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Abstract

Magnetic skyrmions are regarded as promising candidates for tiny and stable

bits of information in future data storage devices which brought them into the

focus of many research activities.

This thesis deals with unsolved fundamental issues about thermally acti-

vated transition processes between ferromagnetic and skyrmionic states as well

as the behavior of skyrmion structures in con�ned geometries. The presented

results were obtained with a self-written Monte Carlo program in combination

with analytical and numerical methods.

Stochastic switching between ferromagnetic and skyrmionic states is ana-

lyzed with the help of the Arrhenius law and the Eyring equation. This yields

activation energies and attempt frequencies. The attempt frequency of the

skyrmion state is much lower than that of the ferromagnetic state which can

be related to a higher entropy of the skyrmion state and is identi�ed as the

reason for the high stability of the skyrmion state.

For a skyrmionic material of �nite size in the spin-spiral phase, a local

parallel orientation of the spin-spiral vector with respect to an edge of the

material results in a reduction of the energy. Additional energy can be saved

by tilting the spin-spiral state at an edge with respect to the spin-spirals in the

interior of the material. The results are used to explain recent experimental

observations about spin-spiral states in magnetic Pd/Fe atomic bilayer islands

on Ir(111).

In Fe/Ir(111), edge properties can be employed to tailor the alignment of

the adjacent nanoskyrmion lattice. A diagonal of the square magnetic unit cell

is coupled parallel to an edge of an Fe island. In contrast to this, a side of the

magnetic unit cell is coupled parallel to a ferromagnetic edge. Experimental

observations are well in line with Monte Carlo calculations.

Finally, e�ects of spatial variations of material parameters are studied.

First, it is shown that they provide a convenient method to determine the

phase space of skyrmionic materials. Second, they are used to obtain a quali-

tative understanding of recent experimental observations of non-axisymmetric

skyrmions in triple layers of Fe on Ir(111).



Abstract

Magnetische Skyrmionen gelten als vielversprechende Kandidaten für Infor-

mationsbits in zukünftigen Datenspeichern und sind daher gegenwärtig Ge-

genstand von vielen Forschungsvorhaben.

Die vorliegende Arbeit untersucht mit theoretischen Methoden fundamenta-

le Fragestellungen über den thermisch induzierten Übergang zwischen skyrmio-

nischem und ferromagnetischem Zustand sowie das Verhalten von Skyrmionen

in Materialien mit beschränkter räumlicher Ausdehnung. Die Ergebnisse wur-

den mit einem selbstgeschriebenen Monte Carlo Programm in Kombination

mit analytischen und numerischen Rechnungen erzielt.

Stochastisches Schalten zwischen ferromagnetischen und skyrmionischen Zu-

ständen wurde mithilfe der Arrhenis-Gleichung und Eyring-Gleichung unter-

sucht. Auf diese Weise wurden Aktivierungsenergien und �Attempt�-Frequenzen

bestimmt. Die �Attempt�-Frequenz des skyrmionischen Zustandes ist wesent-

lich kleiner als die des ferromagnetischen Zustandes, was durch eine höhere

Entropie des skyrmionischen Zustandes erklärt werden kann. Sie sorgt für die

hohe Stabilität des skyrmionischen Zustandes.

Am Rand eines skyrmionischen Materials in der Spin-Spiral-Phase führt

eine lokal parallele Ausrichtung des Spin-Spiral-Vektors zu einer Absenkung

der Energie. Ein weiterer Energiegewinn entsteht durch die Verkippung der

Spin-Spirale am Rand gegenüber den Spin-Spiralen im Inneren des Materials.

Diese Ergebnisse können experimentelle Messungen an magnetischen Inseln

aus zwei atomaren Lagen aus Palladium und Eisen erklären.

In Fe/Ir(111) können die Kanteneigenschaften gezielt manipuliert werden,

um Ein�uss auf die räumliche Orientierung des angrenzenden Nanoskyrmion-

gitters zu nehmen. Die Diagonale der quadratischen magnetischen Einheitszelle

koppelt parallel zu einer o�enen Kante einer Eiseninsel. Dahingegen koppelt

das Nanoskyrmiongitter mit einer Seite der magnetischen Einheitszelle an eine

ferromagnetische Kante. Dieses Verhalten lässt sich sowohl in Experimenten

als auch in den vorliegenden Monte Carlo Rechnungen beobachten.

Zuletzt werden die E�ekte von räumlichen Variationen der Materialpara-

meter studiert. Es wird gezeigt, dass dieser Ansatz eine komfortable Mög-

lichkeit bietet, Phasendiagramme von skyrmionischen Systemen zu erstellen.



Darüber hinaus können räumlich variierende Materialparameter genutzt wer-

den, um ein qualitatives Verständnis experimenteller Beobachtungen von nicht-

achsensymmetrischen Skyrmionen in der atomaren Tripellage von Eisen auf

Ir(111) zu erhalten.
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Chapter 1

Introduction

Conservation of information has been a persistent topic throughout history

of human kind. The oldest preserved artwork dates back to approximately

50,000 years ago [1], which early on revealed the need to retain information

for oneself and others. Following this, it took a long time until the invention

of written language revolutionized our ways of communicating a few thousand

years BC by successively making vast amounts of information accessible for

many people.

With this in mind, it is not surprising that we nowadays live in a society

in which our everyday lives are dominated by information and communication

technology. This has become possible due to discoveries in material sciences

which allow to store and transfer information in highly sophisticated ways. In-

dividual persons can use personal computers and smartphones next to various

other gadgets in order to exchange information via the internet with people

from all over the world. For the storage of data, there are various methods

available which rely on electric charges in solid state disks or on the mag-

netism of material in hard disk drives. The magnetic recording was invented

by the American Oberlin Smith in 1878, and subsequently the Dane Valdemar

Poulsen patented a device for magnetic wire recording in the United States

around 1900 [2]. Since then, the technology of magnetic recording has been

greatly improved to keep up with contemporary requirements.

Currently, an individual bit of information is formed by an assembly of

magnetic grains, which constitute tiny magnetic domains on the nanometer

scale in a thin �lm disk. However, the limits in miniaturization seem to have



2 CHAPTER 1. INTRODUCTION

been reached due to con�icting material requirements known as the trilemma

of magnetic recording [3]. A reduction of the bit size requires a reduction of the

grain volumes, which results in the need for a large anisotropy energy to ensure

thermal stability of the grains, but at the same time a low anisotropy energy

is needed to ensure switchability of the magnetic bits with the write head [3].

At the moment, there are areal densities of about 1 Tb/inch2 available [4], and

di�erent ideas are needed to increase the storage density even further. These

range from an extension of the present technology by heat-assisted switching of

the bits [5, 6, 7] to distinct storage concepts as the use of magnetic skyrmions

as bits of information [8, 9]. Due to their potential for future data storage

devices, magnetic skyrmions have become the focus of many research activities

including this thesis.

Magnetic skyrmions are spatially localized magnetic knots embedded in a

collinear ferromagnetic background [10, 11, 12]. They can be stabilized in

certain material systems as non-centrosymmetric bulk crystals [13, 14, 15, 16,

17, 18, 19, 20] and ultrathin magnetic �lms [21, 22] on non-magnetic supporting

crystals. Only these material systems allow for a non-vanishing Dzyaloshinskii-

Moriya interaction [23, 24] which is essential for the formation of magnetic

skyrmions. The bit size of a potential skyrmionic storage device is limited by

the size of a skyrmion because the two states of a bit would be represented

by the presence or absence of a skyrmion within a certain area. Even though

magnetic skyrmions can be as small as a few nanometers in diameter [21, 22],

realistic bit sizes are comparable to those in current magnetic storage devices.

Therefore, an immediate increase of the bit density by the use of magnetic

skyrmions is not apparent and the question about advantages of skyrmions as

bits of information arises. Most promising is the exploitation of their particle-

like properties which give rise to the possibility of manipulating their position

within a material by an external force [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 37]. In particular, skyrmions can be moved along magnetic tracks giving

rise to ideas of skyrmion-based race-track type storage devices [9, 38]. These

have the huge advantage over solid state discs that they could be operated

without any mechanically movable parts. Also, a signi�cant increase in storage

density may be possible by forming loops of skyrmion tracks. In this way, all

three dimensions of space would be utilized for the data storage instead of
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two dimensions as in current devices. Moreover, skyrmions may not only be

employed as bits of information but also for logic operations in skyrmion-based

logic devices [39].

A lot of research has been conducted in order to establish the founda-

tions needed for the realization of such skyrmionic data storage devices. It

was demonstrated both in experimental and theoretical studies that magnetic

skyrmions can be written and deleted in a controlled fashion, as for example

by the use of an external electric current [22]. Moreover, it was shown ex-

perimentally that skyrmions can be moved by electric currents with su�cient

large velocities [40]. Currently, the main quest remains the identi�cation of a

suitable material that ful�lls the necessary requirements in terms of material

properties and practicability for industrial production processes. Recently, an

important step was accomplished by the discovery of the �rst material system

with interface-induced Dzyaloshinskii-Moriya interaction that not only allows

for the stabilization of skyrmions at ultra-low temperatures but also at room

temperature [41].

Apart from the search for materials that are suitable for technological ap-

plication, there are still open questions concerning fundamental properties of

skyrmionic systems. Consequently, this thesis investigates e�ects of mate-

rial boundaries on the magnetic states of skyrmionic materials and how they

could be employed to tailor the properties of individual skyrmions as well as

skyrmion lattices as a whole. Furthermore, the energy landscape connecting

skyrmionic and ferromagnetic states is studied in order to obtain an insight

into the mechanisms governing the thermal stability of skyrmionic bits.

The main tool for the investigations was a self-written computer program

that is based on a classical Monte Carlo method, the Metropolis algorithm.

The following provides an overview of the content of this thesis.

Chapter 2 and chapter 3 provide an overview of previous theoretical and

experimental �ndings about magnetic skyrmions and introduce theoretical con-

cepts and methods used in the following chapters.

Chapter 4 deals with the stability of single skyrmions as a function of tem-

perature and an external magnetic �eld as obtained with Monte Carlo calcula-

tions. Thermally activated stochastic switching between skyrmionic and ferro-

magnetic states is used to calculate mean lifetimes of the two states. These can
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be used to derive energy barriers and attempt frequencies with the help of the

Arrhenius law and to obtain an insight into the energy landscape of skyrmionic

systems. Finally, the Monte Carlo results are compared to recent experimental

observations about the magnetic Pd/Fe atomic bilayers on Ir(111).

In the following two chapters, con�nement e�ects due to �nite system sizes

on the magnetic states of skyrmionic materials are discussed. First, numerical

and analytical methods are combined to investigate the in�uence of boundaries

onto spin-spiral states in zero external magnetic �eld in Chapter 5. Once more,

the obtained results are compared to experimental observations about Pd/Fe

atomic bilayer islands on Ir(111). Second, the behavior of the nanoskyrmion

lattice in the atomic monolayer of Fe on Ir(111) in the presence of one or

multiple competing edges is studied in chapter 6. In experiment, edges of Fe

islands and Fe stripes as well as edges imposed by an additional ferromagnetic

Ni island were investigated, recently. Monte Carlo calculations using energy

parameters based on density function theory calculations lead to a deeper

insight into the experimentally found edge e�ects and to an estimate about

energy costs that arise due to formation of a domain wall between di�erent

rotational domains of the nanoskyrmion lattice.

Chapter 7 deals with spatial modulations of material parameters in skyrmionic

systems. In the �rst part of the chapter, small parameter gradients are used

to derive phase diagrams. The second part of the chapter investigates the ori-

gin of the highly non-axisymmetric skyrmionic textures found in triple atomic

layers of Fe on Ir(111). In this experimental system, the material parameters

spatially vary because of reconstruction features induced by a mismatch of

lattice constants of the Iron and Iridium.

Chapter 8 ends the thesis with a summary and evaluation of the presented

�ndings.
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Chapter 2

Theoretical and experimental

background

There are materials whose magnetic behavior can be understood without tak-

ing the in�uence of the environment onto the atomic magnetic moments into

considerations. These include some crystals that contain rare earth elements

for example [42]. However, for a large number of material systems, the in�u-

ence of the environment onto the atomic magnetic moments is strong and can

consequently not be neglected. The surrounding crystal �eld may result in a

magnetic anisotropy which favors the alignment of the magnetization along cer-

tain crystallographic directions (see section 2.1.1). Furthermore, the localized

atomic magnetic moments can be coupled to the magnetic moments of atoms

in the close vicinity. This includes the exchange and Dzyaloshinskii-Moriya in-

teraction between two magnetic moments (section 2.1.3 and section 2.1.4) and

higher order contributions as the biquadratic interaction (section 2.1.6) and the

4-spin interaction (section 2.1.5). The competition of multiple of these energy

contributions can be used to explain the formation of non-collinear magnetic

states as spin-spirals and magnetic skyrmions which is discussed in section 2.2.
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2.1 Energies in magnetic materials

2.1.1 Magnetic anisotropy

In magnetic materials, certain orientations of the magnetization can be ener-

getically preferred which is called magnetic anisotropy. This phenomenon can

originate from the sample shape, the crystal symmetry and stress [43]. The

shape anisotropy has its origin in the demagnetization �eld due to free poles

at surfaces of a sample and it prefers a minimization of the magnetic stray

�eld. In contrast to this, the crystal anisotropy has a quantum mechanical

origin. The spin of an electron in an atom is typically coupled to its orbital

momentum which itself is linked to the shape of the charge distribution of

the electron. This is commonly known as spin-orbit coupling. For an isolated

atom, the energy of the atom does not depend on the spatial orientation of the

electronic orbitals. However, the situation changes in solids where the atom

is embedded in the crystal �eld of surrounding atoms and chemical bonding

of the orbitals occurs. If the crystal �eld has a low symmetry and the orbital

charge distribution is non-spherical the energy of the atom will depend on the

spatial orientation of the orbital. An uniaxial crystal anisotropy is typically

expressed as

Ea =
n∑
i=1

Ki sin
2i Θ (2.1)

but it is often su�cient to consider the �rst two terms, only. Within this

description, a positive Ki denotes an easy axis. Θ is the angle between the di-

rection of the magnetization and the direction of the easy axis of the considered

material.

2.1.2 Demagnetization �eld

The magnetization M of a magnetic material is the macroscopic density of

magnetic dipole moments [43]. At a surface with the surface normal n it gives

rise to an e�ective magnetic charge density [44]

σ = n ·M . (2.2)
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This causes vector magnetic �elds both outside and inside of the material. The

�eld that passes through the material is called demagnetization �eld because

its orientation is opposite to the magnetization M. In order to minimize the

energy linked to the demagnetization �eld, surface charges are avoided where

possible. This can be done by the orientation of a uniform magnetization

along certain directions of a particular sample which gives rise to the shape

anisotropy (section 2.1.1). Another way is the formation of domain structures.

This thesis deals with magnetic skyrmions in ultrathin magnetic layers and

hence the energy due to the demagnetization �eld is neglected. A system with

large magnetic stray �elds would stabilize bubble domains instead of magnetic

skyrmions [45].

2.1.3 Exchange interaction

The exchange interaction is a quantum mechanical phenomenon that is re-

sponsible for long range order in magnetic materials. Its origins lie in the

Coulomb repulsion between electrons and the Pauli exclusion principle. For

two interacting electrons, its isotropic contribution [46] to the Hamiltonian is

given by

Hexch. = −Jij · Si · Sj (2.3)

Jij is the so called exchange constant which is calculated as the exchange

integral for the two electron orbitals linked to the spins Si and Sj. In the

literature, di�erent conventions are used for the exchange constant. The group

of S. Heinze in e.g. reference [21] provides the exchange energy per atom

which means that double summations are used and the resulting energy is not

divided by the factor of one half. This convention applies for chapter 5 and 6

since energy parameters from the group of S. Heinze were used. However, a

di�erent convention applies for the other chapters 4 and 7. There, the exchange

energy is given per bond which means that when doing double summations,

the resulting energy has to be multiplied by a factor of one half. The same

applies for other interaction energies which are used within this thesis as the

Dzyaloshinskii-Moriya interaction.
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Depending on the sign of the exchange constant, either the singlet or triplet

state and hence antiparallel or parallel spin alignment can be preferred ener-

getically. A coherent rotation of the spin system does not lead to a change

in the energy. The Bethe-Slater curve provides the energy of the triplet and

singlet states as a function of the interatomic distance. Two electrons close to

each other will have antiparallel spins because of the Pauli principle while a

parallel alignment becomes favorable for larger distances. The interaction has

been generalized for many body systems and is considered in the Hamiltonian

of the Heisenberg model in the same form for all nearest-neighbor sites. For

energy parameter sets for speci�c materials as e.g. the atomic monolayer Fe

on Ir(111) (section 6), contributions going beyond the nearest-neighbor sites

are also taken into account.

An additional anisotropic part of the exchange energy is typically neglected

since it is only a comparably small relativistic e�ect [46]. It is expressed by

Jxx,ijSx,iSx,j + Jyy,ijSy,iSy,j + Jzz,ijSz,iSz,j and thus the energy of the system

depends on the spatial orientation of the magnetic moments with respect to the

line connecting the two magnetic sites. Throughout the thesis, only isotropic

contributions of the exchange energy are considered, i.e. J = Jxx,ij = Jyy,ij =

Jzz,ij. However, a dependence of J on the spatial orientation of a bond is used

in chapter 7.

2.1.4 Dzyaloshinskii-Moriya interaction

Dzyaloshinskii reported in 1958 about an antisymmetric part of the exchange

energy which he derived from crystal symmetry considerations [23]. It can pro-

vide a non-vanishing contribution in the combination of a low crystal symme-

try and a large spin-orbit coupling. The interaction for two localized magnetic

moments S1 and S2 is written as

Di,j · (Si × Sj) = Si ·


0 Dz −Dy

−Dz 0 Dx

Dy −Dx 0

 · Sj (2.4)

with the Dzyaloshinskii-Moriya (DM) vector DT
i,j = (Dx, Dy, Dz) which is a

material parameter. Note that di�erent conventions about double summations
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as explained in section 2.1.3 are used within this thesis. The Dzyaloshinskii-

Moriya interaction favors a canting of the magnetic moments in contrast to the

symmetric part of the exchange interaction which favors (anti-)parallel align-

ment. However, not only the angle between the magnetic moments in�uences

the energy but also the spatial orientation of the magnetic moments with re-

spect to the DM vector. Hence, the DM interaction is called anisotropic [47].

Moriya demonstrated the calculation of the strength of this interaction by us-

ing an extended version of Anderson's formalism of superexchange interaction

incorporating the e�ect of spin-orbit coupling [24]. He considered two mag-

netic sites with spin-orbit coupling on the magnetic sites and di�erent crystal

�eld splittings for the two sites. The strength is equal to zero if there is a

center of inversion at the point bisecting the line connecting the two lattice

sites. Non-vanishing contributions can be found in non-centrosymmetric bulk

crystals as the B20 compounds [48]. Additionally, A. Fert pointed out the pos-

sibility for non-vanishing contributions in ultrathin magnetic layers deposited

onto supporting non-magnetic crystals [49]. Its strength was calculated by A.

Fert and P.M. Levy [50]. They considered a three site mechanism which takes

a non-magnetic impurity atom with a large spin-orbit interaction along with

two magnetic sites into account. In this case, the DM interaction arises due to

a spin-orbit scattering of the conduction electrons by the impurity atom. The

Hamiltonian of the spin-orbit interaction is proportional to the atomic number

Z [43] and hence the coupling constant D can expected to be large for heavy

impurity atoms.

2.1.5 4-Spin interaction

The 4-spin interaction is a higher order contribution to the interaction between

localized magnetic moments and it has its origin in the electron hopping be-

tween four atomic sites {ijkl}. It can be derived using the Hubbard model [51]

as

E4−spin = −
∑
ijkl

Kijkl[(Si · Sj)(Sk · Sl) + (Si · Sl)(Sj · Sk)

−(Si · Sk)(Sj · Sl)] (2.5)
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i j

l            k

Figure 2.1: 4-Spin interaction. Sketch of the cells contributing to the calculation

of the 4-spin energy of the magnetic moment at the lattice site marked in red.

with the material parameter Kijkl. This expression is valid for any lattice [51]

but within this thesis, it will be used for triangular two-dimensional lattices

in chapter 6 for the description of Fe/Ir(111), only. Fig. 2.1 shows that twelve

cells each consisting of four atoms have to be taken into account in order to

calculate the 4-spin energy of the magnetic moment at one particular site of

the triangular lattice. The magnetic ground state of a hypothetical material

that can be described exclusively with a 4-spin interaction was investigated in

Ref. [52].

2.1.6 Biquadratic interaction

The biquadratic energy term

Ebiq = −
∑
ij

Bij(Si · Sj)2 (2.6)

with the material parameter Bij is on the same expansion order as the 4-spin

interaction. It is taken into account for nearest-neighbor sites and it favors a

parallel or anti-parallel alignment of the corresponding magnetic moments in

case of Bij > 0. A perpendicular orientation of neighboring magnetic moments

is favored when Bij < 0. Ref. [52] presents a detailed discussion of the magnetic

ground states for a two-dimensional hexagonal lattice. This interaction is used

for the description of Fe/Ir(111) in chapter 6.
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2.1.7 Zeeman energy

The Zeeman energy is responsible for a parallel alignment of the magnetic

moments of a material with respect to an external magnetic �eld B. The

energy of a magnetic moment µ is given by

EZ = −µ ·B . (2.7)

2.2 Magnetic skyrmions

In the previous section, various energy contributions that play a role in the

formation of non-trivial magnetic states were presented. Among these complex

magnetic states are the so called magnetic skyrmions which are the focus of

this thesis and are hence introduced in the following.

2.2.1 General introduction

Initially, skyrmions were discussed by the name giver Tony Skyrme in the con-

text of non-linear �eld theory in order to describe elementary particles [53].

They are characterized by a topological integer number which prevents a con-

tinuous transformation of the �eld into a state with a di�erent topological num-

ber. Later, it was found that this theory is also applicable to certain magnetic

systems which led to the theoretical proposal of magnetic skyrmions [10, 54] as

localized non-collinear magnetic textures with particle-like character [55]. It

has become accepted knowledge that magnetic skyrmions are formed due to a

competition of the Dzyaloshinskii-Moriya interaction, the exchange interaction

and the magnetic anisotropy energy. Experimentally, skyrmions were observed

in the bulk of non-centrosymmetric magnetic materials [13, 15, 16, 17, 20] and

in ultrathin magnetic layers [21, 22] deposited onto supporting non-magnetic

crystals. Skyrmions can appear in a Bloch- or in a Néel-type form [56] (see

Fig. 2.2) as magnetic knots that are embedded in a ferromagnetic background.

The focus of this thesis is on ultrathin �lm systems which typically exhibit the

Néel-type skyrmions. Therein, the magnetization direction at the skyrmion

center is opposite to the one of the ferromagnetic background and the mag-

netization pro�le through the skyrmion center is close to the one of a 360◦
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Néel-type skyrmionBloch-type skyrmion

Figure 2.2: Magnetic skyrmions. Sketches of a chiral and Néel-type magnetic

skyrmion. The cones indicate the spatial orientations of the atomic magnetic mo-

ments.

Néel-type magnetic domain wall [57]. This particular type of skyrmions is

formed due to the spatial orientation of the DM vector which is perpendicular

to the connection line of two magnetic sites and lies predominantly within the

plane of the magnetic �lm due to symmetry reasons for this class of materi-

als [58]. The skyrmions can appear depending on the exact material parameters

and an external magnetic �eld in close packed lattices as the thermodynami-

cal ground state or diluted as metastable isolated objects in a ferromagnetic

background [11, 12].

Furthermore, additional energy contributions as the dipole-dipole interac-

tion or the 4-spin interaction can have an in�uence on the properties of the

skyrmions or even prevent the formation of skyrmions if they are comparably

large. If for example the dipole-dipole interaction provides the dominating

energy contribution so called bubble domains with a much larger lateral size

and di�erent stability properties are likely to be formed [45]. Still, a weak

Dzyaloshinskii-Moriya interaction can be su�cient to impose a favorable sense

of rotation and the resulting objects are called skyrmion bubbles [59].

The results of the Monte Carlo calculations that are presented in the course

of this thesis are in close relation to skyrmionic ultrathin material systems as

Fe/Ir(111) and Pd/Fe/Ir(111). Hence, the main experimental and theoretical

�ndings about these systems are discussed in the following.
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2.2.2 Ultrathin �lm systems

The �rst experimentally found ultrathin �lm system that exhibits magnetic

skyrmions was the fcc stacked atomic monolayer of Fe on Ir(111) [60, 61, 21].

It is a rather unique system which can not be described in a satisfactory

way by only taking the exchange and Dzyaloshinskii-Moriya interaction and

the anisotropy energy into consideration. Instead, higher order energy con-

tributions as the 4-spin interaction and the biquadratic energy were found to

also play an important role [21] giving rise to unique behavior. Fcc stacked

Fe/Ir(111) displays a square nanoskyrmion lattice with a very small distance

of about 1 nm between the skyrmion centers in a large range of external mag-

netic �eld [0T, 9T] [62]. Fig. 2.3 Ia shows the atomic magnetic con�guration

and Fig. 2.3 Ib,Ic display measurement results obtained with a spin-polarized

scanning tunneling microscope. The nanoskyrmion lattice is linked to the un-

(I)                                                                 (II)

Figure 2.3: Magnetic states of Fe/Ir(111) and Pd/Fe/Ir(111). Figure (I)

reprinted by permission from Macmillan Publishers Ltd: [NATURE PHYSICS]

(Ref. [21], url), copyright (2011). Figure (II) from Ref. [22], url , reprinted with

permission from AAAS. (I) Fe/Ir(111). (a) Sketch of the nanoskyrmion lattice. (b)

Image obtained with a scanning tunneling microscope. (c) Image with magnetic

contrast on the nanoskyrmion lattice obtained with a spin-polarized scanning tun-

neling microscope. (II) Pd/Fe/Ir(111). (A-C) Sketches of the di�erent magnetic

phases which can be obtained as a function of an applied external magnetic �eld.

(D-G) Corresponding experimental images with magnetic contrast obtained with a

spin-polarized scanning tunneling microscope at 8K.

http://dx.doi.org/10.1038/nphys2045
http://dx.doi.org/10.1126/science.1240573
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derlying atomic lattice in such a way that a diagonal of the square magnetic

unit cell is parallel to a close-packed atomic row. Thus, it can appear in one

of three rotational domains with respective angles of 120◦. In chapter 6 of this

thesis, experimental and theoretical observations of con�nement e�ects of the

nanoskyrmion lattice in constricted geometries are discussed.

The second experimentally found ultrathin �lm system in which magnetic

skyrmions can be stabilized is Pd/Fe/Ir(111). The properties of this sys-

tem are quite di�erent from the ones of the previously introduced Fe/Ir(111).

Pd/Fe/Ir(111) can indeed be described by an e�ective Hamiltonian which takes

only an exchange and Dzyaloshinskii-Moriya interaction and an anisotropy en-

ergy into account [57] and is in this respect very close to the initial theoretical

proposal of magnetic skyrmions [10, 11, 12]. In zero magnetic �eld, spin-

spiral states as shown in Fig. 2.3 IIA, IID with spin-spiral periods of 6− 7 nm

were observed at temperatures below about 10K [22]. The dependence of

the spin-spiral period on the energy parameters is discussed in chapter 5 of

this thesis. Qualitatively speaking, the period decreases with an increasing

ratio of D/J . Magnetic skyrmions are formed in the presence of an external

magnetic �eld which is oriented perpendicular to the surface of the magnetic

system (Fig. 2.3 IIB, IIE,IIF). In contrast to the nanoskyrmions in Fe/Ir(111),

the skyrmions form a close-packed lattice with a six-fold symmetry at inter-

mediate magnetic �elds. A large magnetic �eld aligns the magnetic moments

parallel to its direction and isolated magnetic skyrmions exist as metastable

excitations (Fig. 2.3 IIC, IIG). Their size shrinks with an increasing magnetic

�eld [57]. This is in good agreement with theoretical calculations that show a

decrease of the skyrmion size with an increasing magnetic �eld for skyrmions

within the skyrmion lattice and isolated skyrmions [63].

2.3 Transition theory

This section provides an introduction to the available theoretical tools that

can be used to describe activated escape behavior of a system from a local

energy minimum. Furthermore, it is discussed how the existing models apply

to the circumstances of skyrmionic materials.

The �rst generally accepted description of activated transition behavior was
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the Arrhenius equation

k = A · exp (−E/RT ) (2.8)

that describes the temperature dependence of the rate constant k of a chemical

reaction in which an activation energy E has to be overcome on the molecular

level in order to be executed. A is a pre-exponential factor and R the gas

constant. It is highly non-trivial to calculate the pre-exponential factor and

there is a lot of theoretical work dealing with this issue. For example, it can be

shown that the pre-exponential factor can be expressed in the regime of large

damping as

A =
ωω′

2πζ
(2.9)

with the damping coe�cient ζ [64]. The frequencies ω and ω' originate from

an approximation of the potential well of the initial state and the energy bar-

rier with potentials of harmonic oscillators. In other words, if ω is large the

system will oscillate quickly back and forth in its potential well and attempt

to overcome the energy barrier often.

Furthermore, there are various extensions of the Arrhenius equation and a

famous one was developed by Henry Eyring [65] who described the reaction

rate of a chemical process by

k = κ
kBT

h
exp (∆S/R) exp (−∆H/RT ) (2.10)

according to Ref. [66] with the Planck constant h. ∆S and ∆H provide the

entropy and energy di�erences when going from the potential well to the transi-

tion state. This model allows to additionally obtain an insight into the entropy

changes during chemical reactions. The coe�cient κ is a transmission coe�-

cient which takes into account the possibility that not all activated complexes

give rise to products [66].

These descriptions of transition rates are not only suitable for chemical

reactions but can be generalized and applied in various di�erent situations.

In order to give an example related to magnetic materials, Néel and Brown
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discussed that the reversal of the magnetization of a magnetic particle over

an internal anisotropy energy barrier E can be described in a corresponding

way [67, 68]. Therein, the pre-exponential factor is called attempt frequency

which is associated with the frequency of the gyromagnetic precession [69].

That is the frequency with which a magnetic moment precesses around an

external magnetic �eld.

For skyrmionic magnetic bulk systems, C. Schütte and A. Rosch showed in

Ref. [70] that the creation and destruction of skyrmions is driven by singular

magnetic defects, so called Bloch points, that can be considered as emergent

magnetic monopole and antimonopole pairs whose creation rate is in agreement

with eq. 2.8. Further discussions of such Arrhenius-like activated skyrmion

creation and annihilation can be found in Ref. [71, 72, 73]. In Ref. [22], N.

Romming et al. demonstrated the possibility to decisively trigger transitions

between ferromagnetic skyrmionic states by means of the current of a spin-

polarized scanning tunneling microscope. In view of these �ndings, the as-

sumption of an energy landscape similar to the one depicted in Fig. 2.4 and

corresponding lifetimes τSk and τFM of the skyrmionic and ferromagnetic sates

τSk = 〈νSk→FM
0 〉−1 · exp

(
ESk

a /kBT
)

(2.11)

τFM = 〈νFM→Sk
0 〉−1 · exp

(
EFM

a /kBT
)

(2.12)

with the attempt frequencies ν0 and activation energies Ea are justi�ed. In this

picture, the con�gurations that the system passes through during a transition

process are parametrized by a so-called reaction coordinate γ. This model will

be used in chapter 4. Studies that dealt with the determination of the reaction

skyrmion

ferromagnet

E

γ

Sk
Ea FM

Ea

Figure 2.4: Energy landscape. Sketch of the potential wells of the skyrmion

state and ferromagnetic state as a function of a reaction coordinate γ.
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coordinate suggest that transitions between skyrmion state and ferromagnetic

state take place via axisymmetric spin con�gurations [74, 75, 76]. However, it

could not be excluded that strongly non-axisymmetric solutions play a role.
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Chapter 3

Methods

3.1 Statistical mechanics

Methods of statistical mechanics are used to derive macroscopic properties of

systems with a large number of particles from the physical principles govern-

ing the behavior on the microscopic scale. Examples for these many particle

systems are gases, �uids and solids for which it is impossible and in general

also unnecessary to solve the vast number of equations of motion for the in-

dividual particles. Instead, a statistical approach is used to derive important

properties as the speci�c heat, the magnetic susceptibility or the electric con-

ductivity. The key de�nitions are the ones of the microstate and macrostate.

A microstate is de�ned by a complete set of coordinates and momenta for all

the particles of a system. In contrast, the macrostate is given by macroscopic

properties as e.g. the energy, volume and the temperature. A macrostate is

characterized by a set of microstates, the statistical ensemble, which can be

occupied with certain probabilities. For the Monte Carlo calculations within

this work, the systems have been investigated within the canonical ensemble

which will be introduced in the following.

Canonical ensemble

The canonical ensemble describes systems which are in contact with a heat

bath keeping it at a �xed temperature T . The probability to �nd the system

in the microstate r with the energy Er is
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pr = exp

(
− Er
kBT

)
/Z (3.1)

where Z is the canonical partition function which is given due to the normal-

ization condition

∑
r

pr = 1 (3.2)

as

Z =
∑
r

exp

(
− Er
kBT

)
(3.3)

Then, the expectation value for a macroscopic property like the magnitude of

the magnetization M = |M| is given by

〈M〉 =
∑
r

pr(T ) ·Mr (3.4)

with Mr being the magnetization of the microstate r.

An important quantity is the free energy F

F = −kBT ln(Z) (3.5)

from which other quantities like the magnetizationM, the entropy S, the heat

capacity CH and the susceptibility XT

M = −
(
∂F

∂H

)
T

S = kB
∂

∂T
(T lnZ)

CH = −T
(
∂2F

∂T 2

)
H

XT = − 1

V

(
∂2F

∂H2

)
T

can be derived. However, a di�erent description of the heat capacity and the

susceptibility are more convenient for the Monte Carlo calculations. They can

also be obtained from the �uctuations of the system as
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CH = kBβ
2(〈E2〉 − 〈E〉2) XT = β(〈M2〉 − 〈M〉2) (3.6)

in which the heat capacity is determined by �uctuations in the energy and the

susceptibility by �uctuations within the magnetization. The quantities 〈E2〉
and 〈E〉2 are proportional to the square of the particle number N while the

relative �uctuation of the energy is small ∝ 1/N [77]. These �uctuations are

typically too small to be detected in experiments but they can be observed

in Monte Carlo calculations. The same applies for the �uctuations in the

magnetization.

3.2 Monte Carlo

Monte Carlo (MC) methods are used in various �elds of studies to �nd approxi-

mate solutions in cases where analytical approaches fail or are too inconvenient.

With regard to statistical mechanics, they can be employed to obtain approx-

imate values for thermodynamic properties of a given system by performing a

random walk in phase space. A method to elegantly perform this random walk

in phase space is the famous Metropolis algorithm which will be used in the

course of this work. In the following, the general theory of the generation of

random states of a system is discussed. Thereafter, the Metropolis algorithm

is introduced.

3.2.1 Transition theory

Master equation

A system with the microstates n and the corresponding time dependent occu-

pation probabilities wn(t) is considered. The dynamics of the system can be

described by the master equation

∂wn(t)

∂t
= −

∑
m

[wn(t)T (n→ m)− wm(t)T (m→ n)] (3.7)

with T (n → m) being the transition probability from state n to state m. In

thermal equilibrium, the occupation probabilities wn(t) are time independent
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and hence the left side of the equation becomes zero. The choice of the detailed

balance condition

wn(t)T (n→ m) = wm(t)T (m→ n) (3.8)

trivially ensures an according vanishing of the right side of the equation. This is

a su�cient but not a necessary condition [78]. Moreover, the time independent

probabilities wn are chosen to be equivalent to the Boltzmann probabilities pn.

Within a MC method, the transition probability is typically a product of the

probability to create a new test state C(n → m) and the probability for the

acceptance of this state A(n→ m).

T (n→ m) = C(n→ m) · A(n→ m) (3.9)

When the creation of a new test con�guration is a symmetric process, one �nds

C(n→ m) = C(m→ n). Equation 3.8 yields

A(n→ m)

A(m→ n)
=
pm
pn

= exp[−β(Em − En)] (3.10)

as a condition for the choice of the acceptance probabilities. This is ful�lled

by the Metropolis algorithm which is presented in the following section.

Markov chain

A Markov chain is a stochastic process that produces succeeding states of

a system. From a current state n of the system, a random new state m is

generated with the transition probability T (n → m). Most important, the

transition probabilities don't depend on the previous states and hence on the

history of the system. Of course, the normalization condition

∑
m

T (n→ m) = 1 (3.11)

has to be ful�lled. The Metropolis algorithm provides a method to generate

new con�gurations of a system in such a way. For a system consisting of mul-

tiple magnetic moments on a discrete lattice, the sequence of states simulate

arti�cial dynamics.
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3.2.2 Metropolis algorithm

Usually, a summation over all energy states is necessary to obtain the canonical

partition function and thereby the full information about a system. Analyti-

cally, this can be impossible for large systems with many degrees of freedom.

The Metropolis algorithm [79] is a powerful tool that avoids the problem of

the determination of the partition function and directly calculates approximate

values of thermodynamical properties as for example the heat capacity. It is

based on the �nding that random con�gurations of a system can be generated

weighted with the corresponding Boltzmann probability without the need of

the partition function. Therefore, having generated a large amount of random

states {i}, an approximate value Q for the expectation value 〈Q〉 of a quantity
Q is obtained as an arithmetic mean

Q =
1

n

n∑
i=1

Qi ≈
∑
r

Qr exp

(
− Er
kBT

)
/Z = 〈Q〉 (3.12)

with n being the number of values of Q obtained during a Monte Carlo calcu-

lation.

The Metropolis algorithm consists of the two steps:

� Make a random trial change on the system and calculate the resulting

energy di�erence ∆E.

� Accept the new con�guration with the probability p = min{1, exp(−β∆E)}.

These steps are repeated multiple times. Here, β = 1/kBT . This algorithm

provides a very e�cient method to minimize the energy because energetically

more favorable trial states (∆E < 0) will always be accepted. Energetically

more unfavorable trial states (∆E > 0) are accepted with a value smaller one

according to a Boltzmann factor. This choice of acceptance probabilities is in

compliance with eq. 3.10. For the course of this thesis, a Monte Carlo step

is de�ned as N random trial changes with N being the number of magnetic

moments of the considered system.

The Metropolis algorithm is used to describe the behavior of magnetic mo-

ments on discrete sites of a lattice. The directions of the magnetic moments

are given by vectors Si ∈ R3 of unit length. A trial change on the system
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is done by choosing a lattice site and a random new direction for the corre-

sponding magnetic moment. There are multiple ways to generate such a new

direction. The �rst one that was used for this work is called the uniform spin

sampling. Three random numbers Sx, Sy, Sz are chosen uniformly distributed

in the interval [-1,1]. If the resulting vector lies outside of the unit sphere, a

new set of random values will be created. If the resulting vector lies within the

unit sphere, the vector will be projected onto the surface of the unit sphere

and accepted as a new trial direction for the magnetic moment at the chosen

lattice site. This method of producing new random spin directions ensures a

uniform distribution on the surface of the unit sphere. The second method

to create a new random direction is the Gaussian spin sampling method [80].

Here, normal distributed variations are added to the current spin direction at

a random lattice site. Three values sx, sy, sz are created according to the nor-

mal distribution N (0, σ2). Then, the new direction S∗i of a current magnetic

moment Si is determined as

S∗i =
Si + sN (0,σ2)

|Si + sN (0,σ2)|
(3.13)

with

sN (0,σ2) =


sx

sy

sz

 (3.14)

The Gaussian sampling method is useful when relatively smooth spin trajec-

tories are desired. This can be practical for a system close to the equilibrium

state at low temperatures in order to �ne-tune the orientations of the magnetic

moments. For most of the MC calculations presented in this work, the uniform

sampling method was used. In cases where the Gaussian sampling method was

employed, it is noted explicitly.

3.3 Lattices and boundary conditions

All results from Monte Carlo calculations that are shown in the course of

this thesis were performed on two-dimensional hexagonal lattices with vari-
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a                                                b

} m = 4

}

n = 3

}
n = 3

Figure 3.1: Boundary conditions. (a) Periodic boundary conditions for a hexag-

onal lattice with an overall rectangular boundary shape. One side coincides with a

close-packed row. (b) Construction of helical boundary conditions for a hexagonal

lattice with an overall hexagonal boundary shape as shown in (c).

ous sizes and boundary shapes as well as di�erent boundary conditions. The

choice of system size and boundary conditions depends strongly on the pur-

pose of a calculation. Some investigations of this thesis explicitly deal with

the e�ects of boundaries onto the magnetic ground states of skyrmionic ma-

terials. The orientation of spin-spirals with respect to the edge of a magnetic

island is discussed in chapter 5 and the alignment of the nanoskyrmion lat-

tice in Fe/Ir(111) with respect to an edge is the focus of chapter 6. However,

in�uences due to �nite system sizes can be undesired in other situations as

for example when studying phase transitions. Phase transitions only occur in

the thermodynamic limit for in�nite systems that obviously can not be consid-

ered in computer calculations because of limited memory and processing time.

Hence, a method called �nite size scaling based on the changes observed when

varying the system size can be used for this purpose. Apart from this, periodic

boundary conditions can be used to reduce boundary e�ects. At the boundary

of a system, the lattice sites have a reduced number of nearest neighbors and

the idea is to connect lattice sites at opposite sides of the system in order to �ll

up the missing number of neighbors. The exact method depends on the lattice

type and for the hexagonal lattices shown in this thesis, two di�erent methods

were used. First, a hexagonal lattice with an overall rectangular boundary

shape similar to the one shown in Fig. 3.1 a is considered. It consists of m

rows of n lattice sites and the periodic boundary conditions can be found by
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a periodic repetition of the lattice. This choice can be problematic in certain

cases since the boundary shape has a di�erent symmetry than the lattice it-

self and another method to set boundary conditions in which the boundary

shape resembles the symmetry of the lattice is convenient. For this purpose, a

hexagonal lattice with a hexagonal boundary shape is considered and so called

helical boundary conditions [99] are set up in the way indicated in Fig. 3.1 b.

Each "edge" consists as depicted of n sites which results in a total number of

lattice sites

N = 3n2 − 3n+ 1 . (3.15)

This type of lattice is used for the Monte Carlo calculations regarding the

stability properties of a single skyrmion in chapter 4 because the hexagonal

boundary shape is closer to the axisymmetric shape of a skyrmion than a

rectangular boundary. Besides this, skyrmions typically form a close packed

lattice when they are not in the diluted phase.

3.4 Phase transitions and �nite size e�ects

Materials can typically exist in di�erent phases depending on external parame-

ters as e.g. the temperature and a magnetic �eld. This can concern for example

their state of aggregation (e.g. solid, �uid and gaseous) or also their magnetic

order (e.g. ferromagnetic and paramagnetic). The following discussion will

focus on phase transitions of magnetic materials but applies in a similar way

to other material systems.

Phases are described by a suitable order parameter and their exact choice

depends on the considered system, e.g. the magnetization for a ferromagnet.

A phase transition is characterized by a change of the order parameter. For

a ferromagnet, the magnetization is zero above a critical temperature Tc and

unequal to zero below Tc. This change in the magnetization is continuous and

hence the phase transition is called continuous. At Tc, the correlation length ξ

diverges. For a ferromagnet, the correlation length provides the size of clusters

in which the magnetic moments are parallel. The divergence of the correlation

length leads to a divergence in the susceptibility X [64] that can be used to
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determine the position of the phase transition. However, the divergence occurs

in the thermodynamic limes of in�nite systems, only. For �nite systems, the

correlation length is limited by the system size and hence the susceptibility has

a �nite value at the critical temperature. This means that, strictly speaking,

no phase transition occurs in �nite systems. Still, the susceptibility exhibits

a peak which is interpreted as a phase transition within this work. Besides of

the susceptibility, the speci�c heat capacity provides an alternative quantity

that may exhibit a divergence at a phase transition. Also here, a peak instead

of a divergence can be obtained for �nite system sizes.

Typically, the position Tc(L) of the peak for a �nite system of size L is

not identical with the position Tc of the divergence for an in�nite system

[81, 82]. D. P. Landau found using two-dimensional and three-dimensional

Ising lattices that the di�erence Tc − Tc(L) for the speci�c heat is small for

systems with periodic boundary conditions, but may be signi�cant for small

systems with open boundary conditions [83, 84]. Here, Tc(L) is shifted to

smaller temperatures.

3.5 Topological charge

Here, the concept of the topological charge Q in the context of magnetic

skyrmions is presented. It proves to be a very useful order parameter since

it gives the number of skyrmions within a magnetic system. It is typically

de�ned via

Q =
1

4π

∫
A

m ·
(
∂m

∂x
× ∂m

∂y

)
dxdy (3.16)

as an integral over a magnetic surface A whose local direction of magnetization

is described by the continuous �eld m. For a spin-spiral state or the ferromag-

netic state, the topological charge is equal to zero since the coordinate system

can be chosen in such a way that the spatial derivative of the magnetization is

zero in at least one spatial direction. For a single skyrmion, the local magneti-

zation directions cover the whole surface of the unit sphere and consequently

the integral is equal to the surface area of the unit sphere. Hence, an integer

number is obtained by the division of 4π. For discrete magnetic models, the
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integral needs to be replaced by a sum as described in Ref. [85, 86]. In the

following, this process will be explained for a system of magnetic moments Si
on a hexagonal lattice. Therein, the magnetic moments are arranged at the

corners of equilateral triangles. For each set of three magnetic moments on

these triangles, the solid angle Ω is determined via

Ω = 2 · atan2(N,D) (3.17)

N = S1 · (S2 × S3) (3.18)

D = S1S2S3 + (S1 · S2)S3 + (S1 · S3)S2 + (S2 · S3)S1 (3.19)

as shown in Ref. [86]. The order of the arguments of the atan2 function

is consistent with the de�nition of the Fortran function ATAN2. Then, the

integral can be replaced by the sum over the solid angles of all triangles.

3.6 Random telegraph signal

Random telegraph noise usually refers to temporal resistance �uctuations in

small devices that show random switching between two or several discrete

values. This was experimentally observed e.g. for metal oxide semiconduc-

tor �eld-e�ect transistors (MOSFETs) [87] and Cu nanobridges [88]. Simi-

lar behavior has been found for various systems as for example for magnetic

nanoislands whose magnetization direction can spontaneously be reversed due

to thermal agitation [89, 90, 91]. This e�ect is known as superparamagnetism.

In chapter 4 of this thesis, stochastic switching between fer-

romagnetic and skyrmionic states of a magnetic system is discussed. The

obtained two-level process is characterized by the Dzyaloshinskii-Moriya in-

teraction and skyrmion number as a function of the Monte Carlo step. The

Dzyaloshinskii-Moriya interaction provides a random telegraph signal that is

used to obtain the mean times spent in ferromagnetic or skyrmionic states

between two succeeding switching events.

3.6.1 Determination of switching events

In the following, the method used to identify the switching processes between

the skyrmionic and ferromagnetic states is presented. For this purpose, the DM
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Figure 3.2: DM energy and skyrmion number. The DM energy and the

corresponding skyrmion number as a function of the time given in MC steps for

kBT = 0.61 J and µB = 0.103 J revealing a two state behavior due to the ongoing

creation and annihilation of a single skyrmion.

energy and the skyrmion number (see section 3.5) were calculated as a function

of the Monte Carlo step as shown exemplarily in Fig. 3.2 for kBT = 0.61 J

and µB = 0.103 J for a magnetic system with a hexagonal lattice with 631

lattice sites as investigated in chapter 4. The DM energy exhibits a two level

behavior while the skyrmion number adopts discrete natural number values

between zero and two for these parameters within this range of MCS. The

skyrmion number switches predominantly between zero and one corresponding

to the two levels in the DM energy. However, local �uctuations add or remove

topological charge to the skyrmion number without any visible corresponding
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Figure 3.3: Identi�cation of a switching event. DM energy as a function of

the time given in MC steps for kBT = 0.61 J , µB = 0.103 J exhibiting a two state

behavior due to the ongoing creation and annihilation of a single skyrmion. The

frequency distribution of the DM energies exhibits two peaks whose positions E
DM
FM

and E
DM
Sk are marked by the gray and black horizontal lines. A switching event is

identi�ed by the coincidence when the DM energy subsequently crosses these two

energies as a function of the Monte Carlo step.
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changes in the DM energy. Consequently, these �uctuations are neglected

when determining the total number of skyrmions within the system and it is

more convenient to choose the DM energy to identify switching events since

it is less sensitive to local �uctuations. The frequency distribution of the DM

energy at a particular temperature and magnetic �eld exhibits two peaks at

E
DM

FM and E
DM

Sk corresponding to the FM and Sk states as shown in Fig. 3.3.

The switching events are identi�ed by �nding the coincidences at which the

DM energy subsequently crosses the energies E
DM

FM and E
DM

Sk in either order

as a function of the Monte Carlo step. Fig. 3.3 shows a switching event from

the ferromagnetic to the skyrmionic state, i.e. the DM energy subsequently

crosses E
DM

FM and E
DM

Sk .

3.6.2 Determination of lifetimes

For a random telegraph signal with the two levels 0 and 1, the number of

switching events within a given time interval is Poisson distributed and hence

the time τ between two switching events can be described by an exponential

distribution of the type
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Figure 3.4: Lifetime analysis. (a) DM energy as a function of the Monte Carlo

step for µB = 0.1 J and kBT = 0.61 J . (b, c) Lifetime histograms of the telegraph

signal shown in (a) for the ferromagnetic state and skyrmionic state. Exponential

�ts yield the mean lifetimes τFM and τSk.
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P0,1(τ) =
1

τ 0,1

exp(− τ

τ 0,1

) . (3.20)

Therein, τ 0 and τ 1 are average time constants of the two levels and P0(τ) · dτ
and P1(τ) · dτ provide the probabilities that the system remains in state 0 and

1 for the time τ and then switches to the respective other level in the time

interval [τ, τ + dτ ] [92].

Having identi�ed the switching events between ferromagnetic and skyrmionic

states using the Dzyaloshinskii-Moriya energy as a function of the Monte Carlo

step, the times τFM and τSk (see Fig. 3.4 a) that the system stays in either of

the two states between two succeeding switching events can easily be deter-

mined. Figures 3.4 b and 3.4 c show the histograms of τFM and τSk which

were obtained from the analysis of the Dzyaloshinskii-Moriya energy for 108

Monte Carlo steps at µB = 0.1 J and kBT = 0.61 J . Exponential �ts provide

the mean lifetimes τFM = 148273MCS and τSk = 238981MCS according to

equation 3.20. These values are close to the arithmetic means

1

n

n∑
i=1

τFM,i = 143224 MCS
1

n

n∑
i=1

τSk,i = 220087 MCS . (3.21)

3.7 Spin-polarized tunneling current

In section 7.2.6, the possibility to manipulate the lateral position of a magnetic

skyrmion by means of a spin-polarized current injected from a magnetic tip of

a scanning tunneling microscope is discussed. In the following, the theoretical

concepts that give rise to the incorporation of a spin-polarized current into

the Monte Carlo calculations are presented while detailed information about

scanning tunneling microscopy can be found elsewhere as e.g. in Ref. [93].

The tunneling current I of a spin-polarized scanning tunneling microscope

can be separated into an unpolarized part I0 and a polarized part IP with

I(RT , V, θ) = I0(RT , V ) + IP (RT , V, θ) (3.22)

as shown by Wortmann et. al. in Ref. [94]. Therein, θ denotes the angle

enclosed by the tip magnetization and sample magnetization, and RT and
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V are the tip position and the bias voltage between tip and sample. The

unpolarized part of the tunneling current was initially described by J. Terso�

and D.R. Hamann in Ref. [95]. They made the assumption that the work

function φ of the tip is equal to that of the surface leading to the decay constant

κ = ~−1(2mφ)1/2 for the electronic wave functions of tip and sample. The tip

apex was modeled with spherically symmetric s waves. The result was an

unpolarized tunneling current which depends exponentially on the distance

between tip and sample. However, this part of the current is not of interest

for the simulations presented in this thesis and will consequently be neglected.

Stapelfeldt et. al. suggested in Ref. [96] that the spin-polarized part of the

tunneling current can be accounted for within simulations by an additional

contribution

HT = −g
∑

iTi · Si (3.23)

Ti = −T0 · P ·mtip exp (−2κri) (3.24)

to the total Hamiltonian. P is the polarization of the tip magnetization mtip,

T0 the spin-polarized current averaged over the surface unit cell, ri is the

distance between tip and sample atom i and g is a coupling constant. Obvi-

ously, the in�uence of the spin-polarized current decreases exponentially with

an increasing distance between tip and sample which is in agreement with

the considerations by J. Terso� and D.R. Hamann in Ref. [95]. Apart from

that, the Hamiltonian is consistent with the Hamiltonian Hsd = −JsdS · s of
the s-d model which describes the interaction of local magnetic moments S

given by localized d electrons with a conduction electron spin density s of s

electrons [97]. The model originates from investigations of the interaction be-

tween conduction electrons in a non-magnetic metal with localized magnetic

moments of impurity atoms [98]. Therefore, one can not expect precise results

in the context of s electrons and d electrons within a magnetic material. How-

ever, it captures an important e�ect that arises when a spin-polarized current

�ows through a material with spatially inhomogeneous magnetic order. The

conduction electrons rotate to follow the local magnetization direction and in

order to obey angular momentum conservation, the local magnetic structure

experiences a torque which is also known as spin transfer torque.
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In the context of spin-polarized scanning tunneling microscopy, the spin-

polarized s electrons are the electrons tunneling between magnetic tip and

magnetic sample. The interaction takes place with the localized electron states

of the sample.
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Chapter 4

Stability of skyrmionic bits

For this chapter, lifetimes of skyrmionic and ferromagnetic states were calcu-

lated with the Monte Carlo program as a function of temperature and external

magnetic �eld. The Arrhenius law is used for the determination of energy bar-

riers and attempt frequencies which provide an insight into the shape of the

underlying energy landscape of the investigated skyrmionic system.

The results are compared to experimental results obtained by Niklas Rom-

ming with a spin-polarized scanning tunneling microscope. A procedure is

proposed that permits the determination of e�ective material parameters and

the quanti�cation of the Monte Carlo time scale from the comparison of the-

oretical and experimental data.

Results of this chapter are part of the following publication:

J. Hagemeister, N. Romming, K. von Bergmann, E.Y. Vedmedenko & R.

Wiesendanger. Stability of single skyrmionic bits. Nat. Commun. 6 8455

(2015).
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4.1 Simulation parameters and simulation scheme

4.1.1 Model Hamiltonian and system properties

For the sake of generality, an ultrathin magnetic �lm with the standard e�ective

Hamiltonian

H = −J
∑
<i,j>

Si · Sj −
∑
<i,j>

D i,j · (Si × Sj) +K
∑
i

sin2(Θi)− µ
∑
i

B · Si

(4.1)

is considered. Therein, Si = µi/µ is a three-dimensional magnetic moment of

unit length, K describes an uniaxial perpendicular magnetic anisotropy and

B is a uniform external magnetic �eld. J is the e�ective nearest-neighbor

exchange integral and D i,j is an e�ective nearest-neighbor Dzyaloshinskii-Mo-

riya coupling. For symmetry reasons, the DM-vector D i,j is chosen to be

perpendicular to the vector connecting two spins Si and Sj and to lie within

the plane of the magnetic �lm [58]. Systems consisting of up to 1000 Heisenberg

spins on a two-dimensional triangular lattice with a hexagonal boundary shape

(Fig. 4.1) using helical boundary conditions (see Ref. [99] and section 3.3) were

investigated by means of extended MC simulations. Energy parameters typical

for thin-�lms showing skyrmionic phases i.e. D/J ≈ 0.32 and K ≈ 0.07 J were

used [100, 101, 102]. Note that D and J provide energies per bond throughout

this chapter.

A typical phase diagram of a thin �lm skyrmionic system described by the

equation (4.1) can be found elsewhere [15, 103, 104]. In order to summarize,

the system exhibits a spin-spiral state in zero �eld within a certain range of

the energy parameters at low temperatures. A perpendicular magnetic �eld

can be used to cause a transition from the spin-spiral state to a skyrmionic

(Sk) state. In a su�ciently large �eld, the system becomes fully polarized

and transforms into the ferromagnetic (FM) state. The simulations have been

performed at �elds and temperatures near the phase boundary separating the

ferromagnetic and skyrmionic phases where individual skyrmions are formed.

In this region of the phase space, the distance between skyrmions is much

larger than the skyrmion diameter and the energies of the skyrmionic and
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Figure 4.1: Model system. A triangular spin lattice consisting of 631 sites with

a hexagonal boundary shape and helical boundary conditions containing a thermally

excited single skyrmion at kBT = 0.61 J and µB = 0.093 J .

the ferromagnetic states are nearly degenerate and a thermally activated cre-

ation and annihilation of single skyrmions within the ferromagnetic phase is

expected. Indeed, this process can be captured with Monte Carlo simulations

allowing for an exploration of the energy landscape of skyrmionic systems as

will be discussed in the course of this chapter. The switching between the

distinct topological states can be characterized by the skyrmion number which

oscillates predominantly between zero and unity and the DM energy which

exhibits abrupt changes when a skyrmion is created or annihilated as shown in

section 3.6.1 and section 3.6.2. The size of the spin system used for the simu-

lations in this chapter was chosen in such a way that only one single skyrmion

was stochastically created and annihilated within the system near the critical

�eld Bc separating the FM and Sk phases as a function of the time measured

in MC steps (see section 4.1.2).

4.1.2 Choice of System Size

The total number of skyrmions that can be present in the system simulta-

neously depends on the system size N and consequently, the system size has

an in�uence on the stability of an individual skyrmion. Figure 4.2 shows the
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mean lifetimes of the FM state and an individual skyrmion as a function of

the system size for kBT = 0.61 J and µB = 0.1 J . The system was restricted

to geometries with a hexagonal boundary shape leaving only certain possible

values for N . The red and black points mark the mean lifetimes for the values

of N that comply with this constriction. The system can contain a maxi-

mum of one skyrmion for relatively small system sizes N < 800. In the range

500 < N < 800 the single skyrmion is the more probable state compared to the

ferromagnet. For system sizes N < 500 this stability relation is inverted and

the ferromagnet is the more probable state. This behavior may be ascribed

to two e�ects. Firstly, the skyrmion is restricted to a smaller region with a

reduction of the system size providing less space to evade local perturbations.

Secondly, the system eventually becomes too small to allow the formation of

a whole skyrmion. In systems larger than N ≈ 800, multiple skyrmions may

be present within the system at the same time. In order to study the stability

properties of an individual skyrmion, the system size of N = 631 was chosen

which is close to the region allowing for multiple skyrmions.

3 0 0 4 5 0 6 0 0 7 5 00
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Figure 4.2: Dependence of the lifetimes on the system size. The mean

lifetimes τFM,Sk as a function of the number of lattice sites N for kBT = 0.61 J

and µB = 0.1 J . Since triangular lattices with a hexagonal boundary shape are

considered, certain values of N are possible only. The red and black points mark the

mean lifetimes for the values of N that comply with this constriction. The shaded

area to the right side marks the region in which the system size is large enough to

allow two skyrmions to be present simultaneously. For the calculations presented in

the following within this chapter, N = 631 was chosen in order to study the stability

properties of a single skyrmionic bit.
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4.2 Lifetimes and energy landscape

Fig. 4.3 a shows the DM energy as a function of the MC time at three di�erent

magnetic �elds for the temperature kBT = 0.61 J . While the system is found

with equal probabilities in the Sk and FM states at the critical �eld of µBc =

0.103 J , the Sk state becomes preferred for �elds B < Bc as shown for µB1 =

0.093 J . This population imbalance gets inverted in the range B > Bc at which

the FM state becomes more stable as shown for µB2 = 0.114 J .

Fig. 4.3 b shows the histograms of the DM energies which exhibit two peaks

corresponding to the FM and Sk states. The peaks of the Sk states are much

broader than those of the FM, which may be ascribed to thermally induced

�uctuations in the skyrmion size. Additionally, the peak of the Sk state shifts

to higher energies with an increasing �eld indicating that the skyrmion equi-

librium size decreases with the �eld [12]. As the probability to �nd the sys-

tem in either state is equivalent to the area underneath the peaks, the areas

are equal for both states at Bc only. The mean lifetimes τSk and τFM can-

not be deduced directly from the histograms but are rather determined as∑N
i=1 (τFM,i/Sk,i)/N (see section 3.6.2) from the individual lifetimes τSk,i and
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Figure 4.3: Thermally induced creation and annihilation of a single

skyrmion. (a) The DM energy as a function of the Monte Carlo step for di�erent

magnetic �elds at kBT = 0.61 J exhibiting a two-state behavior due to the ongoing

creation and annihilation of a single skyrmion. (b) The histogram of the DM energy

shows two peaks corresponding to the FM and Sk states. The Sk and FM states are

populated with equal probability at the critical �eld Bc and the areas underneath

the peaks of the histogram are equal.
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τFM,i shown in Fig. 4.3 b. For this purpose, more than N = 1000 switching

events have been recorded for each set of temperature and �eld to achieve re-

liable statistics. Fig. 4.4 a shows the e�ect of both the magnetic �eld and the

temperature on the mean lifetimes within the range µB = (0.093 − 0.114) J

and kBT = (0.6− 0.7) J . The red points give τSk and the black points τFM as

determined from the MC calculations. For a �xed temperature, the skyrmionic

state gets destabilized by an increasing �eld and, therefore, the mean lifetime of

a skyrmion decreases. The ferromagnetic state, in contrast, gets stabilized and

the corresponding mean lifetime increases. Surprisingly, the mean lifetimes ex-

hibit a very asymmetric behavior with respect to the intersection point (Bc, τ c)

showing that the Sk and FM states respond di�erently to changes in the mag-

netic �eld. Such an asymmetry can appear for several reasons including �eld

dependent changes in the activation energy, in the energies of the Sk and FM

states or in the dynamics.

In order to clarify this behavior, particular attention has to be paid to the
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Figure 4.4: Lifetimes as a function of temperature and magnetic �eld.

(a) Mean lifetimes of the Sk and FM states as a function of the magnetic �eld and

the temperature. The red and black points are the results of MC calculations. The

points of intersection (Bc, τ c) are marked by green spheres. Bc increases linearly with

T in this temperature range. (b) A sketch of the energy landscape with the energy

minima ESk and EFM of the Sk and FM states which are separated by activation

energies given by ESk
a and EFM

a .
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shape of the energy landscape and its dependence on the magnetic �eld. As

a starting point, a simpli�ed one-dimensional energy landscape (Fig. 4.4 b) is

considered with two energy minima ESk and EFM of the Sk and FM states,

which are separated by an energy barrier giving rise to the two activation

energies ESk
a and EFM

a . The reaction coordinate γ describes the spin con�gu-

rations between the two energy minima. The �eld dependencies of EFM and

ESk can immediately be derived from the MC calculations and are shown in

Fig. 4.5 a for the temperature kBT = 0.61 J . Both energies decrease linearly

with the �eld. This behavior is evident for the FM because of its direct Zeeman

proportionality but is less trivial for the Sk state. The FM state is energet-

ically favored over the Sk state over the full range of investigated �elds. A

linear extrapolation of EFM and ESk to smaller �elds yields a degeneracy at

µB = 0.065 J , yet the skyrmion is more stable (τSk > τFM) for µB < 0.103 J .

The energy of the separating barrier is more di�cult to access because the

intermediate spin con�gurations are yet unknown. However, EFM
a and ESk

a

can be derived from the temperature dependence of the mean lifetimes which

are found to decrease exponentially with the temperature allowing to describe

them with the Arrhenius-law by the functions

μB  = 0.103 Jc

FM Sk
E      E      E +E      E +EFM Sk FM a Sk a

μB/J

E
-E

 [
J]

F
M

15
.

10
 .

5

0

600
.

400

 ..
0.1

.

0

-1
ν

[M
C

S
]

0 

-1
ν

[M
C

S
]

0 

0.096      0.104      0.1120.096           0.104            0.112
μB/J

FM → Sk

Sk → FM

a

b

c

Figure 4.5: Activation energies and attempt frequencies. (a) The ener-

gies ESk and EFM of the Sk and FM states as a function of the magnetic �eld for

the temperature kBT = 0.61 J alongside with the energy of the transition state Et

(Fig. 4.4 b) which is given by the sum of the energy levels and the corresponding

activation energies. (b, c) The attempt frequencies ν0.
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νFM
0 =

1

τFM
0

= νFM→Sk
0 · exp(−E

FM
a

kBT
) (4.2)

νSk
0 =

1

τSk
0

= νSk→FM
0 · exp(−E

Sk
a

kBT
) (4.3)

with the attempt frequencies νFM→Sk
0 and νSk→FM

0 . The activation energies

derived from �ts of numerical data by equations (4.2, 4.3) correspond to the

vertical heights of the shaded areas in Fig. 4.5 a. ESk
a and EFM

a both depend

linearly on the magnetic �eld. ESk
a decreases from 7.4 J to 4.7 J in the inves-

tigated �eld range while EFM
a increases only slightly and is about 11 J . The

observation that ESk
a responds more sensitive to changes in the �eld than EFM

a

may be explained by the fact that the magnetic microstructure of the ferro-

magnetic state remains unchanged (up to �uctuations) with increasing �eld

strength, while the size of an isolated skyrmion shows a strong �eld depen-

dence [12]. A similar activated behavior as described by equation (4.3) with a

comparable value for ESk
a was found for bulk skyrmionic systems [70].

The energy of the barrier state EB is given by the sums of the energies

of the FM and Sk states and the corresponding activation energies as E1
B =

EFM +EFM
a and E2

B = ESk +ESk
a . The energies E1

B and E2
B, shown by the black

and red triangles in Fig. 4.5 a, coincide within the range of numerical accuracy

indicating that the system passes the same barrier state for both transition

directions justifying the one-dimensional picture of the energy landscape.

Summing up, it is found that for �elds B < Bc the Sk state is more stable

than its ferromagnetic counterpart despite the fact that it is still energetically

less favorable. Also, the activation energy of the Sk is smaller than that of the

FM in this range. Thus, the intrinsic energy and most unexpectedly the acti-

vation energy cannot be the dominating mechanism stabilizing the skyrmion.

In order to shed light onto this �nding, the attempt frequencies have been in-

vestigated. From the Arrhenius �t one �nds that the attempt frequencies are

on the order of νSk→FM
0 ≈ 0.05 MCS−1 and νFM→Sk

0 ≈ 400 MCS−1 throughout

the whole range of explored magnetic �elds (Fig. 4.5 b). This large discrepancy

can be ascribed to the attempt frequencies as the reason for the stability of

the Sk state for �elds B < Bc in the present MC calculations. These data also

imply that the energy minimum of the Sk state is broader than that of the

FM state since the attempt frequencies describe in a �rst approximation the

geometry of the energy landscape in the vicinity of the energy minima.
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4.3 Comparison with experiment

The calculations presented above concern a generic two-dimensional skyrmionic

system which can e�ectively be described by a Hamiltonian of equation (4.1).

In the following, the numerical �ndings are compared with experimental re-

sults obtained for Pd/Fe/Ir(111) [22]. The experimental investigations on

Pd/Fe/Ir(111) were performed at a temperature of 4.2 K with a spin-polarized

scanning tunneling microscope (SP-STM) using a Cr-bulk tip. The system

exhibits a spin-spiral state at zero magnetic �eld at low temperatures. In a

perpendicular magnetic �eld, the system adapts a two-level behavior: only

skyrmionic and ferromagnetic con�gurations remain stable [22]. The temper-

ature is such that the thermal energy alone is insu�cient to go from the FM

to the Sk state at moderate �eld values between 2.5T and 4.5T. Instead, the

additional energy from the spin-polarized tunnel current is needed to overcome

the energy barrier and to reach the other energy minimum. Single skyrmions

that are pinned to atomic defects in the ferromagnetic phase were observed

at �elds of 3.5T − 4T. Within this �eld range, using a spin-polarized tun-

nel current I = 100 nA and an applied voltage of U = ±600mV a stochastic

switching between the Sk and the FM states was induced and the correspond-

ing telegraph signal in the di�erential conductance has been recorded [22].

In order to justify a comparison between these experimental data and the

present MC-calculations, particular attention has to be paid to the origin of the

excitations leading to the spontaneous switching between the two states. In

standard MC-simulations the system under investigation is in equilibrium with

a thermal bath, which is described by the energy Eb being an essential part

of the Boltzmann probability pB = e−Ei/Eb . The exact origin of Eb is never

addressed and is traditionally attributed to the thermal energy Eb = kBT .

In the present experimental system the spontaneous switching between the

two states is not purely induced by thermal energy. Instead, the dominant

mechanism was found to be the injection of additional energy due to tunneling

electrons from the tip of a SP-STM [22]. Here, it is assumed that the MC

temperature includes both thermal and electronic excitations. Note also that

the experiments were performed on skyrmions located at local atomic defects

which were neglected within the MC simulations.
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Figure 4.6: Lifetimes from Monte Carlo simulations and experiments on

Pd/Fe/Ir(111). Mean lifetimes obtained from experiments on Pd/Fe/Ir(111) as a

function of the magnetic �eld B in combination with mean lifetimes obtained from

MC calculations. The MC data is linearly rescaled to the experimental data such

that the critical points given by (Bc, τ c) coincide. The lifetimes are described by

exponential functions τFM/Sk(B) ∝ exp(λFM/SkB).

Fig. 4.6 shows experimentally obtained mean lifetimes of the Sk and FM

states as a function of B for the bias voltage of U = −600mV. The functions

show a very good qualitative agreement with the theoretically obtained data of

Fig. 4.4 a. In agreement with the MC data, the lifetimes are strongly asymmet-

ric with respect to the critical �eld Bc ≈ 3.9 T at which the lifetimes are equal.

This �nding allows us to compare the experimental and MC mean lifetimes.

More than that, the MC results can be calibrated using the experimental data

by linearly rescaling τMC
FM/Sk(B) in such a way that the MC intersection point

(BMC
c , τ c) coincides with that found experimentally. Now, the task remains

to determine the correct MC temperature at which the �eld dependent mean

lifetimes best �t to the experimental data. In order to �nd the required MC

temperature, τFM/Sk(B) were described by exponential functions of the form

τFM/Sk ∝ exp(λFM/SkB) (4.4)

with the �t parameters λFM/Sk as proposed in Ref. [70] for the Sk state. The

horizontal black and red lines in Fig. 4.7 a show the values λexp
FM and λexp

Sk ob-

tained from �ts to the experimental data. The thickness of these lines gives
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the uncertainty. For the MC data, the values λMC
FM/Sk depend on the MC tem-

perature and are shown by the red and black dashed lines in Fig. 4.7 a. The

curves λexp
Sk and λMC

Sk intersect at kBT = 0.48 J , while no intersection can be

observed for λexp
FM and λMC

FM within the explored MC temperature range. Seem-

ingly, the best agreement between experiment and MC simulations is obtained

for the MC temperature kBT ≈ 0.48 J . Note that for kBT < 0.58 J , the MC

mean lifetimes were extrapolated from the temperature dependent calculations

because of insu�cient MC statistics in direct simulations. The feasibility of

the proposed calibration method has been con�rmed by the calculation of the

Sk probability pSk(B) = τSk(B)/(τSk(B) + τFM(B)) (Fig. 4.7 b) which is 0.5

at the critical �eld Bc and approaches 1 for small and 0 for large �elds. The

experimentally and numerically determined curves show a good agreement.

From the correspondence between the experimental and the MC time at Bc

the physical time scale is immediately set as 2 · 10−9 s per MC step. From the

knowledge of the experimental Bc, the MC �eld is derived by the scaling factor

Bexp
c /BMC

c . Taking the magnetic moment µ = 3µB for Pd/Fe/Ir(111) [100] into

account, all coupling constants can naturally be determined. According to the

described calculations the nearest-neighbor e�ective exchange interaction for

Pd/Fe/Ir(111) equals J = (7 ± 0.2)meV per bond (or 3.5meV per atom),

while the DM parameter is D = 2.2meV per bond (or 1.1meV per atom).
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Figure 4.7: Calibration of MC results with experimental data obtained

on Pd/Fe/Ir(111). (a) The �t parameter λFM/Sk (Fig. 4.6) for the experimental

data (exp) and MC data (MC). The values λMC
FM/Sk depend on the MC temperature

used. The best correspondence between experiment and MC is found using the MC

temperature kBT ≈ 0.48 J marked by the vertical gray line. The calibration of the

MC mean lifetimes at this temperature with the experimental lifetimes provide an

absolute value for the exchange parameter of J = (7.1±0.2)meV. (b) The skyrmion

probability pSk(B) = τSk(B)/(τSk(B) + τFM(B)).
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These values are close to the e�ective interaction parameters given in Ref. [100,

102]. From the considerations above, the activation energies between single

skyrmions and the ferromagnetic phase in Pd/Fe/Ir(111) are on the order of

ESk
a ≈ 35meV− 50meV and EFM

a ≈ 80meV at the temperature kBT = 0.48 J .

This is somewhat smaller than activation barriers observed for nanoscale Fe/W

islands of comparable size [91] (≈ 100 atoms) to the skyrmions.

The overall good agreement suggests that the present MC simulations are

suited to describe skyrmionic systems and capture the physics of the creation

and annihilation of individual skyrmions.

4.3.1 Stability bounds of skyrmions in Pd/Fe/Ir(111)

Using the results of the MC simulations, the dependence of the mean lifetime

τ c = τFM(Bc) = τSk(Bc) at the critical �eld Bc can be derived as a func-

tion of the inverse temperature J/kBT �nding an exponential dependence as

shown in Fig. 4.8. The data points were obtained from the �eld and tempera-

ture dependent mean lifetimes presented in Fig. 4.4 a. Considering a constant

magnetic �eld, the mean lifetimes τSk(T ) and τFM(T ) exhibit an Arrhenius-

like dependence on the temperature as discussed in the previous section. The

exponential �t functions approximating the temperature dependent mean life-

times τSk(T,B) and τFM(T,B) at a speci�c �eld (B = const.) intersect in

(Tc, τ c). This is shown exemplarily in the inset of Fig. 4.8 for the magnetic

�eld µB = 0.093 J . The point of intersection (Tc, τ c) at which τSk = τFM = τ c

is marked by a black circle and can be found again in the graph of the main

panel. The other data points in the main panel were found in the same way

by the intersections of τSk(T ) and τFM(T ) at other magnetic �elds. This pro-

cedure is possible because the point of intersection depends on the magnetic

�eld, i.e. (Tc(B), τ c(B)). The numerical results are quanti�ed by the experi-

mental data for Pd/Fe/Ir(111) as discussed in the previous section providing

absolute energy and time scales for the MC simulation. With this correspon-

dence, one can derive that the skyrmionic and ferromagnetic states are stable

on the order of years at the critical �eld Bc for temperatures lower than 19 K.

Furthermore, the mean lifetimes are smaller than 50 µs for temperatures larger

than about 60K which provides an estimate for the critical temperature of the

system. In Monte Carlo calculations using energy parameters obtained from
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Figure 4.8: Temperature dependence of τ c. The mean lifetime τ c =

τFM(Bc) = τSk(Bc) as a function of the inverse temperature J/kBT obtained from

MC simulations. A temperature lower than 19 K is needed to achieve mean lifetimes

on the order of years in the system Pd/Fe/Ir(111).

density function calculations, a transition temperature of about 100K was

reported [73].

Thus, a device on the basis of this material will be able to operate at the

temperature of liquid He only. In order to increase the operation temperature

the activation energies need to be larger while leaving the D/J ratio constant.

It can be speculated that this can be achieved by coherent increase of both

energy parameters by e.g. using multilayers in order to increase the number

of nearest-neighbors and at the same time the number of interfaces which are

necessary for a strong DM coupling. From Fig. 4.8, one observes that the value

of J/kBT = 2.43 corresponds to a lifetime of approximately 1s. If this lifetime

is desired at room temperature of 300K an exchange constant of approximately

63meV is needed. Therefore, a material with an even larger exchange constant

has to be used for technological applications where lifetimes on the order of

years are required.

4.4 Entropy

In the following, the entropy of the skyrmionic system investigated in this

chapter is calculated and a connection to the temperature dependence of the
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critical �eld Bc is found.

Ezawa estimated in Ref. [105] the entropy of an extended thin magnetic

�lm exhibiting skyrmions and used it to derive a phase diagram spanned by

temperature and an external magnetic �eld. Particularly, the critical magnetic

�eld separating skyrmionic and ferromagnetic phases was found to increase

with the temperature due to a higher entropy of the skyrmion phase. A similar

behavior for the critical �eld Bc is observed for the present system as shown

in Fig. 4.9. Ezawa calculated the entropy of the extended system adapting at

maximum N skyrmions by using the formula for n subset-element combinations

N !/n!(N−n)!. Hence, skyrmions were treated as an ensemble of quasiparticles.

In the present investigation, a single skyrmion is an extended object with

internal degrees of freedom. Therefore, another approach for the estimation of

the entropy for the system discussed in this chapter is needed.

4.4.1 Entropy from heat capacity

The entropy can be determined from thermodynamic principles based on the

heat capacity C similar to Ramirez et al. in Ref. [106]. The heat capacity is
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Figure 4.9: Skyrmion probability and critical magnetic �eld. The critical

magnetic �eld derived from MC simulations as a function of the temperature. The

skyrmion probability τSk/(τSk + τFM ) is color coded in red to black.
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calculated in the Monte Carlo simulation by

C =
< E2 > − < E >2

kBT 2

as a function of the temperature for various magnetic �elds. For a given

magnetic �eld, the temperature was reduced from the paramagnetic disor-

dered state at kBT = 6 J to the ordered equilibrium state at kBT = 0.01 J

in 1000 steps and 2 · 104 Monte Carlo steps were done at each temperature

step. Fig. 4.10 a shows the heat capacity as a function of the temperature

exemplarily for the magnetic �eld µB = 0.1 J .

The entropy S(T ) can then be determined by evaluating the integral

S(T ) =

∫ T ′=T

T ′=0

C(T ′)

T ′
dT .

In Monte Carlo simulations one faces the problem that the temperature is al-

ways a value greater than zero and therefore, for kBT < 0.58 J the integral

cannot be properly evaluated. However, there is access to the entropy di�er-

ence between a low temperature T0 and a high temperature T∞ at which the

sample is disordered.

∆S =

∫ T ′=T∞

T ′=T

C(T ′)

T ′
dT

The total magnetic entropy of N independent quantum spins is known to be

S = R · ln(2J + 1) with J being the total angular momentum. For classical
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Figure 4.10: Heat capacity and entropy. (a) Heat capacity C(T ) as a function

of the temperature for the magnetic �eld µB = 0.1J . (b) Entropy di�erence −∆S

as a function of the magnetic �eld.
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spin systems this value corresponds to S = R · ln 4π as stated by McMichael et

al. in Ref. [107]. Hence, the magnetic entropy per spin can reach a maximum

of S/R = ln 4π ≈ 2.5. In the limit of strong interactions this value might

be strongly reduced. However, the limit of ln 4π can be assumed as a total

spin entropy at an in�nite temperature. Hence, while the absolute values

of entropy at �nite temperatures cannot be obtained, the entropy di�erence

∆S = S(T∞) − S(T ) can be calculated as a function of an external magnetic

�eld. Fig. 4.10 b shows −∆S(kBT = 0.58 J,B) in the broad range of magnetic

�elds for kBT = 0.58 J , which lies below the ordering temperature. As one can

see from this �gure, ∆S(B) linearly increases with increasing �eld (−∆S(B)

linearly decreases). This means that the entropy of the ordered state S(T,B)

decreases with increasing �eld as the total entropy is S(T,B) = S(T∞)−∆S.

In other words, the skyrmionic state (B < Bc) possesses a larger entropy than

the ferromagnetic state.

Since the in�uence of the entropy becomes more prominent for higher tem-

peratures, the stability of a skyrmion increases at a given magnetic �eld with

the temperature and hence, Bc(T ) should also increase with the temperature.

The entropic contribution due to the formation of a single skyrmion is esti-

mated to be on the order of 0.7 meV/K as the entropy di�erence between the

magnetic �elds B = 1.1Bc and B = 0.9Bc.

4.4.2 Entropy from Eyring equation

The entropy di�erence as obtained with the help of the heat capacity is in

good agreement with considerations using the Eyring equation [65, 66] (see

also section 2.3)

ν = κ
kBT

h
exp(

∆S

kB
) exp(−∆U

kBT
) (4.5)

which provides a link between the transition rate ν and the entropy and energy

di�erences ∆S and ∆U going from the initial to the transition state. Apply-

ing the Eyring equation to the skyrmionic system, one obtains the attempt

frequencies νSk and νFM of the Sk and FM states as
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νSk = κSk
kBT

h
exp(∆SSk/kB) exp(−∆USk

kBT
) (4.6)

νFM = κFM
kBT

h
exp(∆SFM/kB) exp(−∆UFM

kBT
) (4.7)

At Bc, the transition rates are equal (νSk = νFM) and therefore

∆USk −∆UFM = T (∆SSk −∆SFM)− kB ln
κFM

κSk

(4.8)

The di�erences ∆USk−∆UFM and ∆SSk−∆SFM are equal to the di�erences of

the internal energies and entropies of the two states. The energy di�erence has

been found to be ≈ 6 J at Bc from Fig. 4.5 a. Considering κFM ≈ κSk in a �rst

approximation, this leads to an entropy di�erence of ≈ 0.9 meV/K between the

FM and Sk states with (SSk > SFM) at the temperature kBT/J = 0.58. This is

close to the one stated above of 0.7 meV/K. The discrepancy could be a result

of the initially neglected term kB lnκFM/κSk with κFM ≈ 10 · κSk. In chemical

reactions, κ takes into account the possibility that not all activated complexes

give rise to products. In the present context, the interpretation is unclear

but one can speculate that κFM and κSk are related to the probabilities that

"skyrmion seeds" and "ferromagnet seeds" result in a change of the magnetic

state.

4.4.3 Entropy from slope of critical magnetic �eld

Moreover, a direct link between the dependence of the critical magnetic �eld

as a function of the temperature (Bc(T )) and the entropy di�erence between

the Sk and FM states can be shown. From equation (4.8) follows

EFM(Bc, T )− ESk(Bc, T ) = T (SFM(Bc, T )− SSk(Bc, T ))− kB ln
κFM

κSk

(4.9)

with EFM , ESk and SFM , SSk the energies and entropies of the FM and Sk

states. The di�erence of the activation energies is equal to the di�erence of

the energies of the FM and Sk states because the transition state is the same

for both directions as shown in section 4.2 for the present system.
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Di�erentiating both sides of the equation with respect to the temperature

while assuming that the entropy di�erence is in a �rst approximation indepen-

dent of the temperature (∆S(Bc, T ) = SFM(Bc, T ) − SSk(Bc, T )) = ∆S(Bc)

yields

∂

∂T
(EFM − ESk) = ∆S(Bc) (4.10)

It is reasonable to assume that the equilibrium size of a skyrmion at the critical

�eld is approximately independent of the temperature. Therefore, the change

of di�erence of the energy levels with the temperature is dominated by the

Zeeman energy and hence

∂

∂T
(EFM − ESk) ≈ ∂

∂T
∆EZ(Bc) ≈ ∆Mz

∂

∂T
Bc (4.11)

The di�erence of the z-component of the magnetization between the two states

can be derived from the MC simulations as ∆M z ≈ 120µ. The slope of the

change of the critical �eld with respect to the temperature can be taken from

Fig. 4.9 and one obtains

|∆M z
∂

∂T
Bc| ≈ 0.7 meV/K (4.12)

4.4.4 Conclusion

It was shown that di�erent ways lead to similar values within the range of

≈ (0.7− 0.9) meV/K as the entropy di�erence between the Sk and FM states.

Hence, it can be concluded that the skyrmion stability is drastically enhanced

by a larger entropy compared to the ferromagnetic state.

4.5 Metastability of states

In this section, the metastability of the ferromagnetic and skyrmionic states

as a function of the external magnetic �eld is discussed. Starting point are

curves of the magnetization as a function of an external magnetic �eld for
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Figure 4.11: Magnetization curves. The mean perpendicular component of

the magnetization as a function of the magnetic �eld for the temperatures kBT =

0.43 J and kBT = 0.18 J . Starting point was a ferromagnetic state. Exemplary

con�gurations of the system are indicated with numbers in the curve.

a hexagonal lattice consisting of 5776 lattice sites with a rectangular bound-

ary shape using periodic boundary conditions. A larger system than before is

used for this investigation in order to reduce �nite size e�ects onto the forma-

tion of the various magnetic phases. Hysteresis curves of the type shown in

Fig. 4.11 are obtained when varying the magnetic �eld in the range between

µB = −2.1 J and µB = +2.1, J using 121 �eld steps with 105 MC steps each.

When decreasing the magnetic �eld, no transitions from a ferromagnetic to

a skyrmionic con�guration is found for the temperatures kBT = 0.43 J and

kBT = 0.18 J . For the lower temperature, the ferromagnetic state even sur-

vives when the direction of the external magnetic �eld is reversed. In both

cases, the ferromagnetic state is followed by spin-spiral like states which can

be transformed into one or multiple skyrmions in a magnetic �eld with a re-

versed direction. These skyrmions are destroyed by su�ciently large magnetic

�elds which brings the system into the ferromagnetic state.

The results are in good agreement with the �ndings presented in the pre-
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vious sections of this chapter. The energy barrier protecting the skyrmion

state decreases with an increasing magnetic �eld and it is found to vanish at

µ|B| ≈ 0.156 J by linearly extrapolating the data presented in Fig. 4.5. This

is approximately also the magnetic �eld at which the ferromagnetic state is

reached in the hysteresis curves in Fig. 4.11. It can be concluded that the

magnetic �eld transforms the local minimum of the skyrmion into a saddle

point at this particular �eld. In an analogous way, one �nds that the energy

barrier protecting the ferromagnetic state vanishes at the magnetic �eld of

µ|B| ≈ 0.22 J pointing into the opposite direction of the sample magnetiza-

tion. This goes along well with the observation from the hysteresis curve that

the ferromagnetic state can be left at low temperatures with the application

of a magnetic �eld pointing into the opposite direction, only.

4.6 Damping regime

The interpretation concerning the shape of the potential wells of the skyrmionic

and ferromagnetic states are motivated by the formula for the escape rate r

for a system with a viscosity η and an energy barrier ∆ in the regime of a high

damping [108]

r =
ωω′

η
exp(−∆/kBT ) (4.13)

Therein, ω and ω′ approximate by harmonic potentials the energy landscape

around the energy minimum and the barrier respectively. So, if the barrier

height and shape ω′ is identical on the ways back and forth which is a rea-

sonable assumption because the identity of the barrier height has been shown,

the di�erence in total frequency ω · ω′/η can only be explained by the shape

of the energy minima. To be able to apply the Kramers' theorem one has to

satisfy two conditions (i) the energy barrier has to be signi�cantly higher than

the thermal energy and (ii) the system has to be in the regime of intermediate

to high damping. The energy barriers for the skyrmionic system presented in

this chapter have a height of about (5 − 10) J which is by about a factor of

ten larger than the thermal energy of kBT ≈ 0.6 J . Hence, the condition (i) is

satis�ed. The determination of the correct damping regime (ii) is more subtle.
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There are strong arguments indicating that the Monte Carlo calculations take

place in the regime of high damping since it has been shown for an ensem-

ble of single domain particles that the results of the Landau-Lifshitz-Gilbert

equation and a classical heat-bath Monte Carlo scheme coincide in the regime

of high damping [109]. With other words, the regime of high damping is im-

posed by the simulation method. Hence, this supports the assumption that

this transition theory provides a good approximation to the MC simulations

even though the skyrmionic system is more complex.

4.7 Conclusion

The results of the general MC treatment presented in this chapter reveal sev-

eral important peculiarities of the switching between single Sk and FM states.

The most important �nding is that in contrast to other nanomagnets [110] the

�eld dependent mean lifetimes of the Sk and FM states are strongly asym-

metric. The analysis reveals that the stability of skyrmions is hidden in the

dynamics and the geometry of the energy landscape. Particularly, the attempt

frequency of the skyrmion annihilation is orders of magnitudes smaller than

that of the skyrmion creation due to a more shallow shape of the potential.

The good agreement of these general conclusions with the experimental data

on the Pd/Fe bilayer on Ir(111) allow us to make predictions about the ap-

plicability of �eld stabilized skyrmions in thin magnetic �lms for data storage

devices. In order to be able to populate the two states corresponding to "0"

and "1" of a binary data cell with an equal probability the applied magnetic

�eld has to be close to Bc. Furthermore, to ensure the stability of the two

states of a bit, the energy barrier and hence the activation energy has to be

optimized.
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Chapter 5

Con�nement of spin-spiral state

In this chapter, equilibrium properties of spin-spiral states in two-dimensional

systems are discussed. Classical Heisenberg spins on a discrete hexagonal

lattice and the continuum model were used to derive e�ects due to the �nite

size of a magnetic system. In the end, the �ndings are employed to explain

recent experimental observations about spin-spiral states in the Pd/Fe atomic

bilayer on the Ir(111) surface.

Results of this chapter contributed to the following publication:

L. Schmidt, J. Hagemeister, P.-J. Hsu, A. Kubetzka, K. von Bergmann & R.

Wiesendanger. Symmetry breaking in spin spirals and skyrmions by in-plane

and canted magnetic �elds. New J. Phys. 18 075007 (2016).

5.1 Model Hamiltonian and crystal structure

For the following investigations, the standard Hamiltonian

H = −J
∑
<i,j>

Si · Sj −
∑
<i,j>

Di,j · (Si × Sj) +K
∑
i

sin2(Θi) (5.1)

for skyrmionic systems is chosen. It takes an e�ective nearest-neighbor ex-

change interaction and nearest-neighbor Dzyaloshinskii-Moriya interaction with

the parameters J andD = |Di,j| per atom into account. An uniaxial anisotropy

energy can be included by the parameter K, which is set to zero for simplicity.
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Si is considered to be of unit length and can take any orientation in three-

dimensional space. In a wide parameter range, the interactions are known

to lead to spin-spiral and skyrmionic states at low temperatures [103, 104].

As model systems, triangular two-dimensional lattices are chosen in order to

resemble the geometry of pseudomorphic grown magnetic layers on the (111)

surface of an fcc-type crystal as e.g. Iridium. For this class of systems, the

DM vectors Di,j are expected to predominantly lie within the magnetic layer

and to be perpendicular to the connection line of two atomic sites [58]. Here,

the tilting of DM vectors with respect to the magnetic layer is neglected. This

particular choice of orientation of the DM-vectors leads to cycloidal spin-spiral

and hedgehog-like skyrmion states.

5.2 In�nite system

In the following, the formation of homogenous spin-spiral states in in�nite sys-

tems at zero temperature is investigated in the absence of an external magnetic

�eld and with a negligible magneto-crystalline anisotropy. Using a discrete

model for the description of a magnetic crystal, the energy of a spin-spiral

state will depend on the spatial orientation of the corresponding wave vector

kSS. For a triangular lattice, the two crystallographic directions [121] and [101]

(see Fig. 5.1) are considered with their total energies

E[121](Θ) = −2J − 4J cos(Θ)− 2
√

3D sin(Θ) (5.2)

E[101](Θ) = −2J cos(2Θ)− 2D sin(2Θ)− 4J cos(Θ)− 2D sin(Θ) (5.3)

per atom where Θ is the angle between the magnetization directions of neigh-

boring ferromagnetic atomic rows. The energy E[121] can be minimized ana-

lytically with respect to Θ providing

tan(Θmin
[121]) =

√
3

2

D

J
(5.4)

λ[121] =

√
3

2
a · 2π/atan(

√
3

2

D

J
) (5.5)

while E[101] needs to be minimized numerically. The resulting equilibrium

spin-spiral periods λ[121] and λ[101] are shown in Fig. 5.2 a and their deviation
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Figure 5.1: Spin-spirals on a triangular lattice. (a) Sketch of a 2D triangular

lattice with crystallographic directions. (b), (c) Sketch of spin-spirals along two

di�erent crystallographic directions.

is found to be less than 0.5 % for the displayed parameter range. Even smaller

is the percental deviation of the two energies for the di�erently oriented spin-

spiral states (Fig. 5.2 b). The deviation increases with an increasing ratio of

D/J because the corresponding spin-spiral period shrinks at the same time

and, hence, the in�uence of the discrete spin lattice increases. The alignment

of kSS parallel to the [101] direction is the energetically preferred state which

can be explained by the contribution of all bonds to the reduction of both the

DM energy and the exchange energy in this state which is not the case for an

alignment of kSS parallel to the [121] direction.
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Figure 5.2: Spin-spiral period. (a) The equilibrium period of a spin-spiral as a

function of D/J . (b) The energy di�erence for spin-spirals with kSS parallel to the

[121] and [101] directions.
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5.3 Finite size e�ects

Both within simulations and in experimental systems, one is typically con-

fronted with �nite size e�ects. Therefore, the investigation of the in�uence of

a boundary onto the formation of spin-spiral states is of both theoretical and

experimental interest. First, a uniform spin-spiral state is considered and the

energy cost due to a reorientation of kSS from parallel to perpendicular with

respect to an edge is determined. Second, local relaxation processes of the

spin-spiral state at an edge are studied using the continuum model and MC

calculations.

5.3.1 Uniform spin-spiral state

A close-packed atomic edge of a �nite system is considered (Fig. 5.3 a and b)

at which the atoms have the reduced number of four nearest-neighbor atoms

instead of six as in the interior of an extended system. The bulk equilibrium

spin-spiral states of the previous section are continued uniformly to the edge.

Thus, the in�uence on the magnetic system due to the symmetry breaking

of the edge is constricted to the magnetic moments of the �rst atomic row

because nearest-neighbor exchange and DM interactions are considered, only.

It is found that for the atoms at the edge, the energy is most favorable when

kSS is parallel to the edge and most unfavorable when kSS is perpendicular to

the edge as shown exemplarily for D/J = 0.44 in Fig. 5.3 c. The reason

for the energetically preferred parallel orientation is that all bonds contribute

to a reduction of both the exchange energy and the DM energy in this case

while for a perpendicular orientation, the magnetic moments at the edge are

coupled ferromagnetically with respect to each other and the exchange energy

is minimized, only (Fig. 5.3 a and b). Fig. 5.3 d shows the energy di�erence

between parallel and perpendicular orientation of kSS as a function of D/J .

The potential energy gain by a reorientation of kSS are orders of magnitudes

larger for a magnetic moment at an edge than for a magnetic moment within

an extended �lm as can be observed by a comparison with Fig. 5.2 d.
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Figure 5.3: Spin-spirals at an edge. (a), (b) Spin-spiral states with kSS parallel

and perpendicular to the upper edge which is marked with the black bar. Atoms

at the edge have four nearest-neighbor atoms only as indicated exemplarily for one

site. (c) The energy of the spin-spiral state for D/J = 0.44 as a function of the

angle φ between kSS and the edge. (d) The energy di�erence between parallel and

perpendicular orientation of kSS with respect to the edge as a function of D/J .

5.3.2 Edge tilt e�ect

Additional tilting e�ects are expected at the boundaries of thin magnetic sam-

ples with interfacial Dzyaloshinskii-Moriya interaction as has been pointed out

and explored by S. Rohart and A. Thiaville using the continuum model [111].

They considered magnetic stripes and nanodots with ferromagnetic exchange

interaction, an interface-induced DM interaction and an anisotropy energy

as model systems. Edge e�ects of the uniformly magnetized, spin-spiral and

skyrmionic states within these systems are presented but a discussion concern-

ing edge tilt e�ects in spin-spiral states with an orientation of kSS parallel to

an edge is missing. In the following, this issue will be investigated �rst within

the continuum model and second using Monte Carlo calculations.

The energy E of a two-dimensional magnetic system whose magnetization

can be described by a vector �eld m within the continuum model is given by

E = Eex + EDM + EK (5.6)

with
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Eex =

∫ ∫
Ac

[(
∂m

∂x

)2

+

(
∂m

∂y

)2
]

dxdy (5.7)

EDM =

∫ ∫
Dc

[(
mx

∂mz

∂x
−mz

∂mx

∂x

)
+

(
my

∂mz

∂y
−mz

∂my

∂y

)]
dxdy (5.8)

EK = −
∫ ∫

Kc(m · ez)2dxdy (5.9)

according to previous investigations on skyrmionic systems [11] with the con-

tinuum parameters Ac, Dc, Kc for the exchange interaction, Dzyaloshinskii-

Moriya interaction and anisotropy energy. The vector ez provides the system

normal. Once more, the anisotropy energy is neglected (Kc = 0) for simplicity.

The conversion between the continuum parameters and the parameters for the

discrete model using a triangular two-dimensional lattice is given according to

S. Rohart [112] by

Ac =
√

3J (5.10)

Dc = 2
√

3D/a (5.11)

A magnetic stripe within the (ŷ, x̂) plane with �nite length in x̂ and in�nite

width in ŷ direction is considered. Its magnetization m is parametrized by

mT = (0, sin Θ, cos Θ) (5.12)

corresponding to a Néel-type spin-spiral state. In order to capture edge e�ects,

a local tilting of the spin-spiral by the angle α around ŷ is introduced with the

rotation matrix

Ry(α) =


cosα 0 sinα

0 1 0

− sinα 0 cosα

 (5.13)

providing the magnetization

mT = (sinα cos Θ, sin Θ, cosα cos Θ) (5.14)
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In the following, the approximation that α depends on the x-coordinate and Θ

on the y-coordinate only is used for simplicity. Furthermore, the equilibrium

spin-spiral period 2πξ and Θ = y/ξ with ξ = 2Ac/Dc are used. Then, the

energy can be written as

E =

∫ xB

xA

Ac

[(
∂α

∂x

)2

πξ + 2π/ξ

]
−Dc

[(
∂α

∂x

)
πξ + 2π cosα

]
dx (5.15)

where xA and xB are the boundaries of the magnetic stripe in the x direction.

Note that the integration in y direction over one period length has been per-

formed already and hence, a one-dimensional minimization problem remains

which can be solved by using variation calculus. The energy is minimized by

the function α(x) which satis�es

∂2α

∂x2
=

2 sinα

ξ2
(5.16)

and the boundary conditions

∂α

∂x
=

1

ξ
x = xA, x = xB (5.17)

Integration of equation 5.16 provides

(
∂α

∂x

)2

= −4 cosα + C

ξ2
(5.18)

with the integration constant C. Far away from the border, the undisturbed

Néel-type spin-spiral state is expected with α = 0 and ∂α/∂x = 0. Therefore,

the integration constant C can be determined as C = −4. Combining the

equations (5.17) and (5.18) results in

cosα =
3

4
(5.19)

at the edge of the magnetic stripe. This is equivalent to α ≈ ±41.41◦ where

the sign needs to be determined by the rotational sense imposed by the DM

interaction. Interestingly, the tilting angle of the spin-spiral at the edge of the
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magnetic stripe is independent of the material parameters Dc and Jc within

this model. However, the length scale on which the in�uence of the edge on

the spin-spiral state diminishes is given by ξ and thus depends on the material

parameters. A strong DM interaction will lead to a short spin-spiral period

and also a short length on which the edge in�uence diminishes.

These �ndings are in good agreement with Monte Carlo calculations as

will be shown in the following. A two-dimensional hexagonal lattice in the

(x̂, ŷ) plane with rectangular boundary shape is considered (Fig. 5.4). Periodic

boundary conditions are used along the ŷ direction and the magnetic moments

at the right edge are �xed during the MC calculations. The length of the

magnetic sample in the x̂ direction is chosen as 159·
√

3/2 a which is larger than

two times the period of the spin-spirals in the investigated parameter range

J/D ∈ [1.25, 10]. Values within this parameter range are selected in such a

way that one to three spin-spiral periods are equal to an integer number which

can then be used for the width of the magnetic stripe in the ŷ direction. This

is done to avoid a squeezing or stretching of the spin-spiral states during the

MC calculations due to a mismatch of the width of the magnetic stripe and

the spin-spiral period.

Sz -1        +1 Sx -1        +1

     x

[121]

y
[101]

a b159∙√3/2 a

Figure 5.4: Edge tilt in spin-spirals. Néel-type spin-spiral on a two-dimensional

triangular lattice with a rectangular shape for J/D = 10 as obtained from MC

calculations. The system consists of 160 atomic rows in the x̂ direction with an

inter-row distance of
√

3/2 a. The width in the ŷ direction was adopted in such a

way that it is equal to an integer multiple of the spin-spiral period. Periodic boundary

conditions were used in the ŷ direction. The orientation of the magnetic moments at

the right edge is �xed. (a) Contrast of the z-component of the magnetization. (b)

Contrast of the x-component of the magnetization revealing the edge tilt e�ect at

the left edge.
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Figure 5.5: Edge tilt pro�le. (a) Tilting angle of the Néel-type spin-spiral as a

function of the distance to the edge as obtained from the continuum model and MC

calculations. (b) Tilting angle at the edge. (c) Energy save per atom at an edge due

to the tilting compared to the uniform Néel-type spin-spiral state.

Starting point for the MC calculations are arti�cially set-up Néel-type spin-

spiral states according to equation (5.12). Following this, MC calculations

are used to �nd the equilibrium tilting angle of spin-spirals as a function of

the distance to the left free edge. This means that the spin-spirals in atomic

rows parallel to the edge are rotated by random angles around the ŷ axis

during the MC calculation. Each initial state is relaxed for 5 · 105 MC steps

at the temperature kBT = 1.72 · 10−6 J . The result for J/D = 10 is shown in

Fig. 5.4. The contrast of the z-component of the magnetization is similar to

the one expected for a spin-spiral state (Fig. 5.4 a). However, a non-vanishing

contrast of the x-component of the magnetization appears at the left edge of

the magnetic sample, only, revealing the edge tilting e�ect (Fig. 5.4 b). The

tilting of the spin-spirals as a function of the distance to the edge for several

values of J/D are shown in Fig. 5.5 a. Pro�les as obtained by the continuum

model from equations (5.17, 5.18) using the classical Runge-Kutta method are

included for a comparison between the two models. A good agreement between

the two models can be observed. This is further investigated by taking a closer

look at the tilting angle in the �rst atomic row at the edge which is found to

increase with an increasing J/D and seems to approach the continuum value

of 41.41◦ from smaller values (Fig. 5.5 b). The energy save that arises due to

the edge tilt is shown in Fig.5.5 c. The continuum model and MC calculations
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that have been presented so far, consider a coherent rotation of the spin-spiral

in an atomic row parallel to the edge, only. However, the in�uences of this

restriction are comparably small as has been checked for J/D = 10 by an

additional post-relaxing of the obtained spin structures by a MC calculation

that allows for an individual adjustment of the orientation of the magnetic

moments. Gaussian sampling according to section 3.2.2 with σ in the range of

[0.05,0.1] was used for this purpose.

5.4 Comparison with experiment

Here, the theoretical results from above are compared to experimental obser-

vations made on the atomic bilayer islands of fcc stacked Pd on fcc stacked

Fe on Ir(111) with a spin-polarized scanning tunneling microscope [22, 113].

See Ref. [114, 115, 93] for an introduction to (spin-polarized) scanning tun-

neling microscopy. Fig. 5.6 taken from Ref. [113] shows an island at T = 8K

measured at the constant tunneling current I = 0.2 nA and the bias voltage

U = 50meV. The island exhibits a spin-spiral state with a strong tendency to

locally align the spin-spiral vector kSS parallel to an edge. Within the inte-

rior of the island, kSS is predominantly parallel to a crystallographic direction

equivalent to the [112] direction. While the �rst observation is in a qualita-

tive good agreement with the theoretical �ndings, the second observation can

not be explained qualitatively by the simpli�ed model taking next-nearest ex-

change and DM-interactions into account, only. Therein, the [101] direction

Figure 5.6: Coupling of spin-spirals to edges of atomic Pd/Fe-bilayers on

Ir(111). The image is taken from Ref. [113]. Spin-spiral state on the bilayer Pd-Fe

on Ir(111) measured with a spin-polarized scanning tunneling microscope. The white

arrows indicate the orientation of kSS at the edge of the island.



5.5. CONCLUSION 67

was found to be energetically weakly favorable. In order to gain an insight into

the in�uence of the edge of an island onto the formation of the spin-spiral state

within its interior, absolute numbers for possible energy costs at the edge and

within the interior region are determined based on the theoretical results. By

analyzing the area and the border length of the island in Fig. 5.6, quantitative

values for the energy contributions at the edge and the interior of the island can

be made. The area of the island is approximately 6000 nm2 and the perimeter

445.5nm. This means that the island consists of about N = 95000 Fe atoms

of which Nedge = 1650 are located at an edge. The energy costs due to a reori-

entation of kSS depends on the value for D/J . The e�ective exchange energy

parameter J = |Jeff | = 2.3meV and D = 1meV with D/J ≈ 0.435 by Dupé et

al. are used for the following considerations. A reorientation of kSS from the

[101] to the [112] direction within the interior of the island would cost about

N · 1.44 · 10−5 J ≈ 3meV. However, a pure reorientation of kSS from parallel

to perpendicular to the edge without taking edge tilting e�ects into account

would already result in an energy cost of Nedge · 9.2 · 10−2 J ≈ 350meV. The

values for the energy costs per atom were taken from Fig. 5.2 b and Fig. 5.3 c.

The edge tilting e�ect would decrease the energy of the state where kSS is

parallel to an edge even further by 0.22 J per atom at the edge. Hence, an ad-

ditional energy contribution of Nedge · 0.22 J ≈ 835meV is obtained. Summing

up, a total energy contribution of 1185meV at the edge are in competition

with 3meV within the interior of the island within the used model. Therefore,

a strong in�uence of the edge on the alignment of the spin-spirals within the

interior of the island can be explained. However, there are multiple e�ects that

could decrease this e�ect. These can be changing energy parameters to the

edge of the island, atomic defects within the island, higher order parameters of

the exchange and DM-interaction and contributions of the anisotropy energy.

5.5 Conclusion

Within this chapter, basic properties of spin-spiral states as their period were

discussed for ultrathin �lm based skyrmionic systems consisting of two-dimensional

discrete hexagonal spin lattices. Furthermore, the in�uence of an edge due to

a �nite system size was investigated. It was found that it is energetically favor-
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able to locally align the spin-spiral vector parallel with respect to an edge. The

energy is further reduced by a tilting of the spin-spiral state at an edge. For

this �nding, calculations using the Monte Carlo program and the continuum

model were combined and found to be in good agreement. The continuum

model shows that the tilting angle of the spin-spiral state at an edge is equal

to 41.41◦ and independent of the parameters D and J for zero anisotropy.

The results are consistent with the experimental observation that the spin-

spiral vector tends to be locally parallel to an edge in Pd/Fe bilayer islands on

Ir(111).
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Chapter 6

Con�nement of nanoskyrmions in

Fe/Ir(111)

Topic of this chapter are con�nement e�ects on the square nanoskyrmion lat-

tice in the fcc-type Fe atomic monolayer on Ir(111) which arise due to the

�nite size of the Fe layer. First, frustration e�ects due to symmetry mismatch

of the square nanoskyrmion lattice and the boundary shape of triangular Fe

islands is studied. Second, the in�uence of a ferromagnetic edge is investigated

which is realized in experiment by the deposition of additional Ni islands. The

presented experimental results were obtained and analyzed by Davide Iaia and

André Kubetzka and Kirsten von Bergmann. Monte Carlo calculations using

energy parameters based on the parameter set obtained with density function

theory calculations by Stefan Heinze et al. [21] are compared to the experimen-

tal �ndings and provide a deeper insight into the edge e�ects. In the beginning

of this chapter, the experimental �ndings are presented in section 6.1 and fol-

lowing this, the Monte Carlo results are shown in section 6.2. An introduction

to the material system Fe/Ir(111) is given in the beginning of this thesis in

section 2.2.2.

Results of this chapter are part of the following publication:

J. Hagemeister, D. Iaia, E.Y. Vedmedenko, K. von Bergmann, A. Kubetzka &

R. Wiesendanger. Skyrmions at the edge: Con�nement e�ects in Fe/Ir(111).

Phys. Rev. Lett. 117 207202 (2016).
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6.1 Experimental studies

Sample preparation and STM experiments were performed in a multi-chamber

system with di�erent chambers for single crystal preparation, thin �lm growth

and low temperature STM [116], with base pressures in the low 10−10 mbar

range. The Ir(111) single crystal surface was prepared by repeated cycles of

Ar+ ion etching and annealing at about 1600K and occasional heating at T =

1500K in an O2 atmosphere of p = 1× 10−6 mbar down to p = 5× 10−8 mbar.

After the last annealing step of the Ir(111) surface, the Fe evaporation was

deposited after a 90min break in order to ensure room temperature growth.

The SP-STM measurements were done with bulk Cr tips which were prepared

in situ by voltage pulses and controlled collisions with the Ir(111) surface.

Fig. 6.1 shows a current map of a sample area exhibiting both an extended

fcc Fe atomic monolayer high stripe, which grew from an Ir step edge (upper

left of Fig. 6.1), and two free-standing fcc Fe islands. A current map mea-

sured with the feedback loop active, as in Fig. 6.1, is essentially equivalent to

a di�erentiated topography image, dz/dx(x, y), and allows to show small-scale

structures on large areas and on di�erent height levels without the need for

image processing. Three types of rotational domains can be seen and were

labeled A, B and C. Commonly observed one-dimensional defects of the mag-

netic texture within the stripes are dislocation lines, see left inset, separating

equivalent but laterally shifted skyrmion lattices. Apparently they result from

stress, which might arise from a varying stripe width or from pinning at re-

maining defects within the layer. The rotational domains exhibit a clear trend

of coupling with a diagonal of the magnetic unit cell parallel to straight, close-

packed edges: in the stripe in Fig. 6.1, two C domains and an A domain are

found at respective edges, while the surrounding domain is of type B. In the

case of the C domains a defect and the 2nd layer Fe island might have played a

role in the domain formation, but no defects are found in the vicinity of the A

domain. This kind of edge domain is much more rare in stripes with smoother

edges.

In the islands, due to their de�ned shapes, the coupling of the skyrmion

lattice to the edges is most apparent: the A domain is found at the left edge,

type B and C at the upper and right edges, respectively. Consequently, a
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Figure 6.1: Coupling of nanoskyrmion lattice to close-packed edges. Spin-

polarized STM current map of fcc Fe on Ir(111), the insets show topographic data

in gray. Measurement parameters: I = 1 nA, U = 20mV, T = 7.7K, B = 1.5T,

bulk Cr tip. One can observe three rotational domains of the nanoskyrmion lattice,

labeled A, B and C, which show a strong correlation to the Fe step edge direction,

i.e. one diagonal of the magnetic unit cell shows a preference for coupling parallel to

the edge. The mismatching symmetry of the square nanoskyrmion lattice and the

triangular shape of islands leads to frustration and the formation of domain walls.

triple-domain state arises from the combined e�ect of coupling to the edges and

the mismatching symmetries of triangular island shape and square skyrmion

lattice. Details of this state can be seen in the inset in Fig. 6.1, showing the

height data, z(x, y). The domain wall width is on the order of the skyrmion

size, i.e. ≈ 1 nm. The C domain is much smaller than the other two domains,

possibly because the domain wall between domain A and B is pinned at defects.

The magnetic frustration of the system also becomes apparent by magnetic

noise within the image data, i.e. the spin con�guration is not entirely stable

during imaging, especially in the right corner of the island and at the domain

wall between domain B and C. The simplest type of this kind of magnetic jitter

is a domain wall movement, activated thermally or by the tunnel current. The

larger island in Fig. 6.1 shows a similar triple-domain state, despite the second

layer island on top, which itself has a magnetic spiral state [117]. Note that

the vast majority of Fe islands grow in hcp stacking on Ir(111) [118] which

exhibit a hexagonal spin texture and consequently show no sign of frustration

due to con�nement.
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Figure 6.2: Coupling of nanoskyrmion lattice to a ferromagnetic edge. (a)

Pseudo 3D SP-STM topography image of a Ni island on a fcc Fe stripe on Ir(111).

The ferromagnetic Ni causes frustration in the surrounding nanoskyrmion lattice.

Here, a side of the magnetic unit cell shows a preference for parallel orientation to

the ferromagnetic edge, in contrast to the free-standing edges in Fig. 6.2. (b-d)

Field-dependent SP-STM data (I = 1nA, U = 500mV, T = 7.5K, bulk Cr tip,

gray: topographic data on Fe/Ir(111), color: dI/dU signal on Ni/Fe/Ir(111)). (c)

The right island switched from down to up and the magnetic contrast on Fe/Ir(111)

inverted in the upper part of the image. (d) Both islands switched from up to down

and the magnetic contrast on Fe/Ir(111) inverted again. This can be seen by using

a defect (see e.g. yellow cross) as a reference, and demonstrates that this part of the

nanoskyrmion lattice is magnetically coupled to the right islands.

The island edges select the adjacent rotational domains, despite the result-

ing energy cost for domain wall formation due to frustration in the interior of

the island. To investigate the impact of edge properties onto the nanoskyrmion

lattice, the boundary conditions are modi�ed from open to ferromagnetic. For

that purpose, monoatomic layer Ni islands were prepared on fcc Fe/Ir(111)

stripes which are ferromagnetic with an out-of-plane easy axis [119]. The ef-

fect of such an island onto the surrounding skyrmion lattice can be seen in

Fig. 6.2 a. Small domains are formed in the island's vicinity, with a side of

the magnetic unit cell oriented parallel to the island edge. These orientations

are distinct from the three observed in Fe stripes and islands in Fig. 6.1. The

coupling of the skyrmion lattice can be demonstrated directly by switching the

NiFe islands in an external magnetic �eld: between Fig. 6.2 b and c the right

island is switched from down to up by increasing the external �eld from +1T
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to +1.5T. This is accompanied by magnetic contrast inversion of the skyrmion

lattice in the upper half of the image. Switching both islands from up to down

in Fig. 6.2 d also switches the skyrmion lattice back to a state like in Fig. 6.2 b.

The skyrmion lattice in the upper part of the image is thus coupled to the right

island, where a side of the magnetic unit cell runs parallel to the island edge.

6.2 Monte Carlo studies

The previous section discusses experimental observations of con�nement ef-

fects on the nanoskyrmion lattice in Fe/Ir(111). In the following, it is shown

that the major e�ects can be reproduced with Monte Carlo calculations al-

lowing for a deeper insight into underlying mechanisms. First, the model

Hamiltonian and a consistency check with previous experimental results are

presented. Then, the formation of triple-domain states within triangular is-

lands due to the symmetry mismatch of the island boundary and the square

symmetry of the nanoskyrmion lattice is studied. In the course of this, edge

energies and domain wall energies are calculated. Furthermore, the behavior of

the nanoskyrmion lattice in the vicinity of a ferromagnetic edge is investigated

and an energetically unstable rotational domain of the nanoskyrmion lattice is

found which is unequal to the three rotational domains discussed in previous

experimental and theoretical studies.

6.2.1 Model Hamiltonian and consistency check

The magnetic behavior of the pseudomorphic, fcc grown atomic Fe monolayer

on the Ir(111) surface can be described with the Hamiltonian

H =−
∑
i,j

Ji,jSi · Sj −
∑
i,j

Di,j · (Si × Sj)−
∑
i,j

Bi,j(SiSj)
2 +K⊥

∑
i

(Sz
i )

2

−
∑
ijkl

Kijkl[(SiSj)(SkSl) + (SiSl)(SjSk)− (SiSk)(SjSl)] (6.1)

with localized Heisenberg spins Si on a triangular lattice as demonstrated by

Heinze et al. [21]. The contributing energy terms originate from the exchange

interaction up to the eighth nearest neighbor, the Dzyaloshinskii-Moriya (DM)
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interaction, the biquadratic interaction, a perpendicular anisotropy and the

four-spin interaction with the parameters [21]

J1 = +5.7 meV J2 = −0.84 meV J3 = −1.45 meV

J4 = −0.06 meV J5 = +0.2 meV J6 = +0.2 meV

J7 = −0.2 meV J8 = +0.5 meV Di,j = −1.8 meV

Kijkl = −1.05 meV Bi,j = −0.2 meV K⊥ = −0.8 meV . (6.2)

An introduction to the various contributing energy terms is provided in chap-

ter 2 of this thesis. For simplicity, the contributions of the exchange interaction

up to the third nearest neighbors are taken into account, only. For a consis-

tency check, the magnetic ground state at low temperatures and the transition

temperature are determined. A circular magnetic sample system is chosen in

order to minimize the e�ects of a symmetry breaking due to the boundary on

the formation of the nanoskyrmion lattice. The temperature is reduced from

50 K to 1 K in 50 temperature steps each consisting of 2 · 105 MC-steps. A

nanoskyrmion lattice state is found at T = 1K as can be observed in Fig. 6.3 a

which displays an excerpt of the atomic magnetic con�guration. In experi-

ments with spin-polarized scanning tunneling microscopes, the projection of

the local sample magnetization onto the magnetization direction of the tip is

determined. Hence, a color map image of the nanoskyrmion lattice (Fig. 6.3 b)

in which the color scale is determined by the perpendicular component of the

magnetization is created for further comparison. The corresponding Fourier

transform (Fig. 6.3 c) shows four main spots that can be described with the

vectors Q1 and Q2 with |Q1| = |Q2| = Q = 0.264 × 2π/a and an inner angle

of θ = 85.6◦. The reciprocal vectors QL of the underlying atomic lattice can

be added under the assumption of the lattice constant a = 2.715Å [21] and a

reciprocal vector is found to lie in the middle of Q1 and Q2 which gives rise to

the formation of three rotational domains of the nanoskyrmion lattice as re-

ported in previous investigations [21]. Here, it is found that Q1 +Q2 ≈ 3 ·QL.

In previous experimental investigations, Q = 0.277× 2π/a and θ = 92.2◦ [21]

were observed.

In order to determine the transition temperature, the speci�c heat of the

system was calculated as a function of the temperature (Fig. 6.3 d) which
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Figure 6.3: Consistency check of energy parameters. Temperature dependent

MC studies of the nanoskyrmion lattice. (a) Spin structure at T = 1K. (b) Contrast

of the z-component of the magnetization. (c) Fourier transform of (b) (blue spots)

together with the Fourier transform of the underlying crystal lattice (red spots). (d)

Speci�c heat capacity as a function of temperature. A peak at T ≈ 37 K indicates

the transition temperature to the paramagnetic state. (e) Fourier transform of the

nanoskyrmion lattice at di�erent temperatures. The long range order is lost at

approximately 37 K.

exhibits a peak at the temperature Tc = 37K. At temperatures close to Tc,

the four Fourier spots of the nanoskyrmion lattice transform into a circle with

a radius close to Q (Fig. 6.3 e). This indicates a loss of the long-range order

of the nanoskyrmion lattice while the periodicity of the magnetic structure

is conserved locally. Experimental studies showed a transition temperature

of Tc = 27.8 K [120] which was determined by a vanishing magnetic contrast

in the images obtained with a spin-polarized scanning tunneling microscope.

This temperature is somewhat lower than the one obtained with the present

Monte Carlo calculations. It is known that the size of a �nite sample has

an in�uence on the peak position in the speci�c heat capacity in the Monte
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Carlo calculations. However, this could rather explain a smaller transition

temperature instead of a larger one 3.4. Still, the theoretical model seems to

have an overall reasonable agreement with the experimental �ndings and was

used for the following investigations.

6.2.2 Con�nement in triangular islands

For the study of con�nement e�ects on the nanoskyrmion lattice, equilateral

triangular islands are considered similarly to the ones found in experiment

(section 6.1). Here, the island size is chosen such that each edge consists of

200 atoms which is equivalent to a side length of ≈ 54 nm. The experimentally

studied islands possessed edges of 30 nm− 60 nm length.

When reducing the temperature from 45 K > Tc to 0.1K in 45 temperature

steps with 5×104 MC steps each, multi-domain states similar to the one shown

in Fig. 6.4 a are obtained. All three rotational domains of the nanoskyrmion

lattice are visible within a single island and, like in experiment, one diagonal

 50 a

a b

c

Figure 6.4: Con�nement in triangular islands. (a), (b) Triangular islands

with open boundary conditions exhibiting multi- and single-domain states at T =

0.1 K. The displayed out-of-plane sensitive SP-STM images were calculated from the

Monte Carlo spin con�gurations as described in Ref. [121]. (c) Spin structure of the

nanoskyrmion lattice at the energetically favorable edge, taken from (b).



6.2. MONTE CARLO STUDIES 77

of the square of the magnetic unit cell is mostly aligned parallel to the edge

of an island. For this island size, a single-domain state is not obtained as

a result of the cooling process from a random initial state. Since a single-

domain state is needed to determine the energy of the energetically favorable

and unfavorable edges, this state is constructed by periodically repeating the

spin structure of one of the domains and a subsequent annealing by cooling

from 15 K < Tc to 0.1K within 15 temperature steps of 5 × 104 MC steps

each. The result is a single-domain state coupled to one of the edges with a

diagonal of the magnetic unit cell parallel to the edge, as before, and two edges

showing spin con�gurations with lower symmetry, see Fig. 6.4 b. In order to

obtain a statistical average, the arti�cially constructed structure was relaxed

by decreasing the temperature of the system from 8 di�erent temperatures in

the range of 16−23 K to 0.1 K in 15 temperature steps with 5 ·104 Monte Carlo

steps each. A closer inspection of the preferred edge in Fig. 6.4 c shows that the

skyrmion centers are positioned in the second row from the edge. At the edge

itself the spin con�guration is a cycloidal spiral running along the edge, tilted

about 30◦ from the perpendicular direction. This con�guration is reminiscent

of the coupling of spin spirals to edges in PdFe/Ir(111) (section 5.4) and the

edge tilt observed in calculations of systems dominated by the Dzyaloshinskii-

Moriya interaction (section 5.3.2).

As a starting point, the mean total energy per atom is calculated row-wise

as a function of the distance to the edges at T = 0.1 K (Fig. 6.5). The labeling

of the edges refers to the triangular island shown in Fig. 6.4 b. The top-left and

the top-right edges are energetically equivalent and the energy converges with

an increasing distance from the edge whereas for the bottom, energetically
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E
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]
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2 4 6 8 10 12 14 16

-22

-20

-18
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-14

 top-left edge
 top-right edge
 bottom, favorable border

Figure 6.5: Energy analysis at an edge. Row-wise mean energy per atom as a

function of the distance to the edge. The labels correspond to the island Fig. 6.4 b
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favorable edge the mean energy is approximately periodic with a periodicity

of 3 atomic rows far away from the edge. In the latter case, two atomic rows

which have approximately the same energy are followed by a row of lower

energy. The atomic row with the lower energy coincides with a diagonal of

the nanoskyrmion lattice. Thereafter, the mean energy cost for each atomic

row with respect to a corresponding bulk atomic row can be determined. This

is shown in Fig. 6.6 for the individual energy contributions as well as for the

total energy. One can observe that the in�uence of an edge diminishes with the

distance to the edge and that it is small from approximately the tenth atomic

row on. The energy di�erence of the �rst twelve atomic rows between the

energetically favorable and unfavorable edge is displayed at the right side of

Fig. 6.6. A minus sign in the energy di�erence indicates that the bottom edge

is energetically favorable. One can deduce that within the considered model

the interplay of the �rst and third nearest neighbor exchange interaction, the

DM interaction and the four-spin interaction are responsible for the alignment

of the diagonal of the nanoskyrmion lattice parallel to an edge. Therein, energy

gains in the �rst and third nearest neighbor exchange interaction as well as

in the DM interaction compensate an energy loss in the four-spin interaction

and cause a total energy gain of ≈ 2.2 meVa−1 between the two orientations

of the nanoskyrmion lattice with respect to an edge. This value is equivalent

to 8.1meV/nm.

In the next step, the energy cost due to the formation of a domain wall is

estimated. The energy density of the system varies locally both within the

nanoskyrmion lattice as well as in a domain wall between two di�erent rota-

tional domains of the nanoskyrmion lattice. Furthermore, the spin structure

appears to be incommensurate with the crystal structure such that the en-

ergy of a domain wall cannot be determined by simply averaging the energy of

multiple atoms contributing to the domain wall. Instead, it can be derived by

a comparison of the energies of islands with single domain and multi-domain

states. A multi- and a single-domain state island were shown beforehand in

Fig. 6.4 a and b. Additional multi-domain-states were produced by reducing

the temperature from the paramagnetic state to 0.1 K as before. In total, three

di�erent magnetic triple-domain states as shown in Fig. 6.7 were taken into

account with energies as presented in table 6.1.
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Figure 6.6: Energy costs of an edge. Row-wise mean energy cost per atom as a

function of the distance to the edge. The values to the right side provide the energy

di�erence of the sums of the costs for the two edges. The minus sign indicates that

the bottom edge of the island in Fig. 6.4 b is energetically preferred.
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island 1 island 2 island 3

Figure 6.7: Multi-domain states in triangular islands. Three islands with

multi-domain states at T = 0.1 K. The parts of the edges at which the nanoskyrmion

lattice has to be reoriented locally in order to go to a single-domain state are marked.

The domain wall lengths sdw of the three islands are s1
dw ≈ 300, s2

dw ≈ 320 a

and s3
dw ≈ 175 a. At the edge, the nanoskyrmion lattice has to be reoriented

on a length sedge for a transition to the single-domain state and s1
edge ≈ 340 a,

s2
edge ≈ 368 a and s3

edge ≈ 200 a. The energy costs ∆Eedge = 2.2meVa−1 for

a reorientation of the nanoskyrmion lattice at an edge is discussed in the

previous section. The energy cost ∆Edw due to the formation of a domain wall

is obtained with

∆Edw = (Emulti−domain − Esingle−domain + sedge∆Eedge)/sdw

and the results for the three islands is shown in table 6.2. The four-spin inter-

action and the anisotropy energy are decreased by the formation of a domain

wall while the exchange energies as well as the DM energy are increased.

This adds up to a total energy increase of about 3.1 meV/a or 11.4meV/nm

Enn.exch.

[meV]

Esn.exch.

[meV]

Etn.exch.

[meV]

Ebiq.

[meV]

E4−spin

[meV]

EDM

[meV]

Eaniso.

[meV]

Etotal

[meV]

single

domain

-263763

±386

-18296

±86

-56901

±68

7643

±12

33242

±241

-81653

±58

-2651

±18

-382379

±18

island 1 -264402 -17504 -56560 7717 32954 -81488 -2927 -382209

island 2 -264163 -17474 -56580 7718 32752 -81483 -2956 -382186

island 3 -264047 -17783 -56711 7690 32865 -81481 -2825 -382293

Table 6.1: Energies of islands with single and multi-domain states. The

energies of the single-domain state of Fig. 6.4 b and of the multi-domain states in

Fig. 6.7.
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∆Enn.exch.

[meV a−1]

∆Esn.exch.

[meV a−1]

∆Etn.exch.

[meV a−1]

∆Ebiq.

[meV a−1]

∆E4−spin

[meV a−1]

∆EDM

[meV a−1]

∆Eaniso.

[meV a−1]

∆Etotal

[meV a−1]

island 1 0.82 2.64 2.67 0.16 -5.21 2.70 -0.74 3.04

island 2 1.74 2.57 2.56 0.14 -6.84 2.72 -0.77 3.11

island 3 1.35 2.93 2.63 0.18 -6.44 3.15 -0.81 2.99

Table 6.2: The energy cost of a domain wall. The average energy cost of

a domain wall compared to the nanoskyrmion lattice divided by the domain wall

length.

which is on the same order as the di�erence in edge energies ∆Eedge. Inter-

estingly, the competition of the energy contributions from the edge and the

domain wall favor a mono-domain state for the triangular islands as can be

seen in the total energies in table 6.1. Therefore, it can be concluded that

the domain walls are formed due to entropy when decreasing the temperature

from above Tc. However, e�ects that were not taken into account in the Monte

Carlo calculations, may play a role in the experimental systems. Firstly, atomic

defects can cause domain wall pinning (Fig. 6.1). Secondly, the magnetic in-

teractions and the anisotropy energy could be di�erent at the edge compared

to the interior, which would change the energy balance between single- and

multi-domain state. For example, with the calculated domain wall energy and

a slightly increased value of the energy costs of ∆Eedge ≈ 2.7meV/a at an edge,

single- and multi-domain states would already be energetically degenerate in

a triangular island.

In the present system, the movement of domain walls is suppressed com-

pared to domain walls in a ferromagnetic sample since it requires a rearrange-

ment of the nanoskyrmion lattice. This involves an energy barrier which is re-

�ected by the rather inhomogeneous energy distribution within the nanoskyrmion

lattice and the domain wall as shown in Fig. 6.8. The images provide in a color

scheme the local contributions of the various energy terms to the total energy

of the atomic magnetic moments. A vertical aligned domain wall in the middle

of the images separates two di�erent rotational domains of the nanoskyrmion

lattice on the left and right side of the image from each other. The magnetic

unit cells of the two rotational domains are indicated for convenience. The

most obvious observation is the local competition of the nearest-neighbor ex-

change interaction and four-spin interaction. Regions within the domain wall,
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which are particularly favorable for one of the two interactions, are unfavorable

for the other interaction. Apart from this, the energy costs for the formation

of a domain wall remain hidden in the spatial inhomogeneity of the energies.
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Figure 6.8: Color maps of atomic energies and perpendicular magneti-

zation. A vertical aligned domain wall separates two rotational domains of the

nanoskyrmion lattice. The magnetic unit cells are indicated for the two rotational

domains for convenience. The temperature of the system is T = 0.1K.
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6.2.3 Ferromagnetic edge

Due to the deposition of ferromagnetic Ni islands onto the monolayer of Fe

on Ir(111), the behavior of the nanoskyrmion lattice in the presence of a fer-

romagnetic edge could be studied experimentally as discussed in section 6.1.

In order to investigate this issue with the Monte Carlo model, a system with

the shape of a half circle is chosen as a starting point to avoid concurrent

in�uences of multiple edges. The spins at the straight edge are �xed ferromag-

netically in a direction perpendicular to the system plane. After cooling the

system from a value above Tc to T = 1K, one side and not a diagonal of the

square nanoskyrmion lattice is parallel to the straight edge (Fig. 6.9 a). This

domain is dissimilar to the previously observed rotational domains which can

be veri�ed by the corresponding atomic spin structures shown in Fig. 6.9 b and

Fig. 6.3 a. To estimate the energy cost of this new rotational domain, a larger

sample is selected with two ferromagnetic edges above and below and open

boundaries left and right, see Fig. 6.9 c. From the enclosed nanoskyrmion lat-

a

cb

10 a

Figure 6.9: Ferromagnetic edges. (a) Perpendicular magnetic contrast of the

nanoskyrmion state on a half-disk with a ferromagnetic edge as obtained from MC

calculations at T = 1 K [121]. (b) Spin structure at the upper ferromagnetic edge,

taken from (c). (c) Magnetic stripe at T = 0.1 K with two ferromagnetic edges

(top/bottom) and open boundary conditions left and right.
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tice, one obtains an estimate for the energy cost with respect to the common

rotational domains of ≈ 0.25meV/atom.

6.3 Conclusion

It was found that the orientation of the nanoskyrmion lattice in Fe/Ir(111)

can be controlled by tailoring edge properties. In particular, a diagonal of the

magnetic unit cell is coupled parallel to a close-packed edge of an Fe island

and one side of the magnetic cell is coupled parallel to a ferromagnetic edge.

Corresponding behavior was observed both in experimental and Monte Carlo

investigations. From the Monte Carlo calculations, the local energy cost at an

edge of an Fe island due to a rotation of the nanoskyrmion lattice was deter-

mined as 2.2meVa−1 and the energy cost of a domain wall between di�erent

rotational domains of the nanoskyrmion lattice was deduced to be 3.1meVa−1.

These results allow for the conclusion that the domain formation in triangular

islands is governed by mismatching symmetries of island shape and skyrmion

lattice. Despite the lower energy of a single-domain state, multi-domain states

arise by the combined e�ect of entropy and an intrinsic domain wall pinning,

which results from the skyrmionic character of the spin texture.

The results about the con�nement e�ects of this chapter are speci�c for

the nanoskyrmion lattice in Fe/Ir(111) which exhibits a square magnetic unit

cell due to the in�uence of the four-spin interaction. In most systems, the

four-spin interaction is negligible and the skyrmions appear in a close packed

lattice with a six-fold symmetry. Hence, these systems may show di�erent

con�nement e�ects which is an interesting question for future investigations.
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Chapter 7

Skyrmions in inhomogeneous

environments

The previous chapters 5 and 6 dealt with in�uences of material boundaries on

spin-spiral and skyrmion states. In contrast to that, this chapter discusses ef-

fects that result from spatial inhomogeneities of material parameters within a

skyrmionic material. First, linear variations of energy parameters along a sam-

ple system are studied and employed to determine phase space and equilibrium

properties of skyrmions in section 7.1. Second, periodic spatial modulations of

energy parameters, that lead to the formation of non-axisymmetric skyrmion

states, are investigated in section 7.2. Qualitative similarities with recent ex-

perimental observations on the magnetic triple layers Fe/Ir(111) are shown.

Parts of this chapter contributed to the following articles:

� A. Siemens, Y. Zhang, J. Hagemeister, E. Y. Vedmedenko & R. Wiesen-

danger. Minimal radius of magnetic skyrmions: statics and dynamics.

New J. Phys. 18 045021 (2016)

� J. Hagemeister, E.Y. Vedmedenko & R. Wiesendanger. Pattern forma-

tion in skyrmionic materials with anisotropic environments. Phys. Rev.

B 94 104434 (2016).
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7.1 Linear spatial variation of energy parame-

ters

Starting point for the Monte Carlo calculations presented in the following is

the standard e�ective Hamiltonian

H =−
∑
<i,j>

JijSi · Sj −
∑
<i,j>

Dij · (Si × Sj)−K
∑
i

(Szi )2

− µ
∑
i

B · Si (7.1)

for skyrmionic systems. The interaction parameters provide the respective

energies per bond and the anisotropy energy is set to zero, i.e. K = 0, for

simplicity. Two-dimensional hexagonal lattices with a rectangular boundary

shape and open boundary conditions are used. The value of D/J is varied

along one dimension of a magnetic sample which has the result that ferromag-

netic, skyrmionic and spin-spiral phases may be visible simultaneously at low

temperatures within this sample. This o�ers a convenient way to determine

phase boundaries between the di�erent magnetic states as will be discussed in

section 7.1.2. For this purpose, a software tool is needed to automatize the

identi�cation of positions and sizes of the skyrmions within a given magnetic

sample.

7.1.1 Skyrmion position and size

The positions and sizes of magnetic skyrmions were obtained with a self-written

Python script as explained in the following with the aid of the magnetic sample

presented in Fig. 7.1. The value of J is varied linearly along the sample such

that D/J = 2 at the left side of the sample and D/J ≈ 0.27 at the right side

of the sample. D is constant along the sample, µB/D = 0.3 and kBT/D =

8.6 · 10−3. The displayed color map of the perpendicular component of the

magnetization exhibits various skyrmions. In a �rst step, local minima in

the magnetization were determined in order to obtain approximate values for

the positions of the skyrmion centers (xc, yc). Thereafter, these were used as

initial values for �t parameters in two-dimensional approximation processes of

the skyrmions. The polar angle Θ was approximated by
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30 a Sz

-1          +1

Figure 7.1: Skyrmion positions. Magnetic sample with skyrmions whose po-

sitions were obtained automatized with a Python script. The obtained skyrmion

positions are indicated by white points.

Θ = | arcsin

(
tanh

(√
(x− xc)2 + (y − yc)2 + c

w/2

))
(7.2)

+ arcsin

(
tanh

(√
(x− xc)2 + (y − yc)2 − c

w/2

))
| (7.3)

with the �t parameters (xc, yc, c, w). This kind of formula was originally used

for the description of 360◦ domain walls [122] but it was also successfully ap-

plied to magnetic skyrmions [57]. With the �t parameters c and w, the radius

of the skyrmions can be determined as the radius of the region in which the

magnetization locally has a perpendicular component in the opposite direction

of the ferromagnetic background. The approximation process was performed

locally to the skyrmion texture. For this purpose the region within a radius of

20 a around an initial guess for (xc, yc) was considered which was a somewhat

arbitrary choice but su�ciently large to fully contain the respective skyrmion.

However, the size of the region gave rise to the possibility that parts of neigh-

boring skyrmions were included which was taken care of in a second step.

Starting from a skyrmion center (xc, yc) in which the polar angle is locally

minimal, the polar angle should strictly increase with an increasing distance

to the center. All atomic magnetic moments that did not ful�ll this require-

ment were removed for the approximation process. Fig. 7.2 shows the result of

the approximation of an exemplary skyrmion with D/J = 0.14, µB/J = 0.042

at kBT/J = 1.2 · 10−3. For the �t parameters, c = 3.96 a and w = 9.21 a were

obtained which yield a skyrmion radius of 5.22 a.
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Figure 7.2: Two-dimensional �t of a magnetic skyrmion. The choice of

lateral axes is such that the skyrmion center is at (0,0).

7.1.2 Phase diagrams

Basis for the determination of phase diagrams was the observation that smooth

parameter changes along a sample give rise to the simultaneous formation of

ferromagnetic, skyrmionic and spin-spiral states within one sample as shown

exemplarily in Fig. 7.3. In this case, the parameter ratio D/J was linearly var-

ied in the interval (0, 2) and µB/J = 0.7 with J kept constant. The magnetic

state was obtained after a reduction of the temperature to kBT/J = 8.6 · 10−3

in 20 steps each consisting of 75,000 Monte Carlo steps. In the region of small

D/J , the system is ferromagnetic while it exhibits spin-spirals in the region

of large D/J . In the intermediate region, skyrmions of di�erent lateral sizes

are observable. The search for positions and sizes of the the skyrmions was

performed automatized with a python script as explained in the previous sec-

tion 7.1.1. Clearly, the radii of the skyrmions do not possess a constant value

along the sample but they exhibit a maximum that seems to mark the point

where a transition between skyrmion gas and skyrmion lattice takes place

(Fig. 7.3). This is in good agreement with A. Butenko's statement in her

doctoral thesis that the skyrmion size should be proportional to D/H for an

isolated skyrmion and proportional to A/D in a skyrmion lattice [123]. Hence,

the variation of the energy parameters along a large sample proves to be a con-

venient method to determine the boundaries between di�erent magnetic states

in skyrmionic materials. Consequently, phase diagrams as shown in Fig. 7.4 a
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μB/J = 0.7
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Figure 7.3: Linear variation of Dzyaloshinskii-Moriya interaction param-

eter. The variation of D along the sample causes locally the formation of ferromag-

netic, skyrmionic and spin-spiral states.

and 7.4 b can be obtained, in which the color maps provide a representation

of the skyrmion density ρ which is given by the ratio of the e�ective area

locally occupied by the skyrmions and the area occupied by skyrmions of same

size in a close packed lattice. The black lines, which are also included in

Fig. 7.3, indicate the phase boundaries. For the determination of the phase

diagrams, samples of large size with ≈ 300, 000 lattice sites were used and

small variations of the D/J ratio were imposed in order to avoid distortions of

the skyrmions, which are the topic of section 7.2. Depending on the skyrmion

size, ∆(D/J)/(D/J) was chosen in the range of about (0.03% − 0.5%) per

lattice constant in order to avoid large parameter changes within a skyrmion.

Figures 7.4 c and d provide an overview of the skyrmion radius as a function

of the position in phase space showing that a large external magnetic �eld and

a large ratio of D/J leads to the formation of skyrmions with a small later size

on the order of the lattice constant. The question about the smallest possible

size of a stable skyrmion on a discrete lattice arises. In order to investigate this

issue, a closer look is taken at the skyrmion radius at the phase boundary of

the skyrmion lattice phase towards the FM phase (Fig. 7.5 a). Unsurprisingly,

the radius decreases with increasing ratio D/J . It seems that the behavior

can be described by a hyperbolic function with an o�set of 0.52 a being the

smallest radius for a stable skyrmion at in�nite D/J .
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Figure 7.4: Phase diagrams. (a), (b) Phase diagrams using the skyrmion density

ρ as an order parameter at kBT/D = 8.6 ·10−3. (c), (d) Skyrmion radii as a function

of the position in phase space.
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Figure 7.5: Skyrmion radii. (a) Skyrmion radius R at the phase boundary of

the skyrmion lattice phase towards the FM phase. (b) Theoretical consideration

about the smallest possible skyrmion radius on a hexagonal lattice yielding Rmin =
√

3/3 a ≈ 0.58 a.
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For a comparison, the size of an axisymmetric skyrmion, whose center is

in the middle of three neighboring atoms, is considered. Such a skyrmion

would vanish along with its topological charge when it becomes so small that

the magnetic moments of three neighboring atomic sites lie in the plane and

point towards the position of the former skyrmion center (Fig. 7.5 b). This

theoretical model provides an estimation for the smallest possible skyrmion

radius of 0.58 a which is with a deviation of about 10% quite similar to the

one stated above. This �nding is in contrast to the description of skyrmions

in the continuum model in which they can become in�nitesimal small.

7.2 Periodic spatial modulation of energy pa-

rameters

A broad range of theoretical and experimental investigations have been con-

ducted with the consideration of axisymmetric skyrmions in isotropic envi-

ronments. However, one naturally observes a huge variety of anisotropic be-

havior in many experimentally relevant materials [124, 125, 126, 127]. Conse-

quently, the experimental observation of skyrmions which are deformed with

respect to the axisymmetric shape was reported for chiral bulk magnets with

crystal lattice strain recently [128]. Skyrmionic systems with interface in-

duced Dzyaloshinskii-Moriya interaction typically consist of a single or mul-

tiple atomic, magnetic layers of di�erent atomic species which are deposited

succeedingly onto a non-magnetic supporting crystal [22, 100, 102, 129, 41].

In principle, various crystal structures are possible but here, the focus is on

hexagonal lattices due to their current relevance in experimentally investigated

systems [21, 22, 117]. Typically, hexagonal lattices provide a rather isotropic

environment (see chapter 5) but the combination of materials with di�erent lat-

tice constants can give rise to lattice strain and reconstructions in the magnetic

surface layers. Hence, anisotropic environments can also emerge in skyrmionic

systems with interface induced Dzyaloshinskii-Moriya interaction as has been

discussed recently for the double [117] and triple [130] atomic layers of Fe

on Ir(111). The key �ndings for these two materials will be presented in the

following because they were the motivation for the subsequent MC studies.
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7.2.1 Double and triple layers of Fe on Ir(111)

The �rst atomic layer of Fe on Ir(111) grows pseudomorphically and exhibits a

nanoskyrmion lattice [21] in the fcc stacking and a hexagonal spin texture in the

hcp stacking [118]. In the second and third atomic layers of Fe on Ir(111), areas

with reconstruction lines that form due to the mismatch of lattice constants can

be found (Fig. 7.6 a). The reconstruction lines are aligned parallel with respect

to each other and perpendicular to a close packed atomic row of the Ir(111)

surface. They have a periodicity of about 5.2 nm [117] in the double layers

and (4 − 9) nm [130] in the triple layers. In both material systems, cycloidal

spin-spirals were found with periodicities of 1.6nm [117] in the double and

3.8 nm [130] in the triple layers at zero magnetic �eld. The spin-spiral wave

fronts exhibit an overall alignment parallel to a symmetry equivalent [101]

direction. Interestingly, the wave fronts are spatially modulated (Fig. 7.6 b)

with the periodicity of the dislocation lines which could be explained by a

d

b

c

a

Figure 7.6: Triple atomic layers of Fe on Ir(111). The �gures are reprinted

by permission from Macmillan Publishers Ltd: [NATURE NANOTECHNOLOGY]

(Ref. [130], url), copyright (2016). (a) Constant-current image of atomic layers of iron

on Ir(111) obtained with a spin-polarized scanning tunneling microscope. (b), (c)

dI/dU map of the area marked in a at 0T and 2.5T perpendicular external magnetic

�eld. The measurement parameters are U = −0.7V, I = 1 nA and T = 7.8K. (d)

Structural model for the atomic triple layer of iron on Ir(111).

http://dx.doi.org/10.1038/nnano.2016.234
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structural model for the atom positions [117, 130]. P.-J. Hsu et al. point out

in Ref. [117] that previous studies on epitaxial growth showed a preference

of bcc materials to form a bcc(110)-like interface with a fcc(111) surface and

provide Ref. [131, 132, 133] for comparison. They deduce a compression of the

second and third layers by a few percent and present the resulting model for

the atomic structure as shown in Fig. 7.6 d [130]. Regions with bcc(110)-like

areas are indicated by black rectangles which are believed to locally guide the

spin-spiral wave fronts. A minimal opening angle of the zigzag wave fronts

of 117◦ can be deduced for the double layer system and similar values are

expected for the triple layer system. The spin-spiral state in the double layer

system is stable up to 9T perpendicular external magnetic �eld. However,

skyrmionic objects with a non-vanishing topological charge could be obtained

in the triple layer system with magnetic �elds of about 2.5T (Fig. 7.6 c) [130].

They are non-axisymmetric and thus exhibit a di�erent geometry from the

initially theoretically proposed axisymmetric magnetic skyrmions [12].

7.2.2 Model for Monte Carlo calculations

Starting point for the MC calculations is the standard e�ective Hamiltonian

H =−
∑
<i,j>

JijSi · Sj −
∑
<i,j>

Dij · (Si × Sj)−
∑
i

Ki(eKi
· Si)2

− µ
∑
i

B · Si (7.4)

consisting of the exchange energy, the DM energy, the magnetocrystalline

anisotropy and the Zeeman energy. Here, all interaction parameters are given

per bond. The classical three-dimensional spins Si of unit length can rotate

freely on the unit sphere. The corresponding phase space with an isotropic en-

ergy parameter environment is well known [15, 103, 104] (see also section 2.2).

In order to summarize, a spin-spiral state with a �xed rotational sense is the

ground state at low temperatures and zero external magnetic �eld in a broad

parameter range. The application of a perpendicular external magnetic �eld

can cause a transition from the spin-spiral state to a skyrmionic state at an

intermediate �eld strength and eventually the saturated ferromagnetic state is

reached at a su�ciently large �eld.
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For the following investigations, a nearest neighbor DM interaction strength

|D| = D is considered and for symmetry reasons, the DM-vectors are chosen to

lie in the plane of the magnetic �lm and to be perpendicular to the connection

line between neighboring spins [58]. Two-dimensional triangular lattices with

the lattice constant a are used and the behavior of multiple magnetic layers is

mimicked by spatial modulations of the parameters of the anisotropy energy

and exchange interaction.

7.2.3 Modulation of exchange interaction parameter

Similar to previous investigations [134, 135], e�ective nearest-neighbor ex-

change interaction parameters Jij are introduced. The earlier model is ex-

tended in order to modulate the strength of the exchange coupling not only

as a function of the orientation of the respective bond but as a generalization

also of the position in the lattice according to the following description

J2
ij(ri, rj) =

(
j2

M ·
|e · rij|2

a2
+ j2

m ·
|e× rij|2

a2

)
(7.5)

eT (α) = (cos(α), sin(α), 0) (7.6)

α = αmax · sin
(

2π

λ
·
[

1

2
(ri + rj) · e[101]

])
(7.7)

The equation 7.5 is equivalent to the parametrization of an ellipse with the

semi-major axis jM and semi-minor axis jm in the case of jM > jm. The ellipse

lies within the plane of the magnetic �lm and the direction of the major axis e

is locally rotated by the angle α with respect to the [101] direction. r ij is the

vector connecting the lattice sites i and j. The choice of unequal parameters

jM and jm provides an anisotropic environment with an exchange interaction

strength which then depends on the crystallographic orientation of a bond.

The angle αmax and the period λ in units of a can be used to create a periodic

modulation of the anisotropic environment of the exchange-interaction along

the crystallographic direction [101].

Figure 7.7 a shows the perpendicular component of the magnetization of a

spin-spiral state for the modulation period λ = 20 a and modulation angle

αmax = 29◦. The interaction strengths are jm/jM = 0.5 and jm/D = 1.6 and

the anisotropy is K = 0. The temperature of the system was decreased from
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Figure 7.7: Spatial modulation of exchange constant. Spin-spiral state with

zigzag shaped wave fronts on a triangular lattice with periodic boundary conditions

in the [121] direction. The color maps give a linear scheme of the projection of the

magnetization onto a given direction which is perpendicular to the plane in (a) and

parallel to the gray arrows in (b) and (c).

kBT/D = 1.7 to kBT/D = 8.6 · 10−3 using 20 temperature steps with 105

Monte Carlo steps each ensuring that the global energy minimum is reached.

The resulting spin-spirals have a wave length of approximately 14 a. The

wave fronts are on average aligned in parallel to the [101] direction and the

periodicity of their zigzag pattern is in agreement with the modulation period

of the exchange energy. Part of the spin contrast vanishes (Fig. 7.7 b, c) when

calculating the projection of the in-plane component of the magnetization onto

the directions which enclose an angle of ±αmax = ±29◦ with the [101] direction.

This �nding can be veri�ed by the investigation of the incidence nφ of the spins'

azimuthal angles φ with respect to the [101] direction which is shown in Fig. 7.8.

With a vanishing modulation amplitude αmax = 0, the spins are aligned in the

-π          -π/2            0      ϕ    π/2           π

π/4

 -  
  0α
m

ax

nϕ
1

-
0

[a
.u

.]

Figure 7.8: In-plane angle of magnetic moments. The frequency of the

azimuthal angle φ with respect to the [101] direction. The dotted lines provide

±π
2 ± αmax.
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plane given by the system's normal vector and the [121] direction. An increase

of the modulation amplitude αmax causes the single peaks at ±0.5 π to split

into double peaks with a distance of approximately αmax. Consequently, the

spins are predominantly perpendicular to the local spin-spiral wave fronts as

expected for cycloidal spin-spirals [11].

Following this, the modulation of the exchange energy onto the skyrmion

state is investigated. Fig. 7.9 a-f show the magnetic ground states which are

obtained when the temperature of the system is reduced with applied constant

magnetic �elds. Except for the magnetic �eld, all simulation parameters are

chosen to be the same as before. The spin-spirals break up at the magnetic �eld

µB/D = 0.237 and elongated zigzag structures are created which eventually

shrink at magnetic �eld strengths larger than µB/D = 0.284. No individual

1.0 π
-

0.5 π

-

   0.0

•
•

 a  b  c

 d  e  f

h
 g

μB/D = 0.237 μB/D = 0.284 μB/D = 0.332

μB/D = 0.379 μB/D = 0.426 μB/D = 0.474

20a

θ

x1

x2

-10         -5           0           5           10 

Figure 7.9: Spatial modulation of exchange energy. (a-f) Perpendicular con-

trast of the magnetic pattern which is obtained under application of a perpendicular

magnetic �eld to a zigzag spin-spiral state with open boundary conditions. (g) Spin

texture of the magnetic object marked in (d). (h) Pro�les of the polar angle for the

magnetic texture in (g).
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magnetic objects are observed for �elds larger than µB/D = 0.62. The mag-

netic objects possess a unique rotational sense and yield a non-vanishing topo-

logical charge Q. Furthermore, the magnetic objects are non-axisymmetric as

investigated exemplarily for the marked spin texture in Fig. 7.9 d. Fig. 7.9 g, h

show the atomic spin con�guration and the corresponding line pro�les of the

spins' polar angles. The pro�les of the polar angle of the local magnetization

direction clearly show an elongation of the structure into the [101] direction

compared to the [121] direction.

7.2.4 Modulation of anisotropy energy parameter

It is known that the anisotropy energy can in principle vary locally in thin

magnetic �lms [136]. In the following, the e�ects of a spatial modulation of

the anisotropy energy in combination with an isotropic environment of the

exchange and Dzyaloshinskii-Moriya interaction is investigated. Stripe-like

regions with an easy in-plane axis parallel to the [121] direction and easy in-

plane axis parallel to the [101] direction are introduced with the widths dl1 =

18 a and dl2 = 2 a which are periodically repeated along the [101] direction

with a periodicity of 20 a. In Fig. 7.10 a, a sketch of the atomic lattice is

given indicating the anisotropy axis for each lattice site. The same anisotropy

energy constant of K/D = 0.6 is assumed for the two regions and J/D = 2.1

is chosen. Fig 7.10 b-d show the magnetic ground states for di�erent magnetic

�elds after the reduction of the temperature in the same fashion as before. The

spin-spiral period at zero magnetic �eld is approximately 15.8 a and the wave

fronts are aligned in parallel to the [101] direction. With an applied magnetic

�eld of µB/D = 0.52, an ordered state of elongated magnetic objects is formed.

Their centers lie in the middle of the regions that possess an anisotropy axis

parallel to the [121] direction and their elongation into the [101] direction is

determined by the areas in which the anisotropy axis is parallel to the [101]

direction. This �nding is veri�ed exemplarily for a single magnetic object

which is highlighted in Fig. 7.10 c. Fig. 7.10 e shows the corresponding spin

con�guration and Fig. 7.10 f displays the pro�les of the polar angle of the

magnetization along two perpendicular crystallographic axes. One can clearly

discern a lateral size of the magnetic object parallel to the [101] direction of

about 20 a. In other words, the modulation of the anisotropy energy aligns
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Figure 7.10: Spatial modulation of anisotropy energy. (a) Sketch of the

atomic lattice in the top view indicating regions of easy in-plane anisotropy axes

parallel to the [101] (red) and [121] (blue) direction. (b)-(d) Perpendicular magnetic

contrast of the ground state in an applied magnetic �eld. (e) Spin con�guration of a

skyrmion marked in (c). (f) Pro�les of the polar angle through the magnetic texture

shown in (e).

the magnetic objects on tracks along the [121] direction. For magnetic �elds

larger than µB/D ≈ 0.7, a part of the magnetic objects splits into two smaller

parts and eventually the ferromagnetic state is reached at �elds larger than

µB/D ≈ 0.9.

7.2.5 Formation of skyrmionic tracks

In the following, it is shown that linearly aligned skyrmionic structures along

a track can be formed by a spatial modulation of the energy parameters in

a 2D model system. For this purpose, the e�ects of the modulation of the

exchange and anisotropy energy are combined with an isotropic environment

of the DM-interaction on the magnetic ground state of skyrmionic systems.

The parameters for the exchange and Dzyaloshinskii-Moriya interaction are

chosen as in the simulations for Fig. 7.7 and 7.9. Additionally, a spatial mod-

ulation of an easy in-plane anisotropy axis with the energy K/D = 0.6 similar

to simulations for Fig. 7.10 is assumed but the anisotropy axes are partly
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Figure 7.11: Skyrmion tracks. (a) Sketch of the atomic lattice in the top view

indicating the spatial modulation of the direction of the easy anisotropy axis. (b),(c)

Perpendicular contrast of the magnetic ground states at di�erent magnetic �elds.

The spatially modulated anisotropy energy used for Fig. 7.10 is combined with the

anisotropic environment of the exchange interaction used in Fig. 7.7, 7.9 and an

isotropic environment of the DM-interaction. (d),(e) Formation of skyrmion tracks

by a spatial modulation of local magnetic anisotropy as explained in the text.

adopted to follow the modulation of the exchange interaction as indicated in

Fig. 7.11 a, i.e. they are locally parallel to the minor axis of the exchange mod-

ulation scheme. For two magnetic �elds, the magnetic ground states at low

temperatures are shown in Fig. 7.11 b and 7.11 c. One observes ordered bent

non-collinear spin states with a non-vanishing topological charge at the mag-

netic �eld µB/D = 0.52 which appear at µB/D ≈ 0.71 with a larger spatial

separation and are not observed for µB/D & 0.85. As before, the magnetic

objects are aligned along tracks parallel to the [121] direction. However, the

magnetic objects of neighboring tracks in�uence each other in the current sta-

tus in such a way that they could not be moved independently from each other

parallel to the [121] direction. Every second track can be excluded by locally

substituting the easy in-plane axis by an easy out-of-plane anisotropy axis

with the energy K/D = 0.6. The resulting magnetic equilibrium skyrmion-

like patterns are con�ned to spatially separated tracks parallel to the [121]

direction (Fig. 7.11 d and 7.11 e) along which they can be moved as discussed

in section 7.2.6. In real systems, this creation of tracks could be achieved by

nanostructuring of the surface. Next, a closer look at the spatial distribution

of the topological charge and the energy densities for the obtained magnetic

objects reveals that the largest contributions to the topological charge arise at
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Figure 7.12: Topological charge. Spin structure and local skyrmion density for

a magnetic object shown in Fig. 7.11 d. Within the marked area, topological charge

of negative sign is acquired.

their ends and a contribution of opposite sign is acquired near the bend as can

be observed in Fig. 7.12. The sum over the local contributions to the topo-

logical charge provides Q = 1 for each magnetic object. The exchange energy

is large where the DM energy is small as in the region where the magnetic

moments have a perpendicular component opposite to the external magnetic

�eld (Fig. 7.13). The anisotropy energy is small in regions where the spins of

-1.25 0.00 0 0.3 0.6

E  [D]exch E  [D]DM E  [D]aniso

Figure 7.13: Energy densities. The energy densities of the exchange interaction

Eexch, the DM interaction EDM and the anisotropy energy Eaniso for two skyrmions

shown in Fig. 7.11 d. In the bottom, the local orientations of the easy anisotropy

axes are indicated (same as in Fig. 7.11 a). The red arrows indicate the regions in

which the in-plane part of the magnetic objects pin to the edges of the magnetic

track due to the anisotropy energy.
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the magnetic objects lie predominantly within the magnetic layer which is ex-

pected when considering the choice of the directions for easy anisotropy axes as

shown in the bottom of the individual images in Fig. 7.13 or in Fig. 7.11 a. Es-

pecially, the anisotropy energy is small at the ends of the elongated objects as

indicated by the red arrows. The ends coincide with the narrow regions where

the anisotropy axis is oriented parallel to the [101] direction (see Fig. 7.13).

This con�nes the skyrmionic structure spatially in the [101] direction and ad-

ditionally prevents them from decreasing their size in the [101] direction due

to their pinning e�ect. In between these regions, the easy anisotropy axis is

locally parallel to the minor axis of the exchange energy modulation scheme

which suppresses in combination with the direction dependent exchange en-

ergy parameter a splitting of the magnetic objects and stabilizes them over

a relatively large magnetic �eld range. Hence, both the exchange interaction

and the anisotropy energy are responsible for the stabilization of the elongated

skyrmionic structures.

7.2.6 Skyrmion manipulation with magnetic tip

For technological applications it is desirable to not only align magnetic skyrmions

along tracks but also to manipulate their lateral position. The skyrmions pre-

sented in Fig. 7.11 d and 7.11 e are aligned along tracks due to energy barriers

resulting from a spatial modulation of the anisotropy landscape. However, this

con�nement is restricted to the [101] direction and the skyrmions are free to be

moved by a driving force along the [121] direction which will be demonstrated

in the following.

As a driving mechanism, the spin-polarized electric current from a magnetic

tip is chosen. The in�uence can be described according to Ref. [96] (see also

section 3.7) by an additional term HT in the Hamiltonian for Monte Carlo

calculations.

HT = −g
∑
i

Ti · Si (7.8)

Ti = −I0 exp

(
−2κ

√
(xi − xtip)2 + (yi − ytip)2 + h2

)
· P ·mtip (7.9)

Therein, g is a coupling constant and Ti takes the spin-polarized current into
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account. P is the tip polarisation,mtip a unity vector parallel to the magnetiza-

tion direction of the tip, κ the inverse decay length in vacuum, ri = (xi, yi, 0)

and rtip = (xtip, ytip, h) the positions of the lattice sites, and the tip and I0

the spin-polarized current. Typical values are chosen for the decay length

κ = 3Å
−1

and the current I0 = 105 µs
γD

[96]. The tip velocity is set to 1.5 · 10−5

lattice constants per Monte Carlo step. The position of the tip is updated in

intervals of 5000 Monte Carlo steps. The magnetization direction of the tip

is chosen parallel to the skyrmion center and g = 1 and h = 1a with a being

the lattice constant. One �nds that the tip is able to move the skyrmions

of Fig. 7.11 d along the track at the temperature kBT/D = 0.086. A picture

sequence of this process is shown in Fig. 7.14. The tip is positioned above a

skyrmion and when the tip is moved along the track, it moves the skyrmion

along. This causes the other skyrmions to move as well. Since periodic bound-

ary conditions were imposed in the direction of the tracks the skyrmions that

leave the sample at one side reappear at the opposite side of the sample.

t = 0 MCS t = 1 450 000 MCS

t = 2 950 000 MCS t = 4 450 000 MCS

Figure 7.14: Skyrmion movement with a magnetic tip. Monte Carlo simula-

tion of the movement of skyrmions with the tip of a spin-polarized scanning tunneling

microscope. The skyrmions from Fig. 7.11 d are moved along a track. Due to peri-

odic boundary conditions, the skyrmions that are pushed out of the sample to one

side reappear at the opposite side.
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7.3 Summary

Summing up, it was shown that small spatial gradients of material parameters

provide a convenient method to determine phase diagrams of skyrmionic sys-

tems. Large spatial variations of material parameters can result in highly de-

formed magnetic objects with a non-vanishing topological charge. Apart from

the non-axisymmetry, these objects possess main characteristics of skyrmions

such as a small lateral size and the stabilization by a competition of DM

interaction, exchange interaction and magnetocrystalline anisotropy energy.

Moreover, the skyrmionic objects were aligned along tracks due to a spatial

modulation of the energy landscape.

These results qualitatively reproduce the behavior of the magnetic states

observed experimentally in the double and triple layers of Fe on Ir(111). In

these material systems, a spatial modulation of material parameters is caused

by periodic reconstruction features that originate from lattice strain due to a

mismatch of lattice constants.

Additionally to this, the possibility to in�uence the lateral position of skyrmions

by the tip of a spin-polarized scanning tunneling microscope is con�rmed by

Monte Carlo calculations. Previous experimental investigations already re-

vealed that the position of skyrmions in the Pd/Fe bilayer on Ir(111) can

be decisively manipulated by a scanning tunneling microscope in an indirect

way by induced spatial displacements of pinning Co clusters on top of the

surface [137].
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Chapter 8

Summary

Magnetic skyrmions are regarded as promising candidates for bits of informa-

tion in future data storage devices and many research activities are currently

conducted to realize this goal. This thesis discussed fundamental properties

of magnetic skyrmions as their thermal stability and behavior in con�ned ge-

ometries.

In chapter 4, a stochastic switching between ferromagnetic and skyrmionic

state within Monte Carlo calculations was used to determine mean lifetimes of

the two states as a function of magnetic �eld and temperature. Arrhenius-like

dependences were found that give rise to activation energies in the range of

about (4.5−7.5) J for the skyrmion and ≈ 11 J for the ferromagnetic state with

J providing the exchange energy parameter per atomic bond. The material

parameters were D/J = 0.32 and K/J = 0.1. The internal energy of the

skyrmion was larger than that of the ferromagnet within the investigated range

of external magnetic �elds and the di�erence in the attempt frequencies was

identi�ed as the stabilizing mechanism of the skyrmion state. The calculations

revealed an attempt frequency of the skyrmion which was about three orders

of magnitude smaller than that of the ferromagnetic state. This discrepancy

in the attempt frequencies could be linked to the entropy di�erence of the

two states using the Eyring equation, �nding that the skyrmion possesses a

larger entropy compared to the ferromagnetic state. This may be explained

by the fact that the skyrmion allows for �uctuations in position, size and

shape. Finally, the obtained Monte Carlo results are compared to experimental

observations made with a spin-polarized scanning tunneling microscope on
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Pd/Fe/Ir(111). Experimentally, an electric tunnel current was used to locally

induce a stochastic switching between skyrmion and ferromagnetic state. In

this way, mean lifetimes of the two states were acquired as a function of an

external magnetic �eld. The mean lifetimes determined from the Monte Carlo

calculations were linearly rescaled to the experimentally determined lifetimes

which allowed for a calibration of energy parameters and Monte Carlo time

steps with real units. A discrepancy between the obtained energy parameters

and the energy parameters suitable to describe an extended Pd/Fe/Ir(111) �lm

can be expected since the magnetic skyrmions were pinned to atomic defects

in the experimental system.

Chapter 5 dealt with the in�uence of a boundary of a two-dimensional

hexagonal lattice on the formation of spin-spiral states. Nearest-neighbor ex-

change and Dzyaloshinskii-Moriya interactions were considered. Analytical

calculations showed that a parallel alignment of the spin-spiral vector with

respect to an edge of the system formed by a close-packed atomic row pos-

sesses the lowest energy. An additional reduction of edge energy due to an

edge tilt e�ect of the spin-spiral was obtained using a combination of variation

calculus with the continuum model and Monte Carlo calculations. The results

were employed to explain experimental observations about spin-spiral states

in Pd/Fe islands on Ir(111).

For chapter 6, the focus was on the e�ects of edges on the spatial orien-

tation of adjacent domains of the nanoskyrmion lattice in Fe/Ir(111). The

formation of triple-domain states in triangular Fe islands was found as a result

of incompatibility of square skyrmion lattice and triangular island boundary.

A diagonal of the nanoskyrmion lattice couples parallel to an island edge.

This behavior was observed both in experiment and Monte Carlo calculations

based on an energy parameter set that was reported by S.Heinze et al. in

Ref. [21]. The Monte Carlo calculations could be used to determine the poten-

tial save of edge energy as 8.1 meV/nm due to a favorable orientation of the

adjacent nanoskyrmion lattice. Additionally, the energy cost of 11.4meV for

the formation of a domain wall was obtained. Finally, the formation of triple-

domain states in triangular Fe islands could be ascribed to entropy e�ects. At

very low temperatures, the energetically more favorable single-domain state

can't be formed via a continuous reduction of domain wall length due to in-
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trinsic pinning e�ects arising from the energetically spatially inhomogeneous

nanoskyrmion lattice. In experiment, additional pinning e�ects can be present

as a result of e.g. atomic defects. Moreover, the edge energies may be di�erent

because of energy parameters which are locally di�erent compared to the in-

terior of an extended magnetic �lm. This could change the energies of single-

and triple-domain states in triangular islands. Beside of this, the in�uence

of a ferromagnetic edge was studied. In experiment, this edge condition was

achieved by additional ferromagnetic Ni islands. In contrast to an edge of an

Fe island, a side of the magnetic unit cell couples parallel to a ferromagnetic

edge. This can be understood qualitatively by the fact that a diagonal of the

magnetic unit cell possesses, in contrast to a side of the magnetic unit cell, a

zero magnetic moment in average.

Chapter 7 dealt with spatial modulations of the energy parameters in skyrmionic

systems. Firstly, linear variations were employed to show a convenient method

to determine the phase space of skyrmionic systems. From the obtained

skyrmion radii as a function of position in phase space, a minimal skyrmion

radius of about 0.52 a on hexagonal lattices with lattice constant a was deter-

mined. Secondly, periodic spatial modulations of the energy parameters were

employed to obtain zigzag type spin-spirals and deformed skyrmionic states.

A qualitative agreement with recent observations of deformed skyrmions in

triple layers of Fe on Ir(111) was achieved.
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