1 The new EOS module SESAM

In SESAM, the chemical equilibrium problem is treated by the minimisation of the Gibbs
energy G (Sec. 3.2), applying the optimised stoichiometry method as described in Sec. 3.4.
An earlier version of SESAM was extensively evaluated and tested in Meyer (2013) where it
was denoted as StoiCES. Validations were performed by comparing results with published
data and the NASA Glenn computer program CEA (Gordon and McBride, 1994; McBride
and Gordon, 1996). It was shown that equilibrium compositions of complex systems that
contain several hundreds of gaseous species are successfully reproduced, including the
abundances of very small trace species at temperatures of few hundred Kelvin. This is true
for the application of the thermodynamic state constraint of constant (T , P ) and constant
(U , V ). The CPU times required for solving the equilibrium problem was considerably
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improved by implementing a numerical estimate of initial species abundances.

For the inclusion in PHOENIX, SESAM only applies the thermodynamic state constraint
of constant (T , P ). The features of it are described in Sec. 4.1.1 and build up on the basic
considerations in Sec. 3.4. After Meyer (2013), SESAM has been further developed to take
condensed species and ions into account. The respective code modifications are presented
in Sec. 4.1.2. SESAM’s impeccable convergence behaviour is shown in Sec. 4.1.3.

4.1.1 Iterative method: Constraints of constant (T, P )
To calculate the equilibrium composition of a gaseous system using the constraint of
constant temperature and pressure, SESAM follows the iterative scheme depicted in
Fig. 4.1. As input, the gas temperature T and gas pressure P of the environment are
required. In addition, the involved species and elements must be specified for the later
construction of the formula matrix. The moles or relative abundances of the elements are
completing the input data.

Read-in of thermodynamic data

Based on the selection of the required elements and species, SESAM reads in the ther-
modynamic data. As initial configuration, this data is taken from the thermodynamic
library of the NASA Glenn computer program CEA. Their origin is predominantly the
NIST-JANAF Thermochemical Tables (Chase, 1998) from which Bonnie J. McBride and
Sanford Gordon made curve fits for chemical species, based on measured properties and
estimates. A detailed description of the data sources and their format can be found in, e.g.,
McBride et al. (2002). For the computation of the chemical potentials of the individual
species i, SESAM requires initially the enthalpies H0

i (T )/RT and entropies S0
i (T )/R for the

requested temperature. The superscript 0 indicates the reference state 298.15 K and 1 bar.
These properties are stored in the CEA library in the form of least-squares coefficients a1
to a7 and integration constants b1 and b2 and can be accessed by applying the following
equations:

H0(T )
RT

= −a1T
−2 + a2

lnT
T

+ a3 + a4
T

2 + a5
T 2

3 + a6
T 3

4 + a7
T 4

5 + b1

T
(4.1)

S0(T )
R

= −a1
T−2

2 − a2T
−1 + a3 lnT + a4T + a5

T 2

2 + a6
T 3

3 + a7
T 4

4 + b2. (4.2)

Using the list of the required species, SESAM creates the formula vectors ai and constructs
the formula matrix A. Now, the standard chemical potentials µ0

i are calculated by means
of the standard enthalpies and entropies data of all species:

µ0
i

RT
= H0

i

RT
− S0

i

R
with i ∈ {1, 2, ..., N}. (4.3)

Set-up of the equilibrium problem

The next step is to separate the species in the formula matrix A into a set of components
AC and non-components AR. Their total numbers C and R are determined according to
Eqs. 3.21 and 3.20. As mentioned in Sec. 3.4, the species with the highest moles should be
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read-in of thermodynamic data

set-up of the equilibrium problem:

formula matrix A (Sec. 3.4)
standard chemical potential µµµ0 (Eq. 4.3)

C component species (Sec. 3.4)
R non-component species (Sec. 3.4)
stoichiometric matrix N (Eq. 3.31)
chemical potential µµµ∗ (Eq. 4.4)

main iteration:

element abundances b (Eq. 3.3)
chemical potential µµµ (Eq. 3.19)

stoichiometric matrix N (Eq. 3.31)
change of Gibbs function ∆∆∆G (Eq. 3.38)

change of reaction-extent variable δξδξδξ (Eq. 3.47)
step-size parameter ω (Eqs. 4.18, 4.19)
adjust species abundances n (Eq. 4.11)

convergence?
(Eq. 4.20)

stoichiometric matrix N (Eq. 3.31)

initial estimate of composition n0 in Eq. 3.24:

simplex method (Eq. 4.5)
stoichiometric matrix N (Eq. 3.31)
element abundances b (Eq. 3.3)
chemical potential µµµ (Eq. 3.19)
assume equilibrium (Eq. 4.6)
scaling factor κ (Eq. 4.7)

step-size parameter γ (Eq. 4.8)
adjust species abundances n (Eq. 4.8)

T, P, composition

equilibrium
composition

no

yes

Figure 4.1: The basic method of SESAM
to calculate the equilibrium composition
using the constraints of constant tempera-
tures and pressures. A detailed description
of the code and the quantities listed is pre-
sented in Sec. 4.1.1.
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selected as component species in order to ensure the diagonality of the Hessian matrix,
which will be constructed later in the iterative process. It is important to check the
linear independence of these component species to ensure that the non-components can
be constructed from them in the resulting chemical equations. If this is not the case, a
new selection of component species is chosen until linear independence is achieved. This
check is realised by the orthogonalisation method provided by the Gram-Schmidt process.
Applying Eq. 3.33 on AC and AR, the sub-matrix Z is determined. The building of
the stoichiometric matrix N follows including its stoichiometric vectors ν1, ν2, ..., νR from
Eq. 3.31. Afterwards, the pressure-dependent part of the chemical potential is individually
calculated for each species by applying

µ∗i
RT

= µ0
i

RT
+ lnP with i ∈ {1, 2, ..., N}. (4.4)

Initial estimate of the chemical composition

To accelerate the computation, a simplex method (Press, 1992) is implemented to provide
an initial estimate for the equilibrium composition n0 in Eq. 3.24. It consistently solves
the following linear problem,

min
µ∗∈Rn

{nTµ∗ |An = b, ni ≥ 0}, (4.5)

with the conservation of mass and the non-negativity constraint. Here, nT refers to the
transposed of the species abundance vector and µ∗ to the standard chemical potential
vector without contribution from the partial pressures (Eq. 4.4). Using the resulting
new abundances, the species are separated in linearly independent components and
non-components, the stoichiometric matrix N is recreated (Eq. 3.31) and the element
abundances b are calculated (Eq. 3.3). In addition, the chemical potentials are updated
with the partial pressures of the species (Eq. 3.19). Following Smith and Missen (1968),
SESAM assumes that the chemical reactions, which are composed of the R non-component
species, obtained equilibrium. In order to accomplish this, the respective ∆Gj are set to
zero and the abundances of the remaining components are kept constant. From Eqs. 3.19
and 3.38 it follows that the abundances of the non-components are

nj = nt exp
(
−µ∗j −

M∑
k=1

νkjµk

)
= ξj with j ∈ {1, 2, ..., R}, (4.6)

which are consistent with the extents of reaction-extent variables ξj. The nt are the total
number of moles. To ensure that the non-negativity constraint is always fulfilled, a scaling
factor κ is applied so that the ni are always positive. Thereby, the correction-vector of the
species abundances δδδn is modified to

δδδn = κNξξξ with 0 < κ ≤ 1. (4.7)

The parameter κ is very similar to the one of the main iteration (cf. Eqs. 4.13 and 4.14)
and determined in the same way. Next step is to adjust the previously estimated species
abundances n0 in order to approximately minimise the Gibbs function. This is done by
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means of a step-size parameter γ,

n = n0 + γ δδδn with 0 < γ ≤ 1, (4.8)

and its most appropriate value is the one that minimises G in(
dG
dγ

)
= µµµTδδδn, (4.9)

assuming G is locally a parabolic function of γ. To find the best γ, Eq. 4.9 is evaluated
at γ = 1. A result less or equal 0 indicates that the minimising γ is found and the full
correction can be applied in Eq. 4.8. Otherwise, Eq. 4.9 is recalculated using γ = 0.5 in
Eq. 4.8, and the updated chemical potentials (Eq. 3.19). Now, three different cases are
distinguished:
(1) (dG/dγ)|γ=0.5 > 0,
(2) (dG/dγ)|γ=0.5 = 0, and
(3) (dG/dγ)|γ=0.5 < 0.
The most suitable γ is found in case (1) and will be applied. If case (2) occurs, the final γ
is set to 0.2 and case (3) implies the calculation of a new parameter β:

β = 0.5
(

1− (dG/dγ)γ=0.5

(dG/dγ)γ=1 − (dG/dγ)γ=0.5

)
. (4.10)

A β ≤ 1 leads to a γ = β and a β > 1 to γ = 1 as the preferable values. After finding the
suitable γ, the species abundances n are calculated with Eq. 4.8 and the initial estimate
procedure is terminated.

Stoichiometric matrix and main iteration

Based on the estimated initial species abundances, the stoichiometric matrix is rebuilt
and the element abundance vector b is determined conform to the conservation of mass
constraint (Eq. 3.3). Now, the accuracies of the chemical potentials are improved by
adding the partial pressure dependent part to them, as shown in Eq. 3.19. If necessary,
N is rebuilt (Eq. 3.31). Using the updated µi and the stoichiometric coefficients νij, the
changes of the R linearly independent Gibbs functions ∆Gj are determined by Eq. 3.38.
From this, the reaction-extent variables ξj are modified applying Eq. 3.47. Since the
equilibrium problem of minimising G is solved iteratively, the previously estimated species
abundances n are corrected until a minimum of G is found. Applying the procedure as
described by Smith and Missen (1982) and Wong et al. (2003), the n are modified by
means of a step-size parameter ω and the correction-vector δδδn in a way that for each
(m+1)th iteration the species abundances change by

n(m+1) = n(m) + ω(m)δδδn(m). (4.11)

In accordance with Eq. 3.24, the correction-vector is given as

δδδn = Nδδδξξξ. (4.12)
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Nevertheless, to fulfil the non-negativity constraint, a scaling factor κ is used (similar to κ
in Eq. 4.7):

δδδn = κNδδδξξξ with 0 < κ ≤ 1. (4.13)

Here, κ ensures that the changes δδδn do not exceed the current abundances and prevents
negative abundances. To determine the factor, SESAM initially regards

max
1≤i≤N

{
−δni
ni

}
with ni ≥ 0. (4.14)

Only if the maximum of this ratio is lower than one, which means that the changes in the
abundances are always positive, a full correction of the species amounts is applied by setting
κ = 1 in Eq. 4.13. In all other cases, δδδn is reduced by setting κ = 0.99/max(−δni/ni)
to avoid negative species abundances. Afterwards, the step-size parameter ω must be
determined. Since finding G is a minimisation problem, ω has to be chosen so that G
diminishes with each iteration step m:

G
(
n(m) + ω(m)δδδn(m)

)
< G

(
n(m)

)
. (4.15)

Applying the descent method approach, this condition is met when δδδn(m) satisfies(
dG

dω(m)

)
ω(m)=0

≡
N∑
i=1

(
∂G

∂ni

)
n(m)

δn
(m)
i < 0, (4.16)

unless ∂G/∂n = 0. The derivative dG/dω can be obtained by means of Eq. 3.11 and δδδn
from Eq. 4.13:

dG
dω =

N∑
i=1

µiδni. (4.17)

To find the suitable value of ω that minimises the Gibbs function(
dG
dω

)
ω=1

=
N∑
i=1

(
∂G

∂ni

)
ω=1

δn
(m)
i (4.18)

is calculated. If the resulting value is positive, ω will be reduced by

ω(m) = (dG/dω)ω=0

(dG/dω)ω=0 − (dG/dω)ω=1
(4.19)

because a positive dG/dω means that a minimum in G has already been exceeded by
the applied quantity of ω, assuming the Gibbs function as a parabolic function of ω. If
Eq. 4.18 is equal to zero or negative, SESAM continues the calculation of the changes in
the species abundances using ω = 1 in Eq. 4.11, since G is not yet minimised by ω and
the full correction by δδδn is needed. Once the new species abundances are determined, the
convergence criterion

max
1≤i≤N

∣∣∣∣∣δn
(m)
i

n
(m)
i

∣∣∣∣∣ ≤ ε with ε = 1 · 10−8 (4.20)
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is checked and if fulfilled, SESAM’s iterative method is considered terminated and the
equilibrium composition is found. Otherwise the code repeats the calculation of the b,
µi,∆Gj, δξj and ω using the latest species abundances until convergence is achieved.

4.1.2 Treatment of condensed species and ions

Condensed species

Liquids and solids form in high-pressure and low-temperature environments where a
high number of collisions takes place. These conditions can typically be found in the
photospheres of ultra-cool dwarfs and stars.
In SESAM, condensed species can be treated as single species phases, which means that a
solid or liquid phase contains only exactly one species. There are no equilibrium effects
within one condensed phase but each condensed species is in equilibrium with the gaseous
phase. This represents the condition that the liquids and solids do not always mix with
each other. Instead, they are spread in the system and do not bond together into large
lumps. Figuratively speaking, this corresponds to many little crumbs (or fine droplets,
respectively) floating in the gas.
Due to these considerations, disparities from Sec. 4.1.1 occur, regarding the handling of
condensed species, following Smith and Missen (1982). First of all, the species must be
separated in the respective phases α, to consider them as being in the gaseous, liquid,
solid, or single species phase. During each iteration, single species phases may be deleted
or included in the main calculation, depending if an introduction increases or, respectively,
decreases the Gibbs function. Therefore, it is necessary to consider them as non-component
species and not as component species because components must be non-zero to successfully
form the non-components.
For the calculation of the chemical potentials (Eq. 3.19), the mole fractions xi must
be considered as being phase-dependent: xi,α = ni,α/nt,α. A single species phase has
consequently xi,α = 1, resulting in µi = µ∗i (T, P ). The condition for it to be present or
absent in the chemical composition replaces Eq. 3.36 and is given by

∂G

∂ni
≡ ∂G

∂ξj
= µ∗i +

M∑
k=1

νkjµk = 0 with j ∈ {1, 2, ..., R}; i ∈ {1, 2, ..., N}, (4.21)

for ni > 0, i.e. for the presence of the single species phase, and

∂G

∂ni
≡ ∂G

∂ξj
= µ∗i +

M∑
k=1

νkjµk > 0 with j ∈ {1, 2, ..., R}; i ∈ {1, 2, ..., N}, (4.22)

for its absence, ni = 0. The µ∗i represents the standard chemical potential of the respective
condensed species (Eq. 4.4), which is determined from the NIST-JANAF Thermochemical
Tables, analogously to the µ∗i of the gaseous species.

This approach of single species phases is not as physically realistic as the detailed dust
treatment in PHOENIX’ DRIFT-module (Dehn, 2007, based on the dust model code of
Helling et al. 2008) where the complex processes of nucleation, growth, evaporation, and
motions of dust grains are taken into account. DRIFT solves the rate equations of these
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processes, thus, it is slower than SESAM, which relies on the energy minimization method.
However, as a simple approximation of chemical equilibria containing condensed species in a
gaseous environment, SESAM’s approach is substantially more accurate than the one of the
currently used EOS in PHOENIX, ACES, which assumes a multi-species condensed matter
phase (see Sec. 4.2). ACES does not treat liquids and solids separately and, consequently,
they are all clumped together. This situation is not very realistic in atmospheres because
condensed species are mainly widely dispersed instead of forming one single lump.

Ions

As mentioned in Sec. 2.2.1, at sufficiently high gas temperatures, particles ionise and
the released free electrons eventually interact with other free electrons, bound electrons,
and nuclei. In SESAM, the resulting plasmas are treated ideally. This is an appropriate
approximation in environments where the Coulomb collisions are negligibly small. While
this assumption is valid in stellar photospheres, for rarefied environments, e.g., the corona,
or for the very dense atmospheres of degenerated objects like white dwarfs and neutron
stars, the plasma should be treated non-ideally.
To take the charge-balance constraint into account, the formula matrix A includes an
additional row for each species, specifying if the respective species is neutral or if it has
an excess or deficiency of electrons relative to the neutral species. This way, charge
conservation is always satisfied in the stoichiometric procedure.

4.1.3 Convergence behaviour
In SESAM, the chemical equilibrium problem is considered as solved when all species
fulfil the convergence criterion in Eq. 4.20. Figure 4.2 displays the respective changes
|δn(m)

i /n
(m)
i | during the iterative process of four arbitrary temperature and pressure points

representing typical stellar environments.

• The 1500 K, 5 · 10−5 Pa condition can be found in the upper photospheric layers
of M-dwarfs, i.e., at an optical depth τstd (will be defined in Sec. 4.2) of around
1·10−10. The atmosphere is dominated by molecules and neutral species. The positive
values in the figure are caused by an overestimate of the initial abundances of a few
condensed species: these values are eventually strongly reduced and convergence is
achieved.

• A T - and P -point at τstd = 1 · 10−4 of a F-dwarf is symbolised by the 4000 K
and 55 Pa point. Here, fewer molecules and more ions are present in equilibrium
compared to the 1500 K case.

• In the deeper photospheric layers, at optical depths of 16, the F-star features high-
temperature, high-pressure environments, represented by the 10000 K and 7000 Pa
point. The respective chemical composition contains mostly ions and neutral atoms.

• The fourth case has a temperature of 25000 K and a pressure of 3000 Pa. This
condition can be found deep in the photospheres at around τstd = 100 in A-dwarfs.
Mostly ions and neutral species are present in these high-temperature environments.
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Figure 4.2: SESAM’s convergence behaviour of four typical T - and P -points in stellar models.
The changes |δn(m)

i /n
(m)
i | as function of the iterations m are plotted for each individual species i

(black lines). The blue line at 1 · 10−8 marks the threshold of which the iterative process is
considered terminated (Eq. 4.20).
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In the first iteration, SESAM takes the guessed species abundances and corrects them
during the next iterations. Once the chemical composition is close to the equilibrium one,
the correction of the species abundances are steadily decreasing until they are considered
to be converged (for instance, from iteration 20 to 26 in the 10000 K case). This particular
smooth behaviour can be seen in each plot of Fig. 4.2.
Furthermore, the results are stable and do not change if the number of iterations is
artificially increased, which is presented in Fig. 4.3, taking the 4000 K and 55 Pa test case
as example. In this figure, the changes |δn(m)

i /n
(m)
i | for all 747 species i are plotted from

iteration m = 100 to 106. The maximum changes are ∼ 10−16, being significantly lower
than the relative error due to the machine precision and certainly much lower than the
errors of the thermodynamic data.
SESAM shows a straightforward convergence behaviour. The species abundances do not
change significantly after they were considered converged, which is an indispensable criterion
for reliable and trustworthy solutions. Especially with a look for overall convergence of
an atmosphere with potential feedback on the EOS once combined with the radiative
transfer or hydrodynamic modules. Stable and unambiguous results limit a potential
destabilisation of such feedback loops to a minimum.
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Figure 4.3: Same as the 4000 K and 55 Pa test case in Fig. 4.2, but the |δn(m)
i /n

(m)
i | are plotted

up to 1 million SESAM iterations. The plot starts with the 100th iteration to show the changes
|δn(m)

i /n
(m)
i | of an already converged system.

4.2 The atmosphere model code PHOENIX
PHOENIX is a general-purpose atmosphere code, calculating the atmospheric structure and
spectrum of different stars and star-like objects including, for instance, main-sequence stars,
supernovae, novae, white dwarfs, brown dwarfs, giants, Jovian planets, and even disks. In
order to accomplish this, lots of computational time is required, which is substantially
reduced by simplifying approximations and a high parallelisation of the code. Depending

30



4 Methods: The atmosphere model code and its new EOS module

on the objects under investigation, PHOENIX uses different physical conditions, e.g., the
expanding supernovae atmospheres are treated dynamically, while it is in many cases
physically sufficient to consider main-sequence stars statically. Next to the one-dimensional
computation, the code is capable to calculate three-dimensional radiative transfer. The
validation of the newly included EOS module SESAM has been specifically done for
time-independent model atmospheres, using the thermodynamic approximations LTE and
NLTE (Chapter 5). Accordingly, the following description of the PHOENIX code focuses
on this configuration.

The models feature spherical symmetry. Each atmosphere computed in this thesis is divided
in 64 concentric shells, also referred to as layers. Discrete values of physical quantities
are considered for each layer, for instance, the temperature, gas pressure, density, and
moments of the radiation field. The atmospheric layers are defined by a standard optical
depth grid, τstd. It is calculated for the continuum at a standard wavelength λstd with
λstd = 1.2 µm for cool models und λstd = 500 nm for hot models. The standard optical
depth for the first layer, τstd,1, is zero, and it is logarithmically spaced between the second
and 64th layer with τstd,2 = 10−10 and τstd,64 = 100.

Iterative method

After specifying the model stellar parameters like, e.g., the mass, effective temperature,
radius and element abundances, PHOENIX typically imports an atmosphere for nearby
stellar parameters as starting point.
Supplied with the initial atmospheric temperature profile, the pressure profile, the element
abundances, and a list of species, the currently used EOS ACES solves the chemical
equilibrium problem based on the VCS method (Smith and Missen, 1982). This is done
for each T -and P -point. ACES uses the partial pressures from pre-computed partial
pressure tables as initial species abundances for the equilibrium determination. Due to the
limitation of table sizes and numbers, it is not expedient to store all T - and P -points that
may occur during a model calculation. For this reason, ACES will pick the abundances of
the T -and P -point as close as possible to the actual temperature and pressure required
for the demanded equilibrium. In contrast to SESAM, ACES takes only the chemical
potentials for molecules from the polynomial data (Eqs. 4.3 and 4.4). The atomic data
for neutral atoms, condensed species, and ions are calculated from the LTE and NLTE
partition functions (Eqs. 2.16 and 2.21) provided by PHOENIX. This ensures consistency of
the NLTE line data with the NLTE level data. During the ACES-iterations, trace species
with moles lower than 1 · 10−34 are skipped and arbitrarily set to 1 · 10−26 mol. Solids and
liquids are treated with the approach of a multi-species condensed matter phase where
equilibrium effect are present in the condensed phases. ACES does not distinguish between
solids and liquids. In other words, all solids and liquids are formed together into one single
lump.
Based on the computation of the altitude-depending chemical compositions, PHOENIX
obtains the gas pressures in the next step. Assuming that radiation and convective motions
are not significantly affecting the gas pressure, the pressure profile is calculated from the
integration of the hydrostatic equation

dP
dr = −ρ(r)g (4.23)
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where the radius r defines the radial distance to the stellar centre, g is the surface gravity,
and ρ is the density.
If convection is included in the model set-up, PHOENIX applies the mixing-length theory
(Böhm-Vitense, 1958). For each τstd, the temperature gradient is compared to the adiabatic
gradient and layers are assumed to be convective if the condition expressed in Eq. 2.1 is
met.
To decrease the computational time of the line opacities, PHOENIX selects dynamically
the appropriate atomic and molecular line opacities from databases (e.g. the Kurucz
atomic line data: Kurucz and Bell, 2011). This means that LTE lines are included in
the calculation if their absorption coefficient κline is greater or equal a certain threshold,
which is typically set to 10−4 · κcont at selected reference depth points, with the continuous
absorption coefficient κcont = κbf + κff . These coefficients from the bound-free and free-free
transitions are highly dependent on the chemical composition. PHOENIX assumes the
depth-dependent profiles of these lines to be either Voigt or, for weak lines, Doppler
profiles.
Rate equations and the radiative transfer equation are solved iteratively until a stable
solution is found. A detailed description of the full iterative scheme can be found in, e.g.,
Hauschildt (1993); Hauschildt and Baron (1999). Considering static atmospheres, radiative
equilibrium must be satisfied in the radiative zones, stating that the flux is conserved
in each optical depth. The local gas temperatures are corrected so that this condition
is locally fulfilled. For this purpose, PHOENIX uses the modified Unsöld-Lucy method,
described in Hauschildt et al. (2003). Only when the temperature correction is sufficiently
small in each layer, the atmospheric structure is in radiative equilibrium and the model is
considered physically consistent. Otherwise, the new atmospheric temperature and density
structures may serve as reasonable starting values for a new PHOENIX run with slightly
different parameters.

4.3 Modifications and settings for the synergy of SE-
SAM with PHOENIX

For the inclusion of the stand-alone SESAM code as a module in PHOENIX, modifications
were done in order to use this new EOS. It is now possible to adopt SESAM by simply
picking one PHOENIX input parameter. No further settings must be done by the user.
To determine the opacities of the atmospheres, PHOENIX demands the respective equi-
librium compositions for numerous different temperature and pressure points. SESAM
provides this by applying the constraints of constant (T, P ). For this purpose, the module
receives the element abundances from PHOENIX, the list of species considered to be
relevant, and the current T - and P -point as input data for the EOS. After solving the
chemical equilibrium problem, SESAM hands over the mole fractions of all species to
PHOENIX.
Furthermore, SESAM’s source of the chemical potentials had to be modified and, for a
better comparability with ACES, minor species should be treated identically in the two
modules. Both issues are discussed below.
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Chemical potentials for LTE and NLTE species

As discussed above in Sec. 4.2 and 4.1, both EOS’s determine the chemical potentials µi of
the ith species by means of the polynomial data (Eqs. 4.3 and 4.4), whereas ACES applies
them only for molecules. To ensure consistency of the NLTE line data with the NLTE
level data, ACES’ values for the neutral atoms, condensed species, and ions are provided
by the PHOENIX generalised partition functions (Eqs. 2.16 and 2.21). Consequently, the
two different approaches will generate µi that deviate from each other. This is true for
several species. For instance, Fig. 4.4 displays the differences for neutral barium and
singly-ionised barium: at temperatures below 2000 K, the partition functions provide in
both cases higher chemical potentials than the polynomial data, which means the species
will more likely react with other species.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

100 500 2000 10000

0
20

0
40

0
60

0

Ba I

temperature in K

ch
em

ic
al

 p
ot

en
tia

l i
n 

J/
m

ol

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

partition fct.

polynomial

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

100 500 2000 10000

0
40

0
80

0
12

00

Ba II

temperature in K

ch
em

ic
al

 p
ot

en
tia

l i
n 

J/
m

ol

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

partition fct.

polynomial

Figure 4.4: The chemical potentials for Ba i (left panel) and Ba ii (right panel). Red values
are based on polynomial thermodynamic data and black values on the partition function, as
implemented in PHOENIX.

Due to the fact that the µi crucially affect the equilibrium compositions, the two EOS’s
eventually produce different opacities and the respective spectra will deviate from each
other. This is emphasized in the following exemplary atmosphere of a Teff = 3000 K star,
calculated with the help of SESAM. Because most polynomials cover temperatures from
200 K to 6000 K for molecules, and from 200 K to 20000 K for neutral atoms and ions,
the low effective temperature model guarantees a high number of µi being calculated
from the polynomial data. SESAM was modified in a way that this data were used for all
species if provided, otherwise the chemical potentials from the partition functions were
taken. Afterwards, this model was compared with an atmosphere where SESAM took
all chemical potentials (except for the molecules) from the PHOENIX partition functions.
Consequently, the resulting fluxes deviate from each other, as displayed in Fig. 4.5. In this
figure, spikes represent differences in the lines. This occurs predominantly in the spectral
lines of various neutral elements and ions, which chemical potentials deviate, respectively,
regarding the two kinds of data sources. For example, particularly noticeable are the
lines at 455.5 nm, 614.3 nm, 1130.3 nm, and 1500.4 nm where the first two belong to Ba
ii and the latter two to Ba i. A closer look (Figs. 4.6 and 4.7) reveals that there is less
absorption when the chemical potentials are taken from partitions functions compared
to polynomial data. This is in agreement with both Ba i and Ba ii: the µi of the
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4 Methods: The atmosphere model code and its new EOS module

Figure 4.5: Percentage deviation of a spectrum, using the chemical potentials based on the
polynomial thermodynamic data, from a spectrum with the chemical potentials determined by
the partition functions. Both models represent the same M-dwarf of Teff = 3000 K and log(g) = 4
and were calculated by applying SESAM.

polynomial data is at any temperature considered in this model higher than the µi from
the partition functions, consequently, the species reacts more likely and is less abundant
in the equilibrium composition. Therefore, the differences in the µi of the Ba i and Ba ii
directly impact the opacities: spectral lines that involve these species show less absorption
when only values from the partition functions were applied, compared to the polynomial
data.
Thus, for the determination of accurate spectra, one essential requirement is to carefully
select the respective data sources for the chemical potentials. To provide consistency
within PHOENIX considering the NLTE data, SESAM was modified so that the µi of the
neutral atoms, ions and condensed species are directly taken from the PHOENIX partition
functions. The application of the molecular polynomial data according to Eqs. 4.3 and 4.4
is unchanged.

Minor species

During the iteration process of the EOS, the species abundances are modified according
to Eq. 4.11 until the minimum of the Gibbs function is found. If the emerging species
amounts are low, the corresponding step-size parameter ω also has to be low to serve
the non-negativity constraint (Eq. 3.4). This decelerates the calculation time for finding
the suitable G (Smith and Missen, 1982). However, it can be avoided by excluding the
minor species from the equilibrium calculation as it is done in ACES with species that have
abundances of less than 10−34 mol. In ACES, these skipped minor species are generally set
to 10−26 mol. Due to the conservation of mass constraint (Eq. 3.2), the amount of these
minor species may reach a critical quantity, so that this could affect the other species
abundances. SESAM, on the contrary, does not exclude any species and consequently
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Figure 4.6: Sections of the spectra of the model from Fig. 4.5. The red lines represent the case
where the chemical potentials are based on polynomial data, the black lines the case where they
are determined by the partition functions. Deviations are visible in the Ba i lines at 1130.6 nm
and 1500.4 nm.
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Figure 4.7: Sections of the spectra of the model from Fig. 4.5. The red lines represent the case
where the chemical potentials are based on polynomial data, the black lines the case where they
are determined by the partition functions. Deviations are visible in the Ba ii lines at 455.5 nm
and 614.3 nm.
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uses the respective determined abundances. For a better comparison of the two modules,
skipping of minor species and overwriting of abundances are disabled in ACES throughout
the calculations.
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5 Results: Testing the new EOS module

Chapter 5

Results: Testing the new EOS
module

SESAM is a well tested EOS, reliably calculating accurate equilibrium compositions, as
shown and summarised in Sec. 4.1. It has been included in the model atmosphere code
PHOENIX and the interplay between both codes is investigated in this chapter. A direct
comparison with ACES, the currently used EOS in PHOENIX, displays the differences
between them.

A measurable quantity in this context is the atmospheric pressure, calculated by PHOENIX
utilising SESAM’s and ACES’ equilibrium abundances. The agreement of the respective
pressure profiles is examined in detail in Sec. 5.1 for nine different models along with
a convergence analysis of the atmosphere structure. Furthermore, also the radiative
fluxes must be identical for all wavelengths if both EOS’s provide the same equilibrium
compositions, which is tested in Sec. 5.2.

A solution of the EOS is fully defined by the temperature and pressure point, the element
abundances and the species considered to be relevant in the calculation. Both SESAM
and ACES use initial species abundances to improve their convergence speed. Indispens-
able condition for reliability is the independence of the equilibrium compositions from
these initial estimates, though. Section 5.3 deals with the sensitivity of the EOS codes’
convergence with respect to variations of these abundances.

In Sec. 5.4, the test models are complemented by atmospheres involving convection, species
in non-local thermodynamic equilibrium, and sub-solar metallicities, all including a direct
comparison between SESAM and ACES.

During each PHOENIX iteration, the EOS is called more than a thousand times, while
in the multi-dimensional configuration, PHOENIX/3D, it is called even millions of times.
Consequently, the slower an EOS, the more computationally expensive is the calculation
of a model atmosphere. In this context, SESAM’s performance was measured and corre-
sponding tests are presented in Sec. 5.5.

The term chemical abundance refers to the amount of the species expressed in moles,
as calculated by the EOS’s. Chemical concentration refers to the number of particles
per cm−3, which is determined by PHOENIX.
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5.1 Atmospheric temperature and pressure structure
As described in Sec. 4.2, PHOENIX determines the pressure structure of a model atmo-
sphere by solving the hydrostatic equation (Eq. 4.23), resulting in discrete pressure values
for each atmospheric layer. Provided with the respective temperatures and the element
abundances, the EOS computes the equilibrium composition. PHOENIX uses the results
from the EOS to calculate the opacities, which in turn affect the intensities and eventually
the spectrum and the radiative flux. The EOS is, therefore, a determining factor for the
construction of the model atmosphere during this iterative process.

The PHOENIX code simulates atmospheres that entail a wide range of different physical
conditions. From molecule-rich environments at low effective temperatures, to plasmas
at high effective temperatures, SESAM must determine the respective chemical equilibria
reliably and physically consistently. This is investigated by calculating atmospheres of
stars with effective temperatures of 3000 K, 6000 K, and 10000 K as important test cases.
This is combined with varied surface gravities log(g) of 3, 4, and 5 to sample a wide stripe
in the Hertzsprung-Russell diagram in order to study the interplay between SESAM and
PHOENIX. All nine models were calculated using SESAM and ACES. To provide a better
comparison, convective motions where not taken into account excluding their influence on
the results. Furthermore, minor species were explicitly included in the consideration. The
starting models were taken from the library of PHOENIX stellar atmospheres calculated by
Husser et al. (2013). The starting and calculated models have identical stellar parameters
effective temperature, surface gravity, metallicity, and mass.

The choice of the EOS affects the number of iterations that PHOENIX needed to converge,
with a slight advantage on the side of SESAM: all models combined needed 613 iterations
with ACES and 608 iterations with SESAM.
Figure 5.1 shows the changes in temperatures between PHOENIX iterations for each at-
mospheric layer and iteration utilising SESAM. The first layer refers to an optical depth
τstd,1 = 0 and the last layer, i.e. the 64th layer, to τstd,64 = 100 (see Sec. 4.2). This plot
displays the same convergence behaviour for all nine models tested, irrespective of whether
SESAM or ACES were used. The temperature changes are typically quickly decreasing
without any strong fluctuations between the PHOENIX iterations, indicating a very good
and straightforward convergence of PHOENIX and consistent with other error measure-
ments. Only the temperature changes in the upper layers have a tiny decreasing trend.
This region converges slower due the complexity of the environment: the temperatures
and densities are lower than in the rest of the photosphere. This low-opacity environment
complicates the radiative transfer problem, allowing only small correction steps between
the PHOENIX iterations.

In Figs. 5.2 - 5.10, the pressure profiles of the nine models with effective temperatures of
3000 K, 6000 K and 10000 K, all with a log(g) of 3, 4, and 5, are plotted, displaying the
changes in pressures for each atmospheric layer with each iteration during the PHOENIX
run. To enhance the clarity of the plots, red areas represent negative pressure changes,
and blue areas positive ones.

In all nine models, SESAM produces a particularly smooth behaviour without significant
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5 Results: Testing the new EOS module

Figure 5.1: Changes in temperature between the ith iteration of PHOENIX, Ti, and the previous
iteration, Ti−1, for each atmospheric layer and each PHOENIX iteration. The left panel is the
reduced scale of the full-scale representation on the right side, using identical axes. These plots
show the model with Teff = 6000 K and log(g) = 4, calculated by the means of SESAM. The
other cases discussed in Sec. 5.1 present the same convergence behaviour, regardless whether
SESAM or ACES were applied.
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Figure 5.2: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 3000 K and
log(g) = 3 model. The left panels are the reduced scale of the full-scale representations on the
right side, using identical axes. SESAM and ACES were applied for the top and bottom panel,
respectively.
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Figure 5.3: Same as in Fig. 5.2 but for a Teff = 3000 K and log(g) = 4 model.
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Figure 5.4: Same as in Fig. 5.2 but for a Teff = 3000 K and log(g) = 5 model.
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Figure 5.5: Same as in Fig. 5.2 but for a Teff = 6000 K and log(g) = 3 model.
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Figure 5.6: Same as in Fig. 5.2 but for a Teff = 6000 K and log(g) = 4 model.
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Figure 5.7: Same as in Fig. 5.2 but for a Teff = 6000 K and log(g) = 5 model.
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Figure 5.8: Same as in Fig. 5.2 but for a Teff = 10000 K and log(g) = 3 model.
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Figure 5.9: Same as in Fig. 5.2 but for a Teff = 10000 K and log(g) = 4 model.
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Figure 5.10: Same as in Fig. 5.2 but for a Teff = 10000 K and log(g) = 5 model.
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pressure variations within the atmosphere from one PHOENIX iteration to another. This
demonstrates that it reliably finds stable solutions for slight variations in the respective
temperature and pressure points.
Considering ACES, the situation is different: in the six atmospheres with effective tem-
peratures of 3000 K and 6000 K, ACES causes fluctuations in the pressures between the
PHOENIX iterations. These jumps in the pressure changes are located in the lower single-
digit percentage range and do not affect the global T - and P -profiles of the converged
models.
A possible reason is the existence of not negligible variations in the ACES equilibrium
compositions within neighbouring temperature and pressure points, indicating a non proper
convergence. In the tested models, this was particularly caused by the consideration of trace
species in ACES’ iterative process. A general exclusion of minor species with abundances
below 1 · 10−34 mol, as described in Sec. 4.3, results in pressure changes similar to the
smooth behaviours from SESAM. The respective ACES plots can be found in the appendix,
Figs. 1 - 9. Consequently, SESAM produces more reliable trace abundances than ACES.
This affects primarily the cooler models due to the complex chemistry caused by the large
number of molecules present. Because the element abundances are always conserved, a high
number of trace species can, therefore, influence the abundances of the other species. This
is the reason why the 10000 K ACES models do not show any strong pressure fluctuations:
mostly ions and neutral elements are present in the atmosphere, which simplifies the
chemistry and makes the treatment of molecules almost negligible.
It can be seen in the 3000 K models in Figs. 5.2 - 5.4 that the upper atmospheric layers
do not yet show a convergence considering the pressure structures (whereas PHOENIX
stops due to temperature convergence). As mentioned above, these low-density regions
involve more complicated physics than the lower, hotter layers, prolonging the convergence
process. The effect is independent of the EOS utilised and furthermore a general problem
of the simulations.

Figure 5.11 compares the T - and P -profiles of the converged PHOENIX models with
Teff = 3000 K and log(g) = 3 where SESAM and ACES were used. For all optical depths,
the respective temperatures and pressures are in good agreement with each other. The
exclusion of trace species in ACES produces even more consistent results of both EOS’s.
The maximum temperature and pressure deviations are ∼ 0.1 % and ∼ 1 %, respectively,
located around the 15st layer, indicating that the strongest differences between the chemical
compositions of the two EOS’s occur here.
This can be seen in Fig. 5.12, where the deviations in the relative concentrations of the three
most abundant species atomic hydrogen, helium, and molecular hydrogen are displayed.
In this case, the T -profile is mainly affected by deviations in the H concentrations of
SESAM and ACES. In the model where ACES skipped the trace species, the H values are
in all layers in a better agreement with each other compared to the model where ACES
takes all trace species into account. Consequently, the temperature deviations are smaller
throughout the atmosphere.
However, this influence does not work in only one direction, it is rather a constant in-
terplay between the atmospheric temperatures and the chemical abundances during the
PHOENIX iterations. The initially assumed temperatures result in corresponding chemical
equilibria, which, in turn, influence the temperature corrections at the end of the PHOENIX
iteration. New temperature values cause new chemical equilibria and so on until the
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Figure 5.11: Percentage deviations in the final temperature (left) and pressure (right) profiles
between SESAM and ACES for the model with Teff = 3000 K and log(g) = 3. In blue are
the deviations between the codes when ACES takes trace species into account; in red are the
deviations when ACES excludes them.
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Figure 5.12: Percentage deviations of the relative concentrations (in ppm) of the three most
abundant species H, He, and H2 between SESAM and ACES of the same model of Fig. 5.11. In
the left panel, ACES took trace species into account; in the right panel, ACES skipped the trace
species.
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model is considered converged. EOS’s that calculate slight differences in the equilibrium
abundances will, therefore, let the model converge to a different atmospheric equilibrium.
The decisive quantity in this connection is the temperature and not the pressure: due to
the considerable dependence of the chemical potentials on the temperature (see Sec. 3.3),
the equilibrium composition and, consequently, the opacities are strongly affected. The
pressure, however, is only marginally influencing the chemical abundances (Eq. 3.19).

Figures 5.13 - 5.20 present the differences in the T - and P -profiles of the remaining
eight models, which show only minor deviations from each other in all optical depths.
Except for the Teff = 3000 K and log(g) = 4 model, the exclusion of trace species in ACES
results in even better agreements between both EOS’s. The differences in the equilibrium
compositions between SESAM and ACES are, therefore, sufficiently low to not significantly
affect the temperature and pressure profiles.
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Figure 5.13: Same as in Fig 5.11 but for a Teff = 3000 K and log(g) = 4 model.
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Figure 5.14: Same as in Fig 5.11 but for a Teff = 3000 K and log(g) = 5 model.
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Figure 5.15: Same as in Fig 5.11 but for a Teff = 6000 K and log(g) = 3 model.
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Figure 5.16: Same as in Fig 5.11 but for a Teff = 6000 K and log(g) = 4 model.
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Figure 5.17: Same as in Fig 5.11 but for a Teff = 6000 K and log(g) = 5 model.
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Figure 5.18: Same as in Fig 5.11 but for a Teff = 10000 K and log(g) = 3 model.
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Figure 5.19: Same as in Fig 5.11 but for a Teff = 10000 K and log(g) = 4 model.
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Figure 5.20: Same as in Fig 5.11 but for a Teff = 10000 K and log(g) = 5 model.
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5.2 Spectrum
PHOENIX is a radiative transfer focused code, which produces as central result the
spectrum of the simulated star. The EOS is in this regard crucial for the simulations.
Each spectral line depends on the opacities of individual species and, therefore, on the
chemical abundances in the atmosphere. In this section, the spectra of the nine models
in Sec. 5.1 are discussed. Each model was calculated with the help of SESAM and ACES,
taking minor species into account. The deviations between the fluxes fλ were determined
according to 1− fλ,SESAM/fλ,ACES for all wavelengths λ from 1 nm to 5 · 104 nm.
Figure 5.21 shows the discrepancies between three exemplary fluxes of models with effective
temperatures of 3000 K, 6000 K, and 10000 K with a log(g) = 4. The log(g) of 3 and
5 cases show similar behaviours compared to the log(g) = 4 models. The spikes are
corresponding to differences in the spectral lines.
A full list of all nine model spectra is presented in Table 5.1. To quantify the deviations,
the absolute values of 1− fλ,SESAM/fλ,ACES were integrated and normalised on the following
wavelength intervals: the ultraviolet (1 nm - 380 nm), optical (380 nm - 780 nm), near-
infrared (780 nm - 3 µm), and mid-infrared (3 µm - 50 µm) ranges.

model: deviation in percentage:
Teff log(g) UV optical NIR MIR

3000 K 3 6.5 3.7 · 10−1 8.8 · 10−2 6.0 · 10−2

3000 K 4 3.8 · 10−1 2.7 · 10−1 8.5 · 10−2 1.0 · 10−2

3000 K 5 3.1 · 10−1 6.5 · 10−2 5.5 · 10−2 2.2 · 10−2

6000 K 3 8.1 · 10−2 3.2 · 10−3 1.2 · 10−3 1.6 · 10−3

6000 K 4 4.9 · 10−2 1.8 · 10−3 4.6 · 10−4 5.7 · 10−4

6000 K 5 5.8 · 10−1 6.9 · 10−2 1.4 · 10−2 7.7 · 10−3

10000 K 3 2.6 · 10−1 9.3 · 10−4 1.1 · 10−3 1.1 · 10−3

10000 K 4 3.0 · 10−1 3.4 · 10−4 6.2 · 10−4 8.9 · 10−4

10000 K 5 1.0 · 10−1 1.0 · 10−3 1.3 · 10−3 3.4 · 10−3

Table 5.1: Absolute values of the percentage deviations between the spectra of the models
where either SESAM or ACES were used, normalised on the ultraviolet (1 nm - 380 nm), optical
(380 nm - 780 nm), near-infrared (780 nm - 3 µm), and mid-infrared (3 µm - 50 µm) wavelength
intervals.

For the 3000 K and 6000 K models, the largest deviations in the fλ occur in the ultraviolet
and optical wavelengths, indicating that the equilibrium composition of neutral and ionised
atoms, and molecules of the two EOS’s are differing from each other. The smallest
deviations are found in the near- and mid-infrared where the differences between SESAM-
and ACES-based lines are weaker and the continuum is dominating the spectrum. The
respective opacities of the species are in a better agreement with each other there. Exception
from this are the Teff = 10000 K models: here, the best match is located in the optical.
The opacity in low effective temperature objects is dominated by neutral atoms and
especially molecules. Differences amongst the EOS’s are more pronounced in the 3000 K
model than in the solar-like 6000 K model. Except for the log(g) = 5 model, this effect
arises for all other tested surface gravities over all wavelengths: at 3000 K, the deviations
are ranging from 6.5 % to ∼ 10−2 %, and at 6000 K from ∼ 10−1 % to ∼ 10−4 %. With
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Figure 5.21: Flux deviations between the application of SESAM and ACES on the respective
model atmosphere flux spectra.
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increasing effective temperature, the strength of molecular lines decreases and ionisation
emerges. For 10000 K, mostly ions and neutral atomic species are affecting the flux. Here,
the deviations are ranging from ∼ 10−1 % to ∼ 10−4 %.
Although the application of the two EOS’s causes differences in the final fluxes, the
compared spectra deviate only marginally from each other.

5.3 Initial species abundances

The system, for which the EOS modules ACES and SESAM determine the equilibrium
composition, is completely defined by temperature, pressure, element abundances and a
list of species. Both EOS’s are guessing initial abundances for the species to accelerate
their iterative processes. ACES uses pre-computed partial pressure tables (Sec. 4.2),
whereby SESAM calculates them on the fly via a simplex method (Sec. 4.1). In all cases,
the equilibrium composition must be independent from the values of the initial species
abundances. This is an indispensable condition for a reasonable EOS. Therefore, a model
atmosphere, calculated with variations in these guessed abundances, should never differ
regarding the atmospheric temperature and pressure profiles and the flux.
To investigate this, the model with Teff = 6000 K and log(g) = 4 was recalculated with
ACES but, this time, using partial pressure tables of a sub-solar metallicity of −2. Un-
changed is the assumption that the atmosphere contains solar element abundances, i.e.,
[M/H] = 0. Consequently, ACES estimates initial abundances that deviate stronger
from the equilibrium ones than in the original test case where a table with solar species
abundances was used. At first, all trace species are taken into account.
As a result, PHOENIX reached temperature convergence even faster than previously, namely
within 57 iterations instead of 60. However, the final pressure profiles are not identical.
The changes in pressures of the model with [M/H] = −2 are presented in Fig. 5.22,
which differ to the one with solar abundances (Fig. 5.6). The pressure fluctuations are
particularly significant between layer 13 and 43 and occur until the last PHOENIX iteration,
making a stable solution of the atmospheric pressure profile questionable. The figure
demonstrates the influence of inconsistently calculated trace species on the atmospheric
pressure structures. Compared to the upper layers, the lower regions are warmer and
less molecules contribute to the total opacity. In the higher, cooler layers, molecules are
more likely abundant. Here, the interplay between the abundant molecules and the trace
molecules has a significant impact on the resulting equilibrium abundances due to the
conservation of element abundances. This manifests in the pressure fluctuations between
layer 13 and 43. In fact, a direct comparison between the two converged ACES models,
based on [M/H] = 0 and [M/H] = −2 partial pressure tables, shows deviations in these
layers (see Fig. 5.23). An application of other partial pressure tables with metallicities of
-1 and -3 show similar results.

The situation is different when ACES uses the table of [M/H] = 1. This model had not
converged after 160 PHOENIX iterations. An eventual convergence could not be expected.
This can be seen in Fig. 5.24: the profile of the changes in temperature shows an oscillation
across all layers until the end of iteration 160. It contrasts with the original model,
calculated with the [M/H] = 0 table, where convergence was achieved within 60 iterations.
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Figure 5.22: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 6000 K and
log(g) = 4 model with solar element abundances but using the partial pressure table with a
metallicity of −2 as starting species abundances for ACES. The left panel is the reduced scale of
the full-scale representation on the right side, using identical axes.
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Figure 5.23: The final atmospheric pressure profiles of two converged models of a star with
Teff = 6000 K, log(g) = 4 and solar element abundances. Both atmospheres are calculated
using ACES but different partial pressure tables to generate initial guesses (of [M/H] = 0 and
[M/H] = −2) are applied. The right panel represents the area within the blue box in the left
panel.
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5 Results: Testing the new EOS module

Figure 5.24: Changes in temperature between the ith iteration of PHOENIX, Ti, and the previous
iteration, Ti−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 6000 K and
log(g) = 4 model with solar element abundances but using the partial pressure table with a
metallicity of [M/H] = 1 as initial species abundances for ACES. The left panel is the reduced
scale of the full-scale representation on the right side, using identical axes.

ACES’ sensitivity considering the initial species abundances strongly indicates the existence
of pseudo-convergence. If this occurs in the close proximity of the true physical equilibrium
composition, instabilities in the solution will arise. This explains, for instance, the almost
periodical changes in temperatures during the PHOENIX iterative process (Fig. 5.24).
The model alternates between an increase and a decrease in temperatures, i.e., from an
atmosphere with a lack in energy to one with an excess in energy. There is no trend towards
a conservation of energy and, directly coupled with this, a reduction of the temperature
correction at the end of each iteration. PHOENIX tries to approach the solution of a
converged model one time from a too high temperature and the other time from a too
low temperature, oscillating around the physical solution. However, in both cases, the
EOS results may vary slightly more than they physically would, causing a permanent
overcorrection of the temperatures.

These issues are in particular an effect of the inclusion of minor species in the equilibrium
problem. It demonstrates ACES’ difficulties in constructing a reliable stoichiometric matrix
when many trace species are taken into account, making the solution depending on the
initial species abundances. Like in Sec. 5.1, a recalculation with ACES, but excluding the
trace species from the closer consideration, influences significantly the behaviour of the
simulations: no pressure fluctuations are present in the models where sub-solar metallicity
tables were applied (Fig. 10 in the appendix), and the model with the [M/H] = 1 table
converges straightforwardly after 60 PHOENIX iterations. In these cases, there is no affect
of the initial species abundances on the equilibrium compositions.
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Figure 5.25: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 6000 K and
log(g) = 4 model with solar abundances, calculated with the help of SESAM and initial species
abundances in accordance with [M/H] = −40. The left panel is the reduced scale of the full-scale
representation on the right side, using identical axes. These plots are exemplary: all models show
identical results, independently whether metallicities of −40,−20,−2, 0, 1, 20, or 40 were applied.

The problems mentioned above do not arise when SESAM is used: the application of
a partial pressure table is not required because it calculates initial abundances on the
fly and, moreover and of particular importance, the determined equilibrium is always
insensitive to the quality of these initial abundances. This can be shown under similar
conditions compared to the ACES tests presented above. In order to realise this, SESAM
was modified to determine the initial species values from the element abundances of
arbitrary metallicities. However, the basic assumption of solar element abundances in
the further calculation was unchanged. Not only the previous samples with [M/H] of
−2, 0, and 1 were tested but also non-physical metallicities of −40,−20, 20, and 40 were
considered to test SESAM’s robustness.
In each of these six cases, PHOENIX converged within 60 iterations. Furthermore, all
models show exactly the same particular smooth behaviours regarding the changes in
pressure (Fig. 5.25) and temperature (equal convergence behaviour as presented in Fig. 5.1).
The resulting pressure profiles of the model atmospheres are identical across the sampled
optical depth.
Consequently, and in contrast to ACES, SESAM’s equilibrium compositions are not affected
by the initial species abundances. They merely serve their one purpose within SESAM: an
acceleration of the calculation time. How strongly the quality of the initial abundances
influence the total number of SESAM iterations, required for one exemplary PHOENIX
iteration, is shown in Fig. 5.26. For each test case, one additional PHOENIX iteration
was calculated on top of a converged model with Teff = 6000 K, log(g) = 4, and solar
element abundances. The initial abundances were varied by modifying the metallicities
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assumed for SESAM’s initial estimate, using nine different values from [M/H] = −40 to
[M/H] = 40. The plot displays the sum of the SESAM iterations required to determine
the respective equilibrium compositions for all T - and P -points occurring during the
PHOENIX iteration. In each case, PHOENIX executed the EOS 1154 times. Also presented
in Fig. 5.26 is the mean number of SESAM iterations per each EOS call. For the negative
metallicities of −20,−30, and −40, all metals are assumed to be present only in small
traces, namely, the respective element abundances are below 1 · 10−24 mol when applying
[M/H] = −20 and below 1 · 10−44 mol for [M/H] = −40. This essentially complicates
the equilibrium determination because the initial abundances are deviating strongly from
the equilibrium state, prolonging SESAM’s iterative process. The situation is different
for the positive metallicities: the initial species are significantly more abundant and,
consequently, the equilibrium problem is more constrained and the solution can be found
more straightforwardly. Regarding the continuously low total (and mean) number of
iterations for all positive metallicities, SESAM handles initial species abundances that
are above the equilibrium abundances without loosing any efficiency in calculating the
equilibria. Even with [M/H] = −10, the number of iterations compared to the [M/H] = 0
case does not increase.
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Figure 5.26: Total number and mean number of SESAM iterations for one PHOENIX iteration
of the same model with Teff = 6000 K, log(g) = 4, and solar element abundances. Nine different
element metallicities were considered for the initial estimate of the species abundances. In each
case, PHOENIX called the EOS 1154 times.
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5.4 Further model atmospheres

Sub-solar metallicity

In contrast to the previous atmospheres tested, now, a metal-poor star with a sub-solar
metallicity of [M/H] = −2 was modelled instead of assuming solar element abundances.
The object has Teff = 3000 K and log(g) = 4 and was calculated by the means of SESAM
and ACES. This low effective temperature was chosen to ensure a complex system with
a particular contribution of molecules and neutral elements to the opacities. By using a
partial pressure table of [M/H] = −2, ACES was provided the best possible initial species
abundances. As usual, SESAM determined these abundances on the fly by applying a
simplex method.

With SESAM, PHOENIX converged after 90 iterations, and with ACES after 91. The final
atmospheric pressure profiles differ only slightly from each other with a maximum deviation
of 0.3 % (right panel in Fig. 5.27). However, a closer look to the changes in pressure during
the PHOENIX iterative process in Fig. 5.28 reveals a significant difference between the two
EOS’s: like in all previously cases tested, SESAM shows a smooth behaviour throughout
all PHOENIX iterations and optical depths, whereby ACES causes strong fluctuations of
the changes in pressure from one iteration to the next. These jumps occur even until the
model converged, which makes a stable solution uncertain. As in the previous test cases,
this is caused by inconsistently calculated trace species. A recalculation of the model,
but with minor species skipped, does not show these pressure fluctuations (Fig. 11 in the
appendix).
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Figure 5.27: Percentage deviations in the final temperature (left) and pressure (right) profiles
between SESAM and ACES for a model with Teff = 3000 K, log(g) = 4, and [M/H] = −2. In
blue are the deviations between the codes when ACES takes trace species into account; in red are
the deviations when ACES excludes them.

A good agreement between the two EOS’s is found in the atmospheric temperature profile:
the maximum deviation of all optical depths is −6 · 10−2 % around layer 44 (Fig. 5.27),
regardless whether ACES skipped or included trace species in the calculation. A comparison
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5 Results: Testing the new EOS module

Figure 5.28: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 3000 K and
log(g) = 4 model with [M/H] = −2. The left panels are the reduced scale of the full-scale
representations on the right side, using identical axes. SESAM and ACES were applied for the
top and bottom panels, respectively.
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of the relative concentrations of three most abundant species atomic hydrogen, helium,
and molecular hydrogen in Fig. 5.29 shows the direct correlation of the deviations in the
hydrogen concentrations between SESAM and ACES to the deviation in the T -profiles.
Considering the changes in temperature after each PHOENIX iteration for all optical depths,
both EOS’s are producing a straightforward convergence without any strong fluctuations.
The deviations of the respective spectra are 7.0 · 10−1 % in the ultraviolet, 1.8 · 10−1 % in
the optical, 9.2 · 10−2 % in the near-infrared, and 3.0 · 10−2 % mid-infrared spectral ranges.
With respect to the spectrum, the difference between SESAM and ACES is irrelevant.
Nevertheless, the deviations in the UV, NIR, and MIR are somewhat greater than in the
model where a solar metallicity was assumed. This is due to the better agreement of
the final T - and P -profiles between SESAM and ACES: in the [M/H] = 0 model, their
maximum deviations are only 0.01 % and 0.1 %, respectively (Fig. 5.13). As described
in Sec. 5.1, the temperature values are decisive in this connection due to the significant
dependence of the chemical potentials on the temperatures.
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Figure 5.29: Percentage deviations of the relative concentrations (in ppm) of the three most
abundant species H, He, and H2 between SESAM and ACES of the same model of Fig. 5.27. In
the left panel, ACES took trace species into account; in the right panel, ACES skipped the trace
species.

Species in non-local thermodynamic equilibrium

The non-local thermodynamic equilibrium is an important state, as mentioned in Sec. 2.2.1.
Considering the EOS, the only relevant difference between LTE and NLTE are the chemical
potentials of the respective species provided by PHOENIX. The following test case is a star
with an effective temperature of 6000 K and a surface gravity log(g) of 4. Furthermore,
hydrogen and helium are present in NLTE.

The inclusion of SESAM brings about a straightforward convergence, analogously to Fig. 5.1.
There are only marginal changes in the pressures between each PHOENIX iteration for
all atmospheric layers, indicating a reliable final P -profile (Fig. 5.30). The application of
ACES causes strong pressure fluctuations during the whole iterative process, as displayed
in Fig. 5.30.
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Figure 5.30: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 6000 K and
log(g) = 4 model with solar abundances, assuming the species H and He being treated in NLTE.
The left panels are the reduced scale of the full-scale representations on the right side, using
identical axes. SESAM and ACES were applied for the top and bottom panels, respectively.
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Figure 5.31: Percentage deviations in the final temperature (left) and pressure (right) profiles
between SESAM and ACES for a model with Teff = 6000 K and log(g) = 4, assuming H and He
being treated in NLTE. In blue are the deviations between the codes when ACES takes trace
species into account; in red are the deviations when ACES excludes them.

Although the model is converged, the outer layers from 12 to 33 display instabilities
regarding the pressure values, namely at optical depths from τstd,12 = 8.6 · 10−9 to
τstd,33 = 1.0 · 10−4. Analogously to Fig. 5.22, the location of the fluctuations in Fig. 5.30
reveals that the inconsistently calculated minor species significantly influence the abundant
molecules and, therefore, the atmospheric pressures in these layers.
In fact, comparing the resulting final pressure profile of ACES with SESAM, the pressures
deviate mostly in these layers with ∼ 0.1 %. This is shown in Fig. 5.31, along with the
respective temperature profile.
The situation is different when ACES excludes trace species from the equilibrium problem:
the pressure fluctuations do not appear (Fig. 12 in the appendix) and the final P -profile
does not show any deviations from the one where SESAM was utilised.
The equilibrium abundances are in such a good agreement with each other that the
T -profiles show a maximum deviation of only ∼ 10−3 %. The deviations of the resulting
spectra are particularly low: 8.9 · 10−3 % in the UV, 1.7 · 10−4 % in the optical, 2.0 · 10−4 %
in the near-infrared, and 7.1 · 10−5 % in the mid-infrared.

Convection

Convective motions occur frequently in the lower photospheric layers of cool stars and
many giants. They arise around optical depths where the radiative gradient is greater than
the adiabatic gradient, as specified by the Schwarzschild criterion (Eq. 2.1). This condition
is implemented in PHOENIX and crucially derived from the EOS, which results provide
the chemical abundances for the opacities, required to determine the respective gradients.
This is highly temperature and pressure dependent. Consequently, small variations in
the T - and P -profiles can become decisive in certain layers for the emergence of stable
convective currents.
To test the influence of SESAM on the temperature and pressure profiles of PHOENIX,
the atmosphere of a M-dwarf with Teff = 3000 K and log(g) = 4 was modelled, taking
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convection into account.
As a result, the synthetic atmosphere achieves a steady and fast convergence after
19 PHOENIX iterations. This is presented in Fig. 5.32, along with a comparison for
ACES. Although the model with ACES was determined after the same number of iterations,
the T -profile during the PHOENIX iterative process is somewhat different: SESAM results
in stable and constantly decreasing changes in the temperatures whereas ACES causes
fluctuations between the 43th and 64th photospheric layers. Simultaneously, exactly this
region from τstd,43 = 8.6 · 10−3 down to τstd,64 = 100 marks the optical depths were convec-
tion occurs, according to the results of both EOS models. This shows a slightly unstable
behaviour of ACES in convective layers. It is caused by ACES’ inconsistent treatment
of trace species and it neither occurs when ACES excludes them from the equilibrium
problem (cf. Fig. 13 in the appendix), nor when SESAM is used.
Regarding the P -profiles, the application of SESAM shows in Fig. 5.33 in all optical depths
and after each PHOENIX iteration a particular smooth behaviour. ACES, on the other
hand, produces slight fluctuations in the pressures due to the consideration of trace species.
Nevertheless, comparing the final temperature and pressure values, the maximum deviations
are marginal, i.e., ∼ 10−2 % and ∼ 10−1 %, respectively (Fig. 5.34).
Figure 5.35 compares the deviations in the concentrations of the five most abundant
species in the atmosphere. The left panel reveals that differences in the T - and P -profiles
of layers 5 - 16 are directly related to significant deviations in the concentrations of water,
carbon monoxide and molecular hydrogen. An exclusion of trace species in ACES results
in basically the same T - and P -profiles as when SESAM is applied. Accordingly, the right
panel of Fig. 5.35 shows that the respective species deviations are only ∼ 10−3 %.
The peak in Fig. 5.34 around layer 43 cannot be associated with deviations in the five
most relevant species. It is located in exactly the layer where the convection starts.
This deviation in the T -profile does only occur when ACES includes trace species. It is
consequently related to ACES’ inconsistently calculated low-abundant species. The explicit
consideration of trace species results, therefore, in slightly different chemical equilibria
and, directly coupled with this, different opacities. The deviations are not sufficient to
significantly influence the radiative and adiabatic gradients because the utilisation of both
EOS’s produces the same convective layers. However, the opacities deviate from each other
enough to affect the respective temperatures throughout the atmosphere. This influences
the resulting spectra: the deviations are 3.3 · 10−1 % in the ultraviolet, 3.2 · 10−2 % in the
optical, 6.5·10−3 % in the near-infrared, and 3.0·10−3 % in the mid-infrared spectral ranges.

Notable is the fast convergence after only 19 PHOENIX iterations, compared to the test
case from Sec. 5.1 where 87 iteration were required. The reason for this is the pre-computed
atmosphere, the models relied on as a starting point. It was calculated taking convection
into account, whereas the models in Sec. 5.1 excluded the consideration of convective
motions. This exclusion prolongs the iterative process of PHOENIX because the model
eventually converges to a different result, deviating stronger from the starting atmosphere.
For instance, with increasing opacities, convective motions arise to transport the local
radiative energy from the inner part of the atmosphere to the outer part. A synthetic
atmosphere, which does not take this process into account, can easily result in considerably
hotter lower regions than an atmosphere where heat is transported through convection.
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Figure 5.32: Changes in temperatures between the ith iteration of PHOENIX, Ti, and the
previous iteration, Ti−1, for each atmospheric layer and each PHOENIX iteration of a Teff = 3000 K
and log(g) = 4 model with solar abundances and convection taken into account. The left panels
are the reduced scale of the full-scale representations on the right side, using identical axes.
SESAM and ACES were applied for the top and bottom panels, respectively.
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Figure 5.33: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration of the same model
atmosphere of Fig. 5.32. The left panels are the reduced scale of the full-scale representations
on the right side, using identical axes. SESAM and ACES were applied for the top and bottom
panels, respectively.
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Figure 5.34: Percentage deviations in the final temperature (left) and pressure (right) profiles
between SESAM and ACES for a model with Teff = 3000 K and log(g) = 4, including convective
motions. In blue are the deviations between the codes when ACES takes trace species into
account; in red are the deviations when ACES excludes them.
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Figure 5.35: Percentage deviations of the relative concentrations (in ppm) of the five most
abundant species H, He, H2, CO, and H2O between SESAM and ACES of the same model of
Fig. 5.34. In the left panel, ACES took trace species into account; in the right panel, ACES
skipped the trace species.
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5.5 Computational performance
It was shown above that SESAM’s inclusion in PHOENIX results in stable and reliable
solutions of the atmospheric profile for different stars, covering a great variety of physical
conditions. To quantify the computational time SESAM requires to determine the chemical
equilibria, performance tests were made and compared with ACES’ CPU times.
The read-in of the input parameter like the element abundances, the species list, the T -
and P -points, and the thermodynamic data were deliberately excluded from the timing. To
ensure an appropriate comparison between the different approaches considering the initially
guessed species abundances, SESAM’s on-the-fly initial estimates calculation and ACES’
import of the pre-computed partial pressure tables were included in the measurement.
Furthermore, minor species were explicitly taken into account.
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Figure 5.36: The left panel shows the mean number of all EOS iterations, averaging over
10 PHOENIX iterations for models with Teff of 3000 K, 6000 K, and 10000 K, all with log(g) = 4.
The mean CPU times the EOS needed to compute the chemical equilibrium compositions during
the 10 PHOENIX iterations are displayed in the right panel.

Figure 5.36 presents, in the left panel, the mean number of iterations that both EOS’s
needed to calculate the equilibrium compositions during 10 PHOENIX iterations of models
with effective temperatures of 3000 K, 6000 K, and 10000 K. SESAM finds the chemical
equilibria within significantly less iterations than ACES: on average 10 to 24 times fewer
were required. This shows SESAM’s remarkable efficiency regarding its convergence be-
haviour (cf. Fig. 4.2). The right panel of Fig. 5.36 displays the respective mean CPU
times, which the two EOS’s needed for determining the final compositions for 10 PHOENIX
iterations. Here, SESAM is 1.5 to 3.3 times slower than ACES. However, their performances
are still of the same order of magnitude. The higher the effective temperature, the faster
is SESAM: for 10 PHOENIX iterations of the 3000 K model, SESAM needed on average
0.3 s for solving the equilibrium problem, and it took only 0.1 s for the 10000 K model.
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The reason for this is the complexity of the respective chemical compositions. For each
PHOENIX iteration, equilibrium abundances are required for a broad range of temperatures
and pressures. For instance, the model of a Teff = 3000 K star includes temperatures from
1700 K to 8600 K and of a Teff = 10000 K star temperatures from 5500 K to 25000 K.
While only ionic and neutral atomic species are present at high temperatures, at low
temperatures, in addition, a vast number of molecules must be taken into account. This
affects especially the mean CPU times of the Teff = 3000 K model where the biggest
performance difference between the two EOS’s occurs.

Although PHOENIX executes the EOS module more than a thousand times during each
PHOENIX iteration, these small differences in CPU time between SESAM and ACES
are generally irrelevant. Within PHOENIX, major computational effort is spent on the
calculation of the opacities and the radiative transfer, due to fact that this is done for
an enormous number of wavelength points, usually between ∼ 105 and ∼ 106 points.
Regarding the total CPU time, which is required for a fully converged atmosphere, both
EOS’s account only a fraction of it. Since the calculation times of SESAM and ACES are
in the same order of magnitude, it can be stated that SESAM’s inclusion in PHOENIX
does not significantly increase the total CPU times of PHOENIX while providing reliable
results.
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Chapter 6

Conclusions and Outlook

Conclusions

The new EOS SESAM has been successfully implemented as a module in the atmosphere
modelling code PHOENIX. This work has created a basis for a substantial improvement of
the simulation of atmospheres with terrestrial conditions. Now, targeted development of
PHOENIX considering this field of application can proceed, building upon an EOS, which
can reliably determine detailed chemical compositions at low temperatures. Some of these
next steps will be discussed in the outlook below.

Tests considering the accuracy and reliability of SESAM with respect to specific tempera-
tures and pressures and the capability of handling complex systems have already been
performed by Meyer (2013). Therefore, the tests in Chapter 5 focused mainly on the
investigation of the general interplay of the EOS and the PHOENIX framework.
For this purpose, twelve stars were considered in total, which involved various different
physical conditions, varying from molecule-rich low-temperature atmospheres, to hot
environments where mostly ions and neutral atoms are present in the atmosphere. Different
surface gravities were chosen to imply a diversity in particle densities and extension of the
photosphere. Furthermore, stars with convective motions, species treated in NLTE, and
sub-solar chemical abundances were calculated.
In all the cases tested, the inclusion of SESAM resulted in a good and straightforward
convergence of PHOENIX without any significant temperature and pressure variations
between PHOENIX iterations for all optical depths. Furthermore, it was demonstrated
that SESAM finds stable chemical compositions for slight variations in the temperature
and pressure points.
To provide a direct comparison of SESAM with ACES, the currently used EOS in PHOENIX,
all models were recalculated, utilising ACES under similar configurations: both EOS’s were
using the same thermodynamic data and trace species were explicitly taken into account
at all time during the chemical equilibrium calculation. With exception to the hot models
with an effective temperature of 10000 K, the application of ACES resulted in considerable
pressure fluctuations between PHOENIX iterations. This effect is more pronounced in the
cooler atmospheric layers. It is, therefore, directly related to low-temperature environments
where the chemical composition is more complex with a high number of molecules. This
unstable behaviour of ACES is caused by the inclusion of trace species in the equilibrium
problem, indicating its difficulties in the construction of a reliable stoichiometric matrix in
these cases. When ACES was applied in its standard configuration where trace species are
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default to an arbitrarily chosen small value, the pressure fluctuations between PHOENIX
iterations did not occur.
As a consequence, the final atmospheric temperature and pressure structures and the
spectra of the respective converged models calculated with the two EOS’s deviate slightly
from each other. This can be directly related to deviations in the chemical compositions,
determined by SESAM and ACES, letting PHOENIX converge to a different atmospheric
equilibrium. Nevertheless, these deviations in the atmospheric temperature and pressure
profiles are located in the lower single-digit percentage range, indicating that both EOS’s
are in an overall sufficient agreement with each other.
A proper treatment of low-abundance species should not be underestimated: due to the
conservation of element abundances they still influence the other species’ abundances
and, in addition, they may contribute to the opacities in low-mass objects. Consequently,
SESAM, with its ability to handle even a high number of trace molecules, is in this regard
superior to ACES, which produces stable and reliable solutions only if trace species are
excluded from the equilibrium problem.
The two EOS’s are using initially guessed species abundances to accelerate their iterative
process: SESAM calculates them on the fly with a simplex method, whereby ACES uses
pre-computed partial pressure tables. It was shown that SESAM’s equilibrium composition
is independent from any value of the initial species abundances, providing in each case
a very robust convergence behaviour of the code. On the other hand, the equilibrium
composition determined by ACES relies on the starting abundances of the tables, making a
stable solution of ACES problematic. Indeed a convergence of the PHOENIX model could
have not been achieved in each case tested while using ACES. Again, this is an effect of
the trace species, explicitly included in the equilibrium problem for testing purposes.
SESAM’s inclusion of an initial estimate for the initial species abundances is an additional
advantage of SESAM from which PHOENIX can benefit: the calculation, storing, reading
in, and processing of pre-computed partial pressure tables are no longer necessary. In
particular in multi-dimensional computations, the computational time required to perform
the input and output operations for the partial pressure table can be saved. Furthermore,
models with a wide variety of element abundances can be computed easily and without
pre-computations of the respective partial pressure tables.

The computational performances of SESAM and ACES were measured. As a result, SESAM
required in general 10 to 24 times fewer iterations than ACES to find the equilibrium
composition, whereas ACES was 1.5 to 3.3 faster than SESAM. However, these differences
are only marginal, compared to the CPU-time that PHOENIX spends on the calculation of
the opacities and the radiative transfer.

Outlook

The overall positive interplay between PHOENIX and SESAM has been verified. The simula-
tions in this thesis did not involve effects such as dynamic environments, multi-dimensional
models, a high number of NLTE species, or the application of DRIFT. No deviation from
the very good convergence behaviour of PHOENIX demonstrated in Chapter 5 is expected
in these cases because the solution of the chemical equilibrium problem does not depend
on these configurations. For the sake of completeness, these tests should be carried out,
though. However, a direct comparison with ACES in such models is particularly interesting.
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For instance, PHOENIX has occasionally shown convergence problems when calculating
cool atmospheres using DRIFT. Stable equilibrium compositions for slight variations in the
temperature and pressure values are particular important in this context. The application
of SESAM might provide a better convergence of these models.

It has been shown that the spectra of models calculated with SESAM and ACES deviate
from each other, involving the lines of the neutral atoms, molecules, and ions. Considering
specifically the analysis of cool objects like, e.g., M-dwarfs, there are still issues in the
agreement between observed and synthetic spectra (e.g. Passegger et al., 2016). This
may be due to numerous factors: the accuracy of the thermodynamic data, the opacities,
and especially also the EOS, to name only a few. The fact that some spectral features
are different with SESAM could already provide a model improvement. This could be
evaluated by calculating a new PHOENIX model-grid with the application of SESAM and
the subsequent comparison with observed spectra.

The computational performance of SESAM can be improved by a general optimisation
of the code. Respective profiling tests may help in this context to analyse the run time.
In addition, a parallelisation of all loops over non-component species is possible. For
instance, the computation of the change of the reaction-extend variable δξj (Eq. 3.47)
can be processed independently and, therefore, these calculations can be broken down in
subtasks. However, a significant reduction of the CPU-time can be expected only when
the chemical equilibrium problem includes a high number of species.

In Sec. 3.1, it was discussed why the ideal gas law is a valid approximation in photospheres
of main-sequence stars. For a more accurate calculation of other objects, SESAM can
be adapted to the respective equations of state of non-ideal gases. There are numerous
equations of states developed, suitable for specific conditions or objects. For instance,
an improvement of the calculation of white dwarfs could be achieved by including a
degenerated equation of state. Regarding Earth-like atmospheric conditions, for regimes
with high pressures and low temperatures, the ideal gas approximation does not accurately
take into account phase-transitions. Furthermore, an appropriate expression of the chemical
potentials has to be chosen to consider influences of, e.g., the interactions between the
species. This can be done by means of the activity coefficients γi of species i, which
quantify the strength of the deviation from the ideal gas. By replacing Eq. 3.19 with

µnon-ideal
i = µ∗i (T, P ) +RT ln γi(T, P,x)xi, (6.1)

the chemical potentials are now complex functions of temperature, pressure and compo-
sition and can be determined if the experimental values of the activity coefficients are
provided.

With SESAM, PHOENIX has a new EOS, which is capable of finding the chemical compo-
sitions for low gas temperatures. The next step to significantly improve the accuracy of
the simulation of terrestrial conditions is to include relevant line data and opacities of the
chemical species in PHOENIX. However, regarding cool, low-mass objects like terrestrial
planets, there are several processes that lead to deviations from the chemical equilibrium
approximation. An overview of these processes is given in, e.g., Oswalt et al. (2013)
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and Pielke et al. (1998), and only a few of them are briefly highlighted here. Such a
chemical disequilibrium is given whenever radiative and hydrodynamic processes change
the local conditions faster than the chemical reactions adapt to them. Photochemistry,
e.g., photolysis and photo-catalysis, play an important role in low-density environments
with respect to collisional processes. For instance, convection can transport molecules from
deeper to upper atmospheric layers where they can be photo-dissociated by ultraviolet
radiation. The radiative properties of the atmospheres can be strongly influenced by,
e.g., dust grains, clouds formation, and the production of powerful greenhouse agents
like soot and other atmospheric particulates produced by fire, volcanoes and a living
vegetation. Electrical discharges temporarily affect the local chemical composition. Dust
grains, aerosols and ice can form in the atmosphere and settle down, which removes them
from the gas-phase equilibrium. However, they can be transported from one location
to another by convective motions or by local or global winds, making a replenishment
possible if they reach a temperature and pressure point where they evaporate. In addition,
erosive up-streams can transport particles of soft rock into the atmosphere. There are
further atmosphere-surface interactions: the temperature and pressure of the atmosphere
determine if liquids and ice form, which shape the surface by rivers, oceans, or glaciers.
In turn, these surface features influence the albedo of the planet, changing the radiative
properties of the atmosphere. Other disequilibrium effects are caused by the fact that
some chemical reactions proceed slower at low temperatures and low pressures like, for
instance, the conversion from CO to CH4 (Prinn and Barshay, 1977) making it necessary
to take the respective time-scales of the reactions into account.
A proper numerical treatment of these complex processes requires, along with a vast
number of measured and theoretical quantities, a time-dependent, multi-dimensional
approach, which will be processable by coming generations of super-computing facilities.
However, by means of simplifications and sufficiently low resolution, these processes can
be modelled already today with current computational frameworks like PHOENIX. For
instance, the inclusion of a modular disequilibrium treatment of selected species could
open up numerous possibilities for the simulations of terrestrial (and other) environments.
The disequilibrium processes mentioned above could be considered in a separate module
by solving appropriate rate equations, or by explicit calculations. This feature is not
implemented yet but could be realised as follows. First, PHOENIX provides SESAM the
temperature, gas pressure, element abundances, and lists of species, which should be treated
in equilibrium and in disequilibrium. Supplied with this input data, SESAM determines
the respective equilibrium composition as described in the iterative scheme in Sec. 4.1,
taking all species into account. If the abundances of the selected disequilibrium species are
below a certain threshold, these disequilibrium species are assumed to be irrelevant for the
disequilibrium processes, and the final equilibrium composition is found. However, if the
abundances of the disequilibrium species are bigger than this threshold, their abundances
are handed over to the module, which calculates their disequilibrium properties. The
disequilibrium species are removed from the gas-phase equilibrium and, in order to provide
the conservation of mass constraint for the equilibrium species, a new chemical equilibrium
is determined by SESAM but, this time, excluding the disequilibrium species from the
equilibrium problem. The resulting equilibrium composition of the equilibrium species
is the final one. Finally, the respective abundances of all species are transferred to the
PHOENIX main iteration.
As an alternative approach, the disequilibrium species can be considered as additional
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constraint in SESAM. After SESAM hands over the disequilibrium species to the respective
module, the module determines their disequilibrium properties and supplies SESAM with
their new abundances. Instead of recalculating the chemical equilibrium without these
species, they are treated as inert species in the recalculation. This provides a method to
explicitly include the disequilibrium species in the gas-phase equilibrium while keeping
their abundances fixed.
The level of detail for these procedures is limited only to the available computational
power. For instance, SESAM could easily supply a list of all condensed species at the
temperature-pressure locations to a climate module, making it possible for PHOENIX to
take the influence of the global atmospheric circulation into account.
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Appendix

ACES’ atmospheric pressure structures with trace species
skipped

Figure 1: Changes in pressure between the ith iteration of PHOENIX, Pi, and the previous
iteration, Pi−1, for each atmospheric layer and each PHOENIX iteration. The left panel is the
reduced scale of the full-scale representation on the right side, using identical axes. These plots
show the ACES model with Teff = 3000 K and log(g) = 3, analogous to Fig. 5.2 but with trace
species skipped.
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Figure 2: Same as in Fig. 1, but for a Teff = 3000 K and log(g) = 4 model, analogous to Fig. 5.3
but with trace species skipped.

Figure 3: Same as in Fig. 1, but for a Teff = 3000 K and log(g) = 5 model, analogous to Fig. 5.4
but with trace species skipped.
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Figure 4: Same as in Fig. 1, but for a Teff = 6000 K and log(g) = 3 model, analogous to Fig. 5.5
but with trace species skipped.

Figure 5: Same as in Fig. 1, but for a Teff = 6000 K and log(g) = 4 model, analogous to Fig. 5.6
but with trace species skipped.
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Figure 6: Same as in Fig. 1, but for a Teff = 6000 K and log(g) = 5 model, analogous to Fig. 5.7
but with trace species skipped.

Figure 7: Same as in Fig. 1, but for a Teff = 10000 K and log(g) = 3 model, analogous to
Fig. 5.8 but with trace species skipped.
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Figure 8: Same as in Fig. 1, but for a Teff = 10000 K and log(g) = 4 model, analogous to
Fig. 5.9 but with trace species skipped.

Figure 9: Same as in Fig. 1, but for a Teff = 10000 K and log(g) = 5 model, analogous to
Fig. 5.10 but with trace species skipped.
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Figure 10: Same as in Fig. 1, but for a Teff = 6000 K and log(g) = 4 model with solar element
abundances but using the partial pressure table with a metallicity of −2 as starting species
abundances, analogous to Fig. 5.22 but with trace species skipped.

Figure 11: Same as in Fig. 1, but for a Teff = 3000 K and log(g) = 4 model with [M/H] = −2,
analogous to Fig 5.28 but with trace species skipped.
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Figure 12: Same as in Fig. 1, but for a Teff = 6000 K and log(g) = 4 model with solar abun-
dances, assuming the species H and He being treated in NLTE, analogous to Fig. 5.30 but with
trace species skipped.

Figure 13: Same as in Fig. 1, but for a Teff = 3000 K and log(g) = 4 model with solar abundances
and convection taken into account, analogous to Fig. 5.33 but with trace species skipped.
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