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Abstract

The present work mainly aims to assess the returns of major extreme events occur-
ring in southern Pakistan (Sindh province), and the degree of risks associated to
them. Furthermore, a web-tool named "SindheX" is developed for the adaptation
measures, using the results of this thesis. This thesis devotes special attention to
Sindh due its vulnerability to recent extreme events such as heat waves (2015),
heavy precipitation/floods (2010, 2011) and cyclones (2007, 2010, 2014). Sindh
lacks the information regarding the recurrence of these extreme events. The local
administrators, policy makers, and other stakeholders (energy sector, agriculture
sector, water management authority, port authorities etc.) in Sindh need this infor-
mation to plan and implement adaptations accordingly. Considering the urgency
of information, three major extremes recently affecting Sindh are identified and se-
lected for the investigation. They include (i) Temperature (air temperature Tmax

and wet-bulb temperature TWmax), (ii) Sea Surface Temperature/Cyclones of Ara-
bian Sea (North Indian Ocean) at the Sindh coastline, and (iii) Precipitation. The
two most popular methods of the extreme value theory i.e. (1) Block Maxima (BM)
and (2) Peaks Over Threshold (POT) are applied to estimate the return levels (RLs)
of extremes, since these provide more robust information than ad-hoc approaches
on return times of extreme events. Additionally, the Poisson regression is used to
predict the probability of cyclonic activity in the Arabian Sea.

The temperature and precipitation extremes are estimated by applying the POT
approach for the period 1980 – 2010. The results of temperature extremes of station
data indicate RLs of Tmax > 50◦C in Jacobabad, Mohenjo-daro, Padidan, Nawab-
shah, and Tmax > 45◦C in Rohri, Hyderabad, Chhor, Karachi, Badin in a 5 to 100
year return period. The RLs of TWmax exceeds 35◦C in the entire Sindh, severely
impacting the human habitability. The RLs of ERA Interim Tmax and TWmax show
a difference of 3◦C to 5◦C from a station data, for both shorter and longer return pe-
riods. However, a simple bias correction is applied to the ERA Interim data, which
shows remarkable improvement in return levels, but some discrepancies remain.
The results of precipitation extremes illustrate the RLs > 150 mm/day in Rohri,
Nawabshah, Hyderabad, Chhor, Karachi, and Badin and > 100 mm/day in Jacob-
abad and Mohenjo-daro in a 5 to 100 year return period. The Arabian Sea SST
extremes are assessed using the BM method during pre-monsoon (May – June) and
post-monsoon (October – November) from 1891 to 2015. The results indicate RLs
of SST extremes > 29◦C in pre-monsoon and > 28◦C in post-monsoon. The prob-
ability of occurrence of a cyclonic activity like tropical depression (TD), cyclonic
storm (CS), and sever cyclonic storm (SCS) in the Arabian Sea is also predicted
with a Poisson regression model using SST and Southern Oscillation Index (SOI) as
predictors. The results exhibit that the probability of TD, CS, and SCS in the Ara-
bian Sea is more likely during pre-monsoon rather than post-monsoon. The maps
and graphs of this thesis are available on the web–tool SindheX (www.sindhex.org),
and can be used by all organizations, public and private stakeholders, who are in-
terested in the return times of extremes in Sindh.
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Zusammenfassung

Der Schwerpunkt dieser Arbeit liegt in der Untersuchung der Wiederkehrperio-
den von Extremereignissen im südlichen Pakistan (Sindh Provinz) und der damit
verbundenen Risiken. Zusätzlich wurde basierend auf den Ergebnissen dieser Ar-
beit ein Web-Tool namens "SindheX" für Anpassungsmaßnahmen entwickelt. Die
Studie widmet der Provinz Sindh eine besondere Aufmerksamkeit, aufgrund der
Vulnerabilität dieser Region gegen unterschiedliche Arten von Extremereignissen,
wie z.B. Hitzewellen (2015), Starkregen/Überflutungen (2010, 2011) und Zyklonen
(2007, 2010, 2014). Die lokalen Verwaltungsbehörden, sowie die politischen und
andere Entscheidungsträger (Energie-, Agrarsektor, Wasserwirtschaftsverwaltung,
Hafenverwaltungen), benötigen diese Informationen für die Planung und Umset-
zung von Anpassungsmaßnahmen. Basierend auf der Dringlichkeit der Informatio-
nen werden drei Variablen, deren Extremwerte die Provinz Sindh häufig betreffen,
identifiziert und untersucht. Diese sind (i) Temperatur (Lufttemperatur Tmax und
Feuchttemperatur TWmax), (ii) Meeresoberflächentemperatur/Zyklonen im Arabis-
chen Meer (Nördlicher Indischer Ozean), die Sindh’s Küstenlinie treffen, und (iii)
Niederschlag. Für die Abschätzung der Wiedekehrintervalle von Extremereignissen
werden die zwei wichtigsten Methoden der Extremwerttheorie, (1) die Block Max-
ima (BM) - und (2) die Peaks Over Threshold (POT) - Methoden angewandt, da
diese verlässlichere Informationen liefern als Adhoc- Ansätze. Zusätzlich wird die
Wahrscheinlichkeit von Vorkommnissen zyklonaler Aktivitäten im Arabischen Meer
durch ein Poissonregessionsmodell vorausgesagt.

Die Temperatur- und Niederschlagsextreme werden mit Hilfe der POT - Methode
für den Zeitraum 1980 – 2010 untersucht. Die Messstationsdaten zeigen Wiederkehrw-
erte von Tmax > 50◦C in Jacobabad, Mohenjo-daro, Padidan, Nawabshah und
Tmax > 45◦C in Rohri, Hyderabad, Chhor, Karachi, Badin für Wiedekehrinter-
valle zwischen 5 und 100 Jahren, während TWmax in der ganzen Provinz Sindh
35◦C und damit die Grenze der menschlichen Überlebensfähigkeit überschreitet.
Die ERA Interim Wiederkehrwerte von Tmax und TWmax deuten auf einen Unter-
schied von 3◦C bis ◦C im Vergleich zu Stationsdaten sowohl für kürzere und als
auch für längere Wiederkehrperioden. Folglich wird eine einfache Bias-Korrektur
auf die ERA Interim Daten angewandt, die eine bemerkenswerte Verbesserung der
Wiederkehrdaten bewirkt, obwohl bestimmte Unstimmigkeiten erhalten bleiben.
Die Ergebnisse für Niederschlagsextreme zeigen Wiederkehrwerte > 150 mm/Tag
in Rohri, Nawabshah, Hyderabad, Chhor, Karachi, und Badin und > 100 mm/-
Tag in Jacobabad und Mohenjo-daro fuür Wiedekehrintervalle zwischen 5 und 100
Jahren. Die extremen Meeresoberflächentemperaturen (SST) im Arabischen Meer
werden mit Hilfe der Block Maxima Methode im Vormonsun (Mai – Juni) und
Nachmonsun (Oktober – November) für den Zeitraum von 1891 bis 2015 unter-
sucht. Die Ergebnisse zeigen die Rückkehr von SST > 29◦C im Vormonsun und >
28◦C im Post-Monsun. Die Wahrscheinlichkeit von Vorkommnissen zyklonaler Ak-
tivitäten, wie z.B. tropische Depressionen (TD), tropische Stürme (CS), und schwere
tropische Stürme (SCS), im Arabischen Meer wird ebenfalls durch ein Poissonreges-
sionsmodell mithilfe vom SST und Süd-Oszillations-Index als Vorhersageindikatoren

MaidaZahid
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vorausgesagt. Die Ergebnisse zeigen höhere Wahrscheinlichkeiten von TD, CS, und
SCS im Arabischen Meer während des Vormonsuns als während des Nachmon-
suns. Die Karten und Abbildungen dieser Arbeit sind kostenlos über dem Web-
Tool "SindheX" (www.sindhex.org) verfügbar und können von all den öffentlichen
und privaten Betroffenen genutzt werden, welche an den Wiederkehrperioden von
Extremereignissen in Sindh interessiert sind.
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Chapter 1

Introduction

1.1 Background and Motivation

Extreme events are now perceived as a major threat to human civilization, and a
very intense research activity aims at understanding more accurately the processes
and reasons behind these events and climate variability. Researchers are analyzing
the socio-economical and environmental impacts related to extremes, and planning
suitable strategies for adaptation and mitigation. A great deal of work has been
devoted to investigate extreme events (IPCC, 2014), as they can cause massive en-
vironmental damages, economic losses and social disruption by overcoming the local
coping abilities. Extremes differ in duration, spatial extent, nature of the process,
and include events as heat waves, droughts, floods, dry and cold spells, and intense
atmospheric motions, i.e. mid-latitude and tropical cyclones. It is of great interest
and urgency to investigate that how extremes are going to be impacted by climate
change.

This thesis devotes special attention to the southern part of Pakistan (Sindh province)
because of the obvious impacts of extreme events (Zahid and Rasul, 2012; Sheridan
and Allen, 2015). This region is considered as one of the most vulnerable regions
in Pakistan due to the extreme temperature events and high rate of mortality as-
sociated to them (Zahid and Rasul, 2010). An example of the potential impact of
maximum temperatures is the recent heat wave in Sindh, which occurred between
June 17th and June 24th, 2015 and broke all the records with a death toll of 1400
people, and over 14000 people were hospitalized. The temperatures in different
cities of the Sindh region were in the range of 45◦C – 49◦C during the event (Imtiaz
and Rehman, 2015). Karachi had the highest number of fatalities (1200 people ap-
proximately). The Pakistan Meteorological Department (PMD) issued a technical
report stating a very high heat index (measuring the heat stress on humans due to
high temperature and relative humidity) during this heat wave (Chaudhry et al.,
2015).

In summer, Sindh becomes very hot and with the arrival of a monsoon the humidity
increases in the region (Chaudhry and Rasul, 2004). The extremely hot and humid
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conditions can have lethal effects, and can impact the human habitability of a re-
gion (Pal and Eltahir, 2015). The human body generally maintains the temperature
around 37◦C. However, the human skin regulates at or below 35◦C to release heat
(Sherwood and Huber, 2010). Under high levels of the moisture content in the at-
mosphere, the human body cannot maintain the skin temperature below 35◦C and
can develop ailments like hyperthermia, heat strokes and cardiovascular problems.
Hyperthermia is a condition where an extremely high body temperature is reached,
resulting from the inability of the body to get rid of the excess heat. It occurs
mostly when temperature and relative humidity levels are extremely high at the
same time. Hyperthermia can occur even in the fittest human beings, if exposed to
an environment where wet-bulb temperature is greater than 35◦C for at least six
hours.

Sindh receives precipitation mostly during summer monsoon from June to Septem-
ber, which fulfills the need of water for irrigation. But, Sindh is becoming wetter and
experience more intense precipitation events (>100 mm/day) than before during
monsoon, which causes urban flooding almost every year (Zahid and Rasul, 2011).
Such an extreme precipitation events may significantly reduce the crop yields, and
cause huge economic losses to the country Islam et al. (2009); IPCC (2012, 2014).
Sindh is affected mostly with urban flooding caused by extreme precipitation, and
also with riverine and coastal flooding produced by the tropical cyclones and storm
surges in Arabian Sea. (Paulikas and Rahman, 2015). The highest flooding fatali-
ties occur in 2010 alongwith a damage of 3 million houses, 5.3 million acres cropped
area, and 20 million people were affected and displaced (Jonkman, 2005; Ahmad,
2011; Provincial Disaster Management Authority - Sindh, 2013).

The intensification of Sea Surface Temperature (SST) in the Arabian Sea is also
linked with the extreme rainfall events during the summer monsoon (Shukla, 1975;
Izumo et al., 2008; Schott et al., 2009; Levine and Turner, 2012). High SST of
the Arabian Sea intensifies the process of convection, initiating the transport of
moisture-laden air towards land, and thus increasing the likelihood of extreme pre-
cipitation. The changing trends of the Arabian Sea SST are investigated by (Khan
et al., 2008; Muhammad et al., 2016). Collectively these studies project a rise of
SST > 2◦C in the Arabian Sea, contributing to the sea level rise. A climate-shift in
the Arabian Sea after 1995 accompanied by an increase in the number of cyclones
has been identified by Kumar et al. (2009).

Tropical cyclones and storm surges in the Arabian Sea have also caused a lot of
damage in the coastal areas of Sindh, for instance two cyclones Gonu (02A) and
Yemyin (03B) developed in the Arabian Sea in June 2007 are the worst storms
recorded so far. They affected 2.5 million people and made thousands of people
homeless (Tariq and Van de Giesen, 2012). Moreover, they aggravate the problem
of saline intrusion inland and in the coastal aquifers, which are already under stress
due to over exploitation, changes in the Indus hydrology and water usage, locally
and upstream. The coastal communities are at a great risk due to an increase in
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frequency and intensity of tropical cyclones in the Arabian Sea (Pelling and Black-
burn, 2014). The most populous cities in Sindh are Karachi and Hyderabad are
located near the coast and have to bear the brunt of heavy flooding and strong
winds during the intense cyclonic activity in the Arabian Sea (Paulikas and Rah-
man, 2015). Sindh is also prone to other disasters such as sea level rise, droughts,
saline water intrusion, coastal erosion, increased crop water requirement, decline in
fisheries, changes in biodiversity, and decrease in mangroves forests.

Sindh has great importance due to the port activities, which is the hub of logis-
tics and acts as a bridge for trading with the European and Non-European Union
countries. Therefore, the trade and country’s economy is at great risk due to the
recent climate extremes. Hence, there is a strong need of risk assessment in Sindh
to prioritize the regions for adaptations. Moreover, planners and policy makers
have several questions regarding the occurrence of extremes in Sindh. They want
to know that these extremes will occur every year or is it a one-time event, which
areas will be most affected by extremes. Hence, in order to help the planners and
to improve the planning and adaptive capacity in Sindh, we have investigated the
return levels and return periods of major climatic extremes (temperature, wet-bulb
temperature, precipitation, sea surface temperature, and cyclones) in Sindh for the
first time, as it is highly relevant to the public and economic interest.

1.2 Study Area

1.2.1 Geography

Sindh stretches from 23.5◦N – 28.5◦N and 66.5◦E – 71.1◦E, and is bounded on the
west by the Kirthar Mountains, to the north by the Punjab plains, to the east by
the Thar Desert and to the south by the Arabian Sea (Indian Ocean) and in the
center fertile land around Indus River (Figure 1.1). The Indus River is the source
of water for the agriculture lands . Cotton, wheat and sugar cane are grown on the
left bank of the Indus and rice, wheat and gram on the right bank (Chaudhry and
Rasul, 2004). Cotton is the cash crop of the country.

1.2.2 Climatology

The climate in Sindh is arid and subtropical with less than 250 mm annual rain-
fall. The temperature frequently exceeds 45◦C in summer (May – September) and
the minimum average temperature recorded during winter (December – January) is
2◦C. Table 1.1 shows the mean monthly climatic characteristics of the region from
1980 – 2010. High population density, limited resources, poor infrastructure and
high dependence of the local agriculture on climatic factors, mark this region as
highly vulnerable to the impacts of climate change.
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Figure 1.1: Study domain Sindh (23.5◦N – 28.5◦N , 66.5◦N – 71.1◦E) in South Asia. The
red dots show the areas focused within Sindh.

1.3 Objectives

This thesis belongs to the adaptation services platform of Climate–KIC, European
Institute of Technology (EIT). Therefore, its prime focus is to provide informa-
tion on extremes, which planners need when, e.g., designing infrastructures that
are deemed to last a very long time. Lately, three types of devastating extreme
events such as heat waves, cyclones, and extreme precipitation/floods are more ev-
ident in Sindh, and caused huge economic losses as discussed earlier. It is crucial
to know about the return levels and return periods of such events in order to im-
prove planning in Sindh. Therefore, this thesis primarily focus on three variables:
(1) Temperature, (2) Sea Surface Temperature/Cyclones in Arabian Sea, and (3)
Precipitation. The main objectives of the thesis are listed below.

1. To estimate the return levels of maximum temperature, and maximum wet-
bulb temperature extremes in Sindh, Pakistan.

2. To assess the return levels of the sea surface temperature extremes in the
Arabian Sea and their link to cyclogenesis.

3. To analyze the return levels of precipitation extremes in Sindh , Pakistan.

4. A web-tool named as "SindheX" (Sindh extremes) is developed, which con-
tains all information of above mentioned extremes in the form of temporal
and spatial maps (www.sindex.org).
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1.4 Introduction to Extreme Value Theory

Extreme Value Theory (EVT) provides a robust theoretical framework to analyze
the extreme events, it was first introduced by Fisher and Tippett (1928). Later,
Gnedenko (1943) discovered three types of limiting distributions, based on the shape
parameter ξ of the known probability distribution. The three types are called as
Gumbel (ξ = 0) the exponential tail, Fréchet (ξ > 0) the fat tail, and Weibull
(ξ < 0) the upper bound tail or finite end point. EVT has emerged as an important
statistical modeling technique to assess the risks in all disciplines over the last 50
years. The distinguishing feature of the EVT is to quantify the behaviour of the
stochastic variable at large or small level. In particular, EVT provides information
of the probability of events that are larger than the ones that have already been
observed by computing the return times of the unobserved events. EVT represents
an increasingly widespread approach in climate studies (Coles, 2001; Zhang et al.,
2004; Brown et al., 2008; Faranda et al., 2011; Acero et al., 2014) to estimate the
occurrence of the extreme events. EVT comprises two different approaches: [1]
Block Maxima, and [2] Peaks over Threshold. The two methods are asymptotically
equivalent, although they have different selection procedures and different ways of
classifying events as extremes (Pickands, 1975; Lucarini et al., 2016).

Figure 1.2: Concept of the Block maxima and Peaks over threshold

Block Maxima (BM) determines the statistical properties of extremes in a period
(Block), typically daily or annual intervals are used. The data is basically divided
into a blocks of size N ≥ 1, and the maxima Mn retrieved from each block are inde-
pendent identically distributed random variable (i.i.d.r). The empirical distribution
of the maxima is then fitted according to the best matching type of generalized ex-
treme value distribution (GEV), which is a limiting distribution of BM in most of
the cases (Gnedenko, 1943). The GEV fitted data implies the estimation of three
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parameters (1) the location parameter µ, (2) scale parameter σ, and (3) the shape
parameter ξ,and can be described by the distribution function given by Coles (2001).

G(z) =

{

exp
{

−
[

1 + ξ
(

z−µ
σ

)]

−1/ξ
}

for ξ 6= 0,

exp
{

− exp
[

−
(

z−µ
σ

)]}

for ξ = 0,
(1.1)

where −∞ < µ < ∞, σ > 0, 1 + ξ(z − µ)/σ > 0 for ξ 6= 0 and −∞ < z < ∞ for
ξ = 0.

GEV is a single representation of three types of distributions: Gumbel ξ = 0,
Fréchet ξ > 0, and Weibull ξ < 0. In GEV distribution the large block sizes pro-
vides a more accurate estimation of the block maxima, with a low bias in parameter
estimates. Note that for the dependent data larger block size are better, as depen-
dence in data cause slow convergence to the GEV distribution.

BM is preferable when only the information on block maxima is available like yearly
maxima in a long historical records (Kharin et al., 2007), or when the data is not
exactly independent and identically distributed (i.i.d.) for example, sea surface
temperature, where short range dependence is more likely. The short range depen-
dence may exist within the block, but not between the blocks (Katz et al., 2002).
BM is more often used in practice, as it is easier to apply since the blocks appear
naturally in many cases according to Naveau et al. (2009). The main drawback of
BM is that there might be more than one large extreme events in a single year,
corresponding to actual extremes, but in BM only high values from each block is
taken discarding the others. Therefore, the BM may not fully capture all extreme
events (Lucarini et al., 2016).

Peaks Over Threshold (POT) determines the distribution of the exceedances over a
threshold u, which has to be carefully selected. The exceedances are asymptotically
distributed according to the Generalized Pareto Distribution (GPD). GPD has re-
markable properties of universality when the asymptotic behaviour is considered
(Lucarini et al., 2016), while one can expect that the threshold level above which
the asymptotic behaviour is achieved depends on the specifics of the analyzed time
series. In particular, when looking at spatial fields, it will depend on the geograph-
ical location. GPD is characterized by two parameters, the shape ξ, and the scale
σ, the distribution function of GPD is given by Coles (2001).

H(y) =

{

1−
(

1 + ξy
σ̃

)−1/ξ
for ξ 6= 0,

1− exp
(

− y
σ̃

)

for ξ = 0,
(1.2)

where 1 + ξy/σ̃ > 0 for ξ 6= 0, y > 0 and σ̃ > 0.
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GPD also represents three types of distribution based on the shape parameter ξ.
For a negative shape parameter, ξ < 0, the distribution is bounded (Beta distri-
bution), for vanishing shape parameter, ξ = 0, the distribution is exponential, and
for a positive shape parameter, ξ > 0, the distribution has no upper bound (Pareto
distribution).

POT provides a more efficient use of data and has better properties of convergence
when finite datasets are considered (Coles, 2001), therefore, it is mostly preferred
over block maxima method in different disciplines. But, one has to compromise with
the setting of a threshold, as in POT the choice of the threshold should be high
enough to get the sufficient number of data for fitting with the GPD, and to remain
in the asymptotic regime. In such an asymptotic regime the shape parameter ξ
does not depend on threshold u, but the scale parameter σ vary with the threshold,
thus instead a modified scale (σ∗ = σ – ξ u) is used which does not depend on
threshold u. A successful fit can be obtained when the modified scale σ∗, and
shape ξ parameters are stable and compatible within the asymptotic regime.

1.5 Thesis outline

This thesis starts with an introductory chapter which gives an overview of the back-
ground and motivation, study area, objectives and introduction to extreme value
theory approaches used for the analysis. The main part of the thesis is split into
four Chapters 2, 3, 4, 5, and each chapter is constructed with its own Introduction,
data, methods, results, and conclusions, therefore can be easily read independently
from others. First three objectives are achieved in Chapter 2, 3, and 4, while the
fourth objective is described in Chapter 5. The conclusion and outlook of this the-
sis is stated in Chapter 6. Note that repetition of the contents is possible for the
clarity. Brief description of each chapter is given as follows.

Chapter 2

This chapter completes the first objective by estimating the return levels of the daily
maximum temperature Tmax, as well as maximum wet-bulb temperature TWmax

extreme events during summer (May – September) in southern Pakistan. Peaks
over threshold (POT) method is adopted, which have not yet been used for similar
studies in this region. Two main datasets are analyzed: temperatures observed
in nine meteorological stations in southern Pakistan from 1980 to 2013, and the
ERA Interim (ECMWF re-analysis) data for the nearest corresponding locations.
The analysis provides the 2, 5, 10, 25, 50, and 100 years Return Levels (RLs) of
temperature extremes.The RLs of the observed Tmax are above 50◦C in northern
stations, and above 45◦C in the southern stations. The RLs of the observed TWmax

exceed 35◦C in the region, which is considered as a limit of survivability. The RLs
estimated from the ERA Interim data are lower by 3◦C to 5◦C than the RLs as-
sessed for the nine meteorological stations. A simple bias correction applied to ERA
Interim data improves the RLs remarkably, yet discrepancies are still present. The
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results have potential implications for the risk assessment of extreme temperatures
in Sindh.

Chapter 3

This chapter fulfills the second objective by analyzing the Sea Surface Temperature
(SST) extremes in the Arabian Sea, as it is very important for many aspects of the
marine climate system and coastal communities. Even the changes of a few degrees
in SST can influence large-scale weather phenomena, such as tropical cyclones, El
Nino episodes, and south Asian monsoons. Robust warming over the Arabian Sea
is evident in recent decades, thereby increasing the risk of frequent cyclonic activity
in the pre-monsoon (May – June) and post-monsoon (October – November) peri-
ods. Two main data sets used are: SST data of the Hadley Center UK Met office
and annual frequency of tropical depressions TD, cyclonic storms CS, and severe
CS obtained from the Indian Meteorological Department (IMD), for a period 1891
– 2015. This chapter has two parts; firstly the block maxima approach is applied
to the SST dataset in a stationary and non-stationary climate, to investigate the
return levels of SST extremes in the Arabian Sea during pre and post monsoon. The
results show that the return levels of SST extremes in the pre-monsoon (>29◦C) are
slightly higher than the return levels of the post-monsoon (>28◦C) for shorter (2,
5, 10, 20) and longer return periods (50, 100, 200). Secondly, a Poisson regression
is applied on the IMD dataset to do the probabilistic prediction of TD, CS, and
severe CS using SST and SOI as predictors. The results indicate positive correla-
tion between SST and cyclogenesis, and higher probability of the SCS iduring the
pre-monsoon period in the Arabian Sea.

Chapter 4

This chapter analyzes the return levels of precipitation extremes in southern Pak-
istan (Sindh) and achieved the third objective. This region did not receive sub-
stantial amount of precipitation earlier, but now experiencing urban flooding due
to heavy precipitation almost every year causing loss of life, property, crops and
infrastructure. Most of the extreme precipitation occurs during summer monsoon
(JJAS). Therefore, daily precipitation data of JJAS measured at nine weather sta-
tions of Pakistan Meteorological Department over the period 1980 – 2013 is used.
The POT approach is applied to compute the return levels (RLs) of precipitation
extremes, and to identify the regions most prone to them. The results show higher
probability of the precipitation events >100 mm/day and >150 mm/day in 5 to 50
years return period in Rohri, Nawabshah, Hyderabad, Chhor, Karachi, and Badin.

Chapter 5

This chapter completes the last objective of this thesis by introducing SindheX, a
freely available web-tool (www.sindhex.org). It contains all the temporal and spa-
tial maps of the return levels analyzed in this thesis. The text used in the website
is taken from the thesis.
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Table 1.1: Monthly mean climatic characteristics of Sindh from 1980-2013

Mean Temperature (◦C)Stations
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Jacobabad 15.2 18.2 24 30.5 35.6 37 34.8 33 31.4 27.8 22.3 16.7 27
Mohenjo-daro 13.9 16.7 23 29.1 34.1 35 33.9 32.9 30.9 26.7 21.1 15.9 25.9
Rohri 15.6 18.2 23.6 29.8 34.5 35.6 33.9 32.3 31.2 27.6 22.1 16.9 26.4
Padidan 14.8 17.7 23.5 29.9 34.4 35.5 33.7 32.1 31 27.5 22.4 16.4 26.5
Nawabshah 15.4 18 24 29.8 34.5 35.6 34 32.3 31.5 28 22.4 16.9 26.7
Hyderabad 18 21 26.2 30.9 33.3 34 32.4 31.1 31 29.6 24.8 19.6 27.6
Chhor 16.5 19.5 25 30.1 33.5 33.7 31.6 30.1 30.1 28.2 22.6 17.9 26.3
Karachi 18.6 21.2 25.4 28.9 31.1 31.9 30.5 29.2 29.5 28.9 24.6 20.4 26.4
Badin 17.5 20.5 25.8 30.1 32.6 32.8 31 29.6 29.6 28.7 24 19 26.6

Minimum Temperature (◦C)Stations
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Jacobabad 7.9 10.9 16.6 22.4 27.4 29.8 29.3 28.4 26.3 20.5 14.3 8.9 19.9
Mohenjo-daro 4.7 7.9 13.3 18.9 24 27.4 27.9 27 24.7 18.2 11.8 7.3 17.3
Rohri 8.3 10.8 15.9 21.7 26.1 27.7 27.1 26 24.4 19.9 14.2 9.6 18.7
Padidan 6.5 8.9 14.5 20.2 24.7 27 26.9 25.8 23.7 18.3 12.4 7.6 17.8
Nawabshah 6.3 8.7 14.2 19.4 24.6 27.3 27.2 25.9 23.8 18.4 12.4 7.8 17.9
Hyderabad 11.4 13.9 18.8 22.8 26.1 27.9 27.6 26.5 25.4 22.5 17.4 13 21.1
Chhor 5.9 8.9 14.8 20.3 24.8 26.9 26.5 25.3 23.9 18.7 11.8 7 17.6
Karachi 11.5 14 18.6 23 26.6 28.3 27.6 26.3 25.6 21.9 16.8 12.7 20.7
Badin 9.9 12.6 17.9 22.3 25.7 27.6 27.1 26 25 22.1 16.5 11.4 20.2

Maximum Temperature (◦C)Stations
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Jacobabad 22.6 25.6 31.4 38.6 43.9 44.4 40.2 37.6 36.8 35.1 30.3 24.4 34.1
Mohenjo-daro 23.1 26.2 32.1 38.7 43.8 44.2 40.9 38.7 37.5 35.2 30.5 24.8 34.5
Rohri 22.6 25.6 31.2 38.1 43 43.5 40.5 38.3 37.8 35.2 30 24.3 34
Padidan 23.1 26.4 32.2 39.4 43.9 44.1 40.6 38.4 38.3 36.3 31.1 25.3 34.8
Nawabshah 24.5 27.9 33.8 40.2 44.2 43.9 40.7 38.8 39 37.7 32.3 26.1 35.5
Hyderabad 24.7 28.1 33.7 38.8 41.3 40 37.2 35.6 36.3 36.7 31.9 26.2 34.1
Chhor 26.9 29.9 35.2 40 42 40.6 36.8 34.9 36.3 37.6 33.5 28.7 35
Karachi 26.3 28.4 32.2 34.7 35.5 35.4 33.3 32.1 33.2 35.5 32.5 28.2 32
Badin 25.2 28.3 33.7 37.8 39.4 37.9 34.9 33.2 34.2 35.2 31.4 26.5 32.9

Mean Precipitation (mm)
Stations

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual
Jacobabad 3.1 7.3 12 2.7 3.5 3.2 39 35.6 5.3 1.7 0.8 8.3 120.4
Mohenjo-daro 2.6 5.8 3.4 2.9 2.2 2.5 39.9 26.6 6.6 0.4 0.9 6.3 97.1
Rohri 4.1 5.5 6.1 4.9 4.3 6.4 39.7 24.8 3 2.5 0.2 4.1 106.5
Padidan 2.9 4.3 4.4 2.1 1.3 4.2 41.8 40.9 5.4 0.7 0.3 5.5 114.7
Nawabshah 2.5 3.3 3.5 2.8 1.5 5 58.3 48.8 16.1 3.4 0.4 3.2 153.7
Hyderabad 1.4 6.8 4.2 7 2.8 4.4 47.9 71.8 13 5.4 2.2 2.1 169.9
Chhor 0.8 4.1 1.8 2.3 5.8 16.3 82.2 81.8 39.8 9 2.2 1.2 247.6
Karachi 8.4 7.4 5.3 3 0.1 10.8 60 60.9 11 2.6 0.4 4.8 176
Badin 1.2 6.6 0.4 1.7 6.2 9.6 79.5 85.9 24.8 9.3 2.4 0.5 228.5

Rainy days (mm)Stations
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual

Jacobabad 0.5 1 1.2 0.7 0.9 0.5 2 1.2 0.3 0.1 0 0.3 8.6
Mohenjo-daro 0.2 0.5 0.9 0.2 0.3 0.4 1.9 1.4 0.3 0.1 0.1 0.3 6.6
Rohri 0.4 0.6 0.5 0.4 0.2 0.5 1.5 0.6 0.2 0.1 0 0.3 5.3
Padidan 0.2 0.6 0.6 0.2 0.4 0.4 2.2 1.9 0.3 0.2 0 0.3 7.3
Nawabshah 0.1 0.3 0.1 0.3 0.4 0.3 1.5 1.4 0.6 0.1 0 0.2 5.3
Hyderabad 0.3 0.7 0.4 0.6 0.4 0.6 2.1 2.2 0.6 0.3 0.2 0.3 8.6
Chhor 0.1 0.3 0.2 0.4 0.3 1 3 3.2 1.2 0.4 0.2 0.2 10.3
Karachi 0.7 0.8 0.7 0.2 0.1 0.9 3.6 3.3 0.7 0.3 0.1 0.7 12
Badin 0.3 0.3 0 0.4 0.1 0.8 2.4 2.4 0.7 0.3 0.2 0.1 7.8
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Chapter 2

Return levels of temperature

extremes in southern Pakistan

2.1 Introduction

Extreme maximum temperature events have received much attention in recent years,
because of the associated dangerous impact on the increased risk of mortality. Ad-
ditionally, climate change scenarios suggest that in most regions the probability
of occurrence of extremely high temperature is very likely to increase in the fu-
ture (Sheridan and Allen, 2015). The Intergovernmental Panel on Climate Change
(IPCC) scenarios estimates an increase in the surface temperature of the order of
4◦C by the end of 2100 in Sindh, Pakistan. This may significantly reduce crop yields,
and cause huge economic losses to the country(Islam et al., 2009; Rasul et al., 2012;
IPCC, 2012, 2014). Furthermore, it might increase the risks of heat strokes, cardiac
arrest, high fever, diarrhea, cholera and vector borne diseases. Lately, deadly heat
waves and extremely high heat index (combination of high temperature and high hu-
midity) have become more common in southern Pakistan (Zahid and Rasul, 2010).
The enhanced mortality rate related to the heat waves is a serious problem, and two
obvious examples are the 1991 and the 2015 heat waves (Imtiaz and Rehman, 2015).

The analysis of extreme climatic events is a very active area of research in geo-
science(Christidis et al., 2005, 2010; Tebaldi et al., 2006; Morak et al., 2011, 2013).
Extreme value theory (EVT) represents an increasingly widespread approach in cli-
mate studies (Coles, 2001; Zhang et al., 2004; Brown et al., 2008; Faranda et al.,
2011; Acero et al., 2014) to estimate the occurrence of the extreme events. The peaks
over threshold (POT) approach determines the distribution of the exceedances
above a threshold. The exceedances are asymptotically distributed according to the
Generalized Pareto Distribution (GPD). GPD has remarkable properties of univer-
sality when the asymptotic behavior is considered (Lucarini et al., 2016), while one
can expect that the threshold level above which the asymptotic behavior is achieved
depends on the specifics of the analyzed time series. In particular, when looking at
spatial fields, it will depend on the geographical location.
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In this chapter, we have chosen to analyze the temperature extremes in the Sindh
region taking the point of view of threshold exceedances associated to the GPD fam-
ily of distributions, because the statistical inference provided by the POT method
provides a more efficient use of data and has better properties of convergence when
finite datasets are considered with respect to alternative methods for the analysis of
extremes, such as the block maxima method, which is used to fit the observed data
to the generalized extreme value (GEV) distribution (Lucarini et al., 2016). Addi-
tionally, we are here interested in investigating the actual tails of the distributions
and not the statistics of e.g. yearly maxima, the POT approach is indeed more
appropriate. While the POT method has been applied for studying temperature
extremes in different regions of the world (Burgueño et al., 2002; Nogaj et al., 2006;
Coelho et al., 2007; Ghil et al., 2011) to our knowledge, it has never been used to
analyze the statistics of temperature extremes in Sindh. Thanks to the properties
of universality of the GPD distribution, the POT approach can in principle provide
reliable estimates of return periods and the return levels also for time ranges longer
than what is actually observed (Lucarini et al., 2016). This information and this
predictive power can be beneficial for policy makers and other stakeholders. Since,
it is exactly the kind of information planners need when, e.g., designing infrastruc-
tures that are deemed to last a very long time. Note that commonly used, more
empirical approaches to the study of extremes, as those more used for assessing the
"moderate extremes" (IPCC, 2012), do not have any property of universality and
might have weak predictive power.

It is useful to consider two indicators of extremely hot conditions: (1) tempera-
ture extremes Tmax, and (2) Wet-bulb temperature extremes TWmax. Therefore,
we estimate the return levels of Tmax and TWmax over different return periods
during summer (May-September) in Sindh. We apply the POT method on the ob-
servational data of the nine weather stations provided by Pakistan Meteorological
Department, and the ERA Interim re-analysis data of European Center for Medium
range Weather Forecast (ECMWF) model for the corresponding grid points from
1980 to 2013. ERA Interim re-analysis data are generally very good at replicating
also trends in temperature percentile (Cornes and Jones, 2013). Nonetheless, it is
in principle not obvious that ERA Interim data can simulate well meteorological
extremes, as reanalysis are constructed in such a way that typical conditions are
well reproduced. This is why we look at how well ERA Interim data performs in
the target area against observations. If the ERA Interim dataset characterizes well
the extremes, it could be an option for the regions within Sindh where no observa-
tional data is available. Furthermore, a standard bias correction is applied on the
ERA Interim data to assess whether removing the bias in the bulk of the statistics
improves substantially representation of the return levels of extremes. Given the
shortness of the datasets, as we will show later, it is appropriate to analyze the ex-
tremes without taking into considerations possible long-term trends (Frei and Schär,
2001); see also the discussion in Felici et al. (2007). The provision of POT-based
information on stationary extremes is already quite relevant in terms of impacts for
the public and private sector as it fills a big data gap in Sindh. A possibility for
investigating time dependency in the temperature extremes comes for considering
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the centennial NCEP reanalysis (Compo et al., 2011) and using suitable bias cor-
rection procedures. Such an analysis is not performed at this stage as we focus on
observational data.

2.2 Data and Methodology

2.2.1 Meteorological Station Data

The daily maximum temperature and relative humidity data recorded at nine me-
teorological stations in Sindh from 1980 to 2013 are provided by the Pakistan Me-
teorological Department (see Table 2.1). We select nine stations, which contain a
negligible amount of missing values after 1980, and are suitable for the POT analy-
sis (Figure 2.1). An additional criterion is that only those stations are chosen where
no changes occurred in measuring instruments during the last 33 years (Brunetti
et al., 2006). None of the station data shows gaps with duration longer than two
days, which are treated by replacing the missing value with the average of the two
previous values.

Table 2.1: Code, name, geographic coordinates and altitude of the stations.

Code Name
PMD weather stations ERA-Interim stations

Latitude Longitude Altitude (m) Latitude Longitude

JCB Jacobabad 28◦18′N 68◦ 28′E 55 28◦4′N 68◦ 15′E

MJD Mohenjo-daro 27◦22′N 68◦ 06′E 52.1 27◦5′N 67◦ 75′E

RHI Rohri 27◦ 40′N 68◦ 54′E 66 27◦75′N 69 ◦25′E

PDN Padidan 26◦ 51′N 68◦ 08′E 46 26◦8′N 68 ◦5′E

NWB Nawabshah 26◦ 15′N 68◦ 22′E 37 26◦25′N 68◦ 0′E

HYD Hyderabad 25◦ 23′N 68◦ 25′E 40 25◦5 ′N 68◦ 15′E

CHR Chhor 29◦ 31′N 69◦ 47′E 5 25◦3′N 69◦6′E

KHI Karachi 24◦ 54′N 67◦08′ E 21 25◦2′N 67◦5′E

BDN Badin 24◦ 38′N 68◦ 54′E 10 24◦75′N 68◦65 ′E

The temperature data are discretized unevenly with intervals up to 1 degree Celsius.
Deidda and Puliga (2006) proposed a Monte Carlo approach for addressing this is-
sue. They showed that finite resolution in precipitation data affects the convergence
of parameter estimation in the extreme value analysis. They suggested generating
many synthetic datasets by adding numerical noise to the original data, and then
providing the best estimate of the parameters of the extreme value distributions by
averaging over all the best fits obtained in each synthetic dataset. Following their
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Figure 2.1: Study Domain (23.5 – 28.5◦ N , 66.5 – 71.1◦E)

suggestion, we produce high-resolution data to compensate the effect of discretiza-
tion and thus to improve the convergence of the estimator. In order to convert the
temperature readings to higher resolution, we add a uniform random variable in
the interval [−0.5, 0.5]. The main property of this noise is that round (T + r) = T ,
where T is the temperature with 1-degree resolution and ’round’ is the numerical
function, which maps the interval [T − 0.5, T + 0.5] to T . Thus, adding the noise
does not perturb the information content of the observations. This procedure is
applied to all temperature data, irrespective of the actual resolution, and replicated
100 times using a Monte Carlo approach. For each synthetic dataset, we perform
the statistical best fit described later in the paper and then average the results. We
check the influence of this noise parameterization and find no significant bias in the
return level estimates. The advantage of adding a noise is to avoid the spurious
statistical effects associated to the presence discrete values assigned to the tem-
perature readings. Using the described bootstrap method we reduce such problem
without biasing the data.

2.2.2 ERA Interim Reanalysis Data

The gridded daily maximum temperature and relative humidity data of ERA In-
terim re-analysis is obtained from the ECMWF Public Datasets web interface
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(http://apps.ecmwf.int/datasets/). The ERA Interim is generated by the Euro-
pean Center for Medium range Weather Forecast (ECMWF) model with resolution
0.75◦ × 0.75◦ (Dee et al., 2011). The gridded data are then extracted at the closest
grid points of all stations, for the period 1980 – 2013 (Figure 2.1). The latitude and
longitude of the ERA Interim stations are displayed in Table 2.1.

The extreme temperatures analysis is restricted to the summer season (May –
September) over a period of 33 years. We have tested the datasets by applying
the Mann-Kendall test; the results show that trends are not significant in such a
short time interval. One of the main requirements for performing the POT analy-
sis is assuming the stationarity of the time series. Therefore, as in Bramati et al.
(2014), the Augmented Dickey Fuller (ADF) test of stationarity is performed on
all time series (Dickey and Fuller, 1979). In all cases we find no sign of long-term
correlations in the data. Short-term correlations (daily time scale) typically lead
to clusters of extreme values and are studied by computing the extremal index θ
in all time series and treated using the associated standard declustering technique
(see more details in Section 2.2.4).

2.2.3 Wet–bulb Temperature Calculations

The wet–bulb temperature measures the heat stress better than other existing heat
indices, because it establishes the clear thermodynamic limit on heat transfer that
cannot be overcome by adaptations like clothing, activity and acclimatization (Pal
and Eltahir, 2015; Sherwood and Huber, 2010). Here, we use an empirical equation
developed by Stull (2011) to measure the wet–bulb temperature [◦C].

TW = Tatan(α1

√
RH + α2) + atan(T +RH)−

atan(RH + α3) + α4(RH)
3

2atan(α5RH)− α6

(2.1)

where TW is the wet–bulb temperature [◦C], T is the temperature [◦C], and RH
is the relative humidity [%]. This relationship is based on an empirical fit, as in
Stull (2011), where the coefficient values are α1 = 0.151977, α2 = 8.313659, α3 =
-1.676331, α4 = 0.00391838, α5 = 0.023101, and α6 = 4.686035. The Eq. 2.1 covers
a wide range of relative humidity and air temperatures with an accuracy of 0.3◦C.

2.2.4 Peaks over Threshold

In order to determine the return levels of extreme maximum temperatures and
maximum wet-bulb temperatures, the peaks over threshold (POT) approach is ap-
plied to the data obtained from the meteorological stations in Sindh, and from the
ERA Interim archive. Multi-occurrence is an important characteristic of extreme
climatic events and is referred to as clustering. Clusters are consecutive occurrences
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of above threshold events. It is important to post process the clustered extremes
in order to take into account the assumption of weak short time correlation be-
tween extreme events, which is crucial for our statistical analysis. We have treated
the clusters using the concept of Extremal Index (EI) (see Loynes (1965); O’Brien
(1974); Leadbetter (1983); Davison and Smith (1990)). The Extremal Index θ mea-
sures the degree of clustering of extremes. It ranges between 0 and 1, (θ = 0 means
strong clustering and dependence, θ = 1 absence of clusters and independence).
Leadbetter (1983) interprets 1/θ as the mean number of exceedances in a cluster.

The extremal index θ can be estimated in two different ways. Here, we apply the
intervals estimator automatic declustering by Ferro and Segers (2003). A positive
aspect of this method is that it avoids the subjective choice of cluster parame-
ters. The main ingredient is the use of an asymptotic result for the times between
threshold exceedances. The exceedance times are split into two types, a set of van-
ishing intra-exceedance times within the clusters, and an exponentially distributed
set of inter-exceedance times between clusters. The method is iterative, starting
with largest return times and stops when a limit for the inter-exceedance times is
reached. The standard errors of the estimated parameters is obtained by a boot-
strap procedure. In this study, once we select appropriate value for the threshold
(see below) the extremal index θ value is 6 0.5 in all the considered time series.
Therefore, it is necessary to decluster the extremes by choosing the largest event in
each cluster, before fitting it to the GPD.

As mentioned before, we use as statistical model for the exceedances over threshold
the Generalized Pareto Distribution (GPD), which is characterized by two param-
eters, the shape ξ and the scale σ. The GPD for exceedances x − u of a random
variable x reads as

G(x) = 1− [1 + ξ(
x− u

σ
)]−1/ξ (x > u, ξ 6= 0) (2.2)

where u is the threshold. The shape parameter ξ determines the tail behavior while
the scale parameter σ measures the variability. For a negative shape parameter,
ξ < 0, the distribution is bounded (Weibull distribution), for vanishing shape pa-
rameter, ξ = 0, the distribution is exponential, and for a positive shape parameter,
ξ > 0, the distribution has no upper bound (Pareto distribution).

In particular, for a negative shape parameters ξ < 0 the GPD has an upper bound

Amax = u− σ

ξ
(2.3)

G(x) = 0 (x > Amax, ξ < 0)
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where Amax is an absolute maximum (Lucarini et al., 2014). In general, the best
estimate for the two parameters shape ξ and scale σ depend on the threshold u
(Coles, 2001). The choice of the optimal threshold for performing statistical infer-
ence from a time series is crucial. Choosing a very large value for u reduces the
number of exceedances to a few values, inflating the variance of the estimators, so
that the analysis is unlikely to yield any useful results. On the other hand, choosing
a too small value for u would violate the asymptotic nature of the model, with a
possible biased estimation and wrong model selection (Coles, 2001), see details later
in Section 2.3.1. The shape ξ, the scale σ and the return levels are estimated using
the Maximum Likelihood Estimator (MLE) using the R software (R Development
core team 2015), which also provides an estimate of the standard error of the esti-
mates.

Additionally, we wish to investigate the N - years return levels xN , which are ex-
ceeded on the time scale of N years (Coles, 2001) and can be expressed as

xN = u+
σ

ξ
[(Nnyζu)

ξ − 1] (2.4)

where N represents the return period, ny is the number of observations per year
, ζu is the probability of an individual observation exceeding the threshold u, the
shape parameter is ξ and the scale parameter is σ.

2.2.5 Bias Correction Method

A simple bias correction is applied to each ERA Interim time series through a rescal-
ing that adjust the first two moments (mean and variance) to the sample moments
calculated on the corresponding observations (Acharya et al., 2013). Therefore,
the bias correction is applied to the entire time series and it is not tailored to the
extreme events only. The idea is to check whether by adjusting the properties of
the bulk of the statistics we improve the skill of the ERA Interim dataset consid-
erably in describing extreme events. The bias corrected ERA Interim time series x is

x = z̄ +
yERA − ȳ

σy

.σz (2.5)

where yERA is the ERA Interim time series, ȳ and σy its mean and standard devia-
tion, whereas z̄ and σz are the mean and standard deviation of the meteorological
station temperatures. The properties of extremes are commonly assumed to be
closely controlled by the first two moments of the underlying distribution e.g. the
IPCC (2012) relates changes in the properties of extremes to changes in the mean
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and in the standard deviation of the underlying distributions - EVT clarifies that,
in fact, only a loose link exists between true extremes and the bulk of the events.
Note that the proposed method of bias corrections has no impact on the estimates
of the shape parameter, while it affects the scale and location parameters, thus
impacting at any rate the return levels.

2.3 Results and Discussion

2.3.1 Threshold Selection

The threshold selection is the first step in a POT analysis. One needs to test whether
the asymptotic regime is reached, i.e. whether we are choosing true extremes.
It must be noted that EVT does not predict where (in terms of quantiles) one
should expect the asymptotic regime to start. This can be investigated by checking
whether the best fits of the shape parameter ξ and the modified scale parameter
σ∗ = σu − ξu are stable with respect to increases in the chosen value of u (Scarrott
and Macdonald, 2012). The optimal threshold u is selected as the lowest value where
the two parameters are invariant in order to reach the asymptotic limit (Coles, 2001;
Furrer et al., 2010).

Figure 2.2: Modified scale (σ∗) and shape parameter (ξ) of the observed Tmax Karachi.
The red vertical lines represent the selected threshold according to the station quantiles.



2.3 Results and Discussion 19

This choice allows for having as many data as possible for performing the statistical
inference, thus having lower variance for the estimators of the parameters. Figure
2.2 shows the parameter stability plots of the Tmax reading for Karachi, as an
example to explain the threshold selection procedure.

Figure 2.3: Mean residual life plot of the station observed Tmax Karachi.

In addition to diagnostic plots of the modified scale parameter σ∗ and the shape
parameter ξ, the mean residual life plot is used to select the appropriate threshold
for the POT analysis (Davison and Smith, 1990). The idea is to select the lowest
value of the threshold when the plot is approximately linear, and the parameters
(ξ, σ∗) are stable. In the case of the Karachi, data for Tmax, the plot appears to be
linear and stable for u = 36◦C, indicating u = 36 as the most suitable threshold for
the POT analysis (Figure 2.3). We observe that the 90% quantile is an appropriate
threshold for all the station data, as well as the ERA Interim datasets, and for both
Tmax and TWmax.

2.3.2 GPD Fit

The goodness of fit is evaluated by Quantile-Quantile (Q-Q) plots and hypothesis
testing. The Q-Q plot analysis is performed for the stations observed, the ERA In-
terim, the bias corrected ERA Interim daily Tmax and TWmax. The Q-Q plots of the
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observed Tmax show that the GPD fits well in most stations (Figure 2.4). However,
in a few stations like Jacobabad, Mohenjo-daro, Padidan, and Chhor the empirical
values show slight deviation from the modeled values. In spite of minor deviations
at some stations, still most of the exceedances are well fitted by the model. The
Q-Q plots of the observed TWmax also fits well to the model in all stations (Figure
2.7).

Figure 2.4: Quantile-Quantile plots of station observed Tmax (◦C), u= 90% for 9 stations
of southern Pakistan (Sindh).

The Q-Q plots of the empirical ERA Interim Tmax and TWmax data reveals sub-
stantial differences corresponding to the GPD (Figure 2.5 and 2.8). The empirical
values of the higher quantiles are deviating from the theoretical quantiles in all
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stations. However, if the higher quantiles are disregarded, then stations like Ja-
cobabad, Mohenjo-daro, Rohri, Padidan, Nawabshah, Chhor, and Badin fits very
well with the model. The Q-Q plots of the bias corrected ERA Interim Tmax, and
TWmax show better results than the ERA Interim (Figure 2.6 and 2.9). We notice
that the Tmax of the ERA Interim and bias corrected ERA Interim fits better than
the TWmax if the higher quantiles are ignored, indicating the bias procedure is, as
expected, unable to treat correctly the statistics of the largest events.

Figure 2.5: Quantile-Quantile plots of station ERA Interim Tmax (◦C), u= 90% for 9
stations of southern Pakistan (Sindh).
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Figure 2.6: Quantile-Quantile plots of station bias corrected ERA Interim Tmax (◦C), u=
90% for 9 stations of southern Pakistan (Sindh).
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Figure 2.7: Quantile-Quantile plots of station observed TWmax (◦C), u= 90% for 9 stations
of southern Pakistan (Sindh).
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Figure 2.8: Quantile-Quantile plots of station ERA Interim TWmax (◦C), u= 90% for 9
stations of southern Pakistan (Sindh).
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Figure 2.9: Quantile-Quantile plots of station bias corrected ERA Interim TWmax (◦C),
u= 90% for 9 stations of southern Pakistan (Sindh).
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In order to assess the goodness-of-fit, we apply the Kolmogorov-Smirnov (K-S) test
and Anderson-Darling (A-D) test to the data of meteorological stations, ERA In-
terim, bias corrected ERA Interim Tmax and TWmax. The p – values indicate a
good performance of the fit procedure. Table 2.2 show the results of the K-S and
A-D statistics of the Tmax and TWmax in all data sets.

Table 2.2: Results of the Kolmogorov-Smirnov Goodness of fit test and Anderson-Darling
test between empirical and GPD fits.

Observed Tmax

p-valueTest
Statistics

Null
Hypothesis JAC MJD RH I PDN NWB HYD CHR KHI BDN

Kolmogorov Smirnov 0.947 0.340 0.996 0.139 0.941 0.385 0.928 0.306 0.666
Anderson Darling

Equality of probability
distribution 0.553 0.978 0.654 0.857 0.157 0.649 0.233 0.869 0.145

ERA Interim Tmax

p-valueTest
Statistics

Null
Hypothesis JAC MJD RHI PDN NWB HYD CHR KHI BDN

KolmogorovSmirnov 0.169 0.125 0.553 0.456 0.322 0.187 0.419 0.456 0.332
Anderson Darling

Equality of probability
distribution 0.355 0.263 0.165 0.587 0.615 0.398 0.266 0.687 0.425

Bias corrected ERA Interim Tmax

p-valueTest
Statistics

Null
Hypothesis JAC MJD RHI PDN NWB HYD CHR KHI BDN

KolmogorovSmirnov 0.452 0.472 0.197 0.489 0.269 0.137 0.158 0.243 0.312
Anderson Darling

Equality of probability
distribution 0.352 0.315 0.235 0.270 0.335 0.289 0.216 0.390 0.227

Observed TWmax

p-valueTest
Statistics

Null
Hypothesis JAC MJD RHI PDN NWB HYD CHR KHI BDN

KolmogorovSmirnov 0.981 0.111 0.341 0.226 0.457 0.545 0.441 0.385 0.211
Anderson Darling

Equality of probability
distribution 0.623 0.745 0.587 0.884 0.199 0.123 0.789 0.669 0.473

ERA Interim TWmax

p-valueTest
Statistics

Null
Hypothesis JAC MJD RHI PDN NWB HYD CHR KHI BDN

KolmogorovSmirnov 0.712 0.564 0.955 0.425 0.258 0.134 0.856 0.497 0.222
Anderson Darling

Equality of probability
distribution 0.236 0.474 0.516 0.219 0.356 0.117 0.537 0.464 0.613

Bias corrected ERA Interim Tmax

p-valueTest
Statistics

Null
Hypothesis JAC MJD RHI PDN NWB HYD CHR KHI BDN

KolmogorovSmirnov 0.268 0.688 0.127 0.372 0.268 0.229 0.591 0.582 0.478
Anderson Darling

Equality of probability
distribution 0.373 0.484 0.278 0.432 0.306 0.283 0.365 0.445 0.483

2.3.3 Parameter Estimates

Here, we analyze the shape parameter ξ , the scale parameter σ, and threshold u for
all considered datasets. The standard errors of the shape ξ and the scale σ param-
eters are given in Table 2.3. The spatial distribution of the shape parameter ξ and
the scale parameter σ of the GPD in Sindh are shown in Figure 2.10. The shape
parameters ξ are negative in all datasets at all stations. This is hardly surprising, as
meteorological and physical processes make sure that the temperature cannot grow
locally without control. One finds a certain degree of variability across stations
in the estimated value of the shape parameter. In the case of the observed Tmax

one obtains for ξ estimates ranging between -0.418 and -0.223, while for TWmax

the range is between -0.323 and -0.177, so that values slightly closer to zero are
found, thus allowing for larger excursions towards very high values with respect
to the case of the extremes of the actual temperature. When looking at the bias
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corrected ERA Interim data, the range of values for the shape parameter of Tmax

(TWmax) is between -0.305 to -0.002 (-0.18 and -0.01). While there is a good match
in the spatial patterns of the estimates for the observative vs ERA Interim datasets,
the presence of values much closer to zero in the second case suggests the presence
of some inadequacies in the representation of extremes in the reanalysis. This is
not entirely unexpected, as reanalysis are constructed in such a way that typical
conditions are well reproduced. Note that our simple bias correction procedure,
while not impacting the estimates of the shape parameters, allows for improving
the estimates of the return levels, as discussed below.

The scale parameters σ measures the variability of the GPD distributions. The
highest values of the scale parameters σ of Tmax and TWmax are observed at sta-
tions such as Jacobabad, Padidan, Karachi, Hyderabad, and Chhor in all datasets.
This indicates that the variability of temperature extremes is higher at these sta-
tions, and one can expect higher return values of Tmax and TWmax here having
similar shape parameter and same threshold according to Equation 4.2. The scale
parameters σ of the observed Tmax range from 2.08 to 2.76, and the TWmax are
in 1.86 to 2.76. In the ERA Interim analysis, the scale parameter σ of Tmax is
between 1.00 - 1.95, and TWmax in 0.74 - 1.75. We observe a difference in the
scale parameters of both the observed, ERA Interim Tmax and TWmax. We find
that, unsurprisingly, the scale parameters of the bias corrected ERA Interim data
are much closer to those estimated for Tmax and TWmax using the station data.
In the bias corrected ERA Interim Tmax the scale parameters σ are in 1.50 - 2.75,
while for TWmax are in a range 1.40 – 2.40 (Figure 2.10). All the temperature scale
parameters are in degree Celsius.

2.3.4 Absolute Maxima

Once the shape parameters ξ, the scale parameters σ, and the thresholds u are de-
termined, it is possible to compute the theoretical absolute maxima using Eq. (2.3)
(Section 2.2.4). Theoretical absolute maxima can be compared with the observed
ones for each station to better understand whether our fits are in agreement with
the observed data. The daily maximum temperature Tmax and the maximum wet-
bulb temperature TWmax (station data, the ERA Interim, and the bias corrected
ERA Interim) have negative shape parameters ξ at all stations. This means that
according to Eq. (4.1) in section 2.2.4, the probability distribution function (pdf)
is bounded by the maximum values. These maximum values are the theoretical
upper limits predicted by the GPD fit. The analysis shows that the observed abso-
lute maxima Tmax and TWmax at all stations of the three data sets are below the
theoretical absolute maximum, as expected (Figure 2.11). This gives us confidence
on the quality of our fit. The following piece of information can also be derived:
assume that one observes in the future an extreme event larger than the maximum
inferred in the present dataset; this may suggest some non-stationarity in the most
recent portion of the dataset.
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Table 2.3: Estimated parameters shape ξ, scale σ and standard error ∆ξ , ∆σ of all data
sets.

Station observed Tmax

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN
Shape ξ -0.3875 -0.2550 -0.4182 -0.3261 -0.3323 -0.3292 -0.3108 -0.2225 -0.3292
Standard Error ∆ξ 0.0317 0.0226 0.0226 0.0218 0.0208 0.0312 0.0371 0.0341 0.0312
Scale σ 2.7540 2.0819 2.3510 2.2144 2.1391 2.2286 2.5629 2.5685 2.2286
Standard Error ∆σ 0.1421 0.1040 0.1075 0.1076 0.1031 0.1166 0.1462 0.1444 0.1166

ERA Interim Tmax

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN
Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514
Standard Error ∆ξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371
Scale σ 1.4643 1.3230 1.3440 1.5045 1.5630 2.0656 1.8497 1.3303 2.0410
Standard Error ∆σ 0.0798 0.0739 0.0741 0.0788 0.0788 0.1082 0.0949 0.0908 0.1153

Bias Corrected ERA Interim Tmax

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN
Shape ξ -0.1959 -0.1788 -0.2076 -0.2185 -0.2135 -0.3380 -0.2850 -0.0376 -0.2514
Standard Error ∆ξ 0.0320 0.0348 0.0343 0.0287 0.0265 0.0316 0.0337 0.0508 0.0371
Scale σ 1.9834 1.7918 1.8205 2.0382 2.1164 2.7980 2.3081 1.8016 2.7636
Standard Error ∆σ 0.1081 0.1001 0.1004 0.1068 0.1068 0.1467 0.1233 0.1229 0.1562

Station observed TWmax

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN
Shape ξ -0.1769 -0.1860 -0.2150 -0.2157 -0.2164 -0.3231 -0.2423 -0.2190 -0.1867
Standard Error ∆ξ 0.0383 0.0354 0.0347 0.0442 0.0266 0.0269 0.0347 0.0368 0.0322
Scale σ 2.7590 2.0454 1.9600 2.0780 1.8572 2.3724 2.5126 2.3375 1.9032
Standard Error ∆σ 0.1596 0.1146 0.1084 0.1289 0.0938 0.1191 0.1380 0.1328 0.1055

ERA Interim TWmax

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN
Shape ξ -0.0896 -0.0946 -0.0687 -0.1257 -0.1583 -0.1771 -0.0902 -0.0194 -0.1733
Standard Error ∆ξ 0.0379 0.0293 0.0327 0.0342 0.0313 0.0377 0.0357 0.0359 0.0378
Scale σ 1.2879 1.2437 1.2311 1.4408 1.6104 1.6499 1.3423 0.6801 1.7886
Standard Error ∆σ 0.0748 0.0660 0.0676 0.0804 0.0875 0.0959 0.0760 0.0398 0.1028

Bias Corrected ERA Interim TWmax

Estimates JCB MJD RHI PDN NWB HYD CHR KHI BDN
Shape ξ -0.08961 -0.0946 -0.06870 -0.12570 -0.15831 -0.17711 -0.09017 -0.01942 -0.17332
Standard Error ∆ξ 0.03786 0.02931 0.03275 0.03424 0.03134 0.03767 0.03571 0.03593 0.03782
Scale σ 1.35674 1.64650 1.75852 1.49477 1.52013 2.05281 2.14609 1.39943 2.15299
Standard Error ∆σ 0.07878 0.08736 0.09651 0.08347 0.08254 0.11924 0.12145 0.08193 0.12370
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2.3.5 Return Levels

The return levels (RLs) are computed considering various return periods (2, 5, 10,
20, 50, 100-year). As remarked above, using a statistical approach based on the
universality of EVT, we are able to extrapolate the results for time horizons longer
than the one for which observations are taken. Clearly, uncertainties grow when
longer time horizons are considered. The return level plots of the stations observed,
the ERA Interim, the bias corrected ERA Interim daily maximum temperature
Tmax and daily maximum wet–bulb temperature TWmax are displayed in Figures
2.12 and 2.13. The values of the RLs follow the north-south gradient of the climatic
mean temperatures. The northern part of the Sindh (Jacobabad, Mohenjo-daro,
Rohri, Padidan, and Nawabshah) are hotter than the southern part (Hyderabad,
Chhor, Karachi, and Badin).

The 2, 5, 10, 20, 50, 100 year RLs estimated in Sindh for station observed Tmax
at time reach over 50◦C in Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and
over 45◦C in Rohri, Hyderabad, Chhor, Karachi, Badin. The corresponding ERA
Interim Tmax return levels are at least 3◦C to 5◦C lower in all stations, while having
correct representation of the geographical variability of the field. As example, the
RLs of 42◦C at Badin has a 3-year return period in the observations Tmax, but a
30-year return period in ERA Interim (Figure 2.12).

The RLs of TWmax are above 35◦C in all meteorological stations. As for the ERA
Interim, the RLs of TWmax are greater than 30◦C for all the stations except Karachi,
which has RLs less than 30◦C. Here, we see again that the RLs of the ERA Interim
TWmax are lower than the RLs of station TWmax. Going again to the Badin sta-
tions, the 4-year return period observed for TWmax is 38◦C, while the ERA Interim
dataset show the same RL in a 15-year return period (Figure 2.13).

The bias corrected ERA Interim Tmax and TWmax, show some improvements in the
RLs at all stations. When looking at the Nawabshah, Hyderabad, Karachi, and
Badin stations, the RLs agree with those obtained from the station data in the
range 5-100 years, while disagreements exist in the range 2-5 years. In the rest of
the stations, the bias corrected data RLs are closer to those of the station data, yet
not statistically compatible with them. When looking at the wet-bulb temperature
TWmax analysis, the RLs of the bias corrected ERA Interim show some overlap
with those derived from station observations in Mohenjo-daro, Hyderabad, Chhor,
and while no overlap is found in the other stations. One understands that the pro-
posed simple bias correction methods improves the quality of the representation of
extremes by ERA Interim, but many discrepancies remain (Figures 2.12 and 2.13).

We also plot the station and bias corrected ERA Interim Tmax, and TWmax re-
turn levels spatially for the 5, 10, 25 and 50 year return periods (Figures 2.14 and
2.15), as a detailed spatial overview of the temperature extremes in Sindh might
be of interest to the policy makers. The spatial return levels of the station and
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Figure 2.12: Return level plots of the station observed Tmax (black) , ERA Interim Tmax

(red), and bias corrected ERA Interim Tmax (green) in degree Celsius. The blue line is to
show a difference in the observed and ERA Interim RLs.



2.3 Results and Discussion 33

Figure 2.13: Return level plots of the station observed TWmax (blue), ERA Interim TWmax

(pink), and bias corrected ERA Interim TWmax (green) in degree Celsius. The black line
is to show a difference in the observed and ERA Interim RLs.



34 Return levels of temperature extremes in southern Pakistan

Figure 2.14: Spatial distribution of the station observed Tmax (red) and bias corrected
ERA Interim Tmax (blue) return levels in degree Celsius corresponding to return periods
of 5, 10, 25 and 50 years in southern Pakistan.
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Figure 2.15: Absolute maxima Amax in degree Celsius (a) station observed Tmax (b)
ERA Interim and bias corrected ERA Interim Tmax (c) station observed TWmax (d) ERA
Interim and bias corrected ERA Interim TWmax.
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bias corrected ERA Interim Tmax shows differences in temperature; the hottest sta-
tions have the highest return levels. We notice that for Jacobabad, Mohenjo-daro,
Padidan, Nawabshah the return levels are between 50◦C – 53.6◦C and for Rohri,
Hyderabad, Chhor, Karachi, and Badin are between 45◦C – 50◦C in 5 to 50 years
return period (Figure 2.14). These extreme temperatures can impact the yields
because crops are very sensitive to temperature variations, and even a rise of one
degree Celsius can cause detrimental changes in the phenological stages of the crops
(Hatfield and Prueger, 2015). Every crop has a certain limit to tolerate the temper-
ature. When temperature exceeds this limit, the crop yield is drastically reduced.
Abbas et al. (2017) notices 33% decrease in major crops of Sindh due to warmer
and drier weather. Karachi and Badin are expected to decrease rice cultivation,
hatching of fisheries, and mangroves forest surrounding these cities. Furthermore,
temperature extremes can have serious threat to cotton, wheat, and rice yields in
Rohri and Mohenjo-daro areas due to increased crop water requirements.

In summer, the temperature and humidity increase to an extent that there are high
chances of a rapid pests spread in the crops. Temperature extremes not just di-
rectly impact the quantity and quality of grains, but can also be a reason of urban
flooding affecting the agriculture lands. Sindh produces cotton, wheat, rice, mango,
banana, and dates, so a correct estimate of temperature extremes is very important.
The spatial return levels of station and bias corrected ERA Interim TWmax for the
5, 10, 25, and 50 year return periods show highest return level greater than 35◦C
at all stations (Figure 2.15. This is very serious for the human health due to the
working day hours of population in agriculture farms, building construction, and
port activities. Karachi and Badin being closet to the coast are at the highest risk
of temperature extremes. Thus, an immediate plan for adaptations is needed in
Sindh to deal with such a hazard. The high values of TWmax also indicate high
levels of humidity in the region during summer, which is also proved by Kalim and
Shouting (2012); Freychet et al. (2015).

2.4 Summary and Conclusions

The main objective of this chapter is the assessment of the return levels of the
extreme daily maximum temperatures Tmax and wet-bulb temperatures TWmax

in southern Pakistan (Sindh). In addition, the performance of the ERA Interim
TWmax is compared to the weather station TWmax to assess its ability to estimate
temperature extremes in Sindh. Moreover, a simple bias correction is applied to the
ERA Interim data to see whether correcting the first two moments of its statistics
helps in improving its performance in representing temperature extremes.

The POT method is applied to the daily maximum temperature (Tmax) and wet-
bulb temperature (TWmax) data of nine stations and to the corresponding nearest
ERA Interim temperature data. After testing the asymptotic statistical properties,
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the 90% quantile is found to be appropriate threshold choice for all datasets. The
Q-Q plots are used to assess the GPD fit, which results to be acceptable for both
Tmax and TWmax station data for all three datasets. However, the bias corrected
ERA Interim data shows improved GPD fits than the ERA Interim data. The
shape parameters ξ is in general negative at all stations. The scale parametersσ
show high values in Jacobabad, Padidan, Karachi, Hyderabad and Chhor indicating
higher variability of temperature extremes in these regions. The return levels (RLs)
of Tmax and TWmax are estimated for the 2, 5, 10, 25, 50, 100 year return periods in
all datasets. The RLs of Tmax estimated using the meteorological station temper-
atures are greater than 50◦C in Jacobabad, Mohenjo-daro, Padidan, Nawabshah,
and greater than 45◦C in Rohri, Hyderabad, Chhor, Karachi and Badin. While the
RLs of TWmax in station data are larger than 35◦C in the entire Sindh, when using
ERA Interim temperatures, they are estimated as greater than 45◦C in Northern
Sindh and greater than 40◦C in southern Sindh.

The results predict extremely high values of Tmax and TWmax in the region. The
Tmax extremes contribute to an increase rate of evaporation, which in turn may
intensify the hydrological cycle causing precipitation events and flooding (Cheema
et al., 2012). Additionally, crops variety needs to be changed under such a hot
climate to avoid the risks of temperature extremes. The extremes of daily maxi-
mum wet-bulb temperature TWmax are estimated as above the human survivability
threshold 35◦C throughout the region, so the risk of hyperthermia is very high here.
The most vulnerable people are those who are involve in the everyday outdoor ac-
tivities like farming, fishing, building construction, athletes, elderly and infants can
have heat strokes, dehydration etc. The human habitability in such a warm region
is already at risk and one can expect that these issues will be worse in future climate
conditions.

It is found that the RLs of station and ERA interim showed differences are between
3◦C and 5◦C for both shorter and longer return periods due to the minor variations
in the shape and scale parameters. Although the ERA Interim dataset does not
capture well the magnitude of the extremes, still it provides a good representation
of their spatial fields. The biases between the station and the ERA Interim data
are rather relevant when one wishes to address the impact of hot climatic extremes
to human life and to active crop production in the region. It would be of primary
importance to understand the physical reasons behind such inconsistencies, which
makes it hard to use reasonably ERA without bias correction. Clearly, they might
result either from a misrepresentation of local processes dominated by near surface
processes (namely, heat and water fluxes), or from an inadequacy of the re-analysis
in reproducing synoptic and sub-synoptic conditions responsible for extremely hot
and humid conditions.

A simple bias correction i.e. adjusting the mean and standard deviation to ERA
Interim Tmax and TWmax data is applied to check the improvements in return levels.
We noticed that the bias corrected ERA Interim Tmax and TWmax gives the return
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levels closer to the meteorological stations observed ones than the original ERA In-
terim return levels at all stations. Although the bias corrected ERA Interim shows
a good correspondence with the meteorological station data, yet statistically differ-
ences remain in most cases. Therefore, one must use more advanced bias correction
method for analyzing extremes precisely. It is proposed to repeat this analysis in
GCMs (CMIP5, CMIP6) and RCMs (CORDEX) to study the properties of ex-
tremes. All models use re-analysis as input, and generate information of extremes,
which involves biases that if not corrected, can lead to significant errors in predic-
tion of present and future extremes. Therefore, in order to reduce the uncertainties
in impact assessment, it is necessary to improve the re-analysis before using it in
GCMs and RCMs. The results have practical implications for assessing the risk of
extreme temperature events in Sindh. They should be used to prepare the baseline
contingency plans for dealing with strong heat waves in Sindh. Such measures are
not yet present in the territory and lead to many casualties each year. Besides plan-
ning, the resutls are quite useful for the ongoing EU projects (SUCCESS, CSCCC),
World Bank project (Sindh Resilience Project) and mega construction projects like
China-Pakistan Economic Corridor (CPEC).



39

Chapter 3

Return levels of sea surface

temperature extremes and their link

to cyclogenesis

3.1 Introduction

Sea Surface Temperature (SST) is a vital component of the earth’s climate system,
and a prime indicator of extreme events like cyclones, extreme precipitation, El
Nino and sea level rise (Rana et al., 2014; Abram et al., 2008; Hunter, 2010; Levine
and Turner, 2012). SST has shown an increasing trend over the past few decades,
mainly in regions prone to tropical cyclones (Holland, 1997; Emanuel, 2005; Web-
ster et al., 2005; Gillett et al., 2008; Elsner et al., 2008; Knutson et al., 2010; Sobel
et al., 2016). The north Indian Ocean hosts seven percent of the global tropical cy-
clones (Singh et al., 2001), and showed a warming of approximately 0.5◦C between
1970 and 2004 (Christy et al., 2001; Agudelo and Curry, 2004). The north Indian
Ocean has two basins, the Bay of Bengal and Arabian Sea, the frequency of tropical
cyclones is higher in the Bay of Bengal than in the Arabian Sea. But, recently the
Arabian Sea has been warming gradually and experiencing stronger cylonic activity
than in the past (Evan and Camargo, 2011). Therefore, here we are focusing on the
Arabian Sea SST and cyclonic activity in it.

Geographically, the Arabian Sea is surrounded by Pakistan, Iran, India, and the
Arabian Peninsula between latitude 0◦N – 30◦N and longitude 45◦E – 78◦E. The
SST in the Arabian Sea has a bimodal seasonal cycle, which was identified by Gray
(1968). The annual cycle of the Arabian Sea studied by Sayantani et al. (2016)
shows the warming of SST in spring (March – April), intensification of SST during
pre and post monsoon (May – June and October – November), while cooling in
summer and winter monsoon (July – September and December – February). The
warming is generally initiated by the high intensity of solar radiation between March
and May and continues to increase, until the strong winds and cloud cover arrives
in monsoon (June – September). It again increases in October until November be-
cause of low wind speed, and decreases from December to February because of low
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solar radiation (Muhammad et al., 2016). In a recent past, the trends of Arabian
Sea SST are changing and investigated by Mitchell et al. (1990); RupaKumar et al.
(2002); Khan et al. (2008); Muhammad et al. (2016). These studies collectively
project a rise of SST > 2◦C in the Arabian Sea, contributing to the sea level rise.
A climate-shift in the Arabian Sea after 1995 accompanied by an increase in the
number of cyclones has been identified by Kumar et al. (2009). The spatial and
temporal patterns of Arabian Sea warming are discussed more often by investiga-
tors, but least attention has been given to the sea surface temperature extremes
(Oliver et al., 2014).

Tropical cyclones occur in the Arabian Sea each year but they rarely make a land-
fall, however some intense tropical cyclones in the past decade have produced severe
flooding caused by heavy precipitation and storm surges (Needham et al., 2015).
The strongest storm recorded in the history of the Arabian Sea is the super cyclone
Gonu (03A), which formed in early June 2007, and badly impacted Oman, Iran,
United Arab Emirates and Pakistan. The estimated damage was $4 billion (U.S
dollars) with more than 100 casualties collectively (JTWC, 2007). Tropical cyclones
normally develop in the Arabian Sea prior or post monsoon season, when the SST
exceeds 26◦C along with other climatic conditions essential for a cyclone genesis
(Gray, 1968). However, to initiate cyclonic activity in the Arabian Sea, SST above
26◦C is enough (Gray et al., 1994). The pre-monsoon (May – June) cyclones are
associated to an early or late onset of the monsoon, and post-monsoon (October –
November) storms are related to high seal level pressure in the Bay of Bengal (Evan
and Camargo, 2011).

Evan and Camargo (2011) observed an increase in the frequency and intensity of
tropical cyclones in the Arabian Sea since 1998 due to the reduced wind shear.
Murakami et al. (2013) reported a substantial increase in the number of tropical
cyclones (by 46%) over the Arabian Sea by the end of 21st century. Therefore, there
is a strong need to study the probability of cyclongenesis in the Arabian Sea during
peak seasons, to avoid the huge socio-economic losses in the vicinity of the Arabian
Sea. The cyclones prediction in the Arabian Sea mostly rely either on the empirical
genesis indices, or on the new generation of global climate models. Most tropical
cyclone genesis indices predict an increase in the frequency of future cyclones, but
the models predict decrease in the number of cyclones. It is not clear yet that the
problem lies in formulating the indices or models are incorrect (Walsh et al., 2016).
The inhomogenity and disagreement on the frequency of cyclones in the Arabian
Sea creates a substantial concerns for this basin.

The first part of this chapter estimates the return levels of extreme SST in the
Arabian Sea using UK Met office Hadley Center SST data, during pre-monsoon
and post-monsoon. The Block Maxima (BM) approach of Extreme value theory
(EVT) is applied to estimate the return levels of SST extremes in the Arabian Sea.
The BM approach analyzes a series of BM over long blocks, which have theoretical
justification for following the Generalized Extreme Value distribution (GEV). The
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method is applied extensively in analyzing extremes using the stationary (Papalex-
iou and Koutsoyiannis, 2013), and non-stationary GEV distribution (Renard, 2013;
Gilleland and Katz, 2011) to estimate the risks of the extremes in a static and
changing climate (see more details in Section 3.3.1). The stationary GEV distri-
bution indicates no trends in the data, while the non-stationary GEV assesses ex-
tremes in presence of trends in the data. Here, we consider both the stationary and
non-stationary GEV distribution to model the sea surface temperature extremes.
Later, we determine the best-fit GEV model by applying the likelihood-ratio test
and Akaike’s information criterion. Information on the recurrence of SST extremes
is useful for prediction of cyclonic activity, conservation of the marine species such
as fish, coral reefs and mangroves and adaptations for the coastal communities in
the suburbs of the Arabian Sea.

The second part of the chapter shows the probabilistic prediction of cyclonic activity
in the Arabian Sea during pre-monoon and post-monsoon. The Poisson regression
model is used to see the correlation among cyclonic activity (predictand), and SST,
SOI (predictors). The Poisson regression is preferred here because for linear re-
gression the linearity conditions must be satisfied, which is not possible in case of
tropical cyclones due to relatively small number of counts in the large data set.
Moreover, a Poisson regression is recommended as a most appropriate approach
to predict cyclones by different investigators like Wilks (1995); Elsner and Jagger
(2006); Elsner et al. (2008); McDonnell and Holbrook (2004); Kim et al. (2010);
Coxe et al. (2017). They have proved that Poisson regression model provides im-
proved predictive skills over the linear statistical models. The data of the tropical
depressions (TD), cyclonic storms (CS), and severe cyclonic storms (SCS) is taken
for the period 1891 – 2015, from the Indian Meteorological Department. TD, CS,
and SCS data is chosen over super cyclone data due to the long-term data availabil-
ity. Moreover, TD, CS, and SCS have never been explored, although they are more
frequent and may also be extremely hazardous for the coastal and marine climate
system.

3.2 Data and Domain

We use SST data with resolution 1◦ × 1◦ from the UK Met office Hadley Center Sea
Ice and Sea Surface Temperature dataset (HadISST) from 1891 to 2015 (Rayner,
2003). Southern Oscillation Index (SOI) data is obtained from the Climate Research
Unit (https://climexp.knmi.nl/data/isoi.dat) for the same period as SST. For our
analysis, we select the Arabian Sea domain between longitudes 45◦E – 78◦E and
latitudes 0◦N – 30◦N as shown in Figure 3.1 because of its highest probability for
the formation of the tropical depressions and cyclones (Evan and Camargo, 2011).

The tropical cyclones occurring in the Arabian Sea are classified into different cate-
gories on the basis of wind speed Table 3.1. Here, we consider the annual frequency
of Arabian Sea TD, CS, and SCS for the duration 1891-2015, taken from the Indian
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Figure 3.1: Map of the Arabian Sea domain (45◦E – 78◦E and 0◦N – 30◦N)

Meteorological Department (IMD; http://www.rsmcnewdelhi.imd.gov.in/). IMD
data shows that the tropical cyclones and depressions occur mainly in pre-monsoon
(May – June) or post-monsoon (October – November), so these two periods are
preferred in the analysis (for more details see Section 3.4.1).

Table 3.1: Classification of Arabian Sea Tropical Cyclones.

Wind speed
(Knots)

Arabian Sea classification

17 - 33 Tropical depression (TD)
34 - 47 Cyclonic storm (CS)
48 - 63 Severe cyclonic storm (SCS)
64 - 119 Very severe cyclonic storm
≥120 Super cyclonic cyclones

The SST time series is constructed for two seasons: pre-monsoon and post-monsoon,
by selecting the maximum value of spatially averaged SST over the domain during
each season. It is very important to fulfill the stationarity assumption before esti-
mating extreme value statistics by the standard block maxima method. Therefore,
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the Augmented Dickey Fuller (ADF) stationarity test is applied on the SST data
to check the stationarity in time series (Dickey and Fuller, 1979). In ADF, the null
hypothesis, H0, states non-stationarity and presence of trends while the alternative
hypothesis H1 states stationarity. The ADF shows stationarity in the time series at
the 5% significance level. The Mann-Kendall (MK) test is also performed to detect
trend in the SST data. If the p - value is less than the significance level α (alpha) =
0.05, H0 is rejected, which indicates the trend in the data. The MK test detects an
upward trend in the SST data over both the seasons. Table 3.2 shows the result of
ADF and MK tests, which suggests modeling the SST data under both stationary
and non-stationary climate.

Table 3.2: Augmented Dickey Fuller and Mann-Kendall test statistics

Test Pre-Monsoon Post-Monsoon

Augmented Dickey Fuller
p - value (5% CI)

0.024 0.0015

Mann-Kendall
p - value (upward trend)

0.0197 0.0348

3.3 Research Methodology

Two different methods are applied: (1) Block Maxima (BM), and (2) Poisson re-
gression to perform two different tasks. Firstly, the return levels (RLs) of the SST
extremes in the Arabian Sea are estimated during pre-monsoon and post-monsoon
by applying BM. Secondly, a Poisson regression is applied to predict the probability
of occurence of TD, CS and SCS in Arabian Sea using SST and SOI as predictors.
The entire analysis is completed using the R software language (RDevelopment-
CoreTeam, 2015). The extRemes package is used for the estimation of the return
levels RLs (Gilleland, 2015).

3.3.1 Block Maxima

The BM method utilizes maxima from long blocks (typically annual), which leads
to a straightforward interpretation and calculation of return levels. The General-
ized Extreme Value distribution (GEV) is obtained as the limiting distribution of
the maxima. The GEV is a representation of three types of distributions: Gumbel,
Frechet and Weibull. The GEV distribution has three parameters (1) the location,
µ, (2) the scale, σ, and the shape, ξ. The shape parameter ξ determines the tail
behaviour of the GEV distribution. A positive value, ξ > 0, yields the heavy tail
(Frechet) distribution while a negative value, ξ < 0, results in a bounded upper tail
(Weibull) distribution. Defined by continuity, ξ = 0 implies a light tail (Gumbel)
distribution (Coles, 2001; Cheng et al., 2014; Lucarini et al., 2016). As mentioned
earlier in Section 3.1, the block maxima method can be applied using stationary
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and non-stationary GEV models, both are discussed below.

3.3.1.1 Stationary GEV model

In a stationary GEV (SGEV) model, the parameters of the distribution (location,
scale, and shape) are time invariant (Leadbetter, 1983). Coles (2001) gives the
generalized extreme value distribution as

G(z) =

{

exp
{

−
[

1 + ξ
(

z−µ
σ

)]

−1/ξ
}

for ξ 6= 0,

exp
{

− exp
[

−
(

z−µ
σ

)]}

for ξ = 0,
(3.1)

where −∞ < µ < ∞, σ > 0, 1 + ξ(z − µ)/σ > 0 for ξ 6= 0 and −∞ < z < ∞ for
ξ = 0.

The return values are then calculated by solving G(zp) = 1/p, where the return
values are zp, and p is the return period so that zp is the value that is expected to
be exceeded, on average, once every 1/p years (Coles, 2001). The equation can be
solved analytically, and is given by

zp =

{

µ− σ
ξ
[1− {- log(1− p)}−ξ, for ξ 6= 0,

µ− σ log{- log(1− p)}, for ξ = 0,
(3.2)

3.3.1.2 Non-Stationary GEV model

In the NSGEV model, the parameters of the distribution (location, scale and shape)
vary with time (Cheng et al., 2014; Katz, 2010; Cooley, 2009; Felici et al., 2007).
The annual maxima reveals a possible trend in SST through time (Figure 3.4),
suggesting

µ(t) = µ0 + µ1t (3.3)

where t represents the year and and µ0, µ1 are the coefficients.

Southern Oscillation Index (SOI) extremal behavior is similar to SST so it can also
be included as a covariate in the location parameter µ assuming a linear change
with time, while keeping the scale and shape parameter constant (Coles, 2001).
This can be expressed as;
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µ(t) = µ0 + µ1SOI(t) (3.4)

where SOI(t) denotes the values of SOI in year t, µ is the location parameter, and
µ0, µ1 are the coefficients.

Combining Equation (3.3) and Equation (3.4) allows for a dependence on time and
SOI by letting

µ(t) = µ0 + µ1SOI(t) + µ2t (3.5)

NSGEV can incorporate different models, such as trends on the scale and shape
parameter etc (Renard, 2013). Here, we analyze the non-stationarity with respect
to the location parameter µ only, because it is the simplest model to explain the
variation in the data (Felici et al., 2007).

3.3.1.3 Model Choice

In order to test whether the non-stationary GEV model provides statistically sig-
nificant improvement over the stationary one, the likelihood-ratio test (LRT) and
Akaike’s information criterion (AIC) are applied. The likelihood-ratio test statistics
are defined as (Coles, 2001; El Adlouni et al., 2007).

LRT = 2 log(
L0

L1

) (3.6)

where L0 and L1are maximum likelihood for the three parameters of stationary GEV
and four parameters of non-stationary GEV, which follows a chi-square distribution
with degrees of freedom equal to the difference in the number of parameters of L0

and L1. L0 is rejected at the 5% significance level if LRT > χ2 (0.05) = 3.841, and
L1 is selected. Large values of LRT favor model L1, suggesting more variation in
the data than can be fitted with model L0. Table 3.3 shows the likelihood ratio test
statistics.

Table 3.3: The likelihood-ratio test results

Model0 vs Model1 χ2 p− value
Pre-monsoon 4.136 0.115
Post-monsoon 3.952 0.283
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The Akaike information criterion (AIC) is another method of selecting a model from
the set of models, the best model is the one with minimum AIC value (Akaike, 1974).

AIC = −2 log[Lθ̂|y] + 2k (3.7)

Here, (Lθ̂|y) is the maximized Likelihood and k represents the number of estimated
parameters of the model. Akaike differences (AICD) are used to compare the mod-
els.

∆m = AICm − AICmin (3.8)

Here, m (AICm) shows the model number. According to AICD, a model with
∆m = 0 is the best model, but models with ∆m > 2 are also reasonable candidates
(Burnham and Anderson, 2002).

The results of likelihood ratio test and Akaike information criterion (AIC) favors
the non-stationary GEV model, suggesting significant improvement over the sta-
tionary GEV, and allowing for a dependence in time.

3.3.2 Poisson Regression

Poisson regression is used to similar to regular multiple regression except that the
dependent variable is an observed count that follows the Poisson distribution. In
Poisson regression, Generalized Linear Model (GLM) use the Ordinary Least Square
(OLS) method to model the linear relationships between a response variable and
one or more predictor variables. The regression coefficients are estimated using the
method of maximum likelihood.

The Poisson distribution is different from normal distribution, and considered ideal
for modeling the occurrences of discrete events like droughts, tropical cyclones etc,
because it takes on a probability value only for non-negative integers (Elsner and
Schmertmann, 1993; Wilks, 1995). One has that expected rate of occurrence E(Yi)
= var(Yi) = µ, when Yi obeys a Poisson distribution (Kleinbaum et al., 1988).

The probability mass function for the Poisson distribution (Eq 3.9) models the
probability of occurrence of y tropical cyclones and depressions,

P (Yi = y) =
µy
i e

−µi

y!
y = 0, 1, 2, 3, .., (3.9)



3.4 Results and Discussion 47

Where µi is the mean occurrence rate of cyclone type i = 1, 2, 3

In Poisson regression model, for a given β (Poisson regresison coefficient) the µ is
calculated for each set of predictors (SST, SOI) and the likelihood of the observed
number of cyclones is estimated by Eq (3.9). The Poisson regression model can be
depicted as

log(µi) = β0 +
n

∑

j=1

βjXij j = 1, 2 (3.10)

where Xij is the data value for predictor j on observation i and βj is the corre-
sponding Poisson regression coefficients for predictor j.

The calculations have been done by using the function "glm" in R package "stats",
by simply setting the family = "poisson" (Chambers and Hastie, 1992). For "glm"
objects, a set of standard methods (including print(), predict(), logLik() etc) are
also provided in R. We used method = "predict" to obtain predictions, estimates,
and standard error of the fitted generalized linear model (glm). Finally, function
"dpois" in the package "stats" is used to estimate the Poisson probabilities.

3.4 Results and Discussion

3.4.1 Seasonal cycle of SST and cyclonic activity in the Ara-

bian Sea

We plot the seasonal cycle of SST from 1891-2015, to identify the peak times of SST
in the Arabian Sea. Clearly, SST remains above 26◦C in the pre-monsoon (May
– June) and post-monsoon (October – Novemeber), and below 26◦C in other sea-
sons (Figure 3.2). The seasonal frequency of Arabian Sea TD, CS and SCS shows
that the peak activity occurs during May – June and then in October – November.
While the monsoon season (July – September) has a very low activity of cyclone
development. The months of May and June are generally named as a pre-monsoon
period, and the duration from October to November as a post-monsoon period.
Figure 3.2 illustrates that 85 TD, 51 CS, and 61 SCS form in pre-monsoon, whereas
96 TD, 55 CS, and 30 SCS occur during post-monsoon in the Arabian Sea over
the period of 1891-2015. We observed that the seasonal cycle of SST follows the
seasonal cycle of TD, CS and SCS, hence displaying a positive correlation between
them.

We also analyze the annual frequency of TDs, CSs and SCS that occur in the
Arabian Sea (45◦E - 78◦E, 0◦N - 30◦N) from 1891 to 2015. Figure 3.3 shows that
the frequency of tropical depressions ranges from 0 to 4, CSs are 0-3, and SCS are
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Figure 3.2: Seasonal cycle of SST and annual frequency of TDs, CSs and SCS in the
Arabian Sea 1891- 2015)

0-2, from 1950 to 1984, and afterwards only 1-2 tropical depressions are recorded
in the Arabian Sea each year until 1991. The rise in the frequency of TD, CS, and
SCS started again in 1992, experiencing 5-6 TD, 3-5 CS, and 2-3 SCS events each
year. Evan and Camargo (2011) also confirmed that the CS days have increased in
the Arabian Sea during 1992-2008 as compared to 1979-91. The range of a lifetime
of the TD’s and storms are usually 1-9 days. Based on the Indian Meteorological
Department (IMD) data for the period 1891-2015, 213 TD’s, 124 CS’s, and 72
SCS’s has been occurred in the Arabian Sea. The increase in cyclonic activity in
the Arabian Sea is linked to global warming and rise in SST by few investigators
(Hussain, 2011; Haider et al., 2011) but, we could not find the literature on the
SST extremes and risks associated to them in the Arabian Sea. Therefore, it is
important to assess the probability of occurrence of high SST in Arabian Sea due
to the dependence of cyclonic activity on it.

Figure 3.3: Annaual frequency of (a) TDs, (b) CSs, and (c) SCS from 1891 to 2015 in the
Arabian Sea.
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3.4.2 Extreme value analysis of Arabian Sea SST

In this section, the return levels of the Arabian Sea SST extremes during pre-
monsoon and post-monsoon seasons are analyzed using Block Maxima (BM) ap-
proach. The first step in applying BM is the division of the SST data into blocks
of equal length, and producing a set of block maxima. The GEV is then fit to the
block maxima series. The choice of a block size is important in order to have a
uniform distribution of the block maxima. A block length of one year is selected,
which yields 125 annual maxima. Figure 3.4 shows the annual maxima of sea sur-
face temperatures in the pre-monsoon and post-monsoon seasons from 1891 to 2015.

Figure 3.4: Annual maxima of sea surface temperatures (a) pre-monsoon and (b) post-
monsoon from 1891 to 2015.

3.4.2.1 GEVfit

Once the annual maxima is achieved, the quantile plots of a stationary GEV (SGEV)
and non-stationary GEV (NSGEV) models are constructed to check the goodness-
of-fit in a pre-monsoon and post-monsoon. The results show that the qq plots of
both the GEV models fits well with the data in both the seasons (Figure 3.5). It
must be noted that the qq plots of SGEV model are simple to develop as quantiles
does not change with time. But in the NSGEV model the quantiles vary with time
and lack homogeneity in the distributional assumption, so modifications are needed
before plotting the qq plots. In order to deal with non-stationarity, the sequence of
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block maxima first needs to be transformed into the standard Gumbel distribution,
Z̄t using the following equation (Coles, 2001; Felici et al., 2007).

Z̄t = log

{

[

1 + ξ̂

(

Zt − µ̂(SOI)t

σ̂

)]1/ξ̂
}

, t=1,....m (3.11)

If Zt, is a series of block maxima with distribution G[µ̂(SOI)t, σ̂, ξ̂ ], then equation
(3.11) produces a new standardized block maxima Z̄t with a standard Gumbel
distribution (Coles, 2001).

Pr
{

Z̄t 6 z
}

= exp
{

−e−z
}

(3.12)

The transformation removes the time dependence from the maxima, and then the
quantiles of the transformed maxima can be compared with the empirical quantiles
of the standard Gumbel distribution. The Figure 3.5 (b-d) shows the standardized
quantiles for the NSGEV model. In addition to quantile plots, the Anderson Darling
(AD) and Kolmogorov Smirnov (KS) tests are applied to assess the quality of fits
of the GEV models. The null hypothesis of both tests is that the data follows the
specified distribution. The p – values of both tests fail to reject the null hypothesis.
Table 3.4 shows the result of both the tests.

Table 3.4: Anderson Darling and Kolmogorov Smirnov test statistics (p-values)

Test
Pre-monsoon Post-monsoon

SGEV NSGEV SGEV NSGEV
Anderson darling 0.3456 0.269 0.1263 0.289
Kolmogorov Smirnov 0.1374 0.371 0.225 0.345

3.4.2.2 Parameter estimates

The GEV model fitting provides three parameters (ξ, σ, and µ) for the staionary
GEV and four parameters (ξ, σ, µ and µ1) for non-stationary GEV. The estimated
parameters of the stationary and non-stationary GEV in the pre and post monsoon
periods are shown in Table 3.5. Maximum likelihood estimation (MLE)is used for
the estimation of parameters (shape ξ, scale σ, and location µ). MLE is considered
because it is simple to incorporate the non-stationary features in the distribution
parameters as covariates (Shang et al., 2011).
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Figure 3.5: Quantile plots of (a-b) Pre-monsoon SGEV and NSGEV model, and (c-d)
Post-monsoon SGEV and NSGEV model from 1891 to 2015.

Table 3.5: Parameter estimates and uncertainty of SGEV and NSGEV models

Parameter
SGEV NSGEV

pre-monsoon post-monsoon pre-monsoon post-monsoon
µ 29.08 27.83 28.78 27.49
∆µ 0.041 0.045 0.039 0.023
σ 0.427 0.471 0.200 0.228
∆σ 0.028 0.031 0.013 0.014
ξ -0.154 -0.209 -0.078 -0.245
∆ξ 0.045 0.044 0.054 0.039
µ1 0.063 0.101
∆µ1 0.018 0.017
µ2 0.006 0.007
∆µ2 0.005 0.000

3.4.2.3 Return Levels

The return levels are computed by placing the values of the shape and scale pa-
rameters in Eq 3.2, discussed in Section 3.3.1.1. Figure 3.6 displays the return
levels versus the corresponding return periods (5, 10, 20, 50, 100, 200 years) of the
stationary and non-stationary GEV models in both the seasons. The stationary
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GEV model for the pre-monsoon season shows that the return levels of Arabian Sea
SST reaches above 29◦C, for the return periods of 2, 5, 10 years, and exceeds 30◦C
for the return periods of 20, 50, 100, and 200 years (Figure 3.6a). Whereas the
post-monsoon show the return levels of SST over 27◦C for shorter return periods
of 2, 5, 10 years and above 28◦C for longer return period of 20, 50, 100, 200 years
(Figure 3.6c).
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Figure 3.6: Return level plots of (a-b) Pre-monsoon SGEV and NSGEV model, and (c-d)
Post-monsoon SGEV and NSGEV model.

The return levels of a non-stationary GEV (termed as effective return levels) is
estimated by substituting the values of time-varying location parameter µ(t) in Eq
3.2. Effective return levels have interpretation similar to the stationary GEV return
levels (i.e., the quantile corresponding to a specified return period), except that it
varies depending on the time of year, keeping the probability of occurrence of an
extreme event constant (Katz et al., 2002; Cheng et al., 2014). We use R-package
"extRemes" developed for analysis of extremes to produce effective return levels
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(Gilleland and Katz, 2011). Figure 3.6 (b & d) show the return levels versus the
time covariate used in the linear regression (Eq 3.4). These plots are used to see
the risks of extremes over time. For example, the return level of SST extremes is
29.6 ◦C corresponding to a 50-year return period (1891 – 1941) in a pre-monsoon,
but it changes to 30.3◦C over a 125-year (1891–2015) return period (Figure 3.6b).
This means that we must expect the return level of SST extremes greater than
30.3◦C for another 50-year (2016 –2066) return period. The non-stationary return
levels of SST during post-monsoon exhibit the similar results with slight difference
in return levels (Figure 3.6d). The return level for a 50-year return period (1891 –
1941) is 28.3 ◦C, and for a 125-year return period (1891-2015) it is 28.9◦C. Thus,
the probability of the return levels greater than 28.9◦C is very likely in the next
50-years (2016-2066).

The diagnostic plots are not enough to decide that the assumptions are reasonable
for both the GEV models (Figure 3.6). Therefore, we compare the models by apply-
ing likelihood ratio test and Akaike information criterion (AIC, Coles (2001), Akaike
(1974)) discussed in section 3.3.1.3. The likelihood test favors the non-stationary
GEV model, due to its significant improvement over the stationary GEV (Table
3.3. The Akaike criterion also supports the non-stationary model, as it acquires the
minimum values of AIC in both the seasons.

3.4.3 Prediction of cyclogenesis using Poisson regression model

The tropical cyclones mostly develop in the Arabian Sea during inter-monsoon sea-
sons, depending upon the intensity of sea surface temperature (SST). Higher SST
(> 26◦C) increase the chances of a cyclone to develop in the Arabian Sea, but lower
SST (< 26◦C) reduces this probability (Evan and Camargo, 2011). Along with a
high SST, thermodynamically unstable atmosphere, and weak tropospheric wind
shear is required to have a favorable environment for the cyclone development dur-
ing these seasons (McPhaden et al., 2009). But all these favorable conditions can be
influenced by the Southern Oscillation Index (SOI) which measures the strength of
El Niño and La Niña events,that is indicated by its negative (El Niño) and positive
(La Niña) phases (Ho et al., 2006; Trenberth, 2013).

The relationship of tropical cyclogenesis with El Niño (SOI -ve) and La Niña (SOI
+ve) has been studied by several researchers (Camargo et al., 2007; Girishkumar
and Ravichandran, 2012; Sumesh and Ramesh, 2013; Mahala et al., 2015). They
observed severe cyclonic activity during La Niña conditions, and low cyclonic activ-
ity during El Niño conditions in the north Indian Ocean. Most of these studies have
either included the entire north Indian Ocean or only focused on the Bay of Bengal,
but the cyclonic activity occurring in the Arabian Sea and factors influencing it has
not been investigated separately. Here, we have used a Poisson regression model to
analyze a correlation of cyclonic activity with different variables (SST, SOI).



54 Return levels of sea surface temperature extremes and their link to cyclogenesis

We develop a Poisson regression model (Eq 3.10) with cyclonic activity (TD, CS,
and SCS) in the Arabian Sea as a predictand, and SST (favorable, > 26◦C and un-
favorable conditions, < 26◦C) and SOI phases (+ve, -ve) as predictors. We selected
SST and SOI as predictors due to their strong influence on tropical cyclones (Gray
et al., 1992, 1994; Elsner and Schmertmann, 1993; Kim et al., 2010). Moreover, we
concentrated mainly on two predictors in our regression model because more pre-
dictors may encounter a problem of over fitting and become no longer independent,
making the model biased. The results of Poisson regression clearly shows a strong
dependence of the cyclonic activity on the SST and SOI (Table 3.6), which gives us
the confidence to use them in our model, to predict the frequency of TD, CS, and
SCS in the Arabian Sea. The estimates and uncertainties of the regression param-
eter is shown in Table 3.6. It must be noted that the Poisson regression model we
study here is the first one for the Arabian Sea basin.

For our analysis, we set three different ranges for the SST favorable conditions, i–
SSTfav1 = 26◦C – 28◦C, ii– SSTfav2 = 28◦ – 30◦C, and iii– SSTfav3 = 30◦C – 32◦C,
but for the SST unfavorable conditions a range is SSTunfav = 23◦C – 25◦C. We set
different ranges because the extreme value analysis of SST shows that the Arabian
Sea may experience high return values of SST during the cyclogenesis seasons, par-
ticularly in the pre-monsoon (Section 3.4.2.3). Furthermore, it will be interesting
to see that out of three ranges which one is responsible for the highest probability
of occurrence of TD, CS, and SCS in the Arabian Sea. In case of SOI, we consider
the highest value of SOI during a negative (El Niño) and a positive (La Niña) phase
over the last 125 years (1891–2015).

Table 3.6: Summary of a Poisson regression for the pre-monsoon and post-monsoon

Pre-Monsoon

Parameter SST∼ TDs SST ∼ CSs SST ∼ SCS SOI∼ TDs SOI ∼ CSs SOI ∼ SCS
Estimate 0.49 0.35 0.58 0.11 0.25 0.27

Standard error 0.10 0.12 0.09 0.10 0.14 0.12

p–value 0.02 0.007 0.01 0.008 0.005 0.03
Post-Monsoon

Estimate 0.43 0.57 0.61 0.23 0.29 0.24

Standard error 0.22 0.15 0.30 0.11 0.16 0.15

p–value 0.01 0.02 0.006 0.04 0.02 0.007

Firstly, we apply the Poisson regression taking the maximum value of SOI positive
phase (La Niña) under all the ranges of SST. Later, we repeat the procedure taking
maximum value of SOI negative phase (El Niño) with all sets of SST. The results of
a Poisson regression model combining SST and SOI (+ve,-ve) during pre-monsoon
and post-monsoon are shown in the Figures 3.7 and 3.8. In figures, the Arabian Sea
shows no cyclonic activity occur under unfavorable conditions (SST < 26◦C and
SOI +ve,-ve) in both the seasons.

We observe that the Arabian Sea experiences more TD, CS, and SCS under favor-
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able conditions (SST > 26◦C and SOI +ve) but, low frequency of TD, CS, and
SCS under favorable conditions (SST > 26◦C and SOI -ve) in the pre-monsoon and
post-monsoon. The pre-monsoon (May – June) probabilistic prediction of TD, CS,
and SCS occurring in the Arabian Sea shows that with every 2 degree rise in SST,
particularly in a SOI +ve phase there is an increase in the frequency of TD, CS,
and SCS . A threshold range SSTfav1 predicts 1–2, SSTfav2 indicates the likelihood
of 3–4, and SSTfav3 projects 5–7 TD, CS, SCS in the Arabian Sea during +ve SOI.
While an obvious reduction in the frequency of TD, CS, and SCS has been observed
under similar sets of SST favorable conditions during -ve SOI in the Arabian Sea.
For instance, a low probability of 1, 2, 3 TD, CS, and SCS is predicted by the
SSTfav1, SSTfav2 and SSTfav3 (Figure 3.7).

The post-monsoon (October – November) probabilistic prediction of TD, CS and
SCS frequency in the Arabian Sea exhibits similar pattern like pre-monsoon, but
with minor differences in the number of TD, CS, and SCS. The changes in the
frequency of TD, CS, and SCS are apparent with the changes in the set threshold
ranges of the SST and SOI phases (+ve, -ve). During SOI +ve phase the range
SSTfav1 shows 1–2 TD, SSTfav2 predicts 2–3 CS, and SSTfav3 indicates probability
of 3–4 SCS in the Arabian Sea. On the contrary, during SOI -ve phase all the ranges
of SST (SSTfav1, SSTfav2, SSTfav3) a very low probability of cyclonic activity (TD,
CS, and SCS) is observed in the Arabian Sea. The probability of cyclonic activity
in a post-monsoon is comparatively less than a pre-monsoon. One possible reason
could be the change in the state of the ocean, as it started getting cooler during
the post-monsoon period, resulting in less favorable conditions for the occurrence
of SCS.

3.5 Summary and Conclusions

In this chapter, we have estimated the return levels of the SST extremes in the
Arabian Sea during the pre-monsoon (May – June) and the post-monsoon (Octo-
ber –November) from 1891 – 2015, in a stationary and non-stationary climate.It is
important to study the SST extremes in a changing climate because of the poten-
tial impacts it could have on the marine climate system and coastal communities.
The changes in SST influence large-scale phenomena, such as tropical cyclones, El
Nino, and south Asian monsoon systems, which impedes activities, such as fishing,
trade etc. in the coastal communities. We have focused on the Arabian Sea SST
extremes because they have never been extensively investigated. Furthermore, we
have attempted to understand the connection of SST extreme values and SOI with
the frequency of cyclogenesis in the Arabian Sea. We analyzed the probability of
occurrence of cyclonic activity like TD, CS and SCS in the Arabian Sea using SST
and SOI as an indicator for the selected seasons.

The Block Maxima (BM) method is applied to the UK Met office SST data for a
duration 1891 – 2015, in order to estimate the return levels of SST in the Arabian
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Sea over different return periods (2, 5, 10, 20, 50, 100, 200) during pre-monsoon
and post-monsoon. The stationarity and trends in the SST data are handled by
performing statistical tests like Augmented Dickey Fuller (ADF),and the Mann-
Kendall (MK) tests. The block maxima are fitted to both the stationary and
non-stationary Generalized Extreme Value distribution (GEV). The quality of the
fits are tested with the Anderson-Darling and Kolmogorov-Smirnov tests. Both the
GEV models fits well with the data. Therefore, likelihood ratio test and and Akaike
Criterion is applied to choose the best model. Both tests favors a non-stationary
GEV model(NSGEV) over the stationary GEV (SGEV).

The pre-monsoon SST extremes are assessed by the both GEV models. The 2, 5,
10, 20, 50,100, 200 year return periods shows return levels > 29◦C in the Arabian
Sea. While in post-monsoon the return levels show SST > 28◦C from 5 to 200 year
return time. It is well known that the cyclonic activity starts when the underlying
SST is above a threshold 26◦C (Gray, 1968). The SST extremes in both seasons
show probability of a cyclogenesis in the Arabian Sea. But the return levels of SST
extremes during pre-monsoon show slightly higher values than the post-monsoon.
Hence, indicating more chances of a cyclonic activity in the Arabian Sea during a
pre-monsoon than a post-monsoon under the changing climate.

The SST above 26◦C is considered as one of the triggering factors in cyclone forma-
tion in the Arabian Sea (Dare and Mcbride, 2011). So, we plot a seasonal cycle of
SST and frequency of TD, CS, and SCS in the Arabian Sea from 1891 to 2015, to
observe a relation between them. It is found that the peak activity of TD, CS and
SCS in the Arabian Sea occurs either during May – June or October– November,
when SST are >26◦C . Southern oscillation index (SOI) also palys a vital role in an
active or passive cyclonegensis (Mahala et al., 2015). Since, SST and SOI are two
important indicators of cyclogenesis, we applied Poisson regression to investigate
the dependence of TD, CS, SCS on the SST and SOI. The results show positive
correlation and dependence of cyclogenesis on SST and SOI. This correlation can
be used to predict the cyclones in the Arabian Sea using a predictive power of the
Poisson regression model.

We developed a Poisson regression model to predict TD, CS and SCS in the Ara-
bian Sea using predictors; SST and SOI. Two types of SST conditions are set in the
Arabian Sea (1) favorable (SSTfav1= 26 – 28◦C, SSTfav2= 28 – 30◦C, and SSTfav2=
30 – 32◦C), and (2) unfavorable (SSTunfav= 23 – 25◦C). SOI is considered for both
positive phase (La Niña) and negative phase (El Niño). The results show that
under unfavorable conditions of SST and SOI +ve,-ve phases no cyclonic activity
occurs in the Arabian Sea. The favorable conditions reveal more cyclonic activity
(TD, CS, and SCS) in Arabian Sea when the SOI is positive rather than negative
during both inter-monsoon seasons. Our model predicts likelihood of 1 – 2 TD, 3 –
4 CS and 5–7 SCS in a pre-monsoon, and 1 – 2 TD, 2 – 3 CS and 3 – 4 SCS in a
post-monsoon, under favorable conditions of SST and SOI +ve phase. A very low
probability of TD, CS and SCS is predicted by the model during SOI -ve phase.
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The coastal communities in Pakistan are vulnerable to hazards both from land (e.g
river flooding) and the Arabian Sea (cyclones, storm surge and sea level rise). The
TD, CS, and SCS are more more frequent than super cyclones in the Arabian Sea
specifically in a pre-monsoon and a post monsoon. Our findings reveal that with an
each degree rise in SST, there is a high probability of TD, CS and SCS genesis in a
pre-monsoon than a post-monsoon in the Arabian Sea. This increase in the cyclonic
activity can affect the port activities, fishing, and may harm the marine species like
coral reef and mangroves. Moreover, strong winds, sea water intrusion, and rain-
fall creates problems for the nearby coastal communities (Pelling and Blackburn,
2014). Therefore, an effort has been made here to provide an information regrading
cyclonic activity in Arabian Sea to the local coastal administrations for planning
against the upcoming challenges and minimizing the risks for the coastal commu-
nities.
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Chapter 4

Return levels of precipitation

extremes in southern Pakistan

4.1 Introduction

Extreme precipitation events have gained considerable attention worldwide due to
the hazardous consequences and significant economic damages (Easterling et al.,
2000). An extreme precipitation event can be referred to as a very intense precipi-
tation in a short duration or persistent precipitation over a long period of time in
a region (Beguería et al., 2011). The extreme precipitation events and their im-
pacts are now more pronounced in many regions around the world. (Mueller and
Pfister, 2011; Zahid and Rasul, 2011; Dourte et al., 2013; Yilmaz et al., 2014). For
instance, Sindh province of southern Pakistan has become an extremely vulnerable
region due to changing precipitation patterns, extreme precipitation events, and
floods associated to them.

Sindh has an arid climate and requires a supplementary irrigation for agriculture
activities (Chaudhry and Rasul, 2004). It is mostly prone to prolong droughts
with an occasional extreme precipitation events that leads to flooding. Historically,
Sindh has experienced the worst prolong droughts extending over a couple of years
(1968–69, 1971–74, 1985–87, and 1999–2002). The major source of precipitation
is summer monsoon (June – September) in Sindh. Several studies have analyzed
precipitation variability in this region, and found no trends in summer monsoon
precipitation over the last 50 years (Chaudhry et al., 2009; Afzal et al., 2012; Salma
et al., 2012; Hanif et al., 2013). However, extreme precipitation and flood events
are more apparent recently (Zahid and Rasul, 2011; Tariq and Van de Giesen, 2012;
Hussain and Lee, 2014; Kazi, 2014).

Extreme precipitation events have complex and non-uniform spatial patterns dur-
ing monsoon in Sindh. Therefore, diagnostic studies have been carried out to un-
derstand the link between the occurrence of intense precipitation and changes in
monsoon by the regional researchers (Rasul et al., 2005; Hasan and Rasul, 2008).
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The orientation and titling of the Tibetan High is held responsible for a heavy pre-
cipitation in 2011, as it blocks the monsoon currents to enter the northern parts
and persists over Sindh (Cheema et al., 2012). A link between the changes in ex-
treme precipitation and monsoon dynamics have also been investigated with the
CMIP5 future scenarios by Freychet et al. (2015). They observed an increase in the
atmospheric moisture content during monsoon which is a key factor in explaining
the changes in precipitation extremes. Kalim and Shouting (2012) also reported an
enhancement in moisture flux over Arabian Sea that can contribute in more intense
precipitation in southern Pakistan.

The southern Pakistan has a warm climate and it is becoming even warmer (Za-
hid and Rasul, 2012). Scoccimarro et al. (2013) examined the heavy precipitation
events in a warm climate and predicted more frequent precipitation extremes by
the end of the twenty-first century. Ikram et al. (2016) also found that the extreme
precipitation are more likely in coastal areas like Karachi and Badin of southern
Pakistan. Hence, we need more reliable estimates of the probability of the precipi-
tation extremes in Sindh for coastal-land planning and management.

In this chapter, we estimate the return levels of precipitation extremes in 5, 10,
25, 50, 100, and 200 year return periods. We apply Peaks Over Threshold (POT)
method on the daily precipitation data of nine weather stations of Pakistan Me-
teorological Department. The study period comprises summer monsoon (June-
September) for a period 1980 – 2013 (33 years). The POT provides more efficient
use of data since it takes into account more than one extreme value per year, and
has better properties of convergence when finite datasets are considered (Lucarini
et al., 2016).

4.2 Data

The data analyzed in this study is the daily precipitation data from 1980 – 2013,
provided by Pakistan Meteorological Department. The data is obtained from nine
weather stations; Jacobabad, Mohenjo-daro, Rohri, Padidan, Nawabshah, Hyder-
abad, Chhor, Karachi, and Badin. We have selected nine stations, which contain
precipitation records with minimum missing values after 1980, and are suitable for
the extreme precipitation analysis. An additional criterion is that only those sta-
tions are chosen where no changes occurred in measuring instruments during the
last 33 years (Brunetti et al., 2006). We restrict our analysis to summer monsoon
season, June-July-August-September (JJAS), as it is a peak period for extreme pre-
cipitation spells and floods.
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4.2.1 Extreme precipitation data preparation and threshold

selection

The preparation of extreme precipitation data for all the nine stations is the most
important step in the extreme value analysis. There are two popular ways to do it, 1)
Block Maxima (BM) and 2) Peaks Over Threshold (POT) (Thompson et al., 2009).
Here, we preferred POT approach due to the short duration of data (33 years), as
in BM the smaller sample size affects the accuracy of the parameter estimates (Frei
and Schär, 2001). Moreover, the POT method can investigate the frequency as well
as magnitude of the extremes, and is recommended for the estimation of frequency
and intensity of extreme events (Re and Barros, 2009; Tramblay et al., 2013). How-
ever, the single limitation of POT is that it produces dependent data (in clusters),
so we need to remove the dependency of data prior to its use. The independence of
data is very important in extreme value analysis, therefore we use extremal index θ
to remove the data dependencies (Loynes, 1965; O’Brien, 1974; Davison and Smith,
1990). Extremal Index θ measures the degree of clustering of extremes. It ranges
between 0 and 1, (θ = 0 means strong clustering and dependence, θ = 1 absence of
clusters and independence). Leadbetter (1983) interprets 1

θ
as the mean number of

exceedances in a cluster. The short-term correlations (daily time scale) lead to the
clusters in the time series, are investigated by computing the extremal index θ in
all time series, and are treated using the standard declustering technique by Ferro
and Segers (2003).

The selection of an appropriate threshold is another critical step of the POT analy-
sis. It is essential to choose a threshold that is high enough to be in the asymptotic
limit of the distribution of exceedances, but low enough to have ample data for
the fit.Several procedures of threshold selection are suggested by the researchers
(Coles, 2001; Katz et al., 2005). One of them is the use of mean residual plot,
recommended by Beguería et al. (2011); Coles (2001). The mean residual plots
show the relationship between different thresholds and mean excesses (i.e. peaks
above the threshold). Basically, mean excess is a linear function of threshold in
Generalized Pareto Distribution (GPD) (Coles, 2001). So, the threshold is selected
where the mean residual plot shows linearity (Hu, 2013). In this study, we use the
mean residual plots to select the threshold for all nine time series.

4.3 Methodology

Precipitaiton extremes are analyzed by the Peaks Over Threshold (POT) approach
(Coles, 2001; Lucarini et al., 2016) for all nine stations. In this analysis, extremes
are defined as exceedances over threshold distributed according to the Generalized
Pareto Distribution (GPD), which is characterized by two parameters, the shape ξ
and the scale σ. The shape parameter ξ determines the tail behaviour while the
scale parameter σ measures the spread of the distribution (Sugahara et al., 2009).
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The cumulative distribution function of GPD isgiven by (Coles, 2001).

H(y) =

{

1−
(

1 + ξy
σ̃

)−1/ξ
for ξ 6= 0,

1− exp
(

− y
σ̃

)

for ξ = 0,
(4.1)

where 1 + ξy/σ̃ > 0 for ξ 6= 0, y > 0 and σ̃ > 0.

For a negative shape parameter, ξ < 0, the distribution is bounded (beta distri-
bution), for vanishing shape parameter, ξ = 0, the distribution is exponential, and
for a positive shape parameter, ξ > 0, the distribution has no upper bound (Pareto
distribution). The shape parameter ξ and the scale parameter σ for all the time
series are calculated by the maximum likelihood estimation method (MLE). On the
basis of the shape and scale parameters ξ , σ, the return levels (RLs) of the precip-
itation extremes (frequency and intensity) are estimated for various return periods
(2,5,10,20,50,100, and 200) by using Equation (4.2) for all stations (Coles, 2001).

yN = u+
σ

ξ
[(Nnyζu)

ξ − 1] (4.2)

where N represents the return period, ny is the number of observations per year, ζu
is the probability of an individual observation exceeding the threshold u, the shape
parameter is ξ and the scale parameter is σ. Further details of GPD can be studied
in Lucarini et al. (2016); Sugahara et al. (2009); Coles (2001).

This study is performed in three steps:

1. The data is prepared for the POT analysis as discussed in Section 4.2.1 and
passed through trend and stationary tests to check the trends and stationarity
in all time series.

2. Thresholds are selected using the mean residual plots of all stations.

3. GPD model is used to estimate the return levels of the extreme precipitation
events for different return periods (2, 5, 10, 20, 50, 100, and 200) considering
the time interval from 1980 to 2013.

4.4 Results and Discussion

4.4.1 Trend and Stationarity tests

Trend tests are mostly grouped in to two types: parametric and non-parametric
tests. Bouza-Deaño et al. (2008) suggests that the non-parametric tests are more
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appropriate for precipitation data. Mann-Kendall (MK) test is a widely used non-
parametric test to detect the trends and long term correlations in the precipitation
data (Yue et al., 2002). The details of MK test can be seen in Kundzewicz and
Robson (2000). The MK test is applied to the daily precipitation data of all nine
stations, over a period of 1980 – 2013 in southern Pakistan. MK test can de-
tect a trend in the data, but can not assure the non-stationary of the time series,
even if the trends are statistically significant. Therefore, we use Augmented Dickey
Fuller (ADF) test to check the stationarity in the data (Dickey and Fuller, 1979;
Sen and Niedzielski, 2010). The ADF test is proved to have a good capability to
see stationarity in hydrometeorological data (Wang et al., 2006; Yoo, 2007). The
null hypothesis of the ADF test is non-stationarity of the data. We apply ADF
to the data at 0.05 significance level. Therefore, if the p–value is higher than the
significance level, the null hypothesis is rejected. The trend analysis (MK test)
has indicated no significant trends of extreme precipitation in any of the stations.
Similar findings about summer monsoon precipitation in Sindh are reported by
Chaudhry et al. (2009); Afzal et al. (2012). Furthermore, the stationarity analysis
(ADF test) has shown no significant trends in any of the nine stations. Table 4.1
show the results of trends and stationarity tests.

Table 4.1: Trend and Stationarity test resutls

Stations
Test Statistics (p–values)

Mann-Kendall Augmented Dickey Fuller
Jacobabad 0.76844 0.040
Mohenjo-daro 0.2641 0.016
Rohri 0.4384 0.031
Padidan 0.1734 0.027
Nawabshah 0.3083 0.019
Hyderabad 0.3483 0.012
Chhor 0.4583 0.045
Karachi 0.1145 0.038
Badin 0.1714 0.005

4.4.2 Threshold selection

The mean residual plots are used to determine the appropriate threshold for all
nine stations as mentioned earlier in Section 4.2.1. The mean residual plots, in-
volves plotting u against the ‘mean excess’ (the mean of the exceedances of u,
minus u), for a range of values of u. The plot should be linear above the threshold
at which the GPD model becomes valid (Bramati et al., 2014).

For instance, in case of Jacobabad the graph curve is approximately linear and
stable from u = 0 to u = 40, and after that it decays. It means that we should
choose the threshold u = 40 because after that there is no stability. But if we take
u = 40, we will have too few exceedances above a threshold to make meaningful
inferences. Moreover, the information in the plot for large values of u is unreliable
due to the limited amount of data on which the estimate and confidence interval
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Figure 4.1: Mean residual life plots of daily precipitation (mm/day) in all nine-stations of
Sindh.

are based (Coles, 2001). Therefore, it is probably better to set the threshold low
enough to be in the asymptotic regime and high enough to have ample data above
it, like for Jacobabad u = 15 is good enough to perform the POT analysis. The
threshold values differ from station to station in a range 10 – 25 mm according to
the mean residual plots of that station. The extreme precipitation events in Sindh,
Pakistan are investigated by following a threshold of individual station (Figure 4.1).

4.4.2.1 Goodness of Fit

The next step after the threshold selection is to determine the goodness-of-fit using
the quantile plots usually known as qq plots. The qq plots are the most common
diagnostic plots to check that how well data fits to the GPD model.

In qq plots, the observed data is displayed on the y-axis and model quantiles are
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Figure 4.2: QQ plots of extreme precipitation (mm/day) data in all nine-stations of Sindh.

shown on x-axis (Figure 4.2). The results show that the extreme rainfall data fits
well with the GPD in almost all stations with some deviations at the higher quan-
tiles in Hyderabad and Badin. The statistical tests like Kolmogorov- Smirnov (KS)
test and Anderson darling (AD) test are applied on all the stations to check the
quality of the fits (Di Baldassarre et al., 2009). The p – values given in Table 4.2
shows that the two distributions are homogeneous.

Table 4.2: Results of the Kolmogorov Smirnov (KS) and Anderson Darling (AD) tests.

GPD model
p – value

Test Statistics JAC MJD RHI PDN NWS HYD CHR KHI BDN
Kolmogorov Smirnov 0.2993 0.2682 0.8334 0.4342 0.6591 0.8437 0.4881 0.4335 0.2732
Anderson Darling 0.2339 0.1374 0.7873 0.1348 0.6367 0.8835 0.3665 0.4077 0.1425
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4.4.2.2 Parameter Estimates

The shape ξ and the scale σ parameters of GPD are estimated using maximum
likelihood estimation (MLE) method Shang et al. (2011). The shape parameter ξ
determines the tail behavior of the distribution. The results show that the shape
parameter ξ is larger than zero at all stations and lie within a range 0.01 – 0.82
(Table 4.3. The positive value of the shape parameter indicates a heavy-tailed
distribution, with no upper bound and decays polynomially. The highest values
of shape parameter ξ are found in Nawabshah, Hyderabad, Chhor, Karachi, and
Badin, which means that the extreme precipitation events are more likely in these
regions.

Table 4.3: Parameter estimates and standard errors for the summer monsoon precipitation.

Stations
Shape

ξ
Standard Error

∆ξ
Scale

σ
Standard Error

∆σ
Jacobabad 0.03 0.05 4.1 0.34
Mohenjo-daro 0.20 0.13 3.69 1.73
Rohri 0.01 0.19 3.41 0.43
Padidan 0.04 0.14 4.21 0.67
Nawabshah 0.82 0.13 8.00 1.13
Hyderabad 0.58 0.17 6.51 1.31
Chhor 0.56 0.09 8.30 0.85
Karachi 0.53 0.12 8.40 0.21
Badin 0.52 0.11 9.55 1.25

The scale parameter σ measures the width and variability of the GPD distribu-
tion. The scale parameter σ range from 3.41 to 9.55 showing high variability in
all stations (Table 4.3). The highest values of the scale parameter σ is observed
in Nawabshah, Hyderabad, Chhor, Karachi, and Badin (Table 4.3). This indicates
that the variability of precipitation extremes is higher at these stations, and one
can expect higher return values of precipitation here than one might have expected.

4.4.2.3 Return Levels

The return levels (RLs) derived from the GPD model are shown in Figure 4.3. Here,
the RLs indicates the probability of the precipitation intensity over 2, 5, 10, 20, 50,
100 and 200 years return period. The results show a RL of 50 mm/day for a 10 year
return period, and between 50 mm/day - 100 mm/day for a 25 year return period
in all stations.

The urban flash floods are produced when the precipitation intensity exceeds 100
mm/day, and due to the poor drainage capacity of that station, for example floods
2010 and 2011 in Karachi (Rasul et al., 2005; Kazi, 2014). Our results demon-
strate the precipitation events > 100 mm/day, and > 150 mm/day against a 50
year return period, and 100 year return period in Jacobabad, Mohenjo-daro, Rohri,
Nawabshah, Hyderabad, Chhor, Karachi, and Badin. (Ali and Iqbal, 2013). In
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Figure 4.3: Return levels of extreme precipitation (mm/day) derived from GPD model in
all nine-stations of Sindh.

this analysis, Padidan is the only station where the precipitation intensity (RLs)
exceeds 50 mm in a 50 year return period.

The spatial maps of the precipitation return levels are also prepared to give a
detailed overview of precipitation extremes in Sindh (Figure 4.4). The maps are
restricted to 5, 10, 25, and 50 years return period due to short duration of a base
period (1980 – 2013). The results show a probability of precipitation events greater
than 100 mm/day in 25 and 50 years return period throughout Sindh except Pa-
didan. While the RL above 150 mm/day are more evident in southern regions like
Nawabshah, Hyderabad, Chhor, Karachi and Badin. Padidan is the only station
which differs form others in the region, but it seems to have RL greater than 50
mm/day in 50 years, which is above its existing rainfall capacity. It is obvious
from the maps that the higher return levels of precipitation are expected in re-
gions like Nawabshah, Hyderabad, Chhor, Karachi, and Badin. Therefore, there
is a strong need for planing an adaptation strategies for these regions to avoid the
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Figure 4.4: Spatial maps of extreme precipitation return levels (mm/day) in Sindh.

socio-economic losses in future.

4.5 Summary and Conclusions

The primary theme of this chapter is the assessment of the return levels for the
extreme daily precipitation in the southern Pakistan (Sindh). We analyze daily
rainfall data from 9 weather stations in Sindh over a period of 33 years (1980 –
2013). The largest frequencies of the extreme precipitation events concentrated
during summer monsoon (JJAS), therefore it is selected for the study. Peaks over
Threshold (POT) is implemented on all nine stations by constructing an extreme
rainfall data (declustered POT data), checking trends and non-stationarity in the
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data, and selecting a suitable threshold before applying a Generalized Pareto Dis-
tribution (GPD) on the POT data to estimate the return levels. POT method used
in this study is not only suitable for the current research work, but it is applicable
to several other case studies in different regions. It is good for finite data sets but
the duration, quality and availability of data are the main limitations in this method.

Extreme precipitation events are considered as a natural hazard because of their
association with the urban flooding. They severely impact the crops yield, live-
stocks, infrastructure, and port activities etc. The main findings of this study can
be summarized as follows.

1. No linear trends are found in extreme precipitation data during summer mon-
soon in Sindh, because the extreme precipitation events are quite recent here.
The rareness of events and short duration (33 years) of data in Sindh are not
enough to detect a climate change signal in Sindh (Frei and Schär, 2001).

2. We used Generalized Pareto Distribution (GPD) to investigate the extreme
precipitation events in Sindh. We found that GPD model fitted well to the
precipitation data of all stations, according to the graphical qq plots and sta-
tistical tests.

3. We conclude that there are substantial differences in the return levels of ex-
treme precipitation at all stations in Sindh with respect to a 50 year and 100
year return periods. The highest return levels at 2, 5, 10, 25, 50, and 100
years time is greater than 150 mm/day recorded in areas like Rohri, Nawab-
shah, Hyderabad, Chhor, Karachi, Badin, and exceeds 100 mm/day in areas
such as Jacobabad and Mohenjo-daro. The lowest return levels are observed
in Padidan station with precipitation intensity above 50 mm/day in a 50 to
100 year return period. This is due to the higher shape and scale parameters
estimated for the southern stations. Our findings are in agreement with Ali
and Iqbal (2013), who used GEV distribution and found similar results for
the regions in Sindh.

The possible explanation of high return levels of precipitation in Nawabshah, Hy-
derabad, Chhor, Karachi, and Badin can be due to the intense warming of land
(Zahid and Rasul, 2012, 2011), which increases the rate of evaporation in the at-
mosphere, creating instability in the hydrological cycle resulting into more extreme
precipitation. Additionally, another important factor is the enhanced rate of mois-
ture flux over the Arabian Sea that strengthened during summer monsoon. Kalim
and Shouting (2012) investigated the link between moisture flux over Arabian Sea
and extreme precipitation, and found that the moisture flux from Arabian Sea can
contribute to intense precipitation events during monsoon in southern Pakistan.
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Chapter 5

Introduction to web tool SindheX

5.1 Introduction

SindheX is a new online web-based tool (www.sindhex.org), which provides infor-
mation on the return levels and return periods of major climate extremes occurring
in Sindh, Pakistan. It focuses on extremes like temperature, wet-bulb tempera-
ture, precipitation, and sea surface temperature/cyclones of Arabian Sea) affecting
Sindh. This web tool is an end product of the Climate-KIC project title "Extreme
Events in Pakistan: Physical processes and impacts of changing climate", which
belongs to the adaptation services platform (Decision Metrics & Finance theme)
of the Climate-KIC. The results are shared for both the public and private stake-
holders, who are interested in the frequency and intensity of extremes in Sindh.
This tool is especially designed to guide the local administrations to prioritize the
regions in terms of adaptations.

5.2 Graphical User Interface

The Graphical User Interface (GUI) of SindheX shows two types of maps 1) Google
map and 2) Sindh map (Figure 5.1). A Google map is provided to describe the
geography of the study domain, and a map of Sindh is used to show the results of
different parameters at the nine stations considered in the study. GUI consists of
four parameters; maximum temperature Tmax, wet-bulb temperature TWmax, pre-
cipitation, and sea surface temperature, which are hold responsible for the extreme
events in Sindh almost every year. The information regarding the SindheX, data,
method, and visualization of the results is given in the left panel.
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Figure 5.1: Graphical user interface of web-tool SindheX.

5.3 View results

Go to a website www.sindhex.org. To view results, users are required to register and
login to visualize maps. Click "Register" to proceed to registration and "Login" to
proceed to log in. Once you log in, please do the following;

1. Choose one of the variables for example "Wet-bulb Maximum Temperature"
(Figure 5.2). You will see two categories.

a. Temporal Maps

b. Spatial Maps

2. Select "Temporal Maps Tab" it will activate all the stations geographically in
the map of Sindh (Figure 5.3). Now click on the name of the city to view the
data.

3. Click "Spatial Maps Tab", select the return period e.g. 5 years from the
drop-down menu to view the maps (Figure 5.4).

4. Repeat the above-mentioned steps to view the results of other variables.
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Figure 5.2: Visualization of the return levels of extremes in the graphical user interface.

Figure 5.3: A temporal map showing max temperature (◦C) return levels in Jacobabad.
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Figure 5.4: A spatial map showing precipitation (mm/day) return levels in 50 years.



77

Chapter 6

Conclusion and Outlook

This thesis analyzes the probability of occurrence of major extreme events in Sindh
province of southern Pakistan. The statistical methods such as Block Maxima (BM)
and Peaks over threshold (POT) based on a classical Extreme Value Theory (EVT)
are applied to estimate the return periods and return levels of extreme events in
Sindh. The main motivation of using EVT is that it provides a robust theoretical
framework to estimate the probability of occurrence of extreme events larger than
observed. Whereas, other statistical inference based on empirical models lack this
predictive power. Additionally, EVT is quite a relevant approach in assessing the
risks of extremes, but unfortunately it is vaguely mentioned and basically no re-
sults based on it are reported in the IPCC special report on managing the risks of
extreme events to climate change adaptations in 2012 (IPCC, 2012). In this thesis,
the analysis of extremes using EVT in Pakistan has been done for the first time,
with a goal to convey this approach to the potential readers who might not famil-
iar with this method. Moreover, all the results of thesis are shared with the local
administrations and policy makers via web based tool "SindheX", so that they can
make some concrete plans and implement adaptations region-wise.

Sindh province in southern Pakistan is the focal point in this work due to its sus-
ceptibility to recent frequent and intense climate extremes. Sindh is among one
of the most vulnerable regions in Pakistan. Although, it is adversely affected by
three types of extreme events i.e. temperature, precipitation and sea surface tem-
perature/cyclones repeatedly almost each year, but least attention has been given
to plan any type of adaptation strategies due to no information on recurrence of
extremes. The region is unaware of the fact that these extremes are a single event
or to which extent the event might occur in future. To address these concerns,
all three extreme events are investigated separately in different parts of Sindh to
identify the regions at high risks and in need of an immediate attention.

Sindh becomes very hot and humid during summer and many people become a
victim of these extremely high temperatures (Zahid and Rasul, 2012; Imtiaz and
Rehman, 2015). Two types of temperature extremes: (i) maximum air tempera-
ture extremes, Tmax and (ii) maximum wet-bulb temperature extremes, TWmax are
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considered in this thesis. The results show that the return levels reach above 50◦C
in Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and exceeds 45◦C in Rohri,
Hyderabad, Chhor, Karachi, and Badin. The RLs of TWmax are analyzed above
the human survivability threshold 35◦C throughout the region. It is clear from
the results that the human habitability in Sindh is already at high risks of hy-
perthermia, heat strokes, nausea, headaches, dehydration etc during summer (May
–September) season. More than half of the population works in open fields to earn
their livelihoods and becomes a victim of these extreme events. Besides popula-
tion, the agriculture sector is also badly affected by the temperature extremes. The
crops have certain threshold to tolerate heat and even a rise of one degree Celsius
can cause detrimental changes in the phenological stages of the crops (Hatfield and
Prueger, 2015). Moreover, a hot and humid weather are favorable for the produc-
tion of pests and rapid spread in the crops. Sindh produces cotton, wheat, rice,
mango, banana, and dates, so it is very important to know the correct frequency
and intensity of temperature extremes. It is highly recommended that a contin-
gency plan must be prepared and early warning system should be implemented for
dealing with temperature extremes in Sindh.

The sparse network of weather stations and lack of long-term data are the main
limitations in analyzing extremes. This is why the return levels of temperature
extremes are also estimated by using ERA Interim reanalysis to look at how well
ERA Interim data performs in Sindh against observations. The main objective is
that if the ERA Interim dataset characterizes well the extremes, it could be an
option for the regions within Sindh where no observational data is available. The
findings show a clear difference of 3◦C and 5◦C in RLs between the weather station
and ERA Interim datasets. Therefore, a simple bias correction is applied to the
ERA Interim data to see the improvements in its performance in representing RLs
of temperature extremes. The bias corrected ERA Interim Tmax and TWmax show
good correspondence with the meteorological station data, but statistically differ-
ences remains in most cases. Therefore, a more advanced bias correction method
is recommended for analyzing extremes in any region before using the reanalysis
precisely. All models (CMIP5, CMIP6, RCMs, CORDEX) use re-analysis as input,
and generate information of extremes, that can lead to significant errors in predic-
tion of present and future extremes. Therefore, in order to reduce the uncertainties
in impact assessment, it is necessary to improve the re-analysis before using it in
GCMs and RCMs. Furthermore, it is strongly proposed to use EVT approaches in
all models to the study the properties of extremes, for meaningful predictions.

Sindh is vulnerable to extremes both from land (e.g river flooding) and the Ara-
bian Sea (cyclones, storm surge, and sea level rise). The warming of Sea Surface
Temperature (SST) and enhanced cyclonic activity in the Arabian Sea is obvious
lately (Khan et al., 2008; Evan and Camargo, 2011; Muhammad et al., 2016). The
cyclones develop in Arabian Sea every year but rarely make a landfall, yet they
can impact the coastal communities with a heavy precipitation, storm surge, strong
winds and flooding (Needham et al., 2015). In this thesis, the return levels (RLs)
of Arabian Sea SST extremes are assessed in pre-monsoon (May – June) and post-
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monsoon (October –November) seasons due to an extreme cyclonic activity within
these seasons. The results show the RLs of pre-monsoon SST extremes > 29◦C
and the post-monsoon SST extremes > 28◦C in the Arabian Sea. This concludes
that the likelihood of cyclonic activity is equal in both the seasons, as SST above
26◦C is known as one of the triggering factors for a cyclone formation in the Ara-
bian Sea (Gray, 1968; Dare and Mcbride, 2011). But one must understand that
with a changing climate and rise in SST more cyclones can appear in pre-monsoon
rather than a post-monsoon. The tropical depressions (TD), cyclonic storm (CS),
and severe cyclonic storms (SCS) are more frequent in the Arabian Sea than the
super cyclones. In order to predict the probability of TD, CS, and SCS, a poission
regression model is developed using SST and Southern Oscillation Index (SOI) as
predictors. The results predict likelihood of 1–2 TD, 3–4 CS and 5–7 SCS in a pre-
monsoon, and 1–2 TD, 2–3 CS and 3–4 SCS in a post-monsoon, under favorable
conditions of SST and SOI +ve phase. A very low probability of TD, CS and SCS
is predicted by the model during SOI -ve phase.

The precipitation extreme analysis in Sindh concludes no linear trends in the precip-
itation data during summer monsoon (June – September). However, the extreme
precipitation events (> 100 mm/day) are more apparent and new in Sindh (Za-
hid and Rasul, 2011). These extreme precipitation events have been linked to the
extremely high land temperatures, changes in monsoon dynamics and an enhance-
ment in moisture flux over the Arabian Sea during summer monsoon (Kalim and
Shouting, 2012; Freychet et al., 2015). The main reasons of the sudden extreme
precipitation events in Sindh is not yet completely clarified by researchers. In this
thesis, the return levels of the precipitation extremes in Sindh are analyzed by ap-
plying the Peaks over Threshold (POT) method on daily precipitation data during
summer monsoon (June – September) from 1980 to 2013. The results predict the
return levels of precipitation greater than 100 mm/day in Jacobabad, Mohenjo-
daro, and greater than 150 mm/day of precipitation events in Rohri,Nawabshah,
Hyderabad, Chhor, Karachi, and Badin of Sindh, in 50 and 100 year return periods.
Padidan is the only station with return levels of precipitation exceeding 50 mm/-
day in 50 - 100 years. The precipitation extremes > 100 mm/day and 150 mm/day
are predicted in Sindh, which can cause urban flash flooding, for instance 2010
and 2011 floods in Karachi (Rasul et al., 2005; Kazi, 2014). Therefore, there is a
strong need to plan the adaptation measures like rain water harvesting, small dams,
building levees near the river to avoid floods, improved drainage capacity and estab-
lishment of flash flood forecasting system to minimize the risks from such an events.

The results of this thesis clearly show that the recurrences of extreme temperature,
extreme sea surface temperature leading to cyclogenesis, and extreme precipitation
is very likely in Sindh province of southern Pakistan in 50 year return period. The
northern parts (Jacobabad, Mohenjo-daro, Rohri, Padidan) of Sindh are mostly
affected by the temperature extremes, central parts (Nawabshah, Hyderabad) are
impacted by both the temperature and precipitation extremes. While the southern
parts (Chor, Karachi, and Badin) or the coastal communities are the most vul-
nerable to all three types of extreme events analyzed in this work. Therefore, it
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is crucial that the administrations and policy makers take some serious actions to
adapt to the future extreme temperatures, extreme sea surface temperature, fre-
quent cyclonic activity, and extreme precipitation. All three types of extremes are
currently affecting the region and will make situation worse if the accurate planning
and adaptations are not implemented timely in the region.

Clearly, the probability of the extreme events is higher in Sindh, so an action plan
must be prepared to implement adaptations in the vulnerable regions without fur-
ther delays. It was important to convey and share the results of this thesis via
proper platform to the all the stakeholders such as local administrators, energy
sector, food and agriculture organizations (FAO), port authorities, water manage-
ment authorities, governmental and non-governmental organizations, national dis-
aster management authorities (NDMA), trade sector etc. in Sindh. Therefore, a
web-tool "SindheX" is developed as a prototype for other regions in Pakistan and
neighboring countries (India, Nepal, Iran, Afghanistan and Bangladesh). South
Asian region share similar climatic characteristics, hence extreme events occurring
in one region can easily influence the adjoining areas. For instance, any people
died both in India and Pakistan due tot heatwave in 2015. Similarly, million of
people were affected across India, Bangladesh and Nepal as a result of flooding in
August 2017. Moreover, Cyclone Nilofar in Arabian Sea in 2014 affected the coun-
tries surrounding Arabian Sea. Therefore, a strong networking through research
is required among these countries and different departments to reduce the risks of
these disasters. This thesis can serve as a blue print for all South Asian countries.
They can also analyze extreme events more robustly using the extreme value theory
approaches and plan adaptations accordingly.

The results of this thesis will not only contributes to the regional planning, but can
also be useful for the ongoing EU projects like Sindh Union Council and Community
Economic Strengthening Support (SUCCESS), Civil Society Coalition on Climate
Change (CSCCC), World Bank project like Sindh Resilience Project (SRP) and
mega construction projects like China-Pakistan Economic Corridor (CPEC). As I
repeatedly stated in this thesis, that the information on the returns of extremes
are generated solely for the adaptation purposes. This is the first step to see the
extent of extremes independently in Sindh. In future studies, the same analysis
will be repeated for all the other regions of Pakistan and neighboring country like
India to see the spatial extent of extreme events. It will also be interesting to link
all these extremes with physical meteorological phenomenon and with each other.
Apparently, no relation is found among the temperature, SST, and precipitation
extremes, as they occur in different times. But a more detail study with long-term
datasets might unfold some important information on their relationship.
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ξ Shape parameter
σ Scale parameter
µ Location parameter
µ1 Location parameter of the non-stationary GEV model
u Threshold
σ∗ Modified scale parameter
∆ξ Standard error in the shape parameter
∆σ Standard error in the scale parameter
∆µ Standard error in the location parameter
∆µ1 Standard error in the location parameter of the non-stationary GEV

model
θ Extremal Index
xN Return level
N Return period
ζu Probability of an individual observation exceeding the threshold u
ny number of observations per year
z̄ Mean of meteorological station temperature data
σz Standard deviation of meteorological station temperature data
yERA ERA Interim time series
ȳ Mean of the ERA Interim time series
σy Standard deviation of the ERA Interim time series
zp Return values
λy
i Mean occurrence rate

Pr Poisson regression
β Poisson regression coefficient
z̄t Block maxima with standard Gumbel distribution
µ̂ Location parameter of the standard Gumbel distribution
ξ̂ Shape parameter of the standard Gumbel distribution
σ̂ Scale parameter of the standard Gumbel distribution
χ2 Chi square
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EVT Extreme Value Theory
GPD Generalized Pareto Distribution
GEV Generalized Extreme Value Distribution
POT Peaks Over Threshold
BM Block Maxima
MLE Maximum Likelihood Estimation
RL Return Levels
SST Sea Surface Temperature
TD Tropical Depression
CS Cyclonic Storm
SCS Severe Cyclonic Storm
LRT Likelihood Ratio Test
AIC Akaike’s Information Criterion
MK Mann-Kendall
ADF Augmented Dickey Fuller
KS Kolmogorov- Smirnov
AD Anderson Darling
SOI Southern Oscillation Index
NSGEV Non-stationary GEV
SGEV Stationary GEV



xxii Acronyms



xxiii

Subscripts, Superscripts and Annotations

Tmax Maximum Temperature
TWmax Maximum Wet-bulb Temperature
RHmax Maximum Relative Humidity
Amax Absolute Maxima
SSTfav1 Sea surface temperature with first set of favorable conditions
SSTfav2 Sea surface temperature with second set of favorable conditions
SSTfav3 Sea surface temperature with third set of favorable conditions
SSTunfav Sea surface temperature with unfavorable conditions
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Abstract. Southern Pakistan (Sindh) is one of the hottest regions in the world and is highly vulnerable to 10	

temperature extremes. In order to improve rural and urban planning, information about the recurrence of 11	

temperature extremes is required. In this work, return levels of the daily maximum temperature Tmax are 12	

estimated, as well as the daily maximum wet-bulb temperature TWmax extremes. The method used is the Peak 13	

Over Threshold (POT) and it represents a novelty among the approaches previously used for similar studies in 14	

this region. Two main datasets are analyzed: temperatures observed in nine meteorological stations in southern 15	

Pakistan from 1980 to 2013, and the ERA Interim data for the nearest corresponding locations. The analysis 16	

provides the 2, 5, 10, 25, 50 and 100-year Return Levels (RLs) of temperature extremes. The 90% quantile is 17	

found to be a suitable threshold for all stations. We find that the RLs of the observed Tmax are above 50°C in 18	

northern stations, and above 45°C in the southern stations. The RLs of the observed TWmax exceed 35°C in the 19	

region, which is considered as a limit of survivability. The RLs estimated from the ERA Interim data are lower 20	

by 3°C to 5°C than the RLs assessed for the nine meteorological stations. A simple bias correction applied to 21	

ERA Interim data improves the RLs remarkably, yet discrepancies are still present. The results have potential 22	

implications for the risk assessment of extreme temperatures in Sindh.	23	

 24	

Key words 25	
 26	
Extreme temperature, return levels, peak over threshold, Generalized Pareto Distribution, declustering. 27	

1 Introduction 28	

 29	

Extreme maximum temperature events have received much attention in recent years, because of the associated 30	

risk of mortality and their likely increase in intensity and frequency in climate change scenarios (Sheridan and 31	

Allen, 2015). An example of the potential impact of raising maximum temperatures is the recent heat wave in 32	

Southern Pakistan (Sindh), which occurred between June 17
th

 and June 24
th

 2015 and broke all the records with a 33	

death toll of 1400 people, and over 14000 people hospitalized. The temperatures in different cities of the Sindh 34	

region were in the range of 45°C - 49°C during the event (Imtiaz and Rehman, 2015). Karachi had the highest 35	

number of fatalities (1200 people approximately). The Pakistan Meteorological department issued a technical 36	

report stating a very high heat index (measuring the heat stress on humans due to high temperature and relative 37	

humidity) during this heat wave (Chaudhry et al., 2015).  38	

 39	

In summer, Sindh becomes very hot and with the arrival of a monsoon the humidity increase in the region 40	

(Chaudhry and Rasul, 2004). This lethal combination of high temperature and relative humidity is known as wet-41	

bulb temperature, which increases the death rates, and severely impacts the human habitability (Pal and Eltahir 42	

2015). The human body generally maintains the temperature around 37°C. However, the human skin regulates at 43	
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	 2	

or below 35°C to release heat (Sherwood and Huber, 2010). Under high levels of the moisture content in the 1	

atmosphere, the human body cannot maintain the skin temperature below 35°C and can develop ailments like 2	

hyperthermia, heat strokes and cardiovascular problems. Hyperthermia can occur even in the fittest human 3	

beings, if they are exposed to an environment where wet-bulb temperature is greater than 35°C for at least six 4	

hours. Hyperthermia is a condition where extremely high body temperature is reached, resulting from the 5	

inability of the body to get rid of the excess heat. It occurs mostly when temperature and relative humidity levels 6	

are extremely high at the same time.  7	

 8	

This study devotes special attention to Sindh because of its exposure to the frequent and intense temperature 9	

extremes in the past (Zahid and Rasul, 2012). This region is considered as one of the most vulnerable regions in 10	

Pakistan. Sindh stretches from 23.5° N – 28.5° N and 66.5°E - 71.1°E, and is bounded on the west by the Kirthar 11	

Mountains, to the north by the Punjab plains, to the east by the Thar desert and to the south by the Arabian Sea 12	

(Indian Ocean) and in the center fertile land around Indus river. The Indus river is the source of water for the 13	

agriculture lands. Cotton, wheat and sugar cane are grown on the left bank of the Indus and rice, wheat and gram 14	

on the right bank (Chaudhry and Rasul, 2004). Cotton is the cash crop of the country. 15	

 16	

The climate in Sindh is arid and subtropical with less than 250 mm annual rainfall. The temperature frequently 17	

exceeds 45°C in summer (May-September) and the minimum average temperature recorded during winter 18	

(December- January) is 2°C. Table 2 shows the mean monthly climatic characteristics of the region from 1980-19	

2010. Figure 1 shows the spatial distribution of all nine weather stations of Pakistan meteorological department, 20	

and the ERA Interim grid points close to the corresponding locations. High population density, limited resources, 21	

poor infrastructure and high dependence of the local agriculture on climatic factors, mark this region as highly 22	

vulnerable to the impacts of climate change. 23	

 24	

The Intergovernmental Panel on Climate Change (IPCC) scenarios estimates for this region an increase in the 25	

surface temperature of the order of 4°C in this region by the end of 2100. This may significantly reduce crop 26	

yields, and cause huge economic losses to the country (Islam et al., 2009; Rasul et al., 2012; IPCC, 2012; 27	

Pachauri et al., 2014). Furthermore, it might increase the risks of heat strokes, cardiac arrest, high fever, diarrhea, 28	

cholera and vector borne diseases. Heat waves became more frequent and intense during 90’s in Southern 29	

Pakistan. Zahid and Rasul (2010) reports the significant rise in heat index and heat waves events longer than ten 30	

days in Sindh. The enhanced mortality rate related to the heat waves is a serious problem, and two obvious 31	

examples are the 1991 and the previously mentioned 2015 heat waves (Imtiaz and Rehman, 2015).  32	

 33	

The analysis of extreme climatic events is a very active area of research in geosciences (Christidis et al., 2005, 34	

2010; Tebaldi et al., 2006; Zwiers et al., 2011; Morak et al., 2011, 2013). In order to facilitate and standardize the 35	

analysis of extremes, the World Meteorological Organization (WMO) has suggested 27 specific climate indices, 36	

like the number of hot days, cold days, wet days, dry days, etc. (Tank et al., 2006; 2009, Frisch et al., 2002; Choi 37	

et al., 2009; Lustenberger et al., 2014). The investigation and analysis of such climate indices has now reached a 38	

high level of popularity. 39	

 40	
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	 3	

Extreme value theory (EVT) represents an increasingly widespread approach in climate studies  (Coles, 2001, 1	

Zhang et al., 2004; Brown et al., 2008; Faranda et al., 2011; Acero et al., 2014) to estimate the occurrence of the 2	

extreme events. The peak over threshold (POT) approach determines the distribution of the exceedances above a 3	

threshold. The exceedances are asymptotically distributed according to the Generalized Pareto Distribution 4	

(GPD). GPD has remarkable properties of universality when the asymptotic behavior is considered (Lucarini et 5	

al., 2016), while one can expect that the threshold level above which the asymptotic behavior is achieved depends 6	

on the specifics of the analyzed time series. In particular, when looking at spatial fields, it will depend on the 7	

geographical location.  8	

 9	

In this study, we have chosen to use the POT method to assess the temperature extremes in the Sindh region, 10	

because it is the most practical approach in modeling the risks of extremes. It is applied for studying temperature 11	

extremes in different regions of the world (Burgueño et al., 2002; Nogaj et al., 2006; Coelho et al., 2008;  Ghill et 12	

al., 2011). However, to our knowledge, the POT method has never been used to analyze the risk of temperature 13	

extremes in Sindh. The POT approach allows in principle for estimating the return periods and the return levels 14	

(RLs) also for time ranges longer than what has been currently observed. This information and this predictive 15	

power can be beneficial for policy makers and other stakeholders. Note that this is exactly the kind of information 16	

planners need when, e.g., designing infrastructures that are deemed to last a very long time. 17	

 18	

It is useful to consider two indicators of extreme temperatures: (1) temperature extremes Tmax, and (2) Wet-bulb 19	

temperature extremes TWmax, and are interlinked, but rarely studied together. The southern Pakistan  (Sindh) 20	

lacks the information about both the temperature extremes and faces the consequences of heat waves almost 21	

every year. Thus, considering the need and relevance of the information such a study is necessary and timely.    22	

 23	

Therefore, we estimate the return levels of extreme daily maximum temperatures Tmax and daily maximum wet-24	

bulb temperatures TWmax over the different return periods in Sindh. We apply the peak over threshold (POT) 25	

method on the observational data of the nine weather stations provided by Pakistan meteorological department, 26	

and the ERA Interim data of European center for medium range weather forecast (ECMWF) model for the 27	

corresponding grid points from 1980 to 2013. If the ERA Interim dataset characterizes well the extremes, it could 28	

be an option for the regions inside Sindh where no observational data is available. Furthermore, a standard bias 29	

correction is applied on the ERA Interim data to improve the results.  30	

 31	

The paper is organized as follows. In Section 2, the statistical modeling of extremes using peak over threshold 32	

method is briefly illustrated along with a description of the data used. The estimation of daily maximum wet-bulb 33	

temperature is discussed in detail in this Section. Section 3 presents the main results of the POT analysis on the 34	

meteorological station observations, ERA Interim, and bias corrected ERA Interim daily maximum temperature 35	

Tmax and wet-bulb temperature TWmax data at nine locations, viz. Jacobabad, Mohenjo-daro, Rohri, Padidan, 36	

Nawabshah, Hyderabad, Chhor, Karachi, and Badin. The performance of the ERA Interim and bias corrected 37	

ERA Interim in comparison to observations is also described in Section 3. All computations and graphics in this 38	

work are done using the R free open source statistical software, using the packages ismev and extRemes (see 39	

www.R-project.org and R Development core team 2015). Section 4 summarizes the major findings of the study 40	

and concludes our work. 41	
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	 4	

2. Data and Methodology 1	

2.1 Meteorological Station Data 2	

 3	

The daily maximum temperature and relative humidity data recorded at nine meteorological stations in Sindh 4	

from 1980 to 2013 are provided by the Pakistan Meteorological Department (see Table 1).  We select nine 5	

stations, which contain a negligible amount of missing values after 1980, and are suitable for the POT analysis. 6	

An additional criterion is that only those stations are chosen where no changes occurred in measuring instruments 7	

during the last 33 years (Brunetti et al., 2006). None of the station data shows gaps with a duration longer than 8	

two days, which are treated by replacing the missing values with the average of the two previous values. 9	

 10	

The temperature data are discretized unevenly with intervals up to 1 degree Celsius. Deidda and Puliga (2006) 11	

uses a Monte Carlo study for simulating various resolutions to show that the discretization in precipitation data 12	

affects the convergence of parameter estimation in the extreme value analysis. For this reason, we produce high 13	

resolution data to compensate the effect of discretization and thus to improve the convergence of the estimator. 14	

To convert station data to higher resolution, we add them to a uniform noise with the magnitude corresponding to 15	

the discretization steps (1 degree C). The noise r is a uniform random variable in the interval [-0.5, 0.5]. The 16	

main property of this noise is to round (T+r) = T, where T is the temperature with 1-degree resolution and 17	

‘round’ is the numerical function, which maps the interval [T-0.5, T+0.5] to T. Thus, adding the noise does not 18	

perturb the information content of the observations. This procedure is applied to all temperature data, irrespective 19	

of the actual resolution, and replicated 100 times using a Monte Carlo approach. Results are then averaged. We 20	

check the influence of this noise parameterization and find no significant bias in the return level estimates.  21	

 22	

2.2 ERA Interim Reanalysis Data 23	

 24	

The gridded daily maximum temperature and relative humidity data of ERA Interim reanalysis is downloaded 25	

from the website  ECMWF Public Datasets web interface (http://apps.ecmwf.int/datasets/). The ERA Interim is 26	

produced from the European center for medium range weather forecast (ECMWF) model with resolution 0.75° × 27	

0.75° (Dee et al., 2011). The gridded data is then extracted at the closest grid point of all stations, for the period 28	

1980-2013. The latitude and longitude of the ERA Interim stations are displayed in Table 1.  29	

 30	

One of the main requirements to perform the POT analysis is a stationary time series.  Therefore, similar to 31	

Bramati et al. (2014), the ADF test of stationarity (Dickey and Fuller, 1979) is performed on all the time series. 32	

The test results show no sign of long-term correlations in the data. High short-term correlations (daily time scale) 33	

typically lead to clusters of extreme values and require the use of a declustering method (see more detail in 34	

Section 2.4).  35	

2.3 Wet-bulb Temperature Calculations 36	

 37	

The wet-bulb temperature measures the heat stress better than other existing heat indices, because it establishes 38	

the clear thermodynamic limit on heat transfer that cannot be overcome by adaptations like clothing, activity and 39	
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	 5	

acclimatization (Pal and Eltahir 2015, Sherwood and Huber, 2010). Here, we use an empirical equation 1	

developed by Stull (2011) to measure the wet-bulb temperature [°C ]. 2	

 3	

 TW!"#  = T!"#   atan (𝛼! RH!"# + 𝛼!) + atan T!"# + RH!"# − atan RH!"# +  𝛼! +4	

+ 𝛼!(RH!"#) 
!

! atan(𝛼!RH!"#) − 𝛼!                          (1) 5	

  6	

 7	

where TWmax is the maximum wet-bulb temperature [°C], Tmax is the maximum temperature [°C], and RHmax   is 8	

the maximum relative humidity [%]. This relationship is based on an empirical fit, as in Stull (2011), where the 9	

coefficient values are α1 = 0.151977, α2 = 8.313659, α3 = -1.676331, α4 = 0.00391838, α5 = 0.023101, and           10	

α6 = 4.686035. The Eq. (1) covers a wide range of relative humidity and air temperatures with an accuracy of 11	

0.3°C. 12	

2.4 Peak Over Threshold 13	

 14	

In order to determine return levels (RLs) of extreme maximum temperatures and maximum wet-bulb 15	

temperatures in Sindh, the Peak Over Threshold approach (POT) is applied to the meteorological stations, the 16	

ERA Interim, and the bias corrected ERA Interim data. In this analysis, extremes are defined as exceedances over 17	

threshold distributed according to the Generalized Pareto Distribution (GPD), which is characterized by two 18	

parameters, the shape ξ and the scale σ. The GPD for exceedances 𝑥 − 𝑢 of a random variable 𝑥 reads as 19	

 20	

           𝐺 𝑥 = 1 − 1 + 𝜉
𝑥 − 𝑢

𝜎

!
!

!
            𝑥 > 𝑢, 𝜉 ≠ 0  ,             (2) 

 21	

where 𝑢 is the threshold. The choice of the threshold 𝑢 is done in order to ensure that the model in (2) provides a 22	

reasonable fit to exceedances of this threshold. The result for the two parameters shape ξ and scale σ depend on 23	

the threshold u (Coles, 2001). The shape parameter ξ determines the tail behavior while the scale parameter σ 24	

measures the variability. For a negative shape parameter, ξ < 0, the distribution is bounded (beta distribution), for 25	

vanishing shape parameter, ξ = 0, the distribution is exponential, and for a positive shape parameter, ξ > 0, the 26	

distribution has no upper bound (Pareto distribution). 27	

 28	

In particular, for a negative shape parameters ξ <0 the GPD has an upper bound 29	

 30	

                    𝐴!"# = 𝑢 −
𝜎
𝜉

                                                                  (3) 

 31	

                                   𝐺 𝑥 = 0                                𝑥 > 𝐴!"# , 𝜉 < 0                

 32	

where 𝐴!"#  is an absolute maximum (Lucarini et al., 2014). The choice of the optimal threshold for performing 33	

statistical inference from a time series is crucial. A too large value for 𝑢 would reduce the number of exceedances 34	

to a few values, inflating the variance of the estimators and by consequence the analysis would unlikely yield any 35	

useful results. On the other hand, a too small value for 𝑢  would violate the asymptotic nature of the model, with 36	

a possible biased estimation and wrong model selection (Coles, 2001). 37	

 38	

The threshold selection is the first step in the application of POT approach, and the stability of the shape 39	
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	 6	

parameters ξ and the scale parameters σ fitting the GPD is assessed with various thresholds. The threshold chosen 1	

for each station is the lowest value which  stabilizes the estimates shape parameters ξ and the modified scale 2	

parameters σ* (see details later in Section 3.1). The shape ξ, the scale σ and the return levels are estimated using 3	

the Maximum Likelihood Estimator (MLE) using the R software (R Development core team 2015), which also 4	

provides an standard errors of estimates. 5	

 6	

 Multi-occurrence is an important characteristic of extreme climatic events and is referred to as clustering. These 7	

clusters are consecutive occurrences of above threshold events. It is important to treat the clustered extremes to 8	

achieve the independence assumption, which is crucial for the POT model, in order to apply MLE. We treated the 9	

clusters using the concept of Extremal Index (EI) (see Newell, 1964, Loynes, 1965, O'Brien, 1974, Leadbetter, 10	

1983, Smith, 1989, Davison and Smith, 1990). The Extremal Index θ measures the degree of clustering of 11	

extremes. It ranges between 0 and 1, (θ = 0 means strong clustering,   θ = 1 absence of clusters). Leadbetter 12	

(1983) interprets 1/θ as the mean number of exceedances in a cluster. 13	

 14	

The extremal index θ can be estimated in two separate ways. Here, we apply the ‘intervals estimator’ automatic 15	

declustering by Ferro and Segers (2003). A distinctive property of this method is that it avoids the subjective 16	

choice of cluster parameters. The main ingredient is an asymptotic result for times between threshold 17	

exceedances. The exceedance times are split into two types, a set of vanishing intra-exceedance times within the 18	

clusters, and an exponentially distributed set of inter-exceedance times between clusters. The method is iterative 19	

starting with largest return times and stops when a limit for the inter-exceedance times is reached. The standard 20	

errors of the estimated parameters is obtained by a bootstrap procedure. In this study, the extremal index value is 21	

≤ 0.5 in all the time series referring to the clusters. 22	

 23	

The primary focus of the study is to estimate N - years return levels (RLs) x!, which is exceeded on the time 24	

scale of N years (Coles, 2001) and reads 25	

                                                                                                                   26	

                                                𝑥! = 𝑢 +
!

!
(𝑁𝑛!𝜁!)

!
− 1  ,                                                                             (4) 27	

 28	

where N represents the return period, ny is the number of observations per year , ζ!  is the probability of an 29	

individual observation exceeding the threshold 𝑢, the shape parameter is  ξ and the scale parameter is σ. 30	

	31	

2.5. Bias Correction Method  32	

 33	

A simple bias correction is applied to each ERA Interim time series through a rescaling that adjust the first two 34	

moments (mean and variance) to the sample moments calculated on the corresponding observations. Therefore, 35	

the bias correction is applied to the entire time series and it is not tailored to the extreme events only. The bias 36	

corrected ERA Interim time series 𝑥 is expressed as    37	

 38	

 39	

 40	
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𝑥 =  𝑧 +   
𝑦!"# − 𝑦

σ!

 . σ! 

   (5) 1	

 2	

where  𝑦!"# is the ERA Interim time series,  𝑦  and  σ! its mean and standard deviation, whereas 𝑧  and σ! are 3	

the mean and standard deviation of the meteorological station temperatures. The bias corrected ERA Interim time 4	

series shows better results compared to the original ERA Interim data. The comparison of extremes as detected in 5	

the station observations, in the ERA Interim, and in the bias corrected ERA Interim time series is carried out in 6	

Section 3. 7	

3. Results and Discussion  8	

3.1 Threshold Selection  9	
 10	

The threshold selection is the first step in a POT analysis. It is essential to choose a threshold that is high enough 11	

to be in the asymptotic limit of the distribution of exceedances, but low enough to have ample data for the fit. The 12	

threshold selection is performed using diagnostic plots of the modified scale parameter σ* (σ* = σu – ξu) and the 13	

shape parameter ξ of the observed, ERA Interim, the bias corrected ERA Interim Tmax, and TWmax in all stations. 14	

In GPD, the excesses above a high threshold have same shape but shifted scale. In order to deal with this problem 15	

the modified scale σ* is used, because its estimate remains constant above a sufficiently high threshold 16	

guaranteeing that the asymptotic properties are obeyed (Sacrrott and MacDonald, 2012).We observe both the 17	

modified scale parameter and the shape parameter ξ stability plots carefully. The threshold u is selected as the 18	

lowest value where the two parameters are invariant in order to reach the asymptotic limit (Coles, 2001 and 19	

Furrer et al., 2010). Figure 2 shows the parameter stability plots of the station observed Tmax for Karachi only, as 20	

an example to explain the threshold selection procedure. We observe that the 90% quantile is an appropriate 21	

threshold for all the station observed, the ERA Interim, the bias corrected ERA Interim Tmax, and TWmax.  22	

 23	

In addition to diagnostic plots of the modified scale parameter σ* and the shape parameter ξ, the mean residual 24	

life plot is used to select the appropriate threshold for the POT analysis. The mean residual life plot is initiated by 25	

Davison and Smith, (1990), according to them lowest value of the threshold should be selected when the 26	

threshold based mean excesses are consistent. Hence, the threshold is selected when the plot is approximately 27	

linear, like in case of Karachi the station observed Tmax plot appears to be linear and stable at u = 36, indicating u 28	

= 36 as the most suitable threshold for Karachi (Figure 3).  29	

3.2 GPD Fit 30	

 31	

The goodness of fit is evaluated by means of Quantile-Quantile (Q-Q) plots and hypothesis testing. The Q-Q plot 32	

analysis is performed for the stations observed, the ERA Interim, the bias corrected ERA Interim daily Tmax and 33	

TWmax. The Q-Q plots of the observed Tmax show that the GPD fits well in most of the stations. However, in a 34	

few stations the empirical values show slight deviation from the modeled values like Jacobabad, Mohenjo-daro, 35	

Padidan and Chhor. In spite of minor deviations at some stations, still most of the exceedances have a good fit 36	

with the model.  The Q-Q plots of the observed TWmax also show good GPD fits in all stations.  37	

 38	
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The Q-Q plots of the ERA Interim Tmax indicates that the GPD fits are not good. The empirical values of the 1	

higher quantiles are deviating from the theoretical quantiles in all stations. However, if the higher quantiles are 2	

neglected, then the stations like Jacobabad, Mohenjo-daro, Rohri, Padidan, Nawabshah, Chhor, and Badin shows 3	

that the exceedances fit very well. Likewise, the Q-Q plots of the ERA Interim TWmax do not show good fits with 4	

the GPD model. The Q-Q plots of the bias corrected ERA Interim Tmax, and TWmax show better results than the 5	

ERA Interim. We notice that the Tmax of the ERA Interim and bias corrected ERA Interim fit better than the 6	

TWmax if the higher quantiles are ignored.  7	

 8	

In order to assess the goodness-of-fit, we apply the Kolmogorov-Smirnov (K-S) test and Anderson-Darling (A-D) 9	

test to the data of meteorological stations, ERA Interim, bias corrected ERA Interim Tmax and TWmax. The p-10	

values indicate a good performance of the fit procedure. Table 3 displays the results of the K-S and A-D statistics 11	

of the Tmax and TWmax in all the data sets. 12	

3.3 Parameter Estimates  13	

 14	

Here, we analyze the shape parameter ξ , the scale parameter σ, and  threshold u for all considered datasets. The 15	

standard errors of the shape ξ and the scale σ parameters are estimated using the Maximum Likelihood 16	

Estimation (MLE), and given in Table 4. The spatial distribution of the shape parameter ξ and the scale parameter 17	

σ of the GPD in Sindh are shown in Figure 4. The shape parameters ξ are all negative in all datasets at all 18	

stations. This is hardly surprising, as meteorological and physical processes make sure that the temperature 19	

cannot grow locally without control. Figure 4 displays the bias corrected ERA Interim results only. The observed 20	

Tmax shape parameters ξ are between -0.418 to -0.223, and for TWmax within -0.323 to -0.177. The bias corrected 21	

ERA Interim Tmax shape parameters ξ range from -0.305 to -0.002, and TWmax are between -0.18 to -0.01.  22	

 23	

The scale parameters σ of the observed Tmax are from 2.08 to 2.76, and the TWmax are in a range 1.86 to 2.76. In 24	

the ERA Interim analysis, the scale parameter σ of Tmax is within 1.00 - 1.95, and for TWmax within 0.74 -1.75. 25	

We observe a difference in the scale parameters of both the observed, the ERA Interim Tmax  and TWmax. We find 26	

that the scale parameters of the bias corrected ERA Interim data are much closer to those estimated for Tmax and 27	

TWmax using the station data. In the bias corrected ERA Interim Tmax the scale parameters σ are between 1.50 - 28	

2.75, while for TWmax are within a range 1.40 – 2.40 (Figure 4).  29	

3.4 Absolute Maxima 30	

 31	

Once the shape ξ , the scale σ, and the thresholds u are fixed, it is possible to compute the theoretical absolute 32	

maxima using Eq. (3) (Section 2.4). Theoretical absolute maxima can be compared with the observed ones for 33	

each station to better understand the signals of warming in Sindh. The daily maximum temperature Tmax and the 34	

maximum wet-bulb temperature TWmax (station data, the ERA Interim, and the bias corrected ERA Interim) have 35	

negative shape parameter ξ in all stations. This means that according to Eq. (2) in section 2.4, the probability 36	

distribution function (pdf) is bounded by the maximum values. These maximum values are the theoretical upper 37	

limits predicted by the GPD fit. The analysis shows that the observed absolute maxima Tmax and TWmax in all 38	

stations of the three data sets are below the theoretical absolute maximum, as expected (Figure 5). This gives us 39	

confidence on the quality of our fit. The following piece of information can also be derived. Assume that one 40	
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observes in the future an extreme event larger than the maximum inferred in the present dataset; this may suggest 1	

some non-stationarity in the most recent portion of the dataset. 2	

3.5 Return Levels 3	

 4	

The return levels (RLs) are computed considering various return periods (2, 5, 10, 20, 50, 100-year). The return 5	

level plots of the stations observed, the ERA Interim, the bias corrected ERA Interim daily maximum 6	

temperature Tmax and daily maximum wet–bulb temperature TWmax are displayed in Figures 6 and 7. The return 7	

levels follow the north-south gradient of the climatic mean temperatures. The northern parts of the Sindh are 8	

hotter than the southern parts. Therefore, different stations have different potential for maximum temperature 9	

return levels. The stations located in the North are Jacobabad, Mohenjo-daro, Rohri, Padidan, and Nawabshah. 10	

While Hyderabad, Chhor, Karachi, and Badin are sited in the South.  11	

 12	

The 2, 5, 10, 20, 50, 100-year RLs estimated in Sindh for station observed Tmax at time reach over 50°C in 13	

Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and over 45°C in Rohri, Hyderabad, Chhor, Karachi, Badin. 14	

The ERA Interim Tmax return levels are at least 3°C to 5°C lower in all stations. However, the ERA Interim Tmax 15	

captures the geographical variability of the field, but cannot estimate the correct magnitude of the events.  For 16	

example, in Badin the return level of the station Tmax is 42°C in a 3-year return period, while the ERA Interim 17	

show the same value of the return level in a 30-year return period (Figure 6).  18	

 19	

The RLs of TWmax are over the 35°C in all meteorological stations. As for the ERA Interim RLs of TWmax are 20	

greater than 30°C for all the stations except Karachi, which has RLs less than 30°C. Here, we see again that the 21	

RLs of the ERA Interim TWmax are smaller than the RLs of station TWmax. For example, in Badin station, the RLs 22	

of the station TWmax is 38°C in a 4-years return period whereas, the ERA Interim reaches the same RLs in a 15-23	

year return period (Figure 7). 24	

 25	

It is important to underline that the bias between the station and the ERA Interim data is rather relevant when one 26	

wishes to address the impact of hot climatic extremes to the active crop production in the region. The crops are 27	

very sensitive to temperature variations, and even a rise of one degree Celsius can cause detrimental changes in 28	

the phenological stages of the crops (Hatfield and Preuger, 2015). Every crop has a certain limit to tolerate the 29	

temperature. When temperature exceeds this limit, the crop yield is drastically reduced. In summer, the 30	

temperature and humidity increase to an extent that there are high chances of a rapid pests spread in the crops. 31	

Sindh produces cotton, wheat, rice, mango, banana, and dates, so a correct estimate of temperature extremes is 32	

very important in order to avoid the crops failure and the reproduction of pests. Therefore, we apply the standard 33	

bias correction on the ERA Interim data to check the alterations in the return levels and return periods of Tmax and 34	

TWmax. 35	

 36	

The bias corrected ERA Interim Tmax and TWmax, show improvements in the return levels (RLs), along with a 37	

good correspondence in each station. In a maximum temperature Tmax analysis the RLs of the bias corrected ERA 38	

Interim overlap the RLs of the station observations in a range 5-100 years, but do not overlap within a range 2-39	

5years, in the Nawabshah, Hyderabad, Karachi, and Badin. However, the rest of the stations show no overlaps of 40	
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the return levels in both the bias corrected ERA Interim and station observations. In a wet-bulb temperature 1	

TWmax analysis, the RLs of the bias corrected ERA Interim overlap the RLs of the station observations in 2	

Mohenjo-daro, Hyderabad, Chhor, and Badin at some intervals. While, no overlapping of the RLs is detected in 3	

rest of the stations, while they differ at some intervals (Figures 6 and 7).  4	

 5	

The 2, 5, 10, 20, 50, 100-year RLs of Tmax for the bias corrected ERA Interim data are greater than 50°C in 6	

Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C in Rohri, Hyderabad, Chhor, Karachi, 7	

Badin. As for the TWmax, the 2, 5, 10, 20, 50, 100-year RLs of the bias corrected ERA Interim exceed 35°C in all 8	

stations. Figures 6 and 7 show that the ERA Interim time series improves a lot after the bias correction, but the 9	

two data sets still have some quantitative differences. 10	

 11	

The extremes of daily maximum wet-bulb temperature TWmax are estimated as above the human survivability 12	

threshold 35°C throughout the region, so the risk of hyperthermia is very high here. The human habitability in 13	

such a warm region is already at risk. The most vulnerable people are those who are involve in the everyday 14	

outdoor activities like farming, fishing, building construction, athletes, elderly and infants can have heat strokes, 15	

dehydration etc. Therefore, an early warning system is necessary in Sindh, to avoid the crop failure, water 16	

shortages and casualties due to the heat stress each year. 17	

 18	

We also plot the station and bias corrected ERA Interim Tmax, and TWmax return levels spatially for the 5, 10, 25 19	

and 50-year return periods  (Figures 8 and 9), as a detailed spatial overview of the temperature extremes in Sindh 20	

might be of interest to the policy makers. 21	

4. Summary and Conclusion 22	

 23	

The main objective of this study is the assessment of the return levels of the extreme daily maximum 24	

temperatures Tmax and wet-bulb temperatures TWmax in Southern Pakistan (Sindh). In addition, the performance 25	

of the ERA Interim TWmax is compared to the weather station TWmax to assess the ability to estimating 26	

temperature extremes in Sindh. Moreover, a standard bias correction is applied to the ERA Interim data to 27	

improve its performance in representing temperature extremes.  28	

 29	

In summary, the Peak Over Threshold (POT) method is applied to the daily Tmax and TWmax data of nine 30	

observatories and to the corresponding nearest ERA Interim temperature data. Standard declustering technique is 31	

applied to all time series to achieve the independence assumption of extremes. The 90% quantile is the 32	

appropriate threshold choice for the weather stations, the ERA Interim and the bias corrected ERA Interim 33	

maximum temperature and wet-bulb temperature. A Generalized Pareto Distribution (GPD) is fit to both Tmax and 34	

TWmax  for all three datasets. The results show that the shape parameter ξ is negative for all stations. The scale 35	

parameter σ estimated on weather station temperatures is much closer to the bias corrected ERA Interim 36	

estimates than the original ERA Interim data ones. The theoretical absolute maxima of the time series are higher 37	

than the observed absolute maxima in all stations. The Q-Q plots are used to assess the GPD fit, which results to 38	
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be acceptable for both Tmax and TWmax station data as compared to the ERA Interim data. However, the bias 1	

corrected ERA Interim shows improved GPD fits than ERA Interim. 2	

 3	

Return levels (RLs) of Tmax and TWmax are estimated for the 2, 5, 10, 25, 50, 100-year return periods in all 4	

datasets. The RLs of Tmax estimated using the meteorological station temperatures are greater than 50°C in 5	

Jacobabad, Mohenjo-daro, Padidan, Nawabshah, and greater than 45°C in Rohri, Hyderabad, Chhor, Karachi and 6	

Badin. While the RLs of TWmax in station data are larger than 35°C in the entire Sindh, when using ERA Interim 7	

temperatures, they are estimated as greater than 45°C in Northern Sindh and greater than 40°C in southern Sindh. 8	

The differences in the RLs using the two datasets are between 3°C and 5°C for both shorter and longer return 9	

periods due to the minor variations in the shape and scale parameters. Although the ERA-Interim dataset does not 10	

capture well the magnitude of the extremes, but it provides a good representation of their spatial fields. 11	

 12	

A simple standard bias correction is applied to the ERA Interim to assess whether the return levels of extremes 13	

are better predicted after the rescaling is applied. The bias corrected ERA Interim Tmax and TWmax gives return 14	

levels closer to the meteorological stations observed ones than the original ERA Interim return levels at all 15	

stations. Although the bias corrected ERA Interim shows a good correspondence with the meteorological station 16	

data, some differences remain.  17	

 18	

This paper contains novel and beneficial information regarding the assessment of the temperature extremes (Tmax 19	

and TWmax) in Sindh, which would help the local administrations to prioritize the regions in terms of adaptations. 20	

This research fills the gaps in the literature providing information on Tmax and TWmax extremes in Sindh, which 21	

would benefit both public and private stakeholders.  22	
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