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Abstract

In general, the understanding of microscopic physical processes in many-body systems needs
an investigation starting from first principles, especially taking the impact of dimensionality
and correlations into account. However, designing numerical ab-initio algorithms, which can
handle the dimensional crossover and correlations is a very challenging task and strongly limited
with respect to computational power. Because of this, most of the available algorithms in the
literature focus on either one of these challenges.

In this thesis, nevertheless, we tackle these challenges by designing a highly optimized algo-
rithm taking both all correlations and the dimensional crossover into account and show its effi-
cient application for confined, interacting bosonic ensembles. In doing so, the exponential scaling
of complexity w.r.t. the number of particles can be tackled by the ab-initio Multi-Configuration
Time-Dependent Hartree methods for Bosons (MCTDHB) [PRL 77, 033613 (2008)]. However,
further different challenges occur when trying to model three-dimensional interaction potentials
and in order to determine the most feasible interaction potential, we discuss different implemen-
tations for zero- as well as finite-range interaction potentials and rate them with respect to (i)
the possibility to resolve correlations, (ii) a numerically efficient implementation and acceptable
runtimes for desktop computers and (iii) numerically created artefacts due to approximations
made. We show that repulsive short-range interaction potentials given as a product with re-
spect to the dimensions are most suited for an implementation. Despite being most suitable, the
use of these interaction potentials is highly challenging because they introduce a small length
scale and, hence, need large number of grid points in a numerical treatment. We deal with this
challenge by developing an efficient algorithm with respect to the number of grid points based
on the Multi-Layer MCTDHB (ML-MCTDHB) method for ultracold bosons. In doings so by
using a particularly tailored wave function ansatz, we derive equations of motion by using the
Dirak-Frenkel variational principle and implement them in a highly optimized way, e.g., using
parallel-processing. With our new wave function ansatz, the total numbers of grid point scales
linear with the dimensions and not exponential as in the MCTDHB method. The algorithm
is validated by comparison with possible analytical results and with other numerical methods
available in the literature.

The beneficial scaling of our approach is used to study the impact of dimensionality on bosonic
ensembles in different trap geometries. This is achieved by changing the trap aspect ratio, defined
as the quotient between the transversal and longitudinal trap frequencies, leading to a crossover
from a quasi 1D to an isotropic confinement. Especially, we are interested in the interplay
between spatial and particle correlations and, thereby, we employ the following three systems.
(i) Two bosons interact in a harmonic trap with various aspect ratios: This system serves as
a prototype in order to determine suitable numerical and physical parameters and to study
the time scale on which the interaction can induce significant spatial and particle correlations.
Furthermore, we study the general convergence behaviour, which indicates an algebraic decay of
the natural populations in three dimensions. (ii) A bosonic ensemble tunnels between two wells
separated in the longitudinal direction, which are embedded in an elongated harmonic trap:
We show that at least two transversal modes are needed in order to resolve the time-dependent
density profile correctly and identify the influence of the dimensionality on the evolution of the
population imbalance. In addition, we study the validly of different approximation of the many-
body wave function, such as the mean-field approximation or the adiabatic separation of the
spatial dimensions. (iii) A bosonic ensemble, initially displaced from the trap centre, scatters off
a barrier, placed in the trap centre: By studying the mechanisms of coherence loss, interesting
for matter-wave interferometers, we find that for nearly isotropic traps, loss of coherence occurs
between the region close to the barrier and outer regions, due to spatial correlations while for
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quasi one-dimensional traps incoherences rise between the two density fragments of the left and
right side of the barrier, due to particle correlations. Furthermore, we can show how spatial
and particle correlations modify the decay of the centre of mass oscillation. All these effects are
enhanced if the aspect ratio is integer valued.
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Zusammenfassung

Um mikroskopische Prozesse in quantenmechanischen Vielteilchensystemen richtig zu verstehen,
benötigt man eine ab-initio Beschreibung, welche insbesondere den Einfluss sowohl von Korre-
lationen als auch der Dimensionalität berücksichtigt. Es ist jedoch sehr anspruchsvoll einen
solchen ab-initio Algorithmus zu entwickeln, der nicht dramatisch von der verfügbaren Rechen-
leistung abhängt. Deshalb beschränken sich die meisten der gängigen Methoden auf eine der
beiden Problemstellungen.

Trotzdem nehmen wir in dieser Arbeit diese Herausforderung an, indem wir einen hoch-
optimierten Algorithmus entwickeln, der sowohl Korrelationen als auch Systeme im Übergang
zwischen unterschiedlicher räumlicher Dimensionalität numerisch auflösen kann. Wir zeigen die
Effizienz unseres Algoritnmus, indem wir interagierende, bosonische Ensembles im Übergang von
drei zu einer räumlichen Dimension simulieren. Dabei verwenden wir die Herangehensweise der
ab-initio Multi-Configuration Time-Dependent Hartree Methode für Bosonen (MCTDHB) [PRL
77, 033613 (2008)], welche den expotentiellen Anstieg der numerischen Komplexität in Bezug auf
die Teilchenanzahl optimal handhabt. Dabei treten jedoch weitere Herausforderungen auf, bei
dem Versuch Wechselwirkungspotentiale in drei Dimensionen zu modellieren. Um das geeignet-
ste Wechselwirkungspotential zu finden, diskutieren wir unterschiedliche Implementierungen von
Kontaktwechselwirkungen wie auch Wechselwirkungen mit endlicher Reichweite und bewerten
diese Potentiale in Bezug auf die folgenden Fähigkeiten: (i) Korrelationen richtig aufzulösen,
(ii) einen numerisch effizienten Algorithmus mit annehmbaren Rechenlaufzeiten für Desktop-
Computer zu ermöglichen und (iii) numerische Artefakte zu minimieren, die von eventuellen
Approximationen herrühren könnten. Wir zeigen, dass rein abstoßende Wechselwirkungspo-
tentiale mit endlicher Reichweite, welche zusätzlich in den Dimensionen separieren, am besten
für eine effiziente Implementierung geeignet sind. Dennoch stellen solche Wechselwirkungspo-
tentiale numerische eine Herausforderung dar, weil sie eine kleine Längenskala im System in-
duzieren, welche numerisch aufgelöst werden muss, so dass viele Gitterpunkte rechentechnisch
gehandhabt werden müssen. Wir begegnen dieser Herausforderung, indem wir einen effizienten
Algorithmus entwickeln, der für viele Gitterpunkte ausgelegt ist, basierend auf einer Multi-
Layer Methode für MCTDHB. Dabei verwenden wir einen maßgeschneiderten Ansatz für die
Mehrteilchen-Wellenfunktion und leiten spezielle Bewegungsgleichungen mit Hilfe des Dirak-
Frenkel-Variations-Prinzip her. Die Implementierung der Bewegungsgleichungen wurde stark
optimiert, unter anderem, durch Parallelisierung des Programmes. Mit unserem neuen Ansatz
erreichen wir, dass die Gesamtzahl der Gitterpunkte linear bezüglich der Dimensionen skaliert
und nicht exponentiell wie z.B. in der MCTDHB Methode. Der entwickelte Algorithmus wurde
mit analytischen Ergebnissen und anderen gängigen Methoden in der Literatur verglichen.

Wir verwenden das vorteilhafte Skalierungsverhalten, um den Einfluss der Dimensionen auf
ein bosonisches Ensemble zu untersuchen, induziert durch unterschiedliche Fallengeometrien.
Dies erreichen wir, indem wir das Fallenfrequenzverhältnis, definiert aus dem Quotienten der
transversalen zur longitudinalen Fallenfrequenz, kontinuierlich von einer isotropen Falle zu einer
zigarrenförmigen Falle verändern. Uns interessiert besonders der Einfluss und das Zusammen-
spiel von Teilchen- und räumlichen Korrelationen. Wir untersuchen dabei die folgenden drei Sys-
teme: (i) Zwei interagierende Bosonen befinden sich in einer dreidimensionalen, harmonischen
Falle mit variablem Fallenfrequenzverhältnis. Dieses System dient als Prototyp, um geeignete
numerische sowie physikalische Parameter zu finden, und erlaubt die Zeitskala auf der Teilchen-
und räumliche Korrelationen erzeugt werden zu studieren. Des Weiteren untersuchen wir das
Konvergenzverhalten und die natürlichen Populationen, welche in drei Dimensionen einen alge-
braischen Abfall aufweisen. (ii) Ein bosonisches Ensemble tunnelt zwischen zwei Potentialtöpfen,
welche in longitudinaler Richtung in einer länglich ausgedehnten harmonischen Falle eingebettet
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sind. Wir zeigen, dass man mindestens zwei transversale Moden benötigt, um das zeitabhängige
Dichteprofil richtig wiederzugeben. Außerdem untersuchen wir den Einfluss der Dimensionen auf
die zeitliche Entwicklung des Ungleichgewichts der Besetzungsverteilung. Zusätzlich studieren
wir die Gültigkeit unterschiedlicher Approximationen der Mehrteilchen-Wellenfunktion, wie zum
Beispiel einer Mean-field Näherung oder einer adiabatische Separation bezüglich der räumlichen
Dimensionen. (iii) Ein bosonisches Ensemble, anfänglich in einer harmonischen Falle ausgelenkt,
streut an einer zentrierten Barriere. Wir erforschen unterschiedliche Mechanismen, bezüglich des
Verlustes von Kohärenz, was für Atom-Interferometer von zentraler Bedeutung ist. Dabei finden
wir heraus, dass für näherungsweise isotrope Fallen Kohärenz zwischen der Region in der Nähe
der Barriere und sowohl links als auch rechts davon verloren geht. Für fast eindimensionale
Fallen hingegen erkennen wir, dass sich die Kohärenz zwischen den beiden Dichteanteilen der
linken und der rechten Seite der Barriere reduziert. Der erste Prozess lässt sich mit Hilfe von
räumlichen Korrelationen und der zweite mit Hilfe von Teilchenkorrelationen beschreiben. Des
Weiteren ermitteln wir, wie Korrelationen die Oszillation des Masseschwerpunktes modifizieren
können. Interesanterweise werden die obigen Effekte für ganzzahlige Fallenfrequenzverhältnisse
verstärkt.
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Preface

PREFACE

This thesis is based on the following list of publications, which throughout the thesis will be
referenced with double brackets [[· · · ]].

List of publications this thesis is based on

[[1]] V. Bolsinger, S. Krönke, P. Schmelcher Beyond mean-field dynamics of ultra-
cold bosonic atoms in higher dimensions: facing the challenges with a multi-
configurational approach, J. Phys. B 50, 034003 (2017).

[[2]] V. Bolsinger, S. Krönke, P. Schmelcher Ultracold bosonic scattering dynamics off
a repulsive barrier: coherence loss at the dimensional crossover, Phys. Rev. A.
96, 013618 (2017)

Further publications

[[3]] L. Cao, V. Bolsinger, S. I. Mistakidis, G. M. Koutentakis, S. Krnke, J. M. Schurer,
P. Schmelcher A unified ab-initio approach to the correlated quantum dynamics
of ultracold fermionic and bosonic mixtures. J. Chem. Phys 147, 0044106 (2017)

Objectives The aim of this thesis is to study the dimensional crossover from three to one
dimension for ultracold bosonic ensembles in different trap geometries from first principles,
especially taking all correlations into account. The exponential scaling of complexity with respect
to the number of atoms can be tackled with the Multi-Configuration Time-Dependent Hartree
method for Bosons (MCTDHB). However, in three dimensions, a further challenge consists
in the modelling of the three-dimensional interaction potential, and we are going to find the
most suitable finite-range interaction potential. Due to the different participating length scales
occurring due to both the dimensional crossover and the usage of finite-range interactions, a
large number of grid points will be needed numerically. We are going to solve this challenge
by developing a highly efficient algorithm with respect to the number of grid points based on
the Multi-Layer MCTDHB method for ultracold bosons. By using this algorithm, we study
the crossover from three to one dimension from first principles and analyse (i) the interplay
between spatial and particle correlations, (ii) the validly of different approximation of the many-
body wave function such as the mean-field approximation or the adiabatic separation of the
dimensions, (iii) the loss of coherence, or (iv) the influence of the different kinds of correlations
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on observables. We are going to analyse these properties for three setups; two particles in
elongated trap, the dynamics of bosons tunnelling in a double well and scattering off a barrier.

Overall outline In chapter 1, we give a brief introduction in the field of three- and one-
dimensional ultracold bosonic gases and the dimensional crossover. Since interactions in three
dimensions play a significant role in this thesis, we review definitions and concepts of the scatter-
ing theory in chapter 2. Prepared with this knowledge, we discuss possible interaction potentials
in three dimensions and their implementation within the framework of the Multi-Layer Multi-
Configuration Time-Dependent Hartree method for Bosons, in chapter 3. For the resulting,
efficient interaction potentials, we derive, by using the variational principle, equations of motion
and discuss their implementation and numerical effort in chapter 4. In chapter 5, 6 and 7, we
study the interplay between spatial and particle correlations. However, the focus of chapter 5 is
about different aspects of the convergence behaviour for two bosons in three dimensions while
the focus of chapter 6 is about the analysis of different regimes occurring while the dimensional
crossover. The results of chapter 3, 4 and 6 have been published in the publication [[1]]. Next,
we study bosons scattering off a barrier in an elongated trap in chapter 7 and analyse the loss
of coherence, important for the studies of matter-wave interferometers. This chapter is based
on the publication [[2]]. We end with a summary of our results in chapter 8 and an outlook in
chapter 9.

Declaration of Personal Contributions to the Publications [[1-3]] The projects resulting in
[[1,2]] were conducted entirely by myself, including the specification of the research questions,
numerical work and analytical approximate models. In project [[3]], I contributed by active
participation of the discussions rewarding the derivation of the equations of motion and the
design of the algorithm as well as consulted the implementation and code development. In all
cases, the project progress and some problems were discussed on a regular basis with Dr. Sven
Krönke and Prof. Dr. Peter Schmelcher.
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1 Introduction

CHAPTER

ONE

INTRODUCTION

Quantum many-body physics, as for example, occurring in solid state devices, is a complex
and challenging research field not only theoretically, due to the many degrees of freedom, but
also experimentally due to the interactions with the environment and among the different con-
stituents. A structured way to experimentally analyse quantum many-particle systems has been
started by the achievement of condensed alkali metals in magnetic traps at extremely low tem-
peratures1 [3–8]. The condensates, being defined by the property that all particles populate the
same physical state, have been theoretical predicted by Bose [9] and Einstein [10] in 1924/1925
and are hence named Bose-Einstein Condensates (BEC). The condensation can be achieved in
experiments, in which lasers isolate the system from the environment and control motional as
well as internal degrees of freedom. Different types of interaction can be chosen by taking e.g.,
charged, neutral or dipolar atoms (or combinations among them), creating Coulomb, Van-der-
Walls or dipole interaction [11], respectively, or taking different spin states and spin interactions
into account. E.g., for neutral atoms, the strength of the interaction can be tuned by external
magnetic fields applying the concept of Fano-Feshbach resonances [12, 13]. These resonances
occur if a closed scattering channel is energetically near the so-called threshold of an open scat-
tering channel. In this way, the unitary regime, defined by infinitely strong interactions, can
be achieved [14–17]. Furthermore, laser beams can be used to created different confinement
geometries, e.g., harmonic and anharmonic trap potentials, double and triple wells, or different
lattices geometries (e.g., square or honey comb lattice) in one, two or three dimension [18]. In
addition, the number of trapped particles can be modified by changing the chemical potential.
So, in experiments with cold gases a plethora of parameters can be tunes. Detailed summaries
about these topics can be found in the standard textbooks [19–22] and reviews [23–25].

Equipped with these experimental tools, BECs can be used for a large variety of different
physical applications, e.g. the improvement of quantum measurements, the so called quantum
metrology [26–28], by using ”Schrödinger’s cat” like states, which can be created e.g. with the
help of Bose-Einstein condensates [29,30]. These ”Schrödinger’s cat” like states can reduce the
shot to noise limit [31, 32], or can be used for measurements using matter-waves interferome-
try [33].

A further application of BECs can be found for the quantum computer. The BEC plays a major
role in the three main parts of a quantum computer: quantum transport, quantum calculations
and quantum storage/memory (see [34–36] and references therein). Quantum transport can be
achieved in lattice systems, by hopping of atoms among the lattices sites [37, 38] or on atom

1honoured with noble prize in physics 2001 for C. E. Wieman, W. Ketterle and E. A. Cornell [1, 2]
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chips by changing electromagnetic fields created by small wires [39]. Quantum computation can
be realized by using e.g. ultracold trapped ions [40, 41] or neutral atoms with internal states
either in a double well [36] or in lattices [42,43]. Proposals for the quantum information storage
have been made in references [44,45], using the coupling of quantum particles to an environment
in order to drive the system to a steady state, which contains the quantum information.

Furthermore, BECs can not only be used as a constituent for a quantum computer but also
to emulate or rather mimic quantum many-body systems for a diversity of condensed matter
problems [46–49]. In doing so, a Hamiltonian can be mapped onto a many-body system, which
can be mimicked with the help of ultracold atoms. For example, single-particle potentials
can be mimicked by external laser fields or the variety of the interaction strength by using a
Feshbach resonance. One of the most prominent representative examples is the Bose-Hubbard
model [50]. In doing so, the crossover from a Mott insulating state to a superfluid state has been
demonstrated [50–53]. Another example is the BEC-BCS2 crossover for a fermionic system [54].
For weak attractive interaction, Cooper pairs are created [55]. By increasing the interaction
strength, the fermions become bounded and create bosonic molecules, which interact repulsively.
The last example, we like to mention, is the creation of artificial gauge fields [56] using neutral
bosons, where the centre of mass motion can mimic the dynamics of charged particles in a
magnetic field. Historically, the usage of an easy-tunable quantum system in order to emulate
a more complicated many-body quantum system has been already proposed by R. Feynman in
1982:

”Nature isn’t classical, dammit, and if you want to make a simulation of nature,
you’d better make it quantum mechanical, and by golly it’s a wonderful problem,
because it doesn’t look so easy.”

R. Feynman, 1982 [57]

However, quantum mechanical emulations or a quantum computer are under construction
nowadays and for their construction a microscopic physical understanding is needed, which can
be gained by analytical or numerical many-particle studies. Although the fundamental laws of
physics are well known theoretically, they are almost impossible to treat analytically as already
pointed out by P. Dirac:

”The underlying physical laws necessary for the mathematical theory of a large part
of physics and the whole of chemistry are thus completely known, and the difficulty is
only that the exact application of these laws leads to equations much too complicated
to be soluble. ”

P. Dirac, 1929 [58]

Even numerical solutions quickly become infeasible, since the computational effort of quantum
mechanical simulations scales exponentially w.r.t. to the number of particles N , e.g. 2N for a
two-state spin system or (N + M − 1)!/(M − 1)!N ! for a bosonic gas, where M is the number
of single-particle modes. However, in classical simulations, the scaling is only linear w.r.t. the
number of particles, 2dN , where d represents the dimensionality. This is why R.B. Laughlin
and D. Pines wrote in their paper ”The theory of everything”:

”However, it (the many-body Hamiltonian) cannot be solved accurately when the
number of particles exceeds about 10. No computer existing, or that will ever exist,

2Named after the inventors of the BCS theory: J. Bardeen, L. N. Cooper und J. R. Schrieffer
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can break this barrier because it is a catastrophe of dimension”

R.B. Laughlin and D. Pines, 2000 [59]

However, by restricting ourselves to zero-temperature, trapped, dilute, bosonic systems, the
challenge of the exponential scaling w.r.t. the number of particles can be tackled by the recently
developed ab-initio Multi-Configuration Time-Dependent Hartree method for Bosons (MCT-
DHB) [60]. For these systems, the two-body van-der-Waals interaction is the dominant interpar-
ticle interaction, which can be numerically modelled in one dimension by zero-range interaction
potentials. The advantage of using a zero-range interaction potential is that the interaction
range Σ must not be resolved numerically. However, in three dimensions, a description of the
interaction by a zero-range interaction potential within the MCTDHB framework is not possible
and a finite-range interaction potential has to be used with the characteristic length scale Σ (see
chapter 3). In the crossover from one to three dimension, an additional length scale emerges,
namely, the transversal confinement length scale, l⊥. Therefore, a second numerical challenge
occurs: the numeral resolution of all these length scales and therefore the need to simulate a large
number of grid points. This second numerical challenge is tackled in this thesis (see chapter 4).
The MCTDHB method is expanded to an efficient implementation for three dimensions, calling
Multi-Layer Multi-Configuration Time-Dependent Hartree method for Bosons (ML-MCTDHB)
based on an idea mentioned in [61, 62]. In doing so, we have improved the exponential scaling
of the number of grid point w.r.t. the dimensionality used in MCTDHB to a linear scaling in
ML-MCTDHB, and a large number of grid points, approximately an order of magnitude more
grid points per dimension, can be handled while executing the algorithm on desktop computers.
With this ab-initio algorithm, we are able to simulate few- to many body bosonic ensembles
in three dimensions by taking all kinds of correlations into account. Furthermore, we can nu-
merically perform the crossover from three to one dimension and explore the interplay between
particle and spatial correlation w.r.t. the dimensionality for different physical systems, e.g., a
double well (see chapter 6) or with a local disturber (see chapter 7). We can verify the validity
of certain approximations of the many-body wave functions, such as a mean-field approximation
or an adiabatic separation of the dimensionality.

The introduction is structured as follows: First, in section 1.1, we briefly discuss different
characteristics of three- and one-dimensional systems, for example the possibility of conden-
sation, the occurrence of particle correlations, resonances in the scattering length and bound
states. Thereby, we identify the various characteristics which the dimensionality imprints on the
system. In doing so, we motivate the study of the crossover from three to one dimension, which
links the above quite complementary characteristics. In the following section 1.2, we introduce
the physics of the dimensional crossover by reviewing theoretical and experimental studies. In
section 1.3, the basic idea of our numerical method is briefly presented. Afterwards in section
1.4, we define particle and spatial correlations, and describe the concept of natural orbitals and
natural populations. These definitions are used throughout the thesis. Finally in section 1.5,
we describe the further structure of the thesis in order to guide the reader.

1.1. Differences between three and one dimension

It is well known that three-dimensional in contrast to one-dimensional bosonic systems behave
in some respects completely different, making the analysis of a crossover between dimensions
a fascinating subject to study. In the following section, we want to list some of the striking
differences occurring between a three-dimensional and a one-dimensional system.

First, bosons in a three-dimensional trap can condense below a critical temperature Tc, since
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1.1 Differences between three and one dimension

phase and density fluctuations are suppressed, whereas, the condensation is absence in one
dimension [63–65] due to phase fluctuations [66]. The one-dimensional correlation function
decays exponentially [67] on the length scale of the coherence length lc. Even at absolute zero
temperature, there are still phase fluctuations present, however, the decay of the correlation
function is algebraic [64, 68, 69]. The one-dimensional phase space w.r.t. the temperature and
particle numbers have been derived in reference [70] and experimentally verified in reference [71–
74]. However, even in one dimension, if the coherence length lc is much larger than the healing
length ξ = ~/√mρg, where ρ is the density, m the mass of one boson and g is the interaction
strength, different condensed blocks can be formed, which lead to a quasi-condensation.

As a consequence for three dimensions, a good approximation is to assume that all bosons
reside in a mean-field orbital ΦGP (r) due to their condensation,

Ψ(r1, ..., rN , t) =

N∏
i=1

ΦGP (ri, t) (1.1)

By varying these mean-field orbitals, one obtains a non-linear differential equation, known as
the Gross-Pitaevskii equation (GPE) [75,76]. Within the GPE framework, one can describe the
ground state of a BEC in a harmonic trap [77] and its energy spectrum [78] for weak interactions
and low densities. Different dynamical properties like the breathing, dipole, or quadrupole
mode [78–81] have been derived, using a hydrodynamic formulation of the GPE. Furthermore,
the dynamics of vortices [82] can be studied (see also [83] and references therein). However
in one dimension, the fluctuations prevent the condensation of the bosons and deviations from
mean-field results as well as new effects can arise, for example, fragmentation of the wave
function [84], fermionization of the bosons [84–88], the decay of dark solitons due to dynamical
quantum depletion [89,90], or correlated pair tunnelling in a double well [91–93].

Second, the relation between the interaction energy and the kinetic energy is different w.r.t.
the dimensions in the thermodynamical limit. In a box of size Ld with N bosons inside, the only
length scale, which governs the system, is defined by the interparticle distance, l̄ = ρ−1/d, where
ρ = N/Ld is the density and d denotes the number of dimension. The unitless Hamiltonian can
be written as

~2

2m
ρ

2
d

[
−
∫
ddr Ψ̂†(r)∇2

rΨ̂(r) +
γ

2

∫ ∫
ddr ddr′ Ψ̂†(r)Ψ̂†(r′)W (r, r′)Ψ̂(r)Ψ̂(r′)

]
, (1.2)

where Ψ̂†(r) [Ψ̂(r)] are the bosonic creation [annihilation] field operators at position r. For a
more concrete calculation, we have assumed an interaction potential, which scales like ρ−1 and
which is linear in the interaction strength g, e.g., the regularized delta interaction potential
g∂xx [94], where, here, x is the distance between two particles x = |r− r′|. The only remaining
tunable parameter, depending on the dimensionality, is then

γd =
mg

~2
ρ1− 2

d , (1.3)

which is similar to the Lieb-Lininger parameter [95]. We call γ the effective interaction strength,
in order to distinguish it from the interaction strength g. In three dimension the effective
interaction strength is increased if the density becomes more dense, γ3D = mg ρ1/3/~2, whereas
in one dimension, the effective interaction strength increases if the system becomes more diluted,
γ1D = mg

~2 /ρ.

Third, due to strong transversal confinements [96,97], virtual transversal states can be existed,
which modify the interaction strength. The interaction strength for a reduced one-dimensional
system is then given as

g1D =
g

πl2⊥

(
1− Ca0

l⊥

)−1

(1.4)
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where C = 1.4603... is a numerical factor and a0 = mg/4π~2 is the zero-energy scattering length
(a proper definition of a0 is given in chapter 2). For a zero-energy scattering length of the order
of the transversal confinement, resonances in the one-dimensional interaction strength occur.
The resonances only occur due to the dimensional reduction to one-dimensional systems and are
called confinement induced resonances.

Fourth, in a one-dimensional systems, one encounters new regimes if the reduced one-dimen-
sional interaction strength g1D is increased. Especially, for infinite-strong hard-core interactions,
the interacting bosonic system can be mapped onto a non-interacting fermionic systems [85,98].
In this regime, the so-called Tonks-Girardeau (TG) regime, local bosonic properties, such as
the atomic density, behave as that of non-interacting fermions. However, non-local properties,
such as the momentum distribution, are different. A full characterization of the one-dimensional
phase space in the thermodynamic limes is given in reference [99], where five different regimes
have been identified (see figure 1.1). In reference [99] in order to reduce the system to one
dimension, the three-dimensional ground state energy is related to the one-dimensional energy
functional in dependence on the number of particles and interaction strength γ ≡ g1D/ρ1D,
where ρ1D is the mean one-dimensional density. The five regimes are:

i. γ � N−2: the system can be described by a non-interacting bose gas (NI-BG)

ii. γ ∼ N−2: this regime can be well described by the one-dimensional GPE (1D GP)

iii. N−2 � γ � 1: the one-dimensional GPE (1D GP) can be further simplified using the
Thomas-Fermi (TF) approximation, where the kinetic term is neglected.

iv. γ ∼ 1: for strongly interacting systems, the analytic solution by Lieb and Lining (LL)
[95,100] has to be used.

v. γ � 1: this regime can be described by the Tonks-Girardeau (TG) gas, a bosonic gas,
with impenetrable bosons.

1/N2 1

NI-BG 1D GP 1D TF LL TG

0
γ 

Figure 1.1.: Phase diagram for N particles in one dimensions [99] in dependence of the
interaction strength γ = g1D/n1D. The abbreviations stand for: non interacting, bosonic
gas (NI-BG), one-dimensional GPE (1D GP), one-dimensional Thomas-Fermi (1D TF), the
Lieb-Lininger (LL) and the Tonks-Girardeau (TG) regime.

1.2. Crossover from three to one dimension

We consider the crossover from three to one dimension for harmonically trapped, bosonic systems
at zero temperature. The first part is dedicated to a theoretical discussion, and in the second
part we refer to existing experimental studies.

Theory: The crossover from three towards one dimension can be performed by tightening
the transversal trap frequency, i.e. increasing the aspect ratio η, defined as the ratio between
the transversal ω⊥ and longitudinal ω‖ trap frequencies, η = ω⊥/ω‖. For η = 1, both trap
frequencies are equal and an isotropic trap is obtained. If the transversal frequency is decrease
(η → 0), a pancake-like potential is created and the system becomes two-dimensional. If the
transversal frequency is increased (η → ∞), a cigar shaped potential is formed and the system
becomes one-dimensional. If the energy gap between the transversal ground and transversal

8



1.2 Crossover from three to one dimension

first excited states is much larger than any other energy scale, such as thermal excitations or
the chemical potential, the system effectively behaves one-dimensional. Commonly, systems
which are studied in three dimensions but behave almost one-dimensional are called quasi-
one dimensional systems. For quasi-one dimensional systems, static ground state properties
[101,102], the creation of collective excitations [103,104] or the occurrence of the scissor modes
[105] have been studied using the GPE framework. Furthermore, the decay of dark solitons
into vortex rings or solitonic vortices [106], and the dynamical characteristics of the ground and
excited states [107–110] have been investigated.

In order to reduce the computational effort for quasi-one dimensional systems, one can assume
that the Gross Pitaevskii (GP) mean-field wave function ΦGP (r) can be decomposed into a
product of the transversal and longitudinal direction, calling adiabatic separation ΦGP (r) =
φ⊥(x, y)φ‖(z). Here, x and y mark the transversal position and z the longitudinal one. For strong
transversal confinements, the transversal state is nearly undisturbed and can be approximated

by the harmonic oscillator ground state, φ⊥(ρ) = exp(−ρ2/2l2⊥)/
√
πl2⊥, where ρ2 = x2 + y2 and

l⊥ is the transversal characteristic trap length, defined below. In this most simple case, one can
integrate out the transversal degrees of freedom directly and receives an effective one-dimensional
GPE. In order to improve the above approximations, more sophisticated methods have been
proposed in the literature and roughly summarized, they all use the adiabatic separation and
apply a trial wave function transversally, for example with a Gaussian or Thomas-Fermi (TF)
profile which are optimized variationally [111–117]. Using the effective one-dimensional GPE
framework, the properties of the ground-state in a harmonic trap [65], collective excitations
[118] or dark and bright solitons (see [119] and references therein) has been studied for weak
interactions. However, also analytical calculations beyond the adiabatic separation have been
performed, taking dimensional entanglement3 into account [120,121] via a pertubative Schmidt
decomposition [122] of the GP mean-field wave function. In doing so, they showed that the
dimensional entanglement stays ”remarkably” small.

For harmonically trapped, ultracold bosons, a rough phase diagram can be derived [118], using
a zero-range interaction potential. The phase diagram is replotted in figure 1.2 in dependence on
the particle number N and the ratio between the transversal and longitudinal characteristic trap
length, l⊥ and l‖, respectively. For a harmonic confinement, the characteristic trap lengths are

given by l⊥,(‖) =
√
~/mω⊥,(‖), where ω⊥,(‖) are the transversal (longitudinal) trap frequencies

respectively. The zero-energy scattering length a0 is kept constant. The ratio l⊥/l‖ ranges from
zero (one-dimensional) towards one (isotropic harmonic trap in three dimensions). In a more
one-dimensional system (low l⊥/l‖), we recover the Tonks-Girardeau regime (TG gas) for low
number of particles. Increasing the number of particles, the size of the phase space of the Tonks-
Girardeau regime is reduced and a regime is found, where a one-dimensional mean-field (1D MF)
description is sufficient to describe the system. This phenomenon is also reflected by equation
(1.3), where we have observed that in one dimension the effective interaction strength behaves
as γ1D ∝ 1/N . For a system closer to three-dimensions (l⊥/l‖ ∼ 1), we observe that for low
number of particles a regime is found, which can be described by a non-interaction bosonic gas
(NI-BG). Increasing the number of bosons, the interaction among the particles gets important
and must be taken into account. This regime can be solved by the three-dimensional GPE for
cigar shaped traps (3D cigar). This feature can be also explained by equation (1.3), where we
have found that for three dimensions the effective interaction strength behaves as γ3D ∝ N .
A further increase of the number of particles (not shown), would lead to the Thomas-Fermi
regime, where the kinetic term in the Hamiltonian can be neglected. Keeping the number of
particles fixed and chancing the ratio l⊥/l‖, we see by going from three to one dimension that

3 We will call dimensional entanglement also spatial correlations.
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the non-interacting regime is transformed into a weakly correlated regime (1D MF) and finally
into the Tonks-Girardeau regime, where strong correlations are present. This feature is reflected
by equation (1.4), where the interaction strength is increased if the transversal characteristic
length is decreased. However for a large number of particles, the crossover from three to one
dimension is not clearly understood and especially the influence and interplay of particle and
spatial correlations in higher dimensions is of actual interest. Studies in two dimensions, which

a0 =0.05

a0 =0.1

3D cigar

TG gas

1D MF

NI-BG

N

l⊥/l‖
0.2 0.4 0.6 0.8 1

10
0

10
1

10
2

10
3

Figure 1.2.: Approximate phase diagram for the crossover from three dimension l⊥ = 1
towards one dimension l⊥ ∼ 0 in dependence on the particle number N but with two different
fixed scattering length a0 = 0.1 (dark grey) and a0 = 0.05 (light grey). The lines separate
the single regimes (see reference [118]). Four regimes are identified: Tonks Girardeau (TG)
gas, 1D mean-field (MF), 3D MF and the non-interacting bose gas (NI-BG).

take all correlations into account, have already been performed (see references [123–127]).
For example, vortex nucleation is analysed beyond the mean-field framework, where strong
correlations as well as entanglement are observed at a critical rotation frequency [123, 127].
The vortices are proposed to be fragmented objects [126, 127] and not collective excitations
as in the mean-field framework. Even if in the density no vortices can be observed, vortex
similar structures arise in higher natural orbitals [125], which may be linked to the formation
of the Abrikosov lattice and the onset of turbulence in superfluids. Another example is the
analysis of the ground state of an interacting bosonic ensemble in a two-dimensional radial
split potential [128, 129] (and for three dimensions [130]), where fragmentation of the ground
state wave function is predicted. Furthermore, quench dynamics has been studied for one to
three-dimensional systems [131] using beyond mean-field methods. However, a structured way
to simulations of the dimensional crossover is still missing and, within this thesis, we are going
to tackle this challenge.

Experiment: Up to now, condensation of the following elements has been observed in three
dimensions Na [3, 6, 132], Rb [133], Li [134], H [135], He [136], K [137], Cs [138], Yb [139],
Cr [140], Ca [141], Sr [142], Dy [143] and Er [144]. The condensation of these elements have be
achieved after the development of cunning cooling and trapping methods for neutral atoms using
laser light (honoured with the noble prize for Steven Chu [145], Claude Cohen-Tannoudji [146]
and William D. Philips [147] in 1997). Only four years later, in 2001, the first achievements of
a BEC in 1995 have been also dignified with the noble prize for Eric A. Cornell [1], Wolfgang
Ketterle [2] and Carl E. Wieman [1]. In a typical experimental setup, an element is heated up
to approximately ∼ 600K in order to create vapour. In order to cool the vapour, the vapour
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is then slowed down by a Zeeman slower and loaded into a magneto-optical trap (MOT). By
using further optical cooling techniques with laser beams, some hundreds of micro Kelvin can
be achieved. However, this temperature is limited w.r.t. the momentum recoil induced by the
laser beams. In order to achieve lower temperature, evaporative cooling [148] can be used, and
therefore, the cold gas must be loaded into a pure magnetic trap. A review on different trapping
and cooling techniques can be found in references [18,149–152]. In order to perform the crossover
from three to one dimension experimentally, the transversal trap frequencies must be increased,
for example by changing the current on atom chips [153], by changing the magnetic fields in an
Ioffe-Pritchard trap [74], or by superimposing different laser beams, which form cigar shaped
traps side by side [154].

1.3. The numerical method:
Multi-Layer Multi-Configuration Time-Dependent Hartree for Bosons

As we have already stressed, numerical quantum methods suffer from the exponential scaling
of the configuration space w.r.t. the number of particles and a large number of grid points
are needed in three dimensions, due to the necessary separation of the characteristic length
scales in the system. Furthermore, it is of advantage if the numerical methods are as flexible as
the experimental setups; i.e., they can be used for different, time-dependent, various external
trap potentials, for mixtures of different bosonic or fermionic species and for the whole range
of interaction strength, from weak to strong coupling. It is very demanding to satisfy all of
these requests at the same time, and therefore, most of the numerical methods just focus on
some of them. Apart from a classification on the various request, an algorithm can also be
classified w.r.t. structural differences in its implementation, and in the following section, we
want to present three possible criteria. Then, we sketch very briefly the general idea of the
Multi-Configuration Time-Dependent Hartree (MCTDH) method, which is the foundation of
our method, the Multi-Layer Multi-Configuration Time-Dependent Hartree for Bosons (ML-
MCTDHB). The latter is a generalization of the MCTDHB algorithm to multi-species or higher
dimensions (as demonstrated in this thesis). A detailed derivation of the equation of motions is
given in chapter 4.

We describe three possible criteria, where we partly follow the lines of reference [155]. Some-
how, the number of criteria are arbitrary, but we have chosen these three criteria, since they
give a reasonable classification for our purposes.

(a) Degree of approximation:
In general, a physical system can be modelled by a Hamiltonian, which incooperates all
the necessary physics. Non-interesting effects or less important parts in the Hamiltonian
are neglected or simplified by reasonable model terms, for example, normally, for ultracold
interacting neutral bosons, the ”true” Van-der-Walls interaction potential is replaced by
a much simpler short- or zero-range interaction potential. Then, having the ”working”
Hamiltonian, one can distinguish two classes of approaches:
(i) In the first class, no direct approximation is made to the many-body wave functions. The
only approximation, which is made, is a truncation of the infinite size of the Hilbert space,
necessarily in every numerical calculation, leading to a finite-size subspace. By increasing
the size of the subspace, the result becomes more and more numerically ”exact”. Commonly,
the size of the subspace is limited by the resources of computational power and thus either a
few numbers of particles or moderate number of grid points can be used. We call these kinds
of algorithms ab-initio methods, since they simulate the physics from first principles. Some
examples are the Exact Diagonalization (ED) [156], the Density-Matrix Renormalization

11



1 Introduction

Group (DMRG) [157–161], Quantum Monte Carlo (QMC) [162, 163] and the family of the
MCTDH(B) methods .

(ii) In the second class, one simplifies the many-particle wave function by assuming a par-
ticular functional shape. For example, we have already encountered the wave function
approach used to derive the GPE, where all the particles occupy the identical orbital. Fur-
ther examples are the adiabatic separation, where the wave function can be separated into
the dimensions (see section 1.2) or the Gutzwiller wave function approach applied to lat-
tice systems [164, 165]. In the latter, the many-particle wave function is separated w.r.t. a
combination of single modes.

(b) Representation of the number states:
There are two possibilities to represent a number state in a given many-particle Hilbert
space H:

(i) On the on hand, the many-particle Hilbert space can be represented as a direct product
of the single-particle Hilbert spaces Hi, H = ⊗Ni=1Hi, where the product runs over all
numbers of particles. If the many-body wave function |Ψ〉 ∈ H cannot be factorized in the
single particle states of the i-th particle |φ(i)〉, |Ψ〉 6= ⊗Ni=1|φ(i)〉 than particle correlations
are present in the system. Instead, if |Ψ〉 = ⊗Ni=1|φ(i)〉 no particle correlations exist. This
construction is similar to the wave function approach used to derive the GPE.

(ii) On the other hand, the many-particle Hilbert space can be constructed out of single-
mode Fock spaces Fj = span{|n〉j , n ∈ N0}, where |n〉j labels the state j with n particles
inside, such that H = ⊗Mj=1Fj , where M is the maximal number of modes. The many-body
wave function can be expressed into these modes leading, for example, to the Gutzwiller
wave function ansatz. Non-factorization into the modes is a signature of mode correlations.

(c) Temporal Evolution:
At least, two different strategies can be followed in order to solve the temporal evolution of
the many-body wave function. The first one determines the time-evolution operator directly
and the second one solves the Schrödinger equation by integration. The reason for choosing
these tow strategies is that we focus on them in a later discussion. In the following, we have
a closer look on them.
(i) There are different ways, to calculate the time-evolution operator, e.g., using the split-
operator method [166] or using path integrals [167]. In case of a time-independent, many-
particle Hamiltonian H, the temporal evolution of an initial wave function |Ψ(0)〉 is governed
completely by the time-independent many-body eigenstates {|En〉}Mn=1 and eigenenergies En
defined by

H|En〉 = En|En〉 |Ψ(t)〉 =

M∑
n=1

cn exp(−iEnt/~)|En〉

with the coefficients cn = 〈En|Ψ(0)〉. The task is now to solve the eigenvalue equation,
for example by exact diagonalization or many-particle perturbation theory. Due to the
exponential scaling of the Hilbert space w.r.t. the number of particles, exact diagonalization
algorithms needs a lot of computational resources and are only feasible for a few number of
particles (N ∼ 5) [168].
(ii) This is in contrast to methods, which propagate the initial wave-function |Ψ(0)〉 forward
in time. This class allows explicit time-dependent Hamiltonians. For example, one can
expand the wave function into a basis set of (well-chosen) many-body functions {|χ̃i〉}M̃i=1

such that |Ψ(t)〉 =
∑M̃

i=1 ci(t)|χ̃i〉 with the yet unknown, time-dependent coefficients ci(t).
If |Ψ(t)〉 is inserted into the Schrödinger equation, equation of motions for the coefficients

can be derived i~ċi(t) =
∑M̃

j=1〈χ̃i|H(t)|χ̃j〉cj(t), which form a coupled system of first-order
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ordinary differential equations. Representatives of this class are the family of MCTDH
method and the Configuration Interaction.

Summarizing, the MCTDH(B) method is an ab-initio method, which expresses the many-body
Hilbert space as a direct product of single-particle Hilbert spaces. The Schrödinger equation
is solved by propagating an initial wave function in time and therefore MCTDH(B) can han-
dle time-dependent external as well as interaction potentials. However, instead of using time-
independent many-body basis functions, MCTDH(B) uses time-dependent, many-body basis
functions. The time-dependent many-body basis functions are determined variationally and
thus cover always the optimal subspace of the many-particle Hilbert space. In the following,
we further sketch this grave idea of MCTDH(B): In MCTDH(B), a time-dependent basis set of
single-particle functions {|χi(t)〉}Mi=1 is used in order to express the many-particle wave function.
The number of single-particle functions is usually much smaller than the number of single-particle
functions needed with a time-independent basis {|χ̃i〉}M̃i=1. The χi(t) are determined variation-
ally and thus cover always the optimal sup-Hilbert space (see figure 1.3). This subspace moves
in dependence on time so that the best possible representation of the time-dependent many-
particle wave function |Ψ〉 is always guaranteed. In doing so, the number of basis functions can
be reduced and large system can be studied [169].

Figure 1.3.: Schematic representation of the MCTDH algorithm. The time-dependent
single-particle basis used in the MCTDH algorithm is given by {|χi(t)〉}M=2

i=1 (grey area)

and for comparison a time-independent basis is given by |χ̃i〉}M̃=3
i=1 . The dynamics of the

time-dependent single-particle wave function is marked by a black solid line, which moves
somehow in the (multi-dimensional) single-particle Hilbert space. The basis states |χ̃i(t)〉
move also in time and due to their variational optimization they cover always the best
possible sub-Hilbert space in order to represent the ”truth” dynamics of the wave function.

1.4. Using natural orbitals and natural populations:
Particle versus spatial correlations

One central issue of this thesis is the occurrence of correlations in an interacting bosonic ensemble
in the crossover from three to one dimension for various trap geometries. With correlations,
we mean the entanglement on the wave function between different degrees of freedom, or in
other words, the lack of the possibility to represent the wave functions in a product form. In
this way, correlations depend on the chosen coordinate system. In the following, we regard
all the correlations w.r.t. the laboratory frame. Let us give some examples for particle and
spatial correlations: We define that a wave function contains particle correlations if it cannot
be separated into a product form:

Ψ(r1, ...rN ) 6=
N∏
i=1

ψ(ri)

In doing so, we identify that the solution of the GPE cannot contain particle correlations per
construction. Spatial correlations are defined if the many-particle wave function cannot be
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expressed in product form w.r.t. the dimensions.

Ψ(r1, ...rN ) 6= ψ1(x1, ..., xN )ψ2(y1, ..., yN )ψ3(z1, ..., zN )

This approximation is called adiabatic separation.

We quantify spatial and particle correlations with the help of the concept of natural popula-
tions, which is presented in the following. The three-dimensional natural orbitals |αi〉 and natu-

ral populations a
(3D)
i are defined as the eigenfunctions and eigenvalues of the three-dimensional

reduced one-body density operator ρ3D, namely

ρ(3D)|αi〉 = a
(3D)
i |αi〉, (1.5)

which is obtained by
ρ(3D) = trN−1|Ψ〉〈Ψ| (1.6)

integrating over N − 1 particles, denoted by the notation of the trace. Both the natural pop-
ulations and natural orbitals are time-dependent. In this work, the natural orbitals are nor-
malized to one as well as orthogonal and the natural populations are sorted in decreasing order

a
(3D)
1 ≥ a(3D)

2 ≥ a(3D)
3 ≥ ... with

∑
i a

(3D)
i = 1. Furthermore, due to equation (1.5), the reduced

one-body density operator can be decomposed into the natural orbital basis using 1 =
∑

i |αi〉〈αi|

ρ(3D) =
∑
i

a
(3D)
i |αi〉〈αi|. (1.7)

Unoccupied natural orbitals with ai = 0 do not contribute in the above sum and can be neglect
for physical considerations, e.g., in the calculation of the expectation value of single-particle

observable Ô, 〈Ô〉 = tr(ρ̂(3D)Ô). In case only one natural orbital is occupied a
(3D)
1 = 1 and

a
(3D)
i>1 = 0 (as in condensed systems [170]), the one-body density matrix is composed of only

one natural orbital. Here, all the bosons share the same orbital and the bosonic system can
be described by the GP mean-field theory. If the second or more natural orbitals are signifi-
cantly populated, particle correlations are present in the system, which can be quantified by the
depletion, D =

∑
i>1 ai = 1− a1.

In order to classify spatial correlations, we integrate out all but one coordinate s of the three-
dimensional reduced one-body density operator ρ3D,

ρ(s) = tr{1,2,3}\s ρ
(3D), (1.8)

denoted by the trace tr{1,2,3}\s. Similar as above, we can construct one-dimensional ”natural”

orbitals and ”natural” populations |β(s)
i 〉 and b

(s)
i , respectively. The deviations of b

(s)
1 from

unity, namely the depletion, can indicate correlations between the spatial coordinate s and the

other two remaining coordinates. If b
(s)
1 = 1 (and thus b

(s)
i>1 = 0), two important conclusions

can be made. First, the s coordinate can be adiabatically separated from the many-body wave
function and, second, that all particles share the same orbital φs w.r.t. the coordinate s, i.e.,
Ψ(r1, ..., rN ) =

∏N
i=1 φ(xi)Φ(y1, ..., yN , z1, ..., zN ).

Next, we want to study coherence properties [171, 172] of the bosonic system described by
the one-body density operator. The one-body density matrix, namely the one-body density
operator given in position space representation, can be normalized in order to obtain the one-
body correlation function g1(r, r′)

g1(r, r′) = ρ(3D)(r, r′)/
√
ρ(r)ρ(r′). (1.9)

where ρ(r) = ρ(3D)(r, r) is the single-particle density. It has the property |g1(r, r′)| ≤ 1 and
describes the degree of coherence of particles distributed in space. Complete (spatial) coherence
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1.5 Structure of the thesis

is implied by |g1(r, r′)| = 1 for all positions r and r′. The length scale on which the off-diagonal
terms of the one-body density matrix significantly differ from one is defined as the coherence
length ξC . Beyond ξC , the condensation of the bosonic system is destroyed [170, 173]. ξC gives
the length scale on which an atom is smeared out in space.

Furthermore, these mentioned natural populations give a clue about the convergence of our
numerical simulation. A necessary condition for convergence is that the highest natural orbital
must be sufficient small, even though this condition is not sufficient. In order to judge conver-
gence, a more sophisticated convergence analysis has to be performed (see chapter 4 and the
following chapters).

1.5. Structure of the thesis

This thesis is structures as follows: In chapter 2, a short review of two particles scattering at
low energies is given, focusing on the solution for different three-dimensional interaction po-
tentials. Thereby, we give a connection between the interaction potentials parameters and the
physical zero-energy scattering length. The results from this chapter are needed throughout the
following parts of the thesis. In chapter 3, we continue by analysing the numerical applicability
of these three-dimensional interaction potentials w.r.t. an efficient numerical implementation
within the framework of the MCTDHB algorithm. In doing so, we determine the most suitable
interaction potential for our purpose. In order to implement the interaction potential efficiently,
we come up with the idea of introducing an additional layer in the MCTDHB algorithm. In
chapter 4, we derive the special equations of motion and give details of the concrete implemen-
tation of the interaction potential. These equations of motions form a coupled set of first-order
integro-differential equations. We discuss the efficient implementation as well as the convergence
behaviour. In chapter 5, the first numerical study on the crossover from three to one dimension
is executed for the case of two bosons in elongated traps. Afterwards in chapter 6, we study
the tunnelling dynamics of an interacting bosonic ensemble in an initial tilted double well, and
analyse features, such as the density profile, in dependence on the transversal confinement. Fur-
thermore, we study spatial and particle correlations. In chapter 7, an initially displaced bosonic
ensemble scatters off a barrier. The study is similar to the double well scenario, but with higher
initial energies, in order to allow for an energy transfer between the longitudinal and transversal
dimensions. After describing the physics of these systems, we give a summary in chapter 8, and
we end with an outlook of further interesting scenarios in chapter 9.
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2 Scattering theory

CHAPTER

TWO

SCATTERING THEORY

Particle interactions are important in order to properly describe a bosonic ensemble, and due
to the interaction new (counter-intuitive) effects can arise, as we have seen in the introduction,
for example the compensation of dispersion for a free BEC, leading to stable solitons or novel
phenomena such as fermionization if the interaction strength between the particles goes to
infinity. Therefore, it is worth to have a closer look at the interactions between the particles in
a condensate in more detail.

In the following, we briefly review the physics of two particle interactions. The density of dilute
BECs is normally seven orders in magnitude smaller than for air (ρair ∼ 1019cm−3). Due to the
strong diluteness, the mean-particle distance, l̄ = ρ−1/3, is much larger than the range of the
interaction potential Σ, and three-body interactions can be neglected. Usually, the interaction
between two neutral alkali-atoms is described by the Van-der-Waals interaction, which consists
of a repulsive and an attractive part. Having a closer look at the Van-der-Waals interaction
potential, we can divide it into three spatial regions w.r.t. the relative distance between two
bosons r (see figure 2.1): In region (A) the interaction is purely repulsive, which is caused by
both the atomic core and the centrifugal barrier. Its natural length scale lcore is of the order
of the Bohr radius i.e., some hundred pico meters large (see table 2.1). Region (B) is mainly
attractive. This attractive part is created, due to an induced electrical dipole-dipole interaction
between the alkali-atoms and described by α/r6, where α is the strength of the attractive part.
In order to estimate the length scale of the attractive potential Σ, we equate the kinetic energy
~2/(2µΣ2) with α/Σ6 leading to Σ ∼ (αµ/~2)1/4 where µ is the reduced mass. The length
scale Σ is naturally of the order of some nano meters (see table 2.1). The interaction potential
created by both the repulsive part and the attractive part is called the Van-der-Waals interaction
potential UV dW (r). Region (C) is the remaining part, where the interaction potential is set to
zero. Since the mean-particle distance l̄, which is of the order of micro meters, is much larger
than the length of the Van-der-Waals potential Σ, the Van-der-Waals potential can be modelled
as a (zero- or) short-range interaction potential. Having a short-range interaction potential, only
the far-field scattering solution is of interest.

The far-field solution is an outgoing spherical wave [see equation (2.4)], with energy depen-
dent scattering amplitude, causing a phase shift of the outgoing spherical wave. For ultracold
collisions, the scattering amplitude can be approximated by a single parameter, the zero-energy
scattering length a0. The zero-energy scattering length describes the interactions between two
particles completely and can be tuned from very attractive towards very strong repulsive scatter-
ing lengths via virtual excitations, the so called Feshbach resonances [13], by changing internal
states of the atom with an external magnetic field.
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One well established method in theoretical physics is the replacement of the interatomic poten-
tial by some simpler model potential which delivers computational advantage and produces the
same phase shift of the outgoing spherical wave in the far field. These simpler model potentials
can be divided into two groups: (i) finite-range interaction potentials such as the hard or soft
wall interaction potential or (ii) zero-range interaction potentials such as the bare or regularized1

delta interaction potential. In chapter 3, we show that zero-range interaction potentials cannot
be used for numerical simulations in three dimensions within the framework of the MCTDHB
method (see chapter 4).

In experimental setups, the condensates have to be trapped and thus an additional length scale
emerges, the characteristic lengths scale of the trap, ltrap =

√
~/mω, with the trap frequency

ω. Characteristic length scales for various traps are given in table 2.1. The influence of the trap
on the zero-energy scattering length has been studied by several authors and a breakdown of
the validity for a short-range interaction potential has been found at a0 ∼ ltrap [175–179]. As
we will show in section 5.1, our results are in agreement with the limitation. In order to study
systems with arbitrary trap geometry, or in other words to neglect the influence of the trap, one
has to operate in the regime of a0 � ltrap or even better Σ� ltrap [177].

In this dissertation, we want to operate in the latter mentioned regime, and once calculated
the zero-energy scattering length in dependence of the parameters of the interaction potential
in free space, the zero-energy scattering length can be applied to various trap geometries, e.g.
a double well (see chapter 6) or for a local barrier (see section 7). In order to calculate the
zero-energy scattering length in dependence of the trap geometry, advanced theories such as the
Quantum Defect Theory [180–182] have to be used.

(A) (B) (C)

r

r
Ψ
(r
)

a0 lcore Σ d0 2 4 6 8
−0.5

0

0.5

1

Figure 2.1.: The amplitude of the wave function of a particle in a Van-der-Waals potential
(dark grey dash-dotted line) is sketched exemplary (black solid line). The Van-der-Waals
potential is composed of the repulsive part [dark grey region (A)] of range lcore and attractive
part [light grey region (B)] with range Σ. In region (C), the interaction potential is set to
zero. For comparison, a non-interacting wave function is plotted (black dashed line) as
well. The phase shift between the two wave functions can be calculated using the contact
condition at a single point r = d [see equation (2.10)], marked by a dotted black line. The
light grey dashed line represents χ∞k=0(r), which is the wave function at zero energy in the
far field. For zero energy, the zero-energy scattering length can be determined graphically
by determine the intersection of the wave function χ∞k=0(r) with the abscissa.

The remainder of this chapter is structured as follows: First a short review of the framework

1The regularized delta-interaction potential as described by Fermi [174] and Huang [94] ensures the right bound-
ary conditions for r → 0 in three dimensions.
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2 Scattering theory

Table 2.1.: Different characteristic length scales for a BEC of different alkali earth metals
in units of the Bohr radius aBohr ' 0.529 10−10m. Shown are the size of the hard core lcore,
the size of the interaction potential Σ, the inter particle distance l̄ and the characteristic
trap length ltrap used in characteristic experiments. Values are taken from [183].

Elements lcore[aBohr] Σ[aBohr] l̄ [aBohr] ltrap [aBohr]

Li-Li 2.7 64.7 411̇03 1401̇03

Na-Na 3.4 89.9 41̇03 351̇03

K-K 4.2 129.1 411̇03 531̇03

Rb-Rb 4.4 164.4 181̇03 471̇03

Cs-Cs 5.0 201.8 181̇03 261̇03

of three-dimensional scattering theory is given in section 2.1. The limit of zero energy scattering
is discussed in section 2.2. Then, in section 2.3, the zero-energy scattering length for different
model potentials is calculated. Section 2.4 ends with a discussion of the tunability of the zero-
energy scattering length for different interaction potentials.

2.1. Review of the scattering theory

In this section, the elastic scattering between two particles in free space is briefly reviewed. A
more detailed discussion can be found in text books such as [20,184–188].

Usually, binary interaction potentials depend only on the relative distance between two par-
ticles at position r1 and r2, respectively, W (r1, r2) = W (r), with |r1 − r2| = r, and therefore,
the stationary Schrödinger equation separates into relative r = r2 − r1 and centre of mass
R = (r2 + r1)/2 coordinates. For two particles, with equal mass m, the separated Schrödinger
equation reads (

− ~2

2M
∇2

R − ECM
)
φCM (R) = 0 (2.1)(

− ~2

2µ
∇2

r +W (r)− Ek

)
φk(r) = 0 (2.2)

where M = 2m is the total mass and µ = m/2 is the reduced mass. The solution for the centre
of mass (CM) are just a plain waves. The formal solution for the relative coordinate, φk(r), is
given by the Lippmann-Schwinger equation for a particle with energy Ek = ~2k2/2µ

φk(r) = e±ikr − 2µ

~2

∫
d3r′G(|r− r′|)W (r′)φk(r′) (2.3)

with the Green’s function G(x) = − exp(±ikx)/4πx, where k = |k| =
√

2µEk/~2 has been
used. As already stated, we are mainly interested in the far-field solution, r′ � r and therefore
the Green’s function can be approximated by G(|r − r′|) ' exp(∓ikr′ cos θ) exp(±ikr)/r [185],
where θ is the angle between r and r′, leading to

φk(r) = eikr + f(k, θ)
±eikr

r
(2.4)

with the scattering amplitude

f(k, θ) = − µ

2π~2

∫
d3r′e−ikr

′ cos θW (r′)φk(r
′). (2.5)
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2.1 Review of the scattering theory

Regarding only elastic scattering processes, the scattering amplitude is just a function of the
initial energy ∼ k2 as well as the deflection angle θ and can be expanded into partial waves
[184,185]

f(k, θ) =
∞∑
l=0

(2l + 1)fl(k)Pl(cos θ) (2.6)

with the Legendre polynomials Pl(θ) and partial scattering amplitude fl(k), depending on the
angular momentum quantum number and initial energy2.

In the following an alternative framework is set up in order to describe two particle interactions.
We proceed as before by separating the two-particle Schrödinger equation into a centre of mass
and a relative part [see equations (2.1) and (2.2)]. In general, the relative wave function can be
expressed as a sum over partial waves, φk(r) ∼

∑∞
l=0 Pl(cos θ)χlk(r), where

χkl(r) = c1jl(kr)− c2nl(kr) (2.7)

is a superposition of the spherical Bessel jl and Neumann function nl (see appendix B.1), and
χkl(r) solves the differential equation(

−
[

1

r2
∂r
(
r2∂r

)
− l(l + 1)

r2

]
+

2µ

~2
W (r)− k2

)
χkl(r) = 0. (2.8)

In the far field, the (short-range) interaction potential W is zero, and the scattering solution
(2.7) can be written by inserting the asymptotic expressions of the spherical Bessel and Neumann
functions (see appendix B.1). For the coefficients c1 as well as c2, we use the expression c1 =
cos δl(k) as well as c2 = sin δl(k) in order to fulfil automatically the normalization condition of
χkl. By using the angle addition theorem, the resulting expression reads

χ∞kl (r) =
sin(kr − lπ

2 + δl(k))

kr
. (2.9)

Equation (2.9) describes an outgoing spherical wave, where the phase is shifted by δl(k). The
phase shift δl(k) can be determined by sticking the asymptotic wave function χ∞kl (r) to the
true solution χlk(r) at a fixed but arbitrary point d, which must be far away w.r.t. the size of
the interaction potential, d� Σ. Usually, χlk(r) has to be determined numerically (see section
2.3.4) but for special interaction potentials, such as the soft and hard wall interaction potentials,
an analytic solution is known (see section 2.3.3). By matching the two wave functions together,
the contact condition has to be ensured

∂rχ
∞
lk

χ∞lk

∣∣∣∣
r=d

=
∂rχlk
χlk

∣∣∣∣
r=d

≡ B(k). (2.10)

Using equation (2.9), the upper equation can be solved for δl(k)

cot δl(k) =
[B(k) + 1

d ] cot(kd− lπ
2 ) + k

k cot(kd− lπ
2 )− [B(k) + 1

d ]
. (2.11)

In order to relate the scattering amplitude with the phase shift, we insert equation (2.6) into
equation (2.4) and express the result into partial waves. A comparison with (2.9) leads then to

fl(k) =
1

k cot(δl(k))− ik
(2.12)

2The Legendre polynomials Pl(θ) as well as the factor (2l + 1) originates by using the addition theorem for the
spherical harmonics.
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2 Scattering theory

2.2. Low-energy and zero-energy scattering limit

The collision energy in ultracold gases is low, and therefore, the wave length of the relative
scattering particle is the largest length scale in the system (∼ 1/k). The wave function can-
not ”resolve” the concrete structure of the interaction potential anymore and the interaction
potential can be regarded as short-ranged in comparison to the wave length, for kΣ � 1. In
order to find an approximation for the scattering amplitude fl(k) in dependence of the wave
length [189], the wave functions φk(r) in the integral (2.5) can be decomposed into partial waves.
Due to the effectively short-range interaction potential, the support of the integral (2.5) is lim-
ited and the inserted partial waves can be approximated through Bessel functions in the limit
r → 0 (see appendix B.1). One obtains for the partial scattering amplitudes the following energy
dependence

fl ∼ k2l. (2.13)

In the following discussion, we focus on very small scattering energies, where only the l = 0 term
contributes to the scattering amplitude. Such scattering events are named s-wave scattering. In
order to define s-wave scattering, another line of arguments can be given: For small energies kr �
1, the centrifugal barrier l(l+ 1)/r2 in equation (2.8) is so strong that the wave function cannot
”penetrate” through and the original interaction potential W is shielded by the centrifugal
barrier. The wave function gets a trivial phase shift of π

2 l in the far-field. Only for l = 0, wave
function feels the interaction potential and acquires the non-trivial phase shift δ0(k)

Apart for resonances, the cot(δ0(k)) can be expanded for small energies leading to [190]

cot(δ0(k)) =
1

a0k
+

1

2
r0k + .... (2.14)

with the zero-energy scattering length a−1
0 ≡ limk→0 k cot(δ0(k)) and the effective range r0 ≡

2∂k cot(δ0(k))|k=0. The partial scattering amplitude (2.12) is then

f0(k) ≡ a(k) ' 1
1
a0

+ 1
2r0k2 − ik

(2.15)

with the energy dependent scattering length a(k). By taking the zero-energy limit of expression
(2.15), we get the zero-energy scattering length again

a0 = lim
k→0

f0(k) (2.16)

Finally, we note that one can directly perform the zero-energy limit of the Schrödinger equation
(2.8) by directly setting k = 0. Then, the far field solution is χ∞k=0(r) = 1−c/r with the constant
c. By comparing χ∞k=0(r) with equation (2.4), the constant c can be determined to be the zero-
energy scattering length, c = a0. For zero energy, the zero-energy scattering length can be
determined graphically (see figure 2.1) by determining the intersection of the wave function
with the abscissa χ∞k=0(r) = 0⇐⇒ r = a0.

2.3. Calculation of the zero-energy scattering length for various
interaction potentials

In this section, we analytically derive (if possible) expressions for the zero-energy scattering
length for different interaction potentials: the bare delta interaction (section 2.3.1), the reg-
ularized delta interaction (section 2.3.2) as well as hard and soft wall interaction potentials
(section 2.3.3). In the last section 2.3.4, a numerical algorithm is presented, which determines
the zero-energy scattering length for arbitrary interaction potentials.
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2.3 Calculation of the zero-energy scattering length for various interaction potentials

2.3.1. Bare delta interaction potential

The bare delta interaction potential leads to no scattering in three dimensions. We give a proof
of this statement, following the lines of reference [191]. Additionally, further proofs are given in
section 3.1.1 or in the appendix B.2.

The Lippmann-Schwinger equation (2.3) can be analytically solved for the bare delta interac-
tion potential W (r) = gδ(r)δ(θ)δ(ϕ)/r2 sin θ with the interaction strength g

φk(r) =
eikr

1− gG(r)

where G is the Green’s function. For r = 0, the Green’s function diverges and one obtains
φk(r = 0) = 0. But solving (2.3) with the constraint φk(r = 0) = 0 reveals φk(r) = 1, which
does not fulfil the constraint φk(r = 0) = 0. Concluding, the bare delta interaction potential
leads to an ill-defined scattering process in three dimensions, in contrast to one-dimensional
problems, where the bare delta interaction can be used successfully. To achieve non-trivial
scattering, the bare delta interaction potential has to be regularized, in order to include the
right boundary condition at r = 0.

2.3.2. Regularized delta interaction potential

The regularization of the bare delta interaction potential, invented by Fermi [174], takes the
appropriated boundary condition r → 0 into account and reproduces the correct scattering
behaviour in the far field. Furthermore, it allows a direct link between the interaction strength
g and the zero-energy scattering length a0. The regularized delta interaction potential can be
derived in different ways, e.g. by ensuring the right boundary conditions at r = 0 [94, 192], by
letting either the diameter of a hard-sphere interaction potential [193] or the size of a delta shell
interaction potential [194] tends towards zero, by using the rigorous framework of distribution
theory [195], or by applying the Hadamard finite part regularization [196, 197]. We regard
only scattering processes for low enough energy, the so called s-wave scattering. For the s-
wave scattering, the spherical momentum quantum number l is zero and the regularized delta
interaction potential is then given by (see references [94,192])

gδ(r)
∂

∂r
r (2.17)

where g is the interaction strength. We see that the regularization operator ∂
∂rr regularizes the

1/r divergence occurring in the three-dimensional wave function χk0(r) [see equation (2.9)]. Fol-
lowing the lines of reference [188], the scattering amplitude for the regularized delta interaction
potential can be calculated by inserting equation (2.17) into equation (2.3).

φk(r) = e−ikr − C e
−ikr

r
(2.18)

with

C =
µg

2π~2

[
∂

∂r′
r′φk(r′)

]
r′=0

(2.19)

First, multiplying equation (2.18) by r, second differentiating it w.r.t. r and last taking the limit
limr→0 for both sides of equation (2.18), we obtain

C = 1− aCik ⇐⇒ C =
a

1 + ika
. (2.20)
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2 Scattering theory

The scattering solution (2.18) is then

φk(r) = e−ikr − a

1 + ika

e−ikr

r
. (2.21)

Comparison with equation (2.4) gives the scattering amplitude as well as the partial scattering
amplitude

f(k) = f0(k) = − a

1 + ika
(2.22)

and the phase shift can be determined via equation (2.12). In order to derive a relation between
the zero-energy scattering length a0 and the interaction strength g, we perform the zero-energy
limit k → 0 on both sides of equation (2.19), leading to

g =
2π~2

µ
a0 (2.23)

2.3.3. Soft-wall and hard-wall interaction potentials

For the soft as well as the hard wall interaction potential, WS(r) = gΘ(r − Σ) and WH(r) =
limg→∞ gΘ(r −Σ), respectively, analytical solution of the wave function χkl(r) can be found in
the area r < Σ [185–187]. Here, g is the height of the soft wall interaction potential. The wave
function χkl(r) can be linked to the far field solution using equation (2.10) and the phase shift as
well as the scattering amplitude can be obtained. In doing so, B is determined at r = Σ leading
to B = κ cot(κΣ− lπ

2 ), with κ =
√

2µ(E − g)/~2 and the initial energy E = ~2k2/2µ. Inserting
the expression for B in equation (2.11) and regarding only s-wave scattering, we obtain

cot(δ0) =


κ cot(κΣ) cot(kΣ)+k
k cot(kΣ)−κ cot(κΣ) for E > g

κ coth(κΣ) cot(kΣ)+k
k cot(kΣ)−κ coth(κΣ) for E < g

(2.24)

In the special case of hard wall interaction potential g → ∞, the phase shift is proportional to
the size of the interaction potential cot δ = 1/kΣ and in the zero-energy limit, the zero-energy
scattering length (2.16) is equal to the size of the interaction potential Σ

lim
k→0

f0(k) = Σ = a0 (2.25)

where we have used equation (2.12).

2.3.4. General interaction potentials

Usually, equation (2.8) cannot be analytically solved for general interaction potentials and χkl(r)
has to be determined numerically. Equation (2.8) can be simplified using the transformation
χkl(r) = ukl(r)/r, but in doing so, attention must be paid, since the Laplace operator induces a
singular behaviour at r = 0 [198, 199]. In order to avoid the singularity, we set χkl(r) r|r=0 = 0
and hence get the boundary condition u(0) = 0. This boundary condition can be motivated
with that the scattering atoms have an impenetrable core and the relative wave function has to
drop to zero at r = 0 (see also appendix B.2 for a mathematical motivation). The radial part
of the relative wave function reads then[

1

2

d2

dr2
− 2µ

~2
W (r) + k2

]
u(r) = 0 (2.26)
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Figure 2.2.: Shown is the zero-energy scattering length for different interaction poten-
tials: The soft wall interaction potential WS(r) = gΘ(r − Σ) (asterisk), the delta shell
interaction potential WD(r) = gδ(Σ − |r|) (circles), the Gaussian interaction potential
WG(r) = g exp(r2/Σ2) (diamonds) and the renormalized Gaussian interaction potential
WRG(r) = g exp(r2/σ2) in dependence of the interaction strength g. Please note the loga-
rithmic scaling of the x-axis. The inset shows the shape of different interaction potentials for
the two different interaction strength g = 10 (grey) and g = 2000 (black): WS(r) (shaded
area), WG(r) (dashed lines) and WRG (solid lines). Figure is taken from [[1]].

which can be solved numerically, e.g. using Numerov’s method [200]. Knowing χkl(r), the
parameter B [see equation (2.10)], the phase shift [see equation (2.11)], the scattering amplitude
[see equation (2.12)], the scattering length [see equation (2.15)] and the zero-energy scattering
length [see equation (2.16)] can be determined.

In order to illustrate the behaviour of the zero-energy scattering length a0 in dependence on
the interaction strength g, we numerically solve equation (2.26) for the following four interaction
potentials and show the results in figure 2.2:

1. Soft wall interaction potential WS(r) = gΘ(r − Σ):
The zero-energy scattering for the soft wall interaction potential reaches an upper bound
at a0 = Σ for g →∞, as expected from the analytical calculation (see equation (2.25)).

2. Delta shell interaction potential WD(r) = gδ(Σ− |r|):
The zero-energy scattering length for the delta shell interaction potential reaches an upper
bound for larger interaction strengths, a0 = Σ for g → ∞. An infinite strong delta
potential causes a node in the wave function at Σ and thus the zero-energy scattering
length has the same size.

3. The Gaussian interaction potential WG(r) = g exp(r2/Σ2):
By increasing g and keeping Σ fixed, the zero-energy scattering length of the Gaussian
interaction potential increases unlimited (see the inset of figure 2.2), since the effective
width of the Gaussian interaction potential increases unlimited as well, ∝ √g and may
violate other length scales in the system. We like to note that the effective width of
the Gaussian interaction potential may destroy the condition for short-range interaction
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2 Scattering theory

potentials.

4. The renormalized Gaussian interaction potential WRG(r) = g exp(r2/σ2
eff):

The renormalized Gaussian interaction potential is renormalized so that the effective width
of the Gaussian is independent of g, WRG(r = Σ) = ε, where ε is a small and arbitrary
energy scale of the system. In doing so σeff can be calculated, σeff = Σ[ln(g/ε)]−1/2.
The renormalized Gaussian interaction potential unifies two advantageous features, which
are extremely helpful in order to perform numerical simulations in three dimensions (see
chapter 3 and 4). The first one is that WRG(r) is restricted on the range Σ, like the soft
wall interaction potential. This can be seen by regarding the limit g → ∞ (graphically
shown in the inset of figure 2.2):

lim
g→∞

WRG(r) =


∞ |r| < |Σ|
ε |r| = |Σ|
0 |r| > |Σ|

 (ε = 1)
= lim

g→∞
WT (r) (2.27)

The restriction of the width helps to avoid the penetration of other length scales appearing
in the system, and the zero-energy scattering length reaches an upper bound at a0 = Σ for
infinite interaction strength. The second advantage is that WRG(r) is separable into the
dimensions, like the standard Gaussian interaction potential, which is extremely helpful
for an efficient numerical implementation (as we will see in chapter 3 and 4).

2.4. Tunability of the interaction potentials

The maximal zero-energy scattering length is limited to a0 ≤ Σ for an arbitrary, but purely
repulsive short-range interaction potentials WA(r); WA(r) > 0 for r ≤ Σ and WA(r) = 0
for r > Σ. To proof this statement, we approximate WA(r) into a sum of theta functions
WA(r) '

∑Imax
i=1 [Θ(r − i∆) − Θ(r − (i − 1)∆)]gi with ∆ = Σ/Imax and gi = WA(i∆). For

Imax = ∞ the interaction potential WA(r) is recovered, but numerically Imax can be arbitrary
large but must be finite. Performing the limit of infinite interaction strength i.e. gi → ∞, we
can separate the i = Imax term from the remainder of the sum, leading a hard wall interaction
potential WA(r) ' limgImax→∞Θ(r − σ) + remainder. This hard wall interaction potential is
responsible for the limitation of the zero-energy scattering length, a0 ≤ Σ, as seen in section
2.3.4

Larger scattering lengths can be created in three different ways:

i. If a bound state is close to the threshold of the incoming energy, scattering resonances oc-
cur. As much as we know, there is no combination of pure repulsive interaction potentials,
which causes a similar resonant scattering behaviour.

ii. If the bound state of an internal closed scattering channel (occurring for l > 0 or taking
the electronic structure of the atom into account) is near to the threshold of the incom-
ing energy, resonances, i.e., divergences in the scattering length, can be observed [13].
Such resonances are called Fano-Feshbach and by experimentally tuning external mag-
netic fields, the levels of the closed channels can be shifted and arbitrary scattering length
can be obtained, both negative and positive. Neglecting the electronic structure of the
scattering atom and taking only s-wave scattering into account, as we do in this thesis,
Fano-Feshbach do not occur.

iii. If the scattering occurs in a strong transversal confinement, virtual transversal modes
can be excited, leading to confinement induced resonances [96, 97]. For example, in the
case of a harmonic wave guide, one can sum over these transversal modes, leading to a
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2.4 Tunability of the interaction potentials

modification in the scattering length [96]

a1D = −
l2⊥
2a0

(
1− Ca0

l⊥

)
(2.28)

with the characteristic transversal trap length l⊥ =
√
~/ω⊥µ, where ω⊥ is the harmonic

transversal trap frequency, C is a numerical factor C = 1.4602... and a0 is the three-
dimensional zero-energy scattering length.
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Development of an efficient algorithm
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CHAPTER

THREE

EFFICIENT NUMERICAL MODEL FOR THE TWO-BODY
INTERACTION POTENTIAL

Due to the complexity w.r.t. the many degrees of freedom of an interacting bosonic ensem-
ble in three dimensions, it is as good as impossible to solve the time-dependent many-particle
Schrödinger equation analytically. However, analytic solutions can be found, e.g., for two bosons
in an isotropic (anisotropic) harmonic trap with the regularized delta interaction potential [201]
( [202]) or many particles interacting with the harmonic interaction potential [203–207]. How-
ever, the harmonic interaction potential is unphysical, due to its boundary conditions at infinity.
In general, bosonic ensembles interacting with realistic interaction potentials have to be solved
numerically.

Because of the freedom to choose the special shape of a short-range interaction potential in the
zero-energy limit (see chapter 2 and reference [177]), various interaction potentials can be created
and used. A list of possible interaction potentials is given in table 3.1. All of these interaction
potentials depend on a global interaction strength1 h and on a parameter σ corresponding to
the width of the interaction potential. The connection between the parameters h and σ of
the interaction potential and the physical measurable zero-energy scattering length a0 can be
obtained by solving the scattering problem in three dimensions (see section 2.3.4).

In this chapter, we address the questions, what is the preferable interaction potential for nu-
merical application and which special mathematical features of the interaction potential can
be used in order to simplify the numerical effort. These questions have been already shortly
answered in our publication [[1]]. First, three-dimensional zero-range interaction potentials such
as the bare delta interaction (section 3.1.1), the regularized delta interaction (section 3.1.2) and
the bare delta interaction with a renormalized interaction strength (section 3.1.3) are discussed
w.r.t. the possibility to resolve correlations and a feasible numerical implementation. We find
that none of these zero-range interaction potentials can be used properly for an ”correct” nu-
merical simulation with the ML-MCTDHB method, working within a single particle basis in the
laboratory frame and taking particle correlations into account2. However, the bare delta inter-
action potential is fine for mean-field calculations and the regularized delta interaction can be
used correctly if a correlated two particle basis is used. Concluding, we have to use finite-range
interaction potentials, which introduce a new length scale to the system. This new length scale

1For finite interaction potentials, we call the interaction strength g also interaction height and label it with h.
2 Already here, we comment on a constraint given by the numerical ML-MCTDHB method. The ML-MCTDHB

algorithm implies the language of second quantization, in order to represent an ensemble of bosons, which
restricts the implementation to a formulation in the laboratory frame. Therefore, we look for interaction
potentials with nice mathematical and numerical features in the laboratory frame.
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3 Efficient numerical model for the two-body interaction potential

Table 3.1.: Examples of possible interaction potentials.

Gaussian interaction potential WG(r) = h exp(−r2/σ2)
Cosh interaction potential WS(r) = h/ cosh(|r|/σ)
Lorentz interaction potential WL(r) = h/(1 + r2/σ2)
Exponential potential WE(r) = h exp(−|r|/σ)
Theta interaction potential WT (r) = hΘ(σ − |r|)
Delta interaction potential WD(r) = hδ(σ − |r|)
Fermi interaction potential WF (r) = h/(exp(|r| − σ) + 1)

is some orders of magnitudes smaller than other characteristic length scales in the system (see
table 2.1) and has to be resolved numerically. In section 3.2, we look for a short-range interac-
tion potential, which is most handy for a numerical implementation within the ML-MCTDHB
algorithm. Finally, in section 3.3, we give a summary of the main outcome of this chapter:
The most suitable short-range interaction potential for our propose is a renormalized Gaussian
interaction potential, which we have already met in section 2.3.4.

3.1. Zero-range interactions potentials

The main advantage of zero-range interaction potentials is that the length scale of the interaction
does not have to be resolved numerically and thus less grid points are needed, leading to a huge
reduction of the computational effort. Furthermore, a possible interference of the interaction
length with the characteristic trap lengths, important in the crossover from three towards one
dimension, does not have to be considered and the scattering can be regarded as taking place in
free space. The simplest zero-range interaction potential is the bare delta interaction operator
(in position space representation)

gδ(r) (3.1)

where r = r2 − r1 is the relative position vector of two colliding particles, with length |r| = r
and g is the interaction strength for the bare delta interaction. The interaction strength can
be related to the zero-energy scattering a0 length by g = 2π~2/µa0 , where µ is the reduced
mass (see section 2.3.2). Because in some cases, a0 can be experimentally tuned from minus
towards plus infinity via a Feshbach resonance, the interaction range extends to the same infinite
interval.

As we have already seen in section 2.3.1, the bare delta interaction gδ(r) is ill defined in three
dimensions and thus cannot describe scattering in three dimensions. To support this crucial
statement, a new line of argumentation is given in section 3.1.1 in order to formulate the error
caused by the bare delta interaction. Usually, two corrections to the bare delta interaction
potential are used. The first one, described in section 3.1.2, is a regularization of the bare delta
interaction operator w.r.t. to the boundary condition at r = 0. The second, presented in section
3.1.3, is a renormalization of the interaction strength w.r.t. a truncation of the single-particle
Hilbert space.

3.1.1. Bare delta interaction potential

In order to support the statement that the bare delta interaction does not properly describe
scattering in three dimensions, we give a line of argument, which follows the papers [201,208,209].
In doing so, we make a comparison between D = 1 and D = 3 dimensions and between particles
in free space and trapped in an isotropic harmonic trap.
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3.1 Zero-range interactions potentials

The relative Schrödinger equation in D dimensions is given by (H0 + gδ−Erel)|φrel〉, where δ
is the bare delta operator and H0 is the Hamiltonian describing one particle either in free space
or trapped in an isotropic harmonic trap. We expand the relative D-dimensional wave function
|φrel〉 =

∑
i ci|ϕi〉 into a complete set of eigenfunctions H0|ϕi〉 = εi|ϕi〉, where all quantum

numbers are summarized in i. Projecting onto 〈ϕj| leads to

cj(εj − Erel) + g
∑
i

ci〈ϕj|δ|ϕi〉 = 0 (3.2)

which can be solved for cj, using the position space representation for the delta operator

cj = A
〈ϕj|r = 0〉
εj − Erel

, (3.3)

where A = −g
∑

i ci〈r = 0|ϕi〉 is some unknown constant. Inserting equation (3.3) into (3.2),
leads to the general equation for the bare delta interaction potential

M=∞∑
i=0

〈r = 0|ϕi〉〈ϕi|r = 0〉
εi − Erel

= −1

g
, (3.4)

where the summation labels a summation over all quantum numbers.

Next, we want to study the validation of this equation w.r.t. dimensionality and apply both
plain waves and harmonic oscillator wave functions in D dimensions for the eigenfunctions |ϕi〉.

First, 〈r|ϕi〉 are D−dimensional plain waves with momentum q. The sum in equation (3.4)
can be transformed into an integral, (2µ/~2)

∫
dDq 1

q2−k2 = −1/g, where Erel = ~2k2/2µ and

εq = ~2q2/2µ have been used. In one dimension, this integral is convergent, which justifies the
use of the bare delta interaction potential in numerical simulations [88,90,210–214] and analytical
calculations [208, 215]. In three dimensions, however, the integral is ultra-violet divergent and
the interaction strength has to be zero g = 0, otherwise, the equation is ill defined.

Second, using three-dimensional spherical harmonic oscillator wave functions 〈r|ϕi〉 with the
quantum numbers i = {k, l,m} and assuming a symmetrical setup so that l = 0, one can also
show after some algebra that equation (3.4) is divergent and only meaningful for g = 0 (see
appendix C.1 for the calculation).

In order to ”heal” equation (3.4) from its divergence, one can follow two strategies: The first
one is a regularization of the bare delta interaction operator (see section 3.1.2), and the second
one is a truncation of the sum in equation (3.4) i.e. a renormalization of the interaction strength
(see section 3.1.3) in order to compensate for the truncation. In the following, we have a closer
look at these two strategies.

3.1.2. Regularization of the bare delta interaction potential

The first strategy is to regularize the bare delta interaction operator, by incorporating the right
boundary conditions at r = 0. Roughly speaking, since the wave function is zero at r = 0,
the Dirichlet boundary condition in three dimensions has no influence on the wave function
(see also appendix B.2). However, we can modify the slope of the wave function at r = 0
(Neumann boundary condition), in order to create a phase shift in the far-field (see chapter 2).
Incorporating the Neumann boundary condition by rewriting the interaction operator leads to
an additional term ∂rr, named, the regularization operator [94,192]. The regularized interaction
potential reads in position space representation

gδ(r)∂rr. (3.5)
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3 Efficient numerical model for the two-body interaction potential

This regularization operator ”kills” the 1/r divergent part of the wave function φrel(r), which
naturally occurs in three dimensions. This can be proven by a fast calculation assuming φrel(r) =
u(r)/r where u(r) is a general polynomial (up to infinite order).

The numerical ML-MCTDHB method, as most numerical many-body methods, operates with
three-dimensional single particle functions given in the laboratory frame {χi(r)}Mi=1 and therefore
a Hartree product can be formed, which can be symmetrized. The regularized delta interaction
potential (given in the relative frame) acts on these Hartree products (given in the laboratory
frame). Without loss of generality, we can analyse the action of the regularized delta interaction
potential on only two particles (for a transformation of the regularized delta interaction potential
into the laboratory frame, see appendix C.2)

gδ(r)∂r (rχi(r1)χj(r2)) = gδ(r1 − r2)
[
χi(r1)χj(r2) +

r1 − r2

2
(∇r1 −∇r2)χi(r1)χj(r2)

]
, (3.6)

Performing the limit r1−r2 → 0, this equation leads to gδ(r)∂r (rχi(r1)χj(r2)) = gδ(r)χi(r1)χj(r2),
which is a direct consequence of the fact that a single Hartree product, defined in laboratory
frame, cannot feature a 1/r singularity in the relative frame, although the single particle func-
tions χj(ri) can possess a 1/|ri| divergence in the laboratory frame. Due to the commutation of
∂rr with any finite sum, the regularization operator has no effect on any combination of two or
more Hartree products and thus on any numerically available two-body state.

This has three important consequences:

1. The action of the regularization operator is identical to the action of the bare delta inter-
action and can be replaced by it if it acts on a finite Hartree product basis in laboratory
frame, as for example in a mean-field approach used to derive the Gross-Pitaevskii equa-
tion. But a Hartree product basis cannot feature non-trivial correlations, e.g. particle
correlations.

2. If non-trivial correlations are present, increasing the size of basis function, χi, does not
help, since one converges to the non-interacting solution, as discussed in section 3.1.1.

3. The regularized delta interaction potential is not only of use for analytical solutions [201,
202] but can also be used numerically if and only if a correlated two-body basis is employed.
For example, an effective interaction potential can be constructed from the exact two
body solution [201], which gives good predictions for the eigen-energies of the many-boson
problem (e.g. see references [216, 217] and references therein). These correlated basis
functions live in a six-dimensional space and the numerical calculations of matrix elements
(if not known analytically) are six-dimensional and hence very sensitive on the applied
number of grid points. Especially, in the crossover from three towards one dimension,
as studied in this thesis, a large number of grid points are needed. If time-dependent
correlated basis function would be used, then these six-dimensional matrix elements have
to be evaluated at every instance in time, which is computationally very costly and nearly
infeasible.

As a consequence, we do not follow this approach any further.

3.1.3. Renormalized bare delta interaction potential

We focus on the second strategy, namely, the truncation of the sum in equation (3.4) and
a corresponding renormalization of the interaction strength g → gR = gR(M, g). Only in this
section, we name g the ”true” interaction strength in order to distinguish it from the renormalized
interaction strength gR. A renormalization theory can be decomposed into two steps; first, to
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3.1 Zero-range interactions potentials

regularize3 the divergence occurring by introducing a cut-off and, second, to renormalize the
interaction strength g w.r.t. this cut-off.

In this section, first, we discuss our requirements for a proper renormalization theory and
then describe the general steps of a renormalization procedure. Then, two renormalization
procedures, suitable for the ML-MCTDHB algorithm, are discussed, however their developments
and derivations are done in the appendix C.3, since knowledge of the MCTDHB method is
needed. We end by a characterization of the two renormalization theories for our developed
requirements and a short summary.

The requirements are:

i. The renormalization theory must handle arbitrary and time-dependent potentials in order
to be flexible for different trap geometries.

ii. Not only the ground state of a two-particle systems, but also excited as well as many-
particle states must be described correctly.

iii. Since the ML-MCTDHB method is an ab-initio method, the renormalization procedure is
not allowed to use any further approximation, except the ”natural” numerical truncation
of the single particle basis set or the discretization of space used by the method anyway.

iv. The renormalization theory must be numerically feasible, and its computational costs
must be small in comparison with the rest of the algorithm.

General steps of a renormalization procedure: In different physical fields, different ideas
of how divergences can be regularized have been developed, for example, using dimensional
regularization [220], introduction of a high-momentum cut-off [221–224], self-adjoint extension
[225], subtraction of the divergent part of the wave function [223], perturbative regularization
[222], discretization in coordinate space [208] and many more [221, 226–228]. Most of these
ideas have in common that the underlying single-particle Hilbert space, here, spanned by three-
dimensional single particle functions {|ϕi〉}Mi=0, is truncated by M and therefore equation (3.4)
can be written as

M∑
i=0

〈r = 0|ϕi〉〈ϕi|r = 0〉
εi − Erel

= − 1

gR(M)
, (3.7)

with the ’renormalized’ interaction strength gR which depends on M . The true interaction
strengths g, encrypted in Erel = Erel(g), must be linked with the ’renormalized’ interaction
strength gR. Erel has to be calculated analytically, however, this is only possible for rare scenarios
in three-dimensions, such as for an isotropic [201] or anisotropic [202] harmonic confinement.

Another possible way to derive a correspondence between the gR and g is the following:
Usually, a physical quantity, e.g. the ground state energy [229], the centre of mass [230] or the
T -matrix [208] can be calculated, on the one hand, in the truncated single-particle Hilbert space
while using the bare delta interaction potential and, on the other hand, in the full single-particle
Hilbert space while using the regularized delta interaction potential. The results are set equal
in order to derive the correspondence between the true and renormalized interaction strength
gR = gR(M, g). Here, we calculate the T -matrix elements given in a truncated Hilbert space

3 In this section, regularization has a different meaning than in section 3.1.2. Here, by regularization, we denote
the introduction of a cut-off parameter, which truncates either the sum in equation (3.4) or a corresponding
integral. This cut-off parameter is used for the regularization, similar to the renormalization group theory by
Wilson [218, 219], leading to cut-off parameter free theory [167]. In contrast, in section 3.1.2, the crossover
from δ(r) → δ(r)∂rr is denoted as regularization.
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3 Efficient numerical model for the two-body interaction potential

and set them equal to the analytical known solution [see equation (2.22)4]

〈k|T |k′〉 = δk,k′
2π~2

µ

a0

1 + a0k
, (3.8)

where a0 is the zero-energy scattering length and k, k′ are the incoming and outgoing wave
vectors, respectively, with k = |k|. In doing so, we follow the lines of reference [208] and start
with the three-dimensional single-particle Hamiltonian H0 +W , where H0 is the relative kinetic
operator and W = gRδ the delta interaction operator. In position space representation, the
delta interaction operator is given by W = gR|r = 0〉〈r = 0|. The energy dependent T -matrix is
defined as

T (E) = W +WGW (3.9)

with the Green’s function G(E) = 1/(E − H) and the energy E = ~2k2/2µ. The Green’s
function can be calculated from the free Green’s function G0(E)

G(E) = G0(E) +G0(E)WG(E) (3.10)

Projecting equations (3.9) and (3.10) onto plain waves, leads to

Tk,k′(E) =
gR

1− gRΩ(E,M)
(3.11)

with Ω(M,E) = 〈r = 0|G0|r = 0〉 evaluated in the truncated basis set {〈r|ϕi〉}Mi=0. Equating
equation (3.8) and equation (3.11) leads to a connection between the true and renormalized
interaction strength, and in the zero-energy limit, we get

g(gR,M) = lim
E→0

gR
1 + gRΩ(M,E)

. (3.12)

Ω(M,E → 0) is a monotonically increasing function w.r.t. M , e.g. if 〈r|ϕi〉 are plane waves
then Ω ∼ M or if 〈r|ϕi〉 are harmonic oscillator functions then Ω ∼ ψ0(M + 5/2), where ψ0

is the polygamma function. In order to get a feeling for the renormalization procedure, the
true interaction strength g = g(gR,M) is plotted in dependence of the renormalized interaction
strength, applying a three-dimensional harmonic oscillator basis (see figure 3.1). We can see that
for very small gR and small M the renormalization of g has no significant influence and thus the
bare delta interaction can be used. In this regime, a mean-field approximation is sufficient and
one expects only trivial correlations ruling the system. For a larger renormalized interaction
strength gR, the true interaction strength g saturates gmax(M) = limgR→∞ g(gR,M). It is not
possible to simulate, larger ”true” interaction strength than gmax(M) and gmax(M) decreases if
M is increased. Increasing M , leads to a zero true interaction strength g, limM→∞ g(gR,M) = 0,
since the polygamma function at infinity is infinity. Again, we recover the result that the bare
delta interaction potential does not induce scattering in three dimensions.

Developed renormalization procedures: We present two renormalization procedures and dis-
cuss them w.r.t. our described requirements. A detailed derivation of the renormalization pro-
cedures is given in the appendix (see appendix C.3), since a deeper understanding of the ML-
MCTDHB algorithm is needed.

The first renormalization procedure (appendix C.3.1) is the simpler one. Regarding only two
interacting particles, the Hamiltonian can be separated into a centre of mass and a relative part.

4The connection between the scattering amplitude and the T -matrix elements is given by f(k,k′) =
4π3µ/~2〈k|T̂ |k′〉, where µ is the relative mass and k, k′ are the incoming and outgoing wave vectors, re-
spectively.
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Figure 3.1.: Shown is the true interaction strength, calculated using a three-dimensional
harmonic oscillator basis for the two different truncations M = 2 (light grey line) and M = 6
(dark grey line) in equation 3.7. Erel is approximated for small interaction strengths and
linear in the interaction strength [201]. The dashed line shows the values for gR → ∞. As
a reference, the black dash-dotted line shows g = gR.

The ground state energy Erel of the relative Hamiltonian can be obtained either analytically
for a harmonic confinement [201, 202] or numerically if the trap geometry is more advanced in
dependence of the ’true’ interaction strength g, Erel = Erel(g). The single particle functions |ϕi〉
and eigen energies are known from the non-interacting problem, H0|ϕi〉 = εi|ϕi〉 and equation
(3.7) can be solved either analytically (if possible) or numerically in order to get a dependence
between the true and renormalized interaction strength. This renormalization procedure can
handle arbitrary potentials. However, the introduced truncation does not corresponds to the
truncation made by the ML-MCTDHB algorithm since the single particle basis in the ML-
MCTDHB algorithm is time-dependent and is given in laboratory coordinates. Therefore, the
truncation gets time-dependent, which is not reflected by this renormalization procedure. An-
other weak point of this renormalization procedure is that the ground state energy is used to
link the true and the renormalized interaction strengths and thus excited states or many particle
scattering events are not renormalized correctly.

The second developed renormalization procedure tries to circumvent the last mentioned point.
Instead of assuming the correspondence between the ground state energies, the T -matrix, includ-
ing already multiple two-body scattering events, can be used as a starting point [208]. Merging
the general idea of reference [208] with the constrains of the ML-MCTDHB method by using
time-dependent single-particle functions in the relative frame |ϕi〉 and by linking them to the
finite single-particle basis in the laboratory frame {χi}Mi=1 used in ML-MCTDHB, a second
renormalization theory has been derived (appendix C.3.2)5. Due to the time-dependence of the
single-particle functions |ϕi〉, Ω(M,E) has to be evaluated at every instance in time and due
to the coordinate transformation between the relative frame and the laboratory frame, six di-
mensional integrals have to be evaluated at every instance in time. This is far too cumbersome
for a dynamical application. Nevertheless, as we have shown, this renormalization theory can
reproduce the right ground state energy in an isotopic harmonic trap (see appendix C.3.2).

In summary, no suitable renormalization procedure has been found, which fulfils all our require-
ments. The following list summarizes the conceptual problems, we have encountered thereby:

5 In order to make the point clear. The main problem is that the regularization theory is derived in the relative
coordinates, however, the ML-MCTDHB methods works in the laboratory frame.
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3 Efficient numerical model for the two-body interaction potential

• A renormalization procedure is limited to a maximal achievable ’true’ interaction strength
and therefore not the whole interaction range which is experimentally feasible, can be
simulated numerically.

• In ML-MCTDHB, the single-particle basis states |ϕi〉 are dynamically determined at each
instant in time, and therefore the renormalization procedure gets time-dependent, espe-
cially gR = gR(t). However, a simulation with a time-dependent renormalized interac-
tion strength is not assured to converge to the right result, given by the true interaction
strength.

• Due to the description of ML-MCTDHB in second quantization, it operates in the labora-
tory frame, whereas the renormalization is formulated in the relative frame. That is why
a coordinate transformation between these two frames has to be performed, leading to a
six-dimensional integration. Paired with the time-dependence of the single-particle basis,
the integration has to be performed at every instant in time, which is numerically very
costly. This is in complete contrast to the philosophy and basic idea of the ML-MCTDHB
method, which is designed to avoid exactly these six dimensional integrations.

• Generally speaking, a renormalization procedure is just a shift of the interaction strength
g → gR and excited states are shifted the same way as ground states. Therefore, it is not
expected that excited states are renormalized correctly.

• The ML-MCTDHB method does not only truncate the three-dimensional single-particle
Hilbert space once, in fact a truncation happens on different ”layers” (see chapter 4). In
the ML-MCTDHB method, the three-dimensional single-particle Hilbert space is separated
into one-dimensional single-particle Hilbert spaces, which are truncated on their own. All
these truncations influence each other (see figure C.1a in the appendix) and has to be
included in a proper renormalization theory.

As a consequence, we have given up the effort to improve or develop new renormalization
procedures, due to the many conceptual difficulties and challenges.

Summary: Describing numerically non-trivial correlations, neither the regularization of the
delta interaction nor renormalization of the interaction strength can be used in order to circum-
vent the problems of the three-dimensional bare delta interaction. As a consequence, we have
to give up the great advantage of zero-range interaction potentials, namely the independence of
the simulation on the interaction range, and focus on finite-range interaction potentials in the
following.

3.2. Finite-range interaction potential

As a consequence of the discussion in the previous section, the interactions in three dimensions
must be modelled by a finite-range potential W if we want non-trivial correlations to be taken
into account. But not all finite-range interaction potentials are suitable for a numerical imple-
mentation. Therefore, we demand the following requirements to be satisfied for the finite-range
potential used in the ML-MCTDHB algorithm:

1. The interaction potential must be short-range:

In order that a short-range interaction potential is well defined, it must obey certain
constraints: (i) It must be isotropic in space, in order to model s-wave scattering. (ii)
At a finite distance i.e. the size of the interaction potential Σ, the short-range interaction
potential must drop to zero, W (|r| > Σ) = 0, or is forced to be zero. (iii) Σ must constitute
the smallest physical length scale in the problem at hand, and especially it must be smaller
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than the characteristic lengths scales of the trap length ltrap. The trap is not allowed to
influence the scattering process so that the scattering process gets independent of the trap
geometry i.e. the scattering can be regarded as taking place in free space, similar to the
delta interaction potential. (iv) Furthermore, Σ must be smaller than the typical inter-
particle distance to avoid three-body scattering. (v) The short-range interaction potential
must be resolved numerically by a grid with grid distance ∆s = Ls/qs, where Ls is the
total grid length and qs is the number of grid points in the s-th dimension. Because of
isotropy, the grid spacing must be the same in every dimension, and since the scattering is
homogeneous in space, the grid must be equidistant. (vi) The scattering process, in detail
the far-field phase shift, is not allowed to depend on the special shape of the short-range
interaction potential.

Summarizing, we have the following relations for the length scales:

∆s < Σ < ltrap < Ls (3.13)

To satisfy all these constraints of equation (3.13), a large number of grid points are needed,
which causes a numerical challenge (see chapter 1). A list of some possible interaction
potentials is given in table 3.1, with interaction height/strength h and width σ. Of cause
attractive (h < 0) and repulsive (h > 0) interaction potentials, and any combination
between them, are possible.

2. The interaction potential must be linked with the s-wave scattering length a0:

The zero-energy scattering length a0 must be easily tunable via the interaction potential
parameters h and σ. In principle, the whole range for the scattering length from a0 =
−∞ ... ∞ can be covered if the interaction potential features a bound state (see section
2.4). Bound states, however, simulated in the laboratory frame, feature strong particle
correlations, which are in general difficult to handle numerically and challenging to bring
to convergence [231]. Furthermore, the resonance is strongly energy-dependent and thus
resulting in an energy-dependent scattering length, which has to be handled numerically in
a many-particle simulation. In order to avoid these difficulties, we focus on pure repulsive
interaction strengths, with the disadvantage that the maximal achievable scattering length
is limited to a0 ≤ Σ (see section 2.4).

The only relevant physical scattering parameter is the zero-range interaction length a0,
which can be calculated numerically from the interaction potential in dependence of h and
σ (see section 2.3.4). In order to reduce the dependence of a0 to one parameter, which
is numerical easier to handle, an additional normalization condition can be introduced,
which couples h and σ.

3. The interaction potential must lead to the lowest possible computational effort:

As in many numerical method, the interaction matrix element

Wijkl = 〈χiχj |W |χkχl〉 (3.14)

has to be calculated6, created by the three-dimensional single-particle functions {χk(ri)}Mk=1,
where k is the mode index and i the particle index.

(i) Using a brute force implementation, a six-dimensional spatial integration has to be
performed, requiring q2

1q
2
2q

2
3 operations at each instant in time (if the χi are time-dependent

as in the ML-MCTDHB method), where qs are the number of grid points in the dimensions
s = {1, 2, 3}. The numerical effort per iteration step is given by q2

1q
2
2q

2
3, which can be

6Here, we regard only the implementation of local interaction potentials, such as the ones given in table 3.1.
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3 Efficient numerical model for the two-body interaction potential

improved a little by using Monte Carlo integration. As we have seen, a large number
of grid points are necessary to resolve short-range interaction potentials, and therefore a
brute force implementation is not feasible numerically. A different implementation has to
be imagined with a better numerical performance.

(ii) The interaction potential W can be approximated by a sum of single particle potentials,
using a Schmidt decomposition [122,232,233],

W (r1, r2) = W (r1 − r2) ∼WP (r1 − r2) =
P∑
p=1

cpw
(1)
p (r1)w(2)

p (r2) (3.15)

which becomes exact for P = q1q2q3. If WP approximates W well for much less terms, i.e.
P � q1q2q3, the calculation of the interaction matrix element Wijkl can be separated into

two steps, first, the calculation of T
(κ)
ikp = 〈χi|w(κ)

p |χk〉, where κ is the particle index and

then Wijkl =
∑P

p=1 cpT
(1)
ikpT

(2)
jlp . The numerical performance scales in dependence on the

number of grid points with ∼ q1q2q3, which is numerically more feasible, but still out of
range of an efficient implementation. Furthermore, we have found empirically that for too
few terms P , the potential WP exhibits long-range interaction and unphysical oscillations,
which can feature bound states. Although these oscillation can be damped manually by
considering the average ∝

∑Pmax
p=1 Wp as the interaction potential (see Appendix C.4), the

resulting interaction potential is not satisfactory and the performance is still too costly.

(iii) The three-dimensional single-particle functions |χj〉 can be expanded by one-dimen-

sional basis functions |φ(s)
j 〉 for the different spatial directions s (as we will do in our

implementation, see section 4), |χj〉 =
∑

j1j2j3
Bjj1j2j3 |φ

(1)
j1
〉φ(2)
j2
〉φ(3)
j3
〉 and the interaction

potential can be decomposed into the spatial directions,

W (r1, r2) ∼WP1P2P3(r2−r1) =

P1∑
p1=1

P2∑
p2=1

P3∑
p3=1

cp1p2p3 w̃
(1)
p1

(x1−x2) w̃(2)
p2

(y1−y2) w̃(3)
p3

(z1−z2)

(3.16)
which can be achieved by the POT-FIT algorithm [232,233] for a finite number of Ps. In

doing so, the computational task is split into a subtask, first, to calculate W̃
(s)
psisjsksls

=

〈φ(s)
is
φ

(s)
js
|w̃(s)
ps |φ

(s)
ks
φ

(s)
ls
〉 and second Wijkl =

∑P
P cP

∑
IJKLB

∗
iIB
∗
jJBkKBlL

∏3
s=1 W̃

(s)
psisjsksls

,
where we have used the multi-index I = (i1, i2, i3) as well as P = (P1, P2, P3), and where
we have used the abbreviation for the sum sign

∑
I =

∑
i1

∑
i2

∑
i3

. In this way, the

computational effort in dependence of the number of grid points scales with
∑3

s=1 q
2
s , which

is still computationally very challenging for large number of gird points. The efficiency of

this scheme depends on Pi < qs as well as on how many one-dimensional basis states |φ(s)
j 〉

are needed for convergence. We notice that only for the Gaussian interaction potential
(see table 3.1) P1 = P2 = P3 = 1.

(iv) Applying symmetry arguments: The matrix element (3.14) has got the computational

effort, scaling with ∝ m4
sq

2
1q

2
2q

2
3. If the interaction potential W (i.e. W̃

(s)
pijkl) depends only

on the relative coordinate and is real valued, symmetry arguments of the matrix elements
can be used to improve the scaling. We obtain:

W̃
(s)
pijkl = W̃

(s)
pjilk = W̃

∗(s)
pklij = W̃

∗(s)
plkji (3.17)

Furthermore W̃
(s)
pijkl can be Fourier transformed and then evaluated using the IMEST-

algorithm [234] (see also appendix C.5). In doing so, the scaling in dependence of the
number of grid points is reduced from ∝ q2

1q
2
2q

2
3 to ∝ q1q2q3 log(q1q2q3).
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3.3 Summary

Table 3.2.: Numerical effort to determine the matrix element Wijkl for the various imple-
mentations. qs is the number of grid points in dimension s = {1, 2, 3}, M is the number of
three-dimensional single-particle functions and ms is the number of one-dimensional single-
particle functions in dimension s. The parameter of the POT-FIT algorithm are P or Ps

for dimension s, depending on the context (see main text).

brute force implementation
Determine Wijkl M4q2

1q
2
2q

2
3

Expansion into particles
Determine Tikp M2Pq1q2q3

Determine Wijkl PM4

Expansion into dimensions

Determine W̃
(s)
p,isjsksls

psm
4
sq

2
s

Determine Wijkl P1P2P3M
4m4

1m
4
2m

4
3

Since the ML-MCTDHB method aims at an efficient representation of |χi〉 in terms of the

|φ(s)
j 〉, we follow the third strategy in combination with the fourth strategy for evaluating the

matrix elements. Moreover, we restrict ourselves to interaction potentials, which are separable in
Cartesian coordinates, W (r1− r2) = W (1)(x1−x2)W (2)(y1−y2)W (3)(z1− z2), to further reduce
the number of P summations. Demanding isotropy, a natural choice for W is the Gaussian
interaction potential in three dimensions WG(r1−r2) = he−(r1−r2)2/σ2

. The interaction strength
can be adjusted by h, however, increasing the height of the Gaussian potential increases also its
range Σ(h, σ) and thus the length scale of the Gaussian may interfere with other length scales,
for example the trap size. Then, short-range interactions are not ensured anymore. Therefore,
we renormalize the width of the Gaussian w.r.t. a small energy scale of our system ε (as already
done in section 2.3.4) by demanding WRG(r) = ε if |r| = σ , such that Σ is independent of the
height h :

WRG(r1 − r2) = he− ln(h/ε)
(r1−r2)2

σ2 . (3.18)

Increasing the height, the renormalized Gaussian WRG approaches the shape of a hard wall
interaction potential, whose width is limited by σ = Σ. In contrast to this, the range of WG

grows unlimited with increasing h such that the assumptions of both free space scattering and
short-range interactions would be violated (see figure 2.2).

3.3. Summary

In summary, we have analysed the implementation of zero-range interaction potentials in three
dimensions, which all produce insuperable problems, especially, they cannot resolve non-trivial
correlations if a single-particle basis is used. Because of this, we have to use finite-range inter-
action potentials in a numerical implementation, which introduce a new length scale into the
system. This length scale must be the shortest length scale in the problem at hand and has
to be resolved numerically making to a large number of grid points necessary. After formulat-
ing requirements for the finite-range interaction potential (e.g. the interaction potential must
be short-ranged), we have analysed the efficiency to calculate interaction matrix elements, i.e.
the scaling w.r.t. the number of grid points for different implementations of short-range inter-
action potentials. We have found that the renormalized Gaussian interaction potential (3.18)
fulfils our requirements for the finite-range interaction potential and causes the most efficient
implementation.
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4 The algorithm: ML-MCTDHB

CHAPTER

FOUR

THE ALGORITHM: ML-MCTDHB

As already worked out in the introduction, two grave numerical challenges have to be solved
for an efficient implementation of an ab-initio method for bosons in three dimensions taking all
correlations into account. We repeat them shortly: (i) the exponential scaling w.r.t. the number
of particles (ii) the large amount of grid points in order to simulate short-range interaction
potentials. The Multi-Configuration Time-Dependent Hartree method for Bosons (MCTDHB)
[235] is well suited to tackle the first challenge and numerous applications [90, 212–214, 236–
245] show its success. In order to tackle the second challenge, a Multi-Layer expansion of the
MCTDHB algorithm (ML-MCTDHB) can be used as already pointed out in reference [62]. In
reference [[1]], we have developed and implemented an algorithm for the efficient simulation of
ultracold many-body systems in three dimensions. In this chapter, we discuss this multi-layer
expansion and its concrete numerical implementation based on reference [[1]].

This chapter is structured as follows: We begin in section 4.1 with a short introduction into
the family of MCTDH methods, highlighting the main developments. Afterwards, we introduce
the Hamiltonian of the physical system (section 4.2 ), which we have in mind for the following
discussion. One of these developments has been the specialization of MCTDH to bosonic sys-
tems (MCTDHB), which we describe in section 4.3. In section 4.4, we present our Multi-Layer
expansion (ML-MCTDHB), suitable for bosonic systems with the need of high spatial resolution.
Then, a comparison between MCTDHB and ML-MCTDHB, which benchmark our implemen-
tation, is given in section 4.5. Numerical tricks and solutions to numerical problems, which
occur during the concrete implementation are discussed in section 4.6. We end this chapter by
a validation of the implementation of ML-MCTDHB in section 4.7.

4.1. The family of MCTDH-methods

In the year 1990, H.-D. Meyer, U. Manthe and L. Cederbaum have numerically solved the
many-particle Schrödinger equation of distinguishable particles1 by expanding the wave function
into a sum over configurations, created by Hartree products of time-dependent one-dimensional
single-particle functions [246, 247]. They have named their method Multi-Configuration Time-
Dependent Hartree (MCTDH). The time-dependent single particle functions are variationally
optimized at every instance in time. In doing so, MCTDH has achieved a better numerical
convergence behaviour with a smaller numerical effort. Further reductions of the computational
effort by selecting only the most relevant configurations (Selective-MCTDH), have made the

1 To be more exact the Schrödinger equation is solved for many distinguishable degrees of freedom.
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4.2 Setup and Hamiltonian

study for even larger systems possible [248]. The next crucial step has been the development of
a multi-layer structure, named ML-MCTDH, where the many-body wave function is expanded
into sums of configurations, created by products of time-dependent multi-dimensional functions.
This multi-dimensional function can be recursively expanded into time-dependent functions
of lower dimensions, until one reaches the level of one-dimensional single-particle functions.
This multi-layer structure allows treating systems with even more degrees of freedom [249].
Applications of the ML-MCTDH method to a plethora of systems can be found for example in
references [235,250,251].

Apart from the formulations for distinguishable particles, the MCTDH algorithm has been
specialized to indistinguishable particle such as fermions (MCTDHF) [252–254] or bosons (MCT-
DHB) [60, 255] or even mixtures (see references [256–258] and [[3]]). In short, one replaces the
Hartree product with symmetrized products, i.e., determinants and permanents for fermionic
and bosonic system, respectively. Another approach to include distinguishable particles into the
MCTDH algorithm is to express the many-particle Hilbert space in terms of direct products of
single-mode Fock spaces. This approach is based on the second quantization framework and
called the MCTDH in Second Quantization Representation (MCTDH-SQR) [259–261]. Further
developments include the usage of Wannier basis states for lattice systems [262,263], the treat-
ment of internal degrees of freedom [264] and the formulation of a linear-response theory on
top of MCTDHB [265,266]. Reviews about the MCTDH, ML-MCTDH, and MCTDHB can be
found in [169,267–271].

In the following, we focus onto a purely bosonic system. The ideas of the expansions of
MCTDH to bosonic systems [60] and the multi-layer structure for distinguishable particles can
be merged, which is named the Multi-Layer Multi-Configuration Time-Dependent Hartree for
Bosons (ML-MCTDHB) [61, 62]. Due to the computational challenges w.r.t. the number of
grid points, the MCTDHB algorithm has been primarily used in one dimension for the study of
processes such as tunnelling in a double well [214, 236–239], breathing dynamics [212], soliton
dynamics [90,240], quench induced dynamics in lattice systems [241,242], hybrid atom systems
[213,214], and dipolar systems [243,244]. Simulations in two and three dimensions are rare and
limited to a few grid points [123–129,131, 240, 272] (for a review see reference [273]). Our work
enlarge the maximal number of grid points, which can be used per dimension, by a factor of 10
for every dimension, thus huge systems can be simulated.

4.2. Setup and Hamiltonian

We want to solve the time-dependent three-dimensional Schrödinger equation for an ultracold
bosonic ensemble of N bosons with mass m

i~∂tΨ(r1, r2, ..., rN , t) = HΨ(r1, r2, ...rN , t)

=

 N∑
i=1

H0(ri) +
∑

1≤i<j≤N
W (ri, rj)

Ψ(r1, r2, ..., rN , t). (4.1)

where the single particle Hamiltonian H0(ri) acts on the i-th boson and is composed of a kinetic
and an arbitrary, possible time-dependent, external potential V (ri, t) term2.

H0(ri) = − ~2

2m
∇2

ri + V (ri, t) (4.2)

2We use position space representation.

39



4 The algorithm: ML-MCTDHB

The position of the i-th boson is given by ri = (xi, yi, zi)
T in Cartesian coordinates and

rij = |ri − rj | is the distance between the i-th and the j-th atom, appearing in the interaction
potential

W (ri, rj) = W (|ri − rj |) = W (rij) (4.3)

with j 6= i. For the interaction potential, we assume the following properties, which have been
derived and discussed in the chapter 3: (i) The interaction potential W is local and (ii) is
separable w.r.t. to its dimensions, W (ri − rj) = W (1)(xi − xj)W (2)(yi − yj)W (3)(zi − zj).

4.3. The basic idea of MCTDHB in higher dimensions

The main idea of MCTDHB [60] is to express the many-body wave function into a sum over
configurations, created by time-dependent permanents. These permanents are again represented
by time-dependent single-particle functions, which can be expressed by a time-independent set
of basis functions. These different expansions are divided into different layers. In the following,
we have a closer look on each expansion i.e. on each layer.

The first layer or top layer is dedicated to the N -body wave functions Ψ. The N -body wave
function Ψ is expanded into a set of time-dependent permanents |~n〉t in order to include the
bosonic symmetry directly into the N -body wave function approach,

|Ψ(t)〉 =
∑
~n|N

A~n(t)|~n〉t, (4.4)

where the sum runs over all N -body permanents and A~n(t) are time-dependent expansion co-
efficients. The permanent is labelled by the integer vector ~n = (n1, ..., ni, ..., nM ), where ni
is the occupation number of the i-th three-dimensional, time-dependent single-particle function
(3D-SPF), |χi(t)〉. The 3D-SPFs are already member of the next layer, the so-called particle
-layer. The maximal number of supplied 3D-SPFs is M , which can be regarded as a numerical
control parameter. This expansion gets exact in the limit of M → ∞. The time-dependent
3D-SPFs can be expanded once more, but this time, onto a time-independent set of primitive
function |UJ〉.

|χj(t)〉 =

Q∑
J=1

B̃jJ(t)|UJ〉 (4.5)

where B̃jJ(t) are the time-dependent expansion coefficients and the sum runs over the total
number of grid points Q = q1q2q3. The primitive function |UJ〉 are members of the lowest
layer, the so called primitive or physical layer. For example, the set of primitives function
can be a discrete variable representation (DVR) [267, 274] or a grid based on a Fast-Fourier
Transformation [166, 275]. In future, we name the number of primitive functions also number
of grid points. In order to get a better understanding of the expansion of the N -body wave
function, we sketch our expansion in figure 4.1.

If we count the number of needed expansion coefficients, we get for the top layer coefficients(
N +M − 1
M − 1

)
(4.6)

and

M
3∏
s=1

qs (4.7)
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q1 q2 q3

BjJ

~
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N

Top layer

Particle layer

Primitive layer

Figure 4.1.: Expansion of the N -body wave function used for MCTDHB in higher dimen-
sions. On the top-layer, the N -particle wave function Ψ is expressed by permanents with
expansion coefficients A~n(t). These permanents are constructed by the M 3D-SPFs χi. The
3D-SPFs χi are assigned to the (single) particle layer and are expanded by time-independent
functions UJ with coefficients B̃jJ . The UJ are collected on the primitive layer.

for the B̃jJ coefficients, where we have assumed a direct product grid of time-independent basis
functions per dimension, with Q number of grid points.

Next, we derive the equations of motions for the time-dependent expansion coefficients A~n(t)
and B̃jJ(t) using the variational principle. Different variational principles can be applied in
order to derive the equations of motion, for example, Lagrange, Dirac-Frenkel [276, 277] or
McLachlan’s [278]. The equivalence between them has been shown in reference [279,280]. Finally,
the equations of motions are solved numerically by the MCTDHB algorithm using a common
integrator (for example the zvode solver [281–283] for a system of complex differential equations
of first order).

We use the Dirac-Frenkel variational principle, namely 〈δΨ| i∂t − H |Ψ〉 = 0, and insert the
expansion of the N -body wave function (4.4) as well as the expansion of the 3D-SPFs (4.5)
into it (see also appendix D.4). Orthonormality of the 3D-SPFs are ensured by the constrain
〈χj |i∂t|χk〉 = 0 only if the 3D-SPFs are already orthogonal at t = 0. Performing the variation
leads to the following equations of motion [60]

i~∂tA~n =
∑
~m|N

〈~n|H |~m〉A~m (4.8)

i~∂tB̃iI =
M∑

k,l=1

Q∑
L=1

〈UI |
[(

1− P (χ)
)(

H0 +
[
ρ(χ)

]−1

ik
〈W 〉(χ)

kl

)]
|UL〉 B̃lL (4.9)

Let us first explain the notation and significance of the single terms in these two equations
of motions. In order to shorten our notation, we drop the time-dependence here and in the
following. Equation (4.8) is a complete expansions over all possible permanents and the matrix
element 〈~n|H|~m〉 has to be calculated at every instance in time. Using the language of second

quantization, the matrix element is 〈~n|H|~m〉 =
∑

ij â
†
i âjhij +

∑
ijkl â

†
i â
†
j âkâlwijkl, where â†i (âi)

creates (destroys) a boson in the i-th state with,

hij = 〈χi|H0|χj〉, (4.10)

and

wijkl = 〈χ(1)
i |〈χ

(2)
j |W

(ij)|χ(1)
k 〉|χ

(2)
l 〉. (4.11)
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A more complex structure is observed in equation (4.9). The projector, P (χ) =
∑M

i=1 |χi〉〈χi|,
projects onto the co-moving subspace spanned by the instantaneous 3D-SPFs {χi}Mi=1. According
to equation (4.9), the 3D-SPF can only rotate into the orthogonal complement of the subspace
which they are spanning. The dynamics of the 3D-SPFs is driven by both the one-body Hamil-
tonian H0 and the interactions among the atoms, which are represented by the second term in

the bracket on the right-hand-side of equation (4.9). Here, ρ
(χ)
ik denotes the one-body density

matrix3 in the 3D-SPF representation, which can be calculated by

ρ
(χ)
ik = 〈Ψ|a†iak|Ψ〉/N (4.12)

The inverse of the one-body density matrix causes that weakly occupied single particle-functions
rotate faster than strongly occupied ones [267] so that they get stronger populated by the

equation of motion. Finally, 〈W 〉(χ)
ik refers to the so-called mean-field operator matrix, which

can be written as

〈W 〉(χ)
ik =

M∑
j,l=1

ρ
(2)
ijkl

Q∑
I,K=1

W
(χ)
IjKl|UI〉〈UK | (4.13)

with WIjKl =
∑

JL B̃
∗
jJ B̃lL〈UIUJ |W |UKUL〉 and the two-particle density matrix ρ

(2)
ijkl =

〈Ψ|a†ia
†
jakal|Ψ〉/N . Thus, the interaction couples different 3D-SPF, weighted by the correspond-

ing two body density matrix elements.

A numerical challenge is to determine the two ingredients WIjKl for the particle layer and
wijkl for the top layer, since they are both time-dependent and scale w.r.t. the number of grid
points ∝ (q1q2q3)2. However, the elements 〈UIUJ |W |UKUL〉 are time-independent and have to
be calculated only once either numerical or analytically. (The basis functions UI can be chosen
in such a way that the evaluation is easy.) Although the scaling w.r.t. the number of grid points
can be improved by applying symmetry arguments (see section (3.17)) or by evaluating the
integrals in Fourier space (see appendix C.5), the algorithm is still numerical infeasible for a
large number of grid points (qi ∼ 100).

Summarizing, we have performed two truncation of the many-body Hilbert space. The first
truncation has been performed by supplying only M orbitals in order to build-up the permanent.
In the limit of only one 3D-SPFs M = 1, the equations of motion (4.4) and (4.5) recover the GPE
again. The proof is given in the appendix D.1. If only M orbitals are supplied, the simulations
corresponds to a M -mode approximation and if convergence is achieved using M orbitals, or
in the limit M → ∞ the calculation gets numerically exact (for sufficient large number of grid
points). The second truncation, which has been made, is a discretization of the Hamiltonian
(4.2). In the limit M =

∏3
s=1 qs, the full Configuration Interaction (CI) method is recovered

and the discretization of space is the only truncation. Of cause, the algorithm is only of use if
convergence can be achieved for situations M �

∏3
s=1 qs.

4.4. Multi-Layer extension: the ML-MCTDHB algorithm

Apart from the computational effort of the exponential scaling w.r.t. the number of particles,
we have discussed the numerical unfavourable scaling w.r.t. the number of grid points in the
MCTDHB algorithm (see section 4.3), which restricts numerical simulations to a small number

of grid points. However, the scaling of wijkl and 〈W 〉(χ)
ik w.r.t. the number of grid points can

be significantly improved if both the interaction potential and the basis function |UJ〉 can be

3We note that in the (ML-)MCTDHB terminology, the one- and two-body density matrix are proportional to
the transposed of the physical reduced one- and two-body density matrix
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Figure 4.2.: Expansion of the N -body wave function as done in ML-MCTDHB. On the top-
layer, the N -particle wave function Ψ is expressed by permanents with expansion coefficients
A~n(t). These permanents are constructed by the M time-dependent 3D-SPFs χi, which
are located on the so-called particle layer with coefficients BiI . These time-dependent

wave functions are expanded once more into time-dependent 1D-SPFs φ
(s)
i with expansion

coefficient C
(s)
ir , on the subparticle layer. Finally on the primitive layer, the 1D-SPFs are

expanded onto a time-independent grid u
(s)
i .

decomposed into the spatial dimensions. In order to decompose an arbitrary interaction poten-
tial, the POT-FIT algorithm can be used [see section 3.2, in particular equation (3.16)]. The
basis function |UJ〉 are replaced by three time-dependent, one-dimensional single particle func-

tions (1D-SPFs) |UJ〉 → |ΦJ(t)〉 =
⊗3

s=1 |φ
(s)
js

(t)〉, where we have introduced the multi-index
J = (j1, j2, j3) with js = 1, ...,ms and ms ≤ qs as well as the dimensions s = 1, 2, 3. This
expansion is linked with the subparticle layer as illustrated in figure 4.2.

In this way, the 3D-SPFs are given by

|χi(t)〉 =

m1∑
j1=1

m2∑
j2=1

m3∑
j3=1

Bij1j2j3(t)

3⊗
s=1

|φ(s)
js

(t)〉 (4.14)

≡
∑
J

BiJ(t)|ΦJ(t)〉,

and the 1D-SPFs are expanded into a time-independent, one-dimensional set of basis functions

|u(s)
r 〉, r = 1, ..., qs

|φ(s)
j (t)〉 =

qs∑
r=1

C
(s)
jr (t)|u(s)

r 〉. (4.15)

The wave function is not only expanded, but also the acronym MCTDHB, where an ML- is
added at the beginning, due to the expansion into the sub-particle layers. In the limit of as
many numbers of 1D-SPFs as time-independent basis functions, (ms = qs), just a rotation of
the basis is performed and, finally, nothing is gained by the ML-MCTDHB algorithm and the
MCTDHB method is recovered. This expansion is only of use if the number of 1D-SPFs can
be chosen much smaller than the number of basis functions, ms � qs. Usually, a few 1D-SPFs
are enough to represent the dynamics of elongated systems correctly. Only for systems with
very strong spatial correlations, many 1D-SPFs are needed and the algorithm losses its advan-
tage. For example, regarding the crossover from three to one dimension, the spatial correlations
between the transversal and longitudinal direction becomes smaller, due to the separation of
the transversal and longitudinal energy scale, such that less transversal 1D-SPFs are needed
(m1,m2 < m3), with s = 3 the longitudinal direction. For these systems, the here presented
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4 The algorithm: ML-MCTDHB

algorithm is most suitable. For a very strong transversal confinement, there are no spatial
correlations between the longitudinal and transversal dimension anymore and all particle cor-
relations are handed over to the longitudinal direction. In this case, one can set the number
of transversal 1D-SPFs m1 = m2 = 1. This choice represents an initial wave function ansatz
Ψ(r1, r2, ... , rN ) = Φ(z)(z1, z2, ... zN )

∏N
i=1 φ(x)(xi)φ

(y)(yi), where (i) the wave function sep-
arates into its dimensions, (ii) the longitudinal part carries all the correlations as well as the
bosonic symmetry and (iii) the transversal wave functions are determined variationally.

In order to derive the equations of motion, the Dirac-Frenkel variational principle is consulted
again. The top layer coefficients A~n still obey equation (4.8), whereas the equations of motion
for the particle and subparticle layer become

i~∂tBiI =

M∑
k,l=1

∑
L

〈ΦI|
[(

1− P (χ)
)(

H0 +
[
ρ(χ)

]−1

ik
〈W 〉(χ)

kl

)]
|ΦL〉BlL (4.16)

i~∂tC
(s)
ir =

qs∑
r′=1

ms∑
j,k=1

〈u(s)
r |(1− P (s))

(
h

(s)
0 +

[
ρ(s)
]−1

ik

[
〈V̄ 〉(s)kj + 〈W 〉(s)kj

])
|u(s)
r′ 〉C

(s)
jr′ (4.17)

Both equations of motion have got the same structure as equation (4.9), which has been already
explained in section 4.3. Next, we define the ingredients of these equations of motion, starting

with equation (4.17). The projector P (s) =
∑ms

i=1 |φ
(s)
i 〉〈φ

(s)
i | projects onto the one-dimensional

subspace, spanned by the 1D-SPFs |φ(s)
i 〉

ms
i=1. Here, h

(s)
0 is dismantle into a part, which acts non-

trivially on the s-th coordinate, and by a unit operators on all the others s′-th coordinate, s′ 6= s,
as well as a part, which couples the s-th direction to the other ones, V̄ . In other words: A single
particle operator in s dimensions can be decompose into T1⊗12⊗13+11⊗T2⊗13+11⊗12⊗T3+V̄ ,
where Ts is a one-particle, one-dimension operator and V̄ is a one-particle operator, which
couples the dimension. For example, the operator Ts can be the kinetic operator plus a potential
in dimension (s) and V̄ can be a Gaussian potential, i.e., exp(−r2

i /2). Projecting onto the s-th
dimension by integrating out the complementary dimensions, we obtain an operator acting only
on the s-th dimension, namely the mean-field operator matrix

〈V̄ 〉(s)ik =
∑
q,p

ρ(χ)
qp

∑
Qs,Ps

B∗qQs
i
BpPsk 〈ΦQs |V̄ (s)|ΦPs〉 (4.18)

with |ΦPs〉 ≡
⊗

s′ 6=s |φ
(s′)
ps′ 〉 and ρ

(χ)
qp already defined in equation (4.12), but with respect to a

different basis. The next unknown element in equation (4.17) is the density matrix of the s-th

degree-of-freedom of a single boson ρ
(s)
ik :[

ρ(s)
]
ik

=
∑
q,p

ρ(χ)
qp

∑
Qs,Ps

B∗qQs
i
BpPsk (4.19)

where
∑

Qs abbreviates a summation over all qs′ with s′ 6= s and Qs
i equals (q1, q2, q3) with qs

replaced by i. As in equation (4.9), the two-body interaction is expressed with the mean-field

operator matrix 〈W 〉(χ)
kl , which is calculated by

〈W 〉(s)ik =
∑
j,l,q,p

ρ
(2)
qjpl

∑
J,L,Qs,Ps

B∗qQs
i
B∗jJBpPskBlL

∏
s′ 6=s

W
(s′)
qs′js′ps′ ls′

 〈φ(s)
js
|W (s)|φ(s)

ls
〉, (4.20)

where W
(s′)
qs′js′ps′ ls′

= 〈φ(s′)
qs′ φ

(s′)
js′
|W (s′)|φ(s′)

ps′ φ
(s′)
ls′
〉 and 〈φ(s)

js
|W (s)|φ(s)

ls
〉 constitute a single particle

one-dimensional operator. For simplicity in the notation, we set the number of POT-FIT terms
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4.4 Multi-Layer extension: the ML-MCTDHB algorithm

equal to one i.e., the interaction potentials can be represent as a direct product w.r.t. the
dimensions W =

∏3
s=1W

(s).

In equation (4.16), all ingredients are similar to equation (4.9), except for the mean-field

operator matrix 〈W 〉(χ)
kl , which can be written as a product made out of W

(s)
qsjspsls

.

〈W 〉(χ)
ik =

∑
j,l

ρ
(2)
ijkl

∑
I,J,K,L

B∗jJBlL
∏
s

W
(s)
isjsksls

|ΦI〉 〈ΦK| (4.21)

Furthermore, the calculation of the interaction element of the top layer wijkl can be also ex-

pressed as a product of W
(s)
qsjspsls

wijkl =
∑
IJKL

B?
iIB

?
jJBkKBlL

〈
Φ

(1)
I

∣∣∣ 〈Φ
(2)
J

∣∣∣W ∣∣∣Φ(1)
K

〉 ∣∣∣Φ(2)
L

〉
(4.22)

After having all ingredients together, we see that the number of grid points only enter the

calculation of the ingredients W
(s)
isjsksls

, which scale w.r.t. the number of grid points as ∝ q2
s and

can be improved to ∝ qs log(qs) if the IMEST algorithm is applied (see appendix C.5). Having

derived W
(s)
isjsksls

, the other two mean-field operator matrices 〈W 〉(χ)
kl and wijkl for the particle

and top layer, respectively, can be constructed without any further summations on the number
grid points [see equation (4.21) and (4.22)], which is in contrast to the MCTDHB algorithm. In
total, the scaling w.r.t. the number of grid points is

C
3∑
s=1

qs log(qs) (4.23)

where the prefactor C strongly depend on the numbers of 3D-SPFs M , 1D-SPFs ms and the
number of expansion term needed in the POT-FIT algorithm P [compare with equation (3.16)].
An approximation for C is given in section 4.5 in dependence of M , ms and P. Due to this
advantageous scaling w.r.t. the number of grid points, the ML-MCTDHB algorithm can face
larger number of grid points, making it possible to study either a finer grid spacing or larger
grid length, respectively.

Notes about the symmetry conservation of the equations of motion: The here presented
equations of motion do only conserve symmetries, including transformations of two or three
coordinates e.g. rotations or reflections if the simulation is fully converged w.r.t. the expansion
into 1D SPFs (m1,m2,m3) [62]. In general, symmetry conservation can be ensured if symmetry-
adapted coordinates are chosen, but this can lead to the non-separability of the interaction
potential w.r.t. to these new coordinates. In such new coordinates, the interaction potential has
to be transformed into a product form again by using the POT-FIT algorithm, which increases
the computational effort, or a new appropriate interaction potential must be found, which is
separable w.r.t. to these new coordinates if feasible at all. Furthermore, the new coordinates can
lead to a non-equidistant grid spacing, which distorts the interaction in the laboratory frame.

ML-MCTDHB as an efficient GPE solver: If convergence w.r.t. the expansion into 1D-
SPFs (m1,m2,m3) is achieved and only one 3D-SPF is supplied (M = 1), the ML-MCTDHB
equations of motion reduces to the GPE (see appendix D.1). Actually the bare delta interaction
W (r1, r2) = gδ(r1 − r2) can be used for such mean-field calculations, as we have discussed in
section 3.1.2. It has the advantage that it is separable w.r.t. the dimensions and, thus, the
algorithm of ML-MCTDHB, with its advantageous scaling w.r.t. the number of grid points, can
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4 The algorithm: ML-MCTDHB

be used. Furthermore, the bare delta function reduces the computational effort w.r.t. the number
of grid points to approximately a linear scaling

∑3
s=1m

4
sqs, since one integration w.r.t. to the

grid points of equation (4.20) can be performed analytically in order to calculate the mean-field

operator matrix 〈W 〉(s)ik . In contrast to the linear scaling of the interaction potential w.r.t. the
number of grid points for ML-MCTDHB, the scaling of the MCTDHB algorithm (applying a
product grid) behaves cubic ∼ q1q2q3. Thus, ML-MCTDHB is an efficient algorithm, which
can be used to solve the GPE, in case minor spatial correlations are present in the system and
ms � qs can be applied.

4.5. Comparison between MCTDHB and ML-MCTDHB

This section deals with a comparison of the numerical effort between the MCTDHB method (see
section 4.3) and the ML-MCTDHB method (see section 4.4). Here, numerical effort is defined
as the number of floating point operations, which have to be performed at each instance in
time in order to build up the equations of motions [see equations (4.8), (4.9) (4.17) and (4.16)].
We focus thereby on the numerical effort building-up the mean-field operator matrix for the
two-body interaction operator between the MCTDHB and ML-MCTDHB algorithm since the
computation of the remaining ingredients e.g., the one and two body density matrix as well as
the projector, are computationally small and can be neglected. Furthermore, we only analyse
a ”brute force”4 implementation for both the MCTDHB and ML-MCTDHB algorithm, since a
concrete implementation can be quite tricky. Especially, we do not take symmetry arguments,
parallelization or any other trick (see section 4.6) into account.

Table 4.1.: Shown is the numerical effort calculating the mean-field operator matrix for
the two-body interaction operator using a brute force implementation for the MCTDHB
and ML-MCTDHB algorithms. M (ms) is the number of 3D-SPFs (1D-SPFs) and qs is
the number of grid points for the s-th degree of freedom. P is the total number of used
POT-FIT terms (see equation (3.16)). The two abbreviations have been used m ≡

∏3
s=1ms

as well as q ≡
∏3

s=1 qs.

Layer Ingredient method Equation Numerical effort

Top vijkl MCTDHB (4.11) M4q4

vijkl ML-MCTDHB (4.22) PM4m4

Particle 〈W 〉(χ)
kl MCTDHB (4.13) M4q +M2q4

〈W 〉(χ)
kl ML-MCTDHB (4.21) P

(
M4m +M2m4

)
)

Subparticle 〈W 〉(s)ik ML-MCTDHB (4.20) P
∑3

s=1m
4
sq

4
s

In table 4.1, we regard the numerical effort for building-up the mean-field operator matrix
for the two-body interaction operator, which are needed in the equation of motions for both
MCTDHB and ML-MCTDHB. We see that in comparison between the MCTDHB algorithm
and ML-MCTDHB algorithm, the scaling of the total number of grid points (q ≡

∏3
s=1 qs) for

both the top and particle layer is substituted by the scaling w.r.t. the 1D-SPFs (m ≡
∏3
s=1ms)

5.
As already mentioned, if ms � qs, the ML-MCTDHB algorithm is much more efficient as the
MCTDHB algorithm, however the computational effort of the ML-MCTDHB algorithm exceeds
the computational effort of the MCTDHB algorithm if ms ∼ qs, since, the additional, mean-field
operator matrix elements for the subparticle layer have to be created. Furthermore, we see that

4With brute force implementation, we mean a direct implementation of the above equations of motions and
ingredients.

5Here, q and m are not vectors.
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4.5 Comparison between MCTDHB and ML-MCTDHB

the exponential scaling of the total number of grid points w.r.t. the dimensions ∝
∏3
i=1 q

4
s in

the MCTDHB algorithm is replaced by a linear scaling w.r.t. the dimensionality, ∝
∑3

i=1 q
4
s in

the ML-MCTDHB algorithm.

Table 4.2.: Number of coefficients for the MCTDHB and ML-MCTDHB method. The
same notation as in table 4.1 is used. N is the number of bosons.

Layer Method Equation Number of expansion
coefficients

Top MCTDHB (4.4)
(
N+M−1
M−1

)
ML-MCTDHB (4.4)

(
N+M−1
M−1

)
Particle MCTDHB (4.5) Mq

ML-MCTDHB (4.16) Mm

Subparticle ML-MCTDHB (4.15)
∑3

s=1msqs

Next, we have a look at the number of expansion coefficients (see table 4.2). Adding the sub-
particle layer does not mean necessarily that more expansion coefficients have to be propagated
in time. Due to the product grid used in the MCTDHB algorithm, the MCTDHB algorithm
needs

(
N+M−1
M−1

)
+ M

∏3
s=1 qs expansion coefficients and this number of expansion coefficients

can be larger than the number of expansion coefficients needed in the ML-MCTDHB algorithm(
N+M−1
M−1

)
+M

∏3
s=1ms +

∑3
s=1msqs. Knowing the number of expansion coefficients, the com-

putational effort can be determined for calculating the equations of motions (see table 4.3).
We want to emphasise again that we regard only a brute force implementation, while using
sophisticated algorithms this scaling can be improved significantly for both the MCTDHB and
ML-MCTDHB algorithm6.

Summarizing, two main differences between the MCTDHB and ML-MCTDHB algorithm can
be recognized: First, the substitution from the scaling w.r.t. the number of grid points towards
a scaling w.r.t. the number of 1D-SPFs and second the replacement of the exponential scaling
of the total number of grid points to a linear scaling w.r.t. the dimensions.

Table 4.3.: Numerical effort for determining the equations of motion for the MCTDHB and
ML-MCTDHB algorithm. The same notation as in table 4.1 is used. N is the number of
bosons.

Layer Method Equation Numerical effort

Top MCTDHB (4.8)
(
N+M−1
M−1

)2
ML-MCTDHB (4.8)

(
N+M−1
M−1

)2
Particle MCTDHB (4.9) M3q

ML-MCTDHB (4.16) M3m

Subparticle ML-MCTDHB (4.17)
∑3

s=1m
3
sqs

Analysing the total computational effort, we can identify three different computational ”bot-
tlenecks”.

i. The exponential scaling w.r.t. the number of particles, occurring both in MCTDHB and
ML-MCTDHB. This scaling additionally depends on the number of 3D-SPFs [see equation
(4.6)].

6E.g., the numerical effort for propagating the top layer coefficients can be reduced to
(
N+M−1
M−1

)
M2+

(
N+M−3
M−3

)
M4

(see reference [62]).
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4 The algorithm: ML-MCTDHB

ii. Although the scaling of the number of grid points has been improved in ML-MCTDHB,
it still enters the computational effort with the fourth power for non-local interaction
potentials.

iii. The evaluation of the mean-field operator matrix for the two-body interaction operator
scales w.r.t. both 3D and 1D SPFs as M16, where we have set M = ms.

In the next section, we report how these bottle necks can be circumvented.

4.6. Implementation of the algorithm

In this section, we report on specific problems, which occur when implementing the ML-
MCTDHB algorithm. As already mentioned in section 4.5, the algorithm suffers from three
numerical bottlenecks. We show how these bottlenecks can be circumvented and how further
approximations can be used to additionally reduce the numerical effort.

i. The exponential scaling w.r.t. the number of particles:
The exponential scaling w.r.t. the number of particles can be reduced either by a selection
of the most important configurations [248,284] or by introducing a coherent-tail [285]. This
coherent tail takes care of contributions from higher number states and the algorithm need
less number states in order to obtain the same accuracy in comparison to a simulation
without using the concept of the coherent-tail. Furthermore, the calculation of the matrix
element 〈~n|H|~m〉 can be parallelized using high performance computing tools such as
OpenMP [286] or OpenMPI [287]. With characterized parameters for our simulations (see
chapters 5-7), we have not reached this kind of bottleneck and therefore, we do not focus
on this bottleneck any further.

ii. Scaling w.r.t. number of grid points:
If the interaction potential obeys W (r1, r2) = W (|r1 − r2|) and is real valued, some
serve consequences can be drawn resulting in a huge reduction of the numerical effort.
Both requirements are usually fulfilled for all physical two-body short-range interaction
potentials (see table 3.1). A first consequence is that the interaction potential is lo-
cal, resulting in an enormous reduction of the numerical effort w.r.t. the number of grid
points by q4

s → q2
s for the calculation of the mean-field operator matrix for the two-body

interaction operator 〈W 〉(s)ik . A second consequence is that symmetry properties exist

W
(s)
ijkl = W

(s)
jilk = W

∗(s)
klij = W

∗(s)
lkji leading to another reduction of the numerical effort w.r.t.

the number of 1D-SPFs. Lastly, one can use a very efficient algorithm, called the Inter-
action Matrix Evaluation by Successive Transforms (IMEST) [234]. Using IMEST, the
interaction potential is transformed via a Fast Fourier Transformation (FFT) into Fourier
space, and then, the integration over the two dimensional grid declines into two separate
integrations. A short description of the algorithm is given in the appendix C.5. In doing
so, the numerical effort can be reduced further from q2

s to ∝ 3qs log qs.

iii. Scaling w.r.t. the number of both 3D and 1D SPFs:
The calculation of the mean-field operator matrix for the two-body interaction operator
scales with M16 (setting M = ms) w.r.t. the number both 3D and 1D SPFs. In order
to reduce the numerical effort, two different strategies can be followed. The first strategy
is to perform the summation over each index individually and store the resulting higher
dimensional matrix temporarily. We illustrate this by a small example, which calculates
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S =
∑

ij AijBiCj :

Dj =
∑
i

AijBi

save Dj

S =
∑
j

DjCj

In doing so, we can reduce the scaling w.r.t. to the number of both 3D and 1D SPFs to
M10, as long as that the time of storing and loading the temporary data is tolerable. The
second strategy is the parallelization of summation using OpenMP in order to reduce the
numerical effort further to M10−η, where η is the number of parallelized summations.

In the ML-MCTDHB algorithm, we have implemented the second and third mentioned strate-
gies. The first strategy is not implemented, since it is a further approximation to our wave
function, which we try to avoid. All in all, the ML-MCTDHB algorithm can be used on desktop
computers with efficient runtimes (see figure 4.3).

N

t r
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Figure 4.3.: Numerical effort in dependence of (a) number of particles N , (b) 3D-SPFs M
and (c) grid points per dimensions q = qs. For the time axis, a logarithmic scale is used and
the time is scaled w.r.t. the harmonic trap frequency. We used the abbreviations 1s (one
second), 1m (one minute), 1h (one hour), 1d (one day) and 1w (one week).

In order to get a better feeling for the performance of the ML-MCTDHB algorithm, we mea-
sure the numerical effort by comparing the real(wall time) time tr, which the ML-MCTDHB
algorithm needs to propagate an initial wave function up to a certain time point ts , i.e., a certain
number of iterations steps. The number of iteration steps is large enough that initialization pro-
cesses of the algorithm can be neglected. The system, which we regard, consists of two bosons in
a three-dimensional, isotropic, harmonic trap. We prepare the systems ground state and induce
dynamics by a sudden quench of the two-particle interaction strength from h = 0 to h = 1000.
The two-particle interaction is modelled by the Gaussian interaction potential [see equation
(3.18)]. The reference calculation has the numerical parameters M = m1 = m2 = m3 = 2,
n = q1 = q2 = qn3 = 128 and we study deviations from this reference calculation in the follow-
ing. We change the number of particles, the number of 3D-SPFs and the number of grid points
separately in figure 4.3(a), (b), and (c), respectively. In figure 4.3(a), the computational effort
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4 The algorithm: ML-MCTDHB

is plotted in dependence of the number of particles N for both M = 2 (grey stars) and M = 3
(black circles). For M = 2, the scaling

(
N+M−1
M−1

)
becomes linear, while for M = 3, one recognize

the exponential growth of the number of configurations. For example, approximately two weeks
are needed in order to simulate 1000 particles with M = 3. In figure 4.3(b), we compare a
parallelized implementation (black circles) with a non- parallelized (grey stars). Parallelization
is implemented by demanding η = 1 parallel processes. The computational overhead has been
analysed using Intel VTunes [288] and has been reduced whenever it was possible. The paral-
lelized implementation significantly reduces the numerical effort for larger values of 3D-SPF M
(for example for M = 4 by a factor of 3). Fluctuations in the processor frequency, the waiting
times for the I/O streams, spin times and overhead times are reduced by performing the mea-
surements several times and calculating their average. In the last figure 4.3(c), the advantage
scaling w.r.t. the number of grid points of ML-MCTDHB is shown. A MCTDHB calculation,
based on a product grid, cannot achieve these large number of grid points, for example for
q = 900, the product grid has 729.000.000 grid points, whereas with the linear scaling of the
ML-MCTDHB algorithm, we obtain only 2700 grid points.

4.7. Validation of the algorithm

In order to validate the implementation of our algorithm presented in section 4.4, we compare the
energy, wave function and density w.r.t. either known analytical solutions or other established
numerical algorithms available in literature. Both the ground state properties as well as the
dynamical properties are analysed.

i. Comparison with analytical solutions:
The many-body Hamiltonian with harmonic interaction (given in length units of

√
~/mω,

where m is the mass and ω is the trap frequency for an isotropic harmonic trap)

H =
N∑
i=1

(
−1

2
∇2

ri +
1

2
r2
i

)
± g

∑
1≤i<j≤N

(ri − rj)
2 (4.24)

can be solved analytically and the ground state energy is Eana = 3(N − 1)/2
√

1± 2Ng+
3/2 [203, 205]. The analytical solution is used as a benchmark for our simulations. Nu-
merically, the ground state energy can be obtained by an imaginary time propagation of
the ML-MCTDHB equations of motion and we compare the numerical with the analytical
results in table 4.4. We see that increasing the number of 3D-SPFs, the numerical result
converges to the analytical one. For an interaction strength of g = 0.01, we obtain a good
agreement with the analytical result already at M = 8.

ii. Comparison with other mean-field implementation:
We compare the mean-field results obtained by ML-MCTDHB (M = 1, solving the GPE),
with the established MATLAB tool GPELab [289–291] for different anharmonic trap ge-
ometries and a bare delta interaction potential. The Hamiltonian is

H =
N∑
i=1

(
−1

2
∇2

ri +
η

2
(x2
i + y2

i ) +
1

2
z2
i

)
+ g

∑
1≤i<j≤N

δ(ri − rj) (4.25)

where η is the aspect ratio between the transversal and longitudinal trap frequency. We
compare in table 4.5 the ground state energy obtained for two particles and different
interaction strengths. Independent of the interaction strength or the aspect ratio, the
obtained ground state energies agree very well.
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4.7 Validation of the algorithm

iii. Comparison with MCTDHB:
We can use the MCTDHB method [60] with artificial interaction potential (which are al-
ready given in a product form w.r.t. dimensions), in order to validate the ML-MCTDHB
algorithm. In doing so, we have to reduce the number of grid points, in order to make the
simulation feasible. We have checked the following interaction potentials in an isotropic
harmonic trap, with ri being the vector ri = (xi, yi, zi)

T :
(a) W (r1, r2) = g(r1 − r2)2 = g(r2

1 − 2r1r2 + r2
2), with g = 0.1 and for two particles. The

numerical parameters are M = m1 = m2 = m3 = 3 and q1 = q2 = q3 = 20.
(b) W (r1, r2) = g exp(x2

1/S
2 + x2

2/S
2 + y2

1/S
2 + y2

2/S
2 + z2

1/S
2 + z2

2/S
2), with g = 10 and

S = 1 for two particles. The numerical parameters are M = m1 = m2 = m3 = 3 and
q1 = q2 = q3 = 10.
(c) W (r1, r2) = gδ(r1 − r2), which can also be brought into a product form using a trick,
presented in the appendix D.2. The interaction strength is set to g = 0.1 for two particles
and the numerical parameters are M = m1 = m2 = m3 = 3 and q1 = q2 = q3 = 11.
(d) W (r1, r2) = g, with g = 1 and same parameter as above.

Due to the artificial interaction potentials and the reduced number of grid points, the
obtained results are quite unphysical and not converged. We have checked the difference
of the two methods for the energy and density profile and for both relaxation and propa-
gation, where dynamics have been induced by a quench in the interaction strength. The
maximal observed relative deviation in all these simulations is smaller than 10−6, which
is quite satisfying.

Table 4.4.: Comparison of the ground state energy between the ML-MCTDHB and the
analytic solution of the harmonic interaction potential with two particles and the interaction
strengths g = 0.1 as well as g = 0.01 in dependence of the number of 3D-SPFs M =
{2, 4, 6, 8}.

g = 0.01 g = 0.1

Eana 3.029705854 3.2748239349

EM=8 3.029705858 3.274864469
EM=6 3.029705860 3.274877909
EM=4 3.029705865 3.274904647
EM=2 3.029802938 3.282511714

Table 4.5.: Comparison of the ground state energies between GEPLab and the ML-
MCTDHB implementation for two particles with M = 1 and m = m1 = m2 = m3 = 3. In
the left column a harmonic isotropic trap η = 1 is assumed and the interaction strength g is
varied. In the right column the interaction strength is constant g = 4 and the aspect ratio
is increased, deforming the trap into a more cigar shaped potential.

g GPELab ML-MCTDHB η GPELab ML-MCTDHB

1 3.0617826 3.0617826 1 3.2301755 3.2301755
3 3.1764985 3.1764986 3 7.6559965 7.6559966
6 3.3315092 3.3315095 6 14.231841 14.231841
9 3.4712339 3.4712339 9 20.753753 20.753755
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CHAPTER

FIVE

TWO PARTICLES IN AN ELONGATED TRAP

After working out an efficient numerical algorithm in order to study many-particle correlations
in three dimensions in chapter 4, we have to tackle new questions, concerning the numerical
parameters for a concrete implementation and the convergence behaviour of the algorithm. In
this section, we give answers to the following questions:

i. How fine resolved must be the grid spacing ∆s = Ls/qs in order to model the interaction
potential properly, where Ls and qs are the grid length and the number of grid points,
respectively, where s denotes the different dimensions s = {1, 2, 3}? How large must be
the grid length Ls so that the wave function drops to zero at the boundary?

ii. How large can be the zero-energy scattering length a0, created by the interaction potential,
until the transversal confinement, characterized by the length scale l⊥, influences the
interaction? Can the unitary interaction regime [14, 15] be reached and can Confinement
Induced Resonances (CIR) be numerically observed for a large enough aspect ratio? Is it
possible to obtain a strong fragmented ground state for a tight transversal confinement,
still ensuring short-range interactions between the particles?

iii. How fast does the numerical result converge and how large must be the numbers of SPFs
in order to get the numerical error tolerable?

iv. On which time scale can the interaction induce spatial correlations?

v. How large has to be the aspect ratio η so that the transversal degrees of freedom can be
integrated out and one ends up with a pure one-dimensional description of the system?

In order to answer these questions, we analyse two interacting bosons in an either isotropic or
anisotropic harmonic trap. The dimensionless Hamiltonian equation reads then1

H =

N=2∑
i=1

[
H‖(zi) +H⊥(xi, yi)

]
+WRG(r1, r2), (5.1)

with ri = (xi, yi, zi)
T the position of the i-th boson. The longitudinal and transversal single-

particle Hamiltonians are given by

H‖(z) =− 1

2
∇2
z +

1

2
z2

H⊥(x, y) =− 1

2
∇2
x −

1

2
∇2
y +

1

2
η2(x2 + y2),

1We use position representation for the operators.
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5 Two particles in an elongated trap

Table 5.1.: List of used numerical and physical parameters. The index s stands for the
three dimension s = {1, 2, 3}.

numerical parameters physical parameters

Ls grid length η aspect ratio
qs number of grid points h height of the interaction in 3D
ms number of 1D-SPFs σ width of the interaction both in 3D and 1D
M number of 3D-SPFs N number of particles

where η is the aspect ratio between the transversal ω⊥ and longitudinal ω‖ trap frequencies,
η = ω⊥/ω‖. For η = 1, an isotropic three-dimensional harmonic trap potential is recovered.

In this case, if the transversal characteristic trap length l⊥ =
√
~/ω⊥m equals the longitudinal

characteristic trap length l‖ =
√
~/ω‖m, we set ltrap = l⊥ = l‖. For η < 1 we obtain pancake

like traps, performing a crossover towards two dimensions and for η > 1 cigar shaped, i.e.
elongated, traps are obtained. We are interested in the crossover from three to one dimension
and vary the aspect ratio form 1 towards 100. The units of energy and length are given in ~ω‖
and l‖, respectively. The interaction potential is given by the renormalized Gaussian interaction
potential [see equation (3.18)]

WRG(r1, r2) = h exp(−r2
12/σ

2
eff ), (5.2)

where r12 = |r12| is the relative distance between the 1-st and 2-nd boson and σeff = σ/ ln(h/ε)
is the effective width of the Gaussian, depending on the width σ and height h, renormalized to a
small energy scale, ε = 1. Due to the renormalization, the width of the Gaussian is limited and
independent of the height. The advantages for using the renormalized interaction potential have
been already discussed in section 3.2. In order not to confuse the reader, we give an overview
of the used numerical and physical parameters in table 5.1.

The upper setup has the advantage that the two-body Hamiltonian can be separated into a
relative and centre of mass (CM) part using the transformation R = (r1 + r2)/

√
2 and r =

(r2 − r1)/
√

2. The relative and centre of mass Hamiltonians read then

HCM = −1

2
∇2

R +
1

2
R2 (5.3)

Hrel = −1

2
∇2

r +
1

2
r2 + he

−2 r2

σ2
eff . (5.4)

This separation has two serious consequences: First, the Hamiltonian (5.4) is a one-particle
Hamiltonian and can be numerically solved easily. Second, the variance for the ground state of
the CM var(R) =

√
〈R2〉 − 〈R〉2 can be calculated analytically and serves us as an additional

strict tool to check convergence for the simulation [292].

The remaining of the chapter is structured as follows: In section 5.1, we discuss the length
scales of the system. In doing so, we give an answer to the upper questions (i) and (ii). In
section 5.2, the convergence behaviour of the two particle system is studied in detail and upper
limits for the physical parameters, i.e., the interaction height, are determined [see question (iii)].
Section 5.3 provides the answers to the questions (iv) and (v). In doing so, a quench of the
transversal trap frequency is used to induce spatial correlations. Next, in section 5.4, we discuss
the conditions to obtain a pure one-dimensional system. Finally, a summary of this section is
given in section 5.5.
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5.1 Numerical resolution of different length scales

5.1. Numerical resolution of different length scales

In this section, we give an estimation of the order of magnitude of the various length scales
in the system, which appear for interacting bosons in an isotropic harmonic trap. The grid
spacing ∆s is the finest length scale and must be fine enough in order to resolve the width
of the interaction potential correctly, ∆s < σ. Furthermore, in comparison with experimental
achievable values, the range of the interaction potential must be smaller than the characteristic
length scale of the trap σ � ltrap in order to model short-range interactions correctly. At the
boundary of the grid, the density must drop to zeros, in order to avoid that boundary effects
affect the simulation results, giving an additional constrain to the grid length Ls, ltrap < Ls.
Summarizing, the occurring length scales in the system must satisfy

∆s < σ � ltrap < Ls. (5.5)

In the following, we discuss in more detail the influence of each length scale and estimate their
minimal and/or maximal values.

Influence of the grid spacing: We want to answer the question, how fine must be the grid
spacing in order to resolve the interaction potential correctly. In doing so, we chose a large
grid length L = Ls = 12 so that the density drops to zero at the boundary. The behaviour
of the ground state energy is analysed in dependence of the grid spacing ∆ = ∆s and we
define the maximal valued of the grid spacing, when the ground state energy becomes constant
in dependence on ∆. The grid spacing ∆ is decreased by increasing the number of grid points
q = qs, while keeping the other numerical parameters (M = 2, m1 = m2 = m3 = 3) and physical
parameters (h, σ = 0.1) fixed. We perform four different simulations with the interaction heights
h = {27, 125, 512, 1000}, respectively. The results are shown in figure 5.1a. We note that
the ground state energy converges to a constant value w.r.t. h for a grid spacing approximately
smaller than the half of the interaction width σ, namely ∆ = 0.05. Due to the advantageous
property of the renormalized interaction potential (that it approaches the shape of the hard-core
interaction potential with size σ for h→∞), the interaction height can be arbitrary increased,
without any significant influence on the convergence behaviour.

Influence of the grid length: Again, we look for a converged ground state energy, however
this time in dependence of the grid length L keeping the grid spacing ∆ = 0.02 and the other
numerical parameters constant (same parameters as above). We perform the three simulations
for different number of particles N = {2, 5, 10}, respectively, since more particles cause a broader
wave function, which may interfere with the boundary. The parameters for the interaction
potential are h = 10 and σ = 0.1. Figure 5.1b shows the ground state energy divided by the
particle number, and we observe that a grid length of L > 7 is sufficient to ensure a converged
ground state energy. Furthermore, it seems that the expected broadening of the wave function
in dependence on the number of particles is a minor effect and is neglected in the following
discussion.

Influence of the transversal characteristic trap length: We want to estimate the influence
of the trap onto the short-range scattering properties. In doing so, we increase the aspect
ratio η, starting from one, and analyse the interaction energy Eint = 〈WRG〉 in dependence
of η. The result is shown in figure 5.2a for different interaction widths σ = {0.1, 0.2} and a
constant interaction height h = 10 both for a mean-field (M = 1) and a beyond mean-field
(M = 4) simulation. In the mean-field simulation, the interaction energy increases unlimited
if η is increased. However, in the beyond mean-field simulation, the interaction energy drops
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5 Two particles in an elongated trap
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Figure 5.1.: Panel (a) shows the ground state energy E in dependence on the grid spacing
∆ for different interaction heights h = {27, 125, 512, 1000}, labelled by asterisk, circles,
diamonds and crosses, respectively. Panel (b) shows the ground state energy E in dependence
on the grid length L for different number of particles N = {2, 5, 10}, marked by asterisk,
circles and diamonds respectively.

towards zero if the aspect ratio is increased, because for strong transversal confinements (quasi-
one dimensional case) and strong interactions, two different particles can repel each other and
the overlap of their wave functions approaches zero, and thus the interaction energy is reduced as
well. This fragmentation of the wave function can be observed in one dimension [84,87,129,210].
We observe fragmentation at an aspect ratio larger than η > 10 for σ = 0.2 and η > 50 for
σ = 0.1. As we will see in section 5.4, at these large aspect ratios, we are already in a pure one-
dimensional regime, and therefore, the observed fragmentation process is an artefact induced by
the finite-range interaction potential.

However, we are interested in a direct influence of the aspect ratio on the interaction energy,
since by changing the transversal confinement, the density is modified in the trap, and therefore
also the scattering properties. In the following, we try to eliminate this effect from the interaction
energy: For a very tight transversal confinement, due to the separation of the longitudinal and
transversal energy scale, the transversal degrees of freedom can be integrated out (assuming
transversally a harmonic oscillator wave function), leading to a renormalization of the interaction
height in dependence of the aspect ratio h1D = hf(η, σeff ) with f(η, σeff ) = ησ2

eff/(2 + ησ2
eff ).

The interaction energy depends on η via f(η, σeff ) and we renormalize the interaction energy
w.r.t. f(η, σeff ) and furthermore normalize the outcome to unity, f̄ = f(η, σeff ) max(Eint).
The resulting interaction energy is shown in figure 5.2b. We identify a regime for σ = 0.1,
from η = 1 towards η ∼ 10, in which the renormalized interaction energy Eint/f̄ is constant in
dependence of η. In this regime, the trap potential has no direct influence on the short-range
interaction and the scattering between the two particles can be assumed to take place in free
space. For σ = 0.2, however, we do not find such a regime.

Summary: We have found the following values for the different length scales in the system in
order to ensure convergence w.r.t. the grid spacing and grid length and furthermore in order to
ensure short-range interaction w.r.t. the transversal confinement.

∆ = 0.05 < σ = 0.1 � l⊥ = (0.3 ... 1) ≤ l‖ = 1 < L = 7.
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Figure 5.2.: (a) Interaction energy Eint for σ = 0.1 (both light grey lines) and σ = 0.2
(both dark grey lines) for a BMF calculation (circles and stars) and a MF calculation (dashed
lines). (b) Interaction energy divided by f̄ = max(Eint)ησ

2
eff/(2 + ησ2

eff ). Same labels as
in panel (a).

At least 140 grid points are needed in every dimension. In order to avoid convergence problems
w.r.t. the number of grid points, we chose a significantly higher number of grid points, at least
twice the number of grid points, namely 280. We note that the ML-MCTDHB algorithm can
handle even more grid points without any significant loss of efficiency (up to 1000 grid points
per dimension).

5.2. Convergence with respect to the 3D single particle functions

Due to the special choice of our short-range interaction potential, the maximal zero-energy
scattering length a0 is limited by a0 ≤ σ, where the zero-energy scattering length depends on the
two interaction potential parameters h and σ. But how large can a0 be made, ensuring converged
simulations? How many 3D-SPFs are needed in order to obtain converged simulations and how
fast do the numerical simulations converge w.r.t. the 3D-SPFs? To answer these questions, we
simulate again two particles in an isotropic three-dimensional, harmonic trap and change the
zero-energy scattering length by changing the height of the interaction from h = 8 to h = 1000
for a fixed width σ = 0.1. We compare the numerical ground state energy with the analytical
result, which has been derived using the regularized delta interaction potential [201], calling
Eana. Due to the shape independence of the short-range interaction potential, this interaction
potential can be used, or alternatively, the relative Hamiltonian can be also solved numerically
with the regularized interaction potential [see equation (5.4)], which leads to similar results as
the analytical calculation. Here, we define a simulation as converged if the ground state energy
does not differ more than 0.1 % from the analytical solution2.

In figure 5.3a, the ground state energy is given in dependence of the zero-energy scattering
length a0 (i.e. the interaction height h) for different numbers of 3D-SPFs M = {1, 2, 3, 4}.
The number of 1D-SPFs are set to m = m1 = m2 = m3 = 3, which is sufficient in order to
ensure convergence w.r.t. the 1D-SPFs, as can be seen by simulations with m = 4 (not shown).
Increasing a0 leads to a larger deviation between the analytic solution Eana and the numerical

2In general, we define a simulation converged if the observable of interest does not modified by changing the
number of single particle functions.

57
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Figure 5.3.: (a) Ground state energy E for two particle in a three-dimensional, isotropic
harmonic trap with the interaction potential WRG [see equation (3.18)] in dependence of
the zero-energy scattering length a0 (i.e., interaction height h) and w.r.t. different numbers
of 3D-SPFs M . The number of 1D-SPFs are m = m1 = m2 = m3 = 3. Light grey towards
dark grey lines correspond to M = {1, 2, 3, 4}, respectively. The black line is the analytic
solution Eana [201]. The inset in panel (a) is a magnification of the small black square in
the right upper corner. (b) Relative deviation of the ground state energy in dependence of
the zero-energy scattering length.

results. However, increasing the number of 3D-SPFs M , the difference is not significantly
reduced. The worse convergence behaviour in dependence on M can be seen in the inset of figure
5.3a, which shows a zoom of the interaction height in the range between h = 941 and h = 970
(right upper rectangle in the main plot of figure 5.3). We approximately see a linear behaviour of
the convergence in dependence on M . This bad convergence behaviour is intrinsic and studied in
the next paragraph in more detail. A linear extrapolation would lead to approximately M ∼ 85
numbers of 3D-SPFs so that the numerical solution would agree with the analytical one, which
is numerically infeasible. Therefore, here, we define a simulation as converged if the relative
error E/Eana − 1 is smaller than 0.1%. The relative error is plotted in figure 5.3b. In doing so,
we can reach a maximal zero-energy scattering length of a0 = 0.014 i.e. an interaction height of
h ∼ 420.

The enormous deviation between the numerical and analytical ground state energy comes from
the fact that MCTDHB has difficulties, as many numerical methods, to correctly resolve kinks
occurring in the relative wave function into a finite set of smooth basis functions defined in
the laboratory frame. This problem of coordinate transformation is quite general and does not
depend on the dimensions [212]. Examples for wave functions with a kink are: high correlated
one-dimensional, bosonic systems [229], or in general three-dimensional wave functions, where
the relative wave function behaves as ∝ 1/|r| and has a kink at r = 0. In reference [293],
Giesbertz and van Leeuwen have shown that for a relative wave function with a kink, the
natural populations decay algebraically, whereas for smooth relative wave functions they find
an exponential decay of the natural populations. For two particles in an isotropic harmonic
trap, the decay of the natural populations can be estimated (using a similar calculation as in
reference [293]). The relative Hamiltonian can be solved analytically [201], and in the limit for
kr < 1, the two-body wave function can be approximated by u(r)u(R)/|r|, where u(r) > 0 is a
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Figure 5.4.: Shown are the first 15 natural populations for two different interaction strengths
h = 5 (light grey stars) and h = 8 (dark grey circles). The solid black line corresponds to
the approximation [see equation (5.10)] an ∝ n−4. Note the logarithmic scale on the y-axis.

Gaussian u(r) = π−1/4 exp(−r2/2). Transforming the wave function into laboratory frame gives

Ψ(r1, r2) =
u(r1)u(r2)

|r1 − r2|
. (5.6)

The eigenvalues an and eigenfunction |αn〉, which are linked to the one-body reduced density
matrix (see appendix D.3), can be determined directly [see equation (D.7)] from equation (5.6)∫

d3r2 Ψ(r1, r2)αn(r2) =
√
anαn(r1). (5.7)

We insert equation (5.6) into equation (5.7) and use the definition An(r) = αn(r)/u(r), namely
a renormalization of the natural orbitals∫

d3r2
u2(r2)

|r1 − r2|
An(r2) =

√
anAn(r1). (5.8)

We let act the Laplace operator ∇2
1 on r1 for both sides of the equation and use the relation

∇2
1(1/|r1 − r2|) = −4πδ(r1 − r2) ,

∇2
1An(r1) = − 4π

√
an
u2(r1)An(r1). (5.9)

This differential equation can be solved for hard wall boundary conditions and further for small
values of r1, leading to the approximation u(r) ∼ 1. We see that the natural populations in
dependence of n decays algebraically

an ∝ n−4. (5.10)

In order to get a deeper insight into the intrinsic problem of transforming a kinked wave
function from the relative frame into the laboratory frame, we numerically determine the natural
populations an for the analytical solution Ψana(R, r), given by reference [201]. We note that
Ψana(R, r) is separable in the CM and relative coordinates, however, the natural orbitals are
given in the laboratory frame. The natural populations are determined by using the POT-FIT
algorithm [232, 233] up to the I = 30 order, Ψana(R, r) =

∑I
i=1

√
aiαi(r1)αi(r2). The result

is shown in figure 5.4, where we compare the natural populations for two different interaction
strengths, h = 5 and h = 8 with the approximation (5.10). As expected, the natural populations
decay algebraically (note the logarithmic scale in figure 5.10) and they are three fold degenerated,
due to the symmetry of the isotropic harmonic trap. For larger interaction strengths, the decay
of the natural populations is even worse. In conclusion, due to the algebraic decay of the natural
populations, it is very challenging to achieve convergence for large interaction strengths. In order
to circumvent this challenge, we have to come up with a new strategy:
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Figure 5.5.: Variance of the CM ground state var(R) with h = 125 in dependence of the
number of particles.

The strength of correlations can be defined as γ = N1/3a0 (see section 1.1), and therefore,
there are two ways in order to increase γ: The first one is to increase the zero-energy scattering
length a0 (i.e. the interaction strength), as we have done before, and the second one is to
increase the number of particles N . In order to see that increasing the number of particles
does not influence our intrinsic convergence problem discovered before, we increase the number
of particles N from two to twenty and keep the interaction strength fixed h = 125, therefore
increasing γ. In order to judge the convergence of our simulations, we compare the variance of
the CM, var(R) =

√
〈R2〉+ 〈R〉2, for the numerical obtained ground state with the analytical

solution in dependence of the number of particles (see figure 5.5). We find a good agreement
between the analytical and computational result. This strategy paves the way to systems with
higher correlations.

In summary, due to the intrinsic convergence problem of expressing a kink in the relative wave
function into the laboratory frame, and thus the corresponding algebraic decay of the natural
populations, the interaction strength must be limited to h < 470 in order to ensure a relative
error of the ground state energy smaller than 0.1%. Higher correlated systems can be achieved
by increasing the number of particles. This strategy is followed in the upcoming chapters.

5.3. Interaction induced spatial correlations

In the following section, we give an estimation of the various time scales in the system induced
solely by the interaction. In doing so, we quench five bosons in an elongated harmonic trap from
the aspect ratio η = 4 to η = 5. The longitudinal dimension is untouched. For one particle,
the time-evolution of the wave function can be solved analytically, see appendix E.1. Since we
are not interested in particle correlations, convergence is achieved with the numerical mean-field
configuration C = (1; 2, 2, 3) with 250 and 300 number of grid points in the longitudinal and
transversal dimensions, respectively. The grid spacing ∆s is given by 0.02.

The three terms of the Hamiltonian (5.1), the longitudinal single-particle termH‖, the transver-
sal single-particle term H⊥ and the interaction term W induce three different time scales in the
system. For the first two terms, we get the following estimations by neglecting the influence of the
interaction: T⊥ = 2π/∆E⊥ ∼ 0.6 and T‖ = 2π/∆E‖ ∼ 3.1, where ∆E⊥ = 10 and ∆E‖ = 1 are
the eigenenergy differences between the ground and the second and first excited eigenstates for
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Figure 5.6.: (a) Interaction energy Eint in dependence of time (light grey solid line) and
the mean value of the interaction energy Ēint (dark grey solid line). (b) Natural population
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the transversal and longitudinal single particle Hamiltonians, respectively3. In order to estimate
the time scale governed by the interaction, and which is responsible for the induction of spa-
tial correlations, we determine the mean value of the interaction energy Ēint =

∫ T
0 〈WRG〉dt/T ,

where T is the total simulation time (see figure 5.6a), Tint = 2π/Ēint ∼ 31.4. In order to resolve
these different time scales a fine temporal grid spacing is needed, leading to an enormous data
volume.

Next, we are interested in the induced spatial correlations by the interaction, which is mani-
fested by the deviation of the natural populations b(s=3) from one (see figure 5.6b). The deviation
is very small, and a significant coupling between the dimensions can be achieved by the following
three different strategies:

i. Add an additional external potential, which couple the dimensions, e.g. an anharmonic
confinement potential or double well potential.

ii. Increase the simulation time. Comparing the shortest with the longest time scale, we see
Tint is roughly a factor 50 larger than T⊥.

iii. Increase the number of particles.

In the last two strategies, not only the coupling between the dimensions is increased, but also
other correlations in the system, e.g. the particle correlations. Therefore, in the following, we
focus on the first strategy in order to increase the spatial correlations in the system.

5.4. Dimensional reduction

In general, if the wave function separates into its dimensions

Ψ(r1, ...rN ) = Φ⊥(x1, ...xn, y1...yN ) · ϕ(z1, ...zN ) (5.11)

an effective one-dimensional Hamiltonian, for the longitudinal dimension, can be obtained by
integrating out the transversal dimensions, calling it a pure one-dimensional system. Obviously,

3Due to symmetry, only the second transversal excited eigenstate is used.
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5 Two particles in an elongated trap

this product form of the wave function (5.11) w.r.t. the dimensions can be obtained if the Hamil-
tonian is already given as a sum composed by a transversal and longitudinal Hamiltonian, H̃⊥
as well as H̃‖, respectively, H̃ = H̃⊥+ H̃‖. For a harmonic confinement, the wave function is re-
stricted in the transversal direction ∼ 1/(2η) and the relative distance between the two particles
can be approximated by (x2−x1) = (y2−y1) ∼ 1/2η, which can be smaller than the width of the
Gaussian interaction potential for very tight confinements, (x2−x1) = (y2−y1) ∼ 1/2η � σ. In
this regime, the Gaussian interaction potential can be Taylor expanded, and regarding only the
first terms of the Taylor expansion, the Hamiltonian decay into a transversal and a longitudinal
part, and therefore the wave function separates into the dimensions. Other short-range interac-
tion potentials (e.g. as presented in 3.1) have a similar behaviour. Summarizing, for finite-range
interaction potential, a crossover to a pure one-dimensional regime can be always obtained if
the confinement in on the length scale of the interaction width.

Another way to define a one-dimensional regime is if the wave function can be expanded into
only one transversal natural orbitals β, Ψ(r1, ...rN ) =

∏N
i=1 β(xi, yi)ϕ(z1, ...zN ). This definition

of one-dimensional systems depends strongly on the concrete setup i.e., the particle number, the
interaction strength and the external single-particle potential.

5.5. Summary

We have found that the parameters for the renormalized Gaussian interaction potential are
limited to σ ≤ 0.1 and h < 470, in order to ensure convergence. The restriction to these
parameters limits the correlations in the system. Stronger correlating systems can be achieved
by increasing the number of particles.

For the numerical parameters, the grid spacing must be ∆ ≤ 0.04 so that the renormalized
Gaussian interaction potential is modelled properly. In order to ensure short-range interactions
(for σ ≤ 0.1), which are not affected by the confinement, we get the range of the transversal
characteristic trap length 0.3 ≤ l⊥ ≤ 1 (i.e. for the aspect ratio 11 ≥ η ≥ 1). In order to fulfil
all these constrains, we end up with a grid length of L = 7 for a characteristic trap length of
l‖ = 1.

Performing the crossover from three to one dimension, we see that at approximately σ ∼ l⊥, the
interaction energy approaches zero, as expected for a fragmented state. However, this parameter
regime, σ ∼ l⊥, does not assure short-range interactions any more. Furthermore, confinement
induced resonances are ’out-of range’, since the zero-energy scattering length, obtained with the
above parameters for the interaction potential is given by a0 = 0.0068, and the confinement
induced resonance would occur at a transversal trap length l⊥ = 0.007 [see equation (1.4)]. This
parameter is again not in the valid regime, which has been set above.

We have seen that the interaction term is too weak (even at weak transversal confinement)
to induce significant spatial correlations. One way to circumvent this restriction is to add an
external single-particle potential, which couples the dimensions directly.
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CHAPTER

SIX

DOUBLE WELL TRAP

Due to the high degrees of tunability of external parameters as well as the interaction strength
and the separability from the environment, BECs are ideal candidates in order to study physical
many-body phenomena such as the Josephson junctions [294,295]. One of the first experimental
realization of a single bosonic Josephson junction has been achieved in 2005 [296] within a
double well, observing macroscopic quantum self-trapping, which has been already predicted in
references [297,298] using a two-mode, mean-field description. Theoretical extensions to higher-
mode, mean-field models have been performed [299], and a rich dynamics has been predicted,
including chaotic behaviour [300], enhanced tunnelling [93,211] as well as a quantum collapse and
revival [91]. Especially, it has been shown that for strong interactions a mean-field description
of the Josephson junction fails and particle correlations have to be taken into account [92, 93,
211, 301, 302]. All these studies have been performed in one dimension, and a proper analysis
w.r.t. particle and spatial correlations is still missing for three-dimensional Josephson junctions.
Since, the zero-energy scattering length is limited by the usage of three-dimensional, repulsive
short-range interaction potentials (see chapters 2 and 3), not the whole range of the dynamical
regimes for a Josephson junction can be explored with ML-MCTDHB. Therefore, we focus on
the study of the validity of the (i) mean-field and (ii) adiabatic separation approximations of
the wave function and show that the obtained results are fully converged using ML-MCTDHB.

First, we describe the setup of our three-dimensional double well in section 6.1 and repeat the
definitions of the mean-field and adiabatic separation approximation. Then in section 6.2, the
ground state properties of a tilted double well are analysed w.r.t. both mean-field and adiabatic
separation approximations. Since, as we will see, the ground state differs significantly for the
different approximations, the resulting dynamics, induced by switching off the tilt, differ also
significantly and therefore they are hard to compare. However, characteristic differences between
the mean-field as well as adiabatic separation approximations and the full numerical result can
be identified and are studied in section 6.3. We end this chapter with a summary in section 6.4.
We notice that this chapter is literally based in parts on our publication [[1]].

6.1. Setup and numerical parameters

Fourteen bosons, N = 14, are loaded in an elongated trap Vtrap(ri) = η2

2 (x2
i +y2

i )+ 1
2z

2
i , where η

is the aspect ratio between the transversal ω⊥ and longitudinal ω‖ trap frequencies, respectively,

η = ω⊥/ω‖. All units are scaled w.r.t. to the length l‖ =
√
~/mω‖ and energy ~ω‖. E.g. by

shining a blue detuned laser beam in the trap centre, or by using an immobile impurity, both
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6 Double well trap

(a) t = 0

(b) t > 0

z
−4 −2 0 2 4

Figure 6.1.: (a) Sketch of the external potential V (ri) (black solid line) at time instant
t = 0. In order to emphasize the tilt, only Vtilt(ri) is shown as a black dashed line. The
initial density is sketched as a grey shaded area. (b) Sketch of the external potentials V (ri)
(black solid line) at time instant t > 0.

theoretically modelled by Vbarrier(ri) = H exp(−r2
i /S

2) with fixed height H = 10 and width
S = 0.4, a double well is created which separates the trap into a left and a right half. In order to
get an initial population imbalance between the right and left well, an additional linear potential
is added in the longitudinal direction in order to tilt the two potential wells, Vtilt(ri) = dzi with
d = −0.1. The full external potential is then given by

V (ri) = Vtrap(ri) + Vbarrier(ri) + Vtilt(ri).

The interaction is modelled by the renormalized Gaussian interaction potential [see equation
(3.18)]

WRG(r1, r2) = he− ln(hε )
(r1−r2)2

σ2 ,

where the width σ = 0.1, the height h = 125 and the small reference energy ε = 1 are fixed. By
solving equation (2.26), we obtain a zero-energy scattering length of a0 = 0.0048. Then, the full
many-body Hamiltonian is given by

H =

N=14∑
i=1

(
−1

2
∇2

ri + V (r)

)
+

∑
1≤i<j≤14

W (ri, rj) (6.1)

We are interested in a crossover from three to one dimension and thus, we vary the aspect ratio
between two and eight. The characteristic transversal trap lengths l⊥(η) =

√
~/mη ranges from

l⊥(2) ' 0.70 to l⊥(8) ' 0.35. The other physical parameter are chosen such that short-range
interaction can be ensured (see chapter 5 for a discussion). We use

∆ = 0.02 < σ = 0.1 < l⊥ = (0.35 ... 0.7) < l‖ = 1 < L⊥ = 6, L‖ = 8

where ∆ is the grid spacing, which has been chosen in order to resolve the interaction potential
properly. In doing so, we simulate qz = 400 and qx = qy = 300 grid points in the longitudinal and
each transversal dimension, respectively. The total angular momentum w.r.t. to the longitudinal
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6.2 Ground-state analysis

directions (z-direction) commutes with the Hamiltonian (6.1) and in principle this can be used
to simplify the Hamiltonian to a two dimensional problem. However, we do not apply this
symmetry, since otherwise the interaction term is not separable w.r.t. the dimensions anymore
and the interaction potential model has to be approximated (see chapter 3 for a discussion).

In order to obtain the ground state, the ML-MCTDHB equations of motions (4.8), (4.16) and
(4.17) are propagated in imaginary time until convergence is reached. Then Vtilt is switched off
and the dynamics is obtained by a real time propagation (see figure 6.1).

In the following, we repeat the definitions of the mean-field and adiabatic separation approx-
imations, respectively. By a mean-field approximation, we define that all particles share the
same orbital.

Ψ(r1, ..., rN ) =
N∏
i=1

ψMF (ri).

The same approximation is used when deriving the GPE. If the transversal and longitudinal
dimensions separate and if transversally a mean-field approximation can be applied, we call the
approximation adiabatic separation:

Ψ(r1, ..., rN ) =

(
N∏
i=1

ψ⊥(xi, yi)

)
ψ‖(z1, ...zN ).

Numerically both approximation can be obtained by either using only one 3D-SPF (M = 1)
or by using transversally only one 1D-SPF ( m1 = m2 = 1), for the mean-field and adiabatic
separation, respectively (for a discussion see chapter 4). As a reminder, the number of 3D-
SPFs, and 1D-SPFs are summarized in the so-called numerical configuration defined as C =
(M ;m1,m2,m3). We are interested in the differences between these two approximations and a
fully converged simulation, where no approximations to the wave function are taken into account.
Convergence for each approximation has been achieved by the following numerical parameters:

1. Mean-field approximation by solving the three-dimensional GPE with the numerical con-
figurations CMF = (1; 3, 3, 4). In this approximation no particle correlations are present.

2. Adiabatic separation of the transversal dimensions can be achieved with the numerical
configuration Cq1D = (4; 1, 1, 4). In the adiabatic separation approximation no spatial
correlations are taken into account and we call this the quasi 1D simulation.

3. Fully converged solution, which is obtained with the numerical configuration CFC =
(4; 3, 3, 4)

6.2. Ground-state analysis

First, we discuss properties of the ground state. Since we have already said much about con-
vergence (see chapter 5) and the ML-MCTDHB methods (see chapter 4), we refer to a detailed
convergence analysis given in the appendix F.1 and give here only the converged results.

For the ground state, we compare the population imbalance between the two wells, Iz =
(NR −NL)/N , where NL,R =

∑N
i=1〈Θ(±zi)〉, for these three different numerical configurations

in dependence on the aspect ratio η (figure 6.2). One can clearly see that the 3D GPE agrees
well with the fully converged results for η < 4, while the mean-field results deviate for more
anisotropic traps since interparticle correlations become important. In contrast to this, the
configuration Cq1D corresponds to an adiabatic separation of the transversal degrees-of-freedom
while resolving interparticle correlations by bringing the simulation to convergence w.r.t. M =
m3. This quasi one-dimensional simulation approaches the fully converged results for increasing
η, but even for η = 8, significant deviations remain.
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6 Double well trap

η

I z

2 3 4 5 6 7 8

0.25

0.3

0.35

C(FC) = (4; 3, 3, 4)
C(q1D) = (4; 1, 1, 4)
C(MF ) = (1; 3, 3, 4)

Figure 6.2.: Shown are the population imbalances for different numerical configurations
C with respect to the aspect ratio. The lines connecting the points are plotted as a guide
to the eye for the three numerical configurations: the mean-field CMF = (1; 3, 3, 4) (light
grey dashed-dotted with squares), quasi-1D C(q1D) = (1; 3, 3, 4) (grey dashed asterisk) and
fully converged C(FC) = (4; 3, 3, 4) (dark grey solid line with circles). Figure is taken from
reference [[1]].

Configuration dependent ground state properties
Validation of the approximations

Next, we explore in some detail the validity of the adiabatic separation of the transversal degrees
of freedom and the mean-field approximation. Let us consider a cut of the three-dimensional
ground state density ρ(x, y = 0, z) for the three numerical configurations CMF , Cq1D and CFC ,
shown in figure 6.3 for the two aspect ratios η = 2 and η = 8.

For η = 2, the mean-field (figure 6.3a) and fully converged (figure 6.3c) density profiles agree
well, whereas they differ significantly in their geometry from the quasi 1D simulation Cq1D
(figure 6.3e). This is interesting, since the second dominant transversal natural orbital is only

weakly populated with b
(1)
2 = b

(2)
2 ∼ 4 · 10−3 (see figure F.1 in the appendix), indicating low

spatial correlations. Nevertheless, these further orbitals are necessary to describe the dip in
the density induced by the barrier Vbarrier(ri). This is an example that small values of the
natural populations are not a sufficient condition in order to justify convergence. This density
dip cannot be resolved in the quasi 1D simulation due to the crude adiabatic separation, i.e. the
single variationally optimized SPF in each transversal direction has a shape independent of the
longitudinal position.

Increasing the transversal trap frequency restricts the wave function stronger in the transversal
direction, 〈x2 + y2〉 ∼ 1/(η), and if it is smaller than the width of the barrier, the barrier can be
Taylor expanded Vbarrier(ri) ∼ H exp(−z2

i /S
2), as already worked out in section 5.4. No spatial

correlations are induced by this approximated barrier any more, and the adiabatic separation
is a good approximation, as can be seen by comparing the density profiles for CMF (figure
6.3b), CFC (figure 6.3d) and Cq1D (figure 6.3f) for the aspect ratio η = 8. In this regime, only
the interaction could induce spatial correlations, which however is prevented by the transversal
excitation gap.
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6.3 Tunnelling dynamics
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Figure 6.3.: Cut through the density ρ(x, y = 0, z, t) for different aspect ratios η = 2 (left
column), η = 8 (right column) and configurations CMF (first row), CFC (second row) and
Cq1D (third row) in dependence of the longitudinal z and transversal dimension x. The range
of the colour bar goes from zero (black) to 0.2 (white) for the plots (a, c, and e) and to 0.8
for (b, d, and f). Figure is taken from reference [[1]].

6.3. Tunnelling dynamics

To trigger the tunnelling dynamics, we switch off the tilted potential Vtilt(z) at t = 0 and
propagate the many-body wave function in real time, with the intention to study its dynamical
features (results have been published in [[1]]). We compare the two approximations, namely
the adiabatic separation and the mean-field approximation with the fully converged solution.
Snapshots of the temporal evolution of the density cut ρ(x, y = 0, z, t) for the two different
numerical configurations Cq1D (see figures 6.4a,d,e) and CFC (see figure 6.4b,d,f) show how the
particles tunnel from right (t = 0) (see figure 6.3) to left (t = 5.3) and back (t = 10.6). The
aspect ratio has been set to η = 2. We observe again that the quasi one-dimensional configuration
can not resolve the right geometry of the temporal evolution of the density. This has a direct
consequence on the population imbalance Iz (see figure 6.5). For weak aspect ratios η = 2, we
see an excellent agreement in the population imbalance of the mean-field approximation with the
fully converged simulation and a significant phase shift is observed for the adiabatic separation
approximation (quasi 1D configuration). However, at the aspect ratio η = 8, we observe that the
mean-field approximation fails, which cannot describe the collapse and revival of the population
imbalance, whereas the adiabatic separation approximation shows this feature. The collapse
and revival is a clear signature of the necessity to include particle correlations in the system.
Additionally, the phase of the adiabatic separation approximation is shifted, which is caused by
the different initial population imbalances.

In order to quantify particle and spatial correlations, respectively, and therefore the validity
of the adiabatic separation and mean-field approximation, we analyse the integrated depletions
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6 Double well trap

CFC

t = 2.7(b)

t = 5.3(d)
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Figure 6.4.: Cut through the density ρ(x, y = 0, z, t) for different times, t = 2.9, t = 5.3,
t = 10.6 and configurations Cq1D (left column) and CFC (right column)in dependence of the
longitudinal z and transversal dimension x. The aspect ratios is η = 2. The range of the
colour bar is from zero (black) to 0.2 (white). Figure is taken from reference [[1]].
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Figure 6.5.: Temporal evolution of the population imbalance Iz(t) for the two aspect ratios
η = 2 (a) and η = 8 (b). Shown are the following numerical configurations C = (4; 3, 3, 4)
(black solid line), C = (1; 3, 3, 4) (dark grey dashed line), C = (4; 1, 1, 4) (light grey dashed
dotted line). Note that in (a) the grey dashed line is covered by the black solid line. Figure
is taken from reference [[1]].
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6.3 Tunnelling dynamics
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Figure 6.6.: The natural populations a
(3D)
1 (a) and a
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2 (b) w.r.t. time for different aspect

ratios. Both subfigures have the same colour coding. Figures are taken from reference [[1]]

in dependence of η,

D(3D)(η) = 1− 1

Tmax

∫ Tmax

0
a

(3D)
1 dt

D⊥(η) = D(s=1)(η) = D(s=2)(η) = 1− 1

Tmax

∫ Tmax

0
b
(s=1)
1 dt

D‖(η) = 1− 1

Tmax

∫ Tmax

0
b
(s=3)
1 dt

where a
(3D)
1 and b

(s)
1 are the first natural populations of ρ(3D) and ρ(s) for the dimension s ∈

{1, 2, 3}, respectively, and Tmax is the maximal simulation time (see section 1.4 for definitions of
the natural populations and density matrices). These quantities may be interpreted as followed:
The larger the averaged depletion D(3D)(η), D(s)(η) is, the more important correlations are
between the atoms and between the spatial dimension s and the other two spatial dimensions in
the dynamics, respectively. For example if D(3D)(η) = 0, no particle correlations are present and
the mean-field approximation is suitable, as well as for D(1)(η) = D(2)(η) = 0, the transversal
dimensions can be adiabatically separated in the many-body wave function. In figure 6.6a, b
and c, we see D(3D)(η), D⊥(η) and D‖(η), respectively. For a weak transversal confinement, we
have less particle correlations D(3D)(η) ∼ 0 but spatial correlations D⊥(η) ∼ D‖(η) > 0, which
justify the use of the mean-field approximation. For tighter traps η = 8, the particle correlations
increase while spatial correlations decrease, D⊥(η) ∼ 0. All correlations are well described by
the adiabatic separation approximation Ψ(r1, ... rN ) = [

∏N
i=1 φ(xi)φ(yi)]ϕ(z1, ... zN ), which

shows that particle correlations are visible in ϕ(z1, ... zN ) and also in D‖(η), D‖(η) ' D(3D)(η).
In between these two aspect ratios, we find a regime, where both particle and spatial correlations
are present.

Next, we have a look at the natural populations a
(3D)
1 and a

(3D)
2 for the fully converged

simulation in dependence of time for different aspect ratios (figure 6.6d and e). For weak

transversal confinement η = 2, the first natural populations is very close to one a
(3D)
1 ∼ 1 (as

already discussed), indicating that no particle correlations are present in the system. For tighter

traps, the second natural population a
(3D)
2 increases (see figure 6.6e), leading to higher particle
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Figure 6.7.: Transversal E⊥ (panel a) and longitudinal E‖ (panel b) energy in dependence
of time for different aspect ratios, η = 2 (dark grey), η = 4 (grey) and η = 8 (light grey).
The physical parameters are: H = 10, S = 0.4, h = 5 and σ = 0.1. For the simulation, we
used the numerical configuration C = (4; 3, 3, 4).

correlations and thus to beyond mean-field effects. Therefore, the mean-field configuration fails
to describe the system, which possesses damping as well as a different frequency in the population
imbalance (see figure 6.5b).

Last, we have a look at the transversal and longitudinal energy scales in the double well (see
figure 6.7). The transversal (longitudinal) energy E⊥ (E‖) is defined as the expectation value
of the transversal (longitudinal) Hamiltonian, E⊥ = 〈H⊥〉 (E‖ = 〈H‖〉) with

H⊥(xi, yi) =− 1

2

(
∂2

∂x2
i

+
∂2

∂y2
i

)
+
η

2

(
x2
i + y2

i

)
(6.2)

H‖(zi) =− 1

2

∂2

∂z2
i

+
1

2
z2
i . (6.3)

For low aspect ratios, we see a sinusoidal oscillation both in the transversal and longitudinal
energy and for larger aspect ratios, more frequencies take part, however, we do not observe any
energy transfer between the longitudinal and transversal motion. In order to increase the energy
transfer between the dimensions, a different initial condition has to be chosen, which will be
done in the next chapter, where we will increase the initial energy in order to yield a scattering
off the barrier instead of a tunnelling trough the barrier.

6.4. Summary

We have studied particle and spatial correlations in a three-dimensional double well. The mean-
field as well as the adiabatic separation approximation for the wave function have been checked
and compared to a fully converged simulation, taking all correlations into account. We have
seen that increasing the aspect ratio towards quasi 1D leads to stronger particle and weaker
spatial correlations. For low aspect ratios, the properties of the ground state as well for the
dynamics can be well-described by the mean-field ansatz, whereas for high aspect ratios (quasi
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6.4 Summary

1D) an effective one-dimensional but beyond mean-field theory is needed. Especially, at least
two transversal modes are needed, in order to approximate the true topology of the ground state
density. We have seen that for the studied system, there is little energy transfer between the
transversal and longitudinal dimensions. In order to increase the energy transfer, a different
initial condition has to be chosen.

Concluding, with the ML-MCTDHB method (see chapter 4), we are able to simulate the
crossover from quasi one-dimensional to three-dimensional behaviours taking all correlations
into account.
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7 Scattering off a barrier

CHAPTER

SEVEN

SCATTERING OFF A BARRIER

In the previous chapter, where we have analysed the dynamics of a bosonic ensemble tunnelling
in a double well, and where we have seen that no energy is transferred between the transversal
and longitudinal direction, no higher transversal modes are excited. In order to increase the
population of higher transversal modes, enough initial energy must be provided, e.g., spatially
displacing the initial ground state (in a harmonic trap). For sufficiently high initial energies,
the bosonic ensemble does not tunnel between the left and right well anymore, but rather
scatters off the barrier multiple times. Such setups are used in interferometers [33], where
the barrier can split or recombine [303] an atomic beam or a single soliton [304], similar to
light impinging on a half-silvered mirror. Another possibility of building interferometers is the
free-oscillation atom interferometer, where the ground-state wave function in a harmonic trap
is excited by a laser pulse into a left and right moving part, which collides again after half an
oscillation period similar to a Michelson interferometer [305–310]. When the trapped condensate
is initially spatially displaced and impacts with a centred impurity dissipative transport [311],
dipole oscillations [312] as well as effects of the inter-particle interactions can be studied [310].
In both interferometric setups above, a coherent splitting and recombination is important in
order to obtain the contrast of the interference fringes. Sources of coherence loss are particle
correlations, excitations of transversal modes or coupling to an environment as well as finite
temperature. The splitting and recombination process of interferometers is described using a
quasi-one dimensional mean-field approach [312], which cannot cover, per construction, loss of
coherence via particle correlations. In order to study coherence losses in the complete crossover
from three to one dimension, particle correlations and coupling to higher transversal modes
have to be taken into account. Furthermore, in interferometers, observables of interest are the
probability of reflection and transmission of the matter wave beam or the oscillation of the centre
of mass (CM) [303].

The following chapters based on our publication [[2]], where we have explored the quantum
dynamics of a bosonic ensemble in an elongated trap, which is initially displaced and exposed to
a centred Gaussian barrier, experimentally realizable by a blue-detuned laser beam [313] or an
impurity [314–316]. We vary the aspect ratio of the trap, thereby providing a smooth transition
from three to one spatial dimension. The initial displacement is large enough, such that, by the
dimensional coupling induced by the barrier, higher excited transversal modes can be populated
in a controlled manner. In this way, this chapter is a natural extension of the previous chapter,
where the three-dimensional tunnelling of few bosons in a double well has been explored at low
energies (see also reference [[1]]). We analyse the influence of particle and spatial correlations on
the coherence, measured by the first-order correlation function in longitudinal direction, and on
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7.1 Setup and numerical parameters

(a)t < 0

(b)t = 0
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Figure 7.1.: Schematic representation of the setup and preparation of the initial state. The
black solid line is the longitudinal external trap potential and the grey areas give sketches
of the respective many-body densities.

the decay of the CM motion. The strength of the particle and the spatial correlations depend
strongly on the aspect ratio of the trap. Two mechanisms of coherence loss are identified. In the
first one, present for small aspect ratios, we observe a loss of coherence between the region close
to the barrier and outer regions, due to the excitations of transversal modes. The second one,
at larger aspect ratios, is an incoherence between the density fragments to the right and the left
of the barrier, emerging due to particle correlations and becoming manifest in the occupation of
the second natural orbital. Furthermore, the damping of the CM oscillation is reduced if particle
correlations become dominant, whereas it is enhanced if spatial correlations are present. When
the aspect ratio is integer valued, we see a quantitative enhancement of these effects.

The remaining sections follow very closely reference [[2]], which is mainly cited literally, and
is structured as follows: In section 7.1, the setup and the preparation of the initial state are
introduced. To thoroughly understand the case of interacting bosons in three dimensions, we
proceed in three steps. First, presented in section 7.2, we focus on few atoms in a one-dimensional
trap, where only particle correlations can occur. Second, in section 7.3, we study a single atom
and change the aspect ratio continuously to cover the transition from three to one dimension.
We show how the coupling between the dimensions reduces the amplitude of the CM oscillation
and how the coherence is modified, due to incoherent spherical scattering off the barrier. If the
aspect ratio is integer, the damping of the CM motion and the loss of coherence are enhanced.
In section 7.4, we then combine our findings for the few boson case in the crossover from three to
one dimensions, taking both particle and spatial correlations into account. Finally, a conclusion
is given in section 7.5.
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7 Scattering off a barrier

7.1. Setup and numerical parameters

Let us repeat the setup here again for completeness, even if it is very similar to the previous
chapter. We consider N = 5 interacting, ultracold bosons each of mass m in a cylindrically sym-
metrical harmonic trap with aspect ratio, η = ω⊥/ω‖, between the transversal and longitudinal

trap frequency. The one-particle Hamiltonian for the i-th particle at position ri = (xi, yi, zi)
T

reads in harmonic oscillator units (energy scale ~ω‖ and length scale l‖ =
√

~/mω‖)

H0(ri) =H⊥(xi, yi) +H‖(zi) (7.1)

with the transversal and longitudinal components

H⊥(xi, yi) =− 1

2

(
∂2

∂x2
i

+
∂2

∂y2
i

)
+
η2

2

(
x2
i + y2

i

)
, (7.2)

H‖(zi) =− 1

2

∂2

∂z2
i

+
1

2
z2
i . (7.3)

The short-range interaction between the i-th and j-th atom is modelled by the renormalized
Gaussian interaction potential (3.18), and is given here as a reminder

W (ri, rj) = WRG(ri, rj) = he
−

(ri−rj)2

σ2
eff (7.4)

with the interaction height h and effective width σeff = σ/ln(h/ε), where ε is a small energy
scale of the system and set to one (see the discussion in chapter 3) and σ = 0.1 the width of the
short-range interaction potential. The initial state is obtained by letting the bosonic ensemble
relax to its ground states by an imaginary time propagation of the ML-MCTDHB equations
of motion (see figure 7.1a). Then the wave function is displaced by a distance b = 3 in the
elongated direction and instantaneously a barrier is switched on, which can be experimentally
realizable by a blue-detuned laser beam or by adding an impurity (see figure 7.1b). The barrier
(impurity) is modelled by an external Gaussian potential

V (ri) = He−
−r2i
S2 (7.5)

with height H and width S = 0.2. The displacement of the wave function is chosen large enough
such that its overlap with the barrier is negligible and its gained potential energy is larger than
the barrier height H, which ensures that we operate in the over-barrier and not in the tunnelling
regime. The obtained displaced wave function is then propagated (see figure 7.1c) in time with
the following many-particle Hamiltonian

H3D =
N∑
i=1

[H0(ri) + V (ri)] +
∑

1≤i<j≤N
W (ri, rj). (7.6)

7.2. Few bosons ensembles in one dimension

In this section, mainly taken from our publication [[2]], we analyse the scattering dynamics of a
small ensemble of interacting bosons, displaced initially (by a distance b = 3) in a purely one-
dimensional harmonic trap off a centred barrier. In the first part (section 7.2.1), we derive a pure
one-dimensional Hamiltonian by adiabatically reducing the three-dimensional Hamiltonian (7.6)
in order to derive corresponding one-dimensional physical parameters such as the interaction

74



7.2 Few bosons ensembles in one dimension

height h1D or barrier height H1D in dependence on the aspect ratio η. We do so, since up to
now, we have studied only quasi 1D systems (three-dimensional simulations with a sufficient large
aspect ratio), however here, we are going to study a pure one-dimensional system. In the second
part (the first part of section 7.2.2), we focus on weak particle and spatial correlations, created by
a weak interaction strengths and moderate barrier heights. This allows us to describe analytically
the collision dynamics by means of a time-dependent two-mode approximation within the mean-
field theory. In the third part (the remaining part of this section), we increase the interaction
strength as well as barrier height in order to create more correlations and numerically study the
effects of these correlations on the oscillation of the CM and the loss of first-order coherence.

7.2.1. Dimensional reduction

We derive an effective one-dimensional Hamiltonian from the three-dimensional one by applying
the framework already presented in section 5.4. In the limit of large aspect ratios η → ∞,
the energy of the first excited transversal mode is much larger than any other energy scale
in our system, and thus, the wave functions separates into the dimensions. Transversally, a
ground state

√
η/π exp(−ηρ2), where ρ =

√
x2 + y2, can be assumed and the three-dimensional

Hamiltonian (7.6) reads then

H1D =
N∑
i=1

[H0(zi) + V1D(zi)] +
∑

1≤i<j≤N
W1D(zi, zj) (7.7)

with H0(zi) = (−∂2
zi + z2

i )/2, V1D(zi) = H1D exp(−z2
i /S

2) and W1D(zi, zj) = h1D exp[−(zj −
zi)

2/σ2
eff ]. The resulting one-dimensional parameters are H1D = HηS2/(1 + ηS2) and h1D =

hησ2
eff/(2 + ησ2

eff ). For a pure one-dimensional setup (η →∞), the three-dimensional param-
eters are recovered again, H1D(η →∞) = H and h1D(η →∞) = h.

7.2.2. Quantum dynamics in one spatial dimension

We analyse the quantum dynamics of five bosons in a one-dimensional trap following the Hamil-
tonian (7.7). In doing so, the interacting ground state is displaced by b = 3 and gains an
additional potential energy of E = b2/2 = 4.5, which is larger than H1D, and thus the bosons
reveal dipole oscillations [318–322], which are modified by the presence of the barrier. This setup
is in contrast to chapter 6, where the initial state gains only a small potential energy. Here, first,
we consider weak interactions and small barrier heights, where a mean-field approximation is
justified, and then we switch to stronger interactions and larger barrier heights, where particle
correlations become important.

Small barriers and weak interactions

In order to understand the basic scattering behaviour, we first focus on five very weakly interact-
ing (h1D = 0.13, σ = 0.1) bosons and a shallow barrier (H1D = 0.38, S = 0.2). In this regime, a
fraction of the initially displaced bosons is reflected at the barrier and cause a counter oscillating
wave-packet, which interferes with the transmitted wave-packet (see figure 7.2a). In particular,
we do not find any major difference between the results of the ab-initio ML-MCTDHB simu-
lation and a mean-field calculation, which assumes that all bosons reside in the same orbital
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Figure 7.2.: Time evolution of the numerically obtained one-body density (first row) for
N = 5 interacting atoms with h1D = 0.1293, σ = 0.1 and barrier H1D = 0.4, S = 0.2. The
grey scales are normalized w.r.t. the maximal value of the density. (b)-(d) The numerically
exact density profile (light grey line) is compared with the approximation (7.15) (dark grey
line) for three instants in time. In figure (e), the corresponding expectation value of the
CM is compared with equation (7.14). Vertical dashed lines mark the three instants in time
used in sub figures (b)-(d). Figure is taken from reference [[2]].

ΨGP (z, t) obeying the one-dimensional GPE

i∂tΨGP (z, t) = [H0(z) + V1D(z)] ΨGP (z, t)+ (7.8)

+

(
(N − 1)

∫
dZ|ΨGP (Z, t)|2W1D(z,Z)

)
ΨGP (z, t).

Furthermore, by inspecting at figure 7.2a, we see that the temporal evolution of the density
can be modelled by two counter-propagating, stiffly1 oscillating wave packets, expressed as two
different, stiff modes {Φi}i=1,2. For obtaining analytical insights into the dynamics of the density,
namely, into the interference pattern and the decay of the CM oscillation, we assume that the
time-dependent Gross-Pitaevskii orbital ΨGP (z, t) can be expanded into these two modes

ΨGP (z, t) = A1(t)Φ1(z, t) +A2(t)Φ2(z, t). (7.9)

As the two modes, we use the solutions of the time-dependent GPE for V (z) = 0 with the
corresponding GPE ground state ϕGP and energy EGP , being displaced by ±b as the initial
state: Φ1,2(z, t) = exp(−iΘ(t)) exp(±ip̄(t)z)ϕGP (z ∓ z̄(t)) (see appendix G.2 for the derivation
and further details). Here, Θ(t) = EGP t + 1

2 z̄(t)p̄(t) defines the dynamical phase factor and
z̄(t) = b cos(t) as well as p̄(t) = −b sin(t) are the classical values for position and momentum of
an atom oscillating in a harmonic trap.

These two modes represent two stiff wave packets, displaced in opposite direction and counter-
propagating. In order to get an analytic expression for ϕGP , we use the Gaussian trial wave
function (Ω/π)1/4 exp(−Ωz2/2) and determine the parameter Ω, which incorporates the effect

1In the literature, this motion is also called a coherent motion, but in order not to confuse the reader with our
other definition of coherence [172], we call it a stiff moving wave packet, since its shape is maintained during
time evolution
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7.2 Few bosons ensembles in one dimension

of the interaction by minimizing the total energy. For a non-interacting system, Ω is equal to
one, and by increasing the repulsive (attractive) interaction leads to a broadening (narrowing)
of the trial wave function and thus to a smaller (larger) Ω. Knowing the functional expression
for ϕGP , the overlap between Φ1(z, t) and Φ2(z, t) can be calculated analytically and equals
exp(−b2(Ω2 cos2(t) + sin2(t))/Ω). For large displacements b, as regarded here, these two modes
are approximately orthogonal for all times, of which we will make use in the following. Insert-
ing the expansion (7.9) into the time-dependent GPE (7.8), projection onto the two modes,
Φi=1,2, and employing the symmetries ϕGP (z) = ϕGP (−z) and V1D(z) = V1D(−z), leads to the
equations of motion for the coefficients

i∂t

(
A1

A2

)
=

(
v11 v12

v12 v11

)(
A1

A2

)
(7.10)

where the matrix elements are v11 =
∫
dz|ϕGP (z − z̄(t))|2V1D(z) and v12 =

∫
dz exp(−i2p̄(t)z)

ϕGP (z − z̄(t))ϕGP (z + z̄(t))V1D(z). These last two integrals can be evaluated, and yield

v11(t) =

√
ΩS2

√
1 + ΩS2

H1De
−Ωb2 cos2(t)

1+ΩS2 , (7.11)

v12(t) =

√
ΩS2

√
1 + ΩS2

H1De
−b2

(
Ω cos2(t)+

S2 sin2(t)

1+ΩS2

)
.

The set of equations (7.10) can be solved analytically

A1(t) = e−iF (t) cos(G(t)) (7.12)

A2(t) = −ie−iF (t) sin(G(t))

with F (t) =
∫ t

0 v11(τ)dτ and G(t) =
∫ t

0 v12(τ)dτ . Since the modes Φ1,2 couple only during the
collisions, v12(τ) is periodic and strongly peaked such that G(t) increases step-like (see figure
7.3). In order to simplifyG(t), we apply a stationary phase approximation for v12 piecewise in the
time intervals [nπ, (n+1)π), with n ∈ N0, and furthermore perform a linear fit G(t) ≈ G̃(t) = ct
with

c =
1√
πb

√
Ωs

Ω− s
H1De

−b2s (7.13)

where s = S2/(1 + ΩS2). These approximations are quite accurate as can be seen in figure 7.3.
Calculating the evolution of the CM 〈Z〉 =

∑N
i=1〈zi〉/N

〈Z〉 =b cos(t) cos(2ct), (7.14)

we find that the classical oscillation of a displaced atom in a harmonic trap [〈Z〉 = b cos(t)]
is modified by a slower oscillation ∝ cos(2ct), causing a decay and revival of 〈Z〉. Thus c
determines the time-scale on which the classical CM oscillation ’decays’, namely td = π/(4c),
and we therefore called it decay coefficient in the following. The decay coefficient c depends
strongly on b, and if b is increased, c reduces towards zero, meaning that if the initial wave
function is stronger displaced, it has more kinetic energy, travels faster through the barrier and
thus the coupling with the barrier is reduced. Similarly, decreasing the barrier height H1D,
the coupling to the barrier is reduced, and c → 0, leading to an undamped CM oscillation,
〈Z〉 = b cos(t). The influence of the interaction strength on c is rather small in the weak
interacting regime, which we have addressed with the Gaussian trial function for ϕGP , and in
the validity of our model, c can be assumed as constant, c(h1D) ∼ const. Furthermore, the
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Figure 7.3.: Shown is v12(t) (grey solid line), G(t) (black solid line), G̃ (black dashed line)
versus time t, with c = 0.01. c and v12 are obtained using the parameters Ω = 1, H1D = 0.38,
S = 0.2 and b = 3. Figure is taken from reference [[2]].

density |Ψ(z, t)|2 can be calculated analytically

|Ψ(z, t)|2 = cos2(ct)|ϕGP (z − z̄)|2

+ sin2(ct)|ϕGP (z + z̄)|2 (7.15)

+ sin(2p̄z) sin(2ct)ϕGP (z − z̄)ϕGP (z + z̄),

where we have omitted the time-argument for z̄ and p̄ for better readability. The density (7.15)
consists of three parts. The first two terms describe stiff, out-of-phase oscillations of the ground
state wave functions |ϕGP (z − z̄)| and |ϕGP (z + z̄)| with a sinusoidal population transfer of
frequency 2c between these two states. The last term creates an interference pattern with a
contrast ∝ sin(2ct) and is strongest at t = td + nπ/2c, n ∈ N0. In the limit of c → 0, this
interference pattern blurs and one is left with a stiff oscillation of a single wave packet.

For different instants in time, we compare the approximate solution (7.15) for the density and
(7.14) for the CM with the full mean-field calculation (figure 7.2). Not only the decay of the
CM oscillations 〈Z〉 is well-described by our simple model, but also the interference pattern.
Nevertheless, let us finally discuss the implicit assumptions underlying our analytical approach.
Deviations in our model occur, since the barrier can scatter atoms into higher excited modes,
which are not taken into account by the model. Therefore, the model is only valid for small
to moderate barrier heights. Furthermore, while our model assumes elastic scattering off the
barrier, the scattering is inelastic in fact, which can be seen in the mean-field calculations showing
that the turning points of the reflected density fraction are closer to the trap centre than for the
transmitted density fraction (see figure 7.2a). Finally, the assumption of a Gaussian trial wave
function limits the model to small interactions and, summarizing, we find empirically that the
’decay’ of the CM is slightly decreased in fact if the interaction strength is increased, whereas
our model features the opposite trend.

Large barrier amplitude and stronger interactions

For stronger interactions (h1D = 1.5385) and larger barrier height (H1D = 1.5), the dynamics
cannot be described by the GP equation (7.8) anymore, since correlations between the atoms
have to be taken into account. Quantitative differences between a MF and a BMF simulation
are observed, for example, in the oscillation of the CM, in the interference pattern of the density
or in the one-body correlation function. In the following, we explain the occurrence of these
quantitative differences, starting with the interference pattern.
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7.2 Few bosons ensembles in one dimension

While the MF density ρMF (z, t) reveals a pronounced interference pattern for all times (see
figure 7.4a), the interference pattern becomes smeared out as time proceeds if particle correla-
tions are taken into account (see figure 7.4b). The reason for the loss of coherence is a significant
depletion of the first natural orbital α1(z, t) down to 0.65 of the original population (white line
in figure 7.4c), which mainly stems from populating the second natural orbital α2(z, t) up to
0.29 (white line in figure 7.4d) at time t = 39. The remaining 0.06 are distributed among further
natural populations.

We can approximate the BMF density ρBMF by the two main contributing natural orbitals,
ρBMF ≈ a1(t)|α1(z, t)|2 + a2(t)|α2(z, t)|2, with a1(t) + a2(t) ≈ 1. We have observed that the
first natural orbital has a qualitatively similar structure as the mean-field density (compare
panels 7.4a and 7.4c), |α1(z, t)|2 ∼ ρMF (z, t), and the BMF expectation value for the CM can
be approximated as

〈Z〉BMF ∼ (1− a2(t))〈Z〉MF + a2(t)

∫
dZ Z|α2(Z, t)|2 (7.16)

Inspecting figure 7.5a, where we show the second part δBMF ≡
∫
dZ Z|α2(Z, t)|2 multiplied by

a2(t), we notice that δBMF is in-phase with the classical harmonic oscillation. By increasing
a2(t) this in-phase oscillation becomes more pronounced in 〈Z〉BMF and therefore the decay of
the CM in reduced and td is increased. This effect can be also seen in figure 7.5, where both
〈Z〉BMF and 〈Z〉MF are presented.
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Figure 7.4.: Temporal evolution of the density both within the 1D-GPE (a) and when
taking particle correlations into account (b), for N = 5 bosons in a harmonic trap with
barrier H1D = 1.54, S = 0.2 and interaction h1D = 2.01, σ = 0.1. (c) and (d) show the first
and second natural orbitals α1,2(z, t) weighted with their natural populations a1,2, which
are shown as white solid lines. The grey scales are normalized w.r.t. the maximal value of
the density. Figure is taken from reference [[2]].
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Figure 7.5.: Panel (a) shows the CM oscillation for and panel (b) shows the probability
to find two bosons on the same side of the trap, see equation (7.17). Same parameters as
in figure 7.4 are used. For both figures, the light grey line represents the mean-field result
(7.8) and the darker grey line denotes a ML-MCTDHB result, where particle correlations are
taken into account. The black dashed line represents the expectation value of δBMF = 〈z〉
evaluated w.r.t. the second natural orbital and weighted with its population. Figure is taken
from reference [[2]].

Next, we study the probability for two bosons being on the same side of the barrier, which
effectively measures the probability of pairwise transmission or reflection at the barrier

p(t) =
1

N(N − 1)∑
1≤i<j≤N

(〈Θ(zi)Θ(zj)〉+ 〈Θ(−zi)Θ(−zj)〉) , (7.17)

where Θ is the Heaviside function. The probability p(t) is enhanced if particle correlations
are taken into account (see figure 7.5b), identifying pair correlation. So, the bosons like to
be transmitted or reflected pairwise. Pair correlations have already been observed in a double
well scenario [211], similar to our setup, but focusing on tunnelling dynamics. This feature of
enhanced pair correlation causes a decrease of the one-body coherence in the dynamics, which
is consistent with the disappearance of the interference pattern in the temporal evolution of the
density.

Finally, we analyse how the emergent particle correlations affect the spatial coherence of the
bosonic ensemble by inspecting the first-order correlation function

g1(z, z′) = ρ1D(z, z′)/
√
ρ(z)ρ(z′), (7.18)

where ρ1D is the one-dimensional one-body density matrix and ρ(z) = ρ1D(z, z) the one-
dimensional one-body density. The absolute value of the first-order correlation function equals
unity in a MF simulation and features values |g1(z, z′)| < 1 if particle correlations are present.
In figure 7.6, |g1(z, z′)| is given for three different times t = 9π, 9.5π and 10π. The first and the
last instant in time correspond to the 9-th and 10-th classical turning point of the CM oscillation
and t = 9.5π refers to the tenth collision with the barrier. At the classical turning points, we
find that the coherence between the density fragments to the right and the left of the barrier
has been reduced due to the depletion of the dominant natural orbital such that the interference
contrast is reduced at the subsequent collision. At the collision times, however, the coherence
function features an involved ripple structure, which is difficult to interpret.
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Figure 7.6.: Absolute value of the first-order correlation function for three different times
t = {9π, 9.5π, 10π}. The black lines indicate the density profiles at the corresponding time
instants and the black-white dashed lines mark the position of the barrier. Areas of density
smaller than 10−6 are coloured in black. Figure is taken from reference [[2]].

7.3. Dynamics of one atom in three dimensions

In this section, mainly based literally on the publication [[2]], we analyse the scattering dynamics
of a single atom at the barrier in the crossover from three to one spatial dimension by varying
the aspect ratio in order to focus solely on the impact of spatial correlations without any particle
correlations. The atom is initially displaced by b = 3 in the longitudinal dimension (z-direction
i.e. s = 3) and oscillates longitudinally back and forth and scatters (approximately spherically)
at the cantered barrier (H = 5). First, we inspect the temporal evolution of the density in
both transversal and longitudinal direction, and then discuss the effect of integer and non-
integer aspect ratios on the participating scattering channels, followed by an analysis of the CM
oscillation and the loss of longitudinal first-order coherence in the system.

In figures 7.7a and 7.7b, we depict the time-evolution of the longitudinal and transversal
density profiles, respectively. No interference pattern is observed in the longitudinal density
profile and the density becomes much more delocalized as well as more irregular compared to
the one-dimensional simulations (cf. figure 7.4). While in one dimension, the atom can only be
transmitted or reflected, in three dimensions also transversal modes may be populated, since
the barrier induces a coupling between the longitudinal and transversal modes. The transversal
excitations manifest themselves as a breathing of the density (see figure 7.7b) [212, 323, 324].
Scanning the aspect ratio, we empirically find that the transversal breathing excitations are
enhanced if the aspect ratio is integer valued, i.e. η ∈ N. The mechanism of breathing mode
excitation is discussed later in detail.

In order to analyse the channels participating in the scattering process as well as the influence
of the aspect ratio, we project the numerically ML-MCTDHB obtained wave function Ψ(r, t)
onto the following co-moving basis

φn,l,m(r, t) = ϕ2D
n,l (ρ, θ)φm(z, t),

which are products of the one-dimensional, periodically moving, stiff wave functions φm(z, t)
multiplied by static transversal harmonic oscillator eigenfunctions ϕ2D

n,l (ρ, θ). For the complete
orthonormal basis states in the longitudinal direction, we take the solutions φm(z, t) of the
time-dependent Schrödinger equation for an one-dimensional harmonic oscillator with the m-th
harmonic oscillator eigenstate ϕ1D

m initially at rest and displaced by b as the corresponding initial
condition (for a derivation see appendix G.2). The stiff wave functions φm(z, t) have the following
functional form φm(z, t) = e−iΘm(t)e+ip̄(t)zϕ1D

m (z − z̄(t)), with Θm(t) = Emt+ 1
2 z̄(t)p̄(t) and the

harmonic oscillator eigenenergies Em. Both z̄(t) = b cos(t) and p̄(t) = −b sin(t) are the classical
values for the position and momentum of an atom oscillating in a harmonic trap. Pictorially,
one may view this co-moving basis as the instantaneous eigenstates in a harmonic potential with

81



7 Scattering off a barrier

ρ
(1)(x, t) = ρ

(2)(y, t)

t

x
,
y

(b)

0 10 20 30 40

−1

0

1

ρ
(3)(z, t)

z

(a)

−3

0

3

Figure 7.7.: Figures (a) and (b) show the longitudinal and transversal density profiles,
respectively. Parameters are: barrier height H = 5, width S = 0.2, displacement b = 3 and
aspect ratio η = 2. The grey scales are normalized w.r.t. the respective maximal value of
the density. Figure is taken from reference [[2]].

the trap centre z̄(t), which are modified by a momentum boost exp(ip̄(t)z). By projecting onto
this basis, we effectively measure excitations on top of the stiff dipole oscillation of a particle in
a harmonic trap.

The initial state of the problem at hand is the Gaussian ground state displaced by z̄(0) = b
in the longitudinal direction, i.e. Ψ(r, 0) = φ0,0,0(r, 0). Without the barrier, the stiff Gaussian
wave packet φ0,0,0(r, t), oscillating in the longitudinal direction, would exactly coincide with the
solution of the time-dependent Schrödinger equation. In contrast to this, the barrier V couples
various φn,l,m(r, t) while respecting the following symmetry-induced selection rule. The Hamil-
tonian H3D = H0 + V commutes with the z-component of the angular momentum operator Lz.
Since φn,l,m(r, t) is an eigenstate of Lz with eigenvalue l, which holds, in particular, for the initial
state φ0,0,0(r, 0) with l = 0, the barrier may only couple states with vanishing angular quantum
number, i.e. φn,0,m(r, t). In order to monitor both transversal excitations and deviations from
the stiff Gaussian wave packet oscillation, we show the probabilities

dn,m(t) ≡ |〈Ψ(t)|φn,0,m(t)〉|2,

for an integer aspect ratio η = 3 (solid lines) and a non-integer aspect ratio η = 2.5 (dashed
lines) in figure 7.8a. If the aspect ratio is integer valued, the population of the mode φ0,0,0 is
transferred both to the second excited transversal harmonic oscillator state ϕ2D

2,0 measured by
d2 ≡

∑∞
m=0 d2,m as well as to higher excited longitudinal states in the comoving frame with

the transversal degrees of freedom being in the ground state, measured by d0 ≡
∑∞

m=1 d0,m,
which destroys the stiff oscillation of the wave function. We find that (for our parameter values)
essentially no other states participate in the dynamics, i.e. d0,0 + d2 + d0 ≈ 1, because the
first excited transversal state cannot be excited for symmetry reasons and the excitation energy
is not sufficient to populate even higher transversal modes. In the considered time interval,
the population d2 saturates, whereas the population of d0 monotonously increases. Since these
higher excited longitudinal modes are more delocalized, the density becomes more delocalized,
too (see figure 7.7).

In contrast to the integer valued case, no significant population of ϕ2D
2,0 can be observed for

the non-integer aspect ratio η = 2.5, i.e. d2 is negligible. In total the loss of population of the
mode φ0,0,0 is weaker for non-integer aspect ratios. Furthermore d0 is also decreased for non-
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7.3 Dynamics of one atom in three dimensions

integer aspect ratios, representing a reduced population of higher excited longitudinal states
(transversal ground state) and therefore the longitudinal density is more localized compared to
the integer aspect ratio case.
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Figure 7.8.: (a) Populations of d0,0 (all dark black), d2 =
∑∞

m=0 d2,m (all grey lines),
d0 =

∑∞
m=1 d0,m (all light grey lines) for the aspect ratio η = 3 (solid lines) and for η = 2.5

(dashed lines). (b) Normalized transversal energy E⊥(t)/E⊥(0) for the integer aspect ratio
η = 3 (dark grey solid line) and the half-integer aspect ratio (light grey solid line) for the
first oscillation periods, continued in sub figure (c) for longer times. Black vertical dotted
lines mark times, when the atom scatters with the barrier. All other parameters as in figure
7.7. Figure is taken from reference [[2]].

The suppression of transversal excitations for non-integer valued η can be explained by a simple
multiple-scattering model, focusing on the transversal degrees of freedom only and assuming
instantaneous collisions with the barrier: At the first collision (t1 = π/2) of the wave function

with the barrier, the second transversal mode ϕ
(2D)
2,0 is excited, since the first transversal mode

cannot be populated due to symmetry constraints. Directly afterwards, the time evolution is
only governed by H0. Neglecting correlations between the spatial directions induced by the
scattering, the time-dependent transversal wave function for t ∈ (π/2, 3π/2] is therefore given
by

b00ϕ
(2D)
0,0 + b02e

−i2η(t−t1)ϕ
(2D)
2,0

and up to a global phase factor with the amplitudes b00 and b02, which determine the transitions

ϕ
(2D)
0,0 → ϕ

(2D)
0,0 and ϕ

(2D)
0,0 → ϕ

(2D)
2,0 , respectively. This excitation leads to a transversal breathing

in the density with frequency 2η. After the time interval ∆t = π, the wave function collides with
the barrier again, leading to a new excitation from the ground state to the second transversal
mode and vice versa. Excitations to higher modes are neglected again. At this instant in time

(t2 = 3π/2), two additional scattering processes have to be taken into account ϕ
(2D)
2,2 → ϕ

(2D)
2,0 and

ϕ
(2D)
2,2 → ϕ

(2D)
2,2 with the amplitudes b20 and b22, respectively. The time-dependent transversal

wave function is then

B0ϕ
(2D)
0,0 +B2ϕ

(2D)
2,0

with B0 = b00b00 + b02b20e
−i2ηπ and B2 = b00b02(1 + e−i2ηπb22/b00). Within first-order time-

dependent perturbation theory (see appendix G.3), the amplitudes b22 and b00 are of the same
order b22 ' b00 and have the same phase relation. We approximate B2 ' 2b02b00 for an integer
aspect ratio η = n and B2 ' 0 for the half integer aspect ratio η = (2n + 1)/2, with n ∈
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7 Scattering off a barrier

N0. In other words, the breathing excitations induced by the first and the second collision
interfere constructively for integer aspect ratios, whereas they interfere destructively for half-
integer valued η.

This feature can also be clearly seen in the transversal energy, E⊥ = 〈−(∂2
x + ∂2

y)/2 + η2(x2 +
y2)/2〉 (see figure 7.8b,c). At the first scattering event off the barrier (t1 = π/2), longitudinal
kinetic energy is transformed into transversal excitation energy both for the integer and non-
integer aspect ratio. But at the second scattering event at t2 = 3π/2, the transversal excitation
energy is reduced again for the non-integer valued case, whereas in the integer valued case
more energy is deposited transversally. This effect causes the step like structure in E⊥(t) for
integer aspect ratios for times t < 20. As times goes by, the wave function becomes more and
more delocalized and the matrix element 〈Ψ(t)|V |Ψ(t)〉 couples the transversal and longitudinal
dimensions not only at the main scattering events ( i.e. at t = (2n+ 1)/2 π with n ∈ N0) but all
the time. Thus, following a main scattering event, where energy is pumped into the transversal
degrees of freedom, energy can ’flow’ continuously back to the longitudinal degree of freedom.
This causes the change from the step-like transversal energy increase to a peak-like one (see
figure 7.8c). Summarizing, varying the number of oscillation events with the barrier and the
aspect ratio might be used for preparing the atom in a certain state involving longitudinal and
transversal excited modes.

Due to the spatial coupling (in the case of a low integer aspect ratio), we expect also a
modification of the CM oscillation, since the barrier can transfer longitudinal kinetic energy into
transversal energy, inducing this way a decay mechanism for the longitudinal CM oscillation
〈Z〉. In figure 7.9a, we show the CM oscillation for η ∈ {2, 2.5, 3} and observe that the CM
oscillations decay faster for the integer cases, where significant excitations of the transversal
mode are possible. In order to analyse the influence of the aspect ratio on the decay of the
CM oscillations, we fit the model (7.14) to our numerical data and extract the decay coefficient
c (see figure 7.9b). If the aspect ratio is integer valued, c is peaked, indicating the mentioned
decay mechanism w.r.t. the transversal excitation. These peak heights are reduced for larger
aspect ratios since a higher initial excitation energy would be needed to populate the transversal
modes. For even larger aspect ratios, c saturates and corresponds to a pure one-dimensional
simulations with the effective physical parameters stated in section 7.2.1 (not shown).

t

〈Z
〉

(a)

0 10 20 30 40

−3

0

3

η

c

(b)

2 3 4 5 6 7 8

0.01

0.02

0.03

η =2 η =2.5 η =3

Figure 7.9.: (a) The oscillation of the CM for η = 2 (dark grey line), η = 2.5 (light grey
line) and η = 3 (black dashed line). (b) depicts the fitted decay coefficient c of model (7.14)
for various aspect ratios. All other parameters coincide with those of figure 7.7. Figure is
taken from reference [[2]].
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7.4 Dynamics of few bosons in three dimensions
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Figure 7.10.: First-order correlation function |g1(z, z′)| for different aspect ratios η at the
time instant t = 9π. Areas of density smaller than 10−6 are coloured in black. The black-
white dashed line marks the position of the barrier and the black solid line is the longitudinal
density profile. Same physical parameters are used as in figure 7.7. Figure is taken from
reference [[2]].

To analyse the loss of coherence in the longitudinal direction due to correlations between the
spatial directions, we compare the first-order correlation function

g1(z, z′) =
ρ(s=3)(z, z′)√

ρ(s=3)(z)ρ(s=3)(z′)

where the longitudinal one-dimensional density ρ(s=3)(z′) and one-dimensional density matrix
ρ(s=3)(z, z′) are obtained by integrating out the transversal degrees of freedom, e.g. ρ(s=3)(z, z′) =∫
dxdy ρ(3D)(x, y, z;x, y, z′). The absolute value of the first-order correlation function is shown

in figure 7.10 for different aspect ratios at the turning point t = 9π of the corresponding classical
oscillation. For integer aspect ratios, we find a pronounced loss of coherence between the region
close to the barrier and outer regions. This incoherent density fraction stems from nearly
spherical, incoherent scattering (involving the second excited transversal mode) off the barrier.
Due to a stronger coupling of the spatial directions, this loss of coherence is enhanced for
decreasing η. Accordingly, there is only a faint incoherent density fraction for non-integer aspect
ratios, being hardly visible in the case η = 3.5. Non-integer aspect ratios are thus favourable
if one needs to propagate an initial wave function coherently w.r.t. the longitudinal direction
in the presence of a perturber or impurity. We finally remark that g1(z, z′) contains for large
aspect ratios an asymmetry w.r.t. the barrier in comparison with smaller aspect ratios at the
time instant t = 9π. A symmetric arrangement of g1 around the barrier can be found at an
earlier time instant in which the time shift increases.

7.4. Dynamics of few bosons in three dimensions

In this section, mainly taken from the publication [[2]], we combine the knowledge, which we
have gained for a few atoms in one dimension, with one atom in three dimensions in order to
study few atoms in three dimensions taking correlations into account. We simulate the temporal
evolution of five interacting bosons, (h = 91.125) with a centred barrier (H = 9) and vary the
aspect ratio η between 1.5 and 8.0 in order to see the influence of the dimensionality on the
scattering behaviour. In order to ensure short-range interactions and to resolve the interaction
potential properly, a large number of grid points have to be used. The ML-MCTDHB method
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7 Scattering off a barrier

is tailored to effectively treat large number of grid points and we perform our simulations with
q3 = 800 and q1 = q2 = 200 grid points in the longitudinal and each transversal direction,
respectively. For a convergence study and other numerical parameters, see also appendix G.1.

In order to quantify particle and spatial correlations, we analyse the integrated depletions in
dependence of η, as we have done in chapter 6. For completeness, we repeat the definitions of
the depletion here (see also section 1.4).

D(3D)(η) = 1− 1

Tmax

∫ Tmax

0
a

(3D)
1 dt

D(s)(η) = 1− 1

Tmax

∫ Tmax

0
b
(s)
1 dt

where a
(3D)
1 and b

(s)
1 are the first natural populations of ρ(3D) and ρ(s) for the dimension s ∈

{1, 2, 3}2, respectively, and Tmax is the maximal simulation time.

We see that for small integer aspect ratios the system is spatially correlated. Increasing the
aspect ratios, particle correlations increase while spatial correlations decrease. Further increasing
the aspect ratio, the spatial correlations between the transversal and longitudinal degrees of
freedom become negligible and the depletion D(3D) come closer to the D(s)(η) one. This is the
same characteristic as already observed for the double well trap (see figure 6.6), here, however,
the spatial correlations are much stronger. For half-integer aspect ratios (see the inset of figure
6.6), we again observe the general characteristic behaviour, however, in comparison to integer
aspect ratios, the spatial correlations are suppressed, as already discovered and explained in
section 7.3.
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Figure 7.11.: Time-averaged depletions (for a definition see text) for integer (half integer)
aspect ratios in the main figure (inset), measuring particle (D(3D), all black lines), spatial
transversal (D(s=1,2), all light grey lines) and longitudinal (D(s=3), all grey lines) corre-
lations. Circles denote MF simulations, and stars represent BMF simulations. Physical
parameters: N = 5, H = 9, S = 0.2, h = 91.125 and σ = 0.1. Data points are connected by
a line in order to guide the eye. Figure is taken from reference [[2]].

The CM dynamics of the few-boson ensemble does not differ qualitatively from the single-atom
case discussed in section 7.3 (see figure 7.12a), but only quantitatively due to the presence of
interactions. As already observed, the CM oscillation for integer aspect ratios features a stronger

2 Note D(1) = D(2) due to symmetry.
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Figure 7.12.: (a) The CM dynamics is shown for the different aspect ratios η = 2, 2.5, 3.
(b) shows the fitted decay constant c of the model (7.14) in dependence of η. Same physical
parameters as in figure 7.11. Figure is taken from reference [[2]].

decay, since energy can be stored in transversal modes. Fitting again the model (7.14) to the
numerical data (figure 7.12b), we see that the decay coefficient c features a similar dependence
on η as for a single atom (figure 7.9), but the peak structure is less pronounced. Furthermore
for larger aspect ratios, a discrepancy in c is observed between MF and BMF simulations. This
effect has already been encountered in the purely one-dimensional case, where the second natural
orbital becomes populated, leading to a reduction of the decay coefficient (see section 7.2).

In figure 7.13, the absolute value of the first-order correlation functions g1(z, z′) is given for
different aspect ratios, at the right classical turning point (t = 9π). For the aspect ratios
η = 1.5, 2, we see that the correlation function exhibits the characteristic structure observed
for a single atom in three dimensions (see figure 7.10), namely the loss of coherence between
the region close to the barrier and outer regions. This structure is more pronounced for the
integer aspect ratio η = 2 because of the enhanced population of the second transverse excited
mode. Increasing the aspect ratio to η = 3.5, 4, enhances the overall coherence. For η = 3.5,
we even find almost perfect coherence in the longitudinal direction. This regime is well-suited
for propagating the initial wave function coherently in a harmonic trap with the presence of
a scatterer, as a beam splitter. For large aspect ratios η = 7.5, 8, the differences between the
integer and non-integer aspect ratios disappears and an incoherent structure emerges, which
is similar to the results for few bosons in one dimensions (see figure 7.6), but with a sharp
borderline between coherent regions.

7.5. Summary

We have studied the dynamics of an interacting ensemble of bosons, which are initially displaced
from the trap centre of an elongated, three-dimensional, harmonic trap. The displacement has
been larger than the one performed in chapter 6, so that enough initial energy exists in order
to populate transversal modes. As the same time as the start of the temporal evolution of the
bosonic ensemble, a trap-centred barrier is switched on of which the bosons can scatter. We
have been interested in the influence of spatial and particle correlations on the oscillation of the
centre of mass as well as on the loss of first-order coherence in the crossover from three to one
dimension. The crossover has been achieved by changing the aspect ratio between the transversal
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7 Scattering off a barrier

and longitudinal trap frequencies. In order to perform a structured study, we have divided the
analysis into three parts: First, we have regarded only particle correlations by looking at a pure
one-dimensional system. Second, the focus has been set to only spatial correlations and we have
analysed one boson in three dimensions, and finally, we have studied both particle and spatial
correlations by simulating five bosons in three dimensions.

Concluding, two mechanisms of coherence loss have been identified: The first mechanism
can be linked to spatial correlations, occurring for low aspect ratios, due to the excitations of
transversal modes. We observe a loss of coherence between positions close to the barrier and
outer regions. The second mechanism occurs for larger aspect ratios and originates from an
incoherence between the density fragments to the right and the left of the barrier, emerging due
to particle correlations. At intermediate aspect ratios, e.g., at η = 3.5, we have found a regime,
where both particle and spatial correlations are suppressed, and therefore, this regime is suitable
for coherent transport of the wave-function.

Next, we have focused on the damping of the centre of mass oscillation in dependence of the
aspect ratio. Apart from the influence of the reflection and transmission, induced by the multiple
scattering events of the wave function with the barrier, we have identified two more effects: In
the first one, due to the coupling of the dimensions, energy is transferred into the excitation of
transversal modes, leading to a decay mechanism for the (longitudinal) CM oscillations. This
effect is dominant for small aspect ratios. In the second one, particle correlations become more
pronounced which modify the CM oscillations, occurring at large aspect ratios.

Furthermore, we have found out, that all these described effects are stressed for integer aspect
ratios and reduced for half-integer aspect ratios. Looking at the depletions, three different
regimes have been identified, identical to the ones already studied in chapter 6, however with
stronger spatial correlations for integer aspect ratios.
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Figure 7.13.: First-order correlation function |g1(z, z′)| for different aspect ratios η at the
time instant t = 9π. Areas of density smaller than 10−6 are coloured in black. The black-
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reference [[2]]
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8 Summary

CHAPTER

EIGHT

SUMMARY

In this thesis, we have explored the impact of dimensionality on the quantum dynamics of inter-
acting bosons in various traps including spatial and particle correlations. In order to tackle this
problem, we have extended the state-of-the-art ab-initio Multi-Layer Multi-Configuration Time-
Dependent Hartree method for Bosons (ML-MCTDHB), which solves the many-body bosonic
Schrödinger equation very efficiently. The working principle of the MCTDHB algorithm is to
expand the many-body wave function into a sum over all number states of the bosonic system
with time-dependent coefficients. Importantly, the number states are created by variationally
optimized time-independent single-particle functions. In doing so, the MCTDHB can tackle
the exponential scaling of complexity with respect to the number of bosons. However, it has
not been clear how the two-body interaction can be efficiently modelled in three dimensions by
taking correlations into account.

First, we have analysed different possibilities of modelling a (time-dependent) two-body inter-
action potential in three dimensions, starting with the bare delta interaction potential, which
has the advantage that the interaction range has not to be resolved numerically. However, the
bare delta interaction in three dimensions can be shown to be an ill-defined interaction, since
the increase of the size of basis set reduces the effect of the interaction until, in the limit of an
infinite number of basic functions, no scattering remains. This is in contrast to one-dimensional
systems, where the bare delta interaction can be used without limitation. A natural correc-
tion to the bare delta interaction has been given by the regularized delta interaction potential,
which is very successfully used in analytical calculations. However, we prove that the regularized
delta interaction reduces to the bare delta interaction if it acts on a finite sum over products of
single-particle basis functions, as used in many wave function expansion methods, such as the
MCTDHB method. Only if a two-particle basis would be used, the regularized delta interac-
tion describes the scattering in three-dimensions correctly. In the Gross-Pitaevskii mean-field
theory, however, the bar delta interaction is commonly used. Indeed, we show that bare and
regularized delta interactions are equivalent if particle correlations are neglected. In order to
fix the problems with the delta interactions in three dimensions, we have developed different
renormalization algorithms suitable for the MCTDHB method. However, in doing so, these algo-
rithms expose many conceptual problems due to the time-dependent basis used in the MCTDHB
method. Therefore, the algorithms have turned out to be numerical impractical as well as con-
tradicts to the philosophy of the MCTDHB method. As a consequence, we have decided to use
finite-range interaction potentials accepting the challenge of resolving the interaction range nu-
merically. We have defined conditions for an efficient numerical implementation for finite-range
interaction potentials, e.g., that the finite-range interaction potentials must be short-ranged and
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pure repulsive, where the latter is numerically convenient and avoids complications of bound
states. We have discussed different interaction potentials and have come up with a renormalized
Gaussian interaction potential as the most suitable numerical implementation for a two-body
iteration potential. Here, the renormalization keeps the interaction range limited, and therefore,
restricts the zero-energy scattering length to the interaction range. As already mentioned, the
finite-range interaction potential induces a new physical length scale. By construction, the latter
must be the smallest length scale in the system, in particular smaller than the characteristic
trap length scale in order to satisfy the short-range criterion. In this case, numerical methods,
such as the MCTDHB method requires a large number of grid points in order to cover all the
involved lengths scales. Hence, we need an algorithm, which can efficiently handle large number
of grid points.

However, the MCTDHB method is not designed to handle these large number of grid points,
since it uses a product grid w.r.t. the dimensions as the primitive basis. In order to circumvent
this limitation, we have extended the MCTDHB algorithm by expanding the three-dimensional
single-particle functions into three, time-dependent, one-dimensional single-particle functions, in
the spirit of the Multi-Layer Multi-Configuration Time-Dependent Hartree method for Bosons
(ML-MCTDHB) [62]. In doing so, we have derived specially tailored equations of motion by
employing the Dirac-Frenkel variational principle and have discussed their efficient numerical
implementation in order to cope with the occurring numerical bottlenecks. Among other things,
e.g. by using parallel-processing, we have achieved an efficient implementation for desktop com-
puters. Our algorithm does not operate on a product grid anymore, rather the total numbers
of grid points qtot scale linear with the dimensions d, qtot ∝ dq and not exponential as in the
MCTDHB method, qtot ∝ qd The implementation of the new algorithm has been tested and
compared with other numerical methods available in the literature. Let us note that apart
from solving the full time-dependent Schrödinger equation, this ML-MCTDHB algorithm can
be also used to efficiently solve the Gross-Pitaevskii mean-field equation for a large number of
grid points by using the bare delta interaction potential.

In the remaining part of the thesis, we have applied the ML-MCTDHB method to three
different physical systems in order to study the generation and evolution of spatial and particle
correlations in the crossover from three to one dimension:

In the first setup, we have studied the ground state of two interacting bosons in both an
isotropic and elongated harmonic trap in order to determine the interesting range of numerical
and physical parameters and study the convergence behaviour of the ML-MCTDHB algorithm.
By analysing the ground state energy, we have been able to determine the maximal and/or
minimal values for the numerical parameters, i.e., the grid spacing and the grid length. By
varying the aspect ratio between the transversal and longitudinal trap frequencies, the maximal
and minimal value for the aspect ratio has been determined ensuring short-range interactions,
i.e., ensuring the disregard of the influence of the trap on the scattering process. Next, we
have determined the maximal possible value for the zero-energy scattering length, which we
can achieve, while still guaranteeing converged simulations. As we have shown, the maximal
zero-energy scattering length of the renormalized Gaussian interaction potential induces only
minor particle correlations in the system. However, higher particle correlations can be achieved
by increasing the number of particles. Furthermore, we have studied the convergence behaviour
of the two-particle system in an isotropic trap, since here the numerical results can be compared
with the analytical ones. We have found two main effects w.r.t. the convergence behaviour: (i)
In three dimensions, the natural populations decay algebraically. (ii) Even for weak transversal
confinement, small spatial correlations are obtained, justifying our wave function ansatz as done
in the ML-MCTDHB algorithm.

The second system, which we have studied, consists of a three-dimensional double-well in the
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longitudinal direction embedded in an elongated harmonic trap. A surplus of bosons in one well is
created by adding a linear potential, and by removing this linear potential the bosons tunnel be-
tween the wells. We have studied the influence of particle and spatial correlations in dependence
on the transversal confinement, performing a crossover from three to one dimension. Especially,
we have been interested in the validity of the following two approximations for the many-body
wave function: (i) The many-body wave function is approximated by a mean-field ansatz, in
particular, by assuming that all particles occupy the same orbital ψ, Ψ(r1, ....rN ) =

∏N
i=1 ψ(ri),

known as the Gross-Pitaevskii ansatz. The orbital ψ is determined variationally. This approxi-
mation of the many-body wave function cannot resolve particle correlations. (ii) The many-body
wave function is separated into a longitudinal and a transversal part, where transversally only
one mode is used, Ψ(r1, ....rN ) =

∏N
i=1 ψ(xi, yi)ϕ(z1, ....zN ). This approximation is the approach

for reducing a three-dimensional system to a pure one-dimensional system, where the transversal
modes are determined variationally and cannot resolve spatial correlations. We have seen that
for weak transversal confinements, minor particle correlations can be found in the system, how-
ever, significant spatial correlations both for the ground state and in the dynamics occur. Hence
this parameter regime is well described by the mean-field approach. For a strong transversal
confinement, the spatial correlations are reduced and significant particle correlations can be
only found in the longitudinal direction. In between the weak and strong confinement, we have
identified a regime, where both particle and spatial correlations are present such that both of the
above approximations fail to describe the many-body wave function correctly. In this regime, all
correlations have to be taken into account, which can be done by the ML-MCTDHB algorithm.
Furthermore, even for small spatial correlations, there is the need for at least two transversal
modes, in order to describe the density profile of the wave function and the tunnelling behaviour
correctly. Finally, we want to note that in the regarded system no significant energy transfer
from the longitudinal to transversal directions has been observed.

In the third system, we have changed the initial conditions in order to see an energy transfer
between the dimensions. In doing so, we have been able to analyse the quantum dynamics
of an interacting bosonic ensemble in an elongated trap, initially displaced in the elongated
direction. We follow the evolution of the bosonic ensemble in time which scatters multiple times
off a centred barrier. Again, we have been interested into the emergence and disappearance
of particle and spatial correlations in the crossover from three to one dimension. We have
observed a similar behaviour as in the double well scenario; however, spatial correlations are
strongly suppressed for half-integer aspect ratios. We have explained this effect by a model which
describes destructive interference of transversally excited modes. Furthermore, we have found
two mechanisms of loss of the first-order coherence in the longitudinal direction in dependence on
the aspect ratio. For weak confinement, we have observed loss of coherence due to an incoherent
scattering, manifested between positions close to the barrier and outer regions. For stronger
confinement, one can see incoherences between the density fragments to the right and the left
of the barrier emerging due to particle correlations. However, for non-integer aspect ratios,
coherent transport of the bosonic ensemble even in the presence of the barrier is observed.
Therefore, traps with non-integer aspect ratios may be suitable in order to avoid decoherences
in beam splitters or matter-wave interferometers. In addition, we have analysed the decay of the
amplitude of the oscillation of the centre of mass. Apart from the reflection and transmission
of the bosonic ensemble off the barrier, two more effects have been identified, which influence
the decay of the centre of mass oscillation. For small aspect ratios, transversal modes can be
populated transferring energy from the longitudinal into the transversal direction enabled by
the barrier which coupled the dimensions. Afterwards, this energy is missing in the oscillation
of the centre of mass and leading to a decay of the oscillation. In contrast for large aspect ratios,
the increasing particle correlations weaken the decay of the centre of mass oscillation, since the
second natural orbital maintains the dipole oscillation. These effects are pronounced for integer
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aspect ratios and attenuated for non-integer (especially for half-integer) aspect ratios. We have
shown that by tuning the initial displacement, the simulation time, the parameters of the hump
as well as the aspect ratio, we have full control on the spatial fragmentation in the longitudinal
directions and the admixture of excited transversal states.

In summary, the presented ML-MCTDHB method is able to cover the whole crossover from
three to one dimension by taking all correlation into account in a numerical controlled way,
which is notoriously difficult to describe by any numerical method. Since the ML-MCTDHB
method evolves the initial wave function in time, the wave function is known at every instant
in time and different kinds of observables can be calculated and studied. Especially one- and
two-body observables are easy to calculate since the one- and two-body density matrices are
anyway calculated in the ML-MCTDHB algorithm. The ML-MCTDHB algorithm is efficiently
implemented for one-species bosonic ensembles in three dimensions with (time-dependent) two-
body interaction potentials given in a product form such as the delta interaction or the Gaussian
interaction.

93



9 Outlook

CHAPTER

NINE

OUTLOOK

The presented three-dimensional version of the ML-MCTDHB method is able to cover the whole
crossover from 3D to 1D and also from 3D to 2D for interacting bosonic ensembles while taking
all kinds of correlations into account. Furthermore, arbitrary types of (even time-dependent)
three-dimensional interaction potentials can be employed, however, most efficiently is the use
of interaction potentials, which are already given in the product from w.r.t. the dimensions.
The ML-MCTDHB method, as every MCTDH method, can handle arbitrary time-dependent
single-particle potentials either with periodic or hard wall boundary conditions. With this quite
general numerical tool, a huge variety of different bosonic systems can be studied not only in
the dimensional crossover but also in a pure three- and two-dimensional situation and in which
particle correlations are taken into account. In the following, we give some examples for possible
setups:

i. The coherent transport through a wave guide [325] can be studied including spatial and
particle correlations. For a sufficient strong interaction, transversal mode can be popu-
lated, storing kinetic energy, and coherence may be lost due to particle correlations or
transversal excitations. The transport can be disturbed by single or multiple obstacles,
e.g., a single impurity in order to study polaron physics [315, 326], a chain of ions for
the analysis of solid state emulators [327, 328] or random potentials in order to investi-
gate Anderson localization [329–332]. In particular if a large amount of number of grid
points is needed, the here presented method fully exploits its advantages. As already
mentioned, apart from a static potential, also a time-dependent potential can be used
in order to quantum-mechanically study guided quantum transport in elongated traps or
wave guides [333–335]. Furthermore, by placing on each end of the wave guide a bosonic
ensemble with opposite initial momentum, the quantum dynamics of the many-particle
scattering process can be analysed [336,337]. Using the ML-MCTDHB method, all these
studies can be performed by taking particle and spatial correlation into account. These
results of the studies of coherent transport through a wave guide may be used in many
physical fields, e.g., such as for matter-waves interferometers or for quantum computing.

ii. Another interesting study is the dynamics of the breathing mode in the crossover from
three to one dimension and the influence of particle and spatial correlations on the breath-
ing frequency. In particular, differences from the mean-field results [80, 118, 154] are ex-
pected or a modification from pure one-dimensional examinations [324,338]. Furthermore,
different quench scenarios can be imagined, where either the interaction strength or an
external potential e.g. the longitudinal or transversal trap frequency is quenched, creating
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not only a breathing mode, but also a cradle and/or dipole mode1. In particular, induced
dynamics in the direction orthogonal to the quench direction is of interest in order to
observe induced spatial as well as particle correlations.

iii. The three-dimensional ML-MCTDHB algorithm can also be used to study coherence prop-
erties of twin-atom beams [340, 341]. Twin-atom beams can be created if a transversally
excited ensemble of bosons may decay into a longitudinal right and left moving fraction.
These counter-propagating beams provide non-local correlations and feature entangle-
ment, which can be exploited in quantum communication protocols [341].

iv. Owing to the efficiency, the ML-MCTDHB algorithm is suitable for the study of parameter
scans. For example, it would be interesting so see the dependency of the Lieb-Lininger
parameter, e.g. monitored by the interaction energy, on the crossover from three to one
dimension as well as on the number of particles. We remind that for a pure one-dimensional
system, the Lieb-Lininger parameter behaves as ∝ 1/N whereas in three dimensions ∝ N .

v. Another interesting study would be the tunnelling between two neighbouring elongated
traps (see figure 9.1a). A bosonic ensemble can tunnel w.r.t. the y-directions while many
low laying modes can be excited in the longitudinal (orthogonal) z-dimension [303, 342,
343]. This is in contrast to the setup, studied in chapter 6, where no significant orthogonal
modes are excited during the tunnelling process, i.e. no significant energy transfer exists
between the transversal and longitudinal directions. Here, one can analyse, how these low-
energy excitations (in the z-direction) influence the tunnelling frequency taking particle
correlations and spatial correlations into account.

Another aspect is that ions could be put between the two neighbouring elongated traps
(see figure 9.1b) and the influence of the ions on the tunnelling frequency can be studied
and allowing for tuning the tunnelling by changing the interaction between the ion(s)
and the boson. The corresponding pure one-dimensional study has been performed in
reference [213,214,316].

x

y

x

y

Figure 9.1.: Left panel shows two separated elongated bosonic ensembles (grey shaded area)
confined to elongated traps, sketched by the black solid lines. Right panel shows the same
as the left panel but with three additional ions between the two elongated traps.

vi. A challenging but in principle possible numerical task would be to study a bosonic ensem-
bles with attractive interactions. The implementation of an attractive interaction potential
is straight forward, namely, by using negative prefactors for the renormalized Gaussian
interaction potentials in order to model more realistic interaction potentials. Furthermore,
one can think of a combination of repulsive and attractive interaction potentials, e.g., by
using two nested Gaussian interaction potential. Due to the resonances occurring in an

1For a one dimensional study see reference [339]
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9 Outlook

attractive interaction potential, an arbitrary high zero-energy scattering length can be
obtained, and maybe even, the unitary limit in three dimensions can be reached, being of
current interest in research [15,344]. However, the convergence behaviour of such simula-
tions has to be studied very carefully since it can be questionable if these simulations can
be brought to convergence [231].

vii. Not only various pure three-dimensional setups or studies of the dimensional crossovers
from 3D to 1D can be handled by the ML-MCTDHB algorithm but also all the above
studies can be performed for a pure two-dimensional bosonic ensembles or crossovers be-
tween 2D and 1D. However, we note that the algorithm is optimized for three dimensions,
resulting in a computational overhead for two dimensions. The computational overhead
can be minimized by a future efficient implementation of the ML-MCTDHB algorithm for
two dimensions. Other possible numerical extensions of the three-dimensional algorithm
are the extension to multi-species, such as two or more different bosonic or fermionic
or mixtures between fermionic and bosonic systems in three dimensions, which we have
already derived in reference [[3]]. Furthermore, another possible extension could be to in-
clude internal degrees of freedoms, e.g., spin, yielding a four-dimensional problem. These
algorithms have to be highly optimized in order to obtain tolerable simulation times and
to achieve convergence.

Concluding, we are able to study a plethora of different systems while taking particle and
spatial correlations into account with the here developed three-dimensional version of the ML-
MCTDHB method. With this optimized algorithm, we have been able to reach new regimes,
whose quantum dynamics are notoriously difficult to be studied by any method in the literature.
These studies enable to develop a better understanding of microscopic physical processes in
many-body systems and can advance the interpretation of physical experiments by illuminating
the influence of correlations.
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A General Appendix

APPENDIX

A

GENERAL APPENDIX

A.1. Acronyms

Table A.1.: List of used acronyms

BEC Bose-Einstein Condensate
BMF Beyond Mean-Field
CI Configuration Interaction
CM Center of Mass
DOF Degree Of Freedom
EOM Equations Of Motion
FFT Fast Fourier Transform
GPE Gross-Pitaevskii Equation
IMEST Interaction Matrix Evaluation by Successive Transforms
MCTDH(B) Multi-Configurational Time-Dependent Hartree method (for Bosons)
MF Mean-Field
ML-MCTDH(B) Multi-Layer Multi-Configurational Time-Dependent Hartree method (for Bosons)
1D-SPF(s) One-Dimensional Single-Particle Functions(s)
3D-SPF(s) Three-Dimensional Single-Particle Functions(s)
rel relative
w.r.t. with respect to
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APPENDIX

B

SCATTERING THEORY

B.1. Spherical Bessel and Neumann functions

In the far and near field, the spherical Bessel and Neumann function have the asymptotic
representation [345]:

lim
x→∞

jl(x) = j∞l (x) =
sin(x− lπ

2 )

x
lim
x→0

jl(x) = j0
l (x) =

xl

(2l + 1)!!

lim
x→∞

nl(x) = n∞l (x) = −
cos(x− lπ

2 )

x
lim
x→0

nl(x) = n0
l (x) = −(2l − 1)!!

xl+1

B.2. Proof that the bare delta interaction does not scatter in three
dimensions

Let p = i∂r be the radial momentum operator in three dimensions (in position representation)
and T = p2/2 = −∂2

r/2 the radial kinetic operator as well as φ(r) = u(r)/r an arbitrary,
normalized (well-defined) wave function with the radial coordinate r. The Schrödinger equation
can be written for u(r) [see equation (2.26)]. If p is a hermitian operator 〈u|pu〉 = 〈pu|u〉 then
T is also one, since p can be applied twice. 〈u|Tu〉 = 〈u|p2u〉 = 〈pu|pu〉 = 〈p2u|u〉 = 〈Tu|u〉.
Next, we analyse under which conditions p is hermitian in the interval from a to b.

〈u|pu〉 = |u(r)|2|ba + 〈pu|u〉

using partial integration to shift the partial derivative to the conjugated part, and therefore, the
condition for a hermitian momentum operator is

|u(a)|2 = |u(b)|2 (B.1)

We set the boundary a→ 0 and b→∞ and notice that u(r)|r→∞ = 0, due to the normalization
condition of φ(r), 1|φ(r)|2. Therefore at position r = 0, the function u must be zero as well,
otherwise p is not hermitian. Because the bare delta interaction is localized at r = 0, however
u(0) = 0, the bare delta interaction has got no effect in three dimensions.
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C Efficient numerical model for the two-body interaction potential

APPENDIX

C

EFFICIENT NUMERICAL MODEL FOR THE TWO-BODY
INTERACTION POTENTIAL

C.1. Derivation of equation (3.4)

We show the divergent behaviour of equation (3.4) by using harmonic oscillator functions
〈r = 0|ϕk〉 with l = 0.

〈r = 0|ϕk〉 = NkL
1
2
k (0)Y00(θ, φ)

=
√
π−3/42kk!/(2k − 1)!!

(
k + 1

2
k

)
(C.1)

with the generalized Laguerre polynomials L
1
2
k (0) =

(
k + 1

2
k

)
, the spherical harmonic function

Y00(θ, φ) = 1/
√

4π and the normalization constant Nk = (4π)−1/4
√

2k+3k!/(2k + 1)!!. We have
set ~ = ω = m = 1. The left hand side of equation (3.4) is then

∞∑
k=0

|〈r = 0|k, l = 0,m = 0〉|2

εk,l=0 − Erel

=

(
1

π

) 3
2
∞∑
k=0

2kk!

(2k − 1)!!

(
k + 1

2
k

)(
k + 1

2
k

)
1

εk,l=0 − Erel

=

(
1

π

) 3
2 1

2

∞∑
k=0

(2k + 1)!!

(2k)!!

1

k − E

where we have used the following identities Γ(k + 3/2) =
√
π(2k + 1)!!/2k+1, (2k)!! = 2kk! and

insert the relations εk,l=0 = 2k+ 3/2 and the definition E ≡ Erel/2− 3/4. Here, Γ is the gamma
function, Γ(k+1) = k!. With (2k+1)!!/(2k)!! > 1, the sum is bounded from below by

∑∞
k=0

1
k−E ,

which is divergent.

C.2. Transformation of the regularized delta interaction to
laboratory coordinates

We transform the regularized delta interaction potential gδ(r)∂rr, given in spherical relative
coordinates with r = |r|, into Cartesian laboratory coordinates. The individual parts of the
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C.3 Renormalization Theories

regularized delta interaction potential can be transformed separately. We only perform the
transformation into Cartesian coordinates for the derivative ∂/∂r since the other parts are
trivial. The coordinate transformation from spherical relative coordinates to Cartesian relative
coordinates reads

r =

 r1

r2

r3

 =

 x
y
z

 =

 r cos θ sinϕ
r sin θ sinϕ
r cosϕ


leading to

∂

∂r
=

3∑
i=1

ri√
r

∂

∂ri

with r2 = x2 +y2 +z2. After transformation into the laboratory frame (r = r2−r1) and putting
the parts together, equation (3.6) is recovered.

C.3. Renormalization Theories

As mentioned in the main text, different renormalization theories have been developed in various
physical fields. However, these theories cannot be used straight forward in our case, because of
the complexity of the ML-MCTDHB algorithm. Before presenting our developed renormalization
procedures w.r.t. to the ML-MCTDHB algorithm, we repeat the requirements, which a proper
renormalization procedure has to fulfil.

i. The renormalization theory should handle arbitrary, especially time-dependent, external
potentials in order to be flexible for different (experimental) setups.

ii. Not only the ground state of a two particle systems, but also the renormalization of excited
as well as many-particle states should be described correctly.

iii. Since the ML-MCTDHB method is ab-initio, the renormalization procedure should not
use any approximation, except the ”natural” numerical truncation of the single-particle
functions or the discretization of space.

iv. The renormalization theory should be numerical feasible, and its computational costs
should be less in comparison with the remaining part of the ML-MCTDHB algorithm.

C.3.1. Renormalization theory No. 1

The idea of the first renormalization theory is to start with the truncated version of equation
(3.2), derived in the main text. As a reminder, equation (3.2) reads:

cj(εj − Erel) + gR

M∑
i=1

ci〈ϕj|δ|ϕi〉 = 0 (C.2)

We want to determine Erel = Erel(g), in order to derive a relation between the true and renor-
malized interaction strength, g and gR, respectively. For two, weakly interacting particle in an
isotropic trap, an analytic expression can be obtained [201], Erel(g) = 1.5 + (2π)−3/2g. Approx-
imating |ϕi〉 by harmonic oscillator functions with spherical symmetry, equation (C.2) can be
written as an eigenvalue equation E−1Wc = 1/gR c, with the two matrices

W =

 W0,0 W0,1 ...
W1,0 W1,1 ...
... ... ...

 E−1 =


1

(2π)3/2g
0 ...

0 1
(2π)3/2g−2

...

... ... ...
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C Efficient numerical model for the two-body interaction potential

where

Wm,n =

(
1

π

) 3
2

√(
n+ 0.5
n

)√(
m+ 0.5
m

)
The matrix W is symmetric i.e. can be diagonalized, and the eigenvalue problem can be solved.
There is only one eigenvalue, since the rank of W is one, thus the given renormalization is unique
and can be inverted. For example, for only one supplied basis function M = 1, one recovers the
mean-field solution again,

g = gR.

For M = 2, we obtain

gR = π

−
√

25

16π2
g2 +

√
2

π
g + 8π +

5

4π
g +
√

8π


We skip to write down the expressions for higher M , since they are very lengthy and not further
used in this thesis.

In general, for arbitrary trap geometries, Erel and Wm,n have to be determined numerically
and gR can be obtained using equation (3.4), where the sum on the right hand side is truncated
in dependence of M .

C.3.2. Renormalization theory No. 2

In the ML-MCTDHB method, the three-dimensional single-particle Hilbert space H is separated
into one-dimensional single-particle Hilbert spaces Hs, where s stands for the three dimensions,
respectively. Both the H and the Hs are truncated by the ML-MCTDHB method. In H, the
three-dimensional single-particle functions {χi}Mi=1 form a basis and the Hs are each spanned

by {φ(s)
i }

ms
i=1. All these truncation are summarized in C = (M ;m1,m2,m3), called numerical

configuration. A proper renormalization theory must take all these multiple truncations into
account.

Following the lines of [208], our main renormalization formula is obtained in the limit for small
energies E → 0, which is discussed in the following

g = lim
E→0

gR
1 + gRΩ(E)

(C.3)

where the zero-energy limit is already performed on the left hand side and Ω(E → 0) =
limE→0〈r = 0|G0(E)|r = 0〉 is the non-interacting Green’s function at r = 0. This result is
obtained by comparing the T -matrices, on the one hand, in free space for the truncated and,
on the other hand, for the full Hilbert space, respectively1. In three dimensions, Ω is infinite
and one obtains for the ’true’ interaction strength g = 0. Only through the truncation of the
three-dimensional single-particle basis, Ω gets finite and leads to a useful renormalization for-
mula. We note that the definition of Ω is given in relative coordinates. In order to calculate
Ω within the truncated basis of the ML-MCTDHB method (given in laboratory frame), first,
Ω has to be transformed into the laboratory frame2 and second projected onto the numerical

single-particle functions {χi}Mi=1 as well as {φ(s)
i }

ms
i=1, given by the ML-MCTDHB algorithm. In

doing so, the multiple truncations of single basis functions of the ML-MCTDHB algorithm are
taken into account. By solving the transformation from the relative frame into the laboratory
frame, six dimensional integrals over all grid points have to be solved, which are numerically

1 For a consideration of the T -matrix and Green’s function in a harmonic oscillator potential see [346–348].
2Assuming a Gaussian ground state for the centre of mass.
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C.4 Improvement of the POT-FIT algorithm

very costly, and this procedure is in complete contrast with the basic idea of ML-MCTDHB,
which avoids these higher-dimensional integrations over the grid points. Furthermore, many
conceptual problems occur, which are discussed in the main text (see section 3.1.3). Here, we
apply the renormalization procedure3 to two bosons in an isotropic harmonic trap and compare
the ground state with the analytically known solutions [201].

First, we want to study the effect of increasing the number of the three-dimensional single-
particle functions M ∈ {1...8} as well as the number of one-dimensional single-particle functions
m = m1 = m2 = m3 ∈ {2, 3}. The interaction strength gR is set to one and the number of
grid points are n = n1 = n2 = n3 = 200. In figure C.1a, the ground-state energy is plotted
in dependence of M w.r.t. different numerical configurations. We see that increasing both the
number of three-dimensional and one-dimensional single particle functions, the ground-state
energy tends to the non-interacting limit E = 3.

The influence of the renormalization procedure is given in figure C.1b and C.1c, where the
ground state energy and width of the radial density profile are compared with the analytical
solution [201], respectively. The renormalized energy fits very well to the analytical solution,
whereas we find deviations in the width for the density profile. We conclude that the wave
function profile is not renormalized correctly. Furthermore, by renormalizing the energy of the
first excited states (not shown), we see a discrepancy between the analytic and the renormalized
first excited energy, as expected, since the renormalization formula (C.3) gives us only a state-
independent shift in the interaction strength.

Concluding, this renormalization can only be used with a high numerical effort, which makes
the renormalization theory infeasible. Furthermore, within this renormalization method, con-
ceptual problems occur (discussed in the section 3.1.3).

C.4. Improvement of the POT-FIT algorithm

POT-FIT is an algorithm [232, 233] that represents a multi-dimensional potential WG with N
degrees of freedom s = (s1, ... sN )T as a combination of Pi one-dimensional potentials wi(sj):

WG(s) 'WP1 ... PN (s) =

P1∑
p1=1

...

PN∑
pN=1

cp1 ... pNwp1(s1) ... wpN (sN ). (C.4)

If N = 2 and Pi equals the number of grid points, the POT-FIT algorithm reduces to the
Schmidt decomposition [122] and becomes exact. In order to simplify the notation, we consider
only two degrees of freedom N = 2, with P1 = P2 = P .

Usually, for short-range potentials WG, many expansions coefficients c are needed in order to
approximate WG properly, since significant oscillations appear in the pot-fitted potential WP

(see figure C.2). Apart from these artificial oscillations, which are slowly damped for short-
range interaction potentials, additional artificial bound states can occur. In order to improve
the approximation, the different POT-FIT potentials WP for various P can be averaged, leading
to a suppression of the artificial oscillations and a reduction of the depth and number of artificial

3 In order to avoid the mentioned six dimensional integration in every iteration step, we assume that the three-
dimensional single-particle functions {χi}Mi=1 change only little during relaxation, and perform the renormal-
ization procedure only for the final obtained state.
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Figure C.1.: (a) Ground state energy in dependence of M for different configurations and
gR = 1. (b) Ground state energy in dependence of different ’true’ interaction strengths g for
the numerical configurations C = (6; 3, 3, 3). Dark grey stars are the results obtained with
renormalization and the light grey circles have been obtained without renormalization. The
black solid line is the analytic result given by reference [201]. (c) Radial width of the ground
state density profile 〈r2〉 in dependence of true interaction strength g. Same numerical
configuration as in (b).
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bound states (see figure C.2). In doing so, we can write:

WG(s1, s2) ' 1

N

N∑
P=1

WP (s1, s2) =
1

N

N∑
P=1

P∑
p1,p2=1

cp1p2wp1(s1)wp2(s2)

=
1

N
([c11w1w1] + [c11w1w1 + c12w1w2 + c21w2w1 + c22w2w2] + ...)

where we have dropped the argument of the potential wp in the second line. The single expansion
terms can be rearranged leading to a modification of the expansion coefficients cp1p2

=
1

N
(Nc11w1w1 + (N − 1) [c12w1w2 + c21w2w1 + c22w2w2] + (N − 2) [c13w1w3 + ...] + ...)

=
N∑

p1,p2=1

cnewp1p2
wp1wp2

with

cnewp1p2
= cp1p2

N + 1−max(p1, p2)

N
. (C.5)

Concluding, the improved POT-FIT algorithm modifies the expansion coefficients, which is of no
additional numerical cost and can be implemented very easily. In figure C.2, we plot the improved
POT-FIT potential Wav (black dashed line). Its oscillations are faster damped and most of the
artificial bound states disappear, however, its core width is broader. The approximation can be
even further improved (a reduction of the width of the core) if the lowest POT-FIT terms are
neglected, which are mainly responsible for the broadening of the core.

WG(s1, s2) ' 1

N2 −N1

N2∑
p=N1

Wp(s1, s2)

After a re-summation, similar as above, the new POT-FIT coefficients are given by

WG(s1, s2) '
N2∑

p1,p2=1

N2 + 1−max (N1, p1, p2)

(N2 −N1)
cp1p2wp1(s1)wp2(s2) (C.6)
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Figure C.2.: The short range potential WG (black solid line) is compared with its POT-
FIT representation WP=20 (black dotted lines) for twenty expansion terms and the improved
POT-FIT representation Wav with N = 20(black dashed line).
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C.5. Interaction Matrix Evaluation by Successive Transforms

In this section, we present the Interaction Matrix Evaluation by Successive Transforms (IMEST)
algorithm [234], which is an efficient algorithm in order to calculate interaction matrix elements
such as Wijlm = 〈φiφj |Ŵ |φlφm〉, where φi can be either three- or one-dimensional functions. In
this thesis, φi is one-dimensional, and therefore, we focus only on the one-dimensional case. The
interaction matrix elements are then

Wijlm =

∫
dx

∫
dx′ (φi(x))∗

(
φj(x

′)
)∗
φl(x).φm(x′)W (x− x′) (C.7)

Using the property that the interaction potential W (x−x′) depends only on the distance between
two particles ξ = x− x′, we can reduce the computational effort from q2 to ∝ q log(q) by using
a Fast Fourier Transform (FFT), which obeys a logarithmic scaling w.r.t. the number of grid
points q. The forward and backward Fourier Transform of the interaction potential are defined
as

W (ξ) = W (x− x′) =
1√
2π

∫
dk e−ik(x−x′)w(k) (C.8)

w(k) =
1√
2π

∫
dξ eikξW (ξ) (C.9)

Inserting (C.8) into (C.7) leads to

Wijlm =
1√
2π

∫
dx (φi(x))∗ φl(x)

[∫
dk w(k)

(∫
dx′

(
φj(x

′)
)∗
φm(x′)e−ikx

′
)
eikx

]
The calculation of this integral can be divided into three steps. The first step is a FFT
w.r.t. the x′ coordinate, gjm(k) = 1√

2π

∫
dx′ (φj(x

′))∗ φm(x′)e−ikx
′
, followed by an inverse FFT,

Gjm(x) = 1√
2π

∫
dk w(k)gjm(k)eikx. In the last and third step, one has to perform a one-

dimensional integration over the x coordinate, Wijlm =
√

2π
∫
dx (φi(x))∗ φl(x)Gjm(x). In total,

the computational effort is ∝ 2 ·q log q+q for every time step, instead of the ’brute force’ scaling
∝ q2.
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APPENDIX

D

THE METHOD: ML-MCTDHB

D.1. Reduction of (ML-)MCTDHB algorithm to the Gross-Pitaevskii
equation

In this section, we show how the ML-MCTDHB equations of motion can be reduced to the Gross-
Pitaevskii equation (GPE) [75,76]. Therefore, we assume that the simulation is fully converged
w.r.t. the numbers of 1D-SPFs (m1,m2,m3) on the sub-particle layer [see equations (4.16) and
(4.17)]. Alternatively, we can start directly from equation (4.9), namely, the equations of motion
for MCTDHB. On the particle layer, we take only one orbital into account, M = 1, corresponding
to a mean-field simulation. Same to the derivation of the GPE, the (ML-)MCTDHB method
variationally determines the single-particle orbitals. We pick some arbitrary particle (say the
first one) and multiply equation (4.16) with |φI〉, which lead us to

i∂t|χ〉 =

[
(1− |χ〉 〈χ|)

(
H0 +

[
ρ(χ)

]−1
〈W 〉(χ) |χ〉

)]
.

where H0 is the single-particle Hamiltonian. By neglecting particle correlations, we have shown
(see chapter 3) that the interaction potential can be modelled by the bare delta potential, which is
then W (r1, r2) = g

∑N
i=2 δ(r1−ri), and the mean field operator becomes 〈W 〉(χ) = g(N−1) |χ|2.

In the mean-field picture, the one body-density matrix ρ(χ) is unity and the equation of motion
simplifies to:

i∂t |χ〉 =
(
H0 + g(N − 1) |χ|2

)
|χ〉 − c(t) |χ〉 , (D.1)

with a time dependent term c(t) = 〈χ|
(
H0 + g(N − 1) |χ|2 |χ〉

)
, which cancels if one applies an

unitary transformation |χ〉 = ei
∫ t
0 c(τ) dτ |χ̃〉. Finally, one obtains the well-known GPE

i∂t |χ̃〉 =
(
H0 + g(N − 1) |χ̃|2

)
|χ̃〉 . (D.2)

D.2. Writing the bare delta interaction in product form

In this section, we present a trick how the bare delta interaction potential δ(r) ≡ δ(r2− r1) can
be transformed into a product w.r.t. its single degrees of freedom, namely, by using the identity

δ(r2 − r1) =

∫
d3ξ δ(r2 − ξ)δ(r1 − ξ).
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D The Method: ML-MCTDHB

For numerical purposes, the integral can be converted into a summation over all grid points, with
the weights wi (the same weights are used for the DVR grid) given by the Gaussian quadrature
formula

∫
f(ξ) dξ =

∑N
i=1wif(ξi). In total, q1q2q3 terms are created, where qs is the number of

grid points for dimension s. Then, the delta interaction potential is given by weighted kronecker
delta function δ(a − b) → 1

wδa,b. Finally, one gets the delta-interaction as a sum over simple
products

δ(a− b) = ⊗3
s=1

∑
qs=1

D(s)
qs ,

with D
(s)
q = 1

wq
δas,ξqδbs,ξq .

D.3. Connection between the many-body wave function and the
one-body density operator

In general, a two-component wave function, e.g., two particles or two species, can be decomposed
into single-component, orthogonal orbitals

|Ψ〉 =
∑
n

√
an|α(1)

n 〉|α(2)
n 〉 (D.3)

using the Schmidt decomposition [122]. In the following, we think of two particle orbitals for
these components. In this short section, we proof that |αn〉 and an are the natural orbitals and
natural populations, respectively. The natural populations an (natural orbitals |αn〉) are defined
as the eigenvalues (eigenfunctions) of the one-body density matrix ρ(1) = tr2|Ψ〉〈Ψ|, where tr2

denotes the sum over the second particle and |Ψ〉 is the complete two-body wave function,

ρ(1) =
∑
m

〈α(2)
m |Ψ〉〈Ψ|α(2)

m 〉. (D.4)

Inserting equation (D.3) into equation (D.4), leads to

ρ(1) =
∑
n

an|α(1)
n 〉〈α(1)

n |, (D.5)

where we used the orthogonality of the single particle orbitals. Multiplying the upper equation

with |α(1)
m 〉 leads to the eigenvalue equation (D.6).

ρ(1)|αm〉 = am|αm〉. (D.6)

with the spectral decomposition (D.3). By projecting equation (D.3) onto the second particle
leads to the eigenvalue equation, which determines the natural populations and natural orbitals
as well

〈α(2)
m |Ψ〉 =

√
am|α(1)

m 〉. (D.7)

D.4. Derivation of the equations of motions of the ML-MCTDHB
algorithm

In this section, we sketch the derivation of the equations of motion for the ML-MCTDHB im-
plementation in three dimensions. The expansion of the many-body wave function into number
states, the expansion of the three-dimensional SPFs into one-dimensional SPFs, and the ex-
pansion of the one-dimensional SPFs into a DVR grid have been already given in equations

110



D.4 Derivation of the equations of motions of the ML-MCTDHB algorithm

(4.4), (4.14), and (4.15), respectively. The equations of motion can be derived much easier by
introducing the so-called hole-functions for each layer, which are labelled by an upper bar:

|Ψ〉 =
M∑
j

|χj〉Ψ|χj〉η |χj〉Ψ :=
N−1∑
~n

A~n+~j

√
nj + 1

N
|~n〉

|χi〉 =

m∑
q

|φ(s)
q 〉|φ

(s)
q 〉χi |φ(s)

q 〉χi :=
∑
Rs

Bi,R(rσ→qs)|φ
(σ)
Rs
〉

|Ψ〉 =
m∑
q

|φ(s)
q 〉Ψ|φ(s)

qs 〉 |φ(s)
q 〉Ψ :=

M∑
j

|χj〉Ψ|φ(s)
q 〉χj ,

where we used the terminology from the main text. The sum
∑

Rs
stands for the summation

over the two dimensions σ excluding the s dimension (see table D.1) and R(rσ → qs) replaces in
the multi-index R the rσ index with the qs index. With the help of the hole functions the time-
derivative and the variation of the many-particle wave-function can be expressed in a simple
way:

∂t|Ψ〉 =
∑
~m

∂tA~m|~m〉+
∑
iI

|χi〉Ψ|φI〉∂tBi,I +
∑
suv

|φ(s)
u 〉Ψ|Sv〉∂tCuv

δ|Ψ〉 =
∑
~m

δA~m|~m〉+
∑
iI

|χi〉Ψ|φI〉δBi,I +
∑
suv

|φ(s)
u 〉Ψ|Sv〉δCuv

where |S〉 stands for the time-independent primitive grid for the dimensions S = {x, y, z}.
Inserting the time-derivative and the variation of the many-particle wave-function into the Dirac-
Frenkel variational principle

〈δΨ| i∂t −H |Ψ〉 = 0

and by performing the variation w.r.t. ∂A~m, ∂Bi,I and ∂Cuv, we obtain the equations of motion
for the top-, particle-, and sub-particle layer for an arbitrary, many-particle Hamiltonian H.
Due to the rotational invariance of the basis spanned by the SPFs, we can set the constraint
〈φq|∂tφq〉 = 0 in order to fix the basis and to simplify the equations of motion. From this
constraint, it follows: 〈χi|∂tχi〉 = 0 and 〈~n|∂t ~m〉 = 0. Finally, we get:

i∂tA~n =
∑
~m

〈~n|H|~m〉A~m

i∂tBi,I =
∑
jkJ

〈φI |
[
ρ(χ)

]−1

ik

(
1− P (χ)

)
〈χk|Ψ H |χj〉Ψ |φJ〉Bj,J

∂tCwl =
∑
vuk

〈Sl|
[
ρ(φ)

]−1

wk
(1− P (φ))〈φ(s)

k |Ψ H |φ(σ)
u 〉Ψ|Σu〉Cuv,

with the one-body density matrices[
ρ(χ)

]−1

ik
= 〈χk|Ψ|χi〉Ψ,

[
ρ(φ)

]−1

uw
= 〈φ(s)

u |Ψ|φ(σ)
w 〉Ψ,

and the projectors

P (χ) =
∑
i

χi〉〈χi|, P (φ) =
∑
I

|φI〉〈φI |.

Using the Hamiltonian H [defined via equation (4.1)] with the two-body interaction (see section
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D The Method: ML-MCTDHB

Table D.1.: Permutation of the dimension

if s then σ if S then Σ

1 {2, 3} x {y, z}
2 {3, 1} y {z, x}
3 {1, 2} z {x, y}

4.2), the mean-field operator matrices 〈χk|Ψ H |χj〉Ψ and 〈φ(s)
k |Ψ H |φ(σ)

u 〉Ψ can be determined,
leading to equation (4.21) and (4.20) respectively. Finally, we obtain the equations of motion
for the top layer [see equation (4.8)], particle layer [see equation (4.16)] and subparticle layer
[see equation (4.17)]. By the introduction of two-particle hole functions

|Ψ〉 =
∑
ij

|χi〉|χj〉|χ(1)
i χ

(2)
j 〉Ψ,

|χ(1)
k 〉Ψ =

∑
l

|χ(2)
l 〉|χ

(1)
k χ

(2)
l 〉Ψ,

|χ(1)
i χ

(2)
j 〉Ψ =

N−2∑
~n

A~n+~i+~j

√
ni + 1

N

√
nj + 1 + δij
N − 1

|~n〉,

the two-body density matrices can be easily expressed, where the upper index of the 3D-SPF
labels the particle index [

ρ
(χ)
2

]
ijkl

=
Ψ

〈
χ

(1)
i χ

(2)
j

∣∣∣∣∣∣χ(1)
k χ

(2)
l

〉
Ψ
.
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APPENDIX

E

TWO PARTICLES IN AN ELONGATED TRAP

E.1. Derivation of the analytic solution of the breathing mode

We derive the analytic solution of one particle in one dimension, initially in the ground state,
which is instantaneously quenched by changing the trap frequency from Ω to ω. We set the
mass m = 1 and ~ = 1. The initial and final Hamiltonians read in position representation

Hω = −1

2

d2

dx2
+

1

2
ω2x2

HΩ = −1

2

d2

dx2
+

1

2
Ω2x2.

The initial wave function 〈x|N = 0〉 is the zero order of the harmonic oscillator functions

〈x|N〉 =

(
Ω

π

) 1
4 1√

2NN !
HN

(√
Ωx
)
e−

Ωx2

2 ,

where HN are the Hermite polynomials of order N . We calculate the time-evolution of this
initial state, |Ψ〉 = e−iHωt|N = 0〉, by inserting a complete set of orthogonal functions

〈x|n〉 =
(ω
π

) 1
4 1√

2nn!
Hn

(√
ωx
)
e−

ωx2

2

yielding to

|Ψ(t)〉 =

∞∑
m=2n=0

c2ne
−iE2nt|2n〉+

∞∑
m=2n+1=0

c2n+1e
−iE2n+1t|2n+ 1〉, (E.1)

where we have separated the even and odd states and with the coefficients cm

cm = 〈m|N = 0〉 =
1√

2mm!

(
Ωω

π2

) 1
4
∫
dx Hm

(√
ωx
)
e−

(Ω+ω)x2

2 .

Substituting
√

Ω+ω
2 x = x

α = ξ and using the solution of the integral
∫∞
−∞ dy e

−y2
H2m(ay) with

a =
√

Ω+ω
ω (see reference [349]), lead us to

c2m =
(Ωω)

1
4√

22m(2m)!

(2m)!

m!
α(a2 − 1)m

c2m+1 = 0.
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E Two particles in an elongated trap

Inserting the expansion coefficients cm into the wave function of equation (E.1) and using the
formula for generation function for even Hermite polynomials [350]1, we get

〈x|Ψ(t)〉 =

(
4

π

Ωω2

(Ω + ω)2

) 1
4

e−i
ω
2
t 1√

1 +Ae−i2ωt
e
−ωx

2

2

(
1−Ae−i2ωt
1+Ae−i2ωt

)
(E.2)

and for the density

Ψ?Ψ =

(
4

π

Ωω2

(Ω + ω)2

) 1
2 1√

B
e
− 4ω2Ω

B(ω+Ω)2
x2

, (E.3)

with A = (ω−Ω)/(ω+Ω) and B =
(
1 +Ae−i2ωt

) (
1 +Ae+i2ωt

)
= 1+A2+2A cos(2ωt). The wave

function is normalized to one as can be shown by a straight forward calculation. Furthermore,
the variance can be calculated

〈x2〉 =
(ω + Ω)2

4ω2Ω
B(t) =

1

2ω2Ω

[(
ω2 + Ω2

)
+
(
ω2 − Ω2

)
cos(2ωt)

]
. (E.4)

1∑∞
n=0

tn

n!
H2n(ωx) = 1√

1+4t
e(

4t
1+4t

ωx2)
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APPENDIX

F

APPLICATION: DOUBLE WELL TRAP

F.1. Convergence studies

In this section, we check the convergence of the simulations performed in chapter 6. The analysis
of convergence is mainly taken from [[1]]. In doing so, we vary the number of 3D-SPFs M and
1D-SPFs (m1,m2,m3) for fixed physical parameters, and compare the ML-MCTDHB results for
an observables of interest. A simulation is converged if the observables of interest do not change
upon increasing the number of SPFs further. One has to check carefully the convergence in the
ML-MCTDHB algorithm, because an interdependence between M and ms can occur.

For the considered cylindrically symmetrical trap, we may choose the number of transversal
1D-SPFs to be equal: m1 = m2. For nearly isotropic traps, i.e. η ∼ 1, one can use m1 = m2 =
m3. If the transversal trap is tightened, less transversal 1D-SPF are needed, and all particle
correlations, if existent, are handed over to the population of longitudinal 1D-SPFs, thus a good
choice is to set M = m3 ≥ m1 = m2. In the following, each simulation is characterized by the
numerical configuration C = (M ;m1,m2,m3).

A first indicator for convergence can be obtained by a spectral analysis of certain reduced

density operators, i.e. the eigenvalues (natural populations) a
(3D)
i and b

(s)
i of the reduced density

operator of a single boson ρ(3D) and of the s-th degree-of-freedom of a single boson ρ(s) as well as

their eigenvectors (natural orbitals). The smallest natural population a
(3D)
i and b

(s)
i may serve

as a practical measure for how many 3D-SPF and 1D-SPF are needed, respectively, and the
natural-population distribution is sensitive to the presence of particle and spatial correlations,
respectively. Such conclusions from the natural orbitals are rigorous for already converged
simulations and otherwise only indicative (see reference [231] for a critical discussion). Within

our normalization, we have 0 ≤ a
(3D)
i , b

(s)
i ≤ 1 and

∑
i a

(3D)
i =

∑
i b

(s)
i = 1. Moreover, we label

the natural populations in decreasing sequence.

In figure F.1, we show the natural populations b
(s)
i and a

(3D)
i for two aspect ratios η = 2 and

η = 8 and different numerical configurations C. Adding an additional 3D-SPF, the two most

dominant natural populations a
(3D)
1,2 change by only ∼ 10−4, i.e. not significantly (see figure

F.1a). A tighter trap depletes a
(3D)
1 in favour of a

(3D)
2 , indicating already emerging particle

correlations. Adding further 1D-SPFs, the two most dominant natural populations of ρ(s), b
(s)
1,2,

are not significantly changed and corrections take place of the order of 10−4. As expected, the

second dominant natural population b
(1,2)
2 of the transversal directions is stronger populated for

a more isotropic trap, η = 2, than for η = 8, which implies stronger spatial correlations (see
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F Application: Double well trap

Figure F.1.: Panel (a) shows the natural populations a
(3D)
i of ρ(3D), and (b) and (c) presents

the natural populations b
(s)
i of ρ(s), respectively, for two different aspect ratios η = 2

(squares) and η = 8 (stars). The superscript s denotes the dimension. The horizontal
axis provides different numerical configurations C, where M = m3 is increased for various
m1 = m2 kept fixed. The black dashed vertical line separates different configurations, where
M = m3 is increased by one. Figure is taken from reference [[1]].

figure F.1 b). Finally, figure F.1c shows that the spectrum of ρ(3D) is rather robust w.r.t. adding
more 3D- and 1D-SPFs.

Next, we compare the initial population imbalance in dependence of the aspect ratio for
different configurations (see figure F.2a). We see that the three configurations C = (3; 3, 3, 3),
C = (4; 2, 2, 4) and C = (4; 3, 3, 4) agree well, and we refer to the numerical configuration C =
(4; 3, 3, 4) as the fully converged simulation CFC . In order to ensure the convergence of the
dynamical simulations, let us inspect the time evolution of the population imbalance Iz(t) for
different configurations C in two different trap geometries with aspect ratios η = 2 and η = 8,
respectively. In figures F.2b and F.2c, the population imbalance shows excellent agreement
between the tested numerical configurations for both η = 2 and η = 8, respectively (the various
lines lay on top of each other). We chose again the same numerical configuration as above,
C = (4; 3, 3, 4) ≡ CFC .
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Figure F.2.: (a) Population imbalances for different numerical configurations C with respect
of the aspect ratio. The lines connecting the points are plotted as a guide to the eye.
Temporal evolution of the population imbalance Iz(t) for the two aspect ratios η = 2 [panel
(b)] and for η = 8 [panel (c)], respectively. The various lines lay on top of each other. Figure
is taken from reference [[1]].
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APPENDIX

G

APPLICATION: SCATTERING OFF A BARRIER

G.1. Convergence studies

In this section, we discuss the convergence of the simulations performed in chapter 7 (mainly
based literally on the paper [[2]]).

The convergence of a (ML-)MCTDHB calculation has to be carefully checked (see e.g. ref-
erence [292] and the paper [[3]]), and we consider a numerical simulation converged when an
observable of interest does not change to a certain desired accuracy if the numerical control
parameters are varied. For the one-dimensional (beyond mean-field) BMF simulations, we have
employed five optimized single-particle states.

The numerical results of the simulation in three dimension depend on seven numerical control
parameters; the number of 3D-SPFs M , the three numbers of 1D-SPFs {m1,m2,m3} as well as
the three numbers of grid points {q1, q2, q3}. In our numerical calculations, we always use a suf-
ficiently large number of grid points, and thus neglect their discussion in the following, reducing
the seven dimensional parameter space to a four dimensional one. In the simulations performed,
we have used q3 = 800 (q1 = q2 = 200) grid points for the longitudinal (transversal) direction(s),
with an equidistant grid spacing of 0.025. Due to the symmetry of the elongated trap, we set
m1 = m2. We call the set of parameters C = (M ;m1,m2,m3) a numerical configuration C.

For very strongly elongated traps, where the main dynamics takes place in the longitudinal
direction (s = 3), we can reduce the three-dimensional parameter space further, by setting
m3 = M > m1, for which case the particle correlations, if existent, are handed over to the
population of longitudinal 1D-SPFs. However, opposite to this case for nearly isotropic traps,
the parameter space can be reduced by choosing m1 = m2 = m3.

In the main text, we have mainly focused on two observables: first, the oscillation of the CM
〈Z〉 and, second, the occupation of the first natural orbital a1. Their convergence is shown
as an example by regarding the integrated difference between two numerical configurations,
E1 =

∫ Tmax
0 |〈Z〉C1 − 〈Z〉C2 |dt/Tmax and E2 =

∫ Tmax
0 |a1,C1 − a1,C2 |dt/Tmax, where the subindex

denotes the used numerical configuration C and Tmax is the maximal simulation time. We
compare the numerical configuration C1 = (5; 3, 3, 5) and C2 = (6; 4, 4, 6) for the same physical
parameters as used in section 7.4 both for η = 2 and η = 8, which are the extreme cases
for spatial and particle correlations respectively. For η = 2, we obtain E1 = 5.8 · 10−3 and
E2 = 6.1 · 10−4 as well as for η = 8 we get E1 = 3.1 · 10−3 and E2 = 2.2 · 10−3. In essence, the
integrated error is estimated to be of the order 10−3.
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G.2. Co-moving time-dependent basis states

In the first part of this section (based literally on paper [[2]]), we derive a complete set of
orthonormal functions φn(z, t), described by displaced harmonic oscillator functions, stiffly os-
cillating in a harmonic trap, which are used in section 7.3. In the second part of this section,
we show that even the displaced stationary ground state of ϕGP (z) [see equation (7.8)] performs
stiff oscillations in a harmonic trap (see also reference [351]), as utilized in section 7.2.2.

First, the orthonormal functions φn(z, t) are assumed to be of the following functional form
with the yet unknown real-valued functions Θn(t), p̄(t) and z̄(t).

φn(z, t) = e−iΘn(t)+ip̄(t)zϕ1D
n (z − z̄(t)) (G.1)

where ϕ1D
n is the n-th harmonic oscillator function ϕ1D

n (z) = 1/
√

2nn!π−1/4 exp
(
−z2/2

)
Hn (z)

with the Hermite polynomial Hn. The ansatz (G.1) is inserted into the time-dependent, one-
dimensional, single-particle Schrödinger equation, i∂tφn = [−(1/2)∂2

z+(1/2)z2]φn, and we obtain
three coupled differential equations by comparing the real and imaginary part as well as equating
coefficients

∂tz̄(t) = p̄(t) (G.2)

−∂tp̄(t) = z̄(t)

∂tΘn(t)− z̄(t)∂tp̄(t) = En +
1

2

(
z̄2(t) + p̄2(t)

)
with En = n + 1/2. With the initial condition that the wave functions is displaced by b,
φn(z, 0) = ϕ1D

n (z − b), the coupled set of equations can be solved, leading to

z̄(t) = b cos(t) (G.3)

p̄(t) = −b sin(t)

Θn(t) = Ent+
1

2
z̄(t)p̄(t)

The functions φn(z, t) form a complete and orthonormal set of basis functions at all instants
in time. Orthonormality can be checked easily and the proof of completeness follows the same
arguments as for the orthogonal Hermite polynomials (see reference [352]).

Second, the initially displaced mean-field ground-state wave functions ϕGP performs also stiff
oscillations in a harmonic trap. The ground state mean-field orbital obeys the stationary GPE

EGPϕGP (z) =

(
−1

2
∂2
z +

1

2
z2

)
ϕGP (z) + g(N − 1)

×
∫
dZ|ϕGP (Z)|2W (z,Z)ϕGP (z).

Inserting the same approach for the wave function φGP (z, t) = e−iΘ(t)+ip̄(t)zϕGP (z − z̄(t)) into
the corresponding time-dependent GPE, where W (z1, z2) = W (z2 − z1) is assumed, leads again
to the three coupled differential equations (G.2) with their solution (G.3), but now with the
energy En replaced by EGP .

G.3. Stroboscopic perturbation theory

In this section, we sketch the stroboscopic perturbation theory, which we used in section 7.3.
There, a single-particle harmonic oscillator Hamiltonian H0 = [−(1/2)∇2

r + (1/2)r2], with

119



G Application: Scattering off a barrier

harmonic oscillator eigenfunctions |n〉 and eigenvalues En is periodically perturbed in time
V (t) = V0f(t) with V0 = h exp(r2/S2) and f(t) =

∑∞
k=1 δ(t − kt0) a periodic function. The

equation of motion for the total Hamiltonian H(t) = H0 + V (t) in the interaction picture is
given by

i∂t|Ψ(t)〉I = VI(t)|Ψ(t)〉I (G.4)

|Ψ(t)〉I = |Ψ(t1)〉I +
1

i

∫ t

t1

dτVI(τ)|Ψ(τ)〉I (G.5)

with |Ψ(t)〉I = eiH0t|Ψ(t)〉 and VI(t) = eiH0tV (t)e−iH0t =
∑

n,m e
−it(Em−En)bnmf(t)|n〉〈m|. The

amplitudes bnm can be calculated by bnm = 〈n|V0|m〉. If n + m is odd, then bnm = 0 due to
symmetry and the lowest non-zero amplitudes are b00 = h/Ω, b22 = h(S + 2S5)/(2

√
S2 + 1(1 +

2S2 + S4)),∼ 1/2Ω for small S, as well as b20 = b02 = −hS/
√

2
√
S2 + 1(1 + S2).

The initial wave function evolves in time with H0 until a perturbative ’kick’ happens at the
time instant t1. The change in the wave function from ti − ε to ti + ε is calculated by using
first-order perturbation theory.

|Ψ(t1 + ε)〉I =

∫ t1+ε

t1−ε
dτ
∑
nm

e−iτ(Em−En)bnmδ(τ − t1)|n〉〈m|Ψ(t1 − ε)〉I . (G.6)

Using as the initial state a harmonic oscillator ground state |Ψ(0)〉I = |n = 0〉 = |0〉, applying
the limit ε→ 0 and making a two mode approximation, we get:

|Ψ(t1)〉I = b00|0〉+ e−it0(E0−E2)b20|2〉 (G.7)

This equation describes a breathing excitation. Evolving this wave function until the second
’kick’ happens at time instant t2 = t1 + ∆t, we get

|Ψ(t2)〉I = (b00b00 + b20bg02e
−i∆E∆t)|0〉+ eit1∆E(b20b00 + b22b20e

−i∆E∆t)|2〉

with ∆E = E2 − E0.
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[151] R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, Microscopic atom
optics: From wires to an atom chip, Adv. At. Mol. Opt. Phys. 48, 263 (2002).
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[211] S. Zöllner, H.-D. Meyer, and P. Schmelcher, Few-Boson Dynamics in Double Wells: From
Single-Atom to Correlated Pair Tunneling, Phys. Rev. Lett. 100, 40401 (2008).

[212] R. Schmitz, S. Krönke, L. Cao, and P. Schmelcher, Quantum breathing dynamics of
ultracold bosons in one-dimensional harmonic traps: Unraveling the pathway from few- to
many-body systems, Phys. Rev. A 88, 043601 (2013).

[213] J. M. Schurer, P. Schmelcher, and A. Negretti, Ground-state properties of ultracold trapped
bosons with an immersed ionic impurity, Phys. Rev. A 90, 033601 (2014).

[214] J. M. Schurer, R. Gerritsma, P. Schmelcher, and A. Negretti, Impact of many-body cor-
relations on the dynamics of an ion-controlled bosonic Josephson junction, Phys. Rev. A
93, 063602 (2016).

[215] M. A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional
bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83, 1405
(2011).

[216] J. Christensson, C. Forssen, S. Aberg, and S. M. Reimann, Effective-interaction approach
to the many-boson problem, Phys. Rev. A 79, 012707 (2009).

[217] E. J. Lindgren, J. Rotureau, C. Forssén, A. G. Volosniev, and N. T. Zinner, Fermionization
of two-component few-fermion systems in a one-dimensional harmonic trap, New J. Phys.

131



Bibliography

16, 063003 (2014).

[218] K. G. Wilson, The renormalization group: Critical phenomena and the Kondo problem,
Rev. Mod. Phys. 47, 773 (1975).

[219] K. G. Wilson and J. Kogut, The renormalization group and the ε expansion, North-
Holland Publishing Company, Amsterdam, 1974.

[220] R. Jackiw, Diverse Topics in Theoretical and Mathematical Physics, World scientific,
London, 1995.

[221] R. M. Cavalcanti, Exact Green’s functions for delta-function potentials and renormaliza-
tion in quantum mechanics, Rev. Bras. Ens. Fis. 21, 336 (1999).

[222] I. Mitra, A. DasGupta, and B. Dutta-Roy, Regularization and renormalization in scattering
from Dirac delta potentials, Am. J. Phys. 66, 1101 (1998).

[223] N. T. Zinner, Universal two-body spectra of ultracold harmonically trapped atoms in two
and three dimensions, J. Phys. A 45, 205302 (2012).

[224] M. Rontani, S. Aberg, and S. M. Reimann, Configuration interaction approach to the
few-body problem in a two-dimensional harmonic trap with contact interaction. J. Phys.
B 50, 065301 (2017)

[225] S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum
Mechanics, AMS Chelsea Publishing, Procidence, 1988.

[226] M. Olshanii and L. Pricoupenko, Rigorous approach to the problem of ultraviolet diver-
gencies in dilute Bose gases, Phys. Rev. Lett. 88, 010402 (2001).

[227] P. Gosdzinsky and R. Tarrach, Learning quantum field theory from elementary quantum
mechanics, Am. J. Phys. 59, 70 (1991).

[228] S. K. Adhikari and T. Frederico, Renormalization Group in Potential Scattering, Phys.
Rev. Lett. 74, 4572 (1995).

[229] T. Ernst, D. W. Hallwood, J. Gulliksen, H.-D. Meyer, and J. Brand, Simulating strongly
correlated multiparticle systems in a truncated Hilbert space, Phys. Rev. A 84, 023623
(2011).

[230] M. Rontani, G. Eriksson, S. berg, and S. M. Reimann, On the renormalization of contact
interactions for the configuration-interaction method in two-dimensions, J. Phys. B 50,
065301 (2017).

[231] J. G. Cosme, C. Weiss, and J. Brand, Difficult-to-detect convergence problem of variational
multi-mode quantum dynamics with attractive bosons, Phys. Rev. A 94, 043603 (2016).

[232] A. Jackle and H.-D. Meyer, Product representation of potential energy surfaces, J. Chem.
Phys. 104, 7974 (1996).

[233] A. Jackle and H.-D. Meyer, Product representation of potential energy surfaces. II, J.
Chem. Phys. 109, 3772 (1998).

[234] K. Sakmann, Many-Body Schrödinger Dynamics of Bose-Einstein Condensates, Springer,
Berlin, 2011.

[235] O. E. Alon, A. I. Streltsov, and L. S. Cederbaum, Many-body theory for systems with
particle conversion: Extending the multiconfigurational time-dependent Hartree method,
Phys. Rev. A 79, 022503 (2009).
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B. Juĺıa-Dı́az, and A. Polls, Matter-wave recombiners for trapped Bose-Einstein con-
densates, Phys. Rev. A 93, 063620 (2016).

[304] A. D. Martin and J. Ruostekoski, Quantum dynamics of atomic bright solitons under
splitting and recollision, and implications for interferometry, New J. Phys. 14, 043040
(2012).

[305] Y. J. Wang, D. Z. Anderson, V. M. Bright, E. A. Cornell, Q. Diot, T. Kishimoto,
M. Prentiss, R. A. Saravanan, S. R. Segal, and S. Wu, Atom michelson interferometer
on a chip using a Bose-Einstein condensate, Phys. Rev. Lett. 94, 090405 (2005).

[306] O. Garcia, B. Deissler, K. J. Hughes, J. M. Reeves, and C. A. Sackett, Bose-Einstein-
condensate interferometer with macroscopic arm separation, Phys. Rev. A 74, 031601
(2006).

[307] M. Horikoshi and K. Nakagawa, Suppression of dephasing due to a trapping potential
and atom-atom interactions in a trapped-condensate interferometer, Phys. Rev. Lett. 99,
180401 (2007).

[308] R. P. Kafle, D. Z. Anderson, and A. A. Zozulya, Analysis of a free oscillation atom
interferometer, Phys. Rev. A 84, 033639 (2011).

[309] R. H. Leonard and C. A. Sackett, Effect of trap anharmonicity on a free-oscillation atom
interferometer, Phys. Rev. A 86, 043613 (2012).

[310] T. Fogarty, A. Kiely, S. Campbell, and T. Busch, Effect of interparticle interaction in a
free-oscillation atomic interferometer, Phys. Rev. A 87, 043630 (2013).

[311] D. Dries, S. E. Pollack, J. M. Hitchcock, and R. G. Hulet, Dissipative transport of a

136



Bibliography

Bose-Einstein condensate, Phys. Rev. A 82, 033603 (2010).

[312] M. Albert, T. Paul, N. Pavloff, and P. Leboeuf, Dipole oscillations of a Bose-Einstein
condensate in the presence of defects and disorder., Phys. Rev. Lett. 100, 250405 (2008).

[313] C. Raman, M. Kohl, R. Onofrio, D. S. Durfee, C. E. Kuklewicz, Z. Hadzibabic, and
W. Ketterle, Evidence for a critical velocity in a Bose-Einstein condensed gas, Phys. Rev.
Lett. 83, 4 (1999).

[314] J. Bonart and L. F. Cugliandolo, Effective potential and polaronic mass shift in a trapped
dynamical impurityLuttinger liquid system, Europhys. Lett. 101, 16003 (2013).

[315] J. Catani, G. Lamporesi, D. Naik, M. Gring, M. Inguscio, F. Minardi, A. Kantian, and
T. Giamarchi, Quantum dynamics of impurities in a one-dimensional Bose gas, Phys.
Rev. A 85, 023623 (2012).

[316] J. M. Schurer, A. Negretti, and P. Schmelcher, Capture dynamics of ultracold atoms in
the presence of an impurity ion, New J. Phys. 17, 083024 (2015).

[317] L. Salasnich, L. Reatto, A. Parola, and L. Reatto, Effective wave equations for the
dynamics of cigar-shaped and disk-shaped Bose condensates, Phys. Rev. A 65, 43614
(2002).

[318] L. Brey, N. F. Johnson, and B. I. Halperin, Optical and magneto-optical absorption in
parabolic quantum wells, Phys. Rev. B 40, 10647 (1989).

[319] W. Kohn, Cyclotron resonance and de haas-van alphen oscillations of an interacting
electron gas, Phys. Rev. 123, 1242 (1961).

[320] J. F. Dobson, Harmonic-potential theorem: Implications for approximate many-body
theories, Phys. Rev. Lett. 73, 2244 (1994).

[321] A. Fetter and D. Rokhsar, Excited states of a dilute Bose-Einstein condensate in a har-
monic trap, Phys. Rev. A 57, 1191 (1998).

[322] Z. Wu and E. Zaremba, Dissipative dynamics of a harmonically confined Bose-Einstein
condensate., Phys. Rev. Lett. 106, 165301 (2011).

[323] F. Chevy, V. Bretin, P. Rosenbusch, K. W. Madison, and J. Dalibard, Transverse breath-
ing mode of an elongated Bose-Einstein condensate., Phys. Rev. Lett. 88, 250402 (2002).

[324] J. W. Abraham and M. Bonitz, Quantum Breathing Mode of Trapped Particles: From
Nanoplasmas to Ultracold Gases, Contrib. to Plasma Phys. 54, 27 (2014).

[325] V. A. Yurovsky, M. Olshanii, and D. S. Weiss, Collisions, correlations, and integrability
in atom waveguides, Adv. At. Mol. Opt. Phys. 55, 61 (2008).

[326] Y. E. Shchadilova, R. Schmidt, F. Grusdt, and E. Demler, Quantum Dynamics of Ultra-
cold Bose Polarons, Phys. Rev. Lett. 117, 113002 (2016).

[327] G. Morigi and S. Fishman, Dynamics of an ion chain in a harmonic potential, Phys. Rev.
E - Stat. Nonlinear, Soft Matter Phys. 70, 066141 (2004).

[328] U. Bissbort, D. Cocks, A. Negretti, Z. Idziaszek, T. Calarco, F. Schmidt-Kaler, W. Hof-
stetter, and R. Gerritsma, Emulating solid-state physics with a hybrid system of ultracold
ions and atoms, Phys. Rev. Lett. 111, 080501 (2013).

[329] G. Roati, C. D’Errico, L. Fallani, M. Fattori, C. Fort, M. Zaccanti, G. Modugno, M. Mod-
ugno, and M. Inguscio, Anderson localization of a non-interacting Bose-Einstein conden-
sate., Nature 453, 895 (2008).

[330] L. Sanchez-Palencia, D. Clément, P. Lugan, P. Bouyer, G. V. Shlyapnikov, and A. As-
pect, Anderson localization of expanding Bose-Einstein condensates in random potentials,

137



Bibliography

Phys. Rev. Lett. 98, 210401 (2007).

[331] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a
disordered medium, Nature 390, 671 (1997).

[332] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109, 1492
(1958).

[333] M. Grifoni and P. Hänggi, Driven quantum tunneling, Phys. Rep. 304, 229 (1998).

[334] S. I. Mistakidis, T. Wulf, A. Negretti, and P. Schmelcher, Resonant quantum dynamics
of few ultracold bosons in periodically driven finite lattices, J. Phys. B 48, 13 (2015).

[335] T. Wulf, B. Liebchen, and P. Schmelcher, Site-selective particle deposition in periodically
driven quantum lattices, Phys. Rev. A 91, 043628 (2015).

[336] B. Hess, P. Giannakeas, and P. Schmelcher, Analytical approach to atomic multichannel
collisions in tight harmonic waveguides, Phys. Rev. A 92, 022706 (2015).

[337] G. Wang, P. Giannakeas, and P. Schmelcher, Bound and scattering states in harmonic
waveguides in the vicinity of free space Feshbach resonances, J. Phys. B 49, 165302
(2016).

[338] J. W. Abraham, K. Balzer, D. Hochstuhl, and M. Bonitz, Quantum breathing mode of
interacting particles in a one-dimensional harmonic trap, Phys. Rev. B 86, 125112 (2012).

[339] S. I. Mistakidis, L. Cao, and P. Schmelcher, Interaction quench induced multimode
dynamics of finite atomic ensembles, J. Phys. B 47, 225303 (2014).
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