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Simulations of planets in post–Common Envelope Binary
Systems with the FLASH code

Aঋজঝছঊঌঝ

I study systemswith planets in post–common envelope binaries (PCEBs) to analyze the question
of planet formation and planetary dynamics in this kind of systems with three-dimensional
hydrodynamical simulations.
I choose NN Serpentis as an exemplary system. It consists of a white dwarf (WD) primary
component of 0.535± 0.012M⊙ and anMdwarf secondary component of 0.111± 0.004M⊙

within a 3hr 7min orbit (Parsons et al., 2010; Haefner et al., 2004). Additionally, the system is
supposed to have two planets with masses (m · sin(i)) and orbital separations of ∼ 7 MJ and
∼ 5.4AU for planet c and∼ 1.7MJ and∼ 3.4AU for planet d (Beuermann et al., 2013).
The observation of common envelope (CE) events is difficult because they appear on astrophys-
ically short timescales (∼ 1000 years, Ivanova et al. (2013)). Therefore, the current knowledge
of structure formation and energy transformation within the envelope is based on numerical
simulations. The outcome of these simulations depend on the numerical technique and the
initial parameters that are used. Thus, initial parameters for models of the post–CE phase are
difficult to determine exactly.
For this reason, I carry out a parameter study. I evaluate simulations depending on the total
kinetic energy of the gaseous envelope and the distribution of density and kinetic energy within
the envelope.

The simulations show that the survival of first-generation planets which formed before the
CE event is possible but strongly depends on interactions with the gaseous envelope. Therefore,
planets only remain gravitationally bound in setups with moderate initial kinetic energy.
The scenario of second-generation planet formation is supported by my simulations through
the formation of fall-back disks. For similar initial conditions the remaining bound mass within
the simulation box is comparable to the analytic result of Schleicher and Dreizler (2014).
The growth of first-generation planets during the CE event is neither confirmed nor ruled out
by this study. This effect has to be studied in simulations with higher numerical resolution.
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Zঞজঊখখ঎গএঊজজঞগঐ

In der Entwicklung von engen Doppelsternen kann es zu einer Phase kommen, in der die
Kerne beider Sterne innerhalb einer Gashülle umeinander rotieren. Dies wird die “gemeinsame
Hüllenphase” genannt. Da ein Großteil aller Sterne in Doppelsternsystemen oder sogar
Mehrfachsternsystemen vorliegt gibt es viele Beispiele für Systeme, die aus der gemeinsamen
Hüllenphase hervorgehen. Dazu gehören unter anderem sehr enge Doppelsterne bestehend
aus einem Hauptreihenstern und einem Weißen Zwerg. Ein Beispiel für ein solches Systems
ist NN Serpentis. Es setzt sich zusammen aus einem Hauptreihenstern mit einer Masse von
0.111 ± 0.004 M⊙ und einem Weißen Zwerg der Masse 0.535 ± 0.012 M⊙. Die Sterne
umkreisen das gemeinsame Zentrum mit einer Periode von 3h 7min (Parsons et al., 2010;
Haefner et al., 2004). Auf Grund von Schwankungen in der Periodizität der Bedeckung des
Weißen Zwerges durch denHauptreihensternwurde von Beuermann et al. (2010) dieHypothese
aufgestellt, dass zwei Planeten das Doppelsternsystem umkreisen. Diese Hypothese konnte bis
heute nicht widerlegt werden. Die aktuellen Werte für Masse und Radius der beiden möglichen
Planeten sind ∼ 7 MJ und ∼ 5.4 AU für Planet c und ∼ 1.7 MJ und ∼ 3.4 AU für Planet d
(Beuermann et al., 2013).
Vorgelegtwird hier eine Parameterstudie, welche dieAuswirkung der gemeinsamenHüllenphase
auf die Dynamik eventuell vorhandener Planeten untersucht. Desweiteren wird dieMöglichkeit
von Planetenentstehung in sberresten der Gashülle studiert. Die Parameterstudie basiert unter
anderem auf den Ergebnissen von Ricker and Taam (2008, 2012) und Passy et al. (2012). In den
durchgeführten Simulationen variiere ich die gesamte kinetische Energie der Gashülle sowie die
Verteilung der kinetischen Energie und der Dichte innerhalb des Gases.

Die durchgeführten Simulationen zeigen, dass sowohl das sberleben der gemeinsamen Hül-
lenphase für Planetenmöglich ist als auch die Entwicklung für Bedingungen zur Planetenentste-
hung aus sberresten der Hülle.
Planeten der ersten Generation können die Hüllenphase überstehen wenn sie mit dem Gas der
Hülle wechselwirken. Damit dieser Effekt stark genug ist darf sich das Gas nicht zu schnell aus-
breiten, das bedeutet die kinetische Energie der Hülle darf nicht zu groß sein.
In vielen Simulationen bildet sich aus dem zurückfallenden Gas eine Scheibe um den Doppel-
stern. Diese bietet gute Bedingungen zur Entstehung von neuen Planeten. Die beobachteten
Massen, die am Ende der Simulationen noch an das System gebunden sind, sind verlgeichbar mit
dem berechneten Wert in Schleicher and Dreizler (2014) und unterstützen somit die Berechnun-
gen zur Planetenentstehung.
Mit den hier präsentierten Simulationen ist es nicht möglich das Wachstum von Planeten der
ersten Generation während der gemeinsamen Hüllenphase zu untersuchen. Somit kann diese
Möglichkeit weder bestätigt noch ausgeschlossen werden.
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1
Introduction

Pকঊগ঎ঝজ can be found in various constellations with their host star(s). For example, Doyle
et al. (2011) report the detection of a planet orbiting two low-mass stars. Zorotovic and Schreiber
(2013) publish a list of planetary candidates orbiting post–common envelope binaries (PCEBs).
These are derived from observed variations in the eclipse time of the binary. The history of the
systems raises the interest in the existence and formation of planets around PCEBs.
The common envelope (CE) is an important astrophysical process in binary star evolution. It is
widely accepted to be the formation channel for many close compact binaries such as high-mass
X-ray binaries (Zuo and Li, 2014), progenitors of Type Ia supernovae (Iben and Tutukov, 1984;
Kashi and Soker, 2011) and white dwarf/main-sequence (WDMS) binaries (Rebassa-Mansergas
et al., 2007). The SDSS WDMS binary catalogue1 lists more than 3200 systems, more than 200

of which are supposed to have undergone a common envelope phase and be PCEBs.
The theory of CE evolution dates back to the 1970s. The fundamental idea is that the progenitors
of PCEB components must once have been larger than the radius of the remnant system. Thus,
the two components originally formed atwider separations. During the evolution along the giant

1White Dwarf-Main Sequence Binaries from the Sloan Digital Sky Survey: www.sdss-wdms.org
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CHAPTER 1. INTRODUCTION

branch of the primary, its gaseous envelope engulfed the secondary component and through the
transfer of angularmomentum and energywith the envelope the angular separation of the binary
decreased. This might lead to a merger or the ejection of the envelope, revealing the PCEB.
Recent research includes binary population synthesis studies and numerical simulations of the
CE phase in order to determine the energy sources and further physical effects such as drag and
disk formation that might influence the outcome of CE evolution.
PCEBs serve as good targets for eclipse timing measurements because they have short orbital pe-
riodsO(days) and sharp ingress/ egress features due to the compact nature of the components.
Observed period variations can e.g. be attributed to the existence of a third body in the system.
In this case the variation should be periodical itself. A discrepancy between later ecplise timing
observations and the predicted times from the assumption of a third body often leads to the ex-
clusion of this hypothesis. In this sense, the system NN Serpentis is quite special because seven
years after the proposition of the existence of two planets in theWDMS binary system the thesis
still holds.
Assuming the planetary hypothesis forNNSerpentis is correct, the question of the origin of these
planets is still open. Analytical studies of the planetary orbits under changes of the gravitational
potential, describing mass loss during the CE phase, show that first generation planets, formed
before the CE phase, would most probably not survive this stage of stellar evolution (Völschow
et al., 2014). The formation of second generation planets (after the CE phase) seems to be possible
(Schleicher and Dreizler, 2014). As the elapsed time since the end of the CE phase, determined
from the cooling time of the WD which has a temperature of 57.000 K, is supposed to be 1.3
Myr the planets in NN Serpentis could be among the youngest planets known with ages < 1

Myr (Beuermann et al., 2010).

H঎ছ঎, I perform numerical simulations of the post–CE phase in order to contribute to the
investigation of disk formation with special attention to conditions for planet formation.
Furthermore, I analyze the dynamics of first generation planets under the influence of the CE
phase.

T঑঎ জঝছঞঌঝঞছ঎ of this thesis is the following. In chapter 2 I present the underlying principles
for the formation of PCEBs. The method used for my simulations is presented in chapter 3.
Chapter 4 contains the results of the simulations. Conclusions are drawn in chapter 5.
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2
Astrophysical Background

In the following chapter, I give a résumé of the basic theories and concepts which lay the foun-
dations for the performed simulations. These include astrophysical theories on stellar evolution
of single and binary stars, in particular the common envelope phase including recent numerical
studies by various authors. Furthermore, I summarize the state of research on extrasolar planets.

3



2.1. STELLAR EVOLUTION OF SINGLE STARS CHAPTER 2. ASTROPHYSICS

2.1 Post–Main Sequence stellar evolution of single stars

A star spends most of its lifetime in the main sequence (MS) phase. During this evolutionary
phase, central hydrogen burning is the main energy source of the star. The conversion of hydro-
gen into helium leads to the formation of a small helium core surrounded by a thick hydrogen
shell. The ongoing production of helium leads to an increase in mass of the core. When hydro-
gen is depleted in the central region nuclear burning is restricted to the shell. At this stage, the
star leaves the MS. The following detailed stellar evolution highly depends on the mass of the
star. For the course of this chapter I will focus on the evolution of a star with M ≈ 2M⊙. This
represents the evolution for stars with masses between 0.4M⊙ and 2.3M⊙.
The evolution track of a 2M⊙ star is shown in aHertzsprung-Russell diagram (HRD) in Fig. 2.1.

Figure 2.1: Calculated evolution track of a 2M⊙ star of solar metallicity plotted in anHR diagram. Image taken fromHerwig
(2005), slightly altered. The authors state, that the oscillatory behavior of the line in the post–AGBphase is caused by numer-
ical convergence difficulties. The blue track represents a born-again evolution shifted to the lower left for better visibility.
The numbers displayed at each phase give the log of the time spent in this phase for a 2M⊙ star in years.
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CHAPTER 2. ASTROPHYSICS 2.1. STELLAR EVOLUTION OF SINGLE STARS

2.1.1 Helium ignition

The helium core of a 2M⊙ star is nearly isothermal at the end of the MS phase, the temperature
is determined by the hydrogen-burning shell. Since there is no energy source supporting the core
mass against gravity, the star leaves the hydrostatic equilibrium, eq. 2.1. This equates the outwards
directed pressure forces with the inwards directed gravitational forces.

dP (r)

dr
= −

GMr

r2
ρ(r) (2.1)

P is the pressure, G the gravitational constant, Mr is the mass enclosed within the radius r and
ρ(r) is the density at this radius. The core contracts slowly. The gravitational energy released in
the contraction heats up the envelope which then expands slightly. With increasing core mass
due to a supply with helium from the hydrogen burning shell and decreasing core radius the
central density rises. For stars with initial mass> 1.8M⊙ the core is described by an ideal gas, the
equation of state (EOS) is given in eq. 2.2. Here, V denotes the volume, N is the number of gas
particles in volume V, T is the temperature and kB is the Boltzmann constant.

PV = NkBT (2.2)

The contraction of the core directly leads to an increase in temperature until helium burning
begins. The critical temperature for helium burning is roughly 108 K (Weigert et al., 2010).

For stars with initial mass ⩽ 1.8M⊙ the electron gas becomes highly degenerate (Herwig,
2005). The EOS for a completely degenerate electron gas in the non-relativistic case is given in
equation 2.3 (Kippenhahn and Weigert, 1994). In this equation µe denotes the mean molecular
weight per free electron.

P = 1.0036× 1013 ×
ρ

µe

5/3

dyn/cm2 (2.3)

The temperature in the core rises with the temperature of the surrounding shell. As the core
mass reaches roughly 0.45M⊙ the temperature has risen to 108 K and helium is ignited in the
core.
Since temperature and pressure are decoupled, the degenerate core cannot expand, therefore the
nuclear energy is transformed to internal energy and the temperature in the core rises. This leads
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2.1. STELLAR EVOLUTION OF SINGLE STARS CHAPTER 2. ASTROPHYSICS

to an increase in energy production in the core. The following peak of the local luminosity,
called helium core flash, is almost entirely absorbed by the non-degenerate layers above the core
which expand. Due to the high temperature reached in the core the degeneracy is removed and
the core expands. Hence, the temperature and energy production rate decrease again.

2.1.2 Red Giant phase

The contraction of the core after core hydrogen burning leads to an increase of the temperature
and energy production and thus the hydrogen-burning shell expands. The envelope of the
star, scaling with the radius of the hydrogen-burning shell, expands and cools down. Thus,
when hydrogen is exhausted in the center, the star advances towards the right side in the HRD.
However, there is a lower limit to the effective temperature of a star at ∼ 4000 K (Weigert
et al., 2010) when the ionisation structure of the star changes. This leads to a decrease in
the absorption coefficient and increasing luminosity of the star. The star moves upwards in
the HRD. Compared to its time on the main sequence the star has now a very low effective
temperature and a huge radius. It is termed a Red Giant (RG).
When helium is ignited the star is temporarily moving backwards in the HRD, creating a slope
in the evolution track. This is visible in Fig. 2.1 shortly after the MS phase.
The star leaves the Red Giant Branch when helium is exhausted in the core and moves up in the
HRD along the Asymptotic Giant Branch (AGB).

2.1.3 Asymptotic Giant Branch phase

During helium burning carbon and oxygen are created in the core. After helium exhaustion
the CO core rapidly contracts and heats up. Helium burning is then restricted to a shell above
the core still enclosed by a hydrogen-burning shell and the hydrogen-rich envelope. With the
ongoing contraction of the core, the helium-burning shell narrows and the layers above this shell
expand and cool down. This leads to a temporary extinction of the hydrogen shell burning.
However, the helium burning continues in the underlying shell and expands, thus coming closer
to the hydrogen-rich envelope and heating it up. When the temperature again reaches the limit
of ∼ 108 K the hydrogen-burning shell reignites. The helium shell shrinks and shell burning
becomes unstable, ocurring in thermal pulses, so called helium shell flashes, due to the ongoing
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CHAPTER 2. ASTROPHYSICS 2.1. STELLAR EVOLUTION OF SINGLE STARS

supply with helium from the hydrogen-burning shell. These pulses cause the hydrogen-burning
shell to expand and cool down. The outermost layers are only loosely bound to the star and
mass loss sets in.
At the end of the Asymptotic Giant Branch phase shell burning is extinguished completely
within the shrinking envelope. The remaining envelope mass is expelled and reveals a hot
compact central object which will become a white dwarf.

2.1.4 White Dwarf

The compact remnant of a stellar core stops contracting when gravity is counterbalanced by the
electron degenerate pressure. At the point of complete degeneracy, the electrons are packed as
tightly as possible without violating the Pauli exclusion principle. With increasing density in
the core the electron gas becomes more and more relativistic, leading to the EOS as given in
equation 2.4 (Kippenhahn and Weigert, 1994). Note that the pressure is now proportional to
the density to the power of 4

3
.

P = 1.2435× 1015 ×
ρ

µe

4/3

dyn/cm2 (2.4)

Stellar models for WDs composed of non-relativistic degenerate electron gas lead to a mass-
radius relation ofR ∝ M−1/3, meaning that the radius shrinks with increasing mass. The limits
of this model are M → ∞ and R → 0. Including relativistic effects, the models yield an upper
limit for the mass called Chandrasekhar massMCh(based on Chandrasekhar (1931)):

MCh = 1.44M⊙. (2.5)

Realistic WDs consist of an extremely dense degenerate core and less dense outer layers
where the degeneracy is reduced. Energy transport in the central part is dominated by electron
conduction leading to an isothermal interior with temperatures around 107 K (Kippenhahn
and Weigert, 1994). In the outer layers, energy is transported via radiation or convection which
is less effective than the electron conduction in the center. Therefore, the temperature drops
significantly in the outer layers. The thermal energy of white dwarfs mainly comes from kinetic
energy of the nuclei. This can be estimated and combined with its luminosity to calculate the
cooling time of WDs, τWD. Carroll and Ostlie (2006) give a value for τWD = 170 × 109 yr with
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2.1. STELLAR EVOLUTION OF SINGLE STARS CHAPTER 2. ASTROPHYSICS

the remark that this value will be underestimating the cooling time. For recent work on the
cooling time of white dwarfs see e.g. Rohrmann et al. (2012).
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CHAPTER 2. ASTROPHYSICS 2.2. EVOLUTION OF CLOSE BINARY STARS

2.2 Evolution of close binary stars

Stellar binaries and multiple stellar systems are common among different types of populations.
Values of the multiplicity fraction range from less than 10% up to almost 80% (e.g. Mason et al.,
2009; Janson et al., 2013; Elliott et al., 2014; Ward-Duong et al., 2015). This is shown in Fig. 2.2,
plotting the multiplicity fraction over spectral class (Elliott et al., 2014).

Figure 2.2: Multiplicity fraction of stars in terms of spectral class. Red andwhitemarkers are used for Search for Associations
Containing Young Stars (SACY) data. Yellow and bluemarkers represent data fromother authors. Formore details see Elliott
et al. (2014). Spectral class bins are representedwith horizontal error bars.

However, most of them are far apart from each other and can be treated as single stars in stellar
evolution. The critical separation, according to Carroll and Ostlie (2006), under which both
components of the stellar binary have to be taken into account for stellar evolution, is the size of
the primary. Here, I focus on the evolution of close binary systems.
More details on binary evolution can be found in Hurley et al. (2002, chapter 2).

9



2.2. EVOLUTION OF CLOSE BINARY STARS CHAPTER 2. ASTROPHYSICS

Figure 2.3: Equipotential surfaces for a binary system with mass ratio q = 0.25. The + signs represent the positions of the
primaryM1 at distance r1, secondaryM2 at distance r2 and the center of mass of the system to which the distances are
given. Thenumbers one to four along the linesmark theorder of theplotted surfaces startingwith the innermost. Also tagged
are the Lagrangian pointsL1,L2 andL3. Image credits: Iben and Livio (1993).

2.2.1 Equipotential surfaces

Compared to single stars, which are spherical, stars in a close binary are disturbed by their com-
panion and have elongated shapes. This is examined in the Rochemodel, named after the French
mathematician Édouard Roche. Due to the close proximity of such a system, the stars will be
tidally locked and rotate in circular orbits around their common center of mass. The Roche
model considers the total graviational potential of two point masses. Fig 2.3 shows the equipo-
tential surfaces, i.e. surfaces of constant graviational potentialΦ, in the orbital plane of the binary
for such a constellation.

Due to hydrostatic equilibrium (see eq. 2.1) the pressure and therefore also the density is con-
stant along surfaces of constantΦ. It can be seen that close to the point masses the equipotential
surfaces are quasi circular. Moving outwards the surfaces have more and more distorted shapes
elongated towards the position of the companion. If a star expands its shape will adjust to the

10



CHAPTER 2. ASTROPHYSICS 2.2. EVOLUTION OF CLOSE BINARY STARS

Figure 2.4: Giant star filling its Roche-lobe and transferring mass through L1 to the secondary where matter accumu-
lates and forms an accretion disk. Image taken from http://astronomy.swin.edu.au/cosmos/R/roche-lobe+
overflow and rearranged.

equipotential surface to retain equilibrium. The intersection points of equipotential surfaces are
called Lagrangian points. The inner Lagrangian point L1 between the two components deter-
mines the limiting volumes called Roche lobes. This can be used to define the effective radius
rL of a star following the notation of Eggleton (1983), see eq. 2.6. Here, the effective radius of a
Roche lobe is given in terms of the binary separation. q is the mass ratio of the stars. The deriva-
tion of this equation is based on Paczyński (1971).

rL =
0.49q2/3

0.6q2/3 + ln(1 + q1/3)
, 0 < q < ∞ (2.6)

2.2.2 Mass transfer and mass loss

After a star fills its Roche lobe it can lose mass through L1. This mechanism is called Roche-
lobe overflow (RLOF). The mass coming through L1 will rotate in a Keplerian orbit around the
companion, potentially forming an accretion disk (Fig. 2.4).

If all the lost mass from the donor is accreted by the accretor then total mass and total orbital
angular momentum is conserved. This is the case of conservative mass transfer. The separation
of the stars decreases for the case that mass is transferred from the more massive star onto the
less massive star (M1 > M2). If the donor becomes less massive due to mass transfer then the
separation can increase again. The equation for the change in orbital period due to conservative
mass transfer is given in eq. 2.7 as calculated in Hilditch (2001). M1 andM2 are the masses of the

11
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2.2. EVOLUTION OF CLOSE BINARY STARS CHAPTER 2. ASTROPHYSICS

donor and accretor, respectively and P is the orbital period.

Ṗ

P
=

3Ṁ1(M1 −M2)

M1M2

(2.7)

Non-conservative mass transfer includes mass loss and thereby loss of angular momentum.
This can be the case whenmass transfer after RLOF happens too fast for the accretor on less than
a thermal timescale (Iben and Livio, 1993). The material accumulates around the secondary and
mass will get lost through the outer Lagrangian point L2. The orbital period decreases further
with the loss of angular momentum, see eq. 2.8 (Hilditch, 2001). M is the sum of M1 and M2

and K stands for any mechanisms accounting for angular momentum loss asK · J .

Ṗ

P
= −

2Ṁ

M1 +M2

−
3Ṁ2(M1 −M2)

M1M2

+ 3K (2.8)
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CHAPTER 2. ASTROPHYSICS 2.3. COMMON ENVELOPE

2.3 Common envelope

The Roche lobes and thereby the radius of the stellar atmospheres adjust to the changes in or-
bital separation of the binary. Together with non-conservative mass transfer and RLOF of the
secondary this can lead to a phase when both stars move within a common envelope (CE).
The idea of CE evolution dates back to Paczynski (1976), citing private communication with Os-
triker and Webbink (1975). A detailed review on CE evolution is given in Ivanova et al. (2013).
Veras (2016) discuss the effects of CE evolution onto planetary systems, investigating e.g. the ac-
cretion of mass by the planetary companion, interactions with asteroids and the impact of stellar
radiation.
According to Ivanova et al. (2013) the CE evolution can be split into five phases. This is also
supported by Podsiadlowski (2001), e.g. see Fig. 2.5, taken from their paper, which shows the
evolution of the radius of the envelope and the position of the secondary over time as result of
quasi-hydrostatic simulations. Different phases of the evolution are clearly distinguishable.

2.3.1 The main phases of CE evolution

The five main phases of CE evolution are:
1. Loss of corotation
2. Rapid spiral-in
3. Controlled spiral-in
4. Termination of controlled spiral-in
5. Post–CE evolution

Loss of corotation

Starting with a close stable binary the onset of a CE phase depends amongst others on the evolu-
tionary state as well as the mass ratio of the components. It can be induced, as explained before,
by dynamical mass transfer. Further mechanisms are e.g. loss of orbital angular momentum due
to gravitational wave radiation (Iben and Livio, 1993). Subsequently, the expanded envelope
cannot maintain corotation with the binary.
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Figure 2.5: Simulations of the spiralling in of secondaries with massesM2 inside the envelope of a 15M⊙ primary star by
Podsiadlowski (2001). Thedashed lines showtheestimatedpositionof the secondary inside theenvelope. The lines represent
simulations withM2 = 2, 5 and 10M⊙ from bottom to top at the end of the simulation time. The continuous lines show the
radius of the envelope. Distinct phases in the evolution of the binary can be determined.

Rapid spiral-in

Friction between the envelope and the stars leads to the transfer of orbital en-
ergy onto the envelope. Thereby, the binary spirals inward and the envelope ex-
pands. If sufficient energy is released it may even lead to the ejection of the envelope
(e.g. Paczynski, 1976; Podsiadlowski, 2001; Hurley et al., 2002; Ivanova et al., 2013).

Controlled spiral-in

At some point the expansion of the envelope reaches a level the where spiral-in of the binary
slows down. This happens when the binding energy of the envelope is comparable to the total
orbital energy of the binary (Podsiadlowski, 2001). Further frictional energy which is released by
the binary is transported to the surface and radiated away, leading to an increase in luminosity
of the envelope (Meyer and Meyer-Hofmeister, 1979).
However, non-local energy dissipations have been seen in numerical simulations by Ricker
and Taam (2008) and Passy et al. (2012) during the rapid spiral-in phase. Ongoing dom-
ination of these effects after the rapid spiral-in phase could prevent the system to reach a

14
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self-controlled phase.

Termination of controlled spiral-in

Two causes for the termination of the controlled spiral-in phase are possible. Either the envelope
is ejected or the secondary fills its Roche lobe and mass transfer from the secondary takes place
(e.g. Podsiadlowski, 2001; Ivanova et al., 2013). This might lead to the merger of the stellar cores.

Post–CE evolution

Further evolution of the post–CE system is expected. The formation of a fall-back disk could
reduce the orbital separation of the binary (Kuruwita et al., 2016). The primary remnant might
contract (Iben andLivio, 1993) and general thermal evolution of the stellar remnants could restart
mass transfer (Ivanova et al., 2013).

2.3.2 Physical description of CE evolution

Historically, the first descriptions of close binary systems taking into account a common envelope
equated the change in orbital energy Eorb due to the spiral-in with the binding energy of the
envelope Ebind (e.g. van den Heuvel, 1976; Paczynski, 1976; Webbink, 1984; Livio and Soker,
1988). This approach is called the energy formalism.
Another approach introduced by Nelemans et al. (2000), which is called γ formalism, is based
on the calculation of the angular momentum budget.

Energy formalism

The energy budget can be written as

GM1Menv

λairL
= αCE

(

GM1,cM2

2af
−

GM1M2

2ai

)

(2.9)

(Dewi and Tauris, 2000) where a is the binary separation, subscripted with i and f for initial and
final value, accordingly. M1,c is the mass of the primary after it lost its envelope of massMenv. λ
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is a numerical factor, called binding energy parameter, introduced by de Kool (1990) in order to
account for different density distributions of the donor star. de Kool (1990) approximates λ by
0.5. Nowadays it is widely accepted that λ varies depending on stellar mass and evolution. For
a recent study on the binding energy parameter see Wang et al. (2016). The efficiency parameter
αCE (named ηCE inDewi andTauris (2000)), introduced by Livio and Soker (1988), accounts for
the efficiency with which orbital energy is used to drive off the envelope. It is defined as

αCE ≡
∆Ebind

∆Eorb

(2.10)

The value of αCE remains uncertain. Effects that might influence the efficiency of energy de-
position are e.g. efficient energy transport and nonspherical effetcs like mass ejection (Iben and
Livio, 1993). If further energy sources, e.g. nuclear energy, help driving off the envelope it is also
possible to get values of αCE ≫ 1. Han et al. (1995) introduce the parameter αth as efficiency
parameter for the thermal energy. For their simulations they combine values of 0.0, 0.5 and 1.0
for αth and 0.3 and 1.0 for αCE. More recent results from Han et al. (2002) propose the values
αCE = αth = 0.75 as the best solution to fit observations of subdwarf B stars in binaries.

γ formalism

In order to explain the evolution of observed systems of doublewhite dwarfs in close orbitswhich
underwent a CE phase and lost the envelope without a spiral-in phase Nelemans et al. (2000)
brought forward the γ formalism. This should, according to Nelemans et al. (2000), be applied
to systems with low mass ratio.
The essential equation is given in eq. 2.11. It is based on the assumption that the envelope is
completely expelled and that the angular momentum of the systems is reduced linearly.

Ji − Jf = γJi
∆m

M
(2.11)

The angular momentum is given by J, the indices chosen according to the energy formalism. As
before, M is the sum of the stellar masses and ∆ m is the total change of mass. Nelemans et al.
(2000) estimate the value of γ for their observed systems to lie between∼ 1.4 and 1.85.
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Advantages and disadvantages of the formalisms

For historical reasons, the energy formalism is more widely distributed andmore often used than
the γ formalism. This leads to the advantage that the parameters of the energy formalism are
constantly under investigation and the formalism itself is improved (e.g. Zorotovic et al., 2014;
Nandez and Ivanova, 2016; Wang et al., 2016).
Furthermore, there are indications that the energy formalism is more appropriate in order to
describe the observed abundances of classes of systems (e.g. Zorotovic et al., 2010; Zuo and Li,
2014). The γ formalism is efficient in reconstructing the double helium WD systems for which
it was originally introduced.

2.3.3 Remnants of CE systems

Common envelope evolution is one way how close compact binary systems form. The remnant
systems of CE evolution are e.g. WDMS binaries (Rebassa-Mansergas et al., 2007), cataclysmic
variables (CVs) (Kalomeni et al., 2016), high-mass X-ray binaries (Zuo and Li, 2014) as well as
black-hole binaries and long-duration gamma ray bursts (Podsiadlowski et al., 2010). Further
objects that experienced a CE phase are e.g. Type Ia supernovae (Iben and Tutukov, 1984; Kashi
and Soker, 2011).
The wide variety of systems to which CE evolution can be applied is the reason why the detailed
study of its physics is so important.

2.3.4 Numerical simulations of PCEB dynamics

Numerous studies on the impact and outcome of CE evolution have been published over the
last decade. Here, I present a short and incomplete overview of the work of other scientists.
A high percentage of the published studies focuses on the second phase of CE evolution, namely
the rapid inspiral. Among these are Ricker and Taam (2008, 2012). The authors analyze in
particular the duration of the inspiral, the evolution of the orbital separation, the effect of drag
forces on the secondary star and the resulting density distribution of bound and unbound gas.
For this study, the authors use the grid-based adaptive mesh refinement (AMR) code FLASH1

1http://flash.uchicago.edu
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(Fryxell et al., 2000; Dubey et al., 2008). A similar study of the spiral-in phase comparing two
different numerical codes was carried out by Passy et al. (2012). Here, a comparison between the
AMR hybrid code Enzo (O’Shea et al., 2004), combining N-body and hydrodynamics, and the
Lagrangian smoothed-particle hydrodynamics (SPH) code SNSPH (Fryer et al., 2006) is drawn.
I will review these three papers with more detail in succeeding paragraphs.
A comparable analysis is done by Ohlmann et al. (2016a) using the moving-mesh codeAREPO.
The strength of the code is the high spatial resolution that can be achieved. This enables the
authors to observe the prominence of large-scale flow instabilities. Nandez and Ivanova (2016)
use the SPH code StarSmasher to analyze the inspiral of a double white dwarf binary. The
authors pay special attention to the effect of recombination energy on the outcome of the
simulations with the result that including recombination energy decreases the mass that remains
bound to the system. In Iaconi et al. (2017) the idea and setup of Passy et al. (2012) is picked
up using the Enzo code. The authors investigate the outcome of the rapid inspiral under a
wider initial separation of the binary. Furthermore, they compare these simulations with SPH
simulations using Phantom. Iaconi et al. (2017) conclude that a wider initial separation results
in a wider final separation because of the stellar expansion of the primary with differences not
larger than 10% depending on the different codes. Ohlmann et al. (2016b) present the first
magnetohydrodynamics simulations of the rapid spiral-in phase as an extension to Ohlmann
et al. (2016a). The simulations show an amplification of magnetic fields during the inspiral.
Nevertheless, the magnetic field strength is dynamically insignificant for the evolution of the
binary. A set of Monte Carlo simulations was performed in Camacho et al. (2014) with the
aim to better constrain the values of physical parameters of CE evolution by comparison with
observations. As reference observations/ data the authors choose the set of WDMS binaries in
the Data Release 7 of the Sloan Digital Sky Survey (SDSS)2. Camacho et al. (2014) introduce the
parameter αint, which is based on αth as in section 2.3.2. The new notation, however, represents
the inclusion of radiation and recombination energy. In general, the PCEB sample can be well
reproduced with small values of αCE and αint and using a variable binding energy parameter.
Finally, Kuruwita et al. (2016) set up simulations to form a fall-back disk based on Passy et al.
(2012) using Enzo. The authors conclude that a disk helps reducing the final orbital separation
of the binary, however, further energy sources are still required to help unbinding the envelope
gas.

2www.sdss.org
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Figure 2.6: Orbital separation of the binary plotted over time. The initial separation is 4.3 × 1012cm. The decrease during
the first 41 days is dominated by gravitational drag (Ricker and Taam, 2008). Figure fromRicker and Taam (2012).

Ricker and Taam

In the publications Ricker and Taam (2008) and Ricker and Taam (2012) (hereafter Paper I and
II) the authors analyze the evolution of a 1.05M⊙ red giant star with a core mass of 0.36M⊙ and
a 0.6M⊙ companion. The red giant is modelled via a one-dimensional stellar evolution code and
linearly interpolated onto a three-dimensional Eulerianmesh to be used in FLASH 2.4. The core
of the red giant is subsequently substituted by a spherical particle cloud containing 200.000 La-
grangian particles moving as a solid body. Similarly, the secondary is represented by a spherical
cloud of 200.000 Lagrangian particles within 6 × 1010 cm. The orbital period of the binary is
44.2 days at a separation of 4.3× 1012 cm. The model of the primary is evolved for a dynamical
timescale before the secondary is added. The stars are given circular orbital velocities and spin
angular velocity. The simulation box of 4× 1013 cm in each dimension is filled with ambient gas
at a density of 10−9g cm−3 and pressure identical to the pressure of the outermost layer of the
primary star. The evolution of the system is then followed for a total of 56.7 days. The analysis
of the first 41 days is presented in Paper I, the end of the simulation is presented in Paper II.
Figure 2.6 shows the evolution of the orbital separation of the binary over time. The inspiral
starts after about 27 days. At the end of the simulation the orbit is still decaying with a timescale
of about 35 days. The periastron separation has decreased to ∼ 6 × 1011 cm. The gas density
distribution in the vicinity of the stars after 56.7 days is plotted in Fig. 2.7 along with the velocity
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Figure 2.7: Velocity field (km s−1) and density distribution after 56.7 days of evolution. The location of the core is repre-
sented by×, ◦ represents the companion star. Left: xy-plane, right: xz-plane. Ricker and Taam (2012).

field. The image shows that the gas rotates around the companion almost spherically symmetric
in the xy-plane, the red giant core orbits along with the gas. In the xz-plane, the gas density dis-
tribution is flattened along the z-axis, resulting in a toroidal structure. The density distribution
on larger scales along with radial profiles of gas density, pressure and radial as well as tangential
velocity is shown in Fig. 2.8. The vertical lines in the radial profiles at the positions of jumps
in the parameters clearly correspond to the spiral features visible in the gas density distribution.
These features are characterized as spiral shocks.
Finally, the amount of unbound gas, displayed in Fig. 2.9, is 0.18M⊙ at the end of the simulation.
This is about 26% of the total envelope mass.
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Figure 2.8: Left: density distribution in the xy-plane after 56.7 days. The black line indicates the direction for radial profiles
plotted on the right. Right: Radial profiles of density, pressure, radial and tangential velocity (top to bottom) after 56.7 days.
Vertical lines indicate the positions of spiral shocks. Ricker and Taam (2012).

Figure 2.9: Unbound mass from Ricker and Taam (2012). The final amount of ejected mass is 0.18M⊙. At the beginning a
fraction of 0.03M⊙ is already unbound.

21



2.3. COMMON ENVELOPE CHAPTER 2. ASTROPHYSICS

Passy

Passy et al. (2012) investigate a series of simulations comparing different initial conditions and two
different numerical codes. A detailed analysis is given for three simulations, the main parameters
of which are summarized in Table 2.1.

Name Npart orNcells M2(M⊙) A0(R⊙) P0(days) v0/vcirc Af (R⊙) Pf (days)

SPH2 500,000 0.6 83 72 1 20.6 10.1
Enzo2 1283 0.6 91 83 1 20.0 11.0
Enzo7 2563 0.6 85 75 1 19.2 9.8

Table 2.1: Main parameters of three selected simulations. Npart orNcells is the number of particles or cells used for the
simulation,M2 is the secondarymass,A0,P0 (Af ,Pf ) denote the initial (final) orbital separation and period,v0/vcirc is the
orbital velocity of the secondary given in terms of the Kepler velocity.

The primary star is based on a one-dimensional model of a 1M⊙ MS star evolved to the RGB
phase. The density profile is achieved in the SPH simulations by adding particles around a core
particle withmassMc and requesting smooth connections at the boundary between core and en-
velope. Thepressure profile is determinedby the initial value at theboundary and the assumption
of hydrostatic equilibrium.
For simulations with Enzo the one-dimensional stellar model is used to define a spherically sym-
metric three-dimensional primary, the core is represented by a point mass. The simulation box
of size 3× 1013 cm is filled with ambient medium of constant density. As was done in the simu-
lations in section 2.3.4, the setup is evolved for a few dynamical timescales before the secondary,
represented by a point mass, is added. All simulations are run for 1000 days.
The evolution of the orbital separation of the binary over time for the Enzo7 simulation is shown
in Fig. 2.10. Compared to Ricker and Taam (2012) the infall phase starts at a similar time after the
beginning of the simulation. However, the separation decays slower.
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Figure 2.10: Top: orbital separation of the binary plotted over time. Bottom: orbital decay averaged over each cycle (top, red
dashed line). The location of the blue vertical line shows the defined end of the rapid spiral-in phase. Image from Passy et al.
(2012).

For the same simulation, the gas density distribution and velocity field can be compared to
Ricker and Taam (2012) (see Fig. 2.11). After 50 days (Fig. 2.11, second row) the distribution in
the xz-plane (right) appears similar to the distribution in Fig. 2.7. The evolution of spiral shocks
detectable via radial profiles as in 2.8 (bottom) aswell as a uniform flowpattern occur later, visible
after 85 days (Fig. 2.11, third row).
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Figure 2.11: Gas density distribution and velocity field (scaled to23kms−1 in top panel) in the xy- (right) and xz-plane (left)
for Enzo7. The evolution is shown after 0, 50, 85 and 130 days (top to bottom). Passy et al. (2012).
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Figure 2.12: Top: escape velocity (dashed line) and radial velocity (black dots) of the gas plotted over radius at the end of the
SPH2 simulation. Bottom: enclosedmass over radius. Passy et al. (2012).

The unbound mass in the SPH2 simulation is less than 15% of the envelope mass as can be
deduced from Fig. 2.12. The unbound gas is at radii larger than 103R⊙.
For the SPH2 simulation, Passy et al. (2012) plot a detailed analysis of the evolution of the energy
components. This is shown in Fig. 2.13. At the beginning of the simulation, during the inspiral,
the internal energy of the system (Utot, green dashed line) and the orbital energy of the core and
companion (Ec2, black dashed line) decrease while the envelope expands,Φenv (blue dashed line)
increases. After the inspiral (> 280 days), the values of the energy components remain almost
constant.
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Figure 2.13: Evolution of the energy components for the SPH2 simulation of Passy et al. (2012). The total energy Etot is
plotted as black line. The gravitational potential energyΦof the system (indexed tot), the envelope (indexedenv) and the core
and companion (indexed c2) are plotted as well as the kinetic energy K of the core and companion, the bound mass (indexed
b) and the unbound mass (indexed u), the internal energy of the systemUtot, the total energy of the envelopeEenv and the
orbital energy of the core and companionEc2. Total energy is conserved up tomore than 10%.

Conclusion on numerical studies

The presented studies show that the CE phase is not well constrained. The parameters of the
system after the infall phase, e.g. the remaining bound mass and the radial velocity of the gas,
strongly depends on the initial conditions. These are determined by the stellar masses and the
mass of the envelope as well as the total energy of the system. Therefore, a parameter study is
necessary in order to numerically study the post–CE phase.
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Figure 2.14: Planet mass versus planet separation in double logarithmic scale. The planets are colour coded by detection
method. Blue: radial velocity, red: transit, green: microlensing, yellow: direct imaging.

2.4 Extrasolar planets

The first detection of a planet outside our own solar system around a solar-type star was reported
in 1995 by Mayor and Queloz (1995). 51 Peg b is a Jupiter-mass planet with orbital distance of
0.05AU (see exoplanets.org and Han et al. (2014)) to its host star. Since 1995 the number of
detected planets has increased by thousands. Fig. 2.14 shows an overview of the distribution of
announced exoplanets by December 18, 2016 by the Exoplanet Data Explorer at exoplanets.org.
To this date, the Exoplanet Data Explorer lists 2950 confirmed planets.
The planets in Fig. 2.14 are colour coded by detection method. The most common detection

methods are described in the following.

Radial Velocity

Due to the gravitational force of a planet its host star moves around the common center of mass.
Unless the orbit is observed exactly face on the star will be moving in the radial direction with
respect to the observer. This radial motion can be observed via spectroscopy as a shift to the red
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or blue in the spectrum for the star moving away or coming towards the observer, respectively.
The extent of theDoppler shift is larger formassive planets in close orbits. With the radial velocity
(RV) method it is possible to determine a mass limit of the planet depending on the inclination
angle i (i = 0◦ for face on view, i = 90◦ for edge on view) asm · sin(i).
The planets detected via RV are the blue circles in Fig. 2.14.

Transit

The transit of a planet in front of its host star decreases the observed stellar flux. The transit
depth depends on the diameter of the planet. A typical value for the transit depth in terms of
Rplanet/Rstar is 10−4 to 10−3. The frequency of a transit depends on the orbital distance of the
planet to the star. Therefore, the detection probability increases with decreasing separation.
The planets detected via transit are the red circles in Fig. 2.14. A large number of these planets
were discovered by the Kepler mission which was specifically designed in order to detect Earth-
size planets in the Milky Way (Borucki et al., 2008).
A combination of transit and RVmeasurement is of very high interest because it allows to deter-
mine the density of the planet.

Microlensing

The idea of gravitational lensing dates back to Einstein (1936). If the light of a background source
passes a massive object (lens) it will be deflected due to gravity. Depending on the geometrical
conditions the observer might see multiple images of the source or one distorted image. In any
case, the apparent brightness of the source increases. In the case of a single star acting as lens on
a single background star, a microlensing event, the observed intensity of the source star shows
a symmetrical variation. A stellar lens with a planetary companion however would lead to an
asymmetrical variation of the lightcurve and thereby reveal the presence of the companion. This
detectionmethod is sensitive tomassive planets at moderate distances of a fewAU (Ollivier et al.,
2009).
The planets detected via microlensing are the green circles in Fig. 2.14.

Direct Imaging

Direct imaging is photometry of the planet. It is influenced by the contrast and distance
between planet and star, i.e. the method is biased towards detecting massive planets with large
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separations.
The planets detected via direct imaging are the yellow circles in Fig. 2.14.

Extrasolar planets are also detected in stellar binaries or multiple stellar systems. The number
of planets in these kind of systems listed in the Exoplanet Data Explorer by June 2017 is 680. A
detection method, applicable for planets in eclipsing binary systems, is the light-time effect.

Light-time effect

For an eclipsing binary system it is possible to determine the epoch ofminimumof an eclipse very
precisely. In a tight, undisturbed system the eclipse should occur periodically with a constant
period T. In the case of a planet orbiting an eclipsing binary the motion of the binary around
the center of mass of the three-body system leads to a shift of the binary in the direction towards
and away from the observer once per orbital period of the planet. With the increased (decreased)
distance between the binary and observer the eclipses are observed later (earlier) compared to
the undisturbed binary system. This is the light-time (LTT) effect. The difference between
observed timing and calculated timing of the undisturbed system can be plotted in a so called
O-C diagram. If a single planet is in circular orbit around the eclipsing binary the O-C diagram
displays cyclic changes.
Note that the occurence of cyclic changes in the O-C diagram is not a proof for the existence of a
third body orbiting the eclipsing binary.
A list of observed eclipsing PCEBs showing variations in the O-C diagram is given in Zorotovic
and Schreiber (2013). This list also includes the system NN Serpentis (NN Ser).
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2.5 NN Serpentis

The binary system NN Serpentis (ab) consists of a white dwarf and M dwarf. Precise mea-
surement of the parameters is given in Parsons et al. (2010). The white dwarf has a mass of
MWD = 0.535 ± 0.012M⊙ and radius of RWD = 0.0211 ± 0.0002R⊙. The values for the
M dwarf are Msec = 0.111 ± 0.004M⊙ and Rsec = 0.149 ± 0.002R⊙. The temperature
of the WD is given by 57000 ± 3000 K (Haefner et al., 2004). The binary separation is deter-
mined to be af = 0.934 ± 0.009R⊙. Beuermann et al. (2010) estimate the mass of the WD
progenitor ∼ 2M⊙ and the initial separation of the binary ai ∼ 1.5 AU. The period of the
system is P = 0.130 d (Brinkworth et al., 2006). The authors also detect a period decrease of
Ṗ = (9.06± 0.06)× 10−12s s−1.
Among other explanations for the period change in binary systems is the Applegate mechanism
(Applegate, 1992). In this model, Applegate proposes that a reallocation of angular momentum
within an active star during its activity cycle leads to a change in the oblateness of the star and
therefore to a change of its quadrupole moment. The variation of the quadrupole moment af-
fects the gravitational acceleration and thereby causes a change in the orbital period. Brinkworth
et al. (2006) calculate the energy budget for NN Serpentis and resume that the available energy is
too low to explain the observed period moduliations by Applegate’s mechanism.
Further mechanisms explaining the observed ecplipse variations, e.g. apsidal motions (Parsons
et al., 2014), are ruled out as well, thus only leaving the existence of planetary companions as trig-
ger.
The systemwas proposed to harbor two planets by Beuermann et al. (2010) using the LTT effect.
A plot of theO-Cmid eclipse time differences relative to a two-planetmodel is shown in Fig. 2.15.

The planetary masses as determined in Beuermann et al. (2013) are 7.0MJ and 1.7MJ. The
semi-major axis of the planetary orbit is 5.4AU and 3.4AU, respectively. The planetary solution
was tested for dynamical stability (Beuermann et al., 2013). Although there is no confirmation
for the existence of the planets I will adopt the phrasing of planets instead of planet candidats in
the following.

The origin of the planets is not clear at all. Either they are first-generation planets, i.e. they
were formed before the binary evolved into a PCEB, which experienced a dramatic change in
system parameters during and after the CE phase. Or they are second-generation planets which
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Figure 2.15: O-C mid eclipse time differences as yellow and green dots representing data points with errors > 1s and < 1s,
respectively. Overplotted in green are the contributions of components b and c by dashed and dot-dashed lines, respectively,
to the best-fit model plotted as black solid line. Figure fromBeuermann et al. (2010).

formed out of a fall-back disk after the CE phase. In the latter case, the planets’ age would be
restricted by the white dwarf cooling age to be less than 1Myr (Beuermann et al., 2010).
Since NN Serpentis is unique in the sense that the hypothesis of the existence of planets persists
even after many years of observations I will base the basic parameters of my simulations on the
parameters of this system.
I will summarize the results of Völschow et al. (2014) and Schleicher et al. (2015) which argue
against a first-generation and for a second-generation scenario in section 2.5.1 and 2.5.2, respec-
tively.

2.5.1 Analytic examination of first-generation planets

In Völschow et al. (2014) the authors investigate the effects of a change in the gravitational poten-
tial of a binary star onorbitingplanets. This is a simplemodel for amass-ejection event, neglecting
any further effects on the system. The authors examine two different cases depending on themass
loss timescale τ and the planet’s orbital period Pi:

1. adiabatic mass loss with τ ≫ Pi

2. instantaneous mass loss with τ ≪ Pi
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ConsideringNNSerpentis with amass-loss factorµ = Mf/Mi ≈ 0.3 and the planets on circular
orbits with initial semi-major axes> 3.5AU (Beuermann et al., 2010) the planets would

1. have final semi-major axes > 10 AU; or starting at the final positions as published by
Beuermann et al. (2013) the planets initial semi-major axes had to be< 2 AU which leads
to dynamically unstable orbits in the initial system.

2. reach escape velocity and get ejected.

Considering initially elliptical orbits
1. all orbital parameters of the planets would be conserved, i.e. Pi = Pf etc.

2. the final eccentricity and semi-major axis depend on the distance ri and polar angle ϕi of
the planet at the moment of mass ejection.

Evaluating these conditions for NN Serpentis, Völschow et al. (2014) conclude that adiabatic
mass loss is excluded for typical CE events with τ ≪ Pi and instantaneous mass loss would
require initial eccentricities ei ≈ 0.4, see also Fig. 2.16 for escape probabilities depending on
initial eccentricity, which again makes it difficult to find stable solutions for the initial planetary
system.
Furthermore, the authors investigate the effect of geometric gas drag effects on the mass-loss
event. They show that as well for the spherical symmetric case as for a disk-shaped case of
mass-ejection the geometric gas drag can be neglected. Therefore, the results shown above
require a second-generation planet scenario for the system NN Serpentis.

2.5.2 Second-generation planet formation

The formation of a disk from fall-back material can be modeled under the assumption of a spe-
cific ejection scenario. To do so, Schleicher and Dreizler (2014) adapt a model for the ejection
event from Kashi and Soker (2011). In addition to the known physical values from NN Ser the
authors assume a power-law density profile for the envelope and the case that the ejection occurs
when the released gravitational energy from the binary, Eorb in the notation of 2.3.2, exceeds the
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Figure 2.16: Considering instantaneousmass loss, this figure shows the escape probability of a planet depending on its initial
eccentricity and themass loss factor of the system. Fig. 1 fromVölschow et al. (2014).

binding energy of the envelope (Ebind). However, parts of the gas mass outside the radius where
Ebind = Eorb might not reach escape velocity but stay gravitationally bound to the system and
form a disk. To estimate the fraction of gasmass that does not leave the system, the authors apply
a model by Kashi and Soker (2011) in order to determine the post-shock velocity profile of the
gas. For NN Ser, Schleicher and Dreizler (2014) find a remaining gas mass of ∼ 0.133 M⊙. To
derive the mass available for disk formation the parameter αM is introduced which accounts for
corrections of the gas mass due to the underlying assumptions. The potential disk mass is then

Mdisk = αMMbound. (2.12)

Assuming this gas forms a fall-back disk described by a power-lawprofile of the gas surface density
Σ(r) = Σ0(

rout
r
)n, where rout is the outer radius of the disk and Σ0 the surface density of the

disk at rout, with n = 1 and efficient cooling of the disk due to dust, the Toomre Q parameter,
given by

Q =
csΩ

πGΣ
∼ 1, (2.13)
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will decrease. Here, cs denotes the sound speed and Ω is the rotation under the assumption of
Kepler rotation around an object with the same central mass as the present system. Following
e.g. Boley et al. (2010), the authors estimate the mass of initial clumps forming by gravitational
instabilities (GI) to be

Mcl = Σ(r)h2(r) (2.14)

with h being the disk height. The upper limit for the finalmass of the clumps that can be reached,
delimited by the formation of a gap, is

Mf = Mcl

[

12π
αcrit

0.3

]1/2 ( r

h

)1/2

(2.15)

where αcrit is the critical value for viscous dissipation.
Applying this model to NN Ser, Schleicher and Dreizler (2014) derive final masses for planets at
5.4AU and 3.4AU of∼ 6.6MJ and∼ 1.9MJ, respectively. These values are remarkably close
to the observed system.
In addition, the authors point out the possibility that first-generation planets could accrete mass
from the disk to form the observed system NN Ser, a scenario that is not ruled out by Völschow
et al. (2014). The formation of planets through core accretion however seems rather unlikely due
to the young age of NN Serpentis.
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3
Numerical Hydrodynamics

For the work presented in this thesis I make use of the FLASH code, version 4.2.2, with an
additional gpu implementation published in Lukat and Banerjee (2016).
In section 3.1 I give a short introduction to FLASH. Subsequently, I explain the fundamental
setup which is used for the simulations in section 3.2.
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3.1 FLASH

FLASH is a finite-volume adaptive mesh refinement (AMR) code (Berger and Colella, 1989),
originally written for solving the hydrodynamic problem of nuclear flashes. It allows for user
defined applications by a wide variety of compatible modules. These adress amongst others
the solvers for hydrodynamics (HD), gravity and the equation of state, the grid solvers and the
inclusion of Lagrangian particles.
The FLASH code is parallel using the Message Passing Interface (MPI).
The publication Fryxell et al. (2000) presents in detail the architecture of the code, the algorithms
solving the hydrodynamics and thermodynamics as well as some test and benchmark cases.
In the following sections, I summarize some of the most important features for my simulations,
namely the hydro- and thermodynamics algorithms, the adaptive mesh technique and sink
particles.

3.1.1 Adaptive Mesh Refinement

I use the PARAMESH package (MacNeice et al., 2000) included in the FLASH code for setting
up the adaptive grid.
PARAMESH is a block-structured AMR, i.e. it assumes a logically Cartesian order of blocks of
cells where in three dimensions the neighboring cells in x-direction of the cell defined by grid
point (i,j,k) are (i-1,j,k) and (i+1,j,k). FLASH only supports cell-centered data solutions. Thus,
the coordinate triple (i,j,k) denotes the center point of the cell. Refining a block is accomplished
by halving it along each dimension. In 3D simulations this results in a new subset of eight blocks.
These children blocks have in sum exactly the same size as the parent block. The block structure
is stored in a tree, see Fig. 3.1 for a 2D example. There exist several criteria for the refinement and
derefinement of a block. One example is that neighboring blocks may not differ by more than
one level in refinement.
Each block consists of eight interior cells surrounded by guard cells. The number of guard
cells at each boundary is defined by the user. Here, I use a layer of four guard cells. The data
solutions in the guard cells are copied from neighboring blocks unless the block is at a boundary
of the computational domain. In that case the solution is calculated depending upon boundary
conditions.

36



CHAPTER 3. NUMERICAL HYDRODYNAMICS 3.1. FLASH

Figure 3.1: 2D grid with different levels of refinement related to tree structure. The block at refinement level 1, block 10, is
split into blocks 6, 11, 12 and 14. The highest level of refinement is reached for blocks 1, 3, 4 and 5with refinement level 4.
The tree relates parent and children blocks. Figure from Fryxell et al. (2000).
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3.1.2 Hydro- and Thermodynamics

In order to evolve the dynamics of the gas, FLASH solves the Euler equations. These are given in
the conservative form in equations 3.1 - 3.3. Here, ρ and v denote the fluid density and velocity,
respectively. P is the pressure and Φ is the gravitational potential. The energy E is the sum of
internal energy ρϵ and kinetic energy, given byE = ρϵ+ ρ

2
|v|2.

∂ρ

∂t
+∇ · (ρv) = 0 (3.1)

∂ρv

∂t
+∇ · (ρvv) +∇P = −ρ∇Φ (3.2)

∂E

∂t
+∇ · [(E + P )v] = −ρv · ∇Φ (3.3)

These three equations represent the conservation of mass (3.1), momentum (3.2) and energy
(3.3) under the action of gravitational forces. The pressure is derived by solving the equation
of state. For the study presented here this is a polytropic EOS with polytropic constant K and
polytropic index Γ, given in equation 3.4. The gravitational potentialΦ depends on the density
ρ of the gas and is determined via the Poisson equation (equation 3.5).

P = K · ρΓ (3.4)

∇2Φ = 4πGρ (3.5)

The internal energy ρϵ and temperature T are calculated depending on pressure and density,
resulting in T ∝ ρΓ−1. I have chosen the polytropic EOS in order to avoid unphysical
temperatures arising from the combination of the sink particle module and the gamma-law EOS
module.
In order to update the values for the conserved variables in each time step one has to solve
a Riemann problem for the discontinuity represented by the cell interfaces. This is done by
the hydrodynamic solver. For this study, I use a solver implemented in FLASH as alternative
magnetohydrodynamic (MHD) module by Waagan et al. (2011). In comparison to other
available HD and MHD solvers this solver showed the best stability.
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3.1.3 Sink particles

Sink particles are Lagrangian particles, i.e. they can move independently of the grid within the
computational domain. Krumholz et al. (2004) were the first to use sink particles in grid-based
AMR code. Federrath et al. (2010) implemented sink particles in FLASH.
Sink particles were originally supposed to represent bound regions of high density that are going
to collapse in order to prevent the violation of the Truelove-criterion (Truelove et al., 1997).
This criterion limits the resolution of the Jeans length in units of the cell size by which artificial
fragmentation can be avoided. Thus, sink particles interact gravitationally with gas and are also
able to accrete gas. Moreover, sink particles interact gravitationally with other sink particles. As
in my simulations, sink particles can also be used to represent stars or planets. To do so, I initiate
a sink particle at a pre-defined position with given mass and velocity. Calculated gravitational
interactions in simulations are: sinks on sinks, sinks on gas, gas on sinks and gas on gas.

• Gs on gs interactions are solved using a Poisson solver. In my case this is a solver for the
gpu implementation (Lukat and Banerjee, 2016).

• Gs on sinks interactions are calculated by interpolation of the gas-gas interaction at the
position of each sink particle.

• Sinks on gs interactions are calculated via the sum over all sink particles for each cell,
taking into account the masses of the sink particles and the corresponding distance to the
cell center. In order to avoid accelerations approaching infinite values for particles close
to cell centers a gravitational softening is applied within the pre-defined sink softening
radius. The calculated acceleration is added to the gas-gas acceleration.

• Sinks on sinks interactions are calculated via the sum over all paricles, again taking
gravitational softening into account. The result is added to the gas-sinks acceleration.

A time step for the evolution of sink particles is calculated, depending on several conditions.
An upper limit for the sink particle time step is set by the hydrodynamic time steps, a lower limit
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is set by considering the smallest distance between any two sink particles.
Blocks containing sink particles are always on the highest level of refinement.
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3.2 Setup for the performed simulations

In the following section, I describe the setup for my simulations. All terms that are used, such as
α, from now on refer to simulation parameters.

The envelope of the CE system is modeled as a gaseous sphere with given density and velocity
distribution. It is surrounded by ambient medium at rest with density ρamb in a box with length
of 40 AU in each dimension. Within the envelope I define a core with radius rcore and constant
density ρ0. Outside rcore the density decreases as r−α. The central density is determined by the
total massMenv. The total kinetic energy Ekin is split into two parts via the parameter rad. One
part is the kinetic energy of the radial motion of the gas which increases proportional to r0.5.
The second part is the kinetic energy of the angular motion. The gas is set in rotation around
the z-axis. With rcyl being the distance to the z-axis the toroidal velocity decreases proportional
to rcyl−0.5.
Temperature, pressure and internal energy of the gas are calculated via the EOS.

The solid objects in the system are represented by sink particles. One sink particle, sinkbi,
represents the stellar binary. The mass of the binary as well as of the envelope is chosen such as
to represent the system NN Serpentis as introduced in section 2.5. The sink particles sinkp1 and
sinkp2 both represent a planetary object. All three sink particles are initiated at setup time with
defined mass and velocity at fixed positions. Sink merging or accretion of gas onto sinks is not
activated in the simulations.
All setup variables which stay fixed for the set of simulations are summarized in Tables 3.1 (gas)
and 3.2 (sinks).

Since the initial parameters during the CE phase for PCEB systems are not known I carry out
a parameter study. Therefore, I define a parameter space of velocity distribution (rad), total ki-
netic energy Ekin and density slope α. The choice for the values of rad as well as for α are based
on the results of Ricker and Taam (2012) and Passy et al. (2012). These simulations show that
the gas is rotating at the end of the rapid infall phase and in both cases the density decreases with
∼ r−2 at the end of the simulations. In order to account for different initial conditions and to
test various scenarios we choose values for rad of 0.5, 0.7 and 1.0 and α takes on the values 1,
1.5 and 2. I parametrize the total kinetc energy Ekin by the change in orbital energy ∆Eorb of
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parameter default value
total mass of the envelope Menv 1.5M⊙

radius of the envelope Renv 1AU
core radius rcore 0.33AU
density of the ambient medium ρamb 1.5 · 10−15g cm−3

polytropic gamma Γ 1.5

Table 3.1: Default values for the initial setup of the gaseous envelope and the ambient medium.

parameter initial value

mbi 0.65 M⊙

xbi 0 AU
ybi 0 AU
zbi 0 AU
vxbi 0 km s−1

vybi 0 km s−1

vzbi 0 km s−1

parameter initial value

mp1 2.1 MJ

xp1 3.5 AU
yp1 0 AU
zp1 0 AU
vxp1 0 km s−1

vyp1 23.35 km s−1

vzp1 0 km s−1

parameter initial value

mp2 6.32 MJ

xp2 −2.0 AU
yp2 0 AU
zp2 0 AU
vxp2 0 km s−1

vyp2 −30.9 km s−1

vzp2 0 km s−1

Table 3.2: Initial values for the three sink particles used in the simulations.

the envelope which can be calculated via equation 2.9. Choosing αCE = 0.75 and the parame-
ters according to NN Serpentis this leads to ∆Eorb ≃ 1047 erg. To account for different values
of the efficiency parameter and possible further sources of energy, e.g. nuclear energy, we use
Eset = Ekin/∆Eorb = 0.5, 1.0 and 2.0with∆Eorb = 8.2× 1046 erg.
The values for the varying parameters are presented in Table 3.3. I run simulations with all pos-
sible combinations of these parameters. Furthermore, I carry out one simulation with very low
kinetic energy in order to approximate the adiabatic case. Figures 3.2 and 3.3 show the initial dis-
tribution of density and velocity for a simulation with initial parameters of Eset = 0.5, α = 1,
rad = 0.5.

parameter value 1 value 2 value 3
Eset 0.5 1.0 2.0
α 1.0 1.5 2.0
rad 0.5 0.7 1.0

Table 3.3: Variables for the parameter study.
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Figure 3.2: Initial distribution of density (left) and velocities (right) for a simulation with Eset = 0.5, α = 1, rad = 0.5,
zoomed in on the inner part of radius 10 AU. The density is constant within the radius rcore and decreases outside rcore
proportional to r−α.

Figure 3.3: Slice in the xy-plane (left) and xz-plane (right) showing initial density and velocity distribution (scaled to
50 kms−1) for a simulation with Eset = 0.5, α = 1, rad = 0.5. The black dots denote the positons of the binary and
the planets.

43



3.2. SIMULATION SETUP CHAPTER 3. NUMERICAL HYDRODYNAMICS

44



4
Results

In the following sections, I present the results of the parameter study. All simulations presented
here were run at theHummel cluster of the Universität Hamburg.
The cluster consists of 396 compute nodes of which 394 are equipped with 2 CPUs, each
containing 8 cores. Out of these, a partition of 54 nodes is additionally equipped with a GPU.
The partition of GPU-nodes was used for the performed simulations.
In the first step, the simulations were run for 3072 CPUh or a simulated time of 9.5 years.
Simulations showing interesting results in the first step and the prospect of further evolution
were restarted. This results in independent runtimes of the simulations ranging between 4 and
15 years.
I will focus on two simulations in detail. These are the simulation with the parameter set
Eset = 0.5, α = 1, rad = 0.5 (from now on Simulation 1), and the simulation representing
the low-energy case with Ekin ≪ Eint (from now on Simulation 2) in sections 4.1 and 4.2,
respectively. Subsequently, I present individual outcomes in sections 4.3 to 4.7.
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Figure 4.1: Gas density distribution and velocity vectors, scaled to 50 km s−1, of Simulation 1 after 15.5 yrs in xy (left) and
xz (right). The slices are chosen close to themaximumdensity such that z∼ 4.6AU in the left panel and y∼ −1.3AU in the
right panel. An asymmetric region of high-density gas has formed, surrounding the binary. The gas rotates in the xy-plane.
One planetary sink particle has left the simulation box, two particles are left (black circles).

4.1 Simulation 1 - Eset = 0.5, α = 1, rad = 0.5

The simulation was run for∼ 15.5 years. The original distribution of gas density and velocity is
shown in Fig. 3.2. After 15.5 years the density center is located at the position xc = −1.7AU,
yc = −1.3AU, zc = 4.6AU. This is in accordance with the position of the binary. Fig. 4.1
shows the density distribution and velocity vectors at the end of the simulation in slices at z = zc

and y = yc.
At the end of the simulation run a disk has formed around the binary. This can be seen in Fig. 4.2
left side, showing the column density in logarithmic scale in particles per cm2 in the xy-plane,
centered around the density center. The right side of Fig. 4.2 shows an upper limit of the disk
mass, also density centered. The calculation takes into account the column density derived over
the whole height of the box. The images indicate a disk with radius 2 − 3 AU and a mass of
∼ 0.5M⊙ around the density center.
The energy budget is plotted in Fig. 4.3. Kinetic energy is transformed to potential energy during
the first 4.5 years. After ∼ 8 years the energy components converge to almost constant values.
Total energy is not conserved in the simulation because mass that is transported out of the simu-
lation box carries energy away that does no longer contribute to the energy budget.

The gas mass contained within the simulation box is shown in Fig. 4.4 (left), plotted over
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Figure 4.2: Left: column density in the xy-plane for Simulation 1 after 15.5 years. Overplotted are sink particle positions
and gas velocity vectors. Right: disk mass plotted versus radius centered at maximum density. The increase of the disk mass
declines at a radius of∼ 2AU. This correspondeswellwith the drop in columndensity outside2−3AUof the density center.

Figure 4.3: Evolution of energy components for Simulation 1. The components e_kin, e_int and e_grav refer to the kinetic,
internal and potential energy of the gas. e_sinks denotes the potential energy of the sink particles. The sum of these energy
components is plotted as e_tot.
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Figure 4.4: Left: Mass enclosed in radius r from the box center for several time steps of Simulation 1. Right: Gas velocity and
escape velocity at the end of the simulation plotted over radius r. The enclosedmass at the end of the simulation is bound.

the distance to the center of the simulation box. The fraction of mass contained within the
simulation box at the end of the simulation compared to the mass at the beginning of the
simulation is roughly 70%. About 50% of the remaining mass is contained within the rotating
disk. All the mass within the box at the end of the simulation is gravitationally bound to the
system, as can be seen in Fig. 4.4 (right) comparing the radial velocity of the gas and escape
velocity.

From the initial two planets only one planet remains bound to the system. The formerly inner
planet (planet 2) gets a ”kick” after roughly 3 years which accelerates the planet to escape veloc-
ity on an outward directed trajectory. The time of the kick corresponds to a time when planet 2
interacts with a high-density region within the envelope (see Fig. 4.5). After ∼ 4 years the total
velocity of planet 2 clearly exceeds the escape velocity, which can be seen in Fig. 4.6, and we con-
sider the planet as unbound. The planet finally leaves the simulation box after 8 years.
The wake emanating from the outer planet (planet 1), visible in Fig. 4.5, is further discussed in
section 4.3. The inflow along the z-axis in the right panel of Fig. 4.5 arises from the initial condi-
tions of the velocity structurewithin the envelope. Due to the radialmotion and rotation around
the z-axis, the gas first expands in a double cone structure. The inner region is then filled up with
backfalling gas which collides along the z-axis and forms a regionwith increased density. With the
general expansion of the envelope this region expands along the z-axis. The inner parts, closer to
the gravitational center, move inwards whereas the outer parts move outwards along the z-axis.
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Figure 4.5: Gas density distribution in xy-plane (left) and xz-plane (right) after 2.8 yrs. Velocity vector scaled to 50 km s−1.
The gas rotates around the center of mass which lies close to the binary. The inflow along the z-axis arises from the initial
conditions. Interaction of the inner planet (marked with arrows) with high-density gas region results in a strong acceleration
and leads to the ejection of the planet. The wake at the outer planet is further discussed in section 4.3.

Figure 4.6: Total velocity (red) of planet1 (left) and2 (right) compared to theescapevelocity (black). Thegreendashed-dotted
line shows the radial velocity of the planet with respect to the center of mass of the system. Blue line in right plot: fraction
of total velocity to escape velocity corresponding to blue y-axis on the right side. The outer planet (planet 1) remains bound
throughout the simulation while the inner planet is ejected after 4 years and leaves the simulation box after 8 years.
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Figure 4.7: Top left: Trajectories of sink particles in the xy-plane, blue: binary, cyan: planet 1, magenta: planet 2. Top right
and bottom: Trajectory of the binary (top), planet 1 (bottom left) and planet 2 (bottom right) color coded with time. Note the
different axis limits in the top right panel and the differences in the colorbars. The dynamics of planet 1 gets influenced by the
gas after 5 years. Planet 2 is accelerated by the gas after 4 years and subsequently is ejected.

Planet 1 remains bound to the system throughout the simulation which can be seen in
the velocity of the planet, Fig. 4.6, and the trajectories of the sink particles, Fig. 4.7. After
approximately 5 years, the high-density region of the envelope reaches the location of the outer
planet as shown in Fig. 4.8. Afterwards, the planetary dynamics is influenced by the gas which
leads to the inwards spiral motion of the planet.
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Figure 4.8: GasdensitydistributionofSimulation1 in thexy-planeafter5yrs. Thehigh-densitygas regionreaches theposition
of the outer planet which is markedwith a white arrow.
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Figure 4.9: Gas density distribution and velocity vectors, scaled to 50 km s−1, of Simulation 2 after 10 yrs in xy-plane (left)
and xz-plane (right).

4.2 Simulation 2 - low-energy case

The kinetic energyEkin for this simulation was calculated to be of the order of 0.1Eint withEint

being the total internal energy of the envelope. Furthermore, α was set to 1 and rad to 0.5, as is
for Simulation 1. Simulation 2 was run for∼ 10 years.
Fig. 4.9 shows the density in xy-plane and xz-plane overplottedwith velocity vectors, comparable
to Fig. 4.1 for Simulation 1. The gas distribution shows no sign of disk formation, see also the
column density structure in Fig. 4.10.

Most of the gas leaves the simulation box within the first 5 years. The fraction of mass
remaining within the box at the end is < 2%, shown in Fig. 4.11 (left). The outer parts of this gas
reservoir, however, are not gravitationally bound to the system any more, as shows the analysis
of the gas velocity Fig. 4.11 (right).

The fast expansion andmass loss lead to a fast reduction of total energy within the simulation
box, see Fig. 4.12. This clearly does not represent the adiabatic case. Even with further reduction
of the kinetic energywithin reasonable limits it was not possible tomodel the adiabatic expansion
of the envelope. Thus, the simulation of the adiabatic case calls for a different simulation setup
than is presented here.
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Figure 4.10: Columndensity in the xy-plane, centered atmaximumdensity, at the end of Simulation 2. The distribution shows
no sing of a central disk with high column density and a sharp rim. The gas is not in orbital motion around the center of mass.

Figure 4.11: Left: Mass enclosed in radius r. The lines are color coded as in Fig. 4.4. After 6.4 years, represented by the
magenta line, less than 10% of the initial mass is left inside the simulation box. Right: Gas velocity and escape velocity at the
end of the simulation. The gas outside a radius of∼ 13AU is not gravitationally bound to the system.
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Figure 4.12: Evolution of energy components for Simulation 2. The components are named equivalently to Fig. 4.3. Most of
the energy is carried away by gas which leaves the simulation box.

The planets in Simulation 2 move on outwards directed trajectories as would be expected for
this rapid mass loss (Fig. 4.13). The analysis of the velocities shows that the inner planet remains
gravitationally bound until the end of the simulation runwhereas the outer planet exceeds escape
velocity after∼ 4 years, see Fig. 4.14.
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Figure 4.13: Simulation 2: Trajectories of sink particles in the xy-plane. Blue: binary, cyan: outer planet (1), magenta: inner
planet (2).

Figure 4.14: Total velocity (red line), escape velocity (black dashed line) and radial velocity with respect to the center of mass
(greendashed-dotted line) of planet1 (left) and2 (right). Theblue line in the left plot shows the ratio of total velocity to escape
velocity. After approximately 4 years planet 1 exceeds the escape velocity and is ejected from the system.
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Figure 4.15: Simulation parameters: Eset = 1.0,α = 1.5, rad = 0.5. Density distribution in the xy-plane overplotted with
velocity vectors in xy. Left: full boxwith sink particles. Right: zoomed in on planetary position. The planet accumulates gas in
its surroundings.

4.3 Planet - envelope interaction

In the simulations presented here, the sink particles interact gravitationally with the gas. This
means they can accumulate gas, which can be gravitationally bound to the particle. This is
obviously the case for the sink particle representing the binary star. In addition, traces of the sink
particles representing planets or planetary candidates influencing the gas are also visible within
numerous simulations.
One example is shown in Fig. 4.15. The image shows the density distribution in the xy-plane
after roughly 5 years overplotted with velocity vectors for the simulation with the following
parameters: Eset = 1.0, α = 1.5, rad = 0.5. The density in regions close to the planetary sink
particles is clearly higher compared to the surroundings, a wake is formed. This can for example
also be seen in Fig. 4.5 in Simulation 1. However, I do not expect the accretion of gas onto the
planetary sinks if accretion was enabled. Even in the vicinity of a planetary sink the velocity of
the gas is dominated by the expansion and rotation of the envelope. Therefore, the condition of
collapse onto the sink particle is not fulfilled.
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4.4 Planet trajectories

Some planetary trajectories show remarkable features such as reversals or multiple self-crossings.
Examples are given in Fig. 4.16.
The plot on the left side belongs to the simulation with Eset = 0.5, α = 1.0, rad = 0.7. After
two orbits, the trajectory of planet 2 turns towards the center of the xy-plane and the binary sink
particle, thereby reversing its original direction. The change in the direction is due to interactions
with the gas which accelerates the sink particle. A study of this interaction is given in Fig. 4.22
for the simulation with initial parameters Eset = 0.5, α = 1.5, rad = 0.7.
The absolute distance to the binary sink particle, plotted in the bottom panel of Fig. 4.16
decreases to ∼ 0.08 AU. However, a re-run of the simulation with sink particle merging
activated does not result in the merger of the planet and the binary. This result is physically
feasible. Orbital separations of less than 0.1 AU are common for planets, the Exoplanet Data
Explorer lists 339 planets in binaries with separations less than 0.1AU by June 2017.
When the planet approaches the binary sink particle its dynamics is dominated by the gravita-
tional force exerted by the binary resulting in high accelerations. However, both planets remain
bound to the system until the end of the simulation as the total velocity is smaller than the escape
velocity. This can be seen in the left panels of Fig 4.17 for planet 1 (top) and planet 2 (bottom).
The trajectories plotted on the right side of Fig. 4.16 show the results for the simulation with
the following parameters: Eset = 0.5, α = 1.5, rad = 0.5. As a result of the interaction with a
high density region of the gas after completing two orbits, the inner planet (planet 2) reverses.
The trajectory performs loops, due to the close encounter with the binary, and finally traces the
dynamics of the high density region. The velocity of planet 2 oscillates around the escape velocity,
see Fig. 4.17 right bottom panel, therefore a prediction whether the planet remains bound or
not cannot bemadewithout further computations. Planet 1 clearly remains bound to the system.
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Figure 4.16: Simulation parameters left: Eset = 0.5, α = 1.0, rad = 0.7, right: Eset = 0.5, α = 1.5, rad = 0.5. Top:
trajectories of sink particles in the xy-plane. Bottom: Absolut distance of planet 1 and 2 to the binary sink particle. The loops
arise from interactionswith high-density gas regions and subsequent close encounterswith the binary. Sink particlemergers
are excluded due to the high velocities of the planets.
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Figure 4.17: Simulation parameters left: Eset = 0.5,α = 1.0, rad = 0.7, right: Eset = 0.5,α = 1.5, rad = 0.5. Plotted
are the total (red) and radial (green) velocities of planet 1 (2) in the top (bottom) panel compared to the corresponding escape
velocity (black).
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4.5 Bound planets

Many planets remain gravitationally bound to the system at the end of the simulation run.
These are, in addition to the bound planets presented in sections 4.1, 4.2 and 4.4, the following
planets:

1. Eset = 0.5, α = 1.0, rad = 1.0, planet 1

2. Eset = 0.5, α = 1.5, rad = 0.7, planets 1 and 2

3. Eset = 0.5, α = 1.5, rad = 1.0, planets 1 and 2

4. Eset = 0.5, α = 2.0, rad = 0.5, planets 1 and 2

5. Eset = 0.5, α = 2.0, rad = 0.7, planets 1 and 2

6. Eset = 0.5, α = 2.0, rad = 1.0, planets 1 and 2

The velocities of these planets are shown in Fig. 4.18 and 4.19. For comparison, I also show
the velocities of the planets for two simulations with Eset = 1.0 and 2.0, respectively. These are
given in Fig. 4.20.
Notice that only for simulations with Eset = 0.5 and the low-energy case planets remain gravi-
tationally bound. The simulations with one remaining planet have initial density distributions
following r−1. This is coherent with the fact that in this case more gas mass is initiated in the
outer regions of the envelope and thus has higher radial velocity which leads to fast expansion.
The results show no dependence on the parameter rad for the number of planets that remain
gravitationally bound.

All planets that remain bound interact with high density regions of the gas. This is exemplified
in Fig. 4.22 for the simulation with Eset = 0.5, α = 1.5, rad = 0.7. The image shows the sink
particles with velocity vectors as well as the gas density distribution and velocities in the xy-plane.
The first panel (top left) shows the simulation at∼ 1 year. At this time, the initially inner planet
(planet 2) is at the right side of the binary sink particle. The velocity vector is directed outwards
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Figure 4.18: Velocities of planets which remain gravitationally bound for the first three simulations of the list in section 4.5.
Red line: total velocity, green dashed-dotted line: radial velocitywith respect to the center ofmass, black dashed line: escape
velocity.
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Figure 4.19: As Fig. 4.18 for the last three simulations of the list in section 4.5.
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Figure 4.20: Velocities of planets which exceed vesc and are ejected. Top: Eset = 1.0, α = 1.0, rad = 0.5, bottom:
Eset = 2.0, α = 1.0, rad = 0.5. Left: planet 1, right: planet 2. Total velocity in red, radial velocity in green, escape ve-
locity in black and ratio of total velocity over escape velocity in blue.
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Figure 4.21: Distances of the planets to thebinary plottedover time for the simulationswithEset = 0.5,α = 1.5, rad=0.7
(top left),Eset = 0.5,α = 1.5, rad = 1.0 (top right) andEset = 0.5,α = 2.0, rad = 0.7 (bottom). For these simulations,
the velocity of planet 2 reaches or exceeds the escape velocity (see Fig. 4.18 and 4.19.

compared to the velocity on a circular orbit. In the following, the planet is captured by a high
density region and accelerated according to the gas dynamics. The distances of the planets to the
binary for the simulations Eset = 0.5, α = 1.5, rad = 0.7, Eset = 0.5, α = 1.5, rad = 1.0 and
Eset = 0.5, α = 2.0, rad = 0.7, for which the total velocity of planet 2 reaches or exceeds the
escape velocity, are shown in Fig. 4.21. The distances never decrease to less than 1AU.
The trajectories of planets which have close encounters with the binary are first dominated by
the gas dynamics as explained before. Thereby, the planets are forced on trajectories leading
towards the binary. Subsequently, the planets are dominated by the binary’s gravity which
results in very high accelerations as can be seen in Fig. 4.17 in section 4.4. Comparing the
distances of these planets to the binary (Fig. 4.16) with the distances plotted in Fig. 4.21 the limit
for a close encounter at which the planets dynamics is dominated by the binaries gravity can be
set to∼ 1AU.
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Figure 4.22: Plots in the xy-plane for simulation withEset = 0.5,α = 1.5, rad = 0.7 starting in the top left panel at t∼ 1

year, ending in bottom right panel at t∼ 4 years. The velocity vectors of the gas, highlited by white borders have the same
scaling as the velocity vectors of the sink particles which are plotted in black, attached to the particles (black points).
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4.6 Disk formation

The initial conditions are rated as disk forming if the gas distribution fulfills several conditions
at the end of the simulation run. These conditions are

1. the column density, computed in the xy-plane, shows a high density region in contrast to
the ambient gas

2. the distribution appears visually as disk, i.e. it is flat in z-direction

3. the gas rotates around the density center in the xy-plane

4. the toroidal velocity is much larger than the radial velocity (vφ ≫ vrad)

In Fig. 4.23 I show column density plots in xy- and xz-plane for one simulation with disk
(Eset = 0.5, α = 1.5, rad = 0.5, left panel) and for one simulation with no disk (Eset = 0.5,
α = 1.5, rad = 1.0, right panel). Compared to the simulation on the left side, the simulation on
the right has an extended gas distribution along the z-direction. The gas appears to rotate in the
xy-plane, however the fraction of vφ / vrad is rather small.
The simulations which show disks at the end of the simulation runs according to my definition
are summarized in table 4.1. Disks are formed for all values of Eset, α and rad.

66



CHAPTER 4. RESULTS 4.6. DISK FORMATION

Figure 4.23: Columndensity plot in xy-plane (top) and xz-plane (bottom), centered on the center of the simulation box, for the
simulationsEset = 0.5,α = 1.5, rad = 0.5 andEset = 0.5,α = 1.5, rad = 1.0 in the left, respectively right panel. The
black points mark the positions of the binary and the planets. Overplotted are the velocity vectors of the gas. The simulation
on the left side is classified as disk-forming. The simulation on the right side does not form a disk.
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Eset α rad bound planets remaining mass / initial mass
0.5 1.0 0.5 ✓ 0.711
0.5 1.0 0.7 ✓✓ 0.793
1.0 1.0 0.5 ✗ 0.031
1.0 1.0 0.7 ✗ 0.097
2.0 1.0 0.5 ✗ 0.001
2.0 1.0 0.7 ✗ 0.005
2.0 1.0 1.0 ✗ 0.05
0.5 1.5 0.5 ✓✓ 0.944
0.5 1.5 0.7 ✓✓ 0.908
1.0 1.5 0.5 ✗ 0.187
1.0 1.5 0.7 ✗ 0.159
2.0 1.5 0.5 ✗ 0.003
0.5 2.0 0.5 ✓✓ 0.956
0.5 2.0 0.7 ✓✓ 0.918
1.0 2.0 0.5 ✗ 0.371
1.0 2.0 1.0 ✗ 0.291
2.0 2.0 0.5 ✗ 0.004

Table4.1: Column1to3: initial parameters for simulationswhich formdisks. Columnfourmarks thenumberofboundplanets.
The last column gives the gas mass that remains within the simulation box at the end of the simulation run as fraction of the
initial mass.
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4.7 Remaining mass

Irrespective of the different runtimes do all simulations approximate a stable solution at the
end, represented by convergence of the total energy and the remaining (bound) mass. The
remaining mass within the simulation box for all simulations, in units of the initial mass, is
plotted in Fig. 4.24 against the parameter Eset. For better visibility, the values for simulations
with α = 1.0, plotted in red, are shifted by −0.02 and for α = 2.0 (blue) by +0.02. The
diamonds, squares and circles represent values of rad of 0.5, 0.7 and 1.0, respectively. The green
circle represents the low-energy simulation.
As expected, the remaining mass decreases with increasing initial kinetic energy. Furthermore,
the remaining mass decreases with increasing α, i.e. for a steeper initial density slope. The
dependence on the parameter rad is less strong. Only for the case withEset = 2.0 there is a clear
trend towards higher values of remaining mass for larger values of rad. The values range from
95% for the simulation with Eset = 0.5, α = 2.0, rad = 0.5 to 0.1% for the initial parameters
Eset = 2.0, α = 1.0, rad = 0.5.
The fact that most of the envelope’s material remains bound for simulations with Eset <∆Eorb

whereas large parts are unbound for simulations with Eset ≳ ∆Eorb confirms a conclusion by
Passy et al. (2012). In their analysis, the authors find that an additional energy input of about
0.1∆Eorb is enough to fully unbind the envelope compared to only unbinding∼ 15%without
additional energy input.
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Figure 4.24: Mass within the simulation box at the end of the simulation run in multiples of the initial mass. Simulations with
α = 1.0 (red) are shifted by−0.02 againstEset and simulations with α = 2.0 (blue) are shifted by+0.02. Cyan signs
represent simulations withα = 1.5. Values for rad of 0.5, 0.7 and 1.0 are represented by diamonds, squares and circles,
respectively. The low-energy case is represented by a green circle.
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5
Conclusion and Outlook

The research on post–common envelope binaries is still in progress. With this thesis I want
to contribute to the research by analyzing the interaction of gas and stellar as well as planetary
objects during the post–CE phase. The following conclusion summarizes the findings of the
performed parameter study presented in chapter 4.

Pকঊগ঎ঝ - ঐঊজ ঒গঝ঎ছঊঌঝ঒ঘগজ On the one hand, the gas is influenced by the planets which
can be seen in the formation of wakes behind planets and the formation of highly asymmetric
density structures. However, no accretion of gas onto planets is observed in these simulations.
On the other hand, the gas influences the planets which may lead to highly deformed trajectories
compared to the undisturbed case. This way, planets can remain gravitationally bound to the
system or have close encounters with the binary star. The planet - gas interactions depend on
the velocity of the gas. The impact is higher for smaller gas velocities, i.e. small values of kinetic
energy. In the simulations the kinetic energy is parametrized in terms of the change of orbital
energy∆Eorb as calculated for the systemNNSerpentis. With∆Eorb = 8.2×1046 ergs I define
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the parameter Eset = Ekin/∆Eorb. Planets that remain bound throughout the simulation are
only found in the case of Eset = 0.5 and for the low-energy case with Ekin ≪ Eint for the
envelope.

Pকঊগ঎ঝ - ঋ঒গঊছy ঒গঝ঎ছঊঌঝ঒ঘগজ If a planet is scattered towards the binary by interactions
with high density gas regions, its dynamics is dominated by the binary’s gravitational potential.
Thus, the planet experiences high accelerations. The limiting distance under which the dynamics
of the planet is dominated by the binary as determined from the simulations is 1 AU. The
trajectories of planets which have close encounters with the binary are irregular and predictions
whether the planet remains bound or gets expelled are difficult. Mergers of planets with the
binary are not observed and are no physical necessity.

R঎খঊ঒গ঒গঐখঊজজ ঊগ঍ ঍঒জঔ এঘছখঊঝ঒ঘগ The fraction of the gas mass which remains bound
after a CE event is highly discussed because it is influenced by the energy budget of the CE event.
So far, numerical simulations can not reproduce the observations concerning bound gas as well
as binary separation. I showed in section 4.7 that the remaining mass highly depends on the
amount of energy inserted in the envelope. This is in accordance with the results by Passy et al.
(2012). Furthermore, the velocity profile of the envelope can change the amount of remaining
gas by up to two orders of magnitude. Over all, the amount of bound gas ranges from 95% to
0.1% of the initial gas mass. This supports the results of Ricker and Taam (2012) who predict
that the total mass of the envelope might get ejected as well as the outcomes of the simulation by
Ohlmann et al. (2016a) where only 8% of the initial gas mass is unbound.
Schleicher and Dreizler (2014) estimate a bound mass of 0.133M⊙ for the system NN Serpentis.
This is ∼ 10% of the initial envelope mass. The calculation is based on the injection of
1.8× 1047 ergs into the envelope. This value is comparable tomy results for the case ofEset = 2

under the assumption of an exclusively radially expanding envelope. Considering an initially
rotating envelope the simulations presented here suggest a lower value for the boundmass of the
order of 1% of the initial mass.
Fall-back disks are formed through the interaction of gas and the binary. My simulations
show that disks occur for all values of Eset, α and rad where α describes the slope of the initial
density distribution and rad determines the initial ratio of kinetic energy that is used for radial
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expansion of the envelope. However, for disks which do not rotate but only expand radially at
the beginning the formation of a disk is rather unlikely. Only 2 of 17 simulations which form
disks have no initial toroidal velocity.
The formation of a fall-back disk from an intially rotating envelope was studied in Kuruwita
et al. (2016). Compared to my simulations the author use the equation of state for an ideal
gas with γ = 5/3 and study the impact of the temperature of the gas. Starting with a total gas
mass in the simulation box of 0.49M⊙ and the gas rotating around the z-axis, the final disk
mass ranges from 0.28M⊙ to 0.38M⊙, depending on the initial temperature of the gas. This is
about 57 − 77% of the initial mass. The total energy of this simulation is comparable to my
Simulation 1 presented in section 4.1. I estimate the mass of the formed disk to be about 33% of
the initial gas mass. This is lower than the values obtained by Kuruwita et al. (2016). However,
the gas has initial radial velocity inmy simulations which could be the reason for this discrepancy.

Oঞঝকঘঘঔ The presented parameter study opens the field of numerical simulations for the
analysis of planetary dynamics and planet - gas interactions in post–CE systems.
Especially with regard to bound planets this study clearly limits the initial setup for the gas.
Based on this result it is possible to analyze the fate of planets depending on initial planetary
parameters such as mass, orbital separation or multiplicity. Furthermore, the accretion of gas
and accumulation of gas onto planets via collision should be investigated in simulations with
higher numerical resoultion than is achieved here which could also be done in a study dedicated
to bound planets. Here, the numerical resolution had to be limited in order to restrict the data
output.
Thewide variety of disks that are formed inmy simulations can be compared to studies of forma-
tion of second-generation planets, for example Schleicher and Dreizler (2014) and Lichtenberg
and Schleicher (2015). In the latter one, the evolution of disks with radii ≥ 10 AU is studied.
This is much larger than the radii of disks formed in my simulations. However, fragmentation
is observed in various cases of initial disk parameters in Lichtenberg and Schleicher (2015) and is
not ruled out for smaller disks.
Analyzing in detail the radius, angularmomentum, surface density and disk height of the formed
disks can help to improve the estimated probability for second-generation planet formation in
systems like NN Serpentis. This remains a task for future work.
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