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Abstract

The thesis at hand presents the development of new methods for the mining of interaction geometries

in collections of protein structures. The binding between a protein and a small molecule or between

two proteins is a fundamental event in all processes in living cells. Its complete understanding and

manipulation is key in the field of structure-based drug design. The basis of molecular recognition are

non-covalent interactions between atoms. Tools which can be used to mine the ever-growing data

for specific spatial preferences of these interactions can help understanding the nature of molecular

recognition. However, existing tools suffer from low variability and low precision of the used data and

of the possible queries.

In this thesis, two methods have been developed which tackle the problem from two different per-

spectives. The first method, Pelikan, allows a user to search for specific interaction patterns in the

interface between proteins and ligands. Using this methodology, bioisosters and chemoisosters can be

found. This is particular useful if specific substructures in a ligand are to be replaced or a potential

side-effect of a ligand is to be determined. The second method, NAOMInova, calculates and presents

distributions of interacting atoms in the vicinity of molecular substructures in collections of protein

structures. From these distributions, preferred interaction directions can be deduced which is of major

importance in the process of ligand optimization and affinity prediction during a drug design project.

For both methods, a serverless database system is used to efficiently store the relevant data. Fast and

flexible retrieval systems have been developed for these database systems which go beyond existing

methods. The retrieval system of Pelikan supports flexible as well as precise 3D queries on an atomic

level. The NAOMInova method handles user-defined molecular substructures and supports queries

using different attributes of substructures and interacting atoms. In addition, the data used for the

search processes is highly flexible and can be easily adapted. The correctness and the performance

of the retrieval systems are demonstrated in this work and their applicability is shown in different

examples. In addition, graphical user interfaces have been developed as part of this work which allow

immediate and intuitive usage of the methods by life-science researchers.
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Kurzfassung

Die vorliegende Arbeit beschreibt die Entwicklung von neuen Methoden zur Suche nach Interaktion-

sgeometrien in Proteinstruktursammlungen. Die Bindung zwischen einem Protein und einem kleinen

Molekül oder zwischen zwei Proteinen ist ein fundamentaler Prozess in lebenden Zellen. Ein vollständi-

ges Verständnis darüber warum zwei Moleküle binden und dessen Manipulation ist ein wichtiger Aspekt

im Bereich des strukturbasierten Wirkstoffentwurfs. Die Basis von molekularer Bindung sind nicht

kovalente Interaktionen zwischen Atomen. Methoden, die in der Lage sind die wachsende Menge an

Daten nach geometrischen Präferenzen dieser Interaktion zu durchsuchen können helfen die treiben-

den Kräfte hinter diesen Bindungen besser zu verstehen. Existierende Methoden in diesem Feld bieten

jedoch nicht genung Flexibilität und Präzision bezogen auf die möglichen Suchanfragen und in die

analysierten Daten.

In dieser Arbeit wurden zwei Methoden entwickelt die das beschriebene Problem von verschiede-

nen Standpunkten betrachten. Die erste Methode (Pelikan) ermöglicht die Suche nach spezifischen

Interaktionsmustern an der Schnittstelle zwischen Protein und Ligand. Damit können sogenannte

Bioisostere und Chemoisistere entdeckt werden, die insbesondere dann von Nutzen sind, wenn spezi-

fische Substrukturen in Liganden ausgetauscht oder mögliche Nebenenffekte eines Liganden vorherge-

sagt werden sollen. Die zweite Methode (NAOMInova) berechnet geometrische Verteilungen von

interagierenden Atomen im Umfeld von molekularen Substrukturen aus Proteinstruktursammlungen.

Aus diesen Verteilungen können bevorzugte Interaktionsrichtungen abgeleitet werden, die beim Opti-

mieren von Liganden und der Affinitätsvorhersage von Nutzen sind.

Beide Methoden benutzten eine server-lose Datenbank um die benötigten Daten effizient zu speich-

ern. Hierfür wurden schnelle und flexible Suchverfahren entwickelt, die über existierende Methoden

hinausgehen. Im Fall von Pelikan werden flexible und präzise 3D Anfragen auf atomarem Level

unterstützt. Die Methode in NAOMInova arbeitet mit benutzer-spezifizierten molekularen Substruk-

turen und unterstützt verschiedene Attribute von Substrukturen und interagierenden Atomen in den

Anfragen. Zusätzlich können die für die Suche genuzten Daten angepasst werden. Die Korrektheit,

das Leistungsspektrum und die Anwendbarkeit beider Methoden werden in dieser Arbeit demonstri-

ert. Darüber hinaus wurden grafische Oberflächen entwickelt, welche eine intuituve Benutzung durch

Forscher aus dem Bereich der Lebenswissenschaften ermöglicht.
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1
Introduction

Proteins are the workhorses of biochemistry. Almost no biochemical process could take place

without their help. For example, during cell division, the foundation of life, proteins bind

to and replicate the DNA. Proteins are also at the heart of our immune system: Antibodies

are proteins, who precisely bind to a specific structures of germ particles and thereby lead to

their destruction. Moreover, many drugs are based on small molecules binding to a specific

protein to modify their function. For example, the blood pressure is increased by adrenaline

binding to adrenergic β-receptors – proteins which are located in the cell membrane of dif-

ferent organs, e.g., the heart and the kidney. High blood pressure can be cured with small

molecules binding to these receptors in the same way that adrenaline would, and thereby

inhibit the unwanted binding of adrenaline. In all three of these examples, it is of major

importance, that the proteins bind selectively only to very specific ligands. This specificity of

the binding is often called ’molecular recognition’, because the ligand is ’recognized’ by the

protein. These examples show that understanding and designing the molecular recognition

between protein and ligand is key for controlling and understanding biochemical processes.

Already in 1894, Emil Fischer tried to understand why a protein and a small molecule spe-

cifically bind to each other. He postulated that the specific binding of a small molecule to

a protein can be compared to a key which exactly fits to its lock [1]. Nowadays, it is clear

that molecules can have a flexible structure and thus the key as well as the lock can adapt

their structure to each other. However, the main idea of Fischer has been proven right:

The shapes of the two binding molecules have to ’match’ each other. Moreover, upon the

binding of two molecules, non-covalent interactions between atom pairs of both molecules

are formed. For this formation, the atoms have to be in close proximity to each other. Thus,

one could say that in order to be able to build interactions not only the shape of the two

molecules has to ’match’ but also the position of their interacting atoms. Details about the

nature of these interactions and their geometrical properties will be outlines in Section 1.1.

Back in the beginning of the 20th century, drugs were discovered without knowledge about

the molecular processes leading to the diseases which the drugs were meant to cure. Most

of the developed drugs were natural products and were used against infectious diseases [2].

Advances in molecular biology and genetics during the 20th century gave functional insights

1



1. Introduction

into the molecular processes and led to the discovery of malfunctioning proteins as the cause

of many diseases. Knowing this connection, researcher were able to specifically develop drugs

which aim at modifying the function of these proteins.

In the 1980s, computational tools began to emerge in the field of drug design which is now

known as the advent of the ’computer-aided drug discovery’ field [3]. Herein, the ’structure-

based’ methods aim at analyzing the 3D structures of proteins and small molecules and

predicting their specific mutual binding. Many success stories demonstrate the benefit of the

structure-based drug design approach [4,5]. Among the first was the study of Erickson et al.

in which an inhibitor for the HIV protease was designed based on the protein structure [6].

Today, the typical process of ’rational drug design’ includes the identification of a target

protein and the design of a small molecule which specifically binds to it guided by a plethora

of different computer-based tools. This process will be explained in more detail in Section

1.2.

Despite these examples and the substantial progress which has been made since the beginning

of using computational tools in drug-design projects, molecular recognition is still not fully

understood [7] and there are still no methods available which reliably and correctly predict

the binding between two molecules. Technological advancements in X-ray crystallography

have led to the discovery of many molecular structures within the last twenty years [8, 9].

These two facts even increased the demand for computational methods which are able to

handle the growing amount of structural data and filter out the relevant information in order

to guide drug design projects.

The development of computational methods which help to analyze the geometrical prefer-

ences and characteristics of molecular recognition is the focus of this thesis. In the following

sections, the theoretical background relevant for this work is given. At the end of this

chapter, the motivation for the development of these methods is outlined.

1.1. Molecular Recognition in Proteins

Proteins are macromolecules which consist of several, covalently bound amino acids. In pro-

caryotic cells, 20 different amino acids exist. Amino acids can be structurally divided into

the backbone and the sidechain. The backbone is chemically equal in all amino acids and

has an N- and a C-terminus. The covalent bond, also known as ’peptide bond’ is formed

between those termini of the amino acids’ backbone. The side chains of the amino acids

vary and are relevant for their chemical properties.

Proteins can be seen as the tools of live. Their function is mediated through the specific, of-

ten non-covalent binding to small molecules, other proteins, DNA, or RNA. Thereby, various

cellular processes are triggered or inhibited, e.g., contraction of muscles, gene expression, or

signal transduction. The resulting dimer of protein and ligand is also called ’protein-ligand

2



1.1. Molecular Recognition in Proteins

complex’. The binding happens at specific, often hollow-shaped areas in the protein. These

areas are called ’binding sites’. In enzymes, the bound molecule is usually changed in a

chemical reaction which is why the binding site is often called ’active site’ in this context.

The third term ’pocket’ describes hollow-shaped areas in the protein where small molecules

can bind.

In a healthy organism, the cellular balance between active and inactive states, growing and

resting, surviving and dying are maintained by these molecular interactions. Malfunctioning

proteins, however, may lead to imbalances in these equilibriums and thereby cause diseases.

In these cases, drugs are often used to inhibit the binding of a protein to its counterpart in

order to stop or reduce the activity of these malfunctioning proteins. This can be achieved

by designing small molecules which non-covalently bind to the specific protein and simply

occupy its binding site.

The specific, non-covalent binding of two molecules is driven by a negative free binding en-

ergy which consists of an entropic as well as an enthalpic term. Looking at the entropy, two

main aspects have to be considered. On the one hand, the binding of two molecules reduces

the disorder of the system. This is mainly a result of the reduced translational, rotational,

and conformational freedom of both binding partners. On the other hand, the ’hydrophobic

effect’ leads to an increase in the total disorder of the system through binding. The hy-

drophobic effect describes the aggregation of hydrophobic substances in aqueous solutions.

This effect applies if the two binding molecules have hydrophobic spots on their surfaces

which are brought into close contact upon binding. In this case, the water molecules which

used to surround these hydrophobic spots are released into the solvent and the entropy is

increased.

The enthalpic term describes the binding energy of electrostatic interactions between oppo-

sitely charged atoms or groups of atoms. In the course of this thesis these interactions will be

called ’atomic interactions’ in order to avoid confusion with the general interaction between

two molecules. The exact energetic contribution of an individual atomic interaction cannot

be measured and is believed to be highly dependent on the chemical context [10,11]. As for

the entropy, two different processes have to be mainly considered. On the one hand, atomic

interactions between water molecules and the binding site and the ligand are broken up. On

the other hand, new atomic interactions are formed between the ligand and the binding site.

In total, only in those cases in which the binding is energetically more favorable than the

unbound state, a binding occurs.

In the following, the interaction types most relevant in the field of drug design and their

geometrical specifications are introduced. In general, the distance between two atoms which

are involved in an atomic interaction is usually closer than the sum of the atom’s van der

Waals (vdW) radii but not as close as a covalent bond would be.

The ’ionic bond’ is formed via the attractive force between two oppositely charged ions. In

the context of proteins, this type of atomic interaction is relevant for the coordination of
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Figure 1.1.: Schematic depiction specific of atomic interactions. a) Schematic depiction of a hydrogen bond.
D = hydrogen bond donor, H = hydrogen, A = hydrogen bond acceptor, vdWx = van der Waals
radius of atom x, LP = electron lone pair. The black dotted line represents the hydrogen bond.
b) Schematic depiction of the three different geometric arrangements of π-π interactions.

metal atoms. Additionally, charged atoms in side chains of amino acids, e.g., glutamic acid

and arginine, can build ionic bonds. Since the positively charged atom is often bound to a

hydrogen, these ionic bonds are also called ’ionic hydrogen bond’ or ’salt bridge’.

Hydrogen bonds have been described as ”by far the most important specific interaction in

biological recognition processes” [7]. A schematic depiction of a hydrogen bond is shown in

Figure 1.1a. Here, a positively charged hydrogen (depicted as H in Figure 1.1a) is covalently

bound to a partially negatively charged heavy atom, the so called hydrogen bond donor (in

the following denoted as donor, depicted as D in Figure 1.1a). The hydrogen is moreover

in close proximity to another partially negative charged heavy atom, the so called hydrogen

bond acceptor (in the following denoted as acceptor, depicted as A in Figure 1.1a). The

partial charge of an atom is a result of its electro-negativity. Thus, in a biological context,

only nitrogen and oxygen atoms are thought to be donors and only nitrogen, oxygen, and

sulfur are considered acceptors of a ’classical’ hydrogen bond. Several studies on protein

structures have revealed that hydrogen bonds have strong geometrical preferences (for a

review see [7]). Herein, not only the distance between hydrogen and acceptor but also the

global geometry seems to be important. Bissantz et al. [7] report the optimal angle of donor–

hydrogen· · ·acceptor to be above 150◦ and the typical distance between donor and acceptor

to be about 2.9 Å. Looking at the hydrogen bond donor, the optimal position of the hydrogen

should be in direction of the lone pair. The exact geometrical parameters, however, slightly

differ depending on the element types of donor and acceptor [12, 13]. Moreover, different

studies have shown that the exact geometrical preferences seem to depend on the chemical

context, e.g., the functional group or the ring system both the donor and the acceptor are

connected to [14–16]. Also for intra-molecular hydrogen bonds in small molecules, specific

geometric patterns were found [17].

In recent years, more and more attention has been paid to so called ’weak hydrogen bonds’

in the context of drug design. Here, donor atoms with less electro-negativity, e.g., carbons,
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are investigated in more detail [18]. Also for these bonds, geometrical preferences were found

in structures of protein-ligand complexes. However, compared to classical hydrogen bonds,

these preferences seem to be more variable [12] and less easily differentiable from vdW con-

tacts due to similar distances.

Another important group of atomic interactions involve aromatic rings. An overview of the

different interaction types involving aromatic rings has been provided by Meyer et al. [19].

Briefly, the delocalized π electrons are attracted by positively charged atoms. In case of

a cation-π interaction, a positively charged atom is positioned in a short distance on top

of the π electrons. The main structure and energetics of this interactions have been re-

viewed by Me et al. [20]. Additionally, π-π or π-stacking interactions are known. Herein,

the rings are believed to have a quadrupole moment [21]. This means that positive and

negative charges are separated in direction of the ring normal. Mainly, three geometrical

arrangements have been observed in which these aromatic systems attract each other: (1)

T-shaped (or edge-to-face), (2) parallel displaced (or face-to-face), and (3) parallel (or face-

to-face). Schematically, these three arrangements are depicted in in Figure 1.1b. Meyer et

al. [19] reviewed different publications which suggest that the preferred geometry seems to

be dependent on the substituends of the ring [19].

In addition, ’halogen bonds’ have been in the center of research in last years. Examples

of two recent studies are [22] and [23]. In this type of atomic interaction, an attractive

force between a partially positively charged electron hole (so-called ’sigma hole’) in the shell

of an halogen atom and a Lewis base is formed. The electrostatic principles and preferred

geometries of this interactions have been reviewed by Wilcken et al. [24]. A recent survey of

halogen interactions on structures of protein-ligand complexes revealed that varying geome-

tries can be observed depending on the involved amino acid [23].

Apart from the described interactions, many more exist which were reviewed by Bissantz

et al. [7] and Meyer et al. [19]. In this section, only the atomic interactions most relevant

in the context of structure-based drug design have been described. In summary, specific

geometrical preferences have been reported for all of them which strongly depend on the

respective chemical context.

1.2. Structure-Based Drug Design

In the field of structure-based drug design, the design process of drugs is based on the 3D

structure of the target protein and the exploitation of the associated atomic interactions. At

the beginning of such a process stands the identification of the target protein. A classical

target protein is associated with a specific disease and carries out its function through binding

a small molecule at a clearly definable binding site. In recent years, more and more attention

has also been paid to protein-protein interactions, i.e. proteins which bind to other proteins
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[25]. In both cases, the main goal is to modulate the protein’s function by developing a small

molecule which competes for this binding.

After the target protein has been defined, the 3D structure of the protein has to be elucidated.

Here, mainly two different experimental methods are used: X-ray crystallography and nuclear

magnetic resonance (NMR).

After the structure of the target protein has been determined, the binding site needs to be

identified. This is most often the exact spot where the natural ligand binds. However, due

to the principle of allosteric regulation, also other binding sites can be used [26].

This step is followed by the actual drug-design process, which can be divided into two

subsequent steps:

• Lead identification.

• Lead optimization.

1.2.1. Lead identification

Computer-based approaches for the identification of a lead compound, i.e., a molecule which

strongly binds to the target protein, can be divided into three categories [3]:

• Modification of a known ligand.

• Screening of a virtual library.

• De novo generation of ligands.

Modification of a known ligand. For this approach, knowledge about the binding pose of

a ligand is required. This is often gained through co-crystallizing the target protein with

the ligand. Chemical modifications of the ligand can then be applied and convert it into a

more potent inhibitor. The binding affinity of this modified ligand can be assessed experi-

mentally or virtually by using docking methods. Often, the latter method is used first and

only promising compounds are later tested in the more cost- and time-intensive experimental

assays. There are different docking methods, which analyze the structure of both the binding

site and the ligand. These try to predict the binding pose and sometimes also the affinity [27].

Recent advances in docking methods have been reviewed by Yuriev et al. [28]. An integral

part of these methods is a scoring function. Amongst other parameters, it evaluates the

atomic interactions build in the interface.

Screening of a virtual library. Different libraries exist that can be used for virtual screening.

Among them is the ZINC [29] database which is a set of purchasable molecules. Other sources

for virtual sets of compounds are the National Cancer Institut (NCI, https://www.nih.gov/)
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and PubChem (https://pubchem.ncbi.nlm.nih.gov) [30].

Screening algorithms can handle these large compound sets and detect those molecules which

potentially bind to the defined binding site with high affinity. As for the docking methods,

scoring functions are used to predict the binding of a small molecule. An overview about

virtual screening methods is given by Lionta et al. [31].

De-novo generation of ligands. In this approach, small molecules which should bind to

the binding site of the target protein are newly generated. Two different approaches exist:

’fragment based’ and ’atom based’ [32]. In ’fragment-based’ approaches, small molecular

fragments are first placed into the binding site. Then, in several steps, other fragments or

functional groups are connected to the initial fragment. Thus the fragment ’grows’ to a

’full’ ligand. In every step, the binding is evaluated and only optimal solutions are kept. In

structure-based approaches this evaluation is performed using scoring functions which also

take atomic interactions into account. Atom-based approaches in principle have a similar

workflow as fragment-based approaches. However, the building blocks are not chemical frag-

ments or functional groups but atoms. More information about de-novo generation of drugs

is provided in a review by Hartenfeller and Schneider [32].

The compound generated by these procedures are often subject to a ’hit-to-lead-optimization’

which is comparable to the approach followed in the ’modification of a known ligand’. In this

process, the compounds are chemically modified in order to improve their binding affinity.

1.2.2. Lead optimization

In this step, the identified leads are optimized in order to improve the ADMET properties of

the molecules without reducing its affinity: (A) absorption, (D) distribution, (M) metabolism,

(E) elimination, (T) toxicity. For some of these properties, the unintended binding of the

lead compound to non-target proteins is a very important examination since this can lead

to unwanted effects such as side-effects. For example, the binding of a drug to the hERG

potassium channel has been shown to lead to cardiac arrhythmia in the past [33]. Moreover,

the binding to the protein P-glycoprotein is associated with drug resistance as P-glycoprotein

is able to export small molecules form cells [34]. Within the process of optimizing ADMET

properties, similar techniques are applied as in the ’hit-to-lead-optimization’ process.

After the lead optimization, the molecules are tested in-vitro, in-vivo, and finally in clinical

trials.
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1.3. Data Foundation for Analyzing Atomic Interactions

The previous sections showed that structures of proteins and small molecules have an impor-

tant impact on the drug design process. On the one hand, they are used to perform statistical

surveys and provide insights into the process of molecular recognition. On the other hand,

they are the fundamental prerequisite in structure-based drug design endeavors. Two main

libraries of molecular structures build the foundation of these tasks: (1) the Cambridge struc-

tural database (CSD) [35] and (2) the Brookhaven protein data bank (PDB) [36]. The CSD

contains structures of small molecules whereas the PDB is a database for macromolecular

structures, mainly proteins. The structures from the CSD and the majority of the structures

contained in the PDB have been measured experimentally by X-ray crystallography.

Today, the commercial repository CSD contains more than 800 000 structures. Almost

130 000 structures are nowadays part of the PDB. The number of structures has increased

exponentially over the last years and also the quality of the structures is constantly improv-

ing. In addition, the diversity of proteins in the PDB is increasing due to different structural

genomics projects [37]. Given that the PDB is an open source repository, it displays a good

means to investigate atomic interactions between proteins and other molecules.

However, there are some drawbacks and hurdles when working with structures from the PDB.

First of all, since most of the structures have been elucidated with X-ray crystallography,

only the parts of the molecules which contain electrons are resolved. Hydrogen atoms can

only be detected in high resolution experiments, because here the binding electrons can be

measured which are confined to a small spatial region. Secondly, again due to the experi-

mental measurements, the exact orientation of δN and δO in asparagine and glutamine side

chains cannot be determined. The same holds true for the aromatic ring in the histidine

side chain. Thirdly, the crystallized molecule is in a non-native state. In solution, molecules

are dynamic and there might be larger or smaller movements of some atoms. The structure

in a crystal can therefore only be seen as a snapshot of the structure. Moreover, structural

artifacts might occur due to the crystallization process, called packing effects. These mainly

occur on the surface of the crystallized molecules where they are artificially in close contact

to other molecules. Fourthly, errors might occur while fitting the molecular structure into

the electron density. These can result in atoms being placed outside the electron density or

inside too large bulbs of electron density.

For the first two problems, tools exist which compare all possible hydrogen positions and

amino acid orientations and return the most probable solution. In this work, the tool Pro-

toss [38] is used for this task. The third problem is relevant for those parts of the structure

which can be in contact to neighboring molecules inside the crystal. It is therefore important

to inspect the analyzed region of the protein for those contacts before drawing structural

conclusions. The tool Ligand Protein Contact (LPC) [39], published in 1999, even provides

an automated analysis of crystal contact in protein structures. However, the web service is
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not active any more.

The fourth problem can be handled by checking the electron density support. Nowadays,

structure factors have to be added to every newly deposited structure in the PDB. Here, the

EDIA (electron density for individual atoms) is used to calculate the experimental support

for protein structures [40, 41].

Besides these structural problems, the data collection provided by the PDB also suffers from

a structural bias. On the one hand, the PDB contains only structures from proteins which

are crystallizable. Especially trans-membrane proteins are thought to be difficult to crystal-

lize and thus these proteins are underrepresented in the PDB. On the other hand, protein

structures in the PDB are uploaded by researchers. Therefore, proteins which are subject of

many research projects are overrepresented in the PDB.

However, keeping these difficulties in mind when working with the PDB and while gener-

ating statistics, the structures from the PDB can be used to deepen the knowledge about

atomic interactions. Excellent reviews about the limitations of X-ray crystallographic data

and possible validation approaches in the context of structure-based drug design have been

written by Davis et al. [42], Deller and Rupp [43], and Warren et al. [44].

1.4. Motivation

In structure-based drug design the generation or identification of small molecules which are

able to bind to a specific target protein by satisfying all interacting atoms in the binding site

is one major goal. Within this context, there are especially four applications for which the

knowledge about geometric preferences of these interactions is required:

• Parametrization of scoring functions.

• Assessment of ligand selectivity.

• Fragment-based drug discovery.

• Hit-to-Lead optimization / Lead optimization.

Parametrization of scoring functions. In applications like virtual screening or docking, scoring

functions are essential to predict and evaluate the binding of a small molecule to a protein.

The formation of atomic interactions is one major component here. The better the geometry

of an atomic interaction, the higher is its estimated energy contribution. In this context, cor-

rect and precise geometric parameters should lead to a large predictive power of the method.

Assessment of ligand selectivity. For this task, the principle of chemoisosterism can be used.

Chemoisosterism describes the property by which different protein environments can bind to
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the same chemical fragment [45]. The binding of this fragment might involve more than one

atomic interaction. It can be used to investigate why some drugs bind to several different

proteins (polypharmacology) and thus draw conclusions about the selectivity of a ligand.

Fragment-based drug discovery. In order to find the initial fragment for a fragment-based

de-novo design of a drug, the principle of bioisosterism can be used. Bioisosterism describes

the property by which different chemical fragments can bind to the same protein environ-

ment. More than one atomic interaction might be involved in this binding.

Hit-to-Lead optimization / Lead optimization. In both optimization steps, the properties of

a molecule are improved in order to increase its affinity to a target protein or to reduce its

toxicity. Herein, the knowledge about preferred interaction geometries and their dependence

on the chemical context are used in different ways:

• Exchange of functional groups. The affinity of a lead can be optimized by identify-

ing suboptimal atomic interactions. Afterwards, the involved functional group in the

molecule can be replaced by another group such that the resulting geometry is within

optimal ranges for the new atomic interaction. In a similar way, the affinity to an

unwanted target can be reduced.

• Saturation of all atomic interactions. There are atoms which can be involved in more

than one atomic interaction at the same time. If the affinity of a known ligand should

be optimized, the knowledge about the number of interactions and their directions can

guide the exchange process in order to saturate all interactions.

• Exchange of chemical fragments. Here, the principle of bioisosterism is used in order to

exchange chemical fragments in a lead molecule. In this context, a chemical fragment

is larger than a functional group and several atoms of the fragment might be involved in

atomic interactions. On the one hand, this exchange could improve the affinity. On the

other hand, there are known chemical fragments which are associated with undesired

molecular properties, e.g., toxicity. In this case, exchanging a chemical fragment could

improve the molecular properties without reducing its affinity.

From a broader perspective, the required knowledge which is needed for the above mentioned

tasks can be divided into two different groups. One the one hand, knowledge about larger

chemical substructures and their spatial surrounding is needed to infer chemoisosters and

bioisosters. Herein, the focus lies on a spatial interaction pattern rather than on one atomic

interaction. Specific chemo- and bioisosteric cases are more relevant then statistics on large

data sets in this context. This problem will be referred to as ’the search for interaction

patterns’.
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All other described application scenarios require information about preferred interaction di-

rections for specific substructures. Herein, the focus lies on interactions built by one specific

atom of the substructure. Large numbers of cases are required in order to infer statistical

relevant parameters. In the following, this problem will be called ’deduction of preferred

interaction directions’.

Automated tools which easily find the required geometrical information on sets of structural

data are mandatory in order to comply with all above mentioned tasks. Due to the constantly

increasing amount of available data, such as protein structures in the PDB, these tools need

to handle large amounts of data efficiently and have to be able to comprehensively present the

relevant data. The resulting information can then be used to improve the parametrization of

scoring functions, automatically provide information about interchangeable functional groups,

easily detect bioisosters and chemoisosters, and can be used to identify and characterize new

types of atomic interactions. The focus of this work is therefore the development of two

stand-alone tools. One of them enables searches for interaction patterns while the other one

is able to deduce preferred interaction directions of molecular substructures.

1.5. Overview of Content

This thesis is structured in the following way:

Chapter 2 gives an overview of available tools for the search of interaction patterns and

the derivation of preferred interaction directions and outlines their achievements and their

limitations.

Chapter 3 describes the aims pursued by this thesis.

In Chapter 4, the methods used and developed in the course of this thesis are explained.

Firstly, the used software library is introduced. Afterwards, the algorithmical concepts and

data structures developed in the course of this thesis are explained.

In Chapter 5 the experiments used to evaluate the developed methods are explained.

Chapter 6 and 7 then show and discuss the results of the two developed methods.

Finally, Chapter 8 summarizes the achieved results and provides an outlook into future

developments.
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State of the Art

In this chapter, the relevant literature for the two identified problems is presented: the search

for interaction patterns and the deduction of preferred interaction directions. At the end of

each section the features and limitations of the different approaches are summarized.

2.1. Searching for Interaction Patterns

This section discusses software tools that aim at finding spatial patterns of atoms in sets

of macromolecular structures. Among them are tools which search for interaction patterns

which is one of the main focuses of this work. Moreover, tools are included which aim at

searching spatial patterns of connected atoms in proteins. These tools are included because

in principle they handle the same problem which is the search for a specific spatial pattern

of atoms in a large set of macromolecules. During the comparison, special attention is paid

to four aspects:

• Type of geometric patterns that can be searched.

• Data preparation and storage.

• Search algorithm.

• Presentation and postprocessing of results.

In the following sections, a set of tools which enables the search of spatial atomic patterns on

macromolecular structures is presented with regard to these four aspects. Conceptually, this

set of tools can be divided into two groups regarding their target structures: proteins and

protein-ligand interfaces. The first category contains the tools 3DinSight [46], Erebus [47],

Suns [48], ASSAM [49], IMAAAGINE [50], and PDBeMotif/MSDMotif [51]. Therein, 3Din-

Sight was already published in 1998 and was, to my knowledge, the first tool enabling this

kind of data mining. The other tools started to emerge about a decade later. These tools

are mainly used for the comparison of structural features of proteins and for the deduction

of their functionality. The second category is comprised of the tools CSD-CrossMiner [52],
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PRDB [53], Prolix [54], and Relibase [55]. These tools have been developed between 2003

(Relibase) and 2016 (CSD-CrossMiner). Relibase is also available in a commercial version,

called Relibase+. This version provides some additional features and supports different

queries. Therefore, both versions will be treated as different tools in the following compar-

isons. These tools are mainly used in order to study the formation of interactions between

proteins and small molecules. A detailed description for each tool can be found in Appendix

A.1. Among the presented tools, Erebus, Suns, ASSAM, IMAAAGINE, Relibase, and PDBe-

Motif provide a web service which is still operating and freely accessible. All other tools

have either never been publicly available (CSD-CrossMiner, PRDB, Prolix, Relibase+) or the

service has been suspended (3DinSight).

Besides the listed tools, there are some commercial software solutions which have never been

published in scientific journals: Psilo [56] (Chemical Computing Group Inc.) and PLDB [57]

(Schrödinger LLC). According to the website, Psilo contains a database system which pro-

vides access to macromolecular structures. One feature of this database system are geometric

queries between protein and ligand. PLDB provides searches for geometric parameters and

interaction motifs. However, nothing can be said concerning their search mechanism nor

their retrieval speed.

2.1.1. 3D queries

In this section, the set of tools is analyzed regarding their supported 3D queries and their

means to define these queries.

In general, the supported 3D queries differ strongly between the different tools. In most of

the tools, the 3D query consists of search objects which can be combined by distance con-

straints. These objects may be peptides, amino acids, ligand substructures, or atoms. This

category contains the tools 3DinSight, IMAAAGINE, PDBeMotif, PRDB, Prolix, Relibase,

and Relibase+. However, the precision of the 3D query among these tools is very different.

In IMAAAGINE, a 3D query consists of distance constraints between up to eight amino acids.

Herein, an amino acids is considered as one unit. Hence, the distance constraint cannot be

defined for a specific atom of an amino acid. Similar reductions of amino acids to one unit

are done in 3DinSight. On the opposite, in Relibase+ molecular substructures for the protein

and the ligand can be defined and distance and angle constraints can be added for each pair

of atom. In Relibase, this functionality is limited to inter-molecular distance constraints be-

tween pairs of atoms. In that comparison, tools like Prolix, PDBeMotif, and PRDB support

semi-precise 3D queries as distance constraints for specific atoms can be defined for some of

the possible search objects.

Besides the atom-level precision, the flexibility in terms of constraint ranges is different in

the 3D queries of these tools. For example, in Relibase and Relibase+, distance constraints

between atoms can be defined using a range of allowed distances. This is helpful if some
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part of the 3D query should be exactly matched by the results whereas in other parts, some

flexibility can be tolerated. Similar distance ranges can be used in 3DinSight, PRDB, and

Prolix. In IMAAAGINE, only one tolerance value valid for all defined distances can be de-

fined. Even less flexible is the search in PDBeMotif, where only fixed tolerances can be used

for distance constraints.

Moreover, the tools in this first category differ in their means to define a 3D query. 3DinSight

and PRDB only work with SQL queries. Hence, the definition of complicated geometrical

patterns can be quite difficult. All other tools provide 2D graphical interfaces which allows

the definition of search objects and mutual distances between the objects.

The second category contains tools which are able to search for exact geometrical patterns

which are not defined via distance constraints but by complete substructures. This means

that the query is defined by one or several molecular substructures in which every atom

requires a valid 3D coordinate. These tools are Erebus, Suns, ASSAM, and again PDBe-

Motif. Erebus, Suns, and PDBeMotif can all be seen as precise on an atomic level because

the complete pattern from the 3D query is searched and only small geometrical deviations

are allowed. As explained in the following section, ASSAM reduces each amino acid of the

query structure to one unit which represents the spatial orientation of the side chain in a

very simplified way and can therefore not be seen as precise on an atomic level. All of these

3D queries are not flexible as no allowed geometrical deviation for specific parts of the query

can be defined. PDBeMotif appears in both categories because both types of searches are

possible.

The tools in this category highly differ in their provided ability to define a 3D query. Erebus

and ASSAM require a 3D query in pdb file format. This is a convenient way if a specific

part of a known protein should be searched. However, setting up 3D queries from scratch

can be quite difficult. PDBeMotif provides here a set of predefined motifs and a graphical

user interface to define amino acid sequences with specific backbone angles. However, for

larger structures, this can be very difficult as backbone angles have to be known for each

amino acid. In that respect, the tool Suns provides a very convenient way to define queries:

a protein can be loaded and fragments of interest can be selected in a 3D viewer. The

downside of this approach is, however, that no query can be constructed from scratch.

In general, the search for larger 3D structural units is more relevant on protein structures

where specific folds of structural elements are searched. This is reflected by the fact that

this category contains only tools which focus their search on protein structures.

The search supported by the tool CSD-CrossMiner fits to neither of the aforementioned

categories. Here, the spatial arrangements of specific atom types is searched. The search

elements are spheres around selected atoms. The radius of a sphere encodes the allowed
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structural variance. The 3D query is classified here only as semi-precise because only prede-

fined types of atoms can be used for the search, e.g., a carbon of a methyl group. Also the

flexibility of the 3D query is only rated as semi-flexible. The reason is that the used spheres

allow to define the geometrical flexibility of the position of an atom. However, its position

cannot be defined differently with respect to the other atoms in the 3D query. As in the tool

Suns, CSD-CrossMiner provides a 3D view in which structures of interest can be loaded and

a 3D query can be defined visually by selecting specific atoms.

Besides the 3D query, only a few tools provide the possibility to combine the geometrical

search with numerical or textual properties of the protein, the ligand, or the complex, e.g.,

the resolution, the organism. These are Relibase, Relibase+, 3DinSight, and PRDB.

In conclusion, it can be seen that Relibase+ is the only tool supporting precise and flexible

3D queries where every substructure can be drawn and any geometrical constraint can be

added. The most convenient means to define 3D queries from existing 3D structures are

provided by Suns and CSD-CrossMiner.

Data preparation

Almost all tools presented here have in common that they use relational databases to store

the precalculated data. CSD-CrossMiner uses an SQLite database and Suns utilizes an

in-memory database. For Erebus, no comment about the storage of data is made in the

publication.

Almost all tools store general information about each used macromolecular structure in order

to be able to reconstruct relevant information for the resulting hits, e.g., the resolution, the

PDB code, and the release date. However, they strongly differ in their way to precalculate

data which is used for the 3D search.

The tools PRDB and PDBeMotif calculate distances between atoms of small molecules and

amino acids and store them in specific tables. Similarly, 3DinSight and Prolix store distances

between C-α coordinates of amino acids. Thereby, 3DinSight uses all pairs of amino acids

whereas Prolix uses only those amino acids which are in close proximity to a ligand.

ASSAM and IMAAAGINE store the macromolecular structures as graphs. Herein, each amino

acid is transformed to a vertex in the graph. The edges between the vertices represent the

mutual distances between specific points within the amino acids. In both tools the graphs

are complete, meaning that all pairs of vertices are connected by an edge.

A third category of tools uses specific index techniques in order to rapidly reduce the number

of possible results. Herein, Relibase and Relibase+ use topological fingerprints for ligands.
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Prolix stores for each ligand the type of amino acids in its vicinity and its atomic interactions

to amino acid types in a bit vector. In a similar way, CSD-CrossMiner stores the existence

of specific atom types within a protein-ligand interface in a bit vector.

Comparable to a fingerprint technique is the data preparation of Suns. Here, the protein

structures are divided into cubes with 15 Å side lengths. All molecular fragments of two to

eight atoms within these cubes are enumerated and stored.

These different data storing techniques can only be judged in combination with the search

mechanism. However, an obvious disadvantage would be a large size of the stored data.

Unfortunately, the database sizes of the different tools are not given in the respective pub-

lications. Only the authors of Suns state that the storage of 24 218 protein chains requires

89 GB of memory. Given the fact that the complete PDB contains about 130 000 files nowa-

days, advanced hardware components would be required if searches on the complete PDB

were to be performed with this approach.

Search mechanism

The search mechanism is strongly coupled to the data stored in the database. The tools

ASSAM and IMAAAGINE which store all proteins as graph data structures also translate the

query into such a graph data structure and carry out subgraph mining algorithms. ASSAM

is doing this by building product graphs followed by a the clique detection algorithm of Bron

and Kerbosch [58]. IMAAAGINE utilizes the algorithm of Ullmann [59].

The tools PRDB and 3DinSight directly store distances and angles between atoms and amino

acids. Moreover, they only support queries in SQL. Thus, the query mechanism only consists

of a database query. Unfortunately, nothing is known about the exact query mechanism

which is used in PDBeMotif.

The remainder of the tools all pursue a similar strategy: Different techniques are applied in

subsequent steps in order to reduce the number of possible results until a precise matching

is performed in the final step. Here, Erebus first translates the query into pairwise distances

between atoms. These distances are searched in the database in subsequent steps. In a final

step, the complete match is constructed by combining the detected results for all distance

constraints. The tools which store fingerprints, namely Prolix, CSD-CrossMiner, Relibase,

and Relibase+ first use these descriptors before a precise matching step is performed. Prolix

and CSD-CrossMiner store features of specific pocket attributes. Thus, the first step contains

the detection of pockets which contain all relevant features. Relibase and Relibase+ store a

fingerprint for ligands. Hence, this technique can only be used if the query contains a ligand

substructure. In a similar way, Suns first detects all cubes which contain the fragments

requested in the query. Afterwards, the correct positioning of the fragments within a cube

is verified using the algorithm of Kabsch [60].
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The most important aspects on which a search mechanism can be judged are speed and

correctness. In regard of the latter, the tool Suns demonstrates poor performance. Due to

the arbitrary fragmentation of the data in cubes, no hits which span cubes can be detected.

Thus the results might be not complete. Slight problems concerning the correctness can

also be observed with the tool CSD-CrossMiner. Here, a query consists of spheres which

represent the position of atoms. During the search, the query is converted into distance

constraints between spheres. The complete results are finally constructed from these distance

constraints. Due to this procedure, it might happen that hits contain atoms which are

positioned outside of the query spheres. However, given the sometimes high inaccuracy of

the used structural data, this problem might be negligible in this application scenario. All

other tools should in principle be able to find all correct results.

Concerning the retrieval speed, it is difficult to compare the tools because they can handle

different geometrical queries. Moreover, some of the tools are not publicly available. Others

are only reachable via web interfaces. The hardware they are running on is not known making

runtime measurement difficult to compare. Hence, only the runtimes stated in the respective

publications are taken into account here.

In general, tools which find their results in a short time or even support interactivity are more

convenient for potential users. In total, runtimes between <1 s and 6 min are reached with

the reviewed tools here.

Remarkably, Suns achieves these runtimes on a database containing only 272 non-redundant

protein chains. For a database containing the complete PDB, these runtimes could be much

higher.

In PRDB, geometrical queries have to be defined in SQL and are directly applied on the

database. Here, runtimes between 0.03 and 398 s on the complete PDB are reported. These

numbers directly reflect the response time of the database and thus can be seen as a score

for the database design used in PRDB. The high runtimes result from queries which contain

amino acid triplets with mutual distances. These distances are stored in the database and a

six time self-union of this table is required for this query.

Furthermore, it is remarkable that for Prolix very short runtimes below 5 s for typical queries

are reported. On the other hand, for ASSAM runtimes of about 6 min for typical 3D queryies

are reported. Both tools were published in the same year (2012) but nothing is known about

the efficiency of the used hardware components, respectively.

From this small overview it could be concluded that fingerprint based-techniques can be

beneficial and can accelerate the following exact matching procedure. The storage of all

possible data as done by PRDB does not automatically lead to fast retrieval times and

reduces the variability of the supported queries.
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Result presentation

All tools provide a list of results, including the PDB code of the hit. Besides this, several

tools provide the possibility to inspect the results visually in 3D. These are all tools except

from 3DinSight and PRDB. For 3DinSight and PRDB, however, no comment about a visual

presentation of results has been made in the respective publications.

The tools Suns, ASSAM, and CSD-CrossMiner even provide the possibility to superimpose

the results based on the geometrical query. This enables the direct identification of differ-

ences and common structural features among the results. In my opinion, a very important

functionality in the context of interaction pattern searching.

Relibase+ only provides the possibility to superimpose similar proteins based on their se-

quence which is not very helpful if the results based on a 3D query should be analyzed in

more detail. However, Relibase+ is the only tool which can be used to analyze crystallo-

graphic packing effects in macromolecular structures [61].

Prolix, Relibase, and Relibase+ also provide statistics on the resulting hits. In Prolix, the per-

centages of hits which contain a specific interaction are visualized. Relibase and Relibase+

present histograms showing the distribution of the measured distance and angle constraints

within their ranges from the query.

The tool Suns argues that it is perfectly suited to support the refinement of queries. Once a

query has been answered, all resulting structures can be seen in a superposition and specific

structural features can easily be spotted. From that view, the previous query can be refined

by adding or changing constraints.

This overview of additional features for analyzing the results is probably not complete. Here,

only features which are reported in the respective publications and which were considered

useful in the context of structure-based drug design are given. In my opinion, the extraction

of important information out of the result set is a very important functionality. Results of a

structural search are less meaningful if they cannot be compared structurally. In this context,

two functionalities seem to be extremely helpful: the superposition of the resulting structures

and the extraction of statistics.

A complete overview about the most important aspects of the different tools is given in Table

2.1. It is obvious that no tool has the optimal characteristic in all the different columns.

These are first of all the correctness of the search and an atom-precise query with possible

ranges for distance and angle constraints. Tools for the superimposition and visual inspection

of the result should be provided and statistics on the resulting hits should be accessible. The

specificity of the tool could be even increased if the analyzed data set could be defined

and easily exchanged by the user. Thereby, one tool could provide the possibility to find

bioisosteric replacements in a non-redundant set of protein-ligand complexes. At the same
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Search algorithmQuery variability
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of results

Results
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3DinSight yes no yes yes no no no SQL query

Erebus yes only protein no no no no no Incremental, start

with all pairwise

distances

Suns no only protein no no no yes no Incremental, starting

with fragment search

ASSAM yes no no no no no no Subgraph matching

IMAAAGINE yes no no no no no no Subgraph matching

PDBeMotif/

MSDmotif

yes only ligand no no no yes no ?**

F
o
cu
s
o
n
p
ro
te
in
-l
ig
an

d

in
te
rf
ac
es

CSD-

CrossMiner

no semi semi no no yes no Incremental, start

with fingerprint

PRDB yes yes yes yes no ?** ?** SQL query

Prolix yes only ligand yes no no no yes Incremental, start

with fingerprint

Relibase /

Relibase+

yes yes yes yes no no yes Incremental, start

with fingerprint

optimal tool yes yes yes yes yes yes yes –

Table 2.1.: Tools which enable 3D searches of atomic patterns. The first part of the table contains tools which focus on the search on proteins. The
tools in the lower part of the table focus on protein-ligand interfaces. *Here, data refers to the data set on which the search is performed. **
Information not provided in the respective publication.
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time, this tool could be used to detect chemoisosteric replacements among a set of similar

proteins. To my knowledge, a simple switch of the analyzed dataset is not possible in the

above described tools. Finally, only a small amount of tools allows the combination of a

geometrical query with constraints for textual and numerical properties of the protein, the

ligand, or the protein-ligand complex. These additional constraints could help to precisely

tailor a structural search to a users demand.

Hence, there is a lack of tools which can rapidly answer precise and flexible geometrical

queries on an atomic level.

2.2. Deduction of Preferred Interaction Directions

In the last 30 years, several studies have been performed which all aimed at deducing in-

teraction preferences for specific chemical fragments. A comprehensive overview on studies

performed to deduce geometrical preferences in hydrogen bonds can be found in [16]. More-

over, several studies have been performed in order to detect interaction preferences in macro

molecular structures more generally. Among these, some studies focused on fragments of

ligands [62, 63], others focused on fragments of amino acids [64–67], and a third group in-

vestigated both, fragments derived from ligand and protein [68, 69]. [62, 63, 69] even used

statistical models to calculate probabilities of interaction geometries.

Despite the large number of studies on the topic of preferred interaction directions, only very

few research groups have published ready-to-use tools implementing their methodology for

other users. The remainder of this section will focus on those studies for which a tool is or

has been available and discuss their strengths and weaknesses.

To my knowledge, in 1990, Sirius [64] was the first tool which calculated preferred directions

of atomic interactions in macromolecular structures. This work resulted in the ’atlas of pro-

tein side-chain interactions’ [70] and has later been used to evaluate the binding of peptide

inhibitors [71]. Sirius’ basic idea was later extended in the tool X-Site [65] in 1996. One

year later, the tool IsoStar [68] was published which still is the most powerful tool available.

Its main advantage is that it uses CSD data on top of the commonly used PDB. In 2014 the

tool GIANT [66, 72] has been published which in contrast to the other tools discussed here

uses statistical models to analyze the molecular data.

Among those tools, GIANT is the only currently publicly available tool and can be accessed

via a web service. IsoStar is commercially distributed as a stand-alone tool.

In the following, these tools are analyzed with regard to their data preparation and their data

presentation. Moreover, a detailed description for each tool can be found in Appendix A.2.
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2.2.1. Data Preparation

The main idea of data preparation is very similar in all four tools: specific molecular sub-

structures are identified in a data set of macromolecular structures. These substructures

are then transferred into a reference coordinate system and the positions of surrounding,

interacting atoms or other substructures are recorded. The four tools reviewed here mainly

differ in their way how the molecular substructures are defined.

In Sirius, complete side chains of amino acids are used as substructures and the positions of

surrounding side chains are recorded. In X-Site, the molecular substructures is generated by

breaking up each amino acid within a binding site of a ligand into overlapping three-atom

fragments. For each fragment, the distribution of interacting atoms is then recorded. Herein,

chemically equal fragments coming from different amino acids are combined.

GIANT follows a very similar approach. However, the main aim here is to classify spatial

interaction preferences without mixing the data from different amino acids. To this end,

each amino acid is decomposed into fragments of three connected atoms. The specification

of each fragment includes specific atom names for each position within an amino acid and

the amino acid type. Hence, fragment which derive from different amino acids are treated

as different fragments even though they might be chemically equal. Surrounding atoms of

ligand molecules are detected for each fragment. For each atom type of these interacting

atoms, spatial propensity functions were calculated using a Gaussian mixture model. The

results are regions around the defined fragment having a high probability of hosting a specific

ligand atom. The calculated data is stored in a database.

In IsoStar, a predefined set of functional groups is used as molecular substructures. For each

functional group, the distribution of relevant atoms as well as other functional groups is

recorded. Herein, it is differentiated between the original structure of the functional groups,

e.g., protein or ligand. The data is stored in different data files, one for each combination

of functional groups.

Even though the tools use different ways to define their set of analyzed substructures, almost

none of them supports the flexible extension of this set. Only for IsoStar, the tool IsoGen can

be used to generate data files for custom defined substructures. However, this only works

for the CSD data set and not for the PDB [73].

In all four tools, the resolution is used as only quality criterion of the analyzed structures.

Herein, Sirius, X-Site, and IsoStar use an upper limit of 2.0 Å whereas GIANT uses all struc-

tures with a resolution below 2.5 Å.

Moreover, the set of analyzed macromolecular structures cannot be exchanged in the re-

viewed tools. Again, only IsoStar makes a small difference here since the CSD and the PDB

can be used. However, it is not possible to use a set of interesting macromolecular structures,

e.g., all structures derived from a molecular-dynamics simulation, and analyze the preferred
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interaction directions therein.

2.2.2. Data Presentation

The presentation of the analyzed data and the means to tailor the presented data to a users

specific request is an important aspect of the usability of a tool. Only a clear and compre-

hensive presentation can help researchers with sound decision making in the rational drug

design process.

In IsoStar, the distribution of atoms around a central substructure can be presented in two

different modi: the atoms are either displayed as dots or a contoured density surface is shown.

The latter can be created only for a specific element type. For each dot, a backlink to the

original structure is provided. Moreover, sets of presented atoms can be reduced to only

those in a specific distance to the central functional group. Distance distributions can be

visualized in a histogram. In the 3D view, arbitrary distances, angles, and torsion angles can

be measured. Moreover, the data files for IsoStar can be used to identify regions in a protein

binding site where chemical groups are likely to interact using the tool SuperStar [74, 75].

To this end, the atom distributions around functional groups are transferred and displayed

in user-defined protein binding sites.

In GIANT, the probability of atoms being in specific regions around the predefined fragments

can be visualized in a web service. For each cluster, additional information as a list of protein-

ligand complexes which contain the specific interaction pattern are provided. However, no

further means of data analysis are provided. It is therefore difficult to infer interaction ge-

ometries for specific groups from that presentation. In a second application, protein-ligand

interfaces can be loaded and the calculated data can be transferred and visualized within

this interface.

For Sirius, it is not exactly known how the data is presented and which means for data

analysis are provided. The existence of a stand-alone tool is mentioned in the respective

publication but has never been published or described separately. The same holds true for

X-Site.

In summary, only IsoStar provides some further means to analyze the calculated data. Filter

for the distance and element type can be applied and a backlink to the original structure is

provided. This can be very helpful if the position for outlying atoms should be analyzed in

detail. However, even more filter options are required for much more sophisticated analyses.

In that respect, the differentiation between intra- and inter-molecular connections can be

helpful. Filters for specific parts of the structure could help finding differences of preferred

interactions between side chain atoms, backbone atoms, and ligand atoms.
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Toolname Flexibility of

substructures

Flexibility of

data

Quality crite-

rion

Filter for data

presentation

Backlink to original

structure

Sirius no no res. ≤ 2.0 Å no no

X-Site no no res. ≤ 2.0 Å no no

IsoStar semi semi res. ≤ 2.0 Å distances and el-

ement types

yes

GIANT no no res. ≤ 2.5 Å no no

optimal

tool

yes yes atom-wise cri-

terion

yes yes

Table 2.2.: Tools which deduce preferred interaction directions for molecular substructures. res. = resolu-
tion.

As described a the beginning of this section, several studies have been performed in or-

der to analyze the geometrical interaction preferences of specific chemical groups. Sur-

prisingly, the number of tools providing this knowledge and allowing a convenient deduc-

tion of parameters is relativity small. The high number of citations of IsoStar (280, from

http://scholar.google.com/, accessed May 2017) however convincingly shows that these tools

are used in structure-based drug design applications.

Table 2.2 gives an overview about the most important features identified throughout the

previous sections. The main shortcoming of all available tools is the insufficient flexibility of

the analyzed data. This includes the used set of PDB files as well as the set of chemical

fragments. In order to be applicable in diverse settings, a tool requires a flexible adaption

of these data sets. Thereby, the current application scenarios of existing tools could be

extended to identify new atomic interactions. In addition, specific sets of macromolecular

structures could be analyzed. For example, all structures derived from a molecular dynamic

simulation could be analyzed and those structures which exhibit a specific interaction could

be detected. A second unsolved problem is the data quality. The presented tools all use the

resolution of a structure as the only measurement of quality. However, if precise predictions

should be deduced from a spatial distribution, it is of high importance to know about the

experimental precision of the used atom positions and, if required, only those atoms which

have a high experimental support should be used.

In summary, it can be seen that only a few tools exist which can help deduce preferred

interaction directions. The existing tools demonstrate weaknesses in their flexibility of the

used data and their means for data analysis.
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Aims and Preconditions

The preceding chapters presented how knowledge about principles in molecular recognition

can be used in the structure-based drug design process. Existing software solutions which

can be used to create and deepen this knowledge were introduced and their shortcomings

were outlined.

The main aims in this thesis were the development of new computational methods which

are able to solve the two problems introduced previously: searching for interaction patterns

and deduction of interaction preferences. During the development, great emphasis was laid

on the following aspects:

• Consistent handling of data: Structural data of proteins and their bound small molecules

has to be processed in a consistent way and stored such that it is accessible to geo-

metrical searches.

• Reliable and correct retrieval system: Geometric searches should be performed on the

data in order to deduce information relevant for the two mentioned problems. In this

respect, the correctness of the retrieval system is a fundamental requirement.

• Retrieval speed: The time needed to handle different queries should be as small as

possible. Ideally, interactive usage of the tools should be possible.

• High variability: The methods should be able to precisely mine a data set for the

relevant spatial information. To this end, the query system needs high variability.

Moreover, the analyzed data set should be variable.

• Usability: Methods which aim at providing information to guide the structure-based

drug design process have to be used by researches working in this field, e.g., medicinal

chemists. In that respect, the usability of the developed methods is of high importance.

This includes an easy handling of the data, an intuitive generation of queries, and a

comprehensive presentation of the results.
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The methods presented in this thesis were developed from February 2013 to June 2017 in the

research group Computational Molecular Design at the Center of Bioinformatics, Universität

Hamburg. They are based on the NAOMI software library [76] which is jointly developed

and maintained by the PhD students in the research group. The library mainly provides

methods and data structures for the chemically consistent handling and parsing of molecules

in C++. In Chapter 4, methods from this library which were used in this thesis are briefly

explained and the respective publications are given. Besides, functionality from the Qt

library (https://www.qt.io/) was used. The graphical user interfaces (GUI) developed in the

course of this thesis are based on QtQuick and QML and use the 3D visualization library for

molecules and proteins developed by the BioSolveIT.

In the course of this thesis, the method developed for the search of interaction patterns

was published in the Journal of Chemical Information and Modeling [77]. Moreover, a brief

description of the method was published in the Journal of Biotechnology [78]. The method

for the deduction of interaction preferences was jointly developed with Eva Nittinger and has

been submitted to the Journal of Chemical Information and Modeling [79]. At the time of

thesis preparation, the manuscript was under revision. Additionally, this method has been

used to infer interaction geometries of different functional groups. The results of this survey

were published in the Journal of Medicinal Chemistry [16]. See Appendix G for a list of

publications, talks, and posters presentations.
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Methods

In this chapter the methods developed and used in the course of this thesis are presented.

In the first section, fundamental decisions on the storage of data are outlined. Afterwards,

the previously developed methods of the software library NAOMI that were applied in the

context of this thesis are briefly summarized. Section 4.3 describes the new methods and

algorithms for the search of interaction patterns. This methodology is the basis of the tool

Pelikan. In Section 4.4, the methods developed for the problem of deduction of interaction

preferences are presented. These methods are at the heart of the software tool NAOMInova.

4.1. Basic Decisions on Data Storage

In Chapter 3, the main aims for both methods developed in the course of this thesis have

been outlined. The way of storing the relevant data is fundamental in order to be able to

reach these goals. First of all, large data sets should be handled and fast searches should

be possible. Secondly, the used data should be interchangeable. In principle, databases are

perfectly suited to fulfill these requirements. They can store large data sets and provide a

quick access to the data at the same time. As outlined in Chapter 2, databases are utilized

also by several other method in this context.

Two fundamentally different types of databases exist: relational and non-relational databases.

While relational databases have the advantage that structured data can be easily stored and

queried, non-relational databases are more flexible. No precise table scheme has to be defined

and any data can be stored immediately. The data which should be stored here is, however,

highly structured. Structures of proteins can be seen as a set of points in 3D space. In this

view, every point represents an atom which has specific attributes, e.g., its element type.

Very early in the course of this thesis, it was therefore decided to use a relational database.

The next decision regarded the type of the used relational database for both problems.
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There are mainly two different classes: Server-based and non-server-based databases. As the

used data should be interchangeable, the choice fell on a non-server-based database, namely

SQLite. Herein, all data is stored in one file and can be easily exchanged. Moreover, the

SQLite database file is compatible with different platforms which contributes to the usability

of the developed methods.

Besides these considerations, the use of an SQLite database has another advantage: The

NAOMI library already contains methods to store and access molecules in an SQLite database.

Thus, these methods can be used here.

4.2. Basic Methods of the NAOMI Library

In this section the basic methods from the NAOMI library which have been applied in this

work are explained. In cases where the functionality has already been published, only the

most important aspects are mentioned.

4.2.1. Parsing and Interpreting the PDB

Structures of protein-ligand complexes can be encoded in different formats. The most com-

mon formats which are supported by the PDB are the ’.pdb’ format and the ’.mmCif’ format.

Both formats are supported by the NAOMI library and basically contain the same informa-

tion. The NAOMI library contains two different routines to parse the information. The

further handling and interpretation of this parsed data is equal and does not depend on the

original file format. In the following, the term ’PDB file’ will refer to a file from the PDB

which has one of the two formats.

A PDB file basically contains a list of all atoms measured in the structure including their

element types and their coordinates in Cartesian space. Additional information regarding

the experimental conditions used to determine the structure is given in the header section.

The exact location of bonds between atoms and their valence state is however often not

given. In the NAOMI library, the localization of bonds and valence states of the atoms is

determined by checking the pairwise distance between all atoms and a rule-based chemical

model [80]. The exact perception of atom types and bonds for small molecules has been

described by Urbaczek et al. [81]. For proteins, this process has been described by Bietz et

al. [38]. The used chemical model is very strict, meaning that if no valid valence state can

be determined for an atom, the complete molecule is discarded. During this procedure, all

constructed molecules are first classified as protein. Herein, all connected atoms with the

same ’residue number’ from an input file are firstly interpreted as a residue. In a finaliza-

tion step, some of these residues are classified as ligands. This is done if they are isolated.

Additionally, chains consisting of less than six residues are interpreted as ligands. A known

28



4.2. Basic Methods of the NAOMI Library
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Figure 4.1.: Different types of atomic interactions and their geometrical constraints. This figure is adapted
from [77]. Reprinted (adapted) with permission from [77]. Copyright 2017 American Chemical
Society.

limitation deriving from this step is the categorization of covalently-bound ligands as part

of the protein. Moreover, large sugar polymers are very often composed of more than five

connected sugar molecules. Therefore, these molecules are also interpreted as protein in the

NAOMI library. Another known shortcoming of the NAOMI library is that molecules with

covalently bound metals cannot be built due to missing models.

The protein-ligand structures from the PDB are mainly derived from X-ray crystallography

experiments where the position of protons can almost not be determined due to the lack

of electrons. After the initialization of a protein-ligand complex, the positions of hydrogen

atoms are calculated using Protoss [38] which is also part of the NAOMI library. Briefly,

Protoss enumerates alternative hydrogen positions and protonation states of polar moieties

in order to optimize the hydrogen bond network in molecular structures.

4.2.2. Calculation of Atomic Interactions

For the calculation of atomic interactions, a two-step method is used. First of all, atoms

and rings which could in principle be involved in an interaction are determined. These are

atoms which can be a hydrogen bond donor or an acceptor, which are charged (anion or

cation), and all aromatic rings. In the next step, all detected atoms and rings are compared

pairwise and the agreement of geometrical constraints for the different types of interactions

are tested. The constraints for the different interaction types used here are shown in figure

4.1.

4.2.3. The EDIA value

The electron density for individual atoms (EDIA) is a measure for the experimental support

of individual atoms in protein structures resolved by X-ray crystallography and can take

values between 0.0 and 1.2. In order to calculate the EDIA, the experimentally determined

electron density around each atom is analyzed. Atoms whose position is not well defined

by electron density are assigned to a low EDIA value. This can be the case if atoms are
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positioned outside of electron density or inside of large electron density bulbs. Atoms with

an EDIA of 0.8 and higher are thought to be well supported by electron density. In general,

the EDIA should only be calculated for structures with a resolution of or below 2.5 Å. A

detailed description and evaluation of this method can be found in [41].

4.2.4. Superimposition of Atoms

In the NAOMI library, atoms from one set can be superimposed onto a set of other atoms us-

ing the algorithm of Umeyama [82]. Note that for this method, a unique assignment between

atoms from the first and the second set are required. The quality of the superimposition is

determined using the ’root mean square deviation’ (RMSD), see formula 4.1. Herein, V and

W are the two sets of atoms, vi is the atom from V matching to atom wi from W and ~vi

and ~wi are the position vectors of atom vi and wi, respectively. n is the number of atoms

in per set.

RMSD(V, W) =

√

1

n

n

∑
i=1

||~vi − ~wi||2 (4.1)

4.2.5. Spatial Atom Index

The NAOMI library contains an interface to the nanoflann library [83]. This library enables

the use of k-dimensional trees (k-D trees) which supports efficient distance queries on a

k-dimensional set of points. The nanonflann library is especially optimized for the use of

points in 2D and 3D.

4.2.6. The MolString

The molString is a unique string representation of molecules developed by Hilbig et al. [84]. It

stores all atoms and bonds occurring in a canonized molecule and can be used to completely

reconstruct a NAOMI molecule. Here, the molString is mainly used to efficiently store

molecules in databases and to rebuild molecules upon request.

4.2.7. Databases

The NAOMI library contains several libraries which store information about molecules, pro-

teins, and protein-ligand complexes in an SQLite database. Moreover, arbitrary numeric and

textual properties can be stored in this database. Conceptually, the database is separated

in different parts. Each part is in charge for a specific subset of tables. The main task of
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Figure 4.2.: Schematic depiction of different database tables in the NAOMI library. The red box contains
the tables of the MoleculeDB, the blue box contains the tables of the ProteinDB, the green
box contains the tables of the ComplexDB, and finally the yellow box contains the tables of the
PropertyDB. Arrows indicate cross references between tables.

the database parts is to store the protein-ligand complex and to rebuild the desired structure

upon request. A general overview about the different databases and their connections can

be seen in Figure 4.2. In the following subsections, these parts are introduced in more detail.
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MoleculeDB

The MoleculeDB handles the storage of small molecules. Its assembly is schematically de-

picted in the red box in Figure 4.2. Conceptually, each inserted small molecule is separated

in its topology and its 3D coordinates. The topology of a molecule is represented by its Mol-

String. For comparing molecular topologies, a unique string is generated using the SMILES

language [85]. These values are stored in the table ’molecules’. The 3D coordinates of

a molecule are stored in the table ’instances’. Two different keys, the instance key and a

molecule key, are used to connect both database entries. Using the instance key, a molecule

can be completely reconstructed. The conceptual details of the storage of small molecules

has been explained in more detail by Hilbig et al. [84].

ProteinDB

The ProteinDB stores all information about proteins, including their different chains and

amino-acids. It contains three different tables which are schematically depicted in the blue

box in Figure 4.2. A protein is represented in these tables using a unique identifier (id),

named conformation key. In the table ’proteins’, a conformation key is associated with a

name and a set of residues which build the protein’s chain. Residues are identified using

unique residue keys which are the primary keys of the table ’residues’. For each residue

key, a set of coordinates and a residue type is stored. The residue type is comparable to the

molecule key from the MoleculeDB. It refers to a unique chemical topology of a residue which

is stored in the table ’residue templates’. The conformation key can be used to completely

rebuild the protein. Moreover, the residue key can be used to rebuild only a specific residue of

the protein. A more detailed description of the ProteinDB has been published by Schomburg

et al. [86].

ComplexDB

The ComplexDB stores information about protein-ligand complexes and pockets. An overview

about the structure of its tables is displayed in the green box in Figure 4.2. The table

’ligand-protein-mapping’ maps conformation keys to instance keys. This mapping represents

the small molecules and proteins which build a protein-ligand complex. Pockets are repre-

sented by a unique key, named the pocket key. In the table ’pockets’, a pocket key is stored

with three different foreign keys. First of all, a conformation key refers to the protein the

pocket belongs to. Secondly, an instance key links to the reference ligand of the pocket in

the MoleculeDB. Thirdly, a set of residue keys represents all residues which are part of the

pocket. A more detailed description of the ComplexDB has been published by Schomburg

et al. [86].
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PropertyDB

The PropertyDB is used here to store arbitrary numerical and textual properties for molecules,

proteins, and pockets. The structure of its tables is schematically displayed in the yellow box

in Figure 4.2. A property is identified here using a unique key, named property key. For each

property, a unique name and a type is stored in the table ’properties’. The property type

encodes whether this property describes a feature of a molecule, an instance of a molecule, a

pocket, or a protein. For each property type, another table stores the value of the property, a

property key, and a foreign key pointing to the item the property belongs to. Depending on

the table, this can be either a molecule key, an instance key, a pocket key, or a conformation

key. In the yellow box of Figure 4.2, only the tables for molecule and instance properties

are shown as representatives. This database is also intensively used by the software tool

Mona [87].

4.2.8. Property Calculation for Molecules and Pockets

The NAOMI library provides methods to calculate physico-chemical properties of molecules

and pockets. For molecules, this comprises properties as the volume, the molecular weight,

or the count of heavy atoms. The same molecular properties are used in the software tool

Mona [87]. Properties for pockets comprise descriptors for the topology of the pocket, e.g.,

its volume or its depth. These properties are calculated using the DoGSite algorithm [88].

4.2.9. Representation of Molecular Patterns

Within the NAOMI library, the concept of SMiles ARbitrary Target Specification (SMARTS)

[89] has been implemented. A SMARTS is a linear representation of a molecular pattern.

Within these patterns, atoms can be exactly described using various descriptors. Moreover,

atoms can also be described more vaguely by combining atom properties with logical op-

erators, e.g., ’N OR O’. Wild cards representing ’any atom’ are also part of the SMARTS

syntax. A recursive operator allows for the description of molecular environments around

atoms. The NAOMI library contains functionality to interpret these SMARTS pattern and

to search for matching atoms in molecules [90]. In this work, an improved version of the

originally published SMARTS matching algorithm is used. Herein, the overall procedure is

unchanged but the runtimes have been reduced by Robert Schmidt [91].

4.3. Pelikan - Searching for Interaction Patterns

In the following, the methods and concepts developed to search for interaction patterns

in large sets of protein-ligand interfaces is explained. This includes newly implemented
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algorithms as well as extensions to methods from the NAOMI library, already described in

the Section 4.2. The method is a part of the software tool Pelikan. Conceptually, the method

focuses on interaction patterns at the interface between proteins and ligands because most of

the application scenarios presented in Section 1.4 are targeting this area. The methodology

mainly comprises the following aspects:

• A query concept being able to represent different 3D patterns of atoms and different

textual and numerical properties (see Section 4.3.1).

• Derivation and storage of relevant data from a set of protein-ligand interfaces (see

Section 4.3.2).

• Efficient mining of the stored data for defined queries (see Section 4.3.4).

In the following, these aspects will be explained in more detail.

4.3.1. The Query

The query is composed of two different parts: a 3D query and a filter for textual and numerical

properties. The 3D query contains geometrical objects of three different types: search points,

point-point constraints, and angle constraints. It describes a spatial arrangement of atoms

in Cartesian space. Every object which is part of a 3D query is equipped with a unique id.

This id is used in various contexts in order to refer to a specific query object. Filters for

numerical and textual properties can be added independent of the 3D query. These filters

can describe various properties of the ligand, the protein, the pocket, or the protein-ligand

complex, e.g., the resolution, the pocket volume, and the molecular weight of the ligand. In

the following, all different query objects are introduced.

Search Points

Search points represent heavy atoms in a protein-ligand interface. Each search point has at

least three different attributes. An overview about these attributes, their possible values, and

their default configuration is shown in Table 4.1. The attribute ’molecule type’ specifies to

which molecule an atom should belong, e.g., protein or ligand. The exact values which are

possible for this attribute are listed in the first row of Table 4.1. Each search point further

has the attribute ’element’ which holds information about the element type an atom should

have. The possible types for the attribute ’element’ are listed in the second row of Table 4.1.

It comprises the organic set of atoms and all metals and halogens which frequently occur in

protein-ligand complexes. The third attribute of all search points is the ’interaction type’.

It describes the interaction type an atom can have e.g., donor or aromatic. The possible

values of this attribute are listed in the third row of Table 4.1. These three attributes can
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Attributes Value type Possible values Default value

Molecule

type

integer any molecule, reference ligand, ligand,

protein, metal, water

any molecule

Element integer any element, any element type of the

organic subset, halogen, or metal (see

table B.2 for the exact element types

which can be used)

any element

Interaction

type

integer any type, acceptor, donor, aromatic,

metal, cation, anion, hydrophobic

any type

Table 4.1.: Attributes of all search points of a 3D query in Pelikan.

search point 1

search point 2

Possible

SMARTS pattern

for search point 1:

[O$(Oc1c[c:2]ccc1)]

Figure 4.3: Example of a recursive
SMARTS pattern describing
the environment of a search
point. The relative position of
both search points within the
molecules can be annotated
using the search point labels in
the SMARTS expression.

be defined for any search point. Depending on the value of the attribute ’molecule type’,

more attributes might be possible to define.

If the search point should only match atoms in small molecules, the attribute ’molecule type’

should be set to ’reference ligand’ or ’ligand’ (the difference between these values is explained

in Section 4.3.2). In this case, two additional attributes can be adjusted for the search point.

Both are listed in Table 4.2. Firstly, the functional group an atom should be part of can

be defined. The possible values of this attribute are shown in the first row of table 4.2.

Secondly, a more detailed description of the environment of an atom can be defined using a

recursive SMARTS pattern. Therein, the relative position of different search points can be

defined using labels in the SMARTS pattern. An example for such a SMARTS pattern is

displayed in Figure 4.3. In this example, search point 1 should match an aliphatic oxygen.

Search point 2 should match an aromatic carbon. The relative position of both atoms in the

molecule can be defined using the label of search point 2 in the SMARTS pattern describing

the environment of search point 1: [O$(Oc1c[c:2]ccc1)].

If the search point should match only atoms which are part of a protein, the attribute

’molecule type’ should be set to ’protein’. These search points have additional four attributes

which are listed in Table 4.3. Firstly, the amino acid type can be chosen. As shown in the

first row of Table 4.3, all 20 proteinogenic amino acids can be used here. Moreover, amino

acid types are grouped by their chemical property. These can be used instead of a concrete
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Attributes Value type Possible values Standard value

Functional

group

integer any group, all other used functional

group (see tabel B.1)

any group

Atom de-

scription

string any valid SMARTS pattern describing

one atom

empty string

Table 4.2.: Additional attributes of search points which only match atoms in small molecules of a 3D query
in Pelikan.

amino acid type. The exact definition of each group is shown in Appendix B.4. The second

additional property for search points matching only atoms in proteins is the location of the

atom within the amino acid. Three different values are differentiated here: any location,

backbone, and side chain. Moreover, the secondary structure element can be defined in

which the matching atom should be located. The possible values for this attribute are listed

in the third row of Table 4.3. Fourthly, the chemical environment of an atom matching

the search point can be described using a recursive SMARTS pattern. Here, the same

functionality applies as for search points matching atoms in small molecules. However, the

SMARTS pattern may only involve one amino acid. If the amino acid type of a search point

is set to a specific type, a fifth attribute can additionally be set. This attribute is the name

of the atom. It refers to the specific atom name given to any atom of an amino acid within

the PDB file. The exact names which are used for the specific amino acid types are listed in

Appendix B.3.

Point-Point Constraints

Point-point constraints describe relationships between two search points. There are two

different types: distance and interaction constraints. A distance constraints describes the

minimum and maximum allowed distance between two search points. In principle, any dis-

tance value could be used here. However, with regard to the use cases mainly relevant for

this method, the upper limit for both values is set to 15 Å. In an interaction constraint, an

interaction type can be used to describe the relationship between two points. Here, any of

the precalculated interaction types shown in Figure 4.1 can be used.

Per definition, there is a precise order of the search points within a point-point constraint.

Thus, a point-point constraint always has a directionality from its first to its second search

point. For referring to the specific search point object, the unique id of the search point

is used. This order is necessary to exactly define angle constraints as explained in the the

following section.
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Attributes Value type Possible values Standard value

Amino acid

type

integer any amino acid, alanine, arginine,

asparagine, aspartate, cysteine, glu-

tamine, glutamate, glycine, histidine,

isoleucine, leucine, lysine, methionine,

phenylalanine, proline, serine, thre-

onine, tryptophane, tyrosine, valine,

hydrophobic, polar, aromatic, acidic,

basic, neutral

any amino acid

Atom loca-

tion

integer any location, backbone, sidechain any location

Secundary

structure

integer any sec. structure, α-helix, β-sheet,

no sec. structure

any sec. structure

Atom de-

scription

string any valid SMARTS string describing

one atom

empty string

Atom name

(if amino

acid type is

given)

string any name, list of specific atom names

per amino acid type, see Appendix B.3

empty string

Table 4.3.: Additional attributes of search points which only match atoms in protein of a 3D query in
Pelikan. sec. = secondary.

Angle Constraints

The third type of objects of a 3D query in Pelikan is the angle constraint. Angle constraints

can be defined between any two vectors in the 3D query using two ids to other objects in

the query and a minimal and a maximal allowed angle. Both, search points and point-point

constraints may contain vectors. Figure 4.4a gives an overview about all vectors in search

points. Only search points which have one of the following interaction types contain vectors:

donor, acceptor, and aromatic. For donors, the vectors point from the heavy atom towards

the hydrogen. For every hydrogen, one vector is contained in a search point. Similarly, the

vectors of a search point with interaction type ’acceptor’ point from the heavy atom in the

direction of the electron lone pair. Again, a search point might contain several vectors if

the matching atom has more than one lone pair. For aromatic search points, the normals of

the ring plane in both possible directions are used as vectors. Figure 4.4b shows the second

source of vectors in a 3D query. In principle, every point-point constraint contains exactly

one vector. This vector reflects the direction from the first search point of the point-point

constraint to the second search point.

37



4. Methods

Resulting vector for 
angle constraints

Point-point
constraint type 

3-5Å

1.search 
point 1

2.search 
point 3

Distance constraint
Example:

1.search 
point 1

2.search 
point 3

π-π

Interaction constraint
Example:

Resulting vectors for 
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Figure 4.4.: Vectors of query objects in the Pelikan query system. Every pair of vectors can be connected
with an angle constraint. a) Possible vectors of search points. b) Possible vectors of point-point
constraints.

Filters for Textual and Numerical Properties

In addition to the geometrical query, numerical and textual filters can be added to a query.

Filters can be defined for all properties stored in the PropertyDB database. A list of all stored

properties is shown in Appendix B.5. Depending on the value type, these filters are either

range filters where a minimal and a maximal allowed value is provided, or string filters. In the

latter case, the given filter string is searched in the respective database entry as substring

in a case-insensitive manner. Besides filters for specific properties, substructure filter for

reference ligands can be defined using SMARTS patterns.

4.3.2. Calculation and Storage of relevant Data

In Pelikan, all relevant data is stored in an SQLite database. It contains all databases from the

NAOMI library mentioned before, namely the MoleculeDB, the ProteinDB, the ComplexDB,

and the PropertyDB. Additionally, the InteractionDB was developed in order to store data

relevant for the spatial search process. In this section, first the structure of the InteractionDB

is explained. Afterwards the process to build the complete database is described.
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InteractionDB

stores 3D information about atoms

in pockets and interactions.

potential result points (PRPs)

prp_key

pocket_key

type

origin

element

coordx

coordy

coordz

atom name

primary key

foreign key

integer

integer

integer

integer

integer

integer

string

interactions

prp_key1

prp_key2

interaction type

foreign key

foreign key

integer

        examples:

donor, acceptor, ...

ref.ligand, protein, ...

carbon, oxygen, ...

h-bond, metal, ... 

ComplexDB.pockets

Figure 4.5: Overview over
the tables of the
InteractionDB
used in Pelikan.
Arrows indicate
cross references
between tables.
Herein, black
arrows represent
cross references
within the Interac-
tionDB, whereas
green arrows show
cross references to
the ComplexDB.

The InteractionDB

An overview about the table scheme of the InteractionDB is shown in Figure 4.5. The first

table stores potential result points (PRPs) which are atoms with 3D coordinates. It is called

’PRP table’. A PRP is uniquely identified by its primary key, named prp key. Note that the

smallest valid prp key is 1. For each PRP, the table stores its 3D coordinates, its interaction

type, its element type, the molecule type it originates from (origin), and the name of its

atom. In order to reduce storage space, the 3D coordinates are stored as integers. In a

structural file from the PDB, there are at most six digits to represent the floating point

number of the x, y, and z coordinates of an atom, respectively. Thus, each coordinate can

be multiplied by 1 000 and casted to an integer by loosing at maximum the fourth decimal.

The maximal integer which can be generated by this method is 999 999 000. This number

can be represented using 4 bytes. According to the SQLite documentation [92], the storage

of a floating point number would need 8 bytes. Hence, 12 bytes (4 bytes for each dimension)

can be saved per PRP using this conversion of types. Additionally, a foreign key links back

to the ComplexDB indicating the pocket the PRP is part of.

In the table ’interactions’, atomic interactions are stored. An atomic interaction is al-

ways formed between two PRPs which are represented by two reference keys, prp key1 and

prp key2, respectively. They point to the primary prp key in the PRP table. Additionally,

the type of the interaction, e.g., hydrogen bond or cation-π, is stored in this table.

Database Construction

The database can be constructed out of a collection of structural files from the PDB. Both

file formats, pdb and mmCIF, are accepted. During the building process, the files are first

read and interpreted using the functionality of the NAOMI library explained in section 4.2.1.

As already mentioned, when reading files from the PDB using the NAOMI library, covalently
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bound ligands as well as sugar chains are categorized as part of the protein. In order to resolve

this shortcoming, a procedure was developed which identifies covalently bound ligands as well

as ligands consisting of more than five residues. The methods is shown in Algorithm 1.

Firstly, all residues of a protein which might be a ligand are identified and classified as ’hetero

residue’ (see Line 3 in Algorithm 1). These are all residues which fulfill all of the following

criteria:

• The residue is not a standard amino acid.

• The residue is connected to a protein chain (by definition of NAOMI) via a non-peptide

bond.

• All atoms of the residue have valid 3D coordinates.

Algorithm 1 Detect additional ligands

1: procedure getLigandsFromProtein(protein)

2: newligands = empty molecule vector

3: heteroresidues = findHeteroResidues(protein)

4: components = groupConnectedResidues(heteroresidues)

5: for all c ∈ components do

6: if noChainBreakUponRemoval(c, protein) then

7: molecule = createOneMolecule(c)

8: addMoleculeToVector(molecule, newligands)

9: end if

10: end for

11: return newligands

12: end procedure

After all potential ligands have been detected, connected residues are grouped into connected

components by a breadth first search (see Line 4 in Algorithm 1). If no chain break is intro-

duced by removing the complete component, all residues of one component are converted

to one molecule and added to the vector of ligands. Note that the residues are not removed

from the protein in order to maintain the chemical integrity of the structure. However, the

respective residues in the protein are ignored in the further procedures.

Every ligand which consists of more than five and less than one hundred heavy atoms is con-

sidered a reference ligand here. These reference ligands are used to build pockets. A pocket

is defined as all ligands, residues, water, and metals which have an atom-atom distance of

less than 6.5 Å to any of the reference ligand’s atoms. Pockets which contain no residue are

discarded. Afterwards, all atomic interactions are calculated within each pocket using the

NAOMI library (see Section 4.2.2).

In the last calculation step, different properties of the current data structures are determined.
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Properties of the reference ligand and the pocket are calculated using the NAOMI library (see

Section 4.2.8). Moreover, properties for the protein and the complete protein-ligand complex

are extracted from the header section of the PDB file. In total, 39 different properties are

collected for each input file. Therein, 18 properties are determined for the reference ligand,

13 for the pocket, four for the protein, and four for the protein-ligand complex. The exact

properties which are calculated and their value ranges are shown in Appendix B.5.

In the next step, all calculated data is stored in the database. This includes the storage of

all small molecules, protein chains, and pockets in the respective tables of the MoleculeDB,

the ProteinDB, and the ComplexDB. All properties are stored in the respective tables of the

PropertyDB using the reference key to either the molecule, the molecule instance, the pro-

tein, or the pocket assigned in the previous step, respectively. Each heavy atom in a pocket

can be a PRP in a search and is thus stored as PRP in the PRP table of the InteractionDB.

The interaction type of each atom, which is needed for the storage of a PRP, is determined

using the NAOMI library (see the first step for identifying atomic interactions described in

Section 4.2.2). It might happen that more than one interaction type is determined, e.g., the

oxygen of a water can be donor as well as acceptor. In these cases, a separate PRP is stored

for every detected interaction type. These PRPs are completely equal, except for their entry

in the column ’interaction type’. The prp key of each PRP can be seen as a unique id and

will later be used to refer to a specific PRP.

For all detected atomic interactions in the pocket, both PRPs which take part in this inter-

action are stored in the interactions table of the InteractionDB. If more than one PRP has

been entered into the database for one atom, only the PRP with the matching interaction

type is used here.

4.3.3. The Triangle Descriptor

Since all atomic interactions in a pocket are stored in the database, interaction constraints

can be queried directly. For distance constraints however, the 3D coordinates of all PRPs

matching the respective search points of the constraint have to be processed pairwise. This

is done by a self-JOIN of the table storing the PRPs. In principle, the run time of this

query depends on the number of rows which have to be joined. The number of rows can

be influenced by the attributes of a search point. Thus, two search points with element

type ’manganese’ at a specific mutual distance can be searched for much faster than two

search points with element type ’carbon’ because the latter appear much more often in the

database than the former. In principle, a geometrical descriptor which rapidly generates a

list of possible PRPs which occur in a specific geometrical form used in the query could help

to overcome this problem. Different geometrical forms could be used here, e.g., a distance,

a triangle, or a tetrahedron. Two main aspects have to be considered for this decision: the

descriptor has to differentiate between different PRPs and the storage space should not be

too large. Preliminary tests have revealed that a descriptor storing the existence of PRPs
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in a specific distance to other atoms is ineffective in discriminating between different PRPs.

To this end, a descriptor was developed describing the spatial surroundings of a PRP using

different triangles.

In principle, the triangle descriptor is a set of bit strings. Each bit string represents the

occurrence of all PRPs in a specific triangle. To this end, a set of spatial triangles was

defined. For each descriptor triangle (DT), one bit string is calculated. The length of the bit

strings is equal to the maximal PRP id. Hence, each position within the bit string corresponds

to one specific PRP. If a PRP occurs in a specific DT, the bit at the respective position is

set to one. Otherwise, it is zero. Hence, if a 3D query contains a triangle it can be mapped

to the triangles used in the descriptor. If this mapping is successful, all PRPs occurring in

the query triangle can be identified directly by identifying all bits which are set to one in the

respective bit string.

In the following, the set of used DT is described first. Afterwards, the exact calculation of

the descriptor is described.

Used triangles

Any one DT consists of three corners and three edges. One corner, in the following called

the ’PRP corner’, represents one specific PRP. The two other corners, in following called

’legs’, represent the relative coordinates of two further atoms with respect to the PRP. The

considered atom types for the legs of this triangle are:

Legs =



































carbon protein, oxygen protein, nitrogen protein,

donor protein, acceptor protein, aromatic protein,

carbon ligand, oxygen ligand, nitrogen ligand,

donor ligand, acceptor ligand, aromatic ligand



































The edges of the triangle correspond to the distances between the respective corners and are

binned in the following groups:

TriangleEdges =
{

2.5-3.5 Å, 3.5-4.5 Å, 4.5-5.5 Å, 5.5-6.5 Å, 6.5-7.5 Å, 7.5-8.5 Å
}

Using all combinations of two possible legs and three possible distance bins for the three

edges of the triangle, a set of triangles is generated. Such a geometrical descriptor is only

useful if it is able to discriminate between different PRPs, i.e., the bit string has no benefit

if all bits are set to one. In our case, the majority of PRPs happen to occur in DTs with

two ’carbon protein’ legs. These DTs are therefore excluded from the descriptor. In total,

15 642 different DTs are used in this descriptor. Each DT is identified using a unique id.
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Calculation of the triangle descriptor

The main aim of this step is to calculate 15 642 different bit strings dDTi, one for each DTi

with i being the id of the respective DT. Since the process of database construction handles

one protein-ligand complex after the other, the direct calculation of the descriptor is not

feasible. To this end, the transposed descriptor is calculated first: For each PRPj, a bit

string dPRPj coding for its occurrence in all DTs is determined. In principle, this descriptor

could also be used to get all PRPs occurring in a specific DT by querying one specific bit

in each bit string. However, experiments have shown that this procedure can be quite slow

(data not shown here). Therefore, dPRP is transformed after its complete calculation to dDT.

Thus, dPRP is an intermediate step and it is destructed after the dDT has been calculated.

In this section, first the calculation of all dPRP is explained and the runtime of its calcula-

tion is outlined. Afterwards, the transformation of dPRP to all dDT is explained including a

consideration of the runtime for this step.

Calculation of dPRP

dPRP stores the existence of a PRP in all possible DTs. dPRPj
for the PRP with unique id j

is defined as follows:

dPRPj
[i] =







1 if PRP with unique id j occurs in the ith DT

0 else

with: 0 ≤ i < 15 642

This is done by calculating all DTs in which a PRP occurs using the spatial atom index of

the NAOMI library (see Section 4.2.5). The procedure is described in Algorithm 2. First of

Algorithm 2 Calculate descriptor dPRP for each PRP

1: procedure CalcTrianglesForEachPRP(allPockets)

2: for all p ∈ allPockets do

3: tree = buildKD-tree(p.getAllPRPs)

4: for all PRPj ∈ p.getAllPRPs do

5: allDTs = calcAllDTsForPRP(PRPj, tree)

6: dPRPj = generateBitVector(allDTs)

7: storeBitVectorInDatabase(dPRPj)

8: end for

9: end for

10: end procedure
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all, a k-D tree is built from all PRPs of one pocket in Line 3 of Algorithm 2. Afterwards, for

each PRPj, all DTs are calculated in Line 5 of Algorithm 2. To this end, seven distinct range

queries on the k-D tree are performed in order to receive all neighboring PRPs within each

distance of the distance bins. From this data, all possible DTs are constructed and dPRPj

is calculated. The final dPRPj is then stored in the database using the PRP id as reference key.

Runtime analysis for calculating dPRP

Herein, a tight upper boundary for the runtime of Algorithm 2 is determined. First of

all, the runtime for one iteration of the outer loop in Line 2 is analyzed. Herein, the

runtime of building the k-D tree in Line 3 is in O(n log n), with n being the number of

PRPs in one pocket [93]. The calculation of all DTs in Line 5 contains two main steps:

range queries on the k-D tree and the construction of the DTs. The runtime of the for-

mer step is in O(n
2
3 + m), with m being the number of returned points [93]. For the

latter step, the distance between all pairs of resulting points has to be calculated which

has a runtime of O(m2). Adding these steps up leads to a complete runtime for Line 5 of

O(n
2
3 + m + m2) = O(n

2
3 + m2). This is done for each PRP. The complete runtime of

the loop in Line 2 of Algorithm 2 is therefore in O(n
2
3 · n + m2 · n + n log n). The term

n log n can be neglected here because asymptotically it grows slower than n
2
3 · n. Thus,

the complete runtime of the loop in Line 2 can be reduced to O(n
2
3 · n + m2 · n). It is not

possible to compare the sizes of n
2
3 and m2 because it depends on the size of the pocket and

the distribution of PRPs in the pocket.

The complete runtime of Algorithm 2 is difficult to estimate because it depends on the num-

ber of PRPs per pocket. If most of the PRPs are in one pocket, the complete runtime would

be equal to the estimated runtime for one iteration of the outer loop in Line 2. If, on the

other hand, the PRPs are equally distributed over all pockets, the complete runtime would

depend linearly on the number of pockets.

Calculation of dDT

After dPRP is calculated for each PRP, it is transformed into dDT. In this process, a bit string

is generated for each DT. The descriptor dDTi for the ith DT is defined as follows:

dDTi
[j] =







1 if dPRPj[i] == 1

0 else

with: 0 ≤ j < max. unique id of PRP

This calculation is performed by querying the respective bits from all dPRP for each DT. The

number of DTs is constant but for each query, each dPRP has to be inspected. The runtime
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of this step is thus in O(n) where n is the number of all PRPs.

The vector is stored in a compressed form in a specific table in the SQLite database using

the unique id of each DT as primary key, respectively.

Extension of the triangle descriptor by new pockets

After a triangle descriptor has been constructed, it can be further extended. The extension

mechanism is very similar to its construction. First of all, for each PRPj, dPRPj is calculated

as described before. In the second step, the descriptor dDTi for each DT is extended. To

this end, the bit string of each dDTi is extended such that the number of bits corresponds to

the new maximal unique PRP id. Simultaneously, the unique ids of the new PRPs are set to

one in each dDTi if necessary.

4.3.4. The Search Process

During the search process, a query containing geometrical as well as textual and numerical

filters is used to search for all pockets which match the given constraints. In general, a branch-

and-bound strategy is applied. This means that the result space is reduced in different steps

through the algorithm until a complete matching of the geometrical query is performed at

the end. The process can be subdivided into six steps: (1) textual and numerical filtering,

(2) detection of search points which are not involved in point-point constraints, (3) triangle

descriptor request, (4) incremental search of point-point constraints, (5) hit construction,

(6) SMARTS matching. Figure 4.6 schematically depicts the complete process and shows

how the result space is reduced in each step. In the following, the different steps will be

explained in detail.

Step 1 - Textual and Numerical Constraints

In the first step of the Pelikan algorithm, the filters for textual and numerical properties of

the query are used. To this end, these filters are first divided by their property type (molecule,

instance, pocket, or protein). This results in four distinct sets of filters. For each set, one

query is executed, resulting in a list of the respective key type.

Besides the filters for properties stored in the PropertyDB, substructure constraints for the

reference ligand can be defined as SMARTS patterns. These patterns are used in this step, to

get a set of molecule keys which fulfill the SMARTS pattern using the substructure matching

method of the NAOMI library.

Moreover, search points may contain substructure constraints for the reference ligands. In

general, a very specific SMARTS pattern will lead to a large reduction of interim results in
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All potential result pockets are detected
using textual and numerical constraints 
and SMARTS filters. 

In all pockets selected in step 1, PRPs
for isolated search points are identified.

Remove all pockets which do not fulfill
textual and numerical constraints

and SMARTS filter.

All pockets and PRPs are potential results.

Remove all pockets and PRPs which do not
contain isolated search points.

In all pockets resulting from step 2, PRPs 
for specific search points are identified
using the triangle descriptor.

Remove all pockets and PRPs which do not
agree the triangle descriptor.

In all pockets and PRPs resulting from
step 3, PRP pairs are identified which
fulfill the point-point constraints.

Remove all pockets and PRPs which do not
fulfill point-point constraints.

From all PRP pairs detected in step 4, 
geoemtrical hits are generated using
a clique detection algorithm.

Complete hits are constructed by combining
the geometrical hits from step 5 and the
isolated PRPs from step 2, consequently
SMARTS filters are applied to all complete hits.

Remove all pockets and PRPs which do not
fulfill the complete query.

Remove all hits which do not fulfill the
SMARTS filters of search points.

Results

1

Search process is started
for user-defined query.0

Figure 4.6.: Overview about the search process in Pelikan.

this step. An early reduction of results at this stage might reduce the time spend for the

following steps. Based on this hypothesis, highly specific SMARTS patterns of search points

of type reference ligand are additionally used in this step. A SMARTS pattern is defined to

be highly specific here if it covers four or more atoms or if it contains other elements than

carbon, oxygen, or nitrogen.

The complete first step ends with at most five different sets of keys. One set from each query

of the property tables and one list of molecule keys from the SMARTS matching procedure.

All resulting sets are transfered to their corresponding pocket keys. Finally, the intersection

of these sets is generated which corresponds to the set of pockets which fulfill all textual and

numerical constraints of the query. This set of pocket keys is transferred to the second step.

Step 2 - Querying isolated search points

In the second step of the process, results for the search points which are not involved in a

point-point constraint are searched. This is done by one SQL query per search point on the

table storing the PRPs. During this step, the list of allowed pocket keys is used if it has been

generated in step 1. The resulting PRPs for each search point are stored and later passed

to step 6. The list of allowed pocket keys is passed to step 3.
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Figure 4.7.: Extraction of DTs from the 3D query and their combination. On the left, 3D queries are dis-
played. Search points are represented by green dots, black lines represented distance constraints.
The properties highlighted in red lead to the generation of multiple DTs which are combined by
logical operators. On the right, extracted DTs for search point 1 are shown. Their respective
bit strings can either be combined using a logical AND or a logical OR.

Step 3 - Using the triangle descriptor

The input of the third step is a list of allowed pocket keys. In this step, the triangle descriptor

is used to generate lists of PRPs for search points in the query, if possible.

Firstly, all triangles in the 3D query which are applicable to the triangle descriptor are

identified. To this end, at least two corner points have to match the legs used in the triangle

descriptor. Moreover, the distance ranges of the distance constraints must be within the

distance range used in the triangle descriptor (2.5-8.5 Å). Then for each search point, all

DTs are identified which are compatible with the query for that search point. Typically, each

of these DTs fulfills only a subset of the query constraints. In order to cover all relevant

constraints with the triangle descriptor the bit strings of non-contradicting DTs are combined

with logical operators OR and AND. Figure 4.7 exemplary shows in which case which logical

operator is used for the combination. Two bit strings are combined with a logical AND, if

one search point is part of more than one DT. An example for this is show in the upper part

of Figure 4.7. Herein, search point 2 is defined as nitrogen and donor from a ligand. Hence,

two different DTs can be generated which both have to be fulfilled.

Two bit strings are combined with a logical OR, if at least one distance from the query spans

different distance bins of the descriptor. This can be seen in the lower example of Figure

4.7. Herein, the distance range between search point 2 and 3 is defined as 3.0 to 4.0 Å.

Again, two DTs can be generated from this information, but only one of the DTs has to be
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Figure 4.8.: Schematic depiction of step 4 of Pelikan’s search process.

fulfilled.

During this procedure, only those PRP ids are used which are part of a pocket which occurs

in the list of allowed pocket keys. At the end of step 3, sets of allowed PRP ids for the

individual search points in the query have been generated, if the triangle descriptor was

applicable. At the end of step 3, this list of allowed pocket keys is updated according to the

detected PRPs for specific search points. This list together with the sets of PRPs are passed

to step 4.

Step 4 - Sequential Querying of Point-Point Constraints

In step 4, all point-point constraints are processed in a sequential manner. This is schemat-

ically displayed in Figure 4.8. The order of this processing is chosen such that point-point

constraints for which only a few results are expected are processed before those that probably

have a large number of results. The number of results for a point-point constraints is the

product of the estimated number of results for each search point. This estimation is done

using a simple counter of elements and interaction types stored in the database.

For each point-point constraint, the loop shown in Figure 4.8 is run through. At the begin-

ning of the cycle, all pocket and PRP pairs which fulfill the current point-point constraint,
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Figure 4.9.: Schematic depiction of step 5 of Pelikan’s search process.

including the involved search points constraints, are identified. This is done using one SQL

query. During this database query, the list of allowed pocket keys is used to only find results

in relevant pockets. Moreover, if lists of possible PRPs for one or both of the search points

exist, the lists are also used in the query. After a database query, the number of results are

checked first. If no results are found, the process immediately stops. Otherwise, all lists are

updated, which is the last step of the cyclic process. This means that the list of allowed

pockets is set to the list of pocket keys detected in the previous query. Similarly, the lists of

allowed PRPs for the search points involved in the previous query is set to the list of resulting

PRPs, respectively. The idea behind this step is that the list are shortened after every query.

This should reduce the runtime for the subsequent query.

After all point-point constraints have been handled in this step, the results are passed to the

fifth step of the query process.

Step 5 - Clique calculation

The input for the fifth step are lists of PRP pairs for each point-point constraints in the

query. In this step, the fulfillment of the complete query is verified. This is done with a

clique algorithm on an edge-based product graph, similar to the work of Rascal [94]. Firstly, a

product graph is constructed for each pocket. In Figure 4.9, the construction of the product

graph is schematically displayed. Herein, a vertex is inserted in the graph for each detected

PRP pair and the corresponding point-point constraint. Thus, a vertex has three attributes:

first prp key, second prp key, and the unique point-point constraint id. Edges are added

between all pairs of vertices which do not contradict each other. For example, two vertices

which have the same unique point-point constraint id can never be connected by an edge.

Moreover, consider a vertex which represents the match of the point-point constraints be-

tween search point 2 and 5 on the PRPs 12 and 89, respectively. This vertex could never be

connected with a vertex matching search point 5 onto another PRP. Additionally, all angle

constraints are checked in this step and two vertices are not connected if their calculated

angle does not fulfill the required angle constraints. Each clique of size n in this graph is
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Figure 4.10.: ∆-exchange in the application of line graphs to solve the subgraph-isomorphism problem. a)
Graphs are transformed to their line graphs by converting every edge to a vertex. Two vertices
are connected in the line graph if they are incident on each other in the original graph. The
two shown non-isomorphic graphs have isomorphic line graphs. b) Clique detection procedure
in Pelikan. The ∆-exchange problem does not apply here because vertex labels are compared
during product graph construction.

a valid geometrical match, with n being the number of point-point constraints. The clique

detection is performed using the algorithm of Bron and Kerbosch [58] from the Boost Graph

Library (http://www.boost.org/doc/libs/1 61 0/libs/graph/doc/index.html).

A known problem of the Rascal approach is the existence of so-called ∆-exchanges. This

describes the phenomenon that two non-subisomorphic graphs can have subisomorphic line

graphs. This can lead to a clique in the product graph even if there is no subgraph isomor-

phism between the original graphs. This problem is schematically depicted in Figure 4.10a.

This problem does not apply in the clique detection procedure of Pelikan, because all search

points and all PRP ids are compared during the construction of the product graph. Thus,

the connectivity of the vertices is compared taking the mapping of point-point constraint ids

and PRP pairs into account which excludes the occurrence of ∆-exchanges. An example is

given in Figure 4.10b. Here, the vertex c in the product graph is isolated because its mapping

of search points 1 and 3 to PRP 22 and 24, respectively, does not agree with the mapping

of the other vertices a and b.

Step 6 - Match combination and SMARTS Matching

In the last step of the algorithm, the geometrical hits detected in step 5 are combined with

the hits for isolated search points from step 2. All possible combinations of both results are

generated and each combination is considered a valid hit. Finally, a SMARTS matching is

performed for each hit using all SMARTS defined for search points. During this step, the

specific labels in the SMARTS patterns describing the chemical relation between different

atoms within the hit are taken into account. All hits which fulfill the SMARTS pattern build
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Figure 4.11.: Screenshots of the Pelikan GUI.

the final result set.

4.3.5. Pelikan

The method for searching interaction patterns in protein-ligand interfaces is part of the

software tool Pelikan. Pelikan can either be used as command line tool or with a graphical

user interface (GUI). A user guide for both is given in Appendix E. The GUI has mainly

been developed in order to provide a convenient way to build databases, define queries, and

to provide a comprehensive presentation of the results. In the following, the GUI is briefly

introduced. Screenshots of the GUI are shown in Figure 4.11.

The GUI of Pelikan is logically divided into two parts. The upper part displays information

about the current status of the program and the size of the filter chain (see Figure 4.11a,

panel 1). Moreover, all buttons which can be used to start and stop a search are located in

the upper part of the GUI. The lower part of the GUI contains three tabs.

The first tab is shown in Figure 4.11a. Here, different types of numerical and textual filter
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can be chosen from a list (see Figure 4.11a, panel 2). The parameters of the chosen filter

can be defined in panel 3 of Figure 4.11a.

The second tab, shown in Figure 4.11b, provides two different ways to generate a geometrical

query. Herein, the three query components search points, point-point constraints, and angle

constraints are managed in three different lists, shown in panel 1, 2, and 3 in Figure 4.11b,

respectively. In these lists, query objects can be added, manipulated, and deleted. Moreover,

a pocket of interest can be visualized and a query can be defined by selecting specific atoms

or atomic interactions (see Figure 4.11b, panel 4).

The results of a search are displayed in the third tab of the GUI (see Figure 4.11c). In

panel 1 of Figure 4.11c, the number of resulting pockets are shown. In panel 2, a list of

all resulting PDB codes is given. This list is initially sorted by enzyme commission (EC)

number but can also be sorted by molecule topology. A second list shows the resulting

pocket of the currently chosen PDB structure (see panel 3 in Figure 4.11c). All selected

pockets can be visualized and superimposed in the central view of tab three (see panel 4

in Figure 4.11c). The superimposition is performed using the NAOMI method described in

Section 4.2.4. Panel 5 gives an overview about the currently displayed pockets and provides

further information, e.g., the title of the respective PDB file. Statistics of the results can be

exported using the button in panel 6 of Figure 4.11c.

The third tab furthermore provides a feed-back loop to refine the results of a search. To this

end, a set of results can be ’remembered’ by the GUI using the button in panel 1 of Figure

4.11d. When this button is pressed, a new set of buttons appears in the upper part of the

GUI (see panel 2 in Figure 4.11d). These buttons can be used to perform a new search on

the resulting PRPs, the pockets, or the PDB structures of a remembered result.

4.4. NAOMInova - Deduction of Preferred Interaction Directions

In this section, the methods and concepts developed to search for preferred interaction

directions of molecular substructures in large sets of protein structures are explained. This

includes newly implemented algorithms as well as extensions to methods from the NAOMI

library, already described in the Section 4.2. The main idea is to search for specific molecular

substructures in a set of protein structures and collect all relevant, surrounding atoms. In

the following, this molecular substructure will be called ’central substructure’. The relevant

atoms in its vicinity will be called ’partner points’. The developed method works with

complete protein structures including all chains and all small molecules defined in a file from

the PDB. Due to this decision, the method is able to deduce preferred interaction directions

for internal atomic interactions within the protein as well as for atomic interactions between

protein and ligand. The method provides two possibilities to analyze the collected data.

First of all, distributions of partner points around central substructures can be inspected
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visually. Secondly, a link to the original structure will be provided for each partner point,

called ’backlink’. This way, structural characteristics of a partner point distribution can be

traced back to their origin.

The methodology mainly comprises the following aspects:

• A precise definition of molecular substructures and their representation (see 4.4.1).

• Calculation and storage of relevant data from a large set of protein structures (see

4.4.2).

• A query concept which represents a central substructure and surrounding interaction

partners (see 4.4.3).

• Efficient mining of the stored data for specific substructure queries (see 4.4.4).

In the following, these aspects will be explained in more detail.

4.4.1. Definition of Substructures

In NAOMInova, a substructure consists of five different items:

• Template molecule: A molecule with 3D coordinates. From this molecule, specific

atoms can be selected which represent the substructure. These atoms are called ’tem-

plate atoms’. There are two possibilities how this molecule can be defined: (1) a

molecule file with 3D coordinates can be uploaded or (2) a molecules can be defined

using a SMILES string [85]. In the latter case, the 3D coordinates are generated using

Unicon [95].

• Template atoms: A set of connected atoms from the template molecule. These atoms

will later be used as a template structure. All detected occurrences of a substructure

will be superimposed onto the template atoms.

• SMARTS: A textual description of the substructure using the SMARTS language

[89]. This description is used to detect all occurrences of the substructure in the

used data set using the SMARTS matching method from the NAOMI library (see

4.2.9). The SMARTS concept used here is schematically depicted in Figure 4.12. In

NAOMInova, the SMARTS is logically divided into two parts: A fragment part and

a surrounding part. The fragment part describes the actual atoms the SMARTS is

matching. Herein, every atom corresponds to exactly one atom from the template

atoms. Hence, the fragment part has to match the selected atoms from the template

molecule. After a substructure has been found in the database, the detected atoms and

the template atoms are assigned to each other based on their matching to a specific

atom of the fragment part. Wildcards (SMARTS symbol ’*’) and OR combinations

of atoms (e.g., [C,N]) are in principle allowed here. However, these ambiguities might
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Figure 4.12: The SMARTS concept used in
NAOMInova. The fragment part is
highlighted in blue, the surrounding
part is highlighted in purple. Every
atom described in the fragment part
has to match exactly one atom of the
template atoms. The surrounding part
describes the chemical environment of
an atom an matches independent of
the conformation.

lead to structural changes due to different bond angles or bond lengths. Hence, a

meaningful superimposition of the detected and the template atoms might not be

possible in these cases.

The chemical environment of every atom in the fragment part can be described in

more detail using the surrounding part. This can be done using a recursion in the

SMARTS language, indicated with a ’$’. Within this part, the complete syntax of the

SMARTS language can be used. Even though the complete SMARTS will be used to

find occurrences of the substructure in the data, the surrounding part is not relevant

for the superimposition of the atoms. Hence, the surrounding part does not have to

match the template atoms, it is only used to describe the surrounding of the atoms

of interest. To this end, this part matches independent of the exact conformation as

shown in Figure 4.12.

• Name: A unique name. Will be used as id of the substructure.

• EDIAmin: A minimal allowed EDIA value. Only atoms which fulfill the required mini-

mal EDIA value of a substructure will be stored in the database.

4.4.2. Calculation and Storage of relevant Data

The data calculated here is stored in an SQLite database. The MoleculeDB, ProteinDB, and

ComplexDB from the NAOMI library (see section 4.2.7) are used to store the relevant infor-

mation about proteins and ligands. Additionally, partner points are stored in the database.

These tables are governed by the PartnerPointDB which is described in the following sec-

tion. The process of detecting central substructures and the storing of partner points will be

described thereafter.
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The PartnerPointDB

The PartnerPointDB stores all partner points and their attributes. Its main purpose is

to quickly find all partner points fulfilling the query constraints and to provide a link to

the original atom for each partner point. Figure 4.13 shows a schematic depiction of the

tables which belong to the PartnerPointDB. The table ’points’ is generated for each added

substructure. In this table, the main attributes of a partner point are stored, e.g., its 3D

coordinates and its distance to the central substructure. Similar to the storing of the PRPs

in the InteractionDB (see 4.3.2), the coordinates of a partner point are stored as integer

values. Each partner point is identified via a unique id, called ’point key’. This id is also

used in the second table, called ’pointmapping’. Here, a reference to the original molecule

and the exact atom position is stored for each partner point. These values are required if

the original structure in which a partner point was detected should be displayed using the

backlink functionality. Moreover, attributes of the central substructure for which a partner

points was detected are stored in the table ’point’, e.g., the combined EDIA value and a

link to the original molecule. The first table ’points’ is required for each filtering process,

explained in Section 4.4.3. The second table of the PartnerPointDB ’pointmapping’ is only

used if a backlink to the original structure of a partner points is requested.
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Database construction

The construction of a database consists of three steps. In a first step, PDB files are entered

to the database. As for Pelikan, the two file formats ’.pdb’ and ’.mmCIF’ are accepted.

The procedure works for apo protein structures as well as for holo structures, i.e., structures

of protein-ligand complexes. Apo structures are simply handled as protein-ligand complexes

without ligand. In the following, the procedure of constructing a NAOMInova database

is therefore explained only for structures of protein-ligand complexes. The perception of

molecules from PDB files is explained in Section 4.2.1. Upon entering the structures into

the database, the proteins and molecules are stored in the tables of the ProteinDB and

the MoleculeDB. Secondly, substructures have to be registered. During this process, the

SMARTS of each substructure is checked for validity and the name is checked for uniqueness.

Afterwards, the central substructure is stored in a specific database table. The table contains

one column for each of the five attributes of a central substructure. The name of the central

substructure is used as primary key. In the third step, the partner points are detected and

stored. A schematic overview about this process is presented in Algorithm 3.

In principle, all hits of each substructure in each protein-ligand complex are searched using a

first loop over all protein-ligand complexes and a second loop over all substructures. In Line

6 of Algorithm 3 the SMARTS matching step is performed. Then, for each hit, the combined

EDIA EDIAhit of the detected atoms and the affine transformation for its superimposition

onto the substructure’s template atoms is calculated. If EDIAhit < EDIAmin or if the

RMSD of the transformation is larger then 0.2, the hit is discarded. Otherwise, partner

points in the vicinity of the detected atoms are collected in Line 16. Within this function, all

atoms of the protein-ligand complex which have a minimal distance to any of the detected

atoms of below 4.5 Å are collected. Moreover, only atoms from the organic subset are

considered as partner points here, except for carbon and phosphorus. These are atoms with

an element type of oxygen, nitrogen, sulfur, halogen, or metal. This is done using the spatial

atom index from the NAOMI library (see Section 4.2.5). To this end, a k-D tree is created for

all relevant atoms of each protein-ligand complex already in Line 4 of Algorithm 3. Partner

points are then detected using range queries on the k-D tree. Finally, for each partner point

whose EDIA value is larger or equal than EDIAmin, all necessary attributes are calculated.

These attributes are mainly the values stored in the table ’points’ in the PartnerPointDB.

After all central substructures have been detected in one protein-ligand complex, the data

calculated so far is stored in the database.

The upper boundary of the algorithm’s runtime is on the one hand determined by the runtime

of the SMARTS matching algorithm. The problem of subgraph-isomorphism is known to

be NP-complete [96] and thus all known algorithms have an exponential runtime relative

to the size of the used graphs. On the other hand, all steps in the loop starting in Line 7

of Algorithm 3 are performed for each detected hit. If the absolute runtime is examined, it

might therefore be possible, that the loop in Line 7 has a longer runtime than the SMARTS
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Algorithm 3 Detection and Storage of Partner Points

1: procedure detectAndStorePartnerPoints(database)

2: for all plc ∈ database.getPLCs do ⊲ plc = protein-ligand complex

3: Let data be an empty list of partner points with attributes

4: tree = buildKD-tree(plc.getAllOrganicAtoms)

5: for all sub ∈ database.getSubs do ⊲ sub = central substructure

6: hits = findAllHits(sub.SMARTS, plc)

7: for all hit ∈ hits do

8: EDIAhit = getCombinedEdia(hit)

9: if EDIAhit < sub.EDIAmin then

10: continue with next hit

11: end if

12: rmsd, tra f o = getTransformation(hit, sub.templateAtoms)

13: if rmsd > 0.2 then

14: continue with next hit

15: end if

16: partnerPoints = getAllCloseAtoms(hit, tree)

17: partnerPointsTrans = transform(partnerPoints, tra f o)

18: for all pp ∈ partnerPointsTrans do

19: EDIApp = getEdia(pp)

20: if EDIApp ≥ sub.EDIAmin then

21: pp data = getAttributesForPartnerPoint(pp)

22: data.append(pp data)

23: end if

24: end for

25: end for

26: addDataToDatabase(database, data)

27: end for

28: end for

29: end procedure
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matching step in Line 6 in case a large number of hits is detected. Which of those steps is

finally more relevant for the overall runtime highly depends on the used SMARTS and the

used protein-ligand complex.

Due to possible symmetries of a central substructure, an ambiguous behavior of Algorithm

3 might occur. Firstly, linear symmetry occurs in cases where the substructure’s template

atoms resembles a straight line, e.g., for the SMARTS ’O=C’. After transformation, the

partner points are randomly distributed around the symmetry axis. No further projection of

the partner points is performed here. Secondly, substructure symmetry might occur, e.g., for

the SMARTS ’O=C(C)C’. In these cases, the SMARTS matching algorithm would detect

several matchings on the same set of atoms. In principle, each hit is treated individually and

the partner points for each hit are collected. However, if the detected atoms of a hit have

been found before, all partner points are marked with a flag in the database. Thus, it is

possible to distinguish between all hits of a substructure and only its arbitrary first hits.

Database extension

Besides building a new database, databases can also be extended by protein-ligand complexes

as well as by new substructures. In case of protein-ligand complexes which are added to a

database, the same procedure as explained in Algorithm 3 is used. The only difference is in

Line 2. In this case, the loop covers only the newly added protein-ligand complexes.

In case new substructures are added to an existing database, also Algorithm 3 is executed.

However, the loop in Line 5 uses only the new set of substructures. Besides this difference,

an additional step is required when an existing database is extended by new substructures.

During the database construction, attributes are calculated for each partner point in Line 21

of Algorithm 3. One part of this step is another SMARTS matching step: the substructures

a partner points is part of are determined. For this step, all currently registered substructures

are used. If a substructure is added after other substructures, it might be possible that an

earlier detected partner point is part of the new substructure. Hence, after a new substructure

has been added, the detected atoms are temporarily stored for each protein-ligand complex.

If one of these atoms has earlier been detected as partner point, its attributes are updated.

4.4.3. The Query

In NAOMInova, a query can be used to get a set of partner points with specific attributes.

For such a query, a central substructure is mandatory. All other attributes of the query are

optional. Table 4.4 gives an overview about all possible optional parameters, their value

types, and their default values.
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Attributes Value type Possible values Default value

Central

molecule

type

set of integer any subset of ligand, protein,

metal, water

all possible values

Partner sub-

structure

string any substructure, all substruc-

tures stored in the database

any substructure

Partner

molecule

type

set of integer any subset of ligand, protein,

metal, water, metal

all possible values

Partner ele-

ment

integer any element, oxygen, nitrogen,

sulfur, halogen, metal

any element

Partner

amino acid

integer any type, any used amino acid

type (see table B.4

any type

Partner con-

nection

integer any connection, inter, intra any connection

Partner lo-

cation

integer any type, aromatic, aliphatic

ring, conjugated system

any type

Partner dis-

tance

float any range between 0.0 Å and

4.5 Å

0.0-4.5 Å

Resolution float any range between 1.0 Å and

2.5 Å

1.0-2.5 Å

Minimal

EDIA

float -1 and any value between 0.0 Å

and 1.2 Å (-1 means that no

minimal EDIA value is used)

-1

Table 4.4.: Attributes of the query for partner points in NAOMInova.

In addition to the parameter ’partner distance’, the exact atom from the substructure’s

template atoms can be chosen. If this is done, the distance is measured only to this atom.

Otherwise, the shortest distance to any of the substructure’s atoms is used.

4.4.4. The Search Process

The search process only involves one database query since all partner points for a central

substructure are stored in one table. The central substructure defined in the query gives the

table name for the query. All other chosen parameters of the query are used in the WHERE

clause of the query.
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4.4.5. NAOMInova

The method for deducing preferred interaction directions of molecular substructures is part

of the software tool NAOMInova. It can be used as a command line tool as well as in

combination with a GUI. The usage of both is explained in detail in Appendix F. In the

following, the main aspects of the GUI will be introduced.

The first step when working with NAOMInova is to create or load a database. This can be

done via the context menu of the window (see Panel 1 in Figure 4.14a). Conceptually, the

GUI is separated into five different tabs. In the first tab, new substructures can be defined

and added to the database (see Panel 2 of Figure 4.14a). Moreover, substructures which

are already part of the database can be seen in a table view and can be deleted (see Panel

3 of Figure 4.14a). After substructures have been added, a query can be composed. This

can be done in the second tab of the GUI, shown in Figure 4.14b. For filtering the collected

partner points, a central substructure is mandatory (see Panel 1 in Figure 4.14b). Further

attributes of the central substructure as well as of the partner points can be defined and a

query can be submitted to the database (see Panel 2 in Figure 4.14b). After a query has

been conducted, a set containing all received partner points is created.

A list of all currently existing sets is shown on the left of the GUI (see Panel 3 in Figure

4.14b). These sets can be visualized in the two following tabs: the set visualization and

the pocket visualization. In the former, a set of partner points can be visualized around the

central substructure (see Panel 1 in Figure 4.14c). The partner points can be displayed as

spheres or as a density grid. The calculation of the density grid is explained in the following

section. Distances and angles can be measured by selecting any set of atoms and partner

points. If the partner points are displayed as spheres, the color of each sphere encodes the

element type of the partner point. The visualization and measurement can be controlled by

different buttons in the upper part of the GUI (see Panel 2 of Figure 4.14c). The performed

measurement can also be extended to all partner points by clicking on the button shown in

Panel 3 in Figure 4.14c. The results are then displayed in a normalized histogram (see Panel 5

in Figure 4.14c). The process of histogram normalization is explained in Section ’Histogram

normalization’ below. Moreover, the filter properties used to generate the currently visualized

set are displayed in Panel 4 of Figure 4.14c.

In the pocket visualization tab, sets of partner points can be visualized within a protein-ligand

interface (see Panel 1 of Figure 4.14d). To this end, a protein and a ligand can be uploaded

using the functionality provided in Panel 2 in Figure 4.14d. In the visualization, an atom can

then be selected. If this atom is part of a substructure, the sets of partner points around that

substructure can be displayed inside the pocket. Herein, partner points clashing with atoms

from the protein or the ligand can be hidden. As in the set visualization tab, distances and

angles can be measured here (see Panel 3 of Figure 4.14d)

Finally, in the fifth tab, the original structures of the partner points can be visualized. To
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2

3

1

(a) First tab: Definition and addition of substruc-

tures.

3

2

1

(b) Second tab: Filtering for relevant partner

points.

4

2

5

1

3

(c) Third tab: Visualization of partner points

from a set around the central substructure.

3

1

2

(d) Fourth tab: Visualization of partner points

from a set inside a protein-ligand interface.

Figure 4.14.: Screenshots of the NAOMInova GUI.

this end, a partner point in the set or the pocket visualization has to be selected using the

backlink functionality of NAOMInova.

Density grid calculation

In the visualization tabs of the GUI, the partner points of a set can either be displayed as

spheres or as a density grid. The density grid is an evenly spaced, rectangular grid with a

value for the density of partner points assigned to each grid point. In the following, the

calculation of this grid is explained in detail.

1. A grid covering the whole range of partner points with a spacing of 0.4 Å is calculated.

The minimum coordinates of the grid (xmin, ymin, zmin) are set to the minimum over
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all partner point coordinates:

xmin = min
∀pp∈P

xpp

ymin = min
∀pp∈P

ypp

zmin = min
∀pp∈P

zpp

Where P is the set of all partner points and xpp, ypp, and zpp are the x-, y-, and

z-coordinate of the point pp, respectively.

Starting from this minimal point, the grid is build with a spacing of d = 0.4 Å along

all three dimension. The receiving maximal grid point (xmax, ymax, zmax) is then given

by:

xmax = ⌈

(

max
∀pp∈P

xpp − xmin

)

·
1

d
⌉ · d + xmin

ymax = ⌈

(

max
∀pp∈P

ypp − ymin

)

·
1

d
⌉ · d + ymin

zmax = ⌈

(

max
∀pp∈P

zpp − zmin

)

·
1

d
⌉ · d + zmin

2. For each partner point, the eight grid points which correspond to the smallest box

surrounding a partner point are identified. This box is represented by the minimal

corner with the coordinates: (xi, yi, zi) and its maximal corner with the coordinates

(xi+1, yi+1, zi+1). xi is defined as:

xi = ⌊
xpp−xmin

d ⌋ · d + xmin, with xpp being the x-coordinate of the partner point.

xi+1 is defined as xi + d. yi, yi+1, zi, and zi+1 are calculated analogously.

3. The relative positions of the partner point with respect to the three dimensions inside

the box relposx, relposy, and relposz are calculated using linear interpolation. relposx

is defined as follows:

relposx =
xi+1 − xpp

d

The values relposy and relposz are calculated analogously. All three values are between

0 and 1. A relposx value of 1 means that the xpp = xi, whereas a relposx value of

0.5 means that the xpp is in between xi and xi+1.

4. In the last step, a value for each of the eight corners of the box is calculated representing

its distance to the current partner point. In total, the assigned values for one partner

point sum up to 1.
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The following equations are used to calculate the values for each corner of the box.

The used method is called trilinear interpolation,:

valuexi ,yi ,zi
= relposx · relposy · relposz

valuexi+1,yi ,zi
= (1 − relposx) · relposy · relposz

valuexi ,yi+1,zi
= relposx · (1 − relposy) · relposz

valuexi ,yi ,zi+1
= relposx · relposy · (1 − relposz)

valuexi+1,yi ,zi+1
= (1 − relposx) · relposy(1 − ·relposz)

valuexi ,yi+1,zi+1
= relposx · (1 − relposy) · (1 − relposz)

valuexi+1,yi+1,zi
= (1 − relposx) · (1 − relposy) · relposz

valuexi+1,yi+1,zi+1
= (1 − relposx) · (1 − relposy) · (1 − linearz)

For each density grid point (xk, ym, zn), these values are summed over all partner

points. The final sum gives the color intensity of the displayed density grid. Using a

control, a threshold can be determined defining the displayed density grid points.

Histogram normalization

In NAOMInova, distances and angles can be measured for all partner points. These values

are displayed in a histogram. NAOMInova works with 3D data and thus, the bin values for

spherical angles and distances have to be normalized by the volume they represent. As an

example, a distance bin represents a spherical around the central substructure. The larger the

diameter of this shell, the more volume it represents and the more atoms could be positioned

within this shell.

For the normalization of distance histograms, the volume of a bin is calculated using the

following equation:

Vdist,k =
4

3
π(r3

i+1 − r3
i )

Where ri is the minimal and ri+1 the maximal distance of bin k. The value of the normalized

distance bin is the count of partner points for the respective bin divided by Vdist,k.

Analogously, the volume of the kth angle bin is calculated using the following equation:

Vangle,k =
2

3
π| cos(αi)− cos(αi+1)| · R

Where αi is the minimal and αi+1 the maximal angle of bin k. R is the distance cut-off value.

The value of the normalized angle bin is then determined by dividing the count of partner

points for the respective bin by Vangle,k.
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5
Evaluation Strategy and

Experiments

In this chapter the data sets and experiments used to evaluate the methods presented in

this thesis are described. In general, three aims are pursued with these experiments. First

of all, the correctness of the methods should be verified. Secondly, the performance of the

algorithms is quantified in order to demonstrate its strengths and limitations. This includes

the performance of the used databases. Thirdly, the value of the developed method are de-

duced by means of comparison to other existing software solutions. However, this last aspect

could only be assessed for Pelikan since no comparable tool was available for NAOMInova.

In Section 5.2, the experiments performed with the Pelikan method are described. The ex-

periments performed to validate the method used in NAOMInova are presented in Section

5.3. The results of these experiments are shown in Chapters 6 and 7, respectively.

5.1. Hardware

Throughout this work, two different hardware settings are used to conduct the experiments.

(1) A standard PC equipped with an Intel I5-4570 (3.2 GHz) processor, 16 GB of main

memory, and a Samsung 950 pro PCIe solid state drive (512 GB, model nvme) with a btrfs

file system (herein denoted as SSD). (2) A standard PC equipped with an Intel I5-4570

(3.2 GHz) processor, 16 GB of main memory, and a Seagate Desktop hard disk drive (500

GB, model ST500DM002) with an ext4 file system (herein denoted as HDD). Both platforms

run with a standard configuration of a Linux openSUSE 13.1 distribution.
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5.2. Pelikan - Experiments

5.2.1. Systematic Correctness

The correctness of the Pelikan method is verified here by analyzing the search results. In

principle, there can be two types of wrong results. On the one hand, false positive results

can be returned. This means, that there are results which do not fulfill the search criteria.

False positive results can be detected by comparing each resulting hit with the attributes of

the used query. On the other hand, there can be false negative results. In this case, there is

a result in the data set but the method is not able to find it and thus it is not part of the

result set. The strategy to detect this kind of error here is to specifically search for a known

3D pattern which is part of the database.

In order to check for both types of errors, a random set of 200 PDB files has been used to

build a database. Afterwards, a query has been generated for every pocket in each protein-

ligand complex. For query creation, the pocket has been randomly translated and rotated in

3D space as a first step. Then, a set of eight atoms has been collected. This set contained

randomly picked atoms, each had a maximum distance of 8.5 Å to at least one other atom in

the set. For each atom, a search point has been created using its element type, its origin, and

its interaction type. For each atom pair with a mutual distance below 8.5 Å, a point-point

constraint has been created with a random range around the measured atom-atom distance.

Two angle constraints have been added to the query by randomly picking four point-point

constraints. An angle constraint with a randomly chosen range around the measured angle

has been introduced between the first and the second, and the third and the fourth picked

point-point constraint. Finally, one property of the pocket, the protein, and the complex has

been picked randomly, respectively. For each property, a textual/numerical constraint has

been added to the geometrical query.

The query has then been used to find results on the database. Finally, each resulting match

has been compared with the query in order to detect false positive results. Moreover, the

pocket which has been used to create the query had to be part of the results in order to

exclude false negative results.

5.2.2. Data Sets

For the following experiments, different sets of protein-ligand complexes are used. In general,

the PDB has been used as source for protein-ligand complexes. For all experiments, files

in pdb format have been used. From all files in the PDB (accessed November 2016), a

set containing all protein-ligand complexes which contain at least one reference ligand has

been compiled. This set will be named ’PDBcomplete’ in the following. It contains 69 481

different files. Moreover, five sets of protein-ligand complexes with increasing sizes have been

66



5.2. Pelikan - Experiments

created. To this end, 2 000, 4 000, 8 000, 16 000, and 32 000 files were randomly picked from

PDBcomplete, respectively. In the following, these sets will be named by their size.

5.2.3. Database Construction

In order to search for 3D atom patterns using the Pelikan method, a database has to be

created first. In this experiment, the performance of the database construction process is

analyzed. This includes the runtimes for creating a database and an analysis of the database’s

structure and the required disk space. In this experiment, a database is created for each of

the data sets.

The construction process can be divided into two parts. In the first part, the protein-ligand

complexes are added to the database. This step includes the determination of the pockets,

the calculation of PRPs and non-covalent interactions, and their storage. In the second part,

the stored PRPs are used to calculated the triangle descriptor. The runtime for first part

clearly depends on the number of files added to the database. It is however not clear, if there

is a constant amount of time needed to add one protein-ligand complex or if the run time

for adding one protein-ligand complex increases with database size. This question should be

answered by constructing a database using PDBcomplete. Herein, the required runtime has

been measured for each PDB file.

In a second experiment, the runtime for the construction of the triangle descriptor is assessed.

To this end, the triangle descriptor has been calculated for databases of different sizes.

Existing databases can be expanded by adding new protein-ligand complexes. During this

process, the new complexes are first added to the database. This process does not differ

from the addition of protein-ligand complexes during database construction. Afterwards, the

triangle descriptor is expanded. The runtime dependency of this step has been determined

by expanding the different databases by 10% of their protein-ligand complexes.

5.2.4. Triangle Descriptor

The triangle descriptor has been introduced in order to be able to quickly reduce the search

space. In general, such a descriptor can only be efficient if it is able to discriminate between

elements. If, for example, all PRPs were part of all DTs of the descriptor, the descriptor would

not help to reduce the search space. On the other hand, such a descriptor should generalize

in order to reduce its size. For example, if there would be only one PRP for each DT, the

number of different DTs is probably too large. Ideally, the PRPs are evenly distributed over

the different DTs. Moreover, the amount of DTs a PRP is part of should not be too large

and not too small. To this end, the triangle descriptor has first been characterized by means

of counting the number of PRPs per DT and the number of triangles per PRP. In other
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words, the bit density of all bit strings dDTi and dPRPi has been analyzed.

The ability of the triangle descriptor to accelerate a query is difficult to access because it

highly depends on the query. For example, if the query contains a triangle with large distance

ranges, the search points could be part of several DTs from the descriptor. Depending on

the number of PRPs generated from this, the descriptor could be not very beneficial in this

scenario. On the other hand, if a query contains a triangle with well defined search points

(e.g., oxygen, donor, and reference ligand), the search points have to be part of several DTs

of the descriptor. In this case, the descriptor would probably be more efficient.

a

b

c

Attributes any of
{Protein-C, Protein-N, Protein-O, 
  Protein-Don, Protein-Acc, Protein-Arom
  Ligand-C, Ligand-N, Ligand-O, 
  Ligand-Don, Ligand-Acc, Ligand-Arom}

b and c:

Point-point constraints, 
all 2.5-3.5Å, 5.5-6.5Å, or 7.5-8.5Å

a: All attributes 'any'

 

Figure 5.1.: Schematic depiction of the triangle queries
used to determine the efficiency of the trian-
gle descriptor. A green dot represent a search
point. The arrow represent distance con-
straints. The attributes of the search points
and the distance ranges are given in the text.

In order to analyze the mean acceler-

ation potential of the triangle descrip-

tor, the speed-up for hitting exactly one

bit of the descriptor has been recored.

The test queries used here are displayed

in Figure 5.1. Each test query con-

sists of three search points which are

mutually connected by point-point con-

straints. One search point has no spe-

cifically defined attributes (see search

point ’a’ in Figure 5.1). The two other

search points exactly correspond to one

type of the leg types used in the trian-

gle descriptor (see search points ’b’ and ’c’ in Figure 5.1). The set of test queries has been

compiled by combining all possible attributes for these two search points. Additionally, three

different distances for the point-point constraints have been used: 2.5-3.5 Å, 5.5-6.5 Å,

and 7.5-8.5 Å. In total, the set contains 231 different queries. For each query, the gained

speed-up has been calculated by using the following equation:

speed-up =
complete runtime, not using the triangle descriptor

complete runtime, using the triangle descriptor

5.2.5. Query Retrieval Speed

The experiments described in this section should assess the runtime of the search process.

The main purpose is to determine the time consumption of the different steps during the

process. Moreover, the dependence of the runtime on different aspects of the algorithm

should be assessed. In this set of experiments, three different influences have been tested:

• Attributes of the query: Topology, geometrical constraints, and properties of the query

objects.

• The size of the database.
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PDB code: 1j7u
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SER27
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4
3

5
6

Standard queries:

Linear: Triangle:

6.6Å 8.1Å

1
2

3
three points

6.6Å1 2
two points
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1
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3
4
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2
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3

41
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2
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3

7Å6.6Å

8.1Å
4Å 4.6Å

7.2Å
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ILE207

VAL31

SER27

1

2
4

3

5
6

Queries for rarely
occuring attributes:

a b

d

Star:

1
2

3

4 7.2Å

4Å

6.6Å

small star

1
2

3

4

5 6

6.6Å

4Å

7.2Å

3.8Å 4.6Å

large star

e

Figure 5.2.: Schematic depiction of different queries used to assess the query speed of Pelikan. a) Atoms
from the binding site of ANP in PDB file 1j7u used in the queries are labeled with green spheres
and their ids. b) Atoms from the binding site of ANP in PDB file 1j7u used in the queries with
rarely occurring attributes are labeled with green spheres and their ids. c) Query topologies of
linear queries. d) Query topologies of triangular queries. e) Query topologies of star-like queries.
This figure is adapted from [77]. Reprinted (adapted) with permission from [77]. Copyright
2017 American Chemical Society.

• The hardware used during the search process.

In order to test these aspects, a set of test queries has been created. In general, all queries

have been created such that they match atoms in the pocket of ligand ANP in the protein-

ligand complex 1j7u [97] in order to make sure that at least one result is detected for each

query. The used atoms are shown in Figure 5.2a and b. In the standard form, a query consists

only of search points and distance constraints. The attributes of the search points are the
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element type and the origin of the respective atom in 1j7u. The range of the distance

constraints is the distance between the respective atoms in 1j7u ± 0.5 Å. In total, eight

different standard queries exist. They are separated into three different topologies: linear,

triangle, and star. For each topology, two or three different shapes exist, respectively. All

shapes are shown in Figure 5.2c, d, and e. Starting from the standard queries, other queries

have been constructed by changing one query attribute in different steps. For example, the

influence of the search point properties has been tested by comparing the standard queries

with queries where additional properties of the search points are used. In the first step, this

has been the interaction type of each search point. In the second step, all possible attributes

of the search point have been set to the respective properties of the matching atom in 1j7u.

The exact queries are listed in Appendix C.

The influence of the database size has been determined by executing the same queries on

database with different sizes. Moreover, the influence of the used hardware has been tested

by comparing runtimes of the same queries on the SSD and the HDD settings.

5.2.6. Comparison with Relibase

In the last experiments, the Pelikan method has been compared with Relibase. Relibase

has been chosen as competitor because it also focuses on protein-ligand complexes and

it is able to search for precise geometrical queries at an atomic level. The focus of this

experiment is the comparison of the search capabilities of 3D patterns. The definition of the

3D query slightly differs between the tools. Thus, for comparison geometric queries have

been developed which can be used for both tools. The design of these queries has mainly

been restricted by Relibase which is not able to work with intra-molecular distance and angle

constraints. These features can only be used in Relibase+. Moreover, Relibase does not

support the search for atomic interactions. To this end, three different queries have been

designed which contain substructure constraints of the ligand, as well as of the protein. Both

substructures are connected with distance constraints. The used queries are shown in Figure

5.3.

Due to the different design methods, the exact queries used for each tool slightly differ.

In Relibase, molecular structures have to be drawn in 2D. For each structure, its original

molecular structure, e.g., protein or ligand, has to be annotated. For pairs of atoms in

the 2D view, distance constraints can be added. The resulting query almost looks like the

examples displayed in the left panel of Figure 5.3. For Pelikan, the search points with their

attributes and the point-point constraints with their distance ranges are shown in the right

panel of Figure 5.3. For each query, the two different queries have the same chemical and

geometrical meaning. Thus, the same hits should result from a search.

For query design and query execution with Relibase, the web service provided from the

Cambridge Crystallographic Data Center (CCDC, http://relibase.ccdc.cam.ac.uk/) has been
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Query 1:

Relibase Pelikan

1

2

3

4

2.5-3.5Å

2.5-3.5Å

4.5-5.5Å Distances: 
1-3: 4.5-5.5Å
1-4: 2.5-3.5Å
2-4: 2.5-3.5Å

Search points: 
1: Ref. ligand, oxygen, 
    SMARTS: [O$(O(C)c1ccccc1[O:2]C)]
2: Ref. ligand, oxygen
3: Protein, oxygen, glutamine, side chain
4. Protein, nitrogen, glutamine, side chain

Query 2:

1

2 4

Distances: 
1-4: 2.5-3.5Å
2-4: 2.5-3.5Å

Search points: 
1: Ref. ligand, oxygen, 
    SMARTS: [O$(O(C)c1ccccc1[O:2]C)]
2: Ref. ligand, oxygen
4: Protein, nitrogen

ligand

2.5-3.5Å

2.5-3.5Å proteinligand

Query 3:

1

2

3

4

Distances: 
1-3: 4.5-5.5Å
1-4: 2.5-3.5Å
2-4: 2.5-3.5Å

Search points: 
1: Ref. ligand, oxygen
2: Ref. ligand, oxygen
3: Protein, oxygen, glutamine, side chain
4. Protein, nitrogen, glutamine, side chain

2.5-3.5Å

2.5-3.5Å

4.5-5.5Å

ligand

protein

+ resolution <=1.0Å

+ resolution <=1.0Å

protein

Figure 5.3.: Schematic depiction of three different queries used to compare Relibase and Pelikan. The
queries used for Relibase are shown on the left. Here, structures for the ligand as well as for
the protein are drawn as 2D molecular structures. Distance constraints are indicated with green
line. The corresponding queries used for Pelikan are shown on the right. Here, search points are
indicated as green dots and distance constraints are depicted as green lines.
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used between march and june 2017. All test queries have been executed with Pelikan using

the SSD hardware settings.

For all of these queries, the runtime and the exact results have been compared between

Relibase and Pelikan.

5.3. NAOMInova - Experiments

The typical workflow of NAOMInova is the following: First a database out of protein

structures of interest is created. Afterwards, substructures are registered and added to

the database. Finally, the database can be mined for detected partner points around the

substructures using different filters. The most important aspect is the correctness of this

approach. Moreover, the runtimes of the different steps within the workflow are important

for its ease of use. These aspects will therefore be tested here. The exact performed ex-

periments are describes below. The results and their discussion can be found in Chapter

7.

5.3.1. Systematic Correctness

As for the Pelikan methods, two different errors can occur here: false positive and false

negative results. In order to check for their existence, a set of 200 randomly chosen protein

structures has been compiled. For each of the protein structures, a database has been

constructed. Afterwards, three substructures have been defined by randomly choosing three

atoms. For each atom, all neighboring atoms up to a depth of two bonds have been combined

to one substructure. For each substructure, a SMARTS has been created. Together with

an arbitrary name, the substructure has been registered and added to the database. Finally,

an oxygen or nitrogen in the vicinity of the substructure has been randomly picked and was

used to define the parameters of a query. To this end, its element and its distance to the

substructure has been used. Among all partner points received with this filter, the accordance

with the filter criteria has been checked in order to detect false positive results. Moreover,

the atom which has been used to determine the filter criteria has been searched within the

result set. Thereby, the existence of false negative results is checked.

5.3.2. Data Sets

The benchmarking of the different steps within the NAOMInova workflow have been per-

formed using different sets of protein structures. First of all, all structures from the PDB

with a resolution better than 2.5 Å and for which an electron density file was available have

been collected (accessed December 2016). In the following, this set will be called ’PDB2.5’.
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It contains 56 807 unique PDB files. From this set, random sets containing 2000, 4000,

8000, 16 000, and 32 000 PDB files have been created, respectively. These sets have been

used in order to determine how the runtime changes over a growing set of data. For each

PDB file, the corresponding electron density file has been downloaded beforehand.

5.3.3. Database Construction

The runtime of constructing a database has been assessed using the PDB2.5 data set. Herein,

the time needed to add each PDB file has been recorded. The main interest is to determine

an average runtime and to investigate whether this runtime changes during the process of

database construction. Another important aspect here is to determine the most time con-

suming step.

In addition, the disk space required for a NAOMInova database has been assessed by con-

structing databases for all used data sets. The main question here is to compare the increase

of the disk space to the increase of the data sets. In theory, a linear dependency is expected

here.

5.3.4. Adding Substructures

The process of adding substructures to a NAOMInova database contains a SMARTS match-

ing step, the superimposition of the matching atoms to the template substructure, and the

collection of partner points in the vicinity of the matching atoms. As already mentioned

in Section 4.4.2, the runtime of these steps depends on the used SMARTS pattern and

on the number of hits detected for each SMARTS pattern. In principle, a more compli-

cated SMARTS pattern requires more time for the SMARTS matching step but less hits are

probably detected. On the other hand, a simple SMARTS would result in a fast SMARTS

matching step but a large number of hits are detected. In order to verify these theoretical

considerations, the following three different substructures have been added to the database:

• Unique name: Hydroxyethyl 1 – SMARTS: CC[OH]

• Unique name: Hydroxyethyl 2 – SMARTS: [C$(C[CR1])]C[OH]

• Unique name: Hydroxyethyl 3 – SMARTS: [C$(CC1CCCCC1)]C[OH]

For all three substructures, the EDIAmin has been set to 0.8 and the template molecule has

been defined using the SMILES ’CCO’. The SMARTS of these substructures all share the

same fragment part but differ in their surrounding part. For these substructures, the runtime

for the adding process on databases containing the different sets of PDB files have been

recorded and compared.
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5.3.5. Filtering

When working with NAOMInova, the runtime of the filtering step is a very important pa-

rameter. In the typical workflow, a database is constructed once and all substructures of

interest are also added once. Afterwards, several filter steps can be used to analyze the

distribution of partner points. The runtime for this step strongly depends on the database

and it is probably longer the more results are detected. In order to verify this hypothesis

and to assess the runtime behavior of the filter step, three different filters have been used to

query partner points from the three substructures added in the preceding experiments (see

Section 5.3.4). The three queries are defined as follows:

1. Central substructure = current substructure, all other attributes are set to ’any’.

2. Central substructure = current substructure, element type partner point = oxygen, all

other attributes are set to ’any’.

3. Central substructure = current substructure, element type partner point = oxygen,

location of partner point = ligand, all other attributes are set to ’any’.

The queries differ in their precision. The first query demands all detected partner points of

each substructure. The second and the third query should reduce the number of resulting

partner points by asking for a specific element or molecule type of the partner points.
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Results and Discussion of Pelikan

In this section, the results of the experiments for the Pelikan method (described in Section

5) are presented and discussed. The experiments cover the analysis of the Pelikan database,

an analysis of the triangle descriptor efficiency, a benchmarking of the retrieval system for

3D queries, and a comparison with Relibase. If not otherwise stated, the experiments are

performed using the SSD hardware settings (see Section 5.1 for the exact definition). Herein,

a standard PC equipped with a solid state drive is used. The technical details of this platform

are described in 5.2.5. All experiments reported here are performed after clearing the random

access memory (RAM) cache. Thus, no accelerations due to cached database pages are to

be expected.

In order to avoid confusion between complete queries exposed to Pelikan and queries defined

in SQL and executed on the database, the latter will be explicitly called ’database queries’

(db-queries) in the following. The term ’query’ will always refer to a complete Pelikan query.

6.1. Database Construction

In this experiment databases for all datasets are created. An overview about the disk space

used by these databases and the number of stored pockets and PRPs is shown in Table 6.1.

The complete disk space of the database linearly growths with the number of protein-ligand

complexes. About half of the size of each database is occupied by the triangle descriptor table.

On average, one protein-ligand complex contains 3.8 pockets and 996 PRPs. Four different

aspects of the database construction are analyzed in Figure 6.1. Figure 6.1a presents the

runtimes for adding a single protein-ligand complex to the database without the calculation

of the triangle descriptor for subsequent slices of 10 000 PDB files. For all data slices, the

runtimes highly fluctuate as the lower and upper quartile of the values enclose a range of 4 to

6 s (see data slice 0-10 000 and data slice 50 000-60 000 in Figure 6.1a). Most probably, the

fluctuation are a result of the different sizes of the individual complexes. 50% of the files can

be added within 4 s, as indicated by the median (purple line in Figure 6.1a). However, there

are many upward outliers which can be inferred from the fact that the mean is significantly
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Database

name

Size [GB] Size of triangle

descriptor table

[GB]

Number of

pockets

Number of

PRPs

Size per

complex

[MB]

2 000 2.5 1.3 7 777 2 130 064 1.28

4 000 4.7 2.3 14 853 3 927 658 1.20

8 000 9.6 4.7 30 134 8 005 259 1.23

16 000 19 9.5 59 768 15 725 073 1.21

32 000 40 20.0 122 599 32 915 764 1.28

PDBcomplete 84 42.0 264 930 69 718 823 1.24

Table 6.1.: Sizes of different Pelikan databases. The database name stands for the number of entered
protein-ligand complexes in the database. The database ’PDBcomplete’ contains 69 481 different
protein-ligand complexes.

larger than the median (compare yellow square and purple line in Figure 6.1a). These outliers

correspond to protein-ligand complexes with a large number of atoms. Overall, there is no

large increase in runtime with increasing data. Thus, the runtime for adding protein-ligand

complexes stays constant with increasing size of the database.

Figure 6.1b displays the breakdown of the computation time to the individual process steps.

Even though the standard deviations are quite large, one can clearly see that the calculation

of the pocket properties with the DoGSite algorithm and the calculation of hydrogen positions

with Protoss are the most time-consuming steps in the process. The sole writing of calculated

data into the database takes less than 10% of the complete runtime.

After protein-ligand complexes have been added to the database, the triangle descriptor is

calculated. The runtime for this step is shown in Figure 6.1c for different databases. It

can be seen that the computation time depends linearly on the database size (correlation

coefficient of linear regression is 0.999). This result is in agreement with the theoretical

considerations of the algorithm (see Section 4.3.3). It was concluded there that the runtime

depends the distribution of the PRPs over the different pockets. The linear runtime behavior

indicates that the PRPs are uniformly distributed over the different pockets.

The runtime for extending the triangle descriptor is shown for all test databases in Figure

6.1d. Again a linear dependency between the database size and the runtime can be observed

(correlation coefficient = 0.999).

Taken together, a database containing PDBcomplete can be build within eight days (190 h).

Therein, 36.5 h are spend for triangle descriptor calculation. The expected workflow here is

to build a database once which can be used for different queries. If needed, protein-ligand

complexes can be added later by using the extension procedure. During the development,

the runtime for database construction was therefore considered to be less important than

the retrieval time of queries.
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6.1. Database Construction

Figure 6.1.: Performance of the database construction process in Pelikan. a) Runtimes for adding one
protein-ligand complex to a database shown in subsequent slices of data. Mean values are
shown in yellow, the median is given as pink line. The box represents the lower and upper
quartile of each data slice. The whiskers range from 5% to 95%. b) Runtime of different steps
of the complete process of adding a protein-ligand complex to a database. Mean percentages
of the complete runtime and standard deviations of three independent runs are shown. c)
Runtime of the calculation of the triangle descriptor on different databases. Mean values and
standard deviations of three independent runs are shown. d) Runtime of the extension of the
triangle descriptor by 10% on different databases. Mean values and standard deviations of three
independent runs are shown.
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If the runtime was to be optimized, it would be promising to optimize the first step of the

procedure in which the protein-ligand complexes are added to the database as this takes

much more time than calculating the triangle descriptor. Within this step, the calculation

of pocket properties using the DoGSite algorithm has been determined as the most time

consuming step. Hence, a runtime optimization of this step would have great impact on the

complete database building process. Moreover, the analysis shows that the entry of values

into the database only takes 10% of the overall runtime. The overall runtime could therefore

be reduced if all calculation steps for the PDB files are executed in parallel and if all resulting

values are stored in a file. Afterwards, all values could be entered to the database in one

step.

The size of a database containing PDBcomplete is about 84 GB. As stated on the SQLite

homepage [92] (accessed February, 2017), the size limit for an SQLite database is 140 TB.

Thus, the size of the Pelikan database is technically not a problem. However, since multi-

user operations are not as well managed as in server-based databases [98], every user has

to prepare a database by himself or has to copy it. In this scenario, a database of 84 GB

is not very convenient. The triangle descriptor uses 50% of the complete database size

whereas the remaining size is used for storing the protein-ligand complexes and the PRPs.

The overall database size could therefore be reduced with two strategies: reduction of the

triangle descriptor and a more efficient storing of the protein-ligand complexes. Concerning

the latter aspect, there is only little potential as the stored data structures are already

optimized and compressed if possible. In the further analysis of the triangle descriptor (see

Section 6.3), it becomes clear that it could indeed be reduced by some triangles which do

not affect the retrieval time for queries.

A similar descriptor with a triangle shape is also used by other software tools in the context

of drug design, namely Recore [99] and Pharmer [100]. Here, geometric properties of small

molecules are stored in triangles. In both tools, the triangles are stored as points in 3D.

Therein, each side length corresponds to one coordinate. Using a tree data structure for the

storage of these points, fast access to specific triangles is achieved by range queries. This

approach has also been tested here but has proven to be not applicable. The size of the k-D

tree data structure was ten times larger than the current table storing the triangle descriptor.

Unfortunately, the required disk space for storing the triangles is neither given for Recore

nor for Pharmer. Both tools work on small molecules and use a smaller number of atoms as

triangle corners. Hence, it might be possible that the number of triangles is much smaller

than in this application.

Another possibility is to store the triangles in a FastBit index [101]. This is an open source

data processing library which stores data as compressed bitmap indices. Schlosser and Rarey

have already shown that this library provides an efficient data handling for triangles in the

context of structure-based drug design [102]. The only disadvantage of this approach would

be the fact that the FastBit index is stored in a separate file and thus two different files

would be required for Pelikan.

78



6.2. Systematic Correctness

It has been confirmed that the large size of the triangle descriptor table does not influence

the search speed for queries which do not use the triangle descriptor. This was concluded

from experiments where the retrieval times for queries without triangles on a normal Pelikan

database and on a database without triangle descriptor table were compared (see Figure D.1

in Appendix D).

6.2. Systematic Correctness

The experiment described in section 5.2.1 was performed independently three times. Neither

false positive nor false negative results were detected.

The detection of false positive results used here is a very straightforward experiment. For all

results, the agreement with the used query is checked. Detecting false negative results is not

that trivial. For such a test, one has to know all correct results. These expected results can

then be compared with all retrieved results. Unfortunately, such a test set of geometrical

queries and expected results has never been compiled for this application scenario. Moreover,

comparable tools in this area did not publish their methods for the verification of correctness.

We therefore decided to implement a procedure where only one result is known. However,

due to the random procedure of constructing a query, the size of the used data set, and the

independent repetitions, even the correct detection of one expected result strongly points to

a correctness of the method. However, there might still be rare cases in which the method

is not correct which have so far not been detected by this test. In order to detect those, the

developed test could be performed on a much larger data sets and could be repeated much

more often.

6.3. Triangle Descriptor

In this section, the characteristics of the triangle descriptor and its ability to accelerate 3D

queries is tested. To this end, the density of the descriptor is inspected first. Later, a set

of triangle queries is used to asses the speed-up factors achieved by the triangle descriptor.

These queries are called ∆-queries. The exact construction of these queries and the definition

of the speed-up factor are explained in Section 5.2.4.

6.3.1. Descriptor Density

Ideally, each PRP should be contained only in a small number of DTs. At the same time,

all PRPs should be equally distributed over the different DTs. As a consequence, each DT

then contains the same small number of PRPs. In this scenario, the result space could

immediately be reduced to a small number of PRPs if one DT is detected in a query. Each
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Figure 6.2.: Triangle descriptor density. a) Histogram showing the number dDT density. This is the number
of bits set to one in all dDTi as a percentage of the bit string length. This describes the number
of PRPs which occur in a DT as percentage of the complete number of PRPs. b) Histogram
showing the dPRP density. This is the number of bits set to one in all dPRPi as a percentage of
the bit string length. This describes the number of DTs a PRP occurs in, in percentage of the
number of all DTs.

DT is then equally effective in this reduction. In this section, the density of the triangle

descriptor is evaluated in comparison to the described optimal descriptor. To this end, two

different properties are inspected: (1) Which fraction of PRPs are contained on average in

a DT? This is equal to the percentage of bits set to one in dDT and will be referred to as

’dDT density’. (2) In how many DTs does a PRP occur? This count is equal to the number

of bits set to one in dPRP and will be referred to as ’dPRP density’.

In Figure 6.2 both properties of the descriptor from the database PDBcomplete are displayed.

The total count of PRPs in this database is 69 718 823. The triangle descriptor contains

15 542 different DTs. The dDT density of all dDTi is shown in Figure 6.2a. In total, there

are 220 triangles for which no PRP has been found. Hence, for these DTs, dDTi = 0. At

most, 57% of the bits are set to one in a dDTi. Moreover, 75% of all dDTi contain less than

10% of the PRPs, as indicated by the location of the upper quartile in Figure 6.2a.

Figure 6.2b shows the dPRP density. Only 251 PRPs do not occur in any DT. Hence, there

are 251 bit positions in all dDTi which are always zero. At maximum, one PRP occurs in

about 6 299 different DTs. This is equal to about 40% of all DTs. That means that at most

40% of the bits are set to one in a dPRPi. In total, 75% of the PRPs appear in less than

11% of the DTs, as indicated by the upper quartile in Figure 6.2b.

These numbers show that in principle the triangle descriptor is able to differentiate between

the PRPs. There are no PRPs which occur in all DTs and there is only a small number of

PRPs which occurs in no DT at all. Additionally, there is no DT in which all PRPs occur

and only a small number of DTs are never found. However, within one query, more than one

triangle might be involved. Since these triangles can be combined with AND and OR in an

arbitrary query it is difficult to estimate a factor by which the number of PRPs are reduced

by the triangle descriptor.
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Figure 6.3.: Speed-up for ∆-queries using the triangle descriptor. Each histogram shows the speed-up factor
for 77 different ∆-queries achieved by using the triangle descriptor. The vertical dotted line
indicates the mean value for each plot. a) Speed-up factors for ∆-queries with side lengths of
2.5-3.5 Å. b) Speed-up factors for ∆-queries with side lengths of 5.5-6.5 Å. c) Speed-up factors
for ∆-queries with side lengths of 7.5-8.5 Å.

6.3.2. Speed-up

In the next experiment, the speed-up gained by the triangle descriptor is measured using a

set of triangle test queries. The construction of these test queries and the overall test set up

is described in Section 5.2.4. The experiment was performed on the database 8 000. Figures

6.3a, b, and c show the speed-up factors achieved by the triangle descriptor for the three

different groups of ∆-queries. These groups only differ in their distance constraint ranges

which are 2.5-3.5 Å, 5.5-6.5 Å, and 7.5-8.5 Å, respectively. Overall, the smallest achieved

speed-up factors are 1.02, 0.99, and 0.98 for the three different distance ranges, respectively.

That means that the triangle descriptor never slows down the retrieval time drastically. The

maximum recorded speed-up factor is 3.8 (see Figure 6.3a). On average, a speed-up of about

1.5 is reached here.

In the next step the exact reason for the speed-up is analyzed in more detail. With regard to

the search procedure, the only steps which could be accelerated by the triangle descriptor are

steps 4 and 5 of the search process (see Figure 4.6). In step 4, three different db-queries are

generated for each ∆-query. One db-query is executed for each distance constraint. In step

5, the results for all distance constraints are combined to complete hits and verified using

a clique-detection algorithm. The overall effect of the triangle descriptor therefore depends

on the percentage of runtime spent for steps 4 and 5 of the search procedure. The amount

of time spent in steps 4 and 5 relative to the complete runtime without using the triangle

descriptor is shown in Figure 6.4. Two correlations can be observed: The percentage of

runtime spent in step 4 negatively correlates with the overall runtime. Hence, the faster the

∆-queries, the more time is required for step 4 on average. For queries with a runtime below

2000 s, step 4 even seems to be the most time consuming step with a share of more than

60% (see Figure 6.4a). In some cases, almost 100% percent of the runtime is spent in this

step. On the other hand, a positive correlation exists between the overall runtime and the

percentage of time spent in step 5. At maximum, 78% of the complete runtime is spent in
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Figure 6.4.: Percentage of the complete runtime for ∆-queries spent in steps 4 and 5 of the search procedure
if no triangle descriptor is used. Each data point corresponds to one ∆-query. The color of each
dot codes the distance ranges of the respective ∆-queries. a) Percentage of time spend in step
4. a) Percentage of time spend in step 5.

step 5 (see Figure 6.4b).

Moreover, it can be seen that the ∆-queries with small distance ranges (2.5-3.5 Å, displayed

as red dots in Figure 6.4) have shorter total runtimes compared to the ∆-queries with larger

distance ranges (5.5-6.5Å and 7.5-8.5Å, displayed as green and blue dots in Figure 6.4, re-

spectively).

In general, it can be concluded from these observations that step 4 and step 5 can be both

highly time consuming steps in the search procedure. In principle, the triangle descriptor

could therefore be able to reduce the overall runtime. From this perspective, if the runtime

of long-running queries are to be accelerated, a speed-up of step 5 seems to be more effec-

tive than a speed-up of step 4. However, the expected overall speed-up highly depends on

the fact that both steps are accelerated by the triangle descriptor at the same time. As an

example, a ∆-query which has an overall runtime of 10 000 s is considered. Herein, step 5

requires 75% of the overall runtime. In this scenario, an optimization of step 5 alone can

maximally lead to an overall speed-up of four (based on Amdahl’s law [103]).

In the next step, the achieved speed-up is analyzed in more detail. Due to the sorting proce-

dure at the beginning of step 4, the distance between search points ’b’ and ’c’ of a ∆-query

is always used as the first db-query. Since the triangle descriptor only applies to search

point ’a’ of a ∆-query, no speed-up can be achieved for this first db-query. Thus, only the

second and third db-query and step 5 can be accelerated in this experiment. To this end,

the acceleration of the second and third db-query of step 4 and step 5 are compared to the

overall speed-up achieved by using the triangle descriptor.

Figure 6.5 shows the speed-up factors for each of these steps plotted against the overall

speed-up for each ∆-query. It can be seen that the second and the third db-queries are only
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Figure 6.5.: Speed-up factors gained by using the triangle descriptor in different steps of the search procedure.
Each data point corresponds to one ∆-query. The color of each dot codes for the distance ranges
of the respective ∆-query. a)-c) Speed-up factors achieved in the second db-query of step 4, in
the third db-query of step 4, and in step 5 plotted against the overall speed-up factor for the
∆-query, respectively. ’r’ represents the correlation coefficient of a linear regression.

accelerated for some of the ∆-queries with the lowest distance range by the use of the triangle

descriptor (see Figure 6.5a and b). Concerning ∆-queries with the larger distance ranges,

the db-queries are almost not accelerated. In general, no positive correlation between the

overall speed-up and the speed-up of the db-queries can be observed. This means that an

acceleration of the second and third db-queries does not always lead to an overall speed-up

of the entire triangle query. In contrast, a positive linear correlation can be observed between

the speed-up of step 5 and the overall speed-up for the ∆-queries (correlation coefficient r =

0.5, see Figure 6.5c). Interestingly, the maximal speed-up factors reached for the second and

the third db-queries (55 and 52, respectively) are much higher than the maximal acceleration

achieved for step 5 (20), respectively.

A reason for the linear dependency between the overall speed-up and the speed-up of step 5

could be the runtime behavior of the clique detection algorithm. Clique detection in graphs

is an NP-complete problem with an exponential runtime behavior [104]. Therefore, the re-

duction of a very large to a small input leads to strongly reduced runtimes in this algorithm.

Here, the input for the clique detection are product graphs constructed from all PRP pairs

detected in the earlier steps of the search procedure. One graph is constructed for each

pocket. A closer look into this procedure reveals that both the number of graphs as well

as the size of the graphs (in terms of vertices and edges) are reduced by using the triangle

descriptor (no data shown). However, a more detailed analysis would be necessary to confirm

this hypothesis.

In order to estimate the effect of the triangle descriptor, not only the speed-up factor as

such, but also its ability to accelerate queries with respect to the absolute runtime is impor-
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Figure 6.6.: Acceleration of the absolute runtime for ∆-queries due to the triangle descriptor. Each data point
corresponds to one query. The color of each dot codes the distance ranges of the respective ∆-
query. ’r’ represents the correlation coefficient of a linear regression measured for all data points
with a runtime < 1000 s. a) Overall runtime of ∆-queries without using the triangle descriptor
plotted against the overall speed-up factor. b)-d) Overall runtime of ∆-queries without using
the triangle descriptor plotted against the speed-up factors of the second db-query, of step 4,
the third db-query of step 4, and step 5, respectively.

tant. For queries which already have a short runtime without using the triangle descriptor, a

large speed-up factor is less important than for those with long runtimes. In Figure 6.6 the

complete runtime of the ∆-queries without using the triangle descriptor is plotted against

the overall speed-up factor and the speed-up of single steps, respectively.

For the overall speed-up factors, a slight positive linear correlation with the complete runtime

can be observed up to a complete runtime of 1000 s (see Figure 6.6a, correlation coefficient

r=0.16). This means that ∆-queries with a long overall runtime are more accelerated than

those with a short runtime. However, this only holds true for ∆-queries up to an overall

runtime of about 1000 s. ∆-queries with longer overall runtimes are almost not accelerated

at all.

In line with previous observations, large speed-up factors can be observed for the second

and third db-queries if the complete runtime is small (see Figure 6.6b and c). This seems

to be only the case for queries with distance constraint ranges between 2.5 and 3.5 Å. As

84



6.3. Triangle Descriptor

Figure 6.7.: Comparison between speed-up factors of ∆-queries achieved by using the triangle descriptor
with the percentage of PRPs represented by the used DT. Each data point corresponds to one
query. The color of each dot codes the distance ranges of the respective ∆-query. a) Overall
speed-up factor plotted against the percentages of PRPs which are represented by the used DT.
b)-d) Speed-up factor of the second db-query of step 4, the third db-query of step 4, and step
5 plotted against the percentages of PRPs which are represented by the DT.

in Figure 6.6b and c only red dots have y-values significantly larger than zero. In step 5,

also ∆-queries with longer distance ranges are accelerated. The linear correlation for data

points up to a complete runtime of 1000 s is even stronger than for the overall speed-up

here (correlation coefficient r = 0.25, see Figure 6.6d). However, the factors by which the

∆-queries are accelerated are smaller than for the second and third db-queries.

Given these results, the question arises what the reasons are that for some queries a high

speed-up factor was observed and for other queries almost no speed-up could be recorded.

The test queries used in this experiment were designed such that exactly one bit (or one DT)

of the triangle descriptor is used in each ∆-query. To this end, the speed-up was compared

with the percentage of PRPs which occur in the respective DT for each ∆-query. The results

are shown in Figure 6.7.

Figure 6.7a shows that only ∆-queries in which the used DT represents up to 10% of
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the PRPs are accelerated. If DTs are used which represent more than 10% of the PRPs,

∆-queries are not accelerated at all. A very similar distribution can be observed for the

speed-up of step 5 in Figure 6.7d. db-queries from step 4 are only accelerated if the used

DTs represent less than 1% of the PRPs.

In summary, it seems that there are two different kinds of ∆-queries. On the one hand, there

are ∆-queries in which the db-queries are accelerated by the use of the triangle descriptor.

In these, the used DT only represents a very small amount of PRPs. In our experiment, this

mainly applies to ∆-queries with distance ranges of 2.5-3.5 Å. The ∆-queries in this group

already have a small overall runtime of less than 100 s without using the triangle descriptor.

The maximally achieved speed-up factors are 55 for the second and 52 for the third query.

On the other hand, there are ∆-queries for which the use of the triangle descriptor results

in an acceleration only of step 5. Here, the used DT represents up to 10% of the PRPs. In

our experiment, the ∆-queries with distance ranges of 5.5-6.5 Å and 7.5-8.5 Å mainly belong

to the this group. This group contains ∆-queries with an overall runtime of up to 1000 s

without using the triangle descriptor. Hence, the second group contains more ∆-queries than

the first. However, the maximally achieved speed-up factor for step 5 is only 20.

One possible explanation for this observation is the number of results produced by the queries.

In general, the queries with a lower distance range return fewer results than those with higher

distance ranges (see Figure D.2 in Appendix D). The triangle descriptor does not change the

number of results but is able to reduce the number of interim results during step 4 and before

step 5. In theory, if the number of interim results is already small for a ∆-query, a further

reduction of these will not lead to a significant speed-up of step 5 due to the exponential

runtime behavior of the clique detection algorithm. On the other hand, for larger interim

results, a slight reduction could already lead to a strong acceleration in the clique detection.

Concerning db-queries, an acceleration is only observed for ∆-queries with small distance

ranges. Moreover, it can be seen that the db-queries are only accelerated for those ∆-queries

which result in a small number of results (see Figure D.2b and c in Appendix D). Due to the

shell described by a distance constraint around an atom, it can be assumed that the number

of interim results are probably smaller for ∆-queries with small distance ranges than for those

with longer distance ranges. Given this assumption, it can be speculated that db-queries are

only accelerated if the number of already small interim results are further reduced. However,

in order to verify this hypothesis, further analyses of the number of interim results would be

necessary.

From this analysis the following final conclusions can be drawn. First of all, the triangle

descriptor is able to accelerate ∆-queries. The steps which are accelerated by the descriptor

are the highly time-consuming steps in the overall search algorithm. The largest overall
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speed-up factor achieved on the queries used here was found to be 3.7. This speed-up is a

result of two effects. On the one hand, triangle queries which result in a small number of

hits and which are already fast are accelerated due to a speed-up of the db-queries. In these

cases, the targeted DT represents only a small number of PRPs (≤ 1%).

On the other hand, ∆-queries which produce more hits can be accelerated by a speed-up

of step 5 using the triangle descriptor. These ∆-queries have a runtime of less than 1000 s

without using the triangle descriptor and the DTs involved here represent up to 10% of

the PRPs. ∆-queries which have a runtime of more than 1000 s without using the triangle

descriptor and which employ a DT representing more than 10% of the PRPs, are almost not

accelerated at all.

It is obvious that the speed-up factors achieved for complete ∆-queries are much smaller

than those achieved for the individual steps analyzed here. One reason for this observation is

that only two out of six steps are accelerated by the triangle descriptor. Moreover, it could

be seen in Figure 6.4 that for ∆-queries with an overall runtime of up to 2000 s, step 4 is

the most time consuming step if no triangle descriptor is used. However, step 5 is the most

accelerated part for exactly those ∆-queries.

In order to achieve larger speed-up factors, the following steps could be undertaken. First

of all it could be favorable to reduce the number of PRPs represented by one DT. To this

end, those DTs which represent more than 10% of the PRPs should be divided into more

subclasses by adding more properties to the triangle legs or by reducing the distance ranges.

On the other hand, triangles which only represent a few PRPs could be combined using a

reverse strategy. Thereby, the overall speed-up factors of the triangle descriptors could be

increased without increasing its disk space.

A second possible improvement is an optimized runtime behavior of the clique-detection al-

gorithm. In Pelikan, the algorithm from Bron and Kerbosch implemented in the Boost Graph

library is used. Preliminary tests have shown that other implementations for the clique de-

tection problem achieve better runtimes, e.g., the algorithm ’cliquer’ by Östergård [105].

However, these steps will only have an effect on those queries which do not produce too

many results. The aim of the descriptor is to reduce the result space at an early stage in

the algorithm. The effect of the descriptor on the overall runtime is therefore limited by the

number of final results. In its current application, the Pelikan algorithm is used in a tool

where all results can be visually inspected and compared. In such a scenario, a search which

produces more than 1 000 hits is not useful anyway.

Triangular descriptors have already been used by others in order to accelerate the search for

matching 3D atomic structures [106–108]. Unfortunately, these authors do not state which

speed-up factors they obtain by using these descriptors. Sheridan et al. [109] even used

distances between specific atom types to accelerate geometrical queries on molecules. Our
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investigations, however, have shown that a distance descriptor was not able to discriminate

between different PRPs and almost no speed-ups could be achieved for the queries. On

the other hand, more complex geometric descriptors such as a tetrahedron are probably too

selective and need much more disk space. Thus, the intermediate complexity of a triangle

for a geometrical descriptor seems to provide a reasonable balance between discrimination

and disk space.

6.4. Query Retrieval Speed

In this section, the runtime of the query mechanism is analyzed. The experiments performed

here pursue two distinct goals. First of all, they are used to identify the characteristics of

the query mechanism, including its strengths and its limitations. Moreover, guidelines will

be deduced from the experiments which can be used to design fast 3D queries.

Given the variability of the query, different aspects of the query mechanism have to be

considered. Firstly, different attributes of the query are tested using the query data set

presented in section 5.2.5. Secondly, the influence of the database size is tested. Finally, the

influence of the used hardware on the query runtime is tested. To this end, different test

queries were executed using the HDD and the SSD hardware settings. The technical details

of both platforms are described in 5.2.5.

The exact number of resulting hits for each run is listed are Table D.1

6.4.1. Query attributes

Topology

In the first experiment, the influence of the topology of the query on the runtime is tested.

Figure 6.8a shows the runtimes of different queries which only contain search points. If a

search point without any further geometric constraints is added to a query, an additional

db-query is performed in step 2. In principle, subsequent db-queries could be accelerated by

precious db-queries here as the pocket ids found in earlier db-queries are used for subsequent

db-queries. However, the existence of more search points will not accelerate the first db-

query. Hence, it is not surprising that more search points lead to longer runtimes if the

search points are not connected by point-point constraints. The most time consuming step

in these queries is step 2 of the search algorithm (see Figure D.3a).

In Figure 6.8b, the compared queries have the same number of search points. Herein, the
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Figure 6.8.: Runtimes of different test queries having different topologies. a) Runtimes of test queries that
only differ in their number of search points. b) Runtimes of test queries that only differ in their
number of point-point constraints. c) Runtimes of test queries that only differ in their number
of angle constraints.

number of distance constraints is growing throughout the used queries. Additional point-

point constraints lead to a more specific query. Even if an additional db-query is performed

for each point-point constraint in step 4, results from previous queries are used here. Hence,

more point-point constraints lead to a reduction of runtime (see Figure 6.8b). Again, the

database queries (step 4) are the most time consuming steps in these queries. The overall

reduction of the runtime is mainly a result of an acceleration of step 4 (see Figure D.3b).

Moreover, the runtime for step 5 is also reduced because fewer results are detected after step

4 and thus the clique detection runs on less data.

The addition of angle constraints does not influence the runtime of a query strongly (see

Figure 6.8c) even though the number of resulting hits are reduced (see Table D.1). As an

example, for the geometry ’small star’ the number of resulting hits is reduced by 95% (from

about 1.7 · 106 to about 8 · 104) comparing the standard case and the introduction of one

angle constraint. However, the runtime is only reduced by 29%. The reason for this is the

fact that angle constraints are checked in step 5 during the construction of the graph for

the clique detection process. The addition of angle constraint could therefore only reduce

the runtime of the clique detection step. This is the case for the queries on geometry ’four

points’ and ’small star’. However, step 4 is the most time consuming steps for the queries

shown here, respectively (see Figure D.3).

Geometrical constraints

Next, the influence of the attributes of the geometrical constraints are tested. To this end,

test queries which are completely identical except for distance ranges, angle ranges, and

point-points constraints were generated.

In the first test, the size of a distance constraint range was changed (see Figure 6.9a). In

the standard query, all distances have a range of 1 Å. Here, the range for one distance was
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Figure 6.9.: Runtimes of different test queries having different geometrical constraints. a) Runtimes of test
queries which only differ in their range size of one distance constraint. b) Runtimes of test
queries which only differ in their range area of one distance constraint. c) Runtimes of test
queries which only differ in their size of one angle constraint. d) Runtimes of test queries which
only differ in their number of distance constraints which are converted to interaction constraints.

increased to 2 Å and 3 Å, respectively. In a second test scenario, the area of the distance

range was changed from 3-4 Å in the standard case to 6-7 Å and 9-10 Å, respectively (see

Figure 6.9b). In both cases, the number of hits increases with larger range distances and

with larger range areas ( see Table D.1). The increase in resulting hits is less pronounced

for the changed distance range sizes in the geometry ’tetrahedron’ as for the other cases.

This agrees well with the slight increase in runtime for these queries (see Figure 6.9a). For

all queries, the increase of the runtime is a result of a prolonged runtime of step 4 as well as

step 5 (see Figure D.4a and b). Next, distance constraints were exchanged for interaction

constraints in the queries. The resulting runtimes are shown in Figure 6.9d. Note that

for the geometries ’two triangles’ and ’large star’ only one distance could be converted to

an interaction constraint without losing all resulting hits. The introduction of interaction

constraints in the queries leads to a strong reduction of results for the geometries ’four points’

and ’large star’ (see Table D.1). Also the overall runtime, and the runtime of step 4 and step

5 are reduced in these cases (see Figure D.4d). Concerning the geometry ’two triangles’, the
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runtime is only reduced slightly. In accordance with this, the number or results only decreases

from 5 166 results in the standard case to 878 with one interaction. As a comparison, for

the geometry ’large star’, the number of hits are reduces from about 1 · 107 to about 1 · 105

by the replacement. Thus a reduction of the result by 89% is accompanied by a runtime

reduction of 77%.

In Figure 6.9c the resulting runtimes for queries with different range sizes of one angle

constraint are shown. Again, the overall runtime is only slightly influenced. This is due to

the fact that only the runtime of step 5 is impacted by angle constraints. However, the most

time consuming step here is step 4 (see Figure D.4c).

Properties

In this experiment, the influence of additional properties on the overall runtime is tested.

Firstly, the influence of a more precise description of the search points was analyzed. The

results of this experiment are shown in Figure 6.10a. It can be seen that more properties lead

to strongly reduced runtimes. This is mainly due to decreased runtime in step 4 (see Figure

D.5a). Accordingly, the number of resulting hits is reduced by the definition of search-point

properties (see Table D.1).

Similarly, the addition of textual and numerical constraints leads to reduced runtimes and

a reduced number of hits for different query geometries (see Figure 6.10b).

Next, the runtimes of queries are compared by replacing search points properties by rarely oc-

curring attributes. As an example, the attributes ’nitrogen, reference ligand’ of search point

3 in the standard case were exchanged by ’any element, metal’ in the query called ’metal’.

The results are displayed in Figure 6.10c. For the geometries ’four points’ and ’small star’, a

clear reduction of the runtime can be observed. Concerning the geometry ’tetrahedron’, the

runtime is not strongly reduced by the the queries ’metal’ and ’metal, water’. The reason

for this effect is the triangle descriptor. In the standard case, every search point is part of

several triangles. Hence, the number of possible PRPs for search point 1 can be reduced

to 6 · 105 before any db-query is executed. The number of resulting hits in the standard

case are 5 166. In comparison, if the attributes of search point 3 are set to ’any element,

metal’, the list of possible PRPs for search point 1 is increased to 8 · 106. This query results

in only 45 hits. If additionally the molecule type of one search point is set to ’water’, only

one search point remains in a triangle used in the descriptor. Here, 23 hits are detected.

In the last step, the element type of one search point is additionally set to ’phosphorus’.

Here the triangle descriptor does not apply at all. However, the combination of these search

points only rarely occur in the database (5 hits found) and thus the runtime is very fast.

In conclusion, even though the number of results are reduced in the changed queries, the

triangle descriptor does not work as effective as in the standard case and the runtimes are

therefore not strongly changed.
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Figure 6.10.: Runtimes of different test queries having different additional properties. a) Runtimes of test
queries which only differ in their attributes of all search points. b) Runtimes of test queries
which only differ in their textual and numerical properties. c) Runtimes of test queries which
only differ in their element and molecules types of search points. d) Runtimes of test queries
which only differ in their SMARTS description and other additional properties of all search
point.

As an additional property, the chemical environment of a search point can be described using

a SMARTS pattern. Here, the runtimes of different queries with short and long SMARTS

patterns were used to analyze their influence on the runtime. In the queries, every search

point is either equipped with a long or a short SMARTS pattern. The short SMARTS pat-

terns describe three, the long six to nine atoms in the chemical environment of the respective

search point. The exact SMARTS patterns used can be found in Appendix D.

Because of their length, all long SMARTS are additionally used in step 1 where a SMARTS

matching on all small molecule is performed. Concerning the short SMARTS, only the

pattern for search point 3 is additionally used in step 1, because it contains the element

phosphorus. The results of this experiment are displayed in Figure 6.10d. Overall, it can

bee seen that using SMARTS patterns leads to much longer runtimes compared to other

queries. If in addition to the SMARTS pattern, all possible properties of the search point are

set, the runtimes are strongly reduced. Interestingly, for the geometries ’three points’ and

’four points’, using short SMARTS leads to longer runtimes as the use of long SMARTS.

The opposite is true for the geometry ’two points’. Here, both queries without additional

search point properties result in more than 1000 hits. Thus the SMARTS search procedure
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Figure 6.11.: Runtimes of different test queries on databases with different sizes. The mean runtime and
standard deviations of three independent runs are shown as bar plot in seconds. A linear
regression curve using the first four data points of each plot is shown as blue dotted line. In
red, a quadratic regression line of the form y = a · x2 is shown. a is chosen such that the first
data point lays on the regression line. Note that the quadratic function has a linear growth of
2 in this plot due to the logarithmic scale of both axes.

is stopped after 1000 hits were detected. These 1000 hits are reached faster for the short

SMARTS than for the long SMARTS pattern. This then results in a faster runtime for

the query containing short SMARTS for every search point. In case of the queries with

’three points’ and ’four points’, all resulting hits are below 1000. For all queries containing

SMARTS pattern, step 6 of the search algorithm is the most time consuming step (see Figure

D.5d).

In general, it can be concluded from the results so far that geometrically more specific queries

lead to faster runtimes. However, specifically defined search points or distance constraints

are more effective than specific angle constraints. Most of the time, the runtimes for step 4

is the most time consuming step. Using a SMARTS pattern can lead to strong increases of

the runtime for a query. In these queries, the SMARTS matching procedure in step 6 is the

most time consuming step.

6.4.2. Database Size

In the following experiment, the influence of the database size on the runtimes is assessed.

To this end, three different queries were used on databases of different sizes. The results are

shown in Figure 6.11. It can be seen that the runtime of the queries increases with database

size. For each of the used geometries, the number of results almost doubles when the size of

the database doubles (see Table D.1 and Figure D.7 in Appendix D). This indicates a linear

connection between the number of results and the complete database size. For all three used

types of queries, the runtime grows linearly up to a database size of 16 000 protein-ligand
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complexes. This is reflected by linear fits to the data shown in Figure 6.11. For these fits,

only the first four data points were used, respectively. In all three cases, the regression coef-

ficient is 0.999. For larger database sizes, the runtimes deviate from this linear dependence,

growing faster than linear. The overall growth is, however, slower than quadratic, which can

be seen by comparison with the quadratic growth line plotted as guide to the eye in Figure

6.11.

For the queries analyzed here, step 4 is the most time consuming step. Within this step,

database queries for all point-point constraints are performed. SQLite uses B-trees of

database pages to store the data in the tables. Thus the runtimes of these statements

are limited by the runtime complexities achieved on these B-trees. Each db-query contains

a combined JOIN and WHERE statement. In SQLite, JOIN statements are implemented as

nested loops. Hence the asymptotic runtime of this step is in O(n · m) where n and m are

the number rows of each of the joined tables, respectively [92]. In this case, a table is joined

with itself. Hence, n = m and the complete runtime for a JOIN is in O(n2). If indices

exist on the attribute used for joining, this runtime complexity could be reduced because the

relevant rows can be found in O(log n) [110]. The complete runtime of the JOIN would

then be in O(log n + v · w), where v and w are the rows detected for the first and the

second search point which have to be joined, respectively. However, even if indices are used,

the runtime of the JOIN statement depends on the number of rows which have to be joined.

Hence, in the worst case, v = n and w = n which still leads to O(n2) as an upper boundary

of the complete step. The execution of the WHERE statement is also performed as a loop

inside the nested loops of the JOIN statement. The order in which these loops are combined

depends on the sizes of the expected results from each step. In principle, if an index is used,

all PRPs fulfilling a WHERE statement can be detected in O(log n + r), where n is the

number of rows and r is the number of results.

Taken together, the asymptotic runtime behavior of a query on large databases is influenced

by different key factors, for example the number of rows in the table and the number or re-

sults. These theoretical considerations show that the runtime of this step grows faster than

linear and describes at most a quadratic function which is in line with the data observed in

Figure 6.11.

6.4.3. Hardware

As step 4 is one of the most time consuming steps in the query mechanism, the speed of

the underlying hardware is expected to have an impact on the overall runtime of the query.

For comparison, runtimes for different queries on the HDD and SSD hardware settings were

recorded. For these experiments, the database PDBcomplete was used. The results of the mea-

surements are displayed in Figure 6.12. Overall, using the HDD setup increases the runtime

for all queries. This is attributed to the higher reading speed of the SSD compared to the

HDD, because the PDBcomplete database is larger than the available random access memory
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Figure 6.12: Runtimes of four different test queries
on the hardware settings HDD and
SSD. The database PDBcomplete was
used. Mean values and standard de-
viations of three independent experi-
ments are shown as bar plot.

(RAM) of 16 GB. The factor by which the runtime is increased varies between 4.4 (query

’metal’) and 1.7 (query ’standard’). For databases smaller than PDBcomplete, no significant

runtime differences could be observed (data not shown). This reflects that not the complete

but only pages relevant for the search are usually held in RAM. On a PC equipped with

less RAM, the effect of a solid state disk would therefore probably kick in for correspond-

ingly smaller database sizes. Here, the used PC had 16 GB of RAM. Moreover, the exact file

system installed on the hard disk and the solid state disk can have an influence on the runtime.

Considering all runtime measurements, it can be concluded that the runtime of queries mainly

depends on the number of resulting hits which is a result of the specificity of the query as

well as of the size of the used database. In order to achieve fast runtimes for 3D queries,

the following rules can be deduced:

• Geometrically more precise queries are faster than queries with a not well defined

geometry. In this respect, ranges of point-point constraints have a stronger effect than

ranges of angle constraints.

• Search point attributes which hit fewer PRPs lead to faster queries.

• Additional textual and numerical constraints reduce query runtimes.

• The use of smaller databases leads to faster runtimes.

• High reading speed of the hardware decreases the runtime of queries.

The Pelikan method has been mainly designed for the rapid search for specific queries in large

sets of protein-ligand interfaces. In this scenario, only queries which result in less than 1 000

results are applicable. In experiments shown here, queries which result in less than 1 000 hits

have a runtime of less than 50 s on a database containing 16 000 protein-ligand complexes,

except for the queries containing SMARTS patterns. A second application of the Pelikan

method are statistical analyses of coarse queries. In this case, more results than 1 000 are

required in order to derive meaningful hypotheses. Herein, interactivity is probably not as

important as correctness for a user. The experiments shown here demonstrate that Pelikan
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has runtimes of up to 360 s in this scenario, except for the queries containing SMARTS

pattern. Thus, the Pelikan method is able to rapidly detect specific geometrical patterns if

interactivity is required. For the generation of statistical significant results, Pelikan is also

able to find large number of results but requires longer runtimes.

Most of the results shown here were calculated on a database containing 16 000 different

PDB files. The comparisons of databases with different sizes have shown that the runtime

behavior grows slightly faster than linear with the database size. Given the rapid growth

of the PDB in the last years, the approach chosen in Pelikan will loose its effectiveness on

larger data sets. According to Allen and Owens, simple statements are extremely quickly on

SQLite because of a small or non-existing overhead of network calls and server authentication

procedures [98]. However, more complex queries can be faster on other relational databases

systems which have a more sophisticated query optimizer and planner. The statement used

for detecting PRP pairs in the database fulfilling the search point criteria belong to the latter

group of more complicated queries. Hence, a database management system with a better

query optimizer could achieve faster runtimes here. On a server-based database it might also

be faster to query all point-point constraints in a parallel instead of a sequential process.

Moreover, an even faster solid state drive could be used in order to further accelerate the

queries.

Ideally, the Pelikan method would then be usable in two different ways: geometrical queries

on PDBcomplete could be answered using a web service which accelerates queries using a

sophisticated query optimizer. For the analysis of more specific data sets, user can create

their own SQLite database.

6.5. Comparison with Relibase

As a last experiment the performance and ability of the Pelikan method to search for 3D

structures in protein-ligand interfaces is compared to Relibase. This experiment should help

to contextualize the Pelikan approach within the landscape of existing tools. Among the

currently published tools, only Relibase and Relibase+ allow for precise queries on an atomic

level as Pelikan does. However, since Relibase+ is not publicly available, only Relibase can

be used here. In contrast to Relibase+, Relibase does not allow for intra-molecular distances.

Moreover, angle constraints are not possible. Hence, three different 3D queries were designed

which contain only distance constraints between the ligand and the protein. The queries are

shown in Figure 5.3.

The resulting hits and the retrieval times for the searches of all three queries on both systems

are displayed in Table 6.2. Since the runtimes for Relibase highly fluctuated, the runtimes

for Relibase are given as mean values from three independent experiments. For Pelikan, only

the runtime of one exemplary run is shown since the fluctuation of runtimes using the same
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Relibase Pelikan

Query hits PDB runtime hits PDB runtime

structures structures

Query 1 29 24 148 ± 60 s 30 24 62 s

Query 2 114 55 108 ± 74 s 218 52 66 s

Query 3 8 7 28 ± 6 min 13 7 113 s

Table 6.2.: Resulting hits detected by Relibase and Pelikan using three different queries. For each query,
the number of resulting hits, the number of detected PDB structures and the runtime is given
for Relibase and Pelikan, respectively. For Pelikan, a database containing PDBcomplete was used.
Runtimes for Pelikan were measured using the SSD settings. For Relibase, the web interface
provided by the CCDC was used (http://relibase.ccdc.cam.ac.uk/index.php, accessed between
March and June 2017). Runtimes were measured using a stopwatch. Mean values and standard
deviations of three independent experiments are shown.

query is very small.

For query 1, almost the same results were detected by Relibase and Pelikan. They only

differ in the number of detected hits. Relibase found 29 hits whereas Pelikan detected 30.

The reason for this is that the used query could match the same set of atoms twice. In the

Pelikan query, search point 1 and 2 are interchangeable if both matching atoms fulfill the

distance constraint to search point 3. This is the case in one pocket. Obviously, Relibase

does not count these symmetric hits.

Concerning query 2, Pelikan found many more hits than Relibase. The reason for this is

again the symmetry of the query. Pelikan counts every unique hit whereas Relibase seems

to count only unique sets of atoms as hits. Moreover, Relibase found three PDB structures

which were not detected by Pelikan, these are 2hm9, 3kwh, and 2xad. The PDB code 3kwh

contains a protein-ligand complex whose structure has been determined using NMR. Thus

several models for this structure exist. During the interpretation of the PDB file, only the

first entry is used by the NAOMI library if several models exist. In this first model, the

distance between the atoms which match search point 1 and 4 is too large for the used

distance constraint (4.7 Å). Relibase uses all models of the structure. In other models, the

distance between the matching atoms agrees with the distance constraints. The structure

with PDB code 3wkh is deprecated and has been replaced by the structure 3oc0 in the PDB.

Both Relibase and Pelikan find a hit in 3oc0. 3wkh seems to be still part of the Relibase

database but not of the Pelikan database. The PDB code 2xad links to a structure which

contains a glycopeptide. Relibase considers this glycopeptide as ligand and thus detects a

hit. In Pelikan, this structure is considered as protein and thus no hit is detected in this

structure.

Even though Relibase and Pelikan find the same number of PDB structures for query 3, the

detected structures differ between both tools. Only one hit is identical: PDB structure 1kwf

with ligand GLC. The remaining seven hits detected by Relibase are not detected by Pelikan.
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PDB Code Ligand Reason why hit is not detected by Pelikan

3noq EDO Ligand contains only four heavy atoms.

4mty GOL Ligand oxygens are in two different molecules

2ayw ONO 501 Ligand oxygens are in two different molecules

2ayw ONO 601 Ligand oxygens are in two different molecules

1ylj SO4 Ligand oxygens are in two different molecules

1lug SUA Ligand oxygens are in two different molecules

3k34 SUA Ligand oxygens are in two different molecules

Table 6.3.: Hits which were exclusively detected by Relibase using query 3. For each hit, the PDB ID, the
ligand name and the reason, which the hit was not detected in Pelikan is given.

Table 6.3 lists all these hits and gives a reason why the respective hit is not detected by

Pelikan. In most of the cases, the two ligand oxygens of the query are part of two different

molecules in the resulting hits. In the Relibase query, only the origin of an atom can be

specified, e.g., ligand, protein, or water. If the drawn structure is not connected, it cannot

be specified that two atoms should be part of the same molecule. In Pelikan, the reference

ligand, which is used to define the pocket, is logically different from other small molecules

within the pocket, called ligands. If in the the query 3 for Pelikan, the term ’reference ligand’

is exchanged by ’ligand’ for one of the oxygen, all hits listed in Table 6.3 could be detected,

except for PDB structure 3noq. This hit could only be detected with Pelikan if for both

oxygens, the term ’reference ligand’ is replaced by ’ligand’. This means that Pelikan is in

principle able to find all hits Relibase is detecting. However, the query used in Pelikan is

more precise in a sense that a user has to define if points are part of the same reference

ligand or part of different ligands. In Relibase, these cases can not be distinguished.

Moreover, there are six PDB structures which were found by Pelikan but not by Relibase.

For each of these structures, one hit is exemplary shown in Figure 6.13. All six hits are

valid since they agree with the used search constraints. The hits detected in PDB structures

3whi and 5jug are within covalently bound ligands. Relibase does not seem to interpret

these structures as ligand which is why they are not detected by Relibase. A reason why

the PDB structures 1i1w and 1g66 are not among the hits of Relibase could be that GOL

is not interpreted as ligand. The molecule GOL is relatively small and could be interpreted

as part of the solvent rather than as a ligand. However, this interpretation is very unlikely

since Relibase also detected the ligand EDO in PDB structure 3noq (see Table 6.3) which

is chemically very similar to GOL. Concerning PDB structures 4x5p and 2bzz, no possible

explanation why these hit are not part of Relibase’s hitlist could be discovered.

The comparison of the runtimes which Relibase and Pelikan needed to find all hits is difficult

because Relibase can only be accessed via a web server. The runtime here highly depends

on the connection and number of simultaneous users. Therefore, the queries were repeated

several times on different days using the Relibase web interface. Overall, the runtimes for

query 1 and 2, are mainly between 1 and 3 minutes using Relibase and Pelikan. For query 3,

however, Relibase requires with 28 minutes about a factor 15 longer than Pelikan. Noticeably,
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Figure 6.13.: Hits which were exclusively detected by Pelikan using query 3 on the database PDBcomplete. The
atoms matching the search points are highlighted with colored disks. The distance constraints
are indicated by colored lines.

queries in Relibase seem to be much faster if a large ligand substructure is used instead of a

large molecular structure from the protein.

Taken together, it can be concluded that Pelikan is able to find correct results in a runtime

which is similar or faster than that of Relibase. For queries which contain more information

about searched structures in the protein than in the ligand, Pelikan is even faster than

Relibase. Moreover, Relibase does not find all hits which are detected by Pelikan for this

query. Even if the additional geometric constraints of Relibase+ are taken into consideration,

Pelikan offers more query flexibility as a large number of textual and numerical properties

can be added to a geometrical query.

6.6. Application Examples

In this section two application examples are presented which demonstrate how Pelikan can

be used to search for bioisosters as well as chemoisosters.

6.6.1. Bioisosters

In the first application example, chemical fragments which bind to a very similar sub pocket

in proteins (bioisosters) are searched. Herein, the binding site of the protein factor X is used
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Figure 6.14.: Application example of Pelikan’s ability to find bioisosters a) The pocket of 1lpk is used to
define a geometrical query describing an aromatic cage. A search point is represented by a
green sphere with their id written in black. Distance constraints are indicated by green lines.
b) Superimposition of several resulting structures. c)-f) Examples of resulting structures. In
each figure, the rings and atoms matching the search points are highlighted with colored disks
and with the id of the respective search point.

as a starting point. Factor X is an enzyme involved in the blood coagulation process by

converting prothrombin into its active form thrombin. In order to prevent thromboembolic

disorders like stroke or thrombosis, different drugs have been developed which inhibit factor

X. In the S4 pocket of its binding site, factor X features three aromatic rings which surround

a hydrophobic space. This arrangement is called aromatic cage. In order to find different

chemical moieties which bind in such an aromatic cage, a geometrical query was designed as

shown in Figure 6.14a. The binding site of the structure 1lpk [111] was used here. A search

point was defined for each aromatic ring. Each search point has three attributes: ’location

= Protein’, ’interaction type = aromatic ring’, and its specific amino acid type. Additionally,

a fourth search point was added to the query with only one attribute: ’location = Refer-

ence ligand’. The points are mutually connected with distance constraints representing the

structure of 1lpk. Moreover, several angle constraints are added to the query such that the

specific spatial arrangement of the rings is represented. The exact query can be found in
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Appendix C.

Finding all occurrences of this query in the data set PDBcomplete took about 60 s on the

SSD settings. In total, 213 hits in 66 different PDB files were found. In Figure 6.14b, a

superimposition of several results is shown demonstrating the geometrical accordance of the

results with the query. Most of the results are structures of the protein factor X. Exemplary,

the resulting hits in 1mq6 [112], 2w3k [113], and 2j2u [114] are shown in Figure 6.14c, d,

and e, respectively. Moreover, a structure from the bovine trypsine (PDB code 3uqo [115],

Figure 6.14d) was found which contains a very similar subpocket as factor X. The four result

examples presented in Figure 6.14 all contain different chemical moieties which occupy the

space inside the aromatic cage. These moieties are bioisosters.

A search such as the one presented in this example can be used to find bioisosteric frag-

ments and help generate ideas for placing or replacing specific fragments into subpockets.

A similar search on proteins with aromatic cages has recently been performed in different

small-molecule design projects [116,117] showing the importance of such approaches.

6.6.2. Chemoisosters

In the second example, chemoisosteric protein environments are searched which are able

to bind the same chemical fragment. Pelikan offers different possibilities to search for

chemoisosters. If the exact definition of chemoisosterism is used, one could use Pelikan

to search for a specific substructure in a reference ligand. In such a search, however, the

results can contain binding sites which bind the fragment in different ways. Thus the con-

cept of chemoisosterism can even be used in a more precise way. Pelikan can find specific

substructures in reference ligands which build specific interactions with their chemical envi-

ronment. In this example, protein environments which bind to an uracil fragment with four

atomic interactions are searched. A schematic depiction of the query is shown in Figure

6.15a. The query has been designed using the ligand deoxythymidine in the PDB structure

2z1a (unpublished). The substructure is represented by search points 1-4. Search point 1

contains a SMARTS pattern, an attribute which describes the chemical environment of an

atom. Moreover, the SMARTS pattern contains labels which refer to search points 2 and

3. In this way, the exact chemical relation between the search points 1, 2, and 3 is ensured.

The exact SMARTS pattern is displayed in Figure 6.15a. Each search point which is part

of the ligand substructure is connected via an interaction constraint to four different search

points within the protein (search points 5-8). An angle constraint between search point 4

and 8 restricts the π-π interaction geometry to a face-to-face configuration. Moreover, two

distance constraints between search point 1 and 4 and between 3 and 4 ensure the correct

position of the ring center relative to the ligand substructure.

Using the data set PDBcomplete, the search of this query took 90 s on the SSD hardware

settings and revealed 160 matches in 43 different PDB files. About 50% of the resulting
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Figure 6.15.: Application example of Pelikan’s ability to find chemoisosters. a) The pocket of 2z1a is used
to define a geometrical query describing a uracil fragment binding to a protein with four specific
atomic interactions. Search points are represented by a green spheres with their id written in
black. Distance constraints are indicated by green lines. b)-e) Examples of resulting structures.
In each figure, the atoms and rings corresponding to the search points are highlighted with
colored disks and ids. This figure is adapted from [77]. Reprinted (adapted) with permission
from [77]. Copyright 2017 American Chemical Society.

structures are thymidylate kinases from different organisms. Exemplary, the structure of

PDB code 4hld [118] is shown in Figure 6.15b. The ligand ’uracil diphosphat’ (UDP) occurs

frequently in structures of the PDB and thus also several of the results here contained this

ligand (see Figure 6.15c with PDB code 4u8o [119] as an example). Accordingly, several

protein structures which naturally bind to UDP – as for example the dUTPase – are detected

with different ligands (see Figure 6.15d, PDB code 4apz [120]). In Pelikan, small chains of

nucleic acids are considered as ligands. Thus an RNA binding protein (Lsm) bound to the

uracil fragment of a small RNA is part of the results (see Figure 6.15e, PDB code 4m7a [121]).

These results demonstrate Pelikan’s ability to rapidly detect chemoisosters in a large set of

protein-ligand complexes. Besides the demonstrated visual analysis of the hits found with

Pelikan, a statistics report can be exported for each search. This report can be used to

elucidate common structural aspects of all results, e.g., a common amino acid type of a

specific search point.

102



7
Results and Discussion of

NAOMInova

In this section, the results of the experiments performed with NAOMInova are presented

and discussed. They mainly aim at proving the correctness of the NAOMInova method and

at showing its performance. The detailed conduction of these experiments is described in

Section 5.3. All experiments described here were performed using the SSD hardware settings

(see Section 5.1 for the exact definition).

7.1. Systematic Correctness

The correctness of the NAOMInova method was tested by checking for false positive and false

negative results. The experiment explained in Section 5.3.1 was performed independently

three times. Neither false positive nor false negative results were detected.

As for the Pelikan method, it is difficult to completely exclude the existence of false positive

and false negative results. For the former, all detected results were compared to the used

filter properties. The test for the latter is even more difficult because all correct results had

to be known for a query. This can be done on small examples but proofs to be difficult on

a larger scale. The experiment performed here tests the retrieval of specific atoms. The

substructure as well as the retrieved atom is chosen randomly. Hence, it can be concluded

that in the majority of the cases, NAOMInova works correctly and detects the correct results.

However, there might be corner cases which rarely occur for which NAOMInova does not

work correct. These could be detected by increasing the set of used protein structures and

by repeating the experiment more often.
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Figure 7.1.: Performance of the database construction process in NAOMInova. a) Runtimes for adding one
protein-ligand complex to a database shown in subsequent slices of data. Mean values are shown
in yellow, the median is given as pink line. The box represents the lower and upper quartile of
each data slice. The whiskers range from 5% to 95%. b) Sizes of NAOMInova databases
containing sets of protein-ligand complexes of different sizes.

7.2. Database Construction

A database was build using the PDB2.5 data set in order to estimate the runtime for creating

a NAOMInova database. During the build process, the runtime required for adding each

PDB files was recorded. The results of this experiment are shown in Figure 7.1a. Herein,

the runtime characteristics are shown for subsequent data slices of 10 000 files. The mean

value, displayed as a yellow square in Figure 7.1a, slightly fluctuates between 26 s (data

block 0-10 000) and 31 s (data block 20 000-30 000). However, no continuous increase in

the runtime is seen throughout the slices meaning that the runtime does not severely increase

with database growth within the used regime. For each file, the most time consuming step

is the calculation of the EDIA values (about 90% of the runtime, data not shown).

As expected, a linear dependency between the number of protein structures in the database

and the used disk space can be seen (see Figure 7.1b). A database containing PDB2.5 has a

disk space of 20 GB.

7.3. Adding Substructures to the Database

The performance of the substructure-adding step is determined using three different sub-

structures. The exact definition of these substructures can be found in Section 5.3.4. A

schematic depiction of the SMARTS pattern for all three substructures is shown in Figures

7.2a-d. All three substructures share the same fragment part in their SMARTS which is
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Hydroxyethyl 1: 

CC[OH] 

no recursion

Hydroxyethyl 2: 

[C$(C[CR1])]C[OH] 

Hydroxyethyl 3: 

[C$(CC1CCCCC1)]C[OH] 
a b c d

Figure 7.2.: Three different substructures are added to six different databases. a)-d) Schematic depiction
of the three substructures. Pictures were generated with SMARTSviewer [122]. a) The frag-
ment part of all three substructures. b) Surrounding part of Hydroxyethyl 1. c) Surrounding
part of Hydroxyethyl 2. d) Surrounding part of Hydroxyethyl 3. e) Runtimes for the complete
substructure-adding process on databases containing different data sets of protein-ligand com-
plexes. f)-h) Number of detected hits in the SMARTS matching step plotted against the runtime
for adding one of the three substructures to different databases, respectively. In each plot, a
linear regression curve is shown as green dotted line.

’CCO’ (see Figure 7.2a). They differ only in their recursive description of the first carbon

(see Figures 7.2b-d).

The runtimes for adding each of the three substructures to databases containing different

sets of PDB files are shown in Figure 7.2a. Overall, the runtime for adding Hydroxyethyl

1 is larger than for Hydroxyethyl 2 and Hydroxyethyl 3. The runtimes for Hydroxyethyl 2

and Hydroxyethyl 3 are almost identical. The complete procedure can be divided into two

steps: (1) Preparation of protein-ligand complexes and EDIA values and (2) data collection.

For Hydroxyethyl 1, the data collection takes about 50% of the complete runtime. For Hy-
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droxyethyl 2 and Hydroxyethyl 3, this share is only about 20%. The data collection step

again can be divided into the SMARTS matching procedure and handling of all detected hits.

Interestingly, for Hydroxyethyl 1, the share of the SMARTS matching on the data collection

step is only about 20%. For Hydroxyethyl 2 and Hydroxyethyl 3, the SMARTS matching

requires about 78% and about 85% of the time for the data collection step. The reason here

is probably that the for Hydroxyethyl 1, the SMARTS pattern matches very frequently and

a large number of matches has to be handled. Hence, the handling of all results requires

much more runtime than their detection. On the opposite, only a few results are detected

for Hydroxyethyl 2 and 3. Hence, more time is required for their detection than for their

subsequent preparation.

In Figure 7.2b, c, and d the overall runtime for the complete process of substructure-adding

is plotted against the number of detected hits for each substructure, respectively. The cor-

relation can be described with a linear regression line, indicated by the green dotted line in

Figure 7.2b, c, and d. The lines strongly differ in their slope. This value indicates the time

required for the detection and preparation of one hit. As expected, the slope for Carbonyl 1

is very small, indicating that the data collection step per hit is very fast here. However, the

number of detected hits is very large which results in a long overall runtime. Interestingly,

the overall runtimes for Hydroxyethyl 2 and Hydroxyethyl 3 are almost identical despite the

much larger number of hits detected for Hydroxyethyl 2. Accordingly, the slope of the re-

gression line for Hydroxyethyl 3 is much larger than the slope for Hydroxyethyl 2. This is a

result of the more time consuming SMARTS matching per hit for Hydroxyethyl 3.

These results show that the runtime required for adding of a substructure growths linearly

with the number of detected hits. Since every hit has to be handled individually, this behavior

of the runtime cannot be changed.

For all three substructures, the first preparation of the data is one of the most time con-

suming steps. This step includes the reconstruction of protein-ligand complexes from the

database and the reconstruction of the EDIA values for all atoms. During this step, the same

reconstruction procedures are used for each of the protein-ligand complexes. Hence, even a

slight improvement of the required runtime here can lead to much faster runtimes for the

overall reconstruction step. This could be achieved by using a more efficient way of storing

the reconstructed data. However, this procedure is only performed once every time new

substructures are added to the database. Thus, it is favorable to add several substructures

at a time.

For more complicated SMARTS pattern, the SMARTS matching is also an highly time con-

suming step. An acceleration of this step could therefore also lead to shorter overall runtimes.

This could be achieved by using fingerprint techniques. Since the fragment part of the sub-

structure description used here always describes a unique molecular fragment, fingerprints

which store the occurrence of specific substructures in molecules can be applied. Using

this fingerprint, the number of molecules in which the SMARTS pattern occurs could be
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Filter criteria for partner points Hydroxyethyl 1 Hydroxyethyl 2 Hydroxyethyl 3

no filter 2.8·107 pps, 7·105 pps, 2 235 pps,

134 s ± 5 s 3.7 s ± 0.4 s <1 s

element type = oxygen 1.9·107 pps, 4.6·105 pps, 1 636 pps,

96 s ± 2 s 2.2 s ± 0.1 s <1 s

element type = oxygen, 2.4·105 pps, 5.2·104 pps, 143 pps,

location = ligand 4.4 s ± 0.2 s <1 s <1 s

Table 7.1.: Runtimes and number of received partner points (pps) for three different filters on three

different substructures based on the PDB2.5 data set.

reduced rapidly and the exact matching algorithm has to be performed only on the relevant

molecules. A similar approach is applied by Relibase and Relibase+ for substructure mining

in small molecules.

However, the results presented in this section show that about 5·106 substructures can be

detected and inserted into the database in about 160 minutes. In the typical use case, this

step is performed only once and the database is afterwards used for several analyses. Hence,

an interactive behavior is not as important as in the filtering step and runtimes of about 160

minutes are probably tolerable.

7.4. Filtering

As a last performance measurement, the runtime behavior for database filtering is tested.

To this end, three different queries were tested on a database containing PDB2.5 and the

three substructures used in the previous experiment (Hydroxyethyl 1, Hydroxyethyl 2, and

Hydroxyethyl 3). The queries differ in their exact definition. The first query only uses

the substructure as a filter attribute whereas the second and third query use more specific

selections of filter attributes for the requested partner points. A more detailed description of

the queries can be found in Section 5.3.5. The used filter criteria as well as the number of

resulting partner points, and the required runtime is shown in Table 7.1.

Overall, the runtime of a query is longer the more partner points are returned. However, up

to 1.9·107 partner point can be retrieved in a reasonable short time of about 90s, which still

supports an interactive use of NAOMInova. The number of returned partner points depends

on the substructure and how often it has been detected in the used data set. If substructures

which are even more frequent than Hydroxyethyl 1 are used, even longer runtimes have to

be expected. Given the growth rate of the PDB, this scenario is very likely in the coming

years.

107



7. Results and Discussion of NAOMInova

According to the statement of Allen and Owens, an SQLite database can achieve very fast

runtimes for simple statements, e.g., simple SELECT statements [98]. It is therefore unlikely

that a transfer of the NAOMInova database to a similar server-based database would largely

improve the runtime. Moreover, a weak influence of the hardware settings could be observed:

the filter process for Hydroxyethyl 1 has an equal runtime on the SSD as well as on the HDD

settings.

Other database architectures exist which could be useful in reducing the retrieval time. On

the one hand, there are database managements systems which store the data row-wise instead

of column-wise, as most of the traditional relational databases do. These database should be

more optimized for reading data as for writing data which could be beneficial in the current

scenario. One example of such a database is C-Store [123]. A second idea could be the use

of a database which is able to execute an SQL query in a parallel way. In these databases,

a single SQL query is executed by different processing units which can lead to much faster

retrieval times [124].

Despite the longer runtime for the retrieval of large sets of partner points, the main strength of

NAOMInova is that the method is able to calculate partner point distributions for custom-

defined substructures on custom defined data sets of macromolecular structures. To my

knowledge, no other available tool provides this functionality. Even on large sets of protein-

ligand structures, results for up to 1.9 · 107 partner points can be retrieved in about 90 s

with NAOMInova.

7.5. Application Example

In this section, one application example is presented which should demonstrate the useful-

ness of NAOMInova for analyzing interactions geometries in proteins. Within this example,

preferred interaction geometries of a specific functional group are analyzed on a large data

set of protein structures. A more extensive presentation of NAOMInova’s capabilities has

recently been published by Nittinger et al. [16]. In this study, interaction preferences for a

large set of different functional groups has been deduced with the help of NAOMInova.

Exemplary, the distribution of interacting atoms around the substructure Hydroxyethyl 1 (see

Section 5.3.4 for its exact definition) in proteins’ side chains is analyzed based on the PDB2.5.

In a first step, all partner points with an EDIA ≥ 0.8 and in a distance between 2.6 and 3.5 Å

to the substructure’s oxygen are filtered with NAOMInova. This distance has been chosen

in order to only hit atoms which build an atomic interaction with the central substructure.

In total, 2 044 166 partner points are detected. Most of these points are nitrogens or oxygens

(516 729 and 1 518 171, respectively). In Figure 7.3a, b, c, and d, the distributions for both

element types are shown.
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Figure 7.3.: Distribution of nitrogen and oxygen atoms around Hydroxyethyl 1 in proteins’ side chains.
Filter criteria in NAOMInova: origin central substructure = side chain, EDIA ≥ 0.8, distance to
oxygen between 2.6 and 3.5 Å, element type partner = nitrogen (a and b) or = oxygen (c and
d), respectively. a), b) Side and top view of the distribution of nitrogens around Hydroxyethyl
1 in the protein’s side chain. c), d) Side and top view of the distribution of oxygens around
Hydroxyethyl 1 in the protein’s side chain. In a) and c) partner points are displayed as sphere.
In b) and d) partner points are displayed as density grid. e), f) Histogram showing the in-plane
angle of partner points in percent of the total partner point count for different origins for nitrogen
and oxygen, respectively. The value behind each category represents the absolute number of
detected partner points. Schematically, the measurement of the in-plane angle is displayed on
the right part of e).
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a b

PDB code:
2h0e

PDB code:
3ig9

Figure 7.4.: Examples for original structures in which the Hydroxyethyl 1 in a protein’s side chain provided
by the backlink functionality in NAOMInova. The atoms of the substructure are highlighted in
yellow. The partner atom is highlighted in green a) In PDB structure 3ig9 [125] the substructure’s
oxygen acts as an acceptor in an atomic interactions with a nitrogen. b) In PDB structure
2h0e [126] the substructure’s oxygen acts as a donor in an atomic interactions with another
oxygen.

In Figure 7.3a and c, the distribution of partner points is displayed as spheres. However, the

drawing of these sphere may be slow if two many partner points have to be drawn. Hence,

if more than 15 000 partner points are detected, only randomly chosen 15 000 partner points

are displayed. In Figure 7.3b and d, the distribution of the partner points is displayed as

density grid. Here, all partner points are taken into account for the calculation.

From these visualizations, it can directly be seen that the distributions of the two element

types are not equal. It seems that more nitrogens can be found on top of the substructure’s

oxygen than oxygens. In order to confirm this impression, the in-plane angle of all partner

points was measured. To this end, the plane defined by the three atoms of the substructure

was used as reference. Each partner point was first transferred to the defined plane in parallel

to the plane’s normal. Afterwards, the angle between its connection to the oxygen and C-O

axis in the plane was calculated. Schematically, the performed measurement is depicted for

one partner point in Figure 7.3e. The resulting in-plane angles separated by different origins

of the partner points are displayed in Figure 7.3e and f. From these distributions, it can

be seen that partner points from ligands and from the amino acids’ side chains have their

peak between 60◦ and 70◦ for nitrogen and oxygen. A strong difference can be seen for the

distribution of partner points from amino acids’ backbones. In this category, the nitrogens

have their peak angle at about 40◦ whereas oxygens have their peak angle between 70 and

80◦. According to other studies, the optimal angle for a hydrogen bond is believed to be at

60◦ in this measurement [16].

One possible explanation for these differences are steric hindrances of the backbone atoms

which lead to sub-optimal interaction geometries. However, a more detailed look at the data

also points to another possibility. The substructure’s oxygen is part of an hydroxyl and can

therefore act as donor and as acceptor in hydrogen bonds. Using the backlink functionality

110



7.5. Application Example

in NAOMInova, the original structures of different partner points from the backbone were

analyzed. Selected examples are displayed in Figure 7.4. It can be seen that in atomic

interactions with nitrogen, the substructure’s oxygen always acts as an acceptor. Because

of its planar geometry, the backbone’s nitrogen can never act as an acceptor. On the other

hand, when the substructure’s oxygen is interacting with a backbone’s oxygen, it always acts

as an donor. Hence, the different in-plane angles might also be a result of the different

functionalities within a hydrogen bond.

This example shows how the interactive tool NAOMInova can be used to handle large sets

of data and provide the relevant information to the user. Geometrical preferences of different

substructures in different parts of the protein can simply be analyzed by visual inspection and

by means of geometrical measurements. For each partner point, the original protein structure

can be traced back which allows a convenient opportunity to detect additional features of

specific points and rate their relevance to the current problem of interest.
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Conclusion

In this thesis, two different methods for the mining of interaction geometries in macromolec-

ular structures were developed. Pelikan is able to detect bioisosters and chemoisosters in

collections of protein-ligand interfaces. NAOMInova can be used to identify and visualize

geometrical interaction preferences of specific substructures in protein-ligand complexes as

well as in protein structures. For both tools, different experiments have been performed

demonstrating their correctness and their performance for different input parameters. Both

tools can be used to analyze atomic interactions and to get detailed insights into the nature

of molecular recognition. Furthermore, it has been shown that these tools are highly benefi-

cial for various applications related to drug design.

Pelikan as well as NAOMInova are stand-alone tools which stably run on different platforms.

Pelikan is a part of the software bundle provided by the ’AMD Software Server’, Universität

Hamburg (https://software.zbh.uni-hamburg.de/), and can be downloaded and used for free

for academic use. In the near future also NAOMInova will be a part of this collection of

software tools.

In the following sections, the main achievements of these tools are highlighted. Afterwards,

their limitations are presented. Finally, an outlook is given on potential improvements and

further developments of both approaches.

8.1. Achievements

The main achievement of this work is the development of two stand-alone tools which enable

the mining of interaction geometries in collection of macromolecular structures. Both tools

present an outstanding combination of flexibility, specificity, and correctness in comparison

to other existing methods. During the development, a focus has been laid to five specific

aspects, listed in Section 3. In the following, for each of these aspects, the achievements of

this work will be outlined in detail.
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Consistent handling of data

Both tools use the NAOMI library for reading and interpreting the molecular structures

from PDB files. Also the auxiliary tools like Protoss and DoGSite used for preprocessing of

the data are based on these libraries. Hence, throughout this work the same fundamental

chemical models are used which have shown to be consistent and deterministic [76]. The

tool Protoss has been shown to achieve almost optimal results for hydrogen bond networks

when compared with hand curated data sets [38]. A very important precondition when non-

covalent atomic interactions are to be investigated. Moreover, Pelikan and NAOMInova

make use of the database concept from the NAOMI library. This allows an interchange of

databases between different tools from the NAOMI library, e.g., with Mona [84,87].

Both tools extend basic functionalities from the NAOMI library in order to make the relevant

data accessible to the search procedure. This process is deterministic as from the same set

of input data, the same database is constructed every time and the same results are received

for identical queries. Dedicated tests for both tools ensure that information is not changed

throughout the data collection steps.

Reliable and correct retrieval system

For both tools, the correctness of the search process was assessed by checking for false positive

as well as for false negative results. Herein, random atoms were picked for which specific

queries were generated. The correctness of the results for each query was verified. Several

repetitions of this test without detected error lead to the conclusion that both methods are

working correctly. Throughout the development, these test have brought to light different

calculation and implementation errors which underlines their usefulness. For the final versions

of both tools, no errors could be found.

For Pelikan, the correctness of a search was also compared with the tool Relibase. Also in

this experiment, the search procedure proved to be correct.

Retrieval speed

As both tools are meant to be used interactively, the retrieval speed is of high importance.

For both tools, the runtime of the retrieval system was analyzed in detail. The number of

results could be identified as one of the most runtime-influencing parameter. In general, it

can be concluded that the more precise a query, the fewer results are generated resulting

in faster retrieval times. For typical queries, reasonable short runtimes could be achieved

on a standalone PC which support interactive use. For Pelikan, a comparison with the tool

Relibase elucidated advantages of its search mechanism for queries involving substructures

of the protein are used.

High variability

Both tools developed in the course of this thesis provide flexibility with respect to both vari-

able inputs: (1) The used data set and (2) the queries.
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Both tools offer the functionality to generate a database out of any collection of PDB files.

Since SQLite is used, databases can easily be exchanged between users and platforms. To my

knowledge, no other existing tool provides this possibility. For NAOMInova, also the used

substructures can be defined by a user with the help of the powerful SMARTS language.

This feature in combination with the variable set of used PDB files make NAOMInova the

only available tool supporting a complete variability of the used data.

Pelikan supports queries which are precise and at the same time flexible. The developed

query system can be used to precisely define spatial arrangements of atoms in protein-ligand

interfaces. Herein, no aggregation of specific amino acids or other chemical structures is

done. Due to the allowed ranges of distance and angle queries, the precision of a query can

be adjusted for parts of the query leading to more flexibility. This 3D query can be combined

with a large variety of filters for textual and numerical properties of the ligand, the protein,

the pocket, and the protein-ligand complex.

In NAOMInova, the query variability has been realized by supporting filters for various prop-

erties of the central substructure and the partner points. Most importantly, the EDIA is

integrated in NAOMInova which provides the possibility to select only substructures and

partner points which are experimentally well supported.

Usability

GUIs were developed for both tools which can be used to create databases, define queries

and substructures, and inspect the results. In Pelikan, the 3D structures of the results can be

superimposed on that of the query which helps to easily spot differences and similarities of

all results. In NAOMInova, different measurements can be done and the data of a complete

set of partner points can be plotted as an histogram. Moreover, for each partner point

the original structure can be visualized which is important to infer reasons for abnormal

arrangements.

Both tools offer the possibility to export resulting data. In Pelikan, statistics on the the

results can be written to a file whereas in NAOMInova, all raw data of a measurement can

be exported.

Due to the used database system, no server infrastructure is needed in both cases. After

downloading the tools, a user can directly start to create databases or to search structures

and distributions of interest.

8.2. Limitations

Besides the achievements presented in the previous section, both tools also have limitations.

Based on the main source for the limitation, they can be divided into four different groups.

First of all, there are limitations which derive from the used database technology. Secondly,
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the use of the NAOMI library leads to restrictions. The third group deals with limitations

derived from the used data. Finally, the specific algorithms implemented in both tools lead

to restrictions. In the following, the limitations will be discussed in detail for each group.

Database technology

It has been decided to use SQLite because of its convenient way to interchange databases

between different users and platforms. These advantages, however, come at a cost. In

general, it could be shown that queries which lead to a high number of results lead to longer

retrieval times. This is in part due to the runtime of the database queries. Given the growth

of the available macromolecular structures, this will become more and more relevant in the

near future. However, the targeted application scenario of Pelikan is to search for a specific

pattern which leads only to a small number of results. Hence, even with growing data sets,

the retrieval times might be sufficient. The limitation has a stronger effect on NAOMInova

since here the querying of large numbers of partner points is a typical task.

Moreover, the used SQLite databases are not optimized for multi-user purposes. Hence, if

databases for Pelikan and NAOMInova should be shared among several users, they have

to be copied. Especially for databases containing large numbers of PDB files, this can be

inconvenient. Updates have to be performed for each copy of a database.

NAOMI library

In principle, the NAOMI library is a very good basis for the development of computer-based

approaches in the field of drug-design. However, the used data structures also limit the

possible functionalities. First of all, a complex in NAOMI is based on a differentiation

between protein and small molecules. In some cases, for example if peptides are present in

a structure, this classification can be disadvantageous depending on the desired application.

Once a molecule has been classified as a small molecule during the complex initialization

process, it cannot easily be turned into a protein. Since the classification into small molecules

and proteins is used in both tools, it would be desirable to have a more flexible classification

procedure. Otherwise, unintended results might be detected or important results are never

found.

Moreover, the NAOMI complex initialization process is not able to handle flexible structures.

PDB files resulting from molecular dynamics simulations usually contain several coordinates

for the same atom encoding the flexibility of the structure. As seen in the comparison

between Pelikan and Relibase, this can lead to false negative results since only the first

annotated structure is used in the NAOMI library. Also for structures derived from X-ray

crystallography, alternate locations of atoms might be annotated in the PDB file which are

not handled in the NAOMI library.
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Data source

The main data source for both tools developed here is the PDB. The amount of deposited

structures here is ever increasing and also the diversity of the proteins increased during the last

years. However, there are still proteins who’s structures have been elucidated very often and

which are therefore overrepresented in the PDB. At the same time, there are proteins which

are difficult to crystallize or which are no typical target of drug design projects. Structures

of these proteins are often underrepresented in the PDB. This might lead to a bias in the

performed analyzes and might have an influence on the drawn conclusions.

Concretely, if Pelikan is used to find specific interaction patterns, it is not directly clear if

the results derive from different structures of the same protein or from different proteins.

Even the inspection of all results might not get a clear decision of the former problem since

the naming of proteins in PDB files is very inconsistent. In a similar way, such a bias might

lead to wrong conclusion if in NAOMInova a specific patch of atoms around a substructure

is detected.

Specific limitations

In both tools, the structures of proteins and their ligands are treated as rigid structures.

However, under physiological conditions, these molecules are flexible and also the binding

between two molecules is not a rigid system. This flexibility is in part reflected by the

possibility to define ranges for geometric constraints. However, a user has to know the size

of movements in the particular region.

The position of hydrogens and the exact tautomeric states of all molecules are determined

with the tool Protoss in this work. In addition, the optimal mesomeric forms of the molecule

are determined by the NAOMI library during the initialization process. Afterwards, both

tools handle these states as fixed and unchangeable. Hence, if a specific substructure is

searched in NAOMInova, delocalized bonds and hydrogen positions have to be handled with

care. The SMARTS language provides the term ’∼’ which matches any bond. However,

expression for substructures can get very difficult if variable positions for bonds and hydrogens

are considered. The same holds true if the environment of a search point is defined by a

SMARTS patterns in Pelikan.

The tool Pelikan uses only the structural information of protein-ligand interfaces. This limits

the use cases of the tool to projects dealing with the binding between a small molecule and

a protein. Other interfaces such as protein-protein binding or intra-molecular binding in a

protein cannot be investigated with the tools as presented here. Moreover, in Pelikan only

the resolution of a structure can be used as quality criterion.

In both tools, the logical combination of filters is currently limited. All filter components are

combined with a logical ’AND’. In some cases, a filter component can be negated and in

other cases, an ’OR’ combination is possible. The possibility to combine all filter components

with the logical operators ’AND’, ’OR’, and ’NOT’ would even increase the flexibility and
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precision of the search process of both tools.

8.3. Outlook

With regard to the outlined limitations, there are several possibilities to improve Pelikan and

NAOMInova.

First of all, both tools could be transferred to server-based database systems in order to

speed-up the retrieval times. Concerning Pelikan, a database management system with an

advanced query optimizer would probably beneficial. Here, the database systems PostgreSQL

(http://www.postgresql.org) or MySQL (https://www.mysql.com/) could be used. A first

attempt to transfer Pelikan to PostgreSQL has already been done by A. Elvers in her bach-

elors thesis [127]. This work shows that a transfer is in principle possible but a specific

optimization of the search process is still required to achieve good retrieval times.

For NAOMInova, a database system which is optimized to handle large amounts of results

would be a good choice. For example, a database system which supports the parallel execu-

tion of queries or which uses a different scheme for storing the data.

These transfers would have the beneficial side-effect that both tools could be made available

via a web service and multiple users could be handled at the same time. However, this would

reduce the flexibility of both tools as it would be more complicated to generate a database

from a specific set of PDB files. Hence, the best way would be to support both applications:

a user can generate specific databases using the SQLite technology. At the same time, large

databases containing all relevant files from the PDB are provided via a web service.

The complex initialization procedure in the NAOMI library could be changed such that the

classification into protein and small molecules becomes more flexible. This way, the clas-

sification of molecules for both tools could be driven by the user. For example, a list of

molecular patterns could be provided by a user which defines all ligands or which defines

small molecules which should not be categorized as ligands, e.g., molecules from the solvent.

At the same time, the complex in the NAOMI library could be improved such that more than

one 3D coordinate is stored for each atom. Thereby, alternate locations of atoms and flexible

parts in structures could be represented. The search procedures of Pelikan and NAOMInova

could then work on all available 3D coordinates and the flexibility of a structure could in part

be reflected.

In line with the above handling of structural flexibility, the handling of different mesomeric,

tautomeric, and protonation states of molecules could be handled if the concept of SMARTS

and its matching procedure were extended. For example, a term for a delocalized bond could

be introduced into the SMARTS language. During the matching procedure, this would then

match to all bonds which are part of a molecular system with delocalized bonds. This would
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highly facilitate and improve the definition of substructures in NAOMInova and the definition

of search point environments in Pelikan.

The bias of the used data sets can of course not be changed immediately. However, it would

be beneficial if both tools would indicate a potential bias if a large part of the results is

derived from different structures of the same protein. One possibility to do this would be to

classify all proteins upon database construction. In NAOMInova the optimal way for such a

classification would be a sequence similarity. However, in Pelikan only protein-ligand inter-

faces are used. The tool Siena which is able to identify similar binding sites [128] could be

used for classification of all pockets here. In both tools, the results could then be displayed

using these clusters. Moreover, a search could be limited to those structures which are similar

or not similar to a specific structure or protein-ligand interface loaded by the user. All these

functionalities would help to inform the user and manage the structural bias of a data set.

Specifically in Pelikan, there are four aspects which would improve this tool. First of all, the

EDIA should be introduced such that only results having a specific EDIA value are returned.

Secondly, the system should be extended to other interfaces, e.g., protein-protein interfaces.

This would probably increase the database size. However, if the database is transferred to

a more sophisticated database management system, this data extension may be tolerable.

Thirdly, the handling of results can be improved in Pelikan. At the moment, resulting struc-

tures can be displayed in a 3D viewer and several results can be superimposed. However, if a

large number of results is detected, a visual inspection is not feasible. To this end, it would

be beneficial to have an algorithm which analyzes the results and detects spatial similarities

outside the matching atoms. This information could on the one hand be used to cluster the

results and provide a more comprehensive overview over the results. On the other hand, it

could be used to suggest a refined 3D query. Finally, as already mentioned in Section 6.3, the

setup of the triangle descriptor could be optimized in order to further speed-up 3D queries.

Also the tool NAOMInova can be improved by three different aspects. Firstly, it would be

helpful to extend the set of filters for partner point properties by ’is donor’ and ’is acceptor’.

In this way, the specific role of an atom in a hydrogen bond could be investigated. Secondly,

the set of elements which can be used to filter partner points could be extended by ’carbon’.

This would also allow the analysis of weak hydrogen bonds. However, the size of the database

would largely increase because carbon atoms are very frequent in proteins and ligands. After

a transfer to a server-based database system, this increase in data size is probably tolerable.

Finally, it could be interesting to combine the used data with affinity values for protein-ligand

complexes. Then, the distribution of partner points could for example be colored by their

corresponding affinity values which allows a direct link between interaction geometry and

affinity.

In both tools, the combination of filter components could be extended such that all com-

ponents could be combined with the logical operators ’AND’, ’OR’, and ’NOT’. This would

largely improve the flexibility of the possible queries.
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This conclusion shows that Pelikan and NAOMInova offer unique solutions for the fast and

flexible search of interaction geometries in macromolecular structures. The possible exten-

sions described above will further broaden their range of application and thus the benefit for

researchers in the field of structure-based drug design.
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A
Tool Descriptions

A.1. Tools for Searching of Interaction Patterns

3DinSight [46]: 3DinSight has been published in 1998, the web server is not available any

more. However, to my knowledge, it has been the first service which provided searches with

distance constraints on macromolecules. The main focus of 3DinSight is to search for pro-

tein structures with a specific sequence pattern and annotated attributes, e.g., its organism.

However, simple spatial queries are supported: Queries containing distance constraints be-

tween amino acids and nucleo bases can be answered. The query has to be entered in the

structural query language (SQL). 3DinSight uses a relational database containing all struc-

tures of the PDB. Besides the atomic coordinates, distances between all pairs of amino acid

and nucleic base are stored. The results of a search are presented in a list. From here, the

original PDB entry can be viewed or different properties of the molecule can be visualized,

e.g., which amino acids are involved in a α-helix.

Erebus [47]: Erebus searches specific atomic patterns in the complete PDB. The query has

to be defined using the PDB format. Herein, atoms are defined by their element, their

belonging to a specific amino acid or molecule, and their 3D coordinates. Using the terms

’ATOM’ and ’HETATM’, an atom can be explicitly defined as part of the protein or not,

respectively. Using the atoms in the PDB file, similar patterns are searched in the protein

structures of the PDB tolerating small geometrical deviations. For the search, both the

protein and the query structure are converted to complete graphs. Thereby, the distance be-

tween atoms are annotated on the edges. Matching structures are then detected by applying

an iterated sorting and filtering scheme. Herein, all pairwise atom distances are first searched

in the set of protein structures before complete hits are constructed. For each hit, the spatial

accordance of the hit to the query is checked. Only hits with small spatial deviations are

accepted. Unfortunately, no comments are made about the retrieval times. The results are

presented in a list with the original PDB code and the geometrical deviations from the query.

The query can be superimposed on a specific result and visualized.

Using this approach, the detection of specific spatial patterns in proteins is possible. How-

ever, if the search involves small-molecules or water, the search could be difficult because of

the inconsistent annotation of molecule names in PDB files. In addition, the definition of

the query as a PDB file requires a template protein structure. Designing such a query from

133



A. Tool Descriptions

scratch and can be very difficult.

Suns [48]: Suns is able to search for specific fragments in proteins similar to Erebus. How-

ever, Suns provide a graphical interface where a protein structure can be loaded and atoms

or fragments of interest can be selected. Suns utilizes a database containing structural in-

formation of proteins for the search. The inserted protein structures are divided into cubes

with side lengths of 15 Å. Inside this cube, all chemical fragments from two to nine atoms

are collected. Using this approach, a database with 24 218 different protein chains has a size

of 89 GB. During the search of a specific motif, first the cubes which contain all chemical

fragments of the query are identified. Then, the respective cube is reconstructed and the

arrangement of the fragments within the cube are aligned to the query using the algorithm

of Kabsch [60]. As in Erebus, only hits with small spatial deviations are accepted. All hits

are superimposed to the query and presented in a result window. Given this representation,

similarities and differences can easily be spotted. On a database containing a set of 272

non-redundant protein chains, retrieval times between 100 and 10 000 seconds were reached.

Even though short retrieval times are reached here, this approach has two clear disadvantages.

Firstly, the size of the database is quite large given the exponentially increasing number of

protein structures in the PDB. Secondly, due to the separation of data into cubes, no hits

spanning multiple cubes can be detected. Thus, if a specific motif is by chance divided by

the separation into cubes, it could never be found.

ASSAM [49]: The tool ASSAM is able to find amino acid chains with a specific 3D ori-

entation in a set of protein structures. Herein, protein structures are represented as graphs

and stored in a database. Every vertex in these graphs represents one amino acid. A vertex

consists of two pseudo atoms which represent the orientation of the side chain. For each

amino acid type, the exact position of the pseudo atoms is exactly defined by the positions of

the side chain atoms. The graph is complete, meaning that all pairs of vertices are connected

via an edge. The edge contains several distance values, representing the mutual distances

between the two pseudo atoms of the vertices, respectively. A query in this context is a PDB

file containing a peptide chain of up to twelve connected amino acids. For the search, the

query peptide is converted into a graph structure as described before. Then a maximal com-

mon subgraph approach is used to detect all occurrences of the query within the database.

Herein, a fast initial screen is performed using a clique algorithm. Afterwards, exact hits are

detected using the algorithm of Bron and Kerbosch [58]. The resulting hits are presented as

a list. Each hit can be visualized by super-imposing the query sequence onto the detected

structure. Retrieval times should be around 6 min for a typical search.

Even though the protein and query structures are reduced to simpler graphs, the retrieval

times are with six min quite high. Another shortcoming of this approach is the query design.

Only connected peptide in a protein can be detected. However, due to the folding of the pro-

tein, there might be amino acids which are spatially in close contact but sequentially divided
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by more than twelve amino acids. Moreover, due to the representation of amino acids by two

points, the complete spatial variability of a side chain cannot be represented in this approach.

IMAAAGINE [50]: IMAAAGINE is based on the tool ASSAM. The methodology has how-

ever been slightly changed. Proteins are still represented as graphs in which every vertex

corresponds to one amino acid. In IMAAAGINE however, every vertex only contains one

pseudo atom which represents the functional part of the side chain. Again, each graph is

complete. In this case, each edge represents only the mutual distance between the two ver-

tices. A query here may contain up to eight amino acids. For each pair of amino acid, a

mutual distance constraint can be added. Moreover, besides defining an exact type of an

amino acid, its chemical function can be described, e.g., acidic, basic, or hydrophobic. For

the search procedure, the query is converted into a graph. Thereby, every amino acid is con-

verted into a vertex whereas every distance constraint between two amino acids is converted

into an edge between the corresponding vertices. Then the subgraph isomorphism algorithm

of Ullmann [59] is utilized to find all occurrences of the query in the database.

IMAAAGINE overcomes the problems of ASSAM, namely that only amino acids chains can

be searched. However, the representation of amino acids has been reduced from two pseudo

atoms to one pseudo atom which even reduces the possibility to represent the spatial vari-

ability of amino acids.

PDBeMotif/MSDmotif [51]: PDBeMotif is a search engine providing a large set on struc-

tural queries related to proteins. In principle a query consist of different query objects which

can be connected by distance or interactions constraints. A search similar to the search

possible in IMAAAGINE can be performed by generating several sequence motifs consisting

of only one amino acid. These can then be connected by distance constraints. However,

only distance constraints to amino acids which are within the same protein chain are taken

into account here. Unfortunately, the exact search mechanism and the database construc-

tion is not explained in detail for this type of query. In addition to protein based queries,

PDBeMotif provides the possibility to search for interaction patterns containing parts of the

protein and small molecules. To this end, different types of atomic interactions and atom

distances below 4.25 Å between protein and ligand atoms are precomputed and stored in the

database. As query object, a small molecule can be sketched in 2D. Distance constraints up

to 4 Å and interaction constraints can then be defined between exact atoms of the ligand

and any protein based query object. Results are presented in a list and the resulting amino

acids can be highlighted.

This approach allows a wide range of different query possibilities compared to the other

presented approaches. However, only distances up to 4 Å can be used for the query. Another

shortcomings of this software is its usability. The generation of spatial queries is compli-

cated and no 3D template structure can be used here. Moreover, resulting hits cannot be

super-imposed making it difficult to inspect the similarities and differences among the results.
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CSD-CrossMiner [52]: The tool CSD-CrossMiner has been developed to perform spatial

searches on two datasets: the CSD and the PDB. Here, we will focus on its capabilities to

mine the PDB. CSD-CrossMiner uses an SQLite database in which data from protein-ligand

interfaces are stored. For each ligand within a PDB file, this interface includes all atoms

whose minimal distance to any of the ligand’s atoms is below six Å. Inside this interface,

atoms or substructures with specific pharmacophore features are identified, e.g., donor, ac-

ceptor, or hydrophobic. If necessary, the directionality of the feature is annotated. For

example, a donor feature point includes the direction of the hydrogen atom and an aromatic

ring feature point includes the direction of the ring normal. Moreover, the structure in which

the feature has been detected is annotated, e.g., ligand or protein. For each interface, only

these features are stored in the database. Hence, these features display the possible objects

which can be used in a query. A query consists of a set of these feature points in 3D space.

They can be defined using a 3D template structure. Every feature is represented by a sphere.

The diameter of the sphere encodes the locational precision of each feature.

The search starts with translating the 3D query into distance constraints. Herein, the mutual

distance between all feature points is measured. The sum of their feature radii reflects the

tolerance of this distance. Then, using a fingerprint technique, all interfaces which contain

the required set of features are identified. The relevant feature points of each identified

interface are then subjected to a 3D search procedure in which their complete matching to

the query is verified. This is described as a depth-first-search. Starting at the feature point

involved in the highest number of distance constraints, the other feature points are included

iteratively. In every step, a feature point is only included if the exact distance constraint is

fulfilled. Finally, the algorithm of Kabsch is used to determine the best overlap of each hit

with the query.

Results are presented in a 3D viewer super-imposed onto the query. Moreover, 2D depic-

tions of the results are shown. Herein, all results are aligned to the query and can be easily

compared.

The main advantage of the CSD-CrossMiner is its speed. Runtimes between 25 and 350 s

for different example queries are given. These calculations have been performed in par-

allel on four different cores. Moreover, resulting hits are presented as soon as they have

been detected and not after the complete search has been ended. A clear disadvantage

of the CSD-CrossMiner is the reduction of the searchable objects to precalculated features.

Moreover, due to the used search procedure, the resulting hits might not completely spatially

agree with the query. Hence, single atoms might be positioned outside a query feature sphere.

PRDB [53] (Protein Relational Database): The PRDB also utilizes a database in order to

provide spatial queries on protein-ligand interfaces from the PDB. The database contains

several tables storing general information about the protein, e.g., its organism and data con-

cerning its publication. In addition, several geometrical properties are stored in the database.
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These are: Distances between two atoms, distances and angles between atoms and ring cen-

troids, and distances and angles between two ring centroids. Herein, one partner of the

measured parameter has to be part of the protein, the other one has to be part of the ligand.

Moreover, only protein atoms and ring centroids are considered which are within 8 Å of any

ligand atom. For amino acids which have at least one atom within 5 Å of any ligand atom,

two additional tables exists. In the first table, mutual distances between the α carbon of

the amino acids are stored. Analogously, the second table stored triplets of mutual distances

between α carbon of the amino acids.

Queries can be designed in SQL and might cover all items stored in the database. The

presentation of the result is not explained in the publication.

Even though the PRDB approach allows for the definition of distance and angle constraints

in their query, it has clear disadvantages. First of all, queries containing more features than

one distance or one angle constraint are highly complicated to design in SQL. Secondly, no

substructure constraints can be added to the query. Thirdly, distances between amino acids

are only measured at their α carbons. Thus, no precise, atom-wise distance query is possible.

And fourthly, given all the precomputed data, the database has probably a quite large size.

However, nothing is written about the database size in their publication.

Prolix [54] (Protein Ligand Interaction Explorer): Prolix facilitates the rapid mining of

protein-ligand interactions in a large crystal structure database. The database contains in-

formation about all protein-ligand complexes from the PDB. Mainly, the information about

non-covalent interactions between proteins and ligands are stored, e.g., the involved atoms.

In addition, mutual distances between amino acids in the ’shell’ around a ligand are stored.

The shell contains all amino acids which are within 4.5 Å around any ligand’s atoms. Herein,

the distances between the α carbons of the amino acids are used.

A query in Prolix contains a ligand substructure and amino acids in its shell. Specific atomic

interactions can be defined between an atom of the substructure and an amino acid. Dis-

tance constraints between amino acids can be added. Moreover, amino acids which should

not be part of the shell can be defined.

The search algorithm contains three major steps. First of all, all ligands and their shells

are detected in the database which contain the required amino acids and interaction types.

Secondly, the required distance constraints between the amino acids are checked. Finally,

complete hits are constructed using all possible combinations of matching amino acids for

each ligand. Only those which fulfill all constraints are used. At some point within the

search process, a subgraph matching has to be performed in order to detect ligands which

contain the required substructure. Unfortunately, this point is not given in the publication.

The result of a search are presented in list grouped by the protein.

The used fingerprint technique leads to fast runtimes between 2 and 5 s for typical queries.

However, the fact that no constraints for exact atoms of amino acids can be defined strongly

reduces the precision of the possible queries.
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Relibase [55, 61, 129]: Relibase has already been developed in 2003 and provides a large

variety of different geometrical queries. A commercial version, called Relibase+ and a free

version, called Relibase exist. Both tools work with the same relational database which

contains all structures from the PDB, including DNA and RNA structures. For structures

which have been determined using NMR, all different models are incorporated. Ligands are

defined as all small molecules and peptide chains of up to 20 amino acids here. For each

ligand, a topological fingerprint is calculated using hashed values of all non-overlapping paths

through the molecule up to a length of eight bonds.

Queries contain 2D representations of ligand and protein substructures. Specific atoms can

be combined with distance constraints. Notably, allowed distance ranges can be defined here.

In Relibase+, a distance constraint for any pair of atoms can be defined. In Relibase, only

inter-molecular distance constraints are possible. Moreover, planes can be defined and angles

constraints between any pair of plane or distance can be added to the query in Relibase+.

Again, ranges of allowed angles are used here. This geometrical search can be combined with

constraints for the resolution and the experimental procedure in both versions of Relibase.

The search mechanism starts with a substructure search on ligands using the topological

fingerprint. Afterwards, all hits are subjected to an subgraph matching which compares the

complete query to the selected ligand and its surroundings.

Results are presented in a list and can be visualized in a 3D viewer. Herein, the atoms

matching the query are highlighted. In Relibase+, different results in similar proteins can be

super-imposed based on the protein chains. As in Prolix, results are shown as soon as they

have been detected and a user can start inspecting the results before the complete search is

over.

The main advantage of Relibase+ is the high variability of the query. Any substructure can be

drawn and distance and angle constraints can be added without many restrictions. However,

the used search mechanism has the disadvantage that queries which do not contain large

substructures of a ligand may have quite long runtimes (see Section 6.5 for example queries

on Relibase). In principle however, Relibase+ allows geometrical queries which contain only

parts of a protein. Moreover, results cannot be super-imposed based on the query which

makes it difficult to spot similarities and differences among the results.

A.2. Tools for the Deduction of Preferred Interaction Directions

Sirius [64] / X-Site [65]: To my knowledge, Sirius and X-Site were the first tools which

calculated interaction preferences of atomic interactions in macromolecular structures. For

Sirius, the authors used a high resolution set (≤ 2.0 Å) of 52 different protein structures

from the PDB. In these structures they detected all interactions of amino acid side chains.

Each pair of side chains was then transferred into a reference coordinate system using a

template structure for one the detected side chains. For each combination of amino acids,

a distribution could then be generated showing the preferred interaction directions. This
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work resulted in the ’atlas of protein side-chain interactions’ [70] and has later been used

to evaluate the binding of peptide inhibitors [71]. For the tool X-Site, this principle was

followed even further using a data set of 83 protein chains. Here, each amino acid within

the binding site of a ligand was broken up into overlapping three-atom fragments. For each

fragment, the distribution of interacting atoms was recorded. The resulting distributions

were then transfered into other binding sites in order to evaluate the binding of a ligand.

These publications represent the first steps the community made to detect preferred interac-

tion geometries within proteins and transfer the knowledge to the evaluation of the binding

mode of a ligand. Obvious shortcomings of the approach like the small dataset and the

fixed set of protein fragments can be explained by the small number of available high-quality

structures and by restricted storage and compute power at the time of publication.

IsoStar [68]: IsoStar is a tool which visualizes the distribution of interacting atoms in the

vicinity of predefined functional groups in the CSD and the PDB. Here, we focus on the

PDB because we are focusing on interaction preferences in the context of proteins. From

the complete PDB, all structure of protein-ligand complexes which were determined with

X-ray crystallography and had a resolution ≤ 2.0 Å have been used. A ligand was defined as

any non-peptide molecule of at least nine atoms and all peptides of up to ten amino acids.

Within this data set, all non-covalent interactions (mututal atom distance < 4 Å) between

atoms of the protein and the ligand were detected. For each atom it was assessed, whether

it belongs to one of 250 predefined chemical groups. Only if both atoms belong to one of

the groups, the geometrical parameters were recorded. After data collection, all moieties

which where detected for on of the chemical groups, were overlaid. This group is then called

the central group. The distribution of surrounding atoms from other chemical groups (called

contact group) was stored in a specific file format. Herein, only ’target atoms’ are used, e.g.,

nitrogen, oxygen, hydrogen. Such a file has been generated for each combination of central

chemical group and contact chemical group.

In a 3D viewer, these data files can be loaded and the distribution can be analyzed. The

distribution can be displayed as spheres or as contour surfaces. Within the viewer, ranges

for the distance between the central and the contact group can be added. Additionally, the

originating structure can be traced back and visualized for each data point.

Data files for central groups which are not part of the initial set can be calculated using the

programm IsoGen. However, this is only possible for the CSD data set [73].

To my knowledge, IsoStar has been the first tool which systematically collected spatial data

around functional groups which are relevant in the field of drug design and provided a visu-

alization for a convenient analysis. However, regarding the PDB, its functionality is limited

to a predefined set of chemical groups which cannot be extended. Moreover, the means to

analyze the data set are limited to a distance range constraint. Another shortcoming is the

139



A. Tool Descriptions

data handling. Data is collected in separate files and each file has to be loaded individu-

ally. Despite these shortcomings, a large number of publications in which IsoStar has been

used to analyze and improve ligand binding prove the usefulness of this approach (examples

are [130–132]).

SuperStar [74, 75]: The tool SuperStar uses the data generated in the IsoStar approach

and identifies regions in a protein binding site where chemical groups are likely to interact.

To this end, a protein can be visualized in SuperStar. The IsoStar distributions are then

transferred to a defined binding site showing regions where specific chemical groups could

be located. The approach is similar to the tool X-Site. However, they differ in the used data

set: SuperStar utilizes information from the CSD as well as from protein-ligand contacts

detected in the PDB. X-Site only used side chain contacts within the PDB.

However, as for IsoStar, the chemical groups which can be displayed are limited to the pre-

defined set used in IsoStar.

GIANT [66, 72]: GIANT is a recent attempt to generate an unsupervised classification of

spatial interaction preferences without mixing the data from different amino acids. As set

of 23 040 protein-ligand files with a resolution ≤ 2.5 Å from the PDB was used for this

endeavor. From this dataset, proteins were clustered based on their protein chain, result-

ing in 3 219 different clusters. Each amino acid was decomposed into fragments of three

connected atoms. The specification of the fragments included the specific atom names of

the respective amino acid and the name of the amino acid itself. Hence, fragments, even if

chemically equal, are treated as individual fragments. For each fragment, interacting atoms

of the ligand are detected. Herein, a distance smaller than the sum of the van-der-Waals

radii +1 Å was used as only criterion. For each atom type of these interacting atoms, spatial

propensity functions were calculated using a Gaussian mixture model. In total, 8 022 combi-

nations of protein fragment and atom type were found here.

The tool GIANT provides the possibility to visualize these propensity functions in the vicinity

of specific amino acid fragments.

The separation of different side chain fragments provides the opportunity to individually

analyze the interaction preferences of different side chains. However, in some cases, a com-

bination could be beneficial. As for example for the carboxyl group of glutamic acid and

aspartatic acid. Both are chemically almost identically amino acids. The calculation of

propensity functions might be a good means to visualize geometrical preferences and present

hots spots which might be hidden if simple distributions were shown. However, the possibility

to trace back each data point to its original structure is lost by this calculation which could

be helpful to find reasons for structural abnormalities. As for IsoStar, the set of analyzed

fragments and atom types cannot be extended. This option might be less interesting for
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amino acids but the extention by novel atom types might lead to the discovery of new atomic

interactions.
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B
Additional Attributes and Values for

Pelikan and NAOMInova

B.1. Functional Groups used in Pelikan

Aldehyde, ketone, amide, ester, azide, nitrile, guanidine, amidine, amine, alcohol, ether,

pyrrol, thiophene, furane, phenyl, pyridine.

B.2. Element types used in Pelikan

Nitrogen, carbon, phosphorus, sulfur, oxygen, fluorine, chlorine, bromine, iodine, calcium,

zinc, cobalt, iron, copper, manganese, nickel, magnesium.
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B.3. Atom Names of Amino Acids used in Pelikan

Amino acid type Atom names

alanine C, CA, CB, CG, N, O

arginine C, CA, CB, CG, CD, CZ, N, NE, NH1, NH2, O

asparagine C, CA, CB, CG, N, ND2, O, OD1

aspartate C, CA, CB, CG, N, O, OD1, OD2

cysteine C, CA, CB, CG, N, O, SG

glutamine C, CA, CB, CG, CD, N, NE2, O, OE1

glutamate C, CA, CB, CG, CD, N, O, OE1, OE2

glycine C, CA, CB, CG, N, O

histidine C, CA, CB, CG, CD2, CE1, N, ND1, NE2, O

isoleucine C, CA, CB, CG, CG1, CG2, CD1, N, O

leucine C, CA, CB, CG, CD1, CD2, N, O

lysine C, CA, CB, CG, CD, CE, N, NZ, O

methionine C, CA, CB, CG, CE, N, O, SD

phenylalanine C, CA, CB, CG, CD1, CD2, CE1, CE2, CZ, N, O

proline C, CA, CB, CG, CD, N, O

serine C, CA, CB, CG, N, O, OG

threonine C, CA, CB, CG, CG2, N, O, OG1

tryptophane C, CA, CB, CG, CD1, CD2, CE2, CD3, CZ2, CZ3, CH2, N,

NE1, O

tyrosine C, CA, CB, CG, CD1, CD2, CE1, CE2, CZ, N, O, OH

valine C, CA, CB, CG, CG1, CG2, N, O

Table B.1.: Atom names of different amino acid types used in 3D queries in Pelikan.
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B.4. Groups of Amino Acid Types used in Pelikan and NAOMInova

Group Amino acid types

hydrophobic methionine, proline, alanine, leucine, tryptophane, valine,

isoleucine, phenylalanine

polar tyrosine, threonine, glutamine, glycine, serine, cysteine, as-

garagine, lysine, arginine, histidine, glutamine, asparagine

aromatic tryptophane, phenylalanine, tyrosine

acidic glutamate, aspartate

basic lysine, arginine, histidine

neutral tyrosine, threonine, glutamine, glycine, serine, cysteine, as-

paragine

Table B.2.: Groups of amino acids used in 3D queries used in Pelikan and NAOMInova.
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B.5. Properties used in Pelikan

Property name Description Value range

Element Count of each element type present in

a reference ligand. The exact element

types used are listed in B.2

0-100 (integer)

Functional group Count of each functional group present in

a reference ligand. The exact functional

groups used are listed in B.1

0-100 (integer)

MW Molecular weight 0-1 · 109 (real)

Atoms Number of heavy atoms 0-100 (integer)

TPSA Topological polar surface ares 0-1 · 109 (real)

logP logP after Wildman and Crippen [133] -1.0-1000 (real)

Volume Volume of molecule 0-1 · 106 (real)

Total charge Total charge of molecule

Acceptors Number of hydrogen bond acceptors in

molecule

0-100 (integer)

Donors Number of hydrogen bond donors in

molecule

0-100 (integer)

LipinskiDonors Number of hydrogens bound to oxygen

or nitrogen

0-100 (integer)

Table B.3.: Properties calculated for reference ligands in Pelikan, part 1.
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Hetero Number of hetero atoms in molecule 0-100 (integer)

AromAtoms Number of aromatic atoms in molecule 0-100 (integer)

Halogens Number of halogens in molecule 0-100 (integer)

Inorganic Number of atoms not in organic subset 0-100 (integer)

LipinskiAcceptors Number of nitrogens and oxygens 0-100 (integer)

RotB Number of rotatable bonds in molecule 0-400 (integer)

CRTB Maximum path of contiguous rotatable

bonds

0-400 (integer)

Rings Number of rings 0-99 (integer)

URFs Number of unique ring families 0-99 (integer)

AroRings Number of aromatic rings 0-99 (integer)

MaxRing Biggest ring 0-100 (integer)

Ringsystems Number of ringsystems in molecule 0-99 (integer)

AroRingsystems Number of aromatic ringsystems in

molecule

0-99 (integer)

MaxRSsize Biggest ringsystem in molecule 0-100 (integer)

RS Number of stereo centers in molecule 0-100 (integer)

EZ Number of stereo bonds in molecule 0-400 (integer)

Cyclomatic Number Cyclomatic Number of molecule 0-99 (integer)

Max Cyclomatic Number Maximum Cyclomatic Number of

molecule’s ringsystems

0-99 (integer)

Table B.4.: Properties calculated for reference ligands in Pelikan, part 2.

Property name Description Value range

PFAM id id of protein in PFAM database [134] ’PF’+five digit number

Uniprot id id of protein in uniprot database [135] string

EC number enzyme commission number four numbers, 0-99 (integer)

Organism organism of protein string

Table B.5.: Properties calculated for proteins in Pelikan.
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Property name Description Value range

Ligand name Name of reference ligand no limit of length

(string)

Amino acids in pocket Count of each amino acid in the

pocket

0-100 (integer)

Volume Volume of pocket 0-5000 (real)

Surface Surface of pocket 0-5000 (real)

Surface-Volume-Ratio Ratio of surface and volume 0-5000 (real)

HeavyAtoms Number of heavy atoms in pocket 0-1000 (integer)

Acceptors Number of H-bond acceptors 0-100 (integer)

Donors Number of H-bond donors 0-100 (integer)

Hydrophobicity Hydrophobicity of pocket 0-1 (real)

Depth Depth of pocket 0-5000 (real)

Enclosure Enclosure 0-5000 (real)

Score Simple DogSite score 0-5000 (real)

Metal Number of metal atoms in Pocket 0-100 (integer)

Table B.6.: Properties calculated for pockets in Pelikan.

Property name Description Value range

Name Content of PDB title entry no limit of length

(string)

PDB id id of PDB file no limit of length

(string)

Resolution Resolution of PDB file 0-4 (real)

Experimental source Experiment type which has been used

to generate the structure of the pro-

tein. The following types can be used:

Unknown, NMR solution, NMR solid

state, X-ray, fiber diffraction, neutron

diffraction, electron microscopy, elec-

tron crystallography, solution scatter-

ing

enum (integer)

Table B.7.: Properties calculated for protein-ligand complexes in Pelikan.
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OnePoint - no point-point constraints

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

TwoPoints - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

TwoPoints - no point-point constraints

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

TwoPoints - element and interaction type

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

TwoPoints - all properties

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Backbone

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

TwoPoints - resolution

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location
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= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Additional filter: Resolution between 1.5 and 2.5 Å

TwoPoints - resolution and pocket volume

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Additional filter: Resolution between 1.5 and 2.5 Å, pocket volume between 650 and 750 Å3

TwoPoints - 3-4 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 3 Å, max = 4 Å

TwoPoints - 6-7 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = , Sec. structure = Any, Amino acid location =

Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = , Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6 Å, max = 7 Å

TwoPoints - 9-10 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 9 Å, max = 10 Å

TwoPoints - short SMARTS

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(OCC)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(NCC)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å
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TwoPoints - short SMARTS + point attributes

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(OCC)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Back-

bone, SMARTS = [$(NCC)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

TwoPoints - long SMARTS

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = Any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(O(CCO)POP)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(NC(C(C)C)C=O)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

TwoPoints - long SMARTS + point attributes

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(O(CCO)POP)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Back-

bone, SMARTS = [$(NC(C(C)C)C=O)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

ThreePoints - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

ThreePoints - no point-point constraints

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location
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= Any

ThreePoints - resolution

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Additional filter: Resolution between 1.5 and 2.5 Å

ThreePoints - resolution and pocket volume

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Additional filter: Resolution between 1.5 and 2.5 Å, pocket volume between 650 and 750 Å3

ThreePoints - 3-4 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Am

ino acid location = Any

Distance constraint between search points 1-2: min = 3 Å, max = 4 Å

Distance constraint between search points 2-3: min = 4 Å, max = 5 Å//if set to 3-4 Å, no results were found

ThreePoints - 6-7 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location
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= Any

Distance constraint between search points 1-2: min = 6 Å, max = 7 Å

Distance constraint between search points 2-3: min = 6 Å, max = 7 Å

ThreePoints - 9-10 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Distance constraint between search points 1-2: min = 9 Å, max = 10 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

ThreePoints - short SMARTS

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(OCC)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(NCC)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(NPO)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

ThreePoints - short SMARTS + point attributes

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(OCC)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Back-

bone, SMARTS = [$(NCC)]

Search point 2: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Donor, Func-

tional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location =

Any, SMARTS = [$(NPO)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

ThreePoints - long SMARTS

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(NC(C(C)C)C=O)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,
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SMARTS = [$(NC(C(C)C)C=O)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(N(P(O)(O)=O)P(O)(O)=O)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

ThreePoints - long SMARTS + point attributes

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(NC(C(C)C)C=O)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Back-

bone, SMARTS = [$(NC(C(C)C)C=O)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Donor, Func-

tional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location =

Any, SMARTS = [$(N(P(O)(O)=O)P(O)(O)=O)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

FourPoints - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - no point-point constraints

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

FourPoints - resolution
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Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Additional filter: Resolution between 1.5 and 2.5 Å

FourPoints - resolution and pocket volume

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Additional filter: Resolution between 1.5 and 2.5 Å, pocket volume between 650 and 750 Å3

FourPoints - one distance 2 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 5.6 Å, max = 7.6 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - one distance 3 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location
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= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 5.1 Å, max = 8.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - 3-4 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 3 Å, max = 4 Å

Distance constraint between search points 2-3: min = 4 Å, max = 5 Å//if set to 3-4 Å, no results were found

Distance constraint between search points 3-4: min = 3 Å, max = 4 Å

FourPoints - 6-7 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6 Å, max = 7 Å

Distance constraint between search points 2-3: min = 6 Å, max = 7 Å

Distance constraint between search points 3-4: min = 6 Å, max = 7 Å

FourPoints - 9-10 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,
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Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 9 Å, max = 10 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 3-4: min = 9 Å, max = 10 Å

FourPoints - one interaction

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Interaction constraint between search points 3-4: h-bond

FourPoints - two interactions

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Interaction constraint between search points 1-2: h-bond

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Interaction constraint between search points 3-4: h-bond

FourPoints - short SMARTS

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(OCC)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(NCC)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(NPO)]

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional
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group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(OCC)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - short SMARTS + point attributes

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(OCC)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Back-

bone, SMARTS = [$(NCC)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Donor, Func-

tional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location =

Any, SMARTS = [$(NPO)]

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Donor, Functional group

= any, Amino acid = SER, Atom name = OG, Sec. structure = No sec.structure, Amino acid location =

Sidechain, SMARTS = [$(OCC)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - long SMARTS

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any , SMARTS = [$(NC(C(C)C)C=O)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(NC(C(C)C)C=O)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(N(P(O)(O)=O)P(O)(O)=O)]

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any,

SMARTS = [$(OCC(N)C=O)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - long SMARTS + point attributes

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any, SMARTS = [$(NC(C(C)C)C=O)]

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Back-

bone, SMARTS = [$(NC(C(C)C)C=O)]

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Donor, Func-

tional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location =
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Any, SMARTS = [$(N(P(O)(O)=O)P(O)(O)=O)]

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Donor, Functional group

= any, Amino acid = SER, Atom name = OG, Sec. structure = No sec.structure, Amino acid location =

Sidechain, SMARTS = [$(OCC(N)C=O)]

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - metal

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

FourPoints - metal, water

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Water, Element = Undefined, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 3-4: min = 6 Å, max = 7 Å

FourPoints - metal, water, phosphorus Search point 1: Original Molecule = Reference ligand, Element =

Phosphorus, Interaction type = Undefined, Functional group = any, Amino acid = Any, Atom name = Any,

Sec. structure = Any, Amino acid location = Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Water, Element = Undefined, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 3-4: min = 6 Å, max = 7 Å
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FourPoints - angle range 10◦ and FourPoints - one angle

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 2-3: 150-160◦

FourPoints - angle range 50◦

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 2-3: 130-180◦

FourPoints - angle range 90◦

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 2-3: 90-180◦

FourPoints - two angles
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Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 2-3: 150-160◦

Angle constraint: between distance 2-3 and distance 3-4: 110-120◦

SmallStar - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

SmallStar - element and interaction type

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Donor, Func-

tional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location =

Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Donor, Functional group

= any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

SmallStar - all properties

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location
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= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Backbone

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Donor, Func-

tional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location =

Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Donor, Functional group

= any, Amino acid = SER, Atom name = OG, Sec. structure = No sec.structure, Amino acid location =

Sidechain

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

SmallStar - one distance 2 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 5.6 Å, max = 7.6 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

SmallStar - one distance 3 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 5.1 Å, max = 8.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

SmallStar - angle range 10◦ and SmallStar - one angle

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any
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Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Angle constraint: between distance 1-2 and distance 1-3: 60-70◦

SmallStar - angle range 50◦

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Angle constraint: between distance 1-2 and distance 1-3: 40-90◦

SmallStar - angle range 90◦

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Angle constraint: between distance 1-2 and distance 1-3: 20-110◦

SmallStar - two angles

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,
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Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Angle constraint: between distance 1-2 and distance 1-3: 60-70◦

Angle constraint: between distance 1-3 and distance 1-4: 30-40◦

LargeStar - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 5: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 6: Original Molecule = Protein, Element = Carbon, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 1-5: min = 3.3 Å, max = 4.3 Å

Distance constraint between search points 1-6: min = 4.1 Å, max = 5.1 Å

LargeStar - one interaction

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 5: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 6: Original Molecule = Protein, Element = Carbon, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Interaction constraint between search points 1-2: h-bond

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å
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Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 1-5: min = 3.3 Å, max = 4.3 Å

Distance constraint between search points 1-6: min = 4.1 Å, max = 5.1 Å

LargeStar - metal

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 5: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 6: Original Molecule = Protein, Element = Carbon, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 4 Å, max = 5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 1-5: min = 3.3 Å, max = 4.3 Å

Distance constraint between search points 1-6: min = 4.1 Å, max = 5.1 Å

LargeStar - metal, water

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Water, Element = Undefined, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 5: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 6: Original Molecule = Protein, Element = Carbon, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 4 Å, max = 5 Å

Distance constraint between search points 1-4: min = 5.3 Å, max = 6.3 Å

Distance constraint between search points 1-5: min = 3.3 Å, max = 4.3 Å

Distance constraint between search points 1-6: min = 4.1 Å, max = 5.1 Å

LargeStar - metal, water, phosphorus

Search point 1: Original Molecule = Reference ligand, Element = Phosphorus, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location
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= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Water, Element = Undefined, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 5: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 6: Original Molecule = Protein, Element = Carbon, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 1-3: min = 3 Å, max = 4 Å

Distance constraint between search points 1-4: min = 5.2 Å, max = 6.2 Å

Distance constraint between search points 1-5: min = 4.5 Å, max = 5.5 Å

Distance constraint between search points 1-6: min = 4.2 Å, max = 5.2 Å

OneTriangle - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 2-4: min = 6.7 Å, max = 7.7 Å

OneTriangle - element and interaction type

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Donor, Functional group

= any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 2-4: min = 6.7 Å, max = 7.7 Å

OneTriangle - all properties

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Acceptor,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Donor, Functional

group = any, Amino acid = VAL, Atom name = N, Sec. structure = Sheet, Amino acid location = Backbone

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Donor, Functional group
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= any, Amino acid = SER, Atom name = OG, Sec. structure = No sec.structure, Amino acid location =

Sidechain

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 2-4: min = 6.7 Å, max = 7.7 Å

OneTriangle - resolution

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 2-4: min = 6.7 Å, max = 7.7 Å

Additional filter: Resolution between 1.5 and 2.5 Å

OneTriangle - resolution and pocket volume

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 2-4: min = 6.7 Å, max = 7.7 Å

Additional filter: Resolution between 1.5 and 2.5 Å, pocket volume between 650 and 750 Å3

TwoTriangles - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 2.6 Å, max = 3.6 Å

Distance constraint between search points 1-3: min = 3.8 Å, max = 4.8 Å

Distance constraint between search points 1-4: min = 3.8 Å, max = 4.8 Å

Distance constraint between search points 2-4: min = 2.6 Å, max = 3.6 Å

Distance constraint between search points 3-4: min = 3.9 Å, max = 4.9 Å
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TwoTriangles - one interactions

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Interaction constraint between search points 1-2: h-bond

Distance constraint between search points 1-3: min = 3.8 Å, max = 4.8 Å

Distance constraint between search points 1-4: min = 3.8 Å, max = 4.8 Å

Distance constraint between search points 2-4: min = 2.6 Å, max = 3.6 Å

Distance constraint between search points 3-4: min = 3.9 Å, max = 4.9 Å

Tetrahedron - standard

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Tetrahedron - one distance 2 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 8.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å
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Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Tetrahedron - one distance 3 Å

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 5.6 Å, max = 8.6 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Tetrahedron - metal

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 5.7 Å, max = 6.7 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 4-3: min = 4.2 Å, max = 5.2 Å

Tetrahedron - metal, water

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Water, Element = Undefined, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å
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Distance constraint between search points 1-3: min = 5.7 Å, max = 6.7 Å

Distance constraint between search points 1-4: min = 5.3 Å, max = 6.3 Å

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 2-4: min = 4.2 Å, max = 5.2 Å

Distance constraint between search points 3-4: min = 6 Å, max = 7 Å

Tetrahedron - metal, water, phosphorus

Search point 1: Original Molecule = Reference ligand, Element = Phosphorus, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Metal, Element = Magnesium, Interaction type = Metal, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 4: Original Molecule = Water, Element = Undefined, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 2-3: min = 9 Å, max = 10 Å

Distance constraint between search points 2-4: min = 4.2 Å, max = 5.2 Å

Distance constraint between search points 1-2: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 3-4: min = 6 Å, max = 7 Å

Distance constraint between search points 1-3: min = 4.2 Å, max = 5.2 Å

Distance constraint between search points 1-4: min = 5.2 Å, max = 6.2 Å

Tetrahedron - angle range 10 ◦ and Tetrahedron - one angle

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 1-4: 60-70◦

Tetrahedron - angle range 50◦

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any
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Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 1-4: 40-90◦

Tetrahedron - angle range 90◦

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 1-4: 20-110◦

Tetrahedron - two angles

Search point 1: Original Molecule = Reference ligand, Element = Oxygen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 2: Original Molecule = Protein, Element = Nitrogen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Search point 3: Original Molecule = Reference ligand, Element = Nitrogen, Interaction type = Undefined,

Functional group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location

= Any

Search point 4: Original Molecule = Protein, Element = Oxygen, Interaction type = Undefined, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 6.1 Å, max = 7.1 Å

Distance constraint between search points 1-3: min = 3.5 Å, max = 4.5 Å

Distance constraint between search points 1-4: min = 6.7 Å, max = 7.7 Å

Distance constraint between search points 2-3: min = 7.6 Å, max = 8.6 Å

Distance constraint between search points 2-4: min = 6.5 Å, max = 7.5 Å

Distance constraint between search points 3-4: min = 4.1 Å, max = 5.1 Å

Angle constraint: between distance 1-2 and distance 1-4: 60-70◦
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Angle constraint: between distance 2-4 and distance 2-3: 30-40◦

Test Query Bioisosters

Search point 1: Original Molecule = Protein, Element = Any, Interaction type = ring center, Functional

group = any, Amino acid = PHE, Atom name = Any, Sec. structure = Any, Amino acid location = side

chain

Search point 2: Original Molecule = Protein, Element = Any, Interaction type = ring center, Functional

group = any, Amino acid = TYR, Atom name = Any, Sec. structure = Any, Amino acid location = side

chain

Search point 3: Original Molecule = Protein, Element = Any, Interaction type = ring center, Functional

group = any, Amino acid = TRP, Atom name = Any, Sec. structure = Any, Amino acid location = side

chain

Search point 4: Original Molecule = Reference ligand, Element = Any, Interaction type = Any, Functional

group = any, Amino acid = Any, Atom name = Any, Sec. structure = Any, Amino acid location = Any

Distance constraint between search points 1-2: min = 8 Å, max = 10 Å

Distance constraint between search points 1-3: min = 5 Å, max = 7 Å

Distance constraint between search points 1-4: min = 3.5 Å, max = 5.5 Å

Distance constraint between search points 2-3: min = 5.5 Å, max = 7.5 Å

Distance constraint between search points 2-4: min = 3.5 Å, max = 5.5 Å

Distance constraint between search points 3-4: min = 3 Å, max = 5 Å

Angle constraint: between search point 1 and distance 1-2: 10-40◦

Angle constraint: between search point 4 and distance 1-4: 30-60◦

Angle constraint: between search point 4 and distance 2-4: 40-60◦

Angle constraint: between search point 2 and distance 1-2: 10-40◦

Angle constraint: between search point 1 and distance 1-4: 30-60◦
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Query name Number of hits

FourPoints - resolution 286 356

FourPoints - resolution and pocket volume 28 601

FourPoints - 3-4 Å 26 015

FourPoints - 6-7 Å 944 122

FourPoints - 9-10 Å 2 593 420

FourPoints - standard 444 260

FourPoints - angle range 50◦ 225 116

FourPoints - angle range 90◦ 390 328

FourPoints - one distance 2 Å 874 413

FourPoints - one distance 3 Å 1 287 073

FourPoints - metal, water, phosphorus 5 377

FourPoints - metal, water 15 909

FourPoints - metal 26751

ThreePoints - resolution 230 879

ThreePoints - resolution and pocket volume 22 366

ThreePoints - 3-4 Å 44 231

ThreePoints - 6-7 Å 255 572

ThreePoints - 9-10 Å 495 512

ThreePoints - standard 355 815

TwoPoints - resolution 643 558

TwoPoints - resolution and pocket volume 44 423

TwoPoints - all properties 9 788

TwoPoints - element and interaction type 901 723

TwoPoints - 3-4 Å 217 507

TwoPoints - 6-7 Å 933 027

TwoPoints - 9-10 Å 1 336 873

TwoPoints - standard 961 933

FourPoints - one interaction 82 930

FourPoints - two interactions 11 412

FourPoints - angle range 10◦ 46 375

FourPoints - two angles range 10◦ 3 385

FourPoints - short SMARTS + point attributes 3

FourPoints - short SMARTS 364

FourPoints - long SMARTS + point attributes 3

FourPoints - long SMARTS 11

ThreePoints - short SMARTS + point attributes 29

ThreePoints - short SMARTS 606

ThreePoints - long SMARTS + point attributes 10

ThreePoints - long SMARTS 34

Table D.1: Exact number of hits of all test queries on a database containing 16 000 different PDB files using

the tool Pelikan. Continued on next page.
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Query name Number of hits

TwoPoints - short SMARTS + point attributes >1000

TwoPoints - short SMARTS >1 000

TwoPoints - long SMARTS + point attributes 223

TwoPoints - long SMARTS >1 000

FourPoints - no point-point constraints >1 000

(enumeration stopped after 1000 hits)

OnePoint - no point-point constraints 610 935

ThreePoints - no point-point constraints >1 000

(enumeration stopped after 1000 hits)

TwoPoints - no point-point constraints >1 000

(enumeration stopped after 1000 hits)

OneTriangle - resolution 188 265

OneTriangle - resolution and pocket volume 13 190

OneTriangle - all properties 31

OneTriangle - element and interaction type 35 227

OneTriangle - standard 285 085

Tetrahedron - resolution 827

Tetrahedron - resolution and pocket volume 59

Tetrahedron - standard 1 199

Tetrahedron - angle range 50◦ 1 199

Tetrahedron - angle range 90◦ 1 199

Tetrahedron - one distance 2 Å 2 529

Tetrahedron - one distance 3 Å 3 439

Tetrahedron - metal, water, phosphorus 5

Tetrahedron - metal, water 23

Tetrahedron - metal 45

TwoTriangles - resolution 3 382

TwoTriangles - resolution and pocket volume 281

TwoTriangles - standard 5 166

Tetrahedron - angle range 10◦ 755

Tetrahedron - two angles range 10◦ 749

TwoTriangles - standard forInteractionTests 750

TwoTriangles - one interaction 878

LargeStar - standard 1 720 039

LargeStar - metal, water, phosphorus 36 336

LargeStar - metal, water 21 976

LargeStar - metal 71 926

SmallStar - all properties 45

SmallStar - element and interaction type 30 320

SmallStar - standard 1 050 439

SmallStar - angle range 50◦ 391 926

SmallStar - angle range 90◦ 696 369

SmallStar - one distance 2 Å 2 097 030

SmallStar - one distance 3 Å 3 123 997

SmallStar - angle range 10◦ 81 550

SmallStar - two angles range 10◦ 3 829

LargeStar - one interaction 115 862

Table D.1.: Exact number of hits of all test queries on a database containing 16 000 different PDB files
using the tool Pelikan.
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Figure D.1.: Retrieval times of queries which contain no triangle on the database 16 000 with and without
triangle descriptor table. The triangle descriptor table does not influence the runtimes.

Figure D.2.: Comparison between speed-up factors of ∆-queries with the number of results (# results).
Each data point corresponds to one query. The color of each dot codes the distance ranges of
the respective query. For all experiments the database containing 8 000 different protein-ligand
complexes was used. a) Overall speed-up factor gained with the triangle descriptor plotted
against number of results. b) Speed-up factor of the second database query of step 4 gained
with the triangle descriptor plotted against the number of results. c) Speed-up factor of the
third database query of step 4 gained with the triangle descriptor plotted against number of
results. d) Speed-up factor of step 5 gained with the triangle descriptor plotted against number
of results.
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Figure D.3.: Runtimes of different test queries having different topologies separated by different steps of
the algorithm. The complete runtime is the mean value of three independent experiments and
shown in red bars. The single steps are shown in different colors of green as stacked bar. a)
Runtimes of test queries which only differ in their number of search points. b) Runtimes of test
queries which only differ in their number of point-point constraints. c) Runtimes of test queries
which only differ in their number of angle constraints.
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Figure D.4.: Runtimes of different test queries having different geometrical constraints separated by dif-
ferent steps of the algorithm. The complete runtime is the mean value of three independent
experiments and shown in red bars. The single steps are shown in different colors of green as
stacked bar. a) Runtimes of test queries which only differ in their range size of one distance
constraint. b) Runtimes of test queries which only differ in their range area of one distance
constraint. c) Runtimes of test queries which only differ in their size of one angle constraint.
d) Runtimes of test queries which only differ in their number of distance constraints which are
converted to interaction constraints.
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Figure D.5.: Runtimes of different test queries having different additional properties separated by different
steps of the algorithm. The complete runtime is the mean value of three independent experi-
ments and shown in red bars. The single steps are shown in different colors of green as stacked
bar. a) Runtimes of test queries which only differ in their attributes of all search points. b)
Runtimes of test queries which only differ in their textual and numerical properties. c) Run-
times of test queries which only differ in their element and molecules types of search points.
d) Runtimes of test queries which only differ in their SMARTS description and other additional
properties of all search point.
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Figure D.6.: Runtimes of different test queries on database with different sizes separated by different steps
of the algorithm. The complete runtime is the mean value of three independent experiments
and shown in red bars. The single steps are shown in different colors of green as stacked bar.
a) Runtimes of the query ’Four points – standard’. b) Runtimes of the query ’Large star –
standard’. c) Runtimes of the query ’Tetrahedron – standard’.

Figure D.7.: Comparison of runtimes and the number of results of different test queries on database with
different sizes. a) Mean values and standard deviation of runtimes of different test queries from
three independent runs shown as bars in seconds. b) Number of results received from three
different test queries. ’r’ indicates the resulting correlation coefficient of a linear regression.
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Figure D.8.: Runtimes of different test queries on different hardware settings using the PDBcomplete separated
by different steps of the algorithm. The complete runtime is the mean value of three independent
experiments and shown in red bars. The single steps are shown in different colors of green as
stacked bar. a) Runtimes of different test queries using the HDD hardware settings. b) Runtimes
of different test queries using the SSD hardware settings.
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E
Pelikan User Guide

E.1. Starting Pelikan

Pelikan can be used to search for 3D interaction patterns in collections of protein-ligand

complexes. It provides both, a graphical user interface (GUI) and can be used via command

line parameters. Pelikan can be started from a console with:

./Pelikan --help

The program starts and lists up all possible options. In Table E.1 all options are shown and

an explanation for each option is given.

Using the option ’-c’, the tool can be started as a command line tool. Otherwise, the GUI will

open. In the console mode, two tasks can mainly be performed: a database can be created

from a set of PDB files and a search for interaction patterns can be executed. In both cases,

a database file has to be defined using the option ’-o’. For database construction, PDB files

can be defined as a folder (option -d) and as a list of several PDB files using the option ’-i’.

Exemplary, a command for creating a database using these options looks as follows:

./Pelikan -c -o testdb.sqlite -d /my/PDB/folder/

-i /my/PDB/folder2/abcd.pdb /my/PDB/folder2/efgh.pdb --recalc 3

The option ’–recalc’ defines which triangle descriptor table should be used. dDT (option 3)

has been proven to be most effective.

Using a similar command, an existing database can be extended by new protein-ligand com-

plexes:

./Pelikan -c -o testdb.sqlite -d /my/PDB/folder3/

-i /my/PDB/folder2/ijkl.pdb /my/PDB/folder2/mnop.pdb

--addDescriptor 3

Here, the new calculated PRPs are added to the existing triangle descriptor table.

A search for an interaction pattern can be performed using the following command:

./Pelikan -c -o testdb.sqlite -f myFilter.xml

--filtermode 3
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-h [ –help ] Show command line options.

-i [ - -input ] arg Input pdb file(s), suffix is required. Several files can be

declared by simply using spaces, e.g., -i a.pdb b.pdb .

-d [ - -directory ] arg Parse all pdb files in folder.

-l [ - -complexlist ] arg Parse all pdb files in this textfile. File must contain a list

with paths to pdb files.

-o [ - -database ] arg Open this database or, if it does not exist create this

database. Information from complexes and substructures

is written to this database.

-f [ - -filter ] arg Use filter file to perform a search on the database.

-t [ –development ] Open GUI in development mode, only for development.

-c [ –console ] Start tool as command line tool.

–recalc arg Recalculate the triangle descriptor: 1-simple, 2-

recalculate complete table (point-row-descriptor), 3-

recalculate complete Table (tri-row-descriptor), 4-

recalculate complete Table (tri-point-descriptor))

–addDescriptor arg Add new PRPs to triangle descriptor table: 1-simple, 2-

add to table dPRP, 3-add to table dDT, 4-add to table

dPRP−DT(tri-point-descriptor))

–filtermode arg Define which triangle descriptor should be used for the

search process: 1- no descriptor, 2- dPRP, 3- dDT, 4-

dPRP−DT(tri-point-descriptor).

–license arg Provide a license key.

–verbosity arg (=0) Set verbosity level for status output during the run (0 =

Quiet, 1 = Errors (default), 2 = Warnings, 3 = Info)

Table E.1.: Command line options for the console mode of Pelikan.

The option ’-f’ requires a specific file which contains a Pelikan filter. This can only be gen-

erated using the Pelikan GUI (see Section E.1.2). As before, the option ’- -filtermode’ can

be used to defined the triangle descriptor table which should be used for the search. The

parameter 3 is recommended here. The result of a search using the command line tool are

different parameters of the search procedure, including the number of resulting hits and the

required runtime. The actual results are not stored here. If the results should be inspected

visually, it is recommended to perform a search using the GUI tool.

The GUI of Pelikan can be started with:

./Pelikan

Figure E.1 shows a screenshot of the GUI directly after its initial start.
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Figure E.1.: Screenshot of the Pelikan GUI directly after the initial start.

Conceptually, the GUI can be divided into two parts. In the lower part are different tabs

which will be explained in the following sections. The upper part of the GUI offers a control

panel (see Panel 1 in Figure E.1). Here, the current status of the GUI and the current

composition of the query are shown. Moreover, a search can be started from here. In the

following, the main tasks which can be performed with the GUI are explained: loading a

database, creating a filter, inspecting the results of a search, and refining a search.

E.1.1. Load a Database

Pelikan stores all calculated data in an SQLite database. There are two ways how a database

can be opened:

• Load an existing database via the context menu of the GUI: File → Open database

• Build a new database via the context menu of the GUI: File → Create new database.

Afterwards a new dialog appears (see Figure E.2). Herein, two different attributes are

required:

1. Location: Name and path for storing the new database

2. Source of complexes: Folder containing PDB files and/or a list of files. The file

formats ’.pdb’, ’.mmcif’, and ’.cif’ are supported here.
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Figure E.2.: Screenshot of the dialog for creating a new Pelikan database.

E.1.2. Generate a Filter

A query in Pelikan consists of two different filter types: Textual/numerical filters and ge-

ometrical filters. Both can be defined in two different tabs of the GUI and can be freely

combined.

Filter for textual and numerical properties

Figure E.3 shows the first tab of the GUI. On the left, all possible filter attributes are listed

(see Panel 1 in Figure E.3). They contain properties of the ligand, of the protein, of the

pocket, and of the complete protein-ligand complex. By selecting a specific property from

the list on the left, a filter is added to the list on the right (see Panel 2 in Figure E.3). Here,

the exact parameters of a filter can be defined. All filters in the right list are part of the

current filter chain.

Each filter element in the right filter list has three small buttons in its upper right corner:

• ? : Click here to get more information about the filter.

• include / exclude : Click here to change an including filter into an excluding filter

and the other way around.

• x : Click here to delete the filter.
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Figure E.3.: Screenshot of the first tab of the Pelikan GUI – Textual/numerical filter. (1) Textual and
numerical properties for the ligand, the protein, the pocket, and the complete protein-ligand
complex which can be used for a filter. (2) List of textual and numerical filter which are part of
the current filter chain.

Geometrical filter

In the second tab of the GUI, the geometrical filter can be defined. A screenshot of this tab

is shown in Figure E.4. In principle, a geometrical filter consists of three different elements:

search points, point-point constraints, and angle constraints. Each of these elements is

equipped with an unique identifier (id). In the following, these elements are briefly introduced

and their creation from scratch is explained.

• Search point: A search point describes an atom which should be searched for. All

search points of the current geometric filter are shown in the list in Panel 1 of Figure

E.4. A search point can be added using the ’+’ symbol on the upper left corner of

the search point list (see red square in Figure E.4). A search point has the following

attributes:

– Molecule: Molecule type of the atom, e.g., reference ligand, protein, or water.

– Element: Element type of the atom.

– Type: Interaction type of the atom, e.g., donor or acceptor.

Depending on the attribute ’Molecule’ of the search point, it might have further at-

tributes:
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Figure E.4.: Screenshot of the second tab of the GUI – Geometric filter. (1) List of search points which are
part of the filter. (2) list of point-point constraints which are part of the filter. (3) List of angle
constraints which are part of the filter.

– Functional group (only ligand and ref. ligand): Functional group an atom should

be part of.

– Amino acid (only protein): Amino acid an atom should be part of.

– Atom description (only ligand, ref. ligand, and protein): SMARTS [89] pattern

describing the searched atom. The relative orientation of other search points

within the SMARTS pattern can be defined using atom labels referring to the

search point ids, e.g., [C:2].

– Location in amino acid (only protein): Backbone or side chain.

– Secondary structure (only protein): Secondary structure the amino acid of the

matching atom should be part of.

– Atom name (only protein and only if amino acid type is set): Atom name of the

matching atom. Corresponds to the atom name nomenclature from the PDB.

• Point-point constraint: Describes a distance or an interaction between two search

points. All point-point constraints of the current geometric filter are shown in the list

in Panel 2 of Figure E.4. A point-point constraint can be added using the ’+’ symbol

on the upper left corner of the list (see red square in Figure E.4). A point-point

constraint requires two ids of search points. The point-point constraint can have two

different types:
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Figure E.5.: Screenshot of the dialog for loading a pocket in the 3D view for creating a 3D query.

– Distance constraint: A minimal and maximal allowed distance in Å can be defined

(see point-point constraint with id 3 in Figure E.4).

– Interaction constraint: An interaction type can be defined, e.g., h-bond (see

point-point constraint with id 4 in Figure E.4).

• Angle constraint: An angle constraint describes the angle between two vectors. All

angle constraints of the current geometric filter are shown in the list in Panel 3 of Figure

E.4. A vector can either be a point-point constraint or a search point. The vector for

a point-point constraint starts at the position of its first search point and ends at its

second search point. Only search points with an interaction type of ’donor’, ’acceptor’,

and ’aromatic’ can be vectors. For a donor, the vector points from the position of the

heavy atom to the position of the hydrogen. If a donor has two hydrogens, two distinct

vectors are associated with it. Accordingly, the vector of an acceptor points from the

position of the heavy atom to the lone pair. If the atom has more than one lone pair,

several vectors are generated. The vector of an ’aromatic’ search point is the normal

of the corresponding ring. It an angle constraint involves a search point which has

more than one vector, a result is only returned for those atoms where at least one of

the vectors fulfills all angle constraints.

Generate 3D query from pocket

Besides adding components of the 3D query using the ’+’ symbol in the respective list, a

query can be constructed from a protein-ligand interface of interest. To this end, a pocket

has to be loaded first. Click on ’Load Pocket’ in the upper right corner of the visualization

view. Then the dialog shown in Figure E.5 opens. Here, a protein file and a ligand file can

be entered.

The loaded pocket is then displayed in the visualization view, as shown in Figure E.6. Search

points can be added here by clicking on an atom. Properties such as the molecule of a search

point and its element are automatically filled using the properties of the clicked atom. In

the view, the atom is marked with a green halo.
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Figure E.6.: Screenshot of the second tab of the GUI – Geometric filter. (1) Search points as well as
point-point constraints can be added to a query by clicking on a loaded pocket in the 3D view.

Point-points constraints can be added in two different ways:

1. Distance constraint between two search points: Click on one search point in the visu-

alization view and move the mouse to the second search point. Release the mouse button

when your are over the second search point. The used distance range will be automatically

set to a range which includes the measured distance between both atoms.

3. Interaction constraint: Click on an interaction line. If both atoms which are involved in

the interaction are already search points, only a point-point constraint will be added. Oth-

erwise additional search points will be added. Note that the corresponding search point on

an atom is only considered if the interaction type is correct. Otherwise a new search point

and a distance constraint with distance 0 Å is added. The interaction type of the interaction

constraint will be adjusted to the type of the clicked interactions line.

Save and load a filter

A filter, including textual and numerical components as well as 3D components, can be saved

as xml file via the context menu: File → Save filter.

A filter can also be loaded via the context menu: File → Load filter.
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Figure E.7.: Screenshot of the third tab of the Pelikan GUI – Results. (1) Codes of resulting PDB files
are listed. Initially, this list is sorted by the first EC number. It can also be sorted by molecule
topology. (2) After a PDB code has been selected in the first list, all matching pockets of this
PDB structure are shown. (3) Selected pockets are drawn in a 3D view. If several pockets are
selected, they are automatically superimposed based on the atoms matching the search points.
(4) Information about the currently drawn structures.

E.1.3. Inspection of Results

After a search has been performed, the results are presented in the third tab of the GUI:

’Results’. This tab is shown in Figure E.7. All codes of the detected PDB files are shown

in the list in Panel 1 of Figure E.7. These are initially sorted by their first EC number.

The detected pockets contained in a PDB file are shown in Panel 2 of Figure E.7 after a

code from the first list has been selected. By clicking on a pocket in this second list, the

corresponding hit is visualized in the central visualization view (see Panel 3 of Figure E.7).

If several pockets are selected, they are automatically superimposed based on the atoms

matching the search points. Using the box in the lower right part of the visualization view,

the exact element which are drawn can be selected: interactions, results, only relevant parts

of the ligand, only relevant parts of the protein, and secondary structure. The relevant parts

are those parts involved in the matching.

All pockets which are currently drawn are shown in the list in Panel 4 of Figure E.7. Here,

single pockets can be hidden, deleted from the visualization, and the title of the correspond-
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1
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of your results
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Figure E.8.: Screenshot of the third tab of the Pelikan GUI – Results. (1) Results from a previous search
can be refined. Moreover, statistics of results can be exported.

Figure E.9.: Screenshot of the dialog for naming a specific result before it can be refined.

ing PDB file can be displayed as a tool tip from the ’?’ button.

The sorting of the results by the first EC number of their protein can be changed (see Panel

1 of Figure E.8). Here, the hits have been sorted by ligand topology.

Moreover, statistics of the results can be exported as text file using the button in the upper

right corner of the GUI (see red square in Figure E.8).

E.1.4. Refine a Search

In order to refine a previous search, click on ’Refine results’ in Panel 1 of Figure E.8. A

dialog opens, as shown in Figure E.9. Here, a unique name can be entered. The currently

displayed results will be assigned to this name in the following.

Afterwards, four new buttons appear in the upper part of the GUI (see Panel 1 in Figure

E.10). Using these buttons, a new search can be performed only on result from a previous
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1

1. Execute a search on 
your previous results

Figure E.10.: Screenshot of the third tab of the Pelikan GUI – Results, after a the results of one search
have been assigned to a unique name. (1) A set of new buttons appears which can be used to
refine a result.

search. The used previous results can be defined using the drop down menu. A click on

the ’eye’ button visualizes the selected results. Using the three neighboring buttons, a new

search can be performed on all PRPs, on all pockets, or on all protein-ligand complexes from

the selected results, respectively.
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F.1. Starting NAOMInova

NAOMInova can be used to calculate and visualize geometric interaction preferences of

molecular substructures. It provides both, a graphical user interface (GUI) and can be used

via command line parameters. NAOMInova can be started from a console with:

./NaomiNova --help

The program starts and lists up all possible options. In Table F.1 all options are shown and

an explanation for each option is given. Most important is the option ’-m’ as it determines

whether NAOMInova is used as a GUI tool (’-m 0’) or as a command line tool (-m 2). The

Command line option Explanation

-h [ - -help ] Show command line options.

-m [ - -mode ] arg Mode of the tool. 0=Gui compiled (default), 1=Gui

development (only for development), 2=Console.

-i [ - -input ] arg Input pdb file(s), suffix is required. Several files can be

declared by simply using spaces, e.g., -i a.pdb b.pdb .

-d [ - -directory ] arg Parse all pdb files in folder.

-l [ - -complexlist ] arg Parse all pdb files in this textfile. File must contain a list

with paths to pdb files.

-o [ - -database ] arg Open this database or, if it does not exist create this

database. Information from complexes and substructures

is written to this database.

-s [ - -substructures ] arg File with substructures defined with a name, a SMARTS,

a minimal EDIA, and a SMILES. Separated by blancks.

One substructure per line

- -ediapath arg Path for folder with electron density files.

- -csvpath arg Path for folder with precalculated EDIA values as csv

files.

- -license arg Provide a license key.

Table F.1.: Command line options for the console mode of NAOMInova.
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option ’-m 1’ is relevant only for the development of NAOMInova.

In the console mode, only two tasks can be performed: a database can be created from a

set of PDB files and substructures can be added to the database. In both cases, a database

file has to be defined using the option ’-o’. For database construction, PDB files can be

defined as a folder (option -d) and as a list of several PDB files using the option ’-i’. A folder

containing all electron density files can be defined using the option ’- -ediapath’. Exemplary,

a command for creating a database using these options looks as follows:

./NaomiNova -m 2 -o testdb.sqlite -d /my/PDB/folder/

-i /my/PDB/folder2/abcd.pdb /my/PDB/folder2/efgh.pdb

--ediapath /my/ED/folder/

If no folder for electron density files is given or if the electron density file for a specific PDB

structure is not found in the given folder, the respective electron density file is downloaded

from the PDBe web service.

Substructures can be added to a database using the option ’-s’. Here, a file containing all

substructures has to be defined. Each line in this text file has to look like this:

SMARTS name EDIAmin SMILES

The four attributes may only be separated by a blank. Using the following command, a text

file containing several lines of substructure definitions can be added to a database:

./NaomiNova -m 2 -o testdb.sqlite -s subsfile.txt

Moreover, the tool can be used as GUI tool using one of the following commands:

./NaomiNova -m 0 or ./NaomiNova

In the following, the main tasks which can be performed with the NAOMInova GUI are

explained.

Figure F.1 shows a screenshot of the NAOMInova GUI directly after starting the program. In

general, the main workflow for NAOMInova is as follows: 1. Loading or creating a database

2. Defining and adding substructures 3. Filter partner points of interest 4. Inspect sets

of partner points. Besides the loading and creating of databases, these different steps are

distributed over the different tabs of the GUI: First tab – defining and adding substructures,

second tab – filtering, third tab – visualization of partner point sets, fourth tab – visualization

of partner point in protein-ligand interfaces. In the following, the different tasks and tabs

are presented in more detail.
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Figure F.1.: Screenshot of the NAOMInova GUI directly after stating the program.

F.2. Loading and Creating a Database

NAOMInova stores all calculated data in an SQLite database. There are two ways how a

database can be opened:

• Load an existing database via the context menu of the GUI: File → Load database

• Build a new database via the context menu of the GUI: File → Create database.

Afterwards a new dialog appears (see Figure F.2). Herein, three different attributes

are required:

1. Location: Name and path for storing the new database

2. Source of complexes: Folder containing PDB files and/or a list of files. The file

formats ’.pdb’, ’.mmcif’, and ’.cif’ are supported.

3. Source of electron density: Folder which contains 2fo-fc electron density map

files. Note that the electron density files have to be named exactly after their

corresponding PDB code. Hence, for the PDB file ’1j7u.pdb’, the corresponding

electron density file has to be named ’1j7u.ccp4’. Moreover, EDIA values can

only be calculated for PDB structures with a resolution of 2.5 Å and better.
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Figure F.2.: Screenshot of the dialog for creating a new NAOMInova database.

Additionally, missing electron density files are downloaded from the PDBe web

service if the checkbox is selected.

By clicking on ’create’, the database will be created. During the loading or construction of

the database, the GUI stays active. However, no process which requires database operations

can be started, e.g., filtering or adding of substructures.

F.3. Adding and Definition of Substructures

After a database is loaded, substructure can be defined and added to a database. This can

be done in the first tab of the GUI. In general, the main area of the first tab is separated in

three different panels: (1) New substructures can be defined (see Panel 1 Figure F.3), (2)

Defined substructures are collected in a table before they are added to the database (see

Panel 2 Figure F.3). (3) Substructures which are part of the database are listed in a table

(see Panel 3 Figure F.3).

For the definition of a new substructure, four different attributes are required: a unique

name, a template molecule, a SMARTS pattern, and an EDIAmin. They can all be defined

in Panel 1 in Figure F.3.

• Unique name: name of the new substructure. Has to be unique.
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Figure F.3.: Screenshot of the substructure tab of the NAOMInova GUI. (1) New substructures can be
defined. (2) Defined substructures are collected in a first table before they are added to the
database. (3) Table which contains all substructures which are added to the database. The
buttons highlighted in red can be used to transfer substructures between the tables.

• Template molecule: Can be defined by uploading a small molecule from a file with

3D coordinates. Here, the file formats ’.sdf’ and ’.mol2’ are supported. Alternatively,

a SMILES [85] can be entered. From this linear representation, a molecule with 3D

coordinates is generated using UNICON [95]. The template molecules is then displayed

in a 3D view (see F.3).

• SMARTS: A SMARTS pattern can be automatically generated by selecting atoms of

interest from the template molecule. These atoms are highlighted in yellow. The

SMARTS pattern can be manually adapted afterwards. Note that the SMARTS pat-

tern without the used recursion has to match the highlighted atoms from the template

molecule.

Using the button below Panel 1 in Figure F.3 (see red square), a defined substructure can be

inserted into the first table, shown in Panel 2 in Figure F.3. In this process, the correctness

of all substructure attributes are checked.

Finally, after all substructures have been defined, all substructures can be added to the

database at once using the button below Panel 2 in Figure F.3 (see red square).

F.4. Filtering

After substructures have been added to a database, the collected data can be filtered for

partner points of interest. This can be done in the second tab of the NAOMInova GUI which

is displayed in Figure F.4 In order to create a set of partner points, the following parameters
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Figure F.4.: Screenshot of the filter tab of the NAOMInova GUI. (1) The central substructure for a filtering
process has to be defined. (2) Further properties of the central substructure and the partner
atoms can be defined. The distance of a partner atom can either be calculated to any atom of
the substructure or to a specific one (3) After the filtering process, the resulting sets of partner
atoms are listed.

can be entered:

• Set name: Name of the new set. If not entered, the new set will be named ’myNewSet’

(see Panel 1 of Figure F.4).

• Central Substructure: Unique name of a substructure from the database can be defined

in a drop-down list (see Panel 2 of Figure F.4). Mandatory parameter.

• Attributes of central substructure: Optional parameter (see Panel 3 of Figure F.4).

The following attributes can be defined:

– Location (Ligand, Backbone, Sidechain, Water)

• Attributes of partner atoms: Optional parameter. The following attributes can be

defined:

– Substructure

– Location (Ligand, Backbone, Sidechain, Water)

– Element type

– Amino acid type

– Connection (intra or inter)
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Figure F.5.: Screenshots of control panel in the substructure as well as in the pocket visualization tab.

– Location type (partner atoms is part of aromatic ring, aliphatic ring, or conjugated

system)

– Distance to any atom of the central substructure or to a specific atom. This

atom can be selected in the 3D view of the central substructure. The selected

atom is highlighted in yellow (see Panel 3 of F.4).

The filtering process can be triggered by using the button on the bottom of this second tab

(see red square in Figure F.4). After a set of partner points has been created, the name and

the partner point count is listed on the left (see Panel 4 of Figure F.4).

Each set is marked with two colored dots. Both dots indicate in which view a set can

be displayed. Herein, green stands for ’yes’ whereas red indicates that a set can not be

visualized. The left dot (category ’S’) refers to the visualization in the set view. Accordingly,

the color of the right dot (category ’P’) shows if the set can be displayed in the pocket view.

F.5. Visualization

Sets which are displayed in the left list of the NAOMInova GUI can be visualized in the set

view, tab three of the NAOMInova GUI, or in the pocket view, tab four of the GUI. Both

tabs feature a set of control buttons which can be used to change the visualization of the

current set or to perform measurements. The panel with the control buttons is shown in

Figure F.5.

Conceptually, the panel can be divided into two parts:

• Visualization control:

– Density grid button: Partner points of a set are displayed as density grid.

– Spheres button: Partner points of a set are displayed as spheres.

– Element types: Chose the element type of the displayed partner points.
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– Origin: Chose the origin of the displayed partner points.

– Density grid threshold: Define the threshold of the displayed density grid.

• Measurement and highlight control (only active in sphere visualization):

– Backlink button.

– Distance measurement.

– Angle measurement.

– Clear highlights.

– Out-of-plane angle measurement.

– In-of-plane angle measurement.

In the visualization control, arbitrary combinations of the different options are possible. In

the measurement and highlight control, only one button can be active at a time. In both

parts of the control, a black border indicates that a button is active. Depending on which

button is active, different measurements can be performed. In the following, the functionality

of the buttons is explained for the set visualization tab.

F.5.1. Set Visualization Tab

In the set visualization tab, the sets are displayed in a central 3D view (see Panel 1 of Figure

F.6 left). The two different visualization styles, i.e., density grid and spheres, are shown

in the two screenshots in Figure F.6. The filter properties used to create the set currently

displayed are shown on the right (see Panel 3 of Figure F.6 left).

Distance and angle measurements

If the sphere visualization of the partner points is chosen, distances and angles can be

measured. In general, four different types of measurements are possible. Depending on the

functionality which should be used, first the function has to be activated by clicking on the

corresponding button.

In the following, the procedure for measuring the four possible parameters is explained:

• Distance: Activate the distance button in the upper part of the tab (see red square in

Figure F.7a). Select any two atoms or partner points in the 3D view. The distance

between the first and the second selected item is measured.
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F.5. Visualization

Figure F.6.: Screenshots of the set visualization tab of the NAOMInova GUI. (left, 1) A set of partner
atoms around a central substructure is displayed as density grid. (left, 2) The upper part of this
tab contains several buttons which control the displayed data. The button in the red square is
used to display all data of a set as density grid. (left, 3) All filter parameters for the currently
displayed set are listed. (right) A set of partner atoms around a central substructure is displayed
as spheres. The button in the red square is used to enforce this visualization mode.

• Angle: Activate the angle button in the upper part of the tab (see red square in Figure

F.7b). Select any three atoms or partner points in the 3D view. The angle between

the vectors from the first to the second clicked point and from the second to the third

selected point is measured.

• Out-of-plane angle: Activate the out-of-plane angle button in the upper part of the

tab (see red square in Figure F.7c). Select any four atoms or partner points in the

3D view. From the first three selected points, a plane is calculated. The fourth

point is transformed into the plane along the plane’s normal. Then, two vectors are

constructed: from the first clicked point to the transformed fourth point and from the

first clicked point to the original fourth point. The angle between these two vectors is

measured.

• In-plane angle: Activate the in-plane angle button in the upper part of the tab (see

red square in Figure F.7d). Select any four atoms or partner points in the 3D view.

From the first three selected points, a plane is calculated. Herein, the vector from the

first to the second selected point is the reference axis. The fourth selected point is

transferred onto the plane using the plane’s normal. Then, the vector from the first

selected point to the transformed fourth selected point is defined and its angle to the

reference axis is measured.

If the last selected point of the last measurement has been a partner point, the measurement

can be extended to all displayed partner points. The this end, the histogram button in the

upper right part of the third tab has to be selected (see red square in Figure F.7d). The

calculated values are then displayed in a histogram (see Panel 1 of Figure F.7d). Moreover,

the data plotted in the histogram can be exported using the button next to the histogram
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Measure distances Measure angles 
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Figure F.7.: Possible measurements in NAOMInova GUI, displayed in four different Screenshots of the set
visualization tab. For each measurement, the respective mode has to be activated by clicking
on a button. In each screenshot, the responsible button is highlighted with a red square. (a)
Distances can be measured between any two points. (b) Angles can be measured between any
three points. (c) Out-of-plane-angles are measured for four selected points. The plane is defined
by the first three and the out-of-plane angle four the fourth is calculated. (d) In-plane-angles
are measured for four selected points. The plane is defined by the first three and the in-of-plane
angle four the fourth point is calculated. Using the histogram buttons, measurements can be
displayed in the histogram in panel 1 and exported to a file.

button (see red square in Figure F.7d)

Backlink to original structure

For each displayed partner point, the original structure can be visualized. To this end, the

backlink button in the upper part of the third tab has to be selected (see red square in

Figure F.8 left). Then, any partner point in the 3D view can be selected. The GUI then

automatically switches to the fifth tab – the original structure tab. Herein, the detected

atoms of the substructure are highlighted in yellow whereas the atom represented by the

partner point is highlighted in green (see Figure F.8 right).
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See original structure 
of parnter  atom

Figure F.8.: Backlink from a partner atom to its original structure in NAOMInova GUI, displayed for the set
visualization tab. (left) The selection mode of the GUI has to be set to the backlink function
(see red square). Then, a specific partner atom of interest can be selected. (right) The original
structure for a partner atom is displayed. The detected substructure atoms are highlighted in
yellow. The partner atom is highlighted in green.

Show only first hit

Due to substructure symmetries, it might happen that the same set of atoms is matched by

a substructure several times. By selecting the checkbox ’show only first hit’ in the upper

part of the third tab (see Panel 2 in Figure F.6), only the partner atoms from an arbitrary

selected first hit are shown.

F.5.2. Pocket Visualization Tab

Sets which are displayed in the left list of the NAOMInova GUI can be visualized in the

pocket view, tab four of the NAOMInova GUI. As for the set visualization tab, the upper

part of this tab contains different buttons which can be used to control the displayed data

and to measure distances and angles. Depending on the functionality which should be used,

first the function has to be activated by clicking on the corresponding button.

In order to visualize a set in this tab, the following steps have to be done:

• Load a pocket: Load a protein and a ligand of interest by clicking on the ’Load Pocket’

button in Panel 1 of Figure F.9b. A dialog, as shown in Figure F.9a, opens. Here,

a protein and a ligand file can be defined in the upper two fields. Alternatively, a

structure can be fetched from the PDB by entering its PDB id in the lower entry field.

If the latter option is chosen, a new dialog appears after downloading the structure in

which the ligand of interest can be selected. The loaded pocket will be displayed in

the central 3D view.
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Figure F.9.: Screenshot of the filter tab of the NAOMInova GUI. (1) The central substructure for a filtering
process has to be defined. (2) Further properties of the central substructure and the partner
atoms can be defined. The distance of a partner atom can either be calculated to any atom of
the substructure or to a specific one (3) After the filtering process, the resulting sets of partner
atoms are listed.

• Select an atom which should be part of the central substructure. To this end, the

functionality for selecting an atom has to be activated first by clicking on the button

below the pocket loading functionality (see red square in Figure F.9b). If this button is

active, it is surrounded by a black square. The selected atom is highlighted in yellow.

If this atom is part of a substructure for which a set currently exists, the color of its

category ’P’ will change from red to green in the left list (see Panel 2 of Figure F.9b).

• Select a set with a green dot in category ’P’ in the left list. All data from this set will

be transformed to the selected atom and displayed (see Figure F.9c).

Now, all display options and measurements are available as described for the set Visualization

tab. However, histograms can only be calculated and shown in the set Visualization tab.

As shown in Figure F.9d, partner points clashing with the atoms from the pocket can be

removed by selecting the checkbox ’remove clashing points’ (see red square in Figure F.9d).
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