
Determination and application of 3-D

wavefront attributes

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für

Mathematik, Informatik und Naturwissenschaften

im Fachbereich Geowissenschaften

der Universität Hamburg

vorgelegt von

Yujiang Xie

Hamburg, 2017



Tag der Disputation: 07. Dec. 2017
Folgende Gutachter empfehlen die Annahme der Dissertation:

Prof. Dr. Dirk Gajewski
PD Dr. Claudia Vanelle



Abstract

Wavefront attributes are crucial in studying high-frequency seismic body waves prop-
agating in complex 3-D inhomogeneous isotropic and anisotropic media. In practice,
the wavefront attributes involve many useful applications in seismology and seismic
exploration, such as pre-stack data enhancement, diffraction separation, and wave-
front tomography. Conventionally, the 3-D wavefront attributes are determined by
the 3-D common-reflection-surface (CRS) approach with a pragmatic search strategy
in order to reduce the computational costs. However, theoretically, the wavefront
attributes should be determined globally since the conventional pragmatic approach
searching in sub-volumes of the data that may lead to a poor or insufficient fit of
the full travel-time surface to the full data volume. Besides, modern global op-
timization algorithms allow to determine the 3-D CRS wavefront attributes in an
economically competitive fashion. For a global determination of the 3-D CRS wave-
front attributes and to demonstrate one application with the globally-determined
wavefront attributes, this work is mainly composed of two parts.

In the first part, I devote to work on a global determination of the 3-D CRS wavefront
attributes, where several global optimization algorithms are introduced for the si-
multaneous search purpose, e.g., the particle swarm optimisation (PSO), the genetic
algorithm (GA), as well as the differential evolution (DE) algorithm. A comparison
of these global optimization algorithms with the conventional pragmatic approach
is given in this part. Results with the open 3-D SEG C3WA data indicate that the
global determination of the 3-D CRS wavefront attributes by the DE algorithm is
the most superior one in terms of image quality and computational efficiency when
compared with the PSO, GA, and the conventional pragmatic approach.

In the second part, I present one application with the globally-determined wave-
front attributes, which is called wavefront-attribute-based 5-D interpolation (5-D
WABI). The 5-D WABI approach is an extension of the conventional 3-D partial
CRS stacking. The only differences between them are that, for the 5-D WABI
method, the wavefront attributes are determined globally with the DE algorithm
and an azimuth-based trace regularization is utilized within each 3-D common-
midpoint (CMP) gather, while for the conventional 3-D partial CRS approach, the
wavefront attributes are searched by the pragmatic approach and the trace regular-
ization is often performed along an azimuth-fixed direction. A comparison of the
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5-D WABI approach with the conventional 3-D partial CRS method indicates that
the 5-D WABI has its advantages to enhance the image quality for the reduced 3-D
SEG data, in particular in finite-offset volume. In order to check the potential us-
age of the proposed 5-D WABI method with other mathematics-based 5-D seismic
interpolation, a comparison of the 5-D WABI with the rank-reduction-based 5-D
interpolation is presented. Results with a simple 3-D data of a diffractor and the
open 3-D SEG C3WA data show that the proposed 5-D WABI method is efficient
as the rank-reduction-based interpolation and can provide a powerful alternative to
other 5-D interpolation methods with improved handling of diffractions and relaxed
aliasing issues. Next to the interpolation capability itself the proposed 5-D WABI
process also provides a data enhancement facility.



Zusammenfassung

Wellenfrontattribute sind entscheidend in der Untersuchung von hochfrequenten
seismischen Wellen, die durch komplexe, inhomogene und anisotrope 3-D Medien
laufen. Die Wellenfrontattribute haben viele nützliche Anwendungen in der Seis-
mologie und seismischen Exploration, wie pre-stack Datenverbesserung, Diffrak-
tionsseparation und Wellenfronttomography. Üblicherweise werden die 3-D Wellen-
frontattribute mittels des 3-D common-reflection-surface (CRS) operators bestimmt.
Dieser nutzt eine sogenannte pragmatische Suche um die Rechenzeit zu reduzieren.
Allerdings sollten die Wellenfrontattribute idealerweise simultan und global bes-
timmt werden, da die herkömmliche pragmatische Suche nur Teile des Datenvolumen
nutzt, was zu einer schlechten oder unzureichenden Anpassung der Laufzeitfläche
im vollen Datenvolumen führen kann. Außerdem erlauben moderne globale Opti-
mierungsalgorithmen die 3-D CRS Wellenfrontattribute rechenzeitlich effizient zu
bestimmen. Diese Arbeit ist in zwei Teile unterteilt, die globale Bestimmung der
3-D CRS Wellenfrontattribute und eine Anwendung der zuvor bestimmten Wellen-
frontattribute.

Im ersten Teil beschäftige ich mich mit der global Bestimmung der 3-D Wellen-
frontattribute. Ich stelle mehrere globale Optimierungsmethoden für die simultane
Suche vor: Particle Swarm Optimisation (PSO), Genetic Algorithm (GA) und Dif-
ferential Evolution (DE). Ein Vergleich der globalen Optimierungsalgorithmen mit
der konventionellen pragmatischen Suche wird anhand des 3-D SEG C3WA Daten-
satzes dargestellt. Die Ergebnisse zeigen, dass eine globale Bestimmung der 3-D
CRS Wellenfrontattribute mittels des DE Algorithmus am besten ist. Die Qualität
der Abbildung ist besser und die Rechenzeit geringer im Vergleich zu PSO, GA und
dem konventionellen pragmatischen Ansatz.

Im zweiten Teil zeige ich eine Anwendung der global bestimmten Wellenfrontat-
tribute, die sich 5-D Wellenfrontattribut-basierte Interpolation (5-D WABI) nennt.
Der 5-D WABI Ansatz ist eine Erweiterung der konventionellen partiellen 3-D CRS
Stapelmethode. Der einzige Unterschied besteht darin, dass für die 5-DWABI Meth-
ode die Wellenfrontattribute global mittels DE bestimmt werden und eine Azimuth-
basierte Regularisierung der Spuren für jeden 3-D common-midpoint (CMP) gather
genutzt wird. Die konventionelle partielle 3-D CRS Stapelung nutzt CRS Wellen-
frontattribute die durch den pragmatischen Ansatz bestimmt wurden und einen
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Azimuth, der für die Interpolation konstant ist. Ein Vergleich der 5-D WABI Meth-
ode mit dem konventionellen partiellen 3-D CRS Ansatz anhand des 3-D SEG
C3WA Datensatzes zeigt, dass 5-D WABI Vorteile bei der Verbesserung der Ab-
bildungsqualität für den reduzierten 3-D SEG Datensatz aufweist, insbesondere
im finiten-offets Volumen. Um das Potential der 5-D WABI Methode gegenüber
mathematisch-basierten 5-D seismischen Interpolationsmethoden zu evaluieren, wird
ein Vergleich mit der rank-reduction-basierten 5-D Interpolation vorgestellt. Ergeb-
nisse an einem simplen 3-D Datensatz eines Diffraktors und des öffentlichen 3-D SEG
C3WA Datensatzes zeigen, dass die vorgeschlagene 5-D WABI Methode ähnlich ef-
fizient wie die rank-reduction-basierte 5-D Interpolation ist und eine mächtige Alter-
native zu anderen 5-D Interpolationen, mit verbesserter Auflösung von Diffraktionen
und weniger Aliasing, darstellt. Neben der Möglichkeit zur Interpolation bietet die
vorgeschlagene 5-D WABI Methode auch Möglichkeiten zur Datenverbesserung.
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Chapter 1.

Introduction

Seismic ray theory is useful in studying high-frequency seismic body waves prop-
agating in complex 3-D inhomogeneous isotropic or anisotropic media (see e.g.,
Červený, 1972; Gajewski and Pšenč́ık, 1987, 1990; Červený and Moser, 2007; Moser
and Červený, 2007; Červený et al., 2012). With ray theory, global laws of individ-
ual elementary waves can be established independently (Červený, 2001). In actual
applications to seismology and seismic exploration, paraxial ray theory plays a fun-
damental role to derive the well-known two-point paraxial traveltime approximations
(e.g., Červený, 2001; Červený and Moser, 2007; Moser and Červený, 2007). Červený
et al. (2012) state that the expressions of two-point traveltime squared in homoge-
neous isotropic media yield exact results, and expected that using the traveltime
expressions in weakly inhomogeneous, either isotropic or weakly anisotropic, may
provide highly accurate results.

For a medium composed of homogeneous or inhomogeneous isotropic layers, the two-
point paraxial traveltime approximations are closely linked to the theory of seismic
systems (e.g., Bortfeld, 1989; Hubral et al., 1992; Schleicher et al., 1993b). Generally,
the traveltime parameters used in the two-point paraxial traveltime approximations
are computed by kinematic ray tracing and dynamic ray tracing in ray-centred coor-
dinate system or in the general Cartesian coordinate system. Alternatively, Bortfeld
(1989) indicated that the traveltime parameters could be determined by properly
designed traveltime measurements, where the first and second derivatives of the trav-
eltime account for the measurements (see Schleicher et al., 1993b). Theoretically,
the first and second derivatives of the traveltime are related to the traveltime param-
eters used in the common-reflection-surface (CRS) method (e.g., Jäger, 1999; Jäger
et al., 2001; Mann, 2002) in which they are called kinematic wavefield attributes or
wavefront attributes, and can be determined by a data-driven fashion using the sem-
blance (Neidell and Taner, 1971) as an objective function. The wavefront attributes
involve many useful applications in seismology and seismic exploration, such as 2-D
and 3-D pre-stack data enhancement (e.g., Baykulov and Gajewski, 2009, 2010; Xie
and Gajewski, 2016b; Xie, 2017), 5-D interpolation (Xie and Gajewski, 2017), CRS
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case studies (e.g., Menyoli et al., 2004; Mandal et al., 2013; Ahmed et al., 2015), mi-
gration velocity estimation (e.g., Mann, 2002; Gelius and Tygel, 2015; Coimbra et al.,
2016), tomographic inversion (e.g., Duveneck, 2004; Bauer et al., 2016), diffraction
separation and imaging (e.g., Dell and Gajewski, 2011a,b; Rad et al., 2015; Schwarz
and Gajewski, 2017), and passive seismic source localization (Schwarz et al., 2016),
just to name a few.

In 3-D seismic systems for the case of a normal incidence ray, e.g., the 3-D zero-
offset CRS (see e.g., Müller, 2003; Bergler, 2004), six or eight wavefront attributes
need to be determined. For an efficient searching these wavefront attributes, the
historical pragmatic approach (see Mann et al., 1999) was introduced into 3-D CRS
by Müller (2003), where the six or eight wavefront attributes are determined in
sequence from sub-volumes of the whole 3-D data. Then the obtained wavefront
attributes are refined by a modified simulated annealing (SA) optimization algo-
rithm. In Bonomi et al. (2009), a simultaneous search for the 3-D CRS traveltime
parameters was proposed. In their work, a modification of the Powell-conjugate-
direction (PCD) method (Powell, 1964) was applied to perform the simultaneous
search. A comparison of the modified PCD method with the historical pragmatic
approach was not given yet. For an effective determining the 3-D CRS wavefront at-
tributes simultaneously, the metaheuristic-based particle swarm optimization (PSO)
(e.g., Kennedy and Eberhart, 1995; Shi and Eberhart, 1998) was tested by Xie and
Gajewski (2016a). They showed that smoother wavefront attributes and a higher
semblance could be obtained when compared to the initial search results of the
pragmatic approach. Later on, an evolutionary-based Nelder-Mead algorithm was
presented by Xie and Gajewski (2016c), where the wavefront attributes are glob-
ally searched by the genetic algorithm (GA) (Holland, 1975), then the Nelder-Mead
method (Nelder and Mead, 1965) was applied to refine the wavefront attributes.
However, based on our previous results, I found that a global search of the 3-D
CRS wavefront attributes is still not satisfied when compared with the well-known
pragmatic approach. Recently, one algorithm gets more interested, which is the dif-
ferential evolution (DE) (Storn and Price, 1997). The DE algorithm was investigated
by Barros et al. (2015) in the 2-D CRS case, in which the effectiveness of the DE
performing in the 2-D CRS global search task was demonstrated and showed lower
average computational costs when compared with the very fast simulated annealing
(VFSA) (Ingber, 1989). A comparison of the simulated annealing (SA) family in
the 2-D CRS case was given by Garabito et al. (2012), where the VFSA could be
considered as the best one among the SA family.

In this work, I devote to work on a global determination of the 3-D CRS wavefront
attributes, where the PSO, GA, and the DE algorithm are introduced for the si-
multaneous search purpose. A comparison of these global optimization algorithms
themselves (e.g., using the semblance as an objective function) as well as comparing
these global optimization algorithms with the conventional pragmatic approach are
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given in Chapter 2. To show one application with the globally-determined wave-
front attributes, in Chapter 3, I present a 5-D seismic interpolation technique,
which is called wavefront-attribute-based 5-D interpolation (5-D WABI). The 5-
D WABI is an extension of the conventional 3-D partial CRS approach with the
improvement of the wavefront attributes as well as applies an azimuth-based reg-
ularization process in each 3-D CMP gather to better account for the potential of
wide-, rich- and full-azimuth data. To check the potential usage of the proposed
5-D WABI method in actual applications, a comparison of the 5-D WABI with a
rank-reduction-based 5-D seismic interpolation is given in Chapter 3. Chapter 4
concludes this work and Chapter 5 provides an outlook to future possibilities, in
particular in diffraction imaging and wavefront tomography. In this work, vectors
(lowercase) and matrices (uppercase) are denoted with boldface symbols in the text
correspondingly. As opposed to 2-D vectors, 3-D vectors are marked with a hat.
The 2 × 2 matrices are denoted as bold capitals, while the 4 × 4 matrices are char-
acterized by bold underlined capitals. I use component notation in the work, where
the uppercase (I, J , K) indices the values 1 and 2, and the lowercase (i, j, k) takes
the values 1, 2 or 3.





Chapter 2.

3-D CRS with global optimization

2.1. Two-point paraxial traveltime approximations in

3-D seismic systems

In a 3-D seismic system composed of smooth, laterally inhomogeneous isotropic
layers, the wavefront attributes can be determined by the well-known paraxial ray
approximations (e.g., Bortfeld, 1989), where the concept of surface-to-surface for-
malism is applied, and relevant shot and receiver points are situated on the anterior
and posterior surface, respectively (see e.g., Bortfeld, 1989; Hubral et al., 1992;
Schleicher et al., 1993b). With Bortfield’s theory, the paraxial ray approximation is

(

xg

p̄g − pg

)

=

(

A B
C D

)(

xs

p̄s − ps

)

, (2.1)

where the four 2 × 2 matrices A, B, C and D are elements of the well-known 4 × 4
surface-to-surface propagator matrixT, which relates to the second derivatives of the
traveltime. The 2-D slowness vector ps (p̄s) involved to the first derivatives of the
traveltime, is a projection of the 3-D slowness vector p̂s (ˆ̄ps) of the reference ray onto
the plane tangent to the anterior surface. Similarly, the pg (p̄g) is situated on the
plane tangent to the posterior surface. The 2-D vector xs (xg) is a projection of the
displacement vector between ŝ and ˆ̄s (ĝ and ˆ̄g) onto the plane tangent to the anterior
(posterior) surface (see e.g., Bortfeld, 1989; Hubral et al., 1992; Schleicher et al.,
1993b). With the Hamilton’s equation (Buchdahl, 1970), the two-point paraxial
traveltime tp, up to the quadratic terms, is expressed as:

tp = tco − ps · xs + pg · xg − xT
s B

−1xg +
1

2
xT
s B

−1Axs +
1

2
xT
g DB−1xg, (2.2)

where tco is the reference traveltime between ŝ and ĝ, superscript T denotes the
transpose, and B−1 is the inverse matrix of B. Squaring both sides of the Equation
(2.2), and retaining terms up to second order, the hyperbolic traveltime thyp is
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obtained:

t2hyp = (tco − ps · xs + pg · xg)
2 + tco(x

T
s B

−1Axs − 2xT
s B

−1xg + xT
g D B−1xg). (2.3)

Equation (2.3) is expressed in terms of source and receiver coordinates (see e.g.,
Ursin, 1982; Schleicher et al., 1993b). If we consider the anterior surface coincides
with the posterior surface, i.e., the sources and receivers are located on the same
surface, e.g., the sea level, Equation (2.3) can be expressed in midpoint and half-
offset coordinates by

t2hyp = (tco+
∂t

∂mζ
·mζ+

∂t

∂hζ
·hζ)

2+tco(m
T
ζ Mmmmζ+2mT

ζ Mmhhζ+hT
ζ Mhhhζ), (2.4)

where mζ =
1
2
(xg +xs), and hζ =

1
2
(xg −xs). The three 2 × 2 matrices of Equation

(2.4) are given by

Mmm = B−1A + DB−1 − B−1 − B−T,

Mmh = −B−1A + DB−1 + B−1 − B−T,

Mhh = B−1A + DB−1 + B−1 + B−T.

(2.5)

2.2. 3-D zero-offset CRS traveltime operator in

terms of wavefront attributes

In case of the reference ray coincides with the normal ray, e.g., ŝ = ĝ, we have
tco = tzo,

∂t
∂hζ

= 0, and ∂t
∂mζ

= 2pg. Then Equation (2.4) can be simplied as

t2hyp = (tzo + 2pg ·mζ)
2 + 2tzo(m

T
ζ M

zo
mmmζ + hTMzo

hhh), (2.6)

where tzo and pg are the zero-offset (ZO) traveltime and slowness vector of the
normal emergence ray. The matrices Mzo

mm, M
zo
mh, and Mzo

hh satisfy:

Mzo
mm = DB−1 −B−1,

Mzo
mh = Z,

Mzo
hh = DB−1 +B−1.

(2.7)

The matrix Z is a 2 × 2 zero matrix. Alternatively, Equation (2.6) can be expressed
in terms of wavefront attributes pertaining to the normal emergence ray (see e.g.,
Jäger, 1999; Müller, 2003; Bergler, 2004):

t2hyp = [tzo+
2

v0

(

cosφsinθ
sinφsinθ

)

·mζ ]
2+

2tzo
v0

mT
ζ GKNG

Tmζ+
2tzo
v0

hTGKNIPG
Th, (2.8)
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where v0 is the near-surface velocity, θ and φ are the two emergence angles, namley
dip and azimuth of the normal emergence ray. The midpoint displacement mζ =
m − mzo, where mzo is the target common-midpoint (CMP) location and m is a
neighboring CMP location around the target CMP. Half offset is denoted by h,
and KN and KNIP are the wavefront curvature matrices of the normal (N) wave and
the normal-incidence-point (NIP) wave. Finally, a transformation from ray-centered
coordinates to the general Cartesian coordinates is given by the 2 × 2 matrix G
(see e.g., Jäger, 1999; Müller, 2003; Bergler, 2004). For an efficient implementation,
I rewrite Equation (2.8) to

t2hyp = [tzo + 2p ·mζ]
2 +mT

ζ Nmζ + hTMh, (2.9)

where
1

υ0

(

cosφsinθ
sinφsinθ

)

= pg = p = (px, py)
T, (2.9a)

2tzo
υ0

GKNG
T = 2tzoM

zo
mm = N =

(

N00 N10

N10 N11

)

, (2.9b)

2tzo
υ0

GKNIPG
T = 2tzoM

zo
hh = M =

(

M00 M10

M10 M11

)

, (2.9c)

G =

(

cosθcosφ −cosθsinφ
sinφ cosφ

)

. (2.9d)

The eight traveltime parameters: θ, φ, M00, M10, M11, N00, N10 and N11, are related
to the eight wavefront attributes to be determined in this work. For each zero-offset
sample tzo, the wavefront curvature matrices KNIP and KN can be gotten directly
if the matrices M and N are available. In the following sections, I call the eight
traveltime parameters as wavefront attributes that can be determined by Equation
(2.9) while taking the semblance S as an objective function. The semblance function
I used in this work is defined as

S =

i+w
∑

j=i−w

(
n−1
∑

k=0

qj,k)
2

n
i+w
∑

j=i−w

n−1
∑

k=0

q2j,k

, (2.10)

where the summation is performed along the attribute-steered traveltime surface
(indicated by index i) cutting through the target zero-offset trace. The traveltime
at this point is tzo. The subscript j represents samples around i within the semblance
bandwidth defined by 2w+1, where w denotes half coherence bandwidth which usu-
ally corresponds to the prevailing wave period of the observed events. In this work,
I use w = 4 for the 3D SEG data discussed below. The parameter qj,k is the am-
plitude of a sample j of trace k, and n accounts for the maximum number of traces
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used in the semblance analysis. An example of the half semblance bandwidth w or
called half coherence bandwidth is given in Figure 2.4a. The traveltime surface used
to fit with the observed event is steered by the eight wavefront attributes. Hence
if the maximum semblance is found during the fitting process, the corresponding
wavefront attributes used in the traveltime formula are obtained. In practice, the
challenge in the semblance analysis is to find the maximum value. With different
search strategies or algorithms, the efficiency and accuracy may be different. A
discussion related to find the maximum of the semblance will be discussed later.

Alternatively, the wavefront attributes could be computed from a smooth, laterally
inhomogeneous background velocity model, where the kinematic and dynamic ray
tracing systems are utilized. A relation between the 3-D CRS wavefront attribute
and the slowness vector and ray propagator matrix computed by the kinematic and
dynamic ray tracing is provided in the Appendix C. The forwarded wavefront at-
tributes are out of my discussion in this work and I will investigate them in the future
with smooth velocity model. One may note that even with the kinematic and dy-
namic ray tracing, the computed wavefront attributes are also an approximation to
the true wavefront attributes. The paraxial ray theory might be only valid within a
defined vicinity of the reference ray. With complex velocity models, I have not found
any analytical solution to compute the true wavefront attributes in order to check
the accuracy of the wavefront attributes provided by the 3-D CRS approach. I often
use the semblance to check the accuracy of the data-driven wavefront attributes,
which has been reported well in the literature.

2.3. Wavefront attribute search methods

In this section, I first simply summarize the pragmatic approach that has been
reported by Müller (2003). Then I introduce three global optimization algorithms
to simultaneously search the 3-D CRS wavefront attributes.

2.3.1. Pragmatic approach

The pragmatic approach represents one way to determine the 3-D CRS wavefront
attributes (e.g., Müller, 2003, 2007; Dell and Gajewski, 2011a,b; Ahmed et al., 2015;
Rad et al., 2015), which is composed of an initial search and a local optimization.
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Initial search

The initial search of the pragmatic approach usually includes three steps:
Step 1: 3-D CMP experiment. In this step, a 3-D stacked volume together with
three wavefront attributes, i.e., M00, M10 and M11, are obtained. If we assume mζ

= 0, Equation (2.9) simplies as

t2hyp = t2zo + hTMh. (2.11)

The search space for each element of M can be constrained by a velocity guide or
limited between 4/v2max to 4/v2min if no any velocity guides are available, where vmin

and vmax are the possible minimum and maximum stacking velocity estimated from
the observed data. Equation (2.11) can be simplified in case of a narrow-azimuth
acquisition (see Cardone et al., 2003). The 3-D stacked volume gotten here is used
in the following steps.

Step 2: Angle search or slowness search. In this step, the azimuth (φ) and dip (θ)
are determined from the 3-D stacked volume by a plane wave assumption. Its search
operator is given by

thyp = tzo + 2pTmζ . (2.12)

Equation (2.12) is a special case of Equation (2.9) with h = 0 and N = 0. For each
zero-offset time tzo, an effective search space for φ is set between 0 to 2π if no priori
azimuth acquisition is provided. Similarly, the search space for θ is set between
−π/2 to π/2 if no any dip information is available.

Step 3: Normal wavefront curvature search. The search operator is

t2hyp = [tzo + 2pTmζ ]
2 +mT

ζ Nmζ . (2.13)

Equation (2.13) is also a special case of Equation 2.9 with h = 0. The slowness
vector p used in Equation (2.13) is determined from Step 2. An effective search
space for each element of N is constrained by each element of M (see e.g., Jäger,
1999; Müller, 2003), and a negative N occurs for concave reflectors. If the slowness
vector p and the matrix N are provided, the matrix M can be searched again from
the entire 3-D prestack data by using Equation (2.9) with the p and N determined
above.

Local optimization

In order to refine the wavefront attributes, a local optimization algorithm could
be used, such as the simulated annealing (SA) family (see Kirkpatrick et al., 1983;
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Corana et al., 1987; Ingber, 1989), or the Nelder-Mead method (Nelder and Mead,
1965). The two algorithms incorporated into the 3-D CRS approach are provided in
Algorithm: 5 of Appendix B, which is a combination of the SA algorithm with the
Nelder-Mead method. The pseudocode of the classic PCD algorithm with respect
to the 3-D CRS approach is also given there (see Algorithm: 6 of Appendix B). I
take the classic PCD as a local optimization tool here because I have not found an
effective global search strategy by the classic PCD algorithm in the 3-D CRS case,
i.e., a valid search space in each conjugate direction is not found. Without a valid
search space, the minimum of the objective function (i.e., the negative maximum
semblance) in each direction may come from an infinity where there is no any physical
meaning for each of the wavefront attributes. Introducing more local optimization
algorithms are out of my discussion since a local optimization may fail if the initial
search values are located far away from the global best.

2.3.2. Global optimization

In this section, three global optimization algorithms are introduced for the global
determination of the 3-D CRS wavefront attributes.

Particle swarm optimization

The particle swarm optimization (PSO) is originally attributed to Kennedy and
Eberhart (1995) and Shi and Eberhart (1998). In each iteration, I use the PSO
to generate new sets of wavefront attributes, then the semblance is computed for
the newly-generated wavefront attributes until the set of wavefront attributes with
the highest semblance is found. The maximum number of iterations is specified by
the user and may require some tests. Various forms of PSO are documented in the
literature. The one used is

v
(k+1)
i,j = ωv

(k)
i,j + c1r

(k)
1 (p

(k)
i,j − x

(k)
i,j ) + c2r

(k)
2 (g

(k)
j − x

(k)
i,j ), (2.14)

x
(k+1)
i,j = x

(k)
i,j + v

(k+1)
i,j . (2.15)

where vi,j denotes position variation for each particle in the search space. Subscript
i is the particle’s index and j is the dimensionality of a particle. The superscript k
indicates the iteration number. The coefficient ω is an inertia weight often set to 1
in the classic PSO. The parameter pi,j represents the previous best position of each
particle, and xi,j denotes each particle’s position. The global best position among all
particles is given by gj. The coefficients c1 and c2 are two positive constants set to 2
according to previous studies (see Kennedy and Eberhart, 1995; Shi and Eberhart,
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1998). The parameters r1 and r2 are two random values generated between [0,1] in
each iteration. The position variation vector vi,j and the position vector xi,j of each
particle itself are constrained in the user-defined search space during each iteration.
The search space for each component of xi,j and vi,j is the same for each attribute.
When incorporating the PSO into the 3-D CRS approach, each particle represents
a set of wavefront attributes and the dimensionality j satisfies: j=1,2,3,...,8, e.g.,
for the full azimuth case. Next to the classical PSO algorithm with constant values
for ω, c1 and c2, alternative ω, c1 and c2 may require to be estimated from the data,
which will be discussed later. The pseudo-codes of the PSO algorithm used in the
3-D CRS approach is given in Algorithm: 1 of Appendix B.

Genetic algorithm

The genetic algorithm (GA) is an adaptive, heuristic-based search method based
on the evolutionary ideas of natural selection (Holland, 1975). I do not repeat
the GA here but states how the GA is connected with the 3-D CRS approach to
simultaneously search the 3-D CRS wavefront attributes. Similarly to the PSO
algorithm, I use GA to generate new sets of wavefront attributes. Then the set
of wavefront attributes with the maximum semblance is outputted. The GA is
steered by three operators including selection, crossover, and mutation. They are
combined to produce new individuals. Each set of wavefront attributes (e.g., the
eight wavefront attributes) represents one individual, and each one of the eight
wavefront attributes denotes one gene of an individual. The crossover operator used
in this work is

Xi,j =

{

Pi,j 0 ≤ j < l,
Pi+1,j l ≤ j < 8,

(2.16)

where Xi,j represents newly-generated individual computed from two neighbouring
individuals Pi,j and Pi+1,j (see Figure 2.1), where i = 1, 2, ..., NP − 1, and NP
is the population size. In each generation or iteration, the global best individual
(e.g., with the highest semblance) is stored by the last individual (XNP−1,j). The
parameter l is a random integer generated between [0 8], and j is the gene index
in one individual. In the 3-D CRS approach with a wide-azimuth acquisition, each
individual comprises eight genes (i.e., j = 1, 2, ..., 8), which is called dimensionality.
The mutation is done by arbitrary updating parts of genes in the individual Xi,j

within a predefined search space. The search space for each gene of an individual is
the same for each attribute. Next generation is selected from the newly-generated
individuals Xi,j by the roulette wheel selection (see Algorithm: 3 of Appendix B).

In the first iteration, the used individuals are selected from the initial individuals
that are randomly set in the search space. The roulette wheel selection is often done
before the crossover and mutation. In each generation or iteration, the semblance
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Figure 2.1.: Sketches illustrating the crossover operator in genetic algorithm (GA)
and the mutation operator in differential evolution (DE). (a) Randomly
generating an initial set of wavefront attributes in the search space. For
the sake of simplicity, I only show one individual (agent), i.e., NP = 1.
(b) Crossover operator used in GA, where two neighboring individuals
are picked to produce a new individual, and the fitness (Si) of each
new individual is computed by the semblance. (c) The mutation op-
erator used in DE, where three distinct agents (also distinct from the
considered agent) are randomly picked to produce the new agents.
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Si of each individual is computed. Based on the tests on the 3-D SEG data, I
found that 50 iterations may be required to find a maximum semblance for the 3-
D CRS approach. The semblance function start to converge while the number of
iterations reaches to 50. The implementation steps of the GA algorithm incorporated
into the 3-D CRS approach is given in Algorithm: 2 of Appendix B, where the
maximum iteration IT and the population size NP are tested from data. The
crossover probability pc and mutation probability pm are set between [0 1]. Both need
to be tested from the data. The parameter setting for the GA with the semblance
will be discussed later.

Differential evolution

Differential evolution (DE) is originally due to Storn and Price (1997), where the
agents are produced by three random agents picked from the generation (see Fig-
ure 2.1). The picked agents must be distinct from each other as well as distinct from
the considered agent. When connected the DE with the 3-D CRS approach, each
agent represents a set of wavefront attributes. The agent is similar to the individual
in the GA. In the DE algorithm, the mutation operator I used is given by

Xi,j = Pr1,j + F (Pr2,j − Pr3,j), (2.17)

where r1, r2 and r3 are the three numbers picked randomly between [0 NP ]. The
differential weight F is generally set between [0 2] (see Storn and Price, 1997). The
DE pseudocode with respect to the 3-D CRS approach is given in Algorithm: 4
of Appendix B, where the crossover operator and the selection operator are given
there. The parameter CR is the crossover probability, generally set between [0 1] (see
Storn and Price, 1997). Pedersen (2010) gave a list of good choices of DE parameters
for various optimization problems, but we may note that the parameters suggested
from different objective functions may be slightly different. The parameter setting
for the DE algorithm with the semblance will be discussed later.

One should note that the maximum semblance discussed here is not the absolute
global semblance. It is an assumed maximum semblance during the calculation with
wavefront attributes generated by the global optimization algorithms. In principle,
it is impossible to try all possible sets of wavefront attributes to find the absolute
global semblance. The wavefront attributes produced by, e.g., the GA or DE algo-
rithm, could be already enough to find a maximum semblance that may be close to
the absolute global semblance. I will investigate this further. With complex velocity
models, I have not found any analytic solutions to compute the absolute global sem-
blance or its associated true wavefront attributes. An alternative numerical solution
to compute the wavefront attributes is the well-known kinematic and dynamic ray
tracing, but ray tracing also only represents one way to approximately compute the
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wavefront attributes from the velocity model based on the paraxial ray theory. A
comparison of two sets of approximated wavefront attributes to check whether the
determined wavefront attributes accurate or not seems to make no sense.

2.4. 3-D SEG C3WA data

To test these algorithms for the determination of the 3-D CRS wavefront attributes,
I use the 3-D SEG C3WA data as an example, which is an open pre-stack seismic
data built by the SEG research committee (see Aminzadeh et al., 1997). The velocity
model contains a tetrahedron-like salt body below a sedimentary overburden (see
Figure 2.2).

Figure 2.2.: Velocity model of the open 3-D SEG data.

Figure 2.3 (a) shows the data acquisition geometry. Its maximum CMP fold is 17,
and an effective offset is ranged between 40 m to 2695 m. The midpoint distance
between CMP gathers is 40 m and 20 m in x and y direction. Each trace of the
data has 625 samples with a sampling interval of 8 msec. Preprocessing of the
data is made accordingly, such as automatic gain control, removal of first arrivals,
correct source to zero time, and bandpass filter. Finally, a random Gaussian noise
with a signal-to-noise ratio (S/N) of 10 was added to the seismograms, i.e., the
RMS magnitude of the signal amplitude is 10 times than the RMS magnitude of the
random noise. An example of processing the open SEG/EAGE data is given by Xu
et al. (2004). Inline and crossline configurations to be presented in this work are



2.4. 3-D SEG C3WA DATA 19

80 m

320 m

9
6
 s

h
o
ts

Sail line 1 Sail line 26

4
0
 m

6
8
 r

ec
ei

v
er

s

80 m

8 cables
Inline (x) direction

C
ro

ss
li

n
e 

n
u
m

b
er

Inline number

90 140 190 240 290

40

100

160

220

280

340

400

440

(a) (b)

Figure 2.3.: Sketches illustrating the data acquisition geometry and the inline
crossline sections presented in this work. (a) A rectangle acquisition
with 8560 m width (x direction) and 10280 m long (y direction). (b)
Subsets of the data with inline 93 to 285 and crossline 38 to 435 are
utilized since they cover the salt body well. Two sections, inline 190
and crossline 300 (the red lines), are the target sections to be presented.
For the sake of simplicity, only each tenth of them (i.e., the black lines)
are shown.



20 CHAPTER 2. 3-D CRS WITH GLOBAL OPTIMIZATION

illustrated in Figure 2.3 (b), where the distance between crosslines is 20 m and the
distance between inlines is set to 40 m. For a better revealing the salt body in x, y,
and z direction, results with inline 190, crossline 300, and a time slice of tzo = 1.2 s
are shown.

Figure 2.4 shows the offset and midpoint apertures used in this work. For an effective
search at the first time, a full offset range between 40 m to 2695 m is utilized in each
CMP gather (pragmatic approach) or in each CRS gather (global optimization). A
full-offset search means that the half-offset h given in Equation (2.9) or in Equation
(2.11) is constrained between 20 m to 1347.5 m. The offset apertures are estimated
from the data, for example all the observed seismic events in each CMP gather
(pragmatic approach) or in each CRS gather (global optimization) would be better
constrained within the full-offset apertures at the first round search. Then they are
slightly adjusted in the next round search. I often use several candidates for the
offset aperture until good results are achieved.

In principle, a CRS gather is comprised of several CMP gathers, depending on the
midpoint apertures set by the user (see an example in Figure 2.4c). In this work,
the midpoint aperture is set to 200 m in both x and y direction (see Figure 2.4c).
Choosing the initial midpoint aperture mainly depends on the data. Worse results
will be produced if a larger midpoint aperture is used around the considered CMP
location, especially in data from a complex geological structure, e.g., with strong
lateral velocity variations. After the first round search, the midpoint aperture in the
next round search could be estimated by the Fresnel zone (see e.g., Hubral et al.,
1993a) or tested by the user. Similary to the offset aperture extimation, I often use
several candidates for the midpoint aperture until good results are achieved.
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Figure 2.4.: Sketches illustrating the offset and midpoint apertures used in this work.
(a) Calculating the traveltime tk for each trace k within a selected off-
set aperture. The w is the half-coherence bandwidth, which is generally
evaluated by the prevailing wave period of the observed events and the
sampling interval for these events or estimated by the wavelength of the
observed seismograms. In this work, I use w = 4 for the open 3-D SEG
data. The traveltime curve (bold black line) is the intersection of the

traveltime surface with the vertical
−→
OA plane passing through trace k. A

linear interpolation is used in case of the calculated traveltime tk (mid-
dle red point) does not coincide with the discrete sampling time (cyan
points), i.e., the amplitude at the red point can be read to calculate the
semblance. The inclined red dashed line is the aperture boundary in
−→
OA direction that is constrained by the initial offset aperture (ellipse)
shown in (b), where the semi-major and semi-minor axes of the top
and bottom ellipses are predefined based on the data used. I keep the
same apertures when a time sample is over (under) the top (bottom)
ellipse. The vertical location of the two ellipses used for a zero-offset
trace is set by the user, e.g., the observed seismic events from the top
to the bottom would be better constrained within the offset aperture
initially. Similar to the offset aperture, the designed midpoint aperture
is given in (c), where the c and d are semi-minor and semi-major axes
of an ellipse in mx and my direction. In this work, the programming is
executed for each CMP gather (pragmatic approach) or for each CRS
gather (global optimization) one-by-one over the whole 3-D data. The
m0x and m0y are the considered CMP location or the considered CRS
location that can be calculated from the SEG data with the shot and
receiver locations.
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2.5. Parameter setting in global optimization

Parameter setting is crucial for a considered global optimization algorithm used
in this work. For these tests, I use the 3-D SEG C3WA data. For the sake of
simplicity, I pick four zero-offset samples to present, where two samples are chosen
from strong seismic events and the other two samples are picked from weak events.
Figure 2.5 shows the semblance function calculated by the GA, where 2000 sets of
wavefront attributes are produced for each zero-offset sample. Figure 2.5 displays
the non-smoothness characteristics of the semblance function, which implies that
a derivative-based algorithm may fail to find the maxima of the semblance. The
number of iterations IT and the population size NP used for a global optimization
algorithm is estimated from the data. In my tests, I found the NP would be better
greater than 40 for the 3-D SEG C3WA data. Results could be poor if one uses a
less NP , e.g., NP = 30, and the results would be kept almost the same even the NP
is increased to 50 or 80. In the work, I use NP = 40. The number of iteration IT is
also important. Figure 2.6 shows a IT test, where I suggest to set IT ≥ 50, and use
IT = 50 in this work. Figure 2.7 shows the parameter testing for the DE algorithm,
which shows that the maximum semblance calculated by the DE algorithm can be
obtained if F ≥ 1. I suggest to set 1 ≤ F < 2, and use F = 1.2 in this work. The CR
is not so sensitive to the semblance, and I set it to 0.9. The choice of pc and pm in the
GA should be careful since using a large pm may fail to get the maximum semblance
(see Figure 2.8). Considering a higher pc may have more chance to produce new
individuals, I suggest to set 0.5 ≤ pc < 1. The mutant possibility pm should be less
than 0.4 based on this test. In this work, I set pc = 0.8 and pm = 0.2. The PSO
parameters, w, C1 and C2, are not so sensitive to the semblance as compared to the
GA, but there are still some local minima (black areas) mixed with the maximum
(gray areas) (see Figure 2.9 and Figure 2.10), which indicates that choosing the PSO
parameters from the black areas will fail to get the maximum semblance. Based on
these tests, I suggest to set 0.6 ≤ w < 1.4, 2 ≤ C1 < 3, and 1 ≤ C2 < 3 for the 3-D
SEG data. Theoretically, using a wider range of w can be considered, but for most
zero-offset samples, setting the w between 0.6 to 1.4 may be already enough for the
PSO algorithm for the 3-D SEG data. In this work, I use w = 1, C1 = C2 = 2, the
same as previous works (see e.g., Kennedy and Eberhart, 1995; Shi and Eberhart,
1998). Only two zero-offset samples are shown here for the PSO parameter setting
since the parameters suggested from the other two zero-offset samples are almost
the same. Based on my tests not only the discussion above, I found that the DE
could be the most stable algorithm when compared with the GA or the PSO in case
of using the semblance as the objective function.
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Figure 2.5.: Shapes of the semblance function at four zero-offset samples. In this
figure, I use genetic algorithm (GA) to generate 2000 sets of wavefront
attributes to compute the semblance, i.e., 2000 different traveltimes are
calculated by the 2000 sets of wavefront attributes, and each traveltime
corresponds to a semblance. In the GA, I set IT = 50, NP = 40,
pc = 0.8 and pm = 0.2. A close-up look is given in (d) to explore the
detailed shape of the semblance function. The CDP is the common data
point used in the SU format data.
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Figure 2.6.: Iteration tests for differential evolution (DE), genetic algorithm (GA),
and particle swarm optimization (PSO). In these tests, I set NP = 40,
other parameters except the IT are obtained from the parameter setting
discussed below.
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parameters suggested in this work, where I set pc = 0.8 and pm = 0.2.
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Figure 2.9.: Parameter setting for particle swarm optimization (PSO) at CDP
181934 and sample 232 of the 3-D SEG C3WA data. The red point
denotes the parameters suggested in this work, where I set w = 1 and
C1 = C2 = 2.
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Figure 2.10.: Parameter setting for particle swarm optimization (PSO) at CDP
182115 and sample 550 of the 3-D SEG C3WA data. The red point
denotes the parameters suggested in this work, where I set w = 1 and
C1 = C2 = 2.

2.6. Semblance of pragmatic approach and global

optimization

For a complete determination of the eight wavefront attributes from the 3-D SEG
C3WA data, I found that the GA or DE algorithm is cheaper than the traditional
pragmatic approach, and also cheaper than the PSO algorithm (see Figure 2.11).
In the comparison, all global algorithms are tested under the same computational
setting, such as the same CPUs, the same search apertures, the same population
size NP , and the same number of iteration IT . The number of CPUs and the
search apertures used in the pragmatic approach are set as the same as the global
optimization. In the pragmatic approach, I set 100 search intervals for each element
of M, 80 intervals for the dip angle, 40 intervals for the azimuth angle, and 30
intervals for each element of N. The search intervals used in the pragmatic approach
are tested from the data. Alternative search intervals require to be tested for different
datasets.
Figure 2.12 shows inline 190 of the semblance volume, which demonstrates that

both the GA and DE algorithm can provide higher semblance when compared with
the PSO and the pragmatic approach, especially under the salt body where the
semblance provided by the GA or DE is significantly improved (see the white arrows).
The PSO algorithm, sometimes, may not be stable when constant parameters (i.e.,
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Figure 2.11.: Computational costs of the four methods. (a) differential evolution
(DE) referenced as 100%, (b) genetic algorithm (GA), (c) pragmatic
approach (PA), (d) particle swarm optimization (PSO).

w = 1, C1 = 2 and C2 = 2) are used for all zero-offset samples. A strong semblance
event is disappeared in the PSO section (See Figure 2.12 b).

Figure 2.13 demonstrates crossline 300 of the semblance volume, which indicates
that a higher semblance can be obtained by the global search when compared to
the semblance provided by the pragmatic approach. The time slice tzo = 1.2 s of
the semblance volume is shown in Figure 2.14, where the DE demonstrates a great
potential to attenuate the horizontal artifacts/footprints observed in the pragmatic
approach. These horizontal artifacts are caused by the data acquisition system used.
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Figure 2.12.: Inline 190 of the semblance volume obtained by (a) pragmatic ap-
proach, (b) particle swarm optimization (PSO), (c) genetic algorithm
(GA), and (d) differential evolution (DE). The main differences are
denoted by white arrows.
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Figure 2.13.: Crossline 300 of the semblance volume obtained by (a) pragmatic ap-
proach, (b) particle swarm optimization (PSO), (c) genetic algorithm
(GA), and (d) differential evolution (DE).
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Figure 2.14.: Time slice 1.2 s of the semblance volume obtained by (a) pragmatic
approach, (b) particle swarm optimization (PSO), (c) genetic algo-
rithm (GA), and (d) differential evolution (DE). For approximate 90%
zero-offset samples, the DE can provide a higher semblance than the
pragmatic approach.
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2.7. Wavefront attributes of pragmatic approach and

global optimization

A higher semblance usually means that the simulated traveltime surface is fitted
well with the observed event, and its associated wavefront attributes are accurate
than those wavefront attributes searched from a lower semblance. For the sake
of simplicity, only the M11 is shown. Other wavefront attributes are provided in
Appendix D. Figure 2.15 and Figure 2.16 show inline 190 and crossline 300 sections
of the M11 volume, where the M11 is smoother with less noise if the global search
is applied. In the time slice shown in Figure 2.17, the M11 provided by different
algorithms are different (see different colors). The color difference provided by these
methods will be smaller if we clip these pictures with exactly the same color bar. In
practice, the set of wavefront attributes with the best semblance is applied.

From the above investigations, I found that the DE could be the best algorithm
among PSO, GA, as well as the pragmatic approach to determine the 3-D CRS
wavefront attributes while using the semblance as the objective function. In Chap-
ter 3, I will use the DE to represent the global optimization algorithm against
with the conventional pragmatic approach to determine the 3-D CRS wavefront at-
tributes. With the determined wavefront attributes, I will present one 5-D seismic
interpolation technique called 5-D WABI, where I will state how the 5-D WABI
works. To check the potential usage of the proposed 5-D WABI method, a com-
parison of the 5-D WABI with a mathematics-based, rank-reduction 5-D seismic
interpolation is given there.
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Figure 2.15.: Inline 190 of M11 volume obtained by (a) pragmatic approach, (b)
particle swarm optimization (PSO), (c) genetic algorithm (GA), and
(d) differential evolution (DE).
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Figure 2.16.: Crossline 300 of M11 volume obtained by (a) pragmatic approach, (b)
particle swarm optimization (PSO), (c) genetic algorithm (GA), and
(d) differential evolution (DE).
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Figure 2.17.: Time slice 1.2 s of the M11 volume obtained by (a) pragmatic approach,
(b) particle swarm optimization (PSO), (c) genetic algorithm (GA),
and (d) differential evolution (DE).



Chapter 3.

5-D interpolation with wavefront

attributes

Three-dimensional (3-D) prestack seismic data are often recorded in the five-dimensional
(5-D) data space: four spatial dimensions and one temporal dimension (e.g., common-
midpoint (CMP) coordinates in x and y, azimuth, offset, and time). As some nat-
ural and anthropogenic factors, e.g., field obstacles, dead traces, and budgetary
constraints, 3-D prestack seismic data may be irregularly and sparsely sampled
during data acquisition, which would affect the image quality of further applica-
tions. In order to resolve this problem, a simple and straightforward strategy is
to introduce interpolated traces into these data gaps. In the literature, there are
about five categories of interpolation methods reported. The first category is based
on sparse transforms, such as Radon transform (e.g., Kabir and Verschuur, 1995;
Trad et al., 2002; Zhang and Lu, 2014), Fourier transform (e.g., Liu and Sacchi,
2004; Zwartjes and Sacchi, 2007; Trad, 2009; Curry, 2010; Naghizadeh and Innanen,
2011), and Curvelet transform (e.g., Naghizadeh and Sacchi, 2010). With the sparse
transforms, one can gradually attenuate the artifacts and recover the missing data
information in the sparse domain by iteratively thresholding the transformed domain
of the incomplete seismic data (Chen et al., 2016b). The second category of seismic
interpolation methods is the prediction-filtering based interpolation methods (e.g.,
Spitz, 1991; Naghizadeh and Sacchi, 2009; Liu and Fomel, 2011), which interpolate
high-frequency aliased data using prediction-error filters derived from low-frequency
non-aliased data. This method works well with regularly sampled data. The third
category of methods includes the Cadzow rank-reduction method (e.g., Trickett,
2008; Trickett et al., 2010; Chen et al., 2016a,b), or called the multichannel singular
spectrum analysis (MSSA) method (e.g., Oropeza and Sacchi, 2011; Huang et al.,
2015). The rank-reduction-based interpolation methods assume that missing traces
and random noise increase the rank of the constructed Hankel/Toeplitz matrices,
and one can intuitively reduce the negative effects caused by the missing traces and
random noise by applying rank-reduction operators (e.g., Chen et al., 2016a,b). They
intuitively satisfy the local plane-wave assumption. The fourth seismic interpolation
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methods is the wave-equation based methods (e.g., Ronen, 1987; Stolt, 2002; Fomel,
2003; Kaplan et al., 2010). They generally assume that the subsurface velocity is
known and are computationally expensive solving the wave equation. The last kind
of interpolation methods is the wavefront-attribute based interpolation (WABI, e.g.,
Höcht et al., 2009; Baykulov and Gajewski, 2009, 2010; Xie and Gajewski, 2016b;
Xie, 2017), which is a data-driven, velocity independent interpolation technique ex-
tended from e.g., the Common-Reflection-Surface (CRS) method (e.g., Jäger et al.,
2001; Mann, 2002; Höcht, 2002; Müller, 2003). This kind of interpolation methods
utilizes wavefront attributes derived from moveout of events for several neighboring
CMP gathers. The missing traces are predicted by the so-called partial stack. Exam-
ples are the partial CRS stacking (e.g., Baykulov and Gajewski, 2009, 2010), which
can significantly increase the signal-to-noise ratio (S/N) of every trace and fill the
data gaps after the interpolation. In this fashion a regularized 3-D data volume with
improved S/N is generated. Since the wavefront attributes are derived from move-
out which contains information on reflector dip, strike, and curvature, I consider
this kind of interpolation techniques as physics-based interpolation methods to dis-
tinguish them from pure mathematics-based interpolation approaches. The WABI
method is performed within the first Fresnel zone and therefore it uses traces in the
interpolation process, which resolve the same structural details. Since the wavefront
attributes are determined by kinematic features of the wave field, i.e., moveout,
aliasing issues are relaxed. Next to the CRS operator any other operator utilizing
wavefront attributes like i-CRS (Schwarz and Kashtan, 2014), non-hyperbolic CRS
(Fomel and Kazinnik, 2013) or multi-focusing (Gelchinsky et al., 1999) can be used.
These operators determine wavefront attributes from pre-stack data equally well
(Walda and Gajewski, 2017). The 3-D partial CRS method (Baykulov and Gajew-
ski, 2010) was successfully applied to denoise and reconstruct 3-D prestack seismic
data with low S/N. However, two potential problems need to be addressed in this
method and are considered in this work:

i) To obtain high-quality 3-D wavefront attributes their determination should be
performed with global optimization. The above-mentioned publication adopted a
pragmatic search strategy in sub-volumes of the data which may lead to a poor or
insufficient fit of the adapted traveltime surface to the full data volume. As any
other processing step using wavefield attributes also the 3-D partial CRS benefits of
high-quality attributes.

ii) To regularize traces within each 3-D CMP gather, an azimuth-based regular-
ization process would be better to be developed to account for the wide-, rich- or
full-azimuth acquisition. In previous works the regularization was performed along
a specific azimuth which does not exploit the potential of different azimuth acquisi-
tion.

An effective solution to resolve the first problem in the conventional 3-D partial
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CRS method is to develop a global search strategy which determines the wavefront
attributes globally from the entire 5-D data space by assuming that the wave kine-
matics are properly described by the 3-D CRS traveltime formula. The wavefront
attributes with global determination have presented in Chapter 2, where I found
that the DE is the most stable algorithm to globally determine the 3-D CRS wave-
front attributes when compared with the PSO, GA, and the conventional pragmatic
approach. Hence, in this chapter, the DE algorithm is utilized for the global de-
termination of the 3-D wavefront attributes. To address the trace regularization
problem, an azimuth-based regularized strategy is presented in this chapter for the
trace regularization in each 3-D CMP gather.

In this chapter, I first describe the basic concept of the WABI method for the
5-D interpolation purpose, e.g., based on the 3-D partial CRS method, where I
call this interpolation method as 5-D WABI since it works in the 5-D data space.
Then I compare the 5-D WABI method with the conventional 3-D partial CRS
method using the 3-D SEG data as an example. Finally, to check the potential
usage of the proposed 5-D WABI method, a comparison of the 5-D WABI with
a mathematics-based 5-D seismic interpolation, e.g., based on the damped rank-
reduction method (see Chen et al., 2016b), is presented, using a simple 3-D synthetic
data of a diffraction event and the complex 3-D SEG data.

3.1. 5-D WABI

As a 5-D interpolation technique aside from nowadays mathematics-based 5-D seis-
mic interpolation, the 5-D WABI applies the wavefront attributes that has specific
physical meaning in actual applications. The wavefront attributes thereby can be
determined by the 3-D CRS approach while taking the semblance as an objective
function. I call the 5-D WABI method as a physics-based interpolation distin-
guishing it to the other mathematics-based 5-D interpolation. Practically, there are
several steps need to be pointed out when the 5-D WABI method is utilized:

Firstly, I compute the midpoint locations m = (mx, my) for each 3-D CMP gather
of the 3-D data. In each 3-D CMP gather, I get m = (

∑n
i=1mi)/n, where mi is the

midpoint location of a shot s and a receiver g, i indicates the shot-receiver pair, and
n is the number of pairs in this 3-D CMP gather. For each receiver trace in this 3-D
CMP gather, I have mi = (g + s)/2 and hi = (g − s)/2, where s = (sx, sy), g =
(gx, gy), mi = (mi,x, mi,y), and hi = (hi,x, hi,y).

Secondly, the location of a given 3-D CRS gather is determined by a 3-D CMP
gather located at mzo = (mzo,x, mzo,y). I often apply two steps to read traces into
a given 3-D CRS gather:



38 CHAPTER 3. 5-D INTERPOLATION WITH WAVEFRONT ATTRIBUTES

(i) reading traces into the given 3-D CRS gather if all traces in the 3-D data satisfy:
(mx − mzo,x)

2/amx
2 + (my − mzo,y)

2/amy
2 ≤ 1, where the denominator amx and

amy are the midpoint aperture (see Figure 3.1 a), and mx and my indicate any 3-D
CMP position located within the red ellipse centred at the given 3-D CMP location
of mzo = (mzo,x, mzo,y). The number of 3-D CMP gathers used in the given 3-D
CRS gather depends on the midpoint aperture that can be estimated by the Fresnel
zone (e.g., Hubral et al., 1993a) or tested by the user.

(ii) selecting traces into the offset dimension if all traces obtained in step (i) satisfy:
hi,x

2/hx,i
2 + hi,y

2/hy,i
2 ≤ 1, where the denominator hx,i, hy,i are the offset aperture

centred at tzo (see Figure 3.1 b). The offset aperture at each ZO traveltime can
be computed from the pre-determined offset aperture: hx,0, hy,0, hx,n, and hy,n (see
Appendix A). The elliptical aperture used in this work is not the only way to
select traces into a given 3-D CRS gather, but it is a good solution preferable to a
rectangular surface, based on my tests on the open 3-D SEG C3WA data.

In the next step I determine the traces which contribute to a given 3-D partial CRS
gather. The given 3-D CRS gather is already loaded into the computer memory. If
traces within the given 3-D CRS gather satisfy the relation (hi,x − offx)2/px,i

2 +
(hi,y − offy)2/py,i

2 ≤ 1, they are selected into the given 3-D partial CRS gather
centred at (offx, offy), where px,i and py,i are the semi-major and semi-minor
axes of the horizontal ellipse (blue) (see Figure 3.1 b). Both the px,i and py,i are
estimated by the pre-determined apertures: a, b, c, and d (see Appendix A).

After this step I compute the ZO traveltime tzo,p for the 3-D partial CRS operator.
For a sample A on trace k with h = (offx, offy), the tzo,p can be obtained with the
following traveltime oprator in each 3-D CMP gather.

t222(offx, offy) = t211 + hTMh. (3.1)

I assume the ZO traveltime tzo,p = t11 if the calculated t22 satisfy: (t−t22)
2 ≤ fmin2,

where t11 is the trial ZO traveltime, and t22 is the calculated hyperbolic traveltime
(see Figure 3.2 a). A refinement of the tzo,p using Equation 3.1 at the sample A
may be considered after the wavefront attributes of tzo,p are obtained. The eight
wavefront attributes of tzo,p are read from the attribute files (a byproduct of the DE
algorithm), which will be used in the following 3-D partial CRS operator for the 5-D
interpolation purpose.

t2hyp,p = (tzo,p + 2p ·mζ)
2 +mT

ζ Nmd + hTMh. (3.2)

Equation 3.2 is a 5-D interpolation operator in the time domain. With this op-
erator, the sample A is interpolated at t on trace k located at (m0,x, m0,y, offx,
offy). The same process is performed for each sample on trace k, and other traces
in the 3-D CMP gather, as well as other 3-D CMP gathers in the whole 3-D data.
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Figure 3.1.: CRS and partial CRS apertures used in this work. (a) A given 3-D
CRS gather consisting of several 3-D CMP gathers, where the black
dots denote locations of the 3-D CMP gathers. (b) A considered 3-
D CMP gather and its crossponding 3-D partial CRS offset aperture
(blue) in this 3-D CMP gather. Note: the blue ellipse here is only a
subset of whole 3-D partial CRS aperture in the offset direction. (c)
The considered time slice at tzo. (d) An azimuth-based regularization
performed at tzo, where the black grid points are the trace location
regularized along different azimuth directions. Here only the positive
offsets are shown, and the constant azimuthal angle between the dashed
lines is the azimuthal interval. More details see Figure 3.3.

In each 3-D CMP gather of the 3-D data, each trace’s location is regularized by
an azimuth-based regularization in the offset dimension (see Figure 3.1 d and Fig-
ure 3.3), where different azimuthal directions are considered. In practice, the 3-D
partial CRS apertures and the azimuthal intervals are tested from the 3-D data. I
often perform a series of tests to find the optimized 3-D partial CRS apertures and
azimuthal intervals. Amplitude variation in the midpoint dimension can be esti-
mated by the modulus of geometrical spreading factor (e.g., Hubral et al., 1993b;
Schleicher et al., 1993a). Shuey’s approximation (Shuey, 1985) can be applied to
analyze the amplitude versus offset (AVO) in the offset dimension in each 3-D CMP
gather. The amplitude of the sample A is a summation of all amplitudes along the
3-D partial CRS traveltime surface within the 3-D partial CRS aperture, i.e., an im-
provement of the S/N ratio is obtained. Considering the AVO may be omitted since
I stack locally along the offset direction. However, the AVO analysis is necessary
while dealing with data of larger gaps since in such case a large offset aperture for
the 3-D partial CRS stacking is applied to ensure more traces included.
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Figure 3.2.: Calculating tzo,p and construct 3-D partial CRS stacking operator for a
sample A on trace k located at (mzo,x, mzo,y, offx, offy). (a) Calculat-
ing the tzo,p by a traveltime fitting process. For the sake of simplicity,
only one direction (OF) is shown. The black curve is an observed seis-
mic event at this direction. In order to find tzo,p, the traveltime operator
(Equation 3.1) is used. I start from the first ZO sample (see the top
blue dashed curve), then the traveltime surface (Equation 3.1) is moved
downward until the condition satisfies: (t − t22)

2 ≤ fmin2, where I
assume tzo,p = t11. To better understand, the traveltime difference be-
tween tzo,p and t11 shown in this figure is exaggerated. In practice, the
difference between tzo,p and t11 is very small. Usually, I will refine tzo,p
using the simulated sample A if the wavefront attributes around tzo,p are
smooth. The coefficient fmin can be automatically calculated by the
wavefront attributes of two neighboring ZO samples around tzo,p. The
right green line is a boundary of the offset aperture in the OF direction.
(b) An intersection (red curve) of the 3-D partial CRS traveltime sur-
face with the vertical OF plane, where its top horizontal short (blue)
line is the partial CRS aperture for sample A in OF direction. Aside
from the red curve, other parts of the 3-D partial CRS traveltime sur-
face at current CMP gather as well as at its neighbouring CMPs are not
shown here. The whole 3-D partial CRS traveltime surface is expressed
as Equation 3.2.
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Figure 3.3.: Different azimuth-based regularization strategies. (a) An azimuth-fixed
regularization (e.g., φ = 0). (b) Narrow azimuth regularization. (c)
Regularization of one trace k (offx, offy) on the azimuth direction
of iaz ∗ ∆φ, where ∆φ is the azimuth interval, the sign ∗ denotes a
multiplication, and iaz indicates the number of azimuth intervals start-
ing (counter-clockwise) from φ = 0. (d) A wide- or full- azimuth reg-
ularization. For each azimuth direction iaz ∗ ∆φ in the 3-D CMP
gather, I set hx = hy/tan(0 + iaz ∗ ∆φ) and hy = j ∗ ∆hy, where
j = 0, 1, 2, ..., Intmax(hy)/∆hy. The function Intmax() returns the
maximum integer value of hy and ∆hy is the offset increment in the hy

direction. The azimuth interval ∆φ and offset increment ∆hy should
be set by the user in different data. In the 3-D SEG case, I use
∆φ = 6 ∗ π/180 and ∆hy = 30 m, which need to be tested from the
data, e.g., several ∆φ and ∆hy are tried until the one with the best
result is gotten. For the 3-D SEG data, the azimuth range can be set
between [−π 0] or [π to 2π], seeing the data acquisition geometry. For
the azimuth-based regularization, I do the same calculation for the 3-D
simple data discussed in Chapter 3.3 where the offset interval is set in
the x direction, i.e., ∆hx = 30 m.
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3.2. 3-D partial CRS stacking and 5-D WABI

The 3-D SEG C3WA data is used here for the interpolation purpose. To see the per-
formance of the conventional 3-D partial CRS stacking and the 5-D WABI method
in this work, 50% traces in the 3-D SEG data were randomly killed. The midpoint
and offset apertures designed for the 3-D SEG data utilized in this work are given
in Appendix A.

3.2.1. Usage of pragmatic approach and DE

Before I present a comparison of the conventional 3-D partial CRS stacking with
the 5-D WABI method, the wavefront attributes require to be determined from the
gapped 3-D SEG data by the pragmatic approach (3-D partial CRS) and by the DE
algorithm (5-D WABI). Related to the pragmatic approach, the reader can reference
Müller’s work (see Müller, 2003). Additionally to Chapter 2, I briefly summarize
how to use the DE algorithm in the 3-D CRS case for the 5-D interpolation purpose.
Four parameters need to be determined in the DE algorithm. The first two are the
differential weight F and the crossover probability CR, a priori suggested values are
given by Pedersen (2010). However, I found that the F and CR may be slightly
different with different objective functions. In this work, I use F = 1.2 and CR =
0.9 for maximizing the semblance. The last two parameters are the population size
NP and the number of iterations IT , which also need to be tested from the data.
In my tests to the 3-D SEG data, I found that a safe suggestion of the NP should
be larger than 40, and the IT would be better larger than 50 (see Chapter 2). In
order to determine the F and CR in the above, a very large IT and NP needs to be
trialled at the beginning to make sure the DE results only sensitive to F and CR,
then the IT and NP are estimated with the obtained F and CR.

3.2.2. Semblance difference between pragmatic approach and

DE

To see the semblance difference between the pragmatic approach and the DE algo-
rithm, three sections of the 3-D semblance volume are shown. These are a time slice
of 1.2 s, inline 190, and crossline 300 (see Figure 3.4 and Figure 3.5). The semblance
difference of the three sections indicates that, for close to 90% of the zero-offset (ZO)
samples, the semblance provided by the DE algorithm is higher than the one pro-
vided by the pragmatic approach. A detailed semblance comparison of four ZO
samples taken from the 3-D semblance volume is shown in Figure 3.6, where the
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semblance provided by the DE algorithm turns out to be higher. The computa-
tional efficiency between the traditional pragmatic approach and the DE algorithm
is shown in Chapter 2, where the DE is more efficient.

3.2.3. Two CMP gathers

To see the differences between the 3-D partial CRS stacking and the 5-D WABI
method on individual 3-D CMP gather, two 3-D CMPs are shown in this work.
Both are randomly selected without any preference.

The first one is CMP 181903 (see Figure 3.7, displayed in a 2-D section, i.e., all
traces are sorted with increasing offsets). In this gather, seismic events on the raw
data are visible but unclear. Figure 3.7b shows the same data but some traces
were deleted to simulate data gaps. After determination of the 3-D CRS wavefront
attributes obtained from the reduced 3-D data, the conventional 3-D partial CRS
stacking and the 5-D WABI method are applied separately. Figure 3.7c displays this
3-D CMP gather processed by the conventional 3-D partial CRS stacking, where the
reflection events are clearly visible and continuous with less noise, compared to the
raw and gapped 3-D CMP gather (Figure 3.7 b). Figure 3.7d shows the same 3-D
CMP gather but processed by the 5-D WABI method, which also displays improved
results compared to the raw and gapped 3-D CMP gather. In this 3-D CMP gather
with CMP 181903, I do not see a big different result between the conventional 3-D
partial CRS stacking and the 5-D WABI method.

The second example shows data for CMP 182113 of the 3-D SEG data, which is
noisier and the seismic events are difficult to identify. After processing with the
conventional 3-D partial CRS stacking and the 5-D WABI method the gaps are
filled and the reflection events are clearly visible (see Figure 3.8c and d). However,
the result of 5-D WABI displays an improved result. The semblance is used to
confirm this visual observation.

3.2.4. Two CO sections

In order to see the interpolation results on more 3-D CMP gathers simultaneously,
two 3-D common-offset (CO) volumes are shown. In each 3-D CO volume, a 3-D
CMP gather contains only one trace, and all traces in the 3-D CO volume have the
same half offset. The first 3-D CO volume is chosen from a constant half offset of
h = (0 m, 100 m). The second 3-D CO volume is taken from a far constant half
offset with h = (0 m, 1000 m). In each of the two 3-D CO volumes, three sections
comprising the salt body are considered. These are inline 190, crossline 300, and a
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ossline number

Figure 3.4.: Semblance and semblance difference for time slice 1.2 s of the 3-D sem-
blance volume. (a) Semblance difference between (d) and (c), where
about 89.7% ZO samples have a positive semblance. (b) Interpolation
operators with low and high semblance. (c) Semblance of time slice 1.2
s with pragmatic approach. (d) Semblance of time slice 1.2 s with DE
global optimization. The semblance difference is computed by using the
semblance of DE minus the semblance of pragmatic approach.
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Figure 3.5.: Semblance and semblance difference for inline 190 and crossline 300 of
the 3-D semblance volume. (a) Semblance of inline 190 with pragmatic
approach. (b) Semblance of inline 190 with DE global optimiation.
(c) Semblance difference between (b) and (a), where about 88.7% ZO
samples have a positive semblance. (d) Semblance of crossline 300 with
pragmatic approach. (e) Semblance of crossline 300 with DE global
optimization. (f) Semblance difference between (e) and (d), where about
88.1% ZO samples have a positive semblance. The semblance difference
is computed by using the semblance of DE minus the semblance of
pragmatic approach.
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Figure 3.6.: Semblance of the four ZO samples mentioned in Chapter 2. The global
optimization algorithm here is the DE algorithm.

time slice at 1.2 s. In these interpolation sections, all figures have the same color
bar with a minimum (blue) and a maximum (red) amplitude ranged from -0.6 to
0.6.

Figure 3.9 shows inline 190 of the first 3-D CO volume, where the image quality of the
raw data is poor, and many deep reflection events and diffraction patterns are almost
invisible (see Figure 3.9a). Figure 3.9b displays the section with removed traces.
A better continuity of horizons at different time levels can be seen and the S/N is
increased significantly after the 3-D partial CRS stacking and the 5-DWABI method
are applied. Some differences between the 3-D partial CRS stacking and the 5-D
WABI method are marked by red arrows (see Figure 3.9c and d). Figure 3.10 shows
crossline 300 of the first 3-D CO volume, where most of the seismic events shown on
the raw data are difficult to identify except the top horizontal layers (Figure 3.10a).
However, many reflection events and diffraction patterns are observed after the 3-D
partial CRS stacking is applied. It can provide continuous seismic events at all time
levels with a better S/N (see Figure 3.10c). Even improved results are obtained
when the 5-D WABI method is applied (see Figure 3.10d), which displays more
continuous events than the conventional 3-D partial CRS stacking. I note that the
resolution of the crossline section is worse than that of the inline section. This is
due to a sparse data acquisition along the inline direction. Figure 3.11 shows the
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Figure 3.7.: A 3-D CMP gather (CMP 181903) picked from the 3-D SEG data. (a)
Raw 3-D CMP gather with low S/N. (b) Raw 3-D CMP gather with
gaps. (c) Interpolation with conventional 3-D partial CRS stacking. (d)
Interpolation with 5-D WABI method. For the sake of simplicity, only
the azimuth φ = π/2 is shown in this 3-D CMP gather after the 5-D
interpolation and regularization.
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Figure 3.8.: A 3-D CMP gather (CMP 182113) picked from the 3-D SEG data. (a)
Raw 3-D CMP gather with low S/N. (b) Raw 3-D CMP gather with
gaps. (c) Interpolation with conventional 3-D partial CRS stacking. (d)
Interpolation with 5-D WABI method. For the sake of simplicity, only
the azimuth φ = π/2 is shown in this 3-D CMP gather after the 5-D
interpolation and regularization.
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time slice 1.2 s of the first 3-D CO volume, where the structure of the salt body is
hardly visible both on the raw time slice and the reduced time slice. However, a
significantly improved result is obtained either by the 3-D partial CRS stacking or
by the 5-D WABI method (see Figure 3.11c,d). Again, the latter performs better
leading to smoother images than the conventional 3-D partial CRS for most of the
ZO sample locations.

Results obtained from the second (far-offset) 3-D CO volume are significantly im-
proved with the 5-D WABI method compared to the 5-D WABI method applied to
the first (near-offset) 3-D CO volume. See the corresponding inline 190 and crossline
300 of the second 3-D CO volume (Figure 3.12, Figure 3.13). Figure 3.14 shows the
time slice at 1.2 s, where the 5-D WABI method provides a smoother image with
less noise, compared to the conventional 3-D partial CRS stacking. In the central
part of the slice, the structure of the salt body imaged by the 5-D WABI method
is better visible than the one obtained for the conventional 3-D partial CRS. For
about 90% of the ZO samples, the results obtained for the 5-D WABI method are
better than for the conventional 3-D partial CRS (as an example where this is not
the case, see the right top corner of Figure 3.14c and Figure 3.14d). For these cases
these areas, the semblance calculated from the DE-based wavefront attributes is
lower than the semblance for the conventional 3-D partial CRS stacking (see Fig-
ure 3.4c,d). With low-semblance traveltime interpolation operator, the data sample
may be interpolated at a wrong (W) position, instead of the right (R) position (see
Figure 3.4b). Usually, one can use a local optimization algorithm to refine the DE-
based wavefront attributes in these low-semblance areas. However, this option failed
in my tests, where two local optimization algorithms, namely a modified simulated
annealing (MSA) and the Nelder-Mead method were tested. I think that a local
optimization may not guarantee to find or move forward to the global best if the
initial guess is too far away from the global best. I conclude, that for most ZO sam-
ples, nearly 90% in this case, the results obtained from the 5-D WABI are obtained
in better quality using less computational time.

Using the 5-D WABI method and considering several events for the same ZO sam-
ple (conflicting dips) may be cumbersome in the interpolation process if the data is
complex with larger gaps. This conclusion, however, is applicable to trace interpo-
lation in general since the projected Fresnel zone set physical limits with respect to
size of handleable data gaps. For some ZO samples, the number of seismic events
pertaining to a ZO sample can be counted and searched by the algorithm. In such
case, a well-interpolated result can be obtained. However, at some ZO samples
with sparse data comprising large data gaps, the 3-D hyperbolic or non-hyperbolic
CRS traveltime operator may fail in the process of determining wavefront attributes
which belong to different events of a ZO sample. Here, I consider only the dominant
event at each ZO sample. Obviously, events not considered are not interpolated
and therefore missing after the interpolation process. The conventional 3-D par-
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tial CRS stacking has already demonstrated good performance for reflection data
(see Baykulov and Gajewski, 2009, 2010). This work indicated that the 5-D WABI
method provides reliable results for reflections and diffractions.
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Figure 3.9.: Inline 190 of the first 3-D CO volume. (a) Raw CO section. (b) Raw
CO section with gaps. (c) Interpolation with conventional 3-D partial
CRS stacking. (d) Interpolation with the 5-D WABI method.
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Figure 3.10.: Crossline 300 of the first 3-D CO volume. (a) Raw CO section. (b)
Raw CO section with gaps. (c) Interpolation with conventional 3-D
partial CRS stacking. (d) Interpolation with the 5-D WABI method.
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Figure 3.11.: Time slice 1.2 s of the first 3-D CO volume. (a) Raw data. (b) Raw
data with gaps. (c) Interpolation with conventional 3-D partial CRS
stacking. (d) Interpolation with the 5-D WABI method.
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Figure 3.12.: Inline 190 of the second 3-D CO volume. (a) Raw CO section. (b)
Raw CO section with gaps. (c) Interpolation with conventional 3-D
partial CRS stacking. (d) Interpolation with the 5-D WABI method.
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Figure 3.13.: Crossline 300 of the second 3-D CO volume. (a) Raw CO section. (b)
Raw CO section with gaps. (c) Interpolation with conventional 3-D
partial CRS stacking. (d) Interpolation with the 5-D WABI method.
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Figure 3.14.: Time slice 1.2 s of the second 3-D CO volume. (a) Raw data. (b) Raw
data with gaps. (c) Interpolation with conventional 3-D partial CRS
stacking. (d) Interpolation with the 5-D WABI method.
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3.3. 5-D WABI and rank-reduction-based 5-D

interpolation

The proposed 5-D WABI method, as an extension of the conventional 3-D partial
CRS approach, has shown its potential to reconstruct reflection and diffraction data.
However, related to the 5-D interpolation, there are several other types of 5-D seismic
interpolation approaches proposed recently. In order to check the potential usage
of the proposed 5-D WABI, I also compare it with the rank-reduction-based 5-D
interpolation, e.g., the damped rank-reduction method (Chen et al., 2016b), which
performs quite well for reflection data. The rank-reduction codes used in this work
are modified from the open-source Matlab code package (Chen et al., 2016a). The
compared results are given in two 3-D datasets discussed below.

3.3.1. Applications to a simple 3-D synthetic data

I first use a simple 3-D model to generate prestack synthetic seismic data which are
close to the benchmark 3-D data used in many published interpolation works (e.g.,
Trad, 2009; Oropeza and Sacchi, 2011; Chen et al., 2016a,b). In addition I consider
a spherical diffractor in the model since most recently published 5-D interpolation
results mainly focus on data dominated by reflections (e.g., Trad, 2009; Chopra
and Marfurt, 2013; Kreimer et al., 2013; Gao et al., 2015; Ely et al., 2015; Chen
et al., 2016b). Diffraction is more and more gaining interest in both academic and
industry applications since it images small-scale heterogeneities and structures, e.g.
fractures, pinch-outs, thin lenses etc. (e.g., Dell and Gajewski, 2011a,b; Rad et al.,
2015). Preserving diffractions (i.e fractures) in 5-D interpolation is a discussed topic
and leaves space for discussions and investigations (Trad, 2014).

The simple 3-D model is separated by three layers with the velocity of 1500 m/s,
1800 m/s and 2000 m/s, respectively. A spherical diffractor with a velocity of 4000
m/s and with a lateral extension of 100 m is buried in the bottom layer. In the
forward modeling, a zero-phase Ricker-wavelet with a prevailing frequency of 20 Hz
is applied. The 3-D synthetic prestack seismic data has a CMP spacing of 12.5 m
in the x direction, and 25 m in the y direction. The maximum CMP fold is 20,
and the sampling interval is 4 ms. I add 20% random noise to the data, i.e., the
maximum RMS amplitude of the signal is 5 times than that of the random noise. In
the reduced data set, 50% traces is randomly removed. In the 3-D CRS wavefront
attribute search, the midpoint aperture is set to 75 m in the x direction and 50 m in
the y direction. The 3-D CRS offset aperture and 3-D partial CRS offset aperture
are estimated by the user given in Appendix A.
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Figure 3.15.: Computational costs of the 5-D WABI method and the 5-D DRRM
method, where the 5-D WABI is referenced as 100%. I mention that
the computational costs of the 5-D WABI tested here include a global
determination of the wavefront attributes by the DE algorithm.

In the following, I will compare the two interpolation methods with respect to com-
putational efficiency and image quality for reflections and diffractions. Figure 3.15
shows the computational costs between the two 5-D interpolation methods tested
from the simple 3-D data, which indicates that the damped rank-reduction method
has the same magnitude of computational costs compared with the 5-D WABI
method when the same computational setting is used, e.g., the same number of
CPUs. The comparison may be slightly different with different implementations or
different parameter setting, but it indicates that both methods could be comparable
in the computational costs. The parameter setting is crucial in the damped rank-
reduction method which needs some testing for the data under consideration. I use
rank K = 3, which is a parameter accounting for the reconstructed events. The
damping factor N is set to 2. The greater the N , the weaker is the damping, i.e.,
a higher S/N data output corresponds to a smaller N . The number of iterations
for each frequency slice is set to 10. The minimum and maximum frequency to
reconstruct are between 0 Hz and 200 Hz. These parameters are tested from the
data. For these tests, the Hankel matrix and the three block Hankel matrices are
set close to square matrices. For a detailed discussion on parameters one can refer
to the paper (Chen et al., 2016b). In order to show the 5-D interpolation results
in 2-D planes, I first extract a 3-D CO volume, e.g., setting the constant half offset
h = (25 m, 0 m), from the 5-D interpolated results, then the 3-D CO volume is
cut into two sections (inline 10 and crossline 100) and two time slices (1.66 s and
2.4 s). The two time slices are used to show the reflection (1.66 s) and the bottom
diffraction (2.4 s). The color bar of all figures shown below is the amplitude after
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the interpolation.

Figure 3.16 shows inline 10 of the 3-D CO volume. I note that the damped rank-
reduction method displays reflections slightly stronger, while the 5-D WABI method
is superior for diffractions. In the top part with reflection-only data, the damped
rank-reduction method reconstructs the reflection to the boundary even if the re-
flection terminates prior to the boundary (see the left-hand white arrows). In the
bottom part of the data, the diffraction pattern is recovered quite well with the
5-D WABI method. The damped rank-reduction method preserves only parts of
the diffraction. Figure 3.17 is the crossline 100 of the 3-D CO volume, where both
interpolation methods are comparable when the crossline is cut at the center of the
salt body, i.e., closer to the spherical diffractor. Figure 3.18 displays the time slice at
1.66 s cutting through the second reflector. Here the damped rank-reduction method
shows a better performance than the 5-D WABI to reconstruct the reflection. In
the bottom part at time slice 2.4 s which cuts through the diffraction pattern, the
5-D WABI is considerably better in preserving the diffraction when compared with
the damped rank-reduction method (see Figure 3.19).

For a more detailed investigation of the damped rank-reduction method on diffraction-
only data, the bottom part of the whole 3-D data is used. The comparison is shown
in Figure 3.20. In this comparison I see that the damped rank-reduction method
can recover parts of the diffraction but still fail to preserve the diffraction tails. If
the frequency component of the random noise is close to that of the weak diffraction
tails, we may have a challenge to predict or reconstruct the diffraction tails in the
frequency domain without a data enhancement facility which is included in the 5-D
WABI procedure. Perhaps I need to design adaptive sizes for the Hankel matrix
and for the three block Hankel matrices to account for the diffraction in the future.

3.3.2. Applications to the open 3-D SEG C3WA data

In this section, I apply the two 5-D interpolation methods to the open 3-D SEG
data, with S/N = 5, and 50% traces randomly removed in the data. I use K = 15,
N = 6, and 10 iterations in the damped rank-reduction method. The minimum
and maximum reconstructed frequencies are set between 0 Hz to 250 Hz. These
parameters are also tested from the 3-D SEG data, in which I get almost the same
result if the maximum reconstructed frequency is set larger than 50 Hz. The 3-D
CRS apertures and the 3-D partial CRS apertures used here are set as the same as
in Chapter 3.2.

Figure 3.21 shows inline 190 of a 3-D volume that is extracted from the 5-D inter-
polated result with a constant half offset of (0 m, 20 m). I note that the damped
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rank-reduction method is strong to reconstruct the reflection events, but weak to
preserve the diffraction events by the salt body in the middle of the model. The 5-D
WABI is strong in preserving the diffraction patterns including the weak multiple
diffractions, compared to the damped rank-reduction method. Similar conclusions
are obtained for crossline 300 shown in Figure 3.22. In the time slice at 1.2 s shown
in Figure 3.23, the damped rank-reduction method performs well to reconstruct the
strong reflections, but fails to preserve the diffraction events caused by edgy struc-
tures, while the 5-D WABI keeps both, the reflection and the diffraction, which are
recovered very well when compared with the original data.
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Figure 3.16.: Inline 10 of the 3-D CO volume (hx = 25 m, hy = 0 m). (a) Origi-
nal data section. (b) Reduced section after adding 20% random noise
and killing 50% traces randomly. (c) Denoising and data reconstruc-
tion with the damped rank-reduction method. (d) Denoising and data
reconstruction with the 5-D WABI method.



3.3. 5-D WABI AND RANK-REDUCTION-BASED 5-D INTERPOLATION 61

(a)

5 10 15 20

Inline number

0

1

2

3

4

T
im

e
 [
s
]

-0.2

0

0.2

0.4

0.6

0.8

(b)

5 10 15 20

Inline number

0

1

2

3

4

T
im

e
 [
s
]

-0.2

0

0.2

0.4

0.6

0.8

(c)

5 10 15 20

Inline number

0

1

2

3

4

T
im

e
 [
s
]

-0.2

0

0.2

0.4

0.6

0.8

(d)

5 10 15 20

Inline number

0

1

2

3

4

T
im

e
 [
s
]

-0.2

0

0.2

0.4

0.6

0.8

Figure 3.17.: Crossline 100 of the 3-D CO volume (hx = 25 m, hy = 0 m). (a)
Original data. (b) Reduced section after adding 20% random noise
and killing 50% traces randomly. (c) Denoising and data reconstruc-
tion with the damped rank-reduction method. (d) Denoising and data
reconstruction with the 5-D WABI method.
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Figure 3.18.: Time slice 1.66 s of the 3-D CO volume (hx = 25 m, hy = 0 m). (a)
Original data section. (b) Reduced section after adding 20% random
noise and killing 50% traces randomly. (c) Denoising and data recon-
struction with the damped rank-reduction method. (d) Denoising and
data reconstruction with the 5-D WABI method.
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Figure 3.19.: Time slice 2.4 s of the 3-D CO volume (hx = 25 m, hy = 0 m). (a)
Original data section. (b) Reduced section after adding 20% random
noise and killing 50% traces randomly. (c) Denoising and data recon-
struction with the damped rank-reduction method. (d) Denoising and
data reconstruction with the 5-D WABI method.
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Figure 3.20.: 5-D interpolation results with the diffraction-only data, i.e., the bottom
part of the 3-D CO volume (hx = 25 m, hy = 0 m). The top two
columns are selected from the central part of the diffraction-only data,
where (a) is gotten from the damped rank-reduction method and (b)
is obtained from the 5-D WABI method. The bottom two columns
selected from the right-hand side of the diffraction-only data, where (c)
is gotten from the damped rank-reduction method and (d) is obtained
by the 5-D WABI method.
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Figure 3.21.: Inline 190 of the 3-D CO volume (hx = 0 m, hy = 20 m). (a) Original
data section with 20% random noise. (b) Reduced section with 50%
randomly deleted traces. (c) Denoising and data reconstruction with
the damped rank-reduction method. (d) Denoising and data recon-
struction with the 5-D WABI method. The four subfigures have the
same color bar with a minimum (blue) and a maximum (red) amplitude
ranged from -0.6 to 0.6.
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Figure 3.22.: Crossline 300 of the 3-D CO volume (hx = 0 m, hy = 20 m). (a) Orig-
inal data section with 20% random noise. (b) Reduced section with
50% randomly deleted traces. (c) Denoising and data reconstruction
with the damped rank-reduction method. (d) Denoising and data re-
construction with the 5-D WABI method. The four subfigures have
the same color bar with a minimum (blue) and a maximum (red) am-
plitude ranged from -0.6 to 0.6.
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Figure 3.23.: Time slice of 1.2 s of the 3-D CO volume (hx = 0 m, hy = 20 m).
(a) Original data section with 20% random noise. (b) Reduced section
with 50% randomly deleted traces. (c) Denoising and data reconstruc-
tion with the damped rank-reduction method. (d) Denoising and data
reconstruction with the 5-D WABI method. The four subfigures have
the same color bar with a minimum (blue) and a maximum (red) am-
plitude ranged from -0.6 to 0.6.





Chapter 4.

Conclusions

Wavefront attributes are useful in seismology and seismic exploration, such as prestack
data enhancement, diffraction imaging, and wavefront tomography. In this work,
a global determination of the 3-D CRS wavefront attributes is presented, where
three global optimization algorithms are introduced for the global search purpose,
including the PSO, GA and DE algorithm. By using the open 3-D SEG C3WA data
as an example, I found that the semblance and its associated wavefront attributes
provided by the GA or by the DE algorithm are better than those semblances and
attributes provided by the PSO or by the pragmatic approach. Surprisingly, a global
determination of the 3-D CRS wavefront attributes with the GA or the DE algo-
rithm is cheaper than the PSO algorithm and even cheaper than the conventional
pragmatic approach, which is challenging my previous understanding that a global
search could be computationally expensive. Several parameter tests for the three
optimization algorithms showed that, to find the maximum semblance, there are
still some challenges to pick suitable parameters for the GA or for the PSO, while
for the DE, the optimization process is performed stably and not so sensitive to the
parameter setting in the optimization while taking the open 3-D SEG data as an
example.

Next to the global optimization, I demonstrate one application with the globally-
determined wavefront attributes, which is called 5-D WABI. The 5-D WABI method
is an extension of the conventional 3-D partial CRS stacking with the improvement
of wavefront attributes and an azimuth-based regularization is applied in each 3-D
CMP gather to better account for data with wide-, rich- and full-azimuth acquisition.
Results with the open 3-D SEG data indicate that the performance of the 5-D WABI
method is better than the conventional 3-D partial CRS stacking. The improvements
are particularly visible at far offset traces.

To check the potential usage of the proposed 5-D WABI method, a comparison of
the 5-D WABI with the rank-reduction-based 5-D interpolation is given. The com-
parison indicates that the 5-D WABI method revealed a better performance in the
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interpolation process for steeply dipping events like, e.g., diffraction tails. Because
of this feature, diffractions are much better preserved by the 5-D WABI than by the
rank-reduction-based interpolation. Since diffraction imaging is developing into a
powerful add on to plain reflection processing, this feature is substantial for all kind
of processing steps utilizing diffractions. Since the wavefront attributes are deter-
mined from kinematic properties of the wavefield, namely moveout, aliasing issues
are relaxed. The computational effort of the 5-D WABI approach is comparable
to the CPU time consumed by the damped rank-reduction method where the com-
parison includes the CPU time for the determination of wavefront attributes which
may be used for several other processing purposes like velocity model building, time
and depth migration, diffraction separation and tomography, just to name a few.
The 5-D WABI provides a powerful alternative to other 5D interpolation methods
with improved handling of diffractions and relaxed aliasing issues. Next to the inter-
polation capability itself the 5-D WABI process also provides a data enhancement
facility.



Chapter 5.

Outlook

For a near 20 years, the 3-D CRS wavefront attributes are generally determined by
the conventional pragmatic approach, which works quite well for the classical 3-D
CRS stacking. However, today CRS-based works have shifted to the applications
with the wavefront attributes, instead of the stacking only. Recent works have re-
ported that lots of processing steps using wavefield attributes benefit of high-quality
attributes. Besides, modern computing power allows to determine the wavefront at-
tributes globally in a competitively economic fashion. Both motivate one to globally
determine the 3-D CRS wavefront attributes when a 3-D CRS-based work is carried
out. Aside from the 5-D interpolation presented in this work, there are still lots of
subsequent applications benefit of high-quality wavefront attributes, which will be
given in future works. Examples are:

1: 3-D wavefront-based diffraction separation and imaging with global
optimization and conflicting dip processing. In previous works, a global de-
termination of the 3-D CRS wavefront attributes and the conflicting dip problem
are not considered. With the two considerations together with the 3-D DSR trav-
eltime operator (e.g., Abakumov, 2017) or the 3-D non-hyperbolic CRS operator
(Fomel and Kazinnik, 2013), improved diffracted wavefields could be revealed on
the stacked volume when compared with the conventional 3-D CRS stacked volume.
After subtracting the reflections from the full stacked volume, e.g., by the coher-
ent subtraction method (e.g., Schwarz and Gajewski, 2017), a diffraction-dominated
data can be obtained for the diffraction imaging purpose. The associated results
have been reproduced recently, and will be presented soon.

2: 3-D diffraction tomography. With the diffraction-dominated data, e.g., from
the above work, together with the 3-D common-diffraction-surface (CDS) operator
or the 3-D DSR operator, as well as the kinematic and dynamic ray tracing and the
ray perturbation theory, a smooth, laterally inhomogeneous velocity model can be
obtained, which would be useful in RTM and FWI, e.g., providing an initial velocity
model.
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In this work, I only use the 3-D hyperbolic CRS operator to determine the wavefront
attributes. Alternative traveltime operators like the 3-D non-hyperbolic CRS, the
3-D implicit CRS as well as the 3-D DSR traveltime operators (see Abakumov, 2017)
can be used as well.
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Appendix A.

Midpoint and offset apertures

3-D CRS midpoint and offset apertures

The midpoint and offset apertures used in the 3-D CRS-based works are crucial for
the imaging purpose. In practice, these apertures are often estimated from the data
with a data-driven fashion. Figure 3.1a displays the midpoint aperture (red ellipse)
used in the interpolation, being initially set to 200 m in both x- and y- direction,
i.e., amx = amy = 200 m. Figure 3.1b shows an offset aperture used in this work.
The parameters hx,0 and hy,0 are the semi-major and semi-minor axes of the top
ellipse, where a selection of the location (cutting through a sample) and the size of
the top ellipse depends on the data used. In practice, the observed seismic events
from the top to the bottom in the offset dimension are initially constrained within
the offset aperture, then several candidates for the offset aperture are probed until
the one with the best performance is found. The location and size of the bottom
ellipse is defined in the same way. In this case, the semi-major and semi-minor axes
of an ellipse cutting through a sample on the ZO trace are computed by

hx,i = hx,0 + i ∗ (hx,n − hx,0)/n, (A.1)

hy,i = hy,0 + i ∗ (hy,n − hy,0)/n, (A.2)

where hx,n and hy,n are the semi-major and semi-minor axes of the bottom ellipse,
and n is the maximum number of ZO samples. In the 3-D SEG data, I set hx,0 =
140 m, hy,0 = 800 m, hx,n = 140 m, hy,n = 1350 m. In the simple 3-D data, I use
hx,0 = 800 m, hy,0 = 50 m, hx,n = 1000 m, hy,n = 50 m. The 3-D SEG data has
a small half offset in the x direction, up to 140 m, and the simple 3-D data has a
small half offset in the y direction, up to 50 m.
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3-D partial CRS midpoint and offset apertures

The midpoint aperture used in the 3-D partial CRS stack is set as the same as the
3-D CRS stack. The offset aperture used in the 3-D partial CRS stack is determined
as:

px,i = b+ i ∗ (d− b)/n, (A.3)

py,i = a + i ∗ (c− a)/n, (A.4)

where a, b, c, and d are estimated by applying several possible apertures and keeping
the one with the best image quality. In the 3-D SEG data, I set a = c = 400 m, b
= d = 100 m. So for all samples, I have px,i = 100 m, py,i = 400 m. Similarly, I
set a = c = 50 m, b = d = 500 m for the simple 3-D dataset discussed in the 5-D
interpolation part. In this work, I use the same apertures (e.g., midpoint and offset)
for both the 3-D partial CRS stack and the 5-D WABI method.



Appendix B.

Pseudocode of several optimization

algorithms

Algorithm 1 : Particle Swarm Optimization (PSO) with 3-D CRS approach

01: Set the maximum number of iterations ;
02: Initialize each particle’s position (EPP) in the search space;
03: Initialize each particle’s best position (EPBP), e.g., EPBP = EPP;
04: Calculate semblance for each particle (a set of wavefront attributes);
05: Calculate the global best position (GBP) based on the best semblance;
06: Update each particle’s variation according to Equation (2.14);
07: Update each attribute’s position according to Equation (2.15);
08: Update EPBP and GBP if the new position leads to higher semblance;
09: Abort criteria is maximum iterations or the semblance tolerance.

Algorithm 2 : Genetic Algorithm (GA) with 3-D CRS approach

01: set IT , NP , probabilities pc and pm for crossover and mutation;
02: initialize each individual Pi in the user-defined search space;
03: calculate the semblance Si for each individual Pi (a set of wavefront attributes);
04: find the global best semblance Sg over each semblance Si;
05: store the global best Sg and its coressponding Pg; // i.e., keep the best
06: for it = 1 until IT do
07: select new generation based on Algorithm 3;
08: call crossover or mutation operator based on pc and pm;
09: calculate new semblance NSi for each new generated individual Xi;
10: find the global best semblance NSg over each new semblance NSi;
11: store the global best semblance NSg and its coressponding Xg;
12: if ( NSg > Sg) Sg = NSg, Pg = Xg; // i.e., update the best
13: end for
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ALGORITHMS

Algorithm 3 : Roulette Wheel Selection

01: for i = 1 until NP do
02: calculate relative fitness: RSi = Si/(S1 + S2 + ... + SNP );
03: calculate cumulative fitness: CSi =

∑NP
i=1 RSi;

04: end for
05: Randomly generate a real number ps between [0 1];
06: for i = 1 until NP − 1 do
07: if (ps < CS1) Xi = X1;
08: if (ps ≥ CSi && ps < CSi+1) Xi = Xi+1;
09: end for Note: fitness is the semblance in this work.

Algorithm 4 : Differential Evolution (DE) with 3-D CRS approach

01: set IT , NP , crossover probability CR and differential weight F ;
02: initialize each individual Pi in the user-defined search space;
03: calculate the fitness Si for each individual Pi (a set of wavefront attributes);
04: find the global best fitness Sg over each fitness Si;
05: store the global best Sg and its coressponding Pg; // i.e., keep the best
06: for it = 1 until IT do
07: for i = 1 until NP do
08: pick the three distinct numbers r1, r2 and r3;
09: generate an integer L between [1 8];
10: for j = 1 until 8 do
11: generate a random value p between [0 1];
12: if (p < CR or j = L) then
13: Xi,j = Pr1,j + F (Pr2,j − Pr3,j);
14: else
15: Xi,j = Pi,j;
16: end if
17: end for
18: calculate new fitness NSi for new generated individual Xi (Xi = Xi,j);
19: if (NSi > Si )
20: Si = NSi;
21: Pi = Xi;
22: end for
23: find the global best fitness NSg over each new fitness NSi;
24: store the global best fitness NSg and its coressponding Xg;
25: if (NSg > Sg) then // i.e., update the best
26: Sg = NSg;
27: Pg = Xg;
28: end if
29: end for
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Algorithm 5 : Nelder-Mead Simulated Annealing (NMSA) with 3-D CRS approach

01: set nine initial starting vertices (x0, ... ,x8) defining an initial non-degenerated
simplex and calculate the semblance values -f(xi) of all nine vertices (each vertex
vector xi corresponding to eight wavefront attributes);
02: set the initial temperature T0 and a constant temperture steps tempstep;
03: set the iteration steps iter at given temperature T = T0 - k * (T0−0)/tempstep,
where k =∈ {0, 1, 2, ..., tempstep};
04: while (k <= tempstep) do
05: while (j ≤ iter) do
06: add a positive and logarithmically distributed random value T*Random to
the -f(xi), where i =∈ {0, 1, 2, ..., 8};
07: order according to the semblance values at the vertices: f(x0) ≤ f(x1) ≤ ...
≤ f(x8);
08: calculate the centroid vector xg of all vertices except x8;
09: calculate reflected point xr = xg + α(xg - x8), where α being set as 1;

if f(x0) ≤ f(xr) < f(x7), reconstruct the simplex by replacing the worst
point x8 with the reflected point xr, and go to step 7;

if f(xr) < f(x0), expand the reflected point to the expended point xe = xr +
γ (xr - xg), where γ being set as 2;

if the f(xe) < f(xr) reconstruct the simplex by replacing the worst point
x8 with the expanded point xe, and go to step 7;

else f(xe)≥ f(xr), reconstruct the simplex by replacing the worst point x8

with the reflected point xr, and go to step 7;
else f(xr) ≥ f(x7), calculate contracted point xc = xg + ρ(x8 − xg), where 0

< ρ < 0.5, and being set as 0.5 in this work;
if f(xc) < f(x8), reconstruct the simplex by replacing the worst point x8

with the contracted point xc, and go to step 7;
else f(xc) ≥ f(x8), replace all vertices except the best by xi = x0+ σ(xi −

x0), where σ = 0.5, and then go to step 7;
10: compute fractional range tol from the best to the worst point and return if
tol < ftol, where ftol is defined by the user;
11: save the best point and its corrosponding semblance value in this loop;
12: end while
13: end while
14: save the final best point x0 and its corrosponding semblance value -f(x0) for
the given ZO sample;

Note: x0 is always the best point, the aim of the above algorithm is to update x0.
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Algorithm 6 : Powell Conjugate Direction (PCD) with 3-D CRS approach

01: set the maximum number of iterations IT ;
02: set an initial point and an initial 8 × 8 unit matrix;
03: while it <= IT do
04: while i < 8 do // i = 0, 1, 2, ..., 7
05: isolate the minimum point of the semblance function in i direction, and
return its corresponding semblance value;
06: calculate the largest decreasing direction ibig during the eight direction;
07: end while
08: check the terminal critera it <= IT (or using ftol);
09: construct a new direction from the initial point to the minimum point of the
last direction;
10: calculate an extrapolated point in the new direction, and set the minimum
point of the last direction as the initial point for next it;
11: check the semblance value at the extrapolated point meet the so-called con-
jugate condition (Powell, 1964) or not;
12: if ( condition is satisfied ) then
13: set the minimum point of the new direction as the initial point of next it;
// i.e., update the initial point at step 9
14: replace the ibig direction by the last direction;
15: set the new direction as the last direction of next it; //i.e., introduce a new
direction
16: else
17: keep the set of directions for next it;
18: end if
19: end while
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Model-driven wavefront attributes

In Chapter 2 of this work, the wavefront attributes are determined by the 3-D
CRS approach with a data-driven fashion. In this section, I will show how to com-
pute the wavefront attributes by kinematic and dynamic ray tracing in the general
Cartesian coordinates x1, x2, x3, where a certain smooth, laterally inhomogeneous
background velocity model is needed. Kinematic and dynamic ray tracing are ex-
pressed in many forms and in various coordinate systems (see Červený, 2001). Here,
a solution to perform the kinematic and dynamic ray tracing in the general Carte-
sian coordinate system is summarized, where I will explain how the slowness vector
and the ray-propagator matrix computed by the kinematic and dynamic ray tracing
are connected with the data-driven wavefront attributes.

Kinematic ray tracing is important in forwarding modeling to compute the travel-
time, the slowness vector at any point of the reference ray. Generally, the kinematic
ray tracing is expressed in the general curvilinear coordinates ξ1, ξ2, ξ3. However,
executing kinematic ray tracing for models in curvilinear coordinates are often com-
plex since the analytical expressions for the scale factors h1, h2, and h3 in orthogonal
coordinates are required. Besides, if the spherical polar coordinates r, θ, φ, one of
the most used curvilinear coordinates, are given as initial ray coordinates γ1, γ2,
γ3, the ray tracing may fail in some regions, such as the θ close to 0 or to π (polar
regions), or the radius distance r close to 0 (see Červený, 2001). Performing the ray
tracing in ray-centered coordinates are common, but parameters used in velocity
models are often given in the general Cartesian coordinates and a transformation of
them into the ray-centered coordinates or transforming the displacement and slow-
ness of a ray from the ray-centered coordinates to the general Cartesian coordinates
is required. As the wavefront attributes determined from, e.g., the 3-D CRS, are
derived from the isotropic case. In the follows, I only consider the kinematic and
dynamic ray tracing in an inhomogeneous isotropic medium, corresponding rela-
tionships for anisotropic media can be found in Červený (2001). In such case, the
anisotropic CRS may be required. In the general Cartesian coordinate system for
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isotropic medium, the eikonal equation is simplified as

3
∑

i=1

(p
(x)
i )2 − v−2(x1, x2, x3) = 0, (C.1)

where p
(x)
i := ∂τ

∂xi
, i = 1, 2, 3, τ is the traveltime along a given ray, and v(x1, x2, x3)

is the inhomogeneous background medium velocity. By assuming no turning point
with respect to the x3 direction in the region of interest and eliminating one of the
space variables (e.g., x3) in Equation (C.1), one can get
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where the function H is called the reduced Hamiltonian and the associated reduced
ray-tracing systems reads as follows:
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(C.3)

The traveltime variation along the given ray can be integrated by

dτ

dx3

=
1

v2p
(x)
3

. (C.4)

In the above, I set xi = xi(u) and u is a free monotonic parameter along the ray, not
the traveltime or arclength here. If the integration step length dx3 is set, the dx1,
dx2, dp

(x)
1 , dp

(x)
2 as well as the dτ can be computed with the background velocity v.

The initial conditions, e.g., the starting location xi and the slowness vector pI are
taken from results of the 3-D CRS stack. Using the initial conditions with Equation
(C.3) and Equation (C.4), the NIP location (xi|NIP ) and the two horizontal vectors
eI (eI = vpI) of the unit vector ê defined the up-going normal ray direction can be
computed. Again to use Equation (C.3) and (C.4), the traveltime and the slowness
vector of the reference ray emerged at the surface can be integrated with the increse-
ment of dx3, where the slowness vector pI equals to the vector p in Equation (2.9).
Alternative kinematic ray tracing without reduced Hamiltonian, e.g., considering
turning points, is given in (Červený, 2001), where the formulas are different but
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the basic ideas are the same, see section 3.3.1 of the seismic ray theory (Červený,
2001). There are several advantages to use reduced Hamiltonian. The first one is
that the differential equations used in the kinematic ray tracing are reduced from
seven to five. The second is that derivatives of velocity are only required in the
x- and y-directions which significantly increases the computational efficiency in the
3-D case. Besides, ”turning normal rays rarely occur in practice (in fact, most depth
migration algorithms do not handle turning wave energy). If they do occur, they
can be easily excluded during the inversion process” (see Duveneck, 2004).
Dynamic ray tracing (expressed in ray coordinate system) also known as paraxial
ray tracing (expressed in ray-centered coordinate system) which involves to cal-
culate the 4 × 4 ray propagator matrix Π(x) or the wavefront curvature matrix

(K
(x)
CS = GK

(q)
CSG

T) of a ray in the general Cartesian coordinate system, where
the subscript CS means common shot. In the follows, the associated reduced
Hamiltonian is applied. Performing dynamic ray tracing in the general Carte-
sian coordinate system without reduced Hamiltonian is given in section 4.7.1 of
the seismic ray theory (Červený, 2001). If one notes w = (x1, x2, p

(x)
1 , p

(x)
2 )T and

∆w = (∆x1,∆x2,∆p
(x)
1 ,∆p

(x)
2 )T , the dynamic ray tracing system in the general

Cartesian coordinate system can be written as

d
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∆w = S∆w (C.5)

where the S is a 4 × 4 matrix with
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Each element of S can be calculated as follows by using Equation (C.2).
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Equation (C.5) means that the ∆w can be computed with dx3. The associated ray
propagator matrix Π(x) is satisfied:

d

dx3
Π(x) = S Π(x). (C.8)

The matrix Π(x) is defined as

Π(x) =

(

Q
(x)
1 Q

(x)
2
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(x)
2

)

. (C.9)

The 2 × 2 matrices Q
(x)
1 and P

(x)
1 are generally explained as a solution of Equation

(C.5) for initial condition of a line source. While Q
(x)
2 and P

(x)
2 are explained as

a solution of Equation (C.5) for initial condition of a point source (see Červený,

2001). Using Equation (C.5) through Equation (C.9), the four matrices Q
(x)
1 , Q

(x)
2 ,
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P
(x)
2 and P

(x)
2 along the reference ray can be integrated with the incresement of dx3

starting from a shot to a receiver. However, in order to find a connection between
Π(x) with the wavefront attributes, the relationship between Π(x) and T is needed
since the submatrices A, B, C, and D of T are related to the wavefront attributes
(see Equation (2.7) and Equation (2.9)). Generally, the T is expressed in a local
Cartesian coordinates z1, z2, z3. It could be referred to as T(z). However, in marine
data acquisition, the local Cartesian coordinates system coincides with the general
Cartesian coordinate system, and a transformation between them does not need
anymore. Hence I set T = T(z), and the T is often used in the seismic systems
(e.g., Bortfeld, 1989; Hubral et al., 1992). A relationship between Π(q) expressed in
ray-centered coordinate system and T(z) is given in Section 4.4.7 of the seismic ray
theory (Červený, 2001), where I noteΠ(x) =T(z) =T only if the dynamic ray tracing
is performed in the general Cartesian coordinate system and the data is acquired,
e.g., from marine environment, in which the shots and receivers are situated near the
sea level. One should note that, generally, Π(x) 6= Π(q), Π(q) 6= T(z), and T(z) 6= T.
Transformation matrices, interface matrices and the velocity distribution around
shots and receivers are required. The Π(x) = T I use here because: 1) the dynamic
ray tracing is performed in the general Cartesian coordinates, no transfromation
required; 2) the matrix described the inhomogeneity of the medium near the shot and
receiver locations vanishes in a constant velocity medium; 3) the interface curvature
matrix around the sources and receivers equals to zero. In the case of the normal
ray tracks along a ray from the surface ŝ to the underground NIP, one can define
the down-going propagator matrix T0 and the up-going propagator matrix T∗

0 as:

T0 =
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A0 B0

C0 D0

)

,T∗
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0 BT

0

CT
0 AT

0

)

. (C.10)

Using dynamic ray tracing starting from the NIP up-going to the receivers, each
element of the up-going propagator matrix T∗

0 of a ray can be obtained. According
to the chain rule described a central ray traveling from ŝ to NIP and back to the
receiver ĝ, one can get

DB−1 −B−1 = D−1
0 C0,

DB−1 +B−1 = B−1
0 A0.

(C.11)

Hence, with Equation (2.7), following equations can be obtained:

Mzo
mm = D−1

0 C0,

Mzo
hh = B−1

0 A0.
(C.12)

In case of the dynamic ray tracing starting from the NIP up-going to the receivers,
with the right part of Equation (C.10), the following equations are derived:
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K

(x)
CS. (C.13)
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It is often used in the NIP-wave tomography (e.g., Duveneck, 2004), where Mzo
hh =

Mzo
mm = M

(x)
CS for the NIP case. The slowness vector pI related to first derivatives

of the traveltime is computed with Equation (C.3) in the kinematic ray tracing sys-
tem. While the T∗

0 related to second derivatives of the traveltime is calculated in
the dynamic ray tracing system, where the relationship between submatrices of T∗

0

and the curvature matrice Mzo
hh and Mzo

mm is given in Equation (C.12). So far, the
relationship between the data-driven wavefront attributes and model-driven wave-
front attributes is derived to the normal ray case. A derivation for the non-normal
ray case (e.g., the 3-D FO CRS) is similar since we have the wavefront attributes de-
termined by Equation (2.4), and the associated model-driven (forwarded) wavefront
attributes can be computed by the two ray tracing systems discussed above.
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Data-driven wavefront attributes

With the open 3-D SEG C3WA data as an example, the eight wavefront attributes
can be determined by the 3-D CRS approach with a data-driven fashion. In this
section, I only provide the wavefront attributes searched by the pragmatic approach
and the DE global optimization, where three sections of the resulted volume are
shown. The reader if interesting can ask the 3-D CRS with global optimization
software from the WIT website or from the WIKI pages (applied seismics, Hamburg)
to reproduce all of them to see other parts of the attribute volume or try to pick
the GA and PSO algorithm to see the differences between them.

The image quality of M00 is low (see Figure D.1). This is because the 3D SEG
C3WA data has a small half offset (up to 140 m) in the x direction. I do not
observe big differences between the pragmatic approach and the DE algorithm in
terms of the azimuth and dip sections except the inline 190, where the azimuth and
dip attributes provided by the DE algorithm can provide clearer and distinguished
events. The N wavefront attributes show different color values, where I use 300 m
midpoint aperture for both methods in this comparison. In practice for the 3D SEG
data, one can use a smaller midpoint aperture, e.g 100 m or 200 m. I suggest to use
the DE algorithm for the determination of 3-D wavefront attributes. The GA and
PSO algorithm can be used as well, but you may bear more effort to find suitable
parameters for the GA or PSO when different datasets are used.
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Figure D.1.: M00 wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE.
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Figure D.2.: M10 wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE.
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Figure D.3.: M11 wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE.
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Figure D.4.: Azimuth wavefront attribute. (a) Inline 190 with pragmatic approach.
(b) Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE. In this test, I constrain the azimuth
search range between [−80◦ to 80◦]. However, to better use the 3-
D SEG C3WA data, one would be better to set the azimuth range
between [−180◦ 0◦ ] or [180◦ 360◦]. Even more, the semblance would
be kept almost the same when setting the azimuth to π/2, −π/2, or
3π/2, seeing the data acquisition geometry.
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Figure D.5.: Dip wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE. In this test, I constrain the dip search
range between [−80◦ to 80◦].
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Figure D.6.: N00 wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE.
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Figure D.7.: N10 wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE.
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Figure D.8.: N11 wavefront attribute. (a) Inline 190 with pragmatic approach. (b)
Inline 190 with DE. (c) Crossline 300 with pragmatic approach. (d)
Crossline 300 with DE. (e) Time slice 1.2 s with pragmatic approach.
(f) Time slice 1.2 s with DE.





Appendix E.

Software developed in this work

I used a Unix operating system (Debian OS) with the typesetting software LATEX to
write the thesis. The software listed below was executed on the Thunder8 operated
by the Central IT Services (CIS). Examples shown in the thesis were drawn and
visualized by Inkscape, Matlab, and Seismic Unix package made available by the
Center for Wave Phaenomena (CWP) at the Colorado School of Mines. For this
work, five software packages are developed:

1: 3-D CRS with global optimization. It is a global search software written in
OpenMPI/C++ by Yujiang Xie in order to simultaneously determine the 3-D CRS
wavefront attributes, where several optimization algorithms are introduced. Exam-
ples are the particle swarm optimization (PSO) (Kennedy and Eberhart, 1995; Shi
and Eberhart, 1998), genetic algorithm (GA) (Holland, 1975), differential evolution
(DE) (Storn and Price, 1997), simulated annealing (SA) (see e.g., Kirkpatrick et al.,
1983), Nelder-Mead (NA) method (Nelder and Mead, 1965), as well as the Pow-
ell conjugate direction (PCD) algorithm (Powell, 1964). In this software, the 3-D
non-hyperbolic CRS (Fomel and Kazinnik, 2013) is also taken into account (results
are not shown in this work). The C++ source files to read and write SU files are
originally written by German Höcht and Alexander Müller. The raw version of the
software can be downloaded from the WIT website, and an updated version can be
gotten from the WIKI pages, applied seismics, Hamburg.

2: 3-D kinematic and dynamic ray tracing. I developed this software written
in OpenMPI/C++ in order to compute the traveltime, slowness vector, and the ray
propagator matrix of a ray from a given smooth velocity model. The slowness vector
and the ray propagator matrix are related to the 3-D CRS wavefront attributes (see
Appendix C and D). In this software, only the isotropic case is implemented and
the reduced Hamiltonian is considered, e.g., without turning points. This software
is an extension of Duveneck’s NIP-wave tomography package (Duveneck, 2004).
Results with the 3-D kinematic and dynamic ray tracing to compute the 3-D CRS
wavefront attributes from a given smooth velocity model will be investigated later.
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3: 5-D interpolation with wavefront attributes. It is a 5-D seismic interpo-
lation software written in OpenMPI/C++ by Yujiang Xie based on the 3-D wave-
front attributes determined above. To regularize the seismic traces in each 3-D
CMP gather, I use an azimuth-based regularization strategy, e.g., all traces are situ-
ated along different azimuth directions with increasing offsets. This software has two
packages, the first package called 3D partial CRS stack is an extension of Baykulov’s
partial CRS package (Baykulov and Gajewski, 2009, 2010), where different azimuthal
directions are considered. The second package is called 3-D finite-offset CRS stack
(not showing in this work).

4: Rank-reduction-based 5-D interpolation. This software is an extension of
the open-source Matlab code package (Chen et al., 2016a). The current version is
very computational expensive since it involves several very larger matrices (more
than 30 GB while dealing with a 3 GB data) in the Matlab environment.

5: 3-D CRS with pragmatic approach, which is originally written by Müller
(2003), where I developed the matrix N search step since the old 3-D CRS version
downloaded from the WIT website seems missing the N search step.
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Publications derived from the dissertation.

Journal papers:

Y. Xie & D. Gajewski, 2017. 3-D wavefront attributes and conflicting dips, Geo-
physics, submitted.
Y. Xie & D. Gajewski, 2017. 5-D interpolation with wavefront attributes, Geo-
physical Journal International, 211, 897-919.

Conference abstracts:

Y. Xie, 2017. 3D Prestack Data Enhancement with a Simplified CO CRS Operator,
79th EAGE Conference and Exhibition 2017.

Y. Xie & D. Gajewski, 2016. Interpolation and regularization with the 3D CRS
operator, SEG Technical Program Expanded Abstracts 2016.

Y. Xie & D. Gajewski, 2016. Simultaneous estimation of the 3D CRS attributes by
an evolutionary-based Nelder Mead algorithm, SEG Technical Program Expanded
Abstracts 2016.

Y. Xie & D. Gajewski, 2016. Automatic Estimation of the 3D CRS Attributes by
a Metaheuristic-based Optimization, 78th EAGE Conference and Exhibition 2016.
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Červený, V. (2001). Seismic Ray Theory. In Cambridge University Press, Cam-
bridge.
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