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Abstract

Enhancing terrestrial carbon sinks is much discussed as a climate engineering method

both in politics and science. The debate focuses mostly on its potential for carbon

sequestration and fossil-fuel substitution, whereas effects such as changes in heat and

water fluxes are often ignored. Furthermore, many previous studies used idealized sce-

narios to assess global biomass potentials without considering other ecosystem services.

To implement herbaceous biomass plantations in the Max-Planck-Institute Earth Sys-

tem Model, I parametrized a new plant type that reflects the properties of tall, highly

productive C4-grasses such as Miscanthus and Panicum and adapted the model’s phe-

nology and carbon cycle to represent the unique characteristics of these plantations.

To evaluate the model, I used values found in the literature and compared the model’s

performance with that of herbaceous biomass plantations in the Lund-Potsdam-Jena

managed Land model.

I assessed potentials and side-effects of herbaceous biomass plantations on the climate

in a ’plausible’ scenario: Based on the representative concentration pathway (RCP)

4.5 which assumes that large areas of agricultural lands are abandoned, I modelled the

climatic consequences of using such abandoned croplands for biomass plantations, un-

der an RCP8.5 forcing (high CO2-emissions). As baseline, I used a scenario previously

simulated by Sonntag et al. 2016 which assumes that forests naturally establish on

the abandoned areas, leading to substantial carbon uptake by 2100. I compared these

two options of land-use-based climate engineering with regards to sequestration po-

tentials and side-effects. Moreover, I examined the relevance of fossil-fuel substitution

and assessed the importance of going beyond pure carbon considerations by exploring

biogeophysical effects and their potential to offset or enhance impacts of altered CO2-

concentrations on the local or global climate.

My ’plausible’ scenario simulated an expansion of herbaceous biomass plantations to

5.6 million square kilometers. Global yields over the 95 years simulated amount to

255-330 PgC. When used for fossil-fuel substitution, they reduce CO2-concentrations

by 70-90 ppm and temperatures by 0.2-0.4◦C as compared to the baseline afforesta-

tion. Replacing forests with herbaceous biomass plantations not only significantly

alters plant carbon stocks but also how these carbon stocks develop over time. Forests

respond to CO2-fertilization more strongly than do herbaceous biomass plantations, so

that a replacement reduces the area’s sink capacity. At the end of the century, forests

would store 114 PgC more than do herbaceous biomass plantations. Nevertheless, with

fossil-fuel substitution, herbaceous biomass plantations are simulated to be more effec-

tive at sequestering carbon than forests. In many areas, they become more effective

than forests quickly, even when considering current technological limits of biomass con-

version into fossil-fuels.

Biogeochemical effects dominate the effects on the climate whereas biogeophysical ef-

fects are negligible on global and local scales. Only albedo significantly correlates over

large regions with the extent of herbaceous biomass plantations. However, changes
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were slight and did not affect local temperatures. Significant biogeophysical effects

were identified only for components of the water cycle in individual regions such as

southeast Brazil. Overall, I conclude that (1) herbaceous biomass plantations can

function as a method of climate engineering when deployed globally and if they are

established on abandoned croplands, (2) they have larger CO2-reduction potential than

regrowing forests when used for fossil-fuel substitution, (3) side-effects via biogeophys-

ical pathways are small compared to the cooling resulting from carbon sequestration.
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Zusammenfassung

Die Ausweitung terrestrischer Kohlenstoffsenken wird sowohl in Politik, als auch in

der Wissenschaft als klimaändernde Maßnahme (climate engineering) viel diskutiert.

Die Debatte konzentriert sich meistens auf deren Potential zur Kohlenstoffbindung,

während Effekte wie zum Beispiel zur Veränderung von Wärmeflüssen und Wasser-

haushalt oft ignoriert werden. Darüberhinaus benutzten viele frühere Studien ideal-

isierte Szenarien, um die globalen Biomassepotentiale einzuschätzen ohne andere Leis-

tungen globaler Ökosysteme zu berücksichtigen.

Um grasartige Biomasseplantagen in das Max-Planck-Institute Earth System Modell

zu implementieren, habe ich einen neuen Pflanzentyp parametrisiert, welcher die Eigen-

schaften großer, hochproduktiver C4-Gräser, wie Miscanthus und Panicum, wider-

spiegelt und passte die Phänologie und den Kohlenstoffzyklus an die Besonderheiten

dieser Plantagen an. Ich evaluierte das Modell mit Literaturwerten und verglich die

Modellleistung mit jener der grasartigen Biomasseplantagen des Lund-Potsdam-Jena

managed Land Modells.

Die Potentiale und Nebeneffekte grasartiger Biomasseplantagen auf das Klima schätzte

ich in einem ’plausiblen’ Szenario ab: Große Agrarflächen, welche nach dem Represen-

tative Concentration Pathway RCP4.5 aufgegeben werden, benutzt mein Szenario für

Biomasseplantagen, wobei diese Landnutzung an die Emissionen des RCP8.5 (hohe

Kohlenstoffdioxidemissionen) gekoppelt wurden. Als Vergleichsbasis benutzte ich ein

von Sonntag et al. 2016 entwickeltes Szenario, in welchem die gleichen Flächen aufge-

forstet werden, was bis 2100 zu erheblicher Kohlenstoffdioxidaufnahme führen würde.

Ich verglich diese beiden Möglichkeiten der landnutzungsbasierten Klimabeeinflussung

im Hinblick auf deren Kohlenstoffanreicherungspotentiale und möglicher Nebeneffekte.

Zudem, schtzte ich den Einfluss der Substitution fossiler Energieträger durch Biomasse

aus Biomasseplantagen auf die Kohlenstoffbilanz ab und untersuchte, wie wichtig es ist,

über die reine Kohlenstoffkreislaufbetrachtung hinauszugehen, indem ich das Potential

biogeophysikalischer Effekte analysierte, den Einfluß geänderter CO2-Konzentrationen

auf das lokale und globale Klima zu verstärken oder abzuschwächen.

Mein ’plausibles’ Szenario simulierte eine Expansion grasartiger Biomasseplantagen

auf 5.6 Millionen Quadratkilometer. Globale Ernten betrugen 255-330 Pg Kohlen-

stoff in den 95 Jahren der Simulation. Mit der Ersetzung fossiler Energieträger erziel-

ten grasartige Biomasseplantagen eine Reduktion atmosphärischer Kohlenstoffdioxid-

konzentrationen von 70-90 ppm und eine Senkung globaler Temperaturen von 0.2-

0.4◦C im Vergleich zum Aufforstungsszenario. Der Wechsel von Wäldern zu grasartigen

Biomasseplantagen veränderte nicht nur die Pflanzenkohlenstoffbestände, sondern auch

wie sich diese Kohlenstoffbestände über die Zeit entwickeln. Wälder reagieren stärker

auf Kohlenstoffdioxiddüngung als grasartige Biomasseplantagen, sodass der Austausch

die Kohlenstoffsenken der Flächen beeinträchtigte. Ende des Jahrhunderts enthielten

Wälder 114 Pg Kohlenstoff mehr als die grasartigen Biomasseplantagen. Trotzdem

waren grasartige Biomasseplantagen Dank ihrer Fähigkeit zur Substitution fossiler En-
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ergieträger bessere Kohlenstofffänger als Wälder. In vielen Gegenden wurden sie schnell

effektiver als Wälder, selbst unter Berücksichtigung unserer derzeitigen technologischen

Beschränkungen zur Herstellung von Treibstoffen aus Biomasse.

Biogeochemische Effekte dominieren die Auswirkungen auf das globale und lokale

Klima; die biogeophysikalischen Effekte sind vergleichsweise vernachlässigbar. Nur die

Reflektivität der Landoberfläche (Albedo) korreliert signifikant mit der Ausdehnung der

Biomasseplantagen. Dennoch waren die Änderungen so klein, dass sie die lokalen Tem-

peraturen nicht veränderten. Signifikante Änderungen des Wasserzyklus wurden nur

in einzelnen Regionen, wie dem Südosten Brasiliens, festgestellt. Insgesammt schließe

ich aus meiner Arbeit, dass (1) grasartige Biomasseplantagen als klimaändernde Maß-

nahme verwendet werden können, sofern sie auf aufgegebenen Agrarflächen angepflanzt

werden, dass (2) sie ein größeres Kohlenstoffsenkungspotenzial haben als Wälder,

vorausgesetzt sie werden als Ersatz für fossile Energieträger verwendet und dass

(3) Nebeneffekte über biogeophysikalische Wirkungen klein sind, im Vergleich zum

Kühlungspotential der Kohlenstoffspeicherung.
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Chapter 1

Introduction

Land-use and land-use change affect land carbon stocks and land surface properties

(Bonan, 2008; Pongratz et al., 2009b; Brovkin et al., 2013). These changes influence

the climate system. Land ecosystems can both absorb carbon dioxide via photosynthe-

sis and release carbon dioxide via respiration, thereby driving global carbon cycles and

altering carbon dioxide concentrations in the atmosphere (Lal, 2004; Arora and Boer,

2010). Land surface properties can alter wind speeds, radiation balance or latent and

sensible heat fluxes (Betts, 2001; Brovkin et al., 2006; Bonan, 2008). In this thesis I

analyze changes produced by one particular form of land-use change: the large-scale

establishment of herbaceous biomass plantations.

Herbaceous biomass plantations consist of highly productive C4-grasses such as mem-

bers of the genera Miscanthus and Panicum. Different species and varieties of these

perennial grasses grow under most climatic conditions from the inner tropics to the

northern temperate regions (Stewart et al., 2009; Zub and Brancourt-Hulmel, 2010;

Dougherty et al., 2014). Their uses include fodder and bedding for various grazing live-

stock as well as feed for coal power plants or as a basis for biogas and biofuel (Frühwirth

et al., 2006; McKendry, 2002a,b,c). As technologies for transforming cellulose into bio-

fuels improve, biomass value for fossil-fuel substitution increases (Nussbaumer, 2003).

Substituting fossil-fuels by biomass reduces net greenhouse gas emissions, further driv-

ing demand for biomass as countries struggle to meet both their rising energy needs

and their emissions reduction targets (Clifton-Brown et al., 2004; Heaton et al., 2008).

Therefore, many scenarios envisioning the future project expansions of areas used for

biomass cultivation throughout the 21st century (van Vuuren et al., 2011b). However,

how such large-scale changes in land-use will affect the global and regional climate

remains unclear.

Global climate reacts to changes in the Earth’s orbit, volcanism, rock weathering as well

as changes in carbon dioxide (CO2) concentrations (Hartmann et al., 2013; Masson-

Delmotte et al., 2013). Changes in Earth’s orbit and rock weathering act over millenia

and are negligible on human timescales. Volcanism acts quickly but its effects usually

decline within a few years. Changes in CO2-concentrations act on timescales of decades



2 Introduction

to centuries. Throughout the past century, CO2-concentrations rose and continue to

rise as a result of human activities (Subak et al., 1993; Hartmann et al., 2013; Betts

et al., 2016). Three activities have mainly contributed to this rise: fossil-fuel burning,

cement production and land-use change (Hartmann et al., 2013). Land-use change

emits CO2 when land-cover types with low carbon densities such as crops or pastures

replace carbon rich natural ecosystems such as forests (Pongratz et al., 2009b).

Regional climate additionally reacts to changes in land surface properties (Pongratz

et al., 2009a). Topography and vegetation height and density affect wind speeds.

Albedo determines the radiation balance at the surface and in the canopy, altering

sensible heat fluxes. Evapotranspiration drives latent heat fluxes, cooling the surface

and immediate surroundings but warming the atmosphere by increasing concentrations

of water vapor, a potent greenhouse gas (Bonan, 2008).

This thesis analyzes the global and regional effects of large-scale herbaceous biomass

plantations on the climate. I model the large-scale replacement of crops by biomass

plantations using a plausible rather than idealized scenario, in the global Max-Planck

Institute Earth System Model (MPI-ESM). The representative concentration pathway

RCP 4.5, developed for the coupled model intercomparison project (CMIP), projects

large-scale abandonment of agricultural areas as food production intensifies on the

most productive soils, diets shift to products with lower carbon footprints and costs

of carbon emissions rise (Thomson et al., 2011). I model the climatic consequences of

using these abandoned croplands for herbaceous biomass plantations, under an RCP

8.5 emissions forcing (Meinshausen et al., 2011; Riahi et al., 2011). I choose this hy-

brid between RCP 4.5 and RCP 8.5 for three reasons. First, RCP 8.5 projects the

highest increase in anthropogenic greenhouse gas emissions of all RCP scenarios. The

high CO2-concentrations ensure that the reduction produced by drawing-down carbon

from the atmosphere is maximized, which helps identify the scope of achievable CO2-

reduction. Second, the land-use projections of RCP 8.5 assume an increase in areas

used for food production to feed a rapidly growing population. The remaining forest

lands might be used for biomass plantations but this would create an undesirable signal

from deforestation. The land-use of the RCP 4.5 provides the large areas necessary for

my study in the abandoned croplands. Third, this study builds on a study by Sonntag

et al. 2016 in which the same basic scenario setup is used but with the original RCP4.5

land-use left intact. This allows a direct comparison between the effects of afforesta-

tion and biomass plantations using the same areas alternatively for afforestation and

for biomass plantations. I ask what the net effects of such large-scale changes would

be on the regional and global climate.



1.1 Motivation 3

1.1 Motivation

1.1.1 Increasing carbon dioxide emissions drive climate

change

The discovery of fossil-fuels as an energy source spawned an era of unprecedented

wealth and comfort for a larger proportion of the global population than ever before.

Fossil-fuels release their energy when they are burned. Burning off fossil-fuels in turn

emits carbon dioxide (CO2) as a by-product. The growing demand for energy and

associated CO2-emissions have rapidly increased global CO2-concentrations in the at-

mosphere from roughly 280 ppm in pre-industrial times to currently 400 ppm (Subak

et al., 1993; Hartmann et al., 2013; Betts et al., 2016).

CO2, along with other greenhouse gases, such as water vapor and methane, traps heat

and energy from the sun or radiated back from Earth and prevents it from escaping into

space. This phenomenon warms the troposphere naturally and is necessary to make

Earth habitable for humans and most other species. In the past few million years CO2-

concentrations were relatively constant oscillating between 200 and 300 ppm. These

oscillations caused changes in global average annual temperatures and all available data

indicate that the recent rapid increase in CO2-concentrations has triggered additional

warming (Hartmann et al., 2013). In 2015 average global temperatures were approxi-

mately 1◦C higher than a century ago (Hansen et al., 2016).

This rapid increase in global temperatures is the most noticeable symptom of global

climate change. Higher temperatures increase evaporation from the oceans and evapo-

transpiration from land ecosystems and change latent and sensible heat fluxes. Recent

studies suggest that the atmospheric alterations even change global wind patterns such

as jet streams (Seidel et al., 2008).

How these diverse phenomena will affect global weather systems is still unclear. Re-

cent findings suggest they could lead to increased droughts in some areas and flooding

in others. Changing weather patterns affect ecosystems on multiple levels and have

already led to substantial migrations of various species, while others, unable to either

adapt or migrate, have gone extinct (Thomas et al., 2006; Pimm and Joppa, 2015).

Humans depend on ecosystems for their sustenance. Ecosystems provide oxygen, food,

raw materials for buildings, and various other appliances and filter pollutants from

both air and water. Yet, both land and marine ecosystems are now threatened by

rapid climate change. If humans fail to stabilize global CO2-concentrations, they risk

jeopardizing food security and water supplies and losing various other ecosystem ser-

vices.
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1.1.2 Bioenergy: a possible solution?

Using biomass for energy production has been suggested as a climate engineering

technique to both reduce CO2-concentrations in the atmosphere and decrease emis-

sions from fossil sources (Adler et al., 2007). But the many biogeochemical and

biogeophysical feedbacks between ecosystems and the atmosphere, many of which are

poorly understood, complicate projections about the net effects of large-scale land-use

change.

Biomass can substitute fossil-fuels by various means: sugar and oil-rich plants such

as sugarcane or oil-seed can be fermented to ethanol or biodiesel to substitute petrol,

cellulose and biodegradable waste can be digested to biogas to substitute natural gas

and any kind of biomass can be burned to substitute coal. In all cases except the use of

biodegradable waste, large areas of farm or forest-land must be dedicated to producing

biomass. While merely replacing fossil-fuels by biomass would reduce emissions from

fossil sources, the associated large-scale land-use change could increase emissions

temporarily. These additional emissions would then first have to be sequestered, before

the biomass plantations could truly be effective. Furthermore, land-use change affects

other land surface properties especially if diverse natural habitats or conventional

agricultural crops and pastures are replaced by dedicated bioenergy crops.

Bioenergy crops differ from other plants. Because of their quick growth and high

productivity, they transpire more, altering local water cycles and heat fluxes (Hickman

et al., 2010). They regrow from the roots after harvesting, changing carbon and

nutrient cycles (Jørgensen, 1997). Biomass grasses affect surface albedo outside the

tropics because of their long growing season and the timing of the harvest, in late

winter or early spring. The 3 - 4 m high stems dry over the winter masking snow in

colder regions (Miller et al., 2015). Any simulation assessing the effects of biomass

plantations on the Earth system should account for their physiology.

Several previous studies assess various aspects of large-scale biomass plantations. Stud-

ies focusing on economic potentials find that policy incentives aiming at land-based

climate mitigation strategies may jeopardize food security as biomass plantations

compete for land with food crops (Beringer et al., 2011; Popp et al., 2012; Humpenöder

et al., 2014). Conversely, if biomass plantations displace natural ecosystems, these

ecosystems emit additional carbon dioxide to the atmosphere, postponing the ’break-

even point’ at which biomass plantations start sequestering carbon (Melillo et al.,

2009; Hughes et al., 2010; Dass, 2013). Regardless, most studies agree that biomass

plantations may benefit the climate by substituting fossil-fuels and thus preventing

emissions (Clifton-Brown et al., 2004). However, opinions diverge on the scales of this

substitution and on how biomass plantations may affect non-carbon related aspects

of the climate system. If biomass crops such as wheat replace tropical forests, they

increase albedo which should lead to a cooling but decreases in evapotranspiration

increase surface temperatures (Hallgren et al., 2012, 2013). If biomass plantations

replace temperate or boreal forests, albedo and evapotranspiration both cool the
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climate (Georgescu et al., 2011; Hallgren et al., 2013). How these interactions between

albedo, evapotranspiration and surface heat fluxes influence local temperatures is still

debated.

Beyond their effects on climate, biomass plantations also affect their environment.

Evapotranspiration can lead to changes in terrestrial hydrological cycles, changing

percolation and runoff (Vanloocke et al., 2010; Le et al., 2011). In addition, both

herbaceous and woody biomass plantations would push ecosystems even further away

from the natural state than crops currently do (Heck et al., 2016). Such changes impact

the surrounding ecosystems and can lead to additional feedbacks to the climate system.

1.1.3 Research questions

All previous studies leave gaps in our understanding of the influences of different land-

use types on the climate. None of them compares how herbaceous biomass plantations

would affect the climate, if they were established not at the expense of forests or

agricultural areas, but on areas that might be abandoned for economic or demographic

reasons. No study analyzes biomass plantations in a global land-use scenario, including

its feedbacks on the climate, using a global, fully-coupled model. The representative

concentration pathway RCP4.5 projects that large areas of agricultural land will be

abandoned within the coming century. I intend to compare the effects of two different

land-use types planted on these areas and thus close one of the gaps in our understand-

ing of the earth system.

My study aims at presenting a comprehensive picture of potentials and effects of large-

scale herbaceous biomass plantations on the climate. In this study I will analyze the

consequences of large-scale implementations of herbaceous biomass plantations on the

climate in order to resolve the following questions:

• How do different land-uses influence the regional and global climate when imple-

mented on a large scale?

• How large are the effects of fossil-fuel substitution that can be consistently ac-

counted for in a coupled model?

• How do biogeophysical properties of herbaceous biomass plantations affect the

climate on local and global scales?

This thesis describes the implementation and evaluation of herbaceous biomass plan-

tations in the Max-Planck-Institute Earth System Model (chapter 2), as well as the

results from four fully coupled model simulations with herbaceous biomass plantations

using different settings (chapter 3). I compare these simulations with an afforestation

baseline simulation described in Sonntag et al. 2016 and the two RCPs from which

the hybrid scenario was constructed, RCP4.5 and RCP8.5 (chapters 3 and 5). I also
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analyze a simulation designed to isolate biogeophysical effects, to understand how bio-

geophysical feedbacks of land-use change might affect the Earth system (chapter 4).

1.2 Background

1.2.1 The Earth System

The Earth System contains six basic elements: the atmosphere, the hydrosphere, the

cryosphere, the lithosphere, the pedosphere and the biosphere. Each element exchanges

matter and energy with the other elements. The atmosphere is composed of the

gasses surrounding the Earth. The hydrosphere encompasses all water bodies such

as oceans, lakes and rivers but also underground reservoirs of water such as aquifers.

The cryosphere contains all perennial bodies of ice. The lithosphere contains all rocks.

The pedosphere encompasses all soils and the biosphere encompasses all living organ-

isms.

Energy enters the atmosphere in the form of sunlight and radiates back into space as

heat. Sunlight is absorbed by the oceans and the land which can either radiate it back

or transfer it as heat to deeper layers. The biosphere uses sunlight to drive various bi-

ological processes, the most important of which is photosynthesis conducted by plants

and some microorganisms. This process drives the uptake of carbon into the biosphere

that is the major source of energy for life on Earth.

1.2.1.1 Global carbon cycle

Carbon cycles through all components of the Earth System (figure 1.1). In the atmo-

sphere, it forms simple gasses such as carbon dioxide or methane. In the ocean, these

gasses dissolve in the water, react with ions or are taken up by microorganisms. On

land, carbon dioxide is incorporated by plants into living tissues. Both on land and

in the ocean, carbon can be mineralized to form sediments, rocks or fossil resources,

such as oil, gas or coal. Carbon-containing gasses escape back into the atmosphere

through natural processes such as volcanism, wildfires, decaying of organic matter or

by humans altering land-use, burning organic matter or fossil-fuels. The processes

driving the various fluxes operate at timescales between years and millions of years

(Ciais et al., 2013).

Gasses dissolve in ocean water and are released constantly. Currently more carbon

flows towards the ocean with a net flux of 2.3±0.7 PgC/a (Hartmann et al., 2013). In

the ocean, carbon dioxide reacts with water to form carbonic acid and bicarbonate.

This reaction is reversible and can release carbon dioxide to the atmosphere as well

as bind it. Carbon dioxide can also be absorbed by phytoplankton via photosynthesis

and released via respiration or stored in the organic tissues of microorganisms, plants

and animals, which eventually die and sink to the bottom forming sediment layers.
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Figure 1.1: Simplified representation of the global carbon cycle, human disturbance is high-

lighted in red.
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Microorganisms can also use bicarbonate to form calcareous shells, releasing carbon

dioxide in the process.

Carbon enters the land ecosystems mainly through photosynthesis in land plants and

microorganisms (123 PgC/a), although a small amount is bound chemically through

rock weathering (0.3 PgC/a, Hartmann et al. 2013). A variety of processes release

carbon from the land biosphere. Natural processes include respiration, wildfires and

freshwater outgassing. Carbon stored in living organisms enters the soils through roots

or when organisms die. In the soils, microorganisms mineralize organic carbon com-

pounds. Both organic and inorganic carbon compounds can be washed out of soils to

rivers and the ocean where it accumulates as sediments. Over time, sediments com-

press to stone, locking carbon in the lithosphere. This carbon can be released through

volcanic activity back into the atmosphere.

Under a stable climate, the various carbon compounds and fluxes reach equilibrium

where fluxes between pools compensate each other. This equilibrium can be perturbed

by natural processes, such as volcanism, or by human activities. Humans upset this

balance by altering existing fluxes and introducing additional fluxes. Human activities

contribute to the release of carbon from land ecosystems through biomass burning,

wood harvest, land-use change, crop production and animal husbandry. In addition,

humans alter sedimentation rates by diverting or damming rivers or releasing waste

products into freshwater and marine ecosystems. Most importantly, the massive burn-

ing of fossil-fuels releases large quantities of carbon dioxide from the lithosphere directly

into the atmosphere. This steady input of carbon into the atmosphere alters the cli-

mate and influences all other parts of the carbon cycle.

Most plants follow one of two alternative photosynthetic pathways. The C3-pathway

binds carbon dioxide in a compound containing 3 carbon atoms at the beginning of the

Calvin cycle which produces primary sugars. The C4-pathway binds carbon dioxide in

a compound containing 4 carbon atoms which temporarily stores carbon and transports

it to the photosynthetically active cells. There, they release carbon dioxide, artificially

increasing its concentration. This increases photosynthetic and water-use efficiencies

compared to C3-plants. Most C4-plants are grasses (Ehleringer and Cerling, 2002).

Rising carbon dioxide affects C3-plants more than C4-plants. C3-plants are directly

dependent on atmospheric carbon dioxide concentrations for their photosynthetic effi-

ciency, while C4-plants artificially regulate the carbon dioxide concentrations in their

cells to suit their needs. Thus, when carbon dioxide concentrations increase in the at-

mosphere, C3-plants respond by increasing their productivity and water-use efficiency.

C4-plants respond similarly, but to a lesser degree (Ghannoum et al., 2000). In both

C3- and C4-plants photosynthetic efficiency correlates with water use efficiency. There-

fore, changing one parameter affects other land-atmosphere interactions.
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Figure 1.2: Simplified representation of the land-atmosphere interactions. Values for albedo

as simulated by JSBACH.

1.2.1.2 Land-atmosphere interactions: plants influence the climate system

beyond the carbon cycle

The land surface exchanges energy and water with the atmosphere (figure 1.2).

These exchanges depend on the surface type. Surfaces absorb, scatter or reflect

sunlight, depending on their reflectivity (albedo) and orientation, directing energy

fluxes. Surface roughness slows, channels or diverts airflow, altering wind speeds and

directions. Water evaporates, cooling surfaces and transporting heat back into the

atmosphere.

Vegetation dominates these exchanges in all but the most barren regions. Surface

properties in different regions depend largely on the plant types growing there. Plant

types differ in leaf color, texture, orientation and area as well as density and clumping

patterns. These properties determine surface roughness and thus influence air flows

and wind speeds and directions in the canopy (Vautard et al., 2010). Forests impact

surface roughness more than grasses because of their greater height and complex

canopies. Thus, forests affect a larger volume of air than grasses and to a greater

extent thanks to their more heterogeneous canopies.

Trees also affect albedo, especially in winter when dark branches mask snow while

grasses are completely covered by snow producing a homogenous, highly reflective

surface. In spring, summer and autumn, canopy structures and densities scatter

light. Leaf color, texture and orientation determine albedo and thus light distribution,

diffusion and reflection. Leaf absorption and reflectance differs between wavelengths.

Leaves reflect far more in the near infrared (NIR) spectrum than in the visible range
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(VIS) because the latter drives photosynthesis (Rechid et al., 2009; Schaaf et al.,

2002).

Plants influence how water cycles through ecosystems. Canopies intercept precipita-

tion, reducing the amount of water input to soils as some water evaporates directly

from the surfaces of leaves. Canopy interception also increases the duration of water

input to soils as moisture drips from the leaves long after precipitation has stopped.

Roots loosen soils, increasing the soils’ capabilities to absorb water. Dense canopies

shade soils, cooling them and reducing evaporation from their surface. Simultaneously,

extensive root systems absorb water and transport it to the canopies which transpire

and transfer it back to the atmosphere. Thus, canopies increase the overall surface

area through which water is exchanged with the atmosphere.

Transpiration correlates with the leaf area index of the canopy. Leaf area index

expresses total leaf area of the canopy per unit ground area. Leaf area determines the

number of stomata which in turn regulate transpiration. Therefore more extensive

canopies with higher leaf area index lead to higher transpiration. C4-grasses alter

this relationship by increasing their water-use efficiency. This allows them to close or

partially close their stomata during hot or dry conditions without losing their capacity

to photosynthesize.

Climate change affects all land-atmosphere interactions. Increasing temperatures

could lead to increased transpiration while increased carbon dioxide levels could

increase water-use efficiency and therefore decrease transpiration, especially under

drought conditions. Climate change also affects plant distributions and therefore all

aspects related to canopies and root systems. These shifts are particularly conspicuous

when forests invade grasslands or grasslands outcompete forests in a certain area.

Humans influence land-atmosphere interactions through land management and

land-use change. As with natural ecosystem shifts, land-use change involves changes

in the composition and types of plants growing in an area. However, unlike shifts

due to climate change, humans adjust land-use according to their needs rather than

according to the plants and ecosystems best suited for the local climate. Thus plants

and ecosystems fostered by humans often grow under suboptimal conditions or are less

well adapted to the environment they grow in, than other plants or ecosystems might

be. Thus, human induced changes to ecosystems can feed back into the climate both

through land-use change and through the choice of plants favored by land managers.

Urbanization is a special case of land-use change. Urbanization seals soils for roads

and buildings and significantly alters energy and water fluxes in and around affected

areas. However, in the year 2000 cities only covered 0.5% of the land surface and this

fraction is expected to rise to approximately 1.2% of the land surface (Seto et al.,

2012). This area is not considered in the CMIP5 version of the MPI-ESM.

Historically, the most extensive land-use change was the conversion of forests and

natural grasslands to croplands and pastures (Houghton and Nassikas, 2017). In

recent years, while deforestation still dominates in the tropics, other areas are

abandoned either because their productivity declined, or because of policies promoting
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afforestation and restoration of natural ecosystems. Some areas are also converted to

biomass plantations.

1.2.2 Biomass substitutes for fossil-fuels

Fossil-fuels produce energy depending on the type of fuel. Coal burns in power plants

generating electricity and heat. Oil burns in the engines of motorized vehicles gener-

ating motion. Gas can be used for either of these purposes. Each of these fuels can be

substituted by biomass.

Two types of biomass are currently used for energy: organic residues and dedicated

crops (Cherubini, 2010). Organic residues can stem from plants or animals. Plant

residues can come from harvest byproducts, such as straw from food or feed crops or

branches from harvested trees that would otherwise remain on fields or in forests and

decay. Plant residue can also come from waste products such as discarded wooden

furniture or beams transformed into pellets or any other type of organic waste. Animal

residues usually stem from excrement or animal fats, byproducts of animal husbandry

and meat production. Dedicated crops are divided into three types: oil-rich, starch-

and sugar-rich and lignocellulosic feedstock. Oil-rich seeds directly yield vegetable oils

that are converted into biofuels. Starch is broken down into sugar which is converted

into ethanol, another biofuel that can substitute mineral oil. Cellulose-rich crops such

as trees or grasses can be directly used in conventional coal plants for co-firing. Alter-

natively, they can be converted to biofuels via the Fischer-Tropsch-process (van Vliet

et al., 2009).

Both types of biomass have advantages and drawbacks. Using organic residues reduces

wastes and emissions from landfills. In addition, they occur as by-products of con-

ventional industries. Therefore, their production is economical and does not require

additional land dedicated to their cultivation. However, their availability is limited by

the processes that generate them. Their main drawback is that these waste products of-

ten were returned to the land, especially in agriculture and forestry, which contributed

to nutrient recycling and carbon input into soils. Dedicated crops often yield more

energy than waste products. They are bred specifically for their purpose, decreas-

ing conversion losses. However, dedicated crops block land which could otherwise be

used for food or timber production. Their production often involves large quantities of

fertilizer, pesticides or other energy-inputs, decreasing their economic and mitigation

potentials. In the case of woody biomass plantations, long rotation times can further

reduce financial gains.

Lignocellulosic feedstocks outperform other dedicated crops because of their versatility,

higher productivity and their ability to grow on marginal or degraded lands unsuit-

able for food crops. In addition, land-use efficiency increases by 50% for lignocellulosic

biofuels compared to sugar- or starch-derived bioethanol (Valles et al., 2014). In par-

ticular, herbaceous biomass plantations, such as Miscanthus or Panicum plantations,
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combine high productivity with rapid rotation times, ensuring stable incomes for pro-

ducers. In addition, these perennial grasses need little to no fertilizer because of their

ability to recycle nutrients. Outside the tropics, their stems remain on the fields over

the winter, protecting soils from erosion and allowing nutrients to leech back into the

soils. This process dries the stems and reduces nitrogen content, increasing the quality

of harvested material. Energy inputs are minimized in herbaceous biomass plantations

because of their perennial nature. The roots survive and regrow after each harvest.

Thus, a single planting event is followed by up to twenty years of harvests (Dufossé

et al., 2014).

1.2.3 Biomass in global climate policy

Historically, biomass provided the vast majority of humanity’s energy. Fires fueled by

wood, peat or dung heated homes and cooked meals. Charcoal burners transformed

wood into charcoal for the use of smiths, glass makers and other artisans. During

the industrial revolution, fossil-fuels replaced most of this biomass as primary energy

source, particularly in industrialized nations. While this generated wealth for oil-rich

countries, others became dependent on oil imports.

In 1931, the Brazilian government started encouraging the use of sugarcane-derived

ethanol as an additive to gasoline to reduce their dependency on oil imports (Nass et al.,

2007). During the oil crisis of the 1970s, many oil importing countries became aware of

their own vulnerability and dependence on this finite resource and began searching for

alternative energy sources, one of which was biomass. The amount of energy derived

from biomass slowly increased from then on (Gennari et al., 2015). Currently, biomass

provides 14% of humanity’s primary energy. About 75% of biomass provides energy for

heating and cooking in developing countries, while the remaining 25% of biomass pro-

vides electricity, heat and liquid and gaseous fuels for industrialized nations (Parikka,

2004). For instance, bioethanol use for fuel supplied 2.5% of all transport fuels in 2012

(Nass et al., 2007; Valles et al., 2014). However, total energy produced, approximately

40 EJ/a in 2004, only amounted to 38% of estimated potentials of 100 EJ/a (Parikka,

2004).

As climate change gradually became a more pressing issue, renewable energies found

their way into numerous policies meant to limit CO2-emissions. In an agreement in

2003, the European Union (EU) targeted a share of biofuels in gasoline of 2% until

2005, 5.75% until 2010 and, in 2007, extended their target to 10% until 2020 (Schlegel

et al., 2007; Söderberg and Eckerberg, 2013). In 2007, the United States of America

(USA) targeted a production of 80 Gl/a of bioethanol from non-grain sources until

2022 (Gelfand et al., 2013). Interestingly, the policy specifically mentions non-grain

sources, showing how states strive to balance food security and energy production.

In 2015, the United Nations Climate Change Conference (COP21) negotiated the Paris

Agreement which formulates the intent of all member states to limit global average

temperature increase to less than 2◦C. This target requires substantial decreases of



1.2 Background 13

CO2-emissions from fossil sources. The Paris Agreement also acknowledges the im-

portance of food security, further enhancing the significance of non-grain sources for

biofuels.

Apart from the conflict between food and fuel, biomass production for fossil-fuel sub-

stitution may have other consequences on local scales which could make them less

attractive to local decision makers. Any change in land-use changes land-atmosphere

interactions which ultimately determine local climate, water availability and overall

human well-being. Any measures to mitigate climate change will only be implemented

if people benefit from them.

In spite of all efforts, studies show that global efforts will likely fail to achieve the 2◦C

target unless they aggressively reduce their emissions and additionally invest in tech-

nologies to mitigate climate change (Gasser et al., 2015). Countries can reduce emis-

sions by further developing and deploying renewable energies. Lignocellulosic biomass,

as the most versatile renewable energy, could be deployed on much larger scales than

they currently are and thereby substitute larger amounts of fossil-fuels. The impacts of

such large-scale changes on the climate may not be as straightforward as they appear.

Understanding the multiple feedbacks and possible side-effects of such changes may

prevent potentially harmful incentives. A safe way of exploring the effects of land-use

policies on the climate is by simulating them in an Earth System Model.

1.2.4 Modeling biomass in an Earth System Model

Earth System Models simulate the various aspects and feedbacks of the Earth System.

Their goal is to represent as many exchanges of matter and energy between the

different components of the Earth System as possible. Models further understanding

of the Earth System and the complex interplay between its parts. Models allow

projections into the future and help decision makers envision what different policies

might entail.

A fully coupled Earth System Model is particularly useful when attempting to model

the effects of large-scale land-use change on the climate. When fully coupled, Earth

System Models represent not only land-atmosphere interactions but also the reactions

of the ocean. Since the ocean serves as both a large heat and carbon sink and the main

source of rainwater on Earth, it can react dynamically and non-linearly to changes

in the atmosphere as well as feed its reactions back into the atmosphere from where

it can influence the land. Two exchanges are particularly important in this context:

carbon and water.

Carbon outgassing from the ocean could potentially offset reductions in fossil-fuel use.

During the past century, the ocean has absorbed approximately 48% of anthropogenic

emissions (Sabine et al., 2004). These accumulations depend partly on the photo-

synthetic activities of phytoplankton and partly on the partial pressure difference at

the ocean-atmosphere interface. If this pressure difference changes, the ocean could

release some of the carbon dioxide it has accumulated partly or totally offsetting any
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land-based efforts to reduce greenhouse gas emissions.

Water continuously evaporates from the ocean’s surface. The amount depends on the

amount of energy available. As temperatures rise, more energy is available and hence

more water evaporates from the ocean’s surface. More water vapor in the atmosphere

leads to more rainfall both on the ocean and on land. Plants rely on precipitation for

their existence. Precipitation determines where certain plant types can grow. Chang-

ing precipitation regimes can shift the optimal ranges for ecosystems and thus lead to

changes in vegetation coverage and type. Thus, increases in precipitation may trigger

increases in photosynthetic activity of land-plants that were formerly water limited, en-

hancing the natural land carbon sink. Such feedbacks from the ocean to the land must

be taken into account to determine the full effects of any land-use policy on the climate.
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Chapter 2

Implementation of Herbaceous

Biomass Plantations into a Global

Earth-System Model

2.1 Introduction

Any modeling study begins with adjusting the model to represent the processes under

scrutiny. The land component JSBACH of the Max Planck Institute Earth System

Model (MPI-ESM) does not contain herbaceous biomass plantations. Therefore, I de-

veloped a model for this plant type and included it in the model.

Several previous studies have tried to model herbaceous biomass plantations. Most of

these studies used regional models (Clifton-Brown et al., 2004; Vanloocke et al., 2010;

Georgescu et al., 2011; Le et al., 2011) or dynamic global vegetation models that do not

represent the atmosphere and ocean (Melillo et al., 2009; Beringer et al., 2011; Dass,

2013; Humpenöder et al., 2014; Heck et al., 2016). Hughes et al. 2010 use the C4-grass

plant functional type of their vegetation model as an approximation for Miscanthus.

However, Miscanthus and other grasses used for bioenergy production differ greatly

from common C4-grasses. For instance, C4-grasses in Hughes et al. 2010 have a leaf

area index of 3 m2/m2, while Miscanthus reportedly can reach levels exceeding 9 m2/m2

(Heaton et al., 2008). Leaf area index determines leaf surface area which influences

evapotranspiration, surface albedo and roughness, energy fluxes and canopy structure.

A generic C4-grass plant functional type, therefore, cannot adequately represent Mis-

canthus if the study aims to examine the effects of herbaceous biomass plantations on

the climate.

I model herbaceous biomass plantations using all available literature values to

parametrize and evaluate the model. Importantly, values found in the literature, ob-

tained through field measurements, underline the unique characteristics of biomass

grasses. I assess the model using available literature values for yields and water use
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efficiency, the only variables available for Miscanthus and Panicum that are not used

as input parameters by the model. Yields are emphasized since more data is available

for them than for water use efficiency and from a wider variety of climatic zones.

Apart from describing the implementation of herbaceous biomass plantations, this

chapter also describes the modification of the land-use scenario. The land-use sce-

nario modifies the original representative concentration pathway, RCP4.5 land-use. In

the original RCP4.5 land-use, large areas of agricultural lands are abandoned. These

areas then revert to natural lands, such as forests and grasslands. In the modified

scenario, all areas which would have reverted to forests are reclaimed for herbaceous

biomass plantations. JSBACH models land-use change in its transition scheme. A

transition describes a shift from one land-use type to another in a given area. The

transition scheme of JSBACH describes the ensemble of all changes between the differ-

ent land-use types present in a given area. In this chapter, I describe how I modified

the transitions scheme to include herbaceous biomass plantations.

Several steps are necessary in order to simulate herbaceous biomass plantations in

JSBACH. First, I characterized herbaceous biomass plantations as a separate plant

functional type within JSBACH. Second, I adapted the phenology scheme of JSBACH

to account for the unique annual cycle of herbaceous biomass plantations. Third, I

developed a harvest scheme that enabled carbon storage and simulated ’burning’ in

a coal power plant. Lastly, I modified the transition scheme of JSBACH to include

herbaceous biomass plantations.

2.2 Materials and Methods

2.2.1 The Max Planck Institute Earth System Model, MPI-

ESM

The global earth system model MPI-ESM couples the atmospheric general circula-

tion model ECHAM6 (Stevens et al., 2013) with the ocean circulation model MPIOM

(Jungclaus et al., 2013). MPIOM includes the ocean biochemistry model HAMOCC5

(Ilyina et al., 2013). ECHAM6 contains the land surface and vegetation model JS-

BACH (Reick et al., 2013; Schneck et al., 2013). The version used for the original

CMIP5 experiments as described by Giorgetta et al. 2013, was modified to represent

herbaceous biomass plantations.

In all simulations the atmosphere and the land are resolved with a T63 grid (approx-

imately 1.875 × 1.875 Gaussian grid), whereas the ocean and ocean biochemistry are

resolved with a GR15 grid (approximately 1.5 × 1.5 horizontal resolution). Vertical

resolution consists of 47 layers for the atmosphere (from the surface to 0.01 hPa) and

40 layers for the ocean.

The MPI-ESM includes closed carbon and water cycles. Carbon, water and energy

are exchanged between model components via the OASIS coupler (Giorgetta et al.,
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2013). Atmospheric carbon dioxide concentrations can be either prescribed or driven

by anthropogenic emissions. Emission driven simulations allow carbon dioxide concen-

trations to adjust in response to feedbacks from the land or ocean.

2.2.2 JSBACH

JSBACH simulates physical and biochemical processes of the land surface. Vegetation

is represented by plant functional types (PFTs) organized in a tile-structure. The num-

ber of tiles varies depending on initial settings. Surface properties and carbon fluxes

are calculated for each tile separately. Tiles are grouped into land-cover types between

which land-use transitions occur. Land-use transitions are implemented in accordance

with the harmonized land-use scheme developed by Hurtt et al. 2011 (Reick et al.,

2013). In addition, natural vegetation types can shift dynamically in response to cli-

matic stimuli (Brovkin et al., 2009).

The land carbon cycle is represented by a series of pools. Carbon enters the plant

carbon pools via photosynthesis and leaves via respiration and litter production. Lit-

ter pools decompose into the humus pool. Carbon in the litter and humus pools is

slowly mineralized and returns to the atmosphere. Whenever the area of a given plant

functional type changes due to land-use transitions or dynamic vegetation shifts, the

carbon contained in its pools is reallocated to account for the change (Pongratz et al.,

2009b; Schneck et al., 2013).

2.2.3 Herbaceous biomass plantations

Miscanthus and Panicum naturally grow in a large variety of tropical, subtropical and

temperate climates. In plantations, these frost-tolerant C4 grasses can grow far beyond

their natural range (Zub and Brancourt-Hulmel, 2010). These perennial plants grow

as long as conditions are favorable which can be all year for wet tropical regions. When

conditions cease to be favorable (winter, dry season), above-ground biomass dies while

roots survive, allowing them to regrow from the roots as soon as conditions improve

(Frühwirth et al., 2006; Hansen et al., 2004).

Outside the tropics, farmers harvest herbaceous biomass plantations in late win-

ter/early spring, before the start of the growing season (Frühwirth et al., 2006). During

the winter, nutrients leech from the above-ground biomass and return to the soil, re-

ducing the need for fertilizer (Cadoux et al., 2012). There are no reports on how

Miscanthus and Panicum are managed in the tropics.
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2.2.4 Literature review and model evaluation

2.2.4.1 Yield data

Due to their economic potential, many studies have analyzed yield potentials of

herbaceous biomass plantations. They focus on different species of the genera

Miscanthus and Panicum. All studies used for model evaluation are listed in table 2.1

along with the mean yields they report. Citations were checked to prevent the same

data from being used twice.

For the evaluation, studies were grouped by country or, for larger countries, by

state, region or province. Yields were averaged over all available yields and all

reported treatments, such as planting density, cultivar choice, fertilization or irrigation

input. Averages over several years and larger areas reduce biases resulting from local

conditions (soil, microclimate) or specific weather conditions (drought, rainy growing

season). Averages over different cultivars, species and genera reduce biases resulting

from species-specific growing preferences. Averages over different treatments reduce

biases resulting from the choice of cultivation techniques.
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Table 2.1: All studies used for the evaluation of the model and the mean yields they report

Study
Country,

State/Province
Genus

Average Yields

Reported [t/ha]

Acaroǧlu and Aksoy 1998 Turkey Miscanthus 27.7

Acaroǧlu and Şemi Aksoy 2005 Turkey Miscanthus 12.6

Adler et al. 2006 USA, Pennsylvania Panicum 5.6

Andrea et al. 2014 Brazil, Parana State Panicum 10.0

Angelini et al. 2009 Italy Miscanthus 28.7

Aravindhakshan et al. 2010 USA, Oklahoma Miscanthus 13.1

Arundale 2012

USA, Georgia

USA, Illinois

USA, Kentucky

USA, Louisiana

USA, Michigan

USA, Mississippi

USA, New Jersey

USA, Oklahoma

USA, South Dakota

Canada, Ontario

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

4.5

23.0

16.0

9.0

25.0

19.5

7.0

6.0

5.0

6.5

Brosse et al. 2012

Spain

Greece

Italy

Canada, Quebec

USA, Illinois

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

24.0

35.0

31.0

10.5

34.0

Christian et al. 2005 United Kingdom Miscanthus 15.5

Christian et al. 2008 United Kingdom Miscanthus 17.8
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Table 2.1: All studies used for the evaluation of the model and the mean yields they report

Chung and Kim 2012

Switzerland

Austria

Italy

Germany

United Kingdom

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

16.0

22.0

25.0

17.5

15.5

Clifton-Brown et al. 2001

Portugal

United Kingdom

Germany

Denmark

Sweden

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

26.9

12.1

17.0

11.5

16.1

Clifton-Brown et al. 2004 Ireland Miscanthus 12.0

Clifton-Brown et al. 2007 Ireland Miscanthus 11.2

Cosentino et al. 2007 Italy Miscanthus 14.8

Danalatos et al. 2007 Greece Miscanthus 30.5

Fales et al. 2008 USA, Iowa Panicum 5.1

Gauder et al. 2012 Germany Miscanthus 12.0

Heaton et al. 2008
USA, Illinois

USA, Illinois

Miscanthus

Panicum

29.6

11.5

Himken et al. 1997 Germany Miscanthus 17.5

Hong et al. 2011

Germany

Italy

France

China, Fujian Province

Miscanthus

Miscanthus

Miscanthus

Miscanthus

25.5

23.5

38.8

3.2

Jørgensen 1997 Denmark Miscanthus 7.7
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Table 2.1: All studies used for the evaluation of the model and the mean yields they report

Kering et al. 2012
USA, Oklahoma

USA, Oklahoma

Miscanthus

Panicum

4.7

17.8

Larsen et al. 2014 Denmark Miscanthus 9.3

Lemus et al. 2002 USA, Iowa Panicum 10.0

Lemus 2004

USA, Kentucky

USA, Mississippi

USA, Tennessee

USA, Virginia

USA, West Virginia

Panicum

Panicum

Panicum

Panicum

Panicum

16.1

13.2

15.4

14.8

14.1

Lewandowski et al. 2000
Denmark

Germany

Miscanthus

Miscanthus

11.0

15.3

Lim et al. 2014 South Korea Miscanthus 24.9

Lima et al. 2014 Brazil (country average) Panicum 30

Liu and Sang 2013 China, Gansu Province Miscanthus 22.5

Mooney et al. 2009 USA, Tennessee Panicum 13.1

Mulkey et al. 2006 USA, South Dakota Panicum 4.3

Mulkey et al. 2008 USA, South Dakota Panicum 4.7

Palmer et al. 2014
USA, North Carolina

USA, North Carolina

Miscanthus

Panicum

17.8

20.5

Sanderson et al. 1999 USA, Texas Panicum 13.2

Sanderson 2008
USA, Alabama

USA, Pennsylvania

Panicum

Panicum

20.7

6.4

Schwarz 1993 Austria Miscanthus 22.0

Sharma et al. 2003 Italy Panicum 7.3

Siregar et al. 1985 Indonesia, Java Panicum 31.9
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Table 2.1: All studies used for the evaluation of the model and the mean yields they report

Sladden et al. 1991 USA, Alabama Panicum 12.3

Stewart et al. 2009

Japan, Akita Prefecture

Japan, Hyogo Prefecture

Japan, Miyagi Prefecture

Japan, Nagano Prefecture

Japan, Saitama Prefecture

Japan, Tochigi Prefecture

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

Miscanthus

2.3

3.6

5.4

3.0

9.9

8.9

Virgilio et al. 2007 Italy Panicum 9.7

Yu et al. 2013 China, Hubei Province Miscanthus 2.5

Average over all areas 14.93
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2.2.4.2 Water use efficiency

In spite of the importance of irrigation for biomass production of Miscanthus (Ercoli

et al., 1999), only two studies analyzed the water-use efficiency of herbaceous biomass

plantations (Clifton-Brown and Lewandowski, 2000; Hickman et al., 2010). The two

studies use different methods for estimating water use efficiency which complicates

model evaluation.

Clifton-Brown and Lewandowski (2000) measure in a greenhouse under controlled con-

ditions. They exclude soil evaporation by subtracting measurements from pots con-

taining bare soil and by applying paraffin coatings to all pots. While their study allows

them to cleanly separate plant water use efficiency compared to total plant biomass

and compared to harvestable material, whether their results are applicable to field tri-

als remains unclear.

Hickman et al. (2010) calculate evapotranspiration based on field measurements of

heat fluxes. Consequently, they cannot separate transpiration from evaporation and

estimate water use efficiency based on total evapotranspiration. Further, they use only

harvested biomass in their calculations, since the perennial roots remain in the ground

after harvest.

2.2.5 General model concept for herbaceous biomass planta-

tions

The phenology and carbon cycles of JSBACH were adapted to reflect highly produc-

tive, tall grasses such as Miscanthus or Panicum. Few studies analyze the physiological

constraints of these genera and most of these focus merely on temperature constraints

and frost tolerance (Naidu and Long, 2004) or on irrigation and fertilization require-

ments or plant densities for maximizing yields (Danalatos et al., 2007; Christian et al.,

2008; Larsen et al., 2014). Since JSBACH has no irrigation or fertilization option,

temperature and precipitation become the major constraints of the model. The model

follows the following basic assumptions:

• Whenever the biomass grasses can grow they will grow

• Leaves are produced up to the maximum limit of leaf area index (LAI)

• If conditions are not favorable, leaves die but are not shed, instead they remain

attached to the stem

• Outside the tropics, plants remain standing on the fields throughout the winter

and are harvested before the new growing season (standard harvesting technique,

Frühwirth et al., 2006).
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Figure 2.1: Growth and harvest signals for the phenology of herbaceous biomass plantations

as implemented in JSBACH. Green arrows show the signal chain controlling phenology, black

arrows show where the harvest signal is passed to the carbon (see text for details).

The idea that leaves are not shed is not supported by the literature data, which suggests

that plants suffer partial biomass loss through the winter (Heaton et al., 2008). This

assumption was added for two reasons: first, to avoid large-scale carbon loss induced

by rapid shedding during bad weather spells (the default for JSBACH) and second,

because it is unclear whether the reduction in LAI affects surface albedo, as it would

in JSBACH.

Herbaceous biomass plantations were developed as new plant functional types (PFT)

in JSBACH. The model distinguishes between tropical and extra-tropical herbaceous

biomass plantations. JSBACH demands a number of input variables to characterize

the new PFTs. For the few parameters where literature values are available, these were

chosen. The rest were considered to be similar to the values of C4 crops, pastures and

grasses (see table in the Appendix for details).

2.2.6 Phenology of herbaceous biomass plantations

The phenology in JSBACH describes the changes in leaf area index (LAI) throughout

the year. Leaf area index responds to a variety of physiological constraints such as tem-

perature or soil moisture. Leaf area index in turn influences other model components

such as surface albedo and the size of the plant carbon pools. This part of the model

had to be adapted to reflect the unique annual cycles and management techniques used

in the cultivation of HBPs.

In JSBACH maximum leaf area index of herbaceous biomass plantations is 9 m2/m2,
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a value consistent with field measurements (Heaton et al., 2008; Le et al., 2011). JS-

BACH defines the tropics as the region between 30 ◦S and 30 ◦N. In a fist step the

phenology model distinguishes between these two regions (figure 2.1).

2.2.6.1 Tropics

In the tropics, herbaceous biomass plantations grow throughout the year as long as net

primary production (NPP) is positive, air temperature is above 4 ◦C and soil moisture

is above the wilting point (35%, figure 2.1). Leaf area index increases to its maximum

limit of 9 m2/m2. The model assumes that farmers harvest different parts of their fields

at different times and thus assure a continual supply of biomass throughout the year.

In consequence, average LAI throughout any gridcell remains constant except in times

of adversity. However, the carbon harvest is triggered at the start of every year.

2.2.6.2 Extra-tropics

Outside the tropics the seasonal cycle constrains plant growth and harvest. Growth

begins in spring when the beginning of the growing season is triggered by the heat sum

exceeding 30 degree days. The heat sum sums all temperatures exceeding 4 ◦C. From

this date onward, plants grow whenever air temperatures exceed 4 ◦C and soil moisture

is above the wilting point (35%). LAI increases to its maximum and remains at this

level until the harvest in the following spring. Harvest is triggered by the beginning of

the growing season.

Heat summation starts on January 1st in the northern hemisphere and July 2nd in the

southern hemisphere (July 1st in leap years). JSBACH computes a weighted running

mean of the air temperature, termed ”pseudo soil temperature”, for heat summation.

2.2.7 Carbon dynamics of herbaceous biomass plantations and

harvesting scheme

Carbon accumulates in the plant carbon pools throughout the growing season, depend-

ing only on photosynthesis and respiration. The phenological cycle triggers the harvest

and passes the signal to the carbon. In the tropics, harvest of the carbon occurs on

January, 1st. Outside the tropics, harvest occurs at the beginning of the growing sea-

son. In both cases, reported yields correspond to the harvest fraction of the carbon

accumulated in the previous year. Harvested carbon is passed to a separate harvest

pool that can then be used for fossil fuel substitution.

Plant carbon in JSBACH is not divided into above- and belowground carbon. Thus

roots, shoots, and leaves cannot be adequately modeled. Two carbon pools that differ

in their turnover rates contain total plant carbon. These pools represent living tis-

sues and reserves such as sugars or starch, respectively. Since these pools cannot be
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attributed to specific plant organs, the amount of harvestable material must be deter-

mined independently. The fraction of harvestable carbon is determined using root to

shoot ratios found in the literature. These root to shoot ratios range from 0.4 to 0.8

(Meyer et al., 2010). Root to shoot ratios are the ratio of root biomass relative to the

shoot biomass and need to be transformed into ratios of total biomass.

If x is the root to shoot ratio, r the ratio of roots compared to the total plant and s

the ratio of shoots compared to the total plant, then the following equations apply:

r + s = 1 (2.1)

x =
r

s
(2.2)

Thus the shoot ratio can be determined by replacing r from equation (2.2) in equation

(2.1):

s =
1

x+ 1
(2.3)

Using the extreme root to shoot values reported in Meyer et al. (2010), I calculate a

shoot fraction of 0.55 for a root to shoot ratio of 0.8 and a shoot fraction of 0.71 for a

root to shoot ratio of 0.4. These values are considered to be the extremes of harvestable

material the plants can produce.

I therefore distinguish two cultivation scenarios:

• Maximum harvest scenario: farmers intensively cultivate the fields to maxi-

mize above-ground biomass production and minimize plant investments in roots

(harvest fraction: 0.71).

• Minimum management input scenario: farmers minimize their investments

in their biomass plantations, forcing plants to invest heavily in root production

and reduce above-ground biomass production (harvest fraction: 0.55).

The model considers all above-ground biomass to be harvestable carbon. This is a

plausible assumption for herbaceous biomass plantations since harvest equipment cuts

stems close to the ground. Below-ground biomass is passed to the litter pool after each

harvest. Without proper distinction between plant organs, JSBACH cannot simulate

root survival consistently.

Harvested biomass can be used to complement energy from other sources or to replace

energy from other sources. If biomass is used to complement energy from other sources,

carbon dioxide emitted by their combustion adds to overall anthropogenic emissions.

If biomass is burnt instead of fossil fuels, carbon dioxide emissions are reduced by the

amount emitted from biomass combustion. Therefore, assessing the effects of biomass

plantations on the climate must include biomass use. I distinguish two extreme sce-

narios for biomass use:
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• High energy demand: all available energy sources are used, including biomass

plantations. Emissions from biomass combustion are added to overall anthro-

pogenic emissions (0% substitution). In JSBACH, harvested carbon is transferred

into a separate harvest pool that is depleted at a regular rate over the course of

one year. If the carbon in the pool drops below a threshold, the pool is completely

depleted. This depletion reflects the assumption that energy providers would use

an equal amount of biomass each day but not store less than a minimum amount.

• Fossil fuel substitution: all available biomass substitutes the maximum possi-

ble amount of fossil fuels. Emissions from fossil-fuels are reduced by the amount

emitted by biomass combustion (100% substitution). To reduce model com-

plexity, carbon from biomass plantations is instead stored away in a separate

long-term storage pool. This carbon then no longer interacts with the rest of

the carbon cycle anymore. In the high energy demand scenario, the harvest pool

is depleted at a constant rate. I assumed that society would use the available

biomass slowly throughout the year until, after 365 days the supplies would be

exhausted and barns would be emptied in anticipation of the next harvest. The

depletion rate (τ) therefore is:

τ = Ch/365 (2.4)

Where Ch is the amount of carbon in the harvest pool. The depletion rate is

subtracted from the harvest pool and returned to the atmosphere on a daily

basis. If the next years harvest is delayed, for example because of cold weather,

the harvest pool is emptied and remains empty until the harvest event refills it.

2.2.8 Land-use transition scheme

The transition scheme of JSBACH describes all human induced changes in land cover

types. The standard land-use transition scheme of JSBACH currently does not account

for biomass separately. JSBACH treats biomass for biofuel production like standard

crops. One of the main challenges of this thesis was, therefore, to incorporate herba-

ceous biomass plantations as a separate land-use type in JSBACH. This was necessary

to ensure the consistency of the underlying land-use scenario.

2.2.8.1 Land-use scenario

The land-use scenario chosen here is the Representative Concentration Pathway

RCP4.5. In this scenario, large areas of agricultural lands are abandoned until the

end of the century due to an intensification of agricultural methods on the most fertile

soils. In the original scenario, these abandoned lands revert to their natural state, either

forests or grasslands. Here, the abandoned lands that originally revert to forests are
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Figure 2.2: Incorporation of herbaceous biomass plantations into the modified transition

scheme of RCP4.5.

covered with herbaceous biomass plantations. I use only the areas reverting to forests

for two reasons: first, the majority of abandoned lands revert to forests in the origi-

nal scenario and second, use of these areas allows a direct comparison between forests

and herbaceous biomass plantations for the reduction of carbon dioxide concentrations

(figure 2.2).

2.2.8.2 Conceptual formulation

The original land-use scheme of JSBACH accounts for four land-cover types: forests,

grasses, pastures and crops. Theoretically, all of these types can lose area to any of

the other types or gain area from any of the other types at every timestep. However,

the land-use scheme is primarily concerned with transitions between agricultural areas

and natural lands and between pastures and crops. Climate driven transitions between

natural ecosystems are calculated by the dynamical vegetation scheme.

I added herbaceous biomass plantations as a fifth land-cover type. Herbaceous biomass

plantations can exchange area with crops and pastures but not with forests or grass-

lands. The goal was to minimize the interactions with the other land-use types so as

to disturb the underlying land-use scheme as little as possible. Gains to herbaceous

biomass plantations should be limited to those areas that would have reverted to forests

and losses should be limited to those areas that would have been reclaimed from forests

if herbaceous biomass plantations hadn’t been established instead.

There are two reasons why only areas that would have reverted to forests are used:

first, because part of the goal of this study was to assess the mitigation potential of

herbaceous biomass plantations as compared to that of forests and second, because the

transition scheme uses the so-called ’pasture rule’ to determine the transitions between

natural areas and pastures. The underlying assumption is that farmers would pref-

erentially use grasslands as pastures whenever they are available (Reick et al., 2013).

Transitions between pastures and grasslands would be perturbed by the conversion

to herbaceous biomass plantations and could potentially lead to a radically different

land-use distribution.

The original land-use scheme of JSBACH uses a four-by-four transition matrix. Each

element in the transition matrix describes the fraction of the area of a given land-use



2.3 Evaluation of model performance 29

type that is transferred from that land-use type to another. The details are described

in Reick et al. 2013. I modified this transition matrix to include herbaceous biomass

plantations. This new five-by-five transition matrix describes all previous exchanges

plus the new exchanges between herbaceous biomass plantations and other types. Since

exchanges between crops, pastures, and grasses are unaltered and exchanges between

natural lands and herbaceous biomass plantations should not happen, the matrix can

be represented as:

T̃ =


TC→C TP→C TG→C T̃F→C T̃H→C

TC→P TP→P TG→P T̃F→P T̃H→P

TC→G TP→G TG→G 0 0

T̃C→F T̃P→F 0 T̃F→F 0

T̃C→H T̃P→H 0 0 T̃H→H

 (2.5)

Where T̃ , Ti→j is the fraction of area that is transferred from cover type i to cover

type j which remains unaltered by the new transition scheme and T̃i→j describes a

transition element that is altered by the new transition scheme. The land-use types

are abbreviated as C for crops, P for pastures, G for grasses, F for forests and H for

herbaceous biomass plantations.

This matrix can be solved for three separate cases:

• Crops and pastures contract to the benefit of natural lands: agricultural areas

are abandoned and herbaceous biomass plantations are established on all areas

that would have reverted to forests

• Crops and pastures expand in the presence of herbaceous biomass plantations:

areas covered with herbaceous biomass plantations are reclaimed first, to preserve

the original amount of forests

• Crops and pastures expand in the absence of herbaceous biomass plantations:

forests are transformed into agricultural areas

2.3 Evaluation of model performance

2.3.1 Herbaceous biomass plantations as modeled by JS-

BACH

JSBACH models carbon dynamics and leaf area index of herbaceous biomass planta-

tions differently in the tropics than outside the tropics (figure 2.3). Outside the tropics,

LAI drops once a year, at the beginning of the growing season when plants are har-

vested. This drop coincides with a drop in the carbon pool when plant carbon passes

into the harvest pool. But whereas LAI decreases for crops and, to a lesser extent,
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for grasses at the end of the growing season, LAI remains high for herbaceous biomass

plantations because stems remain standing on the fields over the winter. Plants can

continue to assimilate carbon as long as conditions for photosynthesis are favorable.

This coincides with observations (Frühwirth et al., 2006).

In the tropics LAI remains high throughout the year. This is consistent with LAI

development in crops and grasses. Carbon is harvested once a year and passed to the

harvest pools. In simulations without fossil-fuel substitution (FFS 0%), the harvest

pool slowly depletes as biomass is ’burnt’ and carbon dioxide is released to the atmo-

sphere. In simulations with fossil-fuel substitution (FFS 100%), the pool retains all

carbon and new carbon is added at every harvest event. This simulates avoided emis-

sions from fossil-fuels that remain in the ground because they are replaced by biomass.

Throughout this section, all carbon pools are depicted in g/m2 to allow comparisons

between modeled and observed data. I assumed that plant carbon would constitute

50% of dry matter which is similar to estimates from Cannell 2003 who assumed that

1 t of dry biomass could substitute 0.5 t of coal.

2.3.2 Global offline simulations

2.3.2.1 Model setup for the idealized scenarios

In order to evaluate the model, idealized scenarios were simulated with JSBACH in its

stand-alone mode. The land surface was initialized as a single tile containing herba-

ceous biomass plantations in all gridcells. Two 10-year simulations were performed,

each with one of the management schemes (55% and 71% harvest). The first year

was discarded because the harvest event produced no harvest in most areas because

plants had not developed their full potential. Model results were compared to available

literature data to asses how well JSBACH can reproduce observed yield patterns and

water use efficiency.

Simulations were driven by prescribed present-day climate derived from measurements.

The NPP and GPP of these idealized simulations were compared to results from

the Lund-Potsdam-Jena managed Land (LPJmL) model obtained from Vera Heck at

the Potsdam Institute for Climate Impact Research. LPJmL previously implemented

biomass plantations in their model and evaluated their findings (Beringer et al., 2011).

2.3.2.2 Results of idealized scenarios

Annual gross primary production of herbaceous biomass plantations averages

313±7 Pg/a and annual net primary production averages 153±4 Pg/a under a sta-

ble climate in JSBACH offline simulations, independently of the harvesting scheme

used. Primary production for herbaceous biomass plantations is much larger than that

for natural vegetation and for current vegetation because of the high productivity of
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Figure 2.3: Annual cycles of leaf area index (LAI in blue) and carbon (dry matter contains

50% carbon, in black) of herbaceous biomass plantations compared to crops and grasses

(LAI only) in the same simulation for a temperate region in North America (Illinois, USA)

and a tropical region in South America (Paraná, Brazil) as modeled by JSBACH. The top

graphs show a simulation without fossil fuel substitution (FFS 0%), the middle graphs show a

simulation with fossil fuel substitution (FFS 100%), the bottom graphs show the development

of the harvest pool in each of these simulations. Harvest of carbon occurs simultaneously

with the drop in LAI outside the tropics, while it occurs on January, 1st in the tropics.
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Figure 2.4: Zonal averages of GPP (left) and NPP (right) in JSBACH and LPJmL. Data from

LPJmL was generated by Vera Heck at the Potsdam Institute for Climate Impact Research.

the modeled grasses in almost all environments. Several publications analyzed the

high productivity of Miscanthus and conclude that the extraordinary cold tolerance of

this C4-grass combined with high photosynthetic activity and its ability to grow well

in adversity may explain this observation (Beale et al., 1996; Naidu and Long, 2004;

Dohleman et al., 2009; Dohleman and Long, 2009).

Primary production peaks in the tropics, declines towards 30◦ latitude with a second

peak in the temperate regions before declining further towards the poles (figures 2.4

and 2.5). JSBACH reproduces the global patterns found in LPJ but produces more

biomass than LPJ. However, JSBACH produces more than LPJ in all other vegetation

as well, so the pattern agrees with previous findings (Dalmonech and Zaehle, 2013).
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Figure 2.5: Gross (top) and net (bottom) primary production of herbaceous biomass plantations in LPJ (left), and two simulations with

JSBACH (center: 71% harvest; right: 55% harvest). Data from LPJ was generated by Vera Heck at the Potsdam Institute for Climate Impact

Research.
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2.3.3 Comparison of modeled yields with literature values

Modeled yields average 970 g(dry matter)/m2/a (9.7 t/ha/a) for the 55% harvest

scheme and 1260 g(dry matter)/m2/a (12.6 t/ha/a) for the 71% harvest scheme.

This is slightly lower than the average measured yields of 1493 g(dry matter)/m2/a

(14.9 t/ha/a) found in the literature. Maximum modeled yields reach 2140 g(dry

matter)/m2/a (21.4 t/ha/a) for the 55% harvest scheme and 2760 g(dry matter)/m2/a

(27.6 t/ha/a) for the 71% harvest scheme. These maximum modeled yields are

much lower than the maximum yields in the literature of 4900 g(dry matter)/m2/a

(49.0 t/ha/a) achieved on one plot in France (Clifton-Brown et al., 2004). However,

JSBACH averages over all land gridcells which includes deserts and other areas with

sparse plant growth, thus lower peak yields than those from actual fields are expected.

Thus, maximum and minimum measurements found in the literature diverge much

more than modeled yields between years (figure 2.8).

In the model, regional patterns differ widely (figures 2.6 and 2.7). Yields are high-

est in the tropics which agrees well with the few literature values available for this

area. In Europe (figure 2.9) and North America, where most of the literature data

was gathered, model values agree with literature data but in Asia the model seems

to significantly overestimate average yields. However, in this region literature data is

derived from freshly planted fields (Hong et al., 2011; Yu et al., 2013), wild grasslands

(Stewart et al., 2009) or estimated from very small plots (Liu and Sang, 2013).
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Figure 2.6: Modeled yields in the 55% harvest scheme (map) and average measured yields from literature values (diamonds), in g(dry

matter)/m2/a.
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Figure 2.7: Modeled yields in the 71% harvest scheme (map) and average measured yields from literature values (diamonds), in g(dry
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literature values (diamonds), in g(dry matter)/m2/a.



38
Im

p
lem

en
ta

tion
of

H
erb

aceou
s

B
iom

ass
P

lan
tation

s
in

to
a

G
lob

al
E

arth
-S

y
stem

M
o
d

el

Y
ie

ld
s 

[t(
dr

y 
m

at
te

r)
/h

a]

0

10

20

30

40

50

Biomass yields: comparison of literature and model values for Europe

JSBACH 71%
JSBACH 55%
Literature
LPJ rainfed
LPJ irrigated

GBR DEU DNK ITA SWE AUT TUR FRA CHE IRL
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2.3.4 Comparison of water use efficiency with literature values

Simulated water use efficiency (figure 2.10) for transpiration only agree with measure-

ments from the greenhouse used in Clifton-Brown and Lewandowski 2000 but do not

agree with field measurements from Hickman et al. 2010. Water use efficiency is higher

in the simulations with higher yields because yields were used to determine water use

efficiency in both the model and measurements.

2.4 Discussion

2.4.1 Comparison of modeled yields with literature values

JSBACH reproduces the literature’s values, even though it seems to regionally over-

or underestimate yields when compared to literature values. Discrepancies between

modeled and observed yields seem to arise from a combination of model properties and

observation biases.

JSBACH represents vegetation in a very simplified way and many processes cannot be

adequately modeled. Processes related to the specific dynamics within Miscanthus and

Panicum (Switchgrass) plants such as root survival and low yields during establishment

years are not included in the representation of the new plant functional type. Agri-

cultural practices such as irrigation and fertilization that also influence yields equally

cannot be accounted for under the current model setup. Additionally, JSBACH as-

sumes that environments within gridcells are uniform. However in reality, each gridcell

spans an area containing a large variety of local conditions. Variabilities of climate,

soil conditions and topography within this area cannot be captured. Lastly, because

the simulations were idealized with herbaceous biomass plantations as the only plant

cover, they cannot capture potential competitions for water or other resources between

plantations and adjacent other land-use types.

Studies reporting observations however, are often politically or economically motivated.

They face many challenges associated with data collection. These studies are limited

in several ways:

• Plot size: most plots are small, usually no more than one hectare. Local con-

ditions, such as microclimate, nutrient and water availability, elevation and to-

pography can significantly influence yields. Furthermore, yield biases on small

plots can result from nearby ecosystems influencing the field through competi-

tion for water, light or nutrients and through lateral flows within the soil that

transport nutrients into or out of the field. The significance of these ’edge-effects’

diminishes with increasing plot size (Talbot et al., 1995; Kuemmel, 2003). Some

studies avoid these biases by sampling only the central areas (Lemus, 2004) of

plots while others report yields for the entire plots.
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• Timespan: most studies started recently, yield reports over longer timespans

are rare. Timespan is crucial as yields tend to be lower in the first two to three

years (Larsen et al., 2014).

• Geographical location: the vast majority of studies were conducted in Europe

and North America; studies located in other parts of the world were also mainly

confined to the northern hemisphere. Thus, the tropics and southern hemisphere

are comparatively undersampled.

• Soil conditions: some studies used prime farmland while others specifically

investigated the plants’ potentials when grown on degraded soils.

• Treatment: studies diverge widely in terms of irrigation, fertilization and plant-

ing densities, factors that can influence yields significantly, especially in the first

few years after planting (Miguez et al., 2008).

• Cultivars: Miscanthus and Panicum comprise many different species and nu-

merous cultivars. While some studies based their research on existing knowledge

of the most productive cultivars in their region, others explored the suitability of

various cultivars for previously unassessed regions (Yu et al., 2013). Therefore,

some cultivars are suboptimal for the area, soils or climates they are planted in,

leading to yield reductions.

• Data quality: some studies reported overall averages, others reported ranges,

and a few reported individual values for different years and different plots.

• Data type: one study reported biomass estimates of Miscanthus sinensis yields

for wild grasslands in Japan where plants were in competition with other grasses

(Stewart et al., 2009).

One of the goals during model development was to estimate yields of herbaceous

biomass plantations established on abandoned agricultural fields to prevent competi-

tion with food crops. Since farmers abandon their least productive soils first, biomass

plantations will mainly occupy less productive areas. Therefore, JSBACH should not

represent peak yields on prime farmland under optimal management conditions but

rather more conservative estimates consistent with less productive farmland. Addition-

ally, although JSBACH cannot adequately represent increased emissions due to land

management (e.g. energy production for irrigation, tractors, fertilizer and pesticide

production and use...) nor estimate carbon losses due to transport or processing, the

model can compensate by keeping yield estimates conservative. However, most studies

assume that yields will likely increase as a result of a combination of improvement and

spreading of management techniques, selective breeding and genetic engineering. Fur-

thermore, improvement in conversion technologies could reduce carbon losses during

processing. Thus, adapting modeled yields to the lowest values found in the literature

would lead to gross underestimates of biomass productivity.
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This study strives to balance between the potentials for over- and underestimation

of yields while accounting for the many measurement uncertainties and differences be-

tween model and literature values. The longest record of Miscanthus yields comes from

Larsen et al. 2014, who report yields of different cultivars on two fields in Denmark

under different management treatments between 1993 and 2012. In their study, yields

stabilized after several years between 8 and 10 t(dry matter)/ha/a . While this study

is not representative for the entire Earth, other important studies also consistently find

yields between 8 and 12 t(dry matter)/ha/a dry matter (Clifton-Brown et al., 2001;

Heaton et al., 2008; Arundale, 2012). This range coincides with what the agricultural

advice book, Frühwirth et al. 2006, issued by the Austrian government, tells farmers to

expect as long-term yields. Average modeled yields of 9 to 12 t(dry matter)/ha/a fall

within this range. In addition, in those areas where data is more abundant, modeled

yields correspond well with literature values. I conclude that JSBACH can represent

literature values sufficiently well for the rest of this study, although caution is advised,

especially in those areas where observations are scarce.

2.4.2 Comparison of water-use efficiency

Comparing water use efficiency estimates with the literature values is challenging. Only

two literature values were available for water-use efficiency. The first was a field study

(Hickman et al., 2010), while the second study measured water use under controlled

conditions in a green-house (Clifton-Brown and Lewandowski, 2000). The field study

is limited for the same reasons that the yields obtained from field studies are limited

(see above). Finding a gridcell that exactly matches the conditions in the green-house

was impossible, though I strove to stay as close to the ideal conditions as possible.

Additionally, the metrics used to calculate water-use efficiency in the two studies are

difficult to compare. While the field study cannot distinguish between evaporation and

transpiration and instead measures evapotranspiration, the greenhouse study takes

precautions to cleanly separate evaporation and transpiration and reports water-use

efficiency based on transpiration. Also, the field study cannot prevent water from

seeping into the study area through lateral flows, so that total water entering the sys-

tem cannot be fully controlled, while the greenhouse study uses sealed pots preventing

any uncontrolled water from entering or leaving the systems. On the other hand, the

greenhouse study may overestimate both evaporation and transpiration because they

measure the two variables in separate pots. Therefore, all water present in each pot

is available for one mechanism only, whereas in the field study the two mechanism

’compete’ with each other.

JSBACH has its own range of inaccuracies when calculating water-use efficiency. JS-

BACH uses a bucket model to simulate soil water. Although the scheme accounts

for the heterogeneous field capacity distribution within a gridcell, many aspects of soil

depths and texture are only approximated. Importantly, vegetation does not determine

local soil properties and individual soils are not associated with any particular plant
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type. Different plant types within the same gridcell compete for water resources, even

when they would grow separately in reality.

In spite of all the difficulties in comparing the two, JSBACH agrees with the litera-

ture values for the greenhouse study but slightly exceeds the values for the field study.

However, the model shows a large variability of water use efficiency over the entire

Earth. It is likely that in nature such a large variability on the global scale would

translate into considerable variability on local scales. Thus, more emphasis should be

placed on the more idealized greenhouse study. Overall, the discrepancies are small. I

conclude that water use efficiency in the model does not differ from the values found

in the literature.

2.5 Conclusion

This chapter describes the implementation of herbaceous biomass plantations in JS-

BACH. I integrated herbaceous biomass plantations into JSBACH as a new plant

functional type using the specific properties of Miscanthus and Panicum found in the

literature whenever possible. Furthermore, I adjusted the leaf area index and carbon

schemes of JSBACH to represent properties and annual harvest cycles typical for these

plants. Lastly, I adapted the land-use scheme to allocate abandoned agricultural areas

to herbaceous biomass plantations. This chapter describes in detail all the changes

made to JSBACH to incorporate herbaceous biomass plantations and to simulate both

idealized scenarios and a plausible scenario based on the land-use of RCP4.5.

This chapter evaluates the implementation of herbaceous biomass plantations using an

idealized scenario in which the whole world is covered in herbaceous biomass planta-

tions and compares them to various literature values for yields and water-use efficiency

as well as to results from the LPJ-model. Although some uncertainties remain, on the

whole, JSBACH can reproduce the literature values well enough for the rest of this

study.

JSBACH can now represent herbaceous biomass plantations. These results can be used

to introduce herbaceous biomass plantations into a more plausible scenario and assess

their effect on the Earth System.
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Chapter 3

Effects of Herbaceous Biomass

Plantations on the Global Climate

and Land Carbon Stocks: More

Effective than Afforestation

3.1 Introduction

Herbaceous biomass plantations are often viewed as a climate engineering method

because of their ability to replace fossil-fuels and thereby reduce emissions from fos-

sil sources (Cannell, 2003). However, their deployment demands large areas of land,

which leads to competition with other land-uses such as food production or forestry.

Additionally, the conversion of any areas to herbaceous biomass plantations alters land

carbon pools and land carbon dynamics. In this chapter, I explore the ability of herba-

ceous biomass plantations to affect the climate and carbon dynamics in a plausible

scenario which preserves both food production and natural ecosystems, while minimiz-

ing losses from land conversion.

Biomass plantations can provide substantial amounts of energy and mitigate anthro-

pogenic climate change simultaneously (Clifton-Brown et al., 2004; Beringer et al.,

2011; Popp et al., 2012). The potentials for both energy production and climate miti-

gation are controversial and some argue that if biomass plantations displaced natural

lands, the added emissions would exceed the mitigation potentials (Hughes et al., 2010;

Dass, 2013; Searchinger et al., 2008). On the other hand, preserving natural ecosystems

limits area extent available for cultivation of biomass plantations due to the need to

preserve food security.

Three types of previous studies analyzed the effects of biomass plantations on the local

or global climate. Studies using regional models resolve the effects of biomass planta-

tions on local and regional ecosystems very finely but cannot represent global scales
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(Clifton-Brown et al., 2004; Vanloocke et al., 2010; Le et al., 2011; Georgescu et al.,

2011). Studies using Dynamic Global Vegetation Models (DGVMs) capture all land-

based dynamics but lack feedbacks with the atmosphere and ocean (Beringer et al.,

2011; Dass, 2013; Humpenöder et al., 2014; Heck et al., 2016; Boysen, 2016). Studies

using global coupled Earth System Models (ESMs) for regional (Schaeffer et al. 2006)

or global studies often idealize the land-use (Melillo et al., 2009; Hallgren et al., 2013),

or represent biomass grasses as similar to other C4 grasses without accounting for their

unique physiology (Hughes et al. 2010, see chapter 1). None of these studies analyzes

the effects of herbaceous biomass plantations in a fully coupled model with a plausible

land-use scenario. While most report average yields and associated potentials for cli-

mate mitigation, none assess the carbon dynamics and impacts to the extent analyzed

here.

I study the effects of herbaceous biomass plantations in the fully coupled MPI-ESM us-

ing a hybrid scenario constructed from two representative concentration pathways (van

Vuuren et al., 2011a). The hybrid scenario couples emissions from RCP8.5 (Riahi et al.,

2011) to the land-use from RCP4.5 (Thomson et al., 2011). In RCP4.5, large areas of

agricultural lands are abandoned (Hurtt et al., 2011). In my scenario, these areas are

reclaimed for herbaceous biomass plantations. The hybrid scenario has three advan-

tages: first, the high emissions from RCP8.5 allow maximum effects to be identified and

isolated. Second, choice of the land-use of RCP4.5 prevents undesirable emissions from

the displacement of natural ecosystems. In the land-use of RCP8.5, agricultural lands

(crops and pastures) expand at the expense of natural areas. This expansion creates

an emissions signal from deforestation which could counteract mitigation efforts and

mask the signals from herbaceous biomass establishment and fossil-fuel substitution.

The establishment of biomass plantations would further exacerbate this signal since

they would displace even more natural ecosystems and hence increase emissions from

land-use change even further. The original land-use of RCP4.5 does not determine the

fate of the abandoned agricultural lands, they revert to whatever natural ecosystems

successfully outcompete the others for that particular gridcell. Therefore, the estab-

lishment of herbaceous biomass plantations on these abandoned area is acceptable and

would not generate additional emissions. Third, a previous study by Sonntag et al.

2016 uses the same hybrid scenario but with the original land-use from RCP4.5 as im-

plemented in the MPI-ESM. They find that most areas revert to forests. Contrasting

my results to those of Sonntag et al. 2016 allows a direct comparison between the ef-

fects of forest regrowth and the effects of herbaceous biomass plantations on the global

climate.

Apart from the direct climatic effects, I explore the consequences of large-scale herba-

ceous biomass plantations for the land carbon budget. First, I analyze how changes

in area and carbon density affect the land carbon stocks. Changes in area reflect the

changes in land-use and dynamical vegetation changes while changes in carbon densi-

ties combine the effects of CO2-fertilization, climate and disturbance on the vegetation.

Second, I calculate the carbon budget of the areas reclaimed for herbaceous biomass
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plantations. The carbon budget reflects the total change in carbon stocks on the aban-

doned areas between the afforestation scenario and the scenario with establishment

of herbaceous biomass plantations. Third, I estimate the effectiveness of herbaceous

biomass plantations at mitigating the climate compared to forests. The goal of this

study is to comprehensively assess different aspects of the effects of herbaceous biomass

plantations on the global climate and land carbon dynamics.

3.2 Simulation setup

I simulated large-scale deployment of herbaceous biomass plantations in the CMIP5

version of the global coupled model (MPI-ESM, see Chapter 2). All simulations com-

bine emissions from the representative concentration pathway RCP8.5 and land-use

from RCP4.5. The RCP4.5 land-use scenario projects large-scale abandonment of

agricultural areas. In the original scenario, natural vegetation, especially forests, re-

claim these areas. In my simulations herbaceous biomass plantations are established

wherever abandoned agricultural areas would have reverted to forests in the original

scenario. Only areas that would have reverted to forests are used because part of the

goal of this study was to assess the mitigation potential of herbaceous biomass plan-

tations as compared to that of afforestation in the original simulation from Sonntag

et al. 2016. Simulations started in 2006 with the settings of the standard historical

simulation and ended in 2100.

Table 3.1: Setup of the four simulations chosen for this study

Low management

input (harvest 55%

of plant carbon)

High management

input (harvest 71%

of plant carbon)

No fossil-fuel substitu-

tion (FFS 0%)

HBPs55 0%FFS HBPs71 0%FFS

Maximum fossil-fuel

substitution (FFS

100%)

HBPs55 100% FFS HBPs71 100% FFS

Management influences yields. In the case of biomass grasses, management influences

the amount of harvestable material because biomass grasses optimize their carbon

allocation to above- and below-ground plant-components depending on environmental

factors (see chapter 2 for details). I explored a range of possible management options by

harvesting different percentages, 55% and 71%, of total plant carbon. The percentages

were chosen according to the root-to-shoot ratios measured by Meyer et al. 2010. I

explored the effects of fossil-fuel substitution separately by simulating no substitution

(0%) and maximum substitution (100%) for each management case. 0% fossil-fuel

substitution represents a high global energy demand which would be met by any means
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necessary. 100% fossil-fuel substitution represents an ideal case in which all harvested

carbon substitutes and equal amount of coal and losses due to plantation management

and transport are negligible (Cannell, 2003). Thus, I simulated a total of four scenarios,

which together delimit the currently possible operating space. This operating space

excludes any future developments in management techniques, genetic improvements or

carbon capture and storage techniques (table 3.1).

3.3 Large-scale herbaceous biomass plantations in-

fluence global climate

Comparing my four simulations with the afforestation scenario shows how land-use

change influences global climate. Herbaceous biomass plantations cover 5.6 million

square kilometers at the end of the century, yet their cumulative yields account for

significant changes in the global climate.

3.3.1 Cumulative global yields vary between 256 and 330 Pg

Globally herbaceous biomass plantations accumulate 256 Pg of harvested carbon over

the 95 years of the simulation, in the 55% harvest scenario. In the 71% harvest scenario,

herbaceous biomass plantations accumulate 330 Pg of harvested carbon. The level

of fossil-fuel substitution has no effect on global accumulated yields which suggests

that the climatic consequences of this form of terrestrial climate engineering do not

negatively affect the productivity of herbaceous biomass plantations.

Table 3.2: Total yields for the 95 years of the simulation [Pg]

Low management

input (harvest 55%

of plant carbon)

High management

input (harvest 71%

of plant carbon)

No fossil-fuel substitu-

tion (FFS 0%)

255.24 330.89

Maximum fossil-fuel

substitution (FFS

100%)

256.29 333.67

3.3.2 Fossil-fuel substitution lowers atmospheric carbon diox-

ide concentrations and global temperatures

In all simulations global CO2-concentrations (figure 3.1) more than double throughout

the 21st century from 380 ppm in 2006 to more than 790 ppm in 2100 (table 3.3). CO2-
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concentrations surpass the levels of the baseline afforestation scenario in simulations

with herbaceous biomass plantations but without fossil-fuel substitution by approxi-

mately 30 ppm. However, when herbaceous biomass plantations substitute fossil-fuels,

CO2-concentrations are lower than in the baseline afforestation scenario by 70-90 ppm.

The temperature changes reflect changes in CO2-concentrations. Temperatures in all

simulations increase by 3-4◦C throughout the 21st century. In the simulations with-

out fossil-fuel substitution, they are slightly above those in the baseline afforestation

scenario, whereas simulations with fossil-fuel substitution have lower temperatures.

Table 3.3: Carbon dioxide concentrations [ppm] and global temperatures [◦C] at the end of

the 21st century in the simulations with herbaceous biomass plantations compared to the

beginning of the century (present day) and the afforestation baseline. HBPs: simulation with

herbaceous biomass plantations; 55/71: 55% harvest or 71% harvest; 0/100% FFS: 0 or 100%

fossil-fuel substitution.

Simulation Temperature [◦C]
CO2-concentrations

[ppm]

Present day (2006) 14.4 380.5

Afforestation 18.2 884.4

HBPs 55 0% FFS 18.5 915.7

HBPs 71 0% FFS 18.5 922.2

HBPs 55 100% FFS 17.6 814.7

HBPs 71 100% FFS 17.8 791.7

Herbaceous biomass plantations are C4 grasses and capable of living in a large variety

of environments, hence the lack of variability in their global yields between the different

climates analyzed in this study. C4 grasses react less sensitively to CO2-fertilization

than C3 plants because they decouple CO2-uptake and photosynthesis. In spite of

the growing advantages of C3 plants over C4 plants under higher CO2-concentrations,

herbaceous biomass plantations can significantly alter the global climate, especially

when coupled with fossil-fuel substitution (figure 3.1). However, they are not capable of

fully mitigating the effects of a high emission scenario such as RCP8.5 and temperatures

and CO2-concentrations still double compared to 2006. A reduction of 70-90 ppm

agrees with Schaeffer et al. 2006, who find a reduction of 70-80 ppm compared to the

standard SRES A1b scenario for woody biomass plantations on abandoned croplands

in the northern extra-tropics.

The yields of 256-330 PgC fall within the 76-1424 PgC range reported by Boysen 2016

and the 4-570 PgC range found by Dass 2013 though both Boysen 2016 and Dass 2013

use a range of mostly idealized scenarios to calculate their potentials.

A temperature reduction of 0.4-0.6◦C also agrees with the estimates of Dass 2013 (+0.1

to -0.35◦C) and Boysen 2016 (-0.6 to -1.8◦C). However, it contradicts the findings of

Schaeffer et al. 2006 who find a decrease of only 0.1◦C compared to a simulation

with natural vegetation in the same areas, in spite of the similarity in the carbon
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Figure 3.1: Global annual average CO2-concentrations (in ppm) (a) and temperatures (in
◦C) (b) from 2006 to 2100 in the afforestation reference simulation and the four simulations

with herbaceous biomass plantations (HBPs). Lines represent 5-year annual means. HBPs:

herbaceous biomass plantations, 55/71: 55/71% harvest of total plant carbon, 0/100% FFS:

0/100% fossil-fuel substitution.
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potential to our study. Possibly the choice of woody biomass plantations capable of

snow-masking and associated albedo changes may have counteracted the carbon effects,

although a difference in climate sensitivity between their model, IMAGE2.2, and MPI-

ESM cannot be excluded. Hallgren et al. 2013 report a decrease of 0.01-0.06◦C in

80-year equilibrium studies. In their study, the temperature reduction results from

the biogeophysical effects associated with land-use change. These effects are partially

counteracted by emissions due to displaced natural ecosystems. In my study, natural

ecosystems are spared, preventing emissions on the same order of magnitude as the

mitigation potential over the simulation period. Thus, the chosen land-use scenario, in

part, determines the success of the chosen mitigation measure.

The global values show that herbaceous biomass plantations with fossil-fuel substitution

are more effective at mitigating the climate than afforestation after approximately 15-

20 years. They also show that without fossil-fuel substitution, afforestation is more

effective. However, they cannot illustrate how much individual processes contribute to

the overall effectiveness or determine the spatial distribution of carbon stocks.

3.3.3 Gross and net primary production respond to CO2-

concentrations

Primary production increases in all simulations, reacting to rising temperatures,

CO2-fertilization and land-cover change (figure 3.2). Gross primary production (GPP)

reacts directly to climatic conditions and CO2-concentrations. Net primary production

(NPP) includes autotrophic respiration, which also responds to climate conditions.

Land-cover change contributes to the increases in gross and net primary production.

In all simulations large areas of crops and pastures are replaced by natural grasslands,

forests or herbaceous biomass plantations, all of which are more productive than crops

and pastures.

Gross and net primary production differ greatly between simulations (table 3.4),

partly because of differing amounts of CO2-fertilization and partly because of differing

weather and climate conditions between the different simulations. In the simulations

with herbaceous biomass plantations but without fossil-fuel substitution, gross

primary production exceeds that in simulations with fossil-fuel substitution, a clear

indication of the role of CO2-fertilization. However, net primary production reacts to

a combination of gross primary production and respiration. Both depend on climate

variables such as temperature and precipitation, which can vary significantly between

years.
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Table 3.4: Gross and Net primary production for the different simulations in the year 2100.

GPP: gross primary production; NPP: net primary production; HBPs: simulation with herba-

ceous biomass plantations; 55/71: 55% harvest or 71% harvest; 0/100% FFS: 0 or 100%

fossil-fuel substitution.

Simulation GPP [PgC/a] NPP [PgC/a]

Present day (2006) 180 90

Afforestation 258.8 123.3

HBPs 55 0% FFS 271.0 123.5

HBPs 71 0% FFS 265.5 121.9

HBPs 55 100% FFS 267.7 124.1

HBPs 71 100% FFS 259.9 120.0

3.4 Changes in land carbon stocks

3.4.1 Mathematical analysis

Land carbon stocks change in response to changes in area occupied by different PFTs

(area-driven) and by changes in densities of carbon on available areas (density-driven).

Area-driven changes result from land-use change, dynamical vegetation and their inter-

play. Density-driven changes result from changes in plant productivity and respiration.

The change in carbon stock is the difference between the carbon stocks at different

times:

∆C = C1 − C0 (3.1)

Where C1 represents the carbon stocks at timestep 1, C0 represents the carbon stocks

at the beginning of the simulation and ∆C is the difference between the two.

The carbon stocks of any PFT at any given time are a function of the density multiplied

by the area occupied by the PFT:

C = ρA (3.2)

Where ρ is the carbon density and A is the area occupied by the analyzed plant

functional type.

By combining the two equations above, we can express the change in carbon stocks as

a function of the densities and the areas:

∆C = ρ1A1 − ρ0A0

= (ρ0 + ∆ρ) (A0 + ∆A)− ρ0A0

= ρ0∆A+ ∆ρA0 + ∆ρ∆A

(3.3)

Where ρ0∆A represents the area-driven changes in carbon stocks, ∆ρA0 represents the

density-driven changes in carbon stocks and ∆ρ∆A represents the synergy between the

two. Any one of these terms can be positive or negative, so that total carbon stock

changes may be smaller or larger than changes would be, if only one effect were present.
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Figure 3.2: Gross (a) and net (b) primary production (in Pg) from 2006 to 2100 in the

afforestation reference simulation and the four simulations with herbaceous biomass planta-

tions (HBPs). Lines represent 5-year annual means. HBPs: herbaceous biomass plantations,

55/71: 55/71% harvest of total plant carbon, 0/100% FFS: 0/100% fossil-fuel substitution.
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3.4.2 Forests dominate land carbon stocks

The areas of the different land-use types shrink and expand throughout the 21st

century as a result of land-use change and climate-driven shifts of natural vegetation

(figure 3.3). Forests expand in all simulations but most in the afforestation scenario,

where they gain 8.4 million km2 compared to 4.7 million km2 in the simulations with

herbaceous biomass plantations (table 3.5). In the afforestation scenario, two factors

drive forest expansion: the abandonment of agricultural areas (crops and pastures)

and the warming of the Arctic, which leads to more favorable growing conditions

for forests in northern latitudes and a gradual replacement of grasses with forests,

but forests can still expand onto grasslands in the boreal zone. In the scenarios

with herbaceous biomass plantations, abandoned agricultural areas are reclaimed

for herbaceous biomass plantations and are therefore not available for forests. The

presence of herbaceous biomass plantations and the differences in climate influence

the local dynamics of natural vegetation changes, so that total area of natural

grasses is reduced in simulations with herbaceous biomass plantations compared to

the afforestation baseline. Crops and pastures collectively shrink by approximately

6.5 million km2 most of which (5.6 million km2) is reclaimed for herbaceous biomass

plantations.

Table 3.5: Area of the different land-use types in the year 2100 compared to present day

conditions.

Simulation Area [106]km2

Forest Grass
Pastures and

Crops

Herbaceous

biomass

plantations

Present day 42 20 42 0

Afforestation 50.4 25.6 35.1 0

Modified land-use

scheme

46.7 23.7 35.1 5.6

The other 0.9 million km2 revert to grasslands. Nevertheless, the area of grasses are

reduced compared to the afforestation scenario. Natural vegetation reacts dynamically

to climatic conditions. In JSBACH, these interactions occur independently of the

land-use scheme. However, just as in the land-use scheme, areas shift proportionally to

the available areas. As forest areas are smaller in the herbaceous biomass plantations

scenarios, any shifts to grasses will necessarily also be smaller, which leads to smaller

grassland extents compared to the afforestation baseline.
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Figure 3.3: Area changes (in millions of square kilometers) of forests (a), grasses (b), crops and pastures (c) and herbaceous biomass plantations

(d) from 2006 to 2100 in the afforestation reference simulation and the four simulations with herbaceous biomass plantations (HBPs). HBPs:

herbaceous biomass plantations, 55/71: 55/71% harvest of total plant carbon, 0/100% FFS: 0/100% fossil-fuel substitution. The curves for

crops and pastures as well as for herbaceous biomass plantations are all on top of each other showing that the land-use scenarios are consistent

between simulations.
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Figure 3.4: Changes in area (in square kilometers) of forests (a), grasses (b), crops and pastures (c) and herbaceous biomass plantations (d)

from 2006 to 2100 in the simulation with 71% harvest and 100% fossil-fuel substitution.
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Patterns of area changes (figure 3.4) differ between regions. Forests expand in the

boreal zones and contract in the tropics. Grasses contract in the boreal zones and

expand in the tropics, almost mirroring the patterns seen in forests. These changes are

driven by changing climate conditions that alter the competitiveness of the two types

compared to each other. Crops and pastures contract in Europe, most of Africa and

the Americas. However, they expand in East Asia, Australia and the horn of Africa.

These changes are solely driven by local land requirements as projected by the RCP4.5.

Area and density changes drive changes in carbon stocks. Carbon density in plants is

determined by plant type and CO2-concentrations in the atmosphere. Higher concen-

trations of CO2 increase photosynthetic efficiency and carbon fixation rates, especially

in C3 plants. In the simulations with herbaceous biomass plantations, increases in

forest carbon stocks are mainly density-driven (figure 3.5), both in the tropics and in

the boreal regions. Area driven-changes decrease forest carbon stocks in the tropics be-

cause of area losses to grasses, but slightly increase carbon stocks in the boreal regions

as forests expand northwards. The synergistic effects are small compared to the indi-

vidual effects. In most areas plant carbon stocks in forests increase. However, in some

areas of the Amazon basin, forest plant carbon stocks decrease because area-driven

changes dominate in this region.

Plant carbon stocks of herbaceous biomass plantations increase throughout the cen-

tury as a result of their expanding areas. Densities do not contribute to this increase

since these C4 grasses reach their maximum plant carbon densities quickly and are not

significantly affected by CO2-fertilization. Total carbon changes in plants are much

smaller than forests because these grasses do not accumulate woody biomass.

Soil carbon changes under forests are much more heterogeneous (figure 3.6). While

soil carbon stocks increase in the northern hemisphere and some parts of the tropics,

like central Africa, they decrease in parts of the Amazon basin, subtropical Africa and

east Asia. The increase in the northern hemisphere is driven by both area and density

changes, while the increases in the tropics are mainly density-driven and the decreases

in the tropics are essentially area-driven. Again, the synergistic effects are minimal.

Total soil carbon changes under forests in the tropics therefore depend on whether the

area- or the density-driven changes dominate.

Soil carbon changes under herbaceous biomass plantations are dominated by the

area-driven changes. The density-driven changes are minimal but the synergistic ef-

fects counteract the effects of herbaceous biomass plantations. Overall, soil carbon

stocks under herbaceous biomass plantations increase throughout the century. How-

ever, this could result from herbaceous biomass plantations being established on soils

already containing high amounts of carbon.

Total changes of carbon stocks in forests closely follow the soil carbon stock patterns

which dominate over the plant carbon stocks (figure 3.7). For herbaceous biomass

plantations, total carbon stocks increase throughout the century, mostly dominated by

the area-driven and synergistic effects.
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Figure 3.5: Density- (a,b) and area-driven (c,d) changes in plant carbon pools for forests

(FRST) and herbaceous biomass plantations (HBPS) as well as synergistic effects (e,f) and

total plant carbon change (g,h) all units in PgC. Red designates increases in carbon stocks,

blue indicates decreases in carbon stocks, gray areas indicate no changes in carbon stocks.

Forests and herbaceous biomass plantations are plotted to different scales because carbon

stocks in plants in these two land-use types differ by two orders of magnitude. Data shown

for the simulation with 71% harvest and 100% fossil-fuel substitution.
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Figure 3.6: Density- (a,b) and area-driven (c,d) changes in soil carbon pools for forests

(FRST) and herbaceous biomass plantations (HBPS) as well as synergistic effects (e,f) and

total plant carbon change (g,h) all units in PgC. Red designates increases in carbon stocks,

blue indicates decreases in carbon stocks, gray areas indicate no changes in carbon stocks.

Data shown for the simulation with 71% harvest and 100% fossil-fuel substitution.
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Figure 3.7: Density- (a,b) and area-driven (c,d) changes in total carbon pools for forests

(FRST) and herbaceous biomass plantations (HBPS) as well as synergistic effects (e,f) and

total plant carbon change (g,h) all units in PgC. Red designates increases in carbon stocks,

blue indicates decreases in carbon stocks, gray areas indicate no changes in carbon stocks.

Carbon pools for herbaceous biomass plantations include the harvested carbon. Data shown

for the simulation with 71% harvest and 100% fossil-fuel substitution.
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3.4.3 Forest carbon densities increase while herbaceous

biomass plantations areas expand

Increases in carbon density are mainly driven by climate, primarily caused by CO2-

fertilization. However, outside the tropics, increasing temperatures in early spring and

late autumn prolong growing seasons, adding to carbon accumulation and density in-

creases. Densities decrease when plants die because of unfavorable conditions. Plants

can die because of a variety of reasons. Drought, frost or disturbances, such as fire or

storms, can kill plants or plants may be outcompeted by a plant type which is better

adapted to the new climate.

Areas change for three reasons: land-use change, competition between plant types

and expansion or contraction of unsuitable areas. Land-use change responds to de-

mographic, social and economic pressures. Competition between plant types responds

to climatic changes. Unsuitable areas such as glaciers or deserts expand and contract

in response to climatic conditions, such as when glaciers melt due to rising temper-

atures, or in response to human activities, such as when deserts expand in response

to deforestation or overgrazing. In the RCP4.5 scenario, land-use change is driven

by social pressures to intensify agriculture and reduce meat consumption. As a result,

agricultural areas shrink freeing space which my study reclaims for herbaceous biomass

plantations.

Land carbon stocks result from the interplay between area and density. Area increases

decrease carbon densities because densities are averaged over the available area. This

can decrease densities, especially for carbon stocks that accumulate slowly over long

periods of time, such as wood or soil carbon stocks. Conversely, area decreases don’t

necessarily increase densities because plant carbon escapes to the atmosphere while soil

carbon remains on site and is attributed to the new plant type. Plant carbon is lost

from the land either directly as a result of biomass burning, or indirectly by removal

for human use. In both cases, JSBACH assumes that most plant carbon is returned

to the atmosphere rapidly. Moreover, plant productivity governs both densities and

areas simultaneously. Increased productivity increases carbon fixation and therefore

densities but it also increases the competitive fitness of a plant type, leading to an area

expansion at the expense of other plant types. Decreased productivity reduces both

densities and areas by the same effect. Thus, densities and areas vary in synchrony,

creating synergistic effects.

My study disentangles the area- and density-driven changes as well as the synergistic

effects. Most of the changes in carbon stocks of forests and herbaceous biomass plan-

tations can be explained either by the density-driven or by the area-driven changes,

while the synergistic effects play a relatively minor role. Unsurprisingly, changes in

forest carbon stocks are much larger than changes in herbaceous biomass plantations.

This results from the overall larger carbon stocks present in forests.

In JSBACH, agricultural products are not harvested but added to the soil carbon

annually to simulate harvest. The model thus tends to overestimate soil carbon on
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agricultural areas (Nyawira et al., 2016). This may influence the distribution of soil

carbon even on natural areas, since the soil carbon is attributed to the new areas when

agricultural fields are abandoned. These legacy-effects may lead to an over-estimation

of soil carbon under herbaceous biomass plantations at the beginning of the simulation

when large areas of former agricultural lands are reclaimed for herbaceous biomass

plantations. Additionally, since for herbaceous biomass plantations the harvest is re-

moved from the fields, the model may show an unrealistic depletion of soil carbon due

to the establishment of herbaceous biomass plantations. Some literature results suggest

that herbaceous biomass plantations increase soil carbon and improve soil properties

on heavily degraded lands because of their capacity to recycle nutrients (Beale and

Long, 1997). Thus, caution must be applied when interpreting soil carbon changes.

3.5 Carbon budget of areas with herbaceous

biomass plantations

The previous section analyzed the global changes in carbon stocks. This section ana-

lyzes how carbon stocks change on the abandoned agricultural areas which are trans-

formed into herbaceous biomass plantations in my simulations and compares them

to the carbon stocks on the same areas in the afforestation scenario. The goal is

to estimate the change in sink capacity (CISC), the total change in carbon between

the afforestation and herbaceous biomass plantation simulations, on the area under

scrutiny.

3.5.1 Mathematical analysis

The change in sink capacity is defined as the change in carbon stocks of forests minus

the change in carbon stocks of herbaceous biomass plantations:

CISC ..= ∆CFRST −∆CHBPs = (ρ2100FRST − ρ2100HBPs) ∗ AHBPs (3.4)

Where ∆CFRST is the difference in carbon stocks of forests between 2006 and 2100

and ∆CHBPs is the difference in carbon stocks of herbaceous biomass plantations be-

tween 2006 and 2100, ρ2100FRST and ρ2100HBPs are the carbon densities of forests and

herbaceous biomass plantations in 2100 and AHBPs is the are of herbaceous biomass

plantations in 2100. The density of forests can further be broken down into the density

of forest in 2006 (ρ0FRST ) plus the change in density (∆ρ). The change in sink capacity

then becomes:

CISC = ∆AHBPs ∗ ρ0FRST + ∆AHBPs ∗∆ρFRST −∆AHBPs ∗ ρ2100HBPs (3.5)

Three terms emerge from this equation. The first term describes the potential carbon

stocks of a mature forests on the areas covered by herbaceous biomass plantations
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under present-day climate conditions. They therefore represent the prevented forest

sink in a constant climate under the assumption that all areas are abandoned at

the beginning of the simulation. Interestingly, the term simultaneously describes the

amount of carbon emissions avoided by establishing herbaceous biomass plantations

on abandoned agricultural areas rather than forests. These avoided emissions (AVEM)

do not contain increases in carbon densities due to forest growth or carbon dioxide

fertilization.

AV EM = ∆AHBPs ∗ ρ0FRST (3.6)

When biomass plantations claim abandoned agricultural areas, they prevent forest

establishment on these areas. If forests had reclaimed these areas, they would have

acted as a carbon sink equivalent to the avoided emissions and an additional carbon

sink due to CO2-fertilization throughout the century. The second term of equation 3.5

describes this loss of additional sink capacity (LASC).

LASC = ∆AHBPs ∗∆ρFRST (3.7)

The areas on which herbaceous biomass plantations grow are not barren. In order to

assess the change in sink capacity, the carbon stored in herbaceous biomass plantations

in 2100 has to be accounted for:

land HBPs sink = ρ2100HBPs ∗∆AHBPs (3.8)

Thus, equation 3.5 shows the carbon budget of the areas covered by herbaceous biomass

plantations:

CISC = ∆AHBPs ∗ ρ0FRST︸ ︷︷ ︸
AVEM

+ ∆AHBPs ∗∆ρFRST︸ ︷︷ ︸
LASC

−∆AHBPs ∗ ρ2100HBPs︸ ︷︷ ︸
land HBPs sink

(3.9)

Here, the harvested carbon used for fossil-fuel substitution is not included in the car-

bon density of herbaceous biomass plantations, because only the land carbon sink is

assessed. All relations are calculated for the carbon stored in plants, the carbon stored

in soils and for total ecosystem carbon. Total ecosystem carbon gives a measure of the

extreme change in sink capacity for a replacement of forests by herbaceous biomass

plantations, assuming that all carbon stored in soils were lost over the period and

replaced with carbon input from herbaceous biomass plantations.

3.5.2 114 Pg of carbon less on areas with herbaceous biomass

plantations compared to afforestation

Areas covered by herbaceous biomass plantations store 114 Pg less carbon than if

they were covered by forests (table 3.6) under the assumption that after 95 years,

all carbon previously stored in soils has decayed and was emitted to the atmosphere.
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Over the same time period, forests could have developed a potential sink of 248 Pg

carbon (212+36 PgC), a sink almost equivalent to the 255 PgC minimum harvest

estimate for herbaceous biomass plantations under the 55% harvest scheme (table 3.2).

However, if the harvest sink of 255-330 PgC (table 3.2) is added to the on-site sink of

herbaceous biomass plantations (114 PgC), the total sink becomes 390-468 PgC and

the total carbon balance becomes negative, with additional 142-220 PgC sequestered

by herbaceous biomass plantations compared to forests.

Table 3.6: Global carbon budget of areas with herbaceous biomass plantations compared to

afforestation. AVEM: avoided emissions; LASC: loss of additional sink capacity; HBPs Sink:

carbon sink of herbaceous biomass plantations; CISC: change in sink capacity due to the

replacement of forests with herbaceous biomass plantations. All numbers for the simulation

with 71% harvest and 100% fossil fuel substitution. Differences between simulations are

small. The harvested carbon is not included in the HBPs Sink.

Carbon type AVEM [Pg] LASC [Pg]
HBPs Sink

[Pg]
CISC [Pg]

Plant 42 22 4 61

Soil 170 14 131 53

Total 212 36 135 114

Regionally, the patterns of avoided emissions, loss of additional sink capacity and

change in sink capacity match the distribution of herbaceous biomass plantations (fig-

ure 3.8). The highest values are found in south-eastern South America, south-eastern

North America, central Eurasia and western Africa, where herbaceous biomass planta-

tions cover the largest extents. Without the harvested carbon, the carbon balance is

positive almost everywhere, except for a few sites in the Himalayas where the carbon

balance is negative. Results coincide between simulations.
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Figure 3.8: Avoided emissions (AVEM, a,d,g), loss of additional sink capacity (LASC, b,e,h) and change in sink capacity (c,f,i) of plant (a,b,c),

soil (d,e,f) and total ecosystem carbon (g,h,i).
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3.5.3 The potential forest sink almost equates the estimated

harvest

JSBACH computes each plant functional type in every gridcell so that the produc-

tivity of each plant type can be assessed even when the extent of that plant type is

negligible. Importantly, this setup allows estimating the potential productivity and

carbon storage capacity of any plant type on any area within the same climate. Here,

I estimate the carbon storage capacity of forests on the areas covered by herbaceous

biomass plantations and calculate the carbon budget of these areas.

The avoided emissions represent two different, yet similar, carbon pools. On the one

hand, the avoided emissions are the amount of carbon forest ecosystems would have

lost if herbaceous biomass plantations had been established, in 2006, at the expense of

forests rather than on agricultural areas. On the other hand, the avoided emissions also

represent a prevented sink, the amount of carbon forests could have stored, had they

been established on these agricultural fields in 2006. However, the avoided emissions

are only valid under constant climate.

The loss of additional sink capacity represents the amount of additional carbon forests

could store on the same area, due to CO2-fertilization in the changing climate of a

simulation. Similarly to the avoided emissions, this could apply to a forest hypotheti-

cally displaced by herbaceous biomass plantations or to a hypothetical forest growing

on the areas reclaimed for herbaceous biomass plantations. The avoided emissions and

the loss of additional sink capacity together represent the maximum amount of carbon

forests could store on the area used for herbaceous biomass plantations.

The HBPs-sink represents the actual amount of carbon stored on the areas under

scrutiny due to the presence of herbaceous biomass plantations in 2100. This sink only

accounts for the amount of carbon in the fields and does not include the carbon stored

in the form of unburnt fossil-fuels. Thus, the change in sink capacity only represents the

changes in land carbon sink, not the total mitigation potential of herbaceous biomass

plantations.

In all simulations the potential forest sink (avoided emission and loss of additional sink

capacity) of 248 PgC (table 3.6) almost equates the estimated harvest of 255-330 PgC

(table 3.2). This similarity limits the mitigation potential of herbaceous biomass plan-

tations compared to forests and illustrates the trade-off between carbon storage on land

and fossil-fuel substitution. Every square meter of land used for herbaceous biomass

plantations cannot be used to store carbon in forests.

Importantly, many factors that the model represents only in a very limited way could

influence actually realizable yields of herbaceous biomass plantations. Localized recur-

ring droughts, storms or flooding events could limit plant productivity and shift the

balance in favor of forests. On the other hand, literature values suggest that some

areas may produce even higher yields, which would shift the carbon balance in favor

of herbaceous biomass plantations (see Chapter 2).

These findings illustrate the spatial and temporal dimensions involved. In order to
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maximize the mitigation potential of herbaceous biomass plantations, policy makers

need to identify the areas where the effectiveness of herbaceous biomass plantations is

highest compared to forests. Yet, even on the least effective areas, herbaceous biomass

plantations eventually will be more effective than forests at mitigating the climate

because the effects of fossil-fuel substitution accumulate over time whereas the land

carbon sink saturates. Nevertheless, choosing areas where herbaceous biomass planta-

tions quickly become more effective than forests increases their mitigation potential.

However, avoided emissions, loss of additional sink capacity, the HBPs-sink and the

change in sink capacity are all dependent on the chosen land-use scenario.

3.6 Effectiveness of herbaceous biomass plantations

The scenario setup allows a direct comparison of herbaceous biomass plantations with

afforestation. This allows answering several central questions:

• Which of the two land-use types mitigates the climate most effectively?

• Can fossil-fuel substitution make herbaceous biomass plantations more effective

than afforestation and what level of substitution is needed to achieve this in-

creased effectiveness?

• On what timescales do the relevant processes operate?

3.6.1 Mathematical analysis

Effectiveness is the carbon density (per unit vegetated area, that is the area covered

by that land-use type) of one land-use type compared to another. The effectiveness

of herbaceous biomass plantations compared to afforestation is the carbon density of

forests minus the carbon density of herbaceous biomass plantations:

Eff = ρFRST − ρHBPS (3.10)

Where ρ is the carbon density per unit vegetated area, FRST stands for forest and

HBPS for herbaceous biomass plantations. The effectiveness emerges from the change

in sink capacity (eq. 3.5) and expresses the difference in capacity of a given area to

draw carbon from the atmosphere depending on whether it is covered by forests or

herbaceous biomass plantations. The change in sink capacity can also be expressed as:

CISC = Eff ∗∆AHBPs (3.11)

In the case of herbaceous biomass plantations with fossil-fuel substitution, the amount

of carbon harvested and used for fossil-fuel substitution over the lifetime of the plan-

tation has to be added to its carbon density, because the harvested carbon is part of
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plantation’s ability to draw carbon from the atmosphere. Since the substitution-effect

accumulates over time, herbaceous biomass plantations become more effective the

longer they are in use. Herbaceous biomass plantations mitigate the climate more

effectively than forests if the effectiveness is negative. The effectiveness is calculated

for every year of the simulation. Herbaceous biomass plantations are considered

more effective than afforestation for a gridcell in a given year, if the running mean

effectiveness of five consecutive years is negative. I use a running mean to reduce the

effects of short-term variations in productivity, especially in forests.

The level of substitution required for herbaceous biomass plantations to become

more effective than afforestation is calculated by linearly interpolating between the

effectiveness of 0% fossil-fuels substitution and the effectiveness of 100% fossil-fuel

substitution. The relation is interpolated for each year so that the effectiveness of

any given level of fossil-fuel substitution can be assessed for any given year. For my

study I chose two levels of fossil-fuel substitution, 30% and 70%, which reflect typical

values of currently technologically achievable carbon savings for bioenergy compared

to fossil-fuels (Gallagher, 2008).

3.6.2 The effectiveness of herbaceous biomass plantations

compared to forests increases over time

In the year 2100 herbaceous biomass plantations with 100% fossil-fuel substitution mit-

igate the climate more effectively than afforestation in all gridcells (figure 3.9a). Com-

pared to herbaceous biomass plantations without fossil-fuel substitution, afforestation

is more effective (figure 3.9b). In most gridcells, herbaceous biomass plantations with

fossil-fuel substitution are more effective than afforestation even at lower levels of sub-

stitution (figure 3.9d). At 70% fossil-fuel substitution, herbaceous biomass plantations

are effective over much of the globe, while at 30% fossil-fuel substitution, only some

areas, such as North America, the Amazon basin and small areas of Asia and Africa,

favor herbaceous biomass plantations over afforestation.

Fossil-fuel substitution increases the effectiveness of herbaceous biomass plantations

because the harvested carbon accumulates and increases the total carbon storage ca-

pacity of this plant type. Since the effectiveness compares the potential of afforestation

and herbaceous biomass plantations to draw CO2 out of the atmosphere, the harvested

carbon must be included in all effectiveness calculations. In JSBACH, wood harvest

is currently not used for fossil-fuel substitution, however, if it was, this would greatly

change the effectiveness of herbaceous biomass plantations compared to forests.

In many gridcells herbaceous biomass plantations become more effective than afforesta-

tion within only a few years after establishment (figures 3.9c and 3.10a & b). However,

the time needed for herbaceous biomass plantations to become more effective decreases

with increasing levels of fossil-fuel substitution. At 30% fossil-fuel substitution, areas

where herbaceous biomass plantations become effective early are restricted to areas
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where forests do not grow particularly well, such as the Western US. In most areas,

this level of substitution only becomes more effective than afforestation in the last

decades of the 21st century.

At 100% fossil-fuel substitution, the area of herbaceous biomass plantations needed to

mitigate climate at the same level as forests in the afforestation simulation amounts to

2.9 million km2. This is slightly more than half the area available. All additional land

used for herbaceous biomass plantations mitigates the climate beyond the capacities

of forests.
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Figure 3.9: Effectiveness of herbaceous biomass plantations compared to forests: a) for 100% fossil-fuel substitution, b) for 0% fossil-fuel

substitution. c) Year in which 5-year mean effectiveness becomes negative in each gridcell for 100% fossil-fuel substitution. d) Level of

fossil-fuel substitution needed for herbaceous biomass plantations to exceed the effectiveness of forests in the year 2100. All graphs refer to

the simulations with 71% harvest (HBPs71). FFS: fossil-fuel substitution, FRST-HBPS: measure of effectiveness, carbon density of forests

minus carbon density of herbaceous biomass plantations (including fossil-fuel substitution for the lifetime of the plantations).
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3.6.3 Effectiveness depends on choices of location, technology

and timescales

This is the first study that directly quantifies the mitigation potentials of herbaceous

biomass plantations and compares it with that of afforestation. The effectiveness

weighs one square meter of forest against one square meter of herbaceous biomass

plantations in each gridcell, independently of the chosen land-use scenario. This study

highlights the different dimensions affecting the mitigation potential of herbaceous

biomass plantations: the extent of the plantations, the level of fossil-fuel substitution,

and the timeframe considered. Ideally, herbaceous biomass plantations would be

established over large areas using optimal technology (close to 100% fossil-fuel

substitution) with management times spanning many decades. However, my study

shows that herbaceous biomass plantations can also be more effective than forests at

lower levels of substitution and on shorter timescales, especially in areas where forest

productivity is limited such as the western USA.

These findings clearly identify areas where herbaceous biomass plantations are most

effective when compared to forests and show that a little over half the abandoned area

in RCP4.5 would suffice to surpass the mitigation potential of forests.

3.7 General remarks

One factor that limits this study is the size of the gridcells. The gridcells are much

larger than the typical fields planted by farmers. MPI-ESM averages all variables over

the entire gridcell. However, local conditions can vary due to topography, underlying

bedrock, soil conditions and microclimates. Therefore, average yields may not be

achievable in all areas of a gridcell. The modified RCP4.5 land-use scenario establishes

herbaceous biomass plantations on abandoned agricultural areas. Farmers tend to

abandon the least fertile lands first, which could depress yields significantly. I address

this issue by keeping the yields at their lower estimated potential (see chapter 2).

Herbaceous biomass plantations depend on water availability. In some areas, irrigation

and fertilization can significantly improve yields (Ercoli et al., 1999; Miguez et al.,

2008). However, JSBACH cannot simulate irrigation. Plants, therefore, rely solely

on rainfall. Thus, effectiveness in some areas may be underestimated due to lack of

irrigation in the model. However, irrigation uses energy which in turn reduces the

achievable level of fossil-fuel substitution. How these opposing effects would interact

in different regions cannot be estimated in this study.

Land carbon dynamics influence the climate significantly and should be considered

when choosing between land-use options. However, land-use change alters many other

factors besides land carbon dynamics which also need to be considered. Previous

studies indicate that large-scale establishment of biomass plantations may decrease
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food-security and biodiversity and alter water cycles more than crops would (Boysen,

2016; Heck et al., 2016). Establishing herbaceous plant types instead of forests on

any lands also alters the physical properties of the land surface. JSBACH cannot

analyze food-security or biodiversity in detail but it can simulate the physical changes

associated with land-use changes and analyze its effects on the atmosphere. These

effects will be discussed in Chapter 5.

3.8 Conclusion

Herbaceous biomass plantations affect the global carbon cycle significantly. On the

one hand, they sequester carbon through photosynthesis and mitigate climate change

through fossil-fuel substitution. On the other hand, they prevent forest regrowth and

the additional sinks associated with it. Their net effect greatly depends on the chosen

land-use scenario. This study highlights three main effects:

• The greatest potential of herbaceous biomass plantations lies in fossil-fuel

substitution. Simulations without fossil-fuel substitution have higher CO2-

concentrations than in the afforestation baseline, while simulations with fossil-fuel

substitution have lower CO2-concentrations than in the afforestation baseline.

• When established on abandoned agricultural areas, they become effective quickly

and within current technological limits, in spite of the limited areas available for

their establishment.

• Even though herbaceous biomass plantations prevent forest regrowth, a poten-

tial carbon sink on the order of magnitude of total yields of herbaceous biomass

plantations, they still reduce temperatures and atmospheric CO2-concentrations

through fossil-fuel substitution compared to forest regrowth. Effectiveness of

herbaceous biomass plantations depends on the chosen deployment method. This

study explores a plausible land-use scenario which preserves both food produc-

tion and natural ecosystems. In this scenario, herbaceous biomass plantations are

effective in spite of the relatively small areas available. Importantly, maximizing

climate mitigation requires minimizing the impacts on land carbon stocks.

This study shows that herbaceous biomass plantations mitigate global CO2-

emissions and reduce temperatures more effectively than afforestation as long as

they are established on abandoned agricultural lands and direct or indirect emis-

sions from forest displacement are avoided. Although their potential is limited by

area availability and technological feasibility, they could contribute significantly

to emissions reductions through their ability to substitute fossil-fuels.
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Chapter 4

Biogeophysical effects of herbaceous

biomass plantations on land surface

properties and local climate

4.1 Introduction

Plants influence the atmosphere by exchanging matter and energy directly and indi-

rectly with the air surrounding them (Bonan, 2008). While biochemical interactions,

such as photosynthesis and respiration, have been intensively studied, biogeophysical

interactions have received much less attention. This chapter analyzes the biogeophys-

ical effects of large-scale biomass plantations on the climate.

Several previous studies analyzed the biogeophysical effects of land-use change in ide-

alized scenarios or of historical land-use change on the climate (Claussen et al., 2001;

Brovkin et al., 2006; Betts et al., 2007; Pongratz et al., 2009a; Bathiany et al., 2010;

Pongratz et al., 2010; Brovkin et al., 2013). Some of these studies suggest, that,

historically, biogeophysical effects may have counteracted biogeochemical effects on lo-

cal scales (Betts et al., 2007). Similarly some studies on regional scales have found

significant biogeophysical impacts for herbaceous biomass plantations replacing crops

(Georgescu et al., 2011). The biogeophysical effects of herbaceous biomass plantations

may affect the future climate on global or local scales and hence need to by analyzed.

Herbaceous biomass plantations can be used to substitute fossil energy sources. As

such, they are a potent tool for climate engineering (see chapter 3). However, their

surface properties differ significantly from those of other plants which could affect their

ability to mitigate climate change. Also, because biogeophysical effect often affect lo-

cal climate more than global climate, they could conceivably mitigate the climate on

global scales while decreasing the quality of life in their immediate surroundings (Pon-

gratz et al., 2010). This could lead to conflicts between global policy agreements and

local communities affected by the changes. Therefore, how biogeophysical properties
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of herbaceous biomass plantations affect the local climate may well determine if they

are deployed at levels sufficient to mitigate climate change.

Plants interact with the atmosphere by exchanging chemicals and by altering the phys-

ical properties of the land surface (Bonan, 2008). This change in physical properties

can be optical or mechanical. Optical changes involve the color and reflectivity of the

surface. They determine how much sunlight the surface absorbs and reflects. Fur-

thermore, plants can absorb sunlight and radiate it back as heat. Mechanical changes

involve surface area and texture. They impact air movement in and around canopies

and wind speeds and direction. These factors influence the local and global climate.

Water fluxes, mainly evaporation and transpiration, count as biogeophysical interac-

tions because the evaporation of water requires energy which in turn cools the surface

(Bonan, 2008). Thus, evapotranspiration serves to transport energy from the surface

to the atmosphere. Plants influence transpiration for two reasons: first, their extensive

root systems source water from deeper soil layers increasing the amount of water avail-

able for transpiration, and second, their extensive canopies increase the surface area

over which transpiration occurs. These fluxes affect the amount of soil-, ground- and

river-water available for human use (Schilling et al., 2008). Since humans need water

for themselves, for their crops and their domesticated animals, the effects of land-use

change on water cycles and local water availability should be considered.

In nature, biogeophysical and biogeochemical effect of land-use change occur simul-

taneously. Attributing any response to one of these effects requires precise analysis.

Representing as many relevant processes as possible in a global Earth System Model

only partially resolves this issue. While the simulation quantifies all effects it repre-

sents, the model also captures many feedbacks between the different processes. The

question of how to disentangle these effects remains. One possible solution is to elimi-

nate one of the two effects under scrutiny (Brovkin et al., 2013).

Chapter 3 described the hybrid scenario developed to compare afforestation and large-

scale herbaceous biomass deployment. This scenario couples emissions from RCP8.5

to the land-use from RCP4.5. The RCP4.5 land-use projects large-scale agricultural

abandonment. In the afforestation baseline simulated by Sonntag et al. 2016, the ma-

jority of these areas revert to forests, while in my modified land-use scenario, these

same areas are reclaimed for biomass plantations. All simulations described in chapter

3 represent both biogeochemical and biogeophysical effects of the two land-use types.

In order to eliminate the biogeochemical effects on the climate, I developed an addi-

tional simulation based on the modified land-use scenario of RCP4.5: the abandoned

agricultural areas are still reclaimed for herbaceous biomass plantations, but the sce-

nario uses the greenhouse gas concentrations of the afforestation baseline. This new

simulation has the same biogeochemical climate as the afforestation baseline, but differs

from the baseline because of the biogeophysical effects of herbaceous biomass planta-

tions. Thus any differences between this simulation and the baseline must be caused by

the physical alterations engendered by replacing forests by herbaceous biomass plan-

tations. I use this simulation to analyze how the biogeophysical effects of large-scale
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herbaceous biomass plantations influence the local and global climate when compared

to afforestation.

4.2 Material and methods

4.2.1 Setup of original simulations

The simulations analyzed so far consist of a hybrid scenario between the RCP8.5 emis-

sions and the RCP4.5 land-use (for details see description of land-use transitions in

chapter 2). In the RCP4.5 land-use scenario, agricultural areas are abandoned through-

out the century. These areas revert to natural lands in the afforestation baseline. I

modified this land-use scenario so that areas reverting to forests in the original scenario

are reclaimed for herbaceous biomass plantations. These scenarios are further described

in chapters 2 and 3. The Afforestation baseline was simulated by Sebastian Sonntag and

is described in detail in Sonntag et al. 2016. All simulations were conducted with the

Max-Planck-Institute Earth System Model which encompasses the atmospheric global

circulation model ECHAM, the ocean model MPI-OM, which includes the ocean bio-

geochemistry model HAMOCC, and the land component JSBACH. The model version

and setup was identical to that used for the Coupled Model Intercomparison Project

5.

4.2.2 Isolating biogeophysical effects by mathematical means

from preexisting simulations is complicated by the sys-

tem’s internal non-linearity

In all available simulations biogeophysical and biogeochemical effects are entangled. In

order to isolate the effects of land-use on the temperature, I introduced a scaling factor

for each gridcell which links the actual temperature in each gridcell to the radiative

forcing of carbon dioxide. This should, in theory, eliminate all biogeochemical effects

and leave the biogeophysical effects as remaining differences between one simulation

and another.

The radiative forcing of CO2 is expressed as a logarithmic function of the CO2-

concentration (Lenton and Vaughan, 2009):

F (t) = 5.35 ∗ ln
ρCO2(t)

ρCO2(t0)
(4.1)

Where ρCO2(t) is the CO2-concentration at timestep t and ρCO2(t0) is the CO2-

concentration at the beginning of the simulation (reference timestep). The change

in local temperature in each gridcell is a linear function of the radiative forcing.

∆Ti,j (2100) = γi,j ∗ F (2100) (4.2)
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Where ∆Ti,j (2100) is the change in temperature in the gridcell with coordinates i and

j between 2006 and 2100 and γi,j is the scaling factor. Since the temperature for each

gridcell is known and the radiative forcing can be calculated, this equation yields the

scaling factor.

By calculating and comparing the scaling factor for different simulations with the same

land-use, but differing CO2-concentrations, I determined whether the scaling factor is

constant given a certain land-use regardless of the CO2-concentration.

I found that the scaling factor differs between different simulations with similar land-

use which indicates a strong non-linearity of the system. This method cannot be used

to isolate the biogeophysical effects of herbaceous biomass plantations.

4.2.3 Additional simulation to isolate biogeophysical effects

In a second attempt to isolate the biogeophysical effects of herbaceous biomass plan-

tations, I prescribed the greenhouse-gas concentrations of the afforestation baseline

simulation to the modified land-use including herbaceous biomass plantations. Thus,

the biogeochemical effects of herbaceous biomass plantations are eliminated in the new

simulation, leaving only the biogeophysical effects. Because the two land-use scenarios

diverge from the same initial state (historical land-use), only the last twenty years of

the simulations were compared. Students t-test was used to test for significance in

individual gridcells.

4.3 Results and Discussion

4.3.1 Temperatures and surface radiation

Mean global temperatures of the additional simulation resemble those of the afforesta-

tion baseline (see figure 4.1). In chapter 3, comparisons between the afforestation

baseline and the fully coupled models showed that herbaceous biomass plantations

significantly alter the climate compared to forests. The absence of such differences

in the additional simulation shows that biogeochemical effects dominate the global

climate and biogeophysical effects play a minor role on global scales. Yet, average

global temperatures can mask local changes too small to be captured in global trends.

Air temperatures at 2 m height and surface temperatures show no significant

differences between the additional simulations and afforestation for most areas (see

figure 4.2). On land, only three areas with significant differences can be identified: in

western Alaska, temperatures are slightly lower for the additional simulation compared

with afforestation, in Siberia and western Russia temperatures are slightly warmer

than in Afforestation (Students t-test 5% significance level). However, only the area

in western Russia coincides with abundant herbaceous biomass plantations. The
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Figure 4.1: Annual average global temperatures (5-year running means) in the Afforestation

and the additional simulation throughout the century.

remaining areas showing significance are likely false positives of the test, clustered

together because of spatial correlation of neighboring gridcells. Nevertheless, non-local

biogeophysical effects of herbaceous biomass plantations cannot be excluded.

Seasonal minimum and maximum 2 m air temperatures show no significant seasonal

effects which could be correlated to herbaceous biomass plantations (see figures 4.3

and 4.4).

Of all variables analyzed, albedo correlates best with land-use change (figure 4.5).

Albedo in a gridcell increases as the percentage of the gridcell covered with herbaceous

biomass plantations increases. This is not surprising as different plant types reflect

differing amounts of sunlight. Herbaceous biomass plantations reflect more sunlight

than forests and therefore, surface albedo within a gridcell correlates with their

extent (correlation coefficient R=0.88). Different continents are affected similarly by

this effect. This is unexpected, as forest canopies reflect differing amounts of light

depending on the dominant species. However, these differences between forests may

be negligible next to the more substantial differences between forests and herbaceous

biomass plantations.
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Figure 4.2: Difference between the additional simulation and the afforestation baseline in 2 m

air temperatures and surface temperatures (top), net and upward surface radiation (middle)

and cloud cover and surface albedo (bottom). Only significant differences shown (Student’s

t-test 5% confidence level)
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Figure 4.3: 90th percentile of maximum temperatures for each season. DJF: December, January, February; MAM: March, April, May; JJA:
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In areas with herbaceous biomass plantations, upward surface radiation exceeds that

of the afforestation scenario, which results from higher albedo of herbaceous biomass

plantations compared to forests. However, the effects on net surface radiation are

weak. Net surface radiation is reduced by these changes in South America, East Asia

and parts of Africa. In other areas, such as western Russia, the higher albedo does

not affect net radiation significantly. Three mechanisms could be responsible for the

latter observation: either the long, dark, boreal winters reduce the effects of higher

albedo, or the albedo changes are too small to significantly alter net surface radiation,

lastly other effects might counter the albedo effects. Changes in cloud cover due to

altered transpiration which might counteract alterations in upward surface radiation

were excluded.

4.3.2 Water cycle

Precipitation does not change significantly between simulations (Students t-test 5%

significance level) even though herbaceous biomass plantations reduce transpiration

rates significantly (see figure 4.6), in South America and Africa. Herbaceous biomass

plantations transpire less than forests, even though forests have a lower leaf area in-

dex in the model. This is surprising since transpiration correlates with leaf area index

(Chase et al., 1996). In some areas, reduced transpiration increases soil water levels

such as in South America. Interestingly, soil water levels also increase in East Asia,

where changes in transpiration are not significant. Possibly, decreases in transpiration

were too slight to be detected, yet significantly increased soil water nonetheless. Yet

the overall small numbers of gridcells showing significant changes could also result from

false positives. Runoff is not significantly affected.

Transpiration decreases with increasing cover fraction of herbaceous biomass plan-

tations (figure 4.7, correlation coefficient R=-0.45). Herbaceous biomass plantations

transpire less than forests for several reasons. First, they are C4-plants which use wa-

ter significantly more efficiently by closing or partially closing their stomata under hot

dry conditions. This reduces transpiration compared to C3-plants, usually present in

forests, which must keep their stomata open in order to photosynthesize. Second, their

higher albedo reflects more radiation and cools their surface, reducing overall transpi-

ration. The extent of these effects depends on climate. Third, trees often extend their

root systems much further than grasses, allowing them to tap into water resources not

available to grasses.

4.3.3 Comparison to other studies

Few studies consider the biogeophysical effect of land-use change, even though some

studies found that they could alter local and global climate substantially (Betts, 2001;

Claussen et al., 2001; Brovkin et al., 2006; Betts et al., 2007; Pongratz et al., 2009a;
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Figure 4.5: Land surface albedo differences between the additional simulation and the af-

forestation baseline as a function of the cover fraction of herbaceous biomass plantations

(HBPs). Only gridcells in which the cover fraction of herbaceous biomass plantations ex-

ceeded 0.05 were included. The black line shows the linear regression. AFR: Africa, AUS:

Australia, CAM: Central America, EUR: Europe, NAM: North America, NAS: Northern

Asia, SAM: South America, SAS: South Asia
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Figure 4.7: Transpiration differences between the additional simulation and the afforestation

baseline as a function of the cover fraction of herbaceous biomass plantations (HBPs). Only

gridcells in which the cover fraction of herbaceous biomass plantations exceeded 0.05 were

included. The black line shows the linear regression. AFR: Africa, AUS: Australia, CAM:

Central America, EUR: Europe, NAM: North America, NAS: Northern Asia, SAM: South

America, SAS: South Asia
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Bathiany et al., 2010; Pongratz et al., 2010; Brovkin et al., 2013). Several idealized

studies suggest that deforestation in the tropics warms the climate while deforesta-

tion in temperate and boreal regions cools the climate (Claussen et al., 2001; Brovkin

et al., 2006; Bathiany et al., 2010). Brovkin et al. 2006, Betts et al. 2007 and Pongratz

et al. 2009a found that historical land-use cooled the northern hemisphere by increas-

ing albedo as forests were converted to agricultural areas. Brovkin et al. 2013 show

that the biogeophysical effects of the land-uses of RCP2.6 and RCP8.5 do not influence

global climate but can have a local effect in areas where total land-use change exceeds

10%. In light of these findings, the small changes on both local and global scales found

in my study are surprising.

Schaeffer et al. 2006 analyzed the effects of large-scale woody biomass plantations on

albedo and transpiration in the northern hemisphere as compared to afforestation.

They found changes in albedo of up to 10% in individual gridcells. My findings are of

a similar magnitude but with two major differences: first, my scenario uses herbaceous

biomass plantations rather than woody biomass plantations and second, my scenario

encompasses all regions, not just the northern extra-tropics. Woody biomass planta-

tions are harvested every 4-7 years leading to widely fluctuating leaf area indices and

albedo and transpiration changes between years. Herbaceous biomass plantations are

harvested annually and grow back quickly, thus their canopies, albedo and transpira-

tion are more homogenous between years.

Several studies consider the biogeophysical effects of herbaceous biomass plantations

on local conditions. Le et al. 2011 model the effects of Miscanthus, Panicum and Zea

mais on the hydrology of the Midwestern United States of America. They find that

Miscanthus and Panicum have significantly higher transpiration than Zea mais. Im-

portantly, they show that overall hydrology in the Midwestern US is affected by the

choice of species. However, they only compare different C4-grasses. My study shows

that compared to forests, that are mainly composed of C3-species, herbaceous biomass

plantations transpire less, even though C3-plants profit more from higher atmospheric

CO2-concentrations as they are more affected by CO2-fertilization. In situations of

local water limitation, planting C4-grasses or crops may therefore be preferable to

planting forests.

Georgescu et al. 2011 also analyzed the effects of converting annual crops into perennial

herbaceous biomass plantations. They find increases in both albedo and transpiration.

Their simulations, like Le et al. 2011, illustrate the importance of the reference. They

analyze the effects of converting crops to herbaceous biomass plantations and compare

the new plant type with the initial plant type. I compare the effects of two alternative

choices, afforestation and herbaceous biomass plantations. Thus, compared to crops,

both forests and herbaceous biomass plantations would increase overall transpiration,

but, compared to afforestation, herbaceous biomass plantations decrease transpiration.

On the other hand, herbaceous biomass plantations increase albedo compared to crops

and compared to afforestation.
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4.3.4 Limitations of this study

This study is limited by a number of factors. While the MPI-ESM attempts to capture

as many relevant aspects of the Earth System as possible, some aspects are difficult to

model in a global Earth System Model. The coarse resolution may obscure some local

effects of land-use change. In addition, cloud formations and dynamics are difficult to

model which could lead to underestimation of differences in transpiration-precipitation

feedbacks due to land-use change. My study focuses on one global land-use scheme

without considering how other distributions of herbaceous biomass plantations might

affect the climate. Lastly, my study limits the extent of herbaceous biomass planta-

tions to the abandoned agricultural areas of RCP4.5. How larger areas would affect

the climate remains unclear.

The resolution of JSBACH is relatively coarse compared with the fine-scale topogra-

phy of the Earths surface. Land-use often is determined by topography. Rivers or

mountains are often used as boundaries between jurisdictions. Streams and ridges de-

termine the shapes and sizes of fields. Microtopography and microclimates also affect

which species grow in a given area and which land-use will be most profitable. While

JSBACH attempts to capture as many of these elements as possible, it fails to capture

these small-scale variations, as it averages over the gridcells.

As microtopography and microclimates can enhance as well as reduce certain effects,

they average out on the large scales as long as land-use is assigned randomly. Yet,

land-use is rarely assigned randomly as it is usually profit-oriented. Decision makers

can assign land-use based on revenue, maximum production or minimum energy in-

put. My land-use scenario assumes that biomass plantations are established on former

agricultural areas that are abandoned. Thus, it generally assumes that herbaceous

biomass plantations would be established on depleted, less productive or even contam-

inated soils. Because JSBACH averages local conditions over any gridcell it cannot

capture the effects of establishing herbaceous biomass plantations only on those soils.

While herbaceous biomass plantations can grow efficiently on soils unsuitable for more

demanding crops, how their productivity and all related properties would change over

time if they were established on less productive soils remains unclear.

The coarse resolution of global models also limits the details of cloud simulation. Con-

sequently, any processes linked to clouds, such as cloud formation and precipitation, are

represented only on the broad scales of the gridcells. This is important when consid-

ering land-use for several reasons. First, the microtopographic and microclimatic issue

discussed above can lead to large variations in precipitation regimes within one grid-

cell. Second, precipitation influences the amount of water available for plant growth

and transpiration. Third, the amount of transpiration influences the amount of water

vapor available for cloud formation. This feedback can only be represented on the large

scales of the gridcells in the my simulations. For smaller scales, local models should

provide more detailed insights.

My study focuses on one specific land-use scenario. This scenario allocates herbaceous
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biomass plantations based on agricultural abandonment. While this considers poten-

tial capacities for plantations, it doesn’t factor in potential future demands. If areas of

future demand are far from areas of production, transportation costs might outweigh

potential benefits which could drive land-use patterns in different directions. This

could potentially lead to very different establishment patterns for herbaceous biomass

plantations witch in turn could have other consequences for the climate.

The areas used for herbaceous biomass plantations in my study are limited to the

abandoned crops and pastures from RCP4.5. Should future anthropogenic climate

change prove more severe than expected, societies might decide to expand biofuel and

bioenergy production far beyond these areas. My study cannot predict how such an

expansion would affect either the climate or local conditions.

4.4 Conclusions

Biogeochemical effects dominate both on global and local scales. Biogeophysical effects

play only a minor part, reducing the potentials for conflicts between global carbon

dioxide reductions and local decision makers whose lives might be impacted by the

deployment of herbaceous biomass plantations. Nevertheless, biogeophysical effects

or herbaceous biomass plantations affect two fundamental parts of land-atmosphere

interactions:

• Higher albedo of herbaceous biomass plantations increases surface reflectivity

compared to afforestation.

• Lower transpiration of herbaceous biomass plantations compared to forests may

increase soil moisture, compared to the afforestation scenario.

• Overall biogeophysical effects of herbaceous biomass plantations on the global

and local climate are negligible.

These effects could play a larger part on sub-grid scales. Importantly, temperature

changes due to higher albedo may be offset by temperature changes due to lower

transpiration since these effects counteract each other. How such effects might interact

on sub-grid scales remains to be determined.
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Chapter 5

Consequences of alternative

socioeconomic pathways on carbon

distribution

5.1 Introduction

Land-use change influences climate and global carbon distribution. Humans influence

where carbon is stored and how it flows between and through the different components

of the Earth System. This study analyzes how alternative, potential, socioeconomic

pathways would influence future global carbon distribution. This chapter aims to set

herbaceous biomass plantations as an alternative to other possible future energy sys-

tems.

Herbaceous biomass plantations are a land-based method of climate engineering be-

cause their harvest can be used to substitute fossil-fuels and generate energy in a

sustainable way. Afforestation can also be considered a land-based climate engineering

method if trees are viewed primarily as a carbon storage unit. Each method affects

carbon stocks in a unique way which in turn affects all other components of the Earth

System. Knowing where and how carbon is stored could help policy makers coordinate

decisions on carbon removal programs.

Land ecosystems provide many different environmental services, one of which is carbon

dioxide removal. They also provide food, fiber and timber, filter pollutants from the

air and the water, produce medically useful substances and some also serve as recre-

ational areas. Management techniques can seek to optimize one particular service or

to integrate different services. Many of these services depend on the amount of car-

bon in the system, for example, forestry yields more wood if more carbon is stored in

tree-trunks and crops yield more food if they store more carbon as sugars, starches or

oils. Thus carbon can be used as a measure for the ability of an ecosystem to provide

its most basic services. The more carbon the system contains, the more service it can
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potentially provide.

Alternative socioeconomic pathways analyzed here, include the representative concen-

tration pathways RCP4.5 and RCP8.5, the afforestation baseline calculated by Sonntag

et al. 2016 and the herbaceous biomass plantation simulations described in the previous

chapters. I compare the carbon stocks of the different scenarios to analyze how the

carbon emissions are distributed to the different pools of the Earth System. I empha-

size the land-based carbon pools since they are most affected by the land-use choices

underlying the different scenarios.

5.2 Material and methods

All simulations were calculated using the fully coupled MPI-ESM which encompasses

the atmospheric global circulation model ECHAM, the ocean model MPI-OM, which

includes the ocean biogeochemistry model HAMOCC, and the land component

JSBACH. The RCP4.5 and RCP8.5 scenarios were simulated as part of the Coupled

Model Intercomparison Project 5 (CMIP5) and are described in detail in Giorgetta

et al. 2013. The afforestation baseline was simulated by Sonntag et al. 2016 and is

described in detail in Sonntag et al. 2016. It consists of a hybrid scenario which

couples emissions from RCP8.5 to the land-use of RCP4.5. This scenario is referred

to as afforestation baseline because in the land-use of RCP4.5 large areas of formerly

agricultural lands are abandoned and the vast majority revert to forests as natural

ecosystems invade fields left fallow.

I modified the hybrid scenario developed by Sonntag et al. 2016 reclaiming the

abandoned agricultural areas for herbaceous biomass plantations. Herbaceous biomass

plantations are used for energy production. I simulated four scenarios: two with 100%

fossil-fuel substitution, two with 0% fossil fuel substitution, two with high yields (71%

of total plant carbon) and two with low yields (55% of total plant carbon). Each yield

scenario was paired with each fossil-fuel substitution choice.

5.3 Results and Discussion

5.3.1 Atmospheric carbon dioxide concentrations and global

temperatures

Global carbon dioxide (CO2) concentrations increase in all simulations (figure 5.1).

RCP4.5 (green line) shows the smallest increase whereas RCP8.5 shows the largest in-

crease (black line). In the afforestation scenario, forests expand onto abandoned agri-

cultural areas and become additional carbon sinks. This lowers CO2-concentrations
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compared to RCP8.5 by 85 ppm (table 5.1). When herbaceous biomass plantations re-

place these forests (red and magenta lines), they sequester slightly less CO2 than forests,

lowering atmospheric carbon dioxide concentrations by only 47-53 ppm compared to

the vegetation in the RCP8.5 land-use. When herbaceous biomass plantations addi-

tionally substitute fossil-fuels they prevent emissions from fossil energy sources and

thereby reduce CO2-concentrations far below the level of the afforestation scenario.

Atmospheric CO2-concentrations are 154-177 ppm lower in the simulations with 100%

fossil-fuel substitution than in RCP8.5 and 70-93 ppm lower than the afforestation

simulation. However, all simulations forced with the RCP8.5 emissions have higher

CO2-concentrations than RCP4.5. Neither afforestation nor herbaceous biomass plan-

tations can fully mitigate these high emissions.

Global average temperatures follow the CO2-patterns (figure 5.1 and table 5.1). Af-

forestation lowers global temperatures by 0.4◦C compared to RCP8.5. Herbaceous

biomass plantations without fossil-fuel substitution have hardly any influence on tem-

peratures. In simulations with herbaceous biomass plantations but without fossil-fuel

substitution, temperatures increase to slightly above those in the afforestation scenario

but not beyond the RCP8.5 level. Fossil-fuel substitution, however, reduces global tem-

peratures by 0.8-1◦ compared to RCP8.5 and by 0.4-0.6◦ compared to afforestation.

Afforestation mitigates the climate more effectively than biomass plantations, as long

as biomass plantations do not substitute fossil-fuels. Herbaceous biomass plantations

could contribute to reducing global CO2-concentrations and temperatures, as long as

they are deployed on abandoned agricultural areas and are used for fossil-fuel sub-

stitution. However, if herbaceous biomass plantations are intended as an additional

energy source, they can still contribute to reducing CO2-concentrations compared to

the RCP8.5 land-use.

Table 5.1: Carbon dioxide concentrations [ppm] and global temperatures [◦C] at the end of

the 21st century in the simulations with herbaceous biomass plantations compared to the

beginning of the century (present day) and the afforestation baseline. HBPs: simulation with

herbaceous biomass plantations; 55/71: 55% harvest or 71% harvest; 0/100% FFS: 0 or 100%

fossil-fuel substitution.

Simulation Temperature [◦C]
CO2-concentrations

[ppm]

Present day 14.4 380.5

RCP4.5 16.2 538.4

RCP8.5 18.6 969.0

Afforestation 18.2 884.4

HBPs 55 0% FFS 18.5 915.7

HBPs 71 0% FFS 18.5 922.2

HBPs 55 100% FFS 17.6 814.7

HBPs 71 100% FFS 17.8 791.7
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Figure 5.1: Atmospheric carbon dioxide concentrations (a) and mean annual global tempera-

tures (b) of all scenarios analyzed in this section (5-year annual means). RCP: representative

concentration pathway; Afforestation: hybrid baseline afforestation scenario; HBPs: herba-

ceous biomass plantations; 55/71%: percentage of total biomass harvested ; FFS: fossil fuel

substitution; 0/100%: percentage of fossil-fuel substitution.
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5.3.2 Carbon storage

The ocean stores the greatest amount of carbon in the Earth system (figure 5.2).

Land is the second largest carbon pool and the atmosphere the smallest. However

throughout the century the share of carbon that remains in the atmosphere increases in

all simulations. The share of the land carbon pool also increases slightly. Importantly,

the fossil-fuel storage in the simulation with 100% fossil-fuel substitution seems

negligible next to the larger pools. Nevertheless it has the potential to substantially

reduce the amount of carbon in the atmosphere.

Land carbon stocks are divided into plant and soil pools (figure 5.3). Soil pools are

much larger than plant pools. Forest carbon pools exceed all other carbon pools

and on global scales natural ecosystems dominate the land carbon pools, excluding

geological carbon storage. Forest pools increase most in the afforestation scenario,

which is not surprising for this land-use scenario. Interestingly, forest carbon pools

increase more in the afforestation scenario than in the RCP4.5 scenario, even though

they have the same land-use. This difference is caused by the higher CO2-fertilization

in the afforestation scenario.

Forest carbon pools are lowest in RCP8.5. CO2-concentrations in this scenario increase

more than in any other, yet the land stores the least amount of carbon. In spite of the

high CO2-fertilization, forest carbon stocks increase less as they are partly displaced

by the expansion of agricultural areas. This illustrates the importance of land-use

choices for overall land carbon storage.

In all scenarios except RCP8.5, carbon pools in crops and pasture areas decrease,

mainly due to the reduction in area dictated by the RCP4.5 land-use scenario. In

spite of rapidly increasing carbon stocks in herbaceous biomass plantations especially

in the soil, they cannot sequester as much carbon as forests. This explains why

CO2-concentrations are higher in the simulations without fossil-fuel substitution than

in the afforestation scenario.

Herbaceous biomass plantations, though highly productive, have lower plant and soil

carbon stocks and therefore cannot fully compensate the reduced increase in forest

carbon stocks. Therefore, land ecosystems lose part of their ability to sequester

carbon, even though the chosen scenarios do not contain any deforestation for the

establishment of herbaceous biomass plantations.

Natural ecosystems store more carbon in the simulations without fossil-fuel substi-

tution (figure 5.3, red and magenta bars). This results from higher CO2-fertilization

compared to other simulations. Nevertheless, their total carbon storage is lower

because they lack the fossil-fuel storage of the simulations with 100% fossil-fuel

substitution. This illustrates an inherent trade-off between land-based climate

engineering techniques such as fossil-fuel substitution and land-based carbon storage

in ecosystems: higher CO2-concentrations fertilize plants and trigger additional

draw-down of carbon from the atmosphere, but higher fossil-fuel substitution rates

reduce CO2-concentrations more than simple draw-down of CO2 by ecosystems, yet
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simultaneously reduce the draw-down capacity of land-based ecosystems. Carbon

stocks in crops and pastures decrease as their area decreases. This questions the

scenario assumption that more food can be cultivated on less area. However, JSBACH

does not include different management options such as irrigation or fertilization, which

might additionally increase food production.

If herbaceous biomass plantations are cultivated on abandoned crop and pasture

areas which would otherwise have reverted to forests, they prevent forest regrowth

and reduce the land’s carbon sequestration potential. However, the abandoned

areas in the RCP4.5-scenario are large enough to significantly reduce carbon dioxide

concentrations, if they are used to substitute fossil-fuels. This trade-off could be

minimized by planting herbaceous biomass plantations in areas where forests cannot

grow or are less productive. Ultimately, the choice of whether and where to plant

biomass plantations depends on the prioritization of goals.
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Figure 5.2: Total carbon [Pg] contained in the ocean, the atmosphere, and the land in 2006 and 2100 for the afforestation scenario and two

scenarios with herbaceous biomass plantations, the first with 0% fossil-fuel substitution and the second with 100% fossil-fuel substitution.
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NATL: plant carbon in natural lands, P-ANTH: plant carbon in crops and pastures, P-HBPS: plant carbon in herbaceous biomass plantations,

P-ALL: plant carbon in all vegetation types, S-NATL: soil carbon under natural vegetation, S-ANTH: soil carbon under crops and pastures,

S-HBPS: soil carbon under herbaceous biomass plantations, S-ALL: sum of all soil carbon
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This study is limited in one fundamental way: JSBACH cannot account for the many

different management options which could improve carbon stocks in forests, grasslands,

fields or plantations. JSBACH does not include fertilizers and pesticides. JSBACH also

fails to account for possible future improvements resulting from more productive strains

or technologies still in development. Numerous studies have shown that some regions

lag behind their full food production capacities because of lack of technologies such as

efficient irrigation techniques or energy supplies needed to pump water (Matson et al.,

1997; Niles et al., 2002; Harvey et al., 2014). Similarly, silvicultural techniques can

influence carbon stocks in forests and their soils (Niles et al., 2002; López-Dı́az et al.,

2017). Thus JSBACH cannot estimate how much additional carbon land ecosystems

could store, if optimal management techniques were established globally.

5.4 Conclusions

This chapter shows that land-use choices fundamentally influence the distribution of

carbon in land ecosystems and the entire Earth System. Additionally, it illustrates

how different methods of carbon dioxide removal from the atmosphere can influence

each other. This study illustrates two main effects:

• Substituting fossil-fuels with herbaceous biomass plantations increases the overall

draw-down capacity of land-based ecosystems.

• Substituting fossil-fuels with herbaceous biomass plantations simultaneously de-

creases the capacity of forests to store carbon due to the reduction of CO2-

fertilization.
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Chapter 6

Summary and Conclusions

This study combines several important aspects. First, all scenarios were simulated in a

global coupled model, unlike most previous studies on biomass plantations which used

either local or regional models or dynamic vegetation models. Second, the RCP4.5

land-use ensures food security and ample wood supply while providing areas for the

establishment of herbaceous biomass plantations. Third, the high emissions of RCP8.5

help explore the maximum potentials of herbaceous biomass plantations as a tool for

climate engineering. Lastly, I examine many different aspects in order to develop a

comprehensive and holistic view of herbaceous biomass plantations and their potential

effects on the Earth System.

This study analyzes the effects of herbaceous biomass plantations on the climate in a

plausible rather than idealized scenario. The baseline scenario couples the emissions

of RCP8.5 with the land-use of RCP4.5. In this scenario large areas of agricultural

lands are abandoned throughout the 21st century. They revert to natural lands, mainly

forests (afforestation baseline). This afforestation baseline was simulated by Sonntag

et al. 2016. My scenario establishes herbaceous biomass plantations on the abandoned

croplands and pastures that revert to forests in the baseline scenario, avoiding emissions

resulting from the displacement of natural ecosystems.

I developed four scenarios, with two different harvest rates, 55% and 71% of plant

carbon, and two differing fossil-fuel substitution options, 0% and 100% of harvested

carbon used for fossil-fuel substitution. Each harvest rate was paired with each fossil-

fuel substitution option. I simulated all four scenarios from 2005 to 2100 in the fully

coupled Max-Planck-Institute Earth System Model (MPI-ESM).

I compare my scenarios with the baseline afforestation scenario as well as the two

original RCPs. I examine the effectiveness of herbaceous biomass plantations compared

to afforestation in different regions and examine how their presence affects carbon

redistribution in the Earth System. In addition to the biogeochemical effects, I analyze

the biogeophysical effects of herbaceous biomass plantations on the properties of the

Earths surface and on the climate.

My study highlights these main effects of herbaceous biomass plantations on the Earth
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System:

• Their greatest potential lies in fossil-fuel substitution. Simulations without fossil-

fuel substitution have higher CO2-concentrations than in the afforestation base-

line, while simulations with fossil-fuel substitution have lower CO2-concentrations

than in the afforestation baseline.

• When established on abandoned agricultural areas, they become effective quickly

and within current technological limits, in spite of the limited areas available for

their establishment.

• Even though herbaceous biomass plantations prevent forest regrowth, a poten-

tial carbon sink on the order of magnitude of total yields, they still reduce tem-

peratures and atmospheric CO2-concentrations through fossil-fuel substitution

compared to forest regrowth.

• Higher albedo of herbaceous biomass plantations increases surface reflectivity

compared to afforestation.

• Herbaceous biomass plantations, when planted on abandoned agricultural areas

on the scales of my study, have little potential to negatively affect local conditions

• Substituting fossil-fuels with herbaceous biomass plantations simultaneously de-

creases the capacity of forests to store carbon due to the reduction of CO2-

fertilization.

This study analyzed the potentials for side-effects on the climate or for human well-

being. Specifically, I analyzed how biogeophysical effects of herbaceous biomass plan-

tations might affect the local climate and if these effects might counteract or enhance

the biogeochemical effects. I show that herbaceous biomass plantations increase albedo

and decrease transpiration resulting in a net neutral effect compared to forests. Also,

reduced transpiration may increase local soil water availability. Importantly, I show

that conflict potentials between the need for global actions and the risk of local land-

use change negatively affecting human well-being are low, for the alternative scenarios

analyzed here.

This study contributes to a global discussion surrounding methods of mitigating cli-

mate change. Both afforestation and herbaceous biomass plantations used for fossil-fuel

substitution are viewed as methods of climate engineering. My study highlights the ad-

vantages and disadvantages of each method. Both can draw down significant amounts

of CO2. Yet, neither method can fully compensate the high CO2-emissions of RCP8.5.

Therefore, any policy measures using land-use to mitigate high CO2-emissions should

also consider complementary methods. Importantly, the two methods compete for

both land and CO2, as the draw-down potential of C3-forests depends on atmospheric

CO2-concentrations.
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In conclusion, herbaceous biomass plantations can mitigate climate change more ef-

fectively than afforestation in nearly all climates. They become effective quickly and

within technological limits. Their effectiveness is limited by the amount of suitable

land available. However, as decision makers struggle to balance food, fiber, timber and

energy production, they may contribute a small amount to some solutions.
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Chapter 7

Outlook

This study analyzes different aspects of herbaceous biomass and their effects on land

carbon pools and the local and global climate. However, many aspects remain unclear.

Herbaceous biomass plantations affect land properties in many different ways and

through many different mechanisms. Some parameters that are not considered here

are surface roughness or carbon turnover rates. Different distributions of herbaceous

biomass plantations could potentially lead to very different results.

All changes in land-surface properties could potentially affect the atmosphere as well.

For example, surface wind speeds and directions could be affected by surface roughness.

Considering the small effects of other biogeophysical properties of herbaceous biomass

plantations, analyzed so far, on the climate, it is questionable whether any other effects

would be significant. Nevertheless, a thorough analysis would be necessary to reveal

any unexpected side-effects.

The effects of herbaceous biomass plantations on the oceans also warrants further study.

Ocean pH and productivity depend on atmospheric CO2-concentrations, but also on

other factors such as sea surface temperatures. None of these effects are analyzed in

my study. Sea-ice extent would also be an interesting factor to study because of its

role in ocean-albedo feedbacks.

Apart from the effects of my chosen scenario on the components of the Earth system,

other options are conceivable. Further exploration of agricultural and technological

possibilities could carbon draw-down potential of biomass plantations compared to

forests. Bioenergy could be used not only for fossil-fuel substitution but also with

carbon capture and storage which would effectively double carbon savings. Numerous

cultivation techniques such as irrigation, fertilization but also breeding or genetic en-

gineering could shift the boundaries of biomass productivity far beyond their current

limits. Exploring these possibilities could help determine the upper limits of climate

engineering with bioenergy.



106 Outlook



Outlook



i

Appendices

A.1 Detailed implementation of altered land-use

transition scheme in JSBACH

A.1.1 Original land-use scheme

The original land-use scheme in JSBACH distinguishes between the four cover types:

crops, pastures, grasses and forests (Reick et al., 2013). Transitions are initially read

from transitions maps describing the yearly changes between crops, pastures and natu-

ral lands (grasses and forests). These transitions are then broken down to daily values

describing the gross changes between the four cover types. The new cover fractions for

each type are computed by the matrix T:
c′C
c′P
c′G
c′F

 = T


cC
cP
cG
cF

 (A.1)

Where ci is the cover fraction of the cover type i of the previous day, ci is the new

cover fraction of the cover type i, the indices designate the four cover types used in the

original scenario: C stands for crops, P for pastures, G for grasses and F for forests.

The transition matrix T describes the transitions between the four cover types:

T =


TC→C TP→C TG→C TF→C

TC→P TP→P TG→P TF→P

TC→G TP→G TG→G TF→G

TC→F TP→F TG→F TF→F

 (A.2)

Where Ti→j is the fraction of area that is transferred from cover type i to cover type

j. Importantly all cover fractions must sum up to 1:∑
i

ci =
∑
i

c′i = 1 (A.3)

Additionally, because the transitions maps do not distinguish between grasses and

forests but consider both to be natural lands, all transitions between grasses and forests

are always zero:

TG→F = TF→G = 0 (A.4)
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A.1.2 Modified land-use scheme

In order to incorporate herbaceous biomass plantations into the original land-use

scheme, an expanded transition matrix was inserted into the model which separated

herbaceous biomass plantations from the other cover types. This matrix uses the orig-

inal matrix T as input for its calculations. In the original matrix, herbaceous biomass

plantations are considered to be forest. The new transition matrix T̃ is described by

the equation:

T̃ =


T̃C→C T̃P→C T̃G→C T̃F→C T̃H→C

T̃C→P T̃P→P T̃G→P T̃F→P T̃H→P

T̃C→G T̃P→G T̃G→G T̃F→G T̃H→G

T̃C→F T̃P→F T̃G→F T̃F→F T̃H→F

T̃C→H T̃P→H T̃G→H T̃F→H T̃H→H

 (A.5)

Where H denotes the new cover type, herbaceous biomass plantations. All transitions

between crops, pastures and grasses remain identical, since there are no modifications

in the transitions between these cover types. Additionally, there should be no tran-

sitions between forests or grasses and herbaceous biomass plantations, since herba-

ceous biomass plantations are only planted on abandoned crops or pastures. Thus,

T̃F→H = T̃H→F = T̃G→H = T̃H→G = 0. Lastly, equation (A.4) shows that there are no

transitions between grasses and forests either. So the modified matrix can be described

by:

T̃ =


TC→C TP→C TG→C T̃F→C T̃H→C

TC→P TP→P TG→P T̃F→P T̃H→P

TC→G TP→G TG→G 0 0

T̃C→F T̃P→F 0 T̃F→F 0

T̃C→H T̃P→H 0 0 T̃H→H

 (A.6)

Where Ti→j are transition elements conserved by the modified matrix and T̃i→j are the

transition elements of the modified matrix. Ten transition elements are still unknown

in the new matrix. In the following, new equations are developed to determine these

transition elements. Importantly, all transitions elements must fall in the range from

zero to one because the model assumes that within a single timestep farmers would

not convert more than the currently available area of one plant type, for example

abandon cropland to forests and then immediately reclaim it along with more forest,

such transitions would count as a single transition, and to avoid cover fractions that are

negative (negative area is illogical) or larger than one (area larger than the gridcell is

undesirable and would impede proper model functioning). The modified matrix allows

calculating the new cover fractions:
c′C
c′P
c′G
c̃′F
c̃′H

 = T̃


cC
cP
cG
c̃F
c̃H

 (A.7)
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This equation ensures that the cover fractions of crops, pastures and grasses are con-

served by the modified matrix and are identical to the cover fractions calculated by the

original scheme:

c̃i = ci for i ∈ {C,P,G} (A.8)

The sums of all cover fractions must be one:∑
i

c̃i =
∑
i

c̃′i = 1 for i ∈ {C,P,G, F,H} (A.9)

The cover fractions of forests and herbaceous biomass plantations are modified and

need to be recalculated along with all transition elements describing transitions to

and from these cover types. Since the cover fractions of crops pastures and grasses

must be identical to those in the original scenario, the cover fractions of forests and

herbaceous biomass plantations, in the new scenario, together must be identical to the

cover fractions of forests from the original scenario:

c̃F = cF (t = 2005)
A.4
=⇒

A.8, A.9
cF = c̃F + c̃H and c′F = c̃F + c̃H (A.10)

Where cF (t = 2005) indicates the cover fraction of forests in 2005.

A.1.2.1 Matrix derived equations

The structure of the modified transition matrix determines that column sums must be

equal to one (A.9) because the transition elements in each column describe all possible

transitions from one cover type to either itself or the other cover types and since the

entire area covered by that cover type must be accounted for, the sums of the transition

elements must be one:

TC→C + TC→P + TC→G + T̃C→F + T̃C→H = 1 (A.11)

TP→C + TP→P + TP→G + T̃P→F + T̃P→H = 1 (A.12)

T̃F→C + T̃F→P + T̃F→F = 1 (A.13)

T̃H→C + T̃H→P + T̃H→H = 1 (A.14)

This relationship holds true for grasses as well, however, all transition elements in this

column are known, therefore the equation is not considered here. The relationship is

also valid for the original transition matrix:

TC→C + TC→P + TC→G + TC→F = 1 (A.15)

TP→C + TP→P + TP→G + TP→F = 1 (A.16)

Thus equations (A.11) and (A.15) can be combined to:

T̃C→F + T̃C→H = TC→F (A.17)

Similarly equations (A.12) and (A.16) are combined to:

T̃P→F + T̃P→H = TP→F (A.18)
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A.1.2.2 Equations resulting from the specific land-use scenario

On the global scale, RCP4.5 projects a contraction of agricultural lands. However,

agricultural lands may expand in individual gridcells. The scenario produces three

possible cases that need to be dealt with separately: contraction of agricultural lands,

expansion of agricultural lands in the presence of herbaceous biomass plantations and

expansion of agricultural lands in the absence of herbaceous biomass plantations in the

gridcell.

A.1.2.2.1 First case: contraction of agricultural lands

Precondition for the first case: c′F ≥ cF
The first case is the most common case in the RCP4.5 scenario. It reflects abandon-

ment of agricultural areas. In the original scenario, these areas revert to forests. In the

new scenario they are allocated to herbaceous biomass plantations. The precondition

reflects an increase in forests in the original scenario.

A.1.2.2.1.1 Equations specific for the first case

When agricultural lands contract, the abandoned areas are converted to herbaceous

biomass plantations. Forests conserve their cover fractions from the previous timestep.

There are no conversions from herbaceous biomass plantations to crops or pastures:

T̃H→C = 0 (A.19)

T̃H→P = 0 (A.20)

Inserting equations (A.19) and (A.20) into the transition matrix (A.6) yields the fol-

lowing four equations for the new cover fractions (according to equation (A.7) the cover

fractions of crops and pastures keep their original value).

TC→C ∗ cC + TP→C ∗ cP + TG→C ∗ cG + T̃F→C ∗ c̃F = c′C (A.21)

TC→P ∗ cC + TP→P ∗ cP + TG→P ∗ cG + T̃F→P ∗ c̃F = c′P (A.22)

TC→F ∗ cC + TP→F + T̃F→F ∗ c̃F = c̃′F (A.23)

TC→H ∗ cC + TP→H + T̃H→H ∗ c̃H = c̃′H (A.24)

The transition matrix would yield a similar equation for grasses but since all elements

in that equation are known, it is omitted here. The same relationships as above apply

for the original dynamic:

TC→C ∗ cC + TP→C ∗ cP + TG→C ∗ cG + TF→C ∗ cF = c′C (A.25)

TC→P ∗ cC + TP→P ∗ cP + TG→P ∗ cG + TF→P ∗ cF = c′P (A.26)
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Thus, equations (A.21) and (A.25) can be combined and simplified to:

T̃F→C ∗ c̃F = TF→C ∗ cF (A.27)

Similarly, equations (A.22) and (A.26) can be combined and simplified to:

T̃F→P ∗ c̃F = TF→P ∗ cF (A.28)

Since herbaceous biomass plantations are established on areas that revert to forests,

the new cover fractions of forests are smaller or equal to the original cover fractions,

thus c̃F ≤ cF . Yet the crop and pasture areas must not divert from the original

scheme. Gross transitions can lead to reclaiming of forests for agriculture even when

total agricultural area shrinks. Therefore, transitions from forests to agricultural lands

are not necessarily zero. In such cases, transitions from forests to crops or pastures

must be larger than in the original scheme because the new cover fraction of forests

is smaller, thus T̃F→C ≥ TF→C and T̃F→P ≥ TF→P . If the forest cover fraction is very

small, or the transitions to anthropogenic areas particularly large, the equations may

result in transition elements larger than one, i.e. T̃F→C ≥ 1 or T̃F→P ≥ 1. However,

transition elements larger than one. To avoid this, a scaling factor, S, is introduced

into equations (A.27) and (A.28):

S ..= (TF→C + TF→P )
cF
c̃F

(A.29)

The transition elements from forests to anthropogenic areas are then calculated as:

T̃F→i
..=

1

max (1, S)
∗ TF→i

cF
c̃F

for i ∈ {C,P} (A.30)

Additionally, the scenario demands that cover fractions of forests remain constant from

one timestep to the next:

c̃′F = c̃F (A.31)

Lastly, a relationship is needed to describe how much abandoned cropland and how

much abandoned pasture area is converted to herbaceous biomass plantations rather

than forests. For this, I introduce the proportionality factor lambda, λ, and assume

that herbaceous biomass plantations are established proportionally to the total amount

of abandoned agricultural areas:

T̃C→H ∗ c̃C = λTC→F ∗ cC (A.32)

T̃P→H ∗ c̃P = λTP→F ∗ cP (A.33)
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A.1.2.2.1.2 Solutions for the first case

All values for cover fractions and transition elements must belong to the codomain

[0, 1]. The cover fractions describe the fraction of a gridcell covered by the respective

cover types and must be positive because negative area is illogical, but cannot exceed

1 because the maximum area any cover type can occupy is the entire gridcell. The

transition elements describe the fractions of an area occupied by one cover type that is

converted into another. The minimum area converted is none, represented by a transi-

tion element equal to zero, the maximum area converted is the entire area, represented

by a transition element equal to 1. Each relationship must therefore be tested to ensure

that it does not violate this precondition. The equations above provide the modified

cover fractions of forests and herbaceous biomass plantations. Equation (A.31) shows

that the cover fractions of forests are constant (precondition of the modified scenario).

This ensures that the cover fractions of forests are positive but do not exceed one.

c̃′F = c̃F ⇒ 0 ≤ c̃′F ≤ 1 (A.34)

Equation (A.10) and (A.34) can be combined to calculate the new cover fractions of

herbaceous biomass plantations.

(A.10): c′F = c̃′F + c̃′H
(A.34)

= c̃F + c̃′H (A.35)

c̃′H = c′F − c̃F ⇒ 0 ≤ c̃′H ≤ 1 (A.36)

Building on the equations established above, the ten unknown transition elements of

the modified transition matrix can now be determined: T̃H→C and T̃H→P result directly

from equations (A.19) and (A.20), ⇒ T̃H→C = T̃H→P = 0. Since these transition ele-

ments are zero, they are automatically within the intended codomain [0, 1]. T̃F→C and

T̃F→P result from equation (A.30): T̃F→i
..=

1

max (1, S)
∗ TF→i

cF
c̃F

for i ∈ {C,P}. The

scaling factor ensures that the values of these transition elements always lie between

zero and one. ⇒ 0 ≤ T̃ ′F→i ≤ 1, i ∈ {C,P}. In order to determine the transition

elements from forests to anthropogenic areas I define:

∆F→A
..= (TF→C + TF→P ) cF (A.37)

as the conversion fraction (∆) of forests to anthropogenic areas from the original sce-

nario,

∆A→F
..= TC→F ∗ cC + TP→F ∗ cP (A.38)

as the conversion fraction of anthropogenic areas to forests from the original scenario,

and

∆̃A→H
..= T̃C→H ∗ cC + T̃P→H ∗ cP (A.39)

as the conversion fraction of anthropogenic areas to herbaceous biomass plantations in

the new modified scenario.

Equations (A.10) and (A.35) can be rewritten to represent the difference in forest cover
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fraction before and after conversion of anthropogenic areas in the original scheme as

equal to the difference in the sums of cover fractions of forests and herbaceous biomass

plantations before and after conversion of anthropogenic areas.

c′F − cF
A.35
=

A.10
c̃F + c̃′H − (c̃F + c̃H) = c̃′H − c̃H

A.24
= T̃C→H ∗ cC + T̃P→H ∗ cP + T̃H→H ∗ c̃H − c̃H

= T̃C→H ∗ cC + T̃P→H ∗ cP +
(
T̃H→H − 1

)
c̃H

A.14
= T̃C→H ∗ cC + T̃P→H ∗ cP −

 T̃H→C + T̃H→P︸ ︷︷ ︸
0 because of (A.19), (A.20)

 c̃H

(A.40)

c′F − cF = T̃C→H ∗ cC + T̃P→H ∗ cP = ∆̃A→H (A.41)

On the other hand, the same cover change in forests corresponds to the difference in

conversion fractions between forests and anthropogenic areas in the original scheme:

c′F − cF = ∆A→F −∆F→A (A.42)

This relationship is only possible because all transitions between grasses and forests

are zero. Since the modified scenario prescribes that all net increase in forests be

ascribed to herbaceous biomass plantations, the difference in cover fractions is equal

to the conversion fraction of anthropogenic areas to herbaceous biomass plantations:

∆̃A→H = ∆A→F −∆F→A (A.43)

The same relationship described for the transition elements of anthropogenic areas to

herbaceous biomass plantations holds true for the corresponding conversion fractions:

∆̃A→H = λ∆A→F (A.44)

Inserting equation (A.44) into equation (A.43) yields λ:

λ = 1− ∆A→F

∆F→A

(A.45)

This first case covers all gridcells and timesteps in which forests expand in the origi-

nal scenario, c′F ≥ cF . This implies that the conversion fraction from anthropogenic

areas to forests is larger than the conversion fraction from forests to anthropogenic

areas. Neither of these conversion fractions can be negative, therefore λ falls within

the codomaine of zero to one, [0, 1].

The equation for λ is inserted in equations (A.32) and (A.33) to determine the transi-

tions from anthropogenic areas to herbaceous biomass plantations:

T̃C→H = 1− ∆A→F

∆F→A

∗ TC→F

T̃P→H = 1− ∆A→F

∆F→A

∗ TP→F

⇒ 0 ≤ T̃i→H ≤ 1, i ∈ {C,P} (A.46)
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Since λ varies between zero and one, transitions from anthropogenic areas to herba-

ceous biomass plantations in the modified scenario cannot be larger than transitions

from anthropogenic areas to forests in the original scenario, thus 0 ≤ T̃C→H ≤ TC→F

and 0 ≤ T̃P→H ≤ TP→F .

Equations (A.17) and (A.18) describe the relationship between transitions from an-

thropogenic areas to forests and to herbaceous biomass plantations in the new scenario

and from anthropogenic areas to forests in the old scenario. Therefore, the modified

transitions from anthropogenic areas to forests can be described as:

T̃C→F
A.17
= TC→F − T̃C→H

A.32
= (1− λ)TC→F

T̃P→F
A.18
= TP→F − T̃P→H

A.33
= (1− λ)TP→F

⇒ 0 ≤ T̃i→H ≤ 1, i ∈ {C,P} (A.47)

Since λ varies between zero and one, transitions from anthropogenic areas to forests

in the modified scenario cannot be larger than transitions from anthropogenic areas to

forests in the original scenario, thus 0 ≤ T̃C→F ≤ TC→F and 0 ≤ T̃P→F ≤ TP→F .

The area that remains forests is the residual when transitions from forests to anthro-

pogenic areas are subtracted from the sum of all transitions from forests (equation

(A.13)), because transitions between natural areas and from natural areas to herba-

ceous biomass plantations are zero.

T̃F→F = 1−
(
T̃F→C + T̃F→P

)
(A.48)

Equations (A.27) and (A.28) describe the transitions from forests to anthropogenic

areas. Since these equations ensure that transitions from forests to anthropogenic

areas stay within the range from zero to one, and their sum does not exceed one either,

T̃F→C + T̃F→P ≤ 1, the residual term falls within the target range of zero to one,

0 ≤ T̃F→F ≤ 1.

All transitions from herbaceous biomass plantations to other land-use types are zero,

hence the residual term describing the amount of area that remains herbaceous biomass

plantations is equal to one (equations (A.14), (A.19) and (A.20)):

T̃H→H = 1 (A.49)

Thus, all modified values are within their permissible codomain of [0, 1].

A.1.2.2.2 Second case: expansion of agricultural lands in gridcells where

herbaceous biomass plantations are larger or equal to the reclaimed area

Preconditions of the second case: c′F ≤ cF but c̃H ≥ cF − c′F .

Agricultural expansion leads to shrinking of forests in the original scenario. The

precondition that herbaceous biomass plantations extent must be larger than the

area by which forests shrink, ensures that the increased demand in agricultural lands

can be met entirely by reclaiming herbaceous biomass plantations for agriculture.

Separating the second and third cases prevents the cover fraction of herbaceous
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biomass plantations from becoming negative.

A.1.2.2.2.1 Equations specific for the second case

Equations (A.17), (A.18), (A.13) and (A.14) are all valid for this case. All other

equations must be reestablished. Since agricultural areas are expanding, there should

be no transitions between agricultural areas and herbaceous biomass plantations:

T̃C→H = 0 (A.50)

T̃P→H = 0 (A.51)

In this case, the modified transition matrix of equation (A.6), yields the following four

new equations:

TC→C ∗ cC + TP→C ∗ cP + TG→C ∗ cG + T̃F→C ∗ c̃F + T̃H→C ∗ c̃H = c′C (A.52)

TC→P ∗ cC + TP→P ∗ cP + TG→P ∗ cG + T̃F→P ∗ c̃F + T̃H→P ∗ c̃H = c′P (A.53)

T̃C→F ∗ cC + T̃P→F ∗ cP + T̃F→F ∗ c̃F = c̃′F (A.54)

T̃H→H ∗ c̃H = c̃′H (A.55)

Equation (A.54) is equivalent to equation (A.10). Equations (A.25) and (A.26) result

from the original dynamic and are therefore also valid here. Therefore, equations (A.52)

and (A.53) can be simplified as follows:

T̃F→C ∗ c̃F + T̃H→C ∗ c̃H = TF→C ∗ cF (A.56)

T̃F→P ∗ c̃F + T̃H→P ∗ c̃H = TF→P ∗ cF (A.57)

Similarly to the first case, the second case demands an additional condition to determine

the proportions of herbaceous biomass plantations converted to pastures and crops. I

use the proportionality factor lambda, λ, to describe this relationship:

T̃H→C ∗ c̃H = λTF→C ∗ cF (A.58)

T̃H→P ∗ c̃H = λTF→P ∗ cF (A.59)

Finally, the scenario demands that forest area remains constant, because there are

enough herbaceous biomass plantations to meet agricultural needs:

c̃′F = c̃F (A.60)

This last equation is identical to equation (A.34), from the first case.
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A.1.2.2.2.2 Solutions for the second case

Transitions from agricultural areas to herbaceous biomass plantations are zero (see

equations (A.50) and (A.51)). Therefore, transitions from agricultural areas to forests

should be identical to those in the original scenario (see equations (A.17) and (A.18)):

T̃C→F = TC→F

T̃P→F = TP→F

}
⇒ 0 ≤ T̃i→F ≤ 1, i ∈ C,P (A.61)

Analogously to the first case, the cover fractions of forests remain constant (equation

(A.60)), therefore equation (A.36) is also valid. Inserting this equation in equation

(A.55) yields the residual transition element which describes the amount of herbaceous

biomass plantations that are not converted:

T̃H→H =
c′F − c̃F
c̃H

A.1
=

c′F − (cF − c̃H)

c̃H
= 1− cF − c′F

c̃H
(A.62)

Since the preconditions of the second case exclude instances where the area of herba-

ceous biomass plantations is insufficient to satisfy the demand for agricultural area,

this transition element is within the codomain zero to one, 0 ≤ T̃H→H ≤ 1.

The proportionality factor λ, can now be determined using the change in forest cover

fraction:

cF − c′F
A.35
=

A.10
c̃F + c̃H − (c̃F + c̃′H)

= c̃H − c̃′H
A.55
=
(

1− T̃H→H

)
c̃H

A.14
=
(
T̃H→C + T̃H→P

)
c̃H

= ∆̃H→A

(A.63)

Equation (A.42) is also valid here, so that it can be combined with equation (A.63):

∆̃H→A = ∆F→A −∆A→F (A.64)

The proportionality factor λ is used in equations (A.58) and (A.59). The same rela-

tionship is valid for the conversion fractions, therefore:

∆̃H→A = λ∆F→A (A.65)

Thus the proportionality factor λ is determined:

λ = 1− ∆A→F

∆F→A

(A.66)

In the second case, forests shrink in the original scenario and c′F < cF , therefore

∆A→F < ∆F→A. Neither the cover fractions nor the conversion fractions can be neg-

ative, therefore λ is within the targeted codomain, 0 ≤ λ ≤ 1. Combining equations
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(A.58) and (A.59) with equation (A.66) yields the transitions from herbaceous biomass

plantations to anthropogenic areas:

T̃H→C = λTF→C ∗
cF
c̃H

T̃H→P = λTF→P ∗
cF
c̃H

 0 ≤ T̃H→i ≤ 1, i ∈ C,P (A.67)

According to equation (A.9) the sums of all transitions from herbaceous biomass plan-

tations to all types must equal one. Equations (A.58) and (A.59), show that T̃H→C ≥ 0

and T̃H→P ≥ 0. This implies that the sum of the two transition elements from

herbaceous biomass plantations to anthropogenic areas must be smaller or equal to

1, T̃H→C + T̃H→P ≤ 1, if T̃H→C ≤ 1 and T̃H→P ≤ 1. Thus, the two transition elements

are in the targeted codomain.

Transitions from forests to agricultural areas are calculated from equations (A.56) and

(A.57), with the help of equations (A.58) and (A.59) and λ from equation (A.66):(
T̃F→C + T̃F→P

)
c̃F = (TF→C + TF→P ) cF − λ (TF→C + TF→P ) cF

= (1− λ) ∆F→A

A.66
= ∆A→F ⇒ T̃F→C + T̃F→P

=
∆A→F

c̃F

(A.68)

T̃F→i = (1− λ)TF→i
cF
c̃F

, i ∈ C,P (A.69)

In this equation ∆A→F can be larger than c̃F , in which case the sum of transitions from

forests to agricultural areas would be larger than 1, T̃F→C + T̃F→P > 1. This would

lead to a negative forest area and a negative residual transition element in equation

(A.13). To avoid this, the transitions from forests to anthropogenic areas are scaled:

T̃F→i
..= (1− λ)TF→i

cF
max (∆A→F , c̃F )

, i ∈ C,P (A.70)

This scaling ensures that T̃F→C + T̃F→P ≤ 1 so that the residual transition T̃F→F falls

within the permissible codomain, 0 ≤ T̃F→F ≤ 1. The residual transition T̃F→F can

now be determined from equation (A.13) with the help of equation (A.70):

T̃F→F = 1−
(
T̃F→C + T̃F→P

)
= 1−

[
(1− λ)TF→C

cF
max (∆A→F , c̃F )

+ (1− λ)TF→P
cF

max (∆A→F , c̃F )

]
(A.71)

T̃F→F = 1− (TF→C + TF→P )
(1− λ) cF

max (∆A→F , c̃F )
(A.72)

In the second case, the cover fraction of herbaceous biomass plantations is equal to

the difference between the cover fraction of forests in the original scenario and the new

scenario. Because the cover fractions of forests and herbaceous biomass plantations

from the modified scenario sum up to the cover fractions of forests from the original

scenario, c′F
A.10
= c̃′F + c̃′H

A.60
= c̃F + c̃′H , and c̃′H = c′F − c̃F .
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A.1.2.2.3 Third case: expansion of agricultural lands when herbaceous

biomass plantations are too small to satisfy demand

Preconditions of the second case: c′F ≤ cF but c̃H ≤ cF − c′F .

In the third case, herbaceous biomass plantations cannot satisfy the demand for

agricultural lands. When they are used up, forests are reclaimed for agricultural use.

As a result, forest area shrinks, c̃′F < c̃F .

A.1.2.2.3.1 Equations specific for the third case

The third case demands that all remaining areas of herbaceous biomass plantations

be used for agriculture. After the transition occurs, the cover fraction of herbaceous

biomass plantations must be zero:

c̃′H = 0 (A.73)

All herbaceous biomass plantations revert to crops or pastures, the transition element

describing the fraction of their area that remains constant becomes 0:

T̃H→H = 0 (A.74)

Analogously to the second case, no transitions occur from anthropogenic areas to herba-

ceous biomass plantations:

T̃C→H = 0 (A.75)

T̃P→H = 0 (A.76)

These equations correspond to (A.50) and (A.51) from the second case. Equations

resulting from the transition matrix are valid for the third case:

T̃C→F ∗ cC + T̃P→F ∗ cP + T̃F→F ∗ c̃F = c̃′F (A.77)

Equation (A.77) is equivalent to equation (A.54) from the second case and (A.10). The

relationships between transitions from forests and herbaceous biomass plantations to

agricultural areas described in the second case (equations (A.56) and (A.57)) are still

valid:

T̃F→C ∗ c̃F + T̃H→C ∗ c̃H = TF→C ∗ cF (A.78)

T̃F→P ∗ c̃F + T̃H→P ∗ c̃H = TF→P ∗ cF (A.79)

Lastly, the proportionality factor, lambda, is used identically to the second case:

T̃H→C ∗ c̃H = λTF→C ∗ cF (A.80)

T̃H→P ∗ c̃H = λTF→P ∗ cF (A.81)
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A.1.2.2.3.2 Solutions for the third case

Since herbaceous biomass plantations are too small to satisfy the demand for crops

and pastures, all transitions to herbaceous biomass plantations become 0 (equations

(A.75), (A.76), (A.74)):

T̃C→H = T̃P→H = T̃H→H = 0 (A.82)

Consequently, the cover fraction of herbaceous biomass plantations also becomes 0

(equation (A.73)):

c̃′H = 0 (A.83)

Transitions from crops or pastures to forests are equivalent to those in the original

scheme (combine equations (A.17), (A.75) and (A.18), (A.75)):

T̃C→F = TC→F (A.84)

T̃P→F = TP→F (A.85)

λ can be calculated from equations (A.80) and (A.81):(
T̃H→C + T̃H→P

)
= λ∆F→A (A.86)

Additionally, inserting equation (A.74) into (A.14) results in:

T̃H→C + T̃H→P = 1 (A.87)

By combining equations (A.86) and (A.87), λ can be calculated as:

λ =
c̃H

∆F→A

(A.88)

The new cover fraction of forests is equivalent to the old cover fraction plus the change

in area which can be expressed as the difference in conversion fractions to and from

forests (see equation (A.42)):

c′F = cF + ∆A→F −∆F→A (A.89)

The precondition of the third case expresses that herbaceous biomass plantations are

smaller than forest area loss from the original scheme:

c̃H < cF − c′F = ∆A→F −∆F→A (A.90)

By combining this equation with equation (A.88), I find that λ remains within the

confines of the target codomain:

λ < 1− ∆A→F

∆F→A

≤︸︷︷︸
because cF>c′F and ∆F→A>∆A→F

1⇒ 0 < λ < 1 (A.91)
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Transitions from herbaceous biomass plantations to crops and pastures can be expressed

with the help of equations (A.80), (A.81), and (A.88):

T̃H→i =
λ

c̃H
TF→i ∗ cF = TF→i

cF
∆F→A

= TF→i
cF

(TF→C + TF→P ) cF
, with i ∈ C,P (A.92)

Thus,

T̃H→i =
TF→i

TF→C + TF→P︸ ︷︷ ︸≤ 1
≤ 1 (A.93)

Transitions from forests to crops and pastures are calculated from equations (A.78)

and (A.79):

T̃F→i =
1

c̃F

(
TF→i ∗ cF − T̃H→i ∗ c̃H

)
= (1− λ)TF→i

cF
c̃F

, where i ∈ C,P (A.94)

T̃F→C + T̃F→P = (1− λ)
∆F→A

c̃F
(A.95)

Numerically, T̃F→C + T̃F→P can exceed 1 if ∆F→A > c̃F . Therefore, T̃F→C and T̃F→P

must be scaled to prevent negative areas. T̃F→i is redefined as:

T̃F→i
..= (1− λ)TF→i

cF
max (∆F→A, c̃F )

, where i ∈ C,P (A.96)

This ensures that T̃F→C and T̃F→P remain within the target codomain. Inserting

equation (A.96) in equation (A.13) yields the amount of area that remains forests:

T̃F→F = 1−
(
T̃F→C + T̃F→P

)
(A.97)

A.2 Parameters for herbaceous biomass planta-

tions as a new PFT in JSBACH



A
.2

P
a
ra

m
eters

fo
r

h
erb

aceou
s

b
io

m
ass

p
lan

tation
s

as
a

n
ew

P
F

T
in

J
S

B
A

C
H

x
v

Table A.1: Input parameters for herbaceous biomass plantations. All flags are boolean (0 if off and 1 if on).

Parameter Value Unit Reference/Provenence

Lct number 22/23 serial number

Landcover class 8
new class introduced for herbaceous

biomass plantations

Phenology type 6
new type introduced for herbaceous

biomass plantations

Nitrogen scaling flag 1
this flag controls nitrogen distribution

within the canopy

C4 flag 1
since Miscanthus and Panicum are

C4-plants, this flag must be on (=1)

Maximum PEP carboxylation

rate
44.9 10−6 mol(CO2)/m2/s Dohleman et al. 2009

PEPcase CO2 specificity 140 mmol(CO2)/m2/s same as C4 grasses and C4 pasture

Vegetation height 3 m Heaton et al. 2008

Vegetation roughness length 0.3 m

Bonan 2002: ” roughness length for

vegetation is one-tenth of canopy

height...” p272

Fraction NPP to wood pool 0
Miscanthus and Panicum do not

contain wood

Fraction NPP to reserve pool 0.2 same as C4 crops

Fraction NPP to exudates 0

Fraction green to herbivory
0.000822

same as C4 crops
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Table A.1: Input parameters for herbaceous biomass plantations. All flags are boolean (0 if off and 1 if on).

Fraction of carbon from

heterotrophic respiration that is

emitted to the atmosphere

0.5 same as C4 crops

Life time of leaf litter 820 days same as C4 grasses

Life time of woody litter 10950.0 days same as all PFTs

LAI shed constant 0 /days

a value of zero prevents leaf shedding

in the absence of favorable growing

conditions

Maximum carbon content in

woody parts
0 mol(C)/m2 Miscanthus and Panicum do not

contain wood

Reserve carbon to leaf carbon

ratio
4 same as all grasses, pastures and crops

Maximum LAI 9 m2/m2 Heaton et al. 2008

Stem area 0 m2/m2 same as all grasses, pastures and crops

Specific leaf area of carbon 0.451 m2(leaf)/mol(C) same as all grasses, pastures and crops

Clumpiness factor 2 same as grasses

Canopy albedo in the visible

range
0.08 same as all grasses, pastures and crops

Canopy albedo in the near

infrared range
0.33

Minimum snow albedo in the

visible range
0.52
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Table A.1: Input parameters for herbaceous biomass plantations. All flags are boolean (0 if off and 1 if on).

Maximum snow albedo in the

visible range
0.9 same as all grasses, pastures and crops

Minimum snow albedo in the

near infrared range
0.3 same as all grasses, pastures and crops

Maximum snow albedo in the

near infrared range
0.65

Minimum snow albedo 0.4 same as all grasses, pastures and crops

Maximum snow albedo 0.8 same as all grasses, pastures and crops

Dynamic PFT flag 0

Miscanthus and Panicum are

controlled by land-use not by

dynamical vegetation

Woody PFT flag 0
Miscanthus and Panicum are not

woody types

Pasture PFT flag 0
Miscanthus and Panicum are not

pastures

PFT-specific minimum coldest

monthly mean temperature
-40 ◦C

same value as in LPJ, Tim Beringer

and Vera Heck, personal

communication

PFT-specific maximum coldest

monthly mean temperature
1000 ◦C default value for non-dynamic types

PFT-specific maximum warmest

monthly mean temperature
1000 ◦C default value for non-dynamic types

PFT-specific 20-year average

min warmest - coldest month

temperature range

-1000 ◦C default value for non-dynamic types
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Table A.1: Input parameters for herbaceous biomass plantations. All flags are boolean (0 if off and 1 if on).

PFT-specific minimum growing

degree days
0 default value for non-dynamic types

PFT-specific GDD base 5 same as all grasses, pastures and crops

PFT-specific upper limit of

warmest-month temperature
0 same as all grasses, pastures and crops

Time scale of the pfts 0 same as all grasses, pastures and crops
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I. (2013). Global ocean biogeochemistry model HAMOCC: Model architecture and

performance as component of the MPI-Earth system model in different CMIP5 exper-

imental realizations. Journal of Advances in Modeling Earth Systems, 5(2):287–315.

Jørgensen, U. (1997). Genotypic variation in dry matter accumulation and content of

N, K and Cl in Miscanthus in Denmark. Biomass and Bioenergy, 12(3):155 – 169.

Biomass Quality for Power Production.



xxvi REFERENCES

Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D., Miko-

lajewicz, U., Notz, D., and von Storch, J. S. (2013). Characteristics of the ocean

simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean com-

ponent of the MPI-Earth system model. Journal of Advances in Modeling Earth

Systems, 5(2):422–446.

Kering, M., Butler, T., Biermacher, J., and Guretzky, J. (2012). Biomass yield and

nutrient removal rates of perennial grasses under nitrogen fertilization. BioEnergy

Research, 5(1):61–70.

Kuemmel, B. (2003). Theoretical investigation of the effects of field margin and hedges

on crop yields. Agriculture, Ecosystems & Environment, 95(1):387 – 392.

Lal, R. (2004). Soil carbon sequestration impacts on global climate change and food

security. Science, 304(5677):1623–1627.

Larsen, S. U., Jørgensen, U., Kjeldsen, J. B., and Lærke, P. E. (2014). Long-term

Miscanthus yields influenced by location, genotype, row distance, fertilization and

harvest season. BioEnergy Research, 7(2):620–635.

Le, P. V. V., Kumar, P., and Drewry, D. T. (2011). Implications for the hydrologic cycle

under climate change due to the expansion of bioenergy crops in the Midwestern

United States. Proceedings of the National Academy of Sciences, 108(37):15085–

15090.

Lemus, R., Brummer, E., Moore, K. J., Molstad, N. E., Burras, C., and Barker, M. F.

(2002). Biomass yield and quality of 20 switchgrass populations in southern Iowa,

USA. Biomass and Bioenergy, 23(6):433 – 442.

Lemus, R. W. (2004). Switchgrass as an energy crop: Fertilization, cultivar, and cutting

management. PhD thesis, Virginia Polytechnic Institute and State University.

Lenton, T. M. and Vaughan, N. E. (2009). The radiative forcing potential of different

climate geoengineering options. Atmospheric Chemistry and Physics, 9(15):5539–

5561.

Lewandowski, I., Clifton-Brown, J., Scurlock, J., and Huisman, W. (2000). Miscanthus :

European experience with a novel energy crop. Biomass and Bioenergy, 19(4):209 –

227.

Lim, S.-H., Yook, M. J., Kim, J.-W., Song, J.-S., Zhang, C.-J., Nah, G., and Kim, D.-S.

(2014). Genetic diversity in agronomic traits associated with the biomass production

of Miscanthus species collected in Northeast Asia. Plant Genetic Resources, 12:S137–

S140.



REFERENCES xxvii

Lima, M. A., Gomez, L. D., Steele-King, C. G., Simister, R., Bernardinelli, O. D.,

Carvalho, M. A., Rezende, C. A., Labate, C. A., McQueen-Mason, S. J., Polikarpov,

I., et al. (2014). Evaluating the composition and processing potential of novel sources

of Brazilian biomass for sustainable biorenewables production. Biotechnology for

biofuels, 7(1):10.

Liu, W. and Sang, T. (2013). Potential productivity of the Miscanthus energy crop in

the Loess Plateau of China under climate change. Environmental Research Letters,

8(4):044003.
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AFR Africa

AUS Australia

AUT Austria

AVEM Avoided emissions

CAM Central America

CH4 Methane
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CISC Change in sink capacity

CMIP Coupled Model Intercomparison Project

CO2 Carbon dioxide

COP21 United Nations Climate Change Conference in 2015

DEU Germany

DGVM Dynamic Global Vegetation Model

DNK Denmark

ECHAM6 Atmosphere component of MPI-ESM

Eff Effectiveness

ESM Earth System Model

ET Evapo-transpiration

EU European Union

EUR Europe

FFS Fossil-fuel substitution

FRA France

FRST Forests

GPP Gross primary production

GRB United Kingdom

HAMOCC5 Hamburg Ocean Carbon Cycle model

HBPs Herbaceous biomass plantations

IMAGE2.2 Integrated Model to Assess the Global Environment

IRL Ireland

ITA Italy

JSBACH Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg

LAI Leaf Area Index
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LASC Loss of additional sink capacity

LPJmL Lund-Potsdam-Jena managed Land

MPI-ESM Max-Planck-Institute Earth System Model

MPIOM Max-Planck-Institute Ocean Model

NAM North America

NAS Norther Asia

NIR Near infrared

NPP Net primary production

OASIS Coupler for the MPI-ESM model

PFT Plant functional type

RCP Representative Concentration Pathway

SAM South America

SAS South Asia

SRES Special Report on Emissions Scenarios

SWE Sweden

T Transpiration

TUR Turkey

USA United States of America

VIS Visible spectrum
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A Area (except transition scheme

C Crops (transition scheme)

C Carbon (except transition scheme)

c̃ Cover fraction modified by modified transition scheme

ci Initial cover fraction of cover type i

c′i Cover fraction of cover type i for the next day

F Forests (transition scheme)

F (t) Radiative forcing at timestep t

G Grasses (transition scheme)

H Herbaceous biomass plantations (transition scheme)

P Pastures (transition scheme)

S Scaling factor for transition scheme

T Original transition matrix

Ti→j Transition element, fraction of area transferred from cover type i to

cover type j

T̃ Modified transition matrix

∆ Conversion fraction for transition scheme

γi,j Scaling factor for the radiative forcing

λ proportionality factor for transition scheme

ρ Carbon density

ρCO2 Concentration of CO2
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mann and Michaela Born at the IMPRS-ESM office, and Sylvia Houston, secretary in the

land department.

A special thanks goes to the members of the Forest Management group at the Max Planck

Institute for Meteorology for their warm welcome, patience and support. The entire land

department of the Max Planck Institute for Meteorology deserves mention for their support

as well as the cordial working atmosphere. Thank you also to all the members of IMPRS for

all the fun and many parties.

This project was part of the Schwerpunktsprogramm (priority program) ”Climate Engineer-

ing: Risks, Challenges, Opportunities?” funded by the Deutsche Forschungsgemeinschaft

(German Research Foundation) and the Max Planck Institute for Meteorology.



xlvi



xlvii



xlviii



xlix

Eidesstattliche Versicherung
Declaration on Oath
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