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Summary

Bicategories play an important rôle in the classification of fully-extended two-dimensional
topological field theories. In order to describe topological field theories with more
geometric structure, one needs more structure on the algebraic side, which is given by
homotopy fixed points of a certain group action on a bicategory.

In the first chapter of this thesis, we develop the mathematical theory of group actions
on bicategories. By categorifying the notion of a group action on a set, we arrive at a
suitable definition of an action of a topological group on a bicategory. Given such an
action, we provide an explicit definition of the bicategory of homotopy fixed points. This
allows us to explicitly compute the bicategory of homotopy fixed points of certain group
actions. Two fundamental examples show that even homotopy fixed points of trivial group
actions give rise to additional structure: we show that a certain bigroupoid of semisimple
symmetric Frobenius algebras is equivalent to the bicategory of homotopy fixed points
of the trivial SO(2)-action on the core of fully-dualizable objects of the bicategory of
algebras, bimodules and intertwiners. Furthermore, we show that homotopy fixed points
of the trivial SO(2)-action on the bicategory of finite, linear categories are given by
Calabi-Yau categories.

The next chapter deals with an additional equivariant structure on a functor between
bicategories equipped with a group action. We show that such an equivariant functor
induces a functor on homotopy fixed points. As an application, we consider the 2-functor
which sends a finite-dimensional, semisimple algebra to its category of representations.
This functor has got a natural SO(2)-equivariant structure, and thus induces a functor on
homotopy fixed points. We show that this induced functor is pseudo-naturally isomorphic
to an equivalence between Frobenius algebras and Calabi-Yau categories which we have
constructed previously.

In the last two chapters, we classify fully-extended, 2-dimensional oriented topological
field theories. We begin by constructing a non-trivial SO(2)-action on the framed bordism
bicategory. The cobordism hypothesis for framed manifolds allows us to transport this
action to the core of fully-dualizable objects of the target bicategory. We show that this
action is given by the Serre automorphism and compute the bicategory of homotopy fixed
points of this action. Finally, we identify this bigroupoid of homotopy fixed points with
the bicategory of fully-extended oriented topological quantum field theory with values
in an arbitrary symmetric monoidal bicategory. This proves the cobordism hypothesis
for two-dimensional oriented cobordisms.
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Zusammenfassung

In der Klassifizierung von vollständig erweiterten zweidimensionalen topologischen Feld-
theorien spielen Bikategorien eine wichtige Rolle. Um topologische Feldtheorien mit zu-
sätzlicher geometrischer Struktur zu beschreiben, benötigt man zusätzliche algebraische
Struktur, die durch Homotopiefixpunkte einer Gruppenwirkung auf einer bestimmten
Bikategorie gegeben ist.

Im ersten Kapitel entwickeln wir einen mathematischen Formalismus zur Beschreibung
von Gruppenwirkungen auf Bikategorien. Gegeben die Wirkung einer topologischen
Gruppe auf einer Bikategorie, konstruieren wir explizit eine Bikategorie von Homoto-
piefixpunkten dieser Wirkung. Dieser Formalismus ermöglicht uns, Homotopiefixpunkte
von bestimmten Gruppenwirkungen explizit zu berechnen. Zwei fundamentale Beispiele
zeigen nun, dass sogar Homotopiefixpunkte von trivialen Gruppenwirkungen zusätzliche
Struktur sind: so ist die Bikategorie von endlichdimensionalen, halbeinfachen Frobeniu-
salgebren äquivalent zu der Bikategorie von Homotopiefixpunkten der trivialen SO(2)-
Wirkung auf der Bikategorie von vollständig dualisierbaren Algebren und Bimoduln.
Weiterhin zeigen wir, dass Homotopiefixpunkte der trivialen SO(2)-Wirkung auf der Bi-
kategorie von endlichen, linearen Kategorien äquivalent zur Bikategorie von Calabi-Yau
Kategorien sind.
Im nächsten Kapitel beschäftigen wir uns mit einer zusätzlichen äquivarianten Struk-

tur auf einem Funktor zwischen Bikategorien mit einer Gruppenwirkung. Wir zeigen,
dass solch ein äquivarianter Funktor zwischen zwei Bikategorien einen Funktor auf Ho-
motopiefixpunkten induziert. Als Anwendung betrachten wir den 2-Funktor, der einer
halbeinfachen Algebra ihre Darstellungskategorie zuweist. Dieser 2-Funktor hat eine
natürliche SO(2)-äquivariante Struktur, und induziert daher einen Funktor auf Homo-
topiefixpunkten. Sodann identifizieren wir diesen induzierten Funktor mit einer bereits
zuvor konstruierten Äquivalenz zwischen Frobeniusalgebren und Calabi-Yau Kategorien.
In den letzten beiden Kapiteln wenden wir uns der Klassifizierung von zweidimensio-

nalen, vollständig erweiterten, orientierten topologischen Quantenfeldtheorien zu: wir
konstruieren zunächst eine nicht-triviale SO(2)-Wirkung auf einem Skelett der Bika-
tegorie von gerahmten Bordismen. Die Kobordismushypothese für gerahmte Mannig-
faltigkeiten erlaubt uns, diese Wirkung auf den maximalen Untergruppoiden von voll-
ständig dualisierbaren Objekten der Zielkategorie zu transportieren. Wir zeigen, dass
diese SO(2)-Wirkung durch den Serre Automorphismus gegeben ist, und berechnen die
Bikategorie von Homotopiefixpunkten. Schlussendlich identifizieren wir diese Bikategorie
von Homotopiefixpunkten mit der Bikategorie von vollständig erweiterten, orientierten,
zweidimensionalen topologischen Feldtheorien mit Werten in einer symmetrisch monoida-
len Bikategorie. Dies beweist die Kobordismushypothese für zweidimensionale orientierte
Kobordismen.
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Introduction

This thesis investigates structures in 2-dimensional topological quantum field theories
and is based at the interface of algebra and topology.
Giving a precise definition of quantum field theory is a notoriously difficult problem

in mathematical physics. Historically, quantum field theory grew out of attempts to
reconcile relativistic field theory, like classical electrodynamics, with quantum mechanics.
Nowadays, there are essentially two main approaches for formalising quantum field
theories. One approach is given by the framework of algebraic quantum field theory:
here, axiomatic systems for quantum field theory were first developed by Wightman
in [SW64] and then further abstracted by Haag and Kastler in [HK64]. More recent
work of Brunetti, Fredenhagen and Verch in [BFV03] extends this approach to locally
covariant field theories. These axiomatic systems formalise the assignment of an algebra
of observables to certain patches of spacetime.
In this thesis, we use the second main approach for formalising quantum field theory,

which is given by functorial quantum field theory. This approach formalises the assign-
ment of a state space to patches of physical space and tries to axiomatize the output
of the Feynman path integral. One of the main examples of functorial quantum field
theories are given by topological quantum field theories as already considered in Witten’s
seminal paper [Wit89], which in physical terms should be imagined as quantum field
theories in which the correlation functions only depend on the topological features of
spacetime.
In order to turn this physical idea into mathematics, one employs the language of

category theory. A category is a two-layered mathematical structure, which has a class
of objects as one layer, and as a second layer a set of morphisms which act as “relations”
between the objects. A “map” between two categories is called a functor: it maps objects
and morphisms of the source category to objects and morphisms of the target category
in a structure preserving manner.

As defined by Atiyah in [Ati88] and Segal in [Seg04], a topological quantum field theory
is a functor between two categories, which is furthermore compatible with “cutting and
gluing”: the source category can be thought of as the category of spacetime, together with
all possible ways to “cut and glue” particular patches together. Objects of this category
are possible choices of “space”, while morphisms are given by choices of “spacetime”. A
topological quantum field theory then assigns a vector space of states to each object of
this category, and a linear operator to each morphism.

One drawback of Atiyah’s definition is that it is not fully local: the setup of spacetime
as an ordinary category only allows to “cut and glue” patches of space of codimension one.
In order to allow gluing for spaces of arbitrary codimensions, one uses higher categories.
A higher category is a multi-layered structure with additional layers of morphisms: these
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Introduction

can be thought of relations between relations between relations, and so on. One can then
try to define a higher categorical version of the category of spacetime, where cutting and
gluing is also possible for spaces of lower dimension. This higher categorical approach
allows us to define “fully local” topological field theories, which assign further algebraic
data to spaces of lower dimensions. Fully local field theories are actually easier to describe
than one might originally think: one expects from work of Lurie in [Lur09b] that framed,
fully local field theories are determined by a single datum, namely their value on a point.
In order to describe field theories on spacetimes with more geometric structure, one

needs more structure on the algebraic side. This structure is frequently given by homotopy
fixed points of a certain group acting on a higher category. While a fixed point of a
group G acting on a set X is just a point x of X, satisfying the equation g.x = x for all
group elements g in G, a homotopy fixed point of a group acting on a category consists
of more data. In the categorical setting, it is unreasonable to demand an equality of
objects on the nose. Instead, one demands the existence of an additional isomorphism
g.x→ x, which then has to satisfy appropriate coherence equations.
In section 2.2 of this thesis, we develop the theory of a group acting on a bicategory,

which is a higher category with three levels of information: objects, 1-morphisms, and
2-morphisms. We define a suitable generalization of a homotopy fixed point in the
bicategorical setting, and compute these homotopy fixed points for the action of the group
of rotations SO(2) on a bicategory in theorem 2.34. Finally, theorem 5.5 and 5.8 show
that these homotopy fixed points classify oriented, 2-dimensional topological quantum
field theories with an arbitrary symmetric monoidal target bicategory C. This extends
work of Schommer-Pries in [SP09], who classified fully-extended 2-dimensional oriented
field theories with values in the Morita bicategory in terms of separable, symmetric
Frobenius algebras.

Topological quantum field theories

As originally defined by Atiyah in [Ati88], an oriented n-dimensional topological quantum
field theory is a symmetric monoidal functor Z : Cobor

n → Vect. Here, Cobor
n is the

category of oriented cobordisms: objects of this category – previously referred to as space
– are given by closed, oriented (n− 1)-dimensional manifolds. Morphisms between two
(n−1)-manifoldsM and N are given by diffeomorphism classes of bordisms B, which are
n-dimensional oriented manifolds with parametrized boundary, satisfying ∂B ∼= M tN .
For instance, the bordism in figure 1 can be interpreted as a morphism S1 t S1 → S1

in the 2-dimensional oriented bordism category. Composition of bordisms is given by

Figure 1.: The “pair of pants” bordism
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“gluing” bordisms along a common boundary, which may require the choice of collars.
One reason explaining the original interest of mathematicians in topological field

theories is that they provide invariants of manifolds, which are well-behaved under
cutting and gluing. If M is an n-dimensional closed manifold, we may regard it as a
bordism from the empty (n− 1)-manifold to itself. Applying the functor Z then gives a
linear map Z(M) : Z(∅)→ Z(∅). Since Z is a monoidal functor, the vector space Z(∅)
is canonically isomorphic to the ground field K. Thus, we obtain a linear endomorphism
of the ground field, which is nothing else than a scalar. In physical terms, the scalar
Z(M) should be interpreted as the output of the Feynman path integral. This can be
made precise in topological field theories with finite gauge group as in Dijkgraaf-Witten
theories, where the path integral reduces to a finite sum, cf. [FQ93].
Furthermore, the monoidal functor Z implements two crucial properties the path

integral of a quantum field theory should have: locality and gluing properties. These
two properties can be understood as follows: suppose that M is a closed n-manifold
with a decomposition M ∼= M0 tN M1 of two other manifolds M0 and M1 along a closed
submanifold N of codimension one. Since our topological field theory Z is a symmetric
monoidal functor, the invariant Z(M) can be computed in terms of Z(M0), Z(M1) and
Z(N). Thus, we might imagine “cutting up” our manifold M into simple pieces and
computing Z(M) in terms of this decomposition.
Unfortunately, this method becomes more difficult as the dimension of M grows. If

M is of large dimension, it is generally not possible to simplify M much by cutting
along submanifolds of codimension one. Thus, describing bordism categories of high-
dimensional manifolds in terms of generators and relations becomes rather complicated,
cf. [Juh14]. What we would really like to do is to iteratively cut up M into submanifolds
of arbitrary codimension, and to recover the invariant Z(M) in terms of this more general
decomposition. This brings us to fully-extended or fully-local theories.
In order to deal with these theories one employs higher categories: one might try

to define an n-dimensional fully-extended topological field theory to be a symmetric
monoidal n-functor Z between an n-category of cobordisms and a suitable algebraic
target n-category. If this was possible, then Z would be determined by a very small
amount of data.

For instance, it is easy to see that a 1-dimensional topological field theory with values
in the category of vector spaces is fully determined by a finite-dimensional vector space,
which is given by evaluating the functor Z on a point. One might hope that this is true
in general, and that a fully-extended n-dimensional topological field theory is determined
by its value on a single point. Equivalently, one might be tempted to conjecture that the
n-category of bordisms is “freely generated by a point”. However, there are two more
crucial ingredients in the conjecture that we have neglected so far:

1. As 1-dimensional field theories with values in vector spaces are completely deter-
mined by a single finite-dimensional vector space, we should expect that fully-
extended field theories of higher dimensions with values in a higher category C are
classified by objects in C which have to obey suitable finiteness conditions. An
object satisfying these conditions is called fully-dualizable. A precise definition in
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Introduction

the bicategorical setting appears in section 4.1.

2. Experience with three dimensional topological field theories, as for instance con-
sidered in [RT91], has shown that it is beneficial to work with framed bordisms,
instead of oriented ones. These framed bordisms possess the additional structure
of a trivialization of the tangent bundle.

This brings us to the cobordism hypothesis as originally formulated by Baez and Dolan in
[BD95]. They conjecture that the n-dimensional framed bordism category is equivalent
to “the free stable weak n-category with duals on one object”, which implies that there is
a bijection between framed fully-extended topological quantum field theories with values
in a symmetric monoidal n-category C, and dualizable objects of C.
In order to prove this conjecture, one would have to define algebraic models of weak

n-categories. However even for n = 3, the definition of a tricategory as in [GPS95]
is rather unwieldy. In the 2-dimensional setting, the cobordism hypothesis for framed
manifolds is proven in [Pst14]: framed, fully-extended 2-dimensional topological field
theories with values in a symmetric monoidal bicategory C are classified by the core of
fully-dualizable objects of the target.

A more homotopical approach to higher categories is the language of (∞, n)-categories:
these are supposed to have a layer of k-morphism for every natural number k, which
are invertible in an appropriate sense if k > n. Using (∞, n)-categories, Lurie gives an
extensive sketch of a proof of the cobordism hypothesis in [Lur09b]. In this language,
the cobordism hypothesis for framed manifolds is formulated as an equivalence of (∞, 0)-
categories

Fun⊗(Cobfr
n , C) ∼= K (Cfd) (0.1)

between fully-extended n-dimensional C-valued framed topological field theories and the
core of fully-dualizable objects of the symmetric monoidal (∞, n)-category C.
In this thesis, we will avoid the language of (∞, n)-categories, and work with bi- and

tricategories, which are more algebraic in nature. This allows us to exhibit equivalences
as in equation (0.1) in two dimensions very explicitly. At the same time, we gain a
new perspective on classical algebraic structures such as symmetric Frobenius algebras.
These arise as homotopy fixed points of group actions on bicategories, which we discuss
next.

Group actions on higher categories

In order to extend the cobordism hypothesis for framed manifolds as in equation (0.1)
to manifolds with more geometric structure – say an orientation – we come to the
second main player of this thesis: group actions on higher categories. We begin with the
following observation: by definition, a framing on an n-manifold M is a trivialization
TM → Rn of its tangent bundle. By “rotating the framings”, we obtain an O(n)-action
on the set of all framings. Now, the action on the set of all framing should induce an
action on the higher category of framed bordisms. By precomposition, one obtains an
action on Fun⊗(Cobfr

n , C). Using the cobordism hypothesis for framed manifolds as in

x



equation (0.1) yields an O(n)-action on the groupoid of fully-dualizable objects. Since
the cobordism hypothesis for framed manifolds is not very explicitly available in the
language of (∞, n)-categories, the O(n)-action on the core of fully-dualizable objects is
also not directly given. In this thesis, we remedy the situation in the 2-dimensional case
by giving a very explicit definition of the action in question in the language of symmetric
monoidal bicategories.
Now, a relatively formal argument in the language of (∞, n)-categories proves the

cobordism hypothesis for oriented manifolds. According to [Lur09b], “reducing the
structure group” along the inclusion SO(n) ↪−→ O(n) shows that there is an equivalence
of (∞, 0)-categories

Fun⊗(Cobor
n , C) ∼= K (Cfd)SO(n) (0.2)

between C-valued oriented topological field theories, and homotopy fixed points of the
SO(n)-action on the core of fully-dualizable objects of the symmetric monoidal (∞, n)-
category C. Again, as this equivalence arises due to a formal argument, it is not very
explicitly available.
This thesis is concerned with making these statements explicit in the 2-dimensional

case, using the language of symmetric monoidal bicategories. First of all, we set the
stage by giving an explicit definition an action of a topological group on a bicategory
in section 2.2. Then, we turn to homotopy fixed points of such actions. We show as a
first main result in corollary 2.36 that homotopy fixed points of the trivial SO(2)-action
on the core of fully-dualizable objects of the Morita bicategory Alg2 are equivalent to
semisimple symmetric Frobenius algebras.
As a second main result, we define an SO(2)-action on an algebraic skeleton of the

framed bordism bicategory introduced by [Pst14] in chapter 4, and give an explicit
description of the bicategory of homotopy fixed points of the induced action on the core
of fully-dualizable objects of a symmetric monoidal bicategory C. Finally, we show in
section 5 that these homotopy fixed points classify C-valued 2-dimensional fully-extended
oriented topological field theories. In the following, we give a more detailed overview of
this thesis.

Frobenius algebras as homotopy fixed points

While fixed points of a group action on a set form an ordinary subset, homotopy fixed
points of a group action on a category as considered in [Kir02, EGNO15] provide addi-
tional structure.
In this thesis, we take one more step on the categorical ladder by considering group

actions on bicategories. Furthermore, we also consider topological groups: given a
topological group G, the fundamental 2-groupoid of G is a 3-group. We provide a
detailed definition of an action of this 3-group on an arbitrary bicategory C, and construct
the bicategory of homotopy fixed points CG of the action. Contrarily from the case of
ordinary fixed points of group actions on sets, the bicategory of homotopy fixed points
CG is strictly “larger” than the bicategory C. Hence, the usual fixed-point condition is
promoted from a property to a structure.
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Introduction

We begin by studying homotopy fixed points of the trivial SO(2)-action on the core
of fully-dualizable objects of Alg2, which is the bicategory of algebras, bimodules and
intertwiners. The reason for this is as follows: according to [Dav11, Proposition 3.2.8],
the induced action on the core of fully-dualizable objects of Alg2 which comes from
“rotating the framing” on the framed bordism bicategory is actually trivializable. Hence,
instead of considering the action coming from the framing, we may equivalently study
the trivial SO(2)-action on Algfd

2 . It is claimed in [FHLT10, Example 2.13] that the
additional structure of a homotopy fixed point of the action on K (Algfd

2 ) should be given
by the structure of a symmetric Frobenius algebra.
In order to prove that symmetric Frobenius algebras are homotopy fixed points of

the trivial SO(2)-action, we prove a more general result: the rather technical theorem
2.34 computes the bicategory of homotopy fixed points of an arbitrary SO(2)-action on
an arbitrary bicategory C. As a consequence, we obtain an explicit description of the
bicategory of homotopy fixed points of the trivial SO(2)-action in theorem 2.35. This
leads to the following theorem:

Theorem 1 (Corollary 2.36). Consider the trivial SO(2)-action on the core of fully-
dualizable objects of Alg2. Then, the bicategory of homotopy fixed points of this action is
equivalent to the bigroupoid Frob of semisimple symmetric Frobenius algebras:

K (Algfd
2 )SO(2) ∼= Frob . (0.3)

Thus, unlike fixed points of the trivial action on a set, homotopy fixed points of the
trivial SO(2)-action on K (Algfd

2 ) are actually interesting, and come equipped with the
additional structure of a symmetric Frobenius algebra. This theorem is a step towards
the cobordism hypothesis for oriented manifolds, since the bigroupoid Frob classifies
fully-extended, oriented 2-dimensional topological field theories with target Alg2 by work
of Schommer-Pries in [SP09].

Calabi-Yau categories and equivariant functors
In the second chapter of this thesis, we introduce Calabi-Yau categories as originally
considered in [MS06]. These are finite, linear categories which have a Frobenius algebra
structure on Hom-spaces. If Vect2 is the bicategory of linear abelian categories, linear
functors and natural transformations, we show the following algebraic result:

Theorem 2 (Corollary 3.12). Consider the trivial SO(2)-action on the core of fully-
dualizable objects of Vect2. Then, the bicategory of homotopy fixed points of this action
is equivalent to the bigroupoid CY of Calabi-Yau categories:

K (Vectfd
2 )SO(2) ∼= CY . (0.4)

The next part of this chapter deals with relating the two theorems above to each other.
By [BDSPV15, Appendix A], the weak 2-functor Rep : Algfd

2 → Vectfd
2 which sends a

separable algebra to its category of finitely-generated modules is an equivalence between
the fully-dualizable objects of the bicategories Alg2 and Vect2. We extend this result to
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Frobenius algebras and Calabi-Yau categories by showing that the category of finitely-
generated representations of a separable, symmetric Frobenius algebra carries a canonical
structure of a finite, semisimple Calabi-Yau category. The Calabi-Yau structure on the
representation category is given by the composite of the Hattori-Stallings trace with the
Frobenius form. This allows us to construct a 2-functor

Repfg : Frob→ CY (0.5)

between the bigroupoid of Frobenius algebras Frob, and the bigroupoid of Calabi-Yau
categories CY. We then show:

Theorem 3 (Theorem 3.37). The weak 2-functor Repfg : Frob→ CY is an equivalence
of bigroupoids.

We are now in the following situation: theorem 1, theorem 2 and theorem 3 give three
equivalences of bicategories in the following diagram:

K (Algfd
2 )SO(2) K (Vectfd

2 )SO(2)

Frob CY

?

Theorem 1 Theorem 2

Theorem 3

(0.6)

The question is now if there is a canonical arrow K (Algfd
2 )SO(2) → K (Vectfd

2 )SO(2) which
makes the diagram commute. In order to answer this question, we introduce the new
concept of a “G-equivariant structure” on a weak 2-functor F : C → D between two
bicategories endowed with the action of a topological group. We show that a 2-functor
with such aG-equivariant structure induces a 2-functor FG : CG → DG on homotopy fixed
point bicategories. As an application, we consider the trivial action of the topological
group SO(2) on the core of fully-dualizable objects of Alg2 and Vect2. Since the action is
trivial, the 2-functor sending an algebra to its category of representations has a canonical
SO(2)-equivariant structure. Thus, it induces a 2-functor

RepSO(2) : K (Algfd
2 )SO(2) → K (Vectfd

2 )SO(2) (0.7)

on homotopy fixed points. Our second result in this section shows that this induced
functor RepSO(2) fits into the diagram in equation (0.6). More precisely, we show the
following:

Theorem 4 (Theorem 3.41). Let Repfg : Frob→ CY be the equivalence of bigroupoids
constructed by hand in theorem 3.37, and let RepSO(2) be the weak 2-functor in equation
(0.7). Then, the diagram of weak 2-functors

(K (Algfd
2 ))SO(2) (K (Vectfd

2 ))SO(2)

Frob CY

RepSO(2)

∼ ∼

Repfg

(0.8)
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commutes up to a pseudo-natural isomorphism.

These results are related to topological quantum field theories as follows: the 2-
dimensional cobordism hypothesis for framed manifolds, which has been proven in the
language of symmetric monoidal bicategories in [Pst14], asserts that a framed, fully-
extended, 2-dimensional topological quantum field theory is classified by its value on
the positively framed point. However, one needs more data to classify oriented theories,
which is given by the datum of an homotopy fixed point of a certain SO(2)-action on
the target bicategory. We will prove this statement in chapter 5.
Hence, in the language of topological quantum field theory, the equivalence between

fully-dualizable objects of Alg2 and Vect2 as proven in [BDSPV15, Appendix A] shows
that framed 2-dimensional topological quantum field theories with target space Alg2 are
equivalent to field theories with target Vect2. Our results now imply that this equivalence
of framed theories with target spaces Alg2 and Vect2 extends to an equivalence of oriented
theories with target bicategories Alg2 and Vect2.

Calabi-Yau objects and the cobordism hypothesis for oriented manifolds
In chapter 4, we gather the ingredients for the proof of the cobordism hypothesis for
oriented manifolds in two dimensions, which will be proven in chapter 5.

We first clarify the situation on the algebraic side by giving a detailed description of the
SO(2)-action on the core of fully-dualizable objects of an arbitrary symmetric monoidal
bicategory C. This action is essentially given by the Serre automorphism: for each fully-
dualizable object X of C, the Serre-automorphism is a 1-morphism SX : X → X, which
corresponds in the setting of topological field theories to the generator of π1(SO(2)). We
show that the collection of these 1-morphisms are natural with respect to 1-equivalences
of C, and thus constitute a pseudo-natural endotransformation of the identity functor
on K (Cfd). Furthermore, this pseudo-natural transformation turns out to be monoidal.
This allows us to construct a monoidal SO(2)-action on the core of fully-dualizable
objects.
Next, we explicitly construct an SO(2)-action on a skeletal version of the framed

bordism bicategory. We use the description of this bicategory in terms of generators and
relations as given in [Pst14].
By the cobordism hypothesis for framed manifolds, which has been proven in the

setting of bicategories in [Pst14], there is an equivalence of bicategories

Fun⊗(Cobfr
2,1,0, C) ∼= K (Cfd). (0.9)

This equivalence allows us to transport the SO(2)-action on the framed bordism bicat-
egory to the core of fully-dualizable objects of C. We then prove in proposition 4.48
that this induced SO(2)-action on K (Cfd) is given precisely by the Serre automorphism.
This shows that the Serre automorphism has indeed a geometric origin, as expected from
[Lur09b].

In chapter 5, we prove the cobordism hypothesis for 2-dimensional, oriented manifolds.
In fact, we prove a slightly more general result: first of all, we define Calabi-Yau objects
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in an arbitrary symmetric monoidal bicategory C. These generalise both symmetric
Frobenius algebras and Calabi-Yau categories. In general, Calabi-Yau objects do not
need to be fully-dualizable. As a first result, we show:

Theorem 5 (Theorem 5.5). Let C be a symmetric monoidal bicategory. Consider the
SO(2)-action by the Serre automorphism on K (Cfd). Then, there is an equivalence of
bicategories

CY(Cfd) ∼= K (Cfd)SO(2) (0.10)

between the bicategory of fully-dualizable Calabi-Yau objects in C and the bicategory of
homotopy fixed points of the SO(2)-action on K (Cfd).

Conjecturally, non-fully-dualizable Calabi-Yau objects classify non-compact field theo-
ries, cf. [Lur09b]. However, we will not pursue non-compact theories in this thesis.

The second result in this chapter relates fully-dualizable Calabi-Yau objects to oriented
2-dimensional topological field theories. In [SP09], Schommer-Pries gives generators and
relations of the oriented bordism bicategory, and proves that oriented field theories with
target Alg2 are classified by the bigroupoid Frob of semisimple symmetric Frobenius
algebras. Using this presentation of the oriented bordism bicategory, we prove a stronger
theorem which classifies 2-dimensional topological field theories with arbitrary target:

Theorem 6 (Theorem 5.8). Let C be a symmetric monoidal bicategory. Then, there is
an equivalence

Fun⊗(Cobor
2,1,0, C) ∼= CY(Cfd) (0.11)

between fully-extended 2-dimensional C-valued oriented topological quantum field theories
and fully-dualizable Calabi-Yau objects in C.

Combining these two theorems with the results of the previous chapter yields the
cobordism hypothesis for oriented manifolds in dimension two:

Corollary (Corollary 5.9). Let C be a symmetric monoidal bicategory, and consider the
SO(2)-action on K (Cfd) by the Serre automorphism. Then, there is an equivalence of
bigroupoids

Fun⊗(Cobor
2,1,0, C) ∼= (K (Cfd))SO(2). (0.12)

Summarizing, the main results of this thesis are theorem 2.34 which allows us to
identify homotopy fixed points of the trivial SO(2)-action with semisimple symmetric
Frobenius algebras, together with theorems 5.5 and 5.8 which allow us to prove the
cobordism hypothesis for oriented, 2-dimensional manifolds.
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1. Preliminaries

In this chapter, we introduce the main players of the thesis. We begin by highlighting the
main features of symmetric monoidal bicategories. We then comment on fully-dualizable
objects in symmetric monoidal bicategories, and introduce the ideas underlying the
cobordism hypothesis for 2-dimensional manifolds. This chapter does not contain original
material and is meant to serve as a gentle introduction to the more technical parts of
the thesis. References for symmetric monoidal bicategories and fully-dualizable objects
in symmetric monoidal bicategories include [SP09], [Pst14]. The theory of group action
on categories already appeared in [Kir02] and is expanded in [EGNO15]. The section
concerning the cobordism hypothesis is based on [BD95] and [Lur09b].

1.1. Symmetric monoidal bicategories
We begin by introducing the necessary background of symmetric monoidal bicategories.
We assume familiarity with the definitions of a category, as well as functors and natural
transformations.

Recall that a braided monoidal category consist a category C, a functor ⊗ : C ×C → C,
together with a unit object 1C and natural isomorphisms

γX,Y : X ⊗ Y ∼−→ Y ⊗X called braiding,
aX,Y,Z : X ⊗ (Y ⊗ Z) ∼−→ (X ⊗ Y )⊗ Z called associator,

rX : X ⊗ 1C ∼−→ X called right unitor,
lX : X ∼−→ 1C ⊗X called left unitor

(1.1)

for each object X, Y and Z of C. The isomorphisms in equation (1.1) are then required
to fulfil certain coherence conditions. Schematically, these coherence conditions are given
by

• a pentagon axiom for the associators,

• two triangle diagrams for the unitors,

• another triangle axiom relating the braiding and the unitors,

• and two hexagon diagrams relating the braiding and the associators.

A braided monoidal category C is called symmetric if the braiding γX,Y additionally
fulfils the inverse law γY,X ◦ γX,Y = id. For complete definitions, see either [BK01] or
[Lan98]. The prime example of a symmetric monoidal category is the category of vector
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1. Preliminaries

spaces with the usual tensor product. Other examples include the category of sets where
natural choices of the monoidal product are either given by the disjoint union or by the
cartesian product. Furthermore, the category of cobordisms is symmetric monoidal with
respect to disjoint union.
One central result concerning monoidal categories is Mac Lanes’s coherence theorem

[Lan98], which states that every diagram in a monoidal category which is made up
of associators and unitors commutes automatically. Thus, every monoidal category is
equivalent to a strict monoidal category, where the associator and the unitors can be
taken to be identities. However, coherence for higher categories is more complicated:
we will see that although every bicategory is equivalent to a strict 2-category, not every
tricategory is equivalent to a strict 3-category.
We now step up the categorical ladder and give the data underlying a bicategory.

Informally speaking, a bicategory has an additional layer of morphisms. Instead of only
considering morphisms between objects (which will be called 1-morphisms), we introduce
additional morphisms between 1-morphisms, which will be called 2-morphisms. More
formally, a bicategory C consists of the following collection of data:

• a class of objects Ob(C),

• for each pair of objects X and Y of C, a category HomC(X,Y ) with identity object
idX . The objects of HomC(X,Y ) are called 1-morphisms of C, while the morphisms
of HomC(X,Y ) are called 2-morphisms of C.

• For each triple of objects X, Y , Z, a functor

cX,Y,Z : HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z)

called horizontal composition,

• a family of natural isomorphisms called associators, making composition associative
up to natural isomorphism,

• a family of natural isomorphisms called unitors, making the identity objects idX
neutral elements of the composition up to natural isomorphism.

The associators are then required to fulfil the pentagon identity, while there is the
usual triangle axiom for the unitors. Similarly to ordinary categories, one introduces to
notion of “functors” between bicategories. If C and D are bicategories, a weak 2-functor
F : C → D consists of the following data:

• a map F : Ob(C)→ Ob(D),

• a family of functors FX,Y : HomC(X,Y )→ HomD(FX,FY ) for each pair of objects
X and Y of C,

• a family of natural isomorphisms making the functor FX,Y compatible with the
(weak) associative law,

2



1.1. Symmetric monoidal bicategories

• a family of natural isomorphisms making the functor FX,X compatible with the
identities idX in a weak sense.

Furthermore, the existence of certain modifications is required, which act as higher
coherence cells between the natural transformation. Again, we will not spell out the
coherence conditions and refer to the fourth chapter of [Bén67] for a detailed definition.
We now raise up to the challenge of defining monoidal bicategories. By comparing

definitions, one realizes that a bicategory with one object is exactly a monoidal category.
Thus, we could have defined a monoidal category to be a bicategory with one object. This
also works in higher categorical dimensions: Schommer-Pries [SP09] defines a monoidal
bicategory to be a tricategory with one object, while monoidal tricategories are defined
to be quadcategories with one object in [Hof11]. Now, we need one more piece of data,
which is the braiding. Braided monoidal bicategories have already appeared in [McC00].

Let us spell out these definitions a bit more detail: as one would expect, a symmetric
monoidal bicategory consists of a bicategory C, together with a weak 2-functor ⊗ :
C × C → C, a unit object 1C and natural transformations similar to the isomorphisms in
equation (1.1). At this point, we observe an important feature which often turns up in
categorification: we will turn a property into a structure. Instead of requiring conditions
at the level of 1-morphisms as in the definition of a monoidal category, we have to provide
additional 2-cells which sit in the diagrams of 1-cells of the data in equation (1.1). This
additional data consists of seven modifications:

• a modification π inside the pentagon diagram for the coherence of associators,

• a modification λ in the triangle diagram for the left unitors,

• a modification ρ in the triangle diagram for the right unitors,

• a modification µ, making the left unitors compatible with the right unitors,

• two modifications R and S in the hexagon diagrams concerning the braiding,

• and an additional modification σ which weakens the inverse law of the symmetric
braiding.

For a detailed definition, we refer to [SP09, Definition 2.1]. Now, one has to come up
with the right coherence axioms for this data. A priori, it is not clear which axioms the
data of a symmetric monoidal bicategory, or equivalently the data of a tricategory with
one object, should satisfy. This problem gets more and more extreme as the categorical
dimension grows. While trying to work out a suitable definition of an ∞-groupoid,
Grothendieck wrote in a letter to Daniel Quillen:

Here one seems caught at first sight in an infinite chain of ever “higher”,
and presumably, messier structures, where one is going to get hopelessly lost,
unless one discovers some simple guiding principle for shedding some clarity
in the mess. ([Gro83])
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1. Preliminaries

At least for low categorical dimensions, the “simple guiding principle” Grothendieck
speaks about seems to be given by the polyhedra of Stasheff [Sta63]: these are a series
of polytopes whose vertices enumerate the way to parenthesize the tensor product of n
objects. Thus, they can be used as a guiding principle to come up with coherence axioms
related to associativity. For instance, in the case of tricategories, the associativity axiom
(HTA1) of [GPS95] is recognizable as algebraic incarnation of the Stasheff polytope K5
(picture taken from [Dev12]) as in figure 1.1. For a beautiful exposition including many
pictures, see [Sta16]. Work of Trimble [Tri95] which is expanded in [Hof11] explains
how the tricategorical conditions governing unitality can also be deduced from the
associahedra of Stasheff. This gives an ansatz for finding the appropriate coherence
conditions for tricategories, and thus for symmetric monoidal bicategories.

Figure 1.1.: The K5 associahedron of Stasheff

We now come to coherence for tricategories: unlike in the case for monoidal categories,
not every tricategory is equivalent to a strict 3-category. The coherence statement for
tricategories of [GPS95] states instead that every tricategory is triequivalent to a Gray-
category, which is a certain kind or semi-strict 3-category in which composition is strictly
associative and unital, but the interchange law only holds up to isomorphism. Thus, it
is unreasonable to expect that symmetric monoidal bicategories, which are by definition
tricategories with one object, can be completely strictified. However, due to work of
Schommer-Pries in [SP09], every symmetric monoidal bicategory can be strictified to
a “quasistrict” symmetric monoidal bicategory, in which most, but not all, coherence
data is trivial. This theorem allows us to introduce a graphical calculus for symmetric
monoidal bicategories as explained in [Bar14]. We will use this graphical calculus in
chapters 4 and 5, where we work with the framed cobordism bicategory.
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1.2. Fully-dualizable objects

1.2. Fully-dualizable objects
In order to motivate the notion of “fully-dualizable objects” which we will use in chapter
4, we begin by giving an exposition to duals in monoidal categories. This material is
well-known and rather standard, cf. [BK01] and [Pst14].

In chapter 4, we will generalize the discussion to symmetric monoidal bicategories.
Although the case of symmetric monoidal bicategories is more laborious due to the more
complicated coherence axioms, one of the main ideas already appears in the setting for
symmetric monoidal categories. Formulated as a slogan, one might say that “the space
of duality data is contractible”. By this, we mean that the choice of duality data for a
dualizable object in a symmetric monoidal category is unique up to unique isomorphism.
The bicategorical version of these statements will play an important role in the sequel.
Let us begin with the more basic version for duals in monoidal categories:

Definition 1.1. Let C be a symmetric monoidal category. A dual pair consists of an
object X, an object X∗ which we call the (left) dual of X, and two morphisms

evX : X ⊗X∗ → 1
coevX : 1→ X∗ ⊗X (1.2)

so that two triangle equations are satisfied. We call an object X of C which admits a
choice of dual pair dualizable.

One might wonder whether dualizability is a property or a structure. In order to
settle this question, we proceed as follows: it is not difficult to define the notion of a
morphism between dual pairs, and thus one arrives at the notion of a category of dual
pairs in a symmetric monoidal category C, which we shall denote by DualPair(C). By
[Pst14, Theorem 1.6], this category of duals pairs is actually a groupoid, and thus every
morphism between dual pairs is invertible. Furthermore, this groupoid is contractible:
the forgetful functor to the maximal subgroupoid K (Cd) of dualizable objects of C

DualPair(C)→ K (Cd)
(X,X∗, evX , coevX) 7→ X

(1.3)

is an equivalence of categories. Thus, the additional structure of a dual pair is “property-
like”: if an object is dualizable, every choice of additional duality data is equivalent.

In order to generalize this statement to bicategories, we need a suitable definition of a
dual pair in a symmetric monoidal bicategory. If C is a symmetric monoidal bicategory,
one defines a dual pair to consist of an object X of C, its dual X∗, two 1-morphisms as in
equation (1.2), and two additional 2-cells living in the usual triangle diagrams. However,
this naive definition of a dual pair in a symmetric monoidal bicategory does not satisfy
an analogous version of the above theorem. Therefore, one has to restrict to a suitable
class of dual pairs which satisfies additional coherence equations, cf. [Pst14, Section 2].
These dual pairs are called coherent. One then sets up a bicategory of coherent dual
pairs, and proves that this bicategory is actually a 2-groupoid, which is furthermore
contractible.
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We now come to the stronger condition of fully-dualizability: the idea is to put
additional conditions on the evaluation and coevaluation maps. It turns out that the
correct notion of fully-dualizability is to require the existence of all adjoints, meaning
that both evaluation and coevaluation have left- and right adjoints which in turn have
both adjoints of their on, and so on. In the bicategorical setting however, it is sufficient
to require the existence of a left- and right adjoint of the evaluation and coevaluation:
if these exist, the left- and right adjoints will have adjoints themselves automatically by
[Pst14, Theorem 3.9]. In this case, we call the collection of duality data, together with
the adjoints of the evaluation and the coevaluation a fully-dual pair. If an object X in a
symmetric monoidal bicategory can be completed into such a fully-dual pair, it is called
fully-dualizable. Again, one needs to restrict to coherent fully-dual pairs by requiring an
additional coherence equation to show that the groupoid of coherent fully-dual pairs is
contractible. These coherent fully-dual pair will feature as the bicategory Fcfd in chapter
4.

1.3. Group actions on bicategories
Next, we come to the concept of group actions on (bi)-categories. Recall that if X is
a set, and G is a group, a G-action on X is a group homomorphism ρ : G → Aut(X).
A fixed point of this G-action is an element x of X, satisfying g.x = x for all group
elements g of G.
Generalizing the definition of a G-action on a set appropriately leads to the following

definition: if C is a category, we denote by Aut(C) the category of auto-equivalences of
C. If C is a monoidal category, we write Aut⊗(C) for the category of monoidal auto-
equivalences. Furthermore, let G be the discrete monoidal category with G as objects,
and only identity morphisms. We then define:

Definition 1.2. An action of a group G on a category C is a monoidal functor G →
Aut(C). A monoidal group action on a monoidal category C is a monoidal functor
G→ Aut⊗(C).

Unpacking this definition shows that a G-action on a category C consists of an equiva-
lence of categories Fg := ρ(g) : C → C for each g ∈ G, as well as natural isomorphisms
γg,h : Fg ◦ Fh → Fgh, satisfying the usual axioms of a monoidal functor.

In order to give an appropriate notion of a fixed point of such an action, we have to be
a bit careful: requiring equations at the level of objects like the fixed-point condition is
considered to be “evil”, since it breaks the principle of equivalence. Thus, we only consider
objects to be isomorphic instead of equal, and remember the choice of isomorphism. This
leads to the following as considered in [Kir01, Kir02, Kir04]. Here, we follow a more
modern exposition.
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Definition 1.3 ([EGNO15, Definition 2.7.2]). A G-equivariant object for a G-action on
a category C consists of an object X of C, together with an isomorphisms ug : Fg(X)→ X
for every g ∈ G, so that the following diagram commutes:

Fg(Fh(X)) Fg(X)

Fgh(X) X

Fg(uh)

γg,h ug

ugh

(1.4)

It is now possible to define a whole category CG of equivariant objects of a G-action
on a category, where the objects are given as in definition 1.3, and the morphisms are
given by morphisms in C which commute with the trivializing isomorphisms ug. This
category is called the “equivariantization” in [EGNO15].
By unpacking definitions, one shows:

Example 1.4. Consider the trivial G-action on the category of finite-dimensional vector
spaces. Then, there is an equivalence between the category of G-equivariant objects of
VectG and Rep(G), the category of representations of G.

Indeed, a homotopy fixed point of the trivial G-action on Vect consists of a vector space
V , together with a family of linear maps ug : V → V for any g ∈ G. The commutative
diagram in equation (1.4) then demands that the map g → ug is a group homomorphism.
As another example, let us mention the following:

Example 1.5. Let G be a finite group. Then, G acts on VectG, the category of G-graded
vector spaces, by conjugation. The category of homotopy fixed points VectGG is equivalent
to the Drinfeld center of VectG.

Indeed, a homotopy fixed point of this action consists of a family of isomorphisms

uh :
⊕

g∈G
Vhgh−1 →

⊕

g∈G
Vg (1.5)

which is nothing else than a choice of isomorphism Vhg ∼= Vgh. This reproduces the
definition of the Drinfeld center of VectG.
Next, we generalize these definitions to bicategories. In order to do this, we have

to reformulate the definition of G-equivariant object in a more categorical manner and
introduce a bit more notation: for a group G, we denote with BG the category with one
object and G as morphisms. Similarly, if C is a monoidal category, BC will denote the
bicategory with one object and C as the endomorphism category of this object.

Now note that in equivalent, but more categorical terms, a G-action on a set X can be
defined to be a functor ρ : BG→ Set which sends the one object of the category BG to
the set X. Let ∆ : BG→ Set be the constant functor sending the one object of BG to
the set with one element. Then, we claim that the set of fixed points XG of the action ρ
stands in bijection to the set of natural transformations from the constant functor ∆ to
ρ, which is exactly the limit of the functor ρ:
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Lemma 1.6. Let ρ : BG → Set be a functor with ρ(∗) = X, and let ∆ : BG → Set be
the constant functor which sends the one object of BG to the 1-element set and every
morphism of BG to the identity. Then there is a bijection of sets

XG ∼= lim
BG

ρ ∼= Nat(∆, ρ). (1.6)

Proof. Indeed, let us show that XG, together with the inclusions XG → X is the
universal cone of the diagram ρ: first it is easy to see that the fixed point set XG,
together with the inclusion ι : XG → X is indeed a cone over ρ. Now, if (N,ϕ) is
another cone over ρ, (hence ϕ : N → X) note that we must have that ϕ(x) ∈ XG, since
ρ(g)(ϕ(x)) = ϕ(x) as (N,ϕ) was supposed to be a cone. Therefore, we can define the
universal map u : N → XG to be u(n) := ϕ(n).

N

XG

X X

ϕ ϕ
u

ιι

ρ(g)

(1.7)

This shows that the limit of ρ stands in bijection to the fixed point set. Finally, one
shows that the set Nat(∆, ρ) is a universal cone as well, and thus is isomorphic to the
limit.

Categorifying this notion of a G-action on a set reproduces the definition of a discrete
group acting on a category as introduced in definition 1.2, as one can show by unpacking
definition.

Remark 1.7. Let G be a discrete group and let C be a category. Let BG be the 2-
category with one object and G as the category of endomorphisms of the single object ∗.
Furthermore, let Cat be the 2-category of categories, functors and natural transforma-
tions. A G-action on C as in definition 1.2 is equivalent to a weak 2-functor ρ : BG→ Cat
with ρ(∗) = C.

Next, we would like to define the homotopy fixed point category of this action to be a
suitable limit of the action, just as in equation (1.6). The appropriate notion of a limit of
a weak 2-functor with values in a bicategory appears in the literature as a pseudo-limit or
indexed limit, which we will simply denote by lim. We will only consider limits indexed
by the constant functor. For background, we refer the reader to [Lac10], [Kel89], [Str80]
or [Fio06]. We are now in the position to introduce the following definition:

Definition 1.8. Let G be a discrete group, let C be a category, and let ρ : BG→ Cat
be a G-action on C. Then, the category of homotopy fixed points CG is defined to be the
pseudo-limit of ρ.
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Just as in the 1-categorical case as in equation (1.6), it is shown in [Kel89] that the
limit of any weak 2-functor with values in Cat is equivalent to the category of pseudo-
natural transformations and modifications Nat(∆, ρ). Hence, we have an equivalence of
categories

CG ∼= lim ρ ∼= Nat(∆, ρ). (1.8)
Here, ∆ : BG→ Cat is the constant functor sending the one object of BG to the terminal
category with one object and only the identity morphism. By spelling out definitions,
one shows:

Proposition 1.9. Let ρ : BG → Cat be a G-action on a category C, and suppose
that ρ(e) = idC, i.e. the action respects the unit strictly. Then, the homotopy fixed
point category CG in definition 1.8 is equivalent to category of G-equivariant objects of
[EGNO15], which has been introduced in definition 1.3.

Proof. By the equivalence of categories in equation (1.8), we may assume that objects
of CG are pseudo-natural transformations ∆→ ρ. Such a pseudo-natural transformation
consists of

• a functor Θ(∗) : ∆(∗) → ρ(∗) = C which is uniquely specified by its image of the
one object of ∆(∗) and thus is equivalently given by just an object x = Θ(∗)(∗) of
C,

• for every g ∈ G, a natural isomorphism

∆(∗) ρ(∗)

∆(∗) ρ(∗)

Θ(∗)

∆(g) ρ(g)
Θ(g)

Θ(∗)

(1.9)

which is uniquely specified on its one component Θ(g)∗ and thus is equivalent to
an isomorphism

Θ(g)∗ : Fg(x)→ x. (1.10)

This data has to satisfy three conditions: first of all, it has to be natural with respect
to 2-morphisms in BG. Since there are only identity 2-morphisms, this condition is
automatically satisfied. Second, there is a compatibility condition with respect to units
which has to be fulfilled due to the requirement that the action respects the units strictly.
Finally, there is a compatibility condition with respect to composition of 1-morphisms
in BG, which reproduces the diagram in equation (1.4). Hence, we exactly reproduced
the definition of [EGNO15].

In chapter 2, we will generalize this discussion to homotopy fixed points of group
actions on bicategories. We will define the bicategory of homotopy fixed points as a
suitable trilimit in the tricategory of bicategories. We will be able to explicitly describe
this trilimit as a bicategory of tritransformations, trimodifications and perturbations.
This explicit description allows us to actually compute homotopy fixed points.

9



1. Preliminaries

1.4. The cobordism hypothesis
As we will prove the cobordism hypothesis for oriented, 2-dimensional manifolds in
chapter 5, let us explain the basic idea behind the proof. We begin with an exposition
of the 1-dimensional case. First, we recall the definition of a framing:

Definition 1.10. Let M be an n-dimensional manifold, and let k ≥ n be a natural
number. A k-framing of M is a trivialization of the vector bundle T kM := TM ⊕ Rk−n.
In detail, this is a choice of k sections s1, . . . , sk of the stabilized tangent bundle T kM ,
so that the vectors s1(x), . . . , sk(x) form a basis of the tangent space T kM at every point
x.

We then define the framed bordism category Cobfr
1,0 as the symmetric monoidal cat-

egory having 1-framed points as objects and (isotopy classes of) 1-framed bordisms as
morphisms.
Given a symmetric monoidal category C, the cobordism hypothesis for framed, 1-

dimensional manifolds states that evaluating a symmetric monoidal functor on the posi-
tively framed point induces an equivalence of groupoids

Fun⊗(Cobfr
1,0, C)→ K (Cd)

Z 7→ Z(+)
(1.11)

between the category of symmetric monoidal functors, and the groupoid of dualizable
objects in C. This statement consists of two essentially different parts:

1. First of all, the cobordism hypothesis states that the category of symmetric
monoidal functors Fun⊗(Cobfr

1,0, C) is actually a groupoid, and thus every monoidal
natural transformation is invertible. In proposition 1.11 which will be proven in a
relatively formal manner below, we will see that a more general statement holds.

2. The second part of the statement tells us that every symmetric monoidal functor
Z : Cobfr

1,0 → C is already determined by its value on the positively framed point,
which furthermore has to be dualizable. This statement is shown in [Pst14] and
relies on the fact that a dualizable object gives us enough data to define a 1-
dimensional framed topological field theory. One way to show this is to notice that
the 1-dimensional framed bordism category is freely generated by the dual pair given
by the positively and negatively framed points, as well as the left and right elbows
in figure 1.2. As the elbows can be though of “evaluation” and “coevaluation”, the
data of a dualizable object in C and a symmetric monoidal functor Cobfr

1,0 → C
actually agree.

10



1.4. The cobordism hypothesis

ON DUALIZABLE OBJECTS IN MONOIDAL BICATEGORIES 12

1 ∈ R ≃ R ⊕ Tpt of its one-tangent space, by the negatively framed point we
mean a single point together with the opposite trivialization −1 ∈ R. The left and
right elbow are the 1-bordisms presented in Figure 2.

Right elbow Left elbow

Figure 2. Left and right elbow 1-bordisms

Topologically, they are both intervals, but they decomposition of the boundary
is chosen so that the right elbow is a 1-bordism pt+ ⊔ pt− → ∅ and the left elbow is
a 1-bordism ∅ → pt−⊔pt+. There is a unique class of isotopies of framings on them
compatible with the given framings on the boundary and so this characterization

specifies well-defined arrows in Bordfr1 .
Note that the left and right elbow are precisely the elementary bordisms in

dimension 1, corresponding to respectively a critical point of index 0 or 1. Observing
that their domains and codomains coincide with those of (co)evaluation maps leads
to the the following classical result.

Theorem 1.9 (Presentation of the framed bordism category). The framed bordism

category Bordfr1 is freely generated, as a symmetric monoidal category, by the dual
pair consisting of the positively and negatively framed points and left and right
elbows. More precisely, the induced strict homomorphism

Fs
d → Bordfr1

from the free symmetric monoidal category on a dual pair is an equivalence.

Proof. We have to verify that the induced homomorphism is essentially surjective
on objects and fully faithful.

Essential surjectivity is equivalent to saying that any framed 0-manifold A is iso-
morphic to some disjoint union of positively and negatively framed points. Since up
to isotopy1-framings are classified by their orientation, A is certainly diffeomorphic
to such a disjoint union with a diffeomorphism that preserves framings up to iso-
topy. Once such an isotopy is chosen, it can be spread out along a framed 1-bordism

with underlying manifold A×I, the resulting map in Bordfr1 will be an isomorphism
with an explicit inverse given by the framed 1-manifold A× I constructed from the
inverse isotopy.

To establish fullness, we have to verify that any 1-bordism w between disjoint
unions of positively and negatively framed points is in the image of the homomorph-
ism. This can be done by choosing a Morse function w → I with disjoint critical
values, the preimages of sufficiently fine covering of the interval will then decompose
w into elementary bordisms, which are precisely the left and right elbow.

Faithfulness is equivalent to proving that any two different decompositions of w
into left and right elbows can be related by a sequence of applications of triangle
equations. However, the latter correspond to Morse birth-death singularities and
the result follows from classical Cerf theory. �

Corollary 1.10 (The Cobordism Hypothesis in dimension one). Let Bordfr1 be the
framed bordism category, let M be arbitrary symmetric monoidal category. Then,
the evaluation at the positive point induces an equivalence

SymMonCat(Bordfr1 ,M) → K(Md)

Figure 1.2.: The right- and left elbows

To show the mathematics behind the first statement, we give a formal proof of a more
general statement. A generalization to bicategories can be found in [Pst14] and [FSW11].

Proposition 1.11. Let C and D be symmetric monoidal categories with duals, and
let F , G : C → D be symmetric monoidal functors. Then, every monoidal natural
transformation ν : F ⇒ G is invertible.

Proof. As C is symmetric, there is a canonical isomorphism δX : X → X∗∗. To simplify
notation, we write dX := coevX and bX := evX . Now, we claim that an inverse to
νX : F (X)→ G(X) is given by

νX
−1 := F (δX−1) ◦G(dX∗)⊗ id ◦ id⊗ νX∗ ⊗ id ◦ id⊗ F (bX∗) ◦G(δX). (1.12)

In order to see that this map is indeed an inverse, consider the diagram in figure 1.3 on
page 12.

Here, the middle row is given by the map νX−1. By applying the functors F and G to
the S-relation of duality, the compositions along the first and last row are identities. By
composing the first horizontal arrow νX with the middle row, we see that νX−1◦νX = idX .
Composing the middle row with the last horizontal arrow shows that νX ◦ νX−1 = idX .

The diagram is commutative for the following reason: the first and last squares in the
top and bottom row commute due to the naturality of ν applied to δX and δ−1

X . The
fourth square in the top row commutes due to the naturality of ν applied to the evaluation
dX∗ : X∗∗ ⊗ X∗ → 1C . Similarly, the second square in the bottom row commutes by
applying the naturality of ν to the coevaluation bX∗ : 1C → X∗ ⊗X∗∗. All other squares
commute trivially.
Naturality and monoidality of ν−1 now follow from the naturality and monoidality of

ν. Indeed, if f : X → Y is a morphism in C, then G(f) ◦ νX = νY ◦ F (f) since ν is
natural. This is equivalent to F (f) ◦ νX−1 = νY

−1 ◦G(f), which shows naturality of ν−1.
By a similar algebraic manipulation, one shows that ν−1 is indeed monoidal.

We now come to the framed cobordism hypothesis in two dimensions: here one needs to
take more care to define the framed bordism bicategory. Roughly speaking, objects of the
symmetric monoidal bicategory Cobfr

2,1,0 are given by 2-framed points, 1-morphisms are
given by 2-framed 1-dimensional bordisms, and 2-morphisms are given by (isotopy-classes
of) 2-framed 2-bordisms.
In [Pst14], the cobordism hypothesis for framed, 2-dimensional manifolds is proven

by giving a description of the framed bordism bicategory in terms of generators and

11



1. Preliminaries

F
(X

)
F

(X
∗∗

)
F

(X
∗∗

)⊗
F

(X
∗ )

⊗
F

(X
∗∗

)
F

(X
∗∗

)⊗
F

(X
∗ )

⊗
F

(X
∗∗

)
F

(X
∗∗

)
F

(X
)

G
(X

)
G

(X
∗∗

)
G

(X
∗∗

)⊗
F

(X
∗ )

⊗
F

(X
∗∗

)
G

(X
∗∗

)⊗
G

(X
∗ )

⊗
F

(X
∗∗

)
F

(X
∗∗

)
F

(X
)

G
(X

)
G

(X
∗∗

)
G

(X
∗∗

)⊗
G

(X
∗ )

⊗
G

(X
∗∗

)
G

(X
∗∗

)⊗
G

(X
∗ )

⊗
G

(X
∗∗

)
G

(X
∗∗

)
G

(X
)

ν
X

F
(δ

X
)

ν
X

∗∗

id
⊗
F

(b
X

∗
)

ν
X

∗∗
⊗

id
⊗

id
ν

X
∗∗

⊗
ν

X
∗

⊗
id

F
(d

X
∗

)⊗
id

F
(δ

x
−

1 )

G
(δ

X
)

id
⊗
F

(b
X

∗
)

id
⊗
ν

X
∗

⊗
id

id
⊗
ν

X
∗

⊗
ν

X
∗∗

G
(d

X
∗

)⊗
id

id
⊗

id
⊗
ν

X
∗∗

ν
X

∗∗

F
(δ

X
−

1 )

ν
X

G
(δ

X
)

id
⊗
G

(b
X

∗
)

G
(d

X
∗

)⊗
id

G
(δ

X
−

1 )

Figure 1.3.: Every monoidal natural transformation is invertible

12



1.4. The cobordism hypothesis

relations. In two dimensions, the cobordism hypothesis then states that there is an
equivalence of bigroupoids

Fun⊗(Cobfr
2,1,0, C)→ K (Cfd) (1.13)

between the bigroupoid of symmetric monoidal 2-functors and the core of fully-dualizable
objects of the target bicategory C. Note that unlike in the 1-dimensional case where
we only had to require dualizability, 2-dimensional framed field theories are classified
by the groupoid of fully-dualizable objects. This is due to the fact that in the bordism
bicategory, there are additional 2-cells which serve as units and counits of adjunctions
between the 1-morphisms.
Now, we come to the cobordism hypothesis for oriented manifolds: as an orientation

is an additional piece of structure, one should expect an additional piece of information
on the algebraic side. We will see that this additional structure is given by the datum of
a homotopy fixed point of a certain SO(2)-action on the core of fully-dualizable objects.
In chapter 4, we will define a non-trivial monoidal SO(2)-action on an algebraic

skeleton of the framed bordism bicategory, and show that it induces an SO(2)-action on
the bicategory of symmetric monoidal functors Fun⊗(Cobfr

2,1,0, C), where C is an arbitrary
symmetric monoidal bicategory. Using the cobordism hypothesis for framed manifolds as
in equation (1.13) allows us to transport the SO(2)-action to the core of fully-dualizable
objects. This action only depends on a pseudo-natural equivalence of the identity functor
and is called the Serre automorphism. Geometrically, this automorphism corresponds to
the non-trivial generator of π1(SO(2)) ∼= Z.
The cobordism hypothesis for oriented manifolds then states that there is an equiva-

lence of bigroupoids
Fun⊗(Cobor

2,1,0, C)→ K (Cfd)SO(2) (1.14)

between “representations” of the oriented bordism bicategory and homotopy fixed points
of this SO(2)-action on the core of fully-dualizable objects of the target bicategory. This
statement will be proven in chapter 5.
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2. Frobenius algebras and homotopy fixed
points of group actions on bicategories

In this chapter, which is based on results in [HSV17], we explicitly show that the
bigroupoid of finite-dimensional, semisimple, symmetric Frobenius algebras is equivalent
to the bigroupoid of homotopy fixed points of the trivial SO(2)-action on the core of the
bicategory of finite-dimensional, semisimple algebras, bimodules and intertwiners. This
result is motivated by the two-dimensional cobordism hypothesis for oriented manifolds
which will be proven in chapter 5, and can hence be interpreted in the realm of topological
quantum field theory.
We begin by recalling the definition of the bigroupoid Frob of symmetric Frobenius

algebras in section 2.1. This involves the concept of compatible Morita contexts between
symmetric Frobenius algebras. Although most of the material has already appeared
in [SP09], we give full definitions to mainly fix the notation. We give a very explicit
description of compatible Morita contexts between semisimple symmetric Frobenius
algebras not present in [SP09], which will be needed to relate the bicategory of symmetric
Frobenius algebras and compatible Morita contexts to the bicategory of homotopy fixed
points of the trivial SO(2)-action.

In section 2.2, we recall the notion of a group action on a category and of its homotopy
fixed points. By categorifying this notion, we arrive at the definition of a group action on
a bicategory and its homotopy fixed points. This definition is formulated in the language
of tricategories. Since we prefer to work with bicategories, we explicitly spell out the
definition in remark 2.20. Although quite technical, these definitions are parts of the
main results of this chapter since they allow us to give an explicit description of the
bicategory of homotopy fixed points later on.

Given a weak 2-functor F : C → D between two bicategories endowed with the action of
a topological group, we introduce the concept of an “equivariantization” of this 2-functor
in section 2.3. As in the case of homotopy fixed points, this will be additional structure
on the functor. We show that a 2-functor with such a G-equivariant structure induces
a 2-functor FG : CG → DG on homotopy fixed point bicategories. An application of
this formalism related to Frobenius algebras and Calabi-Yau categories will be given in
chapter 3.

In section 2.4, we compute the bicategory of homotopy fixed points of a certain SO(2)-
action on an arbitrary bicategory. As a consequence, we obtain an explicit description
of the bicategory of homotopy fixed points of the trivial SO(2)-action on an arbitrary
bicategory. Corollary 2.36 then shows an equivalence of bicategories between the bicate-
gory of homotopy fixed points of the trivial SO(2)-action on the core of fully-dualizable
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

objects on the bicategory Alg2, and the bigroupoid Frob introduced earlier:

(K (Algfd
2 ))SO(2) ∼= Frob . (2.1)

We note that the bicategory Frob has also appeared in [Dav11, Proposition 3.3.2] as a
certain bicategory of functors. We clarify the relationship between this functor bicategory
and the bicategory of homotopy fixed points (K (Algfd

2 ))SO(2) in remark 2.38.
Throughout the chapter, we use the following conventions: all algebras considered

will be over an algebraically closed field K. All Frobenius algebras appearing will be
symmetric.

2.1. Frobenius algebras and Morita contexts
In this section we recall some basic notions regarding Morita contexts, mostly with the
aim of setting up notations. We will mainly follow [SP09] and [Bas76], though we point
the reader to remark 2.7 for a slight difference in the statement of the compatibility
condition between the Morita context and the Frobenius forms.

Definition 2.1. A Frobenius algebra (A, λ) consists of an associative, unital K-algebra
A, together with a linear map λ : A→ K, so that the pairing

A⊗K A→ K
a⊗ b 7→ λ(ab)

(2.2)

is non-degenerate. A Frobenius algebra is called symmetric if λ(ab) = λ(ba) for all a and
b in A.

Definition 2.2. Let A and B be two algebras. A Morita context M consists of a
quadrupleM := (BMA,ANB, ε, η), where BMA is a (B,A)-bimodule, ANB is an (A,B)-
bimodule, and

ε : AN ⊗B MA → AAA

η : BBB → BM ⊗A NB
(2.3)

are isomorphisms of bimodules, so that the two diagrams

BM ⊗A NB ⊗B MA BM ⊗A AA

BB ⊗B MA BMA

idM⊗ε

η⊗idM (2.4)

AN ⊗B M ⊗A NB AN ⊗B BB

AA⊗A NB ANB

ε⊗idN
idN⊗η

(2.5)

commute.
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2.1. Frobenius algebras and Morita contexts

These two conditions are not independent from each other, as the next lemma shows.

Lemma 2.3 ([Bas68, Lemma 3.3]). In the situation of definition 2.2, diagram (2.4)
commutes if and only if diagram (2.5) commutes.

Proof. First suppose that diagram (2.5) commutes. Then,

η−1((η−1(m⊗ n).m′ ⊗ n′) = η−1(m⊗ n).η−1(m′ ⊗ n′) (η−1 is left B-linear)
= η−1(m⊗ n.η−1(m′ ⊗ n′)) (η−1 is right B-linear)
= η−1(m⊗ ε(n⊗m′).n′) (since (2.5) commutes)
= η−1(m.ε(n⊗m′)⊗ n′).

(2.6)
Since η−1 is an isomorphism, applying η to both sides of the above equations shows that
diagram (2.4) commutes.
Now suppose that diagram (2.4) commutes. Then,

ε(n⊗m.ε(n′ ⊗m′)) = ε(n⊗m).ε(n′ ⊗m′) (ε is right A-linear)
= ε(ε(n⊗m).n′ ⊗m′) (ε is left A-linear)
= ε(n.η−1(m⊗ n′)⊗m′) (since (2.4) commutes)
= ε(n⊗ η−1(m⊗ n′).m′)

(2.7)

Applying ε−1 to both sides of this equations shows that diagram (2.5) commutes.

Note that Morita contexts are the adjoint 1-equivalences in the bicategory Alg2 of
algebras, bimodules and intertwiners. The 2-morphisms in this bicategory are given by
morphisms between Morita contexts, which we define next.

Definition 2.4. Let M := (BMA,ANB, ε, η) and M′ := (BM ′A,AN ′B, ε′, η′) be two
Morita contexts between two algebras A and B. A morphism of Morita contexts consists
of a morphism of (B,A)-bimodules f : M → M ′ and a morphism of (A,B)-bimodules
g : N → N ′, so that the two diagrams

BM ⊗A NB BM
′ ⊗A N ′B

B

f⊗g

η

η′

AN ⊗B MA AN
′ ⊗B M ′A

A

g⊗f

ε

ε′
(2.8)

commute.

If the algebras in question have the additional structure of a symmetric Frobenius
form λ : A→ K, we formulate a compatibility condition between the Morita context and
the Frobenius forms. We begin with the following two observations: if A is an algebra,
the map

A/[A,A]→ A⊗A⊗Aop A

[a] 7→ a⊗ 1
(2.9)
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

is an isomorphism of vector spaces, with inverse given by a ⊗ b 7→ [ab]. Furthermore,
if B is another algebra, and BMA and ANB are (A,B)-bimodules, there is a canonical
isomorphism of vector spaces

τ : (N ⊗B M)⊗A⊗Aop (N ⊗B M)→ (M ⊗A N)⊗B⊗Bop (M ⊗A N)
n⊗m⊗ n′ ⊗m′ 7→ m⊗ n′ ⊗m′ ⊗ n. (2.10)

Using these results, together with the next lemma, we formulate a compatibility condition
between Morita context and Frobenius forms.

Lemma 2.5. Let A and B be two algebras, and let (BMA,ANB, ε, η) be a Morita context
between A and B. Then, there is a canonical isomorphism of vector spaces

f : A/[A,A]→ B/[B,B]

[a] 7→
∑

i,j

[
η−1(mj .a⊗ ni)

] (2.11)

where ni and mj are defined by

ε−1(1A) =
∑

i,j

ni ⊗mj ∈ N ⊗B M. (2.12)

Proof. Consider the following chain of isomorphisms:

f : A/[A,A] ∼= A⊗A⊗Aop A (by equation 2.9)
∼= (N ⊗B M)⊗A⊗Aop (N ⊗B M) (using ε⊗ ε)
∼= (M ⊗A N)⊗B⊗Bop (M ⊗A N) (by equation 2.10)
∼= B ⊗B⊗Bop B (using η ⊗ η)
∼= B/[B,B] (by equation 2.9)

(2.13)

Chasing through those isomorphisms, we see that the map f is given by

f([a]) =
∑

i,j,k,l

[
η−1(mj ⊗ nk) · η−1(ml ⊗ a.ni)

]

=
∑

i,j,k,l

[
η−1(mj ⊗ nk.η−1(ml ⊗ a.ni))

]

=
∑

i,j,k,l

[
η−1(mj ⊗ ε(nk ⊗ml).a.ni)

]
(since (2.5) commutes)

=
∑

i,j

[
η−1(mj ⊗ a.ni)

]
(by definition of

∑

k,l

nk ⊗ml)

=
∑

i,j

[
η−1(mj .a⊗ ni)

]

(2.14)

as claimed.
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2.1. Frobenius algebras and Morita contexts

The isomorphism f described in lemma 2.5 allows us to introduce the following relevant
definition.

Definition 2.6. Let (A, λA) and (B, λB) be two symmetric Frobenius algebras, and let
(BMA,ANB, ε, η) be a Morita context between the algebras A and B. Since the Frobenius
algebras are symmetric, the Frobenius forms necessarily factor through A/[A,A] and
B/[B,B]. We call the Morita context compatible with the Frobenius forms, if the diagram

A/[A,A] B/[B,B]

K
λA

f

λB

(2.15)

commutes. Using the notation from lemma 2.5, this means that

λA([a]) =
∑

i

λB
([
η−1(mi.a⊗ ni)

])
(2.16)

for all a ∈ A.
Remark 2.7. The definition of a compatible Morita context of [SP09, Definition 3.72]
requires another compatibility condition on the coproduct of the unit of the Frobenius
algebras. However, a calculation using proposition 2.10 shows that the condition of
[SP09] is already implied by our condition on Frobenius form of definition 2.6; thus the
two definitions of compatible Morita context do coincide.

For later use, we give a very explicit way of expressing the compatibility condition
between Morita context and Frobenius forms: if (A, λA) and (B, λB) are two semisim-
ple symmetric Frobenius algebras, and (BMA,BNA, ε, η) is a Morita context between
them, the algebras A and B are isomorphic to direct sums of matrix algebras by Artin-
Wedderburn:

A ∼=
r⊕

i=1
Mdi(K), and B ∼=

r⊕

j=1
Mnj (K). (2.17)

By theorem 3.3.1 of [EGH+11], the simple modules (S1, . . . , Sr) of A and the simple
modules (T1, . . . , Tr) of B are given by Si := Kdi and Ti := Kni , and every module is a
direct sum of copies of those. Since simple finite-dimensional representations of A⊗KB

op

are given by tensor products of simple representations of A and Bop by theorem 3.10.2
of [EGH+11], the most general form of BMA and ANB is given by

BMA : =
r⊕

i,j=1
αij Ti ⊗K Sj

ANB : =
r⊕

k,l=1
βkl Sk ⊗K Tl

(2.18)

where αij and βkl are multiplicities. First, we show that these multiplicities must be
trivial. This works for Morita contexts between finite-dimensional, semisimple algebras
and does not require a Frobenius structure.
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

Lemma 2.8. Let (BMA,ANB, ε, η) be a Morita context between two finite-dimensional,
semisimple algebras A and B. Then, the multiplicities in equation (2.18) are trivial after
a possible reordering of the simple modules: αij = δij = βij and the two bimodules M
and N are actually given by

BMA =
r⊕

i=1
Ti ⊗K Si

ANB =
r⊕

j=1
Sj ⊗K Tj .

(2.19)

Proof. Suppose for a contradiction that there is a term of the form (Ti ⊕ Tj) ⊗ Sk in
the direct sum decomposition of M . Let f : Ti → Tj be a non-trivial linear map, and
define ϕ ∈ EndA((Ti⊕Tj)⊗Sk) by setting ϕ((ti + tj)⊗ sk) := f(ti)⊗ sk. The A-module
map ϕ induces an A-module endomorphism on all of AMB by extending ϕ with zero on
the rest of the direct summands. Since EndA(BMA) ∼= B as algebras by theorem 3.5 of
[Bas68], the endomorphism ϕ must come from left multiplication, which cannot be true
for an arbitrary linear map f . This shows that the bimodule M is given as claimed in
equation (2.19). The statement for the other bimodule N follows analogously.

Lemma 2.8 shows how the bimodules underlying a Morita context of semisimple
algebras look like. Next, we consider the Frobenius structure, using the following lemma.

Lemma 2.9 ([Koc03, Lemma 2.2.11]). Let (A, λ) be a symmetric Frobenius algebra.
Then, every other symmetric Frobenius form on A is given by multiplying the Frobenius
form with a central invertible element of A.

By lemma 2.9, we conclude that the Frobenius forms on the two semisimple algebras
A and B are given by

λA =
r⊕

i=1
λAi trMdi

(K) and λB =
r⊕

i=1
λBi trMni (K) (2.20)

where λAi and λBi are non-zero scalars and tr is the usual trace of matrices. We can now
state the following proposition, which will be used in the proof of corollary 2.36.

Proposition 2.10. Let (A, λA) and (B, λB) be two semisimple symmetric Frobenius
algebras and suppose that M := (M,N, ε, η) is a Morita context between them. Let λAi
and λBj be scalars as in equation (2.20), and define two invertible central elements

a : = (λA1 , . . . , λAr ) ∈ Kr ∼= Z(A)
b : = (λB1 , . . . , λBr ) ∈ Kr ∼= Z(B).

(2.21)

Then, the following are equivalent:

1. The Morita context M is compatible with the Frobenius forms in the sense of
definition 2.6.
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2.1. Frobenius algebras and Morita contexts

2. We have m.a = b.m for all m ∈ BMA and n.b−1 = a−1.n for all n ∈ ANB.

3. For every i = 1, . . . , r, we have that λAi = λBi .

Proof. With the form of M and N determined by equation (2.19), we see that the only
isomorphisms of bimodules ε : N ⊗B M → A and η : B → M ⊗A N must be given by
multiples of the identity matrix on each direct summand:

ε : N ⊗AM ∼=
r⊕

i=1
Mi(di × di,K)→

r⊕

i=1
Mi(di × di,K) = A

r∑

i=1
Mi 7→

r∑

i=1
εiMi.

(2.22)

Similarly, η is given by

η : B =
r⊕

i=1
Mi(ni × ni,K) 7→M ⊗A B ∼=

r⊕

i=1
Mi(ni × ni,K)

r∑

i=1
Mi 7→

r∑

i=1
ηiMi.

(2.23)

Here, εi and ηi are non-zero scalars. Using the definition of Morita context and lemma
2.3 shows that the quadruple (M,N, ε, η) is a Morita context if and only if εi = η−1

i .
By calculating the action of the elements a and b defined above in a basis, we see that
conditions (2) and (3) of the above proposition are equivalent.

Next, we show that (1) and (3) are equivalent. In order to see when the Morita context
is compatible with the Frobenius forms, we calculate the map f : A/[A,A]→ B/[B,B]
from equation (2.15). One way to do this is to notice that [A,A] consists precisely of
trace-zero matrices (cf. [AM57]); thus the map

A/[A,A]→ Kr

[A1 ⊕A2 ⊕ · · · ⊕Ar] 7→ (tr(A1), · · · , tr(Ar))
(2.24)

is an isomorphism of vector spaces. Using this identification, we see that the map f is
given by

f : A/[A,A]→ B/[B,B]

[A1 ⊕A2 ⊕ · · · ⊕Ar] 7→
r⊕

i=1
trMdi

(Ai)
[
E

(ni×ni)
11

]
.

(2.25)

Note that this map is independent of the scalars εi and ηi coming from the Morita context.
Now, the two Frobenius algebras A and B are Morita equivalent via a compatible Morita
context if and only if the diagram in equation (2.15) commutes. This is the case if and
only if λAi = λBi for all i, as a straightforward calculation in a basis shows.

Having established how compatible Morita contexts between semisimple algebras over
an algebraic closed field look like, we arrive at following definition.

21



2. Frobenius algebras and homotopy fixed points of group actions on bicategories

Definition 2.11. Let K be an algebraically closed field. Let Frob be the bicategory
where

• objects are given by semisimple, symmetric Frobenius algebras,

• 1-morphisms are given by compatible Morita contexts, as in definition 2.6,

• 2-morphisms are given by isomorphisms of Morita contexts.

Note that Frob has got the structure of a symmetric monoidal bigroupoid, where the
monoidal product is given by the tensor product over the ground field, which is the
monoidal unit.

The bicategory Frob classifies oriented, fully-extended 2-dimensional topological field
theories with values in Alg2 by a theorem of Chris Schommer-Pries:

Theorem 2.12 ([SP09]). The weak 2-functor

Fun⊗(Cobor
2,1,0,Alg2)→ Frob

Z 7→ Z(+)
(2.26)

is an equivalence of bicategories.

In the next sections of this chapter, we will identify the bigroupoid Frob with the bicat-
egory of homotopy fixed points of the trivial SO(2)-action on the maximal subgroupoid
of fully-dualizable objects of the Morita bicategory Alg2.

2.2. Group actions on bicategories and their homotopy fixed
points

In this section, we give an explicit definition of group actions of topological groups on
bicategories and their homotopy fixed points. We recall the following notation: for
a group G, we denote with BG the category with one object and G as morphisms.
Similarly, if C is a monoidal category, BC will denote the bicategory with one object and
C as endomorphism category of this object. Furthermore, we denote by G the discrete
monoidal category associated to G, i.e. the category with the elements of G as objects,
only identity morphisms, and monoidal product given by group multiplication.
Recall from section 1.3 that a G-action on a set X can be defined as a functor

ρ : BG → Set with ρ(∗) = X, and that the set of fixed points is given by the limit of
this functor. As also discussed in the same section, a G-action on a category C can be
defined as a weak 2-functor ρ : BG → Cat with ρ(∗) = C. The category of homotopy
fixed points is then given as the 2-limit of this functor.

Next, we step up the categorical ladder once more, and define an action of a group G
on a bicategory. Moreover, we would also like to account for the case where our group is
equipped with a topology. This will be done by considering the fundamental 2-groupoid
of G, referring the reader to [HKK01] for additional details.
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2.2. Group actions on bicategories and their homotopy fixed points

Definition 2.13. Let G be a topological group. The fundamental 2-groupoid of G is
the monoidal bicategory Π2(G) where

• objects are given by points of G,

• 1-morphisms are given by paths between points,

• 2-morphisms are given by homotopy classes of homotopies between paths, called
2-tracks.

The monoidal product of Π2(G) is given by the group multiplication on objects, by
pointwise multiplication of paths on 1-morphisms, and by pointwise multiplication of
2-tracks on 2-morphisms. Notice that this monoidal product is associative on the nose,
and all other monoidal structure like associators and unitors can be chosen to be trivial.

We are now ready to give a definition of a G-action on a bicategory. Although the
definition we give uses the language of tricategories as defined in [GPS95] or [Gur07], we
provide a bicategorical description in remark 2.16.

Definition 2.14. Let G be a topological group, and let C be a bicategory. A G-action
on C is defined to be a trifunctor

ρ : BΠ2(G)→ Bicat (2.27)

with ρ(∗) = C. Here, BΠ2(G) is the tricategory with one object and with Π2(G) as
endomorphism-bicategory, and Bicat is the tricategory of bicategories.

Remark 2.15. If C is a bicategory, let Aut(C) be the bicategory consisting of auto-
equivalences of of C, pseudo-natural isomorphisms and invertible modifications. Observe
that Aut(C) has the structure of a monoidal bicategory, where the monoidal product is
given by composition. Since there are two ways to define the horizontal composition
of pseudo-natural transformation, which are not equal to each other, there are actually
two monoidal structures on Aut(C). It turns out that these two monoidal structures are
equivalent; see [GPS95, Section 5] for a discussion in the language of tricategories, or
appendix A for more details.
With either monoidal structure of Aut(C) chosen, note that as in definition 1.2 we

could equivalently have defined a G-action on a bicategory C to be a weak monoidal
2-functor ρ : Π2(G)→ Aut(C).

The next remark explicitly unpacks this definition. The notation introduced here will
also be used in our explicit description of homotopy fixed points in remark 2.20.

Remark 2.16 (Unpacking Definition 2.14). Unpacking the definition of a weak monoidal
2-functor ρ : Π2(G)→ Aut(C), as for instance in [SP09, Definition 2.5], or equivalently
of a trifunctor ρ : BΠ2(G)→ Bicat, as in [GPS95, Definition 3.1], shows that a G-action
on a bicategory C consists of the following data:

• for each group element g ∈ G, an equivalence of bicategories Fg := ρ(g) : C → C,
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

• for each path γ : g → h between two group elements, the action assigns a pseudo-
natural isomorphism ρ(γ) : Fg → Fh,

• for each 2-track m : γ → γ′, an invertible modification ρ(m) : ρ(γ)→ ρ(γ′).

• There is additional data making ρ into a weak 2-functor, namely: if γ1 : g → h and
γ2 : h→ k are paths in G, we obtain invertible modifications

φγ2γ1 : ρ(γ2) ◦ ρ(γ1)→ ρ(γ2 ◦ γ1). (2.28)

• Furthermore, for every g ∈ G there is an invertible modification φg : idFg → ρ(idg)
between the identity endotransformation on Fg and the value of ρ on the constant
path idg.
There are three compatibility conditions for this data: one condition making φγ2,γ1

compatible with the associators of Π2(G) and Aut(C), and two conditions with
respect to the left and right unitors of Π2(G) and Aut(C).
• Finally, there is data for the monoidal structure, which is given by:

– A pseudo-natural isomorphism

χ : ρ(g)⊗ ρ(h)→ ρ(g ⊗ h), (2.29)

– a pseudo-natural isomorphism

ι : idC → Fe, (2.30)

– for each triple (g, h, k) of group elements, an invertible modification ω in the
diagram

Fg ⊗ Fh ⊗ Fk Fgh ⊗ Fk

Fg ⊗ Fhk Fghk

χg,h⊗id

id⊗χh,k χgh,k
ωg,h,k

χg,hk

(2.31)

– an invertible modification γ in the triangle below

Fe ⊗ Fg

idC ⊗ Fg Fg

χe,gι⊗id

idFg

γ (2.32)

– another invertible modification δ in the triangle

Fg ⊗ Fe

Fg ⊗ idC Fg

χg,eid⊗ι

idFg

δ (2.33)
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2.2. Group actions on bicategories and their homotopy fixed points

The data (ρ, χ, ι, ω, γ, δ) then has to obey equations (HTA1) and (HTA2) in [GPS95, p.
17], which are given in figure 2.1 and figure 2.2. In these figures, we use the following
notation: the tensor product in the diagrams is suppressed, for instance FgFh means
Fg ⊗ Fh = Fg ◦ Fh. Furthermore, the identity natural transformation of Fg is denoted
by 1g.

FxyFzFw FxyzFw

FxFyFzFw ∼= FxFyzFw Fxyzw

FxFyFzw FxFyzw

χxy,z 1w

χxyz,w

ωx,yz,w

(χx,y 1z) 1w

1x (1y χz,w)

1x (χy,z 1w)

(1x χy,z) 1w

1x χyz,w

χx,yz1w

1x χy,zw

χx,yzw

ωx,y,z 1w

1x ωy,z,w

=

FxyFzFw FxyzFw

FxFyFzFw ∼= FxyFzw Fxyzw

FxFyFzw FxFyzw

χxy,z 1w

1xy χz,w

χxyz,w

ωxy,z,w

(χx,y 1z) 1w

1x (1y χz,w)

χxy,zw

ωx,y,zwχx,y 1zw

1x χy,zw

χx,yzw

Figure 2.1.: Equation (HTA1) for G-actions

Just as in the case of a group action on a set and a group action on a category, we would
like to define the bicategory of homotopy fixed points of a group action on a bicategory as
a suitable limit. However, the theory of trilimits is not very well established. Therefore
we will take the description of homotopy fixed points as natural transformations as in
equation (1.6) as a definition, and define homotopy fixed points of a group action on
a bicategory as the bicategory of pseudo-natural transformations between the constant
functor and the action.
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

Fxy

FxFeFy

∼=

Fx idC Fy

FxFy FxFy

χx,e 1y 1x χe,y

1x 1y

(1xι)1y 1x(ι1y)

1x 1y

1x 1y

χx,y χx,y

δ 1y 1x γ

∼=

ωx,e,y

=

Fxy

∼=

FxFy FxFy1x 1y

χx,y χx,y

Figure 2.2.: Equation (HTA2) for G-actions
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2.2. Group actions on bicategories and their homotopy fixed points

Definition 2.17. Let G be a topological group and C a bicategory. Let
ρ : BΠ2(G)→ Bicat (2.34)

be a G-action on C. The bicategory of homotopy fixed points CG is defined to be
CG := Nat(∆, ρ). (2.35)

Here, ∆ is the constant functor which sends the one object of BΠ2(G) to the ter-
minal bicategory with one object, only the identity 1-morphism and only identity 2-
morphism. The bicategory Nat(∆, ρ) then has objects given by tritransformations ∆→ ρ,
1-morphisms are given by modifications, and 2-morphisms are given by perturbations.
Remark 2.18. The notion of the “equivariantization” of a strict 2-monad on a 2-category
has already appeared in [MN14, Section 6.1]. Note that definition 2.17 is more general
than the definition of [MN14], in which some modifications have been assumed to be
trivial.
Remark 2.19. In principle, even higher-categorical definitions are possible: for instance
in [FV15] a homotopy fixed point of a higher character ρ of an ∞-group is defined to be
a (lax) morphism of ∞-functors ∆→ ρ.
Remark 2.20 (Unpacking objects of CG). Since unpacking the definition of homotopy
fixed points is not entirely trivial, we spell it out explicitly in the subsequent remarks,
following [GPS95, Definition 3.3]. In the language of bicategories, a homotopy fixed
point consists of:
• an object c of C,
• a pseudo-natural equivalence

Π2(G) C

∆c

evc ◦ρ

Θ (2.36)

where ∆c is the constant functor which sends every object to c ∈ C, and evc is the
evaluation at the object c. In components, the pseudo-natural transformation Θ
consists of the following:
– for every group element g ∈ G, a 1-equivalence in C

Θg : c→ Fg(c), (2.37)

– and for each path γ : g → h, an invertible 2-morphism Θγ in the diagram

c Fg(c)

c Fh(c)

Θg

idc ρ(γ)c
Θγ

Θh

(2.38)
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

which is natural with respect to 2-tracks.

• Furthermore, we have an invertible modification Π in the diagram

Π2(G)×Π2(G) C

Aut(C)× C

Aut(C)×Aut(C)

Π2(G) Aut(C)

∆c

⊗

ρ×∆c

ρ×ρ

ev

⊗

id×evc

χ

ρ

evc

Θ×1

1×Θ

∼=

ΠΠ

Π2(G)×Π2(G) C

Π2(G) Aut(C)

∆c

⊗

ρ

∆c evc
Θ

∼=

(2.39)

which in components means that for every tuple of group elements (g, h) we have
an invertible 2-morphism Πg,h in the diagram below.

c Fg(c) Fg(Fh(c)) Fgh(c)Θg

Θgh

Fg(Θh)

Πg,h

χc
g,h

(2.40)
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2.2. Group actions on bicategories and their homotopy fixed points

• For the unital structure, there is another invertible modification M , which only
has the component given in the diagram shown below,

c Fe(c)

Θe

ιc

M (2.41)

with the 1-morphism ι given as in equation (2.30).

This ends the description of the data of a homotopy fixed point. We now come to the
axioms the data defined above have to satisfy. Since we defined a homotopy fixed point
to be a certain tritransformation, we shall require the three axioms of a tritransformation
to hold for the data defied above. Using the equation in [GPS95, p.21-22] we find the
first condition for the data (c,Θ,Π,M) of a homotopy fixed point:

FxFy c FxFyFz c

Fx c Fxy c FxyFz c

c Fxyz c

FxFy(Θz)

∼=
χc

x,y χ
Fz(c)
x,yFx(Θy)

Fxy(Θz)

χxy,zΘxy

Θxyz

Θx

Πx,y

Πxy,z

=

FxFy c FxFyFz c

Fx c FxFyz c FxyFz c

c Fxyz c

FxFy(Θz)

χ
Fz(c)
x,y

Fx(χc
y,z)

Fx(Θy)

Fx(Θyz)

χc
x,yz

χxy,z

ωx,y,z

Θxyz

Θx

Πx,yz

Fx(Πy,z)

(2.42)
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

The second axiom we require is due to the equation on p.23 of [GPS95] and demands
that we have

Fe c FeFx c

c Fx c Fx c

Fe(Θx)

χe,x

Θx

Θe Θx

idFx(c)

Πe,x

∼=

=
Fe c FeFx c

c Fx c Fx c

Fe(Θx)

∼=
χe,x

Θx

Θe

ιc

idFx(c)

ιFx(c)
γ

M

(2.43)

Finally, the equation on p.25 of [GPS95] demands that

Fx c FxFe c

c Fx c

Fx(Θe)

χx,eΘx

Θx

Πx,e =

Fx c FxFe c

c Fx c

Fx(Θe)

Fx(ιc)

idFx(c) χx,eΘx

Θx

Fx(M)

∼=

δ−1 (2.44)
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2.2. Group actions on bicategories and their homotopy fixed points

Remark 2.21. Suppose that (c,Θ,Π,M) and (c′,Θ′,Π′,M ′) are homotopy fixed points.
We now spell out what a 1-morphism between these fixed points is. Since we have defined
a homotopy fixed point to be a tritransformation, a 1-morphism between these homotopy
fixed points will be a trimodification. In detail, this trimodification consists of

• a 1-morphism f : c→ c′ in C,

• an invertible modification m in the diagram below.

Π2(G) C

∆c

evc ◦ρ

evc′ ◦ρ

Θ

evf ∗id

mm Π2(G) C

∆c

∆c′

evc′ ◦ρ

∆f

Θ′

(2.45)

In components, mg is given by the diagram

c Fg(c)

c′ Fg(c′)

Θg

f Fg(f)
mg

Θ′
g

(2.46)

The data (f,m) of a 1-morphism between homotopy fixed points has to satisfy the two
axioms of a trimodification. Following the two equations as on p.25 and p. 26 of [GPS95],
we find the first condition to be:

c Fe(c)

c′ Fe(c′)

ιc

Θe

f
ιf

Fe(f)

ιc′

M

=

c Fe(c)

c′ Fe(c′)

Θe

f Fe(f)
me

ιc′

Θ′
e

M ′

(2.47)
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

The second axiom the data of a 1-morphism between homotopy fixed points must
satisfy is given below in equation (2.48).

c Fg(c) Fg(Fh(c)) Fgh(c)

c′ Fgh(c′)

Θg

f
Θgh

Fg(Θh)

Πg,h

χc
g,h

Fgh(f)

Θ′
gh

mgh

=

c Fg(c) Fg(Fh(c)) Fgh(c)

Fg(c′) Fg(Fh(c′))

c′ Fgh(c′)

Θg

f

Fg(f)

Fg(Θh)

Fg(mh)
Fg(Fh(f))

χc
g,h

Fgh(f)
Fg(Θ′

h)mg

χc′
g,h

∼=

Θ′
gh

Θ′
g

Π′
g,h

(2.48)
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2.2. Group actions on bicategories and their homotopy fixed points

Remark 2.22. The condition saying that m, as introduced in equation (2.45), is a
modification will be vital for the proof of theorem 2.35 and states that for every path
γ : g → h in G, we must have the following equality of 2-morphisms in the two diagrams:

c Fg(c) Fg(c′) Fh(c′)

c′ c′

c c′

idc

f

Θg

mg

Fg(f)

Θ′γ

ρ(γ)c′

idc′

Θ′g
Θ′h

f

Θ′h∼=

=

c Fg(c) Fg(c′) Fh(c′)

Fh(c)

c c′

idc

Θg

ρ(γ)c

Fg(f)

ρ(γ)−1
f

ρ(γ)c′

Θγ Fh(f)

mh

f

Θh Θ′h

(2.49)

Next, we come to 2-morphisms of the bicategory CG of homotopy fixed points:

Remark 2.23. Let (f,m), (ξ, n) : (c,Θ,Π,M)→ (c′,Θ′,Π′,M ′) be two 1-morphisms of
homotopy fixed points. A 2-morphism of homotopy fixed points consists of a perturbation
between those trimodifications. In detail, a 2-morphism of homotopy fixed points consists
of a 2-morphism α : f → ξ in C, so that the following equation is satisfied:

c Fg(c)

c′ Fg(c′)

Θg

fξ α Fg(f)
mg

Θ′
g

=

c Fg(c)

c′ Fg(c′)

Θg

ξ Fg(ξ) Fg(f)
ng

Θ′
g

Fg(α)
(2.50)
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Let us give an example of a group action on bicategories and its homotopy fixed points:

Example 2.24. Let G be a discrete group, and let C be any bicategory. Suppose
ρ : Π2(G) → Aut(C) is the trivial G-action. Then, by remark 2.20 a homotopy fixed
point, i.e. an object of CG consists of

• an object c of C,

• a 1-equivalence Θg : c→ c for every g ∈ G,

• a 2-isomorphism Πg,h : Θh ◦Θg → Θgh,

• a 2-isomorphism M : Θe → idc.

This is exactly the same data as a functor BG → C, where BG is the bicategory with
one object, G as morphisms, and only identity 2-morphisms. Extending this analysis
to 1- and 2-morphisms of homotopy fixed points shows that we have an equivalence of
bicategories

CG ∼= Fun(BG, C). (2.51)

When one specializes to C = Vect2, the functor bicategory Fun(BG, C) is also known
as Rep2(G), the bicategory of 2-representations of G. Thus, we have an equivalence
of bicategories VectG2 ∼= Rep2(G). This result generalizes the 1-categorical statement
that the homotopy fixed point 1-category of the trivial G-action on Vect is equivalent to
Rep(G), cf. [EGNO15, Example 4.15.2].

Next, we give an example coming from tensor categories:

Example 2.25 ([BGM17, Theorem 5.4]). Let G be a finite group. A G-graded extension
of a finite tensor category C is a decomposition D = ⊕g∈GCg with C1 = C. If the tensor
category D is strict monoidal, there is a G-action on the 2-category CModop of left
C-module categories. Furthermore, there is an equivalence of 2-categories

(CModop)G ∼= DMod. (2.52)

2.3. Induced functors on homotopy fixed points
In this section, we introduce the notion of a G-equivariant structure on a weak 2-functor
between two bicategories equipped with a G-action. We show that if such a structure
exists, we obtain an induced functor on homotopy fixed points. We use this theory in
section 3.3.1, where we show that the 2-functor sending an algebra to its category of
representation is SO(2)-equivariant, and induces an equivalence between the bigroupoid
of Frobenius algebras and the bigroupoid of Calabi-Yau categories.

Definition 2.26. Let ρ : BΠ2(G) → Bicat be a G-action on the bicategory ρ(∗) = C,
and let ρ′ : BΠ2(G) → Bicat be a G-action on another bicategory ρ′(∗) = D. Let
H : C → D be a weak 2-functor. A G-equivariant structure for the weak 2-functor H
consists of:
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2.3. Induced functors on homotopy fixed points

• a pseudo-natural transformation T in the diagram

Π2(G) Aut(C)

Aut(D) Fun(C, D)

ρ

ρ′ H◦_
T

_◦H

(2.53)

which very explicitly consists of the data:
– a pseudo-natural transformation

Tg : H ◦ Fg → F ′g ◦H (2.54)

for every g ∈ G, explaining the name G-equivariant structure,
– For every path γ : g → h, an invertible modification Tγ in the diagram

H ◦ Fg F ′g ◦ H

H ◦ Fh F ′h ◦ H

Tg

idH∗ρ(γ) ρ′(γ)∗idH
Tγ

Th

(2.55)

• for every tuple of group elements (g, h), an invertible modifications Pg,h in the
diagram

H ◦ Fg ◦ Fh F ′g ◦ H ◦ Fh F ′g ◦ F ′h ◦ H F ′gh ◦ H

H ◦ Fgh

Tg∗idFh

idH∗χg,h

idF ′
g
∗Th

Pg,h

χ′
g,h∗idH

Tgh

(2.56)

• a modification N

H H ◦ idC H ◦ Fe F ′e ◦ H

idD ◦ H

idH∗ι

N

Te

ι′∗idH

(2.57)

so that the three equations of a tritransformation in definition 3.3 of [GPS95] are fulfilled.
Remark 2.27. We have defined a G-equivariant structure on a weak 2-functor H in such
a way that it induces a tritransformation ρ→ ρ′ between the two actions. It is crucial
to remark that the G-equivariant structure induces a weak 2-functor HG on homotopy
fixed point bicategories:

HG : CG = Nat(∆, ρ)→ Nat(∆, ρ′) = DG. (2.58)
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

Explicitly, the induced functor on homotopy fixed points is given as follows:

Definition 2.28. Suppose that H : C → D is a weak 2-functor between bicategories
endowed with G-actions ρ and ρ′, and suppose that H possesses a G-equivariant structure
as in definition 2.26. Then, the induced functor HG : CG → DG is given as follows: On
objects (c,Θ,Π,M) as defined in remark 2.20 of the homotopy fixed point bicategory CG
we define:

• on the object c of C, we have HG(c) := H(c),

• on the pseudo-natural equivalence Θ, we define the functor on the 1-cell Θg : c→
Fg(c) by

HG(Θg) :=
(
H(c) H(Θg)−−−−→ H(Fg(c))

Tg(c)−−−→ F ′g(H(c))
)
, (2.59)

where Fg and F ′g are data given by the action as defined in remark 2.16, whereas
on the 2-dimensional component Θγ in the diagram

c Fg(c)

c Fh(c)

Θg

idc ρ(γ)c
Θγ

Θh

(2.60)

we assign the 2-morphism

HG(Θγ) :=

H(c) H(Fg(c)) F ′
g(H(c))

H(c) H(Fh(c)) F ′
h(H(c))

H(Θg)

idH(c)

Tg(c)

H(ρ(γ)c)
H(Θγ)

ρ′(γ)H(c)
Tγ(c)

H(Θh) Th(c)

(2.61)

• For the modification Π, we assign the 2-morphism

Hc HFgc F ′
gHc F ′

gHFhc F ′
gF

′
hHc

HFgFhc

HFghc F ′
ghHc

H(Θg)

H(Θgh)

H(Fg(Θh))

Tg(c) Fg(H(Θh)) F ′
g(Th(c))

Pg,h
χ′

g,h(H(c))

Tg(Fh(c))

H(χg,h(c))

H(Πg,h)

Tgh(c)

(2.62)
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• The induced functor sends the modification M to the modification in the diagram

Hc HFec

F ′
eHc

H(Θe)

H(ιc)

ι′
H(c)

Te(c)

H(M)

Nc

(2.63)

It is a straightforward, but tedious to see that (HG(c), HG(Θ), HG(Π), HG(M)) is a
homotopy fixed point in DG.

Definition 2.29. If (f,m) : (c,Θ,Π,M) → (c̃, Θ̃, Π̃, M̃) is a morphism of homotopy
fixed points in CG as in remark 2.21, the induced functor HG is given on 1-morphisms
of homotopy fixed points by HG(f) := H(f), and by

HG(mg) :=

Hc HFgc F ′
gHc

Hc̃ HFg c̃ F ′
gHc̃

H(Θg)

H(f) HFgf

Tg(c)

H(mg)
F ′

gHf
Tg(f)

H(Θ̃g) Tg(c̃)

(2.64)

Definition 2.30. If (f,m) and (ξ, n) are two 1-morphisms of homotopy fixed points in
CG, and σ : ((f,m) → (ξ, n)) is a 2-morphism of homotopy fixed points as in remark
2.23, the induced functor on 2-morphisms is given by HG(σ) := H(σ).

Having this language available allows one to prove the following:

Remark 2.31 ([BGM17, Theorem 3.1]). Let G be a finite group acting on a strict
2-category C. Then, C is G-equivalent to a 2-category with a strict G-action.

However, in the remainder of this thesis we will consider actions by topological groups,
which cannot be easily strictified in this manner.

2.4. Computing homotopy fixed points
In this section, we compute the bicategory of homotopy fixed points of a certain SO(2)-
action on an arbitrary bicategory. Applying the description of homotopy fixed points
in remark 2.20 to the trivial action of the topological group SO(2) on an arbitrary
bicategory yields theorem 2.35. Specifying the bicategory in question to be the maximal
subgroupoid K (Alg2) of the fully-dualizable objects of the Morita-bicategory then shows
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

in corollary 2.36 that homotopy fixed points of the trivial SO(2)-action on K (Algfd
2 ) are

given by semisimple symmetric Frobenius algebras.
We begin by defining an SO(2)-action on an arbitrary bicategory, starting from a

pseudo-natural transformation of the identity functor on C.

Definition 2.32. Let C be a bicategory, and let α : idC → idC be a pseudo-natural
equivalence of the identity functor on C. Since Π2(SO(2)) is equivalent to the bicategory
with one object, Z worth of morphisms, and only identity 2-morphisms, we may define
an SO(2)-action ρ : Π2(SO(2))→ Aut(C) by the following data:

• for every group element g ∈ SO(2), we assign the identity functor of C,

• for the generator 1 ∈ Z, we assign the pseudo-natural transformation of the identity
functor given by α.

• Since there are only identity 2-morphisms in Z, we have to assign these to identity
2-morphisms in C.

• For composition of 1-morphisms, we assign the identity modifications ρ(a+ b) :=
ρ(a) ◦ ρ(b).

• In order to make ρ into a monoidal 2-functor, we have to assign additional data
which we can choose to be trivial. In detail, we set ρ(g ⊗ h) := ρ(g) ⊗ ρ(h), and
ρ(e) := idC . Finally, we choose ω, γ and δ as in equations (2.31), (2.32) and (2.33)
to be identities.

Our main example is the action of the Serre automorphism on the core of fully-
dualizable objects:

Example 2.33. If C is a symmetric monoidal bicategory, consider the maximal sub-
groupoid K (Cfd) of fully-dualizable objects of C. By proposition 4.9, the Serre auto-
morphism defines a pseudo-natural equivalence of the identity functor on K (Cfd). By
definition 2.32, we obtain an SO(2)-action on K (Cfd), which we denote by ρS . We
will show that the Serre automorphism is actually a monoidal natural transformation,
so that we obtain a monoidal SO(2)-action. The explicit description of the bicategory
of homotopy fixed points in the next theorem also shows that CSO(2) is a symmetric
monoidal bicategory if the original bicategory C was assumed to be symmetric monoidal.

The next theorem computes the bicategory of homotopy fixed points CSO(2) of the
action in definition 2.32. This theorem generalizes [HSV17, Theorem 4.1], which only
computes the bicategory of homotopy fixed points of the trivial SO(2)-action.

Theorem 2.34. Let C be a bicategory, and let α : idC → idC be a pseudo-natural
equivalence of the identity functor on C. Let ρ be the SO(2)-action on C as in definition
2.32. Then, the bicategory of homotopy fixed points CSO(2) is equivalent to the bicategory
with

• objects: (c, λ) where c is an object of C and λ : αc → idc is a 2-isomorphism,
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• 1-morphisms (c, λ) → (c′, λ′) in CG are given by 1-morphisms f : c → c′ in C, so
that the diagram

αc′ ◦ f f ◦ αc f ◦ idc

idc ◦ f f

λ′∗idf

αf idf ∗λ

(2.65)

commutes,

• 2-morphisms of CSO(2) are given by 2-morphisms in C.

Proof. First, notice that we do not require any conditions on the 2-morphisms of CSO(2).
This is due to the fact that π2(SO(2)) is trivial. Hence, all naturality conditions with
respect to 2-morphisms in Π2(SO(2)) are automatically fulfilled.
In order to prove the theorem, we need to explicitly unpack the definition of the

bicategory of homotopy fixed points CG. This is done in remark 2.20. The idea of the
proof is to show that the forgetful functor which on objects of CG forgets the data Θ, Π
and M is an equivalence of bicategories. In order to show this, we need to analyze the
bicategory of homotopy fixed points. We start with the objects of CG.
By definition, a homotopy fixed point of this action consists of

• an object c of C,

• a 1-equivalence Θ : c→ c,

• for every n ∈ Z, an invertible 2-morphism Θn : αnc ◦ Θ → Θ ◦ idc so that (Θ,Θn)
fulfill the axioms of a pseudo-natural transformation,

• a 2-isomorphism Π : Θ ◦Θ→ Θ which obeys the modification square,

• another 2-isomorphism M : Θ→ idc,

so that the following equations hold: equation (2.42) demands that

Π ◦ (idΘ ∗Π) = Π ◦ (Π ∗ idΘ), (2.66)

whereas equation (2.43) demands that Π is equal to the composition of 2-morphisms

Θ ◦Θ idΘ∗M−−−−→ Θ ◦ idc ∼= Θ, (2.67)

and finally equation (2.44) tells us that Π must also be equal to the composition

Θ ◦Θ M∗idΘ−−−−→ idc ◦Θ ∼= Θ. (2.68)

Hence Π is fully specified by M . An explicit calculation using the two equations above
then confirms that equation (2.66) is automatically fulfilled. Indeed, by composing with
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2. Frobenius algebras and homotopy fixed points of group actions on bicategories

Π−1 from the right, it suffices to show that idΘ ∗ Π = Π ∗ idΘ. Suppose for simplicity
that C is a strict 2-category. Then,

idΘ ∗Π = idΘ ∗ (M ∗ idΘ) by equation (2.68)
= (idΘ ∗M) ∗ idΘ

= Π ∗ idΘ by equation (2.67).
(2.69)

Adding appropriate associators shows that this is true in a general bicategory.
Note that by using the modificationM , the 2-morphism Θn : αcn → Θ◦ idc is equivalent

to a 2-morphism λn : αc → idc. Here, αnc is the n-times composition of 1-morphism αc.
Indeed, define λn by setting

λn :=
(
αc ∼= αc ◦ idc

idαc∗M−1
−−−−−−→ αc ◦Θ Θn−−→ Θ ◦ idc ∼= Θ M−→ idc

)
. (2.70)

In a strict 2-category, the fact that Θ is a pseudo-natural transformation requires that
λ0 = idc and that λn = λ1 ∗ · · · ∗ λ1. In a bicategory, similar equations hold by adding
coherence morphisms. Thus, λn is fully determined by λ1. In order to simplify notation,
we set λ := λ1 : αc → idc.

A 1-morphism of homotopy fixed points (c,Θ,Θn,Π,M)→ (c′,Θ′,Θ′n,Π′,M ′) consists
of:

• a 1-morphism f : c→ c′,

• an invertible 2-morphism m : f ◦Θ→ Θ′ ◦ f which fulfills the modification square.
Note that m is equivalent to a 2-isomorphism m : f → f ′ which can be seen by
using the 2-morphism M .

The condition due to equation (2.47) demands that the following 2-isomorphism

f ◦Θ idf∗M−−−−→ f ◦ idc ∼= f (2.71)

is equal to the 2-isomorphism

f ◦Θ m−→ Θ′ ◦ f M ′∗idf−−−−→ idc′ ◦ f ∼= f (2.72)

and thus is equivalent to the equation

m =
(
f ◦Θ idf∗M−−−−→ f ◦ idc ∼= f ∼= idc′ ◦ f

M ′−1∗idf−−−−−−→ Θ′ ◦ f
)
. (2.73)

Thus, m is fully determined by M and M ′. The condition due to equation (2.48) reads

m ◦ (idf ∗Π) = (Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ) (2.74)
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and is automatically satisfied, as an explicit calculation confirms: indeed, if C is a strict
2-category we have that

(Π′ ∗ idf ) ◦ (idΘ′ ∗m) ◦ (m ∗ idΘ)

= (Π′ ∗ idf ) ◦
[
idΘ′ ∗ (M ′−1 ∗ idf ◦ idf ∗M)

]
◦
[
(M ′−1 ∗ idf ◦ idf ∗M) ∗ idΘ

]

= (Π′ ∗ idf ) ◦ (idΘ′ ∗M ′−1 ∗ idf ) ◦ (idΘ′ ∗ idf ∗M)
◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗M ∗ idΘ)

= (Π′ ∗ idf ) ◦ (Π′−1 ∗ idf ) ◦ (idΘ′ ∗ idf ∗M) ◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗Π)
= (idΘ′ ∗ idf ∗M) ◦ (M ′−1 ∗ idf ∗ idΘ) ◦ (idf ∗Π)
= (M−1 ∗ idf ) ◦ (idf ∗M) ◦ (idf ∗Π)
= m ◦ (idf ∗Π)

as desired. Here, we have used equation (2.73) in the first and last line, and equations
(2.67) and (2.68) in the third line. Adding associators shows that this is true for an
arbitrary bicategory.
Now, it suffices to look at the modification square of m in equation (2.49). This

condition is equivalent to the commutativity of the diagram

αc′ ◦ f ◦ Θ f ◦ αc ◦ Θ f ◦ Θ

αc′ ◦ Θ′ ◦ f Θ′ ◦ f

idαc′ ∗m

αf∗idΘ idf∗Θ1

m

Θ′
1∗idf

(2.75)

Substituting m as in equation (2.73) and Θ1 for λ := λ1 as defined in equation (2.70),
one confirms that this diagram commutes if and only if the diagram in equation (2.65)
commutes.
If (f,m) and (g, n) are 1-morphisms of homotopy fixed points, a 2-morphism of ho-

motopy fixed points consists of a 2-isomorphism β : f → g in C. The condition coming
from equation (2.50) then demands that the diagram

f ◦ Θ Θ′ ◦ f

g ◦ Θ Θ′ ◦ g

m

β∗idΘ idΘ′∗β

n

(2.76)

commutes. Using the fact that both m and n are uniquely specified by M and M ′,
one quickly confirms that this diagram commutes automatically. Indeed, suppose for
simplicity that C is a strict 2-category. Composing diagram (2.76) with M ′ ∗ idg from
the left and with idf ∗M−1 yields after simplifying and using equation (2.73) to replace
m and n

(M ′ ∗M−1) ◦ (idΘ′ ∗ α) ◦ (M ′−1 ∗M) = α ∗ idΘ. (2.77)
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This equation is always fulfilled since α is a 2-morphism between f and g.
Our detailed analysis of the bicategory CG shows that the forgetful functor U which

forgets the data Θ,M , and Π on objects and assigns Θ1 to λ, which forgets the datam on
1-morphisms, and which is the identity on 2-morphisms is an equivalence of bicategories.
Indeed, let (c, λ) be an object in the strictified homotopy fixed point bicategory. Choose
Θ := idc, M := idΘ and Π as in equation (2.67). Then, U(c,Θ,M,Π, λ) = (c, λ). This
shows that the forgetful functor is essentially surjective on objects. Since m is fully
determined by M and M ′, it is clear that the forgetful functor is essentially surjective
on 1-morphisms. Since (2.76) commutes automatically, the forgetful functor is bijective
on 2-morphisms and thus an equivalence of bicategories.

Let us first apply this theorem to the trivial action: by choosing the pseudo-natural
transformation α in theorem 2.34 to be the identity transformation, we obtain the
following theorem about homotopy fixed points of the trivial SO(2)-action on an arbitrary
bicategory.

Theorem 2.35. Let C be a bicategory, and let ρ : Π2(SO(2)) → Aut(C) be the trivial
SO(2)-action on C. Then, the bicategory of homotopy fixed points CSO(2) is equivalent
to the bicategory where

• objects are given by pairs (c, λ) where c is an object of C, and λ : idc → idc is a
2-isomorphism,

• 1-morphisms (c, λ)→ (c′, λ′) are given by 1-morphisms f : c→ c′ in C, so that the
diagram of 2-morphisms

f f ◦ idc f ◦ idc

idc′ ◦ f idc′ ◦ f f

∼

∼

idf ∗λ

∼

λ′∗idf
∼

(2.78)

commutes, where ∗ denotes horizontal composition of 2-morphisms. The unlabeled
arrows are induced by the canonical coherence isomorphisms of C.

• 2-morphisms of CSO(2) are given by 2-morphisms α : f → f ′ in C.

In the following, we specialise theorem 2.35 to the case of symmetric Frobenius algebras
and Calabi-Yau categories.

2.4.1. Symmetric Frobenius algebras as homotopy fixed points
In order to state the next corollary, recall that the fully-dualizable objects of the Morita
bicategory Alg2 consisting of algebras, bimodules and intertwiners are precisely given
by the finite-dimensional, semisimple algebras, cf. [SP09]. Furthermore, recall that the

42



2.4. Computing homotopy fixed points

core K (C) of a bicategory C consists of all objects of C, the 1-morphisms are given by
1-equivalences of C, and the 2-morphisms are restricted to be isomorphisms.

Corollary 2.36. Let C = K (Algfd
2 ), and consider the trivial SO(2)-action on C. Then

CSO(2) is equivalent to the bicategory of finite-dimensional, semisimple symmetric Frobe-
nius algebras Frob, as defined in definition 2.11. This implies a bijection of isomorphism-
classes of semisimple symmetric Frobenius algebras and homotopy fixed points of the
trivial SO(2)-action on K (Algfd

2 ).

Proof. Indeed, by theorem 2.35, an object of CSO(2) is given by a finite-dimensional
semisimple algebra A, together with an isomorphism of Morita contexts idA → idA. By
definition, a morphism of Morita contexts consists of two intertwiners of (A,A)-bimodules
λ1, λ2 : A→ A. The diagrams in definition 2.4 then require that λ1 = λ−1

2 . Thus, λ2 is
fully determined by λ1. Let λ := λ1. Since λ is an automorphism of (A,A)-bimodules,
it is fully determined by λ(1A) ∈ Z(A). This gives A, by lemma 2.9, the structure of a
symmetric Frobenius algebra.

We analyze the 1-morphisms of CSO(2) in a similar way: if (A, λ) and (A′, λ′) are finite-
dimensional semisimple symmetric Frobenius algebras, a 1-morphism in CSO(2) consists
of a Morita contextM : A→ A′ so that (2.78) commutes.
Suppose that M = (A′MA,ANA′ , ε, η) is a Morita context, and let a := λ(1A) and

a′ := λ′(1A′). Then, the condition that (2.78) commutes demands that

m.a = a′.m

a−1.n = n.a′−1 (2.79)

for every m ∈ M and every n ∈ N . By proposition 2.10 this condition is equivalent to
the fact that the Morita context is compatible with the Frobenius forms as in definition
2.6.

One now shows by hand that the 2-morphisms of CSO(2) and Frob stand in bijection
which proves the statement of the theorem.

Remark 2.37. We have just shown that homotopy fixed points of the trivial SO(2)-
action on K (Algfd

2 ) are symmetric Frobenius algebras. However, this equivalence is not
canonical, as it relies on lemma 2.9 by choosing a Frobenius form in the first place. The
reason the equivalence of corollary 2.36 is not canonical comes from choosing the trivial
SO(2)-action. We will construct an SO(2)-action on the core of fully-dualizable objects
of an arbitrary bicategory in chapter 4 given by the Serre automorphism. In the example
of Alg2, the action of the Serre-automorphism will be trivializable and thus agree with
the trivial action. However, there is a canonical equivalence between homotopy fixed
points of the Serre-automorphism on K (Algfd

2 ) and symmetric Frobenius algebras. Thus,
the choice of Frobenius form we had to make in corollary 2.36 comes from considering
the trivial action instead of the action of the Serre automorphism.

Remark 2.38. In [Dav11, Proposition 3.3.2], the bigroupoid Frob of corollary 2.36 is
shown to be equivalent to the bicategory of 2-functors Fun(B2Z,K (Algfd

2 )). Assuming a
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homotopy hypothesis for bigroupoids, as well as an equivariant homotopy hypothesis in
a bicategorical framework, this bicategory of functors should agree with the bicategory
of homotopy fixed points of the trivial SO(2)-action on K (Algfd

2 ) in corollary 2.36.
Concretely, one might envision the following strategy for an alternative proof of corollary
2.36, which should roughly go as follows:

1. By [Dav11, Proposition 3.3.2], there is an equivalence of bigroupoids Frob ∼=
Fun(B2Z,K (Algfd

2 )).

2. Then, use the homotopy hypothesis for bigroupoids. By this, we mean that the
fundamental 2-groupoid should induce an equivalence of tricategories

Π2 : Top≤2 → BiGrp (2.80)

Here, the right hand-side is the tricategory of bigroupoids, whereas the left hand
side is a suitable tricategory of 2-types. Such an equivalence of tricategories induces
an equivalence of bicategories

Fun(B2Z,K (Algfd
2 )) ∼= Π2(Hom(BSO(2), X)), (2.81)

where X is a 2-type representing the bigroupoid K (Algfd
2 ).

3. Now, consider the trivial homotopy SO(2)-action on the 2-type X. Using the fact
that we work with the trivial SO(2)-action, we obtain a homotopy equivalence
Hom(BSO(2), X) ∼= XhSO(2), cf. [Dav11, Page 50].

4. In order to identify the 2-type XhSO(2) with our definition of homotopy fixed points,
we additionally need an equivariant homotopy hypothesis: namely, we need to use
that a homotopy action of a topological group G on a 2-type Y is equivalent to
a G-action on the bicategory Π2(Y ) as in definition 2.14. Furthermore, we also
need to assume that the fundamental 2-groupoid is G-equivariant, namely that
there is an equivalence of bicategories Π2(Y hG) ∼= Π2(Y )G. Using this equivariant
homotopy hypothesis for the trivial SO(2)-action on the 2-type X then should give
an equivalence of bicategories

Π2(XhSO(2)) ∼= Π2(X)SO(2) ∼= (K (Algfd
2 ))SO(2). (2.82)

Combining all four steps gives an equivalence of bicategories between the bigroupoid of
Frobenius algebras and homotopy fixed points:

Frob ∼= Fun(B2Z,K (Algfd
2 )) by (1)

∼= Π2(Hom(BSO(2), X)) by (2)
∼= Π2(XhSO(2)) by (3)
∼= (K (Algfd

2 ))SO(2) by (4).

(2.83)

In order to turn this argument into a full proof, we would need to provide a proof of
the homotopy hypothesis for bigroupoids in equation (2.80), as well as a proof for the
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equivariant homotopy hypothesis in equation (2.82). While the homotopy hypothesis
as formulated in equation (2.80) is widely believed to be true, we are not aware of a
proof of this statement in the literature. A step in this direction is [MS93], which proves
that the homotopy categories of 2-types and 2-groupoids are equivalent. We however
really need the full tricategorical version of this statement as in equation (2.80), since we
need to identify the (higher) morphisms in BiGrp with (higher) homotopies. In [Gur11],
Gurski sets up a tricategory of topological spaces and shows that the fundamental 2-
groupoid is indeed a trifunctor. Notice that statements of this type are rather subtle,
see [KA91, Sim98].
While certainly interesting and conceptually illuminating, a proof of the equivariant

homotopy hypothesis in a bicategorical language in equation (2.82) is beyond the scope
of this thesis, which aims to give an algebraic description of homotopy fixed points on
bicategories. Although an equivariant homotopy hypothesis for∞-groupoids follows from
[Lur09a, Theorem 4.2.4.1], we are not aware of a proof of the bicategorical statement in
equation (2.82). We also note that an equivariant homotopy hypothesis for strict group
actions of discrete groups on ordinary categories has been proven in [BMO+15] in the
language of model categories.
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3. An equivalence between Frobenius
algebras and Calabi-Yau categories

In this chapter, which is based on results of [Hes16], we show that the bigroupoid Frob
of separable, symmetric Frobenius algebras over an algebraically closed field and the
bigroupoid CY of Calabi-Yau categories are equivalent. To this end, we construct a trace
on the category of finitely-generated representations of a separable symmetric Frobenius
algebra, given by the composite of the Frobenius form with the Hattori-Stallings trace.
The second part of this chapter deals with relating the equivalence of bicategories

Frob ∼= CY of theorem 3.37 with homotopy fixed points. Recall that in chapter 2, we
identified the bigroupoid Frob of Frobenius algebras with homotopy fixed points of the
trivial SO(2)-action on the bigroupoid of fully-dualizable objects of the Morita bicategory
Alg2. Here, we consider the trivial SO(2)-action on the fully-dualizable objects of the
bigroupoid of 2-vector spaces Vect2, and show in corollary 3.12 that homotopy fixed
points of this action are given by Calabi-Yau categories.
Now recall that in section 2.3, we defined the concept of “equivariantization” of a

2-functor between bicategories endowed with a G-action, and gave an explicit description
of the induced 2-functor on homotopy fixed points. As an example, we endow both Alg2
and Vect2 with the trivial SO(2)-action and compute the induced functor RepSO(2) on
homotopy fixed points. Theorem 3.41 then shows that this induced 2-functor is naturally
isomorphic to the 2-functor Repfg constructed in section 3.2, and thus the diagram

(K (Algfd
2 ))SO(2) (K (Vectfd

2 ))SO(2)

Frob CY

RepSO(2)

∼ ∼

Repfg

(3.1)

commutes up to a pseudo-natural isomorphism. Here, the unlabeled equivalences are
due to corollary 2.36 and corollary 3.12.
The chapter is organized as follows: in section 3.1, we recall the definition of the

bicategory CY of finitely semisimple Calabi-Yau categories, as originally considered
in [MS06]. In corollary 3.12 we show that the bicategory of Calabi-Yau categories is
equivalent to the bicategory of homotopy fixed points of the trivial SO(2)-action on the
core of fully-dualizable objects of Vect2, which is the bicategory of finite, linear categories.
In section 3.2, we construct a weak 2-functor Repfg : Frob → CY which sends a

separable symmetric Frobenius algebra to its category of finitely-generated modules.
We endow this category of representations with the Calabi-Yau structure given by the
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composite of the Frobenius form with the Hattori-Stallings trace in definition 3.21, and
show in theorem 3.37 that this functor is an equivalence of bicategories. Section 3.3 is
devoted to the proof of theorem 3.37.
Throughout the chapter we use the following conventions: all algebras considered

will be over an algebraically closed field K. All Frobenius algebras appearing will be
symmetric.

3.1. Calabi-Yau categories
The main player of this section are Calabi-Yau categories, which we define below. Let
K be a field, and let Vect be the category of K-vector spaces. Recall the following
terminology: a linear category is an abelian category with a compatible enrichment over
Vect. A linear functor is an additive functor which is also a functor of Vect-enriched
categories.

Definition 3.1. Following [BDSPV15, Appendix A], we call a linear category C finite,
if

1. there are only finitely many isomorphism classes of simple objects of C,

2. the category C has enough projectives,

3. every object of C has finite length, and

4. the Hom-spaces of C are finite-dimensional.

Definition 3.2. Let K be a field. A Calabi-Yau category (C, trC) is a K-linear, finite,
semisimple category C, together with a family of K-linear maps

trCc : EndC(c)→ K (3.2)

for each object c of C, so that:

1. for each f ∈ HomC(c, d) and for each g ∈ HomC(d, c), we have that

trCc (g ◦ f) = trCd(f ◦ g), (3.3)

2. for all objects c and d of C, the induced pairing

〈− ,−〉C : HomC(c, d)⊗K HomC(d, c)→ K
f ⊗ g 7→ trCc (g ◦ f)

(3.4)

is a non-degenerate pairing of K-vector spaces.

We will call the collection of morphisms trCc a trace on C. Note that an equivalent way
of defining a Calabi-Yau structure on a linear category C is given by specifying a natural
isomorphism

HomC(c, d)→ HomC(d, c)∗, (3.5)
cf. [Sch13, Proposition 4.1].
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Remark 3.3. The space of all endomorphisms of an object of a Calabi-Yau category
has got the structure of a semisimple symmetric Frobenius algebra.

Remark 3.4. The definition of a Calabi-Yau category generalizes the notion of a trace
in a symmetric monoidal category. A nice exposition of traces in symmetric monoidal
categories can be found in [PS14]. A generalization of traces to bicategories using the
theory of shadows also has appeared in [PS13, PS16].

We begin with two preparatory lemmas:

Lemma 3.5. Let (C, trC) be a Calabi-Yau category. Then, the trace is automatically
additive: for each f ∈ EndC(x) and each g ∈ EndC(y), we have that

trCx⊕y(f ⊕ g) = trCx(f) + trCy(g). (3.6)

Proof. Denote by px : x⊕ y ↔ x : ιx and by py : x⊕ y ↔ y : ιy the canonical projections
and inclusions. Then,

idx⊕y = ιx ◦ px + ιy ◦ py. (3.7)
We calculate using the linearity and cyclicity of the trace:

trCx⊕y(f + g) = trCx⊕y((f + g) ◦ (ιx ◦ px + ιy ◦ py))
= trCx⊕y((f + g) ◦ ιx ◦ px) + trCx⊕y((f + g) ◦ ιy ◦ py)
= trCx(px ◦ (f + g) ◦ ιx) + trCy(py ◦ (f + g) ◦ ιy)
= trCx(f) + trCy(g).

(3.8)

Adapting the proof of [Sta65, Section 1] to the setting of linear categories proves the
following lemma:

Lemma 3.6. Let (C, trC) be a Calabi-Yau category, and let x1, . . . , xn be objects of C.
Let x := ⊕ni=1xi, and let f ∈ EndC(x). Since C is an additive category, we may write the
morphism f in matrix form as

f =



f11 . . . f1n
...

...
fn1 . . . fnn


 (3.9)

where the entries fij are morphisms fij ∈ HomC(xj , xi). Then,

trCx(f) =
n∑

i=1
trCxi(fii). (3.10)

Proof. First suppose that f is a block matrix of the form

f =
(

0p X
0 0q

)
. (3.11)
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3. An equivalence between Frobenius algebras and Calabi-Yau categories

Define an endomorphism J of x by the square matrix

J :=
(
Ip 0
0 0q

)
(3.12)

with Ip the diagonal p× p-matrix with diagonal entries (idx1 , . . . , idxp). Then,

f = J ◦ f = J ◦ f − f ◦ J, (3.13)

and by the symmetry and the linearity the trace we then have

trCx(f) = trCx(J ◦ f − f ◦ J) = trCx(J ◦ f)− trCx(J ◦ f) = 0. (3.14)

Similarly, one shows that if

f =
(

0p 0
X 0q

)
, (3.15)

then trCx(f) = 0. Combining these two results and using the linearity of the trace again
shows that

trCx

((
0p X
Y 0q

))
= 0. (3.16)

Now, suppose that f is an arbitrary block matrix of the from

f =
(
Ap X
Y Bq

)
, (3.17)

where Ap ∈ EndC(xp) and Bq ∈ EndC(xq), where xp = ⊕ni=1xi and xq = ⊕nj=p+1xj . Then,

trCx(f) = trCx

((
Ap 0
0 0q

))
+ trCx

((
0p 0
0 Bq

))
(by equation (3.16))

= trCxp (Ap) + trCxq(Bq) (by additivity).
(3.18)

Now, the original claim follows inductively from the last equation.

We now define functors between Calabi-Yau categories:

Definition 3.7. Let (C, trC) and (D, trD) be two Calabi-Yau categories. A linear functor
F : C → D is called a Calabi-Yau functor, if

trCc (f) = trDF (c)(F (f)) (3.19)

for each object c ∈ C and each f ∈ EndC(c). Equivalently, one may require that

〈Ff, Fg〉D = 〈f, g〉C (3.20)

for every pair of morphisms f : c→ c′ and g : c′ → c in C.
If F , G : C → D are two Calabi-Yau functors between Calabi-Yau categories, a natural

transformation of Calabi-Yau functors is just an ordinary natural transformation.
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3.1. Calabi-Yau categories

Definition 3.8. Let CY be the bigroupoid consisting of

objects: Calabi-Yau categories, which are by definition finite and semisimple,

1-morphisms: equivalences of Calabi-Yau categories as in definition 3.7,

2-morphisms: natural isomorphisms.

Note that CY has got a symmetric monoidal structure, given by the Deligne tensor
product of abelian categories, cf. [Del90]. We begin by showing some basic properties of
Calabi-Yau categories.

Lemma 3.9. Let F , G : C → D be two functors between two Calabi Yau categories
(C, trC) and (D, trD). If F and G are naturally isomorphic, then F is a Calabi-Yau
functor if and only if G is a Calabi-Yau functor.

Proof. Let x be an object of C, and let f ∈ EndC(x). Let η : F ⇒ G be a natural
isomorphism. Since η is natural, the following diagram commutes:

F (x) F (x)

G(x) G(x)

F (f)

ηx ηx

G(f)

(3.21)

If F is a Calabi-Yau functor, then

trCx(f) = trDF (x)(F (f)) (since F is Calabi-Yau)
= trDF (x)(η−1

x ◦G(f) ◦ ηx) (since η is natural)
= trDG(x)(G(f)) (since the trace is symmetric).

(3.22)

This shows that G is a Calabi-Yau functor.
If G is a Calabi-Yau functor, then

trCx(f) = trDG(x)(G(f)) (since G is Calabi-Yau)
= trDG(x)(ηx ◦ F (f) ◦ η−1

x ) (since η is natural)
= trDF (x)(F (f)) (since the trace is symmetric).

(3.23)

This shows that F is a Calabi-Yau functor.

Lemma 3.10. Let (C, trC) and (D, trD) be two Calabi-Yau categories, and let

F : C � D : G (3.24)

be an equivalence of linear categories. Then F is a Calabi-Yau functor if and only if G
is a Calabi-Yau functor.
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3. An equivalence between Frobenius algebras and Calabi-Yau categories

Proof. Let η : FG⇒ idD and ν : GF ⇒ idD be natural isomorphisms.
If F is a Calabi-Yau functor and f ∈ EndD(x) for some x ∈ D, then

trDx (f) = trDx (ηx ◦ FG(f) ◦ η−1
x ) (since η is natural)

= trDFG(x)(FG(f)) (since the trace is symmetric)
= trCG(x)(G(f)) (since F is Calabi-Yau).

(3.25)

Hence, G is Calabi-Yau.
If on the other hand G is already Calabi-Yau and f ∈ EndC(x) for some x ∈ C, then

trCx(f) = trCx(ν ◦GF (f) ◦ ν−1) (since ν is natural)
= trCGF (x)(GF (f)) (since the trace is symmetric)
= trDF (x)(F (f)) (since G is Calabi-Yau).

(3.26)

This shows that F is Calabi-Yau.

Next, we show that every finite, linear, semisimple category admits the structure
of a Calabi-Yau category. This is analogous to the fact that every finite-dimensional,
semisimple algebra admits the structure of a Frobenius algebra.

Lemma 3.11. Let C be a finite semisimple linear category over an algebraically closed
field K with n simple objects. Then, C has got a structure of a Calabi-Yau category.
Furthermore, the set of Calabi-Yau structures on C stands in bijection to (K∗)n.

Proof. If C has got the structure of a Calabi-Yau category, the trace trC will be additive by
lemma 3.6. Hence, the trace trC is uniquely determined by the endomorphism algebras of
the simple objects. If X is a simple object of C, Schur’s lemma shows that EndC(X) ∼= K
as vector spaces, since the ground field K is algebraically closed and C is finite. One now
checks that choosing

trCX : EndC(X) ∼= K→ K (3.27)
to be the identity for every simple object X indeed defines the structure of a Calabi-Yau
category on C. This shows the first claim.
Now note that for a simple object X, due to its symmetry the trace trCX is unique

up to multiplication with an invertible central element in Z(EndC(X)) ∼= K. Thus, the
trace trCX on EndC(X) is unique up to a non-zero element in K. Taking direct sums now
shows the second claim.

3.1.1. Calabi-Yau categories as homotopy fixed points
We now apply theorem 2.35 which computes homotopy fixed points of the trivial SO(2)-
action on an arbitrary bicategory to Calabi-Yau categories. Let Vect2 be the bicategory
consisting of linear, abelian categories, linear functors, and natural transformations. The
fully-dualizable objects of Vect2 are then precisely the finite, semisimple linear categories
as in definition 3.1, cf. [BDSPV15, Appendix A]. As a corollary to theorem 2.35 we
obtain:
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Corollary 3.12. Let K be an algebraically closed field. Let C = K (Vectfd
2 ), the core

of fully-dualizable objects of Vect2, and consider the trivial SO(2)-action on C. Then
CSO(2) is equivalent to CY, the bicategory of Calabi-Yau categories.

Proof. Indeed, by theorem 2.35 a homotopy fixed point of the trivial SO(2)-action on
K (Vectfd

2 ) consists of a finite, linear, semisimple category C, together with a natural
isomorphism λ : idC → idC . Let X1, . . . , Xn be the simple objects of C. Then, the natural
transformation λ : idC → idC is fully determined by giving an endomorphism λX : X → X
for every simple object X. Since λ is an invertible natural transformation, the λX must
be central invertible elements in EndC(X). As we work over an algebraically closed field,
Schur’s Lemma shows that EndC(X) ∼= K as vector spaces. Hence, the structure of a
natural transformation of the identity functor of C boils down to choosing a non-zero
scalar for each simple object of C. This structure is equivalent to giving C the structure
of a Calabi-Yau category by lemma 3.11.
Now note that by equation (2.78) in theorem 2.35, 1-morphisms of homotopy fixed

points consist of equivalences of categories F : C → C′ so that F (λX) = λ′F (X) for every
object X of C. This is exactly the condition saying that F must a Calabi-Yau functor.
Finally, one sees that 2-morphisms of homotopy fixed points are given by natural

isomorphisms of Calabi-Yau functors.

3.2. Constructing an equivalence between Frobenius algebras
and Calabi-Yau categories

The purpose of this section is to construct a weak 2-functor Repfg : Frob→ CY, which
sends a separable, symmetric Frobenius algebra to its category of finitely generated
modules, equipped with the additional structure of a Calabi-Yau category, which comes
from the Frobenius form. This weak 2-functor will turn out to be an equivalence of
bigroupoids. The construction uses standard material about separable algebras and
projective modules, which we recall below. For further background, we refer to [Pie82],
[SY11], [AW92], or [Lam12].

3.2.1. Separable algebras and projective modules
We begin by recalling some standard material about separable algebras and finitely-
generated modules. In the following, R will always be a commutative, unital ring. All
algebras considered will be associative and unital. If A is an R-algebra, the enveloping
algebra Ae := Aop⊗A is an Ae-module in a natural way. One way of defining separability
of an algebra is as follows:

Definition 3.13. An R-algebra A is said to be separable, if A is a projective Ae module.

An equivalent way of encoding separability goes via the multiplication µ : A⊗Aop → A:

Proposition 3.14 ([Pie82]). Let A be an R-algebra. Then, the following are equivalent:

1. The algebra A is separable.
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3. An equivalence between Frobenius algebras and Calabi-Yau categories

2. The sequence
0→ kerµ→ Ae

µ−→ A→ 0 (3.28)

is split exact.

3. There is an e ∈ Ae with µ(e) = 1A and xe = ex for all x ∈ A.

We will call the element e ∈ Ae of the last proposition a separability idempotent. One
reason we are interested in separable algebras is due to their nice categorical properties.
Following the proof of proposition 1.5 in [Jan66], we show the following lemma.

Lemma 3.15. Let A be separable R-algebra. If P is an A-module which is projective as
an R-module, then P is projective as an A-module.

Proof. Let P be a projective R-module, and let

0→M
α−→ N → P → 0 (3.29)

be an exact sequence of A-modules. Since P is a projective R-module, there is an
f ∈ HomR(N,M), so that f ◦α = idM . Let e = ∑n

i=1 xi⊗ yi ∈ A⊗R A be a separability
idempotent for A. Recall that this means that

n∑

i=1
xiyi = 1A, (3.30)

and
(a⊗ 1A)e = (1A ⊗ a)e (3.31)

for all a ∈ A.
Now, define a map f ′ : N →M as

f ′(n) :=
n∑

i=1
xi.f(yi.n). (3.32)

We claim that f ′ is a morphism of A-modules which splits the exact sequence in equation
(3.29). Indeed, since

n∑

i=1
(axi)⊗ yi =

n∑

i=1
xi ⊗ (yia) (3.33)

by equation (3.31), applying f(−.n) to the second tensorand yields
n∑

i=1
axi ⊗ f(yi.n) =

n∑

i=1
xi ⊗ f(yia.n). (3.34)

Therefore,

a.f ′(n) =
n∑

i=1
axi.f(yi.n) =

n∑

i=1
xi.f(yia.n) = f ′(a.n). (3.35)

This shows that f ′ is a morphism of A-modules.
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Furthermore,

(f ′ ◦ α)(m) =
n∑

i=1
xi.f(yi.α(m)) =

n∑

i=1
xi.f(α(yi.m)) =

n∑

i=1
xiyi.m = m. (3.36)

This shows that the exact sequence splits as A-modules.

Corollary 3.16. If A is a separable algebra over a field K, then every module over A is
projective. Hence, A is semisimple.

Proof. Since K is a field, every K-module M is projective. By lemma 3.15, M is also
projective as an A-module.

Another nice property of separable algebras is that they are finitely generated:

Proposition 3.17 ([Pie82]). Let A be a separable R-algebra that is projective as an
R-module. Then A is a finitely-generated R-module.

Corollary 3.18. Any separable algebra over a field is finitely-generated and thus finite-
dimensional.

Proof. This follows from the above proposition since every K-algebra is free as a K-
module and thus projective.

Next, we review the so-called dual basis lemma for projective modules. References for
the following are [Lam12, AW92]. If M is a left A-module, the dual module

M∗ := HomA(M,A) (3.37)

is a right A-module with right action given by (f.a)(m) := f(m).a. These modules admit
a “basis” in the following sense:

Lemma 3.19 (Dual basis lemma). Let R be a commutative ring, let A be a R-algebra,
and let P be a left A-module. The following are equivalent:

1. The module P is finitely generated and projective.

2. There are f1, . . . , fn ∈ P ∗ and p1, . . . , pn ∈ P (sometimes called dual- or projective
basis of P ) so that

x =
n∑

i=1
fi(x).pi (3.38)

for all x ∈ P .

3. The map

ΨP,P : P ∗ ⊗A P → EndA(P )
f ⊗ p 7→ (x 7→ f(x).p)

(3.39)

is an isomorphism of R-modules.
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4. For any other left A-module M , the map

ΨP,M : P ∗ ⊗AM → HomA(P,M)
f ⊗m 7→ (x 7→ f(x).m)

(3.40)

is an isomorphism of R-modules.

Proof. (1)⇒ (2): Suppose that P is projective and finitely generated. Let p1, . . . , pn be
a set of generators for P , and let F be a free module on n generators x1, . . . , xn. Define
an map g : F → P by setting g(xi) := pi for 1 ≤ i ≤ n. Since g is defined on generators,
the map g is a morphism of R-modules which is even surjective, since the pi generate P .
Since P is projective, every epimorphism splits. Thus, there is a morphism of A-

modules h : P → F , so that g ◦ h = idP . Since F is a free finitely-generated A-module
on n generators, it is isomorphic to An. Let πi : F ∼= An → A be the projections, and
define fi := πi ◦ h. Then,

h(a) =
n∑

i=1
fi(a).xi (3.41)

since F is free, and by applying g to equation (3.41), we see that

a = (g ◦ h)(a) =
n∑

i=1
g(fi(a).xi) =

n∑

i=1
fi(a).g(xi) =

n∑

i=1
fi(a).pi (3.42)

for every a ∈ P . This shows (2).
(2)⇒ (1): Suppose that f1, . . . , fn and p1, . . . , pn is a dual basis. Then, the pi generate

P by equation (3.38). Thus, P is finitely generated. As in the proof of (1)⇒ (2), let F
be a free module on generators x1, . . . , xn and define a surjective A-linear map g : F → P
by g(xi) := pi. Now, define a map

h : P → F

x 7→
n∑

i=1
fi(x).xi.

(3.43)

Then, h splits g because

(g ◦ h)(x) = g

(
n∑

i=1
fi(x).xi

)
=

n∑

i=1
fi(x).pi = x. (3.44)

Therefore, P is a direct summand of the free module F and hence projective.
(2)⇒ (4): Let f1, . . . , fn ∈ P ∗ and p1, . . . , pn ∈ P be a projective basis of P as in (2).

We claim: the map
ϕ : HomA(P,M)→ P ∗ ⊗AM

g 7→
n∑

i=1
fi ⊗ g(pi)

(3.45)
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is an inverse to ΨP,M . Indeed,

(ΨP,M ◦ ϕ)(g) = ΨP,M

(
n∑

i=1
fi ⊗ g(pi)

)
= x 7→

n∑

i=1
fi(x).g(pi) = g. (3.46)

The last equality follows by applying g to equation (3.38). On the other hand,

(ϕ ◦ΨP,M )(p∗ ⊗m) = ϕ(x 7→ p∗(x).m) =
n∑

i=1
fi ⊗ p∗(pi).m =

n∑

i=1
fi.p

∗(pi)⊗m

=
n∑

i=1
(x 7→ fi(x).p∗(pi))⊗m = p∗ ⊗m.

(3.47)

In the last equality, we have used that P ∗ is a right A-module. The last equality follows
again by applying p∗ to equation (3.38). This shows that ΨP,M is an isomorphism.

(4)⇒ (3) is trivial, since we may choose M := P .
(3)⇒ (2): Suppose that ΨP,P : P ∗ ⊗A P → EndA(P ) is an isomorphism. Then,

Ψ−1
P,P (idP ) =

n∑

i,j

fi ⊗ pj (3.48)

is a dual basis. Indeed,

n∑

i=1
fi(x).pi = ΨP,P

(
n∑

i=1
fi ⊗ p

)
(x) = idP (x) = x. (3.49)

Corollary 3.20. Let A be a separable algebra over a field K, and let M be a finitely
generated A-module. Then, the map ΨM,M : M∗ ⊗AM → EndA(M) of lemma 3.19 is
an isomorphism of A-modules.

Proof. This follows from the fact that every module over a separable K-algebra is pro-
jective, which is proven in corollary 3.16. Hence, by the first part of lemma 3.19, the
map ΨM,M : M∗ ⊗AM → HomA(M,M) is an isomorphism.

This corollary enables us to define a trace for finitely-generated modules over a sepa-
rable symmetric Frobenius algebra, as the next subsection shows.

3.2.2. A Calabi-Yau structure on the representation category of a Frobenius
algebra

Here, we will show that the category of finitely generated modules over a separable
symmetric Frobenius algebra over an algebraically closed field K has the structure of
a Calabi-Yau category in the sense of definition 3.2, and thus construct the 2-functor
Repfg : Frob→ CY on objects.
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Definition 3.21. Let (A, λ) be a separable symmetric Frobenius algebra over a field K
with Frobenius form λ : A → K. Let M be a finitely-generated left A-module. Denote
by

ev : M∗ ⊗AM → A

f ⊗m 7→ f(m)
(3.50)

the evaluation.
Since M is finitely generated, the map ΨM,M : EndA(M) → M∗ ⊗AM is an isomor-

phism by corollary 3.20. We define a trace trλM : EndA(M)→ K by the composition

trλM : EndA(M)
Ψ−1
M,M−−−−→M∗ ⊗AM ev−→ A

λ−→ K. (3.51)

Remark 3.22. As defined here, the trace trλM is the composition of the Hattori-Stallings
trace with the Frobenius form λ. For more on the Hattori-Stallings trace, see [Hat65],
[Sta65] and [Bas76].

Example 3.23. Let (A, λ) be a separable symmetric Frobenius algebra over a field K.
Suppose that F is a free A-module with basis e1, . . . , en. Then,

trλF (idF ) = nλ(1A). (3.52)

Example 3.24. As a second example, let A := Mn(K) be the algebra of n× n-matrices
over K with Frobenius form λ given by the usual trace of matrices. Then, M := Kn is a
projective (but not free), simple A-module. We claim:

trλM (idM ) = 1. (3.53)

Indeed, let e1, . . . , en be a vector space basis of Kn. This basis also generates Kn as an
A-module. Define for each 1 ≤ i ≤ n a K-linear map f∗i : Kn →Mn(K) = A by setting

f∗i (ek) := δi,1Ek,1, (3.54)

where Ek,1 is the square matrix with (k, 1)-entry given by one and zero otherwise. A
short calculation confirms that the f∗i are even morphisms of A-modules. Indeed, if
M ∈ A, then

(M.f∗i (ek))p,q = δ1,iδ1,qMp.k = (f∗i (M.ek))p,q. (3.55)
Next, we claim that

Ψ−1
M,M =

n∑

i=1
f∗i ⊗ ei ∈M∗ ⊗AM. (3.56)

Indeed,

ΨM,M

(
n∑

i=1
f∗i ⊗ ei

)
(ek) =

n∑

i=1
f∗i (ek).ei

=
n∑

i=1
δi,1Ek,1ei

= Ek,1e1 = ek.

(3.57)
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Thus,

trλM (idM ) = λ

(
n∑

i=1
f∗i (ei)

)
= λ

(
n∑

i=1
Ei,1δ1,i

)
= λ(E1,1) = 1. (3.58)

Next, we show that trλM has indeed the properties of a trace. In order to show that
the trace is symmetric, we need an additional lemma first.

Lemma 3.25. Let A be an K-algebra, and let M and N be left A-modules. Define a
linear map

ξ : (M∗ ⊗A N)× (N∗ ⊗AM)→M∗ ⊗AM
(f ⊗ n, g ⊗m) 7→ f ⊗ g(n).m.

(3.59)

Then, the following diagram commutes:

(M∗ ⊗A N)× (N∗ ⊗AM) M∗ ⊗AM

HomA(M,N)×HomA(N,M) HomA(M,M)

ξ

ΨM,N×ΨN,M ΨM,M

◦

(3.60)

Here, the horizontal map at the bottom is given by composition of morphisms of A-modules
and ΨM,M is defined as in equation (3.40).

Proof. We calculate:

(ΨM,M ◦ ξ)(f ⊗ n, g ⊗m) = Ψ(f ⊗ g(n).m)
= x 7→ f(x)g(n).m.

(3.61)

On the other hand,

ΨM,N (g ⊗m) ◦ΨN,M (f ⊗ n) = (x 7→ g(x).m) ◦ (x 7→ f(x).n) = x 7→ g(f(x).n).m
= x 7→ f(x)g(n).m.

(3.62)

Comparing the right hand-side of equation (3.61) with the right hand-side of equation
(3.62) shows that the diagram commutes.

We are now ready to show that the trace is symmetric:

Lemma 3.26. Let (A, λ) be a separable, symmetric Frobenius algebra over a field K.
Let M and N be finitely-generated A-modules, and let f : M → N and g : N → M be
morphisms of A-modules. Then, the trace is symmetric:

trλM (g ◦ f) = trλN (f ◦ g). (3.63)

Proof. Write
Ψ−1
M,N (f) =

∑

i,j

m∗i ⊗ nj ∈M∗ ⊗A N and

Ψ−1
N,M (g) =

∑

k,l

x∗k ⊗ yl ∈ N∗ ⊗AM.
(3.64)
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We calculate:

trλM (g ◦ f) = (λ ◦ ev ◦Ψ−1
M,M )(g ◦ f)

= (λ ◦ ev)


∑

i,j,k,l

m∗i ⊗ x∗k(nj).yl


 (by lemma 3.25)

= λ


∑

i,j,k,l

m∗i (x∗k(nj).yl)




=
∑

i,j,k,l

λ(x∗k(nj) ·m∗i (yl)).

(3.65)

On the other hand,

trλN (f ◦ g) = (λ ◦ ev ◦Ψ−1
N,N )(f ◦ g)

= (λ ◦ ev)


∑

i,j,k,l

x∗k ⊗m∗i (yl).nj


 (by lemma 3.25)

= λ


∑

i,j,k,l

x∗k(m∗i (yl).nj)




=
∑

i,j,k,l

λ(m∗i (yl) · x∗k(nj)).

(3.66)

Since λ is symmetric, the right hand-sides of equations (3.65) and (3.66) agree. This
shows that the trace is symmetric.

Historically, the Hattori-Stallings trace has been defined by using bases. This is also
possible for the trace in definition 3.21, as the next remark shows.

Remark 3.27. Let (A, λ) be a separable, symmetric Frobenius algebra over a field K,
and let M be a finitely-generated A-module.
If M is a free A-module, we may express the trace in a basis of M : if f ∈ EndA(M),

choose a basis e1, . . . , en of M , and let e∗1, . . . , e∗n be the dual basis. Let (Af )ij :=
e∗i (f(ej)) ∈ A. Then,

trλM (f) = (λ ◦ ev)
(

n∑

i=1
e∗i ⊗ f(ei)

)
=

n∑

i=1
λ(e∗i (f(ei))) =

n∑

i=1
λ((Af )ii) ∈ K. (3.67)

Since the trace is symmetric by lemma 3.26, we know that trλM (g ◦ f ◦ g−1) = trλM (f)
for any isomorphism g, and therefore the trace is independent of the basis. If M is only
projective and not necessarily free, there is an A-module Q so that F := M ⊕Q is free.
Let e1 = m1⊕q1, . . . , en = mn⊕qn be a basis of F , and let e∗1 = m∗1⊕q∗1, . . . , e∗n = m∗1⊕q∗n
be the dual basis. Using the additivity of the trace as in lemma 3.5, we have

trλM (f) = trλM⊕Q(f ⊕ 0) =
n∑

i=1
λ(e∗i ((f ⊕ 0)(ei))) =

n∑

i=1
λ(m∗i (f(mi))). (3.68)
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Since the trace is symmetric, this expression is independent of the basis of F . Now, a
standard argument (cf. [Sta65, 1.7]) shows that equation (3.68) is also independent of
the complement Q. For the sake of completeness, we recall this argument here.
Suppose there is another Q′ so that M ⊕Q′ := F ′ is free. Let α be the isomorphism

α : Q⊕ F ′ = Q⊕ (M ⊕Q′) ∼= Q′ ⊕ (M ⊕Q) = Q′ ⊕ F. (3.69)

Using that the trace is additive as in lemma 3.5 shows that

trλM⊕Q(f ⊕ 0Q) = trλM⊕Q⊕F ′(f ⊕ 0Q ⊕ 0F ′) and
trλM⊕Q′(f ⊕ 0Q′) = trλM⊕Q′⊕F (f ⊕ 0Q′ ⊕ 0F ).

(3.70)

Since

(idM ⊕ α)−1 ◦ (f ⊕ 0Q′ ⊕ 0F ) ◦ (idM ⊕ α) = f ⊕ 0Q′ ⊕ 0F ′ , (3.71)

using the cyclic invariance of the traces shows that

trλM⊕Q(f ⊕ 0Q) = trλM⊕Q′(f ⊕ 0Q′), (3.72)

as required. Thus, equation (3.68) is independent of the complement Q.

Next, we show that the trace is non-degenerate.

Lemma 3.28. Let (A, λ) be a separable, symmetric Frobenius algebra over an alge-
braically closed field K, and let M and N be finitely-generated A-modules. Then, the
bilinear pairing of vector spaces induced by the trace in definition 3.21

〈−,−〉 : HomA(M,N)×HomA(N,M)→ K
(f, g) 7→ trλM (g ◦ f)

(3.73)

is non-degenerate.

Proof. By Artin-Wedderburn’s theorem, the algebra A is isomorphic to a direct product
of matrix algebras over K:

A ∼=
r∏

i=1
Mni(K). (3.74)

Since the sum of the usual trace of matrices gives each A the structure of a symmetric
Frobenius algebra, lemma 2.9 shows that the Frobenius form λ of A is given by

λ =
r∑

i=1
λitri, (3.75)

where tri : Mni(K)→ K is the usual trace of matrices and λi ∈ K∗ are non-zero scalars.
Recall that a module over a finite-dimensional algebra is finite-dimensional (as a vector

space) if and only if it is finitely generated as a module, cf. [SY11, Proposition 2.5]. A
classical theorem in representation theory (cf. theorem 3.3.1 in [EGH+11]) asserts that
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3. An equivalence between Frobenius algebras and Calabi-Yau categories

the only finite-dimensional simple modules of A are given by V1 := Kn1 , . . . Vr := Knr .
Since the category (A-Mod)fg is semisimple, we may decompose the finitely-generated
A-modules M and N as the direct sum of simple modules:

M ∼=



l1⊕

i1=1
Kn1


⊕




l2⊕

i2=1
Kn2


⊕ · · · ⊕




lr⊕

ir=1
Knr




N ∼=



l′1⊕

i1=1
Kn1


⊕




l′2⊕

i2=1
Kn2


⊕ · · · ⊕




l′r⊕

ir=1
Knr


 .

(3.76)

By Schur’s lemma, any f ∈ HomA(M,N) is given by f = f1⊕ f2⊕ . . .⊕ fr where fi is a
l′i × li-matrix. Similarly, any g ∈ HomA(N,M) is given by g = g1 ⊕ g2 ⊕ . . .⊕ gr where
each gi is a li × l′i matrix. Thus,

trλM (g ◦ f) = trλM ((g1f1)⊕ (g2f2)⊕ . . .⊕ grfr)

=
r∑

i=1
trλ(Kni )li (gifi) (by additivity)

=
r∑

i=1

li∑

j=1
trλKni ((gifi)j,j) (by lemma 3.6)

=
r∑

i=1

li∑

j=1

l′i∑

k=1
trλKni ((gi)j,k ◦ (fi)k,j) .

(3.77)

Since f was assumed to be non-zero, at least one (fi)j,k is non-zero. Suppose that (fĩ)j̃,k̃ ∈
EndA(Kni) is not the zero morphism. By Schur’s lemma, (fĩ)j̃,k̃ is an isomorphism. Now
define g ∈ HomA(N,M) as

(gi)j,k := (λĩ)−1δi,̃iδj,j̃δk,k̃(fĩ)
−1
k̃,j̃
. (3.78)

Then, by example 3.24,

trλM (g ◦ f) = (λĩ)−1trλKnĩ (idKnĩ ) = 1K 6= 0. (3.79)

We summarize the situation with the following proposition:

Proposition 3.29. Let (A, λ) be a separable symmetric Frobenius algebra over an alge-
braically closed field K. Then, the category of finitely-generated A-modules (A-Mod)fg

has got the structure of a Calabi-Yau category with trace trλM : EndA(M)→ K as defined
in equation (3.51).

Proof. Since A a separable K-algebra, A is finite-dimensional by corollary 3.18. By
lemma B.5, all finitely generated A-modules are necessarily finite-dimensional. It is well-
known that the category of finite-dimensional modules over a finite-dimensional algebra
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is a finite, linear category, cf. [DSPS14]. Since A is a separable K-algebra, all A-modules
are projective by corollary 3.16. Hence, (A-Mod)fg is semisimple.
If M is a finitely-generated A-module, the trace trλ(M) : End(M) → K as defined

in equation (3.51) is symmetric by lemma 3.26, while the induced bilinear form is non-
degenerate by lemma 3.28. This shows that (A-Mod)fg is a Calabi-Yau category.

The following example shows that the assumption that the algebra A is separable is a
necessary condition.

Example 3.30 (Counter-example). Let K be a field of characteristic two, and consider
the group algebra A := K[Z2]. Then, A ∼= K[x]/(x2 − 1) ∼= K[x]/(x− 1)2. This is in fact
a Frobenius algebra with Frobenius form λ(g) = δg,e, which is not separable. Let S be
the trivial representation, and consider a projective two-dimensional representation of A
which we shall call P . Here, the non-trivial generator g of A acts on P by the matrix

g =
(

1 1
0 1

)
. (3.80)

One easily computes that

Hom(P, S) ∼=
{(

0 b
)
| b ∈ K

}
, and Hom(S, P ) ∼=

{(
a
0

)
| a ∈ K

}
. (3.81)

We claim that there is no trace on the representation category of A. Indeed, let trS :
End(S)→ K be any linear map. Then, the pairing

Hom(S, P )⊗Hom(P, S)→ K (3.82)
(
a
0

)
⊗
(
0 b

)
7→ trS

((
0 b

)(a
0

))
= 0 (3.83)

is always degenerate. Therefore, a non-degenerate pairing does not exist.

3.2.3. Constructing the 2-functor Repfg on 1-morphisms

The next step of the construction will be the value of Repfg on 1-morphisms of Frob,
which are compatible Morita contexts. To these, we will have to assign equivalences of
Calabi-Yau categories. Let us recall a classical theorem from Morita theory:

Theorem 3.31 ([Bas68, Theorem 3.4 and 3.5]). Let A and B be R-algebras, and let
(BMA,ANB, ε, η) be a Morita context between A and B. Then,

1. M and N are both finitely-generated and projective as B-modules.

2. An A-module X is finitely generated over A if and only if M ⊗A X is finitely
generated over B.
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3. The functor

M ⊗A − : A-Mod→ B-Mod (3.84)

is an equivalence of linear categories.

This theorem suggests that we should define Repfg on Morita contexts by the functor
M ⊗A−. In order for this to be well-defined, this functor should be a Calabi-Yau functor
as in definition 3.7 if the Morita context is compatible with the Frobenius forms as in
definition 2.6. In order to show this, we need an additional lemma:

Lemma 3.32. Let A and B be two separable K-algebras. Let M = (M,N, ε, η) be a
Morita context between A and B. Write

ε−1(1A) =
∑

i,j

ni ⊗mj ∈ N ⊗B M. (3.85)

For another finitely-generated left A-module T , define a linear map

ξ : T ∗ ⊗A T → (M ⊗A T )∗ ⊗B (M ⊗A T )

t∗ ⊗ t 7→


(
x⊗ y 7→

∑

i

η−1 (x.t∗(y)⊗ ni)
)
⊗
∑

j

mj ⊗ t

 .

(3.86)

Then, the following diagram commutes.

T ∗ ⊗A T (M ⊗A T )∗ ⊗B (M ⊗A T )

EndA(T ) EndB(M ⊗A T )

ΨT,T

ξ

ΨM⊗AT,M⊗AT

idM⊗−

(3.87)

Proof. First note that ∑

i,j

η−1(x⊗ ni).mj = x (3.88)

for every x in M , since ε and η are part of a Morita context. Now, we calculate:

(idM ⊗− ◦ΨT,T )(t∗ ⊗ t)(x⊗ y) = (idM ⊗−)(y 7→ t∗(y).t)(x⊗ y) = x⊗ t∗(y).t. (3.89)

On the other hand,

(ΨM⊗AT,M⊗AT ◦ ξ)(t∗ ⊗ t)(x⊗ y) =

= (ΨM⊗AT,M⊗AT )



(
x⊗ y 7→

∑

i

η−1 (x.t∗(y)⊗ ni)
)
⊗
∑

j

mj ⊗ t

 (x⊗ y)

=
∑

i,j

η−1(x.t∗(y)⊗ ni).(mj ⊗ t)

=
∑

i,j

η−1(x.t∗(y)⊗ ni).mj ⊗ t

= x.t∗(y)⊗ t,

(3.90)
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where in the last line, we have used equation (3.88). This shows that the diagram
commutes.

The next proposition shows that the compatibility condition on the Morita context
between two Frobenius algebras in definition 2.6 is equivalent to the fact that tensoring
with the bimodule M of the Morita context is a Calabi-Yau functor:

Proposition 3.33. Let (A, λA) and (B, λB) be two separable symmetric Frobenius alge-
bras over an algebraically closed field K, and let (M,N, ε, η) be a Morita context between
A and B. Endow Repfg(A) and Repfg(B) with the Calabi-Yau structure as in definition
3.21. Then, the Morita context is compatible with the Frobenius forms λA and λB as in
definition 2.6 if and only if

(M ⊗A −) : Rep(A)fg → Rep(B)fg (3.91)

is a Calabi-Yau functor as in definition 3.7.

Proof. Let AT be a finitely-generated left A-module. By definition, the functor M ⊗A −
is a Calabi-Yau functor if and only if

trλBM⊗AT (idM ⊗ f) = trλAT (f) (3.92)

for all f ∈ EndA(T ). We have to calculate the left hand-side: Let f ∈ EndA(T ) and
write

Ψ−1
T,T (f) =

∑

i,j

t∗i ⊗ tj ∈ T ∗ ⊗A T. (3.93)

Using ni and mj as introduced in formula (3.85), lemma 3.32 shows that

Ψ−1
M⊗AT,M⊗AT (idM ⊗ f) = ξ ◦Ψ−1

T,T (f)

=
∑

i,j

ξ(t∗i ⊗ tj)

=


x⊗ y 7→

∑

k,i

η−1 (x.t∗i (y)⊗ nk)

⊗

∑

l,j

ml ⊗ tj .

(3.94)

Hence,
trλBM⊗AT (idM ⊗ f) = (λB ◦ ev ◦Ψ−1

M⊗AT,M⊗AT )(idM ⊗ f)

=
∑

i,j,k,l

λB(η−1(ml.t
∗
i (tj)⊗ nk)). (3.95)

Since
trλAT (f) =

∑

i,j

λA(t∗i (tj)), (3.96)

the functorM⊗A− is a Calabi-Yau functor if and only if the right hand sides of equations
(3.95) and (3.96) agree for every ti ∈ T ∗ and tj ∈ T . Using the fact that the Frobenius
forms are symmetric, and thus factor through A/[A,A], this is the case if and only if the
Morita context is compatible with the Frobenius forms as in equation (2.16).
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Definition 3.34. Using proposition 3.33 enables us to define the 2-functor Repfg on
1-morphisms of the bicategory Frob: we assign to a compatible Morita context M :=
(M,N, ε, η) between two separable symmetric Frobenius algebras A and B the equivalence
of Calabi-Yau categories Repfg(M) given by

Repfg(M) := (M ⊗A −) : Repfg(A)→ Repfg(B). (3.97)

3.2.4. Constructing the 2-functor Repfg on 2-morphisms
Let (M,N, ε, η) and (M ′, N ′, ε′, η′) be two compatible Morita contexts between two
separable symmetric Frobenius algebras A and B, and let α : M →M ′ and β : N → N ′

be a morphism of Morita contexts. We define a natural transformation Repfg((α, β)) :
(M⊗A−)→ (M ′⊗A−) as follows: for every left A-module AX, we define the component
of the natural transformation as

Repfg((α, β))X := (α⊗ idX) : M ⊗A X →M ′ ⊗A X. (3.98)

This is indeed a natural transformation because for every intertwiner f : AX → AY of
left A-modules, the following diagram

M ⊗A X M ′ ⊗A X

M ⊗A Y M ′ ⊗A Y

α⊗idX

idM⊗f idM′⊗f

α⊗idY

(3.99)

commutes.
Thus, we have obtained the following weak 2-functor Repfg : Frob→ CY, which sends

• a symmetric Frobenius algebra (A, λ) to the Calabi-Yau category
(
Repfg(A), trλ

)
,

• a compatible Morita context (BMA,BNA, ε, η) to the Calabi-Yau functor
(
M ⊗A − : (Repfg(A), trλA)→ (Repfg(B), trλB )

)
, (3.100)

• and a morphism of Morita contexts
(
(α, β) : (BMA,BNA, ε, η)→ (BM ′A,BN ′A, ε′, η′)

)
(3.101)

to the natural transformation (α⊗ id− : (M ⊗A −)→ (M ′ ⊗A −)).

Observe that by the definition of the Deligne tensor product, this weak 2-functor is
compatible with the symmetric monoidal structures of Frob and CY, and thus can
be equipped with the additional structure of a symmetric monoidal 2-functor. This
follows from the fact that a Calabi-Yau structure on (A⊗B)-Mod ∼= A-Mod �B-Mod
is equivalent to a Calabi-Yau structure on A-Mod and on B-Mod.
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3.3. Proving the equivalence
The aim of this section is to prove that the weak 2-functor Repfg : Frob→ CY of section
3.2 is an equivalence of bicategories. This will be done in several steps. First, we show
that Repfg is essentially surjective. Let K be an algebraically closed field, and let (C, trC)
be a Calabi-Yau category over K. Let X1, . . . , Xn be representatives of the isomorphism
classes of simple objects of C, and define an object P of C as P := ⊕ni=1Xi. Then,
A := EndC(P ) is a separable, symmetric Frobenius algebra over K with Frobenius form
λ given by λ := trCP . By proposition 3.29, the category (A-Mod)fg has the structure of a
Calabi-Yau category. We claim:

Proposition 3.35. The functor

HomC(P,−) : C → (A-Mod)fg (3.102)

is an equivalence of Calabi-Yau categories.

Proof. It is clear that trCP endows A := EndC(P ) with the structure of a symmetric
Frobenius algebra. Since C is semisimple, the object P is the sum of the finitely many
simple objects Pi. By Schur’s lemma, the endomorphism algebra of a simple object
Pi is isomorphic to a matrix algebra over a division algebra. This is equivalent to the
separability of EndC(P ), cf. [SY11, Theorem 11.11].

We now show that the functor HomC(P,−) is an equivalence of Calabi-Yau categories.
An exercise of [EGH+11] which is proven in the appendix in proposition B.4 asserts that
the functor HomC(P,−) is an equivalence of linear categories. Thus, our claim amounts
to showing that this functor is compatible with the traces as required in definition 3.7.
Write an object Y of C as an arbitrary sum of simple objects, so that Y = ⊕mj=1Yj ,

and let f ∈ EndC(Y ). Since C is an additive category, we can represent f as an m×m
matrix

f =



f1,1 . . . f1,m
...

...
fm,1 . . . fm,m


 (3.103)

where fk,l ∈ HomC(Yl, Yk).
Similarly, any g ∈ HomC(P, Y ) is naturally a m× n matrix with entries

g =



g1,1 . . . g1,m
...

...
gn,1 . . . gn,m


 (3.104)

where gi,k ∈ HomC(Yk, Yi).
Under this identification, A = EndC(P ) acts on HomC(P, Y ) as a.f := f · a where f · a

is the matrix product of f and a.
Then, the morphism HomC(P, f) is given by

HomC(P, f) : HomC(P, Y )→ HomC(P, Y )
g 7→ f · g (3.105)
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where f · g is the matrix product of f and g. As a first step to calculate the trace in
(A-Mod)fg, we claim that

Ψ−1
HomC(P,Y ),HomC(P,Y )(HomC(P, f)) = δ∗ ⊗ f̃ , (3.106)

as an element of HomC(P, Y )∗ ⊗A HomC(P, Y ), where δ∗ ∈ HomC(P, Y )∗ and f̃ ∈
HomC(P, Y ) are defined as follows. First, define the m× n-matrix

f̃k,r :=
{
fk,r if r ≤ m,
0 else.

(3.107)

Now, given a m× n matrix g ∈ HomC(P, Y ), the element δ∗(g) of A is defined to be
an n× n matrix with entries

δ∗(g)r,l :=
{
gr,l if r ≤ m,
0 else.

(3.108)

Then, if g ∈ HomC(P, Y ),

(Ψ((δ)∗ ⊗ f̃)(g))k,l = (δ∗(g).f̃)k,l
= (f̃ · δ∗(g))k,l

=
n∑

r=1
f̃k,r · δ∗(g)r,l

=
m∑

r=1
fk,r ◦ gr,l

= (HomC(P, f)(g))k,l.

(3.109)

This shows equation (3.106).
We may now calculate the trace of the morphism HomC(P, f) in (A-Mod)fg. By

definition of the trace in (A-Mod)fg, we have

trλHomC(P,Y )(HomC(P, f)) = (trP ◦ ev ◦Ψ−1
HomC(P,Y ),HomC(P,Y ))(HomC(P, f)). (3.110)

Now,

trλHomC(P,Y )(HomC(P, f)) = (trP ◦ ev)(δ∗ ⊗ f̃) (by equation (3.106))
= trP (δ∗(f̃))

=
n∑

i=1
δ∗(f̃)ii (by lemma 3.6)

=
m∑

i=1
fi,i

= trCY (f) (by lemma 3.6).

(3.111)

This shows that HomC(P,−) is a Calabi-Yau functor.
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Next, we follow the exposition in [Bas68, Proposition 3.1] and show that the functor
Repfg is essentially surjective on 1-morphisms. In detail:

Proposition 3.36. Let K an algebraically closed field, and let (A, λA) and (B, λB) be
two separable, symmetric Frobenius algebras. Endow (A-Mod)fg and (B-Mod)fg with the
Calabi-Yau structure described in proposition 3.29, and let

F : (A-Mod)fg � (B-Mod)fg : G (3.112)

be an equivalence of Calabi-Yau categories.
Then, there is a compatible Morita contextM between A and B, so that Repfg(M) is

naturally isomorphic to the functor F .

Proof. The proof essentially works by an application of Eilenberg-Watts and by checking
that everything is compatible with the traces. Define a (B,A)-bimoduleM asM := F (A)
which is naturally a left B-module, and a right A-module by using the map

A ∼= EndA(A) F−→ EndB(M). (3.113)

The Eilenberg-Watts theorem then shows that the functor F is naturally isomorphic to
M ⊗A − (cf. theorem 1 in [Wat60]). Thus, by lemma 3.9, F is a Calabi-Yau functor if
and only if M ⊗A − is a Calabi-Yau functor. Similarly, there is an (A,B)-bimodule N
given by N := G(B), so that the functor G is naturally isomorphic to N ⊗B −.
Furthermore, there are isomorphisms of bimodules

ε : N ⊗B M ∼= G(M) ∼= G(M ⊗A A) ∼= G(F (A)) ∼= A

η : B ∼= F (G(B)) ∼= F (N ⊗B B) ∼= F (N) ∼= M ⊗A N
(3.114)

since F and G is an equivalence of categories. We claim that we can choose these
isomorphisms in such a way that (M,N, ε, η) becomes a Morita context.
Indeed, by lemma 2.3 it suffices to show that diagram (2.5) commutes. Let rB :

N ⊗B B → N be right-multiplication, and let lA : A⊗B N → N be left-multiplication.
Since ε, η, rB and lA are isomorphisms of bimodules, there is a u ∈ Aut(A,B)(N), so

that
rB ◦ idN ⊗ η−1 = u ◦ lA ◦ ε⊗ idN . (3.115)

In particular,

u ∈ HomA(N,N) ∼= HomA(G(B), G(B)) ∼= HomB(B,B). (3.116)

Since every morphism of left B-modules u ∈ HomB(B,B) is given by right multiplication
with an element of B, we may identify u with this element. Since u is also a morphism
of right B-modules, the element u is in the center of B.
Now define an isomorphism of (B,B)-bimodules

η̃−1 : M ⊗A N → B

m⊗ n 7→ u.η−1(n⊗m).
(3.117)

Thus, if we replace η by η̃ we have made diagram (2.4) commute. Hence, (M,N, ε, η̃) is
a Morita context, which is compatible with the Frobenius forms by proposition 3.33.
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The following theorem summarizes the discussion:

Theorem 3.37. The weak 2-functor Repfg : Frob→ CY is an equivalence of bigroupoids.

Proof. In a first step, proposition 3.29 shows the representation category of a separable
symmetric Frobenius algebra has indeed got the structure of a finite, semisimple Calabi-
Yau category. Furthermore, this assignment is essentially surjective on objects: given
a finite, semisimple Calabi-Yau category C, proposition 3.35 shows how to construct a
Frobenius algebra A so that Repfg(A) and C are equivalent as Calabi-Yau categories.
Now, given a compatible Morita context between two Frobenius algebras A and B,

proposition 3.33 shows how to construct a Calabi-Yau functor between the representation
categories. Furthermore, this assignment is essentially surjective by proposition 3.36.

Finally, one shows by hand that Repfg induces a bijection on 2-morphisms of Frob and
CY, which carry no additional structures or properties.

Remark 3.38. Note that the bigroupoid Frob, as well as the bigroupoid CY have
additional symmetric monoidal structure. It is not difficult to see that the weak 2-
functor Repfg is compatible with this symmetric monoidal structure, and is thus an
equivalence of symmetric monoidal bigroupoids.

3.3.1. The functor of representations as equivarinatization

So far, we have constructed an equivalence of bicategories Repfg : Frob → CY. In this
section, we show that this equivalence is actually the “equivariantization” of the 2-functor
sending an algebra to its category of modules.
In order to do so, we use the notion of a “equivariantization” of a weak 2-functor

between bicategories equipped with a G-action from section 2.3, where G is a topological
group. Let us briefly recall the relevant definitions: for a group G, we denote with
BG the category with one object and G as morphisms. Similarly, if C is a monoidal
(bi-)category, BC will denote the (tri-)bicategory with one object and C as endomorphism
(bi-)category of this object.

For a topological group G, let Π2(G) be its fundamental 2-groupoid, and BΠ2(G) the
tricategory with one object called ∗ and Π2(G) as endomorphism bicategory. A G-action
on a bicategory C was defined to be a trifunctor ρ : BΠ2(G) → Bicat with ρ(∗) = C,
where Bicat is the tricategory of bicategories. Furthermore, given a G-action ρ on a
bicategory, we define the bicategory of homotopy fixed points CG to be the bicategory
Nat(∆, ρ) where objects are given by tritransformations between the constant functor
∆ and ρ, 1-morphisms are modifications, and 2-morphisms are perturbations. In the
following, we will use the notation of section 2.2 concerning homotopy fixed points. Using
this notation, we were able to give a concrete definition of a G-equivariant structure on
a weak 2-functor between two bicategories equipped with a G-action in section 2.3. This
concrete definition allows us to show the following lemma.

Lemma 3.39. Let F : K (Algfd
2 )→ K (Vectfd

2 ) be any functor, and let ρ : Π2(SO(2))→
Aut(K (Algfd

2 )) and ρ′ : Π2(SO(2)) → Aut(K (Vectfd
2 )) be the trivial SO(2)-actions.
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Then, F has got a canonical SO(2)-equivariant structure given by taking identities ev-
erywhere.

Proof. We need to provide the data in definition 2.26: Since both actions are trivial,
we may choose Tg : Rep → Rep to be the identity pseudo-natural transformation for
every g ∈ G, and Tγ : idRep ◦ Tg → Th ◦ idRep to be the identity modification for
every path γ : g → h. Furthermore, we may also choose Pgh and N to be the identity
modifications.

Corollary 3.40. Choosing F to be the weak 2-functor Rep which sends an algebra to its
category of finitely-generated modules shows that Rep has a canonical SO(2)-equivariant
structure.

Since the representation functor is SO(2)-equivariant, it induces a functor on homotopy
fixed point bicategories by definitions 2.28, 2.29 and 2.30. We claim:

Theorem 3.41. The diagram

(K (Algfd
2 ))SO(2) (K (Vectfd

2 ))SO(2)

Frob CY

RepSO(2)

∼ ∼

Repfg

(3.118)

commutes up to a pseudo-natural isomorphism. Here, the unlabeled equivalences are
induced by corollary 2.36 and corollary 3.12, while the functor Repfg is constructed in
section 3.2.

Proof. Let
F : (K (Algfd

2 ))SO(2) ∼= Frob
G : (K (Vectfd

2 ))SO(2) ∼= CY
(3.119)

be the equivalences of bicategories in corollaries 2.36 and 3.12. By theorem 2.35, the
bicategory (K (Algfd

2 ))SO(2) is equivalent to a bicategory where objects are given by
separable algebras A, together with an isomorphism of Morita contexts λ : idA → idA,
where idA is the identity Morita context, consisting of the algebra A considered as an
(A,A)-bimodule. If (A, λ) is an object of (K (Algfd

2 ))SO(2), we need to construct an
equivalence of Calabi-Yau categories

η(A,λ) : (G ◦ RepSO(2))(A, λ)→ (Repfg ◦F )(A, λ). (3.120)

By definition 2.28, the value of RepSO(2) on A is given by Repfg(A), the category of
finitely-generated modules of A. The value of RepSO(2) on λ is given by the natural
isomorphism defined as follows: if AM is an A-module, the natural transformation
RepSO(2)(λ) of the identity functor on Repfg(A) is given in components by

RepSO(2)(λ)M :=
(
M ∼= A⊗AM λ⊗idM−−−−→ A⊗AM ∼= M

)
. (3.121)
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3. An equivalence between Frobenius algebras and Calabi-Yau categories

We know that A is isomorphic to a direct sum of matrix algebras:

A ∼=
r⊕

i=1
Mdi(K). (3.122)

Let
(λ1, . . . , λr) ∈ Kr ∼= Z(A) ∼= End(A,A)(A) (3.123)

be the scalars corresponding to the isomorphism of Morita contexts λ. Then, the Calabi-
Yau structure on (G◦RepSO(2))(A, λ) is given as follows: it suffices to write down a trace
for the simple modules, because Repfg(A) is semisimple. If Xi is a simple A-module,
chasing through the equivalence G shows that the trace is given by identifying the division
algebra EndRepfg(A)(Xi) with the algebraically closed ground field K by Schur’s lemma,
and then (up to a permutation of the simple modules) multiplying with the scalar λi.
On the other hand, chasing through the equivalence of bicategories F in corollary

2.36, we see that the Frobenius algebra F (A, λ) is given by the separable algebra A as
in equation (3.122), together with the Frobenius form given by taking direct sums of
matrix traces, multiplied with the scalars λi in equation (3.123). Using the construction
of the functor Repfg in section 3.2 shows that the Calabi-Yau category (Repfg ◦F )(A, λ)
is given by the linear category Repfg(A), together with the Calabi-Yau structure given
by the composite of the Frobenius form with the Hattori-Stallings trace. For a simple
module Xi, this Calabi-Yau structure is given by multiplying with the scalar λi under the
identification EndRepfg(A)(Xi) ∼= K. Thus, we have succeeded in finding an equivalence
η as required in equation (3.120). Going through the equivalences F and G, we check
that η is even pseudo-natural. This shows that the diagram (3.118) commutes up to a
pseudo-natural isomorphism.
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4. The Serre automorphism as a homotopy
action

In this chapter, which is based on results of [HV17], we explicitly construct a non-trivial
SO(2)-action on a skeletal version of the 2-dimensional framed bordism bicategory. By
the 2-dimensional cobordism hypothesis for framed manifolds, we obtain an SO(2)-action
on the core of fully-dualizable objects of the target bicategory. This action is shown to
coincide with the one given by the Serre automorphism. We give an explicit description
of the bicategory of homotopy fixed points of this action, and prove that this bicategory
classifies oriented 2-dimensional topological quantum field theories.
The chapter is organized as follows: in section 4.1 we recall the notion of a fully-

dualizable object in a symmetric monoidal bicategory C. For each such an object X,
we define the Serre automorphism as a certain 1-endomorphism of X. We show that
the Serre automorphism is a pseudo-natural transformation of the identity functor on
K (Cfd), which is moreover monoidal. This suffices to define an SO(2)-action on K (Cfd).
As a corollary of theorem 2.34 of section 2, we then obtain an explicit description of the
bicategory of homotopy fixed points of this action.
Section 4.2 investigates monoidal group actions on bicategories. We obtain a general

criterion for when such an action is trivializable, and comment on the SO(2)-action on
invertible field theories.
In section 4.3, we introduce a skeletal version of the framed bordism bicategory by

generators and relations, and define a non-trivial SO(2)-action on this bicategory. By
the framed cobordism hypothesis, we obtain an SO(2)-action on K (Cfd), which we prove
to be given by the Serre automorphism.

4.1. Fully-dualizable objects and the Serre automorphism
The aim of this section is to introduce the main players of the present chapter. On
the algebraic side, these are fully-dualizable objects in a symmetric monoidal bicategory
C, and the Serre automorphism. Although parts of the following material has already
appeared in the literature, we recall the relevant definitions in order to fix notation.
For background on symmetric monoidal bicategories, we refer the reader to [Pst14] and
[SP09]. We begin by recalling dual pairs in a monoidal bicategory, following [Pst14,
Definition 2.3].
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4. The Serre automorphism as a homotopy action

Definition 4.1. A dual pair in a symmetric monoidal bicategory C consists of an object
X, an object X∗, two 1-morphisms

evX : X ⊗X∗ → 1
coevX : 1→ X∗ ⊗X (4.1)

and two invertible 2-morphisms α and β in the diagrams below.

X ⊗ (X∗ ⊗ X) (X ⊗ X∗) ⊗ X

X ⊗ 1 1 ⊗ X

X X

a

evX ⊗idXidX⊗coevX

lr

idX

α

(4.2)
(X∗ ⊗ X) ⊗ X∗ X∗ ⊗ (X ⊗ X∗)

1 ⊗ X∗ X∗ ⊗ 1

X∗ X∗

a

idX∗ ⊗evXcoevX ⊗idX∗

rl

idX∗

β

(4.3)
We call an object X of C dualizable if it can be completed to a dual pair. A dual pair is
said to be coherent if the “swallowtail” equations are satisfied, as in [Pst14, Def. 2.6].

Remark 4.2. Given a dual pair, it is always possible to modify the 2-cell β in such a
way that the swallowtail are fulfilled, cf. [Pst14, Theorem 2.7].

Dual pairs can be organized into a bicategory by defining appropriate 1- and 2-
morphisms between them. The bicategory of dual pairs turns out to be a 2-groupoid.
Moreover, the bicategory of coherent dual pairs is equivalent to the core of dualizable
objects in C. In particular, this shows that any two coherent dual pairs over the same
dualizable object are equivalent.
We now come to the stronger concept of fully-dualizability.

Definition 4.3. An object X in a symmetric monoidal bicategory is called fully-
dualizable if it can be completed into a dual pair and the evaluation and coevaluation
maps admit both left- and right adjoints.

Note that if left- and right adjoints exists, the adjoint maps will have adjoints them-
selves, since we work in a bicategorical setting [Pst14, Theorem 3.9]. Thus, definition
4.3 agrees with the definition of [Lur09b] in the special case of bicategories.

74



4.1. Fully-dualizable objects and the Serre automorphism

4.1.1. The Serre automorphism
Recall that by definition, the evaluation morphism for a fully dualizable object X admits
both a right-adjoint evRX and a left adjoint evLX . We use these adjoints to define the
Serre automorphism of X:

Definition 4.4. Let X be a fully-dualizable object in a symmetric monoidal bicategory.
The Serre automorphism of X is defined to be the following composition of 1-morphisms:

SX : X ∼= X⊗1
idX⊗evRX−−−−−−→ X⊗X⊗X∗ τX,X⊗idX∗−−−−−−−→ X⊗X⊗X∗ idX⊗evX−−−−−−→ X⊗1 ∼= X. (4.4)

Notice that the Serre automorphism is actually a 1-equivalence of X, since an inverse
is given by the 1-morphism

S−1
X = (idX ◦ evX) ◦ (τX,X ⊗ idX∗) ◦ (idX ⊗ evLX), (4.5)

cf. [DSPS13, Proposition 2.3.3]. The next lemma is well-known, cf. [Lur09b, Proposition
4.2.3] or [Pst14, Proposition 3.8] and can be shown easily graphically.

Lemma 4.5. Let X be fully-dualizable in C. Then, there are 2-isomorphisms

evRX ∼= τX∗,X ◦ (idX∗ ⊗ SX) ◦ coevX
evLX ∼= τX∗,X ◦ (idX∗ ⊗ S−1

X ) ◦ coevX .
(4.6)

Next, we show that the Serre automorphism is actually a pseudo-natural transformation
of the identity functor on the maximal subgroupoid of fully-dualizable objects of C, as
suggested in [SP14]. To the best of our knowledge, a proof of this statement has not
appeared in the literature so far, hence we illustrate the details in the following. We
begin by showing that the evaluation 1-morphism is “dinatural”. Recall the definition of
the dual morphism in a monoidal bicategory:

Definition 4.6. Let C be a symmetric monoidal bicategory, and let X and Y be du-
alizable objects of C. Let f : X → Y a 1-morphism. We define the dual morphism
f∗ : Y ∗ → X∗ by the composition

Y ∗ ∼= 1⊗Y ∗ coevX ⊗idY ∗−−−−−−−−→ X∗⊗X⊗Y ∗ idX∗⊗f⊗idY ∗−−−−−−−−−→ X∗⊗Y ⊗Y ∗ idX∗⊗evY−−−−−−→ X∗⊗1 ∼= X∗.
(4.7)

Lemma 4.7. Let X be dualizable in C. The evaluation 1-morphism evX is “dinatural”:
for every 1-morphism f : X → Y between dualizable objects, there is a natural 2-
isomorphism evf in the diagram below.

X ⊗ Y ∗ X ⊗ X∗

Y ⊗ Y ∗ 1

id⊗f∗

f⊗id evXevf

evY

(4.8)
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4. The Serre automorphism as a homotopy action

Proof. We explicitly write out the definition of f∗ and define evf to be the composition
of the 2-morphisms in the diagram below.

evf :=

X 1 Y ∗ X X∗ X Y ∗ X X∗ Y Y ∗ X X∗ 1 X X∗

∼= 1 X Y ∗ 1 Y Y ∗ 1 1

X Y ∗ X Y ∗ Y Y ∗ 1

id coevX id id id f id

evX id id

α idid

id id evY

evX id id∼=

id r

evX id∼=

evX

revX

id f id

l id id

id evY

l id
lf idid

r

l

levY

id id

id l r id

f id

f id evY

∼=

∼=

(4.9)

In order to show that the Serre automorphism is pseudo-natural, we also need to show
the dinaturality of the right adjoint of the evaluation.

Lemma 4.8. For a fully-dualizable object X of C, the right adjoint evR of the evaluation
is “dinatural” with respect to 1-equivalences: for every 1-equivalence f : X → Y between
fully-dualizable objects, there is a natural 2-isomorphism evRf in the diagram below.

1 X ⊗ X∗

Y ⊗ Y ∗ Y ⊗ X∗

evR
X

evR
Y f⊗id

evR
f

id⊗f∗

(4.10)

Proof. In a first step, we show that f ⊗ (f∗)−1 ◦evRX is a right-adjoint to evX ◦(f−1⊗f∗).
In formula:

(evX ◦f−1 ⊗ f∗)R = f ⊗ (f∗)−1 ◦ evRX . (4.11)

Indeed, let
ηX : idX⊗X∗ → evRX ◦ evX

εX : evX ◦ evRX → id1
(4.12)

be the unit and counit of the right-adjunction of evX and its right adjoint evRX . We
construct unit and counit for the adjunction in equation (4.11). Let

ε̃ : evX ◦(f−1 ⊗ f∗) ◦ (f ⊗ (f∗)−1) ◦ evRX ∼= evX ◦ evRX
εX−−→ id1

η̃ : idY⊗Y ∗ ∼= (f ⊗ (f∗)−1) ◦ (f−1 ⊗ f∗) id∗ηX∗id−−−−−→ (f ⊗ (f∗)−1) ◦ evRX ◦ evX ◦(f−1 ⊗ f∗).
(4.13)

Now, one checks that the quadruple

(evX ◦(f−1 ⊗ f∗), (f ⊗ (f∗)−1) ◦ evRX , ε̃, η̃) (4.14)
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4.1. Fully-dualizable objects and the Serre automorphism

fulfills indeed the axioms of an adjunction. This follows from the fact that the quadruple
(evX , evRX , εX , ηX) is an adjunction. This shows equation (4.11).

Now, notice that due to the dinaturality of the evaluation in lemma 4.7, we have a
natural 2-isomorphism

evY ∼= evX ◦(f−1 ⊗ f∗). (4.15)

Combining this 2-isomorphism with equation (4.11) shows that the right adjoint of evY
is given by f ⊗ (f∗)−1 ◦ evRX . Since all right-adjoints are isomorphic, the 1-morphism
f ⊗ (f∗)−1 ◦ evRX is isomorphic to evRY , as desired.

We can now prove the following proposition:

Proposition 4.9. Let C be a symmetric monoidal bicategory. Denote by K (Cfd) the
maximal sub-bigroupoid of fully-dualizable objects of C. Then, the Serre automorphism
S is a pseudo-natural isomorphism of the identity functor on K (Cfd).

Proof. Let f : X → Y be a 1-morphism in K (Cfd). We need to provide a natural
2-isomorphism in the diagram

X X

Y Y

SX

f f
Sf

SY

(4.16)

By spelling out the definition of the Serre automorphism, we see that this is equivalent
to filling the following diagram with natural 2-cells:

X X 1 X X X∗ X X X∗ X 1 X

Y Y 1 Y Y Y ∗ Y Y Y ∗ Y 1 Y

f

idX evR
X

f id

τX,X idX∗

f f (f∗)−1

idX evX

f f (f∗)−1 f id f

idY evR
Y

τY,Y idY ∗ idY evY

(4.17)
The first, the last and the middle square can be filled with a natural 2-cell due to the
fact that C is a symmetric monoidal bicategory. The square involving the evaluation
commutes up to a 2-cell using the mate of the 2-cell of lemma 4.7, while the square
involving the right adjoint of the evaluation commutes up a 2-cell using the mate of
the 2-cell of lemma 4.8. The so-constructed 2-morphism Sf is pseudo-natural since it is
constructed as a composition of pseudo-natural isomorphisms: the 2-cell of lemma 4.7
in diagram (4.9) is itself defined by composing various natural 2-isomorphisms.

We now come to a main result of this thesis: using that the Serre automorphism is
a pseudo-natural transformation defines an SO(2)-action on the core of fully-dualizable
objects of an arbitrary symmetric monoidal bicategory by definition 2.32. As a corollary
to theorem 2.34 we then obtain an explicit description of the bicategory of homotopy
fixed points of this action.
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4. The Serre automorphism as a homotopy action

Corollary 4.10. Let C be a symmetric monoidal bicategory, and consider the SO(2)-
action of the Serre automorphism on K (Cfd) as in example 2.33. Then, the bicategory
of homotopy fixed points K (Cfd)SO(2) is equivalent to a bicategory where

• objects are given by pairs (X,λX) with X a fully-dualizable object of C and λX :
SX → idX is a 2-isomorphism which trivializes the Serre automorphism,

• 1-morphisms are given by 1-equivalences f : X → Y in C, so that the diagram

SY ◦ f f ◦ SX f ◦ idX

idX ◦ f f

λY ∗idf

Sf idf ∗λX

(4.18)

commutes, and

• 2-morphisms are given by 2-isomorphisms in C.

Proof. This follows directly from theorem 2.34.

Remark 4.11. Recall that we have defined the bicategory of homotopy fixed points CG
as the bicategory of tritransformations Nat(∆, ρ). This bicategory should coincide with
the tri-limit of the action considered as a trifunctor ρ : BΠ2(G)→ Bicat. Since we only
consider symmetric monoidal bicategories and the action of the Serre automorphism is
monoidal by proposition 4.23, we actually obtain an action with values in SymMonBicat,
the tricategory of symmetric monoidal bicategories. It would be interesting to compute
the limit of the action in the tricategory of symmmetric monoidal bicategories. We
expect that this trilimit computed in SymMonBicat is given by CG as a bicategory, with
the symmetric monoidal structure induced by the symmetric monoidal structure of C.

Remark 4.12. By either using a result of Davidovich in [Dav11] or using the results in
section 4.1.3, the action via the Serre automorphism on K (Algfd

2 ) is trivializable. The
category of homotopy fixed points K (Algfd

2 )SO(2) is then equivalent to the bigroupoid
of semisimple symmetric Frobenius algebras by corollary 2.36.
Similarly, the action of the Serre automorphism on K (Vectfd

2 ) is trivializable by
section 4.1.2. The bicategory of homotopy fixed points of this action is equivalent to the
bicategory of Calabi-Yau categories by corollary 3.12.

We now come to two examples: we explicitly compute the Serre automorphism in the
bicategories Alg2 and of Vect2, and show that it is trivializable.

4.1.2. The Serre automorphism in 2-vector spaces
In this section, we calculate the Serre automorphism in K (Vectfd

2 ), the bigroupoid of
fully-dualizable 2-vector spaces over an algebraically closed field K. Recall that the
fully-dualizable objects of Vect2 are given by the finite, linear, semisimple categories
as in definition 3.1. Let C be a finite, semisimple, linear category, with simple objects
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4.1. Fully-dualizable objects and the Serre automorphism

X1, . . . , Xn. Then, we can choose the dual of C to be the functor category C∗ :=
Fun⊕(C,Vect) with objects consisting of additive functors C → Vect. Note that C∗ is
finitely semisimple as well, with simple objects given by the functors F1, . . . , Fn, which
are defined on simple objects by Fi(Xj) = K δij . The evaluation 1-morphism is given by:

ev : C � C∗ → Vect
X � F 7→ F (X),

(4.19)

where � is the Deligne tensor product of abelian categories, cf. [Del90]. Since all functors
considered here are additive, it suffices to give the value of the coevaluation on the ground
field K, the only simple object of Vect. We define the coevaluation as

coev : Vect→ C∗ � C

K 7→
n⊕

i=1
Fi �Xi.

(4.20)

In order to compute the Serre automorphism, we have to compute the right adjoint of
the evaluation functor. We claim:
Lemma 4.13. The right adjoint functor evR of the evaluation ev exists, and is fully
determined by setting

evR : Vect→ C � C∗

K 7→
n⊕

i=1
Xi � Fi.

(4.21)

Proof. Let Xk be a simple object of C, and Fl be a simple object of C∗. Then, we have a
chain of natural isomorphisms

HomC�C∗(Xk � Fl, evR(K)) ∼=
n⊕

i=1
HomC(Xk, Xi)⊗K HomC∗(Fl, Fi)

∼= K δkl ∼= HomVect(Fl(Xk),K)
= HomVect(ev(Xk � Fl),K).

(4.22)

This shows the adjunction formula for simple objects. The general case follows by taking
direct sums.

Now, we are ready to calculate the Serre automorphism.
Lemma 4.14. Let C be a fully-dualizable object of Vect2 (i.e. a finite semisimple linear
category). Then, the Serre automorphism S : C → C is pseudo-naturally isomorphic to
the identity functor on C.
Proof. By definition of the Serre automorphism in definition 4.4, the value of the Serre
automorphism of a simple object Xk in K (Vectfd

2 ) is given by

S(Xk) =
n⊕

i=1
Xi � Fi(Xk) ∼=

n⊕

i=1
Xi � δikK ∼= Xk �K ∼= Xk. (4.23)

Thus, the Serre automorphism is naturally isomorphic to the identity.
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4. The Serre automorphism as a homotopy action

Lemma 4.15. Let C be a fully dualizable object in Vect2. Then, there is a 1:1 correspon-
dence between trivializations of the Serre automorphism S and Calabi-Yau structures on
C.

Proof. The previous lemma 4.14 shows that the Serre automorphism itself is trivial.
Thus, a trivialization of S corresponds bijectively to an invertible endotransformation of
the identity functor on C. Let η : idC ⇒ idC be an invertible natural transformation, and
let X ∈ C be simple. Since the natural transformation η is additive, it is fully determined
by its components on simple objects. Since ηX is natural, it must be an element in the
center of EndC(X). Thus,

ηX ∈ Z(EndC(X)) ∼= K. (4.24)

Since η is an isomorphism, ηX cannot be zero. Hence, ηX is uniquely determined by
a non-zero scalar. Taking direct sums shows that a natural transformation is uniquely
determined by a non-zero scalar for each simple object of C. Now, the statement follows
from lemma 3.11.

Remark 4.16. Here, we have shown by hand that trivializations of the Serre auto-
morphism in Vect2 stand in bijection to Calabi-Yau categories. However, theorem
2.34 gives a more general result: this theorem shows that the bicategory of homotopy
fixed points of the action of the Serre automorphism on K (Vectfd

2 ) is equivalent to the
bicategory of Calabi-Yau categories.

4.1.3. The Serre automorphism in the Morita bicategory
Here, we follow the exposition in [FHLT10], but give more details as needed. In Alg2,
there is a natural notion of duals: if A is an algebra, denote by Aop the opposite algebra,
and let Ae := A⊗K A

op be the enveloping algebra. Then, evaluation and coevaluation
are given by the algebra A as (Ae,K) and (K, Ae)-modules respectively. An object is
called fully dualizable, if the evaluation map admits both a left and a right adjoint. In
Alg2 over a field, this is the case if and only if the algebra in question is separable, cf.
[SP09, Definition 2.70]. If K is an algebraically closed field, the separable algebras are
finite-dimensional and semisimple.

Lemma 4.17. Let A be a fully dualizable algebra. Then, the right-adjoint of the evalua-
tion evRA : K→ A⊗Aop is given by A∗ := HomK(A,K), regarded as an (Ae,K)-module.

Proof. By definition, if the right-adjoint of the evaluation exists, we have a natural
isomorphism

HomVect(A⊗Ae N,V ) ∼= HomAe-Mod(N, evR⊗KV ) (4.25)

for any N (Ae,K)-module and any vector space V . Now, choose V := K and N := Ae.
Then we obtain

A∗ = HomK(A,K) ∼= HomK(A⊗Ae Ae,K) ∼= HomAe(Ae, evR) ∼= evR, (4.26)

as claimed.
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Lemma 4.18. Let A be a fully-dualizable algebra. Then, the Serre automorphism of A
is given by SA = A∗ := HomK(A,K), which we regard as an (A,A)-bimodule.

Proof. This follows from the definition of the Serre automorphism in definition 4.4.
Indeed, using that the evaluation is given by the algebra A as an (Ae,K)-module together
with lemma 4.17 shows that SA ∼= A∗ as (A,A)-bimodules.

It now follows that the Serre automorphism is trivializable in Alg2: a trivialization of
the Serre automorphisms consists of an isomorphism A→ A∗ of (A,A)-bimodules. This
is nothing else than the structure of a Frobenius algebra. Since every finite-dimensional,
semisimple algebra admits the structure of a Frobenius algebra, the Serre automorphism
in Alg2 is trivializable.

Remark 4.19. Here, we have shown by hand that trivializations of the Serre automor-
phism in Alg2 stand in bijection to Frobenius algebras. However, we obtain a more
general result using theorem 2.34: using the fact that the Serre automorphism is trivial-
izable in Alg2, this theorem shows that the bicategory of homotopy fixed points of the
action of the Serre automorphism in Alg2 is equivalent to the bicategory of Frobenius
algebras.

4.1.4. Monoidality of the Serre automorphism

We now return to the abstract definition of the Serre automorphism in an arbitrary sym-
metric monoidal bicategory as in definition 4.4. We show that the Serre automorphism
respects the monoidal structure, and is actually a monoidal pseudo-natural transforma-
tion. This fact will be used to show that the action of the Serre automorphism on the
core of fully-dualizable objects is monoidal. We begin with the following two lemmas:

Lemma 4.20. Let C be a monoidal bicategory, and let X and Y be dualizable objects of
C. Then, there is a 1-equivalence ξ : (X ⊗ Y )∗ ∼= Y ∗ ⊗X∗.

Proof. Consider the 1-morphism (X ⊗ Y )∗ → Y ∗ ⊗X∗ in C defined by

(idY ∗ ⊗ idX∗ ⊗ evX⊗Y ) ◦ (idY ∗ ⊗ coevX ⊗idY ⊗ id(X⊗Y )∗) ◦ (coevY ⊗id(X⊗Y )∗), (4.27)

and consider the 1-morphism Y ∗ ⊗X∗ → (X ⊗ Y )∗ in C defined by

(id(X⊗Y )∗ ⊗ evX) ◦ (id(X⊗Y )∗ ⊗ idX ⊗ evY ⊗idX∗) ◦ (coevX⊗Y ⊗id∗Y ⊗ idX∗). (4.28)

These two 1-morphisms are (up to invertible 2-cells) inverse to each other. This shows
the claim.

Now, we show that the evaluation 1-morphism respects the monoidal structure:

Lemma 4.21. For a dualizable object X of a symmetric monoidal bicategory C, the
evaluation 1-morphism is monoidal. More precisely: the following diagram commutes up
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to a natural 2-cell.

(X ⊗ Y ) ⊗ (X ⊗ Y )∗ 1

(X ⊗ Y ) ⊗ Y ∗ ⊗ X∗ X ⊗ X∗ ⊗ Y ⊗ Y ∗ 1 ⊗ 1

evX⊗Y

idX⊗Y ⊗ξ

idX⊗τY ⊗Y ∗,X∗ evX ⊗ evY

(4.29)
Here, the 1-equivalence ξ is due to lemma 4.20.
Proof. Consider the diagram in figure 4.1 on page 83: here, the composition of the
horizontal arrows at the top, together with the two arrows on the vertical right are exactly
the 1-morphism in equation (4.29). The other arrow is given by evX⊗Y . We have not
written down the tensor product, and left out isomorphisms of the form 1⊗X ∼= X ∼= X⊗1
for readability.

We can now establish the monoidality of the right adjoint of the evaluation via the
following lemma:
Lemma 4.22. Let C be a symmetric monoidal bicategory, and let X and Y be fully-
dualizable objects. Then, the right adjoint of the evaluation is monoidal. More precisely:
if ξ : (X ⊗ Y )∗ → Y ∗ ⊗ X∗ is the 1-equivalence of lemma 4.20, the following diagram
commutes up to a natural 2-cell.

1 X ⊗ Y ⊗ (X ⊗ Y )∗

X ⊗ X∗ ⊗ Y ⊗ Y ∗ X ⊗ Y ⊗ Y ∗ ⊗ X∗

evR
X⊗Y

evR
X ⊗ evR

Y idX⊗Y ⊗ξ

idX⊗τX∗,Y ⊗Y ∗

(4.30)

Proof. In a first step, we show that the right adjoint of the 1-morphism
(evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ) (4.31)

is given by the 1-morphism
(idX⊗Y ⊗ ξ−1) ◦ (idX ◦ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY ). (4.32)

Indeed, if
ηX : idX⊗X∗ → evRX ◦ evX

εX : evX ◦ evRX → id1
(4.33)

are the unit and counit of the right-adjunction of evX and its right adjoint evRX , we
construct adjunction data for the adjunction in equations (4.31) and (4.32) as follows.
Let ε̃ and η̃ be the following 2-morphisms:

ε̃ : (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ) ◦ (idX⊗Y ⊗ ξ−1)
◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY )

∼= (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY )
∼= (evX ⊗ evY ) ◦ (evRX ⊗ evRY ) εX⊗εY−−−−→ id1

(4.34)
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Figure 4.1.: Diagram for the proof of lemma 4.21
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and

η̃ : idX⊗Y⊗(X⊗Y )∗ ∼= (idX⊗Y ⊗ ξ−1) ◦ (idX⊗Y ⊗ ξ)
∼= (idX⊗Y ⊗ ξ−1) ◦ (idX ⊗ τX∗,Y⊗Y ∗)

◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ)
id⊗ηX⊗ηY ⊗id−−−−−−−−−→ (idX⊗Y ⊗ ξ−1) ◦ (idX ⊗ τX∗,Y⊗Y ∗) ◦ (evRX ⊗ evRY )

◦ (evX ⊗ evY ) ◦ (idX ⊗ τY⊗Y ∗,X∗) ◦ (idX⊗Y ⊗ ξ).
(4.35)

One now shows that the two 1-morphisms in equations (4.31) and (4.32), together with
the two 2-morphisms ε̃ and η̃ form an adjunction. This shows that the two 1-morphisms
in equations (4.31) and (4.32) are adjoint.

Next, notice that the 1-morphism in equation (4.31) is 2-isomorphic to the 1-morphism
evX⊗Y by lemma 4.21. Thus, the right adjoint of evX⊗Y is given by the right adjoint of
the 1-morphism in equation (4.31), which is the 1-morphism in equation (4.32) by the
argument above. Since all adjoints are equivalent, this shows the lemma.

We are now ready to prove that the Serre automorphism is a monoidal pseudo-natural
transformation.

Proposition 4.23. Let C be a symmetric monoidal bicategory. Then, the Serre auto-
morphism is a monoidal pseudo-natural transformation of IdK (Cfd).

Proof. We have to provide invertible 2-cells

Π : SX⊗Y → SX ⊗ SY
M : id1 → S1.

(4.36)

By definition of the Serre automorphism in definition 4.4, it suffices to show that the
evaluation and its right adjoint are monoidal, since the braiding τ will be monoidal
by definition. The monoidality of the evaluation is proven in lemma 4.21, while the
monoidality of its right adjoint follows from lemma 4.22. These two lemmas thus provide
an invertible 2-cell SX⊗Y ∼= SX ⊗ SY . The second 2-cell id1 → S1 can be constructed in
a similar way, by noticing that 1 ∼= 1∗.

Remark 4.24. If C is a symmetric monoidal bicategory, we have constructed an action
of the Serre automorphism on K (Cfd) in definition 2.32. The last proposition shows that
this action is a monoidal action.

4.2. Monoidal homotopy actions
In this section, we investigate monoidal group actions on symmetric monoidal bicategories.
Recall that by a (homotopy) action of a topological group G on a bicategory C, we mean
a weak monoidal 2-functor ρ : Π2(G) → Aut(C), where Π2(G) is the fundamental 2-
groupoid of G, and Aut(C) is the bicategory of auto-equivalences of C. For details on
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homotopy actions of groups on bicategories, we refer the reader to section 2.2. In order
to simplify the exposition, we introduce the following definition:

Definition 4.25. Let G be a topological group. We will say that G is 2-truncated if
π2(G, x) is trivial for every base point x ∈ G.
Moreover, we will need also the following definition:

Definition 4.26. Let C be a symmetric monoidal bicategory. We will say that C is
1-connected if it is monoidally equivalent to B2H, for some abelian group H.

In the following, we denote with Aut⊗(C) the bicategory of monoidal auto-equivalences
of C: these are monoidal 2-functors, monoidal pseudo-natural transformations, and
monoidal modifications. For detailed definitions, we refer to [SP09].

Definition 4.27. Let C be a symmetric monoidal category and G be a topological group.
A monoidal homotopy action of G on C is a weak monoidal 2-functor

ρ : Π2(G)→ Aut⊗(C). (4.37)

We now prove a general criterion for when monoidal homotopy actions are trivializable.

Proposition 4.28. Let C be a symmetric monoidal bicategory, and let G be a path
connected topological group. Assume that G is 2-truncated, and that Aut⊗(C) is 1-
connected, for some abelian group H. If H2

grp(π1(G, e), H) ' 0, then any monoidal
homotopy action of G on C is pseudo-naturally isomorphic to the trivial action.

Proof. Let ρ : Π2(G) → Aut⊗(C) be a weak monoidal 2-functor. Since Aut⊗(C) was
assumed to be monoidally equivalent to B2H for some abelian group H, the group action
ρ is equivalent to a 2-functor ρ : Π2(G)→ B2H. Due to the fact that G is path connected
and 2-truncated, there is an equivalence of monoidal bicategories Π2(G) ' Bπ1(G, e),
where π1(G, e) is regarded as a discrete monoidal category. Thus, the homotopy action
ρ is equivalent to a weak monoidal 2-functor Bπ1(G, e)→ B2H.
We claim that such functors are classified by H2

grp(π1(G, e), H) up to pseudo-natural
isomorphism. Indeed, let F : Bπ1(G, e)→ B2H be a weak monoidal 2-functor. It is easy
to see that F is trivial as a weak 2-functor, since we must have F (∗) = ∗ on objects,
F (γ) = id∗ on 1-morphisms, and Bπ1(G) only has identity 2-morphisms. Thus, the only
non-trivial data of F can come from the monoidal structure on F . The 1-dimensional
components of the pseudo-natural transformations χa,b : F (a)⊗F (b)→ F (a⊗b) must be
trival since there are only identity 1-morphisms in B2H. The 2-dimensional components
of this pseudo-natural transformation consists of a 2-morphism χγ,γ′ in B2H for every
pair of 1-morphisms γ : a → b and γ′ : a′ → b′ in Bπ1(G) in the diagram in equation
(4.38) below.

F (a)⊗ F (a′) F (a⊗ a′)

F (b)⊗ F (b′) F (b⊗ b′)

χa,a′

F (γ)⊗F (γ′) F (γ⊗γ′)χγ,γ′

χb,b′

(4.38)
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4. The Serre automorphism as a homotopy action

Hence, we obtain a 2-cochain π1(G) × π1(G) → H, which obeys the cocycle condition
due to the coherence equations of a monoidal 2-functor, cf. [SP09, Definition 2.5].
One now checks that a monoidal pseudo-natural transformation between two such

functors is exactly a 2-coboundary, which shows the claim. Since we assumed that
H2
grp(π1(G, e), H) ' 0, the original action ρ must be trivializable.

In order to give an example for the last proposition, we show that the bicategory Algfd
2

of finite-dimensional, semisimple algebras, bimodules and intertwiners, equipped with
the monoidal structure given by the direct sum fulfills the conditions of proposition 4.28.

Lemma 4.29. Let K be an algebraically closed field. Let C = Algfd
2 be the bicategory

where objects are given by finite-dimensional, semisimple algebras, equipped with the
monoidal structure given by the direct sum. Then, Aut⊗(C) is equivalent to B2K∗.

Proof. Let F : Algfd
2 → Algfd

2 be a weak monoidal 2-equivalence, and let A be a finite-
dimensional, semisimple algebra. Then, A is isomorphic to a direct sum of matrix
algebras. Calculating up to Morita equivalence and using that F has to preserve the
single simple object K of Alg2, we have

F (A) ∼= F

(⊕

i

Mni(K)
)
∼=
⊕

i

F (Mni(K)) ∼=
⊕

i

F (K) ∼=
⊕

i

K ∼=
⊕

i

Mni(K) ∼= A.

(4.39)
Thus, the functor F is pseudo-naturally isomorphic to the identity functor on Algfd

2 .
Now, let η : F → G be a monoidal pseudo-natural isomorphism between two endo-

functors of Alg2. Since both F and G are pseudo-naturally isomorphic to the identity,
we may consider instead a pseudo-natural isomorphism η : idAlgfd

2
→ idAlgfd

2
. We claim

that up to an invertible modification, the 1-equivalence ηA : A → A must be given by
the bimodule AAA, which is the identity 1-morphism on A in Alg2. Indeed, since ηA is
assumed to be linear, it suffices to consider the case of A = Mn(K) and to take direct
sums. It is well-known that the only simple modules of A are given by Kn. Thus,

ηA = (Kn)α ⊗K (Kn)β, (4.40)

where α and β are multiplicities. Now, lemma 2.8 ensures that these multiplicities are
trivial, and thus we have ηA = AAA up to an invertible intertwiner. This shows that up
to invertible modifications, all 1-morphisms in Aut⊗(Algfd

2 ) are identities.
Next, let m be an invertible endo-modification of the pseudo-natural transformation

ididAlgfd
2
. Then, the component mA : AAA → AAA is an element of End(A,A)(A) ∼= K.

This shows that the 2-morphisms of Aut⊗(Algfd
2 ) stand in bijection to K∗.

Remark 4.30. Notice that the symmetric monoidal structure on Algfd
2 considered above

is not the standard one, which is instead the one induced by the tensor product of algebras,
and which is the monoidal structure relevant for the remainder of the paper.

The last lemmas imply the following:
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Lemma 4.31. Any monoidal SO(2)-action on Algfd
2 equipped with the monoidal structure

given by the direct sum is trivial.

Proof. Since π1(SO(2), e) ∼= Z, and H2
grp(Z,K∗) ∼= H2(S1,K∗) ∼= 0, proposition 4.28 and

lemma 4.29 ensure that any monoidal SO(2)-action on Algfd
2 is trivializable.

Corollary 4.32. Since Algfd
2 and Vectfd

2 are equivalent as additive categories, any SO(2)-
action on Vectfd

2 via linear morphisms is trivializable.

Remark 4.33. The last two results rely on the fact that Aut⊗(Algfd
2 ) and Aut⊗(Vectfd

2 )
are 1-connected as additive categories. This is due to the fact that fully-dualizable part
of either Alg2 or Vect2 is semisimple. An example in which the conditions in proposition
4.28 do not hold is provided by the bicategory of Landau-Ginzburg models.

4.2.1. Invertible Field Theories
In the subsection, we consider the case of 2-dimensional oriented invertible topological
field theories: such theories are in many ways easier to describe than arbitrary topological
field theories, and play an important role in condensed matter physics and homotopy
theory, as suggested in [Fre14a, Fre14b, FH16]. Using the cobordism hypothesis for
oriented manifolds which we will prove in chapter 5, we classify oriented invertible
theories in terms of homotopy fixed points. Furthermore, we provide a general criterion
when the SO(2)-action on the bigroupoid of invertible theories is trivializable.

Denote with Pic(C) the Picard groupoid of a symmetric monoidal bicategory C: it is
defined as the maximal subgroupoid of C where the objects are invertible with respect
to the monoidal structure of C. Also recall that if Cobfr

2,1,0 denotes the framed bordism
bicategory, the bicategory of symmetric monoidal functors Fun⊗(Cobfr

2,1,0, C) is equipped
with a monoidal structure which is defined pointwise.

Definition 4.34. An invertible, framed, 2-dimensional, fully-extended topological quan-
tum field theory with values in a symmetric monoidal bicategory C is an invertible object
in the monoidal bicategory of functors Fun⊗(Cobfr

2,1,0, C). The bigroupoid of invertible
framed TQFTs with values in C is given by Pic(Fun⊗(Cobfr

2,1,0, C)).
Remark 4.35. Equivalently, an invertible field theory assigns to the point in Cobfr

2,1,0
an invertible object in C, and to any 1- and 2-dimensional manifold it assigns invertible
1- and 2-morphisms.

Since the cobordism hypothesis for framed manifolds provides a monoidal equivalence
between the bicategory of symmetric monoidal functors Fun⊗(Cobfr

2,1,0, C) and K (Cfd),
the space of invertible, framed topological field theories is given by Pic(K (Cfd)), since
taking the Picard groupoid behaves well with respect to monoidal equivalences.
We begin by proving the following lemma.

Lemma 4.36. Let C be a symmetric monoidal bicategory. Then, there is an equivalence
of symmetric monoidal bicategories

Pic(K (Cfd)) ∼= Pic(C). (4.41)
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Proof. First note that K (Cfd) is a monoidal 2-groupoid, so there is an equivalence of
bicategories Pic(K (Cfd)) ∼= Pic(Cfd). Now, it suffices to show that every object X in
Pic(C) is already fully-dualizable. Indeed, denote the tensor-inverse of X by X−1. By
definition, we have 1-equivalences X ⊗ X−1 ∼= 1 and 1 ∼= X−1 ⊗ X, which serve as
evaluation and coevaluation. These maps may be promoted to adjoint 1-equivalences
by [SP09, Proposition A.27]. Thus, the evaluation and coevaluation also admit adjoints,
which suffices for fully-dualizability in the bicategorical setting.

Notice that given a monoidal bicategory C, any monoidal autoequivalence of C preserves
the Picard groupoid of C, since it preserves invertibility of objects and (higher) morphisms.
In particular, we have a monoidal 2-functor

Aut⊗(C)→ Aut⊗(Pic(C)) (4.42)

obtained by restriction. Since the SO(2)-action on Aut⊗(C) induced by the action on
Cobfr

2,1,0 in definition 4.42 is monoidal, it induces an action on Pic(C). To proceed, we
need the following lemma:

Lemma 4.37. Let C be a symmetric monoidal bicategory, and assume that Pic(C) is
monoidally equivalent to B2K∗. Then, there is an equivalence of bicategories

Aut⊗(Pic(C)) ' Iso(K∗), (4.43)

where the bicategory on the right hand side is regarded as a discrete bicategory.

Proof. Since Pic(C) ' B2K∗ by assumption, we have to describe the Picard groupoid of
the category of monoidal functors from B2K∗ to B2K∗.

First, notice that the monoidal bicategory B2K∗ is computadic in the sense of [SP09]:
it admits a presentation with only one object, only the identity 1-morphism, K∗ as the
set of 1-morphisms, and no relations between the 2-morphisms. The cofibrancy theorem
in [SP09, Theorem 2.78] ensures that every monoidal 2-functor out of a computadic
monoidal bicategory is equivalent to a strict monoidal functor. It is clear that strict
monoidal auto-equivalences of B2K are classified by Iso(K∗) up to natural isomorphism.
In order to see that the 1- and 2- morphisms of Aut⊗(B2K∗) are trivial, we use the
cofibrancy theorem again to strictify monoidal pseudo-natural transformations. In detail,
if F, F ′ : B2K∗ → B2K∗ are two weak monoidal 2-functors, and η : F → F ′ is a monoidal
pseudo-natural equivalence, the confibrancy theorem ensures that η is equivalent to a
strict monoidal pseudo-natural transformation, which means we may choose the data Π
andM in [SP09, Figure 2.7] to be identity 2-morphisms. Thus, η is fully determined by a
1-morphism η∗ : F (∗)→ F (∗) in B2K∗ which has to be the identity, and by a 2-morphism
ηid∗ in B2K∗ filling the naturality square. This 2-morphism however is also fixed to be
trivial by the unitality conditions of a monoidal pseudo-natural transformation in [SP09,
Axiom MBTA2 and Axiom MBTA3].

We now come to the last layer of information: any monoidal modification between two
monoidal pseudo-natural transformations is fixed to be the identity modification by the
unitality requirement in [SP09, Axiom BMBM2].
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Examples of symmetric monoidal bicategories satisfying the assumption of lemma 4.37
are Algfd

2 and Vectfd
2 . In the general case, we have the following lemma:

Lemma 4.38. Let C be a symmetric monoidal bicategory such that Pic(C) is monoidally
equivalent to B2K∗. Then, any monoidal SO(2)-action on Pic(C) is trivializable.

Proof. Since we have monoidal equivalences Π2(SO(2)) ' BZ and Aut⊗(Pic(C)) '
Iso(K∗), monoidal actions correspond to monoidal 2-functors BZ→ Iso(K∗). Monoidality
implies that the single object of BZ is sent to the identity isomorphism of K∗, which
correspond to the identity functor on Pic(C). This forces the functor to be trivial on
objects. It is clear that the action is also trivial on 1- and 2-morphisms. Since there are
no non-trivial morphisms in Iso(K∗), the monoidal structure on the action ρ must also
be trivial.

Finally, we need the following lemma:

Lemma 4.39. Let C be a symmetric monoidal bicategory, and let ρS be the SO(2)-
action on K (Cfd) by the Serre automorphism as in example 2.33. Since this action is
monoidal, it induces an action on Pic(K (Cfd)) ∼= Pic(C) by lemma 4.36. We then have
an equivalence of monoidal bicategories

Pic
(
(K (Cfd))SO(2)

) ∼= Pic(C)SO(2). (4.44)

Proof. Theorem 2.34 allows us to compute the two bicategories of homotopy fixed points
explicitly: we see that objects of both bicategories are given by invertible objects X
of C, together with the choice of a trivialization of the Serre automorphism. The 1-
morphisms of both bicategories are given by 1-equivalences between invertible objects
of C, so that the diagram in equation (4.18) commutes, while 2-morphisms are given by
2-isomorphisms in C.

The implication of the above lemmas is the following: when C is a symmetric monoidal
bicategory with Pic(C) ∼= B2K∗, the action of the Serre automorphism on framed, invert-
ible field theories with values in C is trivializable. Thus all framed invertible 2-dimensional
field theories wih values in C can be turned into orientable ones.

Remark 4.40. Let us also compare these results with proposition 4.28, which showed
that if C is a symmetric monoidal bicategory with Aut⊗(C) ∼= B2H for some abelian
group H, and G is a 2-truncated topological group so that H2

grp(π1(G, e), H) is trivial,
than any monoidal G-action on C is trivializable.
However, the assumptions of the above lemmas are slightly different: here we make

an assumption about the homotopy type of the bicategory we want to act on, instead of
the homotopy type of its automorphism category: instead of making an assumption on
Aut⊗(Pic(C)) (which is proven to be equivalent to Iso(K∗) in lemma 4.37), we assume
that Pic(C) itself has got the homotopy type of a B2K∗.
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4. The Serre automorphism as a homotopy action

4.3. The 2-dimensional framed bordism bicategory

In this section, we introduce a skeleton of the framed bordism bicategory Cobfr
2,1,0: this

symmetric monoidal bicategory Fcfd is the free bicategory of a coherent fully-dual pair
as introduced in [Pst14, Definition 3.13].
Using this presentation, we define a non-trivial SO(2)-action on the skeleton of the

framed bordism bicategory. If C is an arbitrary symmetric monoidal bicategory, the
action on Fcfd will induce an action on the functor bicategory Fun⊗(Fcfd, C) of symmetric
monoidal functors. Using the cobordism hypothesis for framed manifolds, which has been
proven in the bicategorical framework in [Pst14], we obtain an SO(2)-action on K (Cfd).
We show that this induced action coming from the framed bordism bicategory is exactly
the action given by the Serre automorphism. We begin by recalling the definition of the
symmetric monoidal bicategory Fcfd. Instead of writing down diagrams as in [Pst14], we
use a “wire diagram” graphical calculus as introduced in [Bar14].

Definition 4.41. The symmetric monoidal bicategory Fcfd is generated by

• 2 generating objects L and R,

• 4 generating 1-morphisms, given by

– a 1-morphism coev : 1→ R⊗ L, which we write as R L ,

– ev : L⊗R→ 1 which we write as
L R

,

– a 1-morphism q : L→ L,

– another 1-morphism q−1 : L→ L,

• 12 generating 2-cells given by

– isomorphisms α, β, α−1 and β−1 as in definition 4.1, which in pictorial form
are given as follows:

R L
α=⇒ L

L
Rβ=⇒R L R

(4.45)

– isomorphisms ψ : qq−1 ∼= idL : ψ−1 and φ : q−1q ∼= idL : φ−1,

– 2-cells µe : id1 → ev ◦ evL and εe : evL ◦ ev→ idL⊗R, where evL is defined as
evL := τ ◦ (idR ⊗ q−1) ◦ coev. In pictorial form, these 2-morphisms are given
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4.3. The 2-dimensional framed bordism bicategory

as follows:

1 µe=⇒

L R

q−1

R L

q−1

R L

L R

εe=⇒ L R (4.46)

– 2-cells µc : idR⊗L → coev ◦ coevL and εc : coevL ◦ coev→ id1, where coevL is
defined by coevL := ev ◦(q ⊗ idR) ◦ τ . In pictorial form, these 2-morphisms
are given as follows:

L R

R L

q

µc=⇒LR

L R

R L

q εc=⇒ 1 (4.47)

This ends the description of the data of Fcfd. We now come to the relations. We demand
that:
• the 2-cells α and α−1, as well as β and β−1, as well as φ and φ−1, as well as ψ and
ψ−1 are inverses to each other,

• the 2-cells µe and εe satisfy the two Zorro equations, which in pictorial form demand
that the following composition of 2-morphisms

L R

q−1

R L

L R

εe=⇒

L R

L R

µe=⇒
(4.48)
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is equal to idev, and that the following composition of 2-morphisms

q−1

R L

L R

q−1

R L

q−1

R L

µe=⇒
q−1

R L

εe=⇒ (4.49)

is equal to idevL .

• Furthermore, we demand that µc and εc satisfy two Zorro equations, which in
pictorial form demand that the composition

L R

q

R L

R L

R L

µc=⇒

R L

εc=⇒

(4.50)
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4.3. The 2-dimensional framed bordism bicategory

is equal to idcoev, and the composition of the following 2-morphisms

L R

q

R L

L R

q

L R

q

µc=⇒

εc=⇒

L R

q

(4.51)

is equal to idcoevL .

• The 2-cells φ and ψ satisfy triangle identities,

• and finally the cusp-counit equations in figure 5 and 6 on p.33 of [Pst14] are
satisfied, which in graphical form demands that the composition of the following
2-morphisms

R LL

q−1

R L

L R

q

εe=⇒

L R

q

L R L

εc=⇒

L

(4.52)
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4. The Serre automorphism as a homotopy action

is equal to the composition of 2-morphisms of figure 4.2 on page 95,

• the swallowtail equations in figure 3 and 4 on p.15 of [Pst14] are satisfied, which
in graphical form demand that the composition of the 2-morphisms

R LL R

∼=

R L RL

β=⇒

L R

α−1
==⇒

L R

(4.53)
is equal to idev, and that the composition of the following 2-morphisms

R L R L ∼= R R LL α=⇒

R L

β−1
==⇒

R L

(4.54)
is equal to idcoev.

This ends the description of Fcfd, the bicategory freely generated by a coherent fully-
dualizable object.

4.3.1. An action on the framed bordism bicategory

We now proceed to construct a non-trivial SO(2)-action on Fcfd. This action will be
vital for the remainder of this thesis.

By definition 2.32 it suffices to construct a pseudo-natural equivalence of the identity
functor on Fcfd in order to construct an SO(2)-action. This pseudo-natural transforma-
tion is given as follows:

Definition 4.42. Let Fcfd be the free symmetric monoidal bicategory on a coherent
fully-dual object as in definition 4.41. We construct a pseudo-natural equivalence α :
idFcfd → idFcfd of the identity functor on Fcfd as follows:

• for every object c of Fcfd, we need to provide a 1-equivalence αc : c→ c.

– For the object L of Fcfd, we define αL := q : L→ L,

– for the object R of Fcfd, we set αR := (q−1)∗, which in pictorial form is given
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R
L

L

q−
1

R
L

L
R

q

α =⇒

q−
1

R
L

L
R

q

L

∼ =

L

q−
1

R
L

q

L
R

∼ =

q

L
R

q−
1

R
L

∼ =

R
L

L

q

q−
1

α =⇒

q

q−
1 L

ψ =⇒

L

Figure 4.2.: The cusp-counit equations
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by

(q−1)∗ :=

R L

q−1

R

(4.55)

• for every 1-morphism f : c→ d in Fcfd, we need to provide a 2-isomorphism

αf : f ◦ αc → αd ◦ f. (4.56)

– For the 1-morphism q : L→ L of Fcfd we define the 2-isomorphism αq := idq◦q.
– For the 1-morphism q−1 : L→ L we define the 2-isomorphism

αq−1 :=
(
q−1 ◦ q φ−→ idL

ψ−1
−−→ q ◦ q−1

)
. (4.57)

– For the evaluation ev : L⊗R→ 1, we define the 2-isomorphism αev to be the
following composition:

q (q−1)∗

L R =
q

R L

q−1

R

L R

∼=
R LL

q

q−1

α=⇒

q

q−1

L R

ψ=⇒

L R

(4.58)

– For the coevaluation coev : 1→ R⊗ L, we define the 2-isomorphism αcoev to
be the composition

R L

(q−1)∗ q

=
R L

q−1

R

q
∼=

R L

R LL

q−1

q

α=⇒

R L

q−1

q

φ=⇒

R L

(4.59)

One now checks that this defines a pseudo-natural transformation of idFcfd . Using
definition 2.32 gives us a non-trivial SO(2)-action on Fcfd.
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4.3. The 2-dimensional framed bordism bicategory

Remark 4.43. Note that the SO(2)-action on Fcfd does not send generators to genera-
tors: for instance, the 1-morphism (q−1)∗ in equation (4.55) is not part of the generating
data of Fcfd.

Remark 4.44. Notice that the pseudo-natural equivalence α : idFcfd → idFcfd con-
structed in definition 4.42 is a symmetric monoidal pseudo-natural transformation. This
follows from the fact that Fcfd is the free symmetric monoidal bicategory generated
by a coherent fully-dual pair. Thus, we obtain an SO(2)-action on Fcfd via symmetric
monoidal morphisms.

4.3.2. Induced action on functor categories
Starting from the action defined on Fcfd, we induce an action on the bicategory of functors
Fun(Fcfd, C) for an arbitrary bicategory C. The construction of the induced action on
the bicategory of functors is a rather general. We provide details in the following.

Definition 4.45. Let ρ : Π2(G) → Aut(C) be a G-action on a bicategory C, and let
D be another bicategory. We define a G-action ρ̃ : Π2(G) → Aut(Fun(C,D)) which is
induced by ρ as follows:

• on objects g ∈ Π2(G), we define an endofunctor ρ̃(g) of Fun(C,D) on objects F on
Fun(C,D) by ρ̃(g)(F ) := F ◦ ρ(g−1). If α : F → G is a 1-morphism in Fun(C,D),
we define

ρ̃(g)(α) :=

Fρ(g−1)c Gρ(g−1)c

Fρ(g−1)d Gρ(g−1)d

αρ(g−1)(c)

Fρ(g−1)(f) Gρ(g−1)(f)αρ(g−1)(f)

αρ(g−1)(d)

(4.60)

If m : α→ β is a 2-morphism in Fun(C,D), the value of ρ̃(γ) is given by

ρ̃(γ)(m)x := mρ(g−1)(x). (4.61)

• On 1-morphisms γ : g → h of Π2(G), which are paths, we define a 1-morphism
ρ̃(γ) in Aut(Fun(C,D)) between the two endofunctors F 7→ F ◦ ρ(g−1) and F 7→
F ◦ ρ(h−1) of Fun(C,D) as follows:
– for each 2-functor F : C → D, we need to provide a pseudo-natural transfor-

mation ρ̃(γ)F : F ◦ ρ(g−1)→ F ◦ ρ(h−1) which we define via the diagram

Fρ(g−1)x Fρ(h−1)x

Fρ(g−1)y Fρ(h−1)y

F (ρ(γ−1)x)

Fρ(g−1)(f) Fρ(h−1)(f)
F (ρ(γ−1)f )

F (ρ(γ−1)y)

(4.62)
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Here, γ−1 is the “inverse” path of γ given by t 7→ γ(t)−1, and f : x→ y is a
1-morphism in C.

– For every pseudo-natural transformation α : F → G, we need to provide a
modification ρ̃(γ)α in the diagram

ρ̃(g)(F ) ρ̃(h)(F )

ρ̃(g)(G) ρ̃(h)(G)

ρ̃(γ)F

ρ̃(g)(α) ρ̃(h)(α)
ρ̃(γ)α

ρ̃(γ)G

(4.63)

which we define by
ρ̃(γ)α := α−1

ρ(γ−1)x . (4.64)

• For the 2-morphisms in Aut(Fun(C,D)) we proceed in a similar fashion: if m : γ →
γ′ is a 2-track, we have to provide a 2-morphism ρ̃(m) : ρ̃(γ)→ ρ̃(γ′) which can be
done by explicitly writing down diagrams as above.

The rest of the data of a monoidal functor ρ̃ is induced from the data of the monoidal
functor ρ.

For C and D symmetric monoidal bicategories, the bicategory of symmetric monoidal
functors Fun⊗(C,D) acquires a monoidal structure by “pointwise evaluation” of functors.
Such a monoidal structure is also symmetric. The following result is straightforward,
and follows from “symmetric monoidal whiskering” of [SP09].

Lemma 4.46. Let C and D be symmetric monoidal bicategories, and let ρ be a monoidal
action of a group G on C. Then ρ induces a monoidal action

ρ̃ : Π2(G)→ Aut⊗(Fun⊗(C,D)). (4.65)

Example 4.47. Our main example for induced actions is the SO(2)-action on Fcfd as
in definition 4.42. This action only depends on a pseudo-natural equivalence α of the
identity functor on idFcfd . Consequently, the induced action on Fun(Fcfd, C) also only
depends on a pseudo-natural equivalence of the identity functor on Fun(Fcfd, C). Using
the definition above, we construct this induced pseudo-natural equivalence α̃ as follows.

• For every 2-functor F : C → D, we need to provide a pseudo-natural equivalence
α̃F : F → F , which is given by the diagram

α̃F :=

Fx Fx

Fy Fy

F (α−1
x )

F (f) F (f)
F (α−1

f
)

F (α−1)y

(4.66)
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• for every pseudo-natural transformation β : F → G, we need to give a modification
α̃β, which we define by the diagram

Fx Fx

Gx Gx

F (α−1
x )

βx βx
β−1

(α−1
x )

G(α−1)x

(4.67)

This defines a pseudo-natural equivalence of the identity functor on Fun(Fcfd, C). By
definition 2.32, we obtain an SO(2)-action on Fun(Fcfd,C). Note that Fcfd is even a
symmetric monoidal bicategory. The SO(2)-action on Fcfd of definition 4.42 is via
symmetric monoidal homomorphisms by remark 4.44. Hence, if C is also symmetric
monoidal, then lemma 4.46 provides a monoidal action on Fun⊗(Fcfd, C).

4.3.3. Induced action on the core of fully-dualizable objects
In this subsection, we compute the SO(2)-action on the core of fully-dualizable objects
coming from the SO(2)-action on Fcfd. Starting from the SO(2)-action on Fcfd as by
definition 4.42, we have shown in the previous subsection how to induce an SO(2)-action
on the bicategory of symmetric monoidal functors Fun⊗(Fcfd, C) for C some symmetric
monoidal bicategory. By the cobordism hypothesis for framed manifolds, we obtain an
induced SO(2)-action on K (Cfd). More precisely, denote by

EL : Fun⊗(Fcfd, C)→ K (Cfd)
Z 7→ Z(L)

(4.68)

the evaluation functor. The cobordism hypothesis for framed manifolds in two dimensions
[Pst14, Lur09b] states that EL is an equivalence of symmetric monoidal bicategories.
Hence, the composition of the SO(2)-action on Fun⊗(Fcfd, C) and (the inverse of) EL
provides an SO(2)-action on K (Cfd). The next proposition shows that this action is
equivalent to the action ρS induced by the Serre automorphism which is illustrated in
example 2.33.

Proposition 4.48. Let ρ be the SO(2)-action on Fcfd given in definition 4.42, and let
C be a symmetric monoidal bicategory. By definition 4.45, we obtain a monoidal SO(2)-
action on Fun⊗(Fcfd, C). Then, the monoidal SO(2)-action induced by the evaluation in
equation (4.68) on K (Cfd) is equivalent to the action by the Serre automorphism ρS.

Proof. Let
ρ : Π2(SO(2))→ Aut(Fun⊗(Fcfd, C)) (4.69)

be the SO(2)-action on the bicategory of symmetric monoidal functors Fun⊗(Fcfd, C) as
in example 4.47. This action only depends on a pseudo-natural transformation α on the
identity functor on Fun⊗(Fcfd, C). By [Pst14], the 2-functor in equation (4.68) which

99



4. The Serre automorphism as a homotopy action

evaluates a framed field theory on the object L is an equivalence of bicategories. Thus,
we obtain an SO(2)-action ρ′ on K (Cfd). This action is given as follows. By definition
2.32, we only need to provide a pseudo-natural transformation of the identity functor
of K (Cfd). In order to write down this pseudo-natural transformation, note that the
functor

Aut(Fun⊗(Fcfd, C))→ Aut(K (Cfd))
F 7→ EL ◦ F ◦ E−1

L

(4.70)

is an equivalence. Hence, the induced pseudo-natural transformation of idK (Cfd) is given
as follows:
• for each fully-dualizable object c of C, we assign the 1-morphism α′c : c→ c defined
by

α′c := EL
(
α(E−1

L (c))
)
. (4.71)

• For each 1-equivalence f : c→ d between fully-dualizable objects of C, we define a
2-isomorphism α′f : f ◦ α′c → α′d ◦ f by the formula

α′f := EL
(
α(E−1

L (f))
)
. (4.72)

Here, α is the pseudo-natural transformation as in example 4.47. In order to see that
α′c is given by the Serre automorphism of the fully-dualizable object c, note that the
1-morphism q : L → L of Fcfd is mapped to the Serre automorphism SZ(L) by the
equivalence in equation (4.68). This follows from lemma 4.5 which characterizes the
Serre-automorphism in terms of the left- and right adjunction of the evaluation. Now
notice that 2-cells µe, εe, µc and µe in the framed bordism bicategory define adjunctions
using the 1-morphism q. This shows that q is mapped to the Sere-automorphism.

Corollary 4.49. Let ρ be the SO(2)-action on Fcfd given in definition 4.42, and let C
be a symmetric monoidal bicategory. Consider the SO(2)-action ρS on K (Cfd) induced
by the Serre automorphism. Then the evaluation morphism evL induces an equivalence
of bicategories

Fun⊗(Fcfd, C)SO(2) → K (Cfd)SO(2). (4.73)
Proof. By proposition 4.48, the equivalence of equation (4.68) is SO(2)-equivariant.
Thus, it induces an equivalence on homotopy fixed points, see. section 2.3 for an explicit
description. It is also possible to construct this equivalence directly: by theorem 2.34, the
bicategory of homotopy fixed points Fun⊗(Fcfd, C)SO(2) is equivalent to the bicategory
where
• objects are given by symmetric monoidal functors Z : Fcfd → C, together with a

modification λZ : α̃Z → idZ . Explicitly, this means: if α is the endotransformation
of the identity functor of Fcfd as in definition 4.42, we obtain two 2-isomorphisms
in C:

λL : Z(q−1)→ idZ(L)

λR : Z(((q−1)∗)−1)→ idZ(R)
(4.74)

which are compatible with evaluation and coevaluation,
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• 1-morphisms are given by symmetric monoidal pseudo-natural transformations
µ : Z → Z ′, so that the analogue of the diagram in equation (2.65) commutes,

• 2-morphisms are given by symmetric monoidal modifications.

Now notice that Z(q) is precisely the Serre automorphism of the object Z(L). Thus, λL
provides a trivialization of (the inverse of) the Serre automorphism. Applying theorem
2.34 again to the action of the Serre automorphism on the core of fully-dualizable objects
shows that the functor Z 7→ (Z(L), λL) is an equivalence of homotopy fixed point
bicategories.
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5. Calabi-Yau objects and the cobordism
hypothesis for oriented manifolds

In this chapter, we define Calabi-Yau objects in an arbitrary symmetric monoidal bi-
category C. First, we show that fully-dualizable Calabi-Yau objects are equivalent to
homotopy fixed points of the SO(2)-action by the Serre automorphism on K (Cfd). Con-
jecturally, Calabi-Yau objects which are not fully-dualizable are related to non-compact
field theories. We then prove that the 2-groupoid of 2-dimensional oriented topological
quantum field theories with values in a symmetric monoidal bicategory C is equivalent
to the bigroupoid of Calabi-Yau objects in C. This proves the cobordism hypothesis for
2-dimensional, oriented manifolds. We begin with a central definition:

Definition 5.1. Let C be a symmetric monoidal bicategory. A Calabi-Yau object in C
consists of the following data:

• a dualizable object X of C,

• and a 2-morphism
η : evX ◦τX∗,X ◦ coevX → id1. (5.1)

The data (X, η) is then required to fulfill the following condition: we demand the
existence of a 2-morphism ε : idX⊗X∗ → τX∗,X ◦ coevX ◦ evX , so that ε and η are unit
and counit of an adjunction between evX and τX∗,X ◦ coevX . Explicitly, this means that
the composition of the following 2-morphisms

X X∗

X∗ X

X X∗

η=⇒

X X∗

X X∗

ε=⇒
(5.2)
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must be equal to idevx , and the composition of the following 2-morphisms

X∗ X

X X∗

X∗ X

X∗ X

ε=⇒

X∗ X

η=⇒

(5.3)

must be also equal to the identity. We call the 1-morphism

dim(X) := evX ◦τX∗,X ◦ coevX ∈ EndC(1) (5.4)

the dimension of X.
Example 5.2. If C = Alg2 is the bicategory of algebras, bimodules and intertwiners,
every object is dualizable: the dual of an algebra A is given by the opposite algebra Aop,
and evaluation and coevaluation are the bimodules AA⊗Aop and A⊗AopA. The additional
structure of a Calabi-Yau object is nothing else than a symmetric Frobenius form on A.
Unsurprisingly, there is a whole bicategory of Calabi-Yau objects. The 1-morphisms

of this bicategory are defined as follows:
Definition 5.3. Let (X, ηX) and (Y, ηY ) be two Calabi-Yau objects in a symmetric
monoidal bicategory C. A 1-morphism of Calabi-Yau objects is a 1-equivalence f : X → Y
in C, so that the following diagram of 2-morphisms in C commutes.

dim(X)

id1

dim(Y )

dim(f)

ηX

ηY

(5.5)

Here, dim(f) : dim(X)→ dim(Y ) is the 2-isomorphism in C which is induced from the
1-morphism f : X → Y . An explicit description of this 2-morphism follows from the
“dinaturality” of the evaluation and the coevaluation in lemma 4.7.
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The 2-morphisms of the bicategory of Calabi-Yau objects are given as follows:

Definition 5.4. A 2-morphism of Calabi-Yau objects in C is a 2-isomorphism in C. Given
a symmetric monoidal bicategory C, this defines the bigroupoid CY(C) of Calabi-Yau
objects in C.

Next, we show that fully-dualizable Calabi-Yau objects are precisely homotopy fixed
points of the action given by the Serre automorphism:

Theorem 5.5. Let C be a symmetric monoidal bicategory. Then, there is an equivalence
of bigroupoids

CY(Cfd) ∼= (K (Cfd))SO(2), (5.6)

where the SO(2)-action on K (Cfd) is given by the Serre automorphism as in example
2.33.

Proof. First note that corollary 4.10 provides an explicit description of (K (Cfd))SO(2):
objects are given by pairs (X,λX), where X is a fully-dualizable object of C, and λX :
SX → idX is a 2-isomorphism which trivializes the Serre automorphism of X. Given
such a homotopy fixed point, we define a Calabi-Yau object in K (Cfd) by taking the
trace of the Serre automorphism: indeed, by using the pseudo-naturality of the braiding,
one sees that the trace of the Serre automorphism is given by

tr(SX) ∼= evX ◦ evRX . (5.7)

Since the Serre automorphism is trivializable in (K (Cfd))SO(2), the right adjoint of the
evaluation is equivalent to the coevaluation composed with the braiding, see lemma
4.5. Now, we use that X is fully-dualizable by observing that there is a counit ηX :
evX ◦ evRX → id1 of the right-adjunction of the evaluation. Thus, the counit of the
right-adjunction gives X the structure of a Calabi-Yau object.
For the other direction, we proceed as follows: If X is a fully-dualizable Calabi-Yau

object in C, we need to construct a trivialization of the Serre automorphism. For this, it
suffices to show that

evRX = τX∗,X ◦ coevX , (5.8)

up to a 2-isomorphism. Then, the structure of a Calabi-Yau object provides a trivializa-
tion of the Serre automorphism by lemma 4.5.

In order to show equation (5.8), it suffices to show that the 1-morphism τX∗,X ◦ coevX
is a right-adjoint of the evaluation, since the category of all adjoints is contractible. Now,
the unit and the counit of the Calabi-Yau object are precisely the unit and the counit for
the right adjunction of τX∗,X ◦ coevX and the evaluation. Thus, starting from a Calabi-
Yau object, we have constructed a trivialization of the Serre automorphism. Since X
was assumed to be fully-dualizable, this data is exactly an object in K (Cfd)SO(2).

Furthermore, one checks that a 1-morphism in K (Cfd)SO(2) gives rise to a 1-morphism
in CY(C) and vice versa. It is trivial to see that the 2-morphisms of the two bigroupoids
stand in bijection.
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Remark 5.6. By equation (5.8), the right adjoint of the evaluation of a fully-dualizable
Calabi-Yau object is given by the τX∗,X ◦ coevX . We claim that the left-adjoint of the
evaluation is given by the same formula

evL = τX∗,X ◦ coevX , (5.9)

and thus left- and right-adjoint of the evaluation agree. Indeed, by theorem 5.5, a fully-
dualizable Calabi-Yau object is equivalent to a trivialization λX : SX → idX of the Serre
automorphism. The trivialization of SX also provides a trivialization of S−1

X . By lemma
4.5, the left adjoint of the evaluation will then be as claimed.

We now come to the second main result of this section: the classification of fully-
extended oriented 2-dimensional topological quantum field theories in terms of Calabi-
Yau objects. Recall that Schommer-Pries has given a presentation of the 2-dimensional
oriented bordism bicategory via generators and relations. For the benefit of the reader,
we recall this theorem here.

Theorem 5.7 ([SP09, Theorem 3.50]). The oriented 2-dimensional bordism bicategory,
as a symmetric monoidal bicategory, has the generators and relations as in figure 5.1 on
page 107.

Using the presentation for the oriented bordisms bicategory, Schommer-Pries was able
to classify oriented 2-dimensional field theories with values in Alg2 by showing that there
is an equivalence of bicategories

Fun⊗(Cobor
2,1,0,Alg2) ∼= Frob (5.10)

where Frob is the bigroupoid of Frobenius algebras introduced in definition 2.11. We now
prove a stronger theorem where the target space is allowed to be an arbitrary symmetric
monoidal bicategory.

Theorem 5.8. Let C be a symmetric monoidal bicategory. Then, the following 2-functor
is an equivalence of bicategories:

Fun⊗(Cobor
2,1,0, C)→ CY(Cfd)

Z 7→ (Z(+), Z( ))
(ν : Z → Z̄) 7→ (ν+ : Z(+)→ Z̄(+))
(m : ν → ν ′) 7→ (m+ : ν+ ⇒ ν ′+).

(5.11)

Proof. In order to simplify notation, set X := Z(+) and X∗ := Z(−). To see that X is
a fully-dualizable object in C, note that the value of Z on the elbows provides evaluation
and coevaluation. The value of Z on the cusps provides the 2-morphisms α and β in
definition 4.1. Thus, X is dualizable. Now, the cup, the cap and the saddle give units
and counits for left- and right-adjunction between evaluation and coevaluation. Thus,
X is fully-dualizable by [Pst14, Theorem 3.9].
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Generating Objects: + • - • Generating 1-Morphisms: +
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+
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Generating

2-Morphisms:
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2D Morse generators

+ permutations
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Cusp generators

Relations among

2-Morphisms:

=

+ permutations

=

+ permutations

=

+ permutations

=

=

Figure 3.13. Oriented Generators and Relations

in terms of a specific small amount of data which corresponds to the images of
the generators in the target symmetric monoidal bicategory. In this section we will
collect together a few basic results on transformations between topological field the-
ories, focusing only on the oriented case. The existence of the forgetful symmetric
monoidal homomorphism Bordor2 → Bord2 implies that any unoriented topological
field theory gives rise to an oriented theory, so the results of this section are also
valid in the unoriented setting.

Let us fix a target symmetric monoidal bicategory C, and assume that we
have two topological field theories Z0 and Z1 with values in C. We will first work
in the oriented case, and then explain what happens in the unoriented setting.
Theorem 2.78 and Proposition 2.74 allow us to characterize the transformations

Figure 5.1.: Generators and relations for the oriented bordism bicategory
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5. Calabi-Yau objects and the cobordism hypothesis for oriented manifolds

Next, note that X, together with η := Z( ) : dim(X)→ id1 is a Calabi-Yau object in
Cfd; the corresponding unit ε : idX⊗X∗ → τX∗,X ◦ coevX ◦ evX is given by the value of Z
on the saddle. The relations among the 2-morphisms in the oriented bordism bicategory
then ensure that (X, η) really is a Calabi-Yau object.
In order to see that the functor in equation (5.11) is well-defined on 1-morphisms, let

ν : Z → Z̄ be pseudo-natural transformation. Note that naturality with respect to the
cup is equivalent to the equation

Z( ) ◦ νS1 = Z̄( ), (5.12)

where for better readability we have left out associators and unitors. Here νS1 : Z̄(S1)→
Z(S1) is the 2-isomorphism which fills the naturality square. This is exactly the condition
requiring that ν+ : Z(+) → Z̄(+) is a 1-morphism of Calabi-Yau objects. This shows
that the 2-functor in equation (5.11) indeed takes vales in CY(Cfd).

We now show that the 2-functor in equation (5.11) is an equivalence of bicategories. In
order to see essential surjectivity, it suffices to give the values of Z on the generators of
the bordism bicategory. Suppose that (X, η) is a fully-dualizable Calabi-Yau object. Let
ε be the unit of left adjunction of evaluation and coevaluation coming from the definition
of Calabi-Yau object. Note that in the oriented bordism bicategory, the elbows also form
a right-adjunction, with unit given by the cap and counit given by the opposite saddle.
Define a fully-extended 2-dimensional topological quantum field theory Z by setting

Z(+) := X, Z(−) := X∗. (5.13)

On the 1-morphisms of the bordism bicategory, set

Z( +- ) : = τX,X∗ ◦ coevX ,

Z( +- ) : = evX .
(5.14)

Now define on the 2-morphisms of the oriented bordism bicategory as follows:

Z( ) : = η,

Z

( )
: = ε.

(5.15)

In order to define the value of Z on the cap and on the other saddle, let

ηL : evL ◦ ev→ idX⊗X∗
εL : id1 → ev ◦ evL

(5.16)

be the unit and counit of the left-adjunction between the evaluation and its left adjoint
evL. By remark 5.6, the left-adjoint evL is also given by τX∗,X ◦ coev. Thus, ηL and εL
induce 2-morphisms

ηL : τX∗,X ◦ coevX ◦ evX → idX⊗X∗
εL : id1 → evX ◦τX∗,X ◦ coevX .

(5.17)
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Now, define
Z( ) : = εL

Z

( )
: = ηL.

(5.18)

Finally, assign the value of Z on the cusps to be the 2-morphisms α and β (and their
inverses) in definition 4.1. We set

Z

( )
:= α and Z

( )
:= α−1. (5.19)

With these definitions, Z becomes is a symmetric monoidal 2-functor with Z( ) = η.
Thus, the functor in (5.11) is essentially surjective on objects.

In order to see that evaluating at the positive point is essentially surjective on 1-
morphisms, let f : X → Y be a 1-morphism in CY(Cfd). Let Z and Z̄ be the topological
quantum field theories constructed above with Z(+) = X and Z̄(+) = Y . We now
need to construct a pseudo-natural transformation ν : Z → Z̄. Define on objects of the
oriented bordism bicategory

ν+ : = f : Z(+)→ Z̄(+)
ν− : = (f∗)−1 : Z(−)→ Z̄(−).

(5.20)

On the 1-morphisms of the bordism bicategory, which are just the elbows, we define 2-
cells which fill the naturality square. For the left elbow, we have to provide a 2-morphism
ν

( +- )
in the diagram

Z(+ t −) Z̄(+ t −)

Z(∅) Z̄(∅)

ν+⊗ν−

Z( +− ) Z̄( +− )
ν

( +- )

ν∅

(5.21)

which follows from the “dinaturality” of the evaluation and is explicitly constructed in
lemma 4.7. The 2-cell for the other elbow is constructed similarly, by observing that the
coevaluation is also dinatural. Now, we need to check that ν is indeed a pseudo-natural
transformation and is natural with respect to 2-morphisms of the bordism bicategory.
Naturality with respect to the cup is equivalent to equation (5.12), which just says
that our original 1-morphism f is a morphism of Calabi-Yau objects. As argued in
[SP09, Section 3.7] naturality with respect to the two cusps is equivalent to the fact
that there is an ambidextrous adjunction between Z(+) and Z̄(+), which even is an
adjoint equivalence by naturality with respect to the saddles. Thus, ν really is a pseudo-
natural transformation, and the 2-functor in equation (5.11) is essentially surjective on
1-morphisms.
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5. Calabi-Yau objects and the cobordism hypothesis for oriented manifolds

In order to check that the functor induces a bijection on 2-morphisms, we have to
check the relations among the 2-morphism of both bicategories. First of all, the equation

= (5.22)

in the oriented bordism bicategory, together with its permutations, demands that the two
elbows, together with the saddles and the cup and cap form an ambidextrous adjunction.
In K (Cfd)SO(2), this equation is satisfied since Z(+) is fully-dualizable. Next, the
swallowtail equation

= (5.23)

are satisfied in K (Cfd)SO(2) because every fully-dualizable object may be completed into
a coherent dual pair, which satisfies these equations, cf. [Pst14, Theorem 2.7]. This
leaves the cusp-flip equations,

= (5.24)

which are satisfied since Z(+) can be made into a coherent fully-dual pair, which demands
that these equations are satisfied, cf. [Pst14, Theorem 3.16]. The last two relations among
the 2-morphisms in the bordism bicategory demand that the two cusps are inverses to
each other, and are satisfied since the two 2-morphisms α and β are isomorphisms. Thus,
the 2-functor in equation (5.11) induces a bijection on 2-morphisms and is an equivalence
of bicategories.

Combining theorem 5.8 and theorem 5.5 now shows the 2-dimensional cobordism
hypothesis for oriented manifolds:

Corollary 5.9. Let C be a symmetric monoidal bicategory, and consider the SO(2)-action
on K (Cfd) by the Serre automorphism. Then, there is an equivalence of bigroupoids

Fun⊗(Cobor
2,1,0, C) ∼= (K (Cfd))SO(2). (5.25)
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6. Outlook

Here, we give an outlook towards several generalizations and extensions of this thesis.
As we have proven the 2-dimensional cobordism hypothesis for oriented manifolds in
corollary 5.9, one obvious aim would be to give a detailed proof of the cobordism
hypothesis for higher dimensions. Our proof relies on the description of the framed- and
oriented bordism bicategories in terms of generators and relations, as well as an explicit
description of fully-dualizable objects. In three dimensions, [DSPS13] gives a description
of the fully-dualizable objects in a 3-category of tensor categories, while [BDSPV14] gives
an explicit description of the (3 + 2 + 1)-dimensional bordism bicategory and proceeds to
classify extended (3+2+1)-theories in terms of modular tensor categories in [BDSPV15].
In order to understand the action of SO(3) and to compute homotopy fixed points,
a 4-categorical setup is needed. While an algebraic model of a fully weak 4-category
has appeared in [Hof11] under the name quadcategory, it remains to be seen if one
can effectively work with this model. In contrast to the algebraic approach, a detailed
description of the (∞, n)-category of bordisms has appeared in [Sch14].
Another immediate application of theorem 5.8 would be to classify topological field

theories with vales in symmetric monoidal bicategories other than Vect2 or Alg2. One
candidate is the bicategory of spans of 2-vector spaces as considered in [Mor11, Mor15].
However, a formal argument in [Hau14] in the language of ∞-categories suggests that
the SO(2)-action on iterated spans should be trivializable.
More interesting targets would be the bicategory of Landau-Ginzburg models, or the

bicategory of differential graded algebras. By [CM16], the whole bicategory of Landau-
Ginzburg models is fully-dualizable. In order to use theorem 5.8 of the present thesis,
one would have to explicitly compute the Serre automorphism of a fully-dualizable object
in the bicategory of Landau-Ginzburg models.
The situation for dg-algebras is a bit more involved. Here, fully-dualizable objects

are given by smooth and proper dg-algebras as defined in [KS09]. Computing the Serre
automorphism in this bicategory is likely to be more difficult than in Alg2 or in Vect2,
since a trivialization of the Serre automorphism already consists of an infinite amount
of data. Work in this directions using the language of A∞-algebras includes for instance
[Cos07].

A geometric extension of this thesis would be to work directly with the framed bordism
bicategory, instead of the algebraic skeleton of [Pst14]. This would allow to give a precise
meaning to “rotating the framings” on the framed bordism bicategory, and to define the
SO(2)-action geometrically.

Another extension of this thesis could be towards non-compact, or open-closed theories:
theorem 5.8 classifies 2-dimensional, oriented, fully-extended topological quantum field
theories by fully-dualizable Calabi-Yau objects. According to [Lur09b], oriented, non-
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6. Outlook

compact field theories are classified by the whole bicategory of Calabi-Yau objects, which
do not need to be fully-dualizable. In order to prove this in the language of bicategories,
one should give generators and relations of the non-compact version of the oriented
bordism bicategory, and then consider symmetric monoidal functors out of it.

6.1. The homotopy hypothesis
Next, we given an outlook on the homotopy hypothesis. While this thesis deals with ho-
motopy actions in an essentially algebraic way using the language of symmetric monoidal
bicategories, one might hope to make the guiding principle of the homotopy hypothesis
sufficiently precise, so that one can do computations on the topological side, and then
transfer the results to the algebraic world. This approach is for instance taken in [Dav11].
As we work with group actions on symmetric monoidal bicategories, there are three
essentially different types of structures that one has to take care of:

1. First of all, one has to take the purely bicategorical aspect into account. This
means that one expects that there is a suitable tricategory of 2-types, which is
equivalent to the tricategory of bicategories via the fundamental 2-groupoid. In
[Gur11], Gurski sets up an appropriate tricategory of topological spaces and gives
a detailed description of the tricategorical structure of the fundamental 2-groupoid.
Restricting this tricategory of topological spaces to the tricategory of 2-types should
show that the fundamental 2-groupoid induces an equivalence of tricategories.
Further work in [CCG11] considers the geometric realization of a bicategory, which
should act as an inverse to the fundamental 2-groupoid. A model-categorical result
going in this direction is proven in [MS93]: there is a Quillen-equivalence between
the category of 2-types and the category of strict 2-categories.

2. As we deal with symmetric monoidal bicategories, which is extra structure, we
should expect additional structure on the topological side. As originally proven by
Segal using the theory of Γ-spaces in [Seg74], the classifying space of a symmetric
monoidal category is an E∞-space. Moreover, one should also expect a result in
the other direction: namely that the fundamental groupoid of an En-space has a
symmetric monoidal structure. Results in both directions appear in [GO13]: it is
proven that the classifying space of a symmetric monoidal bicategory is an E∞-
space. In the other direction, the authors show that for n ≥ 4, the fundamental
2-groupoid of an En-space carries the additional structure of a symmetric monoidal
bicategory.

3. Finally, we have to take the additional data of a group action into account. Here,
the following results are available: in [BMO+15], it is proven that there is a model
structure on the category of categories equipped with a strict G-action of a finite
group. This model category is then shown to be Quillen equivalent to the model
category of G-spaces. It would be interesting to extend this result to non-strict
G-actions of topological groups on bicategories and thus to prove an equivariant
homotopy hypothesis for weak G-actions.
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6.2. Homotopy orbits

6.2. Homotopy orbits
Finally, we indicate another way of proving the cobordism hypothesis for oriented man-
ifolds by using homotopy orbits. Recall that in chapter 4, we have constructed an
SO(2)-action on the bicategory Fcfd, which is a skeleton of the framed bordism bicat-
egory. We have shown how the action on Fcfd induces an action on the bicategory of
symmetric monoidal functors Fun⊗(Fcfd, C), and that via the framed cobordism hypoth-
esis the induced action on K (Cfd) agrees with the action of the Serre automorphism. As
a consequence, we are able to provide an equivalence of bicategories

Fun⊗(Fcfd, C)SO(2) ∼= K (Cfd)SO(2) (6.1)

in corollary 4.49. We could then in principle deduce the cobordism hypothesis for oriented
manifolds from equation (6.1), once we provide an equivalence of bicategories

Fun⊗(Fcfd, C)SO(2) ∼= Fun(Cobor
2,1,0, C). (6.2)

The above equivalence can be proven directly by using a presentation of the oriented
bordism bicategory via generators and relations, given in [SP09]. In fact, this equivalence
of bicategories follows directly from corollary 4.49 and from corollary 5.9.

Here, we want to comment on an alternative approach. Namely, in order to provide an
equivalence as in equation (6.2), it suffices to identify the oriented bordism bicategory
with the colimit of the SO(2)-action on Fcfd. Indeed, recall that one may define a
G-action on a bicategory C to be a trifunctor ρ : BΠ2(G) → Bicat with ρ(∗) = C. We
then define the bicategory of homotopy orbits or co-invariants CG to be the tricategorical
colimit of the action.
Furthermore, recall that we work with symmetric monoidal bicategories, and that

the action of the Serre automorphism is monoidal. Thus, we obtain a diagram ρ :
Π2(SO(2)) → SymMonBicat, with values in the tricategory of symmetric monoidal
bicategories.
It follows from theorem 2.34 that the bicategory of homotopy fixed points of this

action has a monoidal structure, which is induced from the monoidal structure on C.
This observation allows us to make the following conjecture:

Conjecture 6.1. Let ρ : Π2(SO(2)) → SymMonBicat be the action of the Serre auto-
morphism on the core of fully-dualizable objects of a symmetric monoidal bicategory C.
Then, the trilimit of this diagram exists in the tricategory of symmetric monoidal bicat-
egories and is given as a bicategory by K (Cfd)SO(2) as in theorem 2.34. Furthermore,
the monoidal structure on K (Cfd)SO(2) coming from the monoidal structure on C agrees
with the monoidal structure of the tricategorical limit in SymMonBicat.

Now, consider a monoidal G-action on a symmetric monoidal bicategory C, and suppose
that the tricategorical colimit of the action in SymMonBicat exists. Then, we obtain an
equivalence of bicategories

Fun⊗(CG,D) ∼= Fun⊗(C,D)G (6.3)

113



6. Outlook

for an arbitrary symmetric monoidal bicategory D. The following conjecture is then
natural:

Conjecture 6.2. Consider the SO(2)-action on the skeletal version of the framed bor-
dism bicategory Fcfd as in defintion 4.42. The tricategorical colimit of this action with
values in SymMonBicat exists and is monoidally equivalent to the oriented bordism
bicategory:

(Fcfd)SO(2) ∼= Cobor
2,1,0 . (6.4)

Remark 6.3. We believe that this is not an isolated phenomenon, in the sense that
any higher bordism category equipped with additional tangential structure should be
obtained by taking an appropriate colimit of a G-action on the framed bordism category.

Given conjecture 6.2 and equation 6.3, we obtain the following sequence of monoidal
equivalences of bicategories:

Fun⊗(Cobor
2,1,0, C) ∼= Fun⊗((Fcfd)SO(2), C) (by conjecture 6.2)

∼= Fun⊗(Fcfd, C)SO(2) (by equation 6.3)
∼= K (Cfd)SO(2) (by corollary 4.49).

(6.5)

Hence conjecture 6.2 implies the cobordism hypothesis for oriented 2-manifolds. Notice
that the chain of equivalences in equation (6.5) is natural in C.
On the other hand, the cobordism hypothesis for oriented manifolds in 2-dimensions

implies conjecture 6.2, provided that the colimit exists. Indeed, by using a tricategor-
ical version of the Yoneda lemma, as developed for instance in [Buh15], the chain of
equivalences

Fun⊗(Cobor
2,1,0, C) ∼= K (Cfd)SO(2)

∼= Fun⊗(Cobfr
2,1,0, C)SO(2)

∼= Fun⊗((Fcfd)SO(2), C)
(6.6)

implies that Cobor
2,1,0 is equivalent to (Fcfd)SO(2), due to the uniqueness of representable

objects.
It would then be of great interest to develop concrete constructions of homotopy co-

invariants of group actions on (symmetric monoidal) bicategories in order to directly
verify the equivalence in conjecture 6.2, and to extend the above arguments to general
tangential G-structures.
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A. Weak endofunctors as a monoidal
bicategory

Given a bicategory C, the bicategory of endofunctors End(C) has got the structure of a
monoidal bicategory, which we explain below. Most of the material can be deduced from
the theory of “symmetric monoidal whiskering” of [SP09]. As we only consider the case
of group actions via auto-equivalences, we restrict to the bigroupoid Aut(C).
Definition A.1. Let C be a bicategory. Then, Aut(C) is the monoidal bicategory where
• objects are given by equivalences of bicategories F : C → C,
• 1-morphisms are given by invertible pseudo-natural transformations,

• 2-morphisms are given by invertible modifications.
For the definitions of a bicategory, functors between bicategories, pseudo-natural trans-
formations, and modifications we refer to [Bén67].
First, we set up the Hom-categories Aut(C)(F,G). The vertical composition of 2-

morphisms in Aut(C) is given by vertical composition of modifications, as explained
below.
Definition A.2. Let C be a bicategory, let F , G : C → C be weak 2-functors, let α, β,
γ : F → G be pseudo-natural transformations, and let m : α → β and m′ : β → γ be
modifications as in the diagram below.

C C

F

G

α β γmm m′m′
(A.1)

Define the vertical composition m′ ◦m : α→ γ of m and m′ to be the modification given
in components by the 2-morphism (m′ ◦m)c := m′c ◦mc between the 1-morphisms

αc
mc−−→ βc

m′c−−→ γc (A.2)

for every object c ∈ C.
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A. Weak endofunctors as a monoidal bicategory

Next, we define the horizontal composition in Aut(C): First, let us specify the compo-
sition functor

Aut(C)(G,H)×Aut(C)(F,G)→ Aut(C)(F,H) (A.3)

on objects:

Definition A.3. Let C be a bicategory, and let F , G, H : C → C be weak 2-functors.
Let α : F → G and β : G→ H be two pseudo-natural transformations as in the diagram
below.

C C

F

H

G

α

β

(A.4)

We define their composition β ◦ α : F → H to be the pseudo-natural transformations
given by the following data:

• for every object c ∈ C, the 1-morphism

F (c) αc−→ G(c) βc−→ H(c), (A.5)

• for every 1-morphism f : c → d in C, the invertible 2-morphism (β ◦ α)f in the
2-cell

F (c) H(c)

F (d) H(d)

βc◦αc

F (f) H(f)
(β◦α)f

βd◦αd

(A.6)

defined by the following composition:

H(f) ◦ (βc ◦ αc) (H(f) ◦ βc) ◦ αc (βd ◦G(f)) ◦ αc

βd ◦ (G(f) ◦ αc) βd ◦ (αd ◦ F (f)) (βd ◦ αd) ◦ F (f).

βf∗id

id∗αf

(A.7)

Here, the unlabeled arrows are induced by the associators of C.

Now, we shall define horizontal composition on 2-morphisms of Aut(C).

Definition A.4. Let C be a bicategory, let F , G, H : C → C be weak 2-functors, let
α, β : F → G and α′, β′ : G → H be pseudo-natural transformations, and suppose
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m : α→ β and m′ : α′ → β′ are modifications as below.

C C

F

H

G

α β

α′ β′

mm

m′m′

(A.8)

Define the horizontal composition m′ ∗ m : α′ ◦ α → β′ ◦ β in components by the
2-morphism

(m′ ∗m)c := mc ∗m′c : αc ◦ α′c → βc ◦ β′c (A.9)

for all c ∈ C.

Furthermore, the associator and unitors of Aut(C) are induced by the associator and
unitors of C.
Next, we explain the monoidal structure of Aut(C). We will see that there are two

canonical monoidal structures on Aut(C), since there are two ways of defining horizontal
composition of pseudo-natural transformations, which are not equal to each other, but
only related by an invertible modification. On objects, the monoidal product is given by
the composition of weak 2-functors, which we define below.

Definition A.5. Let C be a bicategory, and let (F, φ), (G,ψ) : C → C be two weak
2-functors. We define their composite F ⊗G := F ◦G as follows:

• on objects of C we have the function F ◦G : Ob(C)→ Ob(C),

• on Hom-categories, we have the composition of ordinary functors

FGa,Gb ◦Gab : C(a, b)→ C(FG(a), FG(b)). (A.10)

• For the identity 1-morphisms, we set the composite to be

idFG(a)
ψGa−−→ G(idGa)

F (φa)−−−−→ FG(ida). (A.11)

• For composition of 1-morphisms, we set the composite to be

FG(g) ◦ FG(f)
ψG(g),G(f)−−−−−−→ F (G(g) ◦G(f)) F (φgf )−−−−→ FG(g ◦ f). (A.12)
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A. Weak endofunctors as a monoidal bicategory

One can show that this composition defines another weak 2-functor F ◦ G : C → C.
Note that composition of functors is strictly associative. This follows from the fact that
composition of 2-morphisms is strictly associative and that a weak 2-functor is strictly
associative on 2-morphisms. For example, if (H,λ), (G,ψ) and (F, φ) : C → C are three
weak 2-functors, the compositions for the units of (H ◦G) ◦ F is given by

HG(φa) ◦H(ψFa) ◦ λGF (a) : idHGFa → HGF (ida) (A.13)

whereas the compositions for the units of H ◦ (G ◦ F ) is given by

H(G(φa) ◦ ψFa) ◦ λGF (a) : idHGFa → HGF (ida). (A.14)

Since the functor H is strictly associative on 2-morphisms, both composites are actually
equal. A similar formula holds for the other natural transformation involving φgf .

The monoidal product of 1-morphisms of Aut(C) can be defined in two ways:

Definition A.6. Let C be a bicategory, let F , F ′ G, G′ : C → C be weak 2-functors, and
let α : F → F ′ and β : G→ G′ be two pseudo-natural transformations as in the diagram
below.

C C C

F

F ′

G

G′

α β (A.15)

Then, there are two different ways of defining the horizontal composition of α and β:

1. The first way of composing α and β is given by
• for every objects a of C, we define a 1-morphism by the composition

(β ⊗1 α)a : (G ◦ F )(a) G(αa)−−−−→ (G ◦ F ′)(a)
βF ′(a)−−−−→ (G′ ◦ F ′)(a), (A.16)

• for every f : a → b in C, we define the 2-morphism (β ⊗1 α)f to be the
composition

G′(F ′(f)) ◦ (βF ′(a) ◦G(αa)) (G′(F ′(f)) ◦ βF ′(a)) ◦G(αa)

(βF ′(b) ◦G(F ′(f))) ◦G(αa) βF ′(b) ◦ (G(F ′(f)) ◦G(αa))

βF ′(b) ◦ (G(αb) ◦G(F (f))) (βF ′(b) ◦G(αb)) ◦G(F (f)).

βF ′(f)∗id

id∗G(αf )

(A.17)

2. The second way of composing α and β is given by:
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• for every object a of C, we define a 1-morphism (β ⊗2 α)a by the composition

(G ◦ F )(a)
βF (a)−−−→ (G′ ◦ F )(a) G′(αa)−−−−→ (G′ ◦ F ′)(a), (A.18)

• for every f : a → b in C, we define a 2-morphism (β ⊗2 α)f to be the
composition

(G′ ◦ F ′)(f) ◦ (G′(αa) ◦ βF (a)) (G′(F ′(f)) ◦G′(αa)) ◦ βF (a)

(G′(αb) ◦G′(F (f))) ◦ βF (a) G′(αb) ◦ (G′(F (f)) ◦ βF (a))

G′(αb) ◦ (βF (b) ◦G(F (f))) (G′(αb) ◦ βF (b)) ◦G(F (f)).

G′(αf )∗id

id∗βF (f)

(A.19)

These two ways of defining the horizontal composition are not equal; however there is an
invertible modification between the two choices of horizontal composition, cf. [GPS95,
Section 5.6] for a proof in the language of tricategories.

Next, we need to define a monoidal product of 2-morphisms in Aut(C).

Definition A.7. Let C be a bicategory, let F , F ′, G, G′ : C → C be weak 2-functors, α,
α′ : F → G and β, β′ : G→ G′ pseudo-natural transformations, and let m : α→ α′ and
m′ : β → β′ be modifications as in the diagram below.

C C C

F

F ′

G

G′

α α′ β β′mm m′m′
(A.20)

Depending on which tensor product we have chosen for the pseudo-natural transforma-
tions, we define the tensor product of modifications as follows:

1. If we have chosen the tensor product ⊗1, we define the modification m′ ⊗1 m :
β ⊗1 α→ β′ ⊗1 α′ for an object a of C to have the components

(m′ ⊗1 m)a := m′F (a) ∗G(ma) : βF ′(a) ◦G(αa)→ β′F ′(a) ◦G(α′a) (A.21)
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A. Weak endofunctors as a monoidal bicategory

as in the diagram below.

(G ◦ F )(a) (G ◦ F ′)(a) (G′ ◦ F ′)(a)

G(αa)

G(α′
a)

βF ′(a)

β′
F ′(a)

G(ma) m′
F (a)

(A.22)

2. For the second tensor product ⊗2, we define the tensor product m′ ⊗2 m at the
component a ∈ C by

(m⊗2 m
′)a := G′(α′a) ∗m′F (a) : G′(αa) ◦ βF (a) → G′(αa) ◦ β′F (a) (A.23)

as in the diagram below.

(G ◦ F )(a) (G′ ◦ F )(a) (G′ ◦ F ′)(a)

βF (a)

β′
F (a)

G′(αa)

G′(α′
a)

m′
F (a) G′(ma)

(A.24)
In the following, we will have to choose a monoidal structure on Aut(C) which we will

simply call ⊗; just to make a choice, define ⊗ := ⊗1.
As a last piece of monoidal structure on Aut(C), there are invertible modifications

φ⊗F,G : idF⊗G → idF ⊗ idG
φ⊗(β,β′),(α,α′) : β ⊗ β′ ◦ α⊗ α′ → (β′ ◦ α′)⊗ (β ◦ α)

(A.25)

which are induced from the unitors and associators of C. Explicitly, the last equation
should be read as follows: α : F → G, α′ : F ′ → G′, β : G → H and β′ : G′ → H ′ are
pseudo-natural transformations between weak 2-functors. Then φ is a modification in
the diagram below.




C C

F⊗F ′

H⊗H′

G⊗G′

α⊗α′

β⊗β′




φ⊗(β,β′),(α,α′)−−−−−−−−→



C C C

F ′

H′

F

H

β′◦α′ β◦α




(A.26)
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The rest of the data making Aut(C) into a monoidal bicategory is relatively trivial: we
have to choose associators, which are pseudo-natural transformation between the functors
(F ⊗G)⊗H → F ⊗ (G⊗H). On objects of Aut(C), we may choose these associators to
be trivial, since composition of weak 2-functors is associative on the nose. If α : F → F ′,
β : G → G′ and γ : H → H ′ are pseudo-natural transformations, we need to choose a
modification mα,β,γ in the diagram below.

(F ⊗G)⊗H F ⊗ (G⊗H)

(F ′ ⊗G′)⊗H ′ F ′ ⊗ (G′ ⊗H ′)

id

(α⊗β)⊗γ α⊗(β⊗γ)
mα,β,γ

id

(A.27)

This modification is induced from the associator and unitors of C.
The last piece of structure making Aut(C) into a monoidal bicategory are modifications

between quadruple applications of the monoidal associator defined above. These can be
chosen to be identities, since the associator is the identity on objects.
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B. Finite linear categories as categories of
modules

Here, we will show that finite, linear categories are equivalent to the representation
category of a finite-dimensional algebra. We begin by giving abelian categories the
structure of a Vect-module, cf. [Kir02].

B.1. Abelian categories as Vect-modules
Let C be a linear category. Then, the functor category End(C) becomes a linear category
by adding natural transformations pointwise. Furthermore, End(C) has got the structure
of a strict monoidal category where the monoidal product is given by the composition of
functors.

Definition B.1. A Vect-module structure on a linear category C is a linear, monoidal
functor F : Vect→ End(C).
We claim that there is only one (up to unique isomorphism) such functor. Indeed,

since F is monoidal there is an isomorphism F (K) ∼= idC . Since F is additive, we have
that

F (Kn) ∼=
n⊕

i=1
idC . (B.1)

Therefore, F is uniquely specified on objects. If A : Kn → Km is a matrix, then F (A) is
a natural transformation in

Hom




n⊕

i=1
idC ,

m⊕

j=1
idC


 ∼=

n⊕

i=1

m⊕

j=1
Hom(idC , idC) (B.2)

which is given by F (A)ij = Aij ididC : the ij-th component of F (A) is given by a mul-
tiplying the number Aij with the identity natural transformation between the identity
functor and the identity functor on C. Hence, the functor F is uniquely specified on
morphisms as well.

We regard C as a right Vect-module category and thus define a functor � : C ×Vect→
Vect by setting X �V := F (V )(X). The fact that F is monoidal and additive translates
into the coherent isomorphisms

X � (V ⊗K W ) ∼= (X � V ) �W (B.3)
X � (V ⊕W ) ∼= (X � V )⊕ (X �W ) (B.4)

for all X ∈ C and vector spaces V and W .
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B. Finite linear categories as categories of modules

Lemma B.2. Let V ∈ Vect and let X and Y be objects of C. Then, there are the
following isomorphisms which are natural in X and in Y :

1. HomC(X,Y � V ) ∼= HomC(X,Y )⊗K V ,

2. HomC(X � V, Y ) ∼= V ∗ ⊗K HomC(X,Y ),

3. HomC(X � V, Y ) ∼= HomVect(V,HomC(X,Y )).

Proof. Since V is a finite-dimensional vector space, it is isomorphic to Kn. For the first
isomorphism, we calculate using equation (B.4):

HomC(X,Y � V ) ∼= Hom(X,Y �Kn) ∼= HomC(X,
⊕

n

Y �K)

∼=
⊕

n

HomC(X,Y ) ∼= HomC(X,Y )⊗K V.
(B.5)

The second isomorphism is similar. The third isomorphism follows from the second one
by dimensional reasoning.

Remark B.3. The second part of the lemma states that X�V is an object representing
the contravariant functor FX,V (Y ) = V ∗ ⊗K HomC(X,Y ). Note that due to the Yoneda
lemma, representable objects are unique up to unique isomorphism. Hence, we could
have alternatively defined the object X � V as the object representing the functor FX,V .
For instance, this perspective is taken in [Kir02].

B.2. Finite linear categories as categories of modules
In the sequel, we will show that a finite linear category is equivalent to a category
of modules over a finite-dimensional algebra. We will mostly follow the exposition in
[EGNO15]; other references for this fact include [DSPS14] and [EGH+11].

Proposition B.4. Let C be a finite linear category. Let Xi be representatives of the
(finitely many) isomorphism classes of simple objects of C. Since C has enough projectives,
there are projective objects Pi, and epimorphisms Pi → Xi. Let P := ⊕iPi be a projective
object of C, and define a finite-dimensional associative K-algebra

A := HomC(P, P ) (B.6)

with multiplication f · g := g ◦ f .
Let (A-Mod)fg be the category of finitely generated left A-modules. Then, the functor

HomC(P,−) : C → (A-Mod)fg (B.7)

is an equivalence of linear categories.

In order to prove this, we need a few auxiliary lemmas together with a well-known
fact from representation theory.
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B.2. Finite linear categories as categories of modules

Lemma B.5. Let A be a finite-dimensional algebra over a field K, and let M be an
A-module. Then, M is finite-dimensional as a K-vector space if and only if M is finitely-
generated as an A-module.

Proof. If M is a finite-dimensional vector space over K, there exists a vector space basis
B := {x1, . . . , xn} of M . We claim that this vector space basis generates M as an
A-module. Indeed, if m ∈M , there are λ1, . . . , λn ∈ K, so that

m =
n∑

i=1
λixi, (B.8)

since B is a vector space basis of M . Hence,

m =
n∑

i=1
(1A · λi).xi. (B.9)

This shows that B generates M as an A-module.
If on the other hand M is finitely generated as an A-module, let x1, . . . , xn be a set of

generators of M . Thus, for an m ∈M there are a1, . . . , an ∈ A so that

m =
n∑

i=1
ai.xi. (B.10)

Since A is a finite-dimensional vector space over K by assumption, we may choose a
vector space basis y1, . . . , yk of A. Hence, for each ai ∈ A, there are λij ∈ K, so that

ai =
k∑

j=1
λijyj . (B.11)

Thus,

m =
n∑

i=1
ai.xi =

n∑

i=1

k∑

j=1
λij(yj .xi). (B.12)

This shows that the yj .xi form a vector-space basis ofM . Thus,M is a finite-dimensional
K-vector space.

Lemma B.6. Let A be a finite-dimensional algebra. Then, the induction functor is
left-adjoint to the restriction functor:

IndA : K-Mod � A-Mod : ResAK . (B.13)

Hence, we have an isomorphism

HomA-Mod(A⊗K V,M) ∼= HomVect(V,M) (B.14)

which is natural in V and M .
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B. Finite linear categories as categories of modules

Proof. This is a special case of Frobenius reciprocity. Indeed, if f : A⊗K V →M is an
intertwiner, then v 7→ f(1⊗v) is a linear map V →M . On the other hand, if g : V →M
is a linear map, then a⊗ v 7→ a.g(v) is a morphism of A-modules. It is easy to see that
these two constructions are inverse to each other.

Lemma B.7. Let P = ⊕iPi be the object of C as defined in proposition B.4. We claim:
for each X ∈ C, there exists a finite-dimensional vector space V and an epimorphism
P � V → X.

Proof. We argue by induction on the length of X. If X is simple, we may choose V to
be K, since by construction of P there is an epimorphism P �K ∼= P → X.
If X is not simple, there exists a short exact sequence

0→ X ′ → X → X ′′ → 0 (B.15)

where the length of both X ′ and X ′′ are strictly less than the length of X. By the
inductive hypothesis, there are vector spaces V ′ and V ′′, together with epimorphisms
f ′ : P � V ′ → X ′ and f ′′ : P � V ′′ → X ′′. Now let V := V ′ ⊕ V ′′, and define a
epimorphism P � V → X as follows: by equation (B.4), we have an isomorphism

P � (V ′ ⊕ V ′′) ∼= (P � V ′)⊕ (P � V ′′). (B.16)

Since in abelian categories, finite products agree with finite coproducts, giving a morphism
P �V → X is equivalent to specifying morphisms P �V ′ → X and P �V ′′ → X. Hence,
there is a map f ′ ⊕ f ′′ : P � V → X. This map is even an epimorphism, since f ′ and f ′′
are epimorphisms, and finite products of epimorphisms are epimorphisms. The situation
is depicted in the diagram below.

0 P � V ′ P � (V ′ ⊕ V ′′) P � V ′′ 0

0 X ′ X X ′′ 0

f ′
f ′⊕f ′′ f ′′

Figure B.1.: Diagram for lemma B.7

Following the proof of theorem 7.10.1 in [EGNO15], we are now ready to prove propo-
sition B.4.

Proof of proposition B.4. We will show first that the functor HomC(P,−) is fully faithful.
Let X and Y be objects of C, and suppose that X is of the form X = P � V for some
vector space V . By lemma B.2, there is a natural isomorphism HomC(P,X) ∼= A⊗K V
of vector spaces. When regarding HomC(P,X) and A⊗K V as A-modules, this becomes
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B.2. Finite linear categories as categories of modules

even an isomorphism of A-modules. Thus we calculate using lemma B.2 and lemma B.6:

HomA-Mod(HomC(P,X),HomC(P, Y )) ∼= HomA-Mod(A⊗K V,HomC(P, Y ))
∼= HomVect(V,HomC(P, Y ))
∼= HomC(P � V, Y )
∼= HomC(X,Y ).

(B.17)

This shows that the functor HomC(P,−) is fully faithful on objects of the form X = P�V .
Now let X ∈ C be arbitrary. By lemma B.7, there is a vector space V together with

an epimorphism f : P � V → X. Applying lemma B.7 again gives another vector space
W with an epimorphism g : P �W → ker f . Let k : ker f → P � V be the canonical
morphism. By construction, the horizontal sequence

P �W P � V X 0

ker f

0 0

g

k◦g f

k

(B.18)

is exact, since both diagonal sequences are exact.
Since the functor HomC(P,−) is exact, the sequence

HomC(P, P �W )→ HomC(P, P � V )→ HomC(P,X)→ 0 (B.19)

is exact.
For the sake of simplifying notation, let F := HomC(P,−). Since Hom is always left

exact, the first row in the diagram is exact. Since P is projective and thus HomC(P,−)
is exact, the second row is also exact.

0 HomC(X,Y ) HomC(P � V, Y ) HomC(P �W,Y )

0 Hom
A-Mod

(F (X), F (Y )) Hom
A-Mod

(F (P � V ), F (Y )) Hom
A-Mod

(F (P �W ), F (Y ))

F F F

By the first step, the second and third vertical arrows are isomorphisms. Using the
5-lemma shows that the first vertical arrow is an isomorphism as well. Therefore, the
functor F = HomC(P,−) is fully faithful.
We now show that the functor HomC(P,−) is essentially surjective. Let M be a

finitely-generated A-module, which is finite-dimensional by lemma B.5. First, define two
morphisms P � (A⊗K M) ⇒ P �M as follows: since HomC(X,P ) is a right A-module,
andM is a left A-module, there are two natural transformations between the two functors

FP,A⊗KM (X) = HomC(X,P )⊗K A⊗K M and (B.20)
FP,M (X) = HomC(X,P )⊗K M (B.21)
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B. Finite linear categories as categories of modules

given by the right action of A on HomC(X,P ) and by the left action of A on M . Recall
that by remark B.3, the object P � (A⊗K M) represents the functor FP,A⊗KM , and the
object P �M represents the functor FP,M .

Therefore, we can define two maps P � (A⊗K M) ⇒ P �M as the images of the two
natural transformations under the isomorphism induced by the Yoneda lemma

Nat(FP,A⊗KM , FP,M ) ∼= HomC(P � (A⊗K M), P �M). (B.22)

Finally, define an object XM of C as the coequalizer of these two morphisms.
We claim that there is a natural isomorphism of left A-modules HomC(P,XM ) ∼= M .

Since P is projective, the functor Hom(P,−) is exact and thus preserves finite colimits.
Hence, we calculate

HomC(P,XM ) ∼= HomC(P, colim
C

P � (A⊗K M) ⇒ P �M)
∼= colim

A-Mod
(HomC(P, P � (A⊗K M)) ⇒ HomC(P, P �M))

∼= colim
A-Mod

(EndC(P )⊗K A⊗K M ⇒ EndC(P )⊗K M)
∼= EndC(P )⊗AM
∼= A⊗AM
∼= M.

(B.23)

In the third line, we have used that the isomorphism of vector spaces HomC(P, P �M) ∼=
EndC(P )⊗K M from lemma B.2 is even an isomorphism of A-modules.

This calculation shows that HomC(P,−) is essentially surjective and thus an equivalence
of linear categories.
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