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Kurzfassung

Die vorliegende Arbeit untersucht das Auftreten von gebundenen Zuständen in Spektroskopien und
ihre Auswirkungen auf die Realzeitdynamik von stark korrelierten Quantensystemen mit Hilfe der
Dichtematrix-Renormierungsgruppe (DMRG) und exakter Diagonalisierung (ED).
Der Hauptfokus betrifft das Verhalten der sogenannten “Dublonen” im Hubbard-Modell, bei de-
nen es sich um gebundene Zustände zweier Elektronen handelt. Das Dublon manifistiert sich in
hochaufgelöster CVV-Auger-Elektronenspektroskopie (AES) als ein Satellit im Spektrum. Mit Hilfe
der DMRG wird sein Verhalten über alle Füllungen des Hubbard-Modells hinweg nachverfolgt und
erklärt. Darüberhinaus wird demonstriert dass ein zweiter Satellit auftaucht, der zu gebundenen
Zuständen von vier Elektronen (bzw. zwei Dublonen) korrespondiert, für den der Begriff “Quadru-
plon” eingeführt wird. Das Quadruplon kann durch Nächste-Nachbarn-Coulomb-Wechselwirkung
zusäzlich stablisiert werden, die zudem weitere gebunde Zustände erzeugt: “Triplonen” (drei Elek-
tronen) und “Dimeronen” (Nächste-Nachbarn-Elektronen). Die Spektren werden auch mit Hilfe des
Bethe-Ansatzes analysiert und es werden die Zerfallskanäle des Dublons in Spinonen und Holonen
in einer Raumdimension aufgedeckt.
Die Echtzeit-Dynamik und der Zerfall einer lokalen Dublon-Anregung wird untersucht und es wird
gezeigt, dass das Dublon bei mittleren Füllungen stabiler wird. Zudem wird gezeigt, dass Zer-
fallskanäle eine diffusive Komponente zu der Propagation hinzufügen, während eine ballistische
Wellenfront erhalten bleibt.
Schließlich wird ein Formalismus für Pump-Probe-Augerspektroskopie entwickelt und mögliche
Aufbauten werden werden diskutiert. Es wird gezeigt, dass die hohe Stabilität des Dublons auf
mittleren Zeitskalen bedingt, dass die Spektren keine Abhängigkeit vom Pump-Probe-Delay zeigen
und dass entweder eine Modifikation des Aufbaus oder des Modells vonnöten ist. Der letztere Pfad
wird verfolgt und es werden Spektren für das dynamische Hubbard-Modell ausgerechnet, wo die
Doppelbesetzung an einen bosonischen Freiheitsgrad koppelt. Es wird gezeigt, wie die Parameter
der Kopplung zu den Verschiebungen und Intensitäten als Funktion des Delays in den Spektren in
Beziehung stehen.
Der sekundäre Fokus liegt in der Untersuchung eines quantenmechanischen oder klassischen Spins
als Störstelle auf einem freien oder wechselwirkenden Substrat. Unter anderem wird demonstriert,
dass wenn dieWechselwirkung bei Halbfüllung stark genug ist, der Spin nicht vollständig relaxieren
kann, d.h. er stellt sich nicht komplett parallel zu einem äußeren Magnetfeld, da die überschüssige
Energie vom Substrat nicht aufgenommen werden kann. Dieses Verhalten ist ähnlich zu dem Grund
warum das Dublon trotz repulsiver Wechselwirkung gebunden und sehr stabil auf einer mittleren
Zeitskala ist.
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Abstract

In this work, the appearance of bound states in spectroscopies and their effects on real-time dy-
namics of strongly correlated quantum systems is investigated with the help of the density matrix
renormalization group (DMRG) and exact diagonalization (ED).
Themain focus surrounds the behaviour of the so-called “doublons” in theHubbardmodel, which are
repulsively bound states of two electrons. The doublonmanifests itself in high-resolution CVVAuger
electron spectroscopy (AES) in the form of a satellite in the spectrum. Using DMRG, its behaviour is
traced and explained through all fillings in the Hubbard model. It is furthermore demonstrated that
there appears a second correlation satellite corresponding to bound states of four electrons (or two
doublons) which are termed “quadruplons”. The quadruplon can be further stabilized with nearest-
neighbour Coulomb interaction which creates even more bound states: “triplons” (three electrons)
and “dimerons” (nearest-neighbour electrons). The spectra are also analysed with the help of the
Bethe ansatz and decay channels of the doublon into spinons and holons in one spatial dimension
are revealed.
The real-time dynamics and decay of a local doublon excitation is investigated and it is shown that
the doublon becomes more stable at intermediate fillings and that scattering channels add a diffusive
component to its propagation, while a ballistic wavefront remains.
Finally, a formalism for pump-probe Auger spectroscopy is developed and possible setups are dis-
cussed. It is shown that due to the high stability of the doublon at the intermediate time scale, the
spectra show no dependence on the pump-probe delay and that either a modification of the setup
or of the model is necessary. In the latter approach, spectra are calculated for the dynamic Hubbard
model, where the double occupancy couples to a bosonic degree of freedom and it is shown how the
parameters of the coupling are relayed to shifts and intensities in the spectra as a function of the
delay time.
The secondary focus surrounds the dynamics of a quantum or classical impurity spin coupled to a
free or strongly interacting substrate chain. It is demonstrated that for a large enough interaction
at half filling, the spin cannot fully relax by aligning itself completely to an external magnetic field
because the excess energy cannot be taken up by the substrate. This behaviour is very similar to the
reason why the doublon is bound despite repulsive interactions and very stable at an intermediate
time scale.
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1. Introduction

1.1. The doublon

One of the hallmarks of interacting systems is the emergence of new particles, be it the protons
and pentaquarks of high-energy physics or the carbon compounds of chemistry. Solid state physics
deals with the interactions of a huge number of electrons (and potentially lattice degrees of freedom
as well) and sees its own zoo of particles emerge. There are in fact various concepts of what can
be regarded as a particle in a many-body context, like Landau’s dressed quasiparticle (renormalized
electrons, polarons), collective excitations (phonons, magnons, plasmons), bound states of electrons or
holes (excitons, Cooper pairs) or defects related to topological winding numbers (Skyrmions). Even
though the new particles are usually composites of smaller ones, low-dimensional systems also show
the opposite effect: Spin-charge separation is the splitting of an electron into an antiholon which
carries just its charge, and a spinon which carries just its spin; and charge fractionalization results in
entities with a fraction of the elementary charge.

A particle that has received considerable attention over the last years is the doublon within the
Hubbard model, which falls into the bound state category. What follows is a short pedagogical
introduction into the related physics, which will then be expanded throughout this work.

The Hubbard model [ Gutzwiller 1963; Kanamori 1963; Hubbard 1963] describes hopping electrons
on a lattice which repel each other whenever they are on the same site. It embodies a system which
is conceptually simple, but notoriously difficult to solve, and allows one to study the interplay be-
tween Coulomb interaction, kinetic energy, the Pauli principle and lattice structure. With standard
notations (see chapter 2.1.1 for details), it reads:

H = −T
∑
⟨ij⟩σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓. (1.1)

There are several limits which are accessible to an analytical solution in order to get an understand-
ing of the emerging physics. One can do perturbation theory in either the hopping or the Coulomb
interaction U , provided that one is much smaller than the other. One could neglect the lattice
structure and solve a single Hubbard atom (or a small cluster) and try to interpolate the full lattice
behaviour from this solution (which was Hubbard’s original approach). Lastly, one could limit the
amount of electrons to just two, the simplest non-trivial value.

Let us pursue the latter case. For a lattice with L sites, we are dealing with a Hilbert space spanned
by the L2 basis states

∣∣ij⟩ := c†i↓c
†
j↑
∣∣0⟩. (1.2)

Since this is a simple two-particle problem, it can be solved by just about any method, for instance
using the Lippmann-Schwinger equation [ Hecker Denschlag and Daley 2006] or the equation of
motion technique for Green’s functions [ Nolting 1990]. We can also do it in a very basic textbook
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manner by inserting (1.2) into the Schrödinger equation and projecting on an eigenstate
⟨
Ψ
∣∣, leading

to:

− T (Ci,j−1 + Ci−1,j + Ci,j+1 + Ci+1,j) + UCijδij = ECij, (1.3)

with the overlaps Cij =
⟨
Ψ
∣∣ij⟩. By introducing a centre-of-mass coordinate R = (Ri +Rj) /2 and

a relative one r = Ri−Rj , we can make a separation ansatz [ Valiente and Petrosyan 2008; Valiente
and Petrosyan 2009; Qin et al. 2014]

Cij = eiKRϕK (r) , (1.4)

with a centre-of-mass momentum K and a relative momentum k; and after inserting obtain the
following difference equation:

ϵ (K) [ϕK (r + 1) + ϕK (r − 1)] + Uδr0ϕK (r) = EKϕK (r) , (1.5)

with

ϵ (K) = −2T cos
(
K

2

)
. (1.6)

Periodic boundary conditions require eiKL = 1, so that K is quantized as Kn = 2πn/L. Further-
more, ϕK (r + L) = e

iKL
2 ϕK (r), and thus

ϕK (−1) = e
−iKL

2 ϕK (L− 1) ,

ϕK (L+ 1) = e
+iKL

2 ϕK (1) .
(1.7)

With this, the complexity reduces from L2 to L and the second-order difference equation (1.5) to-
gether with the boundary conditions (1.7) can be easily solved by diagonalizing the corresponding
matrix for any value ofKn, and for rather large systems. The resulting eigenstates and eigenenergies
EK can thus be classified according to K and are shown for L = 100 in fig. 1.1.

It turns out that there are two kinds of solutions: A continuum of scattering states with real values
of k where the electrons propagate independently; and bound states with an imaginary value of
k, which means that the wavefunction decays exponentially with increasing separation of the two
electrons. Interestingly, bound states do not only appear for attractive values of the interaction
U < 0, but also for repulsive U > 0 in a symmetric fashion. Their energies lie below and above the
energies of two independent particles:

∣∣E∣∣ > 2
∣∣ϵ (K)

∣∣. An electron pair in such a repulsively bound
state remains mostly on the same site and cannot break apart because momentum and kinetic energy
have an upper boundary on a lattice1 — there are simply no states with independent electrons which
are fast enough to carry off all of the potential energy imposed by U . Movement is still possible,
however, via virtual hopping processes, whereby the pair briefly breaks apart and reassembles again
on the neighbouring site, leading to a dispersion as a function ofK . This process is suppressed by U
and becomes impossible for U → ∞, where the pair is completely localized. Note also that in one

1This is meant in a simple lattice model with a cosine dispersion as opposed to particles in a continuum with the
dispersion p2/2m. In a real material there will be higher bands, of course, and one would require a sufficiently large
band gap to observe the described doublon physics.

2
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Figure 1.1.: Eigenstates of the L = 100 periodic Hubbard chain in the two-particle subspace (N↑ =
N↓ = 1), classified according to the centre-of-mass momentum K . For U ̸= 0 only the
bound states with

∣∣EK

∣∣ > 2
∣∣ϵ (K)

∣∣ are plotted. The black solid line indicates the free
doublon dispersion ϵ (K) = J + U + J cos (K) from the effective model (1.9).

spatial dimension, bound states appear for any value of U , but in higher dimensions a critical Uc is
required, typically slightly larger than the bandwidthW [ Sawatzky and Lenselink 1980].

These results lead to us to the definition of the doublon, created by the operator

d†i := c†i↓c
†
i↑. (1.8)

It is furthermore possible to define an effective doublon model by a Schrieffer-Wolff transformation
of the Hubbard Hamiltonian under the assumption of no singly occupied sites and U/T ≫ 1 (thus
entirely neglecting doublon decay) [ Rosch et al. 2008; Lenarčič and Prelovšek 2014; Fazekas 1999;
Auerbach 2012] 2:

Heff =
J

2

∑
⟨ij⟩

(
d†idj + h.c.

)
+ (J + U)

∑
i

nd
i − J

∑
⟨ij⟩

nd
in

d
j , (1.9)

with J = 4T 2/U and the doublon occupancy number nd
i = d†idi. The doublons in this model

are hard-core bosons with the constraint (d†i )2 = 0. Furthermore, it turns out that the interaction
between them is attractive (−J < 0 for U > 0) and of moderate strength, only twice the hopping
amplitude J/2. For our case of a single doublon on an empty lattice, the interaction term vanishes
and the remaining single-particle Hamiltonian can be diagonalized via Fourier transformation

di =
1√
L

∑
K

dK exp (−iKRi) , (1.10)

leading to the dispersion relation ϵ (K) = J + U + J cos (K). Thus, the delocalized doublon is an
eigenstate and we can say that it has infinite lifetime τ =∞ if regarded as a particle. This dispersion

2Without neglecting singly occupied sites there are in fact many more terms arising after the transformation [ Lenarčič
and Prelovšek 2014]. These involve hoppings between singly occupied sites, spin-exchange terms and various three-
site terms causing a recombination of doublons and holes, all of the order of T 2/U . Neglecting doubly occupied sites
rather than singly occupied ones after this general transformation actually leads to the widely known t-J model,
which is appropriate below half-filling, while the doublon model is appropriate at almost complete filling. In both
cases the change of the double occupancy is suppressed with large U .

3



(I)

(a)

site i

“D”(b)

“B”(c)

(II)

U = 0

U = 6

D

B

(III)

Figure 1.2.: (I) Term diagram of the two steps of Auger electron spectroscopy (AES), emission of
the core hole followed by the emission of the Auger electron. (II) Real-space sketch
of the processes of the two valence holes in a full band (n = 2): (a) initial state, (b)
propagation of the bound doublon contributing to the satellite, (c) decay of the doublon
and independent propagation of the electron holes contributing to the band-like part.
(III) The spectrum for the full band and U = 6, with the band-like part (“B”) and the
satellite (“D”) indicated; noninteracting case U = 0 for comparison.

is compared to the position of the exact eigenstates in fig. 1.1 and one can see that the approximation
gets better with increasing U , and becomes quite good when U exceeds the bandwidth W = 4T .
In fact, the dispersion of the bound state can also be exactly reproduced for all U within the Bethe
ansatz, which leads to more complicated equations and will be introduced later in chapter 3.7. Note
also that the overall hopping sign in (1.9) is positive, for U > 0 this leads to an inverted band shape
with a maximum at the Γ-point.

The physics of doublons is an implicit driving force of the effects emerging within the Hubbard
model. However, with the advent of ultracold atomic lattices, it has become possible to create and
observe them in a much more direct fashion. Namely, one can directly prepare one or several dou-
blons

∏
i d

†
i

∣∣0⟩ in the middle of the lattice using a trapping potential and then switch it off, letting
the system evolve in time, and look at the double occupancy d (t) =

⟨
Ψ(t)

∣∣ni↑ni↓
∣∣Ψ(t)

⟩
. Several

predictions of the resulting behaviour have been made [ Kajala, Massel, and Törmä 2011; Hofmann
and Potthoff 2012; Langer et al. 2012; Boschi et al. 2014].

1.2. The two-hole spectral function

On the other hand, doublons also play a major role in a different kind of experiment, namely high-
resolution core-valence (CVV) Auger electron spectroscopy (AES). The setup is as follows: We need
a system with localized core states beside a valence band. A high-frequency photon is absorbed
by a core electron, allowing it to leave the solid. The resulting core hole is subsequently filled by
an electron from the valence band. The energy released by this process is transferred to another
electron (the Auger electron) which is also emitted from solid and whose kinetic energy is measured
(see fig. 1.2(I)).
One notices that while photoemission is mediated by a one-body term of the type a†k,σfiσ (where f
denotes the core electron and a the high-energy scattering state) because classical light is just an
external potential for the quantum system, the Auger transition requires a two-body term of the
type a†k,−σf

†
iσciσci−σ and is in essence just Coulomb interaction between particular orbitals.

Assuming that (i) this Coulomb term is weak, (ii) that there are no further interactions between
the core and the valence states, as well as (iii) between the high-energy states and the rest of the
system; and applying the usual linear-response theory, one arrives at the following Fermi’s golden
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rule formula for the AES intensity in terms of a two-hole spectral function (see chapter 2.2 for more
details)3:

I (ω) =
∑
n

∣∣⟨n∣∣di0∣∣0⟩∣∣2δ (ω − (E0 − En)) . (1.11)

The core states and the high-energy states drop out and one is simply left with a doublon annihilator
di0 = ci0↑ci0↓ applied to the ground state

∣∣0⟩, while the sum goes over all the eigenstates within the
(N − 2)-particle subspace

∣∣n⟩. Furthermore, ω corresponds experimentally to the kinetic energy of
the Auger electron.

Since the electrons are emitted rather than absorbed in the spectroscopical setup, we now need to
think in terms of holes rather than particles, so that an empty site will now be called by the name
“doublon”. The two-particle case described above is now given by the full band n = 2 with two
holes, rather than an empty band n = 0 with two electrons.

With just the δ-function term, I (ω)would measure out the positions of eigenenergies of the system.
With the addition of thematrix element, these obtain a spectral weight. Theweight is largewhenever
(i) di0

∣∣0⟩ gives a large contribution, that is when there is a sufficient amount of doubly occupied
sites in the ground state; and (ii) whenever the initial state di0

∣∣0⟩ has substantial overlap with an
eigenstate, meaning that the eigenstate has a contribution with a doublon at site i0.

TheAES spectrum for the n = 2 case was first explained by Cini and Sawatzky [ Cini 1977; Sawatzky
1977] and is basically given by theK-summation of the eigenenergies in fig. 1.1 with the appropriate
weights, see fig. 1.2(III) (later in more detail figs. 4.1(a) and 4.1(b)). That is, one obtains a broad
continuum of width 2W = 8T termed “band-like part” stemming from the scattering states and
a “satellite” stemming from the bound state, whose finite width (given by J = 4T 2/U ) is due to
dispersion. Fig. 1.2(II) shows these elementary processes. Since the satellite is separated by about U
from the scattering states, it can be resolved forU ≳ W = 4T . The band-like part is what one would
expect for a non-interacting system described by band theory [ Lander 1953]. Not surprisingly, the
spectral weight is distributed such that, for largeU , most of it is taken by the satellite, while the band-
like part is veryweak, reflecting the high overlap of the initial state with the bound eigenstates. Thus,
unexpectedly from the point of view of band theory, the spectrum looks almost like the spectrum
of an atom, with a relatively sharp line only broadened by the doublon dispersion. Realistically, of
course, a multiplet is seen [ Haak, Sawatzky, and Thomas 1978].

Note that the doublon can decay in two ways: For short times the argument that there is no phase
space for final states to transition into under energy conservation is invalid, because there sim-
ply is no energy conservation due to the uncertainty principle. On the other hand, for very long
times, a doublon excitation can eventually decay in a high-order process involving many interme-
diate excitations of lower energy. Evidence shows that its lifetime is exponential in the interaction,
τ ∼ exp (U) [ Strohmaier et al. 2010]. While this decay process is interesting in the context of
the question of thermalization of isolated systems, the short-time decay actually the one which is
relevant for spectroscopy. To understand this, note that eq. (1.11) can also be written as a Fourier
integral (see chapter 2.2.1 below):

I (ω) = lim
t→∞

1

2πt

∑
n

∣∣∣∣∫ t

0

dt′ eiωt
′⟨
n
∣∣ei(H−E0)t′di0

∣∣0⟩∣∣∣∣2 . (1.12)

The dominant contribution to the integral that produces the broad features in the spectrum comes
from short times. The long-time decay should only become visible in the fine-structure at very

3The chemical potential is neglected for the simplicity.
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high ω-resolution. Thus, formula (1.12) establishes the connection between the short-time doublon
dynamics and Auger electron spectroscopy. Note that it cannot be written as an expectation value
of an observable in the state

∣∣Ψ(t)
⟩
and thus provides information complementary to the dynamics.

While the Auger spectrum of the full band has been understood a long time ago, a reliable extension
to intermediate fillings has been missing up to now. A diagrammatic approach has been applied to
the almost full band [ Cini 1979], by using the hole density as a small parameter, but going to lower
fillings constitutes a difficult many-body problem with the additional complication that (1.11) is a
two-particle Green’s function, which is not accessible to every theoretical method.

What can we imagine to happen to a doublon in presence of other doublons and singly occupied
sites? In general, we would expect that decay channels should open up, resulting in a finite lifetime
and additional broadening. At the same time, the eigenstates of a one-dimensional system are known
to consist out of spinon and holon excitations which we expect as the final products of the decay. On
the other hand, a neighbouring singly occupied site can actually help the doublon delocalize, as the
propagation of the double occupancy to such a site does not cost an energy ofU anymore. These two
tendencies are thus in competition with each other. Furthermore, the whole picture is additionally
complicated by the attractive interaction between doublons in the effective Hamiltonian (1.9).

1.3. Objectives

The conglomerate of the above-mentioned questions connected with the physics of doublons in a
many-body environment constitutes the focal point of this thesis. The problem will be approached
using the tools of (i) the density-matrix renormalization group (DMRG), which is a way to compress
the wavefunction yielding numerically exact results, works especially well in one spatial dimension,
and is limited by entanglement growth; (ii) exact diagonalization, which works with the full wave-
function, thus being limited to small Hilbert spaces; and finally (iii) the Bethe ansatz, a method to
construct and interpret the excitation energies of the one-dimensional Hubbard model, providing
us with invaluable information on what is happening in the system. These methods are described
in chapters 3.1, 3.6 and 3.7, respectively. Note that some aspects of the physics are manifestly one-
dimensional — as the decay of the doublon into spinons and holons; but others — as the appearance
of doublonic bound states as such — are not.

In chapter 4.1, the two-hole spectral function (1.11) will be analysed for all fillings. In chapter 4.2, it
will be interpreted with the help of the Bethe ansatz, revealing the decay channels of the doublon
in one dimension. In chapter 5.1, the real-time dynamics of the doublon excitation di0

∣∣0⟩ will be
investigated, again for all intermediate fillings. Finally, in chapter 6, the idea of pump-probe setups
for Auger spectroscopy will be discussed and proposed. Hereby, the system is pumped into a non-
equilibrium state before or during the core-hole decay, with the resulting dynamics providing yet
another perspective on the problem.

Publications associated with this work are summarized in appendix D.

1.4. Bound states in spin dynamics

The concepts emerging within the physics of doublons that have been outlined reappear in different
contexts as well and are very helpful to understand the underlying physics. For example, typical
spintronics applications involve arrays of impurity spins on a metallic substrate which are switched
by external magnetic fields. The simplest model to understand the resulting dynamics and relaxation
times is the one of a single impurity spin coupled to a one-dimensional chain
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H = Jimp-sub S · si0 − B · S+HHubbard, (1.13)

where Jimp-sub is the exchange coupling, si0 is the spin of the electron at lattice site i0 andHHubbard is
the previously introduced Hubbard Hamiltonian.

To initiate the dynamics, one can polarize the impurity spin in x-direction (B = (Bx, 0, 0) with
Bx → ∞) and then suddenly switch the magnetic field in z-direction, B = (0, 0, 1). The spin
will now start to align itself to the field, with the excess energy being carried off by the substrate
electrons. The process is completed once the system is locally (around i0) in its ground state. If
the substrate is interacting, one would expect a faster relaxation since scattering processes help
to dissipate the energy. However, increasing the Hubbard-U at half filling eventually leads to a
reduction of the bandwidth which becomes of the order of J = 4T 2/U and thus much smaller than
the magnetic energy. In this case, the magnetic energy cannot efficiently dissipate into the chain and
the relaxation of the spin is “frozen” at an intermediate value, very similar to the case of doublons
where the double occupancy is frozen at an intermediate value different from the ground-state one
(see chapter 5.1 for more details).

Conversely, we can leave the substrate non-interacting (U = 0), but increase the value of the product
Beff = Jimp-subS. This is, for example, the case if one increases the spin quantum number S in order
to examine the role of quantum spin effects (where S →∞ is the classical limit). WhenBeff exceeds
a critical value, two bound states split off symmetrically from the conduction band. (Note that if
i0 is positioned in the middle of the chain, an arbitrarily small perturbation creates a bound state,
but if i0 is at the edge, a critical value is required, similar to the behaviour of a higher-dimensional
system.) Since the wavefunction of the bound state is exponentially suppressed in the bulk, the site
i0 effectively decouples from the rest of the chain. This can be observed within DMRG by looking
at the corresponding entanglement entropy which becomes small. The dynamics in this case is
effectively captured by a two-spin model (S and si0), with only weak perturbative coupling to the
rest of the chain. Once again, the appearance of a bound state inhibits a full relaxation.

Spin dynamics is, however, not the primary focus of this work. Therefore, only the relevant pub-
lications are included in chapter 5.2 without any broader discussion (See also appendix D for the
references.) The author’s contribution in this collaboration consisted in writing and optimizing the
DMRG code and participating in the interpretation of the results.
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2. Theory

2.1. Model

2.1.1. The Hubbard model

Throughout this work, we will be dealing with the Hubbard model [ Gutzwiller 1963; Kanamori
1963; Hubbard 1963], given by the Hamiltonian

HHub = −T
∑
⟨ij⟩σ

(
c†iσcjσ + h.c.

)
+ U

∑
i

ni↑ni↓, (2.1)

where c†iσ is the creation operator of an electron with spin σ in the orbital i, obeying the fermionic
anticommutation relations

{
cα, c

†
β

}
:= cαc

†
β + c†βcα = δαβ as well as

{
cα, cβ

}
=
{
c†α, c

†
β

}
= 0;

and niσ = c†iσciσ is the occupancy operator. The angled bracket signifies that the summation is
carried out over nearest-neighbours only (with the convention where each bond is counted once).
The parameter U quantifies the local Coulomb interaction between the electrons of the two spin
species.

It is a convenient common practice to set the T = 1, i.e. to measure all energies in units of T and
all times in units of T−1 (or ℏ/T , with ℏ = 1). This will be done in this work as well, although it is
sometimes practical to redundantly keep the T in order to clarify the dimensionality.

Since the hopping does not flip the spin of an electron and the interaction is between the densities
only, the total amount of spin-up and spin-down electrons,

N̂σ =
∑
i

niσ, (2.2)

is conserved within the Hubbard model: [
H, N̂σ

]
= 0. (2.3)

We can thus classify the eigenstates accordingly, writing
∣∣n,N↑, N↓

⟩
where the lack of the circumflex

signifies the eigenvalue: N̂σ

∣∣n,N↑, N↓
⟩
= Nσ

∣∣n,N↑, N↓
⟩
. Note that the conservation of N↑ and N↓

implies the conservation of both the total particle number,

N̂ = N̂↑ + N̂↓, (2.4)

and the total magnetization:

Sz =
1

2

(
N̂↑ − N̂↓

)
. (2.5)
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Going further, we can also define the spinflip operators

S+ =
∑
i

c†i↑ci↓,

S− =
∑
i

c†i↓ci↑
(2.6)

along with the x- and y-components of the spin as well:

Sx =
1

2

(
S+ + S−) ,

Sy =
1

2i

(
S+ − S−) , (2.7)

which obey the usual SU(2) algebra
[
Sα, Sβ

]
=
∑

γ ϵαβγS
γ . The Hubbard Hamiltonian commutes

with all of the components of the vector S = (Sx, Sy, Sz), which constitutes its spin-SU(2) sym-
metry in addition to the U(1) symmetry cα → e−iΛcα leading to the conservation of the charge N .
Since S2 and Sz can be diagonalized simultaneously, we can in principle work in a basis labelled by∣∣n,N, S,M⟩, where S (S + 1) is the eigenvalue of S2 andM is the eigenvalue of Sz , although this
is difficult to achieve in practice.

Note that if an external magnetic field is present, coupling to the z-component of the spin,

HHub+B = HHub −BSz, (2.8)

the Hamiltonian no longer commutes with Sx and Sy, whereby the SU(2) symmetry is broken.

Unless spontaneous symmetry breaking takes place, the ground state for B = 0 is a spin singlet
with N↑ = N↓, so that we can just write

∣∣n,N⟩ without loss of information. The filling n := N/L
can be controlled by introducing a chemical potential µ:

H := HHub − µN̂. (2.9)

In presence of B, the ground state is obviously ferromagnetic with N↑ > N↓.

2.1.2. Charge-SU(2) symmetry

Apart from this spin-SU(2) symmetry, the Hubbard model also exhibits a “hidden” charge-SU(2)
symmetry [ Yang 1989; Zhang 1990]. Namely, introducing the η-operator

η =
∑
i

(−1)i ci↑ci↓, (2.10)

one can easily verify that it is an eigenoperator of HHub and N̂ 1:

1The lattice must be bipartite, so that the operator is in fact η =
∑

i∈A ci↑ci↓ −
∑

i∈B ci↑ci↓, where A and B are the
two sublattices.
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[
η,H

]
= Uη,

[
η, N̂

]
= 2η. (2.11)

Comparing (2.10) with the spinflip operators (2.6), it is apparent that η and S− are related via a
spin-asymmetric and staggered particle-hole transofmration (“Shiba transformation” [ Essler et al.
2005]):

U †
shci↑Ush = (−1)ic†i↑. (2.12)

This means that we can obtain another charge-SU(2) algebra with a vector T, sometimes called
“isospin”:

Tx =
1

2
(η + η†),

Ty =
1

2i
(η − η†),

Tz =
1

2
(L− N̂).

(2.13)

The full HamiltonianH only comutes with T for µ = U/2, which corresponds to half filling n = 1.
In this case, T and S also commute among each other [ Essler et al. 2005], altogether giving rise to
a charge-U(1) × spin-SU(2) × charge-SU(2) symmetry.

Off half filling, it is instructive to decomposeH into

H = H0 − (U − 2µ)Tz + const, (2.14)

whereH0 = H − (U/2)N̂ is the charge-SU(2)-symmetric part ([T,H0] = 0), and where the second
term now looks just like a homogeneous field coupling to the z-component of T. This field explic-
itly breaks the charge-SU(2) symmetry and thus isospin-polarizes the ground state. We still have
[T2,H] = 0 and [Tz,H] = 0 (but [η,H] ̸= 0), so that the eigenstates can be characterized by the
isospin quantum numbers (T,MT ) corresponding to (T2, Tz). For fillings above half filling, we have
µ > U/2, and the field term leads to a state with the isospin pointing into the negative-z direction,
i.e.,MT = −T . The converse is true below half filling.

An intuitive way to think about isospin is that it pertains to empty and doubly occupied sites in
the same way the usual spin operators pertain to singly occupied sites with either an up or down
electron. Above half filling we necessarily have more doubly occupied sites than empty ones in the
same way we have more spin-up sites than spin-down ones in the presence of an external magnetic
field.

2.1.3. Extensions

One often extends the Hubbard model to include the Coulomb interaction between nearest neigh-
bours as well [ Jeckelmann 2002]:

Hext = HHub + V
∑

⟨ij⟩σσ′

niσnjσ′ . (2.15)
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This will only have marginal relevance in the present work and shall come into play when analysing
multiplons in chapter 4.1.

When discussing Auger electron spectroscopy, we will need core states in addition to the valence
band. We assume that they are sufficiently localized, so that any hopping to neighbouring lattice
sites can be neglected:

Hcore = Ec

∑
iσ

nf
σ + Ucc

∑
i

nf
i↑n

f
i↓, (2.16)

where Ec < 0 is the core atomic level and nf
σ = f †

iσfiσ. One can also include a core-valence
interaction of Hubbard type:

Hcore-val = Ucv

∑
iσσ′

nf
iσn

c
iσ′ . (2.17)

The electrons emitted during the spectroscopic process go into scattering states, which are non-
interacting:

Hscat =
1

L

∑
kσ

ϵ (k) a†kσakσ. (2.18)

Thus, core-level photoemission is mediated by the quadratic term

Hphoto =
1

L

∑
ikσ

(
dika

†
kσfiσ + h.c.

)
, (2.19)

where dik is the dipole matrix element; while AES is mediated by a quartic Coulomb interaction
between the three bands:

HAuger =
1

L

∑
ikσ

(
UA
ikf

†
i,−σa

†
kσci,−σciσ + h.c.

)
(2.20)

We will follow the usual procedure of setting the matrix element to a constant:

UA
ik ≈ UA = const. (2.21)

2.1.4. Continuous representation of scattering states

For the practical calculations it is in fact quite helpful to switch to a continuous notation of the
scattering states in the following fashion:

Hscat =

∫
dϵ ρ (ϵ) ϵ a†σ (ϵ) aσ (ϵ) , (2.22)

where

a†σ (ϵ) =
1

ρ (ϵ)

1

L

∑
k

δ (ϵ− ϵ (k)) a†kσ (2.23)
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now creates a particle with energy ϵ and

ρ (ϵ) :=
1

L

∑
k

δ (ϵ− ϵ (k)) (2.24)

is the density of the scattering states, which we will later assume as being constant. The anticom-
mutation relation for the a-operators reads as follows:

{
a (ϵ) , a† (ϵ′)

}
=

1

ρ (ϵ)
δ (ϵ− ϵ′) . (2.25)

Clearly, when going from a description with a wavevector k to the energy ϵ, some information is
lost, since contributions on the same energy shell ϵ (k) are not distinguished. But this is information
we will not need anyway, as long as we deal with energy-resolved spectra, and not momentum-
resolved ones. For instance, if

⟨
nk
⟩
is only a function of ϵ (k), we can sum up over this energy shell

and present the result as a function of ϵ = ϵ (k). Thus, we obtain the same result as we would when
using the a (ϵ)-operators in the first place:

⟨
n (ϵ)

⟩
=

1

ρ (ϵ)

1

L

∑
k

⟨
nk
⟩
δ (ϵ− ϵ (k)) . (2.26)

2.1.5. Coupling to the electromagnetic field

In first quantization, the coupling of a system of particles with equal charges q and equal massesm
to a classical electromagnetic field described by the vector potentialA (r, t) is given by the following
Hamiltonian:

H =

Nel∑
i=1

1

2m
(pi −A (r, t))2 + V ({ri}) +Hrad, (2.27)

where the termHrad is the Hamilton function of the field itself. Since we assume that the back-action
of the system on the field is negligible, it does not play an important role here. The equations of
motion derived from (2.27) are the Lorentz force for the particles and a wave equation for A. The
scalar potential ϕ (r) does not appear explicitly, since its equation of motion (the Poisson equation)
can be solved independently and yields the Coulomb interaction between the electrons, which can
be absorbed into the potential V ({ri}).

Unless the wavelength of the radiation is too small, a reasonable approximation is that A (r, t) does
not vary much within the spatial extent of the system, so that the vector potential only depends on
time. This is known as the “dipole approximation”:

A (r, t) ≈ A (t) . (2.28)

TheHamiltonian (2.27) is difficult to represent in second quantization for a lattice model. However, it
turns out that as long as the dipole approximation is valid, the interaction can be rewritten by using
a time-dependent gauge transformation [ Savasta and Girlanda 1995; Scully and Zubairy 1997;
Rzązewski and Boyd 2004]. In order for the Schrödinger equation to remain invariant under such a
transformation, it must have the following form, as is easy to check by inspection:
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∣∣Ψ′ (t)
⟩
= U † (t)

∣∣Ψ(t)
⟩
,

H ′ (t) = U † (t)H (t)U (t)− iU † (t) U̇ (t) .
(2.29)

Let us now choose

U (t) := eiqA(t)
∑Nel

i=1 ri . (2.30)

Using the identity

eXY e−X =
∑
m

1

m!

[
X, Y

]
m

(2.31)

specifically for the canonical commutation relation
[
r,p
]
= i, one can show that it holds in general

that

e−if(r)g (r,p) eif(r) = g (r,p+∇f (r)) , (2.32)

where f and g are arbitrary functions of the position and momentum. This means that the momen-
tum shift in the Hamiltonian is cancelled by the transformation:

H ′
0 = U † (t)H (t)U (t) =

Nel∑
i=1

1

2m
p2
i + V ({ri}) . (2.33)

However, a new interaction term arises from the time derivative of U (t):

Hd = −iU † (t) U̇ (t) = qȦ (t)

Nel∑
i=1

ri = −E (t)

Nel∑
i=1

qri = −E (t)

Nel∑
i=1

di, (2.34)

where di = qri is the dipole moment of the i-th electron and E (t) = −Ȧ (t) is the electric field.

Now it is straightforward to bring the new Hamiltonian H ′ = H ′
0 + V + Hd into a lattice form in

second quantization. Let us furthermore specify the problem to a one-dimensional chain or a ring.
Working in cylindrical coordinates (r, ϕ, z), we want a spatially constant electric field in ϕ-direction
(in x-direction in the case of a chain):

E (t) = E (t) eϕ,x = −∂A (t)

∂t
eϕ,x. (2.35)

With this, the Hamiltonian reads:

H ′ = H ′
0 + V +Hd = −T

∑
jσ

(
c†j+1,σcjσ + h.c.

)
+ V + E (t)

∑
j

jnj. (2.36)

We now perform the inverse rotation of (2.30) in second quantization, given by [ Eckardt 2016]:

U (t) = e−iqA(t)
∑

j jnj . (2.37)
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It is easy to see that the dipole term is canceled: −iU † (t) U̇ (t) = −Hd. Using once more (2.31),
now with

[
ci, nj

]
= ciδij , it is straightforward to show that

U † (t) cjU (t) = e−iqA(t)jcj, (2.38)

so that the interaction with the field is shifted to the hopping term:

H0 = U † (t)H ′
0U (t) = −T

∑
jσ

(
eiqA(t)c†j+1,σcjσ + e−iqA(t)c†j,σcj+1,σ

)
. (2.39)

Thus, electrons hopping the forward direction receive a phase eiqA(t), those hopping backward
e−iqA(t). This is known as the “Peierls substitution”. All terms which are local or can be written
in terms of the occupancy operator nj (and are contained in V ) are unaffected by the transforma-
tion.

Note that while the two gauges should give identical results if the model is solved exactly, this is
no longer the case when approximations are applied, so that the one or the other may prove to be
much better.

2.2. Derivation of the spectroscopic formulae

2.2.1. Fermi’s golden rule and spectroscopic setups

Let us at first establish Fermi’s golden rule in a very general approach. At first, we need a basic
division of the problem into a systemHsys described by somemodel and high-energy scattering states
Hscat into which the electrons are emitted. Let us proceed to work in the convenient continuous-
energy formalism of eq. (2.22). Furthermore, we have a term V , which is the only one that couples
Hsys and Hscat, thereby driving the transition:

H = Hsys +Hscat + V = H0 + V. (2.40)

The result of first-order perturbation theory in V results in the following expression for the wave-
function, with a correction term linear in V (see appendix B):

∣∣Ψ(t)
⟩
= e−iH0t

∣∣Ψ(0)
⟩
− ie−iH0t

∫ t

0

dt′ eiH0t′V e−iH0t′
∣∣Ψ(0)

⟩
. (2.41)

We assume that the coupling V has the general formwhere some transition operator of the system T
leads to a hopping into the high-energy state a† (ϵ)with some coupling strength λ, which is assumed
to be independent of the system parameters and the scattering state energy. Hence:

V = λA†T + h.c., (2.42)

where

A† =

∫
dϵ ρ (ϵ) a† (ϵ) . (2.43)
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Since Hsys and Hscat are uncoupled in H0 (this has been taken care of by the first-order pertur-
bation theory in V ), the eigenstates of H0 are given by product states

∣∣n, ϵ⟩ ≡ ∣∣ϵ⟩scat∣∣n⟩sys =

a† (ϵ)
∣∣0⟩scat∣∣n⟩sys, so that H0

∣∣n, ϵ⟩ = (En + ϵ)
∣∣n, ϵ⟩.

Finally, the measured spectrum is just given by tracing out the unobserved system degrees of free-
dom from the overlap with the wavefunction:

I (ϵ, t) =
∑
n

∣∣⟨n, ϵ∣∣Ψ(t)
⟩∣∣2 =∑

n

∣∣∣∣⟨n, 0∣∣a (ϵ) e−iHt

∫ t

0

dt′ eiHt′
∫
dϵ′ ρ (ϵ′) a† (ϵ′)Te−iHt′

∣∣0, 0⟩∣∣∣∣2 .
(2.44)

Since the scattering states are empty in the initial state, a (ϵ)
∣∣0⟩scat∣∣0⟩sys = 0, we can commute

the a-operators past each other, letting them cancel and picking up a phase of ϵ in the exponential.
Finally, the time integral can be carried out:

I (ϵ, t) =
∑
n

∣∣∣∣⟨n∣∣ ∫ t

0

dt′ ei(ϵ+En−E0)t′T
∣∣0⟩∣∣∣∣2

=
∑
n

∣∣⟨n∣∣T ∣∣0⟩∣∣2 ∣∣∣∣ei(ϵ+En−E0)t − 1

ϵ+ En − E0

∣∣∣∣2
=
∑
n

∣∣⟨n∣∣T ∣∣0⟩∣∣2 2− 2 cos
[
(ϵ+ En − E0) t

]
(ϵ+ En − E0)

2

=
∑
n

∣∣⟨n∣∣T ∣∣0⟩∣∣2(sin
[
(ϵ+ En − E0) t/2

]
(ϵ+ En − E0) /2

)2

(2.45)

Using the relation
(

sin(xt/2)
x/2

)2 t→∞
≈ πt δ (x/2) = 2πt δ (x), we see that the transition probability

grows linearly for large times. This is expected, since we basically never stop driving the transition
induced by V . However, the ratio j (ϵ) := lim

t→∞
I (ϵ, t) /t does not diverge and can be interpreted as

a steady-state current in the detector resulting from a steady beam of incident photons [ Freericks,
Krishnamurthy, and Pruschke 2009]:

j (ϵ) = 2π
∑
n

∣∣⟨n∣∣T ∣∣0⟩∣∣2 δ (ϵ+ En − E0) . (2.46)

It is easy to check that, up to constant prefactor, the same result is obtained for a time-dependent
transition operator which is harmonic in time, V (t) = V0 cos (Ωt), corresponding to a continuous
laser beam, and for a frequency Ω which is high enough, so that only the resonant term Ω − ∆E
contributes, while the highly oscillating one with Ω+∆E can be neglected (rotating wave approxi-
mation). As an additional change, energies are then trivially shifted by Ω.

A different spectroscopic setup is given by a pulse, where V (t) = V0 cos (Ωt) exp
(
− (t− t0)2 /2σ2

t

)
is now damped by a Gaussian. This means that I (ϵ, t) does not diverge anymore, but approaches
a saturated value. In this case, the total intensity I (ϵ) = limt→∞ I (ϵ, t) is the quantity to look at.
It will be more or less smeared out depending on the temporal duration of the pulse σt due to the
uncertainty principle.

One could also follow the spectra as a function of time, without performing the limit t → ∞.
However, this just gives the somewhat trivial rise of energy conservation and sharpening of the
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spectral features. Although a temporal resolution is introduced in pump-probe experiments, it is
not due to measuring I (ϵ, t) as function of both variables, but rather due to having two pulses with
a delay ∆t hitting the system and still propagating the wavefunction to infinity, thereby obtaining
a spectrum for each pump-probe delay: I (ϵ,∆t) = limt→∞ I∆t (ϵ, t).

2.2.2. AES and APECS: general

In this chapter, the formulae for the Auger electron spectroscopy (AES) and Auger-photoelectron co-
incidence spectroscopy (APECS) will be derived. The former has already been described in the intro-
duction, the latter just corresponds to the setup where the kinetic energy of the photoelectron ϵp is
measured in coincidence with the Auger electron ϵA, producing two-dimensional data. Obviously,
the AES spectrum follows from the APECS spectrum just by integrating over ϵp2. The derivation
will be attempted as general as possible, so as to cover both the pump-probe case and the time-
homogeneous (equilibrium) limit.

The Hamiltonian we are working with has the following general shape:

H = H0 + Vc + Vp = Hc + Vp. (2.47)

As before, H0 = Hsys +Hscat. In the pump-probe case, H0 and Vp have explicit time dependencies
for the pump and the probe pulses, respectively:

H0 = H0 (t) ,

Vp = Vp (t) .
(2.48)

Vc is the Coloumb term driving the transition, given by:

Vc = UA

∑
iσ

∫
ρ (ϵ) dϵ a†−σ (ϵ) f

†
i,σciσci,−σ + h.c. (2.49)

Note that the core levels are always all filled in the ground state, so that we have Vc
∣∣Ψ(0)

⟩
= 0,

meaning that there can be no Coloumb transition to scattering states without previous photoemis-
sion. Furthermore, since both the scattering states (and in certain limits also the core states) will be
eliminated by commutation as was done in the derivation of Fermi’s golden rule above, it is useful
to define the following three-body and two-body transition operators for the AES/APECS case:

V (3)
c := UA

∑
iσ

f †
iσciσci,−σ,

V (2)
c := UA

∑
iσ

ciσci,−σ.
(2.50)

V
(3)
c appears in after the elimination of the scattering states, V (2)

c in the case of vanishing core-
valence interaction after the elimination of the core states.

Vp is dipole term driving the initial photoemission, given by:
2One can also do the converse case and integrate over ϵA to obtain the core-level photoemission spectrum shaken up

by Auger recombinations.
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Vp (t) = s (t) d0
∑
iσ

∫
ρ (ϵ) dϵ a†σ (ϵ) fiσ. (2.51)

Here, s (t) is the dimensionless envelope function of the pump pulse inducing the photoemission,
usually an oscillating term damped by a Gaussian.
As before, elimination of the core states in the AES/APECS case will lead to the following reduced
operator:

V (1)
p (t) = s (t) d0

∑
iσ

fiσ. (2.52)

Of course, the dipole matrix element is in general dependent on all the orbitals, but it is common
practice to set it to a constant: di (ϵ) ≈ d0 = const.

It will always be assumed that the Auger electron and the photoelectron are distinguishable particles
due to the separation of their momenta and energies (kA ̸= kp) and that they do not interact. Energy
exchange between the two (“postcollision interaction”) can be of importance as well, leading to the
effect of “chirping” [ Schütte et al. 2012], but is not the focus of this work.

Let us start with the first-order time-dependent perturbation theory in Vp by expanding the full
propagator (see appendix B for a detailed derivation):

∣∣Ψ(t)
⟩
≈ Uc (t, 0)

∣∣Ψ(0)
⟩
− i

t∫
0

dt′ Uc (t, t
′)Vp (t

′)Uc (t
′, 0)

∣∣Ψ(0)
⟩
. (2.53)

Here, the time evolution operator Uc (t, t
′) describes the dynamics with the HamiltonianHc includ-

ing the transition Coulomb term. Without explicit time dependence, it is just given by

Uc (t, t0) = e−iHc(t−t0). (2.54)

Let us also introduce a shorthand notation for the wavefunction propagated to t following the ap-
plication of Vp at t′ using the subscript p:

∣∣Ψp (t
′)
⟩
= Uc (t, t

′)V (1)
p U0 (t

′, 0)
∣∣Ψ(0)

⟩
. (2.55)

In the time-homogeneous case, the application of U0 (t
′, 0) just gives a factor of e−iE0t′ , of course.

2.2.3. AES and APECS: general

For the overlap of
∣∣Ψ(t)

⟩
(eq. (2.53)) with an eigenstate we obtain:

⟨
n, ϵA, ϵp

∣∣Ψ(t)
⟩
= −i

t∫
0

dt′ s (t′)
⟨
n, ϵA

∣∣Ψp (t
′)
⟩
e−iϵp(t−t′). (2.56)

The APECS spectrum results by taking the modulus squared and tracing over the system, using∑
n

∣∣n⟩⟨n∣∣ = 1sys:
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IAPECS (ϵA, ϵp, t) =
∑
n

∣∣⟨n, ϵA, ϵp∣∣Ψ(t)
⟩∣∣2

=

t∫
0

dt′
t∫

0

dt′′ s (t′) s (t′′)
⟨
Ψp (t

′′)
∣∣ϵA⟩⟨ϵA∣∣Ψp (t

′)
⟩
eiϵp(t

′−t′′).

(2.57)

This formula can be used as the starting point for further approximations.

2.2.4. AES: non-perturbative

The AES spectrum is obtained from the APECS one simply by integrating out the photoelectron
energies:

IAES (ϵA, t) =

∫
dϵp ρ (ϵp) IAPECS (ϵA, ϵp, t) . (2.58)

Assuming a constant density of the scattering states, ρ (ϵp) ≈ ρ
(0)
p = const, the integral over the

exponential function just gives 2πρ(0)p δ (t′ − t′′). Taking the limit t→∞, we thus get:

IAES (ϵA) = 2πρ(0)p

∞∫
0

dt′ s2 (t′)
∣∣⟨ϵA∣∣Ψp (t

′)
⟩∣∣2 = 2πρ(0)p

∞∫
0

dt′ s2 (t′)
⟨
Ψp (t

′)
∣∣n (ϵA) ∣∣Ψp (t

′)
⟩
,

(2.59)

with n (ϵA) = a† (ϵA) a (ϵA).

This is a one-step AES formula3, which is still non-perturbative in the Auger term Vc and is also valid
for the pump-probe case. It has a very intuitive form: The occupancy number of the scattering states
at a given energy n (ϵA) is evaluated in the time-dependent wavefunction

∣∣Ψp (t
′)
⟩
and integrated,

sampled by the pump pulse envelope s (t′).

2.2.5. AES: perturbative

We can now apply perturbation theory in the Auger term Vc as well, by expanding the propagator
Uc (t, t

′):

Uc (t, t
′) ≈ U0 (t, t

′)− i
t∫

t′

dt′′ U0 (t, t
′′)Vc U0 (t

′′, t′) . (2.60)

The Auger spectrum becomes:

3“One-step” means that whole process from core-hole production to Auger auto-ionization is treated as one chain of
time propagations. A two-step approach would start with an existing core hole and the valence band in its ground
state. This is exact if the valence band is completely full or there is no interaction between the core and the valence
states. Otherwise it is an approximation which assumes that the valence band relaxes faster than the core hole
lifetime.
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IAES (ϵA, t) = 2πρ(0)p

t∫
0

dt′ s2 (t′)

t∫
t′

dt′′
t∫

t′

dt′′′
⟨
Ψ(0)

∣∣U0 (0, t
′)V (1)†

p U0 (t
′, t′′)V †

c U0 (t
′′, t)

∣∣ϵA⟩×
×
⟨
ϵA
∣∣U0 (t, t

′′′)Vc U0 (t
′′′, t′)V (1)

p U0 (t
′, 0)

∣∣Ψ(0)
⟩
.

(2.61)

Since
∣∣ϵA⟩ is an eigenstate of Hscat and the system is now completely decoupled from the scat-

tering states due to the application of perturbation theory, we can apply time propagation to the∣∣ϵA⟩ states, giving U0 (t, t0)
∣∣ϵA⟩ = e−iϵA(t−t0)

∣∣ϵA⟩, after which none of the a/a†-operators ap-
pear in the exponentials. The remaining ones are in the Vc-terms and can be commuted out using
aσ′ (ϵ′A) a

†
σ (ϵA)

∣∣0⟩ = 1/ρ (ϵA) δ (ϵA − ϵ′A)
∣∣0⟩ to get the reduced V (3)

c introduced above.
All of this leads to:

IAES (ϵA, t) = 2πρ(0)p

t∫
0

dt′ s2 (t′)

t∫
t′

dt′′
t∫

t′

dt′′′ e−iϵA(t′′−t′′′)×

×
⟨
Ψ(0)

∣∣U0 (0, t
′)V (1)†

p U0 (t
′, t′′)V (3)†

c U0 (t
′′, t′′′)V (3)

c U0 (t
′′′, t′)V (1)

p U0 (t
′, 0)

∣∣Ψ(0)
⟩
.

(2.62)

The scattering states are now completely eliminated and all time propagations pertain to the system
alone. This expression is as far as one can go in the general pump-probe case. A comparison with
(2.59) shows that it is actually not necessarily easier than the non-perturbative one, as the elimina-
tion of the scattering states is bought with an integration over three times instead of one, and the
corresponding propagations in between, even though the Hilbert space dimension is now reduced.
For the time-homogeneous case H0 ̸= H0 (t), the time evolution operator becomes U0 (t, t0) =
U0 (t− t0) = e−iH0(t−t0), so that we can substitute t1 = t′′ − t′, t2 = t′′′ − t′:

IAES (ϵA, t) = 2πρ(0)p

t∫
0

dt′ s2 (t′)

t−t′∫
0

dt1

t−t′∫
0

dt2 e
−iϵA(t1−t2)×

×
⟨
Ψ(0)

∣∣V (1)†
p U †

0 (−t1)V (3)†
c U0 (t1 − t2)V (3)

c U0 (t2)V
(1)
p

∣∣Ψ(0)
⟩
.

(2.63)

However, the divergences due to the application of the perturbation theory are now, with it having
been applied two times, more difficult to deal with. In particular, the equations do not really simplify
if we just set the pulse envelope to a continuous beam, s (t) = 1, because the upper limit of the
integrals over t1 and t2 is t − t′ and the t′-integral does not go away. They do simplify, however, if
we assume a finite pulse duration, so that s (t) is constant up to a time tp ≪ t. Then the limits can
be set to t and the t′-integral just gives a global factor of tp 4. We obtain:

IAES (ϵA, t) = 2πρ(0)p tp

t∫
0

dt1

t∫
0

dt2 e
−iϵA(t1−t2)×

×
⟨
Ψ(0)

∣∣V (1)†
p U †

0 (−t1)V (3)†
c U0 (t1 − t2)V (3)

c U0 (t2)V
(1)
p

∣∣Ψ(0)
⟩
.

(2.64)

4The duration can also be made infinitely small, so that s (t) = δ (t) (even though this is somewhat problematic in
terms of unit dimensions), which instantaneously creates a core hole at t = 0.
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Abbreviating

∣∣Ψcp (t)
⟩
= eiH0tV (3)

c e−iH0tV (1)
p

∣∣Ψ(0)
⟩
, (2.65)

the result can also be written compactly

IAES (ϵA, t) = 2πρ(0)p tp

t∫
0

dt1

t∫
0

dt2
⟨
Ψcp (t1)

∣∣Ψcp (t2)
⟩
e−iϵA(t1−t2). (2.66)

The propagated state in eq. (2.65) can be pre-calculated and saved at the intermediate points, which
allows for an efficient evaluation. Formula (2.66) was first derived by Gunnarson and Schönhammer
[ Gunnarsson and Schönhammer 1980].

The result can also be rewritten in the energy domain. Here, in order to avoid divergences, it is
helpful to introduce a finite core hole lifetime. This means that the Hamiltonian after the core hole
excitation obtains an imaginary part: H0 → H0− iΓ, with Γ > 0. This may seem ad hoc at first, but
can actually be rigorously derived in the case of the full band (see chapter 2.2.9). An approximation
is, however, that Γ is a real number in all circumstances, whereas it would become an operator
away from the full band in an exact calculation [ Gunnarsson and Schönhammer 1980] (see chapter
2.2.9). Inserting resolutions of unity in terms of eigenstates, we can carry out the integrals. The
exponentials now neatly vanish at the upper limit due to the finite Γ. Physically this means that the
Auger process will be over at some point, the core hole having been filled. One obtains:

IAES (ϵA) = 2πρ(0)p tp
∑
mnl

⟨
0
∣∣V (1)

p

†∣∣l⟩⟨l∣∣V (3)
p

†∣∣m⟩⟨m∣∣V (3)
p

∣∣n⟩⟨n∣∣V (1)
p

∣∣0⟩
(ϵA − iΓ− El + Em) (ϵA + iΓ− En + Em)

= 2πρ(0)p tp
∑
m

∣∣∣∣∣∑
n

⟨
m
∣∣V (3)

c

∣∣n⟩⟨n∣∣V (1)
p

∣∣0⟩
ϵA + iΓ− En + Em

∣∣∣∣∣
2

.

(2.67)

If V (1)
p

∣∣Ψ(0)
⟩
is an eigenstate of the system, we can simplify things further starting from (2.66).

This is the case when there is no interaction between the core and valence states or when the band
is completely filled. In this case, HV (1)

p

∣∣Ψ(0)
⟩
=
(
E

(N)
0 + (2L− 1)Ec

)
V

(1)
p

∣∣Ψ(0)
⟩
due to one

missing core hole (cf. eq. 2.165), where E(N)
0 is the ground state energy of the N -particle valence

band only. Applying the time evolution to this state and carrying out the time integral, one obtains:

IAES (ϵA, t) = 2πρ(0)p tp

t∫
0

dt1

t∫
0

dt2
⟨
Ψ(0)

∣∣V (2)
c

†
e
−i

(
ϵA+H−E

(N)
0 −(2L−1)Ec

)
(t1−t2)V (2)

c

∣∣Ψ(0)
⟩

= 2πρ(0)p tp
∑
n

∣∣⟨n∣∣V (2)
c

∣∣Ψ(0)
⟩∣∣2 2− 2 cos

([
ϵA + E

(N−2)
0 − E(N)

0 + Ec

]
t
)

(
ϵA + E

(N−2)
0 − E(N)

0 + Ec

)2 .

(2.68)

And then in the usual manner as was done to derive Fermi’s golden rule:

5The Coulomb repulsion between the core electrons Ucc only gives a trivial shift and will be ignored.
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jAES (ϵA) = lim
t→∞

IAES (ϵA, t)

t
= 4π2ρ(0)p tp

∑
n

∣∣⟨n∣∣V (2)
c

∣∣Ψ(0)
⟩∣∣2 δ (ϵA + E(N−2)

n − E(N)
0 + Ec

)
.

(2.69)

2.2.6. APECS: perturbative

Applying the same perturbation expansion (2.60) to the more general APECS case (2.57), we obtain
the following expression:

IAPECS (ϵp, ϵA, t) =

t∫
0

dt′
t∫

0

dt′′
t∫

t′

dτ ′
t∫

t′′

dτ ′′ s (t′) s (t′′) eiϵp(t
′−t′′)×

×
⟨
Ψ(0)

∣∣U0 (0, t
′′)V (1)†

p U0 (t
′′, τ ′′)V †

c U0 (τ
′′, t)

∣∣ϵA⟩
×
⟨
ϵA
∣∣U0 (t, τ

′)Vc U0 (τ
′, t′)V (1)

p U0 (t
′, 0)

∣∣Ψ(0)
⟩
.

(2.70)

We go to the time-homogeneous limit by substituting t1 = τ ′′− t′′ and t2 = τ ′− t′, setting s (t) ≡ 1
up to tp ≪ t as before, and pulling

∣∣ϵA⟩ past the time-evolution:

IAPECS (ϵp, ϵA, t) =

tp∫
0

dt′
tp∫
0

dt′′
t∫

0

dt1

t∫
0

dt2 e
−i

(
E

(N)
0 −ϵp

)
(t′−t′′)

e−iϵA(t1−t2+t′′−t′)

⟨
Ψ(0)

∣∣V (1)†
p U †

0 (t1)V
(3)†
c U0 (t1 − t2 + t′′ − t′)V (3)

c U0 (t2)V
(1)
p

∣∣Ψ(0)
⟩
.

(2.71)

Using (2.65), this can be rewritten as:

IAPECS (ϵp, ϵA, t) =

tp∫
0

dt′
tp∫
0

dt′′
t∫

0

dt1

t∫
0

dt2 e
−i

(
E

(N)
0 −ϵp

)
(t′−t′′)

e−iϵA(t1−t2+t′′−t′)×

×
⟨
Ψcp (t1)

∣∣U0 (t
′′ − t′)

∣∣Ψcp (t2)
⟩
.

(2.72)

The integrals over t′ and t′′ can now be carried out to obtain:

IAPECS (ϵp, ϵA, t) =

t∫
0

dt1

t∫
0

dt2 e
−iϵA(t1−t2)

⟨
Ψcp (t1)

∣∣Ψcp (t2)
⟩
×

×
2− 2 cos

([
ϵA + ϵp + E

(N−2)
n − E(N)

0

]
t
)

(
ϵA + ϵp + E

(N−2)
n − E(N)

0

)2 .

(2.73)

For the coincidence setup, we cannot assume a too short duration of the photoemission pulse tp,
since it would trivialize the results, eliminating the dependence on ϵp. An infinite tp, on the other
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hand, leads to problems with integral limits. We thus have to assume it to be finite, but large: t−1
p

should be much larger than the energy difference in the cosine term. Then we can still approximate
it by a delta function:

IAPECS (ϵp, ϵA) ≈ 2πtp

∞∫
0

dt1

∞∫
0

dt2 e
−iϵA(t1−t2)

⟨
Ψcp (t1)

∣∣Ψcp (t2)
⟩
δ
(
ϵA + ϵp + E(N−2)

n − E(N)
0

)

= 2πtp

∞∫
0

dt1

∞∫
0

dt2 e
−iϵA(t1−t2)

⟨
Ψcp (t1)

∣∣δ (ϵA + ϵp +H0 − E(N)
0

) ∣∣Ψcp (t2)
⟩
.

(2.74)

This is now in a mixed real-time and energy representation. We can also switch to an energy-only
representation by inserting resolutions of unity in terms of eigenstates, as well as the core hole
lifetime as before, obtaining:

IAPECS (ϵp, ϵA) = 2πtp
∑
m

∣∣∣∣∣∑
n

⟨
m
∣∣V (3)

c

∣∣n⟩⟨n∣∣V (1)
p

∣∣0⟩
ϵA + iΓ− En + Em

∣∣∣∣∣
2

δ
(
ϵA + ϵp + E(N−2)

n − E(N)
0

)
. (2.75)

Obviously, the only difference to AES is the presence of the δ-function ensuring energy conservation
between the initial and the final state, resulting from the long duration of the pump pulse. An
integration over ϵp recovers the previous AES formula (2.67).

The numerical evaluation of both formulas is straightforward: In eq. (2.74),
∣∣Ψcp (t)

⟩
needs to be

propagated and stored at all points of the discretized integral. The delta function can be evaluated
using Chebyshev polynomials (see chapter 3.3) with various

∣∣Ψcp (t)
⟩
as initial and final states. Eq.

(2.75) can be evaluated using a three-dimensional Chebyshev expansion once the modulus square is
expanded, which is a much more costly procedure, as the former approach involves two rather than
three propagations/iterations.

2.2.7. Spectroscopies in perspective

While this work focuses on AES, there are several other spectroscopic setups that are very similar
and can be treated within the same formalism. In this chapter, an overview and a classification
is presented. The setups can be classified according to the order of perturbation theory, the num-
ber of Green’s function arguments and the amount of independently measured frequencies. Table
2.1 shows an overview of the mathematical details, while fig. 2.1 displays the involved physical
processes.

Photoemission (PES) This is by far the most well-known and widely implemented spectroscopy.
An electron is emitted from the solid (this can be the valence band or a core level) due to the photo-
electric effect and its kinetic energy distribution is measured [ Schaich and Ashcroft 1970; Almbladh
1985]. The light sources used in the experiment are weak enough as to justify first-order perturba-
tion theory (Fermi’s golden rule). Without interaction, this probes the density of occupied states in
the valence band.
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spectroscopy PT order GF args #freq. T1 T2 non-interact.
PES 1 1 1 ciσ/fiσ ρocc
IPES 1 1 1 c†iσ ρunocc

AES (no CV interaction) 1 1 1 ci↑ci↓ ρocc ∗ ρocc
AES (with CV interaction) 1 3 1 fiσ f †

iσciσci,−σ

APS 1 1 1 c†i↓c
†
i↑ ρunocc ∗ ρunocc

APECS 1 3 2 fiσ f †
iσciσci,−σ

XAS 1 1 1 c†iσfiσ ∼ ρunocc
DPS 1 3 2 ciσ cjσ′

RIXS 2 3 1 c†iσfiσ T †
1 ∼ ρocc ∗ ρunocc

Table 2.1.: A classification of various spectroscopies according to the order of perturbation theory,
the number of energy summations or time integrations (Green’s function arguments),
the amount of frequencies, the involved operators (see eqs. (2.77) and (2.78)) and the
noninteracting limits.

(a) PES (b) XAS (c) AES (d) RIXS (e) DPE

Figure 2.1.: An overview of selected spectroscopies: (a) In photoemission spectroscopy (PES), an
incident photon leads to the emission of an electron from the valence band. (b) In x-
ray absorption spectroscopy (XAS), an electron is excited into the unoccupied valence
band. (c) In Auger electron spectroscopy (AES), a core electron is emitted. The resulting
core hole is filled by another electron from the valence band. The energy released from
this process is transferred to the Auger electron which is emitted and detected. (d) In
resonant inelastic x-ray scattering (RIXS), the first step is identical to XAS. The resulting
core hole is filled by another electron and the energy is released in an emission of second
photon which is detected. (e) In double photoemission (DPE), an electron is emitted from
the valence band and “drags” another electron with it due to Coulomb interaction. The
electrons are analysed in two detectors.
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Inverse photoemission (IPES) This is the time-inverse process of photoemission: An electron
at a given kinetic energy falls into the valence band, releasing its energy as a photon [ Smith 1988].
Without interaction, this probes the density of unoccupied states.

Appearance potential spectroscopy (APS) This is the time-inverse counterpart to AES: An
electron at a given kinetic energy falls into the valence band and the kinetic energy is used to excite
a core electron into the valence band as well [ Potthoff et al. 1993a; Potthoff et al. 1993b; Potthoff
et al. 1994]. One ends up with two more electrons rather than two holes in the final state. Without
interaction, this measures the self-convolution of the density of unoccupied states.

X-ray absorption spectroscopy (XAS) In this setup, a core electron is excited as well, but the
photon energy is tuned such that it goes into the valence band. This is similar to inverse photoe-
mission with the difference that the electron is drawn from the core states rather than from an
external source. This means there is a core potential as well and bound excitonic states are possible
[ Haverkort, Zwierzycki, and Andersen 2012]. Without interaction, this in principle also probes
the unoccupied states, but one has to consider that there can be various core states with different
degeneracies.

Double photoemission (DPE) In this setup, an incident photon is absorbed by the system, but
leads to the emission of two electrons, whose kinetic energies are measured in coincidence, similar
to APECS [ Berakdar 1998; Pavlyukh, Schüler, and Berakdar 2015; Riessen et al. 2010; Pavlyukh,
Schüler, and Berakdar 2015]. One would think that this requires second-order perturbation theory,
since the light field is just an external potential and can only shift a single electron in first order.
However, experimentally, the light intensity can be lowered so far that the integrated spectral weight
is proportional to it (in our notation ∝ |d0|2), proving that this is still a first-order process. Thus,
the emission of the second electron must be due to a Coulomb interaction term similar to the Auger
process. However, since no core levels are involved, it ought to be an interaction between three
scattering states and a valence-band state:

Vc = UD

∑
iσσ′

3∏
α=1

(∫
ρ (ϵ) dϵα

)
a†σ (ϵ1) a

†
σ′ (ϵ2) aσ′ (ϵ3) ciσ + h.c. (2.76)

Resonant inelastic x-ray scattering (RIXS) This technique has become very popular over the
last years. As in XAS, a core electron is excited into the unoccupied part of the valence band and
the resulting core hole can be filled by any other electron from the valence band. This leads to
the emission of a second photon whose energy is measured and may be different from the incident
one. Because two photons are involved, this method requires second-order perturbation theory,
translating experimentally to intense light sources (synchrotrons). RIXS can be used as a probe of
magnetic excitations since the spin of the intermediate core hole can be flipped due to spin-orbit
interaction. It will thus be filled by an electron of opposite spin compared to the excited one. In a
limiting case, the RIXS spectrum is just given by the dynamical spin structure factor. However, the
general expression is the “Kramers-Heisenberg formula”, which is just the result of second-order
time-dependent perturbation theory, one order beyond Fermi’s golden rule:

I (ω1, ω2) =
∑
m

∣∣∣∣∑
n

⟨
m
∣∣T2∣∣n⟩⟨n∣∣T1∣∣0⟩
ω1 + E0 − En

∣∣∣∣2δ (ω1 − ω2 + E0 − Em) , (2.77)

25



where ω1 is the fixed frequency of the incident photon and ω2 is the measured frequency of the
emitted photon.

One can see that this expression is mostly identical to the APECS case (2.75), which instead results
from the application of first-order perturbation theory two times. Note, however, that ω1 is fixed in
RIXS, so that only ω2 is a active variable. If the modulus square is expanded, one obtains a sum over
three energies instead of one in Fermi’s golden rule

I (ω) =
∑
n

∣∣⟨n∣∣T ∣∣0⟩∣∣2δ (ω − E0 + En) , (2.78)

making an exact calculation more difficult.

2.2.8. Extra-atomic interferences

Let us take a closer look at expression (2.69) for the Auger current. Inserting the transition operator
V

(2)
c , one obtains:

jAES (ϵA) ∝ |UA|2
∑
n

∣∣⟨n∣∣∑
iσ

ciσci,−σ

∣∣0⟩∣∣2 δ (ϵA + E(N−2)
n − E(N)

0 + Ec

)
= |UA|2

∑
n

∑
ii′σσ′

⟨
0
∣∣c†i′,−σ′c

†
i′σ′

∣∣n⟩⟨n∣∣ciσci,−σ

∣∣0⟩ δ (ϵA + E
(N−2)
0 − E(N)

n + Ec

)
.

(2.79)

Note that we have created a coherent superposition of doublons, since the sum over i is within the
modulus square brackets. However, since the orbital-dependence of the Coulomb matrix element
has been neglected, one may question whether this will be the right coherent combination. To this
end, let us go back to step (2.58), where the integral over all photoelectron energies is taken. If we
switch back from a continuous representation of scattering states to discrete momenta, what has to
be calculated there has the following form:

1

L

∑
kp

dikpd
∗
i′kp

f (ϵ (kp)) , (2.80)

where the remaining dependencies have been absorbed into the function f (ϵ (kp)). Let us now
evaluate this sum as best as possible with reasonable assumptions. First off, it stands to reason that
the dipole matrix element is local in real space:

dij = d0 δij. (2.81)

Its partial Fourier transform therefore becomes

dikp =
1

L

∑
j

dije
−ikpRj = d0 e

−ikpRi (2.82)

Plugging this into eq. (2.80), one has to calculate:

1

L

∑
kp

e−ikpRii′f (ϵ (kp)) =

∫
dϵp ρii′ (ϵp) f (ϵp) (2.83)

26



where ρii′ (ϵp) is the lattice density of states of the photoelectrons

ρii′ (ϵp) =
1

L

∑
kp

δ (ϵp − ϵ (kp)) e
−ikpRii′ , (2.84)

and Rii′ = Ri − Ri′ . We can evaluate it for free electrons ϵp = k2
p/2m:

ρii′ (ϵp) =
1

L

V

(2π)3

∫ ∞

0

dkp k
2
p

∫ +1

−1

d cos θ δ
(
ϵp −

k2

2m

)
e−ikpRii′ cos θ

=
1

L

V

(2π)3

∫ ∞

0

dkp k
2
pδ

(
ϵp −

k2p
2m

)
2 sin (kpRii′)

kpRii′

=
1

L

V

(2π)3
1

2
√

2mϵp

∫ ∞

0

dkp k
2
p

(
δ
(
kp −

√
2mϵp

)
+ δ

(
kp +

√
2mϵp

)) 2 sin (kpRii′)

kpRii′

= 2
√
2mϵp

sin (kpRii′)

kpRii′

=
1

2π
ρ (ϵp)

sin (kpRii′)

kpRii′
,

(2.85)

where ρ (ϵp) is the usual density of states for free particles:

ρ (ϵp) =
1

L

∑
kp

δ (ϵp − ϵ (kp)) = 4π
√

2mϵp. (2.86)

One observes that ρii′ (ϵp) is peaked at Rii′ = 0. The nearest neighbours give little contribution if
it holds for the lattice spacing that a ≫ k−1

p , that is if the photoelectron momentum is sufficiently
high. Hence ρii′ (ϵp) ∼ ρ (ϵp) δii′ . This means that extra-atomic contributions interfere destructively,
which has consequences for the Auger term, as well: The double sum over the orbitals in eq. (2.79)
reduces to a single sum, which in turn gives the same contribution for each site due to translational
invariance, and thus a factor of L, while the spin summation gives a factor of 2:

jAES (ϵA) ∝ 2L |UA|2
∑
n

∣∣⟨n∣∣ci↑ci↓∣∣0⟩∣∣2 δ (ϵA + E(N−2)
n − E(N)

0 + Ec

)
. (2.87)

For more details and further issues regarding interference effects, see Abraham-Ibrahim et al. 1978.

2.2.9. AES: nonperturbative

Let us investigate what happens if we try to treat the Auger term nonperturbatively. This is more
conveniently done in the Laplace space and the resulting expression can be exactly evaluated for
the full band. Thus, keeping Vp perturbatively, but treating Vc to all orders, the Auger intensity can
be expressed in the following fashion (see eq. (B.29)):

I (ϵA, ϵp, t) =
∑
n

∣∣∣∣∣ 1

2πi

∫
C

dz e−izt

∫ +∞

−∞
dω̃ s (ω̃)

1

z − ω − E(N)
0

Gn (ϵA, ϵp, z)

∣∣∣∣∣
2

, (2.88)
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where C is the Bromwich integral on a line parallel to the real axis above all singularities of the
integrand. The quantity G which naturally appears in the calculation is very similar to a Green’s
function, but involves the overlap with an excited state:

Gn (ϵA, ϵp, z) =
⟨
n, ϵA, ϵp

∣∣Ĝ (z)Vp
∣∣Ψ(0)

⟩
, (2.89)

where the operator Ĝ is given by the perturbation series

Ĝ (z) =
1

z −H0 − Vc
=

1

z −H0

+
1

z −H0

Vc
1

z −H0

+
1

z −H0

Vc
1

z −H0

Vc
1

z −H0

+ . . . (2.90)

As before, we can pull the operator a†σp
(ϵp) past the resolvents and let it cancel with the bra state⟨

0
∣∣aσp (ϵp). Remember that we assume the photoelectron and the Auger electron as distinguishable,

so that the latter states remain unaffected. Pulling the operator past Ĝ (z) just shifts the argument
by ϵp and we need to replace Vp by V (1)

p :

Gn (ϵA, ϵp, z) =
⟨
n, ϵA

∣∣Ĝ (z − ϵp)V (1)
p

∣∣Ψ(0)
⟩
. (2.91)

Let us now decompose the Auger term into a term V −
c which creates the outgoing electron, reduc-

ing the amount of particles in the system by one; and a term V +
c which lets the Auger electron

recombine:

Vc = UA

∑
iσA

∫
ρ (ϵA) dϵA

(
f †
iσA
a†−σA

(ϵA) ciσA
ci,−σA

+ h.c.
)

≡ V −
c + V +

c

= V −
c +

(
V −
c

)†
=
(
V +
c

)†
+ V +

c

(2.92)

Since there is only one core hole due to perturbation theory in Vp, there can only be at most one
Auger electron at a time. Thus, the identity operator can be written in the following fashion:

1 =
∑
l

∣∣n⟩⟨n∣∣
(N−1)

⊗
∣∣0⟩⟨0∣∣+∑

n

∫
ρ (ϵA) dϵA

∣∣n⟩⟨n∣∣
(N−2)

⊗
∣∣ϵA⟩⟨ϵA∣∣. (2.93)

Note that N now refers to both the valence band and the core states. The Auger term mediates
between these two subspaces:

V −
c

∣∣n(N − 2), ϵA
⟩
= 0

V −
c

∣∣n(N − 1), 0
⟩
=

∫
ρ (ϵA) dϵA

∣∣ϵA⟩ V (3)
−
∣∣n(N − 1)

⟩
V +
c

∣∣n(N − 1), 0
⟩
= 0

V +
c

∣∣n(N − 2), ϵA
⟩
=
∣∣0⟩ V (3)

+

∣∣n(N − 2)
⟩

(2.94)

The nonzero matrix elements are hence:
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⟨
n(N − 2), ϵA

∣∣V −
c

∣∣m(N − 1), 0
⟩
=
⟨
n(N − 2)

∣∣V (3)
−
∣∣m(N − 1)

⟩⟨
n(N − 1), 0

∣∣V +
c

∣∣m(N − 2), ϵA
⟩
=
⟨
n(N − 1)

∣∣V (3)
+

∣∣m(N − 2)
⟩

=
⟨
m(N − 2)

∣∣V (3)
−
∣∣n(N − 1)

⟩∗ (2.95)

Inserting the identity operator 1 after the first application of Vc on the left (note that the zeroth
order without any Auger term V

(3)
c vanishes), as well as before V (1)

p

∣∣Ψ(0)
⟩
on the right of eq. (2.91)

gives:

Gn (ϵa, ϵp, z) =
1

z − ϵp − ϵA − E(N−2)
n

∑
lm

⟨
n (N − 2)

∣∣V (3)
c

∣∣l(N − 1)
⟩
×

×Rlm (z − ϵp)
⟨
m(N − 1)

∣∣V (1)
p

∣∣Ψ(0)
⟩
.

(2.96)

The kernel Rlm (z) can only contain pairwise products of V +
c and V −

c to get a nonzero matrix ele-
ment:

Rlm (z) =
⟨
l (N − 1)

∣∣ ( 1

z − ϵp −H0

+
1

z − ϵp −H0

V +
c

1

z − ϵp −H0

V −
c

1

z − ϵp −H0

+ . . .

) ∣∣m (N − 1)
⟩

=
1

z − ϵp − E(N−1)
l

(
δlm +

Σlm (z)

z − E(N−1)
m

+
∑
r

Σlr (z)

z − E(N−1)
r

Σrm (z)

z − E(N−1)
m

+ . . .

)
=

1

z − ϵp − E(N−1)
l

(
1+ O (z) + O2 (z) + O3 (z) + . . .

)
lm

=
1

z − ϵp − E(N−1)
l

(
(1− O (z))−1)

lm
,

(2.97)

with the geometric sum over powers of the operator

(O (z))lm =
Σlm (z)

z − ϵp − E(N−1)
m

, (2.98)

where a self-energy-like quantity Σlm appears, which describes the process of an Auger emission,
propagation of the system in the (N − 2)-particle subspace, followed by an Auger recombination
(where the Auger electron falls back into the valence band and the core hole is recreated), all eval-
uated within two eigenstates:

Σlm (z) =
⟨
l (N − 1)

∣∣V +
c

1

z − ϵp −H0

V −
c

∣∣m (N − 1)
⟩

=
∑
r

∫
ρ (ϵA) dϵA

⟨
l (N − 1)

∣∣V (3)
+

∣∣r (N − 2)
⟩⟨
r (N − 2)

∣∣V (3)
−
∣∣m (N − 1)

⟩
z − ϵp − ϵA − E(N−2)

r

=
∑
r

∑
iσAi′σ′

A

⟨
l (N − 1)

∣∣c†i′,−σ′
A
c†i′σ′

A
fi′σ′

A

∣∣r (N − 2)
⟩⟨
r (N − 2)

∣∣f †
iσA
ciσA

ci,−σA

∣∣m (N − 1)
⟩
×

× |UA|2
∫
dϵA

ρ (ϵA)

z − ϵp − ϵA − E(N−2)
r

.

(2.99)
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Supposing that the density of states is approximately constant, ρA (E) ≈ ρ0A, one obtains for the
last term near the real axis, for z = ω ± i0+:

|UA|2
∫
dϵA

ρ (ϵA)

ω ± i0+ − ϵp − ϵA − E(N−2)
r

≈ ∓iπρ0A |UA|2 . (2.100)

The self-energy is then frequency-independent and purely imaginary:

Σlm

(
ω ± i0+

)
= ∓iΓlm. (2.101)

For an initially fully occupied valence band Σlm loses its dependence on the eigenstate indices. The
eigenstates in the (N − 1)-subspace just consist out of a core hole at some lattice site i0 with a
spin σp and can be labelled accordingly:

∣∣i0, σp⟩ = fi0σp

∣∣0⟩. However, because of translational
invariance and the fact the valence band is full and looks the same, this is just the same state and
Auger recombination always brings the system back to it. We can hence drop the indices l and m
and use E(N−1) for the energy of this state:

Σ
(
ω ± i0+

)
= ∓iπρ0A |UA|2

∑
r

∣∣⟨r (N − 2)
∣∣∑
iσA

f †
i,σA

ciσA
ci,−σA

fi0σp

∣∣0⟩∣∣2
= ∓iπρ0A |UA|2

∑
r

∣∣⟨r (N − 2)
∣∣ci0σpci0,−σp

∣∣0⟩∣∣2
≡ ∓iΓ.

(2.102)

The kernel reduces to:

R
(
ω ± i0+

)
=

1

ω − ϵp − E(N−1) ± iΓ
. (2.103)

Finally, one obtains the result:

Gn

(
ϵA, ϵp, ω ± i0+

)
= UAd0

⟨
n (N − 2)

∣∣∑
i

ciσpci,−σp

∣∣0 (N)
⟩
×

× 1

ω ± i0+ − ϵp − ϵA − E(N−2)
n

· 1

ω − ϵp − E(N−1) ± iΓ
.

(2.104)

This means that the only difference to the perturbative case is the addition of a finite imaginary part
to the eigenenergies in the propagation after the photoexcitation: ϵp +E(N−1) → ϵp +E(N−1) − iΓ
(for the retarded case ω + i0+). The calculation is not fully complete, of course: One has to insert
(2.104) back into (2.88), perform a partial fraction decomposition 1

z−A
1

z−B
= 1

A−B

(
1

z−A
− 1

z−B

)
and

calculate the Laplace back transform exploiting the fact that a Hermitian operator has all of its poles
(discrete spectrum) or branch cuts (continuous spectrum) on the real axis. Having done that, after a
lengthy computation (which is left out here), expression (2.66) with a finite Γ is eventually recovered.

The inverse of Γ can be interpreted as the core hole lifetime. One can see that it lives longer for (1)
weak coupling to the continuum UA, (2) few available states for the decay (small ρ0A), (3) a smaller
overlap of the two-hole state with the eigenstates of the system.
In spectroscopical calculations, it is common practice to include such a finite Γ as a parameter,

30



termed “optical potential” [ Gunnarsson and Schönhammer 1980]. It is then approximated to be just
a number, whereas the exact formulae (2.97) and (2.99) produce a frequency-dependent operator.
Since its calculation requires a matrix inversion on the whole Hilbert space, it is clearly not feasible
for reasonably-sized systems.
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3. Methods

3.1. Exact Diagonalization

“Exact Diagonalization”1 (ED) is a somewhat misfortunate term which refers to solving quantum
lattice models numerically exactly. Ground states can be obtained by the Lanczos algorithm (see
chapter 3.2); for dynamical correlation functions and time-propagations with a time-independent
Hamiltonian H ̸= H (t) one can employ a modified form of the Lanczos algorithm or the Cheby-
shev expansion (see chapter 3.3); for a generic time-propagation with a time-dependent Hamilto-
nian H (t) one can pair the latter methods with the commutator-free exponential time-propagation
algorithm (CFET, see chapter 3.4). Neither of the methods actually involves a diagonalization of
H , they rather reduce the problem to matrix-vector multiplications of the Hamiltonian with the
wavefunction in the full basis. Whenever diagonalization is performed, it is usually called “full
diagonalization”.
It is well-known that the Hilbert space of a quantum system grows exponentially with the system
size Ld. This can be immediately deduced from the fact that the entropy is on the one hand a
extensive quantity, S ∼ Ld; and at the same time is related to the amount of microstates via the
Boltzmann relation S ∼ ln dimH, so that dimH ∼ eL

d . This means that the ED method is limited
to small system sizes: For the one-dimensional Hubbard model with N↑ spin-up particles and N↓
spin-down particles we have dimH =

(
L
N↑

)
·
(

L
N↓

)
. The greatest resource consumption occurs at

half filling N↑ = N↓ =
L
2
, where for L = 16, the Hilbert space exceeds 165.6 · 106 and the required

memory to store a single state reaches about 1.23 GB, so that the calculations become severly limited
by current hardware rather quickly. It is even more costly to store the Hamiltonian; luckily it is a
sparse matrix due to the tight-binding nature of the hopping. Its memory consumption can be
quantified by introducing the amount of non-zeros per row or column α. For the Hubbard model
we have α ∼ 6 − 11 in d = 1 and up to α ∼ 20 in d = 2 (when hermiticity is also exploited).
There are more entries in two dimensions because of more hopping options. In other words, the
Hamiltonian roughly takes up the memory of O (10) states. Its storage can actually be avoided
altogether, at the expense of some calculation time (see below).
The first step is to define a basis to work with. Since we are working with fermions, the numbering
of the orbitals is important to impose the correct anticommutation relations. In the case of ED, the
following order is convenient:

∣∣n1↑ . . . nL↑n1↓ . . . nL↓
⟩
:=
(
c†1↑

)n1↑
. . .
(
c†L↑

)nL↑ (
c†1↓

)n1↓
. . .
(
c†L↓

)nL↓ ∣∣0⟩. (3.1)

This means that one puts all the spin-up creation operators before all the spin-down ones. Because
each orbital can only be occupied by either zero or one fermion, we can use bitsets to encode the
state numerically, which does not require much memory. Moreover, the chosen order and the fact
that the hopping preserves spin permits one to build up the Hilbert spaces for each spin orientation
independently and then combine them into the full model. Thus, we can first set up the basis for
spinless fermions (a common short term for fermions of the same spin orientation) by

1In the atomic and molecular community, this is equivalent to “full configuration interaction”.
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∣∣n1n2 . . . nL

⟩
:=
(
c†1

)n1

. . .
(
c†L

)nL ∣∣0⟩. (3.2)

It is of course convenient for the basis to have a sort order of some kind, so that one can find a
given state efficiently. A natural choice is found by realizing that a bitset of occupation numbers
like 0101011 defines a binary number, so that the basis states can simply be sorted according to
that very value. However, one should avoid a naive conversion into decimals, since the values will
become rather large. Instead, noticing that this ordering is equal to the colexicographical (or “colex”)
order of all subsets of

(
L
N

)
, one can make use of a well-known recursive combinatorial algorithm to

create these subsets in just a few lines of code [ Ruskey 2003].

The next step is to set up the Hamiltonian in matrix form (or, more generally, also the operators
ci and c†i ). To do that, one simply loops through the basis and applies the creation or annihilation
operator by flipping the corresponding bit. This gives a new state which one can find in the sorted
target basis using bisection (so that the total effort scales as N logN ). The result will then be either
+1 or −1. For ci, this depends on whether there is an even or odd amount of fermions (set bits)
between the first and the i-th site, since it requires that many transpositions to move the operator
to the right place in (3.2). For a hopping term c†icj , one only needs to count the amount of set bits
between i and j, since the other ones cancel out.

Having set up the hopping matrices T ↑ and T ↓, the Hubbard Hamiltonian is found via

H = T ↑ ⊗ 1↓ + 1↑ ⊗ T ↓ + U

= T ↑ ⊕ T ↓ + U,
(3.3)

where 1σ is the unity operator on the Hilbert space with the spin orientation σ, and U is a diagonal
matrix where each entry on row and column i is given by the amount of set bits in the state i on
the full Hilbert space times the Coulomb interaction U . The tensor products appearing in the above
relation can be implemented as Kronecker products for the given matrices. This means that the
mapping from the state indices of the spin subspaces i↑ and i↓ to the index i on the full Hilbert space
is achieved via

i = i↓ + dimH↓ · i↑. (3.4)

Vice versa, given i, one obtains i↓ = i mod H↓ and i↑ = i div H↓ where the latter represents
integer division, i.e. division without remainder. This is of course just a special case of a mapping
of r indices i1 . . . ir, each having its own range n1 . . . nr to a super-index i given by:

i = ir + nr (ir−1 + nr−1 (. . . (i2 + n2i1) . . .))

= ir + ir−1nr + ir−2nrnr−1 + . . .+ i1nrnr−1 . . . n2,
(3.5)

which is very useful in numerous applications. The reverse mapping is found via successive mod
and div operations. Note that if all the ranges are equal, n1 = n2 = . . . nr =: n, this is simply the
representation of the number i in base n where each ir is the corresponding digit; otherwise we are
dealing with a so-called mixed-radix representation.

Since T σ is a Hermitian matrix, it is sufficient to store only the upper or lower triangle. The Kro-
necker product preserves this property, so thatH will also be upper or lower triangular. The action
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of the matrix elements in the other triangle is then taken into account during the matrix-vector
multiplication itself.

In the case of the Peierls substitution (see chapter 2.1.5), however, the hopping becomes complex
and direction-dependent. It has the form eiA(t) for hopping processes from left to right through
the one-dimensional chain, and e−iA(t) for hopping processes in the reverse direction. In this case,
the corresponding directional hopping matrices T>

σ and T<
σ are not necessarily equivalent to the

upper and lower triangles of the full hopping matrix. However, it still holds that T<
σ = (T>

σ )
T . The

Hamiltonian can then be written in the following fashion:

H =
(
e+iA(t)T>

↑ + e−iA(t)T<
↑
)
⊗ 1↓ + 1↑ ⊗

(
e+iA(t)T>

↓ + e−iA(t)T<
↓
)
+ U

= e+iA(t)T> + e−iA(t) (T>)
T
+ U,

(3.6)

where T> = T>
↑ ⊕T>

↓ . In this case, it is always convenient to store just the real matrix T> and only
recalculate the phase eiA(t). A matrix-vector multiplication then involves the application of T> with
the phase factor eiA(t), its transpose with the conjugate phase factor, and finally the diagonal matrix
U , all in succession.

In order to preserve working memory, one can store the Hamiltonian on the hard drive or avoid
storing it altogether and instead use a function which calculates the result of its application to a
given basis state. However, in order to maintain some compromised efficiency, one can also exploit
the tensor-product structure of the Hubbard model. A look at eq. (3.3) reveals that rather than
calculating the tensor product explicitly, we can just calculate T ↑ and T ↓. These subspaces do not
actually require much memory (compare again the case L = 16 and N↑ = N↓ = 8, equivalent to
dimHσ = 12870, thus merely 100 kilobytes!). The full Hamiltonian matrix contains T ↑ and T ↓ as
block matrices, we just need to find the right block in the vector we want to apply the Hamiltonian
to. Thus, the problem boils down to the memory-efficient calculation of

v′ = 1l ⊗H ⊗ 1r · v, (3.7)

for a givenmatrixH , a given vector v and given left and right sizesNl andNr of the identity matrices
1l and 1r, respectively. A tested algorithm which achieves that is the so-called shuffle algorithm [
Czekster et al. 2007; Fernandes, Plateau, and Stewart 1998]; it is presented in alg. 1.

Of course, it does not have to be executed if Nr = 1, as the resulting matrix will simply consist out
of blocks of H on the diagonal, so that H can be applied to the appropriate segments of the vector
v, and can thus be even trivially parallelized. However, no such simple form appears in the case of
Nl = 1 because the Kronecker product is not commutative. Still, a relationship between the two
exists in the form of [ Davio 1981]

H ⊗ 1r = SNr,N · (1l ⊗H) · SN,Nr
. (3.8)

Here, Sa,b is an (ab) × (ab) permutation matrix, called the perfect shuffle, and H is assumed to be
N ×N . A similar relation exists for the case of two identity matrices:

1l ⊗H ⊗ 1r = SNr,NlN
· (1lr ⊗H) · SNlN,Nr

(3.9)

where 1lr is of dimension NlNr identity matrix.
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Algorithm 1 Pot-Sh+ algorithm
1: procedure PotShPlus(diml, dimH, dimr, H, Vin, Vout) ▷ Calculates
Vout ← 1diml×diml ⊗HdimH×dimH ⊗ 1dimr×dimr · Vin in a memory-efficient way

2: V out← V in
3: base← 0
4: jump← dimH ∗ dimr
5: for block = 0, 1, . . . diml − 1 do
6: for offset = 0, 1, . . . dimr − 1 do
7: index← base+ offset
8: allocate V tmp of size dimH
9: for h = 0, 1, . . . dimH − 1 do

10: V tmp[h]← V out[index]
11: index← index+ dimr

12: V tmp← H ∗ V tmp
13: index← base+ offset
14: for h = 0, 1, . . . dimH − 1 do
15: V out[index]← V tmp[h]
16: index← index+ dimr

17: base← base+ jump

Let us delve very briefly into the question of how to calculate the perfect shuffleSa,b without bringing
up too many number-theoretical details. In the case of a = b (which means dimH↑ = dimH↓, i.e.
half filling), an efficient algorithm has been recently developed by Yang et al., exploiting the fact that
each permutation can be written as a product of two involutions 2 [ Yang et al. 2013]. For our needs,
this boils down to alg. 2, called revswap. Note that the loop body just reverses the last two digits of
i in binary representation, obtaining j and converts this result into a decimal representation. This
defines the indices to be swapped.

Algorithm 2 revSwap2 algorithm
1: procedure revSwap(k, Vinout) ▷ Calculates the perfect shuffle Sk,k for a vector with N = k2

rows.
2: N ← rows(V inout)
3: for i = 1, 2, . . . N − 2 do
4: r ← i
5: ultimate← r mod k
6: r ← r div k
7: penultimate← r div k
8: j ← i+ ultimate ∗ (k − 1) + penultimate ∗ (1− k)
9: if i < j then

10: V inout(i) :=: V inout(j)

However, for a ̸= b calculating the perfect shuffle is much more costly, involving the calculation of
the greatest common divisor of two numbers. Even though this can be done rather efficiently by
Euler’s algorithm, this method has performed very poorly in practice due to to the sheer amount of
operations involved when the Hilbert space dimension is high; and could not outperform the shuffle
algorithm. Thus, in the calculations performed in this work, the shuffle algorithm was used when
the Hilbert space exceeded a certain size, except at half filling, where the in-place revswap was used.

2An involution is a self-inverse mapping.
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Figure 3.1.: Comparison of the CPU time in seconds needed for a matrix-vector multiplication (av-
eraged over 10 MVMs, dashed lines) and the memory consumption of the Hamiltonian
in gigabytes (dotted lines) as a function of the Hilbert space dimension for the two ap-
proaches: When the full Hamiltonian is constructed (blue) and when only the spin sub-
spaces are constructed and the shuffle algorithm is used (red).

All in all, the memory can be managed dynamically in the following fashion: If the Hilbert space
does not exceed a threshold value (107 was set in this work), the full Hamiltonian is constructed.
Otherwise, only the spin subspaces and the interaction part U from eq. (3.3) are constructed fully
and the shuffle of revswap algorithms are used for matrix-vector multiplications. The memory con-
sumption of the subspaces can be neglected, while U takes as much memory as one vector from the
Hilbert space.

A benchmark of the two approaches is shown in fig. 3.1, where the matrix-vector multiplication
time and the memory consumption of the Hamiltonian are measured for an L = 4 × 4 Hubbard
model with varying filling, thereby varying the Hilbert space dimension. It turns out that the shuffle
algorithm performs only slightly worse, and for the largest Hilbert spaces just as well, probably due
to the denser Hamiltonian as compared to d = 1. On the other hand, the memory consumption is
smaller by a factor of up to 26.

3.2. The Lanczos algorithm

3.2.1. The ground state

If we seek to minimize the ground-state energy functional of a quantum system described by the
wavefunction

∣∣Ψ⟩,
E
[
Ψ
]
=

⟨
Ψ
∣∣H∣∣Ψ⟩⟨
Ψ
∣∣Ψ⟩ , (3.10)

we can do so by first defining a gradient vector as the derivative with respect to
⟨
Ψ
∣∣:

δE
[
Ψ
]

δ
⟨
Ψ
∣∣ =

H
∣∣Ψ⟩− E[Ψ]∣∣Ψ⟩⟨

Ψ
∣∣Ψ⟩ =

∣∣Ψgrad
⟩
. (3.11)
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An initial guess for
∣∣Ψ⟩ will be improved if we go in the direction of steepest descent, i.e. E

[
Ψ −

αΨgrad
]
< E

[
Ψ
]
for an α > 0 which needs to be determined. To do so, it is helpful to form an

orthogonal basis
∣∣u⟩

0
,
∣∣u⟩

1
from the vectors

∣∣Ψ⟩ and
∣∣Ψgrad

⟩
. A look at eq. (3.11) reveals that the

space spanned by them is equal to the space spanned by
∣∣Ψ⟩ and H

∣∣Ψ⟩: span
(∣∣Ψ⟩, ∣∣Ψgrad

⟩)
=

span
(∣∣Ψ⟩, H∣∣Ψ⟩). Using this orthogonal basis, a general vector

∣∣u⟩ can be written as:

∣∣u⟩ = cos θ
∣∣u0⟩+ sin θ

∣∣u1⟩. (3.12)

A minimization with respect to θ leads to the improved guess

∣∣Ψ⟩min = cos θmin
∣∣u0⟩+ sin θmin

∣∣u1⟩ (3.13)

and implicitly defines the abovementioned α. The procedure can now be repeated with
∣∣Ψ⟩min as

the starting guess. Seeing however, that the minimization with respect to θ is of negligible numerical
cost (it is equivalent to finding the lowest eigenvalue in the two-dimensional space span

(∣∣Ψ⟩, H∣∣Ψ⟩)),
we can do even better than that and work on a much larger space, the Krylov space of dimensionN
(typically N ≲ 100):

KN

[
u0, H

]
:= span

(∣∣u0⟩, H∣∣u0⟩, H2
∣∣u0⟩, . . . , HN−1

∣∣u0⟩) . (3.14)

It turns out that the orthogonal basis for this space can be constructed iteratively and is no more
costly than in the case of two vectors. We can start by orthogonalizing H

∣∣u0⟩ and ∣∣u0⟩, leading to:

∣∣ũ1⟩ = H
∣∣u0⟩− a0∣∣u0⟩, (3.15)

where a0 =
⟨
u0
∣∣H∣∣u0⟩. The tilde in

∣∣ũ1⟩ indicates that this vector is not normalized yet. We obtain
the first Lanczos vector

∣∣u1⟩ by normalizing it:

∣∣u1⟩ = 1

b1

∣∣ũ1⟩, (3.16)

with b21 =
⟨
ũ1
∣∣ũ1⟩. At the n-th step we orthogonalize

∣∣ũn⟩ to all the previous vectors:

∣∣ũn⟩ = H
∣∣un⟩− n∑

i=0

⟨
ui
∣∣H∣∣un⟩∣∣ui⟩. (3.17)

Exploiting this relationship for
∣∣u0⟩ . . . ∣∣un−1

⟩
and the fact that these vectors have already been

made orthonormal, one sees that the above sum reduces to:

n∑
i=0

⟨
ui
∣∣H∣∣un⟩∣∣ui⟩ = an

∣∣un⟩+ bn
∣∣un−1

⟩
, (3.18)

with

an =
⟨
un
∣∣H∣∣un⟩, b2n =

⟨
ṽn
∣∣ṽn⟩ (3.19)

and
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∣∣un⟩ = 1

bn

∣∣ũn⟩. (3.20)

Thus, we arrive at the central relation of the Lanczos algorithm, the three-term recurrence relation:

bn+1

∣∣un+1

⟩
= H

∣∣un⟩− bn∣∣un−1

⟩
− an

∣∣un⟩, (3.21)

from which one can see that obtaining an additional Lanczos vector requires one matrix-vector
multiplication, not counting the orthogonalizations. These multiplications are the most costly part
of the algorithm and can be taken as a measure of the numerical effort. Eq. (3.21) also shows that the
Hamiltonian in the Krylov space HK (with

(
HK)

ij
=
⟨
ui
∣∣H∣∣uj⟩) is given by a tridiagonal matrix:

HK =



a0 b1 0 . . . 0 0
b1 a1 b2 . . . 0 0
0 b2 a3 . . . 0 0
... ... . . . . . . . . . ...
0 0 0 . . . aN−2 bN−1

0 0 0 . . . bN−1 aN−1


. (3.22)

Since N is small, the calculation of its eigenvalues EK
n is of negligible cost. In particular, the lowest

energy is an approximation to the ground-state energy on the full Hilbert space:

E0 ≈ EK
0 . (3.23)

If we write ψK
n,k for k-th component of the n-th eigenvector of the Krylov space, the approximation

to the ground state on the full Hilbert space
∣∣Ψ0

⟩
can be written as a linear combination of the

Lanczos vectors in the following way:

∣∣Ψ0

⟩
≈

N−1∑
k=0

ψK
0,k

∣∣uk⟩. (3.24)

In terms of memory management, we can set up the Lanczos algorithm in two ways:

• Time-efficient setup: In this case, we store the whole Lanczos basis, so that the calculation of
the ground state (3.24) comes at no additional cost (in terms of matrix-vector multiplications).

• Memory-efficient setup: In this case, we store only the three vectors of the recursion relation
(3.21), but have to regenerate the Lanczos basis when calculating the state (3.24).

There is also a choice when it comes to the Krylov space management:

• Continuing setup: We can start with N = 2 and add more and more Lanczos vectors to the
basis, diagonalizing HK with each new one, until convergence is reached. The disadvantage
is that the Krylov space can grow in a somewhat uncontrolled fashion in tough cases, which
can in particular lead to memory problems in the time-efficient setup.

• Restarting setup: We fixN and generate the basis of the Krylov space for this value. If conver-
gence is not reached, we restart the procedure with the obtained guess for

∣∣Ψ0

⟩
. The disad-

vantage is that one will do more iterations than necessary if convergence is already reached
for some N0 < N .
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Of course, it is possible to combine the two approaches by diagonalizing HK at each step to check
the convergence, but restart after a given N to preserve memory.

Furthermore, there are additional caveats to consider:

• In the implementation one should immediately orthogonalize a given vector ũn, otherwise the
norm of each vector will approximately grow by a factor of ∥H∥ and result in overflow.

• If the vectors Hn
∣∣u0⟩ are not all linearly independent, orthogonalization will result in a van-

ishing vector, i.e. there will be some N0 for which bN0 = 0 (or very small numerically). At
this point, the iteration has to quit.

• Awell-known problem is the loss of orthogonality in the Lanczos vectors due to finite-precision
arithmetics. To remedy that, one can perform a full Gram-Schmidt reorthogonalization which
may increase the numerical costs significantly. Alternative algorithms using a partial re-
orthogonalization of selected vectors only, which still ensure numerical stability, have been
developed in the 1980s (Grcar 1981; Simon 1984).

• Instead of selecting the lowest energy, we can also select the highest one and obtain an ap-
proximation for the highest energy on the full Hilbert space as well. This is required for the
Chebyshev expansion method (see chapter 3.3).

• If the Hamiltonian is real, then the ground state can be gauged to be real as well, and only real
arithmetic is required. However, when applying this method to time evolution (see chapter
3.2.2), complex arithmetic is required. Thus, a generic template implementation in C++ is of
advantage.

The Lanczos algorithm is a very generic one, it only needs to know basic linear algebra operations:
matrix-vector multiplications, vector additions and multiplications with a scalar, as well as scalar
products. The latter induces a norm and one has to be able to normalize a vector. Finally, an imple-
mentation of swapping two vectors in memory is recommended. This perfectly lends itself to a very
generic implementation in C++, where the same Lanczos solver class can be used to handle both ex-
act states (see chapter 3.1) and matrix product objects (see chapter 3.6) using template parameters,
provided that the above operations are defined.

3.2.2. Time evolution

The Lanczos algorithm can also be used for time propagation. To see that, let us first introduce the
matrix V of size dimH×N , which has the Lanczos vectors as columns:

V = (u0,u1 . . .uN−1) . (3.25)

Using V , the Hamiltonian in the Krylov space can be written as

HK = V †HV (3.26)

From the orthonormality of the Lanczos vectors one has:

V †V = 1N×N , (3.27)

but since N ≪ dimH,
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V V † = P (3.28)

is the projector on the Krylov space rather than 1dimH×dimH. When projected onto the Krylov space,
the Hamiltonian acts in the following way:

PHP = V V †HV V † = V HKV †. (3.29)

In the time evolution of a state, we are interested in:

∣∣Ψ(t+ δt)
⟩
= e−iHδt

∣∣Ψ(t)
⟩
. (3.30)

We note that for a small time step δt, the Taylor series of e−Hδt is nothing but the Krylov space. This
means that we can find an N so that replacing H → PHP in the above equation has a very small
error and immediately obtain:

∣∣Ψ(t+ δt)
⟩
≈ V e−HKδtV †∣∣Ψ(t)

⟩
. (3.31)

The numerical recipe is thus straightforward:

1. Use
∣∣Ψ(t)

⟩
as the starting vector for the Lanczos recursion, yielding HK and the projected

state
∣∣v (t) ⟩ = V †

∣∣Ψ(t)
⟩
. Since

∣∣Ψ(t)
⟩
/∥Ψ(t)∥ is the first vector of the Lanczos basis, this

projection is just given by vT (t) = (∥Ψ(t)∥, 0, . . . , 0).

2. Perform the time evolution in the Krylov space exactly, by diagonalizingHK = U †ΛU , obtain-
ing the time-evolved projected state v (t+ δt) = U †e−iΛδtU

∣∣v (t) ⟩, where Λ is the diagonal
matrix of the eigenvalues of HK.

3. Project the resulting state out again by multiplying with V from the left; in other words∣∣Ψ(t+ δt)
⟩
≈
∑N−1

k=0 vk (t+ δt)
∣∣uk⟩.

As with the ground state calculation, the Krylov space size N is a measure of the cost of the algo-
rithm, as one needs to perform a matrix-vector multiplication at each step. An optimal choice is
obtained from the following a posteriori error bound (Lubich 2008):

dist = ∥V e−iHKδtV †∣∣Ψ(t)
⟩
− e−iHδt

∣∣Ψ(t)
⟩
∥ ≤

(
HK)

N+1,N

∫ δt

0

dt′
∣∣∣(e−iHKt′

)∣∣∣ . (3.32)

Approximating the integral crudely using the Simpson rule, one obtains:

dist ≤
(
HK)

N+1,N

(
2

3

∣∣∣∣(e−iHKδt/2
)
N,1

∣∣∣∣2 + 1

6

∣∣∣∣(e−iHKδt
)
N,1

∣∣∣∣2
)
δt. (3.33)

Thus, one can add more and more Lanczos vectors until the distance falls below a given tolerance.
As before, the cost of diagonalizing the Krylov space Hamiltonian after adding a Lanczos vector is
negligible.

Note that the Lanczos algorithm for the ground state is recovered if we perform an imaginary-time
evolution with e−Hδτ instead of e−iHδt and set the imaginary time step δτ to infinity (τ = ∞ is
equivalent to T = 0, and thus the ground state). In this case, all eigenvectors but the lowest one in
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e−HKδτ give a negligible contribution and the τ -evolution is equivalent to simply replacing v (δτ)
by the lowest-energy eigenvector.

See also chapter 3.5 for a benchmark of the Lanczos time evolution with the Chebyshev algorithm,
which is described in chapter 3.3.3.

3.3. The Chebyshev expansion technique

3.3.1. Spectral functions

One is often dealing with problems of calculating functions of a single continuous variable (either
the frequency g (ω), the time g (t) or the inverse temperature g (β)), where either a trace over the
whole Hamiltonian H , or equivalently, a sum over all of its eigenvalues En is needed. Examples
include the partition function

Z (β) = Tr e−βH =
∑
n

e−βEn , (3.34)

the density of states

ρ (ω) = − 1

π
Tr Im 1

ω + i0+ −H
=
∑
n

δ (ω − En) , (3.35)

spectral functions in the Lehmann representation

⟨⟨A†;A⟩⟩ (ω) = − 1

π
Tr Im

A
∣∣0⟩⟨0∣∣A†

ω + i0+ − E0 +H
=
∑
n

∣∣⟨n∣∣A∣∣0⟩∣∣2 δ (ω − E0 + En) , (3.36)

or the time evolution of a state

∣∣Ψ(t)
⟩
= e−iHt

∣∣Ψ(0)
⟩
=
∑
n

⟨
n
∣∣Ψ(0)

⟩
e−iEnt

∣∣n⟩. (3.37)

Let us focus on the spectral function first, and then on time evolution in the next section. A possible
approach is to evaluate the desired g (x) on the Krylov space, i.e. approximate it by a fixed amount
of polynomialsM . In principle, we could use the monomial basis xk:

g (x) ≈
M−1∑
k=0

µmon
k xk, −1 < x < 1. (3.38)

Because the polynomials have to converge, one has to use rescaled frequencies −1 < x < 1:

x := (ω − b) /a,
H̃ := (H − b) /a,
a := (Emax − Emin) /(2− ϵ),
b := (Emax + Emin) /2,

(3.39)
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with ϵ ≪ 1, which serves as a safety padding to avoid touching the edges; and with Emin, Emax
signifying the lowest and highest eigenenergy, respectively.
The task is now to calculate the moments µmon

k . In theory, one could use a Taylor expansion, but it
only gives good results for small x and is very poor at the edge of the convergence radius |x| → 1.
Instead, we can profit from the know-how of approximation theory, accumulated over the last two
centuries. It turns out that Chebyshev polynomials are a better, and in fact an almost optimal choice:
They deviate the least from zero among all polynomials, so that the error is evenly spread across the
whole interval.
In general, orthogonal polynomials can be defined either via a recursion relation or via an orthog-
onality relation involving a weight function. For Chebyshev polynomials, the former reads:

Tn (x) = 2xTn (x)− Tn−1 (x) , (3.40)

with the initial conditions T0 (x) = 1, T1 (x) = x. The weight function is given by w (x) =
1/π
√
1− x2 and the orthogonality relation is

∫ 1

−1

dx
1

π
√
1− x2

Tm (x)Tn (x) =
1

2
(1 + δm0) δmn. (3.41)

In fact, there is also an explicit form

Tn (x) = cos (n arccos (x)) , (3.42)

but it is not very stable to evaluate numerically for large n compared to (3.40).
Thus, the Chebyshev expansion of a function g (x) becomes:

(A) g (x) = µ0 + 2
∞∑
n=1

µnTn (x) , (3.43)

with the coefficients given by a projection onto the basis of Chebyshev polynomials (which can be
easily verified using (3.41)):

(A) µn =

∫ 1

−1

dx
1

π
√
1− x2

Tn (x) g (x) . (3.44)

One recognizes that this is in fact completely analogous to a Fourier expansion (where exp (iknx)
rather than Tn (x) forms a natural basis for periodic functions). However, the square root in the
above formula becomes problematic to evaluate if Tn is a function of the Hamiltonian. In such a
case, we can just redefine the expansion in the following way:

(B) g (x) =
1

π
√
1− x2

(
µ0 + 2

∞∑
n=1

µnTn (x)

)
, (3.45)

which amounts to expanding g (x)w−1 (x) rather than just g (x). The corresponding moments are
now:

(B) µn =

∫ 1

−1

dx g (x)Tn (x) . (3.46)
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The downside of using the expansion (3.45) is that the resolution now becomes somewhat uneven,
as the edges of the interval gain more weight.

The next step is to limit the infinite sum to a finite amount of coefficients, which leads to the kernel
polynomial approximation [ Silver and Röder 1994; Wang 1994; Silver and Röder 1997; Weiße and
Fehske 2008; Weiße et al. 2006]:

g (x) ≈ gKPM (x) =
1

π
√
1− x2

(
d0µ0 + 2

M−1∑
n=1

dnµnTn (x)

)
. (3.47)

Note that the right-hand side is a polynomial of degreeM−1, thus a change of basis into the original
ansatz with monomials (3.38) is in principle possible. The additional coefficients dn are required to
damp Gibbs oscillations which arise near points where the function is not differentiable. The Gibbs
phenomenon is a direct result of the truncation of the infinite series and also well-known from the
Fourier series expansion. It has relevance for physical applications, since a spectral function is a
sum of delta peaks, at the edges of which Gibbs oscillations would otherwise appear. One can make
several choices for the damping, which is equivalent to convolutions with different kernels, thereby
broadening the δ-peaks in different ways. The most relevant are [ Weiße and Fehske 2008; Weiße
et al. 2006]:

dJacksonn =
[
(M − n+ 1) cos kn + sin kn tan−1 k1

]
/ (N + 1) , kn = n

π

N + 1
,

dLorentzn = sinh
[
λ (1− n/N)

]
/ sinhλ, λ ∈ R.

(3.48)

The Jackson damping produces δ-peaks broadened as Gaussians, the Lorentz damping as somewhat
wider Lorentzians.

In order to calculate the spectral function (3.36), let us introduce an unshifted “operator density of
states”:

ρA (x) =
∑
n

∣∣⟨n∣∣A∣∣0⟩∣∣2 δ (x− En) . (3.49)

The Chebyshev moments for ρA (x) are obtained via:

µk [ρA] =

∫ 1

−1

dx Tk (x) ρA (x)

=

∫ 1

−1

dx Tk (x)
∑
n

∣∣⟨n∣∣A∣∣0⟩∣∣2 δ (x− En)

=
∑
n

Tk (En)
⟨
0
∣∣A†∣∣n⟩⟨n∣∣A∣∣0⟩

=
∑
n

⟨
0
∣∣A†Tk

(
H̃
) ∣∣n⟩⟨n∣∣A∣∣0⟩

=
⟨
0
∣∣A†Tk

(
H̃
)
A
∣∣0⟩.

(3.50)

Because of the symmetry relation (following from (3.42))
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Tn (−x) = (−1)n Tn (x) , (3.51)

using (−1)n µn instead of µn mirrors the delta function to δ (−x− En) = δ (x+ En). Back-scaling
and shifting then gives the original δ-peak:

δ (ω − E0 + En) =
1

|a|
δ (x+ En + 2b− E0) =

1

|a|
δ (x+ En + Emin + Emax − E0) . (3.52)

The whole algorithm for the evaluation of (3.36) thus looks like that:

1. Calculate the ground state
∣∣0⟩, its energy E0, as well as the maximal and minimal energies

Emax, Emin in the appropriate subspace using the Lanzos method (chapter 3.2). This requires
up to three runs and can be parallelized.

2. Use the energies to rescale the Hamiltonian according to (3.39).

3. Apply the operator A to
∣∣0⟩ and save the state (can be applied in place).

4. Calculate
∣∣Tk⟩ := Tk

(
H̃
)
A
∣∣0⟩ using the recursion relation (3.40). At each recursion step,

the result can be projected on
⟨
0
∣∣A† in order to obtain µn according to (3.50).

5. The spectral function can now be evaluated at each point x by carrying out the summation
(3.45) and scaled back to ω using (3.52). This can be also done very efficiently for an array of
ω-points at once using the cosine transform [ Weiße and Fehske 2008; Weiße et al. 2006]. In
this work, this was implemented using the FFTW library [ Frigo and Johnson 1998].

Finally, one should mention the helpful relations

T2k (x) = 2Tk (x)Tk (x)− T0 (x) ,
T2k+1 (x) = 2Tk+1 (x)Tk (x)− T1 (x) .

(3.53)

Exploiting them, we get:

µ2k = 2
⟨
Tk
∣∣Tk⟩− µ0,

µ2k+1 = 2
⟨
Tk+1

∣∣Tk⟩− µ1,
(3.54)

thereby obtaining 2M moments for a given iteration depth M . This is very helpful when working
with exact states. However, experience has shown that when using the Chebyshev expansion in
combination with matrix-product states, this leads to larger numerical errors and is hence only
employed with exact states.

3.3.2. Multi-dimensional expansion

When applying the filter technique in order to analyse the spectral function in chapter 4.1.3, we will
be faced with the calculation of a two-dimensional expansion (4.24), whose Lehmann representation
is given by

ρAB (x, y) =
∑
mn

⟨
0
∣∣A†∣∣n⟩⟨m∣∣B∣∣n⟩⟨n∣∣A∣∣0⟩ δ (x− xn) δ (y − xm) . (3.55)

45



We can apply the Chebyshev expansion by simply expanding the x- and y-direction independently
in a tensor-product fashion:

ρAB (x, y) =
M∑
k=0

M∑
l=0

µkl hkl dkdl

π2
√
(1− x2) (1− y2)

Tk (x)Tl (y) , (3.56)

where the factor hkl takes care of the fact that the zeroth coefficient has to be halved:

hkl =
2

1 + δk,0

2

1 + δl,0
. (3.57)

The moments now constitute a matrix and are found to be:

µkl =
⟨
0
∣∣A†Tl

(
H̃
)
BTk

(
H̃
)
A
∣∣0⟩. (3.58)

The matrix is obviously symmetric:

µkl = µlk. (3.59)

Eq. (3.58) is best evaluated with enough space to store all the vectors of the outer iteration
∣∣Tk⟩ =

Tk

(
H̃
)
A
∣∣0⟩, so that the rest is obtained using matrix-vector multiplications with B, followed by

scalar products. If the whole two-dimensional spectrum is required, it can be most efficiently eval-
uated using the two-dimensional cosine transform of the moment matrix. Once more, the FFTW
library can be used [ Frigo and Johnson 1998].

3.3.3. Time evolution

In order to calculate the time evolution of a state, we can make use of the better expansion (3.43),
writing [ Tal‐Ezer and Kosloff 1984; Lubich 2008; Weiße and Fehske 2008; Weiße et al. 2006]:

∣∣Ψ(t)
⟩
= e−i(aH̃+b)t∣∣Ψ(0)

⟩
≈ e−ibt

(
µ0 + 2

M−1∑
k=1

Tk

(
H̃
)) ∣∣Ψ(0)

⟩
=: PM

∣∣Ψ(0)
⟩
. (3.60)

The moments can now be calculated analytically:

µk =

∫ 1

−1

dx
1

π
√
1− x2

Tk (x) e
−iaxt = (−i)k Jk (at) , (3.61)

where Jk (at) denotes the k-th Bessel function of the first kind. It decays rather quickly for k > at,
so that only few additional iterations are required after this condition has been fulfilled at some
iteration depth k. A detailed error analysis yields the following expression for the distance to the
exact state [ Lubich 2008]:

dist = ∥PM

∣∣Ψ(0)
⟩
− e−iHt

∣∣Ψ(0)
⟩
∥ ≤ 4

(
e1−(

at
2k)

2 at

2k

)k

, k ≥ at, (3.62)
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thus a scaling which is even faster than exponential.

We can also look at the algorithm in the followingway: In order to propagate over the whole interval
t, the Chebyshev iteration effectively chooses steps of the order of δt ∼ 1/a2/ (Emax − Emin), so that
the complexity depends on the full bandwidth of the spectrum; or is linear in t for a given bandwidth.

Overall, eq. (3.61) allows us to pre-calculate the coefficients of the expansion (stopping when they
become sufficiently small), thereby assessing the effort required to carry out the timestep (3.60) a
priori. The downside is that a rescaling of the Hamiltonian requires additional Lanczos runs, which
is not practical if the HamiltonianH = H (t) depends on time explicitly, so that the spectrum grows
and shrinks in time. In the latter case, a combination of theMagnus expansion technique paired with
the Lanczos time propagation (where the polynomial is not fixed a priori, but implicitly changes at
each timestep) is more appropriate, see chapter 3.4.

3.4. Propagating time-dependent Hamiltonians

The time-independent Schrödinger equation i∂t
∣∣Ψ⟩ = H

∣∣Ψ⟩ can be immediately solved by expo-
nentiation

∣∣Ψ(t)
⟩
= U (t)

∣∣Ψ(0)
⟩
= exp (−iHt)

∣∣Ψ(0)
⟩
, so that the problem of time-propagation

reduces to the evaluation of a matrix exponential. If the Hamiltonian is time-dependent, but com-
mutes with itself at different times, a solution in terms of an exponential can still be obtained by an
integrating factor:

U (t) = exp
[
−i
∫ t

0

dt′ H (t′)

]
, [H (t) , H (t′)] = 0. (3.63)

This form can still be preserved in the general case by introducing a time-ordering operator T ,

U (t) = T exp
[
−i
∫ t

0

dt′ H (t′)

]
, [H (t) , H (t′)] ̸= 0, (3.64)

however, this is not very practical in terms of a numerical implementation. Instead, let us first
consider the simple case where the Hamiltonian has a time dependence with two plateaus:

H (t) =

{
B, 0 ≤ t ≤ 1,
A, 1 < t ≤ 2,

(3.65)

with [A,B] ̸= 0. Then, the solution at t = 2 is given by U (t = 2) = exp (−iA) exp (−iB) and can
be written in terms of a single exponential U (t = 2) = exp (−iC) with the help of the well-known
Baker-Campbell-Hausdorff (BCH) formula:

C = A+B +
1

2
[A,B] +

1

12
([A, [A,B]] + [[A,B] , B])± . . . (3.66)

Now we can think of a general time-dependence as being composed out of many non-commuting,
but piecewise constant Hamiltonians, with the time evolution operator being given by the corre-
sponding matrix exponential. A natural question is to ask whether there is a continuous general-
ization of the BCH formula, which gives this continuous application of matrix exponential in terms
of one effective exponential:
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U (t) = exp [−iΩ (t)] = exp
[
−i

∞∑
k=0

Ωk (t)

]
, [H (t) , H (t′)] ̸= 0. (3.67)

Such a generalization has been indeed found by Magnus [ Magnus 1954; Blanes et al. 2009]. The
first coefficients of the Magnus series are given as follows, with an apparent analogy to the BCH
formula:

Ω0 (t) =

∫ t

0

dt′ H (t′)

Ω1 (t) =
1

2

∫ t

0

dt′
∫ t

0

dt′′ [H (t′) , H (t′′)]

Ω2 (t) =
1

6

∫ t

0

dt′
∫ t

0

dt′′
∫ t

0

dt′′′ ([H (t′) , [H (t′′) , H (t′′′)]] + [H (t′′′) , [H (t′′) , H (t′)]])

. . .

(3.68)

Even after the integrals in the above formula are approximated by a discreteweighted sum,
∫
dt f (t) =∑

iwif (ti), using e.g. Gauss-Legendre integration, we are left with an expression of the type
U (δt) = exp (−iHeff δt) for a step δt, where Heff contains unwieldy commutators which cannot
be numerically evaluated with any reasonable cost. The idea behind the commutator-free exponen-
tial time-propagation method (CFET) is now to make use of the BCH formula in reverse to write the
time evolution operator as a product of exponentials in such a fashion that the first terms of the
Magnus series are reproduced:

U (δt) = exp [−iΩ (δt)] ≈ exp (−iHeff δt) ≈
Nexp∏
n=1

exp (−iHn,eff δt) . (3.69)

Apart from the amount of integration points, the accuracy is controlled by the amount of exponen-
tials Nexp. The simplest CFET with Nexp = 1 is a second-order method given by

H1,CFET21 =
∑
i

wiH (ti) . (3.70)

This is what one would naively set using a small timestep and neglecting all commutators. However,
Alvermann and Fehske have found a fourth-order approximation with just Nexp = 2 [ Alvermann
and Fehske 2011; Alvermann, Fehske, and Littlewood 2012]:

Hn,CFET42 =
2∑

m=1

gnmH (xmδt) , (3.71)

where the coefficients gnm can be arranged in a matrix:

g =

(
g− g+
g+ g−

)
(3.72)

with g± = 3±2
√
3

12
, while the steps are given by x1/2 = 1

2
∓

√
3
6
. Alvermann, Fehske and Littlewood

also give a fourth-order method with three exponentials and a smaller error prefactor:
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Hn,CFET43 =
3∑

m=1

gnmH (xmδt) , (3.73)

with the coefficient matrix now being given by

g =


37
240
− 10

87

√
5
3
− 1

30
37
240

+ 10
87

√
5
3

− 11
360

23
45

− 11
360

37
240

+ 10
87

√
5
3
− 1

30
37
240
− 10

87

√
5
3

 , (3.74)

while the steps are x1/3 = 1
2
∓
√

3
20
, x2 = 1

2
.

Of course, whenever the time-dependence of the Hamiltonian can be separated out asH (t) = H0+
f (t)V , one can pre-sum the values of the time-dependent function to obtain effective Hamiltonians
of the type Hn,eff (δt) = H0 +

[∑
m gnmf (xmδt)

]
V .

3.5. Benchmark of the time-propagation algorithms

Let us now make a performance benchmark of the available time evolution algorithms. Fig. 3.2(a)
shows a comparison of the Chebyshev and the Lanczos algorithms (chapters 3.3.3 and 3.2.2, respec-
tively) for a Hamiltonian that does not depend on time. A Hubbard model with L = 6,N↑ = N↓ = 3
and U = 6 is taken, whose Hilbert space is still small enough to be diagonalized. A random state
from the Hilbert space is then propagated to t = 20 using various fixed recursion depthsM in the
Chebyshev case and fixed Krylov space dimensions N in the Lanczos case. As a measure of error,
the distance to the exactly propagated state is calculated using the uniform norm, given by:

∥Ψ∥∞ = lim
p→∞

(∑
i

∣∣Ψi

∣∣p)1/p

= max
i

∣∣Ψi

∣∣. (3.75)

As a measure of effort, the amount of matrix-vector multiplications (MVMs) is taken, which is es-
sentially equal to N andM , respectively.

One observes that the error remains fairly large, of the order of O (10−1) during the first O (102)
iterations for both methods (note that at = (Emax − Emin) /2 · t = 220 in the Chebyshev case),
until it suddenly drops hyperexponentially and is only limited to O (10−11) due to finite-accuracy
arithmetics. The Lanczos algorithm appears to perform better, requiring fewer MVMs to reach the
same accuracy. However, this is only possible if the whole Krylov space basis can be stored. The
other curves in fig. 3.2(a) show the case where only N = 30, 40, 50 basis states can be stored and it
turns out that the algorithm performs much worse. For the Chebyshev expansion, one always needs
to store only 3 states during the recursion relation.

To test the validity of the distance estimates (3.62) and (3.33), the algorithms are run in an adaptive
mode, stopping the iterations when a given tolerance is reached, which is varied between 10−3 and
10−15. The results are displayed as dots in fig. 3.2(a). One observes that the estimates are very
conservative, the real error is in fact much smaller, especially in the Chebyshev case, though again
limited by the finite-precision arithmetics to O (10−11).

Finally, let us test the case of a time-dependent Hamiltonian H = H (t). Fig. 3.2(b) compares
the various variants of the CFET algorithm, where an adaptive Lanczos solver is used as a driver
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Figure 3.2.: (a) Distance between the numerically propagated state and the exact one (obtained by
diagonalization) using the uniform norm (3.75) as a function of matrix-vector multipli-
cations. Parameters: Hubbard model with L = 6, N↑ = N↓ = 3, U = 6, the initial state
is random, the propagation time is t = 20. The blue curve uses the Lanczos algorithm
and stores as many Krylov states as needed, the other Lanczos curves use a Krylov space
dimension N as indicated and reset after a given timestep. The dots indicate the algo-
rithms in an adaptive mode where the tolerance is varied between 10−15 and 10−3 using
eqs. (3.62) and (3.33).
(b) Distance between a forth-and-back propagated state and the initial state as a function
of matrix-vector-multiplications. Parameters: Hubbard model as in (a) with the addition
of an external electric field E (t) = E0 cos (Ωt) (E0 = 1), described by the Peierls substi-
tution, the propagation is until t = 10 (followed by a backward propagation). Various
CFET setups are used in combination with the Lanczos algorithm. The solid lines are for
Ω = 1, the dotted lines for Ω = 10.
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to compute the matrix exponentials. The same model is taken, but with an external electric field
E (t) = E0 cos (Ωt), with E0 = 1 and Ω = 1 (slow dynamics), Ω = 10 (fast dynamics). Instead of a
cumbersome calculation of the exact time evolution in this case, the following approach is used: The
state is propagated to t = 10 and then back in time to t = 0 using twice the amount of timesteps.
Since one has to get back the initial state, the distance between the propagated and the initial state
is taken as the error. The doubling of the timesteps on the back propagation is necessary to ensure
that the right time dependence has been sampled.

One observes that both CFET43 and CFET42 show a significant improvement as compared to the
simple CFET21 (which is equivalent to treat H (t) as constant during a timestep), but they do not
differ much among each other, so that a further optimization does not seem to be possible. Not very
surprisingly, the fast dynamics with Ω = 10 shows a larger error, but the relative relation of the
algorithms remains the same.

3.6. The Density Matrix Renormalization Group (DMRG)

3.6.1. Matrix decompositions: SVD, QR

The singular value decomposition (SVD) is a decomposition of a matrix M into a product of three
other matrices,

M = USV †, (3.76)

where U and V have the properties U †U = 1 and V †V = 1, while S is diagonal (Sij = siδij) and
contains the singular values si in decreasing order. This decomposition works even if M is non-
quadraticNr×Nc. The amount of singular values then goes as far as min (Nr, Nc). Hence it follows
that ifM is tall and skinny (Nr ≥ Nc), then V † is quadratic and thereby unitary. Similarly, ifM is
short and fat (Nc ≥ Nr), then U is quadratic and thereby unitary.

One should note the relation of the SVD to diagonalization. Decomposing the product MM †, we
find

MM † = USV †V SU † = US2U †. (3.77)

One recognizes that this is simply the diagonalization ofMM † (which is hermitian by construction)
and it follows that the eigenvalues ofMM † are equal to the squares of the singular values ofM .

The SVD can be used a tool for compression: For instance, given a grey-scale digital picture, we can
interpret it as a matrix with entries ranging between 0 and 255, representing each pixel. Applying
the SVD to it, one will notice that whenever there is sufficient structure contained within the picture,
the singular values will decrease and can be truncated, but will all remain of the same order of
magnitude whenever if the picture only contains white noise. Assuming for simplicity that the
original picture is quadraticN ×N , we can take the first χ dominant singular values and then only
need to store of the order of χN numbers rather than N2, a noticeable gain for χ≪ N .

Mathematically, the truncated SVD appears in the problem of low-rank approximation. If we seek
to approximate a matrix by another of smaller rank, i.e. min∥M −M ′∥2 with rank(M ′) < rank(M)
using the Frobenius norm ∥M∥2 =

∑
ij |Mij|2, thenM ′ is found by the same procedure of truncated

SVD as described above.
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This compression property of the SVD lies at the heart of DMRG, which is essentially an elaborate
framework to compress the wavefunction and work with it efficiently.

Another helpful tool is the QR-decomposition, given by

M = QR, (3.78)

where Q has the property Q†Q = 1. The relation to SVD is quite obvious: U = Q and SV † = R.
The QR-decomposition does not reveal the singular values, thus no truncation can be carried out,
but it is slightly cheaper and therefore preferable whenever no truncation is desired in the first place.
In a similar fashion we can define an RQ-decomposition,

M = RQ, (3.79)

now related to the SVD via US = R and V † = Q. It can be found by observing that

M † = Q̃R̃ = (RQ)† = Q†R†, (3.80)

so that R = R̃† and Q = Q̃†. Thus, to find the RQ-decomposition of M , one needs to apply the
QR-decomposition toM † and take the adjoint of the result again.

3.6.2. Matrix product states

The many-body wavefunction is normally expressed as a sum over Fock states, with each Fock state
being given by a set of occupancy numbers. However, a more natural basis for DMRG is the basis
of local states, which will be denoted by

∣∣σl⟩, where l enumerates the lattice site. The local bases
for the most commonly investigated solid state models look as follows (with the site index dropped
assuming homogeneity):

Heisenberg model {
∣∣ ↑ ⟩, ∣∣ ↓ ⟩}

t-J model {
∣∣0⟩, ∣∣ ↑ ⟩ = c†↑

∣∣0⟩, ∣∣ ↓ ⟩ = c†↓
∣∣0⟩}

Hubbard model {
∣∣0⟩, ∣∣ ↑ ⟩, ∣∣ ↓ ⟩, c†↑c†↓∣∣0⟩ = ∣∣ ↑↓ ⟩}

Kondo model {
∣∣σ⟩Heisenberg ⊗

∣∣σ⟩Hubbard}

Let us assume for simplicity that the system is a homogeneous chain of lengthLwith open boundary
conditions. Then we can define a site-independent local dimension D (2, 3, 4 and 8 respectively for
the models above), so that the Hilbert space size is DL. The wavefunction in the local basis reads:

∣∣Ψ⟩ = ∑
σ1...σL

cσ1...σL

∣∣σ1⟩ . . . ∣∣σL⟩. (3.81)

The next step is to think of theDL coefficients cσ1...σL
which appear in the formula above as a tensor

of rank L. It can be reshaped into a D ×DL−1 matrix by bijectively mapping of all the indices but
the first onto a superindex. We can denote this by using parentheses: cσ1...σL

→ cσ1(σ2...σL). We can
then apply the SVD to this matrix, obtaining:

cσ1(σ2...σL) =
∑
i

Uσ1iSiiV
†
i(σ2...σL)

. (3.82)
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Now we reshape the indices of U , introduce a dummy index 1, and define the following A-tensor:

Aσ1
1i := Uσ1i. (3.83)

If no truncation is carried out, then we are dealing with a 1×D matrix for each σ1.
In the next step, we take the remainder of the tensor ciσ2...σL

:= SiiV
†
i(σ2...σL)

and reshape it into a
matrix by mapping the first two indices onto rows and the rest onto columns: ciσ2...σL

→ c(iσ2)σ3...σL
.

Applying the SVD once more, we obtain:

c(iσ2)σ3...σL
=
∑
j

U(iσ2)jSjjV
†
jσ3...σL

(3.84)

and can now define the next A-tensor:

Aσ2
ij := U(iσ2)j. (3.85)

The index j runs over the minimum of the rows and columns of c(iσ2)σ3...σL
, in this case D2, so that

the new A-tensor is now a D ×D2 matrix for each σ2.

Continuing this procedure iteratively until the end of the chain is reached, we obtain the wavefunc-
tion as a matrix product state:

∣∣Ψ⟩ = ∑
σ1...σL

Aσ1Aσ2 . . . AσL
∣∣σ1⟩ . . . ∣∣σL⟩. (3.86)

This is exact since no truncation has been carried out. Therefore, the matrix dimensions increase
exponentially towards the middle of the chain and then decrease again until they reachD×1 at the
last site.
Since theA-tensors were chosen as the reshapedU -matrices of the SVD, the following orthogonality
relation (”left-orthogonality”) follows from the U †U = 1 property of the latter:

∑
σl

(Aσl)†Aσl = 1. (3.87)

Alternatively, we can apply the chain of SVDs to the c-tensor from the right, keeping V † in every
step. In this case we obtain

∣∣Ψ⟩ = ∑
σ1...σL

Bσ1Bσ2 . . . BσL
∣∣σ1⟩ . . . ∣∣σL⟩, (3.88)

where the B-tensors now fulfill the following relation (”right-orthogonality”):

∑
σl

Bσl (Bσl)† = 1. (3.89)

A mixed representation is also possible, by applying the SVD both from the left and right. We may
choose to go to the site l from the left and to l + 1 from the right, then the singular values will be
placed on the bond between these sites:
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∣∣Ψ⟩ = ∑
σ1...σL

Aσ1 . . . AσlSl,l+1 Bσl+1 . . . BσL
∣∣σ1⟩ . . . ∣∣σL⟩. (3.90)

By contracting Sl,l+1 with the preceding A-tensor or the following B-tensor, the result will be non-
orthogonal. We can denote this by the letterM , so for example:

∣∣Ψ⟩ = ∑
σ1...σL

Aσ1 . . . Aσl−1MσlBσl+1 . . . BσL
∣∣σ1⟩ . . . ∣∣σL⟩. (3.91)

This representation actually happens to be the most practical. The site l, which has been selected in
this fashion, is often called orthogonality centre, but to me the term pivot seems more appropriate: In
the DMRG algorithm, one will seek to modify the tensor at this site, while keeping the rest constant.
The term pivot is already established for algorithms which proceed in this manner, e.g. Gaussian
elimination [ Press 2007].
The procedure of moving the pivot left and right through the chain by applying the SVD (or QR) is
called sweeping and is an essential part of improving the efficiency of the algorithm.

3.6.3. Matrix product operators

In order to apply operators to the wavefunction in matrix product form, we also need to repre-
sent them as matrix product operators (MPOs). So, by analogy, we seek the representation of the
Hamiltonian in the following form:

H =
∑
σσ′

W σ′
1σ1W σ′

2σ2 . . .W σ′
LσL
∣∣σ′⟩⟨σ∣∣, (3.92)

where the vector notation indicates the set of local bases: σ = {σ1 . . . σL}. For a tight-binding
Hamiltonian of the type

H =
∑
l

(
XlY

†
l+1 + Yl+1X

†
l

)
+
∑
l

Zl (3.93)

such a representation can be constructed explicitly by introducing a generator, which is a matrix of
operators:

G(l) =


1 0 0 0
Xl 0 0 0

X†
l 0 0 0

Zl Y †
l Yl 1

 , l = 2, . . . , L− 1. (3.94)

At the first site, we set it to the last row of the matrix above, on the last site to the first column:

G
(1)
1i = G4i,

G
(L)
i1 = Gi1.

(3.95)

TheW -matrices in (3.92) are now found to be:
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W
σ′
lσl

ij =
⟨
σ′
l

∣∣G(l)
ij

∣∣σl⟩. (3.96)

This can be verified by multiplying out the product in (3.92), which gives the Hamiltonian (3.93).

Thus, unlike matrix product states, the MPO representation of a tight-binding Hamiltonian is exact
due to the fact that only neighbouring sites are related, so that the bond dimension is

χMPO = 2 +Nnn, (3.97)

where Nnn is the amount of the nearest-neighbour terms. In a similar fashion, an MPS becomes an
exact representation of a state with finite correlation length, such as the AKLT state with χ = 2 [
Affleck et al. 1987; Schollwöck 2011].

However, the MPO representation is not unique: For example, the nearest-neighbour Coloumb in-
teraction term in the Hubbard model (see chapter 2.1.3) contains four operator pairs if written

V
∑
⟨ij⟩

(ni↑nj↑ + ni↑nj↓ + ni↓nj↑ + ni↓nj↓) , (3.98)

but by an obvious reordering of the summation

V
∑
⟨ij⟩

(ni↑ + ni↓) (nj↑ + nj↓) = V
∑
⟨ij⟩

ninj (3.99)

it contains only one.

One should further note that by flipping the bra vector to a ket in (3.92), an MPO acquires an MPS
form with the local basis given by

∣∣σl⟩⊗ ∣∣σl⟩, so that all algorithms, including the compression via
truncating the singular values can be applied:

H =
∑
σ′σ

W (σ′
1σ1)W (σ′

2σ2) . . .W (σ′
LσL)

∣∣σ′σ
⟩
. (3.100)

However, while the bond dimension may shrink, the sparsity of the matrices is lost, effectively
resulting in more entries than before, so that this procedure is of little advantage in practice. It can,
however, be used to find compact representations of long-range Hamiltonians [ Fröwis, Nebendahl,
andDür 2010] or to compress an operatorwhen performing time-evolution in theHeisenberg picture
[ Hartmann et al. 2009].

For DMRG, it is advantageous to calculate and storeH2 as well, which is helpful to quantify the error
of the ground state (see 3.6.4). One can easily check that the generator for this is just the tensor (or
Kronecker) productG(l)⊗G(l). As sparsity is preserved in this case, the numerical costs of handling
H2 in this fashion are usually still acceptable, unless the local dimension gets too large.

For the Hubbard model, the generator contains the operators for the two spin polarizations in the
local basis, which are given by

c↑ =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (3.101)
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and

c↓ =


0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

 . (3.102)

From here we have nσ = (cσ)
† cσ and all the other necessary operators.

Note that the above matrices take care of the fermionic minus sign in the local basis only, but there
is an additional non-local contribution. To account for it, it is helpful to define the following con-
vention for the order of operators in the basis states:

∣∣n1n2 . . . nL

⟩
:=

L∏
i=1

(
c†i↑

)ni↑
(
c†i↓

)ni↓ ∣∣0⟩. (3.103)

Thus, unlike what had been done for exact states (see eq. (3.2)), we now group all local operators
rather then all operators with the same spin.
To sort an operator acting on site j into this list, one has to pull it past all the sites i < j, each giving
a fermionic phase factor fi:

cjσ =

(∏
i<j

fi

)
clocjσ . (3.104)

The phase factor is−1 if there is another electron and+1 if the site is empty. This can be represented
by the occupancy number operators in the following fashion:

fi = (1− 2ni↑) (1− 2ni↓) . (3.105)

In matrix form each fi is given by:

f =
(
1− 2n↑

) (
1− 2n↓

)
=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 . (3.106)

This is in principle just the Jordan-Wigner transformation [ Jordan and Wigner 1993; Dolfi et al.
2014]. One has of course that f 2

i = 1. Due to this property, the fermionic phase cancels in a tight-
binding hopping term, leaving only the contribution between sites:

c†i+1,σciσ =
(
cloci+1,σ

)†
fi c

loc
iσ . (3.107)

In this way, we obtain the MPO generator for the extended Hubbard model:

56



GHubbard =



1 0 0 0 0 0 0

c†↑ 0 0 0 0 0 0

c†↓ 0 0 0 0 0 0

c↑ 0 0 0 0 0 0
c↓ 0 0 0 0 0 0
n 0 0 0 0 0 0

Ud −fc↑ −fc↓ +fc†↑ +fc†↓ V n 1


, (3.108)

with d = n↑n↓. The minus sign in the last row is due to the overall negative hopping −t = −1
(necessary to produce a minimum of the band dispersion at the Γ-point), while the flipped sign
is due to an additional commutation in order to preserve hermiticity: −tc†iσci+1,σ + tciσc

†
i+1,σ =

−t
(
c†iσci+1,σ + h.c.

)
.

This explicit construction to obtain an MPO can also be extended to next-nearest neighbour Hamil-
tonians of the type

H =
∑
l

(
XlY

†
l+2 + Yl+2X

†
l

)
. (3.109)

A possible generator now looks like this:

G(l) =



1 0 0 0 0 0
Xl 0 0 0 0 0

X†
l 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

0 0 0 Y †
l Yl 1

 . (3.110)

The difference to the tight-binding case is the appearance of the ”transfer” block near the left lower
corner. This means that the MPO bond dimension now grows by two for each next-nearest neigh-
bour operator pair Nnnn:

χMPO = 2 +Nnn + 2Nnnn. (3.111)

Very recently, a method of calculating MPOs from local operators has been suggested which adds
them up and uses an optimized compression algorithm which preserves the sparsity of the involved
matrices [ Hubig, McCulloch, and Schollwöck 2017]. This is a promising step of evolution, altogether
removing the need for generators tailored to the problem.

3.6.4. The ground state in DMRG

We have defined an MPS as a decomposition of the exact wavefunction which can be compressed by
truncating the singular values occurring in the SVD decomposition. In practice, the exact wavefunc-
tion is of course unknown, so that we need to work backwards: Setting a threshold for maximum
amount of singular values χ, we can start with a random MPS and try to work toward the ground
state by interpreting the matrix entries as variational parameters and applying the Ritz principle:

min
(⟨
Ψ
∣∣H∣∣Ψ⟩− λ⟨Ψ∣∣Ψ⟩) (3.112)
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with a Lagrange parameter λ. This defines a simple tensor contraction and it is helpful to represent
it in graphical form. By letting closed shapes denote tensors and outgoing legs their indices in the
following way:

v

M

c scalar

vector

matrix

T 4-leg tensor

we can represent basic linear algebra operations as well as arbitrary pair contractions by identifying
the legs:

M v matrix-vector product

traceM

T1 tensor contraction

T3

T2

v v scalar product

w =

=

=

=

c

c

T4

This is in fact a simplified version of the Penrose graphical notation from high-energy physics [
Jorgensen 2006].

The functional in eq. (3.112) can then be represented in the following form, where we use the mixed-
orthogonal form (3.91) of the MPS (the significance of the arrows is explained in 3.6.6):

A A A M B B B

W W W W W W W

A† A† A† M† B† B† B†

−λ

M

A† M†A† A†

B B

B†

A

B†

A B

B†

A

We are now facing the problem that the amount of free parameters is too large to minimize at
once, and this is where the sweeping procedure comes in. At first, we note that the orthogonality
constraints (3.87) and (3.89) can be represented in the following graphical form:

A

A†

=

B

B†

=(a) (b)
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That is, such contractions simplify to a simple line (the identity). Next, we can contract all the tensors
to the left and right of the pivot site, leading to:

M

W

M†

M

−λ

M†

L R

The resulting three-leg tensors L and R can be interpreted as the left and right environment of the
given pivot site l. The graphical notation already suggests how they can be obtained efficiently,
namely by contracting iteratively from left to right or from right to left:

L(l)

Aσl

Aσ
′
l†

Wσ′
lσl L(l+1)= R(l−1) R(l)

Bσl

Bσ′
l†

Wσ′
lσl=(a) (b)

We can translate this back into index language, but in order not to overburden the notation, let us
slightly regroup the indices in the following fashion:

W
σ′
lσl

albl
→W

(l)
σ′σab, (3.113)

and analogously for the other tensors. The iterative precedure now reads:

L
(l)
bi′i =

∑
ajj′

W
(l−1)
σ′σab ·

(
M

(l−1)
σ′j′i′

)∗
· L(l−1)

aj′j ·M
(l−1)
σji ,

R
(l)
aii′ =

∑
bjj′

W
(l+1)
σ′σab ·M

(l+1)
σij ·R(l+1)

bjj′ ·
(
M

(l+1)
σ′i′j′

)∗
.

(3.114)

We can interpret the last two indices of L(l)
ijk and R(l)

ijk as rows and columns of a matrix, so that the
above equations can also be written in terms of matrix-matrix multiplications:

L
(l)
b =

∑
a

W
(l−1)
σ′σab ·

(
M

(l−1)
σ′

)†
· L(l−1)

a ·M (l−1)
σ ,

R(l)
a =

∑
b

W
(l+1)
σ′σab ·M

(l+1)
σ ·R(l+1)

b ·
(
M

(l+1)
σ′

)†
.

(3.115)

In this way, we have obtained a form which can be efficiently implemented by falling back to linear
algebra libraries.
Now, instead of optimizing all the parameters of the wavefunction at once, we can optimize one site
at a time by taking the derivative with respect to

(
M

(l)
σ′

)†
. Graphically, this results in:
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M

L = MRW λ

In index notation, it becomes:

∑
ab

∑
i′j′σ′

W
(l)
σ′σab · L

(l)
aii′ ·R

(l)
bjj′ ·M

(l)
σ′i′j′ = λM

(l)
σij. (3.116)

And once more, we convert it into a matrix notation for the actual implementation:

∑
ab

W
(l)
σ′σab · L

(l)
a ·M

(l)
σ′ ·R(l)

b = λM (l)
σ . (3.117)

This equation is easily recognized as an eigenvalue problem for the following effective single-site
Hamiltonian:

H
(l)
(ijσ)(i′j′σ′) =

∑
ab

W
(l)
σ′σab · L

(l)
aii′ ·R

(l)
bjj′ . (3.118)

Reshaping all the indices ofM (l)
σij into a common vector index,

(
M(l)

)
(σij)

=M
(l)
σij, (3.119)

we can simply write:

H(l) ·M(l) = λM(l). (3.120)

Finally, a simple DMRG algorithm for the ground state is set up as follows:

Preliminary DMRG algorithm

1. Create an MPO representation of the Hamiltonian. Set a cutoff matrix dimension χ and create
a randomMPS of lengthL, i.e. a two-dimensionalL×D array of matricesM (l)

σ for each lattice
site l and local basis vector

∣∣σl⟩. Also allocate vectors of matrices L(l) and R(l), both of size L.
Set L(1) = R(L) = 1 (of size 1× 1) as the initial condition.

2. Left-orthogonalize the MPS by sweeping from right to left using the QR decomposition. While
doing so, create the right environments R(l) for each site after each sweep step. This moves
the pivot to l = 1.

3. Solve the eigenvalue problem (3.120) using the Lanczos algorithm, obtaining a new ground
state energy E0. Use the existing tensorM (1)

σij as the initial guess. ReplaceM (1)
σij by the ground

state solution obtained from this algorithm. Sweep to the right by decomposing the newly
obtainedM (1)

σij using QR, updatingM (2)
σij and L(2). This moves the pivot to l = 2.
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4. Continue in this fashion until eachM (l)
σij has been updated once. This concludes a half-sweep.

Checkwhether the ground state energyE0 has changed significantly during the procedure and
repeat half-sweeps from right to left, followed by those from left to right until convergence.

5. Finally, ensure that the result does not depend on the cutoff χ by performing a second calcu-
lation with a larger χ; or choose it large enough from experience.

While this algorithm will perform reasonably well for simple problems like the ground state energy
of aHeisenberg chain, there aremanymore things to improve for an application to tougher fermionic
problems (with a larger local dimensionD andmore entanglement entropy), which will be discussed
in detail in sections 3.6.6 and 3.6.8.

3.6.5. Entanglement entropy

Let us now take a brief look at the question of why and when DMRG works and how good it is. To
this end, we need to obtain its relation to reduced density matrices, from which the name itself is
derived.
A common procedure is to take a system of interest, described by a wavefunction

∣∣Ψ⟩ and integrate
out a part of it in order to find an effective description of the remainder, in whose behaviour one
is interested. It will be an open system, and thus should be properly described by a density matrix
rather than a pure state. In our case, we take the chain and divide it into two blocks A and B. The
reduced density matrix of block A reads:

ρA = TrB
∣∣Ψ⟩⟨Ψ∣∣. (3.121)

Introducing the basis of the left block as
∣∣i⟩

A
and the basis of the right block as

∣∣i⟩
B
, the wavefunc-

tion can be written as

∣∣Ψ⟩ =∑
ij

Σij

∣∣i⟩
A

∣∣j⟩
B
. (3.122)

Using this basis, the trace over B in (3.121) can now be easily carried out, giving

ρA =
∑
ii′j

ΣijΣ
∗
i′j

∣∣i⟩
A

⟨
i′
∣∣
A
, (3.123)

or, by stripping off the basis vectors and using a matrix notation,

ρA = Σ Σ†. (3.124)

On the other hand, we can also abuse the SVD one more time to carry out a decomposition of the
matrix Σij , leading to:

∣∣Ψ⟩ =∑
ij

∑
a

UiaSaa

(
V †)

aj

∣∣i⟩
A

∣∣j⟩
B

=
∑
a

(∑
i

Uia

∣∣i⟩
A

)
Saa

(∑
j

(
V †)

aj

∣∣j⟩
B

)
=:
∑
a

Saa

∣∣a⟩
A

∣∣a⟩
B
.

(3.125)
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Such a representation is called Schmidt decomposition. In this case,U and V † define basis transforma-
tions of the bases of A and B respectively, such that the entanglement between the two subsystems
becomes evident: If there is only one non-zero singular value, the two subsystems form a product
state and are not entangled at all, and themore singular values are of significant size, the stronger the
entanglement. Notably, the a-summation in the above equation is limited by min (dimHA, dimHB),
so that a small system cannot couple to more states than it contains itself.

Comparing (3.125) to the MPS representation (3.90), we can see that they are identical if we set∣∣a⟩
A

=
∑

σ1...σl
Aσ1 . . . Aσl

∣∣σ1 . . . σl⟩, so that the first l sites of the chain form the subsystem A,
while the rest forms B. Thus, DMRG can be thought of as a successive Schmidt decomposition at
different points and a truncation of the singular values is possible whenever the two subsystems are
weakly entangled.

Comparing (3.124) with the SVD property (3.77), one can also read off that the singular values of the
Schmidt decomposition are equivalent to the eigenvalues of the reduced density matrix.

A convenient measure of the strength of the entanglement between the two subsystems is the en-
tanglement entropy S. It can be defined in an intuitive fashion using the reduced density matrix in
the same way the von Neumann entropy is defined in statistical mechanics:

SAB = −TrρA ln ρA. (3.126)

As such, it is dependent on the position of the cut in the chain. Within DMRG, S is directly accessible
via

SAB = −
∑
a

s2a ln s2a. (3.127)

For a product state, S = 0 holds. Apart from that, S is expected to be maximal for a bipartition of
the chain into two equal parts, as long as the system is homogeneous. Therefore, this is the quantity
we shall focus on, suppressing the subscripts. This is also where the MPS will have the largest bond
dimension, with S ∼ lnχ (cf. S = kB lnΩ from statistical mechanics). This relation can also be
inverted to read χ ∼ expS and we may ask ourselves how large χ needs to be to faithfully represent
the state.

In stastical mechanics, the entropy is an extensive quantity, which is why the Hilbert space grows
exponentially. For quantum ground states, however, the scaling with L is more favourable. The
general result from conformal field theory is that gapped systems obey an area law, meaning that
S ∼ Ld−1 [ Schollwöck 2005]. Intuitively, we can achieve a bipartition in d = 1 by cutting just one
bond, while doing the same in d = 2 requires cutting the order of L bonds. As long as entanglement
is short-ranged, the two subsystems can be thought of as only being entangled via this boundary.
In d = 1 this means that S = const and thus the wavefunction can be represented by an MPS of
fixed bond dimension no matter the system size. However, with periodic boundary conditions, we
need to cut two bonds and expect to get twice the entanglement entropy of open ones. While the
bond dimension χPBC is still constant, with this estimate one gets that χPBC = χ2

OBC . This shows
that DMRG calculations with periodic boundary conditions are much more costly and are therefore
avoided as much as possible.

Most of the interesting quantum systems are not actually gapped. In this case, S acquires a log-
arithmic term: S ∼ lnL in d = 1. This means that χ grows as a power law and no arbitrarily
large system sizes can be worked with. However, the achieved system sizes are still large enough
to display thermodynamic limit behaviour: for spins (e.g. XXZ or transverse Ising model) typically
L ∼ 103, for fermions (e.g. Hubbard model or Kondo impurity model) typically L ∼ 102. For the
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former S ∼ 0.5− 1.5, for the latter S ∼ 1.5− 3. Apart from that the local dimensionD = 2 of spin
systems makes all calculations numerically cheaper.

For dynamical problems, the entanglement entropy also grows in time. This is quite obvious physi-
cally, as a perturbation will spread to neighbouring sites and create more entanglement. If we think
algorithmically, time propagation is a sequence of applications of the Hamiltonian to a state and sub-
sequent additions of states. Neither operation preserves the bond dimension: Since matrix product
states dwell on the truncated Hilbert space, they do not form a vector space. The exact application
of an MPO involves a tensor product and leads to an MPS with χ = χMPO · χMPS , while the exact
sum of two MPS involves a direct sum of the matrices and leads to an MPS with χ = χ1 + χ2.
Again, general considerations within conformal field theory lead to the prediction that S ∼ ln t for
a local perturbation, which is the case when calculating spectral functions or quenching impurities.
In this case, a light cone propagates from the point of perturbation and S increases according to
a power law. The achievable system sizes are about half of what is possible in equilibrium. The
MPS can be typically propagated until the perturbation hits the edge of the chain at which point the
first and last site become entangled. Calculations are easier when the perturbation is applied to the
edge site, as only half of the sites get entangled at each timestep. In the case of a global parameter
quench, the entanglement grows as S ∼ tv, so that χ increases exponentially with the prefactor
v. We can now think of light cones originating at every site, leading to a much faster and stronger
entanglement [ Calabrese and Cardy 2005]. In this case, only few inverse hoppings can be achieved.
Another general result is that entanglement grows faster for nonintegrable systems. In this case,
the time scale can be very limited even for local perturbations [ Prosen and Žnidarič 2007; Muth,
Unanyan, and Fleischhauer 2011].

Lastly, it should be noted that the scaling of the entanglement has opened up new physical venues
with an active field of what is now termed entanglement spectroscopy. For example in d = 2, one
finds S ∼ αL−γ where γ is a constant offset which depends on the topological state of the system.
However, these developments are only tangential to the present work. See Regnault (2017) for a
recent review.

3.6.6. Algorithmic details and caveats

Abelian symmetries

Just as the Hamiltonian in an exact basis becomes block-diagonal in presence of conserved quanti-
ties, a similar property emerges for matrix product states as well, although it is considerably harder
to enforce algorithmically. Let us assume we have an additive conserved quantity Q̂ =

∑L
l=1 q̂l with[

H, Q̂
]
= 0. We can then choose a basis of local eigenstates of Q̂. The first thing to notice is that

the left and right states of the MPS (see (3.122)) become eigenstates of Q̂ as well:

Q̂
∣∣i⟩

A
= QiA

∣∣i⟩
A
,

Q̂
∣∣j⟩

B
= QjB

∣∣j⟩
B
.

(3.128)

With this, the local tensors are only non-zero if the following condition is respected:

Mσl
ij


̸= 0 if QiA +Q (σl) = QjA

and QiA +QjB = Qtot can be fulfilled,
= 0 else,

(3.129)
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where Qtot is the desired quantum number of the state (e.g. a fixed particle number or magneti-
zation). Hence, Mσl obtains a block structure. This result can be straightforwardly generalized to
tuples of quantum numbers resulting from different U (1) symmetries: Q̂ =

{
Q̂(1), Q̂(2), . . .

}
.

As a visualization of Abelian symmetries in the diagrammatic representation, we can assign arrows
to all contraction lines and count incoming lines with a plus sign, outgoing lines with a minus sign:

Q(σl)

Qin Qout
M

Qin +Q(σl)−Qout = 0

This is reminiscent of Kirchhoff’s rules for currents in circuits. As boundary conditions, we need to
assume that there is a vacuum state flowing into the first site and the value Qtot flowing out of the
last site. To demonstrate the block structure of an MPS with Abelian symmetries, fig. 3.3 shows an
L = 6 Hubbard chain with Q = {N↑, N↓} and Qtot = {3, 3} (half filling).
In the numerical implementation, instead of a simplematrix for each value of σl, the encoding ofMσl

now requires an object of higher complexity, let’s call it biped for its amount of legs (the physical
index σl is treated separately): It needs to contain a vector of block matrices and two corresponding
vectors of quantum numbers, incoming and outgoing3. The quantum numbers themselves are gen-
erally tuples, as we have seen, and can be added and subtracted entry-wise. This kind of problem
lends itself nicely to an object-oriented implementation in C++ using generic containers. Note that
we also have the reverse problem of finding a particular block matrix from a given pair of quantum
numbers. It needs to be solved efficiently lest the overhead kills any performance gains, and can ac-
tually be done so by endowing the biped class with a dictionary, which translates quantum number
pairs back into vector indices. If one provides a hash function for the quantum number pairs, such
a dictionary search will work in constant time.
Finally, every operation one had with normal matrices has to be generalized for the biped object:
Addition must be performed block-wise, unmatching block matrix sizes must not appear. Multi-
plication M1 ·M2 is performed only for those blocks where the outgoing indices of M1 match the
incoming indices of M2. The resulting block then has the incoming index of M1 and the outgoing
index ofM2.
Another operation which needs to be generalized is sweeping. The reshaping of indices Mσ

ij →
M(σl)j during a right-sweep shows that this can be done for all outgoing indices of Mσ

ij , since the
outgoing leg j is not touched. Of course, the reverse case is true for a left-sweep. This means that
one needs to loop over all distinct outgoing indices, concatenate the corresponding block matrices,
perform the SVD (or QR), unconcatenate the updated U -matrix to update the blocks at site l and
multiply the SV † part onto the block matrix with the incoming index at the site l+1which matches
the sum rule. The sweep to the left follows analogously.
Having a biped class is not enough, however, since the DMRG algorithm also requires the environ-
ment tensors L(l)

aii′ and R
(l)
ajj′ which have three legs; and possibly larger tensors as well. Hence, the

above class needs to be further generalized to amultipede with an arbitrary amount of legs. A vector
of block matrices now becomes a multi-array and we need some kind of convention of how to refer
to the additional legs, all of which can be incoming or outgoing.
Thus one can see that while the enforcement of Abelian symmetries is straightforward conceptu-
ally, a numerical implementation requires a lot of effort and actually constitutes the main part of a
working DMRG code.

3One of the two is actually redundant due to the sum rule, but keeping it is helpful to preserve the sanity of the
programmer.
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MPS: L=6, (N↑,N↓)=(3,3)
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Figure 3.3.: Graph representation of the subspaces of the Hubbard model with L = 6 sites at half
filling. The values in brackets represent tuples of the good quantum numbers (N↑, N↓),
the values on the arrows indicate the matrix dimensions, which are the exact values for
this small problem.

Fluctuations

While the implementation of Abelian symmetries leads to a significant increase in numerical effi-
ciency, it also produces two additional problems: First, the bond dimension χ is now obtained as the
maximal sum of rows or columns of all block matrices, but it is not clear a priori how large the block
matrices have to be, a simple uniform distribution of χ onto the blocks will surely be suboptimal.
Second, the algorithm becomes prone to being stuck in a local minimum because of the reduced
parameter space during optimization. However, both problems can be solved simultaneously, as
described in the following.

Two-site algorithm The simple solution is to modify the algorithm into being two-site, that is
instead of optimizing Mσl , one optimizes the contraction of two tensors M̃ (σlσl+1)

= MσlMσl+1

with the corresponding effective Hamiltonian, but then still moves the pivot site only by one. In
this way, the parameter space is somewhat enlarged, and the block matrix rows and columns can
grow dynamically during countergoing half-sweeps. This is a very robust procedure which also
works in the presence of non-Abelian symmetries, as well as when compressing an MPS (see 3.6.7).

Density matrix perturbation Another method going back to White [ White 2005] is to perform
sweeping by diagonalizing the density matrix, ρ

σlσ
′
l

= MσlMσ′
l† on the right-sweep and ρ

σlσ
′
l

=

Mσl†Mσ′
l on the left-sweep. This is identical to the SVD by virtue of (3.77). The idea is now to add

a controlled fluctuation term to the density matrix, ρ → ρ + αρ′ with a small mixing parameter α.
The fluctuation leads to a dynamic increase in matrix size and moves the algorithm out of a local
minimum, but if it is completely random, the algorithm will be drawn away from the fixpoint. We
thus need fluctuations which are directed towards it. The solution comes from realizing that the
power method, where one iterates

∣∣Ψ⟩
n+1

= (1− αH)
∣∣Ψ⟩

n
converges to the ground state (this

serves as a kind of simplified Lanczos algorithm). One thus basically needs a multiplication of the
current wavefunction with the Hamiltonian:
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ρ′ = TrR
(
H
(
ρ⊗ 1

)
H†) (right-sweep). (3.130)

The exact evaluation of this formula becomes too laborious and is in fact not needed. One can use
a number of approximations instead, for example [ Schwabe 2015]:

ρ′ L L†

M M†

=

L L†W W †

M M†

(a)

(b)=

or in formulaic notation:

(a) ρ′
σlσ

′
l

=
∑
a

L(l−1)
a ρσlσ

′
l

(
L(l−1)
a

)†
,

(b) ρ′
σlσ

′
l

=
∑
a

∑
σ′′
l σ

′′′
l

W
σlσ

′′
l

ab L(l−1)
a ρσ

′′
l σ

′′′
l

(
L(l−1)

a

)† (
W

σ′
lσ

′′′
l

ab

)∗
.

(3.131)

The formulae for the left-sweep follow analogously. In practice, α should be slowly decreased to
zero as the ground state converges. Unfortunately, due to the construction of the density matrix,
the algorithm will now perform significantly slower.

Enriched SVD Recently, another technique has been suggested that outperforms the density ma-
trix perturbation in every way [ Hubig et al. 2015]. The idea is to expand the pivot tensor in the di-
rection opposite to the concatenation during sweeping, thereby increasing the basis for the ground
state search. To preserve the MPS form, the neighbouring tensor has to be enlarged as well and
filled with zeros:

Mσl →
[
Mσl P σl

]
, Bσl+1 →

[
Bσl+1

0

]
(right-sweep),

Mσl →
[
Mσl

P σl

]
, Aσl−1 →

[
Aσl−1 0

]
(left-sweep).

(3.132)

In order to compute the perturbation P σl , Hubig et al. suggest the following contractions:
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L WP =

RW

M

M

(right-sweep)

(left-sweep)=

or in formulaic notation:

P σl

i(jb) = α
∑
σ′
l

W
σlσ

′
l

ab

(
L(l−1)
a Mσ′

l

)
ij

(right-sweep),

P σl

(ia)j = α
∑
σ′
l

W
σlσ

′
l

ab

(
Mσ′

lR
(l+1)
b

)
ij

(left-sweep).
(3.133)

As a heuristicmotivation, one sees here a similar partialmultiplicationwith theHamiltonian
⟨
Ψ
∣∣H∣∣Ψ⟩

as in the case of the density matrix perturbation. However, in contrast to the latter, the contraction
itself is cheaper to obtain and one does not need to construct the full expensive density matrix ei-
ther. Furthermore, this technique is found to require less sweeps to reach the ground state, overall
leading to a significant increase in efficiency. Finally, the mixing parameter α does not have to be
small or taken to zero, as the additional states will be simply ignored by the ground state algorithm
once one is sufficiently converged. This removes the need for fine-tuning a protocol of setting α to
zero, as is required in the density matrix perturbation method.

3.6.7. Compression of matrix product states

When working with MPS, and in particular during time evolution, one is often faced with a problem
of compressing an MPS to minimize the bond dimension, or in other words to find a

∣∣ϕ⟩, such that

∥∥∣∣ϕ⟩− ∣∣Ψ⟩∥∥2 = ⟨ϕ∣∣ϕ⟩+ ⟨Ψ∣∣Ψ⟩− ⟨ϕ∣∣Ψ⟩− ⟨Ψ∣∣ϕ⟩ < ϵ (3.134)

for a given
∣∣Ψ⟩ (not necessarily normalized) and a tolerance ϵ. Since this problem is very similar to

the ground state minimization, one can proceed in a similar fashion. Writing down the overlap in
the mixed orthogonalization, taking the derivative with respect to (Mσl)† (which only appears in⟨
ϕ
∣∣) and contracting the tensors to form the left and right environment of the site l, one obtains:

A A

A† A†

M B B

B† B†

L R

M

M= =
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This means that compared to running a Lanczos algorithm with an effective Hamiltonian, as was
done to find the ground state, one can simply updateMσl as the above contraction before continuing
to sweep. Due to this relation, we have that

⟨
ϕ
∣∣Ψ⟩ = ⟨ϕ∣∣ϕ⟩, so that the calculation of the tolerance

comes very cheaply:

ϵ =
⟨
Ψ
∣∣Ψ⟩− ⟨ϕ∣∣ϕ⟩ = ⟨Ψ∣∣Ψ⟩−∑

σl

Tr
(
Mσl†Mσl

)
. (3.135)

The whole procedure obviously generalizes to the case where
∣∣Ψ⟩ is a product with an operator,

O
∣∣Ψ⟩. For that, calculating the tolerance requires the contraction

⟨
Ψ
∣∣O†O

∣∣Ψ⟩ instead of
⟨
Ψ
∣∣Ψ⟩. In

this way, the application of an MPO to an MPS can be implemented efficiently.

An important special case is polynomial iteration, where one has to minimize

∥∥∣∣ϕ⟩− αH∣∣Ψ1

⟩
− β

∣∣Ψ2

⟩∥∥2 = ϵ. (3.136)

For Chebyshev polynomials, α = 2 and β = −1 (cf. eq. 3.40). Naively, one would perform this in
two steps, which is unnecessary and leads to avoidable errors.
Instead, one can set up two environments, one with the overlap

⟨
ϕ1

∣∣H∣∣Ψ1

⟩
and one with

⟨
ϕ2

∣∣Ψ2

⟩
.

Then,
∣∣ϕ1

⟩
and

∣∣ϕ2

⟩
are optimized at the same pivot site and the addition Mσl = αMσl

1 + βMσl
2 ,

resulting in the pivot tensor of
∣∣ϕ⟩, can be performed blockwise. For the error one obtains in the

case of real states:

ϵ = β2
⟨
Ψ2

∣∣Ψ2

⟩
+ α2

⟨
Ψ1

∣∣H2
∣∣Ψ1

⟩
+ 2αβ

⟨
Ψ2

∣∣H∣∣Ψ1

⟩
−
⟨
ϕ
∣∣ϕ⟩. (3.137)

Note that in a compression problem we know the wavefunction which we want to approximate
exactly (we just want to prevent it from growing uncontrollably), so that the tolerance ϵ is known
exactly as well, and the whole procedure is well-controlled.

With regard to the bond dimension, it stands to reason to start with a state
∣∣ϕ⟩ which has the same

block dimensions as
∣∣Ψ⟩. If the given error tolerance cannot be achieved, it means that the bond

dimension of
∣∣ϕ⟩ has to be increased. To do that dynamically and adaptively, one can shift to a two-

site algorithm (as described in 3.6.6) for a single half-sweep. In practice, doing such an enlargement
every four ordinary half-sweeps has been found to be optimal.

3.6.8. Final DMRG algorithm

This chapter mentions a couple of crucial details which are necessary for an efficient DMRG algo-
rithm to be able to handle fermionic problems, such as has been implemented as part of this work.

• As the first step, one fixes a total quantum number Qtot, e.g. the amount of particles or mag-
netization, and creates an MPS with the respective block arrays, incoming/outgoing indices
and dictionaries. When working with symmetries, one can effectively only fix the maximal
bond dimension of a single block χsub, while the total maximal bond dimension emerges from
χsub and the amount of blocks. As the initial value, χsub = 1 works just fine.

• While the algorithm runs, the enriched SVD technique (3.6.6) is used with α = 10−2 (which
does not need to be changed during the run), allowing the state to grow adaptively, so that an
optimal χ is achieved at the end. If the problem is prone to converge in a local minimum, one
might need to increase α up to α = 101.
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• All singular values which are smaller than a tolerance ϵSV D are cut (the value ϵSV D = 10−7

has proven adequate), but not more than a given integer Nsv (with an initially small Nsv = 4,
for example). This has the effect that the state has time to pre-converge at a smaller bond
dimension and χ is prevented from growing too fast. If the sum of all truncated singular
values exceeds ϵsvd after a sweep,Nsv can be slowly taken up (specifically in the code: by 10%,
though at least by 1).

• As the main error tolerance, one uses the change in the energy density ϵenergy,n =
∣∣E0,n −

E0,n−1

∣∣/L after the n-th half-sweep. As an additional tolerance of the quality of the state, one
can use the variance ϵstate,n =

∣∣⟨E0,n

∣∣H2
∣∣E0,n

⟩
−E2

0,n

∣∣/L. It is normally not costly to compute
and store H2, making the contraction

⟨
H2
⟩
rather fast (not more than a few percent of the

half-sweep time). Otherwise one can also perform the full contraction with H ·H each time.
If this is also too costly, the quality of the state can also be assessed by checking the change
in the overlap ϵstate,n =

∣∣1 − ∣∣⟨E0,n

∣∣E0,n−1

⟩∣∣, but looking only at changes has the danger of
getting stuck in a local minimum without noticing it. Typically, requiring ϵenergy,n < 10−7 and
ϵstate,n < 10−6 is necessary to achieve a well-converged solution.

3.6.9. Time propagation

Splitting integrators

Before discussing specific time propagation algorithms for DMRG, it is helpful to familiarize oneself
with splitting integration methods. Apart from the fact that many physical problems naturally lend
themselves to such techniques, they also exhibit some desirable structure-preserving properties,
like unitarity (preservation of the norm), symplecticity (preservation of the phase space volume)
and reversibility.
Let us assume that we have a first-order ordinary differential equation where we can split the right-
hand side in such a fashion that the equation would be integrable by a known method if only one
of the terms was present:

ẋ = f (x) = A (x) + B (x) , (3.138)

with the integration rules φA
h and φB

h for a small timestep h, so that:

x (h) = φA
h (x0) , B = 0,

x (h) = φB
h (x0) , A = 0.

(3.139)

This type of problem is quite common. For instance, it appears in a classical Hamiltonian system
with x = (q, p), where we can split off the kinetic and potential energies: H (p, q) = T (p) + V (q),
so that T (p) can be trivially integrated over q, while V (q) can be trivially integrated over p.
We can now introduce an integration rule for the full problem by composing the two integrators,
thus obtaining a first-order integrator4:

χh = φB
h ◦ φA

h . (3.140)

Of course, one can just as well compose the individual integrators in the reverse order with the same
error, which is called the ”adjoint integrator”:

4By convention, an integrator is called n-th order if it is correct up to O
(
hn+1

)
.
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χ∗
h = φB

h ◦ φA
h . (3.141)

By composing more integrators, we can choose the timesteps in such a fashion that the error scaling
goes down evenmore. A popular choice is the following symmetric second-order integrator [ Lubich
2008; McLachlan 1995; Blanes, Casas, and Murua 2008]

S
(2)
h = φA

h/2 ◦ φB
h ◦ φA

h/2 = χ∗
h/2 ◦ χh/2. (3.142)

It is called leapfrog, Störmer–Verlet method or Strang splitting, depending on the field of application.

A likewise popular choice is the following fourth-order and three-stage method, which means that
it is composed out of three S(2) integrators [ Lubich 2008; McLachlan 1995; Blanes, Casas, and
Murua 2008]:

S
(4,3)
h = S

(2)
αh ◦ S

(2)
βh ◦ S

(2)
αh , α =

1

2− 21/3
≈ 1.351, β = 1− 2α ≈ −0.702. (3.143)

One notices that the timestep becomes negative, a property one cannot get rid of at higher orders [
Blanes et al. 2009].

We could also seek a cheaper two-stage integrator:

S
(4,2)
h = S

(2)
h/2 ◦ S

(2)
h/2, (3.144)

but an error analysis shows that it is still of second order, albeit with a smaller prefactor [ McLachlan
1995].

The precision can be pushed further, formulae for up to eighth order have been derived [ McLachlan
1995]. However, they are only necessary if one attempts a propagation to extremely long times,
where the timestep error becomes noticeable. The precision is obviously bought by more function
evaluations at each timestep. For quantum systems, only modest time scales can be achieved due to
other reasons (as finite-size effects or entanglement growth), so that the above formulae are more
than enough to achieve sufficient accuracy. In addition, a peculiarity of DMRG consists in the fact
that each application of an MPO to the state (which plays the role of a function evaluation) is error-
prone in itself due to truncation, so that avoiding higher integration orders actually leads to an
improvement in accuracy for short to medium times.

Time-evolving block decimation (TEBD)

The Suzuki-Trotter method, for historical reasons also called time-evolving block decimation (TEBD),
is a method imported into the DMRG world from Monte Carlo simulations and has been the work-
ing horse for dynamic problems for many years. The key idea is to realize that a tight-binding
Hamiltonian can be split into two commuting parts for even and odd bonds:

H =
L−1∑
i=1

hi,i+1 = Ho +He,

Ho = h12 + h34 + . . .+ hL−1,L,

He = h23 + h45 + . . .+ hL−2,L−1,

(3.145)
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with

[
He, Ho

]
= 0, (3.146)

where we have assumed the chain length to be even.

The splitting integration method can now be applied due to the fact that all the bond terms in He

and Ho also commute with each other:

[
hi,i+1, hi+2,i+3

]
= 0 etc., (3.147)

so that the subsequent splitting

e−iHot = e−ih12te−ih34t . . . e−ihL−1,Lt (3.148)

involves no approximation. The above expression just contains propagations with two-site Hamilto-
nians. The solution can be obtained by fully diagonalizing them and applying the SVD to the result
in order to maintain an MPO form [ Schollwöck 2011]. Note that this destroys the sparsity of the
original Hamiltonian, the result consists out of dense 1×D2 and D2 × 1 matrices.

Thus, we obtain a second-order integrator with the leapfrog algorithm (3.142):

e−iHδt = e−iHoδt/2e−iHeδte−iHoδt/2 +O
(
δt3
)

(3.149)

and similarly a fourth-order algorithm with eq. (3.143). At the application of each exponential, the
state must be truncated.

An obvious disadvantage of the TEBDmethod is that it is limited to tight-binding systems. But even
setting that aside, it seems very un-DMRG-like: It would be nicer if we could propagate the state
itself with local updates as we did in the ground state calculation rather than dealing with the dense
time evolution operator. A method which does exactly that is presented in the following.

Time-dependent variational principle (TDVP)

The time-dependent variational principle was first introduced by Dirac [ Dirac 1930]. Essentially, it
generalizes the Ritz variational principle to the time-dependent Schrödinger equation. A solution
of

∂

∂t
ψ (t) = −iHψ (t) (3.150)

is now sought to be restricted to a variational submanifold S at all times. Let us assume that at t = 0,
we have found a solution u (0) which is in S . The state will leave that manifold if we attempt to
solve the equation exactly, so what we are interested in is an approximate solution from themanifold
u (t) ∈ S rather than the exact ψ (t).
We can find u (t) by imposing the condition that ∂u

∂t
should lie in the tangent space to S at u, denoted

by TuS . In other words, we choose ∂u
∂t

as thew for which ∥w + iHu∥2 is minimal. In yet other words
this is equivalent to choosing ∂u

∂t
as the orthogonal projection of iHu onto the tangent space [ Lubich

2008]. We can introduce a projection operator to denote this:
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∂u

∂t
= PTuSHu (t) . (3.151)

In DMRG, the wavefunction is parametrized as a matrix product state using the tensorsMσl
ij . Each

entry is a variational parameter, so that a general variation looks like this:

δ
∣∣Ψ [M ]

⟩
=
∑
l

∑
{ijσl}

δMσl
ij

∂

∂Mσl
ij

∣∣Ψ [M ]
⟩
. (3.152)

Let us rewrite that expression exploiting the mixed-orthogonal form:

∣∣Θ[C]⟩ =∑
l

∑
{σl}

Aσ1 . . . Aσl−1CσlBσl+1 . . . BσL
∣∣σ1 . . . σl . . . σL⟩

=:
∑
l

∑
{ijσl}

Cσl
ij

∣∣a[1:l−1]
i

⟩∣∣σl⟩∣∣b[l+1:L]
j

⟩
.

(3.153)

∣∣Θ[C]⟩ is now the most general variation of an MPS. However, not all the linearly independent
choices for C produce linearly independent tangent vectors, so that an additional restriction has to
be imposed. Haegeman et al. have proposed the following [ Haegeman et al. 2011; Haegeman et al.
2016]:

∑
σl

(Aσl)†Cσl = 0 ∀l = 1, . . . , L− 1, (3.154)

which we accept here without proof. We thus need to calculate

min
C

∥∥∣∣Θ[C,A]⟩+ iH
∣∣Ψ [A (t)]

⟩∥∥2 , (3.155)

with the restriction (3.154) in order to fix C . In order to facilitate readability, we can consider a
general vector

∣∣Ξ⟩:
min
C

∥∥∣∣Θ[C]⟩− ∣∣Ξ⟩∥∥2 = min
C

(⟨
Θ
∣∣Θ⟩− ⟨Θ∣∣Ξ⟩− ⟨Ξ∣∣Θ⟩) . (3.156)

This becomes:

min
C

∑
l

∑
σl

(
CσlCσl† − CσlF σl† − F σlCσl†

)
, (3.157)

where the matrix elements of F σl are given by:

F σl
ij =

⟨
a
[1:l−1]
i σlb

[l+1:L]
j

∣∣Ξ⟩. (3.158)

A quick look shows that Cσl must be essentially equal to F σl , but since we also need to take care of
the restriction (3.154), the solution is given by:
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Cσl =
∑
σ′
l

(
δσlσ

′
l
− Aσl

(
Aσ′

l

)†)
F σ′

l . (3.159)

One can check that eq. (3.154) is fulfilled by inspection. Plugging this back into eq. (3.153) we obtain

∣∣Θ[C]⟩ = PTΨ[M ]S
∣∣Ξ⟩, (3.160)

with the projection operator onto the tangent space we were looking for:

PTΨ[M ]S =
∑
l

P
[1:l−1]
A ⊗ 1l ⊗ P [l+1:L]

B −
∑
l

P
[1:l]
A ⊗ P [l+1:L]

B , (3.161)

where we have defined

P
[1:n]
A =

∑
i

∣∣a[1:l]i

⟩⟨
a
[1:l]
i

∣∣,
P

[l+1:L]
B =

∑
i

∣∣b[l+1:L]
i

⟩⟨
b
[l+1:L]
i

∣∣. (3.162)

Hence, the TDVP differential equation becomes:

∂

∂t

∣∣Ψ[M]⟩ = −iPTΨ[M ]SH
∣∣Ψ[M]⟩

= −i

(∑
l

H
(1)
l −

∑
l

H
(0)
l

)∣∣Ψ[M]⟩. (3.163)

Here, H(1)
l is the same effective one-site Hamiltonian which also appears in the ground state algo-

rithm, while H(0)
l is an effective zero-site Hamiltonian acting between bonds:

L RW L RW

A

A†

H(1) =(a) H(0) =(b)

With the matrix-vector notation introduced in (3.120), the first term can be integrated exactly by
calculating

Ml (t) = e−iH
(1)
l tMl (0) , (3.164)

using the Lanczos time propagationmethod (see chapter 3.2.2) and performing a half-sweep through
the chain once. WritingMσl = AσlΓσl for the SVD decomposition of the pivot tensor and using the
same matrix-vector notation, the second term can be integrated by calculating
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Γl (t) = e+iH
(0)
l tΓl (0) (3.165)

and doing a half-sweep as well. Note that in the latter case, we are curiously dealing with a propa-
gation backwards in time.

We can now join the two integrators to obtain a first-order integrator of the full problem according
to (3.140) by first applying (3.164), SVD-decomposing the result, applying (3.165), multiplying Γσl (t)
onto the next site and continuing until a half-sweep is completed. The adjoint of this is simply given
by a half-sweep in the other direction. Thus, by composing the integrator with its adjoint and half
the timestep according to the leapfrog formula (3.142), we obtain a second-order algorithm with one
full sweep.

While the whole point of the time-dependent variational principle is to approximate the state on a
given manifold for all times, we know that this is not possible for matrix product states, as the bond
dimension grows in time, so that it is necessary to move to a different manifold with a higher bond
dimension and more variational parameters. It stands to reason to modify the TDVP algorithm to be
a two-site algorithm, as it was done in 3.6.6 and 3.6.7 [ Haegeman et al. 2016]. Everything generalizes
straightforwardly and instead of H(1) and H(0), we now need the two- and one-site Hamiltonians,
respectively: H(2) and H(1).

Performance benchmark

When propagating matrix product states, there is an additional source of error due to the compres-
sion of the wavefunction at each timestep, which is absent when working with exact states. It is
intermingled with the usual timestep error: A larger timestep leads to fewer compressions, but the
wavefunction will deteriorate for long times. However, in order to reduce the error at long times,
small timesteps are necessary. This means that one needs to strike a compromise.

In the following, the two above-mentioned algorithms are tested out by calculating the dynamical
spin-spin susceptibility

Πij (t− t′) = −iθ (t− t′)
⟨[
Si (t) , Sj (t′)

]⟩
(3.166)

for the Hubbard model. It was used in a side-project to this work in order to investigate the dynam-
ics of a classical magnetic impurity on a correlated substrate [ Sayad, Rausch, and Potthoff 2016a]
(see chapters 1.4 and 5.2). When treating the impurity-substrate coupling in perturbation theory,
one can derive an integro-differential equation of motion for the classical spin, which contains a
memory kernel given by Πij (t− t′). Exploiting rotational symmetry in the spin space and plac-
ing the impurity on the edge of a one-dimensional chain (i = j = 1), one only needs to calculate
Πzz

11 (t− t′). With some straightforward manipulations, the latter can be brought into the following
numerically convenient form:

Πzz
11 (t− t′) = θ (t− t′) 2Im

(
eiE0(t−t′)

⟨
E0

∣∣Sz
1e

−iH(t−t′)Sz
1

∣∣E0

⟩)
. (3.167)

During the time propagation, the energy as well as the norm of the wavefunction have to be con-
served, but numerical truncation will lead to a deterioration. One can take the relative deviation
from the initial value as a measure of error:

δE :=

∣∣∣∣
⟨
Ψ(t)

∣∣H∣∣Ψ(t)
⟩
−
⟨
Ψ(0+)

∣∣H∣∣Ψ(0+)
⟩⟨

Ψ(0+)
∣∣H∣∣Ψ(0+)

⟩ ∣∣∣∣, (3.168)
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where the state at time t = 0+ is taken to be
∣∣Ψ(0+)

⟩
= Sz

1

∣∣E0

⟩
.

We compare the second-order TEBD algorithm (3.149) with the second-order two-site TDVP algo-
rithm. As the error tolerance for TEBD, we fix the compression tolerance at the application of each
exponential, ϵ =

∥∥∥∣∣ϕ⟩
n
− exp

(
−iHe/ot

) ∣∣ϕ⟩
n−1

∥∥∥2. As the error tolerance for TDVP, we fix the sin-
gular value truncation threshold. It should be noted that the two are not the same, making a direct
comparison difficult. Yet, a value of 10−7 according to both definitions leads to such large bond
dimensions that the problem becomes barely computable, in this sense the two are at least roughly
comparable. We can therefore vary ϵ between 10−4 and 10−6.

The timestep should be smaller than the typical timescale of the system (equal to 1 in our units), but
it is desirable to keep it as large as possible. The upper two panels of fig. 3.4 show the errors for
fixed δt = 0.2 and different compression tolerances ϵ. One observes that the error is fairly large for
TEBD and cannot be reduced further with a smaller value of ϵ, which means that the Trotter error
resulting from the non-commutativity of the bonds [He, Ho] ̸= 0 dominates and can only be brought
down by reducing the timestep. In other words, TEBD cannot handle large timesteps, unless one
puts in more effort and goes beyond second order. On the other hand, the TDVP error is much
smaller overall and monotonously decreases with the compression tolerance.

The next two panels of fig. 3.4 show the error at a fixed compression tolerance ϵ = 10−5 for different
timesteps. For TEBD, one observes that it goes down at first, as expected, but then deteriorates again
due to the many compression steps in the algorithm. A further reduction of the error at this point
also requires a reduction of ϵ. On the other hand, the TDVP error again decreases monotonously
and is actually not too sensitive to the size of the timestep.

Finally, we can also compare the calculated results with the exact ones forU = 0, where the solution
follows from the diagonalization of the hopping matrix for open boundary conditions:

cl (t) =

√
2

L+ 1

L∑
k=1

sin
(

πkl

L+ 1

)
ck (t)

=

√
2

L+ 1

L∑
k=1

sin
(

πkl

L+ 1

)
e2i cos(

πk
L+1)tck (0) .

(3.169)

This a non-trivial case for DMRG, as there is still entanglement and the wavefunction needs to be
compressed. Apart from δE, the (absolute5) deviation from the exact result

δΠ :=
∣∣Πzz

11,ex. (t)− Πzz
11,num. (t)

∣∣ (3.170)

is plotted as a dashed line in the lower four panels of fig. 3.4. The maximal error during the whole
propagation time are indicated by the horizontal lines.
One observes that the TEBD error is rather large even at short times and becomes even larger at
long times. On the other hand, the TDVP error shows approximately the same rate of deterioration
as δE, albeit now non-monotonically in time, and is also relatively insensitive to the magnitude of
the timestep at fixed ϵ.

Summarizing, we can conclude that TDVP outperforms TEBDby being able to handle large timesteps
and showing stricter, monotonic error scalings. As an optimal choice of parameters, compromising
between small errors and efficiency, one can take δt = 0.2 and ϵ = 10−5.

5Since Πzz
11 (t− t′) can become small and go through zero, we take the absolute deviation rather than the relative one.
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Figure 3.4.: Error of the dynamical spin-spin susceptibility Πzz
11 (t) calculated by TEBD (left column)

and TDVP (right column) for an L = 30 Hubbard chain at half filling, given by the
relative change in energy (3.168) (solid line) for U = 8 and by the deviation from the
exact value (3.170) (dashed line) for U = 0. Horizontal lines indicate the maximal error.
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3.7. The Bethe Ansatz

The Bethe ansatz is a framework to analytically construct and interpret the eigenstates of interacting
one-dimensional quantum systems [ Essler et al. 2005; Sólyom 2010; Schulz 1993; Deguchi et al.
2000].
Commonly investigated models, such as the Heisenberg/XXZ or the Hubbard chain, are integrable
in one dimension, i.e. they exhibit a macroscopic amount of conserved quantities. In these cases, the
eigenstates can be constructed using the Bethe ansatz. However, handling the resulting wavefunc-
tions is very costly in practice, the calculation of matrix elements scales like N !, thus much worse
even than the eN scaling when numerically working in the exact basis. Furthermore, the Bethe
ansatz fails to produce a solution for nonintegrable systems such as the extended Hubbard model.
Still, it has been used successfully to interpret features in the one-particle Green’s function of the
1D Hubbard model (spinon and holon modes) and it stands to reason to attempt to do the same for
the two-particle case.

The Bethe ansatz wavefunction is a plane-wave ansatz in first quantization:

Ψσ1...σN
(x1 . . . xN) =

∑
P

(−1)P AσQ(1)...Q(N)
(P,Q) ei

∑
j kP (j)xj . (3.171)

Here, the permutation Q has to be determined such that the coordinates of the N electrons are or-
dered from left to right in the chain xQ(1) < xQ(2) < . . . xQ(N). The sum runs over all permutations
of N elements. Plugging this into the Schrödinger equation and imposing periodic boundary con-
ditions to determine the amplitudes A, one eventually arrives at the Lieb-Wu equations [ Lieb and
Wu 1968]:

eikjL =

N↓∏
α=1

λα − sin kj − iU/4
λα − sin kj + iU/4

, j = 1 . . . N

N↓∏
α=1

λα − sin kj − iU/4
λα − sin kj + iU/4

=

N↓∏
β=1,β ̸=α

λα − λβ − iU/2
λα − λβ + iU/2

, α, β = 1, . . . N↓

(3.172)

These equations are valid at and below half filling, n ≤ 1 and for N↓ ≤ N/2. No generality is lost
due to the symmetries of the model. The presence of two equations already signals the separation
of the spin and charge degrees of freedom. Hereby, kj is wavenumber associated with the charge,
while λα is called spin rapidity 6 and is associated with the spin. In fact, neglecting the sin kj term
in the second equation and rescaling the rapidities by U/2 leads to the Bethe ansatz solution of the
Heisenberg model.

The energy of the eigenstate is given by the wavenumbers only:

6Interestingly, there is an analogy with the more well-known rapidity for relativistic particles: The latter is given by
Λ = arctanh (v/c), with which the momentum and energy can be parametrized via p = m sinhΛ andE = m coshΛ
(so that E2− p2 = m2 with c = 1). For the half-filled one-dimensional Hubbard model, the spinon momentum and
energy are given by explicit integrals with sinxΛ and cosxΛ in the integrands, respectively.
Furthermore, it is possible to obtain a relativistic dispersion by taking the continuum limit a → 0, T → ∞, aT =
const and the scaling limit U → 0, ∆(U) = const, where a is the lattice constant, T is the hopping amplitude and
∆(U) is the energy gap. Then spinons behave like massless relativistic particles and holons like massive ones with
the mass given by ∆(U). The model becomes a relativistic field theory, so that it is possible to calculate correlation
functions as well [ Essler et al. 2005; Melzer 1995; Woynarovich 1996].
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E = −2t
∑
j

cos kj. (3.173)

Note that kj and λα are in general complex, meaning that the imaginary parts of kj have to cancel
out in the above expression.

By taking the logarithm of the above equations, we can cast them into a different form:

Lkj = 2πIj +
∑
β

θ (2 sin kj − 2λβ) ,∑
j

θ (2 sin kj − 2λα) = 2πJα −
∑
β

θ (λα − λβ) ,
(3.174)

with

θ (x) = −2 arctan
(
2x

U

)
. (3.175)

Here, Ij and Jα appear due to themultivaluedness of the complex logarithm. They can be interpreted
as quantum numbers and are restricted to the following values:

− L

2
< Ij ≤

L

2
, |Jα| ≤

N −N↓ + 1

2
. (3.176)

Furthermore:

Ij is
{

integer if N↓ is even,
half-odd integer if N↓ is odd, (3.177)

Jα is
{

integer if N −N↓ is odd,
half-odd integer if N −N↓ is even. (3.178)

For each distinct set of the Bethe quantum numbers {Ij}, {Jα}, the equations (3.174) need to be
solved to obtain the corresponding kj and λα. The ground state is given by the set with the lowest
energy and the excited states can be constructed either by removing or changing a particular value
from this distribution

∣∣{Ij}, {Jα}⟩gs.
It should be noted that the procedure does not yield all the eigenstates of the Hubbard model yet,
but just the highest-weight states with respect to the spin and charge SU(2) symmetries:

η
∣∣{Ij}, {Jα}⟩ = 0,

S+
∣∣{Ij}, {Jα}⟩ = 0.

(3.179)

To obtain the complete set of eigenstates, one has to apply the lowering operators:

(
S−)m (η†)n ∣∣{Ij}, {Jα}⟩ = 0. (3.180)
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The solution of (3.174) can be in principle obtained using Newton’s method in the complex plane. It
turns out, however, that the basin of attraction of many solutions is fairy small, while being large
for unphysical solutions with coincident roots which would violate the Pauli exclusion principle [
Avdeev and Dörfel 1987]. This means that a very good initial guess needs to be inserted. Luckily,
the equations can be massaged even further to obtain something more stable.

3.7.1. The string hypothesis

In the so-called string hypothesis [ Takahashi 1971] one surmises that bound state solutions of the
Bethe ansatz equations in the thermodynamic limit form vertical “strings” in the complex plane,
meaning that the corresponding roots share the same imaginary part.

An explicit calculation is quite instructive in the case of the doublon problem, i.e. N = 2, N↓ = 1.
There are two k’s and since their imaginary parts must cancel each other out, we can make the
ansatz k± = k ± iξ with ξ > 0 and k ∈ R. The Lieb-Wu equation (3.172) for k− becomes:

eik−L =
λ− sin k− − iU/4
λ− sin k− + iU/4

. (3.181)

The left-hand side diverges for L → ∞, meaning that in this limit, we need to have a matching
divergence on the right-hand side:

sin k− = λ+
iU

4
. (3.182)

The second equation can be written as

1 =
λ− sin k+ − iU/4
λ− sin k+ + iU/4

· λ− sin k− − iU/4
λ− sin k− + iU/4

. (3.183)

One notices that the denominator in the second factor diverges in face of (3.182), so that it has to be
compensated by the numerator:

sin k+ = λ− iU

4
. (3.184)

Adding (3.182) and (3.184), one recognizes that λ must be real, so that sin k+, sin k− and λ all lie on
a vertical string. The (unnormalized) wavefunction becomes:

Ψ(x1, x2) = eik(x1+x2)e−ξ|x1−x2|. (3.185)

Due to the exponential drop with increasing separation of the electrons, this is now recognized as a
bound-state solution, which we had already obtained in chapter 1.1 with more conventional means.
In the Bethe ansatz jargon, the bound state is called a “k-Λ string”.

The string hypothesis generalizes this type of solutions, so that the BA equations can then be recast
into a form which only involves the real parts and barycentres of the strings, leading to purely real
equations.
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3.7.2. The thermodynamic Bethe ansatz

Since the string hypothesis is valid for L → ∞, this limit needs to be carried out for the Bethe
ansatz equations, so that one obtains the thermodynamic Bethe ansatz (TBA). It was first applied by
Yang and Yang to the Bose gas with a δ-interaction [ Yang and Yang 1969]. By recognizing that the
spacing between the BA roots scales like kj+1 − kj ∼ 1/L, one can introduce a “root density” ρ (k)
by way of

n =
1

L

N∑
j=1

1 =
N∑
j=1

ρ (kj)∆kj →
∫ Q

−Q

dk ρ (k) . (3.186)

It satisfies the following integral equation:

ρ (k) =
1

2π
+

∫ Q

−Q

dk′ cos k R (sin k′ − sin k) ρ (k′) . (3.187)

Another quantity that needs to be introduced is the “dressed energy” which satisfies another integral
equation:

κ (k) = −2 cos k − µ− U

2
+

∫ Q

−Q

dk′ cos k′ R (sin k′ − sin k)κ (k′) (3.188)

with the boundary condition

κ (±Q) = 0, (3.189)

which just sets the Fermi energy to zero.

The integral kernel in the above expressions contains

R (x) =

∫ ∞

−∞

dω

2π

eiωx

1 + exp
(

U |ω|
2

)
=

1

πU
Re
[
ψ

(
1− ix

U

)
− ψ

(
1

2
− ix

U

)]
.

(3.190)

where ψ is the digamma function ψ (x) = d
dx

lnΓ (x), which is tabulated7. Note that the above
equations are valid for zero temperature, B = 0, and make use of the string hypothesis.

The kernel is well-behaved and the equations can be easily solved in the following fashion:
At first, the root of the function f (Q) :=

∫ Q

−Q
dk ρ (k) − n must be found, which determines the

pseudo-Fermi momentum Q. This can be done by the bisection method, as Q is known to lie in
the interval Q ∈ [0, π] with Q = 0 for n = 0 and Q = π for n = 1, due to Luttinger’s theorem.
Each function evaluation involves solving the Fredholm integral equation (3.187), for which Gauss-
Legendre integration with 30 ∼ 100 points is more than sufficient. With the given Q, one proceeds
to find the root of eq. (3.189) which fixes µ.

From these formulas we can construct so-called elementary excitations via integrals over ρ and κ.
Each of these has a dressed momentum and a dressed energy:

7“Tabulated” means here that it can be numerically evaluated to arbitrary precision in negligible time.
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• holon: −ph (k), −κ (k)

• antiholon: ph (k), κ (k)

• spinon: −ps (Λ), −ϵs (Λ)

• k-Λ string of lengthm8: pstringm (Λ), ϵstringm (Λ)

Thespin rapidity is now a continuous variable and ranges for an unmagnetized band asΛ ∈ [−∞,∞].
In the case of finite magnetization, a cutoff A has to be determined from ϵs (±A) = 0 and plays an
analogous role to the Fermi vector for spinons9. Numerically, one can just choose a value large
enough, so that ϵs (±Λcutoff) < ϵcutoff is fulfilled to machine accuracy.

The dressed momentum for both the holon and antiholon is given by

ph (k) = 2π

∫ k

0

dk′ ρ (k′) . (3.191)

However, the holon dwells below the pseudo-Fermi momentum Q, with the restriction |k| ≤ Q;
while the antiholon dwells above it with |k| > Q.

The dressed momentum of the spinon is obtained via

ps (Λ) =
nπ

2
− 2

∫ Q

−Q

dk arctan
[
exp

(
−2π

U
(Λ− sin k)

)]
ρ (k) (3.192)

and its dressed energy via

ϵs (Λ) =

∫ Q

−Q

dk
cos k
U

1

cosh
(
2π
U
(Λ− sin k)

)κ (k) . (3.193)

The dressed momentum of the k-Λ string reads:

pstringm (Λ) = −2Re arcsin
(
Λ− imU

4

)
+ 2

∫ Q

−Q

dk arctan
(
4 (Λ− sin k)

mU

)
ρ (k) + π (m+ 1)

(3.194)

and its dressed energy:

ϵstringm (Λ) = 4Re

√
1−

(
Λ− imU

4

)
−2mµ−mU+

∫ Q

−Q

dk
mU/4

(mU/4)2 + (sin k − Λ)2
κ (k) . (3.195)

The dispersions of selected excitations are shown in fig. (3.5). Note that because of Luttinger’s
theorem, the Fermi wave vector is kF = nπ/2 independent of U . The corresponding Fermi wave
vector of the holon (where ϵh

(
khF
)
= 0) is khF = ±nπ = 2kF , also independent of U . The same

holds for the antiholon, since the dispersion crosses the Fermi energy continuously. For the spinon
we always have ksF = nπ/2 = kF .

8By convention, the value m is taken here as the string length, starting with m = 1. Another convention is to start
counting at 2.

9The magnetization is then fixed with the help of a spin root density σ (Λ) with
∫ A

−A
dΛ σ (Λ) = n↓ analogously to

the charge root density ρ (k) in (3.186).
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Figure 3.5.: Some of the elementary excitation dispersions of the Bethe ansatz for U = 6. The filling
increases from n = 0 (blue) to n = 1 (green) in steps of 0.1. The sign of the holon
energies is chosen such that they fall below the Fermi energy EF = 0. Note that there
are no string solutions at n = 1.

Note that these excitations are qualitatively different from the case U = 0 with ϵ (k) = −2 cos (k)
and µ = ϵ (kF ) = −2 cos

(
π n

2

)
. For example, at n = 1 the filled band occupies a width of ∆E = 2

in the latter case, but the holon bandwidth isWh = 4 for any value of U and is moreover gapped by

∆ = −2− U

2
+ 2

∫ ∞

0

dx
J1 (x)

x

e−xU/4

cosh (xU/4) , (3.196)

whereJ1 (x) is the first Bessel function. This can be qualitatively understood due to the Mott transi-
tion at half filling, where the system becomes an antiferromagnet with one electron per site, so that
a hole can propagate in this background as a free particle. In d = 1, the Mott transition occurs at any
finite value ofU , although the charge gap is exponentially small for smallU , namely∆ ∝

√
Ue−1/U ,

and becomes ∆ ∝ U for large U [ Essler et al. 2005; Sólyom 2010] 10.

Each elementary excitation defines an excited state: Holons can be thought of as removing charge,
antiholons as adding charge, spinons as adding or removing spin, and k-Λ strings as creating multi-
plonic bound states (which will be discussed in great detail in chapter 4.1). Furthermore, the elemen-
tary excitations can be freely combined by adding all possible momenta ptot =

∑
α p

α (and either
reflecting at the Brillouin zone edges whenever the modulus of the result exceeds π, or working in
an extended zone) and energies Etot =

∑
α ϵ

α, thus forming continua.
A caveat should be mentioned: There can be a shift of the momentum by±πn due to the fact that the
corresponding distribution {Ij} switches from half-odd integer to integer and consequently a new
distribution of the roots, asymmetric around zero. The presence of such a shift has to be considered
for each physical excitation. See Essler et al. (2005) for more details.

Some of the excitation continua relevant for this work are shown in fig. 3.6.

Finally, we can also form the derivatives of the dressed excitation energies with respect to the dressed
momenta:

10In the Mott phase, the chemical potential is not well-defined. Eq. (3.196) and fig. 3.5 use the symmetric convention
µ = EF = 0. One can also choose an asymmetric convention µ = µ− < 0, where the precise value has to be
determined from the Bethe ansatz equations in the usual way.
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Figure 3.6.: Several excitations of the Hubbard model with U = 6 and n = 2 in the two- , three- and
four-particle subspace obtained from the Bethe ansatz; hh: 2-holon continuum, d: k-Λ
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vh (k) =
∂κ
(
ph
)

∂ph
=

κ′ (k)

ph′ (k)
,

vs (Λ) =
∂ϵs (ps)

∂ps
=
ϵs′ (Λ)

ps′ (Λ)
.

(3.197)

Close to the Fermi energy, a linearization of the dispersion is possible and one can interpret vh (k = Q)
and vs (Λ =∞) (for an unmagnetized band) as the charge and spin velocities, respectively.

3.7.3. Interpreting spectra

The Bethe ansatz has been previously applied to interpret the photoemission spectrum of a one-
dimensional Hubbard system and evidence for holon and spinon branches has been found exper-
imentally in the one-dimensional compound tetrathiafulvalene tetracyanoquinodimethane (TTF-
TCNQ) [ Claessen et al. 2002; Claessen, Schäfer, and Sing 2007].
Since an electron consists out of charge and spin, removing it in photoemission equals the excitation
of a spinon and holon, so that one expects the support of the one-hole spectral function (see also
chapter 4.1.4 below), given by

A1−hole,σ (ω) =
∑
n

∣∣⟨n,N − 1
∣∣ciσ∣∣0, N⟩∣∣2 δ (ω + µ− (E

(N)
0 − E(N−1)

n )
)
, (3.198)

in the (k, ω)-plane to coincide with the spinon-holon continuum with

phs = −ph (k)− ps (Λ)± πn,
Ehs = −κ (k)− ϵs (Λ) ,

(3.199)
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Figure 3.7.: One-hole spectral function of the one-dimensional Hubbard model for L = 60, n = 1
and U = 6, calculated with DMRG. The labels indicate: hs: holon-spinon continuum,
hs(±kF ): holon dispersion with the spinon pinned to its Fermi momentum, h(±kF )s:
spinon dispersion with the holon pinned to its Fermi momentum

where k = phs and ω = Ehs.

In a similar fashion, the support of the dynamic spin structure factor (or dynamic susceptibility)
⟨⟨Sk; Sk⟩⟩ (ω, k) should conincide with the spinon-spinon continuum; and the support of the dy-
namic charge structure factor ⟨⟨nk;nk⟩⟩ (ω, k) with the holon-antiholon continuum. However, in
all the cases, spectral weight associated with bound states (identical to string solutions) can appear
outside of the continua.

Fig. 3.7 shows the one-hole spectral function at half filling (where no string solutions appear) with
overlaid lines highlighting the Bethe ansatz excitations. The boundary of the hs-continuum is drawn
as a cyan line. Within this continuum, additional structures can be identified, namely dispersive
lines corresponding to either the spinon or the holon pinned to their respective Fermi momenta
±ksF = ±π/2 and±khF = ±π [ Claessen et al. 2002]. The pinned particles havemaximal momentum,
but zero energy. In the former case this leads to a doubling of the lines due to the shift by π/2, with
the branch at high binding energy being often called “shadow band”. In the latter case there is no
doubling because the shift by ±π is exactly compensated by the ±πn term in the sum of momenta
(modulo 2π), so that on balance, one obtains the simple spinon dispersion. Note that off half filling
the bound doublon appears in the spectrumwith a gap given approximately byU , which corresponds
to a k-Λ string withm = 1 [ Benthien 2005].
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4. Spectra

4.1. The two-hole spectral function

4.1.1. Preliminaries

Our goal is to compute the local two-particle spectral function, defined as

A2 (ω) = A2−hole (ω) + A2−particle (ω) , (4.1)

which consists of the two-hole excitation spectrum

A2−hole (ω) =
∑
n

∣∣⟨n,N − 2
∣∣ci↑ci↓∣∣0, N⟩∣∣2 δ (ω + 2µ(N−1) −

(
E

(N)
0 − E(N−2)

n

))
, (4.2)

with excitation energies ω ≤ 0, related to Auger electron spectroscopy; and of the two-particle
excitation spectrum

A2−particle (ω) =
∑
n

∣∣∣⟨n,N + 2
∣∣c†i↓c†i↑∣∣0, N⟩∣∣∣2 δ (ω + 2µ(N+1) −

(
E(N+2)

n − E(N)
0

))
, (4.3)

with excitation energies ω ≥ 0. While the former is related to Auger electron spectroscopy, the
latter is related to the so-called appearance potential spectroscopy [ Potthoff et al. 2001].

Note that the definition (4.2) slightly differs from the eq. (2.87): In the experimental setup, the kinetic
energy ϵA of the Auger electron is measured, but in (4.2) one rather measures binding energies
(though speaking of the “frequency” ω by convention). The Hamiltonian used is H = H − µN̂ ,
where the chemical potential ensures the negativity of ω for A2−hole, corresponding to states below
the Fermi level; and the positivity of ω for A2−particle, corresponding to states above the Fermi level.

Since we are working with a finite system, a finite-size variant of µ is needed, which depends on the
particle number. It is defined as:

µ(N−1) = (E
(N)
0 − E(N−2)

0 )/2,

µ(N+1) = (E
(N+2)
0 − E(N)

0 )/2. (4.4)

Particle-hole symmetry implies that the two-hole spectrum at filling n is related to the two-particle
spectrum at filling 2− n via

A2-hole (ω, n) = A2-particle (−ω, 2− n) . (4.5)

It is therefore sufficient to study the two-hole and the two-particle spectrum for fillings at and above
half filling: 1 ≤ n ≤ 2.

85



We are also interested in the k-resolved two-hole spectral function, which for periodic boundary
conditions is given by:

A2−hole (ω, k) =
1

L

∑
n

∣∣∣∣∣⟨n,N − 2
∣∣∑

i

e−ikRici↑ci↓
∣∣0, N⟩∣∣∣∣∣

2

δ
(
ω + 2µ−

(
E

(N)
0 − E(N−2)

n

))
.

(4.6)

Exploiting translational symmetry, it is straightforward to show that k-summation yields

A2−hole (ω) =
1

L

∑
k

A2−hole (ω, k) . (4.7)

To calculate A2−hole (ω), DMRG in combination with the Chebyshev expansion technique is em-
ployed (see chapters 3.3.1 and 3.6). The Chebyshev method has an approximately uniform energy
resolution δE given by δE ∼ ∆E/M where ∆E = Emax − Emin is the total bandwidth and M is
the amount of moments [ Weiße et al. 2006; Weiße and Fehske 2008]. In order to be able to com-
pare the spectra for various fillings and parameters, it is therefore sensible to fix δE as a measure of
resolution rather thanM in all calculations.

4.1.2. Completely filled band

Let us start the discussion of the results by re-establishing the simple case of the completely filled
band (n = 2) described in the introduction. Some numerical results for L = 1000 and periodic
boundary conditions are shown in fig. 4.1(a) (k-resolved) and 4.1(b) (k-summed).

The two-hole spectra for different U can be understood as follows: If U = 0, one can straightfor-
wardly evaluate eq. (4.2) by Fourier transformation to reciprocal space (see appendix A). This yields

A
(0)
2−hole (ω) =

∫
dx ρ0 (x) ρ0

(
ω + E

(N)
0 − E(N−2)

0 − x
)
, (4.8)

where ρ0(x) = 1/L
∑

k δ(x − ε(k)) and ε(k) = −2 cos(k) (the hopping T is set to 1), i.e., the
two-hole spectrum is given by the self-convolution of the non-interacting density of states [ Lander
1953]. For n < 2 and U = 0, one has to take the only the occupied part. The self-convolution of
the one-dimensional density of states ρ0(x) happens to be given by the two-dimensional density of
states with bandwidth 2W = 8 (see black line). The associated picture is that the two conduction
band holes move independently of each other through the lattice.

Upon increasing U , a sharp satellite emerges at the lower edge of this “band-like part” of width 2W
and moves to higher binding energies [ Cini 1977; Sawatzky 1977]. For U ≫ T , this satellite is
approximately separated by U from the barycentre of the band-like part located at ω = −4. This
corresponds to the formation of a stable bound doublon state. Since both the energy and momentum
of an electron on a lattice are bounded from above, a decay of the bound doublon into independent
holes is prohibited by energy conservation for any U > 0 in one spatial dimension, and for a U
exceeding a critical value Uc in higher dimensions. Indeed, looking at fig. 4.1(a) one observes that
the satellite consists of a δ-peak for each value of k.

The finite width of the satellite reflects the fact that the doublon is itinerant. For strong U , the
propagation of a single doublon is perturbatively described by a second-order hopping process and
is captured by the effective Hamiltonian (a special case of eq. (1.9))
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Figure 4.1.: (a) Momentum-resolved two-hole excitation spectrum of a completely filled Hubbard
band (n = 2) for U = 6. Results are obtained by the Chebyshev expansion method
using exact states with L = 1000 lattice sites and periodic boundary conditions. Energy
resolution: δE = 0.01, corresponding to M = 1134 Chebyshev moments. Labels indi-
cate: “D”: doublon, “B”: band-like part (cf. fig. 4.2(I)).
(b) The k-summed spectrum for several values of U as indicated (same resolution,
M = 799 toM = 1856).
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Figure 4.2.: (Ia) Ground state
∣∣0, N⟩ for N = 2L electrons (filling n = 2). The two-hole spec-

troscopy removes two electrons at site i (dashed line). (Ib) Configuration of an excited
state

∣∣n,N − 2
⟩
contributing to the doublon satellite (“D”). Arrows indicate doublon

propagation. (Ic) Configuration contributing to the band-like part (“B”). Arrows indicate
independent motion of the two final-state holes.
(IIa) Configuration with N = L + 1 electrons contributing to the ground state

∣∣0, N⟩
close to half filling. Two electrons at site i are removed (dashed line). (IIb) Configura-
tion contributing to an excited state

∣∣n,N−2
⟩
related to the doublon satellite (“D”). The

arrow indicates doublon propagation.
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Figure 4.3.: Two-hole excitation spectrum (ω < 0) and two-particle excitation spectrum (ω > 0) of
the one-dimensional Hubbard model at U = 6 for fillings n between half filling (n = 1)
and the limit of the completely filled band (n = 2). The filling values indicated on the
right are drawn in black. Results as obtained by DMRG for a system with L = 60 lattice
sites and open boundary conditions at an energy resolution of δE = 0.2, corresponding
to up to M = 1149 Chebyshev moments. The main spectral structures are labeled by
“D” (doublon), “B” (band-like part), “T” (triplon) and “Q” (quadruplon) (see text).

Heff =
J

2

∑
⟨ij⟩

(
d†idj + h.c.

)
+ (J + U)

∑
i

nd
i , (4.9)

where d†i = c†i↑c
†
i↓ is a bosonic doublon creator, nd

i = d†idi, and with J = 4T 2/U . Hence, in
the strong-coupling limit the satellite has the shape of the non-interacting density of states with a
rescaled bandwidth of 2J . With increasing U , it gains more and more spectral weight at the expense
of the band-like part and eventually results in a δ-peak for U = ∞, corresponding to a completely
immobile doublon.

In the strong-U limit, the physics can be visualized to some extent by typical electronic config-
urations contributing to the different spectral features. Fig. 4.2(I) gives a sketch of the different
configurations contributing to the doublon satellite “D” and to the band-like part “B”.

4.1.3. Partially filled band

Overview

We now turn to the case of a conduction band with a finite hole density n < 2. This changes the
situation completely as the two additional holes placed at site i interact with a large (in principle
macroscopic) amount of holes in the incompletely filled band. From the technical point of view,
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the computation of the spectrum evolves into a severe many-body problem: A comprehensive and
reliable study, however, is possible when tolerating a non-zero low-energy cutoff in the form of a
finite spectral resolution δE. Using the Chebyshev technique combined with matrix-product states,
the excitation spectra can be studied in the entire filling range 1 ≤ n ≤ 2 for the Hubbard model on
lattices as large as L = 60 at a constant energy resolution δE ≈ 0.2. With δE ≲ 0.2 one would start
to resolve finite-size artifacts. Calculations have been performed for systems with open boundary
conditions and choosing i as a central site in the chain (see eqs. (4.2) and (4.3)).

Fig. 4.3 provides an overview and shows the filling-dependence of the spectrum at U = 6, a value
chosen to be larger than than the bandwidth (U = 3/2W ), so that for n = 2, the doublon satellite
is clearly separated from the band-like part. The following observations can be made:

• The overall intensity of the two-hole spectrum in the range ω < 0 is seen to decrease with
decreasing filling. This is a consequence of the sum rule for the double occupancy (which is
straightforwardly derived from eq. (4.2)):⟨

ni↑ni↓
⟩
=

∫
dω A2−hole (ω) , (4.10)

and the fact that
⟨
ni↑ni↓

⟩
is decreasing with n.

• The doublon satellite (“D”) is still presentwith strongweight atU = 6, but its support broadens
significantly with decreasing n. The satellite can be traced down to fillings close to half filling.
Right at n = 1 it vanishes completely. An extended discussion is given in chapter 4.1.3.

• A continuation of the “band-like part” (“B”) of the two-hole spectrum is also clearly visible,
at least down to n ≈ 1.5. When the filling approaches half filling, however, the weight of
the band-like part becomes very small, and the structure is hardly visible at low energies, say
−2 ≲ ω < 0, for fillings 1 < n < 1.2. Note, however, that there is finite spectral weight for
ω → 0 at any filling n > 1; only at half filling, n = 1, is the spectrum gapped.

• As soon as n < 2, the spectrum exhibits an additional structure, marked as “T” in fig. 4.3.
For fillings n→ 2 it shows up as a tiny peak at high binding energies. It gains some spectral
weight upon decreasing n and moves towards ω = 0, until it completely merges with the
doublon satellite. At the same time, another peak can be seen emerging in the very spectral
range of satellite (seen best for n = 1.6 at ω ≈ −8.7). It also moves towards ω = 0 at the
same rate. It turns out that both peaks are a consequence of the same effect, hence they are
both labelled “T” for “triplon” an analysis will be performed in chapter 4.1.3.

• The physics close to and at half filling is complicated by the appearance of yet another struc-
ture “Q” which emerges for n ≲ 1.5 at the highest binding energies and gains more and
more weight as n approaches half filling. This feature will be addressed in chapter 4.1.3 and
interpreted as a “quadruplon”.

• At half filling the system is a Mott insulator. The gap in the one-particle spectral function is
accessible to the Bethe ansatz method [ Lieb and Wu 1968] and can be computed from the
exact expression [ Ovchinnikov 1992]

∆ =
16T 2

U

∫ ∞

1

dx

√
x2 − 1

sinh(2πx T/U) . (4.11)

At U = 6 it amounts to ∆ = µ+ − µ− ≈ 2.89. As fig. 4.3 demonstrates, the two-particle
spectral function is gapped aswell, but by twice the one-particle gap 2∆ ≈ 5.86 (the numerical
value is obtained from the ground-state energies, and the slight discrepancy compared to twice
of the Bethe ansatz value is due to the finite system size).
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• The chemical potential jumps from µ = µ− for n ↗ 1 to µ = µ+ for n ↘ 1 and is not
uniquely defined at half filling1. The two-hole and the two-particle spectrum for n = 1 in
fig. 4.3 have been calculated for the choice µ = (µ+ + µ−)/2 = U/2 = 3, which implies
a symmetric spectrum A2(−ω) = A2(ω). If µ = µ+ had been chosen, the n = 1 spectrum
would have evolved continuously from the spectrum for n > 1. Hence, the single broad peak
in the two-hole spectrum at n = 1, which takes the whole spectral weight, smoothly connects
to the quadruplon peak “Q” at higher fillings.

• For fillings below half filling, n < 1, the two-hole spectrum is related to the two-particle
spectrum for n > 1 via the relation eq. (4.5). As is seen for ω > 0 in fig. 4.3, it consists of a
single peak, smoothly connected to “Q” which just continues to lose spectral weight until it
vanishes for n → 0. The vanishing of the weight is related to sum rule for the two-particle
spectrum (which is straightforwardly derived from eq. (4.3))

⟨
(1− ni↑)(1− ni↓)

⟩
=

∫ ∞

0

dω A2−particle (ω) , (4.12)

and to the fact that the average number of empty sites goes to zero for n → 2, i.e., the phase
space for creating two additional particles at a site i vanishes.

• The difference between the total weights of the two-hole and the two-particle spectrum is given
by the filling:

∫ 0

−∞
dω A2−hole (ω)−

∫ ∞

0

dω A2−particle (ω) = n− 1. (4.13)

This is a direct consequence of eqs. (4.10) and (4.12).

The doublon

As soon as the filling falls below n = 2, the doublon starts to interact with a continuum of electron-
hole excitations, such that the corresponding peak should actually be seen as a resonance with a
finite lifetime rather than an exact eigenstate of the Hamiltonian (for a given wave vector). This will
be discussed in detail in chapter 4.1.3.

As a consequence, the doublon peak broadens with decreasing n. Its support widens from a value
slightly larger than ∆ω = 2J = 4/3, which is the perturbative result for U → ∞ at n = 2, to
∆ω ≳ 4 for fillings close to, but above half filling.

To understand the main reason for this broadening, consider the spectrum for a system with N =
L+ 1 particles, i.e., for a filling slightly above n = 1. Fig. 4.2(II) provides a sketch.
The support of the doublon peak is given by the spectral range of the final states. As indicated in
the sketch, the dominating final-state configurations are characterized by a hole moving through
a lattice of half-filled sites. This is a standard many-body problem, intensively discussed, e.g., in
the context of the Mott-Hubbard metal-insulator transition [ Gebhard 2003]. Double occupancies
are effectively suppressed at strong U , well-formed local magnetic moments emerge and develop
strong antiferromagnetic correlations due to the Anderson super-exchange mechanism. While the

1For a finite system, µ not unambiguously defined. With eq. (4.4) we use a symmetric definition, where the chemical
potential for N particles is given as a difference of the total energies for N ± 1 particles. This ensures that the
excitation energies in the two-hole (two-particle) spectrum are strictly non-positive (non-negative). The choice
implies that the two branches of the spectrum are computed with (slightly) different chemical potentials. Hence, it
cannot be used for n = 1 where the function µ = µ(n) is discontinuous.
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effective coupling constant J = 4T 2/U of the latter is derived in second-order-in-T perturbation
theory and is small, the motion of the hole takes place on the large energy scale T . Neglecting J
altogether, already provides the right width of about 4T for the doublon peak, consistent with the
corresponding spectrum displayed in fig. 4.3.

Let us mention that the arguments can be formalized by considering the standard mapping of the
low-energy sector of the Hubbard model for strong U onto the t-J model [ Chao, Spałek, and Oleś
1978]. Close to half filling it reads 2:

Ht−J = −T
∑
⟨ij⟩,σ

(
c̃†iσ c̃jσ + h.c.

)
+ J

∑
⟨ij⟩

SiSj, (4.14)

where Si = 1
2

∑
σσ′ c

†
iσσσσ′ciσ′ is the spin at site i, σ the vector of Pauli matrices, and where c̃iσ is

the annihilator in the subspace with no double occupancies.
Neglecting J altogether yields the t-model, which has simple tight-binding character, so that the
bandwidth of 4T becomes obvious. We thus expect a crossover from n = 2 where the doublon is
a repulsively bound state and the satellite has a width of 2J , to n = 1 where the doublon is a free
particle with a width of 4T .

The band-like part

The band-like part “B” of the two-hole spectrum results from the continuum of unbound two-hole
final states. For n = 2 and U = 0, this is given by the self-convolution of the density of states ρ0 (x)
(see appendix A).With increasingU , it quickly loses weight in favour of the doublon satellite (see fig.
4.2(I)) and ultimately becomes an almost featureless structurewhose shape still loosely resembles the
self-convolution of the density of states, but without the strong van Hove singularities. Its weight
is already low for U = 6T > W , see fig. 4.1(b).

For fillings close to half filling, this scenario still holds to a good approximation, but with the density
of states replaced by its occupied part only (for a given filling). Since the occupied fraction shrinks
with decreasing n, the weight of the band-like part must diminish and its spectral support narrow
down, with the barycentre shifting upwards. This effect is clearly visible in fig. 4.3 for high fillings.

The barycentre of the band-like part also fixes the position of the doublon satellite, which is found
at an energy of about U below. Assuming a rectangular density of states with bandwidth W = 4,
we have ω0 = −(n/2)W for the barycentre and∆ω = nW for the width of the band-like part. This
simple model roughly explains the trend seen for fillings n ≳ 1.6. For example, the model predicts
ω0 = −3.2 for n = 1.6 resulting in ω = −(n/2)W−U = −9.2 for the satellite position. This should
be compared with the barycentre of the satellite at ω ≈ −8.75 in fig. 4.3 (obtained by integrating
the data).

For fillings n ≲ 1.5, however, ω0 shifts much faster with decreasing n and the model breaks down
(note that there is a finite band-like part for any n > 1). In this filling range, one may consider the
two additional holes in the final state asmoving independently of each other, but strongly interacting
with the high hole density in the ground state.

See also chapter 4.2 for an interpretation of the substructures within the band-like part in terms of
the Bethe ansatz excitations.

2Off half filling, one has also to take three-site terms into account which describe the scattering of the holes with and
without spinflip [ Chao, Spalek, and Oles 1977; Ammon, Troyer, and Tsunetsugu 1995].
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Figure 4.4.: (Ia) Ground state
∣∣0, N⟩ forN = 2L− 2 electrons (n < 2, high filling). Two electrons at

site i are removed (dashed line). (Ib) Configuration of an excited state
∣∣n,N − 2

⟩
con-

tributing to the triplon satellite (“T”). The arrow indicates the internal degree of freedom
of the triplon.
(IIa) Configuration with N = L electrons (half filling n = 1) contributing to the ground
state

∣∣0, N⟩. Two electrons at site i are removed (dashed line). Arrows: virtual hopping
processes of second-order perturbation theory in t. (IIb) Configuration of an excited state∣∣n,N − 2

⟩
contributing to the quadruplon satellite (“Q”). Arrows indicate quadruplon

propagation.

The triplon

The most apparent deviations from the standard Cini-Sawatzky theory consist in the appearance
of the new structures “T” and “Q”. Let us first concentrate on “T”, which already shows up for low
hole-densities n ≲ 2, a limit which has been studied to some extent using the ladder approximation
in the hole-hole channel [ Cini 1979; Drchal and Kudrnovsky 1984].
When acting with ci↑ci↓ on the ground state, one may distinguish between contributions to the spec-
trum resulting from two different types of ground-state configurations: In the case of an excitation
that takes place in a hole-free region, one expects essentially the same shape of the spectrum as in
the n = 2 case. The closer n is to 2, the more dominant this contribution. If the excitation takes
place at a site next to an already existing hole, however, a final state with three holes on nearest-
neighbouring sites is created. This case is schematically illustrated on the left side of fig. 4.4(I).
Here, the question arises whether the three holes can form a new bound object, a “triplon”. This
information is coded in the excited states of the Hubbard model which appear in eq. (4.2), rather
than the ground state. This means that we can adjust our initial state in order to enhance the alleged
triplonic contribution by giving it more spectral weight. At the same time, the initial state should be
relevant for the two-hole spectral function, of course, since this is what we are ultimately interested
in. If the previously described picture of creating three holes on neighbouring sites is correct, it thus
stands to reason to calculate the three-hole spectral function

A3−hole,σ (ω) =
∑
n

∣∣⟨n,N − 3
∣∣ci↑ci↓ci+1,σ

∣∣0, N⟩∣∣2 δ (ω + 3µ−
(
E

(N)
0 − E(N−3)

n

))
(4.15)

and its k-resolved variant

A3−hole,σ (ω, k) =
1

L

∑
n

∣∣∣∣∣⟨n,N − 3
∣∣∑

i

e−ikRici↑ci↓ci+1,σ

∣∣0, N⟩∣∣∣∣∣
2

δ
(
ω + 3µ−

(
E

(N)
0 − E(N−3)

n

))
.

(4.16)

This can be studied for all fillings; however, in the same way a doublon appears already at n = 2 as a
bound state, the triplon should do so as well, so this is the case we can first focus on. We are now left
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Figure 4.5.: (a) Momentum-resolved three-hole excitation spectrum for L = 200, U = 6, n = 2, with
an energy resolution of δE = 0.05 (M = 304 Chebyshev moments), calculated using
exact states and periodic boundary conditions.
(b) The k-summed spectrum (eq. (4.15)) for L = 500 , n = 2, δE = 0.01 (up
to M = 1876) and several values of U as indicated. The inset shows the convo-
lutions

∫
dx ρ0 (ω − x,W ) ρ0 (x, 2J) for the same values of U , where ρ0 (x,W ) ≡

1/π
√
W 2/4− x2.

with a much simpler three-body problem only. Since the Hilbert space dimension is approximately
L3/2, we can use the Chebyshev expansion method with exact states.

The result for L = 500 sites is shown in fig. 4.5(b) for several values of U , while fig. 4.5(a) shows the
k-resolved spectrum for U = 6. One observes a similar general pattern as in the two-hole case: For
U = 0 the spectrum consists of a three-fold self-convolution of ρ0(ω) with a spectral width given
by 3W = 12, while for finite U > 0, there is a band-like part and a split-off correlation satellite.

For finite but strong U , the satellite in A3−hole,σ (ω) has a slightly asymmetric weight distribution
due to the presence of the band-like part. Apart from that, its shape is in fact given by a convolution
of ρ0(ω) (the single hole, widthW = 4) with the same density of states, but rescaled (the doublon,
width ∆ω = 2J = 4/3), see the inset in fig. 4.5(b). This clearly indicates that the doublon and the
hole propagate independently and do not form a bound state.

This should also hold for the two-hole spectrum (fig. 4.3): The structure “T” does not represent
a stable triplon, but is rather a doublon-hole continuum superimposed on the doublon satellite.
The filter-operator analysis in chapter 4.1.3 and further arguments given below indeed support this
interpretation.

Compared to the three-hole spectrum, “T” in fig. 4.3 has less spectral weight, but the same shape. It
should be stressed that the two peaks belonging to “T” are simply a consequence of the van Hove
singularities in one dimension, separated by about 16T 2/U ≈ 2.67 for U = 6, and should not be
mistaken for separate resonances. Hence, it is expected that they disappear for higher-dimensional
lattices.

The interpretation of “T” as a doublon-hole continuum also explains that it is located at approxi-
mately U below the barycentre of the three-hole continuum. The latter is given by ω0 = −6 for
n = 2. With decreasing filling the support of the three-hole continuum shrinks, and so does its
barycentre, but it does so at a faster rate than the two-hole continuum, so that the doublon-hole

93



−20 −18 −16 −14 −12 −10

ω

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
3−
h
ol
e

( ω
)

V = 0V = 1

V = 2V = 3

−16−14−12−10 −8 −6 −4
0.00

0.02

0.04

0.06

0.08

0.10

Figure 4.6.: Three-hole excitation spectrum as in fig. 4.5(b), but for different values of the nearest-
neighbour interaction V and fixed U = 6 (up to M = 1971 Chebyshev moments). The
inset shows a close-up view of the continua.

continuum “T” eventually merges with the doublon satellite for fillings approaching n = 1.

A stable, repulsively bound triplon forms in the presence of an additional repulsive nearest-neighbour
Coulomb interaction V (see eq. (2.15)). This situation is shown in fig. 4.6. Starting from the doublon-
hole continuum at U = 6 and V = 0, and switching on V leads to the emergence of two satellites
splitting off for sufficiently strong V . Both have the same shape as the non-interacting density of
states ρ0(x) and are separated by about 2V from the continuum. The presence of two satellites
rather than one is due to the fact that a triplon has an internal degree of freedom: On two sites, the
three-hole states (1, 0)T ≡ c†1↑

∣∣0⟩ and (0, 1)T ≡ c†2↑
∣∣0⟩ form two configurations. When coupled by

the Hamiltonian3

H2-site =

(
U + 2V −T
−T U + 2V

)
, (4.17)

they result in a pair of bonding/antibonding eigenstates at energies E± = U +2V ± T . The energy
splitting of 2T very well explains the energy difference between the positions of the two satellites
in the spectra in fig. 4.6. Their widths are different, but become equal in the strong-coupling limit
U, V ≫ T , and are then given by 8T 2/(U+2V ) (which is not shown, but was checked numerically).

Fig. 4.7 shows the emergence of the two triplon satellites in the two-hole spectrum at n = 1.8
as obtained by DMRG. With V > 0, a much stronger growth of the entanglement entropy during
the Chebyshev iteration is found. This is to be expected, as the model becomes nonintegrable (see
chapter 3.6.5). These spectra have therefore been calculated at a moderate energy resolution δE =
0.4. For V = 3, for example, the MPS bond dimension at this point already exceeds 6200.

For V = 0, we find the dominating doublon satellite around ω ≈ −10 and the two peaks of the
doublon-hole continuum at higher binding energies, separated by about 16T 2/U ≈ 2.67. One is
located at ω ≈ −13.1, while to other one is next to the intense van Hove singularity of the doublon
structure at ω ≈ −10.4, and barely distinguishable from it. It requires a high-resolution calculation
to uncover this feature (δE = 0.04, the purple curve in fig. 4.7). For V > 0, the double-peak
structure of the triplon appears, with a separation of 2 and shifting by about 2V with increasing V ,

3Note that with H2-site, we count the interaction between holes rather than electrons.
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Figure 4.7.: Two-hole excitation spectrum at filling n = 1.8 for U = 6 and different V as indicated.
DMRG calculations for L = 60 lattice sites and energy resolution δE = 0.4 (up toM =
376 Chebyshev moments), except for the purple line at V = 0 (L = 120, δE = 0.04,
M = 3553).

as in the case of the three-hole spectrum (fig. 4.6). The doublon satellite, on the other hand, shows
a considerable loss of spectral weight, but its position is basically unchanged when increasing V .

See chapter 4.1.4 for a discussion of this splitting and additional effects induced by V .

The quadruplon

The two-hole spectrum of the half-filled Hubbard model (see fig. 4.3, lowest panel) displays a broad
peak “Q” centred around ω ≈ −7.4.

A two-hole excitation requires a double occupancy at a site i in the ground state
∣∣0, N⟩. For strongU

andN = L, a corresponding configuration is generated by virtual second-order hopping processes,
which at the same time favour antiferromagnetic spin correlations. This is the famous Anderson
super-exchange [ Anderson 1959]. Starting from this initial-state configuration, the resulting config-
uration contributing to the (N − 2)-electron final state

∣∣n,N−2⟩must therefore contain two empty
nearest-neighbouring sites, i.e., two neighbouring doublons (see the sketch given in fig. 4.4(II)). One
may now ask whether these bind to form a heavier “quadruplon”.

A simple inspection of the presence of a binding energy can be done using the position of “Q”: A
two-doublon continuum would be expected at twice the energetic centre of the doublon satellite,
an additional binding energy would mean a shift from that position. Looking at the closest dataset
to half filling (n = 62/60 in fig. 4.3), one cannot see such a shift within plotting accuracy, the “Q”
peak at ω ≈ 9.8 coincides with the expected continuum centre. Going to higher fillings, however,
one finds a shift that increases roughly linearly with n (from ∆ω ≈ 0.1 at n = 1.2 to ∆ω ≈ 0.4 at
n = 1.6) towards lower binding energies, i.e. the doublons seem to bind attractively as the filling
increases.

For n → 2 the phase space for quadruplon formation shrinks to zero. However, we can address
the quadruplon formation in the final state and carry out a similar analysis as in chapter 4.1.3 by
calculating the following four-hole spectral function
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Figure 4.8.: (a) Momentum-resolved four-hole excitation spectrum (eq. (4.19)) for L = 100, U =
6, n = 2, with an energy resolution of δE = 0.05 (M = 448 Chebyshev moments),
calculated using exact states and periodic boundary conditions.
(b) The k-summed spectrum at the same resolution for various values of U as indicated.

A4−hole (ω) =
∑
n

∣∣⟨n,N − 4
∣∣ci↑ci↓ci+1↑ci+1↓

∣∣0, N⟩∣∣2 δ (ω + 4µ−
(
E

(N)
0 − E(N−4)

n

))
(4.18)

and its k-resolved variant

A4−hole (ω, k) =
1

L

∑
n

∣∣∣∣∣⟨n,N − 4
∣∣∑

i

e−ikRici↑ci↓ci+1↑ci+1↓
∣∣0, N⟩∣∣∣∣∣

2

×

× δ
(
ω + 4µ−

(
E

(N)
0 − E(N−4)

n

))
.

(4.19)

We may continue the line of argumentation we followed for the triplon: Below a filling of n = 1.5,
the probability to find empty sites increases andwhenever a doublon is created next to such an empty
site, one has created two doublons or four holes effectively, so that the initial state of A4−hole (ω)
should still be relevant for A2−hole (ω). Again, should a quadruplon exist, it must already show up
for the completely filled band. This case is shown in figs. 4.8(a) and 4.8(b).

For U = 0, the spectrum consists of a four-hole continuum at low binding energies; its support
is given by 4W = 16. For strong U , this continuum has extremely little spectral weight. Some
of it has been transferred to an extended structure at intermediate excitation energies around ω =
−8T −U , which belongs to the one-doublon-two-hole continuum, though it overlaps with the four-
hole continuum which stretches down to ω = −4W = −16. Most of the weight, however, is taken
by the correlation satellite located at ω ≈ −8T − 2U , which corresponds to final states with two
doublons. Notably, its shape does not resemble the self-convolution of a doublon satellite (cf. fig.
4.1(b)), as one would expect for a doublon-doublon continuum.

This is in fact corroborated by the analysis of the effective doublon model (1.9). Within it, our four-
particle problem reduces to a two-particle one and can be solved in much the same way as the
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(eq. (1.9)) calculated for L = 1000, δE = 0.01, J = 2/3 and Nd = L bosons using exact
states and periodic boundary conditions. The excitation energies of a smaller system
with L = 40 sites are shown as crosses for comparison.

two-hole problem in the Cini-Sawatzky case (see Scott, Eilbeck, and Gilhøj (1994) and chapter 4.1.2).
Separating the relative from the centre-of-mass motion, the eigenvalues can be calculated for rather
large systems. One does indeed observe a split-off resonance for certain values of the wave vector k,
corresponding to a bound quadruplon. However, due to the small interaction strength J , the bound
state is energetically positioned within the doublon-doublon continuum.

In order to demonstrate this, rather than showing just the eigenvalues, let us calculate the k-resolved
two-doublon spectral function within the effective model:

A2−doublon (ω, k) =
1

L

∑
n

∣∣∣∣∣⟨n,Nd − 2
∣∣∑

i

e−ikRididi+1

∣∣0, Nd

⟩∣∣∣∣∣
2

δ
(
ω −

(
E

(Nd−2)
0 − E(Nd−2)

n

))
.

(4.20)

Note that the chemical potential has been omitted for simplicity, so that the lowest binding energy is
at ω = 0. Fig. 4.9 shows the result of a calculation for Nd = L = 1000 and J = 2/3 corresponding
to filling n = 2 and interactionU = 6 in the original model. The two-doublon spectrum corresponds
to the satellite around ω = −8t − 2U − 2J ≈ −21.3 in fig. 4.8(a). The support is given by ∆ω =
8T/3 ≈ 2.67, though with very little weight on the high-binding-energy side. This is the expected
value for two independent doublons: ∆ω = 2× 4× J/2.

The k-resolution uncovers that the continuum actually has very small spectral weight and that the
spectrum is in fact dominated by the intense quadruplon peak. Around the Brillouin zone centre,
the quadruplon is a resonance with a finite width, but still its weight dominates the whole energy
range. For |k| ≳ 3π/4, it is fully split off from the continuum and has zero intrinsic width (the
width is due to the finite δE only). One can conclude that the quadruplon excitation represents a
stable compound object formed by two bound doublons when its wave vector is close to the zone
boundary, while it is a well-defined resonance with finite lifetime around the zone centre.

The stability of the quadruplon can be explained by a phase-space argument: For a state from
the two-doublon continuum, the hard-core constraint is not effective in the thermodynamic limit.
Hence, the total energy of two doublons with wave vectors p and k − p is obtained as J cos(p) +
J cos(k− p). Right at k = ±π, this adds up to zero, so that a bound quadruplon of arbitrary energy

97



−26 −25 −24 −23 −22 −21 −20

ω

0

2

4

6

8

10

12

A
4−
h
ol
e

( ω
)

V = 0

V = 0.5

V = 1V = 1.5

−20 −18 −16 −14 −12 −10
0.00

0.01

0.02

0.03

0.04

0.05

Figure 4.10.: Four-hole spectral function for L = 100 sites, a resolution δE = 0.05 (up toM = 531
Chebyshev moments) and a completely filled band (n = 2) for several values of V
(U = 6) using exact states and periodic boundary conditions. The inset shows a close-
up view of the continua.

ω ̸= 0 and wave vector k = ±π cannot decay. Note that the quadruplon branches split off from the
continuum on the low-binding-energy side, as the quadruplon is bound by an attractive interaction
of strength J , see eq. (1.9). Indeed, its binding energy at k = ±π is just given by Ebind = J [ Scott,
Eilbeck, and Gilhøj 1994].

The same physics is found when considering the k-resolved four-hole spectral function (4.19) in the
full model. This is shown in fig. 4.8(a) for U = 6. Due to the singly occupied sites, which are now
allowed, and a finite U , the one-doublon-two-hole continuum around ω ≈ ω = −8t − U acquires
some spectral weight. This corresponds to final states where one of the doublons has decayed. Most
of the spectral weight, however, is taken by the quadruplon resonance or bound state at higher
binding energies. For the quadruplon binding energy at k = ±π, we obtain about Ebind ≈ 0.58 <
J ≈ 0.67, probably due to the moderate strength of U = 6.

At this point, we briefly note that the quadruplon can be stabilized in the entire Brillouin zone by
a sufficiently strong nearest-neighbour Coulomb interaction V > 0, very similar to the case of
the triplon excitation discussed in chapter 4.1.3. Fig. 4.10 shows the (local) four-hole spectrum for
U = 6 and different V . Here, the quadruplon satellite, with a shape approaching the shape of the
free density of states for strong V , is fully split off from the (very weak) two-doublon continuum
and shows up on its high-binding-energy side, since the interaction is repulsive. With increasing V ,
the quadruplon peak shifts with the additional binding energy 4V .

All of this having being said, it still does not answer the question whether what is seen in the two-
hole spectrum for V = 0 is the stable quadruplon as well. First, we note that the structure “Q” in
A2−hole(ω) (see fig. 4.3) continuously connects to the quadruplon peak analyzed with A4−hole(ω).
This is demonstrated in chapter 4.1.4 where the (local) four-hole spectrum is presented in the entire
filling range 1 ≤ n ≤ 2.

Hence, the question to be answered is the following: Do the two doublons in the final state contribut-
ing to “Q” for fillings n < 2 bind and form a compound object, i.e., is there an enhanced probability
to find the doublons at neighbouring sites? Above an argument relying on the energy shift of “Q”
with respect to the expected position of the two-doublon continuum was given. However, a more
direct analysis should be possible as the numerical approach is based on the many-body wave func-
tion, which in principle contains all information about the system. One should therefore be able to

98



extract specific information on the final states within a given frequency range. An implementation
of this idea within the Chebyshev expansion method requires a new technique which is presented
in the next chapter.

Filter-operator technique

To extract specific information on the states contributing to the two-hole spectrum at a given fre-
quency ω, let us proceed in the following way: First, we define a state

∣∣Ψ(ω)
⟩
as the sum over the

complete set of energy eigenstates weighted by the matrix element of the transition operator:

∣∣Ψ(ω)
⟩
=
∑
m

⟨
m
∣∣ci↑ci↓∣∣0⟩ δ (ω − (E0 − Em))

∣∣m⟩. (4.21)

∣∣Ψ(ω)
⟩
is constructed to represent a typical final state contributing to the spectrum at frequency ω.

Note that it is coincidentally identical to the “correction vector”,

∣∣Ψ(ω)
⟩
= − 1

π
Im 1

ω + i0+ − (E0 −H)
ci↑ci↓

∣∣0⟩, (4.22)

which is employed within dynamical DMRG [ Jeckelmann 2002] to calculate the spectral function,
which in this case would be A2−hole(ω) = ⟨0|c†i↓c

†
i↑|Ψ(ω)⟩.

Here, it is employed in a different way, choosing a Hermitian (but otherwise in principle arbitrary)
“filter operator” F and calculate the following expectation value:

⟨
Ψ(ω)

∣∣F ∣∣Ψ(ω)
⟩
=
∑
mn

⟨
0
∣∣c†i↓c†i↑∣∣m⟩⟨m∣∣F ∣∣n⟩⟨n∣∣ci↑ci↓∣∣0⟩ δ (ω − (E0 − Em)) δ (ω − (E0 − En)) .

(4.23)

This constitutes a “filtered” two-hole spectral function which will be labelled A2−hole [F ] (ω). The
additional weight factors

⟨
m
∣∣F ∣∣n⟩ give us some characterization of the eigenstates involved, de-

pending on the choice of F . The normal spectrum is obviously recovered for F = 1. This quantity
is numerically accessible as the diagonal part (ω = x = y) of the two-dimensional Chebyshev
expansion defined by

A2−hole [F ] (x, y) =
∑
mn

⟨
0
∣∣c†i↓c†i↑∣∣n⟩⟨m∣∣F ∣∣n⟩⟨n∣∣ci↑ci↓∣∣0⟩ δ (x− (x0 − xn)) δ (y − (x0 − xm)) ,

(4.24)

whose calculation is described in chapter 3.3.2.

To convince ourselves that this method works, let us first consider the well-understood limit of the
completely filled band n = 2 one more time. We can define an operator hi which projects out states
with an empty site i as

hi = (1− ni↑) (1− ni↓) , (4.25)

and an operator si, projecting out states with single occupancy at i:

si = (1− ni↑ni↓) (1− hi) = ni↑ + ni↓ − 2ni↑ni↓. (4.26)
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Figure 4.11.: Two-hole spectral function for n = 2 (thick black line) and two-hole spectra (normal-
ized to area) using different filter operators (colored lines), calculated with exact states
for U = 6, L = 1000, δE = 0.01 (M = 1121).

With this we can use F = 1/L
∑

i hi to filter out states characterized by doublons, and F =
1/L

∑
i si to filter out states characterized by the absence of doublons, but the presence of single

holes.

Results for U = 6 are shown in fig. 4.11. One does indeed observe that the spectral function
obtained with the former filter has support at the doublon satellite only, while the support of the
latter coincides with spectral range of both the band-like part and the satellite. This reflects the fact
that singly occupied sites appear as intermediate configurations during doublon propagation.

Let us test the triplon case next. Recall that the two-hole spectral function is computed at the central
site of the chain, i.e., we take i = L/2 for the transition operator ci↑ci↓. To look for triplons, we can
thus choose local filters and take F = hL/2sL/2+δ at different distances δ. An enhanced weight at
δ = 1 would indicate that the doublon and the additional hole bind and form a stable triplon.

The result for n = 1.8 is shown in fig. 4.12(a)). One does indeed see that the case δ = 1 does not
look any more special than δ = 2, δ = 3, or δ = L/2. All choices roughly reproduce the shape of
the two-hole spectral function and are barely distinguishable in the range of the peak at ω ≈ −13.1,
earlier identified as the triplon structure. This corroborates the previous result that a doublon and
a hole do not bind. On the other hand, it was argued that a stable triplon is formed for a nearest-
neighbour interaction V = 1. This is indeed supported by the filter-operator technique: For V = 1
(see inset of fig. 4.12(a)) the case δ = 1 is in fact very different as compared to δ ̸= 1: The weight of
the filtered spectrum is strongly enhanced at frequencies around ω = −14.4, where the peak of the
bound triplon is located (cf. fig. 4.7).

Finally, to investigate the quadruplon, let us consider the filling n = 62/60 right above half filling.
The quadruplon peak is located atω ≈ −9.8 below the doublon structurewith barycentre atω ≈ −6,
see fig. 4.3. The filtered spectra are now computed using F = hL/2hL/2+δ .

The results are shown in fig. 4.12(b). In this case, a filter with δ = 1 produces a strong signal at the
quadruplon position even for V = 0, while the spectra for larger distances δ ̸= 1 are again close to
each other and roughly coincide with the original spectral function. This is a clear indication that
there is a bound quadruplon, the contribution of which dominates the two-hole spectrumA2−hole(ω),
as compared to the doublon-doublon continuum.
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Figure 4.12.: (a) Two-hole spectral function for n = 1.8 (thick black line) and two-hole spectra (nor-
malized to area) using different filter projecting out triplonic states (colored lines), cal-
culated with DMRG for U = 6, L = 60, δE = 0.2 (M = 380).
Inset: results for finite nearest-neighbour interaction V = 1, at δE = 0.4 (M = 239).
(b) The same for n = 62/60 ≈ 1.03, δE = 0.3 (M = 766), with filter operators now
chosen to project out quadruplonic states.

Infinite doublon lifetime for k = π

Let us return to the doublon. As has been discussed in chapter 4.1.3, a stable excitation with infinite
lifetime is found in the simple n = 2 limit and explained as a repulsively bound pair of holes. This
interpretation breaks down for fillings close to half filling, where the two-hole excitation propagates
through a background of singly occupied sites with antiferromagnetic correlations. We are thus left
with the question whether there is a stable doublon for fillings n < 2, and close to half filling in
particular.

TheU -dependence of the doublon lifetime has been addressed in a number of previous theoretical as
well as experimental studies [ Strohmaier et al. 2010; Lenarčič and Prelovšek 2013; Chudnovskiy,
Gangardt, and Kamenev 2012; Petrosyan et al. 2007; Hofmann and Potthoff 2012; Rosch et al.
2008; Hansen, Perepelitsky, and Shastry 2011], starting from the concept of repulsive binding. The
k-resolution of the local two-hole excitation adds a new view on this problem.

With A2−hole (ω, k), one actually decomposes the local two-hole excitation into a coherent linear
superposition of k-dependent two-hole excitations:

ci↑ci↓
∣∣0, N⟩ =∑

k

dk
∣∣0, N⟩, (4.27)

where dk = 1/L
∑

i e
−ikRici↑ci↓ = 1/L

∑
p cp↑ck−p↓ with ckσ = 1/

√
L
∑

i e
−ikRiciσ. The important

observation is that the state dk
∣∣0, N⟩ has a strongly k-dependent lifetime. At the zone boundary

k = π, the lifetime is even infinite, which can be verified numerically and understood analytically.

Let us first discuss the numerical results. Eq. (4.6) can be used to approximate the two-hole spectrum
with a calculation for a system with open boundaries. In this case, the k-summation ofA2−hole(ω, k)
(eq. (4.7)) yields the local spectrum, but averaged over all sites, rather than the local spectral function
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Figure 4.13.: (a) Momentum-resolved two-hole spectral function for n = 1.8 and U = 6. DMRG
calculations for L = 60 sites, δE = 0.2 (M = 380). Note that the spectral weight is
plotted on a logarithmic scale.
(b) The same for n = 1.1 (M = 1118).

at the central site i, as defined in eq. (4.2). For a systemwith sizeL = 60, however, the approximation
is already excellent. Note that this can also be thought of as carrying out a Fourier transform with
two momenta, A2−hole(ω, k, k

′), but then only looking at the diagonal component with k = k′:
A2−hole(ω, k) ≡ A2−hole(ω, k, k).

Fig. 4.13(a) shows the k-resolved spectrum for n = 1.8 and U = 6. The band-like part extends
from ω = 0 to ω ≈ −8 with most of the spectral weight at low binding energies and a ridge-
like structure around k = 0. Its overall spectral weight, however, is very small compared to the
weight of the doublon satellite, which is centred around ω ≈ −10. Interestingly, one finds that
the doublon satellite is not broadened at all for k = ±π. In fact, the structure at k = ±π should
be interpreted as a δ-peak at frequency ω = ω0(π) ≈ −9.25. Note that on the logarithmic scale,
there are seemingly sidebands visible close to ω0(π) and k = ±π. These are, however, simply the
numerical artefact of Gibbs oscillations. As shown below, the position of the δ-peak is precisely given
by ω0(π) = U − 2µ ≈ −9.25, where the value of µ is obtained from the ground-state calculation
(eq. (4.4)). When |k| < π, the satellite acquires some finite width, i.e., the doublon changes from a
stable bound object into a resonance, meaning that there are continuum states right on top of it. Its
width is largest around k = 0, so that the lifetime is shortest. This is opposed to the simple n = 2
limit, where the doublon, if created with the appropriate value of k, is stable in the entire Brillouin
zone.

The situation at a filling of n = 1.1 is very similar. The results are shown fig. 4.13(b). Here, the
k-resolved two-hole spectrum consists of an intense doublon satellite (centred around ω ≈ −5)
and the quadruplon structure (around ω ≈ −10), as well as a band-like part with non-zero, but
extremely low weight close to ω = 0, which is not visible in the figure. Referring to the results
obtained by means of the filter-operator technique in chapter 4.1.3, we interpret the quadruplon
structure as an object composed of two doublons on top of a continuum, i.e., a resonance. Most of
its weight is located close to k = 0. It is tempting to assume that the quadruplon is entirely stable at
k = π, similar to the four-hole spectrum case (fig. 4.8(a)), but the whole spectral weight at the zone
boundary is instead taken by the doublon. We have already seen a similar effect in the case of the
triplon: In the three-hole spectral function for n = 2 (fig. 4.6), it clearly has a different dispersion
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from the two-hole spectral function for n < 2 (the inset of fig. 4.7), while the energetic positions
follow the same rules.

Turning to the doublon in fig. 4.13(b), we observe that it has infinite lifetime at k = ±π again, but
now also displays a distinct “shadow” around k = 0. For n = 1.1, we find 2µ = 9.25, and thus
expect the doublon at energy ω0(π) = U − 2µ ≈ −3.25. This perfectly fits with the position that
can be read off from fig. 4.13(b).

The stability of the doublon at the zone edges can be understood analytically by referring to the
“hidden” charge-SU(2) symmetry of the Hubbard model, described in chapter 2.1.2.

At half filling, the ground state
∣∣0, N⟩ is a non-degenerate total spin singlet. This implies imme-

diately that
∣∣0, N⟩ is a total isospin singlet as well. Hence, we have η

∣∣0, N = L
⟩
= 0. Since

dk=π = η/L for k = π, the transition operator in the Lehmann representation of the k-resolved
two-hole spectral function, eq. (4.6), is just proportional to η, which for half filling implies

A2−hole(ω, k = π) = 0 (4.28)

for all excitation energies ω. This is consistent with the DMRG calculations which predict the dou-
blon satellite to vanish for n = 1, even in the entire Brillouin zone (see fig. 4.3).

Off half filling, the chemical potential µ ̸= U/2 explicitly breaks the charge-SU(2) symmetry and
produces a gapped collective mode showing up as a single δ-peak in the two-hole spectrum at wave
vector k = π (or k = −π). This can be inferred from eq. (2.11). Namely, it is easy to see that, for
arbitrary N , the state η

∣∣0, N⟩ is an exact eigenstate ofH with energy E(N)
0 −U . Inserting this into

eq. (4.6), yields

A2−hole(ω, k = π) = αδ(ω + 2µ− U) (4.29)

and explains the observed position ω0(π) = U − 2µ.

Integrating the k-resolved spectrum, eq. (4.6), over ω yields the total weight at a given k:

α(k) =
1

L

∑
ij

e−ik(Ri−Rj)⟨0, N |c†j↓c
†
j↑ci↑ci↓|0, N⟩. (4.30)

This gives
∑

k α(k) =
∑

i⟨ni↑ni↓⟩, consistent with the global sum rule eq. (4.10). At k = π, as
expressed by eq. (4.29), the whole spectral weight condenses to α(π) at the frequency ω = U − 2µ.
The weight of the mode at the zone boundary is then given by α = 1/L

⟨
0, N

∣∣η†η∣∣0, N⟩ , see eqs.
(2.10) and (4.30), and can be expressed in terms of the isospin as follows:

α =
1

L

⟨
0, N

∣∣ (T2 − Tz(Tz + 1)
) ∣∣0, N⟩. (4.31)

The chemical potential acts like an external field leading to a state with the isospin pointing into the
negative-z direction above half-filling, i.e.,MT = −T . WithMT = (L−N)/2, this leads to:

α = −2MT/L = (N − L)/L = n− 1. (4.32)

This means that the weight of the mode linearly increases from zero at half filling to unity at n = 2
and explains the strong difference in the weights seen in the DMRG results (figs. 4.13(a) and 4.13(b)).
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The same analysis can be done for the k-resolved two-particle spectrum and fillings n > 1. Here,
however, the exact eigenstate η†

∣∣0, N⟩ would lead to a δ-peak at negative frequency ω = ω0(π) =
U −2µ < 0 for n > 1 (which would contradict eqs. (4.3) and (4.4)), but the weight α = 1/L

⟨
ηη†
⟩
=

1/L
⟨
(T2 − Tz(Tz − 1))

⟩
vanishes exactly since MT = −T . For fillings n < 1, the δ-peak in the

two-particle spectrum shows up on the ω > 0 side with a non-zero weight since MT = +T in
this case — analogous to the two-hole spectrum for n > 1 and related to the latter by particle-hole
transformation.

Physically, the collective mode describes a coherent doublon with energy U − 2µ which is not scat-
tered, i.e., the final state with wave vector k = π in the two-hole spectroscopy has infinite lifetime.
Note that it does not propagate through the lattice, since the dispersion flattens out at this point and
the velocity becomes zero. The stability is enforced by the remaining isospin-rotation symmetry
around the z-axis which protects this “η-mode” at the zone edge from decay. Note further that the
η-mode only shows up off half filling and is not bound to off-diagonal long-range order as has been
discussed previously [ Yang 1989; Zhang 1990]. For bipartite lattices of higher dimensions, it is
predicted to be found at the Brillouin-zone edges k = (±π,±π, ...).

4.1.4. Additional points

One-hole spectra: the doublon in photoemission

Fig. 4.14 shows the (local) one-hole excitation spectrum,

A1−hole,σ (ω) =
∑
n

∣∣⟨n,N − 1
∣∣ciσ∣∣0, N⟩∣∣2 δ (ω + µ− (E

(N)
0 − E(N−1)

n )
)

(4.33)

and the one-particle excitation spectrum,

A1−particle,σ (ω) =
∑
n

∣∣∣⟨n,N + 1
∣∣c†iσ∣∣0, N⟩∣∣∣2 δ (ω + µ− (E(N+1)

n − E(N)
0 )

)
. (4.34)

These correspond to photoemission (one-hole spectrum) and inverse photoemission (one-particle
spectrum).

For n = 2, the unrenormalized density of states is recovered: A1−particle,σ (ω) = ρ0(ω + µ). The van
Hove singularities at ω = 0 and ω = −4 are somewhat broadened due to the finite resolution of
δE = 0.2.

For fillings n < 2, the spectrum consists of the upper Hubbard band (UHB) at low binding energies
and the lower Hubbard band (LHB) showing up at higher binding energies, approximately at U
below the UHB (labeled “D” in the figure). Since the LHB for particles corresponds to the UHB for
holes, these states are characterized by two holes on the same lattice site, and thus to the propagation
of a doublon. This means that a doublon resonance appears in the one-hole spectrum in much the
same way higher resonances appear in the two-hole spectrum.
The substructure of the LHB and UHB can be analyzed and understood in terms of collective spinon
and holon excitations, see Benthien, Gebhard, and Jeckelmann (2004); Feiguin and Huse (2009); Kohno
(2010) and fig. 3.7.
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Figure 4.14.: One-hole excitation spectrum (4.33) for ω < 0 (solid line) and one-particle spectrum
(4.34) for ω > 0 (dashed line) for selected fillings n. Parameters as in fig. 4.3.

Two-hole spectra: additional effects of V

Due to strong increase in entanglement entropy, the resolution that could be achieved in the DMRG
calculations with V > 0 was not sufficient to analyze the fine-structure of the triplon peaks. A
common technique to deal with such a problem is linear prediction [ Ganahl et al. 2014; Wolf et
al. 2014]. There, one divides a series of datapoints in two halves and makes the ansatz that the
second half can be written as a linear combination of the first half. One can use this newly obtained
functional dependence in order to “predict” more datapoints in the series. If applied to the first
Chebyshev moments of the spectral function, which are still identical to the infinite system, one
hopes that linear prediction yields the decaying spectral moments of the infinite system before finite-
size effects kick in. As one can imagine, however, this post-processing is not without problems.
Ideally, the moments have to decay exponentially, which is not the case at zero temperature (finite
temperature serves as a natural broadener). Furthermore, the continuous application of a matrix to
the data requires all eigenvalues to be smaller than unity in magnitude for stability; but in practice,
eigenvalues larger than unity will usually appear and there is no general prescription of how to
deal with them. In the given case, linear prediction was attempted did not enhance the frequency
resolution far enough to reveal the triplon fine-structure. It would seem that this information is just
not yet contained in the first Chebyshev moments that are numerically accessible.

Therefore, a different path is pursued: One can go to an even higher filling, n = 1.98, where an exact
calculation is still feasible for a fairly large system. The result for L = 100 and δE = 0.01 is shown
in fig. 4.15. We observe that while the first of the triplon peaks appears right away, the second one
only rises above the continuum when V exceeds a critical value of Vc ≈ 1.3.
Note that the shape of the former markedly differs from the free density of states, indicating that
in contrast to the three-hole spectral function (fig. 4.6), the triplon in A2−hole,σ (ω) does not become
stable in the whole Brillouin zone.
This is further explored in the k-resolved spectra shown in figs. 4.16(a) and 4.16(b). We see that the
first peak occurs close to the Γ-point, while the second appears near the zone edges. In addition, we
observe another resonance emerging out of the band-like part, separated by V from its barycentre
(this can be read off easily at the zone edge), which we can identify as two neighbouring holes
repulsively bound by V as a “dimeron”. The deformation of the band-like part due to such dimerons
can also be seen at n = 1.8 in fig. 4.7.
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Figure 4.15.: Two-hole excitation spectrum at high binding energies for L = 100 and n = 1.98,
δE = 0.01 (up to M = 2852) and several values of V as indicated, calculated using
exact states and periodic boundary conditions.
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Figure 4.16.: (a) Momentum-resolved two-hole excitation spectrum for U = 6, V = 1, L = 100,
n = 1.98, δE = 0.1 (M = 246), calculated using exact states and periodic boundary
conditions.
(b) The same for V = 2 (M = 285).
Labels indicate: “D”: doublon, “B”: band-like part, “T1”, “T2”: triplon, “DM”: dimeron
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Figure 4.17.: (a) Three-hole excitation spectrum (4.15) for various fillings as indicated, calculated
with DMRG. The filling values indicated on the right are drawn in black. Parameters
as in fig. 4.3.
(b) The same for the four-hole excitation spectrum (4.18).

Three-hole spectra: filling dependence

For the sake of completeness, the three-hole spectra are shown for all fillings in fig. 4.17(a). One
observes an immediate appearance of the quadruplon satellite as the filling is reduced. It occupies
the same energetic position from ω ≈ −20 (close to n = 2) to ω ≈ −10 (close to n = 1) as in the
two-hole (fig. 4.3) and the four-hole spectral function (fig. 4.17(b)).
Interestingly, the spectral weight of the quadruplon even exceeds the triplonic (doublon-hole) con-
tribution below n ≈ 1.4.

Four-hole spectra: filling dependence

Fig. 4.17(b) shows the filling-dependence of the four-hole excitation spectrum in the range of the
quadruplon excitation energies. Again, the position of the main peak in fig. 4.17(b) approximately
coincides with the position of “Q” in the two-hole spectrum, if the same final subspaces are compared
(for example, atω ≈ −14.5 inA2−hole (ω) forn = 84/60 = 1.4 compared toω ≈ −14.6 inA4−hole (ω)
for n = 86/60 ≈ 1.43). For n → 2, the main peak evolves into the quadruplon excitation that has
been analyzed in chapter 4.1.3.

The spectrum also uncovers the existence of a “quintuplon”, i.e., a final state composed of two neigh-
bouring doublons plus an additional neighbouring hole. This is visible as the additional structure
on the high-binding-energy side of the quadruplon in fig. 4.17(b) (labeled “QI”). As in the triplon
case, we suspect that the quintuplon can be stabilized as a truly bound state with infinite lifetime
when switching on a nearest-neighbour Coulomb interaction. For V = 0, however, it is not stable
and should correspond to a hole-quadruplon continuum of final states.
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Figure 4.18.: Two- (left), three- (middle) and four-hole (right) spectral function for the full band with
overlayed borders of the Bethe ansatz continua and dispersions as coloured lines. The
same shorthand notations are used as in fig. 3.6.

4.2. Bethe Ansatz analysis of the multi-hole spectra

4.2.1. The full band for various spectroscopies

We have seen in chapter 1.1 that the Schrödinger eigenvalue problem of the Hubbard model, re-
stricted to the subspace of two holes in the full valence band, is easily solvable and the eigenstates
can be classified either as ”scattering states” or as ”bound states” (repulsively bound for U > 0,
attractively for U < 0). The two-hole spectral function adds weights to them and in spectroscopic
terms we call the former ”band-like part” and the latter ”(correlation) satellite”. In the Bethe ansatz,
the scattering states appear as a continuum of two electron holes. Although an electron hole is
composed out of a holon and a spinon, the phase space for spinons vanishes for n = 2, so that the
scattering states coincide with the 2-holon continuum (hh). The bound state of a doublon corre-
sponds to the k-Λ-string of length 1 (for brevity, let us use the label d). This is shown in the left plot
of fig. 4.18. We can also understand the higher spectroscopies for n = 2 in the same way:

The satellite of the three-hole spectrum (central plot in fig. 4.18) exactly coincides with the 1-string-
1-hole continuum (dh), corroborating the fact that there is no repulsively bound triplon for V = 0
(see 4.1.3). The support of the band-like part lies within the 3-holon continuum (hhh), although now
it does not coincide with it fully.

The satellite of the four-hole spectrum coincides with the 2-string continuum (dd), corresponding
to independent doublons in the effective model 1.9 and a k-Λ-string of length 2, corresponding to
the quadruplon bound state (q). The band-like part within the frequency range from ω ≈ −18.3
to ω ≈ −11.2 has its support within the 1-string-2-holon continuum (dhh) and almost completely
coincideswith it. The 4-hole continuum (hhhh) is very broad and also harbours some spectral weight
at low energies (not shown in the plot).

4.2.2. The band-like part for n < 2

Fig. 4.19 shows a close-up of the band-like part of the two-hole spectral function for various fillings,
previously shown in fig. 4.13(a) and 4.13(b). We can interpret these eigenstates as the decay products
of the local doublon excitation created in the initial state.

The whole support of the band-like part is expected to fall within the 2-holon-2-spinon continuum
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Figure 4.20.: Exact noninteracting two-hole spectral function for L = 600 as a sum of Lorentzians
broadened with η = 0.01, for the fillings n = 1.8 (left), n = 1.5 (middle), n = 1.1
(right).
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(hhss) and this is indeed the case, though notably there are areas without any spectral weight at all,
moreso toward half filling.

At n = 1.8, there is a notable ridge-like structure at which the spectral weight suddenly drops off
(orange line). For n = 1.8, it starts at k = ±0.2π ≈ 0.628 and ω = 0, shifts towards the zone edge
with decreasing filling, and can only be faintly seen at n = 1.1 as two speckles of spectral weight at
k = ±0.9π ≈ 2.827. This structure can be identified as the decay channel

(A) d→ h (k) h(±khF ) s(∓ksF ) s(∓ksF ), (4.35)

namely a final state where a single holon is fixed to its Fermi momentum khF , while both of the
spinons are also fixed to their respective Fermi momenta ksF , but with signs opposite to khF . Since it
holds that ksF = khF/2 for any filling, these threemomenta cancel each other, so that one is effectively
left with a single dispersing holon h(k). This is sketched in fig. 4.21 (A).

The other two relevant decay channels are found to be

(B) d→ h(k1) h(k2) s(±ksF ) s(∓ksF ),
(C) d→ h(±khF ) h(∓khF ) s(k1) s(k2),

(4.36)

namely, situations where either the two holons or the two spinons are pinned to their Fermi mo-
menta with opposite sign (cyan and green boundary lines, respectively). In these cases, these fixed
momenta also cancel each other, while the remaining two dispersive particles form a continuum.
See also fig. 4.21 (B), (C) for a sketch.
Since spinons only start to become relevant towards half filling, the area of (C) is vanishingly small
at n = 1.8, becomes noticeable at n = 1.5, but does not seem to coincide with a specific part of
the spectrum. At n = 1.1, however, its shape coincides with the whole support of the band-like
part apart from the speckles of (A) at k = ±0.9π mentioned above. We can thus conclude that (C)
becomes the dominant decay channel at half filling.
On the other hand, holon excitations disappear toward half filling, so that while (B) has a large sup-
port at n = 1.8 and n = 1.5, it becomes rather small at n = 1.1. One observes that its lower border
reproduces the onset of the spectral weight close to the Γ-point rather well, while its upper border
does not seem to delimit anything specific.

Finally, fig. 4.20 shows the noninteracting k-resolved two-hole spectral function for comparison. It
shares several features with the interacting one due to the fact that some properties of the system
remain unchanged with interaction: The spinon and holon dispersions (3.5) are still cosine-shaped
as the free dispersion, though renormalized. Due to the Luttinger theorem, the Fermi momentum
kF = nπ/2 remains unchanged with interaction and is incommensurate except for the cases n =
0, 1, 2. Thus the sum of the dispersions, when folded back into the first Brillouin zone, results in
pockets without any spectral weight in both cases. Furthermore, we have the same soft modes at
k = 0 and k = ±nπ mod π. However, the major differences are that the interacting bandwidth is
much smaller in the interacting case, that the spectral weight is not as evenly distributed and can
vanish in large regions, and that the overall spectral weight is diminished in favour of the satellite.

4.2.3. The satellites for n < 2

Let us finally turn to the high-binding-energy parts of the two-hole spectral function for open bands.
Fig. 4.22 gives an overview. It turns out that the Bethe ansatz is only of very limited assistance in
this case.
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While the agreement of the satellite with the k-Λ-string for the full band (fig. 4.18) is perfect, the
spectral weight in fig. 4.22 shifts more and more away from the string as the filling is decreased.
This is consistent with the picture of a crossover from a perfect repulsively bound state at n = 2 to
a freely dispersive particle at n = 1 (see the discussion in chapter 4.1.3). Interestingly, the string
solution only fills out the whole Brillouin zone for n = 2 and becomes centred around the Γ-point
as the filling is decreased, while the spectral weight is always distributed in the whole Brillouin zone
for any filling and continuously connects to the η-eigenstate (see chapter 4.1.3) 4 at the zone edge.
The red boundaries in fig. 4.22 show the continuum of one k-Λ-string and a single holon-antiholon
pair (dhh). It reproduces the doublon spectral weight at n = 1.8 only roughly and completely fails
to do so at n = 1.1. Note, however, that it is possible to excite any number of holon-antiholon
pairs together with one string, with the support in the (ω,k)-plane growing with the amount of such
pairs. Apart from that, some of the momenta could be pinned to certain values as in the case of the
band-like part, which increases the amount of possibilities even more.
A similar situation is found in the case of the quadruplon: While the k-Λ-string of length 2 stretches
over the whole Brillouin zone, the spectral weight is only centred around the Γ-point and the posi-
tion shifts away from the Bethe ansatz prediction the further one goes away from the full band. In
this case, however, the support more or less lies within the continuum of a k-Λ-string of length 2
with a holon-antiholon pair (qhh), even at n = 1.1.

Overall, it would appear that the spectra at higher binding energies simply defy an easy interpre-
tation in terms of Bethe ansatz states. The same problem actually already appears in the one-hole
spectral function [ Benthien 2005]. And in fact, there is actually no reason to expect that simple
Bethe ansatz states should be excited, there is always the possibility that the spectral weight comes
from a number of different eigenstates which share a given (ω,k)-region.

4Note that the η-eigenstate is not among the Bethe ansatz solutions per se and must be obtained by an additional
construction, eqs. (3.179) and (3.180).
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4.3. Two dimensions

4.3.1. Ladder geometry

A first step of extending one-dimensional physics into two dimensions is to consider a ladder, that is
a finite number of chains (“legs”) stacked in the y-direction and coupled by tight-binding hopping:

H = −t
Nlegs∑
y=1

∑
xσ

(
c†(x+1)yσcxyσ + c†x(y+1)σcxyσ + h.c.

)
+ U

Nlegs∑
y=1

∑
x

nxy↑nxy↓, (4.37)

where x and y independently enumerate the lattice sites in the corresponding axis directions.

While one-dimensional systems are generally Tomonaga-Luttinger liquids (TLL), exhibiting in par-
ticular the phenomenon of spin-charge separation, this picture has to be revised already for the
two-leg ladder: If an electron is removed from the antiferromagnetic ground state and the resulting
hole is allowed to propagate along a leg of the ladder, decaying into a spinon and a holon, it creates
magnetically frustrated interactions with the second leg. This results in a “string potential” which
increases linearly with the separation of the holon and spinon, creating a force that brings them
back together. This situation is similar to the confinement of quarks in quantum chromodynamics.
A very illustrative limit is the anisotropic t-J model on a two-leg ladder, where the nearest-neighbour
exchange within a rung J⊥ is much larger than the exchange along the legs J∥: J⊥ ≫ J∥. In this
case, it is energetically favourable for two holes off half filling to remain on the same rung, while
the other rungs form spin singlets. The bound pair of holes then propagates in the background of
these singlets like a composite boson. The effective description of the model is thus a linear chain
of repulsively interacting bosons. Furthermore, spin and charge switch their roles: Before, we had
a tendency to an antiferromagnet with gapped charge excitations, while the above case has a ten-
dency towards a charge density wave with gapped spin excitations, which is called Luther-Emergy
liquid (LEL). Finally, the system shows superconducting instabilities.
The isotropic case (J⊥ = J∥ or t⊥ = t∥), which we are dealing with here, and which is also rele-
vant for the physics of cuprates, is most difficult to understand and it is believed that the TLL phase
coexists with the LEL phase. See Kagan (2013) for a more detailed overview.

Collecting the x-dependence of the two-hole spectral function into one term,

Axy,x′y′ (ω) :=
⟨
0
∣∣c†xy↓c†xy↑ δ (ω − E(N−2)

0 +H
)
cxy↑cxy↓

∣∣0⟩ e−ikx(Rx−R′
x) , (4.38)

we can carry out the sum over y = 1, 2:

A2-hole (ω, kx, ky) =
1

LxLy

∑
xyx′y′

Axy,x′y′ (ω) e
−iky(Ry−R′

y)

=
1

LxLy

∑
xx′

(
Ax1,x′1 (ω) + Ax2,x′2 (ω) + Ax1,x′2 (ω) e

iky + Ax2,x′1(ω) e
−iky

)
.

(4.39)

An convenient advantage of the two-leg ladder is that there is no difference between open and
periodic boundary conditions in y-direction. Thus, there are two well-defined values of the lattice
momentum ky,n = 2πn/Ly, namely ky = 0 and ky = π for n = 0, 1 respectively. With this, we
obtain two spectra for each of the momentum values:
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A2-hole (ω, kx, ky = 0) =
1

Lx

∑
xx′

(Ax1,x′1 (ω) + Ax1,x′2 (ω)) ,

A2-hole (ω, kx, ky = π) =
1

Lx

∑
xx′

(Ax1,x′1 (ω)− Ax1,x′2 (ω)) .
(4.40)

This is very reminiscent of bonding and antibonding orbitals of the hydrogen atom problem. For
U = 0 and a tight-binding dispersion, the “bonding” part (ky = 0) of the two-hole spectral function
consists out of two football-shaped continua, each with a width of 8T . The “antibonding” (ky = π)
part has just one football-shaped continuum centred around ω = −8T and thus gapped by 4T (see
figs. 4.23(c) and 4.23(d)).

The density of states is readily computed for a ladder:

ρ (ϵ) =
1

LxLy

∑
kxky

δ (ϵ− 2T cos kx − 2T cos ky)

=
1

2Lx

∑
kx

(δ (ϵ− 2T cos kx − 2T ) + δ (ϵ− 2T cos kx + 2T )) .

(4.41)

We have thus two copies of the chain density of states shifted by±2T , altogether giving a bandwidth
ofW = 8T . Staying faithful to the choice U = 1.5W , one should now set U/T = 12.

Figs. 4.23(a) and 4.23(b) show the two-hole spectral function of a 40 × 2 ladder calculated with
DMRG, compared to the U = 0 case in figs. 4.23(c) and 4.23(d), both at a filling of n = 1.8. As
expected, the main dichotomy of a band-like part and a satellite is preserved from the simple chain.
One observes that while the width of the noninteracting band-like part for ky = 0 is about 15.5, it is
strongly reduced in the interacting case to about 10.5. The satellite is positioned at about U below
its barycentre, namely at ω = −17 ∼ −17.8.
For ky = 0, the band-like part shows a lot of substructure: We see an asymmetric shift of spectral
weight towards the satellite, increased intensity at kx = ±π and a small gap at kx = 0, possibly
corresponding to the touching pseudogap of the “footballs” in the U = 0 case. This hints at highly
specific decay channels which might still be interpreted in terms of spinons and holons, albeit in a
modified form. At ky = π, however, the band-like part looks just the same as in the U = 0 case
(except for the renormalization of the width), indicating no spin-charge separation at such a small
y-extension. At kx = ky = π, the whole spectral weight is concentrated in the satellite, as we
would expect it from general considerations of the η-eigenstate (see chapter 4.1.3). Consequently,
the spectral weight at the cusps of the “football” at ky = π goes to zero.

Figs. 4.24(a) and 4.24(b) show a lower filling of n = 1.5. At ky = 0, the band-like part loses all of
its intensity at kx = ±π, indicating that the corresponding decay process is now absent. At ky = π,
slightly more spectral weight in the band-like part is now gained for kx = ±π/2.
Furthermore, the quadruplon now appears, separated by an energy of U from the doublon satellite.
At ky = 0, it is mostly dispersionless, with slightly more weight at the Γ-point. For ky = π we know
that its weight must go to zero at the η-point kx = ±π, but it is already negligible for |kx| > ±π/2.

Thus, all the basic features of the spectral function, including the doublon and quadruplon peaks
as well as the η-mode, survive when going from the chain to the ladder. We can thus expect them
to survive in higher dimensions as well. The main change concerns the physics at the Fermi edge
where the decay products of the doublon are now different and more difficult to analyse, since the
Bethe ansatz cannot be employed anymore. Hence, this must remain a problem for the future.
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Figure 4.23.: Upper panels: Momentum-resolved two-hole spectral function for a 40 × 2 Hubbard
ladder with U = 12 and n = 1.8, calculated with DMRG at an energy resolution of
δE = 0.5, corresponding toM = 327 Chebyshev moments.
Lower panels: The same calculated exactly for U = 0, L = 600 and periodic boundary
conditions, with a Lorentzian broadening of η = 0.01.
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Figure 4.24.: Upper panels: The same as in figs. 4.23(a) and 4.23(b), but for a filling of n = 1.5 and
a 20 × 2 ladder at a resolution of δE = 1, corresponding to M = 175 Chebyshev
moments.
Lower panels: The same calculated exactly for U = 0, L = 600 and periodic boundary
conditions, with a Lorentzian broadening of η = 0.01.
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5. Dynamics

5.1. Doublon dynamics

5.1.1. Introduction

Apart from their appearance in Auger spectra, bound doublon states can also be directly observed
in ultracold atom experiments. This is straightforward for the two-electron case with only one dou-
blon: It can be trapped on a central site of the lattice and will expand into it once the trapping
potential is switched off. It partly decays on a short time scale, while the surviving part propa-
gates in a light-cone-like fashion. This can be nicely modelled using exact diagonalization and the
emerging phenomenology has been investigated theoretically for both fermions [ Kajala, Massel,
and Törmä 2011; Hofmann and Potthoff 2012] and bosons [ Boschi et al. 2014].
When one proceeds to the many-body case, more setups are possible. One could just put many dou-
blons into the centre of a lattice and let this conglomerate expand, which can be again experimentally
realized with trapping potentials. Such setups have also been investigated theoretically for fermions
[ Langer et al. 2012] and bosons [ Vidmar et al. 2013; Hauschild, Pollmann, and Heidrich-Meisner
2015] using DMRG. The procedure could be termed “geometrical quech”, since it is equivalent to
the preparation of lattice segments with different occupancy numbers in their respective ground
states1 and then joining them by switching on the hopping. While the simplest setup is to join a
filled segment with an empty one, one can also join a filled segment (which is a product state) with
an entangled many-body state [ Paula et al. 2017; Ganahl et al. 2012].
In a different approach, one can apply a creation or annihilation operator to the ground state, remov-
ing or shifting the particles suddenly, and then observe the real-time evolution of this perturbation.
This has been investigated by removing a single boson at unit filling for the Bose-Hubbard model [
Andraschko and Sirker 2015] and, for fermions, by creating a nearest-neighbour particle-hole exci-
tation in the half-filled ground state [ Al-Hassanieh et al. 2008].
Yet another setup consists in preparing a Gaussian wave packet, where a compromise is struck be-
tween localization in real and momentum space. This idea has been pursued in particular in order to
study spin-charge separation in one spatial dimension within the Hubbard and t-J models [ Ulbricht
and Schmitteckert 2009; Al-Hassanieh et al. 2013; Moreno, Muramatsu, and Carmelo 2013].

In this work, the sudden annihilation approach is chosen. We are interested in the dynamics fol-
lowing a sudden doublon creation at a site i0 using DMRG. One thus starts from the normalized
state

∣∣Ψi0

⟩
=

1√
N
ci0↑ci0↓

∣∣0, N⟩. (5.1)

Compared to a geometrical quench, this has the disadvantage of having somewhat less control over
the initial occupancies, since the doublon excitation will be slightly spread over several lattice sites
due to the entanglement in the ground state. The advantage is, however, that the initial state is the

1This can be done for spin systems as well, in this case with different magnetizations. In particular, one can create a
domain wall.
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same as in eq. (4.2) and we are dealing with information extracted from the same wave function as
in the two-hole spectral function (cf. the Fourier transform representation (1.12)).

This information is extracted by way of calculating time-dependent expectation values
⟨
Oj

⟩
(t) =⟨

Ψ(t)
∣∣Oj

∣∣Ψ(t)
⟩
of suitable local observablesOj . Obvious choices forOj include the charge density

nj = nj↑ + nj↓ or observables resulting from the decomposition 1 = nd
j + nh

j + ns
j , which allows us

to specifically look at

• doubly occupied sites:
nd
j = nj↑nj↓, (5.2)

• empty sites:
nh
j = nd

j − nj + 1, (5.3)

• singly occupied sites:
ns
j = 1− nd

j − nh
j = nj − 2nj↑nj↓. (5.4)

For the given problem, nh
j ismost useful, revealing both the decay and the propagation of the doublon

excitation.

5.1.2. Decay

Let us first concentrate on doublon decay. Rather than analysing the contributing eigenstates, as
was done in chapter 4.2.3, the object of interest is now the total hole density as a function of time:

nh
tot(t) =

∑
j

⟨
nh
j

⟩
(t). (5.5)

Going away from the limiting case of the full band, one expects two effects to compete: On the
one hand, the finite hole density provides phase space for the doublons to decay, as the bound state
is now positioned within many continua of various particles (for example, arbitrarily many holon-
antiholon excitations). On the other hand, movement along the background of singly occupied sites
does not cost an energy U and should rather stabilize the doublon. It is therefore interesting to see
how these two effects establish themselves and which one wins out.

Fig. 5.1(a) shows nh
tot(t) (normalized to nh

tot(0)) for different fillings. Its shape is a typical sharp dip
for very short times and a subsequent “relaxation” to an intermediate value with weak superimposed
oscillations. The many-body case with n < 2 looks very similar to the overall behaviour previously
seen for the two-particle case (here corresponding to n = 2) [ Hofmann and Potthoff 2012]. The
position of the first minimum tmin can be interpreted as the characteristic “decay time” and results
from the uncertainty principle. The drop to the emerging constant value indicates the decayed
fraction of doublons rdecay.

Similarly to what has been observed in the two-particle case, the decay time tmin is rather short,
below one inverse hopping at U = 6, and only slightly increases with decreasing filling. Its U -
dependence is also instructive and is shown in fig. 5.1(b). As a simple estimate, one would expect
that a transition to a state separated by an energy of∆E should be possible within a time t ∼ 1/∆E,
even if it is prohibited by energy conservation, thus in our case tmin ∼ 1/U .
However, one can do it more rigorously and employ an exactly solvable two-site Hubbard model,
since on the very short decay time scale, only the neighbouring site can be explored by the doublon.
Furthermore, the initial state of a two-site model is actually locally the same as in the n = 2 case,
consisting out of an empty site with an adjacent doubly occupied one in the former case, and a
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Figure 5.1.: (a) Total hole density nh
tot(t), normalized to nh

tot(0), for various fillings as indicated. Time-
dependent DMRG calculation at U = 6 for L = 40. Left inset: characteristic decay time
tmin, defined as the location of the first minimum, as a function of filling. Right inset:
decayed fraction of doublons, defined as the time average 1 − nh

tot(t)/n
h
tot(0) between

t = 4 and the maximal propagation time, as a function of filling.
(b) Inverse square of the decay time tmin, where nh

tot(t) exhibits its first pronounced min-
imum, as a function of U2 for different fillings. Lines: linear fits of the DMRG data based
on the result of the two-site model (5.6), see text.
(c) Comparison of the unnormalized hole density with the expected relaxed ground-state
expectation value (indicated by arrows of the same colour) for various values of U at a
filling of n = 1.5.
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whole doubly occupied lattice in the latter case. The two-site calculation predicts a collapse-and-
revival frequency ω0 =

√
U2 + 16T 2 [ Kajala, Massel, and Törmä 2011]. Indeed, the data for the

first minimum at n = 2, which is expected to be at ω0tmin = π for a cosine, are nicely fitted by

1/t2min ≈
(
U2 + 16T 2

)
/π2. (5.6)

Obviously, the simpler proportionality tmin ∼ 1/U emerges for U ≫ T .
For n < 2 down to n ≈ 1.4, we find that there is still a U2 dependence of 1/t2min (shown by the
linear fits in fig. 5.1(b)), reflecting the fact that the doublon decay is more and more suppressed with
increasing U . However, discrepancies with respect to the fit grow in the range 1 < n ≲ 1.4.

On the intermediate time scale up to the maximum propagation time the main effect of the decreas-
ing filling seems to consist in the decrease of the decayed fraction of doublons rdecay, see the left inset
in fig. 5.1(a). This indicates that the doublon is actually stabilized by the presence of more and more
singly occupied sites. This argument also consistently explains the dramatic overall loss of spectral
weight in the band-like part of the two-hole spectral function with decreasing n (see fig. 4.3, for
example).

At half filling the doublon is most stable. At the same time, the creation of a doublon is most un-
likely in this case, since the double occupancy is strongly reduced. In the two-hole spectral function
this results in the overall decrease of total spectral weight with filling (including the doublon satel-
lite). Note that this effect cannot be seen in fig. 5.1(a) since it is compensated by the normalization
constant nh

tot(0), which becomes small at (and close to) n = 1.

After the initial decay on the time scale tmin, one observes oscillations of nh
tot(t) in fig. 5.1(a) resulting

from repeated decay-and-recombination processes. The corresponding frequency is of the order of
U . These oscillations die out and the decay process is essentially completed within a few inverse
hoppings. However, the filling regime 1 < n ≲ 1.4 is again somewhat exceptional. Here, the
decayed fraction is seen to reach a plateau at a value of about 0.05 (see right inset). Furthermore,
the dip of nh

tot(t) at tmin is so shallow that the “decay time” defined via its position does not seem to
be very meaningful anymore. Instead, nh

tot(t) shows several oscillations of comparable magnitude
and the decay process does yet not seem to be completed.

One can summarize: The (more or less) constant value of nh
tot(t) on the intermediate time scale is the

result of the kinematic constraints becoming active, while an initial decay is possible on the short
time scale tmin ∼ 1/U via low-order scattering processes. Note that the “relaxed” values of nh

tot(t)
that can be read off as time averages from the DMRG data for the different fillings in fig. 5.1(a)
do not coincide with the respective ground-state expectation values

⟨
0, N − 2

∣∣nh
∣∣0, N − 2

⟩
in the

subspace with N − 2 electrons. The latter is expected to be reached for t→∞, probably on a time
scale exponentially long in U , on which higher-order scattering processes are activated. One would
also expect an increase in temperature, which should be, however, negligible in our case of a local
excitation.
One can also check that the “relaxed” value of nh

tot more and more approaches the ground-state ex-
pectation value

⟨
0, N −2

∣∣nh
tot
∣∣0, N −2

⟩
when decreasing U . This is shown in fig. 5.1(c) for n = 1.5.

It is noticeable that even small values of U have the consequence that the relaxed value is not com-
pletely reached within the accessible time scale, indeed suggesting a behaviour which is exponential
in U . The hole density actually seems to go away from the relaxed value for some U , which is prob-
ably the result of an overlaid long-time oscillation, possibly with a frequency of the order of J .
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5.1.3. Propagation

Let us now take a look at the spatiotemporal evolution of the doublon excitation itself. The result
of a corresponding time-dependent DMRG calculation is shown in fig. 5.2(a) for a high filling of
n = 1.8 and in fig. 5.2(b) for n = 1.2.
In order to analyse the emerging light-cone dynamics, two models can be employed: a ballistic and
a diffusive one. Broadly speaking, the former is a signature of a freely propagating excitation as in a
noninteracting system, while scattering induced by interactions is essential for the latter. Although
integrable one-dimensional systems with many conserved quantities, such as the Hubbard chain,
are expected to behave ballistically as noninteracting ones, ballistic and diffusive transport have
also been shown to coexist [ Sirker, Pereira, and Affleck 2009; Andraschko and Sirker 2015]. The
following presentation is based preceding work [ Dunlap and Kenkre 1986; Langer et al. 2009;
Vidmar et al. 2013; Andraschko and Sirker 2015] in establishing the two models.
Given some density distribution

⟨
ρj
⟩
(t) localized at time t around the centre of excitation i0, one

can introduce a time-dependent radius R(t) via

R2 (t)
[⟨
ρ
⟩]

=
∑
j

(j − i0)2
⟨
ρj
⟩
(t) . (5.7)

With this, the ballistic and diffusive case can be distinguished.
Let us first consider the former and compute the radius for noninteracting particles with a dispersion
ϵ (k) = ±v cos (k) on an infinite lattice. The time-dependent density is given by:

⟨
nj (t)

⟩
=
⟨
0
∣∣ci0 eiHt c†jcj e

−iHt c†i0
∣∣0⟩. (5.8)

Using the Fourier transform cj = 1/
√
L
∑

j e
−ikRjcj and time evolution of the operators in recipro-

cal space, ck (t) = e−iϵ(k)tck (0), one obtains:

⟨
nj (t)

⟩
=

1

L2

∑
kk′pp′

⟨
0
∣∣cpc†kck′c†p′∣∣0⟩eiRi0

(p′−p)e−iRj(k
′−k)e−i(ϵ(k′)−ϵ(k))t

=
1

L2

∑
kk′

ei(k−k′)(Rj−Ri0)e−i(ϵ(k′)−ϵ(k))t

=

(
1

L

∑
k

ei
[
k(Rj−Ri0)+ϵ(k)t

])(
1

L

∑
k

ei
[
k(Ri0

−Rj)−ϵ(k)t
])

.

(5.9)

Plugging in the dispersion ϵ (k) = v cos (k) and converting the k-sums into integrals 1/L
∑

k →
1/2π

∫ π

−π
dk, we can use the definition of the n-th Bessel function of the first kind

inJn (x) =
1

2π

∫ π

−π

dk eix cos(k)eink (5.10)

to obtain:

⟨
nj (t)

⟩
= Jj−i0 (vt)Ji0−j (−vt)
= J 2

j−i0
(vt) .

(5.11)
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Figure 5.2.: (a) Space-time plot of
⟨
ñh
j

⟩
(t) n = 1.8. DMRG calculation at U = 6 for L = 40. The

inset showsR2 (t) (after subtracting the initial value) with the fit according to eq. (5.16).
The red line in the main plot indicates vt with the velocity extracted from the fit.
(b) Space-time plot of

⟨
ñh
j

⟩
(t) for n = 1.2 and other parameters as in fig. 5.2(a). The fit

is limited to t = 3.

Note that the sign of the velocity v does notmatter and the density is normalized to unity:
∑

j

⟨
nj (t)

⟩
=

1. Plugging (5.11) back into (5.7) leads to a known identity for Bessel functions, which results in:

R2 (t)
[⟨
n
⟩]

=
1

2
v2t2. (5.12)

In our case, we consider the doublon density ρj (t) =
⟨
nh
j

⟩
(t), and the above relation should be

fulfilled for large U in the two limiting cases: On the one side we have n = 2, where the effective
doublonmodel (1.9) describes a free particlewith ϵ (k) = J cos (k). On the other side, we haven = 1,
where the effective model is the t-J model [ Chao, Spałek, and Oleś 1978] with negligible J (i.e.,
the t model), so that an empty site corresponds to a hole in the singly-occupied antiferromagnetic
background and similarly moves like a free particle with ϵ (k) = −2T cos (k).

Let us now turn to the diffusive model [ Langer et al. 2009; Vidmar et al. 2013; Andraschko and
Sirker 2015]. A solution of the continuous diffusion equation

∂ρ

∂t
−D∂

2ρ

∂x2
= 0, (5.13)

where D is the diffusion constant, with the boundary condition ρ (x, t = 0) = δ (x) and with nor-
malization

∫∞
−∞ dx ρ (x, t) = 1 is given by:

ρ (x, t) =
1√
2πDt

e−
x2

4Dt . (5.14)

In this case,R2 (t) is just the second moment of the Gaussian distribution (5.14), given by the square
of the standard deviation

R2 (t)
[
ρ
]
= 2Dt, (5.15)
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so that the spread is slower and scales with t rather than with t2.

Thus, the following composite ansatz can be made for the doublon problem:

R2 (t)
[⟨
nh
⟩]

=
1

2
v2t2 + 2Dt, (5.16)

and the calculated R2 (t)
[⟨
nh
⟩]

can be fitted to obtain the corresponding velocity v and diffusion
constant D. To neutralize Friedel oscillations originating from open boundary conditions in the
DMRG calculation, the ground-state expectation value is subtracted, so that

⟨
ñh
j

⟩
(t) ≡

⟨
Ψ(t)

∣∣nh
j

∣∣Ψ(t)
⟩
−
⟨
N, 0

∣∣nh
j

∣∣N, 0⟩ (5.17)

will be the quantity to work with. The fits are shown in the insets of figs. 5.2(a) and 5.2(b), and the
corresponding wavefronts j (t) = i0 + vt with v determined by the fit, are indicated by red lines in
the space-time plots. It turns out that at n = 1.2, the fit only gives meaningful values up to a time of
t ∼ 3; thereafter the dynamics changes noticeably. The fit is therefore limited to t ≤ 3 in this case
and it will be discussed further below.

Fig. 5.3 displays the filling dependence of the velocity v (red circles) and of the diffusion constantD
(yellow circles) as obtained from the fit (5.16). The regime where eq. (5.16) is only valid up to t ∼ 3
is found to lie between n = 1 and n ∼ 1.4, and the corresponding restricted fit results for v and D
are displayed as white circles.

For an interpretation of the obtained velocities, a comparison with the predictions of the Bethe
ansatz is once more required. To this end the time-dependent expectation value of nh

j can be
first brought into a form similar to the Lehmann representation of a Green’s function [ Ganahl
et al. 2012]. Introducing the momentum operator P to shift Oj to the point of reference, Oj =

e−iP(Rj−Ri0)Oi0e
+iP(Rj−Ri0), and writing the initial state as a linear combination of Bethe ansatz

states, which are eigenstates of both the momentum operator exp (iPx)
∣∣kn⟩ = exp (iknx)

∣∣kn⟩ and
the Hamiltonian H

∣∣kn⟩ = En (k)
∣∣kn⟩, one obtains:

⟨
nh
j

⟩
(t) =

1

N
∑
pmkn

⟨
0
∣∣d†i0∣∣pm⟩⟨kn∣∣di0∣∣0⟩×

×
⟨
pm
∣∣eipRi0eiHte−iP(Rj−Ri0)Oi0e

+iP(Rj−Ri0)e−iHte−ikRi0

∣∣kn⟩
=

1

N
∑
pmkn

⟨
0
∣∣d†i0∣∣pm⟩⟨pm∣∣Oi0

∣∣kn⟩⟨kn∣∣di0∣∣0⟩eiϕmn(p,k),

(5.18)

where ϕmn (p, k) is a plane-wave-like phase:

ϕmn (p, k) = (k − p) (Rj −Ri0)− (En (k)− Em (p)) t. (5.19)

A stationary phase requires ∂ϕmn (p, k) /∂k = 0. This implies that the wave with wave vector k
travels the distance

∣∣Rj − Ri0

∣∣ = ∂En(k)
∂k

t within the time t. Taking the maximum with respect to
k2, the wavefront propagates according to

Rmax
j −Ri0 = max

k

∂En (k)

∂k
t = vn,maxt. (5.20)

2The same expression results when taking the derivative with respect to p, of course.
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Figure 5.3.: Symbols: velocity v of the holon wavefront extracted from the fit of R2 (t) via eq. (5.16)
(red circles) and directly from the DMRG data (red triangles). Yellow circles show the
diffusion constantD from the same fit. White circles indicate where the fitting procedure
for v and D was restricted to times t ≤ 3 (see text). Lines: maximal velocities obtained
via eq. (5.20) from different Bethe ansatz eigenstates as functions of the filling.

Apparently, this estimate only yields the ballistic component, while a diffusive component should
arise from the dephasing within the linear combination of eigenstates. This means that if velocities
are to be compared with R (t) from DMRG data, a potentially appearing diffusive component has
to be filtered out according to eq. (5.16). Hence, the procedure is to calculate the maximal velocity
vn,max from the Bethe ansatz and identify it with the velocity v obtained from eq. (5.16), expecting a
match for a suitable excitation n.

Fig. 5.3 shows vn,max from various Bethe ansatz excitations displayed as solid lines. From n = 2
down to n ≈ 1.4, one finds an almost perfect matching of the velocity of the wavefront with the
k-Λ string (of length 1). In this range, the doublon propagates nearly ballistically, and it appears
that the effective doublon Hamiltonian eq. (1.9) is still approximately valid, the main effect of its
interaction term just being a renormalization of the doublon hopping amplitude. With decreasing
filling, however, the presence of more and more singly occupied sites progressively invalidates the
effective model, so that the scattering of doublons from single occupancies becomes an interaction
process with increasing relevance. This is reflected in the increase of the diffusion constant D.

As already mentioned, while the additional scattering at intermediate fillings might be expected to
contribute to a stronger doublon decay and to hinder doublon propagation, singly occupied sites can
also “accelerate” a doublon by providing a background on which the propagation does not require
a virtual process costing an energy of the order of U . Indeed, the analysis suggests that scattering
at first merely adds a diffusive component to the dynamics, while the ballistic part continues to
propagate with the velocity of the bound state. It starts to increase and deviate from the velocity of
the k-Λ string below n ∼ 1.4 (see Fig. 5.3).

As mentioned above, we expect a crossover between two ballistic regimes: a bound state at n = 2
(with v = J ) and a free particle at n = 1 (with v = 2T ), so that the actual doublon velocity should
interpolate between the two cases, requiring an “acceleration” toward half filling. This effect is
obviously not peculiar to one-dimensional systems and has also been observed using nonequilibrium
dynamical mean-field theory [ Eckstein and Werner 2014].

However, for times larger than t ∼ 3 in the filling range 1 < n ≲ 1.4, the mixed ballistic/diffusive
model breaks down. Evidently, the many-body character of the problem becomes so severe as to
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disallow an interpretation of the excitation in terms of a single spreading particle. The initial wave-
front dies out and the dynamics becomes much slower (see fig. 5.2(b)), so that the exact scaling of
R2 (t)with t is difficult to read off on the accessible time scale (see the inset of fig. 5.2(b)). A possible
explanation could be that quadruplons (k-Λ strings of length 2) begin to contribute significantly to
the final states. This is evidenced by the two-hole spectral function, where the quadruplon peak
becomes visible below a filling of n ≈ 1.5 (see chapter 4.1.3). In this filling range, the velocity of
the quadruplons is very low (see the “2-string” line in fig. 5.3), so that they may stay behind as
a very slowly expanding core after the doublons have moved away or decayed. The total double
occupancy (Fig. 5.1(a)) does not discriminate between empty doublonic and quadruplonic sites, so
that this separation can only be seen in the spatially resolved plot.

Note that for n = 1, the fit of R2 (t) yields a too large velocity of v ≈ 2.5T andD becomes negative
(see fig. 5.3). This is due to the fact that the hole density in the initial state after the application
of di is spread out across several lattice sites, so that the boundary condition of a strictly localized
hole, needed to derive eq. (5.14), is no longer perfectly fulfilled. Alternatively, one can extract the
wavefront directly from the data by looking for the point when

∣∣⟨ñh
j

⟩
(t)
∣∣ > ϵ, where the cutoff is

set at ϵ = 0.05. The respective results for v are displayed in fig. 5.3 by red triangles and indeed yield
a velocity close to the expected value 2T at half filling. Similarly, without this artefact, we would
expect the diffusion constant to go to zero at n = 1.

5.1.4. Summary

Let us now summarize what can be learned from the real-time doublon dynamics. There are two
limits which can be understood in terms of the propagation and partial decay of a single particle:
For n = 2, the initial doublon excitation is a linear combination of a bound state, which propagates
with the velocity v = J ; and scattering states with two independent electrons. For n = 1, it consists
out of two holes on an antiferromagnetic background, moving with the Fermi velocity v = 2T upon
propagation. For intermediate values of n, two competing effects could be expected beforehand: On
the on the one hand, an opening up of decay channels and increased scattering due to singly occupied
sites, on the other hand a stabilization in the form of a background where doublon propagation does
not require a virtual process.

It turns out that there are two regimes as a function of the filling: Above n = 1.4 (for the given
choice of U = 6), the dichotomy between a bound state and scattering states is kept. However,
both now have to be understood in terms of Bethe ansatz eigenstates: The bound state propagates
with the velocity of a k-Λ string, while the scattering states involve two spinons and two holons (see
chapter 4.2.3). The additional scattering of doublons only leads to an additional diffusive component
D, but the maximal velocity is not lowered, so that a ballistic component remains and the dynam-
ics is therefore mixed ballistic/diffusive. Furthermore, the decayed fraction of doublons actually
decreases, indicating that the stabilization effect of singly occupied sites wins out.

The regime below n = 1.4 is more complicated to understand. It is marked by an increased deviation
of the decay time from the relation 1/t2min ∼ U2, a qualitatively different behaviour of nh

tot involving
long-time oscillations rather than a dip and a plateau. The maximal velocity now deviates from the
velocity of the k-Λ string, since the doublon becomes increasingly unbound and we have a crossover
to the n = 1 case where it is a free particle. At the same time, the mixed ballistic/diffusive model
only remains valid for short times t ≲ 3, after which it breaks down and R (t) shows a qualitatively
different dependence. This might be connected with slow quadruplons which are seen in the two-
hole spectrum in this filling range. Note that the initial conditions of both the ballistic and the
diffusive model involve a single localized particle. However, it would seem that the problem now
attains a many-body character which is impossible to understand in such a simple picture.
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5.2. Spin dynamics

5.2.1. Introduction

This chapter presents the results of the work on spin dynamics using DMRG and compared to other
methods. The common link to doublon dynamics has been outlined in chapter 1.4. Since spin dy-
namics has not been the main focus of this work, no in-depth description will be attempted here and
just the two relevant publications are presented instead.

If the magnetic energy of an impurity spin coupled to a substrate exceeds the bandwidth of the
substrate, the spin cannot relax by getting rid of this energy and remains stationary at an intermedi-
ate value. This is basically the same mechanism which stabilizes doublons on an intermediate time
scale, where the excess energy is given by U . Compare in particular fig. 2 of the following paper,
displaying the components of the spin as a function of time, with fig. 5.1(a) displaying the double
occupancy in the latter case.

In the second work, the spin quantum number S of the impurity spin is increased in order to get
closer to the classical limit S →∞. However, if no rescaling of the spin is done, this also increases
the magnetic energy BS and a bound state emerges at the impurity site. It is only weakly coupled
to the rest of the chain due to the separation in energy, so that the dynamics of the impurity spin
can be described by an effective two-spin model.
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Relaxation of a Classical Spin Coupled to a Strongly Correlated Electron System

Mohammad Sayad, Roman Rausch, and Michael Potthoff
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A classical spin which is antiferromagnetically coupled to a system of strongly correlated conduction
electrons is shown to exhibit unconventional real-time dynamics which cannot be described by Gilbert
damping. Depending on the strength of the local Coulomb interaction U, the two main electronic
dissipation channels, namely transport of excitations via correlated hopping and via excitations of
correlation-induced magnetic moments, become active on largely different time scales. We demonstrate
that correlations can lead to a strongly suppressed relaxation which so far has been observed in purely
electronic systems only and which is governed here by proximity to the divergent magnetic time scale in the
infinite-U limit.

DOI: 10.1103/PhysRevLett.117.127201

Motivation.—A classical spin in an external magnetic
field shows a precessional motion but when exchange
coupled to a conduction-electron system the spin addition-
ally relaxes and finally aligns to the field direction. This is
successfully described on a phenomenological level by the
Landau-Lifschitz-Gilbert (LLG) equation [1] and exten-
sions of this concept [2,3]. The Gilbert damping constant α
is often taken as a phenomenological parameter but can
also be computed ab initio for real materials [4–6] within a
framework of effectively independent electrons using band
theory [7] and then serves as an important input for
atomistic spin-dynamics calculations [8].
Electron correlations are expected to have an important

effect on the spin dynamics. This has been demonstrated in
a few pioneering studies [9–11]—within different models
and using various approximations—but only indirectly by
computing the effect of the Coulomb interaction on the
Gilbert damping. One hallmark of strong correlations,
however, is the emergence and the separation of energy
(and time) scales—with the correlation-induced Mott
insulator [12] as a paradigmatic example.
With the present study we address correlation effects

beyond an LLG-type approach and keep the full temporal
memory effect. It is demonstrated that correlation-induced
time-scale separation has profound and qualitatively new
consequences for the spin dynamics. These are important,
e.g., for the microscopic understanding of the emerging
relaxation time scales in modern nanospintronics devices
involving various transition metals and compounds [13–15].
Concretely, we consider a generic model with a classical

spin S that is antiferromagnetically exchange coupled
(J > 0) to a Hubbard system and study the spin dynamics
as a function of the Hubbard U. To tackle this quantum-
classical hybrid problem, we develop a novel combination
of linear-response theory [6,16,17] for the spin dynamics
with time-dependent density-matrix renormalization group
(t-DMRG) [18–20] for the correlated electron system.

For technical reasons we consider a chain geometry but
concentrate on generic effects which are not bound to the
one-dimensionality of the model.
In the metallic phase at quarter filling, a complex

phenomenology is found where two different channels
for energy and spin dissipation, namely dissipation via
correlated hopping and via excitations of local magnetic
moments, become active on characteristic time scales,
depending on U. While magnetic excitations give the by
far dominating contribution to the Gilbert damping in the
strong-coupling limit, they contribute to the spin dynamics
to a much lesser extent and on later and later time scales
when U is increased.
It is demonstrated that electron correlations can have

extreme consequences: At half-filling and strong U, the
spin relaxation is incomplete on intermediate time scales.
This represents a novel effect in a quantum-classical hybrid
model which is reminiscent of prethermalization [21–24] or
metastability of excitations due to the lack of phase space
for decay [25–28], i.e., physics which so far has been
observed in purely electronic quantum systems only.
Gilbert damping.—We consider the Hubbard model for

N electrons on an open chain of length L as a prototypical
model of correlated conduction electrons:

He ¼ −T
XNN

i<j

X

σ

ðc†iσcjσ þ H:c:Þ þU
XL

i¼1

ni↑ni↓: ð1Þ

The nearest-neighbor (NN) hopping T ¼ 1 sets the energy
and time scale (ℏ ¼ 1). Using standard arguments [16,17],
the Gilbert damping parameter α can be computed as

α ¼ −J2
Z

∞

0

dt t χlocðtÞ ð2Þ

and depends on the Hubbard interaction U via the local
(diagonal and isotropic) retarded spin susceptibility
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χlocðtÞ ¼ −iΘðtÞh0j½si0zðtÞ; si0zð0Þ�j0i ð3Þ

at the site i0 where the classical spin is coupled to. J is the
strength of the exchange interaction [see Eq. (4) below].
Furthermore, j0i is the ground state of He, sizðtÞ ¼
eiHetsize−iHet, and siz is the z component of the local
conduction-electron spin si ¼

P
σσ0c

†
iστσσ0ciσ0=2, with the

vector of Pauli matrices τ and with σ; σ0 ¼ ↑;↓.
We choose i0 ¼ 1 for two reasons: (i) As compared to

the symmetric choice i0 ¼ L=2, this allows us to double the
accessible time scale (before finite-size effects set in).
(ii) The time integral in (2) is sensitive to the long-time
behavior of χlocðtÞ which, at least for U ¼ 0, is related to
the strength of the van Hove singularities in the local
density of states [17]. At the edge of the open chain, those
are weak and characteristic for a three-dimensional system.
Local-spin correlations at quarter filling.—To compute

χlocðtÞ, we apply t-DMRG and the framework of matrix-
product states [18] for systems with L ¼ 80–120 sites.
Concretely, we use the two-site version of the algorithm
suggested in Refs. [19,20] which is based on the time-
dependent variational principle.
Electron correlations are expected to speed up the

relaxation of the classical spin since electron scattering
facilitates the transport of energy and spin density from i0
to the bulk of the system. An increasingly efficient
dissipation implies an increase of α with U. This can be
nicely seen in χlocðtÞ, which determines α via Eq. (2) and
which is shown in Fig. 1 (upper panel) for quarter filling
n≡ N=L ¼ 0.5 where we have a (correlated) metal in the
entire U range. In fact, the absolute value of the integral
weight

R
dt χlocðtÞ grows with increasing U.

Note that via the fluctuation-dissipation theorem, the
total weight

R
dt χlocðtÞ is given by the negative local static

spin susceptibility. This explains that χlocðtÞ is mainly
negative.
Separation of time scales.—A central observation is that

χlocðtÞ develops a pronounced two-peak structure for strong
U. For U ¼ 0 and in the weak-coupling regime, there is
essentially a single (negative) peak around t ∼ 1 only. This
corresponds to fast correlated-hopping processes on a scale
set by the inverse hopping 1=T. As is seen in the figure, the
contribution of these processes to the Gilbert damping
grows with increasing U.
The second (negative) peak is clearly present for U ≳ 8.

The almost linear shift of its position withU hints towards a
time scale set by an effective magnetic interaction JH ∼
1=U between local magnetic moments formed by strong
correlations in the conduction-electron system. Even for
U → ∞, however, local-moment formation is not perfect at
quarter filling: We have hs2i i ¼ 3

4
n ¼ 3

8
< sðsþ 1Þwith s ¼

1=2 for the size of the correlated local moment [12].
This explains the residual contributions from correlated-
hopping processes (first peak).

For strong U the Gilbert damping is dominated by
magnetic processes: Because of the extra factor t under
the integral in Eq. (2), the contribution of the second peak
in χlocðtÞ by far exceeds the hopping contribution (note the
logarithmic scale in Fig. 1). Clearly, α strongly increases
with U though a precise value cannot be given due to
limitations of the t-DMRG in accessing the long-time limit.
Spin-dynamics model.—The simple LLG equation for a

classical spin, i.e., _S ¼ S × B − αS × _S, can only provide
an overall picture of the spin dynamics and in fact ignores
the electronic time-scale separation. We therefore apply a
refined approach which explicitly accounts for the con-
duction-electron degrees of freedom in a model H which,
besides He, Eq. (1), includes the local and isotropic
coupling between si0 and the classical spin S (jSj ¼ 1=2):

H ¼ He þHe−spin ¼ He þ Jsi0S − BS: ð4Þ

We have also added a local magnetic field B which, at time
t ¼ 0, is suddenly switched from B ¼ Binix̂, forcing the
spin to point in the x direction, to B ¼ BfinẑwithBfin ¼ 1 to
initiate the spin dynamics. Complete relaxation is achieved
if SðtÞ → 1

2
ẑ for t → ∞.

FIG. 1. Upper panel: Local-spin correlation χlocðtÞ at i0 ¼ 1 for
an open Hubbard chain with L ¼ 80 sites as obtained by t-
DMRG for quarter filling and different U as indicated. (U ≥ 32:
t-J model with three-site terms [29], L ¼ 100 sites; U ¼ ∞:
L ¼ 120). Energy and time scales are fixed by the NN hopping
T ¼ 1. Lower panel: Resulting real-time dynamics of a classical
spin SðtÞ (with jSðtÞj ¼ 1

2
, only Sz is shown) coupled at i0 to the

local conduction-electron spin as obtained from Eq. (5) for J ¼ 1
and different U. The spin dynamics is initiated by switching the
local magnetic field in Eq. (5) at time t ¼ 0 from the x to the z
direction ðBfin ¼ 1Þ. Inset:U dependence of the relaxation time τ,
defined as SzðτÞ ¼ 0.98jSj.
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The Hamiltonian (4) represents a semiclassical Kondo-
impurity model with finite Hubbard U. For a strong local
field Bfin, the dynamical Kondo effect [30] that would show
up in the case of a quantum-spin S ¼ 1

2
is suppressed—this

justifies the classical-spin approximation. The quantum-
classical hybrid (4) is also obtained in the limit of large spin
quantum numbers S [31] of a correlated quantum-spin
Kondo impurity model [32].
SðtÞ satisfies the classical equation of motion _SðtÞ ¼

SðtÞ × B − JSðtÞ × hsi0it [33]. Applying lowest-order
perturbation theory in J, the Kubo formula yields
hsi0it ¼ J

R
t
0 dt

0χlocðt − t0ÞSðt0Þ, where the retarded local-
spin correlation χlocðtÞ now plays the role of the linear-
response function. As has been demonstrated in Ref. [17]
for U ¼ 0, this approach is perfectly reliable even for
fairly strong couplings J and up to the time scale necessary
for complete spin relaxation. Here, we choose J ¼ 1 to
generate relaxation times accessible to the t-DMRG
approach.
The resulting effective integro-differential equation of

motion [6,16] (see also Refs. [34,35]),

_SðtÞ ¼ SðtÞ × B − J2SðtÞ ×
Z

t

0

dt0χlocðt − t0ÞSðt0Þ; ð5Þ

is numerically solved using high-order Runge-Kutta [36]
and quadrature techniques.
Correlation effects in the spin dynamics.—The resulting

spin dynamics (Fig. 1, lower panel) is characterized by
precessional motion [SxðtÞ; SyðtÞ not shown] with Larmor
frequency ωL ∝ B around the ẑ axis, and by relaxation
driven by dissipation of energy and spin into the bulk of the
electronic system. In the final state there is complete
alignment, SðtÞ↑↑B.
Comparing the results for the different U, we find the

following. (i) Significant relaxation starts at times t ∼ 1=T,
i.e., on the time scale for dissipation through the correlated-
hopping process. (ii) Correlation effects lead to a consid-
erably shorter relaxation time, e.g., by about a factor 2
when comparing the results for U ¼ 0 and U ¼ 16 (see
inset). (iii) To some extent this is due to an additional
damping mechanism, namely via excitations of correla-
tion-induced magnetic moments—at least for moderate U.
(iv) For strong U, however, the relaxation time increases
again. This is counterintuitive but readily explained: Since
the second, “magnetic” peak in χlocðtÞ shifts with increas-
ing U to later and later times, relaxation is already
completed before dissipation through spin-flip processes
can become active. This is most obvious for U → ∞ where
magnetic damping is never activated, and where a renor-
malized band picture may apply. (v) At intermediate U,
however, the picture is different. Here, spin-flip processes
do contribute to the relaxation but more than an order of
magnitude later (t≳ U=T2) than the hopping time scale.
Despite their dominating contribution to α, their effect is

weaker as compared to the correlated-hopping processes.
Still, spin flips leave clear characteristics in SzðtÞ: their
additional torque produces oscillations (with a period
largely independent of U) which superimpose the mono-
tonic relaxation dynamics. The onset of these magnetic
oscillations linearly grows with U. Note that the interpre-
tation of these (and the following) findings does not rely on
the one-dimensionality of the model.
Gilbert damping of a Mott insulator.—Dissipation

through correlated hopping is impeded or even suppressed
at half filling where the system is a Mott insulator for all
U > 0. Figure 2 (upper panel) shows the t-DMRG data for
χlocðtÞ at n ¼ 1 and different U. Its time dependence is
dominated by a single (negative) structure which grows with
increasingU up to, say,U ≈ 8. In the weak-coupling regime,
U ≲ 4, the local magnetic moments are not yet well formed
since the charge gap Δ ∼ e−1=U (as obtained from the Bethe
ansatz [37] for U → 0) is small as compared to T. Hence,
residual hopping processes still contribute significantly.
In the strong-coupling limit, on the other hand, spin-flip

processes dominate. Here, we observe scaling behavior,
χlocðtÞ ¼ Fð4tT2=UÞ with a universal function FðxÞ.
Indeed, due to the suppression of charge fluctuations,
the long-time, low-energy dynamics is captured by a
Heisenberg chain HHeis ¼ JH

P
isisiþ1 with antiferromag-

netic interaction JH ¼ 4T2=U between rigid s ¼ 1=2 spins.
As JH is the only energy scale remaining, FðtJHÞ is the
retarded local susceptibility of the Heisenberg chain. With
FðxÞ obtained numerically by means of t-DMRG applied to
HHeis at JH ¼ 1, the t-DMRG data for strong U are fitted
perfectly (see Fig. 2). Significant deviations from the

FIG. 2. The same as Fig. 1 but for n ¼ 1 (L ¼ 60). Thin black
lines: Heisenberg model with JH ¼ 4T2=U (L ¼ 400) and, for
improved accuracy at U ¼ 8, with NN and NNN couplings
JH ¼ 4T2=U − 16T4=U3 and J0H ¼ 4T4=U3 [38] (L ¼ 300).
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scaling behavior can be seen in Fig. 2 for U ¼ 8 and t ≈ 3,
for instance.
Scaling can be exploited to determine the U dependence

of the Gilbert damping for a Mott insulator. From Eq. (2)
we get

α ¼ J2

J2H

Z
∞

0

dx xFðxÞ ¼ J2

J2H
α0 ¼

J2U2

16T4
α0; ð6Þ

and thus, for fixed J andT, we haveα ∝ U2. For the universal
dimensionless Gilbert damping constant α0 we find

α0 ≈ 4.8: ð7Þ
For a correlated Mott insulator, Eqs. (6) and (7) completely
describe theU dependence of the classical-spin dynamics in
theweak-J,weak-B limitwhere the tdependence ofSðtÞ is so
slow, as compared to the typicalmemory time τmem character-
izing χlocðtÞ, that the Taylor expansion Sðt0Þ ≈ SðtÞ þ
_SðtÞðt0 − tÞ can be cut at the linear order under the t0 integral
in Eq. (5), such that the LLG equation is obtained as a
Redfield equation [39].
Incomplete spin relaxation.—As demonstrated with

Fig. 2 (lower panel), there is an anomalous U dependence
of the spin dynamics at n ¼ 1. Only in the weak-coupling
regime, U ≲ 2, do damping effects increase and lead to a
decrease of the relaxation timewith increasingU. ForU ¼ 4,
however, the relaxation time increases again. This behavior
is clearly beyond the LLG theory and is attributed to the fact
that the memory time, τmem ∝ 1=JH ∝ U for strong U,
becomes comparable to and finally exceeds the precession
time scale τB ¼ 2π=B (see the Supplemental Material [40]).
In addition, as for n ¼ 0.5, we note a nonmonotonic

behavior of SzðtÞ with superimposed oscillations (see
U ¼ 6, for example). With increasing U these oscillations
die out, and from a “critical” interaction Uc ∼ 8 onwards
the relaxation time seems to diverge. Namely, the z
component of SðtÞ approaches a nearly constant value
which decreases with increasing U while Sx (and Sy) still
precess around B (see inset). Hence, on the accessible time
scale,Uc marks a transition or crossover to an incompletely
relaxed but “stationary” state.
The same type of dynamical transition is also seen for a

classical spin coupled to a Heisenberg chain for which
much larger system sizes (L ¼ 400) and thus about an
order of magnitude longer time scales are accessible to t-
DMRG. Here, the crossover coupling is JH;c ∼ 0.5.
However, these calculations as well as analytical arguments
clearly indicate that a state with Sz ¼ const ≠ 1=2 is
unstable and that finally, for t → ∞, the fully relaxed state
with SðtÞ↑↑B must be reached (see [40] for details).
The “stationary state” on an intermediate time scale

originates when the bandwidth of magnetic excitations gets
smaller than the field—as can be studied in detail already
for U ¼ 0 (and very strong B). On the time axis, the
missing relaxation results from a strong memory effect

which, in the strong-U limit, shows up for JH ≲ B. Here,
τmem ≳ τB, which implies that the z component of the spin
torque on SðtÞ averages to zero [40].
The incomplete spin relaxation can also be understood as

a transient “phase” similar to the concept of a prethermal-
ized state. The latter is known for purely electronic systems
[21–24] which, in close parametric distance to integrability,
do not thermalize directly but are trapped for some time in a
prethermalized state. Here, for the quantum-classical
hybrid, the analogue of an “integrable” point is given by
the U → ∞ limit where, for every finite t, the integral
kernel χlocðtÞ≡ 0, and Eq. (5) reduces to the simple (linear)
Landau-Lifschitz equation [1].
The situation is also reminiscent of quantum excitations

which are metastable on an exponentially long time scale
due to a small phase space for decay. An example is given
by doublons in the Hubbard model which, for U much
larger than the bandwidth and due to energy conservation,
can only decay in a high-order scattering process [25–28].
The relaxation time diverges in the U → ∞ limit where the
doublon number is conserved. Here, for a classical spin,
one would expect that relaxation via dissipation of (arbi-
trarily) small amounts of energy is still possible. Our results
show, however, that this would happen on a longer time
scale not accessible to the linear-response approach while
the stationary state on the intermediate time scale is well
captured [40].
Outlook.—Correlation-induced time-scale separation and

incomplete relaxation represent phenomena with further
general implications. While slow correlation-induced mag-
netic scales dominate the Gilbert damping α, their activation
has been found to depend on microscopic details. This calls
for novel correlated spin-dynamics approaches. The combi-
nation of t-DMRG with non-Markovian classical-spin
dynamics is an example of how to link the fields of strongly
correlated electron systems and spin dynamics, but further
work is necessary. Combination with dynamical mean-field
theory [41] is another promising option. Also spin dynamics
based on LLG-type approaches combined with ab initio
band theory could be successful in the case of very strong U
where due to the absence of magnetic damping a renormal-
ized band picture may be adequate. Further progress is even
needed for the very theory of a consistent hybrid-system
dynamics [33,42]. Generally, hybrid systems are not well
understood and call for a merger of known quantum and
classical concepts, such as eigenstate thermalization, pre-
thermalization, (non)integrability, etc. [43]. However, also
concrete practical studies with classical spins coupled to
conduction electrons [17] are needed, as those hold the key
for the microscopic understanding of nanospintronics devi-
ces [15] or Skyrmion dynamics [44,45].
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Validity of linear-response theory.

The reliability of the linear-response approach (see Eq.
(5) of the main text) can be tested by comparing with the
results of the full (non-perturbative) quantum-classical
hybrid dynamics for the model given by Eq. (4) of the
main text. This is easily accessible for the case U = 0 (see
Ref. [1] for details). Fig. 1 displays the time dependence
of the z-component of the classical spin for J = 1, for a
half-filled system (n = 1) of non-interacting conduction
electrons (U = 0) and for different strengths of the field
B after switching from x- to z-direction.

While there are some discrepancies visible, as ex-
pected, the figure demonstrates that the agreement on
a qualitative level is in fact excellent for weak as well
as for strong fields. Both approaches also predict a
crossover from complete to incomplete spin relaxation
at B = Bc ≈ 4. We conclude that the linear-response
approach provides reliable results for the classical spin
dynamics.

This can be explained by the observation that |〈si0〉t| is
small and that the classical spin S(t) and the conduction-
electron moment 〈si0〉t are nearly collinear at any instant
of time (see Ref. [1] for a detailed and systematic discus-
sion). Hence, even for moderately strong couplings J , the
linear-response contribution J2S(t)× 〈si0〉t to the equa-
tion of motion for S(t) is small (and the quadratic and
higher-order corrections are expected to be even smaller).

10�1 100 101 102

time t

0.0

0.1

0.2

0.3

0.4

0.5

S
z

J=1
B=1

B=2

B=3

B=3.5

B=4

B=5

FIG. 1: Time dependence of the z-component of the classical
spin for J = 1, n = 1, U = 0 and different values of the field
B as indicated. Calculations based on the linear-response
approach (fat solid lines) are compared to the results of the
full quantum-classical hybrid theory (thin solid lines) for L =
500.

Mechanism for incomplete relaxation.

Fig. 1 shows that the relaxation of the classical spin
becomes incomplete for strong B. On the basis of the
linear-response theory this can be explained as follows:
The x and y components of the linear response

〈si0〉t =

∫ t

0

dτ χloc(τ)S(t− τ) , (1)

tend to zero if the characteristic memory time τmem of
the kernel χloc(τ) is much larger than the precession time
scale τB = 2π/B since the integral produces a vanishing
average in this case. This means that the corresponding
torque, −J2S(t) × 〈si0〉t, is perpendicular to the field
direction and hence there is no relaxation of the spin.

The same argument can also be formulated after trans-
formation to frequency space: After some transient ef-
fect, we have 〈si0〉ω = χloc(ω)S(ω), and thus the x, y-
components of the linear response will vanish if χloc(ω =
B) = 0, i.e., if B is stronger than the bandwidth of the
magnetic excitations (here: Bc ≈ 4). Note that this
requires an unrealistically strong field in case of non-
interacting conduction electrons.

In the case of correlated conduction electrons, |S(t)×
〈si0〉t| remains small (of the order of 0.1 or smaller), for
weak and for strong B, as has been checked numerically.
We therefore expect the linear-response approach to pro-
vide qualitatively correct results for U > 0 as well.

At half-filling and for strong U , the memory time
τmem ∝ J−1H ∝ U , i.e., τmem can easily become large as
compared to τB, and thus incomplete spin relaxation can
occur at comparatively weak and physically meaningful
field strengths. For example, from the Bethe ansatz [2]
we have

Wspinon = 2

∫ ∞
0

dx

x

J1(x)

cosh(Ux/4)
→ π

2
JH for U →∞

(2)
for the spinon bandwidth Wspinon where J1(x) is the first
Bessel function. Hence, for strong Hubbard interaction,
Bc ≈ 2Wspinon = πJH.

Classical spin coupled to a Heisenberg model.

At half-filling and in the limit U →∞ the low-energy
physics of the Hubbard model is captured by an antifer-
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FIG. 2: Local susceptibility at the edge of an open Heisen-
berg chain (JH = 1).

romagnetic Heisenberg model,

Hs =
∑
i

(JHsisi+1 + J ′Hsisi+2) , (3)

where up to order O(T 2/U) the nearest-neighbor and the
next-nearest-neighbor couplings [3] are JH = 4T 2/U and
J ′H = 0, and up to order O(T 4/U3),

JH =
4T 2

U
− 16T 4

U3
, J ′H =

4T 4

U3
. (4)

Analytically, by perturbation theory in x = 4tT 2/U =
tJH, one verifies the linear short-time behavior

χloc(t) = Θ(t) t
2

3
(JH〈si0si0+1〉+ J ′H〈si0si0+2〉) +O(x2) ,

(5)
valid to leading order for both, the Hubbard and the
effective Heisenberg model. However, as can be seen in
Fig. 2 of the main text, the Heisenberg dynamics also
applies to intermediate times; the effective model with
coupling constants (4) almost perfectly reproduces the
results of the Hubbard model for U ≥ 8.

Here, we treat the Heisenberg model with n.n. cou-
pling as an independent system. Fig. 2 shows the cor-
responding local spin susceptibility for JH = 1 as ob-
tained by t-DMRG calculations with L = 400 Heisen-
berg spins. Since JH is the only energy scale, we have
χloc(t) = F (t JH) for arbitrary JH where F (x) is a func-
tion independent of JH. This implies that the dominant
(negative) peak of χloc(t) shifts to later and later times
as JH decreases.

Fig. 3 displays the spin dynamics resulting from the
full model

H = Hs +Hs−spin = Hs + Jsi0S −BS , (6)

as obtained by the linear-response approach. One clearly
notes that for J . Jc ∼ 0.5 (corresponding to Uc ∼ 8)
the time dependence of Sz develops a prethermalization-
like plateau on an intermediate time scale t ∼ 100 (in
units of 1/JH).
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FIG. 3: Classical spin dynamics for J = 1 and different JH.

For the Heisenberg model, using the scaling property
of χloc(t), it is easily possible to perform calculations up
to t = 1000. On this longer time scale, it is clearly vis-
ible (see Fig. 3) that Sz does not approach a constant
value asymptotically. For JH = 0.4 and JH = 0.2 the z-
component of S(t) is even found to decrease and appears
to approach the trivial solution Sz(t) ≡ 0.

However, it is straightforwardly seen that a “stationary
state” of the form

S(t) = Sz ẑ + S⊥ cos(ωt+ ϕ)x̂+ S⊥ sin(ωt+ ϕ)ŷ (7)

with arbitrary parameters S⊥, ω, ϕ and with constant
(time-independent) Sz does not solve the integro-
differential equation (5) of the main text for t → ∞.
There is one exception only, namely the trivial case where
χloc(t) ≡ 0 which can be realized, up to arbitrarily long
times, in the limit JH → 0.

For small but finite JH > 0, we therefore expect that
the classical spin develops a dynamics on an extremely
long time scale t� 103, the onset of which is already seen
in Fig. 3, which finally terminates in the fully relaxed
state with S(t)→ S0 ↑↑ B.

It is in fact easy to see from the integro-differential
equation that, if there is spin relaxation to a time-
independent constant, S(t)→ S0 for t→∞, the relaxed
state has S0 = 0.5ẑ. This implies that if there is com-
plete relaxation at all, the spin relaxes to the equilibrium
direction.

Oscillations at short times.

As can be seen in Fig. 3 for weak JH, the z-component
of the spin develops oscillations at short times, which can
also be seen for the case of the Hubbard model (cf. Fig. 2
of the main text). These oscillations can be understood
in the following way: Inserting the expression (5) with
J ′H = 0 for the behavior of χloc(t) at short times into Eq.



3

(5) of the main text,

Ṡ(t) = S(t)×B − 2

3
J2JH〈si0si0+1〉S(t)

×
∫ t

0

dt′(t− t′)S(t′) +O(t3J4) , (8)

and approximating S(t) by the J = 0 result S0(t) =
S(cosωt, sinωt, 0) (with B = Bẑ, ω = B, S = 1/2) in
the second term on the right-hand side, a straightforward
calculations yields:

Sz(t) =
2

3
J2JH〈si0si0+1〉S2 ωt sinωt+ 2 cosωt− 2

ω3

+ O(t4J2J2
H) . (9)

This is found to perfectly describe the short-time oscil-
lations for weak JH in Fig. 3 and for strong U in Fig. 2
in the main text. For longer times the oscillations are
damped and eventually die out.
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Abstract – Spin dynamics in the Kondo impurity model, initiated by suddenly switching the
direction of a local magnetic field, is studied by means of the time-dependent density-matrix
renormalization group. Quantum effects are identified by systematic computations for different
spin quantum numbers S and by comparing with tight-binding spin-dynamics theory for the
classical-spin Kondo model. We demonstrate that, besides the conventional precessional motion
and relaxation, the quantum-spin dynamics shows nutation, similar to a spinning top. Opposed to
semiclassical theory, however, the nutation is efficiently damped on an extremely short time scale.
The effect is explained in the large-S limit as quantum dephasing of the eigenmodes in an emergent
two-spin model that is weakly entangled with the bulk of the system. We argue that, apart from
the Kondo effect, the damping of nutational motion is essentially the only characteristics of the
quantum nature of the spin. Qualitative agreement between quantum and semiclassical spin
dynamics is found down to S = 1/2.

Copyright c© EPLA, 2016

Introduction. – The paradigmatic system to study
the real-time dynamics of a spin-(1/2) coupled to a Fermi
sea is the Kondo model [1]. It is mainly considered as
a generic model for the famous Kondo effect [2], namely
screening of the impurity spin by a mesoscopically large
number of electrons in a thermal state with temperature
below the Kondo temperature TK ∼ exp(−1/Jρ), where J
is the strength of the exchange coupling and ρ is the den-
sity of states. The Kondo effect is a true quantum effect
which originates from the two-fold spin degeneracy and is
protected by time-reversal symmetry. Longitudinal spin
dynamics, such as the time-dependent Kondo screening,
has been studied recently [3,4] by starting from an initial
state with a fully polarized spin, which can be prepared
with the help of local magnetic field. The longitudinal
dynamics is initiated by suddenly switching off the field.

Transversal spin dynamics, on the other hand, ap-
pears as a more classical phenomenon: It can be in-
duced, for example, by suddenly tilting a strong field
B � TK from, say, the x̂- to the ẑ-direction. In first place
this induces a precession of the spin around the new field
direction with Larmor frequency ωL ∝ B. For J = 0, the
equation of motion for the expectation value of the spin,
(d/dt)〈S〉t = 〈S〉t × B with B = Bẑ has the same form

as the Landau-Lifschitz equation for a classical spin [5].
When coupling the spin to the Fermi sea with a finite
J , energy can be transferred to the electronic system and
dissipated into the bulk. Hence, the spin must relax and
align to the new field direction as is nicely seen in numeri-
cal studies of the Kondo model out of equilibrium [6]. For
B � TK the spin precession and relaxation is qualitatively
well described by semiclassical tight-binding spin dynam-
ics (TB-SD) (cf., e.g. ref. [7]) where the spin is assumed to
be a classical dynamical observable. In many cases, even
the simple Landau-Lifschitz-Gilbert (LLG) equation [8,9]
including a non-conserving damping term, proportional to
the first time derivative of the spin, seems to capture the
essential (classical) physics.

A major purpose of the present study is to check if there
are quantum effects which are overlooked by the semiclas-
sical approach to transversal spin dynamics (i.e., apart
from the Kondo effect). To this end we compare numerical
results from exact quantum-classical hybrid theory [10,11],
i.e., the TB-SD [7,12], with those of exact quantum theory,
computed with time-dependent density-matrix renormal-
ization group (t-DMRG) [13,14], for different spin quan-
tum numbers S. It turns out that even for S = 1/2 there
is a surprisingly good qualitative agreement of quantum
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with semiclassical dynamics. However, we also identify a
physical phenomenon, namely nutational motion, where
remarkable differences are found:

Classical and quantum nutation. – Besides preces-
sion and damping, inertia effects are well known in clas-
sical spin dynamics [15,16] and can be described by an
additional term to the LLG equation with second-order
time derivative of the spin. The resulting nutation of the
spin motion has been introduced and studied phenomeno-
logically [17,18] or with realistic parameters taken from
first-principles calculations [19] but can also be derived on
a microscopic level [20–22] within the general framework
of semiclassical spin dynamics [23–25].

In case of a quantum spin, inertia effects have not yet
been studied. As compared to spin precession and damp-
ing, nutation is a higher-order effect [21], so that it is
not a priori clear whether or not spin nutation is sup-
pressed by quantum fluctuations. Here, by applying the
t-DMRG to the spin-S Kondo impurity model in a mag-
netic field, we are able to show for the first time that
nutation also shows up in the full quantum spin dynam-
ics. Remarkably, however, quantum nutation turns out to
be strongly damped and shows up on a much shorter time
scale as compared to the relaxation time. On a fundamen-
tal level, this pinpoints an unconventional new quantum
effect in transversal spin dynamics but is also relevant
for experimental studies suggesting, e.g., inertia-driven
spin switching [26,27] opposed to standard precessional
switching [28,29].

Model. – Using standard notations, the Hamiltonian
of the Kondo impurity model reads

H = −T

n.n.∑

i<j

∑

σ=↑,↓
(c†

iσcjσ + H.c.) + Jsi0S − BS. (1)

Here, ciσ is the annihilator of an electron with spin projec-
tion σ =↑, ↓ at site i = 1, . . . , L of an open one-dimensional
chain of length L. The hopping T = 1 between nearest-
neighboring (n.n.) sites defines the energy and the time
scale (h̄ ≡ 1). We assume a half-filled band with N = L
conduction electrons. The impurity spin S is coupled an-
tiferromagnetically with exchange coupling constant J to
the local spin si0 of the itinerant conduction-electron sys-
tem at the first site of the chain, i0 = 1. With the vector
of Pauli matrices τ , we have si =

∑
σσ′ c†

iστσσ′ciσ′/2.
S is a quantum spin characterized by quantum num-

ber S = 1
2 , 1, 3

2 , . . ., and for S > 1/2, eq. (1) is the un-
derscreened Kondo model. Alternatively, S is considered
as a classical spin with fixed length |S| = Scl., where
Scl. =

√
S(S + 1) for a meaningful comparison with re-

sults for a quantum spin.

Real-time dynamics. – To initiate spin dynamics we
consider a local magnetic field B which, at time t = 0,
is suddenly switched from B = Binix̂, forcing the spin to
point in the x̂-direction, to B = Bfinẑ. This addresses,

e.g., spin-resolved scanning-tunneling microscope experi-
ments [30–34]. We choose Bini = ∞ to initially fully polar-
ize the impurity spin. Note that the conduction-electron
spin si0 in the initial state is also polarized, but typi-
cally much weaker, depending on the internal Weiss field
Beff ≡ JS produced by the exchange interaction and the
impurity spin. The dynamics is (predominantly) transver-
sal if Bfin � TK which ensures that the Kondo singlet
remains broken and that there are no (significant) longi-
tudinal spin fluctuations.

For t → ∞ we expect complete relaxation. This is
achieved if the classical spin S(t) or, in the quantum case,
S(t) ≡ 〈S〉t = 〈Ψ(t)|S|Ψ(t)〉 fully aligns with the ẑ-axis.
Likewise the expectation value si0(t) ≡ 〈si0〉t of the local
conduction-electron spin at i0 is expected to orient itself
antiparallel to S(t) for t → ∞.

Time-dependent DMRG. – To study the (quantum)
time-evolution of S(t) and si0(t) after the sudden switch
of the field, we employ the time-dependent density-matrix
renormalization-group technique (t-DMRG) in the frame-
work of matrix-product states and operators [13]. The
implementation of a quantum spin with arbitrary S is
straightforward. For an impurity model with the spin
attached to the first site of the chain, the numerical ef-
fort is essentially independent of S as only the dimen-
sion of the local Hilbert space at i0 scales with 2S + 1.
Due to the global U(1) × U(1) symmetry of H , the to-
tal particle number and the z-component of the total spin
are conserved. For a sudden field switch from the x̂- to
the ẑ-direction, however, only particle-number conserva-
tion can be exploited in the t-DMRG calculation. As
compared to a purely longitudinal dynamics, this implies
an increased computational effort. The time evolution of
matrix-product states is computed using the two-site ver-
sion of the algorithm as suggested in refs. [14,35] which
is based on the time-dependent variational principle. The
maximum bond dimension reached during the propagation
is about 2000.

Quantum-spin dynamics. – We start the discussion
with the t-DMRG results, see the red lines in fig. 1. The
calculations have been performed for a chain with L = 80
sites. For a quantum spin S = 1/2 (fig. 1, top panel), and
for J = 1 and Bfin = 2, the dynamics is sufficiently fast,
i.e., the main physical effects take place on a time scale
shorter than the time where finite-size artifacts show up.
In the bulk of the non-interacting conduction-electron
system, wave packets typically propagate with group
velocity vF = dε(k)/dk = ±2T at the Fermi wave vectors
k = kF = ±π/2 for half filling. This roughly determines
the maximum speed of the excitations and defines a
“light cone” [36,37]. Hence, a local perturbation at i0 = 1
starts to show artificial interference with its reflection
from the opposite boundary at i = L after a time of
about tinter = 2L/vg = L/T , i.e., after about 80 inverse
hoppings – which is well beyond the time scale covered
by fig. 1.
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Fig. 1: (Colour online) Top panel, upper part: dynamics of
S(t)/Smax for the Kondo impurity model, eq. (1), for J = 1
and B = Bfinẑ with Bfin = 2. Only x and z compo-
nents are shown. At t = 0, the system is prepared with
S(0)/|S(0)| = x̂. Time units are fixed by the inverse hopping
1/T ≡ 1. Red lines: t-DMRG calculations for a quantum spin,
S(t) ≡ 〈Ψ(t)|S|Ψ(t)〉, and S = 1/2 (Smax = S). Blue lines:
semiclassical dynamics (TB-SD) with a classical spin S(t) of
length Scl. =

√
S(S + 1) =

√
3/2 (Smax = Scl.). Top panel,

lower part: local conduction-electron moment si0(t) ≡ 〈si0〉t.
Middle panel: the same for S = 5. Bottom panel: z-
components of S(t) and si0(t) for S = 50.

The most obvious effect in the time dependence of S(t)
(see upper part of the top panel) is the precessional motion
around the ẑ-axis: Sx(t) (and likewise of Sy(t) which is not
shown in the figure) oscillate with Larmor frequency ωL ≈
Bfin. Note that |S(t)| = |〈Ψ(t)|S|Ψ(t)〉| is nearly constant,
i.e., there are no substantial longitudinal fluctuations or
Kondo screening.

In addition to the spin precession, there is damping:
The spin relaxes to its new equilibrium direction ∝ ẑ
on the relaxation time scale τrel ≈ 50. Despite the fact
that the total energy and the z-component of the total
spin are conserved (as is also checked numerically), this
is the expected result: At t = 0 the system is locally in
an excited state; for large t, spin relaxation is achieved by
dissipation of energy into the bulk of the chain. The dy-
namics does not stop until the excitation energy ∼ SBfin is
fully dissipated into the bulk, and the system is —locally,
close to i0— in its ground state.

Conduction-electron dynamics. – In the ground
state of the system at time t = 0, the local
conduction-electron spin at i0 is partially polarized in the

−x̂-direction, i.e., antiparallel to S(t = 0) due to the in-
ternal magnetic field JS(0) (see top panel of fig. 1, lower
part). For t > 0 we find that si0(t) follows the dynamics
of the impurity spin S(t) almost adiabatically, i.e., at a
given instant of time t it is slightly behind the (instan-
taneous) ground-state expectation value 〈si0 〉g.s. ↑↓ S(t)
for the conduction-electron system with a “given” Weiss
field JS(t). This slight retardation effect is clearly visi-
ble in fig. 1 (compare the location of the first minimum of
Sx(t) with the first maximum of si0x(t), for instance). In
the semiclassical picture retardation has been identified to
drive the relaxation of S(t) [7].

Quantum nutation. – In addition to the expected
precessional motion and relaxation of si0(t), there is a
weak additional superimposed oscillation visible in si0z(t).
For S = 1/2 the frequency is close to the precession fre-
quency. However, the results for higher spin quantum
numbers (see lower part of the middle panel, S = 5) show
that these oscillations have a characteristic frequency ωN
and hence a physical cause which may require but is inde-
pendent of the precessional motion.

The z-component of the impurity spin actually shows
oscillations with the same frequency and almost the same
amplitude (which can hardly be seen in the first two panels
of fig. 1 due to the rescaling of S(t) by Smax) but becomes
obvious in the bottom panel (no rescaling, S = 50). By
comparing with the semiclassical spin dynamics, we will
argue that this is in fact nutation of the quantum spin.

Tight-binding spin dynamics. – Most (but not
all) features of the transversal quantum dynamics are
qualitatively captured by the numerically much cheaper
“tight-binding spin dynamics” (TB-SD) [7,12], i.e.,
quantum-classical hybrid or Ehrenfest dynamics. TB-SD
originates from the Hamiltonian eq. (1) by treating the im-
purity spin S(t) as a classical dynamical observable which
couples to the (quantum) system of conduction electrons.
Its equation of motion is derived from the canonical equa-
tion Ṡ = {S, 〈H〉t} (see refs. [7,10] for the Poisson bracket
of spin systems), which has the form of a Landau-Lifschitz
equation,

Ṡ(t) = S(t) × B − JS(t) × si0(t). (2)

To also get si0 (t) = 1
2 tr2×2ρi0i0(t)τ , it must be comple-

mented, however, by a von Neumann equation, i d
dtρ(t) =

[T (t), ρ(t)], for the reduced one-particle density matrix
ρ(t) of the electron system whose elements are defined
as ρii′,σσ′ (t) ≡ 〈c†

i′σ′ciσ〉t. Here, the elements of the ef-
fective hopping matrix are Tii′,σσ′(t) = −Tδ〈ii′〉δσσ′ +
δii0δi′i0

J
2 (S(t)τ )σσ′ . The numerical solution using a high-

order Runge-Kutta method is straightforward [38].

Results of the semiclassical approach. – TB-SD
results are shown by light blue lines in fig. 1. To make
contact with the t-DMRG data, we again consider L = 80
sites although much larger systems could be treated
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numerically (see, for instance, ref. [7]). Overall, the semi-
classical theory produces qualitatively very similar results
as compared to the quantum dynamics. This concerns
the precessional motion, the relaxation time scale and also
the occurrence of nutation and the nutation frequency and
amplitude.

However, we can identify basically three quantum effects
which are different or even absent in the TB-SD:

i) Initially the local conduction-electron spin at i0 is less
polarized in the quantum case, and this has some
quantitative consequences for the subsequent spin
dynamics. The reason is that with Scl. =

√
S(S + 1)

the classical Weiss field is stronger: JScl = J
√

3/2 >
J/2 = JS.

ii) Opposed to the classical-spin case, which exclusively
comprises transversal dynamics, we find |S(t)| �=
const in the quantum case, i.e., there are residual
longitudinal fluctuations (see top panel, upper part).
Due to the suppression of the Kondo effect by the
magnetic field, these are moderate, such that the
deviations from the TB-SD are small. One should
note, however, that nevertheless (weak) longitudi-
nal fluctuations are essential for true quantum-spin
dynamics: Assuming the complete absence of longi-
tudinal fluctuations, we would have 〈S〉t = S n̂(t)
with some unit vector n̂(t). Aligning the momentary
quantization axis to n̂(t), the quantum state at time
t is a product state with zero impurity-bath entan-
glement. For the impurity-spin equation of motion,
d〈S〉t/dt = 〈S〉t × B − J〈S × si0〉t, this implies the
factorization 〈S × si0〉t = S(t) × si0(t), resulting in
eq. (2). With the analogous factorization in the equa-
tions of motion for the conduction-electron degrees of
freedom, this implies classical spin behavior. Hence,
longitudinal fluctuations produce entanglement and
quantum effects.

iii) The nutational motion is strongly damped in the
quantum-spin case. Oscillations of Sz(t) and of si0z(t)
with frequency ωN decay on a finite time scale τN
while there is no visible damping of the nutation for
a classical spin on the scale displayed in fig. 1. This
is most obvious for S = 50 (bottom panel), but also
for S = 5 (middle panel, lower part).

S dependence. – For large spin quantum numbers,
one expects that the quantum-spin dynamics becomes
equivalent with that of a classical spin of length Scl. =√

S(S + 1) [39–43]. Indeed, the agreement constantly im-
proves with increasing S, see fig. 1. The common trends
found with increasing S are the following:

i) There is a stronger and stronger initial polarization of
the local conduction-electron spin at i0 due to the in-
creasing magnitude of the Weiss field Beff ≡ JS cou-
pling to si0 . For S = 5 it is more than 80% polarized.

Fig. 2: (Colour online) Angle γ(t) between S(t) and si0(t) in
the spin dynamics after the sudden switch of the field from the
x̂- to the ẑ-direction. TB-SD results for J = 1, Bfin = 0.1
and different Scl. =

√
S(S + 1) as indicated. Inset: schematic

illustration of the nutational motion, see text.

ii) The relaxation time τrel increases with increasing S.
For S = 5 (see fig. 1, middle panel) Sz(t) has reached
only 50% of its final saturation value, and for S = 50
(bottom panel) there is hardly any damping visible
on the time scale accessible to the t-DMRG compu-
tations. Within weak-J perturbation theory and as-
suming that the spin dynamics is slow as compared
to the electronic time scales, we expect τrel ∝ S in the
large-S limit, as is detailed in ref. [44]. However, for
both the semiclassical and the quantum theory, we
find τrel ∝ S2 from the data. This is at variance with
LLG theory and can be traced back to the breakdown
of the Markov approximation (see ref. [44]).

iii) For the nutation frequency we find ωN ∝ S in the
large-S limit (see also the discussion below). The am-
plitude of the nutation vanishes for S → ∞ in both,
the quantum- and the classical-spin case. In this way
quantum- and classical-spin dynamics become equiv-
alent in the large-S limit despite the absence of damp-
ing of the nutational motion in the classical case.

iv) We finally note that |S(t)|/Smax becomes constant in
the quantum case as S → ∞.

Microscopic cause of nutation. – The nutational
motion can be understood easily within the semiclassical
approach (except for damping): Recall that the impurity
spin precession with frequency ωL ≈ Bfin is mainly caused
by the torque due to the magnetic field and note that the
second term on the right-hand side of eq. (2) is small if
si0(t) and S(t) are nearly collinear. In fact, in the instan-
taneous ground state at time t, the conduction-electron
local moment si0(t) would be perfectly aligned antiparal-
lel to S(t) due to the antiferromagnetic exchange coupling
J such that si0 (t) exhibits a precessional motion with the
same frequency ωL ≈ Bfin. Figure 2 demonstrates that the
stronger the effective field JS, the smaller is the deviation
of the angle γ(t) between S(t) and si0(t) from γ = π.
Generally, however, γ(t) < π (for all t) since, due to the
damping, it takes a finite time for si0(t) to react to the
new position of S(t) (see the inset of fig. 2). Note that for
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Fig. 3: (Colour online) Nutation frequency ωN as a function of
S for J = 1 (left) and as a function of J for S = 20 (right).
Dynamics initiated by a switch of the field from the x̂- to the
ẑ-direction with Bfin = 0.1. Results for different Scl. or S,
respectively, as obtained by TB-SD (crosses) and t-DMRG
(circles) in comparison with the classical two-spin model
(filled dots).

very large S only the time average γ(t) is smaller than π
(for instance, see S ≥ 20 in fig. 2). This retardation effect
results in a finite (average) torque JS(t)×si0(t) acting on
si0(t), as can be seen from its equation of motion:

d
dt

si0(t) = JS(t) × si0(t) + T Im
∑

σσ′
〈c†

i0στσσ′ci0+1σ′〉t.

(3)
The second term on the right-hand side is important for
energy and spin dissipation into the bulk of the system
and causes the usual damping of the precession of si0(t)
(and of S(t)) around B. The first term, however, leads to
nutational motion.

This is most easily understood if there is a separation
of time scales, i.e., if the nutation frequency ωN is large
compared to the Larmor frequency ωL ≈ Bfin. In this
limit, eq. (3) implies that si0(t) precesses with frequency
ωN ≈ JScl. approximately around the momentary direc-
tion of S(t) (which itself slowly precesses around the field
direction). Actually, however, due to the retardation, si0

precesses around an axis which is slightly tilted as com-
pared to the momentary direction of S(t). This is nicely
demonstrated by the oscillations of γ(t) with time-average
γ(t) < π as displayed in fig. 2. Furthermore, the equations
of motion, eq. (2) and eq. (3), with the second term disre-
garded, imply that Sz(t) + si0z(t) = const and, therefore,
the impurity spin shows the same nutational motion, but
with opposite amplitude.

In the middle panel of fig. 1 we in fact observe a fast
oscillation of si0(t) with a frequency almost perfectly given
by JScl. (with J = 1 and S = 5). Note that the nutation of
S(t) is hardly visible due to the rescaling with Smax .. The
third panel for S = 50 nicely demonstrates the nutational
motion of both, si0(t) and S(t), with opposite amplitudes
and common frequency ωN � ωL.

Figure 3 displays the results of systematic TB-SD cal-
culations which demonstrate the linear dependence of ωN

on J and S for large JS. These calculations have been

performed for a much weaker field Bfin = 0.1 resulting
in a much slower precession of S(t) around B. Note the
nearly perfect agreement between classical- and quantum-
spin calculations also for smaller JS where there is a sig-
nificant deviation from a linear behavior.

The mechanism described above also explains that the
amplitudes of the nutational oscillations vanish in the limit
S → ∞: An increasing internal Weiss field JS more and
more aligns si0(t) to S(t), i.e., γ(t) → π. Consequently,
the torque JS(t) × si0(t) acting on si0(t) vanishes in the
large-S limit.

Two-spin model. – Figure 3 additionally presents the
results for ωN as obtained by a semiclassical two-spin
model:

H2-spin = JsS − BS. (4)

This model disregards the coupling of the site i0 to the
bulk of the conduction-electron system and thus cannot
describe the damping of the precessional motion. Due
to the absence of damping, the time-averaged angle is
γ(t) = π.

From the numerical solution of eq. (4) we also learn that
it does not predict any damping of the nutational motion.
The nutational oscillations themselves, however, are qual-
itatively captured by H2-spin and, in fact, the whole line
of reasoning explaining the inertia effect also applies to
this model. The nutation frequencies as computed from
H2-spin fit the TB-SD and t-DMRG results rather well for
strong effective fields Beff ≡ JS � T = 1; stronger devia-
tions are found for JS → 2 (see fig. 3). For JS < 2, there
are clear nutational oscillations in the spin dynamics of
the full model (1), as is seen in the top panel of fig. 1, but
ωN cannot be defined accurately.

Bound states. – Beff, cr = 2 is actually the criti-
cal value of the local effective field Beff ≡ JS which
couples to the local conduction-electron spin at i0. For
Beff > Beff, cr there are two one-particle eigenenergies of
the Hamiltonian (1) corresponding to bound states which
symmetrically split off the continuum at the lower and at
the upper band edge, respectively. Note that Beff, cr van-
ishes for a site i0 in the bulk of an infinite chain as is well
known for one-dimensional systems. Contrary, at the edge
(i0 = 1) there is a finite critical field, as is reminiscent of
the physics in higher dimensions.

The sudden switch of the field excites the system lo-
cally at i0. Consequently, if JS > Beff, cr, the subsequent
dynamics is predominantly local since the excitation is
mainly carried by a state whose amplitude is exponen-
tially suppressed with increasing distance from i0. The
dynamics should be understood in this case as a weak per-
turbation of the dynamics of the two-spin model eq. (4).

That this also applies to the quantum-spin case is
demonstrated with fig. 4 which shows the entanglement
entropy Si0 of the subsystem consisting of the quan-
tum impurity spin and the conduction-electron site i0.
In the ground state at t = 0, the entropy decreases with
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Fig. 4: (Colour online) Entanglement entropy of the two-spin
subsystem (impurity spin and site i0 = 1, see dashed ellipse
inset) in the environment (i = 2, . . . , L) as a function of S for
J = 1 and at different times t = 0 and t = 20. t-DMRG results
for Bfin = 2 and L = 50.

increasing effective field JS. For JS = 50 it nearly van-
ishes which implies that ground-state expectation values
of local observables at i0 are almost perfectly described
with the (quantum version of the) two-spin model eq. (4).
With increasing time t, the entropy generally increases,
while for strong effective fields JS is stays close to zero,
i.e., the two-spin model also well captures the dynamics
of local observables in this case.

Damping of quantum nutation. – To explain the
efficient damping of the nutational motion on a very short
time scale τN in the quantum-spin case, we first consider
the quantum variant of the two-spin model eq. (4), i.e.,
both, S and s, are considered as quantum spins with
spin quantum numbers S and 1/2, respectively. The time-
dependent expectation value Sz(t) after the sudden switch
of the field is readily computed and shows oscillations with
frequency ωN. Already in the two-spin model those are
damped on a time scale τN which agrees with that seen in
the results of the full model in fig. 1 for S ≥ 5. Writing
Sz(t) = 〈Sz〉t =

∑
m,n cm,n exp(i(Em − En))t with energy

eigenstates m and n of H2-spin and coefficients cm,n de-
pending on the preparation of the initial state, it becomes
obvious that this damping results from the dephasing of
oscillations with the excitation energies Em − En of the
system.

Due to the small Hilbert-space dimension of the two-
spin model, however, there are strong revivals of the oscil-
lations occurring at finite revival times. In fact, for S = 5,
the first revival of nutational oscillations of si0z(t) can be
seen in the t-DMRG result around t = 20 (fig. 1, middle
panel, lower part). With increasing S and thus with in-
creasing Hilbert space, however, the revival times quickly
exceed the time scale accessible to t-DMRG in the full
model. Furthermore, as the example for S = 5 in fig. 1
shows, the revivals themselves are strongly damped in the
full theory, opposed to the nearly perfect revivals in the
two-spin-model dynamics. As this (secondary) damping
of nutation is caused by the residual effective coupling of
the two-spin model to the bulk of the system, it becomes

less and less efficient with increasing S, while at the same
time the revival time strongly increases and the amplitude
of the oscillations decreases.

Conclusions. – Inertia effects in spin dynamics have
been discussed intensively in the recent years, mainly in
the context of applications for magnetic devices [15–27].
The most fundamental system which covers the essentials
of spin dynamics, however, namely a single spin coupled
to a Fermi sea has not yet been addressed in this respect.
Applying exact quantum and semiclassical numerical tech-
niques to the Kondo impurity model, we could demon-
strate that the real-time dynamics, initiated by switching
the direction of a magnetic field coupled to the spin, not
only exhibits spin precession and spin relaxation but also
nutational motion known from a gyroscope. The effect
not only shows up in the impurity-spin dynamics but also
in the dynamics of the conduction-electron local magnetic
moments. It is very robust and found in a large regime
of coupling constants using tight-binding spin dynamics
and treating the spin as a classical observable. We find
that nutation amplitudes are small as compared to am-
plitudes in precessional motion. The frequency is, in the
strong-coupling limit, linear in J and Scl..

Our study has demonstrated that nutational motion
is not restricted to classical-spin systems but is robust
against quantum fluctuations. Despite the fundamental
differences between semiclassical and quantum dynam-
ics, quantum-spin nutation is found to be very similar to
the classical-spin case in many respects. There is a qual-
itative, and with increasing spin-quantum numbers also
quantitative agreement between quantum and semiclassi-
cal dynamics. Kondo screening of the impurity spin rep-
resents an important exception which, however, in the
present study plays a minor role only as Kondo-singlet
formation is inhibited by the external field.

The main effect of the quantum nature of the spin is
a very efficient damping of the nutational motion on a
very short (femtosecond) time scale which is basically in-
dependent of the relaxation time scale for the precessional
motion. In the strong-coupling (JS → ∞) limit, the spin
dynamics is essentially local and captured by an emergent
two-spin model which has served to understand the physi-
cal origin of the damping of quantum nutation, namely de-
phasing of local spin excitations with revivals suppressed
by the coupling to the bulk of the system.

An important implication of our study is that di-
rect observation of nutational motion, e.g., of magnetic
nanoparticles with a (quantum) macrospin S coupled to
the conduction-electron band of a nonmagnetic metallic
surface, requires a sub-picosecond time resolution. On the
other hand, inertia-driven spin switching in antiferromag-
nets [26,27] has already been demonstrated successfully.
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[43] Sayad M., Gütersloh D. and Potthoff M., Euro.

Phys. J. B, 85 (2012) 125.
[44] See Supplemental Material at URL http://arxiv.

org/abs/1609.05526.

17001-p7





6. Pump-probe spectra

6.1. Introduction

Auger electron spectroscopy has recently received a further surge of attention with the advent of at-
tosecond physics, allowing experimentalists to steer and control electron dynamics on a very short
time scale by varying pump-probe delay times and and pulse intensities. The pioneering experi-
ments [ Drescher et al. 2002; Cavalieri et al. 2007] and theoretical studies [ Smirnova, Yakovlev,
and Scrinzi 2003; Kazansky, Sazhina, and Kabachnik 2009] have been so far performed for atoms in
the gas phase, but upcoming experiments for condensed-matter systems are anticipated. Hence, the
present work attempts to make some first predictions of what to expect of a pump-probe spectrum
for strongly correlated solids and what kind of setups may be of interest.

The Hubbard system is excited by a laser pump pulse of strength E0 and colour Ω, described by a
harmonic cosine term which is damped by a Gaussian envelope of width σt:

E (t) = E0 cos
[
Ω (t− t0)

]
exp

[
− 1

2

(
t− t0
σt

)2 ]
. (6.1)

The corresponding vector potential is given by the integral

A (t) = −
∫ t

−∞
dt′ E (t′) , (6.2)

which can be expressed in terms of the complex error function. The latter can be calculated nu-
merically in an efficient manner using the Faddeeva package [ Johnson 2013]. The vector potential
enters the Hubbard system via the Peierls substitution (see chapter 2.1.5).

After a certain delay time∆t, the system is hit by a probe pulse of the same general shape, but with a
high frequency inducing the transition a†σ (ϵ) fiσ which removes an electron from a deep-lying core
state. Following this, the Auger process is free to happen and the number of Auger electrons in a
given range of the kinetic energy is measured.

6.2. Computational details

The computational setup for the pump-probe spectra is somewhat elaborate and requires some ex-
planation. It is in fact most convenient to use formula (2.59), even though it is nonperturbative. In
order to maintain continuity with the previous results for the two-hole spectral function based on
perturbation theory, the Coulomb matrix element is simply set to a value much smaller than any
other energy scale of the system, UA = 0.001. The system is then propagated through the pump
pulse using the CFET technique combined with a Lanczos propagator in order to calculate the ma-
trix exponentials (see chapter 3.4).
The scattering continuum is coupled as a semi-infinite chain which is cut at the far end (see appendix
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C). One has to take care that the wavepacket of the Auger electron which moves through the chain
does not hit this cutoff (which would lead to unphysical results), i.e. the chain must be long enough
so that the occupancy number at the last site remains negligibly small.
Finally, the integral in eq. (2.59) has to be taken care of. This can be done efficiently by realizing
that for a very high frequency of the probe1, its fast oscillations cannot be felt by the much slower
system (this is similar to the rotating wave approximation common to optics), so that only the enve-
lope s2 (t) remains. Since this is a Gaussian, it is positive definite and can be regarded as a weight
function for the integral. Hence, it is possible to create adapted Gaussian integration weights for it
using the Golub-Welsch algorithm [ Golub and Welsch 1969]. It turns out that it is quite sufficient
to work with only three integration points. This is of great help, as each point necessitates a time
propagation.

6.3. Pump-probe spectra

At first one needs to make a choice about the pump parameters. In the following calculations, σt = 1
is always kept. Furthermore, we shall always work at half filling, where one has the largest phase
space for the increase of the double occupancy dtot. Fig. 6.1(a) shows the value of dtot which settles
in after a pump with various E0 and Ω. Since it becomes nearly constant after the pulse is over, the
values are averaged over the remaining time interval.
In order to excite electrons across the charge gap, the frequency must be at least as large as the gap
itself, which for U = 6 is found to be ∆ = 1.446 from the Bethe ansatz. For transitions from the
barycentre of the lower Hubbard band to the barycentre of the upper Hubbard band, it should be
around W/2 +W/2 + ∆ ≈ 5.4. Indeed, one finds that the largest value of the double occupancy
is achieved with Ω ≈ 4, which is the right order of magnitude. The optimal field strength turns out
to be E0 ≈ 8. Note that too small a frequency is not well defined due to the finite duration of the
pump pulse which cuts off the oscillations prematurely. Furthermore, the double occupancy shows
higher fluctuations in this case.

With the naive pump-probe setup described above, a problem comes up immediately: While the
pump pulse will put energy into the system, allowing electrons to bridge the Hubbard gap, thereby
increasing the double occupancy, due to the high stability of doublons, the double occupancy will
not not relax on a short to intermediate time scale (as we have seen in chapter 5.1.2). This means
that the resulting spectrumwill be dependent on the parameters of the pump pulse, but there will be
no dependence on the pump-probe delay∆t in this range and thus no additional time resolution. To
demonstrate this, a series of pump-probe spectra is shown in fig. 6.1(b) and the double occupancy
as a function of time is displayed in the inset of fig. 6.1(a).

This means that the pure Hubbard-like physics does not really lend itself to pump-probe Auger
experiments and one has to make the setup more sophisticated. For example, the pump could be
made rather slow, allowing the double occupancy to vary over a prolonged time interval, so that
the probe hits the system while the pump is still active. Another idea is to reverse the order of the
pump and probe. This is possible since the core hole has a finite lifetime, so that the final states it
decays into can be modified at the beginning or at the end of it; and a dependence on the delay will
be achieved. Finally, one may seek out systems which go beyond the physics of the Hubbard model
and are described by an extended variant of it. Such a system will be presented in the next chapter.

1It must necessarily be high in order to be able to bridge the gap between the deep core state and a high-energy
scattering state
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Figure 6.1.: (a) Double occupancy after a pump pulse dtot, averaged between t = 7 and t = 20 as a
function of the electric field strength E0 for various frequencies Ω of the light field. ED
calculations for L = 12, U = 6, n = 1 with periodic boundary conditions. The left inset
shows the pump pulse, the right inset shows the double occupancy as a function of time,
both for E0 = 8.
(b) Pump-probe Auger spectra for the same system parameters as in (a) with E0 = 8 and
Ω = 4.

6.4. The dynamic Hubbard model

A plausible ansatz to achieve a relaxation of double occupancy is to couple the Hubbard system to
phonons or, in general, bosonic degrees of freedom. The simplest way to approach this is to treat
them classically. The Hamiltonian now has the following form:

H = Hel +Hlat +Hint, (6.3)

where the lattice part just consists out of classical harmonic oscillators at each site:

Hlat =
1

2m

∑
i

p2i +
mω2

0

2

∑
i

q2i . (6.4)

Each oscillator displacement is coupled to an operatorAi of the system, which will be specified later:

Hint = λ
∑
i

qiAi, (6.5)

where λ is the coupling strength. To derive the classical equation of motion, one has to assume that
the classical Hamilton function is given by the expectation value of the Hamiltonian:

Hclass =
⟨
H
⟩
. (6.6)

The Hamiltonian equations of motion read:
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q̇i =
∂Hclass

∂pi
=
pi
m
,

ṗi = −
∂Hclass

∂qi
= −

(
mω2

0qi + λ
⟨
Ai

⟩
t

)
.

(6.7)

Eliminating the momentum gives a closed equation of motion for the oscillator displacements:

mq̈i +mω2
0qi + λ

⟨
Ai

⟩
t
= 0. (6.8)

One can see that the expectation value
⟨
Ai

⟩
t
acts like a time-dependent force on the classical system.

At this point it is convenient to introduce a rescaled interaction k and coordinate ui:

k :=
λ√
mω2

0

,

ui :=
√
mω2

0 qi.

(6.9)

Thus the interaction term just becomes:

Hint = k
∑
i

uiAi. (6.10)

Note that if A is dimensionless, k and u have the dimension of
√
E. The transformed equation of

motion for ui becomes:

1

ω2
0

üi + ui + k
⟨
Ai

⟩
t
= 0. (6.11)

We assume that the system is in its ground state at t = t0, for which the subscript “g” shall be used:⟨
.
⟩
t=t0

=
⟨
.
⟩
g
. The equilibrium position of the oscillators u(0)i is then found by setting u̇(0)i = 0 and

one obtains:

u
(0)
i = −k

⟨
Ai

⟩
g
. (6.12)

This can be found numerically by a self-consistent computation, updating
⟨
Ai

⟩
g
after each ground-

state calculation until convergence is reached. Note that the equilibrium solution does not depend
on the oscillator frequency ω0, as it is in rest. The interaction term during the self-consistent loop
in fact shows similarity to a mean-field decoupled Hamiltonian:

Hint = −k2
∑
i

⟨
Ai

⟩
g
Ai. (6.13)

The full, time-dependent solution is found to be:

ui (t) = −k
⟨
Ai

⟩
g
cos (ω0 (t− t0)) + kω0

[ ∫ t

t0

dt′
[
cos (ω0t) sin (ω0t

′)− sin (ω0t) cos (ω0t
′)
]⟨
Ai

⟩
t′

]
,

(6.14)
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with the initial conditions ui (t0) = u
(0)
i and u̇i (t0) = 0. The total energy is conserved as long as

Hel ̸= Hel (t) and reads in the rescaled units:

Etot = Eel + Eint + Elat,kin + Elat,pot

=
⟨
Hel
⟩
+ k

∑
i

ui
⟨
Ai

⟩
+

1

2ω2
0

∑
i

u̇2i +
1

2

∑
i

u2i .
(6.15)

Numerically, after propagating the electronic system over a small time step δt, the oscillator dis-
placements in eq. (6.14) can be updated and ∂Etot/∂t ≈ 0 as well as üi/ω2

0 + ui + k
⟨
Ai

⟩
t
≈ 0 can

be taken as error estimates.

Several choices for Ai are possible:

• A coupling to the particle density,Ai = ni, defines the semiclassical Holsteinmodel [ Kalosakas,
Aubry, and Tsironis 1998].

• A coupling to the hopping term, Hint = k
∑

iσ (ui+1 − ui)
(
c†i+1,σciσ + h.c.

)
, defines the Su-

Schrieffer-Heeger model [ Su, Schrieffer, and Heeger 1979], which was originally introduced
to describe polyacetylene, but has seen a resurgence in the last years as a demonstrationmodel
for topological insulators (without interaction)2.

• A coupling to the double occupancy Ai = di = ni↑ni↓ defines a particular dynamic Hubbard
model [ Hirsch 2001; Werner and Eckstein 2016]. The motivation behind this ansatz is that
a doubly occupied orbital will spatially expand to reduce the Coulomb interaction between
the electrons, so that there is no particle-hole symmetry between empty and doubly occupied
sites any longer. The oscillators now cause an effective Coulomb interaction Ui,eff := U +kui.
This class of models owes its name to this very fact: The Hubbard interaction is not just a fixed
parameter anymore. This “dynamic” modification can be done in various ways, however —
for example by a coupling to auxiliary spins [ Bach, Hirsch, and Marsiglio 2010] or quantum
bosons [ Marsiglio, Teshima, and Hirsch 2003] rather than classical oscillators. Note also that
a mean-field decoupling of the Hubbard term produces a Holstein-like coupling.

In the following chapter, the dynamic Hubbard model will be investigated using Auger electron
spectroscopy. It stands to reason that this kind of physics with an asymmetry between empty and
doubly occupied sites (or between the lower and upper Hubbard band) is well-suited to be probed
by AES where the doublon creators and annihilators bridge this gap.

Before looking at the spectra, let us take a brief look at the equilibrium properties. It turns out that
there are two phases: As long as k is small, one finds a slight reduction of the Coulomb interaction
Ueff < U . Accordingly, the double occupancy increases slightly. As soon as k exceeds a critical
value, however, the energy gain due to the oscillators is so large that U becomes negative and the
double occupancy is maximized. In order to optimize the kinetic energy as well, the system goes
into a charge density wave (CDW) phase, where empty and doubly occupied sites alternate. This is
also the ground state one would find for a static U < 0. The resulting phase diagram is shown in
fig. 6.2. For small values of U , one finds a crossover region where

⟨
di
⟩
does not exactly alternate

between 0 and 1, for larger values of U the phase transition is remarkably sharp for a finite system.

2The coupling breaks translational invariance, leading to two sublattices and thus two subbands with a gap. Depending
on the ratio of the two effective hoppings, there can be a topologically non-trival phase with localized edge states
for open boundary conditions; and in the bulk, a non-zero winding number of the mapping S1 → S1 inherent to
the Hamiltonian in k-space in the basis of Pauli matrices H (k) = d (k) · σ.
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Figure 6.2.: Phase diagram of the dynamic Hubbard model as a function of the electron-oscillator
coupling k and Hubbard interaction U for L = 10 sites at half filling with periodic
boundary conditions. The total double occupancy dtot is colour-coded. In the charge
density wave phase (CDW), the local double occupancy

⟨
di
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(within numerical errors), leading to dtot = 0.5.

For U = 6, the critical value is found to be kc ≈ 4.6. Note that for large U , the phase boundary
is given by k ≲ U , meaning that the phase transition takes place when k becomes comparable to
U . The Auger spectra discussed in the following chapter will be all calculated for the homogeneous
phase.

6.4.1. Pump-probe AES spectra

Fig. 6.3 shows pump-probe AES spectra for the dynamic Hubbard model3. One can distinguish the
cases of weak and strong coupling to the oscillators (k = 2 on the left and k = 4 on the right) as
well as the adiabatic and nonadiabatic regimes (ω0 = 0.1 on top and ω0 = 1 on the bottom)4.

Let us look at first at the weakly coupled adiabatic case: Contrary to what might have been expected,
the double occupancy does not decay after the pulse is over, even in the presence of the oscillators,
but still remains nearly constant. Nevertheless, Ueff changes and in fact starts to oscillate with the
frequency ω0 (upper inset) and a period τ = 2π/ω0 ≈ 62.8, much larger than the pump-probe delay
in this case. The particular value of the double occupancy after the pump gives the Auger spectrum
its shape, but there is an additional energetic shift which depends on the value and variation of
Ueff within the core hole lifetime. Since the coupling is weak, Ueff drops only slightly and oscillates
around an average value of Ueff ∼ 5, so that the spectrum shifts only slightly as well. Furthermore,
since Ueff oscillates with the frequency ω0, one expects the spectrum to behave accordingly and shift
back once Ueff has increased again after a long time.

The strongly coupled adiabatic case is very similar except for the fact that due to the higher value of
k,Ueff (t) goes down further and even becomes negative, oscillating around amuch smaller value. As

3The calculations have been performed with exact diagonalization for a fairly small system for simplicity (as the sur-
rounding formalism is fairly sophisticated), but should be extendable to DMRG as well, so that larger systems can
be treated. In the latter case, it is probably more sensible to couple a spin-1/2 to the double occupancy operator [
Bach, Hirsch, and Marsiglio 2010] rather than a classical oscillator and thus work within the Hilbert space of the
Kondomodel. The disadvantage of a semiclassical system is that the simple strategy of successive subsystem updates
requires very small time steps, which would in turn greatly increase the compression error of DMRG.

4In the extreme case ω0 →∞, one reaches the far antiadiabatic limit.
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Figure 6.3.: Pump-probe Auger spectra of the dynamic Hubbard model calculated for L = 10 sites at
half filling with periodic boundary conditions, U = 6 and a pump pulse with E0 = 8 and
Ω = 4 for various values of the electron-oscillator coupling k and oscillator frequency
ω0. The upper insets show the effective Coulomb interaction U + ku (where u is the
dimensionless displacement), the lower insets show the double occupancy as a function
of time. Note that the probe (core hole emission followed by the Auger process) starts
at t = 0.
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soon as it switches sign, the double occupancy can actually be observed to further increase beyond
the value achieved by the pump, though the effect is very small. The spectrum is now also shifted
towards higher binding energies and in addition shows stronger distortion.

For the nonadiabatic case, the time scale on which Ueff (t) oscillates is comparable to the pump-
probe delay or smaller. Furthermore, the delay time is actually approximately an integer multiple
of the oscillation period, ∆t ∼ n · 2π/ω0 (n ∈ N). Due to the two being in sync and the absence
of damping on the given time scale, the dependency on the delay time for both weak and strong
electron-oscillator coupling disappears (except for some finite-size noise). Also, an averaging effect
sets in, whereby Ueff (t) seems to oscillate too strongly for the double occupancy to react, so that it
remains at a constant value, even as Ueff (t) switches sign for k = 4.

Summarizing the findings one can say that an electric pulse hitting an electron system described
by the dynamic Hubbard model allows electrons to bridge the charge gap, increasing the double
occupancy dtot. Still, dtot does not relax at the intermediate time scale, but remains constant. At
the same time, the oscillators are tipped off and start to vibrate with their frequency ω0, inducing
a corresponding oscillation in Ueff (t). The near-independent behaviour of the two quantities is a
distinct feature of the nonequilibrium state, as we would expect dtot to change significantly with
varying U in equilibrium.
The Auger spectrum allows one to deduce the value of the electron-oscillator coupling k: The larger
the energetic shift as a function of ∆t, the higher the amplitude of Ueff (t) and the stronger the
coupling k. Furthermore, the oscillator frequency ω0 can be measured with the help of AES by
varying the pump-probe delay time ∆t: The spectrum looks the same if 2π/∆t is a harmonic of ω0.
In this way, Auger electron spectroscopy remains an investigative tool of the Coulomb interaction,
which for the given model is a time-dependent effective quantity Ueff (t).

The above calculations should be seen as only the first step and further work into pump-probe
spectroscopies must be continued [ Rausch and Potthoff n.d.], preferably in close collaboration with
the experiment. AES is not the only spectroscopy that can be extended in this way, one can think
about pump-probe setups of RIXS and double photoemission (see chapter 2.2.7) as well.
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7. Summary and outlook

In this work, the physics of doublons, which are repulsively bound states of two electrons within the
Hubbard model, has been investigated from three points of view: (1) the two-hole spectral function,
accessible within high-resolution CVV Auger electron spectroscopy, (2) real-time dynamics of the
double occupancy, measurable in ultracold atom experiments and (3) pump-probe AES setups, which
have yet to be realized experimentally. A side-project consisted in the calculation of spin dynamics
and emerging effect of bound states there.

Two-particle spectral function

While the limiting case of two interacting holes has been understood a long time ago, no reliable
calculation yet existed for the case of general filling, where one has to deal with a true many-body
problem. Such a calculation has become possible, however, with the advent of the DMRG, yielding
numerically exact calculations. It has been demonstrated that away from n = 2, the doublon satellite
blends with a doublon-hole continuum, which can be turned into a bound state of three electrons
(“triplon”) with a nearest-neighbour Coulomb interaction V ; that a new bound state of four electrons
(“quadruplon”) appears below a filling of n = 1.5; and that the doublon lifetime becomes infinite
at the Brillouin zone edge in any spatial dimension for a bipartite lattice. The results were also
extended to a two-leg Hubbard ladder, where the same general features appear.

It would be interesting to truly extend the results to higher dimensions. A common ansatz used in
the case of photoemission spectra in this case is cluster perturbation theory (CPT) [ Yang and Feiguin
2016], where the Green’s function on an infinite (or very large) lattice is interpolated from a cluster
which can be solved exactly. However, since a two-particle Green’s function is governed by themore
complicated Bethe-Salpeter equation rather than the Dyson equation, extending this concept to two-
particle Green’s functions is not easily done. An ansatz used by several other authors [ Brehm et al.
2010; Imriška, Gull, and Troyer 2016] is to make the approximation Γ (ω) = G

′(0) (ω)−1−G′
(ω)−1,

where the prime index indicates that the quantities belong to the cluster and underlining indicates
a matrix in the cluster indices. Γ (ω) is then used in the same way as a one-particle self-energy.
This has been tried out by the author, but the results were not satisfactory, the application of the
two approximations does not seem to yield reliable results. In particular, the high weighting of the
noninteracting Green’s function in the CPT formula always leads to a band-like part of the width of
2W , while one expects a strong renormalization away from n = 2.
Hence, in order to calculate Auger spectra in two dimensions, one either needs amodification of CPT
or has indeed to solve the very costly Bethe-Salpeter equation. Recent advances in the dynamical
mean field theory (DMFT) and related methods also seem promising in that the calculation of a two-
particle Green’s function becomes feasible [ Loon et al. 2016].
Of course, other extensions, as for instance to finite temperatures or disordered systems can also be
contemplated.

Another prospect is to actually observe the predicted features, in particular the quadruplon peak,
in the experiment. For this, a strongly correlated material slightly above half filling and high reso-
lution away from the Fermi edge are the things that are required. An alternative route could be to
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manufacture a Hubbard model on an ultracold lattice and perform an Auger measurement there. A
persistent problem in such experiments is the cooling of the lattice.

Using the Bethe ansatz, the band-like part of the spectral function has been analysed to reveal the
decay products of the doublon into spinons and holons. It has been shown that decay channels
usually involve a pinning of either of them to the Fermi energy, where they have a lot of momentum,
but no energy. The multiplonic bound states can be identified with the string solutions of the Bethe
ansatz. This is the only part of the work which manifestly contains one-dimensional physics and the
band-like part is expected to change significantly in higher dimensions. However, the multiplons
are expected to exist in any spatial dimension.

Doublon dynamics

In the real-time dynamics of an initially localized doublon it has been observed that the decayed
fraction of doublons increases with decreasing filling, indicating a stabilization. The double occu-
pancy does not relax to the ground state, but still becomes constant at a different value, up to an
intermediate time scale. At the same time, the increased phase space for the decay manifests itself in
a diffusive behaviour of the doublon cloud, leading to a mixed diffusive/ballistic propagation. Below
a certain filling, this picture is only valid for a short time, however, after which such simple models
break down.

For this problem, it would be of course very interesting to observe a longer time scale in order
to see how the double occupancy eventually relaxes to the ground state after high-order scattering
processes of doublons, which one believes to happen. Such time scales arewell beyond the numerical
methods which exist today, however.

Pump-probe Auger spectroscopy

For the pump-probe AES setup (pumping the system into a nonequilibrium state before probing it
with AES) it has been demonstrated that due to the high stability of doublons, no dependence on
the pump-probe delay is observed. Several modifications of the setup (slow pump, reversed order
of pump and probe) have been suggested and can be implemented in the future. Instead, it has been
demonstrated how pump-probe AES could provide one with a measurement of the parameters of
the dynamic Hubbard model. But most importantly, an elaborate formalism has been developed,
so that such spectra can be calculated at all, involving the mapping of the continuum of scattering
states onto a semi-infinite chain. It has been implemented with exact states and small systems, but
can be combined with DMRG as well. The same formalism can be used to calculate pump-probe
spectra for other multi-particle spectroscopies, as RIXS and double photoemission.

Spin dynamics

It has been demonstrated that bound states strongly influence the magnetization dynamics of impu-
rities coupled to fermionic substrates. Thus, a thinking in such concepts offers insight into under-
standing the ongoings of such systems. In particular, one needs to be familiar with the concept of
an excess energy that cannot be absorbed by the substrate (which is also the reason for the stability
of doublons) and of bound states resulting from strong local perturbations that decouple from the
rest of the system. Both can severely hinder a complete relaxation of the system up to rather long
times.
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An extension of the work to more than one spin, introducing RKKY-interaction between them, can
be contemplated. Furthermore, it may be useful to implement a generic and efficient quantum-
classical propagation algorithm, where the quantum system is described by DMRG, in order to study
classical spins coupled to a substrate; and possibly other problems, as the dynamic Hubbard model
with classical oscillators.
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Appendix

A. Noninteracting two-hole spectral function

The calculation of the two-hole spectral function for a non-interacting system is presented here. The
first step is to rewrite it as a time integral:

G
(0)
ij (ω) =

⟨
0
∣∣c†i↓c†i↑ 1

ω + i0+ − E(N−2)
0 +H

cj↑cj↓
∣∣0⟩

=

∞∫
0

dt
⟨
0
∣∣c†i↓c†i↑e−i

(
ω+i0+−E

(N−2)
0 +H0

)
t
cj↑cj↓

∣∣0⟩
=

∞∫
0

dt
⟨
0
∣∣c†i↓ (t) c†i↑ (t) cj↑ (0) cj↓ (0) ∣∣0⟩e−i(ω+i0+)te

−i
(
E

(N)
0 −E

(N−2)
0

)
t
.

(A.1)

Now one can insert the Fourier-transformed creation and annihilation operators

ckσ =
1√
L

∑
i

e−ikRiciσ,

ciσ =
1√
L

∑
k

eikRiciσ,
(A.2)

exploiting the fact that the time evolution is known in k-space:

ckσ (t) = e−iϵ(k)tckσ (0) . (A.3)

Carrying out the lattice summations and the time integral, one obtains:

G
(0)
ij (ω) =

1

L2

∑
k1k2

⟨
nk1

⟩ ⟨
nk2

⟩
ei(k1+k2)(Ri−Rj)

ω + i0+ + E
(N)
0 − E(N−2)

0 − ϵ (k1)− ϵ (k2)
. (A.4)

For free fermions at T = 0, the occupancy numbers are given by the Fermi function:

⟨
nk
⟩
= 1− θ (|k| − kF ) , (A.5)

which restricts the sum:

G
(0)
ij (ω) =

1

L2

∑
|k1|<kF

∑
|k2|<kF

ei(k1+k2)(Ri−Rj)

ω + i0+ + E
(N)
0 − E(N−2)

0 − ϵ (k1)− ϵ (k2)
. (A.6)

155



Introducing the occupied density of states,

ρocc (ϵ) :=
1

L

∑
|k|<kF

δ (ϵ− ϵ (k)) , (A.7)

one finally obtains the self-convolution formula:

− 1

π
ImG

(0)
ii (ω) =

∫
dϵ ρocc (ϵ) ρocc

(
ω + E

(N)
0 − E(N−2)

0 − ϵ
)
. (A.8)

B. Time-dependent perturbation theory

B.1. General

We are faced with the general problem of a differential equation, where the differential operator D
can be decomposed into a “free” operator D0, which poses no problems, and an “interacting” part
Dint, which complicates things:

Du = D0u+Dintu. (B.1)

Then one can formally introduce a dimensionless coupling strength λ ∈
[
0, 1
]
:

Du = D0u+ λDintu (B.2)

One assumes that the solution can be written as a power series in the interaction strength λ:

u =
∞∑
k=0

λkuk. (B.3)

Plugging this into the differential equation yields:

0 = D0u0 +D0

∞∑
k=1

λkuk +Dint

∞∑
k=0

λk+1uk

= D0u0 +D0

∞∑
k=0

λk+1uk+1 +Dint

∞∑
k=0

λk+1uk

=
∞∑
k=0

λk+1 (D0uk+1 +Dintuk) +D0u0.

(B.4)

This gives an iterative solution scheme: By calculating uk+1 from a previous uk via setting

D0uk+1 +Dintuk = 0 (B.5)

one obtains the solution to the order k + 1. At each step, the calculation of uk+1 involves solving
an inhomogeneous problem where the inhomogeneityDintuk is known from the previous step. The
starting point of the iteration is obtained from the free solution D0u0 = 0.
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B.2. Time domain

For the Schrödinger equation with the Hamiltonian of the type H (t) = Hc + s (t)Vp (see chapter
2.2.2), we now identify:

D0 = i
∂

∂t
−Hc,

Dint = −s (t)Vp.
(B.6)

Thus, the free part (zeroth order) is given by:

i
∂

∂t

∣∣Ψ(0) (t)
⟩
= Hc

∣∣Ψ(0) (t)
⟩
, (B.7)

and the solution reads:

∣∣Ψ(0) (t)
⟩
= e−iHct

∣∣Ψ(0)
⟩
. (B.8)

In first order, we get:

i
∂

∂t

∣∣Ψ(1) (t)
⟩
= Hc

∣∣Ψ(1) (t)
⟩
+ s (t)Vp e

−iHct
∣∣Ψ(0)

⟩
. (B.9)

This can be solved by introducing an integrating factor U †
c (t) with the following property:

− i ∂
∂t
U †
c (t) = U †

c (t)Hc. (B.10)

Namely, differentiating the product U †
c (t)

∣∣Ψ(1) (t)
⟩
one obtains:

i
∂

∂t

(
U †
c (t)

∣∣Ψ(1) (t)
⟩)

= −U †
c (t)Hc

∣∣Ψ(1) (t)
⟩
+ iU †

c (t)
∂

∂t

∣∣Ψ(1) (t)
⟩

= U †
c (t) s (t)Vp e

−iHct
∣∣Ψ(0)

⟩
.

(B.11)

Now a solution by integration is possible:

∣∣Ψ(1) (t)
⟩
= −i

(
U †
c

)−1
(t)

∫ t

0

dt′ U †
c (t

′) s (t′)Vpe
−iHct′

∣∣Ψ(0)
⟩
+
(
U †
c

)−1
(t)
∣∣Ψ(0)

⟩
. (B.12)

To thiswe need to add the differential equation for the integrating factor, which is just the Schrödinger
equation for

⟨
Ψ(0) (t)

∣∣ = ⟨Ψ(0) (0)
∣∣U †

c (t). The corresponding equation for
∣∣Ψ(0) (t)

⟩
= Uc (t)

∣∣Ψ(0) (0)
⟩

is found by taking the adjoint (and acting on
∣∣Ψ(0) (0)

⟩
):

i
∂

∂t
Uc (t) = Hc Uc (t) . (B.13)

We need to impose the boundary condition

157



Uc (0) = U †
c (0) = 1. (B.14)

Hence the solution reads:

U †
c (t) = eiHct,(

U †
c

)−1
(t) = Uc (t) = e−iHct.

(B.15)

Finally, the first-order result reads:

∣∣Ψ(1) (t)
⟩
= e−iHct

∣∣Ψ(0)
⟩
− ie−iHct

∫ t

0

dt′ s (t′) eiHct′Vpe
−iHct′

∣∣Ψ(0)
⟩
. (B.16)

B.3. The Laplace transform

For time-homogeneous spectroscopies it is often more convenient to work directly in the energy
domain by Laplace-transforming the Schrödinger equation1. Let us therefore briefly summarize the
main facts about the Laplace transform. It is defined via:

L
[
f (t)

]
(p) = f (p) =

∫ ∞

0

dt e−ptf (t) , Re p > 0. (B.17)

For the inverse transform, one has to solve the Bromwich integral in the complex plane:

f (t) =
1

2πi
lim
T→∞

∫ c+iT

c−iT

dp eptf (p) . (B.18)

The integration path is a parallel line Re p = c to the imaginary axis and c is chosen such that it is
greater than the real part of all singularities of f (p).

For physical applications, it is more convenient to apply a Wick rotation p = −iz:

L
[
f (t)

]
(z) = f (z) =

∫ ∞

0

dt eiztf (t) , z ∈ C, (B.19)

so that:

L−1
[
f (z)

]
(t) = f (t) = lim

T→∞

−1
2π

∫ ic−T

ic+T

dz e−iztf (z) . (B.20)

Now, ic has to be above all poles of the function.

The Laplace transform has the following useful properties:

• A derivative in the time domain becomes a multiplication with z in the Laplace domain:

L
[
i
∂f

∂t

]
(z) = zf (z)− if (0) . (B.21)

1Often misnamed “Fourier transform” in the literature, but a one-sided Fourier transform to complex arguments is a
Laplace transform.
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• An exponential function in the time domain becomes a resolvent in the Laplace domain:

L
[
e−iat

]
(z) =

i

z − a
. (B.22)

• Multiplication with a phase factor in the time domain becomes a frequency shift in the Laplace
domain:

L
[
e−iωtf (t)

]
(z) = L

[
f (t)

]
(z − ω) . (B.23)

• A convolution integral from 0 to t in the time domain becomes a product in the Laplace do-
main:

L
[ ∫ t

0

dt′ f (t− t′) g (t′)
]
(z) = L

[
f (t)

]
(z) · L

[
g (t)

]
(z) . (B.24)

B.4. Laplace domain

We now derive the wavefunction correction within first-order perturbation theory in the Laplace
domain. Using the Fourier transform of the pump pulse envelope s (t),

s (t) =

∫ ∞

−∞
dω̃ s (ω̃) e−iω̃t,

F [s (t)] (ω̃) ≡ s (ω̃) =
1

2π

∫ ∞

−∞
dt s (t) eiω̃t

(B.25)

one can make use of the property (B.23) and Laplace-transform the Schrödinger equation

i
∂

∂t

∣∣Ψ(t)
⟩
= (Hc + s (t)Vp)

∣∣Ψ(t)
⟩

(B.26)

to get

(z −Hc)
∣∣Ψ(z)

⟩
= i
∣∣Ψ(0)

⟩
+ Vp

∫ ∞

−∞
dω̃ s (ω̃)

∣∣Ψ(z − ω̃)
⟩
. (B.27)

Setting

D0

∣∣Ψ(z)
⟩
= (z −Hc)

∣∣Ψ(z)
⟩
− i
∣∣Ψ(0)

⟩
,

Dint
∣∣Ψ(z)

⟩
= −Vp

∫ ∞

−∞
dω̃ s (ω̃)

∣∣Ψ(z − ω̃)
⟩ (B.28)

one obtains with the previous procedure:

∣∣Ψ(z)
⟩
V 0
p
=

i

z −Hc

∣∣Ψ(0)
⟩
,∣∣Ψ(z)

⟩
V 1
p
=

i

z −Hc

∣∣Ψ(0)
⟩
+ i

∫ ∞

−∞
dω̃ s (ω̃)

1

z −Hc

Vp
1

z − ω̃ −Hc

∣∣Ψ(0)
⟩
.

(B.29)

Of course, if s (t) ≡ 1, then s (ω̃) = δ (ω̃) and the integral is eliminated.
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C. Orthogonal Polynomial Mapping

Many problems fall into the general class of system-bath models, where the Hamiltonian of a given
correlated systemHsys is coupled to a continuous, non-interacting bathHbath via a coupling termHsb.
For example, within dynamical mean-field theory (DMFT) the Hubbard lattice is mapped onto the
Anderson impurity model, where a single correlated site is coupled to a bath [ Georges et al. 1996].
Bosonic baths are used to describe relaxation processes in open systems [ Breuer and Petruccione
2002]. Finally, in the description of spectroscopies, the continuum of scattering states can also be
regarded as a bath.

In order for the continuous bath to become manageable numerically, it needs to be discretized.
The method used in this work has been introduced by Chin et al. [ Chin et al. 2010] and employs
orthogonal polynomials to map the bath onto a semi-infinite chain. The mapping is exact as long as
the far end of the chain remains infinite. If the chain is cut at the end, it still remains exact as long as
a perturbation entering the bath does not hit the edge2. The procedure is quite similar to the “Wilson
chain”, a mapping of a contunuum on a chain within the numerical renormalization group (NRG) [
Wilson 1975]. The latter is, however, not an exact mapping, but employs a logarithmic discretization
to favour small energies, leading to a drop-off of the chain hopping, so that it can eventually be cut
with negligible error.

The general Hamiltonian reads

H = Hsys +Hbath +Hsb, (C.1)

where the environment is described by a density of states ρ (ϵ) = 1/L
∑

k δ (ϵ− ϵ (k)) (2.24), the
bath Hamiltonian has the form (2.22)

Hscat =

∫
dϵ ρ (ϵ) ϵ a†σ (ϵ) aσ (ϵ) , (C.2)

and we assume a convention where the bath creation and annihilation operators are dimensionless,
so that a factor of 1/ρ (ϵ) appears in the commutator (2.25):

{
a†σ (ϵ) , aσ′ (ϵ′)

}
=

1

ρ (ϵ)
δσσ′δ (ϵ− ϵ′) . (C.3)

Electrons can hop in and out of the bath, coupling to an arbitrary operator of the system Aiσ with a
hybridization strength Vi (ϵ):

Hsb =
∑
iσ

∫
dϵ ρ (ϵ)

(
Vi (ϵ) a

†
σ (ϵ)Aiσ + Vi (ϵ)

∗A†
iσaσ (ϵ)

)
. (C.4)

We will assume that the hybridization is site-independent: Vi (ϵ) ≈ V (ϵ).

Let us now take ρ (ϵ) |V (ϵ)|2 dϵ as a weight function defining a class of orthonormal polynomials
pn (ϵ) [ Gautschi 2004]:

⟨pn, pm⟩ :=
∫
ρ (ϵ) |V (ϵ)|2 dϵ pn (ϵ) pm (ϵ) = δnm. (C.5)

2It is always assumed that the bath is empty initially, otherwise the initial ground state will depend on the chain length
as well.
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We can now transform the bath operators a†
σ
(ϵ) onto new discrete operators b†nσ

b†nσ :=

∫
ρ (ϵ)V (ϵ) dϵ pn (ϵ) a

†
σ
(ϵ) . (C.6)

Due to the orthogonality of the polynomials, the inverse transformation is given by:

a†
σ
(ϵ) =

∞∑
n=0

V ∗ (ϵ) pn (ϵ) b
†
nσ, (C.7)

and it holds that the new operators are also fermionic (and dimensionless):{
bnσ, b

†
n′σ′

}
= δnn′δσσ′ . (C.8)

The system-environment interaction becomes:

Hsb =
∑
iσ

∫
ρ (ϵ) |V (ϵ)|2 dϵ

∑
n

pn (ϵ)
[
b†nσAiσ + A†

iσbnσ
]
. (C.9)

All orthogonal polynomials start with a constant, and to maintain the orthonormality (C.5), it has
to be given by:

p0 =
1√∫

ρ (ϵ) |V (ϵ)|2 dϵ
=:

1

|π0|
. (C.10)

Thus, the interaction term (C.9) actually contains a product of pn and p0:

pn = pnp0 |π0| , (C.11)

so that due to orthogonality, only the first term of the sum survives:

Hsb = |π0|
∑
iσ

(
b†0σAiσ + A†

iσb0σ

)
. (C.12)

The kinetic energy of the bath becomes:

Hbath =
∑
nm

∑
σ

∫
ρ (ϵ) |V (ϵ)|2 dϵ ϵpn (ϵ) pm (ϵ) b†nσbmσ. (C.13)

Using the recurrence relation of orthogonal polynomials [ Gautschi 2004],

pn+1 (x) = (Cnx− An) pn (x)−Bnpn−1 (x) , (C.14)

and once more exploiting orthogonality, (C.13) becomes:
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Hbath =
∑
nm

∑
σ

∫
ρ (ϵ) |V (ϵ)|2 dϵ pn+1 (ϵ) + Anpn (ϵ) + Bnp (ϵ)

Cn

pm (ϵ) b†nσbmσ

=
∑
nσ

An

Cn

b†nσbnσ +
∑
nσ

(
1

Cn

b†nσbn+1,σ +
Bn+1

Cn+1

b†n+1,σbnσ

)
=
∑
nσ

αnb
†
nσbnσ +

∑
nσ

√
βn+1

(
b†nσbn+1,σ + bn+1,σb

†
nσ

)
,

(C.15)

where the newly introduced αn and βn are the corresponding recurrence coefficients of the monic
polynomials πn 3, which are related to the original ones (C.14) via

An =
αn√
βn+1

,

Bn =

√
βn
βn+1

,

Cn =
1√
βn+1

.

(C.16)

For a given weight function, the recurrence coefficients can be computed by the Gander-Karp algo-
rithm [ Gander and Karp 2001; Gautschi 2004; Gautschi 1982]. For the common case of a constant
density of states (between ϵmin and ϵmax) and constant hybridization, the generated orthogonal poly-
nomials are the (shifted) Legendre polynomials:

αn = b,

βn =
a2

4− n−2
, n ≥ 1,

(C.17)

where a = 1
2
(ϵmax − ϵmin) and b = 1

2
(ϵmax + ϵmin).

The interpretation of the transformed terms (C.12) and (C.15) is quite obvious: Particles from the
system can hop onto the first site of the chain and then proceed to move along it. Each site is asso-
ciated with progressively higher polynomial order. Since in spectroscopy, one essentially measures⟨
a† (ϵ) a (ϵ)

⟩
, one is able to resolve finer structures with more available maxima and minima from

a linear combination of high-order polynomials at long propagation times. This is, of course, just a
manifestation of the uncertainty principle: The longer the time of propagation within the chain, the
smaller the energy uncertainty and the better the energy resolution.

C.1. Test case: The Friedrichs-Lee model

As a simple test case for the mapping, let us take a look at the dynamic Friedrichs-Lee model [
Friedrichs 1948; Lee 1954; Horwitz and Levitan 1991], where a single atomic level (without spin),

Hsys = ϵ0f
†f, (C.18)

3A monic polynomial πn = cnx
n + cn−1x

n−1 + . . .+ c0 is scaled such that the leading coefficient is cn = 1.
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Figure C.1.: Population of the atomic level |α (t)|2 for the dynamic Friedrichs-Lee model. Compari-
son of the exact solution (except for the RWA approximation) with the orthogonal poly-
nomial mapping (also with the RWA applied). Parameters: Lchain = 10, ρ (ϵ) ≡ 1 on
[0, 1], V (ϵ) = 1, Ω + ϵ0 = 0.9. Shown in red is the occupancy of the last site of the
chain.

is coupled to a continuum via a harmonic laser field

V (ϵ, t) = V (ϵ) cos (Ωt) , (C.19)

so that Aiσ = f .

This model has the advantage of being exactly solvable. The wavefunction can be written as a
superposition of states where the electron is within the atomic level with amplitude α (t), and states
where it is within the continuum having an energy ϵ with the amplitude β (ϵ, t):

∣∣Ψ(t)
⟩
= e−iϵ0tα (t) f †∣∣0⟩+ ∫ ρ (ϵ) dϵ e−iϵtβ (ϵ, t) a† (ϵ)

∣∣0⟩. (C.20)

Plugging this into the Schrödinger equation and eliminating β (ϵ, t) and its time-derivative in favour
of α (t), we obtain the following integro-differential equation:

α̇ (t) = −
∫ t

0

dt′ α (t′)

∫
ρ (ϵ) dϵ e−i(ϵ−ϵ0)(t−t′)V ∗ (ϵ, t)V (ϵ, t′) . (C.21)

A very reasonable approximation to apply now, which does not distort the result too much is the
rotating-wave approximation (RWA), which only leaves the resonant parts from the cos (Ωt) term in
(C.19) and neglects the rapid short-time dynamics. This leads to:

α̇ (t) ≈ −1

4

∫ t

0

dt′ α (t′)

∫
ρ (ϵ) |V (ϵ)|2 dϵ ei(Ω+ϵ0−ϵ)(t−t′). (C.22)

Fig. C.1 compares the exact result with the orthogonal polynomial mapping for 10 chain sites and
the initial state

∣∣Ψ(0)
⟩
= f †

∣∣0⟩. One can see that a particle entering the chain reaches the end at
t ≈ 20 (the unit of time is now the continuum bandwidth, set to 1), so that the average velocity is
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about v ≈ 0.5. It is then reflected and goes back into the system where it influences the system
properties just before t ≈ 40 and leads to deviations from the exact result.
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D. List of publications and preprints

The following publications have a substantial overlap with the present work:

Doublons and the two-hole spectral function

• R. Rausch and M. Potthoff (2016). “Multiplons in the two-hole excitation spectra of the one-
dimensional Hubbard model”. New Journal of Physics 18.2, p. 023033

• R. Rausch andM. Potthoff (2017). “Filling-dependent doublon dynamics in the one-dimensional
Hubbard model”. Phys. Rev. B 95 (4), p. 045152

• R. Rausch and M. Potthoff. “Pump-probe Auger electron spectroscopy”. in preparation

The side-project of using DMRG for spin dynamics involves the following publications:

Spin dynamics

• M. Sayad, R. Rausch, and M. Potthoff (2016a). “Relaxation of a Classical Spin Coupled to a
Strongly Correlated Electron System”. Phys. Rev. Lett. 117 (12), p. 127201

• M. Sayad, R. Rausch, and M. Potthoff (2016b). “Inertia effects in the real-time dynamics of a
quantum spin coupled to a Fermi sea”. EPL (Europhysics Letters) 116.1, p. 17001

Another side-project to this work involved the development of a code for the calculation of ab initio
pump-probe photoemission. The author has not been involved in the code development itself, but
rather participated in the establishing the theoretical framework in terms of Green’s functions and
the presentation of the results in a clear fashion. This involves the following publications:

Ab initio photoemission

• J. Braun, R. Rausch, M. Potthoff, J. Minár, and H. Ebert (2015). “One-step theory of pump-probe
photoemission”. Phys. Rev. B 91 (3), p. 035119

• J. Braun, R. Rausch, M. Potthoff, and H. Ebert (2016). “One-step theory of two-photon pho-
toemission”. Phys. Rev. B 94 (12), p. 125128
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