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Abstract

This thesis presents a method to estimate spatially and temporally variable un-
certainty of an areal precipitation product. The aim of the method is to merge
measurements from different sources into a combined precipitation product and to
provide an associated dynamic uncertainty estimate. Requirements for this estimate
are an accurate representation of the actual uncertainty of the product, an adjust-
ment to additional observations merged into the product through data assimilation,
and flow dependency. Such detailed uncertainty description is important in order
to assess the reliability of the precipitation product. It is especially important for
areal precipitation information as it is needed, for example, to generate precipita-
tion ensembles for probabilistic hydrological modelling, or to specify accurate error
covariance when using precipitation observation for data assimilation into numerical
weather prediction models.

The presented method uses data assimilation as a tool to merge precipitation ob-
servation. The Local Ensemble Transform Kalman Filter (LETKF) is coupled to
an ensemble nowcasting model providing information about the precipitation dis-
placement over time. A continuous nowcasting of a precipitation field and repeated
assimilation of additional observations is performed. By this means, the precipita-
tion product and its uncertainty estimate obtained from the nowcasting ensemble
evolve consistently in time and become flow-dependent. An ensemble data assimi-
lation framework is implemented and tested in order to perform a proof of concept
study of the presented method. Two scores are defined to test the performance
of the uncertainty estimation method. The evaluation of both considered scores
demonstrates that the provided areal uncertainty estimate outperforms constant
benchmark uncertainty values. It enables a more accurate spatial and temporal
distribution of uncertainty, increasing the uncertainty estimate for regions where
the precipitation product exhibits large errors, and decreasing it where the product
has smaller errors. The proof of concept study elaborated in this thesis shows good
results and establishes the groundwork for further studies and possible applications.





Zusammenfassung

Diese Arbeit stellt eine Methode zur Schätzung der räumlich und zeitlich vari-
ablen Unsicherheiten eines flächendeckenden Niederschlagsprodukts vor. Das Ziel
der Methode ist es, Beobachtungen aus verschiedenen Quellen zu einem kombinierten
Produkt zusammenzufügen und eine dazugehörige, dynamische Unsicherheitsschät-
zung zu liefern. Anforderungen an diese Schätzung sind eine präzise Darstellung
der tatsächlichen Unsicherheit des Produkts, eine Anpassung an zusätzliche, durch
Datenassimilation hinzugefügte Beobachtungen und Strömungsabhängigkeit. Solch
eine genaue Unsicherheitsschätzung ist wichtig um die Zuverlässigkeit des Nieder-
schlagsprodukts beurteilen zu können. Sie ist besonders wichtig für flächendeck-
ende Niederschlagsinformation, um zum Beispiel Niederschlagsensemble für proba-
bilistische hydrologische Modellierung zu generieren oder um präzise Fehlerkovari-
anzmatrizen für die Assimilation von Niederschlagsbeobachtungen in nummerische
Wettervorhersagemodelle bereitzustellen.

Die vorgestellte Methode verwendet Datenassimilation als ein Werkzeug um Nieder-
schlagsbeobachtungen zu kombinieren. Der Local Ensemble Transform Kalman Fil-
ter (LETKF) ist an ein Ensemble-Nowcasting-Modell gekoppelt welches Informa-
tion über die zeitliche Verlagerung des Niederschlags liefert. Ein kontinuierliches
Niederschlagsnowcasting mit wiederholter Datenassimilation zusätzlicher Beobach-
tungen wird durchgeführt. Dadurch entwickeln sich das Niederschlagsprodukt und
dessen Unsicherheitsschätzung, die aus dem Nowcasting-Ensemble abgeleitet wird,
zeitlich konsistent und werden strömungsabhängig. Um eine Machbarkeitsstudie der
dargestellten Methode durchzuführen wird ein Ensemble-Datenassimilationssystem
implementiert und getestet. Zwei Bewertungskennzahlen werden definiert um die
Güte der Methode zur Unsicherheitsschätzung zu untersuchen. Die Auswertung
beider Kennzahlen zeigt, dass die erzeugte flächendeckende Unsicherheitsschätzung
besser als konstante Richtwerte für die Unsicherheit ist. Die neue Unsicherheits-
schätzung erlaubt eine präzisere räumliche und zeitliche Verteilung der Unsicher-
heit. Die Unsicherheitsschätzung wird dort erhöht wo das Niederschlagsprodukt
große Fehler aufweist, und dort verringert wo das Produkt kleinere Fehler aufweist.
Die erarbeitete Machbarkeitsstudie zeigt gute Ergebnisse und schafft die Grundlage
für weiterführende Studien und mögliche Anwendungen.
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Introduction 1

To correctly assess the reliability of any observation, it is crucial to know the uncer-
tainty associated with it. For precipitation observations, accurate measurements as
well as a good uncertainty estimation are an ongoing topic of research. Observations
from weather radars are of particular interest because they provide valuable areal
precipitation information with a high spatial and temporal resolution, in contrast
to in situ observations. However, radar measurements are also affected by numerous
sources of errors that diminish the accuracy of the provided precipitation quantifi-
cation, e.g. calibration errors, noise, interferences, clutter, and attenuation. Despite
correction algorithms and filters applied to radar measurements, residual error re-
mains inherent to the data. Additionally, the estimation of rainfall intensity from
radar data implies a relation between measured reflectivity and rain rate which
is empirical and uncertain. Therefore, accurate precipitation quantification is not
possible with radar measurements only.

Improvement of the precipitation estimate is achieved by combining measurements
from different sources, e.g. radar and rain gauge data, to take advantage of as much
information as possible. Since no observation is error free, they must be weighted
with their respective uncertainty in order to obtain a statistically sound combined
precipitation product.

Many studies investigate the statistical combination of precipitation data. They
all rely on computing the optimal estimate of precipitation by minimising its er-
ror variance. The majority of the applied techniques focus on a static, i.e. time
independent, merging approach. Precipitation measurements are combined for ev-
ery available time step, independently. Most merging approaches use kriging or
cokriging schemes to spatially merge radar and rain gauge data (e.g. Krajewski,
1987; Creutin et al., 1988; Haberlandt, 2007; Berndt et al., 2014). Kriging meth-
ods acknowledge the fact that precipitation observations are spatially correlated by
the specification of variograms. These variograms are modelled by mathematical
functions based on theoretical considerations, and do not consider the temporal
structure of the errors. A few observation merging methods using variational data
assimilation methods can also be found. These describe the correlation between ob-
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servation errors through covariance matrices. They can easily be extended to include
further observations. Bianchi et al. (2013), for example, use a variational approach
to estimate precipitation from radar, gauge, and microwave link data.

Furthermore, some studies additionally take into account the temporal correlation
of precipitation measurements while merging radar and gauge data. The temporal
structure of the errors can be considered either by modelling spatiotemporal vari-
ograms in the kriging approach (e.g. Sideris et al., 2014; Pulkkinen et al., 2016) or
by using Kalman filtering that combines knowledge on error variances from previous
time steps for current weighting of observations (e.g. Smith and Krajewski, 1991;
Chumchean et al., 2006). The latter approach is also used by Grum et al. (2005)
with the addition of microwave link data. Even though these methods consider tem-
poral error structure in the merging process, the continuous evolution of the system
is not represented.

Very few studies include a state evolution model to take advantage of previous
knowledge of the system. The coupling of an evolution model can be done us-
ing Kalman filtering or variational data assimilation methods. In addition to the
merging of observations, the evolution component allows for the extrapolation of
information to data-void regions. Advection is commonly used as an approximation
for the evolution of the system. Zinevich et al. (2009) and Mercier et al. (2015)
present frameworks to estimate areal precipitation from microwave and television
satellite links, respectively. Fielding et al. (2014) retrieve three-dimensional cloud
properties from cloud radar and radiance observations.

The three studies presented above integrate the temporal evolution into the sta-
tistical merging of observations. The focus is on retrieving the optimal combined
estimate of the system’s state. However, they do not focus on an assessment of
the uncertainty associated with the precipitation field. Considering radar precipita-
tion data, this uncertainty estimation is extensively studied outside the context of
combined precipitation products.

Numerous studies address the quantification of precipitation measurement uncer-
tainty to overcome the deterministic view on radar precipitation measurements.
The basis for the description of areal precipitation measurement error mostly is
an empirical, statistical study of radar and reference surface measurements. Some
methods only provide static information (Krajewski and Ciach, 2006), other, more
recent approaches also allow for the description of the spatial and temporal struc-
ture of the errors through the description of the error covariance (e.g. Ciach et al.,
2007; Germann et al., 2009; Villarini and Krajewski, 2009; Dai et al., 2014). Spatial
uncertainty description allows for a probabilistic assessment of precipitation infor-
mation suitable for applications. However, the resulting error description is not
dynamical and flow-dependent.
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Precipitation information with an accurate uncertainty estimate is highly relevant
for research areas with special interest in areal precipitation information. The un-
certainty information is needed for example to generate precipitation ensembles
as input for probabilistic hydrological modelling (e.g. Krajewski and Ciach, 2006;
Germann et al., 2009; Rico-Ramirez et al., 2015; Park et al., 2016) or nowcasting
(e.g. Dai et al., 2015; Atencia and Zawadzki, 2015). Furthermore, precipitation ob-
servations are a valuable source of information for data assimilation in numerical
weather prediction (e.g. Dowell et al., 2011; Chang et al., 2014; Bick et al., 2016).
Recent studies stress the importance of correctly specifying errors in this context
(e.g. Waller et al., 2016, 2017).

The work of this thesis connects the advantages of both aspects presented above:
precipitation data merging and probabilistic assessment. It presents a method com-
bining different precipitation observations considering their respective errors and
takes advantage of the additional information provided by the evolution of the sys-
tem. At the same time, the method yields an areal uncertainty estimate for the
precipitation product. Because of the included temporal evolution, the uncertainty
estimate is variable both in space and time and contains flow-dependency. Thus, this
method aims at providing both an accurate precipitation product and an improved
areal and dynamical uncertainty estimate.

The presented method uses data assimilation as a tool to merge precipitation obser-
vation. Data assimilation techniques, like the Local Ensemble Transform Kalman
Filter (LETKF) used here, allow for statically combining information considering
respective uncertainty within a temporal evolution (forecast) model. The LETKF
additionally works in an ensemble context. The ensemble allows for providing an
uncertainty assessment through the different ensemble members, i.e. yields proba-
bilistic information. The data assimilation scheme is coupled to an ensemble now-
casting model providing information about the precipitation displacement over time.
Through the continuous nowcasting of a precipitation field and repeated assimilation
of additional observations, the precipitation product and its uncertainty estimates
obtained from the nowcasting ensemble evolve consistently in time and become
flow-dependent.

Testing the presented method required the development and implementation of an
ensemble data assimilation framework (Chapter 3). This framework is implemented
using object-oriented programming and is designed for flexibility in order to be easily
extendable to other observations, forecast models and ensemble data assimilation
schemes in the future. The ensemble nowcasting model is implemented based on a
advection nowcasting scheme from van Horne (2003). The data assimilation cycle
is initialised using high-resolution radar reflectivity data from a research network
installed in northern Germany (Chapter 2).

The added value of the presented method is demonstrated by performing a proof
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of concept study on an exemplary experiment. After confirming the functioning
of the assimilation framework, the experiment results are analysed to demonstrate
their validity for further study (Chapter 4). The uncertainty estimate provided with
the combined precipitation product is found to improve the spatial and temporal
structure of the uncertainty description compared to a benchmark (Chapter 5).
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Precipitation Monitoring
Network and Data

2

This thesis focuses on the study of a method providing an areal precipitation prod-
uct combining multiple observation sources together with an associated uncertainty
information. The presented method is demonstrated and tested using measurements
from a research network installed north-west of Hamburg near the municipality of
Itzehoe, Germany. It was set up for the PATTERN (Precipitation and Attenua-
tion Estimates from a High Resolution Weather Radar Network) project in 2012
and ran until the end of 2016. Core of the network designed to monitor precipita-
tion with high spatial and temporal resolution are four X-band weather radars
and seven profiling K-band micro rain radars (MRR, METEK Meteorologische
Messtechnik GmbH). Additionally, reference rain gauges are available for calibra-
tion. Figure 2.1 depicts the location of the X-band radars and MRRs installed in
the network domain. The X-band radar locations are named after their installation
sites: HWT (Hungriger Wolf Airport), BKM (township Bekmünde), MOD (Moor-
dorf in the township Westermoor), QNS (township Quarnstedt). MRRs situated
between LAWR sites are named WST, MST, and OST from west to east, respec-
tively. The X-band radars have a maximum range of 20 km and the centre of the
network shows a large area with multiple radar coverage. MRRs are located within
the domain of high multiple coverage to have good possibilities both for calibration
and data intercomparison. All in all, the network covers a domain of approximately
80 km× 60 km.

The following section presents the X-band radar measuring principle, sources of
errors affecting the measurements and the precipitation products used as data basis
in this thesis. MRRs, which are needed for the network calibration as well as for
X-band radar error assessment, are also introduced. The last section of the chapter
presents the statistical analysis performed to get the X-band radar measurement
error needed in the course of the study for data assimilation.
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Figure 2.1: Precipitation monitoring network map. X-band radar locations and
maximum range in black, MRR locations in orange. X-band radars and
associated MRRs are installed at BKM, HWT, MOD and QNS sites.
Three MRRs are installed between X-band radars at sites WST, MST,
and OST, from west to east respectively, together with reference rain
gauges.

2.1 Network Radar Data

Two radar types are used in the network outlined above: single polarisation X-band
weather radars (local area weather radar, LAWR) and micro rain radars (MRR).
X-band radar data constitute the basis to test the method presented in this thesis.
Network composite data is needed for the precipitation nowcasting and single radar
data is used for the generation of synthetic data for assimilation as well as for
nowcasting verification. MRR data is considered as reference for calibration and X-
band radar measurement error assessment. Although the underlying radar technique
is the same, both devices have significant differences in measuring principles and
scanning strategy. They operate at different wavelengths but are both designed
to monitor precipitation. This section describes both instruments and available
data, and shortly outlines the calibration method used within the network for data
consistency.

2.1.1 X-band Weather Radar Data

The main precipitation data used in this study comes from weather radar measure-
ments. The great advantage of weather radars is the areal precipitation information
provided with good spatial and temporal resolution. Weather radars scan the at-
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mosphere on a conical surface with defined elevation angle. Typically, radars in
large national networks provide measurements every five minutes with 1◦ azimuthal
sampling and 1 km range resolution. Newer devices can resolve precipitation with
250 m range resolution (see for example the C-band radar network of the German
Meteorological Service, DWD). The X-band radars presented here (LAWR) deliver
valuable high resolution data, with 1◦ and 60 m spatial resolution and measure-
ments available every 30 seconds. Unlike most radar devices used nowadays, they
provide reflectivity measurements without dual-polarisation and Doppler informa-
tion. LAWRs were built for research purpose in a cooperation between the meteo-
rological department of the University of Hamburg and the Max Planck Institute
for Meteorology (MPI-M).

The LAWRs are built on the basis of simple ship navigation radars originally man-
ufactured by the company GEM elettronica. The main modification is the replace-
ment of the original slot antenna with a parabolic antenna, as seen in Figure 2.2.
LAWRs operate at 9.41 GHz, i.e. within X-band frequency range, and scan the at-
mosphere with 800 pulses per seconds while rotating continuously. Pulses are then
sampled over 1◦ segments and allocated to 333 range bins of 60 m length each,
defining a total of 119 880 pixels per 30 second measurement time step. Technical
LAWR specifications are gathered in Table 2.1. Within the network, LAWRs are
installed on masts at 14 m (BKM, MOD, QNS) and 20 m (HWT) height in order
to surpass surrounding trees and buildings. Their elevation is constant and set to
2◦, resulting in a maximum height above ground of approx. 1000 m at final range.
The measurements are mapped to the ground using a 4/3 Earth radius approxima-
tion to account for beam bending due to atmospheric refraction. LAWR measuring
principle follows basic radar theory as outlined below.

Two essential quantities are needed to monitor precipitation (or any target) with
a radar: the received power to compute reflectivity and the time elapsed between
sending and receiving signal for range allocation. The transmitted power Pt (in
W) is partly backscattered by targets in the atmosphere. The power Pr(r) received
from a distance r (in m) is measured and related to the distance dependent radar
reflectivity η (in mm2m−3) according to the radar range equation (e.g. Probert-
Jones, 1962; Raghavan, 2003; Rinehart, 2010):

Pr(r) = PtG
2θ2lλ2

1024 ln(2)π2r2 η(r). (2.1)

The relation between received and transmitted power depends on device constants
like the radar wavelength λ (in m), the beam width θ (in radians), and the antenna
gain G. The antenna gain quantifies the efficiency of the antenna in focusing emitted
power into the radar beam and the sensitivity to the direction of returning signal.
The received power Pr(r) also depends on the pulse length l (in m) which is the
distance travelled by the emitted signal during the pulse width (in m). The radar
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Figure 2.2: LAWR device without radome (left) showing the parabolic antenna and
as installed at QNS site (right). It is mounted on a 11 m mast fixed on
a 3 m high container.

reflectivity η is defined as the sum of single backscattering cross sections σ (in mm2)
of all targets in a unit volume:

η =
∑
vol

σi. (2.2)

Under the assumption of spherical targets with small diameter compared to the
wavelength (commonly about 1/10) the Rayleigh approximation dictates a simple
relation between backscattering cross section and drop diameter D (in mm):

σ = π5|K|2D6

λ4 .

The dielectric factor |K|2 is a natural constant, |K|2 = 0.92 m−1 for water. There-
fore, a new reflectivity parameter proportional to η can be introduced under Rayleigh
approximation. The radar reflectivity factor Z (in mm6m−3) is defined as the sum
of drop diameters in a unit volume:

Z =
∑
vol

D6
i .

Unlike the radar reflectivity η, the radar reflectivity factor Z is independent of radar
wavelength. This is a great advantage because it enables the comparison between
reflectivity measurements from different devices. Using the Rayleigh approximation
and inserting the radar reflectivity factor into (2.1) yield another form of the radar
equation which allows for computing Z(r) from the received power signal:

Pr(r) = PrG
2θ2lπ3|K|2

1024 ln(2)λ2r2 · Z(r). (2.3)
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Table 2.1: Technical LAWR specifications.

Azimuthal sampling resolution 1◦
Range resolution 60 m
Time resolution 30 s

Maximum range along beam 20 km
Elevation 2◦

Frequency (Wavelength) 9.41 GHz (3.2 cm)
Beam width 2.8◦

Transmit power 25 kW
Pulse width 0.4 µs

Pulse repetition rate 800 Hz
Antenna diameter 850 mm

Rotation 24 revs/min

To be precise, the received power Pr(r) in the radar equation is always an averaged
value over multiple pulses. Single pulse values underlie large variance because of
the great variability of drops within precipitation and averaging guarantees stable
received power. LAWRs average pulses over the azimuthal sampling resolution as
well as over multiple rotations since the radar constantly rotates during the 30
seconds measurement interval. This results in approximately 65 pulses averaged
per issued value.

As stated above, (2.3) is only valid when the Rayleigh approximation holds. If
this is not the case, the radar reflectivity factor must be expressed by a slightly
different term: the equivalent reflectivity factor Ze, which again depends on the
radar wavelength and accounts for scattering targets that do not follow the Rayleigh
approximation. For LAWRs used in this thesis, the Rayleigh approximation is a valid
assumption and radar reflectivity factor Z will be used throughout. For simplicity,
Z will be called reflectivity from here. In addition, Z will be given in its logarithmic
form dBZ = 10 log10(Z), essentially to get a value distribution close to a Gaussian
one.

Practically, radar reflectivity obtained from (2.3) is never intrinsic reflectivity be-
cause the signal is altered along the path. There are numerous causes of errors
affecting radar measurements. Principle sources of spurious signals are listed below,
along with a short indication of data processing methods used on LAWR data for
this thesis. Refer to Lengfeld et al. (2014) for more details about data processing as
well as additional information on the LAWR network within the framework of the
PATTERN project.

Noise: Noise is an unavoidable artefact created by compounds within the radar’s
electronic. It is superimposed to measurements and especially masks weak
signal at far range. The received power Pr(r) by definition decreases with r2,
as apparent in (2.3). In contrast, noise created within the radar itself affects
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measurements at all ranges with constant intensity. Therefore, noise shows
a characteristic increase with distance in Z values, which are corrected with
regard to r2. The LAWR noise filter detects the noise level by computing
the 10th percentile of reflectivity values in fields with at least 10 % precipi-
tation free areas. The noise level is subtracted from the reflectivity data for
subsequent data analysis.

Attenuation: The radar signal loses power by travailing through any medium. In
the case of weather radars, the signal attenuating mediums to consider are air
and water. Attenuation by air (mostly oxygen and water vapour) is small at
X-band frequency range and dampens reflectivity by about 0.1 dB at the max-
imum range of 20 km (Rinehart, 2010, p. 153). It is therefore neglected. Atten-
uation by water is much higher, especially at X-band frequency. For example,
measurements at 20 km from the radar would be dampened by about 6.5 dB
by a constant precipitation field of 10 mm h−1, or roughly 40 dBZ (Doviak and
Zrnić, 2014, p. 42). Attenuation by rain at X-band frequency can be strong
enough to fully suppress precipitation signal behind strong cells. In this case
it is not possible to correct for the attenuation effect because all signal is lost.
Lower attenuation can be corrected using theoretical knowledge on the rela-
tion between precipitation intensity and attenuation. LAWR data is corrected
using a scheme based on Hitschfeld and Bordan (1954). Reflectivity values are
iterated along the beam path and increased by a theoretically computed at-
tenuation value. This approach tends to be conservative and does not fully
account for attenuation intensity.

Static clutter: The term clutter is used in radar meteorology to describe non-
meteorological echoes, usually characterised by high signal intensity. Static
clutter describes constant echoes in the data. These echoes are due to fix ob-
stacles like trees or buildings and are usually most frequent in the near field,
where the beam is low. Pixels showing reflectivity values above 7 dBZ over
95 % of the time are identified as static clutter and removed.

Dynamic clutter: Radar data is usually affected by a number of non-static, erro-
neous signals. Those signals can originate for example from birds, insects,
or signal interferences at similar wavelengths. Two detection algorithms are
used here to eliminate areas with strong inhomogeneity in adjacent pixels.
The TDBZ (Texture of the dBZ field) filter makes use of the reflectivity field
texture and computes the mean squared reflectivity differences between pixels
in a defined area. The SPIN filter counts the number of changes in the sign of
reflectivity gradients. Both filters are presented in Hubbert et al. (2009). In
addition, reflectivity measurements are tested for temporal consistency, mak-
ing use of the high temporal resolution of LAWRs. At a resolution of 30 s,
precipitation signal location is assumed to be stationary in consecutive time
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steps. If a signal is present in one time step but not in the two preceding time
steps, it is identified as clutter. All dynamic clutter is removed from the data.

Spike and ring clutter: Interferences by other X-band emitting devices (for exam-
ple from radars on ships or in the harbour along Elbe river) cause erroneous
high intensity signals in LAWR data. These signals often have the shape of
spikes in narrow azimuthal ranges or ring segments along few radial bins.
Spikes and rings belong to the dynamic clutter because they are variable in
time and space. But they often remain undetected by dynamic clutter filter
since they affect larger areas of adjacent pixels and have uniform values. Spikes
and rings are identified in the data by opposed gradients in reflectivity along
azimuth or range gates stretching over at least five bins.

Miscalibration: LAWRs need to be calibrated using reference measurements. In
the network environment available for this study, reference measurements are
provided by MRRs. They are introduced in Section 2.1.2 and the calibration
procedure for both instruments is described thereafter in Section 2.1.3.

Note that most state of the art radar post-processing algorithms used to remove
clutter are based on polarimetric or Doppler quantities. They generally perform bet-
ter than filters relying only on simple reflectivity fields, but cannot be implemented
for LAWR data due to missing polarimetric and Doppler information.

Two radar reflectivity products are available from the LAWR network: single radar
reflectivity fields and composite reflectivity fields. Single radar reflectivity is pro-
vided on polar coordinates (360 azimuth and 333 range gates) and every 30 sec-
onds for each of the four considered LAWRs, separately. The composite prod-
uct is a merged reflectivity field combining measurements from all four network
LAWRs. It is computed on a quasi Cartesian coordinate system with approximately
250 m× 250 m resolution, resulting in a field with 297× 213 pixels. The projection
used to compute the common grid is a rotated coordinate system that shifts the
Earth equator to the middle of the LAWR network in order to get nearly orthogonal
meridians and parallels. The position of the North Pole in rotated coordinates is
set to 36.0625 ◦E, 170.415 ◦S. LAWR measurements are allocated to pixels of the
regular grid and overlapping reflectivity values are averaged to get the composite
reflectivity field. In the remainder of this thesis, data is depicted in the rotated
coordinate system for simplicity, since only relative locations are of interest. Reflec-
tivity data in single and composite products is thresholded to 5 dBZ, approximately
0.07 mm h−1. This is especially important when using the X-band radar data for
data assimilation. Values referring to no-precipitation signal reach down to approx-
imately −30 dBZ in weather radar measurements. This can yield large reflectivity
difference between model forecast value and observations even though both indicate
no precipitation. To avoid this effect, a threshold below which reflectivity values are
not considered to be caused by precipitation is defined and applied. The threshold
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value used here is common and also used in e.g. Aksoy et al. (2009); Bick et al.
(2016).

Figure 2.3 demonstrates the different LAWR single data processing levels using the
X-band radar MOD. The 17th August 2013 at 04:00:00 UTC is chosen exemplary.
Figure 2.3a is the raw reflectivity field before noise and clutter removal and atten-
uation correction. The whole area captured by the radar is covered by reflectivity
signal. Values do not fall below 15 dBZ, which is due to the superimposition of
noise still present in the data. Nevertheless, precipitation structure is discernible
because the precipitation signal is above noise level. In Figure 2.3b, after noise re-
moval, overall reflectivity intensity is lower. Some areas of the field dropped below
the defined no-precipitation threshold. Pixels marked in orange have been detected
as clutter and values removed. These pixels are interpolated in the next processing
step before attenuation correction is applied. Final data is shown in Figure 2.3c.
Attenuation is highest in regions with stronger precipitation, along the axis of the
precipitating band, where an increase in reflectivity compared to Figure 2.3b is vis-
ible. Measurements of all four LAWR merged onto the regular grid is presented in
Figure 2.4, for the same time step as above. The composite product makes use of the
network advantages and provides reflectivity on an area larger than a single radar.
The precipitation structure apparent in Figure 2.3 is still present and extended by
measurements of the additional three X-band radars.

2.1.2 Micro Rain Radar Data

The micro rain radar (MRR) is a reflectivity profiler manufactured by METEK
Meteorologische Messtechnik GmbH. It retrieves drop size distribution (DSD), and
consequently reflectivity (Z) and rain rate (R), for multiple height levels. As op-
posed to other precipitation monitoring instruments like rain gauges, the MRR pro-
vides data directly at X-band radar beam height. Collocated radar measurements
reduce the discrepancy caused by measurement distance and point-to-area prob-
lems. Furthermore, the MRR yields reflectivity as well as rain rate values directly.
No conversion between rain rate and reflectivity, which is a substantial uncertainty
source when comparing rain gauge and radar data, is necessary. Therefore, MRR
data is suitable for comparison with radar data in beam height as well as rain gauge
data at the surface. This study makes use of MRR data as a connection between
gauge and radar data to calibrate the X-band radar network. In addition, MRRs
are used as a reference to compute X-band measurement errors in Section 2.2. In
total, seven MRRs are installed within the radar network depicted in Figure 2.1.
Figure 2.5 shows a MRR and its installation at QNS site as an example.

The MRR is a frequency-modulated continuous wave (FM-CW) radar with parabolic
antenna emitting at a base frequency of 24.23 GHz and with a fix vertical beam
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(a) Raw data

(b) After noise and clutter removal

(c) Interpolated and attenuation corrected

Figure 2.3: Polar data from X-band radar MOD in three different processing steps,
at 04:00:00 UTC on the 17th August 2013. (a) is the raw reflectivity
data, (b) the data after noise and clutter removal (clutter pixels in
orange) and (c) the final single radar data product, after interpolation
and attenuation correction.
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Figure 2.4: Composite LAWR reflectivity data merging reflectivity values from
BKM, HWT, MOD, and QNS radars on a regular grid with
250 m× 250 m resolution, at 04:00:00 UTC on the 17th August 2013.
Pixels outside network reach or below the no-precipitation threshold of
5 dBZ are displayed in grey.

orientation. The MRR enables to resolve spectral radar reflectivity for 64 drop di-
ameter classes using the Doppler effect in the frequency shift between transmitted
and received signal. It has a high temporal resolution of 10 seconds and a range
resolution of 35 m along 31 height levels. Further technical details are listed in Ta-
ble 2.2. Spectral data is not relevant for this thesis, which only makes use of total
reflectivity integrated over all drop diameters. But since the MRR operates at a
frequency at which Rayleigh approximation is no longer valid, spectral reflectivity
and resulting DSD are needed to calculate the radar reflectivity factor Z allowing
for comparison with LAWR data. Therefore, MRR measuring principle and spectral
quantities are shortly outlined in the following. More details are given in the user’s
manual METEK GmbH (2009).

The frequency shift ∆ftotal recorded by the MRR is a superposition of the Doppler
shift ∆fDoppler caused by moving drops and the shift ∆fheight originating from
the modulated transmitted signal. In the simple case of drops with same terminal
velocity vt (in m s−1) and same height h (in m), ∆ftotal can be expressed as:

∆ftotal = 2
λ
vt︸︷︷︸

∆fDoppler

+ B
2h
cT︸ ︷︷ ︸

∆fheight

. (2.4)

The frequency shift ∆fheight directly relates to drop height and enables height level
allocation. The bandwidth B, i.e. the amplitude, of the transmitted signal around
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Figure 2.5: MRR device from METEK showing the parabolic antenna for vertical
orientation of the beam (left) and an installation at QNS site (right).
It is mounted on a 3 m high container.

Table 2.2: Technical MRR specifications (valid for the data set used in this thesis).

Time resolution 10 s
Range resolution 35 m
Maximum height 1085 m

Number of height levels 31
Number of Doppler spectrum lines 64

Orientation vertical
Base frequency (Wavelength) 24.23 GHz (1.24 cm)

Bandwidth 1.55 MHz
Sampling rate 125 kHz
Beam width 1.5◦

Antenna diameter 600 mm

the base frequency f0 defines the range resolution of the measurements because it
sets a maximum captured target height. During one frequency sweep, the signal
starts at f0 +B/2 and decreases linearly towards f0−B/2, as shown schematically
in Figure 2.6. Due to this modulation and the resulting frequency shift between
transmitted and received signal, it is possible to obtain the distance travelled by
the signal. The frequency shift ∆fDoppler is caused by the vertical movement of drops
relative to the MRR. Drops backscatter the received signal with a frequency shift
proportional to their terminal fall velocity. Discrimination of both frequency shifts
and allocation of reflectivity to height and terminal velocity of drops is done through
Fourier analysis of the received signal. Spectral reflectivity η(n, i) (in mm2m−3),
associated to velocity level n and height level i, can be calculated from the spectral
power density obtained from the Fourier analysis using a form of the radar equation
valid for the MRR (METEK GmbH, 2009, p. 11). Spectral reflectivity η(n, i) can
be converted to η(D, i) (in mm1m−3) using empirical knowledge about the relation
between drop diameter D (in mm) and terminal velocity. Spectral DSD N(D, i) (in
mm−1m−3) can then be computed by dividing the reflectivity received in one drop
size class η(D, i) by the single particle backscattering cross section of that drop size
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emitted signal received signal

f0 B

one sweep, duration T

Figure 2.6: Schematic MRR signal modulation of bandwidth B around base fre-
quency f0. Each sweep has the duration T . Emitted signal is solid,
received signal backscattered from an immovable target at height h
is dashed. Frequency shift ∆fheight between both signals is caused by
target height.

class σ(D) (in mm2):
N(D, i) = η(D, i)

σ(D) .

N(D, i) gives the number of drops in each resolved diameter class D and height
level i. From this DSD information, rain rate R(i) and Z(i) for each height level
can be computed according to

Z(i) =
∫

D
N(D, i)D6dD,

R(i) = π

6

∫
D
N(D, i)D3vt(D, i)dD,

(2.5)

with Z(i) in mm6m−3 and R(i) in mm h−1.

In this thesis MRR data is thresholded to 5 dBZ, as introduced for LAWR data in
Section 2.1.1. Figure 2.7 shows a time series of MRR reflectivity profiles at the HWT
site. It presents the same precipitation event as in Figure 2.3 and 2.4 and shows mea-
surements between 03:00:00 UTC and 05:00:00 UTC. The two lowest height levels
are ignored because of data quality issues in the MRR near field. The advantage of
high-resolution profile data is apparent in the visible small-scale variability of pre-
cipitation, e.g. single fall streaks. The reflectivity shows an intensification around
03:40:00 UTC. Precipitation stops around 04:50:00 where reflectivity drops below
the no-precipitation threshold of 5 dBZ.

2.1.3 Radar Data Calibration

Precipitation data from LAWRs and MRRs need to be calibrated for consistency
within the network and accuracy of measurements. The calibration procedure makes
use of the measuring properties of MRRs that allow for retrieving reflectivity Z as
well as rain rate R without an empirical Z–R relationship (see (2.5)). In addition, it
exploits the fact that MRR data can be compared to rain gauge and X-band radar
data at similar height due to the profile information. The presented calibration is
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performed on network data for the period between April and October 2013, using
three-hour averages of the data.

The main steps of the network calibration are shown in Figure 2.8. Within the
research network presented in Figure 2.1, MRRs at WST, MST and OST sites are
installed in combination with reference rain gauges (G). Those MRRs are calibrated
by comparing the third height level of the MRR rain rate RMRR to the rain gauge
rain rate RG (Figure 2.8, step 1). The calibration coefficient is computed as the
mean difference of logarithmic rain rates for all available data pairs

CMRR,dB = 1
N

∑
N

(dBRMRR − dBRG),

with dBR = 10 log10(R). Rain gauge rain rates RG are previously corrected ac-
cording to Rubel and Hantel (1999) to compensate for wind-induced losses in rain
intensity. The calibration constant CMRR,dB is additive for logarithmic dBR. In order
to apply it to linear R or Z values, it has to be converted to CMRR = 100.1·CMRR,dB .
R and Z take the same calibration coefficient since both are directly proportional
to DSD, which is the actually calibrated quantity (see (2.5)). Knowing CMRR, reflec-
tivity profiles of MRRs at WST, MST, and OST can be corrected and are then used
to compare to LAWR reflectivity. This comparison is done at LAWR beam height,
using the range gate corresponding to the MRR location (Figure 2.8, step 2). MRR
height levels are averaged over the vertical extent of the LAWR beam using linear
weighting depending on distance to the LAWR beam centre, since LAWR measure-
ments are most sensitive to the signal in the centre of the beam. Up to 25 MRR
height levels are considered depending on the network site and the distance be-
tween both devices since beam width increases with range. The LAWR calibration
constant is determined as follows

CLAWR,dB = 1
N

∑
N

(dBZLAWR − dBZMRR),

CLAWR = 100.1·CLAWR,dB ,

where CLAWR,dB is the mean logarithmic reflectivity deviation considering the whole
calibration period and all reference MRRs within LAWR reach. The last network
calibration step is the calibration of remaining MRRs at BKM, HWT, MOD, and
QNS sites (Figure 2.8, step 3). These MRRs have to be calibrated using LAWR data
because no reference rain gauges are available at those sites. This calibration step is
performed in analogy with LAWR calibration described above. Further information
on this network calibration procedure and results for the time period investigated
here are presented in Lengfeld et al. (2014).
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Figure 2.7: Time series of MRR reflectivity factor profiles at HWT site be-
tween 03:00:00 UTC and 05:00:00 UTC on the 17th August 2013. No-
precipitation threshold is 5 dBZ.

X-band radar MRR and rain
gauge, reference
MRR calibration

MRR

X-band radar
calibration

MRR
calibration

1

2

3

Figure 2.8: Schematic illustration of the network calibration procedure for X-band
radar and MRR calibration. Reference MRRs are calibrated using rain
gauges (step 1), X-band radars are calibrated using calibrated reference
MRRs (step 2) and remaining MRRs are calibrated by comparison with
previously calibrated X-band radars (step 3).

2.2 Network Specific Radar Error Statistics

Network radar data is used to assess the X-band radar measurement error. This
error information, more precisely information about the random part of the error,
is crucial to be able to use the measurements for data assimilation in this study.
Radar measurements are affected by numerous sources of errors, as listed in Sec-
tion 2.1.1. Some errors, like attenuation or calibration errors, are systematic and can
be corrected using mentioned methods. Clutter and interferences appear randomly
and can only be detected with filters and removed. Nevertheless, it is not possible
to perfectly correct radar data. Especially random error, e.g. remaining noise, is
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always present in the data. MRR reflectivity data is used as reference to assess the
X-band radar measurement uncertainty specific to the network presented in Sec-
tion 2.1. MRR reflectivity data at X-band radar beam height is used for comparison
of collocated measurements. As for the calibration procedure in Section 2.1.3, MRR
data is averaged over height levels falling within the X-band radar beam width.
Additionally, MRR data, which has a temporal resolution of 10 seconds, is averaged
to match the 30 seconds time step of the X-band radar data.

X-band measurement errors are computed as the difference between X-band reflec-
tivity and MRR reflectivity, both in dBZ and for each available 30 seconds time step.
Within the network depicted in Figure 2.1, four X-band radars and seven MRRs are
available to analyse X-band measurement errors. Due to the different possible com-
binations between devices, X-band measurement errors at different distances from
the radar centre, different beam heights and different devices are taken into account.
In order to avoid using data in the X-band radar near range, which is prone to large
measurement uncertainty and hence affected by data filtering, LAWR-MRR pairs
at the same site are excluded from the analysis. Some LAWR-MRR pairs have to
be excluded because the MRR site is not within reach of the LAWR measurement.
Table 2.3 shows the 20 valid LAWR-MRR pairs. The time period analysed for the
measurement error assessment goes from 1st May to 30th September 2013. This
summer period is chosen to avoid the occurrence of snow, which falsify measure-
ments. Figure 2.9 gives an overview of daily precipitation sums during this period.
Especially May, June and September had frequent rainfall, which lead to a large
available data set. Comparison between X-band and MRR measurements is only
performed on data points where both devices recorded at least 5 dBZ. Considering
all valid LAWR-MRR combinations and all valid data pairs, the data set comprises
440 324 data points and is therefore appropriate for statistical study.

A bias between X-band radar and MRR measurements can be computed from the
data set described above. It shows that X-band radar reflectivity is in average
0.50 dB higher than MRR reflectivity. This bias is most probably due to remaining
miscalibration or noise level. In order to use X-band radar data for data assimilation,
the random part of the error must be defined. The standard deviation of the X-
band measurement errors is computed and amouts to 3.36 dB, i.e. a variance of
11.32 dB2. This variance is used in this study to specify the uncertainty of X-band
radar measurements for data assimilation.
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Figure 2.9: Daily precipitation sums obtained from the MRR at HWT site between
May and September 2013. Missing days are greyed out.

Table 2.3: Possible LAWR-MRR combinations for data comparison.

MRR
BKM HWT MOD MST OST QNS WST

LA
W

R

BKM
HWT
MOD
QNS
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Framework for Ensemble
Data Assimilation in
Precipitation Nowcasting

3

A data assimilation framework coupling a simple probabilistic radar nowcasting
scheme to precipitation measurements is needed to investigate the topic of this
thesis. Since such a framework, satisfying the requirements of the study, was not
available at the beginning of the work, the framework was built up during the
work of this thesis. It consists of an ensemble data assimilation core part to which
forecast models, e.g. nowcasting, can be coupled. The data assimilation system is
implemented in collaboration with Dr.Gernot Geppert. The framework is written
in Python and principal components are implemented using object-oriented pro-
gramming. Therefore, it is flexible and easily expandable. It is designed to allow the
coupling to various forecast models and observation types, and the implementation
of different ensemble data assimilation methods. This chapter first gives a com-
plete derivation of the Local Ensemble Transform Kalman Filter data assimilation
method chosen for the study. It then presents the used ensemble nowcasting scheme,
which is a strongly adapted version of a precipitation extrapolator described in the
work of van Horne (2003). The last part of the chapter addresses the design and
implementation of the data assimilation framework.

3.1 The Local Ensemble Transform Kalman Filter for Data Assimilation

Data assimilation is used in this thesis as a tool to statistically merge precipitation
data from different sources. Data assimilation aims at combining different sources
of information about an observed system, weighted by their respective uncertainty,
in order to get the best possible estimate of the system’s true state. The main
application of data assimilation in atmospheric sciences is in numerical weather
prediction, where data assimilation is used to estimate the initial state for a forecast.
This initial state is approximated in the best possible way by combining the last
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available forecast of the atmospheric state with a large amount of observational
data. In the case of this thesis, the system to be described is areal precipitation,
the forecast model used to predict areal precipitation is the ensemble nowcasting
scheme introduced in Section 3.2, and the observations are radar measurements
presented in Section 2.1.

There are a number of different data assimilation schemes, grouped into three main
categories: variational methods, Kalman filters, and particles filters. An overview
of these methods can be found in, e.g. following works: Lorenc (1986) for varia-
tional methods, Kalnay et al. (2007) for variational methods and Kalman filters,
Arulampalam et al. (2002) and Vetra-Carvalho et al. (2017) for Kalman filters and
particle filters, and Tippett et al. (2003) and Houtekamer and Zhang (2016) for
Kalman filters. As mentioned above, the forecast model used in this thesis provides
an ensemble forecast and therefore requires an ensemble data assimilation scheme.
The data assimilation method used in this thesis is the Local Ensemble Transform
Kalman Filter (LETKF), first introduced by Hunt et al. (2007). It allows to work
with an ensemble of moderate size through a localisation approach. This section
provides a self-contained derivation of the LETKF, building on the introduction of
the Kalman Filter (KF) equations as a solution to a linear least-squares estimation
problem. Since the KF is not suitable for application in non-linear systems the en-
semble component is introduced, leading to the Ensemble Kalman Filter (EnKF)
and specifically to the Ensemble Transform Kalman Filter (ETKF). Finally, domain
localisation is included, yielding the LETKF. Used equations in their final form can
be found in (3.17).

3.1.1 The Kalman Filter

The Kalman Filter (KF, Kalman (1960); Kalman and Bucy (1961)) is used to find
the best estimate of the true state xt of a system based on all available information
z. The best, or optimal estimate is called the analysis xa. Talagrand (1997) provides
a derivation of the expression for xa using the Best Linear Unbiased Estimator
(BLUE), which is presented in the following.

First, we define xt and xa as one-dimensional column vectors containing the whole
model state. This means all model variables at every model location are reshaped
and appended to one another. By analogy, z gathers all available information into
a one-dimensional column vector, defined as

z = Γxt + ξ, (3.1)

where Γ is a matrix relating true state space to information space and ξ is the infor-
mation error. The information error ξ is assumed to be unbiased, i.e. the expected
value of ξ is E

[
ξ
]

= 0, and has covariance Σ. By definition, the analysis xa is found
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as a linear combination of all information in z, which can be written as

xa = Ωz. (3.2)

The matrix Ω represents the weights attributed to the different information con-
tained in z and maps the dimension of z to the dimension of xa. The information
weighting is dependent on its statistical certainty, described by the error covariance
Σ. The weights Ω must be determined in order to obtain the optimal estimate xa.
To be able to do so, xa is required to be statistically unbiased with regard to the
true state xt, i.e. E

[
xa] != xt. From this we can derive the following constraint

0 = E
[
xa]− xt = E

[
ΩΓxt + Ωξ

]
− xt

= ΩΓxt + ΩE
[
ξ
]︸ ︷︷ ︸

=0

−xt

=
[
ΩΓ− I

]
· xt

⇒ ΩΓ = I,

(3.3)

where I is the identity matrix. The BLUE defines the optimal estimate of the true
state as the estimate with minimum error covariance. It therefore needs an analytic
expression for the error covariance of xa, such that the covariance can be minimised
in a next step. The error covariance matrix P a of the analysis xa is given by

P a = E
[
(xa − xt)(xa − xt)T ]

= cov
(
xa − xt)

= cov
(
Ωz − xt)

= cov
(
ΩΓxt + Ωξ − xt)

= cov
([

ΩΓ− I
]
xt)+ cov

(
Ωξ
)

= cov
(
Ωξ
)
.

Using cov
(
Ax

)
= Acov

(
x
)
AT and the constraint developed in (3.3), the analysis

error covariance P a can be written as

P a = ΩΣΩT , (3.4)

where Σ denotes cov
(
ξ
)
. Now, minimising the variance of the analysis error is

equivalent to minimising the trace tr
(
P a) of P a, since the trace is defined as the sum

of elements on the main diagonal of a matrix. The method of Lagrange multipliers
is used to find local extremes of tr

(
P a), subject to the constraint in (3.3). For (3.4),

the Lagrange function results in

L(Ω,Λ) = tr
(
ΩΣΩT )− tr

(
ΛT [ΩΓ− I

])
,

where Λ is the matrix containing the Lagrange multipliers. The constraint that
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must be fulfilled by the minimisation result is apparent in the right part of the
Lagrange function. Now, the Lagrange function is minimised by finding an Ω that
solves ∇ΩL(Ω,Λ) = 0. Using the identities

∂

∂X
tr
(
XBXT ) = BTXT +BXT ,

∂

∂X
tr
(
AXB

)
= BA,

the gradient of the Lagrange function becomes

∇ΩL(Ω,Λ) = ∂

∂Ω
tr
(
ΩΣΩT −ΛT [ΩΓ− I

])
= ΣT ΩT + ΣΩT − ΓΛT != 0.

All terms in this equation are now transposed, which is possible because the entire
equation sums up to zero. From this, one can deduce an expression for the weighting
function Ω that minimises the variance of the analysis xa:

∇ΩL(Ω,Λ) = ΩΣ + ΩΣT −ΛΓT

= 2ΩΣ−ΛΓT != 0

⇒ Ω = 1
2ΛΓT Σ−1.

(3.5)

Using (3.3), one can rearrange (3.5) to

I = 1
2ΛΓT Σ−1Γ,

Λ = 2
[
ΓT Σ−1Γ

]−1
,

⇒ Ω =
[
ΓT Σ−1Γ

]−1
ΓT Σ−1.

Combining the latter with (3.2) finally yields the analytic solution for the analysis
xa given by

xa =
[
ΓT Σ−1Γ

]−1
ΓT Σ−1z.

The optimal estimate of the true state xt is obtained by linearly weighting infor-
mation z, and weights only depends on the uncertainty of information, given by Σ,
and the operator Γ mapping true state to information space. Further, an expression
for the analysis error covariance P a stating the accuracy of the estimate xa can
also be derived. In a first step, an expression for xa − xt is found:

xa − xt =
[
ΓT Σ−1Γ

]−1
ΓT Σ−1z − xt

=
[
ΓT Σ−1Γ

]−1
ΓT Σ−1[Γxt + ξ

]
− xt

=
[
ΓT Σ−1Γ

]−1
ΓT Σ−1Γ︸ ︷︷ ︸

=1

xt +
[
ΓT Σ−1Γ

]−1
ΓT Σ−1ξ − xt

=
[
ΓT Σ−1Γ

]−1
ΓT Σ−1ξ.
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The analysis error covariance is then computed according to its definition:

P a = E
[
(xa − xt)(xa − xt)T ]

= E
[([

ΓT Σ−1Γ
]−1

ΓT Σ−1ξ
)([

ΓT Σ−1Γ
]−1

ΓT Σ−1ξ
)T
]

=
[
ΓT Σ−1Γ

]−1
ΓT Σ−1 E

[
ξξT ]︸ ︷︷ ︸
Σ

Σ−1Γ
[
ΓT Σ−1Γ

]−1

︸ ︷︷ ︸
=1

=
[
ΓT Σ−1Γ

]−1
.

The above derivation yields the KF equations for the analysis xa and its error
covariance P a in a very general form. They are bundled again here:

xa = P aΓT Σ−1z , P a =
[
ΓT Σ−1Γ

]−1
. (3.6)

It is important to note that the optimal estimate xa of the true state computed by
the BLUE only corresponds to the most probable state when the information error
ξ follows a Gaussian distribution.

In order to obtain the KF equations common to atmospheric data assimilation,
information contained in z has to be specified. Information z about the true state
of the system can be divided into two categories. First, there is the last available
model forecast (e.g. from numerical weather prediction) called background or prior
estimate xb. Second, there is additional information gathered from multiple obser-
vations yo. Therefore, z can be rewritten in a more specific way:

z =
(
xbT ,yoT

)T

. (3.7)

Model state vectors xt, xa, and xb have dimension n, the observation set yo has di-
mension p. Generally, p is much smaller than n because the number of atmospheric
observations is small compared to the amount of variables and grid points consid-
ered in numerical weather prediction nowadays. Total dimension of z sums up to
m = n+ p. Analogous to (3.1), background and observations can be expressed by

xb = xt + ξb and yo = Hxt + ε.

The p× n matrix H is called observation operator and maps model space to ob-
servation space. The mapped model state Hxt is therefore called the observation
equivalent. Model states xt and xb are in the same space, therefore no transforma-
tion in needed. Thus, the operator Γ linking model space to information space has
dimension m× n and can be decomposed according to (3.7):

Γ =
(
In,H

T
)T

. (3.8)
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The observation operator H is assumed to be linear in this derivation. Following
the concept above, the m ×m information error covariance matrix is divided into
four sub-matrices:

Σ = E
[
ξξT ] =

[
E
[
ξbξbT ] E

[
ξbεT ]

E
[
εξbT ] E

[
εεT ]

]
.

It is legitimate to assume ξb and ε to be statistically uncorrelated because observa-
tions and background model state originate from different, unrelated sources. From
this and introducing new notations for background and observation error covari-
ances separately, Σ simplifies to

Σ =
[
P b 0
0 R

]
, (3.9)

where P b is the n× n background error covariance and R the p× p observation
error covariance.

The distinction between observations and background state as two different types
of information gathered about the true state xt allows for deriving a more compre-
hensive form of KF equations presented in (3.6). Inserting (3.7), (3.8) and (3.9) into
the analysis expression from (3.6) yields an explicit solution for xa as a function of
background state vector xb and observations yo. The main steps of the derivation
are presented below, showing one intermediate step to demonstrate the computation
principle:

xa =
[
ΓT Σ−1Γ

]−1︸ ︷︷ ︸
Pa

ΓT Σ−1z

=
[(
In,H

T
)[

Pb 0
0 R

]−1(
In,H

T
)T
]−1(

In,H
T
)[

Pb 0
0 R

]−1(
xbT ,yoT

)T

intermediate step reforming
(
In,H

T
)[

Pb 0
0 R

]−1
:

(
In,H

T
)[

Pb 0
0 R

]−1
=̂ Inn

n

HT

p

·

n

p

n

p

(Pb)−1

R−1

0

0
0

0

= In(Pb)−1n

n

HT R−1

p

=
(
In(P b)−1,HTR−1

)
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xa =
[(
In(P b)−1,HTR−1

)(
In,H

T
)T
]−1(

In(P b)−1,HTR−1
)(
xbT ,yoT

)T

=
[
In(P b)−1In +HTR−1H

]−1(
In(P b)−1,HTR−1

)(
xbT ,yoT

)T

=
[
(P b)−1 +HTR−1H

]−1︸ ︷︷ ︸
Pa

[
(P b)−1xb +HTR−1yo

]
.

(3.10)

The first part in the last line of (3.10) is equal to P a. This expression is further
transformed by multiplication with

[
In +HTR−1HP b −HTR−1HP b] = In and

rearranging terms:

P a =
[
(P b)−1 +HTR−1H

]−1

=
[
(P b)−1 +HTR−1H

]−1[
In +HTR−1HP b −HTR−1HP b]

=
[
(P b)−1 +HTR−1H

]−1[[
(P b)−1 +HTR−1H

]
P b −HTR−1HP b

]
= P a[(P a)−1P b −HTR−1HP b]
=
[
In − P aHTR−1H

]
P b

P aHTR−1= P aHTR−1[HP bHT +R
][
HP bHT +R

]−1

= P a[HTR−1HP bHT +HT ][HP bHT +R
]−1

= P a [HTR−1H + (P b)−1]︸ ︷︷ ︸
(Pa)−1

P bHT [HP bHT +R
]−1

= P bHT [HP bHT +R
]−1

= P b − P bHT [HP bHT +R
]−1
HP b.

(3.11)

With this expression for P a, (3.10) can be developed further:

xa =
[
P b − P bHT [HP bHT +R

]−1
HP b

][
(P b)−1xb +HTR−1yo

]
= xb + P bHT

[
R−1yo −

[
HP bHT +R

]−1
Hxb

−
[
HP bHT +R

]−1
HP bHTR−1yo

]
= xb + P bHT

[[
In −

[
HP bHT +R

]−1
HP bHT

]
R−1yo

−
[
HP bHT +R

]−1
Hxb

]
In−

[
HP bHT +R

]−1
HP bHT

=
[[
HP bHT +R

]
−HP bHT

][
HP bHT +R

]−1

=
[
HP bHT +R

]−1
R
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xa = xb + P bHT
[[
HP bHT +R

]−1
yo −

[
HP bHT +R

]−1
Hxb

]
= xb + P bHT [HP bHT +R

]−1[
yo −Hxb].

The final form of xa allows for a comprehensive interpretation of the analysis state
obtained after data assimilation using the KF. It reflects the basic functioning of
data assimilation, where the best estimate xa of the true state xt is obtained from
using background information xb provided by the model and correcting it with a
term that contains additional information from observations. This behaviour be-
comes obvious when looking at the expression for the analysis:

xa = xb +

correction term ∝yo−Hxb︷ ︸︸ ︷
P bHT [HP bHT +R

]−1︸ ︷︷ ︸
=K

gain matrix

[
yo −Hxb]︸ ︷︷ ︸

innovation vector

.

The correction term consists of a weighting term K and a so called innovation vec-
tor. The innovation vector contains the difference between model state vector xb

and observations yo. The observation operatorH transforms model results into ob-
served variables to be able to make the comparison. Therefore, the innovation vector
has dimension p. The Kalman gain matrix K weights the information contained in
the innovation vector. These weights depend on the accuracy of both background
and observations, represented by P b and R respectively. An accurate description
of the uncertainty of both information sources is therefore crucial to get reliable re-
sults from the KF. The term correcting the background xb must be in model space,
therefore the Kalman gain matrix ensures the correct mapping of the innovations[
yo −Hxb]. It also describes links between different variables through covariances
in order to apply corrections to all correlated quantities. The expression for the
analysis error covariance, (3.11), illustrates a key property of the analysis, since it
shows that P a will always be smaller than P b (all equation terms are positive def-
inite matrices). This means that by assimilating any observation, independently of
its uncertainty, the estimate will always be improved. This holds provided that the
observation error covariance is well known. The second term in (3.11) provides the
accuracy gain in the analysis compared to the background state before assimilation.

In order to fully describe the KF data assimilation cycle, the temporal aspect must
be introduced for forecasting. The transition matrix M , which represents the fore-
cast model, evolves the state of the system at time step k to the state at time step
k + 1:

xt
k+1 = Mxt

k + ηk.

Here,M is a matrix and can therefore only describe linear evolution processes. The
model error ηk is assumed to be unbiased. Furthermore, ηk and observation errors εk

are uncorrelated, which is not a strong assumption since their sources are different.
Introducing the temporal dimension implies knowledge on temporal behaviour of
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both observation and model errors. Both are assumed to be uncorrelated in time.
The forecast-analysis cycle is closed by defining the new background state at k+1 as
the evolution of the analysis state obtained at k. By analogy, the background error
covariance for k + 1 is also predicted from the analysis error covariance following

xb
k+1 = Mxa

k ,

P b
k+1 = MP a

k M
T +Q,

where Q = cov
(
η
)
is model error covariance. Using this together with the equations

derived above yields the complete set of KF equations with state evolution and
analysis:

Analysis: xa
k = xb

k +Kk

[
yok −Hkx

b
k

]
,

P a
k =

[
In −KkHk

]
P b

k ,

Forecast: xb
k+1 = Mxa

k ,

P b
k+1 = MP a

k M
T +Q,

with Kk = P b
kH

T
k

[
HkP

b
kH

T
k +Rk

]−1
.

(3.12)

A schematic visualisation of the KF cycle is given in Figure 3.1. The above equations
can be applied either using the full observation set yo or considering only small
batches at a time. Assimilating single observations of yo one after another is referred
to as serial data assimilation. It requires the observation errors to be independent.

The presented derivation of the KF can also be considered from another perspective.
A derivation of the KF by estimating the conditional mean for a linear filtering
problem with Gaussian distributed errors using Bayes’ theorem can be found in,
e.g. van Leeuwen and Evensen (1996) and Cohn (1997).

The next section introduces the ensemble representation of the error covariance
matrices to allow for the evolution of the system by non-linear processes and for
reducing memory and computational costs.

3.1.2 The Ensemble Transform Kalman Filter

The formulation of the KF in (3.12) has two major disadvantages when it comes to
data assimilation in atmospheric sciences. The first one is the strong non-linearity of
processes that cannot be described by a linear operatorM . The second disadvantage
are the associated high computational costs and memory requirements that would
arise from storing forecast and analysis background error covariance matrices and
analytically solving and evolving the analysis error covariance matrix. Depending on
the size of the state controlled by the number of variables and grid points comprised
in the model, both tend to have very large dimension. This section presents the
Ensemble Kalman Filters (EnKF) addressing those problems.
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Figure 3.1: Schematic visualisation of the steps in a KF cycle.

The EnKF scheme was proposed by Evensen (1994). Comprehensive formulation
and implementation can be found in, e.g. Burgers et al. (1998) and Evensen (2003).
Its purpose is to avoid computation and storage of the time evolution of the state
error covariance matrices P b

k and P a
k as shown in (3.12). Instead, an ensemble rep-

resentation of the forecast error covariance of the model state is used to approximate
P b

k and P a
k with the sample background and analysis error covariance matrices P̃ b

k

and P̃ a
k . Stochastic EnKF schemes compute an analysis for each ensemble member

using (3.12) and randomly perturbed observations to guarantee a correct estimate
of P̃ a

k (Burgers et al., 1998). Deterministic schemes, like the one used here, avoid
introducing additional sampling error in the analysis step. Instead, an expression
for the analysis ensemble perturbations around the analysis ensemble mean, based
on the square root of P̃ a

k , is derived in consistency with KF theory. These schemes
are called Ensemble Square Root Filters (SRF). A detailed derivation of Ensemble
SRF equations and a review on different forms can be found in Tippett et al. (2003).

Ensemble SRF introduce background and analysis state ensembles
{
xb

k,i : i = 1, . . . , l
}

and
{
xa

k,i : i = 1, . . . , l
}
, holding l members, and corresponding ensemble means x̂b

k

and x̂a
k . Scaled ensemble perturbation matrices, with dimension n× l, describe the

deviation from the ensemble mean:

Zb
k = 1√

l − 1

(
xb

k,1 − x̂
b
k xb

k,2 − x̂
b
k . . . xb

k,l − x̂
b
k

)
,

Za
k = 1√

l − 1

(
xa

k,1 − x̂
a
k xa

k,2 − x̂
a
k . . . xa

k,l − x̂
a
k

)
.

During the analysis step of Ensemble SRF, only the analysis of the ensemble mean
is computed using the state analysis expression of (3.12). Then, the analysis pertur-
bation matrix Za

k is determined. With that, the new analysis ensemble can simply
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be constructed by computing its members

xa
k,i = x̂a

k +
√
l − 1Za

k,i, (3.13)

where Za
k,i represents the column of Za

k corresponding to member i. Therefore, the
essential part of Ensemble SRF is an expression yielding the ensemble perturbation
matrix of the analysis ensemble. Using properties of covariance matrices, which are
per definition positive-definite, P̃ a

k can be decomposed into

P̃ a
k = Za

kZ
aT
k . (3.14)

Therefore, the analysis covariance matrix presented in (3.12) must be further trans-
formed in order to get an expression that can be decomposed into square roots,
yielding Za

k . Applying P̃
b
k = Zb

kZ
bT
k , the analysis error covariance becomes

P̃ a
k = P̃ b

k − P̃
b
kH

T
k

[
HkP̃

b
kH

T
k +Rk

]−1
HkP̃

b
k

= Zb
kZ

bT
k −Z

b
kZ

bT
k HT

k

[
HkP

b
kH

T
k +Rk

]−1
HkZ

b
kZ

bT
k

= Zb
k

[
In −ZbT

k HT
k

[
HkZ

b
kZ

bT
k HT

k +Rk

]−1
HkZ

b
k

]
ZbT

k .

Introducing Vk =
[
HkZ

b
k

]T one can write

P̃ a
k = Zb

k

[
In − Vk

[
V T

k Vk +Rk

]−1
V T

k

]
ZbT

k

= Zb
kTkT

T
k Z

bT
k .

Consequently, the analysis perturbation matrix is given as

Za
k = Zb

kTk.

The choice of the matrix square root Tk is not unique and different Ensemble SRF
methods exists that differ in the choice of the matrix Tk.

The Ensemble Transform Kalman Filter (ETKF) was first suggested by Bishop et al.
(2001). Later, a suggestion and correction for an unbiased version of the ETKF was
published in Hunt et al. (2007) and Livings et al. (2008). In order to obtain the
square root Tk, eigenvalue decomposition of In − Vk

[
V T

k Vk +Rk

]−1
V T

k , which can
be reformulated to

[
In + VkR

−1
k V T

k

]−1 using the Sherman–Morrison formula, is
computed. The eigenvalue decomposition of VkR

−1
k V T

k is

VkR
−1
k V T

k = CkDkC
T
k ,

where matrices Ck and Dk hold eigenvectors and eigenvalues (on the diagonal),
respectively. Then, computation rules for eigenvalues and eigenvectors allow for
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building the eigenvalue decomposition

In − Vk

[
V T

k Vk +Rk

]−1
V T

k = Ck

[
In +Dk

]−1
CT

k .

With that, the ETKF defines

T ETKF
k = Ck

[
In +Dk

]−1/2
CT

k .

Now that T ETKF
k is defined, it is straight forward to compute the analysis ensemble

matrix
Za

k = Zb
kT

ETKF
k , (3.15)

and compose the analysis ensemble according to (3.13). The main steps of Ensemble
SRF are shown in Figure 3.2. The form of (3.15) shows that the new ensemble
perturbations Za

k are a linear combination of background ensemble perturbations
Zb

k before analysis. This ensemble transformation gave its name to the ETKF.
Through T ETKF

k , perturbations are weighted according to the members agreement
with observations and in consideration of specified observation uncertainties.

Square root decomposition of P̃ a
k allows for reducing computational costs of building

Kk. Multiplying Kk with P̃ a
k (P̃ a

k )−1 = P̃ a
k

[
(P̃ b)−1 +HTR−1H

]
(see first line of

(3.11)) results in

Kk = P̃ a
k H

T
k R

−1

= Zb
kT

ETKF
k ZbT

k T ETKFT
k HT

k R
−1.

(3.16)

Using Zb
k and Za

k instead of P b
k and P a

k avoids handling of n×n matrices in favor of
smaller n×l matrices. Furthermore, it does not require the evolution of P a

k implying
2n model integrations, but only l integrations for ensemble members. The number
of ensemble members l is in most cases much smaller than the total dimension n of
the model state. Additionally, the evolution of ensemble members can be done using
a non-linear model M, since sample statistics do not need to be evolved explicitly.
In summary, the complete set of ETKF equations is

Analysis: x̂a
k+1 = x̂b

k+1 +Kk

[
yok+1 −Hk+1x̂

b
k+1

]
Za

k+1 = Zb
kT

ETKF
k

T ETKF
k = Ck

[
In +Dk

]−1/2
CT

k

xa
k+1,i = x̂a

k+1 +
√
l − 1Za

k+1,i

Forecast: xb
k+1,i = M(xa

k,i)

with Kk = P̃ b
kH

T
k

[
HkP̃

b
kH

T
k +Rk

]−1
.

(3.17)

(Ck and Dk are eigenvectors and eigenvalues of ZbT
k HT

k R
−1
k HkZ

b
k).
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Figure 3.2: Schematic visualisation of the steps in an ensemble SRF cycle.

Despite the great advantages mentioned above, one issue of ensemble SRF is rank
deficiency in the estimated sample background and analysis covariance matrices P̃ b

k

and P̃ a
k . The analysis ensemble perturbations are limited to the subspace spanned

byZb
k which only has rank l − 1 and cannot describe all degrees of freedom contained

in the system. Therefore, it is important that the ensemble members represent all
sources of uncertainty relevant to the system. Otherwise, the analysis computed by
(3.15) does not allow a good fit to all provided observations. Another issue resulting
from the low rank approximation of P b

k is the formation of spurious correlations
between model state vector elements at distant grid points. These correlations cause
observations to have influence on the analysis at remote locations where there should
be no correlation between observation and model variable. The limited ensemble size
yields system undersampling that impacts the analysis and can produce nonphysical
results. A solution to mitigate these low-rank issues is localisation. Localisation can
either be applied by truncating the background covariance matrix P̃ b

k to suppress
spurious correlations (e.g. Houtekamer and Mitchell, 1998, 2001), or by performing
the analysis on small domains to limit the impact of remote observations. The latter
method is used here and a localised version of the ETKF is presented in the next
section.
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3.1.3 Localisation of the Ensemble Transform Kalman Filter

The ETKF described above calculates the state analysis for all grid points at once.
Due to the limited number of ensemble members describing the system, undersam-
pling can produce spurious correlations between locations large distances apart. Lo-
calisation of Ensemble SRF emerged to prevent those erroneous correlations from
altering the analysis. Hunt et al. (2007) introduced the Local Ensemble Transform
Kalman Filter (LETKF), based on previous work from Bishop et al. (2001) and Ott
et al. (2004). Its idea is to reduce the size of the domain considered for simultane-
ous analysis computation. By computing the analysis for different model subregions,
i.e. local domains, separately, each can be updated with a different combination of
ensemble perturbations according to (3.15). This procedure largely increases the de-
grees of freedom available in the system. Furthermore, a radius of influence can be
assigned to observations to hamper their impact on analysis of remote local domains.
Observations considered for a local analysis are called local observations. Figure 3.3
demonstrates the localisation process for local domains comprising one grid point
only and observations with limited influence radius. Before performing the analysis,
background state ensemble

{
xb

k,i : i = 1, . . . , l
}
and error covariance matrix P̃ b

k

are reduced to the size of the local domain. Once observations are assigned to that
domain, observation vector yok , error covariance matrix Rk, and operator Hk must
be adjusted to fit new dimensions. Truncating Rk automatically implies that obser-
vation errors between different local observation sets are independent, as it is the
case in serial data assimilation. After localisation of all required variables, analysis
is computed according to ETKF equations derived in Section 3.1.2, for each local
domain separately. In order to guarantee a smooth analysis, observations should be
used in several neighboring local domains for a continuous impact.

This thesis follows the common approach of domain localisation considering all
model grid points separately, as independent local domains. The equation set (3.17)
is solved for each grid point of the model domain, which is defined by the radar
data composite (Section 2.1.1). The model state is a reflectivity field describing
precipitation. The forecast model M used to evolve the state is the precipitation
nowcasting scheme introduced hereafter in Section 3.2. Observations used for data
assimilation are radar reflectivity measurements.

3.2 Probabilistic Precipitation Nowcasting

Precipitation nowcasting describes short-term forecasting of precipitation based on
the extrapolation of current observations. It is frequently used operationally for
real-time forecasting of severe weather to provide information for early warning
systems, e.g. flood warnings. The expression ’short-term’ is not clearly defined and
can refer to anything from minutes to a few hours. Mostly, nowcasting schemes use
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local domain

local observations

discarded observations

Figure 3.3: Exemplary domain localisation on a regular model grid (solid lines) with
local domain (dot) and available observations (crosses). The observation
influence radius of two grid boxes length defines considered (thick) and
discarded (thin) observations for local analysis.

measurements from weather radars or satellites, some also integrate information
from numerical weather prediction. Different nowcasting methods and numerous
individual schemes exist. They can be broadly classified in four main nowcasting
types: cell tracking methods identifying the displacement of coherent structures
(e.g. Rad-TRAM: Kober and Tafferner (2009), TITAN: Dixon and Wiener (1993)),
template-matching methods estimating a motion vector field using correlation anal-
ysis (TREC: Rinehart and Garvey (1978); Tuttle and Foote (1990), COTREC: Li
et al. (1995), GDST: Wolfson et al. (2000)), stochastic methods using statistical
models to represent precipitation evolution (S-PROG: Seed (2003), PRAISE: Sir-
angelo et al. (2007)) and combinations of those methods with numerical weather
prediction models (STEPS: Bowler et al. (2006), GANDOLF: Pierce et al. (2000)).
A short summary on the history of nowcasting and current progress can be found
in Mass (2012).

The nowcasting scheme used for this study is started from composite radar data
images (Section 2.1.1). It is a simple, template-matching method based on image
correlation analysis to produce short-term precipitation forecasts with up to 30
minutes lead time. The following sections describe the underlying nowcasting scheme
from van Horne (2003), which is adapted to fit the requirements of the study. In
particular, the nowcasting scheme is extended to generate an ensemble forecast and
provide probabilistic nowcasting results. The presented nowcasting scheme only
takes into account advection of the precipitation field and is not able to reproduce
internal variability and evolution. In return, it is easily implemented and has low
computational costs allowing for ensemble computation.

35



3.2.1 Extrapolation-Based Nowcasting

The nowcasting scheme used in this thesis is a simple approach based on template-
matching between precipitation images. The original algorithm, the Automated Pre-
cipitation Extrapolator (APEX), was developed by Matthias van Horne (van Horne,
2003) and is adopted here with some modifications. Performance of the original
APEX algorithm, with a slightly different implementation than the one used in this
work and without the ensemble generation introduced in Section 3.2.2, is analysed
in van Horne (2003). It is found to perform at least as good as uniform advection
schemes and as the Growth and Decay Storm Tracker (GDST) short-term rainfall
forecasting scheme developed at the Massachusetts Institute of Technology (Wolfson
et al., 2000) to provide forecast for aviation management.

The algorithm considers two consecutive radar images (image 1 and image 2) and
computes an estimate of the precipitation displacement from the first to the second
image. A correlation is calculated between image 2 and spatially shifted versions
of image 1. The spatial shift is performed in every direction and with different
amplitudes and the shift yielding the best correlation allows for estimating the
displacement of the precipitation structure between both images. The resulting
displacement vector field indicates the precipitation motion direction and speed (an
example is given in Figure 3.4). The computed displacement between both images
is then used to extrapolate the precipitation structure to its position at future time
steps. The APEX algorithm computes a hierarchical correlation analysis considering
first the whole domain of the images and then smaller subregions. By this means, it
generates spatially variable displacement vectors which allow for small distortions
of the precipitation field during the forecast. Therefore, the nowcasting scheme
features a component partially representing the uncertainty arising from internal
evolution of the field, even though such processes are not specifically implemented.

The nowcasting scheme consists of different steps, describing a forecast cycle from
displacement computation at initialisation time to forecast for a defined period and
forecast time step (Figure 3.5). These steps are outlined in the following:

Step 1: The initialisation of the nowcasting scheme is performed using two consec-
utive radar composite images times tinit and tinit−∆tinit, referred to as image 2
and 1, respectively (Figure 3.4). The time interval ∆tinit between both images
must be chosen large enough to allow for detecting the precipitation shift.
Since the spatial correlation analysis is performed on a Cartesian grid, origi-
nal polar radar data is not suitable. Therefore, gridded composite reflectivity
data is used. The radar composite images consist of 297× 213 pixels with a
resolution of 250 m× 250 m (Section 2.1.1). Both radar composite images are
smoothed by convolution with a 5× 5 pixels kernel with constant weights to
eliminate very small features before proceeding with correlation analysis.
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(a) 3rd July 2013, 15:23:00 UTC (b) 3rd July 2013, 15:26:00 UTC

Figure 3.4: Example of radar reflectivity composite images 1 (a) and 2 (b) and
computed displacement vectors, zoomed into the inner part of the whole
composite domain (Section 2.1.1). Displacement vector field is thinned
out to every tenth pixel in each direction in this representation.

Step 2: The computation of the precipitation displacement vector field is performed
in two steps. First, a global displacement vector for the whole field is esti-
mated. For that, correlation is calculated between image 2 and spatially shifted
versions of image 1 to compute a first estimate of the shift resulting from the
precipitation displacement between both images. The displacement vector de-
scribes the large scale direction and speed of the precipitation field. In this
work, only the inner part of the radar composite images is considered for
correlation analysis in order to avoid artefacts from the radar network edge.
Precipitation is inevitably truncated beyond radar maximum range, causing
a fixed structure in the fields that can falsify obtained correlations. Therefore,
the considered part of image 1 that is shifted and matched to precipitation
structures of image 2 is limited to a region of 160× 140 pixels in the middle
of the full 297× 213 pixels domain (Section 2.1.1). Then, a normalised cross-
correlation is performed between the truncated version of image 1 and whole
image 2, testing every possible position of image 1 in image 2. For details on
the computation of normalised cross-correlations, refer to Lewis (1995). The
global precipitation displacement vector arises from the position of image 1
in image 2 yielding the highest correlation. This global displacement vector is
first computed as a shift of pixels per time step, but can easily be converted
into velocity in m s−1 and adapted to different forecast time steps with knowl-
edge of the image resolution (250 m× 250 m) and the time interval between
the two input images (∆tinit).

Step 3: The second step of the computation of the displacement vector field is the
refinement of the global displacement vector to a variable vector field with pix-
elwise adjustment. The global motion vector, which only indicates overall dis-
placement of precipitation, is refined by computing local displacement vectors
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on smaller regions of the radar composite images. For this, image 1 is shifted
according to the global displacement vector to account for the dominant mo-
tion of the precipitation field. The local component of the displacement vector
in computed in Step 4.

Step 4: The correlation analysis described in Step 2 is performed again on smaller
subregions of the radar composite images. Only pixels with precipitation in-
tensity above the no-precipitation threshold of 5 dBZ (established in Sec-
tion 2.1.1) are considered. An area of 21× 21 pixels around each of these
pixels in the shifted version of image 1 is compared to image 2. The maxi-
mum allowed shift for this local adjustment is 10 pixels in each direction. The
computed local adjustments are added to the global displacement vector in
order to obtain a vector for every pixel. The global displacement vector is
assigned to pixels without precipitation. The effect of the refinement of the
displacement vector field is visible in Figure 3.4, where the depicted vectors
show small, individual deviations from a global displacement towards north
east.

Step 5: The complete displacement vector field is used to compute the precipita-
tion forecast. For this, displacement vector lengths are scaled to the wanted
forecast time step and the future position of the precipitation field in image 2
is predicted accordingly. In order to get a smooth, continuous reflectivity field
after the advection, a 3× 3 window of pixels around each pixel is shifted to its
new position. If more than one reflectivity value is attributed to a pixel of the
forecasted reflectivity field, values are averaged, as illustrated in Figure 3.6.
Pixels in the forecasted field to which no value is attributed are filled with
the default no-precipitation value (5 dBZ). The displacement vector field is
advected together with the precipitation field to provide consistent forecast.
Default value for the displacement vector is the computed global vector (Step
2). If more than one forecast step is required, above advection procedure (Step
5) is repeated with the newly obtained reflectivity and displacement vector
fields.

Domain size and resolution as well as relevant settings for the nowcasting scheme
implementation are gathered in Table 3.1. Especially, some threshold applied to the
computed displacement vector fields to filter erroneous values are given. The table
also includes settings related to the ensemble generation introduced in Section 3.2.2.

Due to the computation of local displacement vectors at each pixel covered with pre-
cipitation, some divergence and rotation is allowed in the vector field. The original
precipitation can therefore be distorted during the forecasting process, accounting
for some internal variability in the structure of the precipitation field. Precipita-
tion intensity can change compared to the initial field due to the averaging in the
forecasting step, but no cell decay or growth model is integrated in the nowcasting
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Figure 3.5: Flowchart of the main components of the nowcasting process, compris-
ing displacement vector computation and forecasting. The steps de-
scribe a single forecast with initialisation using radar images 1 and 2.

scheme. Nevertheless, the distortion and intensity changes in the field provide a tool
to represent some variability in the precipitation field. The steps presented above
describe the initialisation of the forecast and the computation of one forecast. To
run the nowcasting scheme in a cycle, the initialisation time is updated and the
process repeated from Step 1.

This nowcasting model is deterministic and produces a forecast without informa-
tion on forecast uncertainty and on other possible precipitation evolution scenarios.
To introduce a probabilistic component to the forecast and to allow for coupling
the model with the LETKF presented in Section 3.1.3, the nowcasting scheme is
extended to provide ensemble forecasts in the following section.
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initial position forecasted position

Figure 3.6: Schematic representation of the forecasting step for three pixels, exem-
plary. 3× 3 windows of pixels (initial position left) are shifted according
to the local motion vectors calculated for the center pixel. If these pixel
windows overlap in the forecast (new position right), pixel values (re-
flectivity or motion velocity) are averaged to get the forecasted field. In
this example light grey pixels are averages over two values, dark grey
over three values.

Table 3.1: Settings of the probabilistic nowcasting scheme. For more details on the
definition and tuning of single settings refer to van Horne (2003) or
Eckmann (2016).

Nowcasting data and domain
Input data composite radar data

Full domain size 297× 213 pixels
Resolution 250 m× 250 m

Global displacement computation
Data smoothing window 5× 5 pixels

Inner domain for corr. analysis 160× 140 pixels
Max. allowed glob. speed 22 m s−1

Min. required correlation 0.5
Local displacement computation

Domain for corr. analysis 21× 21 pixels
Max. allowed loc. adjustment 10× 10 pixels

Max. deviation from glob. speed 25 %
Max. allowed angle to glob. vector 30◦

3.2.2 Ensemble Forecast Generation

The nowcasting scheme described above in Section 3.2.1 is deterministic. One dis-
placement vector field is computed from two radar images and the forecast is com-
puted using this field. Since this one realisation of the forecast is not necessarily
correct, other possible realisations and their probability to occur are a valuable
addition to the forecast. A probabilistic forecast can be obtained by construct-
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ing an ensemble of forecasts that represents different possible realisations of the
future. The ensemble then allows to estimate probabilities of certain scenarios to
occur, provided that the ensemble spread and distribution match the statistics of
the considered system. Given that, it is possible to estimate the forecast uncer-
tainty through the spread of the model ensemble, often described by the ensemble
standard deviation.

A simple approach is chosen to create an ensemble forecast from the deterministic
forecast: an ensemble of displacement vector fields is generated from the determinis-
tic displacement vector field by randomly perturbing its x- and y-components. The
aim of the ensemble generation process is to produce a smooth perturbation of the
displacement vector field. Therefore, the random noise from which the perturbations
are built must be spatially correlated to avoid fuzzy and inconsistent displacement
vectors. To create the pattern of the spatial correlation, areas with high wind speeds
are assumed to behave similarly, i.e. vectors with large displacement magnitude are
strongly correlated. By this means, information from the precipitation field is incor-
porated into the correlation pattern, which is probably more accurate than assuming
a Gaussian correlation structure or a purely mathematical correlation description
without any relation to the field values. Following method is applied to implement
such a spatially correlated noise generation.

Correlated random noise ucorr is generated from uncorrelated random numbers u
drawn from the standard normal distribution by multiplying it by the lower triangle
matrix L, obtained from the Cholesky decomposition S = LLT of the desired
covariance matrix S:

ucorr = Lu+ 1. (3.18)

Here, 1 is an all-ones vector defining the mean of the correlated random noise ucorr.
The covariance matrix S, which defines the structure of the noise correlation, has to
be prescribed. As mentioned above, S is built here based on the spatial distribution
of the displacement vector magnitude in the field. Per definition, the covariance
matrix S has to be symmetric and positive definite. It is computed by multiplying
the displacement vector magnitude f by its transpose:

S = f ⊗ fT + I,

where f is previously reformed from a two-dimensional field to a vector. Adding the
identity matrix I ensures that S is actually positive definite. Next, the covariance
matrix is scaled such that its diagonal maximum value fits a desired maximum noise
variance σ2

noise, determining the maximum amplitude of the perturbations in the
field. Perturbation variance decreases with decreasing displacement vector magni-
tude, reducing the amplitude of the perturbations for shorter displacement vectors.
This behaviour has the advantage of reducing the amplitude of perturbations at
smaller displacement vector magnitudes, where perturbations are weakly correlated
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and more prone to inconsistency in the field than in the case of large magnitudes.
The decreased variance dampens the fuzziness of the perturbations at low displace-
ment vector magnitudes. After the construction of S, the lower triangle matrix L of
the covariance matrix S can be computed using Cholesky decomposition and allows
for the ensemble nowcasting generation.

For each ensemble member, u is drawn independently for the x- and y-components
of the displacement vector field, and an ensemble of random correlated noise fields
ucorr is computed with (3.18). The noise ucorr has same mean 1 and variance σ2

noise
for both components of the displacement vectors. The deterministic displacement
vector field is then multiplied by the obtained ensemble of correlated random noise
fields to build an ensemble of different initial displacement vector fields. For the
probabilistic forecast, the precipitation field is advected with each member of the
displacement vector field ensemble according to the advection technique described
in Step 5 in Section 3.2.1. In this thesis, σ2

noise = 0.4 is chosen. A short sensitivity
study with different values of σ2

noise and a summary of the important settings of the
nowcasting scheme are given in Section 3.2.3.

3.2.3 Nowcasting Settings

The probabilistic version of the nowcasting scheme used in this thesis is introduced
in Section 3.2.2. An ensemble of forecasts is generated by perturbing the determinis-
tically computed displacement vector field using correlated random noise following
(3.18). The variance of this noise, i.e. the amplitude of the perturbations, is deter-
mined by σ2

noise. The choice of σ2
noise determines the initial spread of the ensemble

of displacement vector fields and therefore also controls the spread of the resulting
ensemble precipitation forecast.

In this study, σ2
noise = 0.4 is chosen. Results from a short sensitivity study analysing

the behaviour of the ensemble forecast with different σ2
noise is presented in Fig-

ure 3.7. Using radar composite images (Section 2.1.1), an ensemble forecast with 50
members is started every two minutes in the time interval from 13:15:00 UTC to
15:15:00 UTC, yielding 60 forecasts. Each forecast has a maximum lead time of 20
minutes, with time steps of two minutes. Forecast ensemble mean is compared to ac-
tual composite radar observations at the corresponding time. Since nowcasting and
composite radar data are on the same grid, pixels can be directly compared. The
root mean square error (RMSE) between forecast ensemble mean and observation
for all forecasts with the same lead time is computed, as well as the average ensemble
spread for these forecasts, i.e. ensemble standard deviation. Results are computed
over all pixels of the nowcasting domain. This analysis is performed with σ2

noise =
0.1, 0.2, 0.4, and 0.6. As expected, the forecast error (RMSE) and the ensemble
spread (ensemble standard deviation) increase with increasing lead time. The fore-
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Figure 3.7: RMSE and ensemble standard deviation of the reflectivity ensemble
forecasts as a function of lead time and for different values of σ2

noise.

cast is underdispersive in all four cases, since the error of the forecast (RMSE) is
higher than the uncertainty indicated by the ensemble standard deviation.

One reason for the low spread of the system is the missing representation of the
uncertainty arising from internal cell development, e.g. growth and decay processes
or splitting and merging of cells. As already mentioned (Section 3.2.1), the variable
displacement vector field allows for some inner distortion of the precipitation field.
Through the generation of the ensemble of displacement vector fields for the proba-
bilistic forecast, uncertainty due to inner processes of the cell is partly represented.
But this effect is too small to account for the high temporal variability of precipi-
tation evolution. The uncertainty of the presented probabilistic nowcasting scheme
is underestimated by the ensemble. Also, the spread of the system only increases
slowly with lead time and appears to saturate. Due to the ensemble generation
process perturbing only the displacement vector field, the precipitation cell is ad-
vected to different locations in each ensemble member during the forecast. After a
number of time steps, precipitation predicted by the different ensemble members is
dispersed over a large area and the ensemble spread does not noticeably increase
with further spreading of the cell.

The spread of the ensemble forecast increases with larger σ2
noise whereas the forecast

error stays nearly the same. σ2
noise = 0.4 is chosen here as the setting yielding

the smallest discrepancy between ensemble spread and forecast error (σ2
noise = 0.6

show a similar deviation between RMSE and standard deviation, but with higher
forecasting error). Relevant settings related to the implementation of the introduced
probabilistic nowcasting scheme in this thesis are summarised in Table 3.1.

3.3 Framework Design and Implementation

This thesis has the objective of combining precipitation nowcasting and observa-
tions in a statistically meaningful way, by considering the respective uncertainty.
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The combination method used is the LETKF presented in Section 3.1.3. A frame-
work that allows to couple nowcasting and observations using the LETKF was im-
plemented during the work of this thesis. The framework is implemented in Python
and makes use of object-oriented programming. It consists of a collection of modules
and abstract classes, designed to be easily extendable and to be coupled to different
forecasting models and multiple observation types. The design and implementation
was done in collaboration with Dr. Gernot Geppert. In the following, main parts
of the framework used for the analysis of this thesis are described to provide an
overview of its structure. The description refers to data assimilation terminology
introduced in Section 3.1.3.

The overall functioning of the data assimilation framework is shown in Figure 3.8.
It allows for performing a data assimilation cycle with a data assimilation method
coupled to a forecast model. The model must be initialised to run an ensemble fore-
cast. Different observations types and configurations, gathered in observation sets
here, can be considered to perform the analysis. Observations of different variables,
from different instruments, at different locations, and available at different time
steps can be used in one experiment. Following the typical data assimilation cycling
procedure, an ensemble forecast is performed until an observation is available. Then,
an observation equivalent ensemble is computed from the ensemble forecast in order
to perform the analysis. From this analysis, a new forecast is started until the time
of the next observation is reached, and the assimilation process starts again. After
the last observation available in the forecast interval, a free forecast is run until
forecast end.

The data assimilation framework in Figure 3.8 is module-based and consists of
a number of single components. The most important components and associated
classes are presented in Figure 3.9 to Figure 3.13 and described in the following, fo-
cusing only on parts used in this study. Also, methods and attributes related to the
data assimilation process are shown, but everything related to the underlying com-
putational process (e.g. handling dimensions, matching locations, input and output)
is excluded. A few technical details on data assimilation analysis computation are
also given.

Data assimilation method: The core of the data assimilation framework is the fil-
ter method performing the analysis. This framework is designed for ensemble
filters. It includes the LETKF as a class derived from a class implementing the
ETKF (Figure 3.9). Each assimilation method is implemented as a class with
an analysis() method that performs the analysis by solving the data assimi-
lation equations based on the background ensemble and provided observations.
The background ensemble stored in the Ensemble class (Figure 3.10) is then
replaced by newly computed analysis ensemble by the update() method. The
analysis is performed according to (3.17) with some adjustments needed for
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INITIALISATION

• Set data assimilation method
• Set ensemble forecast model
• Set model ensemble

PREPARE OBSERVATION SETS

• Read observation times
• Read observation locations

ENSEMBLE FORECAST (Figure 3.10, 3.11)

• Forecast until next observation time
• Output

GET OBSERVATION (Figure 3.12)

• Read observations

CREATE OBS. EQUIVALENT ENSEMBLE (Figure 3.13)

• Compute observation equivalent ensemble
• Output

PERFORM ANALYSIS (Figure 3.9)

• Compute analysis ensemble
• Output

ENSEMBLE FORECAST (Figure 3.10, 3.11)

• Forecast until end of forecast time
• Output

Figure 3.8: Main steps of the data assimilation cycle performed with the developed
framework. Figure references indicate diagrams of the classes used to
compute the respective steps.

computational reasons, to avoid large matrices and soften assumptions on the
observation operator.

The observation equivalent ensemble
{
Hkx

b
k,i : i = 1, . . . , l

}
is calculated be-

forehand by applying the observation operator on each model member.Hkx̂
b
k,

HkZ
b
k and ZbT

k HT
k =

[
HkZ

b
k

]T are then computed directly from the obser-
vation equivalent ensemble by splitting it into mean and perturbations. On
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the one hand, this implementation avoids to apply the observation operator
multiple times. On the other hand, it also resolves the restriction of a linear
observation operator. In the case of a non-linear observation operator Hk,
its application on background perturbations Zb

k is not appropriate because
it does not preserve additivity. By computing the perturbations of the ob-
servation ensemble from

{
Hk(xb

k,i) : i = 1, . . . , l
}
, it is possible to give a good

estimation ofHkZ
b
k and ZbT

k HT
k , whereHk, in this case, is the linearisation of

Hk about x̂b
k (Hunt et al., 2007). In the case of a linear observation operator,

this yields exactly HkZ
b
k and ZbT

k HT
k . Also, first generating the observation

equivalent ensemble makes the computation of local analysis for all considered
local domains in the LETKF completely independent. The analysis can there-
fore easily be parallelised. Another optimisation is the computation of the gain
matrix Kk according to (3.16) rather then using the form presented in (3.17).
Computational advantages, i.e. smaller resulting matrices and avoiding the
evolution of error covariance matrices, are described in Section 3.1.2.

Forecast model: Generally, any ensemble forecast model can be coupled to the
framework by deriving a new class. The nowcasting scheme presented in Sec-
tion 3.2 is implemented in a class derived from the abstract Forecast Model
class (Figure 3.11). It can be initialised as an ensemble (init_ensemble()) or
as just one member (init_model()). The Forecast Model class holds all model
variables needed for its description and during the forecasting process per-
formed by forecast(): dimensions, time, variables, filter_locations.
If the complete state of the system is not considered during the assimila-
tion step, the method get_filter_state() selects just the relevant parts
out of the complete state. These parts will generally be specific variables,
but could also be certain regions of the modelled system. Location informa-
tion of the selected elements is also contained in the Forecast Model class
for correct collocation with observations. The method update_state() sorts
the state analysis computed by the data assimilation method into the com-
plete system state. Basically, it is the inverse process to get_filter_state().
The localisation process in the LETKF requires to split the complete model
region into local domains, which have to be specified in domains. By de-
fault, each grid point of the model domain is defined as one local domain
(Hunt et al., 2007). The nowcasting scheme used here has areal reflectivity
as system state (reflectivity_field). It also needs global and local mo-
tion vectors (global_motion_vector, local_motion_vectors), as described
in Section 3.2. get_displacement() computes these motion vectors.

Observations: Information about different observations types is stored in instances
of the Observation Set class (Figure 3.12). One observation set holds all meta-
data needed to read the observations values requested for the current assim-
ilation step (filename, locations, obs_times). The actual observation val-
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ENSEMBLE DA FILTERS

analysis()
update()

ETKF LETKF

Figure 3.9: Diagram of the abstract Ensemble Data Assimilation Filter class with
derived classes for the ETKF and the LETKF.

ENSEMBLE

members
size

get_mean_perturbs()

OBSERVATION EQUIVALENT
ENSEMBLE

MODEL ENSEMBLE

model_members

forecast()
get_local_ensemble()
set_local_ensemble()

Figure 3.10: Diagram of the abstract Ensemble class and derived classes for model
ensembles and observation equivalent ensembles (Model Ensemble
class and Observation Equivalent Ensemble class).

ues are successively stored in instances of the Observation class. In order to
minimise the required memory space they are stored only during the time
step they are used for assimilation. Observation sets also specify which ob-
servation operator (obs_operator) fits the observation types and where to
find the observation error covariance matrix (covariance_filename). Fur-
thermore, observation sets must provide the information needed for the local-
isation process of the LETKF: the length of the observation influence radius
(obs_influence_radius) and the method get_obs_domains() which assigns
the observation to the correct model domains considering the influence ra-
dius. obs_domains then stores the indices of the observation array relevant
for each model domain. The Observation class as such provides the method
to read the current observation values (read_obs_from_file()) and stores
time, locations and the variables (value). It also provides the observation
error covariance, which can either be a diagonal variance or a full covariance
matrix.
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FORECAST MODEL

dimensions
domains
filter_locations
time
variables

forecast()
get_filter_state()
init_ensemble()
init_model()
update_state()

NOWCASTING MODEL

global_motion_vector
local_motion_vectors
reflectivity_field

get_displacement()

Figure 3.11: Diagram of the abstract Forecast Model class and derived class for the
nowcasting method implemented for this study (Nowcasting Model
class).

Observation operator: Each observation type needs a specific observation opera-
tor computing corresponding observation equivalents from the model state.
The LETKF requires an observation equivalent ensemble holding observa-
tions computed based on the background state ensemble. The observation
equivalent ensemble is stored in the Observation Equivalent Ensemble class
(Figure 3.10). An operator has to be implemented for each observation type
to return an observation given the filter state vector and the locations of both
filter state elements and observations. The Observation Operator class (Fig-
ure 3.13) holds the observation variable types (variables) and must provides
the method calc_obs_ensemble() that generates the observation equivalent
ensemble. The method get_filter_state_indices() allows for selecting all
elements of the filter state vector needed to generate the observation equiva-
lent. Since the precipitation nowcasting scheme used in this work provides a
forecast of reflectivity fields and observations are radar reflectivity, the imple-
mented observation operator in the XBand Radar Operator class represents
the identity.

Ensemble: Since the data assimilation framework is designed for ensemble data as-
similation filters, forecast and observation equivalent ensemble members are
gathered in order to be able to compute ensemble mean and perturbations,
i.e. deviations from the mean. Ensemble members are handled by the abstract
Ensemble class (Figure 3.10) that computes ensemble mean and perturbations
(get_mean_perturbs()) and holds all ensemble members (members) and en-
semble size (size). Two specific classes are derived from there for both en-
semble types occurring in the data assimilation framework: a Model Ensemble
class and an Observation Equivalent Ensemble class. The Model Ensemble
class must perform the ensemble forecast (forecast()). The forecast is per-
formed independently for each ensemble member and can therefore easily be
computed in parallel. An important feature of the Model Ensemble class is
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OBSERVATION SET

covariance_filename
obs_domains
filename
locations
obs_influence_radius
obs_operator
obs_times

get_obs_domains()

OBSERVATION

covariance
location
time
value

read_obs_from_file()

Figure 3.12: Diagram of the abstract Observation Set and Observation classes.

OBSERVATION OPERATOR

variables

calc_obs_ensemble()
get_filter_state_indices()

XBAND RADAR OPERATOR

Figure 3.13: Diagram of the abstract Observation Operator class and derived class
for the observation operator implemented for X-band radar data in
this study (Xband Radar Operator class).

the method assembling the filter state ensemble for local domains. For this,
state vector elements matching local domain locations are gathered through
all members by the method get_local_ensemble(). After the analysis step,
members of the local domain analysis ensemble are allocated to the correct
part of the state vector and to the adequate variables within the Forecast
Model class by the method set_local_ensemble().
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Method and Data
Assimilation Experiment

4

After the implementation of the framework described in Chapter 3, a proof of con-
cept study is performed to assess the functioning of the framework and the potential
of the presented uncertainty estimation method. The method combines precipita-
tion information from different sources in order to obtain a combined, areal product
and additionally estimates its uncertainty. Every available precipitation measure-
ment can be assigned a specific uncertainty information. This information can have
different degrees of accuracy, from constant to spatially and temporally variable.
By combination of both data and uncertainty information through a data assimila-
tion method and the use of a nowcasting method, flow dependency is introduced to
the areal uncertainty estimate, as known uncertainty propagates with the precipi-
tation displacement. This method yields a situation dependent uncertainty whose
structure follows the physics of the system.

This chapter addresses the description of the performed data assimilation experi-
ment and demonstrates the proper functioning of the implemented data assimilation
framework. The performed data assimilation cycle is outlined and the system set-
tings are described, together with an assessment of the experiment validating the
data assimilation system. The assessment of the experiment is important to estab-
lish a reliable foundation for the proof of concept of the presented method. The
potential of the resulting spatially and temporally variable uncertainty information
associated with the combined precipitation product is analysed and demonstrated
in Chapter 5.

4.1 Experiment Setup and Description

The network radar data and the ensemble nowcasting data assimilation framework
presented in Chapter 2 and Chapter 3, respectively, are used to run a data assimila-
tion experiment allowing for the assessment of the uncertainty estimating method.
The purpose of the experiment is to prove the functioning of the implement frame-
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(a) 15:23:00 UTC (b) 15:26:00 UTC

Figure 4.1: LAWR composite reflectivity data for 15:23:00 UTC (a) and 15:26:00
UTC (b) on the 3rd July 2013 used to initialise the ensemble nowcast.

work and to show the method’s potential (Chapter 5). For this, a precipitation event
monitored by the radar network on the 3rd July 2013 is chosen as a basis for the
data assimilation cycle. The event exhibits a cell moving through the network area
and is selected because of its non-stratiform structure (Figure 4.1). The cell does
not cover the whole network domain and therefore allows for testing the method
in areas with and without precipitation. Furthermore, reflectivity values are not
uniform within the precipitation cell, which makes forecast and data assimilation
more interesting.

The forecast for the data assimilation experiment is an ensemble nowcast initialised
with radar composite data (Section 3.2). The nowcasting domain is 297× 213 pixels
large with a resolution of 250 m× 250 m, as defined by the input radar data. Forecast
start is 15:26:00 UTC. The displacement vector field for the forecast is computed
between composite radar images at 15:23:00 UTC and 15:26:00 UTC (Figure 4.1).
The determined global displacement is three pixels towards the east and four pixels
towards the north, i.e. u = 4.2 m s−1 and v = 5.6 m s−1 respectively. The speed of
the precipitation cell is thus estimated to 7 m s−1. A more detailed view of Figure 4.1
can be found in Figure 3.4 together with the computed displacement vector field.
The forecast is performed for 50 ensemble members until 16:00:00 UTC in time
steps of two minutes.

Observations considered for assimilation in this experiment are synthetic observa-
tions created from single radar measurements. Polar data from X-band radar MOD
is used for this purpose because it covers the analysed precipitation cell best. Obser-
vations are created on a 5000 m× 5000 m grid (20× 20 grid boxes in the nowcasting
domain) within the reach of X-band radar MOD, resulting in 52 observation loca-
tions (Figure 4.2). For these, corresponding reflectivity data from the polar X-band
radar data are selected by using the nearest neighbour method. The synthetic obser-
vations represent any additional measurements. They could be considered as data
from a rain gauge network, for example. They could also represent radar data, which
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Figure 4.2: Locations of synthetic observations created for assimilation from data
of the X-band radar at MOD site on a 5000 m× 5000 m grid. Circles
around locations indicate the observation influence radius of 4000 m
used in the data assimilation experiment.

is most commonly thinned and/or superobbed on a spaced, regular grid for direct
radar data assimilation. This is done to reduce computational costs and representa-
tivity disparity and especially avoid correlation of observation errors (e.g. Alpert and
Kumar, 2007; Simonin et al., 2014; Bick et al., 2016; Waller et al., 2016). The chosen
spacing between observations mentioned above allows for an analysis ensemble that
is not completely determined by observed values, i.e. an ensemble that does not
collapse. Observation errors are assumed to be uncorrelated and an error variance
of 11.32 dB2 estimated based on network data is used (Section 2.2). Assimilation
is performed every four minutes, i.e. every two time steps, from 15:30:00 UTC to
16:00:00 UTC. This assimilation frequency is similar to the temporal resolution of
five minutes of the C-band radar data made available operationally by the German
Meteorological Service (DWD) and assimilation frequency used in, e.g. Bick et al.
(2016). In order to close the data assimilation cycling, a new ensemble nowcast is
started after every analysis step. For this new forecast, displacement vector fields
are computed deterministically between the last two analysis ensembles, separately
for each member (Section 3.2.1).

The use of the LETKF further requires the specification of an observation influence
radius, i.e. a radius indicating the area in which an observation has influence on
the model ensemble during the analysis step. It is set to 4000 m in this experiment,
all relevant data assimilation experiment settings are summarised in Table 4.1.
This radius allows for complete coverage of grid points within X-band radar MOD
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Table 4.1: Data assimilation experiment settings. More details on the probabilistic
nowcasting schemes are given in Section 3.2.

Model specific settings
Input data Radar reflectivity composite

Domain size 297× 213 grid points
Grid resolution 250 m× 250 m

Ensemble members 50
Input time step 3 minutes

Forecast time step 2 minutes
Data assimilation settings

Observation type Single X-band reflectivity data
Observation grid 5000 m× 5000 m

Observation frequency Every 2 minutes
Observation variance (std) 11.32 dB2 (3.36 dB)

Observation influence radius 4000 m

reach. Therefore, every grid point in this area is affected by the update step during
data assimilation (Figure 4.2) which favours a smooth analysis. A sensitivity study
confirming the choice of the chosen observation influence radius is presented in
Section 4.2.

The multitude of dimensions, i.e. space, time and ensemble members, complicates
the evaluation of any data assimilation experiment. As an illustrative starting point,
the behaviour of the performed experiment is first shown at one arbitrary grid
point of the model domain (0.041 ◦E, −0.053 ◦N in rotated coordinates). The chosen
grid point corresponds to an observation location within the precipitation cell and
allows for the demonstration of the reflectivity ensemble evolution (Figure 4.3).
The uncertainty of the ensemble mean is indicated by the ensemble spread, which is
defined here as the range given by the ensemble standard deviation. This standard
deviation is zero at the beginning of the forecast because all ensemble members are
initialised with the same reflectivity field (Section 3.2). Therefore, only displacement
vector fields from the ensemble generation differ between ensemble members at
15:26:00 UTC, however reflectivity values are identical. After one time step ensemble
members start to diverge and the standard deviation of reflectivity at the considered
location increases. At time steps where observations are available, data assimilation
is performed, pulling the ensemble mean towards the observation. At the same time
ensemble spread decreases due to the information gain. After the assimilation, the
ensemble evolves freely again during forecasting steps until the next assimilation
is performed. The ensemble mean shows a good agreement with the observations
during the considered period. A large deviation between model and observation
only appears at the second assimilation time step, where the ensemble mean almost
reaches 20 dBZ whereas the corresponding observation indicates no rain (5 dBZ,
Section 2.1.1). This is caused by slightly too large motion vectors and a resulting
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Figure 4.3: Reflectivity ensemble mean evolution (dark blue line) and uncer-
tainty range (light blue envelope, ± one ensemble standard devia-
tion) throughout the data assimilation cycle at observation grid point
0.041 ◦E, −0.053 ◦N and observations (orange whiskers, ± observation
error standard deviation).

too fast advection of the precipitation field. Precipitation in the forecast reaches
the considered model grid point before the precipitation onset in the observations.
After that time, when precipitation also appears in the observations, observations
and model are in better agreement.

The reduction of ensemble spread caused by the update step of the LETKF is not
only present at grid points corresponding to observation locations. Observations
impact ensemble values at all grid points within their influence radius (Figure 4.4).
Depending on the relation between ensemble mean and observations, the increment
caused by the update in the analysis step can be positive or negative. The spatial
structure of the increments is determined by the covariance matrix of the back-
ground ensemble. It indicates the relation between the ensemble at an observation
grid point and the ensemble at the grid point currently considered in the data assim-
ilation analysis. The influence of observations is smooth in space, indicating that the
ensemble adequately represents the covariance within observation influence radius.
Otherwise, the spatial structure of the increments would show random, speckled
patterns. At 15:46:00 UTC and 15:58:00 UTC data assimilation induces a decrease
in the ensemble mean at most grid point affected by the observations. This is due to
the divergent displacement of the precipitation cell between the different ensemble
members, spreading predicted precipitation over a large area of the domain. Fore-
casted precipitation is then reduced by the assimilation in areas where the actual
observations do not record precipitation. As expected from theory, ensemble spread
decreases at every grid point affected by the data assimilation (Figure 4.5).

The divergence between ensemble members with advancing forecast is apparent in
the temporal evolution of the ensemble mean (Figure 4.6). At the beginning of the
forecast interval, members do not differ much and the ensemble mean shows values
above 5 dBZ in a delimited and concentrated region. At later time steps reflectivity
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(a) 15:30:00 UTC

(b) 15:46:00 UTC

(c) 15:58:00 UTC

Figure 4.4: Data assimilation reflectivity increments (analysis minus background)
for the analysis time steps at 15:30:00 UTC (a), 15:46:00 UTC (b) and
15:58:00 UTC (c).
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(a) 15:30:00 UTC

(b) 15:46:00 UTC

(c) 15:58:00 UTC

Figure 4.5: Reflectivity ensemble spread, i.e. ensemble standard deviation, reduc-
tion (analysis minus background) for the analysis time steps at 15:30:00
UTC (a), 15:46:00 UTC (b) and 15:58:00 UTC (c).
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(a) Ensemble mean, 15:30:00 UTC (b) MOD radar, 15:30:00 UTC

(c) Ensemble mean, 15:46:00 UTC (d) MOD radar, 15:46:00 UTC

(e) Ensemble mean, 15:58:00 UTC (f) MOD radar, 15:58:00 UTC

Figure 4.6: Left side: Forecasted ensemble mean reflectivity (analysis) for 15:30:00
UTC (a), 15:46:00 UTC (c) and 15:58:00 UTC (e). The black contour
indicates the region with precipitation probability above 80 %. Right
side: Corresponding single X-band radar MOD reflectivity measure-
ments (circle is maximum radar range).

values in the ensemble members spread over a larger region due to the different di-
rections and speeds of the displacement vector fields. Therefore, the ensemble mean
appears to be blurred and shows a large area with low reflectivity values around a
core with higher reflectivity values. The probabilistic information provided by the
ensemble nowcast allows for delimiting grid points at which more than 80 % of the
ensemble members predict precipitation. This additional information indicates the
most probable location of the precipitation cell in the forecast. This location corre-
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sponds well with simultaneous radar observations of the X-band radar at MOD site.
As mentioned above, X-band radar MOD best captures the studied precipitation
cell and is used to compare forecast to reference observations.

Model predicted reflectivity and single X-band radar MOD observations are com-
pared at grid points chosen for verification. Those locations are selected on a
5000 m× 5000 m grid, similar to assimilation locations. The verification grid is
shifted by 2500 m in each direction with respect to the assimilation grid in or-
der to select independent observation for assimilation and verification (Figure 4.7).
The verification grid consists of 47 grid points within X-band radar MOD range.
Reflectivity forecast and observations are compared at verification grid points at
each of the eight assimilation time steps, after the update. Thus, the comparison
comprises 376 data points in total. At first sight forecast mean corresponds well to
observations, except for an accumulation of data points where the forecast predicts
precipitation but observations have no precipitation, i.e. 5 dBZ (Figure 4.8). These
points describe cases in which no rain is observed by the measurements but the
model ensemble predicts some. The model ensemble mean mostly remains below
15 dBZ in these cases. These relatively low reflectivity values indicate that the-
ses discrepancies mostly occur at the edge of the precipitation cell, where the cell
predicted by the model mean is not correctly restricted in space.

The overall root mean square error (RMSE) amounts to 4.49 dB and the bias to
1.54 dB. Data points where the forecast predicts precipitation but observations have
no precipitation do not affect the bias much. The bias is reduced to 1.04 dB but the
RMSE increased to 5.95 dB when removing those data points. This is due to the
fact that in almost 10 % of the cases, the ensemble mean matches with observations
showing no precipitation, those data points improve scores. For forecast verification
these data points are not removed since forecast includes regions without rain. But
results from the forecast can be improved slightly by applying the 80 % precipitation
probability threshold introduced in Figure 4.6, i.e. setting the ensemble mean for
grid points with precipitation probability lower than 80 % to no rain (5 dBZ). Then
the bias is 1.14 dB and the RMSE 4.44 dB, showing a slight improvement over using
model ensemble mean without integrating probabilistic information.

The bias indicates an overestimation of precipitation by the forecast model. This
is probably due to the fact that cell maxima are spread over different locations
through the different ensemble members. Therefore, more model grid points are
influenced by high reflectivity values than corresponding observations. Depending
on the reflectivity value range, 1 dB has a different impact on the forecast error
in terms of precipitation. Because of the logarithmic scale, a bias of 1.14 dB in
the forecast is equivalent to an overestimation of 30 %. The RMSE of 4.44 dB is
approximately 1 dB larger than the estimated accuracy of the original radar data of
3.36 dB (Section 2.2). A bias correction of the data in Figure 4.8 does not effectively
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Figure 4.7: Locations of synthetic observations as in Figure 4.2 (dots) and locations
for verification on a 5000 m× 5000 m grid shifted by 2500 m north and
east (crosses).

Figure 4.8: Comparison of ensemble mean reflectivity (analysis) and X-band radar
MOD reflectivity measurements at the available 47 verification grid
points and eight analysis time steps.

reduce the RMSE, which then drops to 4.29 dB. Therefore, the variance of the
product provided by the data assimilation framework is slightly larger than the one
of the original data but remains in the same range.
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Data assimilation within the presented framework performs as required, as demon-
strated for example by the typical behaviour of ensemble members in Figure 4.3.
The results of the forecast, verified against independent observations, are reason-
able, especially since the only information used for the forecast is motion extracted
from the comparison of two images. No additional information on the dynamics
of the precipitation cell is used. The ensemble forecast allows for a probabilistic
assessment of the precipitation nowcast, which enables the narrowing of the region
where precipitation is most probable. The wide spread of locations affected by pre-
cipitation in the forecast ensemble mean is due to the simple advection approach
and the ensemble member generation by perturbing the displacement vector.

4.2 Sensitivity to Observation Influence Radius

The above section confirms the correct functioning of the implemented data as-
similation framework. An observation influence radius of 4000 m is used for the
localisation in the LETKF, to cover a large number of grid points and obtain a
smooth analysis (Figure 4.2). The impact of using different observation influence
radii is discussed in the following in a brief sensitivity study. The data assimila-
tion experiment in Section 4.1 is performed again, with observation influence radii
of 1000 m, 2000 m, 3000 m, 5000 m, 6000 m and 7000 m. The initialisation of the
ensemble members for each experiment is identical, the random noise generation
is controlled using a fixed seed value. This analysis supports the above choice of
observation influence radius of 4000 m for further studies in Chapter 5.

The main impact of changing the observation influence radius per definition is
the changed area impacted by each observation. This effect becomes apparent in
the increments obtained at the analysis time step at 15:46:00 UTC for the six
different observation influence radii (Figure 4.9). Model grid points outside the
observation influence radius remain unchanged by the data assimilation procedure.
Therefore, the impact of data assimilation on the forecast decreases with the radius.
Changes induced by observations can be smoothed out quickly during the next
forecast steps if the impacted region is small. On the other hand, large observation
influence radii lead to overlapping information at grid points affected by more then
one observation. The LETKF can potentially be subject to undersampling, even if
the effect is strongly reduced by the domain localisation (Section 3.1.3). Information
from observations can have a negative impact on the analysis because of erroneous
background covariance matrices relating the increment at observation location to
the change in the ensemble at considered grid point. This effect increases with
increasing distance between considered grid point and observation grid point and
can have a negative impact on the product.

The experiment results in this section are verified against observations using the
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(a) Radius: 1000 m (b) Radius: 5000 m

(c) Radius: 2000 m (d) Radius: 6000 m

(e) Radius: 3000 m (f) Radius: 7000 m

Figure 4.9: Data assimilation reflectivity increments (analysis minus background)
for the analysis time step at 15:46:00 UTC for data assimilation ex-
periments with varying observation influence radius: 1000 m, 2000 m,
3000 m, 5000 m, 6000 m and 7000 m. Experiment setup as in Section 4.1.
Results with an observation influence radius of 4000 m in Figure 4.4b.

same procedure as in Section 4.1, calculating bias and RMSE (Table 4.2, Fig-
ure 4.10). As the observation influence radius increases, bias and RMSE first de-
crease. The minimum value is reached for 5000 m and 4000 m radius, respectively.
This is due to the larger area impacted by observations with larger observation
influence radius. Larger observation radii cause a larger area of the predicted reflec-
tivity to be pulled towards the observed reflectivity values. But as the observation
influence radius increases further, no further improvement can be found. Bias and
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Table 4.2: Bias and RMSE between forecast ensemble mean reflectivity (analysis)
and single X-band radar MOD measurements at verification grid points
and analysis time steps for data assimilation experiments with varying
observation influence radius. The selected observation influence radius
is highlighted.

Obs. influence radius Bias (dB) RMSE (dB)
1000 m 2.70 5.30
2000 m 2.34 4.79
3000 m 2.01 4.68
4000 m 1.54 4.49
5000 m 1.52 4.58
6000 m 1.56 4.48
7000 m 1.65 4.52

Figure 4.10: Bias and RMSE for different observation influence radii as shown in
Table 4.2.

RMSE even show a tendency to increase again. This indicates that overlapping ob-
servation information does not add value to the system. They can even deteriorate
the forecast, probably because of contradicting effects on the ensemble at considered
grid point.

An observation radius of 4000 m guarantees impact of observations on all grid points
within X-band radar MOD reach and at the same time causes only slight overlapping
of observation information. It seems to be an adequate choice for the presented
system based on verification results discussed above. Therefore, the experiment
described in Section 4.1 will be further used in the next chapter, with settings
gathered in Table 4.1.
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Areal Uncertainty
Estimate for a Combined
Precipitation Product

5

Chapter 4 validates the data assimilation framework (Chapter 3) and confirms the
performed data assimilation experiment (Section 4.1) as valid foundation for fur-
ther analysis. This chapter addresses the analysis and assessment of the variable,
areal uncertainty information provided by the implemented method together with
the combined precipitation product. The focus is on the spatial and temporal struc-
ture of the uncertainty estimate. The new estimate is shown to be more accurate
than benchmarks values, which describe the uncertainty with a constant number
representative for the precipitation system. The study is based on the data assimi-
lation experiment presented in Section 4.1 and demonstrates the added value of the
presented method providing an accurate areal uncertainty estimate for combined
precipitation products.

5.1 Spatial Structure of the Uncertainty Estimate

The quantity describing the uncertainty of the combined precipitation product is
the ensemble spread. Here, the ensemble spread is defined as the ensemble standard
deviation after a performed analysis. During the data assimilation cycle, the ensem-
ble spread depends on the forecast uncertainty, described by the background error
covariance matrix, and on the observation uncertainty, described by the observa-
tion covariance matrix. The forecast uncertainty results from the errors associated
with the extrapolation scheme used for the precipitation forecast (Section 3.2). The
main sources of error are a wrong displacement of the precipitation cell and the ne-
glected representation of the internal evolution of the cell. This forecast uncertainty
is reduced at grid points influenced by new observations adding information to the
system during data assimilation. The background error covariance matrix P b and
the observation error covariance matrix R determine the effect of new information
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on the ensemble at affected grid points. The observation error used for assimilation
is constant in this study and derived from statistical data analysis (Section 2.2). The
uncertainty described by the model ensemble spread continuously evolves within the
considered system through the data assimilation cycle. The model ensemble, and
thus the ensemble spread containing the uncertainty information, is subject to the
forecast and therefore develops a flow dependency. By this means, the presented
method allows for a physically consistent propagation of uncertainty in time.

The potential of the presented areal uncertainty estimate for the combined precipi-
tation product is its temporal and spatial variability and its statistical consistency.
In order to prove the added value of the method, the uncertainty estimate, i.e. the
ensemble spread, is analysed with focus on its correct spatial distribution. Non-zero
ensemble spread only exists at grid points where at least one ensemble member
shows precipitation values above the no-precipitation threshold of 5 dBZ, defined
in Section 2.1.1. This region expands with time as ensemble members diverge be-
cause precipitation is advected with different displacement vectors in each member
(Figure 5.1). Ensemble spread reaches maximum values at the first analysis time
step in the north-east corner of the domain. Ensemble spread maximum values stay
nearly constant for the rest of the forecast period, varying between 17.8 dB and
18.9 dB. With increasing forecast lead time, the region of maximum spread moves
further north-east with the direction of the precipitation cell displacement (see cell
displacement direction in Figure 3.4). These high ensemble spread values through-
out the forecasting period are due to the fact that no observations are available for
data assimilation in this area. Therefore, the ensemble evolves freely and its spread
is not restricted by additional information on the cell.

In other parts of the domain, the position of the precipitation cell is mostly within
reach of the X-band radar MOD. Therefore, the ensemble at these grid points
benefits from further information through the assimilation of observations from
this radar. Within the area covered by observations from the X-band radar MOD,
the ensemble spread at the beginning of the forecasting period is largest at the
edges of the precipitation cells. In these regions, ensemble members diverge quickly
due to their different displacement directions and speeds. Further into the forecast,
this pattern changes. The area of grid points with non-zero ensemble spread widens
and ensemble spread is smallest at the edges of this area because only few ensemble
members predict precipitation at these outer grid points. In the center of the area,
the spatial distribution of the ensemble spread evolves in time. As mentioned above,
the structure of this ensemble spread is of importance because it represents the
structure of the uncertainty of the obtained combined precipitation product.

The spatial structure and temporal evolution of this uncertainty information is the
main asset of the method presented in this thesis. Its potential is demonstrated in
the following sections.
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(a) 15:30:00 UTC (b) 15:46:00 UTC

(c) 15:34:00 UTC (d) 15:50:00 UTC

(e) 15:38:00 UTC (f) 15:54:00 UTC

(g) 15:42:00 UTC (h) 15:58:00 UTC

Figure 5.1: Spatial distribution of the reflectivity ensemble spread (analysis), i.e.
ensemble standard deviation, for all available analysis time steps.
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5.2 Uncertainty Verification Scores and Benchmarks

Uncertainty specified for a certain quantity cannot be verified on the basis of sin-
gle values because it is a statistical concept. Therefore, verification of uncertainty
information must be done statistically. To characterise the quality of the areal uncer-
tainty estimate of the combined precipitation product provided here, the statistical
relation between forecasted uncertainty, i.e. the ensemble standard deviation, and
the actual error, i.e. the deviation between forecasted and observed reflectivity, is
analysed. In a so-called spread-skill diagram, the perfect relation between forecast
uncertainty and forecast error is a one-to-one relation (Figure 5.2). The uncertainty
forecast perfectly describes the uncertainty of the system if, statistically, the actual
forecast error equals its forecasted uncertainty. The term ”skill” is counterintuitive
and must rather be understood as absolute error. The higher the ”skill” quantity,
the larger the error of the forecast.

For all available verification grid points and analysis time steps introduced in Sec-
tion 4.1, i.e. 376 data points, absolute forecast error and corresponding ensemble
spread are compared in a spread-skill diagram (Figure 5.3). Ensemble spread is di-
vided in classes of 0.5 dB, from 0 dB to 8 dB. Statistics of the absolute forecast error
within these classes are described by the median and the first and third quartiles.
Most data points show ensemble spread and absolute product error below 0.5 dB.
This category is dominated by grid points without precipitation, both in the fore-
cast and the observations. There is a clear correlation between ensemble spread and
absolute product error, hinting at a good uncertainty representation by the ensem-
ble spread. In the range between 0 dB to 3 dB ensemble spread, the forecast model
ensemble is overdispersive because ensemble spread is substantially larger than the
median of the absolute product error distributions (median below the one-to-one
line). This is due to non-zero model forecast values at grid points outside the ob-
served (true) precipitation cell. Most of the ensemble members correctly predict
no precipitation for those grid points, but some have higher reflectivity values be-
cause of the different precipitation displacements. The ensemble standard deviation
is more strongly impacted by these few high reflectivity values than the ensemble
mean. Therefore, the ensemble standard deviation is larger than the deviation be-
tween ensemble mean and observation. To diminish this effect data can be filtered
using the probabilistic information provided by the ensemble forecast, as described
in Section 4.1. By removing data from grid points with a precipitation probability
below a threshold of 80 %, a number of affected grid points outside the true cell
location can be removed. Using this filter reduces the data sample from 376 to
177 data points but strongly improves the spread-skill relation for ensemble spread
below 3 dB (Figure 5.4).

Two scores are defined to quantify the potential of the ensemble spread to correctly
represent the uncertainty of the precipitation product. The aim is to prove that
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ensemble spread

sk
ill

Figure 5.2: Schematic illustration of a perfect statistical spread-skill relation. Here,
spread is model ensemble standard deviation and skill is absolute error
between model ensemble mean and observations.

the spatial and temporal structure of the uncertainty estimate is not random, but
actually provide valuable additional information.

Reliability (REL): The first score indicates the amount of data points for which
the absolute product error falls within the uncertainty range predicted by the
ensemble spread – the percentage of ”hits”. The ensemble spread is interpreted
as the tolerated margin of error. The score represents the reliability of the
product uncertainty estimate

REL = 100
N

N∑
i=1

[εi ≤ σi], (5.1)

where εi and σi are the absolute forecast error and the uncertainty estimate
for each available verification data point i, respectively. The brackets here are
Iverson brackets, which take the value 1 if the enclosed condition applies and
0 otherwise. The higher the value of REL, the better the uncertainty estimate.

Spread-skill deviation (DEV ): The second score measures the deviation from the
perfect spread-skill relation, i.e. from a one-to-one relationship. It is calcu-
lated as a root mean square deviation (RMSD) between ensemble spread and
absolute model error at the verification grid points:

DEV =

√√√√ 1
N

N∑
i=1

(εi − σi)2. (5.2)

The lower the value of DEV , the better the uncertainty estimate.

The above (5.1) and (5.2) introduce the REL and DEV scores in their generic form.
In the following, they will be adapted to the areal uncertainty estimate provided by
the method and the used benchmarks.
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Figure 5.3: Comparison of absolute precipitation product (model ensemble mean)
error and ensemble spread (model ensemble standard deviation) at the
available 47 verification grid points and eight analysis time steps. En-
semble spread values are divided into bins of 0.5 dB width, boxes in-
dicate the median (blue line) and the first and third quartiles. Data
distribution is shown in frequency histograms, the solid grey lines show
the cumulative distribution function.

Figure 5.4: Comparison of absolute precipitation product error and ensemble
spread as in Figure 5.3, but with data points with a precipitation prob-
ability below the threshold of 80 % removed.
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To assess the areal uncertainty estimate for the combined precipitation product,
above scores are computed with the spatially and temporally variable product un-
certainty described by the ensemble spread after the update at all available ver-
ification grid points. The reliability RELvar is computed with σi = σvar,i, where
σvar,i is the product ensemble spread, and εi, the corresponding absolute difference
between forecast ensemble mean and observations from X-band radar MOD at the
same grid points and time. For the spread-skill deviation DEVvar, it is taken into
account that the relation between ensemble spread and forecast skill is a statistical
one. Therefore, median of the model error distributions εbin,j and corresponding
centre of the ensemble spread classes σbin,j (as defined in Figure 5.3) are used. This
also reduces the effect of outliers on the RMSD. With this, (5.1) and (5.2) become

RELvar = 100
N

N∑
i=1

[εi ≤ σvar,i],

DEV var =

√√√√ 1
M

M∑
j=1

(εbin,j − σbin,j)2.

(5.3)

In order to prove the added value of the spatially and temporally variable uncer-
tainty estimate gained by the flow-dependent ensemble spread, the above scores
must be compared to a reference. This reference is a benchmark that must be out-
performed.

The benchmark used here is a constant uncertainty estimate valid for all grid points
at all time steps. Constant uncertainty information is most common for precipita-
tion data from radar or other sources (e.g. Tong and Xue, 2005; Bick et al., 2016).
This constant value must be defined. The idea here is to conserve the same total
amount of uncertainty among the considered data points with both the variable
and the constant uncertainty estimate. By this means, the focus of the analysis is
on the ability of the presented method to correctly distribute the available amount
of uncertainty information in space and time. Therefore, the chosen reference un-
certainty estimate is a mean ensemble spread of the system, σ̄. The first approach
to obtain the mean ensemble spread is to calculate an average over the ensem-
ble standard deviation at verification grid points, including all analysis time steps:
σ̄sample = 2.71 dB. In order to confirm that results do not crucially depend on the
value of this mean ensemble spread and that the validation of the method is reliable,
a second mean ensemble spread is computed using all grid points of the nowcasting
domain: σ̄domain = 1.63 dB. Due to the fact that a large number of grid points at
the edges of the domain have ensemble spread zero because they are outside the
area affected by precipitation, σ̄domain is smaller than σ̄sample and is influenced by
the size of the precipitating area. A smaller value of σ̄ implies that the range of
uncertainty predicted for the precipitation product is smaller.

The spatially and temporally variable uncertainty estimate of the combined precip-
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itation product σvar,i is now compared to both σ̄sample and σ̄domain using the REL
and DEV scores. For this purpose, the areal uncertainty is replaced by the constant
values, yielding the benchmark values for both scores, REL and DEV :

RELsample = 100
N

N∑
i=1

[εi ≤ σ̄sample],

DEV sample =

√√√√ 1
M

M∑
j=1

(εbin,j − σ̄sample)2

(5.4)

and

RELdomain = 100
N

N∑
i=1

[εi ≤ σ̄domain],

DEV domain =

√√√√ 1
M

M∑
j=1

(εbin,j − σ̄domain)2.

(5.5)

5.3 Assessment of the Precipitation Product Uncertainty Estimate

The potential of the uncertainty estimate provided by the presented method is
analysed in comparison to constant uncertainty benchmarks representative for the
system (Section 5.2). The aim of the study is to assess the potential of σvar,i to
better describe the uncertainty of the system and the ability of the data assimilation
cycling to better distribute the uncertainty both in time and space. Scores for the
reliability of the uncertainty estimate and its deviation from a perfect spread-skill
relation, REL and DEV , introduced in (5.3), (5.5) and (5.4) are computed for
σvar,i and both benchmarks σ̄sample and σ̄domain. Because Figure 5.2 indicates an
overdispersive ensemble when using all available verification data points, scores are
also computed for data filtered with the probabilistic information gained through
the ensemble (Figure 5.4). For verification data points below the 80 % precipitation
probability threshold, ensemble mean is set to 5.0 dBZ and ensemble spread to
0.0 dB beforehand. This data set is referred to as filtered data in the following,
unchanged data as original.

Both scores show an improvement when using the areal uncertainty estimate pro-
vided by the data assimilation cycling method compared to using constant bench-
mark uncertainty estimates (Table 5.1). This statement is valid using both original
data and filtered data. Furthermore, the choice of the constant reference uncer-
tainty only changes the magnitude of the improvement. For original (filtered) data,
reliability of the uncertainty estimate RELvar improves by 9.58 percentage points
(13.56 percentage points) compared to RELsample and by 20.75 percentage points
(20.47 percentage points) compared to RELdomain. DEVvar is reduced by 1.43 dB
(2.04 dB) compared to DELsample and 1.92 dB (2.96 dB) compared to DELdomain.

72



Table 5.1: Results for REL and DEV scores for variable uncertainty estimate σvar
(highlighted) and both benchmark values σsample and σdomain.

Scores Original data Filtered data
RELvar (%) 77.13 76.06
RELsample (%) 67.55 62.50
RELdomain (%) 56.38 55.59
DEV var (dB) 1.25 1.19
DEV sample (dB) 2.68 3.23
DEV domain (dB) 3.17 4.15
DEV (σ̄optima,REL) (dB) 2.57 2.47

Especially the reliability improvement depends significantly on the chosen constant
reference uncertainty. The larger the tolerated margin of error defined by the uncer-
tainty estimate, the higher the probability for the actual precipitation product error
to lie within the predicted range. REL can take any desired value if σi is tuned ac-
cordingly. For this reason, RELsample > RELdomain as expected. Consequently, the
improvement of REL using the variable uncertainty estimate σvar,i becomes less
and less apparent for increasing values of constant uncertainty σ̄ because only the
magnitude of the margin of error matters, and not the spatial or temporal distri-
bution. Values of σ̄ can easily be tested in (5.1) and increased until a theoretical,
optimal σ̄optimal,REL that yields better REL than RELvar is found. Using the origi-
nal data set, σ̄optimal,REL ≥ 4.2 dB yield a higher reliability than RELvar. But this
improvement of the REL score cannot be transferred to DEV , as this score takes
into account the correct distribution of the uncertainty, i.e. low (high) predicted un-
certainty where absolute product error is small (large). Therefore, using the above
computed optimal constant uncertainty value yields DEV (σ̄optimal,REL) ≥ 2.66 dB,
which is always higher than DEV var.

Similarly to the optimisation of REL above, DEV can be minimised for an optimal
constant σ̄optimal,DEV . The minimisation yields DEV (σ̄optimal,DEV = 3.49 dB) =
2.57 dB for the original data set and DEV (σ̄optimal,DEV = 3.92 dB) = 2.47 dB for
the filtered data set. This value of the spread-skill deviation is the smallest value
achievable with a constant σ̄ and is still higher than DEVvar. Therefore, even if REL
can yield better results than RELvar with a constant spread value, DEV still shows
best results with σvar,i. This supports the statement that the uncertainty distri-
bution in σvar,i provide a better representation of the actual precipitation product
uncertainty than the one obtained with a constant σ̄. The variable uncertainty
σvar,i is able to predict low uncertainty where actual product error is small, and
high uncertainty where product error is larger.

As stated above, the reliability of the uncertainty estimate REL directly depends on
the tolerated margin of error. The larger the tolerated margin of error is, the larger
the actual precipitation product error εi can be. In (5.1), the margin of error is
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one standard deviation. The tolerated margin of error can be scaled by introducing
the scaling factor α into (5.1) controlling the margin of error as a multiple of the
ensemble spread:

REL = 100
N

N∑
i=1

[εi ≤ α · σi]. (5.6)

Above results for RELvar, RELsample and RELdomain are computed with α = 1, as
apparent in (5.3), (5.5) and (5.4). Now, the reliability is computed for 0 ≤ α ≤ 10
(Figure 5.5). As expected, values for RELvar, RELsample and RELdomain increase
with increasing α, and eventually approach 100 % reliability. All three scores take
the same value at α = 0 because the number of data points with perfectly predicted
reflectivity values (ε = 0) still fulfilling the condition in (5.6) is the same for all.
Except for α = 0.25, RELvar always yield better reliability than both benchmark
values. This means that for a fixed required reliability, the presented areal uncer-
tainty estimate σvar,i allows for a smaller tolerated margin of error for the combined
precipitation product. For example, a reliability of REL = 80 % is reached with a
tolerated margin of error just above one standard deviation for RELvar, whereas it
must be increased to approximately 1.75 and 2.75 for both benchmarks RELsample

and RELdomain, respectively.

Figure 5.5: Reliability score REL according to (5.6) for spatially and temporally
variable uncertainty estimate σvar,i and both benchmark values σdomain
and σsample, for different values of α scaling the tolerated margin of
error.
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Summary, Conclusions,
and Outlook

6

This thesis presents a method to estimate spatially and temporally variable uncer-
tainty of an areal precipitation product. The method makes use of data assimilation
to merge precipitation measurements from different sources. Data assimilation is
performed with an ensemble nowcasting model which provides information about
the precipitation displacement over time. An ensemble data assimilation framework
was developed and implemented during the course of this thesis. Additionally, an
extrapolation-based nowcasting scheme was implemented and coupled to the data
assimilation framework, together with X-band radar observations. The implemented
framework allows for testing the presented method. The potential of the areal un-
certainty estimate provided by the method is demonstrated in a proof of concept
study.

The aim of the presented method is to merge measurements from different sources
into a combined precipitation product and to provide an associated spatially and
temporally variable uncertainty estimate. Requirements for this uncertainty esti-
mate are an accurate representation of the actual error of the product, an adjust-
ment to additional observations merged into the product through data assimilation,
and flow dependency. Such detailed uncertainty description is important in order
to assess the reliability of the precipitation product. This information is especially
important for areal precipitation information as it is needed, for example, to gen-
erate precipitation ensembles for probabilistic hydrological modelling, or to specify
accurate error covariance when using precipitation observation for data assimilation
into numerical weather prediction models. In this study, radar reflectivity is used to
described precipitation. Reflectivity can be converted to rain rate using empirical
relations that are not part of the analysis.

The developed data assimilation framework is implemented using object-oriented
programming to achieve a high level of flexibility (Chapter 3). It is designed for
ensemble data assimilation methods and currently works with the Local Ensemble
Transform Kalman Filter (LETKF). The framework can easily be coupled to other
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models and extended with further observation types. It is used in combination with
precipitation nowcasting in this thesis, but is not restricted to this purpose. The
implemented nowcasting scheme computes the cross-correlation between subsequent
radar composite images and extrapolates the evolution of the precipitation field
using the deduced displacement. The nowcast is started from composite data of a
network of four X-band radars and a probabilistic forecast is generated using an
ensemble technique. The ensemble is generated by stochastic perturbation of the
computed precipitation displacement vector.

The implemented framework allows the coupling of the nowcast with additional
precipitation information. Observations used for data assimilation in the proof of
concept study presented in this thesis are generated on a regular grid from single
X-band radar data (Section 2.1.1). The required X-band radar measurement un-
certainty is computed statistically by comparison with reference micro rain radars
(MRR), using five months of high-resolution data from a radar research network.
The standard deviation of the X-band radar measurement error is found to be
3.36 dB (Section 2.2).

A data assimilation experiment is performed to test the presented method with
emphasis on its potential to provide an improved spatial and temporal uncertainty
estimation. For the experiment, an ensemble precipitation nowcast is performed
and additional observations are merged into it continuously using the LETKF,
generating a combined precipitation product. The behaviour of the data assimilation
cycle results confirms the functioning of the framework. A comparison of the forecast
results with observations establishes the experiment as valid foundation for the
analysis of the method (Chapter 4).

The uncertainty of the precipitation product is estimated by the ensemble spread of
the nowcast after each performed data assimilation step. Two scores are introduced
for the assessment of the method. Both are based on the definition of a perfect
uncertainty estimate, for which the actual observed error must statistically corre-
spond to the predicted uncertainty. The first score describes the reliability REL
of the uncertainty estimate. It indicates the percentage of cases in which the ac-
tual error of the precipitation product lies within the estimated uncertainty range,
which defines a tolerated margin of error. The second score measures the deviation
DEV of the uncertainty estimate from a perfect spread-skill relation as a root mean
square deviation between actual error and uncertainty estimate (Section 5.2).

The scores are computed at verification grid points selected on a regular grid and
for all available analysis time steps. The assessment of the potential of the obtained
areal uncertainty estimate σvar,i requires a benchmark which must be outperformed.
The benchmark for this study is defined as the mean spread of the system. By
this means, the ability of the method to correctly distribute the available mean
uncertainty of the system over time and space can be studied. The mean uncertainty
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of the system is computed using only verification grid points (σ̄sample = 2.71 dB)
and all grid points of the domain (σ̄domain = 1.63 dB).

Both scores demonstrate an improvement of the uncertainty estimate by the pre-
sented method. The reliability, REL, increases by 9.58 percentage points (from
67.55 % to 77.13 %) when using σvar,i instead the constant uncertainty σ̄sample and
by 20.75 percentage points (from 56.38 % to 77.13 %) compared to using σ̄domain.
The spread-skill deviation, DEV , is reduced by 1.43 dB (from 2.68 dB to 1.25 dB)
when using σvar,i compared to using σ̄sample and by 1.92 dB (from 3.17 dB to 1.25 dB)
compared to using σdomain. These results show that the presented areal uncertainty
estimate allows for a more accurate distribution of the uncertainty of the com-
bined precipitation product (Section 5.3) than a constant uncertainty information.
Calculating optimal theoretical values for both scores also prove that no constant
uncertainty information can outperform the uncertainty estimate by σvar,i.

Additionally, an analysis of the influence of the tolerated margin of error on the
results of the reliability score REL is conducted. This analysis demonstrates that
for the same level of reliability, the uncertainty estimate provided by the presented
method allows for a smaller tolerated margin of error than the benchmark values.
For example, a reliability of 80 % is reached with a margin of error of approximately
one standard deviation using σvar,i compared to 1.75 and 2.75, approximately, for
σsample and σdomain.

The proof of concept shows the potential of the developed method and establishes
the groundwork for further studies and possible applications. The evaluation of
both considered scores demonstrates that the provided areal uncertainty estimate
outperforms constant benchmark uncertainty values. It enables a more accurate
distribution of uncertainty in space and time, increasing the uncertainty estimate
for regions where the precipitation product exhibits large errors, and decreasing it
where the product has smaller errors. To the best knowledge of the author, this is
the first study of this kind, focusing on the assessment of flow-dependent uncertainty
for a combined precipitation product using data assimilation. The proof of concept
study elaborated in this thesis shows good results and encourages further study.

The next step of study and development of this method should address its appli-
cability in a real network setting. The proof of concept is performed in a rather
conceptual environment. The method was analysed based on an individual case
study, performing a data assimilation cycle for a 30 minute time period of a pre-
cipitation event. Observations used for data assimilation are taken from one source
and represent a dense, regularly spaced measurement network. Furthermore, the
nowcasting scheme used to perform the forecast and include the flow dependency is
kept simple, relying on displacement extrapolation. The analysis performed in this
thesis can be extended to more precipitation events or other observation configu-
rations for data assimilation. Especially the case of contradicting observations, e.g.
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by implementing biases in the generated synthetic data, could yield valuable infor-
mation on how the method performs in a real setting. But in order to truly assess
the performance of the method in a realistic environment, it would be interesting to
exchange some of the framework parts used here with others, closer to operational
applications.

A first step could be the improvement of the forecasting system. The forecasting
system is important because it incorporates the temporal evolution of the system
into the uncertainty estimate and allows for its flow dependency. Furthermore, the
nowcasting ensemble and its spread influence the data assimilation results and the
resulting uncertainty estimate. The nowcasting scheme used for the proof of con-
cept study in this thesis does not take into account internal variability of the cells
caused for example by growth and decay. Furthermore, it relies on the persistence of
the displacement direction and velocity and cannot represent rotation movements.
These effects are important for time scales up to 30 minutes forecast and more. A
more elaborated nowcasting scheme, e.g. including cell tracking or even a merging
with numerical weather prediction, is likely to be beneficial to the method.

The data used in this study is from a high-resolution weather radar network. Due
to the high spatial and temporal variability of the data, the network offers great
options to study the accuracy of the method in further precipitation cases, and, e.g.
study its performance in different situation like stratiform or convective ones. The
most interesting aspect of the network data with respect to the method is the pos-
sibility to further improve the estimation of the measurement errors specific to the
data set. In this thesis, X-band radar data is used for assimilation with a constant
observation uncertainty. This observation uncertainty is computed by comparison
with reference MRRs, as described in Section 2.2, which is already an accurate es-
timation of the actual measurement error of the X-band radars. Using the multiple
available combination of different X-band radars and MRRs within the network,
it is possible to substantially refine this description of the measurement error. The
computed measurement error can be analysed with respect to different parameters
in order to find dependencies that can be used as predictors for the X-band radar
measurement error. A preview of such a study is shown in Figure 6.1. The data set
presented in Section 2.2 is used to analyse X-band radar measurement error as a
function of distance from the radar. There is a notable dependency between X-band
radar measurement error and distance from the radar that can be used to further
specify the uncertainty of X-band radar observations used for data assimilation.

Furthermore, an improvement towards a more complete X-band radar measurement
error covariance matrix could be achieved by analysing time series of the X-band
radar measurement errors. This allows for a reduction of the thinning of radar
observations for data assimilation, where covariance of errors of the observations
have to be either specified or observations thinned to a distance at which errors
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Figure 6.1: X-band radar measurement error standard deviation for different dis-
tances from the radar computed from five months high-resolution net-
work data (Section 2.2) and linear regression function.

can be assumed uncorrelated. A study on the structure of the error covariance
matrix could also be realised by operationally implementing the presented method
in a network environment and analysing the resulting uncertainty estimate over a
longer, statistically representative, period of time.

The operational implementation within a large radar network, e.g. the C-band radar
network of the German Meteorological Service (DWD) covering Germany, is a pos-
sible prospective application of the discussed method. The method would be con-
venient for the generation of a composite precipitation product statistically merg-
ing radar, rain gauge and potentially MRR data under consideration of respective
measurement errors. The coupling of data from different sources with a precipita-
tion nowcasting tool through ensemble data assimilation would yield a continuously
evolving precipitation product along with a corresponding detailed uncertainty field
available for further applications like the generation of precipitation ensemble or the
use for data assimilation into numerical weather prediction.
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