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Abstract

In this thesis we study the moduli spaces of maximally supersymmetric Anti-de Sitter

(AdS) vacua in gauged, five-dimensionalN = 2 supergravity. These vacua feature in ten-

dimensional compactifications of type IIB supergravity on Sasaki-Einstein manifolds and

are an integral part of the AdS/CFT correspondence. In particular, moduli spaces of five-

dimensional AdS vacua are related to conformal manifolds of the dual, four-dimensional

superconformal field theories via the AdS/CFT correspondence. For a general five-

dimensional N = 2 supergravity coupled to an arbitrary number of vector, tensor and

hypermultiplets, we determine the conditions for AdS vacua in the first part of this

thesis and prove that the unbroken gauge group in the vacuum always contains an

U(1)R-factor. As a next step, we study the moduli space of the AdS vacuum by varying

the scalar fields. We show that this moduli space is a Kähler submanifold of the ambient

quaternionic Kähler manifold spanned by the hypermultiplet scalars.

To relate our results to the full ten-dimensional solutions, we consider consistent

truncations of type IIB supergravity on Sasaki-Einstein manifolds in the second part.

In particular, we study maximally supersymmetric AdS vacua in consistent N = 2

truncations on the Sasaki-Einstein manifold T 1,1. Here we focus on truncations that

contain fields coming from the second and third cohomology forms on T 1,1. There are

two possibilities: The Betti-vector truncation contains N = 2 supergravity coupled to

two vector and two hypermultiplets, while the Betti-hyper truncation contains one vector

multiplet and three hypermultiplets. We find that both truncations admit AdS vacua

with an unbroken U(1)R-symmetry. Finally, we explicitly determine the moduli spaces

and compute their respective metrics.





Zusammenfassung

In dieser Dissertation studieren wir die Moduliräume von maximal-supersymmetrischen

Anti-de Sitter (AdS) Vakua in geeichter, fünfdimensionaler N = 2 Supergravitation.

Diese Vakua treten in zehndimensionalen Kompaktifizierungen von Typ IIB Supergrav-

itation auf Sasaki-Einstein Mannigfaltigkeiten auf und sind ein essentieller Bestandteil

der AdS/CFT Korrespondenz. Die Moduliräume fünfdimensionaler AdS Vakua stehen

durch die AdS/CFT Korrespondenz im Zusammenhang mit den konformen Mannig-

faltigkeiten der dualen, vierdimensionalen superkonformen Feldtheorien. Wir bestim-

men die Bedingungen für AdS Vakua in einer allgemeinen, fünfdimensionalen N = 2

Supergravitation gekoppelt an eine beliebige Anzahl von Vektor-, Tensor- und Hyper-

multipletts im ersten Teil dieser Arbeit und zeigen, dass die ungebrochene Eichgruppe

im Vakuum immer einen U(1)R-Faktor enthält. Als nächsten Schritt studieren wir die

Moduliräume der AdS Vakua durch Variationen in den Skalarfeldern. Wir zeigen, dass

dieser Moduliraum eine Kähler-Untermannigfaltigkeit der umgebenden quaternionischen

Kählermannigfaltigkeit ist, welche von den Hypermultiplettskalaren aufgespannt wird.

Um unsere Ergebnisse mit der vollen zehndimensionalen Lösung in Verbindung zu

bringen, betrachten wir im zweiten Teil dieser Arbeit konsistente Trunkierungen von

Typ IIB Supergravitation auf Sasaki-Einstein Mannigfaltigkeiten. Insbesondere un-

tersuchen wir maximal-supersymmetrische AdS Vakua in konsistenten N = 2 Trunk-

ierungen auf der Sasaki-Einstein Mannigfaltigkeit T 1,1. Hier konzentrieren wir uns auf

Trunkierungen, die Felder enthalten, welche von der zweiten und dritten Kohomolo-

gieform auf T 1,1 kommen. Es gibt zwei Möglichkeiten: Die Betti-Vektor-Trunkierung

enthält N = 2 Supergravitation gekoppelt an zwei Vektor- und zwei Hypermultipletts,

während die Betti-Hyper-Trunkierung ein Vektormultiplett und drei Hypermultipletts

enthält. Wir finden heraus, dass beide Trunkierungen AdS Vakua mit ungebrochener

U(1)R-Symmetrie zulassen. Abschließend bestimmen wir die Moduliräume explizit und

berechnen ihre Metriken.
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Chapter 1

Introduction

In the search for a consistent quantum theory of gravity, string theory provides a frame-

work to address many interesting topics in high energy theoretical physics.1 Its main idea

is that all elementary particles are made up of tiny extended one-dimensional strings.

Different excitations of these strings then give rise to the different particles that we ob-

serve in nature. Interestingly, string theory necessarily contains general relativity and

is expected to provide a well-behaved UV-completion of quantum gravity. Due to the

extended nature of the fundamental strings, the UV-divergences that appear in attempts

to quantize gravity using the usual perturbative approach to quantum field theory do not

arise in string theory. Moreover, Yang-Mills gauge theories, such as the standard model

of particle physics, also appear naturally in string theory. In this sense, string theory

provides a framework for unifying Einstein’s theory of general relativity with the princi-

ples of quantum field theory. However, up to date no mechanism is known that explains

the selection of the standard model field content and gauge group SU(3)×SU(2)×U(1)

out of all the possible gauge theories provided by string theory.

Concepts for physics beyond the standard model, such as supersymmetry and ex-

tra dimensions, can be incorporated consistently in the framework of string theory.

However, the theory is also very restrictive; for example, the consistent formulation of

fermionic string theories is related to the existence of supersymmetry. Moreover, such

theories necessarily require the allowed spacetimes to be ten- or eleven-dimensional.

For phenomenological applications one then has to worry about deriving effective four-

dimensional theories by compactifying on suitable internal manifolds. Even though the

predictions of string theory for phenomenological models in four dimensions have been

extensively studied, so far no experimental evidence has been found.

On the other hand, string theory also provides tools to conceptionally understand

quantum field theories. The idea is to use the rigid mathematical structure of string

theory to derive statements about strongly coupled quantum field theories. This has

famously been studied in the context of the gauge/gravity duality that is known as the

1See [1–5] for introductions to string theory.
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2 Chapter 1. Introduction

AdS/CFT correspondence2 and was first conjectured by Maldacena in [6] and formulated

more precisely in [7, 8].3 It states that an AdSd vacuum preserving q real supercharges

is related to a superconformal field theory (SCFT) on the boundary of AdS with q/2

supercharges and q/2 superconformal charges preserved. In short, we have a conjectured

relation

AdSd vacuum preserving q real superchargesxy
SCFTd−1 preserving q/2 supercharges + q/2 superconformal charges .

(1.1)

The reduction of supersymmetry comes from the fact that half of the supercharges

present in the AdS solution are converted to superconformal charges in the dual field

theory. Eventhough many interesting examples of this duality have been studied [10–14],

no complete proof for the AdS/CFT correspondence is known up to date. However, one

can perform a large amount of non-trivial consistency checks by employing the relations

between gravity and field theory provided by the correspondence. For example, the

gauge group of the AdS solution is mapped to the global flavour symmetry of the dual

SCFT. Moreover, scalar fields in the AdS vacuum are related to the coupling of operators

to the SCFT. In particular, one can consider the supersymmetric moduli space of the

AdS vacuum, i.e. the space of scalar field variations that leave the vacuum invariant.

This moduli space is then mapped via the AdS/CFT correspondence to the conformal

manifold, i.e. the space of gauge invariant operators that preserve the superconformal

invariance of the field theory.

The AdS/CFT correspondence was thoroughly studied over the last decades. In its

original form [6], it was formulated as a duality between AdS5×S5 solutions of type IIB

string theory and an N = 4 SCFT on the boundary. However, in this thesis we will be

interested in the case of minimal supersymmetry on the boundary SCFT, i.e. N = 1 or

four real supercharges. The dual solution in type IIB is then given by AdS5×M5 [15–19],

where M5 is a five-dimensional compact manifold. In particular, the structure of M5 has

to be such that this solution preserves the correct amount of eight real supercharges as

required by (1.1).

Due to their relevance in the gauge/gravity duality, supersymmetric solutions of type

IIB supergravity containing an AdS5 factor and preserving eight real supercharges have

been extensively studied from the ten-dimensional point of view [20–25]. Even though

there are different types of compact manifolds that appear in the various versions of the

AdS/CFT correspondence, we will focus here on the case of compact Sasaki-Einstein

manifolds. Because the AdS spacetime appearing in the AdS/CFT correspondence has

only five non-compact dimensions, it would be interesting to learn more about the re-

lationship between the four-dimensional field theory, the supergravity on AdS5 and the

2AdS/CFT stands for Anti de-Sitter/Conformal Field Theory, where Anti-de Sitter space is the maximally-

symmetric spacetime with constant negative curvature.
3Reference [9] provides a recent review of the gauge/gravity duality.
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compact internal manifold. To this end, we want to discuss AdS vacua purely from the

supergravity perspective and without relation to any higher-dimensional compactifica-

tion in the first part of this thesis. Similar investigations have been performed in different

dimensions and for different numbers of preserved supercharges in [26–32]. In particular,

we will analyze the conditions for preserving supersymmetry and find the restrictions on

possible unbroken gauge groups in the AdS vacuum. As explained above, these gauge

groups map under the AdS/CFT correspondence to global flavour symmetries of the dual

SCFT. This is interesting to study for the case of the global U(1)R-symmetry present in

the superconformal algebra for every four-dimensional N = 1 SCFT. In particular, one

expects this global U(1)R-symmetry to be appear as an unbroken factor in the gauge

group of the five-dimensional AdS vacuum. Hence, the first problem we want to address

in this thesis is:

1) What are the conditions for the existence of maximally supersymmetric AdS5 vacua

in the most general form of gauged five-dimensional N = 2 supergravity?

In part, this question has already been addressed in the context of a-maximization in [33].

However, only the case of Abelian gauge groups was discussed in this reference, while

tensor multiplets were not considered at all. Based on [34], we find that we can formulate

the conditions for AdS5 vacua in terms of isometries and associated moment maps of

the scalar fields. In particular, we prove that the U(1)R-symmetry which is always

present in the dual four-dimensional N = 1 SCFT always remains unbroken in the AdS

vacuum.4 The unbroken gauge group has to be a direct product of this R-symmetry

with an otherwise arbitrary gauge group. Finally, we explain how the spontaneous

gauge symmetry breaking arises in AdS backgrounds and identify the Goldstone bosons.

The negative cosmological constant of an AdS vacuum in a gauged supergravity

is provided by the vacuum expectation value (VEV) of the scalar potential that was

introduced by the gauging. Thus a particular AdS solution is specified by the vacuum

values of the scalar fields in the theory. Once we understand the conditions a theory has

to satisfy in order to admit a supersymmetric AdS vacuum, it would be interesting to

find the parameter space of this solution. In particular, given a configuration of scalar

fields with negative cosmological constant, we can ask whether it is possible to deform

the scalar fields but keep the cosmological constant while preserving supersymmetry.

That is, we want to study the supersymmetric moduli space of the AdS vacuum. For

a neighborhood of the vacuum configuration in the target space of the scalar fields, the

moduli space is given by all deformations of the scalar fields that preserve supersymmetry

and thus leave the vacuum conditions invariant. Thus the second problem we want to

study is:

2) What is the structure of the supersymmetric moduli space of AdS5 vacua?

4For Abelian gauge groups, this was also shown in [33].
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Unfortunately, in general it will be difficult to explicitly determine the moduli space in

a model-independent way. However, we will show that the conditions obtained from

varying the AdS vacuum are sufficient to analyze the structure of the moduli space.

Again, a part of this question has been studied in [33], but we will generalize their

results. In particular, we will discuss the presence of Goldstone bosons as directions

in the deformation space and explain how to remove these unphysical deformations to

obtain the physical moduli space. Finally, we will prove that the moduli space is a

Kähler manifold and consists only of deformations in the hypermultiplet scalars. The

moduli space of AdS5 vacua is related to the conformal manifold of the dual SCFT by

the AdS/CFT correspondence. It was shown that the conformal manifold of N = 1

SCFTs is a Kähler manifold [35] and we find an agreement between four-dimensional

field theory and five-dimensional supergravity. Hence, our proof presents an additional

consistency check for the AdS/CFT correspondence.

After obtaining a deeper understanding of the five-dimensional AdS factors relevant

for applications in the AdS/CFT correspondence, we would like to study the impact

of the compact manifold. So far, we found that the moduli space of supersymmet-

ric AdS5 vacua has the same structure as the conformal manifold of the dual N = 1

SCFT in four dimensions, i.e. both are Kähler manifolds. However, a priori it is un-

clear whether mapping the moduli space to the conformal manifold is bijective under

AdS/CFT. For example, it could be possible that the conformal manifold has a higher

dimension than the AdS5 moduli space. Then the five-dimensional moduli space should

be a subspace of the full ten-dimensional moduli space of the AdS5 × SE5 solution. To

gain a deeper understanding of this issue, we want to study consistent truncations of

type IIB supergravity on Sasaki-Einstein manifolds. A consistent truncation is a reduc-

tion of the ten-dimensional theory to a five-dimensional one such that every solution of

the five-dimensional theory again lifts to a full solution of type IIB supergravity. These

truncations have been studied for general Sasaki-Einstein manifolds in [36–43].

In what follows, we will focus on the prominent example of type IIB supergravity com-

pactified on the homogeneous Sasaki-Einstein manifold T 1,1 = (SU(2) × SU(2))/U(1)

that is underlying the conifold [44, 45]. Since this background is dual to the Klebanov-

Witten theory [10], it has been extensively studied in the past. In particular, the moduli

space of the ten-dimensional solution and the dual field theory have been shown to be

complex five-dimensional and the moduli have been identified [10, 23, 25, 46, 47]. There

is one modulus corresponding to the Axion-Dilaton τ and another coming from the vac-

uum expectation value (VEV) of the complex B-field of type IIB supergravity integrated

over the nontrivial two-cycle5 of T 1,1. Moreover, the remaining three complex moduli

(one of which is the deformation identified in [50]) transform as a triplet under the

SU(2)× SU(2) in the isometry group of T 1,1.

5This is due to the fact that T 1,1 is diffeomorphic to S2 × S3 and thus has non-vanishing second Betti-

number [48,49].
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Consistent truncations to gauged N = 2 supergravity have been derived for T 1,1

compactifications in [43, 48, 49, 51]. In particular, these generalize the situation studied

for general Sasaki-Einstein manifolds in [36–43] by taking the non-trivial second and

third cohomology classes of T 1,1 ∼= S2 × S3 into account. Therefore, the final problem

we will study in this thesis is:

3) Do AdS5 vacua exist in consistent five-dimensional N = 2 truncations of type IIB

supergravity on T 1,1? If so, can we explicitly compute their moduli spaces?

This problem is interesting to study for two reasons: First of all, since we only discussed

the general structure on the moduli space so far, we would like to determine the explicit

moduli space metrics in some examples. This might give some insight into determining

the moduli space metrics in a more general setting. Secondly, we can then compare

the explicit five-dimensional moduli space to the ten-dimensional one and determine the

impact of the compact manifold on their relation. This is related to the question whether

the five-dimensional moduli space is dual to the full conformal manifold of the N = 1

SCFT or only a certain submanifold. In answering question 3), we follow [52] and study

consistent N = 2 truncations known as the Betti-vector truncation and the Betti-hyper

truncation which involve multiplets associated with the topology of T 1,1.

The Betti-vector truncation contains gravity coupled to two vector multiplets and

two hypermultiplets, while the Betti-hyper truncation contains gravity coupled to one

vector multiplet and three hypermultiplets. We then apply the methods developed

for general AdS5 backgrounds to these truncations with the following results. Both

truncations admit AdS vacua with an unbroken U(1)R-symmetry and moreover have

non-trivial supersymmetric moduli spaces. Furthermore, we can explicitly compute the

metrics on the moduli spaces. In the case of the Betti-vector truncation, we find that the

moduli space MBV is spanned by the Axion-Dilaton τ and MBV = H is the complex

upper half plane. For the Betti-hyper truncation we compute a complex two-dimensional

moduli space MBH that is given as a torus bundle with base space parametrized again

by τ . In particular, this reproduces the result of [10] that the moduli in question are

the Axion-Dilaton and a complex scalar that parametrizes a torus. However, the metric

on the moduli space is not a direct product but a non-trivial fibration known as the

universal elliptic curve. Thus we find that we cannot detect the full ten-dimensional

moduli space in the consistent truncations that we study. This is not surprising, as it

was shown in [53] that truncations on T 1,1 (and more general U(1)-bundles over products

of copies of CPn’s) can only retain singlets under the isometry of the compact manifold

in order to remain consistent. Including higher representations of the isometry leads

to inconsistencies in the five-dimensional equations of motion. Since three of the five

complex moduli of the T 1,1 solution transform as a triplet under SU(2)× SU(2), these

cannot be found in consistent truncations. However, this also shows that we found all

moduli of the ten-dimensional solution that are possible to detect in the Betti-hyper

truncation.
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The main part of this thesis is organized as follows. In Chapter 2 we provide the

most general form of gauged five-dimensional N = 2 supergravity and study its super-

symmetric AdS vacua. In Chapter 3 we then determine the necessary conditions on

the moduli space of these vacua by studying the space of scalar field deformations that

preserve the maximally supersymmetric AdS5 vacuum. Moreover, we briefly discuss

in which cases these conditions are not only necessary but sufficient to determine the

moduli space. We proceed by using these results to study AdS5 vacua and their moduli

spaces in consistent truncations of type IIB supergravity compactified on T 1,1 in Chapter

4. Thereafter, we conclude, discuss our findings and give a brief outlook. In Appendix A

we provide general facts about Sasaki-Einstein manifolds and discuss the supersymmetry

of type IIB supergravity compactified on such manifolds in Appendix B. Furthermore,

we explain consistent truncations of type IIB supergravity on Sasaki-Einstein manifolds

in Appendix C. Finally, we discuss the absence of AdS vacua for yet another N = 2

truncation of T 1,1 in Appendix D.



Chapter 2

AdS vacua in gauged

five-dimensional N=2 supergravity

In this chapter we lay the foundation for the remainder of this thesis and study the con-

ditions on maximally supersymmetric AdS5 vacua in a general five-dimensional gauged

N = 2 supergravity. To this end, we first introduce the most general form of N = 2 su-

pergravity coupled to an arbitrary number of vector, tensor and hypermultiplets charged

under an arbitrary gauge group G.

Before we begin the technical analysis, let us first illustrate the general idea. Consider

a given N > 1 supergravity1 in d spacetime dimensions and described by a Lagrangian

L̃ = L̃(Φ,Ψ, ...) depending on a number of scalars Φ, fermions Ψ and possibly some

other fields. The scalars are maps from spacetime M to a target space T ,

Φ : M → T . (2.1)

T is endowed with a Riemannian metric g. In general, supersymmetry will restrict the

form of this metric, e.g. (T , g) could be a manifold with special holonomy or even a

homogeneous space. Moreover, the dimension of T is equal to the number of scalars

present in the theory.

In general, the Lagrangian L̃ is invariant under some global symmetry group G̃.

Here, we will further be interested in gauged supergravity theories, i.e. theories in which

a subgroup G ⊂ G̃ of the global symmetries can be promoted to local symmetries. In

order to preserve the same amount of supersymmetry as before, the Lagrangian L̃ has

to be modified to a new Lagrangian L. The process of selecting the subgroup G and

replacing L̃ 7→ L is called the gauging of the supergravity.2 In particular, the derivatives

∂µΦ of the scalars have to be replaced by covariant derivatives,

∂µΦ→ DµΦ = ∂µΦ + gGKIA
I
µ . (2.2)

1We exclude the N = 1 case from our general considerations, since in these theories a scalar potential can

appear in terms of the superpotential even if the theory is ungauged.
2See [54,55] for review articles on gauged supergravities.

7



8 Chapter 2. AdS vacua in gauged five-dimensional N=2 supergravity

Here gG is the gauge coupling constant for G, AIµ are the gauge fields and KI(Φ) the

associated Killing vectors that span the Lie algebra of the gauge group. Moreover, in

order for the theory to preserve the same amount of supersymmetry after the gauging, the

supersymmetry transformations of the fields receive corrections and one has to introduce

a scalar potential V (Φ) into the Lagrangian. Thus L is of the general form

L = 1
2
R− V (Φ) + g(DµΦ,DµΦ) + ... , (2.3)

where R denotes the Ricci scalar of the spacetime metric.

In this thesis we study maximally supersymmetric AdS vacua of gauged supergravi-

ties. For a vacuum to be AdS, it must be invariant under the respective symmetry group

SO(2, d) and in particular the Lorentz group SO(1, d) ⊂ SO(2, d). In other words, the

vacuum cannot have any distinguished directions, i.e. only the scalar fields can acquire

a non-trivial vacuum expectation value (VEV) 〈Φ〉 6= 0. Moreover, the supersymme-

try variations of all the fields in the spectrum have to vanish. Because supersymmetry

relates scalars Φ and fermions Ψ, this reads

〈δΨ〉 = 〈F (Φ)〉 = 0 , (2.4)

for some function F depending on the explicit form of the supergravity. This condition

restricts the possible background values of the scalar fields 〈Φ〉.
In a given supergravity, the precise form of the function F is determined by super-

symmetry. Moreover, 〈F 〉 fixes the value of the scalar potential 〈V 〉 in the background,

which can then be interpreted as a cosmological constant. Since we are interested in

AdS backgrounds, we will study solutions with 〈V 〉 < 0 and exclude the Minkowskian

case 〈V 〉 = 0. The restrictions posed by (2.4) can then be used to derive properties of

the vacuum, for example its preserved symmetries and the spontaneous gauge symmetry

breaking.

In what follows we explicitly carry out this analysis in the case of five-dimensional

gauged supergravity preserving eight real supercharges.

2.1 General gauged N = 2, d = 5 supergravity

In this section we review the most general form of five-dimensional gauged N = 2

supergravity following [56–58].3 The theory consists of the gravity multiplet,

{gµν , ψAµ , A0
µ} , µ, ν = 0, ..., 4 , A = 1, 2 , (2.5)

where gµν is the metric of spacetime, ψAµ is an SU(2)R-doublet of symplectic Majorana

gravitini4 and A0
µ is a vector field called the graviphoton. In this thesis we consider

3The most general gauged N = 2 supergravity in five dimensions was constructed in [58].
4See Appendix B for our spinor conventions in five-dimensional supergravity.
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theories that are additionally coupled to nV vector multiplets, nT tensor multiplets and

nH hypermultiplets.

A vector multiplet {Aµ, λA, φ} transforms in the adjoint representation of the gauge

group G and contains a vector Aµ, a doublet of symplectic Majorana gauginos λA and a

real scalar φ. A special feature of five-dimensional theories is the fact that a vector field

is Poincaré dual to an antisymmetric tensor field Bµν . One can show [59] that vector

fields carrying an arbitrary representation of G other than the adjoint representation

have to be dualized to tensor fields for the theory to be consistent. This gives rise to

tensor multiplets {Bµν , λ
A, φ}, which have the same field content as vector multiplets

but with a two-form instead of a vector. However, since vector and tensor multiplets

mix in the Lagrangian, we label their scalars φi by a common index i, j = 1, ..., nV +nT .

Moreover, we label the vector fields (including the graviphoton) by I, J = 0, 1, ..., nV ,

the tensor fields by M,N = nV + 1, ..., nV + nT and also introduce a combined index

Ĩ = (I,M). Finally, the nH hypermultiplets,

{qu, ζα}, u = 1, 2, ..., 4nH , α = 1, 2, ..., 2nH , (2.6)

contain 4nH real scalars qu and 2nH symplectic Majorana hyperini ζα.

The dynamics of these fields are described by the Lagrangian L5 of N = 2 gauged

supergravity in five dimensions [58]. Since we are interested in a situation where only

the scalar fields have non-trivial backgrounds values, we give here only the bosonic parts

of the Lagrangian5,

e−1L5 = 1
2
R− 1

4
aĨJ̃H

Ĩ
µνH

J̃µν − 1
2
gijDµφiDµφj − 1

2
GuvDµquDµqv − g2V (φ, q)

+ 1
16g
e−1εµνρστΩMNB

M
µν

(
∂ρB

N
στ + 2gtNIJA

I
ρF

J
στ + gtNIPA

I
ρB

P
στ

)
+ 1

12

√
2
3
e−1εµνρστCIJKA

I
µ

[
F J
νρFστ + fJFGA

F
ν A

G
ρ

(
−1

2
FK
στ + g2

10
fKHLA

H
σ A

L
τ

)]
− 1

8
e−1εµνρστΩMN t

M
IKt

N
FGA

I
µA

F
ν A

G
ρ

(
−g

2
FK
στ + g2

10
fKHLA

H
σ A

L
τ

)
.

(2.7)

Here R is the Ricci-scalar of the spacetime metric and H Ĩ
µν = (F I

µν , B
M
µν), where we

denote by F I
µν = 2∂[µA

I
ν] + gf IJKA

J
µA

K
ν the field strengths of the vector fields AIµ, fKIJ are

the structure constants of the Lie algebra of G and gG is the gauge coupling constant.

Moreover, V (φ, q) is the scalar potential arising in the gauging and Dµφi and Dµqu
are the covariant derivatives of the vector/tensor scalars and hypermultiplet scalars

with respective metrics gij and Guv. For the topological terms of the Lagrangian we

furthermore need a constant, completely symmetric tensor CĨJ̃K̃ and an antisymmetric

invertible matrix ΩMN . Finally, the matrices tK̃
IJ̃

describe the action of the gauge group

on vector and tensor multiplets. Now we recall the various quantities that are introduced

in this Lagrangian in more detail.

5Note that we set the gravitational constant κ = 1 in this thesis.
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As outlined above, the scalar fields in supergravity theories can be interpreted as

maps from spacetime M5 to a target space T ,

φi ⊗ qu : M5 −→ T . (2.8)

Due to the fact that we have two different types of scalar fields in the theory, T is a

product manifold,

T = MV ×MH . (2.9)

The first factor MV is spanned by the scalars φi from the vector and tensor multiplets,

while the manifold MH is parametrized by the scalars qu in the hypermultiplets. In

particular, both spaces are endowed with Riemannian metrics g = gijdφ
idφj on MV

and G = Guvdq
udqv on MH , respectively. Supersymmetry requires these metrics to

have certain properties; the manifold (MV , g) is a projective special real manifold of real

dimension nV + nT , while (MH , G) is a quaternionic Kähler manifold of real dimension

4nH . Since these geometries play a key role in the remainder of this thesis, we now

review their definitions and relevant properties.

Vector/tensor multiplet geometry: projective special real manifolds

Projective special real manifolds6 were first introduced in the context of five-dimensional

supergravity in [60]. Here we follow the presentation in [58,61]. Let H be an nV +nT +1-

dimensional real manifold and P a cubic homogeneous polynomial. For local coordinates

hĨ on H, this translates to

P = CĨJ̃K̃h
ĨhJ̃hK̃ , (2.10)

where CĨJ̃K̃ is a constant, completely symmetric trilinear form. We can define conjugate

coordinates by lowering the index Ĩ on hĨ via

hĨ := CĨJ̃K̃h
J̃hK̃ . (2.11)

Then the matrix of gauge couplings aĨJ̃ in (2.7) defines a positive definite metric a =

aĨJ̃dh
ĨdhJ̃ on H by

a = −1
2
∂2 log(P) , (2.12)

where ∂2 log(P) denotes the Hessian of log(P), i.e. aĨJ̃ = −1
2
∂Ĩ∂J̃ log(P). Then the

components of a can be given in terms of the coordinates hĨ and the symmetric tensor

CĨJ̃K̃ as

aĨJ̃ = −2CĨJ̃K̃h
K̃ + 3hĨhJ̃ . (2.13)

Thus (H, a) is a Riemannian manifold. From this, a projective special real manifold

(MT , g) is defined as the hypersurface in H given by P ≡ 1, i.e.

MV = {P ≡ 1} ⊂ H . (2.14)

6In the supergravity literature, these manifolds are often referred to as very special real manifolds, while

they are called projective special real manifolds in the mathematics literature.
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By solving the condition P ≡ 1 for

P(φ) = CĨJ̃K̃h
Ĩ(φ)hJ̃(φ)hK̃(φ) , (2.15)

we can define local coordinates φi on MV . Then MV carries a natural Riemannian metric

g = gijdφ
idφj by pulling back the metric a onto the hypersurface {P = 1},

gij = hĨih
J̃
j aĨJ̃ . (2.16)

Here we denote

hĨi := −
√

3
2
∂ih

Ĩ(φ) , hiĨ :=
√

3
2
∂ihĨ(φ) , (2.17)

where the index Ĩ was lowered with respect to the metric a.

Let us now prove some important properties of these manifolds. Due to the fact that

P(φ) = 1 on MV , we immediately see that hIhI = 1. Moreover, since ∂iP(φ) = 0 on

MV , we find

0 = ∂iP = 3CĨJ̃K̃(∂ih
Ĩ)hJ̃hK̃ = 3(∂ih

Ĩ)hĨ , (2.18)

where we used the fact that CĨJ̃K̃ is completely symmetric and constant. Thus

hĨhĨ = 1, hĨihĨ = 0 . (2.19)

Combining (2.19) with the definitions of a and g, (2.13) and (2.16), we find

gij = hĨih
J̃
j aĨJ̃ = −2CĨJ̃K̃h

K̃ . (2.20)

The above relations can be compactly formulated in matrix form as [58](
hĨ

hĨi

)
aĨJ̃

(
hJ̃ hJ̃j

)
=

(
1 0

0 gij

)
. (2.21)

Defining hj
Ĩ

= gijhiĨ , this implies

(
hĨ hi

Ĩ

)(hJ̃
hJ̃i

)
= δJ̃

Ĩ
, (2.22)

and

aĨJ̃ = hĨhJ̃ + hi
Ĩ
hiJ̃ . (2.23)

The fact that the matrix (hĨ , hĨi ) is invertible will be crucial in the analysis of the AdS

vacuum conditions later.

Finally, let us introduce a covariant derivative on MV . This can be defined on the

tangent vectors hĨj of MV as

Dih
Ĩ
j := −

√
2
3

(
hĨgij + Tijkh

kĨ
)
. (2.24)

Here Tijk = CĨJ̃K̃h
Ĩ
ih

J̃
j h

K̃
k is a symmetric tensor.
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Hypermultiplet geometry: quaternionic Kähler manifolds

In the following we introduce the notion of quaternionic Kähler manifolds and study

some of their properties. For an extensive introduction, see [61–63]. To begin with,

let (MH , G) be a Riemannian manifold of dimension 4nH with local coordinates qu and

denote by TMH the tangent bundle of MH . A quaternionic structure Q on MH is a

∇G-invariant rank three subbundle of the endomorphism bundle of the tangent bundle,

Q ⊂ End(TMH), such that it is locally spanned by a triplet of almost complex structures,

Jn : TMH → TMH , n = 1, 2, 3 . (2.25)

These satisfy J1J2 = J3 and (Jn)2 = −Id. Let us describe this important definition in

some more detail. Component wise, the almost complex structures satisfy

(Jm)wu (Jn)vw = −δmnδvu + εmnp(Jp)vu . (2.26)

Here δmn is the Kronecker delta and εmnp denotes the completely antisymmetric Levi-

Civita symbol in three dimensions, normalized to ε123 = 1. Moreover, the metric G is

Hermitian with respect to all three Jn, i.e. for vector fields7 X, Y ∈ Γ(TMH),

G(JnX, JnY ) = G(X, Y ) ∀n . (2.27)

One defines an associated triplet of two-forms ωn = ωnuvdq
u ∧ dqv by

ωnuv = Guw(Jn)wv . (2.28)

The invariance of Q under the the action of ∇G, i.e. ∇GQ ⊂ Q, implies for the local

basis Jn that the Levi-Civita connection of G rotates the almost complex structures Jn

in Q, i.e.

∇GJn = εnpqΘpJq . (2.29)

Here Θn is a triplet of SU(2)-connection one-forms. Thus a quaternionic structure is

specifically not a Kähler structure, since none of the almost complex structures are co-

variantly constant with respect to the Levi-Civita connection of the metric G. However,

we can introduce a new connection ∇ by

∇Jn := ∇GJn − εnpqΘpJq , (2.30)

with the property that ∇Jn = 0. Note that ∇ differs from the Levi-Civita connection

by an SU(2)-connection corresponding to Θn.

We call a Riemannian manifold (MH , G,Q) a quaternionic Kähler manifold if it

admits a quaternionic structure.8 One can show that a Riemannian manifold is quater-

nionic Kähler if and only if its holonomy group is contained in SU(2) × Sp(nH). Thus

7We denote by Γ(TMH) the set of sections of the tangent bundle on MH .
8For nH = 1, i.e. dim MH = 4, this definition is satisfied by every oriented Riemannian manifold [61]. Thus

one additionally requires that the sections Jn annihilate the Riemann tensor R of G,

(Jn)suRsvwt + (Jn)svRuswt + (Jn)swRuvst + (Jn)stRuvws = 0 , (2.31)

for all n = 1, 2, 3.
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one can express G in terms of local vielbeins UαAu as [62,63]

Guv = CαβεABUαAu UβBv , (2.32)

where Cαβ denotes the flat metric on Sp(nH) and the SU(2)-indices A,B are raised and

lowered with the SU(2)-invariant metric εAB. One can show that quaternionic Kähler

manifolds are always Einstein, RicG = ν(n+ 2)G, where ν is proportional to the scalar

curvature.9 From now on, we will take the physically relevant value for ν which is fixed

by supersymmetry to ν = −1.10

Isometric action of the gauge group

Let us now discuss how the gauge group acts on the scalar target spaces in vector, tensor

and hypermultiplets. The gauge group G is specified by the generators of its Lie algebra

g and the structure constants fKIJ . These satisfy the usual relation11

[tI , tJ ] = −fKIJtK . (2.33)

Note that indices in this equation only run over the vector multiplets (and the gravipho-

ton). As previously explained, the vector fields must transform in the adjoint repre-

sentation of the gauge group, i.e. tKIJ = fKIJ . On the other hand, the tensor multiplets

can transform in an arbitrary representation of G. It was shown in [57] that the most

general representation for nV vector multiplets and nT tensor multiplets is given by

tK̃
IJ̃

=

(
fKIJ tNIJ
0 tNIM

)
. (2.34)

We immediately realize that the block matrix tNIJ introduces a mixing between vector

and tensor fields, for example in the interaction terms of the Lagrangian (2.7). This is

why we introduced a combined index Ĩ = (I,M) in the first place.

However, the matrix tNIJ is only nonzero if the chosen representation of the gauge

group is not completely reducible. This never occurs for compact gauge groups, but there

exist non-compact gauge groups containing an Abelian ideal that admits representations

of this type, see [57]. There it is also shown that the construction of a generalized

Chern-Simons term in the action for vector and tensor multiplets requires the existence

of an invertible and antisymmetric matrix ΩMN . In particular, the components of the

representation acting on tensor multiplets are of the form

tN
IJ̃

= CIJ̃PΩPN . (2.35)

9The case ν = 0 corresponds to locally hyper Kähler manifolds and is usually excluded.
10Quaternionic Kähler manifolds with negative scalar curvature are called negative quaternionic Kähler man-

ifolds.
11Note the minus sign in the defining relation of the Lie algebra.
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Here ΩMN is antisymmetric and invertible,

ΩMPΩMN = δNP . (2.36)

Since the gauge group is the local symmetry group of the Lagrangian (2.7), it has

to be realized by isometries on the scalar target spaces. In particular, the vector/tensor

and hypermultiplet scalars transform under G as

δGφ
i = −gGΛI

Gξ
i
I(φ) , δGq

u = −gGΛI
Gk

u
I (q) , (2.37)

where ΛI
G are the parameters of the gauge transformation. For the vector and tensor

multiplets, this action is provided by Killing vector fields ξI = ξiI∂i that satisfy the Lie

algebra g of G,

[ξI , ξJ ]i = ξjI∂jξ
i
J − ξ

j
J∂jξ

i
I = −fKIJξiK . (2.38)

The invariance of the Lagrangian (2.7) under the transformations (2.37) determines the

explicit form of the components ξiI in terms of the functions hĨ , their derivatives hĨi and

the representation tK̃
IJ̃

to be [64]

ξiI = −
√

3
2
tK̃
IJ̃
hJ̃hi

K̃
= −

√
3
2
tK̃
IJ̃
hiJ̃hK̃ . (2.39)

The second equality is due to the fact that [64]

tK̃
IJ̃
hJ̃hK̃ = 0 , (2.40)

and thus

0 = ∂i(t
K̃
IJ̃
hJ̃hK̃) = tK̃

IJ̃
hJ̃∂ihK̃ + tK̃

IJ̃
(∂ih

J̃)hK̃ , (2.41)

which implies

tK̃
IJ̃
hJ̃hi

K̃
= tK̃

IJ̃
hJ̃ihK̃ . (2.42)

The situation is more involved in the hypermultiplet case. Again, the gauge group is

realized on the quaternionic Kähler target space MH by Killing vector fields kI = kuI ∂u
satisfying the Lie algebra g,

[kI , kJ ]u = kvI∂vk
u
J − kvJ∂vkuI = −fKIJkuK , (2.43)

and the Killing equation

∇ukvI +∇vkuI = 0 . (2.44)

Moreover, the kI have to be triholomorphic, i.e. they must respect the quaternionic

structure defined by (Jn,Θn) [61, 65],

LIJn = εnpqJpW q
I , LIΘn = ∇W n

I . (2.45)
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Here LI := LkI is the Lie derivative in direction of the Killing vector kI and W n
I (q) is a

triplet of real, field dependent functions called the SU(2)-compensator. Moreover, the

compensator W n
I satisfies the cocycle condition [65]

LIW n
J − LJW n

I + εnpqW p
IW

q
J = −fKIJW n

K . (2.46)

To every Killing vector kI we can then associate a triplet of real functions µnI satisfying

∇uµ
n
I = −1

2
ωnuvk

v
I , (2.47)

which can be related to W n
I by

µnI = Θn(kI)−W n
I . (2.48)

In particular, the µnI define a section µI ∈ Γ(Q) on MH given by µI := µnI Jn and

satisfying

∇GµI = 1
2
ωn(kI , ·)Jn . (2.49)

By introducing the moment maps µnI , we have associated a triplet of real functions

to every generator kI of the Lie algebra of the gauge group. Furthermore, it is possible

to realize a Lie algebra structure on the moment maps. To this end, we define the

triholomorphic Poisson bracket as

{µI , µJ}n := 1
2
ωn(kI , kJ)− 2εnpqµpIµ

q
J . (2.50)

A technical calculation [65] then reveals that this bracket indeed realizes the Lie algebra

on the moment maps, i.e.

{µI , µJ} = fKIJµK . (2.51)

In components, this condition can be written as [62,65]

fKIJµ
n
K = 1

2
ωnuvk

u
I k

v
J − 2εnpqµpIµ

q
J , (2.52)

and is usually referred to as the equivariance condition. We will use this equation several

times when studying moduli spaces of AdS vacua in Chapter 3.

Now consider the operator ∇kI and note that ∇uk
I
v is antisymmetric due to the fact

that the kI satisfy the Killing equation (2.44). Thus we can expand ∇kI in terms of

two-forms on MH . Since the three-dimensional subbundle Q in End(TMH) gives rise

to a triplet of canonical two-forms ωn = g ◦ Jn, we can decompose ∇kI into a part

proportional to ωn and a part related to endomorphisms orthogonal to Q in End(TMH).

This second part is then given by antisymmetric operators LI that commute with ωn

and are related to the hyperino mass matrix [61, 63]. Explicitly, this reads

2∇ukIv = ωnuvµnI + LIuv . (2.53)
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One refers to the operators ωnµnI and LI as the su(2)-part and sp(nH)-part of ∇kI ,
respectively [61]. For later use we define the combinations

SnI := LI ◦ Jn , L := hILI , Sn := hISnI , (2.54)

where the SnI are symmetric operators with components SnIuv = LIuw(Jn)wv [61]. More-

over, using the decomposition (2.53) we can compute the commutator of ∇kI with the

quaternionic structure Jn, i.e.

∇uk
I
w(Jn)wv − (Jn)wu∇vk

I
w = 2εnpqωpuvµ

q
I . (2.55)

Finally, the covariant derivatives of the scalars in the Lagrangian (2.7) are given by

Dµφi = ∂µφ
i + gGA

I
µξ

i
I(φ) , Dµqu = ∂µq

u + gGA
I
µk

u
I (q) . (2.56)

If the Killing vectors kI and ξI have non-trivial background values, the kinetic terms for

the scalar fields contain mass terms for the vector fields AIµ,

gijDµφiDµφj = g2
Ggijξ

i
Iξ
j
JA

I
µA

Jµ + ... , (2.57)

and

GuvDµquDµqv = g2
GGuvk

u
I k

v
JA

I
µA

Jµ + ... . (2.58)

These terms introduce a breaking of the gauge symmetry in the vacuum, which we will

study in more detail later in this chapter.

Before we proceed, let us note that for nH = 0, i.e. in the case when there are no

hypermultiplets present, constant Fayet-Iliopoulos (FI) terms can exist which satisfy the

equivariance condition (2.52). In this case the first term on the right hand side of (2.52)

vanishes since there are no Killing vectors in the hypermultiplets, i.e. kI = 0 for all I.

This implies that there are only two possible solutions [58]: If the gauge group contains

an SU(2)-factor, the FI-terms have to be of the form

µnI = cenI , c ∈ R , (2.59)

where the enI are nonzero constant vectors for indices I = 1, 2, 3 of the SU(2)-factor.

These vectors satisfy

εmnpemI e
n
J = fKIJe

p
K . (2.60)

The second solution has U(1)-factors in the gauge group and thus the respective structure

constants fKIJ vanish. Due to the equivariance condition (2.52) in this case, the constant

moment maps are given by

µnI = cIe
n , cI ∈ R , (2.61)

where en is a constant SU(2)-vector and I labels the U(1)-factors.
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Scalar potential and SUSY variations

Using the structures defined previously we are now in the position to write down the

scalar potential that appears in the Lagrangian (2.7). To do so, let us first define the

useful combinations

µn := hIµnI , ∂iµ
n := hIiµ

n
I , K := hIkI , Ξ := hIξI . (2.62)

The moment map µn is sometimes referred to as “dressed moment map” [61]. Note that

the functions hM corresponding to tensor multiplets do not appear explicitly. However,

the combinations defined in (2.62) can implicitly depend on the scalars in the tensor

multiplets as they might feature in the hI(φ) after solving (2.15).

To make contact between the scalar potential and the fermionic supersymmetry vari-

ations, one usually also defines the following couplings

SAB := µnσABn , WABi := ∂iµ
nσABn ,

Ki :=
√

6
4

Ξi , N αA :=
√

6
4
KuUαAu .

(2.63)

Here σnAB are the Pauli matrices with an index lowered by εAB, i.e.

σ1
AB =

(
1 0

0 −1

)
, σ2

AB =

(
−i 0

0 −i

)
, σ3

AB =

(
0 −1

−1 0

)
. (2.64)

With these definitions the scalar potential is given by

V = 2gijW iABWj
AB + 2gijKiKj + 2N α

ANAα − 4SABSAB . (2.65)

In the following we will also make use of the scalar parts of the fermionic supersym-

metry variations. Like the scalar potential, the supersymmetry variations are given in

terms of the couplings (2.63),

δεψ
A
µ = ∇µε

A − igG√
6
SABγµεB + ... ,

δελ
iA = gGKiεA − gGW iABεB + ... ,

δεζ
α = gGN α

Aε
A + ... .

(2.66)

Here εA denotes the supersymmetry parameter, ∇µ is the five-dimensional covariant

derivative on spinors and γµ are the gamma matrices of Spin(1, 4), see Appendix B.

Moreover, the ellipses correspond to higher spin contributions. This concludes our brief

review of gauged five-dimensional N = 2 supergravity and we now turn to the study of

its supersymmetric AdS backgrounds.

2.2 Supersymmetric AdS vacua

In this section we determine the conditions for AdS5 vacua that preserve all eight super-

charges. Note that some of these results were already obtained in [27, 33, 61]. However,
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we extend their considerations and discuss here the most general case of gauged N = 2

supergravity coupled to vector, tensor and hypermultiplets, charged under an arbitrary

gauge group G. This section is based on [34].

As usual, we denote the background value of a quantity with brackets 〈 〉. We already

discussed in the introduction of this chapter that a vacuum is maximally supersymmetric

if the supersymmetry variations of all the fields vanish. Since we are interested in

SO(2, d)-invariant vacua, the only nonzero supersymmetry variations are those of the

fermions (2.66). Thus we set

〈δεψAµ 〉 = 〈δελiA〉 = 〈δεζα〉 = 0 . (2.67)

We immediately realize that the vanishing of the hyperini variation δεζ
α implies

〈N αA〉 =

√
6

4
〈KuUαAu 〉 = 0 . (2.68)

Now recall that the vielbeins UαAu are invertible in the sense that [62]

UαAu UvαA = δvu . (2.69)

Thus we can multiply (2.68) with UvαA from the right to obtain

〈Ku〉 = 〈hIkuI 〉 = 0 . (2.70)

Similarly, the vanishing of the gaugini variation δελ
iA implies

〈Ki〉εA − 〈W iAB〉εB = 0 . (2.71)

The action of the couplings W iAB on the supersymmetry parameter εB is given by the

Pauli matrices defined in (2.64) while Ki acts as εAB on εB. Since the matrices {εAB, σnAB}
are linearly independent, (2.71) implies the vanishing of the individual couplings

〈Ki〉 = 〈WABi 〉 = 0 . (2.72)

Inserting the definitions (2.63), we find from the first equation that

〈Ξi〉 = 〈hIξiI〉 = 0 , (2.73)

while the second equations gives

〈∂iµn〉 = 〈hIiµnI 〉 = 0 . (2.74)

Finally, let us study the gravitino variation δεψ
A
µ . In a supersymmetric background

it gives rise to a Killing spinor equation for the supersymmetry parameter εA,

〈∇µε
A〉 =

igG√
6
〈SAB〉γµεB . (2.75)
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One can show [66] that Killing spinor equations for symplectic Majorana fermions in

AdS5 are always of the following form,

∇µε
A =

ia

2
UABγµεB , (2.76)

for a ∈ R a constant and UAB = vnσABn an SU(2)-matrix. Here v ∈ S2 is a unit vector.

Thus the vanishing of the gravitino variation in the backgrounds implies

〈SAB〉εB = λUABεB , (2.77)

where λ ∈ R is related to the cosmological constant Λ by λ = 1
2

√
|Λ|. Comparing with

(2.63), we find that

〈µn〉 = 〈hIµnI 〉 = λvn . (2.78)

Note that the case λ = 0 corresponds to Minkowski solutions and thus we assume λ 6= 0

in the following.

To summarize, we have shown that a supersymmetric background has to satisfy the

following equations,
〈µn〉 = 〈hIµnI 〉 = λvn ,

〈∂iµn〉 = 〈hIiµnI 〉 = 0 ,

〈Ku〉 = 〈hIkuI 〉 = 0 ,

〈Ξi〉 = 〈hIξiI〉 = 0 .

(2.79)

Note that due to (2.15) and (2.16) we must have 〈hI〉 6= 0 for some I and 〈hIi 〉 6= 0 for

every i and some I. In particular, this can also hold for 〈φi〉 = 0, i.e. at the origin of

the scalar field space. If we insert the equations (2.79) into the definition of the scalar

potential (2.65), we find that 〈V 〉 < 0 contributes as negative cosmological constant and

thus the backgrounds we study are indeed AdS.

Moment map conditions

Let us try to obtain a deeper understanding of the conditions for supersymmetric AdS

backgrounds we derived. To begin with, we combine the first two equations of (2.79) as

〈
(
hI

hIi

)
µnI 〉 =

(
λvn

0

)
. (2.80)

Let us enlarge these equations to the tensor multiplet indices by introducing µn
Ĩ

where

we keep in mind that µnN ≡ 0. Then we use the fact that the matrix (hĨ , hĨi ) is invertible

in special real geometry (2.22) and multiply (2.80) with (hĨ , hĨi )
−1 to obtain a solution

for both equations, given by

〈µn
Ĩ
〉 = λvn〈hĨ〉 . (2.81)

This implies that the moment maps for all Ĩ point in the same direction in SU(2)-space.

In particular, using the SU(2)R-symmetry we can rotate the vector v such that vn = δ3n
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points into the z-direction. Thus only 〈µI〉 := 〈µ3
I〉 6= 0 for all I in the above equation.

Moreover, since by definition µnN = 0, we find

〈µI〉 = λ〈hI〉 , 〈hN〉 = 0 . (2.82)

Because the hN corresponding to the tensor multiplets have to vanish in the background,

the equations (2.19) simplify to

〈hIhI〉 = 1 , 〈hIhIi 〉 = 0 . (2.83)

Moreover, due to the explicit form of the moment maps in (2.82), the equivariance

condition (2.52) in the AdS background translates to

fKIJ〈µK〉 = 1
2
〈ω3

uvk
u
I k

v
J〉 . (2.84)

Since (2.15) must hold in the vacuum, 〈hI〉 6= 0 for some I and thus there are always

nonzero moment maps present in the supersymmetric background due to (2.82). This

implies that part of the R-symmetry is gauged, which can be seen from the covariant

derivatives of the fermions as they always contain a term of the form AIµ〈µ3
I〉 [58]. More

precisely, this combination gauges a U(1)R subgroup of the global SU(2)R-symmetry.

If the SU(2)R is generated by the Pauli matrices σn and we choose vn = δ3n as above,

then the gauged U(1)R ⊂ SU(2)R is the one generated by σ3. Furthermore, from (2.82)

we find AIµ〈µ3
I〉 = λAIµ〈hI〉 which can be identified with the graviphoton [64].

Spontaneous gauge symmetry breaking

We now focus on the last two equations characterizing the AdS vacuum (2.79). Let us

first prove that the third equation 〈hIkuI 〉 = 0 implies the fourth 〈hIξiI〉 = 0. This can

be done by expressing 〈ξiI〉 in terms of 〈kuI 〉 via the modified equivariance condition of

the vacuum (2.84). Observe that the background value of the Killing vectors on the

projective special real manifold is given by (2.39)

〈ξiI〉 = −
√

3
2
〈tK̃
IJ̃
hJ̃ihK̃〉

= −
√

3
2
〈fKIJhJihK + tNIJh

JihN〉

= −
√

3
2
〈fKIJhJihK〉 ,

(2.85)

where we used (2.34) and (2.82). Inserting (2.82), (2.84) into (2.85), one indeed computes

〈ξiI〉 = −
√

3
2

1
2λ
〈hJi ω3

uvk
u
I k

v
J〉 . (2.86)

But then 〈hIkuI 〉 = 0 always implies

〈hIξiI〉 = −
√

3
2

1
2λ
〈hJi ω3

uvh
IkuI k

v
J〉 = 0 . (2.87)
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Moreover, this shows that 〈ξiI〉 6= 0 is only possible for 〈kuI 〉 6= 0. Note that the reverse

is not true in general as can be seen from (2.85). We are thus left with analyzing the

third condition in (2.79).

Before we proceed, let us briefly comment on the situation where there are no hy-

permultiplets in the spectrum (nH = 0). In this case there is no quaternionic Kähler

manifold and thus also no Killing vectors, i.e. kuI ≡ 0. Then the third condition of (2.79)

is automatically satisfied without restricting the hI . However, we discussed in Section

(2.1) that there can be non-trivial solutions for the moment maps µnI given by constant

FI-terms. Comparing the possible FI-terms (2.59) and (2.61) with (2.82), we realize

that only Abelian FI-terms are allowed in a supersymmetric AdS background. Thus

for theories without hypermultiplets, the possible gauge groups in the vacuum are those

with only Abelian factors.

Now fix nH 6= 0 and let us analyze the third equation 〈hIkuI 〉 = 0 from (2.79). This

equation has two possible solutions:

1) 〈kuI 〉 = 0 , for all I

2) 〈kuI 〉 6= 0 , for some I with 〈hI〉 chosen accordingly.
(2.88)

We already observed in (2.57) and (2.58) that the covariant derivatives of the scalar fields

introduce a mass term for the gauge fields AIµ if the vacuum value of the corresponding

Killing vector is nonzero. This implies that the gauge group is unbroken in case 1), while

it is broken by the non-vanishing Killing vectors 〈kuI 〉 in case 2). To be more precise,

using the relation (2.86) between 〈ξI〉 and 〈kI〉, we can compute the mass matrix MIJ

of the gauge fields to be

MIJ = 〈Guvk
u
I k

v
J〉+ 〈gijξiIξ

j
J〉 = 〈Kuvk

u
I k

v
J〉 . (2.89)

Here Kuv is an invertible matrix which is defined in terms of the metric Guv and the

symmetric operator S3
uv (2.54). Explicitly, we find

Kuv = 〈5
8
Guv − 6

8λ
S3
uv〉 . (2.90)

Since 〈hIkuI 〉 = 0 in the background, the mass matrix MIJ has a zero eigenvector given

by 〈hI〉. Thus the graviphoton 〈hI〉AµI always remains massless in a supersymmetric

AdS vacuum.

Moreover, the U(1)R-symmetry hIkI gauged by the graviphoton commutes with every

other symmetry 〈kJ〉 = 0 of the vacuum. This can be seen by computing

〈[hIkI , kJ ]u〉 = 〈hI(kvI∂vkuJ − kvJ∂vkuI )〉 = −〈hIkvJ∂vkuI 〉 = 0 , (2.91)

where we used (2.79) in the second step. Thus the unbroken gauge group of an AdS

background is always of the form U(1)R × H for some subgroup H ⊂ G. Note that a

priori U(1)R ⊂ G can be a subgroup even though G 6= U(1)R × H. However, gauge

groups of this form always have to be broken in the background, G→ U(1)R ×H.
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Let us now analyze the possible gauge groups in case 1) where 〈kI〉 = 0 for all I.

No spontaneous gauge symmetry breaking appears in this case, since the mass matrix

(2.89) is trivial. Moreover, the equivariance condition (2.52) then implies

fKIJ〈µK〉 = 0 . (2.92)

This requires the adjoint representation of the Lie algebra g to admit a non-trivial

eigenvector with eigenvalue 0. Thus the center of G must be non-trivial and continuous

[67]. This holds for all gauge groups with an Abelian factor, however, semisimple gauge

groups have to be broken in the vacuum and are thus not allowed in case 1). Note that

for example SU(2) as a gauge group would have to be broken in case 1), but gauge

groups of the form U(1)× SU(2) would still be possible.

The situation is quite different in case 2), as spontaneous gauge symmetry breaking

appears due to nonzero background values for some of the isometries kI . First of all,

assume that only Abelian factors in G are broken with 〈kuI 〉 6= 0. Then fKIJ = 0 for these

factors and (2.39) implies 〈ξiI〉 = 0. Thus the spontaneous symmetry breaking originates

from the hypermultiplet sector and the associated Goldstone bosons necessarily reside

in these hypermultiplets. A vector multiplet corresponding to a broken Abelian factor

in the gauge group then becomes massive by “eating” an entire hypermultiplet. The

resulting multiplet is a “long” massive vector multiplet that contains the massive vector

field, four gauginos and four scalars.

For non-Abelian factors of G, we can also consider spontaneous symmetry breaking.

In this case the Killing vectors from the vector multiplets (2.39) can have nonzero vacuum

values 〈ξiI〉 6= 0, but 〈ξiI〉 = 0 is also still possible. Since the ξiI are functions of the kuI due

to (2.86), the spontaneous symmetry breaking is essentially unchanged to the Abelian

case. Again, entire hypermultiplets are eaten and the massive vector fields reside in long

vector multiplets.

Before we summarize this section, let us remark that the number of broken genera-

tors of the gauge group G is determined by the number of linearly independent Killing

vectors 〈kI〉 in the AdS background. In particular, this coincides with the number nG
of Goldstone bosons, because the 〈kuI 〉 form a basis in the space G of Goldstone bosons.

We have G = spanR{〈kI〉} with dim G = rk 〈kuI 〉 = nG as outlined above.

Let us conclude with a short summary of the conditions for maximally supersymmet-

ric AdS backgrounds in five-dimensional gauged N = 2 supergravity. We have shown

that these conditions can be formulated in terms of moment maps and Killing vectors

on the scalar target spaces as

〈µI〉 = λ〈hI〉 , 〈hM〉 = 0 , 〈hIkI〉 = 〈hIξI〉 = 0 . (2.93)

Note that the tensor multiplets enter the final result only implicitly since the hI and

their derivatives are functions of all scalars φi in vector and tensor multiplets.

The first equation shows that in a supersymmetric AdS background a U(1)R-symmetry

is always gauged by the graviphoton while the last equation implies that the unbroken
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gauge group of the vacuum is of the form U(1)R × H. Here H denotes the unbro-

ken part of the gauge group other than U(1)R, which is generated by the vanishing

Killing vectors 〈kI〉 = 0 other than 〈hIkI〉. This reproduces the known result from [33]

that the U(1)R-symmetry has to be unbroken and gauged in a maximally supersym-

metric AdS5 background. In the dual four-dimensional SCFT this U(1)R is given by

a-maximization [68–70]. Furthermore, we described the Higgs mechanism in the case of

spontaneous gauge symmetry breaking by nonzero background values of Killing vectors

kI . The associated gauge fields become massive by “eating” an entire hypermultiplet and

henceforth reside in long vector multiplets. Finally, we discussed the space of Goldstone

bosons and showed that G = spanR{〈kI〉}.
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Chapter 3

Moduli spaces of AdS vacua

The next step in our analysis of AdS5 vacua in gauged N = 2 supergravity will be to

determine their supersymmetric moduli spaces. As previously explained, the intuition

from the AdS/CFT correspondence tells us that these spaces should be Kähler manifolds

[35]. We explicitly verify this by studying the variations of the AdS conditions (2.79)

with respect to the scalar fields and show that the moduli space is given as a subset of

the hypermultiplet scalars. This subset admits a natural Kähler structure coming from

the quaternionic Kähler structure of the ambient space.

Let us begin again by sketching the general idea in an arbitrary supergravity theory

containing scalars Φ and fermions Ψ. In Chapter 2 we studied the conditions 〈F (Φ)〉 = 0

for a vacuum to be AdS. Now we are interested in the deformation space of these vacua.

To this end, we expand the scalar fields

Φ→ 〈Φ〉+ δΦ , (3.1)

where δΦ denotes a small variation around the vacuum point 〈Φ〉. The variation of the

functions F (Φ) then reads

δF (Φ) =
∂F

∂Φ
δΦ . (3.2)

Hence, the deformation spaceD of an AdS5 vacuum is given by all δΦ such that 〈δF 〉 = 0,

i.e. all variations of the scalar fields that leave the conditions 〈F (Φ)〉 = 0 invariant.1 That

is, we are looking for directions in the scalar field space that preserve supersymmetry.2

However, not all of these deformations correspond to physical moduli. If the gauge

group is spontaneously broken, i.e. if there exist Killing vectors KI on the target space T

that acquire a non-vanishing background value 〈KI〉 6= 0 for some I, then we always have

CI〈KI〉 ∈ D for some constants CI ∈ R. The resulting deformation then only transforms

1Because we are only considering the first order variations of the scalar fields, the resulting conditions on the

moduli are only necessary but not sufficient conditions. We will comment on this in more detail later.
2These deformations are really only tangent vectors to the AdS vacuum point in the scalar manifold. However,

we can locally identify them with coordinate directions in the manifold.

25
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the vacuum via an isometry of the scalar field space and hence is considered unphysical.

Such deformations correspond to the Goldstone bosons of the vacuum and should not

be counted as moduli of the AdS vacuum, i.e. we are only interested in the deformation

space D up to isometries of T . If we denote by G the space of Goldstone bosons CI〈KI〉,
then the supersymmetric moduli space is given by the quotient M = D/G.

Variation of the AdS vacuum conditions

Let us now compute the moduli spaceM of the maximally supersymmetric AdS5 vacua

(2.79) determined in the previous chapter. This discussion is largely based on reference

[34]. To begin with, we expand the scalar fields in vector, tensor and hypermultiplets

around the AdS vacuum,

φi → 〈φi〉+ δφi , qu → 〈qu〉+ δqu . (3.3)

We then vary the first condition in (2.79) to find

〈δ(hIµnI )〉 = 〈∂ihIµnI 〉δφi + 〈hI∇uµ
n
I 〉δqu = −1

2
〈ωnuvhIkvI 〉δqu ≡ 0 , (3.4)

where we used (2.47) and (2.79). No conditions are imposed on the scalar field defor-

mations since this variation vanishes identically in a supersymmetric background.

The variation of the second equation in (2.79) is given by

〈δ(hIiµnI )〉 = 〈Djh
I
iµ

n
I 〉δφj + 〈hIi∇uµ

n
I 〉 δqu

= −
√

2
3
〈µnI (hIgij + hIkTijk)〉δφj − 1

2
〈hIiωnuvkvI 〉δqu

= −
√

2
3
λδn3δφi − 1

2
〈hIiωnuvkvI 〉δqu = 0 ,

(3.5)

where we used (2.24) and (2.47) in the second step, while in the third we used the

vacuum conditions (2.79). For n = 1, 2 this simplifies to

〈hIiω1,2
uv k

v
I 〉δqu = 0 . (3.6)

A priori, this appears to restrict 2nG = 2 · rk 〈kuI 〉 of the deformations δqu in the hy-

permultiplets due to the fact that the two-forms ω1,2 are non-degenerate. However, we

show later that the moduli space has a complex structure given by 1
λ
µ3J

3 that maps

the two equations (3.6) into each other. Thus only nG independent deformations are

fixed by (3.6). For n = 3, we can solve (3.5) for the deformations in the vector/tensor

multiplet scalars. Thus the δφi can always be given in terms of the variations δqu in the

hypermultiplets as

δφi = −
√

3
2

1
2λ
〈hIiω3

uvk
v
I 〉δqu . (3.7)

With this we have shown that all deformations δφi are fixed and the space of deformations

is spanned by scalar fields in the hypermultiplets. Note the similarity to the relation
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between the Killing vectors ξI and kI given in (2.86). This is consistent with the fact

that, as discussed in Section 2.2, also all Goldstone bosons reside in hypermultiplets.

Because we have shown above that 〈hIkI〉 = 0 already implies 〈hIξI〉 = 0, all we have

left to do is to vary the third equation in (2.79). We find

〈δ(hIkuI )〉 = 〈∂ihIkuI 〉δφi + 〈hI∇vkuI〉δqv = 0 . (3.8)

Substituting δφi with (3.7), using (2.23) and the background conditions (2.79), we can

formulate this condition solely as an equation for the hypermultiplet scalars,(
1

2λ
〈kIuω3

vwk
w
I 〉+ 〈hI∇vk

u
I 〉
)
δqv = 0 . (3.9)

We have thus shown that the deformation space D is characterized by the two equations

(3.6) and (3.9) that restrict the variations δqu. For a generic supergravity we will not

solve these equations here in general. However, we will discuss some examples coming

from type IIB supergravity in Chapter 4. In these cases we can explicitly compute the

moduli space of AdS vacua. For now, we will show that the conditions determining D
alone suffice to prove that the supersymmetric moduli space M has a Kähler structure

given by the restriction of the section 1
λ
µ3J

3.3

Kähler structure of the moduli space

Let us begin by showing that the Goldstone bosons cI〈kuI 〉, cI ∈ R, indeed satisfy the

conditions (3.6) and (3.9). We immediately see that (3.6) is satisfied due to

cI〈hJi ω1,2
uv k

u
I k

v
J〉 = 2cI〈hJi fKIJµ

1,2
K 〉 = 0 , (3.10)

where we used the equivariance condition (2.84) and the fact that 〈µ1,2
I 〉 = 0 due to

(2.82). Turning to (3.9), we first note that in the AdS background

〈hI(∇vk
u
I )kvJ〉 = 〈hI(∂vkuI )kvJ − hI(∂vkuJ)kvI 〉 = −〈hI [kI , kJ ]u〉 = 〈fKIJhIkuK〉 , (3.11)

where we used (2.79) in the first step, added a term which vanishes in the vacuum and

then used (2.43) in the second step. Additionally, we have

〈fKIJhIkuK〉 = 〈fKIJhKkuI〉 . (3.12)

To see this, using (2.23) and 〈hIkuI 〉 = 0 we find

〈fKIJhIkuK〉 = 〈fKIJhIkuLaKL〉 = 〈fKIJhIkuLhiKhiL〉 . (3.13)

Now note that evaluating (2.42) in the vacuum gives

〈fKIJhJhiK〉 = 〈fKIJhiJhK〉 . (3.14)

3The fact that the complex structure will be given by 1
λ
µ3J

3 relates to the choice of direction in SU(2)-space

for the moment maps µnI that we made in (2.82). For an arbitrary direction v ∈ S2, the complex structure

would be given by the linear combination vnJ
n.
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Inserting (3.14) into (3.13) and using again (2.23), we obtain

〈fKIJhIkuK〉 = 〈fKIJhiIkuLhKhiL〉 = 〈fKIJhKkuLδIL〉 = 〈fKIJhKkuI〉 , (3.15)

which proves the claim (3.12). Turning back to (3.9), we insert δqu = cI〈kuI 〉 and use

(2.84) and (3.11) to find

1
2λ
cI〈kuJω3

vwk
w
J k

v
I 〉+ cI〈hJ(∇vk

u
J)kvI 〉 = 1

λ
cI〈kuJfKIJµK〉+ cI〈fKIJhJkuK〉 . (3.16)

Since in the background 〈µI〉 = λ〈hI〉, applying (3.12) then shows

1
λ
cI〈kuJfKIJµK〉+ cI〈fKIJhJkuK〉 = (fKJI + fKIJ)cI〈hJkuK〉 = 0 . (3.17)

In conclusion, we have shown that the Goldstone directions cI〈kuI 〉 satisfy the conditions

(3.6) and (3.9) on the deformation space of the AdS vacuum and hence G ⊂ D.

Let us now consider the moduli space M = D/G and prove that it admits a natural

Kähler structure descending from the quaternionic Kähler structure of the ambient space.

To this end, we first prove that the almost complex structure J3 ∈ Q combined with the

dressed moment map µ3 from (2.62) restricts to an almost complex structure J := 1
λ
µ3J3

onM.4 We immediately find that J 2 = −Id. To prove that J is well-defined onM, we

will show that the equation (3.6) and (3.9) are J -invariant. Let us begin by examining

the first term in equation (3.9) and define

Bu
v := kuIω

3
vwk

wI . (3.18)

Considering this as a linear map on D, we find

rk 〈Bu
v 〉 ≤ rk 〈kuI 〉 = nG , (3.19)

since ω3 is non-degenerate and thus has full rank. In other words, the image of 〈Bu
v 〉 is

at most nG-dimensional. However, we already saw in (3.16) that 〈Bu
v 〉 is non-vanishing

on Killing vectors 〈kvJ〉,
〈Bu

v k
v
I 〉 = 2〈kuJfKIJµK〉 6= 0 , (3.20)

and thus the Goldstone bosons have a non-trivial image under 〈Bu
v 〉. In particular, this

proves rk 〈Bu
v 〉 = nG because the rank of 〈Bu

v 〉 is bounded by (3.19). The rank-nullity

Theorem from linear algebra,

dim D = rk 〈Bu
v 〉+ dim ker 〈Bu

v 〉 , (3.21)

then implies that all physical moduli must lie in the kernel of 〈Bu
v 〉, i.e. 〈Bu

v 〉δqv = 0 for

all δqu ∈M/G. In conclusion, 〈Bu
v 〉|M = 0 and (3.9) restricted to M reads

〈hI∇vk
u
I 〉|M = 0 . (3.22)

4Due to our choice vn = δ3n in (2.82), we could just use the restriction of J3 as an almost complex structure

onM. However, in a setting for general vn, the definition for the almost complex structure onM is J := 1
λ
µnJn

and thus we use 1
λ
µ3J3 here.
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Since only 〈µ3
I〉 6= 0 in the vacuum, the covariant derivative of the killing vectors kI

commutes with J3 in the background due to (2.55), i.e.

〈∇uk
I
w(Jn)wv − (Jn)wu∇vk

I
w〉 = 2εnpq〈ωpuvµIq〉 = 0 . (3.23)

Thus the equation (3.9) is J3-invariant on M. For the two equations (3.6) the J3-

invariance follows from the fact that J3 interchanges both equations. This can be seen

by substituting δq′u = (J3)uvδq
v and using that J1J2 = J3 on a quaternionic Kähler

manifold. In conclusion, we have shown that the equations (3.6) and (3.9) defining the

moduli space M are invariant under the action of J . Thus we have shown that J
defines an almost complex structure on the supersymmetric moduli space M.

In what follows we want to use Theorem 1.12 of [71]:

Theorem 1 An almost Hermitian submanifold (M, Ǧ,J ) of a quaternionic Kähler

manifold (M,G,Q) is Kähler if and only if it is totally complex, i.e. if there exists a

section I of Q that anticommutes with J and satisfies

I(TpM) ⊥ TpM ∀p ∈M . (3.24)

In particular, the condition (3.24) can be written for all tangent vectors V,W ∈ TpM as

ωI(X, Y ) = Ǧ(X, IY ) = 0 , (3.25)

where ωI = Ǧ ◦ I is the fundamental two-form associated to I. Thus (3.24) is satisfied

if and only if ωI |M vanishes.

Now let us prove that the supersymmetric moduli space M of AdS vacua actually

is totally complex and hence Kähler. To do this, we want to apply Theorem 1 to the

case of I = J1. Using (2.53) and (2.54), we find that in the AdS vacuum (2.93) 〈ω3
uv〉 is

given by

〈ω3
uv〉 = 2

λ
〈hI∇ukIv − Luv〉 . (3.26)

Since 〈ω1
uv〉 = −〈ω3

uw(J2)wv 〉, we can multiply (3.26) with −(J2)wv from the right and

obtain

〈ω1
uv〉 = 2

λ
〈S2

uv − hI∇ukwI(J
2)wv 〉 . (3.27)

Here we used the definitions (2.54). The second term in this expression for 〈ω1
uv〉 vanishes

on M due to (3.22),

〈ω1
uv〉|M = 2

λ
〈S2

uv〉|M . (3.28)

However, S2
uv = Luw(J2)wv is symmetric in u, v while ω1

uv is antisymmetric. Thus we must

have 〈ω1
uv〉|M = 〈S2

uv〉|M = 0 on the moduli space. By (3.25) this implies that (M, Ǧ,J )

is totally complex for Ǧ := G|M. Thus we can apply Theorem 1 and find that J is a
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Kähler structure5 onM and (M, Ǧ,J ) is a Kähler subspace of the hypermultiplet target

space MH .6

It was also proved in [71] that a Kähler submanifold can have at most half the

dimension of the ambient quaternionic Kähler manifold, i.e. dim(M) ≤ 2nH .7 Note

that in the case of an unbroken gauge group we have G = {∅} and thus D =M. In this

case the moduli space can have the maximal possible dimension in the following sense:

The dimension of M is restricted by the dimension of the ambient quaternionic Kähler

manifold to be smaller or equal to 2nH . A spontaneous symmetry breaking then gives

rise to Goldstone bosons which additionally have to be removed from the moduli space,

i.e. lowering the dimension of M even further. Thus for a given dimension 4nH of the

quaternionic Kähler target space, the dimension of the moduli space can be at most 2nH
which can only occur in the case of an unbroken gauge group. Thus the dimension of the

moduli space is least restricted for an unbroken gauge group and in this sense maximal.

If the gauge group is spontaneously broken then additional scalars are fixed by (3.6).

Since M is J3-invariant, every δqu ∈ M can be written as δqu = (J3)uvδq
′v for some

δq′u ∈M. Combined with the fact that J1J2 = J3 this implies that the two conditions

in (3.6) are equivalent on M. Furthermore, we have rk 〈hIiω1
uvk

v
I 〉 = rk 〈kIu〉 = nG and

thus nG scalars are fixed by (3.6). In conclusion, we have shown that

dim(M) = dim(D)− dim(G) ≤ (2nH − nG)− nG , (3.30)

so the moduli space has at most real dimension 2nH − 2nG.

Sufficient conditions for the moduli space

In this chapter we computed the variations of the AdS vacuum conditions (2.79) to

first order in the scalar fields. However, this only gives the necessary conditions on the

supersymmetric moduli space of AdS5 vacua. For instance, consider schematically the

second variation of a vacuum condition 〈F (Φ)〉 = 0,

δ2F =
∂2F

∂Φ∂Φ′
δΦδΦ′ . (3.31)

Then the condition 〈δ2F 〉 = 0 can give rise to equations that are not automatically

satisfied by solutions to the first order equations and thus further restrict the moduli
5A different way to see that J defines a Kähler structure on M is to compute the variation of J under a

shift in the scalar fields. Considering for a moment the more general case J = 1
λ
µnJn, this gives

δJ vu = 1
λ
〈δ(hIµnI )(Jn)vu〉 = 0 (3.29)

where we used (3.4) in the second step. Inserting the vacuum conditions (2.93) into J = 1
λ
µnJn then leads us

back to our choice J = 1
λ
µ3J3 for the Kähler structure on M.

6As we have constructed the moduli space out of deformations around the AdS vacuum (2.93), we actually

prove that a subspace of the tangent space of MH at the vacuum point is a Kähler subspace up to first order in

the scalar fields. Since we can identify the a manifold locally with its tangent space, this holds for a neighborhood

of the vacuum point.
7Applying the same method as in d = 4, N = 2 this can be checked explicitly [28].
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space of the vacuum 〈F 〉 = 0. Let us briefly discuss this for the case of five-dimensional

AdS vacua in gauged N = 2 supergravity.

The vacuum conditions were given in terms of moment maps and Killing vectors in

(2.79). If we consider for the moment the case of supergravity coupled to only hyper-

multiplets, i.e. nV = nT = 0, then the special real manifold in (2.9) is trivial. The gauge

group is G = U(1) and unbroken in the vacuum, as we have shown in Chapter 2 that

an AdS vacuum always has an unbroken U(1)R-symmetry. Moreover, only one Killing

vector K = h0k0, one moment map µn = h0µn0 and one h = h0 exist on T . Due to (2.19),

we have h = 1 and in particular all ∂ih = 0 as there are no scalars φ in the theory. The

AdS vacuum conditions (2.93) reduce to

〈µn〉 = λvn , 〈Ku〉 = 0 . (3.32)

Furthermore, the condition (3.6) on the moduli space is trivial while (3.9) reduces to

〈δKu〉 = 〈∇vK
u〉δqv = 0 , (3.33)

which is simply the condition that K has to be covariantly constant on the moduli space.

The second variation is then just the second covariant derivative, i.e.

〈δ2Ku〉 = 〈∇w∇vK
u〉δqvδq′w . (3.34)

Since K is Killing, the second covariant derivative can be expressed in terms of the

Riemann tensor R to the metric G and the Killing vector K itself [61],

∇w∇vK
u = Ru

vwrK
r . (3.35)

Hence, the second variation is

〈δ2Ku〉 = 〈∇w∇vK
u〉δqvδq′w = 〈Ru

vwrK
r〉δqvδq′w ≡ 0 , (3.36)

where we used the vacuum condition (3.32). Similarly, we find

〈δ2µn〉 = −1
2
〈ωnuv∇wK

v〉δquδq′w ≡ 0 , (3.37)

where we used (3.33). Thus the second order variations impose no further restrictions

on the scalar field variations. Furthermore, due to (3.35) every consecutive variation

will only contain terms proportional to Ku or ∇vK
u and thus vanish identically. In

conclusion, we have shown that the condition 〈δKu〉 = 0 is necessary and sufficient

for the supersymmetric moduli space of the AdS vacuum given by (3.32). Thus our

computation of the moduli spaces extends to a globally well-defined Kähler submanifold

of the scalar target space.

This result is already known in the mathematics literature and was proven in [72]:
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Theorem 2 Let (MH , G,Q) be a quaternionic Kähler manifold endowed with an iso-

metric U(1)-action and corresponding moment map µ ∈ Γ(Q), i.e. µ = µnJn for Jn a

local basis of Q. Then every connected component of the fixed point set not contained in

µ−1(0) is a Kähler submanifold of MH\µ−1(0).

The Kähler structure provided by this theorem is µ/||µ|| for ||µ|| =
√
µnµn. Theo-

rem 2 can then be related to the AdS vacua (3.32) for supergravity coupled to nH-

hypermultiplets as follows: The notation 〈 〉 for the vacuum corresponds to evaluating

the respective quantities at a vacuum point p in the scalar field space T . Thus we can

rewrite the AdS background (3.32) as

µnp = λvn , Kp = 0 . (3.38)

Moreover, we can associate a section µ to the functions µn via µ = µnJn, see (2.49).

This section evaluated at the point p is then µp = λvnJn,p and we define the moduli

space of the AdS vacuum p as8

M := {p ∈MH | µp = λvnJn,p , Kp = 0} . (3.39)

We see immediately that M ⊂ MH\µ−1(0). The second equation in (3.38) then shows

that the Killing vector K has a zero at p. Therefore, p is fixed under the U(1)-action

generated by K. If we denote the set of fixed points in MH by MK , then the moduli

space is contained in MH\µ−1(0) ∩MK and we can apply Theorem 2 to prove that M
is a Kähler manifold.9

Now let us return to the general situation of AdS vacua (2.93) coupled to a number

of vector and tensor multiplets. For this case, we cannot simply generalize the computa-

tions presented above for the case of supergravity coupled only to hypermultiplets. For

example, we also have to take into account the variation of the vector fields ∂iµ
n that

could impose further restrictions on the deformations of the scalar fields. On the other

hand, one would expect from computations in the dual gauge theory that the moduli

space is a globally well-defined Kähler manifold. It would be interesting to consider this

problem in more detail in the future.

We conclude this section with a short summary of our results. In a first step, we com-

puted the space of variations in the scalar fields that leave the AdS vacuum conditions

(2.79) invariant. We then explained that the moduli space is given by these variations

after removing the unphysical variations corresponding to the Goldstone bosons in the

case of a broken gauge group. In particular, we proved that the moduli space admits a

Kähler structure that can naturally be obtained from the quaternionic Kähler structure

8For the special case vn = δ3n we considered throughout this thesis, the value of the section µ in the vacuum

(3.32) is µp = λJ3,p.
9Note that the proof of Theorem 2 relies on the fact that the vanishing of the first covariant derivative ∇K

implies that all other derivatives vanish as well.
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of the hypermultiplet target space. Finally, we discussed how the variations of the vac-

uum conditions to first order are sufficient to determine the moduli space to all orders

in the case of supergravity coupled to only hypermultiplets.
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Chapter 4

AdS vacua from type IIB

supergravity on T 1,1

Much of our motivation to study supersymmetric AdS5 backgrounds in the previous

sections comes from the AdS/CFT correspondence [6]. However, the AdS/CFT corre-

spondence relates the four-dimensional gauge theory on the boundary of AdS5 only to

the full ten-dimensional solution of type IIB supergravity instead of just its AdS factor.

Since we have shown that the moduli space of AdS5 vacua is Kähler and thus has the

same property as the conformal manifold of N = 1 SCFTs in four dimensions [19], it

would be interesting to study whether there are additional moduli in the ten-dimensional

solution. In particular, one wonders whether the compact manifold has an impact on

the moduli space that cannot be detected in the five-dimensional setting.

The moduli spaces of ten-dimensional solutions of type IIB supergravity containing

an AdS factor have been computed in the framework of exceptional generalized geometry

in [23]. Moreover, explicit examples were provided and the moduli of certain Sasaki-

Einstein compactifications have been identified [25]. Now the idea of this chapter is to

consider consistent truncations of type IIB supergravity on Sasaki-Einstein manifolds

that provide a five-dimensional N = 2 truncation. Then we can apply the results of

the previous section to find AdS vacua and their moduli spaces in these truncations and

compare them with the known results in ten dimensions. In this thesis, we will focus on

the type IIB background of the form

AdS5 × T 1,1 , (4.1)

where T 1,1 = SU(2)×SU(2)
U(1)

is a Sasaki-Einstein manifold (see Appendix A). In particular,

the moduli space of this background was computed in [10, 25, 46, 47] and found to be

complex five-dimensional.

Before we proceed, let us briefly discuss the consistent truncations of type IIB su-

pergravity on Sasaki-Einstein manifolds in general and T 1,1 in particular.1 In contrast

1We provide a more detailed introduction in Appendix C.

35
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to the case of compactifications on Calabi-Yau manifolds, Sasaki-Einstein manifolds

usually have non-trivial isometry groups and thus consistent truncations on them are

more difficult to find. References [36–43] constructed consistent truncations on five-

dimensional Sasaki-Einstein manifolds SE5 by expanding the type IIB fields in terms

of the forms defining the Sasaki-Einstein structure, i.e. the contact form η, its deriva-

tive dη and a three-form Ω related to the holomorphic (4, 0)-form on the Calabi-Yau

cone over SE5. The resulting five-dimensional theory was then shown to be an N = 4

supergravity coupled to two vector multiplets. However, these truncations do not take

non-trivial cohomology classes of the Sasaki-Einstein manifold into account. Hence, ref-

erences [43,48,49] generalized the known Sasaki-Einstein truncations in the case of type

IIB supergravity on T 1,1 to include the non-trivial second and third cohomology groups.

Since T 1,1 ∼= S2 × S3, there exists a closed non-trivial two form Y ∈ H2(T 1,1,R) in the

second de-Rham cohomology. Adding this form to the truncation ansatz, i.e. expanding

the type IIB fields in the set (η, dη,Ω,Y) then gives rise to a consistent truncation of

type IIB supergravity on T 1,1. The resulting five-dimensional theory can be shown to

be N = 4 supergravity coupled to three vector multiplets. Since the additional N = 4

vector multiplet appears in the spectrum do to the fact that the second Betti number

b2(T 1,1) = 1, it is referred to as the N = 4 Betti-vector multiplet.

Because we are interested in studying AdS vacua preserving N = 2 supersymmetry,

we want to consider the consistent N = 2 subtruncations that were studied in [51]. To

begin with, let us discuss the supersymmetry breaking from N = 4 to N = 2 in five

dimensions. The N = 4 gravity multiplet decomposes into an N = 2 gravity multiplet,

an N = 2 gravitino multiplet and an N = 2 vector multiplet. Moreover, each N = 4

vector multiplet decomposes into anN = 2 vector multiplet and a hypermultiplet, giving

in total four vector multiplets and three hypermultiplets for the truncations on T 1,1

discussed in Appendix C. In particular, the N = 4 Betti-vector multiplet decomposes

into the N = 2 Betti-vector multiplet and the Betti-hyper multiplet. The truncation to

N = 2 supergravity is then done by removing the massive N = 2 gravitino multiplet2

from the spectrum [48]. However, by examining the resulting equations of motion one

finds that this alone would not lead to a consistent truncation. In fact, one can show [48]

that for the truncation to be consistent, one additionally has to either truncate the

N = 2 Betti-vector multiplet or the Betti-hypermultiplet. Keeping the N = 2 Betti-

vector multiplet in this setting leads to the Betti-vector truncation with field content

given by

gravity multiplet : {gµν , A0
µ}

2 vector multiplets : {A1
µ, A

2
µ, u2, u3}

2 hypermultiplets : {u1, σ, τ, τ̄ , b
a, b̄a} .

(4.2)

2A massive semi-long gravitino multiplet in five dimensions consists of two gravitini, two vector fields, two

complex tensor fields and four spin-1/2 fermions [73]. For more details on the truncation from N = 4 to N = 2

supersymmetry in Sasaki-Einstein truncations, see [37,48].
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On the other hand, keeping the Betti-hypermultiplet leads to the Betti-hyper truncation

with field content

gravity multiplet : {gµν , A0
µ}

1 vector multiplet : {A1
µ + A2

µ, u3}
2 hypermultiplets : {u1, σ, τ, τ̄ , b

a, b̄a, ea, v, v̄} .
(4.3)

This truncation can also be obtained from the N = 4 truncation on T 1,1 by keeping only

those fields that are invariant under the symmetry I = I1 · I2, where [49,51]

I1 : (ĝ, φ̂, B̂2, Ĉ0, Ĉ2, Ĉ4)→ (ĝ, φ̂,−B̂2, Ĉ0,−Ĉ2, Ĉ4) ,

I2 : (θ, ϕ, ω, ν)→ (ω, ν, θ, ϕ) ,
(4.4)

for θ, ϕ, ω, and ν coordinates on T 1,1 as introduced in Appendix A and I2 acts on the

type IIB fields. The I-symmetry can be related [49] to a Z2-symmetry that appears in

the Klebanov-Strassler gauge theories [74].

Additionally, reference [51] studies a truncation that arises by truncating type IIB su-

pergravity to the NS-sector before following the consistent truncation procedure outlined

in Appendix C. The resulting truncation is called NS-sector truncation and contains two

vector multiplets and two hypermultiplets with field content

gravity multiplet : {gµν , A0
µ}

2 vector multiplets : {b2
1, b

2
2, φ+ 4u1, u3}

2 hypermultiplets : {φ− 4u1, u2, c
2, e2, b2, b̄2, v, v̄} .

(4.5)

Note that even though the number of multiplets is the same, this truncation is different

from the Betti-vector truncation. However, the NS-sector truncation does not admit

supersymmetric AdS vacua. This is intuitively clear from the fact that it does not contain

the Axion-Dilaton, which is always a modulus of such backgrounds [25]. Nonetheless,

we will explicitly prove this in Appendix D by using the results from Chapter 2.

These N = 2 truncations of type IIB supergravity on T 1,1 were extensively studied

in [51] and the data on isometries of the scalar target spaces we used in Chapter 2 to

determine the conditions on AdS vacua in a given supergravity were explicitly computed.

In the rest of this chapter, we will use this to compute the conditions on AdS vacua and

their moduli spaces in the Betti-vector truncation and the Betti-hyper truncation.

4.1 The Betti-vector truncation

We first discuss the Betti-vector truncation, i.e. the case where the Betti-hypermultiplet

is truncated out of the spectrum. Up to minor changes, this section is taken from [52].
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Truncation data

The Betti-vector truncation leads to an N = 2 theory that contains gravity coupled to

two vector multiplets and two hypermultiplets [48]. In total, 10 scalars

{u1, u2, u3, σ, τ, τ̄ , b
a, b̄a} , (4.6)

from the N = 4 truncation (C.14) are kept. Here u1,2,3 and σ are real while all others

are complex. The vector in the gravity multiplet is A0
µ while the other vectors are given

by A1,2
µ with associated one-forms AI , I = 0, 1, 2. The scalars {u2, u3} of the vector

multiplets parametrize the projective special real manifold [51]

MBV
V = SO(1, 1)× SO(1, 1) . (4.7)

The coordinates in (2.10) of the ambient space H are given by [51]

h0 = e4u3 h1 = e2u2−2u3 , h2 = e−2u2−2u3 , (4.8)

with C012 = 1
6

and all others zero.3 Lowering the index I according to (2.11) one finds

h0 = 1
3
e−4u3 , h1 = 1

3
e−2u2+2u3 , h2 = 1

3
e2u2+2u3 . (4.9)

The hypermultiplet scalars {u1, σ, τ, τ̄ , b
a, b̄a} for a = 1, 2 can be shown to span the

quaternionic Kähler manifold [48]

MBV
H =

SO(4, 2)

SO(4)× SO(2)
. (4.10)

In particular, τ = C0 + ie−φ is the reduction of the Axion-Dilaton of type IIB supergrav-

ity. The metric on MBV
H can be read off from the kinetic terms of the hypermultiplets

in the Lagrangian [51],

LBVHyper =− 4e−4u1+φMabDb
a ∧ ∗Db̄b − 8du1 ∧ ∗du1

− 1
2
e−8u1Σ ∧ ∗Σ− 1

2
dφ ∧ ∗dφ− 1

2
e2φdC0 ∧ ∗dC0 ,

(4.11)

where
Dba = dba − 3ibaA0 ,

Σ = Dσ + 2εab[b
aDb̄b + b̄aDbb] ,

Dσ = dσ − qA0 − 2A1 − 2A2 ,

(4.12)

for a constant q ∈ R+ and the torus metric

Mab = eφ
(
a2 + e−2φ −a
−a 1

)
= 1

Im τ

(
|τ |2 −Re τ

−Re τ 1

)
. (4.13)

3Note that we use conventions for the special real geometry which are different from [51], see [58] for details.
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The gauge group GBV is realized on the hypermultiplet scalar manifold via the Killing

vectors [51]
k0 = −3iba∂a + 3ib̄a∂̄a − q∂σ ,
k1 = 2∂σ ,

k2 = 2∂σ ,

(4.14)

where we defined ∂a := ∂ba and ∂̄a := ∂b̄a . The associated moment maps [51] are4

~µ0 = 6e−2u1fab
a~e1 − 6e−2u1 f̄ab̄

a~e2 + (1
2
e−4u1eZ − 3)~e3 ,

~µ1 = −e−4u1~e3 ,

~µ2 = −e−4u1~e3 ,

(4.15)

where eZ = q− 6iεab(b
ab̄b− b̄abb) and fa is defined via fab

a = 1√
Im τ

(b2− τb1). From this

we can immediately compute the Lie algebra gBV spanned by the kI . Since k1 = k2, we

only have to compute the respective Lie brackets with k0. We find

[k0, k1] = [k0, k2] = 0 , (4.16)

since the vectors {∂a, ∂̄a, ∂σ} are linearly independent and q is a constant. Thus by

observing that the Killing vectors (4.14) have compact and non-compact parts, the

gauge group is GBV = U(1) × U(1) × R. However, we can see from (4.14) that the

scalars are only charged under an U(1) × R subgroup of GBV with associated gauge

fields A0 and qA0 − 2A1 − 2A2.

AdS vacua and their moduli space

To find the AdS vacua of the five-dimensional theory coming from the Betti-vector

truncation we have to solve the equations (2.93).5 For the third equation we use (4.9),

(4.14) and find

〈hIkI〉 = −(3i〈ba〉∂a − 3i〈b̄a〉∂̄a)e4〈u3〉 + 2e2〈u3〉(e2〈u2〉 + e−2〈u2〉 − q
2
e6〈u3〉)∂σ = 0 . (4.17)

Due to the linear independence of the coordinate vector fields {∂a, ∂̄a, ∂σ}, this implies

〈ba〉 = 〈b̄a〉 = 0 and

e2〈u2〉 + e−2〈u2〉 = q
2
e6〈u3〉 . (4.18)

In particular, the background values of the vector multiplet scalars are not independent

of each other. Inserting these results into the moment maps (4.15), we find that only

the third component 〈µI〉 := 〈µ3
I〉 is nonzero in the background. These components are

given by

〈µ0〉 = q
2
e−4〈u1〉 − 3 , 〈µ1〉 = 〈µ2〉 = −e−4〈u1〉 , (4.19)

4We converted the moment maps according to (µI)
A
B = i~µI( ~σA

B ) where (~σ)AB are the Pauli matrices, see [58].
5Since no tensor multiplets are present in the Betti-vector truncation, the second equation in (2.93) is trivially

satisfied.
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where we used the fact that 〈eZ〉 = q in the AdS background.

We are thus left with solving the first equation in (2.93). Since 〈µ1〉 = 〈µ2〉, (2.93)

implies that 〈h1〉 = 〈h2〉 and thus using (4.31) we find

e−2〈u2〉+2〈u3〉 = e2〈u2〉+2〈u3〉 . (4.20)

This fixes the background value of the vector multiplet scalar u2 to 〈u2〉 = 0. Also,

by using (4.18) we find 〈u3〉 = 1
6

log 4
q
. Note that this fixes the scalar 〈u3〉 in the AdS

vacuum, since q is a constant. Now consider the zero-component 〈µ0〉. Using again (4.9)

and (4.15) and inserting this into the first equation of (2.93), we find

q
2
e−〈u1〉 − 3 = λ

3
e−4〈u3〉 = q2/3λ

6 3√2
, (4.21)

fixing the background value of the scalar 〈u1〉 = − log( λ

3 3√2q1/3
+ 6

q
). To summarize, the

conditions for AdS5 vacua from the Betti-vector truncation fix all the scalars {u2, u3}
from the vector multiplets and moreover the scalars {u1, b

a, b̄a} from the hypermultiplets.

Let us now turn to the moduli space MBV described in Chapter 3. From the above

analysis we know that the hypermultiplet scalars {σ, τ, τ̄} are not constrained by the

conditions (2.93) for the AdS background. However, the moduli space was proven to

be a Kähler manifold and thus has to be even-dimensional. This can be understood by

considering the background values of the Killing vectors (4.14),

〈k0〉 = −q∂σ , 〈k1〉 = 〈k2〉 = 2∂σ . (4.22)

From this we see that the space of Goldstone bosons is one-dimensional and spanned by

∂σ. The respective scalar σ then gets eaten by the gauge field qA0 − 2A1 − 2A2, which

becomes massive as a result of the symmetry breaking. In particular, we explained in

Chapter 2 that the U(1)R-symmetry always remains unbroken in the AdS vacuum and

is gauged by the graviphoton

λ〈hI〉AIµ = λq2/3

6 3√2
A0
µ + 22/3λ

3 3
√
q

(A1
µ + A2

µ) . (4.23)

Thus we find that the gauge group in the supersymmetric AdS background is broken

according to U(1)× U(1)× R −→ U(1)R × U(1).

We have shown that the moduli space of the AdS vacuum is two-dimensional and

spanned by the Axion-Dilaton {τ, τ̄}. This agrees with the bound (3.30) on the dimen-

sion of the moduli space for nH = 2, nG = 1,

dim MBV ≤ 2 · 2− 2 · 1 = 2 , (4.24)

i.e. the moduli space is of maximal dimension. To compute the metric gBV on the moduli

space, note that the coordinate one-forms of the fixed scalars vanish on MBV , i.e.

dba|MBV = db̄a|MBV = du1|MBV = dσ|MBV = 0 . (4.25)
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Using this fact we can read off the metric from the Lagrangian (4.11),

gBV = dφ2 + e2φdC2
0 = 1

Im τ2
dτdτ̄ . (4.26)

This is precisely the metric on the upper half planeH which is well-known to be a Kähler

manifold. Thus the moduli space of the AdS5 vacua in the Betti-vector truncation is

MBV = H . (4.27)

4.2 The Betti-hyper truncation

Let us now turn to the Betti-hyper truncation from which one obtains a five-dimensional

N = 2 theory that contains gravity coupled to one vector multiplet and three hyper-

multiplets [48]. Up to minor changes, this section is taken from [52].

Truncation data

In the Betti-hyper truncation, 13 scalars

{u1, u3, σ, e
a, τ, τ̄ , v, v̄, ba, b̄a} (4.28)

are kept from the N = 4 truncation (C.14). While the gauge field in the N = 2 gravity

multiplet is still A0
µ, the gauge field in the vector multiplet is given as the combination

1
2
(A1

µ + A2
µ). Moreover, the single scalar u3 in the vector multiplet parametrizes the

projective special real manifold [51]

MBH
V = SO(1, 1) . (4.29)

The local coordinates of the ambient space H are given by [51]

h0 = e4u3 , h1 = e−2u3 , (4.30)

with C011 = 1
3

and all others zero. Moreover we obtain

h0 = 1
3
e−4u3 , h1 = 2

3
e2u3 , (4.31)

by lowering the index according to (2.11).

In the hypermultiplets, the scalars {u1, σ, e
a, ba, b̄a, τ, τ̄ , v, v̄} span the quaternionic

Kähler manifold [48]

MBH
H =

SO(4, 3)

SO(4)× SO(3)
. (4.32)

Here ba and v are complex while all others are real. The hypermultiplet Lagrangian is

given by [51]

LBHHyper =− e−4u1Mab[
1
2
Dea ∧ ∗Deb + 1

2
Ea ∧ ∗Eb + 2(Ba ∧ ∗B̄b + B̄a ∧ ∗Bb)]

− 8du1 ∧ ∗du1 − d|v| ∧ ∗d|v|+ |v|2Dϑ ∧ ∗Dϑ
− 1

2
e−8u1Σ ∧ ∗Σ− 1

2
dφ ∧ ∗dφ− 1

2
e2φdC0 ∧ ∗dC0 ,

(4.33)
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where
Ea = (1 + |v|2)Dea − 4Im (vDba) ,

Ba = Dba − i
2
v̄Dea ,

Dea = dea − jaA0 ,

Dϑ = dϑ+ 3A0 ,

(4.34)

ja are constant charges and ϑ = ϑ(v, v̄) is a function of v and v̄ whose explicit form is

not important for our purposes. Moreover Dba, Dσ, Σ and Mab are defined in (4.12)

and (4.13), respectively. From this Lagrangian one can read off the metric for the

hypermultiplet scalars.

The gauge group GBH acts on MBH
H via Killing vectors [51]

k0 = −(q + εabj
aeb)∂σ − 3iba∂a + 3ib̄a∂̄a + 3

2
(1 + ρ2)∂ρ + 3

2
(1 + ρ̄2)∂ρ̄ − ja∂ea ,

k1 = 4∂σ ,
(4.35)

where we introduced a complex scalar ρ ∈ H in the upper half plane that is related to

v via

v = −(i− ρ)(i− ρ̄)

1 + |ρ|2
. (4.36)

The associated moment maps are then given by [51]

~µ0 = (1
2
eZ̃e−4u1 − 3

2Im ρ
(1 + |ρ|2))~e3

− 1
2ρ
e−2u1fa(−3i(ρ̄− i)2b̄a − 3i(ρ̄+ i)2ba + i(1− iρ̄)(1 + iρ̄)ja)~e1

+ 1
2ρ
e−2u1 f̄a(3i(ρ− i)2ba + 3i(ρ+ i)2b̄a + i(1− iρ)(1 + iρ)ja)~e2 ,

~µ1 = −2e−4u1~e3 ,

(4.37)

where eZ̃ = eZ + εab(j
aeb − eajb) = q − 6iεab(b

ab̄b − b̄abb) + εab(j
aeb − jbea). Since

[k0, k1] = 0, the gauge group in this case again contains a non-compact part and is given

by GBH = U(1)× R.

AdS vacua and their moduli space

Let us now solve (2.93) in this consistent truncation. To do this, we insert (4.35) and

(4.30) into the third equation of (2.93),

0 = 〈hIkI〉 = (4e−6〈u3〉 − q − εabja〈eb〉)e4〈u3〉∂σ − (3i〈ba〉∂a − 3i〈b̄a〉∂̄a)e4〈u3〉

+ 3
2
(1 + 〈ρ2〉)e4〈u3〉∂ρ + 3

2
(1 + 〈ρ̄2〉)e4〈u3〉∂ρ̄ .

(4.38)

Using the linear independence of the basis vectors {∂a, ∂̄a, ∂σ, ∂ρ, ∂ρ̄} we immediately

find 〈ba〉 = 〈b̄a〉 = ja = 0.6 Moreover,

〈ρ2〉 = 〈ρ̄2〉 = −1 , q = 4e−6〈u3〉 , (4.39)

6The vanishing of the topological charges ja shows that the backgrounds we are discussing are indeed related

to the Klebanov-Witten theory [10] and not the Klebanov-Strassler solutions [75].
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where we used ja = 0. In particular, we find 〈eZ̃〉 = q and 〈u3〉 = −1
6

log q
4
. The first

equation in (4.39) is solved by 〈ρ〉 = i which implies 〈v〉 = 〈v̄〉 = 0 and

〈|ρ|2〉 = 1 . (4.40)

Thus the vector multiplet scalar u3 and the hypermultiplet scalars {ba, b̄a, v, v̄} are fixed

by the third equation in (2.93). Using the above results, we find that the moment maps

(4.37) are only nontrivial in the ~e3-direction and read

〈µ0〉 = q
2
e−4〈u1〉 − 3 , 〈µ1〉 = −2e−4〈u1〉 . (4.41)

Inserting these expressions into the first equation of (2.93) and using (4.31), we find

( q
2
e−4〈u1〉 − 3) = 3λe4〈u3〉 , e−4〈u1〉 = 2

3
λe−2〈u3〉 . (4.42)

These equations fix the hypermultiplet scalar 〈u1〉 = −1
4

log(25/3λ
3 3
√
q

) in the background.

In conclusion, we have shown that the AdS5 conditions for the Betti-hyper truncation

fix the vector multiplet scalar u3 and the hypermultiplet scalars {ba, b̄a, v, v̄, u1}.
To compute the moduli space, we observe that the scalars {k, ea, τ, τ̄} in the hy-

permultiplets are not restricted by the AdS conditions (2.93) and thus their associated

deformations leave the vacuum invariant. However, as before we find that the Killing

vectors have non-trivial background values,

〈k0〉 = −q∂σ , 〈k1〉 = 4∂σ , (4.43)

and thus the space of Goldstone bosons is again one-dimensional. The gauge group is

broken, U(1) × R −→ U(1)R, and the vector field qA0 − 2(A1 + A2) becomes massive

by “eating” the scalar σ. Note that, as discussed in Section 2.2, the U(1)R symmetry of

the background is still present after the spontaneous symmetry breaking. It is gauged

by the graviphoton7

λ〈h0〉A0
µ + 1

2
〈h1〉(A1

µ + A2
µ) = λq2/3

6 3√2
A0
µ + 22/3λ

3 3
√
q

(A1
µ + A2

µ) . (4.44)

The moduli space is thus four-dimensional and spanned by the hypermultiplet scalars

{ea, τ, τ̄}. This is in agreement with the bound (3.30) for nH = 3, nG = 1,

dim MBH ≤ 2 · 3− 2 · 1 = 4 . (4.45)

Note that dim MBH = 4 is again the maximal dimension possible for the given number

of hypermultiplets and Goldstone bosons.

The moduli space is thus spanned by the reduction of the Axion-Dilaton τ and a

doublet of real scalars ea coming from the Betti-hypermultiplet. To compute the metric,

7We find that the graviphoton of the AdS5 background is the same for both Betti truncations on T 1,1.
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we use the fact that the coordinate one-forms of the fixed scalars vanish on MBH .

Inserting this into the Lagrangian (4.33) for the hypermultiplets, we find

gBH = γMabde
adeb +

1

Im τ 2
dτdτ̄ , (4.46)

where γ = 2e−4〈u1〉 = 2
3
(2Q)1/3λ and Mab is defined in (4.13). We immediately recognize

the second term in (4.46) as the metric of the Axion-Dilaton τ on the upper half plane

(4.26). Let us first discuss the isometries of the metric (4.46). Clearly, (4.46) is invariant

under shifts in the scalars ea, i.e. ea 7→ ea + wa for some constants wa. Moreover, the

metric has an SL(2,R)-isometry induced by the global SL(2,R)-symmetry of type IIB

supergravity [2]. The term 1
Im τ2

dτdτ̄ is the metric on the upper half plane (see (4.27)),

which is known to have an SL(2,R)-isometry given by (B.7). For the term Mabde
adeb,

this follows from the fact that the transformations (B.6) and (B.8) exactly cancel each

other. Thus the metric (4.46) has an R2 × SL(2,R) isometry group.

We already discussed that the moduli space of AdS5 vacua should be Kähler and

in particular complex. To this end, let us define a complex structure for the scalars

{ea, a, φ} and construct the Kähler potential associated to the metric gBH , i.e. a real

function Z such that (gBH)ij̄ = ∂i∂j̄Z for i, j = 1, 2 complex indices on MBH . For the

scalars {a, φ}, the complex structure is naturally given by the Axion-Dilaton τ = a+ie−φ.

To define a complex structure on the scalars ea, recall that the three-forms F̂ a
3 in type

IIB supergravity can be combined into a complex three-form8,

Ĝ3 := F̂ 2
3 − τF 1

3 . (4.47)

Translating this to the scalars ea, we may define a complex scalar z by

z := e2 − τe1 , z̄ := e2 − τ̄ e1 . (4.48)

In particular, this implies e1 = − Im z
Im τ

. The associated coordinate one-forms then intro-

duce a twist between z and τ ,

dz = de2 − τde1 − e1dτ , dz̄ = de2 − τ̄ de1 − e1dτ̄ . (4.49)

Using these we can rewrite the metric of the ea in terms of z and z̄,

Mabde
adeb =

Im z2

Im τ 3
dτdτ̄ +

1

Im τ
dzdz̄ − Im z

Im τ 2
(dτdz̄ + dτ̄dz) . (4.50)

Thus the full complex metric reads

gBH =

(
1

Im τ 2
+ γ

Im z2

Im τ 3

)
dτdτ̄ − γ Im z

Im τ 2
(dτdz̄ + dτ̄dz) +

γ

Im τ
dzdz̄ . (4.51)

This metric is derived from the Kähler potential

Z = −4 log(τ − τ̄)− iγ (z−z̄)2
τ−τ̄ , (4.52)

8See Appendix B, equation (B.4).
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and the associated Kähler form i
2
∂∂̄Z is closed. Thus the moduli space is a Kähler

manifold with Kähler structure defined by Z.

Let us now show that (4.51) extends to a globally well-defined metric and identify

the manifold MBH . Examining the metric (4.46), we already observed that the second

part is the metric 1
Im τ2

dτdτ̄ on the upper half plane H. The first term in (4.46) is the

metric of a torus C/Λτ with complex structure parameter τ . Here Λτ = Z ⊕ τZ is a

lattice spanned by (1, τ). However, this description only holds locally. Globally, the

moduli space is not a direct product of a complex torus with the upper half plane, since

the complex structure (4.48) on the torus varies with τ . Thus the global metric is the

metric on the total space of a complex torus bundle over the upper half plane, i.e.

C/Λτ ↪→MBH −→ H , (4.53)

Note that this agrees with the results stated in [10]; the moduli are the Axion-Dilaton

and a complex scalar parametrizing a torus.

However, it turns out that the metric is in general not a product metric but the metric

of a non-trivial fibration. To identify the total space of the fibration (4.53), consider the

universal elliptic curve E over the upper half plane.9 This is defined as the quotient

E = (C×H) /Z2 , (4.54)

where (m,n) ∈ Z2 acts as

(z, τ) 7→ (z +m+ nτ, τ) . (4.55)

Since this action is free and proper, the quotient E is a two-dimensional complex manifold

[76]. In particular, the fibers of the projection E → H are precisely the complex tori

C/Λτ . To see that gBH gives a well-defined metric on E , we have to show that it is

compatible with the quotient by the action (4.55). Since τ is fixed by (4.55), only the

second term in the Kähler potential (4.52) transforms non-trivially. In particular, we

find for the transformation of the Kähler potential,

Z 7→ Z ′ = Z + 2iγn(z − z̄) + iγn2(τ − τ̄) , (4.56)

which is just a Kähler transformation K 7→ Z ′ = Z + f(τ, z) + f̄(τ̄ , z̄) for a holomorphic

function f(τ, z) = 2iγnz + iγn2τ . Thus both potentials give rise to the same Kähler

metric and gBH is a well-defined global metric on E .10 In conclusion, the moduli space

of AdS vacua in the Betti-hyper truncation is given by the total space of the universal

elliptic curve,

MBH = E = (C×H)/Z2 . (4.57)

9For an introduction to elliptic curves, their moduli spaces and the universal elliptic curve, see [76].
10A different way to see this is to realize the Z2-action (4.55) via the R2-isometry of the metric (4.46) by

e1 7→ e1 − n, e2 7→ e2 +m.
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This manifold is in particular a homogeneous space, since it has a transitive group action

given by the isometries of the metric (4.46), R2 × SL(2,R) ∼= C × SL(2,R). Because

the upper half plane H can be written as the quotient SL(2,R)/SO(2), we find

MBH = [C× SL(2,R)/SO(2)]/Z2 . (4.58)

Thus for both truncations with homogeneous scalar target spaces, also the AdS moduli

space is a homogeneous space.

Before we conclude this section, let us briefly note the following: consider the Kähler

potential Z̃ of SU(2, 1)/U(2), given by

Z̃ = − log(τ − τ̄ + iε(z − z̄)2) , (4.59)

where ε ∈ R is a constant. To make contact with the potential (4.52), we want to split

off a term of the form log(τ − τ̄) from Z̃. To this end, we separate a factor τ − τ̄ inside

the logarithm,

Z̃ = − log(τ − τ̄ + iε(z − z̄)2) = − log(τ − τ̄)− log(1 + iε (z−z̄)2
τ−τ̄ ) . (4.60)

For small ε the second term can be expanded,

− log(1 + iε (z−z̄)2
τ−τ̄ ) ' −iε (z−z̄)2

τ−τ̄ +O(ε2) . (4.61)

Thus we can write

Z̃ = − log(τ − τ̄ + iε(z − z̄)2) ' 1
4
K +O(ε2) , (4.62)

for suitable ε and find that the Kähler potential (4.52) of the AdS moduli space appears

as a first order term in the ε-expansion. To interpret this result we first note the following:

we can reinstall the five-dimensional gravitational constant κ into the metric (4.51) by

γ 7→ κ2γ. Thus the ε-expansion performed above actually corresponds to an expansion in

the gravitational constant κ for ε = 4κ2γ and fixed γ. Since the limit κ→ 0 corresponds

to the large N limit11 of the dual field theory, we can interpret the metric gBHM on the

moduli space as the first order contribution in a large N expansion of the metric on

SU(2, 1)/U(2).

11The AdS/CFT correspondence relates κ ∝ 1/N , see [3, Chapter 23.7] for a review.
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Conclusion and outlook

Let us briefly summarize the results we obtained in this thesis. We started by studying

AdS5 vacua in gauged N = 2 supergravity coupled to an arbitrary number of vector

tensor and hypermultiplets following [34]. To find the conditions for supersymmetric AdS

backgrounds, we analyzed the vanishing of the fermionic supersymmetry variations. We

showed that these conditions can be expressed in terms of Killing vectors and moment

maps on the scalar target space and found that an U(1)R-symmetry is always gauged in

the vacuum. This condition is equivalent to the AdS vacuum being a fixed point under

the U(1)R-symmetry. Moreover, we proved that the associated gauge field is given by

the graviphoton 〈hI〉AµI . In the dual four-dimensional SCFT, this U(1)R-symmetry is

defined by a-maximization while it can be derived in the type IIB setting from volume

minimization on Sasaki-Einstein manifolds. Furthermore, we discussed the spontaneous

gauge symmetry breaking and explained how the massive vector multiplets are built out

of a massless vector multiplet and a hypermultiplet containing the Goldstone boson.

To obtain the moduli space of AdS5 vacua, we expanded the scalar fields around their

vacuum expectation value and used variational calculus to derive a set of conditions

on the variations that characterize the deformation space D of the AdS background.

In particular, we showed that the Goldstone bosons are contained in this deformation

space. The physical moduli space is then given by the quotient M = D/G of scalar

field deformations modulo Goldstone directions G. Even though we could not solve

the equations defining the moduli space explicitly, their structure allowed us to prove

that M is a Kähler submanifold of the quaternionic Kähler target space spanned by

the hypermultiplet scalars. This result is in agreement with the expectation from the

AdS/CFT correspondence, since it was proven in [35] that the conformal manifold of a

four-dimensional N = 1 SCFT also admits a Kähler structure. Moreover, we computed

the dimension of the moduli space to be given as dim M ≤ 2nH − 2nG, where nH
denotes the number of hypermultiplets while nG is the number of Goldstone bosons in

the background.

Since our computations only considered the first order variations in the scalar fields,

47
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the resulting conditions on the moduli space of AdS vacua are only necessary. In the

case of supergravity coupled to only hypermultiplets, we explained how the first order

variations actually determine the moduli space to all orders. However, when coupling

the theory to vector and tensor multiplets, the higher order variations might contribute

additional restrictions on the moduli space.

Following [52], in the second part of this thesis we studied explicit examples of AdS5

vauca obtained from consistent N = 2 truncations of type IIB supergravity compactified

on T 1,1. Namely, these are the Betti-vector truncation containing gravity coupled to two

vector multiplets and two hypermultiplets as well as the Betti-hyper truncation with

gravity coupled to one vector multiplet and three hypermultiplets.1 We found that both

truncations admit supersymmetric AdS vacua with an U(1)R-symmetry that always

remains unbroken in the vacuum. This is in agreement with the U(1)R symmetry coming

from the dual field theories predicted by the AdS/CFT correspondence [6,10,18]. Since

we studied consistent truncations, these results lift to solutions of the full ten-dimensional

supergravity.

The moduli space of the type IIB solution AdS5 × T 1,1 is known to be complex five-

dimensional [10, 23, 25, 46, 47]. However, only two of those moduli transform as singlets

under the SU(2) × SU(2)-factor in the isometry group of T 1,1 and are thus accessible

via consistent truncations [53]; those are the Axion-Dilaton τ and the complex modulus

z related to the topology of T 1,1. In particular, z comes from the fact that b2(T 1,1) = 1

and thus the second and third cohomology classes of T 1,1 are non-trivial. In [23, 25]

the moduli spaces for type IIB solutions of the form AdS5 × SE5 were computed from

generalized geometry. In particular, it was shown that the Axion-Dilaton is always

a modulus, independent from the topology of the Sasaki-Einstein manifold used for

the compactification. Moreover, we have shown in Chapter 3 that the moduli of five-

dimensional AdS backgrounds must always be recruited out of the hypermultiplets.

Our present results agree with these predictions; the moduli space of the Betti-vector

truncation is spanned only by the Axion-Dilaton residing in one of the hypermultiplets

and the metric is the expected one on the upper half-plane. This can be understood

as follows: the fact that T 1,1 has nontrivial second cohomology leads to the presence

of an additional two-form in the reduction ansatz [43, 48, 49]. This additional two-form

gives rise to an additional N = 4 vector multiplet which splits into an N = 2 vector

multiplet and an N = 2 hypermultiplet. However, only one of the two can be retained

in a consistent N = 2 truncation [48]. Thus in the Betti-vector truncation the only

hypermultiplet related to the topology of T 1,1 ∼= S2 × S3 was removed and one would

not expect to find the modulus z in this truncation in the first place.

In the case of the Betti-hyper truncation the situation is different. Here the topology

of T 1,1 contributes to the five-dimensional hypermultiplets of the truncation and gives

1In Appendix D we additionally analyzed the conditions on AdS vacua in the NS-sector truncation. However,

we found that this truncation does not admit AdS5 vacua preserving N = 2 supersymmetry.
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rise to an additional complex modulus z. This modulus parametrizes a complex torus

with complex structure parameter given by the Axion-Dilaton τ . Thus the complex two-

dimensional moduli space MBH of the Betti-hyper truncation contains all the moduli

of AdS5×T 1,1 that are detectable in a consistent truncation. However, even though the

Axion-Dilaton is completely unrelated to the geometry of the compact Sasaki-Einstein

manifold, it turns out that the metric on the moduli space MBH is not a product

metric with the Axion-Dilaton split off from the moduli corresponding to the geometry.

Indeed, we find that MBH is a torus bundle with base space given by the upper half-

plane H. We identified this bundle as the universal elliptic curve with total space

(C×H)/Z2. However, it turns out that the metric on the moduli space is also related to

the metric on SU(2, 1)/U(2) by performing a large N expansion of the Kähler potential

(4.52). Thus since the Betti-hyper truncation is consistent and lifts to the full ten-

dimensional supergravity, the AdS/CFT correspondence relates this result to the metric

on a submanifold of the conformal manifold of the Klebanov-Witten theory in four

dimensions.2

Finally, let us briefly comment on possible future directions. As we computed the

moduli space only to first order in the scalar field variations, it would be interesting to

extend our calculation and determine the moduli space to all orders. However, from the

results on conformal manifolds in the dual N = 1 SCFTs provided by the AdS/CFT

correspondence, one would expect that any further conditions onM are compatible with

the Kähler structure we constructed in Chapter 3.

Turning to the Betti truncations of type II supergravity on T 1,1, it would be interest-

ing to verify our results in the dual field theory. Since the explicit metrics on the moduli

spaces in Betti-vector truncation and Betti-hyper-truncation should be related to met-

rics on submanifolds of the conformal manifold in Klebanov-Witten theory, it would be

a non-trivial check of the AdS/CFT correspondence to obtain these metrics in the field

theory. Moreover, it would be interesting to develop a method to incorporate the three

remaining complex moduli into a five-dimensional description despite the inconsistencies

analyzed in [53].

Because the manifold T 1,1 is related to the infinite family of Sasaki-Einstein mani-

folds called Y p,q [11], a natural question would be to extend our computations to these

manifolds. On first glance, this might seem easily possible; Y p,q ∼= S2 × S3 have the

same topology as T 1,1 and a reduced isometry algebra su(2) ⊕ u(1) ⊕ u(1). Moreover,

the moduli of the ten-dimensional solutions AdS5× Y p,q also contain the Axion-Dilaton

and the modulus z from the VEV of the B-field integrated over the nontrivial two-cycle

on S2 × S3. Additionally, there only exists one other complex modulus transforming in

a triplet under the SU(2) in the isometry group, making the full moduli space complex

three-dimensional [23,25,46,47]. However, the Y p,q manifolds are in general not homoge-

2Consistency of the truncation is related to closure of the associated operators under the operator product

expansion in the dual CFT. This then defines the submanifold of the conformal manifold dual to the moduli

spaces we discuss here.
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neous spaces but only admit a cohomgeneity-one action of the isometry group. Since the

techniques used in [48, 49] rely heavily on the transitivity of the SU(2)× SU(2) action

on the T 1,1 coset, a similar reduction for the Y p,q manifolds might not be consistent.
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Appendix A

Sasaki-Einstein manifolds

Sasaki-Einstein manifolds appear in solutions of type IIB supergravity containing an

AdS5 factor and thus prominently feature in the AdS/CFT correspondence. In this

appendix we provide the basic definitions of Sasaki-Einstein manifolds and briefly review

classifications of five-dimensional Sasaki-Einstein manifolds with certain properties. We

will mostly follow [77, 78], where [77] is a mathematical introduction while [78] focuses

on the physically relevant cases.

A.1 Basic notions of Sasaki-Einstein geometry

We start by recalling the notion of contact geometry. For this, let (M, η) be a smooth

manifold of odd dimension 2n+ 1 and η a one-form on M . If

η ∧ dηn 6= 0 , (A.1)

we call (M, η) a contact manifold. One can prove that every contact manifold admits a

canonical vector field R, called the Reeb vector field or characteristic vector field. This

is uniquely defined by the following conditions,

η(R) = 1 , iRdη = 0 . (A.2)

In particular, R induces a foliation FR on M . Now denote by LR the line bundle

consisting of tangent vectors to the leaves of FR. Then the tangent bundle of M splits

as

TM = C ⊕ LR , (A.3)

where C := ker η is a codimension one subbundle of TM . Then (A.1) implies that dη

restricts to a symplectic form on C.
Since we will be interested in Einstein metrics later, let us now introduce a Rieman-

nian metric g into this setting. To this end, we first define a tensor field J on M such

that

J2 = −IdC + η ⊗R , dη(JX, JY ) = dη(X, Y ) , (A.4)
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for all vector fields X, Y ∈ Γ(TM) and

dη(JX,X) ≥ 0 , (A.5)

for all nonzero vector fields X ∈ Γ(TM). In particular, J defines an almost complex

structure on C that is compatible with the symplectic form defined by dη. We then call

a Riemannian contact manifold (M, g, η) a metric contact manifold if

g(JX, JY ) = g(X, Y )− η(X)η(Y ) , (A.6)

for all vector fields X, Y ∈ Γ(TM) and

g(V, JW ) = dη(V,W ) (A.7)

for all V,W ∈ Γ(C). Since J(ξ) = 0, these conditions are equivalent to (gT , dη, J) being

an almost Kähler structure on the subbundle C. Here gT denotes the transverse metric

that is given by gT = g|C. For completeness, let us remark that we call a metric contact

manifold a K-contact manifold if ξ is a Killing vector field. In particular, every Sasaki

manifold is K-contact.

To define Sasaki manifolds, we first have to introduce a notion of integrability of the

contact structure. This can be done by considering the metric cone C(M) = R+ ×M
over M with ḡ = dt2 + t2g. If we denote the coordinate on R+ by t, we can define a

vector field t∂t called the Euler vector field. Then a contact structure on M gives rise

to an almost complex structure Z on C(M) by

Z(X) = J(X) + η(X)t∂t , Z(t∂t) = −R , (A.8)

for X a vector field on M . One can then prove that, under certain mild assumptions,

the reverse is also true (see [77] for more details and the notion of an almost contact

structure). For our purposes, we assume that there is a one-to-one correspondence

between contact structures on M and almost complex structures on the cone.1 We

then call a contact structure normal if the corresponding almost compelx structure J is

integrable. Finally, a Sasaki manifold is defined to be a normal metric contact manifold.2

Often in the physics literature another definition of Sasaki manifolds is used: A

Riemannian manifold (M, g) is a Sasaki manifold if its metric cone (C(M), ḡ) is a Kähler

manifold. Using the construction (A.8) for an almost complex structure on the cone

C(M), one can prove that these two defintions are equivalent [77].

1If we additionally have a metric g on M , then the correspondence holds between metric contact structures

on M and almost Hermitian structures for ḡ = dt2 + t2g on C(M).
2We will discuss in Appendix B that simply-connected Sasaki-Einstein manifolds always admit a pair of

linearly independent Killing spinors. However, this theorem does not necessary hold in the case where the

manifold is not simply-connected. For applications in supergravity compactifications, one thus defines Sasaki-

Einstein manifolds to always admit Killing spinors [78].
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Let us now include the Einstein condition. Recall that a Riemannian metric is called

an Einstein metric if it is proportional to its Ricci-tensor, i.e.

Ricg = λg , (A.9)

for λ ∈ R the Einstein constant. A Sasaki manifold (M, g) is then called Sasaki-Einstein

if its metric g is an Einstein metric. In particular, one can prove that for a Sasaki-

Einstein manifold of dimension 2n+1 the Einstein constant is always fixed to be λ = 2n.

There are many equivalent characterizations of Sasaki-Einstein manifolds. The following

theorem covers the most important ones [78, Proposition 1.9]

Theorem 3 Let (M, g) be Sasaki manifold of dimension 2n+ 1. Then the following are

equivalent,

1) (M, g) is Sasaki-Einstein with Ricg = 2ng.

2) The cone (C(M), ḡ) is Kähler and Ricci-flat, i.e. Ricḡ = 0.

3) The transverse almost Kähler structure (gT , dη, J) is Kähler-Einstein with RicT =

2(n+ 1)gT .

Note that the same theorem holds if we drop the Einstein and Ricci-flatness conditions

on the metrics. In this sense a Sasaki manifold is an odd-dimensional analogue of a

Kähler manifold, as it is wedged between a Kähler structure on the cone C(M) and on

the space transverse to the foliation FR. However, the transverse space is not always

a manifold. To study this in more detail, we now introduce the notion of regularity in

contact geometry.

A.2 Classifications of Sasaki-Einstein manifolds in dimension

five

Let (M, g) be a Sasaki manifold with associated contact structure (η, ξ, J) and assume

that the leaves M/FR are compact. Then the flow of the Reeb vector field R generates

a locally free U(1)-action on M . This result then motivates the definition of regularity

of a Sasaki manifold. A Sasaki manifold is called

1) regular, if the orbits of R are closed and the induced U(1)-action is free.

2) quasi-regular, if the orbits of R are closed.

3) irregular, if there exists a non-closed orbit of R.

In the regular case one can prove that the transverse space for every compact contact

manifold M is again a manifold [77, Theorem 6.1.26].
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Theorem 4 (Boothby-Wang fibration) Let (M, g, η, R) be a compact regular con-

tact manifold. Then M is the total space of a principal U(1)-bundle π : M → N over a

symplectic manifold (N, gT , P ) such that [P ] ∈ H2(N,Z) and dη = π∗P .

Here H2(N,Z) denotes the second integral cohomology class of M while [P ] denotes

the cohomology class of the form P . In particular, if M in Theorem 4 is Sasaki, then

the underlying manifold N is Kähler. Note that the converse to Theorem 4 is also

true. Moreover, if (M, g) is Einstein, then by Theorem 3 (N, gT ) is Kähler-Einstein. In

particular, Theorem 4 tells us that there exists a manifold N whose tangent bundle is

the pullback of the subbundle C = ker η defined in (A.3) and gT is a globally well-defined

metric. In the quasi-regular case a similar theorem provides an underlying orbifold, while

no such structure exists in the irregular case.

Due to the correspondence provided by Theorem 4, the classification of regular

Sasaki-Einstein manifolds can be reduced to classifying Kähler-Einstein manifolds and

is thus a much easier task. For applications in supergravity compactifications, five-

dimensional Sasaki-Einstein manifolds are particularly interesting. One can prove the

following classification for simply-connected Sasaki-Einstein five-manifolds [77, Theorem

11.4.1].

Theorem 5 Let M be a simply-connected five-dimensional manifold with regular Sasaki-

Einstein structure. Then M is diffeomorphic to k(S2 × S3) for 0 ≤ k ≤ 8. Moreover,

1) for each k = 0, 1, 3, 4, there exists up to isometry precisely one regular Sasaki-Einstein

structure.

2) for each 5 ≤ k ≤ 8, there is a 4(k − 4) parameter family of inequivalent Sasaki-

Einstein structures.

Note that k(S2 × S3) for k = 0 is given by S5. Moreover, the case k = 2 does not

appear in the above theorem. The regular Sasaki-Einstein metric on S2 × S3 is called

the Kobayashi-Tanno metric [44] in the mathematics literature and T 1,1 in the physics

literature [45]. Here, T 1,1 is the homogeneous space SU(2)×SU(2)/U(1) where the U(1)

acts diagonally. This manifold is particularly interesting as it features in the AdS/CFT

dual background of the Klebanov-Witten theory [10]. For coordinates θ, ω ∈ [0, π],

ϕ, ν ∈ [0, 2π) periodic and ζ ∈ [0, 4π) periodic on S2 × S3 the metric on T 1,1 can be

written as

gT 1,1 =
1

6
(dθ2 + sin2 dϕ2 + dω2 + sin2 ωdν2) +

1

9
[dζ + cos θdϕ+ cosωdν]2 . (A.10)

The situation in the quasi-regular and irregular case is more involved. While the

existence of quasi-regular Sasaki-Einstein metrics on k#(S2 × S3) for k ≤ 9 was proven

in [79], no explicit construction was known. Moreover, the existence of irregular Sasaki-

Einstein metrics was questioned for a long time [80]. This changed with the discovery of a
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family of Sasaki-Einstein metrics Y p,q that first appeared in the study of supersymemtric

AdS5 solutions of M-theory [11,81].

Theorem 6 There exist countably infinitely many Sasaki-Einstein metrics on S2 × S3,

labeled by two positive integers p, q such that gcd(p, q) = 1 and q ≤ p. They are explicitly

given in local coordinates φ, ζ ∈ [0, 2π), θ ∈ [0, π], α ∈ [0, 2π`) and y ∈ [y1, y2] as

gp,q =
1− y

6
(dθ2 + sin2 ϕdϕ2) +

1

w(y)q(y)
dy2 +

q(y)

9
(dζ − cos θdϕ)2

+ w(y)[dα + f(y)(dζ − cos θdϕ)]2 ,

where

w(y) =
2(a− y2)

1− y
,

q(y) =
a− 3y2 + 2y3

a− y2
,

f(y) =
a− 2y + y2

6(a− y2)
,

for constant

a = ap,q =
1

2
− p2−3q2

4p3

√
4p2 − 3q2

` =
q

3q2 − 2p2 + p
√

4p2 − 3q2
,

and y1, y2 are the negative and smallest positive root of the function q(y), respectively.

Here gcd(p, q) of two integers p, q denotes the their greatest common divisor. In particu-

lar, this family consists of quasi-regular and irregular Sasaki-Einstein metrics. Moreover,

one can prove that the set of manifolds is in some sense complete [82]:

Theorem 7 Let (M, g) be a compact simply-connected Sasaki-Einstein manifold in di-

mension five for which the isometry group acts with cohomogeneity one, i.e. such that the

generic orbit has codimension one. Then (M, g) is isometric to one of the Y p,q manifolds

in 6.

The Y p,q manifolds are of particular interest in physics, since they provide an explicit

description of Sasaki-Einstein metrics in local coordinates. With this the dual field

theories could be constructed from certain quiver diagrams and thus provide an infinite

number of examples to the AdS/CFT correspondence [12–14].



58 Appendix A. Sasaki-Einstein manifolds



Appendix B

Type IIB supergravity on

Sasaki-Einstein manifolds

In this appendix we discuss solutions to type IIB supergravity of the form

AdS5 × SE5 , (B.1)

where SE5 is a five-dimensional Sasaki-Einstein manifold. To this end, we begin by

reviewing the field content and Lagrangian description of type IIB supergravity. We

proceed by decomposing the ten-dimensional spinors according to (B.1) and show that

N = 2 supersymmetry is preserved on AdS5.

B.1 Type IIB supergravity

The bosonic field content of type IIB supergravity is given by the spacetime metric ĝ,

the Axion-Dilaton τ̂ = Ĉ0 + ie−φ̂, a doublet B̂a
2 , a = 1, 2 of two-forms with fieldstrengths

F̂ a
3 = dB̂a

2 and the Ramond-Ramond four-form Ĉ4.1 Their dynamics are described by

the Lagrangian [2, 38]

LIIB = R̂ ∗1− 1

2Im τ̂ 2
dτ̂ ∧∗d¯̂τ − 1

2
MabF̂

a
3 ∧∗F̂ b

3 −
1

4
F̂5∧∗F̂5 +

1

4
εabĈ4∧ F̂ a

3 ∧ F̂ b
3 , (B.2)

where Mab is defined in (4.13). Moreover, we defined F̂5 = dĈ4 − εab 1
2
B̂a

2 ∧ dB̂b
2, which

has to satisfy a self-duality constraint

∗ F̂5 = F̂5 . (B.3)

Note that this constraint cannot be included in the action and thus has to be introduced

by hand. Moreover, for later use we also define a complex three-form by

Ĝ3 = F̂ 2
3 − τ̂ F̂ 1

3 . (B.4)

1Here we denote as B̂1
2 = B̂2 the NS two-form and B̂2

2 = Ĉ2 the Ramond-Ramond two-form.
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The Lagrangian (B.2) gives rise to a manifestly SL(2,R)-invariant action that, com-

bined with the self-duality constraint (B.3), describes the bosonic part of type IIB su-

pergravity. For the discussion of moduli space metrics in Chapter 4, let us explicitly

provide the details of the SL(2,R)-action (see for example [2] for more details). For a

matrix Λ ∈ SL(2,R), we can always write

Λ =

(
a b

c d

)
(B.5)

with a, b, c, d ∈ R and det Λ = ad − bc = 1. The two-forms B̂a
2 transform as a doublet

under SL(2,R), (
B̂1

2

B̂2
2

)
7→
(
a b

c d

)(
B̂1

2

B̂2
2

)
. (B.6)

The corresponding three-forms F̂ a
3 = dB̂a

2 transform similarly, while the four-form Ĉ4,

the metric ĝ in the Einstein-frame and the self-duality constraint (B.3) are invariant.

On the other hand, the Axion-Dilaton τ̂ = Ĉ0 + ie−φ̂ transforms non-linearly as

τ̂ 7→ aτ̂ + b

cτ̂ + d
. (B.7)

This transformation translates to a transformation of the matrix Mab in (4.13) as

Mab 7→ (Λ−1)caMcd(Λ
−1)db . (B.8)

One can then check that these transformations indeed leave the action constructed from

(B.2) invariant and thus the theory has a global SL(2,R)-invariance. However, this

symmetry does not carry over to the full type IIB string theory, which instead only has

a non-perturbative SL(2,Z) symmetry [2].

B.2 Spinor decomposition

Let us now introduce our conventions for spinors in the ten- and five-dimensional setting,

see [20, 83, 84]. We start with the ten-dimensional Clifford algebra Cliff(1, 9) generated

by

{ΓM ,ΓN} = 2ĝMN , M,N = 0, 1, ..., 9 . (B.9)

Here ΓM are the ten-dimensional gamma matrices, {ΓM ,ΓN} = ΓMΓN + ΓNΓM is the

anti-commutator and ĝMN denotes the ten-dimensional spacetime metric. For later use,

we also define Γ11 := Γ0Γ1...Γ9. In this thesis, we are interested in products (B.1) of five-

dimensional AdS spacetime with a compact Sasaki-Einstein manifold SE5. Therefore,

we decompose the ten-dimensional Clifford algebra

Cliff(1, 9)→ Cliff(1, 4)× Cliff(5) (B.10)
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by [20]
Γµ = γµ ⊗ 1⊗ σ3

Γm = 1⊗ ρm ⊗ σ1 ,
(B.11)

where σn are the Pauli matrices. Then γµ and ρm generate the five-dimensional Clifford

algebras Cliff(1, 4) and Cliff(5), respectively. That is

{ρµ, ρν} = 2gµνAdS5
, {γm, γn} = 2gmnSE5

. (B.12)

In particular, the chirality operator Γ11 decomposes under this split as [20]

Γ11 = 1⊗ 1⊗ σ2 . (B.13)

Now let ε be a ten-dimensional Majorana-Weyl spinor that decomposes under (B.10)

as

ε = ψ ⊗ χ⊗ θ . (B.14)

Here ψ is a spinor of Spin(1, 4), χ is a spinor of Spin(5) and θ is a two-component

spinor. Note that the smallest spinor representation of Spin(1, 4) and Spin(5) is eight-

dimensional [83]. The spinors ψ and χ each have four complex components, however

we cannot impose the Majorana condition in five-dimensions [83]. For this, consider the

following: With the decomposition (B.14), the ten-dimensional chirality condition

Γ11ε = −ε , (B.15)

implies via (B.13) that

σ2θ = −θ . (B.16)

We define the charge conjugate of the ten-dimensional spinor ε by [20]

εc = C10ε
∗ , (B.17)

where ε∗ denotes the complex conjugate of the spinor ε and C10 decomposes into

C10 = C1,4 ⊗ C5 ⊗ σ1 . (B.18)

Thus the charge conjugates of the lower-dimensional spinors are defined as

ψc = C1,4ψ
∗ , χc = C5χ

∗ , θc = σ1θ∗ . (B.19)

The Majorana condition in ten dimensions, ε = εc, then implies

θ = σ1θ∗ . (B.20)

However, in five-dimensions we have ψcc = −ψ and χcc = −χ and thus one cannot

impose the Majorana condition on these spinors [83]. Instead, the spinors ψ1 = ψ and

ψ2 = ψc have to satisfy the additional condition

ψA = εAB(ψB)c . (B.21)
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More generally, a set of spinors ψα for α = 1, 2, ..., 2n is called symplectic Majorana

spinors, if [83]

ψα = Ωαβ(ψα)c . (B.22)

Here Ωαβ is a non-degenerate, antisymmetric matrix that satisfies

ΩαβΩβγ = δγα . (B.23)

Later on, we will also need the charge conjugates of the gamma matrices γµ and ρm. It

can be shown that these transform as [83]

(γµ)c = −γµ , (B.24)

while

(ρµ)c = ρµ . (B.25)

The sign difference between (B.24) and (B.25) is related to the signatures of the metrics

on AdS5 and SE5.

B.3 Supersymmetry on AdS5 × SE5

Let us now derive the amount of supersymmetry preserved in compactifications of type

IIB supergravity on Sasaki-Einstein manifolds. The fermionic part of the type IIB

spectrum contains the gravitino Ψ̂M and the dilatino λ̂, which are complex Weyl spinors

of Spin(1, 9). Equivalently, we can split both spinors according to

Ψ̂M = Ψ̂1
M + iΨ̂2

M ,

λ̂ = λ̂1 + iλ̂2 ,
(B.26)

where Ψ̂AM and λ̂A are ten-dimensional Majorana-Weyl fermions. The supersymmetry

variations of these fermions are given by [20]

δΨ̂M = ∇̂Mε+
i

16 · 5!
F̂5NOPQRΓNOPQRΓM −

1

96

(
ΓNOPM Ĝ3NOP − 9ΓNOĜ3MNO

)
εc ,

δλ̂ =
1

2

(
∂M φ̂− ieφ̂∂M Ĉ0

)
ΓMεc +

i

24
ΓNOP Ĝ3NOP ε ,

(B.27)

where ∇̂M is the covariant derivative associated to the type IIB metric ĝ. We want to

study the supersymmetry preserved by solutions of the form

ĝ = g + gSE5 ,

F̂5 = f(volAdS5 + volSE5) ,

φ̂ = const ,

(B.28)
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with all other type IIB fields set to zero. Then the supersymmetry variation of the

dilatino is trivial while the gravitino variation reduces to

δΨ̂M = ∇̂Mε+
i

16 · 5!
F̂5NOPQRΓNOPQRΓM . (B.29)

The covariant derivative ∇̂M associated to ĝ decomposes as

∇̂µ = ∇µ ⊗ 1⊗ 1 ,

∇̂m = 1⊗∇SE
m ⊗ 1 ,

(B.30)

where ∇µ is the covariant derivative associated to the metric gµν on AdS5 and ∇SE
m is

the covariant derivative associated to the Sasaki-Einstein metric gSE5 . Similarly, we find

for the contraction F̂5MNOPQΓMNOPQ of the five-form [84],

F̂5MNOPQΓMNOPQ = −if · 5!(1⊗ 1⊗ σ3 + iσ1) . (B.31)

Thus for F̂5M := F̂5NOPQRΓNOPQRΓM , the second term in (B.29) decomposes as

i

16 · 5!
F̂5µ =

1

16
fγµ ⊗ 1⊗ (1− σ2) ,

i

16 · 5!
F̂5m = 1⊗ i

16
fρm ⊗ (1− σ2) .

(B.32)

In order to study the supersymmetry preserved by the solution (B.28), we have to

introduce Killing spinors. For a complete Riemannian spin manifold (M, g), a Killing

spinor χ is defined to be a smooth section of the spin bundle such that

∇SE
m χ =

iα

2
ρmχ , m = 1, ..., dim M . (B.33)

Here α ∈ R is the Killing constant.2 We call χ parallel if α = 0 and real if α 6= 0. We

then have the following theorem [78, Theorem 1.14]:

Theorem 8 A complete simply-connected Sasaki-Einstein manifold admits at least 2

linearly independent real Killing spinors with α = +1,−1 for dim M = 2n − 1 and

α = +1,+1 for dim M = 2n, respectively. Conversely, a complete Riemannian spin

manifold admitting such Killing spinors in the respective dimensions is Sasaki-Einstein

with Hol(ḡ) ⊂ SU(n).

In particular, this implies that every simply-connected Sasaki-Einstein manifold is a

spin manifold. Note however that the existence of Killing spinors is more involved in the

case that M is not simply-connected. For example, it was explained in [78] that S5/Zr
only admits Killing spinors for r = 0, 3. Thus in supergravity applications, one usually

2Due to the sign difference between (B.24) and (B.25), we define Killing spinors on AdS5 without the i on

the right hand side of (B.33), i.e. ∇µψ = 1
2
αγµψ for ψ a spinor on AdS.
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defines Sasaki-Einstein manifolds to always admit Killing spinors. This is the point of

view that we will take in this thesis.

For the solution (B.28) to preserve supersymmetry, the type IIB gravitino variation

has to vanish for some ten-dimensional supersymmetry parameter. This parameter is

given in terms of two Majorana-Weyl spinors εA, which can be combined into a single

spinor ε̃ = ε1 + iε2. Given a real Killing spinor χ on SE5 provided by Theorem 8, its

charge conjugate satisfies the Killing equation with Killing constant −α. Using the fact

that (∇SE
m χ)c = ∇SE

m χc, this can be seen by taking the charge conjugate of the Killing

equation (B.33), i.e. (
∇SE
m χ
)c

=

(
iα

2
ρmχ

)c
= −iα

2
ρmχ

c . (B.34)

Here we used (B.25) in the second step. Thus we can expand the ten-dimensional

supersymmetry parameter εA as

εA = ψA ⊗ χ⊗ θ + ψcA ⊗ χc ⊗ θ . (B.35)

Here ψA, ψcA are four symplectic Majorana spinors of Spin(1, 4). This ansatz for εA
automatically satisfies the ten-dimensional Majorana condition εcA = εA by using (B.19).

Then the linear combination ε̃ is given by

ε̃ = ε1 + iε2 = ψ̃1 ⊗ χ⊗ θ + ψ̃c2 ⊗ χc ⊗ θ , (B.36)

where ψ̃1 = ψ1 + iψ2 and ψ̃c2 = ψc1 + iψc2. Inserting this ansatz combined with (B.30) and

(B.32) into the Gravitino variation, we find

δΨ̂µ =

[
∇µ +

1

16
fγµ ⊗ 1⊗ (1− σ2)

]
ε̃ ,

δΨ̂m =

[
∇m + 1⊗ i

16
fρm ⊗ (1− σ2)

]
ε̃ .

(B.37)

Since θ is an eigenspinor of σ2 with eigenvalue −1, the last term in both variations

simplifies. δΨ̂µ = 0 then implies

∇µψ̃1 +
1

8
fγµψ̃1 = 0 ,

∇µψ̃
c
2 +

1

8
fγµψ̃

c
2 = 0 ,

(B.38)

while δΨ̂m = 0 gives (
i

8
f +

iα

2

)
ψ̃1 = 0 ,(

i

8
f − iα

2

)
ψ̃c2 = 0 .

(B.39)
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In the second step we used the fact that χ and χc are Killing spinors on SE5. However,

(B.39) can only be satisfied if one of the two spinors, say ψ̃2, is zero. Then ψ̃1 is a Killing

spinor on AdS5 satisfying

∇µψ̃1 =
α

2
γµψ̃1 . (B.40)

Note that then ψc1 satisfies the Killing equation with constant −α. Thus the ansatz

(B.35) gives rise to two symplectic Majorana spinors on AdS5 and the solution (B.28)

preserves eight real supercharges in five dimensions, i.e. N = 2 supersymmetry on AdS5.
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Appendix C

Consistent truncations of type IIB

supergravity

In this appendix we briefly review the consistent truncations of type IIB supergravity on

Sasaki-Einstein manifolds discussed in [36–43]. To this end, we first explain the ansatz

used for the type IIB fields and then present the results in the special case of truncations

on T 1,1 [43, 48,49] .

Truncations on general Sasaki-Einstein manifolds

We explained in the previous Appendix A that the cone C(M) over a Sasaki-Einstein

manifold is Calabi-Yau. Moreover, it was proven in [85] that a real Killing spinor on

(M, g) lifts to a parallel spinor on (C(M), ḡ). Using the fact that a Sasaki-Einstein

manifold admits two linearly-independent spinors, we can then construct a nonzero

holomorphic (n, 0)-form Ω(C(M) on C(M) [78, 86]. Along the same lines as (A.8), this

defines a form Ω on M via1

ΩC(M) = t2(dt2 + itη) ∧ Ω , (C.1)

with exterior derivative

dΩ = i3η ∧ Ω . (C.2)

Equipped with the Sasaki-Einstein structure forms (η, dη,Ω), we can now discuss the

consistent truncations of type IIB supergravity on Sasaki-Einstein manifolds. We will

follow here mostly [37,39] with notation adapted to [51].

To obtain a consistent truncation to a five-dimensional theory, one expands the spec-

trum of type IIB supergravity in terms of the forms (η, dη,Ω) on the Sasaki-Einstein

manifold. Since these forms are invariant under the isometry group of the Sasaki-Einstein

manifold, the resulting truncation can be shown to be consistent [37,39]. The expansion

1This is explained for the case n = 4 in [87].
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of the metric is taken to be

ĝ = e2u3−2u1g5 + e2u1gT + e−6u3−2u1(η + A0)⊗ (η + A0) , (C.3)

where u1,3 are real scalar fields, A0 is a one-form on the five-dimensional spacetime

and gT is the transverse metric of the Sasaki-Einstein metric.2 While one assumes

trivial dependence on the internal manifold for the Axion-Dilaton τ = τ̂ , the form fields

also have to be expended in terms of (η, dη,Ω). As an example, we provide here the

expansion of the two-forms B̂a
2 since this is where additional moduli will appear in the

T 1,1 truncations. We find

B̂a
2 = ba2 + ba1 ∧ (η + A0) + 1

2
cadη + 2Re [baΩ] . (C.4)

In total, the two-forms contribute SL(2,R)-doublets ca of real scalars, complex scalars

ba, gauge fields ba1 and two-forms ba2. The expansion for the three-forms F̂ a
3 = dB̂a

2

can then be obtained from (C.4) by computing the exterior derivative. Similarly, the

expansion of the self-dual five-form provides three more scalars, two more gauge fields

and two more two-forms. One can show [37, 39] that these fields can be arranged in a

gravitational multiplet plus two vector multiplets of N = 4 gauged supergravity in five

dimensions3:
{graviton, 6 vectors, 1 real scalar}

2×{1 vector, 5 real scalars} .
(C.5)

Here the scalar fields parametrize the manifold [37,39]

SO(1, 1)× SO(5, 2)

SO(5)× SO(2)
. (C.6)

The fact that we obtain an N = 4 supergravity theory in five-dimensions might be

a bit surprising at first, since we have shown in Appendix B that type IIB solutions of

the form AdS5×SE5 only preserve eight supercharges, i.e. N = 2 in five dimensions. To

this end, consider the two linearly independent Killing spinors χ, χc on SE5 provided by

Theorem 8. Similar to (B.35), we can use these to expand the type IIB gravitino Ψ̂A as

Ψ̂A = ψA ⊗ χ⊗ θ + ψcA ⊗ χc ⊗ θ . (C.7)

This gives rise to four symplectic Majorana gravitini in five dimensions, which is con-

sistent with an N = 4 supergravity theory. However, for a theory to preserve all su-

percharges, we must have 〈δεΨ̂A〉 = 0, where ε is the supersymmetry parameter. We

have shown in Appendix B that for backgrounds of the form AdS5 × SE5, ε has to be a

complex spinor such that

ε = ψ ⊗ η ⊗ θ , (C.8)

2The notation u1,3 for the real scalars might seem a bit confusing at this point; however, in the case of

truncations on T 1,1 another real scalar labelled u2 will be present in the expansion of the metric. To keep

notation consistent with [51], we therefore label the real scalars in the general case accordingly.
3The two-forms were dualized to vector fields in the process.
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for ψ a Killing spinor on AdS5. Since the smallest spinor representation of Spin(1, 4)

is eight-dimensional [83], solutions of the truncated theory only preserve eight real su-

percharges, i.e. N = 2 supersymmetry. Indeed, this was found to be true in [37]. This

concludes our review of consistent truncations on general Sasaki-Einstein manifolds. We

will now turn to the special case of truncations on T 1,1.

N = 4 truncations of type IIB on T 1,1

The consistent truncations we studied in the previous section can be generalized for

the particular example of T 1,1 [43, 48, 49]. For this, note that T 1,1 ∼= S2 × S3 and thus

the second and third de-Rham cohomolgy classes are non-trivial. Hence, we can extend

the truncations on general Sasaki-Einstein manifolds by adding a closed, left-invariant

two-form Y ∈ H2(T 1,1,R) into the expansion, i.e. the set of expansion forms is now

(η, dη,Ω,Y). Since T 1,1 can be constructed as an U(1)-bundle over S2 × S2, there exist

two sets of left-invariant SU(2) one-forms σi and Σi [88]. Define the combinations

E1 = 1
6
(σ1 + iσ2) ,

E2 = 1
6
(Σ1 + iΣ2) ,

E ′2 = E2 + vĒ1 ,

E5 = η + A0 ,

η = 1
3
(σ3 + Σ3)

(C.9)

where v is a complex scalar. Then we can write the expansion of the ten-dimensional

metric as [43,48,49]

ĝ = e2u3−2u1ds2
5 + e2u1+2u2E1Ē1 + e2u1−2u2E ′2Ē

′
2 + e−6u3−2u1E5E5 , (C.10)

where u1,2,3 are three real scalars. Similarly, we can write

dη = i
4
(E1 ∧ Ē1 + E2 ∧ Ē2) ,

Y = i
2
(E1 ∧ Ē1 − E2 ∧ Ē2) ,

Ω = E1 ∧ E2 .

(C.11)

Then we find that the expansion of the two-forms B̂a
2 receives an additional term coming

from Y [43, 48,49],

B̂a
2 = ba2 + ba1 ∧ (η + A0) + 1

2
cadη + eaY + 2Re [baΩ], (C.12)

where ea is a doublet of real scalars. These scalars appear as moduli of AdS backgrounds

in the Betti-hyper truncation in Chapter 4. Moreover, the expansion of the three-forms

also contains an additional term proportional to Y ∧ η, i.e.

F̂ a
3 = dB̂a

2 + jaY ∧ η , (C.13)
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where the ja are constant topological charges. Similarly, one adds additional terms in

the expansion of the five-form F̂5. In total, one finds the following field content in the

truncation: the five-dimensional spacetime metric gµν , the graviphoton A0, four real

vectors which we label {A1
µ, A

2
µ, b

a
1µ}, four real tensor fields {ba2µν , Lµν , L̄µν} and 16 real

scalars

{u1, u2, u3, c
a, ea, k, τ, τ̄ , v, v̄, ba, b̄a} . (C.14)

These scalars parametrize the coset space [43,48,49]

SO(1, 1)× SO(5, 3)

SO(5)× SO(3)
. (C.15)

One can then show [43,48,49] that these fields can be reorganized into the gravitational

multiplet coupled to three vector multiplets4 in N = 4 supergravity. Thus the addition

of the non-trivial cohomology form Y gives rise to an additional vector multiplet in the

truncated theory. Due to its origin, this multiplet is usually referred to as the N = 4

Betti-vector multiplet. This multiplet will be particularly interesting in the study of

AdS vacua in N = 2 truncations on T 1,1 studied in Chapter 4.

4The four tensor fields obtained from the expansion of the type IIB fields are dual to four vector fields in

five dimensions.
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Non-existence of AdS vacua in the

NS-sector truncation

Let us briefly discuss the NS-sector truncation (4.5) of type IIB supergravity compacti-

fied on T 1,1 and prove that it does not admit supersymmetric AdS vacua. To begin with,

we review the scalar field geometries present in the NS-sector truncation and provide the

gauged isometries and associated moment maps [51]. The NS-sector truncation leads to

an N = 2 theory that contains the gravity multiplet coupled to two vector multiplets

and two hypermultiplets. Even though, this truncation is different from the Betti-vector

truncation. The 10 scalar fields1

{φ+ 4u1, u3, φ− 4u1, u2, c, e, b, b̄, v, v̄} (D.1)

are kept after truncating the RR-sector from type IIB supergravity and then reducing

to five-dimensions along the lines of Appendix C. The scalars φ+u1 and u3 in the vector

multiplets parametrize the projective special real manifold [51]

MNS
V = SO(1, 1)× SO(1, 1) , (D.2)

with special geometric data given by

h0 = e4u3 , h1 = e−2u1−2u3−φ/2 , h2 = e2u1−2u3+φ/2 , (D.3)

where C012 = 1
6

and all others zero. Lowering the index I according to (2.11) we find

h0 = 1
3
e−4u3 , h1 = 1

3
e2u1+2u3+φ/2 , h2 = 1

3
e−2u1+2u3−φ/2 . (D.4)

In the hypermultiplets, the scalars {φ−4u1, u2, c, e, b, b̄, v, b̄} parametrize the quater-

nionic Kähler manifold [51]

MNS
H =

SO(4, 2)

SO(4)× SO(2)
. (D.5)

1Here we dropped the index a = 2 on the fields c2, e2, b2 and b̄2.
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The metric on MNS
H can be read off from the kinetic terms of the hypermultiplet La-

grangian

LNSHyper =− 1
2
e−4(u1+u2)+φg̃ ∧ ∗g̃ − 1

2
e−4(u1−u2)+φG̃ ∧ ∗G̃− 4e−4u1+φf̃ ∧ ∗ ¯̃f

− 1
4
d(4u1 − φ) ∧ ∗d(4u1 − φ)− 4du2 ∧ ∗du2 − e−4u2Dv ∧ ∗Dv̄ ,

(D.6)

where
g̃ = (1− |v|2)Dc+ (1 + |v|2)De− 4Im (vDb) ,

G̃ = Dc−De ,
f̃ = Db+ i

2
v̄(Dc−De) .

(D.7)

The gauge group GNS acts on MNS
H via Killing vectors [51]

k0 = −(3ib∂b − 3ib̄∂b̄) + (3iv∂v − 3iv̄∂v̄)− j∂e ,
k1 = 2∂c ,

k2 = 0 ,

(D.8)

where we denote j ≡ ja=2. Moreover, the associated moment maps are given by

~µ0 = −[(3− 1
2
eφ/2−2u1(e−2u2((1 + |v|2)j2 + 2ivf − 2iv̄f̄)− e2u2j))~e3

− (3v̄ + 2ieφ/2−2u1(f − i
2
v̄j))~e1 − (3v − 2ieφ/2−2u1(f̄ + i

2
vj))~e2] ,

~µ1 = −[eφ/2−2u1(e−2u2(1− |v|2) + e2u2)~e3 − 2v̄eφ/2−2u1~e1 − 2veφ/2−2u1~e2 ,

~µ2 = 0 ,

(D.9)

where we denote f = fa=2.

With this data at hand, we can easily check that the NS-sector truncation does not

admit supersymmetric vacua. For this, we use the conditions (2.79) computed in Section

2.2. We begin by computing the conditions from the third equation 〈hIkI〉 = 0 in (2.79).

Using the data described above, we find

0 = 〈hIkI〉 =− 3ie4〈u3〉〈b〉∂b + 3ie4〈u3〉〈b̄〉∂b̄ + 3ie4〈u3〉〈v〉∂v − 3ie4〈u3〉〈v̄〉∂v̄
− e4〈u3〉j∂e + 2e−2〈u1〉−2〈u3〉−〈φ〉/2∂c .

(D.10)

Since all coordinate vector fields appearing in this equation are linearly independent

and the function e−2〈u1〉−2〈u3〉−〈φ〉/2 cannot vanish for any value of the scalar fields u1,

u3 and φ, this equation has no solution. Thus, without checking the moment map

conditions (2.82), we immediately find that the NS-sector truncation does not admit

supersymmetric AdS vacua. In particular, we anticipated this result since the Axion-

Dilaton is not present in this truncation but it was shown in [25] that always is a modulus

for type IIB solutions of the form AdS5 × SE5.
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