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Abstract

With their ability to adapt to human tools, robots with anthropomorphic hands
have great potential of being employed in domestic environments to facilitate var-
ious domestic tasks. In-hand manipulation is one of the distinctive skills in an-
thropomorphic hands. It is a process in which fingers push the object to generate
expected manipulations. Although lots of research has been done on this topic,
in many respects this is still a challenge in robotics. To begin with, the control
of the robotic hand is a challenge. An anthropomorphic robotic hand generally
has a large number of joints (more than 10 DOFs). The in-hand system which
consists of the object and the fingers is redundant. Then the interaction state is
complicated, which is hard to be modeled precisely. A small position error on the
finger may change the contact force on the object dramatically. Therefore, a small
error may cause the task to fail. The perception capability of the in-hand manipu-
lation system is limited. The contact sensing on the fingertips is usually limited by
sensors’ restricted size, and the visual information of the object is usually occluded
by fingers. As a result of these challenges, the in-hand object is assumed to be
’unknown’ for the robotic system.

In this research, we focus on manipulating an unknown object with an anthro-
pomorphic robotic hand. The target objects and the support fingers are treated as
one black box system where action commands are sent as input and the observed
visual-haptic feedback is output. In this black box, the process of the in-hand
manipulation is a finger (push finger) pushing an object to rotate on other fingers
(support fingers). To simplify this problem, the object and the support fingers are
treated as one black box. In this black box, an unknown object is located on an
elastic surface consisting of the support fingers. Hence, the in-hand manipulation
is transferred into a process where the push finger pushes an unknown object to
roll onto an elastic surface. In this process, visual-haptic feedback is observed to
evaluate the push performance. To make the elasticity of the surface controllable,
two kinds of support fingers are proposed in this thesis: a fixed support finger
and a spring support finger. The fixed support finger is controlled by a position
controller, and its position is fixed as a pivot around which the object rotates. The
spring support finger performs as an elastic spring. It presses the object against
other fingers and helps to rotate the object with proper contact force. More im-
portantly, an error transfer matrix is given, which proves that positional errors
in different fingers can be compensated by one spring support finger. Combining
different kinds of support fingers, a single support model and a hybrid support
model are proposed to carry out the robotic in-hand manipulations. As a result,
the proposed models reduce the complexity of the in-hand manipulation system
dramatically.

Without any knowledge of the black box, the robot cannot conduct successful
in-hand manipulations. To acquire sufficient knowledge of the in-hand system, a
process called haptic exploration is proposed in this thesis. In this process, the
robot slightly pushes the object in different directions and estimates the interaction
state from haptic feedback. Besides, in-hand manipulation experiments have been
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conducted successfully on a real anthropomorphic hand platform based on this
concept. In these experiments, both visual and haptic feedback has been collected
and researched. The experiments’ result shows the feasibility of the proposed ma-
nipulation method and models. Specifically, in the multi-directional manipulation
experiment, sufficient knowledge has been acquired; and the knowledge is used to
guide the further in-hand manipulations in other tasks. Furthermore, from the
results of these in-hand manipulation experiments, it can be concluded that haptic
sensing is capable of taking the place of visual sensing. This result supports the
idea of haptic exploration.

Reinforcement Learning (RL) has been adopted to improve the in-hand ma-
nipulation skill automatically. RL agents have been built to generate the in-hand
manipulation push commands. Besides, in-hand manipulation simulators are con-
structed with Radial Basis Function Networks (RBFN) trained by real manipu-
lation data for the purpose of taking the place of the real in-hand manipulation
system. The agents improve step by step by interacting with the simulators. In
this thesis, two stochastic RL algorithms are adopted: Williams’ Episodic RE-
INFORCE and Peters’ Episodic Natural Actor-Critic. And finally, the learning
experiments have been conducted based on different rewards: visual only rewards
(unimodal) and visual-haptic rewards (multimodal). The experimental results
demonstrate that our learning method is feasible; moreover, the use of multimodal
rewards speeds up the learning process compared to the result from the use of
unimodal rewards.
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Zusammenfassung

Weil Roboter mit anthropomorphen Händen sich an menschliche Werkzeuge natur-
gemäß anpassen, eignen sie sich besonders für den Einsatz in Häusern, um Men-
schen bei der Hausarbeit zu unterstützen. In-Hand-Manipulation ist eine der
charakteristischen Fähigkeiten anthropomorpher Hände. Es ist ein Prozess in dem
Finger das Objekt drücken, um erwartete Manipulationen zu erzeugen. Obwohl
hier umfassend geforschrt wurde, stellt dies immer noch eine Herausforderung in
der Robotik dar.

In dieser Arbeit wird die in-Hand-Manipulation als Finger (Push-Finger) be-
trachtet, die ein Objekt auf andere Finger (Stützfinger) schieben, um es dort zu
rotieren. Um dieses Problem zu vereinfachen, werden das Objekt und die Stützfin-
ger als eine Blackbox behandelt. In dieser schwarzen Box befindet sich ein unbekan-
nter Gegenstand auf einer elastischen Oberfläche, die aus den Stützfingern besteht.
Folglich wird die In-Hand-Manipulation in einen Prozess übertragen, in dem der
Druckfinger ein unbekanntes Objekt drückt, um es auf die elastische Oberfläche
zu rollen. In diesem Prozess wird visuell-haptisches Feedback beobachtet, um
die Push-Leistung zu bewerten. Zur Veranschaulichung der Feedbacks werden in
dieser Arbeit zwei Stützfinger vorgeschlagen: fester Stützfinger und Federstützfin-
ger. Der feste Stützfinger ist unkontrolliert und fixiert als Drehpunkt, um den
sich das Objekt dreht. Der Federstützfinger dient als elastische Feder. Es drückt
das Objekt gegen andere Finger und hilft, das Objekt mit der richtigen Kontak-
tkraft zu drehen. Noch wichtiger ist, dass eine Fehlertransfermatrix gegeben ist,
die theoretisch beweist, dass Positionsfehler in verschiedenen Fingern durch einen
Federstützfinger kompensiert werden können. Es werden verschiedene Stützfinger,
ein einzelnes Stützmodell und ein hybrides Stützmodell kombiniert, um robotische
In-Hand Manipulationen durchzufhren. Infolgedessen reduzieren die vorgeschlage-
nen Modelle die Komplexität des Manipulationssystems drastisch.

Ohne Kenntnis der Blackbox kann der Roboter keine erfolgreichen Manipula-
tionen durchführen. Um genügend Wissen zu erwerben, wurde in dieser Arbeit ein
Prozess namens haptische Erforschung vorgeschlagen. Dabei drückt der Roboter
das Objekt leicht in verschiedene Richtungen und schätzt den Interaktionszustand
des haptischen Feedback ein. Darüber hinaus wurden Hand-Manipulationsexperi-
mente auf einer realen anthropomorphen Handplattform, die auf diesem Konzept
basiert, erfolgreich durchgeführt. In diesen Experimenten wurde sowohl visuelles
als auch haptisches Feedback gesammelt und erforscht. Das Ergebnis der Experi-
mente zeigt, dass die vorgeschlagene Manipulationsmethode und die Modelle funk-
tionieren. Bei diesen Experimenten, insbesondere beim multidirektionalen Manip-
ulationsexperiment, wurde ausreichend Wissen erworben. Dieses wird verwendet,
um weitere Manipulationen auch in anderen Aufgaben anzuleiten. Darüber hinaus
kann gefolgert werden, dass die haptische Wahrnehmung in der Lage ist, die Stelle
der visuellen Wahrnehmung in diesen Manipulationsexperimenten zu übernehmen,
was die Idee der haptischen Erforschung unterstützt.

Weiterhin wurden Verfahren des Reinforcement Learning (RL) angewandt,
um die Fähigkeiten der In-Hand-Manipulation automatisch zu verbessern. RL-
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Abstract

Agenten wurden aufgebaut, um die Manipulations-Push-Befehle zu erzeugen. Außer-
dem wird ein Manipulationssimulator mit Radial-Basis-Funktionsnetzwerken (RBFN)
konstruiert, die durch reale Manipulationsdaten erzeugt werden, um an die Stelle
des realen Manipulationssystems zu treten. Die Agenten verbessern sich Schritt
für Schritt durch Interaktion mit dem Simulator. In dieser Arbeit werden zwei
stochastische RL-Algorithmen angenommen: Williams ’ Episodische REINFORCE
and Peters’ Episodischer Naturschauspieler-Kritiker. Schließlich wurden die Lern-
versuche auf der Grundlage verschiedener Belohnungen durchgeführt: visuelle allei-
nige Belohnungen und visuelle haptische Belohnungen. Die Forschungsergebnisse
zeigen, dass unsere Lernmethode durchführbar ist. Darüber hinaus beschleunigt
der Einsatz multimodaler (visueller und haptischer) Belohnungen den Lernprozess
im Vergleich zu einzelnen modalen Belohnungen.
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Chapter 1

Introduction

In modern society, robots are required to support humans from the elderly to the
work force. With the progress of science and technology, human-assistance robots
are no longer fiction. More and more commercially available robots are appearing
around us, such as robotic toys, vacuum cleaners, robotic vehicles, surveillance
robots, mental care robots, rescue robots, etc. [173], [37], [118].

With their ability to adapt to human tools, robots with anthropomorphic hands
have great potential of being employed in domestic environments, where they could
facilitate various domestic tasks like tidying up rooms, serving dinner, washing
dishes, etc. For robots, grasping and in-hand manipulation are two fundamental
skills required for these tasks. To date, a large amount of research has been carried
out on grasping. By contrast, in-hand manipulation has been covered to a much
lesser extent. Hence in-hand manipulation (also called regrasping or dexterous
manipulation) is still a challenging research topic in the field of robotics. This
skill not only enables robots to hold objects but also to move and position objects
dexterously.

1.1 Motivation

The world over, robots performed superhuman feats of manipulation in factory
environments. In recent years, robots in human environments have become the
focus of attention. Unlike structured factory environments, human environments
have a number of different challenges beyond the control of robots. As described
in [95], among these challenges are the following:

• People are present˝. Robots and the humans share the same environ-
ments. In some tasks, the robots have to adapt to and interact with humans
who may have little knowledge of the robots.

• ”Environments are usually built-for-humans˝. In human environments,
objects are specially designed to adapt to humans. For example, door han-
dles, cups, and computer mice are well designed according to the shape of
human hands.
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Figure 1.1: A robot chef cooks Michelin star food.

• Other autonomous actors are present˝. In human environments, there
may be pets and many other different robots, like cleaning robots, surveillant
robots, etc.

• Dynamic variation˝. Human environments change dynamically Some-
times, the change of the environment has nothing to do with the robots. For
example, doors may open or close by humans,

• Sensory variation, noise, and clutter˝. In human environment, robots’
sensors are vulnerable to environmental interference, such as light changes,
background sound, temperature changes, etc.

Although human environments constrain the application of robots, domestic
robots are not just science fiction anymore due to the joint efforts made by engineers
and scientists. On the HANNOVER MESSE 2015, the world’s biggest industrial
fair, several impressive collaborative robots were exhibited.

An excellent robot chef is shown in Fig. 1.1. As declared in [68], it will be on
sale in 2017. A pair of robotic arms mounted with two dexterous shadow hands
is mounted in a kitchen. This robot is able to cook world-class food with recipes
downloaded from online stores. In the demonstrated scenario, this robot chef re-
peats the exact actions of Tim Anderson, the winner of 2011 BBC MasterChef,
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1.1. Motivation

Figure 1.2: Nextage envisioned by Kwanda Industries.

such as scraping some butter off a knife, switching on the hob, measuring ingredi-
ents etc. This robot only takes 30 minutes to cook and serve a meal. In the future,
with this robot, famous chefs can sell their recipes as an extension to their brands.
Hence, from buying online recipes, robot’s owners can enjoy the chef-cooked level
meals every day.

Another example is Nextage: an autonomous dual-arm robot designed to work
side by side with humans. With cameras in its head and hands, this robot is ca-
pable of recognizing 3D objects and making visual inspections. A demonstration
was given in [94], in which it makes and serves cups of Espresso to its audience.
In the future, this kind of robots will contribute to the flexible manufacture in
high-mix and low-volume production. In other words, it will bring new opportu-
nities by increasing the efficiency of both manufacturing plants and of domestic
service. Other intelligent robots also have the potential to be applied in human
environments, such as PR2 [49], ARMAR [19], PaPePo [132], HRP-2 [91], etc.

All these robots have mainly been developed to work as human assistants in
human environments. Most of these assisting tasks require autonomous operations
in human environments, which involve subtasks varying from localization, locomo-
tion and grasping to in-hand manipulation. While robotic grasping has been well
researched and implemented, robotic in-hand manipulation is still one of the weak-
est links in this task chain. As a result, today robotic in-hand manipulation is one
of the key steps in robot assisting tasks. With skillful manipulating skills, robots
can be remarkable assistants for us, doing labor-intensive or time-consuming jobs
such as physically assembling something, taking care of an elderly person at home,
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and helping with household chores. In a word, in-hand manipulation is of critical
importance to robotics.

In-hand manipulation covers many aspects. For humans, it is the ability to
hold and move an object within their fingers. In in-hand manipulation tasks, the
motion of the object can be divided into three major categories: translation, shift,
and rotation [58]. This thesis focuses on the in-hand task of an object’s
rotation.

According to different working environments, the application requirements of
robot hands in factories and human environments are different. In factories, robots
are usually designed to grasp objects of a small number of similar types. By con-
trast, in human environments, robot hands are required to interact with a wide
range of objects with different shapes; and the environments the robot hands in-
teract with are specially designed for human hands. Thus, anthropomorphic robot
hands are better equipped for tasks in human environments. This topic has been
thoroughly researched. In the last decade, many anthropomorphic robot hands
designed for flexible interaction tasks have become available off-the-shelf. This
research focuses on the in-hand manipulations carried out by anthropo-
morphic robot hands. To facilitate writing, in the remainder of this thesis the
term manipulation refers to general in-hand manipulation unless stated otherwise.

1.2 Problem Statement

Robotic manipulation is an interesting research topic. Good reviews can be found
in [33] and [30]. A manipulation system consists of robotic fingers and an object.
The fingers work cooperatively and attached to a base. The object is grasped
or manipulated by changing the contact force applied by the fingers. Essentially,
it is an interacting control problem where fingers apply a contact force to move
an object within physical constraints. Three challenging problems of the robotic
manipulation are a large number of joints, a complex interaction model, and limited
perception capabilities.

1.2.1 Large Joint Number

In robotic manipulation, the fingers interact with the object directly. Generally,
there are 5 fingers1 on an anthropomorphic hand, and each of these fingers has
at least 4 joints. The number of the joints is usually larger than 20 on an an-
thropomorphic hand. Therefore, the in-hand manipulation system is redundant.
Moreover, this system is sensitive to contact force; if even one finger falls out of
step with the others, the object could fall off the hand. Therefore, fingers have to
cooperate synchronously and are capable of correcting occurred errors to ensure

1Most anthropomorphic robot hands have 5 fingers to emulate human hands as close as
possible. However, some have only 4, like Shadow Hand-Lite [146].
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successful manipulations. Besides, the size of an anthropomorphic hand is simi-
lar to that of a human hand, which means the whole hand control system has to
be compressed into a very limited space. Some of the robot hands are controlled
remotely via cables to save installation space; however, this mechanism results in
low control accuracy and poor resolution of the finger joints. As a result, the per-
formance of the hand system is not as good as that of general industrial robots. In
short, this large number of joints and the limited joint space constrain the perfor-
mance of the hand and challenge its control system. Hence a robust manipulation
control method is required.

1.2.2 Complex Interaction Models

Besides the robotic control, planning the fingers’ actions is also challenging. Most
grasping and manipulation is planned based on synthesis methods, where a com-
plete knowledge of robots, target objects, and physical laws is modeled explicitly
[96], [64]. However, these synthesis methods are labor-intensive and sensitive to pa-
rameters. In addition, sometimes planning under contact conditions is impractical
due to the computational complexity and the lack of precise and robust dynamic
models. Due to the complexity of the models, these traditional manipulations are
error-prone in the control of the interaction. In addition to precise models, adaptive
force control methods offer another way to robotic manipulation. In robotics, con-
tact force plays an important role in compensating for these errors from the ’poor’
models. However, the contact force is sensitive to the contact state, such as the
fingers’ relative position, contact area, the object’s attributes, etc. For force-based
in-hand manipulation, all grasping fingers are equipped with force control algo-
rithms. And the controller has to assign the contact force to the different fingers.
Sometimes, this makes the system too complex to be implemented. Accordingly,
a better manipulation planning approach is required.

1.2.3 Limited Perception Capabilities

Finally, robotic manipulation requires perception capabilities. Both finger control
and action planning are based on sufficient information, including information on
the object, the state of the fingers, and the contact state between them. Vision and
tactile sensing are the two most used sensing channels in this area. In manipulation,
visual sensing is often used to locate and track the in-hand object and tactile
sensing is used to guide the fingers to adjust the contact state which is sensitive
to the models’ parameters and external disturbances. However, in manipulation
tasks, the object is often occluded by the robot’s fingers and the application of
the tactile sensors is often limited by their size, density, resolution, etc. Thus an
efficient visual-haptic2 sensing method is required in robotic manipulation tasks.

2In this thesis, the term ’haptic’ is used to denote tactile sensing. The ’haptic’ refers more to
the tactile information from the fingers’ actions.
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Figure 1.3: A water tap.

1.3 Objective and Proposed Approach

In this section, the objective of this thesis is presented; moreover, our manipulation
approaches are proposed.

1.3.1 Objective

As discussed above, the principal objective of this thesis is to carry out robust
in-hand manipulation efficiently using an anthropomorphic robot hand. In order
to achieve this, the major objectives of this thesis are the following:

• Conducting various robust in-hand manipulations with an anthropomorphic
robotic hand.

• Exploring the in-hand system with a given grasping configuration. Without
possessing any information about the object in advance, the robot should
have the ability to explore the in-hand object automatically to acquire the
necessary manipulation knowledge. Then, the robot can conduct acceptable
in-hand manipulations efficiently based on this knowledge.

• Seeking the relationship between the haptic and visual feedback by analyzing
the results of the manipulation experiments conducted with our push and
support manipulation method. Efficient methods are required to represent
the manipulation state with the visual and haptic signals.

• Improving the robotic in-hand manipulation skill. The robot should have
the ability to improve its manipulation skill through interacting with its
environments. In other words, the robot should have the ability to learning
its behaviors with the method of trial and error.

6



1.3. Objective and Proposed Approach

Object

Black box

Push finger

Support 
fingers

Figure 1.4: Black box. This diagram shows the basic research concept of in-hand
manipulations. In this black box, an unknown object is located on fingers other
than the push finger. Therefore the manipulation is transferred into rolling the
object on the surface of other fingers.

1.3.2 Concept and Approaches

As presented in [29], two main abilities of a human hand are prehension and ap-
prehension. The prehension is the ability to grasp and hold objects of different
sizes and shapes, and the apprehension is the ability to understand through ac-
tive touch. In this sense, the human hand interacts with the world not only by
performing actions but also by perceiving external information on the world. One
example to illustrate this is turning off a tap, as shown in Fig. 1.3. When a human
hand manipulates a tap, the fingers perform push actions to rotate it. At the same
time, the fingers’ touch is analyzed to estimate the state of the tap. Specifically,
the increase of rotational resistance felt by the fingers means the tap is closing; on
the other hand, decreasing resistance denotes that the tap is opening. Hence, the
state of the tap can be perceived not only from visual observation of the water flow-
ing but also from the haptic feedback (push resistance during the manipulation).
Different from other research, this thesis strengthens the apprehension
skill of the robot hands. Moreover, the visual and haptic information
is used to estimate the state of the in-hand system. To demonstrate the
apprehension ability of the robotic hands, two basic concepts are proposed: the
black box model and haptic exploration.

Manipulation with Black Box

Different from most current manipulation researchers who model the objects and
the robots separately and combine the two with physical laws, this research
treats the target object and the support fingers as one black box system
where control commands of a push finger are sent as input and the
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observed visual-haptic feedback is output. The fingers and the object (called
in-hand system) are all contained in this black box. In the box, only one finger
receives the input commands and moves to drive the manipulation. Without any
knowledge of the in-hand system, the finger has to push into this black box to
’feel’ the interaction state with the object. To explain the performance of the push
actions in the black box, simple manipulation models are introduced in section 3.

As shown in Fig. 1.4, an object is grasped by two fingers. The finger at the
top is called push finger, the one at the bottom is called support finger. Although
only one support finger is plotted in Fig. 1.4, there can be more depending on the
number of fingers involved in a grasp. The special surface consisting of support
fingers have a decisive influence on the push properties of the black box. It is
characterized by the relative position of the contact points and the elasticities
of each support finger. By changing the elasticities of the support fingers via
different control algorithms, the attributes of the special surface can be modified.
More details will be discussed in section 3. Thus, the manipulation is transferred
into rolling an object onto this special surface. To carry out these rolling actions,
push commands are given to the push finger, which has no knowledge of the object
and the special surface. With the push commands, the push finger pushes into this
black box and the haptic information is collected; in addition, the performance of
the push actions is evaluated with the visual rewards from the object’s tracking
system. Since the manipulation is mainly carried out through those push actions
with the help of the support fingers, it is called push and support manipulation in
this thesis.

Haptic Exploration

Before manipulating, the robot does not know anything about the black box ex-
cept that the object has been grasped firmly. Without sufficient prior knowledge,
the robot cannot conduct proper push actions to complete a successful manipula-
tion. Therefore, a special perception strategy is required to help the robot acquire
sufficient knowledge about the black box system. As a result, we developed a
perception strategy named haptic exploration.

Haptic exploration is a process where the robot pushes the in-hand object
slightly in different directions and estimates the interaction state by means of
haptic feedback. The term haptic exploration is very similar to ’touch exploration’
and ’active touch’ which is widely used in robot recognition fields (like material
and surface identification). However, most touch exploration research focuses on
static object information (such as geometrical surface, texture, contact force, etc.)
[145], [15], [98], [183], few researchers pay attention to dynamic information in the
interaction process. Therefore, the term ’haptic exploration’ is introduced in this
research to explore the black box through dynamic interaction.

The haptic exploration process is shown in Fig. 1.5. As an interaction process,
there are two important aspects worth mentioning in the haptic exploration: action
and perception. The action refers to the push actions executed by the push finger.
The term ’push’ is used to denote these actions executed by the push finger which
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Black box

Push finger

Visual feedback

Haptic feedback

Push command

Push

Figure 1.5: Haptic exploration process.

is actively controlled and plays a leading role in manipulations. Different from
pushing a box on the ground, the purpose of these push actions is to collect feedback
rather than move the object. Consequently, if not stated otherwise, all the
push actions presented in this thesis are limited to a very small range so
that the push actions are comparable, since the object can still return to
its original state after the push finger moves back to its initial position.
In addition to the push finger, the support fingers also play an important role in
the haptic exploration. Different controllers are applied to the support fingers to
acquire proper ’elasticity’. On the one hand, this elasticity protects the robot from
damages while the finger pushes ’randomly’. On the other hand, it enables the
system to go back to its initial state when the push action is completed. This
makes sure the robot carries out different commands from the same initial state.

The perception refers to different feedback from multiple channels, specifically
visual and haptic in this thesis. The visual feedback is provided by a visual tracking
system which tracks the reaction of the object to the push actions, such as changes
in the object’s orientation, position, etc. The haptic feedback mainly refers to the
contact force information provided by the tactile sensors mounted on fingertips. It
is worth mentioning that though both visual and haptic feedback is considered, this
process is called haptic exploration. This is because the visual feedback is mainly
used to evaluate the manipulation (push actions) performance, whereas the haptic
feedback is used to evaluate the interaction state. Furthermore, with the collected
knowledge, the robot can select the ’right’ push directions in its manipulation
tasks. In this haptic exploration process, the robot pushes into this black box
based on different commands and perceives the haptic feedback to evaluate the
interaction state in this black box. These repeated actions and perception help the
robot to collect sufficient knowledge on the black box. With this knowledge, the
robot is able to conduct successful manipulations.

With the concept of trial and error, haptic exploration can be a general method
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to help the robot collect knowledge for its manipulation tasks. More impor-
tantly, in this way, calculations based on complex physical laws are not
required; and the interaction state of the robot system can be directly
described with the push feedback.

Learning to Improve Manipulation Skills

With the help of the black box and the haptic exploration, a general robotic ma-
nipulation can be acquired. The manipulation skills can then be improved with
other optimization methods. In this thesis, Reinforcement Learning (RL) is ap-
plied to improve the robotic manipulation skills. The goal of the learning process
is to create an optimized RL agent which can generate more appropriate finger
paths in manipulation tasks. In this research, a stochastic policy is designed to
map the current system state to finger actions. Besides, a manipulation simulator
has been built based on real example data collected from real manipulation exper-
iments. The RL agent generates actions for the manipulation simulator, and the
simulator generates visual and haptic feedback. After calculating the feedback,
action rewards are obtained. According to these rewards, the RL agent optimizes
its parameters to improve its manipulation skills step by step.

1.3.3 Push Manipulation Architecture

In Fig. 1.6, a push manipulation diagram is illustrated. On the top of this system,
there is a planner. It receives the visual-haptic feedback, configures the support
fingers, and generates the push commands to the push finger. Once the object is
grasped, the configuration of the support fingers is done according to manipulation
tasks by this planner. Below the planner, there is an anthropomorphic hand which
consists of two groups of fingers: the push finger and the support finger. The push
finger receives and executes the push commands to push an unknown object. This
finger is controlled via a position controller, which generates the motor commands
to the joints without considering any external impact. It is an off-line controller.
And the support fingers are configured respectively by choosing proper controllers
before manipulations. There are two candidate controllers for the support fingers:
the position controller and the stiffness controller. The position controller is the
same as in the push finger, and the stiffness controller generates motor commands
by considering the tactile feedback on the fingertips. With the stiffness controller,
the finger behaves like a spring which is linearly compliant to the external force.
Accordingly, this finger is called spring support finger in this thesis. With these
fingers, the unknown object is grasped, shown below the anthropomorphic hand in
this diagram. With the push commands and the configured controllers, the fingers
interact with the object dynamically. In the manipulation, the object’s movement
is recorded by a visual tracking system, shown in the bottom of Fig. 1.6. This
tracking system provides the object’s pose to the planner to help estimate the
performance of the current push command.

It is worth noting there are three kinds of feedback in this system: visual
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Position control

Stiffness control

Position control

Contact interaction

Haptic feedback Tactile feedback

Push commands

‘Surface’
configuration

Select controller 
for each finger

Visual feedback

Push finger Support fingers

Figure 1.6: Push manipulation architecture. This diagram illustrates the push
and support manipulation. The yellow dash rectangles denote the components in
this system, and the red arrows refer to the sensing signals. A push manipulation
process is described as follows. At the beginning, a planner configures the support
fingers by selecting proper controllers on them. After that, push commands are
given to the push finger. According to these commands, the finger pushes the
unknown object to roll onto the support fingers. In this process, the object is
tracked and recorded by a visual tracking system and the contact state is recorded
with the tactile sensors.
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feedback, haptic feedback, and tactile feedback. The visual feedback is provided
by the visual tracking system and received by the planner. It contains the changes
in the object’s location and pose. In this planner, the visual feedback is processed to
extract the visual features to estimate the performance of the push manipulation.
The haptic feedback refers to the tactile force on the push fingertip when the
finger pushes forward. It is a dynamic signal recorded during the whole process
of the push action. This feedback is collected by the tactile sensor on the push
finger and sent to the planner. In this planner, the haptic feedback is extracted to
haptic features to evaluate the push performance. This tactile feedback denotes
the instant contact force applied to the support fingers. It indicates the external
force applied to the stiffness controllers.3

1.4 Contributions

The contributions of this thesis are the following:

• A novel robotic manipulation concept is proposed. In this thesis, grasping
fingers and object are considered as a black box. In this black box, only
one finger (named push finger) receives the manipulation commands and
conducts active actions. Thus the manipulation is simplified to give the
push finger commands and let it push into this black box.

• A process named haptic exploration is introduced to assist the robot in ac-
quiring interaction knowledge of the in-hand system. Using the concept of
the black box, the push finger pushes into the box slightly and repeatedly,
and both visual and haptic feedback is collected in this process. The exper-
imental result reveals that the haptic feedback is sufficient to indicate the
right ’push’ direction for manipulation tasks. In other words, the interaction
knowledge of the system can be represented by the haptic feedback collected
in the pushing process. Furthermore, our haptic method shows a novel way
to extract the haptic features from the haptic signals in the pushing process.

• Pushing based manipulation models are developed to analyze our push and
support manipulation method. At the beginning, an elastic surface model is
put forward according to our black box concept. The surface consists of sup-
port fingers. The elastic properties of the surface are of critical importance
in manipulations. In this thesis, to modify the elasticity of the surface two
support fingers are proposed: fixed support finger and spring support finger.
The fixed support finger acts as a pivot around which the object rotates. Its
position is fixed with a position controller. The spring support finger per-
forms as an elastic spring. It presses the object against the other fingers and
helps to rotate the object with proper contact force. A single support model

3In this thesis, both the haptic and the tactile feedback refers to the contact force on the
fingertips. However, the haptic feedback is of more concern to the force in a period of time (also
called dynamic signal); whereas the tactile feedback refers to the contact in an instant of time.
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and a hybrid support model are proposed to illustrate push manipulations
based on combining different support fingers. With these two models, any
rotational manipulation can be achieved by controlling the push finger.

• It is proved that only one spring support finger is sufficient to compensate for
all the errors generated in 2D manipulation processes. More importantly, this
conclusion guarantees the stability of the system in our push manipulation.
This conclusion can be also extended to robotic grasping. Moreover, this
spring support finger improves the robustness of this system against external
disturbances.

• It is illustrated by the experiments that haptic sensing can be the domain
sensing channel to indicate the interaction state in robotic manipulations.
In this thesis, several manipulation experiments have been conducted, and
both visual and haptic signals have been collected. Furthermore, the re-
lation between visual and haptic feedback has been thoroughly researched.
Compared to visual and haptic feedback, the haptic can not only replace the
visual sensing but also provide more useful interaction information for our
push manipulations.

• Reinforcement learning algorithms are applied to improve our in-hand manip-
ulation skills. To our best knowledge, this is the first time that reinforcement
learning algorithms are applied to learn the robotic in-hand manipulation
through the manipulating experience of real robots. Our proposed learning
frame is very close to real robotic learning, and the result shows the potential
of reinforcement learning methods in robotic in-hand manipulations.

1.5 Outline

In this last section, the outline of the remaining chapters is presented. This thesis
is organized as follows:

• In Chapter 2, State of The Art˝, the state of the art of the robotic
grasping and manipulation are presented. First, both human grasping and
manipulation skills are introduced briefly. Then several well-known anthro-
pomorphic robot hands are introduced. And then a presentation and discus-
sion of the currently used robotic grasping and manipulation methods
is introduced. Finally, other multimodal perceptions and intelligent planning
methods used in manipulations are discussed.

• In Chapter 3, Manipulation Models˝, our manipulation method is given,
and related analysis models are built. First, the basic knowledge of contact
models and grasping matrix is introduced. Then a push and support
model is proposed to generalize our main idea to the manipulation. Then
two models extracted from the push and support manipulation model are
discussed specifically. They are the single support model and the hybrid
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support finger model. After his, an enhanced manipulation model is intro-
duced to perform final manipulations. At last, a short discussion is given to
illustrate the feasibility of 3D manipulations with our proposed manipulation
methods.

• In Chapter 4, Manipulation Experiments˝, manipulation experiments
have been performed to verify the feasibility of the models put forward in
Chapter 3. First the experiments’ setup is introduced. Then the push proce-
dure in each manipulation experiments is described. Then different robotic
manipulation experiments are carried out, including repeatability experi-
ments, a multi-push distance manipulation experiment, a multi-directional
manipulation experiment, a hybrid support manipulation experiment, and a
robustness experiment. At last enhanced manipulations are carried out to
illustrate the final manipulation performance of our proposed method; fur-
thermore, comparative manipulation results are given between our proposed
method and the traditional virtual frame method.

• In Chapter 5, Learn to Improve Manipulation Skills˝, learning meth-
ods are implemented to improve the robotic manipulation skills. First, a
short introduction to machine learning is given. Then, a manipulation sim-
ulator is constructed to simulate the visual and haptic rewards in manip-
ulations. Then stochastic policy reinforcement learning algorithms are ap-
plied to learn and optimize finger paths via interaction with the simulator.
Finally, in learning experiments, learning with unimodal or multimodal re-
wards is compared. The result reveals that the use of multimodal rewards
(visual-haptic) speeds up the learning process dramatically compared to us-
ing unimodal rewards (visual only).

• Finally, in Chapter 6, Conclusions˝, the main contributions of this re-
search are reviewed and our future work is presented.
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Chapter 2

State of The Art

Human hands can not only grasp objects but also can move or position objects with
their fingers. This skill of fingers’ moving and position objects is usually known
as ”in-hand manipulation”, ”dexterous manipulation”, or ”re-grasping”. In this
chapter, the state of the art is presented from human to robotic manipulation
problems.

In-hand manipulation is an active research topic. Good reviews can also be
found in [33] and [129]. Although plenty of works have been done in decades, it is
still a challenging topic in robotics [153], [31], [129]. This research involves multiple
areas, from human hands to robotic grasping and manipulation skills, including
capabilities of human hands, the design of robot hands, planning in manipulations,
multimodal sensing, the optimization of robot skills, etc.

In order to present an overview of related research. This chapter is organized
as follows:

• In section 2.1, human grasping and manipulation mechanisms have been
introduced. Firstly human grasping and manipulation configurations are
classified; then the human neural sensing mechanism is introduced briefly;
finally, an example of human manipulation is presented.

• In section 2.2, well-known robotic hands are introduced, and their sensing
capabilities are discussed.

• In section 2.3, state of the art models used in manipulations have been pre-
sented. There are three main streams in modeling robotic manipulation:
synthetic explicit interaction models, virtual object frame models, and con-
tact control models.

• In section 2.4, synergy-based manipulations have been introduced. Inspired
by coupled behaviors of human fingers, synergies are brought into the con-
trol of anthropomorphic robot hands to reduce the number of the actively
controlled joints.
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• In section 2.5, different modalities used in manipulations have been reviewed.
The two mostly used modalities in manipulations are visual and tactile sens-
ing. Visual sensing is often used for the object’s recognition and tracking;
tactile sensing is used to estimate the stability of the system and to adjust
the contact state of the fingers.

• In section 2.6, some other intelligent methods used in robotic manipulations
have been reviewed. The intelligent methods, especially machine learning
algorithms, offer another way to achieve and optimize the robotic manipula-
tions.

2.1 Human Grasping and Manipulation

The anthropomorphic robot hand is derived from mimicking the kinematics of
human hands and sensing capabilities. It is necessary to give a short introduction
to human hands and their working mechanisms for better understanding. In this
section, human grasping and manipulation are firstly classified according to human
daily life tasks; then the neural mechanisms involved in manipulations are briefly
introduced; at last, an example of human manipulation mechanism is offered.

2.1.1 Grasping Classification

As a fundamental step of manipulations, grasping plays a vital role in manipulation
tasks. Humans usually unconsciously perform different grasps in different grasping
tasks. Therefore, classifying the human grasps is an important step in the research
of grasping and manipulations. Many grasp categorization methods have been
proposed.

An early research on characterizing human grasps can be found in [125], where
Napier gave one of the simplest ways to classify human grasps into power grasp
and precision grasp. In a power grasp, both the fingers and the hand palm exert
pressure on the object. In this grasp, the object is wrapped by the hand to gain
as much contact area as possible. Typically, it is used in tasks of grasping large
objects in which no further manipulation is required. Differently, in a precise grasp,
only fingers make the contact and exert pressure on the object. Usually, fingertips
are used for these contacts. In this kind of grasps, the fingers are flexible in moving
the object, so that it is possible for fingers to manipulate the object dexterously.
Therefore, precise grasps are dexterous and have the advantage in manipulations
[163]. Moreover, Schlesinger proposed another categorization which divides the
objects’ shape into six geometry types: cylindrical, hook, tip, spherical, palmar,
and lateral [117]. Bullock and Dollar also proposed a taxonomy for human and
robotic manipulations based on whether there are slips at the contact or not [39].

Besides, a more practical grasp taxonomy was given by Cutkosky, on the basis
of the machinists’ grasps when they are working with hand tools and metal parts
in single-handed operations [50]. The Cutkosky’s grasp taxonomy is shown in
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Figure 2.1: Cutkosy’s grasp taxonomy [50].

Fig. 2.1, essentially, this taxonomy is an integration of the work of Napier and
Schlesinger. In Curkosy’s taxonomy, human grasps are firstly divided into power
grasps and precision grasps; and then further divisions are made based on the
shape of the object. Finally, 16 grasp types are mentioned in Curkosy’s taxonomy,
of which seven are precision grasps suitable for further manipulations.

Furthermore, based on Curkosy’s taxonomy, Zheng et al. investigated one
housemaid and machinist respectively for the using frequency of different grasp
types in both mechanical shop tasks and daily household [186]. Their results
denote that about only six kinds of grasps are used to undertake 80% household
tasks. Their results show that precision grasp time for housemaid and machinist
is 19%, 34% respectively. Furthermore, the prismatic grasp takes 42% of precision
grasps for the housemaid but 38% for the machinist. Therefore, in this thesis,
we focus on precision grasps, especially the prismatic precision grasps,
which is applied to the first grasping step in our manipulations.
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2.1.2 Manipulation Classification

In-hand manipulation is also called dexterous manipulation. The terminology ’dex-
terous’ in manipulations is used to represent the capability of changing the object’s
pose from one configuration to another in the workspace of the object and hand.
According to different assumptions about the contact model, there are two pro-
cesses to achieve this dexterity: re-grasping/finger gaiting and sliding/rolling [31].

Re-grasping/finger gaiting is a practical method to achieve dexterous manipu-
lations for simple hands (like grippers with two fingers or hands with a few DOFs).
In this method, fingers may sometimes detach from the object during the manipu-
lation [156]. After the detachment, some new contacts will be achieved in the next
grasping steps. This method involves the sequent steps of grasping and releasing
the object. However, re-grasping/finger gaiting has drawbacks. During this ma-
nipulation process, an additional support plane is required for holding the object
in the releasing steps. Besides, it takes more time for the sequent steps of grasping
and releasing compared to other methods.

In sliding/rolling, the contact between fingers and object is allowed to slide
during manipulations [47]. In this method, contact sliding and rolling models are
often used to control the contact change. That is quite a big challenge in robotics
and elastic analysis, because the presence of rolling contacts causes many changes
in the robotic system.

2.1.3 Tactile perception in Human Manipulations

According to Johanssons research [85], different types of tactile signals have been
fully used by humans in manipulation tasks, and the information provided by the
visual and proprioception afferents are less essential. Therefore, in this research,
we mainly concern the tactile information in robotic manipulations.

Neural Mechanisms Involved in Human Manipulations

In humans’ manipulations, the tactile information is mainly provided by four types
of tactile afferents on their hands: FA-I (fastly-adapting type I), SA-I (slowly-
adapting type I), FA-II (fastly-adapting type II) and SA-II (slowly-adapting type
II). More details can be found in [170].

FA-I is sensitive to the dynamic skin deformations with high frequency (5− 50
Hz). SA-I is sensitive to the skin deformations with lower frequency, hence it has
responses to the sustained deformations. Both FA-I and SA-I afferents are mainly
distributed in the skin of fingertips. Moreover, compared with SA-I, more FA-I
afferents are found in the skin of fingertips. This reflects that the skin deformations
with high frequency are more important than the skin deformations with lower
frequency in the fingertips. The events detected by FA-I are skin forming/breaking
contact with objects and scanning across a textured surface, etc. [86].

FA-II afferents can be easily excited by transient mechanical events, and they
are to detect hand’s holding and breaking of the contact with an object. Moreover,
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some FA-II-like afferents are in some fibrous tissues (such as muscle fascias and
joint capsules and ligaments) in which they play the role of proprioceptors [52].
SA-II afferents can be excited to lateral stretching of the skin, and it is to detect
the tangential shear strain in the skin during object manipulations [99], [116].
Different from FA-I and SA-I, FA-II and SA-II afferents terminate deeper in the
hand’s skin with a lower and roughly uniform density.

Human Grasp and Manipulation Example

Neural scientists have thoroughly researched the neural mechanisms of human
grasps and manipulations. In [85], Johansson et al. researched human behaviors
of object picking up. In his research, a human picking up behavior is divided
into seven distinct phases: reach, load, lift, hold, replace, unload, and release. In
the ’reach’ phase, humans close their hands until their fingers reaching the object.
The change between ’reach’ and ’load’ phase is trigged by the signals provided by
the FA-I (Meissner) and FA-II (Pacinian) afferents in fingers. In the ’load’ phase,
humans close their hands to increase the grasp force to a target value. This target
force value is estimated through the prior knowledge about the object and tactile
information collected during the interaction. Hence, this process is mainly based
on the information provided by the SA-I (Merkel) afferents. This ’load’ phase ends
after a stable hand posture has been achieved. After the object is grasped, the
following phases are ’left’, ’hold’, and ’replace’, where humans lift up the object
with their arms, hold it in the air, and manipulate it to a new position. Certainly,
in these phases, the human hands conduct corrective actions to adjust the grasp
force for a stable grasp. Hence, in the ’lift’ and ’hold’ phases, detecting of slips
is of critical importance for the success of the task. As researched by Srinivasan
et al., the contact information provided by the FA-I and FA-II afferents is used to
detect both fingertip slip and new object contact [155]. In the ’place’ phase, the
object is put back to the table. During this phase, contacts between the object
and the table must be precisely detected. In the ’release’ phase, the object is set
down properly. Before the object is fully released, the contact information of the
grasp is also provided by the SA-I afferents.

In summary, according to Johansson’s experiment, it can be concluded that
with tactile sensing capabilities and hand’s corrective reactions human hands can
adeptly hold and release a very wide range of objects without crushing or dropping
them. Indeed, humans typically apply a grasp force which is only 10% to 40% more
than the minimum amount needed to avoid slip, thereby achieving the dual goals
of safety and efficiency [147], [85]. Inspired by human grasp mechanism, several
research groups have developed autonomous robotic grasping and manipulation
systems, where tactile sensing was adopted to guide the corrective actions of the
robotic hand [147], [82], [56].
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Figure 2.2: An anthropomorphic robot hand: Shadow Hand.

2.2 Anthropomorphic Robot Hands

For numerous and complicated manipulation tasks, powerful and flexible robotic
hands are required. Operability is one of the most important keys to the success of
intelligent grasp and manipulation tasks. The anthropomorphic hands are designed
by mimicking human hands partly or totally [31]. They are similar to human
hands in aspects of kinematics, contact attributes, etc. [29]. With these hand,
it is easier for us to map human nature manipulation actions to robotic hands
directly. In [29], Biagiotti estimated the dexterity of anthropomorphic hands from
different elements, such as morphological features, task planning strategies, sensory
equipment, control algorithms, etc. Many famous robot hands have been evaluated
according to the proposed aspects. In this research, we define the anthropomorphic
hands as hands whose kinematic and size are similar to the human hands (with 4
or 5 fingers).

2.2.1 Anthropomorphic Robot Hand

As introduced in [31], robot hands are systems with two or more fingers on a
palm. The general robot hand can be divided into three types according to the
number of fingers. First is the single-actuator parallel jaw, such as Kuka YouBot
[7], [34], Willow Garage PR2 [8], [49], etc. Second is the simplified multi-finger
hand, such as Barret Hand [3], [167], Robotiq Adaptive Gripper [1], Kinova KG-3
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[6], Schunk Hand [10], iHY Hand [127], etc. Third is the anthropomorphic robot
hand which is designed by truly mimicking a human hand, such as Utah/M.I.T.
Hand [81], Shadow Hand [5], [148], Robonaut Hand [9], [115], UB Hand [114],
[119], Karlsruhe Hand, [62], [61], DLR/HIT Hand [113], KITECH Hand [21] and
Schunk SVH hand [11], etc. One of the most famous anthropomorphic robot hands
is the Shadow Hand, as shown in Fig. 2.2.

2.2.2 Sensing Capabilities of Robotic Hand

Nowadays, sensor systems are usually equipped in robotic hands to capture mul-
timodal information (for example, vision, sound, tactility, location) in tasks. To
some extent, its sensing ability is a simulation of the human cognitive process.

Human grasp forces highly depend on the coefficient of the friction [41]. For
viscoelastic materials like human skin, the main mechanisms of the friction are
adhesion and hysteresis. Adhesion refers to the tendency of adhering at the as-
perities of the surfaces, and hysteresis denotes a material’s delayed response to
the forces applied on it. Therefore, increasing the contact area helps to increase
the coefficient of friction during grasping [166]. That is why almost all robotic
fingertips are made of or covered by soft materials like silicone rubber.

2.3 Physical Model-based Manipulation

In robotic manipulation systems, it is important to model the details of robot-
object interaction properties which requires the specific knowledge of the system
from precise object-hand interaction models [31]. Lots of manipulation models
have been proposed for robotic manipulations.

In this section, manipulation models are introduced, according to how the
interaction is modeled. First, explicit interaction is introduced, where the finger
and the object are modeled respectively and their contact interaction constraints
are considered. Then a virtual object frame is introduced, where the object is
modeled on a geometry virtual frame but contact constraints are ignored. At last,
special contact models are represented.

2.3.1 Explicit Interaction Model

Modeling the interaction explicitly is one of the most intuitive methods in robotic
manipulations. In this method, object-hand interaction is analyzed explicitly.
Nowadays, many impressive robotic manipulations have been achieved through
building explicit models. One of the most impressive results is high-speed ma-
nipulations [64], [152], [112], where the manipulations were completed through
controlling object’s motions dynamically. This manipulation system tracked the
state of the object accurately and calculated the hand’s actions via an explicit
model, as shown in Fig. 2.3. Besides, a dynamic single finger manipulation model
is presented to roll a rigid dynamic circular object via regulating manipulation
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Figure 2.3: An explicit model for high-speed manipulation [64].

force and the object’s position [67]. Ozawa et al. proposed a method for parallel
surface object control without sensing the object and the tactile force [133].

The explicit models are based on the assumptions that the robot and its envi-
ronments can be explicitly modeled. However, in most real manipulation scenarios,
there are too many uncertainties in robotics. Generally, these uncertainties stem
from several ways. One is because robotic hands are very complex and their con-
trol accuracy is not as high as traditional industrial robots. Most anthropomorphic
hands have more than 10 DOFs. The grasping and manipulation systems are often
redundant. This causes more uncertainties into this system. Moreover, modeling
the physical contact is still a challenge, since both grasping and manipulations
are sensitive to the contact state. Besides, in robotic manipulations, the inter-
action state is sometimes not easy to perceive. In object visual tracking, images
are easy to be occluded by fingers so that the tactile state is hard to perceive in
high density. In a word, explicit models are labor intensive and sensitive to model
parameters. Sometimes planning under contact conditions is impractical due to
the computational complexity and the lack of precise robust dynamic models.

Without precise models, adaptive force control methods show another way to
robotic manipulations. In robotics, contact force plays an important role in com-
pensating these errors in the ’poor’ models. In [111], Li and Kao modeled dexterous
manipulation with soft contacts and a stiffness controller. Biagiotti et al. designed
a Cartesian impedance controller for in-hand manipulation [28]. Generally, the
contact force is sensitive to the contact state, such as the fingers’ relative position,
contact area, the object’s attributes, etc. In force based manipulations, all grasp-
ing fingers are equipped with force control algorithms, which assign proper contact
force to fingers. However, in an anthropomorphic grasp, this method sometimes
makes the system too complex to be implemented.
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2.3.2 Virtual Object Models

To avoid building these precise explicit models, generally, two approximate meth-
ods were proposed: virtual frame and virtual linkage.

Virtual Frame

In [161], instead of using any information of the real object’s position and orienta-
tion, the object is defined by a virtual frame. In this method, only internal sensors
are adopted such as joints’ angle, angular velocity, and torque. Obviously, a virtual
object frame is defined to represent the position of the object. It is a centroid of
a triangle consisting of each center of the fingertips. The concept of virtual object
frame is suitable for senseless grasps and manipulations which aim to manipulate
an object not precisely.

Virtual 
position

Object

Ov

P1

P3

P2

F1

F2

F3

Figure 2.4: Object virtual frame.

In this method, the object position is replaced by a virtual frame xo ∈ R3,
which is assumed to be fixed at the center of each fingertip, as shown in Fig. 2.4.
The virtual object position is:

xo =
1

3
Σ3
i=1xi, (2.1)

where xi denotes the position of each fingertip; and i = 1, 2, 3 means there are
three fingers in this grasp.

Furthermore, to improve the manipulation skills, an adequately modified vir-
tual frame is introduced [162]. In this virtual frame, the position of the virtual
frame changes according to the normal direction of desired grasp force fdi at each
fingertip, as shown in Fig. 2.5. Therefore, the position of the virtual frame xo is:

xo
M
=
Σ3
i=1(fdixi)

Σ3
i=1fdi

, (2.2)

where term fdi > 0 refers to the normal desired grasp force.
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Figure 2.5: Object virtual frame.

Virtual Linkage

Apart from grasp posture, force distribution on each finger is another important
aspect in grasp and manipulation tasks. Generally, internal force controller based
on the grasping matrix is a widely used method in robotic manipulations [124],
[35]. It requires the specific information of the object and the contact position
from the object-hand models.
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Figure 2.6: A kinematic structure of virtual linkages.

At the object level, the grasp force is assigned by the robot hand under the
friction and stability constraints. To model the internal grasp force, a concept
of virtual linkage is introduced in [177]. In this concept, a virtual linkage is a
mechanism with 6 degrees of freedom in n-grasp manipulation tasks. It is used to
model the internal force and the moment applied on the object. In manipulations,
the internal grasp force is dependent on object’s geometry and motion. Forces
and moments applied at a virtual linkage generate joint force and torque at its
actuators. A kinematic structure of the virtual linkages is shown in Fig. 2.6, in
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Figure 2.7: Friction cones.

which the object is grasped firmly and the actuated prismatic joints are connected
by passive revolt joints.

Similarly, in [157] Stramigioli introduced a grasp model based on virtual link-
ages. In his method, there is a virtual object connected by grasping fingertips.
The virtual object consists of several spatial springs which are determined by the
virtual position of the fingers. The object pose is determined by considering the
net forces and applying these to the virtual object. In [180], Wimböck et al. apply
intrinsically passive control (IPC) into Stramigioli’s virtual object model to achieve
object’s motions and specific grasp force. Its control law takes the desired object
frame and desired grasping forces as input. It is passive, and the stability can be
achieved even when a finger looses contact with the object. In [179], Wimböck et
al. also specify the damping terms in the stiffness control of robot hands. With the
model of the virtual object frame, Li et al. measured the manipulation impedance
in a human grasp and applied the inspired impedance into conducting robotic
grasping and manipulations [109].

However, the method of the virtual linkage does not take the contact constraints
on the fingers into account. Furthermore, the object’s manipulation can not be
guaranteed because parts of dynamics are not considered, like contact deformations
on each fingertip and the object surface [161].

2.3.3 Contact Models

Since the object is manipulated by fingers through the contact, contact models
play an important role in both grasping and manipulation tasks.

Friction cone is one of the most used contact models in Classical Mechanics. In
this model, the non-slip boundary of the friction is represented by a surface with
the shape of a cone. In order to achieve a stable contact, the contact force Fc has
to stay in the cone, as shown in Fig. 2.7. A detailed discussion of the friction cone
model is in section 3.1.

The friction cone model is simple and efficient. Because it ignores the defor-
mation on the contact surface. However, most grasp and manipulation tasks are
carried out by soft fingertips whose surface is made from soft materials like silicon
rubber, where large contact force may change the shape of the fingertips dramati-
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d

Figure 2.8: Elastic hemispherical fingertip contact model [80].

cally. Hence, the deformations on the fingertips can not be ignored. Elastic contact
models consider the deformations on the contact surface. For non-adhesive elastic
contact, one of the most famous theories is proposed by Hertzian [87]. Hertzian’s
contact model contains two elastic objects with arbitrary curved surfaces, where
the normal contact force generated between an elastic sphere and a plane is ex-
pressed as:

F =
4
√
R

3
(

E

1− λ2
)d

2
3 , (2.3)

where term R denotes the radius of the elastic sphere; term E is Young Modulus;
λ refers to Poisson ratio, and term d is the maximum displacement of the sphere.
Moreover, Kao improved Hertzian’s model with abstracting two parameters cd and
ς [92]. As a result, Eq. 2.3 changes to:

F = cdd
ς . (2.4)

Furthermore, a straightforward contact model concerning hemispherical soft
fingertips has been proposed by Inoue and Hirai [80]. They modeled the elastic
force with potential energy equations. The deformation of the soft fingertip is mod-
eled with an infinite number of virtual springs. The elastic hemispherical fingertip
contact model is shown in Fig. 2.8. This model reveals that the relationship be-
tween the fingertip’s deformation and the contact force concerns two variables: the
maximum displacement of the fingertip and the orientation angle of a contacting
object. Thus the final contact formula is:

F =
πEd2

cos θp
, (2.5)

where term E denotes the orientation angle of the contacted object. Besides, con-
tact models can also be used to represent the constraints on rolling contact in
theoretical models. Suguru et al. proposed a contact model, where the deforma-
tion of soft fingertips was solved from the angle of elastic potential energy by the
Lagrangian function [18].

In most manipulations, contact points on the objects do not move. However,
in some cases, the contact points may move on the surface of the object in the
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Figure 2.9: The rolling contact cases in [129]. u1 is the contact frame fixed on
the object 1 (finger), and u1 is the contact frame fixed on the object 2 (manip-
ulating object). After rolling forward, the new contact frames will be u′1 and u′2
respectively.

manipulation. According to the research in [129], the contact can be divided into
two cases: rolling and sliding in manipulation problems. For a pure rolling in the
contact plane, the constraint model is considered. The contact frames are built as
shown in Fig. 2.9, where frame u1 is fixed on the object 1 (finger surface), whereas
frame u2 is fixed on the object 2 (a plane). Each frame has velocity v = (vx, vy, vz)

T

and angular velocity ω = (ωx, ωy, ωz)
T . As assumed in most manipulations, where

thee is no relative velocity in the normal direction of the contact surface. When the
finger rolls forward (along with the direction vx), the constraint makes the linear
velocity equal to zero, vx = 0, vy = 0, vz = 0. On the other hand, if there is no spin
on the object 1, there are two more constraints on angular velocity, ωx = 0, ωz = 0.
Hence, the only degree of freedom for the finger surface frame (u1) is rolling in the
angular velocity ωy 6= 0.

Furthermore, a specific contact spot model has been proposed in [20] to get the
contact force in senseless grasping and manipulation. When a soft finger or a soft
object contacted, the contact spot adjusts to the material and shape of fingers and
object. Moreover, the stability of soft contacts has also been discussed in [20]. The
contact spot model is shown in Fig. 2.10, and the contact spot center is expressed
as:

P =
1∫

S
‖δf(s)‖ ds

∫
S

‖δf(s)‖s ds (2.6)

where term δf(s) refers to an infinitesimal force distributed over the contact area
S.
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Figure 2.10: Contact spot model.

2.4 Manipulation with Synergies

There are more than 20 joints in a human hand. However, the joints’ actions are
not independent. On the one hand, it is from the mechanical coupling. Most
tendons are internally connected in human hands. On the other hand, neural con-
nections also play an important role in it. For example, Central Nervous System
(CNS) controls dozens of muscles coordinately in achieving a grasping posture.
This type of muscles’ coordinate control is called synergy. Various hand’s actions
can be obtained through combining weighted postural synergies. In [32], a good
overview about modeling natural and artificial hands with synergies is given. The
explanations of human full-skilled grasp abilities are that humans acquire grasp and
manipulation skills through practices day by day, as a result, their full-skilled abil-
ities are improved little by little unconsciously. Accumulated day by day, humans
learn to cooperate their joints to work coordinately. From the view of numerical,
synergies simplify the large space of joints into a much smaller control space.

It is revealed that not all of the finger joints of the human hand are controlled
independently. As it was tested by Santello et al. in [150], in human grasp tasks,
the change of hand postures are not continued, but rather discrete. Thus accord-
ing to Santello’s experiments, there is a considerable reduction in the number of
controlled DOFs. Flavigné and Perdereau consider the relationship between mus-
cles and DOFs of the hand to model synergies mathematically from an existing
taxonomy of grasps [60].

The synergies’ research is not only limited to grasping research, but also to
the research of human manipulation. Thakur et al. researched the synergies in
different manipulation tasks (unconstrained haptic exploration) [164]. In their
research, 9 synergies were identified and they defined a 9-dimensional space. All
manipulation action can be considered as a trace or curve inside this 9-dimensional
space.

Gradually, the research results of the human hands’ control have been applied
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to design and analyze robotic hands. One of the first research applying synergies
to robotics was done by Ciocarli et al. [46]. Ciocarli et al. proposed a general
approach to reduce the dimensions for robotic hands with synergies [46]. In his
work, each hand posture is combined by different ’eigengrasps’ which are the prin-
cipal components of grasp postures. One eigengrasp is a d dimensional vector and
it can be described as:

ei = [ee,1 ee,2 · · · ee,d]
T , (2.7)

where term ee,d denotes one eigengrasp at the i−th degree of freedom. Therefore,
a hand posture p is given by:

p =
b∑
i=1

aiei, (2.8)

where term ai is the i-th element of amplitude vector, ai ∈ R. Furthermore,
Bernardino et al. generated hand postural synergies from dexterous robot hands
teleoperated by a human via a data glove in different precision grasping tasks [27].
Postural synergies were successfully applied in anthropomorphic hands’ grasping,
where twelve objects of different shapes and sizes were grasped based on eight
different precision grasps [76].

Besides, in [65], Gabiccini et al. focused on the distribution of the optimized
grasp force with the limit of synergies. He considered the elasticity in the grasping
system and proposed a soft under-actuated model to optimize the grasp synergies.
In their model, for a synergistic displacement, input command δσ and joints refer-
ence position qr have a linear relationship. The linear map S ∈ Rn×s (1 6 s 6 n):

δqr = Sδσ. (2.9)

Moreover, to evaluate the distribution of the grasp force, in [65] the cost function
is defined by:

f = GR
Kωe + δfhrs + δfhos , (2.10)

δfhrs = Esy, (2.11)

δfhos = Psz, (2.12)

where term GR
K = KGT (GKGT )−1 ∈ Rc×6 is K-weighted inverse of grasp ma-

trix G. It minimizes potential energy 1
2
δξT0fKξ0f by fixing GR

Kωw [75]. Matrix
Es ∈ Rc×es is a basis of active internal force δfhrs which can be controlled by the
synergistic displacement δσ. The matrix Ps ∈ Rc×ps is a basis of passive internal
force δffrs , which corresponds to the contact force reloaded at the beginning of
the grasp operation. Therefore, the optimal distribution of the grasp force can be
achieved by minimizing the cost function with respect to y ∈ Res . The correspond-
ing variation of the joint torque is

δτ = JT (I−GR
KG)KJSδσ̂, (2.13)

and the associated variation of synergistic force is

δη = ST δτ. (2.14)
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Moreover, not only in robotic grasping research but also in manipulations syn-
ergies play an important role. Xu et al. applied the synergies to the robotic
manipulation and the robotic hand’s design. They designed an under-actuated an-
thropomorphic hand with two synergies synthesized from an in-hand manipulation
task [182]. Planetary gear and flexible shafts are used to achieve the control of
19 hand joints. With these two synergies, the task of rotating two rehabilitation
training balls has been performed successfully. Catalano et al. also developed a
robotic hand (Pisa/IIT SoftHand) with adaptive soft synergies [42]. This hand
consisted of 19 joints and one actuator, and the hand’s soft synergies are achieved
with innovative articulations and ligaments, which make the hand very soft and
robust. Li et al. also used postural synergies to develop a myoelectric prosthetic
hand, where linkages and pulleys are used to realize two postural synergies [110].
Furthermore, in their prosthetic hand, six channels of surface electromyography
(SMEG) signals are used as the input of his system.

2.5 Multimodal in Robotic In-hand Manipula-

tion

Tactile and visual perceptions are two most frequently used sensing channels in
human manipulations. In robotic manipulations, they are of great importance as
well. Visual sensing has been widely used to estimate the object’s shape and pose.
However, the use of the visual sensing is still challenging in robotic manipulations
due to its poor performance in the case of occlusions by fingers. Even small errors
in an object pose may cause failures in grasp and manipulation. Usually, these
failures are almost unavoidable at the stage of grasping execution when the hand
equips no other sensors. Therefore, tactile sensors play a significant role in a
multi-finger robot hand system. Usually, tactile sensors are employed to measure
the force exerted on the fingers.

Vision Based Manipulation

Visual sensing is an important sensing channel in robotics. It has been widely used
to estimate the object’s shape and pose. With cameras, well-known applications:
visual servo and visual tracking are wildly applied in robotics [175], [43]. In robotic
manipulation, the main way to apply the visual sensing is the recognition and
tracking of objects.

In [106], Kragic et al. proposed a robust vision system for robotic manipulations
in real domestic environments. In their system, both foveal and peripheral vision
is used to provide depth visual information. The information of object’s visual
appearance and geometric is applied to object’s recognition and localization in the
realistic indoor tasks. In the task of catching a lightweight object, Murakami et al.
developed a high-speed visual tracking system for robotic re-grasping. Muñoz used
visual servo techniques in the task of 2D manipulation [123]. A novel framework
has been proposed in [84] by using feedback from visual and tactile sensors. The
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Figure 2.11: Three kinds of fingertip sensors.

essential component of this framework is a visual controller, which tracks the mo-
tion of objects by both considering the model of the robot hand and the grasping
force on fingertips. Gao et al. proposed a pure visual haptic prediction model
that enables robots to ’feel’ the object without physical interaction. With a deep
model, they fused the visual and haptic features generated from visual CNN and
haptic CNN for object’s classification [66].

Touch Based Manipulation

Tactile sensing is the other most important modalities in robotic manipulations,
since the robotic manipulations are mainly based on the contact interaction be-
tween the robot hand and the object.

In [107], tactile sensors are defined as devices which are used to measure the
object’s property and contact events. In [163], authors divide tactile sensing into
two type: passive and active sensing. Passive sensing concerns static tactile data.
On the contrary, active sensing concerns tactile data during hand’s actions. Usu-
ally, tactile sensors are mounted on fingertips. In Fig. 2.11 three basic principles
of fingertip sensors are shown [163].

However, limited by sensors’ sensibility and size, most current tactile sensors
are not suitable for the applications of the robotic manipulation. Therefore, many
researchers developed various advanced tactile sensors [181], [57], [122], [40], [14].

Besides tactile sensors, the processing of tactile data is another important part
in tactile sensing as well. To deal with tactile data which is relatively high di-
mensional and redundant, image processing method was borrowed [26]. The two-
dimensional tactile data is considered as an image and it is described by:

mp,q =
∑
z

∑
y

zpyqf(z, y) (2.15)

where terms p and q denote the order of moment; z and y represent the horizontal
and vertical position on the tactile patch; and term f(z, y) is the contact force at
position (z, y).
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Generally, there are two general purposes for tactile sensing. One is to gain
grasp state identification, the other is contact force control. For grasp state iden-
tification, the grasp or manipulation state is divided into several different classes.
For example, object’s dropped and non-dropped classes. In these applications, the
tactile data is often combined with visual information and fingers’ position, etc. In
manipulation recognition research, the tactile data is a supplement to the visual
system in the task of understanding and extracting the motion patterns of the
hand [77], [174]. With training algorithms, the combined data is used to estimate
the upcoming grasp state to keep the manipulation away from failing. In [26],
the grasp stability was learned from tactile data acquired at the end of the grasp
sequence after the final grasp is applied. In their recognition model, AdaBoost
(Adaptive Boosting) and SVM (Support Vector Machine) are implemented to as-
sess the stability of the grasping system. Furthermore, sequences of tactile data
are also used in HMMs (Hidden Markov models) to perform a time-series grasp
stability assessment in manipulations. In [102], Kojima et al. used both motor
angles and contact state to predict the contact stability with an SVM algorithm
while performing successfully and unsuccessfully manipulations. Afterward, the
sequence of the contact state is used as input to a stability assessment model built
with a neural network.

For contact force control, control algorithms are required to plan and control
the motion of fingers to maintain the contact force at the desired value and to move
the object to a goal state. Inspired by human control mechanism, Joseph et al.
presented a novel grasp controller based on tactile sensing [147]. In this controller,
both fingertip pressure arrays and hand-mounted accelerometer are used to mimic
humans’ SA-I, FA-I, and FA-II channels. In [108], based on the balance of the
tactile force, Lei and Wisse employed an optimization method to select a suitable
grasp region in fast unknown objects grasping tasks. In [179], [180], and [177],
tactile force played a role in connecting the object and fingers together as special
virtual linkages. With the concept of virtual linkages, both grasping and dexterous
manipulation are transformed into distributed contact force control problems.

2.6 Intelligent Manipulation

Nowadays, the term Artificial intelligence (AI) inspires us with its countless ex-
traordinary results in various areas. In the Encyclopedia Britannica, a definition
of AI is given by Artificial intelligence (AI), the ability of a digital computer or
computer-controlled robot to perform tasks commonly associated with intelligent be-
ings ˝[48]. In a word, it aims to build an agent, which can generate proper actions
according to its environments state.

AI has been used in a wide range of fields including robot control [38], ma-
chine vision [154] stock trading [168], E-mail processing [74] games [120], medical
diagnosis [105], even music generator [169], [54], etc. In computer science, it is an
useful tool for many difficult problems [143], [149].
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2.6.1 POMDP

Grasping and manipulation tasks sometimes are difficult to be conducted reliably
even in laboratory environments. The problems lie in the limited sensing abilities
and the uncertainty of the control system. Therefore, the Partially Observable
Markov Decision Process (POMDP) is introduced into the multi-finger robot hand
systems. One of the first implements of POMDPs can be found in [79], in which
the uncertainty state of robotic manipulation is modeled with POMDP. In the
tasks of robotic pick-and-place operations, they assumed the robot’s position is
reasonably certain, but the object’s information (pose and shape) are uncertain.
Based on POMDPs an optimal control stochastic policy was proposed to solve a
simple grasp problem in simulation. In [78], POMDPs were used in the planning
of interactive non-prehensile manipulations. Pajarinen and Kyrki proposed an
approach which planned over different possible object compositions to model a
noisy partially viewed object [134].

2.6.2 Machine Learning

Machine learning is a research of methods aim to build an agent and improving it
through interacting with its environment. Generally, there are two categories of
learning methods: supervised learning and reinforcement learning. 1

• Supervised learning means telling the agent how to do something. In
this learning, the corresponding desired output is obtained in advance and
learning parameters are modified by the deviation of the output.

• Reinforcement learning means the agent learns how to improve its act
according to an observation of its environments. In this learning, every input
has a corresponded critical reward, and the learning parameters are modified
by the critical rewards.

Supervised Learning: learning from demonstration

Obviously, in supervised learning, additional training examples are required before
learning. Hence it is suitable for those problems where training examples can be
easily obtained.

One simple way to describe robot behaviors is based on ’IF-THEN’ rules, which
can be transferred to similar tasks with only slight local changes. The learning of a
B-spline fuzzy controller was used in robotic manipulation tasks, from and to which
the control rules were extracted and imported [184], [185]. In order to extract
the ’IF-THEN’ rules, samples are often collected from human’s demonstrations.
It is a practical method that has been wildly implemented in many human-robot
interaction (HRI) tasks. Learning from demonstration (LfD) is an efficient method
for transferring human knowledge to robots. After the transformation, with the
acquired knowledge, the robots can complete tasks directly.

1In some books, the reinforcement learning is included in the unsupervised category.
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Figure 2.12: The architecture of control policy in LfD (Learning from Demonstra-
tion).

For the research of LfD, a comprehensive survey can be found in [17], where the
LfD is considered as Supervised Learning problems. In LfD, the task is described
by how to learn a function which transfers actions of teachers to robots. Especially,
in LfD the training data is collected from tasks demonstrated by teachers. In [17],
LfD is segmented into two fundamental parts: gathering examples and deriving a
policy from them. On the one hand, a teacher conducts the desired behaviors as
examples for the robot; on the other hand, with the examples, the robot derives
a policy to reproduce the demonstrated actions. In gathering examples part, with
sensors, many desired behaviors of the teacher are recorded as examples. These
examples consist of state-action pairs, which can be used by the students to achieve
successful executions on robots. In deriving a policy part, they want to get an
approximation to the state-action mapping (mapping function), to learn a model
of the world’s dynamics or to derive a policy from the information to minimize the
parameters tuning by a few training examples.

In LfD problems, the world is modeled by states S and actions A [17]. There
is a probabilistic transition function T(s′|s, a : S×A× S −→ [0, 1]), which maps
the state to actions. In some tasks the state is partial observable, thus observable
state Z is used in mapping learning instead of state S,. Therefore, the mapping
is M : S −→ Z, a policy π : Z −→ A is introduced to generate actions based
on observations of the environment. In the teacher’s execution, both states z and
selected actions a are recorded as one demonstration di ∈ (zij, a

i
j), z

i
j ∈ Z, aij ∈

A, i = 0 · · · kj. Apart from other learning approaches, the demonstrated data set
D is made available to the learner. From the data set D, a policy is derived to
enable the learner to select a proper action based on the current state. A typical
architecture of control policy in LfD is shown in Fig. 2.12.

Vinayavekhin et al. built a task primitive model treating a human manipu-
lation movement as a sequence of task primitives with the help of a recognition
algorithm [172]. In [104], Kondo et al. conducted a manipulation through a se-
quence of manipulation primitives. They used dynamic programming to recognize
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Figure 2.13: Reinforcement learning where an RL agent interacts with its environ-
ment.

the contact state between the object and the human hand in a manipulation task.
With this system, the contact regions on the operator’s hand are detected. Contact
based manipulation primitive templates were built through the manipulation ex-
periments; furthermore, Dynamic Programming was used to recognize the contact
state out of the manipulation primitives by comparing the similarity between the
contact input sequence and the primitive templates. Similarly, in [45] Cheng et
al. suggested a kind of human-like action gist to represent the motions of human
hands in in-hand manipulation tasks. In this method, a Gaussian Markov Random
Field was used to processes the hand actions sensed with a data-glove.

Reinforcement Learning: learning from trial and errors

Rather than from being explicitly taught, reinforcement learning (RL) is a learning
method which concerns problems that an RL agent interacts with its environment
and its consequent actions and critic rewards are analyzed to improve the agent’s
performance [69], [88]. During these interactions, the agent learns to select proper
actions according to its past experiences (exploitation) or with some new trials (ex-
ploration). In this process, only numerical rewards are used to critic the agent’s
actions with the purpose of maximizing the reward over time. A schematic rein-
forcement learning model is given in Fig. 2.13

Different from supervised learning where an agent learns from a teacher and
the corresponding desired output is given, in reinforcement learning there is no
teacher. In other words, the correct input-output pairs are not necessary in RL;
and it focuses on online performance by trading off exploration and exploitation.
Systematic introductions to reinforcement learning can be found in [88], [24], [159].

The dominant approach of this algorithm is the value-function based approach
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in the early years. Many planning, controls, scheduling, and game tasks were
solved with this value-function based reinforcement learning methods. However,
for the problems with infinite state space or the continuous action, this method may
not work. Fortunately, combined with neural networks, policy-based reinforcement
learning was proposed in the past decades. Several impressive RL implements have
been obtained with policy-based RL algorithms. For example, hitting a baseball
with an anthropomorphic robot arm was presented in [139], where the gradient
policy method was applied into RL for motor primitive control. A successful
autonomous aerobatic maneuvers control was achieved on a real helicopter [13],
where RL was used to optimize the flying dynamic model and the reward function.
A brain-machine interface (BMI) was designed in [55] based on RL, where the BMI
control algorithm learned to complete tasks from interacting with the environment.

2.6.3 Learning for State Estimation

In real robotic applications, sometimes the state of the robotic system is hard to
be observed directly.

In [102], Kojima et al. proposed a probabilistic learning framework to assess
the grasp stability before and during executions with online sensory and proprio-
ceptive data. They built ’one-shot’ recognition models with AdaBoost (Adaptive
Boosting) and SVM (Support Vector Machine) to demonstrate the ability to learn
the grasping stability. Once the final grasp has been applied, the tactile data was
acquired as the input of ’one-shot’ recognition models to assess the stability. Be-
sides they also constructed two HMMs (Hidden Markov models) to classify the
stability of a grasp sequence for ’temporal recognition’. One HMM represented
stable grasps and the other one represents unstable grasps. By evaluating their
likelihood a ’temporal recognition’ can be achieved. Similarly, in [26], another
probabilistic learning framework was proposed, where AdaBoost, support vector
machines (SVMs), and hidden Markov model (HMMs) were employed to assess
grasp stability with tactile data. In [109], Li et al. used Gaussian Mixture Model
(GMM) and Support Vector Machine (SVM) to learn a grasping stability estima-
tor. With this estimator, objects’ physical properties can be perceived, including
the object’s weight and the friction on contact areas. In [63], Funabashi et al. pro-
posed a learning method to learn to manipulate various sized and shaped objects
with a teleoperated anthropomorphic robot hand via a data glove. In their method,
shallow artificial neural networks and deep learning were employed to produce the
robot’s next joints’ state from current joint state and contact state. To implement
the network, the learning process was achieved by applying a mini-batch stochastic
gradient descent method with 300 successful trails. In [23], Baier-Lowenstein and
Zhang presented an automatic value cut-off reinforcement learning algorithm to
learn to grasp a wide set of everyday objects.
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Figure 2.14: The architecture of the grasping neural model proposed by Gorce and
Rezzoug.

2.6.4 Learning for Action Optimal Control

It has been revealed that animals’ control behaviors in nature are naturally stochas-
tic [165]. Additionally, signals in the muscle, joint, tools, and even perception (per-
ceived information) are noise. Moreover, the environments’ changing over time is
a further source of uncertainty. Inspired by the natural control mechanism, some
learning researchers paid attention to statistical estimation theory. In [135], Parisi
et al. compared the reinforcement learning with human programming in teth-
erball robot games. In his work, the robot motor skills were not only trained
through learning methods (imitation learning and relative entropy policy search)
but modeled with human hard coding as well. Its experimental result shows that
the learning approach has a better performance compared with the high-quality
hand-crafted system.

Learning methods also play an important role in grasping and manipulation
research. In [165], a reinforcement learning algorithm called PI2 was implemented
in the robotic system to learn the shape parameters for a robust grasping to solve
the objects uncertain problems (blurry shape and position). Additionally, in [158]
authors extend the PI2 algorithm to PI2SEQ which optimizes the shape and goal
parameters simultaneously to address the fundamental pick-and-place challenge.
Moreover, in [137] authors applied PI2 algorithm to accuracy pool stroke and box
flipping tasks with PR − 2, a dual-arm robot. As a result the robot learned to
achieve the box flipping tasks with the result of 172 succeeded in 200 trails after
26 iterations.

In [71], Gorce and Rezzoug proposed a two-stage model to learn the grasping
posture of an anthropomorphic hand with little knowledge about tasks and few
sensing capabilities. In their model, a four layers neural network was first adopted
to model the inverse kinematics of hand fingers; and another three layers neural
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network with SRV (Stochastic Real Valued) units was built to optimize the hand
grasping configuration. The architecture of the hand posture definition model is
shown in Fig. 2.14.

Some other research showed that humans use off-line simulation to plan their
actions. In [102], the manipulation tasks consisted of three steps: a forward model
for sensory prediction, a grasp stability assessment, and a sequence of motions’
selection. The forward model for sensory prediction predicted the upcoming sensor
state with current state and an action in a sequence of movements. The grasp
stability assessment estimated the grasp state. It kept the in-hand object away
from slipping and falling off. The sequence of motions’ selection is to choose
’good’ actions in a sequence to achieve a manipulation task. In [171], Hool et
al. proposed a direct learning method to learn a control policy to manipulate an
unknown object with tactile information. In their methods, relative entropy policy
search was adopted, and the system state was represented by the joints’ position
and the tactile sensors. Their experiments reveal that the learned policies gain
better rewards than a hand-coded feedback policy, although the learned policies
are error-prone with large variance.
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Manipulation Models

With the concept of trial and error, robot fingers push in the black box in different
directions and visual-haptic feedback is collected to evaluate the pushes’ perfor-
mance. In order to analyze this feedback, several manipulation models have been
proposed to illustrate the push attributes of the black box. In this chapter, firstly,
contact models between the fingers and the object are presented. Then a funda-
mental concept model (push and support model) is proposed. Furthermore, two
models are proposed with specifying the elastic surface to different support fingers:
single and hybrid support model. Both models are discussed based on the grasp-
ing matrix. The relation between object’s motions and the push actions is deduced.

This chapter is organized as follows:

• In section 3.1, three basic contact models are introduced, and manipulation
assumptions are given.

• In section 3.2, a fundamental concept model (named push and support
model) is proposed. Derived from this model, four models are discussed
based on different support fingers. As a result, two of them are used to guide
the robotic manipulations in experiments presented in Chapter 4.

• In section 3.3, a single support model is proposed for two fingers manipu-
lations. In this model, a fixed support finger is used in place of the elastic
surface. Furthermore, two rolling cases are discussed based on whether the
object rolls on the support finger or not.

• In section 3.4, a hybrid support model is proposed for three fingers manip-
ulations, in which a fixed support finger and a spring support finger are
employed instead of the elastic surface. In this model, the fixed support fin-
ger acts as a pivot about which the object rotates; and the spring support
finger plays the role of a spring which helps rotate the object and moves the
object to compensate the contact errors generated by other fingers.

• In section 3.5, enhanced manipulation model is proposed to conduct a ro-
tational manipulation. This model is based on the hybrid support model,
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and additional velocities are added to each finger to compensate the position
error of the object.

• In section 3.6, a short discussion is given to summarize the work in this
chapter.

3.1 Contact Models and Grasping Matrix

Robotic manipulation is an interaction problem where fingers apply contact force
to move the object with physical constraints. The contact plays a critical role
in manipulations. The force in the contact areas is the medium between fingers’
actions and object’s wrenches. Hence, contact models and grasping matrix are
discussed firstly in this chapter.

3.1.1 Contact Models

Contact points are assumed fixed on an object. A coordinate frame Ci is given
to represent the ith contact location (position and orientation); and an object
reference frame CO is fixed on the object. Respecting to the reference frame, a
contact location is represented as gOCi. Typically, a wrench FCi is used to represent
the force fCi and torque τCi applied at the contact point Ci.

As described in [124], a set of feasible wrench applied by a finger at contact Ci
is represented by the wrench base BCi ∈ Rp×mi :

FCi = BCifCi, fCi ∈ FCCi (3.1)

where BCi ∈ Rp×mi , and p depends on contact type, mi refers to the dimension of
the wrench. In more detail, in 3D problems, p = 6; and in 2D problems, p = 3.
FCCi is a close subset of Rmi which constrains the contact wrench.

In order to analyze the external wrench at contact points, three contact models
were given by Murray in [124]: frictionless point contact model, point contact
model with fiction, and soft-finger model.

Frictionless Point Contact Model

In Frictionless point contact model, it assumes there is no friction between the
finger and the object in the contact area. In this case, the contact wrench contains
only force components in their normal direction of the contact surface on the
object. Therefore, the wrench is represented as:

FCi =



0

0

1

0

0

0


fCi, fCi > 0, (3.2)
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where fCi ∈ R is the magnitude of the force applied in the normal direction.
Obviously, fCi must be positive, since the contact force can only be applied by
push not pull.

This contact model is simple. However, it is not practical. Most of the robot
fingers are covered by materials with a large friction coefficient. Thus frictions in
the contact areas can not be ignored. Actually, the friction plays a critical role
in the success of grasping and manipulations. Therefore, the application of the
frictionless point contact model is limited. A more frequently used model is point
contact model with fiction.

Point Contact Model with Fiction

Point contact with fiction indicates the case where friction exists between the
finger and the object in the contact area. In this case, the contact wrench contains
the force both in normal and tangent directions to the surface of the object, and
certainly, torque is not considered in this model.

According to the Coulomb Friction Model, a stable contact means the friction
satisfies:

|f t| ≤ µfn, (3.3)

where µ is the coefficient of the friction, f t refers to the force component in the
tangent direction of the contact surface, and fn refers to the force component in
the normal direction of the contact surface. A geometrical representation of Eq.
3.3 is friction cone; the axis of the cone is to the normal direction of the contact
surface, as illustrated in Fig. 2.7. Hence, the cone angle is given by:

α = tan−1µ. (3.4)

The wrench at the contact point is represented as:

FCi =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0


fCi, fCi ∈ FCCi, (3.5)

with the constraints:

FCCi = {f ∈ R3 :
√
f 2
1 + f 2

2 6 µf3, f3 > 0}. (3.6)

where f1, f2, and f3 refer to the first, second, and third element of fCi
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Soft-finger Model

Another practical contact model is soft-finger model. It assumes that both force
and torque (wrench) exists in the contact areas. Hence, the wrench in the contact
area is represented by

FCi =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


fCi, fCi ∈ FCCi, (3.7)

with the constraints:

FCCi = {f ∈ R4 :
√
f 2
1 + f 2

2 6 µf3, f3 > 0, |f4| 6 γf3}, (3.8)

where γ is the coefficient of the torsional friction, and f4 refers to the fourth element
of fCi.

3.1.2 Grasping Matrix

For further analysis, when a contact wrench is transformed from contact frame
CCi to object reference frame CO, a transformation matrix AdT

g−1
OCi

is used. A

grasp matrix is defined as [30]:

Gi := AdT
g−1
OCi

BCi, (3.9)

Gi ∈ Rp×mi . The grasping matrix is a linear transformation of contact wrench. It
transfers the representation of the contact wrench from the contact frame on the
finger to the frame on the object. More generally, if there are k contact points,
the sum of the wrench on the object applied by contacted fingers is:

FO = GfC = [G1 · · ·Gk]

 fC1

...

fCk

 , (3.10)

with
fC = (fC1, · · · , fCk) ∈ Rm,

FC = FCC1 × · · · × FCCk ⊂ Rm,

m = m1 + · · ·+mk.

(3.11)

Particularly, in 2D problems and with soft-finger model, matrix BCi = I1.

FOCi = GiFCi,

ξCi = GT
i ξO.

(3.12)

1B is a filter that is represented by setting the torque of the twist to 0.
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Figure 3.1: A fundamental concept model. In this mode, the manipulation system
is considered as a finger pushes a ball which is located on an elastic surface.

where terms ξCi and ξO refer to the twist regarding to frames Ci and CO respec-
tively.

3.2 Push and Support Manipulation Models

In this section, a fundamental concept model is proposed to model the robot ma-
nipulation. This model assumes the manipulation as one finger pushing an object
to roll on an elastic surface. Therefore, this model is also named push and support
manipulation model. Based on this model, four other models are deduced from
specifying this ’elastic surface’.

In order to simplify the research problems, the following assumptions are con-
sidered:

• All actions of the robot take place within its workspace;

• The manipulating processes are kept quasi-static;

• The fingers and object are always in contact;

• Every contact finger has only one contact point locating at the center of
fingertip;

• The torque of joints is sufficient for all push actions.

3.2.1 Elastic Surface Model

To illustrate this black box, a general elastic surface model is proposed (also called
concept model), as shown in Fig. 3.1, where a ball is located on an unknown elastic
surface. This surface consists of support fingers including the fixed support finger
and the spring support finger. Hence, the aim of the manipulation is converted to
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move the ball on a surface. To move the ball, one finger is used to push it. After
the push action, the ball moves forward on the surface. Therefore, with this
model, the process of the in-hand manipulation is simplified as a finger
pushing a ball which is located on an unknown elastic surface.

This model is reasonable, since in most human grasps the thumb is usually
opposite to others fingers. According to the research in [186], humans’ grasps for
further manipulations are precise grasp, in which at least the thumb is always op-
posite to other fingers. According to the concept of the push and support model,
a in-hand manipulation could be a process where the thumb pushes the
object and the other fingers act compliantly to adapt the object’s mo-
tions. Therefore, this manipulation can be viewed as a thumb pushing
task, where the thumb tries to push the object in different directions
and the other fingers perform as a special surface which supports the
object against the thumb’s actions and helps the object’s motions. 2

In Fig. 3.1, P represents a push action performed by a push finger. This push
action consists of two elements: push direction Pd and push distance Pl. The push
direction Pd is a unit vector. It starts at point e. In 2D tasks, it is represented by
one angular parameter. In 3D tasks, Pd is represented by two angular parameters.

The push action not only rolls the object on the surface but also presses the
object down to the surface. These ’roll’ and ’down’ actions constitute object’s
motions. Therefore, in this model, the purpose of the manipulation is to choose
good push parameters (like push direction Pd and push distance Pl) to generate
the desired object motion by trading off the roll and down motions.

The object’s motion is represented by a twist:

ξo =

[
vo

ωo

]
, (3.13)

where vo is the object’s velocity; and ωo is the object’s angular velocity. In 2D
tasks, velocity vo ∈ R2 is a vector and angular velocity ωo ∈ R is a scalar. Whereas
in 3D tasks, vo ∈ R3 and ωo ∈ R3 are two three-dimensional vectors.

Similarly, the force and torque applied to the object are represented by a
wrench:

Fo =

[
fo

τo

]
, (3.14)

where fo is the force; and τo is the torque. In 2D tasks, fo ∈ R2 and τo ∈ R.
Whereas in 3D tasks, fo ∈ R3 and τo ∈ R3.

3.2.2 Discussion on Push and Support Manipulation Model

Normally, it is hard to acquire the attributes of the elastic surface in unknown
environments. Fortunately, in manipulation tasks, it is certain that the object is

2In some cases, other fingers can be the push finger, and the thumb could be a support finger.
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3.2. Push and Support Manipulation Models

supported by fingers. This makes it easy to analyze the surface explicitly. Ac-
cording to the type of the elastic surface, the elastic support model is specified
with two different kinds of supports: fixed support model, spring support model
3, hybrid support model, and double spring support model, as illustrated in Fig.
3.2.

Fig. 3.2 illustrates the possible elastic surfaces and how they are derived. At
the beginning, as discussed, the object is located on an elastic surface and one push
finger pushes it. It is the elastic surface model: model (a), as shown in Fig. 3.2.
Specifically, this ’elastic surface’ can be one finger 4, two fingers or even more. In
this thesis, only three fingers grasps are considered, hence the cases with one and
two support fingers are discussed in this section. They are model (b) and model (c)
in Fig. 3.2. Moreover, each support finger shows different properties according to
the active controllers inside. If the finger is ’uncontrolled’ (keep a certain position
with a position controller), the support finger is rigid and performs like a pivot.
In this case, the performance of the elastic surface relates more to the soft parts
of the fingertips. If the finger is controlled by a stiffness controller. The support
finger acts like a spring. In this case, the elastic surface relates more to the finger’s
compliance attributes. As a result, the elastic surface can be divided into four
specific situations: models (d), (e), (f), and (g) in Fig. 3.2. Model (d) is the
fixed support model, in which the support finger acts like a fixed pivot. Model
(e) is the single spring support model, in which the support finger performs like
a spring. Model (f) is the hybrid support model, in which there are two support
fingers, one acts like a fixed pivot and the other acts like a spring. Model (g)
is the double spring support model, in which both two support fingers perform
like a spring. Although these four cases are achievable; they are not necessary in
rotational manipulation tasks. To rotate an object, the fixed support model d and
the hybrid support model f are simpler and more robust than the single spring
support model e and the double spring support model. Without any fixed support
finger, the object in models e and g will be pushed down easily which may cause
unexpected translation in rotational manipulation tasks. In other words, models
e and g are more suitable for translation manipulations; and models d and f are
more suitable for rotation.

As a result, in this thesis, we focus on the single support model (model d or
e) and the hybrid support model (model f). Actually in three fingers grasps, at
most there are two support fingers. We can alway find a direction in which the two
support fingertips overlap. In this direction, the manipulation system fits the fixed
support model d. In other view directions, this system fits the hybrid support
model f . As a result, with these two models, a 3D manipulation can
be divided into several 2D manipulations. More details will be discussed in
section 3.6.

3with one spring support
4This case also includes two support fingers overlapped. In this case, these two overlapped

fingers perform exactly the same. Thus in 2D tasks, the two overlapped support fingers are
considered as one.
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Chapter 3. Manipulation Models

Figure 3.2: The evolution of the elastic surface model.
This diagram shows the derivative of the elastic surface model according to different
supports. (a) is the conceptional elastic surface model. First, it is divided into two
models based on how many grasping fingers involved in. (b) represents a model with one
support finger in two fingers’ grasps, and (c) represents a model with two support fingers
in three fingers’ grasps. Referring to different support finger’ attributes (compliance
performance), four more specific models are deduced. They are model (d), (e), (f), and
(g). Model (d) is fixed support model, in which the support finger acts like a fixed pivot
around which the object rotates. Model (e) is single spring support model, in which the
support finger acts like a spring. Model (f) is hybrid support model, in which there are
two support fingers, one acts like a fixed pivot and the other acts like a spring. Model
(g) is double spring support model, in which both two support fingers act like a spring.
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Figure 3.3: The contact force in single support model. In this model two overlapped
support fingers are viewed as one fixed support finger.

3.3 Single Support Model

In tasks of manipulations, the elastic surface can be specified by different support
fingers as discussed in the previous section 3.2.2. In this section, the ’elastic surface’
is one support finger. The elasticity of the surface highly depends on the stiffness
of support finger and its contact material. This proposed manipulation model is
called single support model. Intuitively, in this model, the push finger can push in
all directions; however, an inappropriate push action may cause the manipulations
failed (like the thumb pushes in the direction away from the object). Therefore,
the constraints of the friction and the stability of the system should always be
considered.

3.3.1 Contact Force

A contact force diagram is shown in Fig. 3.3, where an object is grasped by two
fingers. The finger on the top is the push finger, and the one on the bottom is the
support finger.

According to Eq. 3.12, the wrench applied to the object is

FOC1 = G1fC1

FOC2 = G2fC2.
(3.15)

The manipulation process consists of a series of grasping configurations. In
order to successfully manipulate the object, all these grasping configurations satisfy
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the force-closure requirement to the applied wrench. Hence, with static equilibrium
equation, we have:

k∑
i=1

FOCi + FOgr = 0, (3.16)

where FOgr refers to the gravity wrench respecting to the object frame. In this
thesis, the object is assumed to be light that the gravity wrench can be ignored,
FOgr = 0.

More specifically, this manipulation is carried out in 2D tasks. Hence the
wrench has only three elements. Furthermore, a soft-finger model is adopted to
represent the contact on the fixed support finger; and the point contact model with
friction is used to model the contact on the push finger. Hence, the contact force
is represented by

fC1 =

 f t1
fn1
0

 ,

fC2 =

 f t2
fn2
τ2

 ,
(3.17)

with

AdT
g−1
OCi

=

[
ROCi 0

p̂OCiROCi 1

]
. (3.18)

Assuming the word frame Cw rotates a small angle respecting to the object
frame CO, and other contact frames are built as in Fig. 3.3, where yO and y1 have
the same direction. Besides, yO and y2 have the opposite directions. Therefore,
the transformation matrix has the parameters:

ROC1 =

[
−1 0

0 −1

]
, ROC2 =

[
1 0

0 1

]
,

pOC1 =

[
a1

b1

]
, pOC2 =

[
a2

b2

]
,

BC1 =

 1 0

0 1

0 0

 , BC2 =

 1 0 0

0 1 0

0 0 1

 ,
(3.19)

where terms (a1, b1) and (a2, b2) are the position of the contact frames C1 and
C2 relating to the object frame CO respectively. (a1 − a2, b1 − b2) is exactly the
position of the contact frame C1 relating to the contact frame C2. Assuming (a, b)
is dimension parameters with a = a1 − a2 and b = b1 − b2.
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From the definition of the grasping matrix in Eq.3.9 and Eq. 3.16, it can be
obtained 

fn2 = fn1 ,

f t2 = f t1,

τ = −bf t2 + afn2

(3.20)

3.3.2 Object’s Movement

The object’s motion is shown in 3.4. The contact point C1 moves along a vector Sp
after executing the push action. A world frame is built to analyze the push effects,
with its x-axis perpendicular to the line C1C2. The push action is Sp = u with an
angle θ to xW . According to the world frame, this push action is represented by

Sp =

 cosθ

sinθ

0

u. (3.21)

The vector Sp is decomposed orthogonally into Stp and Snp , where Stp = Spcos(δ)
and Snp = Spsin(δ). Obviously, the motion Sp comes from the compliance of the
deformed system. It mainly consists of three parts: the object’s rolling on the
support finger, the deformation on the contact surface, and the deformation on
the support finger along line yw. As a result, Stp and Snp can be expressed as:

Stp = Sts + Std + Str,

Snp = Sns + Snd ,
(3.22)
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where Std, S
n
d refer to the deformations on the contact surface (at both contact

points C1 and C2); S
t
s, S

n
s refer to the position change in the support finger in

orthogonal directions; and the position change Str is due to the object’s rotational
motion relating to the contact point C2 on the support finger. Compared to the
changes in object’s rotation Str, the deformation Std is much smaller, Std � Str .
Therefore, Std is ignored in the following sections.

As discussed in [80], the contact deformation relates to many factors such as ma-
terials of the contact surface, object’s shape, applied force, etc. Thus the relation-
ship between the contact deformation and contact force is complicated. Takahiro
and Shinichi proposed a contact model for soft fingertips with f = πEd2

cosθp
, where

term Ed refers to Young’s modulus of soft finger materials, and θp is the object’s
orientation relating to the fingertip. However, When the contact force is small
(less than 5 N), a linear model is sufficient to represent the relation be-
tween the contact force and the deformation on the fingertip concluded
from the experiment results in [80].5 Therefore, we assume fnd = −Kn

dS
n
d , where

Kn
d is a special elasticity coefficient.

Inspired from human arm stiffness, [70] the stiffness ellipse model is adopted
to describe the stiffness performance on the support finger. Thus f ts = −Kt

sS
t
s,

fns = −Kn
s S

n
s . Terms Kn

s , Kt
s are the stiffness of fingers acquired from the stiffness

ellipse model. The normal component of the push force fnp is described with Sp:

fnp = − Kn
sK

n
d

Kn
s +Kn

d

Spsin(θ). (3.23)

3.3.3 Object’s Two Roll Cases

About the tangent components of the push force, two cases are worth mentioning
according to whether the object rolls or not.

Rolled case

The rolled case denotes the object rolls on the support finger during the manipu-
lation. In this case, the displacement Str is much larger than the deformation term
Std, since the object rolls on the finger. Hence, in this case, assuming Std = 0 and
torque τ is rolling friction which can be calculated from:

τ = Crrf
n
p , (3.24)

where term Crr is the rolling friction coefficient.
From Eq. 3.23, 3.24 the tangential component of the push force f tp can be

expressed by Sp:

f tp = − Kn
sK

n
d

Kn
s +Kn

d

CrrSpsin(θ). (3.25)

5In more detail, the result can be concluded in ’Fig. 10’ and ’Fig. 11’ in [80]. Furthermore,
within this small range, the deformation on the fingertip is not sensitive to the object’s orientation
θp.
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Unrolled case

The unrolled case denotes the object does not roll on the support finger during the
manipulation. In this case, the rolling torque τ is generated from the deformation
of the contact area. Here the relation between the rolling torque and the deformed
angle γ is simplified to a linear model:

τ = Cdγ, (3.26)

where term Cd refers to the linear coefficient of the deformation.
With Eq. 3.22 and Eq. 3.26, the tangential component of the push force f tp

can be expressed by Sp:

fpt = − Kt
sCd

L2Kt
s + Cd

Spcos(θ). (3.27)

Critical conditions

Intuitively, the critical condition between these two cases is

δc = arctan
1

Kn
d

Kt
s

Kn
s

Cd
Crr

Kn
s +Kn

d

L2Kt
s + Cd

. (3.28)

However, δc is not a precise angle value, since in the rolled case both deformation
and rolling occurs. The shifts between these two cases should be more continuous
and smooth.

3.4 Hybrid Support Finger Model

Besides two fingers grasps, another widely used grasping configuration is three
fingers grasp, as shown in Fig. 3.5. In this grasp, an unknown object is held by
three fingers. The contact points are C1, C2, and C3. An object frame is fixed on
the center of the object named CO.

3.4.1 Contact Force

As discussed in section 3.2.1, there are two support fingers which constitute the
elastic surface. Of these support fingers, one is spring support finger; and the other
is fixed support finger. In this model, the spring support finger performs as a spring
to give an adapting contact force to the object. The fixed support finger acts as
a pivot about which the object rotates. It is worth noting that the point contact
with friction model is used in this model. In other words, the deformation on
fingertips contributes no torque to the object in the manipulation. It is reasonable
that the rotational torques generated by the push finger and the spring support
finger are much larger than the torque generated by the contact deformation of
the fingertips since they have much longer force arms.
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When a push action Sp is given by the push finger at C1. The related push
force is

F1 =

 fx1
f y1
0

 =

 cosα

sinα

0

 f1. (3.29)

Obviously, this push action is parameterized by an angle α to axis x1.

The contact force applied by the spring support finger at point C3 is

F3 =

 0

1

0

 f3, (3.30)

with f3 is the force applied by the spring. Combining with the grasping matrix
and static equilibrium equation 3.16, there is

3∑
i=1

GiFi = 0, (3.31)

where Gi is the grasping matrix for finger i. And the gravity is also ignored here.
According to the relation among the coordinate frames, the parameters of the
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transformation matrices are

ROC1 =

[
1 0

0 1

]
, pOC1 =

[
a1

b1

]
,

ROC2 =

[
−1 0

0 −1

]
, pOC2 =

[
a2

b2

]
,

ROC3 =

[
1 0

0 1

]
, pOC3 =

[
a3

b3

]
,

(3.32)

where BCi = I, which is ignored in Eq. 3.32. The points (ai, bi) denote the
origin position of the frame i relating to the object frame CO. As a result, with
considering the grasping static equilibrium equation (Eq. 3.31), we have the result:

cosαf1 − fx2 = 0

sinαf1 − f y2 + f3 = 0

− b1cosαf1 + a1sinαf1 + b2f
x
2 − a2f

y
2 + a3f3 = 0

(3.33)

The relation between f1 and f3 is:

f1 =
a2 − a3

a1sinα− b1cosα− a2sinα + b2cosα
f3. (3.34)

3.4.2 Object’s Movement

When the spring support finger performs as a spring, its behavior follows Hook’s
law. The centerline of the spring is dspring = [0 1 0] in frame C3. The support
finger is modeled as

F3 = −Ksdspring∆S, (3.35)

where Ks is the spring coefficient. Considering the elastic direction of the spring,
term ∆S = [∆Sx ∆Sy 0]T is the position change in frame’s origin C3. Writing Eq.
3.35 in a scalar form, f3 = −KS∆Sy. With Eq. 3.34 and 3.35, the push force is
calculated by

f1 =
(a3 − a2)Ks

a1sinα− b1cosα− a2sinα + b2cosα
∆Sy. (3.36)

On the fixed support finger, the object rotates around its pivot C2. The twist
ξ3 = AdgC2C3

ξ2. The parameters are set by

RC2C3 =

[
−1 0

0 −1

]
, pC2C3 =

[
a2 − a3
b2 − b3

]
. (3.37)

Thus the twist of the contact frame C3 is

ξ3 =

 b2 − b3
−(a2 − a3)

1

 δ̇ + ξ2, (3.38)
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where δ is the object’s rotated angle and ξ2 is the twist of contact frame C2.
According to elastic fingertip and joints, there is also a small compliance on the
fixed support finger. Since ∆S =

∫
ξ3dt, the object’s motion according to finger

C3 is

∆S =

 b2 − b3
−(a2 − a3)

1

 δ + S2, (3.39)

where S2 is the position change of contact frame C2. S2 = [Sx2 , S
y
2 , 0]T . And

∆Sy = (a3 − a2)δ + Sy2 . (3.40)

As discussed in section 3.3.2, component of contact force f2 is assumed by f y2 =
−Ky

2S
y
2 with linear elastic coefficient Ky

2 of the fixed support finger. Combining
with Eq. 3.33, with f y2 = sinα + f3.

Sy2 = −sinαf1 + f3
Ky

2

. (3.41)

With Eq. 3.34 and 3.41, the push force f1 is represented as

f1 =
(Ky

2 −Ks)f3 + (a3 − a2)Ky
2Ksδ

Kssinα
. (3.42)

Using ∆Sy instead of f3, the relation among push force f1, spring compliance ∆Sy,
and object’s rotated angle δ is

f1 =
(Ks −Ky

2 )∆Sy + (a3 − a2)Ky
2 δ

sinα
. (3.43)

with Eq. 3.36, a linear relation between object’s rotated angle and spring support
force is

δ =
sinα

(a3 − a2)Ky
2

[
a2 − a3

(a1 − a2)sinα− (b1 − b2)cosα
− Ky

2 −Ks

sinαKs

]f3. (3.44)

That is δ ∝ f3.
6

With Eq. 3.44 and 3.34, a linear relation between object’s rotated angle and
push force is

δ = [
sinα

(a3 − a2)Ky
2

+
((a1 − a2)sinα− (b1 − b2)cosα)(Ky

2 −Ks)

(a3 − a2)2Ky
2Ks

]f1. (3.45)

That is δ ∝ f1.
Similarly, the motion of contact frame C1 is

S1 =

 b2 − b1
−(a2 − a1)

1

 δ + S2. (3.46)

6Contact force fi, (i = 1, 2, 3) only relates to force generated in manipulations. In our manip-
ulation experiments, force signals are put on the ground first to reduce the grasping force.
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As a result, Eq. 3.36 is written as

f1 =
(a3 − a2)Ks((a3 − a2)δ + Sy2 )

a1sinα− b1cosα− a2sinα + b2cosα
. (3.47)

The contact point C1 moves in S1 = [Sx1 , S
y
1 , δ]

T . It changes the push action in

Sx1 = LC1C2

√
2(1− cosδ),

≈
√

(a2 − a1)2 + (b2 − b1)2δ.
(3.48)

where Sx1 = cosαS1.
7 Using Sp instead of S1 to represent a general push distance:

δ =
cosα√

(a2 − a1)2 + (b2 − b1)2
Sp. (3.49)

With Eq. 3.45, a linear relation between push force f1 and push distance Ss is

f1 =
a232cosαK

y
2Ks√

a212 + b212(a32sinαKs + (a12cosα− b12sinα)(Ky
2 −Ks)

Sp. (3.50)

To easily note, a32 = a3− a2, a12 = a1− a2, and b12 = b1− b2. For the push finger,
the push stiffness of this system is represented as:

f1 = KsysSp (3.51)

where term Ksys is the system stiffness coefficient of the push finger.
When word frame Cw is given with its y-axis along line C1C2, a1 = a2. Ac-

cording to Eq.3.49, we have

δ =
cos(α + γ)

‖b2 − b1‖
Sp. (3.52)

where γ is used to describe the deviation of the ideal and real models. Eq. 3.45
changes to

f1 =
a232K

y
2Ks

|b12|(a32Ks − b12(Ky
2 −Ks))tanα

Sp. (3.53)

3.4.3 Control of Spring Support Finger

To make the support finger perform as a spring, one of the most efficient ways is
applying the stiffness control where the contact force is used to adjust the finger’s
behaviors. Therefore, a stiffness control algorithm is implemented to control the
spring support finger. Based on the contact force, the finger stiffness is

f = f0 + ∆f,

∆f = −K∆P,
(3.54)

7The approximation is reasonable when δ is small.
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Figure 3.6: The schema of stiffness control.

where term f is the force applied to the finger; ∆f is the changed force resulting
from the changes in the position P , and term K is a stiffness matrix. As researched
in [51], the stiffness matrix K is modeled by

K = (Cs + JCqJ
T)−1, (3.55)

where Cs is structural compliance matrix which is from the flexible parts of the
finger, like elasticity contact surfaces and other soft structural parts; Cq is joint
compliance diagonal matrix, whose diagonal elements refer to the joints’ stiffness;
and J is finger’s Jacobian matrix.

According to [65], Cs and Cq are set to

Cs = (1/kstru)I,

Cq = (1/kss)I,
(3.56)

where matrix I is an identity matrix; terms kstru and kss are the structural and
the joint stiffness respectively.

Referring to the control theory [128], the stiffness control scheme is illustrated
in Fig. 3.6, where the ’robot’ denotes the spring support finger; Fe refers to an
external force; Fs is the contact force provided by contact sensors; and Ks is the
stiffness of the finger.

3.4.4 Error Compensated with One Spring Support Finger

In these models, push actions are performed in a straight line. However, it is
difficult for the push finger to move by following the line while keeping original
contact point in manipulation. As a result, errors occur.

Practically, in manipulations, there are always errors in following the expected
contact points on the object. In this research, these errors are called contact errors.
In a manipulation system, the contact errors are inevitable. On the one hand,
the contact points in models are assumed located at the center of the fingertips.
However, their real position is on the surfaces of the fingertips and usually changes
during the manipulation. Furthermore, the shape of the contact areas is almost
unpredictable. On the other hand, fingers’ control also generates errors due to the

56



3.4. Hybrid Support Finger Model

C2

C3

Object

C O

C 1

l1

y
2σ

TSO

y O

x O

1

Figure 3.7: Object’s translation motion.

low resolution of the fingers’ joints. Besides, other factors could also affect the
contact state, like object’s shape, slips on contact area, et al.

The success of the manipulation is sensitive to the errors σ.8 Many researchers
apply the force control algorithms on each finger to let the fingers compensate
their errors respectively. This makes the system very complicated and inefficient.
Therefore, a better method is required to compensate these errors in an efficient
way. In this thesis, a novel way is proposed by combining all the errors
together and using only one force-controlled finger to compensate them
together.

This thesis focus on a planar rotational manipulation task (2D task), the ob-
ject’s motion is noted as δPO, and the contact points are noted as in Fig. 3.5.
Assuming both the push finger and the fixed support finger generates positional
errors at their contact points. At the beginning, the spring support finger has a
stable contact with the object.9

Assuming at an instant state, errors σ1 and σ2 are generated by fingertips C1

and C2 respectively, as shown in Fig. 3.7. At this state, the basic grasp force can
not be maintained, hence the contact force at the point C3 is reduced. Because

8 σ is defined as the distance from the current finger position to the final contact position
after a firm grasp is achieved. In this research, fingers’ errors which are away from the contact
surfaces on the object are considered, since the errors which are caused by the finger moving
against the object can be controlled easily through contact detection.

9This assumption is reasonable. The object is firmly grasped and an initial grasp force is
achieved. When the errors occur, the spring support finger moves forward until reaching the
object again. Therefore, the object contacts at least one finger: the spring support finger.
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of its spring-like attributes, the spring support finger moves forward to push the
object generating more contact force. Due to this push action, a planar motion
occurs to compensate those errors on other fingers. Therefore, this planar motion
is decomposed into two parts: translation and rotation.

At the beginning, the only external force applied on the object is the push force
at the contact C3 (object’s mass is ignored). There is no torque. Therefore, the
object translates until reaching the finger at the point C2. After that, with the
push action, the object rotates around the pivot C2 until reaching the finger at the
point C1.

The total object’s motion ∆SO and the change in the finger’s position C3 are

∆SC3 = ∆STC3
+ ∆STRC3

,

∆SO = ∆STO + ∆STRO .
(3.57)

As represented in Fig. 3.7, the object’s translation motion is represented by
∆STO. Obviously, this motion compensates the error σ2, and simultaneously it
generates an additional error σT1 to the finger C1, σ

T
1 = σ2. In this translation

motion, the object moves in a line and its contact point on the finger C2 also
moves in the direction parallel to object’s current translation velocity. As a result,
the compensated error in this step is σ2 = [0 σy2 0]T . The object’s motion can be
described as

∆STO =

 0

σy2
0

 . (3.58)

The object’s motion is the change in finger frame C3, that is ∆STO = ∆STC3
.

After the object translates, it rotates around the contact C2. At this stage,
a spring force is applied on contact C ′3. C

′
3 moves to a new position C ′′3 . This is

because a torque is generated by the spring support finger and the torque rotates
the object. Assuming this torque is large enough to move the object to reach C ′′1
from the position C ′1.

10 Obviously, this motion compensates the errors generated
not only by the finger C1 but also generated in the object’s first translation motion.

σ′1 = σT1 + σ1. (3.59)

As shown in Fig. 3.8, the contact frames and the object frame are built with
their x-axes alone the spring direction of the spring support finger. The object’s
rotational motion is represented by ∆STRO . The rotated angle is δO. The relation
between frames C2 and C3 is ξC3 = AdgC2C3

ξC2 , where ξC2 is the twist of frame C2,
ξC3 is the twist of frame C3. AdgC2C3

is a transformation matrix which transfers a
motion from frame C2 to frame C3. With the same parameters as in Eq. 3.37, 11

10If this torque is not large enough, the system reaches a stable state. A two fingers grasp is
obtained. That is the case discussed in section 3.3.

11Although there are new errors occurred in this motion, compared to the object’s dimension
(the distance between the fingers), the errors are too small to affect the transformation matrix.
Therefore, this transformation matrix is mainly based on the geometry relative position of the
fingers.
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Figure 3.8: Object’s rotational motion.

the change in finger’s position C3 is

∆STRC3
=

 b2 − b3
−(a2 − a3)

1

 δ. (3.60)

The object’s motion is

∆STRO =

 b2

−a2
1

 δ. (3.61)

The contact for finger C1 moves from position C ′1 to C ′′1 . Hence line lC2C′1
= lC2C′′1

=
l1. According to frames’ position, l1 = ‖[a2−a1 b2−b1]T‖. When the rotated angle
δ is small, σ′1 = lC′1C′′1 and lC′1C′′1 ≈ l1δ. Therefore, the relation between σ′1 and δ is

σ′1 ≈
√

(a2 − a1)2 + (b2 − b1)2δ. (3.62)

Hence, Eq. 3.60 and 3.61 can be written as

∆STRC3
=

 b2 − b3
−(a2 − a3)

1

 σ′1√
(a2 − a1)2 + (b2 − b1)2

, (3.63)

and

∆STRO =

 b2

−a2
1

 σ′1√
(a2 − a1)2 + (b2 − b1)2

. (3.64)
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Figure 3.9: Object’s rotational motion.

With Eq. 3.58, 3.59, and 3.63, the total motion of the finger C3 and the object
is

∆SC3 =

 b2 − b3
−(a2 − a3)

1


√

σx1
2 + (σy1 + σy2)2

(a2 − a1)2 + (b2 − b1)2

∆SO =

 b2

−a2
1


√

σx1
2 + (σy1 + σy2)2

(a2 − a1)2 + (b2 − b1)2
.

(3.65)

From Eq. 3.65, it can be concluded that though new errors are generated
during fingers’ motions; they all can be compensated by the spring-like
attribute of one finger.

Differently from the case shown in Fig. 3.8 where the object rotates clockwise
until reaching the finger C ′′1 , there is another case. As shown in Fig. 3.9, the object
has to rotate anticlockwise to reach the finger C ′′1 . In this case, the angle between
the push direction and the line C2C

′′
3 is negative, where γ < 0. The following

process it exactly the same as the clockwise case discussed above.

Error Compensation Conditions

No matter the object rotates clockwise or anticlockwise. There is a necessary
condition that the object should be big enough to reach the finger C1. That is

∃C ′1 : lC2C′1max
> lC2C1 , (3.66)

where term lC2C′1max
is the maximum length from the finger C2 to a point on

object’s contour, as shown in Fig. 3.9. There are two cases for this condition. If
γ > 0, C ′1 is located within ∠C ′′1C

′′
3C2; and if γ < 0, C ′1 is located within ∠C ′′3C2C

′′
1 .

In other words, the condition is that on the object a point C ′1 exists that the length
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Figure 3.10: Object’s translation and rotation respecting to the fixed support finger
C2.

lC2C′1
is larger than the fingers’ distance lC′′1C2

which is sufficient to stop the object
from unconstrained rotating.

To summarize, Eq. 3.65 shows it is possible to transfer all fingers’ errors into one
with a transformation matrix. Importantly, this error transformation matrix proves
that position errors in different fingers can be compensated by one spring support
finger together. This conclusion is important that it inspires us to focus more on
the planning of the fingers’ action and to leave the errors to be compensated by
the spring support finger. In force control aspect, this conclusion shows that
only one force-controlled finger is sufficient to guarantee a firm grasp in
2D manipulation tasks.

3.5 Enhanced Manipulation Model

In previous models, the fixed support finger is not controlled according to the
contact force. In hybrid support manipulations, the object’s motion consists of a
small additional translation and an expected rotation. However, in rotational ma-
nipulations, it is required to rotate the object without any translation. Therefore,
an enhanced manipulation model is proposed in this section to reduce the object’s
translation motion in our manipulations.

As shown in Fig. 3.10, when the push finger is moving, a translation and an
expected rotation occur at the centroid of the object, named δξO and SO2 relating
to the fixed support finger C2 respectively. In order to acquire a pure rotation,
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Figure 3.11: An enhanced manipulation model.
In this model, additional motions have been added to each finger to compensate the
displacement of the object’s position while rotating. The additional motion is −V02,
which is the opposite motion of the object on its centroid respecting to the fixed support
finger C2.

an additional opposite motion, −SO2, is added to each grasping finger. These
opposite motions translate the object in the direction of −SO2, which compensates
the object’s translation, as represented in Fig. 3.11. SO = SO2 − SO2. However,
in real robotic manipulation tasks, it is difficult to set SO = 0. Therefore, a more
practical additional oppositional motion is a motion which reduces object’s total
translation SO. The idea behind it is simple. It can be considered as adding an
external velocity field into this system to make the object move against to its
translation SO2. As a result, theoretically, a pure rotational manipulation can be
achieved.

In Fig. 3.11, three additional motions are added to each finger to generate
the ’velocity field’. For the fixed support finger, the motion of the fixed support
finger12 is −SO2. The fixed support finger moves according to

P2 = −SO2. (3.67)

For the push finger, as the additional motion is added to the push action; the
new push action is

P′1 = P1 − SO2. (3.68)

12Here we still use the term ’fixed support finger’ to identify the finger played the fixed role in
our other models; although it moves in this model.
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Figure 3.12: Different perspectives of three fingers grasping.

Similarly to the fixed support and push fingers, an additional motion should
also be added to the spring support finger. Practically, it is not necessary. Since
the additional motion is really small (about 10% of the push distance estimated
from the results of hybrid support experiment in section 4.6); they can be consid-
ered as errors generated by the fingers according to the current object position.
Thereby as illustrated in section 3.4.4, the errors generated by other fingers are
able to be compensated by the spring support finger. As a result in this enhanced
manipulation model, the spring support performs the same as in the hybrid support
model.

Generally, this enhanced manipulation model has two main advantages in ro-
tational manipulations. The first one is reducing the position errors of the object.
Theoretically, this model makes the position change of the object to zero dur-
ing the manipulation. It means a perfect pure rotational manipulation can be
achieved with this model. The second advantage is that this model enhances the
range of the object’s rotation. Obviously, it can be seen in Fig. 3.11, the angle
between the opposite motion −SO2 and the push action P1 is larger than 90◦.
||P1−SO2|| 6 ||P1||. In order to achieve the same rotation performance, a smaller
push distance is required. In other words, the workspace of the push finger is
enhanced. Usually, in manipulation experiments, the object’s rotational range is
limited by the workspace of the fingers (especially the push finger). Therefore
within the same workspace, this model is able to enhance the object’s rotational
range in robotic manipulations. That is why this model is named enhanced ma-
nipulation model in this research.

3.6 3D Manipulation Discussion

Until now, all the proposed models refer to 2D manipulation, in which the object
rotates in a plane. However, it is also possible to achieve a 3D manipulation by
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combining our proposed models. Essentially, in a three fingers grasp, the single
support model and hybrid support model can be found in all three fingers grasps.
Different perspectives of a grasp with three fingers are represented in Fig. 3.12
where a box is grasped by three fingers: one push finger and two support fingers.
From the view A, the two support fingers overlapped. When the push finger
pushes down or up, this situation meets the single support model. This object’s
motion is named pitch rotation. From the view B (straight up), it is the hybrid
support model when the push finger pushes in a horizontal plane. This object’s
motion is named yaw rotation. More details of the object’s yaw, pitch, and roll
rotation are discussed in the following chapter 4. With proper Euler Angles, any
3D rotation (in any direction) can be achieved by intrinsic rotations, z − y′ − z′′
or y − z′ − y′′. The intrinsic rotation sequence is ’Yaw-Pitch-Yaw’. Therefore, a
3D object rotation can be decomposed into yaw and pitch rotations, which can be
achieved by manipulations with the hybrid support model and the single support
model respectively. As a result, it can be concluded that the proposed two models
are sufficient to achieve any 3D rotation manipulations.
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Chapter 4

Manipulation Experiments

In the last chapter, manipulation models, which illustrate the relationship between
the push actions and the object’s motions, are proposed. This chapter focuses on
conducting in-hand manipulation experiments to verify the feasibility of proposed
manipulation method and models.

In these experiments, the robot keeps repeating manipulations automatically.
In this repeating process, different push actions’ parameters are tested and their
manipulation results are recorded. Besides, the visual and haptic information
is adopted to evaluate the performance of the manipulations. As a result, it is
possible for the robot to collect sufficient knowledge to improve its manipulation
skills.

This chapter is organized as follows:

• In section 4.1, a robotic manipulation system is built. It consists of an
anthropomorphic robot hand, tactile sensors, and a visual tracking system.

• In section 4.2, basic experimental procedures are introduced, such as initial
grasping configuration, visual and haptic features extraction, push steps, etc.

• In section 4.3, a repeatability experiment is conducted to verify the stability
of our manipulation methods.

• In section 4.4, multi-push distance experiment is conducted to seek the re-
lation between the push distance and the visual-haptic features, where the
push actions are given with different push distances but in the same direction.

• In section 4.5, a multi-directional manipulation experiment is conducted to
seek the relation between the push direction and the visual-haptic features,
where the push actions are given in different push directions but with the
same distance.

• In section 4.6, a hybrid support manipulation experiment is conducted to
test the performance of the spring support finger and verify the proposed
hybrid support manipulation model.
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• In section 4.7, a robustness experiment is conducted to verify the error com-
pensation performance of the spring support finger given in section 3.4.4. In
this experiment, a disturbance is given by poking the object with a human
finger. After the disturbance disappeared, the manipulation system is able
to move back to a stable state.

• In section 4.8, enhanced manipulation experiments are conducted to verify
the feasibility of the manipulation model proposed in section 3.5. In these
experiments, large rotational manipulations are achieved; and various objects
are tested.

• Finally, in section 4.9, a comparative manipulation experiment is carried out
based on the virtual frame method. Its results show that our method has
significant advantages on object’s in-hand manipulation.

4.1 Experiment Setups

In order to perform manipulation experiments, a robotic manipulation system has
been built, as shown in Fig. 4.1. In this system, an anthropomorphic robot hand
is mounted on the end of a KUKA arm fixed on a table. An object is grasped by
the hand, and a web-camera is located on the table with its face up to the in-hand
object. Referring to its functions, the in-hand manipulation system can be divided
into three parts: anthropomorphic robot hand, tactile sensors, and visual tracking
system.

4.1.1 Anthropomorphic robot hand

The robot hand platform is the Shadow Dexterous Hand [5], [100], as shown in
Fig. 4.2. The original hand has 20 actuated DOFs and further 4 under-actuated
DOFs for a total of 24 joints (5 joints have been removed for 5 BioTac sensors in
our platform). These joints are driven by remote motors through tendons. With
hall effect sensors and strain gauges on each joint, the accuracy of the fingers joints
is less than 1 degree. The moving range of its joints is close to that of a human
hand.

In total, this hand contains 129 sensors, such as tactile sensors on fingertips,
absolute position sensors for each joint, force sensors for each actuator, temperature
sensors, and motor current/voltage sensors. All the sensor data is accessible for a
user via an EtherCAT interface. Besides, with a control board in the hand’s palm,
this system can be extended via add-ons.

Fig. 4.3 shows the kinematics of this hand. It is worth noting that in the
following experiments, 5 DPs (Distal Phalanxes) have been removed, instead, five
BioTac tactile sensors are mounted on the fingertips. Hence, the value of the 5
DIP (Distal Interphalangeal Joints) joints (FFJ1, MFJ1, RFJ1, LFJ1 and THJ1)
provided by their position sensors is fixed to a certain angle: 20◦. Furthermore, the

66



4.1. Experiment Setups

dimension of the DPs has been changed by replacing with BioTac sensors, which
will be introduced in detail in the following section.

4.1.2 BioTac Tactile Sensor

Regarding human in-hand manipulations, fingertips and distal phalanges are most
commonly used parts. Therefore, in this research BioTac sensors [176], [59] are
selected as the tactile sensors in this research. The BioTac sensor is specially
designed for the fingertips of the Shadow Hand.

The BioTac tactile sensor is designed to mimic not only the physical properties
of human fingertips but also their sensory capabilities. Today, it is one of the
leading sensors in the research of the machine touch. These sensors consist of a rigid
core, which is surrounded by an elastic liquid filled-skin. Similar to human touch
abilities, the BioTac is able to measure: vibration, pressure, and temperature. One
advantage of this design is all electronics are protected inside the rigid core.

In this research, the direct pressure value (PDC signals) is adopted to esti-
mate the contact force with 90Hz updating rate. Importantly, as mentioned
in [126], the sensor’s pressure value and the contact force is linearly
dependent on each other. Hence, it is feasible to use the PDC signal to
represent the contact force directly. In the following experiment, the pressure
value, haptic, and contact force value all relate to the PDC signals.

KUKA arm

Shadow hand
In-hand 
object

Camera

Figure 4.1: In-hand manipulation experiment setup.
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Figure 4.2: Shadow Dexterous Hand.

Figure 4.3: Shadow hand kinematics [12].

4.1.3 Vision Tracking System

In order to track the state of the object, the AprilTags system is used in our manip-
ulation experiments. The AprilTags system is a visual fiducial system [89], which
is an artificial landmark and designed to recognize and track tags. In this system,
tags are conceptually similar to QR Codes. To be detected more robustly and from
longer ranges with high localization accuracy, the tags are encoded with far smaller
data payloads between 4 and 12 bits. This system is useful for a wide variety of
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Figure 4.4: An object with an AprilTag.

Figure 4.5: An in-hand object is tracked by the Apriltags system.

tasks including robotics, camera calibration, augmented reality, etc. Different from
2D bar-code systems in which the position of the ’code’ is unimportant, the tag’s
relative position and orientation is provided in the AprilTags system. More details
can be found in [130].

One advantage of using AprilTags is that it provides precise position and ori-
entation of the target tags which can be created from an ordinary printer. The
performance of AprilTags system has been tested in the applications for camera
calibration [144].

In this research, AprilTags system is used to track the in-hand object in manip-
ulation experiments. An AprilTag is attached to the bottom surface of the object,
as shown in Fig. 4.5. In the experiments, the in-hand object is a foam box, with
the dimension of 14cm× 5cm× 4cm.

In the manipulation tasks, the tag always faces down; and a digital camera is
mounted facing up to the palm of the hand. This keeps the tag in the visual field of
the camera. As shown in Fig. 4.5, when the object is grasped, the tag is detected.
This visual tracking system can track a series of tags; however, some characters in
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Figure 4.6: A box grasped by the shadow hand with three fingers.

the background or even some parts of the robot may cause visual error detections.
Therefore, other tags except the one attached to the object are filtered out.

4.2 Experimental Procedure

In order to verify our ’push-based’ manipulation method, experiments are con-
ducted on the real manipulation robot platform introduced in section 4.1. In this
thesis, we only focus on the object’s manipulation but grasping; therefore the ob-
ject is assumed already being grasped stably with a given configuration before
manipulation experiments. Besides, in this research, a manipulation action mainly
consists of two parts: push action carried out by the push finger and the adaptive
behaviors from the support fingers. The adaptive behaviors of the support fingers
will be discussed in following section 4.6. Hence, in the following experiments, we
mainly focus on the push actions. If there is no special noting, the actions refer to
the push actions in the following part of this thesis.

Generally, seven experiments are conducted in this section. They are repeata-
bility, multi-push distance, multi-directional push, hybrid support manipulation,
robustness, enhanced manipulation, and comparative experiments.

4.2.1 Initial Grasping Configuration and Push Process

Before the manipulations, a stable grasping has been achieved, as shown in Fig.
4.6, where a cubic object is grasped by 3 fingers: thumb, index finger, and ring
finger. A corresponding illustrative diagram is shown in Fig. 4.7, where 3 red
dots represent contact points (A,B,O) locating on the object surface. The joints’
configuration of the initial grasping is shown in Table. 4.1, where the FF refers to
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Table 4.1: Three fingers cubic grasping configuration

Joints FF1 FF2 FF3 FF4 MF1 MF2 MF3 MF4 RF1 RF2 RF3 RF4

Angle [◦] 20 50 23 0 20 0 0 -2 20 52 80 -18

Joints LF1 LF2 LF3 LF4 LF5 TF1 TF2 TF3 TF4 TF5 WR1 WR2

Angle [◦] 20 0 0 -25 0 20 20 0 63 -11 0 0

the index finger, MF refers to the middle finger, RF refers to the ring finger, LF
refers to little finger, and TF refers to the thumb.

4.2.2 Automatic Manipulation

Due to little prior knowledge about the system, it is almost impossible for the
robot to figure out the correct push parameters. Hence, a more practical way for
successful manipulations is to let the robot try to push action with different pa-
rameters and evaluate the performance of these push actions through the collected
visual and haptic information. As discussed in section 1.3.2, this trial process is
called haptic exploration, in which the empirical knowledge about the push system
is built. With this knowledge, the robot hand can conduct better push actions in
the following tasks.

In order to carry out a series of push actions efficiently, an additional move
back action is added after each push action. This move back action ensures that
different push experiments start at the same initial state so that the comparison
of different push actions is possible. As a result, in the manipulation experiments,
each push action conducted by the push finger consists of two steps: a forward
push and a backwards movement (named an action pair). In the forward push
step, the push finger moves from its initial point C along a given push vector P to
roll the object. In the backwards movement step, the push finger moves back to its
origin C with pressing the object. After these two steps, the whole system returns
to its initial state. Some extreme push parameters (such as the push actions with
large push distance or in dangerous push directions) may cause the contact slips.
It worths to note that sometimes the finger’s backwards movement can not bring
the system back to its initial state, due to the slips occurred on the contact areas.
Therefore, in the following manipulation experiments, the push distance is limited
to a small range, and the push directions are limited to a certain range, in order
to make sure as few contact slips as possible. With these two push steps, all the
manipulations can be carried out automatically, after the object grasped.

4.2.3 Object Frame

As discussed in section 4.1, a camera is installed on the table with its face up
to the object. Usually, an additional visual calibration is required before every
experiment. However, this makes the experiments inefficient, since we have to
calibrate the visual system before every experiment. A more practical way to
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Figure 4.7: Object frame.

describe the object’s movement is to fix an initial frame at the initial position of
the object’s center and to describe all object movements respecting to its ’initial
frame’.

In this thesis, we focus on the rotation of the object. Moreover, Tait-Bryan
angles are used to represent the object’s rotation. They are widely used in the
orientation systems of ships’, aircrafts’, and cars’ orientation. In this thesis,
the rotation around axis x is called Roll ; the rotation around axis y is
called Pitch ; the rotation around axis z is called Yaw. Combining with
the object frame, the yaw, pitch, and roll rotations are shown in Fig. 4.7. To easy
note, the manipulations aiming to rotate the object in the yaw direction are called
yaw manipulations. Equivalently, pitch manipulation aims to rotate the object
in the pitch direction; and roll manipulation aims to rotate the object in the roll
direction. As discussed in section 3.6, this division transfers a 3D manipulation
into a 2D problem, which can be analyzed with the single support model and the
hybrid support model proposed in sections 3.3 and 3.4.

In the following experiments, the pitch manipulations and yaw manipulations
are discussed separately. However, the roll manipulation is not discussed separately
in this thesis. That is because it can be achieved in yaw manipulations, more details
can be found in the multi-directional manipulation experiment in section 4.5.

Pitch Manipulation

In a pitch manipulation, the single support model is adopted. Two fingers (index
and ring fingers) behind the box are fixed support fingers which hold their position
with position controllers. The finger (thumb) in front of the object is the push
finger, which is controlled actively and pushes the object in given directions. Hence,
a push frame is built with its origin locating at point O, as shown in Fig. 4.8. Its
axis x is parallel to the support contact line AB and its axis y is perpendicular to
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Figure 4.8: Thumb push frame for pitch manipulation.

the grasping plane ABO. A red vector P is used to denote a push action. Three
parameters: θ, α, and Pl are used to describe this push vector. Parameter α refers
to the angle between the push vector P and XOY plane; parameter θ refers to
the angle between the axis x and vector OC which is the projecting of vector P
in XOY plane. The parameter Pl refers to the length of the push vector P. For
the purpose of convenient notation, a push vector P is written as P = [θ α Pl]

T .
Besides, a push direction vector Pd = (θ, α) is used to refer to the push direction.

Yaw Manipulation
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PObject
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c

Figure 4.9: Index push frame for yaw manipulation.
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In a yaw manipulation, the hybrid support model is selected. In this model,
the index finger acts like the push finger; the thumb acts like the fixed support
finger, and the ring finger plays the role of the spring support finger. Hence, a
push coordinate frame is built with its origin locating at point OA, with its axis z
perpendicular to line OB and its axis y perpendicular to grasping plane OABOas
shown in Fig. 4.9. A push action is also represented by a red arrow P. Similarly,
this push vector P is also described with three parameters: θ, α, and Pl, with
P = [θ α Pl]

T . α refers to the angle between the push vector P and XOAY plane,
and θ denotes the angle between axis x and vector OAC which is the projecting
of push P in XOAY plane. Pd = (θ, α). Furthermore, the direction of the spring
support is selected perpendicular to line OAB in plane OOAB.

In the following sections, if it is not noted otherwise, the pitch manipulations
are corresponding to the single support model. Its PDC signals (haptic feedback)
is collected by the sensor on the thumb. Equivalently, the yaw manipulations are
corresponding to the hybrid support model. The PDC signals (haptic feedback) is
collected by the sensor on the index finger.

4.2.4 Haptic and Visual Features Extraction

In order to make the haptic signals comparable, all the haptic signals are put on
the ground by setting their initial value to zero. In the manipulation experiments,
haptic signals have 4 shapes, as shown in Fig. 4.10. To represent these shapes,
four sampling points are adopted to generate a haptic feature. These points are
sampled at the time step t0, t1.7 t3.5, and t7, where term ti refers the haptic value
at the ith second. The point at the beginning is included, though it is always zero.
Furthermore, four lines are plotted to connect the points: t0 to t1.7, t1.7 to t3.5,
t3.5 to t7, and t7 to t0. Thereby the continuous haptic signals can be described
by shapes represented by four lines whose slope coefficients are pk1, pk2, pk3,
and pk4 respectively. More importantly, these four parameters also have practical
meanings. The first slope coefficient pk1 refers to the rising speed of haptic value.
If this value is large, it means the object is difficult to be moved in this push
direction. On the contrary, if this value is too small, it means that the contact
force reduces too fast. In other words, the finger is likely pushing away from the
contact area on the object. The second slope coefficient pk2 denotes the stability
of the second push step. The closer it is to zero, the smoother push action is in
the second step. An ideal value of pk2 is 0, like in Fig.4.10(c). It means there is no
further constraint on the way to move the object in this push direction. The third
slope coefficient pk3 shows how fast the haptic feedback decrease in the backwards
push process. The last coefficient pk4 is the haptic value at the time step t7 since
the beginning point is always 0. It illustrates the stability of this push process. If
any slip occurs in this manipulation process, the contact force changes dramatically
for the tilted attitude of the object after fingers move back to their initial state.
This results in a large value of pk4.

In more detail, in Fig. 4.10(b) and 4.10(d), pk2 is a very small negative value.
More specifically, it happens in the repeatability experiment, such as in Fig. 4.13
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(a) Pd = (90,−30), Ks = (0, 0), d = 4 (b) Pd = (90, 0), Ks = (0, 0). d = 6

(c) Pd = (−30,−30), Ks = (0, 1). d = 4 (d) Pd = (−30, 0), Ks = (0, 1), d = 4

Figure 4.10: Haptic feature extraction.

in section 4.3 where the curve shows a valley in object’s pitch manipulation. That
is from the limitation of the robot joint (the thumb joint TF2). In that experiment,
the thumb pushes on the object in given directions; however, sometimes the push
actions are out of its workspace. In some manipulations, one thumb joint (TF2)
stops after reaching its boundary; however other joints still move ahead. This
unexpected constraint changes the push path away from the object. As a result,
the valley appears due to the decline of the contact force. Fortunately, in these
push directions, the manipulations are still completed successfully as long as the
contact force is larger enough to keep stable contact. These valleys are caused by
the limitation of robot joints; it can be detected by observing of the haptic features
and be avoided via limiting these push directions. This is one of the advantages
of our method that taking all object and fingers as one black box where we only
focus on giving different commands and observing the visual and haptic feedback
for successful manipulation tasks.
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To summarize, the haptic feature is defined by 1

pK =

 pk1

pk2

pk4

 . (4.1)

The visual signals are provided by the visual tracking system that captures
the current position and orientation of the object. The object’s position is used
to represent manipulation errors, which are not the expected motion in rotational
manipulations. To denote the positional error, the relative translation of the object
is recorded in manipulations. And the maximum translation distance is chosen as
the positional error in this thesis. On the other hand, the object’s attitude is used
to evaluate the manipulation performance. According to Euler’s rotation theorem,
any displacement of a rigid body is equivalent to a single rotation. Hence the
object’s attitude is represented by a spatial vector, Vr ∈ R3. Its length denotes
object’s rotated angle δ, and its direction refers to the axis of object’s rotation.
Similar to positional errors, the maximum rotational change is adopted as the
visual feature Vr within the scope of this thesis.

4.3 Repeatability Experiment

Before performing the ’haptic exploration’, the first thing should be taken into
account is the repeatability of the finger push actions. This experiment is to verify
the questions: ’can the object move back to its initial state after each push? ’ and
’can the feedback be repeated with the same push coefficient and grasping config-
uration? ’. Therefore, repeatability experiment is conducted in this section. In
this experiment, we make the robot hand push 10 times in each given direction.
After each push action, the push finger moves back automatically and waits for
2 seconds before the next push action. Each push and move back action takes 3
seconds and their speed is controlled with a polynomial motion planner. In this
process, both visual and tactile information is collected to estimate the interaction
state. In this section, pitch and yaw manipulations are carried out. As mentioned
before, the roll manipulation is not discussed here, since it is inherently included
in yaw manipulation experiments.

Fig. 4.11 and 4.12 represent the raw haptic and visual data. A pitch movement
experiment is shown in Fig. 4.11, where push actions are given in direction Pd =
(90, −15) 2 and with distance Pl = 4mm. The raw haptic feedback is represented
by the PDC signal from the BioTac sensor on the push finger. Fig. 4.11(a) shows the
haptic feedback. The object’s movement is recorded by the visual tracking system.
Changes in object’s yaw, pitch, and roll movements are shown in Fig. 4.11(b),
4.11(c), and 4.11(d) respectively. Similarly, a yaw manipulation experiment, where
push actions are given in direction Pd = (−15, 0) and with distance Pl = 8mm,
is shown in Fig. 4.12.

1In this research, in order to facilitate writing, pk3 is used to represent pk4 in pK
2The default unit is degree[◦] in Pd.
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(a) PDC signal (b) Yaw angle

(c) Pitch angle (d) Roll angle

Figure 4.11: The raw data of 10 manipulations with Pl = 4mm and Pd = (90,−15)

Besides, more experiments are carried out with four more different push direc-
tions. Due to the space constraints, only haptic PDC signal result is given here, see
Fig. 4.13 and 4.14. Manipulations represented in Fig. 4.13 concern object’s pitch
rotation; and the push directions are Pd = (90, 0) and Pd = (90,−30) with the dis-
tance Pl = 8mm. Equivalently, manipulations shown in Fig. 4.14 concern object’s
yaw rotation; and the push directions are Pd = (−30, 0) and Pd = (−30,−30)
with the distance Pl = 4mm.

According to the results depicted in Fig. 4.11, 4.12, 4.13, and 4.14, it can
be concluded: in different push directions, shapes of visual and haptic
signals are different; and when push actions are conducted with the same
push parameters, the visual and haptic signals exhibit the same patten.
Therefore, this experiment supports the conclusion that our push manipulation
method is feasible and repeatable.
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(a) PDC signal (b) Object’s yaw rotation

(c) Object’s pitch rotation (d) Object’s roll rotation

Figure 4.12: The raw data of 10 manipulations with Pl = 8mm and Pd = (−15, 0).

4.4 Multi-Push Distance Experiment

In order to investigate the relation between the push distance and results (haptic
and visual features), multi-push distance experiment is conducted in this section.

For the yaw manipulation, the push finger pushes in one direction: Pd = (0, 0)
but with 7 different push distances (Pl = 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9
mm, 10 mm). In these manipulations, both haptic and visual signals are collected.
After grasping, the object is pushed automatically with different distances (push
once for each distance from Pl = 4 mm to Pl = 10 mm). After these push
actions, the object is released from the hand. This sequence of actions, including
grasping at the beginning, manipulating, and releasing at the end, is considered
as one manipulation sequence. In this experiment, this manipulation sequence is
repeated 3 times.

In order to visualize the relationship among the push distances and the visual
and haptic features, a covariance diagram belongs to one manipulation sequence is
shown in Fig. 4.15. Obviously, the push distance Pl has a strong linear relationship
to the haptic feature pk1 and the object rotation angle δ shown with red solid lines.
pk1 and Pl also have strongly linear relationship. Besides, as shown with a yellow
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Figure 4.13: Repeatability of haptic raw data in the different direction Pd =
(90, 0) and (90,−30) with support stiffness Ks = (0, 0).

Figure 4.14: Repeatability of haptic raw data in the different direction Pd =
(−30, 0) and (−30,−30) with support stiffness Ks = (0, 1).

dash ellipse, the visual feature VZ , the object rotated angle δ, and the push distance
Pl have some weak linear relationship in a part of sections. As discussed in the
visual feature section, this result reveals that the object’s rotational axes are not
strictly in axis Vz. They also have other components in axis Vx and Vy. It means
that it is possible to take place of the roll manipulation with yaw manipulations.
The object’s pitch rotation in this yaw manipulation is considered as a noise since it

79



Chapter 4. Manipulation Experiments

pk1 pk2 pk3 Vx Vy Vz d
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Figure 4.15: Haptic and visual feature covariance diagram.

Figure 4.16: The relation between the finger’s push distance and first haptic fea-
ture.

is unexpected movement. Results of the other two manipulation sequences exhibit
similar pattern to the one presented in Fig. 4.15; therefore they are not presented.
As a result, the push distance Pl can be represented linearly by haptic feature pk1,
and for the visual feature, it can be represented linearly by visual feature δ.

Fig. 4.16 and 4.17 represent the details of the linear performance, where the
data is taken from the average of three manipulation groups. Fig. 4.16 shows
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Figure 4.17: The relation between the finger’s push distance and the object’s
rotated angle.

a linear relationship between the push distance Pl and the haptic feature pk1.
It starts at point (4, 4.4) and ends at point (10, 27.13) with a slope coefficient
3.79, resulting the line equation as y = 3.79x − 10.75. Fig. 4.17 shows a linear
relationship between the push distance Pl and the visual feature δ. It starts at
point (4, 2.08) and ends at point (10, 5.72) with slope coefficient 0.61. Hence,
the line equation is y = 0.61x − 0.36. Furthermore, this linear relationship can
be also extended to haptic and visual features. Because the features are a linear
combination of their elements, and at least one of their elements linearly depends
on the push distance. Therefore, there is a vector which maps the haptic and
visual features to object’s rotation angle in 2D movement. For example, for the
haptic feature, this vector can be TrH = [3.79 0 0 − 10.75], which satisfies δ =
TrH [pkT , 1]T .

From the result of this manipulation experiment, two conclusions can be drawn.
First, there are linear dependents between the push distance and at least one ele-
ment of the haptic and visual features. In other words, it is possible to estimate
part of the haptic and visual features in the manipulation with a large push dis-
tance, with the knowledge built up from manipulations with small push distances.
Second, the haptic pk1 and visual δ are also linearly dependent on each other
with respect to the push distance. Although, they seem redundant; the haptic
features can be used to estimate the performance of a manipulation,
especially in the manipulations with small push distance.

4.5 Multi-Directional Manipulation Experiment

Besides push distance Pl, the manipulation performance also relates to the push
direction Pd. In this section, multi-directional manipulation experiments are car-
ried out to illustrate the relation between the manipulation performance and the
push directions. Equivalently, in this section, the experiments are presented in two
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aspects: pitch and yaw (or ’yaw and roll’) manipulations.
In all manipulations, both haptic and visual signals are collected. For haptic

reward RH , the Euclidean distance is used to compare the haptic feature pK with
an expected one pK′ with

RH = −d(pK,pK′), (4.2)

where d(· ) refers to the operator of the standard Euclidean distance, and term
pK′ denotes the expected haptic feature, which is given manually.

For visual signals, the projecting distance of the visual feature is used to repre-
sent the visual reward. In manipulations, the object’s expected rotation direction
is represented by a unit vector V′r. Hence, visual reward is from projecting the
visual feature Vr to the expected rotational axis V′r

RV = Vr
TV′r, (4.3)

where the expected direction V′r is a unit vector, and it is given according to the
specific manipulation tasks. For example, if the manipulation is performed for a
positive yaw rotation, V′r = [0 0 1]T , and in our yaw manipulations, V′r = [0 0−1]T .

Pitch Manipulation

In pitch manipulations, the push directions are given by Pd = (θ, α), where θ
changes from 60◦ to 120◦ with a step 15◦ and α changes from −60◦ to 15◦ with a
step 15◦. In this experiment, the push distance Pl = 4 mm.

After a stable grasping, those push actions are carried out one by one automat-
ically. The manipulations are also performed with push and back action pair: the
push finger pushes forward with given direction and moves back to its initial state.
This action pair repeats until all directions starting from Pd = (60, 15) and ending
at (120,−60) are completed. In total, 30 (5× 6) push actions are carried out; and
both haptic and visual features are extracted to estimate their performance.

Different haptic rewards obtained by choosing different expected haptic features
pK′ are shown in Fig.4.18. In this experiment, the haptic rewards in Fig. 4.18(c)
is used where the expected haptic feature is given by pK′ = [40 − 20 0]T and
the Euclidean weight is wEuc = [40 20 10]T . Obviously, two bumps are clearly
visible in Fig.4.18(c); one is located around position (90,−30) and the other is
located around the position (105, 15). The local maximum position at (90,−30)
with a haptic reward −0.6. Although the result of haptic rewards depends on the
expected feature pK′ and the weights wEuc which are chosen manually; the local
maximum at position (90,−30) is not sensitive to the chosen parameters.

In this experiment, expected haptic feature pK′ = [40 − 20 0]′ is chosen with
practical reasons based on the discussion in section 4.2.4. The first element of pK′

indicates the initial rising slope in the early state of the push action; hence it is
set as the average value of pk1 in experiments. The second element of pK′ denotes
the change of push force in the latter stage of the push action. The contact force
should be smaller after the object is rolled. Hence, a negative value is chosen.
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(a) pK ′ = (20 − 20 0)T .
(b) pK′ = (20 0 0)T .

(c) pK′ = (40 − 20 0)T .
(d) pK′ = (40 0 0)T .

Figure 4.18: Haptic reward with different pK′.
It is a negative standard Euclidean distance to a desired haptic feature pK ′. In these

diagrams, the horizontal axes denote to different push directions where θ = 60◦ to 120◦

with the step of 15◦ and α = −60◦ to 15◦ with the step of 15◦. The different haptic
rewards are listed in the sub figures according to the different expected haptic feature
pK′. Although pK′ is given by different values, there is always a local maximum around
the point (90◦,−30◦) in all sub figures.

Besides, the last term pK′3 refers to whether any slip occurs in the manipulations.
If it is large, it means a slip occurred and the object can not be moved back to its
initial state completely. If it is small, it means there is no significant slip in this
manipulation. As a result, it is set to 0.

Obviously, in Fig. 4.18(a), 4.18(b), 4.18(c), and 4.18(d), there are more than
one bumps (local maximum) in each sub-figures; however at least a bump is located
around position (90,−30) in each sub-figure. This indicates that these haptic
rewards are robust to the chosen parameters. The different expected features
generate a similar result with a local maximum haptic reward around position
(90 − 30). Hence, any of the sub figures in Fig. 4.18 can be used as the haptic
reward. As it can be seen from Fig. 4.18(c), this haptic reward can only show the
best push actions locally. However, it seems not a good idea to simply identify the
best action with a local maximum. Therefore, to obtain the best global action,
visual rewards are taken into account.

Fig.4.19 illustrates the result of the visual reward. In this experiment, the
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Figure 4.19: Visual reward.

Figure 4.20: Object’s rotation axes.

object’s expected rotation direction is given by V′r = [0 − 1 0]T . As shown in
Fig.4.19, there is a smooth plateau around the point (90,−30). In this figure, the
maximum point is not clearly visible; and the good push direction is located in the
yellow large area from the view of visual rewards. Besides, the object’s rotated
directions are plotted in Fig. 4.20 with arrows. In the figure, the rotated directions
cluster in the direction −Y within a small cone in a palm frame; although the push
directions are given quite differently. Hence, it can be concluded that the
object’s rotated directions are not sensitive to the push directions in
the pitch manipulations.

An intuitive way to choose the best push direction is combining the haptic and
visual rewards together. Hence, we have

Rtotal = wHRH + wVRV , (4.4)

where wH and wV denote the weights for haptic and visual rewards respectively.
The combined haptic and visual reward is shown in Fig. 4.21 with the weights
wH = 1 and wV = 0.5. These weights are selected because in this pitch manipu-
lation the object’ rotations are not sensitive to the push directions. Therefore the
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Figure 4.21: Combined haptic and visual reward in pitch manipulations.

Figure 4.22: The snapshots of a pitch manipulation.

visual weight is given with a small value. The combined reward is shown in Fig.
4.21. In Fig. 4.21, there is a sharper bump compared to the visual reward repre-
sented in Fig. 4.19. However, no significant improvement is observed compared to
the haptic reward given in Fig. 4.18. As a result, in the pitch manipulations,
it is better to focus on haptic (or haptic dominated) reward to evaluate
the manipulation performance, since the pitch manipulation is robust to
the push directional parameters. The best push direction in this experiment
is Pd = (90,−30). A pitch manipulation is carried out on the real robot platform
with the best push direction, and the snapshots are shown in Fig. 4.22.

Yaw and Roll Manipulation

In the yaw manipulations, the push directions are given by Pd = (θ, α), where θ
changes from −60◦ to 60◦ with a step 15◦ and α changes from −60◦ to 30◦ with a
step 15◦. In this experiment, the push distance Pl = 8 mm.

After the object is grasped, these push actions are performed one by one auto-
matically. The manipulations are also conducted with push and back action pairs
as in the experiments given before. It also repeats manipulating until all direc-
tions, starting from Pd = (−60,−60) and ending at (60, 30), are completed. In
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(a) pK′ = (20 10 0)T (b) pK′ = (20 30 0)T

(c) pK′ = (40 10 0)T (d) pK′ = (40 30 0)T

Figure 4.23: Haptic reward with different pK′.

total, 63 (9× 7) push actions are conducted, and both haptic and visual features
are extracted to estimate the performance of the push actions.

Similar to ’Pitch Manipulation’, different haptic rewards are obtained based
on different expected haptic features pK′ in yaw manipulations demonstrated in
Fig. 4.23. In this experiment, the haptic reward in Fig.4.23(a) is adopted with
the expected haptic feature pK′ = [20 10 0]T and the Euclidean weight wEuc =
[20 20 10]T . Two bumps can be seen in Fig.4.23(a); one is located around the point
(−30, 15) with the value of −0.51 and the other is located around the point (30, 45)
with the value of −0.62. Similarly, the expected haptic feature pK′ = [20 10 0]T

is chosen due to practical reasons. The first element of pK′ is chosen from the
average of pk1 value in this experiment. The second element of pK′ is set to a
small positive value. The push force increases since the contact force applied by the
spring support finger increases when rotating. Hence, a small value 10 is chosen.
And the last term of pK′ is set to 0 to reduce the slip as in pitch manipulations.

Similarly, there are more than one bumps in each sub figures in Fig. 4.23. How-
ever, there is a local maximum point around the point (−30, 15) in Fig. 4.23(a),
4.23(b), 4.23(c), and 4.23(d). This supports that these haptic rewards are not sen-
sitive to the manually chosen parameters. It can be seen in Fig. 4.23(a): for the
yaw manipulation, this haptic reward result can not show the best push action.
Therefore, the visual rewards should be considered.

The visual reward is shown in Fig. 4.24. In this experiment, the object’s
expected rotation is given by V′r = [0 0 − 1]T . There is one smooth bump around
the position (−30, 15) with the value of 0.086. Obviously, it is the global maximum
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Figure 4.24: Visual reward.

Z

X

Y

Figure 4.25: Object’s rotated axes.

value. Therefore, the best visual-based push direction can be considered as at the
top position of the bump (−30◦, 15◦). Unlike the pitch manipulation, the object’s
rotation directions are sensitive to the push directions in yaw manipulations. All
the object’s rotated directions are plotted in Fig. 4.25, where the short arrows
refer to the object’s rotation axes. Obviously, these arrows are evenly distributed
in a plane in the palm frame.

In this task, both haptic and visual rewards reflex the manipulation perfor-
mance; and they have their own strengths. The haptic reward shows the best
point with small bumps; however, there are two bumps in Fig. 4.23. Furthermore,
the visual reward shows a single bump in Fig. 4.24, but it is much smoother than
the bumps in the haptic reward.

Similarly, referring to Eq. 4.4, the haptic and visual combined reward is plotted
in Fig. 4.26 with the weights wH = 1 and wV = 20. In Fig. 4.26, there is a single
sharper bump compared to the visual reward presented in Fig. 4.24. As a result,
the best push direction is Pd = (−30, 15). A manipulation with the best push
direction is carried out on the real robot platform. The snapshots of its results are
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Figure 4.26: The combined haptic and visual reward in yaw manipulations.

Figure 4.27: The snapshots of the yaw manipulation.

given in Fig. 4.27, where the object rotates in 6.8◦.

Relation between Haptic and Visual Features

The relation among haptic, visual features and the push directions are shown in
Fig. 4.28 and 4.29. Additionally, one more element, which is the sum of the first
and second elements of the haptic feature: pk1 + pk2, is added in Fig. 4.28 and
4.29.

For the pitch manipulation, there are three linear relations worth noting in
Fig. 4.28. They are (pk1 + pk2)-VZ , (pk1 + pk2)-δ, and (pk1 + pk2)-α demonstrated
with three red lines in Fig. 4.28. Although their linear dependencies are not
strong; some useful conclusions can be drawn from them. For (pk1 + pk2)-α, the
sum of the first and second elements of the haptic feature can be controlled easily
with the second element of the push direction α. Therefore, a linear relation is
assumed (pk1 + pk2) ∝ α + b, where b is a constant baseline. For (pk1 + pk2)-δ,
the expected object rotation decreases when the haptic value pk1 + pk2 increases.
This suggests that the finger should push in the directions with small haptic value
pk1 + pk2. Besides, this figure also highlights other interesting relations, i.e. the
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Figure 4.28: Haptic and visual covariant diagram for the pitch manipulation.

sub-diagrams in the columns θ and α. The points in this sub-diagrams relating to
θ are much scattered; on the contrary, the points relating to α are concentrated
on one particular area. It means that the push direction parameter α has a much
stronger effect on the manipulation performance (visual and haptic features) than
θ.

For the yaw manipulation, the relationship among the parameters is more reg-
ular, as can be seen in Fig. 4.29. One of the most important strong linear relation
is VZ-θ. As VZ is the expected rotation in yaw manipulations, it denotes
the object’s expected rotational direction (VZ) is linearly proportional
to one of the push parameter (θ). Therefore, the best push direction can be
found efficiently by focusing more on θ. Besides, there are also some other inter-
esting relations can be also seen in Fig. 4.29. The sub-diagram (pk1 + pk2)-pk1,
where the data shape is very similar to a line. It denotes that its second element
of the haptic features is less important compared to the first element.

4.6 Hybrid Support Manipulation Experiments

In order to verify the hybrid support model, a hybrid support manipulation ex-
periment is carried out. In this experiment, only one push direction parameter α
is considered, due to it is a 2D manipulation. The object is assumed to rotate in a
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Figure 4.29: Haptic and visual covariant diagram for the yaw manipulation.

horizontal plane. This can be achievable by fixing the other push direction param-
eter, θ, to −30◦ according to the experimental results (the best push direction) in
section 4.5.

This experiment consists of two sub yaw manipulation experiments. The first
one is the push direction experiment, designed to verify the relation between the
push direction and the object’s rotation. The second one is the push distance
experiment. It is conducted to verify the relationship between the push distance
and object’s rotation. Besides, the stiffness control performance on the spring
support finger is also investigated in the push distance experiment.

In this experiment, the push direction is given by Pd = (−30, 15); and the
push length Pl changes in the range of 4mm to 10mm with the step of 1mm. And
each push action is performed three times to reach a stable average value. For the
spring support finger, a stiffness control is applied with 50Hz frequency and the
finger stiffness is set to 6.76.3 The contact force is represented by the maximum
value of the haptic feature (max(pk1, pk2, pk14)), which is the PDC signal read from
the sensors.

3The stiffness is set to this value in all manipulation experiments in this thesis.
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Figure 4.30: The manipulation results based on different push directions with
Pd = (−30, α).

4.6.1 Push Direction

In Push Direction Experiment, the push direction α changes from −60◦ to 60◦, and
the push distance is set to Pd = 8mm. In order to facilitate the experiments, the
robot moves back to its initial grasping state after each push action. Hence, all the
nine manipulations are finished automatically. After that, the object is released
from the hand. Besides, these manipulation processes are conducted three times
and their average value is represented in Fig. 4.30, where the violet circles are
experimental data points. The red line is a regression result with a function of
y = 5.1cos(x − 12.6), where ϕ = −12.6◦. This result fits well with the Eq. 3.49.
Differently from Eq. 3.49, there is a phase angle −12.6◦ in this experiment result.
That is because on the real robot contact positions on the fingertips are different
from the assumed position in the theoretical model. This indicates the feasibility
of our proposed hybrid support model.

Therefore, it can be concluded that the results of the Push Direction Exper-
iment verify our proposed hybrid support finger model, proposed in section 3.4.
Furthermore, according to the visual result, the best push direction is 12.6◦. This
result provides us an optimized push direction for the further manipulations.

4.6.2 Push Distance and Contact Force

Fig. 4.31 illustrates the contact force applied by the different fingers. In this
figure, the blue line denotes the contact force on the thumb; the green line refers
to the contact force on the index finger, and the red line represents the contact force
applied by the ring finger. Obviously, the contact force on the thumb approximates
to the sum of the contact force on the index and ring fingers. That is because, in
this grasping configuration, the thumb is on the opposite side of other two fingers.
According to the force-closure condition, the sum of the contact force should be
zero. However, the BioTac sensors can not identify the force direction. Thus the
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Figure 4.31: The contact force on different fingers.

Figure 4.32: The stiffness performance of the ring finger.

contact force in Fig. 4.31 is all positive scalar, and the contact force on the thumb
approximates to the sum of the other fingers.

The stiffness control performance of the spring support finger is shown in Fig.
4.32. The dots in this figure represent the relation between the contact force
(represented by PDC value) and the finger’s displacement; and the red solid line
denotes the expected stiffness with the equation of y = 6.76x − 7, where 6.76 is
the finger stiffness and 7 is a baseline for compensating the initial grasping force
and fingertip position. It is worth noting that raw data is a little away from the
expected stiffness line. It mainly lies in two aspects. The first aspect is about
the low control resolution of the robot hand which is 1◦ for each joint. The finger
does not move when the control commands are given to change the joints in a
small angle (less than the control resolution). The second aspect is about the
structure compliance. The shadow hand is driven with tendons, even without the
stiffness controller the joints still have some compliance attributes that make them
deformable to the external force. Therefore, the fingertip moves when either the
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Figure 4.33: Change in object’ attitude.

Figure 4.34: Change of the object’s position.

direction or the contact force changes.

Manipulation Errors

The object’s attitude provided by the visual tracking system is plotted in Fig.
4.33. In this figure, the red line denotes the rotation angle in a horizontal plane;
and the gray line corresponds to the rotational errors. It is easy to find that
the rotation angle is almost a line that refers to the push distance, which shows
a linear relationship between the push distance and the object’s rotation angle.
On the other side, the object’s rotational error is much smaller compared to the
rotation angle. Unlike the rotation angle, the error shows no signification linear
relation. Actually, within a small range (Pl 6 6mm), it changes quite slowly.

Besides, the change in object’s attitude, this manipulation method also gener-
ates positional errors. In Fig. 4.34, the change in the object’s position is plotted.
Obviously, there is also a linear relationship between the push distance and the
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Figure 4.35: A disturbance during an object’s grasp.

change in object’s position. However, its maximum value of the change in position
is 1.2 mm. Comparing this value to the change in object’s rotation, it is a very
small value. And due to the low control resolution of finger joints, it is almost
impossible for our robot to move the object to compensate such small positional
errors. Therefore, it can be concluded that it is practical to ignore the position
change in this manipulation method. Besides the purpose of this manipulation is
not to rotate the object but to perceive the interaction state of the in-hand system.
The errors will be compensated in the enhanced manipulation experiments which
are performed in section 4.8.

Short Discussion

Although the low-level controller on the shadow hand is PD controller, the push
actions are still limited by robot’s structure. In these experiments, all these push
actions are controlled off-line and the resolution of each joint is set to 1◦. However,
in haptic exploration, both the limitation of the push finger’s structure and the
control resolution is a part of the environment for the robot.

4.7 Robustness Experiments

Compared to the other manipulation methods, our method can not only reduce
the complexity of the system but also enhance the robustness of grasping and
manipulation abilities dramatically.

The stiffness-control strategy on the spring support finger, discussed in section
3.4.3, benefits not only the stability of the grasp but also the stability of the ma-
nipulations. Hence, in this section two robustness experiments are presented. The
first one is grasping robustness experiment, where a disturbance occurs when the
object is stably grasped. In this grasping state, only the spring support finger (ring
finger) is controlled passively to compensate the errors generated by an external
disturbance. The second experiment is manipulation robustness experiment, where
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the disturbance occurs in the process of manipulation. This manipulation is the
same as in section 4.6. In both experiments, the disturbance is a quick poke on
one side of the object given by a human finger, as shown in Fig. 4.35.

Robustness grasping experiment

(a) Contact force (PDC) on thumb (b) Contact force (PDC) on index finger

(c) Contact force (PDC) on ring finger

Figure 4.36: The haptic result of a robust grasp when a disturbance occurs.

The result of grasping robustness experiment is shown in Fig. 4.36 and 4.37.
Fig. 4.36 illustrates the haptic result; and Fig. 4.37 shows the visual result in this
experiment. The disturbance is given at the 2s. In Fig. 4.36(a), first the thumb
PDC signal increases and then it drops immediately. That is due to the action
delay of the spring support finger. After the disturbance is given, the contact force
on the spring support finger increases. However, because of the low resolution
of the joints, the spring support finger does not move until its positional error
is larger than 1◦. Therefore, the contact force on thumb increases first for the
disturbance, and then drops for the compliance actions from the spring support
finger. This is also demonstrated in Fig. 4.36(c), where contact force on the
ring finger increases for the disturbance at the beginning, and then drops back
immediately for its compliance actions. Fig. 4.36(b) shows the PDC signal from
the index finger. In this stable grasp, the index finger is not controlled, and the
disturbance makes the object away from the index fingertip. Therefore, the contact
force drops dramatically until the object departs from the fingertip (no contact
anymore). And after the disturbance disappeared, the haptic signals return back.
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(a) Yaw angle (b) Pitch angle

(c) Roll angle

Figure 4.37: The visual result of a robust grasp when a disturbance occurs. (ob-
ject’s attitude)

As shown in the visual result, the disturbance generates a negative yaw rotation
on the object, as shown in Fig. 4.37(a); and after it disappears, the object moves
back to its initial state. Two things should be noted here. The first one is that
the change in the object’s position is ignored here since it is really small according
to the result in Fig. 4.34. The other thing is that the update frequency of the
visual signals is not as high as haptic signals, since detecting and tracking tags
takes time for the visual system. Hence, the disturbance signal has a flat bottom
in Fig. 4.37(a); and there is a little delay compared to the haptic signals.

Robustness manipulation experiment

Similarly, Fig. 4.38 and 4.39 present the result of the robustness manipulation
experiment, where a disturbance is given in the process of manipulation. Similar
to the first robustness grasping experiment, the disturbance is given by poking at
the object with a human finger. Fig. 4.38 and Fig. 4.39 show the haptic result
and the visual result respectively. The manipulation is conducted with same push
parameters ( Pd = (−30, 15) and Pl = 8mm) as explained in section 4.6. Fig.
4.38(a), 4.38(b), and 4.38(c) show the PDC signals from the push finger (thumb),
the fix support finger (index finger), and the spring support finger (ring finger)
respectively. Obviously, at the beginning, the signal increases normally due to
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(a) Contact force (PDC) on thumb (b) Contact force (PDC) on index finger

(c) Contact force (PDC) on ring finger

Figure 4.38: The haptic result of a robust manipulation.

the push action; and then spikes occur at the 3s due to the disturbance; finally,
after the disturbance disappears the system goes back to a stable state and the
contact signals decrease with respect to the rest manipulation actions. However,
the contact force on push and fix support fingers can not move back to their initial
state. This is because the external disturbance generates slips on the push and
fixed support fingers, which cause the system can not move back to its initial state.
On the contrary, there are few slips on the spring support finger for its spring-like
attributes. For the visual result, the disturbance generates a fast decrease on
the yaw rotation at the time 3.8s; and there is no distinct effect on other rotation
directions. According to the visual result, the disturbance generates a negative yaw
rotation on the object, as shown in Fig. 4.39. After the disturbance disappears,
the object moves back to its initial state.

Additionally, hundreds of manipulations have been performed, after the manip-
ulation algorithm is completed. Except few experiments conducted in dangerous
push directions, almost all manipulations are completed successfully.4 In other
words, if a proper push direction is given, the successful ratio of our manipulation
methods is almost 100%.

4Here the success of the manipulation denotes that the object does not fall off the robot hand.
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(a) Yaw angle (b) Pitch angle

(c) Roll angle

Figure 4.39: The visual result of a robust manipulation. (object’s orientation)

4.8 Enhanced Manipulation Experiments

In above experiments, the best push direction is found in the haptic exploration.
With the push direction, the object is rotated by a small angle (about 6.8◦). To ap-
ply this ’best push direction’ and improve the manipulation performance, enhanced
manipulation experiments are carried out. In this section conducted manipulations
are based on the enhanced manipulation model introduced in section 3.5. In fol-
lowing experiments, the manipulations are performed on a new platform where the
shadow hand is mounted on the PR-2 robot as its right hand, as illustrated in Fig.
4.40.

The snapshots of an enhanced manipulation are shown in Fig. 4.41. In these
snapshots, the object rotates about 18◦. Compared with the push manipulation
in Fig. 4.27 (rotated by 6.8◦), the yaw rotation is significantly improved by the
enhanced manipulation method. On the other hand, the enhanced performance
not only increases the rotational range of the object but also enable the robot to
manipulate various objects.

4.8.1 Manipulating a Rigid Object

In above sections, the manipulated object is the foam box which is soft and light.
In fact, our manipulation method is able to manipulate rigid objects. As shown in
Fig. 4.42, a rigid box is used in this manipulation experiment. This object has the
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Figure 4.40: The PR-2 robot with a shadow hand.

same dimension as the foam box in Fig. 4.4, but it is made from rigid plastic via
a 3D printer. With the same grasp configuration, the rigid object is manipulated
as the foam box explained in the last enhanced manipulation experiment. The
snapshots are shown in Fig. 4.44(a).

4.8.2 Manipulating Various Objects

Apart from the material, of which the object is made, our method is also able
to manipulate objects with different shapes. In this section, the results about
the manipulation of the objects with different shapes and materials are presented.
Besides the boxes, different objects, like a remote control, a coffee capsule, and
a square plate, are used as shown in Fig. 4.43. Since these objects have differ-
ent sizes, shapes, and materials; their grasping configurations have to be different.
The same as the manipulations conducted before, stable grasps have been achieved
(from human knowledge). Enhanced manipulations have been implemented to ro-
tate these objects. Finally, successful manipulations are carried out on them. The
manipulation result is presented in Fig. 4.44. In Fig. 4.44(b), snapshots of manip-
ulating the coffee capsule are shown. In Fig. 4.44(c), snapshots of manipulating
the square plate are shown. In Fig. 4.44(d) snapshots of manipulating the remote
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Figure 4.41: Snapshots of enhanced manipulation.

Figure 4.42: The rigid object with the same dimension as the foam box.

control are shown.

4.9 Comparing to Virtual Frame Model

In order to evaluate our manipulation method comprehensively, a comparative
manipulation is performed based on the virtual frame model proposed in [161]
which is briefly introduced in section 2.3.2. In this experiment, the manipulated
object is the foam box.
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(a) A remote control. (b) A caffee capsule.

(c) A square plate.

Figure 4.43: Various objects.

4.9.1 Manipulating with Virtual Frame Model

In this manipulation, a three fingers grasp is used. This grasp has the same
initial grasping configuration as in the experiments conducted before. The contact
position is assumed to be located at the center of the fingertips. Therefore, a
virtual frame in a shape of a triangle is built with dash lines and its motion path is
shown in Fig. 4.45. In this process, the rotation center of the frame is calculated
according to Eq. 2.2. And the bunches of red arrows denote the velocity of the
fingers with respect to the virtual frames.

The snapshots of the manipulation are shown in Fig. 4.46. In this manipula-
tion, the object rotates as in yaw manipulations. And the robot tries to rotate the
object as much as it can. As a result, the object rotates in 12◦ until one of the
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(a) Snapshots of manipulating the rigid box.

(b) Snapshots of manipulating the coffee capsule.

(c) Snapshots of manipulating the square plate.

(d) Snapshots of manipulating the remote control.

Figure 4.44: Snapshots of manipulating various objects.
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Figure 4.45: The moving path of the fingers based on the virtual frame model.

Figure 4.46: The snapshots of a manipulation based on virtual frame model.

hand’s joints reached its boundary. In the end, its position changes about 3.7mm
which is considered as the position error in rotation manipulations.

4.9.2 Comparative Results

Tab. 4.2 presents the comparative results between the enhanced and the virtual
frame manipulations.

In Tab. 4.2, several comparative aspects are considered. In this table, the
’Manipulate various objects’ refers to whether the method can manipulate var-
ious objects with different shapes, materials, weight, etc. Obviously, since the
object is modeled with a triangle frame based on the fingers’ position, both of
these methods are able to manipulate different objects. The ’Prepare in advance’
means whether the robot has to do something before manipulating. Only in en-
hanced manipulations, ’exploration’ is required to collect proper information for
the ’right’ push direction. The ’visual and tactile information’ refers to the ne-
cessity of sensing channels in these methods. The virtual frame method requires
no sensing information, but the enhanced manipulation requires the visual and
haptic feedback. The ’Two finger Manipulation’ denotes to whether these meth-
ods are available to manipulate under two fingers grasps. In section 4.4, the pitch
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Table 4.2: Comparison of the enhanced and the virtual frame manipulations.

Virtual Frame Enhanced Manipulation

Manipulate various objects yes yes

Prepare in advance no yes

Visual and haptic information no yes

Two fingers manipulation bad good

Max rotation [◦] small (12◦) large (18◦)

Position error [mm/◦] 0.31mm/◦ 0.26mm/◦

3D manipulation yes yes

Robustness bad good

Safe to the robot bad yes

manipulation is a special case of the virtual frame manipulation when the push
direction is given by Pd = (0, 0). In that experiment, there are slips in contact ar-
eas. In other words, the object may fall off when the finger pushes as in the virtual
frame manipulation. Hence, we conclude that the virtual frame is not available
to two fingers manipulations. The ’Max rotation’ is the largest rotational angle
of the object within the workspace of the hand. In experiments of section 4.9.1
and 4.8, with the same grasp configuration, the object is rotated until any joint
reaches its boundaries. As a result, the object’s largest rotated angle achieved by
them is 12◦ and 18◦ respectively. The ’position error’ refers to position changing
of the object when it reaches the largest rotational angle. According to the exper-
iments, their position change is 3.7mm and 4.6mm respectively. And this research
uses the average position change in every degree as their position errors, that is
3.7/12 = 0.31mm/◦ and 4.6/18 = 0.26mm/◦. The ’3D manipulation’ refers to the
ability to rotate the object in the roll and pitch directions. The ’Robustness’ means
whether these methods can deal with poor parameters of their models. The vir-
tual frame method requires no information about the objects, but a precise robot
model is required. Our enhanced manipulation requires neither object’s informa-
tion nor robot’s precise model. The ’Safe to the robot’ refers to whether there is
any mechanism to protect the robot from unexpected behaviors or disturbances
from the environments during the manipulations. In our enhanced manipulation,
the spring support finger protects the hand from damages. When weird actions
happen, hazard contacts are generated on fingers. By using a spring support fin-
ger, the compliance properties make the finger step away in order to reduce the
hazard contact force to protect the robot.

In summary, our enhanced manipulation method is better than the virtual
frame method in terms of ’Two fingers manipulation’, ’Two fingers manipulation’,
’Max rotation’, ’Position error’, ’Robustness’, and ’Safe to the robot’. Certainly,
our manipulation method also has some drawbacks, such as it requires more time
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to collect some information before manipulations, more sensors are required in the
process of manipulations, more computing power is required, etc. To conclude, ac-
cording to the comparative result, the enhanced manipulation is a precise, efficient,
flexible, and robustness method.
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Chapter 5

Learn to Improve Manipulation
Skills

Learning is one of the most important aspects of artificial intelligence. Its goal is
to build an agent which can adapt to its environments by learning from its past
experience. Machine learning is an active research topic, and it attracts many
researchers from various research fields [159].

In robotics, many tasks are complicated, like a sequence of actions are required
for future successes. Generally speaking, robot learning is an optimal process,
in which an agent is trained to generate proper actions to reach maximum (or
minimum) rewards in the future[93]. In our robotic manipulation tasks, sequence
actions of finger joints are carried out by the robot. After fingers’ actions, the
in-hand object moves to a new state. The performance of the sequence actions is
evaluated from rewards including visual and haptic information.

Although, good in-hand manipulations have been achieved through linear push
actions in section 4; an alternative approach to the robot manipulation is re-
inforcement learning. In this chapter, we would like to let the robot learn the
manipulation skills itself through interacting with its environments.

This chapter is organized as follows:

• In section 5.1, the architecture of the manipulation learning system is intro-
duced.

• In section 5.2, a manipulation simulator is built. It consists of 4 RBFNs: vi-
sual, first haptic, second haptic, and third haptic RBFNs. The visual RBFN
maps the push commands to visual reward, and the haptic RBFNs map the
push commands to the elements of the haptic features. These RBFNs are
trained by the data collected from real manipulation experiments.

• In section 5.3, stochastic policy based reinforcement learning is introduced.

• In section 5.4, learning experiments are performed. In these experiments, two
reinforcement learning (RL) algorithms are adopted: Williams’ Episodic RE-
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Figure 5.1: A manipulation learning architecture.

INFORCE and Peters’ Episodic Natural Actor-Critic. In the manipulation
learning task, multimodal rewards have been used in the learning process.

5.1 Learning Framework

Different from most classic RL benchmark problems, robotic RL problems are often
represented by high dimensional continuous state and actions. Moreover, with
little knowledge of the environment, robots have to discover their optimal actions
automatically, which is called exploration. In robot control problems, improper
exploration is very dangerous, since it may cause hazard damages to the robot and
its environments. Furthermore, more than thousands of episodes are often required
in training process of reinforcement learning. However, conducting thousands of
uncertain actions on real robots is impractical in most robotic applications.

To apply learning algorithms and protect the robot, a robotic in-hand manip-
ulation simulator is built. This simulator simulates the output close to the real
system. After that, an RL agent is built to interact with the simulator. Through
interacting with this simulator, the learning agent improves little by little with
learning algorithms.

Architecture of Manipulation Learning

A manipulation learning architecture is presented in Fig. 5.1. It consists of two
parts: a manipulation simulator and an RL agent. The manipulation simulator
receives the manipulation actions from the RL agent and generates the output
close to the real manipulation system. The RL agent is built to receive the sys-
tem state and generate the manipulation actions. Besides, a density manipulation
experiment is performed on our real robot platform to generate the training exam-
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ples (manipulation data) to train the manipulation simulator. More experimental
details are presented in section 5.2.2.

With the manipulation simulator and the RL agent, the learning process is
performed in three steps. Firstly, a density push manipulation experiment is con-
ducted to collect visual and haptic data. In this experiment, the push parameters
and the visual and haptic feedback is recorded respectively as training examples.
Secondly, a manipulation simulator is built with neural networks which are trained
with the manipulation examples collected in the first step. At last, a policy based
RL agent is built and RL algorithms are implemented. This agent generates ma-
nipulation commands according to the current system state. Through interacting
with the manipulation simulator, the agent improves step by step with reinforce-
ment algorithms.

Manipulation Simulator

A manipulation simulator is built to take the place of the real manipulation system
with which the RL agent interacts. To build this simulator, usually there are two
approaches.

One approach is physics engine based dynamic simulation. It models the time-
varying behaviors of the system based physical theories. Usually, to describe the
model’s behaviors, ordinary differential equations or partial differential equations
are used [53]. In this simulation, mathematical models are used to model the
real-world constraints and the models solved by iterating over the state. This
physics engine based dynamic simulation is widely used in robot controls, nuclear
power, vehicle modeling, etc. Physics engine based dynamic simulation is very
useful in the tuning of the mechatronic systems, since it can run in real time but
in a virtual space, and it gives a result close to the real system. There are many
famous software based on this approach, such as Gazebo1, Adams2, V-REP3, etc.
However, in contact problems, this approach fails in most cases, especially referring
to the contact with soft materials. In our manipulation, the object is driven by
the contact force applied by fingers, and the contact areas (fingertips) are often
covered by soft materials. Therefore, this approach is not suitable to simulate the
robotic manipulation.

Another approach is using function simulator in which a general function ap-
proximator is used to approx the input-output map. The function approximator
is often constructed with neural networks. However, in this approach, there is an
additional training process in which training examples are required. The perfor-
mance of the approximator highly depends on how it is structured and trained.
If good training examples are available, it is a much generalized and efficient ap-
proach. Fortunately, in this research, these visual and haptic training examples
are attainable in real robot manipulations, like the manipulations performed in
the experiments in section 4.5. As a result, this approach is used to simulate the

1http://gazebosim.org/
2http://www.mscsoftware.com/zh-hans/product/adams
3http://www.coppeliarobotics.com/
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Figure 5.2: A manipulation simulator. Its input is the push commands, and the
output is the object’s visual reward and haptic features. This simulator consists
of four one-dimensional function approximators.

manipulation system. Essentially, the function approximator is a function which
maps the manipulation commands to the visual and haptic rewards.

Of this manipulation simulator, the input is the push commands; and output
is the visual reward and the haptic features, as shown in Fig. 5.2. This simulator
consists of four one-dimensional function approximators: one visual approximator
and three haptic approximators. The visual approximator maps the push com-
mands (the push distance and push direction) to the visual reward (degree change
of the object’s orientation). The three haptic approximators map the push com-
mands to elements of the haptic features (pk1, pk2, and pk3) respectively. All
these approximators are constructed with Radial Basis Function Neural Networks
(RBFNs). These networks are trained with manipulation examples collected in
real robot experiments. More details are introduced in the following sections.

Reinforcement Learning Agent

Policy based method is one of the most used RL methods in robot control problems
[22], [101], [139], [141]. In this thesis, a policy-based learning agent is used to
explore the space of the possible policies according to the received feedback.

As shown in Fig. 5.3, this RL agent is a stochastic policy which is represented by
πθ. It takes the finger’s state (position in Cartesian space) as input and produces a
modified push command. With this push command, visual and haptic rewards are
generated by the simulator. After processing these rewards, an optimized gradient
descent direction ∇W is obtained, which denotes the expected changing direction
of the policy parameters θ. Policy πθ updates in direction ∇W. After repeating
this process, the changes in the policy parameters accumulate. Therefore, the
RL agent improves little by little. After the rewards are converged, this learning
process is completed successfully.
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Figure 5.3: A stochastic RL agent for manipulation.

5.2 In-hand Manipulation Simulator

In this section, a manipulation simulator has been built based on the real ex-
perimental data. Moreover, to construct the simulator, Radial Basis Function
Networks (RBFNs) are used.

5.2.1 Radial Basis Function Networks

A Radial Basis Function Network (RBFN) is a kind of neural networks. After first
proposed by Park and Sendberg in 1991, [136] it is very popular in data modeling,
like function approximation.

RBFN is a feed-forward neural network consists of three layers: an input layer,
a hidden layer, and an output layer. The input layer is a ’fan-out’ without any
data processing in this layer. The second layer consists of kernels which weight the
distance between the input and the kernels, called radial basis function. The final
layer adds its input linearly together as its output. Obviously, the kernel is the
most important part of the RBFN, which stores data (examples) from the training
set.

Various radial basis functions have been tested as the kernels of the RBFN.
One of the most frequently used kernels is the Gaussian kernel. The ith Gaussian
kernel with an input vector x is

φi(x) = exp(−
n∑
j=0

(xj − uij)2

2σ2
ij

), (5.1)
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where uij refers to the center location of the ith kernel for the jth variable. It is
also called prototypes. σ is the width of the kernel.

Obviously, the training of an RBFN refers to three parameters: prototypes µ,
the width of kernel σ, and output weights w. Many methods have been proposed to
select the prototypes and train the RBFN [44], [136], [131], [151]. According to the
research in [151], in this thesis, the algorithm k-Means clustering is used to select
prototypes intelligently. In this algorithm, the training data set is clustered, and
their cluster centers are chosen as the prototypes. In more detail, first the training
data is separated into n classes; and then the average of all the points in each cluster
is computed as the cluster center. In this algorithm, the number of the clusters n
is determined heuristically. A large number of n denotes more prototypes. This
means a more complex decision boundary can be received, however, this also causes
the problem that the network’ training and evaluation is more difficult.

5.2.2 Density Push Experiment for Yaw Manipulation

In order to collect sufficient training examples, a density push experiment has
been carried out in this section. This experiment is very similar to the multi-
directional manipulation experiment introduced in section 4.6. Differently, the
push actions are conducted with different distance in this experiment. The push
distance changes from Pl = 2mm to 10mm by step 1mm, and the push direc-
tion changes from Pd = (−60,−60) to (60, 60) by step 15◦. In summary, the
push sequence is listed in Algorithm 1. Totally, 380 pushes are performed in this
experiment.

Algorithm 1 The push sequence in the density push experiment.

for Pl = 2 to 10 mm do
for θ = −60◦ to 60◦ by 15◦ do

for α = −60◦ to 60◦ by 15◦ do
Push execution with P = [θ, α, Pl]

T ;
end for

end for
end for

In these manipulations, all the visual and haptic data are collected; moreover,
the visual reward and the haptic features are extracted as training data set. Their
visual reward and the haptic features are shown in Appendix B.

5.2.3 Manipulation Simulator based on RBFNs

In the manipulation simulator, there are 4 RBFNs. They are visual RBFN, first
haptic RBFN, second haptic RBFN, and third haptic RBFN.

The visual RBFN maps the push parameters to the visual reward introduced
in 4.2.4 in Eq. 4.3. More specifically, the input of this RBFN is the push direction
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Pd and the push distance Pl. Its output is the degree change in object’s rotations
in the expected manipulation direction V′r.

The first haptic RBFN maps the push parameters to the first element of the
haptic feature introduced in 4.2.4. The input of this RBFN is the push direction
Pd and the push distance Pl. Its output is the first element of the haptic feature
pk1. Similarly, the second and third haptic RBFNs map the push parameters to
the second and the third element of the haptic feature pk2 and pk3 respectively.

Visual RBFN

The visual RBFN result is shown in Fig. 5.4 in polar coordinates, where the
training parameters are σ = 1, n = 45. As a result, after training the mean
squared error (MSE) e = 1.8 × 10−5. To visualize the four-dimensional data, the
result of the visual RBFN is sliced into 10 surfaces regarding to the push distance
Pl, as shown in sub-figures 5.4(a), 5.4(b), 5.4(c), 5.4(d), 5.4(e), 5.4(f), 5.4(g), and
5.4(h). Each sub-figure shows the visual RBFN result with a fixed push distance
Pl. In Fig. 5.4, the red dots are the real example data. Specially, Pl = 0mm means
that there is no push action. Hence there is no data point in Fig. 5.4(a), and the
output of the visual RBFN approximates to 0. Equivalently, in this experiment,
no manipulation is performed when the push distance Pl > 10mm; so that there
is no data point neither in Fig. 5.4(g) nor 5.4(h). It can be found that all the
sub-figures show a surface with single bump except the sub-figures when push
distance Pl = 1mm. However the center position of the bumps changes as the
push distance Pl increases. Besides, the surfaces in Fig. 5.4(b) and 5.4(a) are not
as regular as others. That is because when the push distance is small, Pl 6 2mm,
the fingers are hard to be precisely controlled in our robotic platform for their
limited control resolution discussed in the previous section. Therefore, there is no
training example data within this small push distance. The RBFN result is poor
in the area of small push distance. The surface in Fig. 5.4(a) is very close to a
horizontal whose value is zero. In the RBFN, the output will be small when the
input points are far away from the kernels. As a result, the irregular result of the
RBFN has less impact on the performance of the manipulation simulator. That is
one of the reasons why we use RBFN in this thesis.

The result of Fig. 5.4 is also shown in polar space. For better understanding,
one of the sub-figures (Fig. 5.4(e)) is transferred and represented in a Cartesian
space, as shown in Fig. 5.5. The origin of this coordinate frame is at the contact
point of the push finger at its initial state. The direction of the radius is the push
direction, and the length of the radius is the visual rewards.4 A new ellipsoid
surface is obtained in Fig. 5.5. Intuitively, the longer radius length, the better
manipulation is. Hence, in Fig. 5.5, the convex direction of the ellipsoid surface
indexes the direction in which the best visual reward can be obtained. Considering
all the push distance, the total results of visual RBFN is shown in Fig. 5.6 in a

4A baseline b = 0.04mm is added to the radius length, since there are negative visual rewards
in some push directions.
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(a) d = 0 mm (b) d = 2 mm

(c) d = 4 mm (d) d = 6 mm

(e) d = 8 mm (f) d = 10 mm

(g) d = 12 mm (h) d = 14 mm

Figure 5.4: The visual RBFN result in polar coordinates. In order to visualize this
four-dimensional data, this result is sliced into 10 surfaces in sub-figures The red
dots in Fig. 5.4(b), 5.4(c), 5.4(d),5.4(e), and 5.4(f) are training examples.
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Figure 5.5: Transferring sub-figure 5.4(e) into Cartesian coordinate.

Figure 5.6: Visual RBFN result in a Cartesian coordinate.

Cartesian coordinate, where the yellow area refers to a large visual reward, and
the blue part refers to a small value.

Another way to represent the result of the visual RBFN is Fig. 5.7, where the
horizontal axis refers to a data sequence arranged by the order of Algorithm 1,
and the vertical axis refers to the output of the visual RBFN. In this figure, the
blue stars refer to the training example data and the red lines denote the result
from the visual RBFN. This figure gives an intuitive impression of the result of
the visual RBFN in a 2D plot. Obviously, there are 5 segments in Fig. 5.7. Each
of them refers to different push distances from Pl = 2mm to Pl = 10mm. Taking
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Figure 5.7: Visual RBFN result shown with a two-dimensional plot. All experiment
training examples are plotted with blue stars in this figure. The red solid lines refer
to the visual RBFN result.

into account the layout of this thesis is limited, results of the rest haptic RBFNs
are represented as in Fig. 5.7 in the following section.

Haptic RBFNs

Besides visual RBFN, results of haptic RBFNs are presented in this section. The
parameters of the first haptic RBFN are given with σ = 1, n = 50. After training,
its MSE e = 38.6.5 The second haptic RBFN parameters are given with σ = 1,
n = 50. After training its MSE e = 46. Their result is plotted in Fig. 5.8. Fig.
5.8(a) illustrates the result of the first haptic RBFN; and Fig. 5.8(b) shows the
result of the second haptic RBFN. Obviously, it can be seen that the performance
of the second haptic RBFN is not as good as the first haptic RBFN. To explain that
the result of the second haptic RBFN is represented in Fig. 5.9 in polar coordinates.
Points with large errors are in the area with the push distance Pl = 4mm and
6mm and in the direction Pd = (60, 60), represented in Fig 5.9(c) and 5.9(d). This
is because these small slips occur in these push directions. These slips can be
confirmed by the third element of the haptic feature pk4 in Fig. 5.10(a) marked
with two black circles. As discussed in section 4.3, a large value of pk3 denotes
that the object slips on the fingertips during the manipulation. These small slips
change the haptic data slightly. Since the output errors of the haptic RBFN are
not small, the performance of the haptic RBFN is still acceptable. That is because
the points with large errors gather in one corner of the surfaces. They can be

5This MSE is much larger than the visual RBFN result. That is because they have different
units. The unit of the visual reward is rad. For a 10◦ rotation, the visual reward changes only
0.17. However, the haptic is bit (here 1bit = 0.00365kPa). Generally, it changes from 10 to 200.
Hence, the MSE of this RBFN result is larger compared to the result of the visual RBFN.

116



5.3. Policy Based Reinforcement Learning

(a) First haptic RBFN result. (b) Second haptic RBFN result.

Figure 5.8: Haptic RBFN result shown with two-dimensional plot.

ruled out easily in Cartesian coordinates. Actually, this corner is rarely reached
by the robot in the learning process. As a result, these unstable push directions
are ignored, and the simulated system is assumed to be stable in manipulations.

The third haptic RBFN parameters are given with σ = 1, n = 50. After
training, its MSE e = 35. Its result is plotted in Fig. 5.10(a). Unfortunately, the
performance of the third haptic RBFN is bad. That is because the value of pk4
is smaller compared to other elements. Hence, they are easily impacted by noise.
Thereby we focus on its distribution as represented in Fig. 5.10(b), where the solid
red curve refers to experiment data and the blue dash line refers to a Gaussian
distribution N (0, 5.95). Obviously, these two curves exhibit the similar pattern.
As a result, the result of the third haptic RBFN is not used in the following learning
experiments.

5.3 Policy Based Reinforcement Learning

As described in section 5.1, besides the simulator, RL agent is the other important
part of this learning system. In this section, we focus on building an RL agent
and implementing it to learn the manipulation skills through interacting with the
manipulation simulator built in section 5.2.

5.3.1 General Assumption and Problem Statement

In reinforcement learning, the environment is typically built with a Markov De-
cision Process (MDP). An MDP is defined by state-action sets and an one-step
dynamics of the environment [159]. Given state s, action u, and possible next
state s′, the environment dynamics are modeled by a transition probabilities P u

ss′

and a reward Ru
ss′ . In this thesis, the transition probabilities P u

ss′ and the reward
Ru
ss′ is replaced by functions f and ρ. As a result, an MDP is represented by a

tuple 〈X,U, f, ρ〉. In this tuple, X is the state; U is the action; f is the state
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(a) d = 0 mm (b) d = 2 mm

(c) d = 4 mm (d) d = 6 mm

(e) d = 8 mm (f) d = 10 mm

Figure 5.9: Haptic RBFN regression results in polar coordinate.
The data sets are four-dimensional. In order to visualize the RBFs result, it is sliced
into 10. The red dots in Fig. 5.9(b), 5.9(c), 5.9(d),5.9(e), and 5.9(f) are real measured
data. Obviously, the slice shape in Fig. 5.9(a) and 5.9(b) are not as regular as others.
It is because when the push distance is small, the robot fingers are hard to be controlled
precisely for its poor control resolution discussed in the previous section.
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(a) The third haptic RBFN result.
(b) Data distribution.

Figure 5.10: The third haptic RBFN result and the data distribution.

transition probability density function with f : X ×U ×X 7−→ [0, ∞); and ρ is a
reward function with ρ : X × U ×X 7−→ R.

It is important to note that in this manipulation problems the state and actions
are continuous. Therefore, it is impractical to use a probability function which
maps a current state sk and an action uk to a certain next state. Therefore, in the
probability function, reaching a certain state region is used instead of a certain
next state [72]:

P (xk+1 ∈ Xk+1|xk, uk) =

∫
Xk+1

f(xk, uk, x
′)dx′. (5.2)

The action uk at the state xk is drawn from a policy defined by π : X ×U 7−→
[0, inf). After reaching the state region Xk+1, the reward is

rk+1 = ρ(xk, uk, xk+1). (5.3)

In learning, the agent estimates a cost function J(π), or named ’cost-to-go’
function, which is the expected value of a certain function g of the received rewards
with a policy π. The cost function is

Jπ = E{g(r1, r2, . . . )}. (5.4)

In some algorithms, cost-to-go value relates only to state; therefore a state
value function is defined:

V π(x) = E{
∞∑
k=0

γkrk+1|x0 = x, π}. (5.5)

When the chosen action uk is considered, a state-action function is defined:

Qπ(x) = E{
∞∑
k=0

γkrk+1|x0 = x, u0 = u, π}. (5.6)
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In [72], the functions Jπ, V π(x), and Qπ(x) have different definitions depending
on discounted reward or average reward.6

5.3.2 Reinforcement Learning Categories

Generally, there are three main categories in reinforcement learning: critic-only,
actor-only, and actor-critic methods.

Critic-only Methods

The critic-only methods use only state value function or state-action function.
The well-known algorithms Q-learning and SARSA(λ) fall into this category. It
learns the optimal value function V π(x) or value-action functions Qπ(x) with a
determined policy π:

π(x) = arg max
u

Q(x, u). (5.7)

One of the most wildly used updating methods for the value functions is Bellman
optimality equation [159]:

V ∗(x) = max
u

E{ρ(x, u, x′) + γV ∗(x′)},

Q∗(x) = max
u

E{ρ(x, u, x′) + γmax
u′

Q∗(x′, u′)}.
(5.8)

Unfortunately, as described in [72], there is no reliable guarantee on the pol-
icy for any approximated value function in online learning. In POMDPs, a small
change or error in estimated value function may cause large changes. It results in
continuous changes in the policy. In real robot applications, with this major draw-
back, learning agent may generate hazard changed actions which may endanger
robots and its environments. Although the critic only methods are useful in many
completed observable problems, it is inefficient in continuous state or action appli-
cations. On the one hand, the space of the value function increases exponentially
as the number of actions increase. Besides, it is almost impossible for a determined
policy to generate continuous actions. On the other hand, for multi-dimensional or
continuous state, the true value function is hard to be estimated with a determined
policy. Therefore, the actor-only methods are used in some reinforcement learning
algorithms by focusing on optimizing the policy.

Actor-only Methods

The actor-only methods are policy gradient methods, which parameterize the pol-
icy without restoring any value function. Usually, the policies are stochastic, named
stochastic policy. The well-known Williams’ REINFORCE algorithm [178] and
Baxter’s GPOMDP algorithm [25] belong to this category. In these algorithms,

6In Peters’ reinforcement learning [139], these different forms are generalized by a coefficient
of the rewards al.
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Figure 5.11: Actor-critic methods.

the policy is parameterized with θ; and their general goal is to maximize the ex-
pected return J(θ) by optimizing the policy parameter θ.

Assuming the parameterized expected return is differentiable with respect to
θ, the gradient of the cost function is

∇θJ =
∂J

∂πθ

∂πθ
∂θ

. (5.9)

With optimization technology, a simple updating rule of the parameterized policy
is gradient decent:

θk+1 = θk + αk∇θJ, (5.10)

where αk refers to learning rate.
There is a guarantee for the policy to converge at a local minimal if the esti-

mated gradient is unbiased and the learning rate αk fulfills [159]

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞. (5.11)

Usually, the policy is represented by an independent function approximator
(usually neural networks with parameterized weights and some distribution density
functions), whose input is the environment state and output is the distribution of
selected actions.

Actor-critic Methods

The actor-critic method is a combination of the actor-only and critic-only methods
[159]. In Fig. 5.11, a schematic overview of the actor-critic algorithms is shown
[72]. In this method, the actor generates actions based on a policy; and the critic
evaluates the current policy. Usually, the evaluation is given by a value function
method such as TD, LSTD, etc. In the learning process, the critic is first approxi-
mated and updates with samples, and then it is used to evaluate the policy. After
the policy’s evaluation, the actor is updated by using the information from the
critic. For this methods, more details will be discussed in the following section.
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5.3.3 Stochastic Policy Gradient Learning

In autonomous robotic applications, usually there is no sufficient knowledge about
the dynamics of the environment. Since the policy gradient can not be obtained
with model-based methods directly, the stochastic policy gradient method is used.
A stochastic policy is a map, which maps the state x to action u with a probability
distribution over the action space A [103], [160].

Early works on the stochastic policy gradient methods are SRV algorithm [73]
and REINFORCE algorithm [178]. In [97], Kimura et al. used function approxi-
mations to represent a stochastic policy in POMDPs.

The stochastic policy is achieved by selecting the actions in a given stationary
distribution. This distribution can be Gibbs distribution or Gaussian distribution.

Gibbs policy:

πθ(u|x) =
eθxu∑
b e

θxb
. (5.12)

Gaussian policy:

πθ(u|x) = N (u|µ, σ2) =
1√
2πσ

e−
(u−uxθ)

2

2σ2 . (5.13)

One important result of the policy gradient is from the trick of likelihood ratio
[178], [139]. A trajectory τ is generated by roll-outs with the distribution:

pθ(τ) = p(x0)
n∏
k=0

p(xk+1|xk, uk)πθ(uk|xk). (5.14)

Therefore, the gradient of the cost function is [139]

∇θJ(θ) =

∫
T

∇θpθ(τ)r(τ)dτ

=

∫
T

pθ(τ)∇θlogpθ(τ)r(τ)dτ

= E{∇θlogpθ(τ)r(τ)}

(5.15)

The distribution of the trajectory gradient is exactly zero:∫
T

pθ(τ)∇θlogpθ(τ)dτ =

∫
T

∇θpθ(τ)dτ = ∇θ1 = 0, (5.16)

A constant baseline can be added to Eq. 5.15. According to the research in [178],
the baseline can be chosen arbitrarily, but a carefully chosen baseline can reduce
the learning variance. Therefore, a suggested baseline b is:

b = b+ (r − b)/j, (5.17)
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where j is the number of the episode, and r is the reward acquired from one episode.
The baseline in Eq. 5.17 is a scalar based on the time and accumulated rewards.
Some other optimal baselines are discussed in [139], [178] to decrease the learning
variance without biasing the policy gradient in episodes. The baseline also can be
given according to the current state and the policy: bπ(x) as discussed in [139].

Eq. 5.14 and 5.15 are very important. They show that the derivative of the
state distribution can be obtained from samples without a model of the system.

Based on this stochastic policy method, Williams proposed an algorithm named
REINFORCE7 [178]. It is shown in Algorithm 2 with cost function gradient:

∇θJ(θ) = 〈(
n∑
k=0

∇θπθ(uk|xk))(
n∑
k=0

akrk − b)〉. (5.18)

Algorithm 2 Williams’ Episodic REINFORCE algorithm

Input: policy parameter θ, learning rate α, policy standard deviation σ, and
baseline b;
for episode j do

Initialization: πθ ← θ, get initial state X0, r = 0;
for each step i do
uk ← π(θ) and do action uk;
get next state Xk+1 and reward rk;
r = r + rk;
e = e + ∂ln(πθ(Xk))

∂θ
;

end for
b = b + (r - b) / j;
θk+1 = θk + αk(r − b)e;

end for

With policy gradient theory, an advanced way to express Eq. 5.18 by replacing
the baseline with bπ(x) is [160]:

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(x, u)(Qπ(x, u)− bπ(x))dudx. (5.19)

where dπ(x) is stationary distribution of the state x under policy π. dπ(x) =
limt→∞P{xt = x|x0, π} [160].

Particularly, when the state based baseline is the value function V (x), an ad-
vantage function is defined: Aπ(x, u) = Qπ(x, u)− V π(x). As a result, Eq. 5.19
is derived to

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(x, u)Aπ(x, u)dudx. (5.20)

7In this thesis, this algorithm is called Williams’ Episodic REINFORCE algorithm.
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According to the research in [160], [103], term (Qπ(x, u) − bπ(x)) 8 can be
approximated with a compatible function fπw(x, u) with parameter w without af-
fecting the unbiasedness of the gradient:

fπw(x, u) = (∇θlogπ(u|x))Tw ≡ Qπ(x, u)− bπ(x). (5.21)

Therefore, Eq. 5.18 is deduced with the parameterized compatible function:

∇θJ(θ) =

∫
X

dπ(x)

∫
U

∇θπ(x, u)(∇θlogπ(u|x))Tdudxw

= Fθw,

(5.22)

where

F (θ) =

∫
X

dπ(x)

∫
U

∇θπ(x, u)(∇θlogπ(u|x))Tdudx. (5.23)

For the definition of the policy π, the probability of selecting an action is
determinate, ∇

∫
U
π(u, x)du = ∇1 = 0. An important attribute of the compatible

function fπw(x, u) is∫
U

π(u|x)hπw(x, u)du =

∫
U

∇θπ(x, u)duw = 0. (5.24)

The gradient used in Eq. 5.19 is the standard gradient, which is useful in the
space with single minimum and has isotropic magnitude with respect to any direc-
tions away from its minimum, like Euclidean space. Obviously, the performance
of the standard gradient highly depends on the structure of the cost function. In
robot applications, robot joints are usually represented by rotational angles and
task rewards are usually nonlinear. As a result, the parameter space of the cost
function usually is not in Euclidean coordinate but with Riemannian metric struc-
ture, where the standard gradient does not indicate the steepest direction of a
target function. Therefore, one of the efficient ways to this problem would be
applying natural gradients suggested by Amari [16].

Kakade [90] used natural gradient in policy gradient methods to make the agent
choose greedy optimal actions rather than just better actions. Peter introduced
Natural Actor-Critic (NAC) algorithms by applying natural gradients [140], [138].
Their results show the natural gradient improves their learning methods signifi-
cantly compared to the standard gradient.

A natural gradient is the steepest direction with respect to Fisher matrix.
More details can be found in [16]. Suppose a cost function is J(θ), with the form
J(θ) =

∫
X
p(x)l(x, θ)dx. The steepest ascent direction in the Riemannian metric

structure is not in the direction ∇θL(θ) but in the direction:

∇̃θL(θ) = G−1(θ)∇θL(θ), (5.25)

8In other research, like in [72], there is no baseline bπ(x) in this equation. It is from the
different definition of Q function.
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where G(θ) is the Fisher information matrix. It is defined by

G(θ) =

∫
X

p(x)∇θlogp(x)(∇θlogp(x))Tdx. (5.26)

From Eq. 5.25, the natural gradient is a linear transformation of the standard
gradient with the inverse of the Finisher matrix. It is proved that the angle between
the standard gradient and the natural gradient is never more than ninety degree.
This makes sure the natural gradient converge to a local optimum [140].

One important conclusion in policy gradient learning methods is that the Fisher
information matrix is exactly the matrix F (θ) defined in Eq. 5.23, that is G(θ) =
F (θ). With Eq. 5.22 and 5.25, the natural gradient of the cost function ∇θJ(θ) is

∇̃θJ(θ) = G−1(θ)∇θJ(θ) = G−1(θ)F (θ)w = w. (5.27)

This result denotes that for the natural gradient the matrix F (θ)w is not necessary
and only w is required. The policy parameter θ is updated by

θ = θ + αw, (5.28)

where term α denotes the learning rate.
As a result, in terms of the advantage function, the Bellman equation [159] is

written as:

Qπ(x,u) = Aπ(x,u) + V π(x)

= r(x,u) + γ

∫
X
p(x′|x,u)V π(x′)dx′

(5.29)

Peters and Vijayakumar et al. applied natural actor-critic algorithms to LSTD(λ)
introduced in [36], [141], [140], [138]. The advance function Aπ(x,u) = fπw(x,u) is
used to critic the action u in the state x; and the value function is estimated by
appropriating the basis V π(x) = φ(x)Tv. Therefore, Eq. 5.29 is

∇θlogπ(ut|xt)Tw + φ(xt)
Tv = r(xt,ut) + γφ(xt+1)

Tv + ε(xt,ut,xt+1), (5.30)

where ε(xt,ut,xt+1) is an error term which is mean-zero referring to Eq. 5.29.
Obviously, the basis of value function determines the quality of gradient.

In episode tasks, a simple path is given according to Eq. 5.30 with

H−1∑
t=0

γkAπ(xk,uk) = V π(x0) +
H−1∑
k=0

γkr(xk,uk)− γHV π(xH). (5.31)

When γ < 1 and the step number is large enough, there are final rewards in each
episode r(xH−1,uH−1), and the last term γHV π(xH) disappears. Furthermore,
when the initial state is fixed, the value function of the initial state is a constant
scale value J . Hence Eq. 5.31 is

H−1∑
k=0

γk∇θlogπ(ut|xt)Tw + J =
H−1∑
k=0

γkr(ut|xt). (5.32)
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Eq. 5.32 denotes a linear regression with focusing on the parameterized vector w
by mapping the advance function basis to trial-out rewards. A simple mathematic
trick used here is extending the dimension of vector w to [wT , J ]T [141], [139].
As a result in a non-stochastic task, based on least squares regression the natural
gradient is [

w

J

]
= (ΨTΨ)−1ΨTR, (5.33)

where

Ψi =

[
H∑
at∇logπ(xt,ut)

T , 1

]

Ri =
H∑
atr(xt,ut).

(5.34)

As a result, this regression learning method is known as Peters’ Episodic Nat-
ural Actor-Critic (eNAC) algorithm, shown in Algorithm 3 [141]. To speed up the
eNAC, an alternative matrix inversion method is used instead of Eq. 5.33, more
details can be found in [83].

Algorithm 3 Peters’ Episodic Actor-Critic algorithm

Input: policy parameters θ, learning rate α, policy standard deviation σ;
repeat

for m episodes do
Initialization: πθ ← θ, get initial state x0;
Calculate:
policy derivatives: ψk = ∇θ log πθ(uk|xk)

fisher matrix Fθ = 〈(
H∑
k=0

ψk)(
H∑
l=0

ψl)
T 〉.

vanilla gradient g = 〈(
H∑
k=0

ψk)(γ(H−k)r)〉.

average reward r = 〈
H∑
k=0

γH−kr〉.

eligibility φ = 〈
H∑
k=0

ψ〉.

natural gradient:
baseline b = Q(r − φF−1θ g)
where Q = 1

m
(1 + φT (mFθ − φφT )−1φ)

natural gradient gn = F−1θ (g − φb)
end for
policy update θ

until θ converged
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5.4 Manipulation Learning Experiments

In this thesis, reinforcement learning algorithms are used to learn the path of the
push action discussed in Chapter 3. The purpose of this learning is to find
an optimized path for a better in-hand manipulation. To generate push
paths, RL agents are built referring to different learning algorithms. The agents
are built based on stochastic policies which map current state of the push finger to
push actions. In manipulation learning tasks, the state is the position of the push
fingertip in Cartesian space x, and the action is the push direction Pd. As a result,
with reinforcement learning, agents generate better push paths via interacting with
its environment.

5.4.1 Learning Rewards

In manipulation learning experiments, reinforcement learning algorithms are car-
ried out to train the agent through interacting with the manipulation simulator
built in section 5.2.3. In each interaction, once an action is generated and applied
to the simulator, immediate rewards are estimated. With these rewards, the agent
modifies its parameters with reinforcement learning algorithms. Since the critic
rewards can only be made after a full path generated, this manipulation learning
problem belongs to the episodic category. The episodic reward is

r =

∫
kT rstep(xt)dt+ rend, (5.35)

where term rstep(xt) refers to a reward vector at the state xt; term k denotes a
weight vector, and term rend is the final reward which only can be obtained at the
end of episodes. The reward vector rstep(xt) consists of two parts: visual reward
rstepV and haptic reward rstepH with rstep(xt) = [rstepV (xt) rstepH(xt)]

T . The weight
vector k assigns the weights between visual and haptic rewards. Therefore, in one
episode, the integral reward

∫
kT rstep(xt) is a path reward which defines a cost

to criticize the trajectory. In other words, it makes the push action reach the
target as efficiently as possible.9 In manipulation tasks, one critic aspect is the
end position of the path. It highly relates to whether this push task meets the
expected manipulation target. Hence, a final reward is set as 10 times of final
visual reward with rend = 10rstepV (xend).

More practically, in this experiment, a discrete sum is used instead of the
continuous integral term in Eq. 5.35, and a discount factor is used to keep the
path reward away from infinity. As a result, the episode reward is

r =
H−1∑
k=1

γH−kkT rstep(xt) + 10rstepV (xH), (5.36)

where H is the number of steps in one episode. In this learning experiment, the
step number is set to 12, the decay rate is 0.8. Term k gives us a convenient

9Here the ’efficiently’ is defined by the user. In this chapter, the efficiently refers to the large
push force during the manipulation.
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Figure 5.12: A three-layer ANN for Gaussian stochastic policy.

way to switch the learning critic between visual-only and visual-haptic rewards.
For example, in visual only learning, k = [1 0]T . In visual-haptic learning, k =
[1 0.01]T . Therefore, in the following sections, experiments have been performed to
compare the learning performance between visual-only rewards and visual-haptic
rewards with different stochastic learning algorithms.

5.4.2 Learning with Visual-Only Rewards

In this section, learning experiments are carried out based on visual-only rewards.
Thus term k in Eq. 5.36 is set to [1, 0]T . Williams’ Episodic REINFORCE algo-
rithm and Peters’ episodic natural actor-critic algorithm are applied to learn the
push paths.

Williams’ Episodic REINFORCE with Visual-Only Rewards

First, Williams’ Episodic REINFORCE algorithm is implemented. With this algo-
rithm, we trained the RL agent to optimize the push path. The stochastic policy is
built with a three-layer ANN, with 3 input nodes, 5 hidden neurons, and 2 output.
In the input layer, the input is the position of the push fingertip in Cartesian space.
In the hidden layer, the hyperbolic function is used. With these two layers, this
policy is deterministic but stochastic. As introduced in [178], in the output layer,
an additional layer with Gaussian units is used to generate the stochastic output.
In other words, the real output is sampled from the Gaussian distributions:

u = N (uneuron, σ
2), (5.37)
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Figure 5.13: Visual rewards with Williams’ REINFORCE algorithm.

where u is sampled actions; uneuron is the output of neural networks, and σ is the
standard deviation. They all have dimension nu in this experiment. A full stochas-
tic ANN diagram is shown in Fig. 5.12. The usage of the Gaussian sampling layer
is mainly based on two considerations. On the one hand, the deterministic part of
the ANN generates expected value for actions; on the other hand, the stochastic
layer of the ANN generates stochastic actions which contribute the exploration in
the learning process with regard to standard deviation σ.

This stochastic ANN in Fig. 5.12 is the core part of Williams’ Episodic REIN-
FORCE algorithm shown in Algorithm 2. It is the stochastic policy πθ(u|x) which
generates paths by mapping the state to push actions. The details of learning
parameters are shown in Table 5.1.

Table 5.1: Episodic REINFORCE algorithm parameters

Parameters Notation value

State dimensions ns 3

Action dimensions nu 2

Hidden layers units nh 8

Learning rate α 0.005

Discount factor γ 0.8

Policy standard deviation σ 0.4

Steps in one episode H 12

Maximum episode number nep 2000

After training, the learning rewards are shown in Fig. 5.13. At the beginning,
the initial reward is about 0.87. After around 310 episodes, the reward increases
fast to 1.42; after that, it oscillates around 1.43. These oscillations are from the
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Figure 5.14: Learning results with Williams’ REINFORCE algorithm.
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Figure 5.15: A learned path from REINFORCE algorithm.

constant deviation of Gaussian sampling. In this experiment, the Gaussian devia-
tion is chosen to control the distribution of the generated actions from stochastic
policy πθ(u|x). In other words, a constant deviation means the learning agent
keeps exploring from start to the end.

In Fig. 5.14, other learning results are illustrated. Fig. 5.14(a) represents the
change in the baseline b during the learning process. At the beginning, it starts
at 0; then it increases up to 0.8 dramatically within first several episodes; at last,
it converges to 1.4 in the later episodes. In Fig. 5.14(b) the max value of policy
parameters is shown. At the beginning, policy parameters are given randomly
sampled between −1 to 1; and then in first 300 steps, the max value decreases to
0.45.

In Fig. 5.15, an optimized path is given after training. This path starts around
point (0, 0, 0), and ends at point (11.92, −0.24, 0.41) with a curved path. It is
worth noting that the start points are given randomly around point (0, 0, 0) in
each episode; and the policy parameters are also initialized randomly. Therefore,
sometimes the learning results are given slightly different.
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Peters’ Episodic Natural Actor-Critic with Visual-Only Rewards

Peters’ Episodic Natural Actor-Critic algorithm is also implemented to learning
the push path. As shown in Algorithm 3, the feature state used here is xf =
[x21, x

2
2, x

2
3, x1x2, x1x3, x2x3, x1, x2, x3, 1]T , where x = [x1, x2, x3]

T is the state.
A Gaussian policy is used:

π(u|x) = N (θTx, σ2). (5.38)

In this algorithm, it should be known previously that how many episodes are
required to accumulate the ’sufficient’ roll-outs before updating policy parameters.
On the one hand, this number should be large enough to indicate the unbiased
estimation of the state distribution under the current policy; on the other hand,
a large number of the roll-outs slows down the learning process. Therefore, in
this experiment, the number of roll-outs is set to 50 episodes. Other learning
parameters are shown in Tab. 5.2.

Table 5.2: Episodic Natural Actor-Critic parameters.

Parameters Notation value

State dimensions ns 3

State feature dimensions nsf 10

Action dimensions nu 2

Learning rate α 0.5

Discount factor γ 0.8

Policy standard deviation σ 0.2

Steps in one episode nstep 12

Maximum episode number nep 1000

The learning reward is shown in Fig. 5.16. At the beginning, the initial reward
is about 0.7. After 301 episodes, the reward increases very fast up to 1.24; and
then the reward slowly converges to 1.4 in the later episodes. In this learning
process, the reward increases with few fluctuations. These fluctuations come from
the biased estimation of the cost function. Although 50 paths are sampled, it is
still not large enough for a precise unbiased estimation. However, as the result
shows, the learning rewards can be considered as converged. Hence, 50 roll-outs
are used in this experiment.

In Fig. 5.17, a learned path is given after training. This path starts around
the point (0, 0, 0), and end at the point (11.84, 1.17, −1.19) with a curved path.

5.4.3 Learning with Visual-Haptic Rewards

More than visual information, in this section haptic information is involved in the
learning process. The visual-haptic rewards are adopted. As described in Eq. 5.36,
term k is set to [1 0.005]T .
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Figure 5.16: Visual rewards in Peters’ episodic natural actor-critic algorithm.
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Figure 5.17: A learned path from Peters’ episodic natural actor-critic algorithm.

Williams’ Episodic REINFORCE with Visual-Haptic Rewards

Based on visual-haptic rewards, the learning result is shown in Fig. 5.18 with the
same learning algorithm and parameters as in Table 5.1. At the beginning, the
episode reward is about 0.25. After 170 episodes, the reward increases fast to 2.11;
and in the later episodes, the reward fluctuates around 2.1.

Like visual only learning reward, other learning results are shown in Fig. 5.19.
Fig. 5.19(a) shows the change in baseline b. It starts from 0, increases up to 1.1
within first several episodes, and converges to 2.5 in the following episodes. Fig.
5.19(b) shows the max value of policy parameters.

In Fig. 5.20, the path is given after training. This path starts around the point
(0, 0, 0) and ends at the point (11.99, −0.51, 0.54) with a curved path.
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Figure 5.18: Visual-haptic rewards with Williams’ REINFORCE algorithm.
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Figure 5.19: Visual-haptic learning results with Williams’ REINFORCE algorithm

Peters’ Episodic Natural Actor-Critic Based on Visual Haptic Rewards

Based on the visual-haptic rewards, learning result is shown in Fig. 5.21, with the
same learning algorithm and parameters as in Table 5.2. At the beginning, the
episode reward is about 1.6. After 151 episodes, the reward increases fast to 2.17;
and after 451 episodes, rewards fluctuate around 2.2.

In Fig. 5.22, a learned path is given after training. The path also starts around
the point (0, 0, 0) and ends at the point (11.97, 0.97, −0.31) with a curved path.

5.4.4 Discussion of the Learning Results

In these learning experiments, different rewards have been implemented in ma-
nipulation learning process. Comparative results of the learning speed are shown
in Fig. 5.23. In Fig. 5.23, the plotted learning speed is from different learn-
ing algorithms. Obviously, Peters’ Episodic Natural Actor-Critic algorithm is a
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Figure 5.21: Visual-haptic rewards with Peters’ Episodic Natural Actor-Critic.

little faster than Williams’ Episodic REINFORCE algorithm in both learning ex-
periments with visual-only rewards and visual-haptic rewards, but not too much.
Besides, a more distinct difference is the use of different rewards. The learning
with the visual-haptic rewards is much faster than the learning with the visual-
only rewards, both in Williams’ and Peters’ algorithms.

In their learning results, Peters’ algorithm does not show a distinct advantage
over the learning speed comparing to Williams’ algorithm. It comes from the two
aspects. The first one is Peters’ algorithm supposes to use the natural gradient
to speed up the learning process instead of the standard gradient. However, in
this manipulation tasks, the state is in Cartesian space, which makes no difference
between the natural gradient and the standard gradient. As a result, there is
no advantage in the aspect of the natural gradient for Peters’ algorithm. The
other aspect is Peters’ algorithm does not update the parameters of its policy
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Figure 5.22: A learned path from Peters’ Episodic Natural Actor-Critic algorithm
with visual-haptic rewards.

Figure 5.23: Comparison of the learning speed in different learning experiments.
The ’REINFORCE’ refers to the result from Williams’ Episodic REINFORCE
algorithm, and the ’NAC’ refers to the result from Peters’ episodic natural actor-
critic algorithm.

until accumulating enough roll-outs but Williams’ algorithm updates its policy
parameters in the end of each roll-out. In other words, in Peter’s algorithm 150
episodes are performed; however only 3 updates are performed in this learning
process.

On the other hand, compared with the results based visual only rewards and
visual-haptic rewards, the using haptic involved rewards speeds up the learning
speed in both learning algorithms. Therefore it can be concluded that the use of
multimodal rewards shows advantages in manipulation learning process compared
to the use of the unimodal reward.
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Chapter 6

Conclusion

In this chapter, firstly, the main work of this research is summarized. Besides, the
limitation of this research is presented and discussed. Finally, the future outlook
is given in the end of this chapter

6.1 Summary

With their ability to adapt to human tools, robots with anthropomorphic hands
possess great potential as employees in domestic environments, where they could
facilitate various domestic tasks like tidying up rooms, serving dinner, washing
dishes, etc. In-hand manipulation is a distinctive skill in anthropomorphic hands.
Although a lot of research has been done on in-hand manipulation, it still poses
a challenge to robotics. As discussed in chapter 1, the three main problems to be
solved in robotic manipulation are a large number of joints, complex interaction
models, and limited capabilities of perception.

In an anthropomorphic hand, there are more than ten joints. Control of this
large number of joints is not easy. Most robotic in-hand manipulations are carried
out with synthesis models; however, the interaction constraints on the contact are
hard to model in such a redundant system. Moreover, existing models are labor
intensive and error-prone. The two most widely used sensing channels in robotics
are visual and haptic sensing. However, the use of them is limited in robotic in-
hand manipulations. The visual sensing is often disturbed by a noisy background
and occluded by fingers; tactile sensing is often limited by the sensors’ size, density,
resolution, etc.

To deal with these challenges, the black box manipulation concept has been
proposed in section 1.3.2. This black box consists of one object and support
fingers. In this black box, an unknown object is assumed to be located on an
elastic surface consisting of the support fingers. In this system, only the push
finger is controlled actively. It receives the push commands and pushes the object
against the other fingers. Since the push finger has little prior knowledge of the
system, the object and support fingers are considered as a black box for the push
finger. What the push finger does is carry out given push commands and the robot
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observes the visual and haptic feedback from the black box to evaluate its push
actions. Without any knowledge of this black box, the robot cannot manipulate
objects successfully. Hence to acquire sufficient knowledge, a process called haptic
exploration has been introduced in section 1.3.2. In this haptic exploration, the
robot slightly pushes the object in different directions and estimates the interaction
state by means of the haptic feedback.

With the black box, the process of in-hand manipulation is transferred into
rolling the object onto an elastic surface. In chapter 3, in-hand manipulation an-
alytic models have been proposed. According to different elasticity of the surface,
we use two support fingers: a fixed support finger and a spring support finger.
The fixed support finger, whose position is fixed with a position controller, acts
as a pivot around which the object rotates. The spring support finger performs
as an elastic spring. It is controlled passively by a stiffness controller. This finger
presses the object against the other fingers to ensure the stability of the system
and helps to rotate the object with proper contact force. More importantly, an
error transfer matrix is given, which proves that position errors on different fin-
gers can be compensated by one spring support finger. With the combination of
different support fingers, different manipulation models are obtained, as discussed
in section 3.2. Two of them have been further discussed. With one fixed support
finger, the single support model has been proposed in section 3.3 for two fingers
manipulation. With the combination of one fixed support finger and one spring
support finger, the hybrid support model is proposed in section 3.4 for three fingers
manipulation. Finally, we developed an enhanced manipulation model to perform
final manipulations in section 3.5.

In order to verify the proposed method and models, in-hand manipulation ex-
periments have been conducted in chapter 4. They have been carried out on a
robot in-hand manipulation platform consisting of a Shadow Hand, a Kuka arm,
BioTac sensors, and a digital camera. The in-hand manipulation task was to rotate
a rectangular box. First, a repeatability experiment has been conducted to support
the idea of automatic repeating push. Then we have carried out a multi push dis-
tance experiment to discover the relation between the push distance and the haptic
and visual features. This has been followed by a multi-directional manipulation
experiment to illustrate the relation between the manipulation results and push
directions. Then a hybrid support manipulation experiment has been conducted
to verify the proposed hybrid support model. And then a robustness experiment
followed to illustrate the robustness of the proposed manipulation method and to
support the conclusion about the error transfer matrix. Finally, enhanced ma-
nipulation and comparative experiments have been carried out to illustrate the
great merits of our method. In these experiments both visual and haptic feedback
has been collected; moreover, their relation has been thoroughly examined. Based
on the experimental results, we conclude that haptic sensing has the potential to
take the place of visual sensing in these manipulation experiments. Moreover, it
offers more information on the interaction than visual sensing. Besides, in these
experiments, especially in the multi-directional manipulation experiment, enough
knowledge has been acquired to use for further in-hand manipulations in other
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tasks. This supports the idea of haptic exploration.
To automatically learn and improve the in-hand manipulation skills, reinforce-

ment learning (RL) methods have been adopted in chapter 5. Before learning, in
section 5.2 a manipulation simulator was constructed from Radial Basis Function
Networks (RBFNs) for the purpose of taking the place of the real manipulation
system. The RBFNs are trained by the real data collected from the density push
experiment in section 5.2.2. Two stochastic RL algorithms, Williams’ Episodic
REINFORCE and Peters’ Episodic Natural Actor-Critic, have been adopted in
this thesis. Therefore, stochastic RL agents are built to map the current state
to push commands. Through interacting with the manipulation simulator, the
RL agent improves step by step. Besides, in section 5.4.1, the learning experi-
ments were based on two different rewards: visual only rewards and visual-haptic
rewards. The learning results prove that our proposed learning architecture is fea-
sible; moreover, using the multimodal (visual and haptic) rewards can speed up the
learning process dramatically compared to using unimodal (visual only)rewards.

To summarize, the problems presented in section 1.3.1, ”Objectives”, have been
solved in this thesis. Specifically,

• Robust in-hand manipulations have been achieved by an anthropomorphic
robotic hand, as shown in the experiments in chapter 4; in particular, the
robustness attribute has been verified in the experiment in section 4.7.

• In the multi-directional manipulation experiment in section 4.5, the robot
automatically explores the in-hand object through haptic exploration to ac-
quire sufficient manipulation knowledge without possessing any information
about the object in advance. Moreover, further manipulations were carried
out based on the acquired knowledge, such as those in sections 4.6 and 4.7.

• Robust and efficient in-hand manipulation models have been proposed in
chapter 3. These models reduce the complexity of the in-hand manipulation
dramatically. They explain the in-hand manipulation results and the visual
and haptic relations in our experiments.

• The robot has learned and improved its in-hand manipulation skill correctly
through interacting with its environment in chapter 5.

6.2 Limitation and Discussion

Even though robust in-hand manipulation has been achieved in this thesis, there
are still some problems to be solved.

The first one is the manipulation efficiency. In the process of haptic explo-
ration, more than 50 manipulations have been carried out to collect the relevant
knowledge. This takes too much time and makes the system inefficient in achieving
proper manipulations.

The second problem is that the object’s rotated angle is small in the exper-
iments. It lies within the limitation of our robotic hand. The thumb plays an
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important role in in-hand manipulations, especially its joints THJ1 and THJ2.
However, in our robotic hand, the thumb joint TH1 has been removed for the
tactile sensor. And the joints THJ2 and THJ3 only have a range of −15◦ to 15◦.
It is very small compared to that of humans (about 90◦). Moreover, other fingers’
first joints have been removed for the tactile sensors. This reduces the dexterity
of the hand.

The third problem is object’s recognition. Although AprilTag system is used
to track the object’s position and orientation, as an application-oriented method,
the object should be more generalized. The real application scenario requires an
object to be recognized and tracked in any environment without special marks
on it. Therefore, a robust vision tracking system is required to meet the strict
application requirements.

6.3 Future outlook

Due to time constraints, not all ideas and in-hand manipulation experiments were
able to be carried out within this Ph.D. research. The future work will involve the
following problems.

3D manipulation

For robotic manipulation skills, one important improvement would be extending
our method to 3D in-hand manipulations. In 3D tasks, the manipulation tasks will
not be limited to rotational manipulation but will cover translational manipulation
as well. Any object’s motion could be achieved by one rotational manipulation and
one translational manipulation. The rotational manipulation can be completed
by the push and support method proposed in this thesis, and the translational
manipulation can be easily achieved with the virtual frame method. To verify
the performance of 3D in-hand manipulations, more real 3D in-hand manipulation
experiments should be performed.

More fingers in a grasp

More robotic grasp configurations should be tried. In this thesis, only two-finger
grasps and three-finger grasps are adopted in the manipulation experiments. How-
ever, in human’s manipulations, five fingers are often used in a grasp. In the
proposed manipulation method, there can be four support fingers in a five-finger
grasp. With well-defined stiffness of these support fingers, the push and support
method is still feasible for the success of the in-hand manipulations. Therefore, the
push manipulation with four support fingers is one of the future research topics.

Haptic efficient

The process of the haptic exploration proposed in this thesis is inefficient since the
robot explores all the possible push directions exhaustively. A better exploration
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method can be using the haptic and visual cues to find the best push direction
efficiently. In [142], Pinto and Gupta modeled the grasping problem as an 18-way
binary classification over 18 angle bins. Similarly, in robotic in-hand manipulation
problems, the push directions of the haptic exploration also can be a problem of
a binary classification. According to the results of this thesis, the haptic data
is suggested to be used to select the most efficient push direction in the haptic
exploration.

Learning with deep learning methods

Our learned in-hand manipulation skill could be improved with better learning
algorithms. Some modern learning methods are worth a try, like Deep Reinforce-
ment Learning. In [121], a Deep Q-Network (DQN) algorithm was used in the
learning of playing classic Atari games. A deep learning model was proposed to
learn the control policies, which were directly learned from the high-dimensional
sensory input (pixels of the images). In robotic in-hand manipulations, the in-hand
system is usually represented by a high dimensional state vector which includes
high dimensional haptic data, continuous visual tracking data, high dimensional
joints’ state, etc. In dealing with this high dimensional state, this deep learning
method has great potential in learning the skill of the robotic in-hand manipula-
tion.

Besides, the interaction models proposed in this thesis can also benefit robot-
human cooperation tasks, and the proposed haptic sensing method offers some
insight into other contact-related research.
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Appendix A

Nomenclature

Table A.1: Important notations in this thesis

Notation Definition

Pd Push direction

Pl Push distance

ξo Twist of the object

vo Velocity of the object

ωo Angular velocity of the object

Ks Support stiffness vector

pk Haptic feature

pki The ith element of haptic feature

PDC Static pressure on the fingertip

δ Object’s rotated angle in the expected direction

RH Haptic result for multi-directional manipulations

RV Visual result for multi-directional manipulations
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Appendix B

Density Push Result

According to section 5.2.2, the training data in density push manipulation is plot-
ted in Fig. B.1 and B.2 respectively.
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Figure B.1: Visual reward in the density push experiment.
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Figure B.2: Haptic results in the density push experiment. The first element of
the haptic feature, pk1, is shown in this figure.
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Approximate with MLP neural
network

Beside the RBFN, a multilayer perceptron (MLP) neural network is also used to
approximate the manipulation simulator. The result is shown in Fig. C.1. In Fig.
C.1, the general shape is similar to the RBFN’s result in Fig. 5.4(f); however, the
output of network raises in the marginal area. This raise is from the slipping during
the manipulation. When the finger pushes in the directions of this area, the object
slips on the fingertips. This causes this irregular result on the edge of the surface
in Fig. 5.4(f). Compared to the MLP result, the RBFN show advantages over
dealing with this kind of noise. The output of the neural networks decreases when
its inputs are away from the kernels. This attributes improve the performance of
the simulator by reducing the output in marginal area. Therefore, in this thesis
the RBFN is chosen to approximate visual and haptic results.

Figure C.1: Visual result approximated with an MLP neural network.
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[170] Åke Vallbo and Roland Johansson. Properties of cutaneous mechanorecep-
tors in the human hand related to touch sensation. Human Neurobiology,
3(1):3–14, 1984.

[171] Herke Van Hoof, Tucker Hermans, Gerhard Neumann, and Jan Peters.
Learning robot in-hand manipulation with tactile features. In Proceedings
of the IEEE-RAS 15th International Conference on Humanoid Robots (Hu-
manoids), pages 121–127. IEEE, 2015.

[172] Phongtharin Vinayavekhin, Shunsuke Kudoh, Jun Takamatsu, Yuuki Sato,
and Katsushi Ikeuchi. Representation and mapping of dexterous manipu-
lation through task primitives. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pages 3722–3729. IEEE,
2013.

[173] Kazuyoshi Wada and Takanori Shibata. Living with seal robotsits sociopsy-
chological and physiological influences on the elderly at a care house. IEEE
Transactions on Robotics, 23(5):972–980, 2007.

[174] Qian Wan, Ryan Adams, and Robert Howe. Variability and predictabil-
ity in tactile sensing during grasping. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 158–164.
IEEE, 2016.

[175] Ying Wang, Haoxiang Lang, and Clarence W De Silva. A hybrid visual
servo controller for robust grasping by wheeled mobile robots. Transactions
on Mechatronics, 15(5):757–769, 2010.

[176] Nicholas Wettels, Veronica Santos, Roland Johansson, and Gerald Loeb.
Biomimetic tactile sensor array. Advanced Robotics, 22(8):829–849, 2008.

[177] David Williams and Oussama Khatib. The virtual linkage: A model for in-
ternal forces in multi-grasp manipulation. In Proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 1025–1030.
IEEE, 1993.

167



Bibliography

[178] Ronald Williams. Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3-4):229–256, 1992.

[179] Thomas Wimböck, Christian Ott, Alin Albu-Schäffer, and Gerd Hirzinger.
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und wurde bisher noch nicht veröffentlicht.
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