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nicht veröffentlicht.

Ort, Datum

Masoud Mehrjoo

3





Abstract

Free-Electron-Lasers (FELs) have enabled tremendous possibilities in x-ray science due
to their ultrashort, highly intense and coherent radiation. At present, FELs rely pri-
marily on the Self Amplified Spontaneous Emission process, which is of a stochastic
nature, and emit pulses which may fluctuate drastically from shot to shot. Since many
of the novel experiments at FELs require a high degree of beam focusing, in particular
for imaging single non-crystalline biological particles, it is imperative to characterize the
specific properties of single-shot focused complex wave fields versus different states of the
FEL machine. Therefore, a deterministic approach applicable to various FEL operation
regimes is desirable to enable the investigation of photon beam properties. The statis-
tical evaluation of the determined properties over different ensembles of pulses leads to
an understanding of and potentially optimization of the radiation to be delivered.

In this thesis, I have studied different realizations and methods of focused wave field
determination at beamline BL2 at the Free electron Laser At Hamburg (FLASH) for
various radiation regimes. An iterative diffraction imaging technique has been developed
to study highly coherent pulses. The method comprises of a phase retrieval algorithm
applied to single far-field diffraction patterns of highly focused pulses. Also, the Hart-
mann Wavefront Sensing method, as a classical approach, has been applied to measure
photon beam properties in the same machine state. The comparison of results has built
confidence in the validity of the imaging method.

A transition to partially coherent radiation caused the algorithmic convergence of the
iterative technique to fail. Therefore, a general iterative algorithm has been demon-
strated based on Schell’s theorem to reconstruct single-shot complex wave fields, as
well as estimating the spatial degree of coherence. The properties of measured pulses
have been determined with the lowest level of available information compared to the
conventional methods, as a single-shot 2D diffraction pattern measured in the far-field.
These imaging methods are applicable across a very broad photon energy range since no
absorptive optics are needed between the focusing optics and the detector.

Additionally, the variation in longitudinal source position within the operating undula-
tor segments has been determined precisely as feedback from both algorithms, providing
further insight into how FEL machine parameters influence the optical properties of the
photon beam.
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Kurzfassung

Freie Elektronen Laser (FELs) haben dank ihrer ultrakurzen, hochintensiven und kohärenten
Strahlung hervorragende Möglichkeiten im Bereich der Wissenschaft mit Röntgenstrahlung
geschaffen. Zur Zeit basieren die meisten FELs auf dem Mechanismus der Selbstver-
staerkung spontaner Emission (englische Abk. SASE), einem stochastischen Prozess,
was sich in der Emission von Pulsen mit stark fluktuierenden Eigenschaften manifestiert.
Eine Vielzahl neuartiger Experimente an FELs bedarf stark fokussierter Strahlung. Ins-
besondere für die Abbildung einzelner, nichtkristalliner, biologischer Teilchen, wird da-
her eine genaue Charakterisierung spezifischer Eigenschaften des komplexen Wellenfeldes
des FELs in Abhängigkeit der Maschinenparameter für jeden einzelnen Schuss benötigt.
Ein deterministischer Zugang, der auf verschiedene FEL Strahlungsregime angewendet
werden kann ist zur Untersuchung der Röntgenstrahleigenschaften wnschenswert. Eine
statistische Auswertung der ermittelten Eigenschaften für eine Anzahl verschiedener
Pulsensembles führt somit zu einem Verständnis der Strahlungscharakteristiken und
kann potenziel zur Optimierung dieser verwendet werden. Die systematische Veränderung
der Strahlungsregime und quantitative Messung von Pulsen, die sich von Schuss zu
Schuss innerhalb des Ensembles unterscheiden, erlaubt die Beobachtung der Variabilität
gemessener Parameter zwischen verschiedenen Ensemblen.

In dieser Arbeit werden verschiedene Realisierungen und Methoden der Messung
fokussierter Lichtfelder an der Beamline BL2 am Freie Elektronenlaser Hamburg (FLASH)
in unterschiedlichen Strahlungsregimen untersucht. Für hochgradig kohärente Strahlung
wird eine iterative Beugungsbildgebungstechnik weiterentwickelt, die Phasenrekonstruk-
tion auf einzelne Fernfeld-Beugungsmuster von hochfokussierten Pulsen anwendet. Ein
Vergleich mit dem klassischen Wellenfront-Messverfahren nach Hartmann schafft hierbei
Vertrauen in die Gültigkeit der neuentwickelten iterativen Methode.

Für partiell kohärente Pulse konvergiert die iterative Methode jedoch nicht. Da-
her wird ein verallgemeinerter iterativer Algorithmus entwickelt und demonstriert, der
Konzepte der optischen Theorie partiell kohärenter Rntgenstrahlen, basierend auf dem
Schellschen Theorem, benutzt. Dieser Algorithmus erlaubt sowohl die Rekonstruktion
des komplexen Wellenfeldes als auch eine Abschätzung der räumlichen Kohärenz einzel-
ner Pulse. Der so ermittelte Kohärenzgrad in verschiedenen Strahlungsregimen ist in
guter Übereinstimmung mit Simulationen der FEL Strahleigenschaften. Im Vergleich
zu herkömmlichen Methoden wird hierbei der Kohärenzgrad und andere Parameter des
Wellenfeldes mit der geringstmöglichen Menge an verfügbarer Information, der Mes-
sung eines einzelnen zweidimensionalen Beugungsmusters, gewonnen. Diese bildgeben-

iii



den Verfahren sind über einen sehr breiten Bereich von Photonenenergien anwendbar,
da keine absorbierenden optischen Elemente zwischen der fokussierenden Optik und dem
Detektor benötigt sind.

Als zusätzliche Information kann ferner die longitudinale Quellposition im aktiven
Undulatorsegment aus beiden Algorithmen genau ermittelt werden. Dies liefert weiteren
Aufschluss darüber wie die Maschinenparameter des FELs die optischen Eigenschaften
des Röntgenstrahls beeinflussen.
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CHAPTER 1

Introduction

The advent of and rapid advances in synchrotron sources enables the determination of the
structure and variability of crystalline biological specimens, such as protein and molecu-
lar structures[1] which have important practical ramifications, such as the development
of medicines. X-ray crystallography is by far the most prolific method to visualize pro-
tein structure at the atomic level and enhances our understanding of protein function.
One the key practical limitations of crystallography structure determination is that some
of the most interesting proteins can not be crystallized, or are unable to be crystallized
readily[2, 3, 4].

Recently, X-ray Free-Electron-Lasers (FELs)[5] have demonstrated the potential to
determine the structure of small biological particle such as viruses and macromolecules in
their native environment, without the need for crystallization and chemical staining[6, 7].
The unique properties of FELs such as ultrashort, high peak power and highly coherent
pulses have led to the introduction of a new field of microscopy called Coherent X-ray
Diffraction Imaging (CXDI) which allows the imaging of individual and very weakly
scattering particles in a single-shot[8, 9, 10].

Coherent x-ray diffraction imaging is a method whereby one plane of diffraction data
may be transformed into an image of the sample by phasing diffraction patterns. This can
be in two-dimensions from a single measurement. To phase a diffraction pattern in the
context of CXDI, different phase retrieval algorithms have been introduced (for example,
see Chapter4), utilizing the different propagation formalism between the sample and
detector[11, 12]. For example, in plane-wave illumination of the sample, the Fourier
transform is often sufficient to describe the propagation between the sample and detector
located in the far field.

To determine the structure of extremely small particles, or equivalently weak scatterer
samples, a high degree of beam focusing is required to obtain the highest intensity
probing the sample located in a downstream of the focus. Imaging a sample with a
divergent illuminating beam introduces a robust technique of x-ray microscopy called
Fresnel Coherent Diffraction Imaging (FCDI)[13, 6].

Here, the physical exit wave leaving the sample is related to a direct multiplication of
the incident wave and the sample’s 3D refractive index function. Therefore, phasing the
diffraction pattern results in resolving a complex wave field containing the information
of the sample and illuminating wave field.
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1 Introduction

To this end, the wave illuminating the sample must be known in order to correctly
separate its features from those of the incident beam. This realization plays an important
role to quantitatively interpret the structure of the sample investigated, and is called
Wave Field Determination or Characterization of focused X-ray pulses.

FELs primarily rely on the stochastic nature of the Self-Amplification of Spontaneous
Emission (SASE) process, and emit pulses which may fluctuate from shot-to-shot[5].
This statistical nature of FELs demands a comprehensive technique to characterize wave
field properties on a single-shot basis. It potentially allows further statistical analysis
over classes of determined properties to understand and optimize the radiation delivered,
as well as the source characteristics.

Over the last few years, a variety of techniques have been developed to characterize
FEL pulses, such as X-ray Grating Interferometry (XGI), Knife-edge scans, Ptychogra-
phy Coherent X-ray Imaging (PCDI) and Imprints which are briefly described here as a
background to the approaches developed in this thesis (see Chapters3-4-5)).

X-ray Grating Interferometry

It has been demonstrated that interferometry can be used as a well-established technique
for spatially resolved in situ investigation of X-ray wave fields at synchrotrons and XFEL
facilities[14, 15, 16]. Interferometry enables an at-wavelength characterization of the
optical components and to determine, in a non-invasive manner, eventual fluctuations
of wave field properties. The principle of x-ray grating interferometry is based on the
Talbot effect. Following the diffraction by a periodic grating illuminated by the x-
rays, the propagation direction changes by a small shear angle and, at certain-discrete
distances downstream of the grating, a constructive interference pattern appears. Any
transverse variation in the wave field induce a lateral displacement in the measured
interference pattern. Recent theoretical developments showed that the complex wave
field of x-ray pulses can be retrieved using the diffraction measured up to a certain-
limited resolution[17, 18, 19].

The angular sensitivity of grating interferometer depends on the grating-to-detector
distance and inversely on the period of the grating. The latter parameter also determines
the period of the diffraction pattern which may not always be resolved by position
sensitive detectors for practical grating pitches. Therefore, a second grating (absorption
grating) having a period matching the Talbot pattern is often inserted in front of the
detector as a transmission mask, creating a Moiré pattern that can be conventionally
measured in a single-shot basis (fig.1.1).

For a parallel beam geometry (fig.1.1), the spatial resolution of grating interferometry
is limited by either the pixel size of the detector or the pitch of the absorption grating,
and thus, by the manufacturing process. More generally speaking, the performance
of interferometry essentially depends on the quality of the grating. In addition, when
interferometry applies to hard X-ray pulses the fabrication of the grating becomes more
crucial. For example, the beam splitter grating G1 (shown in fig.1.1) should consist
of a low absorbing, phase shifting structure. G2 would be designed precisely with a
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Figure 1.1: Experimental setup for single-shot wavefront sensing using XGI technique.
The grating interferometer consists of a checkerboard pattern silicon phase
grating G1 and a gold absorption grating G2, located at a distance d from the
phase grating. In combination they generate a moiré pattern, from which
the wavefront distrotion can be extracted.[14]

micrometer scale period and well-uniform structure. Its thickness has to provide a high
contrast as well.

Knife-edge scans

In the Knife-Edge technique (also referred to as scanning knife edge) a sharp knife edge
is scanned across the beam axis, and the total intensity of the transmitting beam is
recorded as a function of the edge position[20, 21, 22]. The numerical differential of the
measured intensity profile gives the line-spread function of the beam spot (fig.1.2).

The knife edge of the conventional method must be sharp and fully opaque. To satisfy
these requirements, the penetration length of the knife-edge material must be smaller
than the depth of focus. When the focal spot size in the hard X-ray region reaches a
nanometer order, no ideal knife edge exists because the depth of focus becomes smaller
than the penetration length. The validity of this method mostly relies on the assumptions
that the beam profile has a well-defined, stable shape (mainly of a Gaussian profile) and
that the scanning steps are sufficiently precise.[24]. Since FEL pulses fluctuate shot-to-
shot, the variation of focus position and intensity distribution may result in observing
an average profile of the beam; an over-estimation of the beam size.

Coherent X-ray Ptychography

Scanning coherent diffraction microscopy, also known as ptychography, has revolution-
ized nanobeam characterization at synchrotron radiation sources. In this X-ray mi-
croscopy technique, a sample is scanned on a grid perpendicular to the optical axis;
through a confined, coherent beam; recording at each position of the scan a far-field
diffraction pattern[25, 26] (fig.1.3).
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1 Introduction

Figure 1.2: Conceptual drawing of microbeam knife-edge scan system with differential-
phase-contrast mode.[23]

Figure 1.3: Description of ptychography setup and sample. (a) Schematic outline of
the experimental setup. Optical axis is not to scale. (b) Scanning electron
microscope (SEM) image of a high-resolution test chart made of a 40 by 40
array of starlike structures, patterned into a tungsten layer (thickness 1 mm)
on a diamond substrate (thickness 100 mm). Its smallest features have a size
of about 50 nm. (c) Single-pulse far-field diffraction pattern recorded as part
of the ptychographic dataset (logarithmic scale)[25].

From these overlapping data, the complex transmission function, describing both the
attenuation and phase shift by the sample, and the complex illuminating wave field
can be reconstructed quantitatively by iterative phase retrieval algorithms. Therefore,
a set of scan points (typically few measured scanning points) over a region of interest
of the sample is needed to reconstruct the illuminating probe. The result delivers an
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average probe reconstruction that predominantly assumes a stable illumination. The
method requires a large number of measurements. As such, shot-to-shot variations in
the focus properties will not be captured. The reconstruction, albeit showing superb
spatial resolution, reflects the properties of a statistical average.

It was shown that the method can reconstruct the illuminating probe from a single-
pulse diffraction pattern, however, the comparison with a reconstructed average beam
showed a more precise reconstruction[25]. In addition, the assumption of fully coherent
illumination might not hold in many practical situations. The recent progresses showed
that partially coherent beams could be retrieved by using ptychography if a mixture of
coherent states is assumed[27]. Nevertheless, the validity of this assumption still requires
a well-defined illuminating probe.

Imprints

Imprint techniques have predominantly been used to estimate FEL focus sizes with
excellent spatial resolution as shown in [28]. For this purpose, single highly intense X-
ray pulses illuminate a flat surface of a typically metallic sample and the ablated holes
allows an estimation of the focus spot size and shape[29, 30]. Plotting the ablation
imprint areas, created by single-shots in a solid material, in relation to the pulse energy
logarithm should provide a linear sequence to be fitted by a line. The beam spot area
is then given by the slope of the linear fit and the ablation threshold pulse energy is
determined by a linear extrapolation to zero imprint area, i.e, no surface damage[30].

Practically, the random shot-to-shot fluctuations of XFEL pulse energy can be mon-
itored in the focal spot. The interpretation of the results is statistical in nature and
thus demands a large number of measurements. Moreover, the complex wave field of
pulses can not be determined and in situ feedback is not provided. The imprints need
to typically be retrieved from the focal area and investigated with a high resolution
microscope. Additionally, when the pulse intensity distribution fluctuates shot-to-shot
the assumption of linear integration may no longer be valid, and the dependence of the
imprint pedestal areas on the pulse energy logarithm may become non-linear[30]. Such
a non-linear behavior could be incorrectly attributed to material properties and might
introduce severe inaccuracies into the results leading to an undesirable misinterpretation
of the focus characteristics.

To summarize, in the former approach, pinhole arrays or gratings are designed for
a limited range of photon energies. The accuracy of reconstructions specifically relies
on the assumption of a small angle deflection, which decreases the sensitivity to small
local phase changes[31]. The latter approach require a large ensemble of measurements,
in the presence of a sample, to retrieve the illuminating probe. Intuitively, shot-to-
shot fluctuations of the focus properties will not be resolved and a statistically averaged
picture of the focused beam is obtained.[32]

A solution to overcome these problems is to use an iterative diffractive imaging
technique[33, 34, 35] applied to single far-field diffraction patterns of a highly focused
beam[36, 13]. This method comprises an Iterative Phase Retrieval Algorithm (IPRA)
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1 Introduction

with real space and intensity modulus constraints, utilizing the spherical phase curvature
of the focused beam. This modification results in the fast, reliable and predominantly
unique convergence of the algorithm[37, 38].

In this thesis, an extension of this method to systematically characterize highly focused
X-ray pulses under more general experimental conditions than previously assumed is pre-
sented. The technique can be used to explore both the complex wave field information,
as well as source-point position and its fluctuations. The latter is particularly interesting
for short FEL beamlines and yields valuable information about the gain length of the
source. In addition, it is shown that the partial coherence of the illuminating beam can
be accommodated into a general algorithm that enables us to retrieve an estimation of
the coherence function associated with single shots. This achievement provides a unique
vision to dynamic fluctuations of both coherence properties of FEL sources.

The method applies to a very broad photon energy since no manipulative optics or
sample is needed between the focusing optics and the detector. In particular, the method
enables the characterization of hard X-ray pulses measured in far-field of focusing optics
without either a need for the unique fabrication process or scanning over a sample up-
stream of the detector. The numerical implementation of the method discussed within
this thesis shows the feasibility of the iterative method to converge reliably when the
specified conditions are met for the given energy that practically allows the method
applies to soft and hard x-ray beamlines, solely by a change in the generic geometry of
x-ray microscopy proposed within the next chapters. As it will be shown later, for the
soft and hard x-ray wave field determination the far field condition to measure diffrac-
tion patterns varies in order of few meters. This realization is often compatible with
the availabilities provided in most beamlines, such as those reported at the SPB/SFX
instrument at the European XFEL for hard x-ray energy range or as an alternative to
the softer photon energy at the FLASH beamline BL2.

The wave field characterization experiments presented in this thesis were conducted at
FLASH beamline BL2. FLASH, the Free-electron LASer in Hamburg, is the world’s first
free-electron laser for extremely bright and ultra short pulses in the extreme ultraviolet
and soft x-ray range. The soft x-ray output, based on the SASE process, possesses
unprecedented flux about 1013 photons per pulse with pulse duration in the femtosecond
range and a high level of spatial coherence. The FLASH source provides a tuning range
from 40 - 10nm [39].

The ability to use varying groups of undulators (diverse gain regimes[5]), as well
as distinct longitudinal electron bunch compressions (radiation’s mode reduction[40]),
made FLASH suitable for the study of FEL source radiation. This can be considered as
a comparative investigation to XFELs, which practically shares many similarities to the
European XFEL, though for a different operational wavelength range.

Outline

The thesis is organized as follows. Within Chapter 2, selected aspects of wave field
determination are described. The purpose is to outline the necessary mathematical
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and numerical tools for the implementation of the optical modeling techniques used
throughout the thesis.

Chapter 3 describes the Hartmann Wavefront Sensing method and different relevant
approaches to retrieve a complex wave field by finding local phase gradients. Particular
emphasis is placed on the Fourier Demodulation method which forms the basis of all
experimental wave field analyses within the chapter.

Chapter 4 presents an extension of an intermediate-far field iterative phase retrieval
algorithm to characterize single-shot highly focused x-ray pulses of FLASH, for fully
coherent illuminations. First, the main body of the iterative algorithm is described
theoretically by introducing a mixed propagation strategy, and later its performance is
assessed by numerical simulations. It is shown that the method is capable of reconstruct-
ing the complex wave field of pulses to a high resolution, and can resolve small variations
in phase. The iterative method allows tracking the longitudinal focus fluctuations with
an uncertainty of approximately 2 mm which, in turn, reflects the longitudinal source-
positional variations within the active undulator segments with an unprecedented level
of accuracy. Additionally, the key issues governing the method’s convergence, such as
the required coherence level and signal-to-noise ratio, are discussed when different pulses
of different radiation regimes apply.

Chapter 5 presents a general multi-feedback algorithmic approach to study wave fields
of partially coherent sources. The physical interpretation of measured intensities is
described using the Generalized Schell’s theorem, using reciprocal constraints of phase
retrieval algorithms for reconstruction of partially coherent pulses. This new algorithm
delivers an estimate of the coherence function associated with each pulse and provides a
statistical insight into the coherence fluctuation as well as the wave field variations, as
SASE based sources are statistical in nature. The conditions governing the transition
from conventional approaches to the general algorithm are discussed.

The thesis ends with a short summary and conclusion in Chapter 6.
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CHAPTER 2

The Fundamentals of Wavefront Determina-
tion

In this chapter, an outline of paraxial optics is provided to describe light propagation
in free space for different geometrical regimes. Important relations of Fourier theory are
reviewed to aid the discussion of the solution of the Helmholtz equation for different
geometrical regimes, describing the propagation of an electromagnetic field. Beyond
analytical studies, particular numerical aspects are studied to define the proper sampling
criteria to satisfy the Nyquist theorem. The phase problem in the context of a complex
wave field is reviewed and discussed.

A large body of literature is available on the topic from which a selection ([41]-[42])
was used in the preparation of this chapter.

2.1 Fourier Analysis

The representation of certain functions by expansion into orthogonal functions forms
a powerful technique that can be used in a large class of problems. The particular
orthogonal set chosen depends on the symmetries involved. We consider an interval
[a,b] in a variable ζ with a set of real or complex functions Un(ζ), square integrable and
orthonormal (satisfying the Dirichlet condition) on the interval [a,b]. The orthonormality
condition on the function Un(ζ) can be expressed as∫ b

a

U∗m(ζ)Un(ζ)dζ = δmn, (2.1)

where * indicates the complex conjugate counterpart.
An arbitrary function f(ζ), square integrable (in Hilbert space) on the interval [a,b], can
be expanded in a series of orthonormal functions Un(ζ). If the number of terms in the
series is finite (N),

f(ζ)↔
N∑
n=1

an.Un(ζ) (2.2)

9



2 The Fundamentals of Wavefront Determination

minimizing the mean square error[43]:

MN =

∫ b

a

|f(ζ)−
N∑
n=1

an.Un(ζ)|2dζ (2.3)

can demonstrate the proper choice of the coefficients as

an =

∫ b

a

f(ζ).U∗n(ζ)dζ. (2.4)

If there exist a finite number N0 such that for N > N0 the mean square error can be
made smaller than any arbitrarily small positive quantity, then the series representation

f(ζ) =
∞∑
n=1

an.Un(ζ) (2.5)

with an given by (2.4) is said to converge in the mean to f(ζ). Series (2.5) can be
rewritten with the explicit form (2.4) for the coefficients an :

f(ζ) =

∫ b

a

{
∞∑
n=0

U∗n(ζ ′)Un(ζ)}f(ζ ′)dζ ′. (2.6)

Since this represents any function in the interval (a,b), the bilinear term U∗n(ζ ′)Un(ζ)
only must exist in the neighborhood of ζ = ζ ′. In fact, the kernel of 2.6 converges to the
Dirac’s delta function as following,

∞∑
n=0

U∗n(ζ ′)Un(ζ) = δ(ζ − ζ ′). (2.7)

This is the so-called completeness relation. The most famous orthogonal complete
basis functions are Sine and Cosine which form a Fourier series.

Expressing Fourier sets in an exponential form, we can write the Fourier series as

f(ζ) =
∞∑
n=0

an. exp(inζ), (2.8)

where
√
−1 = i.

When f(ζ) is periodic with a period 2L (for example, propagating electromagnetics
waves are of periodic nature) the coefficient can be presented as

am =
1

2L

∫ L

−L
f(θ) exp(i

−mπθ
L

)dθ. (2.9)
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2.1 Fourier Analysis

In turn the resulting Fourier series is

f(ζ) =
∞∑
n=0

∫ L

−L
f(θ). exp(i

nπ

L
(ζ − θ))dθ. (2.10)

We now let the parameter L approach ∞, transforming the finite interval [-L,L] into
the infinite interval [−∞,∞]. Setting a new parameter space nπ

L
= k, π

L
= δk, (2.10)

introduces a unitary integral operator

f(ζ) =
1

2π

∫ ∞
−∞

exp(−ikζ)dk

∫ ∞
−∞

f(θ) exp(ikθ)dθ, (2.11)

where L = 1√
(2π)

∫∞
−∞ exp(−ikζ) dk, L.L† = 1 and 1 represents the unit operator in

Hilbert space. (2.11) is called Fourier integral theorem.
We now define g(k) (Hereafter the vectors are being indicated by boldface type) the

three dimensional Fourier transform of the function f(x) (x = (x,y,z)) by

g(k) =
1

(
√

2π)
3
2

∫ ∞
−∞

f(x) exp(ik.x)dx, (2.12)

and also the inverse Fourier transform of g(k) can be expressed as :

f(x) =
1

(
√

2π)
3
2

∫ ∞
−∞

g(k) exp(−ik.x)dk. (2.13)

An analogous representation of Fourier transform for D(D=1-3) dimensional reciprocal
spaces can be expressed as :

g(kD) =
1

(
√

2π)
D
2

∫ ∞
−∞

f(xD) exp(ikD.xD)dxD, (2.14)

where the subindex D represents a D dimensional vector.
(2.13) may be interpreted as an expansion of a function f(x) in a continuum of plane
wave eigenfunctions; g(k) then becomes the amplitude of the wave exp(−ik.x). It can
be shown[43] that on the space L2(R) of square-integrable functions on R the Fourier
theorem (2.12,2.13) defines a bijective mapping, i.e. there is a one-to-one correspondence
between a function and its Fourier transform and vice versa.

2.1.1 Important properties of the Fourier Transform

Assume that F represents the Fourier transform of a function. Hereafter, 2D Fourier
transforms will be considered mainly within this thesis.
Then If F(g) = G and F(h) = H, thus

1. Shifting

11



2 The Fundamentals of Wavefront Determination

The Fourier transform of a shifted function is given by the Fourier transform of
the original times an exponential.
F(g(ξ − ξ0, η − η0)) = exp(i(kξξ0 + kηη0)).F(g(ξ, η)),
F(g(ξ, η).exp(i(kξ0ξ + kη0η))) = G(kξ − kξ0 , kη − kη0).

2. Convolution Theorem
We define the convolution of two functions as
h⊗g ≡ 1

2π

∫∞
−∞ g(ξ, η)h(x− ξ, y − η)dξdη.

Then the Fourier transform of the convolution can be interpreted as the direct
product of the Fourier pairs or the Fourier inverse transfrom of a product of Fourier
transform is the convolution of the original function h⊗g.
F(h⊗ g) = G.H

3. Correlation Theorem
We define the cross correlation of two functions as
h⊕g ≡ 1

2π

∫∞
−∞ g(ξ, η)h∗(x+ ξ, y + η)dξdη = 1

2π

∫∞
−∞ g(ξ − x, η − y)h∗(ξ, η)dξdη.

Note that as an operator on a pair of functions h and g, the correlation operator
generally is not commutative. Autocorrelation is one of the desired extensions
of cross correlation in the context of optics when h = g. The Fourier transform of
the autocorrelation can be interpreted as the power spectrum or energy density in
Fourier space.
F(g ⊕ g) = |G|2.

4. Parseval’s Theorem
Taking the inverse Fourier transform of the previous result and setting the inte-
grand’s free parameters to zero, demonstrates a useful relation as follows:∫∫∞
−∞|g|

2d2r =
∫∫∞
−∞|G|

2d2k

5. Derivation relation
Derivatives in real space are translated into a multiplication with the reciprocal
coordinate k in Fourier space:
F( dn

dxn
g) = (ik)n G.

2.2 Maxwell Equations: Propagation of light in free
space

It was Maxwell’s prediction that light can be described as an electromagnetic wave phe-
nomenon, and that electromagnetic waves of all frequencies could be produced, which
drew the attention of physicists and stimulated much theoretical and experimental re-
search into light propagation in free space and matter [41].
The non-source form of Maxwell’s equations describes the propagation of light in free
space, however, when combined with Lorentz’s force equation and Newton’s second law
of motion, these equations provide a complete description of the classical dynamics of

12



2.2 Maxwell Equations: Propagation of light in free space

interacting charged particles and electromagnetic fields.The free space form of Maxwell’s
equations can be written as below [41]:

∇.E(r, t) = 0 . (2.15)

∇.B(r, t) = 0 . (2.16)

∇× E(r, t) +
∂B(r, t)

∂t
= 0 . (2.17)

∇×B(r, t)− ε0µ0
∂E(r, t)

∂t
= 0 . (2.18)

Here B is the magnetic induction, E is the electric field, ε0 and µ0 are equal to the
electric permittivity and magnetic permeability of free space , ∇ and ∇× are the three-
dimensional gradient and curl operators,(r, t) is a 4-vector where the first element denotes
the displacements vector of an arbitrary 3D coordinate and t is time.
In order to obtain the free-space wave equation for the electric field ,taking the curl of
(2.17), one obtains:

∇[∇.E(r, t)]−∇2E(r, t) +∇× ∂B(r, t)

∂t
= 0. (2.19)

The first term of this equation vanishes, due to the free space form of (2.15). Similarly,
by taking curl from (2.18) and regarding (2.16) the magnetic field equation can be found.
The speed at which the electric and magnetic field disturbances propagate in vacuum,
which is called speed of light in free space, is inversely related to the electric permittivity
and magnetic permeability of free space as [41]:

c =
1

√
ε0µ0

. (2.20)

The individual components of E(r, t) and B(r, t) in (2.19) obey all the same scalar
equation, suggesting that it is sufficient to study the 3D scalar field Ψ(r, t), obeying the
scalar wave equation. In this manner, we will decompose a wave field as a superposition
of monochromatic fields, using the Fourier integral [44] :

Ψ(r, t) =
1√
2π

∫ ∞
0

ψω(r) exp(iωt)dω . (2.21)

Here Ψ describes the scalar electromagnetic field.

Substituting (2.21) in (2.19), one obtains :

(∇2 + k2)ψω(r) = 0, k =
ω

c
(2.22)

where k is called the wave number and is proportional to the inverse of the wavelength;
k = 2π

λ
.

The time-independent equation for the spatial component ψω(r) of a monochromatic field

13



2 The Fundamentals of Wavefront Determination

is known as the Helmholtz equation which is a central equation of the scalar diffraction
theory. Hereafter, we take out the subindex ω to ease notation. In this formalism, even
in the presence of an external source σ(r), a coherent, monochromatic wave field in a
plane transverse to the propagation direction can be described as

ψ(r) = A(r) exp(iφ(r)), (2.23)

where A and φ refer to the amplitude and phase of the complex wave field respectively.
Therefore, the wave field contains all information of the source such as its amplitude
and phase.

Expanding the 3D Laplacian of (2.22) as ∇2 = ∇2
⊥+ ∂

∂z
, the Helmholtz equation may

be written as [45]: (
∇2
⊥ +

∂2

∂z2
+ k2

)
ψ(ρ, 0) = 0 . (2.24)

Here ∇2
⊥ is the transverse Laplacian operator and ρj = (xj, yj).

Let us decompose (2.24) as two conjugated operators :

L+L−ψ(ρ, 0) = 0 . (2.25)

Hereafter we omit the ⊥ subindex for simplicity.

L± are the propagation operators for the positive and negative z direction

L± =
∂

∂z
∓ i(k.(1 +

∇2
⊥
k2

)
1
2 ) . (2.26)

A solution of (2.25) can be the linear combination of the solutions of L+ψ = 0 and L−ψ
= 0[43]. Let us call ψ+ and ψ− the solution of L+ and L−. Thus one can express the
solution of (2.26) as C1ψ+ + C2ψ−.

The solution of the L+ψ(r) describes a wave which travels along the positive z direc-
tion. We consider it as the proper solution of (2.26) which means C2 = 0. Thus,

ψ+(ρ, z) = exp(ikz(1 +
∇2

k2
)

1
2 ) ψ(ρ, 0) . (2.27)

(2.27) is a representation of the Fresnel diffraction integral using the Dirac operator[46].
Considering the Fourier space derivative relation, one can map the real space gradient
into Fourier space taking the Fourier inverse of both sides of the result,

∇ = iF−1(k⊥)F . (2.28)

Consequently the Laplace operator can be written as follows[44]

∇2
⊥ = −F−1(k2

x + k2
y)F , (2.29)

where k2
⊥ = k2

x + k2
y.
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2.2 Maxwell Equations: Propagation of light in free space

Substituting (2.29) in (2.27), one can directly obtain

ψ+(ρ, z) = F−1 exp(iz(k2 − k2
⊥)

1
2 ) Fψ(ρ, 0) . (2.30)

Note that all the following propagation equations could also be written as equations
relating an arbitrary pair of propagation planes.

Most theoretical treatments of optical wave propagation are concerned with a useful
approximation of (2.30), because exact analytical solutions are rare. The most prominent
one, experimentally of interest as well, is the Paraxial approximation.

2.2.1 Paraxial approximation

Consider again the problem of propagation of a monochromatic wave field ψω(ρ, 0) from
the plane z = 0 into a plane z = const> 0. The paraxial condition for a wave field is
introduced as [44],

|Ψ+(k⊥, 0)|2 > 0 only for k >> k⊥, (2.31)

which means the plane wave components will contribute in the propagated field only if
their wave vector (k⊥, kz) makes a small angle with respect to the optical axis.

The small angle condition, thus can be met in Fourier space as :
√
k2 − k2

⊥ ' k − k2
⊥

2k
.

Using above approximation one can rewrite (2.30) as :

ψ+(ρ, z) ' exp(ikz)F−1 exp(−iz k
2
⊥

2k
) F ψ(ρ, 0) . (2.32)

Hereafter, we call it as the Fresnel Near Field Propagation of a paraxial wave.
The last right hand terms in (2.32) are the Fourier pair of a convolution integral in

the real space,

exp(−izij
k2
⊥

2k
) F ψ(ρ′, zi) = − i

λzij
F(

∫∫
exp(i

k

2zij
(ρ− ρ′)2).ψ(ρ, zi) d

2r). (2.33)

Here zij = zi − zj and ρ is the dummy integrand .
Taking the inverse Fourier transform of (2.33), implies that ψ+(ρ′, zj) can be inter-

preted as a summation over all spherical waves emanating from the original plane, with
amplitude ψ(ρ, zi). Thus ψ+(ρ′, zj) can be represented in an integral format ,

ψ+(ρ′, zj) ' −
i

λzij
exp(i

k

2zij
ρ′2)

∫∫
exp(i

k

2zij
ρ2). exp(i

k

zij
ρ.ρ′).ψ(ρ, zi) d

2r. (2.34)

Alternating the integrand’s exponential argument parameter as k⊥ = k
zij
ρ , (2.34) man-

ifests itself as a single Fourier transform involved propagation operator,

ψ+(ρ′, zj) ' −
i

λzij
exp(i

k

2zij
ρ′2)F(exp(i

k

2zij
ρ2) . ψ(ρ, zi)). (2.35)
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2 The Fundamentals of Wavefront Determination

Mathematically, we have reduced the convolution form of Fresnel propagation to a sim-
plified Fourier transform version. It is called the Fresnel Intermediate Field Prop-
agation of a paraxial wave.

In the context of electrodynamics the Fresnel number establishes coarsely the ter-
minology of Near, Intermediate and Far field[47]. Assume amax indicates the diameter
of largest area, within that ψ(x, y) varies significantly. Thus the Fresnel Number is
defined as

FN =
a2
max

λz
. (2.36)

When FN>1, propagation is described by different versions of Fresnel operators intro-
duced previously. If FN�1, the on-axis distance would be larger than the transverse area
covered by the lateral field distribution. The exponential integrand in (2.35) vanishes
and ψ+(ρ′, zj) is related to the primary wave by a simple Fourier transform,

ψ+(ρ′, zj) ' −
i

λzij
exp(i

k

2zij
ρ′2)F(ψ(ρ, zi)). (2.37)

Eq(2.37) is called the Far field or Fraunhofer propagation approximation, while the
small angle condition is met.

2.3 The sampling theorem

It is often convenient, both for data processing and mathematical analysis purposes, to
represent a function by an array of its sampled values on a discrete set of points in a
2D plane. Intuitively, it is clear that if these samples are taken sufficiently close to each
other,they would be an accurate representation of the original function. (2.3) represents
a class of functions to be minimized through points a and b which illustrates a less
obvious fact : for a particular class of functions, so-called Band-limited Functions, a
discrete representation can fully describe the original function. This result was originally
pointed out by Whittaker, in 1915, and was later popularized by Shannon in his studies
of information theory.[48]

The principal impact of the Shannon sampling theorem on information theory is that
it allows the replacement of a band-limited signal by a discrete sequence of its samples
without the loss of any information.

Theorem 1 If f ∈ C;C ⊆ R and F, the Fourier transform of f, is supported on the
interval [−b, b], then

f(x) =
∑
n∈Z

f(
n

b
) sinc(πb(x− n

b
))

converges to f in C[49].

In other words, the theorem states that if an absolutely integrable function contains no
frequencies higher than b, then it is completely determined by its samples at a uniform
grid spaced at distances 1

2b
.
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2.3 The sampling theorem

A function g is supported on a set C if it is zero on the complement of this set. The
support of g, which we denote by supp(g), is the minimal closed set on which g is
supported.

A function f ∈ C is band-limited if there exists b ∈ C such that supp(F ) ⊆ [−b, b]. b
is a band-limit for f and 2b, the corresponding frequency bandwidth. The supremum
of the absolute values of all frequencies of f , is called the Nyquist rate [50]. Note that
here, to simplify the problem, we assumed a symmetrical frequency distribution.
In (2.8) a proper discrete representation for f , in the real space, has been derived. As a
simple proof of theorem 1 , consider the inverse Fourier representation of F, thus

F (η) =
∑
n∈Z

cn exp(−πinη
b

), (2.38)

where,

cn =
1

2b

∫ b

−b
F (η) exp(

πinη

b
)dη =

1

2b

∫ ∞
−∞

F (η)exp(
πinη

b
)dη =

1

2b
f(
n

b
). (2.39)

Therefore ,

F (η) =
∑
n∈Z

1

2b
f(
n

b
) exp(−πinη

b
). (2.40)

From (2.40) it is already clear that f can be completely recovered by the values f(n
b
),

where the function is sampled at the Nyquist frequency fN = b; half of the supremum of
the frequencies in Fourier space. To conclude the recovery formula, it is enough to invert
F as follows:

f(x) =

∫ b

−b
F (η)exp(2πixη)dη =

∑
n∈z

f(
n

b
)

1

2b

∫ b

−b
exp(πi(x− n

b
)η)dη

=
∑
n∈Z

f(
n

b
)
sin(πb(x− n

b
))

πL(x− n
b
)

=
∑
n∈Z

f(
n

b
)sinc(πb(x− n

b
)). (2.41)

Replacing b by 1
δx

, one can find the original sampling theorem representation in real
space. Note that the sampling theorem can equally be applied in the Fourier domain.

Clearly stated, in principle, for the replacement of any Fourier transform by its dis-
crete analogue, the Nyquist rate needs to be fulfilled. To implement (2.27), using either
(2.32) or (2.35), a sufficient criterion that ensures adequate sampling is required. In
practice, the best one can do is to ensure that all frequencies present on the numerical
grid are represented correctly.
The key to achieve an accurate result when (2.32) or (2.35) are applied, is to sample
the quadratic phase factor inside the Fourier or inverse Fourier transform at a high
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2 The Fundamentals of Wavefront Determination

enough rate to satisfy the Nyquist criterion. If it is not sampled finely enough, it might
cause aliasing. The intended higher frequency contents would show up in the lower
frequencies[51, 52, 53].
Assume in 1D space, without losing generality, δx.δk = 2π

Nx
. where δx and δk are numer-

ical variables in the real and Fourier space. The local rate of phase change is basically
given by[47]:

flocal =
1

2π
∇iφ (2.42)

where i indicates the variable of derivative either x or kx.

Consider (2.32), the local phase gradient with respect to the frequency variable kx is:

∂φ

∂kx
=
−z.kx
k

. (2.43)

It can be interpreted as the local frequency in the Fourier space. The Nyquist sampling
rate is satisfied when[54]

1

2π
| ∂φ
∂kx
|max 6

1

2δk
. (2.44)

It can be seen from (2.44) that the largest phase difference between two sampling points
may not vary larger than π. It is thus straightforward to finalize the previous steps as,

λz

Nx(δx)2
6 1. (2.45)

A similar procedure for intermediate propagation utilizing the local frequency variation
in the real space demonstrates the numerical constraint on (2.35) as

λz

Nx(δx)2
> 1. (2.46)

The intermediate field propagation involves a leading phase factor outside the integral
which is not sampled generally according to the Nyquist theorem when the integrand is
enough finely sampled at or even better than the Nyquist frequency.

Numerically, the 2D discrete Fourier transform takes as its input a 2D discretely
sampled array with a pixel size of δx and returns an array of the same size with a pixel
size δk = 2π

Nδx
. By (2.34), at the zj plane, δk = k

z
x (to simplify the notation zij is replaced

by z), thus,

δk.δx′ =
2π

N
→ δx′ =

λz

Nδx
. (2.47)

Thus, a discrete Fourier transform may shrink or expand the physical extent of an array,
depending on the propagation distance and wavelength.

Lastly, we note that the transition to the Fresnel diffraction regime relies on an ap-
proximation accurate to second order in r⊥. Luckily, a large body of experimental setups
can be designed both in the optical and x-ray regime, where this approximation is very
well justified.

18



2.4 Phase problem

2.4 Phase problem

As described by eq(2.23), complex wavefronts are uniquely specified by their modulus
and phase as a function of position and time. The modulus (or the amplitude) of
the wavefront can be directly measured using readily available detectors such as CCD
camera, or even human eye which measures the intensity as the square of the amplitude.
However, the phase of the wave field can not be directly measured because it is not
currently possible to design detector with a temporal bandwidth comparable to the
optical frequencies. Therefore, to fully determine the complex wavefront it is necessary
to employ indirect techniques such as the local phase gradient based methods[14, 55, 56,
57] or coherent diffraction imaging phase retrieval[58, 36, 26, 25]. These two methods
describes the two main approaches used within this thesis to characterize the wave fields
measured at the FLASH beamline BL2. The basic principle of which is described in the
following.

2.4.1 Local phase gradient determination

The local phase gradient measurement methods rely on using appropriate manipula-
tive optics to determine the rate of the phase change over localized discrete regions,
surrounding the spatial extent of the wave field. Manipulative optics vary from a se-
ries of gratings to a simpler array of pinholes modified by using x-ray lenses. Those
methods are called X-ray Grating Interferometry(XGI) and Hartmann(-Shack)
wavefront sensing(HWS). The pattern displacement measured downstream of manip-
ulative optics in comparison with a reference pattern leads one to determine the lateral
phase derivatives, perpendicular to the on-axis propagation direction. The derivatives
then are integrated to exploit the structure of the entire phase. These methods are
inherently resolution-limited due to the limited spatial resolution of optical elements.

2.4.2 Coherent diffraction imaging phase retrieval

The essential characteristic of coherent diffraction imaging phase retrieval is the use of
numerical techniques to extract information about the phase of the optical wave field
by a measurement of the beam. Conventionally, the measured beam is called either
diffraction pattern of a localized wave field or the scattered wave filed. It was shown
that if the measured pattern is densely enough sampled, the phase can be retrieved in
two or three dimensions without losing any information. The sampling requirement in
turn implies that the wave field is spatially localized within a closed 2D boundary.

The method is based on an iterative algorithm, starting by a trial wave field. The
trial wave is formed by the modulus of the measured intensity and a random phase.
Then it numerically propagates between a series of specified planes and is constrained to
converge on the original wave field. The imposed constraints are typically the diffraction
pattern measured and the spatial extent of the wave field. The recently developed
algorithms are flexible enough to reconstruct the wave field by a measurement of the
diffraction pattern in the different optical regimes, mainly far and intermediate zone.
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2 The Fundamentals of Wavefront Determination

An intermediate wave field determination requires measurements of a divergent beam,
involving finite curvature. The phase curvature itself imposes a strong constraint to
the algorithm, leading to a faster and unique convergence[59]. The approach to phase
retrieval algorithm used in this thesis falls into the category of intermediate wave field
determination, employing a new algorithm developed for the deterministic recovery of
phase information using mixed Fresnel propagators to uniquely determine the phase of
single shots.

2.5 Coherence as a statistical property of light

The assumption of strictly static electromagnetic fields has been present in the previ-
ous sections up to this point.This assumption may fail in many realistic cases, such
as synchrotron and FEL sources, due to the statistical treatment of light[60, 61]. To
illustrate this fact, consider an extended source comprising infinite independent point
sources. Each point source randomly radiates for some period of time. At the observa-
tion point the total radiation field, which due to the superposition principle is the sum
of all fields from the individual sources, fluctuates as function of time. These fluctua-
tions are extremely fast and can not be detected, therefore only statistical properties
of these fluctuations can be determined. In order to describe adequately a wave field
produced by a electrodynamic source it is evidently desirable to introduce a measure for
the correlation which might exist between the oscillations at the different points. In[62]
it is clearly recognized that the radiation field from such sources can be treated with a
correlation function of the complex wave fields.

This statistical measure is given as the Mutual Coherence Function(MCF)[62],

Γ(r1, r2; τ) = 〈E∗(r1, t).E(r2, t+ τ)〉, (2.48)

which characterizes the associated time and space fluctuations of the electric field
E(r, t). It describes the correlation between two complex wave fields E(r1, t) and
E(r2, t + τ) at the different points r1 and r2 and a time difference τ . Indeed, the
mutual coherence function is a statistical property which reflects the temporal corre-
lation of the electric field at two positions in space with respect to time. Here, the
expectational value denotes the average of all instances of the fields radiated in time,

〈f(t)〉 = lim
T→∞

1

T

∫ T

0

f(t)dt. (2.49)

The function Γ is the first order correlation function of the wave field. The mutual
coherence function may be normalized against the mean spatial amplitude of the fluc-
tuating electric field. This specifies a quantity known as the Complex Degree of Coher-
ence(CDC), γ12, which is defined by the alternative form[62],

γ12(r1, r2, τ) =
Γ(r1, r2, τ)

[〈I(r1, τ)〉〈I(r2, τ)〉] 1
2

, (2.50)
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2.5 Coherence as a statistical property of light

where〈I〉 represents an average intensity over the detection period. γ12 is generally a
complex function of τ .

The Degree of Coherence (DC) depends on the value of γ12 is defined as follows:

1. |γ12(r1, r2, τ)| = 1 coherent

2. 0 < |γ12(r1, r2, τ)| < 1 partially coherent

3. |γ12(r1, r2, τ)| = 0 incoherent

When light is partially coherent, γ12(r1, r2, τ), is close to unity when r1 = r2 and drops
when |r1−r2| increases. The area scanned by r1⊥, when r2⊥ assumed to be fixed, within
which the function |γ12| is greater than 1

e
is called the coherence area[63]. It presents

the spatial extent of |γ12| as a function of the relative distance.
In most FEL experiments neither completely coherent nor completely incoherent radi-

ation is realized and we may frequently speak of fluctuations which are partially coherent.
We will address this property later in this thesis (see chapter(5)) and for the moment re-
strict ourselves to define two fundamental concepts associated with the mutual coherence
function of a partially coherent wave field.

• Cross Spectral Density

It was shown in[62] that the mutual coherence function satisfies a pair of wave
equations in free space namely,

(∇2
i − ∂2

t ) Γ(r1, r2, τ) = 0 i = 1, 2 , (2.51)

where ∂2
t is the second order partial derivative in respect to the time difference

and i specifies in which of r1 and r2 the Laplacian operates on Γ. By defining a
new function as the Fourier transform of Γ,

W (r1, r2, ω) =
1

2

∫
Γ(r1, r2, τ) exp(−ikτ)dτ, (2.52)

one can utilize eq(2.51) in the frequency domain as,

(∇2
i + k2)W (r1, r2, ω) = 0, (2.53)

where k = ω
c

is the wave number of light corresponding to frequency ω. W is
known as the Cross Spectral Density (CSD) function defining the temporal Fourier
transform of the mutual coherence function with respect to the time variable and
satisfies the Helmholtz equation. This pair of elliptical differential equations for the
cross spectral density is easier to solve than the pair of hyperbolic wave equations
for the mutual coherence function; The mutual coherence function then can be
readily determined by taking an invers Fourier transform of the cross spectral
density.
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2 The Fundamentals of Wavefront Determination

Figure 2.1: The propagation geometry .

• Mutual Optical Intensity

When the source is stationary in time, τ = 0, the mutual coherence function is
known as the Mutual Optical Intensity of light[60],

J(r1, r2) = Γ(r1, r2, 0). (2.54)

Reshaping the propagation of quasi-monochromatic light in free space, eq(2.32)
and eq(2.34) represent,

E
′
(r′1) =

∫
K(r1 − r′1)E(r1)d2r1⊥ (2.55)

where r′1 and r1 are the positional vector of O
′

and O spaces as shown in fig.(2.1).
K(r1 − r′1) represents the free space Kernel of eq(2.32) and eq(2.34).

Therefore, J(r′1, r
′
2) can be related to J(r1, r2) as,

J(r′1, r
′
2) = 〈E∗(r′1).E(r′2)〉,

J(r′1, r
′
2) =

∫∫
d2r1⊥

∫∫
d2r2⊥K

∗(r1 − r′1)K(r2 − r′2)〈E∗(r1)E(r2)〉,

J(r′1, r
′
2) =

∫∫
d2r1⊥

∫∫
d2r2⊥K

∗(r1 − r′1)K(r2 − r′2)J(r1, r2) (2.56)

The measurable intensity at O
′

is straightforward obtained when r′1 = r′2 = r′ ,

I(r′) = J(r′, r′), (2.57)

where I(r′) is no longer the modulus of the wave field propagating to O
′

and
would be interpreted as the partially coherent intensity. Indeed, γ12(r1, r2) of J
represents the correlation between two transverse points of the wave field at a given
plane at the same time, a measure known as the transverse degree of coherence.
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CHAPTER 3

Hartmann Wavefront Sensing Method :
Theory, Simulation and Experiment

Hartmann Wavefront Sensing (HWS) is known as a classical method that may be applied
to characterize single-shot soft x-ray FEL beams to a limited resolution.

In this chapter, the HWS method is introduced and different, relevant approaches
to retrieve a complex wavefront by finding local phase gradients are discussed. The
Fourier Demodulation (FD) method is described as a fast and reliable approach to
reconstruct complex wave field. The successful reconstructions lead to the numerical
back propagation of the wave fields and the possibility of the evaluation of the beam
parameters from shot-to-shot.

3.1 Different Approaches of the Hartmann wavefront
sensing analysis

Hartmann wavefront sensors are widely applied in a broad range of optical science such
as adaptive optics and laser beam quality measurements, as well as real time complex
wavefront characterization at FELs[64, 65, 66].

A Hartmann wavefront sensing device consists of an array of apertures mounted at a
distance L from a 2D imaging unit, and is a simple device that is capable of measuring
both pulse intensity and phase distribution in a single frame of data. The key idea of
Hartmann wavefront sensing can be explained in the context of ray optics. When a
distorted complex wavefront illuminates the pinhole array, each aperture acts as an
”optical lever”, distributing the diffracted spots into different lateral positions on the
detector, proportional to the phase tilt ( ∂φ

∂xi
) over the aperture(fig.3.1)[67, 68]. Here, ∂

∂xi
presents a partial derivative in X or Y direction in a Cartesian coordinate. φ is a 2D
real function ascribed as the phase of the wave field in Cartesian coordinate.

The dissected diffraction pattern can be analyzed either in the image or Fourier domain
to obtain the phase gradient (derivatives). The first and more common approach is the
centroid method [69, 70, 71, 72]. Here the local phase gradient at each spot is individually
measured. Typically, a reference spot pattern is measured as an average of many single
shots (black spots in fig.3.1). The measured diffraction patterns must be divided into a
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3 Hartmann Wavefront Sensing Method : Theory, Simulation and Experiment

Figure 3.1: Principle of The HS operation. The scheme shows an incident wave field trav-
eling along the optical axis illuminating an aperture array and the diffracted
spots distributed in a CCD. [68]. The displacement of the diffracted spots
leads to retrieve the complex wavefront.

set of small window grids, each centered on a spot peak, with one window per pinhole (a
single window is shown in fig.3.1). Thus, the diffracted spot locations, within the defined
windows, are determined from centroids along the lateral directions, for the reference
and illuminating wave, as shown in fig.(3.1). Correspondingly, geometrical displacements
(∆X and ∆Y ) provide a measure of the phase gradient in each direction.

An alternative method is the Fourier demodulation [73, 74, 75, 76, 77, 78]. In this tech-
nique the recorded intensity pattern is considered as a whole, rather than investigating
each individual spot by itself. This implementation enables a direct measurement of the
geometrical displacements in Fourier domain.

In the following sections we will explain the Fourier demodulation method as a fast
and easily automized approach to study Hartmann wavefront sensing single-shots data
analysis based on the data collected at the FLASH beamline BL2.

3.2 Fourier demodulation method

When a plane wave illuminates the Hartmann pinhole array, the irradiance function of
the detected pattern at the detector plane can be expressed as a direct product of a
grating modulation function and the transmitted wave pattern amplitude[79, 80] as,

I(r) = V (r)(1 +
1

2

∑
i=x,y

exp(±ikiri)), (3.1)

where V (r) is the complex valued pattern amplitude at location r = (x, y) and is assumed
to be slowly varying and non-vanishing within the aperture.
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3.2 Fourier demodulation method

(a) (b)

Figure 3.2: Typical Hartmann plate (a) and measured modulated diffraction pattern(b)
for a single shot exposure.Pis indicate the transverse array pitch sizes . Note
that in (b) the incoming wave illuminates the Hartmann-plate only partially.

The illumination of the pinhole array with a distorted wavefront causes a local gradient
over each aperture, causing a irregular displacement of the entire pattern. The gauge
translation relates the new coordinate to the rest frame, as sketched in fig.(3.3). It can
be mathematically expressed as,

∇φ
k
≈ ∆r

L
→ ŕ = r +

L

k
∇φ, (3.2)

where k is the wave number and ∇φ indicates the transverse gradient in real space. L
specifies the distance between the pinhole array and the detector. In eq(3.2) it is assumed
that the local phase curvature varies smoothly over the aperture size.

The irradiance modulation therefore is proportional to the phase gradient,

I ′(r) = V (r)(1 +
1

2

∑
i=x,y

exp(±iki(ri +
L∂iφ

k
))). (3.3)

The Fourier transform of eq.(3.3) represents the total transverse phase gradients as the
argument of the first side lobes of the pattern; the noted feature that exploits the fea-
sibility of the Fourier demodulation method to determine the general phase slopes. The
transformed intensity pattern of eq.(3.3) consists of convolution of a slowly varying func-
tion with laterally shifted Dirac’s delta functions as following :

Î =
1

2
{V̂ + b̂x ∗ δ(qx − kx) + b̂y ∗ δ(qy − ky) + C.C}, (3.4)

where b̂i are the Fourier transforms of V (r). exp(iL∂iφ
k

). qi s are the transverse coordinates
in the Fourier domain. * indicates the convolution andˆdenotes the Fourier transform.
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r 
r′ 

∆r 

O 

P 

Q 

L 

C 

Figure 3.3: Geometrical interpretation of the gradient translation. The local phase vari-
ation over C (an arbitrary pinhole) displaces the primary diffracted spot from
P to Q at the detector. Thus the new spot position is related to the previous
one by ∆r. O represents the center of the detector coordinates.

C.C abbreviates the complex conjugate of the right hand side terms.

V (r) varies slowly and thus V̂ is localized in the Fourier domain. The reconstruction
process proceeds in 2 steps as follows:

1- The first term in eq.(3.4) is explicitly the Fourier transform of the intensity pattern.
According to the Nyquist theorem if the diffraction pattern is sampled enough at a
frequency smaller than half of the inner maximum frequency, the intensity pattern can be
fully reconstructed without losing information. However, using the Hartmann wavefront
sensing method, the limited pitch size constrains the modulated frequency of the pattern
that results in a lack of resolution. A circular filter surrounding the central peak with a
radius equal to half of ki satisfies the Nyquist frequency requirement as well as bypassing
the effects of other side lobes. The inverse Fourier transform of sampled V̂ outputs the
integrated intensity, illuminating the pinhole array.

2- The last terms in eq.(3.4) are shifted in Fourier space by ki. It is noted that in
this step the pattern has to be sampled, as mentioned previously. Translation of the
Fourier pattern can be performed easily using the convolution of I ′ with a shift factor
as following :

F(I ′ exp(iki.xi)) =

∫
I ′ exp(iki.xi) exp(iqi.ri)dxi = Î(qi + ki). (3.5)

Here also the central low pass filter suppress the effect of higher harmonics in Fourier
space.

To integrate the phase slopes, we used the complex derivative operator as mentioned
in[44, 43]. Let us define N :

N = ∂x + i∂y. (3.6)

Thus one can express a complex 2D function f(r) by its transverse partial derivatives
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as follows :

NF =

∫
Nf(r) exp(iqi.ri)d

2r = −
∫
f(r)N exp(iqi.ri)d

2r =

−
∫
f(r)(iqx − qy) exp(iqi.ri)d

2r ⇒

f(r) = −F−1(
F(Nf(r))

iqx − qy
)

f(r) = −F−1(
∂xf(r) + i∂yf(r)

iqx − qy
). (3.7)

The phase of a complex wave field is a real function therefore, it is represented as the
real part of (3.7) using the obtained lateral derivatives as;

φ(r) = −R(F−1(
∂xφ(r) + i∂yφ(r)

iqx − qy
)). (3.8)

Here R represents the real part. The denominator of (3.8) has a singularity at the
origin, a so called ill-posed problem. Tikhonov regularization is commonly used to renor-
malized the singularity[81]. The last inverse Fourier transform is a Cauchy principal value
integral, choosing a compact support in the real coordinate which passes the singular-
ity. Thus, the value of the integral is set to zero at the origin where q⊥ = (0, 0) .

Given the Shannon sampling theorem, a 2D raster scan with a step of half pitch size can
increase the sampling of the entire wave field at the position of plate (e.g. the wave field
is scanned with a known step size similar to the ptychography approaches). However,
it is no longer applicable for the purpose of single-shot wave field characterization, and
may only provide an average picture of fluctuating pulses.

In practice, the reconstructed phase may contain aberrations due to the imperfectness
of the optical system. An aberration may even be the dominant term of the recon-
structed phases in an ensemble study, and may obscure the phase fluctuations from
being monitored precisely. A straightforward approach is to separate the overall aber-
ration by finding an appropriate model, and describing the aberrated phase within a
defined boundary. As seen in fig(3.2.b), the transmitted pattern of the wave field can
be defined within a circular boundary which enables to describe the phase of the wave
field by using the Zernike Polynomials.

3.2.1 Zernike polynomials

A real optical imaging system does not produce an ideal image because it may not be
perfect. In the context of optics, a departure of the performance of an optical system
from prediction of ideal paraxial optics is called an aberration[62]. A formed image (here
we refer to the phase of a complex wave field) may suffer from several aberrations such
as spherical aberration,astigmatism,coma etc. A circular phase profile associated with
aberrations can be mathematically modeled using Zernike Polynomials[82, 83]. Zernike
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3 Hartmann Wavefront Sensing Method : Theory, Simulation and Experiment

polynomials are a complete set of orthonormal functions which meaningfully and system-
atically describe optical phase aberrations. The properties of the orthogonal functions
has been described in detail in Chap.2.

Consider an optical system defined within a circular boundary of radius D. Let (r, θ)
the polar coordinate of a point within the closed boundary. Let ρ = r

D
such that 0 ≤

ρ ≤ 1. The wave aberration function A(ρ, θ) of the system can be expanded in terms of
a complete set of Zernike circular polynomials,Zm

n = Rm
n (ρ).sinθ and Zm

n = Rm
n (ρ).cosθ,

as shown in fig.(3.4),which are spanning the spatial space as a set of orthogonal basis,

Figure 3.4: The first 21 Zernike polynomials, ordered vertically by radial degree and
horizontally by azimuthal degree.

A(ρ, θ) =
∞∑
n=0

n∑
m=0

[2.
n+ 1

1 + δm0

]
1
2 .Rm

n (ρ).(anm.cosmθ + bnm.sinmθ), (3.9)

where anm and bnm are the aberration coefficients, m and n are positive integers including
zero such that n-m≥0, δnm is a Kronecker delta and

Rm
n (ρ) =

(n−m)/2∑
l=0

(−1)l.(n− l)!
l!.(n+m

2
− s)!.(n−m

2
− s)!

ρn−2.l, (3.10)

is a polynomial of degree n in ρ.
The index n represents the radial degree and m is called the azimuthal frequency. The
orthogonality in the radial and azimuthal parts are presented as follows,

1.
∫ 1

0
Rm
n (ρ)Rm

n′(ρ)ρdρ = 1
2.(n+1)

.δnn′ ,

2.
∫ 2π

0
cos(mθ).cos(m′θ) = π.(1 + δm0).δmm′ ,

3.
∫ 2π

0
sin(mθ).sin(m′θ) = δmm′ .

Note that the ordering of Zernike polynomials does not necessarily imply that the aber-
ration coefficients decrease as n increases.
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Utilizing the Zernike polynomials, one can recognize the dominant aberrations as-
sociated with the reconstructed phases and subtract them from an ensemble of phase
reconstruction. Thus, the phase fluctuations within different data sets can be observed
accurately.

The theoretical background described in the previous sections, and the knowledge
of aberration modeling pave the way for the analysis of collected data using Fourier
demodulation as follows in the proceeding sections.

3.3 Experiment

As earlier discussed, this thesis addresses an extension of Fresnel coherent diffraction
imaging to characterize highly focused x-ray pulses on a single-shot basis. Since the
European XFEL has only just come online in 2017, the approaches described in this
thesis were established to be compatible with the FLASH’s (the Free electron LaSer
in Hamburg) capabilities, as it shares many similarities with the European XFEL. For
example, the FLASH 1 facility provides flexible regimes of radiation by altering the radi-
ation parameters, such as the number of active undulators and different electron bunch
compression regimes[40]. The former affects the signal-to-noise (SNR) ratio of pulses
delivered, and the latter influences the coherence degree associated with pulses[84]. Ad-
ditionally, both parameters may result in different levels of beam instability, as well as
observing chaotic variations of the intensity and phase patterns. All of those parame-
ters (so-called source related variations) are considered as the key issues linked to data
interpretation of Fresnel coherent diffraction imaging experiments[13].

At the FLASH beamline BL2, conventionally the Hartmann wavefront sensing method
is used as a well-established method to characterize soft x-ray pulses. Therefore, it was
possible to propose an x-ray microscopy setup which can benefit from both Hartmann
wavefront sensing and imaging methods. Thus, the results of the imaging approach can
be compared with the Hartmann wavefront sensing method to illustrate the feasibility
of the imaging approach and to benchmark it against the Hartmann wavefront sensing
method. Here, we describe the general scheme of both experiments and focus on the
Hartmann wavefront sensing branch for the sake of data interpretation and systematical
analysis.

A schematic of the setup, as well as the experimental realization at BL2 are depicted
in fig(3.5). X-ray of wavelength 14.7 nm are cropped by an aperture, located in a finite
distance downstream of the source, and then focused by an elliptical mirror with a
nominal focal length of 2 m.

Hartmann Sensors were placed downstream of the ellipsoidal mirror at position A,
taking advantage of filters incorporated into BL2 beamline, and additionally into the
wavefront sensor, and at position B where an Au mirror under 45o incident angle guides
the focused beam into the Hartmann wavefront sensing branch, as well as the Andor
camera, allocated for the imaging experiments (to be explained in the next chapter). A
niobium(Nb-384.8nm) filter and a couple of zirconium filters(Zr - 289nm,191.5nm) trans-
mit only the fundamental wavelength and effectively block the third and fifth harmonics
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3 Hartmann Wavefront Sensing Method : Theory, Simulation and Experiment

Figure 3.5: Experimental setup. The source radiation passes through an aperture and
is focused by an ellipsoidal mirror with 2m nominal focal length. Hartmann
sensors are placed at 2 different positions;(A) is illuminated by the direct
beam and (B) by the focused beam using an Au mirror under 45o incident
angle. Note that Andor detector was allocated to perform Fresnel coherent
diffraction imaging experiments.

which carry less than 1% of the fundamental intensity prior to filtering. The sensor’s
positions are chosen such that the beam illuminates a sufficient number of pinholes. The
data acquisition is performed using the different apertures upstream of the ellipsoidal
mirror. As previously mentioned, the experiments were conducted for the different source
parameters; the weak and strong electron bunch compression regimes and the different
gain length(operating various insertion sections or undulators). The longitudinal bunch
compression can be described as follows,

”High peak currents are needed in extreme-ultraviolet and X-ray free-electron lasers.
These cannot be produced directly by the electron gun. Therefore moderately long
bunches with a low peak are created in the source, quickly accelerated to higher energy
and then compressed in length by few orders of magnitude”[40]. The effect of different
bunch compression modes and undulator segments on delivered wave fields will be stud-
ied by performing statistical analysis over variations in these parameters in the result
section.

The Hartmann sensors were designed by Laser-Laboratorium Göttingen e.V.[85] to op-
erate from 10 to 40 nm, which is within the accessible FLASH wavelength range fig(3.6). The
Hartmann sensors are adjustable both laterally and with respect to tip and tilt. The
translation range is ±10mm [86]. The characteristics features of both Hartmann sensors
are drawn in Table(3.1).

A typical intensity distribution from Hartmann sensor A is shown in fig.(3.7). The
smooth diffraction distribution around the intense peaks demonstrates the Airy pattern
of the pinholes in the near field regime. As seen, the information available for the retrieval
process is limited to a few diffraction points.
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Table 3.1: Overview of the Hartmann sensors at FLASH BL2

Camera Hartmann Plate

HS A
Softhard SHT MR285MC hole diameter 75µm
1392(H) x 1040(V) pixels pitch size 250µm
8.98mm(H) x 6.71mm(V) field of view 198.251mm plate to CCD

HS B
Princeton Instruments PI-SX: 1300 quadratic holes 110µm x 110µm
1340(H) x 1300(V) pixels pitch size 250µm
19.5mm(H) x 19.5mm(V) field of view 250mm plate to CCD

Figure 3.6: Left panel: Compact design of the modified Hartmann sensor with enhanced
mechanical stability and motorized movement. Right panel: The instrument
has capability of operating different Hartmann plates. For instance a elctro-
formed pinhole array(magnification 10X) is shown as inset [86].
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Figure 3.7: A typical spot pattern measured at the detector behind a Hartmann plate.
This data frame was measured using HS-B,1064.5mm downstream of the
ellipsoidal mirror, at wavelength 14.7nm and the weak compression regime
with 30 electron bunches and 6 active undulators. Colorbar indicates the
intensity in a normalized unit.

3.4 Simulation

To investigate the procedure of phase retrieval using the Fourier demodulation, as theo-
retically stated in sec.2.2, a series of wave field measurements were simulated. Here the
Hartman sensor consists a 40 x 40 pinhole array, with 100µm hole diameter and 400µm
pitch size, and is mounted 300mm upstream of the detector with 1340 x 1340 pixel, each
20µm x 20µm. A fluctuating field E with a certain level of the Poison noise illuminates
partially the pinhole array, as shown in fig.(3.8), and the diffracted wave propagates to
the detector by the near field Fresnel propagator,

ψ(r⊥, L) ' exp(iqL)F−1(exp(−iLq
2
⊥

2q
) F ψ(r⊥, 0)) . (3.11)

Here ψ(r⊥, 0) is the wavefront after the pinhole array, L is the pinhole to detector
distance, q is the wave number.⊥ indicates the transverse coordinates of Fourier space.

Therefore, the wave field intensity (I′) at the detector is ψ(r⊥, L).ψ∗(r⊥, L). Following
the phase retrieval procedure, according to eq(3.4), at the next stage Î is calculated.
The central and first side lobes in each lateral direction are selected as illustrated in
fig.3.9. The inverse Fourier transform of the side lobes demonstrates the phase gradient in
each lateral direction as V (r). exp(iL∂iφ

k
). The obtained phase derivatives in this method

are the argument of an exponential function, and may be wrapped. A wrapped phase
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(a) (b)

Figure 3.8: (a) and (b) are the intensity and phase components of the complex wave field,
illuminating the pinhole array. As seen, the intensity consists of a low flux
distribution that is expected for some of the operational configurations. The
centroid method requires either intense pulses, or an averaging over a few
low intensity pulses to retrieve phase, otherwise the centroid locations are
not distinct.

means that all phase points are constrained to their principal values in a range [0,2π]
or equivalently, [-π,π]. For example, exp(iL∂iφ

k
) is a multi-valued complex exponential

function and has a series of branches, repeating by a factor 2π (see fig.(3.10)).

Figure 3.9: Fourier transform of the measured intensity at the detector plane. The local-
ized distributed carrier harmonics are apparent in Fourier space. The circled
lobes (the central and first transverse) carry on the complex wave field in-
formation. The low pass filters are indicated by blue circles. The colorbar
represents the intensity on a logarithmic scale in an arbitrary unit.
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(a) (b)

Figure 3.10: The (a) analytical phase and the (b) wrapped phase profiles of a 2D spheri-
cal phase. When the phase exceeds more than |n

2
λ|, the wrapped edges can

repetitively be seen in (b).

The easiest way to unwrap the phase can be summing the phase differences sampled at
a discrete location. This method suffices as long as the differences does not jump larger
than 2π. Otherwise, a more complex algorithm has to be implemented to deal with the
circumstances in which this condition does not apply[87]. Here, 2D version of the 3D
unwrapping algorithm described in[88] has been used. The approach starts to unwrap a
function within a defined boundary such that the function is zero-valued outside of the
boundary. Thus, the algorithm divides the area covered by the boundary to small region-
of-interest (ROIs), and tries to unwrap the function locally. Therefore, the unwrapping
procedure requires a well-defined boundary to be calculated. A straightforward solution
was found using retrieved intensity. A binary mask is defined such that the intensity
levels less than 15% of the maximum flux are set to zero. Thus, the high-frequency
distributions are excluded from analysis, which is a limit to the resolution obtained from
the Hartmann wavefront sensing method, alongside of the pitch size fabrication as a
practical issue to affect the resolution.

The retrieved complex wave field is shown in fig(3.11).

To understand the accuracy of a wave field retrieval by Fourier demodulation method,
we define two measures indicating the differences between the simulated and recon-
structed wave fields. The first measure is a pairwise correlation between the intensities
(simulated and reconstructed) and phases as well. The correlation shows how accurate
the general map of the intensity or phase is reconstructed. The second measure is defined
as the P-V error ratio to quantify the resolution of the reconstructed phase.

Thus, for the given wave field, the first measure yields

e = (
(P − V )simulation − (P − V )reconstruction

(P − V )simulation
) ∗ 100% = 10%, (3.12)

which demonstrates that phase structure has not been well-determined.
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3.4 Simulation

(a)

(b)

Figure 3.11: The reconstruction of the simulated complex wave field (fig.3.8) using the
Fourier demodulation method. The phase and intensity are retrieved by
using 100 diffraction spots. The recovered intensity approximately deter-
mines the illuminating field distribution before the pinhole array (a). (b)
displays that the general phase map is successfully reconstructed, however
the smaller structures have not been retrieved due to the limited resolution,
as predicted.

The reconstructed intensity correlates reasonably with the simulation in a factor of
0.95%. As seen, the reconstructed intensity distribution also has not been completely
resolved. The reconstructed wave field can be described as a blurred version of the
simulated wave field due to the limited-resolution of the Hartmann wavefront sensing
method. Nevertheless, the results of the Hartmann wavefront sensing method can be
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used to quantitatively measure significant shot-to-shot phase and intensity fluctuations
which are observable with the resolution of the system.

3.5 Result

Different ensembles of measured data for different source parameters, as listed in ta-
ble(3.2), were analyzed for different apertures(10, 5, 3 mm diameter) upstream of the
ellipsoidal mirror.

Table 3.2: Different source setting,considered for the complex wavefront re-
trieval using the Fourier demodulation method.

Case Compression
regime

Number of
Undula-
tors

Wavelength(nm) Measurement

A1 weak 4 14.7 A
A2 weak 6 14.7 B
A3 strong 4 14.7 A
A4 strong 6 14.7 B

For each data set, an ensemble of dark images, without beam or the aperture in the
beamline, was measured. Then, the averaged dark image was subtracted from each
frame of data within the data set to account for noise distributions. The background
subtracted diffraction patterns were converted in Fourier space. For each data frame, the
Fourier demodulation algorithm identified the central and first side lobes. As such, the
intensity and the lateral phase gradients were retrieved from the Fourier space patterns.
Since the phase gradients were wrapped, a binary mask was defined to initialize the
unwrapping algorithm. The mask has zero values for the intensity levels less than 10%
and is 1 elsewhere. It was observed that the masks form a circular boundary around
the reconstructed intensity for either intense pulses (6 active undulators) or pulses with
lower signal levels (4 active undulators).

To illustrate the reconstruction of pulses measured, we show a series of the recon-
structed phase and intensity for the different radiation regimes, when a 5 mm aperture
was used (fig3.12). The data shown yielded the lowest value of P-V among 100 frames
within a data set (A1-A4). Also, the shown reconstructed phases are aberration corrected
by subtracting the first 7 Zernike polynomials (Eq(3.11)), as the dominant components
of aberration. By fitting the Zernike polynomials to the reconstructed phases of different
radiation regimes, we observed that the further coefficients of the Zernike polynomials
(8 and higher) are negligible. Therefore, the first 7 aberration polynomials were selected
to describe the systematic aberration of the optical system.

Every data set consisted of 100 frames of measured diffraction patterns. Since FEL’s
properties may change shot-to-shot, therefore the measured properties associated with
the intensity and phase is required to be observed statistically. Thus, we would obtain
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an average value for each complex wave field property illustrating a statistical picture of
a dynamic source. Intuitively, increasing the ensembles of measured pulses would result
in a more accurate conclusion about the source’s systematic fluctuations. Nevertheless,
the amount of data frame acquired by the FLASH experiment resulted in observing the
determined parameters fitting well with previous works done[86].

Table(3.3) specifies the reconstruction’s parameters obtained for the different ensem-
bles of measured data versus each source setting. It is seen that the weak compression
regime possesses a higher beam positional stability, especially in the horizontal direction.
In addition, the average RMS error and positional fluctuation of A4 demonstrates that
the strong compression regime with a longer insertion section radiates more chaotically
in comparison with the other cases. And also, It is observed that 6 undulators setup sig-
nificantly increase the noise distribution. This effect manifests itself when a diffraction
pattern is transfered to Fourier space, as a decrease of the signal-to-noise ratio in the
side lobes. Additionally, during the strong compression regime we expected to observe
less stable pulse radiation compare to the weak compression, however the results show
that even a weak compression may exhibit significant shot-to-shot fluctuations of the
intensity. We observed that the combination used in A3-A4 dramatically change the
intensity shot-to-shot fluctuations compared to a combination of weak compression and
different undulator number.

Furthermore, radiation simulations have shown that for the same geometry given (a
5mm aperture here) one expects to measure pulses with 85% degree of transverse co-
herence in the weak compression regime with 4 active undulator segments and 75% in
the strong compression. Since the Hartmann wavefront sensing method is not sensitive
to the coherence degree of the pulse, there is no more precise measure to distinguish
the coherent and partially coherent pulses except the results of radiation simulations.
Therefore, to categorize the measured pulses in terms of coherence, the simulated an-
alyzed value will be considered hereafter in this chapter. It will be shown in the next
chapter that the imaging approach and its algorithmic structure well categorizes the
measured pulses with respect to their coherence properties.

Table 3.3: The reconstructed wave field parameters for the different ensembles
of pulses via different source parameters.<> indicates an ensemble
average.

Case <Phase P-V>(λ) <Phase RMS error> (λ) Standard deviation of the beam
position (mm)

A1 1.47 0.067 σx = 0.088 - σy =0.590
A2 1.11 0.065 σx = 0.034 - σy = 0.198
A3 1.53 0.062 σx = 0.407 - σy = 0.502
A4 1.84 0.095 σx = 0.812 - σy = 0.666

For coherent radiation, it is possible, and relatively straightforward, to numerically
back propagate the reconstructed wave field from the sensor to the focus of the elliptical
mirror. Theoretically, A1 and A2 radiation regimes radiate coherently enough which
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Figure 3.12: The reconstructed data of the Hartmann wavefront sensor B, focused X-ray
pulses of 14.7 nm wavelength, and a 5 mm aperture upstream of the elliptical
mirror. Each row represents the components of reconstructed wave fields
(the intensity and aberration-free phase) for A1 to A4 regimes. As seen, the
Fourier demodulation method is successfully applied to reconstruct pulses
with the different signal-to-noise and coherence degree. For a 5 mm aperture
size approximately 25 diffraction spot were measured for each single-shot.
The data shown yielded the lowest P-V among 100 frames of the measured
data for each radiation regime indicating in table(3.2).
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enable us to back propagate the reconstructed wave field, and determine the complex
wave field at the image plane. The image plane specifies where the source is imaged,
which needs not to be the focal plane of the elliptical mirror[47]. This plane can be
considered as the Fourier transform plane of the ellipsoidal mirror performing transform,
and located slightly downstream of the nominal focal length. Thus, ray-optics governs
that all reflecting rays from the ellipsoidal mirror are collected at the image plane (i.e.
the focus of the beam). Therefore, the intensity distribution is highly localized at that
plane and the sharpness[89],

S(z) =

∫∫
I2(x, y; z) d2r , (3.13)

reaches its maximum value.

Numerically, the retrieved wave field at the detector back propagates to the nominal
focal plane of mirror, and eq(2.32) and eq(2.45) are utilized to propagate the new wave
field in a neighborhood of the mirror focus. Measuring an ensemble of wave fields,
eq(3.13) demonstrates the location of the image plane, as shown fig(3.13). Since the
variation of the image plane would be observed statistically for a shot-to-shot pulse
characterization experiment, we would describe the position of the image plane as a
mean value and its standard deviation.

Figure 3.13: The image and focal planes are indicated by the green and red lines re-
spectively. As seen, the normalized sharpness reaches the unity when the
intensity is highly localized, illustrating the image plane.
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In fig.(3.14) three different meridional intensity distributions, of pulses yielding the
minimum beam positional instability within the data sets, versus different aperture
sizes for A2 radiation regime are shown. The 1D line profile of the image planes (a scan
in direction of the white lines) show a central peak with different fringe distributions
related to the aperture size and the coherence degree of pulses. Also, the non-uniform
distribution of the high frequency fringes, for 3 mm and 5 mm aperture sizes, are due to
the stochastic intensity distribution of the pulses illuminating the aperture, otherwise a
smooth fringe distribution at higher frequencies would be observed. For 10 mm aperture
size, the high frequency features appear uniformly since the area covered by aperture
might be larger than the spatial coherence length of the pulses. Therefore, the transition
from fully to highly coherent radiation is observed. Additionally, The FWHMs of the
peaks determined by the 1D profiles cover an area with only a few numerical pixels
(approximately 6 pixels) that manifests a resolution limited picture of the image plane.
So forth, those positional fluctuations, in the lateral direction, of the pulses that are
smaller than the resolution limit may not be resolved completely.

Fig.(3.15) shows the reconstructed wave field at image plane of a pulse shown in
fig.(3.14.c). The lateral line profiles through the center illustrate a slightly different
fringe distributions can be attributed to the stochastic intensity distribution of wave field
illuminating the aperture. The center of mass of the image plane intensity distribution
was found in (0,0) with a standard deviation of ± 1.5µm in both lateral directions. The
determined lateral displacements of the image plane for the different data set of different
radiation regimes were always smaller than the resolution element (lateral pixel size), so
the lateral displacements can not be meaningfully observed by the limited resolution of
the Hartmann wavefront sensing approach.

Since, the determined intensity distribution of the pulses at the image plane are more
structured than a simple Gaussian distribution, especially when a 3 mm aperture sized
used, the beam width at image plane can not be perfectly described by a Gaussian fitting
to the 2D intensity distributions. Therefore, as a conventional method in laser optics we
determine the FWHM of pulses at image plane utilizing the 2nd momentum method[64].
In this approach, the second momentum of the intensity in a pixel-wise system within
the numerical array is calculated as follows:

4σ = 4. < r2
i >= 4.

∫∫
(ri − r̄i)2 I(x, y) d2r∫∫

I(x, y) d2r
, (3.14)

where i indicates (x,y). The wings of the beam profile influence the 4σ value more than
the center of the profile since the wings are weighted by the square of its distance, r2,
from the center of the beam. Then, the FWHM is related to 4σ as 68% of its value,

FWHM =

√
ln 2

2
. 4σ. (3.15)

Theoretically, when a coherent and nearly planar pulse illuminates a finite size focusing
optics the diffraction limited spot size (FWHM of intensity) can be calculated as[47],
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: (a,c,e) show the meridional profiles of the reconstructed wave fields versus
the different aperture sizes (3, 5, 10 mm). The dashed lines indicate the
beam waist position in each case. (b,d,f) present the cross sectional field
distribution at the waist position.
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Figure 3.15: The Hartmann wavefront sensing reconstructed complex wave field in the
image plane of a pulse having the same longitudinal position as indicated
in fig.(3.14-c). In (a) phase is expressed by the hue and intensity by the
brightness. (b) displays the lateral line profiles of the intensity at the image
plane. The FWHM was estimated as 9.63v × 9.63hµm

2. The solid white
line is a 20µm scale bar.

FWHM = 1.03
λ zimage
D

, (3.16)

where zimage is the image plane on-axis position and D is the diameter of the aperture.
In Table(3.4) the average of FWHMs, determined over 100 pulses of A2 regime using

3,5,10 mm apertures, and expected diffraction spot size values (FWHM of intensity),
by assuming a plane wave radiation, at the image plane are compared. The calculated
FWHMs in all cases are larger than the theoretically expected diffraction spot sizes. The
discrepancy can be attributed to the divergence of the beam illuminating the aperture (a
non-planar phase curvature of the pulses) and non-uniform intensity distribution within
the aperture regardless of the aperture size. Therefore, the assumption of a plane wave
illumination is not longer valid here, illustrating the effect of short beamlines into the
focus properties. For hard x-ray pulses, since the distance between the source and the
focusing optics is typically a few thousands of meters, the phase curvature of the pulses
illuminating the focusing optics would not strongly affect the spatial distribution of the
focused wave at image plane, and the FWHM is expected to correlate with the diffraction
spot size of optics.

3.6 Summary and Conclusion

In this chapter, the experimental realization and theoretical considerations for applying
the Hartmann wavefront sensing to characterize single-shot highly focused pulses at the
FLASH beamline BL2 has been discussed.

The possibility of using the Fourier demodulation method to retrieve the complex
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Table 3.4: Comparison of the average FWHMs at the image plane over 100
pulses of A2 regime and theoretically calculated diffraction spot size
values, versus different aperture sizes.

aperture size(mm) Measured FWHM(µm) Diffraction limited spot size(µm)
10 6.71 ± 1.47 3.11
5 9.51 ± 0.18 6.22
3 17.86 ± 0.17 10.38

wave fields of many patterns measured with Hartmann arrays has been introduced. In
this method, the measured patterns are studied in Fourier space, and the information
of the phase gradient and intensity are extracted from the central and first side lobes of
the converted patterns while the Shannon sampling criterion is satisfied.

The retrieved complex pulses in the coherent regime (i.e. weak electron bunch com-
pression) enabled the determination of the properties of the pulses at the image plane.
The lateral beam position variation was not determined, due to the limited resolution of
the Hartmann system. A strong shot-to-shot (aberration-corrected) phase variation was
observed within the strong compression data sets while the weak compression regime
possessed a smoother shot-to-shot variation, to be seen as a well-defined phase mode.
The fluctuations (phase and intensity) observed within the pulses of the strong compres-
sion regime may be linked to the growth of the strong nonlinear terms[5] in the electron
motions which estimates this more statistically shot-to-shot variation as measured.

The probability density function analysis showed the difference between the coherence
properties of the weak and strong compression regimes. This effect can be attributed
to the change in the RMS bunch length which is directly linked to the uncorrelated
energy spread (∆E

E
) of the bunch. When a strong compression is applied, the number of

radiation modes increase, as released by the probability analysis, and consequently the
contribution of the dominant mode decrease[5].

The caustic distribution of coherent pulses demonstrated a structured intensity dis-
tribution at the image plane for 3 and 5 mm aperture sizes, showing that the transverse
coherence length of pulses is comparable to the extent of apertures. For 10 mm apertures,
the features were significantly smoothed out.

Lastly, it should be noted that utilizing the Hartmann wavefront sensing method at
FLASH was enabled due to the use of soft x-ray radiation. This approach may not
be possible at a hard x-ray beamline. The Hartmann plates usually are designed to
operate in the soft x-ray regime and are transparent when illuminated with hard x-
rays . To analyze short wavelength radiation with a Hartman sensor, a longer distance
between the plate and the detector is needed to validate the assumption of ∆φ � 2π.
This requirement may affect the prerequisite of near field distance between the plate
and detector, and reduce the accuracy of the analysis. Therefore, the Fresnel coherent
diffraction imaging method will be introduced as a potentially applicable approach across
a broad range of photon energies to characterize single-shot highly focused pulses in the
next chapter. The result of the Fresnel coherent diffraction imaging technique will be
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compared against the results of the Hartmann wavefront sensing method to assess the
meaningful correlations between those methods and to benchmark the iterative method.
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CHAPTER 4

Coherent Diffraction Imaging Technique :
Background, Simulation and Experiment

Imaging non-crystalline small biological samples at FELs require a high degree of X-ray
beam focusing to obtain the highest intensity or an optimal matching between beam
size and the spatial extent of samples to be injected [90, 26]. To enable a complete
analysis of data for a large fraction of experiments performed at FELs with focused
beams, it is important to know the exact properties of the focused complex wave fields
including the phase, intensity and spatial distribution. This is particularly the case for
imaging experiments which require either a well-defined or well-characterized wave field
to quantitatively interpret the structure of the sample investigated.

The characterization of highly focused X-ray pulses is particularly challenging due to
the stochastic shot-to-shot fluctuations of the SASE process as well as a focused peak
intensity that exceeds the damage threshold of any material[91]. Therefore, an approach
is required to understand the variation of specific properties of pulses that furthermore
would enable a statistical analysis over various changing parameters– particularly of the
FEL source.

Different methods have been developed to characterize FEL pulses either in a single-
shot basis or as an average over an ensemble of measured data[92, 14, 25]. Most of those
methods suffer from applicability in a limited photon energy range or measuring a large
ensemble of overlapped data in the presence of a sample to whether provide an average
picture of delivered pulses.

A solution to overcome these problems is to use an iterative diffractive imaging
technique[33, 34, 35] applied to single far-field diffraction patterns of a highly focused
beam[36]. This method comprises an Iterative Phase Retrieval Algorithm (IPRA)
with real space and intensity modulus constraints, utilizing the spherical phase cur-
vature of the focused beam; known as the Fresnel Coherent Diffraction Imaging (FCDI)
method[59, 13]. This technique retrieves the phase of the measured far-field diffraction
pattern of a finite size focusing optics illuminated by an x-ray source. It has been shown
that the Fresnel coherent diffraction imaging algorithms result in a fast and predom-
inantly reliable convergence compared to the conventionally used coherent diffraction
imaging algorithms[37, 38].

In this chapter, we propose an extension of the Fresnel coherent diffraction imaging
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method to systematically characterize highly focused X-ray pulses under more general
experimental conditions than previously assumed[36, 93]. The technique can be used
to explore both the complex wave field information, as well as the source-point position
and its fluctuations. The latter is particularly interesting for short FEL beamlines and
yields valuable information about the gain length of the source[5]. The opportunity
of using Fresnel coherent diffraction imaging for a high-resolution, highly focused wave
field characterization in a single shot basis are discussed in detail. The concepts of phase
retrieval algorithms are introduced, and numerical simulations based on the geometry
used at the FLASH beamline BL2 are performed to assess the effectiveness of the Fresnel
coherent diffraction imaging approach as a function of the signal-to-noise ratio and
coherence degree. I discuss the data treatment and analysis of the imaging technique
for the measured diffraction patterns of different ensembles. The reconstructed data are
compared with Hartmann wavefront sensing measurements as a classical benchmark.

4.1 Iterative Phase Retrieval Algorithm

It was shown that the phase information of a scattered wave field can be fully recovered if
the associated diffraction intensity is sampled fully enough at a spacing that is finer than
the Nyquist frequency. In 1975, Fienup developed algorithms for retrieving the phase of
a 2D Localized Field Distribution (LFD) based on the iterative free-space propagation
of the wave field in real and Fourier space, utilizing a priori knowledge of each domain,
so-called Iterative Phase Retrieval Algorithms[11].

Iterative phase retrieval algorithms can be interpreted as iterative maps onto con-
straint sets. Assume Q ∈ R, then a subspace L∈ Q is a constraint set if its elements
obey a certain constraint. For example, the constraint L1, consisting domain informa-
tion, can be formulated as:

L1 := {ψ ∈ Q||DFr(ψ)| = |ψ̃| =
√
I}, (4.1)

where DFr is the Fresnel diffraction integral operator and I is the measured intensity.
Additional knowledge about the spatial localization of the wave field can be formulated
in another constraint set and is called Mask or Support in real space(L2). A solution
of ψ must fall into the elements of intersection L′ = L1 ∩ L2.

If one could map any element of Q onto an element of L′, the solution would obey the
given constraints. This mapping operator can be a projection defined as[35],

P := ψ → D−1
Fr{
√
I.
ψ̃

|ψ̃|
}. (4.2)

that iteratively sends every point of Q to the set of nearest points in L′. A solution
of projection onto set exists if the euclidean space metric achieved a minimum in Q,

ε := minψ∈Q||P(ψ)− ψ||. (4.3)
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Generally, the phase retrieval problem may involve incompatibility in the Con-
straints or, in mathematical language, nonconvex constraint sets due to the noise
in the data, highly symmetric geometry or even missing data regions in the diffraction
pattern[94]. Thus, the algorithm could stagnate in a local minimum and not approach
to eq(4.3).

4.1.1 Gerchberg and Saxton algorithm

The first iterative propagation based algorithm was proposed by Gerchberg and Saxton
(GB algorithm) in the imaging community. The aim of the algorithm is to retrieve the
phase of a localized field distribution where the amplitude of a wave field in two planes
separated by a distance z is known. In this setting the number of independent equations
(2NP for an image with NP pixels) is equal to the number of independent unknowns (2NP

real and imaginary pixel values). The method uses the Fourier transform relationship
for a wave field between a near plane downstream of the localized field distribution and
the far-field diffraction plane. These measurements give the amplitude of the wave field
at two related positions in space allowing an iterative phase retrieval to be performed.
The iterative scheme of the original Gerchberg-Saxton method proceeds as follows.

1. The measured intensities in both planes are transformed to be represented as the
modulus of the complex amplitudes of the wave field i.e. |ψ(~r)| =

√
I(~r)

2. The near plane amplitudes are then assigned random phases, as a first guess to
their values, and transformed to the diffraction plane in the far-field (Fourier trans-
formed).

3. The calculated phases in the diffraction plane are kept, and the magnitudes of the
amplitudes corrected by the measured amplitudes.

4. The estimated diffraction-plane field is transformed back to the image plane where
again the amplitudes are corrected by the measurements and the phases are kept.

5. The estimated near-plane field is then transformed to the diffraction plane where
the process is again repeated successively correcting the iterated amplitudes with
the measured amplitudes until the phases calculated converge on the solution.

The convergence of the algorithm reaches when the Euclidean distance between the
current estimate of the wave field’s amplitude in the far-field (P(ψj)), and the measured
intensity (IF ),

ε2j = ||P(ψj)−
√
IF ||2, (4.4)

is minimized such that no further improvements after jth iteration is observed, and ε
stays at a constant value.

Note, however, that convergence of the algorithm does not generally guarantee that the
algorithm has found the correct solution. In other words, there may be many different
fixed points which are not the desired solution.
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4.1.2 Error Reduction Algorithm

If only one intensity measurement is available and if the object function is characterized
by a distortion in phase and amplitude, the Gerchberg-Saxton algorithm is not applica-
ble. With additional constraints in the near plane the problem can still be solved in many
cases. The Error Reduction algorithm (ER) is a modification on the Gerchberg-Saxton
method where the real space constraints are altered. In the error reduction algorithm the
real-space constraint is no longer the amplitude of the wave field, but the finite extent
of the real-space amplitude of localized field distribution. This could achieve if the first
step of the Grechberg-Saxton algorithm (the amplitude constraint) is altered as,

ψj+1(~r) =

{
ψj(~r) if ~r ∈ Q,
0 if ~r /∈ Q.

where Q is the set of points that are within the known finite extent of the localized field
distribution.

Just as for the Gerchberg-Saxton algorithm the error εj ideally decreases monotonically
with the number of iterations in the error reduction algorithm, hence the naming of the
algorithm.

4.1.3 The Hybrid Input-Output Algorithm

Another modification to the Gerchberg-Saxton algorithm, the Hybrid Input-Output al-
gorithm (HIO) is based on the interpretation of the modulus constraint as a nonlinear
system with input ψj and output ψ′j at iteration j. The new iterate ψj+1 is now formed
not by (minimally) modifying ψj in order to obey the support constraint as it is done
in the error reduction algorithm. Instead, ψj+1 is formed as a linear combination of the
input and output of the modulus constraint system . Hence, the j th iteration can be
formulated as follows:

ψj+1(~r) =

{
ψ′j(~r) if ~r ∈ Q,
ψj − βψ′j if ~r /∈ Q.

where Q is the set of points that are within the known finite extent of the localized
field distribution and the damping parameter β satisfies 0 < β < 1 and is commonly
taken as about 0.8. This has the effect of damping the regions where the amplitude
should converge to zero, and provides the real space constraint that drives the algorithm
towards convergence along with the Fourier modulus constraint. This algorithm has
met with much success where the Gerchberg-Saxton algorithm has failed to converge
and stagnated. This is due to the flexible nature of the real space constraint applied in
hybrid input-output algorithm.

In the following sections we introduce the theoretical considerations required to im-
plement a Fresnel coherent diffraction imaging based phase retrieval algorithm for the
single-shot x-ray wave field determination. The error reduction algorithm is used as the
main body of the phase retrieval algorithm introduced in this chapter.
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4.1.4 Highly Focused FEL Phase Retrieval Algorithm

Consider the problem of imaging highly focused FEL pulses. Experimental schemes
to do so can be proposed as depicted in fig(4.1). The apertures A and B introduce
two different setups that enable the performance of single-shot focused x-ray wave field
characterization based on the Fresnel coherent diffraction imaging concept to utilize the
phase curvature of a divergent beam into the phase retrieval algorithms. The focusing
optics may consist of a Fresnel Zone Plate (FZP), and an order sorting aperture (OSA)
(setup A), or a combination of an aperture located upstream of an elliptical, toroidal or
even Kirkpatrick-Baez mirror system (setup B). In setup (A) the extent of the Fresnel
zone plate can be considered as the spatial support. The order sorting aperture is used
to remove higher-order foci. In (B) the aperture is used to define the spatial extent
of the localized field distribution. As it is desired to apply the iterative technique to
a broad range of photon energies, the setup A might not be feasible in all cases, since
the issues related to the fabrication of Fresnel zone plates cause similar problems as
discussed for the x-ray grating interferometry method. The setup B potentially can be
used without a need for special fabrications, and the geometrical distance can be easily
altered; compatible with different beamlines. Also, the use of an aperture upstream of
the focusing optics enables the implementation of the error reduction algorithm, since the
extent of the support is known ideally. Therefore, by measuring the far-field diffraction
intensity of pulses, and given the knowledge of the aperture, both constraints of an error
reduction algorithm are provided.

Figure 4.1: A scheme of the Fresnel coherent diffraction imaging wave field characteriza-
tion. (A) and (B) introduce two different setups described within the section.
The scheme is not to scale.

Depending on the extent of the aperture, the wavelength used and the aperture-to-
focusing optics distance, it is possible to design a phase retrieval algorithm involving
different Fresnel propagation operators. This opportunity increase the flexibility for
experimental designs. The scheme of a modified iterative algorithm using the error
reduction concept with setup A’s modulus constraint set is depicted in fig.(4.2). The
algorithm is started by a random guess of phase for the measured diffraction pattern and
the trial wave field back propagates to where the support is positioned. The complex
wave field is masked out(Π operator as the real space constraint set) by the support
function. Henceforth, the estimation of localized field distribution propagates forward
to the detector plane and the modulus of the resulting diffracted wave is replaced by
the measured intensity(P projects the intensity modulus). The convergence is obtained
when the Euclidean error metric approaches to a general minimum.
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Figure 4.2: Iterative phase retrieval algorithm. The algorithm is initialized by ascribing
a random phase to the measured diffraction intensity, and a series of recip-
rocal propagation (Feedback loop) is utilized until the Euclidean distance
between the current estimate and measured amplitude converges to a steady
state. Here P and Π are the Fourier and real space constraints used for an
error reduction phase retrieval algorithm. The right column (up to bottom)
shows an example of an iterative wave field reconstruction. Typically, a zero-
padding in real space applies to satisfy the sampling requirement which is,
for simplifying, not shown here. Phase is expressed by the hue and intensity
by the brightness.

The solution to the 2D phase retrieval problem for a discrete diffraction pattern that
can be represented by a Fourier series is almost unique when the diffracted wave is related
to the original wave field via eq(2.35)[37, 38]. Intuitively, exploiting the strong curvature
of a divergent beam downstream of the image plane ensures utilizing eq(2.35). Note
that the unique solution is obtained if the numerical stability of the different operators
is met,as well as the required sampling criterion. These key issues are addressed in the
following section.

4.2 Modeling of Experiment

The experimental setup and general scheme of both Hartmann wavefront sensing and
imaging experiments were described in the previous chapter in detail. In this section, the
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imaging branch will be investigated regarding required criteria to analyze the measured
data.

4.2.1 Important Criteria

In principle, depending on the geometry chosen, the sampling criteria and intermediate
field condition as well as the propagation stability have to be properly considered. The
main issue linked to the canonical transformation (a Fourier transformation containing
a spherical term) is the proper sampling of the spherical term such that the maximum
local spatial frequency be sampled at the Nyquist rate.

Based on the FLASH beamline BL2 capability, the setup B of the previously proposed
geometries was chosen using an elliptical mirror as the focusing optics, as well as a series
of different size apertures. The scheme of highly focused wave field imaging experiment
at BL2 is sketched in fig.(4.3). X-rays of wavelength λ are clipped by an aperture and
focused by an elliptical mirror. A 2D CCD detector is located downstream of the focal
plane where the Fresnel number satisfies the intermediate field condition.The distances
at BL2 were measured as: z01 = 71.5 m,z12 = 3.85 m,z = z23 +z34 = 3.2 m. The nominal
focal length of the elliptical mirror was given as f = 2 m.

Due to the sampling requirements on the intensity distribution, the support must be
finite in extent. Here we consider the aperture size as a rigid constraint in real space.
The aperture extent covers a region that at least is larger than the beam FWHM at the
given plane, though not so large that it is a negligible aperture. Clearly, there is a trade
off between selecting a more coherent region and avoiding to block most of the beam at
the aperture plane.

Figure 4.3: The highly focused wave field characterization geometry. Soft x-rays of wave-
length λ are clipped by a circular aperture and focused by an elliptical mirror
with 2 m nominal focal length. A two-dimensional detector (CCD) is located
downstream of the focal plane where the Fresnel number satisfies the far-field
condition. The aperture diameters, 10-5-3 mm, were the same as used for
the Hartmann wavefront sensing experiments.

As discussed in the previous section, the phase retrieval algorithm may involve dif-
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ferent propagators depending on the geometry and radiation wavelength. Alongside
the benefit of this freedom, it is of vital importance to note that the quadratic phase
factor involved in the Fresnel intermediate propagation may oscillate too rapidly to be
sampled properly in a discrete array of convenient computational size. However, due to
the beam divergence required, eq(2.35) governs the propagation between the elliptical
mirror and detector. Therefore, as the remaining degree of freedom, the separation gap
between the aperture and elliptical mirror can be adjusted such that the propagation
obeys eq(2.32). This combination can increase the stability of the forward propagation
strategy by convenient recasting of the propagation plane.

As discussed in chapter(2), eq(2.45) and eq(2.46) provide the rough sampling criteria
for near and intermediate field propagation. In addition to the previously noted in-
equalities, the geometrical distances, z12 and z = z23 + z34, as well as the aperture size
must be chosen such that the Fresnel number, eq.(2.36), approaches the specific limits,
establishing the near and intermediate zones.

Demonstrated by eq(2.47), an intermediate Fresnel propagation leads the sampling
rate to be rescaled between two on-axis planes, the so-called propagation and observa-
tion planes. The sampling rate in the observation plane thus linearly depends on the
propagation distance and inversely to the numerical field of view in the propagation
plane.

The forward beam propagation from the elliptical mirror to the detector can be eval-
uated as a single Fourier transform which is the most straightforward. This method
is desirable because of its computational efficiency. But, practically, the detector pixel
size is fixed and determines the sampling rate at the focusing mirror. Thus, this trans-
formation shrinks the sampling rate at the mirror plane and a forward propagation to
the image plane, as would be needed to perform further analysis, expands the sampling
rate at the image plane. The second strategy evaluates the Fresnel integral twice, which
works out inversely by shrinking the sampling (or increasing the resolution) at the image
plane, which is an ultimate goal of a successful complex wave field characterization. To
clarify the resolution difference in two strategies, assume a detector with a 1024×1024
pixels, each 20µm×20µm , z23 = z34 = 2.5 m and λ = 10 nm. A direct propagation
leads to a sampling rate equal to δ2 = 2.4µm at the EM plane and δ3 = 10µm at the
image plane consequently. While a two steps propagation provides δ3 = 1.2µm which is
8 times smaller than the previously calculated. The indirect propagation method adds
some flexibility in the grid spacing at the cost of performing a second Fourier transform,
which is practically necessary to resolve typical foci in XFEL experimental setups.

Following the indirect propagation method, the propagation from the elliptical mirror
to the image plane contains two spherical terms in the arguments of the Fourier trans-
formation in eq(2.35). One of them governs the canonical transform and the other one
the elliptical mirror effect as a perfect thin lens. Analytically, it can be formulated as
following:

ψ(ρ′, zj) ' −
i

λzij
exp(i

k

2zij
ρ′2)F(exp(i

k

2zij
ρ2) . exp(−i k

2f
ρ2) . ψ(ρ, zi)), (4.5)
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where zij is the propagation distance between the elliptical mirror and image plane,
f and λ are the nominal focal length of the elliptical mirror and wavelength. The third
exponential term is the elliptical mirror effect as a perfect thin lens. ρ and ρ′ are the
transverse coordinates of the EM and image planes. Here we assume δ as the elliptical
mirror plane numerical sampling rate.

Considering eq(2.42), the effective phase factor inside the argument of the Fourier
transformation has to be sampled at least twice the Nyquist rate in each lateral direction,

flocal =
1

2π
∇i

k

2
(

1

zij
− 1

f
) ρ2 = (

1

zij
− 1

f
)
ρ

λ
≤ 1

2δ
(4.6)

ρ takes on its maximum value at the edge of the numerical grid where ρ=Nδ
2

and N is
the grid number. After some algebra, we obtain

zij ≥
Nδ2f

2λf +Nδ2
. (4.7)

The image plane distribution, ψ(ρ′, zj), is highly localized in the neighborhood of
ρ′. In practice, ρ′ � z34 results in the highly oscillatory region of this function does not
contribute to the argument of the second Fourier transform, for a reciprocal propagation
in between the image and detector planes. Therefore, the highly oscillatory term at the
image plane is sampled finely enough and the numerical stability of the algorithm is
preserved for an indirect propagation.

4.2.2 Wave Field Retrieval

One of the issues linked to the back propagation is that the sampling criterion is not
satisfied in E4 and the highly oscillating part contributing in the back propagation can
not be properly sampled in the discrete array. This is overcome by recognizing that the
wave is formed through the multiplication of a slowly varying component with a quickly
varying one. By analytically propagating the quickly varying part and numerically prop-
agating the remaining, the iterative algorithm remains numerically stable. To explain
clearly, assume a simple two steps back and forth propagation,

ψforth(ρ
′, zj) ' −

i

λzij
exp(i

k

2zij
ρ′2)F(exp(i

k

2zij
ρ2) . ψ(ρ, zi)), (4.8)

ψback(ρ, zi) '
i

λzij
exp(−i k

2zij
ρ2)F(exp(−i k

2zij
ρ′2) . ψforth(ρ

′, zj)), (4.9)

The first exponential term inside the Fourier transformation in ψback cancels out with
the first exponential term, involving ρ′, in ψforth. This inherent property of a feedback
propagation algorithm enables numerically avoiding the highly oscillating term, involving
ρ4, which appears in the beginning and final steps of the algorithm. The analytical
propagation here exploits this mathematical property.

With this information in hand, we can summarize the algorithm steps qualitatively
as following: The algorithm is started by a guess of phase for the measured diffraction
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pattern and the trial complex wave field back propagates to an intermediate plane that
specifies the approximate location of the image plane. Then it propagates to where the
support is located and the complex wave field is masked out. Henceforth, the estimation
of localized field distribution propagates forward to the intermediate plane and the
detector plane. Then, the modulus of the resulting diffracted wave is replaced by the
measured intensity at the detector plane.

To simplify the algorithm steps mathematically, Fresnel propagators are termed by
Ω(ρ, z) as,

ψ(ρ
′, zj) ' −

i

λzij
Ω(ρ′, zij)F(Ω(ρ, zij) . ψ(ρ, zi)). (4.10)

Also, we refer to eq(2.32) by using Υzij within this chapter.
The experimental geometry at beamline BL2 is designed such that eq(2.32) is valid

for propagation distance z12 whereas eq(2.35) describes propagation over distances z23

and z34.
To recover the complex wave field in the detector plane we use an extension of the

iterative algorithm presented by Quiney et al.[36]. More specifically, we introduce an
additional propagation between the entrance aperture and the focusing element. In addi-
tion, we consider a finite distance between source and aperture plane. Consequently, we
require reciprocal propagation between four planes: the support plane E1, the elliptical-
mirror plane E2, the approximate focal plane E3, and the detector plane E4.

Representing the wave field ψ(ρ4, z34) at the detector plane as a product ψd exp(i k
2z34

ρ2
4)

of a (nearly) planar and spherical component, the algorithm can be described as follows:

1. ψ(ρ3, z3) ' i
λz34

Ω(ρ3,−z34) .F(ψdguess) ,

2. ψ(ρ2, z2) ' i
λz23

Ω(ρ2,
z23.f
z23−f )F(Ω(ρ3,−z23) . ψ(ρ3,−z3)) ,

3. ψ(ρ1, z1) ' Υ−1
z12

(ψ(ρ2, z2)),

4. impose support constraint on ψ(ρ1) → ψNew(ρ1) ,

5. ψ(ρ2, z2) ' Υz12(ψNew(ρ1, z1)),

6. ψ(ρ3, z3) ' −i
λz23

Ω(ρ3, z23)F(Ω(ρ2,
z23.f
f−z23

) . ψ(ρ2, z2)) ,

7. ψ(ρ4, z4) ' −i
λz34

.F(Ω(ρ3, z34) . ψ(ρ3, z3))

8. impose wave field amplitude constraint on ψ(ρ4) → ψNew(ρ4) ,

9. Substituting ψNew(ρ4) as ψguess in step 1,

where subindex n of ρn corresponds to the n-th plane. Here f denotes the nominal
focal length of the elliptical mirror and ψdguess is a random complex wave field to initiate
the algorithm. Later, within the context of Chapter 5 we refer to this algorithm as
Algorithm 0.
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The discrete Fourier transform (DFT) relation defines the pixel sizes between two
consecutive planes and are given by:

δxi = δxj (FN >> 1), (4.11)

δxi =
λzij
Nδxi

(FN << 1), (4.12)

where δxij is the linear pixel size in two planes linked by the discrete Fourier transform,
N is the pixel number in the discrete array, λ is the wavelength of x-ray and zij is the
linear distance between two planes.

The Shannon sampling condition, to adequately sample quadratic terms involving in
both Fresnel formalisms can be expressed as follows[95, 53]:

λzij
N(δxi)

≤ 1 (E1 ↔ E2), (4.13)

λzij
N(δxi)

≥ 1 (E2 ↔ E3 and E3 ↔ E4) (4.14)

here δxi identifies the numerical sampling at the plane of propagation and ↔ refers to
a reciprocal propagation between two consecutive planes.

In the first few iterations we use a priori knowledge of the support’s approximate
size, and in further iteration a powerful tool to find a better estimate of support is
called as Shrink-Wrap algorithm [34]. The support in this method is updated by
thresholding the intensity of a blurred version of the current estimate of the localized field
distribution under reconstruction. Thresholding traces the boundary of the localized
field distribution at a given intensity contour. The blurring acts to smooth out the
noise and provide a form of regularization. To find a new support one can thus make
a convolution of intensity of localized field distribution with a Gaussian function of the
width σ, typically covering a few pixel. A-priori knowledge of the support can potentially
speed up the algorithm convergence, however, the support can be reconstructed by the
shrink-wrap algorithm given minimal information about the support.

To establish a connection to the operator notation, we introduce projectors for the
various multiplication in the algorithm as sketched in fig.(4.4).

The iterative algorithm can be compactly expressed by operator notation, as illus-
trated in fig.(4.4):

ψk+1 = [M(I(qx, qy)).π.χ.Υ.S(A(x, y)).Υ−1.χ−1.π−1]ψk. (4.15)

Once convergence has been achieved, the algorithm is halted at step 7, which consti-
tutes the best estimate of the wave field distribution, bounded within the aperture, in
the detector plane.

The measure of algorithm convergence, ε, in this work will be based on that commonly
used in the single plane coherent diffraction imaging phase recovery. The traditional
definition of εt as referred to in [12] is
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Figure 4.4: Operator notation. Each propagation is indicated by a projection and the
constraints are specified with S as the support and M as the mapping op-
erator in Fourier space. π,χ and Υ correspond to the eq(2.32) and eq(2.35)
respectively. In the operator notation, the elliptical mirror is implemented
as a perfect lens. The intermediate plane is an approximate location of the
image plane, estimated using the focal length of the lens and z01.

εtq =

√√√√∑ij(|ψ
q
p(ρ4, z34)| −

√
I
q

measured)
2∑

ij I
q
measured

, (4.16)

where i,j represents the detector as a discrete array and q is the p-th measured intensity
evaluation index.

Statistically, we can introduce a pixel wise error or standard deviation of the recon-
struction in a 2D grid,

εsq =

√∑
ij(|ψ

q
p(ρ4, z34)| −

√
I
q

measured)
2

i.j
. (4.17)

The convergence is obtained when either εt or εs approaches to a certain value fluctu-
ating monotonically without an extreme deviation. Obviously, the error scale differs in
the above definitions.

4.2.3 Numerical Modeling

To validate the algorithm’s performance, we simulated the focus characterization exper-
iment at the FLASH beamline BL2, as shown in fig.(4.3). Soft x-rays of wavelength 14.7
nm are cropped by a 5 mm circular aperture and focused by an elliptical mirror with
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2m nominal focal length. A 2D pixellated detector containing 1024×1024 pixels with a
pixel pitch of 13µm, is located downstream of the focal plane where the Fresnel number
satisfies the far-field condition. In order to simulate the forward propagation of the wave
field to the detector plane, we follow steps 5 to 7 of the algorithm. The distances are
defined as: z01 = 71.5 m, z12 = 3.85 m, z = z23 + z34 = 3.2 m.

The simulated intensity and phase at the aperture plane are shown in fig.(4.5). Note
that a stochastic intensity distribution is used as the incident intensity at the aperture
plane, and the incident unmodified phase is taken to be spherical with a radius of 71.5m.

(a) (b)

Figure 4.5: Simulated divergent wave field. (a) and (b) show the input intensity and
phase for a wave field illuminating the aperture. The image are 1024×1024
pixels with 23.3µm square pixels. The source-to-aperture distance is 71.5 m
and the wavelength is 14.7 nm.

Then, we propagate the focused wave field to close to the theoretically calculated
image plane, called an intermediate plane as indicated in fig(4.4) and located 2.044 m
downstream of the elliptical mirror. Finding the plane with maximum sharpness norm
in a vicinity of the intermediate plane would precisely figure out the on-axis image plane
location. For each simulated single-shot reconstruction 200 iterations are used utilizing
the shrink-wrap algorithm to find the proper support. The support is simply assumed
as a perfect aperture with 5 mm diameter. The algorithm is initialized by a randomly
distributed wrapped phase varying in a range [-π,π].

Fig.(4.6) illustrates the simulated diffraction pattern of the input wave field at the
detector plane. In fact, this is essentially a low resolution image of the combined pupil
function. In contrast to the Hartmann wavefront sensing method the higher frequency
information can be accessible as shown in fig.(4.6.b).

Fig.(4.7) summarizes the results from the reconstruction of the simulated input wave
field at the aperture plane. A 1D-profile comparison of the simulated and reconstructed
phase within the aperture indicates an accurate reconstruction with a rms error of
0.05λ14.7. The phase was unwrapped here using a 2D version of the 3D unwrapping
algorithm described in [88]. An average pixel-wise residual of less than 1% was observed
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(a) (b)

Figure 4.6: The simulated diffracted intensity at the detector plane. The effect of aper-
ture upstream of the focusing optics appears clearly as the circular fringes.

in the reconstructed intensity. As seen in Fig. 4.7(c), the reconstruction error mono-
tonically approaches a minimum after 150 iterations. The support considered in the
simulation was retrieved successfully within the first few iterations of the shrink-wrap
algorithm. The reconstructions were performed by ascribing a random phase to the
simulated amplitude to initiate the algorithm. The wave field reconstruction was found
to be reliable and reproducible upon 50 trials for every single-shot by monitoring the
lowest values of ε. A deviation of 2%, between these minimum values, was found and
the absolute ε was less than 10−3, indicating good convergence.

Under the assumption of geometrical optics the image plane location is 2.054 m down-
stream of the elliptical mirror. As demonstrated by eq(3.13), the peak of the sharpness
indicates the precise position of the image plane which is specified by a red dashed line
in fig.(4.8.a). A meridional profile of the simulated and reconstructed intensity at the
intermediate plane, as an important involved step in the forth-back propagation, verifies
the feasibility of the algorithm to reconstruct the localized wave field as depicted in
fig.(4.8.b). After performing 50 simulated trials the average position of the image plane
was obtained by back-propagating the reconstructed wave field and using eq.(3.13), as
shown in Fig4.8(a). This yields z23 = 2.054 m with a standard deviation of ∆z = ±2
mm, which indicates the uncertainty in the focal position that can be ascribed to the
algorithm.

4.2.4 Noise Stability of The Algorithm

An important consideration to any algorithm one wishes to realize experimentally is its
behavior in the presence of an imperfect signal. More specifically, in this application
the key issue is the convergence (or potentially lack thereof) of the method, in compar-
ison with the ideally simulated data. This can be explored by simulating noisy data
by adding a normally distributed Gaussian noise with an average of zero and different
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Figure 4.7: Input wave field reconstruction at the aperture plane. A visual comparison
of the reconstructed (a) and simulated intensity (see Fig. 4.5) confirms a
good quantitative recovery. The white circle in (a) represents the extent
of the successfully reconstructed support. (b) displays a central line profile
comparison of the simulated (blue line) and reconstructed (red dots) phase
concluding an accurate reconstruction. The error evaluation is depicted in
(c).

standard deviation equal to some defined proportion of the signal in each pixel, to the
simulated diffracted intensities. Note that, we consider a simple case of a Gaussian noise
distribution which is valid in the limit of large counts per pixel. For many trials of sim-
ulation, different levels of noise were considered. It was observed that, with a noise level
less than 10% of the signal level, the algorithm converges to a reliable solution according
to the relative difference between the reconstructed noisy and noise-free simulated wave
fields,

α =

∑
ij I

no
rec −

∑
ij I

id
rec∑

ij I
id
rec

(4.18)

where I idrec presents the reconstruction of a noise free pulse, and Inorec is the reconstruction
of the same pulse with noise added.

∑
ij is a summation over the discrete array.
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Figure 4.8: The image plane wave field reconstruction of the simulated data. A merid-
ional profile of the focused wave field’s intensity is shown in (a). The
image plane on-axis location (red dashed line) was determined accurately
(z = 2.054m) using eq.(3.13) as plotted (black curve) in (a). In (b) the line
profile of the intensity distribution for reconstructed (red dots) and simu-
lated (blue line) wave field are depicted on a logarithmic scale to highlight
the full recovery of the contribution of the sidelobes. Note that the sharpness
is normalized to unity in (a).

For a small noise level in the detection plane (i.e. 1 or 2% of the signal level) the
difference between the noisy and noise free image are relatively small. Increasing the
noise level, for instance 3 and 5% of the signal level, imposes a series of artifacts inside
the reconstructed wave field, as well as upscaling the error metric level. As soon as
approaching a higher noise level more than 10% the convergence is interrupted. This
is reflected in the real space α being approximately 0.035(for 1% signal level), 0.060(for
2% signal level),0.1(for 3% signal level),0.13(for 5% signal level) and 0.24(for 10% signal
level). Also, the imposed effect in the reconstruction can be seen in fig.(4.9).
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(a) (b)

(c)

Figure 4.9: Reconstructed noisy wave field. A Gaussian noise was added to the detector
plane diffracted intensity with the different levels. Adding a noise more
than 3% of the signal level imposes an unwanted artifacts which potentially
can be misinterpreted. A noise level higher than 10% leads to the lack of
the algorithm convergence. (a-c) reflect the reconstructed wave fields at the
aperture plane, with added 3%,5% and 10% Gaussian noise.

4.2.5 Partially Coherent Wave Field Retrieval

As a conceptual assumption, the iterative algorithm assumes a coherent field illumina-
tion. Practically, as studied in [96, 61], at FLASH the SASE process can amplify a
variety of active modes that may alter in transverse coherence from shot to shot. As
demonstrated in [97], the Fresnel coherent diffraction imaging can be directly applied to
retrieve partially coherent wave fields with a specific generalized treatment which will be
discussed in the next chapter broadly. Practically, it was shown[13] that some deviation
in coherence from ideally to highly coherent wave field illumination is tolerable by the
current algorithm. Therefore, a fully spatially coherent illumination is not necessarily
required to apply the algorithm; a highly coherent wave field, which is practically ac-
cessible as A1(2) regime at FLASH1, would lead to a successful implementation of the
iterative algorithm. Here as a simple example to basically understand this effect, we
simulated a highly coherent illumination by blurring a simulated coherent experiment.
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A blurring by a few pixels does not dramatically change the degree of coherence and one
can expect that algorithm reconstructs the wave field successfully.

Fig.(4.10.a) illustrates the blurring as smoothing of the highly oscillating region of
data. It is seen that algorithm converges reliably after 200 iteration to a solution in
general agreement with the simulated complex wave field with a Q equals to 0.02. This
realization build up the Fresnel coherent diffraction imaging method as a robust approach
to be implemented at the FLASH beamline BL2 considering a coherence degree above
of 80% for pulses delivered by the weak compression regime.

(a) (b)

Figure 4.10: Focused highly coherent wave field retrieval. An approximately highly co-
herent wave field was generated by slight blurring of the diffracted wave
field (red solid line of (a)). As a consequence of blurring, the high angle
tails of simulated diffraction pattern (blue solid line of (a)) were smoothed
out. (b) shows the 1D central profile of the simulated and reconstructed
intensities. It implies that for highly coherent pulses, but not full coherent,
the algorithm is still able to reconstructs the wave fields. Note the plots in
(a-b) are the meridional profiles of intensities to be easily compared.

4.3 Results

4.3.1 Data Treatment

The data were acquired for each of the three different apertures (3 mm, 5 mm, 10 mm
diameter) downstream of the elliptical mirror, as well as for a variety source parameters
such as the weak and strong compression regimes and different active undulator segments
(as listed in Table(3.3)).

Fig.(4.11) displays histograms of the intensity distribution (pixel counts in a single-
shot) of the acquired data frames versus the different aperture sizes and different regimes.
In the A3 regime (3rd row) the intensity distribution falls in a negative exponential
distribution, suggesting the perfect SASE performance[5]. To monitor the fluctuation
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in each data set, σm was introduced as the ratio of the standard deviation to the mean
intensity. As seen, by decreasing the aperture size σm scales down significantly. For the
3 mm aperture size in A4 and A3 regimes one can recognize a larger σm in respect to A2
and A1 which reflects a higher level of fluctuation in the presence of the strong bunch
compression.

The subsets of data was selected by including frames which are correlated with a de-
liberately measured reference frame taken during the experiments. The reference frame
for each data set was selected among the frame collected between two consecutive losses
of the beam with the longest period of the beam stability between the gap. This ensures
a reference measurement during the most stable period of radiation. The correlation
made enables us to disregard known instabilities in the apparatus and beamline, as well
as the occasional loss of beam observed during the experiments, and observe only the
meaningful variations of the source. The cross-correlation operator is defined as[13],

Qij =

∑N
n=1 I

i(xn) Ij(xn)∑N
n=1 I

i(xn)
∑N

n=1 I
j(xn)

, (4.19)

where xi are collection of N pixels in the array. Note that Qij is calculated with
respect to the one frame across the data set. A typical cross correlation plot is shown in
fig.(4.12). As seen, during 700s data acquisition the loss of beam possesses a very strong
instability such that only half of the collected data are self-consistent. In addition, in
the data treatment, we consider reconstruction with the subset including frames with
Q> 0.95. This value ensures a reasonable data processing in respect to the numerical
time consumption for a bunch analysis. The frequent instabilities requires a long period
of data acquisition to ensure a proper data analysis for a single-shot pulse study.

To account for noise contributions, dark frames were collected during the experiment,
separately for each data set, were averaged and used in a background subtraction for
each data frame. the subtraction was performed on a pixel by pixel basis according to

Icorr = max{Iframe − (1 + β)Idark, 0}. (4.20)

By application of Eq(4.20) the camera readout noise contributions to Icorr can be
strongly inhibited due to the regularization term β. β denotes the standard deviation of
the dark images, relative to its mean. Values of β approaching zero (from 10−3) are ap-
plied and the results remain unaffected by this regularization term, building confidence
in the absence of modal bias in these reconstructions.

The position of the approximate image plane was also chosen as identical to the sim-
ulation for each single-shot reconstruction which will be modified within the algorithm.
Note that for each case we monitor the error metric versus the number of iterations.

4.3.2 Overview of The Wave Fields Reconstruction

In fig.(4.13–4.15), we display a series of the complex wave field reconstructions for the
different cases. For each case, 100 pulse reconstructions were performed and those with
the lowest error level are shown here. Note that, the reconstructed wave fields listed
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(a) A1-10mm
σm = 0.0718

(b) A1-5mm
σm = 0.0525

(c) A1-3mm
σm = 0.0182

(d) A2-10mm
σm = 0.0659

(e) A2-5mm
σm = 0.0351

(f) A2-3mm
σm = 0.0115

(g) A3-10mm
σm = 0.0747

(h) A3-5mm
σm = 0.0760

(i) A3-3mm
σm = 0.0390

(j) A4-10mm
σm = 0.0425

(k) A4-5mm
σm = 0.0356

(l) A4-3mm
σm = 0.0261

Figure 4.11: Histograms of the acquired data. The intensity fluctuation due to the
chaotic nature of SASE process can be seen in all cases, especially in A3
regime (using the strong electron bunch compression and four undulators)
falling into a negative exponential distribution.

64



4.3 Results

Figure 4.12: Cross correlation of 250 frames of A4 data with 5 mm aperture size. The
Q-factor was calculated against a single data frame collected at 477s. The
gaps reflects the periods of the beam loss, indicated by blue solid line. The
subset with a Q>0.95 and longer period of consistency was chosen to be
retrieved.

were retrieved at the aperture plane. A comparison between reconstructed pulses of the
A3 and A4 regimes with the measured data showed a convergence to a local minimum.
As discussed earlier, the iterative phase retrieval algorithm may converge to a steady
state which is not the solution of the problem due to the either noise level or a lack
of coherence. As seen in fig(4.14.g-l), the algorithm reached to a minimum value of er-
ror after which no improvement in reconstruction was achieved while the reconstructed
amplitudes (fig(4.13.g-l)) showed α values higher that 0.12, stating unsuccessful recon-
structions. For the A1 and A2 regimes α values were less than 0.03, and the difference in
the amplitude of reconstructed and measured pulses were not recognizable by eye. Here-
after, an incompatibility between the convergence of the error metric and α is called a
partial convergence attributed mainly to the coherence level of the pulses measured.
This effect of partial coherence is addressed specifically in the next chapter.

Hence, in this chapter, only the phase reconstructions of the successful (highly co-
herent) cases are displayed. This includes subtracting the defocus and tilt-top term to
monitor the phase fluctuation. The defocus subtracted phase shown here were selected
as those yield the minimum peak-to-valley among the frames of the data set. Here, the
Zernike polynomials were fitted to each reconstructed unwrapped phase. In the previ-
ous chapter, we have performed a similar operation at the detector plane to retrieve the
phase fluctuation.

In fig.(4.16) the peak-to-valley and rms error of the reconstructed phases for the
larger aperture size within A1 and A2 regimes are listed. The calculated peak-to-valley
covers a range from less than λ to more than 4.5λ demonstrating a significant change
within a time series of acquired data. As discussed, the reliability of the algorithm
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was established by performing many trials for every single-shot of a specific dataset.
A unique phase reconstruction was observed over all trials performed for every single
pulse. The reconstructed phases upon 50 trials for every single-shot always yielded a
pair-wise correlation of higher than 97% and a difference of less than 0.01λ regarding
the corresponding peak-to-valleys. This observation shows that the phase fluctuations
measured are invariant under different trials of the algorithm.

A correlation analysis (as α with the phase values instead of the intensities measured)
of retrieved phases showed a mean value of 88% with a standard deviation 10% for
the A1, and 82% with a standard variation 10% for the A2. The variations in peak-
to-valley and correlation made imply that for the A1 and A2 regime the phase of a
pulse may be described by a general map due to the higher level of α (a general bound-
ary with the known separated subdivisions), with changes of the phase value within
the subdivision (describing the peak-to-valley change). A combination of both effects
would be regarded to quantitatively describe the phase variations. A higher level of the
peak-to-valley fluctuation was observed within the reconstructed data using the iterative
technique compare to the Hartmann wavefront sensing. However, in both methods the
reconstructed phases yielded a pair-wise correlation value of higher than 80% on average.
The difference observed in the peak-to-valley can be attributed to the limited resolution
and sensitivity of the Hartmann wavefront sensing method. As pointed out earlier, the
subset of measured intensities were selected such that α value remains larger than 95%.
Therefore, the analyzed intensities are as correlated as the reconstructed phases.

A comprehensive understanding of the phase change for every given regime relies on
the study of the all pulses measured using a general iterative algorithm applied to the
partially coherent pulses measured. This will be discussed in the next chapter.

4.3.3 Image Plane Wave Field Reconstruction

We follow the approach discussed in sec.(3.5) to retrieve the image plane distribution
of the varied radiation regimes. Here, to continue the data analysis carefully and more
reliably we discuss only the A1 and A2 regimes which generate spatially coherent single
pulses to be back propagated numerically within the frame of free-space light propa-
gation. We refer to the image plane when the sharpness norm reaches its maximum
value in a vicinity of the intermediate plane, in a range within that the Fresnel near
field propagation criterion is kept. In fig4.17 the meridional profiles of the intensity for
a single-pulse (yielding the lowest value of the error metric within the data set) for the
different aperture sizes in the A1 regime are shown.

On average, a longitudinal image position of z̄23 = 2.060 m with a standard deviation
of ∆z = ±4 mm is determined for the A1 regime over all the reconstructed pulses (300
frames) with the different aperture sizes since the determination of the image plane
position would not be a function of the different aperture sizes. A similar analysis for
the A2 regime resulted in z̄23 = 2.050m with a standard deviation of ∆z = ±7 mm,
indicating image-plane on-axis fluctuations smaller than the Rayleigh range.

Additionally, in table(4.1) the averaged lateral FWHMs of reconstructed single-shot
pulses with the iterative phase retrieval algorithm approach and the Hartmann wave-
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(a) A1-10mm (b) A1-5mm (c) A1-3mm

(d) A2-10mm (e) A2-5mm (f) A2-3mm

(g) A3-10mm (h) A3-5mm (i) A3-3mm

(j) A4-10mm (k) A4-5mm (l) A4-3mm

Figure 4.13: The single-shot intensity reconstruction. An overview of the intensity (in a
normalized unit) reconstruction at the aperture plane utilizing the shrink-
wrap algorithm in 200 iterations. In A3-A4 regimes due to a lower level of
coherence, the lack of convergence can be seen qualitatively in (g-l) and, as
expected, the algorithm did not completely converge to a global minimum.
The color bars are in a normalized unit in linear scale.
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(a) A1-10mm (b) A1-5mm (c) A1-3mm

(d) A2-10mm (e) A2-5mm (f) A2-3mm

(g) A3-10mm (h) A3-5mm (i) A3-3mm

(j) A4-10mm (k) A4-5mm (l) A4-3mm

Figure 4.14: Logarithmic error metric of the reconstructed single-shot pulses yielding
the lowest value of the error among the reconstructed frames within the
data sets. As shown the phase retrieval algorithm approaches to a min-
imum value which necessarily does not reflect that the solution is found.
The comparison of measured amplitudes with the reconstructions shown in
fig(4.13.g-l) show that the iterative phase retrieval algorithm is stagnated
in a local minimum may be attributed to the partial coherence proper-
ties of the A3 and A4 regime. The A1 and A2 pulses were reconstructed
successfully in 200 iterations with a α level of less than 0.02.
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(a) A1-10mm (b) A1-5mm (c) A1-3mm

(d) A2-10mm (e) A2-5mm (f) A2-3mm

Figure 4.15: Reconstructed single-shot phases of the A1 and A2 regimes at the aper-
ture plane. A defocus term was subtracted from the single-shot recon-
structed phases to observe the meaningful variations of the phases. The
phases shown here yielded the lowest peak-to-valley value within the re-
trieved phases in the data sets. Within 100 frames of the measured data for
the A1 and A2 regimes a high level of correlation (up to 80%) was observed
between the single-shot reconstructions. The changes in peak-to-valley and
the correlation quantify a significant shot-to-shot phase change between the
pulses measure.
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(a) A1-10mm (b) A2-10mm

Figure 4.16: Monitoring the phase fluctuation. For every single shot the reconstructed
phase was unwrapped at the aperture and detector planes. The peak-to-
valley values were calculated at the aperture plane subtracting the defocus
term as the dominant effect encoded into the phase.

front sensing method are compared. The calculated FWHMs in both cases are larger
than the diffraction spot sizes that is seen in the previous chapter. Note that, as used
in the previous chapter, we consider the 4σ method to find the beam width and conse-
quently the transverse FWHMs in each lateral direction. The current results are in a
reasonable agreement with the data analyzed in the previous chapter demonstrating a
reliable consistency in both methods.

Table 4.1: The average beam parameters in weak compression regime versus
different aperture sizes. A standard deviation of 1µm2 is consid-
ered to the calculated FWHMs here, as the maximum level of the
standard deviations found within the determined parameters of the
different data sets.

Aperture size(mm) Averaged beam width(µm2) –
Imaging method

Averaged beam width(µm2) –
Hartmann wavefront sensing
method

A1
10 6.72×6.77 6.71×6.66
5 9.53×9.58 9.5×9.43
3 16.24×16.10 17.86×16.95

A2
10 5.15×5.23 5.35×5.25
5 9.55×9.5 10.24×9.80
3 15.14×15.21 17.10×17.32
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4.3 Results

(a) A1-10mm (b) A1-5mm

(c) A1-3mm

Figure 4.17: The reconstructed meridional profiles of the intensity for the different aper-
ture sizes. A reconstructed wave field at the detector plane can be back
propagated to the intermediate plane when the coherence assumption is
valid. Thus, the image plane can be found when the sharpness reaches its
maximum in a vicinity of the intermediate plane. The single pulses shown
here yielded the lowest value of the error metric among 100 reconstructed
pulses of the data sets. The dashed lines in (a-c) indicates the image plane
position as 2.056 m,2.057 m,2.056 m downstream of the elliptical mirror.
Here, a numerical (systematical) error of 4 mm would be considered to in-
terpret the single-shot determined values accurately. The solid white line
is a 1 cm scale bar. The plots are in a logarithmic scale with an arbitrary
unit.
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(a) A1-5mm (b) A2-5mm

Figure 4.18: An example of the shot-to-shot longitudinal source position fluctuation. (a-
b) show the fluctuation of the longitudinal source position upstream of the
end of the last undulator. The wavefront radius of curvature was determined
as 80.50±2.5 in (a) and 71.50±2.5 in(b).

4.3.4 The Systematic Source-Point Position

Finding the single shot image plane positions informs one of the longitudinal source-point
position fluctuation. As the image plane is the image of the source performed by the
elliptical mirror, one can simply use the optical law of image formation and calculate the
elliptical mirror-source distance and the aperture-source distance. To illustrate the fluc-
tuation of the source position, one subset from A1 and one subset from A2 were chosen.
These subsets were the most self-consistent subsets among the data measured. Despite
the photon noise, the measured source-aperture distance (or conventionally wavefront
radius of curvature) follows the nominal displacement with a relative accuracy of about
2.5 m. For these specific subsets of data the average effective-source position for the 4
undulators setup (fig4.18.a) was found to be 80.50±2.5 m, and 71.50±2.5 m for the 6
undulators setup (fig4.18.b), yielding a difference of 9m. On average, the relative dif-
ference of the source position between 4 undulators and 6 undulators setting was found
approximately 10m (with a standard deviation of 2.5m) which is comparable with the
length of two undulator segments ('10m). Throughout the experiment, the source point
remained upstream of the end of the last undulator[86]. Such longitudinal fluctuations
reflect a gain variation along the undulator. The positional fluctuation does not fit per-
fectly to a Gaussian function, which may be attributed to an insufficient statistics or a
complex process governing the radiation within the undulator.

4.4 Summary and Conclusion

An algorithmic phase retrieval approach to characterize coherent, focused FEL pulses on
a single-shot basis has been demonstrated numerically and experimentally. The results
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obtained compare favorably with the established Hartmann wavefront sensing method
performed with the same FEL parameters. A high level of correlation was observed
between the results of both methods, illustrating the ability of the new iterative method
to reconstruct focused wave fields without the need for using conventional manipulative
optics such as absorbing screens.

It should be noted that the comparison between both Hartmann wavefront sensing
and iterative methods was made due to the applicable FEL energy of FLASH for the
Hartmann sensor. In general, Hartmann plates function well for softer energy ranges and
may not apply to the hard photon energies at XFELs, such as the European XFEL. The
iterative imaging method—not relying on the properties of absorptive optics between
the focusing optics and detector—provides a general technique applicable across a very
broad photon energy range, as well as for different focusing optics for highly spatially
coherent beam.

The degree of coherence and signal-to-noise ratio manifest themselves as the key issues
governing the algorithm convergence. For source parameters satisfy both conditions the
algorithm rapidly converges to a reliable solution with a α value less than 0.02. As
discussed, a successful complex wave field reconstruction is achieved by monitoring both
the error metric convergence and α value. Reaching to a steady state of the error
evaluation may imply that the algorithm is stagnated at a local minimum. This effect
was observed when the strong compression data were analyzed due to the a deviation
in the degree of coherence, as theoretically was predicted. The partially coherent case
is addressed in the next chapter.

Statistical analysis of the different regimes reflected the shot-to-shot variation of the
wave fields, and also as the exact on-axis position of the image plane for every single-shot
is resolved, the associated longitudinal source-position fluctuations can be found. This
enables, for example, to introduce an effective source-position within the undulators,
and for monitoring of the source gain variation within the active undulators of an FEL
source.
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CHAPTER 5

Partially Coherent Wave Field Characteriza-
tion : An Extension of Coherent Diffraction
Imaging Techniques

In general, different compression regimes of FELs may result in wave fields of that are not
perfectly coherent . Partially coherent diffracted intensities cannot be simply interpreted
as the moduli of wave fields determined by their amplitudes and phases. Therefore, the
prerequisite of coherent propagation, and consequently coherent phase retrieval algo-
rithms, is fundamentally not satisfied. We also recall that the method of phase recovery
discussed in the preceding chapter often fails in the presence of partially coherent pulses.
In this chapter we discuss the Generalized Schell’s Theorem and demonstrate a revised
and generalized iterative algorithm to reconstruct partially coherent wave fields as well
as estimate the degree of coherence associated with them.
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5 Partially Coherent Wave Field Characterization : An Extension of Coherent Diffraction Imaging Techniques

5.1 Various representations of a partially coherent wave
field

The general framework of optical coherence theory is well established and has been
described in numerous publications([60],[62],[47],[98]). As shown in the first chapter, a
partially coherent wave field is no longer a solution of Maxwell’s equations and measured
diffraction patterns of an aperture illuminated by partially coherent radiations are not
simply the moduli of the diffracted wave fields. Therefore, the prerequisite of a phase
retrieval algorithm, as simultaneously satisfying both constraints, is violated. In order
to achieve the goal of recovery the wave field for partially coherent FEL pulses, the
properties of either cross spectral density or mutual optical intensity as a way to be
applicable to phase retrieval algorithms are revised.

5.1.1 Modal representation

It is clear that a numerical implementation of cross spectral density function may be
difficult due to the high dimensionality of the problem. A desirable solution might treat
the cross spectral density as an ensemble of electrodynamic fields, of the same frequency
of ω, depending solely on one spatial component r. An affirmative solution to expand the
cross spectral density as ensemble of separable basis in r1 and r2 was given in[99],[100].

Since W (r, r, ω) represents the intensity at frequency ω, I(r, ω), measuring of the
instantaneous power can be practically assumed in the sense that[99]:∫

I(r, ω)d2r <∞. (5.1)

Consequently, by Plancherel’s theorem, W (r1, r2, ω) is square-integrable with respect
to r1, r2 and ω as follows[99]:∫

|W (r1, r2, ω)|2d2r1d
2r2 <∞. (5.2)

From eq(2.48) and eq(2.52), it directly follows that:

W (r1, r2, ω) = W ∗(r1, r2, ω), (5.3)

and the positive definite property of the characteristic function integral,∫
W (r1, r2, ω)f(r1)f ∗(r2)d2r1d

2r2 ≥ 0. (5.4)

Eqs.(5.2)-(5.4) imply that W (r1, r2, ω) is a non-negative, Hermitian and square-
integrable function. The Gram-Schmidt procedure systematically admits a uniformly
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5.1 Various representations of a partially coherent wave field

convergent expansion, constructing a set of orthonormal functions in the general form[43],

W (r1, r2, ω) =
∑
n

a(ω)nψn(r1, ω)ψ∗n(r2, ω), (5.5)

where a(ω)′ns are eigenvalues and ψ′ns are the eigenfunctions determined by the Fried-
holm’s integral equation as follows[43]:∫

W (r1, r2, ω)ψn(r1, ω) d2r1 = an(ω)ψn(r2, ω). (5.6)

Since each term on the right hand side of eq(5.5) is factored with respect to variables
r1 and r2, eq(5.5) represents the cross spectral density as a series of spatially coherent
wave fields, contributing as self-coherent, mutually incoherent modes, all of the same
frequency ω. The expansion of cross spectral density to a series of single modes is the
so-called Coherent Mode Representation method.

Depending on the type of radiation sources to be studied, diverse sets of coherent
modes are introduced to describe the cross spectral density entirely[101, 102, 103]. The
mode decomposition approach might be of practical use to determine pseudo-stationary
statistically sources such as well-known Gaussian radiations generated by synchrotrons.

Therefore, further insight into the concepts of partially coherent pulses may be pro-
vided by a more generalized method which would be independent of the modes repre-
sentation and able to treat the mutual mutual optical intensity or cross spectral density
determination as a 2D problem as well.

5.1.2 Generalized Schell’s theorem

As an alternative approach to deal with the evolution of partially coherent wave fields,
a technique for the determination of the radiation pattern of a partially coherent illumi-
nated aperture was introduced by Schell, known as Schell’s theorem, which connects
the far-field diffracted intensity of an aperture to it’s geometrical structure and the co-
herence function of the illuminating wave field at the aperture position[104]. As such, it
was an important and successful result for the calculation of the intensity pattern and
associated power of antenna radiations in situations involving partially coherent radia-
tions. It was shown in([105]) that Schell’s theorem can be applied even in the Fresnel
regime without the need for far-field condition to apply. The foregoing definition of the
mutual optical intensity in the Schell’s theorem is written,

J(r1, r2) = ψ(r1)ψ∗(r2)γ(r1⊥ − r2⊥) (5.7)

where ψ(r) is a description of rms amplitude over the aperture extent and γ is termed
as the normalized spatial coherence function.

The propagation of mutual optical intensity from a plane at z = 0 to a given plane
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located at z within the paraxial approximation is straightforward to obtain,

J(ρ1, ρ2, z) =
1

(λz)2
exp(i

k

2z
(ρ2

1 − ρ2
2))∫∫

J(ρ′1, ρ
′
2, 0) exp(i

k

2z
(ρ′21 − ρ′22 )) exp(i

k

z
ρ1.ρ

′
1) exp(−ik

z
ρ2.ρ

′
2)d2ρ′1 d

2ρ′2 (5.8)

where ρ = (x, y). The geometry followed are depicted in fig.(2.1). The mutual optical
intensity leaving the aperture is a direct multiplication of J(ρ1, ρ2, 0) with the mutual
amplitude function of aperture A(ρ1).A∗(ρ2). The detailed calculation of the mutual op-
tical intensity and intensity associated have been presented in[105]. As a modification of
the problem, here the mutual optical intensity propagation of a highly localized partially
coherent wave field is calculated such that the quadratic terms of eq(5.8) contribute in a
short range extent. Therefore, one can recast eq(5.8) by an explicit usage of the coherent
function,

J(ρ1, ρ2, z) =
1

(λz)2
exp(i

k

2z
(ρ2

1 − ρ2
2))∫∫

ψ(ρ′1)ψ∗(ρ′2)γ(ρ′1 − ρ′2) exp(i
k

2z
(ρ′21 − ρ′22 )) exp(i

k

z
ρ1.ρ

′
1) exp(−ik

z
ρ2.ρ

′
2)d2ρ′1 d

2ρ′2,

(5.9)

where ψ is termed as the complex wave field and γ the coherence function. |ψ| can be
interpreted as the wave amplitude for the fully coherent condition of J(ρ′1, ρ

′
2, 0) where

the intensity is I(ρ′, 0) = |ψ(ρ′, 0)|2 and γ(ρ′1 − ρ′2) = 1. Substituting a pair of new

coordinates as ∆ρ = ρ′1 − ρ′2 and ρ′av =
ρ′1+ρ′2

2
in eq(5.9), one can represent the intensity

at plane z as,

I(ρ, z) =
1

(λz)2

∫∫
ψ(ρav +

1

2
∆ρ) exp(i

k

2z
(ρav +

1

2
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ψ∗(ρav −
1

2
∆ρ) exp(i
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(ρav −
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2
∆ρ)2)γ(∆ρ) exp(i
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z
ρ.∆ρ)d2∆ρ d2ρav, (5.10)

where ρ = ρ1 = ρ2. The integrands can be reformed as an auto-correlation term con-
volving with the Fourier transformation of γ,

I(ρ, z′) = | i
λz′

∫
ψ∗(ρ

′′
) exp(i

k

2z′
(ρ−ρ′′

))2d2ρ
′′ |2⊗

∫
γ(∆ρ) exp(i

k

z′
ρ′′.∆ρ)d2∆ρ (5.11)

The first term in the right hand side of eq(5.11) implies the Fresnel propagation of
a coherent wave field and the latter represents the Fourier transform of the γ function.
Eq(5.11) can be represented in an alternative format that describes a partially coherent
intensity in terms of an associated fully coherent intensity propagated by the Fresnel
formalism and Fourier transformation of the coherence function of the source as follows,
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Ip = Ic ⊗F(γ), (5.12)

where Ip and Ic are the partially coherent and coherent intensity respectively, and F
is the Fourier transformation. When k

2z′
ρ2 � 1 and k

2z′
ρ′′2 � 1 , the auto-correlation

term converts to the Fraunhofer propagation of the wave field, reproducing the original
representation of the Schell’s theorem in the far-field regime.

Alternatively, in the near field region k
z′
ρ′′.∆ρ� 1 and, the Fourier integral responds

to the exponential term as,

I(ρ, z′) = | i
λz′

∫
ψ∗(ρ

′′
) exp(i

k

2z′
(ρ− ρ′′

))2d2ρ
′′ |2 ⊗ γ(ρ). (5.13)

Schell’s approach is a general representation of the modal decomposition method which
tentatively expresses the partially coherent wave field as a pair of physically understand-
able terms without a need to choose a suitable basis to decompose the cross spectral
density according to its properties and geometry of the optical pipeline given. In this
chapter we will treat the evolution of a partially coherent wave field as it is described
by Schell’s theorem.

5.2 A general version of an iterative phase retrieval
algorithm for partially coherent radiations

As shown in the preceding section, the partially coherent diffraction pattern is no longer
the modulus of the diffracted wave field which results in there being no physical localized
wave field that simultaneously satisfies the modulus and real space constraint. Depend-
ing on the degree of coherence, the iterative algorithm, as seen in the previous chapter,
might diverge or contain many undefined artifacts. The symptoms of the algorithm’s
failure to converge and the expectation of lower coherence in the case of the FEL running
in the so-called strong compression regime motivate an interest to improve the algorithm
developed such that it retrieves the effective wave field for partially coherent radiation
along with the coherence function by taking advantage of Schell’s theorem.

Following the geometry shown in fig.(2.1), the intensity at the detector plane is a con-
volution of the propagated coherent intensity and the Fourier transform of the coherence
function at the image plane. So, if one could deconvolve the right hand side of eq(5.12),
it would result in finding separately the coherence function and the coherent wave am-
plitude at the detector plane. Furthermore, the coherent wave field can be retrieved
using the algorithm developed in the previous chapter. Here as a clarification, the phase
of a partially coherent wave is treated as that associated with the coherent wave field
to be reconstructed. In other words, when a wave field is expressed as an expansion of
mutual modes the phase of the dominant mode is ascribed as the physical phase of the
wave field.

To start the retrieval algorithm, intuitively we would employ a deconvolution routine
with no information of functions convolved with each other. When both Ic and γ are
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unknown and desirable to be resolved, the problem is a so-called Blind Deconvolution.
It is an ill-posed and non-convex problem which might return an infinite number of
solution for a given intensity. In general, a blind deconvolution algorithm practically
consists on an iterative scheme which optimizes itself in each iteration by improving the
initial guess of the coherence function given to the algorithm[106]. A close guess would
bring a faster convergence while a completely random start might diverge altogether or
stagnate quickly to a wrong solution. Therefore, one measure of the perfectness of the
deconvolution outputs is to monitor χ2 as,

χ2 = ||Ip − IBDc ⊗ γBDD ||, (5.14)

which should monotonically decrease with an increasing number of iterations. Here, BD
is an abbreviation of the blind deconvolution and γD refers to the coherence function at
the detector plane.

On the other hand, the Lucy-Richardson algorithm (LC) can be employed to itera-
tively retrieved a numerical estimate of γD using the measured intensity Ip, and a com-
bination of current and previous estimate of the coherent intensity, I∆j

c = Ij+1
c −Ijc [107].

The iterative scheme follows as,

γj+1
DL = γjDL(I∆j

c ⊗
Ip

I∆j
c ⊗ γjDL

) (5.15)

where DL index indicates the Detector coherence function reconstructed using LC al-
gorithm.

Therefore, as an alternative measure one can compare the final γBDD and γDL. The
difference between those γs is minimized when the blind deconvolution converge to the
exact solution, otherwise the retrieved γDL significantly deviates from γBDD . A numerical
simulation in the following section will illustrate this argument.

Here we introduce OP→C as the deconvolution operator taking in the measured in-
tensity and determining the coherent intensity, as well as the coherence function. So,
the algorithmic steps to retrieve partially coherent measured pulses can be respectively
summarized as an initialization level, the main body, and a feedback level to compare
the coherence functions (see Algorithm 1). The main body straightly follows from the
instruction described in detail in the previous chapter and refers to Algorithm 0. The
new algorithm begins with a guess wave field of amplitude

√
IBDc and returns iteratively

the exact ψCE4 associated with the measured data.

5.3 Numerical Modeling

As a simple picture, the partial coherence property is expected to manifest itself as a
blurred measured diffraction pattern at the detector plane. So, identical to the steps we
followed in chapter 4, a stochastic wave field with a phase curvature of z01, propagates
from the aperture plane of 5 mm in diameter, to the intermediate plane, located 2.054 m
downstream of the elliptical mirror. Then, we assign a coherence function for the detector
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5.3 Numerical Modeling

Algorithm 1 Partially coherent wave field recovery

Begin

• Initialization level

1. OP→C(IPE4)→ (ICE4 , γE4)

2. If limiteration'O(102) α = ‖IPE4 − ICE4 ⊗ γE4‖ ' 0
→ Icoh = ICE4 and ψCEguess

4
=
√
Icoh. exp(iφinitial)

• Main body

1. Algorithm 0N
j=1(ψCEguess

4
)

* While ε monitors convergence,

If Mod(j,10) = 0 ,
γ1
DL = f(ρ) ∈ R2

γj+1
DL = γjDL(I∆j

c ⊗
Ip

I∆j
c ⊗γjDL

)

• Feedback level

1. βj+1 = ||γj+1
DL − γBDD ||

If βj+1 − βj > 0
Break
Reinitialize

• Once the simultaneous convergence of β and ε is achieved the algorithm is stopped.

end

plane which enables the use of eq(5.12) to find the partially coherent intensity. In
fig.(5.1.a-b) the partially coherent simulated intensity, as well as the coherence function
are depicted. The partial coherence suppresses the coherence fringes as can be seen from
a comparison of fig.(5.1.a) and fig.(5.1.c) . However, a ±10% variation in the FWHM
of the coherence function did not dramatically change the partially diffraction pattern
such that the correlation between the changed and unchanged functions yielded a value
of 95%. As soon as the variation of FWHM exceeds ±10%, the pairwise correlation
reduces significantly. Consequently, it is observed that the recovery of the coherence
function carries an uncertainty of less than 10% in the FWHM or equivalently in the
coherence length to be resolved.

OP→C(IPE4) was initialized by an off-centered Gaussian function as the initial coher-
ence function suggestion with a FWHM of three times larger than the simulated one.
It was seen that the blind deconvolution algorithm is sensitive to the initial parameter,
and might not converge if the input is far away from the real solution. However, a start
guess close to the final solution would result in retrieving the coherence function easily.
A start guess of the coherence function may be understood from radiation simulations.

Fig.(5.2) displays the evolution of α, β and ε after 300 iteration for a successful re-
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(a) (b)

(c) (d)

Figure 5.1: Partially coherent wave field simulation. (a) displays partially coherent
diffraction pattern of a 5 mm aperture 3.2 m upstream of the detector. (b)
the coherence envelope as a function of the relative lateral coordinates (∆ρ).
(c) represents the coherent intensity associated. (d) shows that the coherence
fringes in (c) are surpassed in (a) as the influence of the partial coherence.
The images are 1024×1024 pixels with 23 µm square pixels. The wavelength
is 14.7 nm.

construction. Consequently, the result of the main body are presented in fig.(5.3). It
is seen that the coherent intensity and coherent function both are reconstructed accu-
rately. The phase reconstruction at the aperture plane reflects an error of less than 1%
in the reconstruction of the phase. As a remaining question to find the exact place of the
image plane, it would be desirable to compare the caustics of the reconstructed coherent
wave field and the partially coherent wave field obeying eq(5.13). As seen in fig.(5.3.c)
both coherent and partially coherent wave field’s intensity caustic distribution result in
finding a unique image plane position. Simply, the delivery of the source image through
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the optical pipeline is not affected by the presence of the coherence function, and the
image plane position can be precisely determined as followed in the previous chapters.
Determining the position of the image plane, the source image FWHM can be calcu-
lated using the second momentum method. The ratio of the coherence function FWHM
to the intensity distribution FWHM would reflect a measure of the average degree of
coherence, even though an uncertainty in order of 10% in reconstructing the coherence
function unavoidably exists.

The normalized degree of coherence at the image plane is depicted in fig.(5.4). It
releases a average degree of coherence of 44% which is in general agreement with the
ideal value considered in the simulation as 48% (the ratio of FWHMs of simulated
functions at the detector plane), given the expected uncertainty in the recovered degree
of coherence.

A stagnation state was found as a probable situation that may occur when a noise
level of more than 8% was added to the diffraction pattern. The stagnation is recognized
by simultaneous monitoring of the convergence of error metrics and the mean difference
of the reconstructed and simulated diffraction pattern. As discussed in the previous
chapter, the mean difference would be in order of 10−3 for a successful reconstruction.
Adding noise levels of 8%, 10% and 15% to fig.(5.2.a) resulted in finding the mean
differences of 0.02, 0.1, 0.3 while the error metrics converged.

It is observed that even in the presence of the uncertainty associated with the recovery
of the coherence function, the successful wave field reconstruction satisfies both condi-
tions of the error metrics convergence and a mean difference in order of 0.003 indicating
a reliable reconstruction. Therefore, it can be concluded that the method provides a re-
liable measure of the wave field and an approximation of the coherence with an expected
level of the uncertainty. The mean difference between the partially coherent intensity
reconstructed with the highest and lowest error level of the coherence function recovered
never exceeds a value of more than 10−3.

5.4 Overview of partially coherent wave field
reconstructions

Since the general algorithm can accommodate partial coherence and simultaneously
determine the coherence function, all pulse categories are expected to be fully recon-
structible with this general algorithm, regardless of the degree of coherence associated
with them. In the following section the results of A3 and A4 regimes will be presented
primarily, since the explicit lack of convergence was seen when they were applied with
the coherent version of the algorithm in the previous chapter. A comparison between
the general and coherent algorithm to reconstruct the pulses of A1(2) regime will follow
in the second section.
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(a) (b)

(c)

Figure 5.2: Evolution of convergence parameters. In (a) α is represented in a normal-
ized fashion as it is conventionally implemented to most of deconvolution
routines. The absolute difference between γDL and γBD iteratively decreases
to a steady state in (b). (c) shows the convergence of Algorithm 0 error
metric on a logarithmic scale. The simultaneous convergence of all three
parameters conclude a successful reconstruction.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: Implementation of the generalized phase retrieval algorithm for a partially
coherent wave field shown in (a). The difference between Lucy-Richardson
and blind deconvolution reconstruction was not resolvable by eye so only
one of them is represented in (b). In (c) the red dots are the sharpness
distribution in a vicinity of the intermediate plane when eq(5.13) applies.
(d) shows the partially coherent intensity distribution at the image plane
which reflects a larger image size (FWHMRE) compared to the diffraction
limited (FWHMDL) value. The extent of the simulated aperture is com-
pletely recovered using the shrink-wrap algorithm within the main body of
the generalized algorithm. The reconstructed phase reasonably fits the sim-
ulated phase yielding z01 = 60 m with an error of less than 1 m.
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Figure 5.4: Degree of coherence. dashed lines present the Fourier back transformation
of γDBD , and the blue circles show the reconstructed coherence function em-
ploying the Lucy-Richardson algorithm.

5.4.1 Implementation to A3 and A4 regimes data

As an exception, as shown in fig.(5.5.a), the measured diffraction data for the case of 10
mm aperture size in A3 regime shows a tilt of the aperture which unfortunately avoids
to apply the specified real space constraint into the reconstruction. And also, due to the
high level of noise, the deconvolution process applied to those data failed to converge
fig(5.5.b-d). Therefore, this set of data has been excluded from the analysis.

In fig(5.6), we display an example of complex wave field reconstructions for the A3
regime using an aperture of 3 mm in size. For the other variants, the same procedure was
followed. Since many pulses were analyzed for each data set, the average of parameters
analyzed over the ensembles is reported here.

The results reflect a series of successful reconstructions converging reliably and rela-
tively fast. The deconvolution algorithm was initialized by a Gaussian function with a
FWHM equal to the 40% of the aperture size. The choice of a Gaussian function led the
deconvolution algorithm to converge to the solutions perfectly close to the reconstructed
coherence function using the Lucy-Richardson algorithm. A random choice to initialize
the deconvolution resulted in a lack of convergence or trapping in a stagnation state.
Therefore, the initialization without any knowledge of the coherence function might be
a bottleneck preventing to start the whole algorithm. It should be noted that as the
result of radiation simulations, a Gaussian function is used as a reasonable guess of the
coherence envelope. The main body of the algorithm was initialized as described in the
previous chapter. For each data frame, 20 trials were compiled to monitor the repro-
ducibility of the algorithm. A standard deviation of less than 8% was observed in εfinal
for all data frames reconstructed.

The results show a size increase of the source image in comparison with those obtained
through A1 and A2 regimes. A small shape variation and lateral positional displacement
of the source image was observed as it is indicated by a red dashed line to illustrate the
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5.4 Overview of partially coherent wave field reconstructions

(a) (b)

(c) (d)

Figure 5.5: Failure to reconstruct the wave field with a 10 mm aperture size in the A3
regime (strong compression- 4 undulators). (a) shows an example of the mea-
sured data which clearly illustrates the effect of the aperture misalignment
to the diffraction pattern. The wave field was not constrained well enough.
Therefore, the reconstructed coherent intensity and coherence function could
not be retrieved successfully as shown in (b,c). The divergence of the single
frame and average pulse are shown in(d).
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Figure 5.6: Partially coherent single-shot wave field reconstruction applied to A3 regime
using a 3mm aperture.(a). the measured intensity, (b). deconvolved inten-
sity, (c). deconvolution convergence, (d). reconstructed coherent intensity,
(e). evolution of the reconstruction error metric, (f). the normalized sharp-
ness, (g). the intensity distribution at the image plane, (h). the degree of
coherence obtained at the image plane, (i). the partially coherent inten-
sity at the aperture plane as the convolution of the reconstructed coherence
intensity and geometrically scaled coherence function. Note that the main
body of the algorithm was given 200 iterations to reconstruct the coherent
wave field, as it was conceived to be enough by the convergence behavior of
the algorithm seen in the previous chapter.
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5.4 Overview of partially coherent wave field reconstructions

off-center positions and rotations resolved. In fig.(5.7) the statistics of change in FWHM
of the source image and coherence functions for A3-A4 using 5 mm aperture are shown.
The average degree of coherence for both regimes statistically varies. More accurately
speaking, if the discussed uncertainty to the reconstruction of the coherence function was
considered, which is comparable with the standard deviation of the fluctuations observed,
the average degree of coherences should be treated as quasi-dynamic parameter with the
smooth fluctuations around its mean value. The reconstructions mostly determined
symmetric coherence functions such that the difference in the lateral FWHMs is fairly
negligible. Hereafter, the 1D profile of the coherence function is plotted and we refer to
FWHM as the value assigned for both lateral directions.

Table(5.1) summarizes the coherence degree for A3-A4 regimes and different aperture
sizes. As seen, the coherence degree approaches 73% in the A3 regime when the smallest
aperture was used while the situation for A4 shows a 5% decrease of the coherence
degree. A4-10 mm reflects the lowest value of the coherence delivered by the radiation
setups. Here, it should be noted that selecting the consistent subset of data enables us
to monitor the consistent performance of the source.

Table 5.1: Overview of the coherence degree of the pulses delivered via A3-A4
regimes. The data shown were resolved using the general algorithm.
A3-10 mm data set, as explained previously, was excluded from the
data analysis.

Case Average source image size(H×Vµm2) Coherence degree(±10%)
A3 - 5 mm 11.8×11.3 73%
A3 - 3 mm 16.8×16.4 78%
A4 - 10 mm 9.8×10.1 70%
A4 - 5 mm 13.9×14 72%
A4 - 3 mm 17.7×17.7 75%

The normalized sharpness of the reconstructed coherent pulses identifies the focal
plane, and hence reflects the longitudinal source position displacement within the un-
dulator segments. For different bunches (fig.5.8), the source fluctuates in a range of
the order of one undulator length with a standard deviation of approximately half an
undulator length. Theses longitudinal fluctuations are in general agreement with those
determined in the previous chapter.

In fig.(5.9) the peak-to-valley (p-v) and rms error of the reconstructed phases (of the
detector plane) for both radiation regimes when a 5 mm aperture was considered are
listed. The reconstructed phases were unwrapped and the first 7 Zernike polynomials
were subtracted. In general, the results yield a larger phase variation in A4 regime
compare to A3. We recall that in the previous chapter the A2 regime showed a higher
level of phase variation in comparison to A1. It can be suggested that increasing the
active undulator segments may result in observing a higher statistical phase change.
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(a) (b)

(c) (d)

Figure 5.7: Variation in image size and coherence function using. Here DC abbreviates
the degree of coherence. (a-b) reflect an average image size (FWHM) of 11.8h
× 11.4v µm

2 and an average coherence function size (FWHM) of 9.6h × 9.7v
µm2, for the A3 regime using a 5 mm aperture . (c-d) present a relatively
lager image size (FWHM) for the A4 regime using 5 mm aperture size, as
13.7h × 13.9v µm

2 while the coherence function size (FWHM) 9.8h × 9.9v
µm2 has been approximately preserved. The black dashed lines display the
average values.
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5.4 Overview of partially coherent wave field reconstructions

Figure 5.8: Longitudinal source positional fluctuation of A3 and A4 regimes when a
5mm aperture was applied. As seen the longitudinal source fluctuation is
clearly resolved and shows an average difference of 10m (2 undulators length)
between A3 and A4 regimes, supporting the results of simulations reported
by FLASH accelerator sector[86]. The black dashed lines display the average
values.

Figure 5.9: Monitoring the phase variations. For every single-shot the first 7 Zernike
polynomials were subtracted from the unwrapped phase at the detector plane
when a 5mm aperture was used. (a-b) show the phase fluctuations for A3
and A4 regimes respectively.
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5.4.2 Implementation to A1 and A2 regimes data

In the previous chapter A1(2) regimes data were analyzed successfully using the conven-
tional algorithm. For all pulses reconstructed, the algorithm convergence was monitored
for many trials to prove the reproducibility of the results. The transition from A1(2)
to A3(4) clearly illustrated that below a certain level of the coherence (when radiation
are partially coherent) the algorithm has to be modified in order to reconstruct pulses
measured. The successfulness of applying the Algorithm 0 to A1(2) meant that up to
a certain level of coherence the algorithm would be able to reconstruct the complex wave
field of the pulses. By the knowledge of the preceding section, we can assert that a high-
level of coherence would be enough to employ the Algorithm 0 instead of assuming
a fully coherent illumination that might not be achieved practically. So, of importance
and interest is to understand the cross-over point of the coherence level, defining the
inevitable transition to the general algorithm.

In fig.(5.10) the complex wave field reconstruction of a frame of A1 data using both
algorithms is compared. The measured intensity was used as the input of the coherent
algorithm as described in the last chapter while the associated coherent intensity (here
we use ⊗ and ⊗−1 as the convolution and deconvolution operators) initiated the general
algorithm . To meaningfully compare the results of both algorithms, the reconstructed
coherent intensities of the general algorithm were convolved with the associated coherent
functions at the image and aperture planes.

Both algorithms converge reliably after 200 iterations to a reproducible solution (20 tri-
als were performed). A reduction in the error metric of 13% using the partially coherent
reconstruction method compared with assuming highly coherent beam was determined.
This improvement compares well with the results and explanation of the previous works
on the partially coherent diffractive imaging[27] . As seen, the reconstructed image
source complex wave field and aperture plane intensities display a high level of correla-
tion between the performance of the two algorithms. The position of the image source
was found to be the same in both algorithms while the general algorithm resulted in a
relatively larger image size in the vertical direction (0.2µm) which manifests a negligible
difference that might arise from the imperfect reconstruction of the coherence function
by the blind deconvolution algorithm. The reconstructed degree of coherence at the
image plane reflects a coherence degree of 82%. It is seen that applying the Algorithm
1 or Algorithm 0 to A1(2) resulted in a series of the same wave field reconstructions
without any significant variations in the statistical parameters of the pulses.

Consequently, different pulses from A1 and A2 for 3-5-10 mm aperture sizes were
compared similarly. Regardless of the aperture size, A1 pulses could be fully character-
ized by both algorithms with a high level of correlation between the reconstructed wave
fields. The transition to A2 regimes significantly decreased the signal to noise ratio and
the deconvolution process often required a high level of the noise threshold to apply.
Nevertheless, the pairwise comparison of reconstructed pulses of A2 regime via both
algorithms, on average, showed a correlation of 92%.

Fig.(5.11) shows the reconstructed average degree of coherence for A1 and A2 regimes.
It can be determined that both regimes deliver pulses with a coherence degree of higher
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5.4 Overview of partially coherent wave field reconstructions

Figure 5.10: Partially wave field reconstruction applied to A1 regime using a 3 mm aper-
ture size. A frame of data were reconstructed using the coherent (left loop)
and partially coherent algorithm (right loop). As expected, due to the high
coherence degree of A1 regime, both algorithms determined the same com-
plex wave field. As an advantage of the general algorithm, the coherence
function was found, yielding an 82% coherence degree. The source image
size and on-axis position resolved in both algorithms are in a general agree-
ment. Both approaches converged to a reliable solution after 200 iterations.
⊗ and ⊗−1 display the convolution and deconvolution operators.
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Figure 5.11: Determination of the degree of coherence at the image plane. The upper
and lower rows display the reconstructed degree of coherence for A1 and
A2 regimes respectively. The aperture size used increases from the left
to right as 3-5-10 mm. The ratio of the average FWHMs to the source
image sizes shows a high level of radiation parameters stability over the
measurements periods (as shown in Table(5.2)). <> is the average (mean)
over the ensemble.

than 81%. The coherence degree of A1 reflects the highest level of consistency in com-
parison to the other regimes, proving the stability of the radiation parameters over the
measurement periods. Accordingly, Table(5.2) categorizes the coherence degrees for A1-
A2 regimes using different aperture sizes. The results confirm, as the probability density
function analysis showed, that A1 regime delivers the most coherent pulses compared to
the other machine-aperture setups.

Our analysis shows that the cross-over governing the transition to the general algo-
rithm is a coherence degree less than 80% associated with pulses. It was clearly shown
that the partially coherent algorithm significantly improves the algorithmic convergence
in every radiation case. A level less than this boundary, as shown in the previous chap-
ter, would results in a lack of convergence. This effect is attributed to the variation-
in-contribution of the γ function in eq(5.10). This shows that a slight decrease in the
coherence length can drastically change the assumption of γ ' 1 and requires the gen-
eral algorithm to be applied. Therefore, the general algorithm might be considered as a
very applicable tools for the beamlines delivering pulses with lower levels of coherence.
Nevertheless, we note that the success of the general algorithm strongly connects to
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5.5 Conclusion

Table 5.2: Overview of the coherence degree of the pulses delivered via A1-
A2 regimes. The data shown were resolved using both general and
conventional algorithms.

Case Average image size(H×Vµm2) Coherence degree(±10%)
A1 - 10 mm 6.72×6.77 78%
A1 - 5 mm 9.53×9.58 83%
A1 - 3 mm 16.24×16.10 89%
A2 - 10 mm 5.15×5.23 76%
A2 - 5 mm 9.55×9.5 82%
A2 - 3 mm 15.14×15.21 87%

the signal to noise ratio. A high level of noise significantly affects the BD algorithm
as of seen for A3-10 mm data set. Apparently, developing a powerful tool dedicated to
deconvolve noisy data with no a prior model or form is strongly required to facilitate
the initiation of the general algorithm.

5.5 Conclusion

A general phase retrieval algorithm was developed to reconstruct partially coherent
pulses delivered in the strong compression regime. The general algorithm enables the
reconstruction of the complex wave fields, as well as the coherence function associated
with them using the so-called Lucy-Richardson algorithm. An inevitable level of uncer-
tainty (±10%) was determined in the reconstruction of the coherence function. It was
shown that this uncertainty does not significantly change the reconstructed partially
coherent pulses. The general approach yields a more reliable level of convergence, com-
pared to the coherence algorithm, for all pulses of the different regimes, and a reasonable
approximation of the coherence degree for each single-shot.

The shot-to-shot fluctuation of the source’s parameters were determined, and a rea-
sonable level of correlation was found between them. The resolved degree of coherence
was in general agreement with radiation simulations. The reconstruction of the trans-
verse degree of coherence in this chapter potentially supports the results of the simulated
radiations and the assumption of considering solely A1-A2 datasets in the third chap-
ter to apply the Hartmann wavefront sensing method. It should be recalled that the
generalized imaging approach may apply to different states of a FEL machine delivering
pulse with different degree of transverse coherence, if enough signal to noise ratio was
achieved.

Table(5.3) presents an overview of all four regimes regarding the determined properties
obtained in the previous and present chapters. A high level of correlation (abbreviated
as C), more than 85%, has been observed between the intensities and respective retrieved
phases, implying a similar pattern of variation through each of them regardless of the
FEL machine state. As seen, aperturing the photon beam upstream of the focusing
optics improves its coherence. However, a clear trade-off between the highest achievable
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Table 5.3: Comparison of the determined properties across the different radi-
ation regimes

Aperture
size (mm)

C(intensity
and phase)

Average
degree of
coherence
(±10%)

Average im-
age size(µm2)
(H×V)

Average
source
position(m
± 2.5 m)

A1
10 0.9 78% 6.7×6.8
5 0.93 83% 9.53×9.58 81
3 0.95 90% 16.2×16.1

A2
10 0.88 76% 5.15×5.23
5 0.92 82% 9.55×9.5 72
3 0.95 88% 15.1×15.2

A3
10 0.89 74% ————
5 0.93 73% 11.8×11.3 80
3 0.91 79% 16.8×16.4

A4
10 0.87 70% 9.8×10.1
5 0.90 72% 13.9×14 71
3 0.90 76% 17.7×17.7

level of the transverse coherence and blocking more photons was observed. The focal size
distribution was found as a function of the aperture size and the degree of coherence.
Applying the same aperture, partially coherent pulses yielded larger focal distribution
than the coherent pulses. Even a small change in the beam coherence (less than 10%)
may result in 30% increase in the image size. Both algorithms developed in this thesis
conclude a consistent effective source position regarding the number of active undula-
tors independent of the bunch compression. However, the iterative scheme inherently
contains a level of uncertainty to resolve the source position which is practically smaller
than the gap between the undulator segments.
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CHAPTER 6

Conclusion

Determining shot-to-shot fluctuations in properties of focused X-ray FEL pulses is es-
sential for many experiments at SASE based FELs, in particular for imaging single
non-crystalline biological particles. The characterization of highly focused X-ray pulses
is particularly challenging due to the stochastic shot-to-shot fluctuations of the SASE
process as well as a focused peak intensity that exceeds the damage threshold of any
material. An approach to solve this problem is to use an iterative diffractive imaging
technique applied to single far-field diffraction patterns from a highly focused beam.
This method comprises an iterative phase retrieval with support and intensity modulus
constraints, utilizing the spherical phase curvature of the focused beam; known as the
Fresnel coherent diffraction imaging method.

Within this thesis, an extension of the Fresnel coherent diffraction imaging method to
systematically characterize highly focused X-ray pulses has been proposed to the case
where the support constraint can be imposed in a plane that differs from the plane
of the focusing optics. This approach enables wave field characterization experiments
to be performed under more general experimental conditions than previously assumed.
The method has been developed to apply to a broad range of photon energy, without
imposing a limit on the resolution.

Furthermore, the method has been generalized to reconstruct partially coherent wave
fields delivered at FELs by taking advantage of Schell’s generalized theorem in the
context of partially coherent optics. In this approach, the measured intensities have been
treated as a convolution of the so-called coherent intensities and associated coherence
functions. This improvement enables the additional benefit of retrieving the coherence
function associated with the pulses, as an additional inverse problem implemented to
the coherent algorithm, with a reliable, if limited, accuracy.

The use of the coherent and generalized algorithms has been simulated by modeling
the wave field characterization experiments for fully and partially coherent pulses. Both
approaches predict successful single-shot wave field retrievals with reliable and repro-
ducible convergence to a unique solution, as well as the precise determination of the
source parameters. The simulations suggest that the general algorithm (partially co-
herent) offers an improvement in the solution reliability, at the cost of decreasing the
convergence speed and noise robustness. It has been observed that the coherent algo-
rithm retrieves the wave fields of simulated highly coherent pulses, and an apparent
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6 Conclusion

failure of reconstruction appears when pulses are partially coherent.
This work has demonstrated the application of the coherent and generalized algo-

rithm to characterize single-shot FEL pulses and determine source parameters by the
FLASH beamline BL2 for a variety of radiation regimes including the different electron
bunch compression and a different number of active undulators. The former affects the
signal-to-noise (SNR) ratio of pulses delivered, and the latter influences the coherence
degree associated with pulses. Additionally, delivered single-shot X-ray pulses have been
expected to show different levels of beam instability, as well as chaotic variations of the
intensity and phase.

The imaging technique has been benchmarked against the well-established Hartmann
Wavefront Sensing method for soft X-ray pulses of FLASH. The Fourier Demodulation
method has been introduced as a fast, and precise approach to analyze data measured
of wavefront sensors in Fourier space. A high level of correlation between the properties
of the reconstructed wave fields and source parameters has been observed using both
methods. The results have shown the shot-to-shot fluctuations of the source parameters
within the subsets and between the different subsets of different regimes.

It has been demonstrated that the generalized algorithm resolves the coherence proper-
ties of the measured pulses and effective source position such that the statistical average
of those parameters compares well with the theoretical expectation. The identification
of effective source position potentially removes the conventional assumption of a (nearly)
planar illuminating probe to be characterized and suits both algorithms for pulse char-
acterizations of short beamlines regardless of the coherence degree.

The method generalizes well to the hard X-ray regime which is a distinct advantage
compared to other methods. The method offers the possibility to enable wave field char-
acterization to the upcoming the European XFEL, with the highest resolution possible
and potentially fast, online feedback for users to optimize and the understand radia-
tion delivered. The unambiguous separation of the wave field and coherence function
may assist the precise conduct and interpretation of novel experiments, especially single
particle imaging experiments at the SPB/SFX instrument.
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J. Feldhaus. The soft x-ray free-electron laser flash at desy: beamlines, diagnostics
and end-stations. New. J. Phys., 11(2):023029, 2009.

[40] P. Emma. Handbook of Accelerator Physics and Engineering. World Scientific,
2013.

[41] J. D. Jackson. Classical Electrodynamics, volume 1. ACADEMIC PRESS (UK),
1999.

[42] R. Churchill. Foureir series and boundary value problem. McGraw- Hill, New York,
2nd edition, 1963.

[43] G. Arfken and H. Weber. Mathematical methods for physicists. ACADEMIC
PRESS, San Diego, CA, 5 edition, 2001.

[44] D.M.Paganin. Coherent X-ray Optics. Oxford University Press, 2006.

[45] R. T. Michael. Deterministic phase retrieval: a Greens function solution. J. Opt.
Soc. Am., 73(11):1434, 1983.

[46] D. Constales and R. S. Krauhar. Multi-periodic eigensolutions to the dirac operator
and applications to the generalized helmholtz equation on flat cylinders and on the
n-torus. Mathematical Methods in the Applied Sciences, 32(16):2050–2070, 2009.

[47] J. W. Goodman. Introduction to Fourier Optics, volume 1. ROBERTS COM-
PANY, 3 edition, 2005.

[48] C. E. Shannon. Communication in the Presence Noise. PROCEEDING of the
I.R.E, pages 10–21, 1947.

[49] The shannon sampling theorem and its implications. http://www-users.math.

umn.edu/~lerman/math5467/shannon_aliasing.pdf. Accessed: 2017-08-10.

[50] P. L. Butzer. A sampling theorem for duration limited function with error calcu-
lation. Information and Control, 65:55–65, 1977.

[51] L. Jung-Ping. Controlling the aliasing by zero-padding in the digital calculation
of the scalar diffraction. J. Opt. Soc. Am. A, 29(9):1956–1964, 2012.

[52] T. Shimobaba, T. Kakue, N. Okada, M. Oikawa, Y. Yamaguchi, and T. Ito.
Aliasing-reduced fresnel diffraction with scale and shift operations. J. Opt.,
15(7):075405, 2013.

104

http://www-users.math.umn.edu/~lerman/math5467/shannon_aliasing.pdf
http://www-users.math.umn.edu/~lerman/math5467/shannon_aliasing.pdf


Bibliography

[53] O. Levent. Sampling of the diffraction field. Appl. Opt., 39(32):5929–5935, 2000.

[54] D. G. Voelz and M. C Roggemann. Digital simulation of scalar optical diffrac-
tion: revisiting chirp function sampling criteria and consequences. App. opt.,
48(32):6132–42, 2009.

[55] S. Matsuyama, H. Yokoyama, R. Fukui, Y. Kohmura, K. Tamasaku, M. Yabashi,
W. Yashiro, A. Momose, T. Ishikawa, and K. Yamauchi. Wavefront measure-
ment for a hard-x-ray nanobeam using single-grating interferometry. Opt. Express,
20(22):24977–24986, 2012.

[56] A. Polo, V. Kutchoukov, F. Bociort, S. F. Pereira, and H. P. Urbach. Determina-
tion of wavefront structure for a hartmann wavefront sensor using a phase-retrieval
method. Opt. Express, 20(7):7822–7832, 2012.

[57] D. R. Neal, W. J. Alford, J. K. Gruetzner, and M. E. Warren. Amplitude and
phase beam characterization using a two-dimensional wavefront sensor. SPIE,
2870:72–82, 1996.

[58] B. Abbey, K. A. Nugent, G. J. Williams, J. N. Clark, A. G. Peele, M. A. Pfeifer,
M. De Jonge, and I. McNulty. Keyhole coherent diffractive imaging. Nat. Phys.,
4:394–398, 2008.

[59] G. J. Williams, H. M. Quiney, B. B. Dhal, C. Q. Tran, K. A. Nugent, A. G. Peele,
D. Paterson, and M. D. de Jonge. Fresnel coherent diffractive imaging. Phys. Rev.
Lett., 97:025506, 2006.

[60] L. Mandel and E. Wolf. Optical coherence and quantum optics. Cambridge
University Press, 1 edition, 1995.

[61] A. Singer, F. Sorgenfrei, A. P. Mancuso, N. Gerasimova, O. M. Yefanov, J. Gulden,
T. Gorniak, T. Senkbeil, A. Sakdinawat, Y. Liu, D. Attwood, S. Dziarzhytski,
D. D. Mai, R. Treusch, E. Weckert, T. Salditt, A. Rosenhahn, W. Wurth, and
I. A. Vartanyants. Spatial and temporal coherence properties of single free-electron
laser pulses. Opt. Express, 20(16):17480–17495, 2012.

[62] E. Wolf and M. Born. Principles of Optics. Cambridge University Press, London,
1959.

[63] E. A. Saleh. Fundamental of Photonics. John Wiley and Sons,Inc., 1 edition,
1991.
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