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Abstract

In this thesis mainly two topics in the field of coherent X-ray magnetic scattering

are addressed. The first topic deals with the determination of spatial coherence

properties of synchrotron radiation in the soft X-ray range by means of magnetic

speckle patterns. For this purpose an X-ray resonant magnetic scattering experiment

at the L3 absorption edge of cobalt has been performed using Co/Pt multilayers

and CoPd alloy films. The obtained magnetic speckle patterns arise from scattering

at magnetic domain patterns due to the X-ray magnetic circular dichroism. A

method is introduced that is based on the analysis of the Fourier transform of

magnetic speckle patterns and gives access to the two-dimensional representation of

the mutual coherence function. It exploits the fact that the autocorrelation function

of a disordered magnetic maze domain pattern possesses perfectly flat side lobes. The

method allows for the simultaneous determination of the transverse coherence length

in all radial directions of the illuminating beam.

The second topic deals with the investigation and characterization of magnetic

maze domain patterns of a wedge-shaped Co/Pd multilayer film as a function of cobalt

thickness close to and within the spin-reorientation transition. The thickness-driven

evolution of the magnetic microstructure is studied by means of X-ray resonant

magnetic scattering. Magnetic diffraction patterns of the magnetic domain structures

as a function of cobalt thickness are extracted from the CCD images. The radial

profiles of the scattering intensity reveal variations of the peak position, width and

amplitude. For the interpretation of the changing intensity profiles a model has

been developed to describe highly disordered maze domain patterns. The model

is based on a synthetic one-dimensional domain pattern with gamma-distributed

domain sizes to imply the significant domain size variations. It is described by the

mean domain size, the domain-wall width, and the shape parameter of the gamma

distribution that is found to be characteristic for a certain pattern geometry. As a

proof of principle the obtained information from the scattering experiment is used to

determine thickness-dependent anisotropies of the wedge-shaped Co/Pd multilayer.
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Kurzzusammenfassung

Diese Arbeit befasst sich hauptsächlich mit zwei Themen aus dem Gebiet der

kohärenten magnetischen Röntgenstreuung. Der erste Themenbereich beschäftigt

sich mit der Ermittlung der räumlichen Kohärenzeigenschaften von Synchrotron-

strahlung im weichen Röntgenbereich mit Hilfe von magnetischen Specklebildern.

Dafür wurde ein resonantes magnetisches Röntgenstreuexperiment an der L3 Ab-

sorptionskante von Kobalt unter der Verwendung von Co/Pt Multilagenfilmen und

CoPd Legierungsfilmen durchgeführt. Die erhaltenen magnetischen Specklebilder

entstehen dabei durch Streuung an magnetischen Domänenstrukturen infolge des

Röntgenzirkulardichroismus. In der Arbeit wird eine Methode vorgestellt, die auf der

Analyse der Fouriertransformation von magnetischen Specklebildern basiert und einen

Zugang zur zweidimensionalen Darstellung der gegenseitigen Kohärenzfunktion ver-

schafft. Dabei wird ausgenutzt, dass die Autokorrelationsfunktion von ungeordneten

labyrinthartigen magnetischen Dömanenstrukturen perfekt plane Flanken aufweist.

Die Methode erlaubt die gleichzeitige Ermittlung der transversalen Kohärenzlänge in

allen radialen Richtungen des einfallenden Strahls .

Der zweite Themenbereich befasst sich mit der Untersuchung und Charakter-

isierung von labyrinthartigen magnetischen Domänenstrukturen von Co/Pd Mul-

tilagenkeilen in Abhängigkeit der Kobaltdicke nahe bei und innerhalb des Spinre-

orientierungsübergangs. Resonante magnetische Röntgenstreuung wird benutzt um

die durch die Schichtdickenänderung hervorgerufene Veränderung der magnetischen

Mikrostruktur zu untersuchen. Die aus den CCD Bildern extrahierten radialen

Streuintensitätsprofile der magnetischen Domänenstrukturen zeigen Veränderungen

der Peak-position, Breite und Intensität als Funktion der Kobaltschichtdicke. Um

dieses Verhalten zu erklären wird ein Model vorgestellt, welches eine Beschreibung

von ungeordneten labyrinthartigen magnetischen Domänenstrukturen ermöglicht.

Das Model basiert auf synthetischen eindimensionalen Domänenstrukturen mit

gammaverteilten Domänengrößen um signifikante Domänengrößenvariationen mit

einzuschließen. Beschrieben wird das Model durch die mittlere Domänengröße, der

Domänenwandbreite und dem Formparameter der Verteilungsfunktion, wobei gezeigt

wird, dass dieser charakteristisch für eine bestimmte Domänenstrukturgeometrie ist.

Als Anwendungsfall für das Model werden die Ergebnisse genutzt um Schichtdicken-

abhängige Anisotropien der Co/Pd Multilagenkeile zu bestimmen.
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1

INTRODUCTION

Over the last decades, the field of research of thin film magnetism has evolved

enormously. Much effort has been put into the study of the magnetic properties of

thin films, which is especially due to their various technological applications such as

sensors and actuators or data storage [1–8]. Current basic research in this field of

research aims to investigate changes of the magnetic microstructure and magnetic

reversal processes of diverse magnetic materials depending on material thickness

(e.g., bulk or surface- and interface-determined properties), chemical composition

(e.g., alloys or compounds), internal structure (e.g., morphology, symmetry, lateral

patterning), and especially in reaction to external excitations (e.g., magnetic field,

electrical current, THz or IR radiation) [9–17]. A solid knowledge and understanding

of the resulting micromagnetic phenomena allows for tailoring magnetic properties,

such as anisotropy, coercivity, remanence, exchange coupling, etc., to the specific

requirements of present and future technologies. Investigations of the magnetic

domain structure in magnetic materials enable access to many of these properties,

as these structures essentially link the physical properties (anisotropy, exchange,

stray field) of these materials with their macroscopic properties (magnetization,

domain size, domain wall width, domain morphology) [18, 19]. The observation of

magnetic domains has significantly contributed to the present state of knowledge

of micromagnetic phenomena in thin films [18, 20–22]. Magnetic domain studies

support the evolution of magnetic materials with custom-tailored properties, result in

a deeper insight into magnetization processes and a better understanding of magnetic

properties in thin films.

Scientific research has always been closely connected to technological applications.

New insights often result in new innovative technologies, where magnetism is mostly

associated with data storage devices and magnetic sensors [18, 23–25]. Nowadays

large-scale storage is mainly based on magnetic hard disc drives (HDDs) where
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1. Introduction

information is stored in sub-100 nm sized magnetic regions (bits), written and read

out by magnetic thin-film heads. The magnetic microstructure of the utilized storage

materials does not play a direct role in these devices, however, it causes energy losses

created in the storage material and noise effects in the read-and-write heads [19].

New generation storage devices are aimed at higher areal densities (10 Tbit/in2

[26–28])1 and ever-faster switching times (1 THz = 1012/s [26, 29, 30])2. To achieve

this, the development of novel magnetic materials, further progress in theoretical

developments, and the development of new experimental techniques are required,

especially since novel devices with higher areal densities require ever smaller lateral

bit dimensions down to a few nanometers (dgrain < 10 nm)[27, 28]. Technically

important are complex film structures consisting of multilayer thin films, alloys and

compounds with a large number of diverse chemical constituents exhibiting magnetic

microstructures with characteristic sizes in the nanometer range.

Static and dynamic investigations of the magnetic microstructure of these

complex thin film systems, elementally resolved and with high spatial and temporal

resolution, is still a challenge in modern research. Several well-established techniques

exist to study nanometer-sized magnetic microstructures.

One approach is magnetic force microscopy (MFM), where a few-nm-sized

magnetic tip scans above the surfaces of the sample and interacts with the stray field

generated by the magnetic domains [31–33]. With this technique a two-dimensional

map of the domain structure with a typical spatial resolution of around 30 nm is

obtained [32].3 However, the time resolution is strongly limited by the duration of the

scanning process (few minutes). Additionally, MFM is highly susceptible to external

magnetic fields often needed for domain investigations and also no depth-selective

information can be obtained. A second scanning probe technique is spin-polarized

scanning tunneling microscopy (Sp-STM) which reaches atomic resolution (< 1 nm)

[35]. Sp-STM makes use of the spin of tunneling electrons to get information on the

local sample magnetization. It is surface sensitive (< 0.2 nm) so that buried layers

cannot be probed. In addition, it is relies on ideal crystalline surfaces of the probed

sample.

Another seminal technique is scanning electron microscopy with polarization anal-

ysis (SEMPA), which probes the spin-polarization of low-energy secondary electrons

1 10 Tbit/in2 ≈ 1.6 · 10−2 bit/nm2 =̂ bits with 8 nm size.
2 Switching process within 1 ps.
3 A spatial resolution of around 10 nm has been reported using extensively modified tips
with special coating [33, 34].
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1. Introduction

emitted from the magnetic sample [36, 37]. It achieves a high spatial resolution down

to 3 nm [38] and recently a time resolution of 700 ps has been reported [39]. SEMPA

has the unique advantage that two components of the magnetization can be detected

simultaneously, which enables a vectorial magnetic imaging. Thus, SEMPA quantifies

the magnitude and direction of the local magnetization directly. However, SEMPA

is inherently surface sensitive due to the short mean free path of the secondary

electrons (le < 1 nm) and not suitable for studies using strong external fields due to

the detection of low-energy secondary electrons. A related electron-based technique

is Lorentz microscopy which is performed in transmission geometry and is based on

the deflection of electrons traversing the magnetic sample due to the Lorentz force of

the sample’s magnetic field [40, 41]. Lorentz microscopy achieves a spatial resolution

below 1 nm [42] and a temporal resolution of around 10 ns [43]. It can be performed

in the presence of magnetic fields due to the high energy of the primary electrons.

An alternative approach is Kerr microscopy, which is based on the magneto-

optical Kerr-effect (MOKE) [17, 44]. MOKE describes the rotation of the plane of

polarization of linearly polarized light upon reflection at the surface of a sample

with magnetization M . The observation of magnetic domains is given by a weak

dependence of the optical constants on the direction of the magnetization. Using

ultra-short intense laser pulses in pump-probe geometry, magnetization dynamics in

the femtosecond regime can be probed where the time resolution is limited by the

pulse length [45]. As an optical method, it is insensitive to applied external fields. A

major drawback of this technique is the diffraction-limited spatial resolution which is

around 200 nm using blue light (λ = 460 nm).

Since the pioneering work of Bergevin and Brunel in the 1970s [46], which used

X-rays for magnetic investigations, a completely new field has been established,

promoted by the development of synchrotron sources and free-electron lasers [47].

The short wavelengths enable high spatial resolution and ultra-short femtosecond

X-ray pulses allow for studies of ultrafast magnetization dynamics. Due to the

availability of X-ray sources with their high brilliance and the possibility of tuning

the photon energy and polarization, investigations of magnetic samples in the soft

and hard X-ray range become feasible and the strong variation of the magneto-optical

constants at the absorption edges becomes accessible. Tuning the photon energy

to the absorption edges opens up the possibility to investigate magnetism element

selectively due to the ability to excite core-level electrons. This property is extremely

useful for studies of individual magnetic layers within multilayer structures consisting

of diverse magnetic materials. Additionally, external fields can be applied without

3



1. Introduction

affecting the probe.

Several X-ray techniques for the investigation of nanometer-sized magnetic

microstructures have been developed during the last 30 years. These techniques are

based on the X-ray magnetic circular dichroism (XMCD) that is characterized by an

X-ray absorption cross-section depending on the orientation of local magnetization

with respect to the helicity of incident circularly polarized X-rays. One approach is

magnetic X-ray transmission microscopy which is a real-space technique and uses

Fresnel zone plates (FZP) [48, 49]. It can be performed either in full-field operation

(MTXM) [50, 51] or in scanning operation (STXM) [52, 53]. In a MTXM a condenser

zone plate focuses the X-ray beam onto the sample and an image is obtained from

the transmitted intensity using a micro zone plate. In a STXM an FZP focuses the

X-ray beam onto the sample and an image is obtained by raster-scanning the sample.

The spatial and time resolution is of around 15− 25 nm [51, 54–56] and 70 ps [57, 58]

in MTXM and STXM. Both techniques are insensitive to external magnetic fields.

Another method is X-ray photo-electron emission microscopy (X-PEEM), which

measures X-ray induced photo-emitted secondary electrons, for which the intensity is

proportional to the local X-ray absorption [21, 59]. X-PEEM is a surface-sensitive

technique and is highly susceptible to external magnetic fields. This technique

achieves 20 nm spatial resolution [60] and 15 ps time resolution [61].

Promising techniques based on coherent X-ray scattering are X-ray resonant

magnetic scattering (XRMS) [62–65] and the lensless X-ray holographic microcopy

(FTH, XHM) [66–69], which can be seen as complementary methods. Holographic

microscopy uses an otherwise opaque optics mask containing an object hole and

a reference hole in front of the transparent sample. The object hole defines the

region of interest and the reference hole enables to recover the phase of the object

wave. The generated hologram is recorded by a charge-coupled device (CCD)

and a real-space image is obtained via a simple Fast Fourier Transform. The

spatial resolution is limited by the maximum scattering angle detectable with the

CCD and the size of the reference hole, which can be fabricated to a size smaller

than 30 nm and hence sub-15 nm spatial resolution become feasible. Ultrafast

pump-probe experiments using FTH have been performed with femtosecond time

resolution [70, 71]. XRMS is used to obtain ensemble-averaged information from

the magnetic microstructure, where the magnetic diffraction pattern caused by

scattering from magnetic domains is detected by a CCD. Characteristic average

properties, such as average domain size and lateral correlation length can be

extracted. Thus, XRMS gives information about the collective behavior of the
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magnetic microstructure and hence gives global statistical information. Due to the

fact that XRMS does not require any special optics, the spatial resolution is solely

limited by the wavelength and the detectable maximum momentum transfer Q. In

general, however, signal-to-noise limitations are relevant due to the dynamic range of

the detector and the photon statistics as the intensity drops strongly towards higher Q.

In this thesis, magnetic domain patterns of a magnetic multilayer are in-

vestigated by means of XRMS. It is shown that by using suitable models, there

is in fact a variety of information about the real-space domain patterns that can

be extracted from magnetic diffraction patterns. The analysis and the developed

model presented in this thesis are applied to static measurements of domain patterns.

However, the main motivation is to use them for the interpretation of magnetic

diffraction patterns obtained from dynamic experiments, especially with respect

to ultrafast magnetization dynamics performed at free-electron lasers [11, 72–74].

Experiments of ultrafast femtosecond magnetization dynamics, such as ultrafast

demagnetization [75–78], attract considerable attention in recent years as they

are motivated by the question of fundamental time limits for the manipulation,

destruction and control of local magnetic order. Such experiments are mainly

performed using the XRMS technique in pump-probe geometry. XRMS compared to

FTH offers the advantage of probing the collective response of the magnetic system

to the external excitation and a simple operation without expensively manufactured

optics masks. In addition, XRMS possesses a better signal-to-noise ratio (S/N).

The interpretation of the magnetic diffraction patterns and their correlation to the

real-space domain structure is an important issue and still under debate [73]. One

part of this thesis deals specifically with this issue.

An important aspect which has not been addressed so far is the coher-

ence of X-ray radiation. Coherence plays a decisive role for the performance of X-ray

experiments like for instance FTH, XHM, coherent diffractive imaging (CDI) or

X-ray ptychography. Holographic imaging is based on the interference between the

exit waves of the object and reference hole, separated by a distance of around 3 µm.

Hence these experiments demand a sufficiently large transverse coherence length to

obtain useful magnetic contrast in the reconstructions. Particularly, X-ray radiation

produced by synchrotron radiation sources is only coherent to a certain degree and

can thus be seen as partially coherent. Consequently, the determination of the

coherence properties of X-ray sources is of high interest since they are the essential

prerequisites for interference-based X-ray experiments. Because of the high demand
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1. Introduction

on beamtime at synchrotron and FEL facilities, experiments are very limited in

time and consequently coherence measurements have to be simple and not too time

consuming. Young’s double pinhole experiments have been performed at synchrotron

sources and FELs to determine the coherence properties for diverse beamline

parameters [79–81]. Additionally, coherence experiments using non-redundant arrays

of apertures (NRAs) [79, 82, 83] and uniformly-redundant arrays of apertures (URAs)

[84, 85] have been conducted at synchrotron sources. The latter allow for some time

saving due to the fact that they effectively perform many Young’s double pinhole

experiments simultaneously. However, all these techniques require expensively

manufactured apertures and the analysis to determine the coherence length is in

general lengthy. A promising method to determine coherence properties is the use of

spatial intensity-correlation functions of speckle patterns from random scatterers

[86–89]. The obtained speckle contrast characterizes the coherence properties by one

number and can be extracted from the speckle pattern with low effort. However,

this method does not allow for a direct measurement of the transverse coherence

length. At this point this thesis sets in and a new method is demonstrated which

makes use of magnetic speckle patterns produced by magnetic maze domain patterns.

It is based on the Fourier transform of magnetic speckle patterns, is characterized

by a simple and fast analysis and allows for an online check of the coherence properties.

This thesis is focused on the investigation of disordered magnetic maze do-

main patterns and the determination of the spatial coherence properties of X-ray

radiation from synchrotron sources. Chapter 2 gives the framework for the under-

standing of this thesis and introduces the fundamentals of coherence theory and

X-ray resonant magnetic scattering.

In Chapter 3 the holographic imaging endstation used for the X-ray scatter-

ing experiments is described, as well as the beamline parameters and optical elements

of the beamline P04 at PETRA III where all experiments presented in this thesis

have been performed. A short description of the fabrication procedure of the samples

used is presented at the end of this chapter.

The newly developed Fourier analysis method to determine the coherence properties

of synchrotron radiation is presented in Chapter 4. This chapter starts with a

mathematical description of the method and general aspects of the properties of

the autocorrelation function of magnetic domain patterns. Two experiments are

6



1. Introduction

demonstrated and a detailed description of the analysis procedure is given.

Chapter 5 presents an X-ray resonant magnetic scattering experiment on a wedge-

shaped Co/Pd multilayer. The chapter begins with a characterization of the sample

system. Subsequently, the experiment is described, followed by the analysis of

the experimental findings using a newly developed model for the interpretation of

diffraction patterns from highly-disordered maze domain patterns. The chapter

closes with an analysis of the magnetic properties of the sample using the obtained

information from the scattering experiment. A short description of the fundamentals

of micromagnetism is given prior to the analysis.

Chapter 4 and Chapter 5 are separately introduced and end with a conclusion

and an outlook.

7



2

FUNDAMENTALS OF SOFT X-RAY

RESONANT MAGNETIC SCATTERING

AND COHERENCE THEORY

In this chapter the theoretical foundations and terminologies of this thesis are

introduced and described. The first section of this chapter deals with the theory of

optical coherence, which is based on the statistical properties of radiation (section

2.1.1). A model is introduced to describe the radiation properties of partially coherent

X-ray sources (section 2.1.2). The substantial quantities of the electromagnetic

radiation such as spatial (section 2.1.3) and temporal coherence (section 2.1.4) are

discussed. As an example, the coherence properties of the soft X-ray beamline P04

at PETRA III are analyzed and the influence of the source parameters and beamline

optics on the coherence properties are explained (section 2.1.5). The second section

deals with the fundamentals of X-ray resonant magnetic scattering from magnetic

specimens. Starting from the definition of X-ray absorption and the optical constants

(section 2.2.1), the strong X-ray magnetic circular dichroism (XMCD) effect at the

absorption edges of 3d transition metals is introduced (section 2.2.2). Subsequently,

an introduction to scattering theory is presented (section 2.2.3). Finally, X-ray

resonant magnetic scattering on magnetic domains is described, together with a brief

discussion about spatial coherence and magnetic speckle patterns (section 2.2.4).

2.1 Coherence theory

The following section focuses on the coherence theory of X-ray radiation produced

by undulator-based sources at storage rings. The source can be treated as a sum of

individual point sources emitting radiation with various amplitudes and phases. The

total radiation can be expressed by a superposition of all these light fields. Due to

8



2.1. Coherence theory

random fluctuation of the source arising when point sources emit light independently

with diverse frequencies and phases, the total radiation can be described by its

statistical properties. This fact led to the field of statistical optics and optical

coherence.

2.1.1 Coherence and correlation functions

Synchrotron radiation sources do not provide fully spatial and temporal coherent

X-ray radiation. The degree of coherence of these sources is relatively high, but far

away from the coherence properties of laser light. Thus, the X-ray radiation can be

described by partially coherent light fields.

The main quantity of coherence theory is the so-called mutual coherence function

(MCF) which is a first-order correlation function in terms of the electric field. For

the case of stationary and ergodic light fields the MCF is defined as [90–93]

Γ (s1, s2, τ) = 〈E (s1, t)E
∗ (s2, t+ τ)〉T . (2.1)

The MCF describes the correlation between two electrical field values E(s1, t) and

E∗(s2, t+ τ) at two different points in space s1 and s2 with a time delay of τ . The

brackets 〈...〉 denote averaging over a time interval T . The stationarity and ergodicity

of the radiation is a good approximation for synchrotron radiation sources [92–94].

The self-correlation of the electrical field meaning s1 = s2 = s and τ = 0 yields

the average intensity

〈I (s, t)〉 =
〈
|E (s, t)|2

〉
= Γ (s, s, 0) . (2.2)

The normalized representation of the MCF is called complex degree of coherence

(CDC) and is defined as

γ (s1, s2, τ) =
Γ (s1, s2, τ)√

Γ (s1, s1, 0) Γ (s2, s2, 0)
=

Γ (s1, s2, τ)√
〈I (s1, t)〉 〈I (s2, t)〉

. (2.3)

The modulus of the CDC varies from zero for incoherent radiation to one for fully

coherent radiation and is said to be partially coherent if 0 < |γ (s1, s2, τ)| < 1. The

modulus of the CDC at different spatial and temporal separations ∆s = s1 − s2

and τ , can be experimentally accessed by performing interference experiments, e.g.,

Young‘s double pinhole experiments [79, 80, 82, 95]. The characteristic lengths, such

as transverse and longitudinal coherence length, can be extracted from profiles of the

9



2.1. Coherence theory

CDC. These will be discussed in detail later.

In the so-called quasi-monochromatic approximation, meaning a narrow spec-

tral bandwidth ∆λ of the X-ray radiation with respect to the mean λ̄, the MCF

Γ(s1, s2, τ) ≈ Γ(s1, s2, 0) = Γ(s1, s2) and CDC γ(s1, s2, τ) ≈ γ(s1, s2, 0) = γ(s1, s2)

are independent on the time delay τ . Within this approximation Eq. 2.3 transforms

to [92]

γ (s1, s2) =
Γ (s1, s2)√

Γ (s1, s1) Γ (s2, s2)
=

Γ (s1, s2)√
I (s1) I (s2)

. (2.4)

and Γ(s1, s2) and γ(s1, s2) are now equal-time correlation functions that describe the

spatial coherence of the field. The coherence time τc and longitudinal coherence length

of the radiation are inverse proportional to ∆λ. If τ � τc, the quasi-monochromatic

approximation can be applied. This means that the longitudinal coherence length

is much larger than any path length difference that occurs in the experiments. The

latter is valid for the mSAXS1 experiments at a synchrotron beamline described in

this thesis, where a monochromator provides a narrow spectral bandwidth and the

small scattering angles ensure small values of τ .

2.1.2 Van Cittert-Zernike theorem and Gaussian Schell-

model

Within the framework of the Van Cittert-Zernike theorem the light emitting source is

assumed to be fully incoherent [90, 96, 97]. It states that each point source inside the

source radiates independently and no correlations appear at any distance between

them. The source can be described as a thermal source with Gaussian intensity

profile [92, 98, 99]. The Van Cittert-Zernike theorem can be used to predict the

coherence properties of the radiation at any distance from the source [92, 100]. Thus,

the characteristic transverse coherence length can be estimated. A thermal source

is radiating as an incoherent source over a solid angle of 4π. However, synchrotron

radiation is strongly directional with a narrow cone. Due to this confinement, the

source can possess an effective degree of transverse coherence. Hence, the Van Cittert-

Zernike theorem does not describe synchrotron radiation rigorously [100–102]. A

detailed discussion about the applicability of different models to describe synchrotron

radiation is given in [98].

A more accurate formalism is the Gaussian Schell-model (GSM), which is widely

1Magnetic small-angle X-ray scattering
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used in the synchrotron community to describe reliably the radiation properties of

partially coherent sources [92, 100–104]. In general, the GSM is based on the so-called

cross spectral density function (CSD), which is the Fourier transform of the mutual

coherence function with respect to τ

W (s1, s2, ω) =

∫
Γ (s1, s2, τ) exp(−iωτ)dτ. (2.5)

However, in quasi-monochromatic approximation, where the bandwidth is small

compared to the mean frequency ω0, the GSM reveals [90]

Γ (s1, s2, 0) = Γ (s1, s2) ∝W (s1, s2, ω0). (2.6)

The GSM assumes the source to have a certain degree of coherence and can be used

to calculate the transverse coherence length and the beam size at any distance z

from the source. Further assumptions are that the source is described as a planar

two-dimensional source and the source intensity distribution I (s) and complex degree

of coherence γ(s1, s2) are Gaussian functions. In the following, the three-dimensional

position vector s is written as s = (r, z), where r = (x, y) is a two-dimensional

vector and z represents the position along the optical axis. The mutual coherence

function of the source at z = 0 within the quasi-monochromatic GSM is then given

by [93, 94, 105–108]

Γ (r1, r2; z = 0) =
√
I (r1)

√
I (r2)γ (r1 − r2) , (2.7)

with

I (r) = I0 exp

(
− x2

2σ2
x

− y2

2σ2
y

)
, (2.8)

γ (r1 − r2) = exp

(
−(x1 − x2)2

2ξ2
T,x

− (y1 − y2)2

2ξ2
T,y

)
, (2.9)

where σx,y and ξT,x,y are defined as the root-mean-square (rms) source size and

transverse coherence length in horizontal (x) and vertical (y) directions, respectively.

Additionally, the complex degree of coherence only depends on the separation of any

two points within the beam γ(r1, r2) = γ(r1 − r2) = γ(∆r) (Schell-model sources

[109]).

In the framework of the GSM the source intensity distribution and the complex

degree of coherence are factorizable (see Eq. 2.8 and 2.9) and can be calculated

separately for the horizontal and vertical directions.

11
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2.1.3 Spatial coherence and transverse coherence length

Spatial coherence deals with the correlation of the electric fields at two different

points r1, r2 with zero delay τ = 0 (Γ (r1, r2, 0)) [92]. The transverse coherence

length is a measure of the spatial distance, transverse to the propagation direction,

over which a certain degree of correlation of the electric fields exists. This applies

both for the source and along the propagation direction.

Within the framework of the Van Cittert-Zernike theorem, the (rms) transverse

coherence length of the beam from an incoherent source with Gaussian intensity

distribution at a distance z from the source2 is given by [87, 96–98]

Ξ(z) =
λz

2πσ
. (2.10)

As mentioned in section 2.1.2, the Van Cittert-Zernike theorem does not describe

accurately the properties of X-ray radiation from undulator-based sources [100–102].

In the framework of the Gaussian Schell-model, the transverse coherence length of

the source and along the propagation direction is defined as the separation at which

the complex degree of coherence drops to a value of 0.6. This separation is equivalent

to the (rms) width of the Gaussian. In the following, the relevant quantities to

describe the X-ray beam and its spatial coherence at the source (z = 0) and away

from the source (z > 0) in the framework of the quasi-monochromatic Gaussian

Schell-model are discussed. For a detailed description it is referred to the literature

[92, 93, 99]. The mutual coherence function at a distance z away from the source is

given by [92, 93, 100, 105]

Γ (x1, x2, z) ∝
I0

∆(z)
exp

(
−x

2
1 + x2

2

4Σ2 (z)
− (x1 − x2)2

2Ξ2 (z)
+
ik(x2

1 − x2
2)

2R(z)

)
, (2.11)

where ∆(z) is the expansion coefficient and R(z) is the radius of the curvature. The

same can be calculated for the y direction. The separability is a property of the

GSM. The beam size Σ(z) and the transverse coherence length Ξ(z) at a distance z

from the source, as well as the angular divergence of the beam θΣ and the coherent

segment θΞ (see Fig. 2.1) is given by

Ξ (z) =
(
ξ2

T,S + θ2
Ξz

2
)1/2

, θΞ =
λ

2πσ

(
1 + p2/4

)1/2
, (2.12)

2The far field condition is fulfilled.
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Figure 2.1: One-dimensional illustration of the propagation of Gaussian Schell-
model beams in free space describing the undulator source σ, the X-ray beam via
Σ (z) and the spatial coherence properties at the source ξT,S and in propagation
direction Ξ (z). The distance zeff separates the near-field and far-field region.

Σ (z) =
(
σ2 + θ2

Σz
2
)1/2

, θΣ =
λ

2πξT,S

(
1 + p2/4

)1/2
. (2.13)

The parameter p = ξT,S/σ = Ξ(z)/Σ(z) is a constant at the source and along the

propagation direction z. It gives the relation between the transverse coherence length

of the source and source size, and states that this relation is conserved along the

propagation direction [94, 110]. In addition it is a characteristic quantity defining

the degree of coherence of the source and the beam. If p � 1 or p � 1 both are

considered to be coherent or incoherent, respectively. The source and the beam are

partially coherent if p = 1.

At large distances z from an incoherent source (p� 1), the transverse coherence

length Ξ(z) in Eq. 2.12 resembles the expression obtained from the Van Cittert-

Zernike theorem (see Eq. 2.10). At this point it becomes clear that the GSM includes

the Van Cittert-Zernike theorem.

Another important quantity of the GSM is the effective distance

zeff =
4πσ2p

λ(p2 + 4)1/2
, (2.14)
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2.1. Coherence theory

which marks the transition between the Fresnel and Fraunhofer region in the propa-

gation. If the source is spatially fully coherent the effective distance is equivalent to

the Rayleigh length which is known from Gaussian beams [111].

The knowledge of the transverse coherence length is not sufficient to understand

how coherent the source or the X-ray beam is. In this case, a global degree of

coherence (normalized degree of transverse coherence) can be introduced, which

characterizes the transverse coherence properties by one number [81, 98, 100].

ζ =
p√

4 + p2
. (2.15)

ζ varies from zero for incoherent to one for coherent radiation. It can even be

factorized and calculated separately for the horizontal ζx and vertical ζy directions.

The total degree of transverse coherence is given by the product ζ = ζxζy of both

components.

A further relevant parameter is the emittance or transverse phase-space of the

source, which is in the frame of the GSM defined by [93, 100]

ε = σθΣ =
λ

4πζ
. (2.16)

The parameter ζ in Eq. 2.16 accounts for the different degrees of spatial coherence. In

case of ζ = 1, i.e., fully spatial coherence, the source is said to be diffraction limited

and ε = λ/4π. This is achieved by a point source radiating spherical wavefronts where

the electric fields are perfectly correlated at every point transverse to the propagation

direction. In case of ζ −→ 0, the source is fully incoherent and ε � λ/4π. The

emittance of the source can now be used together with Eq. 2.13 to give an expression

for the transverse coherence length of the source of any degree of spatial coherence

ξT,S =
2σ√

16π2

λ2
ε2 − 1

. (2.17)

The experiments presented in this thesis were conducted at the P04 beamline

at PETRA III [112]. As an example, the source size σx,y ≈ 140 µm, 21 µm and

angular divergence θx,y
Σ ≈ 14 µrad, 13 µrad of the beamline in horizontal and vertical

directions at λ = 1.59 nm can be used to calculate the coherence parameters via the

equations above (see Fig. 2.2). The calculated transverse coherence lengths of the

source in horizontal and vertical direction are ξx
T,S = 18 µm and ξy

T,S = 22 µm, re-
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2Σ(𝑧) 

2Ξ(𝑧) 
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𝑧eff 𝑧BD 

2Σ(𝑧) 2Ξ(𝑧) 

𝑧BD 

Figure 2.2: Beam size Σx,y (red dashed line) and transverse coherence length Ξx,y

(blue solid line) in horizontal and vertical directions at different distances z from the
source using the beam parameter of the beamline P04 at PETRAIII. The green solid
line corresponds to the effective distance zeff and the black solid line is the distance
zBD from the source at which the beam-defining slit of P04 is positioned.

spectively. Hence, the source is incoherent (p = 0.13; ζ = 0.06) in horizontal direction

and partially coherent (p = 1.05; ζ = 0.46) in vertical direction. Figure 2.2 shows

the transverse coherence lengths Ξ(z) (blue solid line) and beam size Σ(z) (red

dashed line) in horizontal and vertical direction at different distances from the source.

The green solid line represents the effective distance zx,y
eff = 10 m, 1.6 m and the

black solid line the distance zBD = 27.9 m at which the beam-defining slit of the

beamline P04 is positioned. At zBD the transverse coherence lengths in horizontal

and vertical direction are Ξx(z = 27.9 m) = 54 µm and Ξy(z = 27.9 m) = 380 µm,

respectively. The Gaussian beam size Σ(z) at z = 27.9 m can be calculated to

Σx(z = 27 m) = 415 µm (0.98 mm FWHM) and Σy(z = 27.9 m) = 363 µm (0.85 mm

FWHM).

2.1.4 Temporal coherence and longitudinal coherence

length

Temporal coherence deals with the correlation of the electric fields with r1 = r2 = r

at different delays τ (Γ (r, r, τ)) [92]. The longitudinal coherence length is a measure

of the spatial distance, along the propagation direction, over which a certain degree

correlation of the electric fields exists. Hence, it defines the degree of monochromaticity

of the source and the beam.

The longitudinal coherence length ξL,S of a synchrotron source is determined by
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the number of undulator magnet periods N , the wavelength λ and ∆λ (FWHM) at

λ [92]

ξL,S = λ(λ/∆λ) = λnN, (2.18)

where n denotes the n-th harmonic of the radiation. The coherence time is given

by τc,S = ξL,S/c, where c is the speed of light. The longitudinal coherence length

of radiation from the undulator (1st harmonic) at the beamline P04 at PETRA III

(N = 72) at a wavelength of λ = 1.59 nm is ξL,S = 0.11 µm and the coherence time

results in τc,S = 0.37 fs. Hence, the coherence time of the source is much smaller

than the (rms) electron bunch length of σBunch ≈ 42.5 ps [112]. The latter proves

the applicability of the stationary theory for the statistical properties of synchrotron

radiation (see Eq. 2.1), as a large variety of field fluctuations arise within a single

pulse.

At undulator beamlines the longitudinal coherence length of the beam can be

increased by means of a monochromator (spectral filtering) providing a high resolving

power R = λ/∆λ. In this case, the longitudinal coherence length is determined

by ξL = λR. The resolving power of the monochromator at the P04 beamline at

λ = 1.59 nm is R ≈ 3× 103 (exit-slit size of 200 µm), which results in a longitudinal

coherence length of ξL = 4.8 µm. Hence, via spectral filtering (monochromator) the

longitudinal coherence length is in this case increased by a factor of ≈ 40.

Diffraction experiments are limited by the the longitudinal coherence length as it

determines the maximum optical path-length difference ∆s that enables interference

of diffracted beams

ξL > ∆s = a sinϕ, (2.19)

where a is the size of the illuminated area of the sample and ϕ is the maximum

recorded diffraction angle.

2.1.5 Influence of beamline optics on coherence proper-

ties

In the following, the influence of optical elements, such as apertures, the monochro-

mator, and the focusing optics on the coherence properties of the X-ray beam is

briefly discussed.
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Beam-defining aperture

The beam-defining aperture is one of the first optical elements and is in general a pair

of slits for the horizontal and vertical directions [47, 113]. Its purpose is primarily to

cut out the coherent part of the X-ray beam emitted from the source. By cutting

the beam with the aperture (z = zBD), the relations p and ζ for the transmitted

beam Σ(z > zBD) are increased due to the decreased beam size, where Ξ(z > zBD)

remains unaffected unless the apertures are closed to much. Thus, the degree of

spatial coherence of the transmitted beam is increased inversely proportional to the

amount of truncation. The beam-defining aperture is in general far away from the

experimental platform and thus cutting the beam at (z = zBD) does not affect the

size of the beam in the focus Σ(zF) at the experimental platform. However, due to

the increased relations p and ζ and the property of the GSM that these relations are

constant along the propagation direction in free space, Ξ(zF) in the focus increases

proportional to p and ζ. Thus, cutting the beam emitted by the source results in an

increase of the transverse coherence length at the experiment. In this discussion it is

assumed that the beam-defining aperture only cuts Σ and not Ξ, which means that

the slit width is larger than the coherent fraction of the beam. A further truncation

of the beam would result in a more complicated treatment of the beam properties.

An adverse side effect is that cutting the beam is always at the expense of overall

transmission.

Coherence measurements at 400 eV (λ = 3.1 nm) with varying beam-defining slit

openings in vertical direction have been conducted by Skopintsev et al. [79] at the

P04 beamline at PETRA III, utilizing non-redundant arrays (NRAs) of apertures.

They found that the transverse coherence length in vertical direction measured at

the experimental platform in the focus is inversely proportional to the beam-defining

slit width and proportional to ζ in the same direction. These experimental findings

are in-line with the discussion about the beam properties above. They measured an

increase of the transverse coherence length from 2.4 µm to 9.2 µm, an increase of

the normalized degree of transverse coherence from ζ = 0.06 to ζ = 0.25, as well

as a decrease of photon flux by a factor of four with decreasing beam-defining slit

openings from 4.7 mm to 0.8 mm.

It must be pointed out, that a slit or a pinhole does not have a Gaussian

transmission function. Diffraction on the sharp edges of the aperture leads to

oscillations within the Gaussian intensity profile of the beam and the CDC [114, 115].

If the beam has a small transverse coherence length the edge effects are small and the

CDC can be well described by the GSM. However, if the beam is highly coherent the
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Figure 2.3: Illustration of the working principle of a monochromator together with
an exit slit. The beam coming from the undulator, with a relative spectral bandwidth
λ/∆λ = N is spectrally separated and focused into the plane of the exit slit by means
of the monochromator. The exit slit monochromatizes the beam via a reduction of
the spectral bandwidth ∆λ. Image taken from [47]

edge effects are notably high and the GSM overestimates the transverse coherence

length slightly [115].

Monochromator and exit aperture

Monochromators used at soft X-ray synchrotron beamlines are, e.g., the plane-grating

monochromator (PGM), the spherical-grating monochromator (SGM) or the variable-

angle SGM [116]. The following section is discussed for the case of a varied line-space

(VLS) plane-grating monochromator [117–119], as the experiments in this thesis have

been conducted at the P04 Beamline at PETRA III where this type of monochromator

is used [112]. In this case, the X-ray beam is directed to a varied line-space grating

unit. The VLS grating focuses the beam in vertical direction into the plane of an

exit aperture (see Fig. 2.3). Due to angular dispersion the beam becomes spectrally

separated and the exit aperture monochromatizes the X-ray beam via a reduction of

the spectral bandwidth ∆λ. The latter reduction is tunable by adjusting the vertical

exit aperture opening. Consequently, an increased longitudinal coherence length ξL

can be achieved (see section 2.1.4). This fact is essential for experiments requiring a

quasi-monochromatic beam condition.

The focusing of the beam to the position of the exit slit results in a magnified

image of the source σ at that position. Truncation of the beam by decreasing the

exit slit opening, in this case, results not only in an increased resolving power but

also in a decreased emittance ε of the source (Eq. 2.16). As a result, the transverse

coherence length of the source ξT,S is also increased, inversely proportional to the exit

slit opening, and leads to an increased transverse coherence Ξ(zF) at the experimental
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platform. In addition, the exit slit opening has a direct impact on the size of the beam

at Σ(zF). Chang et al. [80], Skopintsev et al. [79], Rose et al. [82] and Paterson et

al. [120] performed coherence measurements with variable vertical exit slit openings

and found an increase of the transverse coherence length Ξ(zF) in vertical direction

inverse proportional to the exit slit openings.

Focusing mirrors

Focusing mirrors are primarily used to increase the photon flux of the X-ray beam. In

the following, the case of a focusing element with a large aperture is discussed which

is the case for most of the focusing optics at synchrotron beamlines [114, 121]. The

large aperture approximation means that the aperture of the focusing optics is much

larger than the beam size of the incident radiation. At the beamline P04 the focusing

mirrors (KB system) are designed to accept an (rms) beam size of 6σ [82, 112]. In this

case, the focusing optics only modify the curvature of the beam. In the framework

of the Gaussian Schell-model, the (rms) beam size Σ(zF) and transverse coherence

length Ξ(zF) in the focus can be directly related to the source parameters upstream

of the focusing element [114, 121, 122] by

Σ(zF) = Mmagσ, Ξ(zF) = MmagξT,S (2.20)

with

Mmag =

∣∣∣∣ f

zL − f

∣∣∣∣
√[

1 +
z2

eff

(zL − f)2

]
. (2.21)

Mmag is called magnification factor, f is the focal length and zL is the distance from

the source to the focusing element. For the case that zL − f � zeff or ζ → 0 the

magnification factor can be expressed by

Mmag =

∣∣∣∣ f

zL − f

∣∣∣∣ . (2.22)

The parameter p introduced in section 2.1.3, i.e., the relation between the transverse

coherence length and the beam size, is constant with focusing. Hence, it is important

for experiments requiring a high transverse coherence length in the focus that the p

parameter is substantially high prior to focusing to prevent vanishingly small coherence

lengths in the focus. Another option to obtain a higher transverse coherence length
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is to move out of the focus or to increase the size of the focus. However, the latter

causes a loss of photon flux.

2.2 Soft X-ray resonant magnetic scattering

The following section focuses on the theory of resonant scattering at magnetic samples

using soft X-rays. An introduction to X-ray absorption and the X-ray magnetic

circular dichroism is given, followed by an introduction to scattering theory. In this

context, the link between X-ray scattering and absorption is discussed. Subsequently,

resonant magnetic scattering at magnetic domain patterns is presented, together with

a brief discussion about the formation of magnetic speckle patterns in dependence on

different degrees of spatial coherence of the illuminating beam.

2.2.1 X-ray absorption and optical constants

The interaction of X-ray radiation and matter can be described macroscopically by

the Beer-Lambert law. It states that when X-rays passing through a material the

X-ray intensity decays exponentially. The transmitted intensity can be expressed by

[123]

I (E,Z, t) = I0e
−µx(E,Z)t, (2.23)

where t is the thickness of the material and µx (E,Z) is the linear absorption coefficient

which depends on the material Z and the incident photon energy E = ~ω. The linear

absorption coefficient can be represented by a penetration length λx via µx = 1/λx.

λx is a characteristic length which brings the intensity to an attenuation by a factor

1/e. Figure 2.4 illustrates λx as a function of photon energy in the soft X-ray range,

which shows the strong absorption at the L3 and L2 edges of cobalt.

The same process can be treated in terms of a plane electromagnetic wave

E(z, t) passing through a material represented by the complex refractive index

n(E) = 1 − δ(E) + iβ(E). The real part δ(E) describes the refraction and the

imaginary part β(E) the absorption of the electromagnetic wave in the material. The

electromagnetic wave traversing the material along the z direction is given by [47]
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Figure 2.4: a) The X-ray penetration length λx of Cobalt as a function of photon
energy in the soft X-ray regime. The strong absorption at 778 eV and 793 eV
correspond to the (L3) and (L2) edges, respectively. Image taken from [124]. b)
Optical constants of Cobalt at the L3 edge. Image taken from [125].

E(z, t) = E0e
i(ωn(E)z/c−ωt)

= E0e
iω(z/c−t)) e−ikδ(E)z︸ ︷︷ ︸

phase shift

e−kβ(E)z︸ ︷︷ ︸
absorption

, (2.24)

where k = 2π/λ is the wavevector and ω is the frequency. The first term in Eq.

2.24 represents the propagation in vacuum, the second term induces a phase shift

represented by δ(E) and the third term describes the absorption represented by β(E)

which decreases the amplitude of the incident electromagnetic wave. By comparing

Eq. 2.23 and the squared version of Eq. 2.24 a direct link between the absorption

β(E) and the linear absorption coefficient µx(E) is found [123]

β(E) =
µx(E)λ

4π
=
ρaλ

4π
σabs(E). (2.25)

The second expression in Eq. 2.25 follows from µx(E) = ρaσ
abs(E) and connects the

absorption with the X-ray absorption cross section σabs(E) which gives the number

of photons absorbed per atom divided by the number of incident photons per unit

area at a certain photon energy [123]. ρa is the atomic number density.

21



2.2. Soft X-ray resonant magnetic scattering

2.2.2 X-ray magnetic circular dichroism

The X-ray magnetic circular dichroism (XMCD) effect describes the dependency of the

X-ray absorption on the helicity of circularly polarized X-rays and the magnetization

orientation of a magnetic material. The first theoretical predictions of the XMCD

effect can be traced back to the work of Erskine and Stern [126], whereby the first

experimental realization has been performed by Schütz et al. [127]. The XMCD

can be directly related to the optical Faraday effect [128], describing the rotation

of linearly polarized light (in the visible range) traversing magnetic materials in

external magnetic fields, and the Kerr effect [129], describing the same relation in

reflection geometry. The X-ray technique allows for element-specific measurements

and the determination of orbital and spin angular moments using sum rules, which is

an important advantage compared to the above mentioned techniques performed at

wavelengths in the visible range.

Two-step model of the XMCD effect

The XMCD effect can be described by a simple two-step model [123, 130]. In the

framework of the two-step model the circularly polarized X-rays are first absorbed

by the magnetic specimen and excite spin-polarized core level electrons. In a second

step, the unoccupied exchange-split d-bands serve as a spin detector for the excited

spin-polarized photoelectrons with respect to the magnetic moment m. The exchange-

splitting of the d-bands is caused by the exchange interaction of d-band electrons

(Stoner model) [123, 131].

In the following the XMCD effect of transition metals at the L3 and L2 absorption

edges are discussed in detail with regard to the two-step model. In 3d transition

metals the 2p core levels are split into 2p3/2 and 2p1/2 sub-levels due to spin-orbit

coupling. Circularly polarized X-rays provide a photon angular momentum given by

L+
ph = +~ for right circular polarization and L−ph = −~ for left circular polarization

where the quantization axis of the angular momentum is in the direction of the

wavevector k and −k, respectively .

In a first step, the incident circularly polarized X-rays trigger atomic core-to-valence

excitations (2p → 3d) by transferring their angular momentum to the photoelectrons.

Due to spin-orbit coupling the angular momentum can be transferred to the spin.

Hence, left- and right-circularly polarized X-rays excite photoelectrons with opposite

spin owing to their opposite momentum (±~) (see Fig. 2.5). The excitation of

photoelectrons from the 2p3/2 and 2p1/2 states into the 3d-states corresponds to the
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a) b) 

Figure 2.5: XMCD effect at the L edges of iron. a) Excitation of spin-polarized
photoelectrons into the exchange-splitted d-bands of iron using X-rays with opposite
helicity. b) X-ray absorption cross section of circularly polarized X-rays in the soft
X-ray regime using a ferromagnetic iron sample with magnetization direction aligned
with respect to the direction of the photon angular momentum. Image taken from
[123].

L3 and L2 absorption edges where the spin polarization is opposite due to their

reverse spin-orbit coupling (L3
∧
= l+ s and L2

∧
= l− s). The selection rules for dipole

transitions with respect to the absorption process besides the conservation of angular

momentum ∆l = ±1 are also given by ∆ml = ±1 and ∆ms = 0. Thus, the spin of

the excited photoelectrons is conserved for the described dipole transitions.

In a second step, the exchange-splitted 3d-bands act as a ”spin detector” for the

excited spin-polarized photoelectrons. Due to the imbalance of unoccupied holes

in the spin-up and spin-down 3d-bands above the Fermi energy, the absorption is

different for left- and right-circularly polarized X-rays, which results in the dichroism

effect. The quantization axis of the spin detector is the magnetic moment m of

the magnetic sample. Maximum XMCD occurs if the magnetization direction is

aligned with respect to the direction of the photon angular momentum (±k) and
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by tuning the photon energy to the correct energy corresponding to the L3 and L2

absorption edges of the 3d transition metals (778 eV and 793 eV for Co, 707 eV and

720 eV for Fe, and 853 eV and 870 eV for Ni, respectively [132]). In contrast, if

the magnetization direction is perpendicular to the direction of the photon angular

momentum, the ”up-” and ”down-” spin directions cannot be distinguished (see Fig.

2.5). The transmitted XMCD intensity is given by [130]

I± ∝ Pcirc ·m ·L±ph ∝ Pcirc · 〈m〉 cos θ, (2.26)

where Pcirc is the degree of circular polarization, m and 〈m〉 are the magnetic moment

and its expectation value of the 3d-band, and θ is the angle between the direction of

L±ph and the magnetic moment m.

The XMCD effect is in general defined as the difference of the intensities ob-

tained from photoelectron excitations with left- and right-circularly polarized X-rays

∆I = I+ − I−. It is worth mentioning that an equal XMCD effect is obtained using

only one helicity of the circular polarization and reversing the magnetization direction

M by sufficiently high external magnetic fields to saturate the magnetic sample.

Taking account of the XMCD effect in ferromagnetic samples, the complex

refractive index n(E) (see section 2.2.1) depends on the polarization state of the

illuminating radiation and has to be modified to

n±(E) = 1− (δ(E)±∆δ(E)) + i (β(E)±∆β(E)) . (2.27)

The subscript (±) corresponds to left- and right-circular polarization. The additional

contributions in the real and imaginary part of n± are the magneto-optical constants

∆δ(E) and ∆β(E) which are the magnetic contributions ( 6= 0 for ferromagnetic

materials). They give rise to a variation in absorption and phase using left- and

right- circularly polarized radiation [133, 134]. The magneto-optical constants depend

strongly on the photon energy, similar to the usual optical constants [125, 133].

2.2.3 Introduction to scattering theory

The scattering of X-rays by an atom is described by scattering at the electron cloud.

The electrons start to oscillate during the scattering process and emit spherical waves.

The total scattering amplitude of the atom is given by the sum of the scattering

amplitudes of all electrons. A mathematical description of the scattering process is
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given by the atomic form factor or scattering amplitude which is the Fourier transform

of the charge density ρe (r), i.e., the number density of electrons in the atom [130]

F0 (Q) = −1

e

∫
ρe (r)eiQrdr, (2.28)

where Q = k − k′ is the momentum transfer. If the wavelength λ of the incident

radiation is large compared to the atomic size (forward scattering), the atomic form

factor is in good approximation given by the total number of electrons Z. The latter

applies in the soft X-ray range, where the absorption edges of the 3d transition

metals are situated (see previous sections). The non-resonant differential atomic

scattering cross section, which gives the angular distribution of scattering from an

atom, i.e., intensity scattered into a solid angle dΩ, is expressed by(
dσ

dΩ

)
atom

= r2
0

∣∣ε · ε′∣∣2|F0 (Q)|2, (2.29)

where ε and ε′ are the unit polarization vectors of the incident and scattered waves

and r0 is the Thomson scattering length or classical electron radius (= 2.82×10−6 nm).

For incident linearly polarized X-rays, ε is perpendicular to the X-ray wavevector k

and for incident circularly polarized X-rays ε can be considered as a superposition of

two linearly polarized X-rays.

X-ray resonant scattering can be described semiclassically through a resonant

absorption and emission of a photon with energy E = ~ω, which corresponds to

the energy or resonance frequency of a harmonic oscillator. The differential atomic

resonant scattering cross-section is then given by(
dσ

dΩ

)
atom

= r2
0

∣∣ε · ε′∣∣2∣∣∣∣F0 (Q) + F ′ (E)− iF ′′ (E)︸ ︷︷ ︸
F (Q,E)

∣∣∣∣2. (2.30)

The additional contributions F ′ and F ′′ in comparison to Eq. 2.29 account for

the refractive and absorptive contributions to the scattering process. For the case

of forward scattering F0 (Q) = Z, the resonant forward scattering factor F (E)

can be separated into f1(E) = Z + F (E)′ and f2(E) = F (E)′′, which are called

Henke-Gullikson factors [123, 135]. The optical theorem states that the imaginary

part of F (E) is proportional to the absorption cross section, which gives a direct link

between scattering and absorption [123] (see Eq. 2.25)
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Im [F (E)] = f2 (E) =
1

2λr0
σabs (E) . (2.31)

In a quantum mechanical picture, the absorption of X-rays and the X-ray scattering

cross section can be determined within the framework of the time-dependent per-

turbation theory. Within the latter theory, the incident X-ray radiation excites a

transition from an initial state |a〉 to an intermediate state |n〉 and subsequently the

system goes back to |a〉 via emission of a photon (resonant elastic scattering). In this

case, the differential resonant elastic scattering cross section in dipole approximation

is expressed by [130]

(
dσ

dΩ

)
atom

= r2
0 |F (E)|2 =

~2ω4

c2
α2

f

∣∣∣∣∣∑
n

〈a |r · ε′|n〉 〈n |r · ε| a〉
~ω − EnR + i(∆n/2)

∣∣∣∣∣
2

, (2.32)

where αf is the fine structure constant, EnR = En − Ea are the resonant energies and

∆n is the energy distribution. For a detailed description and derivation of Eq. 2.32 it

is referred to [123, 130].

The matrix elements in Eq. 2.32 can be calculated for a magnetic sample. For

this, a quantization axis z parallel to the magnetization direction is defined. This

results in the elastic resonant magnetic scattering amplitude expressed by [62, 136]

F (E) =
(
ε′ · ε

)
G0 + i

(
ε′ × ε

)
m̂G1 +

(
ε′ · m̂

)
(ε · m̂)G2, (2.33)

where m̂ is the unit vector of the magnetization and G0,1,2 are the dipole transition

matrix elements. The resonant magnetic scattering factor is divided into three

independent parts which show separately polarization dependent or independent

interactions with respect to the magnetic moments of the sample. The fist term de-

scribes the magnetization independent interaction of photons with the electrons of the

atom (charge scattering). The second term depends linearly on the magnetic moment,

and the polarization dependency reveals that this part can be described analogous to

the XMCD effect [62, 126, 127, 137] (see previous section). The third part depends

quadratically on the magnetic moment and is given by the X-ray magnetic linear

dichroism (XMLD) [138–140]. The XMLD effect is generally much smaller than the

XMCD effect [123, 141]. In case of magnetic samples with out-of-plane easy-axis

of magnetization the polarization vector ε is perpendicular to m̂ and the XMLD

effect vanishes (ε · m̂ = 0). A non-vanishing XMLD contribution arises if a small
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in-plane component of m̂ exists due to a tilted sample with respect to the beam or

a slightly canted magnetization direction of the sample. However, this contribu-

tion is usually small and negligible due to the quadratic dependence on m̂ [68, 72, 142].

The relation between X-ray scattering and X-ray absorption given in Eq. 2.31 can

also be found for magnetic samples from the imaginary part of the elastic resonant

magnetic scattering amplitude F (E) (Eq. 2.33)

Im [F (E)] = f±2 (E) =
1

2λr0
σabs± (E) ,

f±2 (E) = f0 ± fm,

(2.34)

where k0 is the unit vector of the X-ray propagation direction. Equation 2.34

represents the case of incident circular polarization, where (±) corresponds to left-

and right-circular polarization. The unit vector m̂ = εz is considered to be parallel

to the surface normal of the magnetic sample. Hence, the XMLD contribution

vanishes (see above). In Eq. 2.34, f0 represents the resonant scattering at the charge

distribution and fm is related to the polarization-dependent XMCD effect.

Using Eq. 2.34 and Eq. 2.25, the linear absorption coefficient can be described in

terms of the imaginary part of the resonant scattering factor by

µ±x (E) = ρaσ
abs
± (E) = ρa2λr0f

±
2 (E) = ρa2λr0 (f0 ± fm) . (2.35)

The experiments performed in this thesis are all carried out at the resonances of

the ferromagnetic transition metal cobalt and thus the strong resonant magnetic

scattering is dominant [62]. Resonant charge scattering can distort the resonant

magnetic scattering signal if both exhibit similar length scales and thus coincide in

reciprocal space [65, 137]. However, the charge contribution to the resonant scattering

factor can be assumed to be constant and can be neglected for the magnetic sample

systems used in this thesis, as correlations of charge inhomogeneities on the length

scale of the magnetic domains ≈ 100 nm do not exist in these samples (grain sizes

≤ 10 nm [143, 144]).
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Figure 2.6: Magnetic force microscopy (MFM) images of magnetic domain patterns
from a Co/Pt multilayer sample with out-of-plane easy-axis of magnetization. The
left image represents the case of a disordered maze-like domain pattern and the right
image of a well-ordered stripe domain pattern. The right image is taken from [145].

2.2.4 Resonant magnetic X-ray scattering at magnetic

domain patterns

In the following, the resonant magnetic X-ray scattering intensity obtained from

magnetic domain patterns of ferromagnetic samples with out-of-plane easy-axis of

magnetization is discussed. The discussion is restricted to the case of small-angle

X-ray scattering (SAXS) in transmission geometry.

Figure 2.6 illustrates magnetic force microscopy (MFM) images of two kinds of

magnetic domain patterns, the disordered maze-like pattern consisting of a large

variation of domain sizes and the well-ordered stripe domain pattern consisting of

almost a single domain size. The domain pattern can be seen as an alternating series

of up/down (light/dark areas in the MFM images) domains separated by magnetic

domain walls. A detailed description of the formation of magnetic domain patterns

is given in section 5.4.1.

A sketch of the geometry for magnetic small-angle scattering from these samples

is shown in Fig. 2.7. The incident X-ray radiation is scattered by the magnetic

sample, i.e., the magnetic domain pattern, and the scattering intensity is recorded by

a CCD detector. The momentum transfer Q = k−k′ is given by the difference of the

incident k and scattered wave vector k′, where for elastic scattering |k| =
∣∣k′∣∣ = 2π/λ.

In the experimental geometry, the modulus of the momentum transfer is expressed by
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Figure 2.7: Illustration of small-angle scattering (SAXS) in transmission geometry.
The momentum transfer Q = k′ − k is given by the incident k and scattered wave
vector k′. The scattering from a magnetic maze domain pattern (see Fig. 2.6) shows
an isotropic donut-shaped diffraction pattern.

|Q| = 4π

λ
sin θ, (2.36)

where 2θ is the angle between the incident and scattered wave.

In the most ordered case, the domain pattern can be described by an en-

semble of identical scatterers, i.e., magnetic domains with equal width. In such

systems, the magnetic domain pattern (magnetization profile) can be described by a

one-dimensional model by [146, 147]

m (x) =

∞∑
n=−∞

f(x− nd) = fm(x) ∗
∞∑

n=−∞
δ (x− nd), (2.37)

where fm(x) represents the magnetic unit cell consisting of an up and down domain

pair. The sum of delta functions δ (x− nd) represents the basic lattice with domain

period d. Hence, the complete domain pattern is expressed by a convolution of the

magnetic unit cell with a lattice structure. The Fourier transform of the convolution

product in Eq. 2.37 is the product of the Fourier transforms of both constituents

and Eq. 2.37 is transformed to
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Fm (Q) = fm (Q) ·
∞∑

n=−∞
exp (−iQnd)

= fm (Q) · 2π

d

∞∑
n=−∞

δ

(
Q− n2π

d

) (2.38)

where fm(Q) is the form factor, which is thus the Fourier transform of the magnetic

unit cell or shape of the scattering object. Equation 2.38 shows that a comb of delta

functions in real space is also a comb of delta functions in phase space separated by

the inverse period 2π/d. Using Eq. 2.38 the SAXS intensity can be expressed by

I(Q) = |Fm (Q)|2 = |fm (Q)|2 ·

∣∣∣∣∣
∞∑

n=−∞
exp (−iQnd)

∣∣∣∣∣
2

= |fm (Q)|2S(Q). (2.39)

S(Q) is the so-called structure factor and accounts for the spatial configuration of

the scattering objects.

In case of disordered magnetic maze domain patterns, it is not possible to describe

the domain pattern by a single domain size for a magnetic unit cell and also not

through a periodic magnetic lattice due to the large variation of domain sizes.

In general, the magnetic scattering intensity I (Q) is expressed by the squared

modulus of the Fourier transform of the scattering amplitudes Fn from the lattice

sites n with position vector rn [72, 142, 146, 148]

I (Q) ∝

∣∣∣∣∣∑
n

Fn exp (−iQrn)

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∫
V

F (r) exp (iQr) dr

∣∣∣∣∣∣
2

, (2.40)

where the scattering amplitude Fn is given by Eq. 2.33. All lattice sites within a

magnetic domain give the same scattering amplitude and hence the sum in Eq. 2.40

runs over effective domains instead of single scatterers [142, 148]. In the second

expression of Eq. 2.40, the integral ranges over the total volume V of the sample.

In the resonant case with incident circularly polarized X-ray radiation the last term

(XMLD) in Eq. 2.33 cancels out (ε · m̂ = 0). Additionally, the charge contribution

will be neglected in the following (see section 2.2.3). The scattering intensity can

thus be expressed by [63, 73, 148]

I (Q) ∝

∣∣∣∣∣∣
∫
V

(k0 · m̂(r))G1 exp (iQr) dr

∣∣∣∣∣∣
2

∝

∣∣∣∣∣∣
∫
A

mz (r) exp (iQr) dr

∣∣∣∣∣∣
2

, (2.41)
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where k0 is the unit vector in the propagation direction of the incident X-ray. k0

replaces the cross product of the polarization unit vectors (ε′ × ε) in Eq. 2.33 [123].

In Eq. 2.41 the second expression results from the assumptions that |m̂| = con-

stant throughout the magnetic sample and that the X-ray radiation propagates

along the z-direction, i.e., along the sample depth. A denotes the sample area and

−1 < mz (r) < 1 represents the local out-of-plane component of the magnetization,

i.e., a two-dimensional magnetic domain pattern. From Equation 2.41 it follows that

the magnetic scattering intensity I (Q) is proportional to the squared modulus of the

two-dimensional Fourier transform of the magnetic domain pattern mz (r).

Spatial coherence and X-ray resonant magnetic scattering

So far, the spatial coherence properties of the X-ray radiation have been excluded

from the discussion of the X-ray resonant magnetic scattering intensity. The following

discussion provides a brief introduction and describes the effects that arise due to

different degrees of spatial coherence.

In the last section it has been shown that the scattering intensity is the squared

modulus of the Fourier transform of the magnetic domain pattern mz(r). Taking

account of the spatial coherence properties of the X-ray beam, the X-ray scattering

intensity can be rewritten as [90, 146, 149, 150]

I (Q) ∝
∞∫
−∞

∞∫
−∞

Γ (r1, r2)mz (r1)mz
∗ (r2)e(−iQ(r1−r2))dr1dr2

∆r=r1−r2∝
∞∫
−∞


∞∫
−∞

Γ (r1, r1 −∆r)mz (r1)mz
∗ (r1 −∆r)dr1

e(−iQ∆r)d∆r,

(2.42)

where Γ(r1, r1 −∆r) = γ(∆r)
√
I(r1)

√
I(r1 −∆r) is the mutual coherence function

(see Eq. 2.4) in the quasi-monochromatic approximation, characterizing the spatial

coherence properties of the X-ray radiation (see section 2.1). As described in section

2.1.2, γ(∆r) is directly related to the transverse coherence length Ξ of the X-ray

beam. The inner integral in Eq. 2.42 reveals the autocorrelation function of the

magnetic domain pattern given by

P (∆r) =

∞∫
−∞

mz (r1)mz
∗ (r1 −∆r)dr1. (2.43)
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Figure 2.8: Difference between incoherent and coherent X-ray resonant magnetic
scattering. The upper panel shows incoherent illumination of a magnetic maze
domain pattern. In this case the transverse coherence length is much smaller than
the illuminated area but larger than the spatial correlation length of the magnetic
domains. Only the intensities of the scattering object are summed which results in
an averaging of the properties over the illuminated area. The lower panel shows fully
coherent illumination with a transverse coherence length larger than the illuminated
area. The latter results in the emergence of a magnetic speckle pattern providing the
exact spatial arrangement of the magnetic domains. Hence, the speckle pattern can
be seen as a unique fingerprint of the magnetic domain pattern. The image is taken
from [134].

P (∆r) is called Patterson function or Patterson map of the magnetic domain pattern

[151].

Equation 2.42 shows that the mutual coherence function acts as a weighting

factor for the magnetic domain pattern used to calculate the autocorrelation function.

The magnetic scattering intensity is according to that the Fourier transform of the

autocorrelation function of the weighted magnetic domain pattern [149, 152].

Magnetic maze domain patterns of magnetic samples with out-of-plane easy axis

of magnetization display an isotropic donut-shaped diffraction pattern, as it can be

seen in Fig. 2.7 and Fig. 2.8).
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Incoherent illumination of a magnetic domain pattern, i.e., the transverse co-

herence length of the X-ray radiation is much smaller than the illuminated area

(σ >> ξT; γ(∆r) is almost zero), but larger than the correlation length of the mag-

netic domains, results in an averaging of the properties over the illuminated area.

The diffraction pattern resembles an ensemble average over all existing domain size

variations (domain periods) (see Fig. 2.8). The occurring maximum intensity of the

ring structure corresponds to the mean domain size (domain period) in reciprocal

space and the width of the intensity profile is related to the spatial in-plane correlation

length.

Fully coherent illumination, i.e., the transverse coherence length is much larger

than the illuminated area (ξT >> σ, γ(∆r) = 1), causes constructive and destructive

interferences between all wavefronts from the individual scatterers of the sample.

The obtained diffraction pattern exhibits additional small grainy features which are

called speckles. The individual speckles have an angular width corresponding to the

size of the illuminated area. The so-called speckle size is given by Sx,y = λz/dx,y,

where z is the distance between the sample and the detector and dx,y is the beam

size (FWHM) on the sample [120, 153]. Hence, the speckle itself depends on the

size of the illuminated area, but contains no information about the magnetic domain

structure. However, the arrangement of the speckles reflects a particular realization or

spatial arrangement of the domain structure and can be seen as a unique fingerprint

of the magnetic domain pattern. Slight changes within the domain pattern affect the

complete speckle pattern.

In the partially coherent case, i.e., σ ∼ ξT (0 < γ(∆r) < 1), the fully coherent

speckle pattern is blurred out and the contrast or visibility of the speckles is reduced

[150, 154, 155].

The properties of a speckle pattern are in general discussed in terms of statistics.

In case of partially coherent illumination, the speckle pattern can be seen as a sum

of Mc statistically independent individual speckle patterns each with fully coherent

illumination. The probability density function for the intensities, i.e., the distribution

of intensities within the speckle pattern, is given by the gamma distribution [91, 156]

ps (I) =
Mc

McIMc−1

Γ (Mc) 〈I〉Mc
exp

(
−McI

〈I〉

)
, (2.44)

where Γ is the gamma function and 〈I〉 is the mean intensity. The probability density

function can be obtained from the speckle pattern by generating a histogram of

the intensities. An important quantity of speckle statistics is the speckle contrast

C, which can be seen as the visibility of the intensity variations within the speckle
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2.2. Soft X-ray resonant magnetic scattering

pattern, i.e., the normalized variance of intensity fluctuations. It can be expressed by

[89, 91, 156, 157]

C =
σI
〈I〉

=
(
〈
I2
〉
− 〈I〉2)1/2

〈I〉
=

1√
Mc

. (2.45)

The speckle contrast is directly connected to the parameter Mc and provides informa-

tion about the degree of coherence of the illuminating beam. It equals one for fully

coherent (Mc = 1) and zero for incoherent illumination (Mc →∞).
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3

COHERENT X-RAY SCATTERING

EXPERIMENTAL SETUP AND SAMPLE

FABRICATION

The experiments presented in this thesis were performed at the soft X-ray beamline

P04 at the PETRA III storage ring at DESY in Hamburg. The beamline parameters

and optical elements are briefly discussed (section 3.1). Subsequently, the coherent

X-ray scattering experimental setup used for the experiments performed in this thesis

is described (section 3.2). At the end, the sample fabrication procedure is briefly set

out (section 3.3).

3.1 Soft X-ray beamline P04 at PETRA III

The soft X-ray beamline P04 is equipped with a 5 m long APPLE-II-type undulator

consisting of N = 72 periods. The beamline delivers X-rays with variable polarization

in the first harmonic and energies ranging from 250 to 3000 eV (λ = 0.4 nm− 5 nm)

[112]. So far, only circular polarization is available, which is sufficient for the

experiments performed in this thesis. The beamline allows for measurements using

100 % circular polarization with an integral photon flux of Pflux > 1015 photons/s on

the sample at a resolving power of λ/∆λ = 104 . Figure 3.1 shows the P04 beamline

setup. The emitted X-ray radiation from the undulator first passes two pairs of

beam-defining apertures that are 27.9 m away from the source. With appropriate

beam-defining openings the coherent volume can be selected from the beam (see

section 2.1.5). The beam is then directed to a plane mirror/varied-line space (VLS)

plane grating (PM/PG-U) unit, where the groove density at the center of the grating

is 1200 lines/mm. The VLS grating focuses the beam in vertical direction into the

plane of an exit aperture (EXSU). Due to angular dispersion the beam gets spectrally
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3.2. X-ray scattering and holographic imaging endstation

27.9 m 18.1 m 25 m 7.5 m 0.6 m 1.9 m

0 m 27.9 m 46 m 71 m 78.5 m 79.1 m 81 m

Undulator Beam-defining
apertures

Plane mirror/Plane grating unit
cPM/PG-UV

Exit slit unit cEXSUV
Refocusing mirror units

cRMUV Experimental
platformVertical

horizontal

Figure 3.1: The P04 beamline setup composed of the undulator, beam-defining
apertures, plane mirror/varied line-space plane grating unit, exit aperture and re-
focusing mirrors (KB-mirrors). The X-ray beam emitted from the undulator first
passes two pairs of beam-defining apertures. Subsequently, the beam is directed to
a plane mirror/VLS grating unit. The VLS grating focuses the beam in vertical
direction into the plane of the exit aperture, where the beam is monochromatized.
Refocussing mirror units for the horizontal and vertical direction focus the beam to
the experimental platform.

separated. The exit aperture monochromatizes the beam by reducing the spectral

bandwidth ∆λ, which can be tuned by adjusting the vertical exit aperture opening.

As a consequence, the resolving power λ/∆λ and thus the longitudinal coherence

length ξL can be increased. The last optical elements are two refocusing mirror units

(RMU) for the horizontal and vertical direction, which are Kirkpatrick-Baez (KB)

mirrors (plane-elliptical mirrors). The beam can be focused to a minimum beam size

of 10 µm (FWHM) in horizontal and vertical direction at a focal distance of 1.9 m

and 2.5 m, respectively. The vertical focal beam size depends on the exit aperture

opening (≈ 1/3 of the exit slit size), but cannot be tuned to smaller sizes than 10 µm.

3.2 X-ray scattering and holographic imaging

endstation

The experimental setup is specifically designed for coherent small-angle X-ray scatter-

ing (SAXS) and X-ray holographic imaging (XHM) experiments at the P04 beamline

at the storage ring PETRA III (DESY). The setup is conceived to enable an alignment

of the entire setup (setup axis) with respect to the optical axis of the beamline with
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3.2. X-ray scattering and holographic imaging endstation

CCD Camera 

Sample stage 

Fast shutter 

Pinholes Photodiode 

First chamber 

(Pivot point) CCD Camera 

Possible optical axes (beamline) 

Setup axes 

X-ray beam 

First chamber Second chamber third chamber 

X-ray beam 

29 cm 26 cm 19 cm a) b) 

sample 

Figure 3.2: a) Image of the coherent X-ray scattering and X-ray holographic imaging
setup designed for the P04 beamline at PETRA III (DESY) in Hamburg. The setup
consists of three chambers. The X-ray beam coming from the left passes through
a pinhole with variable diameter (first chamber), which selects the center part of
the beam and ensures a high coherent volume of the beam. A fast shutter located
29 cm downstream of the pinhole is used to set the exposure time for the experiments
(second chamber). 26 cm downstream of the fast shutter the beam is scattered by
the sample and the scattered X-rays are detected by a CCD camera (sample-detector
distance = 19 cm, third chamber). b) The second and third chamber are fixed with
respect to each other and can be moved on a conical section with respect to the first
chamber to align the setup (setup axis, black dashed line) to the optical axis of the
beamline (red dashed lines). The blue ellipse corresponds to the base area of the
cone.

sub-micrometer accuracy. It is subdivided into three vacuum chambers (see Fig. 3.2),

where each can be pumped separately with a high vacuum pump. The first chamber is

fixed in space and the other two chambers, which are fixed with respect to each other,

can be moved on a conical section with respect to the first one due to a horizontal and

vertical pivot suspension (see Fig. 3.2). The pivot point is set to the center of the first

chamber, where the pinhole is located. This setup ensures normal and axial alignment

of all optical components independent of beam angle. Additional circular apertures

with 2 mm diameter with the frame coated with fluorescent Yttrium Aluminate

Nanopowder (Y3Al5O12 : Ce) positioned between the chambers are used for a coarse

alignment of the setup with respect to the beam (optical axes). A conical bore with

a setting angle of 30◦ within the apertures suppresses reflections in the direction of

the optical axes.

Inside the first chamber, circular apertures with variable diameters of 20 µm,

30 µm, 40 µm, 100 µm and 1 mm can be placed to the position of the beam axis

using a manipulator. Its purpose is to limit the beam size to a dimension comparable
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Figure 3.3: a) Image of the CCD camera from Spectral Instruments. b) Sketch of
the arrangement of the Smarpod (green), the magnet system (blue) and the sample
holder (black). The beam (purple arrow) is first transmitted through an elongated
aperture holder with a 6 mm inner diameter. Optionally, a beam-defining aperture
or a holographic mask can be mounted on the holder. Subsequently, the beam is
scattered by the sample mounted on the sample holder, which in turn is attached on
a piezoelectrically driven positioning system. The sample is placed at the center of
the magnet system, which provides out-of-plane and in-plane fields up to ±150 mT.

to the transverse coherence length to ensure a coherent beam and to define the

illuminated area on the sample [86, 158]. Inside the second chamber, a fast shutter1 is

placed to set the exposure time for the experiments. It consists of a circular aperture

with 6 mm diameter and enables exposure times down to ≈ 4 ms using a Pt-Ir

shutter blade. Repetition rates up to 2 Hz can be set. Inside the third chamber the

magnetic samples are mounted on an aluminum sample holder, which is attached

on a piezoelectrically driven positioning system2 with nanometer accuracy (see Fig.

3.3). It enables positioning of the sample in all three dimensions with travel ranges

of ±20 mm in X- and Y-direction and ±10 mm in Z-direction from its zero position.

In addition, the sample can be tilted with angles of ±20◦ about the X- and Y-axis

and ±35◦ about the Z-axis. Optionally, a beam-defining aperture or a holographic

mask for holographic imaging experiments can be mounted on an aperture holder in

front of the sample.

The sample is placed at the center of a magnet system, which consists of four

rotatable diametrally magnetized NeFeB permanent magnets arranged in a quadrupo-

lar configuration [159, 160]. In-plane and out-of-plane magnetic fields can be set up

to ±150 mT. Optionally, a photo-diode located behind the sample position can be

1XRS6 Uni-stable X-ray Shutter, Vincent Associates.
2Smarpod 110.45, SmarAct GmbH.
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used to measure the transmitted beam intensity.

The scattered X-rays are detected by a Peltier-cooled 16 Mpx CCD camera3 with

a pixel size of 15 x 15 µm2 (Total chip size = 61 x 61 mm2). The camera has four

read-out ports, where read-out speeds can be set up to 2 MHz per port. The camera

is protected from the high intensity direct beam by a central beam stop of 1 mm

diameter.

3.3 Fabrication of Co/Pt and Co/Pd multilay-

ers

The following section deals with the preparation of Co/Pt and Co/Pd multilayers

used for the XRMS experiments. First, the fabrication methods are briefly introduced

and the used fabrication parameters are specified. Subsequently, the structure and

the fabrication of wedge-shaped multilayer samples used for the experiments in

chapter 5 are presented.

In addition, CoPd alloys have been studied. The Co35Pd65 alloy films

have been fabricated by Dr. Christian Weier from the Peter Grünberg Institut at the

Forschungszentrum Jülich. They are grown at room temperature using molecular

beam epitaxy (MBE) [161]. The film system is fabricated on a 50 nm thick Si3N4

membrane of 100 x 100 µm2 size. First, a seed layer of 2 nm Pd is grown. On this,

40 nm of Co35Pd65 are deposited and finally capped by a 2 nm Pd layer to protect

the sample from oxidation under ambient conditions.

3.3.1 ECR- and DC magnetron-sputtering techniques

For the preparation of Co/Pt and Co/Pd multilayers two different sputtering tech-

niques are used. These are the electron-cyclotron resonance (ECR) [162] and the

direct current (DC) magnetron sputtering [163] techniques. A detailed description of

both techniques can be found in [144, 164, 165]. The fabrication of the Co, Pt, and

Pd layers are carried out at room temperature at a base pressure of 1 ·10−8 mbar. The

ECR sputtering technique is used to grow a Pt seed layer for the Co/Pt and Co/Pd

multilayer films. Its purpose is to initiate and ensure a pronounced (111) texture for

the following Co, Pt, and Pd layers, which are grown by means of DC magnetron

31100S, Spectral Instruments.
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sputtering [166]. This is caused by the higher mobility and energy (30 eV) of the ECR

sputtered atoms compared to magnetron sputtering (20 eV) [144]. However, ECR

sputtering causes a higher interdiffusion at the interfaces. For ECR sputtering an Ar

working pressure of 3.2 · 10−4 mbar and Ar+ ion energies of 1.2 keV are applied and

a Pt deposition rate of 0.3 nm/s is obtained. DC magnetron sputtering is performed

at 3.4 · 10−3 mbar and ion energies of 0.3 keV for Co, 0.4 keV for Pd, and 0.5 keV

for Pt. The ion current is kept constant at 50 mA for Co and 30 mA for Pt and Pd.

The corresponding deposition rates are for Co 0.03 nm/s, for Pd 0.06 nm/s, and for

Pt 0.07 nm/s. Investigations have shown that the combined use of an ECR sputtered

Pt seed layer, which induces growth on a pronounced textured film, and subsequent

DC magnetron sputtered Co, Pd, and Pt layers, which cause improved interfacial

properties due to low interdiffusion, maximizes the overall perpendicular magnetic

anisotropy of the Co/Pt and Co/Pd films [143, 164, 166].

3.3.2 Preparation and structure of wedge-shaped

Co/Pd multilayers

The structural properties and the preparation of the wedge-shaped Co/Pd multilayer

films are described in the following.

Figure 3.4 (a) illustrates the Co/Pd sample structure used for the experiments.

The film system is fabricated on a 200 nm thick Si3N4 membrane of 1500× 1500 µm2

size, which serves as the substrate and allows for X-ray experiments in transmission

geometry. First, the seed layer consisting of 4 nm ECR sputtered Pt and 3.5 nm

DC magnetron sputtered Pd is grown on the substrate. The 4 nm Pt layer ensures

an improved texture and the 3.5 nm Pd layer improved interfacial properties of

the seed layer [165]. Studies have revealed that ≥ 4 nm of Pt guarantees the

maximum obtainable high quality of crystallinity and interfaces [144, 166]. The use

of ECR sputtered Pt instead of Pd is intended to provide a better comparability

of the Co/Pd multilayers with Co/Pt multi- and single-layers which have been

intensively investigated with respect to film structure, growth and magnetic properties

[143, 144, 165, 166]. On the seed layer stacking a wedge-shaped multilayer film is

grown which consists of an 8-fold Co/Pd bilayer (CotÅ/Pd10Å)8 where the thickness

of each Co single layer is varied from tCo,single = 0− 10 Å, and the Pd layer thickness
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Figure 3.4: a) Layout of the 8-fold wedge-shaped Co/Pd multilayer film. b) Image
of the shadow mask used for the fabrication of wedge-shaped Co layers. It consists
of an Al sample holder and a Cu wedge flap. The Cu wedge flap can be opened
and closed to fabricate plane or wedge-shaped films, respectively. The samples are
positioned on a ventilation slot which prevents distortions of the thin substrate due
to rapid pressure changes during transfer into and out of the vacuum chamber.

is kept constant4. The multilayer is fabricated using DC magnetron sputtering

utilizing the penumbra of a shadow mask. An image of the shadow mask is shown in

Fig 3.4 (b). It consists of an Al sample holder and a Cu wedge flap. The flap can be

opened and closed to allow for a growth of a plane layer (Pd) and a wedge-shaped

layer (Co). The shape of the wedge is caused by the penumbra which arises at the

edge of the wedge flap during the deposition process. The center of the samples is

positioned at the edge of the flap to assure a centered wedge-shaped layer on the

substrate. A ventilation slot prevents a distortion of the thin substrate due to rapid

pressure changes during transfer into and out of the vacuum chamber. At last, the

Co/Pd-multilayer stack is capped by a 3.5 nm Pd layer in order to prevent oxidation

of Co under ambient conditions.

4The 32-fold (Co0.8nm/Pt1.4nm) multilayer used in section 4.3.3 has been fabricated in the
same way, except that the Co and Pt layer thicknesses are kept constant and 1 nm Pt
instead of 3.5 nm Pd has been used for the seed layer stacking.
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4

FOURIER ANALYSIS OF MAGNETIC

SPECKLE PATTERNS FOR SPATIAL

COHERENCE DETERMINATION

The knowledge of the coherence properties of X-ray radiation from synchrotron radia-

tion sources is essential for many X-ray techniques that require highly coherent X-ray

radiation. These techniques are, e.g., coherent diffractive imaging (CDI) [167–170],

X-ray holographic imaging (XHM) [69, 171], Fourier transform holography (FTH)

[66–68], X-ray ptychography [82, 172–174], and X-ray photon correlation spectroscopy

(XPCS) [156, 175, 176]. The degree of spatial and temporal coherence has a strong

impact on the performance of these experiments and consequently coherence mea-

surements and optimizations prior to the experiments become important.

The coherence properties are described by the mutual coherence function, as

it is given in section 2.1. The following deals with the mutual coherence function

and complex degree of coherence in the quasi-monochromatic approximation, which

means that the longitudinal coherence length is assumed to be much larger than

any path-length difference that occurs in the experiments. Hence, only the spatial

coherence is considered, which is characterized by the transverse coherence length of

the X-ray beam.

Several techniques exist to determine the spatial coherence properties of X-ray

radiation. The model experiment is the Young’s double-pinhole or double-slit exper-

iment, which measures the fringe visibility ν(∆r) or complex degree of coherence

as a function of slit or pinhole separation ∆r1 [80, 95, 120]. To map out the full

two-dimensional complex degree of coherence, a series of double pinhole apertures

with various separations and spatial orientations is required. The transverse coherence

length in these experiments is defined as the pinhole or slit separation at which the

1In the quasi-monochromatic approximation and assuming that the intensities incident on
each pinhole or slit are equal ν(∆r) = (Imax − Imin)/(Imax + Imin) = |γ(∆r)|.
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determination

visibility or modulus of the complex degree of coherence (CDC) drops to a value of

0.6.2 Based on these experiments, further concepts have been developed utilizing

pinholes to measure coherence properties. These are, e.g., the use of uniformly

redundant arrays of apertures (URA) and non-redundant arrays of apertures (NRA).

The URA is composed of a pseudo-random array of pinholes, such that on a dis-

crete grid all possible pinhole separations occur and do so for an equal number of

times [84, 85, 177, 178]. The NRA is composed of an array of double-pinholes in a

well defined arrangement, where each pinhole separation occurs only once [79, 179].

Both concepts allow for simultaneous measurement of many Young’s double-pinhole

experiments in one or two dimensions and thus reduce the expenditure of time to

measure the transverse coherence length. Another method to determine the coherence

properties is based on the speckle contrast determination of speckle patterns from

random scatterers [86, 87, 89]. The obtained speckle contrast characterizes the spatial

coherence by one quantity and can be extracted from the speckle pattern with low

effort. However, the method does not allow for a direct measurement of the transverse

coherence length.

In the following, a method is presented to determine the two-dimensional repre-

sentation of the modulus of the complex degree of coherence and thus the transverse

coherence length of the X-ray radiation directly from a single magnetic speckle

pattern. It is based on the analysis of the Fourier transform of a magnetic speckle

pattern, that is obtained using X-ray resonant magnetic scattering (XRMS) from a

ferromagnetic sample in the multidomain state.

At first, the Fourier analysis method is described and discussed in detail (section

4.1. Subsequently, the Patterson map of a magnetic domain pattern is described,

as well as its influence on the performance of the method (section 4.2. In the third

section (4.3), two XRMS experiments performed at the P04 beamline at PETRA III

(DESY) are presented, where the magnetic speckle pattern from a ferromagnetic

Co35Pd65 alloy film and a (Co0.8nm/Pt1.4nm)32 multilayer film are used to extract the

transverse coherence lengths. The fourth section (4.4) describes the influence of the

speckle intensity and noise contributions on the extracted coherence function and the

determined transverse coherence lengths. A Young’s double pinhole experiment has

been performed to corroborate the obtained results from the Fourier analysis method

and is presented in the fifth section (4.5). At the end, the results are concluded and

possible further applications of the Fourier analysis method are discussed (4.6).

2For a Gaussian CDC this corresponds to a separation equal to the the rms width or standard
deviation σ.
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4.1. The Fourier analysis method

4.1 The Fourier analysis method

The Fourier analysis method can be seen as a combination of the URA concept and

the speckle analysis method. Within the URA concept, the CDC is obtained from

the Fourier transform of the diffraction pattern from a pseudo-random distributed

pinhole array (scatterers). For the speckle analysis method, a sample with randomly

distributed scatterers (aerogel, colloids, etc.) is used to obtain a speckle pattern. The

extracted speckle contrast C (see Eq. 2.45) is determined via calculating the normal-

ized variance of intensity fluctuations within defined regions of the speckle pattern

and characterizes the coherence properties of the beam. In the presented Fourier

analysis method the CDC (see section 2.1) is obtained from the Fourier transform of

a magnetic speckle pattern, that is obtained using X-ray resonant magnetic scattering

from a magnetic maze domain pattern, having a broad distribution of domain sizes

(magnetic scatterers). The advantage of this method is that the magnetic speckle

patterns obtained from X-ray resonant magnetic scattering experiments, that are

acquired during the investigation of magnetic samples, can be directly used to get

additional access to the spatial coherence properties of the incident X-ray beam.

Thus, no additional expensively manufactured double-pinhole or pinhole arrays have

to be used to determine the coherence prior to these experiments.

The distribution of scattering intensity in an X-ray resonant magnetic scattering

experiment in the detector plane is described by Eq. 2.41 and Eq. 2.42 and is given

by the modulus square of the two-dimensional Fourier transform of the magnetic

density of the sample mz (r), i.e., the magnetic domain pattern. The inverse Fourier

transform of the magnetic speckle pattern yields [149, 152, 180]

I (∆r) ∝
∣∣∣F−1

(
|F (mz (r))|2

)∣∣∣,
=

∣∣∣∣∣∣
∞∫
−∞

Γ (r1, r1 −∆r)mz (r1)mz
∗ (r1 −∆r)dr1

∣∣∣∣∣∣ .
(4.1)

Within the framework of the Gaussian Schell-model, the complex degree of coher-

ence γ(r1, r2) and the beam intensity distribution I(r) are assumed to be Gaussian

functions and the complex degree of coherence depends only on the separation of any

two point pairs within the beam (γ(r1, r2) = γ(r1 − r2) = γ(∆r)). Consequently, the

source is assumed to be spatially uniform (see section 2.1.2). Substitution of Eq. 2.4
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into Eq. 4.1 yields

I (∆r) ∝ |γ (∆r)|

∣∣∣∣∣∣
∞∫
−∞

I (r1)1/2mz (r1) I (r1 −∆r)1/2mz
∗ (r1 −∆r)dr1

∣∣∣∣∣∣ . (4.2)

Equation 4.2 expresses that the Fourier transformed magnetic speckle pattern is the

product of the modulus of the complex degree of coherence and the modulus of the

product autocorrelation function of the magnetic domain pattern and the intensity

distribution of the illuminating X-ray beam. It has been verified in simulations

that the product autocorrelation function can be separated into the product of

the Patterson function of the magnetic domain pattern and the autocorrelation

function of the beam intensity distribution. The latter is feasible in the presented

case, where the magnetic domain pattern is a spatially fast varying function and

the intensity distribution a spatially slow varying function. The applicability of

the separation has been examined using simulated data for typical length scales

of magnetic domain patterns and beam intensity distributions used for magnetic

small-angle X-ray scattering experiments, which reveals a good agreement. It follows

that Eq. 4.2 can be expressed by

I (∆r) ∝ |γ (∆r)| |K (∆r)| |Pm (∆r)| . (4.3)

K (∆r) represents the autocorrelation function of the beam intensity distribution. It

will be demonstrated in section 4.2 that the Patterson function Pm (∆r) of a disordered

magnetic maze domain pattern can be described by a constant except in the vicinity

of the central region and thus contributes to Eq. 4.3 only by a multiplicative factor.

Consequently, Eq. 4.3 can be used to deduce the two-dimensional representation of

the complex degree of coherence γ (∆r) in a particularly easy way, which in turn can

be utilized to determine the transverse coherence lengths (ξT) of the incident X-ray

beam. For this, the Fourier transformed magnetic speckle pattern is normalized by

the autocorrelation function of the beam intensity distribution and subsequently by

its maximum value at zero separation. The latter normalization is performed to

cancel out the multiplicative factor of the Patterson function.

It is possible to describe the above analysis also in the so-called statistically

stationary model, which is a limit of the Gaussian Schell-model, where the illuminating

field components are uniform and planar [90]. In this model, the mutual coherence

function depends only on the separation ∆r of the coordinates and the beam intensity

distribution is only considered by a constant intensity I0 (Γ (r1, r1 −∆r) = I0γ (∆r)).
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The statistically stationary model is often used in the literature due to its simple

form, which is beneficial for analysis purposes [83, 86, 87, 90, 181]. In this model,

the mutual coherence function can be rewritten as (Γ (r1, r1 −∆r) = Γ (∆r)) and Eq.

4.1 yields [149]

I (∆r) ∝ |Γ (∆r)|

∣∣∣∣∣∣
∞∫
−∞

mz (r1)mz
∗ (r1 −∆r)dr1

∣∣∣∣∣∣ ,
∝ |Γ (∆r)| |Pm (∆r)| = I0 |γ (∆r)| |Pm (∆r)| .

(4.4)

Equation 4.4 shows, similar to Eq. 4.3, that the Fourier transform of the magnetic

speckle pattern is given by the product of the modulus of the complex degree of

coherence of the illuminating beam and the modulus of the Patterson function of

the magnetic domain pattern, multiplied simply by I0. This result is similar to the

one obtained from the URA concept3, where the Fourier transform of the coherent

diffraction pattern of a pseudo-random pinhole array results in the product of the

CCD with the known autocorrelation function of the pinhole array [83–85, 178]. In

[84] the authors state that the autocorrelation function should be ideally flat except

for a very sharp peak at the center to obtain reliable results. This property has been

found for the autocorrelation function of spatially disordered magnetic maze domain

patterns, as will be demonstrated in the following section.

4.2 Patterson function of magnetic domain

patterns

4.2.1 Overview and properties

The Patterson function is defined as the convolution or autocorrelation function of a

function f (r).

P (∆r) =

∞∫
−∞

f∗
(
r′
)
f
(
r′ −∆r

)
dr′,

= f∗ (r) ∗ f (−r) ,

= f (r)⊗ f (r) .

(4.5)

3Mostly analyzed in terms of the statistically stationary model.
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Figure 4.1: Fourier transform relationship between a double-slit structure and its
corresponding Fringe pattern and Patterson function in one dimension. I(Q) and
|P (∆x)| have been normalized by their maximum values.

In the field of crystallography, f (r) is the electron density throughout the crystal. In

the presented case, f (r) is the magnetic density mz (r) or magnetic domain pattern,

which varies as a function of the local out-of-plane component of the magnetization

due to the X-ray magnetic circular dichroism (see section 2.2.2).

The main feature of the Patterson function is that its Fourier transform is the

diffracted intensity4

I (Q) =

∞∫
−∞

P (∆r) e−iQrdr,

= F (P (∆r)) .

(4.6)

and by performing the inverse Fourier transform is follows

P (∆r) = F−1 (I (Q)) . (4.7)

Another important relationship between P (∆r) and f (r) is given by the autocorre-

lation theorem of the Fourier transform

I (Q) = F∗ (f (r))F (f (r)) = |F (f (r))|2 = F (P (∆r)) . (4.8)

P (∆r) = F−1
(
|F (f (r))|2

)
. (4.9)

4Here, fully coherent illumination is assumed.
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As a consequence, the Patterson function can be computed from the function f (r)

using two Fourier transforms. Figure 4.1 illustrates the Fourier transform relationships

given by Eq. 4.8 and Eq. 4.9 for a double-slit structure in one dimension. The function

f(x) represents the transmission function of a double slit (rectangle functions). The

modulus square of the Fourier transform of f(x) illustrates a synthetic one-dimensional

fringe pattern I(Q). It is described by a sinc2 function modulated by a constant

frequency, which corresponds to the slit spacing d. P (∆x) is the autocorrelation

function of the double slit structure and can be described by triangle or Λ functions.

The central Λ function represents the self-correlation of both rect functions and the

two side Λ functions with half the amplitude represent the cross-correlation terms.

The distance d between the peak position of the center Λ function and the peak

position of the side Λ functions corresponds to the spacing of the slits. The width of

all Λ functions is given by twice the slit width.

4.2.2 Application to magnetic domain patterns

In the last chapter it has been demonstrated that the CDC can be extracted from the

Fourier transform of a magnetic speckle pattern (see Eq. 4.3 and Eq. 4.4). For this,

it is important to know the characteristics of the Patterson function of a magnetic

domain pattern, similar to the case of the URA concept. The autocorrelation function

of the pinhole array in the URA concept is well known, although the pinholes are

pseudo-randomly distributed5. However, the exact autocorrelation function of a

magnetic domain pattern is not easily accessible, especially in case of a disordered

maze domain pattern with a large amount of domain size variation. Real-space images

obtained from high-resolution magnetic imaging techniques have to be recorded at

the exact position of the illuminating beam together with an appropriate size to get

a sufficient domain pattern to calculate the exact Patterson function. This would be

impractical and hardly achievable.

1D Patterson function

The general properties of the Patterson function Pm (∆r) from magnetic domain

patternsmz (r) can be studied by modeling one-dimensional magnetic domain patterns

with different domain size distributions. For this, an alternating sequence of mz = −1

5URA patterns can be calculated using an algorithm described by [177] and manufactured
with optical lithography techniques. The autocorrelation function as well as the URA
coherent diffraction pattern can be easily simulated.
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Figure 4.2: a) Normalized one-dimensional Patterson function of a synthetic one-
dimensional magnetic domain pattern with gamma-distributed domain sizes for
different values of the standard deviation σ of the distribution function. The average
domain size has been set to 100 nm. The graphs have been smoothed with a kernel of
3 µm to suppress the strong high-frequency oscillations. The side lobe intensity varies
from 0.38 to 0.003. b) Central part of the normalized one-dimensional Patterson
function using a standard deviation σ = 50 nm and an average domain size of 100 nm.
It shows that the dominant central part has a width of around 1 µm. It should be
noted that the graph has an averaged side lobe intensity of 0.003 and is therefore
non-zero.

and mz = 1 values, representing Mz/MS, is modeled to represent magnetic domains

with up- and down-magnetization (see Fig. 5.7). A distribution function for the

domain sizes is implemented to incorporate different domain size variations within

the domain pattern. It is found that a gamma distribution can be used to describe

magnetic maze domain patterns with significant domain size variations. It can

also account for highly-ordered stripe domain patterns with vanishing domain size

variation. For a detailed description and analysis of the used gamma distribution

for the domain sizes, it is referred to section 5.3.2. The Patterson function can be

obtained from the modeled one-dimensional domain pattern by using Eq. 4.9. Fig.

4.2 (a) shows the modulus of the one-dimensional Patterson function for different

standard deviations σ of the gamma distribution, i.e., for different values of domain

size variation within the domain pattern, using an average domain size of D = 100 nm.

The graphs have been smoothed with a kernel of 3 µm width to suppress the strong

high-frequency oscillations. Due to that the graphs display the general shape and
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4.2. Patterson function of magnetic domain patterns

characteristics of the modulus of the Patterson function. It can be seen from Fig.

4.2 (a) that the Patterson function has a broad and triangular-shaped structure at

σ = 0.1 nm, which corresponds to an almost periodic domain pattern with almost a

single domain size. With increasing amount of domain size variation, the width of the

central peak decreases until it can be described by a single narrow peak (σ = 50 nm).

Moreover, with increasing σ, the side lobes develop into flat planes. Figure 4.2 (b)

shows the modulus of the Patterson function obtained from a domain size distribution

with σ = 50 nm and an average domain size of D = 100 nm without smoothing the

graph. It shows that the peak structure at the center is restricted to a total range

of 1 µm. The side lobes are flat and show only slight fluctuations with an average

value of 0.003. Similar results have been found by Asakura et al. [149] describing the

Patterson function of a diffuse plate as a function of mean-square phase variations,

i.e., surface-height variations and by Nugent et al. [84], describing the Patterson

function of an NRA aperture.

2D Patterson function

The analysis of the Patterson function of a magnetic domain pattern can also be

performed in two dimensions. For this, an MFM image of a magnetic maze domain

pattern of a Co/Pt multilayer film with an average domain size of around D = 150 nm

is utilized (Fig. 4.3 (a)). The modulus square of the Fourier transformed MFM image

results in a synthetic two-dimensional diffraction pattern (Fig. 4.3 (b)). A subsequent

Fourier transform of the diffraction pattern yields the two-dimensional Patterson

function of the maze domain pattern (Fig. 4.3 (c)). Fig. 4.3 (c) shows that the

two-dimensional Patterson function consists of a high-intensity peak structure in the

center and slight intensity fluctuations on a constant side lobe in the remaining regions.

An averaged one-dimensional profile of the two-dimensional Patterson function can

be obtained via azimuthal averaging around the center (Fig. 4.3 (d)). Figure 4.3

shows that the azimuthally averaged Patterson function has the same signature as in

the one-dimensional case, when a large variation of domain sizes within the domain

pattern (maze pattern) is present (see Fig. 4.2 (b)). The peak structure in the center

is also restricted to a total range of 1 µm. Furthermore, the side lobe is flat and

shows slight fluctuations with an average value of 0.08.

From the one- and two-dimensional analysis of the Patterson function from

magnetic domain patterns, it follows that for a maze-like domain pattern with a large

variation of domain sizes, the Patterson function can be decomposed into a distinct
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Figure 4.3: (a) Magnetic force microscope (MFM) image of a magnetic maze domain
pattern with an average domain size of around 150 nm (courtesy of D. Stickler and
J. Mohanty). (b) Central area of the modulus square of the Fourier transformed
maze pattern showing a calculated donut-like diffraction pattern. (c) Modulus of
the Fourier transformed diffraction pattern showing the Patterson map of the maze
pattern (logarithmic scale). (d) Plot of the azimuthally averaged Patterson map (red
solid line) yielding the high non-constant contribution of the Patterson function at
the center position and a perfectly flat side lobe (black solid line).

narrow central peak (≈ 1 µm width) and perfectly flat side lobes.

Is has been shown from the Fourier analysis method (section 4.1) that the Fourier

transform of a magnetic speckle pattern can be expressed, within the Gaussian

Schell-model, by the product of the modulus of the complex degree of coherence,

the autocorrelation function of the beam intensity distribution and the Patterson

function. In the context of the statistically stationary model, the latter is reduced to
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4.3. Determination of spatial coherence

the product of the complex degree of coherence and the Patterson function. It has

been shown that the Patterson function of a magnetic maze domain pattern with

large variation of domain sizes is a constant, except in the vicinity of the central

region. It follows, that the complex degree of coherence and hence the transverse

coherence length (see section 2.1) can be extracted from the Fourier transformed

magnetic speckle pattern without the knowledge of the exact shape of the Patterson

function, as it is only a constant multiplicative factor in Eq. 4.3 and Eq. 4.4, except

for the vicinity of the central region. Due to the fact that the high-intensity fringe-like

structure in the central region only extends over a small distance it can be disregarded

for the analysis.

In the following, the determination of the spatial coherence of X-ray radiation,

i.e., the transverse coherence length, will be described in detail using the Fourier

analysis method for two different XRMS experiments performed at the P04 beamline

at PETRA III.

4.3 Determination of spatial coherence

Two XRMS experiments have been performed at the P04 beamline at PETRA III

to determine the spatial coherence of X-ray radiation produced by the synchrotron

radiation source. The first experiment has been carried out with the magnetic sample

positioned out of the focus and the second experiment in the focus of the refocusing

mirrors of P04. The experimental setup described in section 3.2 has been used for

these experiments.

4.3.1 Experimental details

The first XRMS experiment (out-of-focus) has been carried out at a photon energy

of 778 eV (Co L3 absorption edge) using circularly polarized X-ray radiation and a

Co35Pd65 alloy sample (see section 3.3) as scattering medium. A monochromator

exit slit of 200 µm has been used, resulting in a resolving power of λ/∆λ ≈ 3 · 103 at

778 eV and a longitudinal coherence length of ξL = 4.8 µm (see section 3.1). The

refocusing mirror unit set has been used to focus to the experimental platform in the

vertical direction with a focal distance of 2.5 m and a focal size of 70 µm, which is

related to the monochromator exit slit size. In the horizontal direction, the beam has

been focused to a distance of about 15 m behind the setup with a focal distance of
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CCD Camera 
Photodiode 
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Figure 4.4: Sketch of the XRMS experiment. The beam coming from the left passes
through the beam-defining pinhole, and is scattered at the sample. The scattering
pattern is recorded by a CCD camera. The direct beam is blocked by a beam stop.
Optionally, a second pinhole and a photodiode can be placed before and behind the
sample to measure the beam size at the sample position.

16.9 m and a focal size of 100 µm6. The Co35Pd65 alloy sample has been placed

18 cm downstream of the vertical focus. A beam size of ≈ 25 µm x 49 µm FWHM

(h x v) has been measured at the sample position by scanning the beam with a 2 µm

pinhole mounted on the aperture mount (see Fig. 3.3 and 4.4). A sample-detector

distance of zSD = 1.06 m has been used and a beam-defining 40 µm pinhole (first

chamber, see Fig. 3.2). The largest path-length difference given by the dimension of

the illuminated area and the maximum diffraction angle is ∆s = 0.7 µm.

The second XRMS experiment (in-focus) has been performed at a photon

energy of 778 eV using circularly polarized X-ray radiation and a (Co0.8nm/Pt1.4nm)32

multilayer film as scattering medium. A monochromator exit slit size of 50 µm

has been used resulting in a resolving power of λ/∆λ ≈ 1 · 104 at 778 eV and a

longitudinal coherence length of ξL = 15.9 µm. The refocusing mirror unit set

has been used to focus to the experimental platform in the vertical and horizontal

direction with a focal distance of 2.5 m and a focal size of 17 µm and with a focal

distance of 1.9 m and a focal size of 10 µm, respectively. The multilayer sample

6At the time of the experiment the horizontal RMU for the P04 platform was not yet installed.
Instead the RMU of the PIPE platform has been used for the experiments.
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4.3. Determination of spatial coherence

has been placed in the focus. A sample-detector distance of zSD = 32 cm and a

beam-defining 100 µm pinhole has been used. A beam size of ≈ 14 µm x 21 µm

FWHM (h x v) has been measured at the sample position by scanning the beam

with a 2 µm pinhole. The scattered X-rays are detected by a 4 Mpx CCD camera

(PI-MTE 2048B) with a pixel size of 13.5 µm (Total chip size = 28 x 28 mm2). The

largest path-length difference is ∆s = 0.6 µm.

The main differences of both experiments which are relevant for the co-

herence properties of the X-ray radiation are firstly that for the experiment

(out-of-focus) the vertical component of the beam has been focused to the experimen-

tal platform of P04 and the horizontal component has been focused to the PIPE

platform 16.9 m downstream of the experimental platform. Hence, the horizontal

component can be considered as collimated. In the experiment (in-focus) the vertical

and horizontal direction of the beam have been focused to the experimental platform

of P04. Secondly, in the experiment (out-of-focus) the sample has been placed 18 cm

downstream of the vertical focus, where in the experiment (in-focus) the sample has

been placed in the focus. Thirdly, different exit-slit openings have been used for the

experiments.

4.3.2 Determination of the transverse coherence length

(out-of-focus)

In the following the determination of the transverse coherence length of the X-ray

radiation used for the XRMS experiment (out-of-focus) under the above described

experimental conditions is discussed. A series of magnetic diffraction patterns of

the Co35Pd65 alloy sample has been recorded, each with an exposure time of 0.02 s.

Each diffraction pattern has been dark-image corrected. Figure 4.5 (a) displays an

averaged magnetic diffraction pattern of 50 successively recorded images. The ring

structure indicates scattering from a magnetic maze domain pattern and the speckled

structure within the annulus (Fig. 4.5 (a); inset) proves at least a partially coherent

illumination of the magnetic sample (see Fig 2.8). The mean domain size calculated

from the peak position of the radial scattering intensity profile obtained via azimuthal

averaging around the center of the diffraction pattern is DQmax = π/Qmax = 80 nm.

Fig. 4.5 (b) shows the Fourier transform of the magnetic speckle pattern. As
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c) d) 
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Figure 4.5: a) Magnetic diffraction pattern recorded at 778 eV photon energy from
a Co35Pd65 alloy film. The inset shows a small section of the annulus revealing its
speckled structure. b) FFT of the magnetic diffraction pattern (logarithmic scale).
This is equivalent to the product of the modulus of γ (∆r) with the modulus of
the Patterson function Pm (∆r) of the magnetic domain pattern and I0 according
to the statistically stationary model. The inset displays the center position of the
image where the variation of the Patterson function is dominant. c) Autocorrelation
function K (∆r) of the Gaussian beam intensity distribution. K (∆r) is a Gaussian
profile with twice the beam width σB

7. d) γ (∆r) calculated within the Gaussian
Schell-model (see text). The small red and white shaded areas in b) and d) represent
the angular ranges used to determine the CDC and the transverse coherence length
in the horizontal and vertical directions. The black dashed circle and white dashed
ellipse in b) and d) indicate the determined transverse coherence lengths in all angular
directions. In d) a mask with a diameter of 3 µm in the center has been used to mask
out the high-intensity fringe pattern of the Patterson function at that position.
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already discussed in section 4.1, the intensity distribution I (∆r) of the Fourier-

transformed speckle pattern is proportional to the modulus of the coherence function

γ (∆r). Hence, Fig. 4.5 (b) contains information about the two-dimensional spatial

coherence properties and the intensity distribution of the incident X-ray beam. The

high-intensity fringe-like structure in the center of the image illustrates the non-

constant contribution of the Patterson function. It is only visible in the image

center and has a total width of ≈ 1 µm resulting from the large variation of domain

sizes. This observation is consistent with the findings presented in section 4.2.2.

The Fourier-transformed speckle pattern can now be analyzed with respect to the

Gaussian Schell-model (Eq. 4.3) and the statistically stationary model (Eq. 4.4).

In the framework of the statistically stationary model, Fig. 4.5 (b) equals γ (∆r)

except for a constant contribution of the Patterson function and I0. No anisotropy

of I (∆r) is visible regarding its horizontal and vertical directions. Due to that, an

average γ (∆ravg) can be extracted via azimuthal averaging around the center of I (∆r)

which thus represents the spatial coherence in all radial directions. Figure 4.6 (a) shows

the extracted profile I (∆ravg). γ (∆ravg) is obtained from the profile by normalizing

I (∆ravg) to its maximum value at zero separation (∆ravg = 0). Subsequently, the

γ (∆ravg) profile is fitted with a Gaussian function exp
(
−∆ravg

2/2ξ2
T

)
8 (see Eq. 2.9)

and an average transverse coherence length of ξT,avg = (15.6 ± 0.5) µm is determined.

The small constant offset of I (∆ravg) cannot be explained by the theoretical

description of the Fourier transform of the magnetic speckle pattern (see section 4.1

and Eq. 4.4), as γ (∆ravg) is, by its definition, converging to zero at large separation.

It is found that the offset emerges from the readout noise of the CCD detector, which

gives a constant background in the modulus of the Fourier transform even after

appropriate dark image correction. The latter results in an additive contribution to

the Fourier-transformed magnetic speckle pattern due to the linearity property of

the Fourier transform. This issue is discussed and described in detail in section 4.4.

In order to extract γ (∆r) along all angular directions of the two-dimensional

plane, azimuthal averaging of small circle segments with an angular width of 10◦ has

been carried out (red shaded area in Fig. 4.5 (b)). Simple line profiles show strong

fluctuation due to the underlying Patterson function. The averaging has been done

to improve the statistics. The results are plotted in Fig. 4.6 (b) revealing a constant

transverse coherence length of ξT,avg = (15.6 ± 0.5) µm in all angular directions,

which is in-line with the former assumption of absent anisotropy in Fig. 4.5 (b).

7In the following, σB is the (rms) width of the X-ray beam at the sample position.
8In the following, ξT is the (rms) transverse coherence length of the X-ray beam at the sample
position.
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Figure 4.6: a) Averaged one-dimensional profile of I (∆r) obtained via azimuthal
averaging around the center of the Fourier-transformed magnetic diffraction pattern
(black circles). I (∆ravg) is normalized with its maximum value close to zero separation
resulting in the modulus of γ (∆ravg). Using a Gaussian fit (red line) a transverse
coherence length of ξT,avg = (15.6 ± 0.5) µm is obtained. b) Polar diagram showing
the transverse coherence length ξT in all axial directions determined in the frame of
the statistically stationary model (black circles) and in the frame of the Gaussian
Schell-model (blue circles). The red dashed lines denote the general shape along the
axial directions and the green solid line represents the shape of the incident beam,
characterized through its (rms) width σB in horizontal and vertical directions.

The global degree of coherence ζ (see Eq. 2.15) characterizes the transverse

coherence properties of the incident X-ray beam by one number, which also accounts

for the beam size. The global degree of coherence is ζv ≈ 0.35 in vertical and ζh ≈ 0.59

in horizontal direction which leads to a total degree of coherence of ζ = ζvζh ≈ 0.219.

For the calculations, the transverse coherence length in vertical ξT,v = (15.3 ± 0.5)

µm and horizontal direction ξT,h = (15.6 ± 0.5) µm, as well as the rms beam width

in vertical σB,v ≈ 20.8 µm and horizontal direction σB,h ≈ 10.6 µm have been used.

It will be shown in the following paragraph that this value is not exact, as the

preconditions of the statistically stationary model is not fulfilled in the experiment

(σB,h > ξT,h).

The data can be reanalyzed within the framework of the Gaussian Schell-model.

Within the Gaussian Schell-model the beam intensity distribution of the incident

X-ray beam is taken into account for the analysis. According to Eq. 4.3, the Fourier-

transformed magnetic speckle pattern is normalized by K (∆r), the autocorrelation

9Strictly speaking this is already violating the preconditions of the statistically stationary
model, as a plane wave is not confined in space.
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Figure 4.7: Modulus of the CDC in horizontal γ (∆x) and vertical directions γ (∆y)
(black circles). The profiles are extracted from normalized Fourier-transformed speckle
pattern (Fig. 4.5 (d)) using azimuthal averaging of small circle segments with an
angular width of 10◦. Using Gaussian fits (red lines), transverse coherence lengths of
ξT,h = (24.6± 1.5) µm in horizontal and ξT,v = (16.2 ± 0.5) µm in vertical direction
are obtained. The green triangles represent the CDC values obtained from Young’s
double pinhole experiment from averaged line profiles at different pinhole separations
∆x and ∆y (see section 4.5). Using Gaussian fits (green dashed lines), a transverse
coherence length of ξT,h = (22.6 ± 0.3) µm and ξT,v = (16.1 ± 0.4) µm in vertical
and horizontal direction is determined, respectively.

function of the square root of the Gaussian beam intensity distribution (Fig. 4.5

(c)), to obtain γ (∆r) (see Fig. 4.5 (d)). Prior to normalization the constant offset

has been subtracted from I (∆r). The autocorrelation function of the square root of

a Gaussian function results in a Gaussian profile with twice the beam width. The

latter displays an elliptical profile according to the experimentally determined values

for the beam width in horizontal and vertical directions (Fig. 4.5 (c)). The shape of

the beam profile is basically not restricted to the Gaussian type in the analysis, so

that the autocorrelation of the square root of any experimentally obtained beam

profile can be utilized, as long as it shows no variation on the length scale of the

magnetic domain pattern. After normalization γ (∆r) can be extracted from I (∆r)

in all angular directions with the same procedure described above for the statistically

stationary model (see Fig. 4.6). In vertical direction a transverse coherence length

of ξT,v = (16.2 ± 0.5) µm and in horizontal direction of ξT,h = (24.6 ± 1.5) µm

are obtained (Fig. 4.7). The results show a distinct asymmetry with respect to the

vertical and horizontal directions, as can be clearly seen in Fig. 4.5 (d). Furthermore,

an additional feature arises from the normalization that is recognizable at large
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separation in the horizontal direction. The non-Gaussian shape above ∆x = 40 µm

emerges from the first order peak of the Airy pattern of the incident beam, which

appears at a radius of around 45 µm. It appears in the range of investigation due to

the narrow width of the illuminating beam in the horizontal direction. The latter

findings further confirms the validity of the presented normalization, since we see a

well understood deviation from the assumed Gaussian beam. Due to the fact that the

deviation has an impact on the complex degree of coherence in horizontal direction

and hence on the transverse coherence length an increased error margin is assumed

in that direction.

The global degree of coherence can be determined by means of the transverse

coherence lengths in vertical and horizontal directions within the Gaussian Schell-

model and yields ζv ≈ 0.36 and ζh ≈ 0.76. Thus, the total degree of coherence yields

ζ = ζvζh ≈ 0.27.

A Young’s double pinhole experiment has been performed to corroborate

the results from the Fourier analysis method and is described in detail in section

4.5. The results of the experiment are plotted in Fig. 4.7 and Fig. 4.6 (b), together

with the results of the Fourier analysis method analyzed within the Gaussian-Schell

model. From the double pinhole experiment a transverse coherence length of

ξT,h = (22.6 ± 0.3) µm in horizontal and ξT,v = (16.1 ± 0.4) µm in vertical

direction is obtained, respectively. It shows that there is really an asymmetry

in the degree of coherence with respect to its horizontal and vertical axes, as

it is also found from the Fourier analysis method analyzed within the Gaussian

Schell-model. The results from both methods show a good agreement in horizontal

as well as in vertical direction. In contrast, the analysis performed in the statistically

stationary model shows only a good agreement with the results of the double

pinhole experiment in the vertical direction and reveals a significant deviation in

the horizontal direction. The prerequisites for applying the statistically stationary

model in that direction are obviously not fulfilled. A normalization by means of the

beam intensity distribution is indispensable to ensure reliable results in that direction.

The analysis of the data in the Gaussian Schell-model and statistically

stationary model demonstrate that for the case that the X-ray beam size is much

larger than the coherent fraction of the beam (vertical direction; see above) the

coherence properties of the X-ray radiation can be well described by the statistically

stationary model (see Fig. 4.6 (b)). In this case, the complex degree of coherence is

the dominant contribution to the Fourier-transformed magnetic speckle pattern and
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consequently Eq. 4.3 and Eq. 4.4 give comparable results. However, if the beam size

is small compared to the coherent fraction of the beam (horizontal direction; see

above) the beam intensity distribution dominates and has to be considered in the

analysis for a correct characterization of the coherence properties of the beam. In

that case, the statistically stationary model underestimates the coherence properties

of the X-ray beam.

Sampling considerations

The CCD detector consists of a finite number of pixels which sets restrictions to

the field of view (FOV) and resolution. The detectable field of view xFOV = λzSD/s =

112 µm (see Fig 4.5 b)) is determined by the wavelength λ (1.59 nm for 778 eV),

the sample-detector distance zSD (1.06 m) and the pixel size of the CCD detector s

(15 µm). The number of pixels N = 4096 defines the resolution in the space domain

xres = λzSD/Ns = 27.4 nm. The CDC can be mapped out up to a separation of

x = 112µm/2 = 56 µm due to its centro-symmetry. Hence, it can be seen that a

sufficiently large sample-detector distance and a small pixel size are prerequisites for

the detection of the full two-dimensional coherence function.

4.3.3 Determination of the transverse coherence length

(in-focus)

In the following the determination of the transverse coherence length of the

X-ray radiation used for the XRMS experiment (In-focus) under the above-described

experimental conditions is discussed. A series of magnetic diffraction patterns of the

(Co0.8nm/Pt1.4nm)32 multilayer film has been recorded, each with an exposure time of

0.15 s. Each diffraction pattern has been dark image corrected. Fig. 4.8 (a) displays

an averaged magnetic diffraction pattern of 21 successively recorded images. The ring

structure indicates scattering from a magnetic maze domain pattern and the speckle

structure reveals at least partially coherent illumination (Fig 4.8 (a), inset). The

mean domain size calculated from the peak position of the radial scattering intensity

profile obtained via azimuthal averaging around the center of the diffraction pattern

is DQmax = π/Qmax = 96 nm.

Figure 4.8 (b) displays the Fourier-transformed magnetic speckle pattern I (∆r).

The high-intensity peak structure in the center is, as it has been shown in section

4.3.2, limited to a total width of ≈ 1 µm (Fig. 4.8 (b), inset) and illustrates the

non-constant contribution of the Patterson function. The horizontal stripe structure
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a) b) 

c) d) 

𝛾
(∆

r)
 

Figure 4.8: a) Magnetic diffraction pattern recorded at 778 eV photon energy
from a (Co0.8nm/Pt1.4nm)32 multilayer film. The inset shows a small section of the
annulus revealing its speckled structure. b) FFT of the magnetic diffraction pattern
(logarithmic scale). This is equivalent to the product of γ (∆r) with the modulus of
the Patterson function of the magnetic domain pattern Pm (∆r) and I0 according
to the statistically stationary model. The inset displays the center position of the
image where the variation of the Patterson function is dominant. The horizontal
stripe structure in the center constitutes the beam stop wire traversing the annulus
in vertical direction in a). c) Autocorrelation function K (∆r) of the Gaussian beam
intensity distribution. K (∆r) is a Gaussian profile with twice the beam width σB.
d) γ (∆r) calculated within the Gaussian Schell-model (see text). The small red and
white shaded areas in b) and d) represent the angular ranges used to determine the
CDC and the transverse coherence length in the horizontal and vertical direction.
The black and white dashed ellipses in b) and d) indicate the determined transverse
coherence lengths in all angular directions. In d) a mask with a diameter of 1.5 µm
in the center has been used to mask out the high-intensity fringe pattern of the
Patterson function at that position.
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in the center constitutes the contribution of the beam stop wire which traverses the

annulus in vertical direction (see Fig. 4.8 (a)). From Fig. 4.8 (b), a slight anisotropy

of I (∆r) is observed with respect to its horizontal and vertical directions. This gives

rise to an elliptical shape.

In the framework of the statistically stationary model, γ (∆r) and hence the

transverse coherence length ξT can be extracted directly from the Fourier-transformed

speckle pattern in all axial directions using azimuthal averaging of circle segments.

Small circle segments with an angular width of 10◦ has been used for the analysis.

The results for the transverse coherence lengths in all axial directions are plotted in

Fig. 4.9 (a) and reveal a slight asymmetry with respect to the horizontal and vertical

direction, as described above. The transverse coherence length in horizontal direction

is ξT,h = (5.26 ± 0.2) µm and in vertical direction ξT,v = (6.25 ± 0.2) µm which

result in values for the global degree of coherence of ζh ≈ 0.41 in horizontal and

ζv ≈ 0.33 in vertical direction. The total degree of coherence yields ζ = ζvζh ≈ 0.13.

The same procedure can be carried out to determine the transverse coherence

lengths within the Gaussian Schell-model. For this, the Fourier-transformed speckle

pattern is normalized by the autocorrelation function of the square root of the beam

intensity distribution K (∆r) (see Fig. 4.8 (c)) to obtain γ (∆r) (see Fig. 4.8 (d)).

The determined values for the transverse coherence lengths are plotted in Fig. 4.9 (a)).

The complex degree of coherence in horizontal γ (∆x) and vertical γ (∆y) directions

are shown in Fig. 4.9 (b). By fitting the data with a Gaussian function a transverse

coherence length in horizontal direction of ξT,h = (5.79 ± 0.2) µm and in vertical

direction of ξT,v = (6.53 ± 0.2) µm is obtained. The global degree of coherence is

ζh ≈ 0.44 in horizontal and ζv ≈ 0.34 in vertical direction, respectively. Thus, the

total degree of coherence is ζ = ζvζh ≈ 0.15.

The Fourier analysis of the magnetic speckle pattern obtained from the XRMS

experiment (In-focus) reveals, in this case, that the spatial coherence properties of

the X-ray beam can be well described within the statistically stationary model in

both directions (horizontal and vertical). The analysis of the data in the context of

the Gaussian Schell-model reveals only a slight deviation of the transverse coherence

length in both directions compared to the statistically stationary model. This is

due to the fact that the transverse coherence length is much smaller than the beam

width in vertical and slightly smaller in horizontal direction. Thus, γ (∆r) is the

dominant contribution in the Fourier-transformed magnetic speckle pattern I (∆r).

The analysis in section 4.3.2 has shown that a correction of the data is only required

if the transverse coherence length is significantly larger than the (rms) beam width

σB.
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Figure 4.9: The determined transverse coherence lengths of the X-ray beam used
for the XRMS experiment (in-focus). a) and b) show the polar diagram and the
modulus of the CDC in horizontal γ (∆x) and vertical γ (∆y) directions, as it is
shown for the XRMS experiment (out-of-focus) in Fig. 4.6 and Fig. 4.7 in section
4.3.2. From Gaussian fits to the CDC profiles, transverse coherence lengths of
ξT,h = (5.79 ± 0.2) µm in horizontal and ξT,v = (6.53 ± 0.2) µm in vertical direction
are obtained. In this case, as can be seen from the polar diagram, the Fourier analysis
reveals only slight deviations of the transverse coherence lengths determined within
the Gaussian Schell-model and the statistically stationary model. Furthermore, no
deviations of the Gaussian shape of the CDC profiles, as it is found in the analysis in
section 4.3.2, are apparent.

A quantitative understanding of the deviating results from the XRMS experiment

(out-of-focus) and (in-focus) is not straight forward. This is due to the fact that

different exit-slit openings (200 µm and 50 µm) have been used, the measurements

have been performed at different positions along the beam propagation direction and

in the out-of-focus experiment the X-ray beam in horizontal direction has not been

focused to the experimental platform of P04. The exit-slit opening has a direct impact
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not only on the beam size (see section 3.1) but also on the transverse coherence

length of the beam, as described in section 2.1.5. If the exit-slit openings of both

experiments had the same size, the transverse coherence lengths in vertical direction

could in principle be compared, as the relation between beam size and coherence

length p (see section 2.1.3) or ζ (Eq. 2.15) remains unchanged along the propagation

direction and with focusing (see section 2.1.5). Since the beam in horizontal direction

is collimated in the out-of-focus case and focused in the in-focus, the transverse

coherence lengths in that direction cannot be compared. However, both experiments

can be qualitatively compared in the vertical direction. The experiments show that

the transverse coherence length is significantly enhanced for measurements out of the

focus, which is expected, as the transverse coherence length increases with increasing

beam size. However, going out of focus involves a dramatic loss in photon flux

[photons/s], which is a big disadvantage, since most experiments require a high

photon flux. Therefore, most experiments are carried out in focus and hence it is

important to know the coherence properties at that position, especially if high spatial

coherence is required. The XRMS experiment (in-focus) shows a transverse coherence

length of ξT,v = (6.53 ± 0.2) µm. This coherence length is sufficient to perform CDI

or XHM experiments, as the largest distances involved are typically 3-4 µm. At

these separations the modulus of the CDC has values between γ (∆y) = 0.87− 0.78.

The results of the XRMS experiment (in-focus) can be compared with results from

coherence measurements based on NRAs carried out at the beamline P04 [82]. The

authors in [82] determined a transverse coherence length in vertical direction of

ξT,v = (8.7± 0.7) µm in the focus using an exit-slit opening of 50 µm. This value is

larger than the one obtained in the experiment here. This is caused by the fact that

the authors used a photon energy of 500 eV (λ = 2.48 nm) for their experiments in

contrast to 778 eV (λ = 1.59 nm) for the Fourier analysis method and the transverse

coherence length increases with increasing wavelength, as can be seen directly from

Eq. 2.12.

4.4 Influence of speckle intensity and noise

contributions on the Fourier analysis

method

This section deals with the influence of speckle intensity and noise contributions on

the performance of the Fourier analysis method. For this analysis, hundred single-
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exposure (0.02 s) magnetic speckle patterns obtained from the XRMS experiment

(out-of-focus) are used. A series of averaged magnetic speckle patterns ranging from

one to hundred averaged single patterns are calculated to study the effects of the

detector noise and photon noise contributions. In a first step, it is convenient to

calculate the speckle contrast C (see Eq. 2.45) as a function of the number of averaged

speckle patterns, as it is directly related to the coherence properties of the beam

(section 4.4.1). As a second step, the transverse coherence length and the constant

offset (see Fig. 4.6 (b)) is determined for each averaged speckle pattern by means

of the Fourier analysis method (section 4.4.2). The latter is performed within the

statistically stationary model and only an average transverse coherence length ξT,avg

is determined for the sake of simplicity.

4.4.1 Speckle contrast analysis

For the determination of the speckle contrast eight rectangular regions of interest

(ROIs) of (100 x 100) pixels on the annulus of the magnetic speckle pattern have been

selected (see Fig. 4.10 (b)). Each ROI exhibits a spatially uniform mean intensity

of 〈I〉 = 34 ADU. The speckle contrast is calculated using Eq. 2.45. Figure 4.10 (a)

shows the average speckle contrast obtained from eight (100 x 100) pixel ROIs as

a function of number of averaged speckle patterns N . It is found that the average

speckle contrast converges from a high value of C = 0.85 for a single exposure speckle

pattern to a constant value of C = 0.53 with increasing N . Figure 4.10 (c) illustrates

the evolution of the speckle structure within a single ROI with increasing number of

averaged speckle patterns N . The single image exhibits a grainy random-like structure

with isolated high intensities in single pixels and differs significantly from the averaged

speckle patterns above N = 30. Above N = 30, a concise smooth speckle structure

emerges and remains unchanged with further averaging. The constant speckle contrast

shown in Fig. 4.10 (a) and the unchanged speckle structure within the averaged ROIs

shown in Fig. 4.10 (c) point out the temporal stability of the X-ray beam and the

experimental setup during the experiment over the time span of 6.7 min (100 x (0.02

s exposure + 4 s readout time)). The single image (N = 1) is obviously dominated

by either noise contributions of the CCD detector or photon noise.

After dark image correction, the main noise sources are Poisson noise (shot noise),

readout noise and the noise associated with the dark current. The Poisson noise

originates from the discrete nature of light. The readout noise is the noise of the

on-chip amplifier which converts the electronic charge into an analogue voltage. The

dark-current related noise is also known as thermal noise and arises due to thermal
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Figure 4.10: a) Averaged speckle contrast as a function of varying number of
averaged magnetic speckle pattern. The speckle contrast converges to C = 0.53 for
increasing number of averaged pattern. b) Magnetic speckle pattern obtained from the
averaging of 50 single speckle pattern. White rectangles around the annulus denote
the eight 100 x 100 pixel ROIs used for the determination of the average speckle
contrast. c) ROIs of 100 x 100 pixels with varying number of averaged magnetic
speckle pattern. It shows how the speckle structure develops upon averaging.

fluctuations generating electrons within the silicon chip. The readout noise present

in a single image can be determined by calculating the standard deviation σdiff

of the intensity distribution of a difference image from two different dark images

with short exposure σsingle = σdiff/
√

2. With the latter procedure, a readout noise

of σsingle = 8.5 ADU is determined, which is consistent with the CCD camera

specifications. Hence, the readout noise is only a minor noise contribution in the single

image. The CCD camera was cooled down to T = −50◦C during the experiments,

which results in thermal noise of 0.23 ADU/pixel/min and can thus be neglected.

The dominant noise contribution is the Poisson noise. Poisson noise is in contrast

to readout and thermal noise not an additive contribution to the speckle pattern,

but depends on the signal itself. In case of low-photon-number speckle patterns, the
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distribution for the number of photons per pixel kp is given by the negative binomial

distribution, that is a convolution of the Gamma and the Poisson distributions. The

speckle contrast, in this case, can be described by [91, 156]

Clow =
√
C2 + 1/(k̄pN), (4.10)

where k̄p is the mean number of photons per pixel. Equation 4.10 shows that the

apparent speckle contrast is significantly enhanced for small k̄p due to fluctuations

caused by photon counting statistics. With increasing amount of averaging the

contribution vanishes and leads to the correct speckle contrast (≈ N = 30) and fully

developed magnetic speckle patterns. From a fit of Eq. 4.10 to the data (see Fig.

4.10, red line), a mean number of photons per pixel and image k̄p = 2.19 is obtained.

The mean intensity 〈I〉 = 34 ADU calculated for the ROIs10 can be used together

with the value k̄p = 2.19 from the fit to calculate the number of ADUs per photon for

the CCD camera setting, which amounts to s = 16 [ADU/photon]. This value seems

to be quite small, so that a verification of this value via an independent procedure,

e.g., using a droplet algorithm, should be carried out.

4.4.2 Influence of noise contributions on the Fourier

analysis method

In this section the influence of the Poisson noise and readout noise on the parameters

extracted from the Fourier analysis method, i.e., transverse coherence length ξT,avg

and offset of I (∆r) are discussed (see Fig. 4.6 (b)). For this, ξT,avg and the offset for

a varying number of averaged magnetic speckle patterns are determined using the

Fourier analysis method.

Figure 4.11 (a) shows the determined ξT,avg values as a function of averaged

magnetic speckle patterns N . The shape of the curve for the average transverse

coherence length behaves similarly to that of the speckle contrast (see Fig. 4.10 (a)).

ξT,avg starts at a slightly increased value of ξT,avg = (17.2± 0.5) µm and converges

to a constant value of ξT,avg = (15.6± 0.5) µm above N ≈ 10. Thus, the transverse

coherence length has a direct correlation to the speckle contrast and speckle structure,

which is expected due to the fact that the information about the coherence properties

is encoded in the intensity distribution, i.e., the speckle structure. The values at

small N indicate an overestimation of ξT,avg, which can be explained by a slight

10The mean intensity 〈I〉 remains unchanged with increasing number of averaged speckle
patterns.
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Figure 4.11: a) Transverse coherence length obtained from the Fourier analysis
method from an increased number of averaged magnetic speckle pattern. b) Offset
of I (∆ravg) obtained from the Fourier analysis method with increased number of
averaged magnetic speckle pattern.

smearing of the actual speckles due to the Poisson noise.

The offset of I (∆ravg) as a function of averaged speckle pattern is shown in Fig.

4.11 (b) and a 1/
√
N behavior is found. The offset is expected to be independent

on the speckle structure and only dependent on the underlying readout noise. The

readout noise (σ) decreases due to averaging with 1/
√
N , which is in good agreement

with the behavior found for the offset of I (∆ravg). Hence, the offset has a direct

relation to the readout noise and can thus be reduced via averaging of many low-

photon single speckle patterns or using longer exposure times for a single pattern.

The Fourier analysis method described in section 4.3.2 has been carried out

using N = 50 averaged magnetic speckle patterns. The noise analysis in this section

together with the speckle contrast analysis in the last section demonstrate that the

Fourier analysis method has been conducted under stable conditions with respect to

the noise contributions and speckle structure.

In summary, it can be said that deviations of the extracted parameters from

the Fourier analysis method only occur for a very small signal-to-noise ratio (SNR)

and can be avoided via averaging a large number of short exposure speckle patterns

exhibiting small k̄p values or by choosing longer exposure times for a single speckle

pattern.
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4.5 Young’s double pinhole experiment

In the following, a Young’s double pinhole experiment is presented. The experiment

has been performed to corroborate the results obtained from the Fourier analysis

method demonstrated in section 4.3.2. For this, a set of double pinhole apertures

has been manufactured and used to map out the complex coherence functions γ (∆x)

and γ (∆y) in horizontal and vertical direction, respectively.

4.5.1 Fabrication of double pinhole apertures

For the fabrication of opaque optic masks with a double pinhole aperture, a

Au240nm/(Pd120nm/Au240nm)4 multilayer film has been sputtered onto a Si3N4

membrane of 500 x 500 µm2 size and 100 nm thickness by means of a sputter-coater

[69]. A focused ion beam (FIB) has been used to mill double pinholes with a diameter

of 300 nm and varying pinhole separations into the multilayer [182] (see Fig. 4.12

(a)). The milling procedure has been carried out with a 20 pA Ga+ ion beam at

30 keV using a 50 µm sized aperture.

4.5.2 Spatial coherence measurements

For the determination of the spatial coherence and to compare the results with

the Fourier analysis method, the double pinhole apertures have been placed at the

exact same position as the magnetic sample. In addition, a photon energy of 778 eV

has been used for the experiment. Double pinhole fringe patterns with pinhole

separations of ∆x = 4 µm, 8 µm, 16 µm and 20 µm along the horizontal direction

and ∆y = 4 µm, 8 µm, 12 µm and 16 µm along the vertical direction have been

recorded with the CCD. A number of 20 fringe patterns have been averaged for each

separation with an exposure time of 25s per image. Figure 4.12 (b) shows the fringe

pattern of a double pinhole aperture with ∆y = 4 µm in vertical direction. The tilt

of the pattern is caused by a tilted CCD chip with respect to the vertical axis11. The

oval-shaped envelope of the double pinhole fringe pattern in Fig. 4.12 (b) results

from an oval shape of all pinholes (see Fig. 4.12 (a)). It originates from ion beam

astigmatism during fabrication and not from a different beam divergence in hori-

zontal and vertical directions. The large sample-detector distance z = 1.06 m ensures a

11The tilt of the CCD has no influence on the performance of the Fourier analysis method as
the direct FFT of the magnetic speckle pattern has revealed a symmetric I (∆r) profile.
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Figure 4.12: a) Scanning electron microscopy (SEM) image of a vertical double-
pinhole arrangement with 4 µm pinhole separation milled into a Si3N4 membrane
using focused ion beam (FIB). b) Fringe pattern of the double-pinhole arrangement
shown in a) (logarithmic scale). The white rectangle marks the area used to extract
averaged line profiles shown in c) - f). Averaged line profiles of the fringe pattern in
horizontal c), e) and vertical direction d), f) for pinhole separations of ∆x, ∆y = 4 µm
and ∆x, ∆y = 16 µm (blue dots) and the theoretical fit (see Eq. 4.11 (black line).
The inset gives enlarged regions of the fringe pattern in the center.
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sufficient sampling of the fringes (6 pixels per fringe at the largest separation

∆x = 20 µm).

The intensity distribution of a double-pinhole fringe pattern can be expressed by

[80, 81, 120]

I (q) = Id

2J1

(
a
√

(q − qoff)2 + u2

)
a
√

(q − qoff)2 + u2


2 {

1 +
∣∣∣γeff
d

∣∣∣ (cos (dq + α))
}
, (4.11)

where Id = I1 + I2 is the total intensity of the individual intensities from each pinhole

(I1,I2), J1 is the Bessel function of first order, a is the diameter of each pinhole, qoff

represents the q-shift of the envelope, u is the displacement of the extracted averaged

profiles with respect to the center of the fringe pattern, d = ∆x,∆y is the pinhole

separation, α describes the shift of the fringes with respect to the geometric center

of the fringe pattern and γeff
d is the effective complex degree of coherence value for

the separation d. The first term of Eq. 4.11 represents the Airy diffraction pattern

from a single pinhole with diameter a. The second term describes the modulation of

the fringe pattern, where its spatial extent is defined by the pinhole separation and

its amplitude by the effective complex degree of coherence. The effective complex

degree of coherence is defined by [80, 81, 120]

γeff
d =

2
√
I1I2

I1 + I2
γd, (4.12)

Equation 4.12 shows that if the two pinholes of the double-pinhole aperture are

inhomogeneously illuminated (I1 6= I2) the effective complex degree of coherence

γeff
d extracted from the fringe pattern is reduced compared to the complex degree

of coherence γd = γ(∆x), γ∆y). Inhomogeneous illumination can be caused by an

inaccurate pinhole centering with respect to the X-ray beam or a non-uniform beam

profile. It is assumed that the double pinholes are homogeneously illuminated in

the experiment and thus γeff
d = γd. For this, each double pinhole aperture has been

centered with respect to the beam. This has been done by taking line profiles in

horizontal and vertical directions using the photodiode, obtained from scans of the

apertures with respect to the beam.

For the determination of the complex degree of coherence values, averaged line

profiles have been extracted from the averaged fringe patterns for each separation in

the horizontal and vertical directions. Figure 4.12 c) - f) show the extracted averaged
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Figure 4.13: Modulus of the complex degree of coherence in horizontal γ(∆x) and
vertical γ(∆y) direction extracted from averaged line profiles at different pinhole
separations ∆x, ∆x. By using a Gaussian fit (red and black lines) the transverse
coherence length in both directions can be calculated. A transverse coherence length
of ξT,v = (16.1 ± 0.4) µm and ξT,h = (22.6 ± 0.3) µm in vertical and horizontal
direction is determined, respectively.

line profiles in horizontal and vertical directions (blue dots) for a pinhole separation

of ∆x,∆y = 4 µm and ∆x,∆y = 20 µm together with the theoretical fit (black lines)

(see Eq. 4.11). The insets show an enlarged region of the curves in the center. A slight

Gaussian-like background signal is found at the center of the fringe patterns and has

been taken into account in the fit function through an additive Gaussian function.

The background signal is caused by the fact that the beam-stop is slightly to small

to block the whole direct beam, which is indicated by the rectangular structure in

the center (projection of the membrane window).

The fringe patterns with ∆x, ∆y = 4 µm in horizontal and vertical direction

illustrate a high visibility and thus a high complex degree of coherence. For larger

separations ∆x, ∆y = 16 µm, the visibility decreases resulting in smaller values for

the complex degree of coherence. It can be clearly seen that the visibility of the

fringe pattern at ∆y = 16 µm in vertical direction is slightly smaller than the one

in horizontal direction, which gives rise to a smaller value of the complex degree of

coherence in the vertical direction.

Figure 4.13 shows the values of the modulus of the complex degree of coherence
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extracted from the fringe patterns in horizontal and vertical directions as a function

of separation d = ∆x, ∆y. The transverse coherence length for both directions is

determined by using a Gaussian fit to the data [80, 81, 120]. A transverse coherence

length of ξT,v = (16.1 ± 0.4) µm in vertical direction and ξT,h = (22.6 ± 0.3) µm

in horizontal direction is obtained. The CDC profiles and determined transverse

coherence lengths obtained from the double pinhole experiment have been compared

with the ones obtained from the Fourier analysis method in section 4.3.2 and plotted

in Fig. 4.6 and Fig. 4.7.

4.6 Conclusion and outlook

In this chapter a new method has been demonstrated to extract the two-dimensional

representation of the complex coherence function and transverse coherence length

from magnetic diffraction patterns. It has been found that ferromagnetic samples

with magnetic maze domain patterns with large domain size variation are perfect

candidates for this method, as their Patterson function is only given by an intense

peak structure in the center (a few µm width) and perfectly flat side lobes. Thus, the

Patterson function do not distort the complex coherence function and a determination

of the transverse coherence length of the illuminated X-ray beam becomes feasible.

Two experiments with different experimental geometries and beamline properties

have been performed to determine the two-dimensional complex degree of coherence

and transverse coherence lengths in all angular directions.

In the both experiments, the transverse coherence length has been extracted in

all axial directions and analyzed within the framework of the Gaussian Schell-model

and the statistically stationary model. To corroborate the results from the Fourier

analysis method (out-of-focus) a Young’s double pinhole experiment has been

performed, using a double-pinhole arrangement in horizontal and vertical direction

in the plane of the magnetic sample. It has been found from the Fourier analysis

method in the framework of the statistically stationary model that the determined

transverse coherence lengths show no asymmetry with respect to the horizontal

ξT,h = (15.6 ± 0.5) µm and vertical ξT,v = (15.3 ± 0.5) µm directions. It appears

that the transverse coherence length in the vertical direction is in a good agreement

with the one obtained from Young´s double-pinhole direction ξT,v = (16.1 ± 0.4) µm

in the same direction. However, a significant deviation in the horizontal direction

ξT,v = (22.6 ± 0.3) µm is observed.

The data set has been reanalyzed in the frame of the Gaussian Schell model, where
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additionally the beam intensity distribution is taken into account for the analysis.

Transverse coherence lengths in horizontal direction of ξT,h = (16.2± 0.5) µm and

in vertical direction of ξT,v = (24.6 ± 1.5) µm are obtained. Both values show

a perfect agreement with the findings of the Young´s double pinhole experiment.

It has been found from the analysis that if the coherent fraction of the beam is

small compared to the beam profiles, the statistically stationary model and the

Gaussian Schell-model show almost equal results and a good agreement with the

double pinhole experiment. On the contrary, if the coherent fraction of the beam is

large compared to the beam size, the intensity distribution of the beam has a strong

influence on the extraction of the complex degree of coherence and hence on the

determination of the transverse coherence length. In the latter case, a normalization

with the autocorrelation function of the beam intensity distribution is required for a

correct interpretation of the coherence properties of the X-ray radiation.

In the second experiment the same analysis has been performed as described

above. The main differences of both XRMS experiments are given by the fact that

the second experiment has been performed in the focus of the beamline and both

RMU sets have been used to focus the beam in horizontal and vertical directions,

and the fact that two different exit-slit openings have been used. Within the

statistically stationary model a transverse coherence length in horizontal direction

of ξT,h = (5.62 ± 0.2) µm and in vertical direction of ξT,v = (6.25 ± 0.2) µm is

obtained. Thus, a slight asymmetry exists with respect to the horizontal and vertical

direction. The transverse coherence lengths in horizontal ξT,h = (5.79 ± 0.2) µm and

vertical direction ξT,v = (6.53 ± 0.2) µm determined in the context of the Gaussian

Schell-model show only a slight variation compared to the results obtained within

the statistically stationary model. In this case, the transverse coherence length in

vertical direction is much smaller and in horizontal direction slightly smaller than

the beam size in the same directions. Thus, as described above, the beam intensity

distribution has only a small impact on the extraction of the complex degree of

coherence and the determination of the transverse coherence length.

It has been shown that the Fourier analysis method to extract the two-dimensional

complex degree of coherence can be used to get an easy and fast access to the

coherence properties of synchrotron radiation sources. It can be performed without

any apertures such as double pinhole structures, non-redundant or uniformly

redundant arrays of apertures. The method is in particular favorable for X-ray

resonant magnetic scattering experiments, as any diffraction patterns measured in

such experiments can be used directly to determine the spatial coherence of the

illuminated X-ray beam. In addition, the method is applicable to various other
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sample systems with high degree of structural size variations along with an emerging

speckle pattern.

In a future project the Fourier analysis method can be used for a full

characterization of soft X-ray beamlines by changing exit-slit openings, beam-defining

apertures and the wavelength. Due to the simple and fast analysis, the characteriza-

tion can be carried out in a short time compared to coherence measurement using

apertures. With this characterization an optimum beamline condition can be found

for experiments which require highly coherent X-ray radiation.

Furthermore, the Fourier analysis method can be used to determine the spatial

coherence of X-ray free-electron laser (FEL) light, especially in case of single-shot

experiments.

75



5

X-RAY RESONANT MAGNETIC

SCATTERING STUDY OF DOMAIN SIZES,

DOMAIN PATTERN GEOMETRY AND

ANISOTROPY IN Co/Pd MULTILAYERS

Co/Pd and Co/Pt multilayer films exhibit large perpendicular magnetic anisotropy

(PMA) for Co layer thicknesses in the ultrathin regime, which is attributed to a

strong surface and interface anisotropy in these systems [183–185]. These multilayers

have attracted much attention especially due to their technological relevance in high

areal density magnetic recording [24, 25] and are often used as model systems since

they have been intensively studied in the last decades [145, 186, 187].

The formation of magnetic domains in ferromagnetic thin films with PMA is a

consequence of the minimization of the total energy consisting of the magnetostatic

self-energy and domain wall energy. The magnetostatic self-energy can be reduced

through the creation of a series of oppositely magnetized domains separated by

domain walls. The energy reduction and the associated decrease of domain size are

accompanied by an increase of domain wall energy due to the growing number of

domain walls [18]. The balance between both energy contributions determines the

equilibrium domain size.

The magnetic domain structure can be arranged in diverse configurations such

as stripe, maze or bubble domain patterns [18] and it has been found that the

characteristic domain size depends strongly on domain morphology [188], film

thickness [189–191] and field history [64, 192].

The magnetic microstructure links the physical properties and intrinsic energy

contributions of the system with their macroscopic properties and can thus be

seen as an ideal object for magnetic thin film studies. To be more precise, the

investigation of the domain structure of thin ferromagnetic single- and multilayers
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with respect to characteristic domain sizes and pattern geometry gives access to, e.g.,

the magnetic anisotropy constants given the knowledge of exchange stiffness and

saturation magnetization.

X-ray based techniques allow for studying magnetic domain structures by

employing the circular dichroism at the absorption edges of selected magnetic

elements as contrast mechanism. Real-space X-ray techniques are MTXM and

STXM [49, 50, 55], while Fourier-space techniques are FTH [66–68], XHM [69, 171],

X-ray ptychography [174, 193] and XRMS [62, 63, 137, 194–196]. XRMS does not

provide a real-space image of the domain pattern, however, it is commonly used to

obtain ensemble-averaged information from the multidomain state that naturally

occurs in systems with out-of-plane easy axis of magnetization. Characteristic

average properties, such as average domain size and lateral correlation length, can be

extracted.

Ultrafast dynamic processes in magnetic materials are often studied utilizing XRMS

in pump-probe experiments due to the high photon efficiency combined with the

high photon flux available at free-electron laser sources allowing for single-shot

measurements [11, 74].

The exact interpretation of the magnetic diffraction patterns and their correlation

to the real-space domain structure is currently a matter of discussion and large

relevance [73]. Magnetic models are required for the meaningful analysis of diffraction

patterns from diverse domain structures. Models exist describing the diffraction

pattern of well-aligned stripe domain patterns based on a one-dimensional periodic

lattice [197]. Hellwig et al. [64] have presented an extended model to analyze

scattering patterns of moderately disordered domain structures by implementing

Gaussian fluctuations of the domain size. However, the interpretation of diffraction

patterns from highly disordered two-dimensional maze domain patterns, where the

domain walls are mostly curved and almost no straight sections occur, is still under

debate. The scattering pattern of a two-dimensional domain structure obtained from

micromagnetic simulation has been analyzed in [73], where a peak shift towards

smaller momentum transfer Q has been found upon domain wall broadening.

In the following chapter, an XRMS experiment performed at the P04 beamline of

the storage ring PETRA III is presented to investigate highly disordered magnetic

maze patterns utilizing a wedge-shaped multilayer sample. As model system a

wedge-grown Co/Pd multilayer film is used. The composition and fabrication

procedure is presented in section 3.3.2. The Co/Pd multilayer wedge shows a

thickness-driven spin-reorientation transition (SRT) from out-of-plane to in-plane

orientation of magnetization that appears due to an occurring sign change of the
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effective first-order anisotropy constant with increasing cobalt film thickness. In the

thickness range where the effective first order-anisotropy constant becomes small the

domain size decreases upon thickness increase and the magnetization starts canting

into the film plane. The SRT takes place via a state of canted magnetization due

to a strong positive contribution of the second-order anisotropy constant, which

suppresses the collapse of domain size during the SRT [198]. The investigation of

the nanometer-sized domain structure of the Co/Pd multilayer film in the probed

thickness range (see below) close to the spin-reorientation transition is a formidable

task as the orientation of magnetization is highly susceptible to magnetic fields

[199, 200]. Techniques that come along with local magnetic fields, like MFM, cannot

be used to study the magnetic domain size in the range of zero crossing of the

effective first-order anisotropy constant. For the investigation of the latter magnetic

system all optical methods (XRMS, FTH, XHM) and electron-based techniques

(SEMPA, X-PEEM, Lorentz microscopy) are most advantageous as magnetic fields

are circumvented and a high spatial resolution is achieved.

The following chapter is structured as follows. First, the wedge-shaped Co/Pd

multilayer sample is characterized and its thickness profile along the wedge is

determined using X-ray absorption (XAS) profiles (section 5.1). Secondly, the XRMS

experiment is presented, where radial scattering intensity profiles of the sample are

extracted as a function of Co thickness (section 5.2). Thirdly, a model to describe

highly-disordered maze domain patterns is presented that is used to interpret

the evolution of the intensity profiles along the wedge (section 5.3). The model

is based on random-generated synthetic one-dimensional domain patterns using

gamma-distributed domain sizes to reproduce the significant domain size variations

which occur in maze patterns. The modeled domain patterns are characterized

by the mean domain size, the domain wall width, and the shape parameter of the

distribution, which is shown to be characteristic for the domain pattern geometry.

At last, a crosscheck is performed to test the model by means of an analysis of the

magnetic properties of the wedge-shaped Co/Pd multilayer sample (section 5.4).

Magnetic anisotropies at different Co thicknesses are determined using the mean

domain sizes obtained from the model. Furthermore, the amplitudes of the intensity

profiles in the Co thickness range where the magnetization canting sets in are utilized

to determine the magnetic anisotropies in this regime. At the end, the results are

concluded and possible further applications of the one-dimensional domain model are

discussed (section 5.5).

For the experiments in the following chapter the experimental setup de-
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scribed in section 3.2 is used. The experiments have been performed under the

same experimental conditions and geometry as described in section 4.3.1 (XRMS

experiment (out-of-focus)). The only difference between the following experiment

and the XRMS experiment (out-of-focus) is the sample-detector distance which has

been set to zSD = 19 cm.

5.1 Sample characterization and thickness cal-

ibration using XAS and EDX

In the following the characterization of the wedge-shaped (CotÅ/Pd10Å)8 multi-

layer film is presented. The thickness of each cobalt single layer is varied from

tCo,single = 0− 10 Å (see section 3.3).

The wedge sample has been demagnetized with a strong damped oscillating out-

of-plane magnetic field (∼ 1 Tesla) prior to the measurements. The latter procedure

has been performed to transfer the magnetic domain pattern as close as possible to

its magnetic ground state, as defects in the Co films can serve as pinning centers

for domain walls. A proper demagnetization of the sample results in a maze-like

magnetic domain pattern.

X-ray transmission profiles along the wedge have been taken with left I+(x)

and right I−(x) circular polarization at a photon energy of 778 eV (Co L3 edge).

The profiles are recorded by scanning the Si3N4 membrane window containing the

sample with respect to the beam and measuring the transmitted intensity using a

photodiode (≈ 3 cm behind the sample) (see. Fig. 5.1 (a)). An additional pinhole

of 2 µm diameter directly in front of the Co/Pd sample has been used to define the

spatial resolution for this measurement. The transmission profiles are displayed in

Fig. 5.1 (a) (red and black lines). They show a stepwise change in intensity along

the wedge between x = 300 µm and x = 1000 µm indicating the occurring circular

dichroism due to changes of the local out-of-plane component of the magnetization

Mz (magnetic domains). An additional decrease of intensity on top of the stepwise

change results from the increasing total Co thickness along the wedge. An additional

transmission profile I−(y) at 778 eV has been taken perpendicular to the wedge at

x = 300 µm. It shows constant intensity (Fig. 5.1 (a); inset) and thus confirms a

constant Co thickness in this direction.

The Co thickness profile tCo,total(x) along the wedge can be determined by using
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Figure 5.1: a) X-ray transmission profiles of the wedge-shape Co/Pd multilayer
sample taken along the wedge at a photon energy of 778 eV with left I+(x) and
right I−(x) circular polarization (red and black lines) and an averaged profile of both
helicities Iavg(x) (blue line). The transmission profiles are taken by scanning the
membrane window containing the sample with respect to the beam and measuring
the transmitted intensity using the photodiode. The stepwise change of the profiles
in intensity between x = 300 µm and x = 1000 µm indicate the occurring circular
dichroism due to changes of the local out-of-plane component of the magnetization.
The inset shows the transmission profile I−(y) taken perpendicular to the wedge at
x = 300 µm (green line) which shows constant intensity and confirms a constant Co
thickness in that direction. b) EDX profile (Co L3 peak) along the wedge taken with a
primary electron energy of 3 keV (red line) scaled with respect to the known thickness
of 80 Å at the top of the Co/Pd wedge. Co thickness profile tCo,total(x) obtained
from the average of the XAS profiles µ±tCo,total(x) = − ln(I±(x)/I0) with opposite
helicities and calibrated using the EDX profile (black line). From the calibration, a
penetration length of λx = 1/µ0 = 41 nm is obtained.

the X-ray transmission profiles (I±(x)) and the Beer-lambert law under consideration

of the XMCD effect

I±(x) = I0e
−µ±tCo,total(x) (5.1)

with µ± = µ0±∆µ. Here, µ0 covers the non-magnetic and ∆µ the helicity dependent

dichroic contributions. The transmission profiles are transformed into X-ray absorp-

tion (XAS) profiles via taking the logarithm µ±tCo,total(x) = − ln(I±(x)/I0). The

thickness of Pd, Pt and Si3N4 is constant within the film system. To eliminate the

contributions from Pt, Pd, and Si3N4 the transmitted intensities I± are normalized

with the intensity I0 at tCo,total(x = 0) = 0 Å where no Co is deposited (see Fig.

5.1). The Co thickness profile is obtained by taking the average of the XAS profiles

µ0tCo,total(x) = (µ+tCo,total(x) + µ−tCo,total(x))/2 (see Fig. 5.1 (b)). The averaging
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Figure 5.2: a) Layout of the EDX experiment in a SEM. Electron trajectories are
simulated for the wedge-shaped (CotÅ/Pd1Å)8 multilayer with tCo,single = 10 Å at an
electron energy of 3 keV using Monte Carlo simulations [201, 202]. The interaction of
the primary electrons with the sample (blue) indicate the interaction volume of the
electrons. The back-scattered electrons are displayed in red. Characteristic X-rays
are emitted from the whole interaction volume and detected by an EDX detector
positioned at an angle of 35◦ with respect to the sample surface. b) Simulated EDX
intensity of the Co L3 peak as a function of the single layer Co thickness tCo,single

of the (CotÅ/Pd1Å)8 multilayer obtained from Monte Carlo simulations. A linear
behavior of the EDX intensity and Co single layer thickness for various electron
energies is found.

procedure cancels out the dichroic contributions (∆µ) so that only the resonant

absorption of Co (µ0) remains.

It can be seen from Fig. 5.1 that no plateau appears at the top of the thickness

profile which is supposed to show a constant total Co thickness. Thus, the total

wedge is not accessible in the X-ray investigation which is due to the limited size of

the Si3N4 membrane window.

For comparison and calibration purposes, line profiles are taken along the wedge

using energy-dispersive X-ray spectroscopy (EDX) in a scanning electron microscope

(SEM) (Fig. 5.1 (b), red line). A layout of the EDX experiment is shown in (Fig. 5.2

(a)). The line profiles are taken at normal incidence with an electron energy of 3 keV

at the Co L3 peak and at an angle of 35◦ between sample surface and EDX detector.

In Fig. 5.2 (a) a Monte Carlo simulation of the electron trajectories (blue) within

the (CotÅ/Pd10Å)8 multilayer, which indicate the interaction volume, is presented

for tCo,single = 10 Å. The red trajectories represent the back-scattered electrons.
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Characteristic X-rays are emitted from the whole interaction volume and detected by

the EDX detector.

Monte Carlo simulations [201, 202] have been performed on the whole multilayer

stack to check the linear dependency of the Co-EDX signal on Co thickness within the

studied thickness range of the wedge-shaped Co/Pd multilayer film. EDX intensities

of the Co L3 peak of the EDX spectrum at various single-layer Co thicknesses

(0.1− 10 Å) and electron energies (3 - 14 keV) have been simulated (see. Fig. 5.2

(b)) using a number of Ne = 2 · 105 electrons and an electron beam diameter of 5 nm.

A linear dependency of the EDX intensity of the Co L3-peak and the single layer Co

thickness within the multilayer stack is found for all simulated electron energies. The

overall decreasing EDX intensity with increasing electron energy originates from the

fact that the region within the interaction volume, where the characteristic X-rays

are emitted, is shifted to deeper regions of the film system and hence less X-rays are

emitted from the Co layers.

Scaling the EDX profile with respect to the known thickness of 80 Å at the top

of the wedge, the EDX profile can be utilized to calibrate the thickness profile (Fig.

5.1 (a); red line). It follows that a total Co thickness from tCo,total = 1 Å to 76 Å is

accessible within the membrane window. The calibration procedure is necessary only

in case of a non-existent plateau either at the onset or at the top of the wedge. From

the calibration, a penetration length (see chapter 2.2.1) of λx = 1/µ0 = 41 nm is

obtained, describing the transmitted intensity via Beer-Lambert’s law (Fig. 5.1 (b);

black line). The penetration length is of around twice the size of the value measured

in [124]. A possible explanation for the increased penetration length would be a

large spectral bandwidth and hence low resolving power of the X-ray beam caused by

the large exit-slit size of the monochromator (= 200 µm) used for the experiments

(see chapter 4.3.1). The latter results in larger values for the penetration length.

In addition, a minimal deviation (≈ 0.5 eV) of the ideal resonance (778 eV) can

also cause highly increased penetration lengths. A later measurement and analysis

of an equal sample system with a monochromator exit-slit size of 50 µm revealed

λx = 1/µ0 = 23 nm, which is close to the value measured in the literature [124]. This

supports the above given explanation for the increased penetration length.

The magnetic XMCD asymmetry Masym = (µ+
x − µ−x )/(µ+

x + µ−x ) [130, 174, 203]

of the Co/Pd multilayer film along the wedge is shown in Fig. 5.3. The magnetic

asymmetry reveals changes of the magnetization profile along the wedge with a spatial

resolution of 1 µm (The spatial resolution results from the convolution of the 2 µm

circular aperture with a step function). The first dichroic signal appears at a Co

thickness of tCo,total = 8.5 Å. Under the given experimental constraints, it can be as-
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Figure 5.3: The XMCD asymmetry along the wedge at the Co L3-edge (778 eV)
calculated from the XAS profiles with left and right circular polarization (blue line).

sumed that at this Co thickness ferromagnetism occurs. The maximum of the

asymmetry profile is Masym ≈ 0.6 (tCo,total = 11.4 Å) and it decreases gradu-

ally towards Masym ≈ 0.5 (tCo,total = 43.8 Å). The latter value for the XMCD

asymmetry has also been measured by Saravanan et al. [204] for as-grown and

annealed Pd(40Å)/Co(50Å)/Pd(40Å) trilayer films. Above a total Co thickness of

tCo,total = 46.6 Å the dichroic contrast vanishes, which is caused by the fact that

the magnetic domains become to small to be laterally resolved with the 2 µm pin-

hole. It is assumed that the observed change of the dichroic signal with decreasing

tCo,total is originating from an enhanced orbital angular momentum morb, which

is proportional to the XMCD asymmetry [130, 205]. An enhanced orbital angular

momentum has been observed in Co/Pd and Co/Pt multilayers [205–207]. Wu et al.

[205] found an enhanced orbital momentum from m0 = 0.17µB to 0.24µB comparing

a hcp Co thin-film sample of 25 nm thickness with a (Co(4Å)/Pd(10Å))11 multilayer.

Nakajima et al. [206] report on an increasing orbital moment of Co/Pt multilayers

below tCo,single = 6 Å with decreasing Co layer thickness. They assume that the

Co layer is subjected to tensile stress from the Pt layer which increases for thinner

Co layers. The latter gives rise to changes in the band structure. A systematic

analysis of the change of orbital angular momentum with decreasing Co thickness in

Co/Pt multilayers has been performed by Nakajima et al. [207]. The authors found

a significant enhancement of the orbital moment from m0 = 0.13µB to 0.17µB by
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decreasing the Co layer thickness from tCo,single = 20 Å to 5 Å. They concluded that

this effect originates from a strong Co 3d-Pt 5d interfacial hybridization which is

together with the morb enhancement highly localized at the Co/Pt interfaces.

5.2 XRMS and imaging techniques to study

domain sizes in Co/Pd multilayers

In the following, an X-ray resonant magnetic scattering and imaging experiment

performed at a photon energy of 778 eV is presented using the wedge-shaped Co/Pd

multilayer film to investigate the domain pattern evolution along the multilayer wedge.

The experiment has been performed at the P04 beamline at PERTA III (DESY). The

experimental conditions are described above and the experimental setup presented in

section 3.2 has been used for the experiment.

5.2.1 Scanning transmission X-ray microscopy

To gain an overview of the magnetic domain pattern along the wedge, the sample is

scanned in a two-dimensional plane perpendicular and parallel to the wedge using

a fixed pinhole aperture with a diameter of 2 µm (see Fig. 5.4(b)). The scanning

procedure is analogous to scanning transmission X-ray microscopy (STXM), however,

as the scanning beam is not focused but cut with an aperture, the obtainable resolution

at reasonable signal-to-noise ratio is much less. Figure 5.4(a) shows the obtained

STXM image as a function of total Co thickness tCo,total. Magnetic domains are

clearly visible in the range of tCo,total = 40− 50.3 Å. It can be seen that the domain

size decreases upon Co thickness increase, which is due to a decreasing effective

first order anisotropy constant K1,eff, as it is described in section 5.4.1. The STXM

image can be utilized to determine average domain sizes along the wedge. Average

domain sizes from D ≈ 4 µm down to 2.4 µm are found in a Co thickness range of

tCo,total = 46− 49 Å using stereologic methods [208, 209]. The latter method is based

on the analysis of randomly oriented line profiles extracted from selected areas within

the STXM image. Beyond a Co thickness of tCo,total ≈ 51 Å the magnetic contrast

vanishes, where the domains become too small to be resolved with the 2 µm pinhole

(see Fig. 5.3). The spatial resolution is ≈ 1 µm, which results from the convolution

of a 2 µm circular aperture with a step function.
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Figure 5.4: a) Scanning transmission X-ray microscopy (STXM) image taken at a
photon energy of 778 eV with one helicity, which shows the domain size evolution
with increasing Co thickness. b) Layout of the STXM and XRMS experiment. To
obtain the two-dimensional (x-y-plane) STXM image the wedge sample is scanned
along a fixed pinhole (Pinhole mask) with a pinhole diameter of 2 µm in x- and
y-direction perpendicular to the beam. For the XRMS measurements the pinhole
mask is detached and the wedge sample scanned with the total X-ray beam.

5.2.2 X-ray resonant magnetic scattering experiment

In order to study domain patterns with domain sizes in the nanometer range, an

X-ray resonant magnetic scattering experiment at a photon energy of 778 eV has

been performed. In XRMS experiments the spatial resolution is limited by the

detectable momentum transfer Q and the wavelength λ = 1.59 nm. Additionally,

signal-to-noise limitations are relevant due to the limited dynamic range of the

CCD detector and the photon statistics, as the intensity drops strongly towards

higher Q values (I ∼ 1/Q2..4; Small-angle regime [210]). The wedge-shaped Co/Pd

multilayer film displays a magnetic maze domain pattern (see Fig. 5.4) to reduce

dipolar energy. X-ray scattering on such patterns provides an isotropic donut-shaped

magnetic diffraction pattern (see section 2.2.4). Due to the isotropy of the diffraction

pattern a radial scattering intensity profile I(Q) as a function of momentum transfer

Q can be extracted using azimuthal averaging around the center of the diffraction

pattern. The position Qmax of maximum intensity of the profiles I(Qmax) in Fourier-

space is roughly correlated to the ensemble-averaged domain size. Additionally, the

width of I(Q) corresponds to the transverse positional correlation of the magnetic

domains, which is defined as the distance over which domains correlate with their

neighboring domains. For a detailed description of the scattering intensity I(Q) it is

referred to section 2.2.4.

A series of magnetic diffraction patterns has been recorded at different Co thick-
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Figure 5.5: a) X-ray scattering patterns of magnetic maze domain structures. The
rectangular structure in the center is used to mask out the superimposed projection
image of the membrane window. Red dashed-line circles indicate the maximum of
the radial scattering intensity profile for each Co thickness. b) Radial scattering
intensity profiles extracted from the diffraction patterns via azimuthal averaging
(colored symbols). A shift of the peak position Qmax (red shaded area), as well as a
decrease of scattering intensity and increase of peak width are observed. Above a
total Co thickness of tcritical = 58.5 Å the peak position is found to stay constant in
Q while the intensity continues to drop. The solid colored lines show a smoothing of
the data.

nesses using a step size of 10 µm (see Fig. 5.5). Each of the diffraction patterns is

dark-image corrected and the superimposed charge scattering signal originating from

the Si3N4 membrane window is masked out (rectangular structures in Fig. 5.5(a)).

The diffraction patterns are used to extract radial scattering intensity profiles (see Fig.

5.5(b)). Fig. 5.5(b) illustrates the evolution of the profiles at different Co thicknesses

along the wedge. It is found that for increasing Co thickness the peak positions Qmax

of the profiles I(Q) shift towards higher Q values within a total Co thickness range of

tCo,total = 50.3−58.5 Å. The peak position is commonly used to estimate the average

domain size DQmax = π/Qmax resulting in DQmax ≈ 131 − 70 nm in the probed

total Co thickness range. Additionally, a variation of the radial intensity profiles in

width (FWHM) and amplitude towards larger Q values is observed. The width varies

from ∆Q ≈ 0.0246nm−1 to 0.0481 nm−1 corresponding to spatial in-plane correlation

lengths of 2π/∆Q ≈ 255 nm to 130 nm. The latter implies that the probed maze

pattern exhibits only short-range correlations. This is similar to the scattering from a

static liquid, which is significantly different from the long-range correlations of stripe
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domains [64, 197]. Beyond tCo,total = 58.5 Å, which is named tcritical in the following,

the peak position Qmax remains at the same Q, while the intensity continues to drop

(see Fig. 5.5(b)).

In order to understand the evolution of the radial scattering intensity profiles

on Co-thickness increase and their correlation to the real-space domain structure, a

model is required that comprises the spatially disordered maze domain pattern. For

slightly disordered stripe domain patterns a model has already been developed and

published [64]. The model is based on a periodic lattice in which spatial disorder is

included by implementing Gaussian fluctuations of the domain size to explain the

finite peak width of the intensity profiles. Additionally, a linear domain wall profile

is assumed. In [64] the model is used to fit the radial scattering intensity profile of a

stripe domain pattern with an average domain size of DQmax = 90 nm and an in-plane

correlation length of 2π/∆Q = 970 nm. Thus, it is a long-range correlated system

and differs significantly from the short-range correlated maze domain structure of

the Co/Pd multilayer sample with large variation of domain sizes.

In the following, a model based on a one-dimensional domain pattern with

gamma-distributed domain sizes is presented to describe strongly disordered maze

domain patterns. The model is used to generate one-dimensional magnetic diffraction

patterns, that have very similar intensity profiles to a disordered magnetic maze

domain pattern. The former is utilized to fit the experimentally observed radial

scattering intensity profiles.

5.3 Simulation of magnetic maze domain pat-

terns

By means of micromagnetic simulations1 in principle a model for the description

of magnetic domains in maze patterns can be realized [73]. The simulation of

a sufficiently large area is required to obtain reasonable statistics for the Fourier

transformed domain pattern, i.e., for the magnetic diffraction pattern. However,

the simulation of a large sample area in combination with high spatial resolution

is often impractical due to limitations of computing time. Additionally, special

procedures are needed for the extraction of the geometric parameters, e.g., average

domain size and size distribution, from the simulated two-dimensional maze domain

1e.g., with the object oriented micromagnetic framework (OOMMF) [211] or MicroMagnum
[212].

87



5.3. Simulation of magnetic maze domain patterns

pattern. On account of the existence of an isotropic magnetic diffraction pattern (see

Fig. 5.5(a)), the two-dimensional problem can be converted into a one-dimensional

problem without causing a loss of information. The objective is to exploit the

fact that the physical properties of the domain pattern, i.e., the domain sizes and

their distribution function, are on average equal in all spatial directions. It follows,

that this case allows for a one-dimensional description, as it keeps all information

contained in the scattering profile. The latter issue can also be discussed in terms of

a mathematical description. In this context, a two-dimensional maze domain pattern

can be decomposed into a sum of stripe patterns with varying width and orientation,

where each stripe pattern corresponds in Fourier space to a fixed spatial frequency

and its complex conjugate partner. The azimuthal averaging procedure in Fourier

space projects all orientations of the stripe patterns onto one direction leading to an

averaged one-dimensional pattern. In case of an anisotropic diffraction pattern the

domain size distribution is strongly dependent on the orientation and the average

profile does not represent the two-dimensional pattern in all spatial directions. Hence,

to good approximation a two-dimensional maze domain pattern can be described

by a one-dimensional pattern if the maze structure reveals an isotropic magnetic

diffraction pattern.

A further issue in relation to the simulation of maze patterns is to find a suitable

domain size distribution. This issue is discussed in the following.

5.3.1 Analysis of the domain size distribution of mag-

netic maze domain patterns

In order to find a proper distribution function for the maze pattern, a published

domain size distribution of a maze pattern [213] has been studied. Unfortu-

nately, real-space images of the Co/Pd wedge sample in the range of investigation

(tCo,total = 50.3− 61.0 Å, see above) close to the spin-reorientation transition with

high spatial resolution utilizing, e.g., MFM cannot be taken and used for the analysis.

This is due to the fact that the domain structure is highly susceptible to magnetic

fields. X-ray holographic microscopy (XHM) images of the domain structure could

not be recorded. This is presumably caused by non-optimal optics masks at the time

of the experiment. In addition, the limited size of the probed area (≈ 1− 3 µm) is

inappropriate to extract a representative size distribution for the domain pattern. A
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Figure 5.6: Comparison of the domain size distribution of a maze pattern from
a Nd-Fe-B sample extracted from line profiles (black circles) with the probability
density function of a gamma distribution (blue circles) fitted to the data. The inset
shows a part of a Kerr image from this sample. The domain size distribution and the
Kerr image have been taken from Fig. 2 in [213]). A good agreement of both curves
is apparent. The increasing frequencies at very small domain sizes occur from wavy
domain walls specific to the system (see [213]). Only in the range between 2 and 3
times the mean domain size deviations are present.

sufficiently large area is needed to obtain appropriate statistics for the domain size

distribution. For the purpose of generality the domain size distribution of a maze

pattern presented in [213] has been utilized for the analysis. Thielsch et al. [213]

have investigated a Kerr microscopy image (100 × 100 µm2) of a Nd-Fe-B sample

using line profiles along different directions (Horizontal, vertical and diagonal lines)

and measuring the distances between domain walls. The obtained histograms of

the domain sizes reveal an equal shape of the distribution function in all measured

directions, which indicates that the domain size distribution is spatially isotropic. The

analysis (reproduced in Fig. 5.6 from Fig. 2(b) in [213]) yields a strongly asymmetric

distribution of domain sizes which is at variance with a symmetric Gaussian peak

shape. The distribution falls off faster towards small domain sizes and extends wider

towards large domains. It is found that a gamma distribution can be used to describe

this asymmetric distribution function properly. Comparing the extracted domain size

distribution with the probability density function of the gamma distribution, a good

agreement of both curves is obtained, when a mean domain size of 1.25 µm and a

shape parameter of k = 3.8 are used. Two systematic deviations of the model can be
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(a) (b) 

Figure 5.7: a) Section of a one-dimensional domain pattern with gamma-distributed
domain sizes (k = 4, µ = 100 nm) with infinitesimally sharp domain walls and b)
with a hyperbolic-tangent domain wall profile with a width of 20 nm. c) Probability
density function of the gamma distribution for different sets of shape parameter k
and scale parameter ϑ. The probability density function develops into a Gaussian for
larger values of k.

observed from the comparison. The first is a small underestimation of the frequency

for domain sizes in the range of 2 to 3 times the mean value, where the total weight

of this deviation is about 7%. The second is an increasing frequency at very small

domain sizes. This is discussed in [213] as a consequence of wavy domain walls specific

to this system. Such wavy domain walls are not observed in Co/Pd or similar Co/Pt

films [49, 66, 198]. For this example it is clear that the domain size distribution

of the two-dimensional maze pattern is fairly well described by a one-dimensional

gamma distribution. A more complicated empirical distribution function might give

a more exact agreement, but this requires an increased number of fit parameters and

might thus be less meaningful. The number of parameters to describe the gamma

distribution is two, just as for the case of a Gaussian description, so the complexity

of the model is not increased. Hence, a gamma-distributed domain size appears to

be reasonable for modeling a more realistic domain pattern in the range of the SRT.
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5.3.2 Generation of a one-dimensional domain pattern

with gamma-distributed domain sizes

In the following, a model to describe highly-disordered maze domain patterns is

presented. It is based on random-generated one-dimensional domain patterns utilizing

gamma-distributed domain sizes (see above) to reproduce the large domain size

variations present in magnetic maze patterns.

The magnetic domain pattern is modeled as follows: First, the widths of all

domains within the pattern are generated numerically by gamma-distributed random

numbers. Subsequently, a one-dimensional array of discrete consecutive magnetic

elements is generated with values of +1 or -1, indicating the local magnetization

as up or down (see Fig. 5.7 (a)). The size of the individual magnetic elements is

defined by the numerically generated domain widths. The total length of the array

is set to several millimeters in order to increase the statistics in the model and to

take into account the large number of magnetic domains within a two-dimensional

maze pattern. The sampling of the array is set to 0.1 nm which defines the spatial

resolution. The squared modulus of a subsequent fast Fourier transform (FFT) reveals

a modeled scattering intensity profile I(Q) as a function of momentum transfer Q

for the generated magnetic domain pattern (see Fig. 5.8). The obtained I(Q) is

normalized by the length of the array, so that the intensity is independent on that

length.

The probability density function (PDF) of the gamma distribution is parametrized

with a scale parameter ϑ > 0 and a shape parameter k > 0 (see Fig. 5.7 (b)) and is

given by [214]

g (x) =
xk−1exp(−x/ϑ)

ϑkΓ(k)
, x > 0, (5.2)

where Γ(k) =
∫∞

0 tk−1 exp(−k)dt is the gamma function. The parameter k influences

the shape of the distribution function and thus affects its symmetry and width. For

large shape parameter (k ≥ 12) the PDF of the gamma distribution resembles a

Gaussian with narrow peak width (see Fig. 5.7 (b)). With decreasing k, the peak

shape gets increasingly asymmetric and broad. For k ≤ 1 the PDF transforms to an

exponential function. ϑ determines the dispersion of the distribution function and

indicates how stretched or squeezed the distribution is. The mean value is µ = k · ϑ
and the variance is σ2 = k ·ϑ2. The PDF has the property that the ratio σ/µ = 1/

√
k

is a constant for a given shape parameter k. This means that for a fixed k and chang-
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Figure 5.8: a) Intensity profiles of modeled one-dimensional domain patterns with
gamma-distributed domain sizes with varying shape parameter k. The average domain
size has been set to Dgamma = 100 nm. With decreasing k the intensity profile gets
increasingly asymmetric. b) Modeled intensity profiles with varying average domain
size Dgamma. The shape parameter has been set to k = 6. The peak position of
the profiles shift towards larger Q values with decreasing Dgamma. Additionally, the
width increases together with a reduction of peak intensity, towards larger Q values.

ing µ, the standard deviation σ also changes and is thus adjusted to the mean value.

The mean value corresponds to the average domain size D of the one-dimensional

maze pattern, which is named Dgamma in the following.

Figure 5.8 illustrates the evolution of the intensity profiles obtained from generated

one-dimensional domain patterns with varying shape parameter k (Fig. 5.7 (a)) and

average domain size Dgamma (Fig. 5.7 (b)). On the one hand, it is found that the

modeled intensity profile with fixed Dgamma = 100 nm gets increasingly asymmetric

and broad with smaller k values, together with a shift of the peak position Qmax

towards smaller Q. The deviation of the peak positions with respect to the symmetric

Gaussian profile (k = 12) ranges from 0.7% for k = 10 to 17% for k = 3. Furthermore,

the amplitude drops upon decreasing k. On the other hand, the intensity profile with

fixed k = 6 shifts towards larger Q with decreasing domain size Dgamma, as expected,

due to the fact that a linear scaling in real space reflects an inverse scaling in Fourier

space. In particular, in addition to the shift, a variation in width and amplitude

toward larger Q is observed. The same behavior appears for any k parameter in

the range of k = 2 − 12. The FWHM widths of the profiles ∆Q are found to be

proportional to their peak position Qmax with ∆Q/Qmax = constant. This relation

reflects the property of the gamma PDF that σ/µ = constant for a fixed k. Besides,

the peak intensity I(Qmax) is inversely proportional to ∆Q and Qmax and the integral

of each profile remains constant with changing Dgamma. Therefore, it seems that with
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Figure 5.9: Relation between the domain size Dgamma = k ·ϑ and DQmax = π/Qmax

for different shape parameters k (colored circles). The colored lines are linear fits to
the data and reveal a linear dependency between both quantities. For k = 12 it is
found that Dgamma = DQmax. In this case, the gamma PDF resembles a Gaussian.
An increasing deviation between Dgamma and DQmax with decreasing shape parameter
and thus increasing asymmetry is observed.

decreasing Dgamma and increasing Qmax and ∆Q, the intensities are distributed over

a larger range, resulting in a decrease of I(Qmax) .

Figure 5.9 shows the relation between Dgamma and DQmax for different shape param-

eters k (colored circles). DQmax is calculated from the peak position Qmax of the

modeled intensity profiles via DQmax = π/Qmax, which is generally done in the litera-

ture (see e.g., [64, 72, 215]). Linear fits to the data reveal a linear dependency between

both quantities (colored lines). For k = 12, it is found that Dgamma = DQmax and thus

no deviation is observed. In this case, as described above, the gamma distribution

resembles a Gaussian distribution which represents a domain pattern with high spatial

order. A discrepancy of Dgamma and DQmax is observed for shape parameters k < 12

which increases with decreasing k and thus domain patterns with increasing spatial

disorder. The discrepancy amounts to ∆D = (DQmax − Dgamma)/Dgamma = 6%

for k = 5, ∆D = 12% for k = 4 and ∆D = 21% for k = 3. Hence, it is found that

for the case of highly disordered maze domain patterns, the average domain size of

the real-space domain pattern is significantly overestimated in the framework of the

generally used method.

Hellwig et al. [64] discovered a similar relation by means of an XRMS experiment.

The authors found a shift of the first-order peak of the intensity profile to lower Qmax

in the transition from a spatially aligned stripe pattern to a disordered maze pattern.
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Figure 5.10: a) Convolution kernel of the domain wall profile for domain wall widths
of WL = 20 nm and WL = 40 nm. b) Intensity profiles of generated one-dimensional
domain patterns with gamma-distributed domain sizes with varied wall widths. The
intensity profile is only slightly affected by the implementation of a finite domain wall
width into the model. With increasing wall width the peak slightly shifts towards
smaller Q. In addition, the width of I(Q) is reduced, together with a reduction of
intensity.

Miguel et al. [197] concluded that the latter implies that Qmax tends to overestimate

the real average domain size in the disordered case and supposed that the overesti-

mation is the reason for the observed deviation in average domain size derived from

MFM and XRMS measurements.

As a further refinement to the model, a hyperbolic-tangent domain wall profile

with a Bloch wall width according to the definition of Lilley [18, 216] is implemented

by convolving the +/-1 stepwise transitions, i.e., the one-dimensional domain pattern

with the corresponding kernel prior to performing the FFT [73] (see Fig. 5.10 (a)).

The kernel is obtained from the derivative of the hyperbolic-tangent domain wall

profile and is given by

fwall (x) =
π

2WL

1

(cosh (πx/WL))2 .

WL = π

√
A

K
.

(5.3)

WL is the Bloch wall width according to Lilley [216], where A is the exchange

stiffness and K is the sum of effective first K1,eff and second order K2 anisotropy

constants [217]. The convolution kernel is normalized such that the total sum of
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the kernel equals one. The reason for using a normalized kernel is to ensure that

the magnetization remains unchanged by introducing finite-width domain walls (see

Fig. 5.7 (a)). Fig. 5.10 (a) shows the convolution kernels for WL = 20 nm and

WL = 40 nm.

The impact of finite domain walls on the modeled intensity profiles can be

explained through the introduction of a domain wall factor (DWF) in Fourier space.

As the intensity profile is the squared modulus of the Fourier transform of the

one-dimensional domain pattern convolved with the kernel for the domain walls,

the convolution property of the Fourier transform can be used to separate both

contributions (|F {M ∗ fwall}|2 = |F {M}|2 |F {fwall}|2). This ends up in the product

of the squared modulus of the Fourier transform of the one-dimensional domain

pattern and the squared modulus of the Fourier transform of the convolution kernel.

The latter contribution is called domain wall factor. Figure 5.10 (b) illustrates the

evolution of the intensity profiles (fixed k = 4 and Dgamma = 100 nm and 70 nm) of

a one-dimensional domain pattern with infinitely sharp domain walls (black profile)

and Bloch walls with a width of WL = 20 nm (red profile) and WL = 40 nm (blue

profile). The red profiles for Dgamma = 100 nm and Dgamma = 70 nm correspond to

the product of the black profiles and the DWF with WL = 20 nm. The same applies

to the blue profiles and the DWF with WL = 40 nm. It is found that the DWF

shifts the peak position (black profiles) slightly towards smaller Q together with a

drop of intensity. Both effects become larger with increasing domain wall width WL.

The peak shift amounts to 0 % − 2 % in case of WL = 20 nm and to 2 % − 5 % in

case of WL = 40 nm. Furthermore, the intensity drop amounts to 4 % − 7 % and

10 % − 16 % for WL = 20 nm and WL = 40 nm, respectively. The peak shift can be

explained by the fact that the DWF reduces the scattering intensity below and above

the peak maximum Qmax in an asymmetric manner. This means that the right side

lobe of I(Q) falls off faster towards larger Q where the left side lobe remains almost

unaffected. The same behavior has been found by Pfau et al. [73] describing the

influence of domain walls on magnetic diffraction patterns. A detailed description

of their findings is given in [218]. The peak shift due to the DWF depends strongly

on the symmetry of the intensity profile. For k = 12 no peak shift is observed and

only the intensity decreases. A reduction of the integrated intensity of the intensity

profiles in Fourier space due to the DWF is directly proportional to the reduction

of the average absolute squared value of the magnetization
〈
|M/Ms|2

〉
within the

one-dimensional domain pattern in real space.

Figure 5.11 shows the relation between Dgamma and DQmax for different shape

parameters k and using a domain wall width of WL = 40 nm within the model. It
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Figure 5.11: Relation between the domain size Dgamma and DQmax for different
shape parameters k (colored circles) and using a domain wall width of WL = 40 nm.
Just as in case of infinitely sharp domain walls, Dgamma and DQmax show a linear
dependency (colored lines). For k = 12, the effect of the DWF on DQmax is negligibly
small and Dgamma = DQmax still applies. For k < 12, the DWF shifts the peak
position towards smaller Q values and thus results in larger DQmax. This leads to
slightly larger discrepancies of Dgamma and DQmax compared to the case of infinitely
sharp domain walls. In addition, the effect of the DWF on DQmax increases slightly
with decreasing average domain sizes Dgamma. This gives rise to a small shift of the
linear fit function with respect to the origin.

can be seen that the linear dependency between both quantities found for the case

of infinitely sharp domain walls still applies (colored lines). For k = 12, the shift of

Qmax due to the DWF is negligible small and the relation Dgamma = DQmax remains

unchanged. In this case, the DWF only reduces the intensity of the modeled intensity

profiles. For, k < 12 the peak position Qmax is shifted towards smaller Q due to the

DWF which results in increased DQmax values. It follows that the discrepancy between

Dgamma and DQmax is further increased. The discrepancy amounts to ∆D = 7%−8%

for k = 5, ∆D = 14%− 17% for k = 4 and ∆D = 24%− 33% for k = 3. Comparing

these values with the ones obtained in case of infinitely sharp domain walls, see

above, it is found that the discrepancy is mainly attributed to the shift of the peak

position due to the increased asymmetry for k < 12 (see Fig. 5.8 (a)) and thus

to an increased spatial disorder of the real-space domain pattern. However, the

DWF results in an additional contribution to the discrepancy which increases with

decreasing shape parameter k. In addition, it is found that the contribution of the

DWF to the discrepancy is also slightly increased with decreasing Dgamma. This is
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Figure 5.12: a) Radial scattering intensity profile extracted from the diffraction
pattern at tCo,total = 54.6 Å (open symbols) and the corresponding modeled intensity
profile (blue solid line) obtained by an absolute squared FFT of a one-dimensional
domain pattern with gamma-distributed domain sizes. A histogram of this distribution
is shown in the inset. A shape parameter of k = 4 and an average domain size of
Dgamma = 73 nm are used as input parameter. b) Relation between the domain size
Dgamma and DQmax. Values from the intensity profiles fitted to the experimental data
are given by blue filled circles. The black line illustrate the Gaussian distribution where
Dgamma = DQmax. The grey area indicate the used domain wall width WL = 45 nm.

represented by a shift of the linear fit functions with respect to the origin which

amounts to 1.4 nm for k = 5, 3.4 nm for k = 4 and 9 nm for k = 3.

5.3.3 Application of the 1D model to the experimental

data

In the following, modeled intensity profiles of one-dimensional domain patterns

with gamma-distributed domain sizes are used to fit the measured radial scattering

intensity profiles obtained from the XRMS experiment (see Fig. 5.5). As an example,

a comparison of the profile measured at tCo,total = 54.6 Å and the modeled profile

using a scale parameter of ϑ = 18.3 and a shape parameter of k = 4 is shown in

Fig. 5.12 (a). A domain wall width of WL = 45 nm is assumed, which is the average

value calculated in the span of K1,eff and K2 determined from the intensity profiles

(see section 5.4.2). In the latter range, the domain wall width changes only slightly

∆WL ≈ ±5 nm and the impact on the average domain sizes and intensity profiles is

thus in first approximation negligible. The modeled intensity profiles are scaled in
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Figure 5.13: Radial scattering intensity profiles extracted from the measured
diffraction patterns via azimuthal averaging (colored symbols). The solid lines are
modeled intensity profiles resulting from an absolute squared FFT of one-dimensional
domain patterns with gamma-distributed domain sizes.

intensity to match the measured ones. The same operation results in a good agreement

of the modeled and measured intensity profiles up to a Co thickness of tcritical. A

one-dimensional average domain size Dgamma = k · ϑ = 73 nm is obtained from

Fig. 5.12 (a), whereas the domain size calculated from the peak position results

in DQmax = 85 nm. Thus, the analysis reveals a discrepancy between Dgamma and

DQmax which amounts to ∆D = 16% in this case. The discrepancy of both values is

attributed to the shift of the peak position due to the increased asymmetry for k = 4

on the one hand (see Fig. 5.9) and the influence of the domain wall (WL = 45) on the

other hand (see Fig. 5.11). Figure 5.12 (b) shows the relation between Dgamma and

DQmax for different Co thicknesses along the wedge and reveals a linear dependency
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Figure 5.14: a) Normalized radial scattering intensity profiles in the thickness
range of tCo,total = 50.3 Å to 57.7 Å. Every second profile is plotted for clearer
representation. The black curve displays the normalized intensity profile with a shape
parameter k = 4 which is denoted as a universal curve for all profiles. b) Radial
scattering intensity profile at tCo,total = 54.6 Å normalized to the peak maximum
and position Qmax (blue open symbols). For comparison, a normalized profile at
tCo,total = 59.5 Å is plotted (red open symbols). The widths of both profiles are
different, indicating a structural change of the domain pattern at tcritical. The modeled
data indicate a change of the shape parameter of the gamma distribution from k = 4
to 3.3 (red and blue lines).

of both values. In Fig. 5.12 (b) the blue filled symbols correspond to the experimental

findings of all intensity profiles below tcritical and the blue line is a linear fit to the

data. It can be seen that the linear fit function does not pass through the origin of

the graph and is slightly shifted (5.9 nm). This is due to the fact that the shift of the

peak position Qmax slightly increases with decreasing average domain sizes caused

by the influence of the DWF, as described above (see Fig. 5.11).

The presented model reveals a good agreement of the measured and modeled inten-

sity profiles (see Fig. 5.13). In the total Co thickness range of tCo,total = 50.3 − 58.5 Å

average domain sizes of Dgamma = 115 nm to 61 nm are obtained. It is found that

the shape parameter k remains unchanged over this Co thickness range. The model

demonstrates that the observed variation of peak widths and reduction of intensity

(see Fig. 5.13 and Fig. 5.5 (b)) originates from the change of ϑ at constant k and

hence from a change in average domain size Dgamma (see Fig. 5.8). This implies that

the maze pattern is scale invariant in the above-mentioned thickness range and shows

an intrinsic symmetry, represented by the shape parameter k, independent of the

Co thickness or average domain size Dgamma. This behavior reflects the property

of the gamma PDF that it is a scaled distribution where the standard deviation is
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5.3. Simulation of magnetic maze domain patterns

scaled to the average domain size. It follows, that the probed maze patterns exhibit

the same property. The latter is also evident directly from the measurements, when

normalizing the measured radial scattering intensity profiles to the individual peak

maxima I(Qmax) and position Qmax. By means of the normalization all profiles fall

onto a universal curve (Fig. 5.14 (a)). A comparable behavior, i.e., a scale invariance,

has been observed by Malik et al. [219]. The authors find that although the domain

structure of sodium borosilicate glass evolves during phase separation, it remains

scale invariant at all times leading to a universal curve for all measured intensity

profiles.

One observation shown in Fig. 5.5 (b) and Fig. 5.13 has not been discussed so

far. It is found that beyond a total Co thickness of tCritical = 58.5 Å the shape of

the radial intensity profile remains constant in Q (Fig. 5.5 (b)). The latter involves,

according to the model, that the domain size does not change anymore. However,

the amplitude of the intensity profile continues to drop for the remaining three

intensity profiles at tCo,total = 59.5 Å, tCo,total = 60.3 Å and tCo,total = 61 Å. From

that it can be deduced that the reduction of intensity has apparently a different

origin. Due to the fact that the scattering intensity depends on the square of the

out-of-plane component of the magnetization M2
z (see Eq. 2.41), the relation of the

intensity profile above tCritical could be explained by a reduction of this component.

The latter effect can be expected within the spin-reorientation transition, where the

magnetization changes from the out-of-plane to an in-plane orientation via canting of

the magnetization direction [9, 166, 198, 220, 221]. The model reveals, in addition,

that the shape parameter changes from k = 4 to 3.3 (see Fig. 5.14 (b)) above tCritical

which indicates a modification of the domain size distribution and hints to changes of

the magnetic microstructure. As before, the radial intensity profiles in this range are

best described by an identical shape parameter k = 3.3. The findings indicate that

not only the magnetization canting sets in but also that the domain pattern changes

its characteristics. The broadening of the profile above tCritical cannot be explained

by a decrease of domain wall width or decreasing influence of the DWF. This is due

to the fact that the symmetry of the intensity profile is only slightly affected by the

DWF and would thus not result in the significant broadening shown in Fig. 5.14 (b).

In addition, a further increase and not a decrease of the domain wall width in the

canting regime with increasing tCo,total is expected [217].
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Figure 5.15: Integrated intensities of the measured and modeled intensity profiles
as a function of the average domain size Dgamma. The black circles correspond to
the intensities obtained from the experimental data. The red circles represent the
integrated intensities of modeled intensity profiles with infinitely sharp domain walls,
the blue circles with constant domain wall width of WL = 45 nm and the green circles
with varying domain wall width from WL ≈ 40 nm to 50 nm.

5.3.4 Comparison of the 1D integrated intensities of the

measured and modeled intensity profiles

Figure 5.15 displays the one-dimensional integrated intensities of the measured

and modeled intensity profiles as a function of the average domain sizes Dgamma

obtained from the above analysis. The red circles correspond to the integrated

intensity of modeled intensity profiles with infinitely sharp domain walls. In this case,

the modeled profiles do not fit to the measured profiles. However, in this case, the

integrated intensities remain constant with changing Dgamma, as mentioned before

(see section 5.3.2). The small fluctuations of the data are caused by the use of slightly

different integration ranges defined by the accessible Q-space ranges of the measured

data. They occur due to slightly different masks used to mask out the superimposed

projection image of the membrane window in the magnetic diffraction patterns (see

Fig. 5.5 (a)). The black circles represent the integrated intensities of the measured

radial scattering intensity profiles and the blue circles of their corresponding fits

from the model and constant WL = 45 nm. A slightly different relative decrease of

intensity is observed by comparing both curve shapes, where the measured data show

a stronger decrease. The stronger decrease with Dgamma or tCo,total increase cannot

be explained by an increasing absorption, which is not included in the model, since

variations in absorption in the small probed thickness range can be neglected. One
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possible explanation would be a slightly stronger intensity decrease caused by an

increasing domain wall width with decreasing Dgamma. An increasing domain wall

width results in a decreasing width of the DWF and hence leads to a slightly stronger

reduction of intensity (see Fig. 5.10). As mentioned before, the impact of the small

change of domain wall width calculated in the span of K1 and K2 determined from

the intensity profiles is in first approximation negligible, in particular with regard to

the average domain size. However, a slightly stronger influence on the intensity can

be found. The integrated intensities of modeled intensity profiles with varying domain

wall width are shown in Fig. 5.15 (green circles). A stronger reduction of intensity is

observed and the curve shape reveals a similar behavior to the experimental data. A

second explanation for the stronger reduction of intensity in the experimental data,

in particular at small Dgamma, could be the influence of magnetization canting on the

radial intensity profiles. This will be addressed in more detail in the next chapter.

The beam size has a FWHM width of 25 µm in horizontal direction and thus along the

Co wedge and scan direction. The diffraction patterns are recorded with a step size of

10 µm. Hence, it can be expected that the SRT is not found to be abrupt at a certain

Co thickness in the experimental data, but rather through a smeared out transition.

Consequently, extracted radial intensity profiles at Co thicknesses close to the SRT

can exhibit a mixed influence from a changing average domain size and diminishing

out-of-plane magnetization due to canting. The intensity profile has a quadratic

dependence on the out-of-plane component of the magnetization and thus small

changes have a non-negligible impact. The influence of mixed contributions close to

the SRT can be avoided in future experiments through the fabrication of shallower

wedges, where changes of the physical properties of the sample are distributed over a

larger spatial area.

5.4 Determination of magnetic anisotropy con-

stants

In this section, the results obtained from the one-dimensional domain model are

used to determine the magnetic anisotropy constants of the Co/Pd wedge sample at

different Co thicknesses along the wedge. The following magnetic analysis is used as

an independent consistency check of the above-described analysis of the data (section

5.3.3). For a proper understanding of the magnetic analysis a brief introduction to

micromagnetism is presented, where the focus is on Co/Pd and Co/Pt thin films

(section 5.4.1). Subsequently, the one-dimensional average domain sizes obtained
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from the above-described analysis are used to determine the first- and second-order

anisotropy constants (section 5.4.2). Then, the amplitudes of the intensity profiles

above tCritical are utilized to determine the first-order anisotropy constants in the

regime of magnetization canting (section 5.4.3). Finally, the first-order anisotropy

constants are used to determine the bulk and interface anisotropy (section 5.4.4).

5.4.1 Fundamentals of micromagnetism

Free energy density and magnetic anisotropy

Properties that characterize ferromagnetic materials are the magnetic anisotropy

constants Ki, exchange stiffness A, and saturation magnetization MS. The property

of ferromagnetic materials to possess a preferred orientation of magnetization (easy

axis) is known as magnetic anisotropy [18, 186, 222]. The energy needed to rotate

the magnetization direction from its favored easy axis to an unfavored hard axis is

defined as the magnetic anisotropy energy. If only one easy axis of magnetization

exists this is referred to as uniaxial anisotropy, as it is ,e.g., for hexagonal Co, where

the c-axis corresponds to the easy axis of magnetization [223]. The free energy density

of the system depends on the relative orientation of the magnetization direction with

respect to the outstanding axis. The free energy density of a magnetic thin film with

uniaxial anisotropy in second-order approximation is given by [222, 224]

F = K1,eff sin2 θ +K2 sin4 θ, (5.4)

where K1,eff and K2 are the effective first-order and second-order anisotropy constants.

θ is the angle between the c-axis and the magnetization direction. The effective

first-order anisotropy constant consists of three energy contributions with different

origins and is expressed by

K1,eff = K1V +
2K1S

t
− µ0

2
M2

S , (5.5)

where K1V is the volume anisotropy, K1S are the surface and interface contributions of

the anisotropy and t is the single-layer thickness. The last term in Eq. 5.5 represents

the shape anisotropy for thin films with the saturation magnetization MS. In case of

Co/Pt(111) and Co/Pd(111) thin films, K1,eff consists of the anisotropy constants

K1V , K1S , and the shape anisotropy, since all contributions are uniaxial with regard

to the stacking direction.

The volume anisotropy K1V results from the coupling of the spin to the crystal
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lattice due to the spin-orbit coupling and is thus linked to the symmetry of the lattice.

For hexagonal Co, the volume anisotropy prefers an orientation of the magnetization

along the c-axis. Volume anisotropies in the range of K1V = 0.6− 1.2 MJ/m3 can be

found for Co/Pd(111) multilayers in the literature [186, 187, 225–227]. For fcc Co,

the easy axes are along the fcc(111) directions and the corresponding cubic anisotropy

constants are one order of magnitude smaller than K1V for hcp Co owing to the

higher symmetry of the fcc lattice [222, 224].

The surface or interface anisotropy K1S is a consequence of the symmetry breaking

at surfaces and interfaces [228]. The contribution of both surfaces of a thin film is

considered by the prefactor 2 in Eq. 5.5. For Co/Pt(111) and Co/Pd(111) films,

K1S prefers an orientation of the magnetization perpendicular to the surface. For

Co/Pd(111) multilayers, values in the range of K1S = 0.16− 0.74 mJ/m2 are found

in the literature [186, 187, 225–227].

The shape anisotropy (magnetostatic self-energy) arises from magnetic poles at

the surfaces and prefers an alignment of the magnetization parallel to the surface.

Thus, it counteracts the other two anisotropy contributions. Using the saturation

magnetization at room temperature for Co, MS = 1446 kA/m [224], the shape

anisotropy amounts to µ0M
2
S/2 = 1.31 MJ/m3.

The second-order anisotropy constant K2 has in principle also a magneto crys-

talline surface and volume contribution. However, for Co/Pt films it has been found

experimentally that K2S is almost zero and that K2 is mainly determined by its

volume contribution K2V [164, 229].

As the contributions of the effective first-order anisotropy constant are competing

with each other and the interface anisotropy scales inversely with the thickness of the

Co layer, an easy axis parallel to the film normal can be obtained at small Co layer

thicknesses, where the interface contribution is the dominant part. With increasing Co

thickness the contribution of K1S decreases and the shape anisotropy dominates. The

latter results in a decreasing effective first-order anisotropy constant and eventually

gives rise to a sign change. Thus, at larger Co layer thickness the magnetization

direction favors an orientation parallel to the surface. The thickness-driven transition

from an easy axis parallel to the film normal to an easy axis parallel to the surface is

called thickness-driven spin-reorientation transition. For a detailed introduction to

micromagnetism and magnetic anisotropies it is referred to [18, 186, 222, 223].
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Figure 5.16: Phase diagram in anisotropy space (K1,eff/K2), which show different
regions of the easy axis of magnetization as a function of effective first-order and
second-order anisotropy constants. The blue shaded areas correspond to the regions
of canted and coexistence phase.

Thickness-driven spin-reorientation transition

The thickness-driven spin-reorientation transition (SRT) in magnetic thin films

describes a phase transition affected by a change of the easy axis under the variation

of film thickness [9, 221]. The SRT can take place, in general, via the state of canted

magnetization (K2 > 0) [183, 220, 230, 231] or via the coexistence phase (K2 < 0)

[221, 232]. In the canted phase, the easy axis includes an angle 0◦ < θc < 90◦ with

respect to the surface normal, while θc decreases gradually with increasing thickness.

In the coexistence phase, in-plane and out-of-plane domains coexist, while the amount

of the latter decreases with increasing thickness.

In second-order approximation a phase diagram (in K1,eff/K2 space) can be put

forward [9, 221, 233] (see Fig. 5.16) to describe the easy axis orientation depending

on the effective first-order and second-order anisotropy constants. In case of K2 > 0,

the easy axis is parallel to the film normal for K1,eff ≥ 0 and perpendicular to the film

normal for K1,eff < −2K2. The intermediate region −2K2 ≤ K1,eff < 0 represents the

canted phase. The canting angle θc in this region, i.e., the equilibrium orientation

of magnetization with respect to the film normal, can be expressed in terms of the

effective first and second-order anisotropy constants as follows [221, 234]

sin2 θc = −
K1,eff

2K2
. (5.6)

In case of K2 < 0, the easy axis is parallel to the film normal for K1,eff < −2K2 and

perpendicular to the film normal for K1,eff ≤ 0 . The intermediate region represents
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the coexistence phase. For Co/Pt(111) and Co/Pd(111) thin films, it has been found

that the SRT proceeds via a state of canted magnetization [198, 231, 234, 235].

Magnetic domains in thin films with PMA

A magnetic thin film with PMA is able to lower the magnetostatic self-energy

through the creation of magnetic domains which are separated by domain walls. The

gain in dipolar energy with decreasing domain size is counterbalanced by the excess

in domain wall energy. Thus, the minimum of the total energy of domain wall and

dipolar energy determines the equilibrium domain size. With decreasing K1,eff, i.e.,

with increasing Co layer thickness (see Eq. 5.5), the domain wall energy density

becomes smaller which allows for a more efficient reduction of the dipolar energy.

The latter gives rise to smaller domain sizes with increasing Co layer thickness.

An analytical description of the average domain size for single layer films with

PMA was first proposed by Kaplan and Gehring [188] and proven to be valid by

Millev [236]. In [188], the authors deduce an analytical approximation of the infinite

series for the magnetostatic energy of thin films [190] assuming that the domain wall

width is much smaller than the domain size. In addition, they investigate the influence

of the domain morphology on the domain size. The analytical expression for the

average domain size D as a function of domain wall energy density γw, magnetostatic

energy density Ems and single layer thickness t is given by [188, 198]

D (γw, t) = t ·B · exp

[
π

2
· γw

Ems · t

]
, (5.7)

where B is a geometry parameter representing the domain morphology. The geometry

parameter B = 0.955 for a stripe, B = 2.525 for a checkerboard [188], and B = 2.45

for a maze pattern [198, 229]. The magnetostatic energy is Ems = µ0M
2
S/2 as

described above.

For the case K1,eff ≥ 0 and K2 > 0, i.e, in the range of PMA, the domain wall

energy density for Bloch walls in second-order approximation is given by [217]

γw = 2
√
AK1,eff

{
1 +

K1,eff +K2√
K1,effK2

arcsin

[√
K2

K1,eff +K2

]}
, (5.8)

and in the canting region (−2K2 ≤ K1,eff < 0, K2 > 0) by
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γw,c(θc) =
π

2
(K1,eff + 2K2)

√
A

K2
= π

√
AK2 cos2 θc, (5.9)

where A is the exchange stiffness. The second expression in Eq. 5.9 follows from a

rearrangement of the first expression and substitution of Eq. 5.6. It gives the domain

wall energy density in the canting region as a function of the canting angle θc. The

magnetostatic energy is also reduced due to canting and is expressed by

Ems,c(θc) =
µ0

2
M2

S cos2 θc. (5.10)

Substitution of Eq. 5.9 and Eq. 5.10 into Eq. 5.7 results in an expression for the

domain size D in the canting region

Dc (K2, t) = t ·B · exp

[
π2

µ0
·
√
AK2

M2
S · t

]
. (5.11)

Equation 5.11 reveals that the domain size in the canting regime depends only on K2

and thickness t and is independent of K1,eff and θc. It demonstrates that a collapse

of domain size for K1,eff → 0, as it is demonstrated for the coexistence phase, is

prevented [229, 237]. The change of K1,eff only affects the canting angle (see Eq. 5.6).

The analytical solutions given above for single thin films are based on the

assumptions that the approximation of the infinite series for the magnetostatic energy

density is also valid for the canting phase and that the domain size is large compared

to the domain wall width. According to Lilley [216], the domain wall width in second

order approximation for K1,eff ≥ 0 and K2 > 0 is given by [217]

WL =
π
√
A√

K1,eff +K2

, (5.12)

and in the canting region (−2K2 ≤ K1,eff < 0, K2 > 0) by

WL,c =
2π
√
AK2

K1,eff + 2K2
. (5.13)

Equations 5.12 and 5.13 show that the applicability of the analytical approximation

is strongly limited by the size of K2. In the range of perpendicular magnetization and

K1,eff → 0, WL strongly increases, where the domain size D decreases exponentially

(see Eq. 5.7 and Eq. 5.8). The same applies to the canting regime where the domain
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wall width WL,c is further increased when traversing the canted phase towards the

range of in-plane magnetization. Thus, the larger the anisotropy constant K2, the

larger is the range of K1,eff and thickness t where the analytical approximation gives

reasonable results. It will be shown in the next section that for the Co/Pd wedge

sample K2 = (114± 24) kJ/m3. This value is pretty large and thus enables a large

K1,eff range where the model is applicable.

5.4.2 Determination of anisotropy constants using the

domain size of magnetic domain patterns

In the following, the domain sizes obtained from the XRMS experiment and the

model described in section 5.3.3 together with the total Co thicknesses tCo,total are

used to determine the anisotropy constants K1,eff and K2 along the Co/Pd wedge

in the range of perpendicular magnetization (K1,eff ≥ 0). For this, the analytical

expression for the domain size (Eq. 5.7) is used.

Equation 5.7 is defined for single layer films. A model for multilayer films

has been given by Stickler et al. [198]. In case of a multilayer, the magnetostatic

energy density depends on the film composition, i.e., the single layer thickness of the

ferromagnetic material, the single layer thickness of the nonmagnetic interlayer, and

the number of repetitions [238, 239]. It has been found that the magnetostatic energy

density decreases on increase of number of repetitions [229]. The magnetostatic

energy density for a fixed composition can be calculated numerically using the

expression for the magnetostatic energy density in [238, 239]. In [238] and [239]

infinitesimally sharp and freely movable domain walls are assumed, so that the state

of minimal free energy is obtained.

For the Co/Pd multilayer wedge in the Co thickness range of tCo,total = 50.3− 58.5 Å

with average domain sizes of Dgamma = 115 − 61 nm, the magnetostatic

energy density normalized by the maximum magnetostatic energy results in

ed = Ems/0.5µ0M
2
S = 0.9− 0.84.

The analytical expression for the domain size of multilayer films for K1,eff ≥ 0 is

then given by [198]

D (γw, ttotal) = ttotal ·B · exp

[
π

µ0
· γw

edM
2
S · ttotal

]
, (5.14)

where ttotal is the total thickness of the ferromagnetic material.

For the calculation of the second-order anisotropy constant K2 of the Co/Pd
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multilayer, Eq. 5.14 and the expression for the domain wall energy in Eq. 5.8 in the

limit K1,eff = 0, i.e., where the system enters the canted phase, is used. At the point

K1,eff = 0, Eq. 5.8 transforms to γw = π
√
AK2 and resembles Eq. 5.9 for θc = 0◦. In

the XRMS experiment, it is assumed that the system enters the canted phase at the

thickness where the peak position Qmax of the radial intensity profile starts to remain

constant, i.e., at tCritical = 58.5 Å with Dgamma = 61 nm. The second-order anisotropy

constant can now be calculated analytically and amounts to K2 = (114± 24) kJ/m3.

For the calculation, the exchange stiffness of Co A = 31.4 pJ/m [240], B = 2.45 [198]

and ed = 0.84 have been used.

To calculate the first-order anisotropy constant K1,eff in the range of perpendicular

magnetization (tCo,total = 50.3− 57.7 Å) it is assumed that K2 = (114± 24) kJ/m3

is constant in this small Co thickness range. Using Eq. 5.14, the domain sizes

Dgamma = 115 − 61 nm and ed = 0.9 − 0.84, domain wall energies ranging from

γw = (8.4±0.6) mJ/m2 to (6.1±0.6) mJ/m2 are calculated analytically. The obtained

domain wall energies and Eq. 5.8 can now be used to calculate the K1,eff values

numerically. The obtained first-order anisotropies vary from K1,eff = (71± 26) kJ/m3

to (3± 15) kJ/m3 over the total Co thickness range of tCo,total = 50.3− 57.7 Å. The

K1,eff values are plotted in an K1,eff · tCo,single vs. tCo,single diagram in Fig. 5.18.

5.4.3 Magnetization canting

It has been shown that the average domain size does not vary above tCritical (see

Fig. 5.17). In this case, the magnetic system can further decrease its magnetostatic

energy density on thickness increase via canting the magnetization (SRT; see above).

It is assumed in first approximation that the decrease of the magnetic scattering

amplitudes above tCritical results from the reduction of the out-of-plane component

of magnetization Mz due to canting (−2K2 ≤ K1,eff < 0). The scattering signal is

proportional to the square of the cosine of the canting angle θc

Sc

S0
=
|Mz,c|2

|Ms|2
= cos2 θc, (5.15)

where Sc is the scattering amplitude with canting and S0 with perpendicular magne-

tization. The starting point of the canting (normal component of M = Ms) is set to

tCritical. Using the integrated intensities of the corresponding radial intensity profiles

the canting angles can be calculated using Eq. 5.15. Canting angles from θc = 19.8◦

to 37.0◦ are determined. Using the canting angles, a constant K2 = (114± 24) kJ/m3
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Figure 5.17: Radial scattering intensity profiles extracted from the diffraction
patterns in the Co thickness range of tCo,total = 58.5− 61.0 Å (canting region). The
profiles have been smoothed for a better representation. It is assumed that the
decrease of the scattering amplitude is caused by a reduction of the out-of-plane
component of magnetization due to canting. The inset shows a sketch of the easy
axis of magnetization as a function of canting angle θc calculated from the scattering
amplitudes at different Co thicknesses tCo,total.

and Eq. 5.6, the first-order anisotropy K1,eff in the canting regime can be

calculated. The obtained first-order anisotropy constants are ranging from

K1,eff = (−26 ± 21) kJ/m3 to (−83± 25) kJ/m3.

5.4.4 Determination of K1V and K1S

The results of the magnetic analysis for K1,eff (see sections 5.4.2 and 5.4.3) can

be plotted in a K1,eff · tCo,single vs. tCo,single graph (see Fig. 5.18). The dependence

of K1,eff · tCo,single on thickness tCo,single should give a straight line if the driving

parameter is the thickness (Eq. 5.5; [186]). The data below tCritical fit well a line

while the K1,eff values in the canting regime (K1,eff < 0) deviate considerably from

the former line. However, as the investigated Co thickness range is extremely small

one can rule out substantial changes of the film structure and a linear dependence

should be expected. In the thickness range below tCritical the slope of the plot gives

the volume anisotropy K1V = (0.93± 0.04) MJ/m3 while the intercept gives twice

the interface anisotropy K1S = (0.14± 0.02) mJ/m2. These values are in the span of

the reported values of Co/Pd(111) (see section 5.4.1). In particular, the values are in

very good agreement with measurements of Carcia et al. [225] who found a volume
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Figure 5.18: K1,eff · tCo,single versus Co thickness of the Co/Pd multilayer. The
values K1,eff · tCo,single > 0 (blue dots) are calculated using the analytical expression
in Ref. [198] (see text), and a linear fit is shown. The values K1,eff · tCo,single < 0
are calculated using the integrated scattering amplitudes and the expression for the
canting angle (Eq. 5.6).

anisotropy of K1V = 0.94 MJ/m3 and an interface anisotropy of K1S = 0.16 mJ/m2

as well as an SRT occurring at tCo,single = 7.8 Å for Co/Pd multilayers. Their samples

have been prepared via rf sputtering of Co and Pd onto unheated glass and Kapton

substrates. They account the high value of K1V in comparison to the crystallographic

value of hcp Co ≈ 0.5 MJ/m3 for tensile strain due to the lattice mismatch between

Co and Pd (9.1%) and thus for additional magnetoelastic contributions to the volume

anisotropy. An in-depth discussion about the anisotropy constants is beyond the

scope of this thesis and requires intensive structure investigations of the Co/Pd

multilayers.

For t > tCritical, the K1,eff values determined via scattering intensities do not

match to the linear fit of the data for t < tCritical. It is assumed that a change of

microstructure represented by the change of the shape parameter k is the reason

for the deviations. Additionally, it is assumed that due to the spatial extend of

the beam profile the SRT is not found to be abrupt in the experimental data

which makes it difficult to find the onset of the canting process (see section 5.3.4).
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This has a strong influence on the determination of the magnetic anisotropies

via scattering intensities and can thus be also a reason for the deviations above tCritical.

5.5 Conclusion and Outlook

X-ray resonant magnetic scattering experiments on a wedge-shaped Co/Pd multilayer

sample have been performed to study a locally varying disordered magnetic maze

domain pattern. Radial scattering intensity profiles extracted from magnetic

diffraction patterns reveal variations of the peak position, width, and intensity. A

simple, one-dimensional model for the magnetization profile has been demonstrated

to describe the observed radial distribution of the X-ray scattering intensity. It is

found that a one-dimensional model using gamma-distributed domain sizes gives a

very good agreement with the experimental findings. In the range of perpendicular

magnetization the intensity profile of the maze pattern is best described by a fixed

shape parameter k = 4, which implies a scale-invariance of the maze domain pattern

in this range and hence an intrinsic symmetry, independent of the thickness or

domain size variation. Introducing the new shape parameter into the domain model

allows for the prediction and comparison of intrinsic symmetry properties of magnetic

domain patterns. In addition, slight changes of the symmetry caused by external

excitations, e.g., THz- or IR-radiation [73, 241, 242], can be mapped out with the

model.

One important result is a discrepancy of 16% in the presented case when

comparing the average domain size calculated from the peak value of the radial

scattering intensity profile with the fitted domain size from the model. Further

simulations have shown that the discrepancy increases with decreasing shape

parameter and hence with increasing asymmetry of the domain size distribution.

Therefore the commonly used method overestimates the average domain size of the

real space domain pattern for the case of the disordered maze domain pattern. Above

k = 12 the discrepancy vanishes and the gamma-distribution resembles a Gaussian

distribution.

For larger thicknesses t > tCritical (supposed to be the transition to the canted

phase) the shape parameter has to be changed from k = 4 to 3.3 to describe the

scattering reasonably well. The different shape parameter hints to changes of the

magnetic microstructure.

As a proof of principle, the obtained information from the scattering experiment,

112



5.5. Conclusion and Outlook

e.g., average domain size and scattering intensity, are used to determine thickness-

dependent magnetic anisotropies of the Co/Pd multilayer wedge. The magnetic

analysis proves the model to be correct in the range of perpendicular orientation

of magnetization (t < tCritical). The magnetic properties (K1V , K1S) that come

out of the analysis are in a good agreement with published results. However, for

t > tCritical, the obtained anisotropy values do not smoothly match the anisotropies

calculated below tCritical. We obtain different slopes in the K1,eff · tCo,single vs.

tCo,single graph. Such a change of slope could be a growth-related property of the

system [187, 230, 243]. However, the coincidence with the thickness where the model

is changed rather hints at a problem of the description in the canting range or at the

transition. It is assumed that the reason for the observed deviation is a change of

the magnetic microstructure above tCritical, indicated by a change of k within the

model. In addition, experimental constraints, e.g., a limited beam size, can lead to a

smeared out transition region between out-of-plane and canting in the experimental

data, which make it difficult to determine the exact onset of the canting process.

The anisotropies and canting angles are determined using the relative change of

the integrated intensities in the canting region with respect to the onset, and thus

depend strongly on its integrated intensity value. An imprecisely determined onset

can thus also be a reason for the observed deviation.

In future projects the model in combination with the magnetic analysis

can be applied to study the evolution of magnetic maze domain pattern in FEL-,

infrared- or THz-pump and FEL-probe experiments. The impact of the excitations

on the magnetic domain pattern can be analyzed with regard to geometry, domain

wall or intensity changes. The additionally obtained information can lead to a better

understanding of the response of the magnetic system and the correlation between

real-space and reciprocal-space. Due to the high sensitivity and lateral resolution

of the XRMS technique small variations of domain size can be resolved. Thus, the

model allows for the determination of magnetic anisotropies in a thickness range of

only a few Angstrom which is a big advantage in relation to laser-based methods

such as magneto-optical Kerr effect (MOKE) or Kerr-microscopy.
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L. Bocklage, V. Röbisch, E. Quandt, and H. P. Oepen, “Time-resolved scanning

electron microscopy with polarization analysis”, Appl. Phys. Lett., 108, 142401

(2016)

[40] A. Petford-Long and J. Chapman, “Lorentz Microscopy”, in H. Hopster and

H. P. Oepen (Editors), “Magnetic Microscopy of Nanostructures”, (Springer-

Verlag (2005), ISBN: 978-3-540-40186-5)

[41] C. Phatak, A. Petford-Long, and M. De Graef, “Recent advances in Lorentz

microscopy”, Curr. Opin. Solid. St. M., 20, 107 (2016)

[42] S. McVitie, D. McGrouther, S. McFadzean, D. MacLaren, K. O’Shea, and

M. Benitez, “Aberration corrected Lorentz scanning transmission electron

microscopy”, Ultramicroscopy, 152, 57 (2015)

[43] H. S. Park, J. S. Baskin, and A. H. Zewail, “4D Lorentz Electron Microscopy

Imaging: Magnetic Domain Wall Nucleation, Reversal, and Wave Velocity”,

Nano Lett., 10, 3796 (2010)

117



BIBLIOGRAPHY

[44] J. McCord and A. Hubert, “Normalized Differential Kerr Microscopy An

Advanced Method for Magnetic Imaging”, Phys. Status Solidi A, 171, 555

(1999)

[45] A. Laraoui, M. Albrecht, and J.-Y. Bigot, “Femtosecond magneto-optical Kerr

microscopy”, Opt. Lett., 32, 936 (2007)

[46] F. de Bergevin and M. Brunel, “Diffraction of X-rays by magnetic materials. I.

General formulae and measurements on ferro- and ferrimagnetic compounds”,

Acta Crystallogr. A, 37, 314 (1981)

[47] D. Attwood, Soft X-rays and Extreme Ultraviolet Radiation, (Cambridge Uni-

versity Press (1999), ISBN: 978-0-521-02997-1)

[48] P. Fischer, G. Denbeaux, T. Ono, T. Okuno, T. Eimüller, D. Goll, and G. Schütz,
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[58] M. Bolte, G. Meier, B. Krüger, R. Drews, A.and Eiselt, L. Bocklage, S. Bohlens,

T. Tyliszczak, A. Vansteenkiste, B. Van Waeyenberge, K. W. Chou, A. Puzic,

and H. Stoll, “Time-Resolved X-Ray Microscopy of Spin-Torque-Induced Mag-

netic Vortex Gyration”, Phys. Rev. Lett., 100, 176601 (2008)

[59] J. Feng and A. Scholl, “Photoemission Electron Microscopy (PEEM)”, in

“Science of Microscopy”, (Springer-Verlag (2007), ISBN: 978-0-387-25296-4)

[60] T. Kinoshita, K. Arai, K. Fukumoto, T. Ohkochi, M. Kotsugi, F. Guo, T. Muro,

T. Nakamura, H. Osawa, T. Matsushita, and T. Okuda, “Observation of

Micro-Magnetic Structures by Synchrotron Radiation Photoelectron Emission

Microscopy”, J. Phys. Soc. Jpn., 82, 021005 (2012)

[61] C. M. Schneider, A. Krasyuk, S. A. Nepijko, A. Oelsner, and G. Schönhense,

“Accessing fast magnetization dynamics by XPEEM: Status and perspectives”,

J. Magn. Magn. Mater., 304, 6 (2006)

[62] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, “X-Ray Resonance

Exchange Scattering”, Phys. Rev. Lett., 61, 1245 (1988)

[63] K. Chesnel, M. Belakhovsky, S. Landis, J. C. Toussaint, S. P. Collins, G. van der

Laan, E. Dudzik, and S. S. Dhesi, “X-ray resonant magnetic scattering study

119



BIBLIOGRAPHY

of the magnetic coupling in Co/Pt nanolines and its evolution under magnetic

field”, Phys. Rev. B, 66, 024435 (2002)

[64] O. Hellwig, G. Denbeaux, J. Kortright, and E. E. Fullerton, “X-ray studies of

aligned magnetic stripe domains in perpendicular multilayers”, Physica B, 336,

136 (2003)

[65] J. B. Kortright, “Resonant soft X-ray and extreme ultraviolet magnetic scat-

tering in nanostructured magnetic materials: Fundamentals and directions”, J.

Electron Spectrosc., 189, 178 (2013)
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[196] H. A. Dürr, E. Dudzik, S. S. Dhesi, J. B. Goedkoop, G. van der Laan, M. Be-

lakhovsky, C. Mocuta, A. Marty, and Y. Samson, “Chiral Magnetic Domain

Structures in Ultrathin FePd Films”, Science, 284, 2166 (1999)

[197] J. Miguel, J. F. Peters, O. M. Toulemonde, S. S. Dhesi, N. B. Brookes, and

J. B. Goedkoop, “X-ray resonant magnetic scattering study of magnetic stripe

domains in a-GdFe thin films”, Phys. Rev. B, 74, 094437 (2006)

[198] D. Stickler, R. Frömter, H. Stillrich, C. Menk, H. P. Oepen, C. Gutt, S. Streit-
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Grübel, and Hans Peter Oepen. ”Spatial coherence determination from the Fourier

analysis of a resonant soft X-ray magnetic speckle pattern”. Opt. Express, 24, 23162

(2016).

[P3] Christian Weier, Roman Adam, A. Kakay, D.E. Bürgler, Robert Frömter, Judith

Bach, Björn Beyersdorff, Kai Bagschik, Gerrit Winkler, Andre Kobs, Leonard Müller,

Stefan Schleitzer, Magnus Hardensson Berntsen, P. Grychtol, Hans Peter Oepen, H.

C. Kapeyn, M. M. Murnane, Claus Michael Schneider. ”Studying magnetic domains

in ferromagnetic alloys and multilayers using soft X-ray scattering”. JARA-FIT

Annual Report, 133 (2014).

138



PUBLICATIONS

Conference Contributions

[C1] Judith Bach, Robert Frömter, Björn Beyersdorff, Kai Bagschik, Christian Weier,

Roman Adam, Leonard Müller, Stefan Schleitzer, Jens Viefhaus, Gerrit Winkler,

Carsten Thönnißen, Christian Gutt, Gerhard Grübel, and Hans Peter Oepen,

High-resolved Soft X-ray Holographic Imaging at PETRA III,

Poster at 22nd International Congress on X-ray Optics and Microanalysis 2013,

Hamburg (Germany).

[C2] Kai Bagschik, Robert Frömter, Judith Bach, Björn Beyersdorff, Hans Peter

Oepen, Leonard Müller, Stefan Schleitzer, Magnus Hardensson Berntsen, Gerhard
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Grübel, Christian Weier, Roman Adam, and Claus Michael Schneider,

Soft X-ray Holographic Microscopy,

Talk at PETRA III P04 Users Meeting 2014, Hamburg (Germany)

139



PUBLICATIONS

[C6] Kai Bagschik, Robert Frömter, Judith Bach, Björn Beyersdorff, Hans Peter

Oepen, Leonard Müller, Stefan Schleitzer, Magnus Hardensson Berntsen, Gerhard
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Gerhard Grübel, Claus Michael Schneider, and Hans Peter Oepen,

Blocking the collapse of domain size durcing spin-reorientation transition of canted

Co/Pd multilayer films by second-order anisotropy,

Poster at MMM 2014, Hawai (USA).

[C8] Kai Bagschik and Stefan Schleitzer,

Ultrafast Optical Demagnetization of Nanosized Magnetic Domains Imaged via Soft

X-ray Fourier Transform Holography,

Talk at 12th international conference on X-ray microscopy 2014, Melbourne (Aus-

tralia).

[C9] Kai Bagschik, Judith Bach, Björn Beyersdorff, Carsten Thönnißen, Gerrit

Winkler, Christian Weier, Roman Adam, Leonard Müller, Stefan Schleitzer, Jens

Viefhaus, Claus Michael Schneider, Gerhard Grübel, and Hans Peter Oepen,
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Stefan Schleitzer, Gerhard Grübel, Magnus Hardensson Berntsen, Christian Weier,

Roman Adam, and Claus Michael Schneider,

X-ray holographic imaging of magnetic nanostructures and spatial coherence

determination,

Talk at PETRA III P04 Users Meeting 2016, Hamburg (Germany)

[C13] Jochen Wagner, Robert Frömter, Kai Bagschik, Stefan Freercks, Carsten

Thönnißen, Björn Beyersdorff, Leonard Müller, Stefan Schleitzer, Magnus Hardensson

Berntsen, Jens Viefhaus, Gerhard Grübel, and Hans Peter Oepen,
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